

FINAL SUPPLEMENTAL REMEDIAL INVESTIGATION/FEASIBILITY STUDY WORK PLAN LAUREL STATION 1009 EAST SMITH ROAD BELLINGHAM, WASHINGTON

For

Kinder Morgan Canada URS Job No.: 33762344

May 28, 2010

May 28, 2010

Mr. David South Senior Engineer Toxics Cleanup Program Washington Department of Ecology Northwest Regional Office 3190 160th Avenue SE Bellevue, WA 98008–5452

> Final Supplemental Remedial Investigation/Feasibility Study Work Plan Laurel Station 1009 East Smith Road Bellingham, Washington URS Job No.: 33762344

Dear Mr. South:

Presented herein is the Final Supplemental Remedial Investigation/Feasibility Study Work Plan for the above referenced property. This report was prepared by URS Corporation on behalf of Kinder Morgan Canada Inc., operator of the Trans Mountain (Puget Sound) LLC. pipeline system, in accordance with the First Amended Enforcement Order No. DE 91-N192 effective June 15, 1992. Please contact us if you have any questions or require additional information.

Sincerely, URS Corporation

Karen Mixon Project Manager Matt Annis Senior Environmental Scientist

David R. Raubvogel, LHG Senior Geologist

URS Corporation 1501 4th Avenue, Suite 1400 Seattle, WA 98101-1616 Tel: 206.438.2700 Fax: 206.438.2699

TABLE OF CONTENTS

1.0	INTRODUCTION						
	1.1	ENFORCEMENT ORDER	1				
	1.2	SITE DESCRIPTION AND BACKGROUND	2				
	1.3	SITE OPERATIONAL HISTORY	3				
	1.4	PURPOSE OF DOCUMENT	3				
2.0	ENVIRONMENTAL SETTING						
	2.1	PHYSIOGRAPHY	4				
	2.2	GEOLOGIC SETTING					
	2.3	HYDROGEOLOGICAL SETTING	5				
	2.4	SURFACE WATER HYDROLOGY	5				
3.0	POTENTIAL SOURCES OF CONTAMINATION						
	3.1	HISTORIC SPILLS AND RELEASES	7				
	3.2	JANUARY 15, 1991	8				
	3.3	STATION AREA UPGRADES	8				
	3.4	DECEMBER 11, 1991	9				
	3.5	MARCH 7, 1992					
	3.6	OCTOBER 26, 2000	9				
4.0	AREAS OF CONCERN						
	4.1	ORDER-DEFINED AREAS					
	4.2	STUDY UNIT 1					
	4.3	STUDY UNIT 2					
	4.4	STUDY UNIT 3					
	4.5	STUDY UNIT 4					
	4.6	STUDY UNIT 5					
	4.7	STUDY UNIT 6					
	4.8	STUDY UNIT 7	11				
5.0	PRELIMINARY CLEANUP STANDARDS						
	5.1	PRELIMINARY CLEANUP LEVELS					
		5.1.1 Land and Resource Uses, Exposure Pathways, and Receptors	13				
		5.1.1.1 Human Exposure Pathways and Receptors	13				
		5.1.1.2 Ecological Exposure Pathways					
		5.1.2 Preliminary Soil Cleanup Levels	14				
		5.1.3 Preliminary Groundwater Cleanup Levels	16				
		5.1.4 Preliminary Surface Water Cleanup Levels	16				
		5.1.5 Preliminary Air Cleanup Levels					
		5.1.6 Preliminary Sediment Cleanup Levels					
	5.2	PRELIMINARY POINTS OF COMPLIANCE	17				
	5.3	APPLICABLE OR RELEVANT AND APPROPRIATE					
		REQUIREMENTS	18				

6.0	PREVIOUS INVESTIGATIONS AND INTERIM CLEANUP ACTIONS					
	6.1		IL INVESTIGATIONS			
		6.1.1	Historic S	Spills and Releases	19	
			6.1.1.1	1971 Spill	. 19	
			6.1.1.2	1979 Spill		
			6.1.1.3	Relief Tank Area		
		6.1.2	January 1	5, 1991 Spill	21	
			6.1.2.1	16-Inch Ferndale Pipeline		
			6.1.2.2	Area 1		
			6.1.2.3	Area 2		
			6.1.2.4	Area 3	. 24	
		6.1.3	Station A	rea and December 11, 1991 Spill		
			6.1.3.1	Former Pump Station Area		
			6.1.3.2	Former Oily Water Sump		
			6.1.3.3	Former Burn Pit and Former Oil/Water Separator		
			6.1.3.4	Former Drain Line Between Oily Water Sump and Burn Pit		
			6.1.3.5	Former Drain Tile		
			6.1.3.6	Former Waste Pit		
			6.1.3.7	16-Inch Ferndale Pipeline		
			6.1.3.8	20-Inch Main Pipeline		
			6.1.3.9	Former PSE Electrical Substation		
			6.1.3.10	December 11, 1991 Spill		
		6.1.4	March 7,	1992 Spill		
		6.1.5		26, 2000 Spill		
		6.1.6		age Cells		
	6.2	SURF	URFACE WATER INVESTIGATIONS			
		6.2.1	Onsite Su	ırface Water	33	
			6.2.1.1	Oil/Water Separator Monitoring	. 33	
			6.2.1.2	Surface Water Monitoring		
		6.2.2	Offsite Su	urface Water		
			6.2.2.1	Area 1		
			6.2.2.2	Area 3	. 34	
	6.3	GROU	JNDWATI	ER INVESTIGATIONS	35	
		6.3.1	Shallow A	Aquifer	35	
		6.3.2	Deep Aqu	uifer	36	
	6.4	WETI	LANDS ST	TUDIES	37	
7.0	NAT			T OF CONTAMINATION		
	7.1					
	7.2	ONSI	TE AND C	OFFSITE SURFACE WATER	39	
	7.3	GROU		ER		
		7.3.1		Aquifer		
		7.3.2		uifer		
	7.4			FFSITE SEDIMENT		
		7 / 1	Oncita W	atland Sadiment/Soil	40	

		7.4.2	Offsite Wetland S	Sediment/S	Soil			4
8.0	DATA	GAPS						4
9.0	PROPOSED DATA GAP INVESTIGATION							A'
7. 0	9.1							
	9.2		ΓΕ AND OFFSITE					
	9.3		ΓE AND OFFSITE					
	9.4		LANDS					
10.0	FEASIBILITY STUDY							4
11.0	NON-I	DATA :	ENFORCEMENT	ORDER A	ACTIONS			4
	11.1	HEAL	TH AND SAFETY	Y PLAN				4
	11.2	SPILL	PREVENTION P	LAN				44
	11.3		VATER SEPARAT					
	11.4	CURR	RENT STATUS OF	DAMS A	AND FUTU	RE PLANS	·	45
12.0	SCHE	DULE A	AND DELIVERA	BLES				4′
13.0	REFEI	RENCE	SS					48
TABL	ES							
Table	1 – Gro	undwat	er Elevation Data S	Summary				
Table	2 – Area	as of Co	oncern Summary	•				
Table	3 – Sum	mary S	Statistics and Poten	tial Clean	up Levels –	Soil		
Table	4 – Sum	mary S	Statistics and Poten	tial Clean	up Levels –	Groundwat	er	
Table	5 – Sum	mary S	Statistics and Poten	tial Clean	up Levels –	Surface Wa	ater	
Table	6 – Pote	ential C	leanup Levels for A	Air				
			of Soil Analytical R					
			of Soil Analytical R					nd Area 2)
			of Soil Analytical R					
		•	of Soil Analytical		-	=	-	
Table		•	of Soil Analytical	Results –	Former Bur	n Pit and Fo	ormer Oil/Wa	ater
	-		(Study Unit 1)					
Table		•	of Soil Analytical	Results –	Former Dra	in Line Bet	ween Oily W	/ater Sump
			Pit (Study Unit 1)					
		•	of Soil Analytical				,	ly Unit 1)
		•	of Soil Analytical			•	•	4.
		_	of Soil Analytical			_	-	
Table		mmary it 1)	of Soil Analytical	Results –	Former PSI	1 Electrical	Substation (S	Study
Table	17 – Su	,	of Soil Analytical	Results –	December 1	11, 1991 Spi	ill (Study Un	its 1, 5,
Table		,	of Soil Analytical	Results –	March 7, 19	992 Spill (St	tudy Unit 3)	

- Table 19 Summary of Analytical Results October 26, 2000 Spill (Study Unit 1)
- Table 20 Summary of Soil Analytical Results PCS Storage Cells (Study Units 3 and 7)
- Table 21 Summary of Surface Water Analytical Results (Study Units 2, 3, Area 1, and Area 3)
- Table 22 Summary of Groundwater Analytical Results Shallow Aquifer
- Table 23 Summary of Groundwater Analytical Results Deep Aquifer
- Table 24 Data Gaps Summary
- Table 25 Proposed Sampling Locations and Rationale

FIGURES

- Figure 1 Site Location Map
- Figure 2A Site Plan Historic Features
- Figure 2B Site Plan Current Features
- Figure 3 North-South Geologic Cross Section A A'
- Figure 4 East-West Geologic Cross Section B B'
- Figure 5 Groundwater Elevation Contour Map Shallow Aquifer
- Figure 6 Groundwater Elevation Contour Map Deep Aquifer
- Figure 7 Spill Area Map
- Figure 8 Soil Sample Locations 1971 Spill (Study Unit 5)
- Figure 9 Soil Sample Locations (Boneyard/Study Unit 4)
- Figure 10 Soil Sample Locations 1979 Spill (Study Unit 2)
- Figure 11 Soil Sample Locations Historical Spills and Releases (Study Unit 3)
- Figure 12 16-Inch Ferndale Pipeline Sample Locations (Purnell Investigation)
- Figure 13 Area 1 Sample Locations (Purnell Investigation)
- Figure 14 Area 2 Sample Locations (Purnell Investigation)
- Figure 15 Pump Station Area Sample Locations (Study Unit 1)
- Figure 16 Former Oily Water Sump Sample Locations (Study Unit 1)
- Figure 17 Former Burn Pit and Former Oil/Water Separator Sample Locations (Study Unit 1)
- Figure 18 Former Drain Line Between Oily Water Sump and Burn Pit Sample Locations (Study Unit 1)
- Figure 19 Former Drain Tile Excavation Sample Locations (Study Unit 1)
- Figure 20 Former Waste Pit Sample Locations (Study Unit 1)
- Figure 21 20-Inch Main Pipeline Sample Locations (Study Unit 1)
- Figure 22 PSE Electrical Substation Sample Locations (Study Unit 1)
- Figure 23 December 11, 1991 Spill Sample Locations (Study Units 1, 5, and 6)
- Figure 24 March 7, 1992 Spill Soil Sample Locations (Study Unit 3)
- Figure 25 October 26, 2000 Spill Sample Locations (Study Unit 1)
- Figure 26 PCS Storage Cell Sample Locations (Study Units 3 and 7)
- Figure 27 Surface Water Sampling Locations (Study Unit 2)
- Figure 28 Surface Water Sampling Locations (Area 3 and Study Unit 1)
- Figure 29 Surface Water Sampling Locations (Study Unit 3)
- Figure 30 Shallow Aquifer Analytical Results
- Figure 31 Deep Aquifer Analytical Results
- Figure 32 North-South Geologic Cross Section C–C'
- Figure 33 East-West Geologic Cross Section D–D'

- Figure 34 Proposed Soil Sample Locations (Area 1)
- Figure 35 Proposed Soil Sample Locations (Area 2)
- Figure 36 Proposed Soil Sample Locations (Study Unit 1)
- Figure 37 Proposed Soil Sample Locations 1979 Spill (Study Unit 2)
- Figure 38 Proposed Soil Sample Locations (Study Unit 3)
- Figure 39 Proposed Surface Water and Sediment Sampling Locations (Areas 1, 2, and 3)
- Figure 40 Proposed Surface Water and Sediment Sampling Locations (Study Unit 3)
- Figure 41 Site Plan and Proposed Data Gap Sampling Locations

APPENDICES (On disk; only Appendix G included in hard copy)

- Appendix A Enforcement Order Matrix, Supporting Bibliographies, and Amended Order
- Appendix B Boring Logs
- Appendix C Monitoring Well Construction Diagrams and Decommissioning Records
- Appendix D Laboratory Analytical Reports
- Appendix E Supporting Documentation for Enforcement Order-Related Activities
- Appendix F Kinder Morgan 2009 Discharge Monitoring Reports
- Appendix G Sampling and Analysis Plan
- Appendix H Ecology-Approved SPCC Letter

LIST OF ACRONYMS AND ABBREVIATIONS

-- not analyzed

ARARs applicable or relevant and appropriate requirements

ARI Analytical Resources, Inc.

B.C. British Columbia below ground surface

BTEX benzene, toluene, ethylbenzene, and xylenes

CAP cleanup action plan

cPAHs carcinogenic polycyclic aromatic hydrocarbons

cy cubic yards

DMR(s) Discharge Monitoring Reports
DRO diesel-range hydrocarbons

Ecology Washington State Department of Ecology EPA U.S. Environmental Protection Agency

FS Feasibility Study GC gas chromatography

GRO gasoline-range hydrocarbons

HA hand auger

HSP health and safety plan

HO heavy oil-range hydrocarbons

J estimated value

Kinder Morgan Kinder Morgan Canada Inc.

MCCmotor control center $\mu g/kg$ micrograms per kilogrammg/kgmilligrams per kilogram $\mu g/L$ micrograms per litermg/Lmilligrams per litermslmean sea level

MTCA Model Toxics Control Act

ND not detected

NPDES National Pollutant Discharge Elimination System
NWTPH-Dx Northwest total petroleum hydrocarbons – diesel range
NWTPH-Gx Northwest total petroleum hydrocarbons – gasoline range

OSHA Occupational Safety and Health Administration

PAHs polycyclic aromatic hydrocarbons

PCBs polychlorinated biphenyls PCL(s) preliminary cleanup level(s) PCS petroleum-contaminated soil

PSE Puget Sound Energy
psi pound(s) per square inch
Purnell W.D. Purnell & Associates

PVC polyvinyl chloride

RI/FS Remedial Investigation/Feasibility Study

SAP Sampling and Analysis Plan

SAS Sound Analytical Services, Inc.
SMS Sediment Management Standards
SVOCs semivolatile organic compounds
TEE terrestrial ecological evaluation

TMOPL Trans Mountain Oil Pipe Line Corporation

TP test pit

TPH total petroleum hydrocarbons

TPH (418.1) TPH result by analytical method 418.1

TPH-FS TPH field screening result

TTEC total toxicity equivalency concentration

URS URS Corporation

VOCs volatile organic compounds WAC Washington Administrative Code

WISHA Washington Industrial Safety and Health Act

WTPH-HCID Washington Hydrocarbon Identification Analytical Method

1.0 INTRODUCTION

Presented herein is the Final Supplemental Remedial Investigation/Feasibility Study (RI/FS) Work Plan for Kinder Morgan Canada Inc., operator of Trans Mountain Pipeline (Puget Sound) LLC's (formerly Trans Mountain Oil Pipe Line Corporation [TMOPL] and Terasen Pipelines) Laurel Station facility located at 1009 East Smith Road in Bellingham, Washington (site). The Final Supplemental RI/FS Work Plan was prepared to meet the requirements of Washington Administrative Code (WAC) 173-340-350 and as required by Item II.A of Exhibit A of the First Amended Enforcement Order (Amended Order) No. DE 91-N192 (effective June 15, 1992), and the Washington Department of Ecology (Ecology) directives outlined during the August 25, 2009 meeting between Ecology, Kinder Morgan Canada Inc. (Kinder Morgan), and URS Corporation (URS). During this meeting, Ecology requested that Kinder Morgan submit a Draft Supplemental RI/FS Work Plan in accordance with the requirements of WAC 173-340-350(7)(c) and (8)(c) and WAC 173-340-840, which was to include the following:

- A Microsoft Access database compiling data collected at the site to date
- Proposed cleanup levels
- Identification of data gaps
- Proposed scope of work and schedule to fill data gaps; and
- Proposed date for submitting a Draft RI/FS Report

The Draft Supplemental RI/FS Work Plan was submitted to Ecology on January 15, 2010 and Ecology's comments were received on February 15, 2010. Kinder Morgan and URS met with Ecology on March 12, 2010 to discuss the comments, which have been incorporated into the Final RI/FS Work Plan. Ecology requested that data collected during the data gap investigation be compiled and presented in a Draft RI/FS Report.

1.1 ENFORCEMENT ORDER

In October 1991, TMOPL received an Enforcement Order (Original Order) No. DE 91-N192 from Ecology concerning assessment and cleanup of a natural gas condensate release at the site on January 15, 1991. Ecology issued an Amended Order to TMOPL effective June 15, 1992 to address two additional releases (crude oil) that occurred at the site on December 11, 1991 and March 7, 1992 and soil contamination unrelated to the three releases that was discovered during facility upgrades following the January 15, 1991 release. URS and Kinder Morgan, with concurrence from Ecology, have determined that the Amended Order supersedes the Original Order.

The Amended Order contains action items and requirements related to environmental data components (e.g., work plans and reports associated with sample collection and management of petroleum-contaminated soil [PCS]) and non-data components (e.g., plans associated with health and safety, spill prevention, dam and surface water maintenance, and oil/water separator maintenance). Numerous documents have been submitted to Ecology and activities conducted by Kinder Morgan since the Original and Amended Orders were issued; however, the Order remains open by Ecology.

URS developed a matrix summarizing the apparent status of the required actions of the Order. To develop this matrix, URS reviewed internal project files, Ecology's documents at the Washington State Archives Office in Olympia, Washington, and documents located at Kinder Morgan's headquarters in Calgary, Alberta. Pertinent documents related to items in the Order were used to develop three separate bibliographies: one for URS internal documents; the second for Ecology-filed documents; and the third for documents reviewed at Kinder Morgan's headquarters. The matrix, supporting bibliographies, and a copy of the Amended Order are included as Appendix A. The matrix includes a list of:

- The action items as specified in the Amended Order;
- References to documents associated with individual items:
- References to Ecology response/comment documents associated with individual items;
 and
- A status column indicating one of the following:
 - 1. actions completed and acknowledged by Ecology as completed;
 - 2. actions completed and not acknowledged by Ecology as completed;
 - 3. actions completed but information not submitted to Ecology to obtain acknowledgement of completion; and
 - 4. actions not completed or pending.

Data-related actions not completed or pending are discussed in Section 8. The remaining data collection activities and actions are discussed in Section 6. Non-data components of the Amended Order are discussed in Section 11.

1.2 SITE DESCRIPTION AND BACKGROUND

The site is located at 1009 East Smith Road, approximately 4 miles north of the City of Bellingham, in Whatcom County, Washington (Figure 1). The site is zoned as R5 with a Conditional Use Permit for industrial development and situated in an area of mixed agricultural and residential land use. Green belts and wooded park land are common in the surrounding properties. The site has been previously logged and now consists of access roads, service areas and second growth deciduous and conifer trees.

The developed site covers approximately 15 acres and is bounded by an additional 135 acres of Trans Mountain Pipeline (Puget Sound) LLC-owned undeveloped or agriculture land on three sides. Current facility improvements include 20-inch and 16-inch pipelines, a pump station and associated valve manifolds, an oil drain system, and two 96,000 barrel aboveground (1 barrel equivalent to 42 gallons) break-out tanks. Auxiliary facilities which support the industrial activities include a fire fighting system, electrical building, Tank Motor Control Center (MCC) Building, Puget Sound Energy (PSE) Substation, an emergency generator, transformer, HVAC heat pump, the Trans Mountain administrative office and maintenance facilities. The Laurel Station facility supplies crude oil to refineries in Ferndale and Anacortes, Washington and has been in operation since 1956. Site plans showing historic and current features are included as Figures 2A and 2B, respectively.

1.3 SITE OPERATIONAL HISTORY

Laurel Station was constructed in 1956 and pumping commenced at the site in December 1956. Originally the site was used to transport crude oil via pipeline from Alberta, Canada to Ferndale and Anacortes, Washington. The pipeline divides into Ferndale and Anacortes branches at Laurel Station. In 1972, crude oil delivery from Canada was significantly reduced and the use of the pumping station was virtually discontinued with only one to two deliveries of crude oil per year. In late 1977, deliveries of crude oil and natural gas condensate increased to frequencies of 2 to 3 deliveries per month. In 1982, Mobil began using the storage tanks at the site to store natural gas condensate which was shipped via the pipeline to a refinery located in Ferndale. BP Oil subsequently took over use of these tanks from Mobil.

In the early 1990s, a number of site integrity upgrades were initiated. That initiative in conjunction with a lack of oil deliveries resulted in the pump station being decommissioned in 1991 with all associated valves and piping consolidated and repositioned above ground. In 1991, the waste oil burn pit was removed and a fiberglass oil sump was installed with level switches and automated oil detection systems. Stormwater drains were installed in 1992 and the facility was contoured with swales to contain all stormwater and surface flow to the facility. The oil/water separators were installed with automated sensors as was the siphon system within the relief tank bay. In 1992, the break-out tanks (Tanks No. 170 and 180) were taken out of service and later isolated and decommissioned in 1994. Similarly, the booster pump piping was removed in 1995, the pump having been removed in 1991. A densitometer building and an electrical control building (MCC) was installed that same year. In 2000, the station valve manifold was revised and covered by a building with spill containment.

Oil deliveries remained consistent into the early 2000s with an increase demand by local refineries in the later part of the decade. In conjunction with a system upgrade of the Canadian Trans Mountain pipeline system, which made increased volumes possible at Sumas Station, the Trans Mountain (Puget Sound) pipeline system was also expanded. The 2008 upgrade included replacement of the former pump station, decommissioning of the relief tank (Tank No. 120), installation of the stormwater retention pond, and reactivation of the break-out tanks (Tanks No. 170 and 180) as well as upgraded oil/water separators, coalescing vaults and oil detection systems in the tank bays. Figure 2B depicts site features subsequent to the 2008 upgrade.

1.4 PURPOSE OF DOCUMENT

This Final Supplemental RI/FS Work Plan has been developed to summarize and compile data generated during investigations and cleanup actions previously performed at the site in accordance with the Orders, and to identify data gaps. To meet these objectives, this Final Supplemental RI/FS Work Plan contains:

- The site description and background (Section 1.0).
- A description of the environmental setting (Section 2.0).
- The potential sources of contamination and areas of concern (Sections 3.0 and 4.0, respectively).
- Development of preliminary cleanup standards (Section 5.0).
- A summary of previous investigations and interim cleanup actions implemented at the site (Section 6.0).

- A discussion of the nature and extent of contamination (Section 7.0).
- A discussion of data gaps and the proposed data gap investigation (Sections 8.0 and 9.0, respectively).
- A brief discussion of the FS and Non-Data Enforcement Order Actions (Sections 10.0 and 11.0, respectively).
- A schedule for completing the proposed data gap investigation and submitting the Draft RI/FS Report (Section 12.0).

Analytical results are presented on tables and figures. Sample locations are provided in figures. The data are also available in an ACCESS data base format that can be provided at Ecology's request. The information compiled in this report is primarily from other reports generated during the timeframe since the Order was initiated. Specific sources of information are referenced in the RI/FS Work Plan text and the reference list is provided in Section 13.0. In addition to information from reports, correspondence, field notes, and laboratory reports were reviewed as necessary to confirm that the information provided herein is accurately presented.

2.0 ENVIRONMENTAL SETTING

2.1 PHYSIOGRAPHY

The surface topography in the site vicinity slopes gently to the north-northwest. The region around the site is composed of gently rolling hills with approximately 40 feet of relief. The two aboveground bulk break-out tanks (Tanks No. 170 and 180) at the site are located on a low hill at an elevation of approximately 330 feet above mean sea level (msl) (United States Geological Survey, 1994). From this hill the ground surface slopes to the northwest to East Smith Road with an average gradient of about 9 feet per 100 feet. The main station facilities are located on an asphalt pad at an elevation of approximately 300 feet msl.

2.2 GEOLOGIC SETTING

The site is mantled by unconsolidated glacial deposits which are capped by a glaciomarine drift (Bellingham Drift). The Bellingham Drift consists of unsorted and unstratified pebbly, sandy silts and clays which were deposited by floating ice. Underlying the Bellingham Drift is the Demming Sand, an advance outwash deposit which occurs as discontinuous lenses of coarse sand, gravelly sand and layers and lenses of gravels and silty clays. The Demming Sand is underlain by the Kulshan Drift, which consists of an unsorted and unstratified mixture of silt, clay, sand and pebbles. The Vashon Till, consisting of a compact mixture of pebbles in a matrix of silt, clay and sand, underlies the Kulshan Drift. The Esperance Sand (part of the Vashon Drift) underlies the Vashon Till and overlies bedrock (Chuckanut Formation). The top of the Chuckanut Formation lies at a depth of approximately 350 feet below ground surface (bgs). The Esperance Sand consists of crossbedded outwash deposits of sand and gravel (Dames & Moore, 1992a).

Excavations, test pits and exploratory borings completed at the Laurel Station facility indicate that the site is covered by a nearly continuous layer of relatively low permeability silty, sandy, gravelly clay or till, which corresponds to the Bellingham Drift. This layer dips towards the west, following the natural slope of the site, and thickens at the base of the slope near the station.

In the area of the former oily water sump, the silty clay layer is not currently present and was apparently removed during grading for initial construction of the station. Beneath this silty clay layer are undifferentiated glacial deposits consisting of silty sandy gravels and gravelly sandy silts ranging from 100 to 150 feet in thickness. This unit appears to have been deposited as discontinuous lenses with significant heterogeneity and varying permeability (Dames & Moore, 1992b).

In general, the shallow soils are characteristic of the Bellingham Drift. It is difficult to correlate the underlying glacial deposits from borings and soil samples in the site area with the units described by Easterbrook (1976). Thus, these units have simply been designated as the undifferentiated glacial sediments. The Bellingham Drift is described in the field to consist generally of grey or brown silty sand over consolidated silty clays with small amounts of scattered rounded gravel. These soils are very dense and have low to very low permeability. Underlying the drift soils, at a depth of approximately 50 feet bgs, is a moderately heterogeneous grey to tan silty gravelly sand with higher permeability than the Bellingham Drift material. In borings that encountered this unit, horizontal lenses with lesser silt and/or greater gravel content with greater relative hydraulic conductivity than the surrounding material were noted (Dames & Moore, 1992a).

2.3 HYDROGEOLOGICAL SETTING

During previous subsurface investigations at the site, groundwater was encountered at depths ranging from approximately 150 to 215 feet bgs (deep aquifer). Isolated occurrences of perched shallow groundwater have been encountered during previous investigations at the site at depths ranging from 15 to 45 feet bgs (shallow aquifer). North-south and east-west geologic cross sections of the site are shown on Figures 3 and 4, respectively. Boring logs from prior site investigations are included as Appendix B. Interpretation of the subsurface conditions at the site has been revised subsequent to URS' review of the boring logs and current geologic literature.

The groundwater monitoring well network at the site consist of five shallow wells (SW-1 through SW-5) and previously included five deep wells (DW-1 through DW-5). Monitoring wells DW-1 through DW-5 were decommissioned in May 2008 in compliance with WAC 173–160–151 and WAC 173–160–381. Well construction logs and decommissioning records are provided in Appendix C. Groundwater flow is northwesterly in the shallow aquifer and westerly in the deep aquifer (Dames & Moore, 1992a and URS Corporation, 2008b). Representative groundwater elevation contour maps for the shallow and deep aquifers are presented as Figures 5 and 6, respectively. Groundwater measurements from monitoring well SW-1 were not used to contour groundwater elevations as this well is screened across the silty clay/clayey silt unit noted at approximately 10 feet bgs throughout most of the site. Groundwater within SW-1 is perched on the silty clay/clayey silt unit and is not considered to be laterally connected to groundwater encountered in the other shallow monitoring wells. Groundwater elevation measurements for the monitoring well network are presented in Table 1.

2.4 SURFACE WATER HYDROLOGY

No permanent streams are located on the facility. Located north of the site, across East Smith Road, is an intermittent tributary to Deer Creek. This tributary is fed by surface water runoff

which is contained in two drainage ditches running parallel with East Smith Road along the northern boundary of the facility (Figures 2A and 2B). The tributary runs primarily in a north-northwesterly direction where it terminates at the confluence with Deer Creek, approximately 1,300 feet from its beginning (Figures 2A and 2B). Wetland areas exist along the northwestern property boundary and in the southern portion of the site.

Surface water drainage on the facility property is divided into three sub-basins, which drain to three outfalls from the facility. The first drainage sub-basin includes stormwater from the northwest portion of the facility, including the major operating facilities (maintenance, office, and Cold Storage Buildings, Manifold Area, Pump Building and PSE Substation), and is directed to the stormwater detention pond located in the northwest corner of the facility. The Manifold Area is covered and has a trench drain equipped with an electronic oil-water detector that is linked to an automated gate valve on the discharge drain piping, as well as a high level alarm. The PSE Substation is equipped with four trench drains, two manholes and one catch basin that all drain to the underground stormwater drain pipe. A second transformer, located outside the PSE Substation, is equipped with containment curbing, a normally-closed drain valve and a gravel base. Stormwater enters catch basins, manholes, trench drains or a collection ditch that flows to an oil detection chamber and oil/water separator near the property's northwest corner. The oil detection chamber has a hydrocarbon detector that alarms locally and in the Control Centre in Edmonton, Alberta.

The stormwater detention pond is approximately three feet deep including freeboard above the 100-year event, a bottom area of 1,050 square feet and side slopes with a ratio of 4:1. The discharge structure is a riser with lower orifice and upper notched weir, a normally-open valve, and an emergency overflow. The detention pond discharges to the roadside ditch along East Smith Road, which ultimately drains to a tributary of Deer Creek, a tributary of the Nooksack River.

The second drainage sub-basin contains the two break-out tanks (Tanks No. 170 and 180). Catch basins within each tank bay include oil detection and excess flow instrumentation. The catch basins are piped to oil/water coalescing separators and detention boxes outside the tank bays. Drain valves from the diked area are normally open and will automatically close if oil is detected or if excess flow is detected. Stormwater collected within each of the containment dikes surrounding Tanks No. 170 and 180 discharges through an alarmed oil/water coalescing separator and detention box before discharging to an open ditch leading to the roadside ditch along East Smith Road, which comingles with discharge from the retention pond and eventually discharges to Deer Creek. Discharges from both the first and second drainage sub-basin do not flow directly to the impaired segments of Deer Creek, currently identified on the 303(d) list (Ecology, 2008).

The third drainage sub-basin contains the decommissioned relief tank (Tank No. 120). The tank containment area is discharged through an undefined channel through a heavily vegetated area on the facility's west side that drains to the Baker Creek drainage basin. Being decommissioned, the secondary containment valve is normally open. The discharge does not flow directly into impaired segments of Baker Creek, currently identified on the 303(d) list (Ecology, 2008).

3.0 POTENTIAL SOURCES OF CONTAMINATION

The principal contaminants at the site are Canadian crude oil and natural gas condensate. These petroleum products have been the primary materials conveyed through the pipeline and stored in tanks at the site. Gasoline or other refined petroleum products have not reportedly been conveyed through the pipeline or stored at the site. Other potential contaminants are polychlorinated biphenyls (PCBs) that may have been present in the onsite transformers and xylene. Xylene was used in the past to clean the seals on the pumps. The used xylene was reportedly disposed of into the former oily water sump. Minor quantities of lubricants, cleaners, and paints have also been used at the facility for general maintenance and cleaning.

Releases which are known or may have occurred at the site include: historic oil spills previously reported to Ecology; the January 15, 1991 natural gas condensate release; petroleum contaminated soil (PCS) encountered during the October 1991 facility upgrade; the December 11, 1991 crude oil release; the March 7, 1992 crude oil release; and the October 26, 2000 crude oil release. These areas are depicted on Figure 7. Other potential sources of chemical or petroleum releases include the former electrical substation, the former oily water sump and associated piping, the former drain tile, the former waste pit, the former burn pit, the former oil/water separator, the break-out tanks (Tanks No. 170 and 180), relief tank (Tank No. 120), areas where PCS have been stockpiled in the past, and the oil pipeline and associated underground and aboveground equipment. The known spills and releases are discussed in more detail in Sections 3.1 through 3.6 below. No releases have been reported at the facility since the October 26, 2000 spill incident.

3.1 HISTORIC SPILLS AND RELEASES

According to former TMOPL personnel, historical releases occurred at the site in 1971 and 1979. The 1971 spill occurred in July when approximately 6,300 barrels of crude oil leaked from a flange on the main line pump at the facility. The crude oil leaked into a ditch leading to the property north of East Smith Road. Approximately 3,500 barrels were recovered with the balance either evaporating or infiltrating into surficial soils in the spill area. Soils that were affected by this spill were excavated and placed in the Boneyard, and were landfarmed by tilling with agricultural equipment (Dames & Moore, 1992a).

The 1979 spill occurred in February when a tank roof drain line froze and ruptured resulting in a condensate release in the containment area of Tank No. 170. This release of approximately 1,149 barrels formed a pool of natural gas condensate approximately 2 feet deep inside the bermed containment area surrounding the tank. The condensate was pumped back into the tank and no further remedial actions were reportedly implemented. Frozen soils and surface water in the spill area were noted to have likely slowed the potential migration of condensate to the subsurface (Dames & Moore, 1992a).

Other areas of potential contamination noted by former TMOPL personnel included the containment area around Tank No. 120 and an area adjacent to the containment berm. PCS encountered during the 1983 refurbishment of the former burn pit, small quantities of soils from miscellaneous small spills and leaks, and PCS from a historic East Smith Road spill were

reportedly placed in the containment area around Tank No. 120 or in an area to the south of the tank (Dames & Moore, 1992a).

3.2 **JANUARY 15, 1991**

The January 15, 1991 spill occurred when approximately 75 barrels of natural gas condensate leaked from the drain tile that was connected to the 16-inch Ferndale pipeline (Figures 2A and 2B). The leak surfaced down slope and flowed overland into the field of the western adjacent property. Natural gas condensate was also found leaching from the northern boundary of the field into a drainage ditch located on the south side of East Smith Road. From this area, stormwater flowed north through a culvert under East Smith Road, then east and north into a tributary of Deer Creek (Figures 2A and 2B). To control further migration of condensate, interceptor trenches were constructed on the western adjacent property (see Figure 2A), and control dams (siphon dams) were constructed in the north ditch along East Smith Road, at the outlet of a small slough draining into the tributary of Deer Creek (Dam 2), and in Deer Creek at Hannegan Road (Dam 3) (TMOPL Corporation, 1991).

3.3 STATION AREA UPGRADES

Subsequent to the January 15, 1991 spill, TMOPL elected to upgrade the facility and removed unnecessary fittings and piping. The upgrade was undertaken in order to minimize the potential for future leaks at the station. The station upgrade work began on October 15, 1991. During excavation activities on October 25, 1991, it was apparent that subsurface leakage of crude oil and/or natural gas condensate had occurred from either pumps, drain lines, or the oily water sump.

When the oily water sump was exposed, the pipe connections to the sump were observed to be broken, which allowed oily water to escape from the sump into the adjacent soils. The pathways for subsurface migration of oily water appeared to have been trenches excavated in the pump station area for pipelines, drain lines, and conduit runs. The trenches were noted to have been backfilled with disturbed native soil, which had a higher permeability than the adjacent undisturbed native soil, therefore creating preferential pathways. During excavation of the drain line running from the oily water sump to the former burn pit, oily water was noted in the backfill materials of the trench. Additional areas of contamination noted during the station upgrade included a former waste pit, a drain tile, and a former oil/water separator that was connected to the former burn pit. The oily water sump and drain tile were removed as part of the 1991/1992 station upgrade activities.

A former PSE electrical substation was located in the northwest portion of the site. The substation provided power for cathodic protection of the pipeline and operation of station equipment. Cooling oils have not been used in pumps at the site as pump bearings are lubricated by the petroleum product passing through the pipeline. Therefore, PCBs were not considered to be a potential contaminant at the site with the possible exception of the former electrical substation. No releases at the substation have been reported.

3.4 **DECEMBER 11, 1991**

The December 11, 1991 crude oil spill occurred south of the Cold Storage Building during excavation activities associated with the station upgrade that began in October 1991. The spill was caused by the fracture of a non-standard unprotected vent fitting. The fracture occurred during excavation activities above the 16-inch lateral (Ferndale pipeline) just off the mainline. Crude oil escaped under a pipeline pressure of approximately 200 pounds per square inch (psi), which caused crude oil to jet vertically into the air. Approximately 30 minutes elapsed before the leak could be stopped and an estimated 84 barrels of crude oil was released (Dames & Moore, 1992a).

At the time of the release there was a slight breeze from the southwest towards the northeast. Consequently, a fine mist of crude oil was blown to the northeast. The bulk of the spilled oil was discharged to the ground in the station area. The grass and tree covered area between the leak and East Smith Road had a thin coating of oil. Discrete droplets of oil were observed on the surface of East Smith Road, and a slight sheen was observed on surface water that had accumulated on the northern adjacent property (across East Smith Road) as a result of airborne hydrocarbons. After the leak was stopped, an estimated 51 barrels of crude oil within the excavation adjacent to the pipeline and accumulating on the surrounding ground surface was recovered (Dames & Moore, 1992a).

3.5 MARCH 7, 1992

During a delivery of crude oil to Anacortes on March 7, 1992, a pressure relief valve malfunction resulted in a partial diversion of oil from the pipeline to the 3,000 barrel relief tank (Tank No. 120). The tank eventually overflowed and an estimated 1,250 barrels of crude oil entered the surrounding spill containment dike. The relief tank was equipped with a normally closed drain valve, which led to an oil/water separator. The valve was operated to release stormwater that had accumulated within the dike. Following the March 7 incident, the drain valve was found to be in a partially open position, which resulted in the release of 30 to 50 barrels of crude oil from the dike into an adjacent wooded wetland area. The spilled oil travelled along a narrow depression for approximately 600 feet, where a temporary dam (designated the March 7, 1992 Spill Containment Dam) was constructed to prevent further migration and to facilitate oil recovery (Dames & Moore, 1992a). Cleanup efforts were implemented to recover any pooled oil from the wetland area.

3.6 OCTOBER 26, 2000

On October 26, 2000, an estimated 645 barrels of crude oil leaked from an open 2-inch vent valve on the 16-inch lateral pipeline (Ferndale pipeline). The vent was located approximately 10 feet bgs near the southwest corner of the Cold Storage Building. At the time of the release, the vent was exposed in an excavation that was associated with an upgrade of the station valves. The leak occurred following this upgrade when the pipeline was being refilled after restart of station operations. Prior to restarting station operations and resuming the flow of crude oil, the pipeline had been shut off and purged of petroleum product, and the vent was opened to purge the pipeline of nitrogen. However, the vent was inadvertently left open when the flow of crude oil resumed (URS, 2001).

Upon discovery, the oil had filled up the excavation and pooled around the perimeter of the excavation. The greatest area of pooling was to the south of the excavation, and eventually the oil flowed down slope to the north. A 4-inch diameter polyvinyl chloride (PVC) storm drain pipe was situated along the north sidewall of the excavation at approximately 8 feet bgs. The storm drain pipe had been cut to facilitate earthwork activities associated with the station valve upgrade. This open pipe served as a conduit for crude oil flow that eventually surfaced down slope approximately 140 feet to the northwest. The crude oil continued to flow down slope along the stormwater drainage swale and entered the first of two containment excavations that were dug in response to the release. The containment excavations were both lined with a geomembrane, and the first containment excavation captured all of the overland flow of crude oil. Approximately 628 barrels of crude oil were recovered using vacuum trucks during the spill response action and PCS was removed from the site during subsequent excavation activities (URS, 2001).

4.0 AREAS OF CONCERN

The Amended Order defines the facility or "site" as three areas of concern (Areas 1 through 3) at the site, as well as "all other properties in the vicinity of the pump station property which have been affected or are potentially affected by spills, leaks, or discharges of petroleum products or other hazardous substances from the pump station". Other areas of concern at the site that are not defined in the Amended Order coincide with the other spills discussed in Section 3.0, as well as the areas where PCS was previously stored onsite (former PCS storage cells). The non-Order-defined areas of concern at the site are discussed in seven individual "Study Units" (Study Units 1 through 7). A summary of the areas of concern and the correlation between the individual spills, Study Units, and Order-defined Areas 1 through 3 is provided in Table 2. The areas of concern are shown on Figures 2A and 2B and described in more detail below.

4.1 ORDER-DEFINED AREAS

The Order-defined Areas 1 through 3 (Figures 2A and 2B) correlate directly with the January 15, 1991 spill and include the following: (1) Area 1 – all property located up to 350 feet west of the pump station property line, south of Smith Road, including the portion of the access easement located west of the pump station property line; (2) Area 2 – all property located north of Area 1 including the adjacent eastern access road, north of Smith Road; (3) Area 3 – Deer Creek and its tributaries including all wetlands, ditches, culverts, streams, ponds, creeks, and other surface water bodies and uplands adjacent to Deer Creek and its tributaries from the southern Smith Road culvert, immediately north of Area 1, downstream to Guide Meridian Road.

4.2 STUDY UNIT 1

Study Unit 1 addresses historic spills and releases, portions of the January 15, 1991 spill, contamination encountered during station upgrade projects, the December 11, 1991 spill, and the October 2000 spill. Study Unit 1 generally covers the pump station operations area and includes the former pump station area, former oily water sump, former burn pit, former oil/water separator, former drain line between the oily water sump and the burn pit, former drain tile, former waste pit, 16-inch Ferndale pipeline, 20-inch Main pipeline, and the former PSE electrical substation.

4.3 STUDY UNIT 2

Study Unit 2 addresses the February 1979 spill and covers the area located within the containment berms surrounding the aboveground break-out tanks (Tanks No. 170 and 180).

4.4 STUDY UNIT 3

Study Unit 3 addresses the March 7, 1992 spill and covers the area located within the former relief tank containment dike and the wetland area located southeast of the tank. Study Unit 3 also addresses PCS encountered during the 1983 refurbishment of the former burn pit, small quantities of soils from miscellaneous small spills and leaks, and PCS from a historic East Smith Road spill that were reportedly placed in the enclosure of the relief tank or in an area to the south of the tank enclosure. PCS from small spills and leaks was reportedly stored in the relief tank enclosure (Dames & Moore, 1992a). One of the PCS storage cells (Storage Cell No. 1) was also located within Study Unit 3.

4.5 STUDY UNIT 4

Study Unit 4 (the Boneyard) addresses soils impacted by the July 1971 spill. Soils impacted from this spill were excavated and placed in the Boneyard, where they were landfarmed by tilling with agricultural equipment. This area was also used to store miscellaneous equipment (e.g., pumps) and piping.

4.6 STUDY UNIT 5

Study Unit 5 addresses portions of the July 1971 and December 11, 1991 spills and covers an area directly northeast of the Laurel Station entrance, on the north side of East Smith Road. Study Unit 5 also addresses the area north of the reported historic East Smith Road spill.

4.7 STUDY UNIT 6

Study Unit 6 addresses the December 11, 1991 spill, and the area north of the reported historic East Smith Road spill.

4.8 STUDY UNIT 7

Study Unit 7 addresses the locations of the former onsite PCS storage cells. During previous interim cleanup actions conducted at the site, excavated PCS was placed in lined storage cells prior to offsite disposal. As mentioned in Section 4.4, PCS Storage Cell No. 1 was located within Study Unit 3.

5.0 PRELIMINARY CLEANUP STANDARDS

This section discusses preliminary cleanup standards that could be used to develop and evaluate cleanup alternatives. The preliminary cleanup standards listed in this section are not approved by Ecology as final cleanup standards for the site. Final cleanup standards will be established in the cleanup action plan (CAP). However, Ecology expects that cleanup standards will be "...initially established during the scoping of the remedial investigation and may be further refined during the remedial investigation and/or feasibility study" per WAC 173-340-350(9)(a).

WAC 173-340-700(3) defines the term "cleanup standards" as follows:

"Cleanup standards shall consist of the following:

- Cleanup levels for hazardous substances present at the site
- The location where these cleanup levels must be met (point of compliance)
- Other regulatory requirements that apply to the site because of the type of action and/or location of the site ('applicable state and federal laws')"

This section does not establish preliminary remediation levels, because no potential cleanup alternatives have been identified that would use remediation levels. However, cleanup alternatives developed as the RI/FS progresses may include remediation levels. If so, preliminary remediation levels will be developed at the time that they are proposed. The Model Toxics Control Act (MTCA) explains the difference between cleanup levels and remediation levels as follows:

Remediation levels are not the same as cleanup levels. A cleanup level defines the concentrations of hazardous substances above which a contaminated medium (e.g., soil) must be remediated in some manner (e.g., treatment, containment, and/or institutional controls). A remediation level, on the other hand, defines the concentration (or other method of identification) of a hazardous substance in a particular medium above or below which a particular cleanup action component (e.g., soil treatment or containment) will be used. Remediation levels, by definition, exceed cleanup levels.

5.1 PRELIMINARY CLEANUP LEVELS

The MTCA process for establishing cleanup levels begins with identifying the nature of the contamination, the potentially contaminated media, the current and potential pathways of exposure, the current and potential receptors, and the current and potential land and resource uses (WAC 173-340-700[5]). These parameters are assessed on a preliminary basis in this section, with the expectation that further data collection will result in refinement of these parameters and adoption of final cleanup levels in the CAP.

Summary-level statistics of the available historical data were used to preliminarily identify the nature of the contamination and the potentially contaminated media at the site (see also Section 3 for a discussion of potential sources of contamination). The results of this summary-level analysis are presented by medium in Subsections 5.1.2 through 5.1.4, while historical data are discussed in more detail in Section 6. Tables 3 through 5 present lists of compounds previously analyzed in soil, groundwater, and surface water samples collected at the site, and summarize number of samples analyzed, number of detections of a chemical constituent, maximum detected result, and the maximum reporting limit of the existing data set for each analyte in each medium. These tabulations are also used in this subsection to assess whether the use of indicator compounds under WAC 173-340-703 is appropriate for the site. Indicator compounds are sometimes used at sites contaminated with a large number of hazardous substances, where it can be appropriate to eliminate from consideration those hazardous substances that contribute a small percentage of the overall threat to human health and the environment.

5.1.1 Land and Resource Uses, Exposure Pathways, and Receptors

As discussed in Section 1, the current land use at the site is industrial, while land use at the surrounding properties is mixed agricultural and residential. Although the land use at the site is expected to remain industrial for the foreseeable future because of the infrastructure investment on the site, future residential land use cannot be ruled out. Groundwater in the vicinity of the site is currently used as a drinking water source, and this use is expected to continue. Surface water bodies at or near the site have been historically impacted, or have the potential to be impacted, by releases at the site. These surface water bodies include on-site wetlands and stormwater drainage ditches that drain to a tributary of Deer Creek. Both surface water and soil/sediment in these freshwater bodies have the potential to be impacted by releases.

Exposure pathways involve four necessary elements. These are: (1) a source and mechanism of chemical release to the environment, (2) an environmental transport medium, (3) a point of potential receptor contact with the medium containing the site-related chemical, and (4) a receptor intake route at the contact point. Whenever one or more of these elements are missing in an exposure pathway, the pathway is incomplete and there is no potential for exposure, and therefore no risk, under current conditions.

5.1.1.1 Human Exposure Pathways and Receptors

The potential human receptors and pathways listed below are retained for consideration in this RI/FS. As more information becomes available regarding exposure pathways relative to contaminant distribution, this list of exposure pathways will be refined.

- Current and future construction and remediation workers, from potential exposure to dust
 or volatile emissions (inhalation) and direct contact (incidental ingestion and dermal
 absorption) with affected subsurface soils and sediments during construction or
 remediation.
- Future remediation workers, from potential exposure via dermal contact or inhalation of volatile compounds in affected groundwater or surface water during remediation
- Current and future industrial workers, and future residents and recreation users, from potential exposure to vapors emitted to the outdoor air from affected subsurface soils, sediments, and surface water during daily activities.
- Current and future industrial workers, residents, and recreational users, from potential
 exposure to groundwater in the event that affected groundwater is used now or in the
 future for water supply.
- Current and future industrial workers, residents, and recreational users, from potential inhalation exposures to volatile chemicals in vapors migrating into indoor air.

5.1.1.2 Ecological Exposure Pathways

Pathways to ecological receptors are evaluated under MTCA using the procedures established in WAC 173-340-7490. Because the undeveloped land area in the vicinity of the site exceeds 4 acres, the site is unlikely to qualify for an exemption from the terrestrial ecological evaluation requirements under WAC 173-340-7491. The simplified terrestrial ecological evaluation

procedure of WAC 173-340-7492 is expected to be applicable. As part of this simplified evaluation, the chemical concentration values presented in WAC 173-340-900, Table 749-2 are included in Table 3, for comparison to the summarized soil sample results for the site. This comparison in Table 3 allows an initial contaminant analysis in accordance with WAC 173-340-7492(2)(c). Other elements of the simplified terrestrial ecological evaluation (such as the exposure analysis and the pathway analysis) will be refined as further information is obtained regarding exposure pathways relative to contaminant distribution.

5.1.2 Preliminary Soil Cleanup Levels

As summarized in Table 3, five classes of potential contaminants have been included in analyses of soil samples at the site: petroleum, volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), PCBs, and metals. For each analyte under these classes, Table 3 presents summary statistics for historical soil samples representative of soil remaining onsite. That is, samples representative of soil removed during historical interim actions (see Section 6) are not included in the statistical results presented in Table 3. For each analyte, Table 3 shows the number of sample results available, the number of detections at the site, the maximum reporting limit, and the maximum detected concentration. Columns to the right of the statistical summary for each analyte document the relevant potential soil cleanup levels, including MTCA Methods A, B, and C for direct contact, MTCA Method B and Method C soil cleanup levels protective of groundwater, and terrestrial ecological evaluation (TEE) values from MTCA Table 749-2.

Table 3 shows that much of the available historical data for the site consists of field screening data. These data values were generated using a field gas chromatography (GC) instrument calibrated against either a crude oil standard or a natural gas condensate standard. The details of the field analyses and the calibration are limited. These data are used in this RI/FS as screening level data, to help assess where data gaps are present, and what level of additional investigation is warranted for various portions of the site. Review of the field screening data indicates that samples were evaluated against natural gas condensate and/or crude oil pattern profiles. Natural gas condensate is a low density liquid hydrocarbon that may contain light end volatile constituents as well as long chain hydrocarbon groups. The GC instrument was set up for analysis such that all samples and standards were analyzed under the same conditions and therefore the data, regardless of natural gas condensate or crude oil pattern identification, was based on the same carbon range. As the field procedure was not designed to include analysis of light end constituents such as benzene, the field data are collectively compared to diesel/motor oil range screening values. The field screening data values for crude oil are compared against the TEE cleanup level for diesel. These values are selected based on the apparent hydrocarbon ranges represented by the historical field screening analyses. Future analyses indicated in the data gap investigation will consider the overall pattern profile for hydrocarbons in the sample when comparing to PCLs.

The MTCA TEE soil cleanup level is selected as the preliminary cleanup level (PCL) for total petroleum hydrocarbons (TPH) as diesel, while the PCLs for the other petroleum fractions are selected as the MTCA Method A unrestricted soil cleanup levels (WAC 173-340-900, Table 745-1). To date, Kinder Morgan has elected to not perform fractionation analysis of the petroleum compounds found at the site, and therefore has elected not to calculate MTCA Method B or C cleanup levels for TPH. Kinder Morgan may elect future performance of fractionation

analyses and calculation of MTCA Method B or C cleanup levels for TPH during the progress of the RI/FS.

For VOCs in soil, the MTCA Method B soil cleanup levels for direct contact are selected as the PCLs for most compounds, unless the MTCA Method A soil cleanup level is lower (in such cases the Method A value is selected). The available groundwater data for these analytes (Table 4) do not show substantial impacts to groundwater, providing a preliminary empirical demonstration that measured soil concentrations will not cause an exceedance of the applicable groundwater cleanup levels per WAC 173-340-747(3)(f).

For individual SVOCs in soil, the MTCA Method B soil cleanup levels for direct contact are selected as the PCLs. The available groundwater data for these analytes (Table 4) do not show substantial impacts to groundwater, providing a preliminary empirical demonstration that measured soil concentrations will not cause an exceedance of the applicable groundwater cleanup levels per WAC 173-340-747(3)(f). For the seven carcinogenic polycyclic aromatic hydrocarbons (cPAHs), the MTCA Method A soil cleanup level is selected because it is lower than the Method B value. The total concentration of the cPAH compounds (benzo[a]pyrene, indeno[1,2,3-cd]pyrene, dibenzo[a,h]anthracene, chrysene, benzo[k]fluoranthene, benzo[b]fluoranthene, and benzo[a]anthracene) is compared to the cleanup level using the Toxicity Equivalency Factor methodology of WAC 173-340-708(8).

In general, the MTCA Method A soil cleanup level for PCB mixtures is selected as the PCL. PCBs have not been detected in soil at the site, and the historical reporting limits are below the potential cleanup levels in Table 3, except for the MTCA Method B and Method C protection of groundwater cleanup levels for Aroclor 1254.

For arsenic and lead in soil, the MTCA Method A soil cleanup levels are selected as the PCL. For nickel and selenium in soil, the natural background concentrations (Ecology, 1994) are selected as the preliminary soil cleanup levels. The available groundwater data for these metals (Table 4) imply that soil concentrations protective of groundwater are most applicable as cleanup levels, however the protection of groundwater cleanup levels for these metals are substantially below the natural background concentrations. Therefore, use of the natural background concentration is applicable per WAC 173-340-700(6)(d). For antimony, beryllium, copper, silver, thallium, and zinc, MTCA Method B soil cleanup levels for direct contact are selected as the PCLs. The available groundwater data for these metals (Table 4) do not show potential impacts to groundwater, providing a preliminary empirical demonstration that measured soil concentrations will not cause an exceedance of the applicable groundwater cleanup levels per WAC 173-340-747(3)(f). This is also true for cadmium and mercury, however the MTCA Method A soil cleanup values are selected for these two metals because the Method A values are lower than the MTCA Method B values. For chromium in soil, the MTCA Method B soil cleanup values protective of groundwater are selected as the PCLs. The available groundwater data for this metal (Table 4) imply that soil concentrations protective of groundwater are most applicable, and the cleanup level is higher than the natural background concentration (assuming the chromium found on site is all chromium III). Based on product types that were transported through the facility, it is unlikely hexavalent chromium is present.

MTCA Method C soil cleanup levels have not been selected as PCLs for any analytes because future residential land use cannot be ruled out (see also Section 5.1.1).

5.1.3 Preliminary Groundwater Cleanup Levels

Four classes of potential contaminants have been included in analyses of groundwater samples at the site: petroleum, VOCs, SVOCs, and metals. For each analyte under these classes, Table 4 presents summary statistics for historical groundwater samples collected from monitoring wells at the site. For the purposes of evaluating all historical detections in groundwater, Table 4 summarizes all groundwater sample results from 1992 through 2006. For the purpose of characterizing current groundwater conditions, only the most recent data should be considered (see Section 6.3 for a more detailed discussion of groundwater conditions beneath the site). For each analyte, Table 4 shows the number of sample results available, the number of detections at the site, the maximum reporting limit, and the maximum detected concentration. Columns to the right of the statistical summary for each analyte document the relevant potential groundwater cleanup levels, including MTCA Methods A, B, and C groundwater cleanup levels.

The lower of the MTCA Method A or Method B groundwater cleanup value is selected as the PCL for each analyte. MTCA Method C groundwater cleanup levels have not been selected as PCLs for any analytes because future residential land use cannot be ruled out (see Section 5.1.1).

5.1.4 Preliminary Surface Water Cleanup Levels

Three classes of potential contaminants have been included in analyses of surface water samples at the site: petroleum, VOCs (benzene, toluene, ethylbenzene, and xylenes [BTEX]), and PAHs. For each analyte under these classes, Table 5 presents summary statistics for historical surface water samples. For each analyte, Table 5 shows the number of sample results available, the number of detections at the site, the maximum reporting limit, and the maximum detected concentration. Columns to the right of the statistical summary for each analyte document the relevant potential surface water cleanup levels, including MTCA Methods A, B and C surface water cleanup levels, the National Recommended Water Quality Criteria (NTR 40 CFR 131.36, 2006) for protection of human health, Section 304 of the Clean Water Act, and the state surface water quality criteria (both acute and chronic criteria for freshwater) for toxics substances (WAC 173-201A, Table 240[3]) for protection of aquatic organisms.

No surface water cleanup standards have been established for TPH or xylenes. The selected PCL for benzene is $1.2~\mu g/L$, based on the National Recommended Water Quality Criteria. The PCLs for ethylbenzene and toluene are $530~\mu g/L$ and $1,300~\mu g/L$ respectively, based on Section 304 of the Clean Water Act. For gasoline and diesel range hydrocarbons, the MTCA Method A groundwater cleanup levels are selected as the PCLs.

5.1.5 Preliminary Air Cleanup Levels

For those historical analytes in soil, groundwater, or surface water (Tables 3 through 5) that are considered volatile compounds with the potential to result in air contamination, potential MTCA Method B and C air cleanup levels were calculated and are presented in Table 6. Because of the potential for a future complete pathway from contamination remaining in soil to indoor air in

residences, MTCA Method B cleanup levels are appropriate as preliminary air cleanup levels. No air sampling has been conducted at the site. The preliminary air cleanup levels are used during this RI/FS to evaluate the need for additional assessment of the vapor intrusion pathway. The need to assess air will be based on future soil and groundwater data collected at the site.

5.1.6 Preliminary Sediment Cleanup Levels

None of the historical samples at the site have been considered to be sediment. MTCA reserves regulatory authority to address potential releases to freshwater sediments under WAC 173-340-760, and by reference to freshwater standards under the Washington Sediment Management Standards (SMS) (WAC 173-204-340). However, Ecology has not yet promulgated freshwater sediment cleanup levels. There is an ongoing discussion within the regulatory and scientific community regarding monitoring, sampling and analysis of freshwater sediments, and there are draft proposed revisions to the SMS for freshwater sediments.

For this RI/FS, analytical results of solids samples potentially considered to be freshwater sediment will be compared to either the Freshwater Sediment Quality Values presented in Table 11 of Ecology's *Creation and Analysis of Freshwater Sediment Cleanup Values in Washington State*, dated July 1997, or the preliminary soil cleanup levels selected in Table 3. The rationale for the values selected for each analyte will be based on the characteristics of the samples actually collected and will be documented in the data reports. The need for bioassays will be assessed after evaluation of the chemical data generated during the proposed data gap investigation (see Section 9.3).

5.2 PRELIMINARY POINTS OF COMPLIANCE

The point of compliance element of cleanup standards developed under MTCA identifies where on the site the numeric cleanup level must be met for each environmental medium. In general, the preliminary points of compliance for all media at the site are the standard points of compliance established in WAC 173-340-720 through -750. The data and site conditions do not currently warrant the proposal of alternative points of compliance. However, additional data collection and analysis may result in a conclusion that alternative points of compliance for one or more environmental medium are appropriate. If so, alternative points of compliance will be evaluated when they are proposed.

The standard points of compliance are:

- **Groundwater:** Throughout the site from the uppermost level of the saturated zone (shallow aquifer) extending vertically to the lowest most depth (deep aquifer) which could potentially be affected by the site (WAC 173-340-720[8][b])
- **Surface Water:** The point or points at which hazardous substances are released to surface waters of the state (WAC 173-340-730[6][a])
- **Soil:** For soil cleanup levels based on the protection of groundwater, soils throughout the site (WAC 173-340-740[6][b]). For soil cleanup levels based on protection from vapors, soils throughout the site from the ground surface to the uppermost groundwater saturated zone (WAC 173-340-740[6][c]). For soil cleanup levels based on human exposure via

direct contact or ecological considerations, soil throughout the site from ground surface to 15 feet bgs (WAC 173-340-740[6][d] and WAC 173-340-7490[4][b]).

• **Air:** Ambient air throughout the site (WAC 173-340-750[6])

A standard point of compliance for sediment has not been promulgated. The preliminary point of compliance for sediment at the site is therefore based on the definition of sediment in the SMS, and the standard point of compliance for other site media.

• **Sediment:** Throughout the site, settled particulate matter located in the predominant biologically active aquatic zone, or exposed to the water column

5.3 APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS

The third component of developing cleanup standards is consideration of "applicable state and federal laws" (WAC 173-340-700[3]). MTCA also requires that cleanup actions comply with legally applicable state and federal laws and regulations, as well as other applicable or relevant and appropriate requirements (ARARs).

"Legally applicable" requirements under MTCA are "those cleanup standards, standards of control, and other environmental protection requirements, criteria, or limitations adopted under state or federal law that specifically address a hazardous substance, cleanup action, location or other circumstances at the site" (WAC 173-340-710[3]).

"Relevant and appropriate" requirements are "those cleanup standards, standards of control, and other environmental requirements, criteria, or limitations established under state or federal law that, while not legally applicable to the hazardous substance, cleanup action, location, or other circumstance at a site, address problems or situations sufficiently similar to those encountered at the site that their use is well suited to the particular site" (WAC 173-340-710[4]).

As part of developing preliminary cleanup standards, chemical-specific ARARs were considered on a media-specific basis in Subsections 5.1.2 through 5.1.6. When cleanup alternatives are developed as part of the Feasibility Study (FS), ARARs that potentially apply to the cleanup alternatives will be added to this discussion.

6.0 PREVIOUS INVESTIGATIONS AND INTERIM CLEANUP ACTIONS

Numerous investigations and interim cleanup actions have been conducted at the site to address the potential sources of contamination (i.e., spill areas). A summary of previous investigations and interim cleanup actions conducted at the site is provided below in Section 6.1. Surface water and groundwater investigations are discussed in Sections 6.2 and 6.3, respectively. Wetlands studies are discussed in Section 6.4. Analytical results are summarized in Tables 7 through 23. Sample locations are shown on Figures 8 through 31. Laboratory analytical reports for the samples discussed in Section 6 are provided in Appendix D.

6.1 SOIL INVESTIGATIONS

As discussed in Section 5.1.2, much of the available historical data for the site consists of field screening data. Most of these data values were generated using a field GC instrument calibrated

against a crude oil standard, and in some cases, a natural gas condensate standard. To assess whether the historical field screening data indicate potentially contaminated soil remains in portions of the site, the field screening data values for natural gas condensate and crude oil are compared against the TEE cleanup level for diesel. This value is selected based on the hydrocarbon ranges represented by the historical field screening analyses. The value for natural gas condensate is also selected based on the likely absence of benzene considering the age of the releases and the frequency of benzene detections documented in Table 3 (12 of 125 samples).

6.1.1 Historic Spills and Releases

Investigations and interim cleanup actions conducted at the site to address historical spills and releases are discussed below and a summary of analytical data results are presented in Table 7.

6.1.1.1 1971 Spill

Soils impacted north of East Smith Road by the 1971 spill were excavated, placed in the Boneyard, and landfarmed. During the 1992 interim RI (Dames & Moore, 1992b), a series of test pits were completed north of East Smith Road and in the Boneyard (Figures 8 and 9, respectively).

Test pits TP-5-1 through TP-5-6 were completed north of East Smith Road, and soil samples were collected at depths of 1, 5, and 10 feet bgs. Field GC analysis conducted onsite indicated that TPH concentrations in each of the soil samples were below the instrument detection limit of 25 milligrams per kilogram (mg/kg) (Dames & Moore, 1992a). Additional soil samples were collected in this area to address the December 11, 1991 spill and are discussed in Section 6.1.3.10.

Test pits TP-19 through TP-24 were completed in the Boneyard, and soil samples were collected at depths of 1, 5, and 10 feet bgs. Field GC analysis indicated the presence of low levels of TPH, ranging in concentration from 30 to 50 mg/kg, in the 1 foot bgs soil samples collected from test pits TP-20, TP-21, and TP-23. Four confirmation soil samples (TP-20 at 10 feet bgs, TP-21 at 1 foot bgs, TP-22 at 5 feet bgs, and TP-24 at 1 foot bgs) were submitted to Analytical Resources, Inc. (ARI) for TPH analysis. TPH was detected in the 1 foot bgs sample collected from TP-21 at a concentration of 16 mg/kg, and was not detected above the reporting limit in the remaining three confirmation samples (Dames & Moore, 1992a).

Based on this data, the subsurface investigations and interim cleanup actions conducted subsequent to the 1971 spill, including excavation of PCS north of East Smith Road, and placement and landfarming in the Boneyard, appear to have adequately characterized the vertical and lateral extent of contamination and effectively remediated soils impacted by the 1971 spill to below the applicable PCLs.

6.1.1.2 1979 Spill

Natural gas condensate released during the 1979 spill pooled within the bermed containment area surrounding Tank No. 170. The condensate was pumped back into the tank and no further remedial actions were reportedly implemented. Frozen soils and surface water in the spill area were noted to have likely minimized any migration of condensate into the subsurface. During

the 1992 interim RI (Dames & Moore, 1992b), three soil borings (TM-B7, TM-B8, and TM-B13) were drilled using hollow stem auger methods within the bermed containment of Tanks No. 170 and 180 (Figure 10). Soil borings TM-B7 and TM-B8 were drilled adjacent to the southwest and northeast of Tank No. 170 to depths of 18 and 34 feet bgs, respectively. Soil samples were collected from 3 and 8 feet bgs in boring TM-B7, and from 4, 9, and 34 feet bgs in boring TM-B8. Field GC analysis indicated that TPH levels were below the 25 mg/kg detection limit in each of the samples with the exception of the 9-foot bgs sample collected from boring TM-B8, where TPH was detected at a concentration of 140 mg/kg, which is below the PCL for diesel of 460 mg/kg.

Soil boring TM-B13 was drilled adjacent to the north of Tank No. 180 to a depth of 26 feet bgs, and soil samples were collected from 9 and 24 feet bgs. Field GC analysis of these two samples indicated that TPH concentrations were below the 25 mg/kg detection limit. The 24-foot bgs sample was submitted to ARI for TPH analysis, and TPH (diesel range hydrocarbons) was not detected above the reporting limit of 10 mg/kg, which corresponded to the field GC analysis (Dames & Moore, 1992a).

Additional soil sampling was conducted within the containment area of Tanks No. 170 and 180 in March 2008, prior to reactivation of the tanks after a several year period of being out of service. Soil samples were collected from two hand auger borings (08-B2 and 08-B3) located near the northeast and southeast portions of Tank No. 170 at depths of 1, 3, and 4.5 feet bgs, and from two locations beneath Tank No. 170 (sample identifications Tank 170-1 and Tank 170-2) at depths ranging from the surface to 3.5 feet bgs. These borings were accessed by cutting holes in the bottom of the steel tanks at locations which had evidence of corrosion. Soil samples were also collected from three hand auger borings (08-B4 through 08-B6) located to the west, east, and south of Tank No. 180 at depths ranging from 1 to 4.5 feet bgs, and from three locations beneath Tank No. 180 (sample identifications Tank 180-1 through Tank 180-3) at depths ranging from the surface to 4 feet bgs. Each of the soil samples were analyzed for gasoline-range hydrocarbons by Ecology Method NWTPH-Gx, diesel- and motor oil-range hydrocarbons by method NWTPH-Dx, and BTEX by EPA Method 8021B. Gasoline-, diesel-, and motor oilrange hydrocarbons were detected at maximum concentrations of 350 mg/kg, 3,100 mg/kg, and 3,500 mg/kg, respectively, in the 3-foot bgs sample collected at Tank 180-1, which exceeded their respective PCLs. These constituents were not detected above their respective PCLs in the soil samples collected from the other locations. Benzene was detected at a concentration of 33 micrograms per kilogram (μ g/kg) in the 4.5-foot bgs sample collected from 08-B3, which slightly exceeded the PCL of 30 μ g/kg. BTEX were not detected above their respective PCLs in the remaining soil samples (URS, 2008a).

During a geotechnical evaluation conducted by URS in 2007, no field evidence of petroleum contamination was noted in geotechnical borings (U-3 and U-4) drilled to depths of 23 and 24 feet bgs on the containment dike to the west of Tanks No. 170 and 180, respectively.

6.1.1.3 Relief Tank Area

The containment area around the relief tank and an area adjacent to the south of the containment berm were used to store PCS encountered during the 1983 refurbishment of the former burn pit, small quantities of soils from miscellaneous small spills and leaks, and PCS from a historic East Smith Road spill (Dames & Moore, 1992a). During the 1992 interim RI (Dames & Moore, 1992b), surface soil samples were collected from three hand auger borings (HA-3-1 through HA-3-3) within the relief tank containment berm area. Subsurface samples were collected from a hand auger boring southeast of the tank within the containment area (HA-3-4). Subsurface soil samples were also collected from an additional hand auger boring (HA-3-5) and three test pits (TP-3-1 through TP-3-3) in the area adjacent to the south of the containment area (Figure 11).

Field GC analysis of the surface samples collected from within the containment berm area indicated that TPH levels were below the 25 mg/kg detection limit in each of the soil samples with the exception of the sample collected from HA-3-2, where TPH was detected at a concentration of 200 mg/kg. The HA-3-3 sample was submitted to ARI for TPH analysis, and TPH was not detected above the reporting limit of 10 mg/kg (Dames & Moore, 1992a).

Soil samples were collected from hand auger borings HA-3-4 and HA-3-5 at depths of 0.5, 5, and 8 feet bgs. Field GC analysis of these samples indicated that TPH levels were below the 25 mg/kg detection limit. Soil samples were collected from test pits TP-3-1 through TP-3-3 at depths of 0.5, 5, and 10 feet bgs. Field GC analysis of these samples indicated that TPH levels were below the 25 mg/kg detection limit with the exception of the 0.5-foot bgs sample collected from TP-3-1 and the 5-foot bgs sample collected from TP-3-2, where TPH was detected at concentrations of 80 mg/kg and 4,000 mg/kg, respectively (Dames & Moore, 1992a). The TPH concentration detected in the 5-foot bgs sample collected from TP-3-2 exceeded the PCL of 460 mg/kg; however, TPH was not detected above the 25 mg/kg detection limit in the 10-foot bgs sample collected from TP-3-2.

Additional soil samples were collected from these two areas and excavation of PCS was conducted within the containment berm subsequent to the March 7, 1992 spill, which are discussed in Section 6.1.4.

6.1.2 January 15, 1991 Spill

The January 15, 1991 spill was originally investigated by W.D. Purnell & Associates (Purnell). Purnell's investigation (W.D. Purnell and Associates, Inc., 1991a) focused on the 16-inch Ferndale pipeline and the Order-defined Areas 1 through 3, which are discussed individually below. A summary of soil analytical data generated during the Purnell investigation is presented in Table 8.

6.1.2.1 16-Inch Ferndale Pipeline

Purnell completed three hand auger borings (TH-1, TH-3, and TH-4) to a depth of approximately 5 feet bgs adjacent to the north of the 16-inch Ferndale pipeline (Figure 12). Soil samples collected from TH-1, TH-3, and TH-4 at approximately 5 feet bgs were submitted to Sound Analytical Services, Inc. (SAS) of Tacoma, Washington for TPH analysis by EPA SW-846 modified Method 8015 (Method 8015). Diesel-range hydrocarbons were detected in TH-3 and TH-4 at concentrations of 72 mg/kg and 12 mg/kg, respectively. TPH was not detected above the laboratory reporting limit of 10 mg/kg in the soil sample collected from TH-1 (W.D. Purnell and Associates, Inc., 1991a).

6.1.2.2 Area 1

Assessment of the lateral extent of contamination in Area 1 included the collection of 39 soil samples (sample numbers 1 through 31, 36 through 39, and 47 through 50) collected at depths ranging from 0 to 36 inches bgs (Figure 13). The samples were analyzed for TPH by EPA Method 8015. TPH was not detected above the laboratory reporting limit of 10 mg/kg in 19 of the samples. Diesel-range hydrocarbons were detected in the remaining soil samples at concentrations ranging from 45 mg/kg (sample number 36) to 15,411 mg/kg (sample number 13) (W.D. Purnell and Associates, Inc., 1991b). TPH was detected above the PCL of 460 mg/kg in 15 of the soil samples.

Fifteen of the 39 soil samples were submitted to the laboratory for analysis of BTEX by EPA SW-846 Method 8020. BTEX were detected at maximum concentrations of 6,830 μ g/kg (benzene), 57,300 μ g/kg (toluene), and 8,640 μ g/kg (ethylbenzene), in sample number 1 which was collected at a depth of 0 to 10 inches bgs. Xylenes were detected at the highest concentration of 109,000 μ g/kg in sample 13 which was collected at a depth of 10 to 14 inches bgs. BTEX were detected above their respective PCLs of 30 μ g/kg, 7,000 μ g/kg, 6,000 μ g/kg, and 9,000 μ g/kg in sample numbers 1 and 13. Benzene and xylenes were also detected above the PCL in sample numbers 2, 10, 16, and 21. The reporting limit for benzene (50 μ g/kg) was above the PCL of 30 μ g/kg in samples reported as not detected for benzene. Toluene was also detected above the PCL in sample numbers 10 and 21.

Soil sample number 47 was submitted to the laboratory for analysis of PAHs by EPA SW-846 Method 8270. Naphthalene, fluorene, and phenanthrene were detected at concentrations of 810 μ g/kg, 400 μ g/kg, and 250 μ g/kg, respectively. The concentrations of naphthalene and fluorene were below their respective PCLs of 1,600 μ g/kg and 3,200 μ g/kg. A PCL was not established for phenanthrene.

The lateral extent of soil contamination resulting from the January 15, 1991 spill appears to have been adequately characterized in Area 1, with the exception of the northern extent, which migrated through a stormwater culvert into Area 2 north of East Smith Road (see Section 6.1.2.3).

To further assess the vertical extent of contamination in portions of the spill area, 13 soil samples were collected from 3 Shelby Tube samplers (SH-1 through SH-3) advanced within Area 1 (Figure 13). Three soil samples were collected from SH-1 (4 to 6, 16 to 18, and 28 to 30 inches bgs) and five soil samples were collected from both SH-2 and SH-3 (4 to 6, 10 to 12, 16 to 18, 22 to 24, and 28 to 30 inches bgs). TPH was not detected above the laboratory reporting limit of 10 mg/kg in 9 of the samples, including all five samples collected from SH-3. Diesel-range hydrocarbons were detected in the 4 to 6 inch bgs (843 mg/kg) sample collected from SH-1, which exceeds the PCL, but were not detected above laboratory reporting limits in the deeper samples collected from 16 to 18 and 28 to 30 inches bgs. Diesel-range hydrocarbons were also detected in the 4 to 6 (2,053 mg/kg), 10 to 12 (4,907 mg/kg), and 16 to 18 inch bgs (1,667 mg/kg) samples collected from SH-2, which exceed the PCL, but were not detected above laboratory reporting limits in the deeper samples collected from 22 to 24 and 28 to 30 inches bgs.

Four of the samples collected with detectable concentrations of TPH were also analyzed for PAHs. Naphthalene, fluorene, and phenanthrene were detected in each of the samples at

concentrations ranging from 500 μ g/kg (SH2 at 4 to 6 inches bgs) to 5,500 μ g/kg (SH-1 at 4 to 6 inches bgs), 500 μ g/kg (SH-2 at 4 to 6 inches bgs) to 1,200 μ g/kg (SH-1 at 4 to 6 inches bgs), and 400 μ g/kg (SH-2 at 4 to 6 inches bgs) to 800 μ g/kg (SH-1 at 4 to 6 inches bgs), respectively. Benzo(b)fluoranthene was detected at a concentration of 100 μ g/kg in the 4 to 6 inch bgs sample collected from SH-1. The concentrations of the detected PAHs in these four samples were below their respective PCLs, if established, with the exception of the naphthalene concentrations detected in the 4 to 6 inch bgs sample collected from SH-1 and the 10 to 12 inch bgs and 16 to 18 inch bgs samples collected from SH-2.

Although the 4 to 6 inch bgs sample collected from SH-1 and the 4 to 6, 10 to 12, and 16 to 18 inch bgs samples collected from SH-2 exceeded the PCL for TPH, the vertical extent of soil contamination at these locations was defined. However, the vertical extent of naphthalene impacts exceeding the PCL at SH-1 and SH-2 was not defined.

Three monitoring wells (MW-1 through MW-3) were installed in Area 1 that were screened from approximately 2.5 to 3 feet bgs and were sampled on at least three occasions between March and June, 1991. The wells were installed within a designated wetland area and groundwater levels in these wells ranged from 2.5 to 12.5 inches bgs. Based on the depth to water in these wells, water samples collected from these wells are considered to be representative of surface water and are discussed in more detail in Section 6.2.2.

Approximately 2,250 cubic yards (cy) of PCS was estimated in Area 1 as a result of the January 15, 1991 spill incident. Insitu treatment was recommended as the preferred remedial alternative. No documentation was found that indicated impacted soils exceeding PCLs within Area 1 were remediated.

6.1.2.3 Area 2

To assess the lateral extent of contamination in Area 2, 10 soil samples (sample numbers 32 through 35, 40, 41, and 51 through 54) were collected (Figure 14) at depths ranging from 0 to 18 inches bgs. Each of the samples was analyzed for TPH by Method 8015. TPH was not detected above the laboratory reporting limit of 10 mg/kg in 5 of the samples. Diesel-range hydrocarbons were detected in the remaining soil samples at concentrations ranging from 18 mg/kg (sample number 35) to 439 mg/kg (sample number 41). TPH was not detected above the PCL in the remaining soil samples (W.D. Purnell and Associates, Inc., 1991b).

The vertical extent of contamination in Area 2 was determined in the field to be limited to the ground surface and/or surface water, and within the upper 3 inches of soil. The vertical extent of contamination was confirmed by advancing a Shelby Tube (SH–4) at the approximate location of sample number 41. Three soil samples were collected from SH–4 at depths of 4 to 6, 18 to 20, and 28 to 30 inches bgs, and were submitted to the laboratory for TPH analysis. TPH was not detected above the laboratory reporting limit of 10 mg/kg in any of the samples. Approximately 300 cy of PCS were estimated within Area 2 as a result of the January 15, 1991 spill incident. Insitu treatment was recommended as the preferred remedial alternative (W.D. Purnell and Associates, Inc., 1991b). However, it does not appear that impacted soils within Area 2 were remediated.

6.1.2.4 Area 3

Purnell's assessment of Area 3 was limited to a surface water monitoring program at Dams 2 and 3. Surface water investigations are discussed in Section 6.2.

Fisheries Assessment

To assess the effects of the January 15, 1991 spill incident, 9 stations located between the spill origin and the mouth of Deer Creek were sampled on March 26, 1991 (Seymour & Associates, 1991). Approximately 150 to 300 feet of the creek was electrofished at each station. Juvenile fish were stunned, netted, identified as to species and age class, and returned to the creek. Stations included spawning areas, pool and riffle sections, forested and residential areas, agricultural sections, and an area within the spill cleanup zone. The purpose of the sampling was to evaluate the diversity of juvenile fish in the creek and to detect any abnormal situation that may have been the result of the spill. No attempt was made to enumerate total population size during this investigation. Based on the results of the assessment, Seymour & Associates concluded that the January 15, 1991 spill incident did not have a measurable impact upon the fish resources of Deer Creek, below Hannegan Road (Dames & Moore, 1992a).

6.1.3 Station Area and December 11, 1991 Spill

To address contamination identified during the station upgrading activities implemented subsequent to the January 15, 1991 spill, and contamination resulting from the December 11, 1991 spill, the following sub-areas were investigated and are discussed below: the former pump station area, former oily water sump, former burn pit, former oil/water separator, former drain line between the oily water sump and the burn pit, former drain tile, former waste pit, 16-inch Ferndale pipeline, 20-inch Main pipeline, and the former PSE electrical substation (Figure 2A).

Due to the close proximity of many of the sub-areas to one another, distinguishing the exact source or contribution of contamination identified in the soil at each sub-area was difficult or impossible to determine. The majority of the sub-areas discussed below (designated "former") were removed during the upgrading activities conducted at the site between 1991 and 1992. The field investigation conducted during Dames & Moore's 1992 interim RI initially focused on the areas around the former drain line between the former oily water separator and former burn pit. The area of soil investigation was subsequently extended out from the boundaries of these initial areas to assess the lateral extent of hydrocarbon occurrence. Where hydrocarbon impacts extended beyond the depth capabilities of the backhoe utilized to perform test pits, soil borings were drilled to complete the assessment in these areas.

6.1.3.1 Former Pump Station Area

During station upgrading activities in December 1991, three pumps were removed from the pump station area, and soil samples were collected at two-foot intervals beneath the pumps from test pits (PB-1, PB-2, and PB-4) completed to depths ranging from 12 to 17 feet bgs (Figure 15). Field GC analysis indicated that TPH levels were below the 25 mg/kg detection limit in each of the samples with the exception of the 6 and 10-foot bgs samples collected from test pit PB-4, and the 12-foot bgs sample collected from test pit PB-2, where TPH was detected at concentrations of 1,900 mg/kg, 64 mg/kg, and 5,300 mg/kg, respectively. The vertical extent of TPH

contamination was defined in test pit PB-4 as TPH was below the 25 mg/kg detection limit in the 12-foot bgs sample (Dames & Moore, 1992a and 1992b); however, the vertical extent of TPH contamination was not defined at test pit PB-2.

Three additional test pits (TP-1, TP-2, and TP-18) were completed in the station area in November and December 1991, and soil samples were collected at 4 feet bgs (Figure 15). Field GC analysis indicated that TPH levels were below the 25 mg/kg detection limit in each of the samples (Dames & Moore, 1992a and 1992b).

Soil borings TM-B10, TM-B14, and TM-B15 were drilled in the pump station area in February 1992 to depths of 40, 55, and 30 feet bgs, respectively (Figure 15). Groundwater was encountered at approximately 25 feet bgs in boring TM-B15, but was not encountered in TM-B10 or TM-B14. Field screening of soil samples collected from 15 and 40 feet bgs in boring TM-B10 did not identify TPH above the 25 mg/kg detection limit. The field screening result at 25 feet bgs was approximately 28 mg/kg, which is below the PCL. The 15-foot bgs soil sample collected from TM-B10 was submitted to ARI for WTPH-HCID analysis, and TPH was not detected above the reporting limit of 10 mg/kg. Field screening of soil samples collected from 13 and 54 feet bgs in boring TM-B14 identified TPH at concentrations of 430 mg/kg and less than the 25 mg/kg detection limit, respectively. A soil sample collected from 34 feet bgs in TM-B14 was submitted to ARI for TPH analysis, and diesel-range hydrocarbons were detected at a concentration of 20 mg/kg. Field screening of a soil sample collected from 29 feet bgs in boring TM-B15 identified TPH at a concentration of 1,600 mg/kg. However, a sample collected from 30 feet bgs in TM-B15 was submitted to ARI for TPH analysis, and diesel-range hydrocarbons were detected at 50 mg/kg (Dames & Moore, 1992a and 1992b), which is below the PCL. A summary of the analytical results for samples collected in the former pump station area are presented in Table 9.

6.1.3.2 Former Oily Water Sump

To assess potential hydrocarbon contamination in the area of the former oily water sump, soil borings TM-B4 and TM-B16 were drilled to depths of 28 and 40 feet bgs, respectively, and were completed as shallow monitoring wells SW-4 and SW-5 (Figure 16). Monitoring wells SW-4 and SW-5 were screened from 18 to 28 feet bgs and 34 to 39 feet bgs, respectively. Groundwater analytical results for monitoring wells SW-4 and SW-5 are discussed in Section 6.3.1.

Soil field screening results from samples collected at 18 and 23 feet bgs in boring TM-B4 identified TPH at concentrations of 400 mg/kg and 1,300 mg/kg, respectively. However, TPH was not detected above the 25 mg/kg detection limit in the 28-foot bgs sample collected from TM-B4. The sample collected from TM-B4 at 18 feet bgs was submitted to ARI for BTEX, WTPH-HCID, TPH-418.1, SVOCs, and priority pollutant metals analyses. BTEX were either not detected above the laboratory reporting limit or not detected above their respective PCLs. The reporting limit for benzene exceeded the PCL of $30 \,\mu\text{g/kg}$. Diesel-range hydrocarbons and TPH by Method 418.1 were detected at concentrations of 320 mg/kg and 1,200 mg/kg, respectively. SVOCs were not detected above their respective PCLs with the exception of 2-methylnaphthalene, which was detected at a concentration of 1,300 $\mu\text{g/kg}$. Metals were not detected above their respective PCLs.

Soil samples collected from boring TM-B16 at 13, 19, 29, and 39 feet bgs were submitted to ARI for WTPH-HCID analysis. Diesel-range hydrocarbons were detected at concentrations of 3,100 mg/kg and 510 mg/kg in the 13 and 19 foot bgs samples, respectively, which exceed the PCL of 460 mg/kg. TPH was detected in the 29 foot bgs sample at a concentration of 30 mg/kg. TPH was not detected in the sample collected at 39 feet bgs. (Dames & Moore, 1992a and 1992b).

A summary of the analytical results for soil samples collected in the former oily water sump are presented in Table 10. Based on this data, the vertical extent of TPH impacts above PCLs in soil appear to have been adequately characterized at boring locations TM-B4 and TM-B16; however, the lateral extent of contamination exceeding PCLs is undefined.

6.1.3.3 Former Burn Pit and Former Oil/Water Separator

To assess potential hydrocarbon contamination in the area of the former burn pit and former oil/water separator, four test pits (TP-6, TP-7, TP-10, and BURNPIT #1) and three soil borings (TM-B2, TM-B3, and TM-B6) were completed in this area (Figure 17) from November 1991 through February 1992.

Field screening of soil samples collected from the test pits identified maximum TPH concentrations of 1,200 mg/kg at 13 feet bgs in TP-6 and 13,200 mg/kg at 5 feet bgs in TP-7. TPH concentrations in TP-6 decreased to 220 mg/kg at 15 feet bgs, and to 51 mg/kg at 15 feet bgs in TP-7, which are below the PCL. BTEX, TPH by Method 418.1, or diesel-range petroleum hydrocarbons by WTPH-HCID were not detected above their respective laboratory reporting limits or PCLs in the 10-foot bgs sample from TP-6 that was submitted to ARI for analysis. The reporting limit for benzene was above the PCL. The sample was also analyzed for gasoline-range petroleum hydrocarbons and the concentration detected was 12 mg/kg, below the PCL. TPH was not identified above the 25 mg/kg detection limit in the samples collected from test pit TP-10 (Dames & Moore, 1992a and 1992b).

One soil sample was collected from BURNPIT #1 at a depth of 3 feet bgs and submitted to ARI for WTPH-HCID, BTEX, metals, and PAH analysis. Diesel-range hydrocarbons were detected at a concentration of 170 mg/kg, and ethylbenzene and xylenes were detected at concentrations of 830 μ g/kg and 2,100 μ g/kg, respectively. Benzene was not detected above the laboratory reporting limit of 160 μ g/kg. ARI's reporting limit for benzene exceeded the PCL of 30 μ g/kg. Toluene was not detected. Metals identified in the sample were not detected above their respective PCLs. Naphthalene, fluorene, phenanthrene, pyrene, dibenz(a,h)anthracene, indeno(1,2,3)pyrene, and chrysene were detected in the BURNPIT #1 sample at concentrations below their respective PCLs, where established (Dames & Moore, 1992a and 1992b); however, 2-methylnaphthalene (750 μ g/kg) was detected above the PCL of 320 μ g/kg.

Soil borings TM-B2 and TM-B3 were drilled to depths of 20 and 50 feet bgs, respectively, and were completed as shallow monitoring wells SW-1 and SW-2 (Figure 17). Groundwater analytical results for monitoring wells SW-1 and SW-2 are discussed in Section 6.3.1.

Soil boring TM-B6 was drilled to a depth of 58 feet bgs. Field screening did not identify hydrocarbon impacts at this location. Field screening did not identify hydrocarbon impacts in TM-B2 from 5 to 20 feet bgs, or in TM-B3 from 22 to 47 feet bgs. The 5-foot bgs soil sample

collected from TM-B2 was submitted to ARI for TPH analysis by Method 418.1, and TPH was detected at a concentration of 21 mg/kg (Dames & Moore, 1992a and 1992b), below the PCL.

The analytical results for soil samples collected in the former burn pit and former oil/water separator area are summarized in Table 11. Based on this data, the vertical extent of TPH impacts above PCLs in soil appear to have been adequately characterized at test pit locations TP-6, TP-7, TP-10, and BURNPIT #1 and boring locations TM-B2, TM-B3, and TM-B6; however, the lateral extent of contamination exceeding PCLs at test pits TP-6 and TP-7 appears to be undefined.

6.1.3.4 Former Drain Line Between Oily Water Sump and Burn Pit

To assess potential hydrocarbon contamination in the area of the former drain line between the former oily water sump and the former burn pit, one test pit (TP-8) and six soil borings (TM-B18 and TM-B20 through TM-B24) were completed in this area between November 1991 and February 1992 (Figure 18).

Field screening of soil samples collected from TP-8 identified TPH at concentrations ranging from below the 25 mg/kg detection limit to 100 mg/kg. The 6-foot bgs soil sample was submitted to ARI for BTEX, TPH by Method 418.1, and WTPH-HCID analysis. BTEX were not detected above their respective laboratory reporting limits; however, ARI's reporting limit for benzene exceeded the PCL. TPH was detected at a concentration of 140 mg/kg and gasoline-range hydrocarbons were detected at 38 mg/kg (Dames & Moore, 1992a and 1992b), which are below their respective PCLs.

Soil borings TM-B18 and TM-B20 through TM-B24 were drilled to depths of 30, 24.5, 15, 10, 13.5, and 10 feet bgs, respectively. Field screening of soil samples collected from these borings did not identify TPH concentrations above the 25 mg/kg detection limit (Dames & Moore, 1992a and 1992b).

A summary of the analytical results for soil samples collected in the area of the former drain line between the former oily water sump and former burn pit is presented in Table 12. Based on this data, the lateral and vertical extent of TPH impacts exceeding PCLs appears to have been defined at these sampling locations.

6.1.3.5 Former Drain Tile

In December 1991, soil boring TM-B5 was drilled between the former drain tile and the 16-inch Ferndale pipeline to a depth of 32 feet bgs, and was completed as shallow monitoring well SW-3 (Figure 19). Groundwater analytical results for monitoring well SW-3 are discussed in Section 6.3.1. Soil samples were collected at depths of 8, 13, and 18 feet bgs, and field screening of soil samples collected from TM-B5 did not identify TPH above the 25 mg/kg detection limit. The 13-foot bgs soil sample was submitted to ARI for TPH analysis by Method 418.1, and TPH was not detected above the laboratory reporting limit of 10 mg/kg (Dames & Moore, 1992a and 1992b). Additional soil samples were collected and excavation of PCS was conducted in this area subsequent to the October 2000 spill incident and is discussed in Section 6.1.5.

During January and February 1992, the former drain tile was removed as it was no longer needed subsequent to the station upgrading activities. The excavation to remove the drain tile was approximately 4 feet wide and varied in depth from approximately 6 feet at the south end where the drain tile connected to the 16-inch Ferndale pipeline, to approximately 1 foot in depth at the north end where the drain tile daylighted (Figure 19). Portions of the 16-inch Ferndale pipeline also were exposed during the excavation activities to remove below-ground instrumentation no longer required. TPH concentrations of soils removed during the excavation activities ranged from less than 25 mg/kg to 3,700 mg/kg. Nine post-excavation soil samples were collected (DTE-1 through DTE-7, EXFERN-5 and EXFERN-7) and field screening identified TPH in DTE-1 (base of excavation sample) and DTE-3 (sidewall sample) at concentrations of 680 mg/kg and 36 mg/kg, respectively. The DTE-1 sample was submitted to ARI for WTPH-HCID analysis and diesel-range hydrocarbons were detected at a concentration of 460 mg/kg (Dames & Moore, 1992c), which is equal to the PCL. Approximately 40 cy of soil exhibiting field evidence of petroleum contamination was excavated and placed in one of the PCS storage cells located within Study Unit 7. Clean fill was reportedly used to backfill the drain tile excavation.

A summary of the analytical results for soil samples collected in the former drain tile excavation area are presented in Table 13. Based on this data, the lateral and vertical extent of TPH impacts exceeding PCLs appears to have been defined at the former drain tile location, with the exception of location DTE-1.

6.1.3.6 Former Waste Pit

To assess potential hydrocarbon contamination in the area of the suspected former waste pit, two test pits (TP-4 and TP-5) and three soil borings (TM-B19, TM-B25, and PIT #1) were completed in this area between November 1991 and February 1992 (Figure 20).

Test pits TP-4 and TP-5 were completed to 12 and 14 feet bgs, respectively. Field screening of soil samples collected from TP-4 and TP-5 did not identify TPH above the 25 mg/kg detection limit with the exception of the 5-foot bgs sample collected from TP-5 (50 mg/kg). A sample collected from TP-5 at 14 feet bgs was submitted to ARI for TPH analysis by Method 418.1. TPH was not detected above the laboratory reporting limit of 10 mg/kg (Dames & Moore, 1992a and 1992b).

Soil borings TM-B19, TM-B25, and PIT #1 were drilled to depths of 18, 20, and 15 feet bgs, respectively. Field screening of samples collected from TM-B19 and TM-B25 did not identify TPH above the 25 mg/kg detection limit. The 15-foot bgs soil sample collected from PIT #1 was submitted to ARI for analysis of metals, VOCs by EPA Method 8240, and SVOCs by EPA Method 8270. Metals identified in the sample were not detected above their respective PCLs. Toluene (450 μ g/kg) was detected in the sample at a concentration below its respective PCL. Other VOCs were either not detected or were below their respective PCLs. The reporting limit for benzene (190 μ g/kg) exceeds the PCL. SVOCs detected in the sample included 2-methylnaphthalene (200 μ g/kg), butylbenzylphthalate (370 μ g/kg), naphthalene (79 μ g/kg), and phenanthrene (47 μ g/kg), each of which were below their respective PCLs, where established.

A summary of the analytical results for soil samples collected in the former waste pit area are presented in Table 14. Based on this data, the lateral and vertical extent of TPH, VOC, SVOC,

and metals impacts exceeding PCLs appears to have been defined at the former waste pit location.

6.1.3.7 16-Inch Ferndale Pipeline

As discussed in Section 6.1.3.5, the 16-inch Ferndale pipeline was partially exposed during the former drain tile excavation activities conducted during January and February 1992 and soil samples were collected along the exposed pipeline as shown on Figure 19. Field screening of soils removed during the excavation activities identified TPH at concentrations ranging from less than 25 mg/kg (EXFERN-1) to 3,700 mg/kg (EXFERN-11) (Dames & Moore, 1992c). Field screening of post-excavation soil samples EXFERN-5 and EXFERN-7 did not identify TPH above the 25 mg/kg detection limit. Approximately 40 cy of PCS was excavated and placed in one of the PCS storage cells located within Study Unit 7. Clean fill was reportedly used to backfill the excavation (Dames & Moore, 1992c). The analytical results for post-excavation soil samples collected in the area of the 16-inch Ferndale pipeline are summarized in Table 13. Additional soil samples were collected and excavation of PCS was conducted in this area subsequent to the October 26, 2000 spill incident, which is discussed in Section 6.1.5.

6.1.3.8 20-Inch Main Pipeline

The 20-inch Main Pipeline was exposed in January 1992 for inspection and maintenance. The excavation was reportedly extended to depths ranging from approximately 7 to 15 feet bgs. A total of 34 post-excavation soil samples were collected from the trench, including 18 bottom of excavation samples (designated "PLB") and 16 sidewall samples (designated "PLS") (Figure 21). The sample depths were not documented. Field screening of the post-excavation soil samples did not identify TPH above the 25 mg/kg detection limit. Several of the post-excavation samples were submitted to ARI for analysis for TPH by Method 418.1 and WTPH-HCID. Diesel-range petroleum hydrocarbons were detected at 7 feet bgs in sample PLB-1-1 at a concentration of 110 mg/kg, which is below PCL. The remaining post-excavation soil samples submitted to ARI did not detect TPH above 20 mg/kg (Dames & Moore, 1992a and 1992b).

Eighteen soil samples were collected from stockpiled material generated during the 20-inch Main Pipeline work, two of which were submitted to ARI for WTPH-HCID analysis. TPH concentrations ranged from non-detect to 39 mg/kg (diesel-range hydrocarbons). The stockpiled material was reportedly placed in one of the PCS storage cells located within Study Unit 7 (Dames & Moore, 1992b).

The analytical results for soil samples collected in the area of the 20-inch Main Pipeline are summarized in Table 15. Based on this data, TPH impacts identified during exposure of the 20-inch Main Pipeline during the January 1992 inspection and maintenance activities appear to be minimal and do not exceed PCLs.

6.1.3.9 Former PSE Electrical Substation

To determine whether PCB-containing fluids had leaked from either the onsite electrical substation near the northwest corner of the site and/or the transformer located near the Laurel Station office, five hand auger borings (ES-1 through ES-5) were advanced in the areas of concern in March 1992 (Figure 22). Two soil samples were collected from each hand auger location at depths ranging between 4 and 12 inches bgs and were submitted to ARI for PCB

analysis. PCBs were not detected in any of the soil samples above the laboratory reporting limit of 0.05 mg/kg (Dames & Moore, 1992a and 1992b). The analytical results for soil samples collected in the area of the former PSE electrical substation are summarized in Table 16.

6.1.3.10 December 11, 1991 Spill

Surficial soils in the station area affected by airborne and pooling oil resulting from the December 11, 1991 spill were scraped from the surface and reportedly placed in one of the PCS storage cells located within Study Unit 7. Post-excavation soil samples EX-10, EX-11, EX-13, and EX-15 through EX-17 were collected from near the surface following excavation of impacted soils (see Figure 23) and TPH was not detected above 61 mg/kg based on field screening (Dames & Moore, 1992a and 1992b).

Thirty-eight surface soil samples (HA-6-1 through HA-6-20 and SS-6-1 through SS-6-8 and SS-6-11 through SS-6-20) were collected to the north, northeast, and east of the pump station area to further assess potential hydrocarbon impacts downwind of the December 11, 1991 spill location (Figure 23). Field screening of the soil samples did not identify TPH above the 25 mg/kg detection limit. Six of the samples (HA-6-5, HA-6-9, HA-6-11, HA-6-20, SS-6-7, and SS-6-15) were submitted to ARI for WTPH-HCID analysis, and TPH was not detected above the laboratory reporting limit of 10 mg/kg (Dames & Moore, 1992b).

The analytical results for soil samples collected as a result of the December 11, 1991 spill are summarized in Table 17. Based on this data, the subsurface investigations and interim cleanup actions conducted subsequent to the December 11, 1991 spill, including excavation of PCS in the pump station area and placement in one of the PCS storage cells in Study Unit 7 appear to have adequately characterized the vertical and lateral extent of contamination and effectively remediated soils impacted by this spill.

6.1.4 March 7, 1992 Spill

Following the recovery of crude oil spilled during the March 7, 1992 spill incident, PCS located within the containment berm surrounding the relief tank was excavated and reportedly placed in one of the PCS storage cells located in Study Unit 7. Seven post-excavation soil samples (PRT-1, PRT-2, PRT-3, PRT-4, PRT-5, PRT0-1, and PRT0-2) were collected from within the containment berm as shown on Figure 24 and submitted to ARI for analysis. TPH was detected in samples collected at 2 feet bgs from PRT-1 and PRT-2 at concentrations of 16,000 mg/kg and 10,000 mg/kg, respectively, which exceed the PCL. TPH was not detected in the remaining five post-excavation samples (Dames & Moore, 1992a). The excavation reportedly extended to approximately 4 feet bgs in the eastern half of the containment area, and to 2-3 feet bgs in the western half; however, additional post-excavation samples were not collected. Subsequent to the removal of PCS, the containment area and dykes were reconstructed with an impermeable clay liner.

In addition to constructing the March 7, 1992 Spill Containment Dam at the southern limit of the spill path (Figures 2A and 2B), a water flood and skimming operation was implemented to remove free product from the wetland area. Process water generated during this operation was transferred to Tank No. 170 for settling. Following the flooding and skimming operation, oil-

contaminated debris was manually removed from the wetland area and shipped to Recomp of Washington for industrial incineration (TMOPL Corporation, 1992).

A summary of the analytical results for soil samples collected in the area of the March 7, 1992 spill are presented in Table 18. Based on this data, the vertical and lateral extent of TPH impacts within the containment area and exceeding the PCL were not fully characterized within the containment berm. Surface water sample collection associated with the wetland area is described in Section 6.2.2.2. No solids sampling was conducted in the wetland area.

6.1.5 October 26, 2000 Spill

As described in Section 3.6, the primary areas impacted by the October 26, 2000 spill incident were downslope from the release location (Figure 25). Following initial response actions, soil excavation was performed at locations where field-screening indicated elevated levels of petroleum contamination existed. Seventy-two (72) post-excavation soil samples were collected from the excavations for analysis of diesel, heavy oil, and gasoline-range hydrocarbons (Ecology Methods NWTPH-Dx and NWTPH-Gx), and BTEX (EPA Method 8021B). Initially, 7 of the 72 post-excavation soil samples (PEX-6-S-5, PEX-9-B-10, PEX-11-S-7, PEX-12-S-7, PEX-13-S-5, PEX-14-S-1, and PEX-72-B-1) contained concentrations of petroleum hydrocarbons and/or BTEX constituents that exceeded MTCA cleanup levels. Additional excavation was performed at these seven locations and the areas were re-sampled (PEX-48-S-4, PEX-77-B-11, PEX-38-S-4, PEX-77-B-11, PEX-55-S-2, PEX-53-S-1.5, and PEX-76-B-4). Petroleum hydrocarbons or BTEX were not detected above applicable PCLs in the areas where additional excavation was performed. Post-excavation soil samples collected from the lower excavation were either nondetect for petroleum hydrocarbons or BTEX constituents or were below applicable PCLs, with the exception of sample PEX-34-S-1, where benzene was detected at a concentration of 125 μ g/kg, which was below the 2000 MTCA cleanup level of 500 μ g/kg. Two post-excavation soil samples collected from the upper excavation (PEX-17-B-5 and PEX-18-S-3) contained benzene at concentrations of 139 μ g/kg and 96.1 μ g/kg, respectively, above the PCL of 30 μ g/kg, but did not exceed the 2000 MTCA cleanup level of 500 μ g/kg (URS, 2001).

Approximately 3,500 tons of PCS was excavated and placed in two lined containment cells located within Study Unit 7. Fifteen soil samples were collected from the stockpiled material and analyzed for diesel, heavy oil, and gasoline-range hydrocarbons, and BTEX. Gasoline-range hydrocarbons ranged in concentration from non-detect to 720 mg/kg; diesel-range hydrocarbons ranged in concentration from non-detect to 1,500 mg/kg; and heavy oil-range hydrocarbons ranged in concentration from non-detect to 1,100 mg/kg. BTEX were detected at maximum concentrations of 2,700 μ g/kg, 16,000 μ g/kg, 5,200 μ g/kg, and 36,000 μ g/kg, respectively. Approximately 3,500 tons of PCS was transported offsite to the CSR America Associated (aka, Associated Sand and Gravel) facility in Everett, Washington, where it was treated by low temperature thermal desorption (URS Corporation, 2001). The post-excavation and stockpile soil sample analytical results associated with the October 26, 2000 spill incident are summarized in Table 19.

With the exception of benzene concentrations at sample locations PEX-17-B-5, PEX-18-S-3, and PEX-34-S-1, the cleanup actions implemented during the October 26, 2000 spill appear to have effectively remediated PCS to below applicable PCLs.

6.1.6 PCS Storage Cells

As described in Sections 6.1.3.10 and 6.1.4 above, PCS removed during various interim actions was placed into seven PCS storage cells located south of the main pump station facility (Study Unit 7). The storage cells were constructed within and used the native silty clay soils for the cell sidewalls. The cells were lined with a 30-mil PVC/nitrile synthetic liner. PCS within the enclosure was covered with a 20-mil high density polyethylene tarp. The seams of the liner were chemically welded by the manufacturer, while the exterior tarp seams were overlapped by 6 to 8 inches and laced together (Dames & Moore, 1993a).

From October through December 1992, three and a half of the PCS storage cells (Nos. 1, 4S, the western half of Cell No. 5, and the "blue tarp") were consolidated into four other storage cells (Nos. 2 through 5) (Figure 26). The remaining cells were also regraded so that stormwater would not accumulate on the tarps covering the cells. Subsequent to the consolidation and regrading work, post-consolidation soil samples were collected from beneath the former liners of PCS Storage Cell Nos. 1, 4S, the western half of Cell No. 5, and the blue tarp (Figure 26). A total of 35 post-consolidation soil samples were collected from beneath the former storage cell liners and were submitted to ARI for WTPH-HCID analysis. None of the samples contained TPH at concentrations above the laboratory reporting limit of 10 mg/kg (Dames & Moore, 1993b).

In July 1993, soil samples were collected within Storage Cell Nos. 2 through 5 for waste characterization purposes. The soil samples were collected from a series of 24 hand auger borings as shown on Figure 26, and were submitted to ARI for WTPH-HCID and BTEX analysis. Two samples with elevated TPH concentrations were also analyzed for PAHs. TPH was detected in Storage Cell Nos. 2 through 5 at maximum concentrations of 7,200 mg/kg, (gasoline-range hydrocarbons), 22,000 mg/kg (diesel-range hydrocarbons), and 7,800 mg/kg (heavy-oil range hydrocarbons). BTEX were detected at maximum concentrations of 5,400 μ g/kg, 21,000 μ g/kg, 12,000 μ g/kg, and 52,000 μ g/kg, respectively. Three samples analyzed for PAHs contained concentrations well below the threshold values applied by the State of Washington at that time for determining if the material was considered a dangerous waste (Dames & Moore, 1993a).

Between June and October 1994, approximately 8,000 cy of PCS was removed from the storage cells and transported to permitted treatment and disposal facilities including: Roosevelt Regional Landfill in Roosevelt, Washington; Associated Sand & Gravel in Everett, Washington; and Holnam Inc. cement facility in Seattle, Washington. Based on their January 26, 1995 letter (Appendix E), Ecology considered the interim cleanup action complete and required no further action for the PCS storage cells (Ecology, 1995).

A summary of soil analytical results for soil samples collected in association with the PCS storage cells is presented as Table 20.

6.2 SURFACE WATER INVESTIGATIONS

Subsequent to the January 15, 1991, December 11, 1991, and March 7, 1992 spill incidents, surface water sampling was instituted at various onsite and offsite locations. In addition, surface

water monitoring has been conducted at onsite oil/water separators located in the main pump station area (OWS-1), the relief tank (OWS-PR), and break-out Tanks No. 170 and 180 (OWS-170 and OWS-180, respectively). The onsite and offsite surface water sampling programs are discussed below and a summary of analytical results for surface water samples is presented in Table 21.

6.2.1 Onsite Surface Water

6.2.1.1 Oil/Water Separator Monitoring

Surface water samples were collected from four onsite oil/water separators (OWS-170, OWS-180, OWS-1, and OWS-PR) between December 1991 and November 1992 and were submitted to ARI for TPH (418.1), WTPH-HCID, and BTEX analysis. Oil/water separators OWS-170 and OWS-180 are shown on Figure 27; OWS-1 is shown on Figure 28; and OWS-PR is shown on Figure 29. The oil/water separators associated with the tanks address discharge of rain water accumulation within the tank containment areas.

Benzene, toluene, and xylenes were detected in OWS-170 at maximum concentrations of $14 \,\mu\text{g/L}$, $16 \,\mu\text{g/L}$, and $7.3 \,\mu\text{g/L}$, respectively. TPH and ethylbenzene were not detected above their respective laboratory reporting limits in surface water samples collected from OWS-170. TPH or BTEX were not detected above their respective laboratory reporting limits in surface water samples collected from OWS-180 (Dames & Moore, 1992d and Dames & Moore, 1992e). The benzene concentration detected in OWS-170 ($14 \,\mu\text{g/L}$) during the January 27, 1992 sampling event exceeded the PCL; however, benzene was not detected above the laboratory reporting limit during the subsequent sampling event conducted on November 10, 1992.

Gasoline-range hydrocarbons were detected in the surface water sample collected from OWS-1 in December 1991 at a concentration of 0.95 mg/L, which is below the PCL of 1.0 mg/L. BTEX were not detected above their respective laboratory reporting limits in surface water samples collected from OWS-1 (Dames & Moore, 1992e).

TPH was detected in the surface water sample collected from OWS-PR in January 1992 at a concentration of 1.7 mg/L. BTEX were not detected above their respective laboratory reporting limits in surface water samples collected from OWS-PR (Dames & Moore, 1992d).

6.2.1.2 Surface Water Monitoring

To assess potential impacts from the March 7, 1992 spill incident, a surface water monitoring program was implemented in the wetland area beginning March 10, 1992 and was continued through November 1992. Nine surface water sampling locations (SW-1, SW-2, SW-3, SPILL-1, SPILL-2, SPILL-3, SPILL-4/SPILL-6, SPILL-5, and SPILL-7) were established between the relief tank area and downstream of the March 7, 1992 Spill Containment Dam (Figure 29). Sample locations SW-1 and SW-3 were located on the downstream side of the spill containment dam constructed at the terminus of the spill. Surface water samples were analyzed for TPH, gasoline, diesel, and oil-range hydrocarbons, and BTEX. These compounds were not detected above their respective PCLs, with the exception of benzene, which was detected at a concentration of $5.4 \mu g/L$ in the surface water sample collected at SW-2 on March 10, 1992. Benzene was not detected above the laboratory reporting limit in the surface water sample

collected at SW-2 on March 11, 1992. Benzene was also detected above the PCL in the surface water sample collected at SPILL-3 (1.8 μ g/L) on November 4, 1992, but was not detected at any of the downstream surface water samples collected on the same day. Subsequent surface water sampling was not conducted at location SPILL-3.

6.2.2 Offsite Surface Water

6.2.2.1 Area 1

As discussed in Section 6.1.2.2, three wells (MW-1 through MW-3) were installed offsite in Area 1 following the January 15, 1991 spill incident (Figure 28). These wells were screened from 2.5 to 3 feet bgs and were installed within a wetland area. Therefore, water samples from these wells are considered to be representative of surface water. The water samples were submitted to SAS for analysis of TPH by EPA Method 8015 and BTEX by EPA Method 8020. Diesel-range hydrocarbons and BTEX were detected at maximum concentrations of 21 mg/L, 290 μ g/L, 66 μ g/L, 37 μ g/L, and 632 μ g/L, respectively, in MW-2. The maximum benzene concentration detected in MW-2 (290 μ g/L) exceeded the PCL of 1.2 μ g/L. However, the benzene concentration in MW-2 decreased to less than the laboratory reporting limit of 1 μ g/L by the May 1991 sampling round. The concentration of diesel-range hydrocarbons in MW-2 had decreased to 6.6 mg/L by the June 1991 sampling round (W.D. Purnell and Associates, Inc., 1991b), but still exceeded the PCL of 0.5 mg/L. The water sample collected from MW-2 on April 8, 1991 was also submitted to the laboratory for analysis of PAHs by EPA Method 8270. Naphthalene, fluorene, and phenanthrene were detected at concentrations of 120 μ g/L, 5 μ g/L, and 2 μ g/L, respectively. All detected PAHs were below PCLs, if established.

6.2.2.2 Area 3

To assess potential offsite (Area 3) impacts from the January 15, 1991 spill incident, a surface water monitoring program was implemented at Dam 2 (SWRO-D2) and Dam 3 (SWRO-D3) (Figure 28), which were monitored twice weekly from January 17, 1991 to April 4, 1991, and once weekly from April 4, 1991 to April 28, 1991. The surface water samples were analyzed for TPH by EPA Method 8015. During certain sampling events, surface water samples were also analyzed for BTEX by EPA Method 8020, and were analyzed for PAHs by EPA Method 8270. During the January to April sampling period, TPH concentrations detected in surface water samples collected at Dam 2 and Dam 3 decreased from 3.9 mg/L and 2.3 mg/L, respectively, to less than the laboratory reporting limit of 1.0 mg/L (W.D. Purnell and Associates, Inc., 1991b).

Benzene was not detected above the laboratory reporting limit of $1 \mu g/L$ in any of the surface water samples collected from Dam 2 or Dam 3 during the sampling period. Toluene, ethylbenzene, and xylenes were only detected during the January 28, 1991 sampling event at maximum concentrations of $4 \mu g/L$, $1 \mu g/L$, and $11 \mu g/L$, respectively, which are below their respective PCLs, where established. PAHs were not detected above their established reporting limit of $11 \mu g/L$ (W.D. Purnell and Associates, Inc., 1991b).

Subsequent to the December 11, 1991 spill incident, a surface water sampling program was implemented at the stormwater culvert on the north side of East Smith Road, and at Dams 2 and 3 (Figure 28). Surface water samples were collected periodically at the stormwater culvert (SWRO-C) and behind Dam 2 (SWRO-D2) from December 11 or 12, 1991 through July 22,

1992, and from behind Dam 3 (SWRO-D3) from December 11, 1991 through May 20, 1992. The samples were submitted to ARI for BTEX, TPH (Method 418.1), and WTPH-HCID analysis. These constituents were not detected above laboratory reporting limits, with the exception of benzene (2 μ g/L), toluene (2.2 μ g/L), and xylenes (1.7 μ g/L) in the first surface water sample collected at the stormwater culvert on December 11, 1991 (Dames & Moore, 1992a). The benzene concentration detected at the stormwater culvert on December 11, 1991 exceeded the PCL of 1.2 μ g/L; however, benzene was not detected above the laboratory reporting limit in surface water samples collected during subsequent sampling events.

6.3 GROUNDWATER INVESTIGATIONS

Five shallow groundwater monitoring wells (SW-1 through SW-5) and five deep groundwater monitoring wells (DW-1 through DW-5) were installed at the site between December 1991 and April 1992. The analytical results for the groundwater sampling events conducted between 1992 and 2008 are summarized in Tables 22 and 23 and are discussed below. The monitoring well construction diagrams are provided in Appendix C. A summary of groundwater level and elevation measurements is presented in Table 1.

6.3.1 Shallow Aquifer

The shallow monitoring well locations are shown on Figure 30. Groundwater samples collected from SW-1 and SW-2 in April 1992 did not contain TPH or BTEX concentrations above laboratory reporting limits. Chloroform was detected in SW-1 during the April 1992 sampling event at a concentration of $14 \,\mu g/L$, which exceeds the PCL of $7.2 \,\mu g/L$; however, the chloroform detection was attributed to laboratory interference (Dames & Moore, 1992b). Chloroform has not been detected in SW-1 since the April 1992 sampling event. The groundwater samples collected from SW-1 and SW-2 in April 1992 were also analyzed for total priority pollutant metals. Arsenic, chromium (total), and lead were detected at or above their respective PCLs in both wells, and nickel was detected above the PCL in SW-2. Groundwater samples collected from SW-1 and SW-2 have not been analyzed for metals subsequent to the April 1992 sampling event, and groundwater samples collected from SW-3 through SW-5 have never been analyzed for metals. Arsenic, chromium, lead, and nickel were not detected above PCLs in soil at the site so the groundwater detections in the shallow aquifer appear to be unrelated to the site releases.

Monitoring well SW-1 was sampled in October 2000, September 2004, May 2006, and March 2008, and gasoline-range hydrocarbons, motor oil-range hydrocarbons, and BTEX were not detected above their respective PCLs. PAHs including benzo(a)pyrene $(0.02 \,\mu g/L)$, benzo(a)anthracene $(0.01 \,\mu g/L)$, benzo(b)fluoranthene $(0.01 \,\mu g/L)$, benzo(k)fluoranthene $(0.01 \,\mu g/L)$, chrysene $(0.02 \,\mu g/L)$, fluoranthene $(0.02 \,\mu g/L)$, fluorene $(0.04 \,\mu g/L)$, 2-methylnaphthalene $(0.43 \,\mu g/L)$, naphthalene $(0.08 \,\mu g/L)$, phenanthrene $(0.12 \,\mu g/L)$, and pyrene $(0.02 \,\mu g/L)$ were detected in SW-1 during the May 2006 sampling event (Knight Piesold, 2006). The total toxicity equivalency concentration (TTEC) for cPAHs detected in SW-1 $(0.023 \,\mu g/L)$ during the May 2006 sampling event exceeded the PCL of $0.012 \,\mu g/L$; however, cPAHs were not detected above laboratory reporting limits during the March 2008 sampling event. PAHs including 1-methylnaphthalene $(0.023 \,\mu g/L)$ and 2-methylnaphthalene

 $(0.027 \,\mu\text{g/L})$ were detected in SW-1 during the March 2008 sampling event at concentrations below their respective PCLs.

Monitoring well SW-2 was sampled in October 2000, September 2004, May 2006, December 2006, and March 2008, and gasoline-range hydrocarbons, motor oil-range hydrocarbons, and BTEX were not detected above their respective PCLs. PAHs including fluorene $(0.02 \,\mu\text{g/L})$, 2-methylnaphthalene $(0.22 \,\mu\text{g/L})$, naphthalene $(0.11 \,\mu\text{g/L})$, phenanthrene $(0.06 \,\mu\text{g/L})$, and pyrene $(0.02 \,\mu\text{g/L})$ were detected in SW-2 during the May 2006 sampling event (Knight Piesold, 2006) at concentrations below their respective PCLs, where established. The cPAHs were not detected in 2006 or 2008.

During the April 1992 sampling event, monitoring well SW-3 was analyzed for BTEX, which were not detected above their respective laboratory reporting limits (URS Corporation, 2008b). BTEX were also not detected during the May 2006 sampling event, nor were TPH. PAHs including 2-methylnaphthalene (0.01 μ g/L), phenanthrene (0.02 μ g/L), and pyrene (0.01 μ g/L) were detected in SW-3 during the May 2006 sampling event (Knight Piesold, 2006) at concentrations below their respective PCLs, where established. The cPAHs were not detected. SW-3 was dry during the December 2006 sampling event and was reportedly damaged during the March 2008 sampling event (URS Corporation, 2008b).

A groundwater sample was not analyzed from monitoring well SW-4 in April 1992. The well was sampled in November 2006 and March 2008, and TPH and BTEX were not detected above laboratory reporting limits. Naphthalene was detected in SW-4 during the March 2008 sampling event at a concentration of $0.012 \,\mu\text{g/L}$ (URS, 2008b), which is below the PCL.

The groundwater sample collected from SW-5 in April 1992 contained oil & grease (TPH-418.1) and benzene at concentrations of 18 mg/L and 1.3 μ g/L, respectively (Dames & Moore, 1992a and 1992b), which exceeded the PCLs. However, gasoline-range hydrocarbons, diesel-range hydrocarbons, motor oil-range hydrocarbons, and BTEX were not detected above their respective laboratory reporting limits in SW-5 during the September 2004 and May 2006 sampling events. PAHs benzo(a)pyrene (0.01 μ g/L), chrysene (0.04 μ g/L), fluoranthene (0.01 μ g/L), 2-methylnaphthalene (0.01 μ g/L), naphthalene (0.02 μ g/L), phenanthrene (0.02 μ g/L), and pyrene (0.03 μ g/L) were detected in SW-5 during the May 2006 sampling event (Knight Piesold, 2006) at concentrations below their respective PCLs.

Based on this data, contaminants of concern above the PCLs are not currently present in the shallow aquifer. A summary of groundwater analytical results for the shallow aquifer monitoring wells is presented in Table 22.

6.3.2 Deep Aquifer

The deep monitoring well locations are shown on Figure 31. Groundwater samples collected from monitoring wells DW-1 through DW-5 during the April 1992 sampling event were submitted to ARI for analysis of TPH by Method 418.1, BTEX, and metals. TPH and BTEX were not detected above their respective laboratory reporting limits. Arsenic was detected above the PCL of 0.005 mg/L in monitoring wells DW-1 (0.083 mg/L), DW-3 (0.018 mg/L), DW-4 (0.014 mg/L), and DW-5 (0.019 mg/L). Chromium was detected above the PCL of 0.05 mg/L in

monitoring well DW-2 (0.154 mg/L). Lead was detected above the PCL of 0.015 mg/L in monitoring wells DW-2 (0.167 mg/L), DW-3 (0.028 mg/L), and DW-4 (0.021 mg/L). Metals analyses were not conducted on groundwater samples collected in subsequent sampling events. Arsenic, chromium, and lead were not detected above PCLs in soil at the site so detections in the deep aquifer appear to be unrelated to site releases.

Groundwater samples were collected from monitoring wells DW–2 and DW–3 in October 2000, following the October 26, 2000 spill incident, and submitted to ARI for analysis of gasoline, diesel, and heavy oil-range hydrocarbons (Ecology Methods NWTPH-Gx and NWTPH-Dx) and BTEX. Toluene and xylenes were detected in DW–3 at concentrations of 0.771 μ g/L and 1.25 μ g/L, respectively, which are below their respective PCLs. Benzene and ethylbenzene were not detected above their respective laboratory reporting limits in DW-3. BTEX were not detected above their respective laboratory reporting limits in DW-2, and TPH were not detected above their respective laboratory reporting limits in either well (URS, 2008b).

Groundwater samples were collected from all five deep monitoring wells in December 2006 and submitted to ARI for analysis of gasoline, diesel, and heavy oil-range hydrocarbons (Ecology Methods NWTPH-Gx and NWTPH-Dx), BTEX, and PAHs. There were no detected constituents above their respective laboratory reporting limits and reporting limits were below PCLs (URS, 2008b). A summary of the groundwater analytical results for the deep aquifer monitoring wells is presented in Table 23.

Based on the deep well sampling results, with the exception of toluene and xylenes, contaminants of concern have not been identified in the deep aquifer. Toluene and xylenes detections in DW-3 were well below applicable cleanup levels. In 2007, Kinder Morgan contacted Ecology to obtain their concurrence regarding decommissioning the five deep wells. On Kinder Morgan's behalf, URS notified Ecology on April 24, 2008 that the five deep wells were scheduled for decommissioning. On May 1, 2008, the five deep wells were decommissioned by Cascade Drilling, Inc. in compliance with the provisions of WAC 173–160–151 and WAC 173–160–381 (URS, 2008c). Well decommissioning records are provided in Appendix C.

6.4 WETLANDS STUDIES

Wetlands investigations were conducted by Purnell in Areas 1, 2, and 3 in March and October 1991, and January 1992. Wetlands located downstream of Hannegan Road were not included as part of the Area 3 investigation. During their investigation, Purnell delineated nine isolated wetlands within Areas 1, 2, and 3, which totaled approximately 9.1 acres. Approximately 2.9 acres of both emergent (wet meadow) and forested plant communities were delineated in Area 1, approximately 3.4 acres of both emergent and forested wetlands were delineated in Area 2, and approximately 2.8 acres of forested wetlands were delineated in Area 3 (W.D. Purnell and Associates, Inc., 1992). The Purnell wetland delineation maps are included as Appendix E.

URS conducted a wetland investigation in August 2009 to assess the status of wetlands previously delineated in Areas 1, 2, and 3, and wetlands affected by the March 7, 1992 spill incident. During the investigation, URS noted that wetland conditions have persisted in the areas

affected by past spill incidents. Wetland hydrology indicators were observed in representative areas previously delineated by Purnell, and hydric soils were also confirmed in these areas. Plant species were observed to be similar to those documented during Purnell's wetlands delineation and field notes taken by Dames & Moore personnel in the March 7, 1992 spill area (Study Unit 3). URS also noted that Dam 3, on Deer Creek near Hannegan Road, was no longer present. Dam 2 was still in place and a small, unvegetated pond was observed behind the dam. URS concluded that since the wetlands affected by past spill incidents appeared to have recovered and were observed to be very similar to what was documented in 1991 and 1992, wetland mitigation activities did not appear to be necessary at this time (URS, 2010). The boundaries of the wetland area in Study Unit 3 were not determined during URS' August 2009 assessment.

The wetland investigations described above have not included sediment/soil sampling within the wetland areas potentially affected by petroleum releases at the site.

Prior to the 2008/2009 facility upgrade, Kinder Morgan conducted a Wetland/Fish & Wildlife Study (Aqua-Terr Systems, Inc. [ATSI], 2007), the purpose of which was to provide an assessment of the presence, location, and extent of wetlands, streams, and other biological critical areas and their regulated buffers under the jurisdiction of Whatcom County, Ecology, and the U.S. Army Corps of Engineers that were within the proposed Kinder Morgan upgrade project area. Wetlands were not observed within the project area nor within 300 feet of the project area at the site, however, an apparent forested wetland was observed immediately north of East Smith Road, separate from the project area. Local species of concern, or state and federally listed species, were not observed in the project area. The ATSI report is included in Appendix E.

7.0 NATURE AND EXTENT OF CONTAMINATION

7.1 SOIL

The nature of contamination present in soil at the site consists primarily of diesel-range hydrocarbons resulting from historic natural gas condensate and crude oil spill incidents, and pump station operations. The extent of contamination exceeding PCLs appears to be limited to isolated hot spots identified during Dames & Moore's 1991/1992 RI and areas not fully remediated during interim cleanup actions. In general, natural gas condensate and crude oil released at the site have migrated laterally via surface water drainage features or former underground piping systems, or in the case of the December 11, 1991 spill incident, lateral migration was caused by an airborne release.

The majority of the petroleum product historically released at the site was addressed during spill response actions and vertical migration of petroleum product appears to have been limited by the presence of a silty clay/clayey silt unit located at approximately 10 feet bgs throughout most of the site. This silty clay/clayey silt unit varies in thickness from approximately 3 feet at test pit PB-4 to approximately 60 feet at soil boring TM-B12. Deeper zones of contamination (between 10 feet bgs and the perched groundwater) remaining onsite appear to be the result of leaks from former pump station features, such as the former oil/water separator, pumps and former oily water sump. At these locations, the silty clay/clayey silt unit is either relatively thin or non-existent, and petroleum product releases from these former features has migrated directly into the

Bellingham Drift, which is much coarser relative to the silty clay/clayey silt unit. Areas with residual soil contamination including analytical data are depicted on the north-south and east-west geologic cross sections presented on Figures 32 and 33, respectively. The locations of the areas with apparent residual soil contamination are shown on Figures 34 through 38.

The lateral extent of TPH contamination in Area 1, which is a delineated wetland impacted by the January 15, 1991 natural gas condensate spill incident, is shown on Figure 34. Soils containing petroleum hydrocarbons and BTEX above the PCLs may remain based on the historic sampling results (Figure 34). The data collected thus far provides a lateral extent of the area affected in Area 1, but the vertical extent of petroleum hydrocarbons, BTEX, and PAHs was not clearly defined.

In Area 2 (north of East Smith Road), also impacted by the January 15, 1991 release, the vertical extent of TPH-affected soil was not fully delineated where impacted soil was identified (Figure 35). In addition, BTEX was not assessed in the area of impacted soil.

Study Unit 1 includes the pump station operations area and as previously described was affected by the releases in January 1991, December 1991, and October 2000. Petroleum-contaminated soil was also found during station upgrades following the January 1991 release. Isolated areas of soil contamination remained in place at the time of the investigations and the data collected did not fully define the lateral and/or vertical extent of contamination above PCLs at the former oily water sump and piping manifold, former pump station, north end of the former drain tile, in the vicinity of the Cold Storage Building, and former oil/water separator. These areas are noted on Figure 36.

Samples collected from beneath the north side of Tank No. 180 in the break-out tank area indicated TPH above PCLs to 3 feet bgs, the maximum depth sampled. On the southeast side of Tank No. 170, a single sample indicated benzene above the PCL at 4.5 feet bgs. These locations are shown on Figure 37. The vertical and lateral extent of the areas is not fully defined.

The vertical extent of affected soil area within the containment berm of Tank No. 120 (relief tank) where PCS was stored and where the overflow of crude oil was temporarily held following the March 2, 1992 was not defined below 2 feet bgs.

7.2 ONSITE AND OFFSITE SURFACE WATER

Significant or long-term impacts to onsite or offsite surface water were not identified during prior investigations. As per the requirements of the National Pollution Discharge Elimination System (NPDES) permit program, Laurel Station, having had a reportable quantity release occurring after November 16, 1987, is required to meet Ecology's Industrial Stormwater General Permit (Permit) for stormwater discharges from the facility. Both stormwater sampling and visual inspections are conducted at three outfall locations (Figures 2A and 2B). The sampling parameters required by the permit are turbidity, pH, total zinc, petroleum and grease, lead, and copper. Quarterly sampling and visual inspections are conducted at the two outfalls to the East Smith Road ditch, at the northwest and northeast corners of the facility. An annual inspection of the discharge outfall from the relief tank (Tank No. 120) containment berm is also required. Annual inspections of the three outfalls are conducted during July, August or September for

unpermitted, non-stormwater discharges to storm drains or receiving waters. Discharge Monitoring Reports (DMRs) prepared by Kinder Morgan during 2009 are included as Appendix F.

7.3 GROUNDWATER

7.3.1 Shallow Aquifer

The initial monitoring of the shallow groundwater monitoring wells indicated that petroleum hydrocarbon concentrations were present in SW-1 and SW-5 and were not detected in the other shallow wells. Subsequent sampling of these wells did not detect petroleum hydrocarbons. Based on these findings it is apparent that the shallow groundwater quality has not been affected by the historic petroleum releases and existing residual soil contamination. As shown on the north to south geologic cross section (Figure 32), residual contamination was present in the soil above the shallow groundwater; however, the underlying groundwater has not been impacted. In addition, monitoring wells SW-1 and SW-2 are situated downgradient from a number of former and potentially existing PCS areas (e.g., former burn pit, former oily water sump, former oil/water separator, former drain tile and pipeline spill locations) and petroleum hydrocarbon constituents were not detected or were detected below PCLs. Based on this data, it is apparent that migration of petroleum constituents into the shallow saturated zone is limited by the dense, low permeability glacial soils underlying Laurel Station.

Although total arsenic, chromium, lead, and nickel have been detected above PCLs in SW-1 and SW-2, these metals were not detected above PCLs in soil at the site, indicating that the detections in the shallow groundwater do not appear to be related to site releases.

7.3.2 Deep Aquifer

Consistent with the shallow groundwater, the deeper groundwater quality beneath the site has not been impacted by petroleum hydrocarbon releases and residual levels of petroleum in the site soils. With the exception of part per billion levels of xylenes and toluene detected in DW-3 during a single monitoring event in 2000, petroleum hydrocarbons have not been detected in the downgradient monitoring wells (DW-2 and DW-3) situated on the west side of the facility (Figure 31).

Total arsenic, chromium, and lead were detected in selected deep monitoring wells above PCLs, but these metals were not detected above PCLs in soil on the site. The detections in the deeper groundwater do not appear to be related to site releases.

7.4 ONSITE AND OFFSITE SEDIMENT

7.4.1 Onsite Wetland Sediment/Soil

During the March 7, 1992 spill incident, a wooded wetland area located southeast of the release point (Figure 29) was impacted by approximately 30 to 50 barrels of crude oil which traveled along a narrow depression for approximately 600 feet, where a temporary dam (the March 7, 1992 Spill Containment Dam) was constructed to facilitate oil recovery. Cleanup efforts were implemented to recover any pooled oil from the wetland area. This included a water flooding

and skimming operation. Subsequent surface water monitoring (Section 6.2.1.2) conducted within the wetland area and downstream of the containment dam did not detect significant levels of petroleum constituents (Table 21). Based on the surface water sampling results and the subsequent visual assessment of the affected area, significant impacts to wetland sediment/soil quality were not apparent. However, as mentioned previously, wetland sediment/soil sampling was not performed within the wetland. Any impacted wetland sediment/soil within this area would be limited to the narrow depression associated with the spill path.

7.4.2 Offsite Wetland Sediment/Soil

The wetland areas located within Area 1 and Areas 2 and 3, situated west and north of the site (Appendix E), respectively, were impacted by petroleum releases associated with the January 15, 1991 and December 11, 1991 spill incidents. The January 15, 1991 spill consisted of approximately 75 barrels of natural gas condensate that flowed overland into the field west of the site (Area 1). Petroleum also migrated into the drainage ditch located on the south side of East Smith Road and flowed north (Area 2) through a culvert under East Smith Road, then east and north into a tributary of Deer Creek (Area 3). Interceptor trenches (Figure 2A) were constructed in the wetland area draining into the tributary of Deer Creek (Dam 2), and in Deer Creek at Hannegan Road (Dam 3). During the December 11, 1991 spill incident, approximately 84 barrels of crude oil was released into the air, the bulk of which discharged to the ground in the station area. A slight sheen was observed on the surface water in Area 2 as a result of airborne hydrocarbons. An estimated 51 barrels of crude oil was recovered during the cleanup activities.

Initial surface water monitoring implemented in Areas 1 and 3 (Section 6.2.2) detected elevated levels of petroleum hydrocarbons and subsequent sampling events showed a significant decline in petroleum hydrocarbon concentrations. Sampling of wetland sediment/soil was not previously performed within Areas 2 and 3. However, based on the cleanup efforts and subsequent observations in the off site wetland areas, significant impacts to wetland sediment/soil quality are not anticipated. The estimated limit of any impacted sediment/soil in the wetland areas is consistent with the lateral extent of surface water occurrence following the spill events.

8.0 DATA GAPS

Data gaps identified during the review and compilation of soil, groundwater and surface water data generated during the investigations and cleanup actions implemented at the Laurel Station facility are summarized in Table 24. The identification of data gaps considered changes in analytical methodology and revisions made to MTCA since the effective date of the Amended Order for all media as well as the applicability of the timing of the data collection to best demonstrate the current water quality of surface water bodies and groundwater. The screening levels for benzene and cPAHs based on MTCA were revised downward since most of the data collection was completed in the 1990s. Consequently, the assessment of benzene and cPAHs by the current standard (PCLs as discussed in Section 5.0) was often incomplete as laboratory reporting limits exceeded the selected current PCLs. These adjustments were considered as part of the data gaps assessment and the analytical program proposed for the supplemental investigation (Section 9.0) includes testing to clearly identify if these constituents are compounds of concern at the site.

Data gaps are primarily limited to isolated locations where the vertical and/or lateral extent of contamination in soil was not previously defined. Groundwater monitoring completed between 2000 and 2008 in the shallow and deep groundwater wells was performed and no groundwater quality impacts were identified, and no data gaps were evident relative to characterization of the shallow/deep groundwater.

Although significant data gaps were not identified associated with the onsite and offsite surface water sampling previously conducted at the site, the majority of the data was collected prior to 1993. Thus, current surface water quality information does not exist for the areas affected by the historic petroleum releases.

Onsite and offsite sediment/soil sampling has not been performed within the areas of perennially submerged wetlands, ditches or creeks potentially affected by historic spills at the site.

The outer limits of the wooded wetland area affected by the March 7, 1992 spill incident have not been delineated, although a wetland assessment conducted by URS in August 2009 documented the presence of wetland hydrology indicators, including hydric soils and native hydrophytic vegetation (URS, 2010).

The Amended Order indicates that a wetland mitigation plan shall be required for cleanup actions in wetland areas of the site. Wetlands assessment data and surface water data indicate the wetland areas are not affected by previous facility releases; however, the soil/sediments within the channels have not been assessed.

9.0 PROPOSED DATA GAP INVESTIGATION

To address the data gaps presented in Section 8, further assessment of the soil, wetland sediment/soil and surface water conditions is proposed at locations both onsite and offsite. The proposed investigation will be conducted in accordance with the Sampling and Analysis Plan (SAP), included as Appendix G, and will be implemented within 60 days of Ecology's approval of the data gap investigation. The proposed scope of work is summarized in Table 25 and discussed in more detail below. The proposed data gap sampling locations are depicted on Figures 34 through 41.

9.1 SOIL

To further evaluate the lateral and vertical extent of impacted soils, a series of hand auger and/or push probe borings (A1-B1 through A1-B25, A2-B1, SU3-B1 through SU3-B7, SU1-B1 through SU1-B20, and SU2-B1 through SU2-B8), depending on field conditions, will be advanced at the proposed locations shown on Figures 34 through 38. Several of the proposed deeper borings may need to be advanced using hollow stem auger drilling methods. The proposed boring rationale, soil sampling depths and analyses for each boring is presented in Table 25. Soil samples will be analyzed for gasoline, diesel, and heavy oil-range hydrocarbons (NWTPH-Gx and NWTPH-Dx), BTEX, and at selected locations, PAHs. If diesel or heavy-oil range hydrocarbons are detected in a sample above the PCL of 460 mg/kg, that sample will also be analyzed for PAHs. Contingency step-out borings will be performed if field-screening indicates the need for additional lateral characterization of hydrocarbon impacts. Soil sampling

procedures and methods as well as quality assurance measures are presented in the SAP (Appendix G).

9.2 ONSITE AND OFFSITE SURFACE WATER

Surface water sampling will be conducted at offsite locations within Areas 1, 2 and 3 and onsite within Study Unit 3 (Table 25). The proposed sampling locations are shown on Figures 39 and 40. The proposed sampling locations generally coincide with prior surface water sampling locations. The surface water sampling procedures and methods are outlined in the SAP presented in Appendix G. Surface water sampling will be conducted when surface water is present within the proposed sampling locations. Samples will be analyzed for gasoline, diesel, and heavy oil-range hydrocarbons (NWTPH-Gx and NWTPH-Dx) and BTEX.

In Area 1, sampling locations A1-SW1 and A1-SW3 will be located adjacent to former shallow monitoring well locations MW-3 and MW-2, respectively (Figure 39). Sample A1-SW2 will be situated in the central portion of the former spill path from the January 15, 1991 release. A surface water sample (A2-SW1) will be collected at the confluence of two drainages located in Area 2 on the north side of East Smith Road (Figure 39). In Area 3, surface water samples A3-Dam 2 and A3-Dam 3 will be collected on the upstream side of the containment dam located within the tributary of Deer Creek and within Deer Creek near the previous dam, respectively (Figure 39).

In Study Unit 3, three surface water samples (SU3-SW1, SU3-SW2 and SU3-SW3) are proposed within the wetlands along the spill path of the March 7, 1992 release (Figure 40). Sample SU3-SW1 will be collected directly upstream of the March 7, 1992 Spill Containment Dam.

9.3 ONSITE AND OFFSITE WETLAND SEDIMENT/SOIL

Wetland sediment/soil sampling will be conducted at both onsite and offsite locations within Areas 1, 2 and 3 and Study Unit 3 to assess the current conditions of the wetland sediments in the areas impacted by historic spills (Table 25). Wetland sediment/soil sampling will be conducted in accordance with the procedures and methods presented in the SAP (Appendix G). This sampling will be performed using hand sampling devices and no motorized sampling equipment (e.g., drilling rig) will be used within wetland areas.

The wetland sediment/soil sample locations will be generally co-located with surface water sampling locations (Figures 39 and 40). At each sample location, a transect across the drainage/or standing water is proposed, including up to three sampling points as follows:

1) central portion of drainage channel/or standing water body; 2) right bank of drainage or standing water; and 3) left bank of the drainage or standing water. The purpose of the transect across each sample location is to provide a representative sampling of the areas affected by the main petroleum spill path and subsequent dispersion on the water surface.

9.4 WETLANDS

Although wetland mitigation may not be required, URS will supplement the data collected and observations made during the August 2009 wetlands investigation by determining the outer boundaries of the wetland area in Study Unit 3.

10.0 FEASIBILITY STUDY

Upon completion of the data gap investigation, an FS will be developed as part of the Draft RI/FS Report and will evaluate cleanup action alternatives to enable a cleanup action to be selected for the site. The FS will be developed in accordance with WAC-340-350(8).

11.0 NON-DATA ENFORCEMENT ORDER ACTIONS

Several interim actions were included in Exhibit A of the Amended Order that were not directly related to data collection activities and reporting. These activities may support data collection efforts or support risk management for potential future releases and include health and safety planning, spill prevention, and infrastructure to mitigate site releases (oil/water separators, containment dams). Ecology indicated to Kinder Morgan during a meeting on August 25, 2009 that the intent of the required actions in Exhibit A may be met in the course of compliance with other Ecology or regulatory requirements outside of the RI/FS documented in this report. This section addresses the Exhibit A activities that are outside of the RI/FS activities and how they currently or will be addressed.

11.1 HEALTH AND SAFETY PLAN

Exhibit A, Section IIA of the Amended Order states that a Health and Safety Plan (HSP) must be included in the RI/FS work plan. A HSP was previously provided to, acknowledged by, and reviewed by Ecology (refer to Appendix A). Per the Order, approval by Ecology was not required; however a written statement by TMOPL (now Kinder Morgan) was required to acknowledge the plan met the appropriate legal requirements.

Kinder Morgan has a corporate health and safety program and facility-specific requirements to ensure that appropriate health and safety procedures as required by law are followed during all facility operations including activities conducted by subcontractors working for Kinder Morgan. All work performed as part of the supplemental RI/FS activities will be conducted under a HSP that meets the applicable requirements under the Occupational Safety and Health Administration (OSHA) 29 CFR 1910.120, Washington Industrial Safety and Health Act (WISHA), and Kinder Morgan facility specific requirements. As the plan does not require approval by Ecology, Kinder Morgan proposes that the requirement for Ecology's review of a HSP applicable to the supplemental RI/FS and it's inclusion in the SAP (Appendix G) be removed and that the statement above indicating that a HSP will meet the applicable legal requirements will adequately meet the intent of the Order.

11.2 SPILL PREVENTION PLAN

Exhibit A, Section III.E.1 through 3 of the Amended Order describes detailed requirements for a spill prevention plan, implementation, and schedule for implementation. Kinder Morgan

submitted an Oil Spill Contingency Plan to the Spill Prevention, Preparedness, and Response department at Ecology. This plan meets the current Ecology requirements and was approved by Ecology in a letter dated August 27, 2009. The plan is available for review but has not been included in this report. A copy of the approval letter is included in Appendix H.

11.3 OIL/WATER SEPARATORS

Exhibit A, Section III.F.1 through 4 requests as-builts, sampling and analysis plans, sample results, and reporting associated with the oil/water separators that were onsite at the effective date of the Order. Several reports were submitted to Ecology with this information in the 1990's.

The facility has undergone several upgrades since the Order became effective including upgrades to their stormwater containment features inclusive of oil/water separators. In addition, with new construction such as the electrical substation, Kinder Morgan installed equipment to mitigate potential future releases and manage stormwater. Remote sensing devices are included at all of the separators and an operations and maintenance program is documented and followed by the facility staff.

The remote sensing hydrocarbon probes are capable of detecting a thin (0.01 inches) layer of oil on the water surface. Once detected, an alarm is received locally and at the Edmonton Control Centre alerting both the onsite Operating Technician and the Control Centre Operator so that appropriate action can be initiated to prevent oil from reaching the public storm water system. The probes are located at:

- The station manifold sump where a valve can be automatically closed if hydrocarbons are detected, isolating the release to the manifolds secondary containment area.
- The stormwater oil/water separator adjacent to East Smith Road. If hydrocarbons are detected, an automated valve would close, stopping discharge from the separator. The separator is designed to retain 125 barrels of petroleum.
- Each of the individual tank bays for Tanks No. 170 and 180 contain oil/water coalescing filters and a retention vault. Probes are installed both at the automated valve on the upstream side of the filter and within the vault.
- Relief Tank No. 120 containment berm draining through at the siphon drain and weir-type separator through which the containment berm for the relief tank No. 120 drains.

As described in Section 2.4, the oil/water separators are components of an integrated system designed to prevent petroleum-affected water associated with the facility from entering surrounding creeks and tributaries.

11.4 CURRENT STATUS OF DAMS AND FUTURE PLANS

Exhibit A, Section III.D.1 through 5 describes requirements for maintenance and operation of containment Dams 2, 3, and the March 7, 1992 Spill containment dam, evaluation of removing these dams and submittal of a dam removal plan. The project file contains several reports and correspondence from November 26, 1991 to February 22, 1993 in regard to this requirement.

Based on the current physical conditions of the dams and the potential utility of the dams for future spill containment, the requirements in the Order appear outdated.

Kinder Morgan is currently assessing upgrading Dam 2 to provide an ongoing physical containment barrier useful in the event of a future release from the site. Dam 2 is identified as a spill control point in the facility's emergency response plan and has been routinely maintained since its installation. The earthen berm was reinforced and erosion features filled in around the 20" inverted pipe in the fall of 2009. Cobble armoring was also placed at the discharge point.

The March 7, 1992 Spill Containment Dam, constructed of fiberglass panels with an impervious liner, is still in place although its upkeep has not been maintained. Kinder Morgan would like to remove it and conduct vegetation brushing for ready access so the site could be used as a future spill response point if required. Onsite emergency response equipment would be deployed to reconstruct a dam if required. With the decommissioning of relief tank No. 120, the source for a release has been removed.

Dam 3 consisted of a boomed area to facilitate collection of oil and was removed at the end of the emergency response phase. As observed during the August 2009 wetland assessment (Appendix E), Dam 3 is no longer present.

As noted in Section 9.0, solids and surface water sampling is proposed for areas associated with these dams. These data will be presented in the Draft RI/FS Report with proposed actions for each dam.

12.0 SCHEDULE AND DELIVERABLES

The data gap investigation will be implemented within 60 days of receiving formal acceptance of the proposed investigation from Ecology. Ecology will be notified at least 30 days prior to the implementation of field work activities. The Draft RI/FS Report will be submitted within 120 days of receiving the final analytical results from the laboratory. Monthly status reports will be submitted to Ecology during the time period between implementation of the data gap investigation field work and submittal of the Draft RI/FS Report. Additionally, a meeting will be held between Ecology, Kinder Morgan, and URS within 60 days of receiving the final analytical results from the laboratory. The purpose of this meeting will be to discuss the data and preliminary cleanup alternatives. The proposed schedule is presented below.

The analytical results and coordinates of each sampling location included in the proposed data gap investigation will be added to the existing Microsoft Access database for submittal to Ecology. The sample analytical results will be compared to the PCLs established in Tables 3 and 5 of the Final Supplemental RI/FS Work Plan.

Schedule

Activity	Date Range
Final Supplemental RI/FS Work Plan submittal	May 28, 2010
Data gap investigation field work	June/July 2010
Meeting with Ecology	August/September 2010
Draft RI/FS Report submittal	October/November 2010
Monthly status reports	Monthly from May to October 2010

13.0 REFERENCES

- Aqua-Terr Systems, Inc., 2007. Laurel Station Project Area, Terasen Pipeline, Wetland/Fish & Wildlife Study, Whatcom County, Washington. March.
- Dames & Moore, 1992a. Remedial Investigation/Feasibility Study Work Plan, Trans Mountain Oil Pipe Line, Corp., Laurel Station, Bellingham, Washington. September 30.
- Dames & Moore, 1992b. Remedial Investigation Report, Laurel Station, Bellingham, Washington. June 12.
- Dames & Moore, 1992c. Report on the Drain Tile Excavation, Interim Cleanup Action (Section I.J.3), Laurel Pump Station, Laurel, Washington. April 3.
- Dames & Moore, 1992d. Letter to Kevin Fitzpatrick (Department of Ecology) from David Maltby (Dames & Moore). January 14.
- Dames & Moore, 1992e. Letter to Barbara Trejo (Department of Ecology), Oil/Water Separator and Surface Water Sampling Results, Trans Mountain Oil Pipe Line Corp., Laurel Station. October 22.
- Dames & Moore, 1993a. Final Phase II Interim Action Report, Trans Mountain Oil Pipe Line Corp., Laurel Pump Station Facility. December 6.
- Dames & Moore, 1993b. Petroleum Contaminated Soil Cell Consolidation and Regrade Monitoring, Trans Mountain Oil Pipe Line Corporation, Laurel Station. January 14.
- Easterbrook, 1976. Geologic map of western Whatcom County, Washington: *U.S. Geological Survey Map* I-854-B.
- Knight Piesold, 2006. *Letter Report, Laurel Station Groundwater Quality Monitoring* 2006. September 22.
- Seymour & Associates, 1991. Laurel Pump Station Condensate Spill: Fisheries Assessment. May 16.
- TMOPL Corporation, 1991. Proposed Site Assessment Plan for the January 15, 1991 Condensate Spill at Laurel Pump Station. February 1.
- TMOPL Corporation, 1992. Inter Office Correspondence, L.H.E. Weran to R.D. Vergette, Re: Laurel Station Spill Clean Up Progress, Week Ending March 20, 1992. March 20.
- United States Geological Survey, 1994. *Bellingham North, Washington*, 7.5-minute quadrangle.
- URS Corporation, 2001. Voluntary Cleanup Action, Laurel Station Release, Bellingham, Washington. August 6.

- URS Corporation, 2008a. Soil Assessment, Laurel Station Tanks 170 and 180, 1009 East Smith Road, Bellingham, Washington. June 21.
- URS Corporation, 2008b. Letter Report, 2008 Groundwater Monitoring, Laurel Station Facility, 1009 East Smith Road, Bellingham, Washington. June 5.
- URS Corporation, 2008c. Letter Report, 2008 Deep Well Decommissioning, Laurel Station Facility, 1009 East Smith Road, Bellingham, Washington. June 21.
- URS Corporation, 2010. Letter Re: Wetland Investigations at Laurel Station, Bellingham, WA. January 11.
- W.D. Purnell and Associates, Inc., 1991a. Response to Enforcement Order DE 91-N192; Items No. I.G.1.A, I.G.1.B and I.G.1.C, Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station, Natural Gas Condensate Spill. November 25.
- W.D. Purnell and Associates, Inc., 1991b. Site Assessment Report Soil & Water Analysis, Laurel Pump Station Natural Gas Condensate Spill, East Smith Road, Whatcom County, Washington. May 17.
- W.D. Purnell and Associates, Inc., 1992. Response to Enforcement Order DE 91-N192, Item I.I.1, Wetlands Delineation; Areas 1 3, Trans Mountain, Laurel Pump Station. April 9.
- Washington Department of Ecology, 1994. Natural Background Soil Metals Concentrations in Washington State, Toxics Cleanup Program, Department of Ecology, Publication #94–115. October.
- Washington Department of Ecology, 1995. Letter to Dan O'Rourke (Trans Mountain Oil Pipe Line) from Barbara Trejo (Ecology) Re: Trans Mountain Laurel Station, Interim Action Contaminated Soil Stockpiles, First Amended Enforcement Order No. DE91-N192, Exhibit A, Section III, Subsection I. January 26.
- Washington Department of Ecology, 2008. Washington State Water Quality Assessment.

Table 1 Groundwater Elevation Data Summary Laurel Station Bellineham. Washington

	CHARLES A CREAK CHES A CR	TOTAL DEPTH	TOC ELEVATION	SCREEN INTERVAL	SCREEN INTERVAL ELEVATION	TOC HEIGHT	DEPTH TO GROUNDWATER	GROUNDWATER ELEVATION
WELLID	DATE MEASORED	(ft-TOC)	(ft-MSL)	(ff-bgs)	(ft-MSL)	(ft-bgs)	(ft-TOC)	(ft-MSL)
	April 15-17, 1992	NM	296.09			NM	90.9	290.03
	October 31 - November 2, 2000	NM	296.09			NM	5.60	290.49
	September 2004	18.60	296.09			NM	4.92	291.17
SW-1	May 10, 2006	18.60	296.09	5 - 20	291.09 - 276.09	NM	5.45	290.64
	November 7-8, 2006	NM	296.09			MN	NM	NC
	December 7-8, 2006	NM	296.09			NM	MN	NC
	March 13, 2008	18.60	296.09			NM	4.86	291.23
	April 15-17, 1992	NM	296.69			NM	38.82	257.87
	October 31 - November 2, 2000	NM	296.69			NM	39.85	256.84
	September 2004	49.34	296.69			NM	39.93	256.76
SW-2	May 10, 2006	49.34	296.69	40 - 50	256.69 - 246.69	NM	38.58	258.11
	November 7-8, 2006	45.70	296.69			-0.3	40.50	256.19
	December 7-8, 2006	45.70	296.69			-0.3	38.60	258.09
	March 13, 2008	48.82	296.69			-0.3	37.48	259.21
	April 15-17, 1992	NM	304.79			NM	33.56	271.23
	October 31 - November 2, 2000	NM	304.79			NM	DRY	NC
	September 2004	35.33	304.79			NM	DRY	NC
SW-3	May 10, 2006	35.33	304.79	22 - 32	282.79 - 272.79	NM	33.96	270.83
	November 7-8, 2006	34.70	304.79			2.5	DRY	NC
	December 7-8, 2006	34.70	304.79			2.5	DRY	NC
	March 13, 2008	34.79	304.79			2.5	32.75	272.04
	April 15-17, 1992	NM	298.30			NM	DRY	NC
	September 2004	NM	298.30			NM	DRY	NC
SW4	May 10, 2006	NM	298.30	18 - 28	280 30 - 270 30	NM	DRY	NC
	November 7-8, 2006	27.40	298.30			-0.2	15.30	283.00
	December 7-8, 2006	27.20	298.30			-0.2	17.30	281.00
	March 13, 2008	27.41	298.30			-0.2	17.95	280.35
	April 15-17, 1992	NM	298.86			NM	20.64	278.22
	September 2004	27.26	298.86			NM	20.31	278.55
S.W.S	May 10, 2006	27.26	298.86	34 - 39	26486 - 25986	NM	20.24	278.62
0.10	November 7-8, 2006	38.60	298.86	65 - 46	204.00 - 2.55.00	-0.5	DRY	NC
	December 7-8, 2006	38.60	298.86			-0.3	DRY	NC
	March 13, 2008	38.60	298.86			-0.5	DRY	NC
	April 15-17, 1992	NM	322.41			NM	197.70	124.71
DW-1	November 7-8, 2006	224.80	322.41	186.5 - 226.5	135.91 - 95.91	3.7	197.80	124.61
	December 7-8, 2006	223.20	322.41			3.7	198.30	124.11
	April 15-17, 1992	NM	291.80			NM	168.86	122.94
DW-2	November 7-8, 2006	NM	291.80	153 - 173	138.80 - 118.80	3.0	168.70	123.10
	December 7-8, 2006	NM	291.80			3.0	169.30	122.50
	April 15-17, 1992	NM	282.41			NM	159.35	123.06
DW-3	November 7-8, 2006	NM	282.41	146.5 - 166.5	135.91 - 115.91	3.1	160.50	121.91
	December 7-8, 2006	NM	282.41			3.1	160.20	122.21
	April 15-17, 1992	NM	281.42			NM	157.16	124.26
DW4	November 7-8, 2006	NM	281.42	155.5 - 175.5	125.92 - 105.92	0.0	157.70	123.72
	December 7-8, 2006	NM	281.42			0.0	157.90	123.52
	April 15-17, 1992	NM	327.73			NM	195.61	132.12
DW-5	November 7-8, 2006	NM	327.73	194 - 214	133.73 - 113.73	0.3	204.20	123.53
	December 7-8, 2006	NM	327.73			0.3	204.20	123.53

Notes:

1. Total depth was measured by sounding the wells prior to sumpling and may differ from total depth as installed.

2. Source of top of casing elevations - Remedial Investigation/Feasibility Study Workplan, Trans Mountain Oil Pipeline, Corp.,

Lauret Station, Bellingham, WA (Dames & Moore, 1992)

ft-TOC - feet below top of well casing ft-MSL - feet above mean sea level

ft-bgs - feet below ground surface NC - not calculated NM - not measured

Areas of Concern Summary Laurel Station Bellingham, Washington Table 2

Spill/Incident	Enforcement Order Area	Area of Concern	Notable Facility Features
Historic Spills and Releases	Other Areas	Study Units 1, 2, 4, 5, and 6	Pump Station Area, Boneyard, Bulk Storage Tank Area
January 1991 Spill	Areas 1, 2, and 3	Study Unit 1 and Areas 1, 2, and 3	None; impacted areas are located offsite
Pump Station Upgrade Discoveries	Other Areas	Study Unit 1	Pump Station Area
December 1991 Spill	Area 3 and Other Areas	Study Units 1, 5, and 6	Pump Station Area
March 1992 Spill	Other Areas	Study Unit 3	Relief Tank Area
October 2000 Spill	Other Areas	Study Unit 1	Pump Station Area
PCS Storage Cells	Other Areas	Study Units 3 and 7	North of Pressure Relief Tank Area

Notes: PCS - petroleum-contaminated soil

Table 3 Summary Statistics and Potential Cleanup Levels - Soil Laurel Station Bellingham, Washington

		Existing Da	ta Summary	7		Direc	ct Contact	Potential Clea	anup Levels Protectio	n of GW		
		Number of		Maximum Reporting	MTCA Method A	MTCA Method A	MTCA Method B	MTCA Method C	MTCA Method B	MTCA Method C	MTCA TEE	NBSM
Analyte	Samples	Detections	Detection	Limit	(Unrestricted)	(Industrial)	Method B	Method C	Method B	Method C		
Field Analyses (mg/kg) TPH - crude oil range	80	56	13,200	25	NA	NA	NA	NA	NA	NA	NA	NA
TPH - field screen	290	53	10,000	25	NA	NA	NA	NA	NA	NA	NA	NA
TPH - natural gas condensate TPH (mg/kg)	81	8	5,700	25	NA	NA	NA	NA	NA	NA	NA	NA
TPH - diesel range	257	103	15,411	61	2,000	2,000	NE	NE	NE	NE	460	NA
TPH - gasoline range	143	32	350	58	100/30 ¹	100/30 ¹	NE	NE	NE	NE	200	NA
TPH - heavy fuel oil range TPH - motor oil range	73	23	173 3,500	25 14	2,000 2,000	2,000	NE NE	NE NE	NE NE	NE NE	NE NE	NA NA
TPH - niotor on range	39	3	180	10	2,000	2,000	NE NE	NE NE	NE NE	NE NE	NE NE	NA NA
TPH by 418.1	26	15	1,700	10	2,000	2,000	NE	NE	NE	NE	NE	NA
VOCs (ug/kg) 1,1,1-trichloroethane	2	0	NA	630	2	2	72,000	3,150,000	83,410	185,400	NE	NA
1,1,2,2-tetrachloroethane	2	0	NA	630	NE	NE	5	656	1.6	16	NE	NA
1,1,2-trichloroethane	2	0	NA 500	630	NE	NE	18	2,303	5.5	55	NE	NA
1,1,2-trichlorotrifluoroethane 1,1-dichloroethene	2 2	0	590 NA	1,300 630	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NA NA
1,2-dichloroethane	2	0	NA	630	NE	NE	11	1,442	2.3	23	NE	NA
1,2-dichloroethene 1,2-dichloropropane	2	0	NA NA	630 630	NE NE	NE NE	NE 15	NE 1,930	NE 3.5	NE 35	NE NE	NA NA
2-butanone	2	0	NA NA	3,100	NE NE	NE NE	NE	1,950 NE	NE	NE	NE NE	NA NA
2-hexanone	2	0	NA	3,100	NE	NE	NE	NE	NE	NE	NE	NA
4-methyl-2-pentanone acetone	2	0	NA 4,400	3,100 630	NE NE	NE NE	NE 8,000,000	NE 350,000,000	NE 2.1	NE 4.5	NE NE	NA NA
benzene	125	12	6,830	630	30	30	18,181	2,386,363	0.0052	0.052	NE NE	NA NA
bromodichloromethane	2	0	NA	630	NE	NE	16	2,117	4.2	42	NE	NA
bromoform bromomethane	2 2	0	NA NA	630 1,300	NE NE	NE NE	127 112	16,614 4,900	57 37	570 83	NE NE	NA NA
carbon disulfide	2	0	NA NA	630	NE NE	NE NE	8,000	350,000	5,100	11,500	NE NE	NA NA
carbon tetrachloride	2	0	NA	630	NE	NE	7.7	1,010	4.3	43	NE	NA
chlorobenzene chloroethane	2	0	NA NA	630 1,300	NE NE	NE NE	1,600 NE	70,000 NE	2,543 NE	5,562 NE	NE NE	NA NA
chloroform	1	0	NA NA	1,300	NE NE	NE NE	NE 164	21,516	42	423	NE NE	NA NA
chloromethane	2	0	NA	1,300	NE	NE	77	10,096	9.9	99	NE	NA
cis-1,2-dichloroethene cis-1,3-dichloropropene	2 2	0	NA NA	630 630	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NA NA
dibromochloromethane	2	0	NA NA	630	NE NE	NE NE	12	1,563	3.3	33	NE NE	NA NA
ethylbenzene	125	21	8,640	190	6,000	6,000	8,000,000	350,000,000	12	26	NE	NA
hexachloroethane	3	0	NA	170	NE	NE	71/80	9,375/3,500	343	1,993	NE	NA
m,p-xylene methylene chloride	27	1	58 900	70 1,300	NE 20	NE 20	160,000 133,333	7,000,000,000	233 ² 0.019	511 ² 0.19	NE NE	NA NA
o-xylene	27	1	30	35	NE	NE	160,000,000	7,000,000,000	275	602	NE NE	NA
styrene	2	0	NA	630	NE	NE	33	4,375	86	859	NE	NA
tetrachloroethene toluene	125	0 16	NA 57,300	630 630	NE 7,000	NE 7,000	NE 6,400,000	NE 280,000,000	NE 7.2	NE 16	NE NE	NA NA
total xylenes	125	32	109,000	656	9,000	9,000	16,000,000	700,000,000	27	59	NE NE	NA NA
trans-1,2-dichloroethene	2	0	NA	630	NE	NE	NE	NE	NE	NE	NE	NA
trans-1,3-dichloropropene trichloroethene	2 2	0	NA NA	630 630	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NA NA
trichlorofluoromethane	2	0	NA	1,300	NE	NE	24,000	1,050,000	NE NE	NE	NE NE	NA
vinyl chloride	2	0	NA	1,300	NE	NE	0.67	88	0.014	1.4	NE	NA
SVOCs (ug/kg) 1,2,4-trichlorobenzene	3	0	NA	86	NE	NE	800	35,000	8,369	18,830	NE	NA
1,2-dichlorobenzene	3	0	NA	86	NE	NE	7,200	315,000	18,310	40,690	NE	NA
1,3-dichlorobenzene	3	0	NA	86	NE	NE	NE	NE	NE	NE	NE	NA
1,4-dichlorobenzene 2,2'-Oxybis(1-Chloropropane)	3	0	NA NA	86 86	NE NE	NE NE	42 NE	5,469 NE	72 NE	717 NE	NE NE	NA NA
2,4,5-trichlorophenol	3	0	NA	430	NE	NE	8,000	350,000	78,850	177,400	NE	NA
2,4,6-Trichlorophenol	3	0	NA	430	NE	NE	91	11,932	101	1,014	NE	NA
2,4-dichlorophenol 2,4-dimethylphenol	3	0	NA NA	260 170	NE NE	NE NE	240 1,600	10,500 70,000	277 2,426	612.7 5,306	NE NE	NA NA
2,4-dinitrophenol	3	0	NA NA	860	NE NE	NE NE	1,000	7,000	82	179	NE NE	NA NA
2,4-dinitrotoluene	3	0	NA	430	NE	NE	160	7,000	266	582	NE	NA
2,6-dinitrotoluene 2-chloronaphthalene	3	0	NA NA	430 86	NE NE	NE NE	80 NE	3,500 NE	107 NE	234 NE	NE NE	NA NA
2-chlorophenol	3	0	NA NA	86	NE NE	NE NE	400	17,500	NE NE	NE NE	NE NE	NA NA
2-methylnaphthalene	3	3	1,300	NA	NE	NE	320	14,000	0.082	0.18	NE	NA
2-methylphenol 2-nitroaniline	3	0	NA NA	86 430	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NA NA
2-nitrophenol	3	0	NA	430	NE	NE	NE	NE	NE	NE	NE	NA
3 & 4-methylphenol	3	0	NA NA	86	NE NE	NE NE	NE	NE 202	NE 9.7	NE 97	NE NE	NA NA
3,3'-dichlorobenzidine 3-nitroaniline	3	0	NA NA	430 430	NE NE	NE NE	2.2 NE	292 NE	8.7 NE	87 NE	NE NE	NA NA
4,6-dinitro-2-methylphenol	3	0	NA	860	NE	NE	NE	NE	NE	NE	NE	NA
4-bromophenyl-phenylether 4-chloro-3-methylphenol	3	0	NA NA	86 170	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NA NA
4-chloroaniline	3	0	NA	260	NE	NE	NE	NE	NE	NE	NE	NA
4-chlorophenyl-phenylether 4-nitroaniline	3	0	NA NA	86 430	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NA NA
4-nitrophenol	3	0	NA	430	NE	NE	NE	NE	NE	NE	NE	NA
acenaphthene	6	0	NA	1,000	NE	NE	4,800	210,000	285	623	NE NE	NA
acenaphthylene anthracene	9	0	NA NA	1,000 1,000	NE NE	NE NE	NE 24,000	NE 1,050,000	NE 6,778	NE 14,830	NE NE	NA NA
benzo(a)anthracene	9	0	NA NA	1,000	See Note 3	See Note 3	24,000 See Note 3	See Note 3	See Note 3	See Note 3	NE NE	NA NA
benzo(a)pyrene	9	0	NA	1,000	See Note 3	See Note 3	See Note 3	See Note 3	See Note 3	See Note 3	30	NA
benzo(b)fluoranthene benzo(g,h,i)perylene	9	1	100 74	1,000 1,000	See Note 3 NE	See Note 3 NE	See Note 3 NE	See Note 3 NE	See Note 3 NE	See Note 3 NE	NE NE	NA NA
benzo(k)fluoranthene	9	0	NA	1,000	See Note 3	See Note 3	See Note 3	See Note 3	See Note 3	See Note 3	NE	NA
benzoic acid	3	0	NA NA	860	NE NE	NE NE	320,000	14,000,000	NE NE	NE NE	NE NE	NA NA
benzyl alcohol bis(2-chloroethoxy)methane	3	0	NA NA	430 86	NE NE	NE NE	24,000 NE	1,050,000 NE	NE NE	NE NE	NE NE	NA NA
bis(2-chloroethyl)ether	3	0	NA	86	NE	NE	0.91	119	NE NE	NE	NE NE	NA NA
bis(2-ethylhexyl)phthalate	3	0	NA	86	NE	NE	71	9,375	NE	NE	NE	NA
butylbenzylphthalate	3	1	370	74	NE	NE	16,000	700,000	2,696,000	5,898,000	NE	NA

Table 3 Summary Statistics and Potential Cleanup Levels - Soil Laurel Station Bellingham, Washington

		Evicting Do	ta Summary	,				Potential Clea	anup Levels			
		Existing Da	ia Suillilafy	'		Direc	t Contact		Protectio	n of GW		
Analyte	Number of Samples	Number of Detections		Maximum Reporting Limit	MTCA Method A (Unrestricted)	MTCA Method A (Industrial)	MTCA Method B	MTCA Method C	MTCA Method B	MTCA Method C	MTCA TEE	NBSM
SVOCs (ug/kg) (continued)		l								I.		
carbazole	3	0	NA	86	NE	NE	50	6,563	909	9,089	NE	NA
chrysene	9	2	98	1,000	See Note 3	See Note 3	See Note 3	See Note 3	See Note 3	See Note 3	NE	NA
dibenz(a,h)anthracene	9	1	46	1,000	See Note 3	See Note 3	See Note 3	See Note 3	See Note 3	See Note 3	NE	NA
dibenzofuran	3	1	49	86	NE	NE	160	7,000	82	179	NE	NA
diethylphthalate	3	0	NA	86	NE	NE	NE	NE	NE	NE	NE	NA
dimethylphthalate	3	0	NA	86	NE	NE	80,000	3,500,000	40,960	89,600	NE	NA
di-n-butylphthalate	3	0	NA	86	NE	NE	NE	NE	NE	NE	200	NA
di-n-octylphthalate	3	0	NA	86	NE	NE	1,600	70,000	1,594,000,000	3,486,000,000	NE	NA
fluoranthene	9	1	75	1,000	NE	NE	3,200	140,000	1,887	4,128	NE	NA
fluorene	9	6	1,200	1,000	NE	NE	3,200	140,000	698	651	NE	NA
hexachlorobenzene	3	0	NA	86	NE	NE	0.63	82	264	2,641	NE	NA
hexachlorocyclopentadiene	3	0	NA	430	NE	NE	480	21,000	NE	NE	NE	NA
indeno[1,2,3-cd]pyrene	9	1	70	1,000	See Note 3	See Note 3	See Note 3	See Note 3	See Note 3	See Note 3	NE	NA
isophorone	3	0	NA	86	NE	NE	1,053	138,158	248	2,475	NE	NA
naphthalene	9	7	5,500	1,000	5	5	1,600	70,000	12	26	NE	NA
nitrobenzene	3	0	NA	86	NE	NE	40	1,750	39	85.9	NE	NA
n-nitroso-di-n-propylamine	3	0	NA	86	NE	NE	0.14	19	NE	NE	NE	NA
n-nitrosodiphenylamine	3	1	200	86	NE	NE	204	26,786	NE	NE	NE	NA
pentachlorophenol	3	0	NA	430	NE	NE	8.3	1,094	28	277	11	NA
phenanthrene	9	7	800	1,000	NE	NE	NE	NE	NE	NE	NE	NA
phenol	3	0	NA	170	NE	NE	48,000	2,100,000	20,640	47,300	NE	NA
pyrene	9	2	77	1,000	NE	NE	2,400	105,000	1,959	4,286	NE	NA
TTEC cPAH	63	5	22.58	NA	100	2,000	137	NE	0.7	7	NE	NA
PCBs (mg/kg)												
aroclor 1016/1242	10	0	NA	0.05	1 ⁹	NE	5.6	245	7.2	16	2	NA
aroclor 1248	10	0	NA	0.05	19	NE	NE	NE	NE	NE	2	NA
aroclor 1254	10	0	NA	0.05	19	NE	1.6	70	0.00082	0.0018	2	NA
aroclor 1260	10	0	NA	0.05	1 ⁹	NE	NE	NE	NE	NE	2	NA
Pesticides (mg/kg)	10	V	1,11	0.00		1,12	1,2	1,12	1,12	1,12		11.1
hexachlorobutadiene	3	0	NA	0.17	NE	NE	13	700	1.816	11,350	NE	NA
Metals (mg/kg)							-		, , , , ,	,		
antimony	3	0	NA	7	NE	NE	32	1,400	0.016	0.036	NE	NE
arsenic	3	3	6.4	NA	20	20	0.66	88	0.00015	0.0015	20/95 ⁵	7
beryllium	3	3	0.5	NA	NE	NE	160	7,000	0.082	0.18	25	0.6
cadmium	3	0	NA	0.3	2	2	80	3,500	0.020	0.045	25	1
	3	3	52.2	NA	2,000/19 ⁶	2,000/19 ⁶	240	10,500	61/0.126	134/0.276	42	48
chromium	3	3	31	NA NA	2,000/19 NE	2,000/19 NE	2,960	129,500	1.516	3.3	100	36
copper	-						,	·	0.039^7			
lead	3	3	6.4	NA	250	1,000	NE	NE		0.0387	220	24
mercury	3	1	0.07	0.07	2	2	24	1,050	0.014	0.031	9/0.7 ⁸	0.07
nickel	3	3	45	NA	NE	NE	$1,600^4$	70,000	0.82	1.8	100	48
selenium	3	1	0.3	0.1	NE	NE	400	17,500	0.20	0.45	0.8	38
silver	3	1	0.5	0.3	NE	NE	400	17,500	0.20	0.45	NE	NE
thallium	3	0	NA	0.1	NE	NE	5.6 ⁴	245	0.0029	0.0063	NE	NE
zinc	3	3	119	NA	NE	NE	24,000	1,050,000	12	27	270	85

Notes:
Bolded values indicate the selected Preliminary Cleanup Level for each analyte

GW - groundwater MTCA - Model Toxics Control Act

TEE - terrestrial ecological evaluation
NBSM - Natural Background Soil Metals Concentrations in Washington State, Puget Sound Region 90th Percentile Value, October 1994.
TPH - total petroleum hydrocarbons

VOCs - volatile organic compounds SVOCs - semivolatile organic compounds

PCBs - polychlorinated biphenyls mg/kg - milligrams per kilogram

ug/kg - micrograms per kilogram NA - not applicable

NE - not established

1 gasoline mixtures without benzene/gasoline mixtures with benzene

 $^2\,\mbox{Value}$ for m-xylene used in calculation, p-xylene value is NE

³ Carcinogenic PAH (cPAH) cleanup levels under MTCA are based on the calculated total toxicity of the mixture using the Toxicity Equivalency Methodology in WAC 173-340-708 (8).

The mixture of cPAHs shall be considered a single hazardous substance and compared to the applicable MTCA Method B cleanup level for benzo(a)pyrene.

 $^{\rm 4}$ For nickel and thallium, value is for soluble salts 5 ArsenicIII/ArsenicV

 $^6\,Chromium III/Chromium VI$

 $^{7}\,MTCA\,Method\,A\,groundwater\,value\,used\,for\,calculation\,because\,no\,Method\,B\,or\,C\,values\,are\,available\,for\,lead$

⁸ inorganic/organic

⁹ Preliminary Cleanup Level is for the total mixture of PCBs using TEQ summation

Table 4 Summary Statistics and Potential Cleanup Levels - Groundwater Laurel Station Bellingham, Washington

		Existing Da	ta Summary		Poter	tial Cleanup l	Levels
Analyte	Number of Samples	Number of Detections	Maximum Detection	Maximum Reporting Limit	MTCA Method A	MTCA Method B	MTCA Method C
Field Analyses (mg/L)	1 0		0.42	37.4	27.4	37.4	37.4
TPH - field screen	8	8	0.43	NA	NA	NA	NA
TPH (mg/L)	T =		NI A	0.00	NIE	NIE	NIE
EPH (C10-C19) EPH (C19-C32)	5	0	NA NA	0.08	NE NE	NE NE	NE NE
HEPH (C19-C32 less PAH)	5	0	NA NA	0.08	NE NE	NE NE	NE NE
LEPH (C10-C19 less PAH)	5	0	NA NA	0.08	NE NE	NE NE	NE NE
TPH - diesel range	11	2	370	250	0.5	NE NE	NE NE
TPH - gasoline range	11	0	NA	250	0.8/1.0 1	NE	NE
TPH - motor oil range	11	0	NA	500	0.5	NE	NE
TPH by 418.1	9	1	18	1	NE	NE	NE
VH C6-C10	8	0	NA	100	NE	NE	NE
VPHw (VHWL to 10-BTEX)	8	0	NA	100	NE	NE	NE
VOCs (ug/L)	1	T	T	,			
1,1,1-trichloroethane	9	1	5.7	1	200	7,200	15,750
1,1,2,2-tetrachloroethane	9	0	NA	1	NE	0.22	2.19
1,1,2-trichloroethane	9	0	NA	1	NE	0.77	7.77
1,1,2-trichlorotrifluoroethane	9	0	NA	2	NE	NE	NE
1,1-dichloroethane	9	1	1.2	1	NE	1,600	3,500
1,1-dichloroethene	9	0	NA	1	NE	NE	NE
1,2-dichloroethane	9	0	NA	1	5	0.48	4.81
1,2-dichloropropane	9	0	NA	1	NE	0.64	6.43
2-butanone	9	0	NA	5	NE	NE	NE
2-chloroethylvinylether	9	0	NA	1	NE	NE	NE
2-hexanone	9	0	NA	5	NE	NE	NE
4-methyl-2-pentanone	9	0	NA	5	NE	NE	NE
acetone	9	0	NA	5	NE	800	1,750
benzene	29	1	1.3	1	5	0.795	7.95
bromodichloromethane	9	0	NA	1	NE	0.71	7.06
bromoform	9	0	NA	1	NE	5.5	55
bromomethane	9	0	NA	2	NE	11	24.5
carbon disulfide	9	0	NA	1	NE	800	1,750
carbon tetrachloride	9	0	NA	1	NE	0.34	3.37
chlorobenzene	9	0	NA	1	NE	160	350
chloroethane	9	0	NA	2	NE	NE	NE
chloroform	9	1	14	2	NE	7.2	72
chloromethane	9	1	1.6	4	NE	3.4	34
cis-1,2-dichloroethene	9	0	NA	1	NE	NE	NE
cis-1,3-dichloropropene	9	0	NA NA	1	NE	NE	NE
dibromochloromethane	9	0	NA	1	NE	0.52	5.2
ethylbenzene	28	0	NA	2	700	800	1,750
m,p-xylene	8	0	NA	0.5	NE	1,600	35,000
methyl tert-butyl ether							
methylene chloride	8	0	NA NA	2	20 5	5.8	243 58
o-xylene	8	0	NA NA	0.5	NE	16,000	35,000
styrene	17	0	NA NA	1	NE NE	1.5	15
tetrachloroethene	9	0	NA NA	1	NE NE	NE	NE
toluene	27	1	0.771	2	1,000	640	1,400
total xylenes	28	1	1.25	4	1,000	1,600	3,500
•	-						
trans-1,2-dichloroethene	9	0	NA NA	1	NE	NE	NE
trans-1,3-dichloropropene	9	0	NA NA	1	NE NE	NE	NE
trichloroethene		0	NA NA	1	NE	NE 2 400	NE 5.250
trichlorofluoromethane	9	0	NA NA	2	NE	2,400	5,250
vinyl acetate	9	0	NA	1	NE	8,000	17,500
vinyl chloride	9	0	NA	2	0	0.03	0.29

Table 4 Summary Statistics and Potential Cleanup Levels - Groundwater Laurel Station Bellingham, Washington

		Existing Da	ta Summary		Poter	ntial Cleanup l	Levels
Analyte	Number of Samples	Number of Detections	Maximum Detection	Maximum Reporting Limit	MTCA Method A	MTCA Method B	MTCA Method C
SVOCs (ug/L)					_		
1-methylnaphthalene	4	2	0.023	0.01	NE	NE	NE
2-methylnaphthalene	13	5	0.43	0.01	NE	32	70
acenaphthene	5	1	0.01	0.01	NE	960	2,100
acenaphthylene	5	0	NA	0.01	NE	NE	NE
acridine	5	0	NA	0.05	NE	NE	NE
anthracene	5	0	NA	0.01	NE	4,800	10,500
benzo(a)anthracene	5	1	0.01	0.01	See Note 2	See Note 2	See Note 2
benzo(a)pyrene	13	2	0.02	0.01	See Note 2	See Note 2	See Note 2
benzo(b)fluoranthene	5	1	0.01	0.02	See Note 2	See Note 2	See Note 2
benzo(b,k)fluoranthene	5	1	0.03	0.02	NE	NE	NE
benzo(g,h,i)perylene	5	1	0.01	0.02	NE	NE	NE
benzo(k)fluoranthene	5	3	0.04	0.01	See Note 2	See Note 2	See Note 2
chrysene	5	0	NA	0.02	See Note 2	See Note 2	See Note 2
dibenz(a,h)anthracene	5	3	0.02	0.01	See Note 2	See Note 2	See Note 2
fluoranthene	5	2	0.04	0.01	NE	640	1,400
fluorene	5	0	NA	0.02	NE	640	1,400
indeno[1,2,3-cd]pyrene	13	5	0.11	0.011	See Note 2	See Note 2	See Note 2
naphthalene	5	5	0.12	NA	160	160	350
phenanthrene	5	5	0.03	NA	NE	NE	NE
pyrene	5	0	NA	0.05	NE	480	1,050
quinoline	5	3	0.02	0	NE	0.0036	0.036
TTEC cPAH	51	15	0.026	NA	0.1	0.012	0.12
Metals (mg/L)	7	5	0.003	0.001	NE	NE	NE
antimony							
arsenic	7	6	0.083	0.002	0.005	0.00006 3	0.00058 3
beryllium	7	4	0.006	0.001	NE	0.032	0.07
cadmium	7	1	0.002	0.002	0.005	0.008	0.0175
chromium	7	7	0.767	NA	0.05 4	24/.048 4	53/0.11 4
copper	7	7	0.523	NA	NE	0.59	1.3
lead	7	7	0.167	NA	0.015	NE	NE
mercury	7	1	0.0001	0.001	0.002	0.0048	0.011
nickel	7	7	0.6	NA	NE	0.32	0.7
selenium	7	1	0.024	0.01	NE	NE	NE
silver	7	0	NA	0.003	NE	NE	NE
thallium	7	3	0.009	0.005	NE	NE	NE
zinc	7	7	1.03	NA	NE	4.8	105
Conventionals (mg/L)	1 -		41.7	374) TE	000	1.770
chloride	7	7	41.7	NA	NE	800	1,750
nitrate as N	8	5	0.615	0.01	NE	NE	NE
nitrite as N	8	1	0.011	0.01	NE	NE	NE
pH	8	8	8.23	NA	NE	NE	NE
sulfate	8	8	329.3	NA	NE	NE	NE
total dissolved solids	8	8	8,523	NA	NE	NE	NE

Bolded values indicate the selected Preliminary Cleanup Level for each analyte

MTCA - Model Toxics Control Act

TPH - total petroleum hydrocarbons

EPH - extractable petroleum hydrocarbons

HEPH - heavy extractable petroleum hydrocarbons

LEPH - light extractable petroleum hydrocarbons

VH - volatile hydrocarbons

VPHw - volatile petroleum hydrocarbons in water

VOCs - volatile organic compounds SVOCs - semivolatile organic compounds

TTEC - total toxicity equivalent concentration

NA - not applicable NE - not established

mg/L - milligrams per liter

ug/L - micrograms per liter

Gasoline with benzene present/without benzene present

Carcinogenic PAH (cPAH) cleanup levels under MTCA are based on the calculated total toxicity of the mixture using the Toxicity Equivalency Methodology in WAC 173-340-708 (8).

The mixture of cPAHs shall be considered a single hazardous substance and compared to the applicable MTCA Method B cleanup level for benzo(a)pyrene.

³ Carcinogenic value for inorganic arsenic

⁴Chromium III/ChromiumVI

Summary Statistics and Potential Cleanup Levels - Surface Water Laurel Station Table 5

Bellingham, Washington

		Existing Da	Existing Data Summary	7				Pe	Potential Cleanup Levels	evels		
Analyte	Number of Samples	Number of Number of Maximum Samples Detections Detection	Maximum Detection	Maximum Reporting Limit	MTCA Method A ¹	MTCA Method B	MTCA Method C	CWA Section 304	NRWQC (Water & Org)	NRWQC (Org Only)	SWQC (acute)	SWQC (chronic)
TPH (mg/L)												
TPH - diesel range	48	2	0.35	3	0.5	NE	NE	NE	NE	NE	NE	NE
TPH - gasoline range	115	1	0.95	0.5	$\mathbf{0.8/1.0}^{2}$	NE	NE	NE	NE	NE	NE	NE
TPH by 418.1	190	23	12	1	NE	NE	NE	NE	NE	NE	NE	NE
VOCs (ug/L)												
benzene	222	6	1,400	29.4	NE	23 ³	5673	2.2	1.2	71	NE	NE
toluene	222	8	2,170	29.4	NE	$18,900^{4}$	$47,100^4$	1,300	6,800	200,000	NE	NE
ethylbenzene	222	3	2.1	29.4	NE	6,9144	17,2844	530	3,100	29,000	NE	NE
total xylenes	222	10	2,330	58.8	NE	NE	NE	NE	NE	NE	NE	NE
Polycyclic Aromatic Hydrocarbons (PAHs) (ug/L)												
acenapthene	1	0	NA	12	NE	6434	1,6074	029	NE	NE	NE	NE
acenaphthylene	1	0	NA	12	NE	NE	NE	NE	NE	NE	NE	NE
anthracene	-	0	NA	12	NE	$25,926^{4}$	64,8154	8,300	9,600	110,000	NE	ŊĖ
benzo(g,h,i)perylene	1	0	NA	12	NE	NE	NE	NE	NE	NE	NE	NE
fluoranthene	1	0	NA	12	NE	90^4	2254	130	300	370	NE	NE
fluorene	1	1	5	NA	NE	3,4574	8,6424	1,100	1,300	14,000	NE	NE
naphthalene	1	1	120	NA	NE	$4,938^{4}$	12,3464	NE	NE	NE	NE	NE
phenanthrene	1	1	2	NA	NE	NE	NE	NE	NE	NE	NE	NE
pyrene	1	0	NA	12	NE	$2,593^{4}$	6,4814	830	096	11,000	NE	NE
Carcinogenic PAHs (ug/L)												
benzo(a)pyrene	1	0	NA	12	NE	See Note 5	See Note 5	0.0038	0.0028	0.031	NE	NE
benzo(a)anthracene	1	0	NA	12	NE	See Note 5	See Note 5	0.0038	0.0028	0.031	NE	NE
benzo(b)fluoranthene	1	0	NA	12	NE	See Note 5		0.0038	0.0028	0.031	NE	NE
benzo(k)fluoranthene	1	0	NA	12	NE	See Note 5		0.0038	0.0028	0.031	NE	NE
dibenzo(a,h)anthracene	1	0	NA	12	NE	See Note 5	See Note 5	0.0038	0.0028	0.031	NE	NE
chrysene	1	0	NA	12	NE	See Note 5	See Note 5	0.0038	0.0028	0.031	NE	NE
indeno(1,2,3-c,d)pyrene	1	0	NA	12	NE	See Note 5	See Note 5	0.0038	0.0028	0.031	NE	NE
TTEC cPAH	7	0	NA	NA	NE	NE	NE	NE	0.0028	NE	NE	NE

Notes:

Bokled values indicate the selected Preliminary Cleanup Level for each analyte

MTCA - Model Toxics Control Act

CWA Section 304 - Clean Water Act Section 304

NRWQC (Water & Org.) - National Recommended Water Quality Criteria (NTR 40 CPR 131.36, 2006) for protection of human health via consumption of water and organisms NRWQC (Org Only) - National Recommended Water Quality Criteria (NTR 40 CPR 131.36, 2006) for protection of human health via consumption of organisms only SWQC (caute) - state surface water quality criteria for freshwater acute exposure to toxics substances (WAC 173-201A, Table 240[3]) for protection of aquatic organisms SWQC (chronic) - state surface water quality criteria for freshwater chronic exposure to toxics substances (WAC 173-201A, Table 240[3]) for protection of aquatic organisms TPH - total petroleum hydrocarbons

VOCs - volatile organic compounds

ug/L - micrograms per liter NE - not established mg/L - milligrams per liter

WTCA Method A values taken from WAC 173-340-900, Table 720-1, Method A Cleanup Levels for Ground Water

²Gasoline with benzene present/without benzene present

3 Carcinogenic value

*Non-carcinogenic value
**Carcinogenic value
**Carcinogenic PAH (cPAH) cleamp levels under MTCA are based on the calculated total toxicity of the mixture using the Toxicity Equivalency Methodology in WAC 173-340-708 (8).

The mixture of cPAHs shall be considered a single hazardous substance and compared to the applicable MTCA Method B cleamp level for betraco(a)pyrene.

Table 6 Potential Cleanup Levels for Air Laurel Station Bellingham, Washington

		Po	otential Cleanup Lev	els	
Analyte	MTCA Method B (ug/m³)	MTCA Method C (ug/m³)	Inhalation Cancer Potency Factor (kg-day/mg)	Inhalation Correction Factor (unitless)	Inhalation Reference Dose mg/kg-day)
VOCs		_			
1,1,1-trichloroethane	4,800	10,500	NE	2	3
1,1,2-trichloroethane	0.15625	1.5625	0.056	2	NE
1,1,2,2-tetrachloroethane	0.0431	0.4310	0.203	2	NE
1,1-dichloroethane	320	700	NE	2	0.2
1,2-dichloroethane	0.0962	0.9615	0.091	2	0.0014
1,2-dichloropropane	1.8286	4	NE	2	0.0011
4-methyl-2-pentanone	32	70	NE	2	0.02
acetone	NE	NE NE	NE	2	NE
benzene	0.3205	3.2051	0.0273	2	0.0086
bromodichloromethane	NE	NE	NE	2	NE
bromomethane	2.2857	5	NE NE	2	0.0014
carbon disulfide	320	700	NE NE	2	0.2
carbon distillde	0.1667	1.6667	0.0525	2	NE
chlorobenzene	8	17.5	0.0323 NE	2	0.005
			0.0805	2	
chloroform	0.1087	1.0870			NE NE
chloromethane	1.3889	13.8889	0.0063	2	NE
dibromochloromethane	NE	NE	NE	2	NE 0.201
ethylbenzene	457	1,000	NE	2	0.286
m-xylene	46.4	102	NE	2	0.029
methyl tert-butyl ether	9.62	96.2	NE	2	0.8571
methylene chloride	5.3191	53.1915	0.0016	2	0.8571
o-xylene	46.4	102	NE	2	0.029
p-xylene	NE	NE	NE	2	NE
styrene	4.375	43.75	0.002	2	0.2857
toluene	2,240	4,900	NE	2	1.4
trichlorofluoromethane	320	700	NE	2	0.2
vinyl acetate	91.4286	200	NE	2	0.0571
vinyl chloride	0.2841	2.8409	0.0308	2	0.0286
xylenes (total)	46	102	NE	2	0
SVOCs					
1-methylnaphthalene	NE	NE	NE	2	NE
1,2,4-trichlorobenzene	91.4286	200	NE	2	0.0571
2-methylnaphthalene	NE	NE	NE	2	NE
2-chlorophenol	NE	NE	NE	2	NE
1,2-dichlorobenzene	64	140	NE	2	0.04
1,4-dichlorobenzene	365.7143	800	NE	2	0.2286
bis(2-chloroethyl)ether	0.0076	0.0758	1.155	2	NE
acenaphthene	NE	NE	NE	1	NE
anthracene	NE	NE	NE	1	NE
fluorene	NE	NE	NE	1	NE
naphthalene	1.3714	3	NE	2	0.0009
nitrobenzene	0.2743	0.6	NE	2	0.0002
pyrene	NE	NE	NE	1	NE
Metals					
mercury	0.1371	0.3	NE	1	8.5714E-05

Notes:

Method B values are selected as preliminary air cleanup values for all potential contaminants, because of the potential for future residential use of the property. MTCA - Model Toxics Control Act

 $\mathrm{ug/m}^3$ - micrograms per cubic meter

Table 7
Summary of Soil Analytical Results – Historic Spills and Releases
Laurel Station
Bellingham, Washington

ple ID			Tick trianges (mg/ ng)			VOCS (ug/kg)			(0 0)	
HA-3-1	Sample Depth (feet bgs)	Sample Date	TPH - field screen	Benzene	Toluene	Ethylbenzene	Xylenes	Gasoline Range	Diesel Range	Heavy Oil Range
	0.3	1/8/1992	25 U	-	-	-	-	-	1	-
HA-3-2	0.3	1/8/1992	200 J	-				-	-	-
HA-3-3	0.3	1/8/1992	25 U	1	-	1	-	1	1	$10~\mathrm{U}^1$
	0.5		25 U	ŀ	:	:	1	ŀ	1	ı
HA-3-4	5	1/28/1992	25 U	ı	1	:	1	ı	1	1
	8		25 U	ı	1	:	1	ı	1	1
	0.5		25 U	ŀ	-		-	ŀ	-	ŀ
HA-3-5	5	1/28/1992	25 U	-	-			-		-
	8		$25\mathrm{U}$					-		-
1 P. C. D. C.	3	1001/01/01	25 U	ŀ	-		-	ŀ	-	ŀ
IM-B/	8	12/10/1991	25 U	I	-			-		$10~\mathrm{U}^1$
	4		25 U	ı	-			ı	-	1
TM-B8	6	12/11/1991	140 J	ı	1	:	1	ı	1	1
	34		25 U	-			-	-	-	1
TM_B13	6	2/20/1992	25 U	1	-		-	1	-	1
CIG-IVII	24	2/20/1332	25 U	-				-	10 U	-
	1		25 U	1			+	1	-	1
TP-19	5	1/15/1992	25 U	1	1	;	1	1	1	I
	10		25 U	1		-		1	1	1
	1		40					-		-
TP-20	5	1/15/1992	25 U	1	-		-	1	-	1
	10		25 U	1	-	-	-	1	10 U	$10~\mathrm{U}^1$
	1		50	-				-	16	-
TP-21	5	1/15/1992	25 U	-				-		-
	10		25 U	1			+	1	-	1
	1		25 U	-	-			1		ŀ
TP-22	5	1/16/1992	25 U	-				-	$\Omega 01$	-
	10		25 U	1		-		1	-	1
	1		30					-		-
TP-23	5	1/16/1992	25 U	1	-		-	1	-	1
	10		25 U							
Preliminary Cleanup Level ²	Level ²		460	30	7,000	000'9	000,6	100/303	460	2,000

Table 7 Summary of Soil Analytical Results – Historic Spills and Releases Laurel Station Bellingham, Washington

			Field Analyses (mg/kg)		VOCS	VOCs (ug/kg)			TPH (mg/kg)	
Sample ID	Sample Depth (feet bgs)	Sample Date	TPH - field screen	Benzene	Toluene	Ethylbenzene	Xylenes	Gasoline Range	Diesel Range	Heavy Oil Range
	1		25 U	1	-	1	1	1	7.6 J	1
TP-24	5	1/16/1992	25 U	-						
	10		25 U	-						
	0.5		3 O E	ı	-		-	-	-	-
TP-3-1	5	1/29/1992	25 U	ı	1	-	1	1	1	1
	10		25 U	-						
	0.5		5.5 EJ	1	-	-	1	1	:	
TP-3-2	5	1/29/1992	4,000 E					-		
	10		25 U	-	-		-	-		1
	0.5		25 U	-	-			-		-
TP-3-3	5	1/29/1992	15 J	ı	1	:	1	ı	1	1
	10		25 U	-						
	1		25 U	ŀ	-		:	-	:	1
TP-5-1	5	1/22/1992	25 U	-					-	
	10		25 U	1			:	1		-
	1		25 U					-		
TP-5-2	5	1/22/1992	25 U	ı	1	:	1	ı	1	ı
	10		25 U							
	1		25 U	-						
TP-5-3	5	1/22/1992	25 U	ı				-		
	10		25 U	-				-		-
	1		25 U	1	-		:	1		-
F 4	5	0001/00/1	25 U	1			:	1		-
1F-5-4	10	7661/77/1	25 U	ı	1	:	1	I	1	ı
	14		-	1	-	-	-	1	1	$10\mathrm{U}$
	1		25 U	ı	-		-	-	-	-
TP-5-5	5	1/22/1992	25 U					-		
	10		25 U	-	-		-	-		1
	1		25 U	-				-		
TP-5-6	5	1/22/1992	25 U	1	-		:	1		-
	10		25 U							
Preliminary Cleanup Level ²	nup Level ²		460	30	7,000	6,000	000,6	$100/30^3$	460	2,000

Summary of Soil Analytical Results – Historic Spills and Releases Laurel Station Bellingham, Washington Table 7

			Field Analyses (mg/kg)		VOC	VOCs (ug/kg)			TPH (mg/kg)	
Sample ID	Sample Depth (feet bgs)	Sample Date	TPH - field screen	Benzene	Toluene	Ethylbenzene	Xylenes	Gasoline Range	Diesel Range	Heavy Oil Range
	1		-	14 U	14 U	14 U	28 U	5.6 U	5.6 U	11
08-B2	3	3/3/2008	ı	11 U	11 U	11 U	22 U	4.5 U	5.4 U	11 U
	4.5		-	18 U	18 U	18 U	36 U	7.3 U	0.8 U	14 U
	1		1	23 U	23 U	23 U	46 U	9.1 U	19	51
08-B3	33	3/3/2008	ı	$32~\mathrm{U}^4$	32 U	32 U	64 U	13 U	41	09
	4.5		-	33	28 U	28 U	58	11 U	8.7	13 U
	1	3/3/2008	-	20 U	20 U	20 U	36 N	38	6.3 U	15
08-B4	3	3/13/2008	-	18 U	18 U	18 U	36 U	7.1 U	0.0 U	12 U
	4.5	3/13/2000	-	16 U	16 U	$\Omega 91$	32 U	6.4 U	0.09	12 U
	1			17 U	17 U	17 U	35 U	O 6.9	6.2 U	12 U
08-B5	3	3/3/2008	-	16 U	16 U	16 U	32 U	6.3 U	6.3 U	U 81
	4.5			14 U	14 U	14 U	28 U	5.7 U	5.8 U	12 U
90 00	1	8000/2/2	-	$\Omega 81$	18 U	$18\mathrm{U}$	35 U	7.0 U	0.0 U	12 U
00-00	3	3/3/2000		13 U	13 U	13 U	26 U	5.1 U	5.3 U	$\Omega 01$
Tonk 170 1	0.5	8000/8/8	-	U 11	11 U	U 11	22 U	6.2	130	190
I all N 1/ U-1	2	3/3/2000		14 U	14 U	14 U	28 U	7.8	36	34
	0.5		-	15 U	15 U	15 U	29 U	8.4	25	21
Tank 170-2	2	3/3/2008		20 U	20 U	20 U	40 U	7.9 U	5.8 U	12 U
	3.5		ı	$35~\mathrm{U}^4$	35 U	35 U	70 U	14 U	5.5 U	11 U
	0.5		-	20 U	21	20 U	30	150	1,900	2,500
Tank 180-1	2	3/3/2008	-	14 U	14 U	14 U	27 U	300	2,200	2,300
	3			16 U	16 U	16 U	33 U	350	3,100	3,500
	0.5		-	14 U	14 U	14 U	28 U	5.6 U	5.3 U	U 11
Tank 180-2	1.5	3/19/2008	-	13 U	13 U	13 U	25 U	5.1 U	0.09	12 U
	4			14 U	14 U	14 U	29 U	5.8 U	6.1 U	12 U
	0.5		-	14 U	14 U	14 U	29 U	5.8 U	0.0 U	12 U
Tank 180-3	1.5	3/19/2008	1	16 U	16 U	16 U	32 U	9.1	5.3 U	11 U
	3			11 U	11 U	11 U	23 U	4.5 U	5.4 U	11 U
Preliminary Cleanup Level ²	ınup Level²		460	30	7,000	000'9	000'6	$100/30^{3}$	460	2,000

Notes:

Bolded values indicate the Preliminary Cleanup Level was exceeded

VOCs - volatile organic compounds

TPH - total petroleum hydrocarbons

ug/kg - micrograms per kilogram

mg/kg - milligrams per kilogram

bgs - below ground surface

NA - not available

-- - not analyzed

U - not detected above the reporting limit shown

¹ Detected by Method 418.1 E or J - estimated

 2 See Table 3 for Preliminary Cleanup Level rationale

 3 Gasoline mixtures without benzene/gasoline mixtures with benzene 4 Not detected; however, laboratory reporting limit exceeds the Preliminary Cleanup Level.

Table 8

Summary of Soil Analytical Results - 1991 Purnell Investigation (Area 1 and Area 2)

Laurel Station Bellingham, Washington

Dennignam, washington															
	AREA	9,1	STUDY UNIT 1	[1					ARI	AREA 1					
	Sample ID	TH-1	TH-3	TH-4	1	7	3	4	5	9	7	8	6	10	Preliminary
	Sample Depth (inches bgs)	63	99	54	0-10	98-01	10-20	10-20	0-10	0-10	0-10	0-10	0-10	10-16	Cleanup Level ¹
	Sample Date	2/1/1991	2/1/1991	2/1/1991	2/18/1991	2/18/1991	2/18/1991	2/18/1991	2/18/1991	2/18/1991	2/18/1991	2/18/1991	2/18/1991	2/18/1991	
Total Petroleum Hydrocarbons (mg/kg)															
Diesel-range		10 U	72	12	3,976	4,215	78	10 U	2,946	8,085	1,863	1,551	10 U	857	460
Volatile Organic Compounds (ug/kg)															
Benzene		1	1	1	6,830	260	$50~\mathrm{U}^2$	-	$50~\mathrm{U}^2$	$50~\mathrm{U}^2$	$50~\mathrm{U}^2$	$50~\mathrm{U}^2$:	860	30
Toluene		-	-	:	57,300	2,800	20 U	-	50 U	1,680	210	280	-	8,300	7,000
Ethylbenzene		1	1	:	8,640	029	50 U	1	70	210	80	240	1	420	6,000
Xylenes (total)		1	ŀ	:	89,900	17,900	80	1	880	3,730	1,540	5,000	:	16,800	9,000
Polycyclic Aromatic Hydrocarbons (PAHs) (ug/kg)	(ug/kg)														
Naphthalene		I	I	ł	1	;	1	I	I	ŀ	ŀ	1	1	1	1,600
2-Methylnaphthalene		1	ŀ	;	1	1	1	1	ŀ	1	1	1	:	1	320
Fluoranthene		1	1	:	1	:	1	1	1	1	1	1	:	1	3,200
Fluorene		1	1	1	-		1	-	-	1	-		1	-	3,200
Pyrene		1	I	1	-		1	1	1	1	-		1	-	2,400
Phenanthrene		1	1	1	:	:	1	-	-	1	-		1	-	NE
Carcinogenic PAHs (ug/kg)															
Benzo(a)pyrene		1	1	1	-		1	-	-	1	-		1	-	See Note ³
Benzo(a)anthracene		1	1	1	-		1	-	-	1	-		1	-	See Note ³
Benzo(b)fluoranthene		I	I	ł	1	;	1	1	I	ŀ	ŀ	1	1	1	See Note ³
Benzo(k)fluoranthene		-	-	-			-	-	-	-	-	-	-	-	See Note ³
Dibenz(a,h)anthracene		-	-	-			-			-				-	See Note ³
Chrysene		ŀ	ŀ	1	;	1	1	1	1	ł	1	1	1	1	See Note ³
Indeno(1,2,3-c,d)pyrene		1	1	1	-		1	-	-	1	-		1	-	See Note ³
TTEC		-	1	:	-	:	:		-	-	:		:		100

Bolded values indicate the Preliminary Cleanup Level was exceeded.

U - not detected above the reporting limit shown $\ensuremath{\mathrm{U}} 1$ - compound was analyzed for but not detected above the reporting

limit shown. Reporting limit is estimated.

NA - not available

NC - not calculated NE - not established TTEC - total toxicity equivalency concentration

-- - not analyzed

bgs - below ground surface mg/kg - milligrams per kilogram TPH - total petroleum hydrocarbons

ug/kg - micrograms per kilogram VOCs - volatile organic compounds

¹ See Table 3 for Preliminary Cleanup Level rationale

² Not detected; however, laboratory reporting limit exceeds the

Preliminary Cleanup Level.

³ Carcinogenic PAH (cPAH) cleanup levels under MTCA are based on the calculated total toxicity of the mixture using the Toxicity Equivalency Methodology in WAC 173-340-708 (8). The mixture of cPAHs shall be considered a single hazardous substance and compared to the applicable MTCA Method B cleanup level for benzo(a)pyrene.

Table 8

Summary of Soil Analytical Results - 1991 Purnell Investigation (Area 1 and Area 2)

Laurel Station Bellingham, Washington

Bellingham, Washington		F										
	AREA				-	AREA	A 1					
	Sample ID	11	12	13	14	15	16	17	18	61	20	Preliminary
	Sample Depth (inches bgs)	0-10	0-10	10-14	0-10	0-10	0-10	10-24	0-10	6-10	10-24	Cleanup Level
	Sample Date	2/18/1991	2/18/1991	2/18/1991	2/18/1991	2/18/1991	2/18/1991	2/18/1991	2/18/1991	2/18/1991	2/18/1991	
Total Petroleum Hydrocarbons (mg/kg)												
Diesel-range		1,222	10 U	15,411	$10\mathrm{U}$	1,501	4,169	$10 \mathrm{U}$	10 U	344	50	460
Volatile Organic Compounds (ug/kg)												
Benzene		$50~\mathrm{U}^2$	1	1,940	1	$50~\mathrm{U}^2$	130	1	ŀ	$50~\mathrm{U}^2$	ŀ	30
Toluene		50 U	1	31,400	:	120	3,700	:	1	20 U	ı	7,000
Ethylbenzene		80	1	6,010	1	50 U	1,050	ŀ	1	20 U	I	90009
Xylenes (total)		1,050	ı	109,000	1	450	19,800	1	1	180	1	9,000
Polycyclic Aromatic Hydrocarbons (PAHs) (ug/kg)	(ug/kg)											
Naphthalene		I	I	1	1	;	1	ŀ	ŀ	1	ŀ	1,600
2-Methylnaphthalene		-		-	-			-	1		-	320
Fluoranthene		ı	ı	1	1	;	1	ŀ	ŀ	1	ŀ	3,200
Fluorene		1		:	-	-		-	1		-	3,200
Pyrene		1	1	:	1	:	1	:	1	-	ŀ	2,400
Phenanthrene		-							-		-	NE
Carcinogenic PAHs (ug/kg)												
Benzo(a)pyrene		ı	ı	1	1	:	1	ŀ	ł	1	ŀ	See Note ³
Benzo(a)anthracene		1		:	-	-		-	1		-	See Note ³
Benzo(b)fluoranthene		1	-	:	-	-	-	-	1		1	See Note ³
Benzo(k)fluoranthene		1	1	:	:	:	:	ŀ	1	1	ŀ	See Note ³
Dibenz(a,h)anthracene		1	1	:	:	:	1	:	1	-	ı	See Note ³
Chrysene		ı	ı	1	1	;	1	ŀ	ŀ	1	ŀ	See Note ³
Indeno(1,2,3-c,d)pyrene		1		:	-	-		-	1		-	See Note ³
TTEC		1	1	:	1	1	-	1	1	-	1	100

Bolded values indicate the Preliminary Cleanup Level was exceeded.

U - not detected above the reporting limit shown

UJ - compound was analyzed for but not detected above the reporting

limit shown. Reporting limit is estimated.

NA - not available

NC - not calculated NE - not established TTEC - total toxicity equivalency concentration -- - not analyzed

bgs - below ground surface

mg/kg - milligrams per kilogram TPH - total petroleum hydrocarbons

ug/kg - micrograms per kilogram VOCs - volatile organic compounds

¹ See Table 3 for Preliminary Cleanup Level rationale

² Not detected; however, laboratory reporting limit exceeds the

Preliminary Cleanup Level.

³ Carcinogenic PAH (cPAH) cleanup levels under MTCA are based on the calculated total toxicity of the mixture using the Toxicity Equivalency Methodology in WAC 173-340-708 (8).

The mixture of cPAHs shall be considered a single hazardous

substance and compared to the applicable MTCA Method B cleanup level for benzo(a)pyrene.

Summary of Soil Analytical Results - 1991 Purnell Investigation (Area 1 and Area 2)

Laurel Station

Bellingham, Washington

	ABEA					100						
	Semale ID	5	,	73	7,0			ţ	96	00	30	:
•	Sample ID	77	77	57	74	c 7	97	17	87	67	30	Preliminary
	Sample Depth (inches bgs)	10-20	0-10	0-10	0-10	0-10	0-10	0-10	0-10	0-10	0-10	Cleanup Level ¹
	Sample Date	2/18/1991	2/18/1991	2/18/1991	2/18/1991	2/18/1991	2/19/1991	2/19/1991	2/19/1991	2/19/1991	2/19/1991	
Total Petroleum Hydrocarbons (mg/kg)												
Diesel-range		12,523	3,649	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	460
Volatile Organic Compounds (ug/kg)												
Benzene		086	$50~\mathrm{U}^2$	-	:	-	:	-		-	1	30
Toluene		16,100	420		:	-	-	-			-	000'L
Ethylbenzene		1,750	130	1	:	:	:	:	1	1	ŀ	000'9
Xylenes (total)		51,300	2,470	:	:	:	1	:	1	1	ŀ	000'6
Polycyclic Aromatic Hydrocarbons (PAHs) (ug/kg)	(ug/kg)											,
Naphthalene		1	1	1	1	1	1	1	1	1	1	1,600
2-Methylnaphthalene		1	1	-	:	-	:	-		-	1	320
Fluoranthene		-	-		-	-	1	-			1	3,200
Fluorene		-	-				-				-	3,200
Pyrene		-	-				-				-	2,400
Phenanthrene			-								-	\mathbf{NE}
Carcinogenic PAHs (ug/kg)												
Benzo(a)pyrene		1	1	-	-	-	-	-	-	-	ŀ	See Note ³
Benzo(a)anthracene		ŀ	ŀ	1	;	1	1	ŀ	ı	1	ı	See Note ³
Benzo(b)fluoranthene		ł	ŀ	;	;	1	1	ŀ	1	1	I	See Note ³
Benzo(k)fluoranthene		-	-				-				-	See Note ³
Dibenz(a,h)anthracene		-	-	-	-	-	-	-			1	See Note ³
Chrysene		-	-		-	-	-	-			1	See Note ³
Indeno(1,2,3-c,d)pyrene		1	1		:	-	-	-			1	See Note ³
TTEC		:	-				:	-	-		;	100

Bolded values indicate the Preliminary Cleanup Level was exceeded.

U - not detected above the reporting limit shown

UJ - compound was analyzed for but not detected above the reporting

limit shown. Reporting limit is estimated.

NA - not available

NC - not calculated NE - not established

TTEC - total toxicity equivalency concentration

bgs - below ground surface -- - not analyzed

mg/kg - milligrams per kilogram TPH - total petroleum hydrocarbons

ug/kg - micrograms per kilogram VOCs - volatile organic compounds

¹ See Table 3 for Preliminary Cleanup Level rationale

² Not detected; however, laboratory reporting limit exceeds the Preliminary Cleanup Level.

³ Carcinogenic PAH (cPAH) cleanup levels under MTCA are based on the calculated total toxicity of the mixture using the Toxicity Equivalency Methodology in WAC 173-340-708 (8).

The mixture of cPAHs shall be considered a single hazardous

substance and compared to the applicable MTCA Method B cleanup level for benzo(a)pyrene.

Summary of Soil Analytical Results - 1991 Purnell Investigation (Area 1 and Area 2)

Laurel Station Bellingham, Washington

beningnam, wasnington											
	AREA					AREA 1	,				
	Sample ID	31	98	37	38	39	47	48	49	20	Preliminary
	Sample Depth (inches bgs)	0-10	0-10	0-10	0-10	0-10	6-12	10-12	18-20	14-16	Cleanup Level ¹
	Sample Date	2/19/1991	2/19/1991	2/19/1991	2/19/1991	2/19/1991	2/19/1991	2/19/1991	2/19/1991	2/19/1991	
Total Petroleum Hydrocarbons (mg/kg)											
Diesel-range		863	45	194	10 U	10 U	1,395	10 U	10 U	10 U	460
Volatile Organic Compounds (ug/kg)											
Benzene		ŀ	ı	1	1	1	1	ŀ	ı	ŀ	30
Toluene		1	-	:	:	:	:	1	1	ı	7,000
Ethylbenzene		1	-	1	:	:	1	1	1	ı	000'9
Xylenes (total)		1		1	ł	:	:		-	ŀ	000'6
Polycyclic Aromatic Hydrocarbons (PAHs) (ug/kg)) (ug/kg)										
Naphthalene		ŀ	ŀ	1	;	;	810	ŀ	1	ŀ	1,600
2-Methylnaphthalene		-		-	1	-	-			1	320
Fluoranthene		ŀ	ı	1	ł	1	1,000 U	ŀ	ı	ŀ	3,200
Fluorene		-		-	1	:	400		-	-	3,200
Pyrene		1	-	1	:	:	1,000 U	1	1	ŀ	2,400
Phenanthrene		-	1	-	-		250	1	1	-	NE
Carcinogenic PAHs (ug/kg)											
Benzo(a)pyrene		1	I	1	ŀ	1	1,000 U	1	ı	ŀ	See Note ³
Benzo(a)anthracene		1	I	1	ŀ	1	1,000 U	1	ı	ŀ	See Note ³
Benzo(b)fluoranthene		1		1	ł	:	1,000 U		-	ŀ	See Note ³
Benzo(k)fluoranthene		1	1	1	1	1	1,000 U	1	1	ı	See Note ³
Dibenz(a,h)anthracene		-		-	1	-	1,000 U			1	See Note ³
Chrysene		-		-	1	-	1,000 U			1	See Note ³
Indeno(1,2,3-c,d)pyrene		-		-	1	:	1,000 U		-	-	See Note ³
TTEC		ŀ	1	1	1	1	NC	1	ı	1	100

Bolded values indicate the Preliminary Cleanup Level was exceeded.

U - not detected above the reporting limit shown

UJ - compound was analyzed for but not detected above the reporting

limit shown. Reporting limit is estimated.

NA - not available

NC - not calculated NE - not established

TTEC - total toxicity equivalency concentration

-- - not analyzed

bgs - below ground surface

mg/kg - milligrams per kilogram TPH - total petroleum hydrocarbons

ug/kg - micrograms per kilogram VOCs - volatile organic compounds

¹ See Table 3 for Preliminary Cleanup Level rationale

² Not detected; however, laboratory reporting limit exceeds the

Preliminary Cleanup Level.

³ Carcinogenic PAH (cPAH) cleanup levels under MTCA are based on the calculated total toxicity of the mixture using the Toxicity Equivalency Methodology in WAC 173-340-708 (8).

The mixture of cPAHs shall be considered a single hazardous substance and compared to the applicable MTCA Method B

cleanup level for benzo(a)pyrene.

Final Report Table 8 1991 Purnell Investigation - Soil

Summary of Soil Analytical Results - 1991 Purnell Investigation (Area 1 and Area 2)

Laurel Station Bellingham, Washington

Deningnam, wasnington															
	AREA							AREA 1	1						
	Sample ID		SH-1				SH-2					SH-3			Preliminary
	Sample Depth (inches bgs)	4-6	16-18	28-30	4-6	10-12	16-18	22-24	28-30	4-6	10-12	16-18	22-24	28-30	Cleanup Level
	Sample Date	4/8/1991	4/8/1991	4/8/1991	4/8/1991	4/8/1991	4/8/1991	4/8/1991	4/8/1991	4/8/1991	4/8/1991	4/8/1991	4/8/1991	4/8/1991	
Total Petroleum Hydrocarbons (mg/kg)															
Diesel-range		843	$10\mathrm{U}$	10 U	2,053	4,907	1,667	10 U	10 U	10 U	$10 \mathrm{U}$	$10\mathrm{U}$	$10\mathrm{U}$	10 U	460
Volatile Organic Compounds (ug/kg)															
Benzene		-	-	1		-	-	1	1	-	-	:	-	:	30
Toluene		-	-	-		-	1	1	-	-	-		-	-	7,000
Ethylbenzene		-	-	-			:	1	-	-			-	:	6,000
Xylenes (total)		-	-	:		-	:	1	-	-	-	-	:	:	9,000
Polycyclic Aromatic Hydrocarbons (PAHs) (ug/kg)	ug/kg)														
Naphthalene		5,500	ŀ	ł	500	3,700	3,000	I	I	ı	ł	;	;	1	1,600
2-Methylnaphthalene		1	1	1	;	:	1	1	ŀ	1	1	;	1	:	320
Fluoranthene		1,000 U	ŀ	1	O 006	D 006	N 008	1	1	1	:	;	1	:	3,200
Fluorene		1,200	-	-	200	1,100	200	1	-	-			-	:	3,200
Pyrene		1,000 U	-		Ω 006	$\Omega 006$	008 n	-	-				-	-	2,400
Phenanthrene		800			400	009	300	-							NE
Carcinogenic PAHs (ug/kg)															
Benzo(a)pyrene		1,000 U	-	:	000 O	000 U	800 U	-	-	-				:	See Note ³
Benzo(a)anthracene		1,000 U	-	+	900 U	000 O	800 U	1	1	-	-	-	-	-	See Note ³
Benzo(b)fluoranthene		100	-		Ω 006	$\Omega 006$	008 n	-	-				-	-	See Note ³
Benzo(k)fluoranthene		1,000 U	:	1	O 006	D 006	N 008	ŀ	1	ŀ	1	:	1	:	See Note ³
Dibenz(a,h)anthracene		1,000 U	-		Ω 006	Ω 006	008 n	-					-	-	See Note ³
Chrysene		1,000 U	-	:	900 U	000 O	800 U	1	1	-	-		-	-	See Note ³
Indeno(1,2,3-c,d)pyrene		1,000 U	1	1	900 U	000 O	800 U	1	1	1	-	-	-	:	See Note ³
TTEC		10	-	:	NC	NC	NC	:	1					:	100

Bolded values indicate the Preliminary Cleanup Level was exceeded.

U - not detected above the reporting limit shown

UJ - compound was analyzed for but not detected above the reporting

limit shown. Reporting limit is estimated.

NA - not available

NC - not calculated NE - not established

TTEC - total toxicity equivalency concentration

bgs - below ground surface -- - not analyzed

mg/kg - milligrams per kilogram TPH - total petroleum hydrocarbons

ug/kg - micrograms per kilogram VOCs - volatile organic compounds

¹ See Table 3 for Preliminary Cleanup Level rationale

² Not detected; however, laboratory reporting limit exceeds the Preliminary Cleanup Level.

³ Carcinogenic PAH (cPAH) cleanup levels under MTCA are based on the calculated total toxicity of the mixture using the Toxicity Equivalency Methodology in WAC 173-340-708 (8).

The mixture of cPAHs shall be considered a single hazardous

substance and compared to the applicable MTCA Method B cleanup level for benzo(a)pyrene. 5 of 6

Summary of Soil Analytical Results - 1991 Purnell Investigation (Area 1 and Area 2)

Laurel Station Bellingham, Washington

Bellingham, Washington															
	AREA							AREA 2							
	Sample ID	32	33	34	35	40	41	51	52	53	54		SH-4		Preliminary
	Sample Depth (inches bgs)	0-10	0-10	0-10	0-10	0-10	0-10	0-4	0-4	0-4	12-18	4-6	18-20	28-30	Cleanup Level ¹
	Sample Date	2/19/1991	2/19/1991	2/19/1991	2/19/1991	2/19/1991	2/19/1991	4/8/1991	4/8/1991	4/8/1991	4/8/1991	4/8/1991	4/8/1991	4/8/1991	
Total Petroleum Hydrocarbons (mg/kg)															
Diesel-range		10 U	35	65	18	10 U	439	10 U	10 U	38	10 U	10 U	10 U	10 U	460
Volatile Organic Compounds (ug/kg)															
Benzene		ı	1	1	1	1	1	ł	ı	ŀ	ı	1	1	1	30
Toluene		-	-				;	-			-	-		:	7,000
Ethylbenzene		1	1	1	1	1	:	-	ı	1	1	1	1	:	6,000
Xylenes (total)							-								9,000
Polycyclic Aromatic Hydrocarbons (PAHs) (ug/kg)	ug/kg)														
Naphthalene		I	ŀ	1	1	1	ł	ŀ	I	1,000 U	I	1	ŀ	;	1,600
2-Methylnaphthalene		-	-				;	-			-	-		:	320
Fluoranthene		ı	ŀ	1	1	1	ŀ	ŀ	ı	1,000 U	ı	1	ŀ	;	3,200
Fluorene		-	-		-		:	-	-	1,000 U	1	:		:	3,200
Pyrene		-	-				:		-	1,000 U	-	-		:	2,400
Phenanthrene		1	-		-		:	-	-	1,000 U	1	-		:	NE
Carcinogenic PAHs (ug/kg)															
Benzo(a)pyrene		1	1	-	1	-	1	-	1	1,000 U	ŀ	1	-	1	See Note ³
Benzo(a)anthracene		1	1	-	-		-	-	1	1,000 U	1	1		-	See Note ³
Benzo(b)fluoranthene		I	ŀ	1	1	1	ł	ŀ	I	1,000 U	I	1	ŀ	;	See Note ³
Benzo(k)fluoranthene		-	-				:		-	1,000 U	-	-		:	See Note ³
Dibenz(a,h)anthracene		-	-				;	-		1,000 U	-	-		:	See Note ³
Chrysene		ı	ŀ	1	1	1	ŀ	ŀ	ı	1,000 U	ı	1	ŀ	;	See Note ³
Indeno(1,2,3-c,d)pyrene		1	1	-	-		-	-	1	1,000 U	1	1		-	See Note ³
TTEC		1	1	:	!	:	1	1	1	NC	1	:	-	1	100

Bolded values indicate the Preliminary Cleanup Level was exceeded.

U - not detected above the reporting limit shown

UJ - compound was analyzed for but not detected above the reporting

limit shown. Reporting limit is estimated.

NA - not available

NC - not calculated NE - not established TTEC - total toxicity equivalency concentration

-- - not analyzed

bgs - below ground surface

mg/kg - milligrams per kilogram TPH - total petroleum hydrocarbons

ug/kg - micrograms per kilogram VOCs - volatile organic compounds

¹ See Table 3 for Preliminary Cleanup Level rationale

² Not detected; however, laboratory reporting limit exceeds the Preliminary Cleanup Level.

³ Carcinogenic PAH (cPAH) cleanup levels under MTCA are based on the calculated total toxicity of the mixture using the Toxicity Equivalency Methodology in WAC 173-340-708 (8).

The mixture of cPAHs shall be considered a single hazardous substance and compared to the applicable MTCA Method B cleanup level for benzo(a)pyrene.

Table 9
Summary of Soil Analytical Results – Pump Station Area (Study Unit 1)
Laurel Station
Bellingham, Washington

			Field Analysis (mg/kg)	TPH (mg/kg) ¹
Sample ID	Sample Depth (feet bgs)	Sample Date	TPH - field screen	Diesel Range
	5		25 U	
	7		25 U	
	9		25 U	
PB-1	11	11/19/1991	17 J	
	13		25 U	
	15		25 U	
	17		20 J	
PB-2	12	11/20/1991	$5,300 \text{ J}^2$	
	6		1,900 J ²	
PB-4	8	11/19/1991	25 U	
FD-4	10	11/19/1991	64 J ²	
	12		25 U	
TM-B10 15 25			25 U	10 U
		2/17/1992	28 E	
TM-B10 25 40			25 U	
	13		430	
TM-B14	34	2/20/1992	25 U	20
	54		25 U	
TM-B15	29	2/24/1992	1,600 E	
	30	2/24/1992		50
TP-1	4	11/15/1991	25 U	
TP-2	4	11/15/1991	25 U	
TP-18	4	12/4/1991	25 U	
Preliminary C	leanup Level ³		460	

Bolded values indicate the Preliminary Cleanup Level was exceeded

mg/kg - milligrams per kilogram

TPH - total petroleum hydrocarbons

bgs - below ground surface

-- - not analyzed

U - not detected above the reporting limit shown

E or J - estimated

¹ Method WTPH-HCID

² Identified as crude oil range

³ See Table 3 for Preliminary Cleanup Level rationale

Table 10 Summary of Soil Analytical Results – Former Oily Water Sump (Study Unit 1) Laurel Station Bellingham, Washington

			Field Analysis (mg/kg)	m) HAL	(mg/kg)		VOCs	VOCs (ug/kg)				Metal	Metals (mg/kg)			
Gl. II	Sample Depth	Sample	TPH.		TPH	D	Tollow	PAL-II	Vedence	4	D118				Minled	75
Sample ID	(feet bgs)		field screen	Diesel Kange	(Method 418.1)	Benzene	Loluene	Etnyibenzene	Aylenes	Arsenic	Arsenic Beryinum	Chromium	Copper	Lead	Mickel	ZINC
	3		$100 \mathrm{J}^2 / 25 \mathrm{U}^3$	1	1	1	1	ı	1	-	:	1	-		:	-
	~		25 UJ	1	:	-	1	1	1		1	:	1		:	-
i	13	1001/2/01	25 U		-		1	-	-	:	-		-			-
I M-B4	184	1661/5/71	$400 \mathrm{J}^2 / 25 \mathrm{U}^3$	320	1,200	53 U ⁵	53 U	U 061	086	1.99	0.2	17.6	15.3	2.9	16	29.2
	23		$1,300 \text{ J}^2 / 25 \text{ U}^3$		1	-	1	-	:	;	:	-	:	-	:	1
	28		25 UJ	1	:			1	1	1	:	:	1	1	:	
	13		:	3,100	:		1			:						-
	19		:	510	:	-	1	1	:	1	1	:	1		;	
TM D16	24	2/25/1002	25 U	1	:	-	1	1	:		1	:	1		:	-
OIG-IVI	29	7661 167 17	-	30	-		-	-	-	-			-		-	
	34		25 U		:		-	-	-	:	-			-		
	39		:	10 U	-	-		1	-	:	-	-	-		-	
Preliminary Cleanup Level	leanup Level		460		2,000	30	7,000	6,000	9,000	20	160	617	2,960	250	48	24,000

Notes

Bolded values indicate the Preliminary Cleanup Level was exceeded

--- not analyzed

bgs - below ground surface

mg/kg - milligrams per kilogram

TPH - total petroleum hydrocarbons

ug/kg - micrograms per kilogram U - not detected above the reporting limit shown E or J - estimated ¹ Method WTPH-HCID

² Identified as crude oil range

³Identified as natural gas condensate range

⁴This sample was also analyzed for SVOCs, which were not detected above their respective Preliminary Cleanup Levels with the exception of 2-methylnaphthalene (1,300 ug/kg).

⁵Not detected; however, laboratory reporting limit exceeds the Preliminary Cleanup Level.

⁶See Table 3 for Preliminary Cleanup Level rationale

⁷Chronimum III

Table 11 Summary of Soil Analytical Results – Former Burn Pit and Former Oil/Water Separator (Study Unit 1; Lauret Stapiana, Washington

			Field Analysis (mg/kg)	(I) HdL	(mg/kg)	L	VO	VOCs (ug/kg)		Polycyclic Aromatic Hydrocarbons (PAHs) (ug/kg)	Hydrocarbons (PAHs) (ug/kg)	F			Carcinogenic PAHs (ug/kg)	PAHs (ug/kg)								Meta	Metals (mg/kg)					
Sample II	Sample ID Sample Depth (feet bgs)	th Sample Date	TPH -	Diesel Gasoline Range ¹ Range ¹	ine TPH TPH (Method 418.1)	1) Benzene	Tolu	Ethylbenzene Xylenes	ylenes 2-Methylnaphthalene		Naphthalene	- 0	Pyrene	Benzo(a) Be pyrene ant	Benzo(a) Benz anthracene fluorar	Benzo(b) Benzo(k) fluoranthene fluoranthene	(k) Dibenz(a,h) anthracene	,h) Chrysene	Indeno (1,2,3-c,d) pyrene	TTEC Antin	Antimony Arse	nic Beryllin	Arsenic Beryllium Cadmium	um Chromium	ప	Lead	Mercury Ni	Nickel Selen	Selenium Silver	er Thallium	ı Zinc
Burnpit #1	1 3	2/19/1992	:	170	1	$160\mathrm{U}^5$	U ⁵ 630 U	830 J	2,100 75	750 82 J	150	180	77	74 U	74 U 74	74 U 74 U	46 J	25 J	70 J	12.15 61	6U 6.4	4 0.3	0.2 U	1 52.2	31	4.7	0.07	45 0.1	0.1 U 0.3 U	U 0.1 U	53.6
	5		25 J		21	:	1				1	:				:	1	1	1	1	-	1	1	1	1	1			1	1	1
TM B2	10	12/2/1001	25 U			1			-		1			-	-		-		-		-	-	-	-	1	-					1
7G-W1	15	16(1)271	25 J	-	-	:	:	-		-	:	:	-		-		1	:	-		-	-		1		1	-		1	:	-
	20		25 U				-	-		-	-	1			-			-			-	1	-	-		-			1	-	-
	22		25 U								-	-					-					-									-
TM B3	32	13/3/1001	25 U			:	1	-		:	:	:		-	-			-	1		-	1	-	-		-			1	1	1
CG-IVI I	37	1661/6/71	25 U		-		-	-			1	1			-		-	-	-	-	-	1	-	-		-	-		1	-	1
	47		25 U				-				-	:			-							-		-					-		-
	8		25 U			-	1	-	-		1	1	-	-	-		-	1	-	-	-	1	-	1		-			1	1	1
	13		25 U		10 U		-	-			1	1			-		-	-	-	-	-	1	-	-		-	-		1	-	1
	18	12/9/1991	25 U	-	-	:	:	-		-	:	:	-		-		1	:	-		-	-		1		1	-		1	:	-
	23		25 U		-		-	-			1	1			-		-	-	-	-	-	1	-	-		-	-		1	-	1
TM D6	28		25 U	:	;	;	;	1	-	:	;	;	;	;	:	:	1	;	1	1	-	1	1	1	;	1	1	-	1	1	1
OG-IVI	33		25 U			-	1	-			1	1	-	-	-		-	1	-	-	-	1	-	1		-			1	1	1
	38				-	:	-	-			1	:			-			:		-		1	-	-		-			1	-	1
	43	12/10/1991		-	-	:	:	-		-	:	:	-		-		1	:	-		-	-		1		1	-		1	:	-
	48		25 U		-		-	-			1	1			-		-	-	-	-	-	1	-	-		-	-		1	-	1
	58		25 U			:	-					-					-	-	-			-		-		-			-		-
	5				-	-		-		-	1	1	1		-		-		-			-	-	-		-	-	-	1	+	
TP-10	10	11/26/1991	25 U		-		-	-			1	1			-		-	-	-	-	-	1	-	-		-	-		1	-	1
	15		25 J		10 U	:	-					-					-	-	-			-		-		-			-		-
	1		$17 \mathrm{J}^2 / 25 \mathrm{U}^3$		-	1		-			:	-			-		-		-		:	-	-	-		-	-		+	:	-
	5		$11 \mathrm{J}^2 / 25 \mathrm{U}^3$	1		1	;	1	:	:	;	;	1	;	-	;	1	;	1	-	-		1	1	;	1	1	:	1	1	1
TP-6	10	11/22/1991	900 J ² / 330 J ⁴	330 12	80	55 U ⁵	j ⁵ 55 U	55 U			:	-			-		-		-		-		-	-		-	-		+	:	-
	13		$1,200 \ { m J}^2 \ / \ 700 \ { m J}^3$	•		1	;	1	:	:	;	;	1	;	-	-	1	;	1	1	-		1	1	;	1	1	:	1	1	1
	15		$57^2 / 220 \text{ J}^3$	-	1	1	1	-			1	:	-	;	-		-	-	1			-	1	-	-			-	1	1	
	1		$25 \mathrm{U}^{2.3}$		-	1	:	-			1		-	-	-		-	-	-			-	-	-					-	1	
	5		13		-	1		-			:	-			-		-		-		-	-	-	-		-	-		+	:	-
TP-7	7	11/22/1991	99		-	-					:	:			-		-				-	-			:	-	-			:	-
	10		25 U ^{2, 3}		-	-		-	-	-	1	-	-		-		-		-		-	-	-		;	-	-			+	-
	15		$51 \mathrm{J}^2 / 25 \mathrm{U}^3$	-	38	1	1	1	-	-	-	-	1	-		1	1	1	1	1		1	-	1	1	1	1	-	1	1	1
Prelimina	Preliminary Cleanup Level ⁶	·el ⁶	460	460 100/3	307 2,000	30	7,000	9 000,9	9,000 320	3,200	1,600	NE	2,400	See Note ⁸ Se	See Note ⁸ See Note ⁸	Note ⁸ See Note ⁸	te ⁸ See Note ⁸	e See Note	See Note ⁸	100 32	2 20	160	2	61/0.12	2 2,960	250	2	48 38	38 400	9.6	24,000

Notes

Bolded values indicate the Preliminary Cleanup Level was exceeded
TPH - total petroleum hydrocarbons
TPC - could rogatic compounds
TTG - could rogatic compounds
TGC - void fine organic part of the prefixed as a care of the prefixed as

Summary of Soil Analytical Results – Former Drain Line Between Oily Water Sump and Burn Pit (Study Unit 1) Laurel Station Bellingham, Washington Table 12

			Field Analysis (mg/kg)		TPH (mg/kg)	(g)		VOCs (ug/kg)	(ug/kg)	
Sample ID	Sample Depth (feet bgs)	Sample Date	TPH - field screen	Diesel Range	Gasoline Range	TPH (Method 418.1)	Benzene	Toluene	Ethylbenzene	Xylenes
	6		25 U	1	1	:	-	-	-	1
TM-B18	24	2/26/1992	:	10 U	:	:	1	1	1	1
	29		25 U	:	1	:	1	1	1	:
	4		25 U	1	1	:	1	-	1	-
TM-B20	6	2/26/1992	25 U	1	1	:	1	1	1	:
	24		25 U	1	:	:	1	1	1	1
TM-B21	15	2/27/1992	25 U	:	1	-	-		1	-
TM-B22	5	2/27/1992	25 U	:	-	:	:		:	-
TM-B23	13.5	2/27/1992	25 U	:	1	-	-		1	-
TM-B24	10	2/27/1992	25 U							-
	9		$100~\mathrm{J}^2$	49	38	140	$52 \mathrm{~U}^3$	52 U	52 U	100 U
TP-8	8	11/22/1991	69 J	-		-	-			-
)	10		25 U	-		-	-		-	-
	15		25 U	1	;	:	-	1	1	:
Preliminary Cleanup Level ⁴	eanup Level ⁴		460	460	$100 / 30^5$	2,000	30	7,000	6,000	9,000

Bolded values indicate the Preliminary Cleanup Level was exceeded

-- - not analyzed

bgs - below ground surface

mg/kg - milligrams per kilogram E or J - estimated

NA - not available

TPH - total petroleum hydrocarbons ug/kg - micrograms per kilogram

U - not detected above the reporting limit shown

 $VOCs - volatile \ organic \ compounds \\ {}^{l}Method \ WTPH-HCID$

²TPH in natural gas condensate range

³ Not detected; however, laboratory reporting limit exceeds the Preliminary Cleanup Level.

 $^{^4}$ See Table 3 for Preliminary Cleanup Level rationale 5 Gasoline mixtures with benzene

Table 13
Summary of Soil Analytical Results – Former Drain Tile Excavation (Study Unit 1)
Laurel Station
Bellingham, Washington

			Field Analysis (mg/kg)	TPH	(mg/kg)
Sample ID ¹	Sample Depth (feet bgs)	Sample Date	TPH - field screen	Diesel Range ²	TPH (Method 418.1)
DTE-1	1	2/25/1992	680 E	460	
DTE-2	NA	2/25/1992	25 U	15 U	
DTE-3	NA	2/25/1992	36	15 U	
DTE-4	NA	2/25/1992	25 U		
DTE-5	NA	2/25/1992	25 U		
DTE-6	NA	2/25/1992	25 U		
DTE-7	NA	2/25/1992	25 U		
EXFERN-5	NA	1/25/1992	25 U		
EXFERN-7	NA	1/25/1992	25 U		
	8		25 U		
TM-B5	13	12/6/1991	25 U		10 U
	18		25 U		
Preliminary Cle	eanup Level ³		460	460	2,000

Bolded values indicate the Preliminary Cleanup Level was exceeded

bgs - below ground surface

TPH - total petroleum hydrocarbons

mg/kg - milligrams per kilogram

NA - not available

U - not detected above the reporting limit shown

E - estimated

-- - not analyzed

Samples DTE-3, -5, and -7 were collected from the sidewall of the excavation approximately 12 inches above the base of the excavation.

Samples EXFERN-5 and EXFERN-7 are post excavation samples.

¹ Samples DTE-1, -2, -4, and -6 were collected from the base of excavation.

² Method WTPH-HCID

³ See Table 3 for Preliminary Cleanup Level rationale

Table 14 Summary of Soil Analytical Results - Former Waste Pit (Study Unit 1) Laurel Station Bellingham, Washington

	Sample ID	Pit #1	TM-	-B19	TM-B25		TI	P-4		TI	P-5	
	Sample Depth (feet bgs)	15	4	14	15	2	4	6	8	5	14	Preliminary Cleanup Level ¹
	Sample Date	2/27/1992	2/26/	1992	2/27/1992		11/20	/1991		11/21	/1991	Creamap Zever
Total Petroleum Hydrocarbons (TP	H) (mg/kg)											
TPH Field Screening			25 U	25 U	25 U	25 U	25 U	25 U	25 U	50 J^2		460
Diesel-range											10 U^3	460
Volatile Organic Compounds (ug/kg	<u>;)</u>											
Benzene		190 U ⁶										30
Toluene		450										7,000
Ethylbenzene		190 U										6,000
Xylenes (total)		330 U										9,000
Polycyclic Aromatic Hydrocarbons	(PAHs) (ug/kg)											
Naphthalene		79 J										1,600
2-Methylnaphthalene		200										320
Fluoranthene		86 U										3,200
Fluorene		86 U										3,200
Pyrene		86 U										2,400
Phenanthrene		47 J										NE
Carcinogenic PAHs (ug/kg)												
Benzo(a)pyrene		86 U										See Note ⁴
Benzo(a)anthracene		86 U										See Note ⁴
Benzo(b)fluoranthene		86 U										See Note ⁴
Benzo(k)fluoranthene		86 U										See Note ⁴
Dibenz(a,h)anthracene		86 U										See Note ⁴
Chrysene		86 U										See Note ⁴
Indeno(1,2,3-c,d)pyrene		86 U										See Note ⁴
TTEC		NC										100
Metals (mg/kg)												
Antimony		7 U										32
Arsenic		3.4										20
Beryllium		0.5										160
Cadmium		0.3 U										2
Chromium		44.6										61 ⁵
Copper		21.4									-	2,960
Lead		6.4										250
Mercury		0.07 U										2
Nickel		45										48
Selenium		0.3										38
Silver		0.5									-	400
Thallium		0.1 U										5.6
Zinc		119	-			-			-	-		24,000

Bolded values indicate the Preliminary Cleanup Level was exceeded

bgs - below ground surface

mg/kg - milligrams per kilogram

ug/kg - micrograms per kilogram

TTEC - total toxicity equivalency concentration

-- - not analyzed

U - not detected above the reporting limit shown

J - estimated

NC - not calculated

NE - not established

¹ See Table 3 for Preliminary Cleanup Level rationale

² TPH detected in natural gas condensate range

 3 TPH by method 418.1

⁴ Carcinogenic PAH (cPAH) cleanup levels under MTCA (Model Toxins Control Act) are based on the calculated total toxicity of the mixture using the Toxicity Equivalency Methodology in WAC 173-340-708 (8). The mixture of cPAHs shall be considered a single hazardous substance and compared to the applicable MTCA Method B cleanup level for benzo(a)pyrene.

⁵ Chromium III

 $^{^{\}rm 6}$ Not detected, however, laboratory reporting limit exceeds the Preliminary Cleanup Level

Table 15 Summary of Soil Analytical Results – 20-Inch Main Pipeline (Study Unit 1) Laurel Station Bellingham, Washington

		Field Analysis (mg/kg)	ТРН	(mg/kg)
Sample ID	Sample Date	TPH - field screen	Diesel Range ¹	TPH (418.1)
PLB-1-1-7'	1/14/1992	25 U	110	15
PLB-1-2-5'	1/14/1992	25 U		
PLB-1-3-7'	1/14/1992	25 U		
PLB-1-4-10'	1/14/1992	20		
PLB-1-5-12'	1/14/1992	25 U	10 U	13
PLB-1-6-10'	1/14/1992	25 U		
PLB-1-10-4'	1/15/1992	25U		
PLB-1-11	1/17/1992	25 U		
PLB-1-12	1/17/1992	25 U		
PLB-1-13	1/17/1992	25 U		
PLB-1-14	1/17/1992	25 U		
PLB-1-15	1/17/1992	25 U	10 U	
PLB-1-16	1/21/1992	25 U		
PLB-1-17	1/17/1992	25 U		
PLB-1-18	1/21/1992	25 U		
PLB-1-19	1/21/1992	25 U		
PLB-1-21	1/21/1992	25 U		
PLB-1-22	1/21/1992	25 U	10 U	
PLS-1-1-5'	1/14/1992	25 U		
PLS-1-2-2'	1/14/1992	25 U		
PLS-1-3-3'	1/14/1992	25 U 25 U		
PLS-1-4-8'	1/14/1992	25 U 25U		
PLS-1-5-9'	1/14/1992	25 U 25U		
PLS-1-10	1/17/1992	25 U		
PLS-1-11	1/17/1992	25 U		
PLS-1-12	1/17/1992	25 U		
PLS-1-13	1/17/1992	25 U		
PLS-1-14	1/17/1992	25 U	10 U	
PLS-1-15	1/17/1992	25 U		
PLS-1-16	1/21/1992	25 U		
PLS-1-17	1/21/1992	25 U		
PLS-1-18	1/21/1992	25 U		
PLS-1-19	1/21/1992	25 U		
PLS-1-20	1/21/1992	25 U	10 U	
Preliminary C	leanup Level ³	460	460	2,000

Bolded values indicate the Preliminary Cleanup Level was exceeded

TPH - total petroleum hydrocarbons mg/kg - milligrams per kilogram

U - undetected

-- - not analyzed

¹ Method WTPH-HCID

² Sample prefix PLB indicates base sample and PLS indicates sidewall sample

 $^{^{\}rm 3}$ See Table 3 for Preliminary Cleanup Level rationale

Table 16 Summary of Soil Analytical Results – Former PSE Electrical Substation (Study Unit 1) Laurel Station Bellingham, Washington

				PCBs (mg/	/kg)	
Sample ID	Sample Depth (inches bgs)	Sample Date	Aroclor 1016/1242	Aroclor 1248	Aroclor 1254	Aroclor 1260
ES-1	4	3/25/1992	0.05 U	0.05 U	0.05 U	0.05 U
E3-1	10	3/23/1992	0.05 U	0.05 U	0.05 U	0.05 U
ES-2	6	3/25/1992	0.05 U	0.05 U	0.05 U	0.05 U
E3-2	12	3/23/1992	0.05 U	0.05 U	0.05 U	0.05 U
EC 2	ES-3 4 8		0.05 U	0.05 U	0.05 U	0.05 U
E3-3	ES-3 4 8		0.05 U	0.05 U	0.05 U	0.05 U
ES-4	6	3/25/1992	0.05 U	0.05 U	0.05 U	0.05 U
E3-4	12	3/23/1992	0.05 U	0.05 U	0.05 U	0.05 U
ES-5	6	3/25/1992	0.05 U	0.05 U	0.05 U	0.05 U
E3-3	10	3/23/1992	0.05 U	0.05 U	0.05 U	0.05 U
Preliminary Cle	eanup Level ¹		1	1	1	1

Bolded values indicate the Preliminary Cleanup Level was exceeded

-- - not analyzed

bgs - below ground surface

mg/kg - milligrams per kilogram

PCBs - polychlorinated biphenyls

U - not detected above the reporting limit shown

¹ See Table 3 for Preliminary Cleanup Level rationale

Table 17 Summary of Soil Analytical Results – December 11, 1991 Spill (Study Units 1, 5, and 6) Laurel Station Bellingham, Washington

			Field Analysis (mg/kg)	TPH (mg/kg) ¹
Sample ID	Sample Depth (inches bgs)	Sample Date	TPH - field screen	Diesel Range
EX-10	NA	12/17/1991	25 U	
EX-11	NA	12/17/1991	25 U	
EX-13	NA	12/17/1991	25 U	
EX-15	NA	12/17/1991	61	
EX-16	NA	12/17/1991	15 J	
EX-17	NA	12/17/1991	25 U	
HA-6-1	0-4	1/6/1992	25 U	
HA-6-2	0-4	1/6/1992	25 U	
HA-6-3	0-4	1/6/1992	25 U	
HA-6-4	0-4	1/6/1992	25 U	
HA-6-5	0-4	1/6/1992	25 U	10 U
HA-6-6	0-4	1/6/1992	25 U	
HA-6-7	0-4	1/6/1992	25 U	
HA-6-8	0-4	1/6/1992	25 U	
HA-6-9	0-4	1/6/1992	25 U	10 U
HA-6-10	0-4	1/7/1992	25 U	
HA-6-11	0-4	1/8/1992	25 U	10 U
HA-6-12	0-4	1/8/1992	25 U	
HA-6-13	0-4	1/8/1992	25 U	
HA-6-14	0-4	1/8/1992	25 U	
HA-6-15	0-4	1/8/1992	25 U	
HA-6-16	0-4	1/8/1992	11 J	
HA-6-17	0-4	1/8/1992	25 U	
HA-6-18	0-4	1/8/1992	25 U	
HA-6-19	0-4	1/8/1992	25 U	
HA-6-20	0-4	1/8/1992	25 U	10 U
SS-6-1	0-4	1/24/1992	25 U	
SS-6-2	0-4	1/24/1992	25 U	
SS-6-3	0-4	1/24/1992	25 U	
SS-6-4	0-4	1/24/1992	25 U	
SS-6-5	0-4	1/24/1992	25 U	
SS-6-6	0-4	1/24/1992	25 U	
SS-6-7	0-4	1/24/1992	25 U	10 U
SS-6-8	0-4	1/24/1992	25 U	
SS-6-11	0-4	1/24/1992	25 U	
SS-6-12	0-4	1/24/1992	25 U	
SS-6-13	0-4	1/24/1992	25 U	
SS-6-14	0-4	1/24/1992	25 U	
SS-6-15	0-4	1/24/1992	25 U	10 U
SS-6-16	0-4	1/24/1992	25 U	
SS-6-17	0-4	1/24/1992	25 U	
SS-6-18	0-4	1/24/1992	25 U	
SS-6-19	0-4	1/24/1992	25 U	
SS-6-20	0-4	1/24/1992	25 U	
Preliminary C	leanup Level ²		460	

Bolded values indicate the Preliminary Cleanup Level was exceeded

TPH - total petroleum hydrocarbons

mg/kg - milligrams per kilogram

bgs - below ground surface

NA - not available

-- - not analyzed

U - not detected above the reporting limit shown

J - estimated

¹ Method WTPH-HCID

² See Table 3 for Preliminary Cleanup Level rationale

Table 18 Summary of Soil Analytical Results – March 7, 1992 Spill (Study Unit 3) Laurel Station Bellingham, Washington

			ТРН	(mg/kg)
Sample ID	Sample Depth (feet bgs)	Sample Date	Diesel Range ¹	Gasoline Range ¹
PRT-1	2	3/20/1992	16,000	
PRT-2	2	3/20/1992	10,000	
PRT-3	NA	3/20/1992	10 U	
PRT-4	NA	3/20/1992	10 U	
PRT-5	NA	3/20/1992	10 U	
PRT0-1	NA	3/23/1992	10 U	
PRT0-2	NA	3/23/1992	10 U	
Preliminary Cle	eanup Level ²		460	100 / 30 ³

Bolded values indicate the Preliminary Cleanup Level was exceeded

TPH - total petroleum hydrocarbons

mg/kg - milligrams per kilogram

bgs - below ground surface

NA - not available

-- - not analyzed

U - undetected

¹ Method WTPH-HCID

 $^{^{2}}$ See Table 3 for Preliminary Cleanup Level rationale $\,$

 $^{^{3}}$ Gasoline mixtures without benzene/gasoline mixtures with benzene

Table 19
Summary of Soil Analytical Results - October 26, 2000 Spill (Study Unit 1)
Laurel Station
Bellingham, Washington

Common ID	Comple Type	Comple Dete	Sample Depth	NWTPH-Dx (mg/kg)	(mg/kg)	NWTPH-Gx (mg/kg)		NOC	VOCs (ug/kg)	
Sampre 11	Sample 13pc	Sample Date	(feet bgs)	Diesel/Fuel Oil-Range	Heavy Oil-Range	Gasoline-Range	Benzene	Toluene	Ethylbenzene	Xylenes
A	Stockpile	10/28/2000	NA	830	082	:	-	-		-
В	Stockpile	10/28/2000	NA	910	720	280	680	4,100	1,800	12,000
C	Stockpile	10/28/2000	NA	1,300	1,000	-	-	-		-
D	Stockpile	10/28/2000	NA	1,500	1,100	1	1	1	:	1
Ε	Stockpile	10/28/2000	NA	1,300	086	720	2,700	16,000	5,200	36,000
F	Stockpile	10/28/2000	NA	310	150	:	1	:	:	1
STOCK-1	Stockpile	11/16/2000	NA	10 U	25 U	5 U	$50~\mathrm{U}^1$	50 U	50 U	100 U
STOCK-2	Stockpile	11/16/2000	NA	10 U	25 U	29.9	$50~\mathrm{U}^1$	50 U	50 U	100 U
CELL2-G	Stockpile	11/16/2000	NA	86.2	72.1	56.6	$50~\mathrm{U}^1$	117 U	149	881
CELL2-H	Stockpile	11/16/2000	NA	113	75.4	26.9	$50~\mathrm{U}^1$	50 U	52.1	231 U
CELL2-J	Stockpile	11/16/2000	NA	82	54.1	41.3	$50~\mathrm{U}^1$	84.4 U	92.5	484
CELL2-K	Stockpile	11/16/2000	NA	92.4	41.5	115	$85.1~\mathrm{U}^1$	205 U	296	1,230
CELL2-L	Stockpile	11/16/2000	NA	169	L'46	73.2	$50~\mathrm{U}^1$	84.9 U	149 U	0 959 O
CELL2-M	Stockpile	11/16/2000	NA	60.4	30	62.7	56.7	171 U	158	919 U
CELL2-N	Stockpile	11/16/2000	NA	42.4	27.1	69.3	$50~\mathrm{U}^1$	114 U	146 U	513 U
PEX-1-11	Post-Excavation	11/2/2000	11	10 U	25 U	5 U	$50~\mathrm{U}^1$	50 U	50 U	100 U
PEX-6-S-5 ²	Post-Excavation	11/2/2000	5	191	503	5.41	$50~\mathrm{U}^1$	50 U	50 U	100 U
PEX-8-B-10	Post-Excavation	11/3/2000	10	21.9	25 U	5 U	$50~\mathrm{U}^1$	50 U	50 U	100 U
$PEX-9-B-10^3$	Post-Excavation	11/3/2000	10	157	25 U	129	$100~\mathrm{U}^1$	100 U	840 U	1,340
PEX-10-B-6	Post-Excavation	11/3/2000	9	29.4	25 U	17.6	$50~\mathrm{U}^1$	50 U	50 U	100 U
PEX-11-S-7 ⁴	Post-Excavation	11/3/2000	7	029	30	266	$2{,}000~\mathrm{U}^1$	50 U	$7{,}000~\mathrm{U}^1$	45,000
PEX-12-S-7 ³	Post-Excavation	11/3/2000	7	431	25 U	869	$1,\!000~\mathrm{U}^1$	1,000 U	6,000 U	32,300
PEX-13-S-5 ⁵	Post-Excavation	11/3/2000	5	28.8	Ω 52 Ω	38.2	573	50 U	150 U	25,700
PEX-14-S-1 ⁶	Post-Excavation	11/3/2000	1	681	392	190	$400~\mathrm{U}^1$	12,700	800 U	37,900
PEX-15-S-2	Post-Excavation	11/6/2000	2	73.9	33.3	5 U	$50~\mathrm{U}^1$	50 U	50 U	100 U
PEX-16-S-3	Post-Excavation	11/9/2000	3	88.6	92	25.2	$50~\mathrm{U}^1$	52 U	50 U	166
PEX-17-B-5	Post-Excavation	11/9/2000	5	13.1	19.1	11.3	139	50 U	224	1,650
PEX-18-S-3	Post-Excavation	11/9/2000	3	18.5	31.7	8.68	96.1	50 U	50 U	461
PEX-19-S-3	Post-Excavation	11/9/2000	3	38.3	48.7	5 U	$50~\mathrm{U}^1$	50 U	50 U	100 U
PEX-20-B-5	Post-Excavation	11/9/2000	5	16.1	25 U	5 U	$50~\mathrm{U}^1$	50 U	50 U	100 U
PEX-21-S-3	Post-Excavation	11/9/2000	3	18.3	25 U	5 U	$50~\mathrm{U}^1$	50 U	50 U	100 U
PEX-22-S-4	Post-Excavation	11/9/2000	4	28.4	34	5 U	$50~\mathrm{U}^1$	50 U	50 U	107
Proliminory (Moonin I ovol ⁷	lovo I amool			750	000 6	100/308	ç	1	000	000
ı ı cımınıaı y	icanup revei			400	2,000	OC / OOT	90	000,/	0,000	9,000

Table 19
Summary of Soil Analytical Results - October 26, 2000 Spill (Study Unit 1)
Laurel Station
Bellingham, Washington

			Sample Depth	(gy/km) xQ-HdTWN	(mg/kg)	NWTPH-Gx (mg/kg)		NOC	VOCs (ug/kg)	
Sample ID	Sample 1ype	Sample Date	(feet bgs)	Diesel/Fuel Oil-Range	Heavy Oil-Range	Gasoline-Range	Benzene	Toluene	Ethylbenzene	Xylenes
PEX-23-B-6	Post-Excavation	11/9/2000	9	10.1	12.5 U	5 U	$50~\mathrm{U}^1$	20 U	20 U	100 U
PEX-24-S-4	Post-Excavation	11/9/2000	4	23.4	25 U	5 U	$50~\mathrm{U}^1$	$\Omega 0S$	0.05	100 U
PEX-25-S-3	Post-Excavation	11/13/2000	3	10 U	25 U	5 U	$50~\mathrm{U}^1$	$\Omega 0S$	$050 \mathrm{U}$	100 U
PEX-26-S-3	Post-Excavation	11/13/2000	3	$10\mathrm{U}$	25 U	5 U	$50~\mathrm{U}^1$	$\Omega 0S$	0.05	100 U
PEX-27-S-3	Post-Excavation	11/13/2000	3	10 U	25 U	5 U	$50~\mathrm{U}^1$	$\Omega 0S$	$\Omega 0S$	100 U
PEX-28-S-3	Post-Excavation	11/13/2000	3	10 U	25 U	5 U	$50~\mathrm{U}^1$	$\Omega 0S$	$\Omega 0S$	100 U
PEX-29-S-1.5	Fost-Excavation	11/13/2000	1.5	16.8	27.9	5 U	$50~\mathrm{U}^1$	50 U	50 U	100 U
PEX-30-S-2	Post-Excavation	11/13/2000	2	10 U	25 U	5 U	$50~\mathrm{U}^1$	$\Omega 0S$	$\Omega 0S$	100 U
PEX-31-S-2	Post-Excavation	11/13/2000	2	10.7	25 U	5 U	$50~\mathrm{U}^1$	$\Omega 0S$	$050 \mathrm{U}$	100 U
PEX-32-S-1.5	Fost-Excavation	11/13/2000	1.5	10.3	25 U	5 U	$50~\mathrm{U}^1$	$\Omega 0S$	$\Omega 0S$	100 U
PEX-33-S-1.5	Fost-Excavation	11/13/2000	1.5	10 U	25 U	5 U	$50~\mathrm{U}^1$	$\Omega 0S$	0.05	100 U
PEX-34-S-1	Post-Excavation	11/13/2000	1	69.2	45.4	11.5	125	332	9.68	605
PEX-35-S-1	Post-Excavation	11/13/2000	1	14	30.5	5 U	$50~\mathrm{U}^1$	50 U	50 U	100 U
PEX-36-S-1	Post-Excavation	11/13/2000	1	20.6	25 U	5 U	$50~\mathrm{U}^1$	$\Omega 0S$	$\Omega 0S$	100 U
PEX-37-S-3	Post-Excavation	11/13/2000	3	10 U	25 U	5 U	$50~\mathrm{U}^1$	50 U	50 U	100 U
PEX-38-S-4	Post-Excavation	11/13/2000	4	20.7	41.1	5 U	$50~\mathrm{U}^1$	$\Omega 0S$	0.05	100 U
PEX-39-B-10	Post-Excavation	11/13/2000	10	10 U	25 U	5 U	$50~\mathrm{U}^1$	50 U	50 U	100 U
PEX-40-B-4	Post-Excavation	11/13/2000	4	10 U	25 U	5 U	$50~\mathrm{U}^1$	$\Omega 0S$	$\Omega 0S$	100 U
PEX-41-B-4	Post-Excavation	11/13/2000	4	10 U	25 U	5 U	$50~\mathrm{U}^1$	$\Omega 0S$	50 U	100 U
PEX-42-B-4	Post-Excavation	11/13/2000	4	10 U	25 U	5 U	$50~\mathrm{U}^1$	50 U	50 U	100 U
PEX-43-B-4	Post-Excavation	11/13/2000	4	10 U	25 U	5 U	$50~\mathrm{U}^1$	50 U	50 U	100 U
PEX-44-B-4	Post-Excavation	11/13/2000	4	10 U	25 U	5 U	$50~\mathrm{U}^1$	50 U	50 U	100 U
PEX-45-B-3	Post-Excavation	11/13/2000	3	10 U	25 U	5 U	$50~\mathrm{U}^1$	50 U	50 U	100 U
PEX-46-B-11	Post-Excavation	11/13/2000	11	10 U	25 U	5 U	$50~\mathrm{U}^1$	$\Omega 0S$	$\Omega 0S$	100 U
PEX-47-S-4.5	Fost-Excavation	11/13/2000	4.5	16.7	31.5	5 U	$50~\mathrm{U}^1$	$\Omega 0S$	$\Omega 0S$	100 U
PEX-48-S-4	Post-Excavation	11/13/2000	4	57.8	76.4	5 U	$50~\mathrm{U}^1$	$\Omega 0S$	$050 \mathrm{U}$	100 U
PEX-49-S-7	Post-Excavation	11/14/2000	7	17.6	25 U	21.5	$50~\mathrm{U}^1$	50 U	50 U	100 U
PEX-50-S-1	Post-Excavation	11/14/2000	1	10 U	25 U	5 U	$50~\mathrm{U}^1$	50 U	50 U	100 U
PEX-51-S-2	Post-Excavation	11/14/2000	2	10 U	25 U	5 U	$50~\mathrm{U}^1$	50 U	50 U	100 U
Preliminary C	Preliminary Cleanup Level ⁷			460	2,000	100 / 308	0€	7,000	000'9	9,000

Table 19 Summary of Soil Analytical Results - October 26, 2000 Spill (Study Unit 1) Laurel Station Bellingham, Washington

Comple ID	Comple Tene	Comple Dote	Sample Depth	NWTPH-Dx (mg/kg)	(mg/kg)	NWTPH-Gx (mg/kg)		YOC	VOCs (ug/kg)	
Sample 1D	Sample 13pe	Sample Date	(feet bgs)	Diesel/Fuel Oil-Range	Heavy Oil-Range	Gasoline-Range	Benzene	Toluene	Ethylbenzene	Xylenes
PEX-52-S-1.5	Post-Excavation	11/14/2000	1.5	10 U	25 U	5 U	$50~\mathrm{U}^1$	50 U	50 U	100 U
PEX-53-S-1.5	Post-Excavation	11/14/2000	1.5	16.2	25 U	5 U	$50~\mathrm{U}^1$	50 U	0.05	100 U
PEX-54-B-8	Post-Excavation	11/14/2000	8	113	25 U	30.5	$50~\mathrm{U}^1$	50 U	50 U	100 U
PEX-55-S-2	Post-Excavation	11/14/2000	2	22.4	28.3	5 U	$50~\mathrm{U}^1$	50 U	50 U	100 U
PEX-56-B-5	Post-Excavation	11/14/2000	5	10 U	25 U	S U	$50~\mathrm{U}^1$	20 U	$\Omega 0S$	100 U
PEX-57-B-8	Post-Excavation	11/14/2000	8	10 U	25 U	S U	$50~\mathrm{U}^1$	20 U	$\Omega 0S$	100 U
PEX-58-S-3	Post-Excavation	11/14/2000	3	10 U	25 U	S U	$50~\mathrm{U}^1$	20 U	$\Omega 0S$	100 U
PEX-59-S-2	Post-Excavation	11/14/2000	2	10 U	25 U	S U	$50~\mathrm{U}^1$	20 U	$\Omega 0S$	100 U
PEX-60-B-4	Post-Excavation	11/14/2000	4	10 U	25 U	S U	$50~\mathrm{U}^1$	20 U	$\Omega 0S$	100 U
PEX-61-S-1.5	Post-Excavation	11/14/2000	1.5	10 U	25 U	S U	$50~\mathrm{U}^1$	20 U	$\Omega 0S$	100 U
PEX-62-B-6	Post-Excavation	11/14/2000	9	10 U	25 U	5 U	$50~\mathrm{U}^1$	50 U	0.05	100 U
PEX-63-B-6	Post-Excavation	11/14/2000	9	10 U	25 U	5 U	$50~\mathrm{U}^1$	50 U	50 U	100 U
PEX-64-S-4	Post-Excavation	11/14/2000	4	15.2	25 U	5 U	$50~\mathrm{U}^1$	50 U	0.05	100 U
PEX-65-S-4	Post-Excavation	11/14/2000	4	10 U	25 U	5 U	$50~\mathrm{U}^1$	50 U	50 U	100 U
PEX-66-S-3.5	Post-Excavation	11/14/2000	3.5	10 U	25 U	5 U	$50~\mathrm{U}^1$	50 U	50 U	100 U
PEX-67-S-2	Post-Excavation	11/14/2000	2	50.6	25	69.5	$50~\mathrm{U}^1$	120 U	154 U	585 U
PEX-68-B-2	Post-Excavation	11/14/2000	2	10 U	25 U	5 U	$50~\mathrm{U}^1$	50 U	50 U	100 U
PEX-69-B-2.5	Post-Excavation	11/14/2000	2.5	10 U	25 U	5 U	$50~\mathrm{U}^1$	50 U	50 U	100 U
PEX-70-B-3	Post-Excavation	11/14/2000	3	18.8	25 U	92.9	$50~\mathrm{U}^1$	20 U	$\Omega 0S$	100 U
PEX-71-B-3	Post-Excavation	11/14/2000	3	10 U	25 U	5 U	$50~\mathrm{U}^{1}$	50 U	50 U	100 U
						9				
Preliminary C	Preliminary Cleanup Level'			460	2,000	$100/30^{\circ}$	30	7,000	6,000	9,000

Summary of Soil Analytical Results - October 26, 2000 Spill (Study Unit 1) Bellingham, Washington Laurel Station Table 19

Complem	Sound ID Sound Tone	Commle Dete	Sample Depth	NWTPH-Dx (mg/kg)	(mg/kg)	NWTPH-Gx (mg/kg)		70V	VOCs (ug/kg)	
Sample 1D	Sample 13be	Sample Date	(feet bgs)	Diesel/Fuel Oil-Range	Heavy Oil-Range	Gasoline-Range	Benzene		Toluene Ethylbenzene	Xylenes
PEX-72-B-1 ⁹	PEX-72-B-1 ⁹ Post-Excavation	11/14/2000	1	270	173	97.1	181	1,060	580	37,700
PEX-73-B-1.5	PEX-73-B-1.5 Post-Excavation 1	11/14/2000	1.5	8.02	41.7	10.2	$50~\mathrm{U}^1$	0.05	O 05	100 U
PEX-74-B-4	PEX-74-B-4 Post-Excavation	11/16/2000	4	$\Omega 0 I$	25 U	5 U	$50~\mathrm{U}^1$	20 U	$\Omega 0S$	100 U
PEX-75-B-4	PEX-75-B-4 Post-Excavation	11/16/2000	4	10 U	25 U	5 U	$50~\mathrm{U}^1$	50 U	20 U	100 U
PEX-76-B-4	PEX-76-B-4 Post-Excavation 1	11/22/2006	4	$10\mathrm{U}$	25 U	5 U	$50~\mathrm{U}^1$	0.05	O 05	100 U
PEX-77-B-11	PEX-77-B-11 Post-Excavation 11/22/2006	11/22/2006	11	10 U	25 U	5 U	$50~\mathrm{U}^1$	50 U	50 U	100 U
Preliminary Cleanup Level ⁷	leanup Level ⁷			460	2,000	100 / 308	30	7,000	6,000	9,000

Bolded values indicate the Preliminary Cleanup Level was exceeded

NWTPH-Dx - Northwest total petroleum hydrocarbons - diesel range

NWTPH-Gx - Northwest total petroleum hydrocarbons - gasoline range

bgs - below ground surface

mg/kg - milligrams per kilogram

ug/kg - micrograms per kilogram

VOCs - volatile organic compounds

U - not detected above the reporting limit shown -- - not analyzed

¹ Not detected; however, laboratory reporting limit exceeds Preliminary Cleanup Level

² Additional soil excavation was completed at this location and re-sampled as PEX-48-S-4

³ Additional soil excavation was completed at this location and re-sampled as PEX-77-B-11

⁵ Additional soil excavation was completed at this location and re-sampled as PEX-55-S-2 ⁴ Additional soil excavation was completed at this location and re-sampled as PEX-38-S-4

⁶ Additional soil excavation was completed at this location and re-sampled as PEX-53-S-1.5

⁷ See Table 3 for Preliminary Cleanup Level rationale

⁸ Gasoline mixtures without benzene/gasoline mixtures with benzene

⁹ An additional soil excavation was completed at this location and re-sampled as PEX-76-B-4

	Sample ID	2-1A	2-2D	2-3B	2-4C	2-6A	2-6C	2-7B	3-1C	3-2D	3-3A	3-4B	
	Sample Type	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Preliminary Cleanup Level ¹
	Sample Date	7/7/1993	7/7/1993	7/7/1993	7/7/1993	7/8/1993	7/8/1993	7/8/1993	7/8/1993	7/8/1993	7/8/1993	7/8/1993	, , , , , , , , , , , , , , , , , , ,
<u>Total Petroleum Hydrocarbons (mg/kg)</u> Diesel/Fuel Oil-Range		150	400	400	38	420	350	19	25	280 J	400	240	460
Heavy Oil-Range		55	140	130	50 U	160	50 U	50 U	50 U	120 J	160	100	2,000
Gasoline-Range		49	91	120	23	120	78	22	20 U	55 J	71	99	$100 / 30^2$
Volatile Organic Compounds (ug/kg)													
Benzene		$62~\mathrm{U}^3$	$58\mathrm{U}^3$	180	$57 \mathrm{U}^3$	$61\mathrm{U}^3$	$58 \mathrm{U}^3$	59 U	$58 \mathrm{U}^3$	$58 \mathrm{U}^3$	$57~\mathrm{U}^3$	720 J	30
Toluene		62 U	58 U	28 U	57 U	61 U	58 U	29 U	58 U	58 U	0 LS	59 UJ	7,000
Ethylbenzene		62 U	88	520	68	130	72	71	77	28 U	100 J	1,400 J	90009
Xylenes (total)		$120\mathrm{U}$	120	2,200	220	340	110 J	f 68	120	72 J	220 J	$1,100 \mathrm{J}$	9,000
1,1,2-Trichlorotrifluoroethane			-	-	-		-		-	-		-	NE
Acetone			-										8,000,000
Methylene Chloride			-										20
Polycyclic Aromatic Hydrocarbons (PAHs) (ug/kg)													
Naphthalene		-	1	1	1	;	1	1	1	1	1	1	1,600
2-Methylnaphthalene		-	1	1	1	1	1	1	1	1	1	1	320
Fluoranthene			1	1	-	-	-	-	-	1		-	3,200
Fluorene			-										3,200
Pyrene		1	ŀ	I	1	1	ŀ	ŀ	1	ŀ	1	1	2,400
Phenanthrene			-	-	-		-		-	-		-	NE
Acenaphthene			1	1	-		-		-	-		-	4,800
Anthracene			1	-			-		-	-			24,000
Dibenzofuran			-	1		-	-	-	-	1		-	160
Carcinogenic PAHs (ug/kg)													
Benzo(a)pyrene			1	-			-		-	-			See Note ⁴
Benzo(a)anthracene		1	I	I	1	1	ŀ	1	1	ŀ	1	1	See Note ⁴
Benzo(b)fluoranthene			-	-	-				-	-		-	See Note ⁴
Benzo(k)fluoranthene		-	1	1	1	1	1	1	1	1	1	;	See Note ⁴
Dibenz(a,h)anthracene			-	-					-	-			See Note ⁴
Chrysene			1	-					-	-			See Note ⁴
Indeno(1,2,3-c,d)pyrene			1	-					-	-			See Note ⁴
TTEC		1	1	1	1	1	1	I	1	1		-	100

Notes:

Bolded values indicate the Preliminary Cleanup Level was exceeded

mg/kg - milligrams per kilogram

ug/kg - micrograms per kilogram

TTEC - total toxicity equivalency concentration

U - not detected above the reporting limit shown

J - estimated

M - estimated value found with low spectral match parameters

--- not analyzed NE - not established

¹ See Table 3 for Preliminary Cleanup Level rationale

 $^2\ Gasoline\ mixtures\ without\ benzene/gasoline\ mixtures\ with\ benzene$

 $^{\rm 3}\,{\rm Not}$ detected; however, laboratory reporting limit exceeds the Preliminary

 4 Carcinogenic PAH (cPAH) cleanup levels under MTCA are based on the

Methodology in WAC 173-340-708 (8).

The mixture of cPAHs shall be considered a single hazardous substance and compared to the applicable MTCA Method B cleanup level for benzo(a)pyrene. Samples 4-3C, 5-1A, 5-2C, 5-3B, 5-4D, and 5-5B were also analyzed for RCRA TCLP metals, which were not detected above waste criteria. calculated total toxicity of the mixture using the Toxicity Equivalency

Final Report Table 20 PCS Storage Cells - Soil

	Sample ID	4-1B	4-2D	4-2 DUP	4-3C	4-4A	4-5C	4-6B	4-6 DUP	5-1A	5-2C	5-3B	5-4D	5-5B	4S-1	
	Sample Type	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Stockpile	Post- Consolidatio	Preliminary Cleanup Level ¹
	Sample Date	7/9/1993	7/9/1993	7/9/1993	7/9/1993	7/9/1993	7/9/1993	7/9/1993	7/9/1993	7/9/1993	7/9/1993	7/9/1993	7/9/1993	7/9/1993	10/16/1992	1
Fotal Petroleum Hydrocarbons (mg/kg)																
Diesel/Fuel Oil-Range		210	37	130	22,000	400	25 U	25 U	430	7,500	1,500	1,700	4,400	1,200	10 U	460
Heavy Oil-Range		78	50 U	110	7,800	290	50 U	50 U	320	2,800	099	89	1,800	360	10 U	2,000
Gasoline-Range		58	20 U	53	7,200	75	20 U	20 U	20 U	2,400	440	570	1,700	450	10 U	$100/30^{2}$
Volatile Organic Compounds (ug/kg)																
Benzene		$60 \mathrm{U}^3$	$57 \mathrm{U}^3$	1	1,200	$60 \mathrm{U}^3$	$60 \mathrm{U}^3$	$61 \mathrm{U}^3$	1	1,200	910 J	1,700 J	5,400	110	1 U	30
Foluene		Ω 09	57 U	1	21,000	N 09	Ω 09	61 U	1	4,400	1,300 J	6,800 J	17,000	150 U	1 U	7,000
Ethylbenzene		O 09	160	1	12,000	O 09	N 09	61 U	1	1,800	1,600 J	2,500 J	5,100	2,000	1 U	6,000
Xylenes (total)		110 J	190	1	52,000	120 U	120 U	120 U	1	19,000	13,000 J	22,000 J	39,000	6,600	2 U	000'6
,1,2-Trichlorotrifluoroethane		-	-	-	-	-	-	-	-	-	-		1	-	1	NE
Acetone			-	-		-			-	-	-		-	-	1	8,000,000
Methylene Chloride		-		-	-	-		-			-			-		20
Polycyclic Aromatic Hydrocarbons (PAHs) (ug/kg)																
Naphthalene		-	-	-	8,600	-	-	-		1,400	-	-	2,500	-	-	1,600
2-Methylnaphthalene				-	25,000		-	-		7,500	-	-	11,000	-	-	320
Fluoranthene		1	1	ŀ	3,400	1	1	1	1	160 U	1	1	390	1	1	3,200
Fluorene		-	-	-	$3,300 \ J$	-	-	-	-	1,100	-		1,000	-	1	3,200
Pyrene		-	-	-	3,300	-	-	-	-	360	-		260	-	-	2,400
Phenanthrene		-	-	-	5,700	-	-	-	-	1,800	-		2,000	-	1	NE
Acenaphthene				-	840 J					160 U			340 U		-	4,800
Anthracene				-	1,200 J		-	-		160 U	-	-	340 U	-	-	24,000
Dibenzofuran				-	3,000			-		320 J	-	-	320 J	-	-	160
Carcinogenic PAHs (ug/kg)																
Benzo(a)pyrene		1	1	1	1,300 U	1	1	1	-	160 U	1	1	85 J	1	1	See Note ⁴
Benzo(a)anthracene		1	;	1	940 J	1	1	ŀ	1	160 U	1	1	150 J	1	1	See Note ⁴
Benzo(b)fluoranthene		-	-	-	1,300 U	-	-	-	-	160 U	-	-	230	-	1	See Note ⁴
Benzo(k)fluoranthene				-	1,300 U		-	-		160 U	-	-	230	-	-	See Note ⁴
Dibenz(a,h)anthracene				-	1,300 U			-		160 U	-	-	340 U	-	-	See Note ⁴
Chrysene				-	1,900		-	-		720	-	-	750	-	-	See Note ⁴
Indeno(1,2,3-c,d)pyrene		1	1	1	1,300 U	1	1	1	1	160 U	1	1	340 U	1	1	See Note ⁴
ITEC				-	113					19	-	-	153.5	-	-	100

Notes:

Bolded values indicate the Preliminary Cleanup Level was exceeded

mg/kg - milligrams per kilogram

ug/kg - micrograms per kilogram

TTEC - total toxicity equivalency concentration

U - not detected above the reporting limit shown

J - estimated

M - estimated value found with low spectral match parameters

--- not analyzed NE - not established

 $^2\ Gasoline\ mixtures\ without\ benzene/gasoline\ mixtures\ with\ benzene$ ¹ See Table 3 for Preliminary Cleanup Level rationale

³ Not detected; however, laboratory reporting limit exceeds the Preliminary

 4 Carcinogenic PAH (cPAH) cleanup levels under MTCA are based on the

calculated total toxicity of the mixture using the Toxicity Equivalency

Methodology in WAC 173-340-708 (8).

The mixture of cPAHs shall be considered a single hazardous substance and compared to the applicable MTCA Method B cleanup level for benzo(a)pyrene. Samples 4-3C, 5-1A, 5-2C, 5-3B, 5-4D, and 5-5B were also analyzed for RCRA TCLP metals, which were not detected above waste criteria.

	Sample ID	4S-2	4S-3	4S-4	48-5	BT-1	BT-2	BT-3	BT-4	SC-1A	SC-1B	SC-1C	SC-1D	SC-1E	
	Sample Type	tion	Post- Consolidation	Post- Consolidation	Post- Consolidation	tion	Post- Consolidation	Post- Consolidation	Post- Consolidation	Post- Consolidation	Post- Post-	ی	ت	Post- Consolidation	Preliminary Cleanin I evel ¹
	Sample Date		10/16/1992	10/16/1992	10/16/1992		10/16/1992	10/16/1992	10/16/1992	10/16/1992	10/16/1992		10/16/1992	10/16/1992	cremary rever
Total Petroleum Hydrocarbons (mg/kg)															
Diesel/Fuel Oil-Range		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	460
Heavy Oil-Range		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	2,000
Gasoline-Range		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	$100/30^{2}$
Volatile Organic Compounds (ug/kg)															
Benzene		1 U	2 U	4 U	1	1	29	1	1	1	1	1	1	1	30
Foluene		1 U	2 U	4 U	1	1	1	1	1	1	1	1	1	1	7,000
Ethylbenzene		1 U	2 U	4 U	1	1	180	1	1	1	1	1	1	1	9,000
Xylenes (total)		2 U	1.6 J	14	1	1	150	1	1	1	1	1	1	1	9,000
,1,2-Trichlorotrifluoroethane		ŀ	1	:	ŀ	3	14 M	:	:	1	1	1	:	1	NE
Acetone		ŀ	1	:	ŀ	1	140	1	:	1	1	1	:	1	8,000,000
Methylene Chloride		1	1	:	1	4.7	1	1	:	1	1	1	1	1	20
Polycyclic Aromatic Hydrocarbons (PAHs) (ug/kg)	(g)														
Naphthalene		ŀ	1	1	ŀ	1	1	1	1	1	1	1	;	1	1,600
2-Methylnaphthalene		1	1	1	1	1	1	1	1	1	1	1	1	1	320
Fluoranthene		ŀ	1	1	1	1	1	-	1	1	1	1	1	1	3,200
Fluorene			-	-				-				-		-	3,200
Pyrene		ŀ	1	1	ŀ	1	:	1	:	1	1	1	:	1	2,400
Phenanthrene		ŀ	1	:	1	1	1	1	:	1	1	1	1	1	NE
Acenaphthene		ŀ	1	:	1	1	1	1	1	1	1	1	1	1	4,800
Anthracene		ŀ	1	:	ŀ	:	:	:	:	1	1	1	:	1	24,000
Dibenzofuran		ı	1	1	1	-	1	1	:	1	1	1	:	1	160
Carcinogenic PAHs (ug/kg)															
Benzo(a)pyrene		ł	1	1	1	1	1	1	1	1	1	1	1	1	See Note ⁴
Benzo(a)anthracene		-	1	1	1		1	1	-	1	1	1	1	1	See Note ⁴
Benzo(b)fluoranthene		I	1	1	ŀ	1	1	1	:	ŀ	1	1	1	1	See Note ⁴
Benzo(k)fluoranthene			1	-	-		:	-	-		-	-		-	See Note ⁴
Dibenz(a,h)anthracene		ŀ	ı	1	ŀ	1	1	1	1	1	1	1	1	1	See Note ⁴
Chrysene			1	-	-		1	-	-	-	-	-		-	See Note ⁴
Indeno(1,2,3-c,d)pyrene		-	-					-	-						See Note ⁴
TTEC		ŀ	1	1	ı	1	;	;	;	ŀ	1	;	1	1	18

Notes:

Bolded values indicate the Preliminary Cleanup Level was exceeded

mg/kg - milligrams per kilogram

ug/kg - micrograms per kilogram
TTEC - total toxicity equivalency concentration
U - not detected above the reporting limit shown
J - estimated
M - estimated value found with low spectral match parameters

¹ See Table 3 for Preliminary Cleanup Level rationale --- not analyzed NE - not established

 $^2\ Gasoline\ mixtures\ without\ benzene/gasoline\ mixtures\ with\ benzene$

³ Not detected; however, laboratory reporting limit exceeds the Preliminary

 4 Carcinogenic PAH (cPAH) cleanup levels under MTCA are based on the

Methodology in WAC 173-340-708 (8).

The mixture of cPAHs shall be considered a single hazardous substance and compared to the applicable MTCA Method B cleanup level for benzo(a)pyrene. Samples 4-3C, 5-1A, 5-2C, 5-3B, 5-4D, and 5-5B were also analyzed for RCRA TCLP metals, which were not detected above waste criteria. calculated total toxicity of the mixture using the Toxicity Equivalency

Final Report Table 20 PCS Storage Cells - Soil

Summary of Soil Analytical Results PCS Storage Cells (Study Units 3 and 7) Laurel Station

Bellingham, Washington

	Sample ID	SC-1F	SC-1G	SC-1H	P5-2	P5-3	P5-4	P5-5	P5-6	P5-7	P5-8	
	1	Post-	Post-	Post-	Post-	Post-	Post-	Post-	Post-	Post-	Post-	Preliminary
	Sample Type	Consolidation	Consolidation	Consolidation	Consolidation Consolidation Consolidation Consolidation Consolidation Consolidation Consolidation Consolidation	Consolidation	Consolidation	Consolidation	Consolidation	Consolidation		Cleanup Level ¹
	Sample Date	10/16/1992	10/16/1992	10/16/1992	11/25/1992	11/25/1992	11/25/1992	11/25/1992	11/25/1992	12/1/1992		•
Total Petroleum Hydrocarbons (mg/kg)												
Diesel/Fuel Oil-Range		10 U	10 U	10 U	$10\mathrm{U}$	10 U	10 U	$10~\mathrm{U}$	$10\mathrm{U}$	10 U	10 U	460
Heavy Oil-Range		$10~\mathrm{U}$	$10 \mathrm{U}$	$10 \mathrm{U}$	10 U	10 U	10 U	10 U	$10\mathrm{U}$	$10 \mathrm{U}$	10 U	2,000
Gasoline-Range		$10\mathrm{U}$	$10\mathrm{U}$	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	$100 / 30^2$
Volatile Organic Compounds (ug/kg)												
Benzene		1	1	1	1	1	1	-	1	1	1	30
Toluene							-					7,000
Ethylbenzene		1	1	1	1	:	1	-	1	1	1	6,000
Xylenes (total)				-	-		-	-				9,000
1,1,2-Trichlorotrifluoroethane			-	-	-		-	-		-		NE
Acetone							-					8,000,000
Methylene Chloride		1	1	1	1	:	1	-	1	1	1	20
Polycyclic Aromatic Hydrocarbons (PAHs) (ug/kg)	72											
Naphthalene		1	1	1	1	;	1	-	1	1	1	1,600
2-Methylnaphthalene												320
Fluoranthene		I	1	1	1	1	1	1	1	1	1	3,200
Fluorene		1	1	1	1	1	1	-	1	1	1	3,200
Pyrene		1	-	-	-		-			-	-	2,400
Phenanthrene		ı	1	1	1	1	1	1	1	1	1	NE
Acenaphthene		I	1	1	1	1	1	1	1	1	1	4,800
Anthracene												24,000
Dibenzofuran		1	-	-		-	-			-	-	160
Carcinogenic PAHs (ug/kg)												
Benzo(a)pyrene		1	-	-			-					See Note ⁴
Benzo(a)anthracene		-	-	-		-						See Note ⁴
Benzo(b)fluoranthene		1	1	1	1	;	1	-	1	1	1	See Note ⁴
Benzo(k)fluoranthene		-	-									See Note ⁴
Dibenz(a,h)anthracene		-	-	-		-						See Note ⁴
Chrysene		-	-	-		-						See Note ⁴
Indeno(1,2,3-c,d)pyrene		-	1	-	-	:	1	1	1	-		See Note ⁴
THEC												700

Notes:

Bolded values indicate the Preliminary Cleanup Level was exceeded

mg/kg - milligrams per kilogram

 $ug/kg - micrograms \ per kilogram \\ TTEC - total toxicity equivalency concentration \\ U - not detected above the reporting limit shown \\$

J - estimated

M - estimated value found with low spectral match parameters

¹ See Table 3 for Preliminary Cleanup Level rationale --- not analyzed NE - not established

 $^2\,\mathrm{Gasoline}$ mixtures without benzene/gasoline mixtures with benzene

 $^{3}\,\mathrm{Not}$ detected; however, laboratory reporting limit exceeds the Preliminary

 4 Carcinogenic PAH (cPAH) cleanup levels under MTCA are based on the

calculated total toxicity of the mixture using the Toxicity Equivalency

Methodology in WAC 173-340-708 (8).

The mixture of cPAHs shall be considered a single hazardous substance and compared to the applicable MTCA Method B cleanup level for benzo(a)pyrene. Samples 4-3C, 5-1A, 5-2C, 5-3B, 5-4D, and 5-5B were also analyzed for RCRA TCLP metals, which were not detected above waste criteria.

	Sample ID	6-5d	P5-10	P5-11	P5-12	P5-13	P5-14	P5-15	P5-16	P5-17	P5-18	P5-19	
	5	Post-	Post-	Post-	Post-	Post-	Post-	Post-	Post-	Post-	Post-	Post-	Preliminary
	Sample 1ype	Consolidation	Consolidation	Consolidation	Consolidation	Consolidation	Consolidation	Consolidation	Consolidation		Consolidation Consolidation	Consolidation	Cleanup Level ¹
	Sample Date	12/1/1992	12/1/1992	12/1/1992	12/1/1992	12/1/1992	12/1/1992	12/1/1992	12/1/1992	12/1/1992	12/1/1992	12/1/1992	
		,										,	
Diesel/Fuel Oil-Range		10 U	10 U	10 O	10 0	10 0	10 U	10 O	10 0	10 U	0 OI	10 O	460
Heavy Oil-Range		10 U	10 U	10 U	10 U	12	10 U	10 U	10 U	$10 \mathrm{U}$	10 U	10 U	2,000
Gasoline-Range		10 U	10 U	10 U	$10\mathrm{U}$	$10\mathrm{U}$	10 U	10 U	10 U	10 U	$\Omega 01$	10 U	$100 / 30^2$
Volatile Organic Compounds (ug/kg)													
Benzene		1	:	1	1	1	1	1	1	1	:	-	30
Toluene		1	-		-		-	-	-				7,000
Ethylbenzene		1	1	1	1	1	1	1	1	1	1	ŀ	9,000
Xylenes (total)		1	1	1	1	1	1	1	ı	1	1	1	9,000
1,1,2-Trichlorotrifluoroethane		1	1	1	1	1	1	1	1	1	1	ŀ	Æ
Acetone		1	1	1	1	1	1	1	ı	1	1	1	8,000,000
Methylene Chloride		1	:	1	:	:	:	ŀ	1	:	:	1	20
Polycyclic Aromatic Hydrocarbons (PAHs) (ug/kg)	<u>(g)</u>												
Naphthalene		-	:		:	:	-	-	!		-	-	1,600
2-Methylnaphthalene		-	-		-	-		-	-		-	-	320
Fluoranthene		1	1	1	1	1	1	ŀ	I	1	1	ı	3,200
Fluorene		1	-		:	-	-	-	1	-			3,200
Pyrene		-	-		:	-	-	-	1				2,400
Phenanthrene		-	-				-	-	-				NE
Acenaphthene		-	-		:	-	-	-	1				4,800
Anthracene		1	-		:	-	-	-	1	-			24,000
Dibenzofuran		-											160
Carcinogenic PAHs (ug/kg)													
Benzo(a)pyrene		-	-		-	-		-	-		-	-	See Note ⁴
Benzo(a)anthracene		1	1	1	1	1	1	1	I	1	1	1	See Note
Benzo(b)fluoranthene		-	-		-	1	-	-	1	-			See Note ⁴
Benzo(k)fluoranthene		-	:		:	1	-	-	1				See Note ⁴
Dibenz(a,h)anthracene		:	-		-	-	-		-		-		See Note ⁴
Chrysene		1	1	1	1	1	1	1	ŀ	1	1	1	See Note ⁴
Indeno(1,2,3-c,d)pyrene		1	1	1	1	1	1	1	1	1	1	1	See Note ⁴
TYPEC		1	:	:	:	:	:	1	:	:	:	1	100

Notes:

Bolded values indicate the Preliminary Cleanup Level was exceeded

mg/kg - milligrams per kilogram

ug/kg - micrograms per kilogram
TTEC - total toxicity equivalency concentration
U - not detected above the reporting limit shown
J - estimated
M - estimated value found with low spectral match parameters

--- not analyzed NE - not established

¹ See Table 3 for Preliminary Cleanup Level rationale

 $^2\ Gasoline\ mixtures\ without\ benzene/gasoline\ mixtures\ with\ benzene$

 $^{\rm 3}\,\mathrm{Not}$ detected; however, laboratory reporting limit exceeds the Preliminary

 4 Carcinogenic PAH (cPAH) cleanup levels under MTCA are based on the Cleanup Level.

calculated total toxicity of the mixture using the Toxicity Equivalency

Methodology in WAC 173-340-708 (8).

The mixture of cPAHs shall be considered a single hazardous substance and compared to the applicable MTCA Method B cleanup level for benzo(a)pyrene. Samples 4-3C, 5-1A, 5-2C, 5-3B, 5-4D, and 5-5B were also analyzed for RCRA TCLP metals, which were not detected above waste criteria.

Table 21 Summary of Surface Water Analytical Results (Study Units 2, 3, Area 1, and Area 3) Laurel Station Bellingham, Washington

			VOC	s (ug/L)			TPH (mg/L)	
Sample ID	Sample Date	Benzene	Toluene	Ethylbenzene	Xylenes	Diesel Range	Gasoline Range	TPH (Method 418.1)
OWS-1	12/4/1991	1 U	1 U	1 U	2 U		0.95	1 U
0 11 5 1	8/6/1992	1 U	1 U	1 U	2 U	0.25 U	0.25 U	1 U
	1/8/1992	1 U	2.6	1 U	2 U			1 U
OWS-170	1/27/1992	14	16	1 U	7.3			1 U
	11/10/1992	1 U	1 U	1 U	2 U	0.25 U	0.25 U	1 U
	8/27/1991	1 U	1 U	1 U	2 U	0.25 U	0.25 U	1 U
OWS-180	1/8/1992	1 U	1 U	1 U	2 U			1 U
	1/21/1992 11/10/1992	1 U 1 U	1 U 1 U	1 U 1 U	2 U 2 U	0.25 U	0.25 U	1 U 1 U
OWS-PR	1/8/1992	1 U	1 U	1 U	1.2 J	0.23 0	0.23 0	1.7
OW5-1K	3/10/1992	1 U	1 U	1 U	2 U			1 U
	3/11/1992							1 U
	3/11/1992	1 U	1 U	1 U	2 U			1 U
	3/12/1992	1 U	1 U	1 U	2 U			1 U
	3/12/1992	1 U	1 U	1 U	2 U			
	3/13/1992	1 U	1 U	1 U	2 U			1.1
SW-1	3/13/1992	1 U	1 U	1 U	2 U			
	3/14/1992	1 U	1 U	1 U	2 U			1 U
	3/15/1992	1 U	1 U	1 U	2 U			1 U
	3/16/1992	1 U	1 U	1 U	2 U			1 U
	3/17/1992	29.4 U ²	29.4 U	29.4 U	58.8 U			1 U
	3/18/1992	1 U	1 U	1 U	2 U			1 U
	4/28/1992	1 U	1 U	1 U	2 U		0.25 U	1 U
SW-2	3/10/1992	5.4	2.1	14	22			1 U
	3/11/1992	1 U	1 U	1 U	2 U			1 U
	3/12/1992	1 U	1 U	1 U	2 U			1 U
	3/13/1992	1 U	1 U	1 U	2 U			1 U
	3/14/1992	1 U	1 U	1 U	2 U			1 U
	3/15/1992	1 U	1 U 1 U	1 U	2 U			1 U
	3/16/1992 3/17/1992	1 U 1 U	1 U	1 U 1 U	2 U 2 U			1 U 1 U
	3/18/1992	1 U	1 U	1 U	2 U			1 U
	3/19/1992	1 U	1 U	1 U	2 U			1 U
	3/20/1992	1 U	1 U	1 U	2 U			1 U
	3/24/1992	1 U	1 U	1 U	2 U			1 U
SW-3	4/1/1992	1 U	1 U	1 U	2 U			1 U
	4/8/1992	1 U	1 U	1 U	2 U			1 U
	4/15/1992	1 U	1 U	1 U	2 U			1 U
	4/22/1992	1 U	1 U	1 U	2 U		0.25 U	1 U
	4/28/1992	1 U	1 U	1 U	2 U		0.25 U	1 U
	5/7/1992	1 U	1 U	1 U	2 U		0.25 U	1 U
	5/13/1992	1 U	1 U	1 U	2 U			1 U
	5/20/1992	1 U	1 U	1 U	2 U	0.25 U		
	5/27/1992	1 U	1 U	1 U	2 U			1 U
	7/15/1992	1 U	1 U	1 U	2 U	0.25 U	0.25 U	1 U
	11/4/1992	1 U	1 U	1 U	2 U	0.25 U	0.25 U	1 U
SPILL-1	10/22/1992	1 U	1 U	1 U	2 U	0.25 U	0.25 U	1 U
SPILL-2	10/22/1992	1 U	1 U	1 U	2 U	0.25 U	0.25 U	1 U
	11/4/1992 10/22/1992	1 U 1 U	1 U 1 U	1 U 1 U	2 U 2 U	0.25 U 0.35	0.25 U	1 U 1 U
SPILL-3			1 U		2 U		0.25 U	
	11/4/1992 11/4/1992	1.8 1 U	1 U	1 U 1 U	2 U	0.33 0.25 U	0.25 U 0.25 U	1 U 1 U
SPILL-4/SPILL-6	11/4/1992	1 U	1 U	1 U	2 U	0.25 U	0.25 U	1 U
SPILL-5	11/4/1992	1 U	1 U	1 U	2 U	0.25 U	0.25 U	1 U
SPILL-7	11/10/1992	1 U	1 U	1 U	2 U	0.25 U	0.25 U	1 U
Preliminary Cleanu		1.2	1,300	530	NE	0.5	0.8/1.03	NE NE

Table 21 Summary of Surface Water Analytical Results (Study Units 2, 3, Area 1, and Area 3) Laurel Station Bellingham, Washington

			VOC	s (ug/L)			TPH (mg/L))
Sample ID	Sample Date	Benzene	Toluene	Ethylbenzene	Xylenes	Diesel Range	Gasoline Range	TPH (Method 418.1)
	3/15/1991					4		1 U
MW-1	4/17/1991 5/30/1991	57	1 U	1 U	21	1 U ²		
	6/18/1991		-			1 U ²		
	3/15/1991		-			21		25.8
	4/8/1991		-				1	
MW-2 ⁴	4/17/1991 5/22/1991	290 1 U	66 1 U	37 1 U	632 1 U	7.3 8.9		
	6/12/1991					8.1		
	6/18/1991					6.6		
MW-3	3/15/1991 4/17/1991	21	15	 1 U	10	1 U ²		1 U
IVI VV -3	6/18/1991					1 U ² 1 U ²		
	4/12/1991	1 U	1 U	1 U	1 U			1 U
	4/24/1991	1	1 U	3	3		1	1 U
	5/15/1991	1 U 1 U	1 U 1 U	1 U 1 U	1 U			
	5/22/1991 5/30/1991	1 U	1 U	1 U	1 U 1 U			3.8 1 U
	6/5/1991		1 U	1 U	1 U			1 U
	6/12/1991	1 U	1 U	1 U	1 U			2
	6/18/1991	1 U 5 U ²	1 U	1 U	1 U			1 U
	6/26/1991 7/1/1991	1 U	5 U 1 U	5 U 1 U	5 U 1 U			5.9 2.3
	8/13/1991	1 U	1 U	1 U	1 U			1 U
	8/21/1991	1 U	1 U	1 U	1 U			1 U
	9/4/1991 9/19/1991	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U			2.2 0.5 U
	12/11/1991	2	2.2	1 U	1.7 J			1 U
	12/11/1991	1 U	1 U	1 U	2 U		1	1 U
	12/11/1991	1 U	1 U	1 U	2 U			1 U
	12/11/1991 12/11/1991	1 U 1 U	1 U 1 U	1 U 1 U	2 U 2 U			1 U 1 U
	12/11/1991	1 U	1 U	1 U	2 U			1 U
	12/12/1991	1 U	1 U	1 U	2 U			1 U
	12/12/1991	1 U 1 U	1 U 1 U	1 U 1 U	2 U			1 U 1 U
	12/12/1991 12/12/1991	1 U	1 U	1 U	2 U 2 U			1 U
	12/12/1991	1 U	1 U	1 U	2 U			1 U
	12/12/1991	1 U	1 U	1 U	2 U			1 U
	12/12/1991 12/12/1991	1 U 1 U	1 U 1 U	1 U 1 U	2 U 2 U			1 U 1 U
SWRO-C	12/13/1991	1 U	1 U	1 U	2 U		0.5 U	1 U
Sinto C	12/13/1991	1 U	1 U	1 U	2 U			1 U
	12/17/1991 12/18/1991	1 U 1 U	1 U 1 U	1 U 1 U	2 U 2 U		0.5 U	1 U 1 U
	12/24/1991	1 U	1 U	1 U	2 U		0.5 U	1 U
	1/2/1992	1 U	1 U	1 U	2 U		0.5 U	1 U
	1/8/1992					1 U ²	 0.25 H	
	1/15/1992 1/22/1992						0.25 U 0.25 U	
	1/29/1992						0.25 U	
	2/6/1992		-				0.25 U	
	2/12/1992 2/20/1992						0.25 U 0.25 U	
	2/26/1992						0.25 U	
	3/3/1992						0.25 U	
	3/11/1992 3/18/1992	1 U	1 U	1 U	2 U		0.25 U 0.25 U	
	3/25/1992						0.25 U	
	4/1/1992	1 U	1 U	1 U	2 U		0.25 U	
	4/8/1992	1 U	1 U	1 U	2 U		0.25 U	
	4/15/1992 4/22/1992	1 U	1 U	 1 U	2 U	0.25 U	0.25 U 0.25 U	
	4/28/1992	1 U	1 U	1 U	2 U	0.25 U	0.25 U	
	5/7/1992	1 U	1 U	1 U	2 U	0.25 U	0.25 U	
	5/13/1992 5/20/1992	1 U	1 U	1 U	2 U	3 U ²	0.25 U	
	7/15/1992	1 U 1 U	1 U 0.64 J	1 U 1 U	2 U 2 U	0.25 U 0.25 U	0.25 U 0.25 U	 1 U
	7/22/1992	1 U	1 U	1 U	2 U	0.25 U	0.25 U	1 U
	8/6/1992	1 U	1 U	1 U	2 U	0.25 U	0.25 U	1 U
	10/19/1992	1 U	1 U	1 U	2 U	0.25 U	0.25 U	1 U
Preliminary Clean	up Level ¹	1.2	1,300	530	NE	0.5	0.8/1.03	NE

Table 21 Summary of Surface Water Analytical Results (Study Units 2, 3, Area 1, and Area 3) Laurel Station Bellingham, Washington

			VOC	s (ug/L)			TPH (mg/L)	
Sample ID	Sample Date	Benzene	Toluene	Ethylbenzene	Xylenes	Diesel Range	Gasoline Range	TPH (Method 418.1)
	1/17/1991					3.9 ⁵		
	1/19/1991					2.45		
	1/21/1991					1 U ²		
	1/23/1991 1/28/1991	1 U	1 U	1 U	2	1 U ²		
	2/1/1991					1 U ²		
	2/8/1991				-	1 U^2		
	2/15/1991					1 U ²		
	2/18/1991					1 U ²		
	2/22/1991 3/3/1991					1 U ²		
	3/8/1991					1 U ²		
	3/12/1991		-		-	1 U ²		
	3/15/1991					1 U ²		
	3/22/1991					1 U ²		
	3/29/1991 4/12/1991	1 U	 1 U	 1 U	1 U	1 U ²		
	4/17/1991	1 U	1 U	1 U	1 U	1 U ²		
	4/24/1991	1 U	1 U	1 U	1 U			1 U
	5/15/1991	1 U	1 U	1 U	1 U			
	5/22/1991	1 U	1 U	1 U	1 U			1 U
	5/30/1991 6/5/1991	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U			1 U 1 U
	6/12/1991	1 U	1 U	1 U	1 U			2.8
	6/18/1991	1 U	1 U	1 U	1 U			1.3
	6/26/1991	5 U ²	5 U	5 U	5 U			1.1
	7/1/1991	1 U	1 U	1 U	1 U			1 U
	7/10/1991	1 U	1 U	1 U	1 U			4.4
	7/21/1991	1 U	1 U	1 U	26			3.5
	8/8/1991	1 U 1 U	1 U	1 U	1 U			1 U
	8/13/1991 8/21/1991	1 U	1 U 1 U	1 U 1 U	1 U 1 U			1 U 1 U
	8/28/1991	1 U	1 U	1 U	1 U			1 U
	9/4/1991	1 U	1 U	1 U	1 U			5.6
SWRO-D2	9/12/1991	1 U	1 U	1 U	1 U			1 U
SWRO B2	9/19/1991 10/3/1991	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U			4.1 1 U
	10/10/1991	1 U	1 U	1 U	1 U			1 U
	10/17/1991	1 U	1 U	1 U	1 U			1 U
	10/24/1991	1 U	1 U	1 U	1 U			1 U
	12/12/1991 12/12/1991	1 U 1 U	1 U 1 U	1 U 1 U	2 U 2 U			1 U 1 U
	12/13/1991	1 U	1 U	1 U	2 U		0.5 U	1 U
	12/14/1991	1 U	1 U	1 U	2 U			1 U
	12/15/1991	1 U	1 U	1 U	2 U			1 U
	12/17/1991 12/18/1991	1 U 1 U	1 U 1 U	1 U 1 U	2 U 2 U		0.5 U	1 U 1 U
	12/24/1991	1 U	1 U	1 U	2 U		0.5 U	1 U
	1/2/1992	1 U	1 U	1 U	2 U		0.5 U	1 U
	1/8/1992		-		1	1 U^2		
	1/22/1992 1/29/1992						0.25 U 0.25 U	
	2/6/1992						0.25 U	
	2/12/1992						0.25 U	
	2/20/1992						0.25 U	
	2/26/1992						0.25 U	
	3/3/1992 3/11/1992	1 U	 1 U	1 U	2 U		0.25 U 0.25 U	
	3/18/1992						0.25 U	
	3/25/1992		-		-		0.25 U	
	4/1/1992	1 U	1 U	1 U	2 U		0.25 U	
	4/1/1992 4/15/1992	1 U	1 U	1 U	2 U		0.25 U 0.25 U	
	4/22/1992	1 U	1 U	1 U	2 U	0.25 U	0.25 U	
	4/28/1992	1 U	1 U	1 U	2 U	0.25 U	0.25 U	
	5/7/1992	1 U	1 U	1 U	2 U	0.25 U	0.25 U	
	5/13/1992 5/20/1992	1 U 1 U	1 U 1 U	1 U 1 U	2 U 2 U	3 U ² 0.25 U	0.25 U 0.25 U	
	6/30/1992	1 U	1 U	1 U	2 U	0.23 0	0.25 U	1 U
	6/30/1992	1 U	1 U	1 U	2 U		0.25 U	
	7/22/1992	1 U	1 U	1 U	2 U	0.25 U	0.25 U	1 U
	10/19/1992	1 U	1 U	1 U	2 U	0.25 U	0.25 U	1 U
Preliminary Cleanu	p Level ¹	1.2	1,300	530	NE	0.5	0.8/1.03	NE

Table 21 Summary of Surface Water Analytical Results (Study Units 2, 3, Area 1, and Area 3) Laurel Station Bellingham, Washington

			VOC	cs (ug/L)			TPH (mg/L)	1
Sample ID	Sample Date	Benzene	Toluene	Ethylbenzene	Xylenes	Diesel Range	Gasoline Range	TPH (Method 418.1)
	1/17/1991					1.6 ⁵		
	1/19/1991					2.35		
	1/21/1991					1 U^2		
	1/23/1991					2.25		
	1/28/1991	1 U	4	1	11	1 U^2		
	2/1/1991	1 U	1 U	1 U	1 U	1 U^2		
	2/4/1991	1 U	1 U	1 U	1 U	1 U^2		
	2/8/1991	1 U	1 U	1 U	1 U	1 U^2		
	2/11/1991	1 U	1 U	1 U	1 U	1 U^2		
	2/15/1991					1 U^2		
	2/18/1991	1 U	1 U	1 U	1 U	1 U^2		
	2/22/1991	1 U	1 U	1 U	1 U	1 U^2		
	2/25/1991	1 U	1 U	1 U	1 U	1 U^2		
	3/3/1991					1 U^2		
	3/4/1991	1 U	1 U	1 U	1 U	1 U^2		
	3/8/1991	1 U	1 U	1 U	1 U	1 U^2		
	3/12/1991	1 U	1 U	1 U	1 U	1 U^2		
	3/15/1991	1 U	1 U	1 U	1 U	1 U^2		
	3/20/1991	1 U	1 U	1 U	1 U	1 U^2		
	3/22/1991	1 U	1 U	1 U	1 U	1 U^2		
SWRO-D3	3/25/1991	1 U	1 U	1 U	1 U	1 U^2		
	3/29/1991	1 U	1 U	1 U	1 U	1 U^2		
	4/12/1991	1 U	1 U	1 U	1 U	1 U^2		
	4/17/1991	1 U	1 U	1 U	1 U	1 U^2		
	4/24/1991	1 U	1 U	1 U	1 U			1 U
	5/15/1991	1 U	1 U	1 U	1 U			
	5/22/1991	1 U	1 U	1 U	1 U			1 U
	5/30/1991	1 U	1 U	1 U	1 U			1 U
	6/5/1991	1 U	1 U	1 U	1 U			1 U
	6/12/1991	1 U	1 U	1 U	1 U			1.5
	6/18/1991	1 U	1 U	1 U	1 U			1 U
	6/26/1991	$5 U^2$	5 U	5 U	5 U			1 U
	7/1/1991	1 U	1 U	1 U	1 U			1 U
	7/10/1991	1 U	1 U	1 U	1 U			1 U
	7/21/1991	1 U	1 U	1 U	14			1 U
	7/30/1991	1 U	1 U	1 U	1 U	-		1 U
	8/13/1991	1 U	1 U	1 U	1 U			1 U
	8/28/1991	1 U	1 U	1 U	1 U			1 U
	9/4/1991	1 U	1 U	1 U	1 U			1 U
	9/12/1991	1 U	1 U	1 U	1 U	-		1 U
	9/19/1991 10/3/1991	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U			0.5 U 1 U
	10/3/1991	1 U	1 U	10	1 U			10
Preliminary Cleanu	p Level ¹	1.2	1,300	530	NE	0.5	0.8/1.03	NE

Table 21 Summary of Surface Water Analytical Results (Study Units 2, 3, Area 1, and Area 3) **Laurel Station** Bellingham, Washington

			VOC	s (ug/L)			TPH (mg/L)	
Sample ID	Sample Date	Benzene	Toluene	Ethylbenzene	Xylenes	Diesel Range	Gasoline Range	TPH (Method 418.1)
	10/10/1991	1 U	1 U	1 U	1 U			1 U
	10/17/1991	1 U	1 U	1 U	1 U			1 U
	10/24/1991	1 U	1 U	1 U	1 U			1 U
	12/11/1991	1 U	1 U	1 U	2 U			1 U
	12/12/1991	1 U	1 U	1 U	2 U			1 U
	12/12/1991	1 U	1 U	1 U	2 U			1 U
	12/13/1991	1 U	1 U	1 U	2 U		0.5 U	1 U
	12/15/1991	1 U	1 U	1 U	2 U			1 U
	12/17/1991	1 U	1 U	1 U	2 U			1 U
	12/18/1991	1 U	1 U	1 U	2 U		0.5 U	1 U
	12/24/1991	1 U	1 U	1 U	2 U		0.5 U	1 U
	1/2/1992	1 U	1 U	1 U	2 U		0.5 U	1 U
	1/8/1992					$1 U^2$		
	1/15/1992						0.25 U	
	1/22/1992				-		0.25 U	
GWDO DA	1/29/1992				-		0.25 U	
SWRO-D3	2/6/1992				-		0.25 U	
(continued)	2/12/1992				-		0.25 U	
	2/20/1992						0.25 U	
	2/26/1992						0.25 U	
	3/3/1992						0.25 U	
	3/11/1992	1 U	1 U	1 U	2 U		0.25 U	
	3/18/1992				-		0.25 U	
	3/25/1992						0.25 U	
	4/1/1992	1 U	1 U	1 U	2 U		0.25 U	
	4/8/1992	1 U	1 U	1 U	2 U		0.25 U	
	4/15/1992				-		0.25 U	
	4/22/1992	1 U	1 U	1 U	2 U	0.25 U	0.25 U	
	4/28/1992	1 U	1 U	1 U	2 U	0.25 U	0.25 U	
	5/7/1992	1 U	1 U	1 U	2 U	0.25 U	0.25 U	
	5/13/1992	1 U	1 U	1 U	2 U	$3 U^2$	0.25 U	
	5/20/1992	1 U	1 U	1 U	2 U	0.25 U	0.25 U	
	10/19/1992	1 U	1 U	1 U	2 U	0.25 U	0.25 U	1 U
Preliminary Cleanu	ıp Level ¹	1.2	1,300	530	NE	0.5	0.8/1.03	NE

Bolded values indicate the Preliminary Cleanup Level was exceeded

VOCs - volatile organic compounds

TPH - total petroleum hydrocarbons

ug/L - micrograms per liter mg/L - milligrams per liter

-- - not analyzed

U - not detected above the reportling limit shown

J - estimated

OWS-1 - Oil/water separator near PSE substation

OWS-170 - Oil/water separator east of Tank No. 170 OWS-180 - Oil/water separator east of Tank No. 180

OWS-PR - Oil/water separator east of pressure relief tank SWRO-C - Culvert adjacent to East Smith Road

SWRO-D2 - Dam 2 SWRO-D3 - Dam 3

¹ See Table 5 for Preliminary Cleanup Level rationale

² Not detected; however, laboratory reporting limit exceeds the Preliminary Cleanup Level.

³ Gasoline with benzene present/gasoline without benzene

⁴MW-2 also analyzed for polycyclic aromatic hydrocarbons (PAHs) during the April 8, 1991 sampling event. Fluorene, naphthalene, and phenanthrene were detected at concentrations of 5 ug 120 ug/L, and 2 ug/L, respectively. Other PAHs were not detected above their respective laboratory reporting limits.

⁵ Reported as a combination of diesel and gasoline range hydrocarbons by EPA Modified Method 8015.

Table 22 Summary of Groundwater Analytical Results - Shallow Aquifer Laurel Station Bellingham, Washington

	_								Sua	low Wells									
			S	SW-1 1					SW-2	SW-2			SW-31		SW-4		SW-5 1		Preliminary Cleanup
Compound Sample Date	ate 4/15/1992	10/31/2000	9/1/2004	5/10/2006	3/13	3/13/2008 Duplicate	4/15/1992	10/31/2000	9/1/2004 5	5/10/2006 12	12/8/2006 3/	3/13/2008 4	4/15/1992 5/1	5/10/2006 11/	11/7/2006 3/13/2008	2008 4/15/1992	92 9/1/2004	4 5/10/2006	Levels 2
Total Petroleum Hydrocarbons (mg/L) Gasoline-range		0.05 U	0.1 U	0.1 U	ı	:	:	0.05 U	0.1 U	0.1 U	0.25 U	1	:	0.1 U		1	0.1 U	0.1 U	0.8 / 1.03
Diesel-range (C ₁₂ -C ₂₄)	1	0.37	:	0.08 U	0.25 U	0.25 U	:	0.253	:	0.08 U	0.25 U	0.25 U		0.08 U 0.0	0.25 U 0.25 U	u	:	0.08 U	0.5
Motor Oil-range (C ₂₄ -C ₃₈)	1	0.5 U	;	0.08 U	0.5 U	0.5 U	;	0.05 U	;	0.08 U	0.5 U	0.5 U	0	0.08 U	0.5 U 0.5 U		1	0.08 U	6.5
Oil and Grease	1.0 U		;	1	ı	:	1.0 U	;	;	;	:	1	:	;	:	18.0	1	1	NE
Volatile Organic Compounds (ug/L) Benzene	1.0 U ⁴	r ⁴ 0.50 U	0.50 U	0.50 U	0.2 U	0.2 U	1.0 U ⁴	0.50 U	0.50 U	0.50 U	0.2 U	0.2 U	1.0 U⁴ 0	0.50 U 0	0.2 U 0.2 U	U 1.3.1	0.50 U	0.50 U	0.795
Chloroform				1	0.2	0.2 U	1.0 U	:	:	:	0.2 U	0.2 U	1.0 U		0.2 U 0.2 U	U 2.0 UJ	Э.	1	7.2
Toluene	1.0 U	J 0.50 U	0.50 U	0.50 U	0.2 U	0.2 U	1.0 U	0.50 U	0.50 U	0.50 U	0.2 U	0.2 U	1.0 U	0.50 U 0	0.2 U 0.2 U	U 2.0 UJ	J 0.50 U	0.50 U	640
Ethylbenzene	1.0 U	J 0.50 U	0.50 U	0.50 U	0.2 U	0.2 U	1.0 U	0.50 U	0.50 U	0.50 U	0.2 U	0.2 U	1.0 U	0.50 U 0	0.2 U 0.2 U	U 2.0 UJ	J 0.50 U	0.50 U	700
Xylenes (total)	2.0 U	J 1.0 U	0.50 U	0.50 U	0.4 U	0.4 U	2.0 U	1.0 U	0.50 U	0.50 U	0.4 U	0.4 U	2.0 U 0	0.50 U 0	0.4 U 0.4 U	U 4.0 UJ	J 0.50 U	0.50 U	1,000
Polycyclic Aromatic Hydrocarbons (PAHs) (ug/L). Naphthalene	I	1	ŀ	0.08	0.01 U	0.01 U	:	1	:	0.11	0.01	0.01 U	0	0.01 U 0.0	0.011 UJ 0.012		:	0.02	160
1-Methylnaphthalene	1	1	1	ı	0.023	0.011	;	;	1	;	1	0.01 U	1	1	0.01 U	n	1	1	NE
2-Methylnaphthalene	1	:	;	0.43	0.027	0.013	;	;	1	0.22	0.01 U	0.01 U	1	0.01 0.0	0.01 U 0.01 U	u	1	0.01	32
Fluoranthene	1	;	;	0.02	0.01 U	0.01 U	;	;	;	0.01 U	0.01 U	0.01 U	0	0.01 U 0.	0.01 U 0.01 U	n	1	0.01	640
Fluorene	1	1	1	0.04	0.01 U	0.01 U	1	;	;	0.02	0.01 U	0.01 U	0	0.01 U 0.	0.01 U 0.01 U	u	1	0.01 U	640
Pyrene	1	:	:	0.02	0.01 U	0.01 U	:	:	:	0.02	0.01 U	0.01 U	:	0.01 0.0	0.01 U 0.01 U	u	1	0.03	480
Phenanthrene	1	:	:	0.12	0.01 U	0.01 U	:	:	:	90.0	0.01 U	0.01 U	1	0.02 0.0	0.01 U 0.01 U	u	1	0.02	NE
Carcinogenic PAHs (ug/L)				000	11 10 0	11 100					11 10 0	11 10 0		11 100	1100			100	77.77
Delizo(a)pyrene	1	1	:	0.02	0.01	0.01	:	:	:			0.01	1			1	:	0.01	c aloni aac
Benzo(a)anthracene	1	:	;	0.01	0.01 U	0.01 U	:	:	:			0.01 U	0			 0	:	0.01 U	See Note 5
Benzo(b)fluoranthene	1	1	1	0.01	0.01 U	0.01 U	1	:	1			0.01 U	0				1	0.01 U	See Note 5
Benzo(k)fluoranthene	1	:	;	0.01	0.01 U	0.01 U	;	;	:	0.01 U	0.01 U	0.01 U	0	0.01 U 0.	0.01 U 0.01 U	n	;	0.01 U	See Note 5
Dibenz(a,h)anthracene	1	1	1	0.02 U	0.01 U	0.01 U	;	;	;			0.01 U	0			n	1	0.02 U	See Note 5
Chrysene	-	1	1	0.02	0.01 U	0.01 U	:	:		0.01 U	0.01 U	0.01 U	0	0.01 U 0.	0.01 U 0.01 U	u		0.04	See Note 5
Indeno(1,2,3-c,d)pyrene	1	:	;	0.02 U	0.01 U	0.01 U	;	;	:	0.02 U	0.01 U	0.01 U	0 :	0.02 U 0.	0.01 U 0.01 U	n	1	0.02 U	See Note 5
TTEC	-	-	:	0.023	NC	NC	:	;	-	NC	NC	NC	-	NC	NC NC	-		0.0104	0.012
Metals (mg/L)																			
Antimony		:	:	1	1	:	0.003	;	:	;	;	1	:	;	-	:	:	1	NE
Arsenic		'	1	1	1	:	0.005	:	:	:	1	1	1	:	1	:	:	ı	0.005
Beryllium	0.002		;	1	1	:	0.004	;	:	;	;		:	;	-	:	;	1	0.032
Chromium	0.179	-	1	1	ı	:	0.767	;	;	;	1	1	1	;	1	1	1	1	0.05^{6}
Copper	0.207		1	1	-	:	0.523	:		-	-	-	-		-			1	0.59
Lead	0.031	1	:	-	-	:	0.000	;	-	:	-	-	-					-	0.015
Mercury	0.001 U	n	:	-	-	:	0.0002	;	-	:	-	-	-					-	0.002
Nickel	0.23	-	;	1	-	:	09.0	;		-	-	-			-			1	0.32
Thallium	0.005 U	n	;	1	1	:	0.008	;	:	;	;		:	;	-	:	:	1	NE
Zinc	0.279	6	-	-	-		1.03	-		-	-							ı	4.8

Notes:

Bodded values indicate the Preliminary Cleanup Level was exceeded
NWTPH-Gx - Northwest total petroleum hydrocarbons - gasoline range
NWTPH-Dx - Northwest total petroleum hydrocarbons - diesel range

ug/L - micrograms per liter
U - not detected above the reporting limit showl
UJ - not detected above the reporting limit shown. Reporting limit is estimated.

TTEC - total toxicity equivalency concentration
TTEC - total toxicity equivalency concentration
TTEC - total toxicity equivalency concentration
--- not analyzed
--- not analyzed
--- not analyzed
--- buring November-December 2006 sampling event, SW-1 was not accessible and wells SW-3 and SW-5 were dry. In March 2008, SW-3 was damaged and SW-5 was dry.

See Table 4 for Preliminary Cleanup Level rationale.

In water sheld effected: long-thing process in the rotal of ethylbenzene, tolbene, and xylenes is less than 1% of the gasoline mixture. The cleanup level for all other gasoline mixtures is 0.8 mg/L.

*Not detected: promount pevels under MTCA are based on the calculated total toxicity of the mixture using the Toxicity Equivalency Methodology in WAC 173-340-708 (8).

The mixture of ePAHs shall be considered a single hazardous substance and compared to the applicable MTCA Method B cleanup level for benzo(a)pyrene.

Summary of Groundwater Analytical Results - Deep Aquifer Laurel Station Bellingham, Washington

								Deep Wells							
		DW-1	/-1		DW-2			DW-3			DW-4		DW-5	7-5	Preliminary Cleanin
Compound	Sample Date	4/22/1992	12/7/2006	4/16/1992	10/31/2000	12/8/2006	4/16/1992	10/31/2000	12/8/2006	4/16/1992	12/8/	12/8/2006 Field Dup	4/17/1992	12/8/2006	Levels 1
Total Petroleum Hydrocarbons (mg/L	<u>T)</u>														
Gasoline-range			$0.25 \mathrm{U}$	-	$0.05~\mathrm{U}$	$0.25~\mathrm{U}$		$0.05~\mathrm{U}$	$0.25~\mathrm{U}$		$0.25 \mathrm{U}$	$0.25~\mathrm{U}$		$0.25\mathrm{U}$	$0.8 / 1.0^2$
Diesel-range (C ₁₂ -C ₂₄)		1	$0.25\mathrm{U}$	1	0.25 U	0.25 U	1	0.25 U	0.25 U	1	$0.25\mathrm{U}$	$0.25~\mathrm{U}$	1	0.25 U	6.5
Motor Oil-range (C ₂₄ -C ₃₈)		1	0.5 U	1	0.5 U	0.5 U	:	0.25 U	0.5 U	1	0.5 U	0.5 U	:	0.5 U	0.5
Oil and Grease		1.0 U	:	1.0 U	1	1	1.0 U	1	1	1.0 U	1	1	1.0 U	1	NE
Volatile Organic Compounds (ug/L)															
Benzene		$1.0\mathrm{U}^3$	0.2 U	$1.0~\mathrm{U}^3$	0.50 U	0.2 U	$1.0~\mathrm{U}^3$	0.50 U	0.2 U	$1.0\mathrm{U}^3$	0.2 U	0.2 U	$1.0~\mathrm{U}^3$	0.2 U	0.795
Toluene		1.0 U	$0.2\mathrm{U}$	1.0 U	0.50 U	0.2 U	1.0 U	0.771	0.2 U	1.0 U	$0.2~\mathrm{U}$	$0.2\mathrm{U}$	1.0 U	0.2 U	640
Ethylbenzene		1.0 U	0.2 U	1.0 U	0.50 U	0.2 U	1.0 U	0.50 U	0.2 U	1.0 U	0.2 U	0.2 U	1.0 U	0.2 U	700
Xylenes (total)		2.0 U	0.4 U	2.0 U	1.0 U	0.4 U	2.0 U	1.25	0.4 U	2.0 U	0.4 U	0.4 U	2.0 U	0.4 U	1,000
Polycyclic Aromatic Hydrocarbons (ug/L) Naphthalene	(ng/L)	1	0.01 U	-	-	0.01 U	-	1	0.01 U	1	0.02	0.01 U	-	0.01 U	160
2-Methylnaphthalene		1	0.01 U	:	:	0.01 U		;	0.01 U	1	0.01 U	0.01 U	:	0.01 U	32
Carcinogenic PAHs (ug/L)															
Benzo (a) pyrene		1	0.01 U	;	;	0.01 U	;	1	0.01 U	1	$0.01\mathrm{U}$	0.01 U	;	0.01 U	See Note 4
Benzo(a)anthracene		1	0.01 U	:	1	0.01 U	:	1	0.01 U	1	0.01 U	0.01 U	:	0.01 U	See Note 4
Benzo(b)fluoranthene			$0.01~\mathrm{U}$	-	-	0.01 U		-	$0.01~\mathrm{U}$	-	$0.01\mathrm{U}$	0.01 U		0.01 U	See Note 4
Benzo(k)fluoranthene		:	0.01 U	-	:	0.01 U		:	0.01 U		0.01 U	0.01 U		0.01 U	See Note 4
Dibenz(a,h)anthracene		-	$0.01~\mathrm{U}$			$0.01 \mathrm{U}$			0.01 U		$0.01\mathrm{U}$	0.01 U		0.01 U	See Note 4
Chrysene			$0.01~\mathrm{U}$	-	-	0.01 U		-	$0.01~\mathrm{U}$	-	$0.01\mathrm{U}$	0.01 U		0.01 U	See Note 4
Indeno(1,2,3-c,d)pyrene			$0.01~\mathrm{U}$		-	$0.01 \mathrm{U}$			$0.01~\mathrm{U}$		$0.01 \mathrm{U}$	0.01 U		0.01 U	See Note 4
TTEC		-	NC	-	:	NC	-	1	NC	:	NC	NC	-	NC	0.012
Metals (mg/L)															
Antimony		0.003	-	0.001 U	1	1	0.002	1	:	0.001 U	:	1	0.002	!	NE
Arsenic		0.083	-	0.002 U	1	1	0.018	1	:	0.014	:	:	0.019	1	0.005
Beryllium		0.001 U	1	0.006	1	1	0.001	1	1	0.001 U	:	1	0.001 U	1	0.032
Chromium		0.038	:	0.154	1	1	0.036	1	:	0.014	1	:	0.042	1	$0.05/0.1^{5}$
Copper		0.010		0.209	:	:	0.080	:	-	0.017	:	-	0.041	1	0.592
Lead		0.009	1	0.167	1	1	0.028	1	1	0.021	:	1	0.013	1	0.015
Nickel		0.03	:	0.08	1	1	0.03	1	1	0.020	:	1	0.05	1	0.32
Selenium		0.001 U	1	0.005 U	1	1	0.005 U	1	1	0.001 U	:	1	0.024	1	NE
Thallium		0.001 U	:	0.009	1	1	0.002	1	;	0.001 U	:	:	0.001 U	1	NE
Zinc		0.028	1	0.243	1	-	0.218	-	-	0.045	!	-	0.079	-	4.8

Notes:
Bolded values indicate the Preliminary Cleanup Level was exceeded

NWTPH-Gx - Northwest total petroleum hydrocarbons - gasoline range

NWTPH-Dx - Northwest total petroleum hydrocarbons - diesel range

ug/L - micrograms per liter mg/L - milligrams per liter TTEC - total toxicity equivalency concentration

--- not analyzed $$\rm U$ - not detected above the reporting limit shown

NC - not calculated

NE - not established

¹ See Table 4 for Preliminary Cleanup Level rationale
² In water, the cleanup level is 1 mg/L if benzene is not present, and the total of ethylbenzene, toluene, and xylenes is less than 1% of the gasoline mixture. The cleanup level for all other gasoline mixtures is 0.8 mg/L.
³ Not detected; however, laboratory reporting limit exceeds the Preliminary Cleanup Level.
⁴ Carcinogenic PAH (cPAH) cleanup levels under MTCA are based on the calculated total toxicity of the mixture using the Toxicity Equivalency Methodology in WAC 173-340-708 (8).
The mixture of cPAHs shall be considered a single hazardous substance and compared to the applicable MTCA Method B cleanup level for benzo(a)pyrene.
⁵ Total Chromium

Table 24
Data Gaps Summary
Laurel Station
Bellingham, Washington

Area of Concern	Media	Sample Location(s)	Reference Figure	Data Gap
		1, 2, 5, 6, 7, 8, 10, 11, 13, 15, 16, 21, 22, 31, and 47	Figure 13	Vertical extent of petroleum hydrocarbons exceeding the PCL not defined beyond 3 feet bgs
Area 1	Soil	1, 2, 10, 13, 16, and 21	Figure 13	Vertical extent of BTEX exceeding PCLs not defined beyond 2 - 3 feet bgs
		SH-1	Figure 13	Vertical extent of naphthalene exceeding the PCL not defined beyond 0.5 foot bgs
Area 2	Soil	41	Figure 14	Vertical extent of petroleum hydrocarbons exceeding the PCL not defined beyond 1 foot bgs; BTEX not assessed
Study Unit 1 - Former Pump Station Area	Soil	PB-2	Figure 15	Vertical and lateral extent of petroleum hydrocarbons exceeding the PCL not defined beyond 12 feet bgs
Study Unit 1 - Former Oily Water Sump	Soil	TM-B4 and TM-B16	Figure 16	Lateral extent of petroleum hydrocarbons exceeding the PCL not defined between 13 and 23 feet bgs
Study Unit 1 - Former Burn Pit	Soil	TP-6 and TP-7	Figure 17	Lateral extent of petroleum hydrocarbons exceeding the PCL not defined between 5 and 13 feet bgs
Study Unit 1 - Former Drain Tile	Soil	DTE-1	Figure 19	Vertical and lateral extent of petroleum hydrocarbons exceeding the applicable PCL not defined beyond 1 foot bgs
Study Unit 1 - December 2000 Spill	Soil	PEX-17-B-5, PEX-18-S-3, and PEX-34-S-1	Figure 25	Vertical and lateral extent of benzene exceeding the PCL not defined beyond depths ranging between 1 and 5 feet bgs
Study Unit 2 - Bulk Storage Tank Area (Tank No. 170)	Soil	08-B3	Figure 10	Vertical and lateral extent of benzene exceeding the PCL not defined beyond 4.5 feet bgs
Study Unit 2 - Bulk Storage Tank Area (Tank No. 180)	Soil	Tank 180-1 (beneath Tank No. 180)	Figure 10	Vertical and lateral extent of petroleum hydrocarbons exceeding PCLs not defined beyond 3 feet bgs
Study Unit 3 - Relief Tank	Soil	PRT-1 and PRT-2	Figure 24	Vertical and lateral extent of petroleum hydrocarbons exceeding the PCL within the relief tank containment berm not defined at or beyond 2 feet bgs
Areas 1, 2, and 3	Surface Water	Wetlands and Tributary to Deer Creek	Figure 28	Current surface water quality
Study Unit 3	Surface Water	Wetlands and March 7, 1992 Spill Containment Dam	Figure 29	Current surface water quality
Areas 1, 2, and 3	Wetland Sediment/Soil	Wetlands and Tributary to Deer Creek	Figure 28	Current wetland sediment/soil quality
Study Unit 3	Wetland Sediment/Soil	Wetlands and March 7, 1992 Spill Containment Dam	Figure 29	Current wetland sediment/soil quality
Study Unit 3	NA	Wetland Area Affected by March 7, 1992 Spill	Figure 24	Outer boundaries of this wetland have not yet been delineated.

Notes:
PCL - Preliminary Cleanup Level
BTEX - Benzene, toluene, ethylbenzene, and xylenes
bgs - below ground surface
NA - not applicable

Proposed Sampling Locations and Rationale Table 25

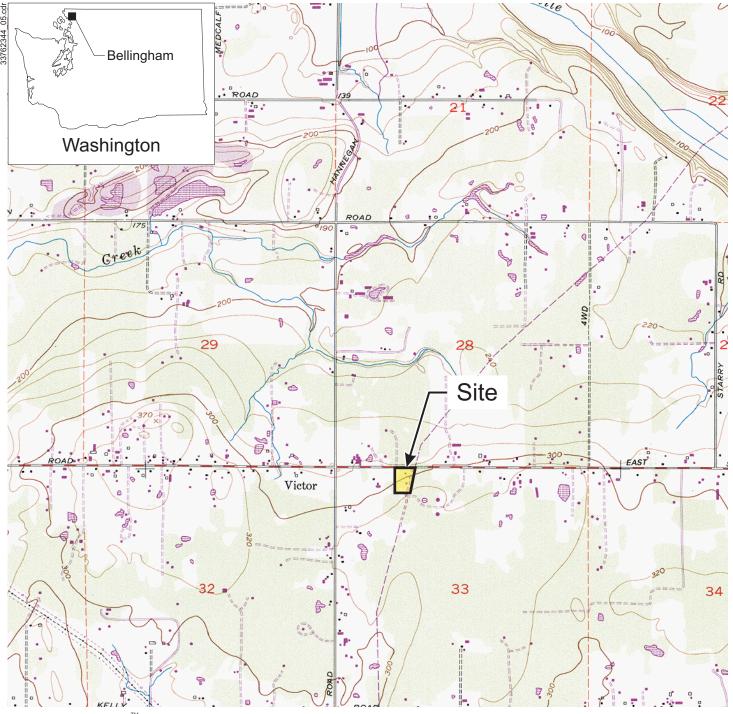
Laurel Station Bellingham, Washington

Jo ood V				4		
Concern	rroposed Sample Locadon/Sample ID	Reference Figure	Media	rroposed Samping Deptn (feet bgs)	Analytical Parameters	Rationale
Area 1	A1-B1 through A1-B25	Figure 34	Soil	3 and 5	NWTPH-Gx, NWTPH-Dx ¹ , and BTEX. PAHs for Al-B1, A1-B9, A1-B12, A1-B16, A1-B17, and A1-B20.	Characterization of the vertical and lateral extent of hydrocarbon impacts exceeding the PCL in Area I. Characterization of the vertical extent of PAHs where TPH elevated. Assessment of BTEX.
Area 2	A2-B1	Figure 35	Soil	1, 2, and 3	$NWTPH-Gx, NWTPH-Dx^1, BTEX, and \\ PAHs^3$	Characterization of the vertical extent of hydrocarbon impacts exceeding the PCL in Area 2. Assessment of BTEX.
	SU1-B1 through SU1-B4	Figure 36	Soil	5, 10 and 15	NWTPH-Gx, NWTPH-Dx, BTEX, and PAHs ³	Characterization of the lateral extent of hydrocarbon impacts exceeding the PCL at test pits TP-6 and TP-7.
	SU1-B5	Figure 36	Soil	2 and 5	NWTPH-Gx, NWTPH-Dx, BTEX, and PAHs ³	Characterization of the vertical extent of hydrocarbon impacts exceeding the PCL ${\bf a}$ sample location DTE-1.
	SUI-B6 through SUI-B9, SUI-B17 and SUI-B18	Figure 36	Soil	3, 5 and 10	NWTPH-Gx, NWTPH-Dx, BTEX, and PAHs 3	Characterization of the vertical and lateral extent of hydrocarbon impacts exceeding the PCL at sample locations PEX-11-S-7, PEX-17-B-5, PEX-18-S-3, and PEX-34-S-1.
Study Unit 1	SU1-B10 and SU1-B11	Figure 36	Soil	5, 10 and 15	NWTPH-Gx, NWTPH-Dx, BTEX, and PAHs ³	Characterization of the vertical and lateral extent of hydrocarbon impacts exceeding the PCL at sample location PB-2.
	SU1-B12 through SU1-B16	Figure 36	Soil	5, 10, 15, 20 and 25	NWTPH-Gx, NWTPH-Dx, BTEX, and PAHs ³	Characterization of the lateral extent of hydrocarbon impacts exceeding the PCL at soil borings TM-B4 and TM-B16.
	SU1-B19	Figure 36	Soil	6, 8 and 10	NWTPH-Gx, NWTPH-Dx, BTEX, and PAHs ³	Confirmatory sampling at sample location PB-4.
	SU1-B20	Figure 36	Soil	29 and 30	NWTPH-Gx, NWTPH-Dx, BTEX, and PAHs ³	Confirmatory sampling at boring TM-B15.
Study Unit 2	SU2-B1 through SU2-B8	Figure 37	Soil	2, 5 and 10	NWTPH-Gx, NWTPH-Dx, BTEX, and PAHs ³	Characterization of the vertical and lateral extent of hydrocarbon impacts exceeding the PCL within the bulk storage tank containment berms.
See.do. 175.56.2	SU3-B1 through SU3-B6	Figure 38	Soil	2 and 4	NWTPH-Gx, NWTPH-Dx, BTEX, and PAHs ³	Characterization of the vertical and lateral extent of hydrocarbon impacts exceeding the PCL within the former relief tank containment berm.
Study Cills	SU3-B7	Figure 38	Soil	5 and 7	NWTPH-Gx, NWTPH-Dx, BTEX, and PAHs ³	Confirmatory sampling at test pit TP-3-2.
	A1-SW1 through A1-SW3	Figure 39	Surface Water	NA	NWTPH-Gx, NWTPH-Dx, and BTEX	Establish current surface water quality within Area 1.
Areas 1, 2, and 3	A2-SW1	Figure 39	Surface Water	NA	NWTPH-Gx, NWTPH-Dx, and BTEX	Establish current surface water quality within Area 2.
	A3-DAM2 and A3-DAM3	Figure 39	Surface Water	NA	NWTPH-Gx, NWTPH-Dx, and BTEX	Establish current surface water quality within Area 3.
Study Unit 3	SU3-SW1 through SU3-SW3	Figure 40	Surface Water	NA	NWTPH-Gx, NWTPH-Dx, and BTEX	Establish current surface water quality within Study Unit 3.
	A1-SED1 through A1-SED32	Figure 39	Wetland Sediment/Soil	0-1	NWTPH-Gx, NWTPH-Dx1, and BTEX	Establish current wetland sediment/soil quality within Area 1.
Areas 1, 2, and 3	$A2-SED1^2$	Figure 39	Wetland Sediment/Soil	0-1	NWTPH-Gx, NWTPH-Dx1, and BTEX	Establish current wetland sediment/soil quality within Area 2.
	A3-SED1 through A3-SED32	Figure 39	Wetland Sediment/Soil	0-1	NWTPH-Gx, NWTPH-Dx1, and BTEX	Establish current wetland sediment/soil quality within Area 3.
Study Unit 3	SU3-SED1 through SU3-SED32	Figure 40	Wetland Sediment/Soil	0-1	NWTPH-Gx, NWTPH-Dx1, and BTEX	Establish current wetland sediment/soil quality within Study Unit 3.

PCL - Preliminary Cleanup Level

NWTPH-Gx - Northwest Total Petroleum Hydrocarbons Gasoline
NWTPH-Dx - Northwest Total Petroleum Hydrocarbons Diesel extended (diesel and oil-range)
BTEX - Benzene, toluene, ethylbenzene, and xylenes
PAHs - Polycyclic aromatic hydrocarbons

bgs - below ground surface

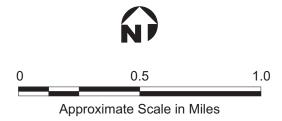
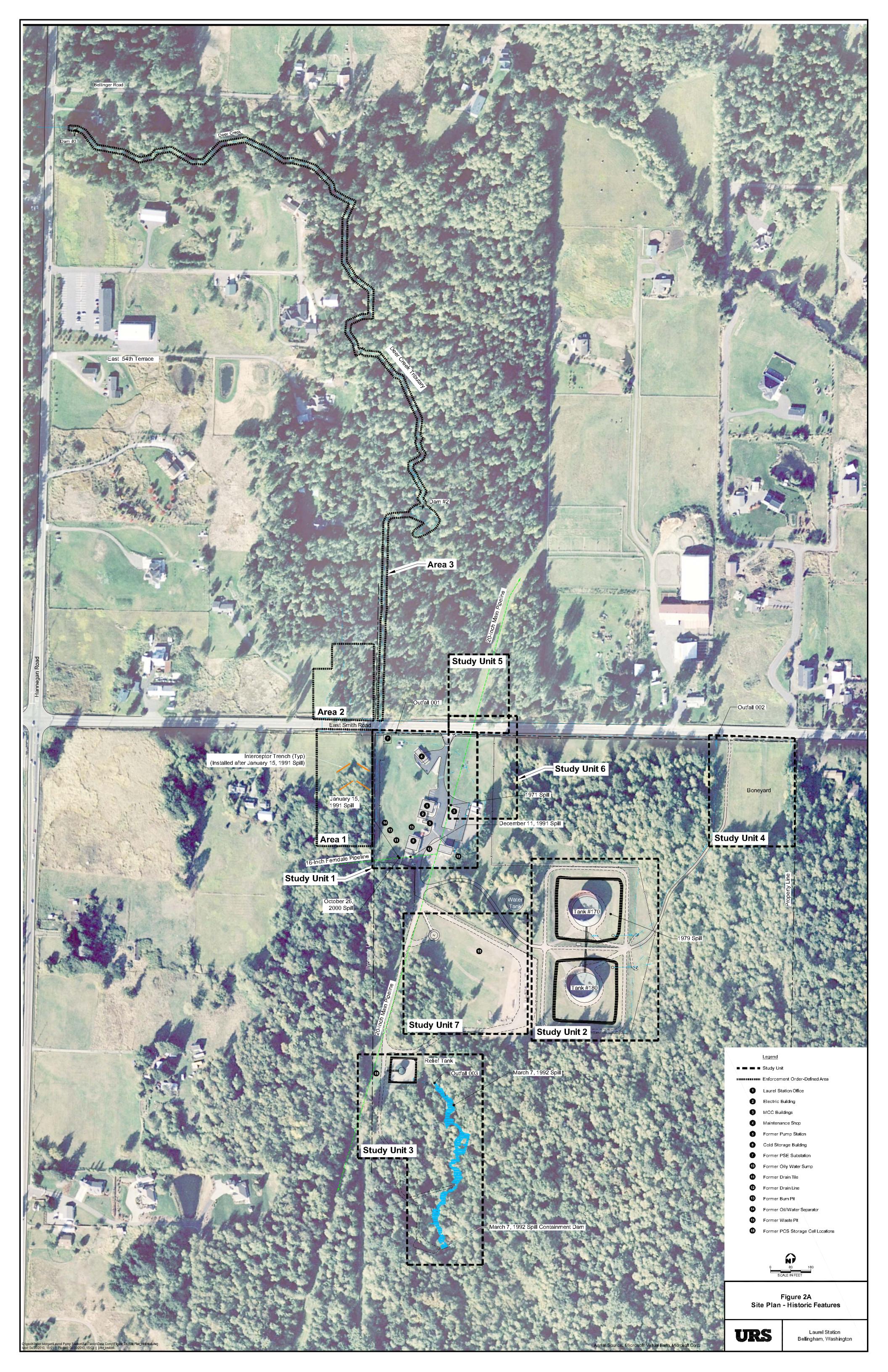
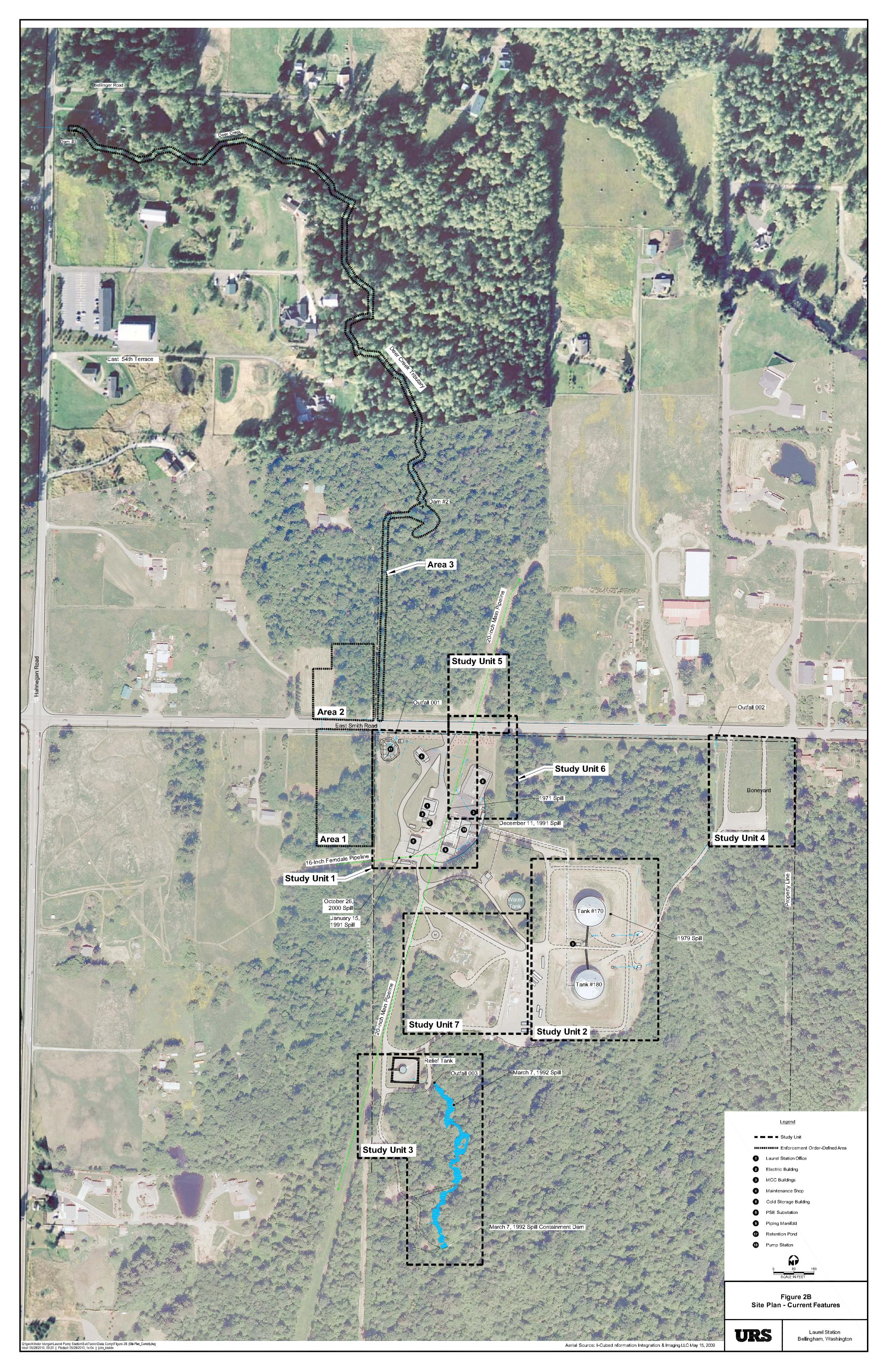

NA - not applicable

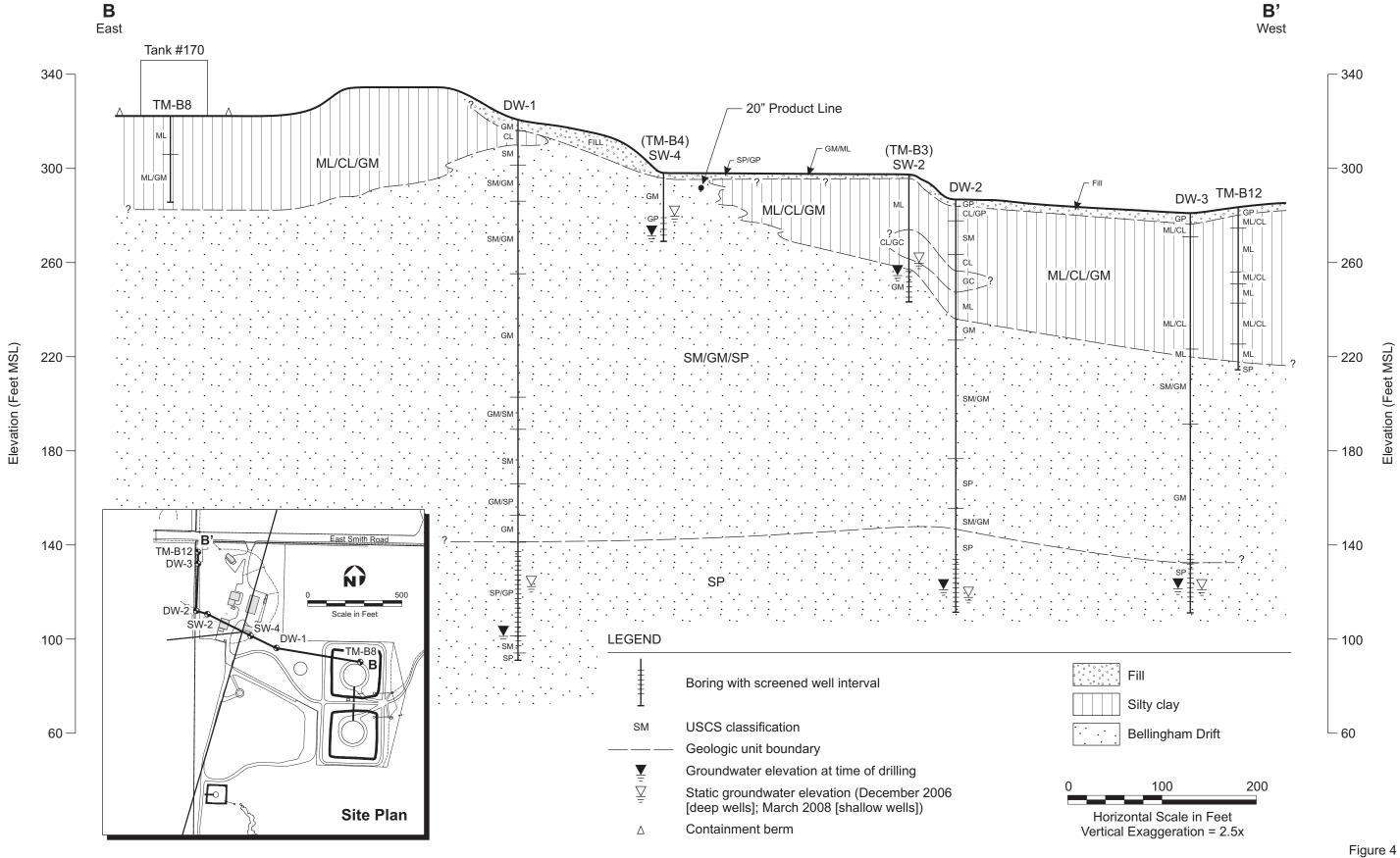
NWTPH-HCID analyses will be performed on selected samples to assess type of TPH for comparison to PCLs as described in the Sampling and Analysis Plan (Appendix G)

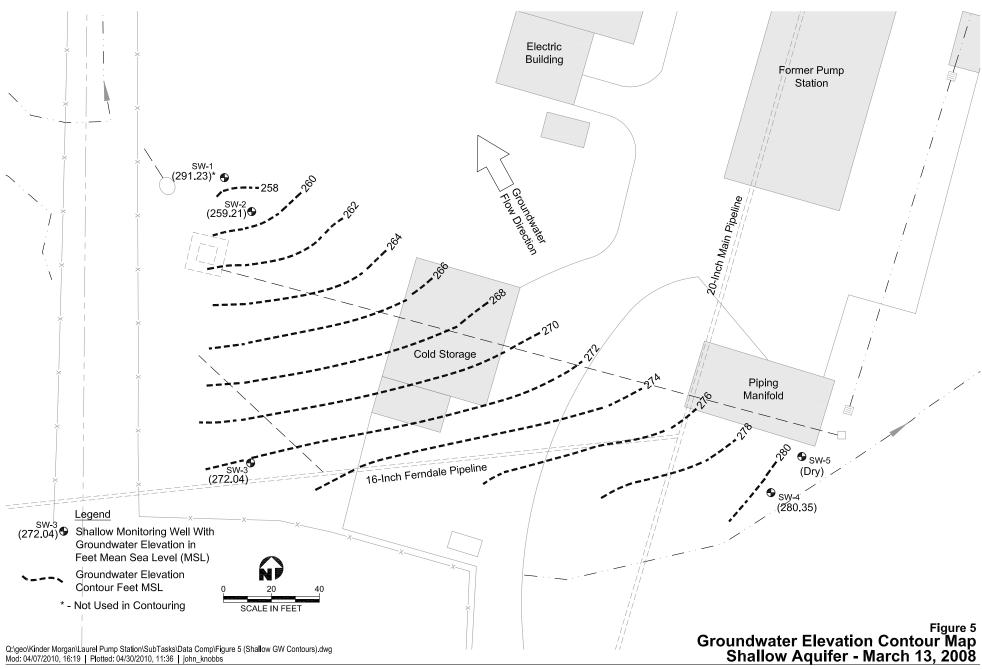
URS Corporation

¹ Acid and/or silica gel cleanup
² Three samples per location: (a) mid-drainage, (b) right bank, and (c) left bank
³ PAH analysis will be conducted where NWTPH-Dx exceeds the Preliminary Cleanup Level of 460 milligrams per kilogram

Map created with TOPO! $^{\!\top\!\!\!M}$ © 1997 Wildflower Productions, www.topo.com, based on USGS topographic map

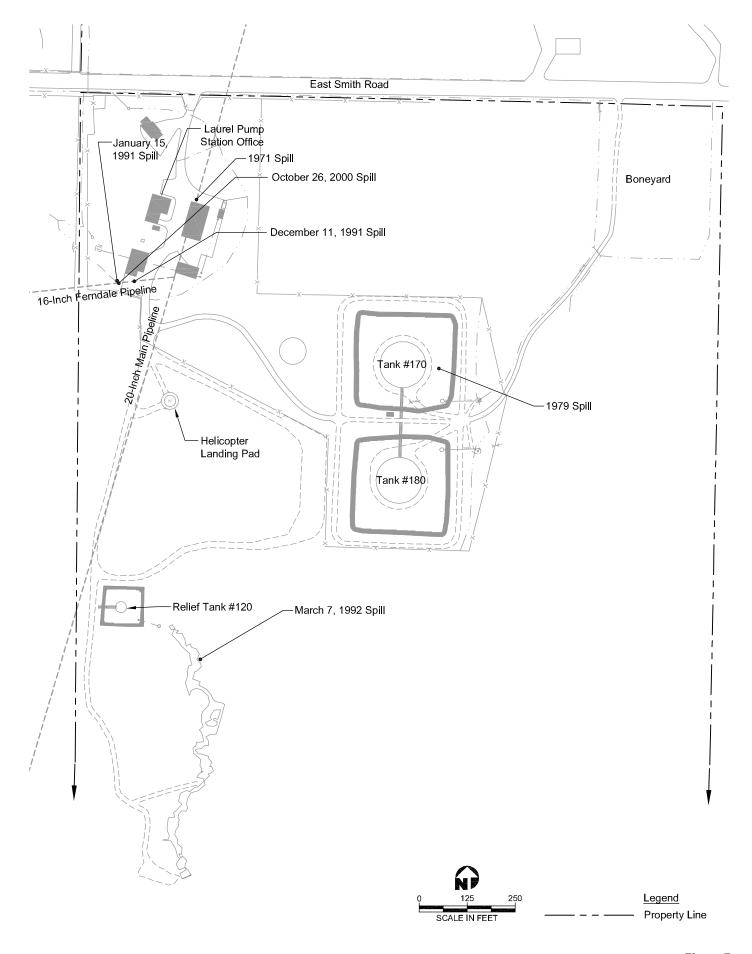






Figure 1 **Site Location Map**



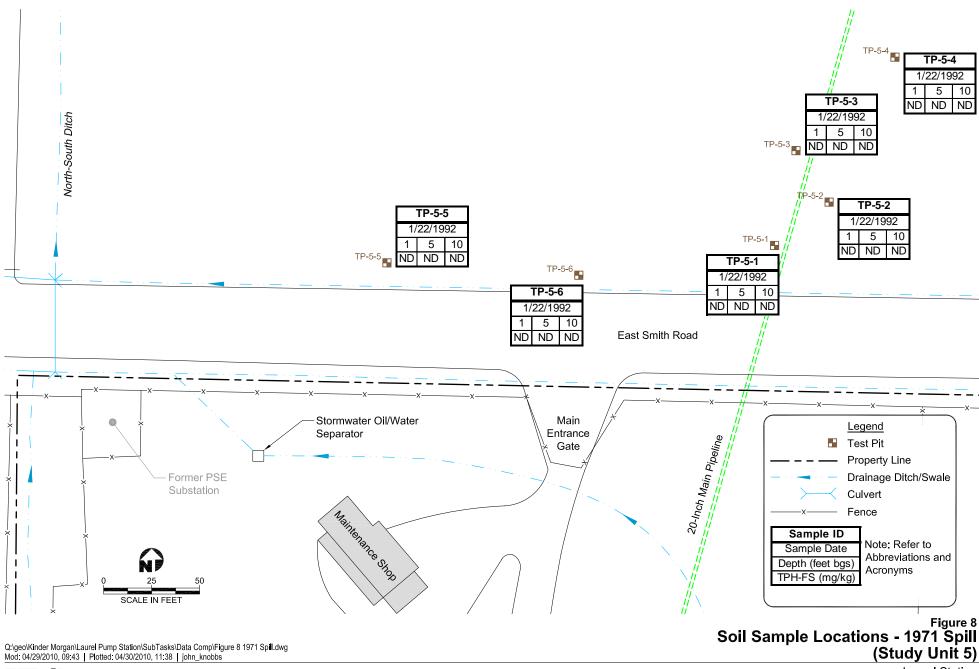


East-West Geologic Cross Section B-B'



Laurel Station Bellingham, Washington

Q:\geo\Kinder Morgan\Laurel Pump Station\SubTasks\Data Comp\Figure 6 (Deep GW Contours).dwg Mod: 04/16/2010, 11:37 | Plotted: 04/30/2010, 11:37 | $john_knobbs$


Figure 6 Groundwater Elevation Contour Map Deep Aquifer - December 7-8, 2006

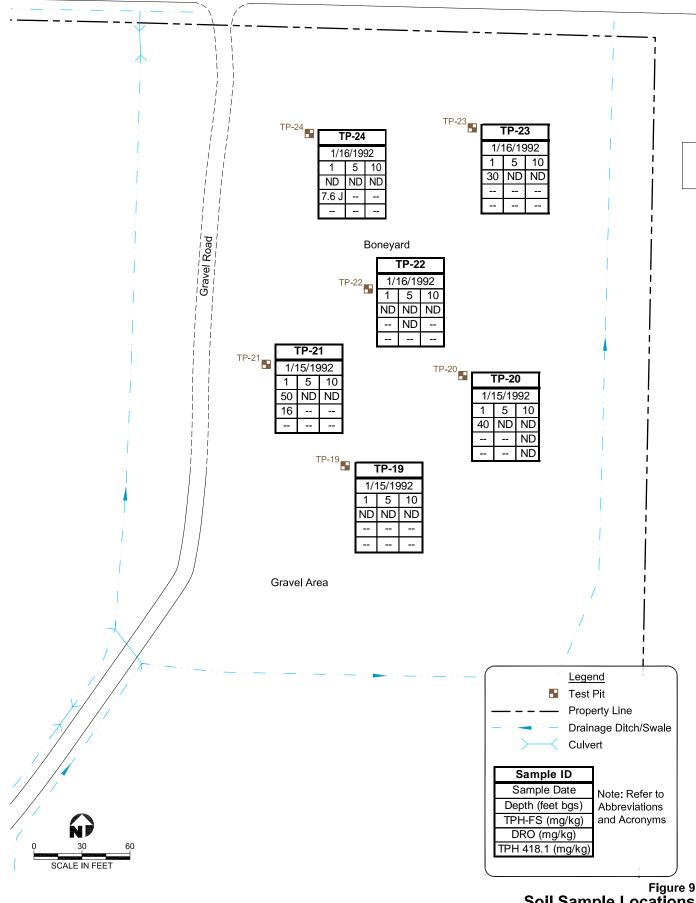
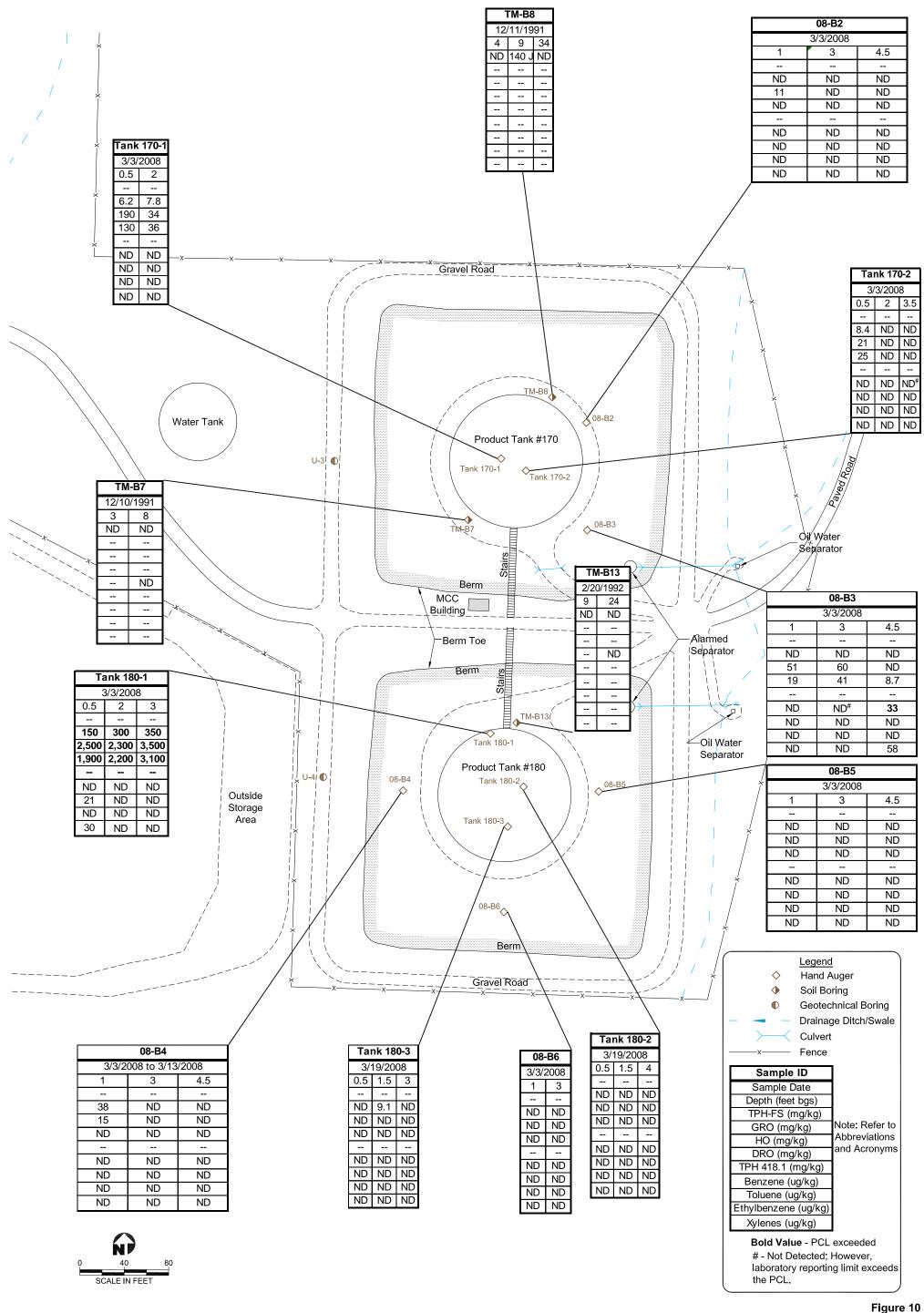
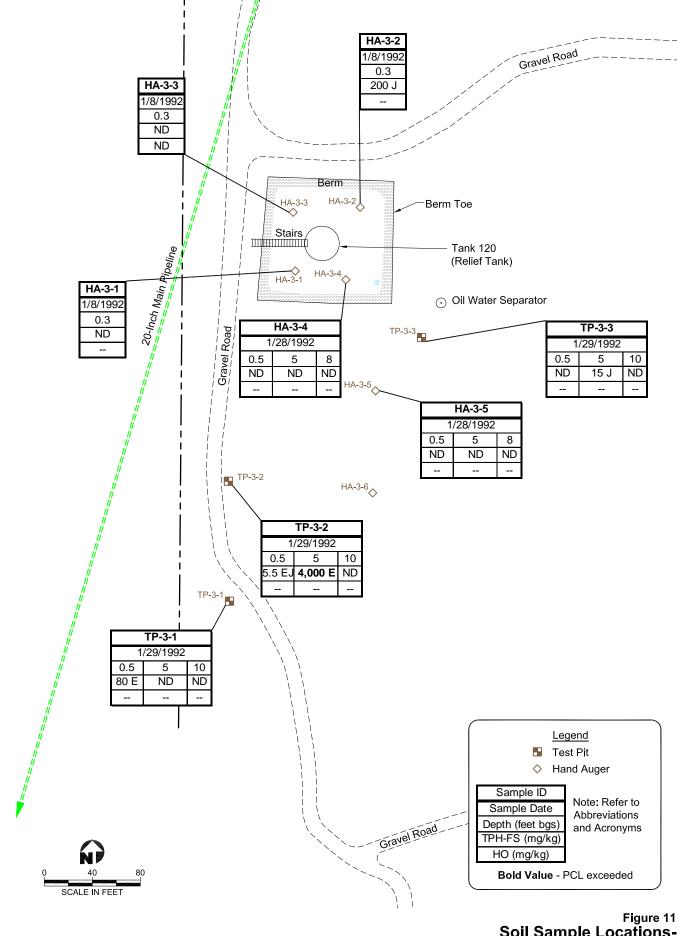

Q:\geo\Kinder Morgan\Laurel Pump Station\SubTasks\Data Comp\Figure 7 (Spil Area Map).dwg Mod: 04/29/2010, 09:43 | Plotted: 04/30/2010, 11:37 | john_knobbs

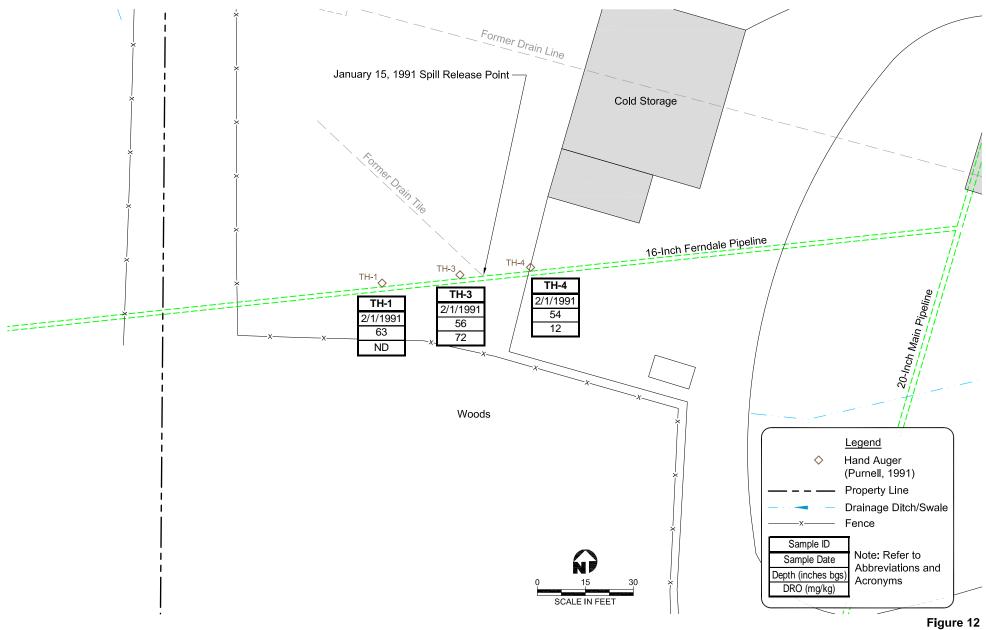
Figure 7 Spill Area Map

Laurel Station Bellingham, Washington

Q:\geo\Kinder Morgan\Laurel Pump Station\SubTasks\Data Comp\Figure 9 1971 Spill Unit 4.dwg Mod: 01/14/2010, 12:28 | Plotted: 04/30/2010, 11:41 | john_knobbs

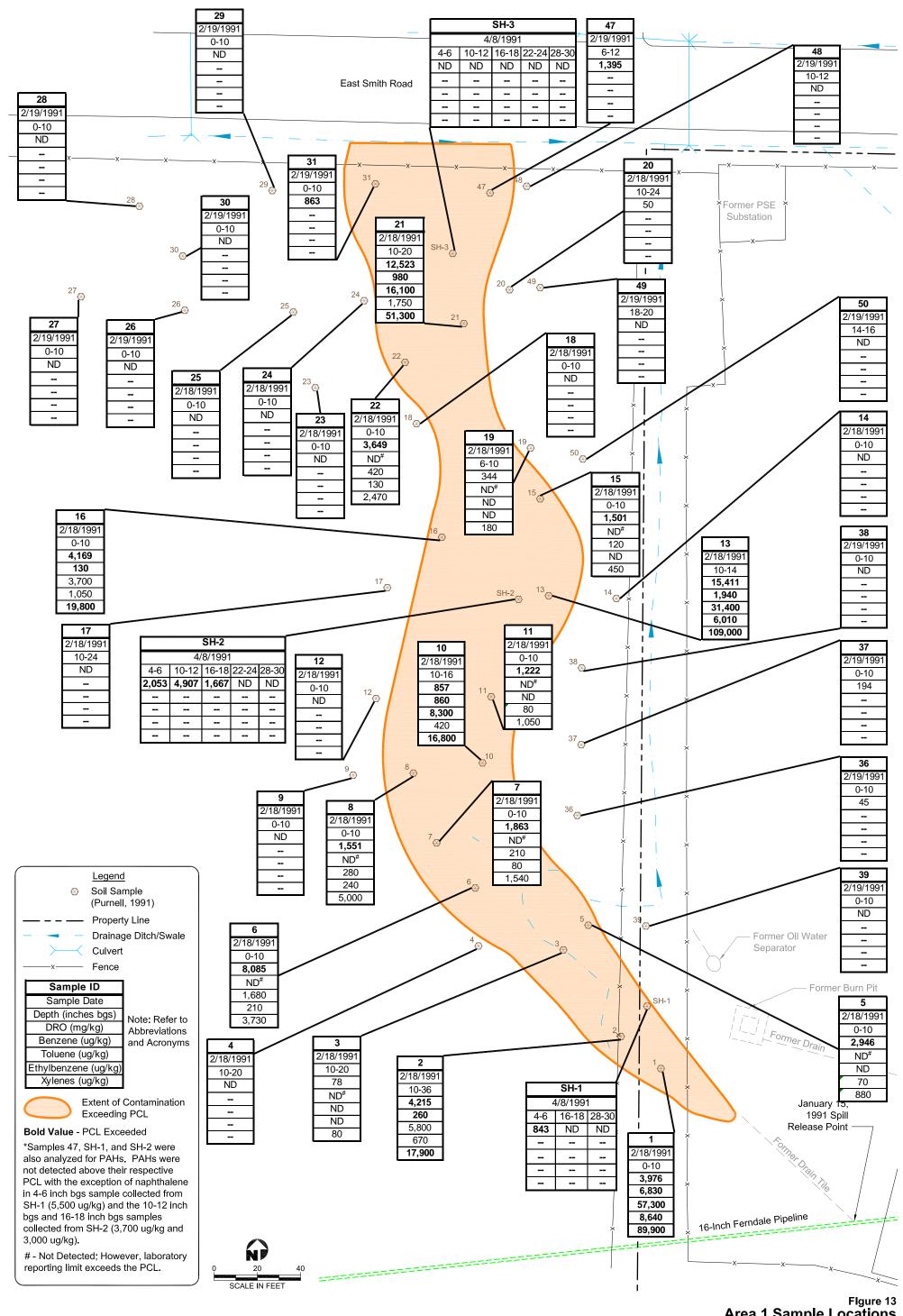
Soil Sample Locations (Boneyard/Study Unit 4)


Figure 10 Soil Sample Locations - 1979 Spill (Study Unit 2)

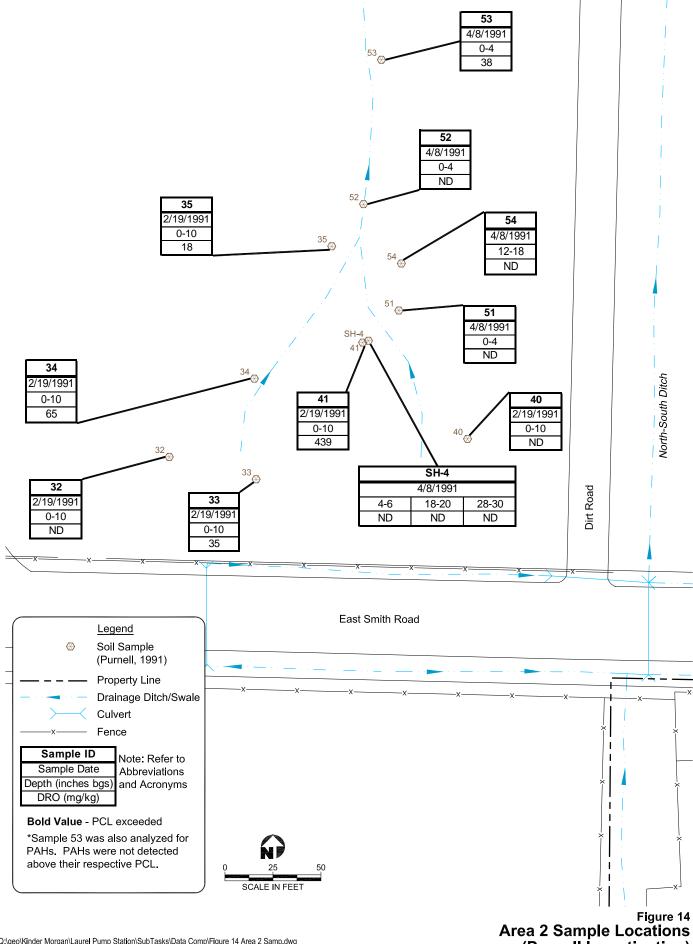
Q:\geo\Kinder Morgan\Laurel Pump Station\SubTasks\Data Comp\Figure 11 Hist Spills Unit 3.dwg Mod: 04/29/2010, 15:54 | Plotted: 04/30/2010, 11:40 | john_knobbs

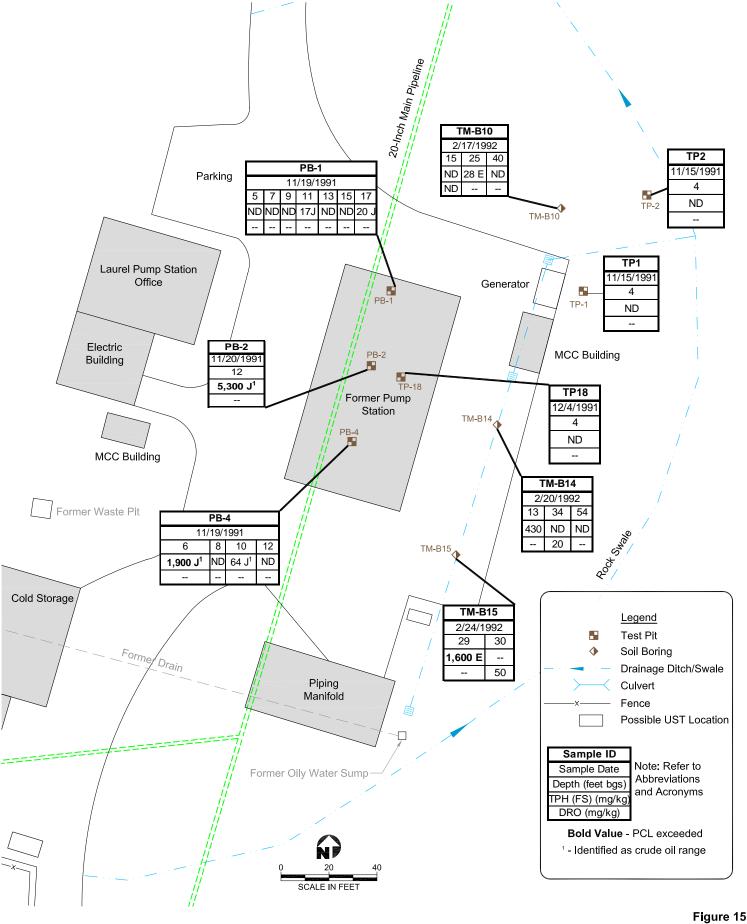
Soil Sample Locations-Historical Spills and Releases (Study Unit 3)



Q:\geo\Kinder Morgan\Laurel Pump Station\SubTasks\Data Comp\Figure 12 16 In Fern Pipe.dwg Mod: 04/29/2010, 09:43 | Plotted: 04/30/2010, 11:39 | john_knobbs

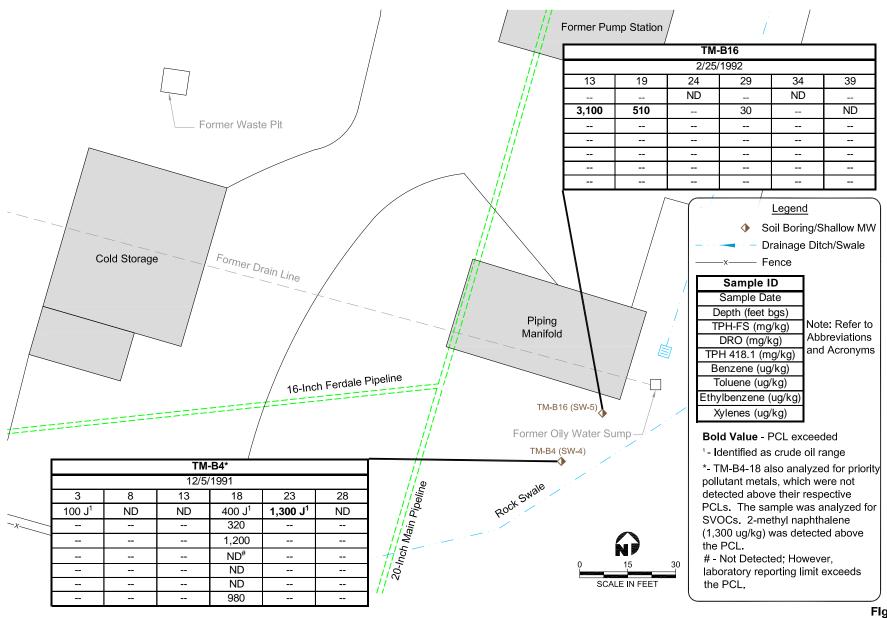
Figure 12 16-Inch Ferndale Pipeline Sample Locations (Purnell Investigation)




Q:\geo\Kinder Morgan\Laurel Pump Station\SubTasks\Data Comp\Figure 13 Area 1.dwg Mod: 05/28/2010, 11:32 | Plotted: 05/28/2010, 13:49 | john_knobbs

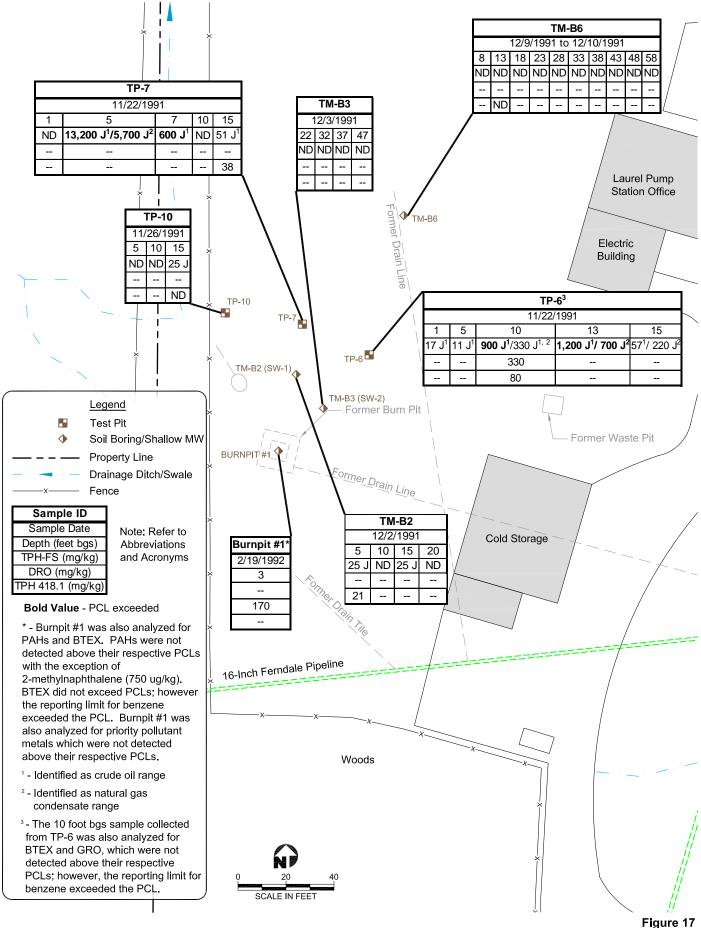
Area 1 Sample Locations (Purnell Investigation)

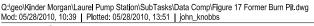
Laurel Station Bellingham, Washington

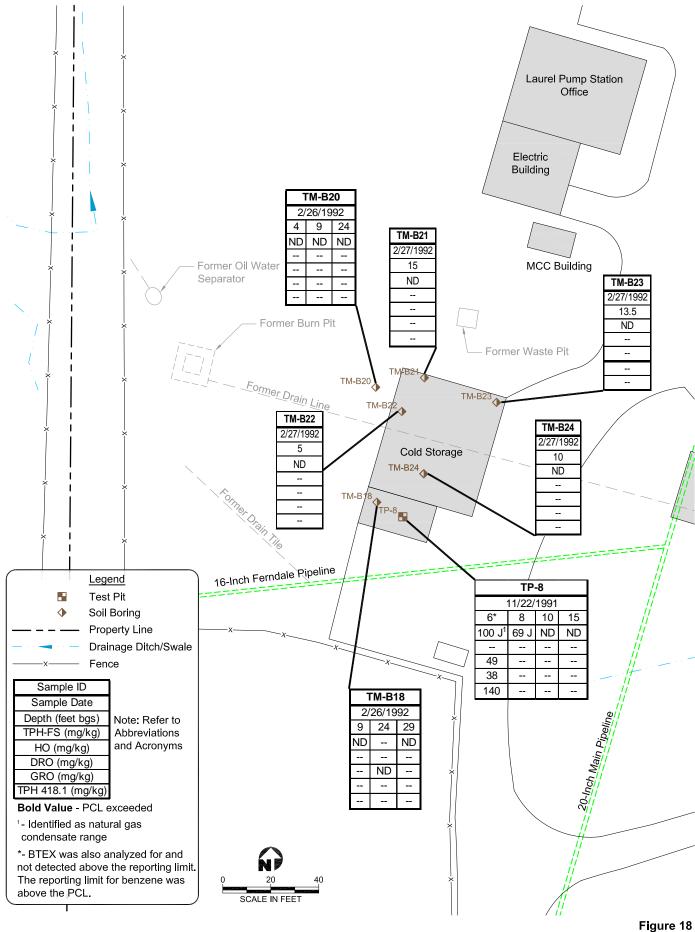

(Purnell Investigation)

Q:\geo\Kinder Morgan\Laurel Pump Station\SubTasks\Data Comp\Figure 15 Pump Sta.dwg Mod: 05/28/2010, 10:41 | Plotted: 05/28/2010, 13:50 | john_knobbs

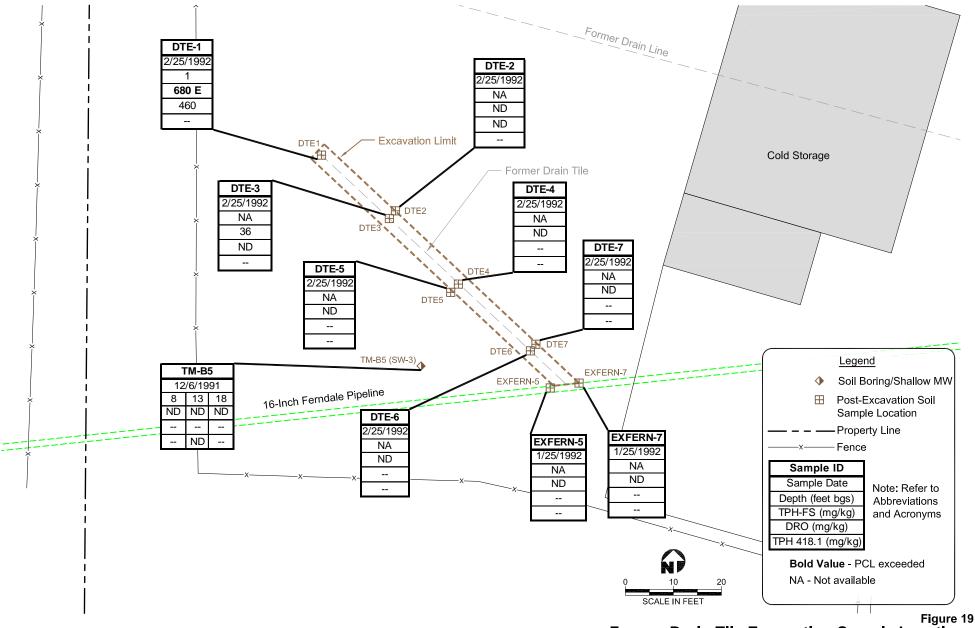
Pump Station Area Sample Locations (Study Unit 1)




Q:\geo\Kinder Morgan\Laurel Pump Station\SubTasks\Data Comp\Figure 16 Form Oily Wat.dwg Mod: 04/29/2010, 10:08 | Plotted: 04/30/2010, 13:24 | john_knobbs

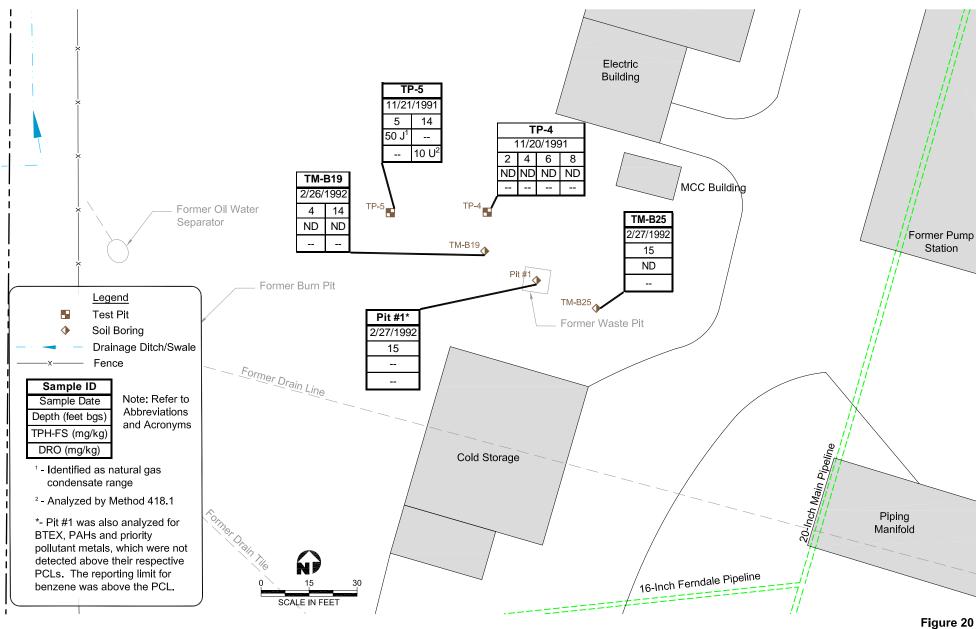

Figure 16
Former Oily Water Sump Sample Locations
(Study Unit 1)

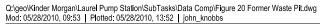
Former Burn Pit and Former Oil/Water Separator
Sample Locations (Study Unit 1)



Q:\geo\Kinder Morgan\Laurel Pump Station\SubTasks\Data Comp\Figure 18 Former Drain Line.dwg Mod: 05/28/2010, 10:37 | Plotted: 05/28/2010, 13:52 | john_knobbs

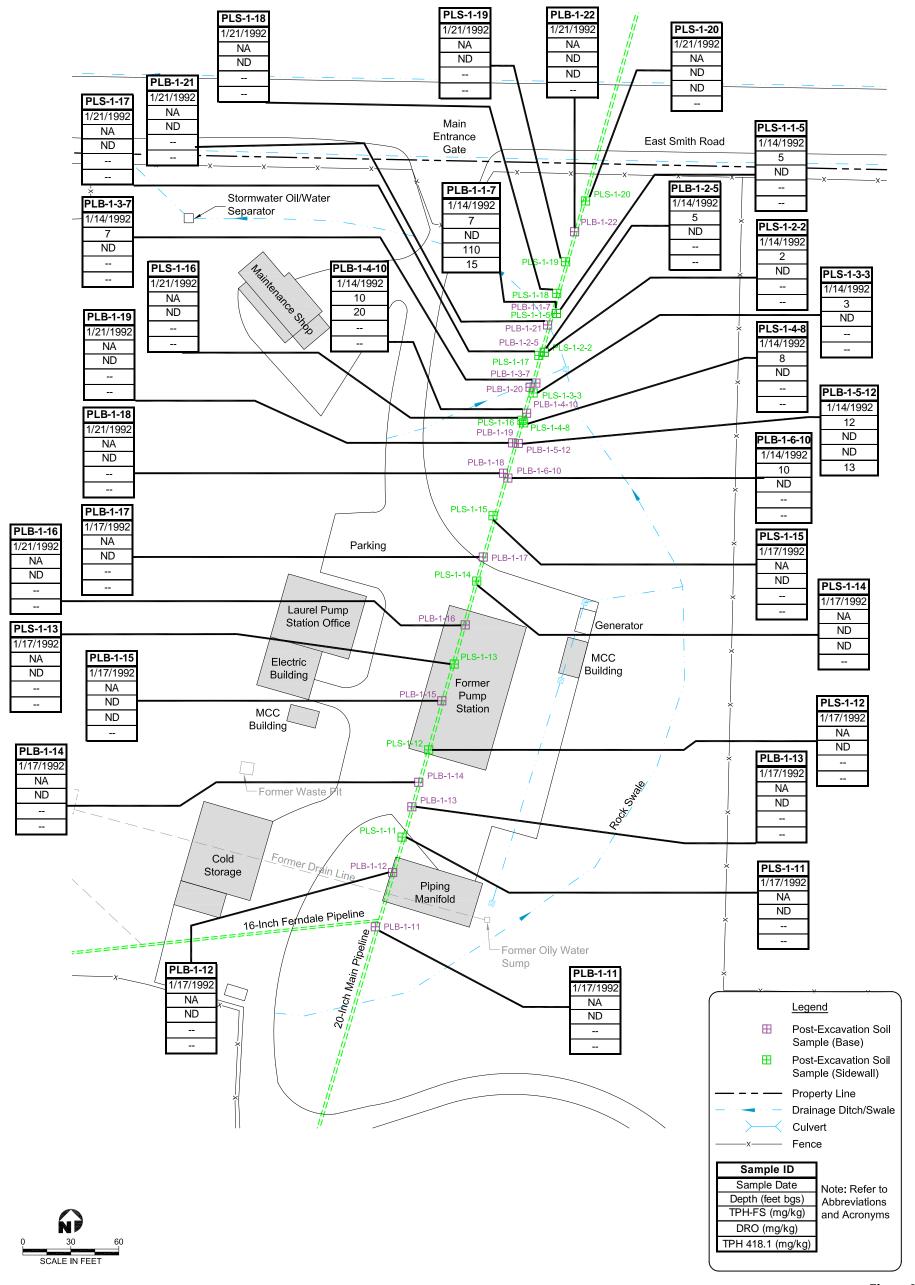
Former Drain Line Between Oily Water Sump and Burn Pit Sample Locations (Study Unit 1)

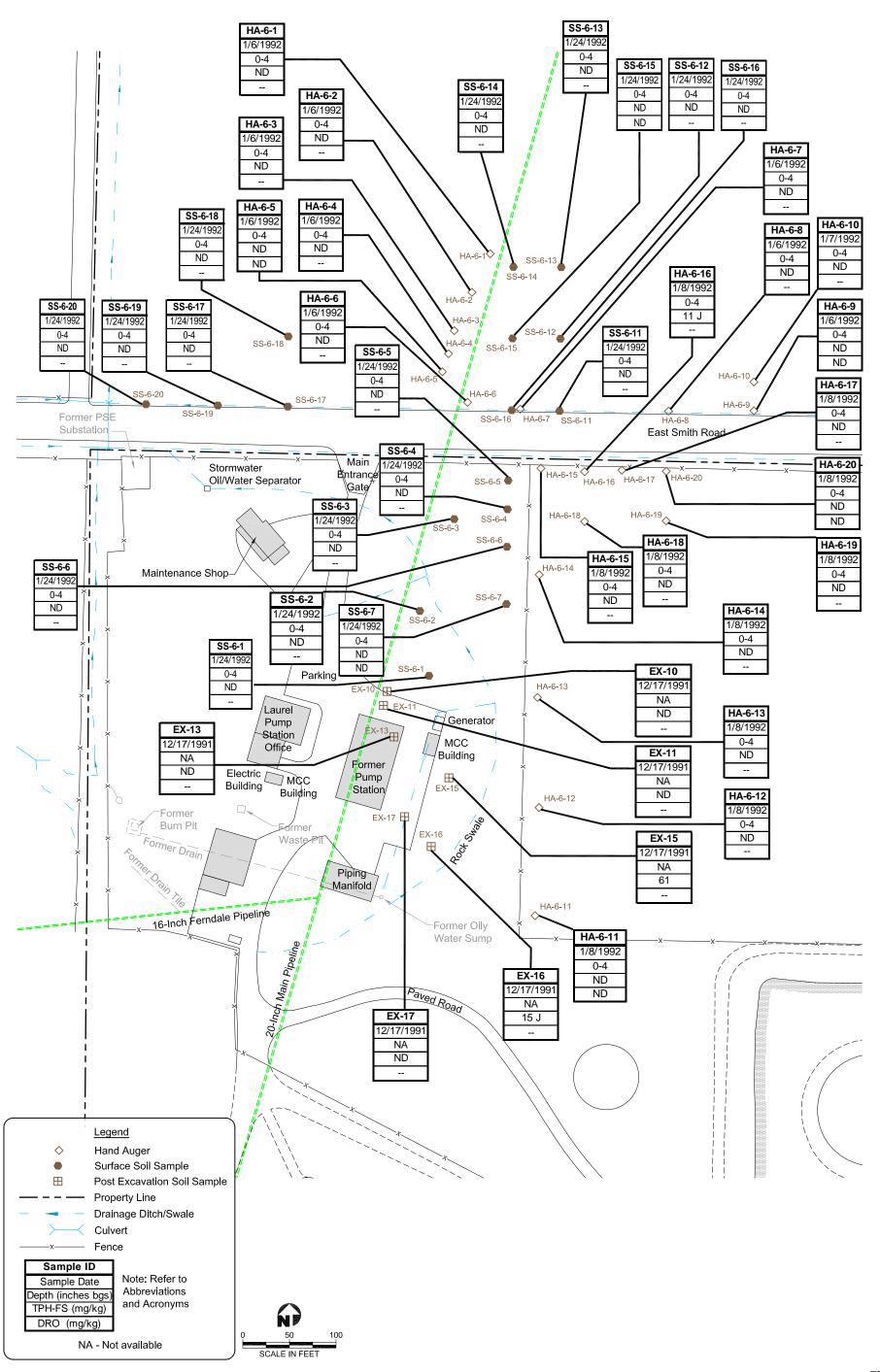




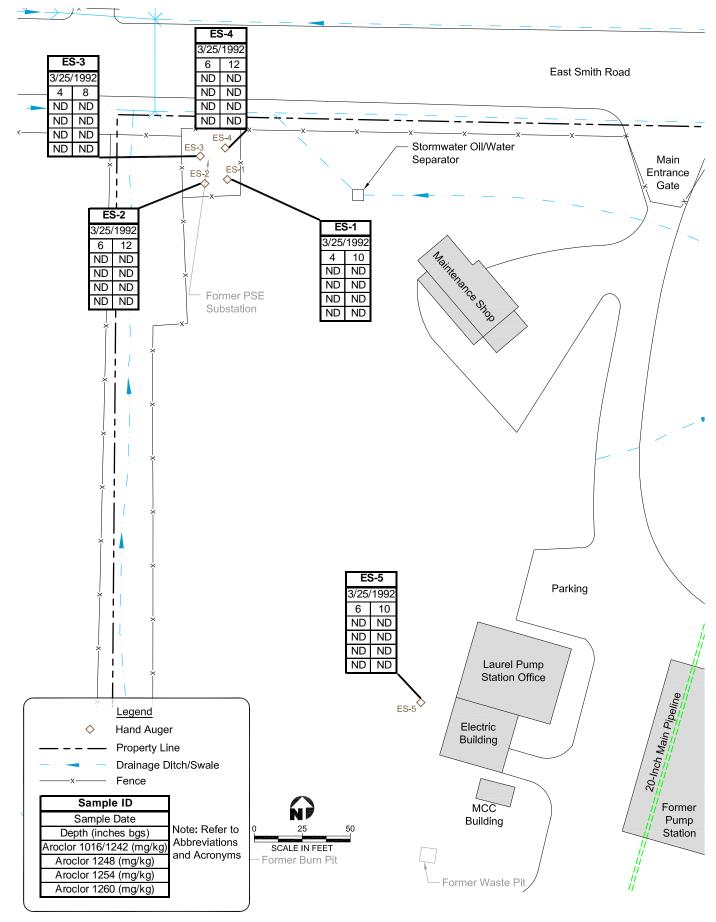
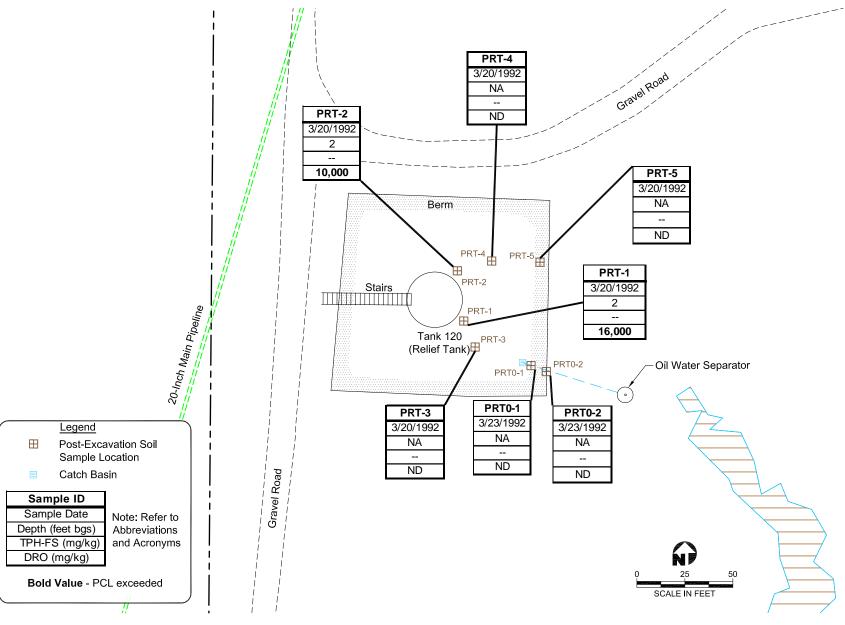
Q:\geo\Kinder Morgan\Laurel Pump Station\SubTasks\Data Comp\Figure 19 Former Drain Tie.dwg Mod: 01/14/2010, 12:36 | Plotted: 04/30/2010, 11:45 | john_knobbs

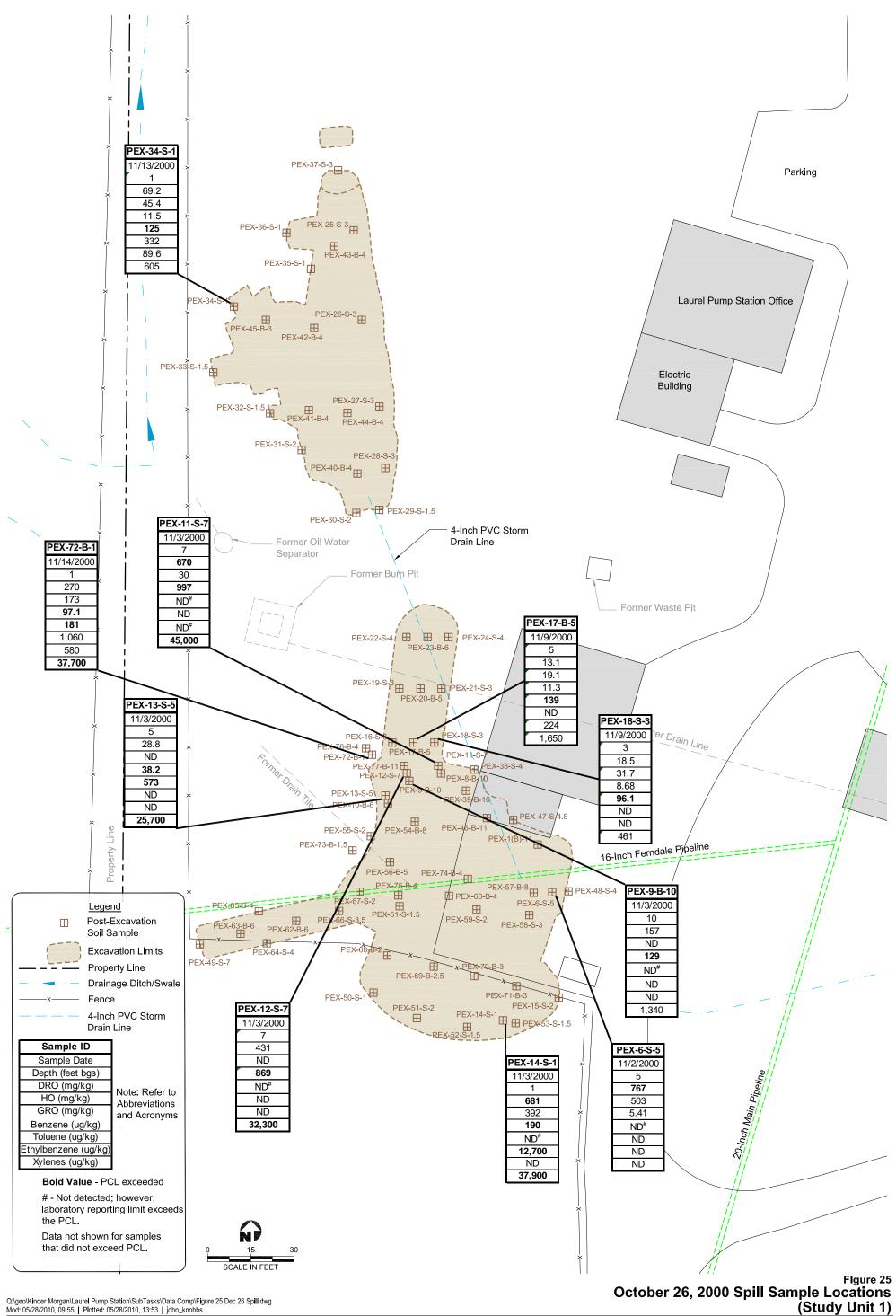
Former Drain Tile Excavation Sample Locations (Study Unit 1)

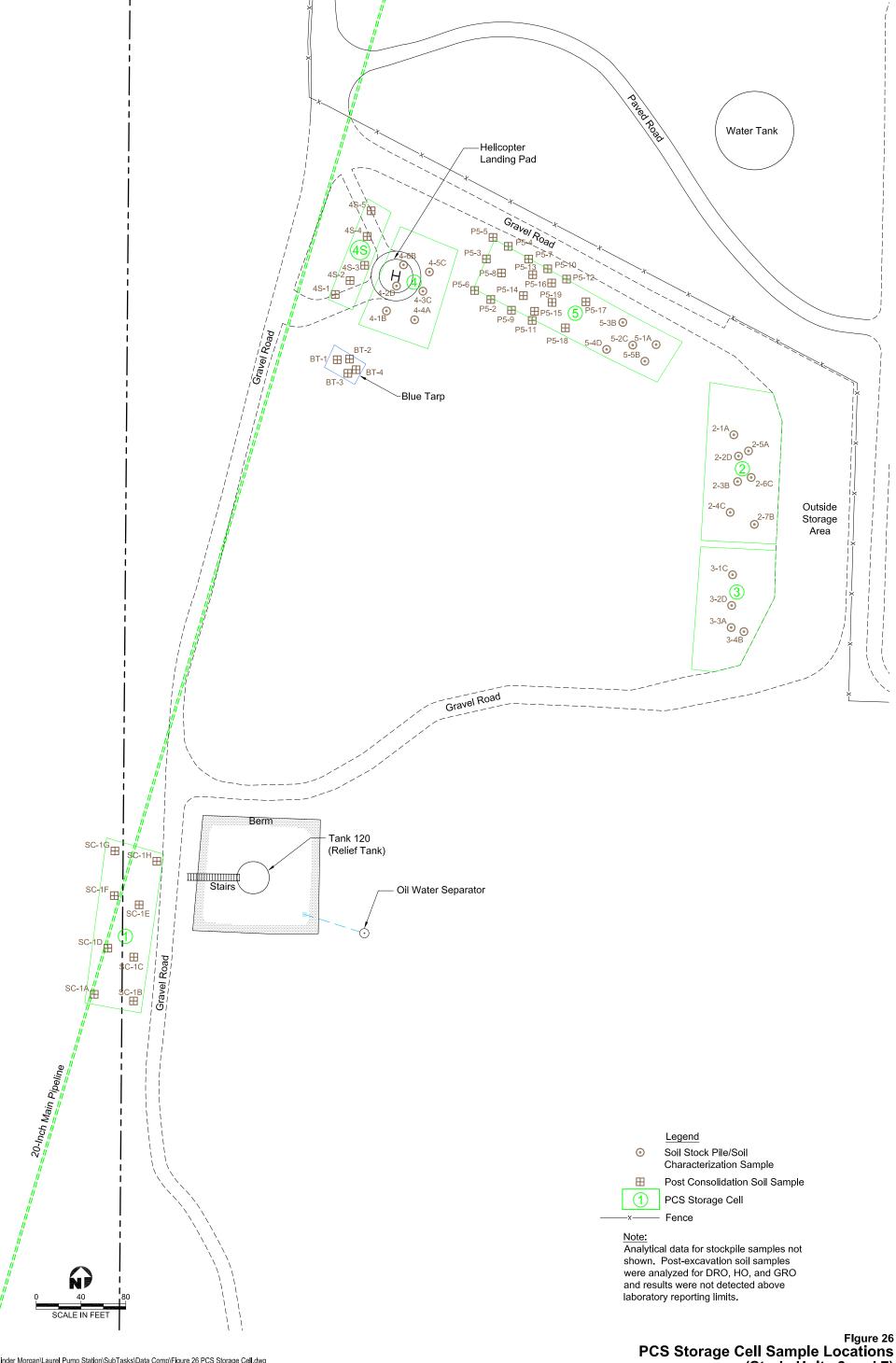


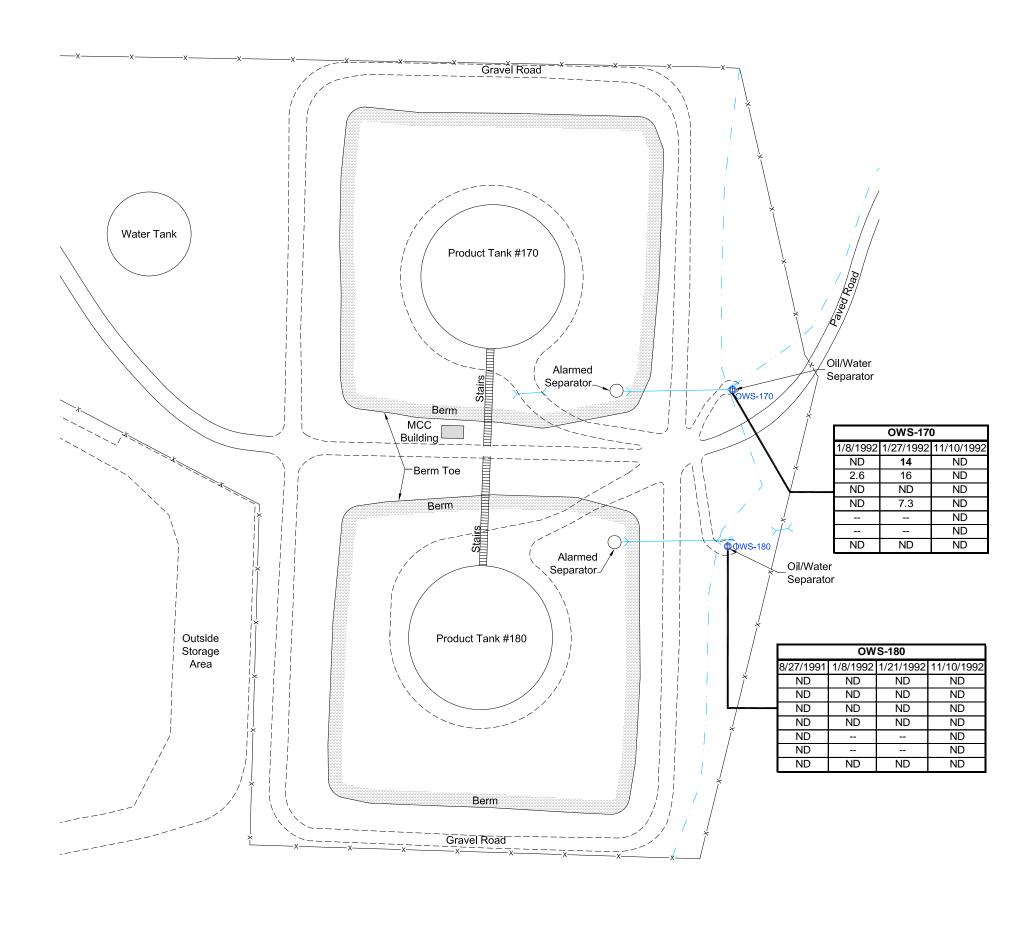


20-Inch Main Pipeline Sample Locations (Study Unit 1)

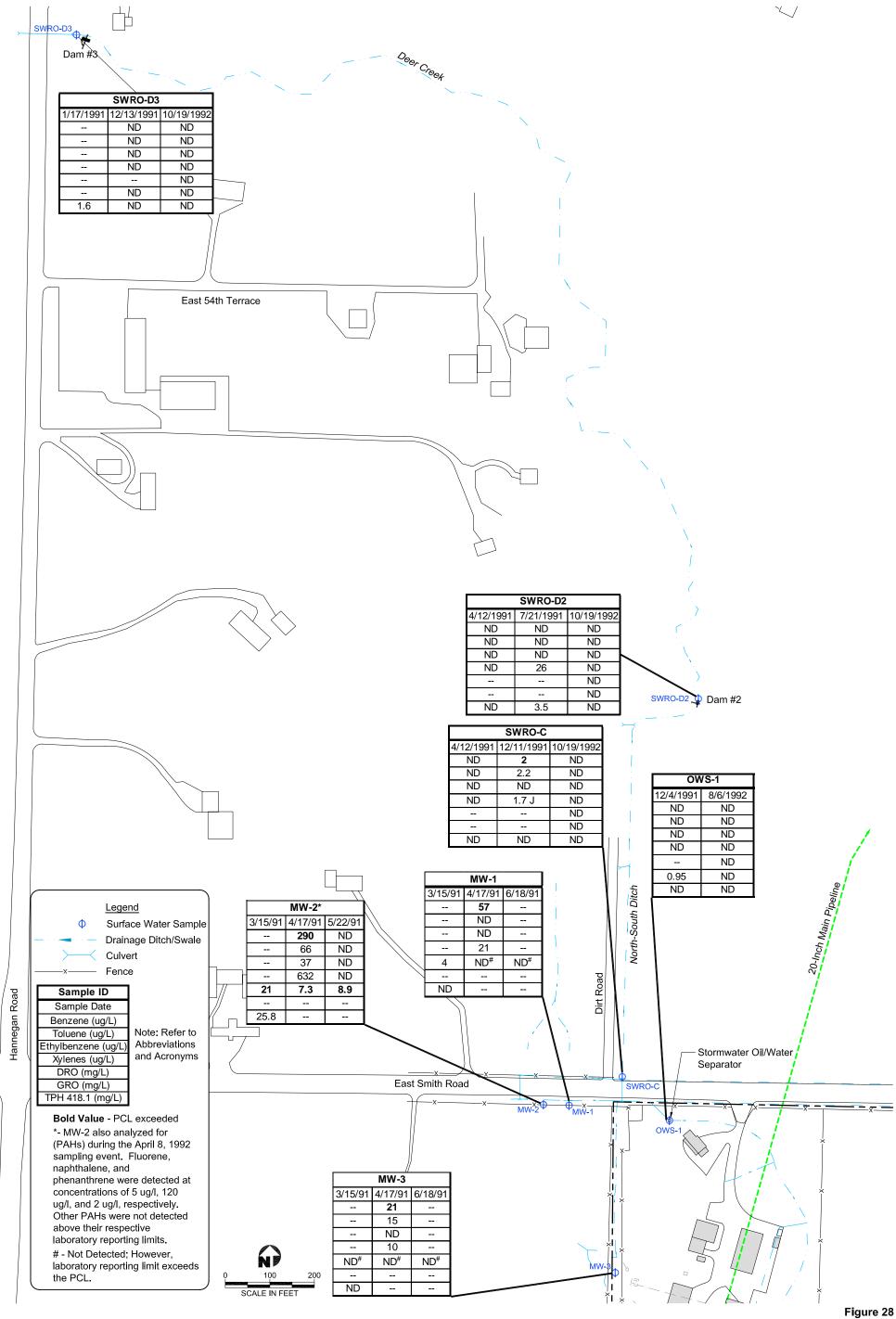

Figure 22
Former PSE Electrical Substation Sample Locations
(Study Unit 1)

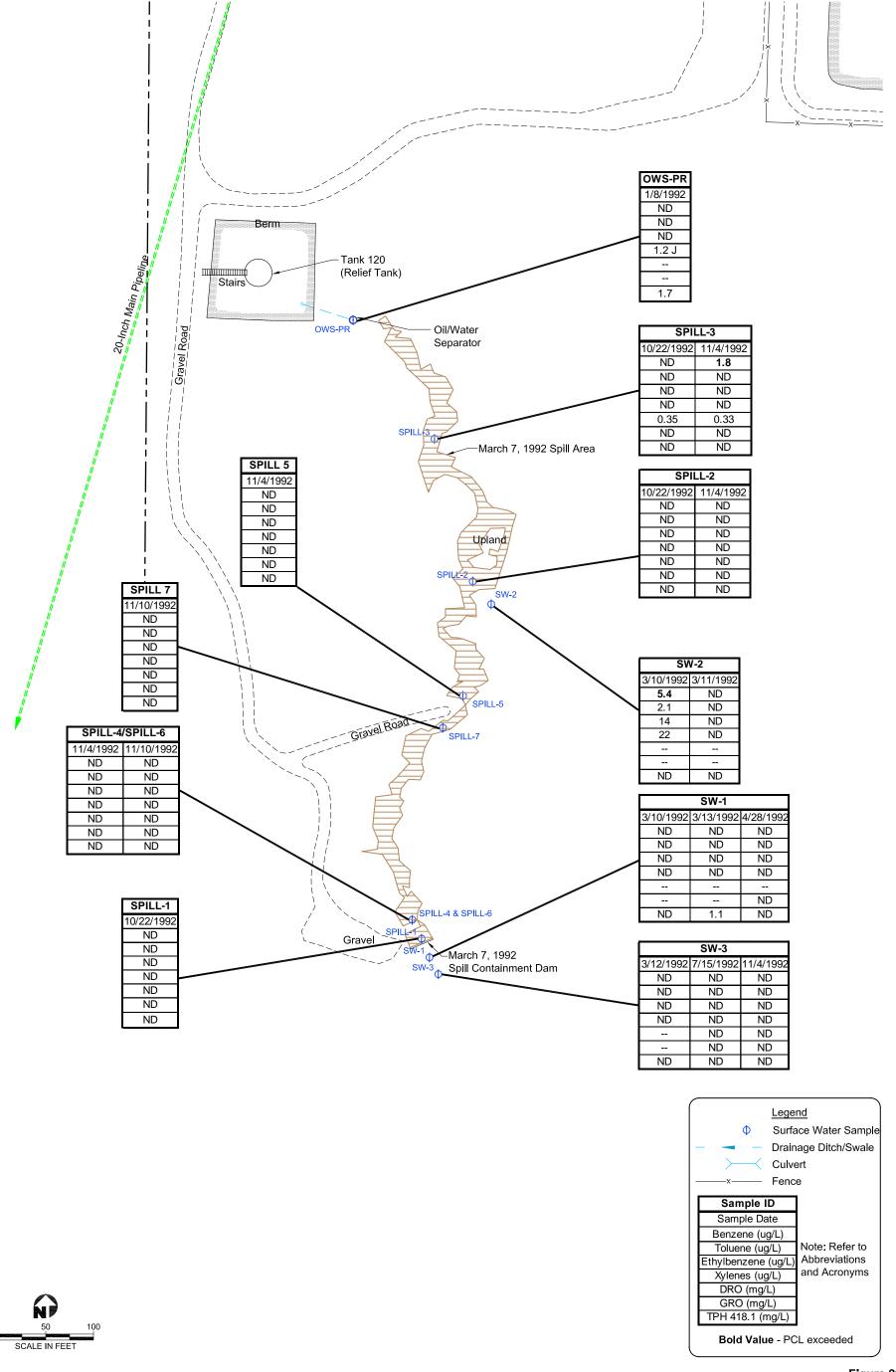

Q:\geo\Kinder Morgan\Laurel Pump Station\SubTasks\Data Comp\Figure 24 Mar 7 1991 Spill.dwg Mod: 04/29/2010, 15:54 | Plotted: 04/30/2010, 13:31 | john_knobbs



URS

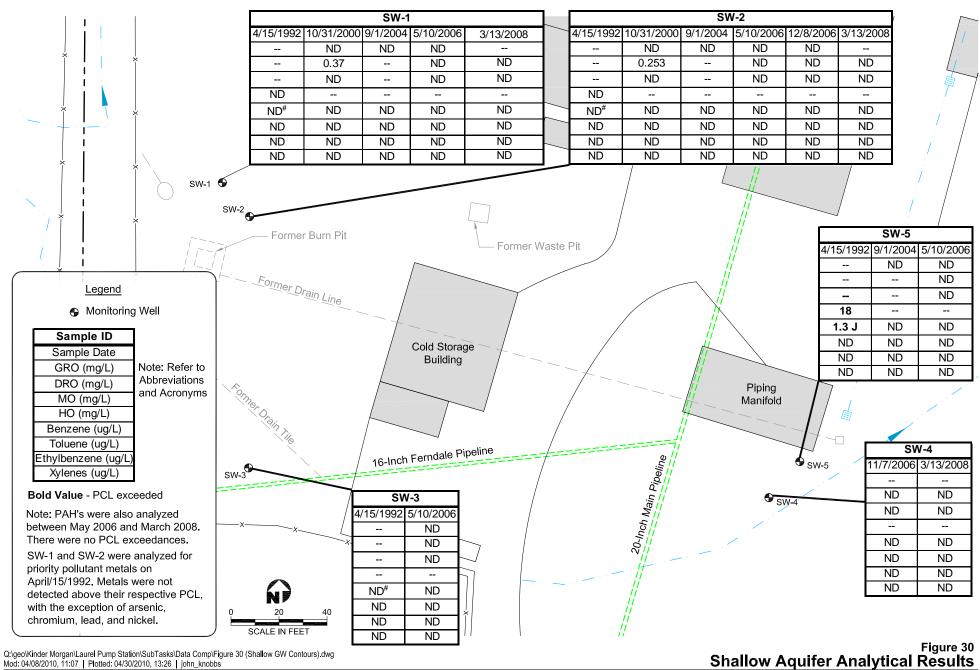
Q:\geo\Kinder Morgan\Laurel Pump Station\SubTasks\Data Comp\Figure 26 PCS Storage Cell.dwg Mod: 04/29/2010, 15:53 | Plotted: 04/30/2010, 13:30 | john_knobbs


Figure 26 (Study Units 3 and 7)

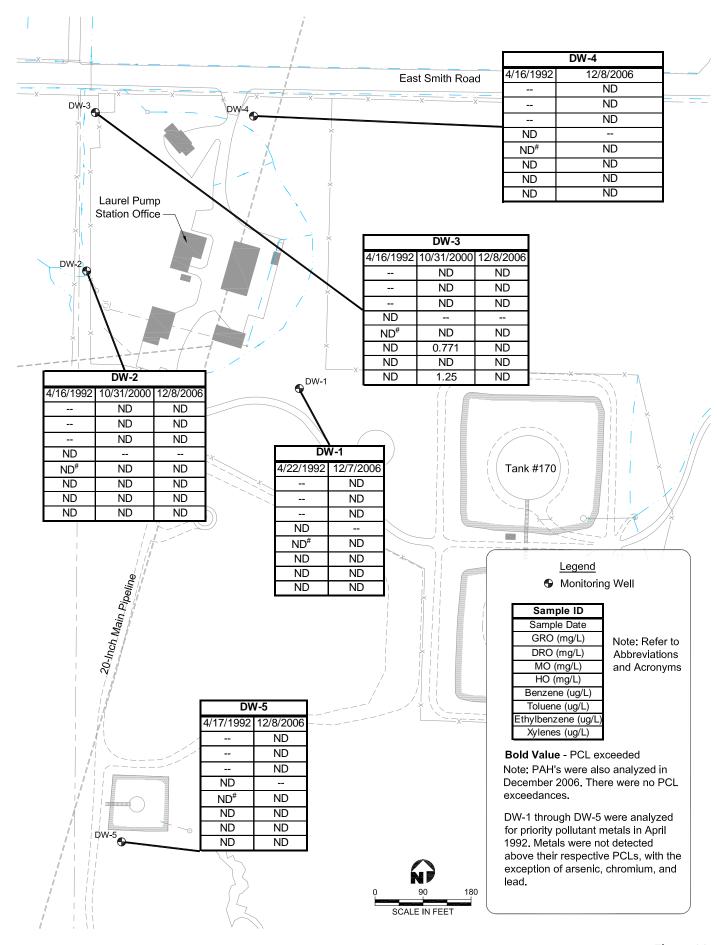


Surface Water Sampling Locations (Study Unit 2)

Legend

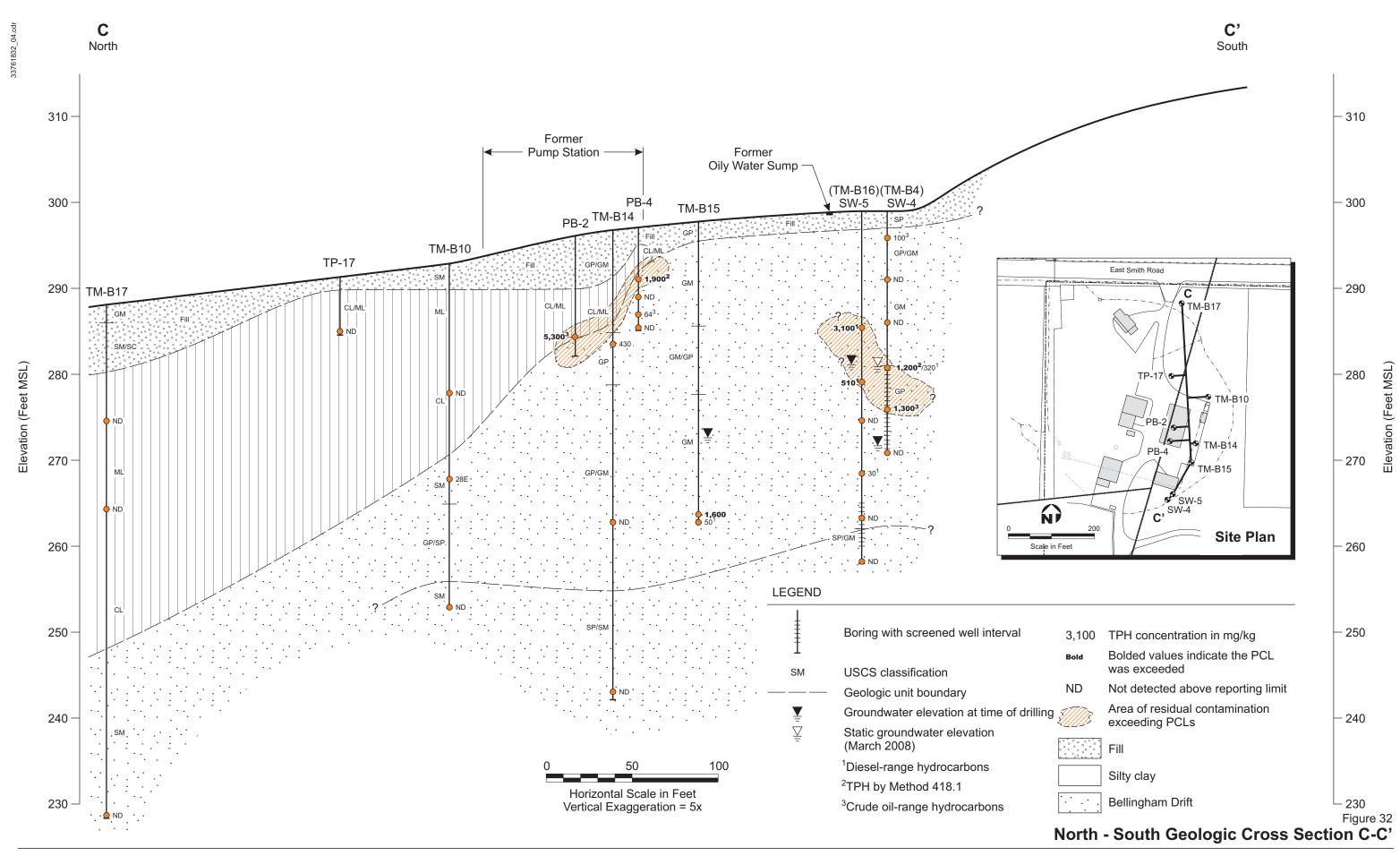


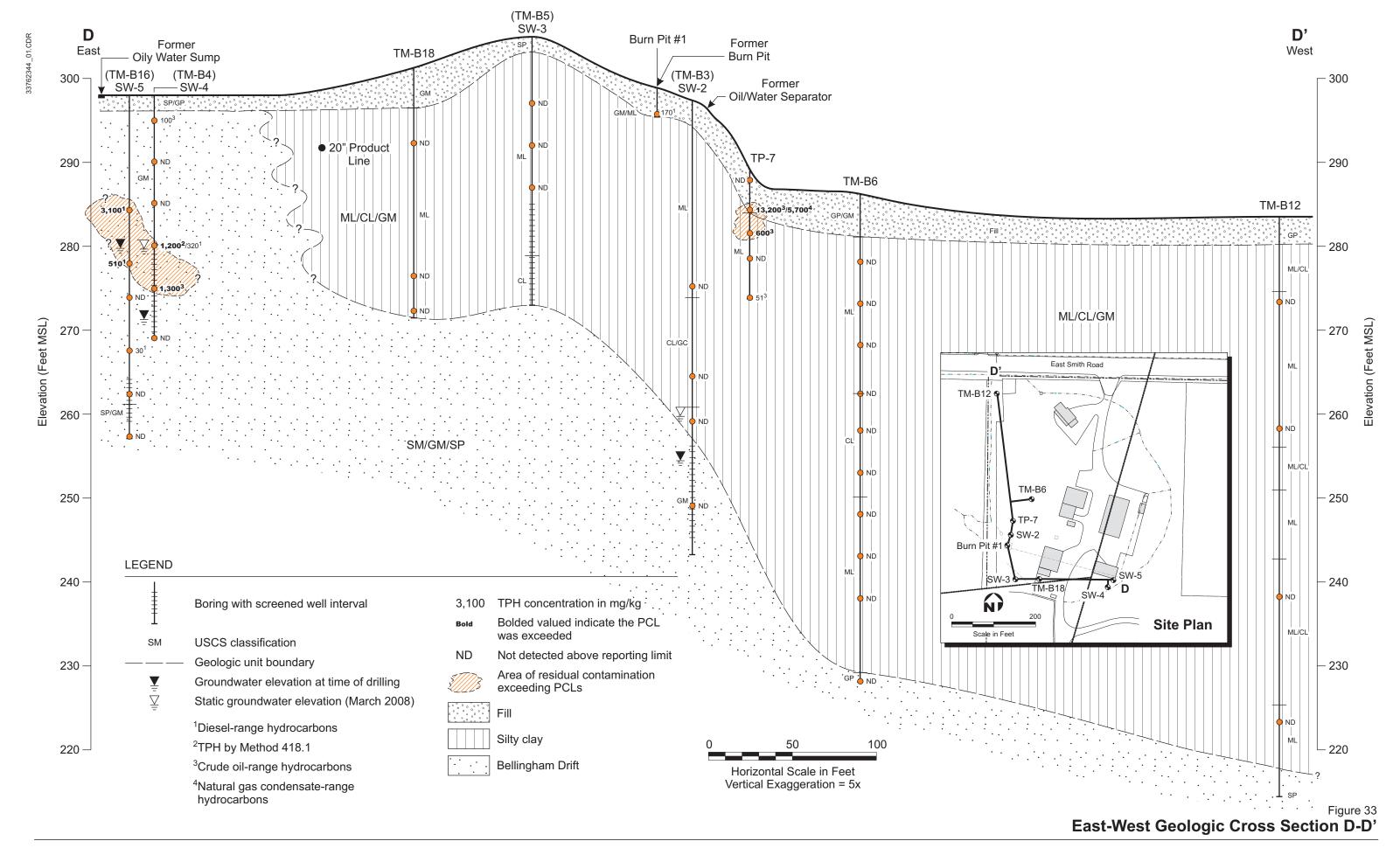
Surface Water Sampling Locations (Area 3 and Study Unit 1)

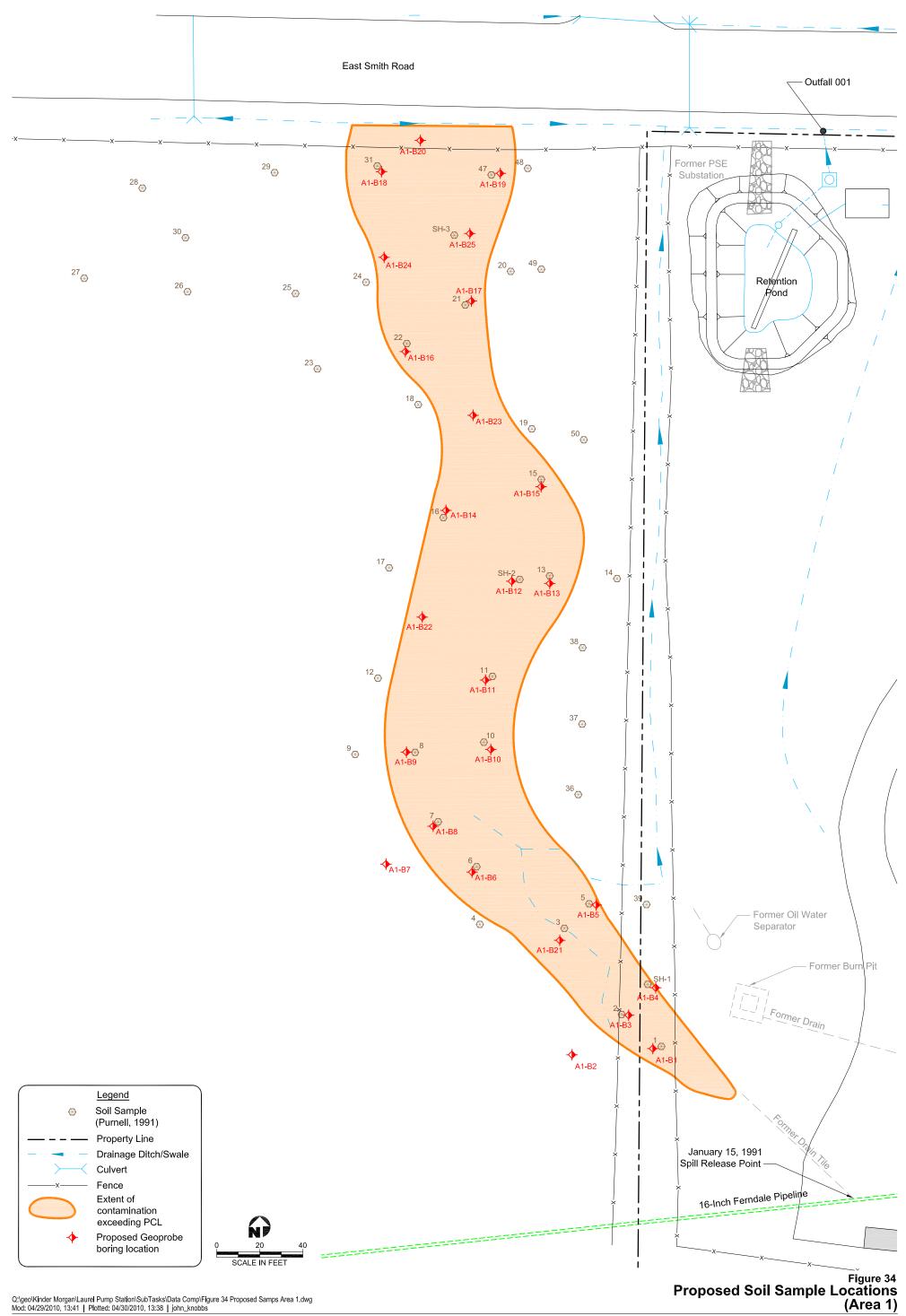


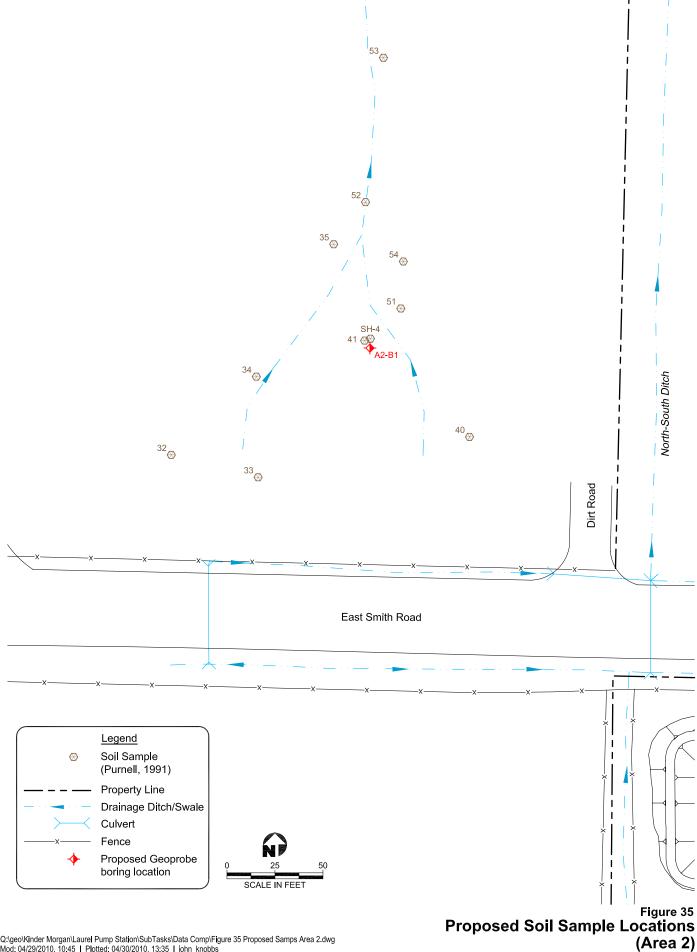
Q:\text{Q:\text{lgeo}\text{Kinder Morgan}\Laurel Pump Station\SubTasks\Data Comp\Figure 29 (SW Locs SU 3).dwg Mod: 05/28/2010, 10:25 | Plotted: 05/28/2010, 13:59 | john_knobbs

Surface Water Sampling Locations (Study Unit 3)






Q:\geo\Kinder Morgan\Laurel Pump Station\SubTasks\Data Comp\Figure 31 (Deep GW Contours).dwg Mod: 04/08/2010, 11:17 | Plotted: 04/30/2010, 13:39 | john_knobbs



URS

Q:\geo\Kinder Morgan\Laurel Pump Station\SubTasks\Data Comp\Figure 35 Proposed Samps Area 2.dwg Mod: 04/29/2010, 10:45 | Plotted: 04/30/2010, 13:35 | john_knobbs

Laurel Station Bellingham, Washington

Q:\geo\Kinder Morgan\Laurel Pump Station\SubTasks\Data Comp\Figure 36 Proposed Samp Unit 1.dwg Mod: 04/29/2010, 14:54 | Plotted: 04/30/2010, 13:35 | john_knobbs

Laurel Station Bellingham, Washington

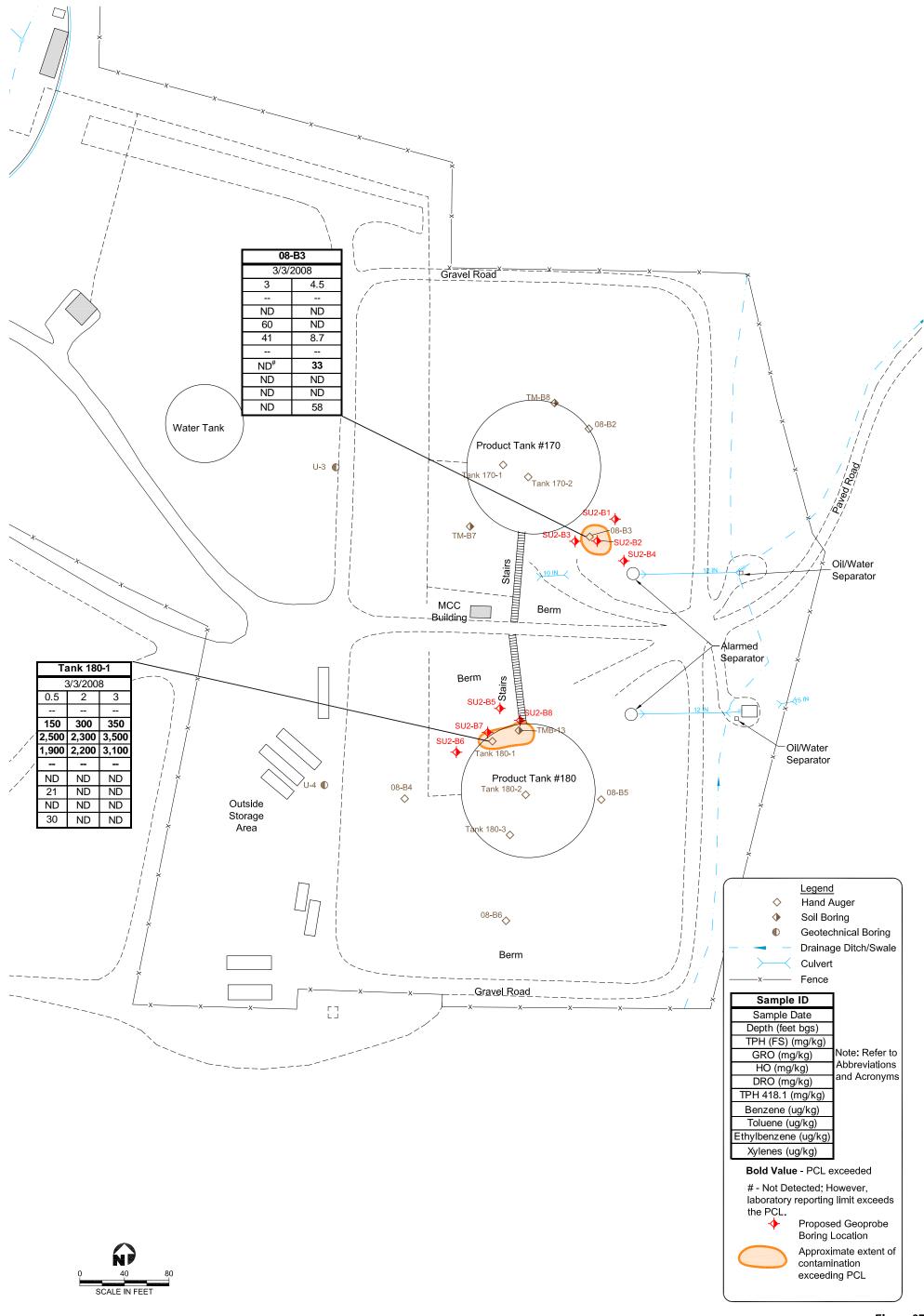


Figure 37 Proposed Soil Sample Locations - 1979 Spill (Study Unit 2) Laurel Station

Bellingham, Washington

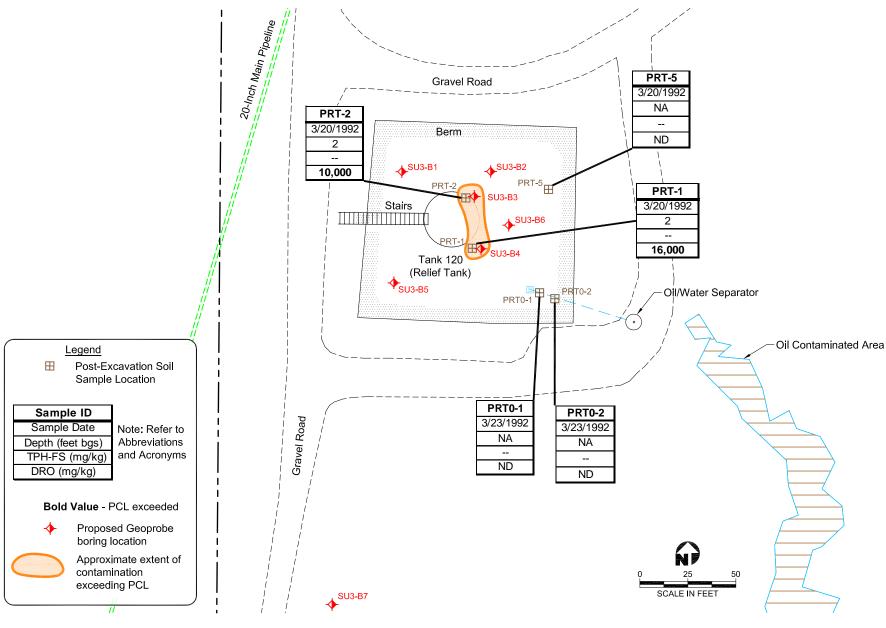
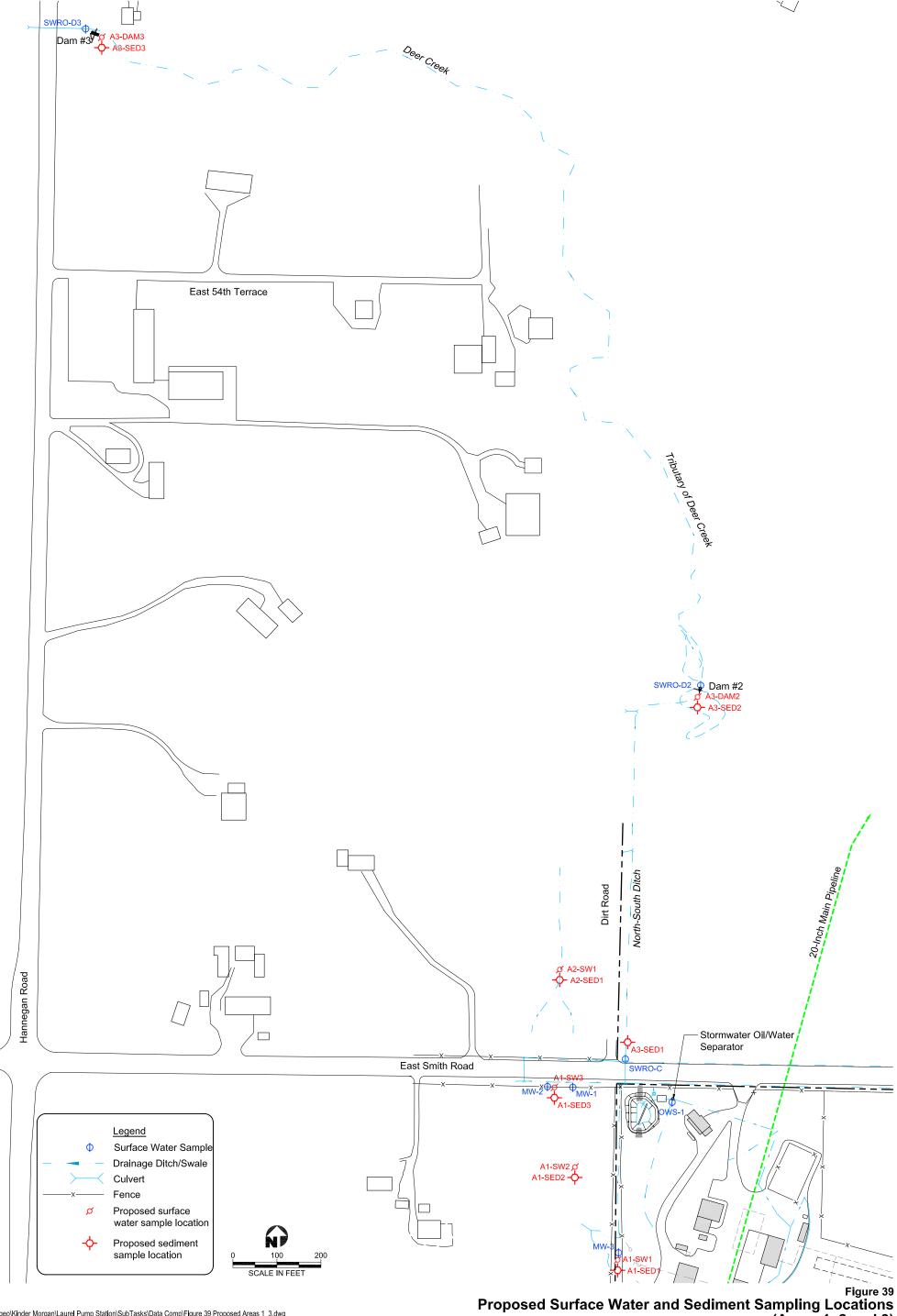
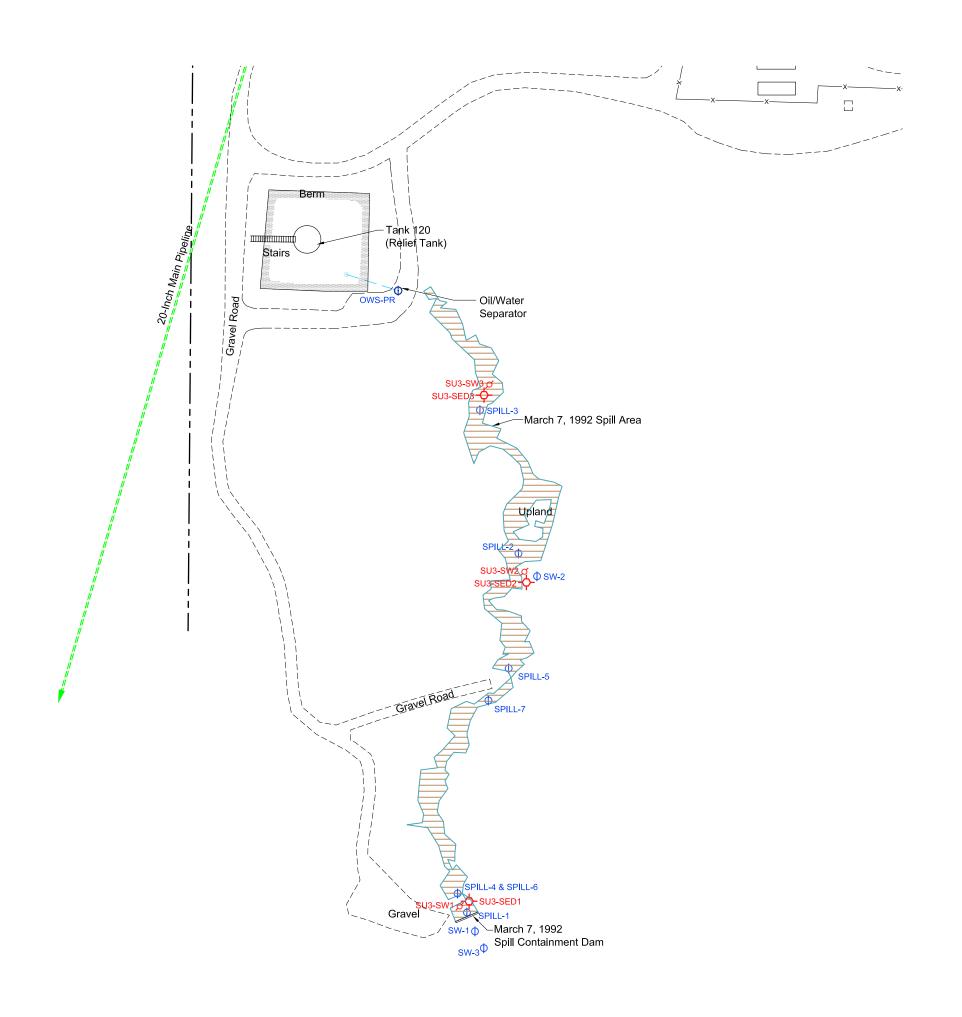
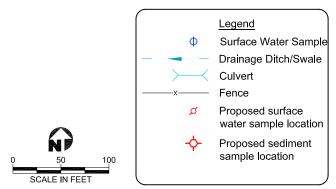
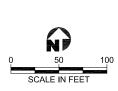
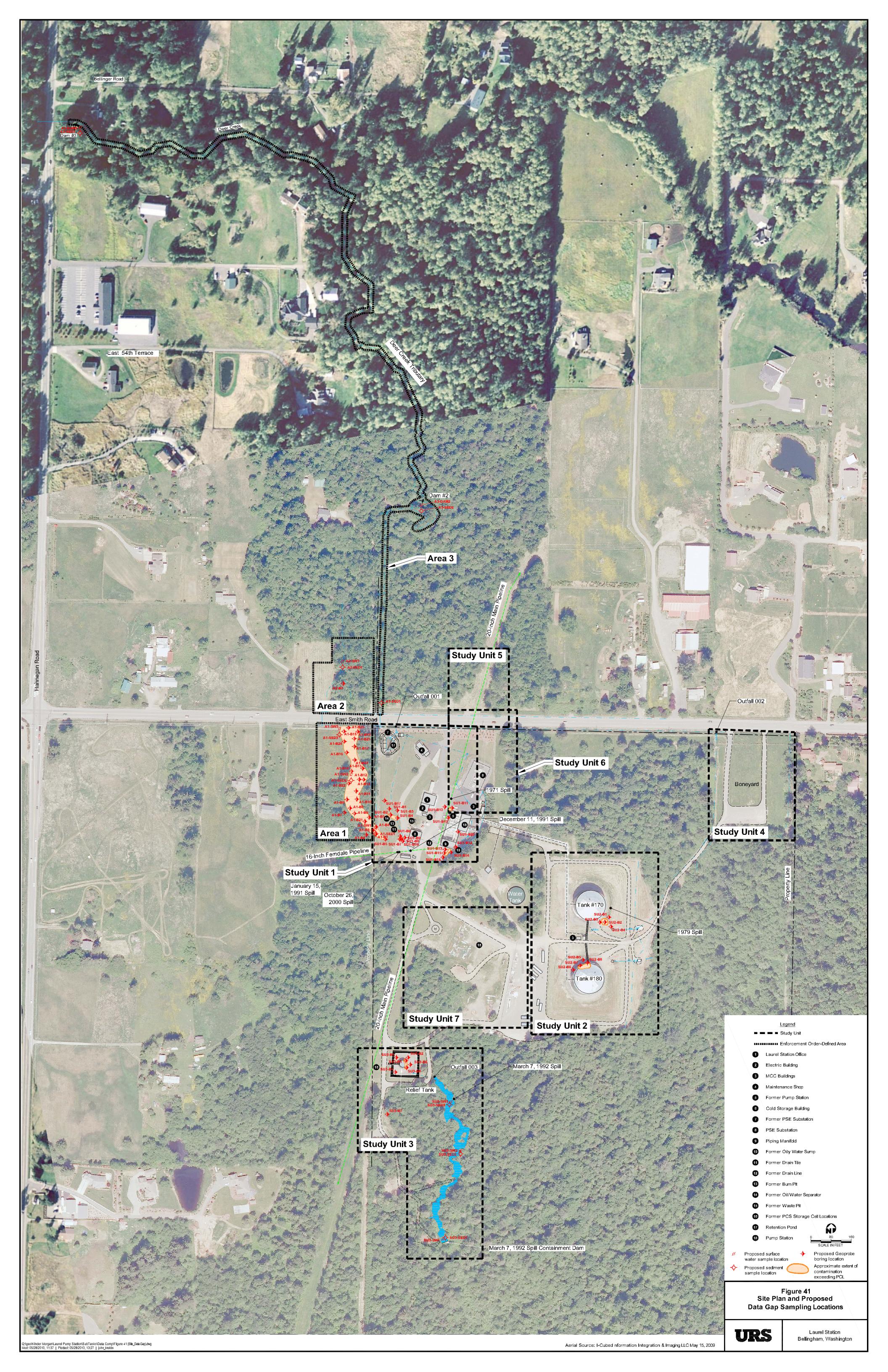



Figure 38
Proposed Soil Sample Locations
(Study Unit 3)








Q:\geo\Kinder Morgan\Laurel Pump Station\SubTasks\Data Comp\Figure 39 Proposed Areas 1_3.dwg Mod: 04/29/2010, 14:54 | Plotted: 04/30/2010, 13:33 | john_knobbs

(Areas 1, 2 and 3)

APPENDIX A ENFORCEMENT ORDER MATRIX, SUPPORTING BIBLIOGRAPHIES, AND AMENDED ORDER

Enforcement O	rder No. DE 91-N192	2				
				STAT		
E.O. Exhibit A Item - First Amended EO No 91-N192 (effective 6-15-92)	Associated Documentation	Ecology Correspondence	Completed / acknowledged by Ecology	Completed/not acknowledged by Ecology	Completed / Not Submitted to Ecology	Actions Pending / Not Completed
I. PRE-REMEDIAL INVESTIGATION REPORT Submit to Ecology for review an independent pre-remedial investigation report for all the	61, 96, 106	71		✓		
investigation work performed by Trans Mountain which has not previously been submitted to Ecology in a report format including the information obtained during Trans Mountain's 1991- 1992 upgrade of the pump station.						
II. REMEDIAL INVESTIGATION AND FEASIBILITY STUDY						
Conduct a remedial investigation and feasibility study (RI/FS) pursuant to WAC 173-340-350. The RI/FS shall address known or potential contamination resulting form the January 1931. December 1991, and March 1992 petroleum spills as well as known or potential contamination resulting from current and historic operations including spills or leaks at and from the pump station. The RI/FS shall also include information to determine the impact or potential impact of releases of hazardous substances at the facility on the natural resources and ecology of the area, and ecological and human risk assessment, wetland delineation, and an evaluation of interim cleanup actions.						✓
A. Submit to Ecology for review and approval a RI/FS Work plan pursuant to WAC 173-340-350. The work plan format shall follow the general format presented in the EPA Superfund Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA. The work plan shall include a health & safety plan (WAC 173-340-810), sampling and analysis plan (WAC 173-340-820), wetland delineation plan, a natural resource damage assessment plan, and a discussion of data gaps associated with each item described in WAC 173-340-350(6). If Trans Mountain believes that an item described in WAC 173-340-350(6) is not applicable to the site, a brief explanation about why it is not applicable shall be included in the work plan.	12, 41, 88	25, 36		✓		
The health & safety plan is reviewed but not approved by Ecology. If Trans Mountain believes that the existing health & safety plan (Amended Health and Safety Plan For Trans Mountain Oil Pipe Line Corporation, Laurel Station RI/FS, March 20, 1992, prepared by Dames and Moore) meets the legal requirements for worker health and safety (WAC 173-340-810) for the work to be completed for the RI/FS described above, Ecology shall be notified by Trans Mountain, in writing, the basis for its decision about the adequacy of the health & safety plan. If the existing plan does not meet the legal requirements for worker health & safety, Trans Mountain shall include a revised health & safety plan which shall be submitted with the work plan.	12, 41, 88	25, 36, E47		✓		
B. Submit to Ecology for review and approval a RI/FS report. The report shall follow the EPA suggested RI/FS format.						✓
III INTERIM ACTIONS	T	1				
III. INTERIM ACTIONS A. Submit a written response to each comment included in Ecology's June 19, 1991 comment letter on Purnell & Associates' May 17, 1991, Site Assessment Report - Soil and Water Analysis, Laurel Pump Station Natural Gas Condensate Spill, East Smith Road, Whatcom County, Washington and the Seymour & Associates' May 16, 1991, Laurel Pump Station Condensate Spill: Fisheries Assessment. The written response shall include responses made	19, 20, 37, E8					
prior to the issuance of this Order. B. Surface Water Monitoring				✓		
1. Submit to Ecology for review biweekly surface water sampling results obtained by Trans Mountain at surface water monitoring stations established by Trans Mountain to monitor surface water quality from areas contaminated by hazardous substances. The water quality parameters to be analyzed shall include but not be limited to the volatile organics: benzene, toluene, ethylbenzene, and xylene (BETX); the full range of petroleum hydrocarbons; pH; conductivity; and temperature. The Washington Department of Ecology analytical procedures for petroleum hydrocarbon analysis for water (WTPH-G, WTPH-D, WTPH-AIR.1) shall be used to analyze the full petroleum hydrocarbon range. The analytical method selected for BETX shall be in compliance with WAC 173-340-830, analytical procedures.	12, 13, 26, 50, 95, 101, T19, T22, T24, T26, T27, T28, T29, T38, T42					
The water quality sampling result submittals shall include but not be limited to a surface water station location map, a summary of surface water sampling results, copies of the laboratory data sheets, and a description of any water quality sampling results which exceed groundwater or surface water quality criteria.				√		
C. Submit to Ecology for review detailed hydrogeological cross sections which cover the area within a one-mile radius of the January 15, 1991, leak site to confirm Purnell & Associates hypothesis that no aquifer other than the shallow aquifer is contaminated with natural gas condensate or other contaminants related to the Laurel Pump Station and that no drinking water wells are affected. Logs from registered and unregistered wells identified within a one-mile radius of the January 15, 1991, leak site as well as any other information available to Trans Mountain or their consultants shall be used to develop the cross sections.	22, 94, 96, 100			✓		

Enforcement O	rder No. DE 91-N192	2				
				STA	rus	
E.O. Exhibit A Item - First Amended EO No 91-N192 (effective 6-15-92)	Associated Documentation	Ecology Correspondence	Completed / acknowledged by Ecology	Completed/not acknowledged by Ecology	Completed / Not Submitted to Ecology	Actions Pending / Not Completed
D. Dam and Surface Water Maintenance	00 00	24 75 02				
1. Submit to Ecology for review a plan for maintaining and operating Dam #2, located downstream of Smith Road, Dam #3, east of Hannegan Road, and the dam constructed by Trans Mountain for the March 1992 petroleum spill. The plan shall also include a discussion of the cleanup of visible contamination on the surface water. A copy of the plan shall also be sent by certified or registered mail to the Department of Wildlife and Mark Schuller, Department of Fisheries (Fisheries), 333 E. Blackburn Road, Mt. Vernon, Washington for Fisheries files.		21, 75, 93	√ E22			
Begin implementation of the Dam #2 and Dam #3 dam and surface water maintenance plan.	E26			1		
Begin implementation of the dam and surface water maintenance plan for the dam	72	77, E19		✓		
constructed by Trans Mountain for the March 1992 petroleum spill. 4. Submit to Ecology for review and comment an evaluation of the feasibility of removing Dam #2, Dam #3, and the dam constructed by Trans Mountain for the March 1992 petroleum leak. The evaluation shall include but not be limited to a discussion of potential environmental impacts such as migration of contaminants or contaminated sediments as a result of the dam removal, a summary of surface water testing, and visual and olfactory contamination observations.	T17, T18		√ E27 (Dam 3)			
5. Submit to Ecology for review a Dam Removal Plan if the evaluation described in D.4., above, indicates that dam removal is feasible and Ecology agrees with the evaluation. The plan shall provide detailed steps for completing the dam removal including a discussion of any SEPA or other permit requirements such as a hydraulic permit, water permit requirements and specific requirements for preventing further environmental damage as a result of the dam removal.						✓
E. Spill Prevention Plan Submit to Ecology for review a spill prevention plan which shall address future potential	24, 42, 51, 57, E12	48			-	
leaks, spills, or unauthorized discharges from the Laurel Pump Station site. The plan shall include but not be limited to the following information and procedures:	24, 42, 31, 37, 112	40	√ E14, E18			
 A description of a reporting system to be used to notify immediately persons responsible for the management of the facility and appropriate state, federal, and local authorities; 	24, 42, 51, E16			√		
 A description and a site plan showing equipment or facilities for the prevention, containment or treatment of leaks, spills, and unauthorized discharges; 	24, 42, 51			✓		
c. A list of all hazardous substances as defined in Chapter 70.105D RCW, Hazardous Waste Cleanup - Model Toxics Control Act which are used, processed or stored at the facility including the normal quantity maintained on the premises. The applicable Material Safety Data Sheets (MSDS) shall be included as an appendix to the plan.	24, 42, 51			✓		
d. A brief description of any leaks, spills, or unauthorized discharges which occurred during the 36-month period preceding the effective date of this Order and subsequent measures taken by Trans Mountain Oil Pipe Line Corporation to prevent or to reduce the possibility of further leaks, spills, or unauthorized discharges; and				✓		
e. An implementation schedule for additional equipment or facilities which might be required for E.1.b, above, but which are not yet operational. The Spill Prevention Plan must be reviewed and certified by a professional engineer registered in the State of Washington. Such certification shall in no way relieve Trans Mountain Oil Pipe Line Corporation of its duty to prepare and fully implement the Spill Prevention Plan for the Laurel Pump Station.	copy not signed by			✓		
Begin the Spill Prevention Plan implementation.	24, 79			✓		
Submit to Ecology the results of the studies, evaluations, or other items outlined by Trans Mountain in its Spill Prevention Plan implementation schedule.	67, 79	68		✓		
F. Oil/Water Separator	0.45.00.00.50	=.				
 Submit to Ecology as-builts of the Laurel Pump Station Oil/Water separators along with a list of hazardous substances that historically may have been discharged. The as-builts shall identify historic sources connected to the separators as well as current sources. 	9, 15, 30, 68, E2	11, E1		✓		
2. Submit a sampling and analysis plan for water samples to be collected from the separators. The initial sampling round shall include the priority pollutant and petroleum hydrocarbon analyses if the sources which discharge to the separators cannot be determined. If the sources discharging to the separators have been identified then the sampling may be limited to those hazardous substances associated with each source. The sampling and analysis plan shall meet the submittal requirements of WAC 173-340-430(6).	14, 37, 38, 68, 84	62, 65, 76	√ 86			
Collect water samples from the oil/water separator outlets.	95, 101			1		
4. Submit to Ecology a written report of the chemical analytical results for each separator sampling event. The report shall include a summary of the analytical and quality control/quality assurance results, copies of all laboratory analytical and quality control/quality assurance data, and describe any changes to the procedures described in the sampling and analysis plan prepared for F.2, above.	95, 101, T28, T32, T42, T46, T47, T52, T53, T55, T56, T59			✓ T53, T63		

Enforcement O	rder No. DE 91-N19	2				
				STA	rus	
E.O. Exhibit A Item - First Amended EO No 91-N192 (effective 6-15-92)	Associated Documentation	Ecology Correspondence	Completed / acknowledged by Ecology	Completed/not acknowledged by Ecology	Completed / Not Submitted to Ecology	Actions Pending / Not Completed
G. Wetlands Delineation and Mitigation						
A wetland mitigation plan shall be required for cleanup actions in wetland areas of the site. Appropriate wetland delineation shall be accomplished in advance of the wetland mitigation plan. Attachment 1, <u>Report Recommendations For Wetland Determinations/Delineations and Compensatory Wetlands Mitigation Plans</u> provides general guidelines for wetland determinations/delineations and mitigation plans.						
Submit to Ecology for review and comment a wetland determination/delineation for the	52, T12, T13, T16	45				
following areas: a. Laurel Pump Station property; Area 1; Area 2; and the portions of Area 3 upstream of	52, T12, T13, T16	45, E7, E17		1		
Hannegan Road, which have been affected by the January 1991 natural gas condensate leak.	52, 112, 115, 116	40, 27, 217		•		
b. All other areas of the site which have been identified as affected or potentially affected by the pump station operation in the Ecology reviewed and approved wetland delineation plan required under section II.A. Pump station operations include but are not limited to historic and current operations, upgrading, spill responses, interim actions, final remedial actions. 2. Submit to Ecology a Wetland Mitigation Plan for the site.		E7				√
2. Submit to Ecology a Welland Willigation Flam for the Site.						•
Implement the wetland mitigation plan.						✓
H. Interim Cleanup Action - Laurel Pump Station Property: Non-Wetland Areas Affected by the						
<u>January 15, 1991 Natural Gas Condensate Leak</u> 1. Submit to Ecology a work plan and a sampling and analysis plan for the following interim	33, 46, 47, 55	40, T31		✓		
January 15, 1991 natural gas condensate leak: a. Removal of the existing drain tile;	, , ,	,		•		
	44, 55	E34	✓ E34			
b. Excavation of any contaminated non-wetland soils which exceed the cleanup criteria for the contaminants of concern. Contaminated non-wetland soils and any stockpiled soils from the January 15, 1991 leak site excavation shall be immediately moved to onsite treatment beds for bioremediation immediately after excavation.	44, 55 115			~		
c. Backfilling of the excavations completed for H.1.a and H.1.b with clean native soil or structural fill. Compacted native soils or structural fill used for backfilling must have hydraulic conductivity values less than or equal to the insitu native soils to prevent this area from acting as a conduit for any potential future leaks, spills, or discharges from this site unless the backfill cannot be placed to meet hydraulic conductivity values due to limitations imposed by the pipe line submittal requirements. The backfilled areas must immediately be reseeded with the appropriate fast growing native vegetation to prevent sedimentation to nearby surface waters. d. Evaluate whether a new drainage system should be installed to replace the drain tile. Install				✓ ✓		
the new drainage system as required. The new system shall contain any future potential leaks or discharges of hazardous substances. The work plan and sampling and analysis plan shall include the appropriate items in the WAC 173-340-430 (6). In addition to the items identified in WAC 173-340-430 (6). the following shall be included in the plans:						
(1) An evaluation of the feasibility of conducting the work described in H.1.a and H.1.d, above, during the different seasons when precipitation varies;						✓
(2) A State Environmental Policy Act (SEPA) checklist or environmental impact statement (EIS) for all interim actions which require a state, county, or city permit and/or National Environmental Policy Act (NEPA) documents for federal permits;	114			✓		
(3) An application for a Water Quality Modification from the Department of Ecology - Water Quality Section, if required; and						
(4) A sediment/drainage control plan which shall allow no sediments to be discharged to any surface water body including but not limited to wetlands, drainage ditches, creeks, streams, and ponds.						
(5) A plan which describes how bioremediation will be accomplished. The on-site bioremediation must be managed to maximize bioremediation (destruction) of hazardous substances rather than aeration (volatilization). While volatization will occur during excavation and treatment, it should be minimized. Therefore, the following must be accomplished as part of the bioremediation at the site:						
(a) Excavate and place soil in the lined, covered treatment beds; (b) Control and manage all runoff related to the bioremediation treatment beds; and (c) properly manage the soil moisture, pH, temperature, and nutrient additions to maximize the						
bioremediation time frame. 2. Begin Interim Cleanup Actions.	44, T23			✓		
Submit report of interim cleanup actions to Ecology.	44, 59, T23, T40	66				
o. Sashiit report of interini deciral actions to Ecology.	77, 00, 120, 140	00		✓		

Enforcement O	rder No. DE 91-N192	2				
				STAT		
E.O. Exhibit A Item - First Amended EO No 91-N192 (effective 6-15-92)	Associated Documentation	Ecology Correspondence	Completed / acknowledged by Ecology	Completed/not acknowledged by Ecology	Completed / Not Submitted to Ecology	Actions Pending / Not Completed
I. Contaminated Soil Stockpiles						
Trans Mountain has generated contaminated soil stockpiles at the pump station as a result of upgrading their facility. These stockpiles shall be monitored, sampled, and evaluated for interim cleanup action options pursuant to WAC 173-340-430, Interim Actions.						
Submit to Ecology for review and comment an Operation and Maintenance Plan for the soil stockpiles pursuant to WAC 173-340-400 (4) (b) and (c). The plan shall include air monitoring based on requirements or recommendations from appropriate regulatory agencies.	73, 85, 89, 111, 112	80, 107, E40 (Whatcom Co. Health Dept. letter), E44 (NWAPA letter)	√ E32			
2. Submit to Ecology for review and approval an interim cleanup action plan for the remediation of contaminated soil stockpiles pursuant to WAC 340-430. The proposed cleanup action shall use permanent solutions to the maximum extent practicable (WAC 173-340-360). The cleanup options evaluated as well as the proposed cleanup action shall be presented in the plan.	78, 112, 113, 115, E29, E30, E51	E28, E31, E33, E43, E49, E50		✓		
Implement the approved interim cleanup action plan.	108, 115		✓			
Submit to Ecology for review and approval a report of the results of the soil stockpile cleanup action.	115, E25		√ T64			
IV. SELECTION OF CLEANUP ACTIONS						
A. Trans Mountain shall submit a SEPA checklist or EIS to Ecology or other appropriate local or state agency and/or NEPA documents, if required, to appropriate federal agencies for the proposed draft cleanup action plan proposed by Ecology. The checklist, EIS, and/or other documents or copies shall be included, as a minimum, with the draft cleanup action plan for public comment.	114 (submittal of SEPA checklist)	16, E50		✓		
Ecology shall prepare and issue a draft cleanup action plan for the proposed cleanup actions at the site. The draft cleanup action plan shall meet the requirements under WAC 173-340-360(10) and (11).						
V. CLEANUP ACTIONS						
A. Cleanup actions shall be accomplished by Trans Mountain in compliance with WAC 173-340-400, Cleanup Actions. Submit to Ecology for review and approval all plans, specifications, and other documents required under WAC 173-340-400 (4). In addition to the requirements under WAC 173-340-400(4), Trans Mountain shall prepare a wetland mitigation plan, other mitigation plans determined to be appropriate based on the results of the RI/FS, and an evaluation of the feasibility of completing the cleanup action during the different seasons when precipitation varies. The evaluation shall be submitted with the plans, specifications, and other documents.	58, 70	60		✓		
Implement cleanup actions after Ecology reviews and approves plans, specifications, wetland or other mitigation plans, and other documents.						✓

BIBLIOGRAPHY - URS (FORMERLY DAMES & MOORE) LAUREL STATION FACILITY

1.	01-24-1991	Dames & Moore, Amended Health and Safety Plan, Trans Mountain Oil Pipeline Corporation, Laurel Station RI/FS, dated January 24, 1991.
2.	02-01-1991	Trans Mountain Oil Pipe Line Corporation, Report, Proposed Site Assessment Plan for the Condensate Spill at Laurel Pump Station.
3.	02-27-1991	Washington State Department of Ecology (Ecology), Letter, Michael Gallagher (Ecology) to G.R. Miller (TMOPL), Re: A reported release of hazardous substances at Trans Mountain Oil Pipe Line Corporation – Laurel Pump Station, 1009 East Smith Road, Bellingham, Washington and Potential Liability for the Release.
4.	05-16-1991	Seymour & Associates, Report, Laurel Pump Station Condensate Spill: Fisheries Assessment.
5.	05-17-1991	W.D. Purnell & Associates, Inc., Site Assessment Report – Soil & Water Analysis, Laurel Pump Station Natural Gas Condensate Spill, East Smith Road, Whatcom County, Washington.
6.	06-19-1991	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Gary Miller (TMOPL), Re: Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station, 1009 East Smith Road, Bellingham, Washington [Ecology comments, Purnell & Associates, Site Assessment Report – Soil and Water Analysis, Laurel Pump Station Natural Gas Condensate Spill, East Smith Road, Whatcom County, Washington, dated May 17, 1991 and Seymour & Associates report Laurel Pump Station Condensate Spill: Fisheries Assessment, dated May 16, 1991].
7.	08-20-1991	W.D. Purnell & Associates, Inc., Sampling and Analysis Plan, Trans Mountain, Laurel Pump Station Condensate Spill, Area I, II, III.
8.	10-28-1991	Enforcement Order DE 91-N192
9.	11-05-1991	Trans Mountain Oil Pipe Line Corporation (TMOPL), Letter, Dan O'Rourke (TMOPL) to Barbara Trejo (Ecology), Re: Enforcement Order Item F.1 – Oil/Water Separator.
10.	11-07-1991	W.D. Purnell & Associates, Inc., Response to Enforcement Order No. DE 91-N192; Item No. I.G.1.D, Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station Spill Site.

11.	11-14-1991	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Enforcement Order No. DE 91-N192, Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station.
12.	11-14-1991	W.D. Purnell & Associates, Inc., Report, Health and Safety Plan, Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station Natural Gas Condensate Spill.
13.	11-15-1991	W.D. Purnell & Associates, Inc., Response to Enforcement Order No. DE 91-N192; Items No. I.B.1 and I.B.5.
14.	11-15-1991	W.D. Purnell & Associates, Inc., Response to Enforcement Order No. DE 91-N192; Item No. I.F.2.
15.	11-22-1991	Trans Mountain Oil Pipe Line Corporation (TMOPL), Letter, Dan O'Rourke (TMOPL) to Barbara Trejo (Ecology), Re: Laurel Pump Station C3 Separator Information.
16.	11-22-1991	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Trans Mountain Oil Pipe Line Corporation, Enforcement Order No. DE 91-N192, Exhibit A and B, Item II.A, Selection of Proposed Cleanup Actions, Area 1, Area 2, and Laurel Pump Station Wetlands.
17.	11-25-1991	W.D. Purnell & Associates, Inc., November 25, 1991, Response to Enforcement Order No. DE 91-N192; Items No. I.G.1.A, I.G.1.B and I.G.1.C., Trans Mountain Oil Pipeline Corporation, Laurel Pump Station, Natural Gas Condensate Spill.
18.	11-26-1991	W.D. Purnell & Associates, Inc., Response to Enforcement Order No. DE 91-N192; Item No. I.D.1.
19.	11-27-1991	W.D. Purnell & Associates, Inc., November 27, 1991, Response to Enforcement Order No. DE 91-N192; Item No. I.A., Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station Spill Site.
20.	11-27-1991	Trans Mountain Oil Pipe Line Corporation (TMOPL), Letter, Dan O'Rourke (TMOPL) to Barbara Trejo (Ecology), Re: Enforcement Order #DE91-N192-Laurel Pump Station.
21.	12-10-1991	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Dam and Surface Water Maintenance Plan, Enforcement Order No. DE 91-N192, Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station, [Review of Purnell & Associates Dam and Surface Water Maintenance Plan, dated November 26, 1991].

22.	12-11-1991	W.D. Purnell & Associates, Inc., Response to Enforcement Order DE 91-N192; Item No. 1.C.
23.	12-19-1991	Trans Mountain Oil Pipe Line Corporation (TMOPL), Letter, Dan O'Rourke (TMOPL) to Michael Gallageher (Ecology), Re: Enforcement Order No. DE 91-N192, Trans Mountain Oil Pipe Line Corporation Laurel Station Cleanup [summary of December 11, 1991 release].
24.	01-02-1992	Washington State Department of Ecology (Ecology), Letter, Kirk Smith (Ecology) to Dan O'Rourke (TMOPL), Re: Trans Mountain Oil Pipe Line Corporation – Laurel Pump Station, Whatcom County, Washington [request for information on December 11, 1991].
25.	01-02-1992	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Health and Safety Plan, Enforcement Order No. DE 91-N192, Trans Mountain Oil Pipe Line Corporation – Laurel Pump Station.
26.	01-06-1992	Dames & Moore, Work Plan, Remedial Investigation/Feasibility Study, Laurel Pump Station, Laurel, Washington dated January 6, 1992.
27.	01-09-1992	Washington State Department of Ecology (Ecology), Letter, Kirk Smith (Ecology) to Brian Short (TMOPL), Re: Spill at the property located at Laurel Pump Station, Whatcom County, Washington [request for information on response actions completed in regard to December 11, 1991 release].
28.	01-16-1992	Dames & Moore, draft Spill Prevention, Control and Countermeasures Plan, Trans Mountain Oil Pipe Line Corporation, Laurel Station.
29.	01-21-1992	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Enforcement Order DE 91-N192, Request for Enforcement Order Schedule Revision.
30.	02-10-1992	Trans Mountain Oil Pipe Line Corporation (TMOPL), Letter, Dan O'Rourke (TMOPL) to Barbara Trejo (Ecology), Re: Trans Mountain Oil Pipe Line Corporation Laurel Station Stormwater Discharge Permitting Requirements.
31.	02-13-1992	Trans Mountain Oil Pipe Line Corporation (TMOPL), Letter, Dan O'Rourke (TMOPL) to Barbara Trejo (Ecology), Re: Enforcement Order No. DE 91-N192 Schedule Revision.
32.	02-14-1992	Dames & Moore, Response to Enforcement Order No. DE 91-N192, Item Number I.D.1, Dam and Surface Water Inspection and Maintenance Plan, Trans Mountain Oil Pipe Line Corporation, Laurel Station dated February 14, 1992.

33.	02-14-1992	Dames & Moore, Draft Work Plan, Interim Cleanup Action, Laurel Pump Station Property, Non-Wetland Areas, Trans Mountain Oil Pipe Line Corporation.
34.	02-19-1992	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Michael Boyle (TMOPL), Re: Trans Mountain, Laurel Pump Station, Whatcom County, Washington, Administrative Options for Remedial Actions.
35.	02-24-1992	Trans Mountain Oil Pipe Line Corporation (TMOPL), Letter, Dan O'Rourke (TMOPL) to Barbara Trejo (Ecology), Re: Enforcement Order No. DE 91-N192, Item I.J.3 Submittal Schedule.
36.	02-25-1992	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Health & Safety Plan, Enforcement Order No. DE 91-N192, Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station.
37.	02-28-1992	Dames & Moore, Letter, Mark Molinari (Dames & Moore) to Barbara Trejo (Ecology), Response to Ecology comments dated June 19, 1991 on submittals of Items No. 1.A.1 and I.A.2 of the Enforcement Order.
38.	02-28-1992	Dames & Moore, Oil/Water Separators, Sampling and Analysis Plan, Laurel Station, Laurel, Washington, for Trans Mountain Oil Pipe Line Corporation dated February 28, 1992.
39.	03-02-1992	Trans Mountain Oil Pipe Line Corporation (TMOPL), Letter, Dan O'Rourke (TMOPL) to Barbara Trejo (Ecology), Re: Trans Mountain Laurel Station Administrative Options.
40.	03-12-1992	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Enforcement Order No. DE 91-N192, Section I.J.1, Draft Work Plan – Interim Cleanup Action, Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station.
41.	03-20-1992	Dames & Moore, letter, Mark Molinari (Dames & Moore) to Barbara Trejo (Ecology), Re: Response to Ecology Comments on the amended Health and Safety Plan (HSP) for Trans Mountain – Laurel Station RI/FS.
42.	03-25-1992	Trans Mountain Oil Pipe Line Corporation (TMOPL), Spill Prevention Plan, Laurel Station, dated March 25, 1992.
43.	03-27-1992	Trans Mountain Oil Pipe Line Corporation (TMOPL), Letter, Dan O'Rourke (TMOPL) to Barbara Trejo (Ecology), Re: Enforcement Order No. DE 91-N192 Schedule Revision.

44.	04-03-1992	Dames & Moore, Report on the Drain Tile Excavation, Interim Cleanup Action (Section I.J.3), Laurel Pump Station, Laurel, Washington, dated April 3, 1992.
45.	04-06-1992	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Enforcement Order No. DE 91-N192, Section I.1.1, Wetlands Delineation: Areas 1-3, Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station.
46.	04-06-1992	Trans Mountain Oil Pipe Line Corporation (TMOPL), Letter, Dan O'Rourke (TMOPL) to Barbara Trejo (Ecology), Re: Laurel Station – Response to Item 2 of Ecology's March 12, 1992, Letter Regarding the Interim Cleanup Action Work Plan.
47.	04-08-1992	Dames & Moore, Letter, David Maltby (Dames & Moore) to Barbara Trejo (Ecology), Re: Laurel Station – Responses to Ecology's March 12, 1992 Letter Regarding the Interim Cleanup Action Work Plan.
48.	04-09-1992	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Enforcement Order No. DE 91-N192, Section I.E, Spill Prevention Plan, Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station [comments on D&M 03-25-1992 Spill Prevention Plan].
49.	04-14-1992	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Enforcement Order No. DE 91-N192, Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station [notice that Ecology requires investigation and cleanup at the site for areas affected by releases].
50.	04-21-1992	Dames & Moore, Facsimile, David Maltby (Dames & Moore) to Barbara Trejo (Ecology), (transmittal of the results of water analyses for the water samples taken in the area of the pressure relief tank, Dams 2 & 3, and the culvert).
51.	04-27-1992	Dames & Moore, Spill Prevention Control And Countermeasures Plan, Laurel Pump Station.
52.	04-27-1992	Cantrell & Associates, Letter, Bill Cantrell (Cantrell & Associates) to Barbara Trejo (Ecology), (response to Ecology comments on E.O. Item I.I.1).
53.	04-28-1992	Dames & Moore, Letter, David Maltby (Dames & Moore) to Barbara Trejo (Ecology), Outline of proposed site-specific risk assessment (baseline ecological and human health risk assessment) for Laurel Station.
54.	05-08-1992	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Trans Mountain, Laurel Pump Station

		Whatcom County, Wash., Enforcement Order No. DE 91-N192, Items I.F.2 and I.J.3.
55.	05-08-1992	Dames & Moore, Work Plan, Interim Cleanup Action, Laurel Pump Station Property, Non-Wetland Areas, Trans Mountain Oil Pipe Line Corporation.
56.	05-17-1992	W.D. Purnell & Associates, Inc., May 17, 1992, Site Assessment Report - Soil & Water Analysis, Laurel Pump Station Natural Gas Condensate Spill East Smith Road, Whatcom County, Washington.
57.	05-28-1992	Trans Mountain Oil Pipe Line Corporation (TMOPL), Letter, Dan O'Rourke (TMOPL) to Barbara Trejo (Ecology), Re: Laurel Station Spill Prevention Plan (I.E) – Response to Ecology's Comments.
58.	05-29-1992	Trans Mountain Oil Pipe Line Corporation (TMOPL), Letter, Michael Boyle (TMOPL) to Barbara Trejo (Ecology), Re: Laurel Station – Draft of Amended Enforcement Order.
59.	06-01-1992	Dames & Moore, Letter, David Maltby (Dames & Moore) to Barbara Trejo (Ecology), Re: Responses to Ecology comments on the Oil/Water Separators – Sampling and Analysis Plan, Laurel Station, Laurel, Washington dated February 28, 1992 and the Report on the Drain Tile Excavation, Interim Cleanup Action (Section I.J.3) Laurel Station, Laurel, Washington dated April 3, 1992.
60.	06-09-1992	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Michael Boyle (TMOPL), Re: Trans Mountains Comments on the Draft First Amended Enforcement Order.
61.	06-12-1992	Dames & Moore, Remedial Investigation Report, Laurel Station, Bellingham, Washington dated June 12, 1992.
62.	06-15-1992	First Amended Enforcement Order No. DE 91-N192
63.	06-25-1992	Trans Mountain Oil Pipe Line Corporation (TMOPL), Spill Prevention Plan, Laurel Station, dated June 25, 1992.
64.	06-26-1992	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Dan O'Rourke (TMOPL), Re: Retention of Records, Laurel Pump Station.
65.	07-21-1992	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Oil/Water Separator Sampling and Analysis Plan, First Amended Enforcement Order No. DE 91-N192, Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station.

66. 07-23-1992 Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Drain Tile Excavation Report, First Amended Enforcement Order No. DE 91-N192, Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station. 67. 07-29-1992 Trans Mountain Oil Pipe Line Corporation (TMOPL), Letter, Dan O'Rourke (TMOPL) to Barbara Trejo (Ecology), Re: Enforcement Order DE 91-N192 – Item III.E.3 SPP Schedule Results. 68. 07-30-1992 Dames & Moore, Oil/Water Separators, Sampling and Analysis Plan, Laurel Station, Laurel, Washington, for Trans Mountain Oil Pipe Line Corporation dated July 30, 1992. 69. 07-30-1992 Dames & Moore, Response to Enforcement Order No. DE 91-N192, Exhibit A, Part III, D.1, Dam and Surface Water Inspection and Maintenance Plan, Trans Mountain Oil Pipe Line Corporation, Laurel Station dated July 30, 1992. 70. 07-31-1992 Letter, David Raubvogel (Dames & Moore) to Barbara Trejo (Ecology), Re: First Amended Enforcement Order, Exhibit A, Part III, B.1, Laurel Station, Bellingham, Washington, [Submittal of request to modify surface water sampling frequency under the enforcement orderl. 71. 08-03-1992 Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: First Amended Enforcement Order No. DE 91-N192, Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station, [Review of Remedial Investigation Report, Laurel Pump Station, Laurel, Washington, submitted by Dames & Moore, dated June 12, 1992]. 72. 08-14-1992 Dames & Moore, Dam Removal Assessment and Feasibility Evaluation, First Amended Enforcement Order Exhibit A, Part III, D.4., Trans Mountain Oil Pipe Line Corporation, dated August 14, 1992. 73. 08-17-1992 Dames & Moore, Operation and Maintenance Manual, Petroleum Contaminated Soil Storage Cells, Laurel Station, Bellingham, Washington, Revision: A, dated August 17, 1992. 74. 08-18-1992 Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: First Amended Enforcement Order No. DE 91-N192, Item III.E.3, Spill Prevention Plan Implementation Schedule Results, Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station. 75. 08-18-1992 Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Dam and Surface Water Inspection and Maintenance Plan, First Amended Enforcement Order No. DE 91-N192, Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station.

76.	08-27-1992	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Oil/Water Separator Sampling and Analysis Plan, First Amended Enforcement Order No. DE 91-N192, Item III.F.2, Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station.
77.	08-28-1992	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Dam Removal Evaluation, First Amended Enforcement Order No. DE 91-N192, Item III.D.4, Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station.
78.	08-29-1992	Dames & Moore, Phase I Interim Action Plan, Remediation of Petroleum Contaminated Soil, Laurel Station, Bellingham, Washington, dated August 29, 1992.
79.	08-31-1992	Trans Mountain Oil Pipe Line Corporation (TMOPL), Letter, Dan O'Rourke (TMOPL) to Barbara Trejo (Ecology), Re: Spill Prevention Plan Implementation Schedule Results – III.E.3.
80.	09-03-1992	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Operation and Maintenance Plan – Soil Stockpiles, First Amended Enforcement Order No. DE 91-N192, Trans Mountain Oil Pipe Line Corporation – Laurel Pump Station.
81.	09-03-1992	Trans Mountain Oil Pipe Line Corporation (TMOPL), Letter, Dan O'Rourke (TMOPL) to Barbara Trejo (Ecology), Re: RI/FS Draft Work Plan Submittal Date Extension – Part II. A.
82.	09-04-1992	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: RI/FS Draft Work Plan Submittal Date Extension Request, First Amended Enforcement Order No. DE 91-N192, Exhibit A, II.A, Trans Mountain Oil Pipe Line Corporation – Laurel Pump Station.
83.	09-04-1992	Dames & Moore, Response to Enforcement Order No. DE 91-N192, Exhibit A, Part III, D.1, Dam and Surface Water Inspection and Maintenance Plan, Trans Mountain Oil Pipe Line Corporation dated September 4, 1992.
84.	09-09-1992	Dames & Moore, Oil/Water Separators Sampling and Analysis Plan, Trans Mountain Oil Pipe Line Corporation, Laurel Station, dated September 9, 1992.
85.	09-21-1992	Trans Mountain Oil Pipe Line Corporation (TMOPL), Letter, Dan O'Rourke (TMOPL) to Barbara Trejo (Ecology), Re: First Amendment Enforcement Order No. DE 91-N192 – Item III.I.1.

86.	09-25-1992	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Oil/Water Separator Sampling and Analysis Plan, First Amended Enforcement Order No. DE 91-N192, Item III.F.2, Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station.
87.	09-29-1992	Dames & Moore, Amended Health and Safety Plan, Trans Mountain Oil Pipe Line Corporation, Laurel Station, dated September 29, 1992.
88.	09-30-1992	Dames & Moore, Remedial Investigation/Feasibility Study Work Plan, Trans Mountain Oil Pipeline Corporation, Laurel Station, Bellingham, Washington dated September 30, 1992.
89.	10-08-1992	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Barbara Trejo (Ecology), Re: Ecology September 3, 1992 Letter, Operations and Maintenance, Soil Stockpiles, First Amended Enforcement Order, Trans Mountain Oil Pipe line Corporation, Laurel Station.
90.	10-09-1992	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Terryl Nyman (Northwest Air Pollution Authority), Re: Estimated Emissions during Recontouring of Soil Stockpiles at the Laurel Station, Bellingham, Washington.
91.	10-16-1992	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Dan O'Rourke (TMOPL), Re: Sampling Results, PCS Stockpiles, Laurel Station.
92.	10-21-1992	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Barbara Trejo (Ecology), (informing Ecology that copies of the Dam and Surface Water Inspection and Maintenance Plan were submitted to both the Departments of Wildlife and Fisheries per Item D.1. of the First Amended E.O.).
93.	10-21-1992	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Department of Wildlife (transmittal of a copy of the Dam and Surface Water Inspection and Maintenance Plan per Item D.1. of the First Amended E.O.).
94.	10-22-1992	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Barbara Trejo (Ecology), Re: Geologic Cross Section, Trans Mountain Oil Pipeline Corp., Laurel Station.
95.	10-22-1992	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Barbara Trejo (Ecology), Re: Oil/Water Separator and Surface Water Sampling Results, Trans Mountain Oil Pipeline Corp., Laurel Station.
96.	10-22-1992	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Barbara Trejo (Ecology), Re: Response to Comments on Remedial Investigation Report, Ecology August 3, 1992 letter, Laurel Station, Bellingham, Washington.

97.	10-23-1992	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Steven Matthew (Department of Health, Office of Toxic Substances [Olympia, WA]), (transmittal of RI/FS Work Plan).
98.	10-29-1992	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Barbara Trejo (Ecology), Re: October 23, 1992 Meeting (documents that Trans Mountain will not be required to conduct additional surface water sampling as outlined in the E.O. until further review by Ecology).
99.	11-03-1992	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Dan O'Rourke (TMOPL), Re: Surface Water Sampling Results, March 7, 1992 Spill Area, Laurel Station.
100.	11-13-1992	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Barbara Trejo (Ecology), Re: Geologic Information, Trans Mountain Oil Pipe Line Corp., Laurel Station.
101.	11-17-1992	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Barbara Trejo (Ecology), Re: Oil/Water Separator and Surface Water Sampling Results, Trans Mountain Oil Pipeline Corp., Laurel Station.
102.	11-20-1992	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Barbara Trejo (Ecology), Re: Ground Water Level Measurements, Trans Mountain Oil Pipe Line Corp, Laurel Station.
103.	11-30-1992	Dames & Moore, Operation and Maintenance Manual, Petroleum Contaminated Soil Storage Cells, Laurel Station, Bellingham, Washington, Revision C. dated November 30, 1992.
104.	12-02-1992	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Ms. R. Delahunt (Whatcom County Health Department), (transmittal of geologic related information for the PCS storage cell area).
105.	12-29-1992	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Facility Name Change, First Amendment Enforcement Order No. DE 91-N192, Trans Mountain Oil Pipeline Corporation – Laurel Pump Station.
106.	01-05-1993	Trans Mountain Oil Pipe Line Corporation (TMOPL), Letter, Dan O'Rourke (TMOPL) to Barbara Trejo (Ecology), Re: Ecology comments regarding Remedial Investigation Report, DOE Letter of August 3, 1992.
107.	01-11-1993	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: First Amendment Enforcement Order

		DE 91-N192, Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station, Operation and Maintenance Plan – PCS Cells.
108.	01-14-1993	Dames & Moore, Report, Petroleum Contaminated Soil Cell Consolidation and Regrade Monitoring, Trans Mountain Oil Pipe Line Corporation. Laurel Station, dated January 14, 1993.
109.	01-26-1993	Dames & Moore, Report, Haynes Residence Well Sampling, Bellingham, Washington.
110.	02-03-1993	Dames & Moore, Report, Haynes Residence Well Sampling, Bellingham, Washington.
111.	03-10-1993	Dames & Moore, Operation and Maintenance Manual, Petroleum Contaminated Soil Storage Cells, Laurel Station, Bellingham, Washington, dated March 10, 1993.
112.	04-21-1993	Letter, David Raubvogel (Dames & Moore) to Barbara Trejo (Ecology), Re: Addendum to Phase I Interim Action Plan, Petroleum Contaminated Soil Stockpiles, Trans Mountain Oil Pipe Line Corp., Laurel Pump Station.
113.	06-14-1993	Dames & Moore, Final Phase I, Interim Action Plan, Remediation of Petroleum Contaminated Soil, Laurel Pump Station Bellingham, Washington, dated June 14, 1993.
114.	07-12-1993	Dames & Moore, Whatcom County Permit General Information Form (GIF)/Land Disturbance Application, Trans Mountain Oil Pipeline Corporation, Laurel Station, Bellingham, Washington [submittal of SEPA checklist to Whatcom County Public Works].
115.	12-06-1993	Dames & Moore, Final Phase II Interim Action Report, Trans Mountain Oil Pipe Line Corp., Laurel Pump Station Facility dated December 6, 1993.
116.	11-14-1994	Dames & Moore, Petroleum Contaminated Soil Stockpile, Interim Cleanup Action Report, Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station Facility dated November 14, 1994.
117.	10-17-2001	URS, Voluntary Cleanup Action, Laurel Station Release, Bellingham, Washington dated October 17, 2001.
118.	02-12-2007	URS, Letter, Karen Mixon (URS) to Brad Kohlsmith (Kinder Morgan Canada), Re: 2006 Groundwater Monitoring, Laurel Station Facility, 1009 East Smith Road, Bellingham, Washington.

119.	05-24-2007	URS, Letter, Karen Mixon (URS) to Brad Helland (Ecology), Re: Historical Site Information, Laurel Station Facility, 1009 East Smith Road, Bellingham, Washington.
120.	06-21-2008	URS, Letter, Karen Mixon (URS) to Brad Kohlsmith (Kinder Morgan Canada), Re: 2008 Deep Well Decommissioning, Laurel Station Facility, 1009 East Smith Road, Bellingham, Washington.
121.	07-27-2009	URS, Letter, Karen Mixon (URS) to Brad Kohlsmith (Kinder Morgan Canada), Re: 2008 Groundwater Monitoring, Laurel Station Facility, 1009 East Smith Road, Bellingham, Washington.
122.	07-27-2009	URS, Letter, Karen Mixon (URS) to Brad Kohlsmith (Kinder Morgan Canada), Re: Soil Assessment, Laurel Station Tanks 170 and 180, Laurel Station Facility, 1009 East Smith Road, Bellingham, Washington.

BIBLIOGRAPHY - WASHINGTON DEPARTMENT OF ECOLOGY LAUREL STATION FACILITY

E1.	08-20-1991	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station, 1009 East Smith Road, Bellingham, Washington [regarding oil/water separators C1 and C2].
E2.	08-27-1991	Trans Mountain Oil Pipe Line Corporation (TMOPL), Letter, Dan O'Rourke (TMOPL) to Barbara Trejo (Ecology), Re: Laurel Pump Station Oily Water Separator Information.
E3.	09-20-1991	Trans Mountain Oil Pipe Line Corporation (TMOPL), Letter, Dan O'Rourke (TMOPL) to Barbara Trejo (Ecology), Re: Laurel Station Enforcement Order Wetlands Determination/Delineation – Item I.I.1.
E4.	10-16-1991	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Trans Mountain Oil Pipe Line Corporation, 1009 East Smith Road, Bellingham, Washington [comments on the Site Assessment Report – Soil & Water Analysis dated May 20, 1991].
E5.	10-18-1991	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Trans Mountain Oil Pipe Line Corporation, 1009 East Smith Road, Bellingham, Washington [regarding Hydraulic Project Approval permit].
E6.	11-08-1991	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Trans Mountain Oil Pipe Line Corporation, 1009 East Smith Road, Bellingham, Washington [regarding oil/water separator permits].
E7.	11-22-1991	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Trans Mountain Oil Pipe Line Corporation, Enforcement Order No. DE 91-N192, Exhibit A and B, Item II.A, Selection of Proposed Cleanup Actions, Area 1, Area 2, and Laurel Pump Station Wetlands.
E8.	11-26-1991	Trans Mountain Oil Pipe Line Corporation (TMOPL), Letter, Dan O'Rourke (TMOPL) to Barbara Trejo (Ecology), Re: Laurel Pump Station Condensate Spill – Enforcement Order Item I.A.1 – Water Well Survey.
E9.	12-02-1991	Washington State Department of Ecology (Ecology), Letter, Dick Boose (Ecology) to Barbara Trejo (Ecology), Re: Review of the site Health and Safety Plan, Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station Natural Gas Condensate

		Spill, Prepared by W.D. Purnell & Associates Inc. Bellingham, Washington 98227, November 14, 1991.
E10.	12-04-1991	Trans Mountain Oil Pipe Line Corporation (TMOPL), Letter, Dan O'Rourke (TMOPL) to Barbara Trejo (Ecology), Re: Enforcement Order DE 91-N192 – Schedule Revision.
E11.	03-20-1992	Dames & Moore, Amended Health and Safety Plan for Trans Mountain Oil Pipe Line Corporation.
E12.	05-28-1992	Trans Mountain Oil Pipe Line Corporation (TMOPL), Letter, Dan O'Rourke (TMOPL) to Barbara Trejo (Ecology), Re: Laurel Station Spill Prevention Plan (I,E) – Response to Ecology's Comments.
E13.	06-11-1992	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to William Cook (citizen), Re: First Amended Enforcement Order No. DE 91-N192, Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station, 1009 E. Smith Road, Whatcom County, Washington.
E14.	06-12-1992	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Spill Prevention Plan, Enforcement Order No. DE 91-N192, Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station.
E15.	06-12-1992	Dames & Moore, Letter, Roy W. Elliott et al (Dames & Moore) to Dan O'Rourke (TMOPL), Re.: Report, Remedial Investigation, Laurel Station, Bellingham, Washington.
E16.	06-29-1992	Trans Mountain Oil Pipe Line Corporation (TMOPL), Letter, Lorne Weran (TMOPL) to Barbara Trejo (Ecology), Re: Requested Information from Trans Mountain.
E17.	07-13-1992	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Wetland Delineation, First Amended Enforcement Order No. DE 91-N192, Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station.
E18.	07-23-1992	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Spill Prevention Plan, First Amended Enforcement Order No. DE 91-N192, Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station.
E19.	07-24-1992	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Dam and Surface Water Maintenance

E20.	08-04-1992	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Access Agreement, Request for Revision to Schedule, First Amended Enforcement Order No. DE 91-N192, Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station.
E21.	08-21-1992	Trans Mountain Oil Pipe Line Corporation (TMOPL), Letter, Michael W. P. Boyle (TMOPL) to Barbara Trejo (Ecology), Re: Access Agreements.
E22.	09-09-1992	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Dam and Surface Water Inspection and Maintenance Plan, First Amended Enforcement Order No. DE 91-N192, Trans Mountain Oil Pipe Line Corporation – Laurel Pump Station.
E23.	09-15-1992	Trans Mountain Oil Pipe Line Corporation (TMOPL), Letter, Dan O'Rourke (TMOPL) to Barbara Trejo (Ecology), Re: First Amended Enforcement Order Part V.5. – Performance.
E24.	01-07-1993	Trans Mountain Oil Pipe Line Corporation (TMOPL), Letter, G.A. Irving (TMOPL) to Barbara Trejo (Ecology), Re: Access Agreement – William Cook Property, 976 E. Smith Road, Bellingham, WA.
E25.	01-11-1993	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Dan O'Rourke (TMOPL), Re: Soil Sampling, December 7, 1992 Diesel Fuel Spill, Laurel Station.
E26.	02-09-1993	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Barbara Trejo (Ecology), Re: Sediment Sampling at Dam #3, Trans Mountain Oil Pipe Line Corp.
E27.	02-22-1993	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station – Dam 3.
E28.	02-24-1993	Washington State Department of Ecology (Ecology), Facsimile, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station, Petroleum Contaminated Soil Cell, Consolidation and Regrade.
E29.	02-26-1993	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Barbara Trejo (Ecology), Re: Hand Auger Boring Program at PCS Storage Cells, Trans Mountain Oil Pipe Line Corp., Laurel Pump Station.

E30.	02-26-1993	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Barbara Trejo (Ecology), Re: Responses to Ecology's February 24, 1993 Letter, Trans Mountain Oil Pipe Line Corp., Laurel Pump Station.
E31.	03-09-1993	Washington State Department of Ecology (Ecology), Facsimile, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station – PCS Cells.
E32.	03-18-1993	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: PCS Storage Cell Operation & Maintenance Manual, First Amended Enforcement Order No. DE 91-N192, Trans Mountain Oil Pipe Line Corporation – Laurel Pump Station.
E33.	05-14-1993	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Phase I Interim Action Plan, Laurel Pump Station [comments from Ecology].
E34.	05-28-1993	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station, Interim Action – Drain Tile Excavation [review by Ecology].
E35.	06-17-1993	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Barbara Trejo (Ecology), Re: Revisions to Figure, Report on the Drain Tile Excavation, Trans Mountain Oil Pipe Line Corp., Laurel Pump Station.
E36.	06-21-1993	Trans Mountain Oil Pipe Line Corporation (TMOPL), Letter, Dan O'Rourke (TMOPL) to Barbara Trejo (Ecology), Re: Laurel Pump Station Contaminated Soil Stockpile Remediation Meeting May 27, 1993.
E37.	06-22-1993	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Barbara Trejo (Ecology), Re: Final Phase I Interim Action Plan Dated June 14, 1993, Trans Mountain Oil Pipe Line Corp., Laurel Pump Station.
E38.	07-02-1993	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Barbara Trejo (Ecology), Re: Final Phase I Interim Action, PCS Cell Characterization Sampling and Analysis Program, Trans Mountain Oil Pipe Line Corp., Laurel Pump Station.
E39.	07-08-1993	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Barbara Trejo (Ecology), Re: Phase I Interim Action Plan Permit Review, Trans Mountain Oil Pipe Line Corp., Laurel Pump Station, Job. No. 21199-032-005.
E40.	07-27-1993	Whatcom County Health Department (WCHD), Letter, Jeanne M. Funsch (WCHD) to Doug Goldthorp (Whatcom County Public Works), Re: Land

		Disturbance Application, Trans Mountain Oil Pipe Line Corporation, Laurel Station.
E41.	07-28-1993	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Dan O'Rourke (TMOPL), Re: July 27, 1993 Meeting With Ecology, Laurel Station.
E42.	08-11-1993	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station.
E43.	08-20-1993	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Jeanne Funsch (Whatcom County Health Department) and Julie Elsbree (Northwest Air Pollution Authority), Re: Trans Mountain – Laurel Pump Station, Soil Stockpile Remediation.
E44.	08-20-1993	Northwest Air Pollution Authority (NAPP), Letter, Terry L. Nyman (NAPP) to David Raubvogel (Dames & Moore), Re. Proposed excavation, screening, and transportation of petroleum contaminated soil.
E45.	08-26-1993	Washington State Department of Ecology (Ecology), Letter, Louise Bardy (Ecology) to Dan O'Rourke (TMOPL), Re: Independent Cleanup Action Report, Trans Mountain Oil Pipe Line Corporation, Burlington Scraper Trap, Burlington, WA.
E46.	09-07-1993	Washington State Department of Health, Office of Toxic Substances, Hazardous Waste Section – Trans Mountain Pipeline, Bellingham, Washington.
E47.	09-10-1993	Washington State Department of Ecology (Ecology), Letter, Scott Mosley (Ecology) to Barbara Trejo (Ecology), Re: Comments on Health & Safety Plan, Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station.
E48.	10-05-1993	Trans Mountain Oil Pipe Line Corporation (TMOPL), Letter, Dan Knight (TMOPL) to Barbara Trejo (Ecology), Re: Open House on Saturday, October 23.
E49.	10-25-1993	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Split Sample Analytical Results, July 1993 PCS Soil Characterization, Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station.
E50.	11-01-1993	Washington State Department of Ecology (Ecology), Letter, Barbara Trejo (Ecology) to Dan O'Rourke (TMOPL), Re: Draft Phase II Interim Action Report, Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station.
E51.	11-24-1993	Dames & Moore, Letter, David Raubvogel and David Keller (Dames & Moore) to Barbara Trejo (Ecology), Re: Responses to Ecology Comments, Draft Phase II

Interim Action Report, Trans Mountain Oil Pipe Line Corp., Laurel Pump Station, Bellingham, Washington.

BIBLIOGRAPHY - KINDER MORGAN (FORMERLY TRANS MOUNTAIN OIL PIPE LINES) LAUREL STATION FACILITY

T1.	02-01-1991	Trans Mountain Oil Pipe Line Corporation (TMOPLC), Letter, G.R. Miller (TMOPLC) to Chang-Pi Wang (Ecology), Re: Laurel Station Condensate Spill – Site Assessment Plan.
T2.	02-27-1991	Washington State Department of Ecology (Ecology), Letter, Barbara J. Trejo (Ecology) to Gary Miller (TMOPLC), Re: A Reported Release of Hazardous Substances at Trans Mountain Oil Pipe Line Corporation – Laurel Pump Station, 1009 East Smith Road, Bellingham, Washington and Potential Liability for the Release.
Т3.	03-04-1991	Washington State Department of Ecology (Ecology), Letter, Barbara J. Trejo (Ecology) to Gary Miller (TMOPLC), Re: Proposed Site Assessment Plan, Condensate Spill – Laurel Pump Station, 1009 East Smith Road, Bellingham, Washington.
T4.	04-16-1991	Washington State Department of Ecology (Ecology), Letter, Ecology to Gary Miller (TMOPLC), Re: Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station Condensate Spill, Whatcom County, Washington [summary of verbal responses to the Trans Mountain Proposed Site Assessment Plan].
T5.	04-19-1991	Trans Mountain Oil Pipe Line Corporation (TMOPLC), Letter, G.R. Miller (TMOPLC) to Barbara Trejo (Ecology), Re: Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station Condensate Spill.
Т6.	05-09-1991	Washington State Department of Ecology (Ecology), Letter, Barbara J. Trejo (Ecology) to Gary Miller (TMOPLC), Re: Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station Condensate Spill, Whatcom County, Washington.
T7.	06-13-1991	Trans Mountain Oil Pipe Line Company Ltd., Letter, Michal W.P. Boyle (TMOPLC) to Elin Abramson (Ecology), Re: Escape of Natural Gas Condensate from Laurel Pump Station – January 15, 1991.
T8.	06-14-1991	W.D. Purnell & Associates, Inc., Letter, Banks Upshaw (W.D. Purnell) to Dan O'Rourke (TMOPLC), Re: Summary of Site Visit at the Laurel Pump Station Spill Site with Barbara Trejo and John Marshall of the Washington State Department of Ecology.
T9.	06-18-1991	W.D. Purnell & Associates, Inc., Soil Logs of Monitoring Wells At the Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station Condensate Spill Site.

T10.	06-24-1991	Washington State Department of Ecology (Ecology), Letter, Barbara J. Trejo (Ecology) to Gary Miller (TMOPLC), Re: Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station, 1009 East Smith Road, Bellingham, Washington [well construction and maintenance standards].
T11.	08-29-1991	Trans Mountain Oil Pipe Line Corporation (TMOPLC), Letter, Dan O'Rourke (TMOPLC) to Barbara Trejo (Ecology), Re: Laurel Pump Station Spill – Letter from Department of Fisheries, August 11, 1991.
T12.	12-06-1991	W.D. Purnell & Associates, Inc., Letter, Willard D. Purnell to Dave Every (Dames & Moore), Re: Status of Wetlands Investigation Work, Laurel Pump Station Condensate Spill.
T13.	02-20-1992	W.D. Purnell & Associates, Inc., Response to Enforcement Order DE 91-N192 Item I.I.1 Wetland Delineation; Areas 1-3, Trans Mountain, Laurel Pump Station.
T14.	03-21-1992	Trans Mountain Oil Pipe Line Company Ltd., Inter Office Correspondence, L.H.E. Weran to R.D. Vergette, Re: Laurel Station Spill Clean Up Progress, Week Ending March 20, 1992.
T15.	03-21-1992	Dames & Moore, Daily Field Report, P. Sajer (Dames & Moore) to Dan Watterson, Mark Molinari, and W. Martin McCabe (Dames & Moore), Re. Laurel Pump Station, Laurel, Washington.
T16.	04-09-1992	W.D. Purnell & Associates, Inc., Trans Mountain – Laurel Station Spill Site, Response to Enforcement Order DE 91-N192; Item I.I.1, Wetlands Delineation.
T17.	05-14-1992	Dames & Moore, Letter, David Maltby (Dames & Moore) to Barbara Trejo (Ecology) Re: Analytical Results of Water Samples Collected at Laurel Station.
T18.	06-11-1992	Dames & Moore, Letter, David Maltby (Dames & Moore) to Barbara Trejo (Ecology) Re: Analytical Results of Water Samples Collected at Laurel Station.
T19.	06-19-1992	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Dan O'Rourke (TMOPLC), Re: Analytical Results, Containment Dam Water Sample, Laurel Pump Station.
T20.	06-30-1992	Quarterly Oil/Water Separator Water Sampling, Trans Mountain Oil Pipe Line Corporation, Laurel Station, Bellingham, Washington.
T21.	07-08-1992	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Dan O'Rourke (TMOPLC), Re: Draft First Amended Enforcement Order, Laurel Station, Bellingham, WA.

T22.	07-14-1992	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Dan O'Rourke (TMOPLC), Re: Surface Water Sampling Results, Laurel Station, Bellingham, Washington [analytical results for surface water sample collected on June 30, 1992].
T23.	07-31-1992	Dames & Moore, Report on the Drain Tile Excavation, Interim Cleanup Action (Exhibit A, Part III, H.3.), Laurel Station, Laurel, Washington.
T24.	08-03-1992	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Barbara Trejo (Ecology), Re: Weekly Surface Water Sampling Results, Trans Mountain Laurel Station, Bellingham, Washington.
T25.	09-24-1992	Dames & Moore, Report Excerpt, Trans Mountain Oil Pipe Line Corporation, Laurel Station, Figures and Laboratory Results.
T26.	11-03-1992	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Dan O'Rourke (TMOPLC), Re: Surface Water Sampling Results, March 7, 1992 Spill Area, Laurel Station [analytical results requested on October 21, 1992].
T27.	11-16-1992	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Dan O'Rourke (TMOPLC), Re: Surface Water Sampling Results, March 7, 1992 Spill Area, Laurel Station.
T28.	11-17-1992	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Barbara Trejo (Ecology), Re: Oil/Water Separator and Surface Water Sampling Results, Trans Mountain Oil Pipe Line Corp., Laurel Station.
T29.	11-18-1992	Dames & Moore, Letter, Dames & Moore to Dan O'Rourke (TMOPLC), Re: Surface Water Sampling Results, March 7, 1992 Spill Area, Laurel Station.
T30.	11-19-1992	Trans Mountain Oil Pipe Line Company Ltd., Facsimile, L.H.E. Weran (TMOPLC) to Susan H. Lee (Ecology), Re: Recent improvements made at the Laurel Station site.
T31.	11-19-1992	Washington State Department of Ecology, Report, Ecology Comments on the Interim Action Plan for Trans Mountain – Laurel Pump Station, Dames & Moore, August 29, 1992.
T32.	12-23-1992	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Dan O'Rourke (TMOPLC), Re: Oil/Water Separator Sampling and Analysis, Laurel Station.
Т33.	12-17-1992	Dames & Moore, Letter, A. David Every (Dames & Moore) to Dan O'Rourke (TMOPLC), Re: Laurel Pump Station, Access Road Wetland Fill, Investigation Recommendations.

T34.	02-17-1993	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Barbara Trejo (Ecology), Re: Draft Phase I Interim Action Plan, Trans Mountain Oil Pipe Line Corp., Laurel Station.
T35.	02-17-1993	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Dan O'Rourke (TMOPLC), Re: February 17, 1993 Meeting with Ecology, Laurel Station.
T36.	03-12-1993	Washington State Department of Ecology (Ecology), Letter, Kimberly E. Anderson (Ecology) to Ken Casten (Evergreen Recycling), Re. Recycling Crude Tank Bottom Oils.
Т37.	04-19-1993	Washington State Department of Ecology (Ecology), Facsimile, Barbara J. Trejo (Ecology) to Dan O'Rourke (TMOPLC), Re: Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station [approving request for a four-month extension of the draft submittal dates for the Wetland Delineation and the RI/FS Report].
T38.	05-14-1993	Trans Mountain Oil Pipe Line Corporation (TMOPLC), Letter, Dan O'Rourke (TMOPLC) to Barbara Trejo (Ecology), Re: Water Sampling Analysis Results.
T39.	05-26-1993	Enforcement Order Submittal Summary.
T40.	06-17-1993	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Barbara Trejo (Ecology), Re: Revision to Figure, Report on the Drain Tile Excavation, Trans Mountain Oil Pipe Line Corp., Laurel Pump Station.
T41.	06-22-1993	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Barbara Trejo (Ecology), Re: Final Phase I Interim Action Plan Dated June 14, 1993, Trans Mountain Oil Pipe Line Corp., Laurel Station.
T42.	08-11-1993	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Dan O'Rourke (TMOPLC), Re: Quarterly Oil/Water Separator and Surface Water, Sampling Results – July 1993, Laurel Station.
T43.	08-15-1993	Trans Mountain Oil Pipe Line Corporation (TMOPLC), Facsimile, Dan O'Rourke (TMOPLC) to Barbara Trejo (Ecology), Re: Water Sample Analysis Results.
T44.	08-20-1993	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Barbara Trejo (Ecology), Re: Ecology August 11, 1993 Letter, Final Phase I Interim Action Plan, Trans Mountain Oil Pipe Line Corp. (Trans Mountain), Laurel Pump Station.
T45.	08-20-1993	Northwest Air Pollution Authority (NWAPA), Letter, Terry L. Nyman (NWAPA) to David Raubvogel (Dames & Moore), Re: Air Pollution Regulations and Information.

T46.	11-08-1993	Trans Mountain Oil Pipe Line Corporation (TMOPLC), Letter, Jacqueline L. Potter (TMOPLC) to Barbara Trejo (Ecology), Re: 1993 Third Quarter Report – Laurel Station.
T47.	01-24-1994	Trans Mountain Oil Pipe Line Corporation (TMOPLC), Letter, Dan O'Rourke (TMOPLC) to Barbara Trejo (Ecology), Re: 1993 Fourth Quarter Report – Laurel Station.
T48.	02-01-1994	CH2MHill, Letter, Kevin A. Sanders (CH2MHill) to Kirk Stopenhagen (CH2MHill), Re: Analytical Data for Trans-Mountain Pipeline, CVO Laboratory Reference No. 6291.
T49.	02-10-1994	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Lester Keel (NWAPA), Re: Trans Mountain Oil Pipe Line Corp, Laurel Pump Station, Petroleum Contaminated Soil Remediation.
T50.	02-10-1994	Northwest Air Pollution Authority (NWAPA), Letter, James B. Randles (NWAPA) to Dan O'Rourke (TMOPLC), Re: Laurel Pump Station, PCS Storage Cell Remediation.
T51.	03-31-1994	Trans Mountain Oil Pipe Line Corporation (TMOPLC), Report, Letter, Dan J. O'Rourke (TMOPLC) to James Randles (NWAPA), Re: Laurel Station Tank Cleaning Project – Air Monitoring Data.
T52.	04-20-1994	Trans Mountain Oil Pipe Line Corporation (TMOPLC), Letter, Jacqueline L. Potter (TMOPLC) to Barbara Trejo (Ecology), Re: 1994 First Quarter Report – Laurel Station.
T53.	04-29-1994	Washington State Department of Ecology (Ecology), Letter, Barbara J. Trejo to Dan O'Rourke (TMOPLC), Re: Trans Mountain – Laurel Station, First Amended Enforcement Order No. DE91-N192, Oil/Water Separator, Sampling and Analysis Plan.
T54.	06-21-1994	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Dan O'Rourke (TMOPLC), Re: Water Sampling Results, PCS Cell No. 2, Laurel Station Project.
T55.	06-22-1994	Trans Mountain Oil Pipe Line Corporation (TMOPLC), Letter, Jacqueline L. Potter (TMOPLC) to Barbara Trejo (Ecology), Re: 1994 First Quarter Report – Laurel Station.
T56.	07-05-1994	Trans Mountain Oil Pipe Line Corporation (TMOPLC), Letter, Jacqueline L. Potter (TMOPLC) to Barbara Trejo (Ecology), Re: 1994 Second Quarter Report – Laurel Station.
T57.	08-08-1994	Laurel Station Contamination Assessment and Remediation Summary.

T58.	08-15-1994	Dames & Moore, Letter, David Raubvogel (Dames & Moore) to Barbara Trejo (Ecology), Re: Oversized Material Treatment, Trans Mountain Oil Pipe Line Corp. Project.
T59.	10-21-1994	Trans Mountain Oil Pipe Line Corporation (TMOPLC), Letter, Jacqueline L. Potter (TMOPLC) to Barbara Trejo (Ecology), Re: 1994 Third Quarter Report – Laurel Station.
T60.	11-08-1994	A.L. Sleister & Sons Construction, Inc. (A.L. Sleister), Facsimile, Robert C. Downing (A.L. Sleister) to Dan O'Rourke (TMOPLC), Re: Releases of Liability for Contaminated Soil.
T61.	01-16-1995	Trans Mountain Oil Pipe Line Corporation (TMOPLC), Letter, Dan O'Rourke (TMOPLC) to Barbara Trejo (Ecology), Re: Oil/Water Separators Sampling and Analysis Plan.
T62.	01-24-1995	Trans Mountain Oil Pipe Line Corporation (TMOPLC), Letter, Dan O'Rourke (TMOPLC) to Barbara Trejo (Ecology), Re: 1993 Fourth Quarter Report – Laurel Station.
T63.	01-24-1995	Washington State Department of Ecology (Ecology), Letter, Barbara J. Trejo (Ecology) to Dan O'Rourke (TMOPLC), Re: Trans Mountain – Laurel Station, First Amended Enforcement Order No. DE91-N192, Oil/Water Separator, Sampling and Analysis Plan.
T64.	01-26-1995	Washington State Department of Ecology (Ecology), Letter, Barbara J. Trejo to Dan O'Rourke (TMOPLC), Re: Trans Mountain—Laurel Station, Interim Action—Contaminated Soil Stockpiles, First Amended Enforcement Order No. DE91-N192, Exhibit A, Section III, Subsection I.
T65.	06-11-1997	Trans Mountain Oil Pipe Line Corporation (TMOPLC), Inter Office Correspondence, M.W.P. Boyle to Dan O'Rourke, Re: Laurel Station – Smith Road Widening.
T66.	06-11-1997	Trans Mountain Oil Pipe Line Corporation (TMOPLC), Email, Gary Miller (TMOPLC) to Dan O'Rourke (TMOPLC), Re: Laurel Station – Widening of Smith Road.
T67.	07-10-1997	Analytical Resources, Inc. (ARI), Letter, Jeff J. Reitan (ARI) to Jacki Schneider (TMOPLC), Re: Laurel Station Hydrocarbon Tests.
T68.	07-10-1997	Trans Mountain Oil Pipe Line Company Ltd., Facsimile, William Kerr (TMOPLC) to Judy Aitken (Ecology), Re: Soil Laboratory Analyses Results – Laurel Station.

T69.	07-11-1997	Trans Mountain Oil Pipe Line Company Ltd., Facsimile, William Kerr (TMOPLC) to Judy Aitken (Ecology), Re: Additional Soil Laboratory Results for Laurel Station.
T70.	07-14-1997	Analytical Resources, Inc. (ARI), Letter, Jeff J. Reitan (ARI) to Jacki Schneider (TMOPLC), Re: Laurel Station Hydrocarbon Tests.
T71.	07-30-1997	Soil Sampling – East Smith Road Widening.
T72.	06-20-2002	GeoEngineers, Report, Hydrogeologic Services, Well Safe Yield Evaluation, Laurel Facility, Bellingham, Washington.
T73.	11-05-2002	GeoEngineers, Groundwater Monitoring Results, Trans Mountain Laurel Pumping Station, 1009 East Smith Road, Bellingham, Washington.
T74.	05-17-2006	Maxxam Analytics Inc., Laboratory Analysis Results.

STATE OF WASHINGTON

DEPARTMENT OF ECOLOGY

Northwest Regional Office, 3190 - 160th Ave S.E. • Bellevue, Washington 98008-5452 • (206) 649-7000

June 11, 1992

RECORDED DELIVERY

Mr. Michael Boyle Trans Mountain Oil Pipe Line Corporation 1333 West Broadway, Suite 900 Vancouver, B.C. V6H 4G2 Canada

RE: First Amended Enforcement Order No. DE 91-N192

Dear Mr. Boyle:

The First Amended Enforcement Order No. DE 91-N192 (Amended Order) issued by the Washington Department of Ecology (Ecology) to Trans Mountain Oil Pipe Line Corporation (Trans Mountain) is enclosed. As indicated, the effective date of the Amended Order is June 15, 1992.

If you have any questions or would like to meet with Ecology to discuss the Amended Order, please feel free to contact me at (206) 649-7206.

Sincerely,

Barbara J. Trejo Project Manager

abora / TRGO

BJT:bt

Enclosure

cc: Tanya Barnett, AAG Glenn A. Irving, Trans Mountain

State of Washington Department of Ecology

In the Matter of Remedial Action by:

First Amended Enforcement Order No. DE 91-N192

Trans Mountain Oil Pipe Line Corporation

1333 West Broadway, Suite 900 Vancouver, B.C. V6H 4C2 Canada

To: Glenn A. Irving
Vice President, Secretary,
and General Counsel

Michael Boyle Corporate Solicitor and Assistant Secretary

I.

Jurisdiction

This Order is issued pursuant to the authority of RCW 70.105D.050(1).

II.

Statement of Facts

- 1. The Department of Ecology (Ecology) observed releases of petroleum product on January 15, 1991; December 11, 1991; and March 7, 1992 from the Trans Mountain Oil Pipe Line Corporation Laurel Pump Station, 1009 East Smith Road near the City of Bellingham in Whatcom County, Washington.
- 2. Trans Mountain Oil Pipe Line Corporation notified Ecology (letter to B. Trejo, Ecology, dated November 27, 1991) that soil contamination, not related to the petroleum product releases described above, was identified by Trans Mountain Oil Pipe Line Corporation on October 25, 1991 during an upgrade of the Laurel Pump Station.

- 3. Trans Mountain Oil Pipe Line Corporation responded to the reported releases and commenced containment and cleanup operations. Trans Mountain Oil Pipe Line Corporation also retained geotechnical and environmental consulting firms to perform preliminary contamination assessments. On June 19, 1991, Trans Mountain Oil Pipe Line Corporation concurred with Ecology's decision to issue an Enforcement Order to expedite remedial actions at the facility.
- Soil, sediments, groundwater, and surface water have been demonstrated to be contaminated or are potentially contaminated as a result of the petroleum releases from the Trans Mountain Oil Pipe Line Corporation - Laurel Pump Station based on the results presented in the following plans and reports: (1) Proposed Site Assessment Plan For The Condensate Spill At Laurel Pump Station, January 15, 1991, Trans Mountain Oil Pipe Line Corporation, February 1, 1991; (2) Laurel Pump Station Condensate Spill: Fisheries Assessment, Seymour & Associates, May 16, 1991; (3) Site Assessment Report - Soil & Water Analysis, Laurel Pump Station Natural Gas Condensate Spill, East Smith Road, Whatcom County, Washington, Purnell & Associates, May 17, 1991; and (4) Work Plan, Remedial Investigation/Feasibility Study, Laurel Pump Station, Laurel, Washington for Trans Mountain Oil Pipe Line Corporation, Dames & Moore, January 6, 1992.

Ecology Determinations

- 1. The Trans Mountain Oil Pipe Line Corporation is an "owner and operator" as defined in RCW 70.105D.020(6) of a portion of a "facility" as defined in RCW 70.105D.020(3).
- The facility or "site" is defined as the Laurel Pump Station property located at 1009 East Smith Road, Bellingham, Washington and all other properties in the vicinity of the pump station property which have been affected or are potentially affected by spills, leaks, or discharges of petroleum products or other hazardous substances from the pump station, if any, including the following areas: Area 1 - all property located up to 350 feet west of the pump station property line, south of Smith Road, including the portion of the access easement located west of the pump station property line; (2) Area 2 - all property located north of Area 1 including the adjacent eastern access road, north of Smith Road; (3) Area 3 - Deer Creek and its tributaries including all wetlands, ditches, culverts, streams, ponds, creeks, and other surface water bodies and uplands adjacent to Deer Creek and its tributaries from the southern Smith Road culvert, immediately north of Area 1, The facility or site downstream to Guide Meridian Road. definition may be expanded based on the results of future remedial actions.

- 3. The substances found at the facility as described above are "hazardous substances" as defined in RCW 70.105D.020(5).
- 4. Based on the presence of these hazardous substances at the facility and all factors known to the Department, there is a release or threatened release of hazardous substances from the facility, as defined in RCW 70.105D.020(10).
- 5. By a letter of April 1, 1991, Trans Mountain Oil Pipe Line Corporation voluntarily waived its rights to notice and comment and accepted Ecology's determination that Trans Mountain Oil Pipe Line Corporation is a "potentially liable person" under RCW 70.105D.040 with respect to the site.
- 6. Pursuant to RCW 70.105D.030(1) and 70.105D.050, the Department may require potentially liable persons to investigate or conduct other remedial actions with respect to the release or threatened release of hazardous substances, whenever it believes such action to be in the public interest.
- 7. Based on the foregoing facts, Ecology believes the remedial action required by this Order is in the public interest.

Work to be Performed

Based on the foregoing Facts and Determinations, it is hereby ordered that Trans Mountain Oil Pipe Line Corporation take the remedial actions described in the attached Exhibit A, Scope of Remedial Actions, and Exhibit B, Performance Schedule for Remedial Actions in accordance with Chapter 173-340 WAC unless otherwise specifically provided for herein. Exhibits A and B are incorporated by reference and are integral and enforceable parts of this Enforcement Order.

٧.

Terms and Conditions of Order

1. <u>Definitions</u>

Unless otherwise specified, the definitions set forth in Chapter 70.105D RCW and Chapter 173-340 WAC shall control the meanings of the terms used in this Order.

2. Public Notice

RCW 70.105D.030(2)(a) requires that, at a minimum, this Order be subject to concurrent public notice. Ecology shall be responsible for providing such public notice and reserves the right to modify or withdraw any provisions of this Order should public comment disclose facts or considerations which indicate to Ecology that the Order is inadequate or improper in any respect.

3. Remedial Action Costs.

Trans Mountain Oil Pipe Line Corporation shall pay to Ecology costs incurred by Ecology prior to the effective date of the Order and costs incurred by Ecology pursuant to this These costs shall include work performed by Ecology or its contractors for investigations, remedial actions, and Order preparation, oversight and administration. Ecology costs shall include costs of direct activities; e.g., employee salary, laboratory costs, travel costs, contractor fees, and employee benefit packages; and agency indirect costs of direct activities. Trans Mountain Oil Pipe Line Corporation shall pay the required amount within 90 days of receiving from Ecology an itemized statement of costs that includes a summary of costs incurred, a general description of work performed, an identification of involved staff, and the amount of time spent by involved staff members on the project. Failure to pay Ecology's costs within 90 days of receipt of the itemized statement of costs may result in interest charges.

4. Designated Project Coordinators.

The project coordinator for Ecology is:

Name Barbara J. Trejo

Washington State Department of Ecology

Address 3190 - 160th Avenue Southeast

Bellevue, Washington 98008-5452

The project coordinator for Trans Mountain Oil Pipe Line Corporation is:

Name Dan O'Rourke

Trans Mountain Oil Pipe Line Corporation

Address 1333 West Broadway, Suite 900

Vancouver, B.C. V6H 4C2 Canada

The project coordinators shall be responsible for overseeing the implementation of this Order. To the maximum extent possible, communications between Ecology and Trans Mountain Oil Pipe Line Corporation, and all documents, including reports, approvals, and other correspondence concerning the activities performed pursuant to the terms and conditions of this Order, shall be directed through the project coordinators. Should Ecology or Trans Mountain Oil Pipe Line Corporation change project coordinators, written notification shall be provided to Ecology or Trans Mountain Oil Pipe Line Corporation at least ten (10) calendar days prior to the change.

5. <u>Performance</u>. All work performed pursuant to this Order shall be under the direction and supervision, as necessary, of a professional engineer or hydrogeologist, or similar expert, with appropriate training, experience and expertise in hazardous waste site investigation and cleanup.

Trans Mountain Oil Pipe Line Corporation shall notify Ecology as to the identity of such engineer(s) or hydrogeologist(s), and of any contractors and subcontractors to be used in

carrying out the terms of this Order, in advance of their involvement at the Site. Trans Mountain Oil Pipe Line Corporation shall provide a copy of this Order to all agents, contractors or subcontractors retained to perform work required by this Order and shall ensure that all work undertaken by such agents, contractors and subcontractors will be in compliance with this Order.

Except when necessary to abate an emergency situation,
Trans Mountain Oil Pipe Line Corporation shall not perform
any remedial actions at the Trans Mountain Oil Pipe Line
Corporation - Laurel Pump Station and adjacent properties
affected by the pump station operation outside that required
by this Order unless Ecology concurs, in writing, with such
additional remedial actions.

WAC 173-340-400(7)(b)(i) requires that "construction" that is required under this Order and is performed on the Site <u>must</u> be under the supervision of a professional engineer registered in Washington.

6. Access

Ecology or any Ecology authorized representative shall have the authority to enter and freely move about all property at the Site at all reasonable times for the purposes of, inter alia: inspecting records, operation logs, and contracts related to the work being performed pursuant to this Order; reviewing the progress in carrying out the terms of this Order; conducting such tests or collecting samples as

Ecology or the project coordinator may deem necessary; using a camera, sound recording, or other documentary type equipment to record work done pursuant to this Order; and verifying the data submitted to Ecology by Trans Mountain Oil Pipe Line Corporation. Ecology shall provide reasonable notice before entering property unless an emergency prevents notice. While at the Site, Ecology and any Ecology authorized representatives shall observe reasonable safety requirements imposed by Trans Mountain Oil Pipe Line Corporation, provided that such requirements are brought to the attention of Ecology and any Ecology authorized representatives. Ecology shall allow split or replicate samples to be taken by Trans Mountain Oil Pipe Line Corporation during an inspection unless doing so would interfere with Ecology's sampling. Trans Mountain Oil Pipe Line Corporation shall allow split or replicate samples to be taken by Ecology and shall provide Ecology seven (7) days notice before any sampling activity. However, Trans Mountain shall provide Ecology only as much advance notice as is practical under the circumstances when (1) sampling becomes necessary due to unforeseen circumstances or (2) sampling is to occur during a rain event.

To the extent that compliance with this Order requires access to property not owned or controlled by Trans Mountain Oil Pipe Line Corporation, Trans Mountain Oil Pipe Line Corporation shall make every reasonable effort to obtain

signed access agreements for itself, its contractors, and agents, and provide Ecology with copies of such agreements. With respect to non-Trans Mountain Oil Pipe Line Corporation property upon which monitoring wells, pumping wells, treatment facilities, or other response actions are to be located, the access agreements to the extent practicable shall also provide that no conveyance of title, easement, or other interest in the property shall be consummated without provisions for the continued operation of such wells, treatment facilities, or other response actions on the property. The access agreements should also provide to the extent practicable that the owners of any property where monitoring wells, pumping wells, treatment facilities, or other response actions are located shall notify Ecology by certified mail at least thirty (30) days prior to any conveyance, of the property owner's intent to convey any interest in the property and of the provisions made for the continued operation of the monitoring wells, treatment facilities, or other response actions installed pursuant to this Order.

7. Public Participation

Trans Mountain Oil Pipe Line Corporation shall assist Ecology in preparing and/or updating a public participation plan for the Site. Trans Mountain Oil Pipe Line Corporation may assist Ecology with the plan preparation prior to the issuance of the Order. Ecology shall maintain the

responsibility for public participation at the Site. Trans
Mountain Oil Pipe Line Corporation shall help coordinate and
implement public participation for the Site.

8. Retention of Records

Trans Mountain Oil Pipe Line Corporation shall preserve in a readily retrievable fashion, during the pendency of this Order and for ten (10) years from the date of completion of the work performed pursuant to this Order, all records, reports, documents, and underlying data in its possession relevant to this Order. Should any portion of the work performed hereunder be undertaken through contractors or agents of Trans Mountain Oil Pipe Line Corporation, a record retention requirement meeting the terms of this paragraph shall be required of such contractors and/or agents.

9. Dispute Resolution

Ecology to resolve factual or technical disputes which may arise during the implementation of this Order. Such request shall be in writing and directed to the signatory of this Order. Ecology resolution of the dispute shall be binding and final. Trans Mountain Oil Pipe Line Corporation is not relieved of any requirement of this Order during the pendency of the dispute and remains responsible for timely compliance with the terms of the Order unless otherwise provided by Ecology in writing.

10. Reservation of Rights

Ecology reserves all rights to issue additional orders or take any action authorized by law in the event or upon the discovery of a release or threatened release of hazardous substances not addressed by this Order, upon discovery of any factors not known at the time of issuance of this Order, in order to abate an emergency, or under any other circumstances deemed appropriate by Ecology.

Ecology also reserves all rights regarding the injury to, destruction of, or loss of natural resources resulting from the release or threatened release of hazardous substances from the Trans Mountain oil Pipe Line Corporation - Laurel Pump Station.

In the event Ecology determines that conditions at the Site are creating or have the potential to create a danger to the health or welfare of the people on the Site or in the surrounding area or to the environment, Ecology may Order Trans Mountain Oil Pipe Line Corporation to stop further implementation of this Order for such period of time as needed to abate the danger.

11. Transference of Property

No voluntary or involuntary conveyance or relinquishment of title, easement, leasehold, or other interest in any portion of the Site shall be consummated by Trans Mountain Oil Pipe Line Corporation without provision for continued implementation of all requirements of this Order and

implementation of any remedial actions found to be necessary as a result of this Order.

Prior to transfer of any legal or equitable interest

Trans Mountain Oil Pipe Line Corporation may have in the Site
or any portions thereof, Trans Mountain Oil Pipe Line
Corporation shall serve a copy of this Order upon any
prospective purchaser, lessee, transferee, assignee, or other
successor in such interest. At least thirty (30) days prior
to finalization of any transfer, Trans Mountain Oil Pipe Line
Corporation shall notify Ecology of the contemplated
transfer.

12. Compliance With Other Applicable Laws

All actions carried out by Trans Mountain Oil Pipe Line Corporation pursuant to this Order shall be done in accordance with all applicable federal, state, and local requirements.

13. Revisions to the Scope of Work and Schedule

Revisions to the scope of work or to the schedule shall be granted only when a request for revision is submitted to the Ecology project coordinator within five business days after Trans Mountain Oil Pipe Line Corporation knew or should have known of the need for the revision, and when good cause exists for granting the revision. All revision shall be requested in writing. The request shall specify the reason(s) the revision is needed. A revision of schedule shall be granted only for such period as Ecology determines

is reasonable under the circumstances. A requested revision shall not be effective until approved by Ecology, which approval shall be confirmed in writing.

The burden shall be on Trans Mountain Oil Pipe Line Corporation to demonstrate to the satisfaction of Ecology that good cause exists for granting a revision. Good cause includes, but is not limited to, the following:

- 1. Circumstances entirely beyond the control and despite the due diligence of Trans Mountain Oil Pipe Line Corporation such as difficulty in obtaining access to property not owned or controlled by Trans Mountain Oil Pipe Line Corporation;
- 2. Delays directly attributable to any changes in or need to comply with permit terms or conditions or to appeals on or lack of a permit, concurrence, or approval needed to implement the terms of this Order, provided that Trans Mountain Oil Pipe Line Corporation filed a timely application for such a permit, concurrence or approval; and
- 3. Acts of God, including fire, flood, blizzard, extreme temperatures, storm, earthquake, wave or water conditions, strikes or other labor disputes or other unavoidable casualty.

However, neither increased costs of performance of the terms of this Order, nor changed economic circumstances, nor unavailability of qualified personnel to perform work

required by the terms of this Order shall be considered good cause for granting a revision.

VI.

Satisfaction of this Order

The provisions of this Order shall be deemed satisfied upon Trans Mountain Oil Pipe Line Corporation's receipt of written notice from Ecology that Trans Mountain Oil Pipe Line Corporation has completed the remedial activity required by this Order, as amended by any modifications, and that all other provisions of this Enforcement Order have been complied with.

VII.

Enforcement

- 1. Pursuant to RCW 70.105D.050, this Order may be enforced as follows:
 - A. The Attorney General may bring an action to enforce this Order in a state or federal court.
 - B. The Attorney General may seek, by filing an action, if necessary, to recover amounts spent by Ecology for investigative and remedial actions and orders related to the Site.
 - C. In the event Trans Mountain Oil Pipe Line
 Corporation refuses, without sufficient cause, to
 comply with any term of this Order, Trans Mountain
 Oil Pipe Line Corporation will be liable for:
 - (1) up to three times the amount of any costs

- incurred by the state of Washington as a result of its refusal to comply; and
- (2) civil penalties of up to \$25,000 per day for each day it refuses to comply.
- D. This Order is not appealable to the Washington Pollution Control Hearings Board. This Order may be reviewed only as provided under RCW 70.105D.060.

Effective date of this Order: June 15, 1992

Michael J. Gallagher

EXHIBIT A

SCOPE OF REMEDIAL ACTIONS

I. PRE-REMEDIAL INVESTIGATION REPORT

Submit to Ecology for review an independent pre-remedial investigation report for all the investigation work performed by Trans Mountain which has not previously been submitted to Ecology in a report format including the information obtained during Trans Mountain's 1991 - 1992 upgrade of the pump station.

II. REMEDIAL INVESTIGATION AND FEASIBILITY STUDY

Conduct a remedial investigation and feasibility study (RI/FS) pursuant to WAC 173-340-350. The RI/FS shall address known or potential contamination resulting from the January 1991, December 1991, and March 1992 petroleum spills as well as known or potential contamination resulting from current and historic operations including spills or leaks at and from the pump station. The RI/FS shall also include information to determine the impact or potential impact of releases of hazardous substances at the facility on the natural resources and ecology of the area, an ecological and human health risk assessment, wetland delineation, and an evaluation of interim cleanup actions.

A. Submit to Ecology for review and approval a RI/FS work plan pursuant to WAC 173-340-350. The work plan format shall follow the general format presented in the EPA Superfund <u>Guidance for Conducting Remedial</u>

Investigations and Feasibility Studies Under CERCLA.

The work plan shall include a health & safety plan (WAC 173-340-810), sampling and analysis plan (WAC 173-340-820), wetland delineation plan, a natural resource damage assessment plan, and a discussion of data gaps associated with each item described in WAC 173-340-350(6). If Trans Mountain believes that an item described in WAC 173-340-350(6) is not applicable to the site, a brief explanation about why it is not applicable shall be included in the work plan.

The health & safety plan is reviewed but not approved by Ecology. If Trans Mountain believes that the existing health & safety plan (Amended Health and Safety Plan For Trans Mountain Oil Pipe Line Corporation, Laurel Station RI/FS, March 20, 1992, prepared by Dames & Moore) meets the legal requirements for worker health and safety (WAC 173-340-810) for the work to be completed for the RI/FS described above, Ecology shall be notified by Trans Mountain, in writing, the basis for its decision about the adequacy of the health & safety plan. If the existing plan does not meet the legal requirements for worker health &

safety, Trans Mountain shall include a revised health & safety plan which shall be submitted with the work plan.

B. Submit to Ecology for review and approval a RI/FS report. The report shall follow the EPA suggested RI/FS format.

III. INTERIM ACTIONS

A. Submit a written response to each comment included in Ecology's June 19, 1991 comment letter on Purnell & Associates' May 17, 1991, Site Assessment Report - Soil and Water Analysis, Laurel Pump Station Natural Gas Condensate Spill, East Smith Road, Whatcom County, Washington and the Seymour & Associates' May 16, 1991, Laurel Pump Station Condensate Spill: Fisheries Assessment. The written response shall be in a report or letter format and shall include responses made prior to the issuance of this Order.

B. Surface Water Monitoring System

1. Submit to Ecology for review biweekly surface water sampling results obtained by Trans Mountain at surface water monitoring stations established by Trans Mountain to monitor surface water quality from areas contaminated by hazardous substances.

The water quality parameters to be analyzed shall include but not be limited to the volatile organics: benzene, toluene, ethylbenzene, and xylene (BETX); the full range of petroleum hydrocarbons; ph; conductivity; and temperature. The Washington Department of Ecology analytical procedures for petroleum hydrocarbon analysis for water (WTPH-G, WTPH-D, WTPH-418.1) shall be used to analyze the full petroleum hydrocarbon range. The analytical method selected for BETX shall be in compliance with WAC 173-340-830, analytical procedures.

The water quality sampling result submittals shall include but not be limited to a surface water station location map, a summary of surface water sampling results, copies of the laboratory data sheets, and a description of any water quality sampling results which exceed groundwater or surface water quality criteria.

C. Submit to Ecology for review detailed hydrogeological cross sections which cover the area within a one-mile radius of the January 15, 1991, leak site to confirm Purnell & Associates hypothesis that no aquifer other

than the shallow aquifer is contaminated with natural gas condensate or other contaminants related to the Laurel Pump Station and that no drinking water wells are affected. Logs from registered and unregistered wells identified within a one-mile radius of the January 15, 1991, leak site as well as any other information available to Trans Mountain or their consultants shall be used to develop the cross sections.

- D. Dam and Surface Water Maintenance
 - 1. Submit to Ecology for review a plan for maintaining and operating Dam #2, located downstream of Smith Road, and Dam #3, east of Hannegan Road, and the dam constructed by Trans Mountain for the March 1992 petroleum spill. The plan shall also include a discussion of the cleanup of visible contamination on the surface water. A copy of the plan shall also be sent by certified or registered mail to the Department of Wildlife and Mark Schuller, Department of Fisheries (Fisheries), 333 E. Blackburn Road, Mt. Vernon, Washington for Fisheries files.
 - 2. Begin implementation of the Dam #2 and Dam #3 dam and surface water maintenance plan.
 - 3. Begin implementation of the dam and surface water maintenance plan for the dam constructed by Trans Mountain for the March 1992 petroleum spill.
 - 4. Submit to Ecology for review and comment an evaluation of the feasibility of removing Dam #2, Dam #3, and the dam constructed by Trans Mountain for the March 1992 petroleum leak. The evaluation shall include but not be limited to a discussion of potential environmental impacts such as migration of contaminants or contaminated sediments as a result of the dam removal, a summary of surface water testing, and visual and olfactory contamination observations.
 - 5. Submit to Ecology for review a Dam Removal Plan if the evaluation described in D.4., above, indicates that dam removal is feasible and Ecology agrees with the evaluation. The plan shall provide detailed steps for completing the dam removal including a discussion of any SEPA or other permit requirements such as a hydraulic permit, water quality modification permit, or other applicable permit requirements and specific requirements for preventing further environmental damage as a result of the dam removal.

E. Spill Prevention Plan

- Submit to Ecology for review a spill prevention plan which shall address future potential leaks, spills, or unauthorized discharges from the Laurel Pump Station site. The plan shall include but not be limited to the following information and procedures:
 - a. A description of a reporting system to be used to notify immediately persons responsible for the management of the facility and appropriate state, federal, and local authorities;
 - b. A description and a site plan showing equipment or facilities for the prevention, containment or treatment of leaks, spills, and unauthorized discharges;
 - c. A list of all hazardous substances as defined in Chapter 70.105D RCW, Hazardous Waste Cleanup Model Toxics Control Act which are used, processed, or stored at the facility including the normal quantity maintained on the premises. The applicable Material Safety Data Sheets (MSDS) shall be included as an appendix to the plan.
 - d. A brief description of any leaks, spills, or unauthorized discharges which occurred during the 36-month period preceding the effective date of this Order and subsequent measures taken by Trans Mountain Oil Pipe Line Corporation to prevent or to reduce the possibility of further leaks, spills, or unauthorized discharges; and
 - e. An implementation schedule for additional equipment or facilities which might be required for E.1.b, above, but which are not yet operational.

The Spill Prevention Plan must be reviewed and certified by a professional engineer registered in the State of Washington. Such certification shall in no way relieve Trans Mountain Oil Pipe Line Corporation of its duty to prepare and fully implement the Spill Prevention Plan for the Laurel Pump Station.

2. Begin the Spill Prevention Plan implementation.

3. Submit to Ecology the results of the studies, evaluations, or other items outlined by Trans Mountain in its Spill Prevention Plan implementation schedule.

F. Oil/Water Separator

- 1. Submit to Ecology as-builts of the Laurel Pump Station oil/water separators along with a list of hazardous substances that historically may have been discharged. The as-builts shall identify historic sources connected to the separators as well as current sources.
- 2. Submit a sampling and analysis plan for water samples to be collected from the separators. The initial sampling round shall include priority pollutant and petroleum hydrocarbon analyses if the sources which discharge to the separators cannot be determined. If the sources discharging to the separators have been identified then the sampling may be limited to those hazardous substances associated with each source. The sampling and analysis plan shall meet the submittal requirements of WAC 173-340-430(6).
- 3. Collect water samples from the oil/water separator outlets.
- 4. Submit to Ecology a written report of the chemical analytical results for each separator sampling event. The report shall include a summary of the analytical and quality control/quality assurance results, copies of all laboratory analytical and quality control/quality assurance data, and describe any changes to the procedures described in the sampling and analysis plan prepared for F.2, above.

G. Wetlands Delineation and Mitigation

A wetland mitigation plan shall be required for cleanup actions in wetland areas of the site. Appropriate wetland delineation shall be accomplished in advance of the wetland mitigation plan. Attachment 1, Report Recommendations For Wetland Determinations/Delineations and Compensatory Wetlands Mitigation Plans provides general guidelines for wetland determinations/delineations and mitigation plans.

- Submit to Ecology for review and comment a wetland determination/delineation for the following areas:
 - Laurel Pump Station property; Area 1; Area 2; and the portions of Area 3 upstream of

Hannegan Road, which have been affected by the January 1991 natural gas condensate leak.

- b. All other areas of the site which have been identified as affected or potentially affected by the pump station operation in the Ecology reviewed and approved wetland delineation plan required under section IT.A. Pump station operations include but are not limited to historic and current operations, upgrading, spill responses, interim actions, final remedial actions.
- 2. Submit to Ecology a Wetland Mitigation Plan for the site.
- 3. Implement the wetland mitigation plan.
- H. Interim Cleanup Action Laurel Pump Station Property:
 Non-Wetland Areas Affected by the January 15, 1991
 Natural Gas Condensate Leak
 - 1. Submit to Ecology a work plan and a sampling and analysis plan for the following interim cleanup actions for non-wetland areas of the Laurel Pump Station property affected by the January 15, 1991 natural gas condensate leak:
 - a. Removal of the existing drain tile;
 - b. Excavation of any contaminated non-wetland soils which exceed the cleanup criteria for the contaminants of concern. Contaminated non-wetland soils and any stockpiled soils from the January 15, 1991 leak site excavation shall be immediately moved to onsite treatment beds for bioremediation immediately after excavation.
 - c. Backfilling of the excavations completed for H.1.a and H.1.b with clean native soil or structural fill. Compacted native soils or structural fill used for backfilling must have hydraulic conductivity values less than or equal to the in-situ native soils to prevent this area from acting as a conduit for any potential future leaks, spills, or discharges from this site unless the backfill cannot be placed to meet hydraulic conductivity values due to limitations imposed by the pipe line. The backfilled areas must immediately be reseeded with appropriate fast growing native vegetation to prevent sedimentation to nearby surface

waters.

d. Evaluate whether a new drainage system should be installed to replace the drain tile. Install the new drainage system as required. The new system shall contain any future potential leaks or discharges of hazardous substances.

The work plan and sampling and analysis plan shall include the appropriate items in WAC 173-340-430(6), Submittal Requirements. In addition to the items identified in WAC 173-340-430(6), the following shall be included in the plans:

- (1) An evaluation of the feasibility of conducting the work described in H.1.a to H.1.d., above, during the different seasons when precipitation varies;
- (2) A State Environmental Policy Act (SEPA) checklist or environmental impact statement (EIS) for all interim actions which require a state, county, or city permit and/or National Environmental Policy Act (NEPA) documents for federal permits;
- (3) An application for a Water Quality Modification from the Department of Ecology - Water Quality Section, if required; and
- (4) A sediment/drainage control plan which shall allow no sediments to be discharged to any surface water body including but not limited to wetlands, drainage ditches, creeks, streams, and ponds.
- (5) A plan which describes how bioremediation will be accomplished. The on-site bioremediation must be managed to maximize bioremediation (destruction) of hazardous substances rather than aeration (volatilization). While volatilization will occur during excavation and treatment, it should be minimized. Therefore, the following must be accomplished as part of the bioremediation at the site:
 - (a) Excavate and place soil in lined, covered treatment beds;

- (b) Control and manage all runoff related to the bioremediation treatment beds; and
- (c) properly manage the soil moisture, pH, temperature, and nutrient additions to maximize the bioremediation time frame.
- 2. Begin Interim Cleanup Actions
- 3. Submit report of interim cleanup actions to Ecology.
- I. Contaminated Soil Stockpiles

Trans Mountain has generated contaminated soil stockpiles at the pump station as a result of the upgrading of their facility. These stockpiles shall be monitored, sampled, and evaluated for interim cleanup action options pursuant to WAC 173-340-430, Interim Actions.

- 1. Submit to Ecology for review and comment an Operation and Maintenance Plan for the soil stockpiles pursuant to WAC 173-340-400(4)(b) and (c). The plan shall include air monitoring based on requirements or recommendations from appropriate regulatory agencies.
- 2. Submit to Ecology for review and approval an interim cleanup action plan for the remediation of contaminated soil stockpiles pursuant to WAC 173-340-430. The proposed cleanup action shall use permanent solutions to the maximum extent practicable (WAC 173-340-360). The cleanup options evaluated as well as the proposed cleanup action shall be presented in the plan.
- 3. Implement the approved interim cleanup action plan.
- 4. Submit to Ecology for review and approval a report of the results of the soil stockpile cleanup action.

IV. SELECTION OF CLEANUP ACTIONS

A. Trans Mountain shall submit a SEPA checklist or EIS to Ecology or other appropriate local or state agency and/or NEPA documents, if required, to appropriate federal agencies for the proposed draft cleanup action plan proposed by Ecology. The checklist, EIS, and/or other documents or copies shall be included, as a minimum, with the draft cleanup action plan for public comment.

Ecology shall prepare and issue a draft cleanup action plan for the proposed cleanup actions at the site. The draft cleanup action plan shall meet the requirements under WAC 173-340-360(10) and (11).

V. CLEANUP ACTIONS

- A. Cleanup actions shall be accomplished by Trans Mountain in compliance with WAC 173-340-400, Cleanup Actions. Submit to Ecology for review and approval all plans, specifications, and other documents required under WAC 173-340-400(4). In addition to the requirements under WAC 173-340-400(4), Trans Mountain shall prepare a wetland mitigation plan, other mitigation plans determined to be appropriate based on the results of the RI/FS, and an evaluation of the feasibility of completing the cleanup action during the different seasons when precipitation varies. The evaluation shall be submitted with the plans, specifications, and other documents.
- B. Implement cleanup actions after Ecology reviews and approves plans, specifications, wetland or other mitigation plans, and other documents.

EXHIBIT B

PERFORMANCE SCHEDULE FOR REMEDIAL ACTIONS

The performance schedule for remedial actions, below, follows the format established in Exhibit A, Scope of Remedial Actions.

The actual start date or the maximum number of days after the effective date of the First Amended Enforcement Order for submittals or actions follows each item. Draft plans, reports, or other documents shall be submitted at least 60 days in advance of the final submittal dates to allow Ecology time to review and comment on documents and Trans Mountain time to revise documents based on Ecology's comments.

Ecology's failure to perform any obligation undertaken in this Order within the time specified in Exhibit B shall not excuse Trans Mountain Oil Pipe Line Corporation from performing any of its obligations under this Order. However, the time allowed for Trans Mountain Oil Pipe Line Corporation to perform any obligation that is dependent on the review or approval of Ecology shall be extended by the number of days that Ecology is late in completing such review or approval.

PERFORMANCE SCHEDULE

NUMBER OF DAYS AFTER THE EFFECTIVE DATE OF ORDER

ITEM		START OR DUE DATE	START	DRAFT	FINAL
I.	Pre-Remedial Report	6/12/92			
II.	RI/FS				
A.	Work Plan			days 90	30 days after receipt of Ecology's comments on draft

NUMBER OF DAYS AFTER THE EFFECTIVE DATE OF ORDER

В.	Report			330	30 days
				days	after receipt
					of
					Ecology's comments
					on draft
III.	Interim Actions				
	Response	Complete			
	Monitoring		7 days		
1	Cross Sections	Complete			
D.	Dam Maintenance				
	1. Plan			21 days	30 days after receipt of Ecology's comments on draft
	2. Implementation	12/27/91			
	3. Implementation		21 days		
	4. Evaluation ;			60 days	30 days after receipt of Ecology's comments on draft
	5. Removal Plan		·	130 days	30 days after receipt of Ecology's comments on draft
Ε.	Spill Prevention Plan				

NUMBER OF DAYS AFTER THE EFFECTIVE DATE OF ORDER

		Υ	T	T
1. Plan	6/30/92			
2. Implementation	4/27/92			
3. Study Results	8/01/92			
F. Oil/Water Separator				
1. As-builts	7/01/92			
2. Plan	6/15/92			
3. Sampling	14 days after the plan approved	·		
4. Results	15 days after each sampling event			
G. Wetlands		·		
1. Delineation			330 days	30 days after receipt of Ecology's comments on draft
2. Mitigation Pļan			570 days	30 days after receipt of Ecology's comments on draft
3. Mitigation Plan Implementation		To be deter-mined		
H. Interim Action - Non Wetland				
1. Work Plan	6/1/92			
2. Interim Cleanup Action	Complete			

NUMBER OF DAYS AFTER THE EFFECTIVE DATE OF ORDER

3. Report	6/30/92			
I. Contaminated Soil Stockpiles				
1. O & M Plan			45 days	30 days after receipt of Ecology's comments on draft
a. implementation		45 days		
2. Work Plan			75 days	30 days after receipt of Ecology's comments on draft
3. Implement cleanup action	30 days after the plan approved			
4. Report	60 days after III.I.3 work complete			
IV. Cleanup Action Selection				
SEPA/NEPA Checklist or EIS			450 days	30 days after receipt of Ecology's comments on draft

NUMBER OF DAYS AFTER THE EFFECTIVE DATE OF ORDER

	Ecology issues draft cleanup plan		480 days	30 days after receipt of Ecology's comments on draft
v.	Cleanup Actions			
	Submit plans, specifications, or other documents		570 days	30 days after receipt of Ecology's comments on draft
	Begin cleanup action	To be deter- mined		

Note: Items listed as "complete" were completed under the original Enforcement Order.

REPORT RECOMMENDATIONS FOR WETLAND DETERMINATIONS/DELINEATIONS

- i. General location map, using USGS Quadrangle, (1": 2,000"), with site clearly defined. If a site is not associated with easily recognizable landmarks, a smaller scale map may be appropriate.
- 2. Topographic map of area, preferably with two foot contour intervals.
- 3. Site map (large scale no smaller than 1": 400').
- For large and/or complex projects, a large scale (1": 400' to 1": 100') air photo with overlays displaying site property and wetland boundaries. An orthophotograph displaying 2 foot contour intervals is preferred. If an orthophotograph is not available, have the center of a small scale (e.g. 1": 3,333' to 1": 5,000') air photograph enlarged to 1": 400'.
- 5. Site designated on a National Wedland Inventory Map.
- 5. Site designated on a Soil Survey Report soils map with proximate soil series profile descriptions appended.
- Discussion in text regarding methods and results with special emphasis on whether approach was simple, intermediate, or complex as described in the 1989 Federal Manual for Identifying and Delineating Jurisdictional Wetlands.
- 8. Any previous site documentation and/or analysis including but not limited to SEPA checklist, soils engineering analysis, plant and/or wetland inventories, Washington Natural Heritage Program data, threatened and endangered species, etc.
- All completed field data sheets (Corps format for 3 parameter application) numbered to correspond with each sample site.
- 10. Map of numbered sample sites (large scale and superimposed on ropographic map and/or air photograph). The report should identify sites where one or more of the three parameters were not sampled.
- 11. Field stakes should be placed marking each sample site for agency verification.
- 12. The werland boundary should be staked and flagged in the field and accurately mapped on a large scale map (e.g., county assessor's map) or on a large scale air photograph.
- 13. For difficult boundary determinations, at least three samples should be taken; one in the nonwetland, one in the wetland, and one at the boundary. All three wetland parameters (soil, plants, hydrology) should be displayed for each sample.

REPORT RECOMMENDATIONS For Compensatory Wetlands Mitigation Plans

A. INTRODUCTION

Mitigation for creation, restoration or enhancement of wetlands should compensate for lost functions and values. Wetlands should be designed to be persistent features in the landscape, negating the need for continued water level manipulation, revegetation or other types of management. An available water supply is crucial to wetland development. Design should also consider relationships of the wetland to the watershed, other wetlands, adjacent uplands and deep water habitats.

B. THE WETLAND MITIGATION PLAN

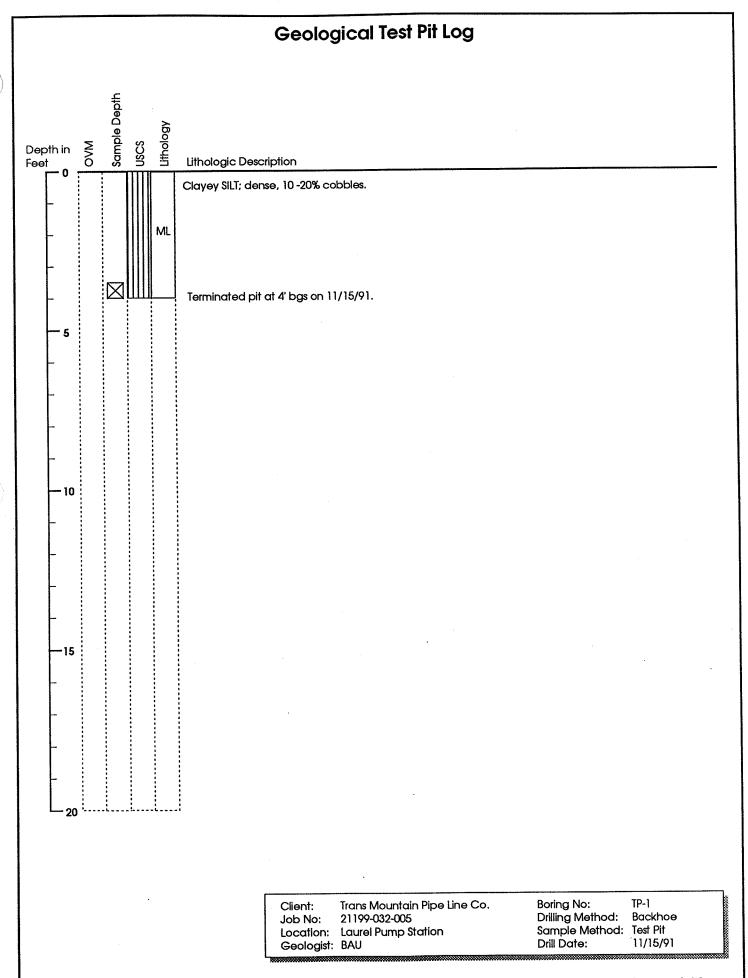
(to be prepared by a qualified wetlands consultant)

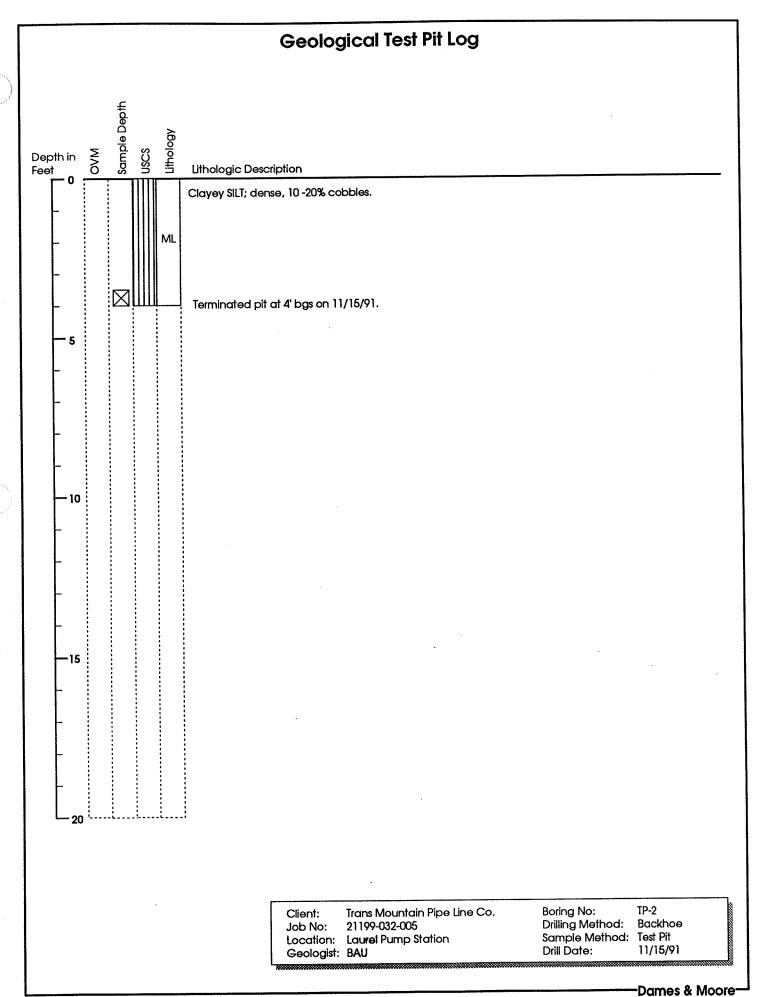
Conduct a thorough ecological assessment of the impacted wetland. Compare the values and functions of the impacted wetland to the wetland to be created, restored or enhanced.

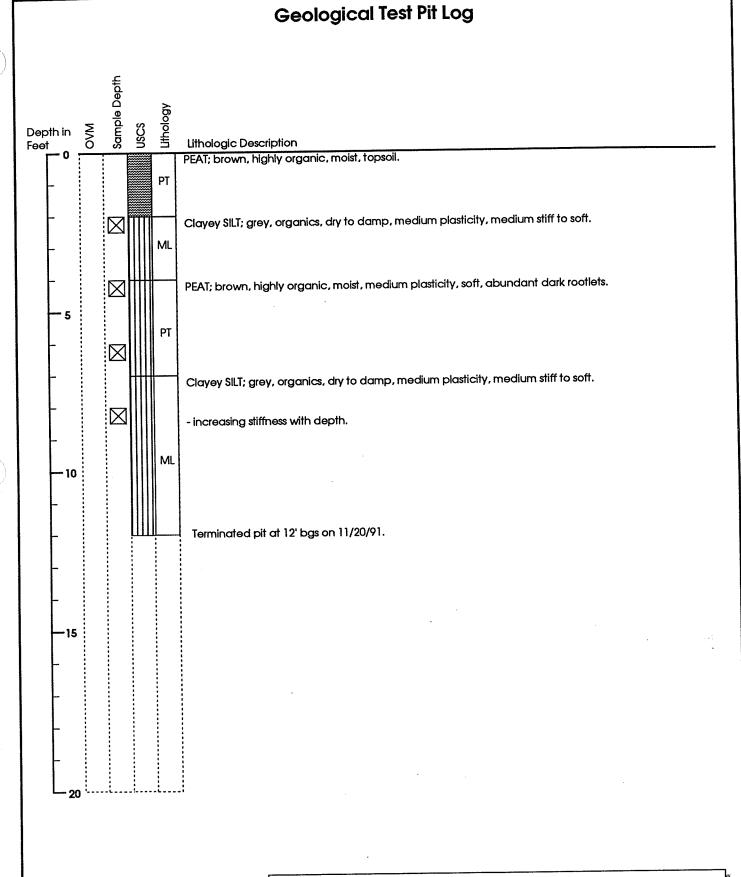
- 2) Establish goals and objectives for the mitigation site. Goals are broad and non-specific, objectives are site specific and direct the actions of the project. Include performance standards with specific criteria for measuring project success.
- Prepare detailed construction and revegetation plans. Include where species are being planted, what is being planted and the size and density of plantings. Include the same information for the buffer area. Indicate drainages and topography to 2 ft. intervals. Specify a time schedule for construction events. Site work should include the following:
 - * erosion control. natural contouring, proper elevations
 - * plant only native species, control exotic species
 - * fertilize and irrigate as needed to increase plant survival
 - * have a biologist on site during all phases of construction
- Develop a monitoring plan that will measure project success through sampling of specific criteria (eg. % plant cover, %plant survival). Use a standardized sampling technique to determine whether criteria have been met. Monitoring should be done at least annually and for a minimum for 5 years. Prepare a "time-zero" report which includes an as-built survey and photographs of the established wetland. Include a signed contract with a qualified consultant to ensure monitoring is conducted.
- Develop a contingency plan for corrective actions to be taken if objectives are not met. The contingency plan should be enforced with a bond to ensure successful mitigation.
 - These are general guidelines only. For the complete guidelines, call the Department of Ecology at 493-9260.

APPENDIX B BORING LOGS

APPENDIX B - BORING LOGS


Study Unit 1


- TP-1
- TP-2
- TP-4
- TP-5
- TP-6
- TP-7
- TP-8
- TP-9
- TP-10
- TP-11
- TP-12
- TP-13
- TP-14
- TP-15
- TP-16
- TP-17
- TP-18
- PB-1
- PB-2
- PB-4
- TM-B2
- TM-B3
- TM-B4
- TM-B5
- TM-B6
- TM-B10
- TM-B11
- TM-B12
- TM-B14
- TM-B15
- TM-B16
- TM-B17
- TM-B18
- TM-B19
- TM-B20
- TM-B21
- TM-B22 TM-B23
- TM-B24


APPENDIX B - BORING LOGS

Study Unit 1 (continued) TM-B25 DW-1 DW-2 DW-3 DW-4 **Study Unit 2** TM-B7 TM-B8 TM-B13 U-3 U-4 **Study Unit 3** TP3-1 TP3-2 TP3-3 DW-5 **Study Unit 4** TP-19 TP-20 TP-21 **TP-22** TP-23 TP-24 **Study Unit 5** TP5-1 TP5-2 TP5-3 TP5-4 TP5-5 TP5-6 **Borings Outside of Area of Concern Boundaries**

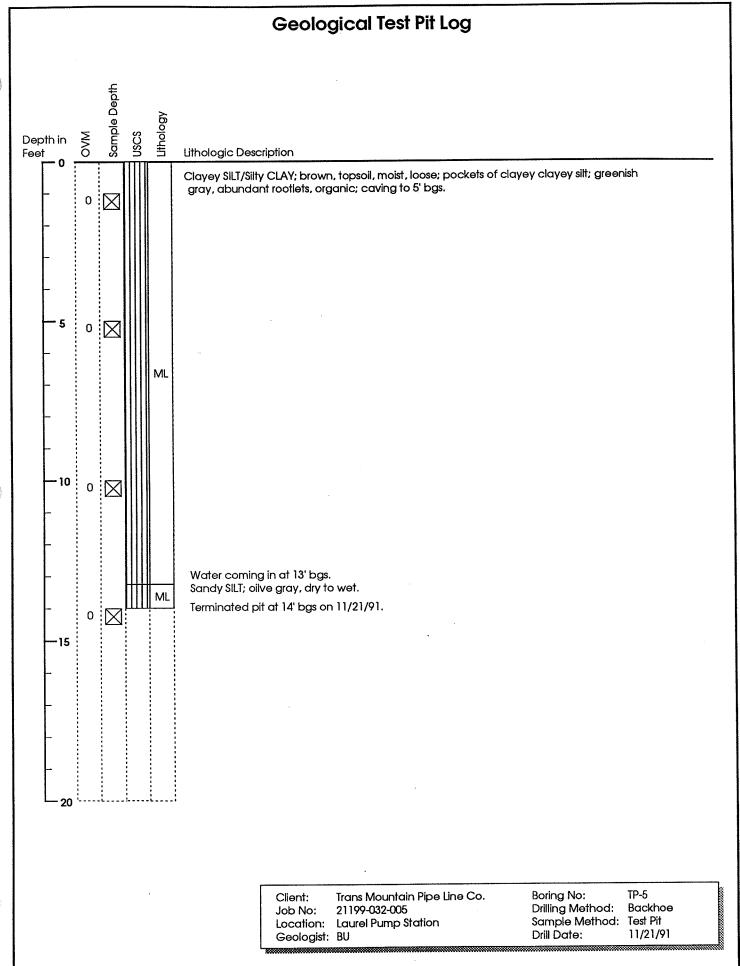
TM-B1 TM-B9

Client:

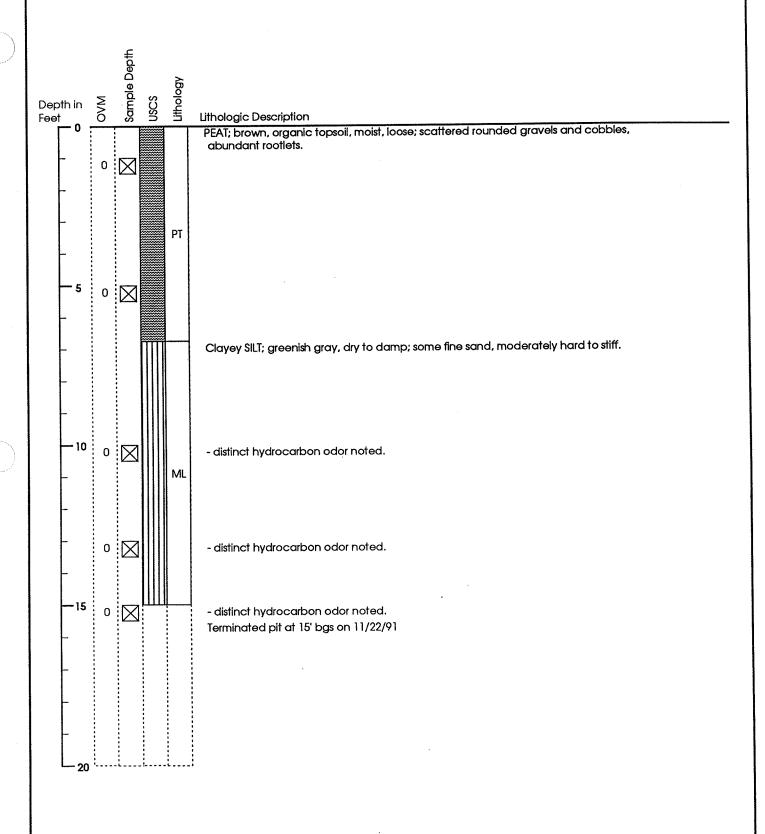
Trans Mountain Pipe Line Co.

Job No: 21199-032-005 Location: Laurel Pump Station

Geologist: BAU


Boring No: Drilling Method: TP-4

Sample Method: Test Pit


Backhoe Test Pit

Drill Date:

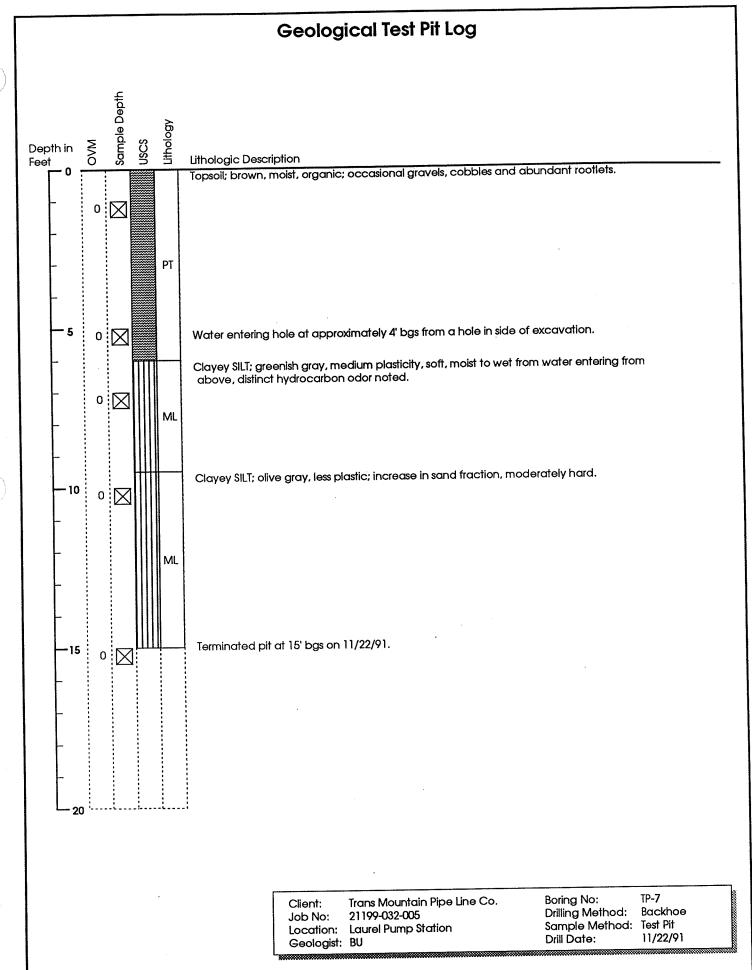
11/20/91

Trans Mountain Pipe Line Co.

21199-032-005 Job No:

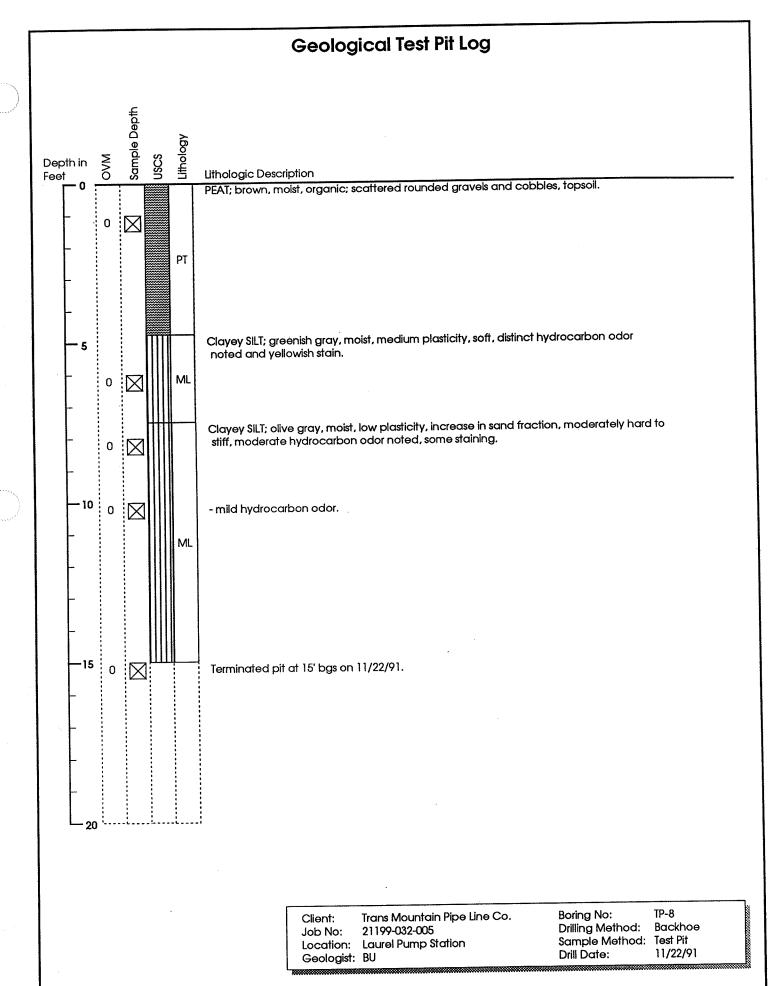
Location: Laurel Pump Station

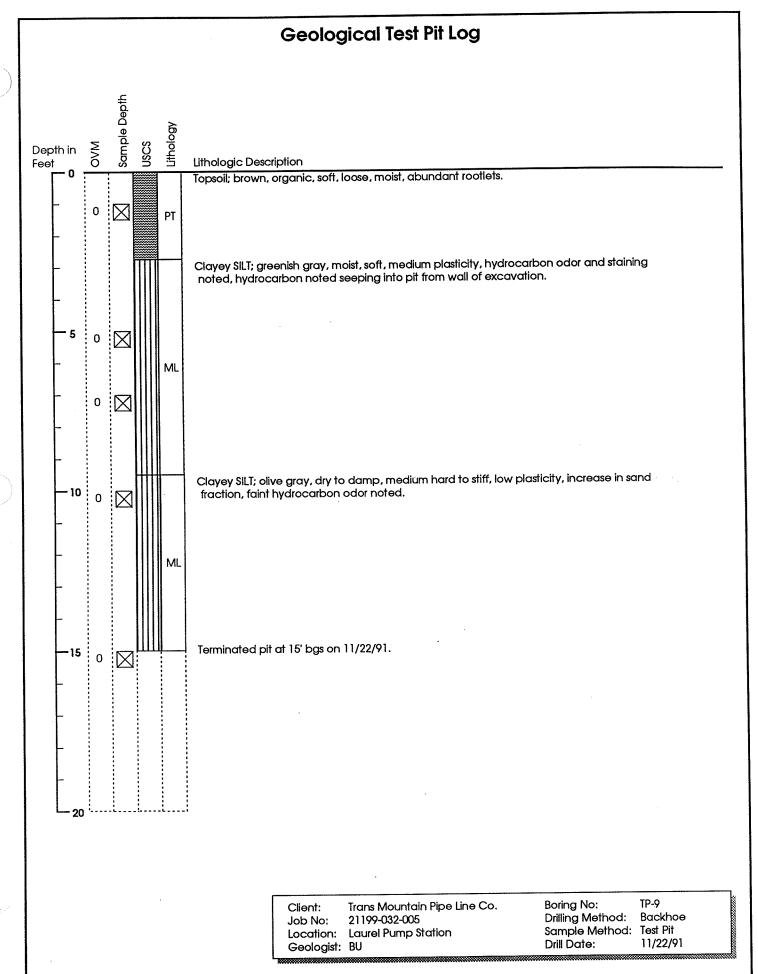
Geologist: BU

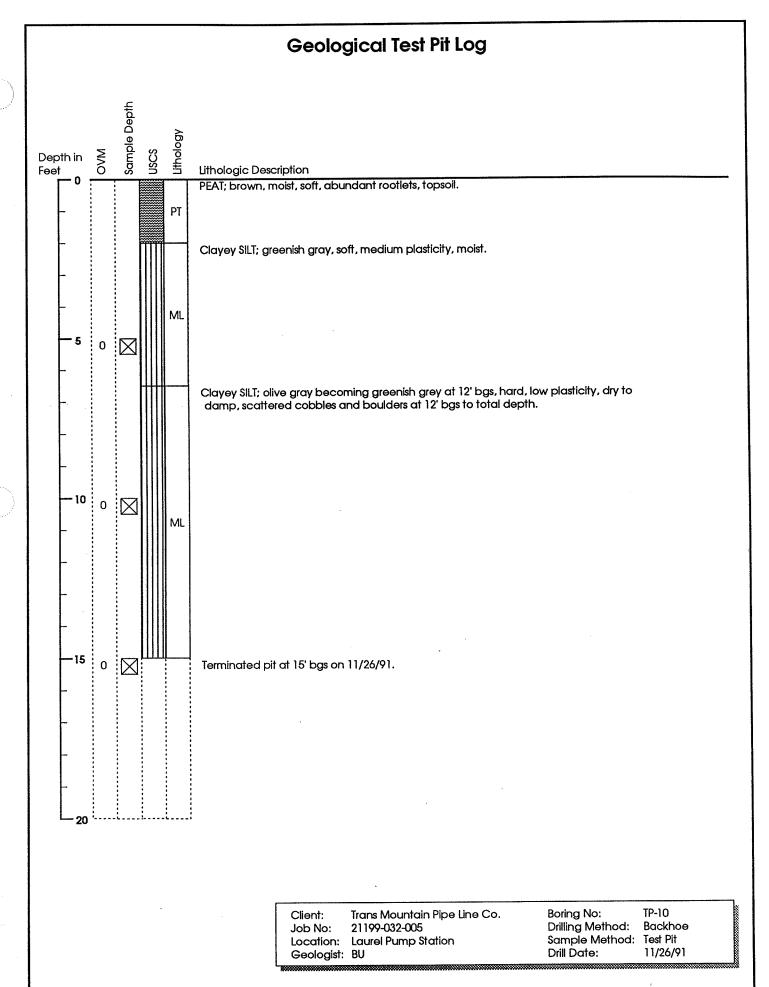

Boring No:

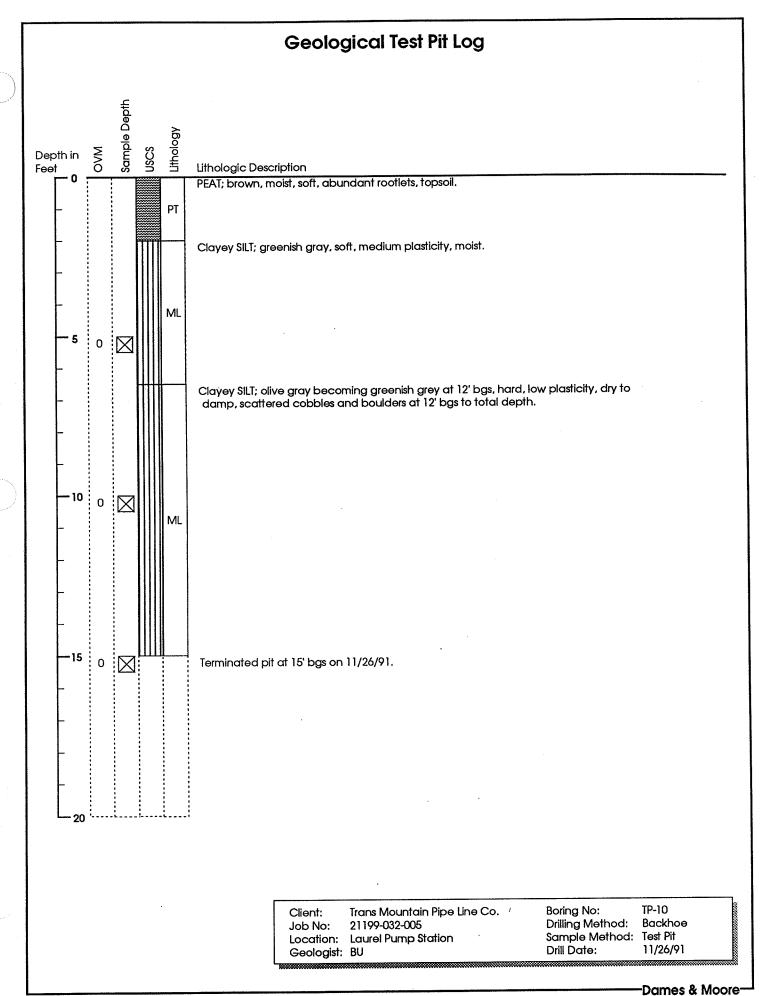
TP-6 Backhoe

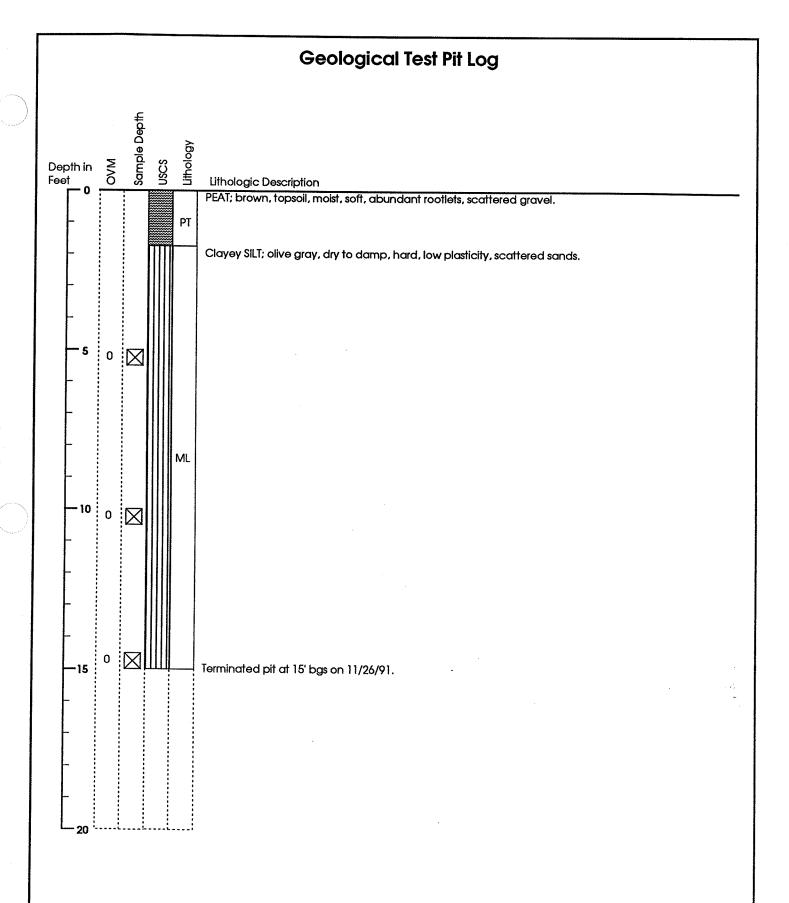
Drilling Method: Sample Method: Test Pit


Drill Date:


11/22/91




FILENAME: TRMTN-TP.DRW

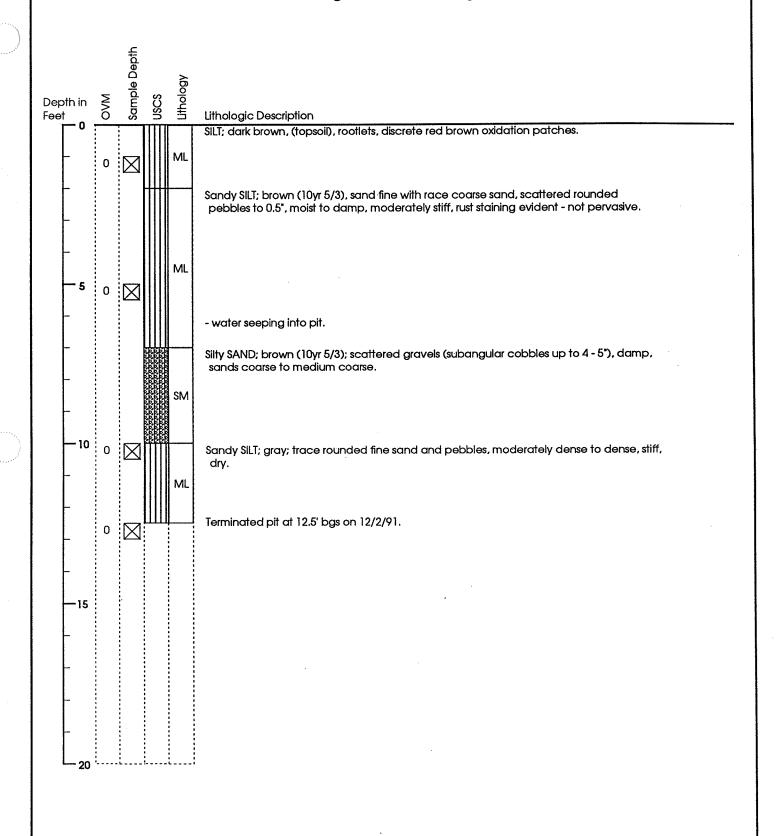

-Dames & Moore

Trans Mountain Pipe Line Co.

21199-032-005 Job No: Location:

Laurel Pump Station

Geologist: BU


Boring No:

TP-11 Drilling Method:

Sample Method: Drill Date:

Backhoe Test Pit 11/26/91

Trans Mountain Pipe Line Co.

Job No:

21199-032-005

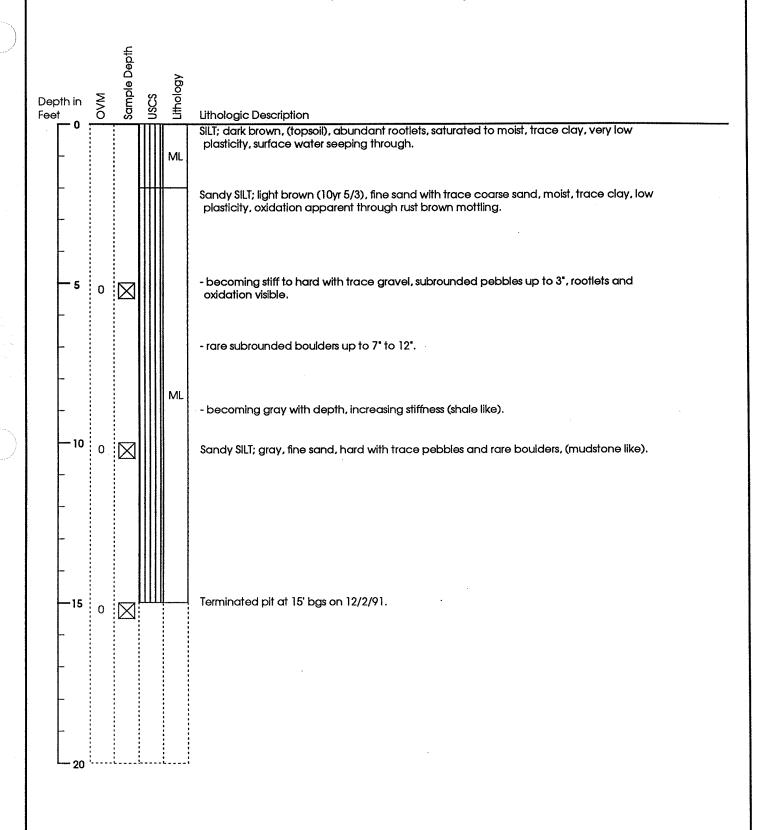
Location: Laurel Pump Station

Geologist: PC

Boring No:

TP-12

Drilling Method:


Backhoe

Sample Method: Test Pit

Drill Date:

12/2/91

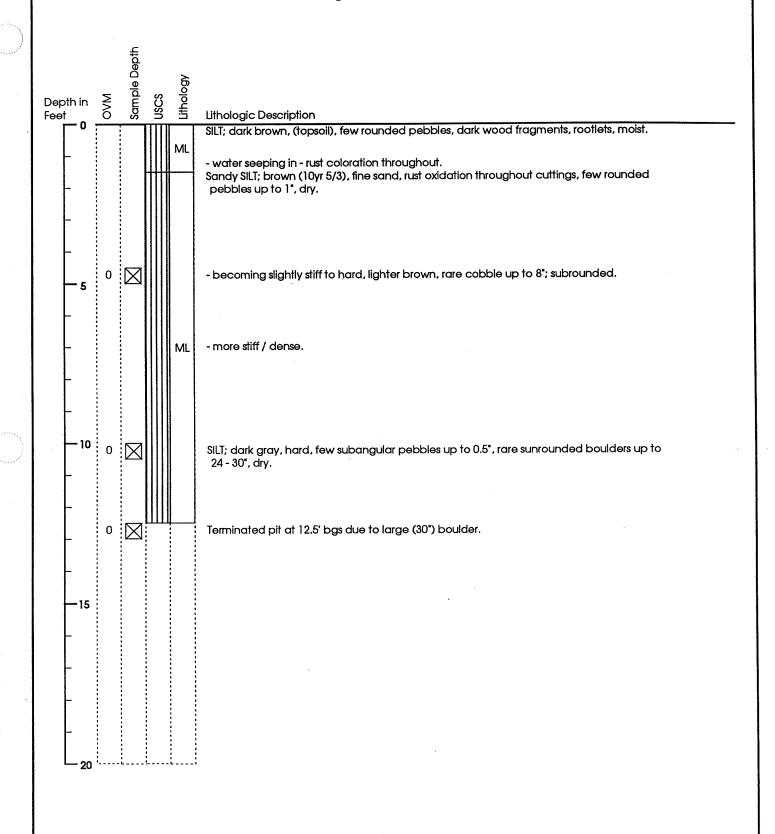
Trans Mountain Pipe Line Co.

Job No:

21199-032-005

Location: Laurel Pump Station

Boring No: Drilling Method:


TP-13 Backhoe Sample Method: Test Pit

Geologist: PC

Drill Date:

12/2/91

Trans Mountain Pipe Line Co.

Job No: Location:

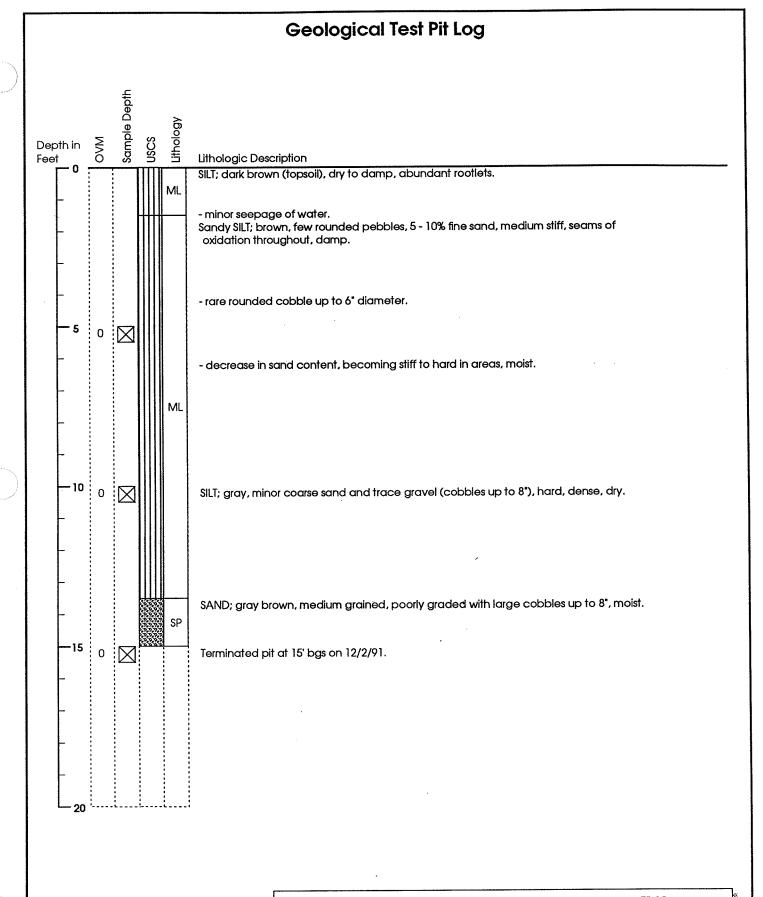
21199-032-005

Laurel Pump Station

Geologist: PC

Boring No:

TP-14


Drilling Method:

Sample Method: Test Pit

Backhoe

Drill Date:

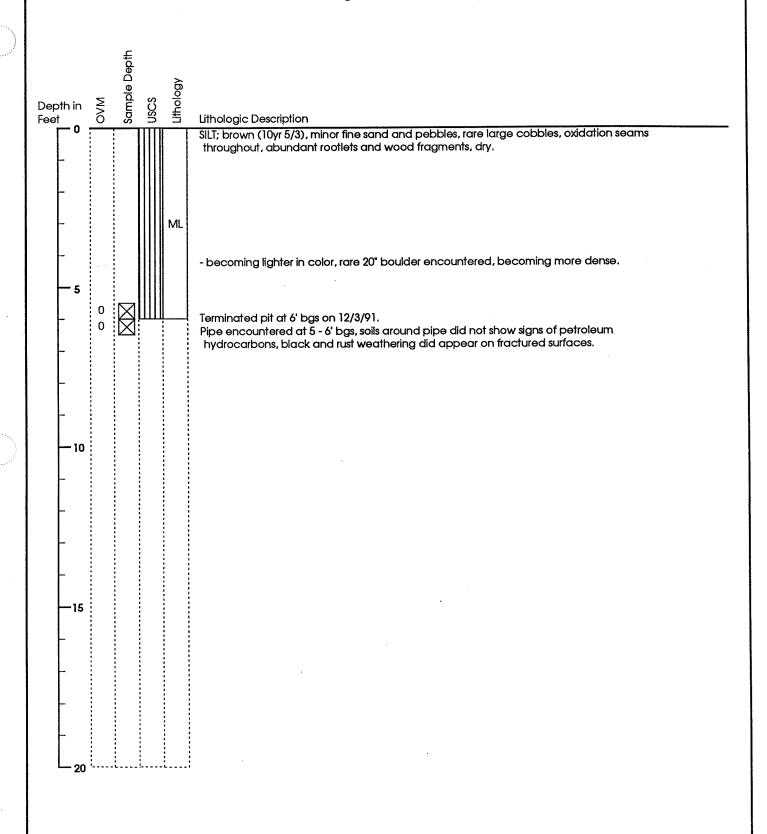
12/2/91

Trans Mountain Pipe Line Co.

Location: Laurel Pump Station

21199-032-005

Geologist: PC


Boring No: Drilling Method: TP-15 Backhoe

Sample Method: Drill Date:

Test Pit 12/2/91

Dames & Moore

Trans Mountain Pipe Line Co.

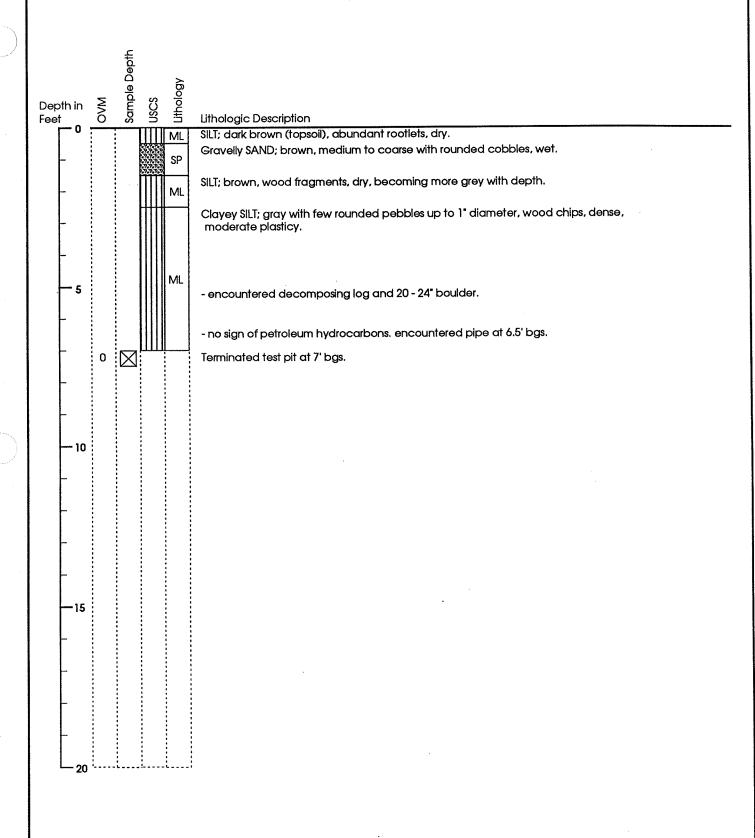
Job No: Location:

21199-032-005 Laurel Pump Station

Geologist: PC

Boring No:

TP-16


Drilling Method: Sample Method: Test Pit

Backhoe

Drill Date:

12/3/91

Trans Mountain Pipe Line Co.

21199-032-005 Job No:

Location: Laurel Pump Station

Geologist: PC

Boring No:

TP-17


Drilling Method: Sample Method: Test Pit

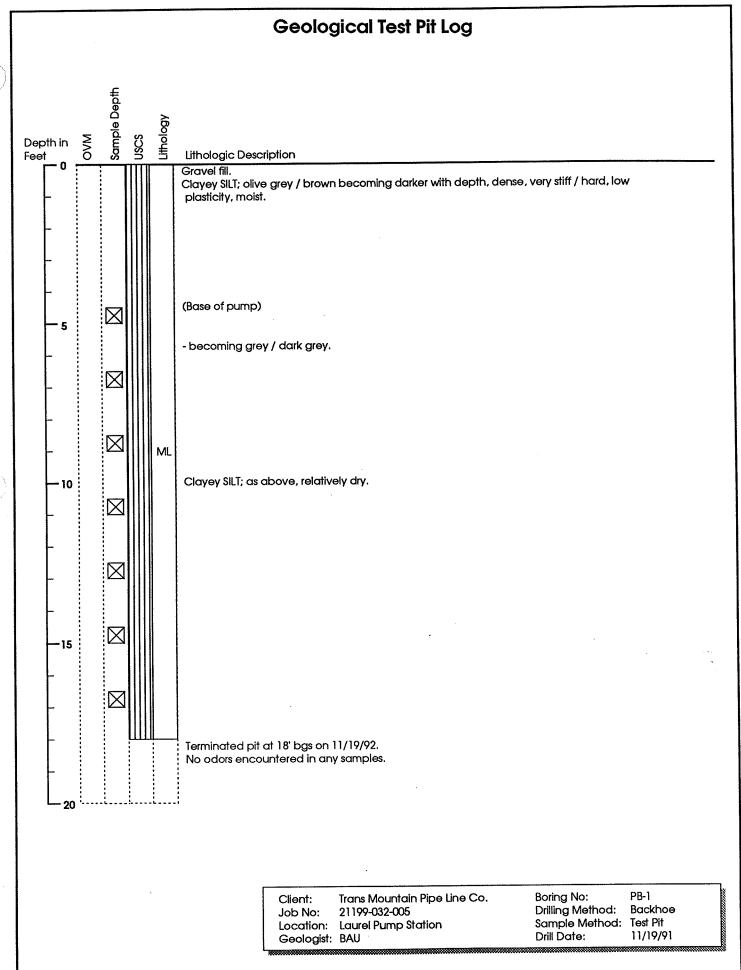
Backhoe

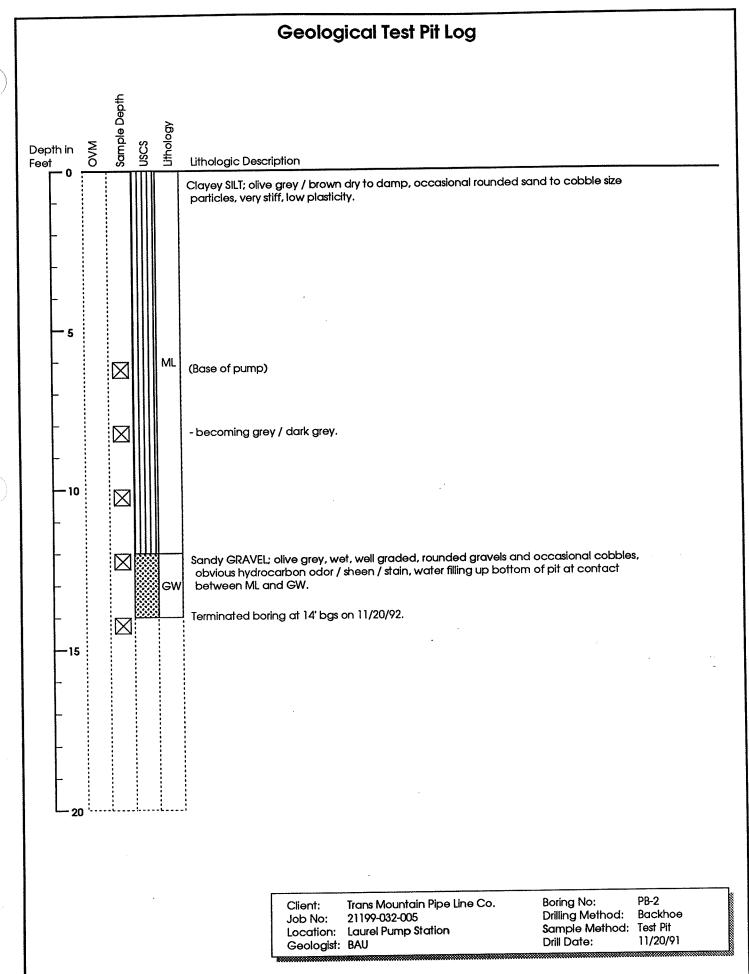
Drill Date:

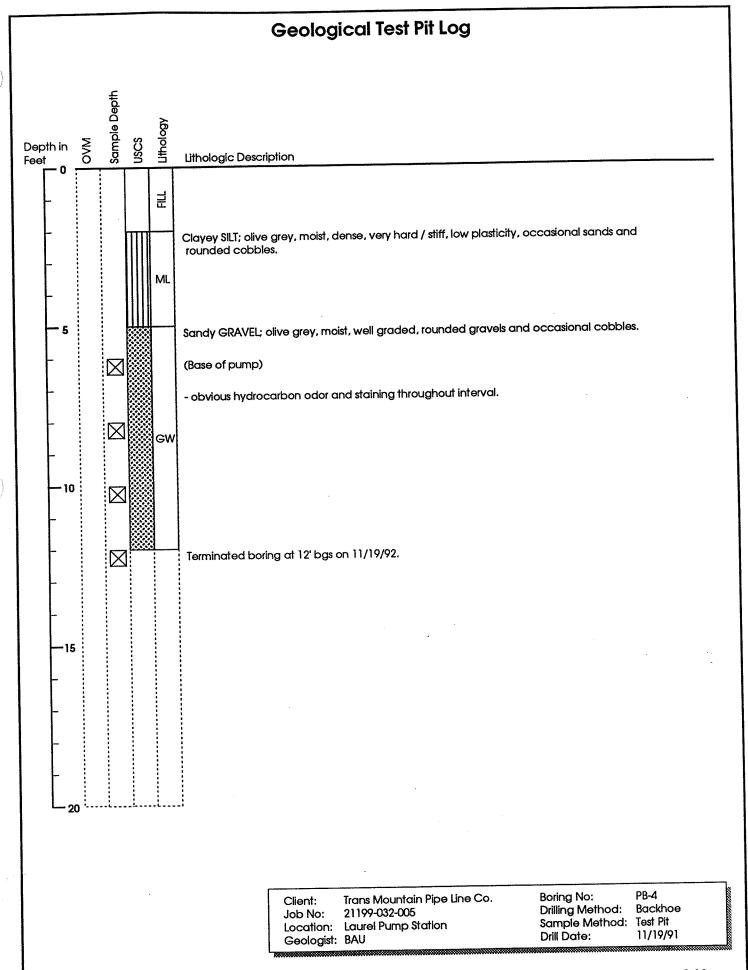
12/3/91

Trans Mountain Pipe Line Co.

Job No:


21199-032-005 Location: Laurel Pump Station


Geologist: PC


Boring No: Drilling Method: TP-18 Backhoe

Sample Method: Test Pit Drill Date:

12/4/91

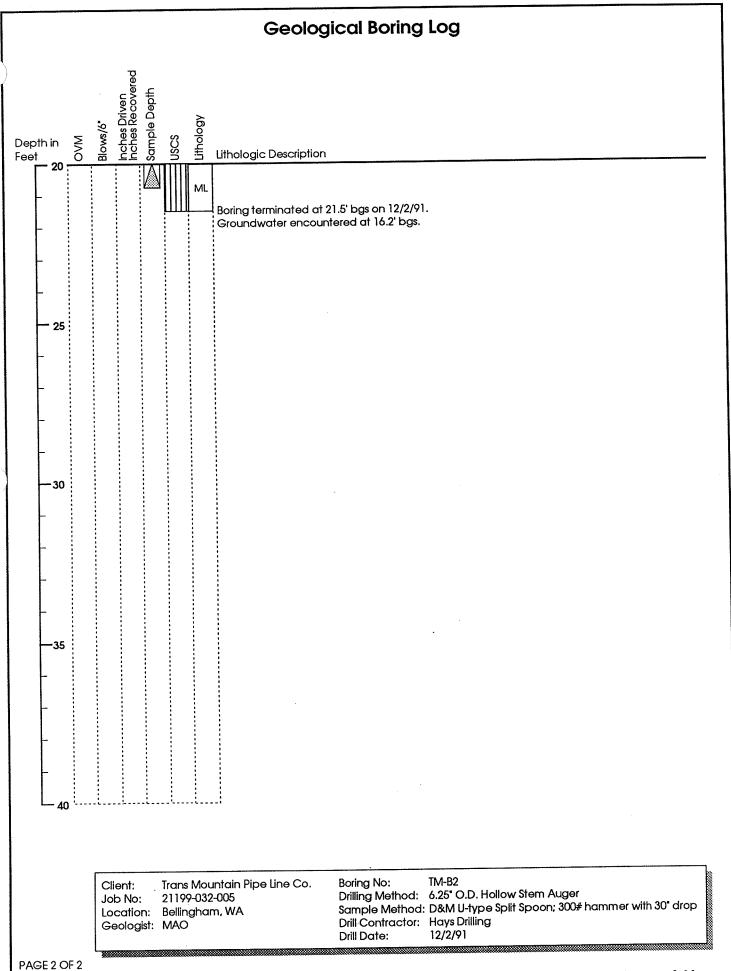
Geological Boring Log

Client: Job No: Trans Mountain Pipe Line Co.

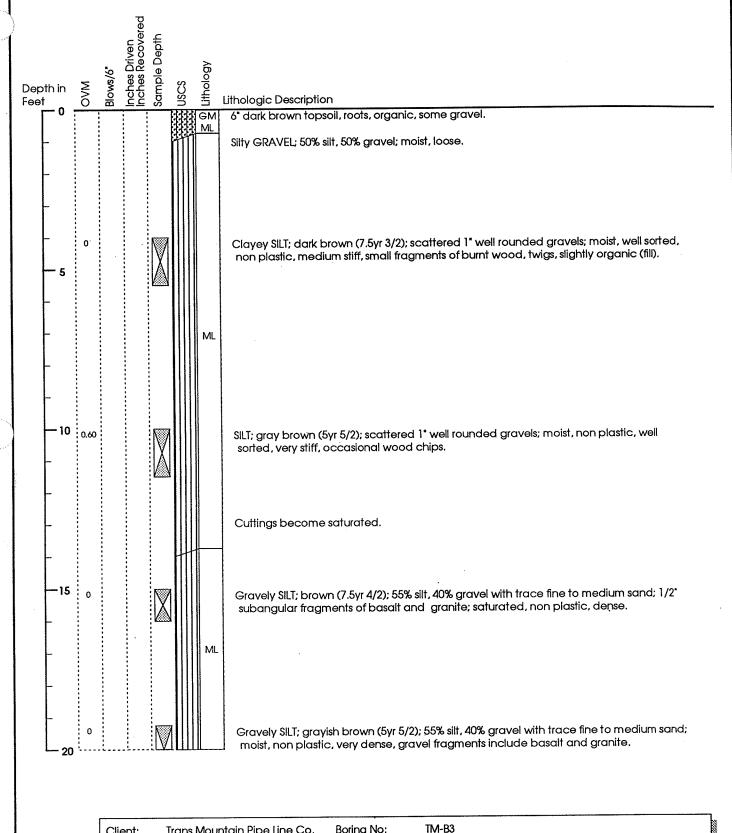
21199-032-005

Location: Bellingham, WA

Geologist: MAO


Boring No:

Drilling Method: 6.25" O.D. Hollow Stem Auger


Sample Method: D&M U-type Split Spoon; 300# hammer with 30" drop

Drill Contractor: Hays Drilling

Drill Date: 12/2/91

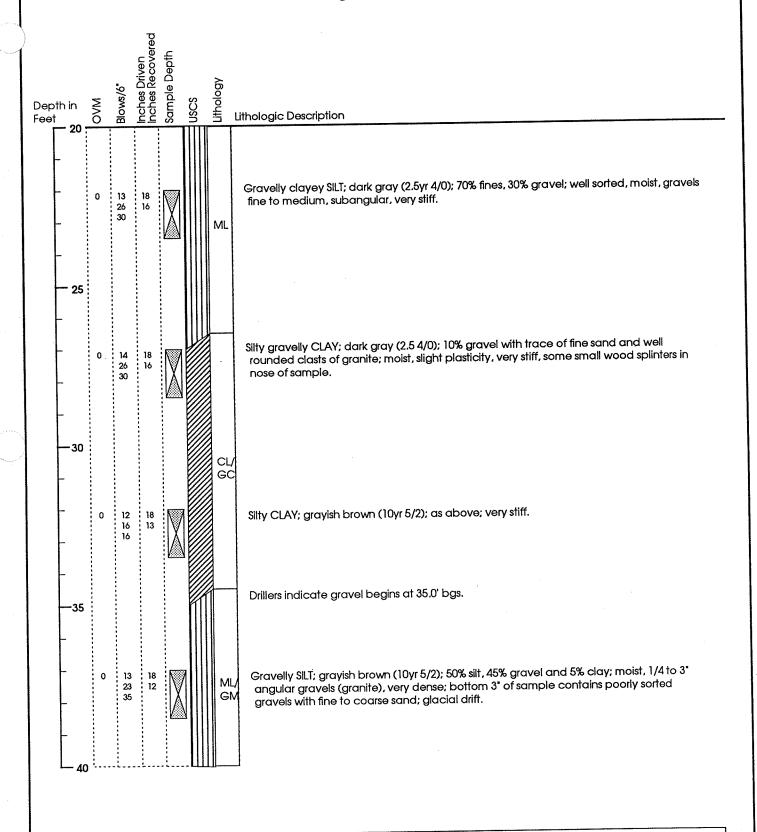
Trans Mountain Pipe Line Co.

21199-032-005

Drilling Method: 6.25" O.D. Hollow Stem Auger

Bellingham, WA Location:

Sample Method: D&M U-type Split Spoon; 300# hammer with 30" drop


Drill Contractor: Hays Drilling

Geologist: MAO

Drill Date: 12/3/91

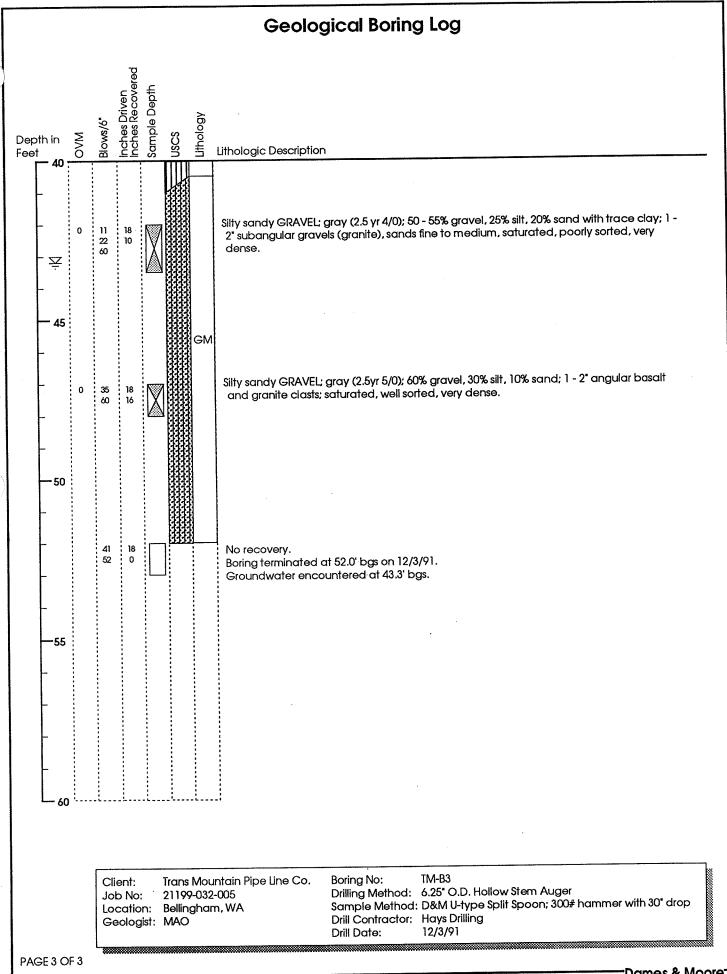
PAGE 1 OF 3

Trans Mountain Pipe Line Co.

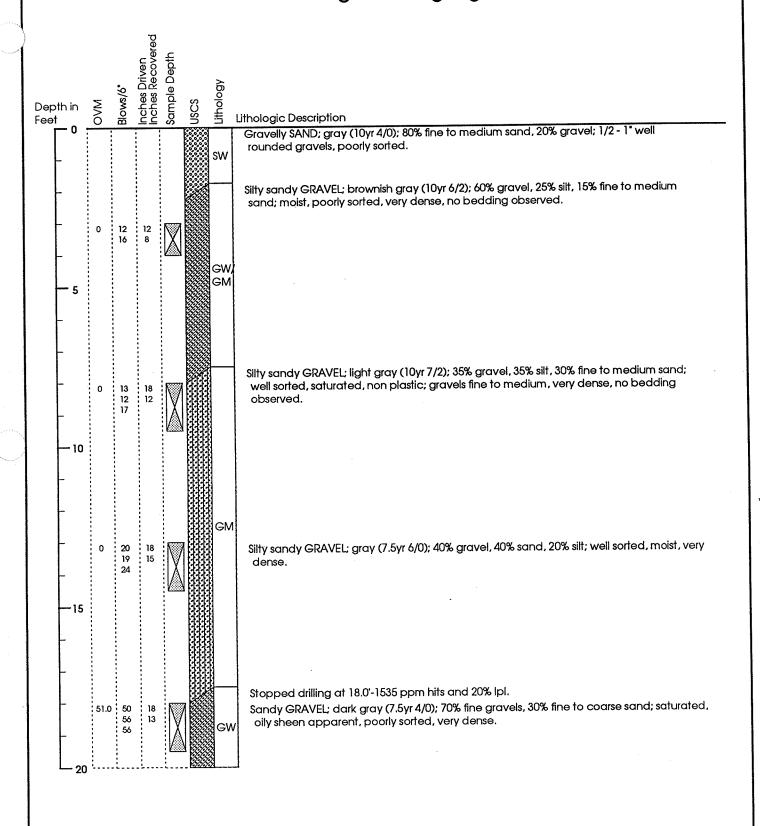
21199-032-005

Location: Bellingham, WA Geologist: MAO

Boring No:


TM-B3

Drilling Method: 6.25" O.D. Hollow Stem Auger


Sample Method: D&M U-type Split Spoon; 300# hammer with 30" drop

Drill Contractor: Hays Drilling Drill Date: 12/3/91

PAGE 2 OF 3

Geological Boring Log

Client:

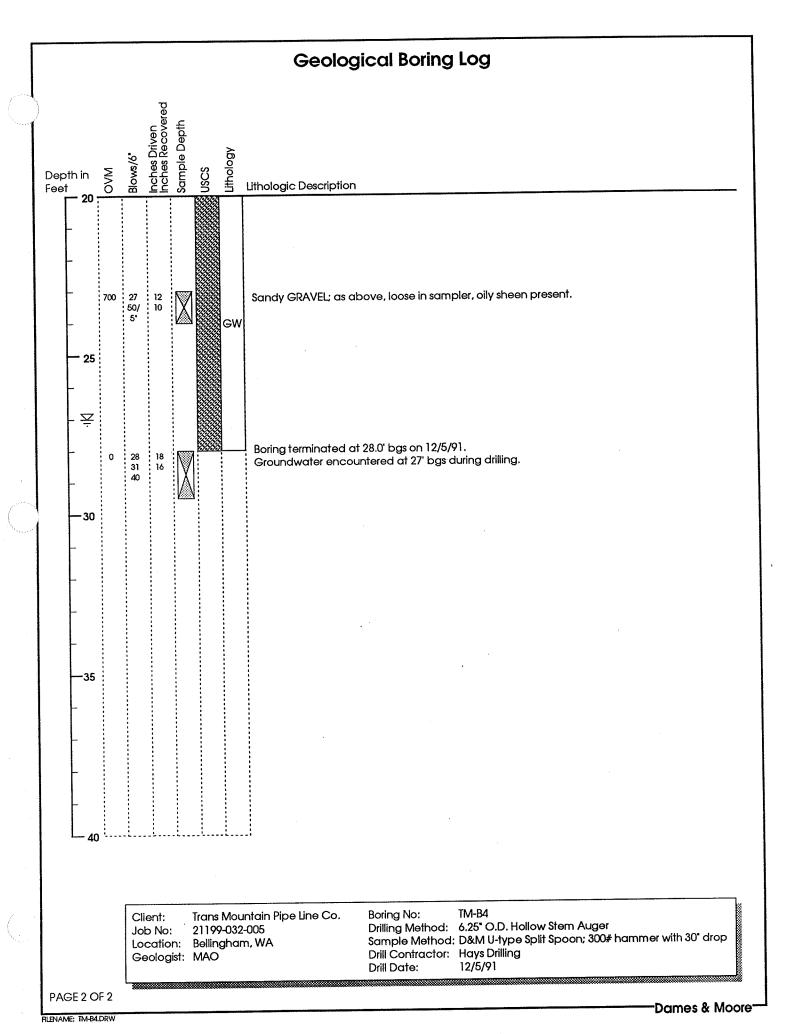
Trans Mountain Pipe Line Co.

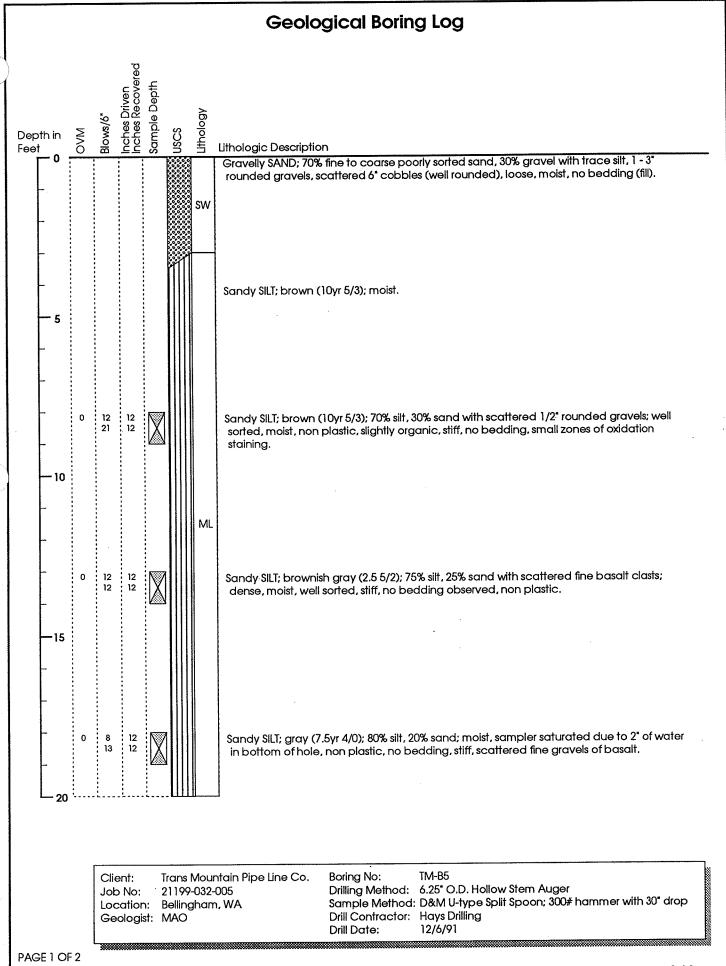
Job No: 21199-032-005

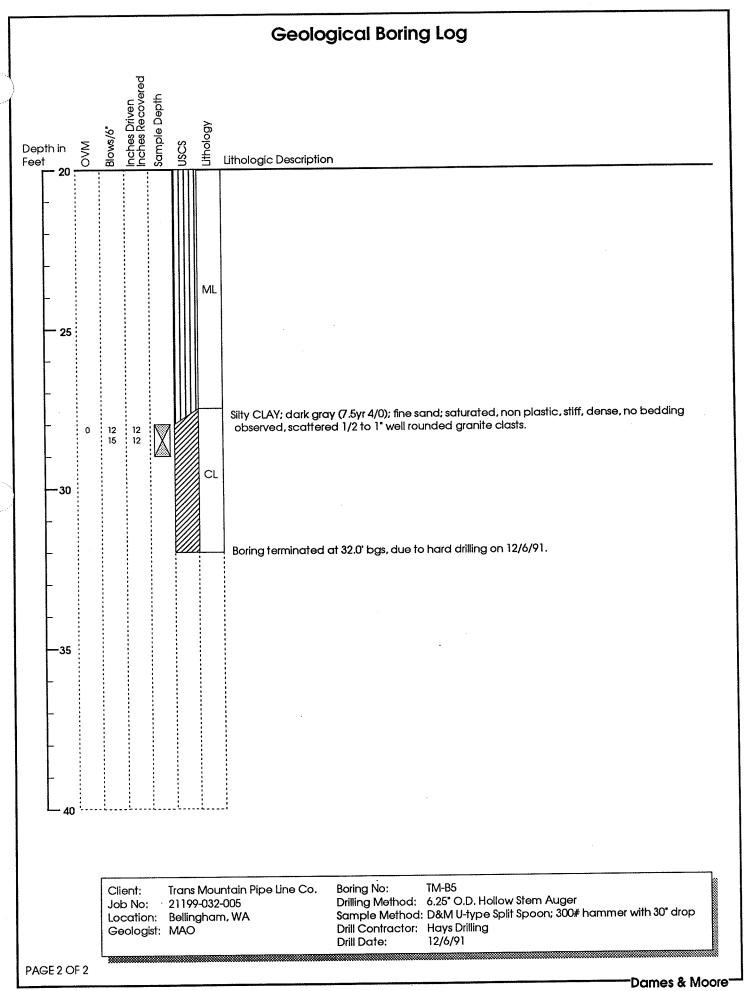
Bellingham, WA Location: Geologist: MAO

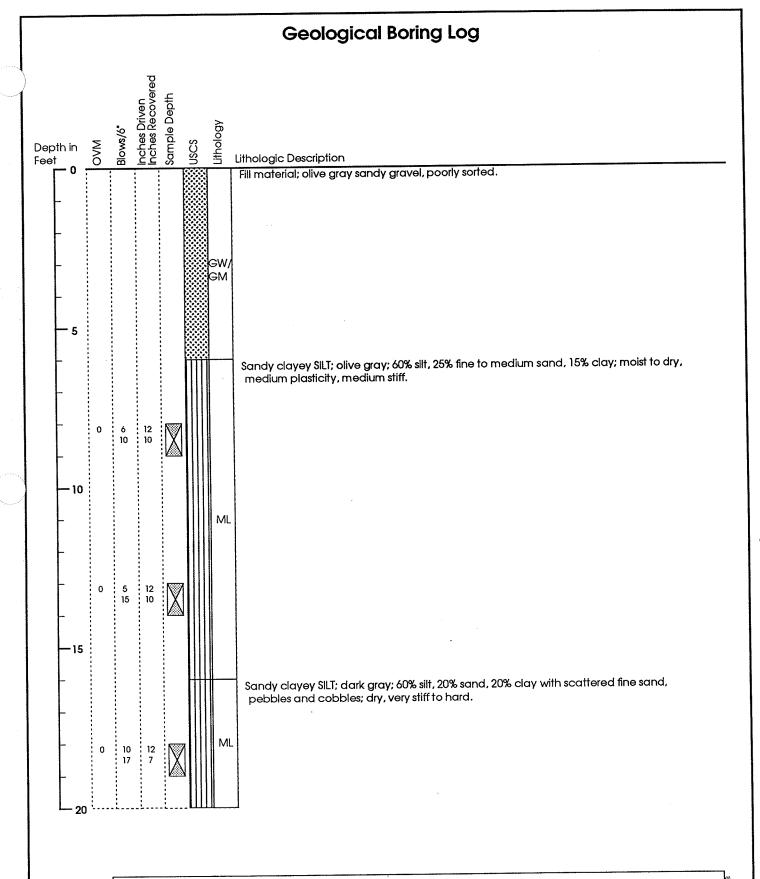
TM-B4 Boring No:

Drilling Method: 6.25" O.D. Hollow Stem Auger


Sample Method: D&M U-type Split Spoon; 300# hammer with 30" drop


Drill Contractor: Hays Drilling


Drill Date:

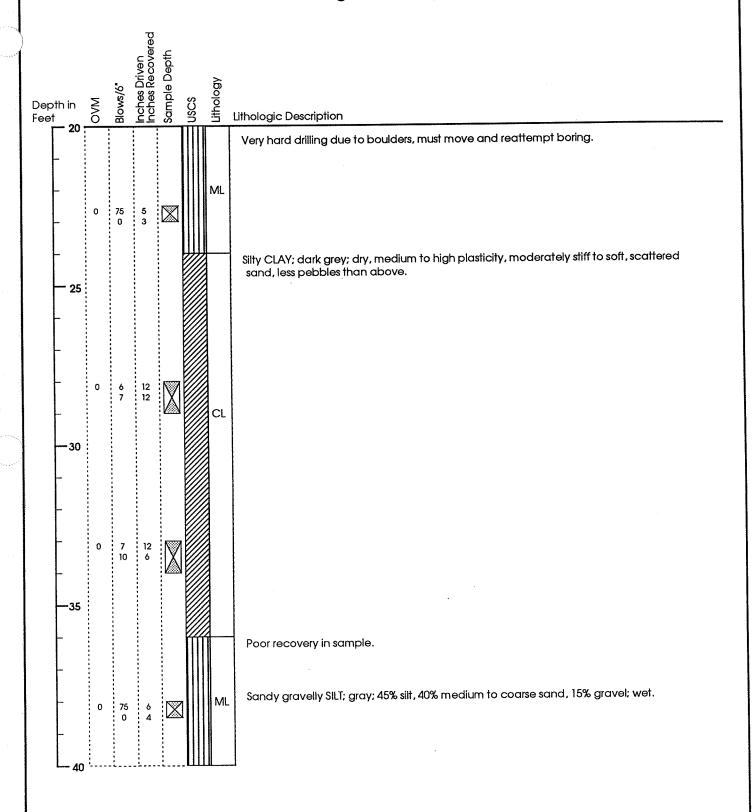

12/5/91

PAGE 1 OF 2

Client: Job No: 21199-032-005

Trans Mountain Pipe Line Co.

Boring No: TM-B6 Drilling Method: 6.25" O.D. Hollow Stem Auger


Sample Method: D&M U-type Split Spoon; 300# hammer with 30" drop

Drill Contractor: Hays Drilling

Location: Laurel Station Geologist: MAO

Drill Date: 12/9/91

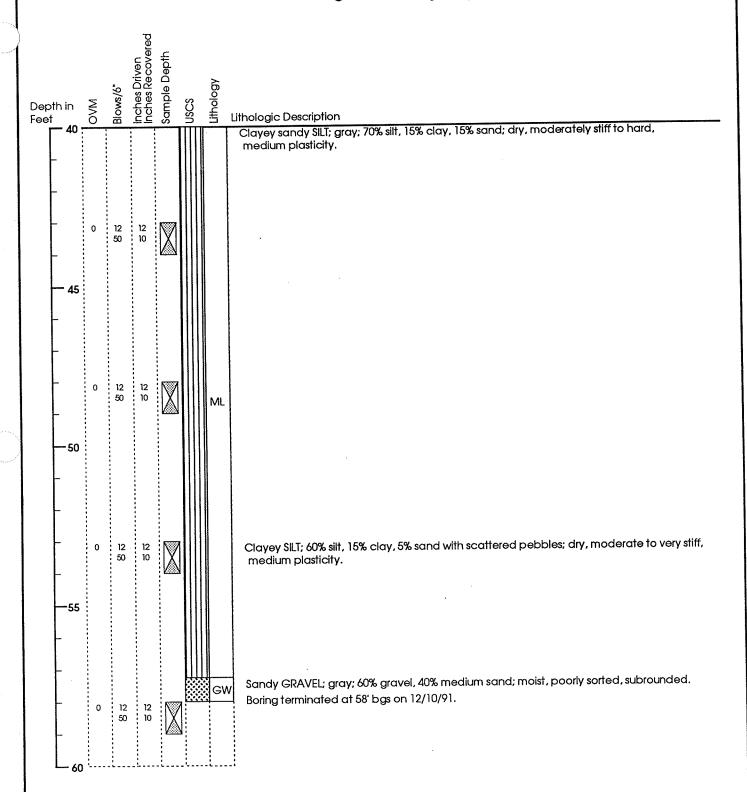
Trans Mountain Pipe Line Co. Client: Job No:

21199-032-005

Location: Laurel Station Geologist: MAO

TM-B6

Drilling Method: 6.25" O.D. Hollow Stem Auger


Sample Method: D&M U-type Split Spoon; 300# hammer with 30" drop

Drill Contractor: Hays Drilling Drill Date: 12/9/91

PAGE 2 OF 3

Dames & Moore

Trans Mountain Pipe Line Co.

21199-032-005

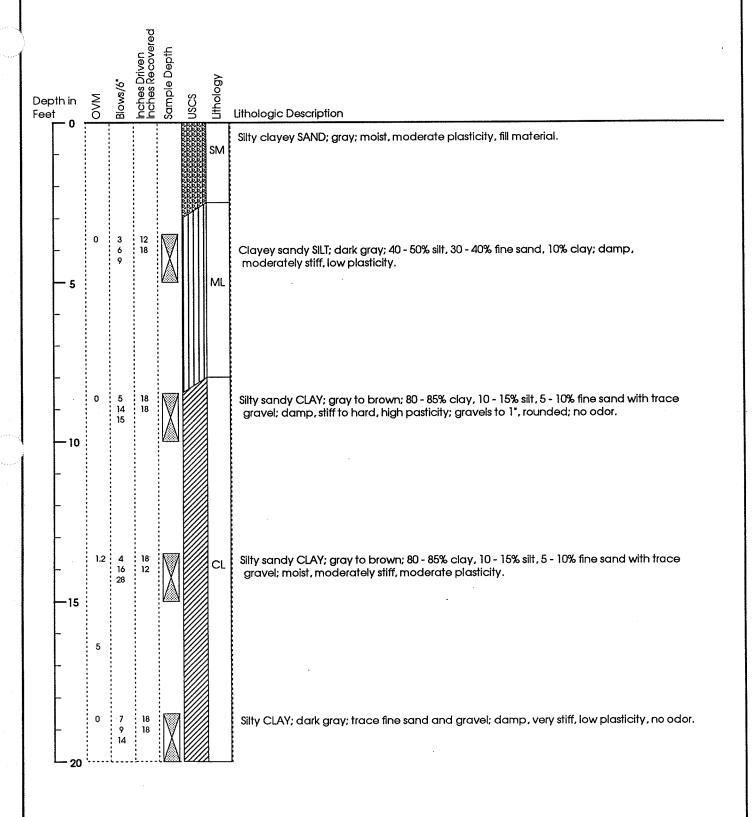
Location: Laurel Station

Geologist: MAO

Boring No:

TM-B6

Drilling Method: 6.25" O.D. Hollow Stem Auger


Sample Method: D&M U-type Split Spoon; 300# hammer with 30" drop

Drill Contractor: Hays Drilling

Drill Date: 12/9/91

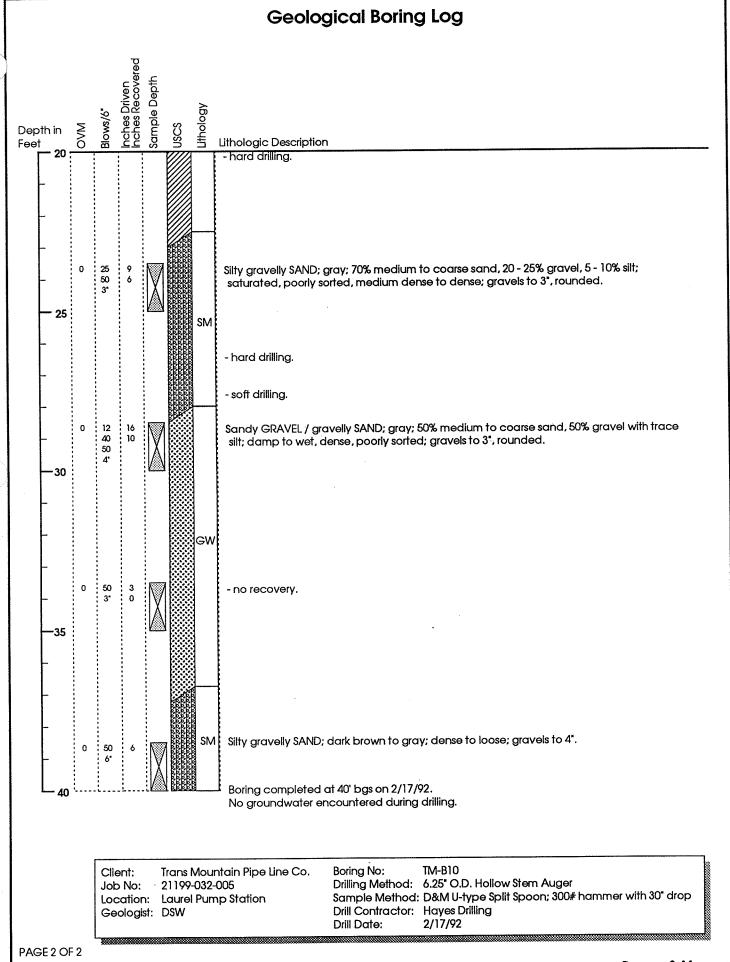
PAGE 3 OF 3

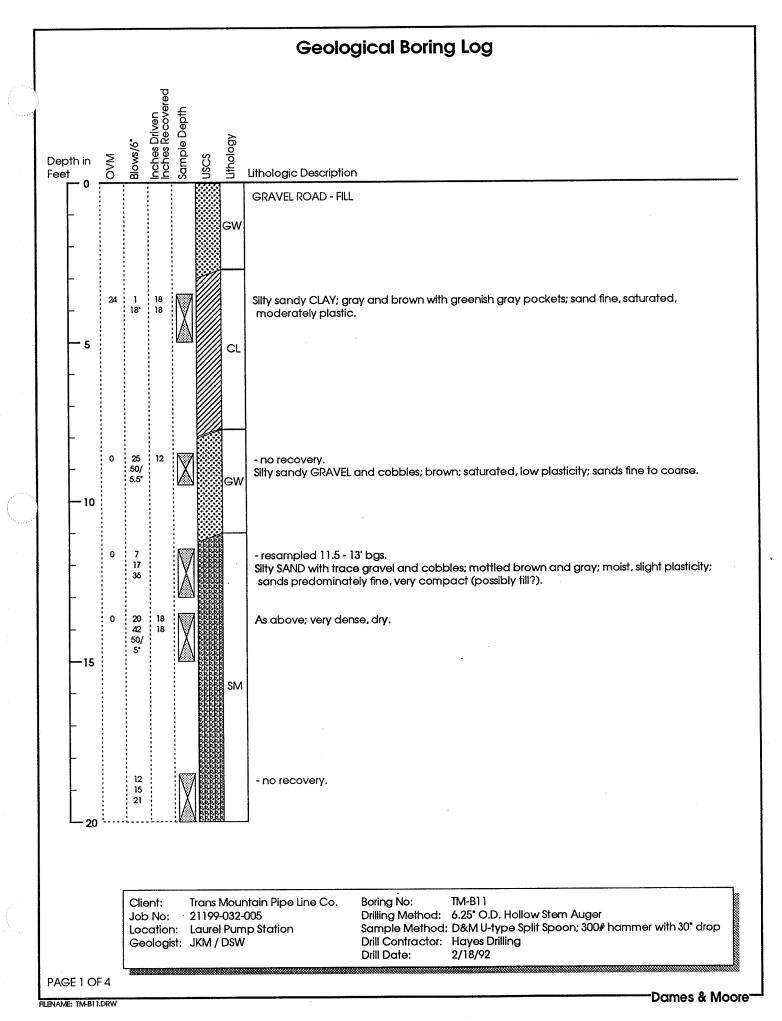
Trans Mountain Pipe Line Co.

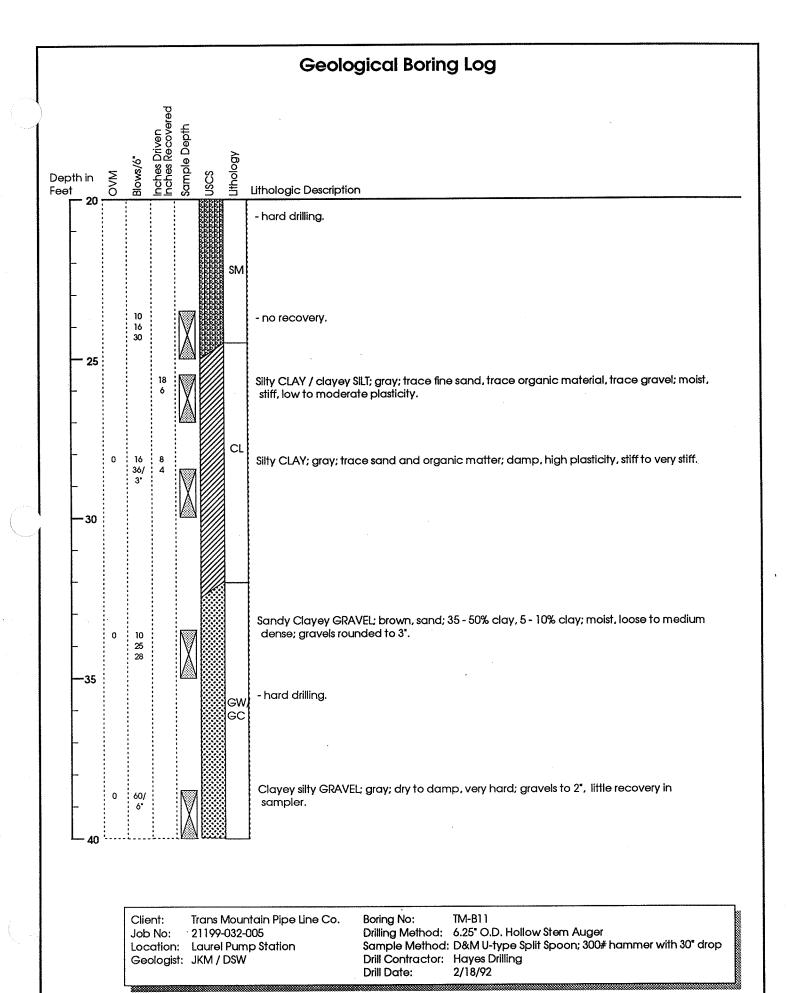
Boring No:

TM-B10

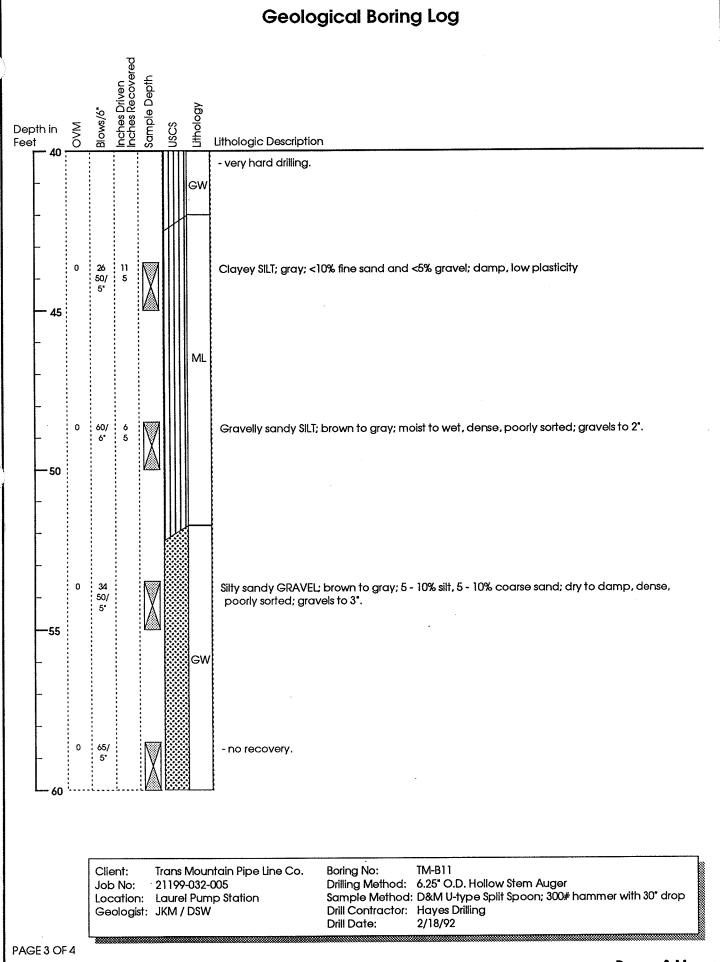
Job No: 21199-032-005 Location: Laurel Pump Station Drilling Method: 6.25" O.D. Hollow Stem Auger

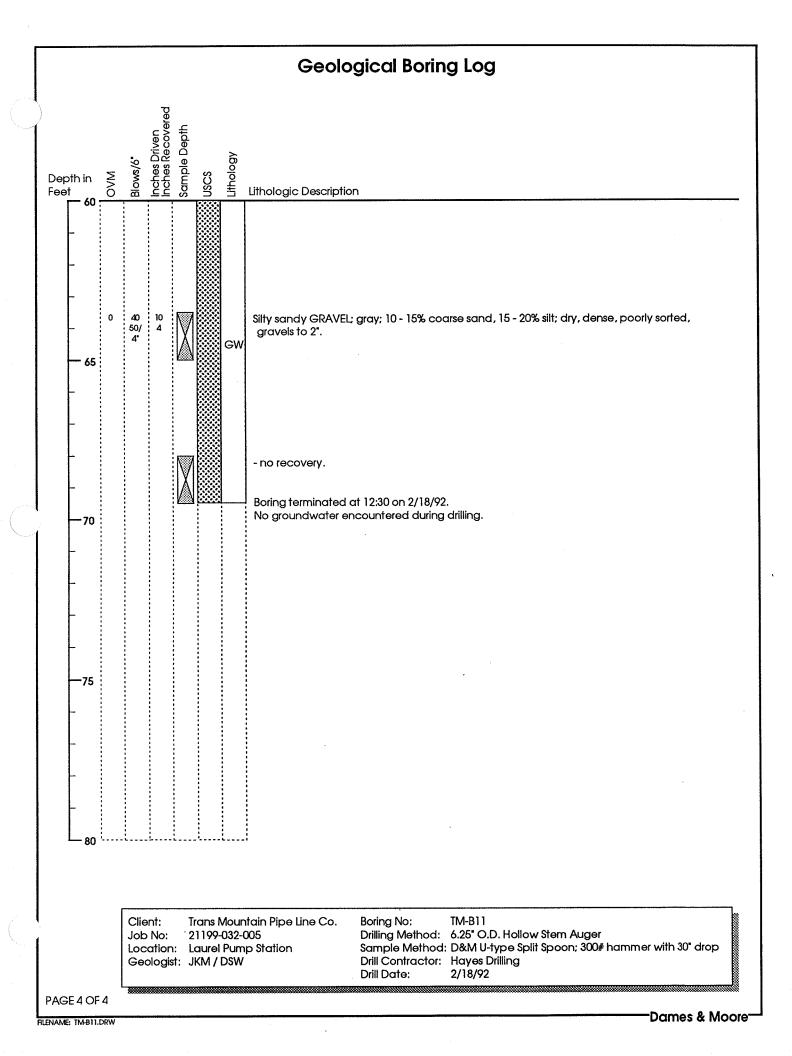

Sample Method: D&M U-type Split Spoon; 300# hammer with 30" drop

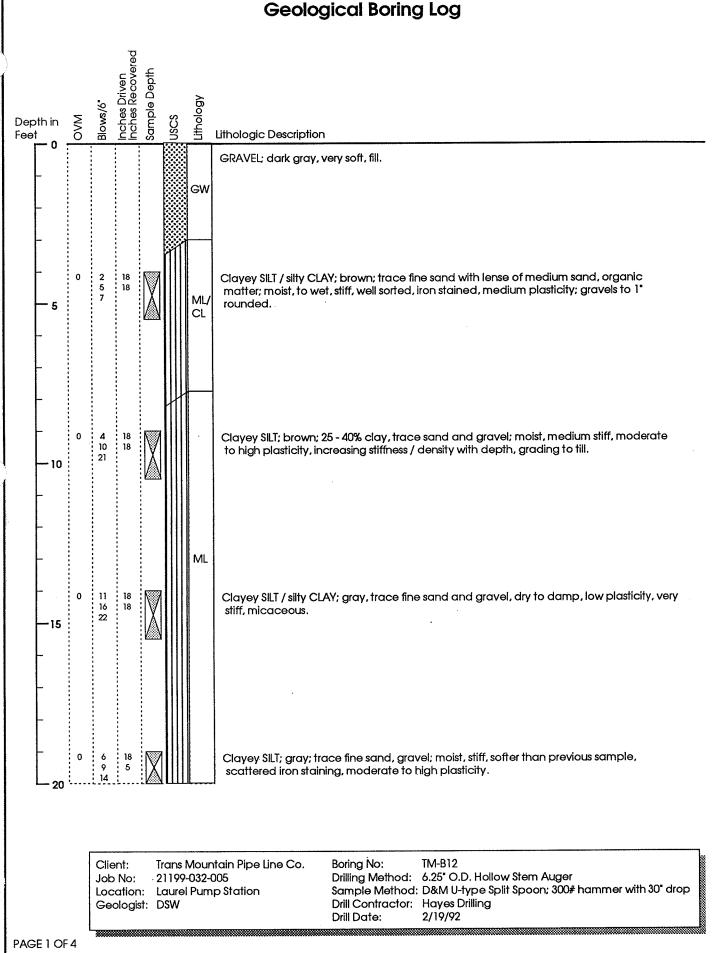

Geologist: DSW

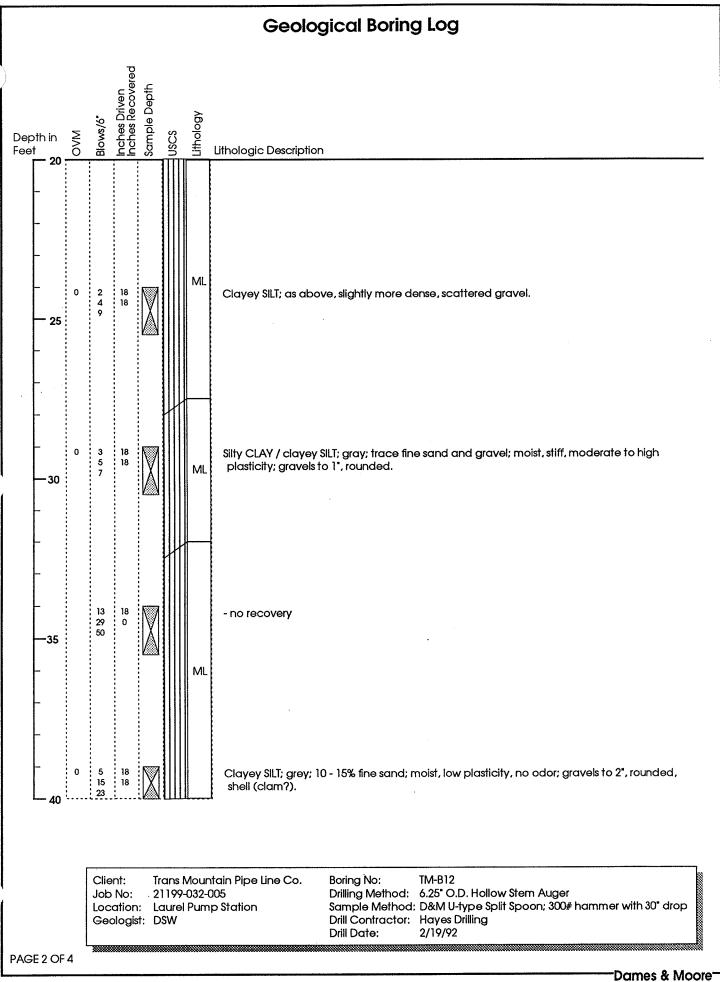

Drill Contractor: Hayes Drilling

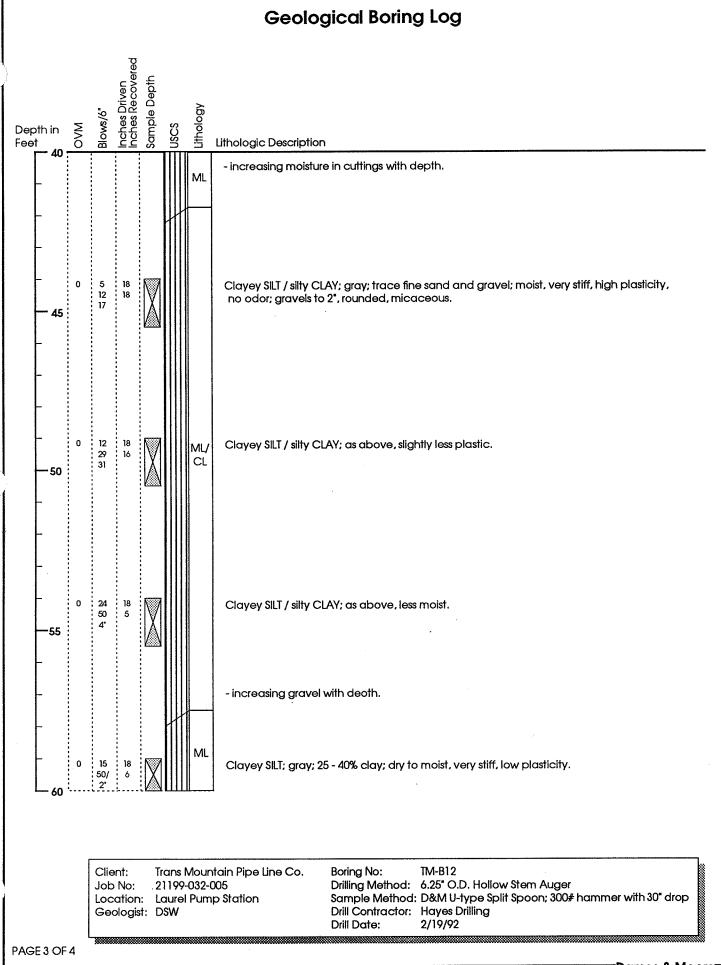
Drill Date:

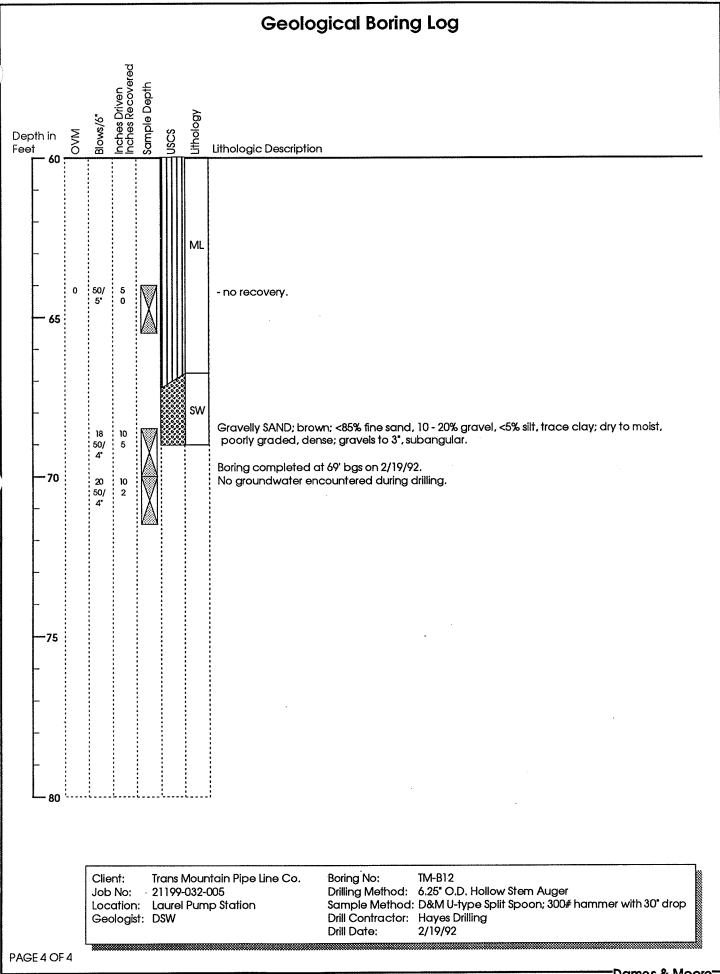

2/17/92

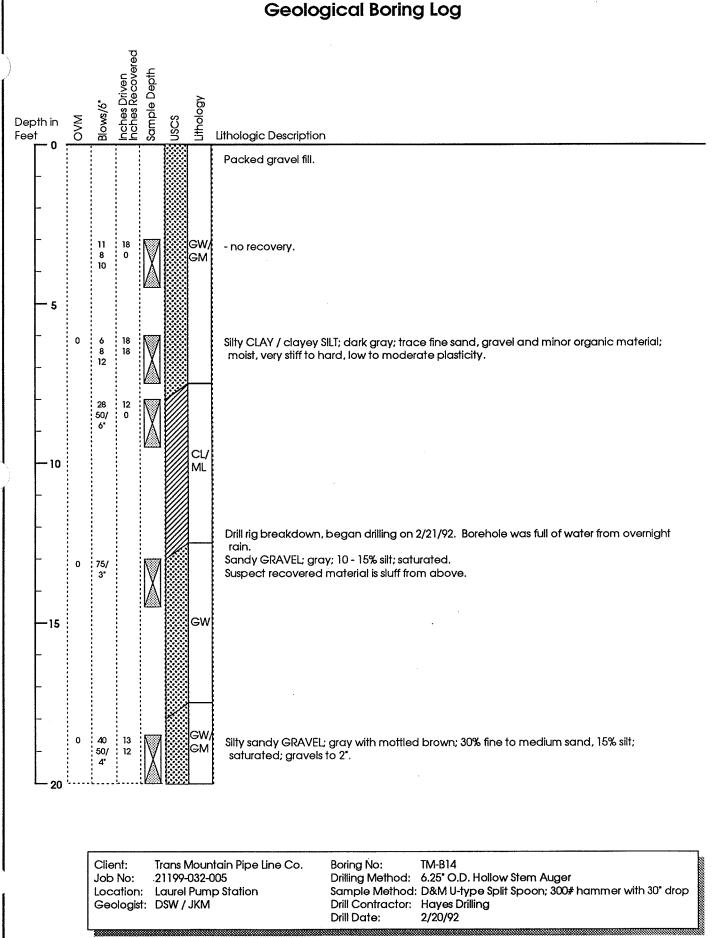


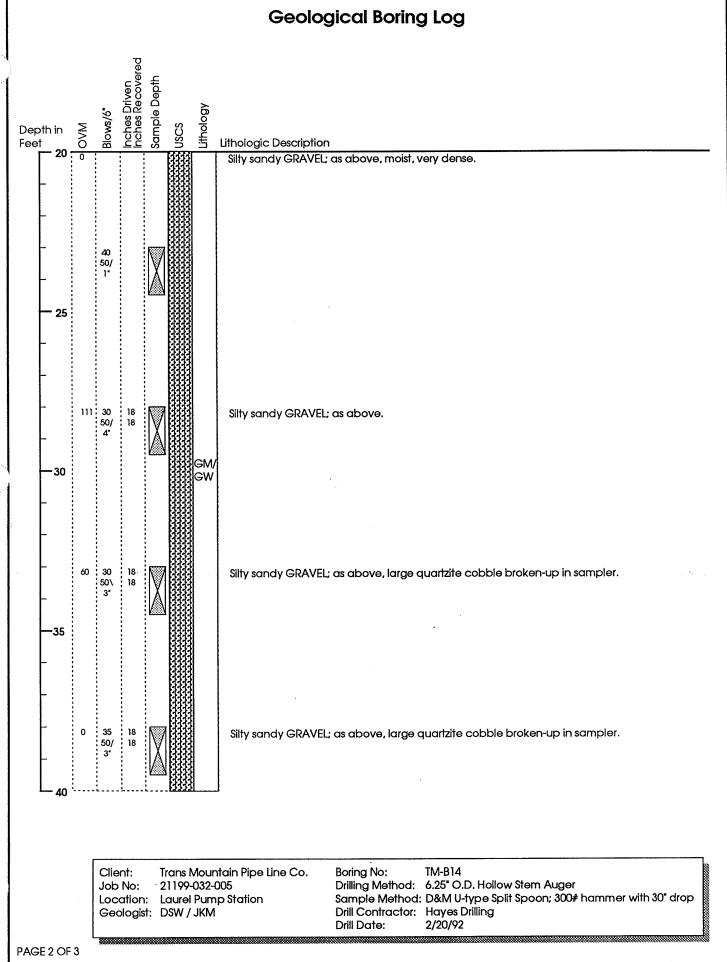


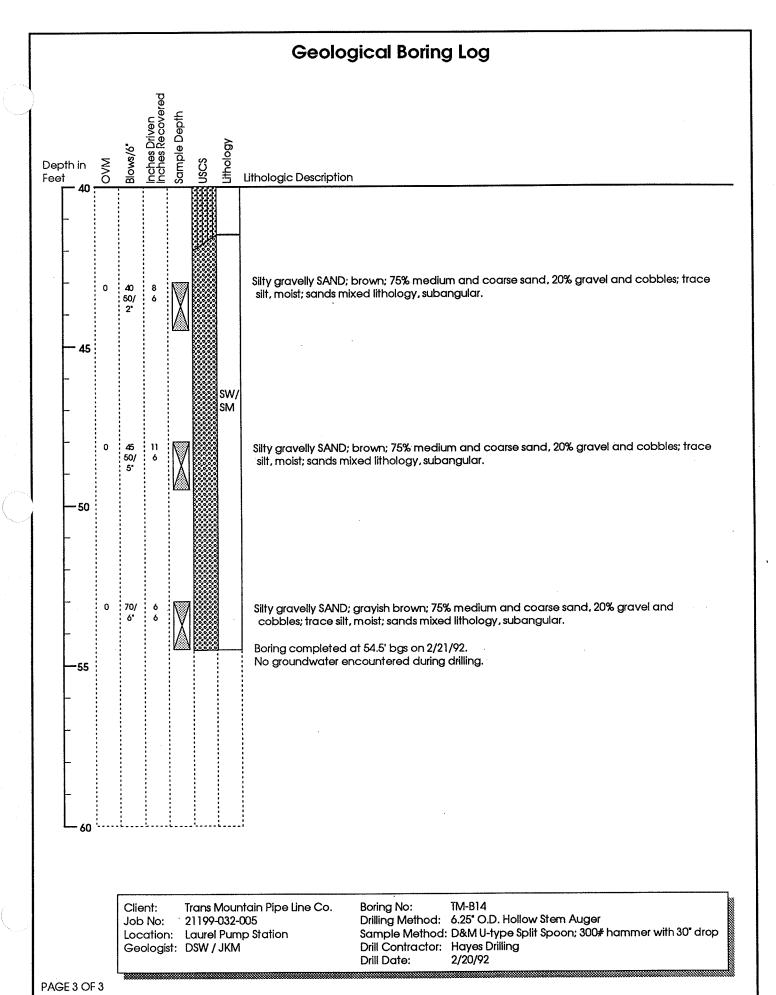


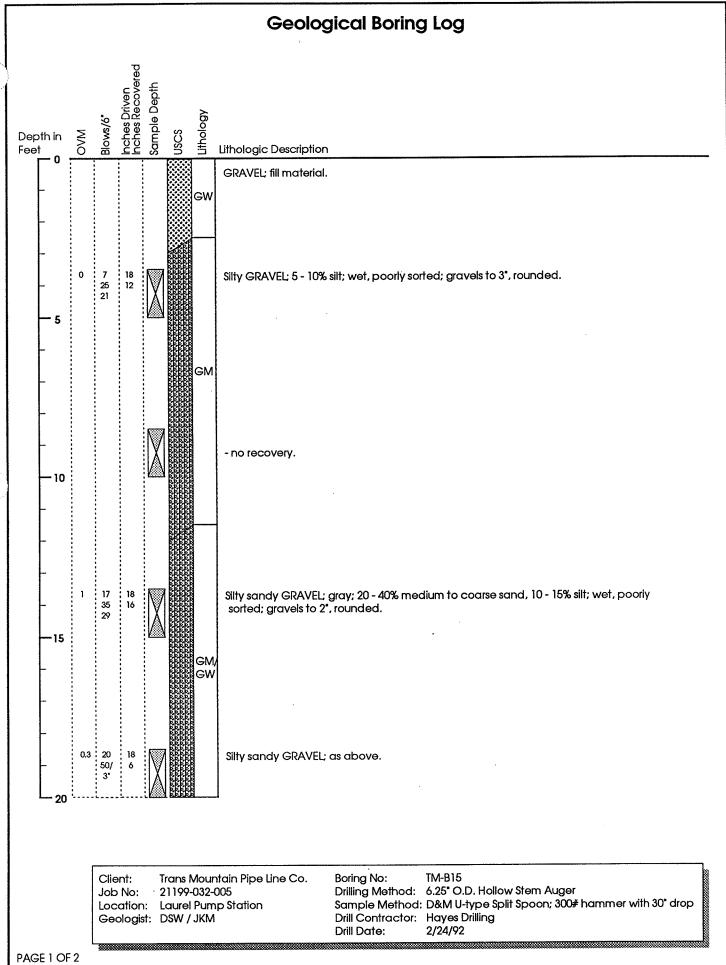

PAGE 2 OF 4

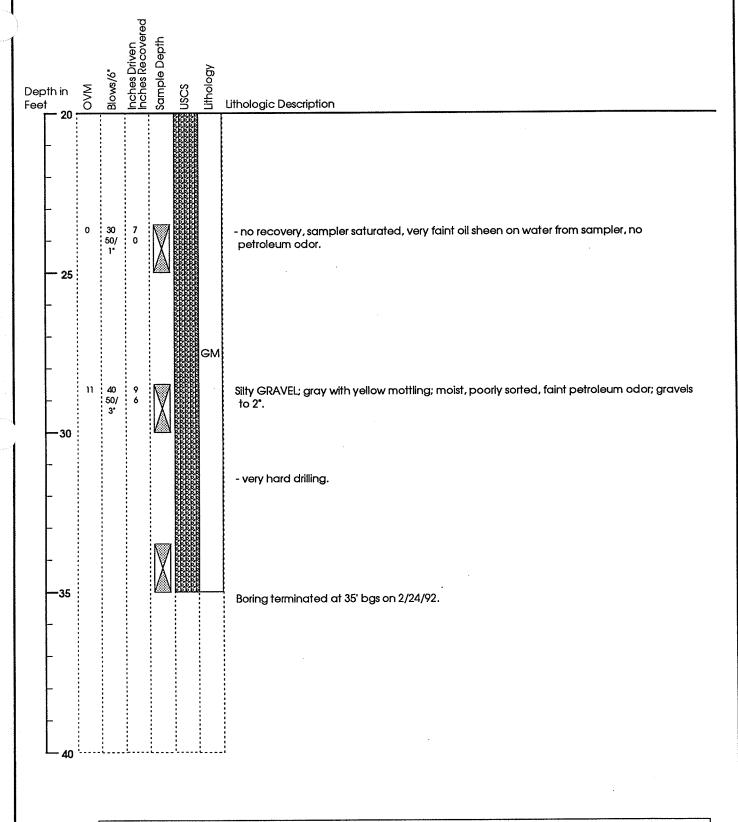










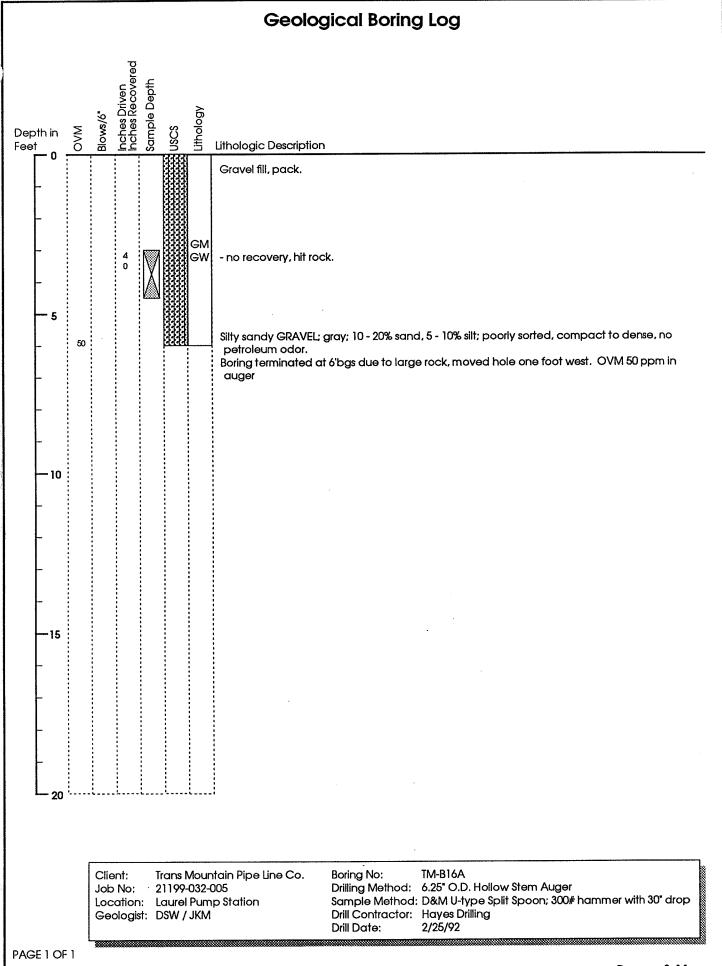

PAGE 1 OF 3

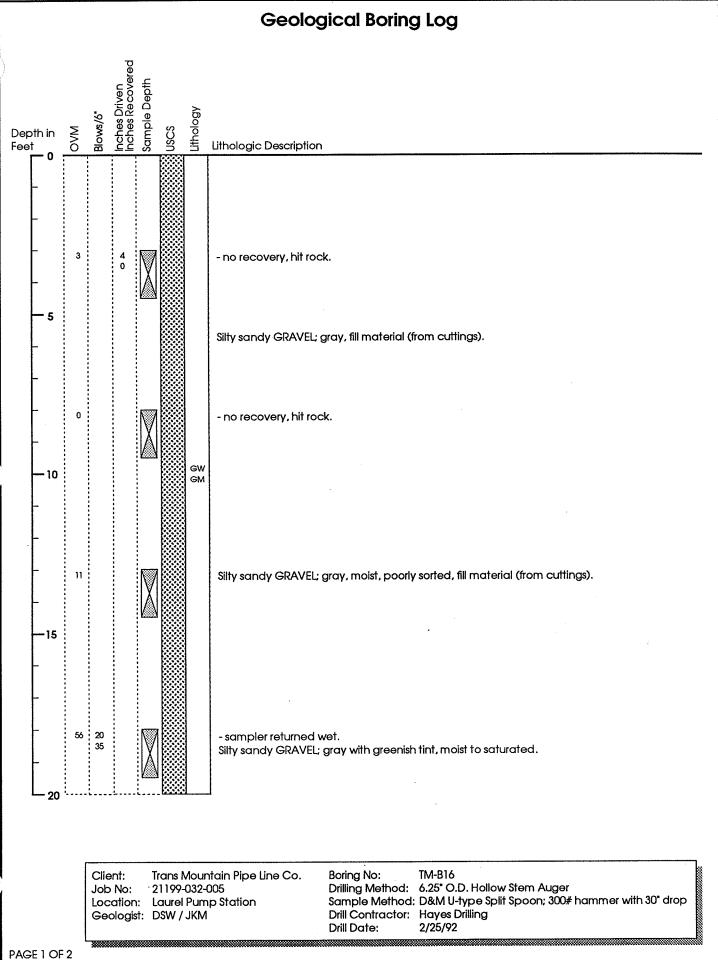
Client: Job No: 21199-032-005

Trans Mountain Pipe Line Co.

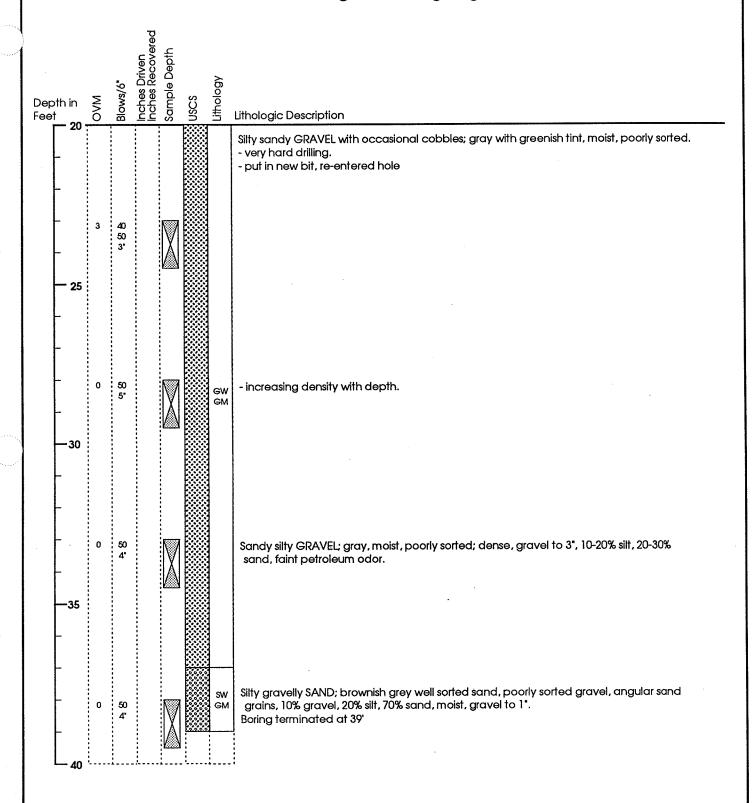
Location: Laurel Pump Station

Geologist: DSW / JKM


Boring No: **TM-B15**


Drilling Method: 6.25" O.D. Hollow Stem Auger

Sample Method: D&M U-type Split Spoon; 300# hammer with 30" drop


Drill Contractor: Hayes Drilling Drill Date:

2/24/92

Client: Job No: Trans Mountain Pipe Line Co.

21199-032-005

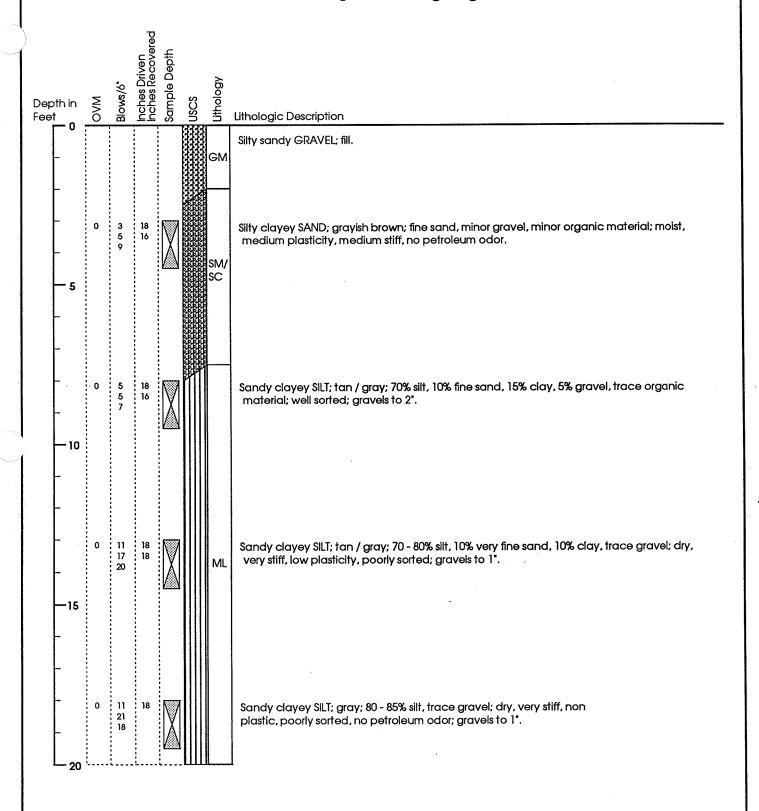
TM-B16

Location: Laurel Pump Station

Geologist: DSW / JKM

Drilling Method: 6.25" O.D. Hollow Stem Auger

Sample Method: D&M U-type Split Spoon; 300# hammer with 30" drop


Drill Contractor: Hayes Drilling Drill Date:

2/25/92

PAGE 2 OF 2

Dames & Moore

Client:

Trans Mountain Pipe Line Co.

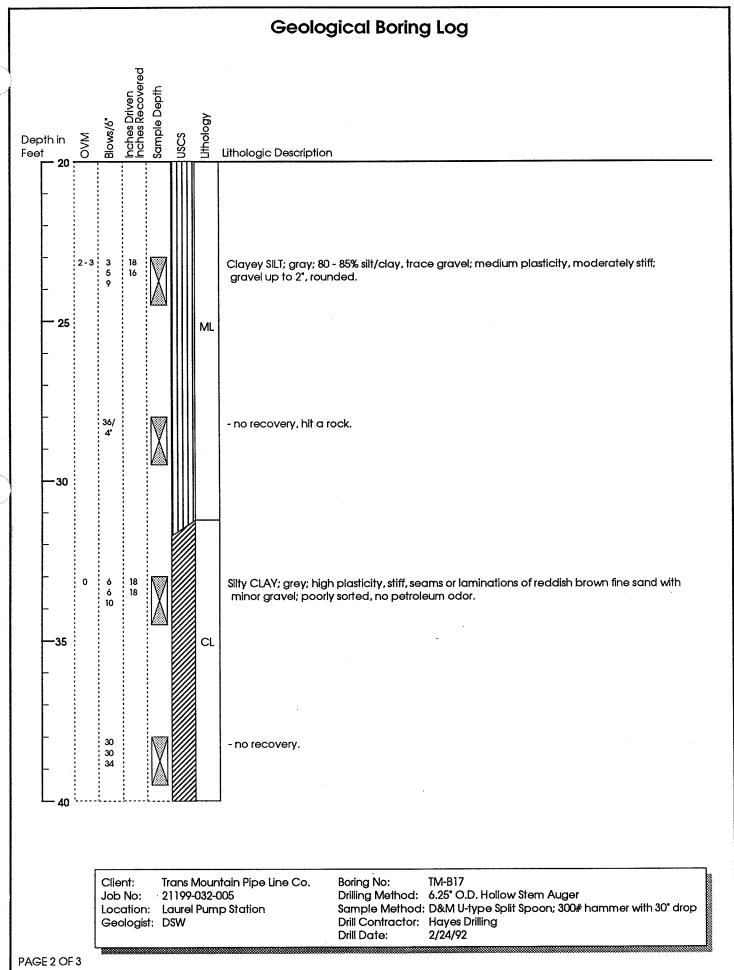
Job No:

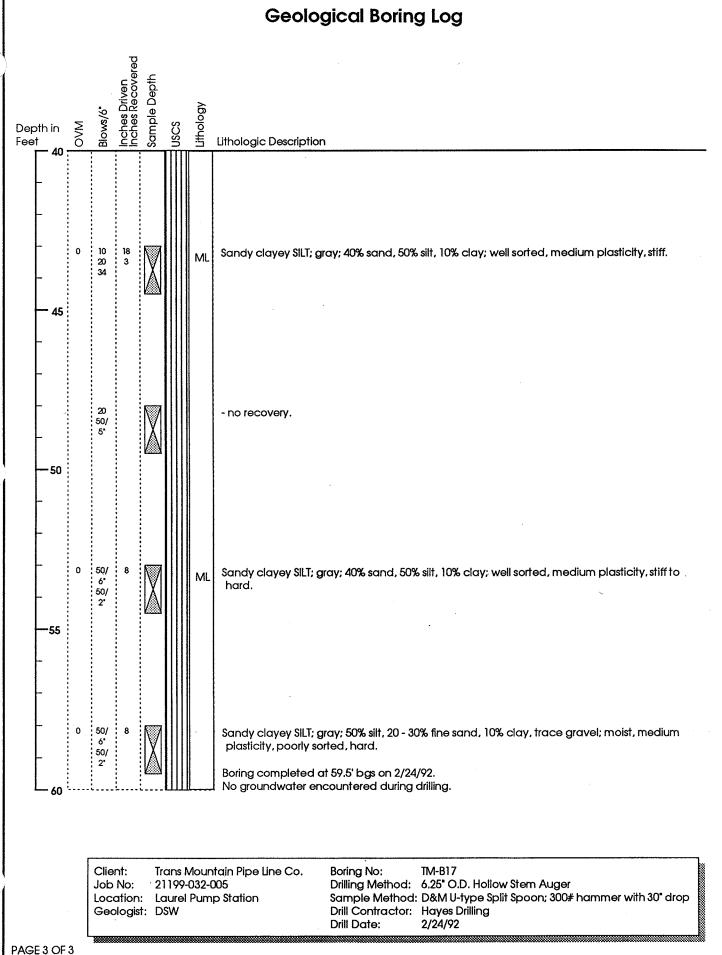
21199-032-005

Location: Laurel Pump Station Geologist: DSW

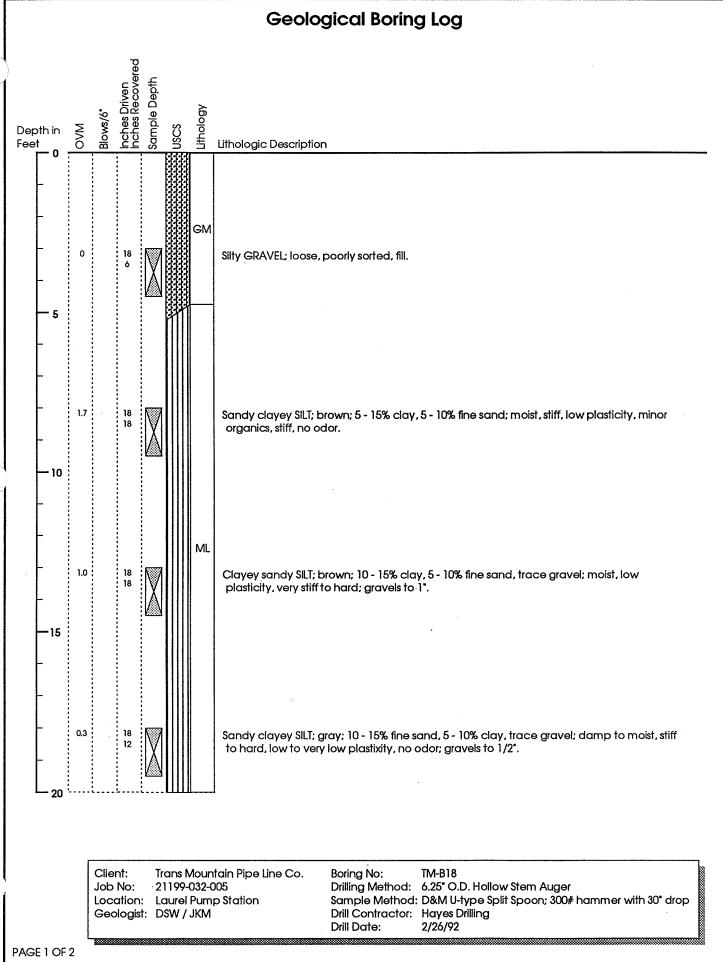
Boring No:

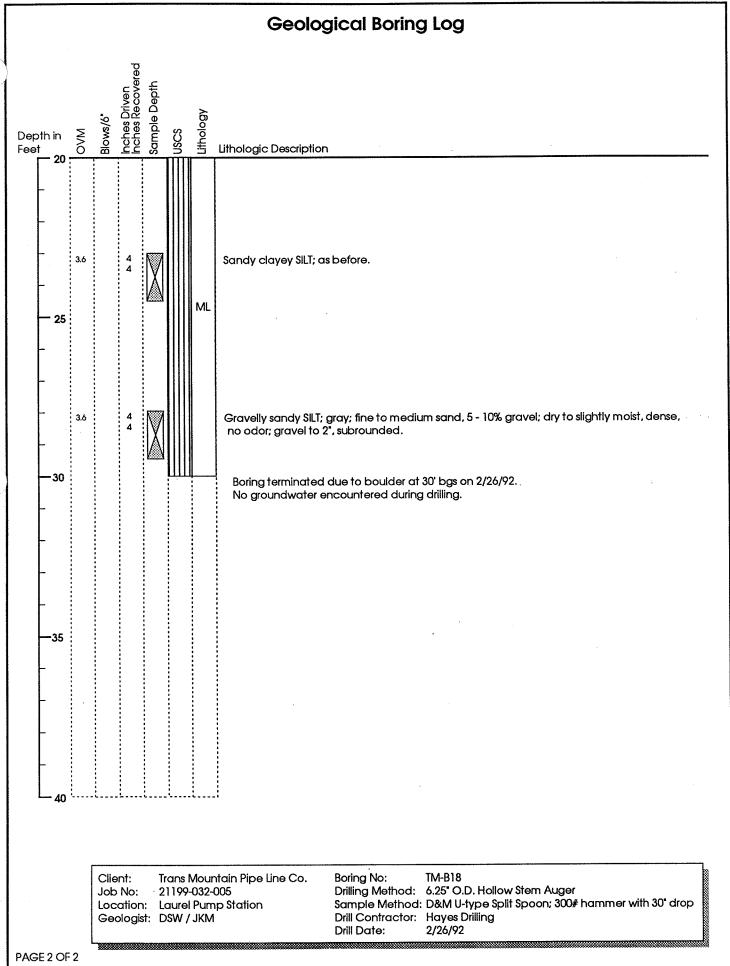
TM-B17

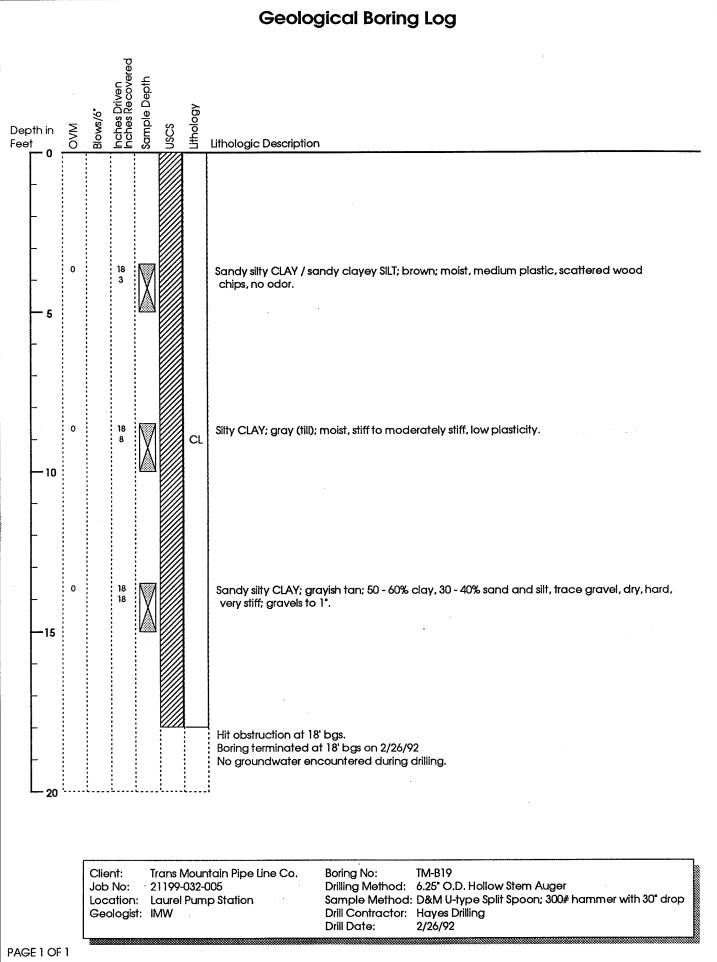

Drilling Method: 6.25" O.D. Hollow Stem Auger

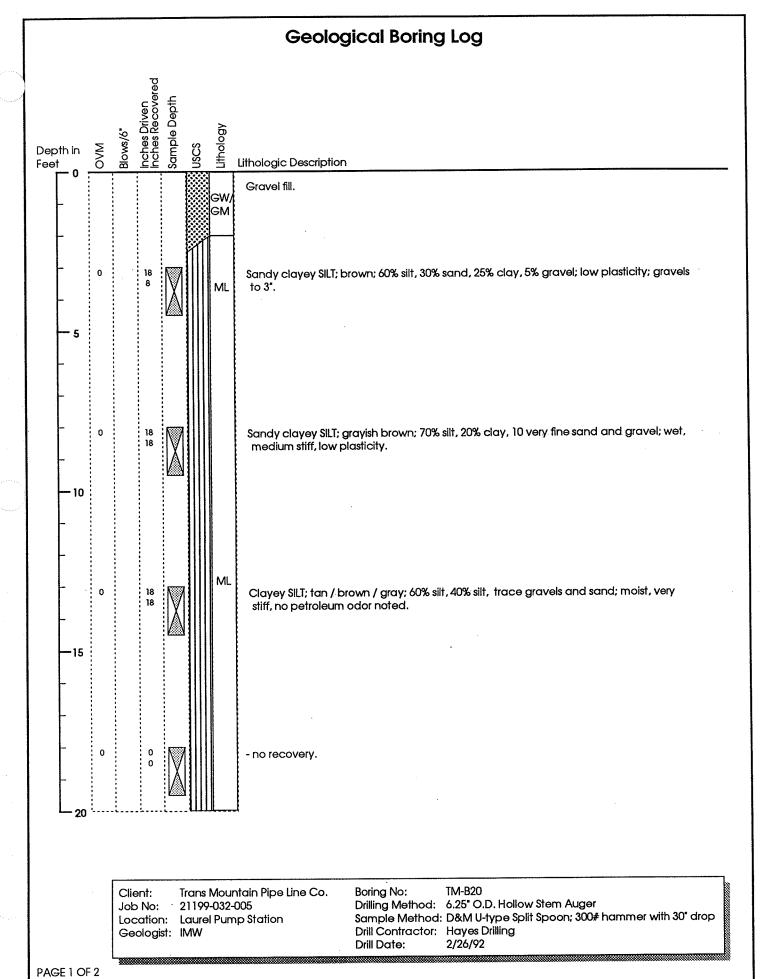

Sample Method: D&M U-type Split Spoon; 300# hammer with 30" drop

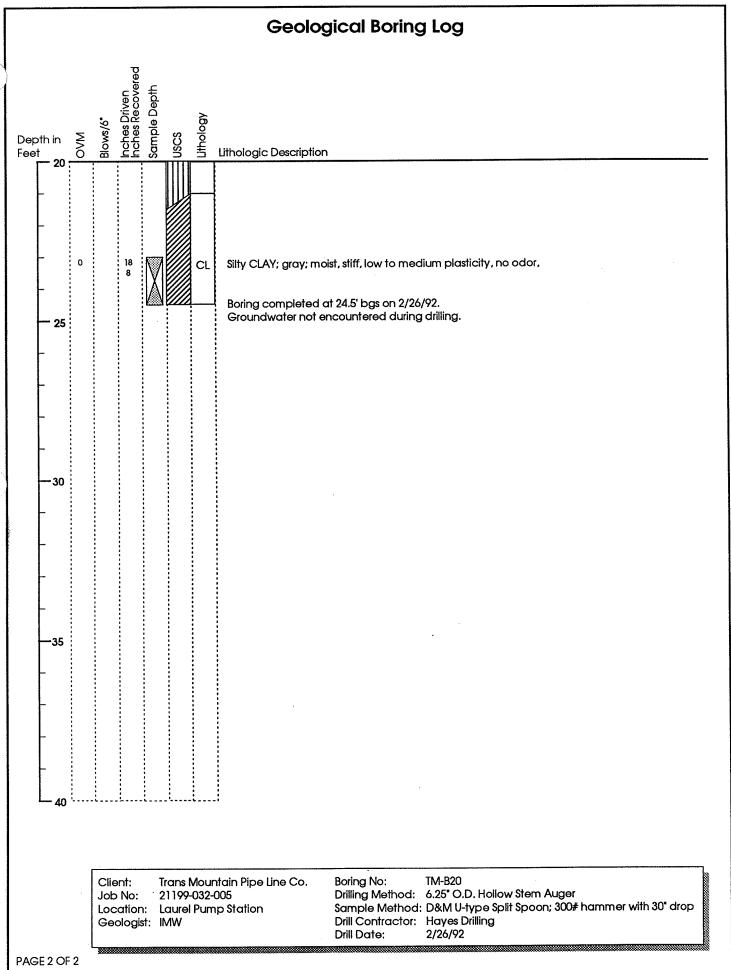
Drill Contractor: Hayes Drilling

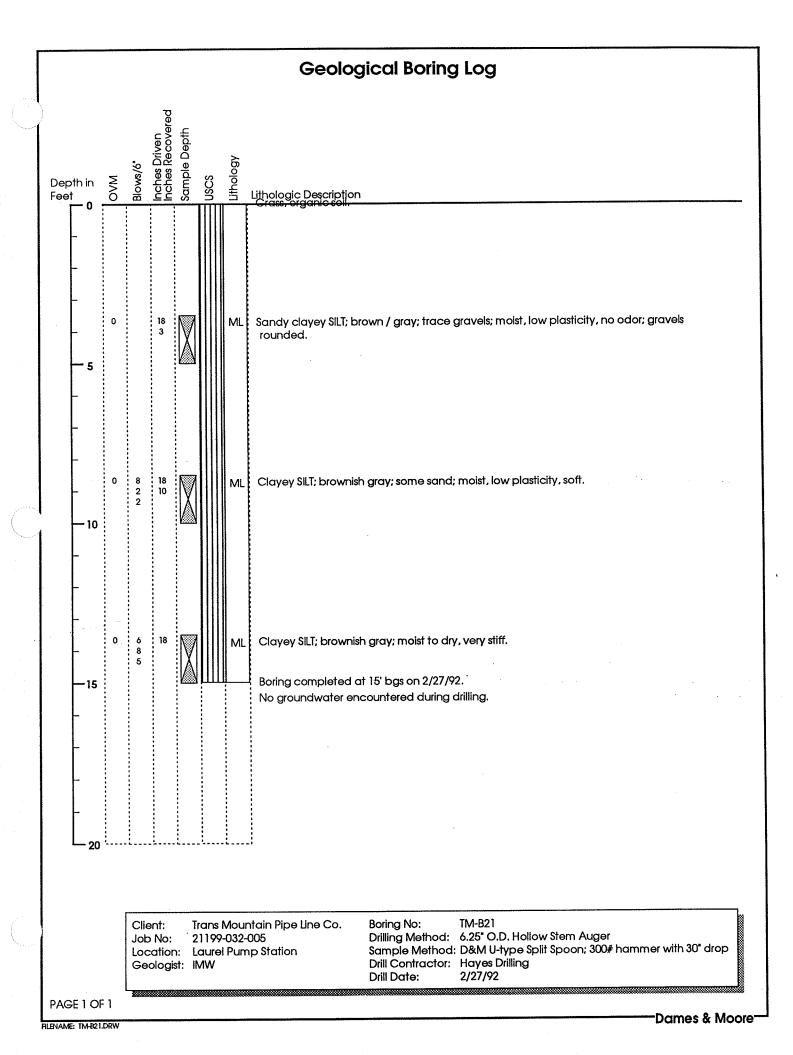

Drill Date: 2/24/92

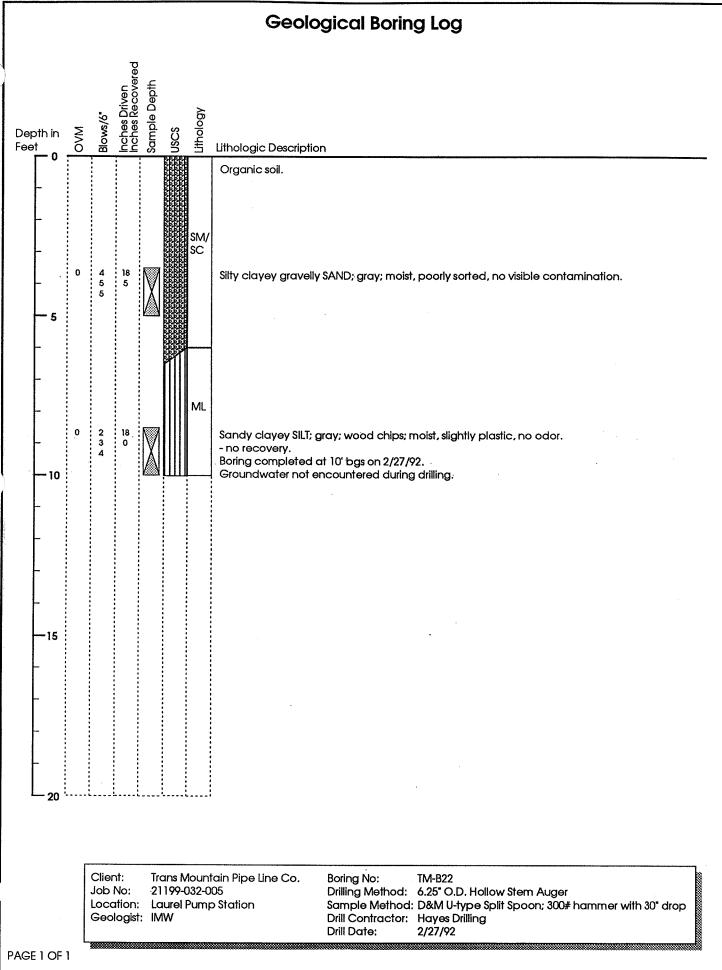

PAGE 1 OF 3

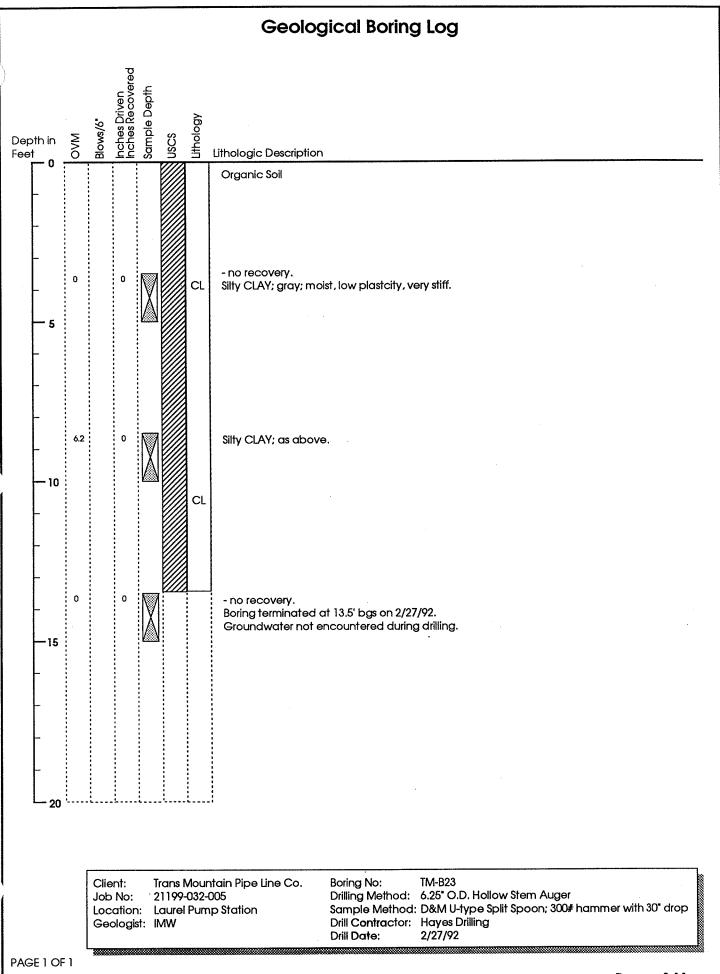


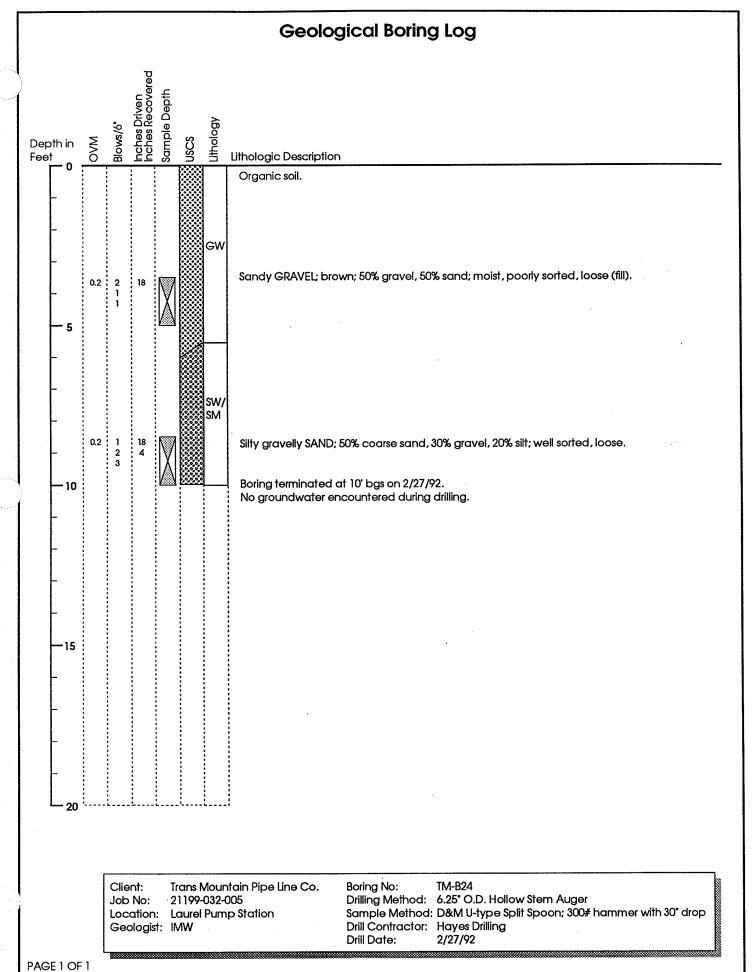


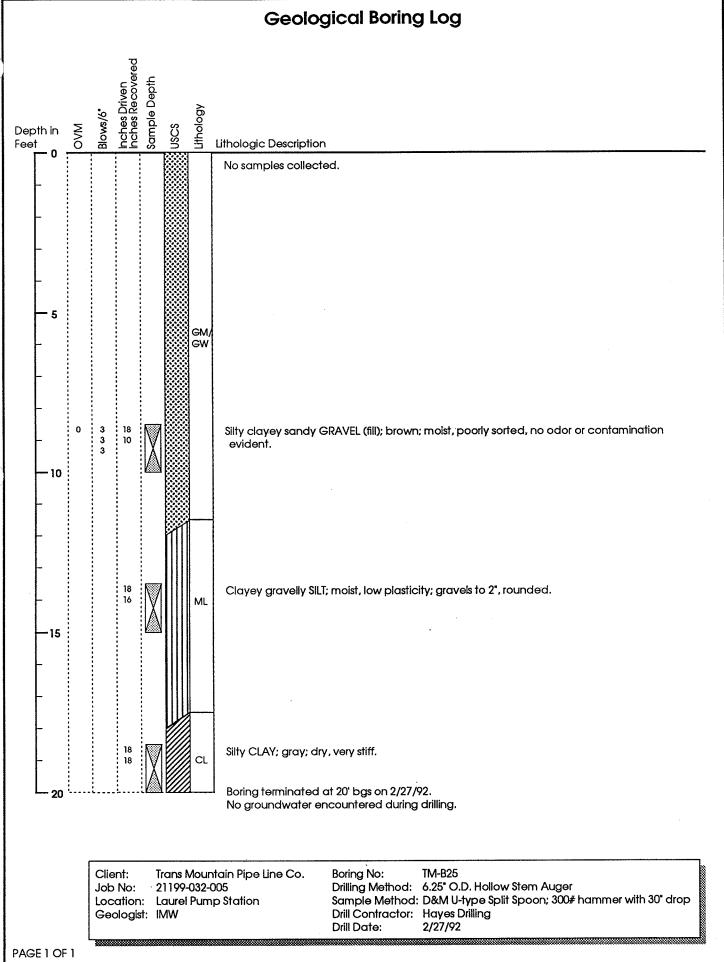

PAGESOF

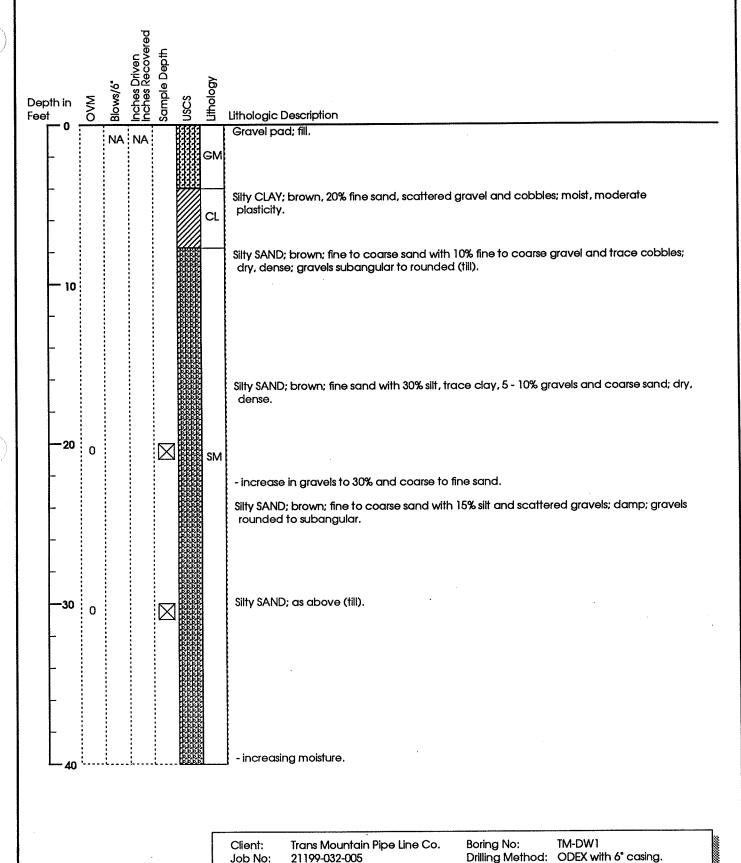








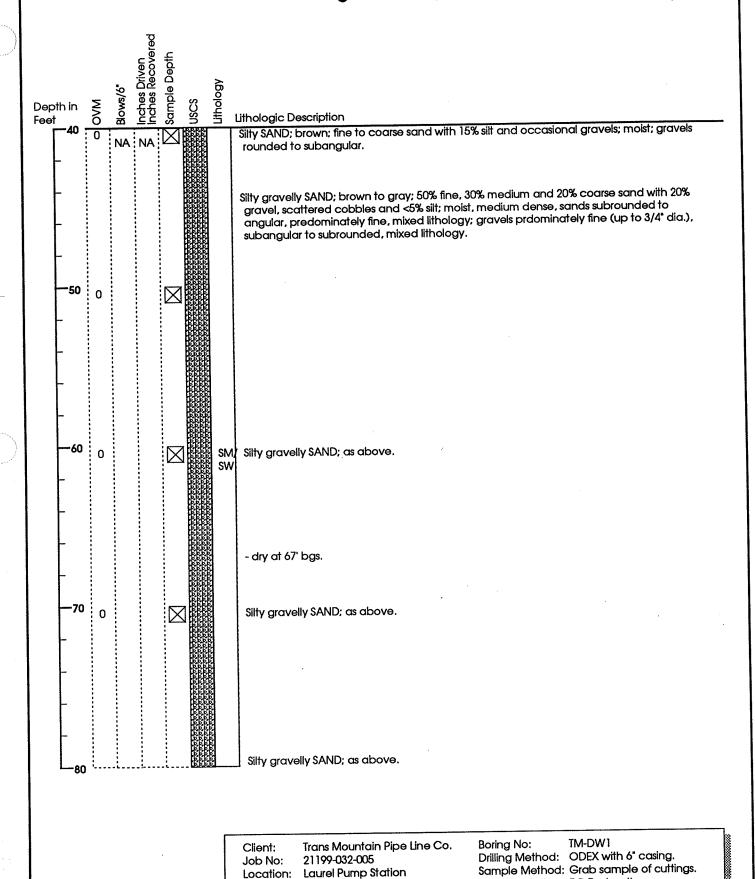




Location: Laurel Pump Station

Geologist: JKM/DSW

PAGE 1 OF 6

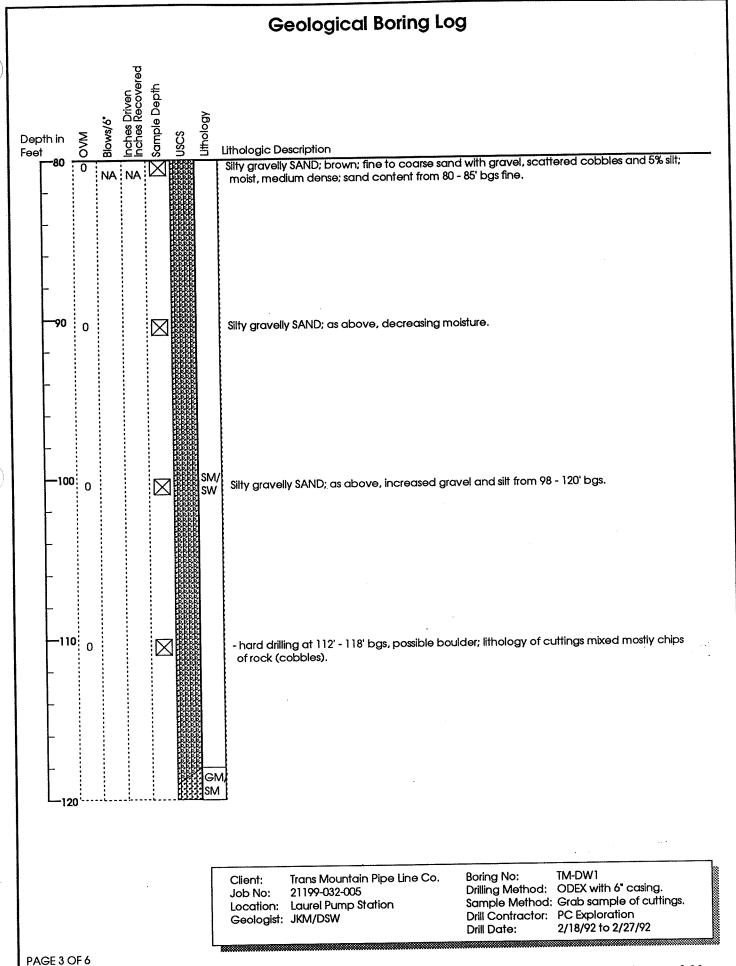

Sample Method: Grab sample of cuttings.

2/18/92 to 2/27/92

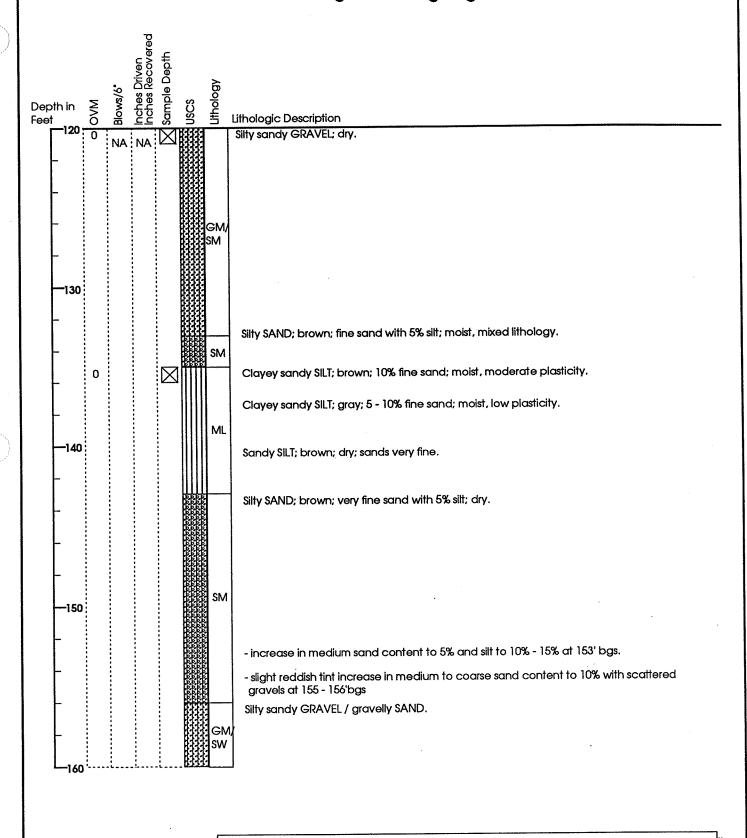
Drill Contractor: PC Exploration

Drill Date:

Geological Boring Log


Geologist: JKM/DSW

PAGE 2 OF 6


Drill Contractor: PC Exploration

Drill Date:

2/18/92 TO 2/27/92

Geological Boring Log

Client: Job No: Trans Mountain Pipe Line Co.

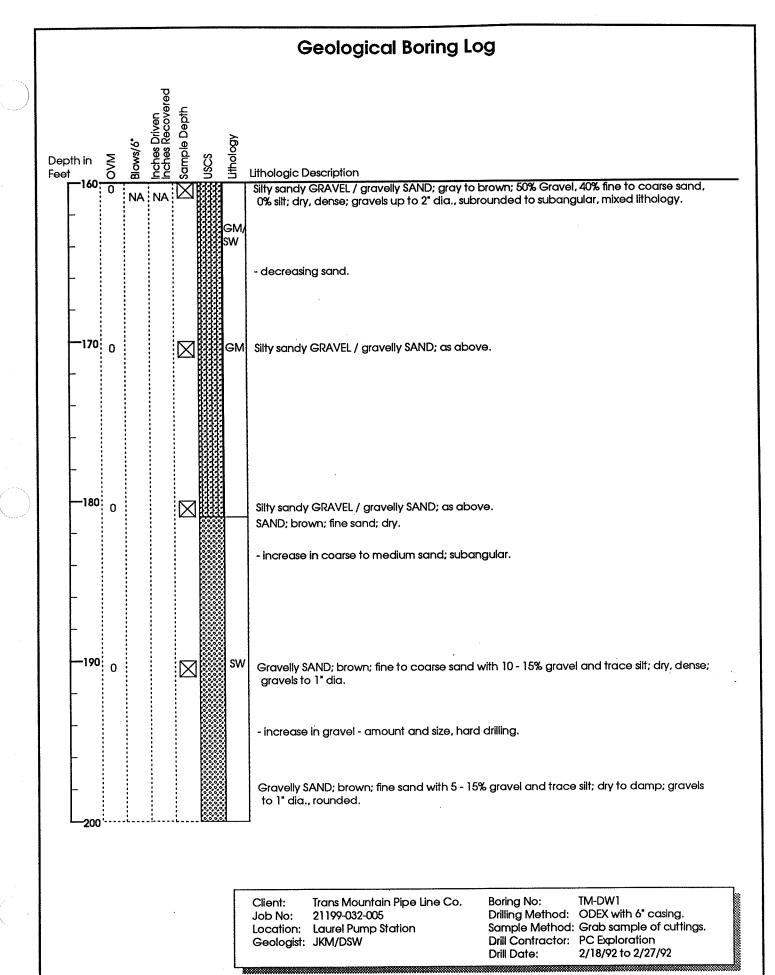
21199-032-005

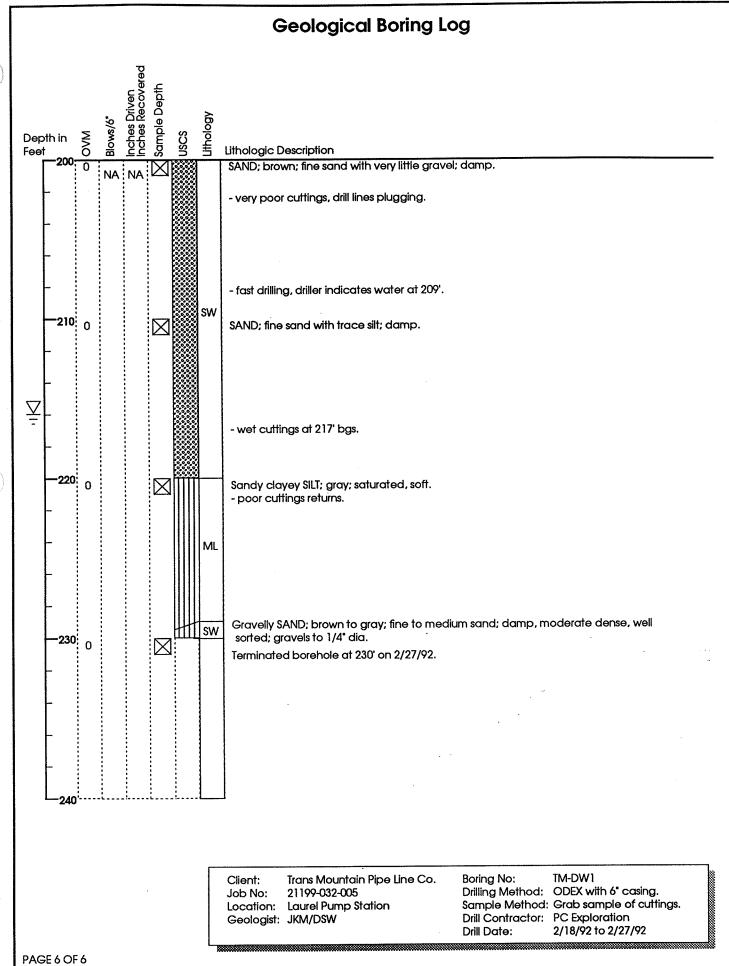
Location: Laurel Pump Station

Geologist: JKM/DSW

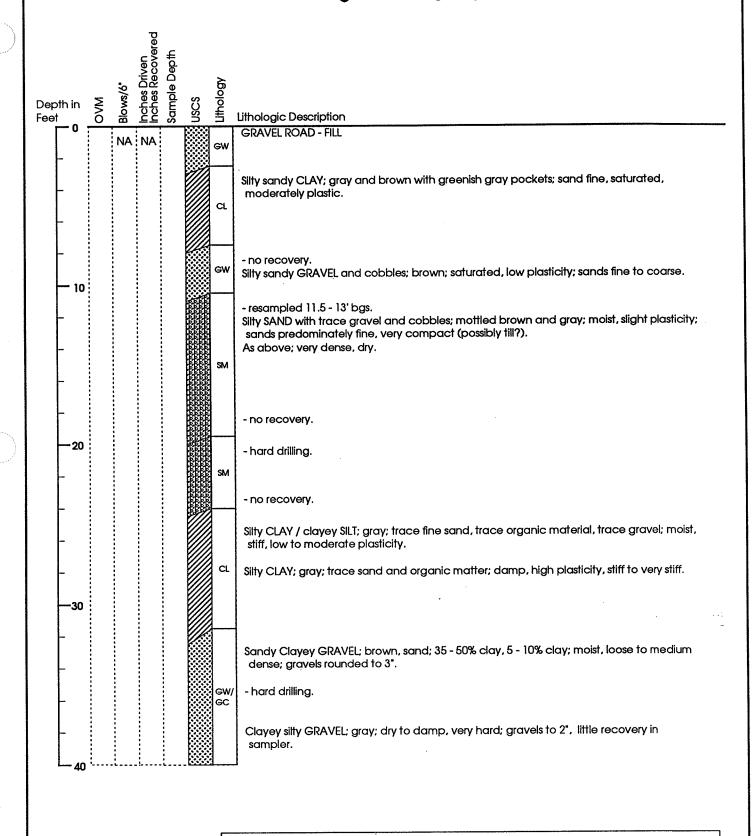
Boring No:

TM-DW1


Drilling Method: ODEX with 6" casing.


Drill Contractor: PC Exploration

Sample Method: Grab sample of cuttings.


Drill Date:

2/18/92 to 2/27/92

Geological Boring Log

Client:

Trans Mountain Pipe Line Co.

Boring No:

DW-2

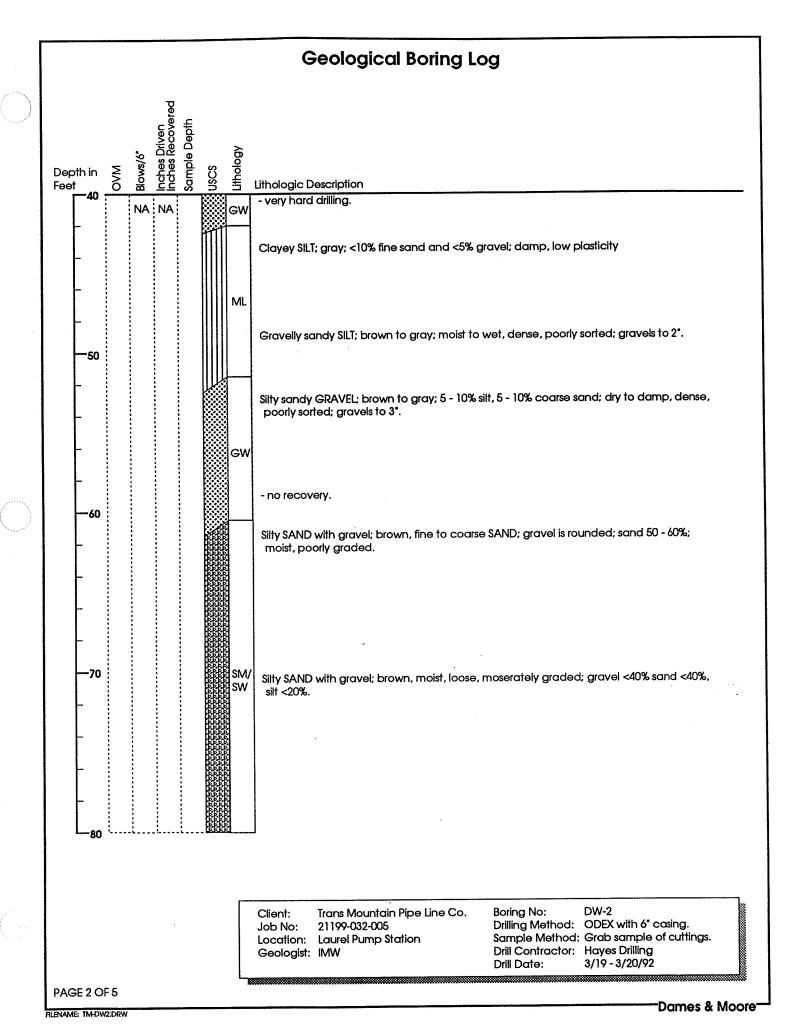
Job No:

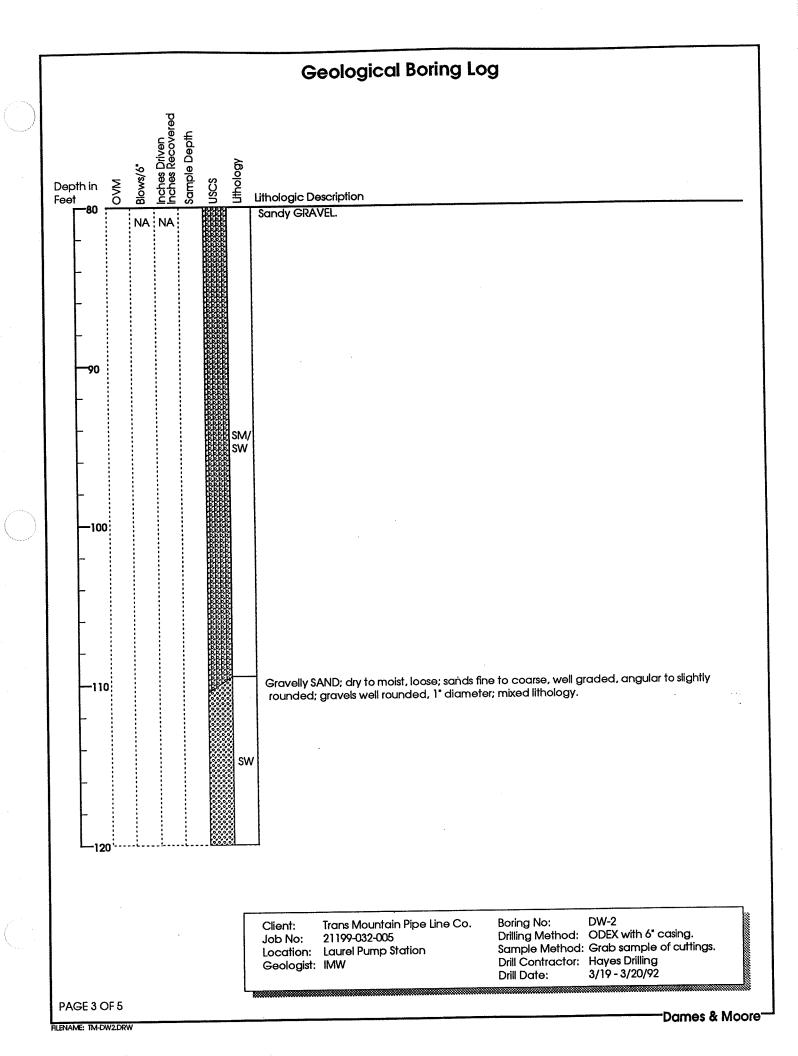
Drilling Method: ODEX with 6" casing.

Location:

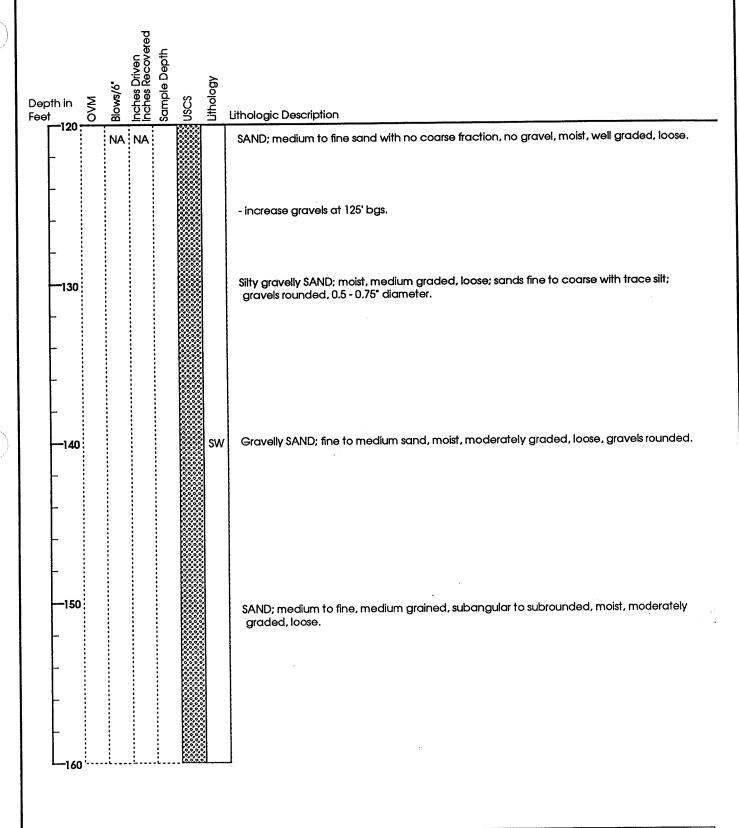
21199-032-005 Laurel Pump Station

Sample Method: Grab sample of cuttings.


Geologist: IMW


Drill Contractor: Hayes Drilling

Drill Date:


3/19 - 3/20/92

PAGE 1 OF 5

Client:

Trans Mountain Pipe Line Co.

Boring No:

DW-2

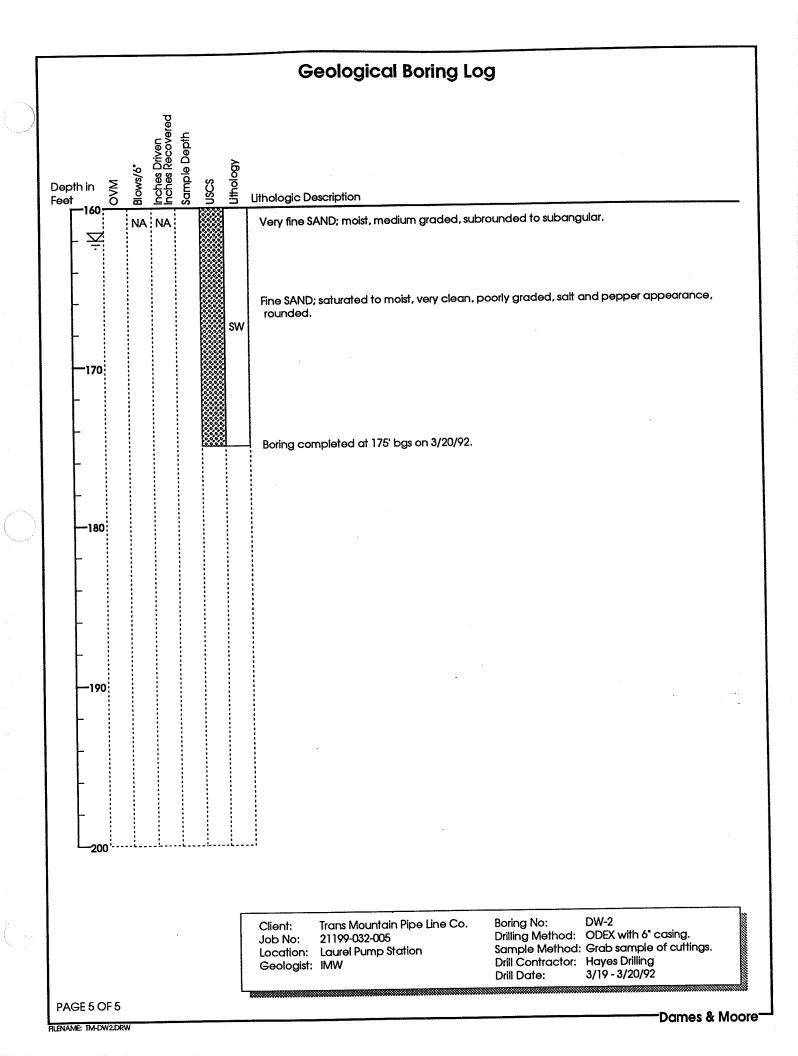
Job No:

21199-032-005

Location: Laurel Pump Station Geologist: IMW

Sample Method: Grab sample of cuttings.

Drilling Method: ODEX with 6" casing.

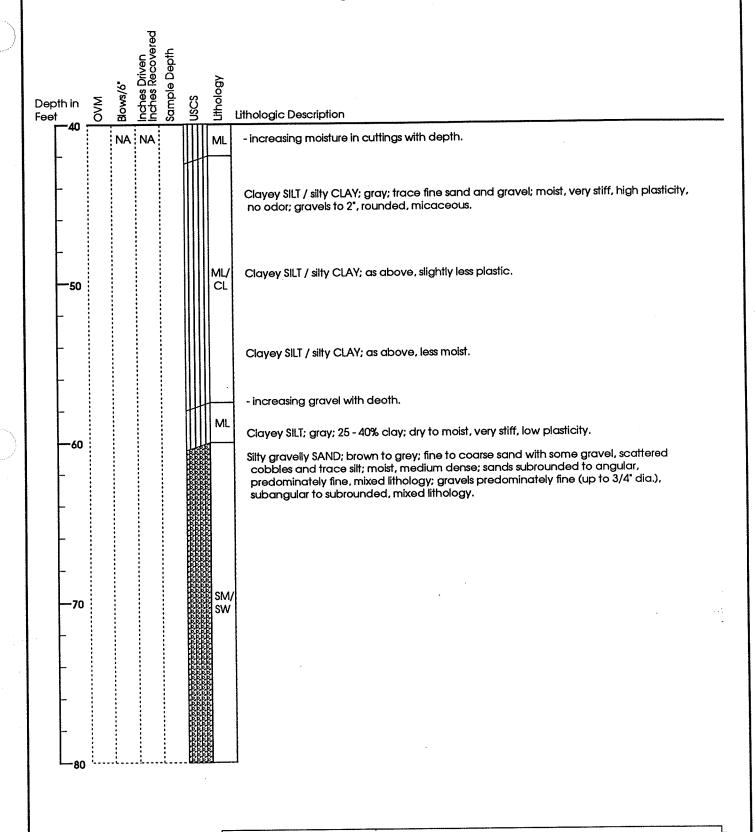

Drill Contractor: Hayes Drilling

Drill Date:

3/19 - 3/20/92

PAGE 4 OF 5

Dames & Moore FLENAME: TM-DW2.DRW



Geological Boring Log

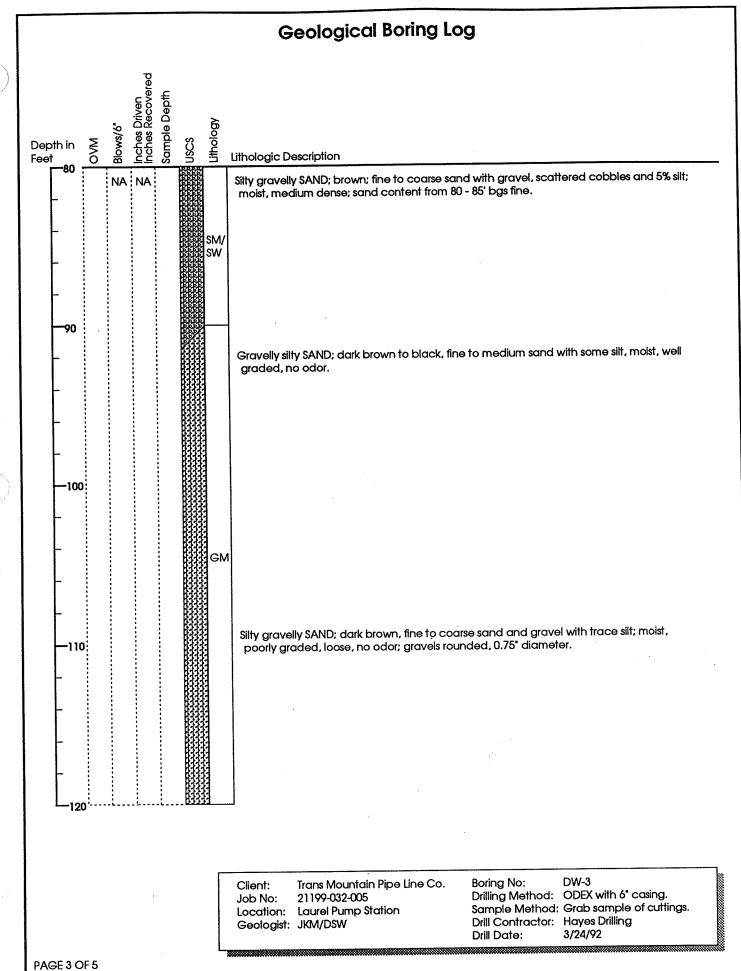
FAGE 1 OF

Trans Mountain Pipe Line Co.

21199-032-005

Location: Laurel Pump Station

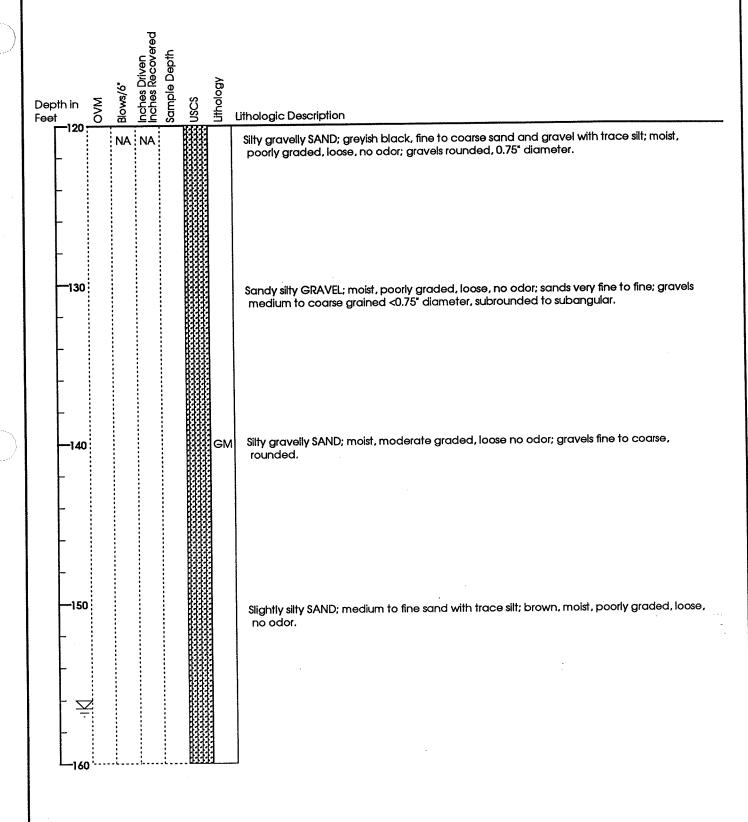
Geologist: JKM/DSW


Boring No:

DW-3

Drilling Method: ODEX with 6" casing. Sample Method: Grab sample of cuttings.

Drill Contractor: Hayes Drilling Drill Date: 3/24/92


PAGE 2 OF 5

FILENAME: TM-DW3.DRW

Dames & Moore

Client:

Trans Mountain Pipe Line Co.

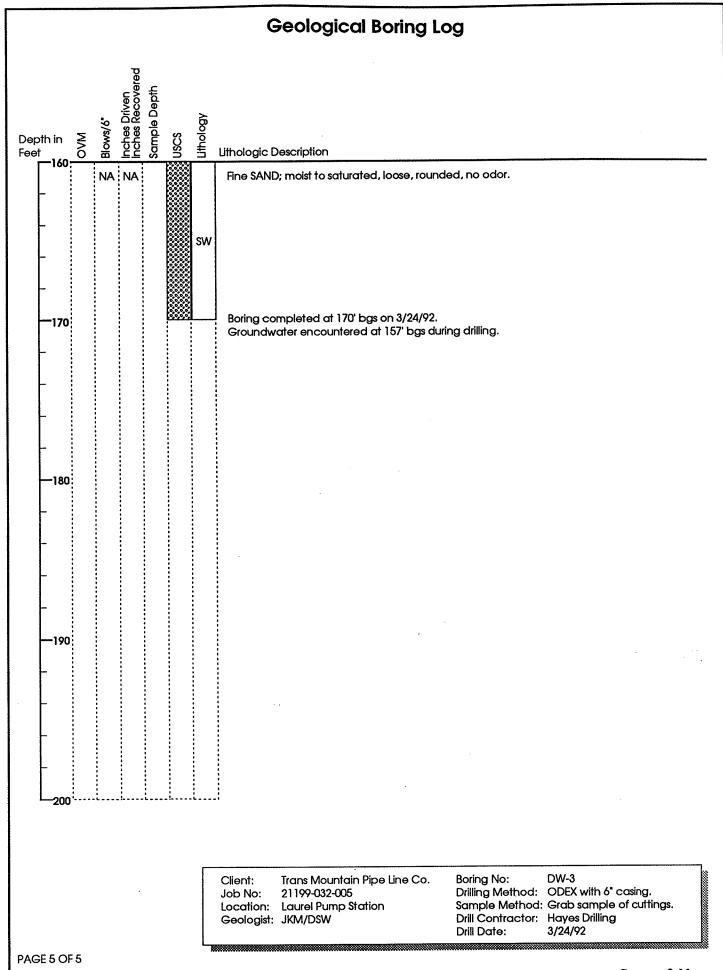
Boring No:

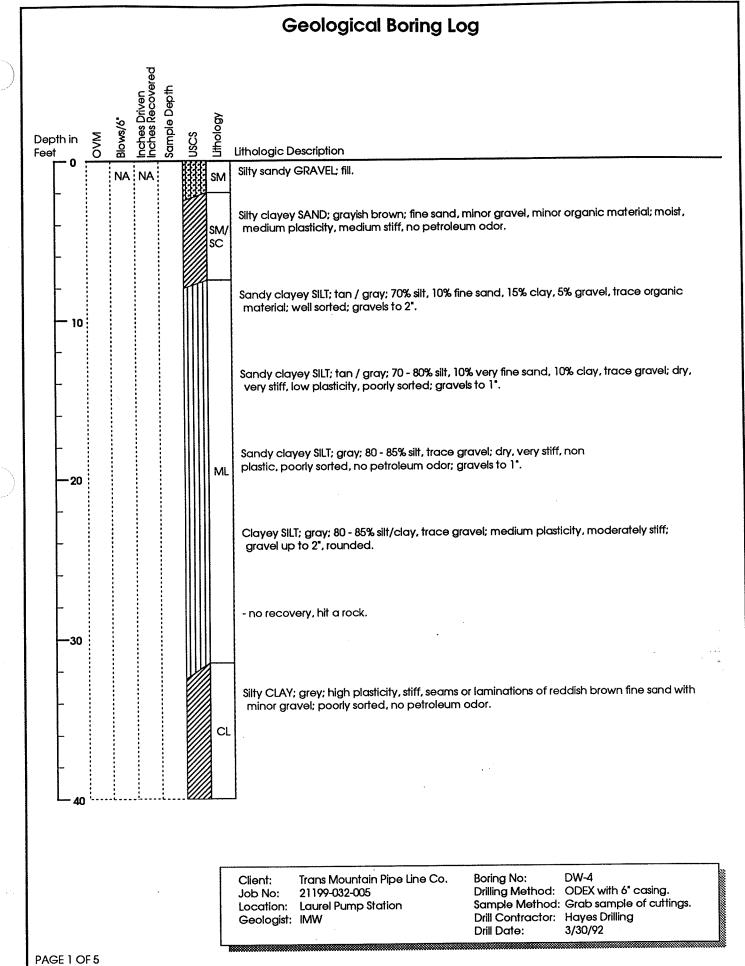
DW-3

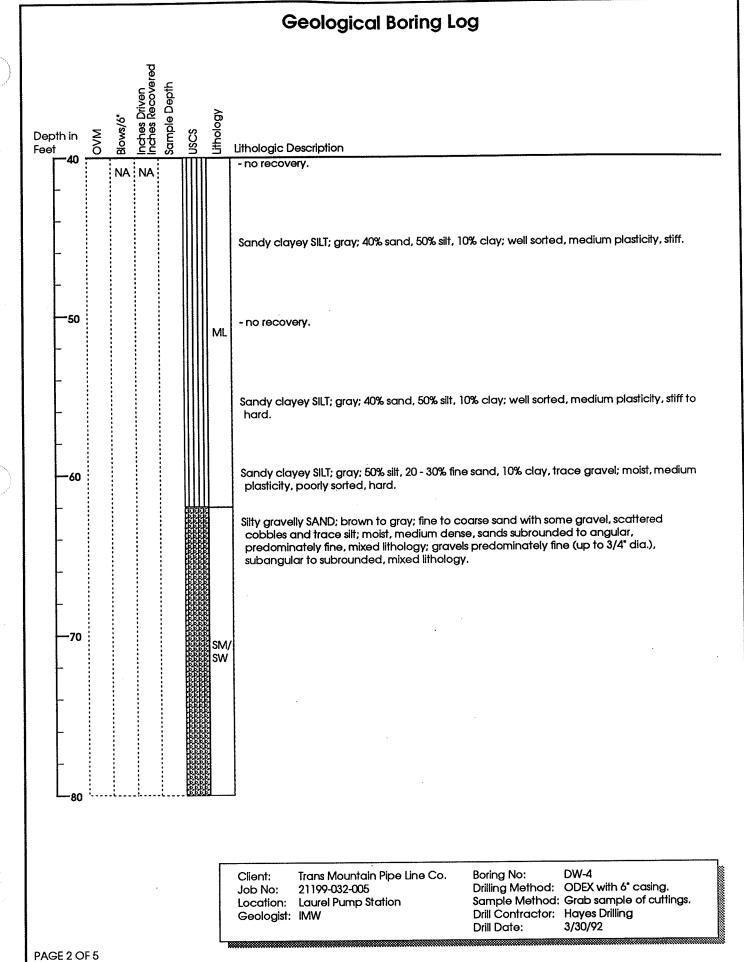
Job No: Location:

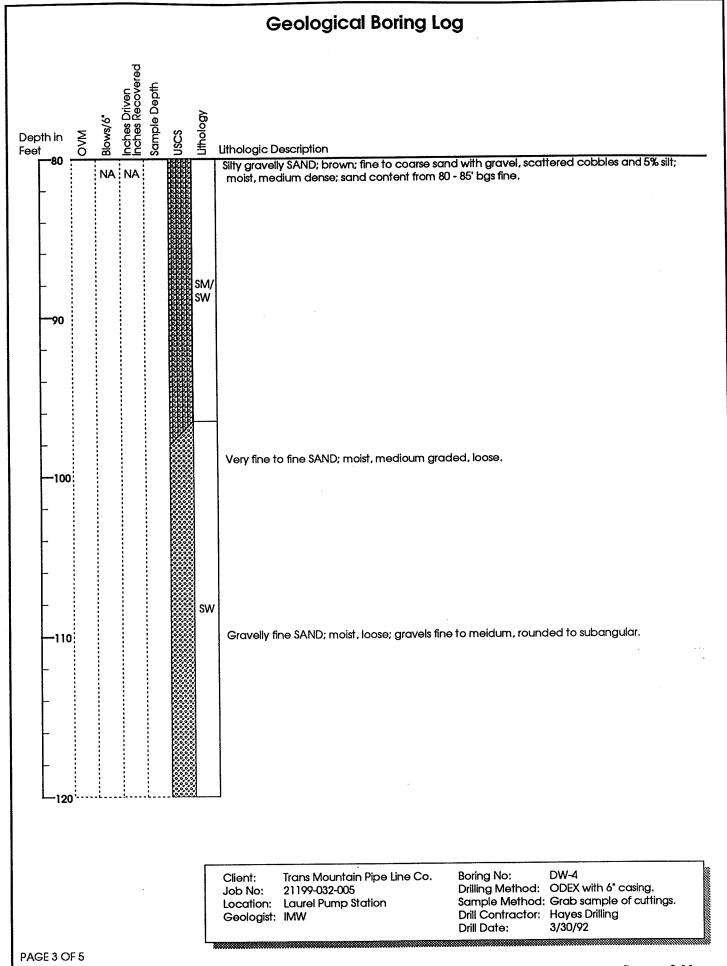
21199-032-005

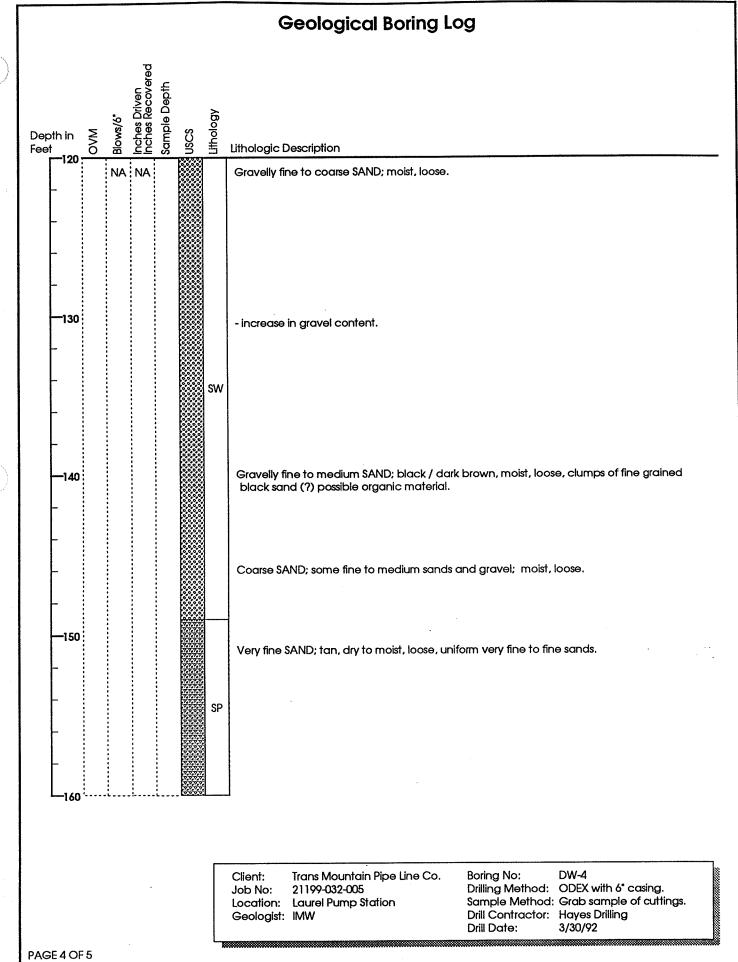
Laurel Pump Station

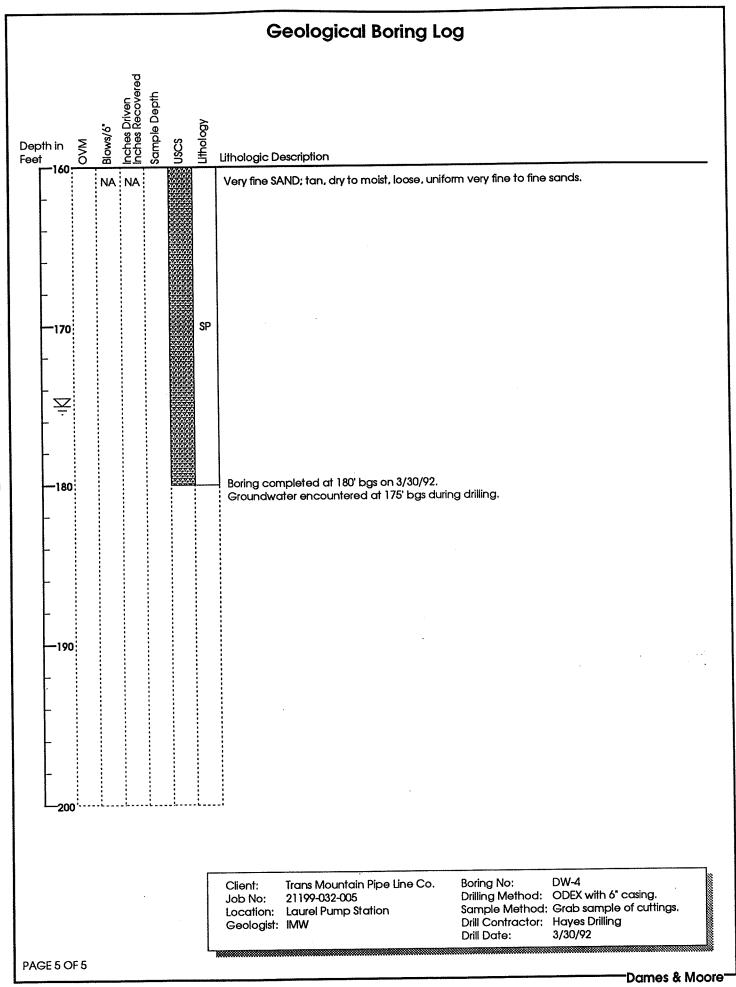

Drilling Method: ODEX with 6" casing. Sample Method: Grab sample of cuttings.

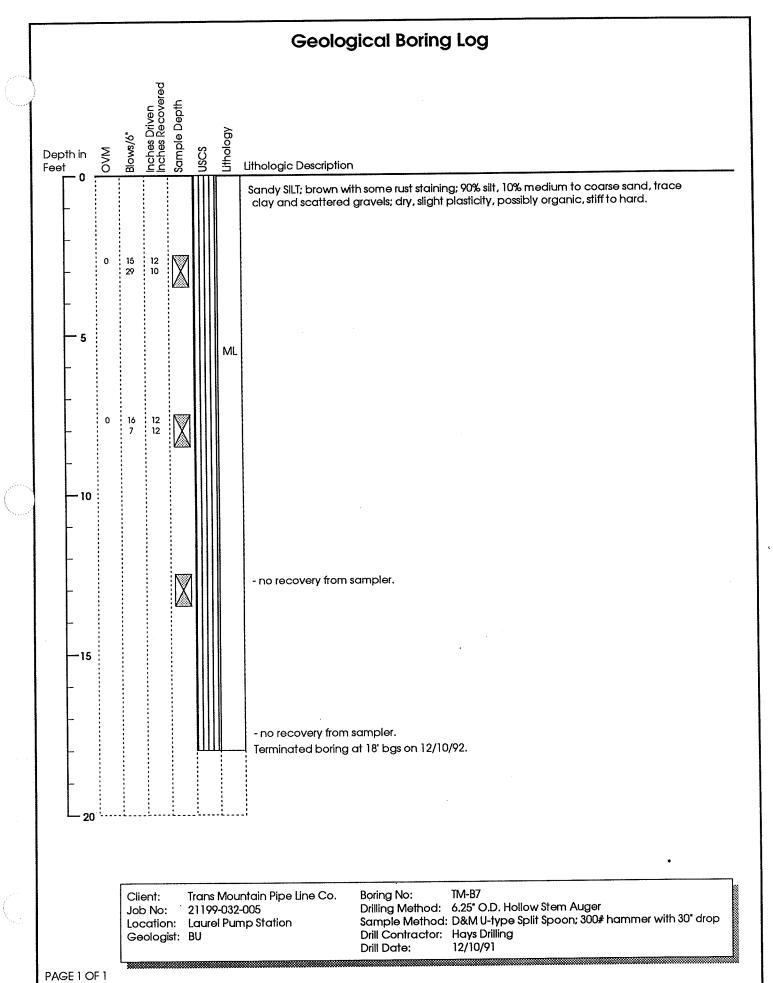

Geologist: JKM/DSW

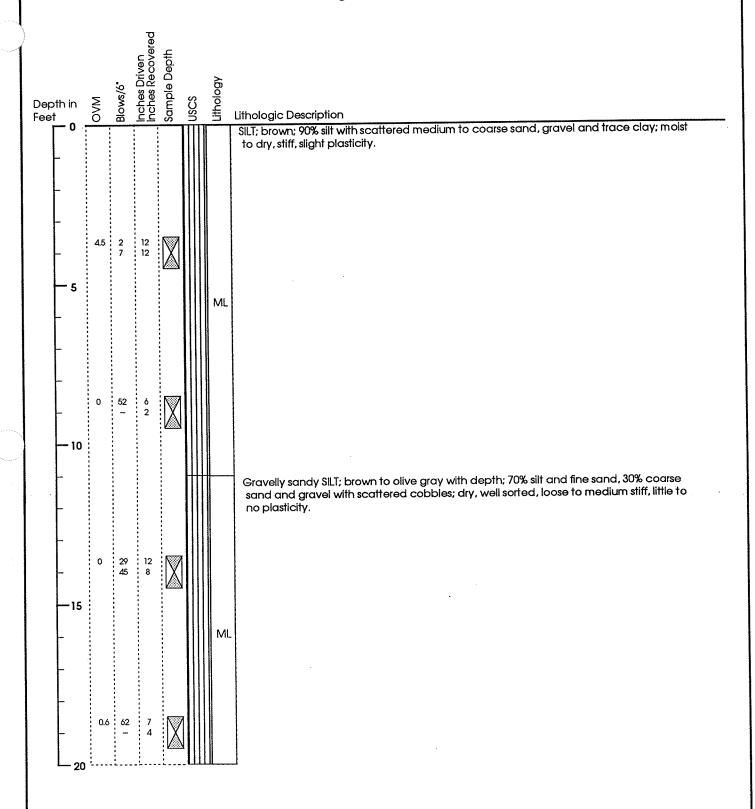

Drill Contractor: Hayes Drilling Drill Date:


3/24/92


PAGE 4 OF 5

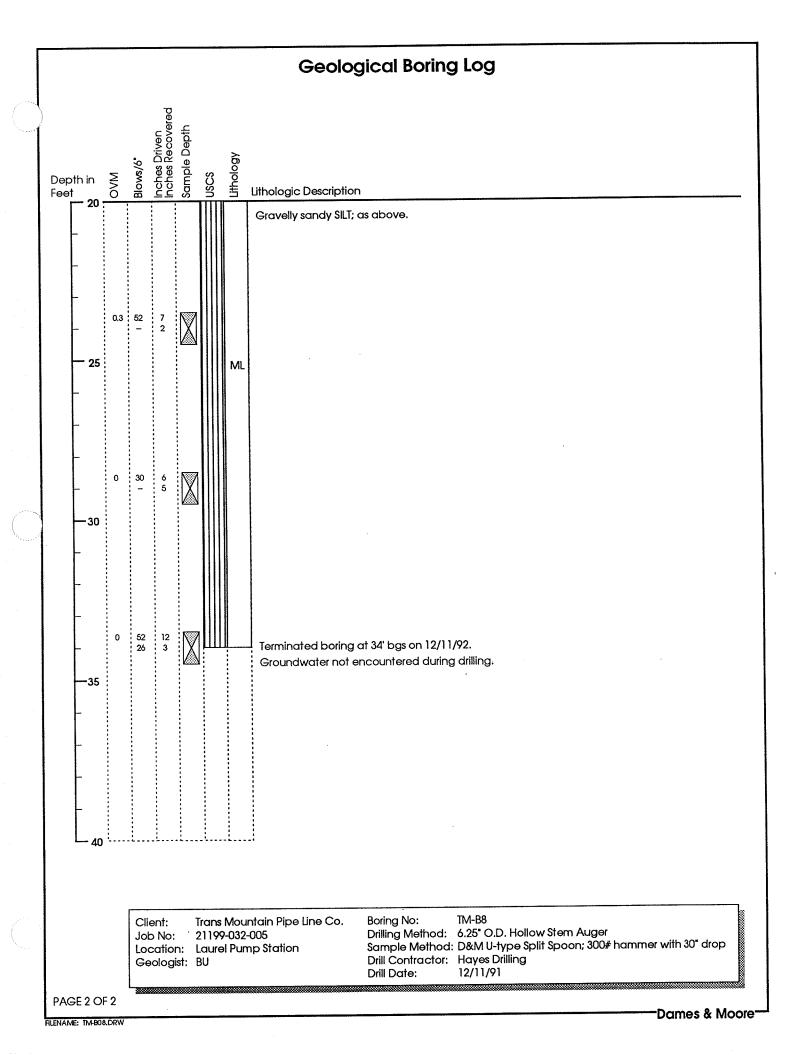


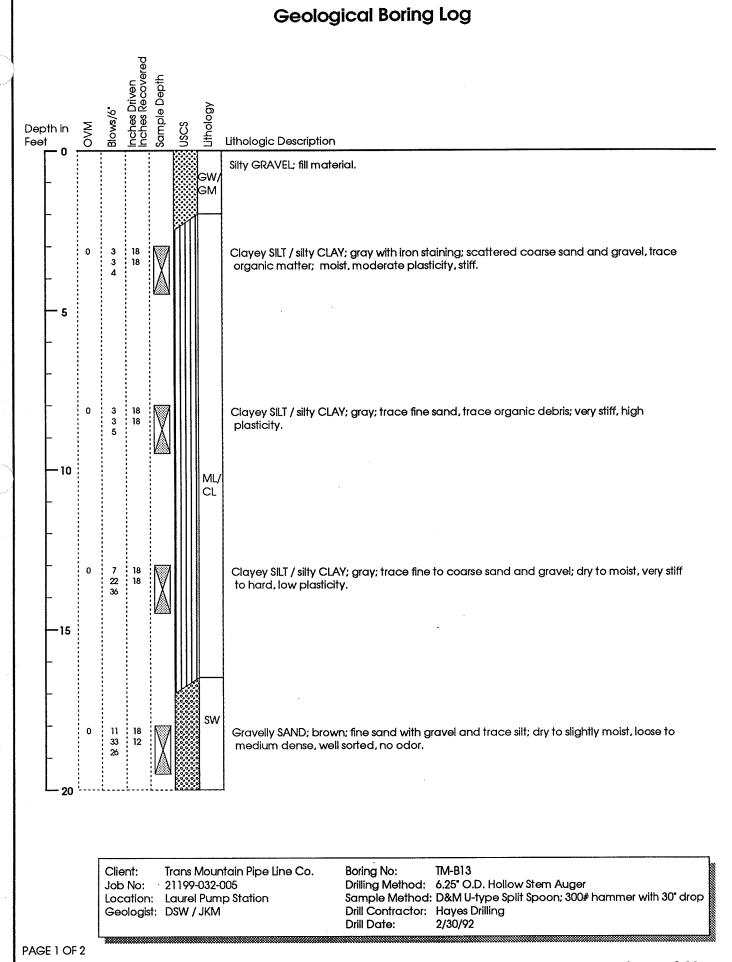


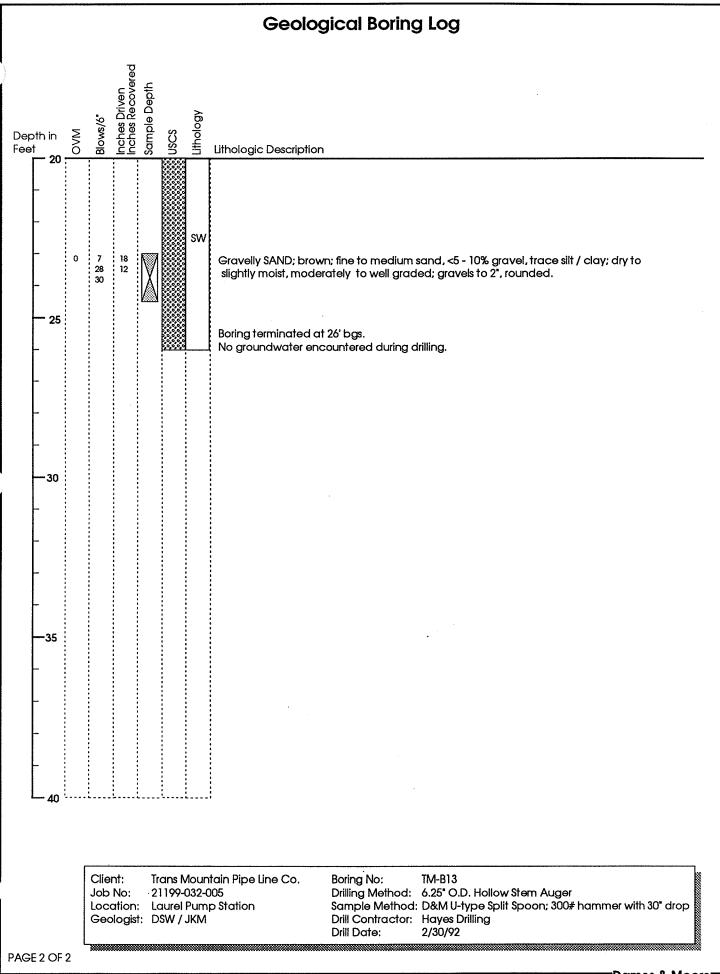


Trans Mountain Pipe Line Co. 21199-032-005

Location: Laurel Pump Station


Geologist: BU


Boring No: TM-B8


Drilling Method: 6.25" O.D. Hollow Stem Auger Sample Method: D&M U-type Split Spoon; 300# hammer with 30" drop

Drill Contractor: Hayes Drilling

Drill Date: 12/11/91

Project: BE9333-2 Paget Sound Reactivation

Project Location: Bellingham, W4

Project Number: 33759847. 00001

Boring No. U-3

Sheet 1 of 2

Sketch Location	Date(s) Drilled 3/13/2006	Logged E. Lenz
	Drilling Method Drill Bit Size/Type 1-1 S A	Total Depth of Borehole 24 Ft 23,5 Ft
	Drilling Contractor Boar+	Drill Rig Type B-61 Mobile
1 *	Samping Method(s) SAT	Hammer SPT: 14016 - 30-in
:	Groundwater Level and Date Measured	Surface Bevation

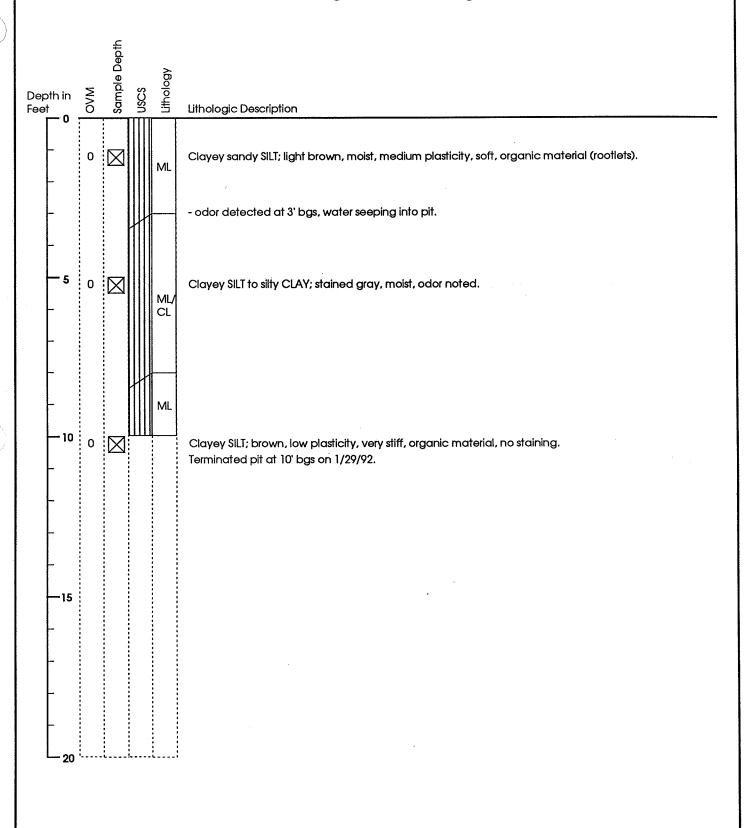
	SAMPLES								
Elevation feet	Depth, feet	Type Number Blows/ft.		Number of Rings	nscs	MATERIAL DESCRIPTION	REMARKS AND OTHER TESTS		
-	0-	<u> </u>							
	2.5-					-	[ML] Brown to arounge lovour slightly Gravelly SILT, moist, m, stiff (fill)		
	2.0	Set	5-1	1	188		[ML] Brown to orange brown sandy 2.5— (fine) SILT, moist, median stiff,	PP= N/a	
-	5-			0			Now-plastic (fill)		
-	7.5	\\ \rac{s}{p}	5-2	8/11/4	18/18/		- becomes hard, gray to brown to 7.5- Olive in color, dry, with some		
_	0-			30			Sandy Zones of < 1" thick to [GP] Gray with two colored gravel		
	2.5	X P	5-3	32,36	8/18		slightly silty to trace fines, sandy (fine to course) GRAVEL, moist to 2.5- wet, becoming dry to moist,		
-	5-	3	-	(19)		ָרְרָעָרָרָרְרָּרָרָרְרָּרָרְרָּרְרָּרְר	very dense		
	7.5	X S C T	5-4	199 199	0/6		[ML/SM] Gray silty SAND/sandy SILT, moist to dry, v. dense/		
_	0	_		6"			Nard, NON-plastic, trace gravel		

Proj Proj	ject: ect Loc ect Nui	BE93 cation: mber:	133- 13e 33	2 # 11in 75	inge igha 981	et m +7.	Sound Reactivation Boring No. , wh oooo! Sheet Z of	
Sketo	th Locati	ion					Date(s) Drilled Drilling Method Drill Bit SzerType Drilling Contractor Samping Method(s) Groundwater Level and Date Measured Loggad By Total Depth of Borehole Drill Rig Type Hammer Data Surface Bevalion	
Elevation feet	Depth, P feet	Type &	AMPLES Number	Blows/ft.	Number of Rings	nscs	MATERIAL DESCRIPTION	REMARKS AND OTHER TESTS
	2.5	SPT	5-5	50 For 5"	45		[GM] Gray to brown silty and 2.5- Sandy coarse gravel, moist to dry, v. dense 7.5- 2.5- 7.5-	

URS

Project: BE9333-2 Puget Sound Reactivation	Boring No. U- 4
Project Location: Bellingham, WA	,
Project Number: 33759847. 00001	Sheet 1 of 2

Sketch Location	Date(s) 3/13/2007	logged E, Lenz
Ifato	Drilling Method Drill Bit Size-Type + 15A	Total Depth of Borehole 24 C.L.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Drilling Contractor Beaut	Drill Rig Type Mobile 13-61
, ,	Semping SPT	Hammer Data SPT: 14016, 3010
	Groundwater Level and Date Measured N/O	Surface Bevation .


	SAMPLES						I			
	Elevation feet	Depth, feet	Tvne	2	Number	Blows/ft.	Number of Rings	nscs	MATERIAL DESCRIPTION	REMARKS AND OTHER TESTS
	_	2.5	X	SPT	S-1		13''		[ML-SM] Orangesh-brown to brown and gray, sandy SILT/silty fine SAND, v. soft/v. loose, moist to 25- wet, low plasticity (Fill-embankment)	Start at 3:30 PM
		7.5 	X	SPT	S-Z	1/8/17	19/10		[ML] Tawish-light-brown slightly 7.5 sitty sandy SILT with trace gravel, moist, v. stiff	pp = 0.4 4.5 to > 4.5 Esf
	-	2.5	X	501	5-3	1/5/20(35)	12,18"	8	[ML] (same abbave) 2.5- 5-	dviller woter growelly zone PP= 4.0 he > 4.5 tsf
OG ENV - FIL WG 3/18/01		7.5	X	(AP)	5-4	7/2/20	181		. 7.5-	pp > 4.5 tsf
LOGE		<u> </u>							URS	

Proje	ect: ect Loc	BE93 cation: mber:	333- 13e	2 1 11in	enge Igha	et m	Sound, WA	Reactive	ction		Boring Sheet		•
	th Local		3.3	5/5	98.	<u>*/.</u>	Dritting Contract Samplin Method Grounds		She	ot v	Logged By Total Depth of Borehole Drill Rig Type Hammer Data Surface Bevelion		
	•	S/	AMPLE:	S	1	T							
Elevation feet	Depth, feet	Туре	Number	Blows/ft.	Number of Rings	nscs		MA	TERIAL	DESCRIPT	ΠΟΝ		REMARKS AND OTHER TESTS
	2.5— 5— 7.5—	3 P 1	23 34 50	5-53	18 18		[ML] [GM/ dand grave	colored sightly elly SA	ev. s ray gray	avel	Sandy Sandy Strace dense	2.5- - - - - - - - - - - - - - - - - - -	End drilling at 4:25, seave site at 5:00 pm
	7.5	j		İ								7.5	

URS

LOG ENV - FIELD DWG 3/18/01

Client:

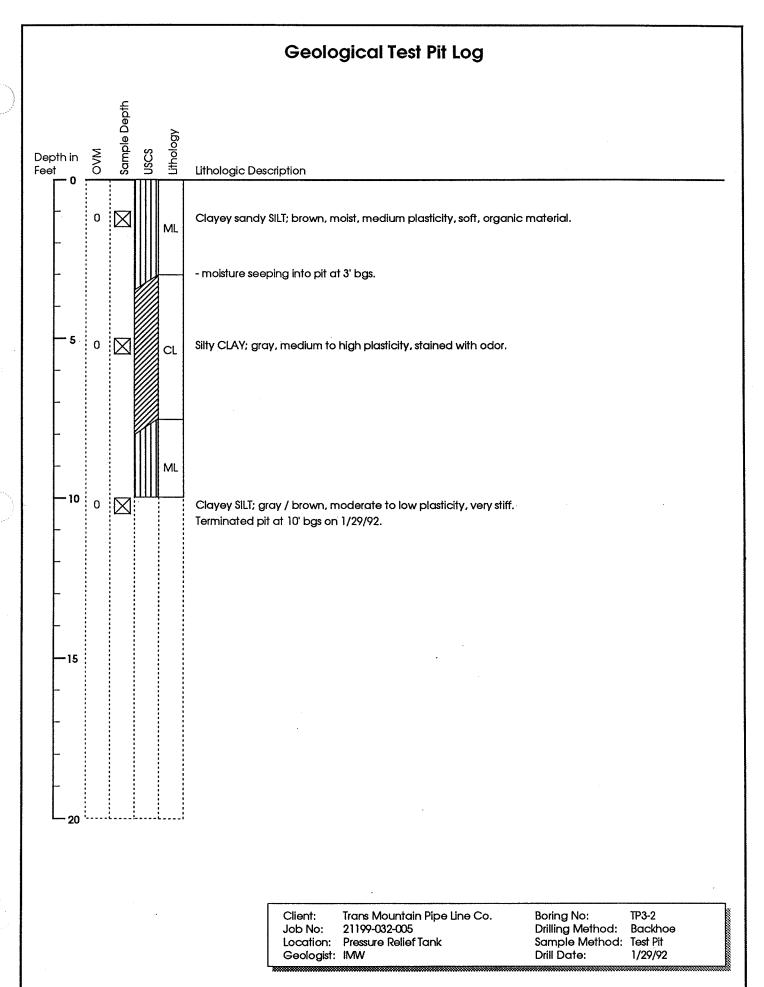
Trans Mountain Pipe Line Co.

Job No: Location:

21199-032-005 Pressure Relief Tank

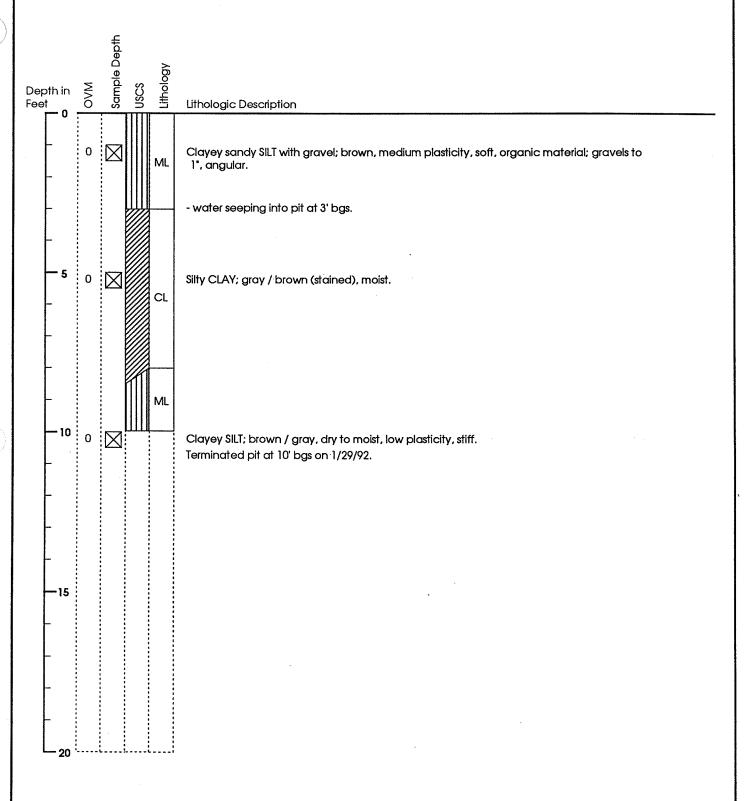
Boring No:

Drill Date:


TP3-1

Drilling Method: Sample Method: Test Pit

Backhoe 1/29/92


Geologist: IMW

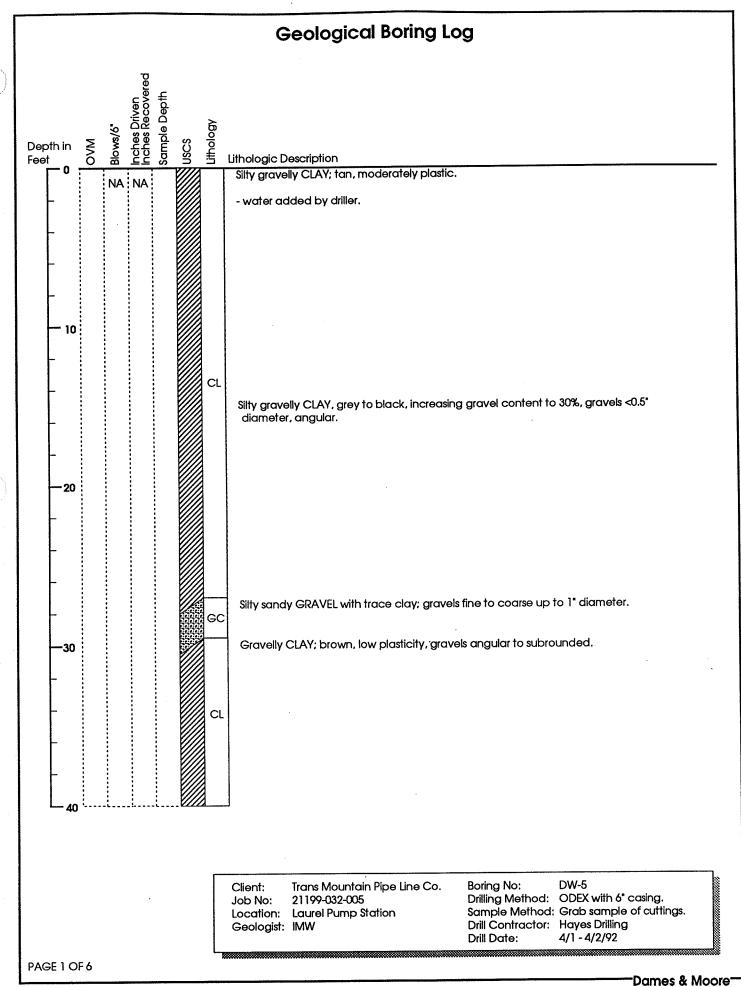
Dames & Moore

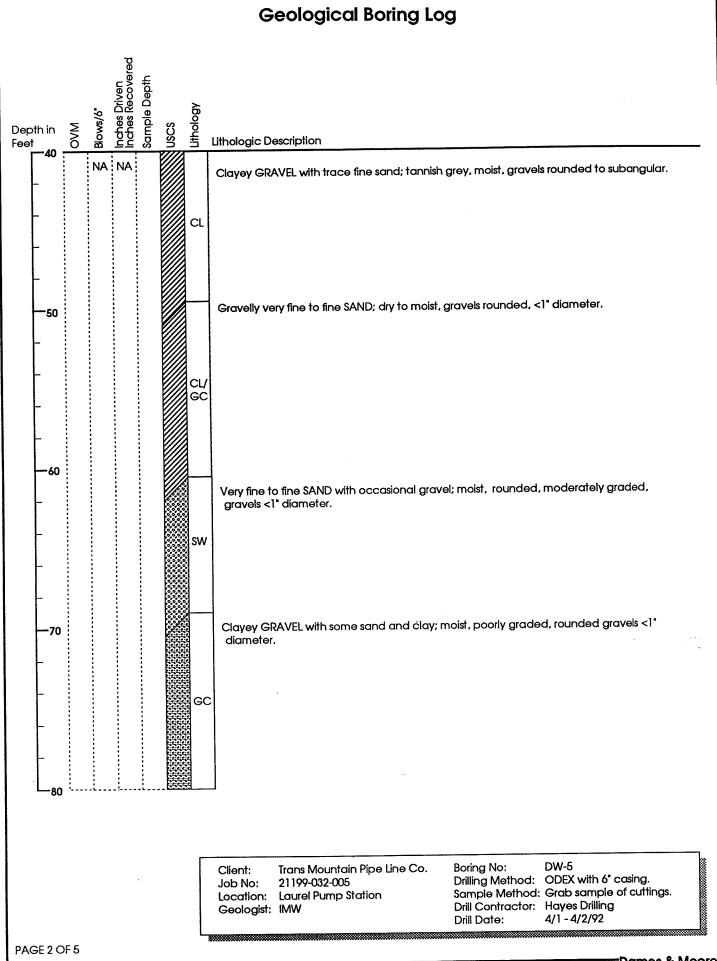
-Dames & Moore-

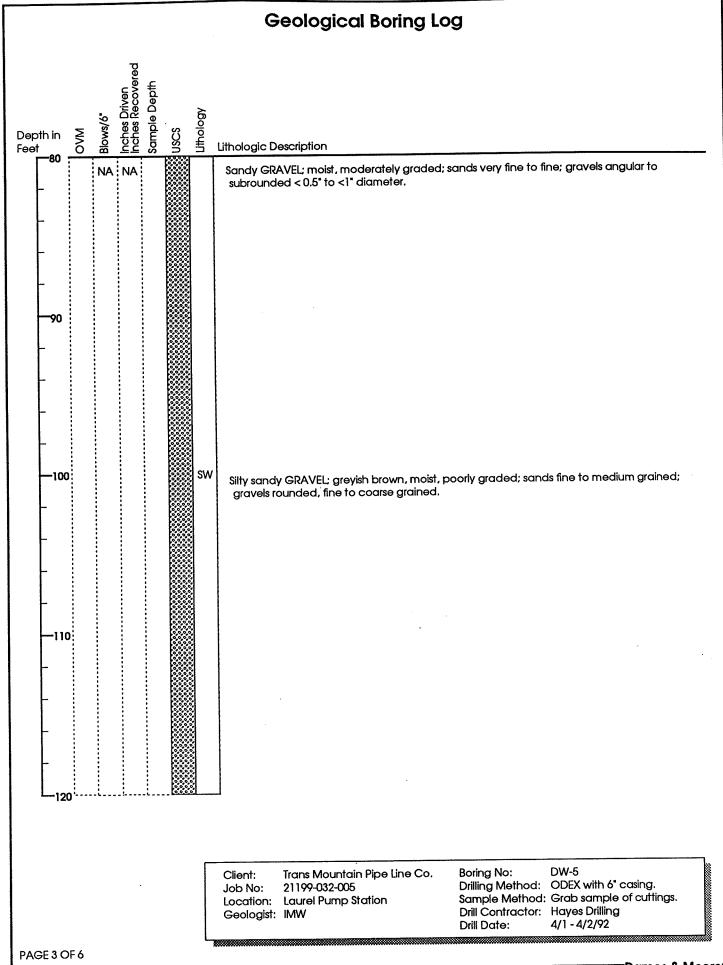
Trans Mountain Pipe Line Co.

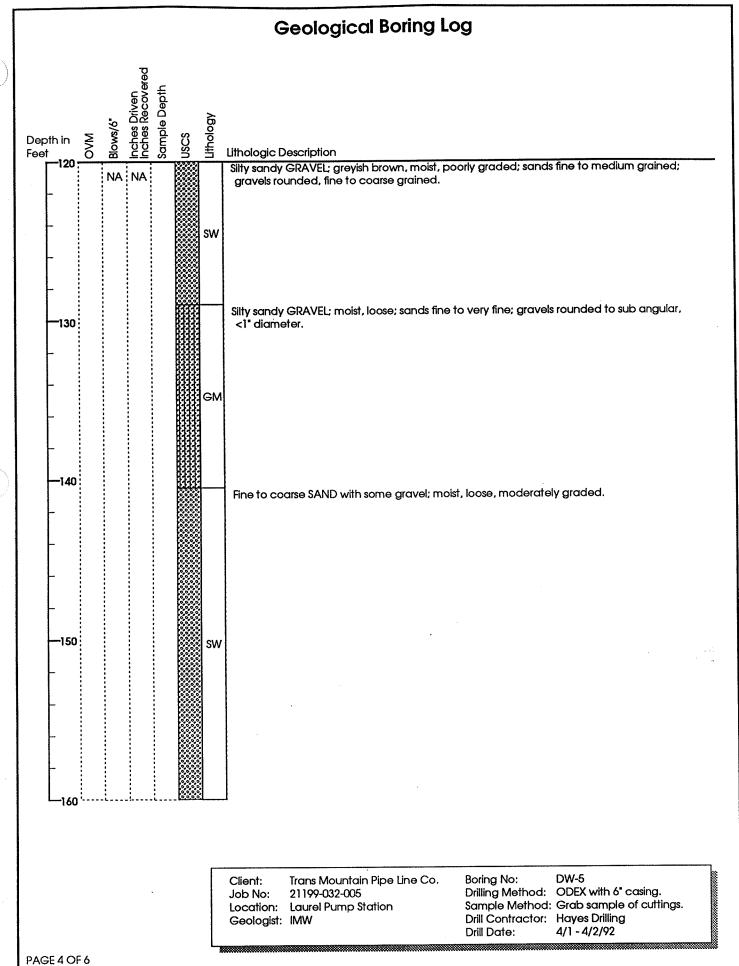
21199-032-005

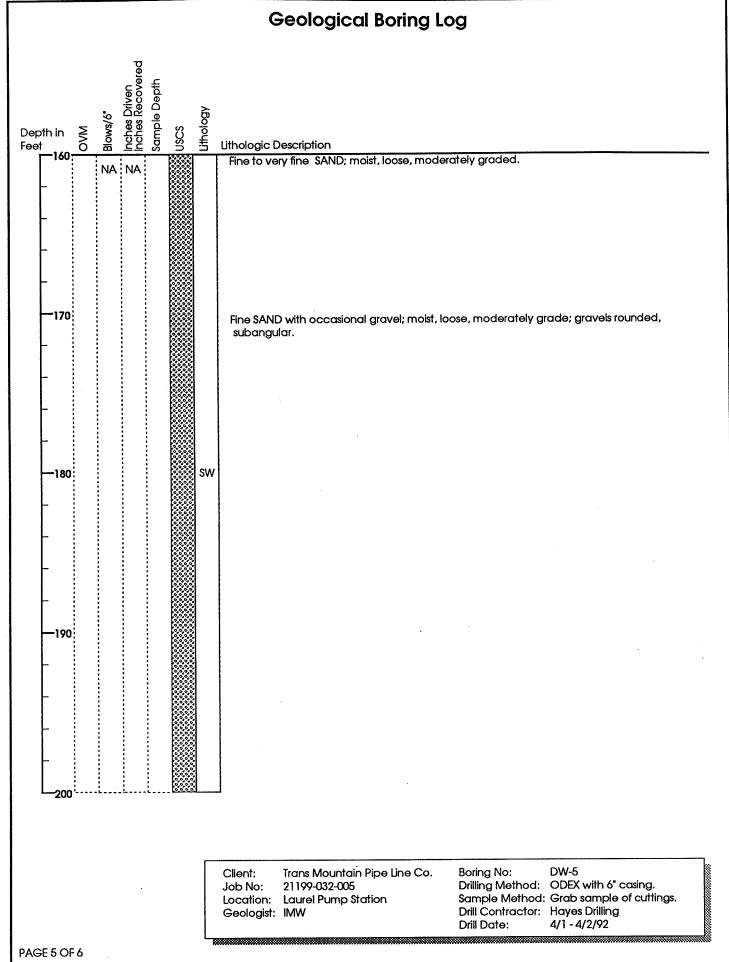
Location: Pressure Relief Tank

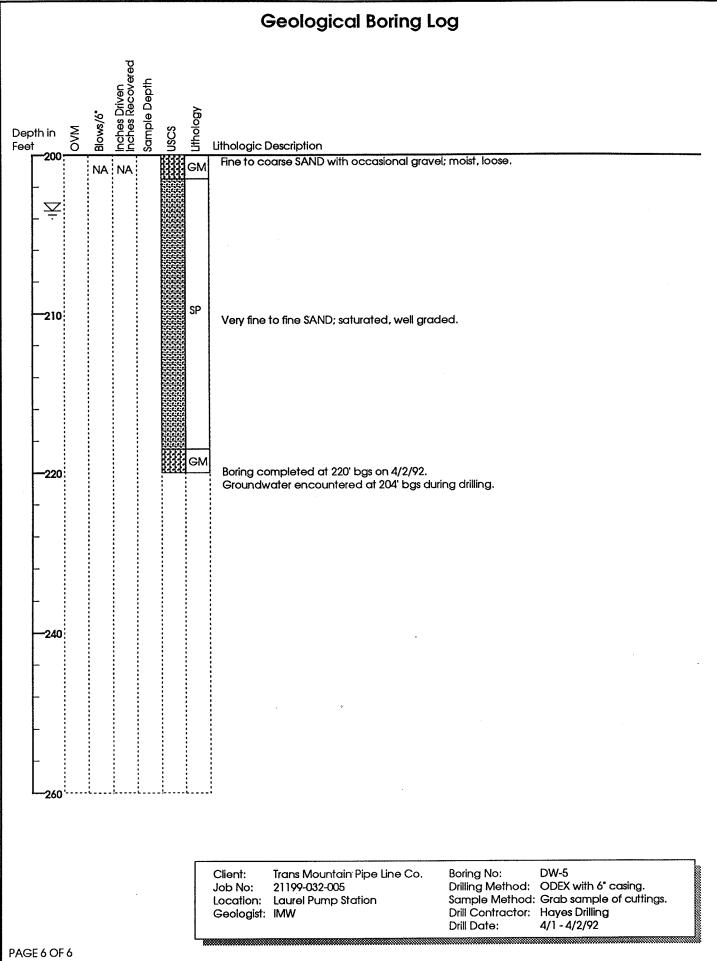

Geologist: IMW

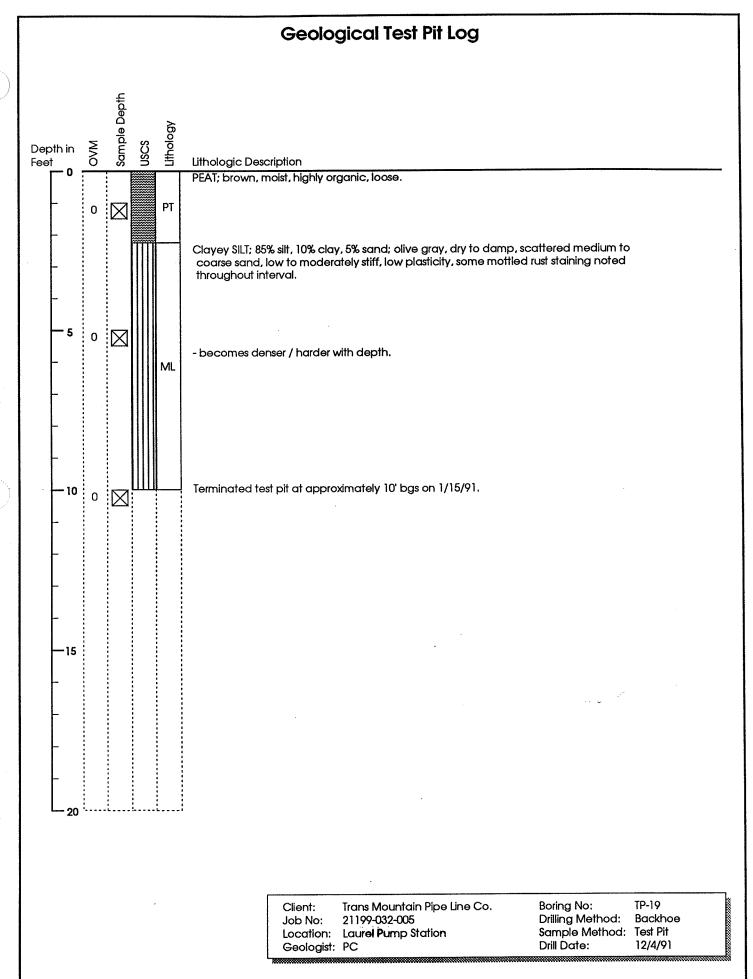

Boring No: Drilling Method: Sample Method:

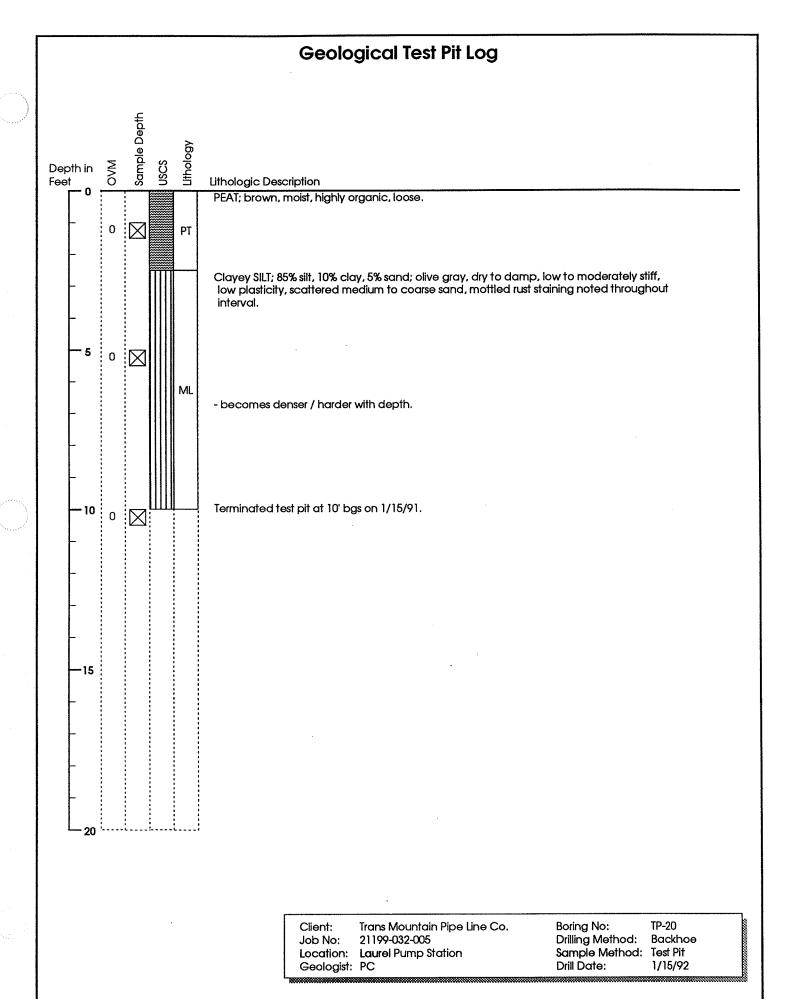

TP3-3 Backhoe

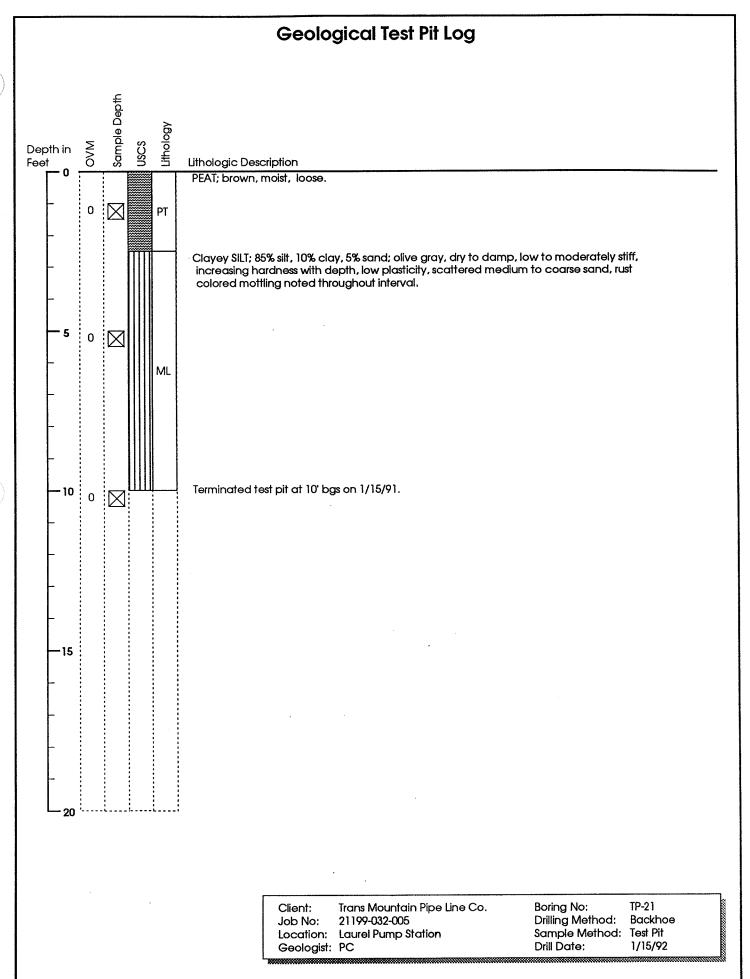

Drill Date:

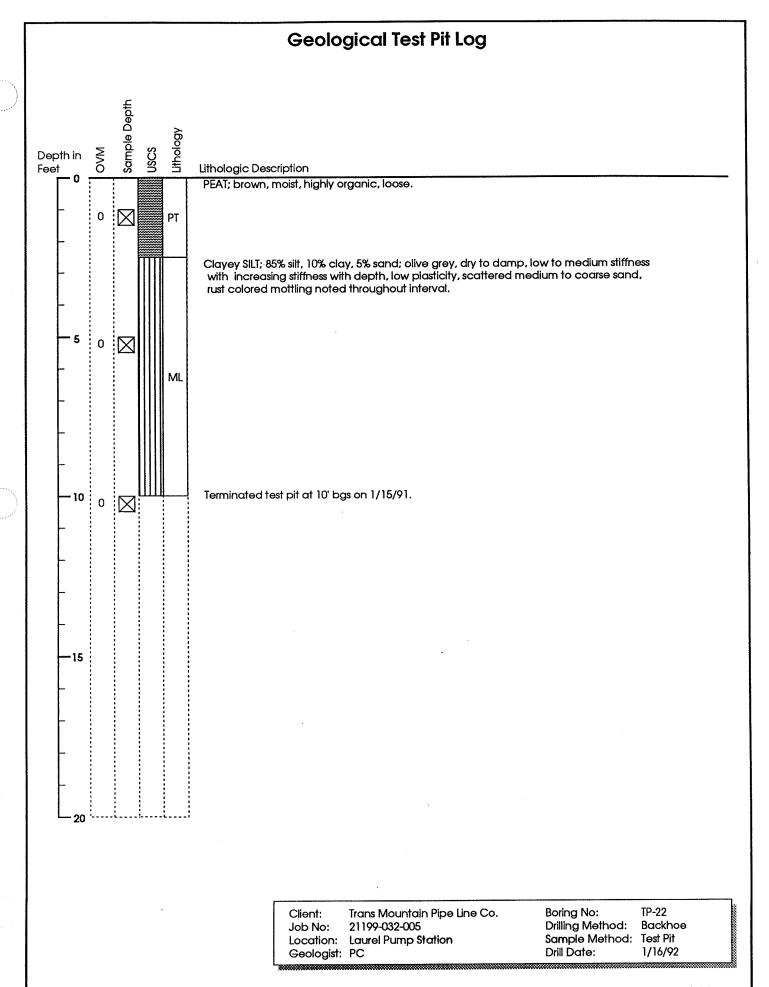

Test Pit 1/29/92

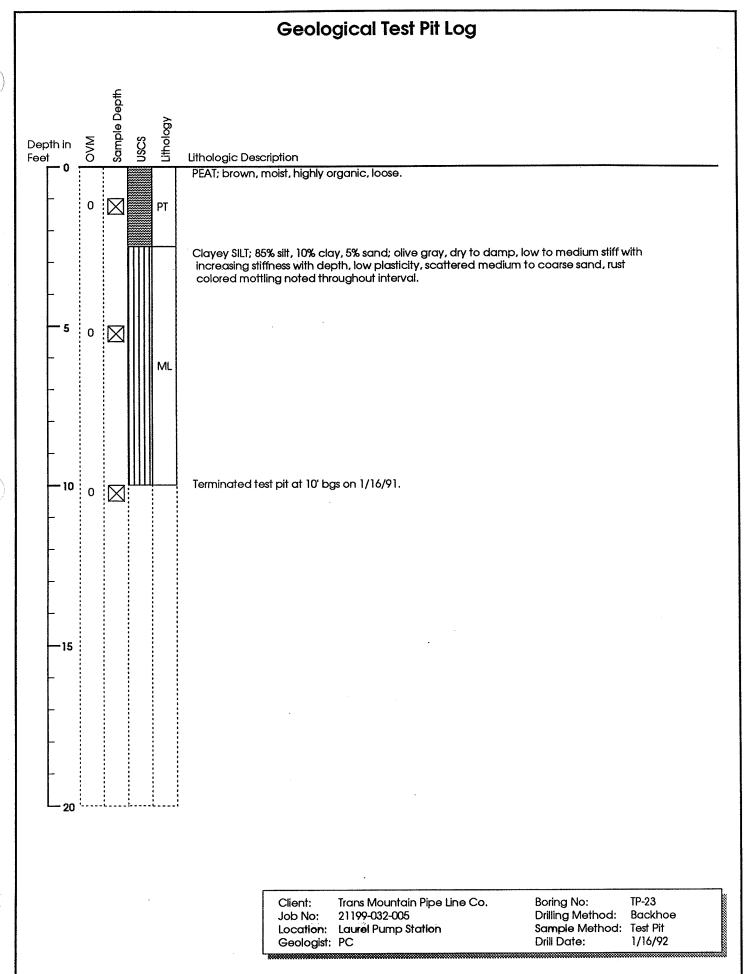


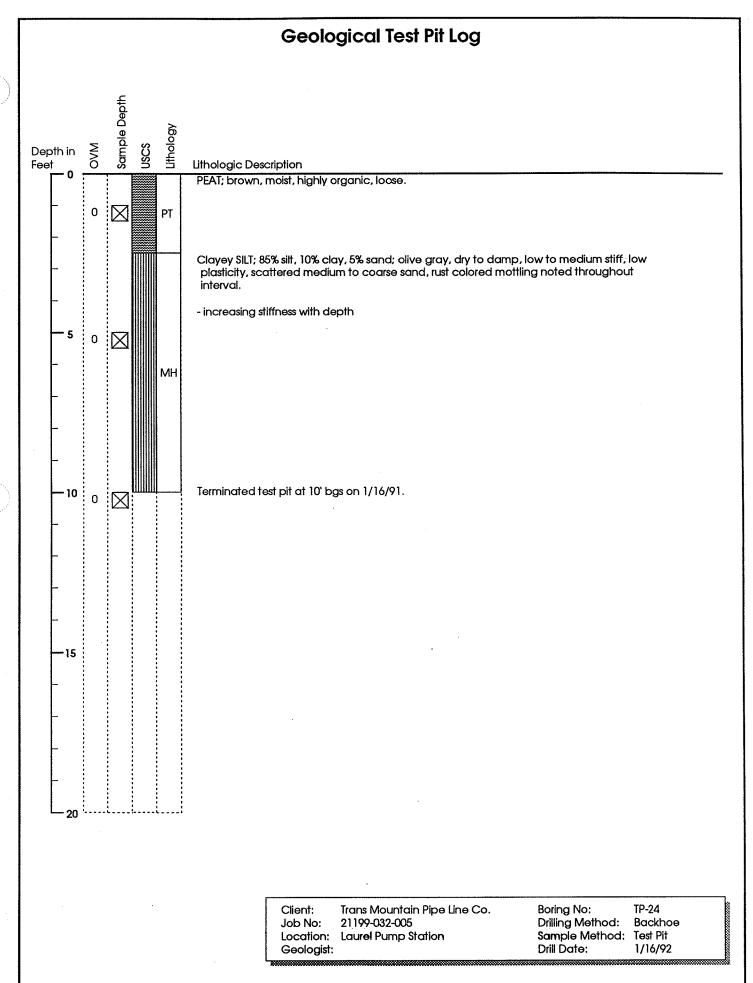


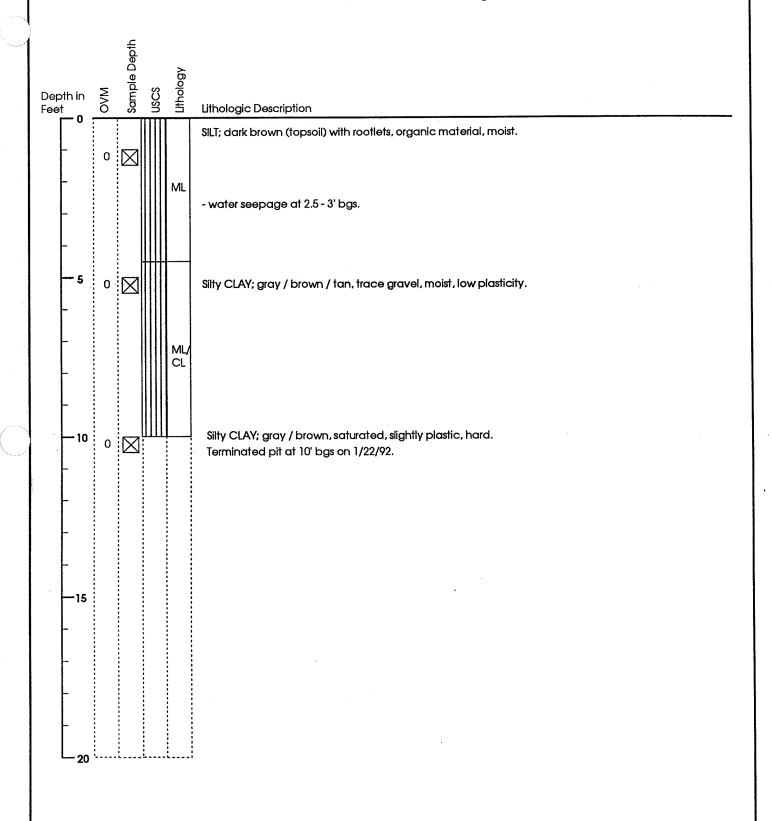












Client:

Trans Mountain Pipe Line Co.

Boring No:

TP5-1

Job No: Location:

21199-032-005 Smith Road, Bellingham, WA


Drilling Method: Sample Method: Test Pit

Backhoe 1/22/92

Geologist: IMW

Drill Date:

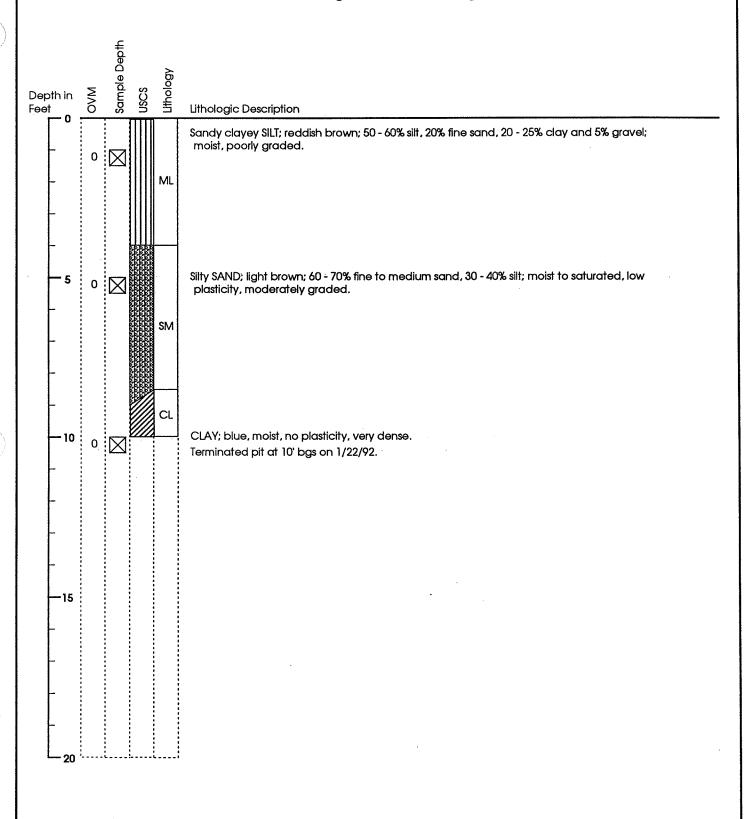
Trans Mountain Pipe Line Co.

21199-032-005

Smith Road, Bellingham, WA

Boring No: Drilling Method:

Drill Date:


TP5-1 Backhoe Sample Method: Test Pit

1/22/92

Location: Geologist: IMW

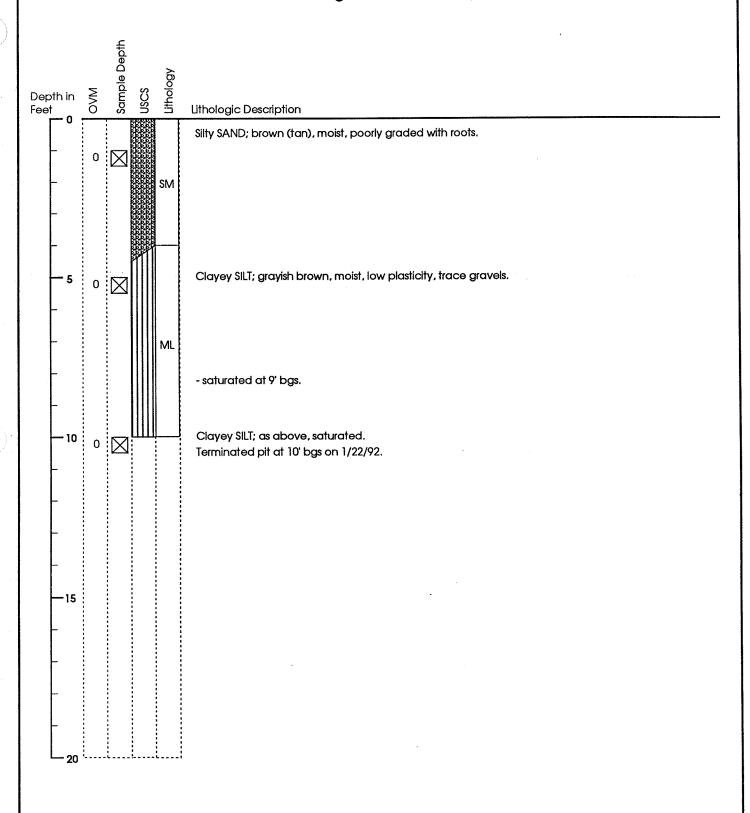
Dames & Moore

Client: Job No: Trans Mountain Pipe Line Co.

21199-032-005

Boring No:

TP5-2


North of Smith Road, Belliingham, WA Location: Drill Date:

Drilling Method: Sample Method: Test Pit

Backhoe 1/22/92

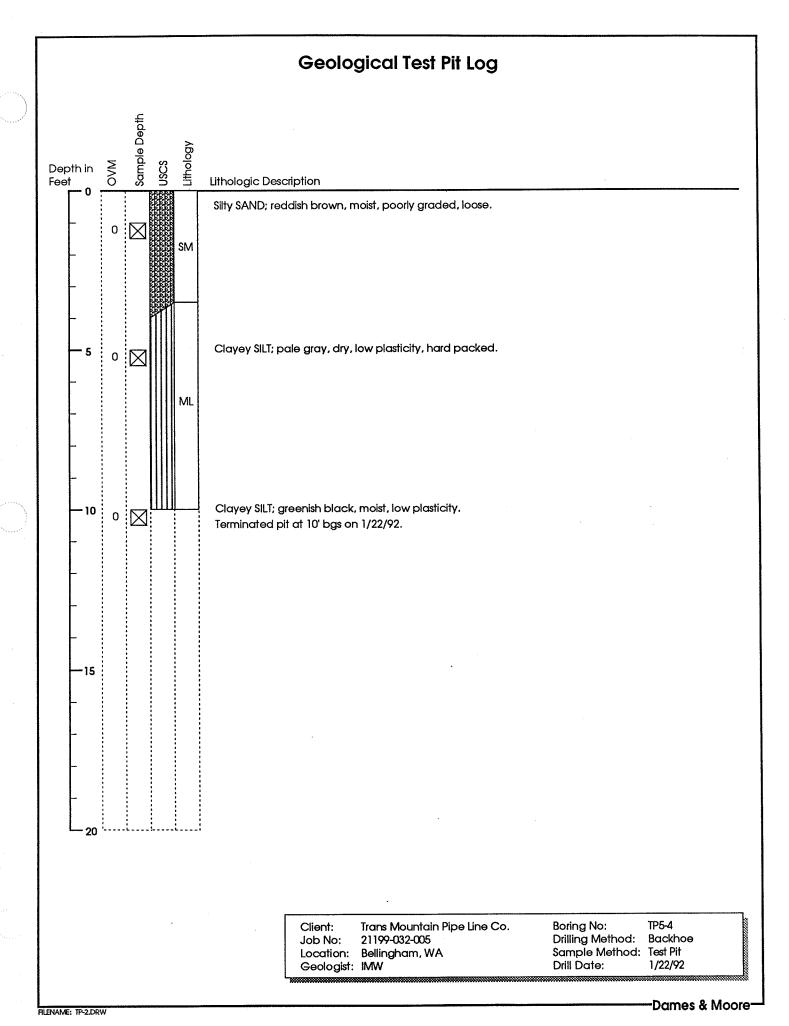
Geologist: IMW

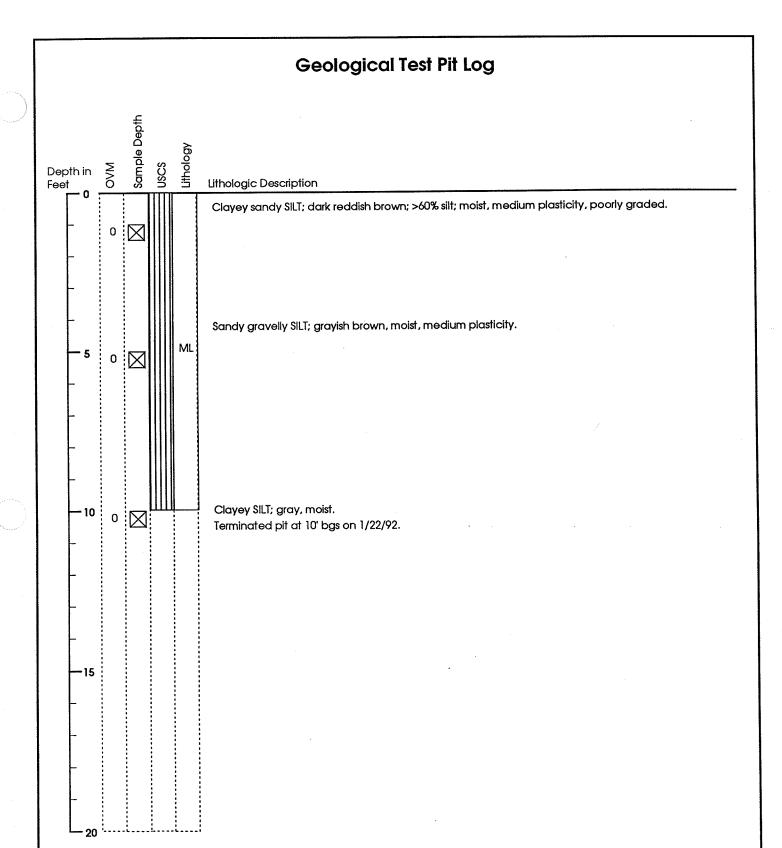
Client: Job No: Trans Mountain Pipe Line Co.

21199-032-005

North of Smith Road, Bellingham, WA

Boring No: Drilling Method:


TP5-3 Backhoe


Location:

Geologist: IMW

Drill Date:

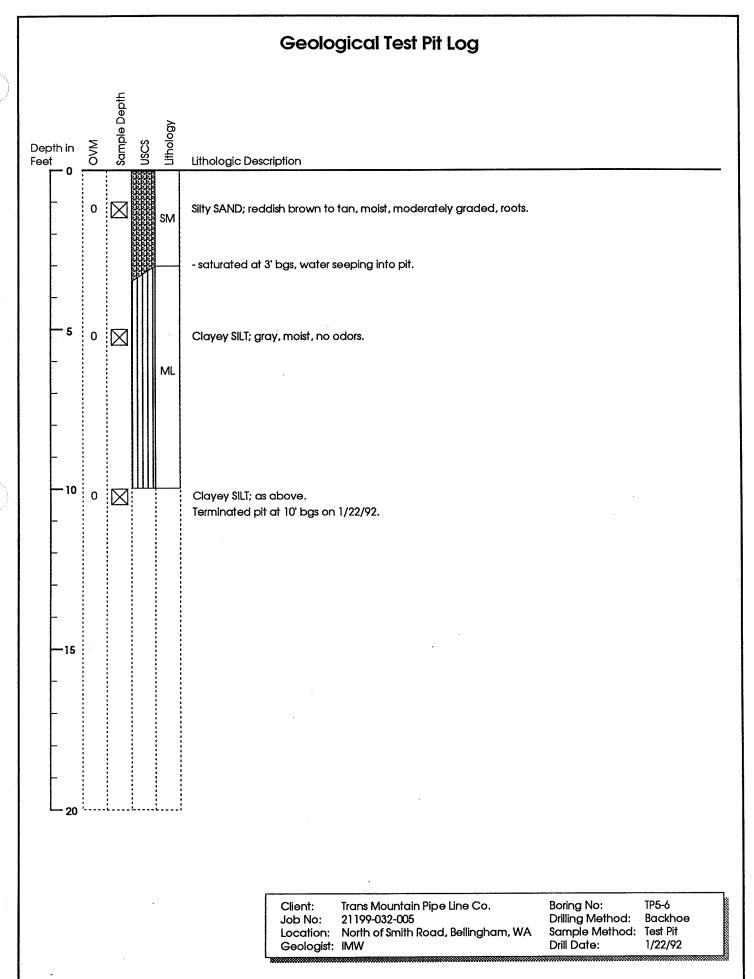
Sample Method: Test Pit 1/22/92

Client:

Trans Mountain Pipe Line Co.

Job No: Location:

21199-032-005


Bellingham, WA Geologist: IMW

Boring No: Drilling Method:

TP5-5 Backhoe

Sample Method: Test Pit Drill Date:

1/22/92

-Dames & Moore

Geological Boring Log Depth in Lithologic Description Feet Gravelly SILT; brown (7.5yr 4/3); 20% gravel, 80% silt; 1 - 2" well rounded gravels; non plastic, well sorted, moist, occasional grass roots and twigs. Gravelly SILT; As above, very dense. 28 Gravelly sandy SILT; brown (7.5yr 4/2); 75% silt, 20% gravel, 10 - 15% sand; 1 - 3" well 12 50/ rounded gravels; well sorted, moist, non plastic, very dense; 2" subangular piece of fresh granite in nose of sampler. 32 36 51 Gravelly sandy SILT; 60% silt, 30% gravel, 10% sand; as above.

Gravelly SILT; light brownish gray (10yr 6/2); 70% silt, 20% gravel, 5 - 10% fine to medium sand; 1 - 3" well rounded to subangular fragments of granite (white); well sorted, non plastic, very dense, saturated due to water added to hole from drillers.

Client: Trans Mountain Pipe Line Co.

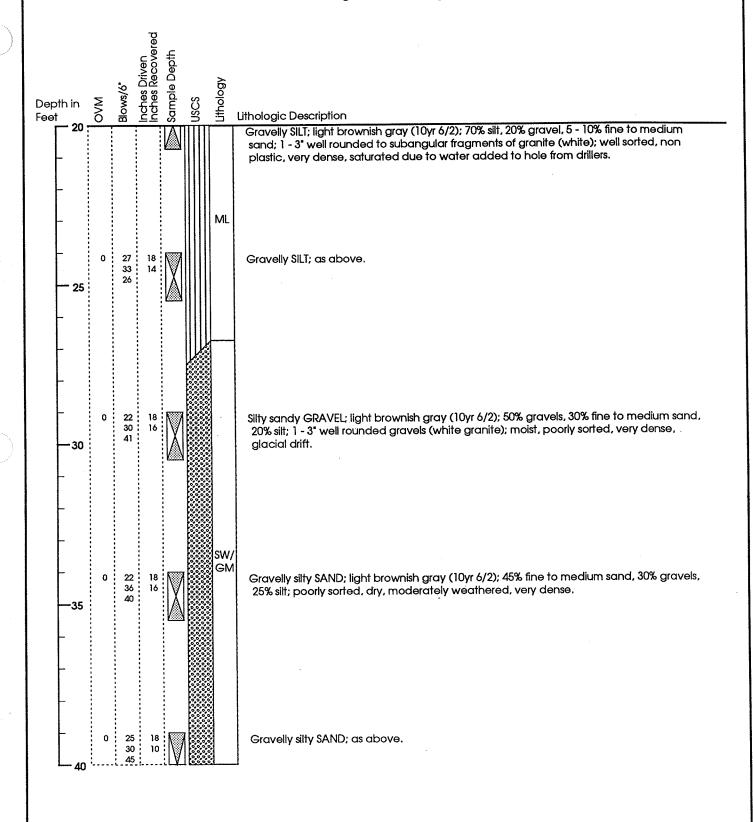
TM-B1 Boring No:

21199-032-005 Job No: 🕛

Drilling Method: 6.25" O.D. Hollow Stem Auger

Location: Bellingham

Sample Method: D&M U-type Split Spoon; 300# hammer with 30" drop


Geologist: MAO

Drill Contractor: Hays Drilling Drill Date:

18 13

11/26/91

Client:

Trans Mountain Pipe Line Co.

Boring No:

TM-B1

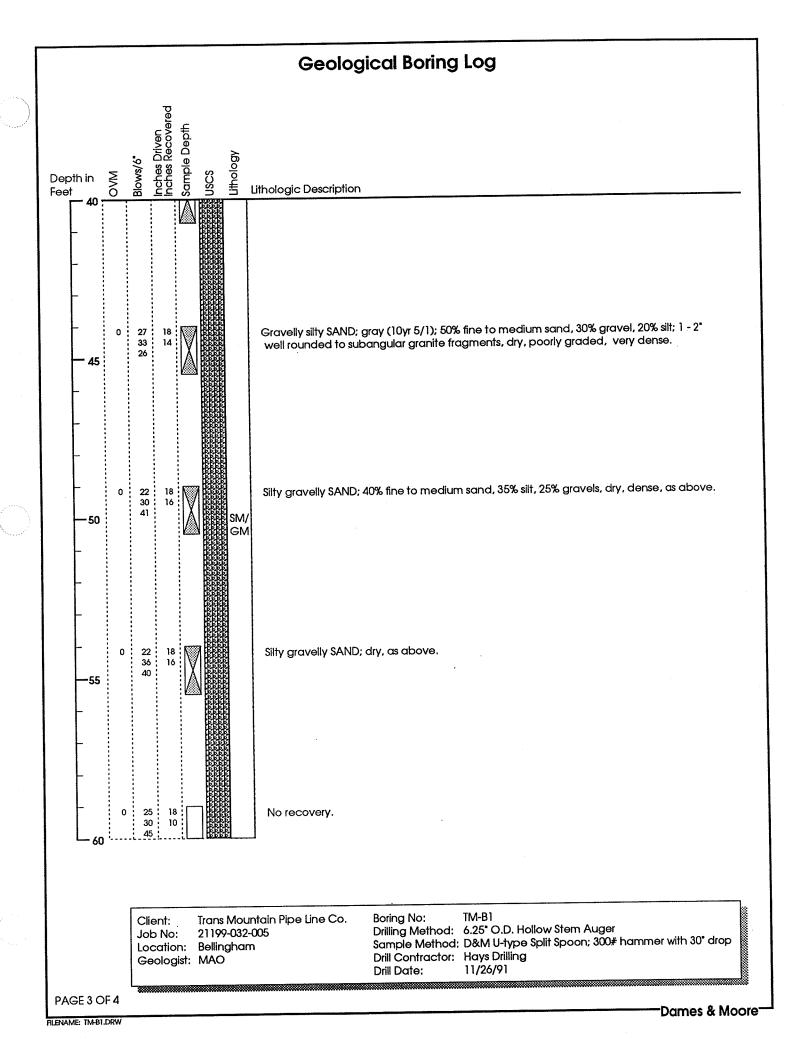
Job No:

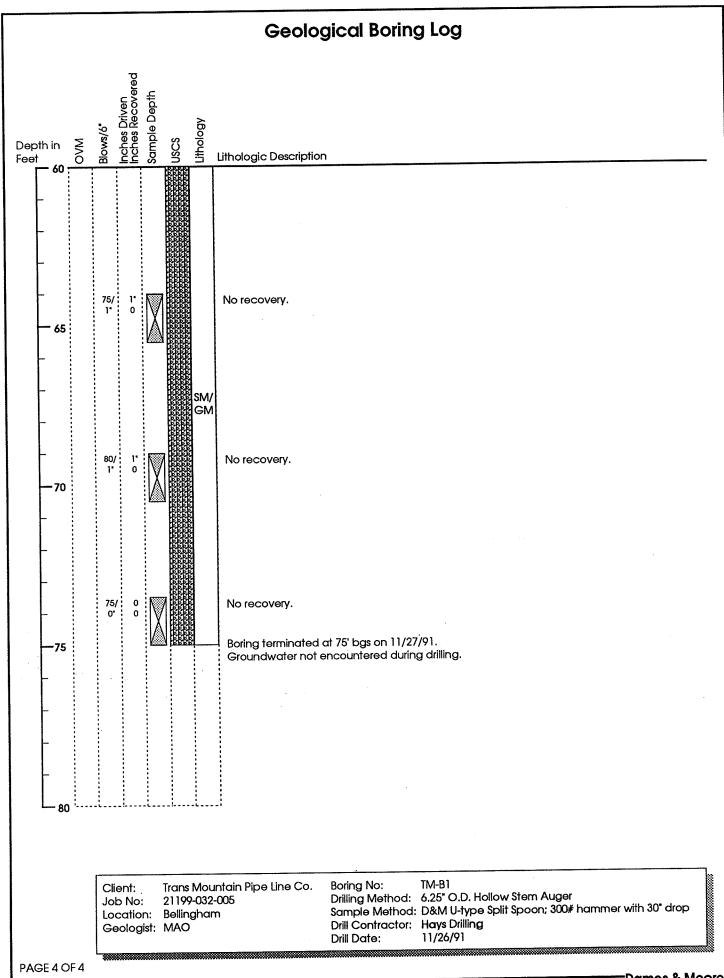
21199-032-005

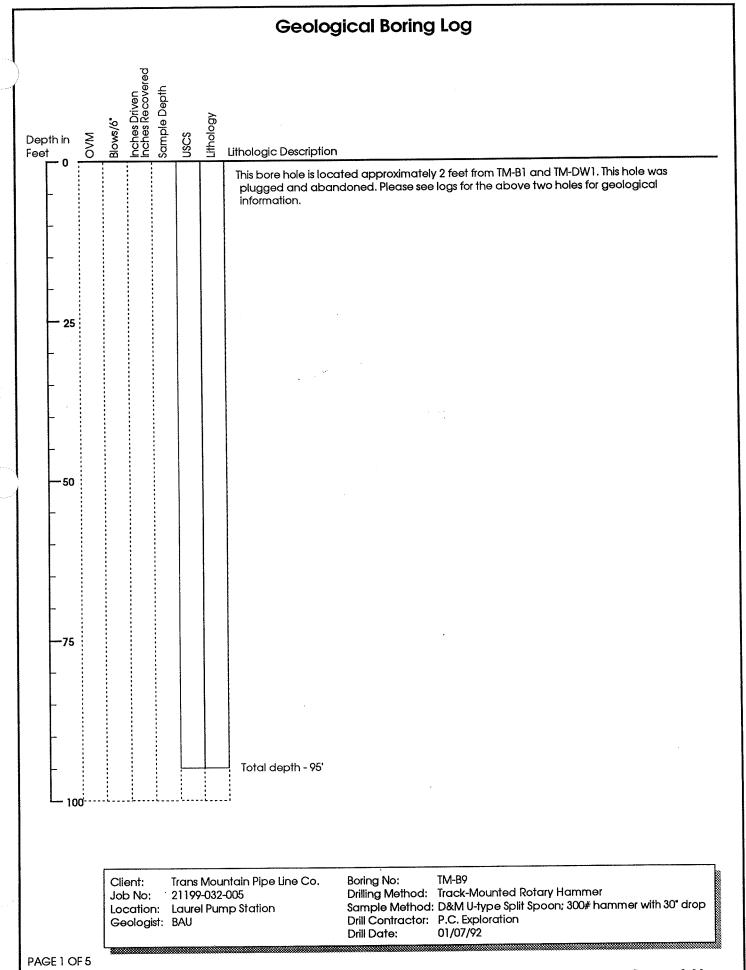
Drilling Method: 6.25" O.D. Hollow Stem Auger

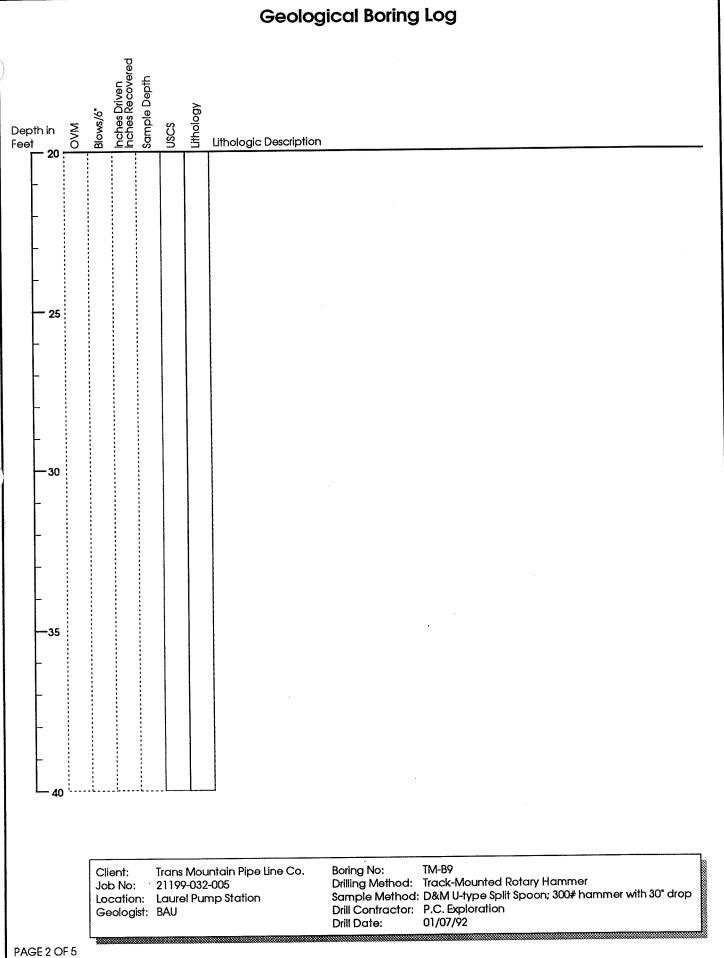
Location: Bellingham

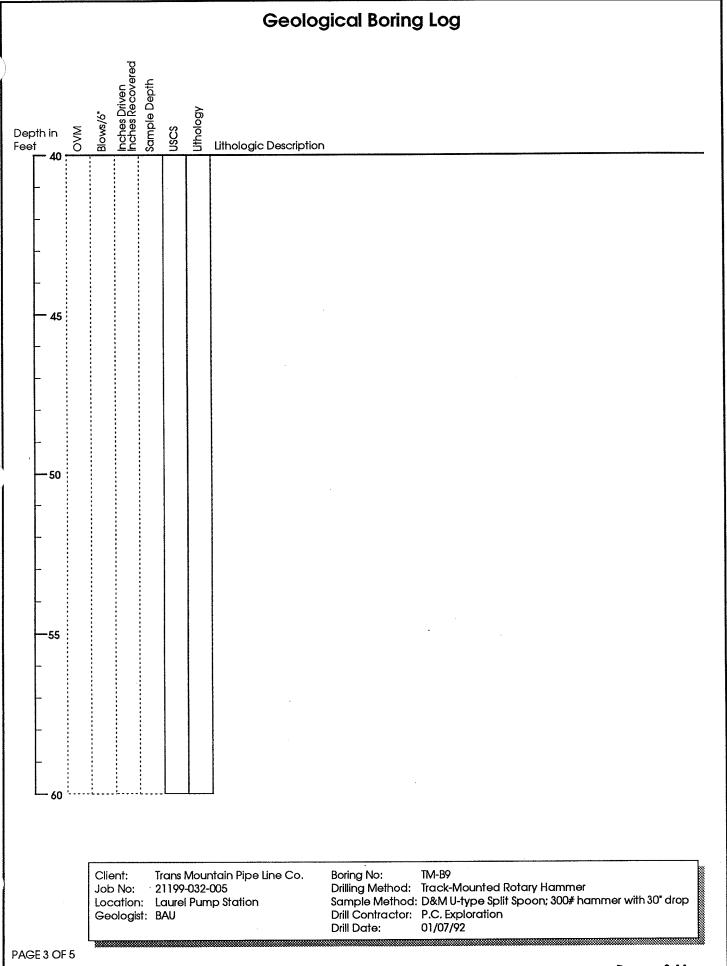
Sample Method: D&M U-type Split Spoon; 300# hammer with 30" drop

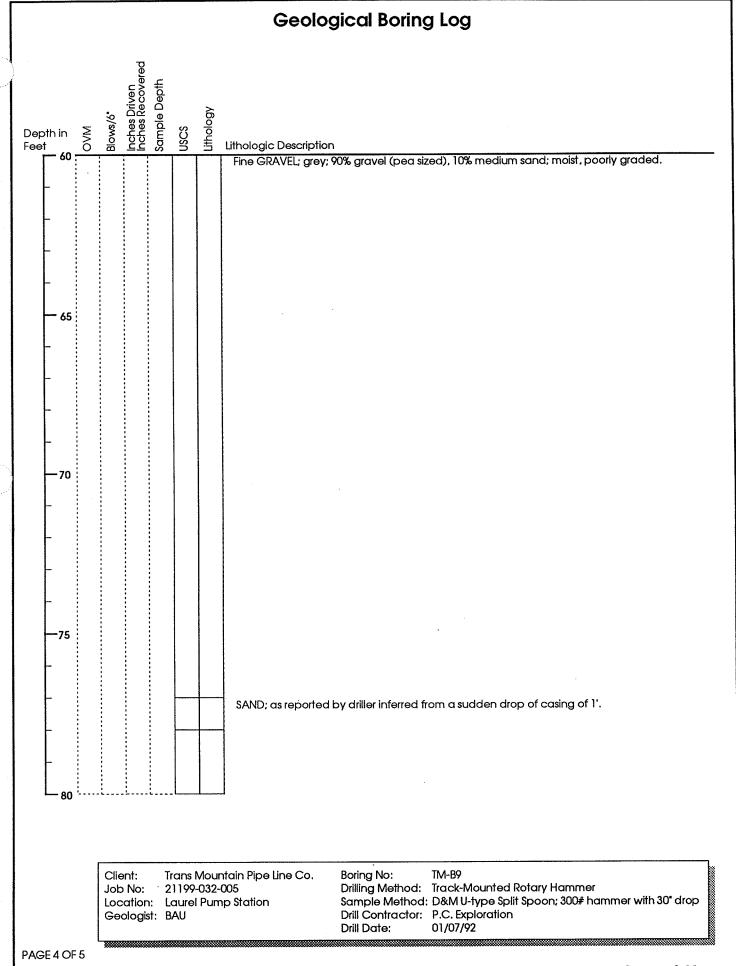

Geologist: MAO

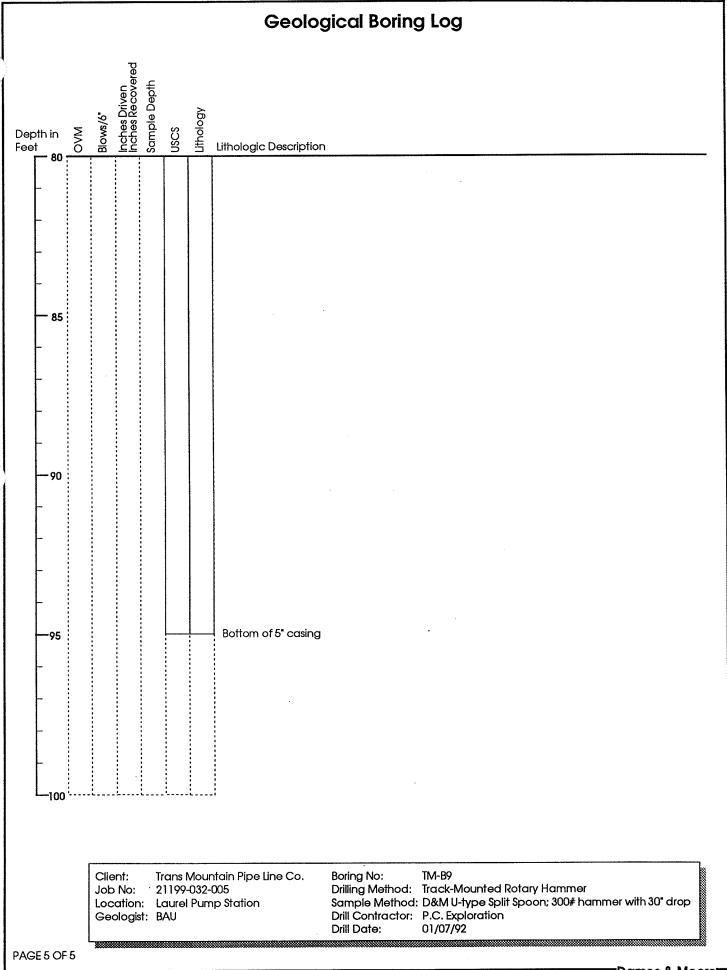

Drill Contractor: Hays Drilling

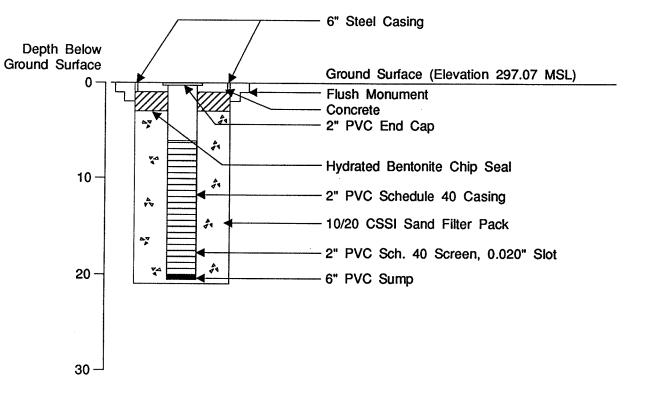

PAGE 2 OF 4

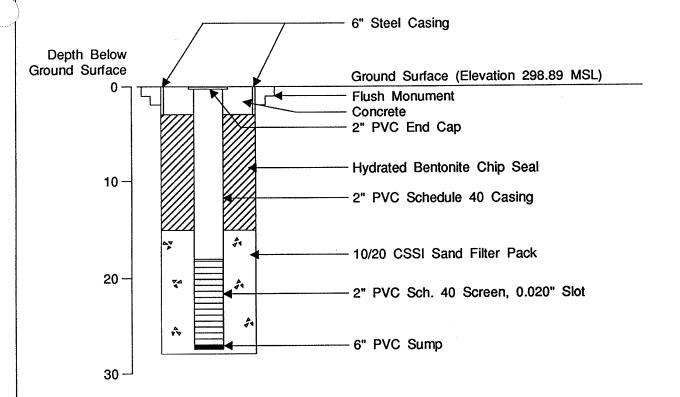

Drill Date:

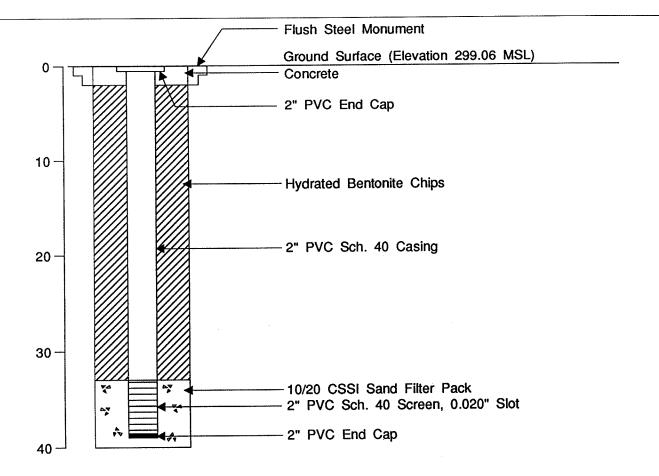

11/26/91

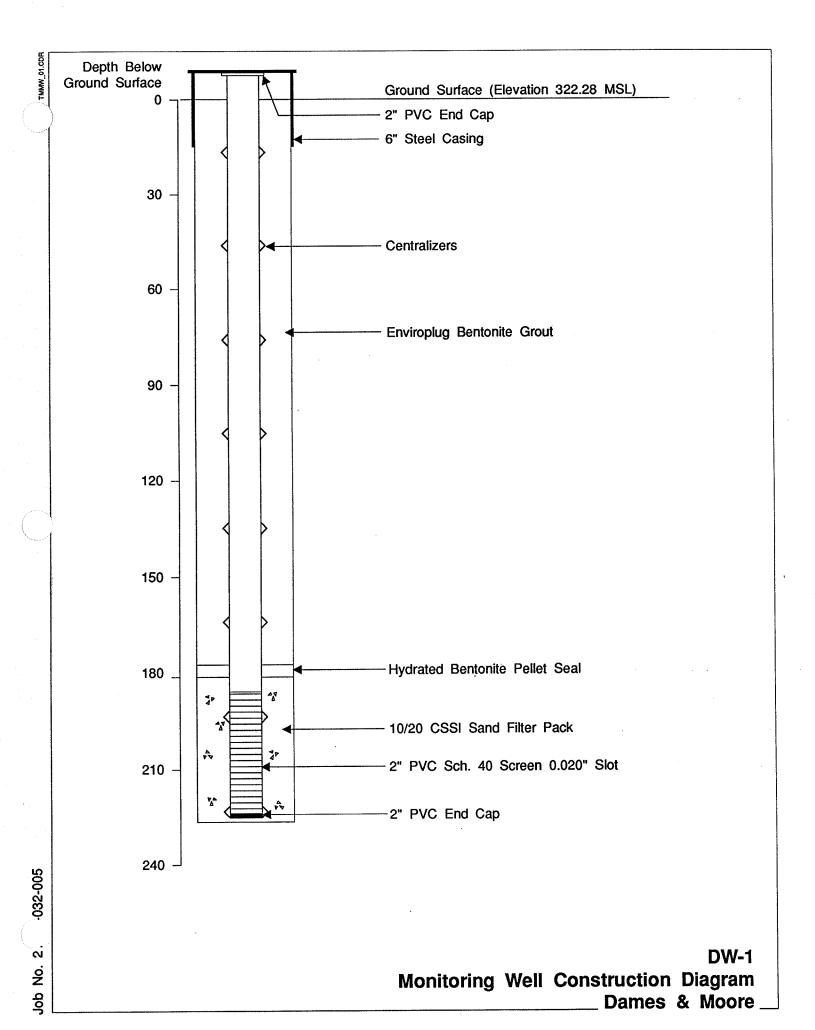







APPENDIX C MONITORING WELL CONSTRUCTION DIAGRAMS AND DECOMMISSIONING RECORDS


Appendix C – Well Construction Diagrams and Decommissioning Reports


Shallow Wells (Well Construction Diagrams only) SW-1 SW-2 SW-3 SW-4 SW-5 Deep Wells (Well Construction Diagrams and Decommissioning Reports) DW-1 DW-2 DW-3 DW-4 DW-5

Job No.

Notice of Intent No. A130238 (SUBMIT ONE WELL REPORT PER WELL INSTALLED) Type of Well Construction/Decommission X Resource Protection Construction Geotechnical Soil Boring X Decommission ORIGINAL INSTALLATION Notice of Intent Number _____ Property Owner ____ Laurel Station 1009 E. Smith Rd. Site Address City Bellingham County Whatcom Consulting Firm URS Corporation Location 1/4 SW 1/4 SW Sec 28 TWN 39N R 3E or Unique Ecology Well ID Tag No. Lat/Long (s,t,r Lat Deg ______ Lat Min/Sec ___ WELL CONSTRUCTION CERTIFICATION: I constructed and/or accept responsibility for still Required) Long Deg ____n/a ___ Long Min/Sec ____n/a construction of this well, and its compliance with all Washington well construction standards Materials used and the information reported above are true to my best knowledge and belief Tax Parcel No. X Driller Trainee Name (Print) Cased or Uncased Diameter 2 Static Level _____ Driller/Trainee Signature Driller/Trainee License No. Work/Decommision Start Date 4/30/2008 If trainee, licesned drillers' Work/Decommision Completed Date 5/2/2008 Signature and License No. Formation Description W08-307 Construction/Design FT CONCRETE SURFACE SEAL **∂** FT grout prout FT BACKFILL REQUIRED INFORMATION (Must get one or both if available) DEPT OF ECOLOGY WELL TAG #: CLIENT WELL ID #: DW-I DEPTH OF BORING _____FT ECY 050-12 (Rec=v 2/01) Page ___ of ____

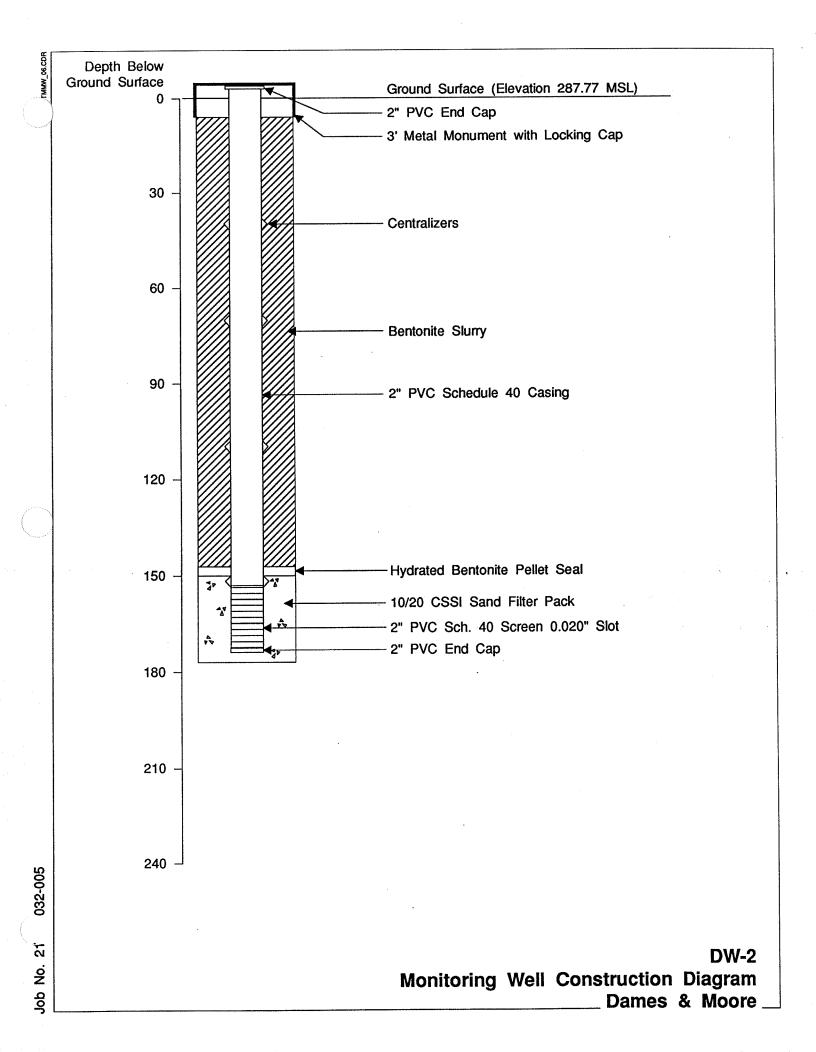
CURRENT

RESOURCE PROTECTION WELL REPORT

TMOPL 21199 SUBJECT SHEET. OF. MONITORING WELL CONSTRUCTION DIABROM DW-1 2 " PUC END CAP Steel Cooing -26 87 87 -66 -146 -Envirophy tablets CSSI sand filter pack 2" prc Sch. 40 sceen 0.020" slot -206

227.20

211 PUC END CAP


CHECKED B

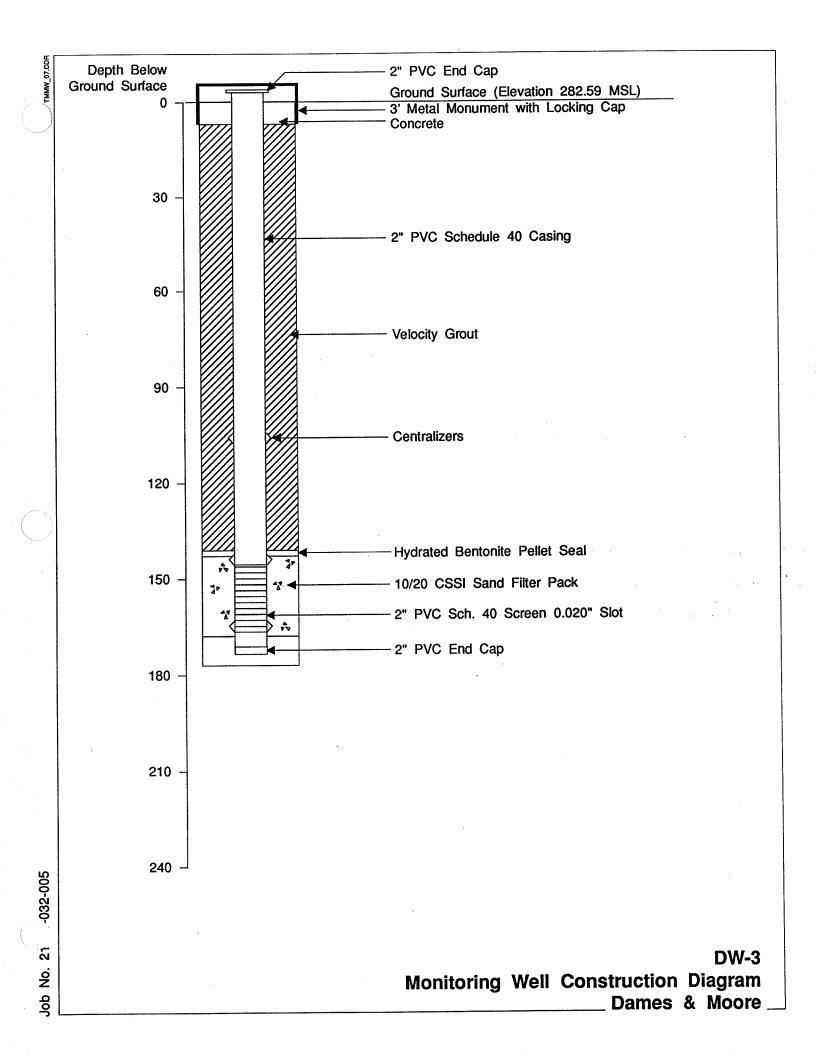
PC ExploRATION, INC.

DIM Superision: DW, JKIN

OM

Completed 3/3/92.

(SUBMIT ONE WELL REPORT PER WELL INSTALLED) Notice of Intent No. A130238 Construction/Decommission Type of Well Construction X Resource Protection X Decommission ORIGINAL INSTALLATION Notice Geotechnical Soil Boring of Intent Number Property Owner Laurel Station 1009 E. Smith Rd. Site Address Consulting Firm URS Corporation Bellingham County Whatcom City EWM $Location \qquad \ \ \, \text{1/4} \ \underline{SW} \ \text{1/4} \ \underline{SW} \ \text{Sec} \ \underline{28} \ \text{TWN} \ \underline{39N} \ \text{R} \ \underline{3E} \ \text{ or} \\$ Unique Ecology Well ID Tag No. WELL CONSTRUCTION CERTIFICATION: I constructed and/or accept responsibility for Lat/Long (s,t,r Lat Deg ______ Lat Min/Sec ____ still Required) Long Deg n/a Long Min/Sec n/a construction of this well, and its compliance with all Washington well construction standards Materials used and the information reported above are true to my best knowledge and belief Tax Parcel No. X Driller Trainee Name (Print) Cased or Uncased Diameter 2'' Static Level Driller/Trainee Signature Driller/Trainee License No. Work/Decommision Start Date 4/30/2008 If trainee, licesned drillers' Work/Decommision Completed Date 5/2/2008 Signature and License No. W08-307 Formation Description Construction/Design CONCRETE SURFACE SEAL FT BACKFILL REQUIRED INFORMATION (Must get one or both if available) **DEPT OF ECOLOGY WELL TAG #:** CLIENT WELL ID #: DW-D DEPTH OF BORING 173 FT


Page of ____

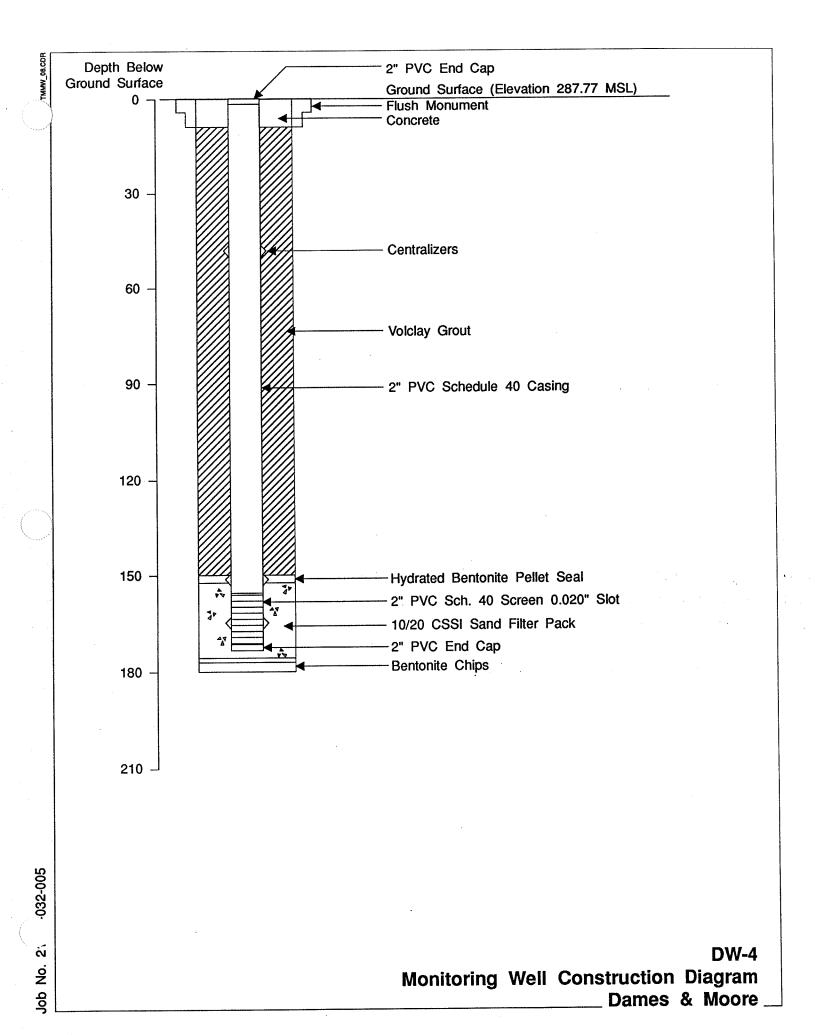
ECY 050-12 (Rec=v 2/01)

CURRENT

RESOURCE PROTECTION WELL REPORT

WELL ID: DW CONSTRUCTION D DAMES & MOORE DRILLER: Hay	ATE: 3/23/12 ELEVATION 292.07 MSL REPRESENTATIVE: / MW: Warns S Drilly U.C. (Brannow)
LOCATION	
	Smith Rd. June Smart DW-2 snamel road
i+3 - []	STICK UP 3 / SURFACE CASING TYPE metal monument
- 0' - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	SURFACE CASING TYPE mital monument SURFACE SEAL TYPE Climent SURFACE SEAL FROM D SURFACE SEAL TO 3' lags.
-40'	
- 70' - >	BORE HOLE DIAMETER ("CASING TYPE PVC. 2" drameter CASING FROM 3' above surface of sound CASING TO 153' bys BOREHOLE SEAL TYPE Buttorite surry SEAL FROM 3' bys SEAL TO 147' bys
- 150' - 153' -	BENTONITE PELLET SEAL FROM 147 byo TO 156 byo SAND PACK TYPE 10/20 lolorado Silica Sand SAND PACK FROM 150 byo SAND PACK TO 174 byo
- 173	SCREEN TYPE 2", 5000" SLAFED WC SCREEN TO 178" by
	TOTAL DEPTH OF CASING 178

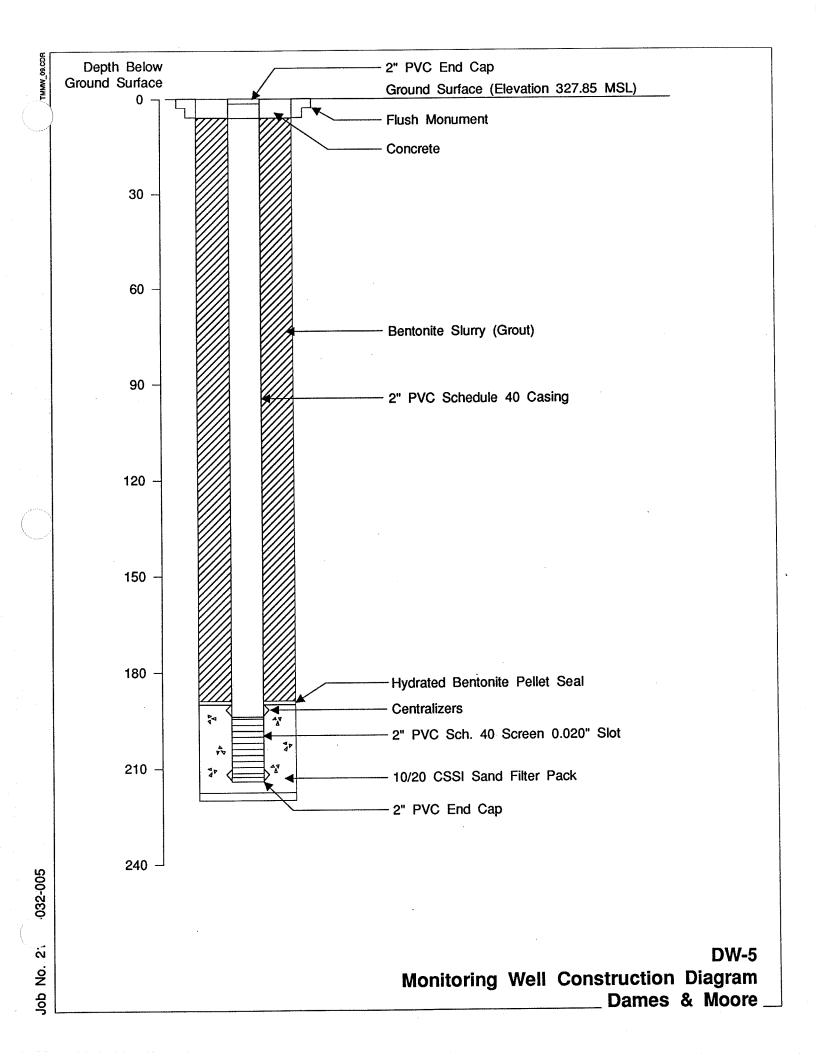
(SUBMIT ONE WELL REPORT PER WELL INSTALLED) Notice of Intent No. A130238 Construction/Decommission Type of Well X Resource Protection Construction Geotechnical Soil Boring X Decommission ORIGINAL INSTALLATION Notice Property Owner Laurel Station of Intent Number 1009 E. Smith Rd. Site Address Consulting Firm URS Corporation Bellingham County Whatcom City Unique Ecology Well ID Location 1/4 SW 1/4 SW Sec 28 TWN 39N R 3E or Tag No. Lat/Long (s,t,r Lat Deg ______ Lat Min/Sec WELL CONSTRUCTION CERTIFICATION: I constructed and/or accept responsibility for still Required) Long Deg <u>n/a</u> Long Min/Sec <u>n/a</u> construction of this well, and its compliance with all Washington well construction standards Materials used and the information reported above are true to my best knowledge and belief Tax Parcel No. X Driller Trainee Name (Print) Cased or Uncased Diameter 3" Static Level Driller/Trainee Signature Driller/Trainee License No. 2761 Work/Decommision Start Date 4/30/2008 If trainee, licesned drillers' Work/Decommision Completed Date 5/2/2008 Signature and License No. W08-307 Formation Description Construction/Design CONCRETE SURFACE SEAL 9rout 0 -BACKFILL REQUIRED INFORMATION (Must get one or both if available) **DEPT OF ECOLOGY WELL TAG#:** CLIENT WELL ID #: DW - 3


Page _____ of ____

ECY 050-12 (Rec=v 2/01)

CURRENT

RESOURCE PROTECTION WELL REPORT


\$. S		4	, ,			
	WELL ID: CONSTRUCT DAMES &	TION MOORE	DAT RE		EZEVATIO	N 282,59 MSL
	DRILLER	, , ,	V / "	rannon Horke)		
	LOCATION	4		, Smith Rd		
				on-3 blications on-2 blications on-2 contractions	***************************************	
+	·3' —			STICK UP 3/ SURFACE CASING TYPE model man w laken co	ment	
j.	7			SURFACE SEAL TYPE CUMENT SURFACE SEAL FROM 0 SURFACE SEAL TO 7'Ks	•	
	•		.			
	106' -			BORE HOLE DIAMETER 6" CASING TYPE PVC 2" dameter CASING FROM + 3' (above pource surf CASING TO -146. 5' bys BOREHOLE SEAL TYPE buttonite gla SEAL FROM 7' bys	w)	
			L L	BOREHOLE SEAL, TYPE <u>butting</u> SEAL FROM 7/60 SEAL TO 141/601	my voic	LAY
	141					•
٠	f	1200	1	BENTONITE PELLET SEAL FROM 4/ / TO 143'		`
'	143		>	SAND PACK TYPE 10/2 Colorado Vilid SAND PACK FROM 143' SAND PACK TO 148	a lard	
				SCREEN TYPE 3 dain; 0.020"	slot Stie	Pve
				SCREEN TO 140.5		
	(65,			·		6120/
	166.5			TOTAL DEPTH OF CASING, 166.5	_	

RESOURCE PROTECTIO		CURR Notice o	ENT f Intent No	o. Al	130238
Construction/Decommission		T	ype of We	11	
Construction		X	Resource	Protection	
X Decommission ORIGINAL INSTALLATION	<i>Totice</i>		Geotechn	ical Soil Boring	
of Intent Number	Property Ow			aurel Station	
	Site Address			E. Smith Rd.	17h a ta a wa
Consulting Firm URS Corpo	ration City	Bellingham	——————	County	Whatcom EWM
Unique Ecology Well ID Tag No.	Location	1/4 SW 1/4	Sec Sec	28 TWN 39N	
WELL CONSTRUCTION CERTIFICATION: I constructed and/or	ccept responsibility for Lat/Long (s,t,	r Lat Deg	n/a	Lat Min/Sec	
construction of this well, and its compliance with all Washington well	onstruction standards still Required) Long Deg	n/a	Long Min/Se	ec <u>n/a</u>
Materials used and the information reported above are true to my best	cnowledge and belief Tax Parcel No).		· <u>************************************</u>	
X Driller Trainee Name (Print) Andy Fla Driller/Trainee Signature x	Cased or Uncas	sed Diameter	<i>3''</i>	Sta	atic Level
Driller/Trainee License No. 276		nision Start Date		4/30/20	08
If trainee, licesned drillers'				,	
Signature and License No.	Work/Decomr	nision Completed	Date	5/2/200)8
Construction/Design	W08-307		F	ormation Descri	ption
	ONCRETE SURFACE SEAI	FT	0	-	FT
				7	FT
	DEPT OF ECOLOGY WELL TO SELIENT WELL ID #:	·			_
Scale 1" =	EPTH OF BORING 175 . S	FT of		ECY US	0-12 (Rec. v 2.01)

Scale 1" = _____

	WELL I CONSTR	D: OUS	TION MOOR	DA'	TE: 15/3/10/2 MALTAY
N.	DRILLE	R:	<u>HF</u>	YE	EPRESENTATIVE: 13. 1972 USL
· · · · }	LOCATI	ON	ſ		5 mille Ra
					Drue 25'00 DW4
•				<i></i>	STICK UP Flush SURFACE CASING TYPE Flush Mount
					SURFACE SEAL TYPE CONCUL SURFACE SEAL FROM SURFACE SEAL TO
	<	\\\\-		\nearrow	BORE HOLE DIAMETER 6 CASING TYPE PO/C 2" CASING FROM Sweeter CASING TO 155:5"
-	·•				BOREHOLE SEAL TYPE VOLCLAY SEAL FROM FEET ISO'
					BENTONITE PELLET SEAL FROM 150' TO 152-5
r					SAND PACK TYPE 15-25 10-20 Colorado Silica Sand Sand PACK FROM 152.5 SAND PACK TO 177
					SCREEN TYPE 2" 20 SLOT PUC SCREEN FROM 155.5" SCREEN TO 175.5
	<				TOTAL DEPTH OF CASING 175.5 TOTAL DEPTH HOLE 180'
	•	L		<u> </u>	TOTAL DEPTH OF CASING 175.5 TOTAL DEPTH HOLE 180'

A130238 Notice of Intent No. (SUBMIT ONE WELL REPORT PER WELL INSTALLED) Type of Well Construction/Decommission X Resource Protection Construction Geotechnical Soil Boring X Decommission ORIGINAL INSTALLATION Notice of Intent Number _____ Laurel Station Property Owner 1009 E. Smith Rd. Site Address Bellingham County Whatcom City Consulting Firm URS Corporation Location 1/4 SW 1/4 SW Sec 28 TWN 39N R 3E or Unique Ecology Well ID Tag No. Lat/Long (s,t,r Lat Deg ____n/a ___ Lat Min/Sec ____ n/a WELL CONSTRUCTION CERTIFICATION: I constructed and/or accept responsibility for still Required) Long Deg ____n/a Long Min/Sec ____n/a construction of this well, and its compliance with all Washington well construction standards Materials used and the information reported above are true to my best knowledge and belief Tax Parcel No. X Driller Trainee Name (Print) Cased or Uncased Diameter 2' Static Level_____ Driller/Trainee Signature x Driller/Trainee License No. Work/Decommision Start Date 4/30/2008 If trainee, licesned drillers' Work/Decommision Completed Date 5/2/2008 Signature and License No. Formation Description W08-307 Construction/Design CONCRETE SURFACE SEAL BACKFILL grout REQUIRED INFORMATION (Must get one or both if available) **DEPT OF ECOLOGY WELL TAG#:** CLIENT WELL ID #: DW-5 DEPTH OF BORING 214 FT ECY 050-12 (Rec=v 2 '01) Page _____ of ____

CURRENT

RESOURCE PROTECTION WELL REPORT

LAUREL PUMP STATION WELL CONSTRUCTION REPORT

WELL ID: DW	-5
CONSTRUCTION	DATE - 4/2 \$ 3/92
DAMES & MOOR	
DRILLER: 14	REPRESENTATIVE: IMWI Wams WAS Dri Winc. 327.85 MSC
D1(11)1111(1	
LOCATION	(Brannon Hopke)
LOCATION	plantic- covered soil Sockpile & Fault
	plastic - Preme
	The second
	Control of the contro
,	gott to the state
	and the first th
	State
	251 474
	DW-5
	STICK UP (Wen mount
	SURFACE CASING TYPE <u>metal</u> furl mont
	SURFACE CASING TIPE TOOLS TOOLS
	–
	SURFACE SEAL TYPE
	SURFACE SEAL FROM
1 1 1	SURFACE SEAL TO
.	·
	,
1 1	, 11
	BORE HOLE DIAMETER 6"
	CASING TYPE PVC, 2" diameter
	CASING FROM O
	CASING TO 194
	BOREHOLE SEAL TYPE benkente surry (ground) Myo-Ben SEAL FROM TWITTE THE SEAL TO 199
	BOREHOLE SEAL TYPE WILL SUNTY
	SEAL FROM
	SEAL TO 199
.	
189	DELIGHT DELIGHT CEAT
	BENTONITE PELLET SEAL FROM 191
	TO <u>189.6</u>
a1 -	The same of California Color
P(1 -)	SAND PACK TYPE 10100 COLORADO SILICA SAL
KI I	> SAND PACK FROM 191
194 -	SAND PACK TO 216
117	SAND FACE TO
	· ·
	11 57/2
	All I a Amo deled the
	SCREEN TYPE 2" diameter, 0.020" glotted PVC SCREWN FROM 194
	SCRENN FROM 194
	SCREEN TO \$14
	214-2"
, [4-	TOTAL DEPTH OF CASING 114
214 -	TOTAL DEPTH OF CASING // I
220-	TOTAL DEPTH HOLE 120'

APPENDIX D LABORATORY ANALYTICAL REPORTS

APPENDIX D – LAB REPORTS

Lab	Work Order	Sample Dates
Analytical Resources Inc.	9553	11/21 - 12/2/1991
Analytical Resources Inc.	9624	12/11/1991
Analytical Resources Inc.	9626	12/5/1991
Analytical Resources Inc.	9641 II	12/11 - 12/13/1991
Analytical Resources Inc.	9671	December 1991
Analytical Resources Inc.	9698	12/17/1991
Analytical Resources Inc.	9714	12/24/1991
Analytical Resources Inc.	9727	1/2/1992
Analytical Resources Inc.	9766	1/6 - 1/8/1992
Analytical Resources Inc.	9809	1/14 - 1/15/1992
Analytical Resources Inc.	9849	1/15 - 1/18/1992
Analytical Resources Inc.	9864	1/17 - 1/21/1992
Analytical Resources Inc.	9880	1/24/1992
Analytical Resources Inc.	9884	1/27/1992
Analytical Resources Inc.	9903	1/29/1992
Analytical Resources Inc.	9954	2/6/1992
Analytical Resources Inc.	9991	2/13/1992
Analytical Resources Inc.	A027	2/17 – 2/21/1992
Analytical Resources Inc.	A068	2/24 – 2/26/1992
Analytical Resources Inc.	A089	2/27/1992
Analytical Resources Inc.	A126	3/3/1992
Analytical Resources Inc.	A134	2/25/1992
Analytical Resources Inc.	A165	3/10/1992
Analytical Resources Inc.	A182	3/11 – 3/12/1992
Analytical Resources Inc.	A210	3/13/1992
Analytical Resources Inc.	A222	3/14 – 3/16/1992
Analytical Resources Inc.	A247	3/17 – 3/18/1992
Analytical Resources Inc.	A285	3/19 - 3/20/1992
Analytical Resources Inc.	A326	3/23/1992
Analytical Resources Inc.	A383	4/1/1992
Analytical Resources Inc.	A422	4/8/1992
Analytical Resources Inc.	A501, A523	4/16 – 4/17/1992
Analytical Resources Inc.	C003	10/16/1992
Analytical Resources Inc.	C332	11/25/1992
Analytical Resources Inc.	C360	12/1/1992
Analytical Resources Inc.	E354	7/7 – 7/8/1993
Analytical Resources Inc.	E367 – E367 IV	7/9/1993
Analytical Resources Inc.	ML21	3/3/2008
Analytical Resources Inc. Analytical Resources Inc.	MN46	3/13/2008
Analytical Resources Inc.	MN48	3/13/2008
•	MO08	3/19/2008
Analytical Resources Inc.		
Analytical Resources Inc.	KI11, KG83	11/7, 12/7 - 12/8/200

APPENDIX D – LAB REPORTS (continued)

Lab	Work Order	Sample Dates
NCA Labs	B0J0800	10/31/2000
NCA Labs	B0K0103	11/2/2000
NCA Labs	B0K0106	11/3/2000
NCA Labs	B0K0272	11/9/2000
NCA Labs	B0K0285	11/6/2000
NCA Labs	B0K0337	11/13/2000
NCA Labs	B0K0362	11/14/2000
NCA Labs	B0K0455	11/16/2000
NCA Labs	B0K0591	11/22/2000
Sound Analytical Services	15544	1/17/1991
Sound Analytical Services	15573	1/19/1991
Sound Analytical Services	15645	1/21 - 1/22/1991
Sound Analytical Services	15661	1/23/1991
Sound Analytical Services	15829	1/22/1991
Sound Analytical Services	15834	2/1/1991
Sound Analytical Services	15861	2/4/1991
Sound Analytical Services	15937	2/8/1991
Sound Analytical Services	15964	2/11/1991
Sound Analytical Services	16003	2/13/1991
Sound Analytical Services	16045	2/14 - 2/15/1991
Sound Analytical Services	16046	2/15/1991
Sound Analytical Services	16062	2/18/1991
Sound Analytical Services	16063	2/18/1991
Sound Analytical Services	16127	2/19 - 2/20/1991
Sound Analytical Services	16178	2/22/1991
Sound Analytical Services	16218	2/25/1991
Sound Analytical Services	16308	3/1/1991
Sound Analytical Services	16329	3/4/1991
Sound Analytical Services	16469	3/8/1991
Sound Analytical Services	16483	3/12/1991
Sound Analytical Services	16561	3/15/1991
Sound Analytical Services	16653	3/20/1991
Sound Analytical Services	16695	3/22/1991
Sound Analytical Services	16723	3/25/1991
Sound Analytical Services	16807	3/28 - 3/29/1991
Sound Analytical Services	16854	3/28/1991
Sound Analytical Services	16941	4/8/1991
Sound Analytical Services	17001-1	4/8/1991
Sound Analytical Services	17001-2	4/8/1991
Sound Analytical Services	17001-3	4/8/1991
Sound Analytical Services	17001-4	4/8/1991
Sound Analytical Services	17001-5	4/8/1991

APPENDIX D – LAB REPORTS (continued)

Lab	Work Order	Sample Dates
Sound Analytical Services	17001-6	4/8/1991
Sound Analytical Services	17001-6D	4/8/1991
Sound Analytical Services	17001-MB	4/8/1991
Sound Analytical Services	17025	4/12/1991
Sound Analytical Services	17151-1	4/17/1991
Sound Analytical Services	17151-2	4/17/1991
Sound Analytical Services	17151-3	4/17/1991
Sound Analytical Services	17151-4	4/17/1991
Sound Analytical Services	17151-5	4/17/1991
Sound Analytical Services	17151-MB	4/17/1991
Sound Analytical Services	17277	4/24/1991

19 December 1991

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Maltby Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: #21199-032 Trans Mtn. ARI Job #9553 DAMES & MOORE SEATTLE ULC 2 0 1991

Dear David:

Please find enclosed the results and the original chain-of-custody record for the above referenced project. Samples were received intact on 12/4/91, and analyses proceeded without incident. These results have been faxed to you and/or Jason Ai as they became available.

If you have any questions or need further information, please feel free to call any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

e Levemoel

Kate Stegemoeller Project Coordinator

KAS/ks

Enclosures

cc: file#9553

CHAIN-OF-CUSTODY RECORD

PINK COPY - Project Manager

2 . 4

Note Number 9 P Of Containers Total Number SHEET FIELD NOTES: 3 days turn avound time for 418.1 WTPH-HCID -> need Diesel and heavy times WHITE COPY - Original (Accompanies Samples) YELLOW COPY - Collector PINK (DATE OF COLLECTION. other turnaroundtine 1ct days. Sate X 21199-032-005 Lavel Pump Irams Mountain COLLECTOR TREVINICARU LABORATORY NOTES: PROJECT_ LOCATION_ JOB NO.: HECEIVED BY: (Signature) RECEIVED BY: (Signature) RECEIVED BY: (Signature) SIGIIDAND 500 Market Place Tower 2025 First Avenue Seattle, Washington 98121 PHONE: DAMES & MOORE Container Type a lass lay = = = ラ = = = DAŢE/TIME DATE/TIME 16/1/2 LABORATORY CONTACT:

LABORATORY CONTACT:

LABORATORY CONTACT:

LABORATORY CONTACT: Sample Type 1801 10:45 10,20 15:10 15:50 14:55 エス 9:30 13:20 11:35 5.01 14:00 Number | Depth | Time RAM HOUSHED BY: (Signature) RELINQUISHED BY: (Signature) RELINQUISHED BY: (Signature) ANALYTICAL LABORATORY: <u>7</u> 10 MBK- 55" <u>1</u>0 781-2× 101 A -0 rP13K2 1715-3X M-B2 KABX+ TP10-3 TB-2x 185.4x TP6-3x 18-3x Sample Number M-B1 6 5 126 19-7 6-2 P13 P-8 P10 101

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

TOTAL PETROLEUM HYDROCARBONS by IR Scan **Modified EPA Method 418.1**

Matrix: Soil

Project: 21199-032-005

Trans Mountain

QC Report No: 9553 -

Dames & Moore

VTSR: 12/04/91

Data Release Authorized _

Data Prepared: 12/12/91 -MAC:PJW

Date Prepared: 12/11/91

Date of Analysis: 12/12/91

Dilution

Lab ID	Client Sample ID	Factor	TPH (ppm)
9553 MB	METHOD BLANK	1	10 U
9553 B	TP6-3X 10'	1	80
9553 B DUP	TP6-3X 10'	1	78
9553 B TRIP	TP6-3X 10'	1	79
9553 D	TP8-2X 6'	1	140
9553 E	TP9-3X 7'	10	1000

Values reported in ppm (mg/Kg) based on wet weight of sample

Indicates compound was analyzed for but not detected at the given detection limit.

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

TOTAL PETROLEUM HYDROCARBONS by IR Scan Modified EPA Method 418.1

Matrix: Soil

Project: 21199-032-005

Trans Mountain

QC Report No: 9553 -

Dames & Moore

VTSR: 12/04/91

Data Release Authorized //mm

Data Prepared: 12/13/91 -MAC:PJW

Date Prepared: 12/12/91 Date of Analysis: 12/13/91

Dilution **Factor** TPH (ppm) **Client Sample ID** Lab ID 10 U METHOD BLANK 9553 MB TP5-4X 14' 10 U 9553 A 38 TP7-5X 15' 1 9553 C 5 1700 EX-5X 9553 F 1 10 U TP10-3X 15' 9553 G 10 U TP11-2X 10' 1 9553 H 10 U 1 TP13X-2 10' 9553 I 10 U 1 TP15-3X 15' 9553 J 1 10 U TM-B1X 55' 9553 K 21 1 9553 L TM-B2X 5.0' TM-B2X 5.0' 1 17 9553 L RE* 11 TM-B2X 5.0' 1 9553 L DUP TM-B2X 5.0' 1 11 9553 L TRIP

Values reported in ppm (mg/Kg) based on wet weight of sample

- U Indicates compound was analyzed for but not detected at the given detection limit.
- * Reran with additional silica gel.

Analytical

Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490 (206) 621-7523 (FAX)

ORGANICS ANALYSIS DATA SHEET - Method 602/8020 GC/PID FOR BETX

Matrix: Soils/Sediments

Level:

Low

21199-032-005 QC Report No: 9553 Dames & Mooore

Project No: Trans Mountain

Date Received: 12/04/91

K

Data Release Authorized: ______ Report prepared: 12/13/91-MAC: RPR

	Sample No.	Meth Blank	TP6 - 3X - 10'	TP6 - 3X - 10'	TP8 - 2X - 6'	TP9 - 3X - 7'
	ARI ID	MB 1210	9553 B	9553 BDup	9553 D	9553 E
	Date Analyzed		12/11/91	12/11/91	12/11/91	12/11/91
	Amt Analyzed		0.091 gm	0.091 gm	0.096 gm	0.082 gm
CAS Number	Units	μg/Kg	µg/Кg	µg/Кg	µg/Кg	μg/Kg
71-43-2 Benzene		50 U	55 U	55 U	52 U	61 U
108-88-3 Toluene		50 U	55 U	55 U	52 U	70
	100-41-4 Ethylbenzene 1330-20-7 Total Xylenes		55 U	55 U	52 U	61 U
			110 U	1100	100 U	510
1000-20-7 TOTAL X 101	Trifluorotoluene	96.5%	104%	100%	102%	106%
	Bromobenzene	0.4.00/	103%	98.7%	107%	216%*

If the result is a value greater than or Value equal to the detection limit, report value.

Indicates compound was analyzed for U but not detected at the given detection limit.

Analysis not required. NR

Indicates surrogate recovery was enhanced due to matrix interference / coelution.

This flag is used when the analyte is В found in the blank as well as a sample. Indicates possible/probable blank contamination.

> This flag is used when quantitated value falls above the limit of the calibration curve and dilution should be run.

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

QC Report No: 9553 Dames & Moore

Project: Trans Mountain

21199-032-005

VTSR: 12/04/91

TOTAL GASOLINE RANGE HYDROCARBONS WA TPHG Method by GC/FID

Matrix: Soil

Data Release Authorized Sans B. Jath

Data Prepared: 12/13/91 - MAC: RPR

Date Extracted: 12/10/91 Date Analyzed: 12/11/91

Lai	b ID	Client Sample ID	Dilution Factor	Gasoline Range Hydrocarbons †	Gas ID *	Surrogate A	Surrogate B
9553	MB	Method Blank	NA	5.0 U	No	85.9%	80.2%
9553	В	TP6 - 3X - 10'	NA	12	Yes	96.6%	97.2%
9553	B Dup	TP6 - 3X - 10'	NA	12	Yes	93.3%	95.4%
9553	D	TP8 - 2X - 6'	NA	38	Yes	93.5%	115%
9553	E	TP9 - 3X - 7'	NA	180	Yes	99.5%	372%**

Surrogate A = Trifluorotoluene Surrogate B = Bromobenzene

Values reported in ppm (mg/kg).

- Indicates compound was analyzed for but not detected at the given detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- In the opinion of the analyst, was there a pattern match for gasoline.
- Value based on total peaks in the range from Toluene to Dodecane.
- * * Coeluted with another compound.

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

TOTAL PETROLEUM HYDROCARBONS WA HCID Method by GC/FID

QC Report No: 9553-Dames & Moore

Project: Trans Mountain

21199 - 032 - 005

VTSR: 12/04/91

Matrix: Soil

Data Release Authorized

Data Prepared: 12/17/91 - MAC: RPR

Date Extracted: 12/11/91

Dates Analyzed: 12/12/91

Lab	ID	Client Sample ID	Dilution Factor	Petroleum Hydrocarbons †	TPH ID *	Surrogate Recovery
MB	1211	Method Blank	T -:	10 U	-	105%
9553	В	TP6 - 3X (10')	-	330	Diesel "†"	81.7%
9553	D	TP8 - 2X (6')	-	49	No "‡"	104%
9553	E	TP9 - 3X (7')	-	76	Diesel "#"	96.9%

Surrogate is Me-Arachidate.

Values reported in ppm (mg/Kg).

- U Indicates compound was analyzed for but not detected at the given detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- * In the opinion of the analyst, was there a pattern match for diesel or gasoline (yes or no).
- † Value based on total peaks in the range from Toluene to C24.
- † Value represents Diesel range plus heavier hydrocarbons.

20 December 1991

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Maltby Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: #21199-032 Trans Min. ARI Job #9553 II

DEC 2 6 1991

Dear David:

Please find enclosed the results for sample "TP9-3X 7" from the above referenced project. The sample was logged-in as part II of job 9553 for "rush" TAT analysis by WA HCID Method for TPH, as per Pauline Roberts' request on 12/13/91. These results have been faxed to you today as well.

If you have any questions or need further information, please feel free to call any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Coordinator

KAS/ks

Enclosures

cc: file#9553 II

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

TOTAL PETROLEUM HYDROCARBONS WA HCID Method by GC/FID

QC Report No: 9553 - Dames & Moore

Project: 21199 - 032 - 005

VTSR: 12/13/91

Data Release Authorized

Matrix: Soil

Data Prepared: 12/19/91 - MAC: RPR

Date extracted: 12/17/91

Dates Analyzed: 12/18/91

10649 MB1217 Method Blank - 20 U - 91	Lab ID		Lab	Cilent Sample ID	Dilution Factor	Petroleum Hydrocarbons †	TPH ID *	Surrogate Recovery
19/3/19 19/15/17 1 19/0/11/0/3/3/3/3/						20 U	-	91.1%
9553 E TP9 - 3X 7' - 170 Diesel 10		E .			-	170	Diesel	102%

Surrogate is Me-Arachidate.

Values reported in ppm (mg/Kg),

- Indicates compound was analyzed for but not detected at the given detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- In the opinion of the analyst, was there a pattern match for diesel or gasoline (yes or no).
- † Value based on total peaks in the range from Toluene to C24.

27 December 1991

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Maltby Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: #21199-032 Trans. Mtn. ARI Job #9553 III

Dear David:

Please find enclosed the results for sample EX-5X from the above referenced project. These were faxed to you 12/24/91.

The analyst notes that there also seems to be some gasoline in the sample, and recommends the tph-gas analysis for better quantitation.

If you have any questions or need further information, please feel free to call any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegémoeller Project Coordinator

KAS/ks

Enclosures

cc: file#9553 III

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

TOTAL PETROLEUM HYDROCARBONS WA HCID Method by GC/FID

QC Report No: 9553 III - Dames & Moore

Project: Trans Mtn.

VTSR: 12/18/91

Matrix: Soil

Data Release Authorized

Data Prepared: 12/23/91 - MAC: RPR

Date extracted: 12/18/91 Dates Analyzed: 12/19/91

Lai	b ID	Client Sample ID	Dilution Factor	Petroleum Hydrocarbons †	TPH ID *	Surrogate Recovery
МВ	1218	Method Blank	-	10 U	-	93.1%
9553	F	EX - 5X	-	360	Diesel	105%
9553	F	EX - 5X	-	140	Gas	-

Surrogate is Me-Arachidate.

Values reported in ppm (mg/Kg).

- U Indicates compound was analyzed for but not detected at the given detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- * In the opinion of the analyst, was there a pattern match for diesel or gasoline (yes or no).
- † Value based on total peaks in the range from Toluene to C24.

16 December 1991

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

Jason Ai Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: #21199-032

ARI Job #9624

Dear Jason:

Please find enclosed the results and the original chain-of-custody record for the above referenced project. Samples were received intact on 12/12/91 for 24-hr. TAT; analyses proceeded without incident and results were faxed to you 12/13/91.

If you have any questions or need further information, please feel free to call any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Coordinator

KAS/ks

Enclosures

cc: file#9624

Chain of Custody Record & Laboratory Analysis Request

ARI Client:

Phone #:

Number of coolers:

Date: $\frac{12/12/4}{}$ Page _____ of _____

ANALYTICAL RESOURCES INCORPORATED

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

	within 7	com di	Call The result	ا م	the ordered		Comments/Special Instructions:	&	7 Trub Blank 12/9	3-1	<u>~</u>		~	2)	1 12/11	Sample ID Date	Samplers: RB	Client Project ID: $>199-032$	Client Contact: agon /
Date: 1み//む/9」 Time: 8:00		Printed Name: T, M: 1181	Received by: (Signature) MANULY	Date: 12/13/6	Company: Dance & MOOR C	ne:	Relinquished by:		W 7	14/11 16:02 W 3	14:54 W 3	18:75 W 3	16:21 W 3	14:74 W 3	13:04 W 3	Time Matx Cont Lab ID		32.	-
Date: Time:	Company:	Printed Name:	Received by: (Signature)	Date: Time:	Company:	Printed Name:	Relinquished by: (Signature)		× ×	× ×	× ×	× ×	× ×	× ×	× ×	1	4-81 PH-4		Analysis Required
Date: Time:	Company:	Printed Name:	Received by: (Signature)	Date: Time:	Company:	Printed Name:	Relinquished by: (Signature)												Notes/Comments

HYN

TOTAL PETROLEUM HYDROCARBONS by IR Scan **Modified EPA Method 418.1**

Analytical Chemists & Consultants

ANALYTICAL RESOURCES INCORPORATED

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

Matrix: Water

Project: 21199-032

QC Report No: 9624 -

Dames & Moore

VTSR: 12/12/91

Data Release Authorized _

Data Prepared: 12/16/91 -MAC:PJW

Date Prepared: 12/12/91 Date of Analysis: 12/12/91

Dilution

Lab ID	Client Sample ID	Factor	TPH (ppm)
9624 MB	METHOD BLANK	1	1.U
9624 A	SWR0-C1	1	1 Ú
9624 B	SWR0-C2	1	1 U
9624 C	SWR0-C3	1	1 U
9624 D	SWR0-C4	1	1 U
9624 E	SWR0-D1	1	1 U
9624 F	SWR0-D31	1	1 U

Values reported in ppm (mg/L).

Indicates compound was analyzed for but not detected at the given detection limit.

ORGANICS ANALYSIS DATA SHEET BETX by Method 602/8020

Matrix:

Waters

Level:

Low

Data Release Authorized:

Report prepared: 12/13/91 - MAC:B sdrd

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

Project No: 21199-032

QC Report No: 9624 - D&M

VTSR: 12/12/91

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490 (206) 621-7523 (FAX)

		Sample No.	Meth Blank	SWRO-C1	SWRO-C2	SWRO-C3	SWRO-C4
		ARI ID	mb 12/12	9624A	9624B	9624C	9624D
		Date Analyzed	12/12/91	12/12/91	12/12/91	12/12/91	12/12/91
		Amt Analyzed	5.0 ml	5.0 ml	5.0 ml	5.0 ml	5.0 ml
CAS Num	ber	Units	μg/L	μg/L	μg/L	μg/L	μg/L
71-43-2	Benzene		1.0 U	2.0	1.0 U	1.0 ับ	1.0 U
108-88-3	Toluene		1.0 U	2.2	1.0 U	1.0 U	1.0 U
100-41-4	Ethylbenze	ne	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1330-20-7 Total Xylenes		2.0 U	1.7 J	2.0 U	2.0 U	2.0 U	
Trifluorotoluene			101%	97.2%	99.7%	94.1%	99.1%
Bromobenzene			91.3%	91.4%	91.4%	88.9%	98.6%

В

K

		Sample No.	SWRO-D1	SWRO-D-3-1	Trip Blank
		ARI ID	9624E	9624F	9624G
		Date Analyzed	12/12/91	12/12/91	12/12/91
		Amt Analyzed	5.0 ml	5.0 ml	5.0 ml
CAS Number		Units	μg/L	μg/L	μg/L
71-43-2	Benzene		1.0 U	1.0 U	1.0 U
108-88-3	Toluene		1.0 U	1.0 U	1.0 U
100-41-4	Ethylbenze	ne	1.0 U	1.0 U	1.0 U
1330-20-7	Total Xylen	es	2.0 U	2.0 U	2.0 U
•		Trifluorotoluene	92.6%	92.7%	93.5%
		Bromobenzene	89.0%	88.0%	85.9%

Value If the result is a value greater than or equal to the detection limit, report value.

U Indicates compound was analyzed for but not detected at the given detection limit.

NR Analysis not required.

This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.

This flag is used when quantitated value falls above the limit of the calibration curve and dilution should be run.

7.0.1

26 December 1991

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Maltby Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: #21199-032 Laurel Pump Sta. ARI Job #9626

Dear David:

Please find enclosed the results and original chain-of-custody records for the above referenced project. The 418.1 tph results were faxed to you 12/18/91.

Sample OW5-1204-91 was rerun for tph-gas due to low surrogate recoveries; results were the same the second time, indicating matrix affect. Hydrocarbons in this sample peak in the late gas range. The pattern is not enough to call gas, but possibly highly weathered gas.

If you have any questions or need further information, please feel free to call any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Coordinator

KAS/ks

Enclosures

cc: file#9626

DAMES & MOORE SEATTLE

DEC 2 7 1991

ORGANICS ANALYSIS DATA SHEET - METHOD 8270

Sample ID:

MB 1217

Matrix:

Soils/Sediments

Data Release Authorized: _

Report prepared: 12/20/91 MAC: RPR

Date extracted: 12/17/91 -Date Analyzed (FINN 6): 12/19/91 GPC Cleanup: Yes (1 of 2)

CAS Number

μg/Kg 130 U 108-95-2 Phenol bis(2-Chloroethyl)Ether 67 U 111-44-4 67 U 2-Chlorophenol 95-57-8 67 U 1,3-Dichlorobenzene 541-73-1 67 U 1,4-Dichlorobenzene 106-46-7 330 U Benzyl Alcohol 100-51-6 67 U 1,2-Dichlorobenzene 95-50-1 67 U 2-Methylphenol 95-48-7 2,2'-Oxybis(1-Chloroporpane) 67 U 108-60-1 67 U 4-Methylphenol 106-44-5 67 Ū N-Nitroso-Di-n-Propylamine 621-64-7 130 U Hexachloroethane 67-72-1 67 U Nitrobenzene 98-95-3 67 U *78-59-1* Isophorone 330 U *88-75-5* 2-Nitrophenol 130 U 2.4-Dimethylphenol 105-67-9 670 U Benzoic Acid 65-85-0 67 U bis(2-Chloroethoxy)Methane 111-91-1 200 U 2,4-Dichlorophenol 120-83-2 67 U 1,2,4-Trichlorobenzene 120-82-1 67 U Naphthalene 91-20-3 200 U 4-Chloroaniline 106-47-8 130 U **Hexachlorobutadiene** 87-68-3 130 U 4-Chloro-3-Methylphenol 59-50-7 67 U 2-Methylnaphthalene 91-57-6 **Hexachlorocyclopentadiene** 330 U 77-47-4 330 U 2.4.6-Trichlorophenol 88-06-2 330 U 2,4,5-Trichlorophenol 95-95-4 67 U 2-Chloronaphthalene 91-58-7 330 U 2-Nitroaniline 88-74-4 67 U Dimethyl Phthalate 131-11-3 67 U Acenaphthylene 208-96-8 330 U 3-Nitroaniline 99-09-2

*Base/neutral surrogate recoveries

Dage/Heatign Carre	
d5-Nitrobenzene	74.7%
2-Fluorobiphenyl	81.0%
d14-p-Terphenyl	79.9%
1,2-Dichlorobenzene	81.0%

ANALYTICAL RESOURCES **INCORPORATED**

Sample No: Method Blank

QC Report No: 9626 Dames & Moore

Project No: 21199 - 032

Laurel Pump Sta.

Date Received: NA

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490

(206) 621-7523 (FAX)

Sample Weight: 30 gm (Equiv. Dry Wt.)

%Moisture: NA

pH: NA

Conc/Dilution: 1 to 1

CAS Numb	er	μg/Kg
83-32-9	Acenaphthene	67 U
51-28-5	2,4-Dinitrophenol	670 U
100-02-7	4-Nitrophenol	330 U
132-64-9	Dibenzofuran	67 U
121-14-2	2,4-Dinitrotoluene	330 U
606-20-2	2,6-Dinitrotoluene	330 U
84-66-2	Diethylphthalate	67 U
7005-72-3	4-Chlorophenyl-phenylether	67 U
86-73-7	Fluorene	67 U
100-01-6	4-Nitroaniline	330 U
534-52-1	4,6-Dinitro-2-Methylphenol	670 U
86-30-6	N-Nitrosodiphenylamine(1)	67 U
101-55-3	4-Bromophenyl-phenylether	67 U
118-74-1	Hexachlorobenzene	67 U
87-86-5	Pentachlorophenol	330 U
85-01-8	Phenanthrene	67 U
120-12-7	Anthracene	67 U
84-74-2	Di-n-Butylphthalate	67 U
206-44-0	Fluoranthene	67 U
86-74-8	Carbazole	67 U
129-00-0	Pyrene	67 U
85-68-7	Butylbenzylphthalate	67 U
91-94-1	3,3'-Dichlorobenzidine	330 U
56-55-3	Benzo(a)Anthracene	67 U
117-81-7	bis(2-Ethylhexyl)Phthalate	67 U
218-01-9	Chrysene	67 U
117-84-0	Di-n-Octyl Phthalate	67 U
205-99-2	Benzo(b)Fluoranthene	67 U
207-08-9	Benzo(k)Fluoranthene	67 U
50-32-8	Benzo(a)Pyrene	67 U
193-39-5	Indeno(1,2,3-cd)Pyrene	67 U
53-70-3	Dibenz(a,h)Anthracene	67 U
191-24-2	Benzo(ghi)Perylene	67 U

(1) Cannot be separated from diphenylamine

-Acia surrogate recoveries	
d5-Phenol	70.9%
2-Fluorophenol	80.6%
2,4,6-Tribromophenol	65.1%
2-Chlorophenol	76.9%

ORGANICS ANALYSIS DATA SHEET - METHOD 8270

Sample ID:

9626 E

Matrix:

Soils/Sediments

Data Release Authorized: _

Report prepared: 12/20/91 MAC: RPR

Date extracted: 12/17/91
Date Analyzed (FINN 6): 12/19/91
GPC Cleanup: Yes (1 of 2)

μg/Kg **CAS Number** 120 U 108-95-2 Phenol bis(2-Chloroethyl)Ether 60 U 111-44-4 60 U 2-Chlorophenol 95-57-8 60 U 1,3-Dichlorobenzene 541-73-1 60 U 1.4-Dichlorobenzene 106-46-7 300 U 100-51-6 Benzyl Alcohol 60 U 1,2-Dichlorobenzene 95-50-1 60 U 2-Methylphenol 95-48-7 60 U 2,2'-Oxybis(1-Chloroporpane) 108-60-1 60 U 4-Methylphenol 106-44-5 N-Nitroso-Di-n-Propylamine 60 U 621-64-7 120 U Hexachloroethane 67-72-1 60 U Nitrobenzene 98-95-3 60 U Isophorone 78-59-1 300 U 2-Nitrophenol 88-75-5 2,4-Dimethylphenol 120 U 105-67-9 600 U 65-85-0 Benzoic Acid 60 U bis(2-Chloroethoxy)Methane 111-91-1 179 U 2,4-Dichlorophenol 120-83-2 60 U 120-82-1 1,2,4-Trichlorobenzene 210 Naphthalene 91-20-3 179 U 106-47-8 4-Chloroaniline 120 U **Hexachlorobutadiene** 87-68-3 120 U 4-Chloro-3-Methylphenol 59-50-7 1300 2-Methylnaphthalene 91-57-6 300 U Hexachlorocyclopentadiene 77-47-4 300 U 2,4,6-Trichlorophenol 88-06-2 300 U 2.4.5-Trichlorophenol 95-95-4 60 U 2-Chloronaphthalene 91-58-7 300 U 88-74-4 2-Nitroaniline 60 U Dimethyl Phthalate 131-11-3 60 U 208-96-8 Acenaphthylene 300 U 3-Nitroaniline 99-09-2

*Rase/neutral/surrogate recoveries

puse/Heurian surrogare rev	,0100
d5-Nitrobenzene	76.8%
2-Fluorobiphenyl	81.6%
d14-p-Terphenyl	72.9%
1,2-Dichlorobenzene	82.0%

Sample No: TMB4 - 4 - 18

QC Report No: 9626 Dames & Moore

Project No: 21199 - 032

Laurel Pump Sta.

Date Received: 12/12/91

Consultants

333 Ninth Ave. North

Analytical Chemists &

Seattle, WA 98109-5187 (206) 621-6490

(206) 621-7523 (FAX)

Sample Weight: 33.5 gm (Dry Weight)

%Moisture: 17.1

pH: NA

Conc/Dilution: 1 to 1

CAS Numb	er	μg/Kg
83-32-9	Acenaphthene	60 U
51-28-5	2,4-Dinitrophenol	600 U
100-02-7	4-Nitrophenol	300 U
132-64-9	Dibenzofuran	49 M
121-14-2	2,4-Dinitrotoluene	300 U
606-20-2	2,6-Dinitrotoluene	300 U
84-66-2	Diethylphthalate	60 U
7005-72-3	4-Chlorophenyl-phenylether	60 U
86-73-7	Fluorene	190
100-01-6	4-Nitroaniline	300 U
534-52-1	4,6-Dinitro-2-Methylphenol	600 U
86-30-6	N-Nitrosodiphenylamine(1)	60 U
101-55-3	4-Bromophenyl-phenylether	60 U
118-74-1	Hexachlorobenzene	60 U
87-86-5	Pentachlorophenol	300 U
85-01-8	Phenanthrene	400
120-12-7	Anthracene	60 U
84-74-2	Di-n-Butylphthalate	60 U
206-44-0	Fluoranthene	60 U
86-74-8	Carbazole	60 U
129-00-0	Pyrene	20 J
85-68-7	Butylbenzylphthalate	60 U
91-94-1	3,3'-Dichlorobenzidine	300 U
56-55-3	Benzo(a)Anthracene	60 U
117-81-7	bis(2-Ethylhexyl)Phthalate	60 U
218-01-9	Chrysene	98
117-84-0	Di-n-Octyl Phthalate	60 U
205-99-2	Benzo(b)Fluoranthene	60 U
207-08-9	Benzo(k)Fluoranthene	60 U
50-32-8	Benzo(a)Pyrene	60 U
193-39-5	Indeno(1,2,3-cd)Pyrene	60 U
53-70-3	Dibenz(a,h)Anthracene	60 U
191-24-2	Benzo(ghi)Perylene	60 U

(1) Cannot be separated from diphenylamine

*Acid surrogate recoveries

Acid suitogaic recoveries	
d5-Phenol	73.5%
2-Fluorophenol .	85.1%
2,4,6-Tribromophenol	81.4%
2-Chiorophenol	80.2%

EXPLANATION OF INORGANIC DATA REPORT CODES

The columns labeled 'PREP', 'C', and 'M' contain important information about your analyses. The codes are ned below.

PREPARATION CODES

These 3-letter codes describe methods used to prepare samples for analysis:

AEN USEPA, Metals in air filters	RWC USEPA SW-846 3005
AHM ARI, Mercury in air filters	SCC USEPA CLP, Soil digestion, HCl matrix
AHN ARI, Metals in air filters	SCM USEPA CLP, Mercury in soil
ANN NIOSH 7300, Metals in air filters	SCN USEPA CLP, Soil digestion, HNO ₃ matrix
CAN AOAC (1984) 25.024, Metals in earthenware	SEM EPA 600/4-79-020 245.5, Mercury in soil
DE6 EPA 600/4-79-020 218.5, Cr(VI) in water	SHF ARI, Metals in soil, HF digestion
DMM DMN followed by TMM, Dissolved mercury	SRL Journal, Lithium meta-borate fusion
DMN Filtered through .45u filter, Dissolved metals	SPF PSEP, Metals in sediment, HF digestion
DMIN Filtered fillowed by DF6	SSC Standard Methods 302C, Sb/Sn in soil
EW6 EWN followed by DE6	SSN Standard Methods 302C, Soil digestion
EWM EWN followed by TMM EWN USEPA SW-846 1310, EP Toxicity	SSS Standard Methods 302C, Ti in soil
FHP ARI, Metals in tissue (HNO ₂ /HClO ₄)	SW6 USEPA SW-846 3060, Cr(VI) in soil
FPP PSEP, Metals in tissue (HNO ₃ /HClO ₄)	SWC USEPA SW-846 3050, HCl matrix
TDM Lawred Managery in ticcure	SWN USEPA SW-846 3050, HNO3 matrix
FRM Journal, Mercury in tissue FRN Journal, Metals in tissue (HNO3/H2O2)	SWR USEPA SW-846 Modified 3005, Sb by GFAAS
FRIN Journal, Metals in dissue (1110311202)	TEC EPA 600/4-79-020 4.1.3, HCl matrix
KRN ARI, Concentration by coprecipitation	TEG EPA 600/4-79-020 272.1, Silver in water
LEM USEPA, TCLP followed by TMM	TEI EPA 600/4-79-020 200.7 and 9.3
LEN USEPA, TCLP Extraction	TEN EPA 600/4-79-020 4.1.3, HNO ₃ matrix
HM ARI, Mercury in miscellaneous materials	THG ARL Silver in photographic solutions
AN ARI, Metals in miscellaneous materials	TMM EPA 600/4-79-020 245.1, Mercury in water
OAM ARI, Mercury in oil, grease or tar	TSC Standard Methods 302C, Sb/Sn in water
OAN ARI, Metals in oil, grease or tar	TSN Standard Methods 302D
PHM ARI, Mercury in wipes	TSS Standard Methods 302E, Ti in water
PHN ARI, Metals in wipes	TWC USEPA SW-846 3010, HCl matrix
RCC USEPA CLP, Water digestion, HCl matrix	TWG USEPA SW-846 7760, Silver in water
RCN USEPA CLP, Water digestion, HNO ₃ matrix	TWN LISEPA SW-846 3020, HNO ₃ matrix
REC EPA 600/4-79-020 4.1.4, HCl matrix	WMN EPA 600/4-79-020, Preserved, undigested water
REI EPA 600/4-79-020 200.7 and 9.4	XSC Standard Methods 302B
REN EPA 600/4-79-020 4.1.4, HNO ₃ matrix	NOC - Dialitate Historian

CONCENTRATION CODES

These codes are used to qualify reported concentrations:

U No analyte was detected. The reported value is the lower limit of detection.

METHOD CODES

RMA EPA 600/4-79-020 206.2

These codes signify the instrumental technique used for analysis:

CVA Cold Vapor Atomic Absorption Spectrophotometry

FLA Flame Atomic Absorption Spectrophotometry

FA Graphite Furnace Atomic Absorption Spectrophotometry
ICP Inductively Coupled Plasma Atomic Emission Spectrometry

ANALYTICAL RESOURCES, INC. Inorganic Laboratory Data Report 12/26/91 08:38:29

ARI job number: 9626

Client: Dames & Moore
Contact: David Malthy
Project: Laurel Pump Sta.
ID number: TMB4-4-18

ARI sample number: E

Description:

Sampled: //
Received: 12/12/91
Matrix: Soil

Released by:

ANALYTICAL RESULT

Analyte	Concentration	С	Prep	M
Antimony	0.1 mg/kg-dry	บ	SWC	GFA
	1.99 mg/kg-dry		SWN	GFA
<u> </u>			SWC	ICP
Beryllium		TT	SMC	ICP
Cadmium		0		
Chromium	17.6 mg/kg-dry		SWC	ICP
Copper	15.3 mg/kg-dry		SWC	ICP
	2.9 mg/kg-dry		SWN	GFA
	0.04 mg/kg-dry	บ	SCM	CVA
	16 mg/kg-dry		SWC	ICP
		II	SWN	GFA
Selenium		<u> </u>	<u> </u>	ICP
Silver	0.3 mg/kg-dry	<u> </u>	SWC	
Thallium	0.1 mg/kg-dry	Ü	SWN	GFA
Zinc	29.2 mg/kg-dry	ļ	SWC	ICP
	Antimony Arsenic Beryllium Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver	Antimony 0.1 mg/kg-dry Arsenic 1.99 mg/kg-dry Beryllium 0.2 mg/kg-dry Cadmium 0.2 mg/kg-dry Chromium 17.6 mg/kg-dry Copper 15.3 mg/kg-dry Lead 2.9 mg/kg-dry Mercury 0.04 mg/kg-dry Nickel 16 mg/kg-dry Selenium 0.1 mg/kg-dry Thallium 0.1 mg/kg-dry	Antimony 0.1 mg/kg-dry U Arsenic 1.99 mg/kg-dry Beryllium 0.2 mg/kg-dry Cadmium 0.2 mg/kg-dry U Chromium 17.6 mg/kg-dry Copper 15.3 mg/kg-dry Lead 2.9 mg/kg-dry Mercury 0.04 mg/kg-dry U Nickel 16 mg/kg-dry Selenium 0.1 mg/kg-dry U Silver 0.3 mg/kg-dry U Thallium 0.1 mg/kg-dry U	Analyte Concentration Antimony 0.1 mg/kg-dry U SWC Arsenic 1.99 mg/kg-dry SWN Beryllium 0.2 mg/kg-dry SWC Cadmium 0.2 mg/kg-dry U SWC Chromium 17.6 mg/kg-dry SWC Copper 15.3 mg/kg-dry SWC Lead 2.9 mg/kg-dry SWN Mercury 0.04 mg/kg-dry U SCM Nickel 16 mg/kg-dry SWC Selenium 0.1 mg/kg-dry U SWN Silver 0.3 mg/kg-dry U SWN Thallium 0.1 mg/kg-dry U SWN

ANALYTICAL RESOURCES, INC. Inorganic Laboratory Data Report 12/26/91 08:38:33

Client: Dames & Moore

ARI job number: 9626 ARI sample number: MB

Contact: David Malthy
Project: Laurel Pump Sta.

ID number:

Description: Method Blank

// Sampled: Received: Matrix: Soil

Released by:

RESULTS ANALYTICAL

CAS Number	Analyte	Concentration	С	Prep	M
	Antimony	0.1 mg/kg-dry	U	SWC	GFA
7440-36-0		0.1 mg/kg-dry	บ	SWN	GFA
7440-38-2	Arsenic				ICP
7440-41-7	Beryllium	0.1 mg/kg-dry	Ü	SWC	
7440-43-9	Cadmium	0.2 mg/kg-dry	บ	SWC	ICP
7440-47-3	Chromium	0.5 mg/kg-dry	บ	SWC	ICP
,		0.2 mg/kg-dry	U	SWC	ICP
7440-50-8	Copper		U	SWN	GFA
7439-92-1	Lead	0.1 mg/kg-dry			
7439-97-6	Mercury	0.1 mg/kg-dry	U	SCM	CVA
7440-02-0	Nickel	1 mg/kg-dry	U	SWC	ICP
	Selenium	0.1 mg/kg-dry	U	SWN	GFA
7782-49-2		0.3 mg/kg-dry	U	SWC	ICP
7440-22-4	Silver		 		CEA
7440-28-0	Thallium	0.1 mg/kg-dry	U	SWN	GFA
7440-66-6	Zinc	0.9 mg/kg-dry	<u> </u>	SWC	ICP

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANICS ANALYSIS DATA SHEET - Method 602/8020 **BETX by GC-PID**

Matrix: Soils Level: Low

Data Release Authorized:

Report prepared: 12/19/91 - MAC:D

QC Report No: 9626-Dames & Moore Project No: Laurel Pump Stn.

Date Received: 12/12/91

		Sample No.	Method Blank	TMB4-4-18	TMB4-4-18 Dup
		ARIID	9626MB	9626E	9626E Dup
		Date Analyzed	12/16/91	12/17/91	12/17/91
		Amt Analyzed		0.095 gm	0.095 gm
CAS Num	her	Units	μg/kg	μg/kg	μg/kg
	Benzene		50 U	53 U	53 U
	Toluene		50 U	53 U	53 U
	Ethylbenzene		50 U	190 U	190 U
	Total Xylenes		100 U	980	960
1330-20-7	Tolul Ayleries				

Surroacte Recoveries

Trifluorotoluene	101%	103%	102%
Bromobenzene	87.9%	NR	NR

Data Reporting Qualifiers

Value	If the result is a value greater than or equal to the detection limit, report the value.	В .	This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
U	Indicates compound was analyzed for but not detected at the given detection limit.	J	Indicates an estimated value when result is less than specified detection limit.
NR	Indicates not reported due to matrix interference.		

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANICS ANALYSIS DATA SHEET - Method 602/8020 **BETX by GC-PID**

Matrix: Waters

Level: Low

Data Release Authorized: _

Report prepared: 12/19/91 - MAC:D

QC Report No: 9626-Dames & Moore Project No: Laurel Pump Stn.

Date Received: 12/12/91

	Sample No.	Meth Blank	T170OUT	T180OUT	PRTOUT	OWS-12-04-91
	ARIID	1216MB	9626A	9626B	9626C	9626D
	Date Analyzed	12/16/91	12/16/91	12/16/91	12/16/91	12/16/91
	Amt Analyzed	5,0 mls	5.0 mls	5.0 mls	5.0 mls	5.0 mls
CAS Number	Units	μg/L	μg/L	μg/L	μg/L	μg/L
71-43-2 Benzene	1 011110	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
108-88-3 Toluene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
100-41-4 Ethylbenzen		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1330-20-7 Total Xylene		2.0 U	2.0 U	2.0 U	2.0 U	2.0 U

Surrogate Recoveries					07.70
Trifluorotoluene	101%	109%	111%	111%	37.6%
Promobenzene	87.9%	94.8%	97.8%	94.5%	36.3%

Data Reporting Qualifiers

Value If the result is a value greater than or equal to the detection limit, report the value.

This flag is used when the analyte is found В in the blank as well as a sample. Indicates possible/probable blank contamination.

Indicates compound was analyzed for but U not detected at the given detection limit.

Indicates an estimated value when result J is less than specified detection limit.

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

TOTAL GASOLINE RANGE HYDROCARBONS WA TPHG Method by GC/FID

QC Report No: 9626-Dames & Moore

Project: 21199-032

Laurel Pump Stn.

VTSR: 12/12/91

Matrix: Water

Data Release Authorized

Data Prepared: 12/18/91 - MAC:D

Date Extracted: 12/16/91

Date Analyzed: 12/16-17/91

Lab ID	Client Sample ID	Dilution Factor	Gasoline Range Hydrocarbons †	Gas ID *	Surrogate A	Surrogate B
9626 MB(12/16)	Method Blank	NA	0.5 U	No	75.8%	65.4%
9626 MB(12/17)	Method Blank	NA	0.5 U	No	84.6%	78.2%
9626 A	T170 OUT	NA	0.5 U	No	80.5%	71.0%
9626 B	T180	NA '	0.5 U	No	82.9%	72.8%
9626 C	PRT	NA	0.5 U	No	83.3%	72.0%
9626 D	OW5-1204-91	NA	0.95	No	30.5%	34.0%
9626 D RE	OW5-1204-91 RE		0.87	No	32.3%	39.9%

Surrogate A = Trifluorotoluene Surrogate B = Bromobenzene

Values reported in ppm (mg/kg).

- Indicates compound was analyzed for but not detected at the given detection limit. U
- Indicates a value above the linear range of the detector. Dilution required. Х
- Value based on total peaks in the range from Toluene to Dodecane.
- In the opinion of the analyst, was there a pattern match for gasoline.

TOTAL PETROLEUM HYDROCARBONS by IR Scan **Modified EPA Method 418.1**

Matrix: Soil

Project: 21199-032

QC Report No: 9626 -

Dames & Moore

VTSR: 12/12/91

Data Release Authorized Dm. B. Pa

Data Prepared: 12/18/91 -MAC:PJW

Date Prepared: 12/16/91 Date of Analysis: 12/17/91

Dilution

Lab ID	Client Sample ID	Factor	TPH (ppm)
9626 MB	METHOD BLANK	1	10 U
9626 E	TMB4-4-18'	10	1200
9626 F	TMB5-2-13'	1	10 U
9626 G	TMB6-2-13'	1	10 U
9626 H	TMB7-2-8'	1	10 U
9626 H Dup	TMB7-2-8'	1	10 U
9626 H Trip	TMB7-2-8'	1	10 U

Values reported in ppm (mg/Kg) based on wet weight of sample

Indicates compound was analyzed for but not detected at the given detection limit.

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

TOTAL PETROLEUM HYDROCARBONS by IR Scan Modified EPA Method 418.1

Matrix: Water

Project: 21199-032

Laurel Pump Sta.

QC Report No: 9626 -

Dames & Moore

VTSR: 12/12/91

Data Release Authorized //mm

Data Prepared: 12/18/91 -MAC:PJW

Date Prepared: 12/16/91 Date of Analysis: 12/16/91

Dilution

Client Sample ID	Factor	TPH (ppm)
METHOD BLANK	1	1 U
OWS 1204-91	1	1 U
	METHOD BLANK	METHOD BLANK 1

Values reported in ppm (mg/L).

U Indicates compound was analyzed for but not detected at the given detection limit.

TOTAL PETROLEUM HYDROCARBONS WA HCID Method by GC/FID

Analytical

Chemists & Consultants

ANALYTICAL RESOURCES INCORPORATED

Matrix: Soils

QC Report No: 9626-Dames & Moore

Project: 21199-032

Laurel Pump Stn.

VTSR: 12/12/91

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490 (206) 621-7523 (FAX)

Data Release Authorized

Data Prepared: 12/18/91 - MAC:D

Date extracted: 12/16/91 Date Analyzed: 12/17/91

		Total		Surrogate		
Lab ID	Client Sample ID	Hydrocarbons †	ID •	Recovery		
9626 MB	Method Blank	10 U	No	132%		
9626 F	TMB4-4-18	320	Diesel	103%		

Surrogate is Me-Arachidate.

Values reported in ppm (mg/kg).

- Indicates compound was analyzed for but not detected at the given detection limit.
- Indicates a value above the linear range of the detector. Dilution required. X
- In the opinion of the analyst, was there a pattern match for gasoline or diesel (yes or no).
- Value based on total peaks in Toluene-C24 range.
- Indicates not reported due to matrix interference and/or dilution. NR

26 December 1991

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Maltby Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: #21199-032 Trans Mtn. ARI Job #9641 II

Dear David:

Please find enclosed the results and original chain-of-custody records for the above referenced project. The 418.1 tph results were faxed to you 12/18/91, and the BETX on 12/23/91. The three samples for tph-gas analysis were added as per your request of 12/16/91.

If you have any questions or need further information, please feel free to call any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Coordinator

KAS/ks

Enclosures

cc: file#9641 II

RELIDION FIELD NOTES FIELD NOTES FIELD NOTES Start Notes Pan FIELD NOTES Start Notes Pan FIELD NOTES Start Notes Pan FIELD NOTES FIELD NOT		COLLECTORS PRIME KIS, BAN DATE OF COLLECTION 12/11, 12/12/91	198121 (No. (206) 448-7994	Seattle, Washington (206) 728-0744 Fa:	¢ ÷	,
Borries ON 1 Sample Contains Type 2 Start	1	Laurel Station	ower	500 Market Place 7	./a	
Boring or Wall Sample Order Number Doph Time Type Container Type C	1	(Van Sm		DAMES		,
Boding of Number Doph Time Type Container Type (2016) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	_		398-	Dawid	D&M CONT	
Besting Of Sample Sample Sample Time Type Scale Received by Signature STAN BARD Functional Part of the Sample Samp		21199-027		HY CONTACT:	LABORATO	
Baring Will Sample Sample Container Type Container		T A		AL LABORATORY:	ANALYTIC/	
Bedring Wall Sample Container Type C		STANDARD turnaround (RUSh &				
Baning of Well Sample Container Type		Sw 10-41; All other samples			RELINQUIS	
Baring Well Sample Sample Container Type Sample Container Type Sample Sampl		Trease	RECEIVED		RELINQUIS	
Baring Value Sample Value Va	1	0/	RECEIVED BY:	(Signature)	RELINGUIS	
Baring Valid Sample Valid Va	W		-	2188	SWRO	
Boring Wall Sample Sam	M		×		SWRO (
Boring Well Sample Sam	W		×		├	
Boing Well Sample Sampl	W		×		<u> </u>	
Boring Well Sample Sam	- 1		×		SWRO	
Boring Well Sample Number Number Depth Time Sample Container Type Sample Surf. Number Surf. Surf. Surf. Surf. Surf. Number Surf.	-		×		5WR0	
Boring Well Sample Sam	10. 20		X	222	Swip.or	
Boring Well Sample Sam	W		×		 	
Boring or Well Sample			X		5WK0	
Boring Well Sample Number Number Depth Time Type Container Type C					SW RO	
Boring Well Sample Well Sample Number Number Depth Time Type Container Type Conta			X		<u> </u>	
Boring Well Sample Number Number Depth Time Type Container Type Solve Residence Reside					SWRO	
Boring or Well Sample Number Depth Time Type Container Type Sylve Solve			X			7
Boring or Well Sample Number Depth Time Type Container Type Contai	4		X		SMGO	,1/
Boring Boring Boring Sample or Well Sample Number Number Depth Time Type Container Type Containe			X.			71
Boring Boring or Well Sample Number Depth Time Type Container Type Container Type Sample Swro C6 22:20 1 1 X X X X X X X X			×		CwRo	
Boring Boring Sample Vell Sample Sample Sample Container Type Sample Supple Supple Sample Supple Sample Sample Sample Sample Sample Supple Sample Supple Sample Sample Sample Supple Sample Sample Supple Sample Supple Sample Supple Sample Supple Sample Sample Supple Sample Sample Supple Sample Sample Supple Sample Sam	2			22:20		11
Boring Sample Sam			455 - X	Sept 20:25		/71
\$15000000000000000000000000000000000000		10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 4 60 1 80 1 80 1 80 1 80 1 80 1 80 1 80 1	Depth Time	or Well Number	
		10 800 WE 145 00 000 WE 145	(0 \		Boring	

CHAIN-OF-CUSTODY RECORD

WHITE COPY - Original (Accompanies Samples) YELLOW COPY - Collector PINK COPY - Project Manager

RELINQUISHED BY: Signature) SURO DB-4 RELINQUISHED BY: (Signature) RELINQUISHED BY; (Signature) SWRO CARA SWRO D&M CONTACT: ANALYTICAL LABORATORY: 5WRO CZ1 SUNTO 172-4 LABORATORY CONTACT WRO CZ3 Number Number Depth Sample C19 S. REPLA Time 530 2225 450 625 40 02.8 500 Market Place Tower 2025 First Avenue Seattle, Washington 98121 (206) 728-0744 Fax No. (206) 448-7994 Dames & Moore Sample Type 3/9/ 12:44 DATE/TIME 40 DATE/TIME Container Type SSANG RECEIVED BY: (Signature) RECEIVED BY: (Signature) ANALYSES. 103 60 180 10 LABORATORY NOTES: 7 PROJECT TRANS MOUNTAIN JOB NO. 21199-032 COLLECTOR +OR LOCATION LAUREL Standard Turnaround for all Sheet 1 of 2) which is 24hr STATION DATE OF COLLECTION 12 12 -SURFACE, HED RUNIOFF FIELD NOTES $\frac{1}{2}$ 12/3 1381 ۵ ا Total Number S S S Of Containers Laboratory Note Number

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

TOTAL PETROLEUM HYDROCARBONS by IR Scan Modified EPA Method 418.1

Matrix: Water

Project: 21199-032

Trans Mtn.

QC Report No: 9641 -

Dames & Moore

VTSR: 12/13/91

Data Release Authorized _

Data Prepared: 12/19/91 -MAC:PJW

Date Prepared: 12/18/91

Date of Analysis: 12/18/91

Values reported in ppm (mg/L).

		Dilution	
Lab ID	Client Sample ID	Factor	TPH (ppm)
9641 MB	METHOD BLANK	1	1 U
9641 B	SWR0 C5	1	1 U
9641 C	SWR0 C6	1	1 U
9641 D	SWR0 C7	1	1 U
9641 E	SWR0 C8	1	1 U
9641 F	SWR0 D3-2	1	1 U
9641 G	SWR0 C9	1	1 U
9641 l	SWR0 D2-2	1	1 U
9641 J	SWR0 C11	1	1 U
9641 L	SWR0 C13	1	1 U
9641 N	SWR0 D2-3	1	1 U
9641 O	SWR0 D3-3	1	1 U
9641 P	SWR0 C15	1	1 U
9641 R	SWR0 C17	1	1 U
9641 T	SWR0 C19	1	1 U
9641 U	SWR0 C20	1	1 U
9641 V	SWR0 D2-4	1	1 U
9641 W	SWR0 D3-4	1	1 U
9641 Y	SWR0 C22	1	1 U

U Indicates compound was analyzed for but not detected at the given detection limit.

ORGANICS ANALYSIS DATA SHEET BTEX by Method 602/8020

Matrix: Water Level: Low Project No: 21199-032

Trans Mtn.

QC Report No: 9641 II-Dames&Moore

VTSR: 12/13/91

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490 (206) 621-7523 (FAX)

Instrumen	t ID: GC/PID	Sample No.	Method Blk	SWRO-C5	SWRO-C6	SWRO-C7
		ARI ID	1216MB	9641B	9641C	9641 D -
		Date Analyzed	12/16/91	12/17/91	12/17/91	12/17/91
		Amt Analyzed	5.0 ml	5.0 ml	5.0 ml	5.0 ml
CAS Num	ber	Units	μg/L	μg/L	μg/L	μg/L
71-43-2	Benzene		1.0 U	1.0 U	1.0 U	1.0 U
108-88-3	Toluene		1.0 U	1.0 U	1.0 U	1.0 U
100-41-4	Ethylbenzene		1.0 U	1.0 U	1.0 U	1.0 U
1330-20-7	Total Xylenes		2.0 U	2.0 U	2.0 U	2.0 U
	*	Trifluorotoluene	101%	96.0%	94.6%	94.6%
		Bromobenzene	87.9%	93.3%	89.7%	89.8%

Instrument ID: GC/PID Sample No.		SWRO-C8	SWRO-D3-2	SWRO-C9	SWRO-D2-2	
		ARI ID	9641E	9641F	9641G	96411
		Date Analyzed	12/17/91	12/17/91	12/17/91	12/17/91
		Amt Analyzed	5.0 ml	. 5.0 ml	5.0 ml	5.0 ml
CAS Num	ber	Units	μg/L	μg/L	μg/L	μg/L
71-43-2	Benzene		1.0 U	1.0 U	1.0 U	1.0 U
108-88-3	Toluene		1.0 U	1.0 U	1.0 U	1.0 U
100-41-4	Ethylbenzene		1.0 U	1.0 U	1.0 U	1.0 U
1330-20-7	Total Xylenes		2.0 U	2.0 U	2.0 U	2.0 U
		Trifluorotoluene	95.9%	91.2%	97.3%	93.6%
		Bromobenzene	89.7%	88.5%	89.4%	87.1%

Value	If the result is a value greater than or equal to the detection limit, report the value.	В	This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
U	Indicates compound was analyzed for but not detected at the given detection limit.	K	This flag is used when quantitated value falls above the limit of the calibration
NR	Analysis not required.		curve and dilution should be run.

ORGANICS ANALYSIS DATA SHEET BTEX by Method 602/8020

Matrix: Water Level: Low Project No: 21199-032

Trans Mtn.

QC Report No: 9641 II-Dames&Moore

VTSR: 12/13/91

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

Data Release Authorized:

Report prepared: 12/20/91 - MAC:C PAT

Instrumer	nt ID: GC/PID	Sample No.	SWRO-C11	SWRO-C11(2)	SWRO-C13	SWRO-D2-3
		ARI ID	9641J	9641JDUP	9641L	9641 N- -
		Date Analyzed	12/17/91	12/17/91	12/17/91	12/17/91
		Amt Analyzed	5.0 ml	5.0 ml	5.0 ml	5.0 ml
CAS Number		Units	μg/L	μg/L	μg/L	μg/L
71-43-2	Benzene		1.0 U	1.0 U	1.0 U	1.0 U
108-88-3	Toluene		1.0 U	1.0 U	1.0 U	1.0 U
100-41-4	Ethylbenzene	9	1.0 U	1.0 U	1.0 U	1.0 U
1330-20-7	330-20-7 Total Xylenes		2.0 U	2.0 U	2.0 U	2.0 U
<u> </u>		Trifluorotoluene	95.9%	94.5%	93.7%	95.6%
		Bromobenzene	89.1%	86.4%	86.8%	85.8%

Instrument ID: GC/PID		Sample No.	SWRO-D3-3	SWRO-C15	SWRO-C17	SWRO-C19
		ARI ID	96410	9641P	9641R	9641T
		Date Analyzed	12/17/91	12/17/91	12/17/91	12/17/91
		Amt Analyzed	5.0 ml	5.0 ml	5.0 ml	5.0 ml
CAS Number		Units	μg/L	μg/L	μg/L	μg/L
71-43-2	71-43-2 Benzene		1.0 U	1.0 U	1.0 U	1.0 U
108-88-3	Toluene		1.0 U	1.0 U	1.0 U	1.0 U
100-41-4	Ethylbenzene)	1.0 U	1.0 U	1.0 U	1.0 U
1330-20-7	0-20-7 Total Xylenes		2.0 U	2.0 U	2.0 U	2.0 U
Trifluorotoluene		90.3%	89.9%	90.7%	92.7%	
		Bromobenzene	84.2%	82.9%	83.8%	85.9%

Value	If the result is a value greater than or equa to the detection limit, report the value.	В	This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
U	Indicates compound was analyzed for but not detected at the given detection limit.	К	This flag is used when quantitated value falls above the limit of the calibration
NR	Analysis not required.		curve and dilution should be run.

ORGANICS ANALYSIS DATA SHEET BTEX by Method 602/8020

> Matrix: Water Level: Low

Project No: 21199-032

Trans Min.

QC Report No: 9641 II-Dames&Moore

VTSR: 12/13/91

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490 (206) 621-7523 (FAX)

Data Release Authorized: Report prepared: 12/20/91 - MAC:C PAT

Instrument ID: GC/PID		Sample No.	SWRO-20	SWRO-C20(2)	\$WRO-D2-4
		ARI ID	9641U	9641UDUP	9641V
		Date Analyzed	12/17/91	12/17/91	12/17/91
		Amt Analyzed	5.0 ml	5.0 ml	5.0 ml
CAS Num	ber	Units	μg/L	μg/L	μg/L
71-43-2	Benzene		1.0 U	1.0 U	1.0 U
108-88-3	Toluene		1.0 U	1.0 U	1.0 U
100-41-4	Ethylbenzene)	1.0 U	1.0 U	1.0 U
1330-20-7	Total Xylenes		2.0 U	2.0 U	2.0 U
		Trifluorotoluene	91.8%	88.9%	91.7%
		Bromobenzene	84.1%	83.4%	83.9%

	to the detection limit, report the value.	
U	Indicates compound was analyzed for but not detected at the given detection limit.	ŀ
NR	Analysis not required.	

Value If the result is a value greater than or equal

This flag is used when the analyte is found В in the blank as well as a sample. Indicates possible/probable blank contamination.

Κ This flag is used when quantitated value falls above the limit of the calibration curve and dilution should be run.

ORGANICS ANALYSIS DATA SHEET
BTEX by Method 602/8020

Matrix: Water Level: Low Project No: 21199-032

Trans Mtn.

QC Report No: 9641 II-Dames&Moore

VTSR: 12/13/91

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

Data Release Authorized: The Report prepared: 12/20/91 - MAC:CPAT

Instrument ID: GC/PID		Sample No.	Method Blk	SWRO-D3-4	SWRO-D3-4(2)	SWRO-C22
		ARI ID	1217MB	9641W	9641WDUP	9641¥ -
		Date Analyzed	12/17/91	12/17/91	12/17/91	12/17/91
		Amt Analyzed	5.0 ml	5.0 ml	5.0 ml	5.0 ml
CAS Number		Units	μg/L	μg/L	μg/L	μg/L
71-43-2	Benzene		1.0 U	1.0 U	1.0 U	1.0 U
108-88-3	Toluene		1.0 U	1.0 U	1.0 U	1.0 U
100-41-4	Ethylbenzene		1.0 U	1.0 U	1.0 U	1.0 U
1330-20-7	Total Xylenes		2.0 U	2.0 U	2.0 U	2.0 U
<u> </u>		Trifluorotoluene	95.2%	103%	99.1%	94.1%
		Bromobenzene	86.4%	88.5%	86.3%	81.0%

Value	If the result is a value greater than or equal to the detection limit, report the value.	B	This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
U	Indicates compound was analyzed for but not detected at the given detection limit.	K	This flag is used when quantitated value falls above the limit of the calibration
NR	Analysis not required.		curve and dilution should be run.

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

TOTAL GASOLINE RANGE HYDROCARBONS WA TPHG Method by GC/FID

QC Report No: 9641 - II Dames & Moore

Project: 21199 - 032

Trans Mtn. VTSR: 12/13/91

Matrix: Water

Data Release Authorized

Data Prepared: 12/23/91 - MAC: RPR

Date Extracted: 12/16/91 Date Analyzed: 12/16 - 17/91

			Dilution	Gasoline Range		Surrogate	Surrogate
La	b ID	Client Sample ID	Factor	Hydrocarbons †	Gas ID *	Α	В .
МВ	1216	Mehtod Blank	NA	0.5 U	No	75.8%	65.4%
МВ	1217	Mehtod Blank	NA	0.5 U	No	84.6%	78.2%
9641	U	SWRO - C20	NA	0.5 U	No	74.3%	71.0%
9641	U Dup.	SWRO - C20	NA	0.5 U	No	74.7%	70.2%
9641	V	SWRO - D2-4	NA	0.5 U	No	76.2%	69.5%
9641	w	SWRO - D3-4	NA	0.5 U	No	90.7%	75.9%
9641	W Dup.	SWRO - D3-4	NA	0.5 U	No	87.9%	77.6%

Surrogate A = Trifluorotoluene Surrogate B = Bromobenzene

Values reported in ppm (mg/L).

- U Indicates compound was analyzed for but not detected at the given detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- * In the opinion of the analyst, was there a pattern match for gasoline.
- † Value based on total peaks in the range from Toluene to Dodecane.

02 January 1992

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Maltby Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: #Laurel Upgrade;

ARI Job #9671

Dear David:

Please find enclosed the results for the above referenced project.

If you have any questions or need further information, please feel free to call any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Coordinator

KAS/ks

Enclosures

cc: file#9671

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

TOTAL PETROLEUM HYDROCARBONS by IR Scan **Modified EPA Method 418.1**

Matrix: Water

Project: Laurel Upgrade

QC Report No: 9671 -

Dames & Moore

VTSR: 12/17/91

Data Release Authorized

Data Prepared: 12/20/91 -MAC:PJW

Date Prepared: 12/18/91 Date of Analysis: 12/18/91

Dilution

		Dilution	
Lab ID	Client Sample ID	Factor	TPH (ppm)
9671 MB	METHOD BLANK	1	1 U
9671 A	SWRO-C25	1	1 U
9671 B	SWRO-D2-6	1	1 U
9671 C	SWRO-DAM3-6	1	1 U
9671 D	SWRO-C-26	1	1 U
9671 E	SWRO-D2-7	1	1 U
9671 F	SWRO-D3-7	1	1 U

Values reported in ppm (mg/L).

Indicates compound was analyzed for but not detected at the given detection limit.

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANICS ANALYSIS DATA SHEET - Method 602/8020 BETX by GC-PID

Matrix: Water Level: Low

Data Release Authorized: _

Report prepared: 12/31/91 - MAC:D

QC Report No: 9671-Dames & Moore Project No: Laurel Upgrade

Date Received: 12/17/91

		Comple No.	Meth Blank	SWRO-C2-5	SWRO-D2-6	SWRO-D3-6	SWRO-D3-6 Duplicate
		Sample No.				9671C	9671C
		ARI ID	1219MB	9671A	9671B		
		Date Analyzed		12/19/91	12/19/91	12/19/91	12/19/91
		Amt Analyzed	5.0 mls	5.0 mls	5.0 mls	5.0 mls	5.0 mls
CAS Num		Units	μg/L	μg/L	μg/L	μg/L	μg/L
	Benzene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	Toluene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	Ethylbenzene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1330-20-7	Total Xylenes		2.0 U	2.0 U	2.0 U	2.0 U	2.0 U

Surrogate Recoveries

Trifluorotoluene	102%	93.1%	89.1%	91.6%	85.3%
Bromobenzene	90.9%	83.8%	81.0%	83.3%	77.4%

		Sample No.	SWRO-C-26	SWRO-D2-7	SWRO-D3-7	Trip Blank
		ARI ID	9671D	9671E	9671F	9671G
		Date Analyzed	12/19/91	12/20/91	12/20/91	12/20/91
		Amt Analyzed	5.0 mls	5.0 mls	5.0 mls	5.0 mls
CAS Number		Units	μg/L	μg/L	μg/L	μg/L
71-43-2	Benzene		1.0 U	1.0 U	1.0 U	1.0 U
108-88-3	Toluene		1.0 U	1.0 U	1.0 U	1.0 U
100-41-4	Ethylbenzene		1.0 U	1.0 U	1.0 U	1.0 U
1330-20-7	Total Xylenes		2.0 U	2.0 U	2.0 U	2.0 U

Surrogate Recoveries

Trifluorotoluene	91.4%	90.9%	92.5%	93.1%
Bromobenzene	83.3%	83.4%	87.4%	85.6%

Data Reporting Qualifiers

Value If the result is a value greater than or equal to the detection limit, report the value.

This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.

U Indicates compound was analyzed for but not detected at the given detection limit.

J Indicates an estimated value when result is less than specified detection limit.

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Maltby Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: #21199-032 Trans Mountain;

ARI Job #9698

Dear David:

Please find enclosed the results and original chain-of-custody for the above referenced project. The TPH-418.1 results were faxed to you 12/27/91.

If you have any questions or need further information, please feel free to call any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Coordinator

KAS/ks

Enclosures

cc: file#9698

CHAIN-OF-CUSTODY RECORD

WHITE COPY - Original (Accompanies Samples) YELLOW COPY - Collector PINK COPY - Project Manager

DAMES & MOORE 500 Market Place Tower 2025 First Avenue Seattle, Washington 98121 COO 778,774 Fey No. 7706 448,7004	DAM CONTACT: NATE PHONE: #	D D I	RELINQUISHED BY: (Signature) DATE/TIME Company Com						CLAN	03-8	8 11:50	-C27 11:25 WATER	Boring or Well Sample Sample Sample Number Number Depth Time Type Container Type	
COLLECTOR DATE OF COLLECTION 12/17/01	JOBNO: 21100-032	RECEIVED BY: (Signature)	RECEIVED BY: (Signature) LABORATORY NOTES: STANDMARD TWRNARDUND					Sec.	12 Mm	X	Úic , e, e	X	ANALYS OF SOLO SOLO SOLO SOLO SOLO SOLO SOLO	

TOTAL PETROLEUM HYDROCARBONS by IR Scan Modified EPA Method 418.1

Matrix: Water

Project: 21199-032

Trans Mountain

QC Report No: 9698 -

Dames & Moore

ANALYTICAL RESOURCES INCORPORATED

333 Ninth Ave. North

(206) 621-6490 (206) 621-7523 (FAX)

Seattle, WA 98109-5187

Analytical Chemists & Consultants

VTSR: 12/20/91

Data Release Authorized //an

Data Prepared: 12/27/91 -MAC:PJW

Date Prepared: 12/23/91

Date of Analysis: 12/23/91

Dilution

			D	
Lab I	D	Client Sample ID	Factor	TPH (ppm)
969	98 MB	METHOD BLANK	1	1 U
96	598 A	SWRO-C27	1	1 U
96	698 B	SWRO-D2-8	1	1 U
96	98 C	SWRO-D3-8	1	1 U

Values reported in ppm (mg/L).

U Indicates compound was analyzed for but not detected at the given detection limit.

TOTAL GASOLINE RANGE HYDROCARBONS WA TPHG Method by GC/FID

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

QC Report No: 9698-Dames & Moore

Project: 21199-032

Trans. Mtn.

VTSR: 12/20/91

Matrix: Waters

Data Release Authorized

Data Prepared: 1/6/92 - MAC:K kas

Date Analyzed: 12/30/91

Lab ID	Client Sample ID	Dilution Factor	Gasoline Range Hydrocarbons †	Gas ID *	Surrogate А	Surrogate B
9698 MB	Method Blank	-	0.5 U	No	85.3%	80.4%
9698 A	SWRO-C27	-	0.5 U	No	85.2%	79.5%
9698 B	SWRO-D2-8	-	0.5 U	No	84.7%	77.4% 🔍
9698 C	SWRO-D3-8	-	0.5 U	No	84.2%	77.5%
9698 Cdup	SWRO-D3-8 dup.	-	0.5 U	No	81.4%	74.6%
9698 D	Trip Blank	-	0.5 U	No	80.5%	72.8%

Surrogate A = Trifluorotoluene Surrogate B = Bromobenzene

Values reported in ppm (mg/L).

- U Indicates compound was analyzed for but not detected at the given detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- * In the opinion of the analyst, there was a pattern match for gasoline (yes or no).
- † Value based on total peaks in the range from Toluene to Dodecane.

Analytical

333 Ninth Ave. North

Seattle, WA 98109-5187

QC Report No: 9698-Dames & 1009 1621-6490

(206) 621-7523 (FAX)

Project No: 21199-032 Trans Mtn.

Date Received: 12/20/91

Chemists & Consultants

Report prepared: 1/6/92 - MAC:K

BETX by GC-PID

Matrix: Water

Level: Low

Data Release Authorized:

ORGANICS ANALYSIS DATA SHEET - Method 602/8020

		_	Method	SWRO-	SWRO-	SWRO-	SWRO-
		Sample No.	Blank	C27	D2-8	D3-8	D3-8 dup.
		ARI ID	1230MB	9698A	9698B	9698C	9698Cdup
		Date Analyzed	12/30/91	12/30/91	12/30/91	12/30/91	12/30/91
		Amt Analyzed	5.0 mls				
CAS Num	ber	Units	μg/L	μg/L	μg/L	μg/L	μg/L
71-43-2	Benzene		1.0 U				
108-88-3	Toluene		1.0 U	1.0 U	1.0 Ü	1.0 U	1.0 U
100-41-4	Ethylbenzene		1.0 U				
1330-20-7	Total Xylenes		2.0 U				

Surrogate Recoveries

Trifluorotoluene	102%	99.9%	101%	100%	97.6%
Bromobenzene	95.4%	94.7%	93.1%	92.3%	87.0%

•		Sample No.	Trip Blank
	:	ARI ID	9698D
		Date Analyzed	12/30/91
		Amt Analyzed	5.0 mls
CAS Num	ber	Units	μg/L
71-43-2	Benzene		1.0 U
108-88-3	Toluene		1.0 U
	Ethylbenzene		1.0 U
1330-20-7	Total Xylenes		2.0 U

Surrogate Recoveries

Tallogula Resolvence	
Trifluorotoluene	94.8%
Bromobenzene	86.0%

Data Reporting Qualifiers

Value If the result is a value greater than or equal to the detection limit, report the value.

- В This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
- U Indicates compound was analyzed for but not detected at the given detection limit.
- Indicates an estimated value when result is less than specified detection limit.

06 January 1992

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Maltby Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: #21199-032 Trans Mountain; ARI Job #9714

Dear David:

Please find enclosed the results and original chain-of-custody for the above referenced project. The TPH-418.1 results were faxed to you 12/31/91.

If you have any questions or need further information, please feel free to call any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Coordinator

KAS/ks

Enclosures

cc: file#9714

CHAIN-OF-CUSTODY RECORD

WHITE COPY - Original (Accompanies Samples) YELLOW COPY - Collector PINK COPY - Project Manager

2025 First Avenue Seattle, Washington 98121 (206) 728-0744 Fax No. (206) 448-7994	DAMES & MOORE	D&M CONTACT: 1 HC157 PHONE:	LABORATORY CONTACT: TATE	ANALYTICAL LABORATORY: $\mathcal{A}\mathcal{A}$	RELINQUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature)	RELINCUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature) RECEIVED BY: (Signature) DATE/TIME RECEIVED BY: (Signature)								Y'25		04:40	- C28 9:30 WATER	Boring or Well Sample Number Number Depth Time Type Container Ty
COLLECTOR D. MALTSY DATE OF COLLECTION 12/24/9	LAUREL	TRANS MOUNTAIN	JOB NO.: 21199 - 032 SHEET OF		signature)	STANDARD TURNARULUS Signature) LABORATORY NOTES: STANDARD TURNARULUS										× × ×	· X	Total Number
F			F					-				-		}	77	•		Of Containers Laboratory Note Number

TOTAL GASOLINE RANGE HYDROCARBONS BY GC/FID WA TPH-G Method (Purge & Trap)

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

QC Report No: 9714-Dames & Moore

Project: 21199-032

Transmountain

VTSR: 12/24/91

Matrix: Waters

Data Release Authorized <u>PSCSV</u> Data Prepared: 01/02/91 - MAC:D

> Date extracted: 12/30/91 Date Analyzed: 12/30/91

			Dilution	Gasoline Range		Surrogate	Surrogate
Lab	ID	Client Sample ID	Factor	Hydrocarbons †	Gas ID *	Α	В
9714	MB	Method Blank	NA	0.5 U	No	85.3%	80.4%
9714	Α	SWRO-C28	NA	0.5 U	No	81.8%	75.4%
9714	В	SWRO-D2-9	NA	0.5 U	No	78.6%	73.7%
9714	B Dup	SWRO-D2-9 Dup	NA	0.5 U	No	83.1%	78.2%
9714	C	SWRO-D3-9	NA	0.5 U	No	83.8%	79.8%
9714	D	Field Blank	NA	0.5 U	No	86.6%	80.9%

Surrogate A = Trifluorotoluene Surrogate B = Bromobenzene

Values reported in ppm (mg/L).

- U Indicates compound was analyzed for but not detected at the given detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- * In the opinion of the analyst, was there a pattern match for gasoline (yes or no).
- † Value based on total peaks in Toluene-C12 range.

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANICS ANALYSIS DATA SHEET - Method 602/8020 BETX by GC-PID

Matrix: Water Level: Low

Data Release Authorized:

Report prepared: 01/02/92 - MAC:D

QC Report No: 9714-Dames & Moore

Project No: 21199-032

Transmountain

Date Received: 12/24/91

						SWRO-D2-9
		Sample No.	Meth Blank	SWRO-C28	SWRO-D2-9	Duplicate
		ARI ID	1230MB	9714A	9714B	9714B Dup
•		Date Analyzed	12/30/91	12/30/91	12/30/91	12/30/91
		Amt Analyzed	5.0 mls	5.0 mls	5.0 mls	5.0 mls
CAS Num	ber	Units	μg/L	μg/L	μg/L	μg/L
71-43-2	Benzene		1.0 U	1.0 U	1.0 U	1.0 U
108-88-3	Toluene		1.0 U	1.0 U	1.0 U	1.0 U
100-41-4	Ethylbenzene		1.0 U	1.0 U	1.0 U	1.0 U
1330-20-7	Total Xylenes		2.0 U	2.0 U	2.0 U	2.0 U

Surrogate Recoveries

Juliogaic Recovered				
Trifluorotoluene	102%	95.9%	92.3%	96.1%
Bromobenzene	95.4%	89.1%	85.3%	91.5%

		Sample No.	SWRO-D3-9	Field Blank
		ARI ID	9714C	9714D
		Date Analyzed	12/30/91	12/30/91
		Amt Analyzed	5.0 mls	5.0 mls
CAS Num	ber	Units	μg/L	μg/L
71-43-2	Benzene		1.0 U	1.0 U
108-88-3	Toluene		1.0 U	1.0 U
100-41-4 Ethylbenzene			1.0 U	1.0 U
1330-20-7	Total Xylenes		2.0 U	2.0 U

Surrogate Recoveries

Trifluorotoluene	95.9%	102%
Bromobenzene	92.9%	95.9%

Data Reporting Qualifiers

Value If the result is a value greater than or equal to the detection limit, report the value.

B This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.

U Indicates compound was analyzed for but not detected at the given detection limit.

J Indicates an estimated value when result is less than specified detection limit.

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

TOTAL PETROLEUM HYDROCARBONS by IR Scan **Modified EPA Method 418.1**

Matrix: Water

Project: 21199-032

Trans Mountain

QC Report No: 9714 -

Dames & Moore

VTSR: 12/24/91

Data Prepared: 12/27/91 -MAC:PJW

Date Prepared: 12/26/91 Date of Analysis: 12/26/91

Dilution

Lab ID	Client Sample ID	Factor	TPH (ppm)
9714 MB	METHOD BLANK	1	1 U
9714 A	SWRO-C28	1	1 U
9714 B	SWRO-D2-9	1	1 U
9714 C	SWRO-D3-9	1	1 U

Values reported in ppm (mg/L).

Indicates compound was analyzed for but not detected at the given detection limit.

10 January 1992

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Maltby Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: #21199-032 Trans Mountain;

ARI Job #9727

Dear David:

Please find enclosed the results and original chain-of-custody for the above referenced project. The TPH-418.1 results were faxed to you 1/3/92.

If you have any questions or need further information, please feel free to call any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Coordinator

KAS/ks

Enclosures

cc: file#9727

CHAIN-OF-CUSTODY RECORD

WHITE COPY - Original (Accompanies Samples) YELLOW COPY - Collector PINK COPY - Project Manager

.".	BORATORY: ARICONTACT: KATE	(Signature) DATE/TIME RECEIVED	DATESTIME RECEIVED					3:25	02-10	5WRO - C29 8:00 WATER	Boring or Well Sample Number Number Depth Time Type Container Type
PROJECT TRANS MOUNTAIN LOCATION LAURE C STATION COLLECTOR () MOUTHY DATE OF COLLECTION 1/2/92	0	(Signature)	BY: (Signature) LABORATORY NOTES: STANDARD TURN AROUND)					N. W.	X	X	Total Number Of Containers
			-				1,3/	+			Laboratory

とって ひょうし

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

TOTAL PETROLEUM HYDROCARBONS by IR Scan **Modified EPA Method 418.1**

Matrix: Water

Project: 2199-032-5502-005

Trans Mountain

QC Report No: 9727 -

Dames & Moore

VTSR: 01/02/92

Data Release Authorized _

Data Prepared: 01/03/92 -MAC:PJW

Date Prepared: 01/02/92 Date of Analysis: 01/02/92

Dilution

Lab ID	Client Sample ID	Factor	TPH (ppm)
9727 MB	METHOD BLANK	1	1 U
9727 A	SWRO-C29	1	1 U
9727 B	SWRO-02-10	1	1 U
9727 C	SWRO-03-10	1	1 U

Values reported in ppm (mg/L).

Indicates compound was analyzed for but not detected at the given detection limit.

TOTAL GASOLINE RANGE HYDROCARBONS WA TPHG Method by GC/FID

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

QC Report No: 9727-Dames & Moore

Project: 21199-032-5502-005

Trans. Mtn. VTSR: 01/02/92

Matrix: Waters

Data Release Authorized

Data Prepared: 1/10/92 - MAC:K kas

Date Analyzed: 01/09/92

		Dilution	Gasoline Range		Surrogate	Surrogate
Lab ID	Client Sample ID	Factor	Hydrocarbons †	Gas ID *	Α	В
9727 MB	Method Blank	-	0.5 U	No	83.3%	72.0%
9727 A	SWRO-C29	-	0.5 U	No	87.3%	77.7%
9727 Adup	SWRO-C29 dup.	-	0.5 U	No	97.5%	88.6%
9727 B	SWRO-02-10	-	0.5 U	No	86.4%	79.4%
9727 C	SWRO-03-10	-	0.5 U	No	87.9%	78.4%

Surrogate A = Trifluorotoluene Surrogate B = Bromobenzene

Values reported in ppm (mg/L).

- U Indicates compound was analyzed for but not detected at the given detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- * In the opinion of the analyst, there was a pattern match for gasoline (yes or no).
- † Value based on total peaks in the range from Toluene to Dodecane.

Analytical Chemists & Consultants

333 Ninth Ave. North

QC Report No: 9727-Dames & Neattle, WA 98109-5187 Project No. 21199-032-5502-005 621-7523 (FAX)

Trans. Mountain

Date Received: 1/2/92

ORGANICS ANALYSIS DATA SHEET - Method 602/8020 BETX by GC-PID

> Matrix: Water Level: Low

Data Release Authorized:

Report prepared: 1/10/92 - MAC:K kas

		Γ	Method	SWRO-	SWRO-	SWRO-	SWRO-
		Sample No.	Blank	C29	C29 dup.	02-10	03-10
		ARI ID	MB1/7	9727A	9727Adup	9727B	9727C
		Date Analyzed	01/09/92	01/09/92	01/09/92	01/09/92	01/09/92
		Amt Analyzed	5.0 mls				
CAS Num	ber	Units	μg/L	μg/L	μg/L	μg/L	μg/L
71-43-2	Benzene		1.0 U				
108-88-3	08-88-3 Toluene		1.0 U				
100-41-4 Ethylbenzene			1.0 U				
1330-20-7	Total Xylenes		2.0 U				

Surrogate Recoveries

, can egan e me e e e e e e e e e e e e e e e e e					
Trifluorotoluene	97.7%	103%	113%	101%	102%
Bromobenzene	88.5%	94.2%	107%	93.3%	94.3%

Data Reporting Qualifiers

Value If the result is a value greater than or equal to the detection limit, report the value.

- This flag is used when the analyte is found В in the blank as well as a sample. Indicates possible/probable blank contamination.
- U Indicates compound was analyzed for but not detected at the given detection limit.
- Indicates an estimated value when result is less than specified detection limit.

13 January 1992

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Maltby Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: #21199-032-3502-005 Laurel Sta.;

ARI Job #9766

Dear David:

Please find enclosed the results and original chain-of-custody report for the above referenced project. The TPH-418.1 results were faxed to you 1/9/92, the BETX results earlier today.

Both soils and waters were run for TPH by Method 8015-HCID; water samples were in 1 liter amber bottles rather than the 4 oz. vials required for 8015-gas analysis.

If you have any questions or need further information, please feel free to call any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Coordinator

KAS/ks

Enclosures

cc: file#9766

DAMES & MOORE SEATTLE

JAN 14 1992

CHAIN-OF-CUSTODY RECORD

WHITE COPY - Original (Accompanies Samples) YELLOW COPY - Collector PINK COPY - Project Manager

Laboratory Note Number 76/0/ Р Of Containers 3 3 Total Number SHEET TAKEN 16/92 76/2/ FIELD NOTES: DATE OF COLLECTION 1 TAKEN ! Afer Pauline Roberts 1/9193 please with the HALLIND-2-1 FOX BETX = TAB TA = = = = = Ξ **:** JOB NO. 21199 . 032 - 5502 - CCS STATION COLLECTOR TWINING B. UNGER #tw170-8-1 PROJECT TRANS 'TALL LOCATION LAJREL LABORATORY NOTES: Oco Control RECEIVED BY: (Signature) RECEIVED BY: (Signature) RECEIVED BY: (Signature) PHONE: 728-0744 01001100 101 SISTINA 500 Market Place Tower 2025 First Avenue Seattle, Washington 98121 man 778-0744 Fax No. (206) 448-7994 DAMES & MOORE LITER + VOA Container Type 402. 407 402 DATE/TIME 12/20/ Sample Type 13:50 Soll 300 DAVID MATTEN LABORATORY CONTACT: CANTE A 1200 4.0 1425 1415 1505 2751 Number | Number | Depth | Time 100% 10(5) Sw Ro + C 30 8-28. 855 RELINQUISHED BY: (Signature) (Signature) RELINQUISHED BY: (Signature) ANALYTICAL LABORATORY: _ 4 4 × 4 D&M CONTACT: Sample 3.2Ro-D2-11 8-D3-11 -9× HA-3+ 3X HA -5x Tw. 18-3-1 10. Mo − | 2 − 12180-K-HAX-6+20 HAX-6-1

TOTAL PETROLEUM HYDROCARBONS WA HOID Method by GC/FID

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

QC Report No: 9766-Dames & Moore

Project: 21199-032-3502-005

Laurel Sta.

VTSR: 01/08/92

Matrix: Soil

Data Release Authorized

Data Prepared: 1/13/92 - MAC: RPR

Date extracted: 01/09/92

Dates Analyzed: 1/09-10/92

La	b ID	Client Sample ID	Dilution Factor	Petroleum Hydrocarbons †	TPH ID *	Surrogate Recovery
9768	MB 1-9	METHOD BLANK	-	10 U		120%
9766	A	HA - 5X	-	10 U	No	76.6%
9766	В	HA - 9X	-	10 U	No	76.3%
9766	c	HA - 3- 3X	-	10 U	No	80.1%
9766	D +	HAX-6-11	 	10 U	No	79.1%
	E	HAX - 6 - 20	-	10 U	No	79.6%
9766	E	MAX - 0 - 20	· -	.00		I

Surrogate is Me-Arachidate.

Values reported in ppm (mg/Kg).

- U Indicates compound was analyzed for but not detected at the given detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- * In the opinion of the analyst, was there a pattern match for diesel or gasoline (yes or no).
- † Value based on total peaks in the range from Toluene to C24.

22 January 1992

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Maltby
Dames & Moore
500 Market Place Tower
2025 First Avenue
Seattle, WA 98121

RE: Client Project: #21199-032 Transmountain ARI Job #9809

Dear Sue:

Please find enclosed the results and original chain-of-custody report for the above referenced project. Samples arrived in good condition on 1/15/92. Ingrid Williams spoke with Shelby Miller on 1/16/92, requesting that sample PLBX-1-10-4' be deleted from the chain-of-custody and that sample PLBX-1-5-13' be added for holding. Shelby made these changes, as are indicated on the chain.

Due to machine drift on the IR instrument, the TPH-418.1 analysis was re-run. The original results were faxed to you yesterday; only the re-analysis results are included here, as the drift appears to have been corrected. (The "9809 G Dup 2" result was actually 9.9 ppm, but is reported as undetected since our normal detection limit is 10 ppm.)

If you have any questions or need further information, please feel free to call any time. I can be reached at the number above, or direct at 340-2867, ext. 117, where you can also leave a message if I'm not available.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Coordinator

KAS/ks

Enclosures

cc: file#9809

DAMES & MOORE SEATTLE

JAN 23 1992

CHAIN-OF-CUSTODY RECORD

WHITE COPY - Original (Accompanies Samples) YELLOW COPY - Collector PINK COPY - Project Manager

Sample Wto Sample Container Type
Sample Wto Sample Wto Sample Wto Sample Wto Sample Wto Sample Wto Sample Container Type C-21 V/5/1/2 Wind 12005 Sovie 2002 Stars C-21 V/5/1/2 Wind 2005 Sovie 2002 Stars
Sample Wtw Sample Type Container Type AS A SA S
Sample Wtw Sample Container Type Sample Sample Sample Sample Sample Wtw Sample Wtw Sample Container Type Sample Sample Sample Container Type Sample Sample Sample Sample Sample Sample Sample Container Type Sample
Sample Wito Sample Container Type Co
Sample With Time Type Container Type 30 30 30 30 30 30 30 30 30 30 30 30 30
Sample Wito Sample Container Type Co
Sample Wtw Sample Time Type Container Type Co
Sample Vito Sample Sampl

TOTAL PETROLEUM HYDROCARBONS WA HOID Method by GC/FID

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

QC Report No: 9809-Dames&Moore

Project: Transmountain

VTSR: 01/15/92

Matrix: Soils

Data Prepared: 01/22/92 - MAC:C SCM

Date Extracted: 01/16/92 Date Analyzed: 01/17/92

Lab ID	Client Sample ID	Dilution Factor	Petroleum Hydrocarbons †	TPH ID *	Surrogate Recovery
9809 MB	Method Blank	1	10 U	No	83.1%
9809 D	SP1X-1-5	1	10 U	No	124%
9809 E	SP1X-1-5	1	10 U	No	127%
9809 F	SP2X-1-5	1	39	Diesel	128%
9809 G	PLBX-1-5-12	1	10 U	No	135%

Surrogate is Me-Arachidate.

Values reported in ppm (mg/kg) on a dry weight basis.

- U Indicates compound was analyzed for but not detected at the given detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- * In the opinion of the analyst, was there a pattern match for diesel or gasoline.
- † Value based on total peaks in the range from Toluene to C24.

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

TOTAL PETROLEUM HYDROCARBONS by IR Scan **Modified EPA Method 418.1**

Matrix: Soil

Project: Transmountain

QC Report No: 9809 -

Dames & Moore

VTSR: 01/15/92

Data Release Authorized __

Data Prepared: 01/22/92 -MAC:PJW

Date Prepared: 01/21/92 Date of Analysis: 01/22/92

Dilution

Lab ID	Client Sample ID	Factor	TPH (ppm)
9809 MB	METHOD BLANK	1	10 U
9809 G 2	PLBX-1-5-12'	1	13
9809 G Dup 2	PLBX-1-5-12'	1	10 U
9809 G Trip 2	PLBX-1-5-12'	1	11

Values reported in ppm (mg/Kg) based on wet weight of sample

Indicates compound was analyzed for but not detected at the given U detection limit.

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Maltby
Dames & Moore
500 Market Place Tower
2025 First Avenue
Seattle, WA 98121

RE: Client Project: #21199-032 Trans. Mountain/Laurel Stn.;
ARI Job #9849

Dear David

Please find enclosed the results and original chain-of-custody report for the above referenced project. Nine samples arrived in good condition on 1/21/92, and analyses proceeded without incident. The 418.1 results were faxed to you 1/23/92, the HCID's earlier today.

If you have any questions or need further information, please feel free to call any time. I can be reached at the number above, or direct at 340-2867, ext. 117, where you can also leave a message if I'm not available.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Coordinator

KAS/ks

Enclosures

cc: file#9849

DAMES & MOORE SEATTLE

JAN 3 0 1992

DAMES & MOORE 500 Market Place Tower - 2025 First Avenue - Seattle, Washington 98121 - (206) 728-0744

Chain of Custody

		STORIBINOS	o to tedmul	N -	. -	.	T .		.T.	- -		<u>-</u>	T	$\overline{}$				T					Ι	
		Comments/ Instructions		no 418, 1 andices		10 4(8.1 analyse				De de	200		1	, made					trional alamas	Sample Receipt	Total no. of containers:	Chain of custody seals:	Conforms to record:	ab number:
Analysis Request			lullo9 Viinoi (81) aliste teM XOT q (,	W								,	50	17.0	7 7						Milles	ou Miller	10	(Date) //2//72
		il ATO	£ 1. ₽	17 20		(FA)	X		8	5	ρ.	R	4	7	0/0/1	20011				Received by (lab):	Jan My	(Printed) $\int_{l} \varphi l / l$	(Company)	(Time) 5:4 S
		0168/019	drocarbons sticides/PC 8/8080	γH Pe	× ;	X	*	Z	Z	又	タ	<u>×</u>		ζ								NS	lowe	(NOTE
		Polycyclic Aromatic		0심	1																S. A. C.	III	28 1/2	(Date)
		Base/Neutral/Acids 625/8270 (GC/MS)															ļ 			, ;	びら	100	Z W	
		Aromatic Volatiles		O1A										ļ	<u> </u>					shed by	2	1	(Au	(500
1			5/8240 (GC) ogenated /										-	707						Relinquished by	()	(Sig) (Sig)	(Company)	(Time)_
100000	1		atile Organ	Matrix ≫	925	Ziz	soil	Son			┼──	+		1,3	1							<u>,</u>		
Se lower - coc.	.	ART MAJAMA ART MAJAMA	Ar. Williams	Date Time	1149 0905	16/10/09/20/20/20/20/20/20/20/20/20/20/20/20/20/	142 rong	1162 1330			1/15/ag 1677			0.00	2000					nments:				
Ĕ	A,		Sampler's Initials: PMU CA	Sample ID	TP 22-2x-5/11	1 1-11-7604	ヘートート	Magara) 1	James - C	2 -1-	, , , , , , , ,	19,11,2	2 871	10// [00]	8					Special Instructions/Comments:				

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

TOTAL PETROLEUM HYDROCARBONS by IR Scan Modified EPA Method 418.1

Matrix: Soil

Project: 21199032

QC Report No: 9849 - Dan

Dames & Moore

VTSR: 01/21/92

Data Release Authorized La

Data Prepared: 01/23/92 -MAC:PJW

Date Prepared: 01/22/92 Date of Analysis: 01/23/92

Dilution

Lab ID	Client Sample ID	Factor	TPH (ppm)
9849 MB	METHOD BLANK	1	10 U
9849 C	PLB-1-1-7'	1	15
9849 E	SS-3-5X	1	710
9849 H	TP-20-3X-10'	1	10 U
9849 H Dup	TP-20-3X-10'	1	10 U
9849 H Trp	TP-20-3X-10'	1	10 U

Values reported in ppm (mg/Kg) based on wet weight of sample

U Indicates compound was analyzed for but not detected at the given detection limit.

TOTAL PETROLEUM HYDROCARBONS WA HOID Method by GC/FID

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

QC Report No: 9849-Dames & Moore

Project: 21199-032

VTSR: 01/21/92

Matrix: Soil Core

Data Release Authorized

Data Prepared: 1/29/92 - MAC:K kas

Date extracted: 1/22, 1/27/1992 Dates Analyzed: 1/23-1/24, 1/27/92

Lab ID	Client Sample ID	Dilution Factor	Petroleum Hydrocarbons †	TPH ID *	Surrogate Recovery
9849 MB	Method Blank	- ' .	10 U	-	83.7%
9849 A	TP 22-2X-5'	-	10 U	No	90.0%
9849 B	TP 24-1X-1'	- -	7.6 J	No	77.3%
9849 C	PLB-1-1-7'	-	110	No	124%
9849 D	SS-3-1	-	340	Diesel	81.5%
9849 E	SS-3-5X	-	1600	Both	85.7%
9849 F	SS-3-6	_	1500	Both	96.8%
9849 G	TP-21-1-1'	-	16	No	118%
9849 H	TP-20-3X-10'	-	10 U	No	73.7%
9849 MB2	Method Blank	-	10 U	-	87.8%
9849 1	TMB9-1 (60')		10 U	No	91.7%

Surrogate is Me-Arachidate.

Values reported in ppm (mg/Kg).

- U Indicates compound was analyzed for but not detected at the given detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- * In the opinion of the analyst, was there a pattern match for diesel or gasoline.
- † Value based on total peaks in the range from Toluene to C24.

NR Indicates the surrogate was not recovered due to dilution or matrix effect.

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, Wa 98109-5187 (206) 621-6490

Facsimile	
****	7 7
Date of transmittal:	29/92 Time: 3:30
Addressee: David K	lettery FAX No: (_) # 29
Company: Danes + N	Phone No:()
	x 4x 4x 44 44 44 44 44 44 44 44 44 44 44
From: Kele Stevens	elle FAX No: (206) 621-7523
Number of Pages:(Including	<u>→</u> Phone No: (206) 621-6490 g this cover page)
સ સ શ સ સ લ લ સ સ સ સ સ સ સ લ સ શ શ શ શ	人名巴尼克 化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化
If you do not receive the numediately - (206) 621-6	umber of pages indicated, please contact sender at ARI 490
Additional message He	re are the TPH-44CID results for
	ns. Hm. samples received 1/21/192.
472 MA ALL MANAGEMENT AND	

TOTAL PETROLEUM HYDROCARBONS WA HOLD Method by GC/FID

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Nimh Ave. Nomh Sexttle, WA 98109:5187 (208):621-6490 (206):621-7523 (FAX)

QC Report No: 9849-Dames & Moore

Project: 21199-032

VTSR: 01/21/92

Matrix: Soil Core

Data Release Authorized

Data Prepared: 1/29/92 - MAC:K kas

Date extracted: 1/22, 1/27/1992 Dates Analyzed: 1/23-1/24, 1/27/92

Lab ID	Clieni Sampio ID	Dilution Factor	Petroleum Hydrocarbons †	TPH ID	Surrogate Recovery
9849 MB	Method Blank	T -	10 U		83.7%
9849 A	TP 22-2X-5	-	10 U	No	90.0%
9849 B	TP 24-1X-1'	_	7.6 J	No	77.3%
9849 C	PLB-1-1-7"	-	110	No	124%
9849 D	SS-3-1	1 .	340	Diesel	81.5%
9849 E	\$\$-3-5X	_	1600	Both	85.7%
9849 F	\$\$-3-6	 	1500	Both	96.8%
9849 G	7P-21-1-1	-	16	No	118%
9849 H	IP-20-3X-10	 	10 U	No	73.7%
9849 MB2	Method Blank	+	10 U	_	87.8%
9849 1	TM89-1 (60)		10 U	No	91.7%

Surrogate is Me-Arachidate.

Values reported in ppm (mg/Kg).

- U Indicates compound was analyzed for but not detected at the given detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- In the opinion of the analyst, was there a pattern match for diesel or gasoline.
- † Value based on total peaks in the range from Toluene to C24.
- NR Indicates the surrogate was not recovered due to dilution or matrix effect.

5 February 1992

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Maltby Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: #21199-032 Trans. Mountain/Laurel Stn.;
ARI Job #9864

Dear David:

Please find enclosed the results and original chain-of-custody report for the above referenced project. Eight samples and a trip blank arrived in good condition on 1/23/92, and the analyses proceeded without incident. Results of the 8015-gas range analysis were faxed to you on 1/31/92.

If you have any questions or need further information, please feel free to call any time. I can be reached at the number above, or direct at 340-2867, ext. 117, where you can also leave a message if I'm not available.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegémoeller Project Coordinator

KAS/ks

Enclosures

DAMES & MOORE SEATTLE

FEB 06 1992

cc: file#9864

CHAIN-OF-CUSTODY RECORD

WHITE COPY - Original (Accompanies Samples) YELLOW COPY - Collector PINK COPY - Project Manager

CHAIN-OF-CUSTODY RECORD

WHITE COPY - Original (Accompanies Samples) YELLOW COPY - Collector PINK COPY - Project Manager

Note Number Laboratory OF. Of Containers RECEIVED BY: (Signature) Start in while delivery to lab. N h N Total Number SHEET / DATE OF COLLECTION 1/22/92 FIELD NOTES: BUM Shaw WA LOCATION LAWER SPATION COLLECTOR IMMILIAMS PROJECT Transmountain JOB NO : 21199 - 032 LABORATORY NOTES: X X #c0 407 0100 100 100 1/22/92 (© 1445 HEGENED BY: (Signaturp) RECEIVED BY: (Signature) PHONE: 72-20744 とかべく SISTIMA 2-tongrials 500 Market Place Tower 2025 First Avenue Seattle, Washington 98121 (206) 728-0744 Fax No. (206) 448-7994 Container Type DAMES & MOORE Š. DATE/TIME matton Sample Type Aro 0835 HW 420 タのフ 5280 0815 LABORATORY CONTACT: Katte Well Sample Number Number Depth Time ar 7 HW / U R V PELINQUISHED BY: (Signature) RELINQUISHED BY: (Signature) DAVID RELINQUISHED BY: (Signature) ANALYTICAL LABORATORY: _ SWRO-D3-8 51-20-DZNR XV RO-C-32 This Hank D&M CONTACT: Boring

TOTAL PETROLEUM HYDROCARBONS WA HCID Method by GC/FID

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

QC Report No: 9864- Dames&Moore

Project: 21199-032

Trans Mtn.

VTSR: 01/23/92

Data Release Authorized

Matrix: Soil

Data Prepared: 01/28/92 - MAC:K SCM

Date extracted: 01/24/92 Date Analyzed: 01/27/92

Lab ID	Client Sample ID	Dilution Factor	Petroleum Hydrocarbons †	TPH ID *	Surrogate Recovery
9864 MB	Method Blank	-	10 U	No	89.0%
9864 A	PLS-1-14X	-	10 U	No	81.8%
9864 B	PLSX-1-20	-	10 U	No	87.0%
9864 C	PLB-1-15X	_	10 U	No	83.1%
9864 D	PLBX-1-22	-	10 U	No	78.8%
9864 E	TP4X-5-1	-	10 U	No	78.3%

Surrogate is Me-Arachidate.

Values reported in ppm (mg/Kg) on a dry weight basis.

- U Indicates compound was analyzed for but not detected at the given detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- * In the opinion of the analyst, was there a pattern match for diesel or gasoline.
- t Value based on total peaks in the range from Toluene to C24.

NR Indicates the surrogate was not recovered due to dilution or matrix effect.

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

TOTAL GASOLINE RANGE HYDROCARBONS WA TPHG Method by GC/FID

QC Report No: 9864 - Dames & Moore

Project: 21199-032

Trans Mtn.

VTSR: 01/23/92

Matrix: Waters

Data Release Authorized

Data Prepared: 1/29/92 - MAC: RPR

Date Extracted: 01/27/92 Date Analyzed: 01/27/92

			Dilution	Gasoline Range		Surrogate	Surrogate
Lai	b ID	Client Sample ID	Factor	Hydrocarbons †	Gas ID *	Α	В
9864	MB-0127	Mehtod Blank	NA	0.25 U	No	88.8%	86.3%
9864	F	SWRO-C-32	NA	0.25 U	No	93.1%	89.6%
9864	F Dup	SWRO-C-32 dup.	. NA	0.25 U	No	92.9%	88.5%
9864	G	SWRO-D2-13	NA	0.25 U	No	93.8%	89.0%
9864	Н	SWRO-D3-13	NA	0.25 U	No	95.8%	91.7%
9864	1	TRIP BLANK	NA	0.25 U	No	92.4%	88.8%

Surrogate A = Trifluorotoluene Surrogate B = Bromobenzene

Values reported in ppm (mg/L).

- Indicates compound was analyzed for but not detected at the given detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- In the opinion of the analyst, was there a pattern match for gasoline.
- † Value based on total peaks in the range from Toluene to Dodecane.

		•			~
4986	Turn-Ardund / 3	2 wh.	Analytical Resources, Inc. (206) 621-6490	(206) 621-7523 · fax	the Stop mielle R
ARI Job Numbe	VrSR 13/92	, Sh:hl			ARI Lab Contact:
Sample Acknowledgement	Page of	Time:	Albertax No.	Les of Phone No:	ARILA
032	Logged F.	mitai: 1/34/9/3	Addressee Daild MALLburax No.	Company: Dances of Mont ophone No.	gged in at ARI.
Project #.	PO#	Date of Transmittal	Addre	Com	Following is a list of samples received and logged in at ARI. Please verify information listed.
Client:	Contact Digital 47191 the	Billing Address:			Following is a fist of samples rec Please verify information listed.

Estimated Cost: Per Sample 2 2 2 2	Sample Sample 25 20 20 20 20 20 20 20 20 20 20 20 20 20	Para- Meth Cost Per meter No Sample 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Para- Meth Cost Per meter No Sample 2004 Per 100 Sample 200 Per 100 Sa	Para- Meth Cost Per meter No Sample 200 200 200 200 200 200 200 200 200 20	per s	8	8		
Cost Pe Sample 78	Semple 25	meter No Sample	Para- Meth Cost Pe meter No Sample 25 Per Mo Sample 25 Pe	Para- Meth Cost Per meter No Sample	Estimated Extended Costs	375	235,00		
		Para- Meth No Modelin No McCol	Para Meth Mo No Full RN SN ST	Para Meth No Lab Arcia	mated st Per mple	35	8/52		
	No No	Meder Meder Mark Mark Mark	Pera- meter #100 / 100 /	Para- meter # 1/10/6	<u> </u>	1	4		· ·

#Bottles per

Sample

AHI ID NO

SMO/CLIENT SAMPLE ID:

If there are discrepancies, contact ARI Lab Contact

sample

0

NOTE Unless arrangements for storage/archiving are made for this project, water samples will be disposed of 60 days (VOA waters 30 days) after sample receipt. (Opened vojatile waters will be disposed of after analysis). Soil samples will be disposed of 90 days after sample receipt (VOA soils will be 60 days).

COO COO ARI (06/1/80)

TOTAL

3 February 1992

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Maltby Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: #21199-032 Trans. Mountain/Laurel Stn.;

ARI Job #9880

Dear David:

Please find enclosed the results and original chain-of-custody report for the above referenced project. Two samples arrived in good condition on 1/27/92, and the analysis proceeded without incident.

If you have any questions or need further information, please feel free to call any time. I can be reached at the number above, or direct at 340-2867, ext. 117, where you can also leave a message if I'm not available.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stedemoeller Project Coordinator

KAS/ks

Enclosures

cc: file#9880

CHAIN-OF-CUSTODY RECORD

WHITE COPY - Original (Accompanies Samples) YELLOW COPY - Collector PINK COPY - Project Manager

Boring Sample Sample Sample Container Type Co	Total Number Of Containers Laboratory Mote Number
0-15 1130 sir 202 class	
9->	
RELINGUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature) LABORATORY NOTES:	
RELINOUMSHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature)	
18. S. N. N. N. S.	, , ,
DAM CONTACT: TALKING MUNITON PHONE: 12 1014 PROJECT TALKS MUNINAIN	 - -
INWINGE LOCATION LAWING HATION BULLY LAWIN	
الہ	7

TOTAL PETROLEUM HYDROCARBONS WA HCID Method by GC/FID

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

QC Report No: 9880-Dames & Moore

Project: 21199-032

Trans. Mtn.

VTSR: 01/27/92

Data Release Authorized

Matrix: Soils

Data Prepared: 2/3/92 - MAC:K kas

Date extracted: 01/28/92 Dates Analyzed: 01/28/92

Lab ID	Client Sample ID	Dilution Factor	Petroleum Hydrocarbons †	TPH ID *	Surrogate Recovery
9880 MB	Method Blank	-	10 U	-	57.7%
9880 A	SSX-6-7	1 -	10 U	No	58.8%
9880 B	SSX-6-15	-	10 U	No	60.6%

Surrogate is Me-Arachidate.

Values reported in ppm (mg/Kg).

- U Indicates compound was analyzed for but not detected at the given detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- * In the opinion of the analyst, was there a pattern match for diesel or gasoline.
- † Value based on total peaks in the range from Toluene to C24.
- NR Indicates the surrogate was not recovered due to dilution or matrix effect.

31 January 1992

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Maltby Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: #21199-032 Trans. Mountain/Laurel Stn.;
ARI Job #9884

Dear David

Please find enclosed the results and original chain-of-custody report for the above referenced project. One sample arrived in good condition on 1/28/92, and analyses proceeded without incident. The 418.1 results were faxed to you 1/29/92, the BETX earlier today.

If you have any questions or need further information, please feel free to call any time. I can be reached at the number above, or direct at 340-2867, ext. 117, where you can also leave a message if I'm not available.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Coordinator

KAS/ks

Enclosures

cc: file#9884

DAMES & MOORE SEATTLE

FEB 03 1992

CHAIN-OF-CUSTODY RECORI

TWHITE COPY-Original (Accompanies Samples) YELLOW COPY-CALLANT PINIX COPY 1/39/83 8:37

DAMES & MOORE 500 Market Place Tower 2025 First Avenue 2025 First Avenue 2026 First	D&M CONTACT:PHONE:	LABORATORY CONTACT:	ANALYTICAL LABORATORY:	RELINQUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature)	RELINQUISHED BY: (Signature) PATE/TIME RECEIVED BY: (Signature) RECEIVED BY: (Signature)	(Simplification) DATE (TIME							Will to NE ICCE WARK 2-40 MILLION X	NA 1200 MAY 1-1 DIMBA	Sample Sample Container Type Soft Soft Soft Soft Soft Soft Soft Soft	
COLLECTOR IMIN, WAR MAS DATE OF COLLECTION 1/27/92		24199032	A.R.T. # 9884		JABORATORY NOTES: J. P. R. T. 1/28/92 11:45			The first of the f	Files 1/31/93: NO	129/92 9-27 Prose	Kiter Ingrid W.		2		Series Se	JOPT - Original (

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

TOTAL PETROLEUM HYDROCARBONS by IR Scan Modified EPA Method 418.1

Matrix: Water

Project: 21199032

Trans Mountain

QC Report No: 9884 -

Dames & Moore

VTSR: 01/28/92

Data Release Authorized 1/mm /3 / Afr

Data Prepared: 01/29/92 -MAC:PJW

Date Prepared: 01/29/92 Date of Analysis: 01/29/92

		Dilution	
Lab ID	Client Sample ID	Factor	TPH (ppm)
9884 MB	METHOD BLANK	1	1 U
9884 A	TW170	1	1 U

Values reported in ppm (mg/L).

Indicates compound was analyzed for but not detected at the given detection limit.

ORGANICS ANALYSIS DATA SHEET BTEX by Method 602/8020

Matrix: Water Level: Low Project No: 211 99 032

Trans Mtn.

QC Report No: 9884-Dames & Moore

VTSR: 01/28/92

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

Data Release Authorized: Dam B. P. Report prepared: 01/30/92 - MAC:C PAT

Instrumen	t ID: GC/PID	Sample No.	Method Blk	TW 170	TW 170 DUPL.
		ARI ID	0129MB	9884A	9884ADUP
		Date Analyzed	01/29/92	01/29/92	01/29/92
		Amt Analyzed	5.0 ml	5.0 ml	5.0 ml
CAS Num	ber	Units	μg/L	μg/L	μg/L
71-43-2	Benzene		1.0 U	14	15
108-88-3	Toluene		1.0 U	16	16
100-41-4	Ethylbenzene		1.0 U	1.0 U	1.0 U
1330-20-7	Total Xylenes		2.0 U	7.3	7.6
		Trifluorotoluene	93.0%	97.5%	103%
		Bromobenzene	89.7%	98.0%	106%

Value	If the result is a value greater than or equal	В	This flag is used when the analyte is found
	to the detection limit, report the value.		in the blank as well as a sample. Indicates
	•		possible/probable blank contamination.
Ü	Indicates compound was analyzed for but		

not detected at the given detection limit.

K This flag is used when quantitated value falls above the limit of the calibration curve and dilution should be run.

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Maltby
Dames & Moore
500 Market Place Tower
2025 First Avenue
Seattle, WA 98121

RE: Client Project: #21199-032 Trans. Mountain/Laurel Stn.;

ARI Job #9903

Dear David:

Please find enclosed the results and original chain-of-custody report for the above referenced project. Five samples arrived in good condition on 1/30/92, and the analysis proceeded without incident.

If you have any questions or need further information, please feel free to call any time. I can be reached at the number above, or direct at 340-2867, ext. 117, where you can also leave a message if I'm not available.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Coordinator

KAS/ks

·Enclosures

cc: file#9903

CHAIN-OF-CUSTODY RECORD

WHITE, COPY - Original (Accompanies Samples) YELLOW COPY - Collector PINK COPY - Project Manager

500 Market Place Tower 2025 First Avenue Seattle, Washington 98121 (206) 728-0744 Fax No. 706) 448-70	D&M CONTACT:	ABORATORY CONTACT:	analytical laboratory: $ABT \cdot T$	RELINQUISHED BY: (Signature) DATE/TIME	RELINQUISHED BY: (Signature) DATE/TIME	TELINOUISHED BY: (Signature) DATE/TIME							TIP BANK 1000 "	W 20-03-14 030 V	WED-12-14 MID (SWEOX-C-33 DY60 11	23	Boring or Well Sample Number Number Depth Time Type
DAMES & MOORE 500 Market Place Tower 2025 First Avenue Seattle, Washington 98121 (206) 728-0744 Fay No. (206) 448-7004	PHONE:		Terry Ader	ME RECEIVED BY: (Signature)	P.O.S Live Levin									4.			2- 40 ml. vails	Container Type
OF	y SWELL	_			Standond two worms time							7	7-7-1	2	X	× / / / / / / / / / / / / / / / / / / /	200	Cotal Number of Containers
															1		1	_aboratory

TOTAL GASOLINE RANGE HYDROCARBONS WA TPHG Method by GC/FID

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

QC Report No: 9903-Dames & Moore

Project: 21199-032

Trans Mountain

VTSR: 01/30/92

Matrix: Waters

Data Release Authorized

Data Prepared: 02/03/92 - MAC:C PAI

Date Extracted: 01/30/92
Date Analyzed: 01/30/92

		Dilution	Gasoline Range		Surrogate	Surrogate
Lab ID	Client Sample ID	Factor	Hydrocarbons †	Gas ID *	Α	В
9903 MB	Method Blank	1	0.25 U	No	85.8%	- 80.4%
9903 A	SWRO-C-33	1	0.25 U	No	91.7%	89.6%
9903 A DUP	SWRO-C-33 DUPL.	1 1	0.25 U	No	92.4%	89.7%
9903 B	SWRO-X-C-33	1	0.25 U	No	92.0%	89.6%
9903 C	SWRO-D2-14	1	0.25 U	No	95.6%	94.8%
9903 D	SWRO-D3-14	1	0.25 U	No	87.3%	84,9%
9903 E	Trip Blank	1	0.25 U	No	87.1%	82.5%

Surrogate A = Trifluorotoluene Surrogate B = Bromobenzene

Values reported in ppm (mg/L).

- U Indicates compound was analyzed for but not detected at the given detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- * In the opinion of the analyst, was there a pattern match for gasoline.
- † Value based on total peaks in the range from Toluene to Dodecane.

12 February 1992

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Maltby Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: #21199-032 Trans. Mountain/Laurel Stn.;

ARI Job #9954

Dear David:

Please find enclosed the results and original chain-of-custody report for the above referenced project. Four samples and a trip blank arrived in good condition on 2/6/92, and the analyses proceeded without incident. Results of the tph-418.1 analysis were faxed to you on 2/10/92.

If you have any questions or need further information, please feel free to call any time. I can be reached at the number above, or direct at 340-2867, ext. 117, where you can also leave a message if I'm not available.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Coordinator

KAS/ks

Enclosures

cc: file#9954

DAMES & MOORE SEATTLE

FEB 13 1992

Maraline Range Hydrocartons

500 Market Place Tower 2025 First Avenue Seattle, Washington 98121 2007 1738-0744 Fax No. (200) 448-7994	D&M CONTACT: DAVID MALTA PHONE: 7280744	ANALYTICAL LABORATORY: ANALYTICAL LABORATORY:	RELINQUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature)	RELINQUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature) RELINQUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature)					PRT-2692 10:10. V 2×10m1+11+1 X			SWR0-102-15 9:40 "	H20 2440 m/ NOA	Boring or Vell Sample Sample Sample Number Number Depth Time Type Container Type	_
LAURI	PROJECT TRANS MOUNTAIN SHEET OF		9,B,I. 9954	LABORATORY NOTES: STO TURNAROUND					X 3	2	\(\times \)	× 2	2	COLOR SOLO SOLO SOLO SOLO SOLO SOLO SOLO	COPY - Original (

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

QC Report No: 9954-Dames & Moore

Project: 21199-032

Trans Mtn.

VTSR: 02/06/92

TOTAL GASOLINE RANGE HYDROCARBONS WA TPHG Method by GC/FID

Data Release Authorized

Matrix: Waters

Data Prepared: 02/11/92 - MAC: RPR

Date Extracted: 02/09/92 Date Analyzed: 02/09/92

La	b ID	Client Sample ID	Dilution Factor	Gasoline Range Hydrocarbons †	Gas ID *	Surrogate A	Surrogate B
9954	MB-0209	Method Blank	NA	0.25 U	No	91.7%	88.9%
9954	Α	SWRO - C 34	NA	0.25 U	No	93.0%	91.7%
9954	A Dup	SWRO - C 34	NA	0.25 U	No	93.5%	91.4%
9954	В	SWRO - D2 - 15	NA	0.25 U	No	81.5%	63.4%
9954	С	SW50 - D3 - 15	NA	0.25 U	No	93.7%	89.5%
9954	D	Trip Blank	NA	0.25 U	No	89.2%	87.8%

Surrogate A = Trifluorotoluene Surrogate B = Bromobenzene

Values reported in ppm (mg/kg).

- U Indicates compound was analyzed for but not detected at the given detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- * In the opinion of the analyst, was there a pattern match for gasoline.
- † Value based on total peaks in the range from Toluene to Dodecane.

ORGANICS ANALYSIS DATA SHEET BETX by Method 602/8020

Matrix: Water Level: Low Project No: 21199-032

Trans Mtn.

QC Report No: 9954-Dames & Moore

VTSR: 2/6/92

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

Data Release Authorized: _

Report prepared: 02/11/92 - MAC: RER

Instrumen	t ID: GC/PID	Sample No.	Method Blk	Trip Blank	PRT-2692
		ARI ID	MB-0209	9954 - D	9954 - E
		Date Analyzed	2/9/92	2/10/92	2/9/92
		Amt Analyzed	5.0 ml	5.0 ml	5.0 ml
CAS Num	ber	Units	μg/L	μg/L	μg/L
71-43-2	Benzene		1.0 U	1.0 U	1.0 U
108-88-3	Toluene		1.0 U	1.0 U	1.0 U
100-41-4	Ethylbenzene		1.0 U	1.0 U	1.0 U
1330-20-7	Total Xylenes		2.0 U	2.0 U	2.0 U
		Trifluorotoluene	95.4%	96.8%	91.8%
		Bromobenzene	87.2%	69.0%	87.6%

Value	If the result is a value greater than or equal	В	This flag is used when the analyte is found
	to the detection limit, report the value.		in the blank as well as a sample. Indicates
			possible/probable blank contamination.
U	Indicates compound was analyzed for but		
	not detected at the given detection limit.	K	This flag is used when quantitated value
			falls above the limit of the calibration
NR	Analysis not required.		curve and dilution should be run.

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

TOTAL PETROLEUM HYDROCARBONS by IR Scan **Modified EPA Method 418.1**

Matrix: Water

Project: 21199-032

Trans Mountain

QC Report No: 9954 -

Dames & Moore

VTSR: 02/06/92

Data Release Authorized

Data Prepared: 02/10/92 -MAC:PJW

Date Prepared: 02/07/92 Date of Analysis: 02/07/92

Dilution

Lab ID	Client Sample ID	Factor	TPH (ppm)
9954 MB	METHOD BLANK	1	1 U
9954 E	PRT-2692	1	1 U

Values reported in ppm (mg/L).

Indicates compound was analyzed for but not detected at the given detection limit.

25 February 1992

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Maltby Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: #21199-032 Trans Mtn.:

ARI Job #9991

Dear David:

Please find enclosed the results and original chain-of-custody report for the above referenced project. Four samples and a trip blank arrived in good condition on 2/14/92, and the analyses proceeded without incident.

If you have any questions or need further information, please feel free to call any time. I can be reached at the number above, or direct at 340-2867, ext. 117, where you can also leave a message if I'm not available.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Coordinator

KAS/ks

Enclosures

cc: file#9991

CHAIN-OF-CUSTODY RECORD

WHITE COPY - Original (Accompanies Samples) YELLOW COPY - Collector PINK COPY - Project Manager

PHONE: (200744) DORE		RELINQUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature)	RELINCUISHED BY: (Signature) RELINCUISHED BY: (Signature) PATE/TIME RECEIVED BY: (Signature) RELINCUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature)				Trip Blank poor 40 ma vias	5.55	10:45 1-196% ander	7(30) 10:35 (50) no physic.	10:00	the 40 rul vial	Boring or Sample Sample Sample Sample Number Number Depth Time Type Container Type Solve S
Pump faction; Bellivations Pare of collection 2/13/6	2/199 027	A.R.T. # 9991	LABORATORY NOTES:				2	x	***	<	(×	7 2	Section of

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

Final Report Laboratory Analysis of Selected Parameters

Matrix: _ WATER Data Release Authorized: Noculous Report Prepared: February 25, 1992

			DATE OF ANALYSIS				
Sample	e Data	•	2/14/92				
			Turbidity				
Lab ID		Sample Number	(NTU)				
9991	D	T-180	> 200				

Method Blank Analysis:

Sample Number	Turbidity (NTU)
Method Blank 1	0.10
Detection Limit	0.10

Duplicate Analysis:

	(NTU)
Original	> 200
Duplicate	> 200
RSD	•

Turbidity determined with a HACH Ratio Nephelometer calibrated against Formazin standards.

Project No: 21199-032

QC Report No: DAMES & MOORE-9991 Date Received: 2/14/92

TOTAL GASOLINE RANGE HYDROCARBONS WA TPHG Method by GC/FID

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

QC Report No: 9991-Dames & Moore

Project: 21199-032

Trans Mtn.

VTSR: 02/14/92

Matrix: Waters

Data Release Authorized

Data Prepared: 2/21/92 - MAC:K kas

Date Analyzed: 02/18/92

		Dilution	Gasoline Range		Surrogate	Surrogate
Lab ID	Client Sample ID	Factor	Hydrocarbons †	Gas ID *	Α	В
9991 MB	Method Blank	_	0.25 U	No	89.4%	86.6%
9991 A	SWRO-C35	-	0.25 U	No	86.5%	83.6%
9991 Adup	SWRO-C35 duplicate	-	0.25 U	No	85.7%	82.9%
9991 B	SWRO-D2-16	-	0.25 U	No	85.8%	81.8%
9991 C	SWRO-D3-16	-	0.25 U	No	86.6%	82.5%
9991 E	Trip Blank	-	0.25 U	No	86.0%	83.7%

Surrogate A = Trifluorotoluene Surrogate B = Bromobenzene

Values reported in ppm (mg/L).

- U Indicates compound was analyzed for but not detected at the given detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- * In the opinion of the analyst, there was a pattern match for gasoline (yes or no).
- † Value based on total peaks in the range from Toluene to Dodecane.

ORGANICS ANALYSIS DATA SHEET - Method 602/8020 BETX by GC-PID

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

Matrix: Water Level: Low

Data Release Authorized:

Report prepared: 2/21/92 - MAC:K kas

QC Report No: 9991-Dames & Moore

Project No: 21199-032

Trans Mtn.

Date Received: 2/14/92

			Method		Trip
		Sample No.	Blank	T180	Blank
		ARI ID	MB0218	9991D	9991E
		Date Analyzed	02/19/92	02/19/92	02/19/92
		Amt Analyzed	5.0 mls	5.0 mls	5.0 mls
CAS Num	ber	Units	μg/L	μg/L	μg/L
71-43-2	Benzene		1.0 U	1.0 U	1.0 U
108-88-3	Toluene		1.0 U	1.0 U	1.0 U
100-41-4	Ethylbenzene		1.0 U	1.0 U	1.0 U
1330-20-7	Total Xylenes		2.0 U	2.0 U	2.0 U

Surrogate Recoveries

Tan Ogaio Rootiono			
Trifluorotoluene	108%	97.6%	99.5%
Bromobenzene	100%	82.4%	95.3%

Data Reporting Qualifiers

Value If the result is a value greater than or equal to the detection limit, report the value.

- B This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
- U Indicates compound was analyzed for but not detected at the given detection limit.
- J Indicates an estimated value when result is less than specified detection limit.

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

TOTAL PETROLEUM HYDROCARBONS by IR Scan Modified EPA Method 418.1

Matrix: Water

Project: 21199-032

Trans Mountain

QC Report No: 9991 -

Dames & Moore

VTSR: 02/14/92

Data Release Authorized

Data Prepared: 02/18/92 -MAC:PJW

Date Prepared: 02/18/92

Date of Analysis: 02/18/92

Dilution

Lab ID	Client Sample ID	Factor	TPH (ppm)
9991 MB	METHOD BLANK	1	1 U
9991 D	T180	1	1.2

Values reported in ppm (mg/L).

Indicates compound was analyzed for but not detected at the given detection limit.

28 July 1993

DAMES & MOORE SEATTLE JUL 2 9 1993 ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Raubvogel Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: #21199-032-005 Trans. Mtn. Characterization; ARI Job #E367, E367 II, E367 III, E367 IV

Dear David:

Please find enclosed the results and original chain-of-custody (COC) record for samples from the above referenced project. Thirteen soil samples were received on 7/12/93, in good condition and with no discrepancies between the COC and sample container labels. The HCID and BETX analyses proceeded without incident of note, and these results were reported to you verbally and/or faxed to you as they became available.

At your request on 7/19, three samples were relogged into the laboratory for PAH analysis and one for TCLP Metals. Five additional samples were relogged into the laboratory on 7/20 for TCLP Metals. All analyses were without incident, and these results were also reported to you verbally as soon as they became available.

A matrix spike and matrix spike duplicate were analyzed for the HCID and BETX parameters; recovery reports are included as documentation. A metals duplicate and matrix spike were analyzed, and recovery/RPD reports are included as well. Blank spikes were extracted and/or analyzed with these samples for the BETX and PAH parameters, and recovery reports are included as additional QC documentation for the project.

A copy of these results and all raw data will be kept on file by ARI should you require any additional information or copies of the paperwork. Also, if you have questions, please feel free to call me any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Coordinator 206-340-2866 ext. 117

Enclosures cc: file#E367

DAMES & MOORE

ARI# E377

Chain of Custody

Date 1 /17493 Page 1 of

500 Market Place Tower • 2025 First Avenue • Seattle, Washington 98121 • (206) 728-0744

) 3 Just Provided Sp2/2 5/7 Number of Containers * 7 3 7 7 Sample Receipt Total no. of containers: Chain of custody seals: Rec'd good condition/cold: Conforms to record: Beibl Comments/ Instructions SEC Lab number: (Date)_//2/ (8) **EP TOX Metals** Metals (13) Priority Pollutant Analysis Request 9:43 Received by (fab): (Company) (Printed) 12/33 (Time). UTPH-HCID Sig. 0808/809 Pesticides/PCBs (Printed) David M. WELHSLEY (Company) DAMES + MERRIS Hydrocarbons 610/8310 (Date) 7, Polycyclic Aromatic BTX 602/8015 625/8270 (GC/MS) Base/Neutral/Acids (Sig) La Car MUN 37 EX 6414 (Time) 9:23 Relinquished by: Aromatic Volatiles 0108/108 Halogenated Volatiles 954/8540 (GC/WS) Volatile Organics F3R WPPH-6, WT74-D, WTTPH-4/(8) Matrix 7/9/93 15:44 5016 Project Manager: משנים המתומטבר Special Instructions/Comments: Analyse IF TPH RESMITS Project Number: 21199-632-655 2,26 Time 16.30 (5:35 19:35 10:45 11:45 B 0:0 50,19 20,10 5021 16:32 のけまし まとろ 5 Turn around time: STAN DUCE CONTA CI Date Sampler's Initials: এন্দ্ৰ Sampler's Signature: 🊜 🕹 - Dup Imm5010TELY PLSC 4-2-DUP Laboratory: (II Pcsc4-4-6-8 P. Sec. 4- 2- D 囟 M > 576RA PPM Œ PCSC-4-3-C 255-5-1-A PCSC-5-4-D -1-4-x50d PC56-5-3-PLSL - 5-2-2 Sample ID アムラン・サード Pesc-5-5-Pese-11-5-RESULTS. 3-4-7536 BASED

TOTAL PETROLEUM HYDROCARBONS WA HCID Method by GC/FID

Matrix: Soil

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North

QC Report No: E367-Dames & Moore Seattle, WA 98109-5187

(206) 621-6490

Project: 21199-032-005

(206) 621-7523 (FAX)

Trans Mtn Characterization

Data Release Authorized_ Data Prepared: 07/20/93 MAC:kas

VTSR: 07/12/93

Date extracted: 07/14/93

Laula ID	Olioni Samonio ID	Date Analyzed	Dilution	Gas	Diesei	Oil Range°	Surrogate Recovery
Lab ID	Client Sample ID	Analyzed	Factor	Range†	Range*		
E367 MB	Method Blank	07/15/93	-	20 U	25 U	50 U	111%
E367 A	PCSC-4-1-B	07/16/93	-	58	210	78	118%
E367 B	PCSC-4-2-D	07/16/93	-	20 U	37	50 U	117%
E367 C	PCSC-4-3-C	07/16/93	10	7200	22000	7800	105%
E367 D	PCSC-4-4-A	07/16/93	-	75	400	290	108%
E367 E	PCSC-4-5-C	07/16/93	-	20 U	25 U	50 U	111%
E367 F	PCSC-4-6-B	07/16/93	-	20 U	25 U	50 U	118%
E367 G	PCSC-5-1-A	07/16/93	-	2300	7100 X	2200	96.3%
E367 GdI	PCSC-5-1-A	07/16/93	10	2400	7500	2800	107%
E367 H	PCSC-5-2-C	07/16/93	-	440	1500	660	122%
E367 I	PCSC-5-3-B	07/16/93	-	570	1700	68	139%
E367 J	PCSC-5-4-D	07/16/93	-	1700	5100 X	1800	120%
E367 Jdl	PCSC-5-4-D	07/16/93	10	1500	4400	2100	133%
E367 K	PCSC-5-5-B	07/16/93	-	450	1200	360	118%
E367 L	PCSC-4-2-DUP	07/16/93	-	53	130	110	115%
E367 M	PCSC-4-6-DUP	07/16/93	-	20 U	430	320	93.5%

Surrogate is Me-Arachidate. Values reported in ppm (mg/Kg).

- U Indicates compound was analyzed for but not detected at the given detection limit.
- Indicates a value above the linear range of the detector. Dilution required. Х
- Indicates an estimated value when the value is less than the calculated detection limit. J
- S Indicates no value reported due to saturation of the detector. Dilution required.
- Indicates that surrogate was not detected because of dilution of the extract. D
- Indicates a probable value which is unable to be confirmed due to matrix interference. С
- Indicates no recovery due to matrix interference and/or dilution. NR
- Value based on total peaks in the range from Toluene to C12. t
- Value based on total peaks in the range from C12 to C24.
- Value based on total peaks in the range from C24 to C32.

Analytical Chemists &

Consultants 333 Ninth Ave. North

Seattle, WA 98109-5187 (206) 621-6490

TPH MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

ARI Job I.D.: E367K

Matrix: Soil

Data Release Authorized: \underline{P}

Report: 07/20/93 MAC:kas

Sample No: PCSC-5-5-B

(206) 621-7523 (FAX) QC Report No: E367-Dames & Moore

Project: 21199-032-005

Trans Mtn Characterizaiton

	SPIKE ADDED	SAMPLE CONC	MS CONC	MS REC	QC Limits
COMPOUND	(mg/Kg)	(mg/Kg)	(mg/Kg)		
Diesel	597	1240	1750	85.4%	50-150

	SPIKE ADDED	MSD CONC	MSD REC	RPD	•	C mits
COMPOUND	(mg/Kg)	(mg/Kg)	,		RPD	REC
Diesel	592	1520	47.3% *	57% *	50	50-150

Spike Recovery: 1 out of 2 outside limits

Asterisked values outside advisory QC Limits

Comments: MSD Recovery and RPD outside limits

due to hydrocarbon concentration in the unspiked sample.

ORGANICS ANALYSIS DATA SHEET BETX Method by GC/PID

Matrix: Soil

Consultants 333 Ninth Ave. North Seattle, WA 98109-5187

ANALYTICAL RESOURCES INCORPORATED

(206) 621-6490 (206) 621-7523 (FAX)

Analytical Chemists &

QC Report No: E367 - D & M Project: 21199-032-005

Trans. Mtn. Char.

Data Release Authorized:

Report: 07/23/93

VTSR: 07/12/93

	••		Method	Method	Method	PCSC-4-	PCSC-4-	PCSC-4-
		Sample No.	Blank	Blank 2	Blank	1-B	2-D	3-C
		ARI ID	MB0716	MB20716	MB0719	E367A	E367B	E367C
		Date Analyzed	07/16/93	07/17/93	07/19/93	07/17/93	07/17/93	07/17/93
•		Amt Analyzed	0.1 g	0.1 g	0.1 g	0.083 g	0.088 g	0.080 g
		Dilution	_	-	_	-	-	-
CAS Numb	ber	Units	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg
71-43-2	Benzene		50 U	50 U	50 U	60 U	57 U	1200
108-88-3	Toluene		50 U	50 U	50 U	. 60 U	57 U	18000 X
100-41-4	Ethylbenzene	•	50 U	50 U	50 U	60 U	160	12000 X
1330-20-7	Total Xylenes		100 U	100 U	100 U	110 J	190	47000 X
		Trifluorotoluene	94.4%	91.0%	99.1%	92.5%	99.2%	95.5%
•		Bromobenzene	89.7%	91.0%	96.7%	102%	113%	∍NR

		PCSC-4-	PCSC-4-	PCSC-4-	PCSC-4-	PCSC-5-	PCSC-5-
	Sample No.	3-C Dil.	4-A	5-C	6-B	1-A	1-A Dil.
	ARI ID	E367CDIL	E367D	E367E	E367F	E367G	E367GDIL
	Date Analyzed	07/19/93	07/17/93	07/17/93	07/17/93	07/17/93	07/19/93
•	Amt Analyzed	0.080 g	0.084 g	0.084 g	0.082 g	0.082 g	0.082 g
	Dilution	1:10	-	-	-	-	1:10
CAS Number	Units	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg
.71-43-2 Benzene		1200	60 U	60 U	61 U	1200	1500
108-88-3 Toluene		21000	60 U	60 U	61 U	4400	5500
100-41-4 Ethylbenzene		12000	60 U	60 U	61 U	1800	2100
1330-20-7 Total Xylenes		52000	120 U	120 U	120 U	17000 X	19000
	Trifluorotoluene	98.0%	92.0%	91.8%	85.3%	96.8%	96.2%
	Bromobenzene	104%	94.6%	92.5%	86.7%	125%	98.5%

- U Indicates the compound was undetected at the reported detection limit.
- J Indicates an estimated value when the value is less than the calculated detection limit.
- Χ Indicates a value above the linear range of the detector. Dilution required.
- S Indicates no value reported due to saturation of the detector. Dilution required.
- D Indicates that surrogate was not detected because of dilution of the extract.
- С Indicates a probable value which is unable to be confirmed due to matrix interference.
- NR Indicates no recovery due to matrix interference and/or dilution.

ORGANICS ANALYSIS DATA SHEET BETX Method by GC/PID

Matrix: Soil

Data Release Authorized:

Report:

07/23/93

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

QC Report No: E367 - D & M

Project: 21199-032-005

Trans, Mtn. Char.

VTSR: 07/12/93

•							
		PCSC-5-	PCSC-5-	PCSC-5-	PCSC-5-	PCSC-5-	PCSC-5-
	Sample No.	2-C	3-B	· 4-D	4-D Dil.	5-B	5-C Dup.
	ARI ID	E367H	E367I	E367J	E367JDIL	E367K	E367KDUP
•	Date Analyzed	07/17/93	07/17/93	07/17/93	07/19/93	07/17/93	07/19/93
	Amt Analyzed	0.079 g	0.076 g	0.076 g	0.076 g	0.078 g	0.078 g
	Dilution	-	=	•	1:10	_	-
CAS Number	Units	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg
71-43-2 Benzene		910	1700	5400	6300	110	140
108-88-3 Toluene		1300	6800	16000 X	17000	150 U	150
100-41-4 Ethylbenzen	9	1600	2500	5100	4700	2000	2100
1330-20-7 Total Xylene	S	13000	22000	39000 X	39000	6600	6500
	Trifluorotoluene	94.4%	98.8%	94.1%	95.5%	92.6%	95.8%
	Bromobenzene	NR	NR	114%	96.5%	124%	NR

- U Indicates the compound was undetected at the reported detection limit.
- J Indicates an estimated value when the value is less than the calculated detection limit.
- Χ Indicates a value above the linear range of the detector. Dilution required.
- S Indicates no value reported due to saturation of the detector. Dilution required.
- D Indicates that surrogate was not detected because of dilution of the extract.
- С Indicates a probable value which is unable to be confirmed due to matrix interference.
- NR Indicates no recovery due to matrix interference and/or dilution.

ORGANICS ANALYSIS DATA SHEET - Method 602/8020 GC/PID FOR BETX

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

Matrix: Soil

Client Project No: Trans Mtn.

•

Data Release Authorized: Distribution Report prepared: 07/20/93 MAC:X Jji

QC Report No: E367II - Dames & Moore

VTSR: 07/12/93

		Sample No.	Method Blank	Method Blank	PCSL-4-2-Dup	PCSL-4-6-Dup
		ARI ID	MB 7/13	MB#2 7/13	E367L	E367M
		Date Analyzed	07/13/93	07/14/93	07/14/93	07/14/93
		Amt Analyzed	0.1 g	0.1 g	0.087 g	0.081 g
CAS Numb	oer "	Units	μg/Kg	μg/Kg	μg/Kg	μg/Kg
71-43-2	Benzene		50 U	50 U	57 U	62 U
108-88-3	Toluene		50 U	50 U	57 U	62 U
100-41-4	Ethylbenzer	ne	50 U	50 U	99	62 U
1330-20-7	Total Xylene	es	100 U	100 U	180	120 U
		Trifluorotoluene	96.6%	104%	91.0%	87.8%
		Bromobenzene	96.8%	111%	109%	96.1%

- U Indicates the compound was undetected at the reported detection limit.
- J Indicates an estimated value when the value is less than the calculated detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- S Indicates no value reported due to saturation of the detector. Dilution required.
- D Indicates that surrogate was not detected because of dilution of the extract.
- C Indicates a probable value which is unable to be confirmed due to matrix interference.
- NR Indicates no recovery due to matrix interference and/or dilution.

BETX MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

ANALYTICAL RESOURCES **INCORPORATED**

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187

Sample No: PCSC-4-6-B (206) 621-6490 QC Report No: E357 - D & M (206) 621-7523 (FAX) Project: 21199-032-005

> Trans. Mtn. Char. VTSR: 07/12/93

Lab ID: E367F Matrix: Soil

Data Release Authorized: _ Report: 07/23/93

COMPOUND	SPIKE ADDED (µg/Kg)	SAMPLE CONC (µg/Kg)	MS CONC (μg/Kg)	MS REC
Benzene	1250	0	1280	102%
Toluene	1250	0	1290	103%
Ethylbenzene	1250	0	1280	102%
Total Xylenes	3750	0	3870	103%

COMPOUND	SPIKE ADDED (µg/Kg)	MSD CONC (µg/Kg)	MSD REC	RPD
Benzene	1250	1360	109%	6.6%
Toluene	1250	1360	109%	5.7%
Ethylbenzene	1250	1360	109%	6.6%
Total Xylenes	3750	4090	109%	5.7%

Surrogate rec.	TFT	ВВ
MS	90.2%	93.1%
MSD	88.9%	92.7%

Comments:

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

BETX BLANK SPIKE RECOVERY

Matrix: Soil

QC Report No: E367 - D & M

Project: 21199-032-005

Trans. Mtn. Char.

Data Release Authorized:

Report: 07/23/93 MAC:ctr

Date Extracted: 07/16/93 Date Analyzed: 07/16/93

COMPOUND	SPIKE ADDED (µg/Kg)	SPIKE CONC (µg/Kg)	SPIKE REC	QC LIMITS
Benzene	1250	1250	100%	66-142
Toluene	1250	1240	99.2%	59-139
Ethylbenzene	1250	1230	98.4%	NA
Total Xylenes	3750	3680	98.1%	NA

	Surrogate rec.	QC Limits
Trifluorotoluene	96.9%	75-118
Bromobenzene	97.8%	66-124

Spike Recovery: 0 out of 2 outside limits Surrogate Recovery: 0 out of 2 outside limits

Asterisked values outside QC Limits

Comments: NA - indicates no QC Limits established for these compounds

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

BETX BLANK SPIKE DUPLICATE RECOVERY

Matrix: Soil

QC Report No: E367 - D & M

Project: 21199-032-005

Trans. Mtn. Char.

Data Release Authorized:

Report: 07/23/93 MAC:ctr

Date Extracted: 07/16/93 Date Analyzed: 07/16/93

COMPOUND	SPIKE ADDED (µg/Kg)	SPIKE CONC (µg/Kg)	SPIKE REC	QC LIMITS
Benzene	1250	1230	98.4%	66-142
Toluene	1250	1230	98.4%	59-139
Ethylbenzene	1250	1240	99.2%	NA
Total Xylenes	3750	3710	98.9%	NA

	Surrogate rec.	QC Limits
Trifluorotoluene	92.8%	75-118
Bromobenzene	95.0%	66-124

Spike Recovery: 0 out of 2 outside limits

Surrogate Recovery: 0 out of 2 outside limits

Asterisked values outside QC Limits

Comments: NA - indicates no QC Limits established for these compounds

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

BETX BLANK SPIKE RECOVERY #2

Matrix: Soil

QC Report No: E367 - D & M

Project: 21199-032-005

Trans. Mtn. Char.

Data Release Authorized:

Report:

07/23/93 MAC:ctr

Date Extracted: 07/16/93 Date Analyzed: 07/17/93

COMPOUND	SPIKE ADDED (µg/Kg)	SPIKE CONC (µg/Kg)	SPIKE REC	QC LIMITS
Benzene	1250	1230	98.4%	66-142
Toluene	1250	1230	98.4%	59-139
Ethylbenzene	1250	1220	97.6%	NA
Total Xylenes	3750	3700	98.7%	NA

	Surrogate rec.	QC Limits
Trifluorotoluene	90.2%	75-118
Bromobenzene	93.5%	66-124

Spike Recovery: 0 out of 2 outside limits Surrogate Recovery: 0 out of 2 outside limits

Asterisked values outside QC Limits

Comments: NA - indicates no QC Limits established for these compounds

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

BETX BLANK SPIKE DUPLICATE RECOVERY

#2

Matrix: Soil

QC Report No: E367 - D & M

Project: 21199-032-005

Trans. Mtn. Char.

Data Release Authorized: f

Report: 07/23/93 MAC:ctr

Date Extracted: 07/16/93

Date Analyzed: 07/17/93

COMPOUND	SPIKE ADDED (µg/Kg)	SPIKE CONC (µg/Kg)	SPIKE REC	QC LIMITS
Benzene	1250	1230	98.4%	66-142
Toluene	1250	1240	99.2%	59-139
Ethylbenzene	1250	1240	99.2%	NA
Total Xylenes	3750	3740	99.7%	NA

	Surrogate rec.	QC Limits
Trifluorotoluene	92.7%	75-118
Bromobenzene	96.0%	66-124

Spike Recovery: 0 out of 2 outside limits Surrogate Recovery: 0 out of 2 outside limits

Asterisked values outside QC Limits

Comments: NA - indicates no QC Limits established for these compounds

EXPLANATION OF INORGANIC DATA REPORT CODES

The columns labeled 'PREP', 'C', and 'M' contain important information about your analyses. The codes are defined below.

PREPARATION CODES

These 3-letter codes describe methods used to prepare samples for analysis:

111000	or letter codes describe methods used to prepar
AEN	USEPA, Metals in air filters
AHM	ARI, Mercury in air filters
AHN	ARI, Metals in air filters
ANN	NIOSH 7300, Metals in air filters
CAN	AOAC (1984) 25.024, Metals in earthenware
DE6	EPA 600/4-79-020 218.5, Cr(VI) in water
DMM	DMN followed by TMM, Dissolved mercury
DMN	Filtered through .45u filter, Dissolved metals
EW6	EWN followed by DE6
EWM	EWN followed by TMM
EWN	USEPA SW-846 1310, EP Toxicity
FHP	ARI, Metals in tissue (HNO ₃ /HClO ₄)
FPP	PSEP, Metals in tissue (HNO ₃ /HClO ₄)
FRM	Journal, Mercury in tissue
FRN	Journal, Metals in tissue (HNO ₃ /H ₂ O ₂)
KRN	ARI, Concentration by coprecipitation
LEM	USEPA, TCLP followed by TMM
LEN	USEPA, TCLP Extraction
MHM	ARI, Mercury in miscellaneous materials
MHN	ARI, Metals in miscellaneous materials
OAM	ARI, Mercury in oil, grease or tar
∧	

C USEPA SW-846 3005
USEPA CLP, Soil digestion, HCl matrix
USEPA CLP, Mercury in soil
USEPA CLP, Soil digestion, HNO3 matrix
EPA 600/4-79-020 245.5, Mercury in soil
ARI, Metals in soil, HF digestion
Agronomy, Metals in soil, Water extract
1 SMN followed by DMM, Dissolved mercury
Standard Methods 302C, Sb/Sn in soil
Standard Methods 302C, Soil digestion
Standard Methods 302C, Ti in soil
USEPA SW-846 3060, Cr(VI) in soil
USEPA SW-846 3050, HCl matrix
USEPA SW-846 3050, HNO ₃ matrix
PSEP/PSDDA, Microwave, Total acid digestion
EPA 600/4-79-020 4.1.3, HCl matrix
EPA 600/4-79-020 272.1, Silver in water
EPA 600/4-79-020 200.7 and 9.3
EPA 600/4-79-020 4.1.3, HNO ₃ matrix
ARI, Silver in photographic solutions
EPA 600/4-79-020 245.1, Mercury in water
Standard Methods 302C, Sb/Sn in water
Standard Methods 302D
Standard Methods 302E, Ti in water
USEPA SW-846 3010, HCl matrix
USEPA SW-846 7760, Silver in water
USEPA SW-846 3020, HNO ₃ matrix
I EPA 600/4-79-020, Preserved, undigested water

Standard Methods 302B

CONCENTRATION CODES

REC EPA 600/4-79-020 4.1.4, HCl matrix

EPA 600/4-79-020 200.7 and 9.4 REN EPA 600/4-79-020 4.1.4, HNO₃ matrix

OAN ARI, Metals in oil, grease or tar

RCC USEPA CLP, Water digestion, HCl matrix RCN USEPA CLP, Water digestion, HNO₃ matrix

PHM ARI, Mercury in wipes PHN ARI, Metals in wipes

RMA EPA 600/4-79-020 206.2

REI

These codes are used to qualify reported concentrations:

No analyte was detected. The reported value is the lower limit of detection.

METHOD CODES

These codes signify the instrumental technique used for analysis:

CVA Cold Vapor Atomic Absorption Spectrophotometry Flame Atomic Absorption Spectrophotometry

GFA Graphite Furnace Atomic Absorption Spectrophotometry ICP Inductively Coupled Plasma Atomic Emission Spectrometry

ID number: PCSC-4-3-C

Project: 21199-032-005

Description:

Sampled:

Received: 07/19/93

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490

Analytical

Chemists &

Consultants

(206) 621-7523 (FAX)

% Solids: 0.00

Matrix: Soil

Client: Dames & Moore

Contact: Dave Raubvogel

ARI job number: E367

ARI Sample number: C

Released by:

RESULTS ANALYTICAL

CAS Number	Analyte	Concentration	С	LOD	Prep	м	Analyzed
7440-38-2	Arsenic	0.05 mg/L	ט	0.05	LEN	ICP	07/21/93
7440-39-3	Barium	0.801 mg/L		0.001	LEN	ICP	07/21/93
7440-43-9	Cadmium	0.002 mg/L	U	0.002	LEN	ICP	07/21/93
7440-47-3	Chromium	0.005 mg/L	U	0.005	LEN	ICP	07/21/93
7439-92-1	Lead	0.02 mg/L	U	0.02	LEN	ICP	07/21/93
7439-97-6	Mercury	0.0001 mg/L	U	0.0001	LEM	CVA	07/22/93
7782-49-2	Selenium	0.05 mg/L	U	0.05	LEN	ICP ·	07/21/93
7440-22-4	Silver	0.003 mg/L	U	0.003	LEN	ICP	07/21/93

ARI job number: E367 ARI Sample number: CDUP

number: CDUP

Client: Dames & Moore

Contact: Dave Raubvogel

Matrix: Soil

ID number: PCSC-4-3-C

Project: 21199-032-005

Description: Laboratory Duplicate

Sampled: /

Received: 07/19/93

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490

(206) 621-7523 (FAX)

% Solids: 0.00

Released by:

/

ANALYTICAL RESULTS

CAS Number	Analyte	Concentration	С	LOD	Prep	М	Analyzed
7440-38-2	Arsenic	0.05 mg/L	ט	0.05	LEN	ICP	07/21/93
7440-39-3	Barium	0.791 mg/L		0.001	LEN	ICP	07/21/93
7440-43-9	Cadmium	0.002 mg/L	ט	0.002	LEN	ICP	07/21/93
7440-47-3	Chromium	0.005 mg/L		0.005	LEN	ICP	07/21/93
7439-92-1	Lead	0.02 mg/L	U	0.02	LEN	ICP	07/21/93
7439-97-6	Mercury	0.0001 mg/L	ט	0.0001	LEM	CVA	07/22/93
7782-49-2	Selenium	0.05 mg/L	υ	0.05	LEN	ICP	07/21/93
7440-22-4	Silver	0.003 mg/L	Ü	0.003	LEN	ICP	07/21/93

Matrix Duplicate Quality Control Report

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

Client: Dames & Moore

Client's sample ID: PCSC-4-3-C ARI sample ID: E367 CDUP

Units: mg/L

Analyte	Meth	Original Sample	Matrix Duplicate	RPD	Control Limit	Q
Arsenic Barium Cadmium Chromium Lead	ICP ICP ICP ICP	U 0.05 0.801 U 0.002 U 0.005 U 0.02	U 0.05 0.791 U 0.002 U 0.005 U 0.02	0.0 1.3 0.0 0.0	± 0.05 ± 20 % ± 0.002 ± 0.005 ± 0.02	L L L
Mercury Selenium Silver	CVA ICP ICP	U 0.0001 U 0.05 U 0.003	U 0.0001 U 0.05 U 0.003	0.0 0.0 0.0	±0.0001 ± 0.05 ± 0.003	L L

RPD = Relative Percent Difference

'Q' codes: '*' = control limit not met

'L' = RPD not valid, alternate limit = ± detection limit

ID number: PCSC-4-3-C

Project: 21199-032-005

Description: Matrix Spike

Sampled: / /

Received: 07/19/93

Chemists & Consultants

Analytical

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490

(206) 621-7523 (FAX)

% Solids: 0.00

Matrix: Soil

Client: Dames & Moore

Contact: Dave Raubvogel

ARI job number: E367

ARI Sample number: CSPK

Released by:

ANALYTICAL

RESULTS

CAS Number	Analyte	Concentration	С	LOD	Prep	М	Analyzed
7440-38-2	Arsenic	5.27 mg/L		0.05	LEN	ICP	07/21/93
7440-39-3	Barium	5.81 mg/L		0.001	LEN	ICP	07/21/93
7440-43-9	Cadmium	1.01 mg/L		0.002	LEN	ICP	07/21/93
7440-47-3	Chromium	4.92 mg/L		0.005	LEN	ICP	07/21/93
7439-92-1	Lead	4.93 mg/L		0.02	LEN	ICP	07/21/93
7439-97-6	Mercury	0.0008 mg/L		0.0001	LEM	CVA	07/22/93
7782-49-2	Selenium	1.13 mg/L		0.05	LEN	ICP	07/21/93
7440-22-4	Silver	0.907 mg/L		0.003	LEN	ICP	07/21/93

Matrix Spike Quality Control Report

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

Client: Dames & Moore

Client's sample ID: PCSC-4-3-C ARI sample ID: E367 CSPK

Units: mg/L

Analyte	Meth	Sample	Matrix Spike	Spike Added	%R	Control Limit	Q
Arsenic Barium Cadmium Chromium Lead	ICP ICP ICP ICP	0 0.801 0 0	5.27 5.81 1.01 4.92 4.93	5.00 5.00 1.00 5.00 5.00	105.4 100.2 101.0 98.4 98.6	75-125% 75-125% 75-125% 75-125% 75-125%	
Mercury Selenium Silver	CVA ICP ICP	0 0 0	0.0008 1.13 0.907	0.0010 1.00 1.000	80.0 113.0 90.7	75-125% 75-125% 75-125%	

%R = Percent Recovery

'Q' codes: 'N' = control limit not met

'H' = %R not applicable, sample concentration too high

ARI job number: E367 ARI Sample number: G

Client: Dames & Moore Contact: Dave Raubvogel

Matrix: Soil

ID number: PCSC-5-1-A

Project: 21199-032-005

Description:

Sampled:

Sampled: / /
Received: 07/20/93

333 Ninth Ave. North Seattle, WA 98109-5187

Analytical

Chemists &

Consultants

(206) 621-6490

(206) 621-7523 (FAX)

% Solids: 0.00

Released by:

ANALYTICAL RESULTS

CAS Number	Analyte	Concentration	C	LOD	Prep	м	Analyzed
7440-38-2	Arsenic	0.05 mg/L	U	0.05	LEN	ICP	07/24/93
7440-39-3	Barium	1.03 mg/L		0.001	LEN	ICP	07/24/93
7440-43-9	Cadmium	0.002 mg/L	υ	0.002	LEN	ICP	07/24/93
7440-47-3	Chromium	0.005 mg/L	ט	0.005	LEN	ICP	07/24/93
7439-92-1	Lead	0.02 mg/L	Ū	0.02	LEN	ICP	07/24/93
7439-97-6	Mercury	0.0001 mg/L	Ū	0.0001	LEM	CVA	07/26/93
7782-49-2	Selenium	0.05 mg/L	U	0.05	LEN	ICP	07/24/93
7440-22-4	Silver	0.003 mg/L	U	0.003	LEN	ICP	07/24/93

ARI job number: E367 ARI Sample number: GDUP

> Client: Dames & Moore Contact: Dave Raubvogel

Matrix: Soil

% Solids: 0.00

ID number: PCSC-5-1-A

Project: 21199-032-005

Description: Laboratory Duplicate

Sampled:

Received: 07/20/93

Consultants 333 Ninth Ave. North

Seattle, WA 98109-5187 (206) 621-6490

Analytical

Chemists &

(206) 621-7523 (FAX)

RE/SULTS ANALYTICAL

Released by:

CAS Number	Analyte	Concentration	С	LOD	Prep	М	Analyzed
7.440-38-2	Arsenic	0.05 mg/L	U	0.05	LEN	ICP	07/27/93
7440-39-3	Barium	1.09 mg/L		0.001	LEN	ICP	07/27/93
7440-43-9	Cadmium	0.002 mg/L	U	0.002	LEN	ICP	07/27/93
7440-47-3	Chromium	0.005 mg/L	U	0.005	LEN	ICP	07/27/93
7439-92-1	Lead	0.02 mg/L	U	0.02	LEN	ICP	07/27/93
7439-97-6	Mercury	0.0001 mg/L	ט	0.0001	LEM	CVA	07/26/93
7782-49-2	Selenium	0.05 mg/L	U	0.05	LEN	ICP	07/27/93
7440-22-4	Silver	0.003 mg/L	U	0.003	LEN	ICP	07/27/93

Matrix Duplicate Quality Control Report

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

Client: Dames & Moore

Client's sample ID: PCSC-5-1-A ARI sample ID: E367 GDUP

Units: mg/L

Analyte	Meth	Original Sample	Matrix Duplicate	RPD	Control Limit	Q
Arsenic Barium Cadmium Chromium Lead	ICP ICP ICP ICP ICP	U 0.05 1.03 U 0.002 U 0.005 U 0.02	U 0.05 1.09 U 0.002 U 0.005 U 0.02	0.0 5.7 0.0 0.0	± 0.05 ± 20 % ± 0.002 ± 0.005 ± 0.02	L L L
Mercury Selenium Silver	CVA ICP ICP	U 0.0001 U 0.05 U 0.003	U 0.0001 U 0.05 U 0.003	0.0 0.0 0.0	±0.0001 ± 0.05 ± 0.003	L L L

RPD = Relative Percent Difference

'Q' codes: '*' = control limit not met

'L' = RPD not valid, alternate limit = ± detection limit

ARI job number: E367 ARI Sample number: GSPK

Client: Dames & Moore

Contact: Dave Raubvogel

Matrix: Soil

% Solids: 0.00

ID number: PCSC-5-1-A

Project: 21199-032-005

Description: Matrix Spike Sampled: / /

Received: 07/20/93

Released by:

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490

(206) 621-7523 (FAX)

ANALYTICAL RES/ULTS

ſ	CAS Number	Analyte	Concentration	С	LOD	Prep	М	Analyzed
	7440-38-2	Arsenic	5.22 mg/L		0.05	LEN	ICP	07/24/93
	7440-39-3	Barium	5.95 mg/L		0.001	LEN	ICP	07/24/93
	7440-43-9	Cadmium	1.00 mg/L		0.002	LEN	ICP	07/24/93
l	7440-47-3	Chromium	4.92 mg/L		0.005	LEN	ICP	07/24/93
l	7439-92-1	Lead	4.74 mg/L		0.02	LEN	ICP	07/24/93
	7439-97-6	Mercury	0.0010 mg/L		0.0001	LEM	CVA	07/26/93
l	7782-49-2	Selenium	1.07 mg/L		0.05	LEN	ICP	07/24/93
	7440-22-4	Silver	0.907 mg/L		0.003	LEN	ICP	07/24/93

Matrix Spike Quality Control Report

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

Client: Dames & Moore

Client's sample ID: PCSC-5-1-A ARI sample ID: E367 GSPK

Units: mg/L

Analyte	Meth	Sample	Matrix Spike	Spike Added	%R	Control Limit	Q
Arsenic Barium Cadmium Chromium Lead	ICP ICP ICP ICP	0 1.03 0 0	5.22 5.95 1.00 4.92 4.74	5.00 5.00 1.00 5.00 5.00	104.4 98.4 100.0 98.4 94.8	75-125% 75-125% 75-125% 75-125% 75-125%	
Mercury Selenium Silver	CVA ICP ICP	0 0 0	0.0010 1.07 0.907	0.0010 1.00 1.000	100.0 107.0 90.7	75-125% 75-125% 75-125%	

%R = Percent Recovery

'Q' codes: 'N' = control limit not met

'H' = %R not applicable, sample concentration too high

ARI job number: E367

ARI Sample number: H

Client: Dames & Moore

Contact: Dave Raubvogel Matrix: Soil

% Solids: 0.00

ID number: PCSC-5-2-C

Project: 21199-032-005

Description:

Sampled: / /

Received: 07/20/93

Released by:

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490

(206) 621-7523 (FAX)

ANALYTICAL REGULTS

CAS Number	Analyte	Concentration	С	LOD	Prep	М	Analyzed
7440-38-2	Arsenic	0.05 mg/L	U	0.05	LEN	ICP	07/24/93
7440-39-3	Barium	0.931 mg/L	·	0.001	LEN	ICP	07/24/93
7440-43-9	Cadmium	0.002 mg/L	U.	0.002	LEN	ICP	07/24/93
7440-47-3	Chromium	0.005 mg/L	υ	0.005	LEN	ICP	07/24/93
7439-92-1	Lead	0.02 mg/L	U	0.02	LEN	ICP	07/24/93
7439-97-6	Mercury	0.0001 mg/L	U	0.0001	LEM	CVA	07/26/93
7782-49-2	Selenium	0.05 mg/L	. ប	0.05	LEN	ICP	07/24/93
7440-22-4	Silver	0.003 mg/L	U	0.003	LEN	ICP	07/24/93

ARI job number: E367

ARI Sample number: I

Client: Dames & Moore

Contact: Dave Raubvogel

Matrix: Soil

% Solids: 0.00

ID number: PCSC-5-3-B

Project: 21199-032-005

Description:

Sampled:

Received: 07/20/93

Released by:

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490

(206) 621-7523 (FAX)

ANALYTICAL

RESULTS

CAS Number	Analyte	Concentration	С	LOD	Prep	М	Analyzed
7440-38-2	Arsenic	0.05 mg/L	U	0.05	LEN	ICP	07/24/93
7440-39-3	Barium	0.842 mg/L		0.001	LEN	ICP	07/24/93
7440-43-9	Cadmium	0.002 mg/L	U	0.002	LEN	ICP	07/24/93
7440-47-3	Chromium	0.005 mg/L	ט	0.005	LEN	ICP	07/24/93
7439-92-1	Lead	0.02 mg/L	ט	0.02	LEN	ICP	07/24/93
7439-97-6	Mercury	0.0001 mg/L	Ū	0.0001	LEM	CVA	07/26/93
7782-49-2	Selenium	0.05 mg/L	U	0.05	LEN	ICP	07/24/93
7440-22-4	Silver	0.003 mg/L	U	0.003	LEN	ICP	07/24/93
1 1		1	l l	i	1	1	L

Analytical

Chemists &

Consultants

ID number: PCSC-5-4-D

Project: 21199-032-005

Description:

Sampled:

Received: 07/20/93

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490

(206) 621-7523 (FAX)

% Solids: 0.00

Matrix: Soil

Client: Dames & Moore

Contact: Dave Raubvogel

ARI job number: E367

ARI Sample number: J

Released by:

RESULTS ANALYTICAL

CAS Number	Analyte	Concentration	С	LOD	Prep	М	Analyzed
7440-38-2	Arsenic	0.05 mg/L	U	0.05	LEN	ICP	07/24/93
7440-39-3	Barium	1.18 mg/L		0.001	LEN	ICP	07/24/93
7440-43-9	Cadmium	0.002 mg/L	U	0.002	LEN	ICP	07/24/93
7440-47-3	Chromium	0.005 mg/L	U	0.005	LEN	ICP	07/24/93
7439-92-1	Lead	0.02 mg/L	U	0.02	LEN	ICP	07/24/93
7439-97-6	Mercury	0.0001 mg/L	Ū	0.0001	LEM	CVA	07/26/93
7782-49-2	Selenium	0.05 mg/L	U	0.05	LEN	ICP	07/24/93
7440-22-4	Silver	0.003 mg/L	U	0.003	LEN	ICP	07/24/93

ID number: PCSC-5-5-B

Project: 21199-032-005

RESULTS

0.003

LEN

Description:

Sampled: / /

Received: 07/20/93

Seattle, WA 98109-5187 (206) 621-6490

07/24/93

ICP

Analytical

Chemists &

Consultants

(206) 621-7523 (FAX)

333 Ninth Ave. North

Released by:

% Solids: 0.00

Matrix: Soil

Client: Dames & Moore

Contact: Dave Raubvogel

Silver

ARI job number: E367

ARI Sample number: K

7440-22-4

ANALYTICAL

0.003 mg/L

CAS Number	Analyte	Concentration	С	LOD	Prep	М	Analyzed
7440-38-2	Arsenic	0.05 mg/L	U	0.05	LEN	ICP	07/24/93
7440-39-3	Barium	0.714 mg/L		0.001	LEN	ICP .	07/24/93
7440-43-9	Cadmium	0.002 mg/L	U	0.002	LEN	ICP	07/24/93
7440-47-3	Chromium	0.005 mg/L	ט	0.005	LEN	ICP	07/24/93
7439-92-1	Lead	0.02 mg/L	ט	0.02	LEN	ICP	07/24/93
7439-97-6	Mercury	0.0001 mg/L	U	0.0001	LEM	CVA	07/26/93
7782-49-2	Selenium	0.05 mg/L	יט	0.05	LEN	ICP	07/24/93

ARI job number: E367

ARI Sample number: MB

Client: Dames & Moore

Contact: Dave Raubvogel

Matrix: Soil

ID number:

Project: 21199-032-005

Description: Method Blank

Sampled:

Received:

Consultants 333 Ninth Ave. North

Analytical

Chemists &

Seattle, WA 98109-5187 (206) 621-6490

(206) 621-7523 (FAX)

% Solids: 0.00

Released by:

ANALYTICAL RESULTS

							•
CAS Number	Analyte	Concentration	С	LOD	Prep	М	Analyzed
7440-38-2	Arsenic	0.05 mg/L	U	0.05	LEN	ICP	07/21/93
7440-39-3	Barium	0.241 mg/L		0.001	LEN	ICP	07/21/93
7440-43-9	Cadmium	0.002 mg/L	U	0.002	LEN	ICP	07/21/93
7440-47-3	Chromium	0.005 mg/L	U	0.005	LEN	ICP	07/21/93
7439-92-1	Lead	0.02 mg/L	U	0.02	LEN	ICP	07/21/93
7439-97-6	Mercury	0.0001 mg/L	U	0.0001	LEM	CVA	07/22/93
7782-49-2	Selenium	0.05 mg/L	υ	0.05	LEN	ICP	07/21/93
7440-22-4	Silver	0.003 mg/L	U	0.003	LEN	ICP	07/21/93

ARI job number: E367 ARI Sample number: MB2

Client: Dames & Moore Contact: Dave Raubvogel

Matrix: Soil

% Solids: 0.00

ID number:

Project: 21199-032-005

Description: Method Blank

Sampled: / /
Received: / /

Released by:

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490

(206) 621-7523 (FAX)

ANALYTICAL RE/SULTS

CAS Number	Analyte	Concentration	С	LOD	Prep	М	Analyzed
7440-38-2	Arsenic	0.05 mg/L	Ü	0.05	LEN	ICP	07/24/93
7440-39-3	Barium	0.033 mg/L		0.001	LEN	ICP	07/24/93
7440-43-9	Cadmium	0.002 mg/L	บ	0.002	LEN	ICP	07/24/93
7440-47-3	Chromium	0.005 mg/L	υ	0.005	LEN	ICP	07/24/93
7439-92-1	Lead	0.02 mg/L	ט	0.02	LEN	ICP	07/24/93
7439-97-6	Mercury	0.0001 mg/L	ט	0.0001	LEM	CVA	07/26/93
7782-49-2	Selenium	0.05 mg/L	U	0.05	LEN	ICP	07/24/93
7440-22-4	Silver	0.003 mg/L	υ	0.003	LEN	ICP	07/24/93

Analytical Chemists & Consultants

ORGANICS ANALYSIS DATA SHEET

PNAs by GC/MS

Sample ID: E367mbs

Matrix: Solls/Sediments

Date Release Authorized:

Report: 07/27/93 MAC: sk

Date extracted: 07/21/93

Analyzed (FINN 4): 07/26/93

GPC Clean-up: Yes

Final Volume: 2.0 mL

Sample No: Method Blank

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490

(206) 621-7523 (FAX)

QC Report No: E367 - Dames & Moore

Project No: 21199-032-005

Trans Mtn. Characterization

VTSR: NA

Sample Wt: 15.0 g (Dry Weight Equiv.)

Percent Moisture: NA

pH: NA

Conc/Dilution: 1 to 1

CAS Number	μg/Kg	
91-20-3	Naphthalene	130 U
91-57-6	2-Methylnaphthalene	130 U

,,,		
91-57-6	2-Methylnaphthalene	130 U
208-96-8	Acenaphthylene	130 U
83-32-9	Acenaphthene	130 U
132-64-9	Dibenzofuran	130 U
86-73-7	Fluorene	130 U
85-01-8	Phenanthrene	130 U
120-12-7	Anthracene	130 U
206-44-0	Fluoranthene	130 U
129-00-0	Pyrene	130 U
56-55-3	Benzo(a)Anthracene	130 U
218-01-9	Chrysene	130 U
205-99-2	Benzo(b)Fluoranthene	130 U
207-08-9	Benzo(k)Fluoranthene	130 U
50-32-8	Benzo(a)Pyrene	130 U
193-39-5	Indeno(1,2,3-cd)Pyrene	130 U
53-70-3	Dibenz(a,h)Anthracene	130 U
191-24-2	Benzo(ahi)Pervlene	130 U

Base/neutral surrogate recoveries

d14-p-Terphenyl	108%
d10-Diphenyl	76.4%

Data Reporting Qualifiers

- Indicates compound was analyzed for but U not detected at the given detection limit.
- Indicates an estimated value when result is less than specified detection limit.
- Analysis not required. NR

- This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
- This flag is used when quantitated value falls above the limit of the calibration curve and dilution should be run.
- Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match parameters.

333 Ninth Ave. North

(206) 621-6490

Seattle, WA 98109-5187

(206) 621-7523 (FAX)

Analytical Chemists & Consultants

ORGANICS ANALYSIS DATA SHEET

PNAs by GC/MS Sample ID: E367G

Matrix: Soils/Sediments

Date Release Authorized:

MAC: sk Report: 07/27/93

Date extracted: 07/21/93

Analyzed (FINN 4): 07/26/93

GPC Clean-up: Yes Final Volume: 2.0 mL

Sample Wt: 12.2 g (Dry Weight)

QC Report No: E367 - Dames & Moore

Trans Mtn. Characterization

Sample No: PCSC-5-1-A

Project No: 21199-032-005

VTSR: 07/19/93

Percent Moisture: 20.3%

Conc/Dilution: 1 to 1

pH: 7.1

CAS Number	· ·	μg/Kg
91-20-3	Naphthalene	1400
91-57-6	2-Methylnaphthalene	7500
208-96-8	Acenaphthylene	160 U
83-32-9	Acenaphthene	160 U
132-64-9	Dibenzofuran	320 M
86-73-7	Fluorene	1100
85-01-8	Phenanthrene	1800
120-12-7	Anthracene	160 U
206-44-0	Fluoranthene	160 U
129-00-0	Pyrene	360
56-55-3	Benzo(a)Anthracene	160 U
218-01-9	Chrysene	720
205-99-2	Benzo(b)Fluoranthene	160 U
207-08-9	Benzo(k)Fluoranthene	160 U
50-32-8	Benzo(a)Pyrene	160 U
193-39-5	Indeno(1,2,3-cd)Pyrene	160 U
53-70-3	Dibenz(a,h)Anthracene	160 U
191-24-2	Benzo(ghl)Perylene	160 U

Base/neutral surrogate recoveries

d14-p-Terphenyl	118%
d10-Diphenyl	80.5%

Data Reporting Qualifiers

- Indicates compound was analyzed for but U not detected at the given detection limit.
- Indicates an estimated value when result is less than specified detection limit.
- NR Analysis not required.

- This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
- This flag is used when quantitated value falls above the limit of the calibration curve and dilution should be run.
- Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match parameters.

Analytical Chemists & Consultants

ORGANICS ANALYSIS DATA SHEET PNAs by GC/MS

Sample ID: E367J

Matrix: Soils/Sediments

Sample No: PCSC-5-4-D

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490 (206) 621-7523 (FAX)

QC Report No: E367 - Dames & Moore Project No: 21199-032-005

1199-002-000

Trans Mtn. Characterization

VTSR: 07/19/93

Date Release Authorized: _

Report: 07/27/93 MAC: sk

Date extracted: 07/21/93

Analyzed (FINN 4): 07/26/93

GPC Clean-up: Yes

Final Volume: 2.0 mL

Sample Wt: 11.8 g (Dry Weight)

Percent Moisture: 22.3%

pH: 7.1

Conc/Dilution: 1 to 1

CAS Number		μg/Kg
91-20-3	Naphthalene	2500
91-57-6	2-Methylnaphthalene	11000
208-96-8	Acenaphthylene	170 U
83-32-9	Acenaphthene	170 U
132-64-9	Dibenzofuran	320 M
86-73-7	Fluorene	1000
85-01-8	Phenanthrene	1900
120-12-7	Anthracene	170 U
206-44-0	Fluoranthene	360 M
129-00-0	Pyrene	520
56-55-3	Benzo(a)Anthracene	150 M
218-01-9	Chrysene	720
205-99-2	Benzo(b)Fluoranthene	
207-08-9	Benzo(k)Fluoranthene	230
50-32-8	Benzo(a)Pyrene	85 J
193-39-5	Indeno(1,2,3-cd)Pyrene	170 U
53-70-3	Dibenz(a,h)Anthracene	170 U
191-24-2	Benzo(ghi)Perylene	170 U

Base/neutral surrogate recoveries

d14-p-Terphenyl	102%
d10-Diphenyl	75.2%

Data Reporting Qualifiers

- U Indicates compound was analyzed for but not detected at the given detection limit.
- J Indicates an estimated value when result is less than specified detection limit.
- NR Analysis not required.

- B This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
- K This flag is used when quantitated value falls above the limit of the calibration curve and dilution should be run.
- M Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match parameters.

Analytical Chemists & Consultants

ORGANICS ANALYSIS DATA SHEET

PNAs by GC/MS Sample ID: E367Jdl

Matrix: Soils/Sediments

Date Release Authorized: -

Report: 07/27/93 MAC: sk

Date extracted: 07/21/93

Analyzed (FINN 4): 07/27/93

GPC Clean-up: Yes
Final Volume: 2.0 mL

218-01-9

205-99-2

Sample No: PCSC-5-4-D

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490

(206) 621-7523 (FAX)

Project No: 21199-032-005

QC Report No: E367 - Dames & Moore

Trans Mtn. Characterization

VTSR: 07/19/93

Sample Wt: 11.8 g (Dry Weight)

Percent Moisture: 22.3%

pH: 7.1

Conc/Dilution: 1 to 2

750

340 U

CAS Number	•	μg/Kg
91-20-3	Naphthalene	2500
91-57-6	2-Methylnaphthalene	11000
208-96-8	Acenaphthylene	340 U
83-32-9	Acenaphthene	340 U
132-64-9	Dibenzofuran	290 M
86-73-7	Fluòrene	1000
85-01-8	Phenanthrene	2000
120-12-7	Anthracene	340 U
206-44-0	Fluoranthene	390
129-00-0	Pyrene	560
56-55-3	Benzo(a)Anthracene	340 U

 207-08-9
 Benzo(k)Fluoranthene
 340 U

 50-32-8
 Benzo(a)Pyrene
 340 U

 193-39-5
 Indeno(1,2,3-cd)Pyrene
 340 U

 53-70-3
 Dibenz(a,h)Anthracene
 340 U

 191-24-2
 Benzo(ghi)Perylene
 340 U

Benzo(b)Fluoranthene

Chrysene[®]

Base/neutral surrogate recoveries

d14-p-Terphenyl	104%
d10-Diphenyl	78.0%

Data Reporting Qualifiers

- Value If the result is a value greater than or equal to the detection limit, report the value.
 - U Indicates compound was analyzed for but not detected at the given detection limit.
 - J Indicates an estimated value when result is less than specified detection limit.
 - NR Analysis not required.

- This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
- K This flag is used when quantitated value falls above the limit of the calibration curve and dilution should be run.
- M Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match parameters.

333 Ninth Ave. North

(206) 621-7523 (FAX)

(206) 621-6490

Seattle, WA 98109-5187

Analytical Chemists & Consultants

ORGANICS ANALYSIS DATA SHEET PNAs by GC/MS

Sample ID: E367mbmr Matrix: Soils/Sediments

Date Release Authorized:

Report: 07/27/93 MAC: sk

Date extracted: 07/21/93

Analyzed (FINN 4): 07/23/93

GPC Clean-up: No Final Volume: 2.0 mL

Sample No: Method Blank

QC Report No: E367 - Dames & Moore

Project No: 21199-032-005

Trans Mtn. Characterization

VTSR: NA

Sample Wt: 2.00 g (Dry Weight Equiv.)

Percent Moisture: NA

pH: NA

Conc/Dilution: 1 to 1

CAS Number		μg/Kg
91-20-3	Naphthalene	1 1000 U
91-57-6	2-Methylnaphthalene	1000 U
208-96-8	Acenaphthylene	1000 U
83-32-9	Acenaphthene	1000 U
132-64-9	Dibenzofuran	1000 U
86-73-7	Fluorene	1000 U
85-01-8	Phenanthrene	1000 U
120-12-7	Anthracene	1000 U
206-44-0	Fluoranthene	1000 U
129-00-0	Pyrene	1000 U
56-55-3	Benzo(a)Anthracene	1000 U
218-01-9	Chrysene	1000 U
205-99-2	Benzo(b)Fluoranthene	1000 U
207-08-9	Benzo(k)Fluoranthene	1000 U
50-32-8	Benzo(a)Pyrene	1000 U
193-39-5	Indeno(1,2,3-cd)Pyrene	1000 U
53-70-3	Dibenz(a,h)Anthracene	1000 U
191-24-2	Benzo(ghi)Perylene	1000 U

Base/neutral surrogate recoveries

d14-p-Terphenyl	114%
d10-Diphenyl	92.9%

Data Reporting Qualifiers

	to the detection limit, report the value.
U ,	Indicates compound was analyzed for but not detected at the given detection limit.
j	Indicates an estimated value when result is less than specified detection limit.
NR	Analysis not required.

Value

If the result is a value greater than or equal

- B This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
- K This flag is used when quantitated value falls above the limit of the calibration curve and dilution should be run.
- M Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match parameters.

Analytical Chemists & Consultants

ORGANICS ANALYSIS DATA SHEET

PNAs by GC/MS

Sample ID: E367C

Matrix: Soils/Sediments

Date Release Authorized:

Report: 07/27/93 MAC: sk

Date extracted: 07/21/93

Analyzed (FINN 4): 07/23/93

GPC Clean-up: No

Final Volume: 2.0 mL

Sample No: PCSC-4-3-C

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490

(206) 621-7523 (FAX)

Project No: 21199-032-005

QC Report No: E367 - Dames & Moore

Trans Mtn. Characterization

VTSR: 07/19/93

Sample Wt: 1.54 g (Dry Weight)

Percent Moisture: 22.9%

pH: 6.7

Conc/Dilution: 1 to 1

CAS Number

μg/Kg

		Partie
91-20-3	Naphthalene	8600
91-57-6	2-Methylnaphthalene	25000
208-96-8	Acenaphthylene	1300 U
83-32-9	Acenaphthene	840 M
132-64-9	Dibenzofuran	3000
86-73-7	Fluorene	3300 M
85-01-8	Phenanthrene	5700
120-12-7	Anthracene	1200 M
206-44-0	Fluoranthene	3400
129-00-0	Pyrene	3300
56-55-3	Benzo(a)Anthracene	940 J
218-01-9	Chrysene	1900
205-99-2	Benzo(b)Fluoranthene	1300 U
207-08-9	Benzo(k)Fluoranthene	1300 U
50-32-8	Benzo(a)Pyrene	1300 U
193-39-5	Indeno(1,2,3-cd)Pyrene	1300 U
53-70-3	Dibenz(a,h)Anthracene	1300 U
191-24-2	Benzo(ghi)Perylene	1300 U

Base/neutral surrogate recoveries

d14-p-Terphenyl	129%
d10-Diphenyl	98.8%

Data Reporting Qualifiers

If the result is a value greater than or equal Value to the detection limit, report the value.

U Indicates compound was analyzed for but not detected at the given detection limit.

Indicates an estimated value when result J is less than specified detection limit.

NR Analysis not required.

- This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
- This flag is used when quantitated value falls above the limit of the calibration curve and dilution should be run.
- Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match parameters.

SOIL SEMIVOLATILE BLANK SPIKE RECOVERY

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

ARI Sample ID: E367sb

Client: Dames & Moore

Project: 21199-032-005

333 Ninth Ave. North

Instrument ID: FINN 4

Trans Mtn. Characterization (206) 621-6490

Seattle, WA 98109-5187

(206) 621-7523 (FAX)

Report: MAC:sk 07/27/93

Date extracted: 07/21/93

mA

Date analyzed: 07/23/93

COMPOUND	SPIKE ADDED (µg/Kg)	SAMPLE CONC (μg/Kg)	SB CONC (µg/Kg)	SB REC	QC LIMITS REC
	3330	0	3720	112	31-137
Acenaphthene	3330	0	4550	137	NA
Fluoranthene		 	4040	121	NA .
Benzo(a)anthracene	3330	U	4040	121	

Base/neutral surrogate recoveries

d14-p-Terphenyl	127%
d10-Diphenyl	98.2%

Asterisked values outside QC Limits

Comments:

FORM III PNA (SB)

9 March 1992

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Maltby Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: #21199-032 Trans Mtn.: ARI Job #A027

Dear David:

Please find enclosed the results and original chain-of-custody report for the above referenced project. Ten samples and a trip blank arrived in good condition on 2/21/92, and the analyses proceeded without incident.

The analyst notes that samples Burn Pit #1 and Burn Pit #2 were reextracted and re-analyzed for HCID because the original results were so disparate. The second run confirmed the results of the first, so the original values are reported here.

Samples for volatile organics analysis were first extracted at medium level, which was found to give unnecessarily high detection limits. Both samples were re-run at higher concentration, and all results are reported here.

If you have any questions or need further information, please feel free to call any time. I can be reached at the number above, or direct at 340-2867, ext. 117, where you can also leave a message if I'm not available.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Coordinator

KAS/ks

Enclosures

cc: file#A027

DAMES & MOORE SEATTLE

MAR 10 1992

AXNEED Verbal Periods on T180-022092 as soon as audicula YELLOW COPY - Collector PINK COPY - Project Manager Laboratory B Of Containers g 7 3 3 M Total Number 3 Rush-72 Hr. Turn* P.B.T.# A027 SHEET DATE OF COLLECTION VENT PA FIELD NOTES Rest of anolysis - Standard turnaround time Total WHITE COPY JOHNIA (Accompanies Samples) 7 LOCATION Samel Station PROJECT / VOM Synonytas COLLECTOR DSW JTKM JOB NO.: 21199-032 LABORATORY NOTES: RECEIVED BY: (Signature) RECEIVED BY: (Signature) PHONE: 728-0744 CHAIN-OF-CUSTODY RECORD SISTIAND 500 Market Place Tower 2025 First Avenue Seattle, Washington 98121 (206) 728-0744 Fax No. (206) 448-7994 203 905 4037 105 Container Type DAMES & MOORE 3" Ring 12 anyer AND YOR = * 4,00 2/21 DATE/TIME DATE/TIME LABORATORY CONTACT: [ENN' HERED Sample Type 3 3 3 D&M CONTACT: Dave Matth ANALYTICAL LABORATORY: ARE 4 3:8 (B) T180-0220092 40 15:30 St.8 <u>ල</u> ල 90;6 RELINQUISHED BY: (Signature) RELINQUISHED BY: (Signature) 400 200 Well Sample Number Depth 24,0 Bumpit #1 Dup 419 TMB13X-341 7 SWRO D3-17 SW (50 D2-17 TMBIOK-15" TMB14K-34 TMB111 K-5' SWKDC36 TM 82 X-10' Bumpit# tro Blows poblog

DOOL

57

Note Number

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

TOTAL PETROLEUM HYDROCARBONS WA HCID Method by GC/FID

QC Report No: A027-Dames & Moore

Project: 21199-032

Trans Mtn.

VTSR: 02/21/92

Matrix: Soils/Sediments

Data Release Authorized Data Prepared: 2/26/92 - MAC:K kas

Date extracted: 02/24/92

Dates Analyzed: 02/25/92

Lab ID	Client Sample ID	Dilution Factor	Petroleum Hydrocarbons †	TPH ID *	Surrogate Recovery
A027 MB	Method Blank	- .	10 U	-	90.1%
A027 A	TMB12X-10'	† -	10 U	No	97.8%
A027 B	TMB10X-15'	_	10 U	No	103%
A027 C	TMB11X-5'	-	2000	Diesel	127%
A027 D	TMB13X-24'	 	10 U	No	90.6%
A027 E	TMB14X-34'		20	Diesel	93.6%
	Burn Pit #1	 	170	Diesel	91.8%
A027 F	Burn Pit #1 dup.	+	10 U	No	100%
A027 G	built Fil # 1 dap.	<u> </u>	1 .50	L	<u> </u>

Surrogate is Me-Arachidate.

Values reported in ppm (mg/Kg).

- Indicates compound was analyzed for but not detected at the given detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- In the opinion of the analyst, was there a pattern match for diesel or gasoline.
- Value based on total peaks in the range from Toluene to C24.
- NR Indicates the surrogate was not recovered due to dilution or matrix effect.

333 Ninth Ave. North

ORGANICS ANALYSIS DATA SHEET - METHOD 8270

Sample ID: Matrix: MB-0226 re

Soils/Sediments

Data Release Authorized:

Report prepared: 03/05/92 - MAC: RPR

Date Extracted: 02/26/92

Sample No: Method Blank

Analytical Chemists & Consultants

QC Report No: A027-Dames & Moore

Project No: 21199-032-Trans Mtn.

Seattle, WA 98109-5187 (206) 621-6490

VTSR: NA (206) 621-7523 (FAX) Sample Weight: 30 gm (Equiv. Dry Wt.)

%Moisture: NA

pH: NA

Final Ext. Vol.: 1.0 mls. Conc/Dilution: 1 to 1

Dale Exitacted.	02/20/72
Date Analyzed (FINN	6): 03/04/92
GPC Cleanup: N	lo(1 of 2)

CAS Numb	per	μg/Kg
108-95-2	Phenol	130 U
111-44-4	bis(2-Chloroethyl)Ether	67 U
95-57-8	2-Chlorophenol	67 U
541-73-1	1,3-Dichlorobenzene	67 U
106-46-7	1,4-Dichlorobenzene	67 U
100-51-6	Benzyl Alcohol	330 U
95-50-1	1,2-Dichlorobenzene	67 U
95-48-7	2-Methylphenol	67 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	67 U
106-44-5	4-Methylphenol	67 U
621-64-7	N-Nitroso-Di-n-Propylamine	67 U
67-72-1	Hexachloroethane	130 U
98-95-3	Nitrobenzene	67 U
78-59-1	Isophorone	67 U
88-75-5	2-Nitrophenol	330 U
105-67-9	2,4-Dimethylphenol	130 U
65-85-0	Benzoic Acid	670 U
111-91-1	bis(2-Chloroethoxy)Methane	67 U
120-83-2	2,4-Dichlorophenol	200 U
120-82-1	1,2,4-Trichlorobenzene	67 U
91-20-3	Naphthalene	67 U
106-47-8	4-Chloroaniline	200 U
87-68-3	Hexachlorobutadiene	130 U
59-50-7	4-Chloro-3-Methylphenol	130 U
91-57-6	2-Methylnaphthalene	67 U
77-47-4	Hexachlorocyclopentadiene	330 U
88-06-2	2,4,6-Trichlorophenol	330 U
95-95-4	2,4,5-Trichlorophenol	330 U
91-58-7	2-Chloronaphthalene	67 U
88-74-4	2-Nitroaniline	330 U
131-11-3	Dimethyl Phthalate	67 U
208-96-8	Acenaphthylene	67 U
99-09-2	3-Nitroaniline	330 U

*Base/neutral surrogate recoveries

2	
d5-Nitrobenzene	67.0%
2-Fluorobiphenyl	55.2%
d14-p-Terphenyl	80.3%
d4 1,2-Dichlorobenzene	62.8%

CAS Numb	er	μg/Kg
83-32-9	Acenaphthene	67 U
51-28-5	2,4-Dinitrophenol	670 U
100-02-7	4-Nitrophenol	330 U
132-64-9	Dibenzofuran	67 U
121-14-2	2,4-Dinitrotoluene	330 U
606-20-2	2,6-Dinitrotoluene	330 U
84-66-2	Diethylphthalate	67 U
7005-72-3	4-Chlorophenyl-phenylether	67 U
86-73-7	Fluorene	67 U
100-01-6	4-Nitroaniline	330 U
534-52-1	4,6-Dinitro-2-Methylphenol	670 U
86-30-6	N-Nitrosodiphenylamine(1)	67 U
101-55-3	4-Bromophenyl-phenylether	67 U
118-74-1	Hexachlorobenzene	67 U
87-86-5	Pentachlorophenol	330 U
85-01-8	Phenanthrene	67 U
86-74-8	Carbazole	67 U
120-12-7	Anthracene	67 U
84-74-2	Di-n-Butylphthalate	67 U
206-44-0	Fluoranthene	67 U
129-00-0	Pyrene	67 U
85-68-7	Butylbenzylphthalate	67 U
91-94-1	3,3'-Dichlorobenzidine	330 U
56-55-3	Benzo(a)Anthracene	67 U
117-81-7	bis(2-Ethylhexyl)Phthalate	67 U
218-01-9	Chrysene	67 U
117-84-0	Di-n-Octyl Phthalate	67 U
205-99-2	Benzo(b)Fluoranthene	67 U
207-08-9	Benzo(k)Fluoranthene	67 U
50-32-8	Benzo(a)Pyrene	67 U
193-39-5	Indeno(1,2,3-cd)Pyrene	67 U
53-70-3	Dibenz(a,h)Anthracene	67 U
191-24-2	Benzo(ghi)Perylene	67 U
	be senarated from diphenylan	

(1) Cannot be separated from diphenylamine

*Acid surrogate recoveries

Acid sullogate recoveries	•
d5-Phenol	51.2%
2-Fluorophenol	53.1%
2,4,6-Tribromophenol	42.4%
d4 2-Chlorophenol	59.6%

Sample No: Burn Pit #1

%Moisture: 18.0

Final Ext. Vol.: 2.0 mls.

Conc/Dilution: 1 to 1

pH: 6.38

QC Report No: A027-Dames & Moore

VTSR: 02/21/92

Project No: 21199-032-Trans Mtn.

Sample Weight: 29.1 gm (Dry Wt.)

ANALYTICAL RESOURCES

INCORPORATED

Analytical Chemists &

Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANICS ANALYSIS DATA SHEET - METHOD 8270

Sample ID:

A027 - F re

Soils/Sediments Matrix:

Data Release Authorized: _ Report prepared: 03/05/92 - MAC: RPR

> Date Extracted: 02/26/92 Date Analyzed (FINN 6): 03/04/92 GPC Cleanup: No (1 of 2)

CAS Numb	per i	µg/Кg
108-95-2	Phenol	140 U
111-44-4	bis(2-Chloroethyl)Ether	69 U
95-57-8	2-Chlorophenol	69 U
541-73-1	1,3-Dichlorobenzene	69 U
106-46-7	1,4-Dichlorobenzene	69 U
100-51-6	Benzyl Alcohol	340 U
95-50-1	1,2-Dichlorobenzene	69 U
95-48-7	2-Methylphenol	69 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	69 U
106-44-5	4-Methylphenol	69 U
621-64-7	N-Nitroso-Di-n-Propylamine	69 U
67-72-1	Hexachloroethane	140 U
98-95-3	Nitrobenzene	69 U
78-59-1	Isophorone	69 U
88-75-5	2-Nitrophenol	340 U
105-67-9	2,4-Dimethylphenol	140 U
65-85-0	Benzoic Acid	690 U
111-91-1	bis(2-Chloroethoxy)Methane	69 U
120-83-2	2,4-Dichlorophenol	210 U
120-82-1	1,2,4-Trichlorobenzene	69 U
91-20-3	Naphthalene	150
106-47-8	4-Chloroaniline	210 U
87-68-3	Hexachlorobutadiene	140 U
59-50-7	4-Chloro-3-Methylphenol	140 U
91-57-6	2-Methylnaphthalene	750
77-47-4	Hexachlorocyclopentadiene	340 U
88-06-2	2,4,6-Trichlorophenol	340 U
95-95-4	2,4,5-Trichlorophenol	340 U
91-58-7	2-Chloronaphthalene	69 U
88-74-4	2-Nitroaniline	340 U
131-11-3	Dimethyl Phthalate	69 U
208-96-8	Acenaphthylene	69 U
99-09-2	3-Nitroaniline	340 U

*Rase/neutral surrogate recoveries

base/fleulial sallogate recoveries		
d5-Nitrobenzene	61.2%	
2-Fluorobiphenyl	69.0%	
d14-p-Terphenyl	74.0%	
d4 1,2-Dichlorobenzene	60.6%	

CAS Numb	er	μg/Kg
83-32-9	Acenaphthene	69 U
51-28-5	2,4-Dinitrophenol	690 U
100-02-7	4-Nitrophenol	340 U
132-64-9	Dibenzofuran	69 U
121-14-2	2.A-Dinitrotoluene	340 U
606-20-2	2,6-Dinitrotoluene	340 U
84-66-2	Diethylphthalate	69 U
7005-72-3	4-Chlorophenyl-phenylether	69 U
86-73-7	Fluorene	82 M
100-01-6	4-Nitroaniline	340 U
534-52-1	4,6-Dinitro-2-Methylphenol	690 U
86-30-6	N-Nitrosodiphenylamine(1)	200 M
101-55-3	4-Bromophenyl-phenylether	69 U
118-74-1	Hexachlorobenzene	69 U
87-86-5	Pentachlorophenol	340 U
85-01-8	Phenanthrene	180
86-74-8	Carbazole	69 U
120-12-7	Anthracene	69 U
84-74-2	Di-n-Butylphthalate	69 U
206-44-0	Fluoranthene	67 J
129-00-0	Pyrene	77
85-68-7	Butylbenzylphthalate	69 U
91-94-1	3,3'-Dichlorobenzidine	340 U
56-55-3	Benzo(a)Anthracene	69 U
117-81-7	bis(2-Ethylhexyl)Phthalate	69 U
218-01-9	Chrysene	55 J
117-84-0	Di-n-Octyl Phthalate	69 U
205-99-2	Benzo(b)Fluoranthene	69 U
207-08-9	Benzo(k)Fluoranthene	69 U
50-32-8	Benzo(a)Pyrene	69 U
193-39-5	Indeno(1,2,3-cd)Pyrene	69 U
53-70-3	Dibenz(a,h)Anthracene	69 U
191-24-2	Benzo(ghi)Perylene	69 U

(1) Cannot be separated from diphenylamine

*Acia surrogate recoveries	
d5-Phenol	56.2%
2-Fluorophenol	49.6%
2,4,6-Tribromophenol	68.3%
d4 2-Chlorophenol	62.1%

ncorpora nalytical

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANICS ANALYSIS DATA SHEET - METHOD 8270

Sample ID: Matrix: A027 - G re Soils/Sediments

Report prepared: 03/05/92 - MAC: RPR

Date Extracted: 02/26/92 Date Analyzed (FINN 6): 03/04/92 GPC Cleanup: No (1 of 2) Sample Weight: 26.9 gm (Dry Wt.) %Moisture: 17.9 pH: 6.70

> Final Ext. Vol.: 2.0 mls. Conc/Dilution: 1 to 1

Sample No: Burn Pit #1 Dup

VTSR: 02/21/92

QC Report No: A027-Dames & Moore

Project No: 21199-032-Trans Mtn.

CAS Numb	per	μg/Kg
108-95-2	Phenol	150 U
111-44-4	bis(2-Chloroethyl)Ether	74 U
95-57-8	2-Chlorophenol	74 Ü
541-73-1	1,3-Dichlorobenzene	74 U
106-46-7	1,4-Dichlorobenzene	74 U
100-51-6	Benzyl Alcohol	370 U
95-50-1	1,2-Dichlorobenzene	74 U
95-48-7	2-Methylphenol	74 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	74 U
106-44-5	4-Methylphenol	74 U
621-64-7	N-Nitroso-Di-n-Propylamine	74 U
67-72-1	Hexachloroethane	150 U
98-95-3	Nitrobenzene	74 U
78-59-1	Isophorone	74 U
88-75-5	2-Nitrophenol	370 U
105-67-9	2,4-Dimethylphenol	150 U
65-85-0	Benzoic Acid	740 U
111-91-1	bis(2-Chloroethoxy)Methane	74 U
120-83-2	2,4-Dichlorophenol	220 U
120-82-1	1,2,4-Trichlorobenzene	74 U
91-20-3	Naphthalene	58 J
106-47-8	4-Chloroaniline	220 U
87-68-3	Hexachlorobutadiene	150 U
59-50-7	4-Chloro-3-Methylphenol	150 U
91-57-6	2-Methylnaphthalene	260
77-47-4	Hexachlorocyclopentadiene	370 U
88-06-2	2,4,6-Trichlorophenol	370 U
95-95-4	2,4,5-Trichlorophenol	370 U
91-58-7	2-Chloronaphthalene	74 U
88-74-4	2-Nitroaniline	370 U
131-11-3	Dimethyl Phthalate	74 U
208-96-8	Acenaphthylene	74 U
99-09-2	3-Nitroaniline	370 U

*Base/neutral surrogate recoveries

base/ficalial ballogale lee	
d5-Nitrobenzene	57.8%
2-Fluorobiphenyl	62.7%
d14-p-Terphenyl	75.3%
d4 1,2-Dichlorobenzene	58.2%

CAS Numbe	er	μg/Kg
83-32-9	Acenaphthene	74 U
51-28-5	2,4-Dinitrophenol	740 U
100-02-7	4-Nitrophenol	370 U
132-64-9	Dibenzofuran	74 U
121-14-2	2,4-Dinitrotoluene	370 U
606-20-2	2,6-Dinitrotoluene	370 U
84-66-2	Diethylphthalate	74 U
7005-72-3	4-Chlorophenyl-phenylether	74 U
86-73-7	Fluorene	46 M J
100-01-6	4-Nitroaniline	370 U
534-52-1	4,6-Dinitro-2-Methylphenol	740 U
86-30-6	N-Nitrosodiphenylamine(1)	44 M J
101-55-3	4-Bromophenyl-phenylether	74 U
118-74-1	Hexachlorobenzene	74 U
87-86-5	Pentachlorophenol	370 U
85-01-8	Phenanthrene	84
86-74-8	Carbazole	74 U
120-12-7	Anthracene	74 U
84-74-2	Di-n-Butylphthalate	74 U
206-44-0	Fluoranthene	75 M
129-00-0	Pyrene	64 J
85-68-7	Butylbenzylphthalate	74 U
91-94-1	3,3'-Dichlorobenzidine	370 U
56-55-3	Benzo(a)Anthracene	74 U
117-81-7	bis(2-Ethylhexyl)Phthalate	74 U
218-01-9	Chrysene	42 M J
117-84-0	Di-n-Octyl Phthalate	74 U
205-99-2	Benzo(b)Fluoranthene	74 U
207-08-9	Benzo(k)Fluoranthene	74 U
50-32-8	Benzo(a)Pyrene	74 U
193-39-5	Indeno(1,2,3-cd)Pyrene	70 M J
53-70-3	Dibenz(a,h)Anthracene	46 M J
191-24-2	Benzo(ghi)Perylene	74 M J

(1) Cannot be separated from diphenylamine

*Acid surrogate recoveries

Acid sullogate recoveries	
d5-Phenol	51.3%
2-Fluorophenol	49.4%
2,4,6-Tribromophenol	66.5%
d4 2-Chlorophenol	57.5%

ORGANICS ANALYSIS DATA SHEET Volatiles by Method 624/8240

Lab ID:

0226MB

Matrix:

Soils/Sediments

Report prepared 03/05/92 - MAC:D

Instrument: FINN III Date Analyzed: 02/26/92 Sample: Method Blank

Analytical Chemists & Consultants

QC Report No: A027-Dames & Moore

Project No: 21199-032

Trans. Mtn.

VTSR: NA

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490

(206) 621-7523 (FAX)

Amount Analyzed: 5.0 gms (Equiv. Dry Weight)

Percent Moisture: NA Conc/Dil: 1:1

CAS Number		μg/Kg
74-87-3	Chloromethane	2.0 U
74-83-9	Bromomethane	2.0 U
75-01-4	Vinyl Chloride	2.0 U
75-00-3	Chloroethane	2.0 U
75-09-2	Methylene Chloride	2.0 U
67-64-1	Acetone	5.0 U
<i>75-15-0</i>	Carbon Disulfide	1.0 U
75-35-4	1,1-Dichloroethene	1.0 U
75-34-3	1,1-Dichloroethane	1.0 U
156-60-5	Trans-1,2-Dichloroethene	1.0 U
156-59-2	Cis-1,2-Dichloroethene	1.0 U
67-66-3	Chloroform	1.0 U
107-06-2	1,2-Dichloroethane	1.0 U
<i>78-93-3</i>	2-Butanone	5.0 U
71-55-6	1,1,1-Trichloroethane	1.0 U
56-23-5	Carbon Tetrachloride	1.0 U
75-27-4	Bromodichloromethane	1.0 U
75-69-4	Trichlorofluoromethane	2.0 U

CAS Number		μg/Kg
78-87-5	1,2-Dichloropropane	1.0 U
10061-02-6	Trans-1,3-Dichloropropene	1.0 U
79-01-6	Trichloroethene	1.0 U
124-48-1	Dibromochloromethane	1.0 U
79-00-5	1,1,2-Trichloroethane	1.0 U
71-43-2	Benzene	1.0 U
10061-01-5	cis-1,3-Dichloropropene	1.0 U
<i>75-25-2</i>	Bromoform	1.0 U
108-10-1	4-Methyl-2-Pentanone	5.0 U
591-78-6	2-Hexanone	5.0 U
127-18-4	Tetrachloroethene	1.0 U
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U
108-88-3	Toluene	1.0 U
108-90-7	Chlorobenzene	1.0 U
100-41-4	Ethylbenzene	1.0 U
100-42-5	Styrene	1.0 U
1330-20-7	Total Xylenes	2.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane		2.0 U

Surrogate Recoveries

d8-Toluene	106%
Bromofluorobenzene	98.3%
d4-1,2-Dichloroethane	94.3%

Data Reporting Qualifiers

- Indicates compound was analyzed for but not detected at the given detection limit.
- Indicates an estimated value when result is less than specified detection limit.
- This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
- This flag is used when quantitated value falls above the limit of the calibration curve and dilution should be run.
- Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match parameters.

ORGANICS ANALYSIS DATA SHEET Volatiles by Method 624/8240

Lab ID:

A027F

Matrix:

Soils/Sediments

Instrument, CININ III

Instrument: FINN III
Date Analyzed: 02/26/92

Sample: Burn Pit #1

QC Report No: A027-Dames & Moore

Project No: 21199-032

Trans. Mtn.

VTSR: 02/21/92

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490

(206) 621-7523 (FAX)

Amount Analyzed: .008 gms (Dry Weight)

Percent Moisture: 20.4% Conc/Dil: 1:625

CAS Number		μg/Kg
74-87-3	Chloromethane	1300.U
74-83-9	Bromomethane	1300 U
75-01-4	Vinyl Chloride	1300 U
75-00-3	Chloroethane	1300 U
75-09-2	Methylene Chloride	1300 U
67-64-1	Acetone	3100 U
75-15-0	Carbon Disulfide	630 U
75-35-4	1,1-Dichloroethene	630 U
75-34-3	1,1-Dichloroethane	630 U
156-60-5	Trans-1,2-Dichloroethene	630 U
156-59-2	Cis-1,2-Dichloroethene	630 Ų
67-66-3	Chloroform	630 U
107-06-2	1,2-Dichloroethane	630 U
78-93-3	2-Butanone	3100 U
71-55-6	1,1,1-Trichloroethane	630 U
56-23-5	Carbon Tetrachloride	630 U
75-27-4	Bromodichloromethane	630 U
75-69-4	Trichlorofluoromethane	1300 U

CAS Number		μg/Kg
78-87-5	1,2-Dichloropropane	630 U
10061-02-6	Trans-1,3-Dichloropropene	630 U
79-01-6	Trichloroethene	630 U
124-48-1	Dibromochloromethane	630 U
79-00-5	1,1,2-Trichloroethane	630 U
71-43-2	Benzene	630 U
10061-01-5	cis-1,3-Dichloropropene	630 U
75-25-2	Bromoform	630 U
108-10-1	4-Methyl-2-Pentanone	3100 U
591-78-6	2-Hexanone	3100 U
127-18-4	Tetrachloroethene	630 U
79-34-5	1,1,2,2-Tetrachloroethane	630 U
108-88-3	Toluene	630 U
108-90-7	Chlorobenzene	630 U
100-41-4	Ethylbenzene	630 U
100-42-5	Styrene	630 U
1330-20-7	Total Xylenes	1300 U
1,1,2-Trichloro-1,2,2-trifluoroethane		1300 U

Surrogate Recoveries

d8-Toluene	128%
Bromofluorobenzene	146%
d4-1,2-Dichloroethane	124%

Data Reporting Qualifiers

- U Indicates compound was analyzed for but not detected at the given detection limit.
- J Indicates an estimated value when result is less than specified detection limit.
- B This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
- K This flag is used when quantitated value falls above the limit of the calibration curve and dilution should be run.
- M Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match parameters.

ORGANICS ANALYSIS DATA SHEET Volatiles by Method 624/8240

Lab ID:

A027F RE

Matrix:

Soils/Sediments

Data Release Authorized: _

Report prepared 03/05/92 - MAC:D

Instrument: FINN III
Date Analyzed: 02/26/92

Sample: Burn Pit #1

Rerun

QC Report No: A027-Dames & Moore

Project No: 21199-032

Trans. Mtn.

VTSR: 02/21/92

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490

(206) 621-7523 (FAX)

Amount Analyzed: .032 gms (Dry Weight)

Percent Moisture: 20.4% Conc/Dil: 1:156

CAS Number		μg/Kg
74-87-3	Chloromethane	310 U
74-83-9	Bromomethane	310 U
75-01-4	Vinyl Chloride	310 U
75-00-3	Chloroethane	310 U
75-09-2	Methylene Chloride	310 U
67-64-1	Acetone	780 U
75-15-0	Carbon Disulfide	160 U
75-35-4	1,1-Dichloroethene	160 U
75-34-3	1,1-Dichloroethane	160 U
156-60-5	Trans-1,2-Dichloroethene	160 U
156-59-2	Cis-1,2-Dichloroethene	160 U
67-66-3	Chloroform	160 U
107-06-2	1,2-Dichloroethane	160 U
78-93-3	2-Butanone	780 U
71-55-6	1,1,1-Trichloroethane	160 U
56-23-5	Carbon Tetrachloride	160 U
75-27-4	Bromodichloromethane	160 U
75-69-4	Trichlorofluoromethane	310 U

CAS Number		μg/Kg
<i>78-87-5</i>	1,2-Dichloropropane	160 U
10061-02-6	Trans-1,3-Dichloropropene	160 U
79-01-6	Trichloroethene	160 U
124-48-1	Dibromochloromethane	160 U
79-00-5	1,1,2-Trichloroethane	160 U
71-43-2	Benzene	160 U
10061-01-5	cis-1,3-Dichloropropene	160 U
75-25-2	Bromoform	160 U
108-10-1	4-Methyl-2-Pentanone	780 U
591-78-6	2-Hexanone	780 U
127-18-4	Tetrachloroethene	160 U
<i>79-34-5</i>	1,1,2,2-Tetrachloroethane	160 U
108-88-3	Toluene	160 U
108-90-7	Chlorobenzene	160 U
100-41-4	Ethylbenzene	160 U
100-42-5	Styrene	160 U
1330-20-7	Total Xylenes	310 U
1,1,2-Trichloro-1,2,2-trifluoroethane		310 U

Surrogate Recoveries

Sulfogule Recoveries	
d8-Toluene	115%
Bromofluorobenzene	117%
d4-1.2-Dichloroethane	102%

Data Reporting Qualifiers

- U Indicates compound was analyzed for but not detected at the given detection limit.
- J Indicates an estimated value when result is less than specified detection limit.
- B This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
- K This flag is used when quantitated value falls above the limit of the calibration curve and dilution should be run.
- M Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match parameters.

ORGANICS ANALYSIS DATA SHEET Volatiles by Method 624/8240

Lab ID:

A027G

Matrix:

Soils/Sediments

Data Release Authorized: ________

Report prepared 03/05/92 - MAC:D

Instrument: FINN III Date Analyzed: 02/26/92 Sample: Burn Pit #1 Dup

QC Report No: A027-Dames & Moore

Project No: 21199-032

Trans. Mtn.

VTSR: 02/21/92

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490

(206) 621-7523 (FAX)

Amount Analyzed: .008 gms (Dry Weight)

Percent Moisture: 20.5% Conc/Dil: 1:625

·

CAS Number		μg/Kg
74-87-3	Chloromethane	1300 U
74-83-9	Bromomethane	1300 U
75-01-4	Vinyl Chloride	1300 U
75-00-3	Chloroethane	1300 U
75-09-2	Methylene Chloride	1300 U
67-64-1	Acetone	3100 U
<i>75-15-0</i>	Carbon Disulfide	630 U
75-35-4	1,1-Dichloroethene	630 U
75-34-3	1,1-Dichloroethane	630 U
156-60-5	Trans-1,2-Dichloroethene	630 U
156-59-2	Cis-1,2-Dichloroethene	630 U
67-66-3	Chloroform	630 U
107-06-2	1,2-Dichloroethane	630 U
78-93-3	2-Butanone	3100 U
71-55-6	1,1,1-Trichloroethane	630 U
56-23-5	Carbon Tetrachloride	630 U
75-27-4	Bromodichloromethane	630 U
75-69-4	Trichlorofluoromethane	1300 U

CAS Number		μg/Kg
<i>78-87-5</i>	1,2-Dichloropropane	630 U
10061-02-6	Trans-1,3-Dichloropropene	630 U
79-01-6	Trichloroethene	630 U
124-48-1	Dibromochloromethane	630 U
79-00-5	1,1,2-Trichloroethane	630 U
71-43-2	Benzene	630 U
10061-01-5	cis-1,3-Dichloropropene	630 U
<i>75-25-2</i>	Bromoform	630 U
108-10-1	4-Methyl-2-Pentanone	3100 U
591-78-6	2-Hexanone	3100 U
127-18-4	Tetrachloroethene	630 U
79-34-5	1,1,2,2-Tetrachloroethane	630 U
108-88-3	Toluene	630 U
108-90-7	Chlorobenzene	630 U
100-41-4	Ethylbenzene	830 M
100-42-5	Styrene	630 U
1330-20-7	Total Xylenes	2100
1,1,2-Trichlord	o-1,2,2-trifluoroethane	1300 U

Surrogate Recoveries

Surrogate Recoveries	
d8-Toluene	97.2%
Bromofluorobenzene	98.7%
d4-1.2-Dichloroethane	84.0%

Data Reporting Qualifiers

- U Indicates compound was analyzed for but not detected at the given detection limit.
- J Indicates an estimated value when result is less than specified detection limit.
- B This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
- K This flag is used when quantitated value falls above the limit of the calibration curve and dilution should be run.
- M Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match parameters.

ORGANICS ANALYSIS DATA SHEET Volatiles by Method 624/8240

> Lab ID: Matrix:

75-27-4

75-69-4

A027G RE

Soils/Sediments

Report prepared 03/05/92 - MAC:D

Instrument: FINN III Date Analyzed: 02/26/92 Sample: Burn Pit #1 Dup

Rerun

QC Report No: A027-Dames & Moore

Project No: 21199-032

Trans. Mtn.

VTSR: 02/21/92

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490

(206) 621-7523 (FAX)

Amount Analyzed: .032 gms (Dry Weight)

Percent Moisture: 20.5% Conc/Dil: 1:156

CAS Number		μg/Kg_
74-87-3	Chloromethane	310 U
74-83-9	Bromomethane	310 U
75-01-4	Vinyl Chloride	310 U
75-00-3	Chloroethane	310 U
75-09-2	Methylene Chloride	310 U
67-64-1	Acetone	790 U
<i>75-15-0</i>	Carbon Disulfide	160 U
75-35-4	1,1-Dichloroethene	160 U
75-34-3	1,1-Dichloroethane	160 U
156-60-5	Trans-1,2-Dichloroethene	160 U
156-59-2	Cis-1,2-Dichloroethene	160 U
67-66-3	Chloroform	160 U
107-06-2	1,2-Dichloroethane	160 U
78-93-3	2-Butanone	790 U
71-55-6	1,1,1-Trichloroethane	160 U
56-23-5	Carbon Tetrachloride	160 U

CAS Number		μg/Kg
78-87-5	1,2-Dichloropropane	160 U
10061-02-6	Trans-1,3-Dichloropropene	160 U
79-01-6	Trichloroethene	160 U
124-48-1	Dibromochloromethane	160 U
79-00-5	1,1,2-Trichloroethane	160 U
71-43-2	Benzene	160 U
10061-01-5	cis-1,3-Dichloropropene	160 U
<i>75-25-2</i>	Bromoform	160 U
108-10-1	4-Methyl-2-Pentanone	790 U
591-78-6	2-Hexanone	790 U
127-18-4	Tetrachloroethene	160 U
79-34-5	1,1,2,2-Tetrachloroethane	160 U
108-88-3	Toluene	160 U
108-90-7	Chlorobenzene	160 U
100-41-4	Ethylbenzene	720
100-42-5	Styrene	160 U
1330-20-7	Total Xylenes	2400
1.1.2-Trichloro	-1,2,2-trifluoroethane	310 U

Surrogate Recoveries

Bromodichloromethane

Trichlorofluoromethane

Juliogaic Recording	
d8-Toluene	92.7%
Bromofluorobenzene	117%
d4-1,2-Dichloroethane	93.7%

Data Reporting Qualifiers

160 U

310 U

Value If the result is a value greater than or equal to the detection limit, report the value.

- Indicates compound was analyzed U for but not detected at the given detection limit.
- Indicates an estimated value when result is less than specified detection limit.
- This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
- This flag is used when quantitated value falls above the limit of the calibration curve and dilution should be run.
- Indicates an estimated value of analyte М found and confirmed by analyst but with low spectral match parameters.

ORGANICS ANALYSIS DATA SHEET Volatiles by Method 624/8240

Lab ID:

0226MB

Matrix:

Waters

Data Release Authorized: __ Report prepared 03/05/92 - MAC:D

Instrument: FINN III Date Analyzed: 02/26/92 Sample: Method Blank

Analytical Chemists & Consultants

QC Report No: A027-Dames & Moore

Project No: 21199-032

Trans. Mtn.

VTSR: NA

Seattle, WA 98109-5187

(206) 621-6490

(206) 621-7523 (FAX)

333 Ninth Ave. North

Amount Purged: 5 mls Conc/Dil: 1 to 1

CAS Number 78-87-5

CAS Numb	er	μg/L
74-87-3	Chloromethane	2.0 U
74-83-9	Bromomethane:	2.0 U
75-01-4	Vinyl Chloride	2.0 U
75-00-3	Chloroethane	2.0 U
75-09-2	Methylene Chloride	2.0 U
67-64-1	Acetone	5.0 U
75-15-0	Carbon Disulfide	1.0 U
75-35-4	1,1-Dichloroethene	1.0 U
75-34-3	1,1-Dichloroethane	1.0 U
156-60-5	Trans-1,2-Dichloroethene	1.0 U
56-59-2	Cis-1,2-Dichloroethene	1.0 U
J7-66-3	Chloroform	1.0 U
107-06-2	1,2-Dichloroethane	1.0 U
78-93-3	2-Butanone	5.0 U
71-55-6	1,1,1-Trichloroethane	1.0 U
56-23-5	Carbon Tetrachloride	1.0 U
75-27-4	Bromodichloromethane	1.0 U
75-69-4	Trichlorofluoromethane	2.0 U

, , , ,	1 1 /2 2 10 11 11 11 11 11 11 11 11 11 11 11 11	
10061-02-6	Trans-1,3-Dichloropropene	1.0 U
79-01-6	Trichloroethene	1.0 U
124-48-1	Dibromochloromethane	1.0 U
79-00-5	1,1,2-Trichloroethane	1.0 U
71-43-2	Benzene	1.0 U
10061-01-5	cis-1,3-Dichloropropene	1.0 U
75-25-2	Bromoform	1.0 U
108-10-1	4-Methyl-2-Pentanone	5.0 U
591-78-6	2-Hexanone	5.0 U
127-18-4	Tetrachloroethene	1.0 U
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U
108-88-3	Toluene	1.0 U
108-90-7	Chlorobenzene	1.0 U
100-41-4	Ethylbenzene	1.0 U
100-42-5	Styrene	1.0 U
1330-20-7	Total Xylenes	2.0 U
1.1.2-Trichlor	o-1,2,2-trifluoroethane	2.0 U

1,2-Dichloropropane

Surrogate Recoveries

vanogaio nocono	
d8-Toluene	106%
Bromofluorobenzene	98.3%
d4-1,2-Dichloroethane	94.3%

Data Reporting Qualifiers

Value If the result is a value greater than or equal to the detection limit, report the value.

- Indicates compound was analyzed for but not detected at the given detection limit.
- Indicates an estimated value when result is less than specified detection limit.
- This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
- This flag is used when quantitated value falls above the limit of the calibration curve and dilution should be run.
- Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match parameters.

ORGANICS ANALYSIS DATA SHEET Volatiles by Method 624/8240

Lab ID:

A027K

Matrix:

Waters

Data Release Authorized: ______

Report prepared 03/05/92 - MAC:D

Instrument: FINN III Date Analyzed: 02/26/92 Sample: Trip Blank

QC Report No: A027-Dames & Moore

Project No: 21199-032

Trans. Mtn.

VTSR: NA

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490

(206) 621-7523 (FAX)

Amount Purged: 5 mls Conc/Dil: 1 to 1

CAS Numbe	er	μg/L
74-87-3	Chloromethane	2.0 U
74-83-9	Bromomethane	2.0 U
75-01-4	Vinyl Chloride	2.0 U
75-00-3	Chloroethane	2.0 U
75-09-2	Methylene Chloride	2.0 U
67-64-1	Acetone	5.0 U
75-15-0	Carbon Disulfide	1.0 U
75-35-4	1,1-Dichloroethene	1.0 U
75-34-3	1,1-Dichloroethane	1.0 U
156-60-5	Trans-1,2-Dichloroethene	1.0 U
156-59-2	Cis-1,2-Dichloroethene	1.0 U
.57-66-3	Chloroform	1.0 U
107-06-2	1,2-Dichloroethane	1.0 U
<i>78-93-3</i>	2-Butanone	5.0 U
71-55-6	1,1,1-Trichloroethane	1.0 U
56-23-5	Carbon Tetrachloride	1.0 U
75-27-4	Bromodichloromethane	1.0 U
75-69-4	Trichlorofluoromethane	2.0 U

CAS Number		μg/L
78-87-5	1,2-Dichloropropane	1.0 U
10061-02-6	Trans-1,3-Dichloropropene	1.0 U
79-01-6	Trichloroethene	1.0 U
124-48-1	Dibromochloromethane	1.0 U
79-00-5	1,1,2-Trichloroethane	1.0 U
71-43-2	Benzene	1.0 U
10061-01-5	cis-1,3-Dichloropropene	1.0 U
75-25-2	Bromoform	1.0 U
108-10-1	4-Methyl-2-Pentanone	5.0 U
591-78-6	2-Hexanone	5.0 U
127-18-4	Tetrachloroethene	1.0 U
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U
108-88-3	Toluene	1.0 U
108-90-7	Chlorobenzene	1.0 U
100-41-4	Ethylbenzene	1.0 U
100-42-5	Styrene	1.0 U
1330-20-7	Total Xylenes	2.0 U
1,1,2-Trichloro	-1,2,2-trifluoroethane	2.0 U

Surroacte Recoveries

d8-Toluene	106%
Bromofluorobenzene	101%
d4-1,2-Dichloroethane	98.0%

Data Reporting Qualifiers

Value If the result is a value greater than or equal to the detection limit, report the value.

- Indicates compound was analyzed for but not detected at the given detection limit.
- Indicates an estimated value when result is less than specified detection limit.
- This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
- This flag is used when quantitated value falls above the limit of the calibration curve and dilution should be run.
- Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match parameters.

EXPLANATION OF INORGANIC DATA REPORT CODES

The columns labeled 'PREP', 'C', and 'M' contain important information about your analyses. The codes are deed below.

PREPARATION CODES

These 3-letter codes describe methods used to prepare samples for analysis:

CONCENTRATION CODES

These codes are used to qualify reported concentrations:

U No analyte was detected. The reported value is the lower limit of detection.

METHOD CODES

RMA EPA 600/4-79-020 206.2

These codes signify the instrumental technique used for analysis:

CVA Cold Vapor Atomic Absorption Spectrophotometry
FJ A Flame Atomic Absorption Spectrophotometry

Graphite Furnace Atomic Absorption Spectrophotometry
ICr Inductively Coupled Plasma Atomic Emission Spectrometry

ANALYTICAL RESOURCES, INC. Inorganic Laboratory Data Report 03/05/92 08:28:03

Client: Dames & Moore Contact: David Maltby

ARI job number: A027 ARI sample number: F

Project: Trans. Mtn.
ID number: Burn Pit #1

Description:

Sampled: / /
Received: 02/21/92
Matrix: Soil

Released by:

RESULT ANALYTICAL

CAS Number	Analyte	Concentration	С	Prep	М
7440-36-0	Antimony	5 mg/kg-dry	U	SWC	ICP
7440-38-2	Arsenic	4.47 mg/kg-dry		SWN	GFA
7440-41-7	Beryllium	0.3 mg/kg-dry		SWC	ICP
7440-43-9	Cadmium	0.2 mg/kg-dry	U	SWC	ICP
7440-47-3	Chromium	52.2 mg/kg-dry		SWC	ICP
7440-50-8	Copper	31.0 mg/kg-dry		SWC	ICP
7439-92-1	Lead	4.2 mg/kg-dry		SWN	GFA
7439-97-6	Mercury	0.06 mg/kg-dry	U	SCM	CVA
7440-02-0	Nickel	45 mg/kg-dry		SWC	ICP
7782-49-2	Selenium	0.1 mg/kg-dry	U	SWN	GFA
7440-22-4	Silver	0.3 mg/kg-dry	U	SWC	ICP
7440-28-0	Thallium	0.1 mg/kg-dry	ט	SWN	GFA
7440-66-6	Zinc	53.6 mg/kg-dry		SWC	ICP

ANALYTICAL RESOURCES, INC. Inorganic Laboratory Data Report 03/05/92 08:28:07

ARI job number: A027

Client: Dames & Moore Contact: David Maltby

ARI sample number: G

Project: Trans. Mtn.
ID number: Burn Pit #1 Dup

Description:

Sampled: //
Received: 02/21/92

Matrix: Soil

Released by:

RESULT ANALYTICAL

CAS Number	Analyte	Concentration	С	Prep	M
7440-36-0	Antimony	6 mg/kg-dry	υ	SWC	ICP
7440-38-2	Arsenic	6.40 mg/kg-dry		SWN	GFA
7440-41-7	Beryllium	0.3 mg/kg-dry		SWC	ICP
7440-43-9	Cadmium	0.2 mg/kg-dry	U	SWC	ICP
7440-47-3	Chromium	46.1 mg/kg-dry		SWC	ICP
7440-50-8	Copper	26.2 mg/kg-dry		SWC	ICP
7439-92-1	Lead	4.7 mg/kg-dry		SWN	GFA
7439-97-6	Mercury	0.07 mg/kg-dry		SCM	CVA
7440-02-0	Nickel	39 mg/kg-dry		SWC	ICP
7782-49-2	Selenium	0.1 mg/kg-dry	U	SWN	GFA
7440-22-4	Silver	0.3 mg/kg-dry	U	SWC	ICP
7440-22-4	Thallium	0.1 mg/kg-dry	U	SWN	GFA
	Zinc	50.5 mg/kg-dry		SWC	ICP
7440-66-6	ZIIC	3010 119 11-1	<u> </u>	L	

ANALYTICAL RESOURCES, INC. Inorganic Laboratory Data Report 03/05/92 08:28:11

Client: Dames & Moore

ARI job number: A027 ARI sample number: MB

Contact: David Maltby Project: Trans. Mtn.

ID number:

Description: Method Blank

Sampled: / /
Received: / /
Matrix: Soil

Released by:

ANALYTICAL RESULTS

	T	- Communica	С	Prep	м
CAS Number	Analyte	Concentration			
7440-36-0	Antimony	5 mg/kg-dry	U	SWC	ICP
7440-38-2	Arsenic	0.1 mg/kg-dry	ប	SWN	GFA
7440-41-7	Beryllium	0.1 mg/kg-dry	U	SWC	ICP
7440-43-9	Cadmium	0.2 mg/kg-dry	U	SWC	ICP
7440-47-3	Chromium	0.5 mg/kg-dry	υ	SWC	ICP
7440-50-8	Copper	0.4 mg/kg-dry		SWC	ICP
7439-92-1	Lead	0.1 mg/kg-dry	U	SWN	GFA
7439-97-6	Mercury	0.1 mg/kg-dry	U	SCM	CVA
7440-02-0	Nickel	1 mg/kg-dry	U	SWC	ICP
7782-49-2	Selenium	0.1 mg/kg-dry	U	SWN	GFA
7440-22-4	Silver	0.3 mg/kg-dry	บ	SWC	ICP
7440-28-0	Thallium	0.1 mg/kg-dry	U	SWN	GFA
7440-66-6	Zinc	0.6 mg/kg-dry		SWC	ICP

5 March 1992

DAMES & MOORE SEATTLE MAR 0 6 1992 ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Maltby Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: #21199-032 Trans Mtn.:

ARI Job #A068

Dear David:

Please find enclosed the results and original chain-of-custody report for the above referenced project. Eleven samples and a trip blank arrived in good condition on 2/27/92, and the analyses proceeded without incident.

The analyst notes that sample DTSP-1 might have some gas, however there is diesel and perhaps some other "garbage" preventing gas range quantitation. Also note that samples TMB 16-13 and TMB 16-19 have hydrocarbons in both the gas and diesel ranges, but no gas pattern is evident; it looks like the early part of diesel, maybe Diesel #1. I've included copies of the chromatograms for these samples.

If you have any questions or need further information, please feel free to call any time. I can be reached at the number above, or direct at 340-2867, ext. 117, where you can also leave a message if I'm not available.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Coordinator

KAS/ks

Enclosures

cc: file#A068

CHAIN-OF-CUSTODY RECORD

Poring

WHITE COPY - Original (Accompanies Samples) YELLOW COPY - Collector PINK COPY - Project Manager

sasoline Rance

Note Number Laboratory If HID inducted additioned Mich 7/1/ Two rented, please do. P. Total Number Of Containers 2 2 4 4 SHEET FIELD NOTES A.R.T.# HO68 (B) H. W. 7 7 Commed Stations Transmountain 21199-632 LABORATORY NOTES: LOCATION PROJECT__ JOB NO.: 7 Obcopies NO. > 00000000 hature) RECEIVED BY: (Signature) 0100100 SISTIMA PHONE: 728-0744 RECEIVED BY 2 x40mg/bA DX 45 mO VOA 2x40mLVOA 20300A, 403, bor 500 Market Place Tower 2025 First Avenue Seattle, Washington 98121 (206) 728-0744 Fax No. (206) 448-7994 Container Type DAMES & MOORE 3" Ring DATE/TIME eni Hedou Sample Type 3 Ž 3 S V Ŋ E 9:20 14.0 9:40 <u>।</u> ८ 14:15 12:15 9:2 28 DAM CONTACT: DONE Malthy (3,39 Time RELINQUISHED BY: (Signature) REMOUISHED BY: (Signature) RELINQUISHED BY: (Signature) ANALYTICAL LABORATORY: __ 12h LABORATORY CONTACT:__ 425 752 त्रीय 2/2 Well Sample Duct TMB 1514-30" SW 100-D3-18 TMB16-29 Sw RO-D2-18 TM816+ 39 TM517K-24 TMB16- 13 7m816-19 TM818-34 SWRD-CIE

Ira Bank

MSP

DATE OF COLLECTION Varies

DSW

COLLECTOR

TOTAL PETROLEUM HYDROCARBONS WA HCID Method by GC/FID

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

QC Report No: A068-Dames&Moore

Project: 21199-032

Trans Mtn.

VTSR: 02/27/92

Data Release Authorized

Matrix: Soils

Data Prepared: 03/04/92 - MAC:C PAT

Date Extracted: 02/28/92 Date Analyzed: 03/03/92

		Dilution	Petroleum		Surrogate
Lab ID	Client Sample ID	Factor	Hydrocarbons †	TPH ID *	Recovery
A068 MB	Method Blank	1	10 U	No	112%
A068 A	TMB 15X-30	1	50	Diesel	107%
A068 B	TMB 16-29	1	30	No	109%
A068 C	TMB 16-13	1	3100	Diesel	106%
A068 D	TMB 16-19	1	510	Diesel	122%
A068 E	TMB 16-39	1	10 U	No	110%
A068 F	TMB 17X-24	1	10 U	No	110%
A068 G	TMB 18-24	1	10 U	No	114%
A068 H	DTSP-1	1	3500	Diesel	108%

Surrogate is Me-Arachidate.

Values reported in ppm (mg/kg) on a dry weight basis.

- U Indicates compound was analyzed for but not detected at the given detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- * In the opinion of the analyst, was there a pattern match for diesel or gasoline.
- † Value based on total peaks in the range from Toluene to C24.

TOTAL GASOLINE RANGE HYDROCARBONS WA TPHG Method by GC/FID

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

QC Report No: A068-Dames & Moore

Project: 21199-032

Trans Mountain

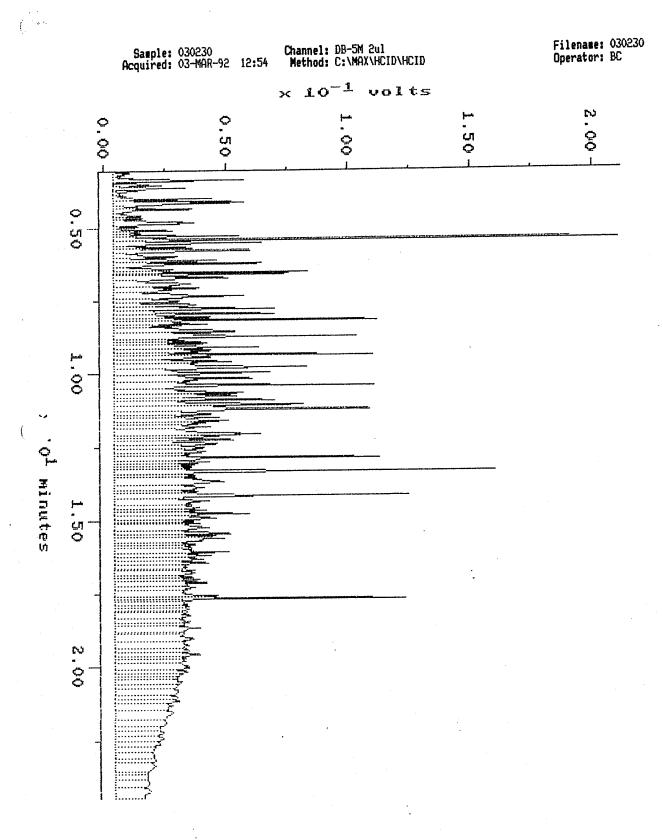
VTSR: 02/27/92

Data Release Authorized

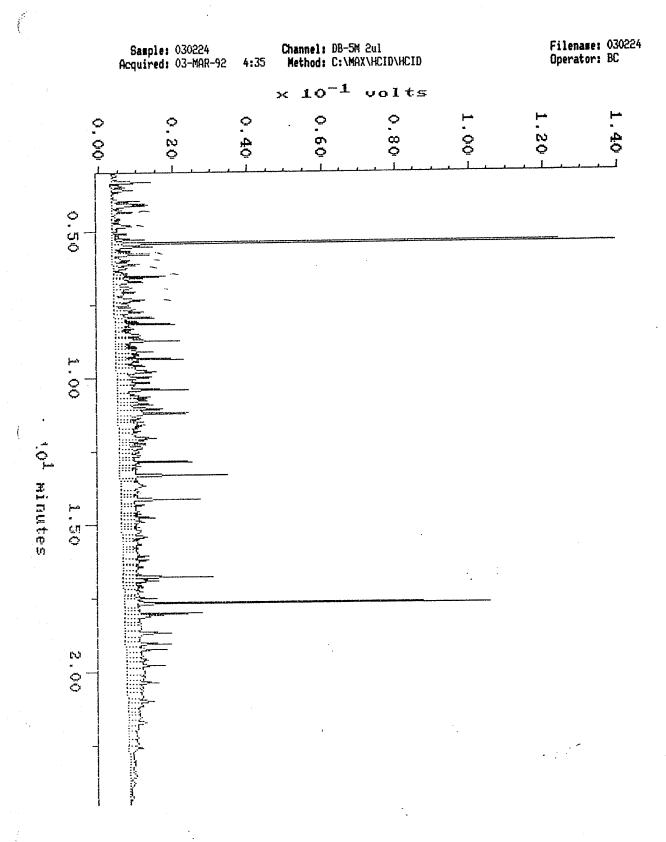
Matrix: Soils

Data Prepared: 03/03/92 - MAC:C PAT

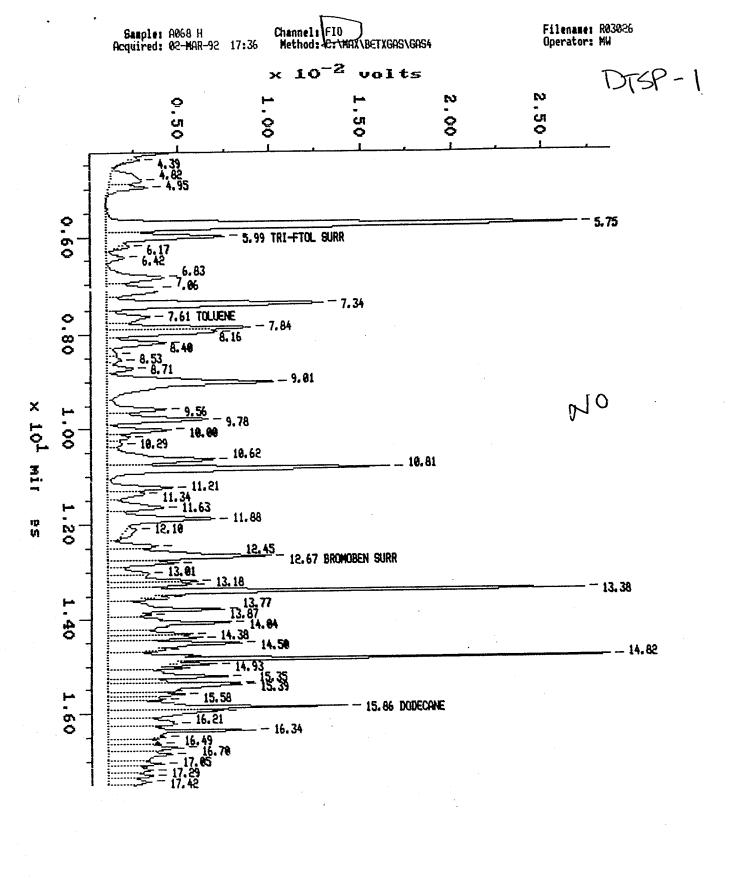
Date Extracted: 03/02/92 Date Analyzed: 03/02/92

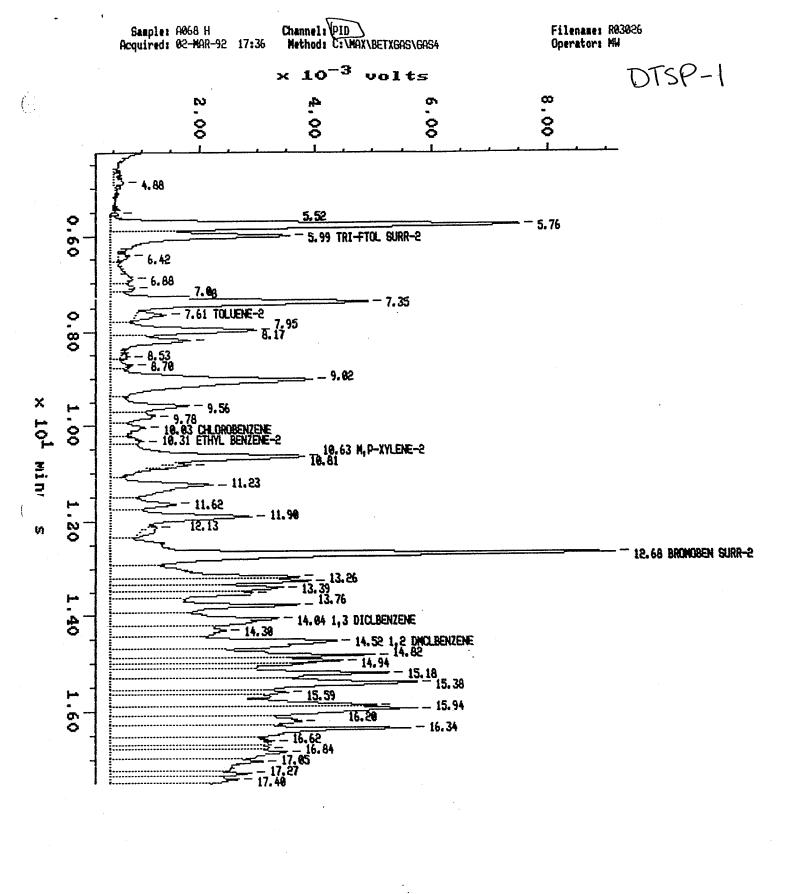

		Dilution	Gasoline Range		Surrogate	Surrogate
Lab ID	Client Sample ID	Factor	Hydrocarbons †	Gas ID *	Α	В
A068 MB	Method Blank	1	5.0 U	No	99.9%	102%
A068 H	DTSP-1	1	270	No	109%	NR
A068 HDUP	DTSP-1 DUPL.	. 1	260	No	108%	NR

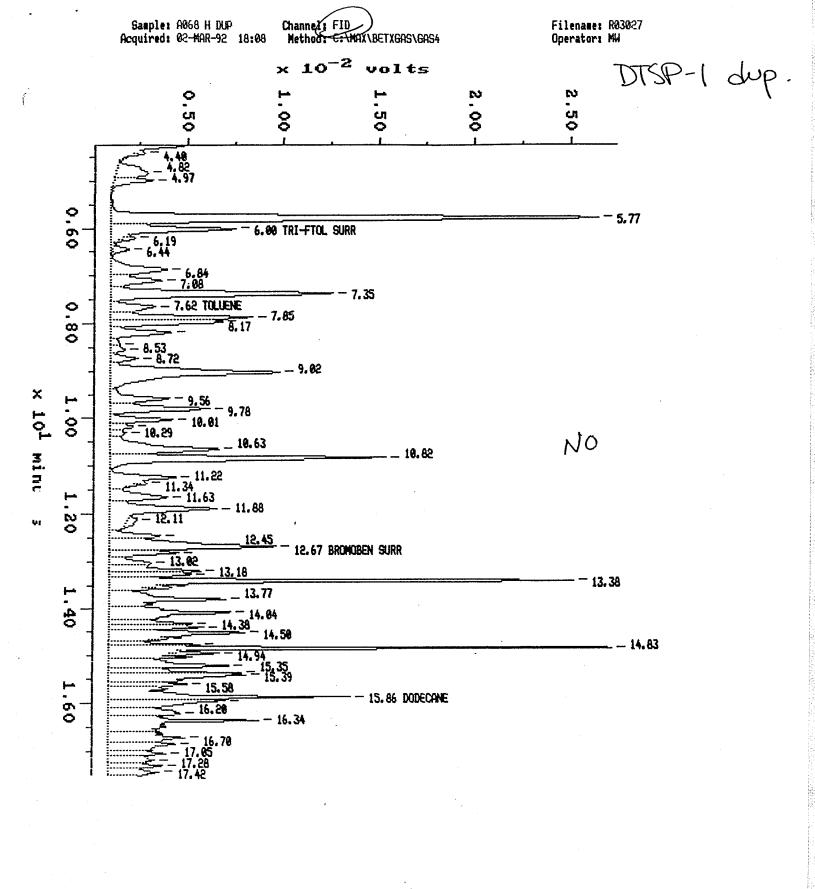
Surrogate A = Trifluorotoluene Surrogate B = Bromobenzene

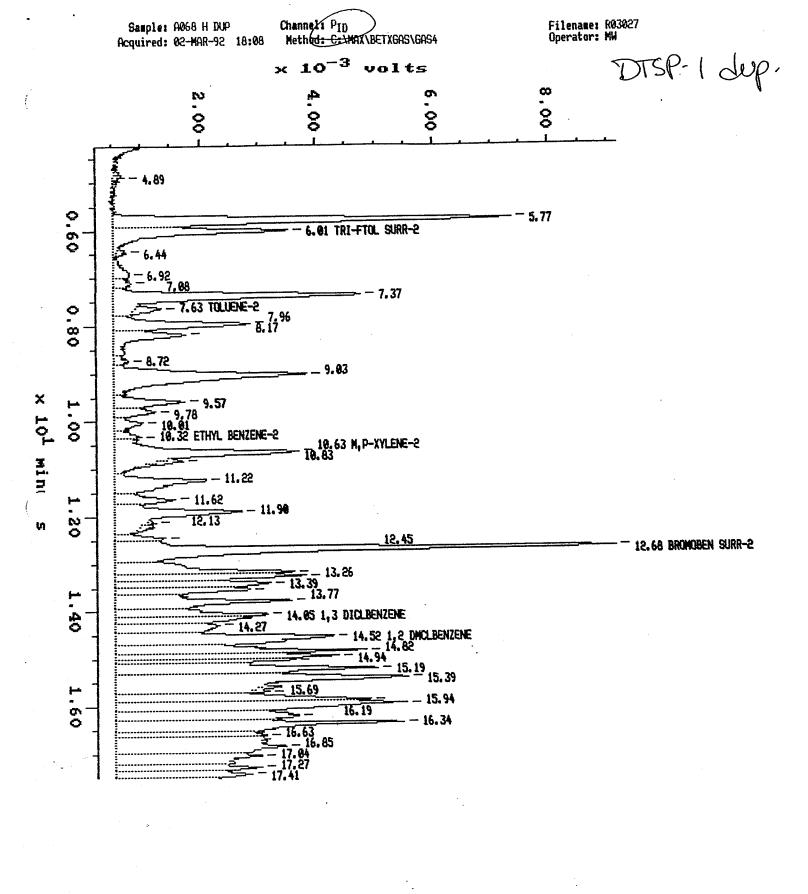

Values reported in ppm (mg/kg) on a dry weight basis.

- U Indicates compound was analyzed for but not detected at the given detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- * In the opinion of the analyst, was there a pattern match for gasoline.
- † Value based on total peaks in the range from Toluene to Dodecane.


NR Indicates no recovery due to matrix interference and/or dilution.




A068C



A068 D

17 March 1992

DAMES & MOORE SEATTLE MAR 18 1992 ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Maltby Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: #21199-032 Trans Mtn.:

ARI Job #A089

Dear David:

Please find enclosed the results and original chain-of-custody report for the above referenced project. One sample was received in good condition on 3/2/92, and the analyses proceeded without incident. I apologize for the slight delay in shipping this package, but the metals results were held up until this morning. Hopefully this hasn't caused too much inconvenience.

If you have any questions or need further information, please feel free to call any time. I can be reached at the number above, or direct at 340-2867, ext. 117, where you can also leave a message if I'm not available.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Coordinator

KAS/ks

Enclosures

cc: file#A089

CHAIN-OF-CUSTODY RECORD

WHITE COPY - Original (Accompanies Samples) YELLOW COPY - Collector PINK COPY - Project Manager

500 Market Place Tower 2025 First Avenue Seattle, Washington 98121 COLLECTOR (206) 728-0744 Fax No. (206) 448-7994	1011 PHONE: 128 0744		ANALYTICAL LABORATORY: A RT	IE RÉCEIVEÓ BY: (Signature)	RECEIVED BY: Joignature)	RECEIVED BY: (Signature)									15 1500 Sort 3 aby cul, XX	Boring or Sample Sample Sample Sample Container Type Container Type
* [MWIMary	rans Mountain	5:21199 032 SHEET 1 OF 1			Aurinary to lot , more repulsion for) had be seen	Jample X	Total Numbro Of Containe Laboratory

ORGANICS ANALYSIS DATA SHEET Semivolatiles by Methods 625/8270

Lab ID:

0304MB

Matrix:

Soils/Sediments

Sample No: Method Blank

QC Report No: A089-Dames & Moore

Project No: 21199-032

Trans Mtn.

VTSR: NA

333 Ninth Ave. North Seattle, WA 98109-5187

Analytical Chemists &

Consultants

(206) 621-6490

.......

(206) 621-7523 (FAX)

Data Release Authorized: ___ Report prepared 03/09/92 - MAC:D

Date extracted: 03/03/92

Analyzed (FINN 6): 03/04/92

GPC Clean-up: No (1 of 2)

Sample Wt: 30.0 gm (Equivalent Dry Weight) Percent Moisture: NA

pH: NA

Conc/Dilution: 1 to 1

CAS Numb	er	μg/Kg
108-95-2	Phenol	130 U
111-44-4	bis(2-Chloroethyl)Ether	67 U
95-57-8	2-Chlorophenol	67 U
541-73-1	1,3-Dichlorobenzene	67 U
106-46-7	1,4-Dichlorobenzene	67 U
100-51-6	Benzyl Alcohol	330 U
95-50-1	1,2-Dichlorobenzene	67 U
95-48-7	2-Methylphenol	67 U
108-60-1	2,2'(Oxybis(1-Chloropropane)	67 U
106-44-5	4-Methylphenol	67 U
621-64-7	N-Nitroso-Di-n-Propylamine	67 U
67-72-1	Hexachloroethane:	130 U
98-95-3	Nitrobenzene	67 U
78-59-1	Isophorone	67 U
88-75-5	2-Nitrophenol	330 U
105-67-9	2,4-Dimethylphenol	130 U
65-85-0	Benzoic Acid	670 U
111-91-1	bis(2-Chloroethoxy)Methane	67 U
120-83-2	2,4-Dichlorophenol	200 U
120-82-1	1,2,4-Trichlorobenzene	67 U
91-20-3	Naphthalene	67 U
106-47-8	4-Chloroaniline	200 U
87-68-3	Hexachlorobutadiene	130 U
59-50-7	4-Chloro-3-Methylphenol	130 U
91-57-6	2-Methylnaphthalene	67 U
77-47-4	Hexachlorocyclopentadiene	330 U
88-06-2	2,4,6-Trichlorophenol	330 Ų
95-95-4	2,4,5-Trichlorophenol	330 U
91-58-7	2-Chloronaphthalene	67 U
88-74-4	2-Nitroaniline	330 U
131-11-3	Dimethyl Phthalate	67 U
208-96-8	Acenaphthylene	67 U
99-09-2	3-Nitroaniline	330 U

CAS Numb	er	μg/Kg_
83-32-9	Acenaphthene	67 U
51-28-5	2,4-Dinitrophenol	670 U
100-02-7	4-Nitrophenol	330 U
132-64-9	Dibenzofuran	67 U
121-14-2	2,4-Dinitrotoluene	330 U
606-20-2	2,6-Dinitrotoluene	330 U
84-66-2	Diethylphthalate	67 U
7005-72-3	4-Chlorophenyl-phenylether	67 U
86-73-7	Fluorene	67 U
100-01-6	4-Nitroaniline	330 U
534-52-1	4,6-Dinitro-2-Methylphenol	670 U
86-30-6	N-Nitrosodiphenylamine(1)	67 U
101-55-3	4-Bromophenyl-phenylether	67 U
118-74-1	Hexachlorobenzene	67 U
87-86-5	Pentachlorophenol	330 U
85-01-8	Phenanthrene	67 U
86-74-8	Carbazole	67 U
120-12-7	Anthracene	67 U
84-74-2	Di-n-Butylphthalate	67 U
206-44-0	Fluoranthene	67 U
129-00-0	Pyrene	67 U
85-68-7	Butylbenzylphthalate	67 U
91-94-1	3,3'-Dichlorobenzidine	330 U
56-55-3	Benzo(a)Anthracene	67 U
117-81-7	bis(2-Ethylhexyl)Phthalate	67 U
218-01-9	Chrysene	67 U
117-84-0	Di-n-Octyl Phthalate	67 U
205-99-2	Benzo(b)Fluoranthene	67 U
207-08-9	Benzo(k)Fluoranthene	67 U
50-32-8	Benzo(a)Pyrene	67 U
193-39-5	Indeno(1,2,3-cd)Pyrene	67 U
53-70-3	Dibenz(a,h)Anthracene	67 U
191-24-2	Benzo(ghi)Perylene	67 U
	والمراجع والمالية المالية	-mino

(1) Cannot be separated from diphenylamine

*Base/neutral surrogate recoveries

d5-Nitrobenzene	61.1%
2-Fluorobiphenyl	48.7%
d14-p-Terphenyl	80.9%
d4-1,2-Dichlorobenzene	56.9%

*Acid surrogate recoveries

Acid saling and interior	
d5-Phenol	46.0%
2-Fluorophenol .	46.5%
2,4,6-Tribromophenol	38.6%
d4-2-Chlorophenol	53.6%

ample No: Pit 1

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490 (206) 621-7523 (FAX)

ORGANICS ANALYSIS DATA SHEET Semivolatiles by Methods 625/8270

Lab ID: Matrix: A089ARE

Soils/Sediments

Data Release Authorized: Man M. Salve

Report prepared 03/09/92 - MAC:D

Date extracted: 03/03/92 Analyzed (FINN 6): 03/04/92

GPC Clean-up: No (1 of 2)

Sample Wt: 23.2 gm (Dry Weight)

QC Report No: A089-Dames & Moore

Trans Mtn.

Project No: 21199-032

VTSR: 03/02/92

Percent Moisture: 33.6% pH: 6.5

Conc/Dilution: 1 to 1

CAS Numbe	er	μg/Kg_
108-95-2	Phenol	170 U
111-44-4	bis(2-Chloroethyl)Ether	86 U
95-57-8	2-Chlorophenol	86 U
541-73-1	1,3-Dichlorobenzene	86 U
106-46-7	1,4-Dichlorobenzene	86 U
100-51-6	Benzyl Alcohol	430 U
95-50-1	1,2-Dichlorobenzene	86 U
95-48-7	2-Methylphenol	86 U
108-60-1	2,2'(Oxybis(1-Chloropropane)	86 U
106-44-5	4-Methylphenol	86 U
621-64-7	N-Nitroso-Di-n-Propylamine	86 U
67-72-1	Hexachloroethane	170 U
98-95-3	Nitrobenzene	86 U
78-59-1	Isophorone	86 U
88-75-5	2-Nitrophenol	430 U
105-67-9	2,4-Dimethylphenol	170 U
65-85-0	Benzoic Acid	860 U
111-91-1	bis(2-Chloroethoxy)Methane	86 U
120-83-2	2,4-Dichlorophenol	260 U
120-82-1	1,2,4-Trichlorobenzene	86 U
91-20-3	Naphthalene	79 J
106-47-8	4-Chloroaniline	260 U
87-68-3	Hexachlorobutadiene	170 U
59-50-7	4-Chloro-3-Methylphenol	170 U
91-57-6	2-Methylnaphthalene	200
77-47-4	Hexachlorocyclopentadiene	430 U
88-06-2	2,4,6-Trichlorophenol	430 U
95-95-4	2,4,5-Trichlorophenol	430 U
91-58-7	2-Chloronaphthalene	86 U
88-74-4	2-Nitroaniline	430 U
131-11-3	Dimethyl Phthalate	86 U
208-96-8	Acenaphthylene	86 U
99-09-2	3-Nitroaniline	430 U

CAS Numb	er	μg/Kg_
83-32-9	Acenaphthene	86 U
51-28-5	2,4-Dinitrophenol	860 U
100-02-7	4-Nitrophenol	430 U
132-64-9	Dibenzofuran	86 U
121-14-2	2,4-Dinitrotoluene	430 U
606-20-2	2,6-Dinitrotoluene	430 U
84-66-2	Diethylphthalate	86 U
7005-72-3	4-Chlorophenyl-phenylether	86 U
86-73-7	Fluorene	86 U
100-01-6	4-Nitroaniline	430 U
534-52-1	4,6-Dinitro-2-Methylphenol	860 U
86-30-6	N-Nitrosodiphenylamine(1)	86 U
101-55-3	4-Bromophenyl-phenylether	86 U
118-74-1	Hexachlorobenzene	86 U
87-86-5	Pentachlorophenol	430 U
85-01-8	Phenanthrene	47 J
86-74-8	Carbazole	86 U
120-12-7	Anthracene	86 U
84-74-2	Di-n-Butylphthalate	86 U
206-44-0	Fluoranthene	86 U
129-00-0 ·	Pyrene	86 U
85-68-7	Butylbenzylphthalate	370 M
91-94-1	3,3'-Dichlorobenzidine	430 U
56-55-3	Benzo(a)Anthracene	86 U
117-81-7	bis(2-Ethylhexyl)Phthalate	86 U
218-01-9	Chrysene	86 U
117-84-0	Di-n-Octyl Phthalate	86 U
205-99-2	Benzo(b)Fluoranthene	86 U
207-08-9	Benzo(k)Fluoranthene	86 U
50-32-8	Benzo(a)Pyrene	86 U
193-39-5	Indeno(1,2,3-cd)Pyrene	86 U
53-70-3	Dibenz(a,h)Anthracene	86 U
191-24-2	Benzo(ghi)Perylene	86 U

(1) Cannot be separated from diphenylamine

*Base/neutral surrogate recoveries

d5-Nitrobenzene	56.5%
2-Fluorobiphenyl	63.1%
d14-p-Terphenyl	59.5%
d4-1,2-Dichlorobenzene	54.5%

-Acia sallogate recoveries	
d5-Phenol	62.6%
2-Fluorophenol	61.9%
2,4,6-Tribromophenol	63.0%
d4-2-Chlorophenol	61.6%

Sample No: Method Blank ORGANICS ANALYSIS DATA SHEET Volatiles by Method 624/8240

Analytical Chemists & Consultants

Lab ID:

MB - 0303

Matrix:

Soils/Sediments

QC Report No: A089-Dames&Moore

Project No: 21199-032

VTSR: NA

Trans Mtn.

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490 (206) 621-7523 (FAX)

Data Release Authorized: _

Report prepared: 03/04/92 - MAC: RPR

Amount Analyzed: 0.027 gm (Eqiuv.Dry Wt.)

Percent Moisture: NA

pH: NA

Instrument: FINN 7 Date Analyzed: 03/03/92

μg/Kg **CAS Number** 370 U Chloromethane 74-87-3 370 U 74-83-9 **Bromomethane** 370 U Vinyl Chloride 75-01-4 370 U Chloroethane 75-00-3 840 Methylene Chloride 75-09-2 500 J Acetone 67-64-1 190 U Carbon Disulfide 75-15-0 190 U 1,1-Dichloroethene 75-35-4 190 U 1.1-Dichloroethane 75-34-3 190 U Trans-1,2-Dichloroethene 156-60-5 190 U Cis-1.2-Dichloroethene 156-59-2 190 U Chloroform 67-66-3 190 U 1.2-Dichloroethane 107-06-2 930 U 2-Butanone 78-93-3 190 U 1,1,1-Trichloroethane 71-55-6 190 U Carbon Tetrachloride 56-23-5 190 U Bromodichloromethane 75-27-4 190 U Trichlorofluoromethane 75-69-4

CAS Number		μg/Kg_
78-87-5	1,2-Dichloropropane	190 U
10061-02-6	Trans-1,3-Dichloropropene	190 U
79-01-6	Trichloroethene	190 U
124-48-1	Dibromochloromethane	190 U
79-00-5	1,1,2-Trichloroethane	190 U
71-43-2	Benzene	190 U
10061-01-5	cis-1,3-Dichloropropene	190 U
110-75-8	2-Chloroethylvinylether	190 U
75-25-2	Bromoform	190 U
108-10-1	4-Methyl-2-Pentanone	370 U
591-78-6	2-Hexanone	740 U
127-18-4	Tetrachloroethene	190 U
79-34-5	1,1,2,2-Tetrachloroethane	190 U
108-88-3	Toluene	190 U
108-90-7	Chlorobenzene	190 U
100-41-4	Ethylbenzene	190 U
100-42-5	Styrene	190 U
1330-20-7	Total Xylenes	340 M
	-1,2,2-trifluoroethane	930 U

Surrogate Recoveries

Juliogale Recoveries	
d8-Toluene	104%
Bromofluorobenzene	101%
d4-1,2-Dichloroethane	95.0%

Data Reporting Qualifiers

Value If the result is a value greater than or equal to the detection limit, report the value.

- Indicates compound was analyzed for but not detected at the given detection limit.
- Indicates an estimated value when result is less than specified detection limit.
- This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
- This flag is used when quantitated value K falls above the limit of the calibration curve and dilution should be run.
- Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match parameters.

ORGANICS ANALYSIS DATA SHEET Volatiles by Method 624/8240 Sample No: Pit - 1

Analytical Chemists & Consultants

Lab ID:

A089 - A

Matrix:

Soils/Sediments

QC Report No: A089-Dames&Moore

Project No: 21199-032

Trans Mtn.

(206) 621-6490

(206) 621-7523 (FAX)

333 Ninth Ave. North

Seattle, WA 98109-5187

Data Release Authorized: __

Report prepared: 03/04/92 - MAC: RPR

Amount Analyzed: 0.027 gm (Dry Wt.)

Percent Moisture: 34.5%

pH: NA

VTSR: 03/02/92

Instrument: FINN 7

Date Analyzed: 03/03/92

CAS Number		μg/Kg
74-87-3	Chloromethane	370 U
74-83-9	Bromomethane	370 U
75-01-4	Vinyl Chloride	370 U
75-00-3	Chloroethane	370 U
75-09-2	Methylene Chloride	900 B
67-64-1	Acetone	4400 B
75-15-0	Carbon Disulfide	190 U
75-35-4	1,1-Dichloroethene	190 U
75-34-3	1,1-Dichloroethane	190 U
156-60-5	Trans-1,2-Dichloroethene	190 U
156-59-2	Cis-1,2-Dichloroethene	190 U
67-66-3	Chloroform	190 U
107-06-2	1,2-Dichloroethane	190 U
78-93-3	2-Butanone	930 U
71-55-6	1,1,1-Trichloroethane	190 U
56-23-5	Carbon Tetrachloride	190 U
75-27-4	Bromodichloromethane	190 U
75-69-4	Trichlorofluoromethane	190 U

CAS Number	·	μg/Kg
78-87-5	1,2-Dichloropropane	190 U
10061-02-6	Trans-1,3-Dichloropropene	190 U
79-01-6	Trichloroethene	190 U
124-48-1	Dibromochloromethane	190 U
79-00-5	1,1,2-Trichloroethane	190 U
71-43-2	Benzene	190 U
10061-01-5	cis-1,3-Dichloropropene	190 U
110-75-8	2-Chloroethylvinylether	190 U
75-25-2	Bromoform	190 U
108-10-1	4-Methyl-2-Pentanone	370 U
591-78-6	2-Hexanone	740 U
127-18-4	Tetrachloroethene	190 U
79-34-5	1,1,2,2-Tetrachloroethane	190 U
108-88-3	Toluene	450
108-90-7	Chlorobenzene	190 U
100-41-4	Ethylbenzene	190 U
100-42-5	Styrene	190 U
1330-20-7	Total Xylenes	330 JB
1,1,2-Trichlord	o-1,2,2-trifluoroethane	590

Surrogate Recoveries

our og are not a real	
d8-Toluene	98.9%
Bromofluorobenzene	94.1%
d4-1,2-Dichloroethane	88.8%

Data Reporting Qualifiers

Value If the result is a value greater than or equal to the detection limit, report the value.

- Indicates compound was analyzed for but not detected at the given detection limit.
- Indicates an estimated value when result is less than specified detection limit.
- This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
- This flag is used when quantitated value K falls above the limit of the calibration curve and dilution should be run.
- Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match parameters.

EXPLANATION OF INORGANIC DATA REPORT CODES

The columns labeled 'PREP', 'C', and 'M' contain important information about your analyses. The codes are ned below.

PREPARATION CODES

These 3-letter codes describe methods used to prepare samples for analysis:

CONCENTRATION CODES

These codes are used to qualify reported concentrations:

U No analyte was detected. The reported value is the lower limit of detection.

METHOD CODES

RMA EPA 600/4-79-020 206.2

These codes signify the instrumental technique used for analysis:

- CVA Cold Vapor Atomic Absorption Spectrophotometry
- FI.A Flame Atomic Absorption Spectrophotometry
 - A Graphite Furnace Atomic Absorption Spectrophotometry
- Inductively Coupled Plasma Atomic Emission Spectrometry

ANALYTICAL RESOURCES, INC. Inorganic Laboratory Data Report 03/17/92 10:39:11

Client: Dames & Moore

ARI job number: A089

Contact: David Maltby
Project: Trans. Mtn.
ID number: Pit 1

ARI sample number: A

Description:

Sampled: //
Received: 03/02/92 Matrix: Soil

Released by:

ANALYTICAL

CAS Number	Analyte	Concentration	С	Prep	М
7440-36-0	Antimony	7 mg/kg-dry	U	SWC	ICP
7440-38-2	Arsenic	3.4 mg/kg-dry		SWN	GFA
7440-41-7	Beryllium	0.5 mg/kg-dry		SWC	ICP
7440-43-9	Cadmium	0.3 mg/kg-dry	U	SWC	ICP
7440-47-3	Chromium	44.6 mg/kg-dry		SWC	ICP
7440-50-8	Copper	21.4 mg/kg-dry		SWC	ICP
7439-92-1	Lead	6.4 mg/kg-dry		SWN	GFA
7439-97-6	Mercury	0.07 mg/kg-dry	U	SCM	CVA
7440-02-0	Nickel	45 mg/kg-dry		SWC	ICP
7782-49-2	Selenium	0.3 mg/kg-dry		SWN	GFA
7440-22-4	Silver	0.5 mg/kg-dry		SWC	ICP
7440-28-0	Thallium	0.1 mg/kg-dry	U	SWN	GFA
7440-66-6	Zinc	119 mg/kg-dry		SWC	ICP

ANALYTICAL RESOURCES, INC. Inorganic Laboratory Data Report 03/17/92 10:39:15

Client: Dames & Moore

ARI job number: A089 ARI sample number: MB

Contact: David Maltby Project: Trans. Mtn.

ID number:

Description: Method Blank

Sampled: / /
Received: / /
Matrix: Soil

Released by:

ANALYTICAL RESULT

CAS Number	Analyte	Concentration	С	Prep	M
7440-36-0	Antimony	5 mg/kg-dry	U	SWC	ICP
7440-38-2	Arsenic	0.1 mg/kg-dry	U	SWN	GFA
7440-33 2	Beryllium	0.1 mg/kg-dry	บ	SWC	ICP
	Cadmium	0.2 mg/kg-dry	U	SWC	ICP
7440-43-9		0.5 mg/kg-dry	U	SWC	ICP
7440-47-3	Chromium		U	SWC	ICP
7440-50-8	Copper	0.2 mg/kg-dry			
7439-92-1	Lead	0.1 mg/kg-dry	U	SWN	GFA
7439-97-6	Mercury	0.1 mg/kg-dry	U	SCM	CVA
7440-02-0	Nickel	1 mg/kg-dry	U	SWC	ICP
7782-49-2	Selenium	0.1 mg/kg-dry	U	SWN	GFA
	Silver	0.3 mg/kg-dry	U	SWC	ICP
7440-22-4		0.1 mg/kg-dry	U	SWN	GFA
7440-28-0	Thallium		177		ICP
7440-66-6	Zinc	0.4 mg/kg-dry	U	SWC	TCP

DAMES & MOORE SEATTLE MAR 13 1992 ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Maltby Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: #21199-032 Trans Mtn.: ARI Job #A126

Dear David:

Please find enclosed the results and original chain-of-custody report for the above referenced project. Three samples and a trip blank arrived in good condition on 3/5/92, and the analysis proceeded without incident.

If you have any questions or need further information, please feel free to call any time. I can be reached at the number above, or direct at 340-2867, ext. 117, where you can also leave a message if I'm not available.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Coordinator

KAS/ks

Enclosures

cc: file#A126

CHAIN-OF-CIINTODY BECORD

Seroline rang luddrawborn WHITE COPY Original (Accompanies Samples) YELLOW COPY - Collecte

A.R.T. # Ala6

TOTAL GASOLINE RANGE HYDROCARBONS BY GC/FID WA TPH-G Method (Purge & Trap)

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490

(206) 621-7523 (FAX)

QC Report No: A126-Dames & Moore

Project: 21199032

Trans Mtn.

VTSR: 03/05/92

Data Release Authorized

Matrix: Waters

Data Prepared: 03/10/92 MAC:D sk

Date extracted: 03/06/92 Date Analyzed: 03/06-07/92

			Dilution	Gasoline Range		Surrogate	Surrogate
Lab	ID	Client Sample ID	Factor	Hydrocarbons †	Gas ID *	A	В
A126	MB	Method Blank	NA	0.25 U	No	86.8%	89.7%
A126	Α	SWRO-C38	NA	0.25 U	No	85.8%	90.8%
A126	A DUP.	SWRO-C38 Dup	NA	0.25 U	No	87.7%	92.6%
A126	В	SWRO-D2-19	NA	0.25 U	No	86.0%	90.4%
A126	С	SWRO-D3-19	NA	0.25 U	No	85.5%	89.1%
A126	D	Trip Blank	NA	0.25 U	No	86.2%	93.8%

Surrogate A = Trifluorotoluene Surrogate B = Bromobenzene

Values reported in ppm (mg/L).

- U Indicates compound was analyzed for but not detected at the given detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- * In the opinion of the analyst, was there a pattern match for gasoline (yes or no).
- † Value based on total peaks in Toluene-C12 range.

13 March 1992

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Maltby
Dames & Moore
500 Market Place Tower
2025 First Avenue
Seattle, WA 98121

DAMES & MOORE SEATTLE

MAR 1 6 1992

RE: Client Project: #21199-032 Trans Mtn.: ARI Job #A134

Dear David:

Please find enclosed the results and original chain-of-custody report for the above referenced project. Three samples were received in good condition on 3/5/92, and the analysis proceeded without incident.

If you have any questions or need further information, please feel free to call any time. I can be reached at the number above, or direct at 340-2867, ext. 117, where you can also leave a message if I'm not available.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Coordinator

KAS/ks

Enclosures

cc: file#A134

WHITE

ON CONTROL NO. 0000000

0100110010

Container Type

Sample Type

Time 38

Number Number Depth

Sample

Boring

4 02. Glass

50:1

1135 50:1 1340 18:1

DTE - 2X NTE - 3X

DTE - 1X

SHEATHANA

ject Manager

*

*

FIELD NOTES:

- Clean ナギー

=

Note Number

Total Number Of Containers

Laboratory

			0
			* Run Bois to quantify if any hits an Held
			٤
			荆
			4
			f any
			اب
			رح.
			江
			4
	-		Ğ
			+
		ES:	S. C.
		NOT	90
		SRY	Ş
		RAT	A A
		ABO	*
		=	1
		ature	
		Sign.	Sign
		ΒΥ:	BY:
		RECEIVED BY: (Signature) LABORATORY NOTES:	CEIVED BY: (Signature)
		E'	THE STATE OF THE S
			71.7
		ME	ME
		DATE/TIME	3/5/92 /7: DATE/TIME
			6
		<u>ē</u>	V _€
		SHER 8Y: (Signature)	(Signatu
	,	. A 64.	SHED BY: (
_	-	(왕	

PHONE: 728-0744 LABORATORY CONTACT: Kate Stegemoeller bavid Matthy ANALYTICAL LABORATORY: _ D&M CONTACT:

OF 1

SHEET

500 Market Place Tower 2025 First Avenue Seattle, Washington 98121 (206) 728-0744 Fax No. (206) 448-7994 DAMES & MOORE

COLLECTOR DAVID MAITED

PROJECT Transmountain Oil Pipeline

LOCATION Bellicaham WA

21199-032-005

JOB NO.:

RECEIVED BY: (Signature)

DATE/TIME

RELINQUISHED BY: (Signature)

JELINOUISHE

DATE OF COLLECTION 2/25/12

ニアニク ; ナクァ

TOTAL PETROLEUM HYDROCARBONS WA HCID Method by GC/FID

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

QC Report No: A134-Dames&Moore

Project: Trans Mountain

VTSR: 03/05/92

Matrix: Soils

> Date Extracted: 03/06/92 Date Analyzed: 03/12/92

Surrogate **Dilution** Petroleum Recovery Hydrocarbons † TPH ID * **Factor Client Sample ID** Lab ID 99.9% 15 U No Method Blank A134 MB 112% Diesel 460 DTE-1X 1 A134 A 109% No 15 U 1 A134 B DTE-2X 102% 15 U No DTE-3X A134 C

Surrogate is Me-Arachidate.

Values reported in ppm (mg/kg) on a dry weight basis.

- U Indicates compound was analyzed for but not detected at the given detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- * In the opinion of the analyst, was there a pattern match for diesel or gasoline.
- † Value based on total peaks in the range from Toluene to C24.

12 March 1992

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Maltby Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: #21199-032 Trans Mtn.: ARI Job #A165

Dear David:

Please find enclosed the results and original chain-of-custody report for the above referenced project. Three samples were received in good condition on 3/11/92, and the analyses proceeded without incident. The 418.1 results were faxed to you yesterday, the BETX earlier today.

If you have any questions or need further information, please feel free to call any time. I can be reached at the number above, or direct at 340-2867, ext. 117, where you can also leave a message if I'm not available.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Coordinator

e Herenoc

KAS/ks

Enclosures

cc: file#A165

CHAIN-OF-CUSTODY RECORD & WHITE COPY - Original (Accompanies Samples) YELLOW COPY - Collector PINK COPY - Project Manager

SW-2 1145 \$ 1-6 plus 2-40me	X X X X X X X X X X X X X X X X X X X
1210 (240 ml raid 1W-1 (110) 1-2 plus 2-46ml	X Canadar
/	
_	<
=F 4	
7	
	A.R.J. Allos
ture)	ignature) LABORATORY NOTES:
3/10/92/11230	T-170 ran anaturi
הברוואבטוסהבט סד: (Signature) או בירוואב אבכבועבט פּץ: (Signature)	SW-1) ZW
RELINQUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature)	SW-2 (NAM
ANALYTICAL LABORATORY: $A\mathcal{PI}$	June 15 1 15 15 15 15 15 15 15 15 15 15 15 1
LABORATORY CONTACT: Kaba	2/100 : 22
D&M CONTACT: Burid Maltay PHONE: 728 0744	JOB NO:
DAMES & MOORE	P
300 Market Flace Lower 2025 First Avenue Seattle, Washington 98121 COS 728 O744 Feb No. (2005) 449 7004	

TOTAL PETROLEUM HYDROCARBONS by IR Scan Modified EPA Method 418.1

Matrix: Water

Project: 21199-032

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

QC Report No: A165

Dames & Moore

VTSR: 03/11/92

Data Release Authorized

Data Prepared: 03/11/92 -MAC:PJW

Date Prepared: 03/11/92 Date of Analysis: 03/11/92

Dilution Client Sample ID Lab ID **Factor** TPH (ppm) A165 MB METHOD BLANK A165 A T-170 1 U A165 B SW-1 1 U A165 C SW-2 1 1 U

Values reported in ppm (mg/L).

U Indicates compound was analyzed for but not detected at the given detection limit.

ORGANICS ANALYSIS DATA SHEET - Method 602/8020 BETX by GC-PID

Matrix: Water Level: Low

Data Release Authorized: Man Mahan

Report prepared: 3/12/92 - MAC:K kas

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

QC Report No: A165-Dames & Moore

Project No: 21199-032

Date Received: 3/11/92

			Method	·		
		Sample No.	Blank	T-170	SW-1	SW-2
		ARI ID	0309MB	A165A	A 165B	A165C
		Date Analyzed	03/10/92	03/11/92	03/11/92	03/11/92
•		Amt Analyzed	5.0 mls	5.0 mls	5.0 mls	5.0 mls
CAS Number		Units	μg/L	μg/L	μg/L	μg/L
71-43-2	Benzene		1.0 U	1.0 U	1.0 U	5.4
	<u> </u>		1.0 U	5.6	1.0 U	14
			1.0 U	1.0 U	1.0 U	2.1
1330-20-7	Total Xylenes		2.0 U	2.0 U	2.0 U	22

Surrogate Recoveries

Take galle keep to hoo				
Trifluorotoluene	83.5%	87.4%	85.0%	90.2%
Bromobenzene	84.9%	83.6%	83.6%	95.1%

Data Reporting Qualifiers

Value If the result is a value greater than or equal to the detection limit, report the value.

- B This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
- U Indicates compound was analyzed for but not detected at the given detection limit.
- J Indicates an estimated value when result is less than specified detection limit.

18 March 1992

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Maltby Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: #21199-032 Trans Mtn.: ARI Job #A182

Dear David:

Please find enclosed the results and original chain-of-custody report for the above referenced project. Nine samples were received in good condition on 3/12/92, and the analyses proceeded without incident.

If you have any questions or need further information, please feel free to call any time. I can be reached at the number above, or direct at 340-2867, ext. 117, where you can also leave a message if I'm not available.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Coordinator

Kafe Stelemoel

KAS/ks

Enclosures

cc: file#A182

CHAIN-OF-CUSTODY RECORD

WHITE COPY - Original (Accompanies Samples) YELLOW COPY - Collector PINK COPY - Project Manager

COLLECTOR IN WI WIAMS DATE OF COLLECTION BY 192	500 Market Place Tower 2025 First Avenue Seattle, Washington 98121 (206) 728-0744 Fax No. (206) 448-7994
Oil Pipe Line	DAMES & MOO
21199 032	多名
	ANALYTICAL LABORATORY: ART , SAHE WA
Map 6015- gas range lundra curran AiRit. AISI	RELINQUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature)
R A H	
Į.	RELINQUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature)
X solucted at 5381 Hannesan	SW-1 1615 11 1-0 amers
	60
×	SURO -072-20 1450 11 A
×	, ,
*	(WRD-C39 1410 " 2-40 me
χ χ	5W-2-2 1010 " 1-6 phs2-bap x
	SW-1-2 0946 water 1-6 phis 2-gond X
TOTAL STATES AND THE STATES OF	L 6/2/
SO A CO SO TO TO A COS SO A COS SO A TO A COS SO A TO A COS SO A COS SO A COS SO A TO A COS SO A TO A COS SO A COS	Mal VSES
7.3.5	J

CHAIN-OF-CUSTODY RECORD

WHITE COPY - Original (Accompanies Samples) YELLOW COPY - Collector PINK COPY - Project Manager

				≥	뀨	20	ΞI	Т	T	Τ				\vdash	Π	1		T		6	a (\sim	_	٦
		D&M CONTACT:	LABORATORY CONTACT:	ANALYTICAL LABORATORY: _	RELINQUISHED BY: (Signature)	RELINQUISHED BY:	RELINQUISHED BY:													S- Me		200	Boring or Well Number	
		VTACT:	TORY C	CAL LA	ISHED) M W. (7	- 1	7	Sample Number	1
			ATNO ATNO	BORA	BY: (S		BY: (S			<u> </u>										+	\downarrow			-
				ГОЯҮ:	ignatur	(Signature)	(Signature)													1		(Depth	
2025 I Seattle (206)	SØM DA	7 5	tat		e)		©													2440		28	Time	
2025 First Avenue Seattle, Washington 98121 (206) 728-0744 Fax No. (206) 448-7994	DAMES & MOORE	MANCY MULTINA	Late Stesembeller	Analytical	DAT	3/12 DAT	DAT									 				-			Sample Type	
nue ngton 93 4 Fax N	ece Tou		i Le) Cul	DATE/TIME	DATE/TIME	DATE/TIME						 				<u> </u>			_ _				
3121 o. (206	Y 10		moe	To		6														2-mil plus 1-L	: ; ا د	2-hal mus 1-C	Container Type	
448-79	OKE	PHON	ller	120%	RECE	RECE	RECE													23.	-	nhus I	ner Tyr	
5		PHONE: 1260744	7	Resources luc	RECEIVED BY: (Signature)	RECEIVED BY	RECEIVED BY: (Signature)													1	-			
		00	2	5	Y: (Sig	(Signature)	Y: (Sig													4		¥	4NA1 7585 107 6016010	
		14	-		nature)	1)2/g	nature)		-							-				+	-		1 6 CO CO C	√I .
င်	Б	PRO	JOB																	7	5	<	\$ 60,000 35 (10,000)	
COLLECTOR	LOCATION_	PROJECT_	JOB NO.: _			mtil shipind	AROBATORY NOTES:														+		(%)(%)	J
		7	2			3	RY E																4 3	
MW, (annel	Vains	21199			Sharry Short	Į.														-		PNA 65 10 0 100 PEST PCBO	,
		1	032		ć	Z. 3	-	-													-	-	NA SI NI SI	
Lian	Artier	Muntais	1,		ć	٤٠															1		SSTOR ROOM POLICIES OF STORY O	
3	Cor	T T			8		-	-			-										+	-	930 (68)	
		ß.			²	true																	ASBEST TOS	1
					7 / 6	t fee a															+	_		
ATE O					7 1	* ************************************																		
F COLI					286	} }	-						-									\dashv		1
_ECTIC					3	refrieduration or Thans																		
Z N					1.	25																	HD -	
DATE OF COLLECTION $3/12/92$			SHEET			Mo							ļ									0	FIELD NOTES:	
12						nta																	•	
			유			Movatala situ				+	1	1								W			Total Number Of Containers	
			,			ζ†																L	_aboratory Note Number	

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

TOTAL PETROLEUM HYDROCARBONS by IR Scan Modified EPA Method 418.1

Matrix: Water

Project: 21199 032

Trans Mtn.

QC Report No: A182

Dames & Moore

VTSR: 03/12/92

Data Release Authorized //m/3.//

Data Prepared: 03/17/92 -MAC:PJW

Date Prepared: 03/16/92 Date of Analysis: 03/16/92

Dilution Lab ID **Client Sample ID Factor** TPH (ppm) A182 MB **METHOD BLANK** 1 1 U SW-1-2 A182 A 1 U SW-2-2 A182 B 1 1 U A182 G SW-1 1 1 U A182 H SW-1-3 1 1 U SW-3-1 A182 I 1 U

Values reported in ppm (mg/L).

U Indicates compound was analyzed for but not detected at the given detection limit.

TOTAL GASOLINE RANGE HYDROCARBONS BY GC/FID WA TPH-G Method (Purge & Trap)

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

QC Report No: A182-Dames & Moore

Project: 21199032

Trans Mtn.

VTSR: 03/12/92

Matrix: Waters

Data Release Authorized

Data Prepared: 03/17/92 MAC:D sk

Date extracted: 03/16/92 Date Analyzed: 03/16/92

			Dilution	Gasoline Range		Surrogate	Surrogate
Lab	ID	Client Sample ID	Factor	Hydrocarbons †	Gas ID *	A	В
A182	MB	Method Blank	NA	0.25 U	No	92.1%	97.8%
A182	С	SWRO-C39	NA	0.25 U	No	92.6%	98.3%
A182	D	SWRO-D2-20	NA	0.25 U	No	96.8%	99.6%
A182	Ε	SWRO-D3-20	NA	0.25 U	No	91.9%	95.6%
A182	F	Trip Blank	NA	0.25 U	No	93.6%	99.6%

Surrogate A = Trifluorotoluene Surrogate B = Bromobenzene

Values reported in ppm (mg/L).

- U Indicates compound was analyzed for but not detected at the given detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- * In the opinion of the analyst, was there a pattern match for gasoline (yes or no).
- † Value based on total peaks in Toluene-C12 range.

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANICS ANALYSIS DATA SHEET - Method 602/8020 BETX by GC-PID

Matrix: Water

Level: Low

Data Release Authorized: _

Report prepared: 03/17/92

17/92 MAC:D sk

QC Report No: A182-Dames & Moore

Project No: 21199032

Trans Mtn.

Date Received: 03/12/92

	Sample No.	Meth Blank	SW-1-2	SW-2-2	SWRO-C39	SWRO-D2-20
	ARI ID	0316MB	A182A	A182B	A182C	A182D
	Date Analyzed	03/16/92	03/16/92	03/16/92	03/16/92	03/16/92
	Amt Analyzed	5.0 mls	5.0 mls	5.0 mls	5.0 mls	5.0 mls
CAS Number	Units	μg/L	μg/L	μg/L	μg/L	μg/L
71-43-2 Benzene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
108-88-3 Toluene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
100-41-4 Ethylbenzene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1330-20-7 Total Xylenes		2.0 U	2.0 U	2.0 U	2.0 U	2.0 U

Surrogate Recoveries

- Canogaro Roco Volico											
Trifluorotoluene	92.1%	98.6%	93.0%	89.8%	90.2%						
Bromobenzene	88.3%	96.1%	89.5%	87.8%	89.5%						

		Sample No.	SWRO-D3-20	Trip Blank	SW-1-3	SW-1-3 dup	SW-3-1
		ARI ID	A182E	A182F	A182H	A182H dup	A182I
		Date Analyzed	03/16/92	03/16/92	03/16/92	03/16/92	03/16/92
		Amt Analyzed	5.0 mls	5.0 mls	5.0 mls	5.0 mls	5.0 mls
CAS Num	ber	Units	μg/L	μg/L	μg/L	μg/L	μg/L
71-43-2	Benzene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
108-88-3	Toluene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
100-41-4	Ethylbenzene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1330-20-7	Total Xylenes		2.0 U	2.0 U	2.0 U	2.0 U	2.0 U

Surrogate Recoveries

Trifluorotoluene	91.4%	92.1%	92.1%	93.6%	95.1%
Bromobenzene	84.2%	90.0%	89.4%	87.4%	90.8%

Data Reporting Qualifiers

Value If the result is a value greater than or equal to the detection limit, report the value.

B This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.

U Indicates compound was analyzed for but not detected at the given detection limit. J Indicates an estimated value when result is less than specified detection limit.

24 March 1992

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Maltby Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: #21199-032 Trans Mtn.: ARI Job #A210

Dear David:

Please find enclosed the results and original chain-of-custody report for the above referenced project. Two samples and a trip blank were received in good condition on 3/13/92, and the analyses proceeded without incident.

If you have any questions or need further information, please feel free to call any time. I can be reached at the number above, or direct at 340-2867, ext. 119, where you can also leave a message if I'm not available.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Coordinator

KAS/ks

Enclosures

cc: file#A210

CHAIN-OF-CUSTODY RECORD

WHITE COPY - Original (Accompanies Samples) YELLOW COPY - Collector PINK COPY - Project Manager

		5	LABOR,	ANALYI	RELINQ	RELINO	RELINO	-								11.11	18-3-19-19-19-19-19-19-19-19-19-19-19-19-19-	#-1-mg	Boring or Well Number
		74.70	D&M CONTACT: DWW	ANALYTICAL LABORATORY:	RELINQUISHED BY: (Signature)	うれんごんんん へ RELINGUISHED BY: (Signature)	RELINQUISHED BY: (Signature)		_							P V W		4	g Sample Number
			DNTACT:	ORATOR	Y: (Signa	Y: (Signa	Y: (Signa										+		ile Depth
2025 F Seattle (206)	500 M	-		3	ture)	ture	ture)										1:12	01:11	Time
2025 First Avenue Seattle, Washington 98121 (206) 728-0744 Fax No. (206) 448-7994	arket Place	MES & MOODE	Cota Byenveller 728	adul	DATE/TIME	3/13/92	DATE/TIME						100				water	water	Sample Type
e on 98121 ax No. (20	Tower	8 X	mark	i cul 1	TIME	IME (2-4	
06) 448-79	ONE) DDF	ELLONION IN THE REAL PROPERTY OF THE PERTY O	2eAm	RECEI	(150) REC	RECE			-							7	2- Generoscias	Container Type
9	_	!! -	72	ras	RECEIVED BY: (Signature)	RECEIVED BY: (Signature)	AED BY:											our.	
		,	1280744	luc.	(Signature	(Signature	(Signature										×	<u> </u>	4NA1 VSE 1016010 101602010 803010
COLL	LOCA	PROJECT	7 JOB NO.:	and the state of t	<u> </u>	13/1/2	a ABC										*	K	Sen Seg S
COLLECTOR_	LOCATION Lawrel		1			17:50 lab.	A ABOBATORY NOTES					-							\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
The	Tw.	Trans	21199			\$. Sav.	NOTES:												1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	i	noratain	032			3							-						100000000
aus	Antion	ar.				ξ,													
						のったん													ASBESTOS .
DATE																			
OF COL						This													
DATE OF COLLECTION_						rhidywatu													THE STATE OF THE S
3/3/92			SHEET																FIELD NOTES:
12			ET /			until divery											-		Θ
			OF /			diese											4	u	Total Number Of Containers Laboratory

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

TOTAL PETROLEUM HYDROCARBONS by IR Scan Modified EPA Method 418.1

Matrix: Water

Project: 21199 032

Trans Mtn.

QC Report No: A210

Dames & Moore

VTSR: 03/13/92

Data Release Authorized __

Data Prepared: 03/17/92 -MAC:PJW

Date Prepared: 03/16/92 Date of Analysis: 03/16/92

Dilution

Lab ID	Client Sample ID	Factor	TPH (ppm)
A210 MB	METHOD BLANK	1	1 U
A210 A	SW-1-4	1	1.1
A210 B	SW-3-2	1	1 U

Values reported in ppm (mg/L).

U Indicates compound was analyzed for but not detected at the given detection limit.

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANICS ANALYSIS DATA SHEET - Method 602/8020 BETX by GC-PID

Matrix: Water Level: Low

Data Release Authorized:

Report prepared: 03/21/92

263 100 MACO

QC Report No: A210-Dames & Moore

Project No: Trans Mtn.

Date Received: 03/13/92

	Sample No.	Meth Blank	SW-1-4	SW-1-4 dup	SW-3-2	Trip Blank
	ARI ID	0317MB	A210A	A210A dup	A210B	A210C
	Date Analyzed	03/17/92	03/17/92	03/17/92	03/17/92	03/17/92
	Amt Analyzed	5.0 mls	5.0 mls	5.0 mls	5.0 mls	5.0 mls
CAS Number	Units	μg/L	μg/L	μg/L	μg/L	μg/L
71-43-2 Benzene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
108-88-3 Toluene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
100-41-4 Ethylbenzene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1330-20-7 Total Xylenes		2.0 U	2.0 U	2.0 U	2.0 U	2.0 U

Surrogate Recoveries

	odnogate Recoveries					
	Trifluorotoluene	86.3%	92.7%	94.0%	92.1%	90.5%
i	Bromobenzene	87.2%	93.8%	94.1%	92.4%	92.3%

Data Reporting Qualifiers

Value	• • • • • • • • • • • • • • • • • • • •	В	This flag is used when the analyte is found
	to the detection limit, report the value.	,	in the blank as well as a sample. Indicates
		•	possible/probable blank contamination.

- U Indicates compound was analyzed for but not detected at the given detection limit.
- J Indicates an estimated value when result is less than specified detection limit.

23 March 1992

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Maltby Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: #21199-032 Trans Mtn.: ARI Job #A222

Dear David:

Please find enclosed the results and original chain-of-custody report for the above referenced project. Six samples and a trip blank were received in good condition on 3/16/92, and the analyses proceeded without incident.

If you have any questions or need further information, please feel free to call any time. I can be reached at the number above, or direct at 340-2867, ext. 119, where you can also leave a message if I'm not available.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Coordinator

KAS/ks

Enclosures

cc: file#A222

ı		
1		7
ı	-	ŕ
ı	_	_
l	J	>
١	_	
l	4	_
ı	بر	
l		J
ı		
ŀ		
ł)
l		-
l	7	ī
l	U	1
l	7	Ţ
ı)
	Г	1
l		7
ı		•
l	7	1
l		-
l	<u> </u>	ı
l)
l		1
ı	~	_
ı	ᅺ	J
ł		7

WHITE COPY - Original (Accompanies Samples) YELLOW COPY - Collector PINK COPY - Project Manager

Divid	LOCATION LAWY	726 0744 JOBNO: 21199	ANALYTICAL LABORATORY: Draytical Egonyra, Mc.	RELINQUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature)	RELINQUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature) A Signature	RELINQUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature) LABORATORY NOTES:						N-1-10 1515 & X X	V- /5	15:05	8	Boring Boring Sample Sample Sample Sample Solution Type Container Type Solution Solu
Marthan DATE OF COLLECTION 3/14; 3/15/91	anni Station	032SHEETOF										3/15/97	141	15/92	3/14/02	S S ONE I S I S I S I S I S I S I S I S I S I

CHAIN-OF-CUSTODY RECORD

WHITE COPY - Original (Accompanies Samples) YELLOW COPY - Collector PINK COPY - Project Manager

2025 First Avenue Seattle, Washington 98121 (206) 728-0744 Fax No. (206) 448-7994	JAMES & MOORE 500 Market Place Tower	D&M CONTACT: FIXA (Q 1 WATE) PHONE: 120 0 144	ONTACT: KATE HELME	ANALYTICAL LABORATORY: Amallytical Romines luc.	RELINQUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature)	RELINQUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature)	RELINQUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature								N. S. DACCO	-	5 3/16/92 1140 water	SW-1-7 3/16/02 1130 water 2-40 me; 1-L X	Boring or Well Sample Sample Sample Number Number Depth Time Type Container Type	. I
COLLECTOR 1MM (WIN DATE OF COLLECTION 3/16/92	Lawrel	PROJECT Trans Mountain	JOB NO.: 2/199 032 SHEET 1		(¢		e) LABORATORY NOTES:										×	×	TO SO	
			of }												1	3 (ω <u>(</u>	ر ا	Total Number Of Containers Laboratory Note Number	

Analytical Chemists & Consultants

Project No: 21199-032

VTSR: 3/16/92

QC Report No:A222-Dames & Moore

Trans Mtn.

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490 (206) 621-7523 (FAX)

ORGANICS ANALYSIS DATA SHEET BETX by Method 602/8020

Matrix:

Waters

Level:

Low

Data Release Authorized:

Report prepared: 03/23/92 - MAC:

		Sample No.	Method Blank	SW-3-3	SW-3-3	SW-3-4
		ARI ID	MB0317	A222 - A	A222 - A Dup	A222 - B
		Date Analyzed	3/17/92	3/18/92	3/18/92	3/18/92
		Amt Analyzed	5.0 ml	5.0 ml	5.0 ml	5.0 ml
CAS Num	mber Units		μg/L	μg/L	μg/L	μg/L
71-43-2	Benzene		1.0 U	1.0 U	1.0 U	1.0 U
108-88-3	Toluene		1.0 U	1.0 U	1.0 U	1.0 U
100-41-4	Ethylbenze		1.0 U	1.0 U	1.0 U	1.0 U
1330-20-7	Total Xylen	es	2.0 U	2.0 U	2.0 U	2.0 U
	Trifluorotoluene		86.2%	83.9%	87.0%	83.4%
		Bromobenzene	87.1%	89.8%	89.9%	85.2%

		Sample No.	SW-1-5	SW-1-6	SW-1-7	SW-3-5	Trip Blank
		ARI ID	A222 - C	A222 - D	A222 - E	A222 - F	A222 - G
		Date Analyzed	3/18/92	3/18/92	3/18/92	3/18/92	3/18/92
		Amt Analyzed	5.0 ml				
CAS Num	ber	Units	μg/L	μg/L	μg/L	μg/L	μg/L
71-43-2	Benzene		1.0 U				
108-88-3	Toluene		1.0 U				
100-41-4	Ethylbenze		1.0 U				
1330-20-7	Total Xylen	es	2.0 U				
		Trifluorotoluene	85.3%	85.0%	85.0%	82.5%	86.7%
		Bromobenzene	86.7%	86.8%	84.0%	85.4%	86.0%

DATA QUALIFIERS

- U Indicates the compound was undetected at the listed concentration.
- J Indicates an estimated value when the value is less than the calculated detection limit.
- D Indicates the surrogate(s) was not detected, due to dilution of extract.
- NR Indicates the surrogate recovery cannot be reported due to matrix interference.
- Χ Indicates a value above the linear range of the detector. Dilution required.
- S Indicates no value reported due to saturation of the detector. Dilution required.
- С Indicates a probable value which is unable to be confirmed due to matrix interference.

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

TOTAL PETROLEUM HYDROCARBONS by IR Scan Modified EPA Method 418.1

Matrix: Water

Project: 21199-032

Trans. Mountain

QC Report No: A222

Dames & Moore

VTSR: 03/16/92

Data Release Authorized Im M Sub-c

Data Prepared: 03/18/92 -MAC:PJW

Date Prepared: 03/18/92 Date of Analysis: 03/18/92

Dilution **Factor** Lab ID **Client Sample ID** TPH (ppm) A222 MB **METHOD BLANK** 1 1 U SW-3-3 A222 A 1 U A222 B SW-3-4 1 U 1 A222 C SW-1-5 1 1 U A222 D SW-1-6 1 1 U A222 E SW-1-7 1 U 1 A222 E MS SW-1-7 1 SW-1-7 A222 E MSD 1 SW-3-5 A222 F 1 U

Values reported in ppm (mg/L).

U Indicates compound was analyzed for but not detected at the given detection limit.

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

TPH WATER MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

ARI Sample No: A222 E Client Sample No: SW-1-7 Client: Dames & Moore Project: Trans. Mountain

COMPOUND	SPIKE ADDED (mg/L)	SAMPLE CONC. (mg/L)	MS CONC. (mg/L)	MS % REC	MSD CONC. (mg/L)	MSD % REC	RPD
TPH	10.0	0.6	9.9	93.0%	10.0	94.0%	1.1%

1 April 1992

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Maltby Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: #21199-032 Trans Mtn.; ARI Job #A247

Dear David:

Please find enclosed the results and original chain-of-custody record for the above referenced project. Seven samples and a trip blank were received in good condition on 3/18/92, and the analyses proceeded without incident. The 418.1 report was faxed to you 3/23/92, the BETX and tph-gas earlier today.

If you have any questions or need further information, please feel free to call any time. I can be reached at the number above, or direct at 340-2867, ext. 117, where you can also leave a message if I'm not available.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stégemoeller Project Coordinator

KAS/ks

Enclosures

cc: file#A247

DAMES & MOORE SEATTLE APR 02 1992

CHAIN-OF-CUSTODY RECORD

DAMES & MOORE 500 Market Place Tower 2025 First Avenue Seattle, Washington 98121 (206) 728-0744 Fax No. (206) 448-7994	D&M CONTACT: + MONTH PHONE: 1290744	ANALYTICAL LABORATORY; PET	RELINQUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature)	RELINQUISHED BY: (Signature) PATE/TIME 3/16/92 BY: (Signature) RELINQUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature)				2	1000 - D2-0 1050 2-1000	-C40 1035	blank - /	SW -1 -9 0890 17 17 18	1 -8 1/15 " 2-40 mg, 1-C	11: co waster 2-40me; 12 X	Boring or Sample Sample Sample Sample Sample Social	1
22/	PROJECT Trans Mountain SHEET /		A.R. I. Hayn	LABORATORY NOTES: take.				7 C lb 3 K	_		3//	X 3/18/97 2/18/97	3/17/4		CONTROL OF SOLITON STATE OF SOLITON STAT	WHITE COPY - Original (
18/12	OF /							7	1/2	2	2	<i>√</i> الد	ıω		Total Number Of Containers Laboratory Note Number	et Manager

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

TOTAL PETROLEUM HYDROCARBONS by IR Scan Modified EPA Method 418.1

Matrix: Water

Project:

21199032

Trans. Mountain

QC Report No: A247

Dames & Moore

VTSR: 03/18/92

Data Release Authorized //ms B. P.

Data Prepared: 03/20/92 -MAC:PJW

Date Prepared: 03/20/92

Date of Analysis: 03/20/92

Dilution

Lab ID	Client Sample ID	Factor	TPH (ppm)
A247 MB	METHOD BLANK	1	1 U
A247 A	SW-3-6	1	1 U
A247 B	SW-1-8	1	1 U
A247 C	SW-3-7	1	1 U
A247 D	SW-1-9	1	1 U

Values reported in ppm (mg/L).

U Indicates compound was analyzed for but not detected at the given detection limit.

В

ANALYTICAL RESOURCES INCORPORATED

Matrix: Level: Waters Low Project No: 21199032

Trans Mtn.

Data Release Authorized:

Report prepared: 03/31/92 - MAC

QC Report No: A247-Dames&Moore

VTSR: 03/18/92

Consultants
333 Ninth Ave. North

Analytical Chemists &

Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

		Sample No.	Method Blk.	SW-3-6	SW-3-6 DUPL.	SW-1-8
		ARI ID	MB0320	A247A	A247ADUP	A247B
		Date Analyzed	3/23/92	3/24/92	3/24/92	3/24/92
	Amt Analyzed mber Units		5.0 ml	5.0 ml	5.0 ml	0.2 ml
CAS Num	umber Units		μg/L	μg/L	μg/L	μg/L
71-43-2	Benzen	e	1.0 U	1.0 U	1.0 U	29.4 U
108-88-3	Toluene)	1.0 U	1.0 U	1.0 U	29.4 U
100-41-4	Ethylbe	nzene	1.0 U	1.0 U	1.0 U	29.4 U
1330-20-7	Total Xy	/lenes	2.0 U	2.0 U	2.0 U	58.8 U
	Trifluorotoluene		106%	104%	95.5%	91.3%
	Bromobenzene		97.8%	99.2%	92.5%	89.5%

		Sample No.	SW-3-7	SW-1-9
		ARI ID	A247C	A247D
		Date Analyzed	3/24/92	3/24/92
		Amt Analyzed	5.0 ml	0.2 ml
CAS Num	ber	Units	μg/L	μg/L
71-43-2	Benzen	е	1.0 U	1.0 U
108-88-3	Toluene	€	1.0 U	1.0 U
100-41-4	Ethylbe	nzene	1.0 U	1.0 U
1330-20-7	Total Xy	/lenes	2.0 U	2.0 U
		Trifluorotoluene	96.2%	94.8%
		Bromobenzene [89.9%	88.0%

Value If the result is a value greater than or equal to the detection limit, report value.

U Indicates compound was analyzed for but not detected at the given detection limit.

NR Analysis not required.

This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.

K This flag is used when quantitated value falls above the limit of the calibration curve and dilution should be run.

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

TOTAL GASOLINE RANGE HYDROCARBONS WA TPHG Method by GC/FID

QC Report No: A247-Dames&Moore

Project: 21199032

Trans Mtn.

VTSR: 03/18/92

Matrix: Waters

Data Release Authorized

Data Prepared: 03/31/92 - MAC:C PA#

Date Extracted: 03/23/92 Date Analyzed: 03/23/92

		Dilution	Gasoline Range		Surrogate	Surrogate
Lab ID	Client Sample ID	Factor	Hydrocarbons †	Gas ID *	A	В
A247 MB	Method Blank	1	0.25 U	No	102%	98.7%
A247 E	SWRO-C40	1	0.25 U	No	92.6%	91.1%
A247 F	SWRO-D2-21	1	0.25 U	No	91.1%	89.5%
A247 G	SWRO-D3-21	1	0.25 U	No	93.5%	94.0%
A247 H	Trip Blank	1	0.25 U	No	89.1%	91.6%

Surrogate A = Trifluorotoluene Surrogate B = Bromobenzene

Values reported in ppm (mg/L).

- U Indicates compound was analyzed for but not detected at the given detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- * In the opinion of the analyst, was there a pattern match for gasoline.
- † Value based on total peaks in the range from Toluene to Dodecane.

1 April 1992

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Maltby Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: #21199-032 Trans Mtn.; ARI Job #A285

Dear David:

Please find enclosed the results and original chain-of-custody record for the above referenced project. Seven samples and a trip blank were received in good condition on 3/23/92, and the analyses proceeded without incident. The 418.1 report was faxed to you 3/25/92.

The analyst notes that the hydrocarbon pattern looks like a crude oil, extending from the gasoline range to beyond the diesel range.

If you have any questions or need further information, please feel free to call any time. I can be reached at the number above, or direct at 340-2867, ext. 117, where you can also leave a message if I'm not available.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Coordinator

Kafe Shepemoel

KAS/ks

Enclosures

cc: file#A285

DAMES & MOORE SEATTLE APR 02 1992

CHAIN-OF-CUSTODY RECORD

WHITE COPY - Original (Accompanies Samples) YELLOW COPY - Collector PINK COPY - Project Manager

ANALYTICAL LABORATORY: LABORATORY CONTACT: D&M CONTACT: D&M CONTACT:	RELINQUISHED BY: (Signature) RELINQUISHED BY: (Signature)			Trip Blank.	PRTS	DRT-4	PRT-2	PRT-1	3w.3-9	a	Boring or Well Sample Number Number Depth
74	1 10 10				1705	1700	1635	16/5 Die		(640 V	Time
& M(e Tower ue ton 98121 Fax No. (2)	IME RECEIVE				y			8	2 0.00	د	Sample Type Container Type
PHONE: 1230744 OORE 1.16.7. P385	RECEIVED BY: (Signature) RECEIVED BY: (Signature) RECEIVED BY: (Signature)									×	4NA 1 58 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
JOBNO: 21/99 032 PROJECT Trans Mountain COCATION Exhibition (autre) Section COLLECTOR MINIMAN DATE OF COL	LABORATORY NOTES: Stared in lass refrigerations of phone delivery or Manday 3/2362 to AR				×	×		*			10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SHEET OF DATE OF COLLECTION 3/17/42 \$	hence				3/20/07	3/20/62		- :	interest on 31 1/12		
	pendi-T							~ ·	م (د	Oi La	otal Number f Containers aboratory ote Number

TOTAL PETROLEUM HYDROCARBONS WA HCID Method by GC/FID

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

Matrix: Waters

QC Report No: A285-Dames & Moore 333 Ninth Ave. North

Project: 21199032

Seattle, WA 98109-5187 (206) 621-6490

Trans Mtn.

(206) 621-7523 (FAX)

VTSR: 03/27/92

Data Release Authorized

Data Prepared: 03/27/92 MAC:D sk

Date extracted: 03/24/92 Date Analyzed: 03/25/92

		Petroleum	Dilution		Surrogate
Lab ID	Client Sample ID	Hydrocarbons †	Factor	TPH ID *	Recovery
A285 MB	Method Blank	10 U	-		125%
A285 C	PRT-1	22000X	-	No	114%
A285 C dil	PRT-1 dil	16000	X50	No	D
A285 D	PRT-2	10000X	- '	No	97.7%
A285 D dil	PRT-2 dil	10000	X20	No	D
A285 E	PRT-3	10 U	•	No	111%
A285 F	PRT-4	10 U	-	No	113%
A285 G	PRT-5	10 U	-	No	118%

Surrogate is Me-Arachidate.

Values reported in ppm (mg/L).

- U Indicates compound was analyzed for but not detected at the given detection limit.
- Х Indicates a value above the linear range of the detector. Dilution required.
- In the opinion of the analyst, was there a pattern match for gasoline or diesel (yes or no).
- Value based on total peaks in Toluene-C24 range. †
- D Indicates surrogate value diluted below detection limit.
- NR Indicates not reported due to matrix interference and/or dilution.

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

TOTAL PETROLEUM HYDROCARBONS by IR Scan Modified EPA Method 418.1

Matrix: Water

Project:

21199032

Trans Mountain

QC Report No: A285

Dames & Moore

VTSR: 03/23/92

Data Release Authorized _______

Data Prepared:

03/25/92 -MAC:PJW

Date Prepared: 03/24/92 Date of Analysis: 03/24/92

Dilution Lab ID **Client Sample ID Factor** TPH (ppm) METHOD BLANK A285 MB 1 U A285 A SW-3-8 1 U 1 A285 B SW-3-9 1 1 U

Values reported in ppm (mg/L).

U Indicates compound was analyzed for but not detected at the given detection limit.

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187

QC Report No: A285-Dames & Magaze-6490

(206) 621-7523 (FAX)

ORGANICS ANALYSIS DATA SHEET - Method 602/8020 BETX by GC-PID

> Matrix: Water Level: Low

Data Release Authorized: __ Report prepared: 4/1/92 - MAC:K kas

Project No: 21199-032

Date Received: 3/23/92

			Method		SW-3-8		Trip
		Sample No.	Blank	SW-3-8	duplicate	SW-3-9	Blank
		ARI ID	0325MB	A285A	A285Adup	A285B	A285H
		Date Analyzed	03/26/92	02/27/92	03/27/92	03/27/92	03/27/92
		Amt Analyzed	5.0 mls	5.0 mls	5.0 mls	5.0 mls	5.0 mls
CAS Num	ber	Units	μg/L	μg/L	μg/L	μg/L	μg/L
71-43-2	Benzene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
108-88-3	Toluene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	Ethylbenzene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1330-20-7	Total Xylenes		2.0 U	2.0 U	2.0 U	2.0 U	2.0 U

Surrogate Recoveries

Trifluorotoluene	97.3%	94.9%	101%	98.2%	89.5%
Bromobenzene	96.1%	91.8%	95.3%	96.9%	90.1%

Data Reporting Qualifiers

Value If the result is a value greater than or equal to the detection limit, report the value.

В This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.

U Indicates compound was analyzed for but not detected at the given detection limit.

J Indicates an estimated value when result is less than specified detection limit.

8 April 1992

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Maltby Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: #21199-032 Trans Mtn.; ARI Job #A326

Dear David:

Please find enclosed the results and original chain-of-custody record for the above referenced project. Sixteen samples and a trip blank were received in good condition on 3/26/92. The sample listed as ES-3-8" on the COC was labeled as ES-3-6" on the sample bottle. As per your message yesterday the COC ID was used for reporting results.

All analyses proceeded without incident. The 418.1 report was faxed to you 4/1/92.

If you have any questions or need further information, please feel free to call any time. I can be reached at the number above, or direct at 340-2867, ext. 117, where you can also leave a message if I'm not available.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Coordinator

KAS/ks

Enclosures

cc: file#A326

DAMES & MOORE SEATTLE

APR 09 1992

CHAIN-OF-CUSTODY RECORD

WHITE COPY - Oliginal (Accompanies Samples) YELLOW COPY - Collector PINK COPY - Project Manager

	\$	Dam CONTACT.	LABORATORY CONTACT:	ANALYTICAL LABORATORY:	RELINGUISHED BY: (Signature)	HELINOUISHED AT: (Signature)	INTO BY:		1	(1000 - 17)	14-1-0-00/N-V	27/11/	7-10"	-6-6"	-12"	4-6"	\ <u>\</u>	2 4	FS = 7 - 12"	3	7 >(0"		3172-6	2	1	or Well Sample Number Number Depth	Boring	CHAIN-C
	500 Market Place Tower 2025 First Avenue Seattle, Washington 98121 (206) 728-0744 Fax No. (206) 448-7994	DAMES & MO	d Wentlan o BHONE 725	ARI	DATE/TIME	3/26/42 130/02/20	KINS COE / LOBAL	סייבים הבספותנס	0910 meter	المتد	\$	water 2- yours	1 00 V	199	/12~	1/20	11/5	1(/0	1108	100		3	(6)0 NM AI 2-4352: 1-L	֓֞֝֞֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	1010 401 9/01 MOX	Sample Container Type		7 -000 00 1100
Ĥ.	Wik V	PROJECT KAINS MUYDIALL	20 1911 : ON BOL +14/0	2/25/97 & mx + MWD1	(Signature) June do Linkle	belle whit shopm	V. (Signature) CABORATORY NOTES.	W Signature)	3	x Flogs range (hydrocontor	<i>X</i>			×	×		*	Ž		×	×	×	X	×	X	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		ţ
A.R. I. # 1326	DATE OF COLLECTION 5/23/97	Station	SHEET	17 2/2 C	ہے۔	-	I taken refriderator		A	2	3/25/92	328/92	4								/ '		ロジ	D: M 3/28/92	E H SO	collected on		
	2		1 of 2						2	2	2	2	_	-	-	-	-	-	-	-	_	_	W	-	1	Of Co	Number ntainers atory Number	

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

TOTAL GASOLINE RANGE HYDROCARBONS WA TPHG Method by GC/FID

QC Report No: A326-Dames & Moore

Project: 21199032

Trans Mtn.

VTSR: 03/26/92

.

Matrix: Waters

> Date Extracted: 04/01/92 Date Analyzed: 04/01/92

	Client Sample ID	Dilution Factor	Gasoline Range Hydrocarbons †	Gas ID *	Surrogate A	Surrogate B
Lab ID		1 1	0.25 U	No	85.8%	78.7%
A326 MB	Method Blank			No	90.9%	85.7%
A326 N	SWRO-C-41	1	0.25 U		1	82.5%
	SWRO-C-41 DUPL.	. 1	0.25 U	No	89.7%	·
A326 NDUP		 	0.25 U	No	88.6%	85.5%
A326 O	SWRO-D2-21		0.25 U	No	92.7%	89.0%
A326 P	SWRO-D3-21	1				86.2%
A326 Q	Trip Blank	1	0.25 U	No	91.4%	00.2.6

Surrogate A = Trifluorotoluene Surrogate B = Bromobenzene

Values reported in ppm (mg/L).

- U Indicates compound was analyzed for but not detected at the given detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- * In the opinion of the analyst, was there a pattern match for gasoline.
- t Value based on total peaks in the range from Toluene to Dodecane.

Analytical Chemists & Consultants

ORGANICS ANALYSIS DATA SHEET PCB Analysis by GC/ECD

QC Report: A326-Dames & Moore

Date Received: 03/26/92

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

Matrix: Soils

Data Release Authorized

Report prepared: 04/07/92 - MAC:C PAT

GPC Cleanup: No Alumina Cleanup: Yes Acid Cleanup: No

92.8%

Reported in ppb (µg/kg)

		keponed in	رو،،روس طراح			
1	Day II J Blands I	ES-1-4"	ES-1-10"	ES-2-6"	ES-2-12"	ES-3-4"
Sample #:	Method Blank	A326D	A326E	A326F	A326G	A326H
ARI Lab ID:	MB0321	03/31/92	03/31/92	03/31/92	03/31/92	03/31/92
Date Extracted:	03/31/92		04/02/92	04/02/92	04/02/92	04/02/92
Date Analyzed:	04/02/92	04/02/92	32.2 g	32.0 g	29.5 g	34.5 g
Dry Weight:	30.0 g	33.0 g	20 mls	20 mls	20 mls	20 mls
Final Volume:	20 mls	20 mls	1:1	1:1	1:1	1:1
Dilution:	1:1	1:1	1:1	l		
	501/	50 U	50 U	50 U	50 U	50 U
1016/1242	50 U	50 U	50 U	50 U	50 U	50 U
1248	50 U		50 U	50 U	50 U	50 U
1254	50 U	50 U	50 U	50 U	50 U	50 U
1260	50 U	50 U	300	000		<u> </u>
		71.10	94.4%	60.1%	82.7%	68.4%
TCMX Surrogate %	81.5%	71.1%	106%	73.4%	103%	91.9%
DCBP Surrogate %	103%	87.7%	100%	70.4%	1	
Carrente #1	ES-3-8"	ES-4-12"	ES-4-6"	ES-5-6*	ES-5-10"	
Sample #:		A326J	A326K	A326L	A326M	
ARI Lab ID:	03/31/92	03/31/92	03/31/92	03/31/92	03/31/92]
Date Extracted:	04/02/92	04/02/92	04/02/92	04/02/92	04/02/92	J
Date Analyzed:		24.4 g	27.7 g	29.8 g	30.9 g]
Dry Weight:		20 mls	20 mls	20 mls	20 mls]
Final Volume:	1:1	1:1	1:1	1:1	1:1	1
Dilution:	1;1	1	1			
	50 U	50 U	50 U	50 U	50 U	
1016/1242		50 U	50 U	50 U	50 U	7
1248		50 U	50 U	50 U	50 U	7
1254		50 U	50 U	50 U	50 U	
1260	50 U	300	1 000	1	1	!
	70.000	86.0%	88.8%	77.8%	78.6%	7
TCMX Surrogate %	78.8%	00.0%	10.0%	05.2%	92.8%	1

Data Qualifiers

If the result is a value greater than or equal to the detection limit, report the value. Value Indicates an estimated value when that value is less than the calculated detection limit. J Indicates compound was analyzed for, but not detected at the given detection limit. U

104%

95.2%

Indicates value above the linear range of the detector. Dilution required. Х

99.2%

Indicates surrogate was diluted out. D

86.1%

DCBP Surrogate %

	,	- 970miler (-l, 3-40 ms x	Sample Container Type Solution	TE COPY - Original (Accom
~ +	++	+	TO ANIC LAD ASSESSED ASSESSED AS TO A STORY OF A STORY	mpanies Samples) 文字
			A CONTROL FIELD !	panies Samples) YESLOW COPY - Collector PINK
4	* +	4	Total Number	COPY - Project
	発	- 0930 - X	- 0720miler -l, 3-40 ma x x x x x x x x x x x x x x x x x x	pth Time Type Container Type Solve S

ARI# A523

ANALYTICAL RESOURCES, INC. Inorganic Laboratory Data Report 05/12/92 15:22:33

Client: Dames & Moore

ARI job number: A523

ARI sample number: H

Contact: David Maltby
Project: Trans Mountain
ID number: DW-1

Description:

Sampled: //
Received: 04/22/92 Matrix: Water

Released by:

RESULTS ANALYTICAL

					1
CAS Number	Analyte	Concentration	С	Prep	M
7440-36-0	Antimony	0.003 mg/L		RWC	GFA
7440-38-2	Arsenic	0.083 mg/L		RMA	GFA
7440-41-7	Beryllium	0.001 mg/L	Ū	TWN	ICP
7440-43-9	Cadmium	0.002 mg/L	Ü	TWN	ICP
	Chromium	0.038 mg/L		TWN	ICP
7440-47-3		0.010 mg/L		TWN	ICP
7440-50-8	Copper			TWN	GFA
7439-92-1	Lead	0.009 mg/L			
7439-97-6	Mercury	0.0001 mg/L	U	TMM	CVA
7440-02-0	Nickel	0.03 mg/L		TWN	ICP
7782-49-2	Selenium	0.001 mg/L	U	RMA	GFA
7440-22-4	Silver	0.003 mg/L	U	TWN	ICP
	Thallium	0.001 mg/L	บ	TWN	GFA
7440-28-0				TWN	ICP
7440-66-6	Zinc	0.028 mg/L		1	

ANALYTICAL RESOURCES, INC. Inorganic Laboratory Data Report 05/12/92 15:22:37

Client: Dames & Moore

ARI job number: A523

ARI sample number: MB

Contact: David Maltby Project: Trans Mountain

ID number:

Description: Method Blank

Sampled: / / Received: Matrix: Water

Released by:

RESULTS ANALYTICAL

CAS Number	Analyte	Concentration	С	Prep	М
7440-36-0	Antimony	0.001 mg/L	U	RWC	GFA
7440-38-2	Arsenic	0.001 mg/L	U	RMA	GFA
7440-41-7	Beryllium	0.001 mg/L	U	TWN	ICP
7440-43-9	Cadmium	0.002 mg/L	U	TWN	ICP
7440-47-3	Chromium	0.005 mg/L	υ	TWN	ICP
7440-50-8	Copper	0.002 mg/L	Ū	TWN	ICP
7439-92-1	Lead	0.002 mg/L		TWN	GFA
7439-97-6	Mercury	0.0001 mg/L	U	TMM	CVA
7440-02-0	Nickel	0.01 mg/L	U	TWN	ICP
7782-49-2	Selenium	0.001 mg/L	U	RMA	GFA
7440-22-4	Silver	0.003 mg/L	U	TWN	ICP
7440-28-0	Thallium	0.001 mg/L	U	TWN	GFA
7440-66-6	Zinc	0.005 mg/L		TWN	ICP

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

Final Report Laboratory Analysis of Selected Parameters

Matrix:

WATER

Data Release Authorized:

Report Prepared: May 19, 1992

Project No: 21199032

QC Report No: D&M-A523

Date Received: 4/22/92

		f		DAT	E OF ANAL	YSIS.		
Sample Data		4/27/92	5/14/92	4/23/92	4/23/92	5/6/92	5/15/92	5/7/92_
Sample Data	•	pH	TDS	NO2	NO3	CI	F	SO4
Lab ID	Sample Number		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
A523 H	DW-1	8.23	8,523	< 0.010	0.023	4.3	0.24	6.1

Method Blank Analysis: SO₄ NO₃ CI NO₂ TDS pН (mg/L) (mg/L) (mg/L)(mg/L)(mg/L)(mg/L)Sample Number < 1.0 < 0.05 < 1.0 < 0.010 < 0.010 14 Method Blank 1 1.0 0.010 1.0 0.05 0.010 10 Detection Limit:

Check Standard: SO₄ F Cl NO3 pН TDS NO₂ (mg/L)(mg/L)(mg/L)(mg/L)(mg/L) (mg/L)25.1 0.260 13.4 1.90 0.257 Measured Value 25.0 1.96 0.250 0.250 10.0 "True" Value -96.94% 100.48% 133.80% 104.00% 102.80% % Recovery

Duplicate Analysis: SO4 F NO₂ NO3 Cl TDS pН (mg/L) (mg/L)(mg/L)(mg/L)(mg/L)(mg/L)0.24 6.1 8.23 < 0.010 0.023 4.3 Original 5.2 0.23 4.2 8.55 < 0.010 < 0.010 Duplicate 11.09% 1.50% 3.01% RSD 2.70%

Comments:

Very turbid sample and some fine particulates may have passed the filter and hence account the high TDS. Conductivity of the sample was 262 µmho/cm.

See job A501 for additional QC data.

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

TOTAL PETROLEUM HYDROCARBONS by IR Scan Modified EPA Method 418.1

Matrix: Water

Project:

21199032

Trans Mountain

QC Report No: A523

Dames & Moore

VTSR: 04/22/92

Data Release Authorized

Data Prepared: 04/24/92 -MAC:PJW

Date Prepared: 04/24/92 Date of Analysis: 04/24/92

Dilution

Lab ID	Client Sample ID	Factor	TPH (ppm)
A523 MB	METHOD BLANK	1	1 U
A523 D	SW-3-15	1	1 U
A523 E	DAM	1	4.9
A523 F	T-180	1	1 U
A523 G	T-170	1	1 U
A523 H	DW-1	1	1 U

Values reported in ppm (mg/L).

U Indicates compound was analyzed for but not detected at the given detection limit.

..~/

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS

Lab ID:

MB0423

Matrix:

Waters

Data Release Authorized: Dans B. Lath

Report: 04/24/92 MAC:C pat

Instrument: FINN 3

Sample: Method Blank

QC Report No: A523-Dames&Moore

Project: 21199032

Trans Mtn.

VTSR: NA

Amount Purged: 5.0 ml

Conc/Dilution: 1 to 1

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490

(206) 621-7523 (FAX)

	Date Analyzed: 04/23/92		
CAS Numbe	er		
74-87-3	Chloromethane		

CAS Number		μg/L
74-87-3	Chloromethane	2.0 U
74-83-9	Bromomethane	2.0 U
75-01-4	Vinyl Chloride	2.0 U
75-00-3	Chloroethane	2.0 U
75-09-2	Methylene Chloride	2.0 U
67-64-1	Acetone	5.0 U
75-15-0	Carbon Disulfide	1.0 U
75-35-4	1,1-Dichloroethene	1.0 U
75-34-3	1,1-Dichloroethane	1.0 U
156-60-5	Trans-1,2-Dichloroethene	1.0 U
156-59-2	Cis-1,2-Dichloroethene	1.0 U
67-66-3	Chloroform	1.0 U
107-06-2	1,2-Dichloroethane	1.0 U
78-93-3	2-Butanone	5.0 U
71-55-6	1,1,1-Trichloroethane	1.0 U
56-23-5	Carbon Tetrachloride	1.0 U
108-05-4	Vinyl Acetate	1.0 U
75-27-4	Bromodichloromethane	1.0 U
78-87-5	1,2-Dichloropropane	1.0 U

CAS Number		μg/L
10061-01-5	cis-1,3-Dichloropropene	1.0 U
79-01-6	Trichloroethene	1.0 U
124-48-1	Dibromochloromethane	1.0 U
79-00-5	1,1,2-Trichloroethane	1.0 U
71-43-2	Benzene	1.0 U
10061-02-6	trans-1,3-Dichloropropene	1.0 U
110-75-8	2-Chloroethylvinylether	1.0 U
75-25-2	Bromoform	1.0 U
108-10-1	4-Methyl-2-Pentanone	5.0 U
591-78-6	2-Hexanone	5.0 U
127-18-4	Tetrachloroethene	1.0 U
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U
108-88-3	Toluene	1.0 U
108-90-7	Chlorobenzene	1.0 U
100-41-4	Ethylbenzene	1.0 U
100-42-5	Styrene	1.0 U
1330-20-7	Total Xylenes	2.0 U
75-69-4	Trichlorofluoromethane	2.0 U
76-13-1	1,1,2-Trichlorotrifluoroethane	2.0 U

Surrogate Recoveries

d8-Toluene	104%
Bromofluorobe	nzene 98.1%
d4-1,2-Dichloro	ethane 102%

Data Reporting Qualifiers

If the result is a value greater than or equal to the detection limit, report the value.

- Indicates compound was analyzed for but not detected at the given detection limit.
- Indicates an estimated value when result is less than specified detection limit.
- B This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
- This flag is used when quantitated value falls above the limit of the calibration curve and dilution should be run.
- Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match parameters.

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS

Lab ID:

A523H

Matrix:

Waters

Report: 04/24/92 MAC:C pat

Sample: DW-1

QC Report No: A523-Dames&Moore

Project: 21199032

Trans Mtn.

VTSR: 04/22/92

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490

(206) 621-7523 (FAX)

Instrument:	FINN 3
Date Analyzed	: 04/23/92

Amount Purged: 5.0 ml Conc/Dilution: 1 to 1

CAS Numbe	CAS Number											
74-87-3	Chloromethane	2.0 U										
74-83-9	Bromomethane	2.0 U										
75-01-4	Vinyl Chloride	2.0 U										
75-00-3	Chloroethane	2.0 U										
75-09-2	Methylene Chloride	2.0 U										
67-64-1	Acetone	5.0 U										
75-15-0	Carbon Disulfide	1.0 U										
75-35-4	1.0 U											
75-34-3	1.0 U											
156-60-5	Trans-1,2-Dichloroethene	1.0 U										
156-59-2	Cis-1,2-Dichloroethene	1.0 U										
67-66-3	Chloroform	1.0 U										
107-06-2	1,2-Dichloroethane	1.0 U										
78-93-3	2-Butanone	5.0 U										
71-55-6	1,1,1-Trichloroethane	1.0 U										
56-23-5	Carbon Tetrachloride	1.0 U										
108-05-4	Vinyl Acetate	1.0 U										
75-27-4	Bromodichloromethane	1.0 U										
<i>78-87-5</i>	1,2-Dichloropropane	1.0 U										

CAS Number	μg/L	
10061-01-5	cis-1,3-Dichloropropene	1.0 U
79-01-6	Trichloroethene	1.0 U
124-48-1	Dibromochloromethane	1.0 U
79-00-5	1,1,2-Trichloroethane	1.0 U
71-43-2	Benzene	1.0 U
10061-02-6	trans-1,3-Dichloropropene	1.0 U
110-75-8	2-Chloroethylvinylether	1.0 U
75-25-2	Bromoform	1.0 U
108-10-1	4-Methyl-2-Pentanone	5.0 U
591-78-6	2-Hexanone	5.0 U
127-18-4	Tetrachloroethene	1.0 U
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U
108-88-3	Toluene	1.0 U
108-90-7	Chlorobenzene	1.0 U
100-41-4	Ethylbenzene	1.0 U
100-42-5	Styrene	1.0 U
1330-20-7	Total Xylenes	2.0 U
75-69-4	Trichlorofluoromethane	2.0 U
76-13-1	1,1,2-Trichlorotrifluoroethane	2.0 U

Surroagte Recoveries

oallogalo kooottolise	
d8-Toluene	106%
Bromofluorobenzene	98.9%
d4-1,2-Dichloroethane	100%

Data Reporting Qualifiers

- Indicates compound was analyzed for but not detected at the given detection limit.
- Indicates an estimated value when result is less than specified detection limit.

- This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
- This flag is used when quantitated value falls above the limit of the calibration curve and dilution should be run.
- Indicates an estimated value of analyte М found and confirmed by analyst but with low spectral match parameters.

EXPLANATION OF INORGANIC DATA REPORT CODES

The columns labeled 'PREP', 'C', and 'M' contain important information about your analyses. The codes are delay.

PREPARATION CODES

These 3-letter codes describe methods used to prepare samples for analysis:

gestion rate fusion t, HF digestion Sb/Sn in soil Soil digestion Ti in soil VI) in soil I matrix O3 matrix I 3005, Sb by GFAAS CI matrix ilver in water and 9.3 NO3 matrix hic solutions Mercury in water , Sb/Sn in water I matrix ver in water NO3 matrix ver in water NO3 matrix ver in water
rt, SSTVICICIII ninha

CONCENTRATION CODES

These codes are used to qualify reported concentrations:

U No analyte was detected. The reported value is the lower limit of detection.

METHOD CODES

RMA EPA 600/4-79-020 206.2

These codes signify the instrumental technique used for analysis:

CVA Cold Vapor Atomic Absorption Spectrophotometry
FLA Flame Atomic Absorption Spectrophotometry
Graphite Furnace Atomic Absorption Spectrophotometry

Inductively Coupled Plasma Atomic Emission Spectrometry

16 April 1992

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Maltby Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: #21199-032 Trans Mtn.; ARI Job #A383

Dear David:

Please find enclosed the results and original chain-of-custody record for the above referenced project. Four samples and a trip blank were received in good condition on 4/3/92, and analyses proceeded without incident. The 418.1 results were faxed to you on 4/7/92.

If you have any questions or need further information, please feel free to call any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Coordinator 206-340-2867 ext. 117

KAS/ks

Enclosures

cc: file#A383

DAMES & MOORE SEATTLE

APR 17 1992

CHAIN-OF-CUSTODY RECORD

WHITE COPY - Original Naccompanies Samples) YELLOW COPY - Collector

THELD NOTES: TH		DAMES & MOORE 500 Market Place Tower 2025 First Avenue Seattle, Washington 98121 (206) 728-0744 Fax No. (206) 448-7994	D&M CONTACT:PHONE:	LABORATORY CONTACT:	ANALYTICAL LABORATORY:	RELINQUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature)	Service /	MELINOUISHED BY: (Signature) ALVINGE RECEIVED BY: (Signature) PATE/TIME RECEIVED BY: (Signature) PATE/TIME RECEIVED BY: (Signature) PATE/TIME RECEIVED BY: (Signature)						12 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	20-03-23 1370	02 23	-C-472 (200 mater 2-02 Vial)	Boring or Sample Sample Sample Sample Container Type Container Type
	WM1	Lowrel Pump Station - Belling OR IMM: Wiam DATE OF COLLECTION	SHEET -	21199 027	P.B.I.	The same of the sa	(une pump station	LABORATORY NOTES: - * Samples fored in regulation on site	╅—						*		×	(3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

TOTAL PETROLEUM HYDROCARBONS by IR Scan **Modified EPA Method 418.1**

Matrix: Water

Project: 21199 032

Trans Mountain

QC Report No: A383

Dames & Moore

VTSR: 04/03/92

Data Release Authorized

Data Prepared: 04/06/92 -MAC:PJW

Date Prepared: 04/06/92 Date of Analysis: 04/06/92

Dilution

_Lab ID	Client Sample ID	Factor	TPH (ppm)
A383 MB	METHOD BLANK	1	1 U
A383 D	SW-3-12	1	1 U

Values reported in ppm (mg/L).

Indicates compound was analyzed for but not detected at the given detection limit.

ORGANICS ANALYSIS DATA SHEET
BETX by Method 602/8020

Matrix: Water

Level:

Low

Project No: Trans Mtn.

21199032

333 Ninth Ave. North

Analytical

Chemists &

Consultants

99032 Seattle, WA 98109-5187

QC Report No: A383-Dames & Moore (206) 621-6490

VTSR: 4/3/92

(206) 621-7523 (FAX)

Data Release Authorized:

Report prepared: 04/14/92 - MAC: RFR

Instrumen	t ID: GC/PID	Sample No.	Method Blank	SWRO-C-42	SWRO-D2-23	SWRO-D3-23
		ARI ID	MB-0409	A383 - A	A383 - B	A383 - C
		Date Analyzed	4/9/92	4/10/92	4/10/92	4/10/92
		Amt Analyzed	5.0 ml	5.0 ml	5.0 ml	5.0 ml
CAS Num	ber	. Units	μg/L	μg/L	μg/L	μg/L
71-43-2	Benzene		1.0 U	1.0 U	1.0 U	1.0 U
108-88-3	Toluene		1.0 U	1.0 U	1.0 U	1.0 U
100-41-4	Ethylbenzene		1.0 U	1.0 U	1.0 U	1.0 U
1330-20-7	Total Xylenes		2.0 U	2.0 U	2.0 U	2.0 U
		Trifluorotoluene	100%	91.1%	90.9%	91.5%
		Bromobenzene	96.0%	90.5%	91.8%	94.8%

Instrumen	t ID: GC/PID	Sample No.	SW - 3 - 12	Trip Blank
		ARI ID	A383 - D	A383 - E
		Date Analyzed	4/10/92	4/10/92
		Amt Analyzed	5.0 ml	5.0 ml
CAS Num	ber	Units	μg/L	μg/L
71-43-2	Benzene		1.0 U	1.0 U
108-88-3	Toluene		1.0 U	1.0 U
100-41-4	Ethylbenzene		1.0 U	1.0 U
1330-20-7	Total Xylenes		2.0 U	2.0 U
		Trifluorotoluene	87.1%	87.8%
		Bromobenzene	87.4%	90.2%

GC DATA QUALIFIERS

- U Indicates the compound was undetected at the listed concentration.
- J Indicates an estimated value when the value is less than the calculated detection limit.
- D Indicates the surrogate(s) was not detected, due to dilution of extract.
- NR Indicates the surrogate recovery cannot be reported due to matrix interference.
- X Indicates a value above the linear range of the detector. Dilution required.
- S Indicates no value reported due to saturation of the detector. Dilution required.
- C Indicates a probable value which is unable to be confirmed due to matrix interference

TOTAL GASOLINE RANGE HYDROCARBONS WA TPHG Method by GC/FID

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

QC Report No: A383-Dames & Moore

Project: Trans Mtn.

21199032

VTSR: 04/03/92

Matrix: Waters

Data Release Authorized

Data Prepared: 04/14/92 - MAC: RPR

Date Extracted: 04/09/92 Date Analyzed: 04/09/92

			Dilution	Gasoline Range		Surrogate	Surrogate		
Lal	b ID	Client Sample ID	Factor	Hydrocarbons †	Gas ID *	A	В		
A383	MB-0409	Method Blank	-	0.25 U	-	90.2%	107%		
A383	Α	SWRO-C-42	-	0.25 U	No	89.4%	113%		
A383	В	SWRO-D2-23	-	0.25 U	No	91.2%	115%		
A383	C	S W R O - D3 - 23	-	0.25 U	No	93.4%	120%		
A383	E	Trip Blank	-	0.25 U	No	88.8%	115%		

Surrogate A = Trifluorotoluene Surrogate B = Bromobenzene

Values reported in ppm (mg/L).

- U Indicates compound was analyzed for but not detected at the given detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- * In the opinion of the analyst, was there a pattern match for gasoline.
- † Value based on total peaks in the range from Toluene to Dodecane.

21 April 1992

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Maltby
Dames & Moore
500 Market Place Tower
2025 First Avenue
Seattle, WA 98121

DAMES & MOORE SEATTLE

APR 22 1992

RE: Client Project: #21199-032 Trans. Mtn. ARI Job #A422

Dear David:

Please find enclosed the results and original chain-of-custody record for the above referenced project. Four samples and a trip blank were received in good condition on 4/9/92, and the analyses proceeded without incident.

Although BETX analysis was only requested for sample SW-3-13, the 8015-gas and BETX analyses are performed simultaneously, and the BETX results were therefore reported. A new report can be produced without the extra samples if necessary. You will not be invoiced for the unrequested results.

If you have any questions or need further information, please feel free to call any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Coordinator 206-340-2867 ext. 117

KAS/ks

Enclosures

cc: file#A422

CHAIN-OF-CUSTODY RECORD

WHITE COPY - Ontimal Accompanies Samples) YELLOW COPY - Collector PINK COPY - Project Manager

Seattle, Washington 98121 (206) 728-0744 Fax No. (206) 448-7994	DAMES & MOORE 500 Market Place Tower	PHONE:	ANALYTICAL LABORATORY:	RELINQUISHED BY: (Signature) 49/19 16:33	HEDBY: (Signature) DATE/TIME RE	RELINQUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature)						trip planele	1200 J. G. G. J C. X	2-13-24 0415	24 0050 /	-43 LOHO MATER 2 -40 me voo	Sample Sample Container Type 10 10 10 10 10 10 10 10 10 10 10 10 10	$^{\prime}$
COLLECTOR MYW, Wan DATE OF COLLECTION 4/8/92	LOCATION BELLLY COM Ma Ma	01/11/02/	ı		stored in reputification on site until deliver	LABORATORY NOTES:						2	X		2		Total Rich Rich Rich Rich Rich Rich Rich Rich	100 /04 05 (S) 100 /60 /6 /00 / 100
		_		 	د_				+			(•	7		Of Contain Laboratory Note Numb	$\neg 1$

积渊 BHJ3

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

TOTAL PETROLEUM HYDROCARBONS by IR Scan **Modified EPA Method 418.1**

Matrix: Water

Project:

21199032

Trans Mountain

Dames & Moore

QC Report No: A422 VTSR: 04/09/92

Data Release Authorized Dam B. Astr

Data Prepared: 04/14/92 -MAC:PJW

Date Prepared: 04/13/92 Date of Analysis: 04/13/92

Dilution

Lab ID	Client Sample ID	Factor	TPH (ppm)
A422 MB	METHOD BLANK	1	1 U
A422 D	SW-3-13	1	1 U

Values reported in ppm (mg/L).

Indicates compound was analyzed for but not detected at the given detection limit.

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANICS ANALYSIS DATA SHEET - Method 602/8020 BETX by GC-PID

Matrix: Water

Level: Low

Data Release Authorized:

Report prepared: 04/20/92

24/20/02 AACD

QC Report No: A422-Dames & Moore

Project No: 21199032

Trans Mtn.

Date Received: 04/09/92

		Sample No.	Meth Blank	SWRO-C-43	SWRO-D2-24	SWRO-D3-24
		ARI ID	0415mb	A422A	A422B	A422C
		Date Analyzed	04/15/92	04/15/92	04/15/92	04/15/92
		Amt Analyzed	5.0 mls	5.0 mls	5.0 mls	5.0 mls
CAS Number		Units	μg/L	μg/L	μg/L	μg/L
71-43-2	Benzene		1.0 U	1.0 U	1.0 U	1.0 U
108-88-3	Toluene		1.0 U	1.0 U	1.0 U	1.0 U
100-41-4	Ethylbenzene		1.0 U	1.0 U	1.0 U	1.0 U
1330-20-7	Total Xylenes		2.0 U	2.0 U	2.0 U	2.0 U

Surrogate Recoveries

	anogaio kocoronos					_
Tr	ifluorotoluene	105%	99.3%	99.0%	99.4%	
Bi	romobenzene	102%	101%	100%	95.4%	ı

		Sample No.	SW-3-13	Trip Blank
		ARI ID	A422D	A422E
•		Date Analyzed	04/15/92	04/15/92
		Amt Analyzed	5.0 mls	5.0 mls
CAS Num	ber	Units	μg/L	μg/L
71-43-2	Benzene		1.0 U	1.0 U
108-88-3	Toluene		1.0 U	1.0 U
	Ethylbenzene		1.0 U	1.0 U
1330-20-7	Total Xylenes		2.0 U	2.0 U

Surrogate Recoveries

Trifluorotoluene	103%	99.1%
Bromobenzene	101%	101%

Data Reporting Qualifiers

- U Indicates compound was analyzed for, but not detected at the given detection limit.
- J Indicates an estimated value when that value is less than the calculated detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- NR Indicates no recovery due to matrix interference and/or dilution.

TOTAL GASOLINE RANGE HYDROCARBONS BY GC/FID WA TPH-G Method (Purge & Trap)

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

QC Report No: A422-Dames & Moore

Project: 21199032

Trans Mtn.

VTSR: 04/09/92

Data Release Authorized

Matrix: Waters

Data Prepared: 04/20/92 MAC:D sk

Date extracted: 04/15/92 Date Analyzed: 04/15-16/92

			Dilution	Gasoline Range		Surrogate	Surrogate
Lab	ID	Client Sample ID	Factor	Hydrocarbons †	Gas ID *	A	В
A422	MB	Method Blank	NA	0.25 U	No	94.3%	90.2%
A422	Α	SWRO-C-43	NA	0.25 U	No	91.1%	91.1%
A422	В	SWRO-D2-24	NA	0.25 U	No	92.7%	90.3%
A422	С	SWRO-D3-24	NA	0.25 U	No	93.5%	86.2%
A422	E	Trip Blank	NA	0.25 U	No	94.5%	94.0%

Surrogate A = Trifluorotoluene Surrogate B = Bromobenzene

Values reported in ppm (mg/L).

- U Indicates compound was analyzed for but not detected at the given detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- * In the opinion of the analyst, was there a pattern match for gasoline (yes or no).
- † Value based on total peaks in Toluene-C12 range.

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

DAMES & MOORE SEATTLE MAY 2 8 1992

David Maltby Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: #21199-032 Trans. Mtn. ARI Job #A501

Dear David:

Please find enclosed the original results for the volatile organics analyses for the above referenced project. I apologize for not including them in the data package mailed May 19th; hopefully the delay hasn't caused you too much inconvenience.

If you have any questions or need further information, please feel free to call any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Coordinator 206-340-2867 ext. 117

KAS/ks

Enclosures

cc: file#A501

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS

Lab ID:

0422mb

Matrix:

Waters

Instrument: FINN 7

Date Analyzed: 04/22/92

Report: 04/24/92 MAC:D sk

Amount Purged: 5.0 ml Conc/Dilution: 1 to 1

Sample: Method Blank

QC Report No: A501 - Dames & Moore

Project: 21199032

Trans Mtn.

VTSR: NA

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490

(206) 621-7523 (FAX)

CAS Numb		μg/L
74-87-3	Chloromethane	2.0 U
74-83-9	Bromomethane	2.0 U
75-01-4	Vinyl Chloride	2.0 U
75-00-3	Chloroethane	2.0 U
75-09-2	Methylene Chloride	2.0 U
67-64-1	Acetone	5.0 U
<i>75-15-0</i>	Carbon Disulfide	1.0 U
75-35-4	1,1-Dichloroethene	1.0 U
75-34-3	1,1-Dichloroethane	1.0 U
156-60-5	Trans-1,2-Dichloroethene	1.0 U
156-59-2	Cis-1,2-Dichloroethene	1.0 U
67-66-3	Chloroform	1.0 U
107-06-2	1,2-Dichloroethane	1.0 U
<i>78-93-3</i>	2-Butanone	5.0 U
71-55-6	1,1,1-Trichloroethane	1.0 U
56-23-5	Carbon Tetrachloride	1.0 U
108-05-4	Vinyl Acetate	1.0 U
75-27-4	Bromodichloromethane	1.0 U
78-87-5	1,2-Dichloropropane	1.0 U

CAS Numbe	μg/L	
10061-01-5	cis-1,3-Dichloropropene	1.0 U
79-01-6	Trichloroethene	1.0 U
124-48-1	Dibromochloromethane	1.0 U
79-00-5	1,1,2-Trichloroethane	1.0 U
71-43-2	Benzene	1.0 U
10061-02-6	trans-1,3-Dichloropropene	1.0 U
110-75-8	2-Chloroethylvinylether	1.0 U
75-25-2	Bromoform	1.0 U
108-10-1	4-Methyl-2-Pentanone	5.0 U
591-78-6	2-Hexanone	5.0 U
127-18-4	Tetrachloroethene	1.0 U
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U
108-88-3	Toluene	1.0 U
108-90-7	Chlorobenzene	1.0 U
100-41-4	Ethylbenzene	1.0 U
100-42-5	Styrene	1.0 U
1330-20-7	Total Xylenes	2.0 U
75-69-4	Trichlorofluoromethane	2.0 U
76-13-1	1,1,2-Trichlorotrifluoroethane	2.0 U

Surrogate Recoveries

d8-Toluene	101%
Bromofluorobenzene	100%
d4-1,2-Dichloroethane	92.3%

Data Reporting Qualifiers

- Indicates compound was analyzed for but not detected at the given detection limit.
- Indicates an estimated value when result is less than specified detection limit.

- B This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
- This flag is used when quantitated value falls above the limit of the calibration curve and dilution should be run.
- Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match parameters.

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS

Lab ID:

MB0505A

Matrix:

Waters

Son N. Rhe

Sample: Method Blank

Analytical Chemists & Consultants

QC Report No: A501 - Dames & Moore

Project: 21199-032

Trans Mtn.

VTSR: NA

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490

(206) 621-7523 (FAX)

Data Release Authorized: __

107-06-2

78-93-3

71-55-6

108-05-4

56-23-5

75-27-4

78-87-5

Report: 05/05/92 MAC:Kkas

Instrument: Finn 3 Date Analyzed: 05/05/92 Amount Purged: 5.0 ml

Conc/Dilution: 1 to 2 (equivalent)

CAS Number μg/L 4.0 U 74-87-3 Chloromethane 4.0 U 74-83-9 Bromomethane 4.0 U 75-01-4 Vinyl Chloride 4.0 U 75-00-3 Chloroethane Methylene Chloride 4.0 U 75-09-2 10 U 67-64-1 Acetone 2.0 U Carbon Disulfide 75-15-0 2.0 U 75-35-4 1.1-Dichloroethene 2.0 U 75-34-3 1,1-Dichloroethane Trans-1,2-Dichloroethene 2.0 U 156-60-5 2.0 U Cis-1,2-Dichloroethene 156-59-2 2.0 U 67-66-3 Chloroform

CAS Numbe	μg/L	
10061-01-5	cis-1,3-Dichloropropene	2.0 U
79-01-6	Trichloroethene	2.0 U
124-48-1	Dibromochloromethane	2.0 U
79-00-5	1,1,2-Trichloroethane	2.0 U
71-43-2	Benzene	2.0 U
10061-02-6	trans-1,3-Dichloropropene	2.0 U
110-75-8	2-Chloroethylvinylether	2.0 U
75-25-2	Bromoform	2.0 U
108-10-1	4-Methyl-2-Pentanone	10 U
591-78-6	2-Hexanone	10 U
127-18-4	Tetrachloroethene	2.0 U
79-34-5	1,1,2,2-Tetrachloroethane	2.0 U
108-88-3	Toluene	2.0 U
108-90-7	Chlorobenzene	2.0 U
100-41-4	Ethylbenzene	2.0 U
100-42-5	Styrene	2.0 U
1330-20-7	Total Xylenes	4.0 U
75-69-4	Trichlorofluoromethane	4.0 U
76-13-1	1,1,2-Trichlorotrifluoroethane	4.0 U

Surrogate Recoveries

1,2-Dichloropropane

1.2-Dichloroethane

1,1,1-Trichloroethane

Carbon Tetrachloride

Bromodichloromethane

2-Butanone

Vinyl Acetate

to T	10.49/
d8-Toluene	104%
Bromofluorobenzene	102%
d4-1,2-Dichloroethane	97.3%

Data Reporting Qualifiers

2.0 U

10 U

2.0 U

2.0 U

2.0 U

2.0 U

2.0 U

- Indicates compound was analyzed for but not detected at the given detection limit.
- Indicates an estimated value when result is less than specified detection limit.
- B This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
- This flag is used when quantitated value falls above the limit of the calibration curve and dilution should be run.
- Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match parameters.

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS

Lab ID: Matrix: A501E

Waters

Sample: SW-1-11:30

QC Report No: A501 - Dames & Moore

Project: 21199032

Trans Mtn.

VTSR: 04/17/92

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490

(206) 621-7523 (FAX)

Data Release Authorized: Jan V. Suku

Report: 04/24/92 MAC:D sk

Instrument: FINN 7 Date Analyzed: 04/22/92 Amount Purged: 5.0 ml Conc/Dilution: 1 to 1

CAS Numbe	μg/L	
74-87-3	Chloromethane	2.0 U
74-83-9	Bromomethane	2.0 U
75-01-4	Vinyl Chloride	2.0 U
75-00-3	Chloroethane	2.0 U
75-09-2	Methylene Chloride	2.0 U
67-64-1	Acetone	5.0 U
<i>75-15-0</i>	Carbon Disulfide	1.0 U
75-35-4	1,1-Dichloroethene	1.0 U
75-34-3	1,1-Dichloroethane	1.0 U
156-60-5	Trans-1,2-Dichloroethene	1.0 U
156-59-2	Cis-1,2-Dichloroethene	1.0 U
67-66-3	Chloroform	14
107-06-2	1,2-Dichloroethane	1.0 U
78-93-3	2-Butanone	5.0 U
71-55-6	1,1,1-Trichloroethane	1.0 U
56-23-5	Carbon Tetrachloride	1.0 U
108-05-4	Vinyl Acetate	1.0 U
75-27-4	Bromodichloromethane	1.0 U
78-87-5	1,2-Dichloropropane	1.0 U

CAS Numbe	μg/L	
10061-01-5	cis-1,3-Dichloropropene	1.0 U
79-01-6	Trichloroethene	1.0 U
124-48-1	Dibromochloromethane	1.0 U
79-00-5	1,1,2-Trichloroethane	1.0 U
71-43-2	Benzene	1.0 U
10061-02-6	trans-1,3-Dichloropropene	1.0 U
110-75-8	2-Chloroethylvinylether	1.0 U
75-25-2	Bromoform	1.0 U
108-10-1	4-Methyl-2-Pentanone	5.0 U
591-78-6	2-Hexanone	5.0 U
127-18-4	Tetrachloroethene	1.0 U
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U
108-88-3	Toluene	1.0 U
108-90-7	Chlorobenzene	1.0 U
100-41-4	Ethylbenzene	1.0 U
100-42-5	Styrene	1.0 U
1330-20-7	Total Xylenes	2.0 U
75-69-4	Trichlorofluoromethane	2.0 U
76-13-1 .	1,1,2-Trichlorotrifluoroethane	2.0 U

Surroacte Recoveries

0209	
d8-Toluene	106%
Bromofluorobenzene	95.2%
d4-1,2-Dichloroethane	88.2%

Data Reporting Qualifiers

- Indicates compound was analyzed for but not detected at the given detection limit.
- Indicates an estimated value when result is less than specified detection limit.
- B This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
- This flag is used when quantitated value falls above the limit of the calibration curve and dilution should be run.
- Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match parameters.

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS

Lab ID:

A501F

Matrix:

Waters

Data Release Authorized: _

Report: 04/24/92 MAC:D sk

Instrument: FINN 7

Sample: SW-2-12:00

QC Report No: A501 - Dames & Moore

Project: 21199032

Trans Mtn.

VTSR: 04/17/92

Chemists & Consultants

Analytical

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490 (206) 621-7523 (FAX)

Date Analyzed: 04/22/92

Amount Purged: 5.0 ml Conc/Dilution: 1 to 1

CAS Number		μg/L
74-87-3	Chloromethane	2.0 Ü
74-83-9	Bromomethane	2.0 U
75-01-4	Vinyl Chloride	2.0 U
75-00-3	Chloroethane	2.0 U
75-09-2	Methylene Chloride	2.0 U
67-64-1	Acetone	5.0 U
<i>75-15-0</i>	Carbon Disulfide	1.0 U
75-35-4	1,1-Dichloroethene	1.0 U
<i>75-34-3</i>	1,1-Dichloroethane	1.0 U
156-60-5	Trans-1,2-Dichloroethene	1.0 U
156-59-2	Cis-1,2-Dichloroethene	1.0 U
67-66-3	Chloroform	1.0 U
107-06-2	1,2-Dichloroethane	1.0 U
<i>78-93-3</i>	2-Butanone	5.0 U
71-55-6	1,1,1-Trichloroethane	1.0 U
56-23-5	Carbon Tetrachloride	1.0 U
108-05-4	Vinyl Acetate	1.0 U
75-27-4	Bromodichloromethane	1.0 U
<i>78-87-5</i>	1,2-Dichloropropane	1.0 U

CAS Numbe	er	μg/L
10061-01-5	cis-1,3-Dichloropropene	1.0 U
79-01-6	Trichloroethene	1.0 U
124-48-1	Dibromochloromethane	1.0 U
79-00-5	1,1,2-Trichloroethane	1.0 U
71-43-2	Benzene	1.0 U
10061-02-6	trans-1,3-Dichloropropene	1.0 U
110-75-8	2-Chloroethylvinylether	1.0 U
75-25-2	Bromoform	1.0 U
108-10-1	4-Methyl-2-Pentanone	5.0 U
591-78-6	2-Hexanone	5.0 U
127-18-4	Tetrachloroethene	1.0 U
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U
108-88-3	Toluene	1.0 U
108-90-7	Chlorobenzene	1.0 U
100-41-4	Ethylbenzene	1.0 U
100-42-5	Styrene	1.0 U
1330-20-7	Total Xylenes	2.0 U
75-69-4	Trichlorofluoromethane	2.0 U
76-13-1	1,1,2-Trichlorotrifluoroethane	2.0 U

Surrogate Recoveries

d8-Toluene	105%
Bromofluorobenzene	95.0%
d4-1,2-Dichloroethane	85.9%

Data Reporting Qualifiers

- Indicates compound was analyzed for but not detected at the given detection limit.
- Indicates an estimated value when result is less than specified detection limit.

- This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
- This flag is used when quantitated value falls above the limit of the calibration curve and dilution should be run.
- Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match parameters.

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS

Lab ID:

A5011

Matrix:

78-87-5

Waters

Data Release Authorized:

Report: 04/24/92 MAC:D sk

Instrument: FINN 7

Sample: SW-3

Amount Purged: 5.0 ml

Conc/Dilution: 1 to 1

QC Report No: A501 - Dames & Moore

Project: 21199032

Trans Mtn.

VTSR: 04/17/92

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490

(206) 621-7523 (FAX)

	Date Analyzed:	04/22/92
CAS Number		
- 4 4 - 4	Old and the second	

CAS Numb	er	μg/L
74-87-3	Chloromethane	2.0 U
74-83-9	Bromomethane	2.0 U
75-01-4	Vinyl Chloride	2.0 U
75-00-3	Chloroethane	2.0 U
75-09-2	Methylene Chloride	2.0 U
67-64-1	Acetone	5.0 U
<i>75-15-0</i>	Carbon Disulfide	1.0 U
75-35-4	1,1-Dichloroethene	1.0 U
<i>75-34-3</i>	1,1-Dichloroethane	1.0 U
156-60-5	Trans-1,2-Dichloroethene	1.0 U
156-59-2	Cis-1,2-Dichloroethene	1.0 U
67-66-3	Chloroform	1.0 U
107-06-2	1,2-Dichloroethane	1.0 U
<i>78-93-3</i>	2-Butanone	5.0 U
71-55-6	1,1,1-Trichloroethane	1.0 U
56-23-5	Carbon Tetrachloride	1.0 U
108-05-4	Vinyl Acetate	1.0 U
75-27-4	Bromodichloromethane	1.0 U

CAS Numbe	er	μg/L_
10061-01-5	cis-1,3-Dichloropropene	1.0 U
79-01-6	Trichloroethene	1.0 U
124-48-1	Dibromochloromethane	1.0 U
79-00-5	1,1,2-Trichloroethane	1.0 U
71-43-2	Benzene	1.0 U
10061-02-6	trans-1,3-Dichloropropene	1.0 U
110-75-8	2-Chloroethylvinylether	1.0 U
75-25-2	Bromoform	1.0 U
108-10-1	4-Methyl-2-Pentanone	5.0 U
591-78-6	2-Hexanone	5.0 U
127-18-4	Tetrachloroethene	1.0 U
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U
108-88-3	Toluene	1.0 U
108-90-7	Chlorobenzene	1.0 U
100-41-4	Ethylbenzene	1.0 U
100-42-5	Styrene	1.0 U
1330-20-7	Total Xylenes	2.0 U
75-69-4	Trichlorofluoromethane	2.0 U
76-13-1	1 1 2-Trichlorotrifluoroethane	2.0 U

Surrogate Recoveries

1,2-Dichloropropane

d8-Toluene	105%
Bromofluorobenzene	96.3%
d4-1,2-Dichloroethane	87.6%

Data Reporting Qualifiers

1.0 U

- Indicates compound was analyzed for but not detected at the given detection limit.
- Indicates an estimated value when result is less than specified detection limit.

- This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
- This flag is used when quantitated value falls above the limit of the calibration curve and dilution should be run.
- Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match parameters.

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS

Lab ID:

A501J

Matrix:

Waters

Report: 04/24/92 MAC:D sk

Sample: SW-5

QC Report No: A501 - Dames & Moore

Project: 21199032

Trans Mtn.

VTSR: 04/17/92

Chemists & Consultants

Analytical

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490 (206) 621-7523 (FAX)

Instrument:	FINN 7
Date Analyzed	: 04/22/92

Amount Purged: 5.0 ml Conc/Dilution: 1 to 10

CAS Numbe	r	μg/L
74-87-3	Chloromethane	20 U
74-83-9	Bromomethane	20 U
75-01-4	Vinyl Chloride	20 U
75-00-3	Chloroethane	20 U
75-09-2	Methylene Chloride	20 U
67-64-1	Acetone	50 U
75-15-0	Carbon Disulfide	10 U
75-35-4	1,1-Dichloroethene	10 U
75-34-3	1,1-Dichloroethane	10 U
156-60-5	Trans-1,2-Dichloroethene	10 U
156-59-2	Cis-1,2-Dichloroethene	10 U
67-66-3	Chloroform	10 U
107-06-2	1,2-Dichloroethane	10 U
78-93-3	2-Butanone	50 U
71-55-6	1,1,1-Trichloroethane	10 U
56-23-5	Carbon Tetrachloride	10 U
108-05-4	Vinyl Acetate	10 U
75-27-4	Bromodichloromethane	10 U
<i>78-87-5</i>	1,2-Dichloropropane	10 U

CAS Numbe	er	μg/L
10061-01-5	cis-1,3-Dichloropropene	10 U
79-01-6	Trichloroethene	10 U
124-48-1	Dibromochloromethane	10 U
79-00-5	1,1,2-Trichloroethane	10 U
71-43-2	Benzene	10 U
10061-02-6	trans-1,3-Dichloropropene	10 U
110-75-8	2-Chloroethylvinylether	10 U
75-25-2	Bromoform	10 U
108-10-1	4-Methyl-2-Pentanone	50 U
591-78-6	2-Hexanone	50 U
127-18-4	Tetrachloroethene	10 U
79-34-5	1,1,2,2-Tetrachloroethane	10 U
108-88-3	Toluene	10 U
108-90-7	Chlorobenzene	10 U
100-41-4	Ethylbenzene	10 U
100-42-5	Styrene	10 U
1330-20-7	Total Xylenes	20 U
75-69-4	Trichlorofluoromethane	20 U
76-13-1	1,1,2-Trichlorotrifluoroethane	20 U

Surrogate Recoveries

-	d8-Toluene	109%
	Bromofluorobenzene	95.9%
	d4-1,2-Dichloroethane	86.9%

Data Reporting Qualifiers

- Indicates compound was analyzed for but not detected at the given detection limit.
- Indicates an estimated value when result is less than specified detection limit.

- This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
- This flag is used when quantitated value falls above the limit of the calibration curve and dilution should be run.
- Indicates an estimated value of analyte М found and confirmed by analyst but with low spectral match parameters.

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds

Sample No:

SW-5

Lab ID: A501J Matrix: Water QC Report No: A501-Dames & Moore

Project No: 21199-032

Trans Mtn.

VTSR: 4/17/92

Data Release Authorized: <u>Aum M. Osfe</u>

	CAS			Scan	Estimated
1	Number	Compound Name	Fraction	Number	Concentration
					(μg/L)
1	-	UNKNOWN Hydrocarbon (bp m/e 43)	VOA	646	170 J
2	-	Trimethylcyclohexane Isomer (bp m/e 69)	VOA	691	250 J
3	-	UNKNOWN Hydrocarbon (bp m/e 57)	VOA	776	160 J
4	-	C10.H22 Isomer (bp m/e 57)	VOA	791	240 J
5	-	UNKNOWN Hydrocarbon (bp m/e 57)	VOA	808	200 J
6	-	UNKNOWN Hydrocarbon (bp m/e 43)	VOA	872	280 J
7	-	UNKNOWN Hydrocarbon coelute (bp m/e 57)	VOA	913	170 J
8	-	UNKNOWN Hydrocarbon (bp m/e 57)	VOA	969	240 J
9	-	UNKNOWN Hydrocarbon (bp m/e 43)	VOA	983	180 J
10	-	UNKNOWN Hydrocarbon (bp m/e 57)	VOA	1061	270 J
111					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					
23					
24					
25	•/				
26					
27					
1					
28					
29				•	
30					

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS

Lab ID:

A501J (re)

Matrix:

Waters

Report: 05/05/92 MAC:Kkas

monte Einn 3

Sample: SW-5

re-analysis

QC Report No: A501 - Dames & Moore

Project: 21199-032

Trans Mtn.

VTSR: 04/17/92

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490

(206) 621-7523 (FAX)

instrument:	Finn 3
Date Analyzed:	05/05/92

Amount Purged: 5.0 ml Conc/Dilution: 1 to 2

CAS Numbe	r	μg/L
74-87-3	Chloromethane	4.0 U
74-83-9	Bromomethane	4.0 U
75-01-4	Vinyl Chloride	4.0 U
75-00-3	Chloroethane	4.0 U
75-09-2	Methylene Chloride	4.0 U
67-64-1	Acetone	10 U
<i>75-15-0</i>	Carbon Disulfide	2.0 U
75-35-4	1,1-Dichloroethene	2.0 U
75-34-3	1,1-Dichloroethane	1.2 J
156-60-5	Trans-1,2-Dichloroethene	2.0 U
156-59-2	Cis-1,2-Dichloroethene	2.0 U
67-66-3	Chloroform	2.0 U
107-06-2	1,2-Dichloroethane	2.0 U
78-93-3	2-Butanone	10 U
71-55-6	1,1,1-Trichloroethane	5.7
108-05-4	Vinyl Acetate	2.0 U
<i>56-23-5</i>	Carbon Tetrachloride	2.0 U
75-27-4	Bromodichloromethane	2.0 U
<i>78-87-5</i>	1,2-Dichloropropane	2.0 U

CAS Numbe	er	μg/L
10061-01-5	cis-1,3-Dichloropropene	2.0 U
79-01-6	Trichloroethene	2.0 U
124-48-1	Dibromochloromethane	2.0 U
79-00-5	1,1,2-Trichloroethane	2.0 U
71-43-2	Benzene	1.3 J
10061-02-6	trans-1,3-Dichloropropene	2.0 U
110-75-8	2-Chloroethylvinylether	2.0 U
75-25-2	Bromoform	2.0 U
108-10-1	4-Methyl-2-Pentanone	10 U
591-78-6	2-Hexanone	10 U
127-18-4	Tetrachloroethene	2.0 U
79-34-5	1,1,2,2-Tetrachloroethane	2.0 U
108-88-3	Toluene	2.0 U
108-90-7	Chlorobenzene	2.0 U
100-41-4	Ethylbenzene	2.0 U
100-42-5	Styrene	2.0 U
1330-20-7	Total Xylenes	4.0 U
75-69-4	Trichlorofluoromethane	4.0 U
76-13-1	1,1,2-Trichlorotrifluoroethane	4.0 U

Surrogate Recoveries

d8-Toluene	103%
Bromofluorobenze	ne 106%
d4-1,2-Dichloroeth	ane 101%

Data Reporting Qualifiers

- Indicates compound was analyzed for but not detected at the given detection limit.
- Indicates an estimated value when result is less than specified detection limit.

- This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
- This flag is used when quantitated value falls above the limit of the calibration curve and dilution should be run.
- Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match parameters.

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANIC ANALYSIS DATA SHEET - Tentatively Identified Compounds

Sample No:

SW-5 re-analysis

ow o le dia

Lab ID: A501J (re)

Matrix: Water

QC Report No: A501-Dames & Moore

Project No: 21199-032

Trans Mtn.

VTSR: 4/17/92

Data Release Authorized: Man M. Och

	040		r	T	
	CAS Number	Common and Name		Scan	Estimated
	Number	Compound Name	Fraction	Number	Concentration
<u> </u>	-	Alludouslanantana laamas (hn m /a 41)	1/04	010	(μg/L)
2		Alkylcyclopentane Isomer (bp m/e 41)	VOA	918	16 J
3		Trimethylcyclopentane Isomer (bp m/e 70)	VOA	954	15 J
	-	Trimethylcyclopentane Isomer (bp m/e 55)	VOA	976	23 J
4	-	Alkylcyclohexane Isomer (bp m/e 41)	VOA	1119	22 J
5	-	Trimethylcyclohexane Isomer (bp m/e 111)	VOA	1197	35 J
6	-	UNKNOWN Hydrocarbon (bp m/e 57)	VOA	1372	13 J
7		UNKNOWN Hydrocarbon (bp m/e 43)	VOA	1506	21 J
8	-	C9.H12 Isomer (bp m/e 105)	VOA	1570	13 J ·
9	-	UNKNOWN (bp m/e 41)	VOA	1671	16 J
10	-	UNKNOWN Hydrocarbon (bp m/e 57)	VOA	1769	37 J
11		Tetramethylbenzene Isomer (bp m/e 119)	VOA	1819	39 J
12		UNKNOWN Hydrocarbon coelute (bp m/e 57.)	VOA	1835	20 J
13					
14					
15					
16					
17		·			
18		· · · · · · · · · · · · · · · · · · ·			
19					
20					
21					
22		,			
23					
24					
25					
26					
27					
28					
29					
30	<u></u>				
30					

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS

Lab ID:

A501K

Matrix:

71-55-6 56-23-5

108-05-4

75-27-4 78-87-5

Waters

Data Release Authorized: _

Report: 04/24/92 MAC:D sk

Instrument: FINN 7

Amount Purged: 5.0 ml Conc/Dilution: 1 to 1 Date Analyzed: 04/22/92

Sample: DW-2

QC Report No: A501 - Dames & Moore

Project: 21199032

Trans Mtn.

VTSR: 04/17/92

Analytical Chemists & Consultants

333 Ninth Ave. North

Seattle, WA 98109-5187

(206) 621-6490

(206) 621-7523 (FAX)

Dato / traingsout o types / 12				
CAS Numb	μg/L			
74-87-3	Chloromethane	1.6 J		
74-83-9	Bromomethane	2.0 U		
75-01-4	Vinyl Chloride	2.0 U		
<i>75-00-3</i>	Chloroethane	2.0 U		
75-09-2	Methylene Chloride	2.0 U		
67-64-1	Acetone	5.0 U		
<i>75-15-</i> 0	Carbon Disulfide	1.0 U		
75-35-4	1,1-Dichloroethene	1.0 U		
75-34-3	1,1-Dichloroethane	1.0 U		
156-60-5	Trans-1,2-Dichloroethene	1.0 U		
156-59-2	Cis-1,2-Dichloroethene	1.0 U		
67-66-3	Chloroform	1.0 U		
107-06-2	1,2-Dichloroethane	1.0 U		
78-93-3	2-Butanone	5.0 U		

CAS Numbe	er	μg/L
10061-01-5	cis-1,3-Dichloropropene	1.0 U
79-01-6	Trichloroethene	1.0 U
124-48-1	Dibromochloromethane	1.0 U
79-00-5	1,1,2-Trichloroethane	1.0 U
71-43-2	Benzene	1.0 U
10061-02-6	trans-1,3-Dichloropropene	1.0 U
110-75-8	2-Chloroethylvinylether	1.0 U
75-25-2	Bromoform	1.0 U
108-10-1	4-Methyl-2-Pentanone	5.0 U
591-78-6	2-Hexanone	5.0 U
127-18-4	Tetrachloroethene	1.0 U
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U
108-88-3	Toluene	1.0 U
108-90-7	Chlorobenzene	1.0 U
100-41-4	Ethylbenzene	1.0 U
100-42-5	Styrene	1.0 U
1330-20-7	Total Xylenes	2.0 U
75-69-4	Trichlorofluoromethane	2.0 U
76-13-1·.	1,1,2-Trichlorotrifluoroethane	2.0 U

Surrogate Recoveries

1,2-Dichloropropane

1,1,1-Trichloroethane

Carbon Tetrachloride

Bromodichloromethane

Vinyl Acetate

d8-Toluene	111%
Bromofluorobenzene	96.3%
d4-1,2-Dichloroethane	86.7%

Data Reporting Qualifiers

1.0 U

1.0 U 1.0 U

1.0 U

1.0 U

- Indicates compound was analyzed for but not detected at the given detection limit.
- Indicates an estimated value when result is less than specified detection limit.

- B This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
- This flag is used when quantitated value falls above the limit of the calibration curve and dilution should be run.
- Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match parameters.

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS

Lab ID:

A501L

Matrix:

Waters

Data Release Authorized: _

Report: 04/24/92 MAC:D sk

Chon M. Sepen

Sample: DW-3

QC Report No: A501 - Dames & Moore

Project: 21199032

Trans Mtn.

VTSR: 04/17/92

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle. WA 98109-5187

..~/

(206) 621-6490

(206) 621-7523 (FAX)

Instrument: FINN 7 Date Analyzed: 04/22/92 Amount Purged: 5.0 ml Conc/Dilution: 1 to 1

0 4 0 4 h h

CAS Numbe	r	μg/L
74-87-3	Chloromethane	2.0 U
74-83-9	Bromomethane	2.0 U
75-01-4	Vinyl Chloride	2.0 U
75-00-3	Chloroethane	2.0 U
75-09-2	Methylene Chloride	2.0 U
67-64-1	Acetone	5.0 U
75-15-0	Carbon Disulfide	1.0 U
75-35-4	1,1-Dichloroethene	1.0 U
75-34-3	1,1-Dichloroethane	1.0 U
156-60-5	Trans-1,2-Dichloroethene	1.0 U
156-59-2	Cis-1,2-Dichloroethene	1.0 U
67-66-3	Chloroform	1.0 U
107-06-2	1,2-Dichloroethane	1.0 U
78-93-3	2-Butanone	5.0 U
71-55-6	1,1,1-Trichloroethane	1.0 U
56-23-5	Carbon Tetrachloride	1.0 U
108-05-4	Vinyl Acetate	1.0 U
75-27-4	Bromodichloromethane	1.0 U
<i>78-87-5</i>	1,2-Dichloropropane	1.0 U

CAS Number	er	μg/L
10061-01-5	cis-1,3-Dichloropropene	1.0 U
79-01-6	Trichloroethene	1.0 U
124-48-1	Dibromochloromethane	1.0 U
79-00-5	1,1,2-Trichloroethane	1.0 U
71-43-2	Benzene	1.0 U
10061-02-6	trans-1,3-Dichloropropene	1.0 U
110-75-8	2-Chloroethylvinylether	1.0 U
75-25-2	Bromoform	1.0 U
108-10-1	4-Methyl-2-Pentanone	5.0 U
591-78-6	2-Hexanone	5.0 U
127-18-4	Tetrachloroethene	1.0 U
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U
108-88-3	Toluene	1.0 U
108-90-7	Chlorobenzene	1.0 U
100-41-4	Ethylbenzene	1.0 U
100-42-5	Styrene	1.0 U
1330-20-7	Total Xylenes	2.0 U
75-69-4	Trichlorofluoromethane	2.0 U
76-13-1	1,1,2-Trichlorotrifluoroethane	2.0 U

Surroagte Recoveries

-	d8-Toluene	109%
	Bromofluorobenzene	96.3%
	d4-1,2-Dichloroethane	88.1%

Data Reporting Qualifiers

- U Indicates compound was analyzed for but not detected at the given detection limit.
- J Indicates an estimated value when result is less than specified detection limit.

- B This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
- K This flag is used when quantitated value falls above the limit of the calibration curve and dilution should be run.
- M Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match parameters.

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS

Lab ID:

A501M

Matrix:

Waters

Data Release Authorized: _

Report: 04/24/92 MAC:D sk

Instrument: FINN 7

Sample: DW-4

QC Report No: A501 - Dames & Moore

Project: 21199032

Trans Mtn.

VTSR: 04/17/92

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490

(206) 621-7523 (FAX)

Date Analyzed: 04/22/92

Amount Purged: 5.0 ml Conc/Dilution: 1 to 1

CAS Numbe	r	μg/L
74-87-3	Chloromethane	2.0 U
74-83-9	Bromomethane	2.0 U
75-01-4	Vinyl Chloride	2.0 U
75-00-3	Chloroethane	2.0 U
75-09-2	Methylene Chloride	2.0 U
67-64-1	Acetone	5.0 U
75-15-0	Carbon Disulfide	1.0 U
75-35-4	1,1-Dichloroethene	1.0 U
75-34-3	1,1-Dichloroethane	1.0 U
156-60-5	Trans-1,2-Dichloroethene	1.0 U
156-59-2	Cis-1,2-Dichloroethene	1.0 U
67-66-3	Chloroform	1.0 U
107-06-2	1,2-Dichloroethane	1.0 U
78-93-3	2-Butanone	5.0 U
71-55-6	1,1,1-Trichloroethane	1.0 U
56-23-5	Carbon Tetrachloride	1.0 U
108-05-4	Vinyl Acetate	1.0 U
75-27-4	Bromodichloromethane	1.0 U
<i>78-87-5</i>	1,2-Dichloropropane	1.0 U

CAS Numbe	μg/L	
10061-01-5	cis-1,3-Dichloropropene	1.0 U
79-01-6	Trichloroethene	1.0 U
124-48-1	Dibromochloromethane	1.0 U
79-00-5	1,1,2-Trichloroethane	1.0 U
71-43-2	Benzene	1.0 U
10061-02-6	trans-1,3-Dichloropropene	1.0 U
110-75-8	2-Chloroethylvinylether	1.0 U
75-25-2	Bromoform	1.0 U
108-10-1	4-Methyl-2-Pentanone	5.0 U
591-78-6	2-Hexanone	5.0 U
127-18-4	Tetrachloroethene	1.0 U
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U
108-88-3	Toluene	1.0 U
108-90-7	Chlorobenzene	1.0 U
100-41-4	Ethylbenzene	1.0 U
100-42-5	Styrene	1.0 U
1330-20-7	Total Xylenes	2.0 U
75-69-4	Trichlorofluoromethane	2.0 U
76-13-1 .	1,1,2-Trichlorotrifluoroethane	2.0 U

Surrogate Recoveries

ourrogaio koooroiise	
d8-Toluene	109%
Bromofluorobenzene	95.1%
d4-1,2-Dichloroethane	87.3%

Data Reporting Qualifiers

- Indicates compound was analyzed for but not detected at the given detection limit.
- Indicates an estimated value when result is less than specified detection limit.
- This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
- This flag is used when quantitated value falls above the limit of the calibration curve and dilution should be run.
- Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match parameters.

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS

Lab ID:

A501N

Matrix:

Waters

Data Release Authorized: _

Report: 04/24/92 MAC:D sk

Sample: DW-5

QC Report No: A501 - Dames & Moore

Project: 21199032

Trans Mtn.

VTSR: 04/17/92

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490

(206) 621-7523 (FAX)

Instrument: FINN 7 Date Analyzed: 04/22/92 Amount Purged: 5.0 ml Conc/Dilution: 1 to 1

CAS Number	r	μg/L
74-87-3	Chloromethane	2.0 U
74-83-9	Bromomethane	2.0 U
75-01-4	Vinyl Chloride	2.0 U
75-00-3	Chloroethane	2.0 U
75-09-2	Methylene Chloride	2.0 U
67-64-1	Acetone	5.0 U
75-15-0	Carbon Disulfide	1.0 U
75-35-4	1,1-Dichloroethene	1.0 U
75-34-3	1,1-Dichloroethane	1.0 U
156-60-5	Trans-1,2-Dichloroethene	1.0 U
156-59-2	Cis-1,2-Dichloroethene	1.0 U.
67-66-3	Chloroform	1.0 U
107-06-2	1,2-Dichloroethane	1.0 U
78-93-3	2-Butanone	5.0 U
71-55-6	1,1,1-Trichloroethane	1.0 U
56-23-5	Carbon Tetrachloride	1.0 U
108-05-4	Vinyl Acetate	1.0 U
75-27-4	<i>Bromodichloromethane</i>	1.0 U
<i>78-87-5</i>	1,2-Dichloropropane	1.0 U

CAS Numbe	μg/L	
10061-01-5	cis-1,3-Dichloropropene	1.0 U
79-01-6	Trichloroethene	1.0 U
124-48-1	Dibromochloromethane	1.0 U
79-00-5	1,1,2-Trichloroethane	1.0 U
71-43-2	Benzene	1.0 U
10061-02-6	trans-1,3-Dichloropropene	1.0 U
110-75-8	2-Chloroethylvinylether	1.0 U
75-25-2	Bromoform	1.0 U
108-10-1	4-Methyl-2-Pentanone	5.0 U
591-78-6	2-Hexanone	5.0 U
127-18-4	Tetrachloroethene	1.0 U
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U
108-88-3	Toluene	1.0 U
108-90-7	Chlorobenzene	1.0 U
100-41-4	Ethylbenzene	1.0 U
100-42-5	Styrene	1.0 U
1330-20-7	Total Xylenes	2.0 U
75-69-4	Trichlorofluoromethane	2.0 U
76-13-1	1,1,2-Trichlorotrifluoroethane	2.0 U

Surrogate Recoveries

d8-Toluene	108%
Bromofluorobenzene	94.1%
d4-1,2-Dichloroethane	87.4%

Data Reporting Qualifiers

- Indicates compound was analyzed for but not detected at the given detection limit.
- Indicates an estimated value when result is less than specified detection limit.

- This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
- This flag is used when quantitated value falls above the limit of the calibration curve and dilution should be run.
- Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match parameters.

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS

Lab ID:

A5010

Matrix:

Waters

Data Release Authorized:

Report: 04/24/92 MAC:D sk

Sample: Trip Blank

QC Report No: A501 - Dames & Moore

Project: 21199032

Trans Mtn.

VTSR: 04/17/92

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490

(206) 621-7523 (FAX)

Instrument: FINN 7 Date Analyzed: 04/22/92 Amount Purged: 5.0 ml Conc/Dilution: 1 to 1

CAS Numbe	r	μg/L
74-87-3	Chloromethane	2.0 U
74-83-9	Bromomethane	2.0 U
75-01-4	Vinyl Chloride	2.0 U
75-00-3	Chloroethane	2.0 U
75-09-2	Methylene Chloride	2.0 U
67-64-1	Acetone	5.0 U
75-15-0	Carbon Disulfide	1.0 U
75-35-4	1,1-Dichloroethene	1.0 U
75-34-3	1,1-Dichloroethane	1.0 U
156-60-5	Trans-1,2-Dichloroethene	1.0 U
156-59-2	Cis-1,2-Dichloroethene	1.0 U
67-66-3	Chloroform	1.0 U
107-06-2	1,2-Dichloroethane	1.0 U
78-93-3	2-Butanone	5.0 U
71-55-6	1,1,1-Trichloroethane	1.0 U
56-23-5	Carbon Tetrachloride	1.0 U
108-05-4	Vinyl Acetate	1.0 U
75-27-4	Bromodichloromethane	1.0 U
<i>78-87-5</i>	1,2-Dichloropropane	1.0 U

CAS Numbe	er	μg/L
10061-01-5	cis-1,3-Dichloropropene	1.0 U
79-01-6	Trichloroethene	1.0 U
124-48-1	Dibromochloromethane	1.0 U
79-00-5	1,1,2-Trichloroethane	1.0 U
71-43-2	Benzene	1.0 U
10061-02-6	trans-1,3-Dichloropropene	1.0 U
110-75-8	2-Chloroethylvinylether	1.0 U
75-25-2	Bromoform	1.0 U
108-10-1	4-Methyl-2-Pentanone	5.0 U
591-78-6	2-Hexanone	5.0 U
127-18-4	Tetrachloroethene	1.0 U
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U
108-88-3	Toluene	1.0 U
108-90-7	Chlorobenzene	1.0 U
100-41-4	Ethylbenzene	1.0 U
100-42-5	Styrene	1.0 U
1330-20-7	Total Xylenes	2.0 U
75-69-4	Trichlorofluoromethane	2.0 U
76-13-1	1,1,2-Trichlorotrifluoroethane	2.0 U

Surroacte Recoveries

d8-Toluene	104%
Bromofluorobenzene	96.6%
d4-1,2-Dichloroethane	86.9%

Data Reporting Qualifiers

- Indicates compound was analyzed for but not detected at the given detection limit.
- Indicates an estimated value when result is less than specified detection limit.

- This flag is used when the analyte is found in the blank as well as a sample. Indicates possible/probable blank contamination.
- This flag is used when quantitated value falls above the limit of the calibration curve and dilution should be run.
- M Indicates an estimated value of analyte found and confirmed by analyst but with low spectral match parameters.

19 May 1992

DAMES & MOORE SEATTLE

MAY 20 1992

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Maltby Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: #21199-032 Trans. Mtn.

ARI Job #A501, A523

Dear David:

Please find enclosed the results and original chain-of-custody records for the above referenced project. Fourteen samples and a trip blank were received on 4/17/92, eight samples and a trip blank on 4/22/92. All samples were in good condition. These have all been faxed to you as they became available.

Conventionals sample SW-5 was not analyzed for CI due to analyst oversight. Only half a bottle of this sample was received, however if there is enough sample remaining she will perform the analysis.

If you have any questions or need further information, please feel free to call any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Coordinator 206-340-2867 ext. 117

KAS/ks

Enclosures

cc: file#A501, A523

CHAIN-OF-CUSTODY RECORD

WHITE COPY - Original (Accompanies Samples) YELLOWICOPY - Callector PINK COPY - Project Manager

																					1			
Sample Name Depth Time Type Container Type Sample	Note Number																				1	_	\$	
Sample Depth Time Type Sample	Of Containers	7	7	7		\top	1	-									\top					ا ا	2	
Sample Depth Time Type Sample	Total Number	!	-	7	\dashv	+		-				\dashv	-		-	\dashv	\dashv	\dashv					3	2
Sample Depth Time Sample Container Type Of Type																						 	文	31
Sample Depth Time Sample Container Type Of Type	ES:									İ												빞	3	3
Sample	NOT																					ر ا	3	4
Sample Time Sample Container Type Time Type	IELD												١											NO.
Sample Sample Container Type Sample Sa					l																		1	ECT
Sample Sample Container Type Sample Sample Container Type Sample Sam																							اک	COLI
Sample Sample Container Type Sample Sample Container Type Sample Sam	(2)	_			\dashv		1	1				_											. 5	P.
Sample Sample Container Type Sample Sample Container Type Sample Sam							1																12	DATE
Sample S			不													\perp	_						密	
Sample S	198	X	X		\perp		_	_			_					\dashv	_					. <		.
Sample Number Depth Time Type Container Type (2000) 69 (8) (8) (8) (8) (8) (8) (8) (8) (8) (8)	1 1998	X	X	×	_	-	_	1									\dashv					12	12	-01
Sample Depth Time Type Container Type T	93 140	-	V	0			_	-	-	\dashv							-					1 =	Est	٤
Sample Depth Time Type Container Type T	31/3/1/3	×	_	~			+	+	-							_	\dashv				[7 3	4	ĺ
Sample Number Depth Time Type Type Type Type Type Type Type Typ	Con Children					\dashv	\dashv	-	+-													72	7	3
Sample Number Depth Time Sample 1200 3-40 vol. -Left. X X X X X X X X X	10 10 10 10 10 10 10 10 10 10 10 10 10 1				$\neg \uparrow$	-	\dashv	+	\vdash	Н											9	57] [-3
Sample																			iš:			<u> </u>	3	7
Sample Number Depth Time Type Container Type 2. 40 Multi-Left Mile 3. 40 Multi-Left Mile 3. 40 Multi-Left Mile 3. 10 Multi-Left Mile 1. 10 Multi-Left Mile	1.49 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45																_		N N		-	ZIZ		, ,
Sample Number Depth Time Type Container Type 2. 40 Multi-Left Mile 3. 40 Multi-Left Mile 3. 40 Multi-Left Mile 3. 10 Multi-Left Mile 1. 10 Multi-Left Mile	A SAN								<u> </u>										ORY V			. ال] _	TOR,
Sample Number Depth Time Type Container Type Type Type Type Type Type Type Type	(2) (3) (1)	<u> </u>				_		\bot	┼								-		PAT			Š į	ATIO	LEC
Sample Number Depth Time Type Container Type Type Type Type Type Type Type Type	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ļ		8		_	-	-	┼	-							-	-	M			805 608	5 3	CO
Sample Number Depth Time Type Container Type Container Type 1270 7-40/mJ/L-Lfram N 1500 7-0/0/2 1720 7-40/mJ/L-Lfram N 1720 10-1-6 plash: X 1720 10-1		<u> </u>	<u> </u>			-	-	+	+-	 				-	-				 	(e)		12		
Sample Number Depth Time Sample 1270 3-40vdn -1-6pdn 1270 2-40vdn -1-6pdn 1270 1-6pdn 1270 1-6pdn	1 2/2/3/	×	×	-		-		+	+	\vdash		-							natur	natu	.	77		
Sample Number Depth Time Sample 1270 3-40vdn -1-6pdn 1270 2-40vdn -1-6pdn 1270 1-6pdn 1270 1-6pdn	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	-		^		\neg		-	1										(Sig	Sig) :		20		
Sample Sample Time Type Container Type Container Number Depth Time Type Container Type Container Type Container Type Type Container Type Cont	72467	3	ري												Ŀ) BY		11		
Sample Sample Time Type Container Type Container Number Depth Time Type Container Type Container Type Container Type Type Container Type Cont	1	2	28																NEI SEE	INE(ij	ഥ	7994
Sample Sample Time Type Container Type Container Number Depth Time Type Container Type Container Type Container Type Type Container Type Cont	T _V		O					.											HECE HECE	RECE		움)R	48
Sample Number Depth Time Type Cont Number Depth Time Type Cont Sample Number Depth Time Type Cont Sample Sample Sample Cont Sample Sample Sample Cont Sample	iner	3	:	_															03				\tilde{O}	286 286
Sample Number Depth Ti Number Depth Ti Signature NISHED BY: (Signature) onts	É	6	س.																ш			\mathbf{Z}	9812 No.
Sample Number Depth Ti Number Depth Ti Signature NISHED BY: (Signature		14	K	-				-	+	-	-	-	\vdash	-	-	<u> </u>		-	E S N	MIT:		DA	ે જો ¹	ace Tonne ngton 4 Fax
Sample Number Depth Ti Number Depth Ti Signature NISHED BY: (Signature	mple																		A A A	DATE	17	N. T.	ES	Vashive Pu
Sample Number Depth Ti Number Depth Ti Signature NISHED BY: (Signature		4	 	-			_	-	- -	-	-	-	-	-	1-	-	-	-	1.4		Ä	7/3	AM.	Mark S Firs 12, V
Sample Number Depth Number Depth Sample Number Depth Sample Sample Sample Signation Signati	e E	3	118	12																<u>@</u>		9	ď	88.88
Sample Number [Number 1 Number		1-	1/1/	12	-		-	+	-	-	-	+-	+	-	+-	+	-	+		ature	RY I	٦١	ull ki	
Sample Number [Number 1 Number	40	5																	(Sign	(Sign	ATO	\[\frac{1}{2} \]		1
Boring or Well Samp Number Num			+	-	+	1-1	\dashv	+	+-	+	+	+	+	+	+	-	-	+-	⊣∴ ⊸ 4	BY:	BOR	S		
Boring or Well S. Number N. D. C. C. S. D. C.	ld me																			呈	اد ا	ACT:		
Boring Well Numbe LABOF D&M O			10	ワ	+-	\vdash		+	+	+	+	+	+-	+	+	+	\vdash	\dagger		SINC	F S	ATC		
	oring or Nell		<u>'</u>	∮₹	2															FLINC	NALY	ABOF &M.C		
	a z	4	72	¥	7								L	_	1				E) E	Œ	Ī₹	ם נ		

PINK COPY - Project Manager 3 do not do 30 metaus on 50-5 (no metaus bottle supplied) LABORATORY NOTES: OALS BY - CANIGNS INCLUDE C1,504, F, NO3 Of Containers 4 4 Wa N lotal Number 127 (THOPL SHEET 3 Sw-1 ; Sw-2 used as sample ID twice. FIELD NOTES: DATE OF COLLECTION... WHITE COPY - Carompanies Samples) YELLOW COPY - Collector × × X Nourteen 345 X × JOB NO. 24 49 032 Tals LOCATION LANCE COLLECTOR_INM PROJECT_ × X × (Signature) RECEIVED BY: (Signature) RECEIVED BY: (Signature) Ologino von 7280744 CHAIN-OF-CUSTODY RECORD SISTINA × RECEIVED BY: 9 3-40mo, 2011. H 3-40ml, 205. 1-1 PHONE: · your 500 Market Place Tower 2025 First Avenue Seattle, Washington 98121 (206) 728-0744 Fax No. (206) 448-7994 3-42me, 1-4 Container Type 2-tone ton DAMES & MOORE 3-40 mg N0 72475 1-1 となる DATE/TIME 707 Sample Type 万の人 1430 535 प्राप्त 200 100 Number Number | Depth | Time (B) OK RELINQUISHED BY: (Signature) (Signature) ANALYTICAL LABORATORY: Rupo-03-25-LABORATORY CONTAGT: ſ 900 -72-2 RELINQUISHED BY: Sample SW 20-10-44 SW-3-14 Trip Blaw D&M CONTACT: Boring Well \Re

Laboratory Note Number

CHAIN-OF-CUSTODY RECORD

Sample Type

Well Sample Number Depth Time

Boring

1200 Hz

DS -1

WHITE COPY - Original (Accompanies Samples) YELLOWNOWY - Collector PINK COPY - Project Manager

Note Number Laboratory by lype him CTMOPU Total Number Stanistno 10 FIELD NOTES: LOCATION LAWRER PUMM Station COLLECTOR IMW, WIGH RECEIVED BY: (Signature) | LABORATORY NOTES: JOB NO .: 6/1/9/9 PROJECT___ Mallon RECEIVED BY: (Signature) PHONE: 726 0744 RECEIVED BY: (Signature) SISTINA 500 Market Place Tower 2025 First Avenue Seattle, Washington 98121 (206) 728-0744 Fax No. (206) 448-7994 766 Container Type DAMES & MOORE 3-40ml SS. David Malthu DATE/TIME

DATE OF COLLECTION 4

LABORATORY CONTACT: KALL

D&M CONTACT:

ANALYTICAL LABORATORY: __

RELINQUISHED BY: (Signature)

RELINQUISHED BY: (Signature)

RELINQUISHED BY: (Signature)

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

Final Report Laboratory Analysis of Selected Parameters

Matrix: WATER

Data Release Authorized: Machine

Report Prepared: May 19, 1992

Project No: 21199032 QC Report No: D&M-A501 Date Received: 4/17/92

					DAT	E OF ANAL	YSIS		
C1-	Data		4/18/92	5/14/92	4/18/92	4/18/92	5/2/92	<i>5/7/</i> 92	5/7/92
Sample	Data	·	pH	TDS	NO2	NO3	Cl	F	SO4
r . t. 7	—	Sample Number	"	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Lab I	E	SW-1-11:30	6.16	419	< 0.010	< 0.010	2.7	0.43	329.3
A501	E	SW-2-12:00	8.03	253	0.011	0.323	16.5	0.20	18.3
A501	T	SW-5	6.70	561	< 0.010	< 0.010	-	0.05	58.7
A501	K	DW-2	7.67	335	< 0.010	0.257	41.7	0.23	39.8
A501	<u>, , , , , , , , , , , , , , , , , , , </u>	DW-3	7.81	290	< 0.010	0.287	7.6	0.23	24.2
A501	L	DW-3	7.70	214	< 0.010	0.615	8.1	0.19	24.9
A501	M	DW-4 DW-5	7.93	135	< 0.010	< 0.010	6.3	0.15	7.7
A501	N	DVV-3	7.33	1 100	1 10.010				

Method Blank Analysis: SO₄ F CÏ NO3 TDS NO₂ pН (mg/L)(mg/L) (mg/L)(mg/L)(mg/L)(mg/L)Sample Number < 1.0 < 0.010 < 1.0 < 0.05 < 0.010 Method Blank 1 < 10 1.0 1.0 0.05 10 0.010 0.010 Detection Limit:

Check Standard: SO₄ NO3 F CI NO2 TDS pН (mg/L)(mg/L)(mg/L)(mg/L)(mg/L)(mg/L)24.9 10.3 1.99 0.257 0.260 Measured Value 1.96 25.0 10.0 0.250 0.250 "True" Value 99.56% 102.80% 101.53% 104.00% 102.80% % Recovery

Duplicate Analysis: SO₄ F Cl NO3 pΗ TDS NO₂ (mg/L) (mg/L)(mg/L)(mg/L) (mg/L)(mg/L)0.20 18.3 6.3 < 0.010 < 0.010 7.93 214 Original 19.2 0.21 6.6 < 0.010 < 0.010 Duplicate 7.95 225 3.45% 3.55% 3.07% 3.54% RSD 0.18%

Spike Analysis: SO₄ F Cl NO3 TDS NO2 pН (mg/L)(mg/L)(mg/L)(mg/L)(mg/L) (mg/L)24.15 0.19 < 0.010 6.3 < 0.010 Original 56.3 2.15 16.4 0.417 0.387 Spike -1.96 33 10.0 0.400 0.400 Spike level 100.00% 97.42% 104.25% 100.70% 96.75% % Recovery

Comments: Sample SW-5 was missed during the analysis of chloride

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

TOTAL GASOLINE RANGE HYDROCARBONS WA TPHG Method by GC/FID

Matrix: Waters

QC Report No: A501-Dames & Moore

Project: 21199032

Trans Mountain

VTSR: 04/17/92

Data Release Authorized

Data Prepared: 04/27/92 - MAC: rpr

Date Extracted: 04/20/92

Date Analyzed: 04/20/92

ام ا	h ID	Client Sample ID	Dilution Factor	Gasoline Range Hydrocarbons †	Gas ID *	Surrogate A	Surrogate B
Lab ID			1	0.25 U	_	77.6%	79.3%
A501	MB0420	Method Blank	-				
A501	В	SWRO - C - 44	-	0.25 U	No	81.0%	84.4%
L				0.25 U	No	96.2%	95.5%
A501	C	SWRO-D 2 - 25					05.59
A501	D	SWRO-D 3 - 25	-	0.25 U	No	94.4%	95.5%

Surrogate A = Trifluorotoluene Surrogate B = Bromobenzene

Values reported in ppm (mg/L).

- U Indicates compound was analyzed for but not detected at the given detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- In the opinion of the analyst, was there a pattern match for gasoline.
- † Value based on total peaks in the range from Toluene to Dodecane.

ORGANICS ANALYSIS DATA SHEET
BETX by Method 602/8020

Matrix: Water Level: Low

Project No: 21199032

QC Report No: A501-Dames & Moore

VTSR: 4/17/92

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

Data Release Authorized:

Report prepared: 04/27/92 - MAC: RPR

Instrumen	t ID: GC/PID	Sample No.	Method Blk	SW - 3 - 14
		ARI ID	MB-0420	A501 - A
		Date Analyzed	4/20/92	4/21/92
		Amt Analyzed	5.0 ml	5.0 ml
CAS Number		Units	μg/L	μg/L
71-43-2	Benzene		1.0 U	1.0 U
108-88-3	Toluene		1.0 U	1.0 U
100-41-4	Ethylbenzene		1.0 U	1.0 U
1330-20-7	Total Xylenes		2.0 U	2.0 U
		Trifluorotoluene	78.3%	88.7%
		Bromobenzene	80.0%	89.1%

GC DATA QUALIFIERS

- U Indicates the compound was undetected at the listed concentration.
- J Indicates an estimated value when the value is less than the calculated detection limit.
- D Indicates the surrogate(s) was not detected, due to dilution of extract.
- NR Indicates the surrogate recovery cannot be reported due to matrix interference.
- X Indicates a value above the linear range of the detector. Dilution required.
- \$ Indicates no value reported due to saturation of the detector. Dilution required.
- C Indicates a probable value which is unable to be confirmed due to matrix interference

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

TOTAL PETROLEUM HYDROCARBONS by IR Scan Modified EPA Method 418.1

Matrix: Water

Project: 21199032

Trans Mountain

QC Report No: A501

Dames & Moore

VTSR: 04/17/92

Data Release Authorized _______

Data Prepared: 04/23/92 -MAC:PJW

Date Prepared: 04/21/92 Date of Analysis: 04/21/92

Dilution

Lab ID	Client Sample ID	Factor	TPH (ppm)	
A501 MB	METHOD BLANK	1	1 U	
A501 A	SW-3-14	1	1 U	
A501 G	SW-1	1	1 U	
A501 H	SW-2	1	1 U	
A501 J	SW-5	1	18	
A501 K	DW-2	1	1 U	
A501 L	DW-3	1	1 U	
A501 M	DW-4	1	1 U	
A501 N	DW-5	1	- 1 U	

Values reported in ppm (mg/L).

U Indicates compound was analyzed for but not detected at the given detection limit.

EXPLANATION OF INORGANIC DATA REPORT CODES

The columns labeled 'PREP', 'C', and 'M' contain important information about your analyses. The codes are dead below.

PREPARATION CODES

These 3-letter codes describe methods used to prepare samples for analysis:

RWC USEPA SW-846 3005 AEN USEPA, Metals in air filters SCC USEPA CLP, Soil digestion, HCl matrix AHM ARI, Mercury in air filters SCM USEPA CLP, Mercury in soil AHN ARI, Metals in air filters SCN USEPA CLP, Soil digestion, HNO₃ matrix ANN NIOSH 7300, Metals in air filters SEM EPA 600/4-79-020 245.5, Mercury in soil CAN AOAC (1984) 25.024, Metals in earthenware SHF ARI, Metals in soil, HF digestion DE6 EPA 600/4-79-020 218.5, Cr(VI) in water Journal, Lithium meta-borate fusion SRL DMM DMN followed by TMM, Dissolved mercury PSEP, Metals in sediment, HF digestion SPF DMN Filtered through .45u filter, Dissolved metals Standard Methods 302C, Sb/Sn in soil SSC EW6 EWN followed by DE6 Standard Methods 302C, Soil digestion SSN EWM EWN followed by TMM Standard Methods 302C, Ti in soil SSS EWN USEPA SW-846 1310, EP Toxicity SW6 USEPA SW-846 3060, Cr(VI) in soil ARI, Metals in tissue (HNO₃/HClO₄) FHP SWC USEPA SW-846 3050, HCl matrix PSEP, Metals in tissue (HNO₃/HClO₄) FPP SWN USEPA SW-846 3050, HNO₃ matrix FRM Journal, Mercury in tissue SWR USEPA SW-846 Modified 3005, Sb by GFAAS FRN Journal, Metals in tissue (HNO₃/H₂O₂) KRN ARI, Concentration by coprecipitation TEC EPA 600/4-79-020 4.1.3, HCl matrix TEG EPA 600/4-79-020 272.1, Silver in water LEM USEPA, TCLP followed by TMM EPA 600/4-79-020 200.7 and 9.3 TEI LEN USEPA, TCLP Extraction TEN EPA 600/4-79-020 4.1.3, HNO₃ matrix MIM ARI, Mercury in miscellaneous materials THG ARI, Silver in photographic solutions I ARI, Metals in miscellaneous materials TMM EPA 600/4-79-020 245.1, Mercury in water OAM ARI, Mercury in oil, grease or tar TSC Standard Methods 302C, Sb/Sn in water OAN ARI, Metals in oil, grease or tar TSN Standard Methods 302D PHM ARI, Mercury in wipes Standard Methods 302E, Ti in water TSS PHN ARI, Metals in wipes TWC USEPA SW-846 3010, HCl matrix RCC USEPA CLP, Water digestion, HCl matrix TWG USEPA SW-846 7760, Silver in water RCN USEPA CLP, Water digestion, HNO3 matrix TWN USEPA SW-846 3020, HNO3 matrix REC EPA 600/4-79-020 4.1.4, HCl matrix WMN EPA 600/4-79-020, Preserved, undigested water EPA 600/4-79-020 200.7 and 9.4 REI XSC Standard Methods 302B REN EPA 600/4-79-020 4.1.4, HNO₃ matrix

CONCENTRATION CODES

These codes are used to qualify reported concentrations:

 ${f U}$ No analyte was detected. The reported value is the lower limit of detection.

METHOD CODES

RMA EPA 600/4-79-020 206.2

These codes signify the instrumental technique used for analysis:

CVA Cold Vapor Atomic Absorption Spectrophotometry

FLA Flame Atomic Absorption Spectrophotometry

Graphite Furnace Atomic Absorption Spectrophotometry

Inductively Coupled Plasma Atomic Emission Spectrometry

Client: Dames & Moore

ARI job number: A501 ARI sample number: E

Contact: David Malthy
Project: Trans Mountain
ID number: SW-1 11:30

Description:

Sampled: / /
Received: 04/17/92 Matrix: Water

Released by:

RESULT ANALYTICAL

CAS Number	Analyte	Concentration	C	Prep	М
7440-36-0	Antimony	0.001 mg/L		RWC	GFA
7440-38-2	Arsenic	0.007 mg/L		RMA	GFA
7440-41-7	Beryllium	0.002 mg/L		TWN	ICP
7440-43-9	Cadmium	0.002 mg/L	Ū	TWN	ICP
7440-47-3	Chromium	0.179 mg/L		TWN	ICP
7440-50-8	Copper	0.207 mg/L		TWN	ICP
7439-92-1	Lead	0.031 mg/L		TWN	GFA
7439-97-6	Mercury	0.001 mg/L	บ	TMM	CVA
744.0-02-0	Nickel	0.23 mg/L		TWN	ICP
7782-49-2	Selenium	0.005 mg/L	U	RMA	GFA
7440-22-4	Silver	0.003 mg/L	U _.	TWN	ICP
7440-28-0	Thallium	0.005 mg/L	U	TWN	GFA
7440-66-6	Zinc	0.279 mg/L		TWN	ICP

Client: Dames & Moore

ARI job number: A501

ARI sample number: ESPK

Contact: David Malthy
Project: Trans Mountain
ID number: SW-1 11:30
Description: Matrix Spike

Sampled: / /
Received: 04/17/92 Matrix: Water

Released by:

ANALYTICAL RESULT

CAS Number	Analyte	Concentration	С	Prep	M
7440-36-0	Antimony	0.075 mg/L		RWC	GFA
7440-38-2	Arsenic	0.071 mg/L		RMA	GFA
7440-41-7	Beryllium	0.048 mg/L		TWN	ICP
7440-43-9	Cadmium	0.099 mg/L		TWN	ICP
7440-47-3	Chromium	0.450 mg/L		TWN	ICP
7440-50-8	Copper	0.307 mg/L		TWN	ICP
7439-92-1	Lead	0.129 mg/L		TWN	GFA
7439-97-6	Mercury	0.006 mg/L		TMM	CVA
7440-02-0	Nickel	0.73 mg/L		TWN	ICP
7782-49-2	Selenium	0.088 mg/L		RMA	GFA
7440-22-4	Silver	0.239 mg/L		TWN	ICP
7440-28-0	Thallium	0.113 mg/L		TWN	GFA
7440-66-6	Zinc	0.773 mg/L		TWN	ICP

ANALYTICAL RESOURCES, INC. Matrix Spike Quality Control Report

Client: Dames & Moore

Client's sample ID: SW-1 11:30

ARI sample ID: A501 ESPK

Units: mg/L

Analyte	Meth	Sample	Matrix Spike	Spike Added	%R	Control Limit	Q
Antimony Arsenic Beryllium Cadmium Chromium	GFA GFA ICP ICP ICP	0.001 0.007 0.002 0	0.075 0.071 0.048 0.099 0.450	0.100 0.100 0.050 0.100 0.250	74.0 64.0 92.0 99.0 108.4	75-125% 75-125% 75-125% 75-125% 75-125%	N N
Copper Lead Mercury Nickel Selenium	ICP GFA CVA ICP GFA	0.207 0.031 0 0.23	0.307 0.129 0.006 0.73 0.088	0.100 0.100 0.005 0.500 0.100	100.0 98.0 120.0 100.0 88.0	75-125% 75-125% 75-125% 75-125% 75-125%	
Silver Thallium Zinc	ICP GFA ICP	0 0 0.279	0.239 0.113 0.773	0.250 0.100 0.500	95.6 113.0 98.8	75-125% 75-125% 75-125%	

%R = Percent recovery

'Q' codes: 'N' = control limit not met

'H' = %R not valid, sample concentration too high

Client: Dames & Moore

ARI job number: A501

ARI sample number: F

Contact: David Malthy
Project: Trans Mountain
ID number: SW-2 12:00

Description:

Sampled: / /
Received: 04/17/92
Matrix: Water

Released by:

RESULTS ANALYTICAL

CAS Number	Analyte	Concentration	С	Prep	М
7440-36-0	Antimony	0.003 mg/L		RWC	GFA
7440-38-2	Arsenic	0.005 mg/L		RMA .	GFA
7440-41-7	Beryllium	0.004 mg/L		TWN	ICP
7440-43-9	Cadmium	0.002 mg/L	บ	TWN	ICP
7440-47-3	Chromium	0.767 mg/L		TWN	ICP
7440-50-8	Copper	0.523 mg/L		TWN	ICP
7439-92-1	Lead	0.090 mg/L		TWN	GFA
7439-97-6	Mercury	0.0002 mg/L		TMM	CVA
7440-02-0	Nickel	0.60 mg/L		TWN	ICP
7782-49-2	Selenium	0.010 mg/L	U	RMA	GFA
7440-22-4	Silver	0.003 mg/L	U	TWN	ICP
7440-28-0	Thallium	0.008 mg/L		TWN	GFA
7440-66-6	Zinc	1.03 mg/L		TWN	ICP

Client: Dames & Moore

ARI job number: A501

ARI sample number: FDUP

Contact: David Malthy
Project: Trans Mountain
ID number: SW-2 12:00
Description: Laboratory Duplicate

Sampled: / /
Received: 04/17/92 Matrix: Water

Released by:

ANALYTICAL RESULTS

	-				
CAS Number	Analyte	Concentration	С	Prep	M
7440-36-0	Antimony	0.003 mg/L		RWC	GFA
7440-38-2	Arsenic	0.009 mg/L		RMA	GFA
7440-41-7	Beryllium	0.004 mg/L		TWN	ICP
7440-43-9	Cadmium	0.003 mg/L		TWN	ICP
7440-47-3	Chromium	0.792 mg/L		TWN	ICP
7440-50-8	Copper	0.523 mg/L		TWN	ICP
7439-92-1	Lead	0.088 mg/L		TWN	GFA
7439-97-6	Mercury	0.0001 mg/L		TMM	CVA
7440-02-0	Nickel	0.59 mg/L		TWN	ICP
7782-49-2	Selenium	0.010 mg/L	U	RMA	GFA
7440-22-4	Silver	0.003 mg/L	U	TWN	ICP
7440-28-0	Thallium	0.011 mg/L		TWN	GFA
7440-66-6	Zinc	1.01 mg/L		TWN	ICP

ANALYTICAL RESOURCES, INC. Matrix Duplicate Quality Control Report

Client: Dames & Moore

Client's sample ID: SW-2 12:00

ARI sample ID: A501 FDUP

Units: mg/L

Analyte	Meth	Original Sample	Matrix Duplicate	RPD	Control Limit	Q
Antimony Arsenic Beryllium Cadmium Chromium	GFA GFA ICP ICP ICP	0.003 0.005 0.004 U 0.002 0.767	0.003 0.009 0.004 0.003 0.792	0.0 57.1 0.0 40.0 3.2	± 20 % ± 0.005 ± 20 % ± 0.002 ± 20 %	L L
Copper Lead Mercury Nickel Selenium	ICP GFA CVA ICP GFA	0.523 0.090 0.0002 0.60 U 0.010	0.523 0.088 0.0001 0.59 U 0.010	0.0 2.2 66.7 1.7 0.0	± 20 % ± 20 % ±0.0001 ± 20 % ± 0.010	L L
Silver Thallium Zinc	ICP GFA ICP	U 0.003 0.008 1.03	U 0.003 0.011 1.01	0.0 31.6 2.0	± 0.003 ± 0.005 ± 20 %	L

RPD = Relative percent difference

'Q' codes: '*' = control limit not met

'L' = RPD not valid, alternate limit = ± detection limit

ARI job number: A501

ARI sample number: K

Client: Dames & Moore Contact: David Malthy Project: Trans Mountain ID number: DW-2

Description:

Sampled: Received: 04/17/92 Matrix: Water

Released by:

RESULT ANALYTICAL

CAS Number	Analyte	Concentration	С	Prep	M
7440-36-0	Antimony	0.001 mg/L	U	RWC	GFA
7440-38-2	Arsenic	0.002 mg/L	U	RMA	GFA
7440-41-7	Beryllium	0.006 mg/L		TWN	ICP
7440-43-9	Cadmium	0.002 mg/L	U	TWN	ICP
7440-47-3	Chromium	0.154 mg/L		TWN	ICP
7440-50-8	Copper	0.209 mg/L		TWN	ICP
7439-92-1	Lead	0.167 mg/L		TWN	GFA
7439-97-6	Mercury	0.0001 mg/L	U	TMM	CVA
7440-02-0	Nickel	0.08 mg/L		TWN	ICP
7782-49-2	Selenium	0.005 mg/L	Ū	RMA	GFA
7440-22-4	Silver	0.003 mg/L	U	TWN	ICP
7440-28-0	Thallium	0.009 mg/L		TWN	GFA
7440-66-6	Zinc	0.243 mg/L		TWN	ICP

Client: Dames & Moore

ARI job number: A501

ARI sample number: L

Contact: David Malthy
Project: Trans Mountain
ID number: DW-3

Description:

Sampled: / /
Received: 04/17/92

Matrix: Water

Released by:

ANALYTICAL RESULT(s

CAS Number	Analyte	Concentration	С	Prep	М
7440-36-0	Antimony	0.002 mg/L		RWC	GFA
7440-38-2	Arsenic	0.018 mg/L		RMA	GFA
7440-41-7	Beryllium	0.001 mg/L		TWN	ICP
7440-43-9	Cadmium	0.002 mg/L	บ	TWN	ICP
7440-47-3	Chromium	0.036 mg/L		TWN	ICP
7440-50-8	Copper	0.080 mg/L		TWN	ICP
7439-92-1	Lead	0.028 mg/L		TWN	GFA
7439-97-6	Mercury	0.0001 mg/L	Ū	TMM	CVA
7440-02-0	Nickel	0.03 mg/L		TWN	ICP
7782-49-2	Selenium	0.005 mg/L	ប	RMA	GFA
7440-22-4	Silver	0.003 mg/L	Ū	TWN	ICP
7440-28-0	Thallium	0.002 mg/L		TWN	GFA
7440-66-6	Zinc	0.218 mg/L		TWN	ICP

Client: Dames & Moore

ARI job number: A501

ARI sample number: M

Contact: David Malthy
Project: Trans Mountain
ID number: DW-4

Description:

Sampled: Received: 04/17/92

Matrix: Water

Released by:

RESULTS ANALYTICAL

				D	1
CAS Number	Analyte	Concentration	С	Prep	М
7440-36-0	Antimony	0.001 mg/L	บ	RWC	GFA
7440-38-2	Arsenic	0.014 mg/L		RMA	GFA
7440-41-7	Beryllium	0.001 mg/L	ប	TWN	ICP
7440-43-9	Cadmium	0.002 mg/L		TWN	ICP
7440-47-3	Chromium	0.014 mg/L		TWN	ICP
7440-50-8	Copper	0.017 mg/L		TWN	ICP
7439-92-1	Lead	0.021 mg/L		TWN	GFA
7439-97-6	Mercury	0.0001 mg/L	Ū	TMM	CVA
7440-02-0	Nickel	0.02 mg/L		TWN	ICP
7782-49-2	Selenium	0.001 mg/L	U	RMA	GFA
7440-22-4	Silver	0.003 mg/L	υ	TWN	ICP
7440-28-0	Thallium	0.001 mg/L	Ū	TWN	GFA
7440-66-6	Zinc	0.045 mg/L		TWN	ICP

Client: Dames & Moore

ARI job number: A501

ARI sample number: N

Contact: David Malthy
Project: Trans Mountain
ID number: DW-5

Description:

Sampled: / /
Received: 04/17/92

Matrix: Water

Released by:

RESULTS ANALYTICAL

CAS Number	Analyte	Concentration	С	Prep	M
7440-36-0	Antimony	0.002 mg/L		RWC	GFA
7440-38-2	Arsenic	0.019 mg/L		RMA	GFA
7440-41-7	Beryllium	0.001 mg/L	ប	TWN	ICP
7440-43-9	Cadmium	0.002 mg/L	ប	TWN	ICP
7440-47-3	Chromium	0.042 mg/L		TWN	ICP
7440-50-8	Copper	0.041 mg/L		TWN	ICP
7439-92-1	Lead	0.013 mg/L		TWN	GFA
7439-97-6	Mercury	0.0001 mg/L	ប	TMM	CVA
7440-02-0	Nickel	0.05 mg/L		TWN	ICP
7782-49-2	Selenium	0.024 mg/L		RMA	GFA
7440-22-4	Silver	0.003 mg/L	U	TWN	ICP
7440-28-0	Thallium	0.001 mg/L	U	TWN	GFA
7440-66-6	Zinc	0.079 mg/L		TWN	ICP

Client: Dames & Moore

ARI job number: A501

Contact: David Malthy Project: Trans Mountain

ARI sample number: MB

ID number:

Description: Method Blank

Sampled: / /
Received: / /
Matrix: Water

Released by:

ANALYTICAL RESULT/S

CAS Number	Analyte	Concentration	С	Prep	М
7440-36-0	Antimony	0.001 mg/L	ט	RWC	GFA
7440-38-2	Arsenic	0.001 mg/L	ט	RMA	GFA
7440-41-7	Beryllium	0.001 mg/L	υ	TWN	ICP
7440-43-9	Cadmium	0.002 mg/L	ט	TWN	ICP
7440-47-3	Chromium	0.005 mg/L	Ū	TWN	ICP
7440-50-8	Copper	0.002 mg/L	U	TWN	ICP
7439-92-1	Lead	0.001 mg/L	บ	TWN	GFA
7439-97-6	Mercury	0.0001 mg/L	Ū	TMM	CVA
7440-02-0	Nickel	0.01 mg/L	U.	TWN	ICP
7782-49-2	Selenium	0.001 mg/L	Ū	RMA	GFA
7440-22-4	Silver	0.003 mg/L	Ū	TWN	ICP
7440-28-0	Thallium	0.001 mg/L	Ū	TWN	GFA
7440-66-6	Zinc	0.004 mg/L	ט	TWN	ICP

26 October 1992

DAMES & MOORE SEATTLE OCT 28 1992 ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Raubvogel Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: #21199-032 Trans. Mtn. ARI Job #C003

Dear David:

Please find enclosed the results and original chain-of-custody record for the above referenced project. Seventeen soil samples were received on 10/19/92, in good condition.

The HCID analysis proceeded without incident, however the method blank and several samples had surrogate recoveries slightly lower than QC limits. These results were given to you verbally, as preliminaries, on 10/21. All samples were re-extracted and reanalyzed, and only these results are reported here.

A copy of these results and all raw data will be kept on file with ARI should you require any additional information or copies of the paperwork.

If you have any questions, please feel free to call me any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Coordinator 206-340-2866 ext. 117

KAS/ks

Enclosures

cc: file#C003

TOTAL PETROLEUM HYDROCARBONS WA HCID Method by GC/FID

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

QC Report No: C003 - D & M

Project: 21199-036-7172-005

Trans Mtn.

VTSR: 10/19/92

Data Release Authorized

Matrix: Soils

Data Prepared: 10/23/92

MAC:D sk

Date extracted: 10/21/92 Dates Analyzed: 10/22-23/92

Lab ID	Client Sample ID	Dilution Factor	Gas Range Petroleum Hydrocarbons †	Diesel Range Petroleum Hydrocarbons *	Oil Range Petroleum Hydrocarbons °	Surrogate Recovery
C003 MB	Method Blank	-	10 U	10.U	10 U	65.9%
C003 A2	PCS-BT-1	-	10 U	10 U	10 U	64.1%
C003 B2	PCS-BT-2	-	10 U	10 U	10 U	54.8%
C003 C2	PCS-BT-3	-	10 U	10 U	10 U	63.3%
C003 D2	PCS-BT-4	-	10 U	10 U	10 U	68.8%
C003 E2	PCS-SC-1A	-	10 U	10 U	10 U	57.4%
C003 F2	PCS-SC-1B	-	10 U	10 U	10 U	68.8%
C003 G2	PCS-SC-1C	-	10 U	10 U	10 U	63.3%
C003 H2	PCS-SC-1D	-	10 U	10 U	10 U	60.6%
C003 I2	PCS-SC-1E	-	10 U	10 U	10 U	65.9%
C003 J2	PCS-SC-1F	-	10 U	10 U	10 U	65.3%
C003 K2	PCS-SC-1G	-	10 U	10 U	10 U	59.0%

Surrogate is Me-Arachidate. Values reported in ppm (mg/kg).

- U Indicates compound was analyzed, but not detected at the given detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- Value based on total peaks in C12-C24 range.
- † Value based on total peaks in Toluene-C24 range.
- NR Indicates not reported due to matrix interference.
- S Indicates no value reported due to saturation of the detector. Dilution required.
- J Indicates an estimated value when the value is less than the calculated detection limit.
- D Indicates the surrogate was diluted out.

TOTAL PETROLEUM HYDROCARBONS WA HCID Method by GC/FID

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

QC Report No: C003 - D & M

Project: 21199-036-7172-005

Trans Mtn.

VTSR: 10/19/92

Data Release Authorized

Matrix: Soils

Data Prepared: 10/23/92

MAC:D sk

Date extracted: 10/21/92 Dates Analyzed: 10/22-23/92

Lab ID	Client Sample ID	Dilution Factor	Gas Range Petroleum Hydrocarbons †	Diesel Range Petroleum Hydrocarbons *	Oll Range Petroleum Hydrocarbons °	Surrogate Recovery
C003 L2	PCS-SC-1H	-	10 U	10 U	10 U	60.1%
C003 M2	PCS-4S-1	-	10 U	10 U	10 U	64.7%
C003 N2	PCS-4S-2	-	10 U	10 U	10 U	59.6%
C003 O2	PCS-4S-3	**	10 U	10 U	10 U	60.7%
C003 P2	PCS-4S-4	-	10 U	10 U	10 U	62.6%
C003 Q2	PCS-4S-5	-	10 U	10 U	10 U	63.0%

Surrogate is Me-Arachidate.
Values reported in ppm (mg/kg).

- U Indicates compound was analyzed, but not detected at the given detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- * Value based on total peaks in C12-C24 range.
- † Value based on total peaks in Toluene-C12 range.
- Value based on total peaks in C24-C32 range.
- NR Indicates not reported due to matrix interference.
- S Indicates no value reported due to saturation of the detector. Dilution required.
- J Indicates an estimated value when the value is less than the calculated detection limit.
- D Indicates the surrogate was diluted out.

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

DIESEL MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

ARI Job No: C003

Client: D&M

Project: 21199-036-7172-005

Trans Mtn.

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490

(206) 621-7523 (FAX)

Sample No: PCS-SC-1H

	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONC	CONC	%	LIMITS
COMPOUND	(mg/Kg)	(mg/Kg)	(mg/Kg)	REC	REC
Diesel	596	0	672	113%	50-150

	SPIKE	MSD	MSD		QC	
	ADDED	CONC	%	%	LIMITS	
COMPOUND	(mg/Kg)	(mg/Kg)	REC	RPD	RPD	REC
Diesel	598	670	112%	0.89	50	50-150

SURROGATE	MS	96.6%
% RECOVERY	MSD	96.7%

Surrogate is Me-Arachidate

Comments: Advisory QC Limits

CHAIN-OF-CUSTODY RECORD

PINK COPY - Project Manager WHITE COPY - Original (Accompanies Samples) YELLOW COPY - Collector

910N Consolidation Laboratory Of Containers ဗ Total Number TAT: 10/22/92 afternam • idantifies tor DATE OF COLLECTION 16 Oct Samples SHEET FIELD NOTES: 130 TPH < 100 Check ムニ PC 0,2 OT 3. His Post St. P.R.I. # 6003 × × X × × × × × × JOB NO.: 21199 -036 - 7/72 -005 Mountain ON ON ONO Pfeifer and cor PROJECT Trans ABORATORY NOTES: COLLECTOR LOCATION_ PHONE: 728 - 6744 RECEIVED BY: (Signature) RECEIVED BY: (Signature) 0100100 101 Signibus 8 02 6 lass 500 Market Place Tower 2025 First Avenue Seattle, Washington 98121 (206) 728-0744 Fax No. (206) 448-7994 02 G/ass 6lass Container Type DAMES & MOORE 802 Glass <u>~</u> = 67 **6**0 00 DATE/TIME S:(O IV) 2 Sample Type Raubvoge 501 705 7 7 Ξ 1615 1615 1330 1330 1515 Time 1330 1330 RELINQUISHED BY: (Signature) ANALYTICAL LABORATORY: Number Number Depth 7 12 4 SK-1C 3 21 ol 865 SC-1925 LABORATORY CONTACT: D&M CONTACT: David 'n 4 d 3 SC-10 45-20 45-2 Sc - 1 F BT-2 Sc-1 B 3c-1 E Sc-1 H 454 Sample 87.4 Sc-1 RELINAUISHED BY 8T-1 BT-3 45-1 Boring Well PCS PCS A PcS Pcs Pcs Pcs 25 Prs Pcs PCS PCS Pcs Pcs Prs RAS

03 December 1992

INCORPORATED **DAMES & MOORE**

SEATTLE DEC 4 1992 Analytical Chemists & Consultants

ANALYTICAL RESOURCES

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Raubvogel Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: #21199-032 Trans. Mtn. ARI Job #C332

Dear David:

Please find enclosed the results and original chain-of-custody (COC) record for the above referenced project. Five soil samples were received on 11/25/92, in good condition, and the analysis proceeded without incident

Note that a blank spike recovery report is included; this blank was extracted and analyzed with your samples for QC documentation.

A copy of these results and all raw data will be kept on file with ARI should you require any additional information or copies of the paperwork.

If you have any questions, please feel free to call me any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller **Project Coordinator** 206-340-2866 ext. 117

KAS/ks

Enclosures

cc: file#C332

Ample CHAIN-OF-CUSTODY RECORD

WHITE COPY - Original (Accompanies Samples) YELLOW COPY - Collector PINK COPY - Project Manager

···	,	_	,			,		·		 				 					γ					ı
Note Number					l				1								•	87		İ	1	1	1	
Of Containers Laboratory	<u></u>	-		<u> </u>	-	\vdash									-+	\dashv	!	1/2		\dashv				
Total Number		-	-	-	-									l				";	- 1	P,				
													l I			\neg		\mathbf{V}		\dashv		-		ı
Ö																	H	_		ET			- Jos	
NOTE																	. Li	\		SHEET			52/11	
FIELD NOTES:																		Ň					DATE OF COLLECTION 1/25 PL	
																		1.					LECT	
								_	\dashv			_			\dashv			N.					JF CO	
																							ATEC	
CON. HERS																	1							
SCISTEST	Q	ĸ	*	Υ	×				-			-			\dashv	\dashv	- Z					Station		
a 1 100																	TORY NOTES: - WELL FORMATOWNE				1	ZZ		
0 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								_	\dashv	 				-	\dashv	_	N.				this	3		
3110 10 10 10 10 10 10 10 10 10 10 10 10										 							7		.		dan.	至	aks	
35 (10 5))))))))))))))))))))))))))))))))))) ********									\Box					\dashv	_	_	<u> </u>	,		21199 032	Toans Mountain	2	COLLECTOR IMMINIAUN	
187.61							-		\dashv							\dashv	LABORATORY NOTES:			8	12	\$	75	
18/23/4										 							OBY N				- 1		O. HO	l
1.67.67.67										 				_	_	-				JOB NO.:	PROJECT_	LOCATION_	LECT	
\&\\%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\																			.	වූ	PRO	9	<u> </u>	
(~/~~/O~ 1									_							_	iture)	iture)		1	1			
ST CO CO														\dashv		\dashv	(Signa (Signa	(Signa		17/2	5			
SHEA JONNO																	BY:) BY:		Š	2			
		(n)															RECEIVED BY: (Signature) A (Bu) M (UL) RECEIVED BY: (Signature)	RECEIVED BY: (Signature)		Jam -	ב בי בי	길	-7994	
Container Type	402 Glass	teflon (ið																띪		# T		Š	9 448	
ontair	10,	1 /1	1		Þ									.			and and and and and and and and and and						. 20 . 20	
	7																	TIME		Wo e		S L	ton 98 Fax N	
Sample Type	5)			Ð												DATE/TIME	DATE/TIME		To Kak Stremoeller Milliam So 17/4	Sar i	DAIVIES & IVIOURE	2025 First Avenue Seattle, Washington 98121 (206) 728-0744 Fax No. (206) 448-7994	
	2 24											-		_			*		ART	2 ×		AIV	25 Firs file, V 60 728	
patc	1925/12																	nre)		2 /	کے ا <u>د</u>		888	
Sample Tiwe Number Dept h	arb	9463	60 03	20.0	000												RELINQUISHED BY: (Signature)	RELINQUISHED BY: (Signature)	ANALYTICAL LABORATORY: _	TACT:_				
Sample Number	7	7	Ĭ		\ <u></u>										•			D BY:	ABOF	LABORATORY CONTACT:	् ना ∺	Ħr.		
	-		ļ	_	1					 	_						RELINQUISHED BY:	JISHE	ICAL L	\TORY	D&M CONTACT			
Bering or Well	85-2	P5-3	8-4	P5-5	5													LINOL	ALYT	BORA	S W			
— m 7 #	8	9,	$ \mathcal{Z} $	3	12								-				2 2	12	A	≤ :	ద			J

TOTAL PETROLEUM HYDROCARBONS WA HCID Method by GC/FID

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

Matrix: Soil

QC Report No: C332-Dames & Moore

Project: 21199.032 Trans. Mtn.

Data Release Authorized _

Data Prepared: 12/03/92 - MAC:K kas

VTSR: 11/25/92

Date extracted: 11/30/92

Lab ID	Client Sample ID	Date Analyzed	Dilution Factor	Gas Range†	Diesel Range*	Oil Range°	Surrogate Recovery
C332 MB	Method Blank	12/01/92	- 1	10 U	10 U	10 U	106%
C332 A	P5-2	12/02/92	-	10 U	· 10 U	10 U	132%
C332 B	P5-3	12/02/92	 -	10 U	10 U	10 U	127%
C332 C	P5-4	12/02/92	-	10 U	10 U	10 U	121%
C332 D	P5-5	12/02/92	-	10 U	10 U	10 U	123%
C332 E	P5-6	12/02/92	-	10 U	10 U	10 U	127%

Surrogate is Me-Arachidate.
Values reported in ppm (mg/Kg).

- U Indicates compound was analyzed for but not detected at the given detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- J Indicates an estimated value when the value is less than the calculated detection limit.
- \$ Indicates no value reported due to saturation of the detector. Dilution required.
- D Indicates that surrogate was not detected because of dilution of the extract.
- C Indicates a probable value which is unable to be confirmed due to matrix interference.
- NR Indicates no recovery due to matrix interference and/or dilution.
- † Value based on total peaks in the range from Toluene to C12.
- Value based on total peaks in the range from C12 to C24.
- Value based on total peaks in the range from C24 to C32.

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

TOTAL DIESEL RANGE HYDROCARBON SPIKE BLANK RECOVERY

ARI Job No: C332

Matrix: Soil

Client: Dames & Moore

Project: 21199.03

Trans. Mtn.

COMPOUND	SPIKE	SB	SB	QC
	ADDED	CONC.	%	Limits
	(mg/kg)	(mg/kg)	REC	REC
Diesel	625	787	126	48-155

	Surrogate % rec.	QC Limits
Methyl Arachidate	124%	59-153

Spike Recovery: 0 out of 1 outside limits Surrogate Recovery: 0 out of 1 outside limits

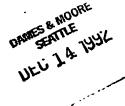
Asterisked values outside QC Limits

Comments:

Report prepared:

12/03/92

MAC:K kas


10 December 1992

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Raubvogel Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: #21199-032 Trans. Mtn. ARI Job #C360

Dear David:

Please find enclosed the results and original chain-of-custody (COC) records for the above referenced project. Twenty-four soil samples were received on 12/1/92, in good condition. Sample TP2-5 was not on the COC, but was added per Ingrid Williams' instructions to Terrie Hedger at 10:30 am on 12/2. These reports were faxed to you earlier today.

The analyses were without incident of note. A blank spike recovery report is included: this blank was extracted and analyzed with your samples for QC documentation.

A copy of these results and all raw data will be kept on file with ARI should you require any additional information or copies of the paperwork.

If you have any questions, please feel free to call me any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller 🕟 Project Coordinator 206-340-2866 ext. 117

KAS/ks

Enclosures

cc: file#C360

PINK COPY - Project Manage Laboratory Total Number Of Containers ဗ SHEET FIELD NOTES: DATE OF COLLECTION___ WHITE COPY - Original (Accompanies Samples) YELLOW COPY - Collector ARI# C360 > X × × × × LOCATION LAUNT SHATING PROJECT Trans Mountal, COLLECTOR (MW. Wan JOB NO .: 2199 022 LABORATORY NOTES: GOOD TO SON RECEIVED PY: (Signature) 0108/108/5/ CEIVED BY: (Signature) RECEIVED BY: (Signature) PHONE: 1760144 RAMON CHAIN-OF-CUSTODY RECORD Signing 500 Market Place Tower 2025 First Avenue Seattle, Washington 98121 (206) 728-0744 Fax No. (206) 448-7994 Container Type DAMES & MOORE 402 pr 1/92/1/190 DATE/TIME DATE/TIME Sample Type 0900 | 25:50 M Williams Well Sample . Number Depth Time Ž 315 9639 ANALYTICAL LABORATORY: 44 RELINQUISHED BY: (Signature) RELINQUISHED BY: (Signature) LABORATORY CONTACT: D&M CONTACT: 112-4 TP 1-5 ره ا 9 J 5 2,6 9 Ø ā = からし 9 **Boring**

TOTAL PETROLEUM HYDROCARBONS WA HCID Method by GC/FID

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

Matrix: Soil

QC Report No: C360-Dames & Moore

Project: 21199.032 Trans. Mtn.

Data Release Authorized

Data Prepared: 12/09/92 - MAC:K kas

VTSR: 12/01/92

Date extracted: 12/02/92

		Date	Dilution	Gas	Diesel	Oil	Surrogate
Lab ID	Client Sample ID	Analyzed	Factor	Range†	Range*	Range	Recovery
C360 MB1	Method Blank	12/03/92	-	10 U	10 U	10 U	134%
C360 MB2	Method Blank	12/03/92	-	10 U	10 U	10 U	99.7%
C360 A	P5-7	12/08/92	-	10 U	10 U	10 U	106%
C360 B	P5-8	12/05/92	-	10 U	10 U	10 U	131%
C360 C	P5-9	12/08/92	-	10 U	10 U	10 U	97.6%
C360 D	P5-10	12/08/92	-	10 U	10 U	10 U	96.2%
C360 E	P5-11	12/08/92	-	10 U	10 U	10 U	86.1%
C360 F	P5-12	12/09/92	-	10 U	10 U	10 U	87.1%
C360 G	P5-13	12/09/92	-	10 U	10 U	12	111%
C360 H	P5-14	12/05/92	-	10 U	10 U	10 U	133%
C360 I	P5-15	12/09/92	-	10 U	10 U	10 U	104%
C360 J	P5-16	12/09/92	-	10 U	10 U	10 U	98.3%
C360 K	P5-17	12/09/92	-	10 U	10 U	10 U	89.3%
C360 L	P5-18	12/09/92	-	10 U	10 U	10 U	90.8%
C360 M	P5-19	12/09/92	-	10 U	10 U	10 U	96.9%

Surrogate is Me-Arachidate.
Values reported in ppm (mg/Kg).

- U Indicates compound was analyzed for but not detected at the given detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- J Indicates an estimated value when the value is less than the calculated detection limit.
- S Indicates no value reported due to saturation of the detector. Dilution required.
- D indicates that surrogate was not detected because of dilution of the extract.
- C Indicates a probable value which is unable to be confirmed due to matrix interference.
- NR Indicates no recovery due to matrix interference and/or dilution.
- t Value based on total peaks in the range from Toluene to C12.
- * Value based on total peaks in the range from C12 to C24.
- Value based on total peaks in the range from C24 to C32.

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

TOTAL DIESEL RANGE HYDROCARBON SPIKE BLANK RECOVERY

ARI Job No: C360

Matrix: Soil

Client: Dames & Moore

Project: 21199.03

Trans. Mtn.

	SPIKE	SB	SB	QC
	ADDED	CONC.	%	Limits
COMPOUND	(mg/kg)	(mg/kg)	REC	REC
Diesel	625	788	126	48-155

	Surrogate % rec.	QC Limits
Methyl Arachidate	107%	59-153

Spike Recovery: 0 out of 1 outside limits Surrogate Recovery: 0 out of 1 outside limits

Asterisked values outside QC Limits

Comments:

Report prepared:

12/09/92

MAC:K kas

TOTAL PETROLEUM HYDROCARBONS WA HCID Method by GC/FID

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

QC Report No: C003 - D & M

Project: 21199-036-7172-005

Trans Mtn.

VTSR: 10/19/92

Data Release Authorized

Matrix: Soils

Data Prepared: 10/23/92

MAC:D sk

Date extracted: 10/21/92 Dates Analyzed: 10/22-23/92

Lab ID	Client Sample ID	Dilution Factor	Gas Range Petroleum Hydrocarbons †	Diesel Range Petroleum Hydrocarbons *	Oll Range Petroleum Hydrocarbons °	Surrogate Recovery
C003 L2	PCS-SC-1H		10 U	10.⊍	10 U	60.1%
			10 U	10 U	10 U	64.7%
C003 M2	PCS-4S-1	-			10 U	59.6%
C003 N2	PCS-4S-2	-	10 U	10 U		
C003 O2	PCS-4S-3	-	10 U	10 U	10 U	60.7%
			10 U	10 U	10 U	62.6%
C003 P2	PCS-4S-4		<u> </u>	<u> </u>		63.0%
C003 Q2	PCS-4S-5	-	10 U	10 U	10 U	03.0%

Surrogate is Me-Arachidate. Values reported in ppm (mg/kg).

- U Indicates compound was analyzed, but not detected at the given detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- Value based on total peaks in C12-C24 range.
- † Value based on total peaks in Toluene-C12 range.
- Value based on total peaks in C24-C32 range.
- NR Indicates not reported due to matrix interference.
- S Indicates no value reported due to saturation of the detector. Dilution required.
- J Indicates an estimated value when the value is less than the calculated detection limit.
- D Indicates the surrogate was diluted out.

DIESEL MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Analytical Chemists & Consultants

ARI Job No: C003

Client: D&M

333 Ninth Ave. North

ANALYTICAL RESOURCES INCORPORATED

Sample No: PCS-SC-1H

Project: 21199-036-7172-005 Trans Mtn. Seattle, WA 98109-5187 (206) 621-6490

(206) 621-6490 (206) 621-7523 (FAX)

COMPOUND	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONC	CONC	%	LIMITS
	(mg/Kg)	(mg/Kg)	(mg/Kg)	REC	REC
Diesel	596	0	672	113%	50-150

	SPIKE ADDED	MSD CONC	MSD %	%		C MITS
COMPOUND	(mg/Kg)	(mg/Kg)	REC	RPD	RPD	REC
Diesel	598	670	112%	0.89	50	50-150

SURROGATE	MS	96.6%
% RECOVERY	MSD	96.7%

Surrogate is Me-Arachidate

Comments: Advisory QC Limits

CHAIN-OF-CUSTODY RECORD

WHITE COPY - Original (Accompanies Samples) YELLOW COPY - Collector PINK COPY - Project Manager

Boring 8	86.5				SISTIN	1	1.87.8	SPIS		931	OTST. TO	937			Number entainers story	Number
Well Sample Number Number	Depth .	Time	Sample Type	Container Type	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	~ \~~ 1	\times			SES. MA	127		FIELD NOTES:			
PCS 87-1	13' [1330	'.o2	8 02 6/455							×	TPH	TPH < 100 Check	k for	1	
BT-2	, 9	1330	11	i i							×	don	dominant hydro	ydro -	7	
87-3		1330	7,) (×	Car	Carbon ida	identi Fied	7	_
BT-4	33, 1	1330	2	1)							×	0	A11 San	Samples	7	
														-		
Pcs Sc-14	4, 1	1515	17	8 02 Glass							×					
Pcs Sc-18	4,	_									×					1
\$\$-1C	351										×					
	351										×				_	ĺ
	3,										×					
71-38 SX-1F	٤, د										×		-3		1	
PCS SC-14.	25'										×					
Sc-1 H	ر الا الا	>	7	≯							×					
PCS 45-1		1615	1:05	8 02 6 lass							×				1	
Pcs 45-2		1615	Se.; (802 Glass							×					
		4		-							*					
Pcs 454	9	>	>	>		_					×		>		\dashv	
Pcs, 45-5	30	→	>	>							×					T
	(Signature)	الہا	S:(O (O)	26/6	BY: (Signa		ABORATORY NOTES:	/ NOTES:	42	·	AT: 10	p) ee/	TAT: 10/32/92 afternoon	سممس		
RELINDUISHED BY: ((Signature)	(a)	DATE/TIME		MECEIVED BY: (Signa	ature)										
RELINQUISHED BY: (Signature)	(Signatur	(e)	DATE/TIME		RECEIVED BY: (Signa	ature)	X	P.R.I. #	#	£ 6003	80					
ANALYTICAL LABORATORY:	ATORY:															Т
LABORATORY CONTACT:	ACT:					<u> </u>	10B NO : 21/99	199-036	36-7172	72 - 605	٧		o.	SHEET /	Ç.	
D&M CONTACT: David		Rambuoge	Joge	PHONE: 728	-07	44	PRO IFOT TO A	1 1	1 .	1	P. 1.		PC < 2011	ĺ	Care 1: 4. 4.	1
		DAN	MES &	DAMES & MOORE			LOCATION	Laure	1 🔍				\ }			
		500 Ma 2025 Fin Seattle, (206) 72	rket Place frst Avenue Washington 28-0744 Fa	500 Market Place Tower 2025 First Avenue Seattle, Washington 98121 (206) 728-0744 Fax No. (206) 448-7994		ŏ	COLLECTOR	7	Pfeife	•	DATI	OF COLL	DATE OF COLLECTION /6	00+92		

DAMES & MOORE SEATTLE

26 July 1993

JUL 2 7 1993

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

David Raubvogel Dames & Moore 500 Market Place Tower 2025 First Avenue Seattle, WA 98121

RE: Client Project: #21199-032-005 Trans. Mtn. Characterization; ARI Job #E354

Dear David:

Please find enclosed the results and original chain-of-custody (COC) record for samples from the above referenced project. Eleven soil samples, one water sample, and a trip blank were received on 7/9/93, in good condition and with no discrepancies between the COC and sample container labels. Copies of these reports were faxed to you as they became available.

The analyses were without incident of note. A matrix spike and matrix spike duplicate were analyzed by the HCID method on sample PCSC-2-1-A; a recovery report is included as documentation. Please note that the high recoveries are influenced by the level of matrix contamination. Blank spikes were extracted and/or analyzed with these samples for the BETX and 418.1 parameters, and recovery reports are included as additional QC documentation for the project.

A copy of these results and all raw data will be kept on file by ARI should you require any additional information or copies of the paperwork. Also, if you have questions, please feel free to call me any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kate Stegemoeller Project Coordinator 206-340-2866 ext. 117

Enclosures

cc: file#E354

DAMES & MOORE

500 Market Place Tower 2025 First Avenue - Seattle, Washington 98121 - (206) 728-0744

Date 1 /8 /93 Page 1 of

		iners	stnoO to re	Mumbe	M	١	· ·	7	1 ~	<u>۱</u>	\ \rac{1}{2}	٦~,	, (1	(1)	m	7	لہ ا			l						
/ 6 / 15 Page Of			Comments/ Instructions		35 F 100.14C		1								>					Sample Receipt	Total no. of containers:	Chain of custody seals:	Rec'd good condition/cold:	Conforms to record:	Lab number:	
Dale			slateM X(EP TC (8)													,				8	11 /1.7	3	7/4/2	C_{μ}	
			y Pollutani 5 (13)	Priorit SlateM																	. 2		3	(Date)	2	
	Rednest			•											·					<u></u>	1		17	1 2		
											,									by (lat	. 3		D	04:		
##10-071 (now)	Analysis	।	1 - HC	497	>	>	>	>	>	>	>	>	>	>	7					Received by (lab):	a	Printed		(Time)	.	
3/6	An	1.2	171-4													>				Rec	(pig)		- (_	·
			BO9/sebic																	0		ال		193		LINERED TO PRI
1100 1008			no1A oiloy anod1soc																		l)	M. Westsiep	4	(Date) 7/8		Jak
2			81 83 /309	хта											-	>	>				Ja Ja	Ν	3	(Dat		30
		sbio	Albeutral/A I/OĐ) 07S:	assa [ı	2		7	
	N	səl	atic Volati	MotA	>	>	>	>	>		>	>	7	>	>				_	ed by:		25.	2	136	1	No.
	.		genated Ve																	Relinquished by	1	(Printed) Davis	M. M. S. S. W. W. Composition	(Time) 18	4	7
		(SW	ile Organid	1												4	4			Reli	(Sia)	(Prir	خ ز			
1			Ta	Matrix	2016	2017	50 1L	Soil	2017	701	501L	30 it	SOIL	2016	2016	WATER	NATER	-			אות	a l	<u>^</u>	4 TE 15		
. 220.	RAVE DOGE	49.0	IN.	Time	11:00	13:2:40	93 14:10	15.24	9:05	9:45	10.35		14:35	15:05	19315150	15:30					(%) T	office of	1 1 2 2 1 1	I whediately		
of Nimber 2-11 19 - 527 - 55 F 1	.1	117 3		Date	2/1/23	84/4/2	7/7/93/	1/2/43	1/3/23	56/8/1	7/2/13 10:35	A5 12 :28	18/33	20:51 3921	7/8/9	8/8/2				ments:	THE TO THE PARTY - 4(8) WILL	TOT OC	_	7		
Por. 2		ory:	Sampler's Initials: OMW Sampler's Signature:				r r	7	1	A	a	<u>ر</u>	0	¥	8		4			Special Instructions/Comments:	\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		I	~]		
Project Mumber	Mana	Laboratory: round time:	er's Initi Signati	Sample 1D	A-(0-7-		- h-2-	• 1	ٷ	7-7-	-	- (3-3	- 4-8	3-1	BLANK			structio	7	ないといい	1 %	•		
Proje	Project	Turn ar	Sample mpler's	San	-(-2-757	7556-2-	8-7-752	Pcsc-2	PC56-2-6	2000	7.22.7	Pc5c-3	Pc5c-3-7	PCSC-	Pesc. 3	PCWC.	निका ह			ecial In	0 - H.A	RESULTS TO	73006	Resident		
L			Sai		2	¥	2	3	<u>r</u>	Ň	4	7	ď	ă	ď	K.	F			တ္က	- 62	í ď	<u> </u>	, ¢		

TOTAL PETROLEUM HYDROCARBONS WA HCID Method by GC/FID

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North

QC Report No: E354-Dames & Moore Seattle, WA 98109-5187 Project: 21199-032-005

(206) 621-6490 (206) 621-7523 (FAX)

Trans Mtn Characterization

VTSR: 07/09/93

Matrix: Soil

Data Release Authorized Data Prepared: 07/22/93 MAC:kas

Date extracted: 07/13/93

		Date	Dilution	Gas	Diesel	Oil	Surrogate
Lab ID	Client Sample ID	Analyzed	Factor	Range†	Range*	Range°	Recovery
E354 MB	Method Blank	07/17/93	-	20 U	25 U	50 U	114%
E354 A	PCSC-2-1-A	07/17/93	T - 1	49	150	.55	119%
E354 B	PCSC-2-2-D	07/17/93	-	91	400	140	123%
E354 C	PCSC-2-3-B	07/17/93	-	120	400	130	124%
E354 D	PCSC-2-4-C	07/17/93	-	23	38	50 U	115%
E354 E	PCSC-2-6-A	07/17/93	-	120	420	160	126%
E354 F	PCSC-2-6-C	07/17/93	-	78	350	50 U	132%
E354 G	PCSC-2-7-B	07/17/93		22	67	50 U	120%
E354 H	PCSC-3-1-C	07/17/93	-	20 U	25	50 U	117%
E354 I	PCSC-3-2-D	07/17/93	-	55	280	120	174%
E354 J	PCSC-3-3-A	07/17/93	-	71	400	160	131%
E354 K	PCSC-3-4-B	07/17/93	-	66	240	100	138%

Surrogate is Me-Arachidate. Values reported in ppm (mg/Kg).

- U Indicates compound was analyzed for but not detected at the given detection limit.
- Χ Indicates a value above the linear range of the detector. Dilution required.
- J. Indicates an estimated value when the value is less than the calculated detection limit.
- S Indicates no value reported due to saturation of the detector. Dilution required.
- D Indicates that surrogate was not detected because of dilution of the extract.
- С Indicates a probable value which is unable to be confirmed due to matrix interference,
- NR Indicates no recovery due to matrix interference and/or dilution.
- t Value based on total peaks in the range from Toluene to C12.
- Value based on total peaks in the range from C12 to C24.
- Value based on total peaks in the range from C24 to C32.

ANALYTICAL RESOURCES **INCORPORATED**

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187

(206) 621-6490

QC Report No: E354-Dames & Moore (206) 621-7523 (FAX)

Project: 21199-032-005

Sample No: PCSC-2-1-A

Trans Mtn Characterizaiton

TPH MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

ARI Job I.D.: E354A

Matrix: Soil

Data Release Authorized:

Report: 07/22/93 MAC:kas

	SPIKE ADDED	SAMPLE CONC	MS CONC	MS REC	QC Limits
COMPOUND	(mg/Kg)	(mg/Kg)	(mg/Kg)		
Diesel	627	151	1330	188% *	50-150

	SPIKE ADDED	MSD CONC	MSD REC	RPD		C mits
COMPOUND	(mg/Kg)	(mg/Kg)			RPD	REC
Diesel	627	966	130%	36%	50	50-150

Surrogate % Recovery	MS	MSD
Me-Arachidate	147%	123%

Spike Recovery: 1 out of 2 outside limits

Comments: Asterisked values outside advisory QC Limits.

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANICS ANALYSIS DATA SHEET - Method 602/8020 GC/PID FOR BETX

Matrix: Soil

Data Release Authorized: 1200 MAC Report prepared: 07/19/93 MAC

Client Project No: 21199-032-005

Trans Mtn. .

Characterization

QC Report No: E354 - Dames & Moore

VTSR: 07/09/93

		Sample No.	Method Blank	Method Blank	Method Blank	PCSC-2-1-A	PCSC-2-2-D
4		ARI ID	MB 07/14	MB 07/14 #2	MB 07/14 #3	E354A	E354B
		Date Analyzed	07/14/93	07/15/93	07/15/93	07/15/93	07/15/93
		Amt Analyzed	0.1 g	0.1 g	0.1 g	0.080 g	0.086 g
CAS Number		Units	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kġ
	nzene		50 U	50 U	50 U	62 U	58 U
108-88-3 Tol			50 U	50 U	50 U	62 U	58 U
100-41-4 Eth	vlbenzene)	50 U	50 U	50 U	62 U	88
1330-20-7 Tot			100 U	100 U	100 U	120 U	120
		Trifluorotoluene	97.7%	94.8%	98.1%	94.1%	94.0%
	•	Bromohenzene	99.6%	102%	102%	102%	119%

	•				duplicate		
	•	Sample No.	PCSC-2-3-B	PCSC-2-4-C	PCSC-2-4-C	PCSC-2-6-A	PCSC-2-6-C
	•	ARI ID	E354C	E354D	E354Ddup	E354E	E354F
		Date Analyzed	07/15/93	07/15/93	07/15/93	07/15/93	07/15/93
		Amt Analyzed	0.086 g	0.087 g	0.087 g	0.082 g	0.087 g
CAS Num	ber	Units	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg
71-43-2	Benzene	1	180	57 U	57 U	61 U	58 U
108-88-3	Toluene		58 U	57 U	57 U	61 U	58 U
100-41-4	Ethylbenzen	Э	520	89	92	130	72
1330-20-7	Total Xylenes		2200	220	220	340	110 J
		Trifluorotoluene	95.0%	90.4%	89.8%	92.9%	91.7%
		Bromobenzene	109%	118%	119%	115%	114%

- U Indicates the compound was undetected at the reported detection limit.
- J Indicates an estimated value when the value is less than the calculated detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- S Indicates no value reported due to saturation of the detector. Dilution required.
- D Indicates that surrogate was not detected because of dilution of the extract.
- C Indicates a probable value which is unable to be confirmed due to matrix interference.
- NR Indicates no recovery due to matrix interference and/or dilution.

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANICS ANALYSIS DATA SHEET - Method 602/8020 GC/PID FOR BETX

Matrix: Soil

Data Release Authorized:

Report prepared:

07/19/93

MACXIII

Client Project No: 21199-032-005

Trans Mtn. .

Characterization

QC Report No: E354 - Dames & Moore

VTSR: 07/09/93

	Sample No.	PCSC-2-7-B	PCSC-3-1-C	PCSC-3-2-D	PCSC-3-3-A	Method Blank
	ARI ID	: E354G	E354H	E354l	E354J	MB 7/16
·	Date Analyzed	07/15/93	07/15/93	07/15/93	07/15/93	07/16/93
	Amt Analyzed	0.085 g	0.086 g	0.086 g	0.087 g	0.1 g
CAS Number	Units	μg/Kg	μg/Kg	μg/Kg	μg/Kg	μg/Kg
71-43-2 Benzene		59 U	58 U	58.U	57 U	50 U
108-88-3 Toluene		59 U	58 U	58 U	57 U	50 U
100-41-4 Ethylbenzene	•	71	77	58 U	100	50 U
1330-20-7 Total Xylenes		89 J	120	72 J	220	100 U
	Trifluorotoluene	95.2%	92.0%	91.4%	90.9%	94.4%
	Bromobenzene	116%	116%	110%	125%	89.7%

		Sample No.	PCSC-3-4-B	
•		ARI ID	E354K	
		Date Analyzed	07/16/93	
		Amt Analyzed	0.085 g	
CAS Number		Units	μg/Kg	
71-43-2	Benzene		720	
108-88-3	08-88-3 Toluene		59 U	
100-41-4 Ethylbenzene			1400	
1330-20-7	Total Xylenes		1100	
	·	Trifluorotoluene	105%	
		Bromobenzene	NR	

- U Indicates the compound was undetected at the reported detection limit.
- J Indicates an estimated value when the value is less than the calculated detection limit.
- X Indicates a value above the linear range of the detector. Dilution required.
- \$ Indicates no value reported due to saturation of the detector. Dilution required.
- D Indicates that surrogate was not detected because of dilution of the extract.
- C Indicates a probable value which is unable to be confirmed due to matrix interference.
- NR Indicates no recovery due to matrix interference and/or dilution.

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

ORGANICS ANALYSIS DATA SHEET - Method 602/8020 GC/PID FOR BETX

Matrix: Water

Data Release Authorized: #20

Report prepared;

07/10/03 MA

Client Project No: 21199-032-005

Trans Mtn. .

Characterization

QC Report No: E354 - Dames & Moore

VTSR: 07/09/93

	Sample No.	Method Blank	Method Blank	Method Blank	PCWC-3-1	Trip Blank
	ARI ID	MB 07/14	MB 07/14 #2	MB 07/14 #3	E354L	E354M
	Date Analyzed	07/14/93	07/15/93	07/15/93	07/15/93	07/15/93
	Amt Analyzed	5.0 ml	5.0 ml	5.0 ml	5.0 ml	5.0 ml
	Dilution	-	. •	-	-	
CAS Number	Units	μg/L	μg/L	μg/L	μg/L	μg/L
71-43-2 Benzene		1.0 U	1.0 U	1.0 U	10	1.0 U
108-88-3 Toluene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
100-41-4 Ethylben	zene	1.0 U	1.0 U	1.0 U	2.5	1.0 U
1330-20-7 Total Xyle	enes	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
	Trifluorotoluene	97.5%	95.2%	96.2%	93.2%	94.4%
	Bromobenzene	98.5%	103%	102%	102%	101%

- Indicates the compound was undetected at the reported detection limit.
 Indicates an estimated value when the value is less than the calculated detection limit.
 Indicates a value above the linear range of the detector. Dilution required.
 Indicates no value reported due to saturation of the detector. Dilution required.
 Indicates that surrogate was not detected because of dilution of the extract.
 Indicates a probable value which is unable to be confirmed due to matrix interference.
- NR Indicates no recovery due to matrix interference and/or dilution.

BETX SPIKE BLANK RECOVERY

ARI Job No: E354

Client: Dames & Moore

Project: 21199-032-005

Trans Mtn.

Characterization

Matrix Soil

Date Extracted: 07/14/93 Date Analyzed: 07/14/93

COMPOUND	SPIKE ADDED (µg/Kg)	SB CONC (µg/Kg)	SB % REC	QC LIMITS REC
Benzene	1250	1190	95.2	NA
Toluene	1250	1150	92.0	NA
Ethylbenzene	1250	1200	96.0	NA
Total Xylenes	3750	3550	94.7	NA

	Surrogate % rec.	QC Limits
Trifluorotoluene	93.4%	75-118
Bromobenzene	101%	66-124

Surrogate Recovery: 0 out of 2 outside limits

Asterisked values outside QC Limits

Comments: NA - indicates no QC Limits established for these compounds

Report prepared: 07/

07/19/93 MAC:X jjr

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

BETX SPIKE BLANK RECOVERY

ARI Job No: E354

Client: Dames & Moore

Project: 21199-032-005

Trans Mtn.

Characterization

Matrix Soil

Date Extracted: 07/14/93 (#2) Date Analyzed: 07/15/93

COMPOUND	SPIKE ADDED (µg/Kg)	SB CONC (µg/Kg)	SB % REC	QC LIMITS REC
Benzene	1250	1180	94.4	NA
Toluene	1250	1130	90.4	NA
Ethylbenzene	1250	1170	93.6	NA
Total Xylenes	3750	3470	92.5	NA

	Surrogate % rec.	QC Limits
Trifluorotoluene	92.6%	75-118
Bromobenzene	102%	66-124

Surrogate Recovery: 0 out of 2 outside limits

Asterisked values outside QC Limits

Comments: NA - indicates no QC Limits established for these compounds

Report prepared:

07/19/93 MAC:X jjr

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

BETX SPIKE BLANK RECOVERY

ARI Job No: E354

Client: Dames & Moore

Project: 21199-032-005

Trans Mtn.

Characterization

ANALYTICAL RESOURCES INCORPORATED

333 Ninth Ave. North

(206) 621-6490 (206) 621-7523 (FAX)

Seattle, WA 98109-5187

Analytical Chemists & Consultants

Matrix Soil

Date Extracted: 07/14/93 (#3) Date Analyzed: 07/15/93

COMPOUND	SPIKE ADDED (µg/Kg)	SB CONC (µg/Kg)	SB % REC	QC LIMITS REC
Benzene	1250	1170	93.6	NA
Toluene	1250	1130	90.4	NA
Ethylbenzene	1250	1160	92.8	NA
Total Xylenes	3750	3440	91.7	NA

	Surrogate % rec.	QC Limits
Trifluorotoluene	87.0%	75-118
Bromobenzene	97.6%	66-124

Surrogate Recovery: 0 out of 2 outside limits

Asterisked values outside QC Limits

Comments: NA - indicates no QC Limits established for these compounds

Report prepared: 07/19/93 MAC:X jjr

Client: Dames & Moore

Trans Mtn.

Characterization

Project: 21199-032-005

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

BETX SPIKE BLANK RECOVERY

ARI Job No: E354

Matrix Soil

Date Extracted: 07/16/93 Date Analyzed: 07/16/93

COMPOUND	SPIKE ADDED (µg/Kg)	SB CONC (µg/Kg)	SB % REC	QC LIMITS REC
Benzene	1250	1250	100	NA
Toluene	1250	1240	99.2	NA
Ethylbenzene	1250	1230	98.4	NA
Total Xylenes	3750	3680	98.1	NA

	Surrogate % rec.	QC Limits
Trifluorotoluene	96.9%	75-118
Bromobenzene	97.8%	66-124

Surrogate Recovery: 0 out of 2 outside limits

Asterisked values outside QC Limits

Comments: NA - indicates no QC Limits established for these compounds

Report prepared: 07/19/93 MAC:X jjr

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

TOTAL PETROLEUM HYDROCARBONS by IR Scan Modified EPA Method 418.1

Matrix: Water

ARI LAB ID: E354

Client: Dames & Moore

Project: Trans. Mtn. Characterization

21199-032-005

VTSR: 07/09/93

Data Release Authorized _

Data Prepared:

07/22/93 MAC:piw

Date Prepared: 07/21/93 Date of Analysis: 07/22/93

Lab ID	Client Sample ID	Dilution Factor	TPH (ppm)
E354 MB	METHOD BLANK	1	1 U
E354 L	PCWC-3-1	1	3.3

Quality Control Data Results

Lab ID	Client Sample ID	Sample Conc.	HqT (mqq)	Amount Spiked	QC % Rec.	RPD
E354 SB	SPIKE BLANK	0	5.1	5.0 ppm	102%	-
E354 SBdup	SPIKE BLANK DUP	0	4.2	5.0 ppm	84.0%	19.4

Values reported in ppm (mg/L)

U Indicates compound was analyzed for but not detected at the given detection limit.

March 10, 2008

Karen Mixon URS Corporation Century Square 1501 Fourth Avenue Suite 1400 Seattle, WA 98101

RE: Client Project: Laurel Station

ARI Job No: ML21

Dear Karen:

Please find enclosed the original chain of custody documentation and the final results for the sample from the project referenced above. Analytical Resources, Inc. (ARI) received twenty soil samples and one trip blank in good condition on March 4, 2008.

The samples were analyzed for NWTPH-Dx and NWTPH-Gx plus BTEX, as requested on the COC.

There were no anomalies associated with the samples.

A copy of these reports and all associated raw data will remain on file electronically with ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kelly Böttem Client Services Manager 206/695-6211

kellyb@arilabs.com

Enclosures

cc: file ML21

KFB/kfb

Chain of Custody Record & Laboratory Analysis Request

127	Turn-around	Turn-around Requested:	747		Page:		ر س		Analytical Resources, Incorporated
.≥	*	Phone: ع 10% کم	Phone:	-	Date:	Date: 3/09	Ice Present?		4611 South 134th Place, Suite 100 Tukwila, WA 98168
Client Contact: Kurn Mixun	-				No. of Coolers:	1	Cooler 7 &	P	206-695-6200 206-695-6201 (fax)
Client Project Name:					Co	S.	Analysis Requested	nested	Notes/Comments
Level Statio- Kinde	L Mark	CI				N			
Client Project #:	Samplers					110 r			
Sample ID	Date	Time	Matrix	No. Containers	19TUM 83TO	14) TP 1			
02-62-3'	89/8/8	8//1	1,186	\dot{h}	×	×			
08-63-3	-2	1500	1.05	4	×	×			
5.7-68-80		1500	رو ا	ž	X	×			
01-83-45		1530	1.00	ţ	×	X	***		
1-58-80		1610	1108	ţ	メ	×	·		
1-78-20		1430	7:35	Ц	نحز	×			
00-135		1700	1:35	t.	×	×			
08-85-45		27/0	1100	¢	~	×	-		
08-86-3	>	ノンダー	7.82	Z	~	×			·
	39.105	١	120	ત	×				
l Instructions	Relinquished by:		, ,	Received by:	1/6		Relinquished by:		Received by:
	(Signature)	Course V Markey	2	(Signature)	12/0/61	Y Z	(Signature)	1.	(Signature)
₹ - -	Frinted Name:	L Mixh	٤	Printed Name:	Ceny (16 ton	Printed Name:		Printed Name:
smok the wilth or	Company:			Company:	M	H.	Company:		Company:
	Date & Time: 3/中/0月	SILO 8	15	Date & Time: \mathcal{I}	08	2107	Date & Time:		Date & Time:

meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program signed agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

report you to URS, direct bill Kinder Morgan

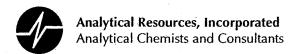
Chain of Custody Record & Laboratory Analysis Request

Matrix No. Containers Soil 4 Soil 4 X X X X X X X X X X X X X X X X X X	Turn-around	Turn-around Requested: S+d TM に Phone:			7	Analytical Resources, Incorporated Analytical Chemists and Consultants
Analysis Requested Analys	A DOL	-438-22	34	Date: 35/09 Pr	esent?	4611 South 134th Place, Suite 100 Tukwila, WA 98168
Analysis Requested The Containers Analysis Represented The Containe				_	, Y	206-695-6200 206-695-6201 (fax
ALTEX (BOLL B) LA X X X X X X X X X X X X X X X X X X X				(-)	Analysis Requested	Notes/Comments
atrix No Containers AMTON - Containers AMTON - Company: Company: Date & Time: Date & Time: Date & Time:	Project #: Samplers:			λC		
atrix No. Containers ALEX ALEX ALEX ALEX ALEX ALEX ALEX ALEX ALEX ALEX ALEX ALEX ALEX ALEX ALEX ALEX ALEX ALEX ALEX Company: Company: Date & Time: Date & Time:				1-1		
	Time	Matrix	No. Containers	MUTPI		
	1145	1.05	4	×		
	1158	2011	۲	X X		
Y	17/10	Soil	Ų	X		
Y	17.40		1	×		
1	1250		7			
1	09 <i>E1</i>		1	× ×		
1	5081		7	×		
Heceived by: (Signature) Printed Name: Company: Date & Time: Date & Time: Printed Name: Date & Time: Date & Time:	9 E 81		4	×		
Lif X X Reinquished by: Signature	1335	\rightarrow	4			
Received by: Company: Printed Name: Printed Name: Company: Company: Put	3/3/08 1340		L.f.	× /		
Printed Name: Printed Name: Printed Name: Company: Put	Relinquished by: (Signature)	min	Received by: (Signature)	Wall loss	Relinquished by: (Signature)	Received by: (Signature)
Company: At Company: Date & Time: Date & Time:	1		Printed Name:	of melila	Printed Name:	Printed Name:
Date & Time: My K (D.()	₩ %		Company:	46#	Company:	Company:
	Time: 3/4/68 0	1/8/	Date & Time:	(701) &	Date & Time:	Date & Time:

meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program signed agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Report gue to URS, direct to 11 Kind Morger


Chain of Custody Record & Laboratory Analysis Request

	Manual de Manual			***************************************		
Date & Time:	Date & Time:	0101 201	Date & Time;	Date & Time: 3/4/08 (77)	Date & Time	
Сотрапу:	Company:	Her	Company:	URS	Company:	
Printed Name:	Printed Name:	4 Congleton	Printed Name:	Printed Name: KWL LMIKIN	Printed Nam	
Received by: (Signature)	Relinquished by: (Signature)	of consta	Received by: (Mams may		Comments/Special Instructions
	The state of the s		1			
						. %
-						
		× ×	4	1645 20,1	3/2/88	08-14-1
		ester x370a normh normh	No. Containers	Time Matrix	Date	Sample ID
		MIY H 100-4 108) 100-1		0	Samplers	Client Project #:
Notes/Comments	Analysis Requested	(**/ (@.		imel Stehn-Kind Moun	Stehn - K	Client Project Name:
206-695-6200 206-695-6201 (fax)		No. of Cooler Coolers: Temps:			VX	Client Contact: Vive MyN
4611 South 134th Place, Suite 100 Tukwila, WA 98168	11.5	Date: 3/68 Ice Present?	34	Phone:	ري. ر <u>ا</u>	ARI Client Company: URS [UNDOWN].
Analytical Resources, Incorporated Analytical Chemists and Consultants		Page: 3 of G	<u> </u>	Turn-around Requested: 8197747		ARI Assigned Number: $\mathcal{ML}\mathcal{U}$

said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for signed agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

MONTHALL BYS, GRA-10.11 KIRN MOUNT

Cooler Receipt Form

ARI Client: URS CORP.	Project Name: Law Delivered by:	cel STN.	.
COC No:	Delivered by:		
Assigned ARI Job No: ML2(Tracking No:		
Preliminary Examination Phase:			
Were intact, properly signed and dated custo Were custody papers included with the coole Were custody papers properly filled out (ink, Record cooler temperature (recommended 2.	signed, etc.)	YES YES <u>2.</u>	NO NO & °C
Cooler Accepted by: 386 Co	ngtin Dat	e: <u>3/4/06</u> Time:	1010
Complete custody for	orms and attach all shipp	ing documents	
Log-In Phase:	,		
Was a temperature blank included in the cool What kind of packing material was used? Was sufficient ice used (if appropriate)? Were all bottles sealed in individual plastic bat Did all bottle arrive in good condition (unbroke Were all bottle labels complete and legible? Did all bottle labels and tags agree with custo Were all bottles used correct for the requested Do any of the analyses (bottles) require presed Were all VOC vials free of air bubbles? Was sufficient amount of sample sent in each Samples Logged by: ** Notify Project Materials Applications of the sample sent in each sample sen	ags? en)? ody papers? ed analyses? ervation? (attach preservat	YES YES YES YES YES YES YES YES YES YES	NO NO NO NO NO NO
Explain discrepancies or negative responses:	:		
	Ву:	Date:	

BETX SOIL SURROGATE RECOVERY SUMMARY

ARI Job: ML21 QC Report No: ML21-URS Corporation

Matrix: Soil Project: Laurel Station - Kinder Morgan

Event: NA

Client ID	TFT	BBZ	TOT OU
MB-030608	105%	106%	0
LCS-030608	105%	104%	0
LCSD-030608	91.4%	93.9%	0
08-B2-3'	92.7%	93.8%	0
08-B3-3'	99.5%	101%	0
08-B2-4.5'	105%		0
08-B3-4.5'	93.5%	95.8%	0
08-B5-1'	99.9%	102%	0
08-B6-1'	98.2%	100%	0
08-B5-3'	100%		0
08-B5-4.5'	90.3%		0
08-B6-3'		99.2%	0
TANK170-1-SURFACE	95.0%		0
TANK170-1-2'	92.4%		0
08-B3-1'		95.4%	0
	91.2%		0
MB-030608		101%	0
LCS-030608	99.9%		0
	93.4%		0
TANK170-2-2	89.3%		0
TANK170-2-31/2'	92.4%		. 0
08-B2-1'	97.4%		0
TANK180-1-SURFACE	91.5%		0
TANK180-1-2'		104%	0
TANK180-1-2' TANK180-1-3' 08-B4-1		98.7%	0
08-B4-1	87.5%	92.3%	0

			LCS/MB	LIMITS	QC :	LIMITS
(TFT)	==	Trifluorotoluene	(80-1	120)	(61	-137)
(BBZ)	=	Bromobenzene	(80-1	120)	(58	-139)

Log Number Range: 08-4218 to 08-4237

TPHG SOIL SURROGATE RECOVERY SUMMARY

ARI Job: ML21 Matrix: Soil

QC Report No: ML21-URS Corporation

Project: Laurel Station - Kinder Morgan Event: NA

Client ID	BFB	TFT	BBZ	TOT OUT
MB-030608	NA	104%	105%	0
LCS-030608	NA	103%	105%	0
LCSD-030608	NA	89.7%	93.8%	0
08-B2-3'	NA	91.0%	93.2%	0
08-B3-3'	NA	98.8%	100%	0
08-B2-4.5'	NA	103%	104%	0
08-B3-4.5'	NA	91.5%	95.3%	0
08-B5-1'	NA	97.8%	101%	0
08-B6-1'	NA	96.4%	99.8%	0
08-B5-3'	NA	98.7%	101%	0
08-B5-4.5'	NA	91.4%	95.3%	0
08-B6-3'	NA	95.6%	100%	0
TANK170-1-SURFACE	NA	95.3%	99.0%	0
TANK170-1-2'	NA	92.4%	96.7%	0
08-B3-1'	NA	92.9%	96.2%	0
TANK170-2-SURFACE	NA	91.5%	96.5%	0
MB-030608	NA	99.7%	102%	0
LCS-030608	NA	99.0%	102%	0
LCSD-030608	NA	93.5%	97.3%	0
TANK170-2-2	NA	90.0%	93.7%	0
TANK170-2-31/2'	NA	92.6%	96.6%	0
08-B2-1'	NA	97.9%	101%	0
TANK180-1-SURFACE	NA	92.0%	103%	0
TANK180-1-2'	NA	96.6%	88.9%	0
TANK180-1-3'	NA	91.3%	109%	0
08-B4-1	NA	87.1%	92.3%	0

		LCS/MB LIMITS	QC LIMITS
(BFB)	= Bromofluorobenzene	(70-130)	(70-130)
(TFT)	= Trifluorotoluene	(80-120)	(65-137)
(BBZ)	= Bromobenzene	(80-120)	(54-144)

Log Number Range: 08-4218 to 08-4237

BETX WATER SURROGATE RECOVERY SUMMARY

ARI Job: ML21 Matrix: Water QC Report No: ML21-URS Corporation

Project: Laurel Station - Kinder Morgan

Event: NA

BBZTOT OUT Client ID TRIP BLANK 105%

> QC LIMITS LCS/MB LIMITS

(TFT) = Trifluorotoluene (80-120)(80-120)

(80-120)(BBZ) = Bromobenzene (80-120)

Log Number Range: 08-4238 to 08-4238

TPHG WATER SURROGATE RECOVERY SUMMARY

ARI Job: ML21 Matrix: Water

QC Report No: ML21-URS Corporation

Project: Laurel Station - Kinder Morgan

Event: NA

 Client ID
 TFT
 BBZ
 TOT OUT

 TRIP BLANK
 107%
 105%
 0

LCS/MB LIMITS QC LIMITS

(TFT) = Trifluorotoluene (80-120)

(80-120) (80-120)

(BBZ) = Bromobenzene (80-120) (80-12

Log Number Range: 08-4238 to 08-4238

Sample ID: MB-030608
METHOD BLANK

Lab Sample ID: MB-030608

LIMS ID: 08-4218 Matrix: Soil

Data Release Authorized:

Date Analyzed: 03/06/08 09:18 Instrument/Analyst: PID3/PKC

Reported: 03/07/08

QC Report No: ML21-URS Corporation

Project: Laurel Station - Kinder Morgan

Event: NA
Date Sampled: NA

Date Received: NA

Purge Volume: 5.0 mL

Sample Amount: 100 mg-dry-wt

CAS Number	Analyte	RL	Result	
71-43-2	Benzene	12	< 12 U	
108-88-3	Toluene	12	< 12 U	
100-41-4	Ethylbenzene	12	< 12 U	
	m,p-Xylene	25	< 25 U	
95-47-6	o-Xylene	12	< 12 U	
				GAS ID
4	Gasoline Range Hydrocarbons	5.0	< 5.0 U	
	BETX Surrogate Recover	TY .		
	Trifluorotoluene	105%		
	Bromobenzene	106%		
	Gasoline Surrogate Recov	rery		
	Trifluorotoluene	104%		
	Bromobenzene	105%		

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Sample ID: MB-030608 METHOD BLANK

Project: Laurel Station - Kinder Morgan

Lab Sample ID: MB-030608

LIMS ID: 08-4231

Data Release Authorized:

Matrix: Soil Reported: 03/07/08

Date Analyzed: 03/06/08 19:54 Instrument/Analyst: PID3/PKC

Date Received: NA

Event: NA

Date Sampled: NA

Sample Amount: 100 mg-dry-wt

QC Report No: ML21-URS Corporation

Purge Volume: 5.0 mL

CAS Number	Analyte	RL	Result
71-43-2	Benzene	12	< 12 U
108-88-3	Toluene	12	< 12 U
100-41-4	Ethylbenzene	12	< 12 U
	m,p-Xylene	25	< 25 U
95-47-6	o-Xylene	12	< 12 U
			GAS II
	Gasoline Range Hydrocarbons	5.0	< 5.0 U

BETX Surrogate Recovery

Trifluorotoluene	99.1%
Bromobenzene	101%

Gasoline Surrogate Recovery

Trifluorotoluene	99.7%
Bromobenzene	102%

BETX values reported in μ g/kg (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Sample ID: 08-B2-3' SAMPLE

Lab Sample ID: ML21A

LIMS ID: 08-4218

Matrix: Soil

Data Release Authorized: Reported: 03/07/08

Date Analyzed: 03/06/08 14:33 Instrument/Analyst: PID3/PKC

QC Report No: ML21-URS Corporation

Project: Laurel Station - Kinder Morgan

Event: NA

Date Sampled: 03/03/08 Date Received: 03/04/08

Purge Volume: 5.0 mL

Sample Amount: 110 mg-dry-wt

Percent Moisture: 7.4%

CAS Number	Analyte	RL	Result	
71-43-2	Benzene	11	< 11 U	
108-88-3	Toluene	11	< 11 U	
100-41-4	Ethylbenzene	11	< 11 U	
	m,p-Xylene	22	< 22 U	
95-47-6	o-Xylene	11	< 11 U	
			GAS	ID
	Gasoline Range Hydrocarbons	4.5	< 4.5 U	-
	BETX Surrogate Recove	ry		
	Trifluorotoluene	92.7%		
	Bromobenzene	93.8%		
	Gasoline Surrogate Reco	very		
	Trifluorotoluene	91.0%	÷	

BETX values reported in μ g/kg (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Sample ID: 08-B3-3' SAMPLE

Lab Sample ID: ML21B

LIMS ID: 08-4219

Matrix: Soil

Data Release Authorized:

Reported: 03/07/08

Date Analyzed: 03/06/08 14:58

Instrument/Analyst: PID3/PKC

QC Report No: ML21-URS Corporation

Project: Laurel Station - Kinder Morgan

Event: NA

Date Sampled: 03/03/08 Date Received: 03/04/08

Purge Volume: 5.0 mL

Sample Amount: 39 mg-dry-wt

Percent Moisture: 38.6%

CAS Number	Analyte		RL	Rest	ult		
71-43-2	Benzene		32	<	32	U	•
L08-88-3	Toluene		32	<	32	U	
L00-41-4	Ethylbenzene		32	<	32	U	
	m,p-Xylene		64	<	64	U	
95-47-6	o-Xylene		32	<	32	U	
							GAS ID
	Gasoline Range Hydrocarbons		13	<	13	U	
	BETX Surrogate Recove	ry					
	Trifluorotoluene	99.5%					
	Bromobenzene	101%					
	Gasoline Surrogate Reco	very					
	Trifluorotoluene	98.8%					
	Bromobenzene	100%					

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Sample ID: 08-B2-4.5' SAMPLE

Lab Sample ID: ML21C

LIMS ID: 08-4220 Matrix: Soil

Data Release Authorized:

Date Analyzed: 03/06/08 15:22

Instrument/Analyst: PID3/PKC

Reported: 03/07/08

QC Report No: ML21-URS Corporation

Project: Laurel Station - Kinder Morgan

Event: NA

Date Sampled: 03/03/08 Date Received: 03/04/08

Purge Volume: 5.0 mL

Sample Amount: 69 mg-dry-wt

Percent Moisture: 26.7%

CAS Number	Analyte	RL	Result
71-43-2	Benzene	18	< 18 U
108-88-3	Toluene	18	< 18 U
100-41-4	Ethylbenzene	18	< 18 U
	m,p-Xylene	36	< 36 U
95-47-6	o-Xylene	18	< 18 U
			GAS]
	Gasoline Range Hydrocarbons	7.3	< 7.3 U
	BETX Surrogate Recover	Y	
	Trifluorotoluene	105%	
	Bromobenzene	105%	

Gasoline Surrogate Recovery

Trifluorotoluene 103% Bromobenzene 104%

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Sample ID: 08-B3-4.5' SAMPLE

Lab Sample ID: ML21D

LIMS ID: 08-4221

Matrix: Soil

Reported: 03/07/08

Data Release Authorized:

Date Analyzed: 03/06/08 15:47

Instrument/Analyst: PID3/PKC

QC Report No: ML21-URS Corporation

Project: Laurel Station - Kinder Morgan

Event: NA

Date Sampled: 03/03/08 Date Received: 03/04/08

Purge Volume: 5.0 mL

Sample Amount: 45 mg-dry-wt

Percent Moisture: 22.2%

CAS Number	Analyte		RL	Resul	ŧ.	
71-43-2	Benzene		28	3:	3	•
108-88-3	Toluene		28	< 2	3 U	
100-41-4	Ethylbenzene		28	< 28	3 U	
	m,p-Xylene		56	58	3	
95-47-6	o-Xylene		28	< 28	3 U	
						GAS II
	Gasoline Range Hydrocarbons	;	11	< 13	L U	
	BETX Surrogate Recove	ry				
	Trifluorotoluene	93.5%	_			
	Bromobenzene	95.8%				

Trifluorotoluene 91.5% Bromobenzene 95.3%

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Sample ID: 08-B5-1'
SAMPLE

Lab Sample ID: ML21E LIMS ID: 08-4222

Matrix: Soil

Data Release Authorized:

Reported: 03/07/08

: **/**

Date Analyzed: 03/06/08 16:12 Instrument/Analyst: PID3/PKC QC Report No: ML21-URS Corporation

Project: Laurel Station - Kinder Morgan

Event: NA

Date Sampled: 03/03/08 Date Received: 03/04/08

97.8%

101%

Purge Volume: 5.0 mL

Sample Amount: 72 mg-dry-wt

Percent Moisture: 19.3%

CAS Number	Analyte	RL	Result	
71-43-2	Benzene	17	< 17 U	
108-88-3	Toluene	17	< 17 U	
100-41-4	Ethylbenzene	17	< 17 U	
	m,p-Xylene	35	< 35 U	
95-47-6	o-Xylene	17	< 17 U	
	Gasoline Range Hydrocarbons	6.9	< 6.9 U	GAS I
	BETX Surrogate Recove	ery		
	Trifluorotoluene	99.9%		
	Bromobenzene	102%		
	Gasoline Surrogate Reco	very		

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of qasoline or weathered gasoline.

Trifluorotoluene

Bromobenzene

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Lab Sample ID: ML21F LIMS ID: 08-4223

Matrix: Soil

Data Release Authorized:

Reported: 03/07/08

Date Analyzed: 03/06/08 16:36 Instrument/Analyst: PID3/PKC Sample ID: 08-B6-1' SAMPLE

QC Report No: ML21-URS Corporation

Project: Laurel Station - Kinder Morgan

Event: NA

Date Sampled: 03/03/08 Date Received: 03/04/08

Purge Volume: 5.0 mL

Sample Amount: 72 mg-dry-wt

Percent Moisture: 16.4%

CAS Number	Analyte	RL	Result
71-43-2	Benzene	18	< 18 U
108-88-3	Toluene	18	< 18 U
100-41-4	Ethylbenzene	18	< 18 U
	m,p-Xylene	35	< 35 U
95-47-6	o-Xylene	18	< 18 U
			GAS ID
	Gasoline Range Hydrocarbons	7.0	< 7.0 U
	BETX Surrogate Recove:	rv	
	2221 2422 2440 11000 10	- 2	
	Trifluorotoluene	98.2%	
		-	
	Trifluorotoluene	98.2%	
	Trifluorotoluene Bromobenzene	98.2%	

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Lab Sample ID: ML21G

Data Release Authorized:

Date Analyzed: 03/06/08 17:01

Instrument/Analyst: PID3/PKC

LIMS ID: 08-4224

Reported: 03/07/08

Matrix: Soil

Page 1 of 1

QC Report No: ML21-URS Corporation

Sample ID: 08-B5-3'

Project: Laurel Station - Kinder Morgan

SAMPLE

Event: NA

Date Sampled: 03/03/08 Date Received: 03/04/08

Purge Volume: 5.0 mL

Sample Amount: 79 mg-dry-wt

Percent Moisture: 21.5%

RL Result CAS Number Analyte < 16 U 71-43-2 Benzene 16 < 16 U 16 Toluene 108-88-3 < 16 U 16 Ethylbenzene 100-41-4 < 32 U 32 m,p-Xylene < 16 U 95-47-6 16 o-Xylene GAS ID Gasoline Range Hydrocarbons 6.3 < 6.3 U BETX Surrogate Recovery 100% Trifluorotoluene Bromobenzene 101% Gasoline Surrogate Recovery Trifluorotoluene 98.7% 101% Bromobenzene

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Page 1 of 1

Lab Sample ID: ML21H

LIMS ID: 08-4225

Matrix: Soil

Data Release Authorized:

Reported: 03/07/08

Date Analyzed: 03/06/08 17:26 Instrument/Analyst: PID3/PKC

Sample ID: 08-B5-4.5' SAMPLE

QC Report No: ML21-URS Corporation

Project: Laurel Station - Kinder Morgan

Event: NA

Date Sampled: 03/03/08 Date Received: 03/04/08

Purge Volume: 5.0 mL

Sample Amount: 88 mg-dry-wt

Percent Moisture: 14.3%

CAS Number	Analyte	RL	Result
71-43-2	Benzene	14	< 14 U
108-88-3	Toluene	14	< 14 U
100-41-4	Ethylbenzene	14	< 14 U
	m,p-Xylene	- 28	< 28 U
95-47-6	o-Xylene	14	< 14 U
			GAS ID
	Constine Dense Hirdwesenhons		
	Gasoline Range Hydrocarbons	5.7	< 5.7 U
	BETX Surrogate Recover		< 5.7 0
			< 5.7 0
	BETX Surrogate Recover	ТУ	< 5.7 0
	BETX Surrogate Recover	90.3% 93.2%	< 5.7 0
	BETX Surrogate Recover Trifluorotoluene Bromobenzene	90.3% 93.2%	< 5.7 0

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Sample ID: 08-B6-3' SAMPLE

Lab Sample ID: ML211 LIMS ID: 08-4226

Matrix: Soil

Data Release Authorized:

Date Analyzed: 03/06/08 20:19

Instrument/Analyst: PID3/PKC

Reported: 03/07/08

QC Report No: ML21-URS Corporation

Project: Laurel Station - Kinder Morgan

Event: NA

Date Sampled: 03/03/08 Date Received: 03/04/08

Purge Volume: 5.0 mL

Sample Amount: 97 mg-dry-wt

Percent Moisture: 5.7%

CAS Number	Analyte	RL	Result	
71-43-2	Benzene	13	< 13 U	
108-88-3	Toluene	13	< 13 U	
100-41-4	Ethylbenzene	13	< 13 U	
	m,p-Xylene	26	< 26 U	
95-47-6	o-Xylene	13	< 13 U	
			C	GAS II
	Gasoline Range Hydrocarbons	5.1	< 5.1 U	
	Gasoline kange nyurocarbons	٠.1	(3.1 0	
	BETX Surrogate Recover		< 3.1 0	
	5 -		7 3.1 0	
	BETX Surrogate Recove	ry	7 3.1 0	
	BETX Surrogate Recover	95.4% 99.2%	7 3.1 0	
	BETX Surrogate Recovery Trifluorotoluene Bromobenzene	95.4% 99.2%	7 3.1 0	

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of qasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Sample ID: TANK170-1-SURFACE SAMPLE

Lab Sample ID: ML21J

LIMS ID: 08-4227

Matrix: Soil

Data Release Authorized:

Reported: 03/07/08

Date Analyzed: 03/06/08 20:44

Instrument/Analyst: PID3/PKC

QC Report No: ML21-URS Corporation

Project: Laurel Station - Kinder Morgan

Event: NA

Date Sampled: 03/03/08 Date Received: 03/04/08

Purge Volume: 5.0 mL

Sample Amount: 110 mg-dry-wt

Percent Moisture: 0.8%

CAS Number	Analyte	RL	Result	
71-43-2	Benzene	11	< 11 U	
108-88-3	Toluene	11	< 11 U	
100-41-4	Ethylbenzene	11	< 11 U	
	m,p-Xylene	22	< 22 U	
95-47-6	o-Xylene	11	< 11 U	
			G	SAS ID
	Gasoline Range Hydrocarbons	4.4	6.2	GRO
	BETX Surrogate Recove	ery		
	Trifluorotoluene	95.0%		
	Bromobenzene	98.1%		
	Gasoline Surrogate Reco	very		
	Trifluorotoluene	95.3%		
	Bromobenzene	99.0%		

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Instrument/Analyst: PID3/PKC

Sample ID: TANK170-1-2' SAMPLE

Project: Laurel Station - Kinder Morgan

Lab Sample ID: ML21K

LIMS ID: 08-4228 Matrix: Soil

Data Release Authorized:

Reported: 03/07/08

Event: NA
Date Sampled: 03/03/08
Date Received: 03/04/08

Date Analyzed: 03/06/08 21:08 Purge Volum

Purge Volume: 5.0 mL Sample Amount: 89 mg-dry-wt

QC Report No: ML21-URS Corporation

Percent Moisture: 3.3%

CAS Number	Analyte	RL	Result	
71-43-2	Benzene	14	< 14 U	_
108-88-3	Toluene	14	< 14 U	
100-41-4	Ethylbenzene	14	< 14 U	
	m,p-Xylene	28	< 28 U	
95-47-6	o-Xylene	14	< 14 U	
				GAS II
				ana
	Gasoline Range Hydrocarbons	5.6	7.8	GRO
	BETX Surrogate Recove		7.8	GRO
			7.8	GRO
	BETX Surrogate Recove	ry	7.8	GRO
	BETX Surrogate Recove Trifluorotoluene	92.4% 96.2%	7.8	GRO
	BETX Surrogate Recove Trifluorotoluene Bromobenzene	92.4% 96.2%	7.8	GRO

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Date Analyzed: 03/06/08 21:33

Instrument/Analyst: PID3/PKC

Sample ID: 08-B3-1' SAMPLE

Lab Sample ID: ML21L

LIMS ID: 08-4229 Matrix: Soil

Data Release Authorized:

Reported: 03/07/08

QC Report No: ML21-URS Corporation

Project: Laurel Station - Kinder Morgan

Event: NA

Date Sampled: 03/03/08 Date Received: 03/04/08

92.9%

96.2%

Purge Volume: 5.0 mL

Sample Amount: 55 mg-dry-wt

Percent Moisture: 28.7%

CAS Number	Analyte	RL	Result	
71-43-2	Benzene	23	< 23 U	
108-88-3	Toluene	23	< 23 U	
100-41-4	Ethylbenzene	23	< 23 U	
	m,p-Xylene	46	< 46 U	
95-47-6	o-Xylene	23	< 23 U	
				GAS I
	Gasoline Range Hydrocarbons	9.1	< 9.1 U	
	BETX Surrogate Recove	ry		
	Trifluorotoluene	92.1%		
	Bromobenzene	95.4%		

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

Trifluorotoluene

Bromobenzene

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Sample ID: TANK170-2-SURFACE SAMPLE

Lab Sample ID: ML21M

LIMS ID: 08-4230 Matrix: Soil

Data Release Authorized:

Date Analyzed: 03/06/08 21:58

Instrument/Analyst: PID3/PKC

Reported: 03/07/08

QC Report No: ML21-URS Corporation

Project: Laurel Station - Kinder Morgan

Event: NA

Date Sampled: 03/03/08 Date Received: 03/04/08

Purge Volume: 5.0 mL

Sample Amount: 86 mg-dry-wt

Percent Moisture: 7.5%

CAS Number	Analyte	RL	Result	
71-43-2	Benzene	15	< 15 U	
108-88-3	Toluene	15	< 15 U	
100-41-4	Ethylbenzene	15	< 15 U	
	m,p-Xylene	29	< 29 U	
95-47-6	o-Xylene	15	< 15 U	
			(GAS II
	Gasoline Range Hydrocarbons	5.8	8.4	GRO
	BETX Surrogate Recove	ry		
	Trifluorotoluene	91.2%		
	Bromobenzene	95.3%		
	Gasoline Surrogate Reco	very		

Trifluorotoluene 91.5% Bromobenzene 96.5%

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Sample ID: TANK170-2-2 SAMPLE

Lab Sample ID: ML21N

LIMS ID: 08-4231 Matrix: Soil

Data Release Authorized:

Date Analyzed: 03/06/08 22:22

Instrument/Analyst: PID3/PKC

Reported: 03/07/08

QC Report No: ML21-URS Corporation

Project: Laurel Station - Kinder Morgan

Event: NA

Date Sampled: 03/03/08 Date Received: 03/04/08

Purge Volume: 5.0 mL

Sample Amount: 63 mg-dry-wt

Percent Moisture: 15.1%

CAS Number	Analyte	RL	Result
71-43-2	Benzene	20	< 20 U
108-88-3	Toluene	20	< 20 U
100-41-4	Ethylbenzene	20	< 20 U
	m,p-Xylene	40	< 40 U
95-47-6	o-Xylene	20	< 20 U
			GAS
	Gasoline Range Hydrocarbons	7.9	< 7.9 U

BETX Surrogate Recovery

Trifluorotoluene	89.3%
Bromobenzene	92.7%

Gasoline Surrogate Recovery

Trifluorotoluene	90.0%
Bromobenzene	93.7%

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Sample ID: TANK170-2-31/2' SAMPLE

Lab Sample ID: ML210 LIMS ID: 08-4232

Matrix: Soil

Data Release Authorized:

Date Analyzed: 03/07/08 00:01

Instrument/Analyst: PID3/PKC

Reported: 03/07/08

QC Report No: ML21-URS Corporation

Project: Laurel Station - Kinder Morgan

Event: NA

Date Sampled: 03/03/08 Date Received: 03/04/08

Purge Volume: 5.0 mL

Sample Amount: 36 mg-dry-wt

Percent Moisture: 8.9%

CAS Number	Analyte		RL	Rest	ılt	
71-43-2	Benzene		35	<	35 U	-
108-88-3	Toluene		35	<	35 U	
100-41-4	Ethylbenzene		35	<	35 U	
	m,p-Xylene		70	<	70 U	
95-47-6	o-Xylene		35	<	35 U	
						GAS I
	Gasoline Range Hydrocarbons	3	14	<	14 U	
	BETX Surrogate Recove	ery				
	Trifluorotoluene	92.4%	_			
	Bromobenzene	96.1%				

Gasoline	Surrogate	Recovery	

Trifluorotoluene	92.6%
Bromobenzene	96.6%

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Page 1 of 1

Lab Sample ID: ML21P

LIMS ID: 08-4233 Matrix: Soil

Data Release Authorized:

Reported: 03/07/08

Date Analyzed: 03/07/08 00:26 Instrument/Analyst: PID3/PKC

Sample ID: 08-B2-1' SAMPLE

QC Report No: ML21-URS Corporation

Project: Laurel Station - Kinder Morgan

Event: NA

Date Sampled: 03/03/08 Date Received: 03/04/08

Purge Volume: 5.0 mL

Sample Amount: 89 mg-dry-wt

Percent Moisture: 10.2%

CAS Number	Analyte	RL	Result	
71-43-2	Benzene	14	< 14 U	
108-88-3	Toluene	14	< 14 U	
100-41-4	Ethylbenzene	14	< 14 U	
	m,p-Xylene	28	< 28 U	
95-47-6	o-Xylene	14	< 14 U	
				GAS ID
	Gasoline Range Hydrocarbons	5.6	< 5.6 Ŭ	
	BETX Surrogate Recove	ry		
	Trifluorotoluene	97.4%		
	Bromobenzene	100%		
	Gasoline Surrogate Reco	very		
	Trifluorotoluene	97.9%		
	Bromobenzene	101%		

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Lab Sample ID: ML21Q LIMS ID: 08-4234

Matrix: Soil

Data Release Authorized:

Reported: 03/07/08

Date Analyzed: 03/07/08 00:51 Instrument/Analyst: PID3/PKC

Sample ID: TANK180-1-SURFACE SAMPLE

QC Report No: ML21-URS Corporation

Project: Laurel Station - Kinder Morgan

Event: NA

Date Sampled: 03/03/08 Date Received: 03/04/08

Purge Volume: 5.0 mL

Sample Amount: 62 mg-dry-wt

Percent Moisture: 5.0%

CAS Number	Analyte	RL	Result	
71-43-2	Benzene	20	< 20 U	
L08-88-3	Toluene	20	21	
100-41-4	Ethylbenzene	20	< 20 U	
	m,p-Xylene	40	< 40 U	
95-47-6	o-Xylene	20	30	
				GAS ID
				CAC LL
	Gasoline Range Hydrocarbo	ons 8.0	150	GRO
	Gasoline Range Hydrocarbo			
	BETX Surrogate Reco	overy		
	BETX Surrogate Reco	91.5% 97.3%		
	Trifluorotoluene Bromobenzene	91.5% 97.3%		

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

ID

ORGANICS ANALYSIS DATA SHEET BETX by Method SW8021BMod TPHG by Method NWTPHG Page 1 of 1

Sample ID: TANK180-1-2' SAMPLE

Lab Sample ID: ML21R

LIMS ID: 08-4235 Matrix: Soil

Data Release Authorized:

Date Analyzed: 03/07/08 01:15

Instrument/Analyst: PID3/PKC

Reported: 03/07/08

QC Report No: ML21-URS Corporation

Project: Laurel Station - Kinder Morgan

Event: NA

Date Sampled: 03/03/08 Date Received: 03/04/08

Purge Volume: 5.0 mL

Sample Amount: 93 mg-dry-wt

Percent Moisture: 4.1%

CAS Number	Analyte	RL	Result	
71-43-2	Benzene	14	< 14 U	
108-88-3	Toluene	14	< 14 U	
100-41-4	Ethylbenzene	14	< 14 U	
•	m,p-Xylene	27	< 27 U	
95-47-6	o-Xylene	14	< 14 U	
			GAS	s ID
	Gasoline Range Hydrocarbons	5.4	300	3RO

BETX Surrogate Recovery

Trifluorotoluene	96.2%
Bromobenzene	104%

Gasoline Surrogate Recovery

Trifluorotoluene	96.6%
Bromobenzene	88.9%

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Sample ID: TANK180-1-3' SAMPLE

Lab Sample ID: ML21S

LIMS ID: 08-4236 Matrix: Soil

Data Release Authorized:

Date Analyzed: 03/07/08 01:40

Instrument/Analyst: PID3/PKC

Reported: 03/07/08

QC Report No: ML21-URS Corporation

Project: Laurel Station - Kinder Morgan

Event: NA

Date Sampled: 03/03/08 Date Received: 03/04/08

Purge Volume: 5.0 mL

Sample Amount: 76 mg-dry-wt

Percent Moisture: 9.8%

CAS Number	Analyte	RL	Result	
71-43-2	Benzene	16	< 16 U	
108-88-3	Toluene	16	< 16 U	
100-41-4	Ethylbenzene	16	< 16 U	
	m,p-Xylene	33	< 33 U	
95-47-6	o-Xylene	16	< 16 U	
				GAS II
	Gasoline Range Hydrocarbons	6.6	350	GRO
	BETX Surrogate Recove	ry		
	Trifluorotoluene	90.9%		
	Bromobenzene	98.7%		

Trifluorotoluene 91.3% Bromobenzene 109%

Gasoline Surrogate Recovery

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Sample ID: 08-B4-1 SAMPLE

Lab Sample ID: ML21T

LIMS ID: 08-4237 Matrix: Soil

Data Release Authorized:

Date Analyzed: 03/07/08 02:05

Instrument/Analyst: PID3/PKC

Reported: 03/07/08

QC Report No: ML21-URS Corporation

Project: Laurel Station - Kinder Morgan

Event: NA

Date Sampled: 03/03/08 Date Received: 03/04/08

Purge Volume: 5.0 mL

Sample Amount: 64 mg-dry-wt

Percent Moisture: 20.9%

CAS Number	Analyte	RL	Result
71-43-2	Benzene	20	< 20 U
108-88-3	Toluene	20	< 20 U
100-41-4	Ethylbenzene	20	< 20 U
	m,p-Xylene	39	< 39 U
95-47-6	o-Xylene	20	< 20 U
			GAS II
	Gasoline Range Hydrocarbons	7.8	38 GRO

BETX Surrogate Recovery

Trifluorotoluene	87.5%
Bromobenzene	92.3%

Gasoline Surrogate Recovery

m 167	0 77 10.
Trifluorotoluene	87.1%
Bromobenzene	92.3%

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Sample ID: TRIP BLANK SAMPLE

Lab Sample ID: ML21U

LIMS ID: 08-4238

Matrix: Water

Data Release Authorized:

Reported: 03/07/08

Date Analyzed: 03/06/08 10:27 Instrument/Analyst: PID3/PKC

QC Report No: ML21-URS Corporation

Project: Laurel Station - Kinder Morgan

Event: NA

Date Sampled: 03/03/08 Date Received: 03/04/08

> Purge Volume: 5.0 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
71-43-2	Benzene	1.0	< 1.0 U
108-88-3	Toluene	1.0	< 1.0 U
L00-41-4	Ethylbenzene	1.0	< 1.0 U
	m,p-Xylene	1.0	< 1.0 U
95-47-6	o-Xylene	1.0	< 1.0 U
	Gasoline Range Hydrocarbons	0.25	< 0.25 U
	BETX Surrogate Recover	c Y	
	Trifluorotoluene	110%	
	Bromobenzene	105%	
	Gasoline Surrogate Recov	very	
	Trifluorotoluene	107%	

105%

BETX values reported in μ g/L (ppb) Gasoline values reported in mg/L (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

Bromobenzene

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

ORGANICS ANALYSIS DATA SHEET BETX by Method SW8021BMod

Page 1 of 1

Lab Sample ID: LCS-030608

LIMS ID: 08-4218

Matrix: Soil

Data Release Authorized:

Reported: 03/07/08

Date Analyzed LCS: 03/06/08 08:29

LCSD: 03/06/08 08:54

Instrument/Analyst LCS: PID3/PKC

LCSD: PID3/PKC

Sample ID: LCS-030608

LAB CONTROL SAMPLE

QC Report No: ML21-URS Corporation

Project: Laurel Station - Kinder Morgan

Event: NA Date Sampled: NA Date Received: NA

Purge Volume: 5.0 mL

Sample Amount LCS: 100 mg-dry-wt

LCSD: 100 mg-dry-wt

Analyte	LCS	Spike Added-LC:	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Benzene	352	350	101%	352	350	101%	0.0%
Toluene	3070	3100	99.0%	3120	3100	101%	1.6%
Ethylbenzene	574	595	96.5%	587	595	98.7%	2.2%
m,p-Xylene	2150	2230	96.4%	2190	2230	98.2%	1.8%
o-Xylene	778	790	98.5%	796	790	101%	2.3%

Reported in $\mu g/kg$ (ppb)

RPD calculated using sample concentrations per SW846.

BETX Surrogate Recovery

	LCS	LCSD
Trifluorotoluene	105%	91.4%
Bromobenzene	104%	93.9%

ORGANICS ANALYSIS DATA SHEET TPHG by Method NWTPHG

Page 1 of 1

Lab Sample ID: LCS-030608

LIMS ID: 08-4218

Matrix: Soil

Data Release Authorized:

Reported: 03/07/08

Date Analyzed LCS: 03/06/08 08:29

LCSD: 03/06/08 08:54

Instrument/Analyst LCS: PID3/PKC

LCSD: PID3/PKC

Sample ID: LCS-030608

LAB CONTROL SAMPLE

QC Report No: ML21-URS Corporation

Project: Laurel Station - Kinder Morgan

Event: NA Date Sampled: NA

Date Received: NA

Purge Volume: 5.0 mL

Sample Amount LCS: 100 mg-dry-wt

LCSD: 100 mg-dry-wt

Spike LCS Spike LCSD LCSD Added-LCSD Recovery RPD Analyte LCS Added-LCS Recovery 50.0 111% 53.1 50.0 106% 4.4% 55.5 Gasoline Range Hydrocarbons

Reported in mg/kg (ppm)

RPD calculated using sample concentrations per SW846.

TPHG Surrogate Recovery

LCSLCSDTrifluorotoluene103%89.7%Bromobenzene105%93.8%

ORGANICS ANALYSIS DATA SHEET BETX by Method SW8021BMod

Page 1 of 1

Lab Sample ID: LCS-030608

LIMS ID: 08-4231

Matrix: Soil

Data Release Authorized:

Reported: 03/07/08

Date Analyzed LCS: 03/06/08 19:05

LCSD: 03/06/08 19:30

Instrument/Analyst LCS: PID3/PKC LCSD: PID3/PKC Sample ID: LCS-030608

LAB CONTROL SAMPLE

QC Report No: ML21-URS Corporation

Project: Laurel Station - Kinder Morgan

Event: NA Date Sampled: NA Date Received: NA

Purge Volume: 5.0 mL

Sample Amount LCS: 100 mg-dry-wt

LCSD: 100 mg-dry-wt

Analyte	LCS	Spike Added-LC	LCS S Recovery	LCSD	Spike Added-LCSI	LCSD Recovery	RPD
Dengano	334	350	95.4%	332	350	94.9%	0.6%
Benzene Toluene	2890	3100	93.2%	2910	3100	93.9%	0.7%
Ethylbenzene	548	595	92.1%	550	595	92.4%	0.4%
m,p-Xylene	2050	2230	91.9%	2070	2230	92.8%	1.0%
o-Xylene	744	790	94.2%	753	790	95.3%	1.2%

Reported in $\mu g/kg$ (ppb)

RPD calculated using sample concentrations per SW846.

BETX Surrogate Recovery

	LCS	LCSD
Trifluorotoluene	99.9%	93.4%
Bromobenzene	101%	96.2%

ORGANICS ANALYSIS DATA SHEET TPHG by Method NWTPHG

Page 1 of 1

Sample ID: LCS-030608
LAB CONTROL SAMPLE

Lab Sample ID: LCS-030608

LIMS ID: 08-4231

Matrix: Soil
Data Release Authorized:

Reported: 03/07/08

Date Analyzed LCS: 03/06/08 19:05

LCSD: 03/06/08 19:30

Instrument/Analyst LCS: PID3/PKC

LCSD: PID3/PKC

QC Report No: ML21-URS Corporation

Project: Laurel Station - Kinder Morgan

Event: NA
Date Sampled: NA
Date Received: NA

Purge Volume: 5.0 mL

Sample Amount LCS: 100 mg-dry-wt

LCSD: 100 mg-dry-wt

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Gasoline Range Hydrocarbons	51.8	50.0	104%	50.6	50.0	101%	2.3%

Reported in mg/kg (ppm)

RPD calculated using sample concentrations per SW846.

TPHG Surrogate Recovery

	LCS	LCSD
Trifluorotoluene	99.0%	93.5%
Bromobenzene	102%	97.3%

TPHD SURROGATE RECOVERY SUMMARY

Matrix: Soil

QC Report No: ML21-URS Corporation
Project: Laurel Station - Kinder Morgan

Client ID	OTER	TOT OUT
08-B2-3'	91.6%	0
08-B3-3'	92.0%	0
08-B2-4.5'	90.2%	0
08-B3-4.5'	96.4%	0
08-B5-1'	91.1%	0
08-B6-1'	86.0%	0
08-B5-3'	92.7%	0
08-B5-4.5'	95.8%	0
08-B6-3'	87.6%	0
TANK170-1-SURFACE	89.3%	0
TANK170-1-2'	88.0%	0
08-B3-1'	88.7%	0
TANK170-2-SURFACE	83.1%	0
TANK170-2-2	95.3%	0
TANK170-2-31/2'	97.8%	0
08-B2-1'	97.1%	0
TANK180-1-SURFACE	88.4%	0
TANK180-1-2'	67.6%	0
030508MBS	86.2%	0
030508LCS	84.7%	0
030508LCSD	84.9%	0
TANK180-1-3'	D	0
TANK180-1-3' MS	97.6%	0
TANK180-1-3' MSD	80.4%	0
08-B4-1	92.4%	0

LCS/MB LIMITS	QC LIMITS
(46-116)	(42-112)

(OTER) = o-Terphenyl

Prep Method: SW3550B

Log Number Range: 08-4218 to 08-4237

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID Page 1 of 2

QC Report No: ML21-URS Corporation Project: Laurel Station - Kinder Morgan Matrix: Soil

Date Received: 03/04/08

Data Release Authorized:

Reported: 03/10/08

ARI ID Sample ID		Extraction Date	Analysis Date	EFV DL	Range	RL	Result
ML21A 08-4218	08-B2-3' HC ID:	03/05/08	03/07/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	5.4 11	< 5.4 U < 11 U 91.6%
ML21B 08-4219	08-B3-3' HC ID: DRO/RRO	03/05/08	03/07/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	8.1 16	41 60 92.0%
ML21C 08-4220	08-B2-4.5' HC ID:	03/05/08	03/07/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	6.8 14	< 6.8 U < 14 U 90.2%
ML21D 08-4221	08-B3-4.5' HC ID: DRO	03/05/08	03/07/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	6.4 13	8.7 < 13 U 96.4%
ML21E 08-4222	08-B5-1' HC ID:	03/05/08	03/07/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	6.2 12	< 6.2 U < 12 U 91.1%
ML21F 08-4223	08-B6-1' HC ID:	03/05/08	03/07/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	6.0 12	< 6.0 U < 12 U 86.0%
ML21G 08-4224	08-B5-3' HC ID:	03/05/08	03/07/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	6.3 13	< 6.3 U < 13 U 92.7%
ML21H 08-4225	08-B5-4.5' HC ID:	03/05/08	03/07/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	5.8 12	< 5.8 U < 12 U 95.8%
ML21I 08-4226	08-B6-3' HC ID:	03/05/08	03/07/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	5.3 10	< 5.3 U < 10 U 87.6%
ML21J 08-4227	TANK170-1-SURFACE HC ID: DRO/RRO	03/05/08	03/07/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	5.0 10	130 190 89.3%
ML21K 08-4228	TANK170-1-2' HC ID: DIESEL/MOTOR	03/05/08 OIL	03/07/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	5.2 10	36 34 88.0%
ML21L 08-4229	08-B3-1' HC ID: DRO/RRO	03/05/08	03/07/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	7.0 14	19 51 88.7%
ML21M 08-4230	TANK170-2-SURFACE HC ID: DRO/RRO	03/05/08	03/07/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	5.4 11	25 21 83.1%

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID Page 2 of 2

Matrix: Soil

QC Report No: ML21-URS Corporation

Project: Laurel Station - Kinder Morgan

Date Received: 03/04/08

Data Release Authorized:

Reported: 03/10/08

ARI ID	Sample ID	Extraction Date	Analysis Date	EFV DL	Range	RL	Result
ML21N 08-4231	TANK170-2-2 HC ID:	03/05/08	03/07/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	5.8 12	< 5.8 U < 12 U 95.3%
ML210 08-4232	TANK170-2-31/2' HC ID:	03/05/08	03/07/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	5.5 11	< 5.5 U < 11 U 97.8%
ML21P 08-4233	08-B2-1' HC ID: RRO	03/05/08	03/07/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	5.6 11	< 5.6 U 11 97.1%
ML21Q 08-4234	TANK180-1-SURFACE HC ID: DRO/MOTOR OIL	03/05/08	03/07/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	52 100	1,900 2,500 88.4%
ML21R 08-4235	TANK180-1-2' HC ID: DRO/MOTOR OIL	03/05/08	03/07/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	52 100	2,200 2,300 67.6%
MB-030508 08-4236	Method Blank HC ID:	03/05/08	03/06/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	5.0 10	< 5.0 U < 10 U 86.2%
ML21S 08-4236	TANK180-1-3' HC ID: DRO/MOTOR OIL	03/05/08	03/10/08 FID3A	1.00 20	Diesel Motor Oil o-Terphenyl	110 220	3,100 3,500 D
ML21T 08-4237	08-B4-1 HC ID: RRO	03/05/08	03/07/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	6.3 13	< 6.3 U 15 92.4%

Reported in mg/kg (ppm)

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis. RL-Reporting limit.

Diesel quantitation on total peaks in the range from C12 to C24. Motor Oil quantitation on total peaks in the range from C24 to C38. HC ID: DRO/RRO indicates results of organics or additional hydrocarbons in ranges are not identifiable.

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID

Page 1 of 1

Sample ID: TANK180-1-3' MS/MSD

Lab Sample ID: ML21S LIMS ID: 08-4236

Matrix: Soil

Data Release Authorized:

Reported: 03/10/08

Project: Laurel Station - Kinder Morgan

QC Report No: ML21-URS Corporation

Date Sampled: 03/03/08 Date Received: 03/04/08

Date Extracted MS/MSD: 03/05/08

Date Analyzed MS: 03/07/08 06:59 MSD: 03/07/08 07:15

Instrument/Analyst MS: FID3A/JGR

MSD: FID3A/JGR

Sample Amount MS: 9.04 g-dry-wt MSD: 9.04 g-dry-wt

Final Extract Volume MS: 1.0 mL

MSD: 1.0 mL

Dilution Factor MS: 10.0

MSD: 10.0

Percent Moisture: 9.8%

Range	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD	
Diesel	3,120	3,840	166	NA	3,720	166	NA	3.2%	

TPHD Surrogate Recovery

MS MSD o-Terphenyl 97.6% 80.4%

Results reported in mg/kg NA-No recovery due to high concentration of analyte in original sample and/or calculated negative recovery. RPD calculated using sample concentrations per SW846.

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID

Page 1 of 1

Sample ID: LCS-030508

LCS/LCSD

Lab Sample ID: LCS-030508

LIMS ID: 08-4236 Matrix: Soil

Data Release Authorized:

Reported: 03/10/08

QC Report No: ML21-URS Corporation

Project: Laurel Station - Kinder Morgan

Date Sampled: NA
Date Received: NA

Date Extracted LCS/LCSD: 03/05/08

Date Analyzed LCS: 03/06/08 23:16

LCSD: 03/06/08 23:31

Instrument/Analyst LCS: FID3A/JGR

LCSD: FID3A/JGR

Sample Amount LCS: 10.0 q

LCSD: 10.0 g

Final Extract Volume LCS: 1.0 mL

LCSD: 1.0 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Range	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Diesel	126	150	84.0%	128	150	85.3%	1.6%

TPHD Surrogate Recovery

LCS LCSD

o-Terphenyl

84.7% 84.9%

Results reported in mg/kg
RPD calculated using sample concentrations per SW846.

TOTAL DIESEL RANGE HYDROCARBONS-EXTRACTION REPORT

ARI Job: ML21

Matrix: Soil Project: Laurel Station - Kinder Morgan

Date Received: 03/04/08

ARI ID	Client ID	Client Amt	Final Vol	Basis	Prep Date
	0110110				
08-4218-ML21A	08-B2-3'	9.33 g	1.00 mL	D	03/05/08
08-4219-ML21B	08-B3-3'	6.15 g	1.00 mL	D	03/05/08
08-4220-ML21C	08-B2-4.5'	7.33 g	1.00 mL	D	03/05/08
08-4221-ML21D	08-B3-4.5'	7.78 g	1.00 mL	D	03/05/08
08-4222-ML21E	08-B5-1'	8.10 g	1.00 mL	D	03/05/08
08-4223-ML21F	08-B6-1'	8.41 g	1.00 mL	D	03/05/08
08-4224-ML21G	08-B5-3'	7.90 g	1.00 mL	D	03/05/08
08-4225-ML21H	08-B5-4.5'	8.57 g	1.00 mL	D	03/05/08
08-4226-ML21I	08-B6-3'	9.49 g	1.00 mL	D	03/05/08
08-4227-ML21J	TANK170-1-SURFACE	9.92 g	1.00 mL	D	03/05/08
08-4228-ML21K	TANK170-1-2'	9.67 g	1.00 mL	D	03/05/08
08-4229-ML21L	08-B3-1'	7.17 g	1.00 mL	D	03/05/08
08-4230-ML21M	TANK170-2-SURFACE	9.29 g	1.00 mL	D	03/05/08
08-4231-ML21N	TANK170-2-2	8.56 g	1.00 mL	D	03/05/08
08-4232-ML210	TANK170-2-31/2'	9.11 g	1.00 mL	D	03/05/08
08-4233-ML21P	08-B2-1'	8.98 g	1.00 mL	D	03/05/08
08-4234-ML21Q	TANK180-1-SURFACE	9.56 g	1.00 mL	D	03/05/08
08-4235-ML21R	TANK180-1-2'	9.67 g	1.00 mL	D	03/05/08
08-4236-030508MB1	Method Blank	10.0 g	1.00 mL	-	03/05/08
08-4236-030508LCS1	Lab Control	10.0 g	1.00 mL	-	03/05/08
08-4236-030508LCSD1	Lab Control Dup	10.0 g	1.00 mL	-	03/05/08
08-4236-ML21S	TANK180-1-3'	9.02 g	1.00 mL	D	03/05/08
08-4236-ML21SMS	TANK180-1-3'	9.04 g	1.00 mL	D	03/05/08
08-4236-ML21SMSD	TANK180-1-3'	9.04 g	1.00 mL	D	03/05/08
08-4237-ML21T	08-B4-1	7.94 g	1.00 mL	D	03/05/08

March 27, 2008

Karen Mixon URS Corporation Century Square 1501 Fourth Avenue Suite 1400 Seattle, WA 98101

RE: Client Project: 33760783.08001, Laurel Station

ARI Job No: MN46

Dear Karen:

Please find enclosed the original chain of custody documentation and the final results for the sample from the project referenced above. Analytical Resources, Inc. (ARI) received four water samples and two soil samples and a trip blank in good condition on March 14, 2008. The samples were logged under two different ARI SDGs.

The samples were analyzed for VOAs, NWTPH-Dx and SIM PAHs as requested.

There were no anomalies associated with the samples.

A copy of these reports and all associated raw data will remain on file electronically with ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kelly Bettem

Client Services Manager

206/695-6211

kellyb@arilabs.com

Enclosures

cc: file MN46

KFB/kfb

	Analytical Resources, Incorporated Analytical Chemists and Consultants	4611 South 134th Place, Suite 100 Tukwila, WA 98168	206-695-6200 206-695-6201 (fax)	Notes/Comments				m5/m5D	-						Received by: (Signature)	Printed Name:	Сопрапу:	Date & Time:
984		11.5	20			2.08 11 18					× ×	メメ			Relinquished by: (Signature)	Printed Name:	Company:	Date & Time:
98h5-80 9) of [80	المتاريخ ال		411	H 4) 5 77	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	×	×	×				1.1	March	CAMMINTON V		1505/
08-5480 equest	Page:) Dette:	No. of Coolers:			No. Containers	× 6	x Z	7 ×	X H	5	5			Received of: (Signardire)	Printed Name: //	* AR1	Date & Jime; 1/8
/ Analysis Re	ed:	Phone:		LAMREL STATION BELLINGTAN	I Vermeeren	Matrix	H20	0 H20	0 H20	1 K.2		1 501C			January Commen			اولاً
1 & Laboratory	Turn-around Requeste	Phone:			_		9111 80/61/6	0521	0051	1537	0091	0291			× 6	د ا	Company:	Date & Time: 3-14-08
$08-\ {\it GH80}$ Chain of Custody Record & Laboratory Analysis Request	ARI Assigned Number:	ARI Client Company: 5	Client Contact: XARIX MIXON	Client Project Name: KINDER 1900 & GAD	Client Project #: 7785.0800	Sample ID	4-W-4	J- MS	5W-11	5W-2	6-184-3	08-84-4.5			Comments/Special Instructions	IN SECTIONAL KIND		Kohlemen, El-Kind Myn.

said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for signed agreement between ARI and the Client. Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless atternate retention schedules have been established by work-order or contract.

Cooler Receipt Form

ARI Client: ///PS_	Project Name:	KINDER MORGIA	\mathcal{N}
COC No: NA	Delivered by: /	HINDER MORGIA,	
Assigned ARI Job No: MNH	Tracking No:	NA	
Preliminary Examination Pl	hase:		
Were intact, properly signed ar	nd dated custody seals attached to	the outside of to cooler?	OFES> NO
	with the cooler?		NO NO
• • •	filled out (ink, signed, etc.)		-
* * * * * *	commended 2.0-6.0 °C for chemist	iry	2.0 °C
Cooler Accepted by:	al		me:
	ete custody forms and attach all		
Log-In Phase:			
Was a temperature blank include	ded in the cooler?		YES MO
	was used?		ILE
Was sufficient ice used (if appre	opriate)?	(YES NO
Were all bottles sealed in indivi	idual plastic bags?	······································	YES NO
Did all bottle arrive in good con	dition (unbroken)?		(YES) NO
Were all bottle labels complete	and legible?	***************************************	NO NO
Did all bottle labels and tags ag	gree with custody papers?	***************************************	(YES) NO
	or the requested analyses?		YES NO
·) require preservation? (attach pre		YES (NO)
	ubbles?	/ 5-3/	(YES) NO
Was sufficient amount of samp	le sent in each bottle?		(YES) NO
Samples Logged by:	Date:	3/17/08 Time:	
** Not	ify Project Manager of discrepar	icies or concerns **	
Explain discrepancies or negati	ive responses:		
14 bottles vece	ived for sample	SW-1	
1 (50)		•	
			ļ
	Ву:	Date:	

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: SW-4
Page 1 of 2 SAMPLE

Lab Sample ID: MN46A

LIMS ID: 08-5480 Matrix: Water

Data Release Authorized: Reported: 03/19/08

Instrument/Analyst: NT5/JZ
Date Analyzed: 03/18/08 14:47

QC Report No: MN46-URS Corporation

Project: Kinder Morgan Laurel Station B'ham

33760783.08001

Date Sampled: 03/13/08 Date Received: 03/14/08

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.2	< 0.2	Ū
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	1.0	14	
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	Ũ
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	1.0	< 1.0	Ŭ
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	Ū
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	0.2	< 0.2	Ū
75-25-2	Bromoform	0.2	< 0.2	Ŭ
108-10-1	4-Methyl-2-Pentanone (MIBK)	1.0	< 1.0	U
591-78-6	2-Hexanone	1.0	< 1.0	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	Ü
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	Ŭ
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	U
1330~20-7	m,p-Xylene	0.4	< 0.4 < 0.2	U
95-47-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2		
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
107-02-8	Acrolein	1.0	< 1.0	U
74-88-4	Methyl Iodide	1.0	< 1.0	U
74-96-4	Bromoethane	0.2	< 0.2	U
107-13-1	Acrylonitrile	1.0	< 1.0	Ŭ
563-58-6	1,1-Dichloropropene	0.2	< 0.2 < 0.2	U
74-95-3	Dibromomethane			U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2 < 1.0	Ü
96-12-8	1,2-Dibromo-3-chloropropane	1.0	< 0.2	U
96-18-4	1,2,3-Trichloropropane	0.2	< ∪.2	U

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: SW-4

Page 2 of 2

SAMPLE

Lab Sample ID: MN46A QC Report No: MN46-URS Corporation

Project: Kinder Morgan Laurel Station B'ham LIMS ID: 08-5480 Matrix: Water

33760783.08001

Date Analyzed: 03/18/08 14:47

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	1.0	< 1.0	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0	U
91-20-3	Naphthalene	1.0	< 1.0	Ű
87-61-6	1,2,3-Trichlorobenzene	1.0	< 1.0	U

Reported in μ g/L (ppb)

d4-1,2-Dichloroethane	117%
d8-Toluene	104%
Bromofluorobenzene	95.4%
d4-1.2-Dichlorobenzene	104%

Data Release Authorized: Reported: 03/19/08

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: SW-1 Page 1 of 2 SAMPLE

Lab Sample ID: MN46B QC Report No: MN46-URS Corporation

LIMS ID: 08-5481 Project: Kinder Morgan Laurel Station B'ham Matrix: Water 33760783.08001

33760783.08001 Date Sampled: 03/13/08 Date Received: 03/14/08

Instrument/Analyst: NT5/JZ Sample Amount: 10.0 mL Date Analyzed: 03/18/08 15:13 Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.2	< 0.2	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	1.0	7.5	
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	0.2	
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	1.0	< 1.0	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	Ŭ
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	Ų
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	υ
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	Ü
110-75-8	2-Chloroethylvinylether	0.2	< 0.2	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	1.0	< 1.0	U
591-78-6	2-Hexanone	1.0	< 1.0	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100~42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	0.2	< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
107-02-8	Acrolein	1.0	< 1.0	U
74-88-4	Methyl Iodide	1.0	< 1.0	U
74-96-4	Bromoethane	0.2	< 0.2	U
107-13-1	Acrylonitrile	1.0	< 1.0	U
563-58-6	1,1-Dichloropropene	0.2	< 0.2	U
74-95-3	Dibromomethane	0.2	< 0.2	U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	Ų
96-12-8	1,2-Dibromo-3-chloropropane	1.0	< 1.0	Ų
96-18-4	1,2,3-Trichloropropane	0.2	< 0.2	U

Volatiles by Purge & Trap GC/MS-Method SW8260B

Sample ID: SW-1 SAMPLE Page 2 of 2

QC Report No: MN46-URS Corporation Lab Sample ID: MN46B

Project: Kinder Morgan Laurel Station B'ham LIMS ID: 08-5481 Matrix: Water

33760783.08001

Date Analyzed: 03/18/08 15:13

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	1.0	< 1.0	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97 - 5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	Ŭ
98-82-8	Isopropylbenzene	0.2	< 0.2	Ų
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0	U
91-20-3	Naphthalene	1.0	< 1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	< 1.0	U

Reported in μ g/L (ppb)

d4-1,2-Dichloroethane	128%
d8-Toluene	101%
Bromofluorobenzene	94.1%
d4-1,2-Dichlorobenzene	106%

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 2

Sample ID: SW-1

MATRIX SPIKE

Lab Sample ID: MN46B

LIMS ID: 08-5481 Matrix: Water

Data Release Authorized:

Instrument/Analyst: NT5/JZ

Date Analyzed: 03/18/08 17:23

Reported: 03/19/08

QC Report No: MN46-URS Corporation
Project: Kinder Morgan Laurel Station B'ham

33760783.08001

Date Sampled: 03/13/08 Date Received: 03/14/08

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

74-87-3 Chloromethane 0.2 74-83-9 Bromomethane 0.2 75-01-4 Vinyl Chloride 0.2 75-00-3 Chloroethane 0.2 75-09-2 Methylene Chloride 0.5 67-64-1 Acetone 1.0 75-35-4 1,1-Dichloroethene 0.2 75-34-3 1,1-Dichloroethane 0.2 156-60-5 trans-1,2-Dichloroethene 0.2 156-59-2 cis-1,2-Dichloroethene 0.2 67-66-3 Chloroform 0.2 107-06-2 1,2-Dichloroethene 0.2 78-93-3 2-Butanone 1.0 71-55-6 1,1,T-Trichloroethane 0.2 56-23-5 Carbon Tetrachloride 0.2 78-87-5 1,2-Dichloroethane 0.2 78-27-4 Bromodichloroethene 0.2	CAS Number	Analyte	RL	Result	Q
75-01-4 Vinyl Chloride	74-87-3	Chloromethane	0.2		
75-09-2 MethyTene Chloride 0.5 75-09-2 MethyTene Chloride 0.5 75-15-0 Carbon Disulfide 0.2 75-15-0 Carbon Disulfide 0.2 75-34-3 1,1-Dichloroethene 0.2 75-34-3 1,1-Dichloroethene 0.2 156-60-5 trans-1,2-Dichloroethene 0.2 156-59-2 cis-1,2-Dichloroethene 0.2 67-66-3 Chloroform 0.2 107-06-2 1,2-Dichloroethane 0.2 107-06-2 1,2-Dichloroethane 0.2 108-05-4 Vinyl Acetate 1.0 75-27-4 Bromodichloromethane 0.2 108-05-4 Vinyl Acetate 1.0 75-27-4 Bromodichloromethane 0.2 1061-01-5 cis-1,3-Dichloropropane 0.2 1061-01-5 cis-1,3-Dichloropropene 0.2 124-48-1 Dibromochloromethane 0.2 174-3-2 Benzene 0.2 100-10-2-6 trans-1,3-Dichloropropene 0.2 110-75-8 2-Chloroethylvinylether 0.2 110-75-8 2-Chloroethylvinylether 0.2 108-10-1 4-Methyl-2-Pentanone (MIBK) 1.0 127-18-4 Tetrachloroethene 0.2 108-8-3 Toluen 0.2 108-8-3 Toluen 0.2 108-8-3 Toluen 0.2 108-90-7 Chlorobenzene 0.2 109-41-4 Ethylbenzene 0.2 100-41-4 Ethylbenzene 0.2 100-42-5 Styrene 0.2 103-20-7 mp-Xylene 0.2 133-0-20-7 mp-Xylene 0.2 133-1,1,2-Trichloropropene 0.2 133-1,1,2-Trichloropropene 0.2 133-1,1,2-Trichloropropene 0.2 133-1,1,2-Trichloropropene 0.2 133-1,1,2-Trichloropropene 0.2 134-8-4 Methyl 1odide 1.0 154-73-1 1,1-Dichlorobenzene 0.2 154-73-1 1,1-Dichloropropene 0.2 155-56-4 Bromoethane 0.2 156-69-4 Trichloropropene 0.2 156-7-69-4 Trichloropropene 0.2 157-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-	74-83-9	Bromomethane	0.2		
Methylene Chloride	75-01-4	Vinyl Chloride	0.2		
67-64-1 Acetone	75-00-3	Chloroethane	0.2		
75-15-0 Carbon Disulfide 0.2 75-35-4 1,1-Dichloroethene 0.2 75-35-4 1,1-Dichloroethene 0.2 156-60-5 trans-1,2-Dichloroethene 0.2 156-59-2 cis-1,2-Dichloroethene 0.2 167-66-3 Chloroform 0.2 107-06-2 1,2-Dichloroethane 0.2 78-93-3 2-Butanone 1.0 71-55-6 1,1,1-Trichloroethane 0.2 108-05-4 Vinyl Acetate 1.0 75-27-4 Bromodichloromethane 0.2 78-87-5 1,2-Dichloropropane 0.2 10061-01-5 cis-1,3-Dichloropropene 0.2 179-01-6 Trichloroethane 0.2 174-48-1 Dibromochloromethane 0.2 174-3-2 Benzene 0.2 170-75-8 2-Chloroethylvinylether 0.2 175-25-2 Bromoform 0.2 178-10-75-8 2-Chloroethylvinylether 0.2 178-10-1 4-Methyl-2-Pentanone (MIBK) 1.0 179-18-4 Tetrachloroethene 0.2 108-90-7 Chlorobenzene 0.2 100-41-4 Ethylbenzene 0.2 100-41-4 Ethylbenzene 0.2 100-41-5 Styrene 0.2 110-75-69-4 Trichlorofluoromethane 0.2 175-69-4 Trichlorofluoromethane 0.2 176-13-1 1,1,2-Trichloro-1,2,2-trifluoroe 0.2 176-13-1 1,1,2-Trichloro-1,2,2-trifluoroe 0.2 176-31-1 1,1,2-Trichloro-1,2,2-trifluoroe 0.2 176-47-6 0-Xylene 0.2 176-48-4 Methyl Iodide 0.2 176-48-4 Bromoethane 0.2 176-47-6 0-Xylene 0.2 176-48-4 Methyl Iodide 1.0 174-88-4 Methyl Iodide 1.0 174-88-4 Methyl Iodide 1.0 176-33-58-6 1,1-Dichloropenzene 0.2 176-48-4 Bromoethane 0.2 176-49-6	75-09-2	Methylene Chloride			
75-35-4 1,1-Dichloroethene 0.2 75-34-3 1,1-Dichloroethane 0.2 156-60-5 trans-1,2-Dichloroethene 0.2 156-59-2 cis-1,2-Dichloroethene 0.2 176-66-3 Chloroform 0.2 176-66-3 Chloroform 0.2 178-93-3 2-Butanone 1.0 178-93-3 2-Butanone 1.0 178-55-6 1,1,1-Trichloroethane 0.2 178-93-5 Carbon Tetrachloride 0.2 178-87-5 1,2-Dichloroptopane 0.2 178-87-5 1,2-Dichloroptopane 0.2 179-01-6 Trichloroethane 0.2 179-01-6 Trichloroethene 0.2 179-01-6 Trichloroethane 0.2 179-01-6 Trichloroethane 0.2 179-01-6 Trichloroethane 0.2 179-01-6 Trichloroethane 0.2 179-18-3 Benzene 0.2 179-18-3 Benzene 0.2 179-18-4 Tetrachloroethene 0.2 188-10-1 4-Methyl-2-Pentanone (MIBK) 1.0 179-34-5 1,1,2,2-Tetrachloroethane 0.2 179-34-5 1,1,2,2-Tetrachloroethane 0.2 179-34-5 1,1,2,2-Tetrachloroethane 0.2 179-34-5 1,1,2,2-Tetrachloroethane 0.2 179-34-5 1,1,2,2-Tetrachloroethane 0.2 179-34-5 1,1,2,2-Tetrachloroethane 0.2 179-34-5 1,1,2,2-Tetrachloroethane 0.2 179-34-5 1,1,2,2-Tetrachloroethane 0.2 179-34-5 1,1,2,2-Tetrachloroethane 0.2 179-69-4 Trichlorofluoromethane 0.2 179-69-4 Trichlorofluoromethane 0.2 179-69-4 Trichlorofluoromethane 0.2 179-61-3-1 1,1,2-Trichloro-1,2,2-trifluoroe 0.2 179-64-7 0-Xylene 0.2 179-64-7 1,4-Dichlorobenzene 0.2 179-64-8 Bromoethane 0.2 179-64-8 Bromoethane 0.2 179-64-8 Bromoethane 0.2 179-64-8 Bromoethane 0.2 179-64-95-3 Dibromomethane 0.2 179-61-3-1 1,1-Tetrachloroethane 0.2 -	67-64-1	Acetone	1.0		
1.1-Dichloroethane	75-15-0	Carbon Disulfide	0.2		
156-60-5	75-35-4	1,1-Dichloroethene	0.2		
156-59-2 cis-1,2-Dichloroethene 0.2	75-34-3	1,1-Dichloroethane	0.2		
67-66-3 Chloroform 0.2 107-06-2 1,2-Dichloroethane 0.2 78-93-3 2-Butanone 1.0 71-55-6 1,1,1-Trichloroethane 0.2 56-23-5 Carbon Tetrachloride 0.2 108-05-4 Vinyl Acetate 1.0 78-87-5 1,2-Dichloropropane 0.2 10061-01-5 cis-1,3-Dichloropropene 0.2 10061-01-5 cis-1,3-Dichloropropene 0.2 124-48-1 Dibromochloromethane 0.2 124-48-1 Dibromochloromethane 0.2 110-6 Trichloroethane 0.2 110-75-8 2-Chloroethane 0.2 110-75-8 2-Chloroethylvinylether 0.2 110-75-8 2-Chloroethylvinylether 0.2 127-18-4 Tetrachloroethene 0.2 127-18-4 Tetrachloroethene 0.2 127-18-4 Tetrachloroethene 0.2 108-90-7 Chlorobenzene 0.2 100-42-5 Styrene 0.2 100-42-5 Styrene 0.2 75-69-4 Trichlorofluoromethane 0.2 1330-20-7 m,p-Xylene 0.2 107-02-8 Acrolein 1., 2-Dichlorobenzene 0.2 107-02-8 Acrolein 1., 2-Dichlorobenzene 0.2 107-03-1 1, 3-Dichlorobenzene 0.2 107-02-8 Acrolein 1.0 127-18-4 Methyl Iodide 1.0 127-13-1 Acrylonitrile 1.0 127-13-1 Acrylonitrile 1.0 127-13-1 Acrylonitrile 1.0 127-13-1 Acrylonitrile 1.0 127-13-1 Acrylonitrile 1.0 127-13-1 Acrylonitrile 1.0 127-13-1 Acrylonitrile 0.2 127-13-1 1,2-Dichloropropene 0.2 127-13-1 Acrylonitrile 1.0 127-13-1 Acrylonitrile 1.0 127-13-1 Acrylonitrile 0.2 127-13-1 1,2-Dibromo-3-chloropropane 1.0	156-60-5	trans-1,2-Dichloroethene	0.2		
107-06-2	156-59-2	cis-1,2-Dichloroethene	0.2		
78-93-3	67-66-3	Chloroform	0.2		
71-55-6	107-06-2	1,2-Dichloroethane	0.2		
S6-23-5	78-93-3	2-Butanone	1.0		
108-05-4	71-55-6	1,1,1-Trichloroethane	0.2		
75-27-4 Bromodichloromethane 0.2 78-87-5 1,2-Dichloropropane 0.2 10061-01-5 cis-1,3-Dichloropropene 0.2 79-01-6 Trichloroethene 0.2 124-48-1 Dibromochloromethane 0.2 179-00-5 1,1,2-Trichloroethane 0.2 10061-02-6 trans-1,3-Dichloropropene 0.2 110-75-8 2-Chloroethylvinylether 0.2 110-75-8 2-Chloroethylvinylether 0.2 1591-78-6 2-Hexanone (MIBK) 1.0 1591-78-6 2-Hexanone 0.2 179-34-5 1,1,2,2-Tetrachloroethane 0.2 108-88-3 Toluene 0.2 108-88-3 Toluene 0.2 100-41-4 Ethylbenzene 0.2 100-42-5 Styrene 0.2 175-69-4 Trichlorofluoromethane 0.2 176-02-8 Acrolein 1.0 176-02-8 Acrolein 1.0 176-02-8 Acrolein 1.0 176-02-8 Acrolein 1.0 176-02-8 Acrolein 0.2 177-13-1 Acrylonitrile 1.0 176-02-8 Acrolein 0.2 176-02-8 Dibromomethane 0.2 176-02-8 I,1,1,2-Tetrachloroethane 0.2 176-02-8 I,1,1,2-Tetrachloroethane 0.2 176-02-8 Dibromomethane 0.2 176-02-8 I,1,1,2-Tetrachloroethane 0.2 176-02-8 I,1,1,2-Tetrachloroethane 0.2	56-23-5	Carbon Tetrachloride	0.2		
78-87-5 1,2-Dichloropropane 0.2 10061-01-5 cis-1,3-Dichloropropene 0.2 79-01-6 Trichloroethene 0.2 124-48-1 Dibromochloromethane 0.2 79-00-5 1,1,2-Trichloroethane 0.2 10061-02-6 trans-1,3-Dichloropropene 0.2 10061-02-6 trans-1,3-Dichloropropene 0.2 10061-02-6 trans-1,3-Dichloropropene 0.2 110-75-8 2-Chloroethylvinylether 0.2 75-25-2 Bromoform 0.2 108-10-1 4-Methyl-2-Pentanone (MIBK) 1.0 591-78-6 2-Hexanone 1.0 127-18-4 Tetrachloroethene 0.2 79-34-5 1,1,2,2-Tetrachloroethane 0.2 108-88-3 Toluene 0.2 108-90-7 Chlorobenzene 0.2 100-42-5 Styrene <td>108-05-4</td> <td>Vinyl Acetate</td> <td>1.0</td> <td></td> <td></td>	108-05-4	Vinyl Acetate	1.0		
10061-01-5 cis-1,3-Dichloropropene 0.2 79-01-6 Trichloroethene 0.2 124-48-1 Dibromochloromethane 0.2 79-00-5 1,1,2-Trichloroethane 0.2 71-43-2 Benzene 0.2 10061-02-6 trans-1,3-Dichloropropene 0.2 10061-02-6 trans-1,3-Dichloropropene 0.2 10061-02-6 trans-1,3-Dichloropropene 0.2 10061-02-6 trans-1,3-Dichloropropene 0.2 110-75-8 2-Chloroethylvinylether 0.2 15-25-2 Bromoform 0.2 108-10-1 4-Methyl-2-Pentanone (MIBK) 1.0 191-78-6 2-Hexanone 1.0 127-18-4 Tetrachloroethene 0.2 108-88-3 Tolue 1.1,2,2-Tetrachloroethane 0.2 108-90-7 Chlorobenzene 0.2 109-	75-27-4	Bromodichloromethane	0.2		
10061-01-5 cis-1,3-Dichloropropene 0.2 79-01-6 Trichloroethene 0.2 124-48-1 Dibromochloromethane 0.2 79-00-5 1,1,2-Trichloroethane 0.2 71-43-2 Benzene 0.2 10061-02-6 trans-1,3-Dichloropropene 0.2 110-75-8 2-Chloroethylvinylether 0.2 1525-2 Bromoform 0.2 108-10-1 4-Methyl-2-Pentanone (MIBK) 1.0 191-78-6 2-Hexanone 1.0 127-18-4 Tetrachloroethene 0.2 193-45 1,1,2,2-Tetrachloroethane 0.2 108-80-3 Toluene 0.2 108-90-7 Chlorobenzene 0.2 100-41-4 Ethylbenzene 0.2 75-69-4 Trichlorofluoromethane 0.2 75-47-6 o-Xylene 0.2 <td< td=""><td>78-87-5</td><td>1,2-Dichloropropane</td><td>0.2</td><td></td><td></td></td<>	78-87-5	1,2-Dichloropropane	0.2		
79-01-6 Trichloroethene 0.2 124-48-1 Dibromochloromethane 0.2 79-00-5 1,1,2-Trichloroethane 0.2 71-43-2 Benzene 0.2 10061-02-6 trans-1,3-Dichloropropene 0.2 110-75-8 2-Chloroethylvinylether 0.2 75-25-2 Bromoform 0.2 108-10-1 4-Methyl-2-Pentanone (MIBK) 1.0 591-78-6 2-Hexanone 1.0 127-18-4 Tetrachloroethene 0.2 79-34-5 1,1,2,2-Tetrachloroethane 0.2 108-88-3 Toluene 0.2 108-90-7 Chlorobenzene 0.2 100-41-4 Ethylbenzene 0.2 75-69-4 Trichlorofluoromethane 0.2 75-69-4 Trichlorofluoromethane 0.2 95-47-6 0-Xylene 0.2 -	10061-01-5		0.2		
79-00-5	79-01-6		0.2		
79-00-5 1,1,2-Trichloroethane 0.2 71-43-2 Benzene 0.2 10061-02-6 trans-1,3-Dichloropropene 0.2 110-75-8 2-Chloroethylvinylether 0.2 75-25-2 Bromoform 0.2 108-10-1 4-Methyl-2-Pentanone (MIBK) 1.0 591-78-6 2-Hexanone 1.0 127-18-4 Tetrachloroethene 0.2 79-34-5 1,1,2,2-Tetrachloroethane 0.2 108-88-3 Toluene 0.2 108-90-7 Chlorobenzene 0.2 100-41-4 Ethylbenzene 0.2 75-69-4 Trichlorofluoromethane 0.2 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroe 0.2 75-69-4 Trichlorobenzene 0.2 95-47-6 o-Xylene 0.2 95-50-1 1,2-Dichlorobenzene 0.2		Dibromochloromethane	0.2		
71-43-2 Benzene		1,1,2-Trichloroethane	0.2		
110-75-8	71-43-2		0.2		
110-75-8	10061-02-6	trans-1,3-Dichloropropene	0.2		
75-25-2 Bromoform 0.2 108-10-1 4-Methyl-2-Pentanone (MIBK) 1.0 591-78-6 2-Hexanone 1.0 127-18-4 Tetrachloroethene 0.2 79-34-5 1,1,2,2-Tetrachloroethane 0.2 108-88-3 Toluene 0.2 108-90-7 Chlorobenzene 0.2 100-41-4 Ethylbenzene 0.2 100-42-5 Styrene 0.2 75-69-4 Trichlorofluoromethane 0.2 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroe 0.2 1330-20-7 m,p-Xylene 0.4 95-50-1 1,2-Dichlorobenzene 0.2 541-73-1 1,3-Dichlorobenzene 0.2 106-46-7 1,4-Dichlorobenzene 0.2 107-02-8 Acrolein 1.0 74-88-4 Methyl Iodide 1.0 74-96-4 Bromoethane 0.2			0.2		
108-10-1 4-Methyl-2-Pentanone (MIBK) 1.0 591-78-6 2-Hexanone 1.0 127-18-4 Tetrachloroethene 0.2 79-34-5 1,1,2,2-Tetrachloroethane 0.2 108-88-3 Toluene 0.2 108-90-7 Chlorobenzene 0.2 100-41-4 Ethylbenzene 0.2 100-42-5 Styrene 0.2 75-69-4 Trichlorofluoromethane 0.2 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroe 0.2 1330-20-7 m,p-Xylene 0.4 95-47-6 o-Xylene 0.2 95-50-1 1,2-Dichlorobenzene 0.2 541-73-1 1,3-Dichlorobenzene 0.2 107-02-8 Acrolein 1.0 74-88-4 Methyl Iodide 1.0 74-96-4 Bromoethane 0.2 107-13-1 Acrylonitrile 1.0 56			0.2		
591-78-6 2-Hexanone 1.0 127-18-4 Tetrachloroethene 0.2 79-34-5 1,1,2,2-Tetrachloroethane 0.2 108-88-3 Toluene 0.2 108-90-7 Chlorobenzene 0.2 100-41-4 Ethylbenzene 0.2 100-42-5 Styrene 0.2 75-69-4 Trichlorofluoromethane 0.2 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroe 0.2 1330-20-7 m,p-Xylene 0.4 95-47-6 o-Xylene 0.2 95-50-1 1,2-Dichlorobenzene 0.2 541-73-1 1,3-Dichlorobenzene 0.2 106-46-7 1,4-Dichlorobenzene 0.2 107-02-8 Acrolein 1.0 74-88-4 Methyl Iodide 1.0 74-96-4 Bromoethane 0.2 107-13-1 Acrylonitrile 0.2 563-58-6 </td <td></td> <td>4-Methyl-2-Pentanone (MIBK)</td> <td>1.0</td> <td></td> <td></td>		4-Methyl-2-Pentanone (MIBK)	1.0		
127-18-4 Tetrachloroethene 0.2 79-34-5 1,1,2,2-Tetrachloroethane 0.2 108-88-3 Toluene 0.2 108-90-7 Chlorobenzene 0.2 100-41-4 Ethylbenzene 0.2 100-42-5 Styrene 0.2 75-69-4 Trichlorofluoromethane 0.2 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroe 0.2 1330-20-7 m,p-Xylene 0.4 95-47-6 o-Xylene 0.2 95-50-1 1,2-Dichlorobenzene 0.2 541-73-1 1,3-Dichlorobenzene 0.2 106-46-7 1,4-Dichlorobenzene 0.2 107-02-8 Acrolein 1.0 74-88-4 Methyl Iodide 1.0 107-13-1 Acrylonitrile 1.0 563-58-6 1,1-Dichloropropene 0.2 74-95-3 Dibromomethane 0.2 <t< td=""><td></td><td>-</td><td>1.0</td><td></td><td></td></t<>		-	1.0		
79-34-5 1,1,2,2-Tetrachloroethane 0.2 108-88-3 Toluene 0.2 108-90-7 Chlorobenzene 0.2 100-41-4 Ethylbenzene 0.2 100-42-5 Styrene 0.2 75-69-4 Trichlorofluoromethane 0.2 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroe 0.2 1330-20-7 m,p-Xylene 0.4 95-47-6 o-Xylene 0.2 95-50-1 1,2-Dichlorobenzene 0.2 541-73-1 1,3-Dichlorobenzene 0.2 106-46-7 1,4-Dichlorobenzene 0.2 107-02-8 Acrolein 1.0 74-88-4 Methyl Iodide 1.0 74-96-4 Bromoethane 0.2 107-13-1 Acrylonitrile 1.0 563-58-6 1,1-Dichloropropene 0.2 74-95-3 Dibromomethane 0.2 96-12		Tetrachloroethene	0.2		
108-88-3 Toluene 0.2 108-90-7 Chlorobenzene 0.2 100-41-4 Ethylbenzene 0.2 100-42-5 Styrene 0.2 75-69-4 Trichlorofluoromethane 0.2 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroe 0.2 1330-20-7 m,p-Xylene 0.4 95-47-6 o-Xylene 0.2 95-50-1 1,2-Dichlorobenzene 0.2 541-73-1 1,3-Dichlorobenzene 0.2 106-46-7 1,4-Dichlorobenzene 0.2 107-02-8 Acrolein 1.0 74-88-4 Methyl Iodide 1.0 74-96-4 Bromoethane 0.2 107-13-1 Acrylonitrile 1.0 563-58-6 1,1-Dichloropropene 0.2 74-95-3 Dibromomethane 0.2 630-20-6 1,2-Dibromo-3-chloropropane 1.0		1,1,2,2-Tetrachloroethane	0.2		
108-90-7 Chlorobenzene 0.2 100-41-4 Ethylbenzene 0.2 100-42-5 Styrene 0.2 75-69-4 Trichlorofluoromethane 0.2 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroe 0.2 1330-20-7 m,p-Xylene 0.4 95-47-6 o-Xylene 0.2 95-50-1 1,2-Dichlorobenzene 0.2 541-73-1 1,3-Dichlorobenzene 0.2 106-46-7 1,4-Dichlorobenzene 0.2 107-02-8 Acrolein 1.0 74-88-4 Methyl Iodide 1.0 74-96-4 Bromoethane 0.2 107-13-1 Acrylonitrile 1.0 563-58-6 1,1-Dichloropropene 0.2 74-95-3 Dibromomethane 0.2 630-20-6 1,1,1,2-Tetrachloroethane 0.2 96-12-8 1,2-Dibromo-3-chloropropane 1.0 </td <td></td> <td></td> <td>0.2</td> <td></td> <td></td>			0.2		
100-41-4 Ethylbenzene 0.2 100-42-5 Styrene 0.2 75-69-4 Trichlorofluoromethane 0.2 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroe 0.2 1330-20-7 m,p-Xylene 0.4 95-47-6 o-Xylene 0.2 95-50-1 1,2-Dichlorobenzene 0.2 541-73-1 1,3-Dichlorobenzene 0.2 106-46-7 1,4-Dichlorobenzene 0.2 107-02-8 Acrolein 1.0 74-88-4 Methyl Iodide 1.0 74-96-4 Bromoethane 0.2 107-13-1 Acrylonitrile 1.0 563-58-6 1,1-Dichloropropene 0.2 74-95-3 Dibromomethane 0.2 630-20-6 1,1,1,2-Tetrachloroethane 0.2 96-12-8 1,2-Dibromo-3-chloropropane 1.0		Chlorobenzene	0.2		
100-42-5 Styrene 0.2 75-69-4 Trichlorofluoromethane 0.2 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroe 0.2 1330-20-7 m,p-Xylene 0.4 95-47-6 o-Xylene 0.2 95-50-1 1,2-Dichlorobenzene 0.2 541-73-1 1,3-Dichlorobenzene 0.2 106-46-7 1,4-Dichlorobenzene 0.2 107-02-8 Acrolein 1.0 74-88-4 Methyl Iodide 1.0 74-96-4 Bromoethane 0.2 107-13-1 Acrylonitrile 1.0 563-58-6 1,1-Dichloropropene 0.2 74-95-3 Dibromomethane 0.2 630-20-6 1,1,1,2-Tetrachloroethane 0.2 96-12-8 1,2-Dibromo-3-chloropropane 1.0		Ethylbenzene	0.2		
75-69-4 Trichlorofluoromethane 0.2 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroe 0.2 1330-20-7 m,p-Xylene 0.4 95-47-6 o-Xylene 0.2 95-50-1 1,2-Dichlorobenzene 0.2 541-73-1 1,3-Dichlorobenzene 0.2 106-46-7 1,4-Dichlorobenzene 0.2 107-02-8 Acrolein 1.0 74-88-4 Methyl Iodide 1.0 74-96-4 Bromoethane 0.2 107-13-1 Acrylonitrile 1.0 563-58-6 1,1-Dichloropropene 0.2 74-95-3 Dibromomethane 0.2 630-20-6 1,1,1,2-Tetrachloroethane 0.2 96-12-8 1,2-Dibromo-3-chloropropane 1.0			0.2		
76-13-1 1,1,2-Trichloro-1,2,2-trifluoroe 0.2 1330-20-7 m,p-Xylene 0.4 95-47-6 o-Xylene 0.2 95-50-1 1,2-Dichlorobenzene 0.2 541-73-1 1,3-Dichlorobenzene 0.2 106-46-7 1,4-Dichlorobenzene 0.2 107-02-8 Acrolein 1.0 74-88-4 Methyl Iodide 1.0 74-96-4 Bromoethane 0.2 107-13-1 Acrylonitrile 1.0 563-58-6 1,1-Dichloropropene 0.2 74-95-3 Dibromomethane 0.2 630-20-6 1,1,1,2-Tetrachloroethane 0.2 96-12-8 1,2-Dibromo-3-chloropropane 1.0			0.2		
1330-20-7 m,p-Xylene 0.4 95-47-6 o-Xylene 0.2 95-50-1 1,2-Dichlorobenzene 0.2 541-73-1 1,3-Dichlorobenzene 0.2 106-46-7 1,4-Dichlorobenzene 0.2 107-02-8 Acrolein 1.0 74-88-4 Methyl Iodide 1.0 74-96-4 Bromoethane 0.2 107-13-1 Acrylonitrile 1.0 563-58-6 1,1-Dichloropropene 0.2 74-95-3 Dibromomethane 0.2 630-20-6 1,1,1,2-Tetrachloroethane 0.2 96-12-8 1,2-Dibromo-3-chloropropane 1.0	76-13-1		0.2		
95-47-6 o-Xylene 0.2 95-50-1 1,2-Dichlorobenzene 0.2 541-73-1 1,3-Dichlorobenzene 0.2 106-46-7 1,4-Dichlorobenzene 0.2 107-02-8 Acrolein 1.0 74-88-4 Methyl Iodide 1.0 74-96-4 Bromoethane 0.2 107-13-1 Acrylonitrile 1.0 563-58-6 1,1-Dichloropropene 0.2 74-95-3 Dibromomethane 0.2 630-20-6 1,1,1,2-Tetrachloroethane 0.2 96-12-8 1,2-Dibromo-3-chloropropane 1.0					
95-50-1 1,2-Dichlorobenzene 0.2 541-73-1 1,3-Dichlorobenzene 0.2 106-46-7 1,4-Dichlorobenzene 0.2 107-02-8 Acrolein 1.0 74-88-4 Methyl Iodide 1.0 74-96-4 Bromoethane 0.2 107-13-1 Acrylonitrile 1.0 563-58-6 1,1-Dichloropropene 0.2 74-95-3 Dibromomethane 0.2 630-20-6 1,1,1,2-Tetrachloroethane 0.2 96-12-8 1,2-Dibromo-3-chloropropane 1.0			0.2		
541-73-1 1,3-Dichlorobenzene 0.2 106-46-7 1,4-Dichlorobenzene 0.2 107-02-8 Acrolein 1.0 74-88-4 Methyl Iodide 1.0 74-96-4 Bromoethane 0.2 107-13-1 Acrylonitrile 1.0 563-58-6 1,1-Dichloropropene 0.2 74-95-3 Dibromomethane 0.2 630-20-6 1,1,1,2-Tetrachloroethane 0.2 96-12-8 1,2-Dibromo-3-chloropropane 1.0			0.2		
106-46-7 1,4-Dichlorobenzene 0.2 107-02-8 Acrolein 1.0 74-88-4 Methyl Iodide 1.0 74-96-4 Bromoethane 0.2 107-13-1 Acrylonitrile 1.0 563-58-6 1,1-Dichloropropene 0.2 74-95-3 Dibromomethane 0.2 630-20-6 1,1,1,2-Tetrachloroethane 0.2 96-12-8 1,2-Dibromo-3-chloropropane 1.0		•			
107-02-8 Acrolein 1.0 74-88-4 Methyl Iodide 1.0 74-96-4 Bromoethane 0.2 107-13-1 Acrylonitrile 1.0 563-58-6 1,1-Dichloropropene 0.2 74-95-3 Dibromomethane 0.2 630-20-6 1,1,1,2-Tetrachloroethane 0.2 96-12-8 1,2-Dibromo-3-chloropropane 1.0					
74-88-4 Methyl Iodide 1.0 74-96-4 Bromoethane 0.2 107-13-1 Acrylonitrile 1.0 563-58-6 1,1-Dichloropropene 0.2 74-95-3 Dibromomethane 0.2 630-20-6 1,1,1,2-Tetrachloroethane 0.2 96-12-8 1,2-Dibromo-3-chloropropane 1.0			1.0		
74-96-4 Bromoethane 0.2 107-13-1 Acrylonitrile 1.0 563-58-6 1,1-Dichloropropene 0.2 74-95-3 Dibromomethane 0.2 630-20-6 1,1,1,2-Tetrachloroethane 0.2 96-12-8 1,2-Dibromo-3-chloropropane 1.0			1.0		
107-13-1 Acrylonitrile 1.0 563-58-6 1,1-Dichloropropene 0.2 74-95-3 Dibromomethane 0.2 630-20-6 1,1,1,2-Tetrachloroethane 0.2 96-12-8 1,2-Dibromo-3-chloropropane 1.0		_	0.2		
563-58-6 1,1-Dichloropropene 0.2 74-95-3 Dibromomethane 0.2 630-20-6 1,1,1,2-Tetrachloroethane 0.2 96-12-8 1,2-Dibromo-3-chloropropane 1.0					
74-95-3 Dibromomethane 0.2 630-20-6 1,1,1,2-Tetrachloroethane 0.2 96-12-8 1,2-Dibromo-3-chloropropane 1.0					
630-20-6 1,1,1,2-Tetrachloroethane 0.2 96-12-8 1,2-Dibromo-3-chloropropane 1.0					
96-12-8 1,2-Dibromo-3-chloropropane 1.0					
			0.2		

Volatiles by Purge & Trap GC/MS-Method SW8260B

Sample ID: SW-1 Page 2 of 2 MATRIX SPIKE

QC Report No: MN46-URS Corporation

Project: Kinder Morgan Laurel Station B'ham LIMS ID: 08-5481

33760783.08001

Matrix: Water Date Analyzed: 03/18/08 17:23

Lab Sample ID: MN46B

CAS Number	Analyte	RL	Result Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	
108-67-8	1,3,5-Trimethylbenzene	0.2	
95-63-6	1,2,4-Trimethylbenzene	0.2	
87-68-3	Hexachlorobutadiene	1.0	
106-93-4	Ethylene Dibromide	0.2	
74-97-5	Bromochloromethane	0.2	
594-20-7	2,2-Dichloropropane	0.2	
142-28-9	1,3-Dichloropropane	0.2	
98-82-8	Isopropylbenzene	0.2	
103-65-1	n-Propylbenzene	0.2	
108-86-1	Bromobenzene	0.2	
95-49-8	2-Chlorotoluene	0.2	
106-43-4	4-Chlorotoluene	0.2	
98-06-6	tert-Butylbenzene	0.2	
135-98-8	sec-Butylbenzene	0.2	
99-87-6	4-Isopropyltoluene	0.2	
104-51-8	n-Butylbenzene	0.2	
120-82-1	1,2,4-Trichlorobenzene	1.0	
91-20-3	Naphthalene	1.0	
87-61-6	1,2,3-Trichlorobenzene	1.0	

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	98.8%
d8-Toluene	98.5%
Bromofluorobenzene	99.2%
d4-1,2-Dichlorobenzene	98.8%

Data Release Authorized:

LIMS ID: 08-5481 Matrix: Water

Reported: 03/19/08

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 2 MATRIX SPIKE DUP

Lab Sample ID: MN46B QC Report No: MN46-URS Corporation

Project: Kinder Morgan Laurel Station B'ham

Sample ID: SW-1

33760783.08001

Date Sampled: 03/13/08 Date Received: 03/14/08

Instrument/Analyst: NT5/JZ Sample Amount: 10.0 mL Date Analyzed: 03/18/08 17:49 Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result Q
74-87-3	Chloromethane	0.2	
74-83-9	Bromomethane	0.2	
75-01-4	Vinyl Chloride	0.2	
75-00-3	Chloroethane	0.2	
75-09-2	Methylene Chloride	0.5	
67-64-1	Acetone	1.0	
75-15-0	Carbon Disulfide	0.2	
75-35-4	1,1-Dichloroethene	0.2	
75-34-3	1,1-Dichloroethane	0.2	
156-60-5	trans-1,2-Dichloroethene	0.2	
156-59-2	cis-1,2-Dichloroethene	0.2	
67-66-3	Chloroform	0.2	
107-06-2	1,2-Dichloroethane	0.2	
78-93-3	2-Butanone	1.0	~ * *
71-55-6	1,1,1-Trichloroethane	0.2	
56-23-5	Carbon Tetrachloride	0.2	
108-05-4	Vinyl Acetate	1.0	
75-27-4	Bromodichloromethane	0.2	
78-87-5	1,2-Dichloropropane	0.2	
10061-01-5	cis-1,3-Dichloropropene	0.2	
79-01-6	Trichloroethene	0.2	
124-48-1	Dibromochloromethane	0.2	
79-00-5	1,1,2-Trichloroethane	0.2	
71-43-2	Benzene	0.2	
10061-02-6	trans-1,3-Dichloropropene	0.2	.
110-75-8	2-Chloroethylvinylether	0.2	
75-25-2	Bromoform	0.2	
108-10-1	4-Methyl-2-Pentanone (MIBK)	1.0	
591-78-6	2-Hexanone	1.0	
127-18-4	Tetrachloroethene	0.2	
79-34-5	1,1,2,2-Tetrachloroethane	0.2	
108-88-3	Toluene	0.2	
108-90-7	Chlorobenzene	0.2	
100-41-4	Ethylbenzene	0.2	
100-42-5	Styrene	0.2	
75-69-4	Trichlorofluoromethane	0.2	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		
1330-20-7	m,p-Xylene	0.4	
95-47-6	o-Xylene	0.2	
95-50-1	1,2-Dichlorobenzene	0.2	
541-73-1	1,3-Dichlorobenzene	0.2	
106-46-7	1,4-Dichlorobenzene	0.2	
107-02-8	Acrolein	1.0	
74-88-4	Methyl Iodide	1.0	
74-96-4	Bromoethane	0.2	
107-13-1	Acrylonitrile	1.0	
563-58-6	1,1-Dichloropropene	0.2	
74-95-3	Dibromomethane	0.2	
630-20-6	1,1,1,2-Tetrachloroethane	0.2	
96-12-8	1,2-Dibromo-3-chloropropane	1.0	
96-18-4	1,2,3-Trichloropropane	0.2	

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Matrix: Water

Sample ID: SW-1

MATRIX SPIKE DUP

Lab Sample ID: MN46B QC Report No: MN46-URS Corporation

LIMS ID: 08-5481 Project: Kinder Morgan Laurel Station B'ham

33760783.08001

Date Analyzed: 03/18/08 17:49

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0		
108-67-8	1,3,5-Trimethylbenzene	0.2		
95-63-6	1,2,4-Trimethylbenzene	0.2		
87-68-3	Hexachlorobutadiene	1.0		
106-93-4	Ethylene Dibromide	0.2		
74-97-5	Bromochloromethane	0.2	~	
594-20-7	2,2-Dichloropropane	0.2		
142-28-9	1,3-Dichloropropane	0.2		
98-82-8	Isopropylbenzene	0.2		
103-65-1	n-Propylbenzene	0.2	+	
108-86-1	Bromobenzene	0.2		
95-49-8	2-Chlorotoluene	0.2		
106-43-4	4-Chlorotoluene	0.2		
98-06-6	tert-Butylbenzene	0.2		
135-98-8	sec-Butylbenzene	0.2		
99-87-6	4-Isopropyltoluene	0.2		
104-51-8	n-Butylbenzene	0.2		
120-82-1	1,2,4-Trichlorobenzene	1.0		
91-20-3	Naphthalene	1.0		
87-61-6	1,2,3-Trichlorobenzene	1.0		

Reported in μ g/L (ppb)

d4-1,2-Dichloroethane	102%
d8-Toluene	99.4%
Bromofluorobenzene	98.8%
d4-1.2-Dichlorobenzene	99.8%

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: SW-11 Page 1 of 2 SAMPLE

Lab Sample ID: MN46C QC Report No: MN46-URS Corporation

LIMS ID: 08-5482 Project: Kinder Morgan Laurel Station B'ham Matrix: Water

33760783.08001

Data Release Authorized: Date Sampled: 03/13/08 Reported: 03/19/08 Date Received: 03/14/08

Instrument/Analyst: NT5/JZ Sample Amount: 10.0 mL Date Analyzed: 03/18/08 15:39 Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.2	< 0.2	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	1.0	5.9	
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	υ
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	Ŭ
78-93-3	2-Butanone	1.0	< 1.0	Ŭ
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	U
75-27-4	Bromodichloromethane	0.2	< 0.2	Ŭ
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	Ū
124-48-1	Dibromochloromethane	0.2	< 0.2	Ŭ
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	0.2	< 0.2	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK) 2-Hexanone	1.0	< 1.0	U
591-78-6 127-18-4	Tetrachloroethene	1.0	< 1.0	U
79-34-5		0.2	< 0.2	U
108-88-3	1,1,2,2-Tetrachloroethane Toluene	0.2	< 0.2 < 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	Ü
100-41-4	Styrene		< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	Ü
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.4	< 0.4	Ū
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	Ū
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	Ū
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	Ŭ
107-02-8	Acrolein	1.0	< 1.0	Ū
74-88-4	Methyl Iodide	1.0	< 1.0	Ū
74-96-4	Bromoethane	0.2	< 0.2	Ū
107-13-1	Acrylonitrile	1.0	< 1.0	Ŭ
563-58-6	1,1-Dichloropropene	0.2	< 0.2	Ŭ
74-95-3	Dibromomethane	0.2	< 0.2	Ü
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	Ü
96-12-8	1,2-Dibromo-3-chloropropane	1.0	< 1.0	Ü
96-18-4	1,2,3-Trichloropropane	0.2	< 0.2	Ŭ
	-,-,5 111011010P10P4110	- · -	- 4.2	_

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: SW-11 SAMPLE

Lab Sample ID: MN46C QC Report No: MN46-URS Corporation

LIMS ID: 08-5482 Project: Kinder Morgan Laurel Station B'ham Matrix: Water

33760783.08001

Date Analyzed: 03/18/08 15:39

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	1.0	< 1.0	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82 - 8	Isopropylbenzene	0.2	< 0.2	Ų
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	υ
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0	U
91-20-3	Naphthalene	1.0	< 1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	< 1.0	U

Reported in μ g/L (ppb)

d4-1,2-Dichloroethane	121%
d8-Toluene	99.4%
Bromofluorobenzene	95.4%
d4-1,2-Dichlorobenzene	105%

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: SW-2 SAMPLE

Page 1 of 2

Lab Sample ID: MN46D

LIMS ID: 08-5483

Matrix: Water

Data Release Authorized: Reported: 03/19/08

Instrument/Analyst: NT5/JZ

Date Analyzed: 03/18/08 16:05

QC Report No: MN46-URS Corporation

Project: Kinder Morgan Laurel Station B'ham

33760783.08001

Date Sampled: 03/13/08 Date Received: 03/14/08

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.2	< 0.2	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.5	< 0.5	U
67-64-1	Acetone	1.0	1.7	
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	Ŭ
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	Ű
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	1.0	< 1.0	U
71-55-6	1,1,1~Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	1.0	< 1.0	Ū
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	Ū
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	Ū
79-01-6	Trichloroethene	0.2	< 0.2	Ū
124-48-1	Dibromochloromethane	0.2	< 0.2	Ū
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	Ū
71-43-2	Benzene	0.2	< 0.2	ΰ
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	0.2	< 0.2	Ū
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	1.0	< 1.0	U
591-78-6	2-Hexanone	1.0	< 1.0	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	0.2	< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95~47~6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
107-02-8	Acrolein	1.0	< 1.0	U
74-88-4	Methyl Iodide	1.0	< 1.0	U
74-96-4	Bromoethane	0.2	< 0.2	U
107-13-1	Acrylonitrile	1.0	< 1.0	U
563-58-6	1,1-Dichloropropene	0.2	< 0.2	υ
74-95-3	Dibromomethane	0.2	< 0.2	U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
96-12-8	1,2-Dibromo-3-chloropropane	1.0	< 1.0	U
96-18-4	1,2,3-Trichloropropane	0.2	< 0.2	U

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Matrix: Water

LIMS ID: 08-5483

Lab Sample ID: MN46D

Sample ID: SW-2 SAMPLE

QC Report No: MN46-URS Corporation

Project: Kinder Morgan Laurel Station B'ham

33760783.08001

Date Analyzed: 03/18/08 16:05

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	υ
87-68-3	Hexachlorobutadiene	1.0	< 1.0	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	υ
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	Ü
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0	U
91-20-3	Naphthalene	1.0	< 1.0	Ų
87-61-6	1,2,3-Trichlorobenzene	1.0	< 1.0	U

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	124%
d8-Toluene	104%
Bromofluorobenzene	93.6%
d4-1,2-Dichlorobenzene	106%

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 2

Sample ID: Trip Blank SAMPLE

Lab Sample ID: MN46E

LIMS ID: 08-5486 Matrix: Water

Data Release Authorized: Reported: 03/19/08

Instrument/Analyst: NT5/JZ
Date Analyzed: 03/18/08 13:04

QC Report No: MN46-URS Corporation

Project: Kinder Morgan Laurel Station B'ham

33760783.08001

Date Sampled: 03/13/08 Date Received: 03/14/08

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Ç
74-87-3	Chloromethane	0.2	< 0.2	τ
74-83-9	Bromomethane	0.2	< 0.2	Ţ
75-01-4	Vinyl Chloride	0.2	< 0.2	Ţ
75-00-3	Chloroethane	0.2	< 0.2	τ
75-09-2	Methylene Chloride	0.5	< 0.5	τ
67-64-1	Acetone	1.0	1.5	
75-15-0	Carbon Disulfide	0.2	0.8	
75-35-4	1,1-Dichloroethene	0.2	< 0.2	Ţ
75-34-3	1,1-Dichloroethane	0.2	< 0.2	τ
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	τ
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	Į
67-66-3	Chloroform	0.2	< 0.2	Į
107-06-2	1,2-Dichloroethane	0.2	< 0.2	τ
78-93-3	2-Butanone	1.0	< 1.0	τ
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	Ţ
56-23-5	Carbon Tetrachloride	0.2	< 0.2	Ţ
108-05-4	Vinyl Acetate	1.0	< 1.0	1
75-27-4	Bromodichloromethane	0.2	< 0.2	1
78-87-5	1,2-Dichloropropane	0.2	< 0.2	1
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	1
79-01-6	Trichloroethene	0.2	< 0.2	1
124-48-1	Dibromochloromethane	0.2	< 0.2	1
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	1
71-43-2	Benzene	0.2	< 0.2	1
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	1
110-75-8	2-Chloroethylvinylether	0.2	< 0.2	1
75-25-2	Bromoform	0.2	< 0.2	1
108-10-1	4-Methyl-2-Pentanone (MIBK)	1.0	< 1.0	
591-78-6	2-Hexanone	1.0	< 1.0	
127-18-4	Tetrachloroethene	0.2	< 0.2	
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	
108-88-3	Toluene	0.2	< 0.2	
108-90-7	Chlorobenzene	0.2	< 0.2	
100-41-4	Ethylbenzene	0.2	< 0.2	
100-42-5	Styrene	0.2	< 0.2	
75-69-4	Trichlorofluoromethane	0.2	< 0.2	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	
1330-20-7	m,p-Xylene	0.4	< 0.4	
95-47~6	o-Xylene	0.2	< 0.2	•
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	
107-02-8	Acrolein	1.0	< 1.0	
74-88-4	Methyl Iodide	1.0	< 1.0	
74-96-4	Bromoethane	0.2	< 0.2	
107-13-1	Acrylonitrile	1.0	< 1.0	
563-58-6	1,1-Dichloropropene	0.2	< 0.2	
74-95-3	Dibromomethane	0.2	< 0.2	
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	
96-12-8	1,2-Dibromo-3-chloropropane	1.0	< 1.0	
96-18-4	1,2,3-Trichloropropane	0.2	< 0.2	

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: Trip Blank

Page 2 of 2

LIMS ID: 08-5486

SAMPLE

QC Report No: MN46-URS Corporation Lab Sample ID: MN46E

Project: Kinder Morgan Laurel Station B'ham

33760783.08001

Matrix: Water Date Analyzed: 03/18/08 13:04

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	1.0	< 1.0	Ü
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	Ų
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	Ų
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0	U
91-20-3	Naphthalene	1.0	< 1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	< 1.0	U

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	114%
d8-Toluene	1.03%
Bromofluorobenzene	93.8%
d4-1.2-Dichlorobenzene	103%

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: MB-031808 METHOD BLANK Page 1 of 2

Lab Sample ID: MB-031808

LIMS ID: 08-5481 Matrix: Water

Data Release Authorized:

Reported: 03/19/08 Instrument/Analyst: NT5/JZ

Date Analyzed: 03/18/08 12:38

QC Report No: MN46-URS Corporation

Project: Kinder Morgan Laurel Station B'ham

33760783.08001

Date Sampled: NA Date Received: NA

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result
74-87-3	Chloromethane	0.2	< 0.2
74-83-9	Bromomethane	0.2	< 0.2
75-01-4	Vinyl Chloride	0.2	< 0.2
75-00-3	Chloroethane	0.2	< 0.2
75-09-2	Methylene Chloride	0.5	< 0.5
67-64-1	Acetone	1.0	< 1.0
75-15-0	Carbon Disulfide	0.2	< 0.2
75-35-4	1,1-Dichloroethene	0.2	< 0.2
75-34-3	1,1-Dichloroethane	0.2	< 0.2
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2
67-66-3	Chloroform	0.2	< 0.2
107-06-2	1,2-Dichloroethane	0.2	< 0.2
78-93-3	2-Butanone	1.0	< 1.0
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2
56-23-5	Carbon Tetrachloride	0.2	< 0.2
108-05-4	Vinyl Acetate	1.0	< 1.0
75-27-4	Bromodichloromethane	0.2	< 0.2
78-87-5	1,2-Dichloropropane	0.2	< 0.2
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2
79-01-6	Trichloroethene	0.2	< 0.2
124-48-1	Dibromochloromethane	0.2	< 0.2
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2
71-43-2	Benzene	0.2	< 0.2
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2
110-75-8	2-Chloroethylvinylether	0.2	< 0.2
75-25-2	Bromoform	0.2	< 0.2
108-10-1	4-Methyl-2-Pentanone (MIBK)	1.0	< 1.0
591-78-6	2-Hexanone	1.0	< 1.0
127-18-4	Tetrachloroethene	0.2	< 0.2
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2
108-88-3	Toluene	0.2	< 0.2
108-90-7	Chlorobenzene	0.2	< 0.2
100-41-4	Ethylbenzene	0.2	< 0.2
100-42-5	Styrene	0.2	< 0.2
75-69-4	Trichlorofluoromethane	0.2	< 0.2
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	0.2	< 0.2
1330-20-7	m,p-Xylene	0.4	< 0.4
95-47-6	o-Xylene	0.2	< 0.2
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2
107-02-8	Acrolein	1.0	< 1.0
74-88-4	Methyl Iodide	1.0	< 1.0
74-96-4	Bromoethane	0.2	< 0.2
107-13-1	Acrylonitrile	1.0	< 1.0
563-58-6	1,1-Dichloropropene	0.2	< 0.2
74-95-3	Dibromomethane	0.2	< 0.2
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2
96-12-8	1,2-Dibromo-3-chloropropane	1.0	< 1.0 < 0.2

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: MB-031808

Page 2 of 2

METHOD BLANK

Lab Sample ID: MB-031808

LIMS ID: 08-5481

QC Report No: MN46-URS Corporation

Project: Kinder Morgan Laurel Station B'ham

33760783.08001

Matrix: Water Date Analyzed: 03/18/08 12:38

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	Ū
87-68-3	Hexachlorobutadiene	1.0	< 1.0	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	Ų
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	Ų
99-87-6	4-Isopropyltoluene	0.2	< 0.2	Ų
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0	U
91-20-3	Naphthalene	1.0	< 1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	< 1.0	Ŭ

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	114%
d8-Toluene	104%
Bromofluorobenzene	98.4%
d4-1,2-Dichlorobenzene	101%

VOA SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: MN46-URS Corporation Project: Kinder Morgan Laurel Station B'ham

33760783.08001

ARI ID	Client ID	PV	DCE	TOL	BFB	DCB	TOT OUT
MN46A	SW-4	10	117%	104%	95.4%	104%	0
MB-031808	Method Blank	10	114%	104%	98.4%	101%	0
LCS-031808	Lab Control	10	110%	101%	101%	100%	0
LCSD-031808	Lab Control Dup	10	109%	101%	101%	99.7%	0
MN46B	SW-1	10	128%	101%	94.1%	106%	0
MN46BMS	SW-1	10	98.8%	98.5%	99.2%	98.8%	0
MN46BMSD	SW-1	10	102%	99.4%	98.8%	99.8%	0
MN46C	SW-11	10	121%	99.4%	95.4%	105%	0
MN46C MN46D	SW-2	10	124%	104%	93.6%	106%	0
MN46E	Trip Blank	10	114%	103%	93.8%	103%	0
		LCS	S/MB LIM	ITS		OC LIWI	TS
SW8260B							
(DCE) = d4-1,2-Dichloroethane			70-130			70-13	0
(TOL) = d8-Toluene			70-130			70-13	0
, = ,	ofluorobenzene		70-130		70-130		
(DCB) = d4-1.2-Dichlorobenzene		70-130			70-130		

Prep Method: SW5030B

Log Number Range: 08-5480 to 08-5486

Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: LCS-031808

Page 1 of 2

LAB CONTROL SAMPLE

Lab Sample ID: LCS-031808

LIMS ID: 08-5481

Matrix: Water

Data Release Authorized:

Reported: 03/19/08

Instrument/Analyst LCS: NT5/JZ

LCSD: NT5/JZ

Date Analyzed LCS: 03/18/08 11:29

LCSD: 03/18/08 12:03

QC Report No: MN46-URS Corporation

Project: Kinder Morgan Laurel Station B'ham

33760783.08001

Date Sampled: NA Date Received: NA

Sample Amount LCS: 10.0 mL

LCSD: 10.0 mL

Purge Volume LCS: 10.0 mL

LCSD: 10.0 mL

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Chloromethane	9.9	10.0	99.0%	9.2	10.0	92.0%	7.3%
Bromomethane	10.0	10.0	100%	9.4	10.0	94.0%	6.2%
Vinyl Chloride	10.2	10.0	102%	9.8	10.0	98.0%	4.0%
Chloroethane	13.7	10.0	137%	12.7	10.0	127%	7.6%
Methylene Chloride	9.8	10.0	98.0%	9.5	10.0	95.0%	3.1%
Acetone	53.2	50.0	106%	51.7	50.0	103%	2.9%
Carbon Disulfide	10.8	10.0	108%	10.2	10.0	102%	5.7%
1,1-Dichloroethene	10.6	10.0	106%	10.2	10.0	102%	3.8%
1,1-Dichloroethane	10.6	10.0	106%	10.0	10.0	100%	5.8%
trans-1,2-Dichloroethene	10.4	10.0	104%	10.0	10.0	100%	3.9%
cis-1,2-Dichloroethene	10.2	10.0	102%	9.8	10.0	98.0%	4.0%
Chloroform	10.5	10.0	105%	10.0	10.0	100%	4.9%
1,2-Dichloroethane	9.8	10.0	98.0%	9.4	10.0	94.0%	4.2%
2-Butanone	52.9	50.0	106%	51.3	50.0	103%	3.1%
1,1,1-Trichloroethane	10.8	10.0	108%	10.3	10.0	103%	4.7%
Carbon Tetrachloride	11.2	10.0	112%	10.5	10.0	105%	6.5%
Vinyl Acetate	10.7	10.0	107%	10.7	10.0	107%	0.0%
Bromodichloromethane	10.2	10.0	102%	9.8	10.0	98.0%	4.0%
1,2-Dichloropropane	9.9	10.0	99.0%	9.3	10.0	93.0%	6.2%
cis-1,3-Dichloropropene	10.2	10.0	102%	9.8	10.0	98.0%	4.0%
Trichloroethene	10.0	10.0	100%	9.4	10.0	94.0%	6.2%
Dibromochloromethane	10.7	10.0	107%	10.2	10.0	102%	4.8%
1,1,2-Trichloroethane	9.7	10.0	97.0%	9.4	10.0	94.0%	3.1%
Benzene	10.1	10.0	101%	9.6	10.0	96.0%	5.1%
trans-1,3-Dichloropropene	10.5	10.0	105%	10.0	10.0	100%	4.9%
2-Chloroethylvinylether	10.2	10.0	102%	9.6	10.0	96.0%	6.1%
Bromoform	9.0	10.0	90.0%	8.6	10.0	86.0%	4.5%
4-Methyl-2-Pentanone (MIBK)	49.9	50.0	99.8%	49.7	50.0	99.4%	0.4%
2-Hexanone	50.2	50.0	100%	48.8	50.0	97.6%	2.8% 5.6%
Tetrachloroethene	9.2	10.0	92.0%	8.7	10.0	87.0%	5.0%
1,1,2,2-Tetrachloroethane	10.2	10.0	102%	9.7	10.0	97.0%	5.0* 5.1*
Toluene	10.0	10.0	100%	9.5	10.0	95.0%	5.1° 5.2°
Chlorobenzene	9.8	10.0	98.0%	9.3	10.0	93.0% 99.0%	4.9%
Ethylbenzene	10.4	10.0	104%	9.9	10.0		5.0%
Styrene	10.2	10.0	102%	9.7	10.0	97.0% 113%	4.3%
Trichlorofluoromethane	11.8	10.0	118%	11.3	10.0	103%	6.6%
1,1,2-Trichloro-1,2,2-trifluoroetha	11.0	10.0	110%	10.3	10.0	96.5%	6.0%
m,p-Xylene	20.5	20.0	102%	19.3	20.0	96.0%	5.1%
o-Xylene	10.1	10.0	101%	9.6	10.0	96.08 89.0%	5.5%
1,2-Dichlorobenzene	9.4	10.0	94.0%	8.9	10.0	92.0%	5.3%
1,3-Dichlorobenzene	9.7	10.0	97.0%	9.2	10.0	92.0%	4.3%
1,4-Dichlorobenzene	9.5	10.0	95.0%	9.1	10.0	91.08	0.4%
Acrolein	45.9	50.0	91.8%	46.1	50.0 10.0	96.0%	2.1%
Methyl Iodide	9.8	10.0	98.0%	9.6	10.0	101%	3.9%
Bromoethane	10.5	10.0	105%	10.1	10.0	1018	J. / 0

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: LCS-031808

LAB CONTROL SAMPLE Page 2 of 2

Lab Sample ID: LCS-031808 QC Report No: MN46-URS Corporation

Project: Kinder Morgan Laurel Station B'ham LIMS ID: 08-5481 Matrix: Water

33760783.08001

_		Spike	LCS		Spike	LCSD	
Analyte	LCS	Added-LCS	Recovery	LCSD	Added-LCSD	Recovery	RPD
Acrylonitrile	10.1	10.0	101%	10.1	10.0	101%	0.0%
1,1-Dichloropropene	10.4	10.0	104%	9.8	10.0	98.0%	5.9%
Dibromomethane	9.8	10.0	98.0%	9.4	10.0	94.0%	4.2%
1,1,1,2-Tetrachloroethane	10.7	10.0	107%	10.1	10.0	101%	5.8%
1,2-Dibromo-3-chloropropane	10.4	10.0	104%	10.4	10.0	104%	0.0%
1,2,3-Trichloropropane	9.3	10.0	93.0%	9.3	10.0	93.0%	0.0%
trans-1,4-Dichloro-2-butene	10.6	10.0	106%	10.0	10.0	100%	5.8%
1,3,5-Trimethylbenzene	10.6	10.0	106%	10.0	10.0	100%	5.8%
1,2,4-Trimethylbenzene	10.7	10.0	107%	10.2	10.0	102%	4.8%
Hexachlorobutadiene	9.1	10.0	91.0%	8.4	10.0	84.0%	8.0%
Ethylene Dibromide	9.7	10.0	97.0%	9.6	10.0	96.0%	1.0%
Bromochloromethane	9.9	10.0	99.0%	9.6	10.0	96.0%	3.1%
2,2-Dichloropropane	11.3	10.0	113%	10.7	10.0	107%	5.5%
1,3-Dichloropropane	9.8	10.0	98.0%	9.4	10.0	94.0%	4.2%
Isopropylbenzene	10.5	10.0	105%	9.9	10.0	99.0%	5.9%
n-Propylbenzene	10.6	10.0	106%	10.0	10.0	100%	5.8%
Bromobenzene	9.2	10.0	92.0%	8.7	10.0	87.0%	5.6%
2-Chlorotoluene	10.0	10.0	100%	9.5	10.0	95.0%	5.1%
4-Chlorotoluene	10.2	10.0	102%	9.7	10.0	97.0%	5.0%
tert-Butylbenzene	10.4	10.0	104%	9.8	10.0	98.0%	5.9%
sec-Butylbenzene	10.7	10.0	107%	10.2	10.0	102%	4.8%
4-Isopropyltoluene	10.8	10.0	108%	10.2	10.0	102%	5.7%
n-Butylbenzene	11.0	10.0	110%	10.3	10.0	103%	6.6%
1,2,4-Trichlorobenzene	9.0	10.0	90.0%	8.5	10.0	85.0%	5.7%
Naphthalene	9.9	10.0	99.0%	9.5	10.0	95.0%	4.1%
1,2,3-Trichlorobenzene	8.9	10.0	89.0%	8.7	10.0	87.0%	2.3%

Reported in $\mu g/L$ (ppb)

RPD calculated using sample concentrations per SW846.

	LCS	LCSD
d4-1,2-Dichloroethane	110%	109%
d8-Toluene	101%	101%
Bromofluorobenzene	101%	101%
d4-1,2-Dichlorobenzene	100%	99.7%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B Sample ID: SW-1

Matrix: Water

Data Release Authorized:

Reported: 03/19/08

MATRIX SPIKE Page 1 of 2

QC Report No: MN46-URS Corporation Lab Sample ID: MN46B LIMS ID: 08-5481

Project: Kinder Morgan Laurel Station B'ham

33760783.08001

Date Sampled: 03/13/08 Date Received: 03/14/08

Sample Amount MS: 10.0 mL Instrument/Analyst MS: NT5/JZ MSD: NT5/JZ

MSD: 10.0 mL Purge Volume MS: 10.0 mL

Date Analyzed MS: 03/18/08 17:23 MSD: 10.0 mL MSD: 03/18/08 17:49

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Chloromethane	< 0.2 U	8.3	10.0	83.0%	9.0	10.0	90.0%	8.1%
Bromomethane	< 0.2 U	9.3	10.0	93.0%	10.3	10.0	103%	10.2%
Vinyl Chloride	< 0.2 U	8.8	10.0	88.0%	9.5	10.0	95.0%	7.7%
Chloroethane	< 0.2 U	11.6	10.0	116%	12.5	10.0	125%	7.5%
Methylene Chloride	< 0.5 U	8.7	10.0	87.0%	9.5	10.0	95.0%	8.8%
Acetone	7.5	45.6	50.0	76.2%	49.1	50.0	83.2%	7.4%
Carbon Disulfide	< 0.2 U	9.3	10.0	93.0%	10.1	10.0	101%	8.2%
1.1-Dichloroethene	< 0.2 U	9.4	10.0	94.0%	10.2	10.0	102%	8.2%
1,1-Dichloroethane	< 0.2 U	9.2	10.0	92.0%	9.9	10.0	99.0%	7.3%
trans-1,2-Dichloroethene	< 0.2 U	9.3	10.0	93.0%	9.9	10.0	99.0%	6.2%
cis-1,2-Dichloroethene	< 0.2 U	9.2	10.0	92.0%	10.0	10.0	100%	8.3%
Chloroform	0.2	9.4	10.0	92.0%	10.1	10.0	99.0%	7.2%
1,2-Dichloroethane	< 0.2 U	8.7	10.0	87.0%	9.3	10.0	93.0%	6.7%
2-Butanone	< 1.0 U	46.5	50.0	93.0%	49.8	50.0	99.6%	6.9%
1,1,1-Trichloroethane	< 0.2 U	9.6	10.0	96.0%	1.0.4	10.0	104%	8.0%
Carbon Tetrachloride	< 0.2 U	10.3	10.0	103%	11.0	10.0	110%	6.6%
Vinyl Acetate	< 1.0 U	8.9	10.0	89.0%	9.5	10.0	95.0%	6.5%
Bromodichloromethane	< 0.2 U	9.2	10.0	92.0%	9.8	10.0	98.0%	6.3%
1,2-Dichloropropane	< 0.2 U	8.7	10.0	87.0%	9.3	10.0	93.0%	6.7%
cis-1,3-Dichloropropene	< 0.2 U	8.8	10.0	88.0%	9.4	10.0	94.0%	6.6%
Trichloroethene	< 0.2 U	9.3	10.0	93.0%	9.9	10.0	99.0%	6.2%
Dibromochloromethane	< 0.2 U	9.7	10.0	97.0%	10.2	10.0	102%	5.0%
1,1,2-Trichloroethane	< 0.2 U	9.0	10.0	90.0%	9.7	10.0	97.0%	7.5%
Benzene	< 0.2 U	9.2	10.0	92.0%	9.7	10.0	97.0%	5.3%
trans-1,3-Dichloropropene	< 0.2 U	9.2	10.0	92.0%	10.0	10.0	100%	8.3%
2-Chloroethylvinylether	< 0.2 U	7.7	10.0	77.0%	7.9	10.0	79.0%	2.6%
Bromoform	< 0.2 U	7.8	10.0	78.0%	8.2	10.0	82.0%	5.0%
4-Methyl-2-Pentanone (MIBK)	< 1.0 U	44.5	50.0	89.0%	47.3	50.0	94.6%	6.1%
2-Hexanone	< 1.0 U	43.7	50.0	87.4%	46.0	50.0	92.0%	5.1%
Tetrachloroethene	< 0.2 U	8.9	10.0	89.0%	9.4	10.0	94.0%	5.5%
1,1,2,2-Tetrachloroethane	< 0.2 U	9.2	10.0	92.0%	9.6	10.0	96.0%	4.3%
Toluene	< 0.2 U	9.1	10.0	91.0%	9.6	10.0	96.0%	5.3%
Chlorobenzene	< 0.2 U	9.2	10.0	92.0%	9.6	10.0	96.0%	4.3%
Ethylbenzene	< 0.2 U	9.4	10.0	94.0%	9.9	10.0	99.0%	5.2%
Styrene	< 0.2 U	8.2	10.0	82.0%	8.5	10.0	85.0%	3.6%
Trichlorofluoromethane	< 0.2 U	10.8	10.0	108%	11.4	10.0	114%	5.4%
1,1,2-Trichloro-1,2,2-trifl	< 0.2 U	9.8	10.0	98.0%	10.6	10.0	106%	7.8%
m,p-Xylene	< 0.4 U	18.3	20.0	91.5%	19.2	20.0	96.0%	4.8%
o-Xylene	< 0.2 U	9.1	10.0	91.0%	9.4	10.0	94.0%	3.2%
1,2-Dichlorobenzene	< 0.2 U	8.7	10.0	87.0%	9.3	10.0	93.0%	6.7%
1,3-Dichlorobenzene	< 0.2 U	9.0	10.0	90.0%	9.6	10.0	96.0%	6.5%
1,4-Dichlorobenzene	< 0.2 U	8.8	10.0	88.0%	9.4	10.0	94.0%	6.6%
Acrolein	< 1.0 U	40.2	50.0	80.4%	44.5	50.0	89.0%	10.2%
Methyl Iodide	< 1.0 U	9.9	10.0	99.0%	10.8	10.0	108%	8.7%
Bromoethane	< 0.2 U	9.4	10.0	94.0%	10.1	10.0	101%	7.2%
Acrylonitrile	< 1.0 U	8.4	10.0	84.0%	9.6	10.0	96.0%	13.3%
1,1-Dichloropropene	< 0.2 U	9.3	10.0	93.0%	9.8	10.0	98.0%	5.2%

ORGANICS ANALYSIS DATA SHEET Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Matrix: Water

Lab Sample ID: MN46B LIMS ID: 08-5481 Sample ID: SW-1
MATRIX SPIKE

QC Report No: MN46-URS Corporation

Project: Kinder Morgan Laurel Station B'ham

33760783.08001

Analyte	Sample	MS	Spike Added-MS	MS Recovery	msd	Spike Added-MSD	MSD Recovery	RPD
Dibromomethane	< 0.2 U	9.2	10.0	92.0%	9.6	10.0	96.0%	4.3%
1,1,1,2-Tetrachloroethane	< 0.2 U	9.9	10.0	99.0%	10.7	10.0	107%	7.8%
1,2-Dibromo-3-chloropropane	< 1.0 U	9.3	10.0	93.0%	9.9	10.0	99.0%	6.2%
1,2,3-Trichloropropane	< 0.2 U	8.6	10.0	86.0%	9.5	10.0	95.0%	9.9%
trans-1,4-Dichloro-2-butene	< 1.0 U	8.8	10.0	88.0%	9.4	10.0	94.0%	6.6%
1,3,5-Trimethylbenzene	< 0.2 U	8.7	10.0	87.0%	8.8	10.0	88.0%	1.1%
1,2,4-Trimethylbenzene	< 0.2 U	9.1	10.0	91.0%	9.6	10.0	96.0%	5.3%
Hexachlorobutadiene	< 1.0 U	8.3	10.0	83.0%	8.8	10.0	88.0%	5.8%
Ethylene Dibromide	< 0.2 U	9.1	10.0	91.0%	9.6	10.0	96.0%	5.3%
Bromochloromethane	< 0.2 U	8.8	10.0	88.0%	9.6	10.0	96.0%	8.7%
2,2-Dichloropropane	< 0.2 U	9.8	10.0	98.0%	10.6	10.0	106%	7.8%
1,3-Dichloropropane	< 0.2 U	9.0	10.0	90.0%	9.4	10.0	94.0%	4.3%
Isopropylbenzene	< 0.2 U	9.4	10.0	94.0%	9.9	10.0	99.0%	5.2%
n-Propylbenzene	< 0.2 U	9.4	10.0	94.0%	9.8	10.0	98.0%	4.2%
Bromobenzene	< 0.2 U	8.6	10.0	86.0%	9.2	10.0	92.0%	6.7%
2-Chlorotoluene	< 0.2 U	9.0	10.0	90.0%	9.5	10.0	95.0%	5.4%
4-Chlorotoluene	< 0.2 U	9.2	10.0	92.0%	9.6	10.0	96.0%	4.3%
tert-Butylbenzene	< 0.2 U	9.5	10.0	95.0%	10.1	10.0	101%	6.1%
sec-Butylbenzene	< 0.2 U	9.6	10.0	96.0%	10.2	10.0	102%	6.1%
4-Isopropyltoluene	< 0.2 U	9.6	10.0	96.0%	10.2	10.0	102%	6.1%
n-Butylbenzene	< 0.2 U	9.6	10.0	96.0%	10.1	10.0	101%	5.1%
1,2,4-Trichlorobenzene	< 1.0 U	8.4	10.0	84.0%	9.0	10.0	90.0%	6.9%
Naphthalene	< 1.0 U	9.1	10.0	91.0%	9.7	10.0	97.0%	6.4%
1,2,3-Trichlorobenzene	< 1.0 U	8.5	10.0	85.0%	9.0	10.0	90.0%	5.7%

Reported in $\mu g/L$ (ppb)

RPD calculated using sample concentrations per SW846.

ORGANICS ANALYSIS DATA SHEET PNAs by Low Level SW8270D-SIM GC/MS

Page 1 of 1

Sample ID: SW-4
SAMPLE

Lab Sample ID: MN46A

LIMS ID: 08-5480 Matrix: Water

Data Release Authorized:

Reported: 03/27/08

Date Extracted: 03/20/08 Date Analyzed: 03/27/08 12:41 Instrument/Analyst: NT2/VTS QC Report No: MN46-URS Corporation

Project: Kinder Morgan Laurel Station B'ham

Event: 33760783.08001

Date Sampled: 03/13/08 Date Received: 03/14/08

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.010	0.012
91 - 57-6	2-Methylnaphthalene	0.010	< 0.010 U
90-12-0	1-Methylnaphthalene	0.010	< 0.010 U
208-96-8	Acenaphthylene	0.010	< 0.010 U
83-32-9	Acenaphthene	0.010	< 0.010 U
86-73-7	Fluorene	0.010	< 0.010 U
85-01-8	Phenanthrene	0.010	< 0.010 U
120-12-7	Anthracene	0.010	< 0.010 U
206-44-0	Fluoranthene	0.010	< 0.010 U
129-00-0	Pyrene	0.010	< 0.010 U
56-55-3	Benzo(a)anthracene	0.010	< 0.010 U
218-01-9	Chrysene	0.010	< 0.010 U
205-99-2	Benzo(b) fluoranthene	0.010	< 0.010 U
207-08-9	Benzo(k) fluoranthene	0.010	< 0.010 U
50-32-8	Benzo(a)pyrene	0.010	< 0.010 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.010	< 0.010 U
53-70-3	Dibenz(a,h)anthracene	0.010	< 0.010 U
191-24-2	Benzo(g,h,i)perylene	0.010	< 0.010 U
132-64-9	Dibenzofuran	0.010	< 0.010 U

Reported in $\mu g/L$ (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 52.7% d14-Dibenzo(a,h)anthracene 43.0%

ORGANICS ANALYSIS DATA SHEET PNAs by Low Level SW8270D-SIM GC/MS

Page 1 of 1

Matrix: Water

Data Release Authorized:

Reported: 03/27/08

QC Report No: MN46-URS Corporation

Lab Sample ID: MN46B LIMS ID: 08-5481 Project: Kinder Morgan Laurel Station B'ham

Event: 33760783.08001

Sample ID: SW-1

SAMPLE

Date Sampled: 03/13/08 Date Received: 03/14/08

Sample Amount: 500 mL Date Extracted: 03/20/08 Final Extract Volume: 0.5 mL Date Analyzed: 03/27/08 13:09 Dilution Factor: 1.00 Instrument/Analyst: NT2/VTS

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.010	< 0.010 U
91-57-6	2-Methylnaphthalene	0.010	0.027
90-12-0	1-Methylnaphthalene	0.010	0.023
208-96-8	Acenaphthylene	0.010	< 0.010 U
83-32-9	Acenaphthene	0.010	< 0.010 U
86-73-7	Fluorene	0.010	< 0.010 U
85-01-8	Phenanthrene	0.010	< 0.010 U
120-12-7	Anthracene	0.010	< 0.010 U
206-44-0	Fluoranthene	0.010	< 0.010 U
129-00-0	Pyrene	0.010	< 0.010 U
56-55-3	Benzo(a) anthracene	0.010	< 0.010 U
218-01-9	Chrysene	0.010	< 0.010 U
205-99-2	Benzo(b) fluoranthene	0.010	< 0.010 U
207-08-9	Benzo(k)fluoranthene	0.010	< 0.010 U
50-32-8	Benzo(a)pyrene	0.010	< 0.010 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.010	< 0.010 U
53-70-3	Dibenz(a,h)anthracene	0.010	< 0.010 U
191-24-2	Benzo(g,h,i)perylene	0.010	< 0.010 U
132-64-9	Dibenzofuran	0.010	< 0.010 U

Reported in μ g/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 64.0% d14-Dibenzo(a,h)anthracene 29.3%

ORGANICS ANALYSIS DATA SHEET PNAs by Low Level SW8270D-SIM GC/MS

Page 1 of 1

Sample ID: SW-1

MATRIX SPIKE

Lab Sample ID: MN46B

LIMS ID: 08-5481 Matrix: Water

Data Release Authorized:

Date Extracted: 03/20/08

Date Analyzed: 03/27/08 13:38

Instrument/Analyst: NT2/VTS

Reported: 03/27/08

QC Report No: MN46-URS Corporation

Project: Kinder Morgan Laurel Station B'ham

Event: 33760783.08001

Date Sampled: 03/13/08 Date Received: 03/14/08

Sample Amount: 460 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.011	
91-57-6	2-Methylnaphthalene	0.011	
90-12-0	1-Methylnaphthalene	0.011	
208-96-8	Acenaphthylene	0.011	
83-32-9	Acenaphthene	0.011	
86-73-7	Fluorene	0.011	
85-01-8	Phenanthrene	0.011	
120-12-7	Anthracene	0.011	
206-44-0	Fluoranthene	0.011	
129-00-0	Pyrene	0.011	
56-55-3	Benzo(a)anthracene	0.011	
218-01-9	Chrysene	0.011	
205-99-2	Benzo(b)fluoranthene	0.011	
207-08-9	Benzo(k)fluoranthene	0.011	
50-32-8	Benzo(a)pyrene	0.011	
193-39-5	Indeno(1,2,3-cd)pyrene	0.011	
53-70-3	Dibenz(a,h)anthracene	0.011	
191-24-2	Benzo(g,h,i)perylene	0.011	
132-64-9	Dibenzofuran	0.011	

Reported in $\mu g/L$ (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 58.0% d14-Dibenzo(a,h)anthracene 28.4%

ORGANICS ANALYSIS DATA SHEET PNAs by Low Level SW8270D-SIM GC/MS

Page 1 of 1

Sample ID: SW-1

MATRIX SPIKE DUPLICATE

Lab Sample ID: MN46B QC Report No: MN46-URS Corporation

LIMS ID: 08-5481 Project: Kinder Morgan Laurel Station B'ham

Event: 33760783.08001

Matrix: Water Data Release Authorized: Date Sampled: 03/13/08

Reported: 03/27/08 Date Received: 03/14/08

Date Extracted: 03/20/08 Sample Amount: 460 mL Final Extract Volume: 0.5 mL Date Analyzed: 03/27/08 14:07 Instrument/Analyst: NT2/VTS Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.011	
91-57-6	2-Methylnaphthalene	0.011	* ** **
90-12-0	1-Methylnaphthalene	0.011	
208-96-8	Acenaphthylene	0.011	
83-32-9	Acenaphthene	0.011	
86-73-7	Fluorene	0.011	
85-01-8	Phenanthrene	0.011	
120-12-7	Anthracene	0.011	
206-44-0	Fluoranthene	0.011	
129-00-0	Pyrene	0.011	
56-55-3	Benzo(a)anthracene	0.011	
218-01-9	Chrysene	0.011	
205-99-2	Benzo(b)fluoranthene	0.011	
207-08-9	Benzo(k)fluoranthene	0.011	
50-32-8	Benzo(a)pyrene	0.011	
193-39-5	Indeno(1,2,3-cd)pyrene	0.011	
53-70-3	Dibenz(a,h)anthracene	0.011	
191-24-2	Benzo(g,h,i)perylene	0.011	
132-64-9	Dibenzofuran	0.011	

Reported in μ g/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 60.7% d14-Dibenzo(a,h)anthracene 31.4%

ORGANICS ANALYSIS DATA SHEET PNAs by Low Level SW8270D-SIM GC/MS

Page 1 of 1

Lab Sample ID: MN46C

LIMS ID: 08-5482 Matrix: Water

Data Release Authorized: Reported: 03/27/08

Date Extracted: 03/20/08 Date Analyzed: 03/27/08 15:04 Instrument/Analyst: NT2/VTS

Sample ID: SW-11 SAMPLE

QC Report No: MN46-URS Corporation

Project: Kinder Morgan Laurel Station B'ham

Event: 33760783.08001

Date Sampled: 03/13/08 Date Received: 03/14/08

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result		
91-20-3	Naphthalene	0.010	< 0.010 U		
91-57-6	2-Methylnaphthalene	0.010	0.013		
90-12-0	1-Methylnaphthalene	0.010	0.011		
208-96-8	Acenaphthylene	0.010	< 0.010 U		
83-32-9	Acenaphthene	0.010	< 0.010 U		
86-73-7	Fluorene	0.010	< 0.010 U		
85-01-8	Phenanthrene	0.010	< 0.010 U		
120-12-7	Anthracene	0.010	< 0.010 U		
206-44-0	Fluoranthene	0.010	< 0.010 U		
129-00-0	Pyrene	0.010	< 0.010 U		
56-55-3	Benzo(a) anthracene	0.010	< 0.010 U		
218-01-9	Chrysene	0.010	< 0.010 U		
205-99-2	Benzo(b)fluoranthene	0.010	< 0.010 U		
207-08-9	Benzo(k)fluoranthene	0.010	< 0.010 U		
50-32-8	Benzo(a)pyrene	0.010	< 0.010 U		
193-39-5	Indeno(1,2,3-cd)pyrene	0.010	< 0.010 U		
53-70-3	Dibenz(a,h)anthracene	0.010	< 0.010 U		
191-24-2	Benzo(g,h,i)perylene	0.010	< 0.010 U		
132-64-9	Dibenzofuran	0.010	< 0.010 U		

Reported in $\mu g/L$ (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 59.3% d14-Dibenzo(a,h)anthracene 40.7%

ORGANICS ANALYSIS DATA SHEET PNAs by Low Level SW8270D-SIM GC/MS Page 1 of 1

Sample ID: SW-2 SAMPLE

Lab Sample ID: MN46D

LIMS ID: 08-5483 Matrix: Water

Data Release Authorized:

Reported: 03/27/08

Date Extracted: 03/20/08 Date Analyzed: 03/27/08 15:33 Instrument/Analyst: NT2/VTS

QC Report No: MN46-URS Corporation

Project: Kinder Morgan Laurel Station B'ham

Event: 33760783.08001

Date Sampled: 03/13/08 Date Received: 03/14/08

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Boanlt

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.010	< 0.010 U
91-57-6	2-Methylnaphthalene	0.010	< 0.010 U
90-12-0	1-Methylnaphthalene	0.010	< 0.010 U
208-96-8	Acenaphthylene	0.010	< 0.010 U
83-32-9	Acenaphthene	0.010	< 0.010 U
86-73-7	Fluorene	0.010	< 0.010 U
85-01-8	Phenanthrene	0.010	< 0.010 U
120-12-7	Anthracene	0.010	< 0.010 U
206-44-0	Fluoranthene	0.010	< 0.010 U
129-00-0	Pyrene	0.010	< 0.010 U
56-55-3	Benzo(a) anthracene	0.010	< 0.010 U
218-01-9	Chrysene	0.010	< 0.010 U
205-99-2	Benzo(b)fluoranthene	0.010	< 0.010 U
207-08-9	Benzo(k)fluoranthene	0.010	< 0.010 U
50-32-8	Benzo(a)pyrene	0.010	< 0.010 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.010	< 0.010 U
53-70-3	Dibenz(a,h)anthracene	0.010	< 0.010 U
191-24-2	Benzo(g,h,i)perylene	0.010	< 0.010 U
132-64-9	Dibenzofuran	0.010	< 0.010 U

Reported in $\mu g/L$ (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 62.3% d14-Dibenzo(a,h)anthracene 27.9%

ORGANICS ANALYSIS DATA SHEET PNAs by Low Level SW8270D-SIM GC/MS

Page 1 of 1

Sample ID: MB-032008 METHOD BLANK

Lab Sample ID: MB-032008

LIMS ID: 08-5481 Matrix: Water

Data Release Authorized:

Reported: 03/27/08

Date Extracted: 03/20/08 Date Analyzed: 03/26/08 22:30 Instrument/Analyst: NT2/VTS

QC Report No: MN46-URS Corporation

Project: Kinder Morgan Laurel Station B'ham

Event: 33760783.08001

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result	
91-20-3	Naphthalene	0.010	< 0.010 U	
91-57-6	2-Methylnaphthalene	0.010	< 0.010 U	
90-12-0	1-Methylnaphthalene	0.010	< 0.010 U	
208-96-8	Acenaphthylene	0.010	< 0.010 U	
83-32-9	Acenaphthene	0.010	< 0.010 U	
86-73-7	Fluorene	0.010	< 0.010 U	
85-01-8	Phenanthrene	0.010	< 0.010 U	
120-12-7	Anthracene	0.010	< 0.010 U	
206-44-0	Fluoranthene	0.010	< 0.010 U	
129-00-0	Pyrene	0.010	< 0.010 U	
56-55-3	Benzo (a) anthracene	0.010	< 0.010 U	
218-01-9	Chrysene	0.010	< 0.010 U	
205-99-2	Benzo(b)fluoranthene	0.010	< 0.010 U	
207-08-9	Benzo(k)fluoranthene	0.010	< 0.010 U	
50-32-8	Benzo(a)pyrene	0.010	< 0.010 U	
193-39-5	Indeno(1,2,3-cd)pyrene	0.010	< 0.010 U	
53-70-3	Dibenz(a,h)anthracene	0.010	< 0.010 U	
191-24-2	Benzo(g,h,i)perylene	0.010	< 0.010 U	
132-64-9	Dibenzofuran	0.010	< 0.010 U	

Reported in μ g/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene d14-Dibenzo(a,h) anthracene 69.3%

SIM SW8270 SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: MN46-URS Corporation Project: Kinder Morgan Laurel Station B'ham

33760783.08001

Client ID	MNP	DBA	TOT OUT
SW-4	52.7%	43.0%	0
MB-032008	70.0%	69.3%	0
LCS-032008	73.7%	78.3%	0
LCSD-032008	66.3%	67.7%	0
SW-1	64.0%	29.3%	0
SW-1 MS	58.0%	28.4%	0
SW-1 MSD	60.7%	31.4%	0
SW-11	59.3%	40.7%	0
SW-2	62.3%	27.9%	0

		LCS/MB LIMITS	QC LIMITS
	d10-2-Methylnaphthalene d14-Dibenzo(a,h)anthracene	(49-113) (49-132)	(44-112) (10-138)

Prep Method: SW3520C Log Number Range: 08-5480 to 08-5483

ORGANICS ANALYSIS DATA SHEET PNAs by Low Level SW8270D-SIM GC/MS

Lab Sample ID: LCS-032008

Page 1 of 1

Sample ID: LCS-032008
LAB CONTROL SAMPLE

QC Report No: MN46-URS Corporation

LIMS ID: 08-5481 Project: Kinder Morgan Laurel Station B'ham

Matrix: Water Event: 33760783.08001

Data Release Authorized: Date Sampled: NA Reported: 03/27/08 Date Received: NA

Date Extracted LCS/LCSD: 03/20/08 Sample Amount LCS: 500 mL

LCSD: 500 mL

Date Analyzed LCS: 03/26/08 22:58 Final Extract Volume LCS: 0.50 mL LCSD: 03/27/08 12:12 LCSD: 0.50 mL

Instrument/Analyst LCS: NT2/VTS Dilution Factor LCS: 1.00

LCSD: NT2/VTS LCSD: 1.00

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Naphthalene	0.212	0.300	70.7%	0.198	0.300	66.0%	6.8%
2-Methylnaphthalene	0.204	0.300	68.0%	0.188	0.300	62.7%	8.2%
1-Methylnaphthalene	0.214	0.300	71.3%	0.230	0.300	76.7%	7.2%
Acenaphthylene	0.187	0.300	62.3%	0.171	0.300	57.0%	8.9%
Acenaphthene	0.231	0.300	77.0%	0.206	0.300	68.7%	11.4%
Fluorene	0.243	0.300	81.0%	0.219	0.300	73.0%	10.4%
Phenanthrene	0.219	0.300	73.0%	0.205	0.300	68.3%	6.6%
Anthracene	0.181	0.300	60.3%	0.185	0.300	61.7%	2.2%
Fluoranthene	0.222	0.300	74.0%	0.208	0.300	69.3%	6.5%
Pyrene	0.220	0.300	73.3%	0.208	0.300	69.3%	5.6%
Benzo(a)anthracene	0.191	0.300	63.7 %	0.174	0.300	58.0%	9.3%
Chrysene	0.267	0.300	89.0%	0.250	0.300	83.3%	6.6%
Benzo(b)fluoranthene	0.206	0.300	68.7%	0.189	0.300	63.0%	8.6%
Benzo(k)fluoranthene	0.343	0.300	114%	0.327	0.300	109%	4.8%
Benzo(a)pyrene	0.129	0.300	43.0%	0.130	0.300	43.3%	0.8%
Indeno(1,2,3-cd)pyrene	0.237	0.300	79.0%	0.216	0.300	72.0%	9.3%
Dibenz(a,h)anthracene	0.231	0.300	77.0%	0.213	0.300	71.0%	8.1%
Benzo(g,h,i)perylene	0.223	0.300	74.3%	0.204	0.300	68.0%	8.9%
Dibenzofuran	0.239	0.300	79.7%	0.218	0.300	72.7%	9.2%

Reported in $\mu g/L$ (ppb)

RPD calculated using sample concentrations per SW846.

SIM Semivolatile Surrogate Recovery

	LCS	LCSD
d10-2-Methylnaphthalene	73.7%	66.3%
d14-Dibenzo(a,h)anthracene	78.3%	67.7%

ORGANICS ANALYSIS DATA SHEET PNAs by Low Level SW8270D-SIM GC/MS

Page 1 of 1

Matrix: Water

Sample ID: SW-1 MATRIX SPIKE

QC Report No: MN46-URS Corporation

Lab Sample ID: MN46B LIMS ID: 08-5481 Project: Kinder Morgan Laurel Station B'ham

Event: 33760783.08001

Data Release Authorized: Date Sampled: 03/13/08 Reported: 03/27/08 Date Received: 03/14/08

Date Extracted MS/MSD: 03/20/08 Sample Amount MS: 460 mL

MSD: 460 mL

Date Analyzed MS: 03/27/08 13:38 Final Extract Volume MS: 0.50 mL MSD: 03/27/08 14:07

MSD: 0.50 mL

Instrument/Analyst MS: NT2/VTS Dilution Factor MS: 1.00 MSD: NT2/VTS

MSD: 1.00

Analyte	Comple	MS	Spike Added-MS	MS	wan	Spike	MSD	222
Amaryce	Sample	MB	Added-MS	Recovery	MSD	Added-MSD	Recovery	RPD
Naphthalene	< 0.0100 U	0.184	0.326	56.4%	0.197	0.326	60.4%	6.8%
2-Methylnaphthalene	0.0271	0.198	0.326	52.4%	0.210	0.326	56.1%	5.9%
1-Methylnaphthalene	0.0226	0.206	0.326	56.3%	0.228	0.326	63.0%	10.1%
Acenaphthylene	< 0.0100 U	0.171	0.326	52.5%	0.182	0.326	55.8%	6.2%
Acenaphthene	< 0.0100 U	0.204	0.326	62.6%	0.218	0.326	66.9%	6.6%
Fluorene	< 0.0100 U	0.225	0.326	69.0%	0.240	0.326	73.6%	6.5%
Phenanthrene	< 0.0100 U	0.218	0.326	66.9%	0.231	0.326	70.9%	5.8%
Anthracene	< 0.0100 U	0.195	0.326	59.8%	0.211	0.326	64.7%	7.9%
Fluoranthene	< 0.0100 U	0.212	0.326	65.0%	0.222	0.326	68.1%	4.6%
Pyrene	< 0.0100 U	0.205	0.326	62.9%	0.218	0.326	66.9%	6.1%
Benzo(a)anthracene	< 0.0100 U	0.146	0.326	44.8%	0.153	0.326	46.9%	4.7%
Chrysene	< 0.0100 U	0.209	0.326	64.1%	0.215	0.326	66.0%	2.8%
Benzo(b)fluoranthene	< 0.0100 U	0.118	0.326	36.2%	0.108	0.326	33.1%	8.8%
Benzo(k)fluoranthene	< 0.0100 U	0.175	0.326	53.7%	0.203	0.326	62.3%	14.8%
Benzo(a)pyrene	< 0.0100 U	0.0898	0.326	27.5%	0.101	0.326	31.0%	11.7%
Indeno(1,2,3-cd)pyrene	< 0.0100 U	0.0774	0.326	23.7%	0.0809	0.326	24.8%	4.4%
Dibenz(a,h)anthracene	< 0.0100 U	0.0800	0.326	24.5%	0.0838	0.326	25.7%	4.6%
Benzo(g,h,i)perylene	< 0.0100 U	0.0710	0.326	21.8%	0.0781	0.326	24.0%	9.5%
Dibenzofuran	< 0.0100 U	0.188	0.326	57.7%	0.193	0.326	59.2%	2.6%

Reported in μ g/L (ppb)

RPD calculated using sample concentrations per SW846.

< 0.25 U

< 0.50 U

< 0.25 U

< 0.50 U

87.6%

90.2%

0.25

0.50

0.25

0.50

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID Page 1 of 1 Matrix: Water

MN46C

MN46D

08-5483

08-5482

QC Report No: MN46-URS Corporation

Project: Kinder Morgan Laurel Station B'

33760783.08001

Date Received: 03/14/08

1.00 Diesel

Motor Oil

Motor Oil

o-Terphenyl

Diesel

o-Terphenyl

1.0

1.00

1.0

Data Release Authorized: Reported: 03/25/08

ARI ID	Sample ID	Extraction Date	Analysis Date	EFV DL	Range	RL	Result
MN46A 08-5480	SW-4 HC ID:	03/20/08	03/21/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	0.25 0.50	< 0.25 U < 0.50 U 82.0%
MB-032008 08-5481	Method Blank HC ID:	03/20/08	03/21/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	0.25 0.50	< 0.25 U < 0.50 U 87.6%
MN46B 08-5481	SW-1 HC ID:	03/20/08	03/21/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	0.25 0.50	< 0.25 U < 0.50 U 84.7%

FID3A

FID3A

03/20/08 03/21/08

03/20/08 03/21/08

Reported in mg/L (ppm)

SW-11

SW-2

HC ID: ---

HC ID: ---

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis. RL-Reporting limit.

Diesel quantitation on total peaks in the range from C12 to C24. Motor Oil quantitation on total peaks in the range from C24 to C38. HC ID: DRO/RRO indicates results of organics or additional hydrocarbons in ranges are not identifiable.

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID

Page 1 of 1

Sample ID: SW-1

MS/MSD

Lab Sample ID: MN46B LIMS ID: 08-5481

Matrix: Water

Data Release Authorized:

Reported: 03/25/08

QC Report No: MN46-URS Corporation

Project: Kinder Morgan Laurel Station B'ham

33760783.08001

Date Sampled: 03/13/08 Date Received: 03/14/08

Sample Amount MS: 470 mL

MSD: 470 mL

Final Extract Volume MS: 1.0 mL

MSD: 1.0 mL

Dilution Factor MS: 1.00

MSD: 1.00

Date Extracted MS/MSD: 03/20/08

Date Analyzed MS: 03/21/08 18:42

MSD: 03/21/08 18:57

Instrument/Analyst MS: FID3A/JGR

MSD: FID3A/JGR

Range	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Diesel	< 0.25 U	2.15	3.19	67.4%	2.39	3.19	74.9%	10.6%

TPHD Surrogate Recovery

o-Terphenyl

MS MSD

75.1% 83.1%

Results reported in mg/L RPD calculated using sample concentrations per SW846.

TPHD SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: MN46-URS Corporation
Project: Kinder Morgan Laurel Station B'ham

33760783.08001

Client ID	OTER	TOT OUT
Chi 4	00.08	0
SW-4 MB-032008	82.0% 87.6%	0
LCS-032008	88.9%	Ö
LCSD-032008	81.3%	0
SW-1	84.7%	0
SW-1 MS	75.1%	0
SW-1 MSD	83.1%	0
SW-11	87.6%	0
SW-2	90.2%	0

LCS/MB LIMITS QC LIMITS

(OTER) = o-Terphenyl

(58-114)

(45-121)

Prep Method: SW3510C

Log Number Range: 08-5480 to 08-5483

ORGANICS ANALYSIS DATA SHEET

NWTPHD by GC/FID

Page 1 of 1

Lab Sample ID: LCS-032008

LIMS ID: 08-5481 Matrix: Water

Data Release Authorized:

Reported: 03/25/08

Date Extracted LCS/LCSD: 03/20/08

Date Analyzed LCS: 03/21/08 16:55

LCSD: 03/21/08 17:10

Instrument/Analyst LCS: FID3A/JGR

LCSD: FID3A/JGR

Sample ID: LCS-032008

LCS/LCSD

QC Report No: MN46-URS Corporation

Project: Kinder Morgan Laurel Station B'ham

33760783.08001

Date Sampled: NA Date Received: NA

Sample Amount LCS: 500 mL

LCSD: 500 mL

Final Extract Volume LCS: 1.0 mL

LCSD: 1.0 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Range	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Diesel	2.27	3.00	75.7%	2.07	3.00	69.0%	9.2%

TPHD Surrogate Recovery

LCS LCSD o-Terphenyl 88.9% 81.3%

Results reported in mg/L RPD calculated using sample concentrations per SW846.

TOTAL DIESEL RANGE HYDROCARBONS-EXTRACTION REPORT

ARI Job: MN46

Project: Kinder Morgan Laurel Station B'ham 33760783.08001 Matrix: Water

Date Received: 03/14/08

ARI ID	Client ID	Samp Amt	Final Vol	Prep Date
08-5480-MN46A	SW-4	500 mL	1.00 mL	03/20/08
08-5481-032008MB1	Method Blank	500 mL	1.00 mL	03/20/08
08-5481-032008LCS1	Lab Control	500 mL	1.00 mL	03/20/08
08-5481-032008LCSD1	Lab Control Dup	500 mL	1.00 mL	03/20/08
08-5481-MN46B	SW-1	500 mL	1.00 mL	03/20/08
08-5481-MN46BMS	SW-1	470 mL	1.00 mL	03/20/08
08-5481-MN46BMSD	SW-1	470 mL	1.00 mL	03/20/08
08-5482-MN46C	SW-11	500 mL	1.00 mL	03/20/08
08-5483-MN46D	SW-2	500 mL	1.00 mL	03/20/08

March 26, 2008

Karen Mixon URS Corporation Century Square 1501 Fourth Avenue Suite 1400 Seattle, WA 98101

RE: Client Project: Laurel Station

ARI Job No: MN48

Dear Karen:

Please find enclosed the original chain of custody documentation and the final results for the sample from the project referenced above. Analytical Resources, Inc. (ARI) received four water samples and two soil samples and a trip blank in good condition on March 14, 2008. The samples were logged under two different ARI SDGs.

The samples were analyzed for NWTPH-Dx and NWTPH-Gx plus BTEX, as requested on the COC.

There were no anomalies associated with the samples.

A copy of these reports and all associated raw data will remain on file electronically with ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kelly Bottem

Client Services Manager

206/695-6211

kellyb@arilabs.com

Enclosures

cc: file MN48

KFB/kfb

といこく 2 <u>5</u> 201210 Chain of Custody Record & Laboratory Analysis Request

1

aphs

Analytical Chemists and Consultants Analytical Resources, Incorporated 206-695-6200 206-695-6201 (fax) 4611 South 134th Place, Suite 100 Notes/Comments M2/M5D Tukwila, WA 98168 Printed Name Received by Date & Time (Signature) Company: Analysis Requested X1-1111 +d * Relinquished by 0 Printed Name 120B X FIGH-HDI Date & Time (Signature) ァ × Present? HV) 415 77 ₽ × × X X X XO-HJ_MM No. of Coolers: Page: 40C3 X Y × 451415H Date & Time: 108 421 No. Containers (Signature) LANKEL STATION BELLINGHAM 206-438-2700 I Vermeeren Matrix 42 Fr **元**,0 201 pleur pit sui somple (Signature) M aust much 4011 0708 Kon Limica URS Carratho 1600 1300 1220 1537 1620 Turn-around Requested: Time 3-14-081 13/08 Samplers: Offeur Client Contact: AREN MIXON Client Project Name: KINDER MONE G-AND Relinquished by: Date & Time: Date 4 Use URS JAB 33740784. らんないから in sepreta winkurder Client Project #: 7185.0800 | A HI Assigned Number: NA & Comments/Special Instructions المن بالها المي Sample ID ARI Client Company: 08-B4-4. 08-134-2 Kahlemin んぴん んどーイ 5W -181

said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for signed agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate etention schedules have been established by work-order or contract

Cooler Receipt Form

ARI Client: UPS	Project Name:_	KINDER Confice -	MODERAL	<u> </u>	
COC No: NA	Delivered by:	Confice -	20		
Assigned ARI Job No: MN46 mn48	Tracking No:	M			
Preliminary Examination Phase:					
Were intact, properly signed and dated custody	seals attached to	the outside of	to cooler?	(FES)	МО
Were custody papers included with the cooler?				(ES)	NO
Were custody papers properly filled out (ink, sign	ned, etc.)			(ES)	NO
Record cooler temperature (recommended 2.0-6				2.0	_°C
Cooler Accepted by:		Date: <u> </u>	14/0 tsin	ne:	
Complete custody forn				-	
Log-In Phase:					
Was a temperature blank included in the cooler	?			YES	NO)
What kind of packing material was used?				ILE	
Was sufficient ice used (if appropriate)?				YES	NO
Were all bottles sealed in individual plastic bags				-	ON ON
Did all bottle arrive in good condition (unbroken))?		(YES)	NO ·
Were all bottle labels complete and legible?					NO
Did all bottle labels and tags agree with custody	papers?			YES I	NO
Were all bottles used correct for the requested a	analyses?	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(YES)	NQ
Do any of the analyses (bottles) require preserve	ation? (attach pro	eservation chect	klist) <u>/</u> .	YES (NO)
Were all VOC vials free of air bubbles?	,		SVA S	(YES)	NO
Was sufficient amount of sample sent in each bo	ottle?			(ES)	NO
Samples Logged by:	Date	a.3/17/08	Time:		
** Notify Project Mana					
					
Explain discrepancies or negative responses:	50,000	5111-1			
14 bottles received for	· same	, 500			
				•	
					-
	By:		Date:		

BETX SOIL SURROGATE RECOVERY SUMMARY

ARI Job: MN48

QC Report No: MN48-URS Corporation Project: Kinder Morgan Laurel Station B'ham Matrix: Soil

Event: 33760784

Client ID	TFT	BBZ	TOT OUT
MB-031808	100%	105%	0
LCS-031808	103%	107%	0
LCSD-031808	97.9%	104%	0
08-B4-3	89.7%	95.0%	0
08-B4-4.5	83.9%	90.7%	0

			LCS/MB	LIMITS	QC	LIMITS
(TFT)	=	Trifluorotoluene	(80-	120)	(61	137)
(BBZ)	==	Bromobenzene	(80-	120)	(58	3-139)

Log Number Range: 08-5484 to 08-5485

TPHG SOIL SURROGATE RECOVERY SUMMARY

ARI Job: MN48 QC Report No: MN48-URS Corporation

Matrix: Soil Project: Kinder Morgan Laurel Station B'ham

Event: 33760784

Client ID	BFB	TFT	BBZ	TOT OUT
MB-031808	NA	99.0%	105%	0
LCS-031808	NA	101%	108%	0
LCSD-031808	NA	96.6%	104%	0
08-B4-3	NA	87.9%	93.6%	0
08-B4-4.5	NA	82.4%	89.2%	0

		LCS/MB LIMITS	QC LIMITS
(BFB)	= Bromofluorobenzene	(70-130)	(70-130)
(TFT)	= Trifluorotoluene	(80-120)	(65-137)
(BBZ)	= Bromobenzene	(80-120)	(54-144)

Log Number Range: 08-5484 to 08-5485

BETX WATER SURROGATE RECOVERY SUMMARY

ARI Job: MN48 QC Report No: MN48-URS Corporation

Matrix: Water Project: 33760784

Event: NA

 Client ID
 TFT
 BBZ
 TOT OUT

 Trip Blank
 102%
 102%
 0

LCS/MB LIMITS QC LIMITS

(TFT) = Trifluorotoluene(BBZ) = Bromobenzene(80-120)(80-120)

Log Number Range: 08-5490 to 08-5490

TPHG WATER SURROGATE RECOVERY SUMMARY

ARI Job: MN48 QC Report No: MN48-URS Corporation

Matrix: Water Project: 33760784

Event: NA

Client ID TFT BBZ TOT OUT
Trip Blank 101% 103% 0

LCS/MB LIMITS QC LIMITS
Trifluorotoluene (80-120) (80-120)

(TFT) = Trifluorotoluene (80-120) (80-120) (BBZ) = Bromobenzene (80-120) (80-120)

Log Number Range: 08-5490 to 08-5490

ORGANICS ANALYSIS DATA SHEET BETX by Method SW8021BMod TPHG by Method NWTPHG Page 1 of 1

Sample ID: MB-031808
METHOD BLANK

Lab Sample ID: MB-031808

LIMS ID: 08-5484 Matrix: Soil

Data Release Authorized: Reported: 03/19/08

Date Analyzed: 03/18/08 09:19

Instrument/Analyst: PID3/PKC

QC Report No: MN48-URS Corporation

Project: Kinder Morgan Laurel Station B'ham

Event: 33760784

Date Sampled: NA Date Received: NA

Purge Volume: 5.0 mL

Sample Amount: 100 mg-dry-wt

CAS Number	Analyte	RL	Result
71-43-2	Benzene	12	< 12 U
108-88-3	Toluene	12	< 12 U
100-41-4	Ethylbenzene	1.2	< 12 U
	m,p-Xylene	25	< 25 U
95-47-6	o-Xylene	12	< 12 U
			GAS ID
	Gasoline Range Hydrocarbons	5.0	< 5.0 U

BETX Surrogate Recovery

Trifluorotoluene 100% Bromobenzene 105%

Gasoline Surrogate Recovery

Trifluorotoluene 99.0%
Bromobenzene 105%

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

ORGANICS ANALYSIS DATA SHEET BETX by Method SW8021BMod TPHG by Method NWTPHG

Page 1 of 1

Lab Sample ID: MN48A

LIMS ID: 08-5484 Matrix: Soil

Data Release Authorized: Reported: 03/19/08

Date Analyzed: 03/18/08 15:14 Instrument/Analyst: PID3/PKC

Sample ID: 08-B4-3 SAMPLE

QC Report No: MN48-URS Corporation

Project: Kinder Morgan Laurel Station B'ham

Event: 33760784 Date Sampled: 03/13/08 Date Received: 03/14/08

Purge Volume: 5.0 mL

Sample Amount: 70 mg-dry-wt

Percent Moisture: 22.2%

CAS Number	Analyte	RL	Result
71-43-2	Benzene	18	< 18 U
108-88-3	Toluene	18	< 18 U
100-41-4	Ethylbenzene	18	< 18 U
	m,p-Xylene	36	< 36 U
95-47-6	o-Xylene	1.8	< 18 U
			GAS ID
	Gasoline Range Hydrocarbons	7.1	< 7.1 U

BETX Surrogate Recovery

Trifluorotoluene	89.7%
Bromobenzene	95.0%

Gasoline Surrogate Recovery

Trifluorotoluene	87.9%
Bromobenzene	93.6%

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Results corrected for soil moisture content per Section 11.10.5 of EPA Method 8000C.

ORGANICS ANALYSIS DATA SHEET BETX by Method SW8021BMod TPHG by Method NWTPHG Page 1 of 1

Sample ID: 08-B4-4.5 SAMPLE

Lab Sample ID: MN48B

LIMS ID: 08-5485 Matrix: Soil

Matrix: SOII
Data Release Authorized: Reported: 03/19/08

Date Analyzed: 03/18/08 15:39

Instrument/Analyst: PID3/PKC

Project: Kinder Morgan Laurel Station B'ham

Event: 33760784

Date Sampled: 03/13/08 Date Received: 03/14/08

Purge Volume: 5.0 mL

QC Report No: MN48-URS Corporation

Sample Amount: 79 mg-dry-wt

Percent Moisture: 20.3%

CAS Number	Analyte	RL	Result
71-43-2	Benzene	16	< 16 U
108-88-3	Toluene	16	< 16 U
100-41-4	Ethylbenzene	16	< 16 Ŭ
	m,p-Xylene	32	< 32 U
95-47-6	o-Xylene	16	< 16 U
			GAS ID
	Gasoline Range Hydrocarbons	б.4	< 6.4 U

BETX Surrogate Recovery

Bromobenzene Gasoline Surrogate	90.7%
Trifluorotoluene	83.9%

<u>.</u>	
Trifluorotoluene	82.4%
TITIAGIOCOIACIC	02.10
Bromobenzene	89.2%

BETX values reported in μ g/kg (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Results corrected for soil moisture content per Section 11.10.5 of EPA Method 8000C.

ORGANICS ANALYSIS DATA SHEET BETX by Method SW8021BMod TPHG by Method NWTPHG Page 1 of 1

Sample ID: Trip Blank SAMPLE

Lab Sample ID: MN48C

LIMS ID: 08-5490

Data Release Authorized;

Matrix: Water Reported: 03/19/08 QC Report No: MN48-URS Corporation

Project: 33760784

Event: NA

Date Sampled: 03/13/08 Date Received: 03/14/08

Purge Volume: 5.0 mL Date Analyzed: 03/18/08 11:33 Dilution Factor: 1.00 Instrument/Analyst: PID3/PKC

CAS Number	Analyte	RL	Result
71-43-2	Benzene	0.25	< 0.25 U
108-88-3	Toluene	0.25	< 0.25 U
100-41-4	Ethylbenzene	0.25	< 0.25 U
	m,p-Xylene	0.50	< 0.50 Ü
95-47-6	o-Xylene	0.25	< 0.25 U
			GAS ID
	Gasoline Range Hydrocarbons	0.10	< 0.10 U

BETX Surrogate Recovery

Trifluorotoluene	102%
Bromobenzene	102%

Gasoline Surrogate Recovery

Trifluorotoluene	101%
Bromobenzene	103%

BETX values reported in μ g/L (ppb) Gasoline values reported in mg/L (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

ORGANICS ANALYSIS DATA SHEET BETX by Method SW8021BMod

Page 1 of 1

Sample ID: LCS-031808

LAB CONTROL SAMPLE

Lab Sample ID: LCS-031808

LIMS ID: 08-5484 Matrix: Soil

Data Release Authorized:

Date Analyzed LCS: 03/18/08 08:30

Instrument/Analyst LCS: PID3/PKC

LCSD: 03/18/08 08:55

LCSD: PID3/PKC

Reported: 03/19/08

QC Report No: MN48-URS Corporation

Project: Kinder Morgan Laurel Station B'ham

Event: 33760784

Date Sampled: NA Date Received: NA

Purge Volume: 5.0 mL

_ **J** - . . .

Sample Amount LCS: 100 mg-dry-wt LCSD: 100 mg-dry-wt

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Benzene	332	350	94.9%	364	350	104%	9.2%
Toluene	2910	3100	93.9%	3160	3100	102%	8.2%
Ethylbenzene	556	595	93.4%	604	595	102%	8.3%
m,p-Xylene	2100	2230	94.2%	2300	2230	103%	9.1%
o-Xylene	766	790	97.0%	843	790	107%	9.6%

Reported in $\mu g/kg$ (ppb)

RPD calculated using sample concentrations per SW846.

BETX Surrogate Recovery

	LCS	LCSD
Trifluorotoluene	1.03%	97.9%
Bromobenzene	107%	104%

ORGANICS ANALYSIS DATA SHEET TPHG by Method NWTPHG

Page 1 of 1

Lab Sample ID: LCS-031808

LIMS ID: 08-5484 Matrix: Soil

Data Release Authorized: Reported: 03/19/08

10porcou: 05/15/05

Date Analyzed LCS: 03/18/08 08:30

LCSD: 03/18/08 08:55

Instrument/Analyst LCS: PID3/PKC

LCSD: PID3/PKC

Sample ID: LCS-031808

LAB CONTROL SAMPLE

QC Report No: MN48-URS Corporation

Project: Kinder Morgan Laurel Station B'ham

Event: 33760784

Date Sampled: NA Date Received: NA

Purge Volume: 5.0 mL

Sample Amount LCS: 100 mg-dry-wt

LCSD: 100 mg-dry-wt

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD	
Gasoline Range Hydrocarbons	53.2	50.0	106%	54.0	50.0	108%	1.5%	

Reported in mg/kg (ppm)

RPD calculated using sample concentrations per SW846.

TPHG Surrogate Recovery

	LCS	LCSD
Trifluorotoluene	101%	96.6%
Bromobenzene	108%	104%

TPHD SURROGATE RECOVERY SUMMARY

Matrix: Soil

QC Report No: MN48-URS Corporation Project: Kinder Morgan Laurel Station B'ham

33760784

Client ID	OTER	TOT OUT
001000MDG	85.8%	0
031908MBS 031908LCS	96.9%	0
08-B4-3	90.2%	0
08-B4-4.5	94.4%	0

LCS/MB LIMITS QC LIMITS

(OTER) = o-Terphenyl

(46-116)

(42-112)

Prep Method: SW3550B

Log Number Range: 08-5484 to 08-5485

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID

Page 1 of 1 Matrix: Soil QC Report No: MN48-URS Corporation

Project: Kinder Morgan Laurel Station B'ham

33760784

Date Received: 03/14/08

Data Release Authorized:

Reported: 03/25/08

ARI ID	Sample ID	Extraction Date	Analysis Date	EFV DL	Range	RL	Result
MB-031908 08-5484	Method Blank HC ID:	03/19/08	03/20/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	5.0 10	< 5.0 U < 10 U 85.8%
MN48A 08-5484	08-B4-3 HC ID:	03/19/08	03/20/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	6.0 12	< 6.0 U < 12 U 90.2%
MN48B 08-5485	08-B4-4.5 HC ID:	03/19/08	03/20/08 FID3A	1.00	Diesel Motor Oil o-Terphenyl	6.0 12	< 6.0 U < 12 U 94.4%

Reported in mg/kg (ppm)

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis. RL-Reporting limit.

Diesel quantitation on total peaks in the range from C12 to C24. Motor Oil quantitation on total peaks in the range from C24 to C38. HC ID: DRO/RRO indicates results of organics or additional hydrocarbons in ranges are not identifiable.

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID

Page 1 of 1

Lab Sample ID: LCS-031908

LIMS ID: 08-5484 Matrix: Soil

Data Release Authorized:

Reported: 03/25/08

Date Extracted: 03/19/08 Date Analyzed: 03/20/08 08:24 Instrument/Analyst: FID3A/JGR Sample ID: LCS-031908 LAB CONTROL

QC Report No: MN48-URS Corporation

Project: Kinder Morgan Laurel Station B'ham

33760784

Date Sampled: NA Date Received: NA

Sample Amount: 10.0 g Final Extract Volume: 1.0 mL

Dilution Factor: 1.00

Range	Lab Control	Spike Added	Recovery
Diesel	111	150	74.0%

TPHD Surrogate Recovery

o-Terphenyl

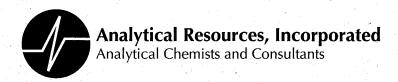
96.9%

Results reported in mg/kg

TOTAL DIESEL RANGE HYDROCARBONS-EXTRACTION REPORT

ARI Job: MN48

Matrix: Soil


Date Received: 03/14/08

Project: Kinder Morgan Laurel Station B'ham

33760784

ARI ID	Client ID	Client Amt	Final Vol	Basis	Prep Date
08-5484-031908MB1	Method Blank	10.0 q	1.00 mI	_	03/19/08
08-5484-031908LCS1	Lab Control	10.0 g	1.00 mI		03/19/08
08-5484-MN48A	08-B4-3	8.29 g	1.00 mI	, D	03/19/08
08-5485-MN48B	08-B4-4.5	8.32 g	1.00 mI	, D	03/19/08

Basis: D=Dry Weight W=As Received
Diesel Extraction Report

March 28, 2008

Karen Mixon
URS Corporation
Century Square
1501 Fourth Avenue Suite 1400
Seattle, WA 98101

RE: Client Project: Kinder Morgan ARI Job No: MO08

Dear Karen:

Please find enclosed the original chain of custody documentation and the final results for the sample from the project referenced above. Analytical Resources, Inc. (ARI) received six soil samples in good condition on March 20, 2008.

The samples were analyzed for NWTPH-Dx and NWTPH-Gx plus BTEX, as requested on the COC.

There were no anomalies associated with the samples.

A copy of these reports and all associated raw data will remain on file electronically with ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

Kelly Bottem

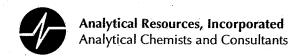
Client Services Manager

206/695-6211

kellyb@arilabs.com

Enclosures

cc: file MO08


KFB/kfb

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number:	Turn-around	Turn-around Requested:	-		Page:	Jo			Analytical Resou	Analytical Resources, Incorporated
ARI Client Company: URS		Phone: $ec{eta}_{0}$	Phone: 206 438 240	100	Date: ()	Date: 03/19/64 Present?	ent?		4611 South 134th Pl Tukwila, WA 98168	4611 South 134th Place, Suite 100 Tukwila, WA 98168
Client Contact: KAREN MIXON	NON				No. of Coolers:	Cooler Temps:	e: So:		206-695-6200 2	206-695-6200 206-695-6201 (fax)
Client Project Name: KINI'S MOSCAN	OSCAN						Analysis Requested	ited	ON	Notes/Comments
Client Project #: 357(0184.0800)	Samplers:	IAN VE	IDN VERMEEREN	>	(-X) H X31	XQ +				
Sample ID	Date	Time	Matrix	No. Containers	Jimh	IATWN				
180-3-0.5	03/19/08	0805	Soil	4	X	X				
180-3-1.5	_	0810			X	X				
190-3-3		0830	·		X	X				
180-2-0.5		0840			X	X				
180-3-1.5		0380			X	X.				
189-3-4	>	09 60	₯	\rightarrow	X	X				
						,				
										000
Comments/Special Instructions	Relinquished by: (Signature)	1		Received by:	- Chille on I Mark	When	Relinquished by:	(Signature)	Received by: (Signature)	Mariek
	Printed Name:	Name: (AN VERMEEREN	N	Printed Name:	Name: The Market	イギン	Printed Name: [PSSA Peres	Printed Name: [PRSSA PECKSON- FRANKS	Printed Name: //	1 AMOUNT TAN
		URS		ğ	3		Company: URS		Company:	
	Date & Time: 03/19/03		北京	Date & Time: 03/19/09	5076	4:30	Date & Time:	£:59	Date & Time:	1000
										(0,0)

meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program signed agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Cooler Receipt Form

ARI Client:	ARI Client: //25	Project Name:	KINDER I	YORGIAN	. 1.	
Assigned ARI Job No: MEDOS Tracking No: No Preliminary Examination Phase: Were intact, properly signed and dated custody seals attached to the outside of to cooler? No Were custody papers included with the cooler? No Were custody papers properly filled out (ink, signed, etc.) No Record cooler temperature (recommended 2.0-6.0 °C for chemistry No Cooler Accepted by: Date: John Time: No Complete custody forms and attach all shipping documents Log-In Phase: Was a temperature blank included in the cooler? No Were all bottles sealed in individual plastic bags? YES NO Were all bottle arrive in good condition (unbroken)? YES NO Were all bottle labels complete and legible? YES NO Were all bottle labels and tags agree with custody papers? YES NO Were all bottles used correct for the requested analyses? YES NO Were all bottles used correct for the requested analyses? YES NO Were all bottles and tags agree with custody papers? YES NO Were all bottles arrive in good condition (unbroken)? YES NO Were all bottles are fags agree with custody papers? YES NO Were all bottles are fags agree with custody papers? YES NO Were all bottles are fags agree with custody papers? YES NO Were all bottles are fags agree with custody papers? YES NO Samples Logged by: YES NO YES		Delivered by:	DUPILIZ - an	<u>Q</u>		
Preliminary Examination Phase: Were intact, properly signed and dated custody seals attached to the outside of to cooler? Were custody papers included with the cooler? Were custody papers properly filled out (ink, signed, etc.) Record cooler temperature (recommended 2.0-6.0 °C for chemistry Date: Jolos Time: Inst Complete custody forms and attach all shipping documents Log-In Phase: Was a temperature blank included in the cooler? Was sufficient ice used (if appropriate)? Were all bottles arrive in good condition (unbroken)? Were all bottle labels complete and legible? Were all bottle labels complete and legible? Do any of the analysos (bottles) require preservation? (attach preservation checklist) Were sufficient amount of sample sent in each bottle? Pale: Jolos NO Were all VOC vials free of air bubbles? NO Was sufficient amount of sample sent in each bottle? Pale: Jolos Time: Inst NO Explain discrepancies or negative responses:						
Were intact, properly signed and dated custody seals attached to the outside of to cooler? Were custody papers included with the cooler? Were custody papers properly filled out (ink, signed, etc.) Record cooler temperature (recommended 2.0-6.0 °C for chemistry Date: 300 °C Cooler Accepted by: Complete custody forms and attach all shipping documents Log-In Phase: Was a temperature blank included in the cooler? What kind of packing material was used? Was sufficient ice used (if appropriate)? Were all bottles sealed in individual plastic bags? Were all bottle labels complete and legible? Were all bottle labels and tags agree with custody papers? Were all bottles used correct for the requested analyses? Were all bottles used correct for the requested analyses? Were all VOC vials free of air bubbles? Was sufficient amount of sample sent in each bottle? Explain discrepancies or negative responses: Explain discrepancies or negative responses:	Preliminary Examination Phase:		· .			
Were custody papers included with the cooler? Were custody papers properly filled out (ink, signed, etc.) Record cooler temperature (recommended 2.0-6.0 °C for chemistry Date: 3 10 8 Time: 1550 Complete custody forms and attach all shipping documents Log-In Phase: Was a temperature blank included in the cooler? What kind of packing material was used? Was sufficient ice used (if appropriate)? Were all bottles sealed in individual plastic bags? Did all bottle labels complete and legible? Were all bottle labels and tags agree with custody papers? Were all bottles used correct for the requested analyses? Do any of the analyses (bottles) require preservation? (attach preservation checklist) Were all VOC vials free of air bubbles? Was sufficient amount of sample sent in each bottle? Date: 3/20/08 Time: 11 28 Explain discrepancies or negative responses:	· · · · ·					
Were custody papers properly filled out (ink, signed, etc.) Record cooler temperature (recommended 2.0-6.0 °C for chemistry Date: 370 °C Cooler Accepted by: Date: 470 °C Complete custody forms and attach all shipping documents Log-In Phase: Was a temperature blank included in the cooler? What kind of packing material was used? Was sufficient ice used (if appropriate)? Were all bottles sealed in individual plastic bags? Did all bottle arrive in good condition (unbroken)? Were all bottle labels complete and legible? Were all bottle labels correct for the requested analyses? Were all bottles used correct for the requested analyses? Were all VOC vials free of air bubbles? Were all VOC vials free of air bubbles? Date: 3/40/08 Time: 11 280 Explain discrepancies or negative responses:						
Record cooler temperature (recommended 2.0-6.0 °C for chemistry						
Complete custody forms and attach all shipping documents Log-In Phase: Was a temperature blank included in the cooler? What kind of packing material was used? Was sufficient ice used (if appropriate)? Were all bottles sealed in individual plastic bags? Were all bottle arrive in good condition (unbroken)? Were all bottle labels complete and legible? Were all bottle labels and tags agree with custody papers? Were all bottle used correct for the requested analyses? Were all VOC vials free of air bubbles? Was sufficient amount of sample sent in each bottle? **Notify Project Manager of discrepancies or concerns** Explain discrepancies or negative responses:						
Log-In Phase: Was a temperature blank included in the cooler? What kind of packing material was used? Was sufficient ice used (if appropriate)? Were all bottles sealed in individual plastic bags? Vers all bottle arrive in good condition (unbroken)? Were all bottle labels complete and legible? Were all bottle labels and tags agree with custody papers? Were all bottles used correct for the requested analyses? Were all bottles analyses (bottles) require preservation? (attach preservation checklist) Were all VOC vials free of air bubbles? Was sufficient amount of sample sent in each bottle? Date: 3/20/05 Time: 11.25 **Notify Project Manager of discrepancies or concerns ** Explain discrepancies or negative responses:	• No. 100 (1997)			-		
Was a temperature blank included in the cooler? What kind of packing material was used? Was sufficient ice used (if appropriate)? Were all bottles sealed in individual plastic bags? Did all bottle arrive in good condition (unbroken)? Were all bottle labels complete and legible? Did all bottle labels and tags agree with custody papers? Were all bottle sused correct for the requested analyses? Were all bottles used correct for the requested analyses? Were all VOC vials free of air bubbles? Was sufficient amount of sample sent in each bottle? **Notify Project Manager of discrepancies or concerns ** Explain discrepancies or negative responses:	Cooler Accepted by:	re	Date: 3/2	2/08 Tir	me: <u>//</u> /	15()
Was a temperature blank included in the cooler? What kind of packing material was used? Was sufficient ice used (if appropriate)? Were all bottle sealed in individual plastic bags? Did all bottle arrive in good condition (unbroken)? Were all bottle labels complete and legible? Were all bottle labels and tags agree with custody papers? Were all bottle sused correct for the requested analyses? Were all bottles used correct for the requested analyses? Were all VOC vials free of air bubbles? Was sufficient amount of sample sent in each bottle? **Notify Project Manager of discrepancies or concerns** Explain discrepancies or negative responses:	Complete custod	ly forms and attach all sl	hipping docu	ments	2 * 4	
What kind of packing material was used? Was sufficient ice used (if appropriate)? Were all bottles sealed in individual plastic bags? Did all bottle arrive in good condition (unbroken)? Were all bottle labels complete and legible? Did all bottle labels and tags agree with custody papers? Were all bottle sused correct for the requested analyses? Were all bottles used correct for the requested analyses? Were all VOC vials free of air bubbles? Was sufficient amount of sample sent in each bottle? **Notify Project Manager of discrepancies or concerns ** Explain discrepancies or negative responses:	Log-In Phase:					
What kind of packing material was used? Was sufficient ice used (if appropriate)? Were all bottles sealed in individual plastic bags? Did all bottle arrive in good condition (unbroken)? Were all bottle labels complete and legible? Did all bottle labels and tags agree with custody papers? Were all bottle sused correct for the requested analyses? Were all bottles used correct for the requested analyses? Were all VOC vials free of air bubbles? Was sufficient amount of sample sent in each bottle? **Notify Project Manager of discrepancies or concerns ** Explain discrepancies or negative responses:	Was a temperature blank included in the	ronler?			VEQ	√ 100
Was sufficient ice used (if appropriate)? Were all bottles sealed in individual plastic bags? Did all bottles arrive in good condition (unbroken)? Were all bottle labels complete and legible? Did all bottle labels and tags agree with custody papers? Were all bottles used correct for the requested analyses? Do any of the analyses (bottles) require preservation? (attach preservation checklist) Were all VOC vials free of air bubbles? Were all VOC vials free of air bubbles? Was sufficient amount of sample sent in each bottle? Date: 3/20/05/Time: 11.26/ *** Notify Project Manager of discrepancies or concerns *** Explain discrepancies or negative responses:			•			E
Were all bottles sealed in individual plastic bags? Did all bottle arrive in good condition (unbroken)? Were all bottle labels complete and legible? NO Did all bottle labels and tags agree with custody papers? WES NO Were all bottles used correct for the requested analyses? Do any of the analyses (bottles) require preservation? (attach preservation checklist) Were all VOC vials free of air bubbles? Were all VOC vials free of air bubbles? Was sufficient amount of sample sent in each bottle? Date: 3/20/05 Time: 11 26 *** Notify Project Manager of discrepancies or concerns ** Explain discrepancies or negative responses:						 .
Did all bottle arrive in good condition (unbroken)? Were all bottle labels complete and legible? NO Did all bottle labels and tags agree with custody papers? WES NO Were all bottles used correct for the requested analyses? Do any of the analyses (bottles) require preservation? (attach preservation checklist) Were all VOC vials free of air bubbles? WA YES NO Was sufficient amount of sample sent in each bottle? Date: 3/20/08 Time: 11 20 *** Notify Project Manager of discrepancies or concerns *** Explain discrepancies or negative responses:						_
Were all bottle labels complete and legible?		*			_	
Did all bottle labels and tags agree with custody papers? Were all bottles used correct for the requested analyses? Do any of the analyses (bottles) require preservation? (attach preservation checklist) Were all VOC vials free of air bubbles? Was sufficient amount of sample sent in each bottle? **Notify Project Manager of discrepancies or concerns ** Explain discrepancies or negative responses:		•				
Were all bottles used correct for the requested analyses?						
Do any of the analyses (bottles) require preservation? (attach preservation checklist)						
Were all VOC vials free of air bubbles?	· ·	•				. —
Was sufficient amount of sample sent in each bottle?		•				NO
** Notify Project Manager of discrepancies or concerns ** Explain discrepancies or negative responses:						NO
** Notify Project Manager of discrepancies or concerns ** Explain discrepancies or negative responses:	Samples Logged by: a_e	Date:	3/20/08	Time: 11	205	
					->x >	•
By: Date:	Explain discrepancies or negative respons	es:			, .	
By: Date:						
By: Date:						
By: Date:						
By: Date:						
By: Date:						
By: Date:						
By: Date:						
By: Date:						
		Ву:		Date:		

BETX SOIL SURROGATE RECOVERY SUMMARY

ARI Job: MO08 Matrix: Soil

QC Report No: MO08-URS Corporation Project: Kinder Morgan Event: 33760784.08001

Client ID	TFT	BBZ	TOT OUT
MB-032608	97.6%	100%	0
LCS-032608	104%	107%	0
LCSD-032608	95.3%	99.2%	0
180-3-0.5'	96.7%	98.5%	0
180-3-1.5'	97.7%	100%	0
180-3-3'	96.2%	99.5%	0
180-2-0.5'	95.1%	99.0%	0
180-2-1.5'	87.8%	90.6%	0
180-2-4'	96.6%	99.4%	0

			LCS/MB LIMITS	QC LIMITS
(TFT)	=	Trifluorotoluene	(80-120)	(61-137)
(BBZ)	=	Bromobenzene	(80-120)	(58-139)

Log Number Range: 08-5755 to 08-5760

TPHG SOIL SURROGATE RECOVERY SUMMARY

ARI Job: MO08 Matrix: Soil

QC Report No: M008-URS Corporation Project: Kinder Morgan Event: 33760784.08001

Client ID	BFB	TFT	BBZ	TOT OUT
MB-032608	NA	98.0%	101%	0
LCS-032608	NA	104%	108%	0
LCSD-032608	NA	94.8%	100%	0
180-3-0.5'	NA	97.4%	101%	0
180-3-1.5'	NA	98.4%	102%	0
180-3-3'	NA	97.6%	102%	0
180-2-0.5'	NA	96.7%	102%	0
180-2-1.5'	NA	89.5%	93.1%	0
180-2-4'	NA	97.1%	102%	0

			LCS/MB	LIMITS	1	QC LIMITS
(BFB)	=	Bromofluorobenzene	(70-	130)		(70-130)
(TFT)	=	Trifluorotoluene	(80-	120)		(65-137)
(BBZ)	=	Bromobenzene	(80-	120)		(54-144)

Log Number Range: 08-5755 to 08-5760

ORGANICS ANALYSIS DATA SHEET BETX by Method SW8021BMod TPHG by Method NWTPHG Page 1 of 1

Sample ID: MB-032608 METHOD BLANK

Lab Sample ID: MB-032608

LIMS ID: 08-5755 Matrix: Soil

Data Release Authorized:

Date Analyzed: 03/26/08 10:57

Instrument/Analyst: PID3/PKC

Reported: 03/28/08

QC Report No: MO08-URS Corporation

Project: Kinder Morgan Event: 33760784.08001

Date Sampled: NA Date Received: NA

Purge Volume: 5.0 mL

Sample Amount: 100 mg-dry-wt

CAS Number	Analyte	RL	Result
71-43-2	Benzene	12	< 12 U
108-88-3	Toluene	12	< 12 U
100-41-4	Ethylbenzene	12	< 12 U
	m,p-Xylene	25	< 25 U
95-47-6	o-Xylene	12	< 12 U
			GAS ID
	Gasoline Range Hydrocarbons	5.0	< 5.0 U

BETX Surrogate Recovery

Trifluorotoluene	97.6%
Bromobenzene	100%

Gasoline Surrogate Recovery

Trifluorotoluene	98.0%
Bromobenzene	101%

BETX values reported in μ g/kg (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

ORGANICS ANALYSIS DATA SHEET BETX by Method SW8021BMod TPHG by Method NWTPHG

Page 1 of 1

Lab Sample ID: MO08A LIMS ID: 08-5755

Matrix: Soil

Data Release Authorized:

Reported: 03/28/08

Date Analyzed: 03/26/08 12:43 Instrument/Analyst: PID3/PKC

Sample ID: 180-3-0.5' SAMPLE

QC Report No: MO08-URS Corporation

Project: Kinder Morgan Event: 33760784.08001

Date Sampled: 03/19/08 Date Received: 03/20/08

> Purge Volume: 5.0 mL Sample Amount: 87 mg-dry-wt

Percent Moisture: 3.9%

CAS Number	Analyte	RL	Result
71-43-2	Benzene	14	< 14 U
L08-88-3	Toluene	14	< 14 U
00-41-4	Ethylbenzene	14	< 14 U
	m,p-Xylene	. 29	< 29 U
95-47-6	o-Xylene	14	< 14 U
			(
	Gasoline Range Hydrocarbons	5.8	< 5.8 U
	BETX Surrogate Recove	ry	•
	Trifluorotoluene	96.7%	
	Bromobenzene	98.5%	
	Gasoline Surrogate Reco	very	
	Trifluorotoluene	97.4%	
	Bromobenzene	101%	

BETX values reported in μ g/kg (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Results corrected for soil moisture content per Section 11.10.5 of EPA Method 8000C.

Sample ID: 180-3-1.5' SAMPLE

Lab Sample ID: MO08B

LIMS ID: 08-5756 Matrix: Soil

Data Release Authorized:

Reported: 03/28/08

Date Analyzed: 03/26/08 13:08 Instrument/Analyst: PID3/PKC

QC Report No: MO08-URS Corporation

Project: Kinder Morgan Event: 33760784.08001

Date Sampled: 03/19/08 Date Received: 03/20/08

> Purge Volume: 5.0 mL Sample Amount: 79 mg-dry-wt

Percent Moisture: 4.7%

CAS Number	Analyte RL		Result
71-43-2	Benzene	16	< 16 U
108-88-3	Toluene	16	< 16 U
100-41-4	Ethylbenzene	16	< 16 U
	m,p-Xylene	32	< 32 U
95-47-6	o-Xylene	16	< 16 U
			GAS :

6.3 Gasoline Range Hydrocarbons 9.1 GRO

BETX Surrogate Recovery

Trifluorotoluene	97.7%
Bromobenzene	100%
Casaline Surrogate	Basarran

Gasoline Surrogate Recovery

Trifluorotoluene 98.4% Bromobenzene 102%

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable qasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Sample ID: 180-3-3' SAMPLE

Lab Sample ID: MO08C

LIMS ID: 08-5757 Matrix: Soil

Data Release Authorized:

Reported: 03/28/08

Date Analyzed: 03/26/08 13:33

Instrument/Analyst: PID3/PKC

QC Report No: MO08-URS Corporation

Project: Kinder Morgan Event: 33760784.08001

Date Sampled: 03/19/08 Date Received: 03/20/08

Purge Volume: 5.0 mL

Sample Amount: 110 mg-dry-wt

Percent Moisture: 7.0%

CAS Number	Analyte	RL	Result	
71-43-2	Benzene	11	< 11 U	
108-88-3	Toluene	11	< 11 U	
100-41-4	Ethylbenzene	11	< 11 U	
	m,p-Xylene	23	< 23 U	
95-47-6	o-Xylene	11	< 11 U	
			G.	A S
	Gasoline Range Hydrocarbons	4.5	< 4.5 U	
	BETX Surrogate Recove	ry		
	Trifluorotoluene	96.2%		
	Bromobenzene	99.5%		
	Gasoline Surrogate Reco	very		
	Trifluorotoluene	97.6%		
	Bromobenzene	102%		

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Sample ID: 180-2-0.5' SAMPLE

Lab Sample ID: MO08D

LIMS ID: 08-5758 Matrix: Soil

Data Release Authorized:

Reported: 03/28/08

Date Analyzed: 03/26/08 13:57 Instrument/Analyst: PID3/PKC

Date Received: 03/20/08

Purge Volume: 5.0 mL Sample Amount: 90 mg-dry-wt

QC Report No: MO08-URS Corporation

Event: 33760784.08001

Project: Kinder Morgan

Percent Moisture: 6.4%

Date Sampled: 03/19/08

CAS Number	Analyte	RL	Result	
71-43-2	Benzene	14	< 14 U	
108-88-3	Toluene	14	< 14 U	
100-41-4	Ethylbenzene	14	< 14 U	
	m,p-Xylene	28	< 28 U	
95-47-6	o-Xylene	14	< 14 U	
			G	AS ID
	Gasoline Range Hydrocarbons	5.6	< 5.6 U	
	BETX Surrogate Recovery			
	Trifluorotoluene 95	5.1%		

rifluorotoluene	95.1%
romohenzene	ବବ ମହ

Bromobenzene

Gasoline Surrogate Recovery

Trifluorotoluene	96.7%
Bromobenzene	102%

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Sample ID: 180-2-1.5' SAMPLE

Lab Sample ID: MO08E

LIMS ID: 08-5759 Matrix: Soil

Data Release Authorized:

Reported: 03/28/08

Date Analyzed: 03/26/08 14:22 Instrument/Analyst: PID3/PKC

QC Report No: MO08-URS Corporation

Project: Kinder Morgan Event: 33760784.08001

Date Sampled: 03/19/08 Date Received: 03/20/08

Purge Volume: 5.0 mL

Sample Amount: 98 mg-dry-wt

Percent Moisture: 7.3%

CAS Number	Analyte	RL	Result
71-43-2	Benzene	13	< 13 U
108-88-3	Toluene	13	< 13 U
100-41-4	Ethylbenzene	13	< 13 U
	m,p-Xylene	25	< 25 U
95-47-6	o-Xylene	13	< 13 U
			GAS
	Gasoline Range Hydrocarbons	5.1	< 5.1 U -
	BETX Surrogate Recovery		
	mai filmono de la como	. 0%	

Trifluorotoluene	87.8%
Bromobenzene	90.6%

Gasoline Surrogate Recovery

· · · · · · · · · · · · · · · · · · ·	
Trifluorotoluene	89.5%
Bromobenzene	93.1%

BETX values reported in μ g/kg (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

Sample ID: 180-2-4' SAMPLE

Lab Sample ID: MO08F

LIMS ID: 08-5760 Matrix: Soil

Data Release Authorized:

Reported: 03/28/08

Date Analyzed: 03/26/08 16:00

Instrument/Analyst: PID3/PKC

QC Report No: MO08-URS Corporation

Project: Kinder Morgan Event: 33760784.08001

Date Sampled: 03/19/08 Date Received: 03/20/08

> Purge Volume: 5.0 mL Sample Amount: 86 mg-dry-wt

Percent Moisture: 14.7%

CAS Number	Analyte	RL	Result	
71-43-2	Benzene	14	< 14 U	
108-88-3	Toluene	14	< 14 U	
100-41-4	Ethylbenzene	14	< 14 U	
	m,p-Xylene	29	< 29 U	
95-47-6	o-Xylene	14	< 14 U	
			G	AS I
	Gasoline Range Hydrocarbons	5.8	< 5.8 U	
	BETX Surrogate Recove	ry		
	Trifluorotoluene	96.6%		
	Bromobenzene	99.4%		

Gasoline Surrogate Recovery Trifluorotoluene 97.1% 102% Bromobenzene

BETX values reported in $\mu g/kg$ (ppb) Gasoline values reported in mg/kg (ppm)

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

ORGANICS ANALYSIS DATA SHEET BETX by Method SW8021BMod

Page 1 of 1

Lab Sample ID: LCS-032608

LIMS ID: 08-5755 Matrix: Soil

Data Release Authorized:

Reported: 03/28/08

Date Analyzed LCS: 03/26/08 10:08

LCSD: 03/26/08 10:32 Instrument/Analyst LCS: PID3/PKC

LCSD: PID3/PKC

Sample ID: LCS-032608

LAB CONTROL SAMPLE

QC Report No: MO08-URS Corporation

Project: Kinder Morgan

Event: 33760784.08001

Date Sampled: NA Date Received: NA

Purge Volume: 5.0 mL

Sample Amount LCS: 100 mg-dry-wt

LCSD: 100 mg-dry-wt

Analyte	LCS	Spike Added-LC:	LCS S Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
D	328	350	93.7%	302	350	86.3%	8.3%
Benzene		3100	91.6%	2610	3100	84.2%	8.4%
Toluene	2840			-	_		
Ethylbenzene	546	595	91.8%	502	595	84.4%	8.4%
4	2050	2230	91.9%	1890	2230	84.8%	8.1%
m,p-Xylene o-Xylene	736	790	93.2%	694	790	87.8%	5.9%

Reported in $\mu g/kg$ (ppb)

RPD calculated using sample concentrations per SW846.

BETX Surrogate Recovery

	LCS	LCSD
Trifluorotoluene	104%	95.3%
Bromobenzene	107%	99.2%

ORGANICS ANALYSIS DATA SHEET TPHG by Method NWTPHG

Page 1 of 1

Lab Sample ID: LCS-032608

LIMS ID: 08-5755 Matrix: Soil

Data Release Authorized:

Reported: 03/28/08

Date Analyzed LCS: 03/26/08 10:08

LCSD: 03/26/08 10:32 Instrument/Analyst LCS: PID3/PKC

LCSD: PID3/PKC

Sample ID: LCS-032608

LAB CONTROL SAMPLE

QC Report No: MO08-URS Corporation

Project: Kinder Morgan

Event: 33760784.08001

Date Sampled: NA Date Received: NA

Purge Volume: 5.0 mL

Sample Amount LCS: 100 mg-dry-wt

LCSD: 100 mg-dry-wt

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCS	LCSD D Recovery	RPD
Gasoline Range Hydrocarbons	52.6	50.0	105%	46.7	50.0	93.4%	11.9%
	Report	ed in mg/	kg (ppm)				

RPD calculated using sample concentrations per SW846.

TPHG Surrogate Recovery

	LCS	LCSD
Trifluorotoluene	104%	94.8%
Bromobenzene	108%	100%

TPHD SURROGATE RECOVERY SUMMARY

Matrix: Soil

QC Report No: MO08-URS Corporation Project: Kinder Morgan

33760784.08001

Client ID	OTER	TOT OUT
180-3-0.5'	86.2%	0
180-3-1.5'	75.8%	0
180-3-3'	86.7%	0
180-2-0.5'	79.8%	0
180-2-1.5'	77.6%	0
032408MBS	86.7%	0
032408LCS	80.9%	0
032408LCSD	84.4%	0
180-2-4'	90.4%	0
180-2-4' MS	89.6%	0
180-2-4' MSD	91.1%	0

LCS/MB LIMITS QC LIMITS

(OTER) = o-Terphenyl

(46-116)

(42-112)

Prep Method: SW3550B

Log Number Range: 08-5755 to 08-5760

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID Page 1 of 1

Matrix: Soil

QC Report No: MO08-URS Corporation

Project: Kinder Morgan

33760784.08001 Date Received: 03/20/08

Data Release Authorized: Reported: 03/28/08

Extraction Analysis EFV Result RLDate Date DLRange ARI ID Sample ID 6.0 < 6.0 U 03/24/08 03/25/08 1.00 Diesel 180-3-0.5' A800M < 12 U 12 Motor Oil HC ID: ---FID3A 1.0 08-5755 86.2% o-Terphenyl 5.3 < 5.3 U Diesel 180-3-1.5' 03/24/08 03/25/08 1.00 MO08B 11 < 11 U FID3A 1.0 Motor Oil HC ID: ---08-5756 75.8% o-Terphenyl 5.4 < 5.4 U 03/24/08 03/25/08 1.00 Diesel 1.80-3-3 MO08C < 11 U Motor Oil 11 HC ID: ---FID3A 1.0 08-5757 86.7% o-Terphenyl < 5.3 U 5.3 1.00 Diesel 180-2-0.5' 03/24/08 03/25/08 MO08D 11 < 11 U Motor Oil FID3A 1.0 08-5758 HC ID: ---79.8% o-Terphenyl 6.0 < 6.0 U Diesel 03/24/08 03/25/08 1.00 180-2-1.5' MO08E < 12 U Motor Oil 12 HC ID: ---FID3A 1.0 08-5759 77.6% o-Terphenyl 5.0 < 5.0 U Diesel MB-032408 Method Blank 03/24/08 03/25/08 1.00 Motor Oil < 10 U 10 HC ID: ---FID3A 1.0 08-5760 86.7% o-Terphenyl 6.1 < 6.1 UDiesel 03/25/08 1.00 03/24/08 MO08F 180-2-4 Motor Oil < 12 U 12 HC ID: ---1.0 FID3A 08~5760 90.4% o-Terphenyl

Reported in mg/kg (ppm)

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis. RL-Reporting limit.

Diesel quantitation on total peaks in the range from C12 to C24. Motor Oil quantitation on total peaks in the range from C24 to C38. HC ID: DRO/RRO indicates results of organics or additional hydrocarbons in ranges are not identifiable.

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID

Page 1 of 1

MS/MSD

Lab Sample ID: MO08F LIMS ID: 08-5760

Matrix: Soil

Data Release Authorized:

Date Extracted MS/MSD: 03/24/08

Date Analyzed MS: 03/25/08 19:15

Instrument/Analyst MS: FID3A/JGR

MSD: 03/25/08 19:31

MSD: FID3A/JGR

Reported: 03/28/08

QC Report No: MO08-URS Corporation

Project: Kinder Morgan

33760784.08001

Date Sampled: 03/19/08 Date Received: 03/20/08

Sample Amount MS: 8.20 g-dry-wt

Sample ID: 180-2-4'

MSD: 8.17 g-dry-wt

Final Extract Volume MS: 1.0 mL

MSD: 1.0 mL

Dilution Factor MS: 1.00

MSD: 1.00

Percent Moisture: 18.3%

MSD Spike Spike MS MSD Added-MSD Recovery RPD Added-MS Recovery Sample MS Range 2.9% 184 77.2% 75.4% 142 < 6.1 U 183 Diesel

TPHD Surrogate Recovery

MS o-Terphenyl

89.6% 91.1%

MSD

Results reported in mg/kg RPD calculated using sample concentrations per SW846.

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID

Page 1 of 1

Sample ID: LCS-032408

LCS/LCSD

Lab Sample ID: LCS-032408

LIMS ID: 08-5760 Matrix: Soil

Data Release Authorized:

Reported: 03/28/08

QC Report No: MO08-URS Corporation

Project: Kinder Morgan

33760784.08001

Date Sampled: NA Date Received: NA

Date Extracted LCS/LCSD: 03/24/08

Sample Amount LCS: 10.0 g

LCSD: 10.0 g

Date Analyzed LCS: 03/25/08 16:27 LCSD: 03/25/08 16:42

Final Extract Volume LCS: 1.0 mL LCSD: 1.0 mL

Instrument/Analyst LCS: FID3A/JGR

Dilution Factor LCS: 1.00

LCSD: FID3A/JGR

LCSD: 1.00

Range	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD	
Diesel	102	150	68.0%	103	150	68.7%	1.0%	

TPHD Surrogate Recovery

LCSD LCS

o-Terphenyl

80.9% 84.4%

Results reported in mg/kg RPD calculated using sample concentrations per SW846.

TOTAL DIESEL RANGE HYDROCARBONS-EXTRACTION REPORT

ARI Job:

800M

Matrix: Soil

Date Received: 03/20/08

Project: Kinder Morgan 33760784.08001

Client Final Prep Date Vol Basis ARI ID Client ID Amt 03/24/08 8.26 g 1.00 mL D 180-3-0.5 08-5755-MO08A 03/24/08 D 180-3-1.5' 9.40 g 1.00 mL 08-5756-MO08B 03/24/08 D 9.28 g 1.00 mL 08-5757-MO08C 180-3-3' 03/24/08 D 1.00 mL 180-2-0.5 9.46 g 08-5758-MO08D 03/24/08 8.29 g 1.00 mL \mathbb{D} 180-2-1.5' 08-5759-MO08E 03/24/08 1.00 mL Method Blank 10.0 g 08-5760-032408MB1 03/24/08 1.00 mL 08-5760-032408LCS1 Lab Control 10.0 g 03/24/08 1.00 mL 08-5760-032408LCSD1 Lab Control Dup 10.0 g 03/24/08 8.19 g 1.00 mL D 180-2-4' 08-5760-MO08F 03/24/08 1.00 mL D 08-5760-MO08FMS 180-2-4 8.20 g 1.00 mL 03/24/08 8.17 g D 08-5760-MO08FMSD 180-2-4'

URS

Memo

1501 4th Avenue, Suite 1400 Seattle, Washington 98101 206.438.2700 Telephone 206.438.2699 Fax

To:

Karen Mixon, Project Manager

Info:

FINAL

From:

Alison M Rohde, Chemist

Date:

January 19, 2007

Summary Data Quality Review

SUBJECT:

Laurel Station Facility, Kinder Morgan

Bellingham, Washington

Groundwater Monitoring - November/December 2006

The summary data quality review of 7 groundwater samples, one field duplicate, and one trip blank collected between November 7 and December 8, 2006 has been completed. The samples were analyzed at the Analytical Resources, Incorporated (ARI) laboratory in Tukwila, Washington for volatile organic compounds (VOCs) by EPA Method 8260B, total petroleum hydrocarbons (TPH, gasoline-range, diesel-range and oil-range) by Washington State Department of Ecology (Ecology) methods NWTPH-Gx and NWTPH-Dx, and/or polynuclear aromatic hydrocarbons (PAHs) by EPA Method 8270D modified for select ion monitoring (SIM) as described below. The analyses were performed in general accordance with the methods specified in EPA's Test Methods for Evaluating Solid Waste (SW-846), Update IIIB, June 2005 and Ecology's Analytical Methods for Petroleum Hydrocarbons, June 1997. The laboratory provided a summary report containing sample results and associated QA/QC data for all samples. The following samples are associated with ARI sample delivery groups (SDGs) KF01, KG83, and KI11:

Sample ID	ARI ID	Requested Analysis
SW-4	KF01A	VOCs, NWTPH-Dx, PAHs
Trip Blank	KF01B	VOCs
SW-4	KG83A	PAHs
DW-1	KI11A	VOCs, NWTPH-Gx, NWTPH-Dx, PAHs
DW-2	KI11B	VOCs, NWTPH-Gx, NWTPH-Dx, PAHs
DW-3	KI11C	VOCs, NWTPH-Gx, NWTPH-Dx, PAHs
DW-4	KI11D	VOCs, NWTPH-Gx, NWTPH-Dx, PAHs
SW-2	KI11E	VOCs, NWTPH-Gx, NWTPH-Dx, PAHs
DW-5	KI11F	VOCs, NWTPH-Gx, NWTPH-Dx, PAHs
DUP (Duplicate of DW-4)	KI11G	VOCs, NWTPH-Gx, NWTPH-Dx, PAHs

Upon receipt by ARI, the sample jar information was compared to the chain-of-custody (COC). No discrepancies relating to sample identification were noted by ARI and the coolers were within the EPA-recommended range of $4^{\circ}\text{C}\pm2^{\circ}$ C.

Data validation is based on method performance criteria and, where appropriate, laboratory-specified control limits. Hold times, method / trip blanks, surrogate recoveries, matrix spike/matrix spike duplicate recoveries, laboratory duplicate results, blank spike recoveries (laboratory control samples) and reporting limits were reviewed

Summary Data Quality Review Laurel Station Facility, Kinder Morgan Groundwater Monitoring

to assess compliance with applicable methods. If data qualification was required, data were qualified based on the definitions and use of qualifying flags outlined in the EPA document *USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Organic Data Review,* October 1999.

Organic Analysis

Samples were analyzed for VOCs, TPH, and/or PAHs by the methods identified in the introduction of this report.

1. Holding Times – Acceptable except as noted below:

PAHs by Method 8270D-SIM – Sample SW-4 (KF01A) was extracted and analyzed by EPA method 8270D but not by the low-level technique required to achieve reporting limits below the Ecology Model Toxics Control Act (MTCA) Method B groundwater cleanup levels. URS Corporation requested ARI to use the remaining unused sample volume to extract and analyze the sample using the low-level method. ARI relogged the sample under work order KG83. The sample was extracted 16 days past the 7-day method holding time. PAHs were not detected in the sample in either analysis. The PAH results for the reextracted sample (KG83) are qualified as estimated based on the holding time exceedance and flagged 'J' if reported as detected or 'UJ' if reported as not detected.

2. Blanks – Acceptable except as noted below:

<u>PAHs by Method 8270D-SIM</u> – Naphthalene (0.0064 ug/L) was detected in the method blank extracted on November 30, 2006 with sample SW-4 (KG83A). Per CLP guidelines, analytes detected in samples that are also detected in blanks are qualified if the sample concentration is less than five times (5x) the blank concentration. Naphthalene was detected in sample SW-4 at a concentration less than 5x the method blank concentration; therefore, the result for naphthalene was qualified as not detected and flagged 'U' at the reported result.

- 3. Surrogates Acceptable
- 4. Laboratory Control/Laboratory Control Duplicate Samples (LCS/LCSD) Acceptable except as noted below:

<u>VOCs by Method 8260B</u> – The percent recoveries for tetrachloroethene (115%) and acrolein (68.0%) in the LCS analyzed on December 12, 2006 (associated with samples in KI11) were outside the laboratory control limits of 77-114% and 69-118%, respectively. As the LCSD and relative percent difference (RPD) for the LCS/LCSD pairs were acceptable, data were not qualified based on the LCS results.

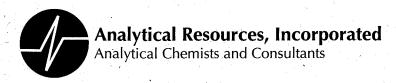
Matrix Spike / Matrix Spike Duplicates (MS/MSD) – Acceptable except as noted below:

General - MS/MSDs were performed on sample SW-2 for TPH and PAHs. Results were acceptable.

<u>VOCs by Method 8260B</u> - A MS/MSD was performed on sample SW-2. With the exception of 2-chloroethylvinylether (2-CVE), recoveries were acceptable. 2-CVE was not recovered. 2-CVE has been documented to be unstable in the presence of acids; even dilute acids will produce hydrolysis of 2-CVE to acetaldehyde and 2-chloroethanol. Any 2-CVE which may have been present in a water sample is therefore likely to react with the hydrochloric acid used for sample preservation. The results for 2-CVE for samples associated with these SDGs are qualified as rejected and flagged 'R.'

Summary Data Quality Review Laurel Station Facility, Kinder Morgan Groundwater Monitoring

6. Field Duplicate – Acceptable


A field duplicate was submitted for DW-4 and identified as DUP. Results were comparable for all analyses.

7. Reporting Limits – Acceptable except as noted below:

PAHs by Method 8270D-SIM – The reporting limits for PAHs in the initial analysis of sample SW-4 (KF01) were elevated because the laboratory used the incorrect method. The laboratory re-extracted and reanalyzed sample SW-4 using the appropriate method at the request of URS Corporation. The reporting limits for SW-4 (KG83) were acceptable, but the results are qualified as estimated based on holding time exceedance. The qualified data from the lower level analysis will be used for groundwater assessment.

Overall Assessment of Data

The completeness for SDGs KF01, KG83, and KI11 is greater than 97%. The usefulness of this data is based on USEPA guidance documents listed in the introduction to this report. Upon consideration of the information presented above, the data are acceptable except where flagged with data qualifiers that modify the usefulness of the individual values.

27 November 2006

RECEIVED

JAN 2 2 2007

URS CORPORATION
SEATTLE

Karen Mixon
URS Corporation
Century Square
1501 Fourth Avenue Suite 1400
Seattle, WA 98101

RE: Client Project: 3375, Kinder Morgan, Laurel Station ARI Job No: KF01

Dear Karen:

Please find enclosed the original chain of custody documentation and the final results for the samples from the project referenced above. Analytical Resources, Inc. (ARI) received one water sample and one trip blank in good condition on November 10, 2006.

The samples were analyzed for VOAs, NWTPH-Dx and PAHs as requested.

These analyses proceeded without incident of note.

A copy of these reports and all associated raw data will remain on file electronically with ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

Mark D. Harris Project Manager 206/695-6210

MaD. Oaul

markh@arilabs.com

Enclosures

cc: file KF01

MDH/mdh

Chain of Custody Record & Laboratory Analysis Request

Analytical Resources, Incorporated	Alialytical Criemists and Consultants 4611 South 134th Place, Suite 100 Tukwila WA 98168	206-695-6200 206-695-6201 (fax)	Notes/Comments	* patt PL 0.01 majl								Received by: (Signature)	Printed Name:	Сотралу:	Date & Time:	
	sent? Y	iler 5,03	Analysis Requested									Relinquished by: (Signature)	Printed Name:	Company:	Date & Time:	Ch - 44 L - 4 combined on the Combined on the
Page: of	Date: 11/15/01/ Ice Present?	No. of Cooler Coolers: / Temps:		•	~ 0€28 8540 - WW7PH NW7PH	イイ	×					Received by: (Signature) 136 (Cong LA)	Printed Name: 名名 なみんとアカル	ART	100 1420	yathodology following ADI Store
Turn-around Requested: Standard	Phone: (2c6) 458-2134		_	TM, MHH	Time Matrix No. Containers	1535 Water 7	- Water 4		, .			n Mille (Signature)).	Mecillowsh	Company:	$\begin{array}{cc} 1240 & \text{Date & Time} \\ \nu/\nu \end{array}$	rvices in accordance with annountiete
	pany: URS Ca	Client Contact: Kayes Ni Kow		Samples:	nple ID Date	4-WS	EIP BLANK 1/07/06					M/ä	Printed Name:	Company:	Date & Time: 11/10/6ん	Limits of Liability: ARI will perform all requested services in accordance with appropriate mathodology following ABI Standard Countries Described to ABI Standard Countries Described to ABI Standard Countries Described to ABI Standard Countries and the ABI Standard Countries and

Entities of Enabling. And with perform an requession services in accordance with appropriate memory rounding and procession and inspiration with the requested services, shall not exceed the Invoiced amount for said services. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

ARI Data Reporting Qualifiers

Effective 11/22/04

Inorganic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Duplicate RPD is not within established control limits
- B Reported value is less than the CRDL but ≥ the Reporting Limit
- N Matrix Spike recovery not within established control limits
- NA Not Applicable, analyte not spiked
- H The natural concentration of the spiked element is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- L Analyte concentration is ≤5 times the Reporting Limit and the replicate control limit defaults to ±1 RL instead of the normal 20% RPD

Organic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Flagged value is not within established control limits
- B Analyte detected in an associated Method Blank at a concentration greater than one-half of ARI's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.
- J Estimated concentration when the value is less than ARI's established reporting limits
- D The spiked compound was not detected due to sample extract dilution
- NR Spiked compound recovery is not reported due to chromatographic interference
- E Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- S Indicates an analyte response that has saturated the detector. The calculated concentration is not valid; a dilution is required to obtain valid quantification of the analyte
- NA The flagged analyte was not analyzed for
- NS The flagged analyte was not spiked into the sample
- M Estimated value for an analyte detected and confirmed by an analyst but with low spectral match parameters. This flag is used only for GC-MS analyses
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification"
- Y The analyte reporting limit is raised due to a positive chromatographic interference. The compound is not detected above the raised limit but may be present at or below the limit
- C The analyte was positively identified on only one of two chromatographic columns. Chromatographic interference prevented a positive identification on the second column
- P The analyte was detected on both chromatographic columns but the quantified values differ by ≥40% RPD with no obvious chromatographic interference

Sample ID: MB-111506 METHOD BLANK

Lab Sample ID: MB-111506

LIMS ID: 06-23070

Matrix: Water

Data Release Authorized: Reported: 01/19/07

Instrument/Analyst: FINN3/PAB Date Analyzed: 11/15/06 16:53

QC Report No: KF01-URS Corp

Project: KINDER MORGAN- LAUREL STATION

3375

Date Sampled: NA Date Received: NA

Sample Amount: 20.0 mL Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.2	< 0.2	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.3	< 0.3	U
67-64-1	Acetone	3.0	< 3.0	U.
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	Ü
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	1.0	< 1.0	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	0.2	< 0.2	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	0.5	< 0.5	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	1.0	< 1.0	U
591-78-6	2-Hexanone	3.0	< 3.0	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	0.2	< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
107-02-8	Acrolein	5.0	< 5.0	U
74-88-4	Methyl Iodide	0.2	< 0.2	U
74-96-4	Bromoethane	0.2	< 0.2	U
107-13-1	Acrylonitrile	1.0	< 1.0	U
563-58-6	1,1-Dichloropropene	0.2	< 0.2	U
74-95-3	Dibromomethane	0.2	< 0.2	U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	U
	-			

Page 2 of 2

Sample ID: MB-111506 METHOD BLANK

MEIROD BURN

Lab Sample ID: MB-111506

QC Report No: KF01-URS Corp

LIMS ID: 06-23070

Project: KINDER MORGAN- LAUREL STATION

3375

Matrix: Water
Date Analyzed: 11/15/06 16:53

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	Ų
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in μ g/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	83.5%
d8-Toluene	93.5%
Bromofluorobenzene	77.0%
d4-1.2-Dichlorobenzene	97.28

Sample ID: SW-4 SAMPLE

Lab Sample ID: KF01A

QC Report No: KF01-URS Corp

LIMS ID: 06-23070

Project: KINDER MORGAN- LAUREL STATION

Matrix: Water

3375

Data Release Authorized: Reported: 01/19/07

Date Sampled: 11/07/06
Date Received: 11/10/06

Instrument/Analyst: FINN3/PAB
Date Analyzed: 11/15/06 17:48

Sample Amount: 20.0 mL Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	
74-83-9	Bromomethane	0.2	< 0.2	Ū
75-01-4	Vinyl Chloride	0.2	< 0.2	Ŭ
75-01-4	Chloroethane	0.2	< 0.2	Ŭ
75-00-3	Methylene Chloride	0.3	< 0.2	Ū
67-64-1	Acetone	3.0	< 3.0	U
75-15-0	Carbon Disulfide	0.2	< 0.2	Ū
75-35-4	1,1-Dichloroethene	0.2	< 0.2	Ū
75-34-3	1,1-Dichloroethane	0.2	< 0.2	Ü
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	Ū
		0.2	< 0.2	Ū
156-59-2	cis-1,2-Dichloroethene Chloroform	0.2	< 0.2	Ū
67-66-3		0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	1.0	< 1.0	Ü
78-93-3	2-Butanone			
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	Ŭ
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	0.2	< 0.2	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	0.5	< 0.5	Ū
75-25-2	Bromoform	0.2	< 0.2	Ū
108-10-1	4-Methyl-2-Pentanone (MIBK)	1.0	< 1.0	Ū
591-78-6	2-Hexanone	3.0	< 3.0	Ū
127-18-4	Tetrachloroethene	0.2	< 0.2	Ū
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	0.2	< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
107-02-8	Acrolein	5.0	< 5.0	U
74-88-4	Methyl Iodide	0.2	< 0.2	U
74-96-4	Bromoethane	0.2	< 0.2	U
107-13-1	Acrylonitrile	1.0	< 1.0	U
563-58-6	1,1-Dichloropropene	0.2	< 0.2	U
74-95-3	Dibromomethane	0.2	< 0.2	U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	U

Page 2 of 2

Matrix: Water

Lab Sample ID: KF01A LIMS ID: 06-23070 Sample ID: SW-4
SAMPLE

QC Report No: KF01-URS Corp

Project: KINDER MORGAN- LAUREL STATION

3375

Date Analyzed: 11/15/06 17:48

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	υ

Reported in $\mu g/L$ (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	87.5%
d8-Toluene	92.2%
Bromofluorobenzene	80.2%
d4-1.2-Dichlorobenzene	104%

Sample ID: TRIP BLANK SAMPLE Page 1 of 2

Lab Sample ID: KF01B

LIMS ID: 06-23071 Matrix: Water

Data Release Authorized:

Reported: 01/19/07

Instrument/Analyst: FINN3/PAB Date Analyzed: 11/15/06 17:21

QC Report No: KF01-URS Corp

Project: KINDER MORGAN- LAUREL STATION

3375

Date Sampled: 11/07/06 Date Received: 11/10/06

Sample Amount: 20.0 mL Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.2	< 0.2	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.3	< 0.3	U
67-64-1	Acetone	3.0	< 3.0	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	1.0	< 1.0	Ŭ
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	0.2	< 0.2	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	0.5	< 0.5	Ų
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	1.0	< 1.0	U
591-78-6	2-Hexanone	3.0	< 3.0	Ū
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
107-02-8	Acrolein	5.0	< 5.0	U
74-88-4	Methyl Iodide	0.2	< 0.2	Ų
74-96-4	Bromoethane	0.2	< 0.2	U
107-13-1	Acrylonitrile	1.0	< 1.0	U
563-58-6	1,1-Dichloropropene	0.2	< 0.2	U
74-95-3	Dibromomethane	0.2	< 0.2	U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	U

Page 2 of 2

Sample ID: TRIP BLANK

SAMPLE

Lab Sample ID: KF01B

QC Report No: KF01-URS Corp

LIMS ID: 06-23071

Project: KINDER MORGAN- LAUREL STATION

3375

Matrix: Water
Date Analyzed: 11/15/06 17:21

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in $\mu g/L$ (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	91.0%
d8-Toluene	95.2%
Bromofluorobenzene	83.5%
d4-1,2-Dichlorobenzene	97.8%

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 1 of 2

QC Report No: KF01-URS Corp

Project: KINDER MORGAN- LAUREL STATION

Sample ID: LCS-111506

LAB CONTROL SAMPLE

3375

Date Sampled: NA Date Received: NA

Data Release Authorized:

Lab Sample ID: LCS-111506

Reported: 01/19/07

LIMS ID: 06-23070

Matrix: Water

Instrument/Analyst LCS: FINN3/PAB

LCSD: FINN3/PAB

Date Analyzed LCS: 11/15/06 15:22

LCSD: 11/15/06 16:03

Sample Amount LCS: 20.0 mL

LCSD: 20.0 mL

Purge Volume LCS: 20.0 mL

LCSD: 20.0 mL

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Chloromethane	2.6	4.0	65.0%	2.6	4.0	65.0%	0.0%
Bromomethane	4.0	4.0	100%	3.8	4.0	95.0%	5.1%
Vinyl Chloride	3.2	4.0	80.0%	2.9	4.0	72.5%	9.8%
Chloroethane	3.1	4.0	77.5%	3.2	4.0	80.0%	3.2%
Methylene Chloride	4.1	4.0	102%	3.3	4.0	82.5%	21.6%
Acetone	16.8	20.0	84.0%	16.6	20.0	83.0%	1.2%
Carbon Disulfide	3.6	4.0	90.0%	3.1	4.0	77.5%	14.9%
1,1-Dichloroethene	3.9	4.0	97.5%	3.7	4.0	92.5%	5.3%
1,1-Dichloroethane	4.0	4.0	100%	3.4	4.0	85.0%	16.2%
trans-1,2-Dichloroethene	4.2	4.0	105%	3.6	4.0	90.0%	15.4%
cis-1,2-Dichloroethene	3.5	4.0	87.5%	3.2	4.0	80.0%	9.0%
Chloroform	3.7	4.0	92.5%	3.3	4.0	82.5%	11.4%
1,2-Dichloroethane	3.9	4.0	97.5%	4.0	4.0	100%	2.5%
2-Butanone	17.3	20.0	86.5%	15.8	20.0	79.0%	9.1%
1,1,1-Trichloroethane	3.7	4.0	92.5%	3.3	4.0	82.5%	11.4%
Carbon Tetrachloride	3.6	4.0	90.0%	3.6	4.0	90.0%	0.0%
Vinyl Acetate	3.4	4.0	85.0%	3.2	4.0	80.0%	6.1%
Bromodichloromethane	3.8	4.0	95.0%	3.5	4.0	87.5%	8.2%
1,2-Dichloropropane	3.8	4.0	95.0%	3.6	4.0	90.0%	5.4%
cis-1,3-Dichloropropene	4.0	4.0	100%	3.7	4.0	92.5%	7.8%
Trichloroethene	3.9	4.0	97.5%	3.7	4.0	92.5%	5.3%
Dibromochloromethane	3.5	4.0	87.5%	3.2	4.0	80.0%	9.0%
1,1,2-Trichloroethane	4.0	4.0	100%	3.8	4.0	95.0%	5.1%
Benzene	4.1	4.0	102%	3.8	4.0	95.0%	7.6%
trans-1,3-Dichloropropene	3.7	4.0	92.5%	3.5	4.0	87.5%	5.6%
2-Chloroethylvinylether	3.5	4.0	87.5%	3.2	4.0	80.0%	9.0%
Bromoform	3.6	4.0	90.0%	3.3	4.0	82.5%	8.7%
4-Methyl-2-Pentanone (MIBK)	18.2	20.0	91.0%	17.3	20.0	86.5%	5.1%
2-Hexanone	19.0	20.0	95.0%	17.9	20.0	89.5%	6.0%
Tetrachloroethene	4.4	4.0	110%	4.2	4.0	105%	4.7%
1,1,2,2-Tetrachloroethane	3.5	4.0	87.5%	3.3	4.0	82.5%	5.9%
Toluene	4.1	4.0	102%	4.0	4.0	100%	2.5%
Chlorobenzene	4.1	4.0	102%	3.7	4.0	92.5%	10.3%
Ethylbenzene	4.2	4.0	105%	3.7	4.0	92.5%	12.7%
Styrene	4.6	4.0	115%	4.1	4.0	102%	11.5%
Trichlorofluoromethane	3.6	4.0	90.0%	3.5	4.0	87.5%	2.8%

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: LCS-111506

LAB CONTROL SAMPLE

Lab Sample ID: LCS-111506

LIMS ID: 06-23070 Matrix: Water QC Report No: KF01-URS Corp

Project: KINDER MORGAN- LAUREL STATION

3375

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
1,1,2-Trichloro-1,2,2-trifluoroetha	3.8	4.0	95.0%	3.6	4.0	90.0%	5.4%
m,p-Xylene	9.0	8.0	112%	7.9	8.0	98.8%	13.0%
o-Xylene	4.3	4.0	108%	3.8	4.0	95.0%	12.3%
1,2-Dichlorobenzene	4.2	4.0	105%	4.0	4.0	100%	4.9%
1,3-Dichlorobenzene	4.3	4.0	108%	3.9	4.0	97.5%	9.8%
1,4-Dichlorobenzene	4.2	4.0	105%	3.9	4.0	97.5%	7.4%
Acrolein	15.7	20.0	78.5%	16.7	20.0	83.5%	6.2%
Methyl Iodide	4.6	4.0	115%	4.4	4.0	110%	4.4%
Bromoethane	3.9	4.0	97.5%	3.8	4.0	95.0%	2.6%
Acrylonitrile	3.6	4.0	90.0%	3.3	4.0	82.5%	8.7%
1,1-Dichloropropene	3.8	4.0	95.0%	3.5	4.0	87.5%	8.2%
Dibromomethane	4.1	4.0	102%	3.6	4.0	90.0%	13.0%
1,1,1,2-Tetrachloroethane	3.9	4.0	97.5%	3.6	4.0	90.0%	8.0%
1,2-Dibromo-3-chloropropane	3.1	4.0	77.5%	3.0	4.0	75.0%	3.3%
1,2,3-Trichloropropane	3.8	4.0	95.0%	3.3	4.0	82.5%	14.1%
trans-1,4-Dichloro-2-butene	3.8	4.0	95.0%	3.6	4.0	90.0%	5.4%
1,3,5-Trimethylbenzene	4.2	4.0	105%	3.5	4.0	87.5%	18.2%
1,2,4-Trimethylbenzene	4.3	4.0	108%	3.6	4.0	90.0%	17.7%
Hexachlorobutadiene	4.1	4.0	102%	3.8	4.0	95.0%	7.6%
Ethylene Dibromide	3.7	4.0	92.5%	3.6	4.0	90.0%	2.7%
Bromochloromethane	3.9	4.0	97.5%	3.5	4.0	87.5%	10.8%
2,2-Dichloropropane	4.0	4.0	100%	3.4	4.0	85.0%	16.2%
1,3-Dichloropropane	4.0	4.0	100%	3.7	4.0	92.5%	7.8%
Isopropylbenzene	4.0	4.0	100%	3.6	4.0	90.0%	10.5%
n-Propylbenzene	4.5	4.0	112%	3.8	4.0	95.0%	16.9%
Bromobenzene	4.3	4.0	108%	3.9	4.0	97.5%	9.8%
2-Chlorotoluene	3.6	4.0	90.0%	3.7	4.0	92.5%	2.7%
4-Chlorotoluene	4.2	4.0	105%	3.7	4.0	92.5%	12.7%
tert-Butylbenzene	4.3	4.0	108%	3.6	4.0	90.0%	17.7%
sec-Butylbenzene	4.3	4.0	108%	3.8	4.0	95.0%	12.3%
4-Isopropyltoluene	4.2	4.0	105%	3.8	4.0	95.0%	10.0%
n-Butylbenzene	4.1	4.0	102%	4.0	4.0	100%	2.5%
1,2,4-Trichlorobenzene	4.1	4.0	102%	3.9	4.0	97.5%	5.0%
Naphthalene	3.7	4.0	92.5%	3.5	4.0	87.5%	5.6%
1,2,3-Trichlorobenzene	4.1	4.0	102%	3.9	4.0	97.5%	5.0%

Reported in $\mu g/L$ (ppb)

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

	LCS	LCSD
d4-1,2-Dichloroethane	97.5%	87.5%
d8-Toluene	100%	92.8%
Bromofluorobenzene	90.5%	86.2%
d4-1,2-Dichlorobenzene	99.2%	91.0%

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS

Page 1 of 1

Sample ID: MB-111406 METHOD BLANK

Lab Sample ID: MB-111406

LIMS ID: 06-23070

Matrix: Water

Data Release Authorized:

Date Extracted: 11/14/06

Date Analyzed: 11/22/06 12:39

Instrument/Analyst: NT1/VTS

Reported: 01/19/07

QC Report No: KF01-URS Corp

Project: KINDER MORGAN- LAUREL STATION

Event: 3375

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL

Final Extract Volume: 0.5 mL

Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.10	< 0.10 U
91-57-6	2-Methylnaphthalene	0.10	< 0.10 U
208-96-8	Acenaphthylene	0.10	< 0.10 U
83-32-9	Acenaphthene	0.10	< 0.10 U
86-73-7	Fluorene	0.10	< 0.10 U
85-01-8	Phenanthrene	0.10	< 0.10 U
120-12-7	Anthracene	0.10	< 0.10 U
206-44-0	Fluoranthene	0.10	< 0.10 U
129-00-0	Pyrene	0.10	< 0.10 U
56-55-3	Benzo(a) anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k)fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U
191-24-2	Benzo(g,h,i)perylene	0.10	< 0.10 U
132-64-9	Dibenzofuran	0.10	< 0.10 U

Reported in μ g/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene d14-Dibenzo(a,h)anthracen 100%

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS

Page 1 of 1

Sample ID: SW-4 SAMPLE

Lab Sample ID: KF01A

LIMS ID: 06-23070

Matrix: Water

Data Release Authorized:

Date Extracted: 11/14/06

Date Analyzed: 11/22/06 15:33

Instrument/Analyst: NT1/VTS

Reported: 01/19/07

QC Report No: KF01-URS Corp

Project: KINDER MORGAN- LAUREL STATION

Event: 3375

Date Sampled: 11/07/06 Date Received: 11/10/06

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.10	< 0.10 U
91-57-6	2-Methylnaphthalene	0.10	< 0.10 U
208-96-8	Acenaphthylene	0.10	< 0.10 U
83-32-9	Acenaphthene	0.10	< 0.10 U
86-73-7	Fluorene	0.10	< 0.10 U
85-01-8	Phenanthrene	0.10	< 0.10 U
120-12-7	Anthracene	0.10	< 0.10 U
206-44-0	Fluoranthene	0.10	< 0.10 U
129-00-0	Pyrene	0.10	< 0.10 U
56-55-3	Benzo(a) anthracene	0.10	< 0.10 U
218-01-9	Chrysene	0.10	< 0.10 U
205-99-2	Benzo(b)fluoranthene	0.10	< 0.10 U
207-08-9	Benzo(k) fluoranthene	0.10	< 0.10 U
50-32-8	Benzo(a)pyrene	0.10	< 0.10 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.10	< 0.10 U
53-70-3	Dibenz(a,h)anthracene	0.10	< 0.10 U
191-24-2	Benzo(g,h,i)perylene	0.10	< 0.10 U
132-64-9	Dibenzofuran	0.10	< 0.10 U

Reported in $\mu g/L$ (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 83.7%

d14-Dibenzo(a,h)anthracen 97.3%

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS

Page 1 of 1

Sample ID: LCS-111406

LAB CONTROL SAMPLE

Lab Sample ID: LCS-111406

LIMS ID: 06-23070 Matrix: Water

Data Release Authorized:

Date Extracted LCS/LCSD: 11/14/06

Date Analyzed LCS: 11/22/06 13:04

Instrument/Analyst LCS: NT1/VTS

LCSD: 11/22/06 13:28

LCSD: NT1/VTS

Reported: 01/19/07

QC Report No: KF01-URS Corp

Project: KINDER MORGAN- LAUREL STATION

Event: 3375 Date Sampled: NA

Date Received: NA

Sample Amount LCS: 500 mL

LCSD: 500 mL

Final Extract Volume LCS: 0.50 mL

LCSD: 0.50 mL

Dilution Factor LCS: 1.00

LCSD: 1.00

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Naphthalene	2.62	3.00	87.3%	2.58	3.00	86.0%	1.5%
Acenaphthylene	2.78	3.00	92.7%	2.84	3.00	94.7%	2.1%
Acenaphthene	2.84	3.00	94.7%	2.72	3.00	90.7%	4.3%
Fluorene	2.90	3.00	96.7%	2.88	3.00	96.0%	0.7%
Phenanthrene	3.04	3.00	101%	3.09	3.00	103%	1.6%
Anthracene	2.94	3.00	98.0%	2.85	3.00	95.0%	3.1%
Fluoranthene	3.03	3.00	101%	3.12	3.00	104%	2.9%
Pyrene	3.00	3.00	100%	3.34	3.00	111%	10.7%
Benzo(a)anthracene	2.67	3.00	89.0%	2.89	3.00	96.3%	7.9%
Chrysene	2.91	3.00	97.0%	3.30	3.00	110%	12.6%
Benzo(b)fluoranthene	2.84	3.00	94.7%	3.30	3.00	110%	15.0%
Benzo(k)fluoranthene	3.50	3.00	117%	3.03	3.00	101%	14.4%
Benzo(a)pyrene	2.78	3.00	92.7%	2.88	3.00	96.0%	3.5%
Indeno(1,2,3-cd)pyrene	2.90	3.00	96.7%	2.93	3.00	97.7%	1.0%
Dibenz(a,h)anthracene	2.88	3.00	96.0%	3.05	3.00	102%	5.7%
Benzo(g,h,i)perylene	2.88	3.00	96.0%	2.90	3.00	96.7%	0.7%
Dibenzofuran	2.51	3.00	83.7%	2.58	3.00	86.0%	2.8%

Reported in μ g/L (ppb)

RPD calculated using sample concentrations per SW846.

SIM Semivolatile Surrogate Recovery

	LCS	LCSD
d10-2-Methylnaphthalene	87.7%	84.7%
d14-Dibenzo(a,h)anthracen	105%	96.0%

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID

Page 1 of 1 Matrix: Water

QC Report No: KF01-URS Corp Project: KINDER MORGAN- LAUREL STATION

3375

Date Received: 11/10/06

Data Release Authorized:

Reported: 01/19/07

ARI ID	Sample ID	Extraction Date	Analysis Date	EFV DL	Range	Result
MB-111406 06-23070	Method Blank HC ID:	11/14/06	11/15/06 FID3A	1.00	Diesel Motor Oil o-Terphenyl	< 0.25 U < 0.50 U 94.7%
KF01A 06-23070	SW-4 HC ID:	11/14/06	11/15/06 FID3A	1.00	Diesel Motor Oil o-Terphenyl	< 0.25 U < 0.50 U 93.8%

Reported in mg/L (ppm)

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis.

Diesel quantitation on total peaks in the range from C12 to C24. Motor Oil quantitation on total peaks in the range from C24 to C38. HC ID: DRO/RRO indicates results of organics or additional hydrocarbons in ranges are not identifiable.

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID

Page 1 of 1

Lab Sample ID: LCS-111406

LIMS ID: 06-23070

Matrix: Water

Data Release Authorized: Reported: 01/19/07

Date Extracted: 11/14/06 Date Analyzed: 11/15/06 20:57

Instrument/Analyst: FID3A/JGR

Project: KINDER MORGAN- LAUREL STATION 3375

Date Sampled: NA Date Received: NA

QC Report No: KF01-URS Corp

Sample Amount: 500 mL Final Extract Volume: 1.0 mL

Dilution Factor: 1.00

Sample ID: LCS-111406

LAB CONTROL

Range	Lab Control	Spike Added	Recovery	
Diesel	2.45	3.00	81.7%	

TPHD Surrogate Recovery

o-Terphenyl

93.3%

Results reported in mg/L

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20061115.b/1115a058.d

Method: /chem3/fid3a.i/20061115.b/ftphfid3a.m

Instrument: fid3a.i

Operator: JR

Report Date: 11/16/2006

Macro: 21-JUN-2006

ARI ID: KF01MBW1

Client ID:

Injection: 15-NOV-2006 19:55

Dilution Factor: 1

Calibration Dates: Gas:10-NOV-2006 Diesel:15-NOV-2006 M.Oil:10-OCT-2006

AK102:15-NOV-2006 AK103:18-OCT-2006 JP-4:12-APR-2004 JET-A:15-JUL-2006 CREOSOTE: FID:3A RESULTS

Compound	RT	Shift	Height	Area	Range	Total Area	Conc
		.======					=====
Toluene	1.178	0.029	28128	111263	GAS (Tol-C12)	600900	25
C8	1.332	-0.019	13361	37339	DIESEL (C12-C24)	235590	16
C10	2.615	0.000	3633	3961	M.OIL (C24-C38)	32784	4
C12	3.113	-0.002	4276	2133	AK-102 (C10-C25)	369266	20
C14	3.447	0.006	3917	1478	AK-103 (C25-C36)	26719	4
C16	3.691	-0.003	3571	3931	İ		
C18	3.938	0.002	3054	2348			
C20	4.166	0.017	2742	2446			
C22	4.381	-0.004	1809	1749	İ		
C24	4.573	-0.006	1188	1059			
C25	4.691	-0.003	847	216			
C26	4.804	0.003	572	179	İ		
C28	5.006	-0.007	245	71			
C32	5.468	0.006	1395	2026	JP-4 (Tol-C14)	678759	61
C34	5.680	0.003	381	327	CREOSOT (C12-C22)	224176	59
Filter Peak	6.234	0.000	584	183			
C36	5.887	0.002	444.0	360	o-Terph Surrogat	e Rec = 94.6%	(772788)
C38	6.104	-0.004	580.0	374			
C40	6.379	0.001	535	158			, ,
o-terph	4.011	-0.041	1504587	772788	JET-A (C10-C18)	305013	26
Triacon Surr	5.259	0.016	839683	693853	!	R 11/15/06	
=========	======	======	=========	=======	, ====================================	~ <i> 5 0 0</i>	====

Range Times: NW Diesel (3.114 - 4.579) AK102 (2.62 - 4.69) Jet A(2.62 - 3.94)

NW M.Oil(4.58 - 6.11) AK103(4.69 - 5.89) OR Diesel(2.62 - 5.01)

Г		·	 					1	 Y	(×10′	`6>								<u>-</u>		1			
	٠.		۰ ۲	\$	٠.٠ [‡] ٠	.	·	ំ ហ	 	o. 7	φ		4	4 4 		. .	1 3	1	· ·	<u>ب</u> ق	8		တို့ င	
4	;-																				1umn		Sample 1	Data Fil Date : 1
12	2																				Column phase: RTX-1		Sample Info; KF01MBW1	lle: /chem3/fid3a. 15-NOV-2006 19:55
4	,																				RTX-1		CF01MB	nem3/f -2006
2.7		-C10	(2,615	i)																			표	id3a.i/2 19:55
3.0	-	-C12	(3,113	3)																				File: /chem3/fid3a,i/20061115,b/1115a058,d ; 15-NOV-2006 19;55
3,3		-C14	(3,447	' >																				,b/1115a
3,6	-	-C16	(3,691	>																				\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
3,9	_	-C18	(3,938	>		_																		
4.2	-	-c20	(4,166	>												c	-ter	ph (4.011	ני				
4 5	_		(4,381																	/che				
].	-C25	(4,573 (4,691	>																n3/fi				
4 8	4		(4,804)																	d3a•i				
5 4 4 1	- -	-C28	(5,006)																1/2006				
10 4 4	Ī	-C32	(5,468	>								-Triad	on Surr	^ (5,25	9)					/chem3/fid3a.i/20061115.b/1115a058.d	Column diamete	Operator: JR	Instr	
51		-C34	(5,680))																1115a	n diar	tor:	ument:	
6.0	-		(5,887)																	ბ58₊d	neter:	æ	Instrument: fid3a₊i	
6,3	-	Filt	(6.104) er Peak (6.379)	< <6₊2	234)																0.25		₩ + 	
6,6					2																			
6,9																								
7.2																								
7.5																								
7.8																								
8,1																								771
8 + 4																								Page 1
																								-
8.7																								

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20061115.b/1115a062.d

Method: /chem3/fid3a.i/20061115.b/ftphfid3a.m

Instrument: fid3a.i

Macro: 21-JUN-2006

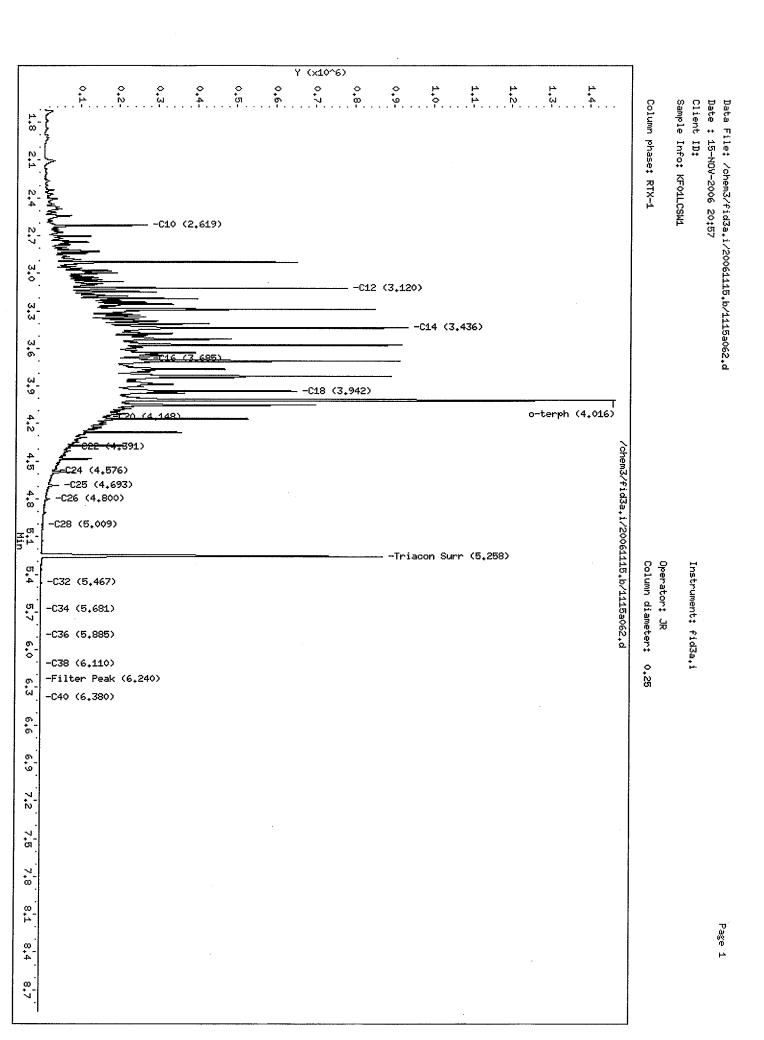
Operator: JR

Report Date: 11/16/2006

Client ID:

Injection: 15-NOV-2006 20:57

Dilution Factor: 1


ARI ID: KF01LCSW1

Calibration Dates: Gas:10-NOV-2006 Diesel:15-NOV-2006 M.Oil:10-OCT-2006

AK102:15-NOV-2006 AK103:18-OCT-2006 JP-4:12-APR-2004 JET-A:15-JUL-2006 CREOSOTE: FID:3A RESULTS

Compound	RT	Shift	Height	Area	Range	Total Area	Conc
Toluene	1.178	0.030	47938	58868	======================================	======================================	174
C8	1.353	0.003	25372	33626	DIESEL (C12-C24)	18192861	1224
C10	2.619	0.003	266829	149327	M.OIL (C24-C38)	324967	38
C12	3.120	0.006	779038	336947	AK-102 (C10-C25)	21299518	1178
C14	3.436	-0.004	934598	587766	AK-103 (C25-C36)	305421	45
C16	3.685	-0.008	270788	192138			
C18	3.942	0.006	650859	544219			
C20	4.148	-0.001	167512	64552	İ		
C22	4.391	0.006	73245	55016			
C24	4.576	-0.003	31224	6141			
C25	4.693	-0.001	45410	30577			
C26	4.800	-0.001	23143	20388			
C28	5.009	-0.004	3741	1443			
C32	5.467	0.005	1875	2233	JP-4 (Tol-C14)	8795856	791
C34	5.681	0.004	326	220	CREOSOT (C12-C22)	17679806	4625
Filter Peak	6.240	0.006	229	122			
C36	5.885	0.000	304.0	117	o-Terph Surrogate	e Rec = 93.3%	(762621)
C38	6.110	0.003	297.0	104	Triacon Surrogate	e Rec = 115.3%	(697051)
C40	6.380	0.003	175	105			
o-terph	4.016	-0.036	1240874	762621	JET-A (C10-C18)	16370796	1414
Triacon Surr	5.258	0.015	872672	697051	1	11/16/06	
						<i>-</i> -	

Range Times: NW Diesel (3.114 - 4.579) AK102 (2.62 - 4.69) Jet A (2.62 - 8.94) NW M.Oil (4.58 - 6.11) AK103 (4.69 - 5.89) OR Diesel (2.62 - 5.01)

Analytical Resources Inc. TPH Quantitation Report

Data file: /chem3/fid3a.i/20061115.b/1115a063.d

Method: /chem3/fid3a.i/20061115.b/ftphfid3a.m

Instrument: fid3a.i

Operator: JR

Macro: 21-JUN-2006

Report Date: 11/16/2006

ARI ID: KF01A

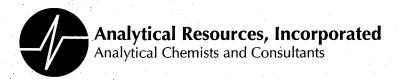
Client ID:

Injection: 15-NOV-2006 21:12

Dilution Factor: 1

Calibration Dates: Gas:10-NOV-2006 Diesel:15-NOV-2006 M.Oil:10-OCT-2006

AK102:15-NOV-2006 AK103:18-OCT-2006 JP-4:12-APR-2004 JET-A:15-JUL-2006 CREOSOTE:


FID:3A RESULTS

Compound	RT	Shift	Height	Area	Range	Total Area	Conc
Toluene	1.177	0.029	28215	82845	GAS (Tol-C12)	572113	24
C8	1.328	-0.023	14849	45109	DIESEL (C12-C24)	388907	26
C10	2.615	0.000	3400	3646	M.OIL (C24-C38)	150738	17
C12	3.121	0.007	5169	3869	AK-102 (C10-C25)	554014	31
C14	3.444	0.003	4335	1208	AK-103 (C25-C36)	139800	21
C16	3.688	-0.005	4877	5764			
C18	3.938	0.002	4850	4812			
C20	4.144	-0.005	5338	4323			
C22	4.385	0.000	5589	3156			
C24	4.579	0.000	4923	1555			
C25	4.693	0.000	4561	1626			
C26	4.800	-0.002	3906	2736			
C28	5.011	-0.002	2575	559			
C32	5.464	0.002	3017	3388	JP-4 (Tol-C14)	649853	58
C34	5.680	0.003	822	1073	CREOSOT (C12-C22)	330247	86
Filter Peak	6.234	0.000	401	379			
C36	5.883	-0.002	668.0	460	o-Terph Surrogate	Rec = 93.8%	(766374)
C38	6.105	-0.002	477.0	132	Triacon Surrogate	Rec = 114.5%	(692132
C40	6.380	0.003	272	85			
o-terph	4.014	-0.038	1552755	766374	JET-A (C10-C18)	365249	, 32
Triacon Surr	5.256	0.013	867880 	692132		St 11/14/0	06

Range Times: NW Diesel (3.114 - 4.579) AK102 (2.62 - 4.69) Jet A(2/.62 - 3.94)

NW M.Oil(4.58 - 6.11) AK103(4.69 - 5.89) OR Diesel(2.62 - 5.01)

					· · · · · · · · · · · · · · · · · · ·			Y (x:	10^6)												
		0,1	۲۵ د د	0,3		 ⊙ 	· · · · · · · · · · · · · · · · · · ·	0.7-	φ. 	• • • • • •	4 • • • •	4 4 	4 	1.3-	1 ² 4	 51 -		δ	ပ္သာ	Ω	ָ טַ
, 44 80)lumn	ample		Date :
																		phase:	Info:	ID:	* 15-NOV-2006 21:12
22 -4																		Column phase: RTX-1	Sample Info; KF01A		V-2006
4 2,7	-C10	(2,6	L5)															4			15-NOV-2006 21:12
•	ļ																				, . !
3.0	-C12	(3,1	21>																		
ω ω.	-C14	(3,4	44)																		ļ
3.6		(3,68																			
⊍- •••		(3,9																			Š
4 *2		(4,14												0-	-terph	(4,01	T 4>				
•	-c22	(4,38	35)														\d 2				
4 51	c25	(4,57 (4,69	33)														em3/fi				
• •		(4,80															d3a,i				
ا 1.	L-C28	(5,01	.1>														/2006:				
ان 4	-C32	(5,46	4)							Tria	oon Su	rr (5.2	:56)				/chem3/fid3a.i/20061115.b/1115a063.d	Colu		Inst	
5,7		(5,68															/1115;	Operator: JR Column diamete		Instrument: fi	
	-036	(5,88	3)														063.d	JR meter:		÷ fid:	
6.0	-038 -Filt		5) ak (6.	234)														‡ 0 ₊ 25		d3a+1	
6.3	-C4¢			2017													ì	ហ៊			
6-6-																					
6.9																					
7.2																					
7.5																					
7.8																					
ω -Δ-																					٦ ش
4																					1.98e
8.7																					

6 December 2006

Karen Mixon URS Corporation Century Square 1501 Fourth Avenue Suite 1400 Seattle, WA 98101

RE: Client Project: 3375, Kinder Morgan, Laurel Station ARI Job No: KG83

Dear Karen:

Please find enclosed the final results for the sample from the project referenced above.

Sample SW-4 was re-extracted and re-analyzed outside of holding time for PAHs as requested.

This analysis proceeded without incident of note.

A copy of these reports and all associated raw data will remain on file electronically with ARI. If you have any further questions, please contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

Mark D. Harris
Project Manager
206/695-6210
markh@arilabs.com

Enclosures

cc: file KG83

MDH/mdh

ARI Data Reporting Qualifiers

Effective 11/22/04

Inorganic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Duplicate RPD is not within established control limits
- B Reported value is less than the CRDL but ≥ the Reporting Limit
- N Matrix Spike recovery not within established control limits
- NA Not Applicable, analyte not spiked
- H The natural concentration of the spiked element is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- L Analyte concentration is ≤5 times the Reporting Limit and the replicate control limit defaults to ±1 RL instead of the normal 20% RPD

Organic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Flagged value is not within established control limits
- B Analyte detected in an associated Method Blank at a concentration greater than one-half of ARI's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.
- J Estimated concentration when the value is less than ARI's established reporting limits
- D The spiked compound was not detected due to sample extract dilution
- NR Spiked compound recovery is not reported due to chromatographic interference
- E Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- S Indicates an analyte response that has saturated the detector. The calculated concentration is not valid; a dilution is required to obtain valid quantification of the analyte
- NA The flagged analyte was not analyzed for
- NS The flagged analyte was not spiked into the sample
- M Estimated value for an analyte detected and confirmed by an analyst but with low spectral match parameters. This flag is used only for GC-MS analyses
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification"
- Y The analyte reporting limit is raised due to a positive chromatographic interference. The compound is not detected above the raised limit but may be present at or below the limit
- C The analyte was positively identified on only one of two chromatographic columns. Chromatographic interference prevented a positive identification on the second column
- P The analyte was detected on both chromatographic columns but the quantified values differ by ≥40% RPD with no obvious chromatographic interference

ORGANICS ANALYSIS DATA SHEET PNAs by Low Level SW8270D-SIM GC/MS Page 1 of 1

Sample ID: MB-113006 METHOD BLANK

Lab Sample ID: MB-113006

Date Extracted: 11/30/06

Date Analyzed: 12/02/06 09:46

Instrument/Analyst: NT1/VTS

LIMS ID: 06-23904

Matrix: Water Data Release Authorized:

Reported: 01/19/07

QC Report No: KG83-URS Corp

Project: KINDER MORGAN-LAUREL STATION

Event: 3375

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.010	0.0064 J
91-57-6	2-Methylnaphthalene	0.010	< 0.010 U
208-96-8	Acenaphthylene	0.010	< 0.010 U
83-32-9	Acenaphthene	0.010	< 0.010 U
86-73-7	Fluorene	0.010	< 0.010 U
85-01-8	Phenanthrene	0.010	< 0.010 U
120-12-7	Anthracene	0.010	< 0.010 U
206-44-0	Fluoranthene	0.010	< 0.010 U
129-00-0	Pyrene	0.010	< 0.010 U
56-55-3	Benzo(a)anthracene	0.010	< 0.010 U
218-01-9	Chrysene	0.010	< 0.010 U
205-99-2	Benzo(b)fluoranthene	0.010	< 0.010 U
207-08-9	Benzo(k)fluoranthene	0.010	< 0.010 U
50-32-8	Benzo(a)pyrene	0.010	< 0.010 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.010	< 0.010 U
53-70-3	Dibenz(a,h)anthracene	0.010	< 0.010 U
191-24-2	Benzo(g,h,i)perylene	0.010	< 0.010 U
132-64-9	Dibenzofuran	0.010	< 0.010 U

Reported in $\mu g/L$ (ppb)

SIM Semivolatile Surrogate Recovery

63.7% d10-2-Methylnaphthalene

d14-Dibenzo(a,h)anthracen 73.7%

ORGANICS ANALYSIS DATA SHEET
PNAs by Low Level SW8270D-SIM GC/MS
Page 1 of 1

Sample ID: SW-4
SAMPLE

Lab Sample ID: KG83A

LIMS ID: 06-23904

Matrix: Water

Data Release Authorized: Reported: 01/19/07

Date Extracted: 11/30/06

Date Analyzed: 12/02/06 10:36 Instrument/Analyst: NT1/VTS QC Report No: KG83-URS Corp

Project: KINDER MORGAN-LAUREL STATION

Event: 3375

Date Sampled: 11/07/06 Date Received: 11/10/06

Sample Amount: 500 mL Final Extract Volume: 0.5 mL

Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.010	0.011 B
91-57-6	2-Methylnaphthalene	0.010	< 0.010 U
208-96-8	Acenaphthylene	0.010	< 0.010 U
83-32-9	Acenaphthene	0.010	< 0.010 U
86-73-7	Fluorene	0.010	< 0.010 U
85-01-8	Phenanthrene	0.010	< 0.010 U
120-12-7	Anthracene	0.010	< 0.010 U
206-44-0	Fluoranthene	0.010	< 0.010 U
129-00-0	Pyrene	0.010	< 0.010 U
56-55-3	Benzo(a)anthracene	0.010	< 0.010 U
218-01-9	Chrysene	0.010	< 0.010 U
205-99-2	Benzo(b)fluoranthene	0.010	< 0.010 U
207-08-9	Benzo(k)fluoranthene	0.010	< 0.010 U
50-32-8	Benzo(a)pyrene	0.010	< 0.010 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.010	< 0.010 U
53-70-3	Dibenz(a,h)anthracene	0.010	< 0.010 U
191-24-2	Benzo(g,h,i)perylene	0.010	< 0.010 U
132-64-9	Dibenzofuran	0.010	< 0.010 U

Reported in μ g/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 65.3%

d14-Dibenzo(a,h)anthracen 70.0%

ORGANICS ANALYSIS DATA SHEET PNAs by Low Level SW8270D-SIM GC/MS Page 1 of 1

Date Extracted LCS/LCSD: 11/30/06

Date Analyzed LCS: 12/02/06 10:11

Instrument/Analyst LCS: NT1/VTS

Sample ID: LCS-113006

LAB CONTROL SAMPLE

Lab Sample ID: LCS-113006

LIMS ID: 06-23904

Matrix: Water

Data Release Authorized:

Reported: 01/19/07

QC Report No: KG83-URS Corp

Project: KINDER MORGAN-LAUREL STATION

Event: 3375

Date Sampled: NA

Date Received: NA

Sample Amount LCS: 500 mL Final Extract Volume LCS: 0.50 mL

Dilution Factor LCS: 1.00

Analyte	LCS	Spike Added	Recovery
Naphthalene	0.228	0.300	76.0%
Acenaphthylene	0.229	0.300	76.3%
Acenaphthene	0.227	0.300	75.7%
Fluorene	0.279	0.300	93.0%
Phenanthrene	0.246	0.300	82.0%
Anthracene	0.193	0.300	64.3%
Fluoranthene	0.273	0.300	91.0%
Pyrene	0.269	0.300	89.7%
Benzo(a) anthracene	0.242	0.300	80.7%
Chrysene	0.266	0.300	88.7%
Benzo(b) fluoranthene	0.238	0.300	79.3%
Benzo(k)fluoranthene	0.240	0.300	80.0%
Benzo(a)pyrene	0.157	0.300	52.3%
Indeno(1,2,3-cd)pyrene	0.229	0.300	76.3%
Dibenz(a,h)anthracene	0.236	0.300	78.7%
Benzo(g,h,i)perylene	0.236	0.300	78.7%
Dibenzofuran	0.201	0.300	67.0%

Reported in μ g/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 74.78

d14-Dibenzo(a,h)anthracen 84.0%

21 December 2006

Karen Mixon URS Corporation Century Square 1501 Fourth Avenue Suite 1400 Seattle, WA 98121

RE: Client Project: 33759339, Laurel Station ARI Job No: KI11

Dear Karen:

Please find enclosed the original chain of custody documentation and the final results for the samples from the project referenced above. Analytical Resources, Inc. (ARI) received seven water samples in good condition on December 9, 2006.

The samples were analyzed for VOAs, NWTPH-G, NWTPH-Dx and PAHs as requested.

All samples were initially analyzed for PAHs on 12/16/06. The percent recoveries for the surrogates and internal standards were low following the analyses of samples DW-2 and DW-3. These samples were re-analyzed on 12/20/06. The percent recoveries were within acceptable QC limits for the re-analyses. The results for the re-analyses only have been submitted.

The remaining analyses proceeded without incident of note.

A copy of these reports and all associated raw data will remain on file electronically with ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

Mark D. Harris Project Manager 206/695-6210 markh@arilabs.com

1000.0al

Enclosures

cc: file KI11

MDH/mdh

Chain of Custody Record & Laboratory Analysis Request

	Turn-around Requested:	n-around Requested: S TAN DARD			Page:		of			Analytic	Analytical Resources, Incorporated Analytical Chemists and Consultants
ARI Client Company:		Phone:			Date:	4	lce Drogonto	\ \ ?		4611 Sc	4611 South 134th Place, Suite 100
MARS CORPORATION		206-	206-438-4300	90	12-	30-8	i ese	, , , , , , , , , , , , , , , , , , , ,		Tukwila	Tukwila, WA 98168
KALIN WIKON					No. of Coolers:	d	Cooler Temps:	Cooler 7,6,7,7	-84 C P 8 8 12 2	206-69	206-695-6200 206-695-6201 (fax)
Client Project Name:								Analysis Requested	p		Notes/Comments
LAMPEL STATION						_	_	(50			
Client Project #: ショルティス39	Samplers:	Jesse Mc	Jesse McCurrence Hommeren	t	*9.			(q c			
Sample ID	Date	Time	Matrix	No. Containers	HATVIN	A G(NN)	778) 700	±78) H∀∂		,	
Dw-4	70/2/21	5h&1	8	rt	×	×	×	×			
ይພ- አ	90 8 71	0000	AA	7	*	У	¥	×			
Dw-3	20/8/21	1030	4 2	4	×	×	×	×			
7-30	20/8/21	1230	AQ	£	×	×	×	×			
5w-2	12/8/06	1335	40	יַל	×	×	×	×			Extra volume
DW-5	10/8/21	1510	\$	7	×	×	У	×			
DWP	10/8/21)	A&	r	×	×	×	×			FIELD DUPLICATE
Comments/Special Instructions ・Pみせき(メミベ) アデタロパー	Relinquished by: (Signature)	M M	\ {	Received by:	$\left \cdot \right $			Relinquished by: (Signature)		Received by:	
0.01 mg/L Reporting	Printed Name:	7 9	= x sh	Printed Name:	7/2	20		Printed Name:		Printed Name:	:0
FOR SERVICES, CONTRCT WAR	Company: WRS CORP.	COMP.		Company:				Company:		Company:	
	Date & Time: 12 9 6 し		1050	Date & Time: 12 9	E,	501	6	Date & Time:		Date & Time:	

meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client. Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

ARI Data Reporting Qualifiers

Effective 11/22/04

Inorganic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Duplicate RPD is not within established control limits
- B Reported value is less than the CRDL but ≥ the Reporting Limit
- N Matrix Spike recovery not within established control limits
- NA Not Applicable, analyte not spiked
- H The natural concentration of the spiked element is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- L Analyte concentration is ≤5 times the Reporting Limit and the replicate control limit defaults to ±1 RL instead of the normal 20% RPD

Organic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Flagged value is not within established control limits
- B Analyte detected in an associated Method Blank at a concentration greater than one-half of ARI's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.
- J Estimated concentration when the value is less than ARI's established reporting limits
- D The spiked compound was not detected due to sample extract dilution
- NR Spiked compound recovery is not reported due to chromatographic interference
- E Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- S Indicates an analyte response that has saturated the detector. The calculated concentration is not valid; a dilution is required to obtain valid quantification of the analyte
- NA The flagged analyte was not analyzed for
- NS The flagged analyte was not spiked into the sample
- M Estimated value for an analyte detected and confirmed by an analyst but with low spectral match parameters. This flag is used only for GC-MS analyses
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification"
- Y The analyte reporting limit is raised due to a positive chromatographic interference. The compound is not detected above the raised limit but may be present at or below the limit
- C The analyte was positively identified on only one of two chromatographic columns. Chromatographic interference prevented a positive identification on the second column
- P The analyte was detected on both chromatographic columns but the quantified values differ by ≥40% RPD with no obvious chromatographic interference

Sample ID: MB-121206 Page 1 of 2 METHOD BLANK

Lab Sample ID: MB-121206

LIMS ID: 06-24545

Matrix: Water

Data Release Authorized:

Instrument/Analyst: FINN3/PAB

Date Analyzed: 12/12/06 10:21

Reported: 12/18/06

QC Report No: KI11-URS Corp Project: LAUREL STATION

33759339

Date Sampled: NA Date Received: NA

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	Ū
74-83-9	Bromomethane	0.2	< 0.2	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.3	< 0.3	U
67-64-1	Acetone	3.0	< 3.0	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	1.0	< 1.0	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	0.2	< 0.2	Ũ
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	Ü
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U.
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	0.5	< 0.5	Ũ
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	1.0	< 1.0	U
591-78-6	2-Hexanone	3.0	< 3.0	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	Ū
100-42-5	Styrene	0.2	< 0.2	Ū
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
107-02-8	Acrolein	5.0	< 5.0	U
74-88-4	Methyl Iodide	0.2	< 0.2	Ū
74-96-4	Bromoethane	0.2	< 0.2	U
107-13-1	Acrylonitrile	1.0	< 1.0	U
563-58-6	1,1-Dichloropropene	0.2	< 0.2	U
74-95-3	Dibromomethane	0.2	< 0.2	Ü
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	U

Page 2 of 2

Sample ID: MB-121206

METHOD BLANK

Lab Sample ID: MB-121206 LIMS ID: 06-24545

Matrix: Water Date Analyzed: 12/12/06 10:21 QC Report No: KI11-URS Corp

Project: LAUREL STATION

33759339

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	υ
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	Ŭ
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	96.5%
d8-Toluene	100%
Bromofluorobenzene	83.8%
d4-1.2-Dichlorobenzene	93.2%

Page 1 of 2

Lab Sample ID: KI11A LIMS ID: 06-24541

Matrix: Water

Data Release Authorized: Reported: 12/18/06

QC Report No: KI11-URS Corp Project: LAUREL STATION

33759339

Sample ID: DW-1

SAMPLE

Date Sampled: 12/07/06 Date Received: 12/09/06

Instrument/Analyst: FINN3/PAB Sample Amount: 20.0 mL Date Analyzed: 12/12/06 13:59 Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.2	< 0.2	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.3	< 0.3	U
67-64-1	Acetone	3.0	< 3.0	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	Ŭ
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	1.0	< 1.0	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	0.2	< 0.2	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	Ū
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	0.5	< 0.5	U
75-25-2	Bromoform	0.2	< 0.2	Ŭ
108-10-1	4-Methyl-2-Pentanone (MIBK)	1.0	< 1.0	U
591-78-6	2-Hexanone	3.0	< 3.0	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	U
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	Ü
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	Ŭ
107-02-8	Acrolein	5.0	< 5.0	U
74-88-4	Methyl Iodide	0.2	< 0.2	U
74-96-4	Bromoethane	0.2	< 0.2	Ŭ
107-13-1	Acrylonitrile	1.0	< 1.0	U
563-58-6	1,1-Dichloropropene	0.2	< 0.2	U
74-95-3	Dibromomethane	0.2	< 0.2	U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	U

Page 2 of 2

Sample ID: DW-1

SAMPLE

Lab Sample ID: KI11A LIMS ID: 06-24541 QC Report No: KI11-URS Corp Project: LAUREL STATION

33759339

Matrix: Water

Date Analyzed: 12/12/06 13:59

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	Ų
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in μ g/L (ppb)

d4-1,2-Dichloroethane	97.2%
d8-Toluene	96.8%
Bromofluorobenzene	78.5%
d4-1 2-Dichlorobenzene	105%

Page 1 of 2

Lab Sample ID: KI11B LIMS ID: 06-24542 Matrix: Water

Instrument/Analyst: FINN3/PAB Date Analyzed: 12/12/06 14:26

Data Release Authorized:

Reported: 12/18/06

QC Report No: KI11-URS Corp Project: LAUREL STATION

33759339

Sample ID: DW-2

SAMPLE

Date Sampled: 12/08/06 Date Received: 12/09/06

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.2	< 0.2	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.3	< 0.3	Ω
67-64-1	Acetone	3.0	< 3.0	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	1.0	< 1.0	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	0.2	< 0.2	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	Ű
79-01-6	Trichloroethene	0.2	< 0.2	Ū
124-48-1	Dibromochloromethane	0.2	< 0.2	υ
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	Ū
71-43-2	Benzene	0.2	< 0.2	Ū
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	Ū
110-75-8	2-Chloroethylvinylether	0.5	< 0.5	Ū
75-25-2	Bromoform	0.2	< 0.2	Ū
108-10-1	4-Methyl-2-Pentanone (MIBK)	1.0	< 1.0	Ū
591-78-6	2-Hexanone	3.0	< 3.0	Ū
127-18-4	Tetrachloroethene	0.2	< 0.2	Ū
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	Ū
108-88-3	Toluene	0.2	< 0.2	Ū
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-41-4	Styrene	0.2	< 0.2	ΰ
75-69-4	Trichlorofluoromethane	0.2	< 0.2	ΰ
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	Ū
1330-20-7		0.4	< 0.2	Ū
95-47-6	<pre>m,p-Xylene o-Xylene</pre>	0.4	< 0.4	Ü
	1,2-Dichlorobenzene	0.2	< 0.2	Ū
95-50-1				
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U U
106-46-7	1,4-Dichlorobenzene	0.2 5.0	< 0.2	
107-02-8	Acrolein	0.2	< 5.0 < 0.2	U U
74-88-4	Methyl Iodide	0.2	< 0.2	Ū
74-96-4	Bromoethane			
107-13-1	Acrylonitrile	1.0	< 1.0	U
563-58-6	1,1-Dichloropropene	0.2	< 0.2	U
74-95-3	Dibromomethane	0.2	< 0.2	U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	U

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: DW-2 SAMPLE

Lab Sample ID: KI11B LIMS ID: 06-24542

QC Report No: KI11-URS Corp Project: LAUREL STATION

33759339

Matrix: Water

Date Analyzed: 12/12/06 14:26

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	υ
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	90.0%
d8-Toluene	98.8%
Bromofluorobenzene	81.0%
d4-1 2-Dichlorobenzene	1028

Sample ID: DW-3 Page 1 of 2 SAMPLE

Lab Sample ID: KI11C LIMS ID: 06-24543 Matrix: Water

Data Release Authorized:

Reported: 12/18/06

33759339 Date Sampled: 12/08/06 Date Received: 12/09/06

QC Report No: KI11-URS Corp

Project: LAUREL STATION

Sample Amount: 20.0 mL Instrument/Analyst: FINN3/PAB Date Analyzed: 12/12/06 14:53 Purge Volume: 20.0 mL

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.2	< 0.2	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.3	< 0.3	U
67-64-1	Acetone	3.0	< 3.0	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	Ū
78-93-3	2-Butanone	1.0	< 1.0	Ŭ
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	0.2	< 0.2	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	Ü
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	0.5	< 0.5	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	1.0	< 1.0	Ū.
591-78-6	2-Hexanone	3.0	< 3.0	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2 < 0.2	U U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe			
1330-20-7	m,p-Xylene	0.4	< 0.4 < 0.2	U U
95-47-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
541-73-1	1,3-Dichlorobenzene		< 0.2	U
106-46-7	1,4-Dichlorobenzene	0.2	< 5.0	
107-02-8	Acrolein	5.0	< 0.2	U U
74-88-4	Methyl Iodide	0.2	< 0.2	Ū
74-96-4	Bromoethane	1.0	< 1.0	U
107-13-1	Acrylonitrile		< 0.2	
563-58-6	1,1-Dichloropropene	0.2	< 0.2	U U
74-95-3	Dibromomethane 1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
630-20-6		0.5	< 0.2	Ū
96-12-8	1,2-Dibromo-3-chloropropane		< 0.5	U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	U

Page 2 of 2

Sample ID: DW-3

SAMPLE

Lab Sample ID: KI11C LIMS ID: 06-24543

QC Report No: KI11-URS Corp Project: LAUREL STATION

33759339

Matrix: Water

Date Analyzed: 12/12/06 14:53

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	Ų
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in μ g/L (ppb)

d4-1,2-Dichloroethane	98.2%
d8-Toluene	94.5%
Bromofluorobenzene	81.2%
d4-1.2-Dichlorobenzene	106%

Sample ID: DW-4 Page 1 of 2 SAMPLE

Lab Sample ID: KI11D LIMS ID: 06-24544 Matrix: Water

Data Release Authorized:

Instrument/Analyst: FINN3/PAB

Date Analyzed: 12/12/06 15:20

Reported: 12/18/06

QC Report No: KI11-URS Corp Project: LAUREL STATION 33759339

Date Sampled: 12/08/06 Date Received: 12/09/06

74-87-3 Chloromethane 0.2 < 0.2	CAS Number	Analyte	RL	Result	Q
75-01-4	74-87-3	Chloromethane	0.2	< 0.2	U
T5-00-3	74-83-9	Bromomethane	0.2	< 0.2	U
T5-00-3	75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-09-2			0.2		U
67-64-1 Acetone 3.0 < 3.0					
75-15-0		_			
75-35-4					
75-34-3					
156-60-5					
156-59-2 Cis-1,2-Dichloroethene					
67-66-3 Chloroform 0.2 < 0.2					
107-06-2		· ·			
78-93-3 2-Butanone 1.0 < 1.0					
71-55-6 1,1,1-Trichloroethane 0.2 < 0.2					
56-23-5 Carbon Tetrachloride 0.2 < 0.2					
108-05-4 Vinyl Acetate 0.2 < 0.2		· · ·			
75-27-4 Bromodichloromethane 0.2 < 0.2					
78-87-5 1,2-Dichloropropane 0.2 < 0.2					
10061-01-5					
79-01-6 Trichloroethene 0.2 < 0.2					
124-48-1 Dibromochloromethane 0.2 < 0.2 U 79-00-5 1,1,2-Trichloroethane 0.2 < 0.2 U 71-43-2 Benzene 0.2 < 0.2 U 10061-02-6 trans-1,3-Dichloropropene 0.2 < 0.2 U 110-75-8 2-Chloroethylvinylether 0.5 < 0.5 U 75-25-2 Bromoform 0.2 < 0.2 U 108-10-1 4-Methyl-2-Pentanone (MIBK) 1.0 < 1.0 U 591-78-6 2-Hexanone 3.0 < 3.0 U 127-18-4 Tetrachloroethene 0.2 < 0.2 U 108-88-3 Toluene 0.2 < 0.2 U 108-90-7 Chlorobenzene 0.2 < 0.2 U 100-41-4 Ethylbenzene 0.2 < 0.2 U 100-42-5 Styrene 0.2 < 0.2 U 75-69-4 Trichlorofluoromethane 0.2 < 0.2 U 1330-20-7 m,p-Xylene 0.4 < 0.4 U 95-50-1 1,2-Dichlorobenzene 0.2 < 0.2 U 134-73-1 1,3-Dichlorobenzene 0.2 < 0.2 U 106-46-7 1,4-Dichlorobenzene 0.2 < 0.2 U 107-02-8 Acrolein 5.0 < 5.0 U 107-13-1 Acrylonitrile 1.0 < 1.0 U 563-58-6 1,1-Dichloropropene 0.2 < 0.2 U 14-95-3 Dibromomethane 0.2 < 0.2 U 1563-58-6 1,1-Dichloropropene 0.2 < 0.2 U 1563-58-6 1,1-Dichloropropene 0.2 < 0.2 U 1563-58-6 1,1-Dichloropropene 0.2 < 0.2 U 1563-58-6 1,1-Dichloropropene 0.2 < 0.2 U 1563-58-6 1,1-Dichloropropene 0.2 < 0.2 U 1563-58-6 1,1-Dichloropropene 0.2 < 0.2 U 1563-58-6 1,1-Dichloropropene 0.2 < 0.2 U 1563-58-6 1,1-Dichloropropene 0.2 < 0.2 U 1563-58-6 1,1-Dichloropropene 0.2 < 0.2 U 1563-58-6 1,1-Dichloropropene 0.2 < 0.2 U 1563-58-6 1,1-Dichloropropene 0.2 < 0.2 U 1563-58-6 1,1-Dichloropropene 0.2 < 0.2 U 1563-58-6 1,1-Dichloropropene 0.2 < 0.2 U 1563-58-6 1,1-Dichloropropene 0.2 < 0.2 U 1563-58-6 1,1-Dichloropropene 0.2 < 0.2 U 1563-58-6 1,1-Dichloropropene 0.2 < 0.2 U 1563-58-6 1,1-Dichloropropene 0.2 < 0.2 U 1563-58-6 1,1-Dichloropropene 0.2 < 0.2 U 1563-58-6 1,1-Dichloropropene 0.2 < 0.2 U 1563-58-6 1,					
79-00-5 1,1,2-Trichloroethane 0.2 < 0.2					
71-43-2 Benzene 0.2 < 0.2					
10061-02-6 trans-1,3-Dichloropropene 0.2 < 0.2					
110-75-8 2-Chloroethylvinylether 0.5 < 0.5					
75-25-2 Bromoform 0.2 < 0.2					
108-10-1 4-Methyl-2-Pentanone (MIBK) 1.0 < 1.0					
591-78-6 2-Hexanone 3.0 < 3.0					
127-18-4 Tetrachloroethene 0.2 < 0.2		-			
79-34-5 1,1,2,2-Tetrachloroethane 0.2 < 0.2					
108-88-3 Toluene 0.2 < 0.2	127-18-4				
108-90-7 Chlorobenzene 0.2 < 0.2	79-34-5	1,1,2,2-Tetrachloroethane			
100-41-4 Ethylbenzene 0.2 < 0.2	108-88-3				
100-42-5 Styrene 0.2 < 0.2	108-90-7				U
75-69-4 Trichlorofluoromethane 0.2 < 0.2	100-41-4				U
76-13-1 1,1,2-Trichloro-1,2,2-trifluoroe 0.2 < 0.2	100-42-5	Styrene			
1330-20-7 m,p-Xylene 0.4 < 0.4	75-69-4	Trichlorofluoromethane	0.2	< 0.2	U
95-47-6 O-Xylene 0.2 < 0.2	76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	0.2	< 0.2	U
95-50-1 1,2-Dichlorobenzene 0.2 < 0.2	1330-20-7	m,p-Xylene	0.4	< 0.4	U
541-73-1 1,3-Dichlorobenzene 0.2 < 0.2	95-47-6	o-Xylene	0.2		
106-46-7 1,4-Dichlorobenzene 0.2 < 0.2	95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
107-02-8 Acrolein 5.0 < 5.0	541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
107-02-8 Acrolein 5.0 < 5.0	106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
74-96-4 Bromoethane 0.2 < 0.2		Acrolein	5.0	< 5.0	U
74-96-4 Bromoethane 0.2 < 0.2	74-88-4	Methyl Iodide	0.2	< 0.2	U
107-13-1 Acrylonitrile 1.0 < 1.0	74-96-4		0.2	< 0.2	U
563-58-6 1,1-Dichloropropene 0.2 < 0.2				< 1.0	U
74-95-3 Dibromomethane 0.2 < 0.2	563-58-6		0.2	< 0.2	U
630-20-6 1,1,1,2-Tetrachloroethane 0.2 < 0.2 U 96-12-8 1,2-Dibromo-3-chloropropane 0.5 < 0.5 U			0.2	< 0.2	U
96-12-8 1,2-Dibromo-3-chloropropane 0.5 < 0.5 U		1,1,1,2-Tetrachloroethane	0.2		U
<u> </u>					U
				< 0.5	U

Page 2 of 2

Sample ID: DW-4
SAMPLE

QC Report No: KI11-URS Corp Project: LAUREL STATION

33759339

Matrix: Water

LIMS ID: 06-24544

Lab Sample ID: KI11D

Date Analyzed: 12/12/06 15:20

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	υ
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	98.2%
d8-Toluene	101%
Bromofluorobenzene	78.8%
d4-1 2-Dichlorobenzene	108%

Sample ID: SW-2 SAMPLE

Lab Sample ID: KI11E LIMS ID: 06-24545

Matrix: Water Data Release Authorized:

Reported: 12/18/06

Instrument/Analyst: FINN3/PAB Date Analyzed: 12/12/06 11:52

QC Report No: KI11-URS Corp Project: LAUREL STATION

33759339 Date Sampled: 12/08/06 Date Received: 12/09/06

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.2	< 0.2	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.3	< 0.3	Ü
67-64-1	Acetone	3.0	< 3.0	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	1.0	< 1.0	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	0.2	< 0.2	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	0.5	< 0.5	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	1.0	< 1.0	U
591-78-6	2-Hexanone	3.0	< 3.0	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	U
108-90-7	Chlorobenzene	0.2	< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2	Ū
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.2	Ū
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6	o-Xylene	0.2	< 0.2	U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	U
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
107-02-8	Acrolein	5.0	< 5.0	U
74-88-4	Methyl Iodide	0.2	< 0.2	U
74-96-4	Bromoethane	0.2	< 0.2	U
107-13-1	Acrylonitrile	1.0	< 1.0	U
563-58-6	1,1-Dichloropropene	0.2	< 0.2	U
74-95-3	Dibromomethane	0.2	< 0.2	Ü
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	U

Page 2 of 2

Sample ID: SW-2

SAMPLE

Lab Sample ID: KI11E LIMS ID: 06-24545 QC Report No: KI11-URS Corp Project: LAUREL STATION

33759339

Matrix: Water

Date Analyzed: 12/12/06 11:52

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	υ
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	Ũ
103-65-1	n-Propylbenzene	0.2	< 0.2	Ü
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in μ g/L (ppb)

d4-1,2-Dichloroethane	104%
d8-Toluene	109%
Bromofluorobenzene	90.2%
d4-1 2-Dichlorobenzene	112%

Sample ID: SW-2 Page 1 of 2 MATRIX SPIKE

Lab Sample ID: KI11E LIMS ID: 06-24545

Matrix: Water Data Release Authorized:

Reported: 12/18/06

Instrument/Analyst: FINN3/PAB Date Analyzed: 12/12/06 13:04

QC Report No: KI11-URS Corp Project: LAUREL STATION

33759339

Date Sampled: 12/08/06 Date Received: 12/09/06

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2		
74-83-9	Bromomethane	0.2		
75-01-4	Vinyl Chloride	0.2		
75-00-3	Chloroethane	0.2		
75-09-2	Methylene Chloride	0.3		
67-64-1	Acetone	3.0		
75-15-0	Carbon Disulfide	0.2		
75-35-4	1,1-Dichloroethene	0.2		
75-34-3	1,1-Dichloroethane	0.2		
156-60-5	trans-1,2-Dichloroethene	0.2		
156-59-2	cis-1,2-Dichloroethene	0.2		
67-66-3	Chloroform	0.2		
107-06-2	1,2-Dichloroethane	0.2		
78-93-3	2-Butanone	1.0		
71-55-6	1,1,1-Trichloroethane	0.2		
56-23-5	Carbon Tetrachloride	0.2		
108-05-4	Vinyl Acetate	0.2		
75-27-4	Bromodichloromethane	0.2		
78-87-5	1,2-Dichloropropane	0.2		
10061-01-5	cis-1,3-Dichloropropene	0.2		
79-01-6	Trichloroethene	0.2		
124-48-1	Dibromochloromethane	0.2		
79-00-5	1,1,2-Trichloroethane	0.2		
71-43-2	Benzene	0.2		
10061-02-6	trans-1,3-Dichloropropene	0.2		
110-75-8	2-Chloroethylvinylether	0.5		
75-25-2	Bromoform	0.2		
108-10-1	4-Methyl-2-Pentanone (MIBK)	1.0		
591-78-6	2-Hexanone	3.0		
127-18-4	Tetrachloroethene	0.2		
79-34-5	1,1,2,2-Tetrachloroethane	0.2		
108-88-3	Toluene	0.2		
108-90-7	Chlorobenzene	0.2		
100-41-4	Ethylbenzene	0.2		
100-42-5	Styrene	0.2		
75-69-4	Trichlorofluoromethane	0.2		
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	0.2		
1330-20-7	m,p-Xylene	0.4		
95-47-6	o-Xylene	0.2		
95-50-1	1,2-Dichlorobenzene	0.2		
541-73-1	1,3-Dichlorobenzene	0.2		
106-46-7	1,4-Dichlorobenzene	0.2		
107-02-8	Acrolein	5.0		
74-88-4	Methyl Iodide	0.2		
74-96-4	Bromoethane	0.2		
107-13-1	Acrylonitrile	1.0		
563-58-6	1,1-Dichloropropene	0.2		
74-95-3	Dibromomethane	0.2		
630-20-6	1,1,1,2-Tetrachloroethane	0.2		
96-12-8	1,2-Dibromo-3-chloropropane	0.5		

Sample ID: SW-2 Page 2 of 2 MATRIX SPIKE

Lab Sample ID: KI11E LIMS ID: 06-24545

QC Report No: KI11-URS Corp Project: LAUREL STATION

Matrix: Water

33759339

Date Analyzed: 12/12/06 13:04

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0		
108-67-8	1,3,5-Trimethylbenzene	0.2		
95-63-6	1,2,4-Trimethylbenzene	0.2		
87-68-3	Hexachlorobutadiene	0.5		
106-93-4	Ethylene Dibromide	0.2		
74-97-5	Bromochloromethane	0.2		
594-20-7	2,2-Dichloropropane	0.2		
142-28-9	1,3-Dichloropropane	0.2		
98-82-8	Isopropylbenzene	0.2		
103-65-1	n-Propylbenzene	0.2		
108-86-1	Bromobenzene	0.2		
95-49-8	2-Chlorotoluene	0.2		
106-43-4	4-Chlorotoluene	0.2		
98-06-6	tert-Butylbenzene	0.2		
135-98-8	sec-Butylbenzene	0.2		
99-87-6	4-Isopropyltoluene	0.2		
104-51-8	n-Butylbenzene	0.2		
120-82-1	1,2,4-Trichlorobenzene	0.5		
91-20-3	Naphthalene	0.5		
87-61-6	1,2,3-Trichlorobenzene	0.5		

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	99.2%
d8-Toluene	103%
Bromofluorobenzene	85.8%
d4-1.2-Dichlorobenzene	102%

Sample ID: SW-2

MATRIX SPIKE DUP

Page 1 of 2

Lab Sample ID: KI11E LIMS ID: 06-24545

Matrix: Water

Data Release Authorized: Reported: 12/18/06

Instrument/Analyst: FINN3/PAB
Date Analyzed: 12/12/06 13:32

QC Report No: KI11-URS Corp Project: LAUREL STATION

33759339

Date Sampled: 12/08/06 Date Received: 12/09/06

CAS Number	Analyte	RL	Result Q
74-87-3	Chloromethane	0.2	
74-83-9	Bromomethane	0.2	
75-01-4	Vinyl Chloride	0.2	
75-00-3	Chloroethane	0.2	
75-09-2	Methylene Chloride	0.3	
67-64-1	Acetone	3.0	
75-15-0	Carbon Disulfide	0.2	
75-35-4	1,1-Dichloroethene	0.2	
75-34-3	1,1-Dichloroethane	0.2	
156-60-5	trans-1,2-Dichloroethene	0.2	
156-59-2	cis-1,2-Dichloroethene	0.2	
67-66-3	Chloroform	0.2	
107-06-2	1,2-Dichloroethane	0.2	
78-93-3	2-Butanone	1.0	
71-55-6	1,1,1-Trichloroethane	0.2	
56-23-5	Carbon Tetrachloride	0.2	
108-05-4	Vinyl Acetate	0.2	
75-27-4	Bromodichloromethane	0.2	
78-87-5	1,2-Dichloropropane	0.2	
10061-01-5	cis-1,3-Dichloropropene	0.2	
79-01-6	Trichloroethene	0.2	
124-48-1	Dibromochloromethane	0.2	
79-00-5	1,1,2-Trichloroethane	0.2	
71-43-2	Benzene	0.2	
10061-02-6	trans-1,3-Dichloropropene	0.2	
110-75-8	2-Chloroethylvinylether	0.5	
75-25-2	Bromoform	0.2	
108-10-1	4-Methyl-2-Pentanone (MIBK)	1.0	
591-78-6	2-Hexanone	3.0	
127-18-4	Tetrachloroethene	0.2	
79-34-5	1,1,2,2-Tetrachloroethane	0.2	
108-88-3	Toluene	0.2	
108-90-7	Chlorobenzene	0.2	
100-41-4	Ethylbenzene	0.2	
100-42-5	Styrene	0.2	
75-69-4	Trichlorofluoromethane	0.2	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		
1330-20-7	m,p-Xylene	0.4	
95-47-6	o-Xylene	0.2	
95-50-1	1,2-Dichlorobenzene	0.2	
541-73-1	1,3-Dichlorobenzene	0.2	
106-46-7	1,4-Dichlorobenzene	0.2	
107-02-8	Acrolein	5.0	
74-88-4	Methyl Iodide	0.2	
74-96-4	Bromoethane	0.2	
107-13-1	Acrylonitrile	1.0	
563-58-6	1,1-Dichloropropene Dibromomethane	0.2	
74-95-3		0.2	
630-20-6	1,1,1,2-Tetrachloroethane	0.2	
96-12-8	1,2-Dibromo-3-chloropropane	0.5	
96-18-4	1,2,3-Trichloropropane		

Page 2 of 2

Sample ID: SW-2

MATRIX SPIKE DUP

Lab Sample ID: KI11E LIMS ID: 06-24545 QC Report No: KI11-URS Corp Project: LAUREL STATION

33759339

Matrix: Water

Date Analyzed: 12/12/06 13:32

CAS Number Analyte		RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0		
108-67-8	1,3,5-Trimethylbenzene	0.2		
95-63-6	1,2,4-Trimethylbenzene	0.2		
87-68-3	Hexachlorobutadiene	0.5		
106-93-4	Ethylene Dibromide	0.2		
74-97-5	Bromochloromethane	0.2		
594-20-7	2,2-Dichloropropane	0.2		
142-28-9	1,3-Dichloropropane	0.2		
98-82-8	Isopropylbenzene	0.2	· -	
103-65-1	n-Propylbenzene	0.2		
108-86-1	Bromobenzene	0.2		
95-49-8	2-Chlorotoluene	0.2		
106-43-4	4-Chlorotoluene	0.2		
98-06-6	tert-Butylbenzene	0.2		
135-98-8	sec-Butylbenzene	0.2		
99-87-6	4-Isopropyltoluene	0.2		
104-51-8	n-Butylbenzene	0.2		
120-82-1	1,2,4-Trichlorobenzene	0.5		
91-20-3	Naphthalene	0.5		
87-61-6	1,2,3-Trichlorobenzene	0.5		

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	106%
d8-Toluene	100%
Bromofluorobenzene	93.5%
d4-1,2-Dichlorobenzene	98.5%

Page 1 of 2

Lab Sample ID: KI11F LIMS ID: 06-24546 Matrix: Water

Data Release Authorized:

Instrument/Analyst: FINN3/PAB

Date Analyzed: 12/12/06 15:48

Reported: 12/18/06

QC Report No: KI11-URS Corp Project: LAUREL STATION 33759339

Date Sampled: 12/08/06 Date Received: 12/09/06

Sample ID: DW-5

SAMPLE

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.2	< 0.2	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.3	< 0.3	U
67-64-1	Acetone	3.0	< 3.0	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	1.0	< 1.0	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	Ū
108-05-4	Vinyl Acetate	0.2	< 0.2	Ū
75-27-4	Bromodichloromethane	0.2	< 0.2	Ū
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	U
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	Ū
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	Ū
110-75-8	2-Chloroethylvinylether	0.5	< 0.5	U
75-25-2	Bromoform	0.2	< 0.3	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	1.0	< 1.0	Ū
591-78-6	2-Hexanone	3.0	< 3.0	Ū
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	Ü
	Toluene	0.2	< 0.2	U
108-88-3	Chlorobenzene	0.2	< 0.2	U
108-90-7			< 0.2	U
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5 75-69-4	Styrene Trichlorofluoromethane	0.2	< 0.2	U
			< 0.2	Ū
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe			
1330-20-7	m,p-Xylene	0.4	< 0.4 < 0.2	U
95-47-6	o-Xylene	0.2		U
95-50-1	1,2-Dichlorobenzene	0.2	< 0.2	
541-73-1	1,3-Dichlorobenzene	0.2	< 0.2	U
106-46-7	1,4-Dichlorobenzene	0.2	< 0.2	U
107-02-8	Acrolein	5.0	< 5.0	U
74-88-4	Methyl Iodide	0.2	< 0.2	U
74-96-4	Bromoethane	0.2	< 0.2	U
107-13-1	Acrylonitrile	1.0	< 1.0	U
563-58-6	1,1-Dichloropropene	0.2	< 0.2	U
74-95-3	Dibromomethane	0.2	< 0.2	U
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	U
96-18-4	1,2,3-Trichloropropane	0.5	< 0.5	U

Page 2 of 2

Sample ID: DW-5
SAMPLE

Lab Sample ID: KI11F LIMS ID: 06-24546 QC Report No: KI11-URS Corp Project: LAUREL STATION

33759339

Matrix: Water

Date Analyzed: 12/12/06 15:48

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	97.0%
d8-Toluene	98.0%
Bromofluorobenzene	82.8%
d4-1 2-Dichlorobenzene	99 5%

Page 1 of 2

Lab Sample ID: KI11G LIMS ID: 06-24547 Matrix: Water

Data Release Authorized: Reported: 12/18/06

Instrument/Analyst: FINN3/PAB
Date Analyzed: 12/12/06 16:22

Sample ID: DUP SAMPLE

QC Report No: KI11-URS Corp Project: LAUREL STATION

33759339

Date Sampled: 12/08/06 Date Received: 12/09/06

CAS Number	Analyte	RL	Result	Q
74-87-3	Chloromethane	0.2	< 0.2	U
74-83-9	Bromomethane	0.2	< 0.2	U
75-01-4	Vinyl Chloride	0.2	< 0.2	U
75-00-3	Chloroethane	0.2	< 0.2	U
75-09-2	Methylene Chloride	0.3	< 0.3	U
67-64-1	Acetone	3.0	< 3.0	U
75-15-0	Carbon Disulfide	0.2	< 0.2	U
75-35-4	1,1-Dichloroethene	0.2	< 0.2	U
75-34-3	1,1-Dichloroethane	0.2	< 0.2	U
156-60-5	trans-1,2-Dichloroethene	0.2	< 0.2	U
156-59-2	cis-1,2-Dichloroethene	0.2	< 0.2	U
67-66-3	Chloroform	0.2	< 0.2	U
107-06-2	1,2-Dichloroethane	0.2	< 0.2	U
78-93-3	2-Butanone	1.0	< 1.0	U
71-55-6	1,1,1-Trichloroethane	0.2	< 0.2	U
56-23-5	Carbon Tetrachloride	0.2	< 0.2	U
108-05-4	Vinyl Acetate	0.2	< 0.2	U
75-27-4	Bromodichloromethane	0.2	< 0.2	U
78-87-5	1,2-Dichloropropane	0.2	< 0.2	U
10061-01-5	cis-1,3-Dichloropropene	0.2	< 0.2	U
79-01-6	Trichloroethene	0.2	< 0.2	U
124-48-1	Dibromochloromethane	0.2	< 0.2	Ų
79-00-5	1,1,2-Trichloroethane	0.2	< 0.2	U
71-43-2	Benzene	0.2	< 0.2	U
10061-02-6	trans-1,3-Dichloropropene	0.2	< 0.2	U
110-75-8	2-Chloroethylvinylether	0.5	< 0.5	U
75-25-2	Bromoform	0.2	< 0.2	U
108-10-1	4-Methyl-2-Pentanone (MIBK)	1.0	< 1.0	U
591-78-6	2-Hexanone	3.0	< 3.0	U
127-18-4	Tetrachloroethene	0.2	< 0.2	U
79-34-5	1,1,2,2-Tetrachloroethane	0.2	< 0.2	U
108-88-3	Toluene	0.2	< 0.2	Ü
108-90-7	Chlorobenzene	0.2	< 0.2	Ü
100-41-4	Ethylbenzene	0.2	< 0.2	U
100-42-5	Styrene	0.2	< 0.2	U
75-69-4	Trichlorofluoromethane	0.2	< 0.2 < 0.2	U U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe	0.4	< 0.2	Ū
1330-20-7	m,p-Xylene	0.4	< 0.4	U
95-47-6 95-50-1	o-Xylene 1,2-Dichlorobenzene	0.2	< 0.2	Ū
541-73-1 106-46-7	1,3-Dichlorobenzene 1,4-Dichlorobenzene	0.2	< 0.2 < 0.2	U U
	Acrolein	5.0	< 5.0	Ū
107-02-8 74-88-4	Methyl Iodide	0.2	< 0.2	Ū
74-86-4	Bromoethane	0.2	< 0.2	Ū
107-13-1	Acrylonitrile	1.0	< 1.0	U
563-58-6	1,1-Dichloropropene	0.2	< 0.2	Ū
74-95-3	Dibromomethane	0.2	< 0.2	Ū
630-20-6	1,1,1,2-Tetrachloroethane	0.2	< 0.2	U
96-12-8	1,2-Dibromo-3-chloropropane	0.5	< 0.5	Ū
96-12-8	1,2,3-Trichloropropane	0.5	< 0.5	U
JU-10-4	1,2,3-111cmtotoptopane	0.5	\ 0.5	J

Page 2 of 2

Sample ID: DUP

SAMPLE

Lab Sample ID: KI11G LIMS ID: 06-24547 QC Report No: KI11-URS Corp Project: LAUREL STATION

33759339

Matrix: Water

Date Analyzed: 12/12/06 16:22

CAS Number	Analyte	RL	Result	Q
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.2	< 0.2	U
95-63-6	1,2,4-Trimethylbenzene	0.2	< 0.2	U
87-68-3	Hexachlorobutadiene	0.5	< 0.5	U
106-93-4	Ethylene Dibromide	0.2	< 0.2	U
74-97-5	Bromochloromethane	0.2	< 0.2	U
594-20-7	2,2-Dichloropropane	0.2	< 0.2	U
142-28-9	1,3-Dichloropropane	0.2	< 0.2	U
98-82-8	Isopropylbenzene	0.2	< 0.2	U
103-65-1	n-Propylbenzene	0.2	< 0.2	U
108-86-1	Bromobenzene	0.2	< 0.2	U
95-49-8	2-Chlorotoluene	0.2	< 0.2	U
106-43-4	4-Chlorotoluene	0.2	< 0.2	U
98-06-6	tert-Butylbenzene	0.2	< 0.2	U
135-98-8	sec-Butylbenzene	0.2	< 0.2	U
99-87-6	4-Isopropyltoluene	0.2	< 0.2	U
104-51-8	n-Butylbenzene	0.2	< 0.2	U
120-82-1	1,2,4-Trichlorobenzene	0.5	< 0.5	U
91-20-3	Naphthalene	0.5	< 0.5	U
87-61-6	1,2,3-Trichlorobenzene	0.5	< 0.5	U

Reported in $\mu g/L$ (ppb)

d4-1,2-Dichloroethane	94.0%
d8-Toluene	97.2%
Bromofluorobenzene	79.0%
d4-1.2-Dichlorobenzene	1.07%

Sample ID: SW-2 MATRIX SPIKE

Page 1 of 2

Lab Sample ID: KI11E LIMS ID: 06-24545

Matrix: Water

Data Release Authorized:

Reported: 12/18/06

QC Report No: KI11-URS Corp Project: LAUREL STATION

33759339

Date Sampled: 12/08/06 Date Received: 12/09/06

Sample Amount MS: 20.0 mL Instrument/Analyst MS: FINN3/PAB MSD: FINN3/PAB

MSD: 20.0 mL Purge Volume MS: 20.0 mL Date Analyzed MS: 12/12/06 13:04 MSD: 12/12/06 13:32

MSD: 20.0 mL

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Chloromethane	< 0.2 U	2.9	4.0	72.5%	3.0	4.0	75.0%	3.4%
Bromomethane	< 0.2 U	3.7	4.0	92.5%	3.8	4.0	95.0%	2.7%
Vinyl Chloride	< 0.2 U	3.3	4.0	82.5%	3.3	4.0	82.5%	0.0%
Chloroethane	< 0.2 U	3.3	4.0	82.5%	3.5	4.0	87.5%	5.9%
Methylene Chloride	< 0.3 U	3.5	4.0	87.5%	3.7	4.0	92.5%	5.6%
Acetone	< 3.0 U	15.7	20.0	78.5%	21.0	20.0	105%	28.9%
Carbon Disulfide	< 0.2 U	4.0	4.0	100%	4.0	4.0	100%	0.0%
1,1-Dichloroethene	< 0.2 U	3.6	4.0	90.0%	3.6	4.0	90.0%	0.0%
1,1-Dichloroethane	< 0.2 U	3.8	4.0	95.0%	4.0	4.0	100%	5.1%
trans-1,2-Dichloroethene	< 0.2 U	3.9	4.0	97.5%	3.9	4.0	97.5%	0.0%
cis-1,2-Dichloroethene	< 0.2 U	3.5	4.0	87.5%	3.7	4.0	92.5%	5.6%
Chloroform	< 0.2 U	3.6	4.0	90.0%	3.8	4.0	95.0%	5.4%
1,2-Dichloroethane	< 0.2 U	4.3	4.0	108%	4.5	4.0	112%	4.5%
2-Butanone	< 1.0 U	15.1	20.0	75.5%	17.4	20.0	87.0%	14.2%
1,1,1-Trichloroethane	< 0.2 U	3.8	4.0	95.0%	4.1	4.0	102%	7.6%
Carbon Tetrachloride	< 0.2 U	4.4	4.0	110%	4.2	4.0	105%	4.7%
Vinvl Acetate	< 0.2 U	3.2	4.0	80.0%	3.7	4.0	92.5%	14.5%
Bromodichloromethane	< 0.2 U	4.0	4.0	100%	4.2	4.0	105%	4.9%
1,2-Dichloropropane	< 0.2 U	4.0	4.0	100%	4.0	4.0	100%	0.0%
cis-1,3-Dichloropropene	< 0.2 U	4.2	4.0	105%	4.0	4.0	100%	4.9%
Trichloroethene	< 0.2 U	4.2	4.0	105%	3.9	4.0	97.5%	7.4%
Dibromochloromethane	< 0.2 U	3.5	4.0	87.5%	3.8	4.0	95.0%	8.2%
1,1,2-Trichloroethane	< 0.2 U	4.0	4.0	100%	4.4	4.0	110%	9.5%
Benzene	< 0.2 U	4.3	4.0	108%	4.1	4.0	102%	4.8%
trans-1,3-Dichloropropene	< 0.2 U	4.0	4.0	100%	4.0	4.0	100%	0.0%
2-Chloroethylvinylether	< 0.5 U	< 0.5 U		NA	< 0.5 Ü	4.0	NA	NA
Bromoform	< 0.2 U	3.6	4.0	90.0%	3.6	4.0	90.0%	0.0%
4-Methyl-2-Pentanone (MIBK)	< 1.0 U	17.5	20.0	87.5%	17.8	20.0	89.0%	1.7%
2-Hexanone	< 3.0 U	17.2	20.0	86.0%	20.4	20.0	102%	17.0%
Tetrachloroethene	< 0.2 U	4.7	4.0	118%	4.8	4.0	120%	2.1%
1,1,2,2-Tetrachloroethane	< 0.2 U	3.3	4.0	82.5%	3.3	4.0	82.5%	0.0%
Toluene	< 0.2 U	4.5	4.0	112%	4.4	4.0	110%	2.2%
Chlorobenzene	< 0.2 U	4.1	4.0	102%	4.0	4.0	100%	2.5%
Ethylbenzene	< 0.2 U	4.4	4.0	110%	4.2	4.0	105%	4.7%
Styrene	< 0.2 U	3.4	4.0	85.0%	3.6	4.0	90.0%	5.7%
Trichlorofluoromethane	< 0.2 U	3.8	4.0	95.0%	4.0	4.0	100%	5.1%
1,1,2-Trichloro-1,2,2-trifl	< 0.2 U	4.0	4.0	100%	4.0	4.0	100%	0.0%
m,p-Xylene	< 0.4 U	9.2	8.0	115%	8.9	8.0	111%	3.3%
o-Xylene	< 0.1 U	4.0	4.0	100%	4.2	4.0	105%	4.9%
1,2-Dichlorobenzene	< 0.2 U	4.0	4.0	100%	3.9	4.0	97.5%	2.5%
1,3-Dichlorobenzene	< 0.2 U	4.1	4.0	102%	4.1	4.0	102%	0.0%
1,4-Dichlorobenzene	< 0.2 U	4.0	4.0	100%	4.1	4.0	102%	2.5%
Acrolein	< 5.0 U	13.4	20.0	67.0%	14.5	20.0	72.5%	7.9%
Methyl Iodide	< 0.2 U	4.7	4.0	118%	4.9	4.0	122%	4.2%
Bromoethane	< 0.2 U	3.8	4.0	95.0%	4.0	4.0	100%	5.1%
Acrylonitrile	< 1.0 U	3.2	4.0	80.0%	3.6	4.0	90.0%	11.8%
1,1-Dichloropropene	< 0.2 U	3.8	4.0	95.0%	3.7	4.0	92.5%	2.7%
I, I DICHIOLOPLOPEHE	~ U.2 U	5.0	4.0	JJ.00	5.,	1.0	J J .	2.,0

Sample ID: SW-2

MATRIX SPIKE

Lab Sample ID: KI11E

QC Report No: KI11-URS Corp

LIMS ID: 06-24545 Project: LAUREL STATION Matrix: Water 33759339

			Spike	MS		Spike	MSD	
Analyte	Sample	MS	Added-MS	Recovery	MSD	Added-MSD	Recovery	RPD
Dibromomethane	< 0.2 U	4.0	4.0	100%	4.1	4.0	102%	2.5%
1,1,1,2-Tetrachloroethane	< 0.2 U	4.0	4.0	100%	4.0	4.0	100%	0.0%
1,2-Dibromo-3-chloropropane	< 0.5 U	3.2	4.0	80.0%	3.0	4.0	75.0%	6.5%
1,2,3-Trichloropropane	< 0.5 U	3.3	4.0	82.5%	3.7	4.0	92.5%	11.4%
trans-1,4-Dichloro-2-butene	< 1.0 U	3.6	4.0	90.0%	4.0	4.0	100%	10.5%
1,3,5-Trimethylbenzene	< 0.2 U	3.6	4.0	90.0%	3.5	4.0	87.5%	2.8%
1,2,4-Trimethylbenzene	< 0.2 U	3.7	4.0	92.5%	3.4	4.0	85.0%	8.5%
Hexachlorobutadiene	< 0.5 U	4.5	4.0	112%	4.3	4.0	108%	4.5%
Ethylene Dibromide	< 0.2 U	4.0	4.0	100%	3.9	4.0	97.5%	2.5%
Bromochloromethane	< 0.2 U	3.4	4.0	85.0%	3.9	4.0	97.5%	13.7%
2,2-Dichloropropane	< 0.2 U	4.3	4.0	108%	4.3	4.0	108%	0.0%
1,3-Dichloropropane	< 0.2 U	3.6	4.0	90.0%	4.2	4.0	105%	15.4%
Isopropylbenzene	< 0.2 U	3.8	4.0	95.0%	3.8	4.0	95.0%	0.0%
n-Propylbenzene	< 0.2 U	4.1	4.0	102%	4.0	4.0	100%	2.5%
Bromobenzene	< 0.2 U	4.1	4.0	102%	4.3	4.0	108%	4.8%
2-Chlorotoluene	< 0.2 U	3.9	4.0	97.5%	3.8	4.0	95.0%	2.6%
4-Chlorotoluene	< 0.2 U	4.0	4.0	100%	4.0	4.0	100%	0.0%
tert-Butylbenzene	< 0.2 U	3.9	4.0	97.5%	3.8	4.0	95.0%	2.6%
sec-Butylbenzene	< 0.2 U	4.0	4.0	100%	3.9	4.0	97.5%	2.5%
4-Isopropyltoluene	< 0.2 Ŭ	4.0	4.0	100%	4.0	4.0	100%	0.0%
n-Butylbenzene	< 0.2 U	4.1	4.0	102%	3.9	4.0	97.5%	5.0%
1,2,4-Trichlorobenzene	< 0.5 U	3.8	4.0	95.0%	3.9	4.0	97.5%	2.6%
Naphthalene	< 0.5 U	2.8	4.0	70.0%	3.1	4.0	77.5%	10.2%
1,2,3-Trichlorobenzene	< 0.5 U	3.8	4.0	95.0%	3.8	4.0	95.0%	0.0%

Reported in μ g/L (ppb)

NA-No recovery due to high concentration of analyte in original sample, calculated negative recovery, or undetected spike. RPD calculated using sample concentrations per SW846.

Page 1 of 2

Sample ID: LCS-121206

LAB CONTROL SAMPLE

Lab Sample ID: LCS-121206

LIMS ID: 06-24545 Matrix: Water

Data Release Authorized:

Reported: 12/18/06

QC Report No: KI11-URS Corp Project: LAUREL STATION

33759339

Date Sampled: NA Date Received: NA

Instrument/Analyst LCS: FINN3/PAB

LCSD: FINN3/PAB

Date Analyzed LCS: 12/12/06 09:21

LCSD: 12/12/06 09:52

Sample Amount LCS: 20.0 mL

LCSD: 20.0 mL
Purge Volume LCS: 20.0 mL
LCSD: 20.0 mL

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Chloromethane	3.0	4.0	75.0%	2.9	4.0	72.5%	3.4%
Bromomethane	3.8	4.0	95.0%	3.8	4.0	95.0%	0.0%
Vinyl Chloride	3.3	4.0	82.5%	3.1	4.0	77.5%	6.2%
Chloroethane	3.2	4.0	80.0%	3.2	4.0	80.0%	0.0%
Methylene Chloride	3.6	4.0	90.0%	3.5	4.0	87.5%	2.8%
Acetone	17.2	20.0	86.0%	15.4	20.0	77.0%	11.0%
Carbon Disulfide	4.2	4.0	105%	4.2	4.0	105%	0.0%
1,1-Dichloroethene	3.7	4.0	92.5%	3.6	4.0	90.0%	2.7%
1,1-Dichloroethane	3.8	4.0	95.0%	3.8	4.0	95.0%	0.0%
trans-1,2-Dichloroethene	3.7	4.0	92.5%	3.8	4.0	95.0%	2.7%
cis-1,2-Dichloroethene	3.8	4.0	95.0%	3.4	4.0	85.0%	11.1%
Chloroform	3.7	4.0	92.5%	3.7	4.0	92.5%	0.0%
1,2-Dichloroethane	4.2	4.0	105%	4.4	4.0	110%	4.7%
2-Butanone	15.7	20.0	78.5%	15.1	20.0	75.5%	3.9%
1,1,1-Trichloroethane	3.8	4.0	95.0%	3.8	4.0	95.0%	0.0%
Carbon Tetrachloride	4.0	4.0	100%	4.1	4.0	102%	2.5%
Vinyl Acetate	3.6	4.0	90.0%	3.3	4.0	82.5%	8.7%
Bromodichloromethane	4.0	4.0	100%	3.9	4.0	97.5%	2.5%
1,2-Dichloropropane	3.9	4.0	97.5%	4.0	4.0	100%	2.5%
cis-1,3-Dichloropropene	4.0	4.0	100%	4.1	4.0	102%	2.5%
Trichloroethene	4.0	4.0	100%	4 0	4.0	100%	0.0%
Dibromochloromethane	3.6	4.0	90.0%	3.5	4.0	87.5%	2.8%
1,1,2-Trichloroethane	4.3	4.0	108%	4.0	4.0	100%	7.2%
Benzene	3.9	4.0	97.5%	4.1	4.0	102%	5.0%
trans-1,3-Dichloropropene	3.9	4.0	97.5%	3.9	4.0	97.5%	0.0%
2-Chloroethylvinylether	3.0	4.0	75.0%	3.0	4.0	75.0%	0.0%
Bromoform	3.6	4.0	90.0%	3.6	4.0	90.0%	0.0%
4-Methyl-2-Pentanone (MIBK)	17.7	20.0	88.5%	17.0	20.0	85.0%	4.0%
2-Hexanone	18.6	20.0	93.0%	17.3	20.0	86.5%	7.2%
Tetrachloroethene	4.6	4.0	115%	4.4	4.0	110%	4.4%
1,1,2,2-Tetrachloroethane	3.4	4.0	85.0%	3.2	4.0	80.0%	6.1%
Toluene	4.2	4.0	105%	4.3	4.0	10.8%	2.4%
Chlorobenzene	4.0	4.0	100%	3.9	4.0	97.5%	2.5%
Ethylbenzene	4.2	4.0	105%	4.0	4.0	100%	4.9%
Styrene	4.3	4.0	108%	4.2	4.0	105%	2.4%
Trichlorofluoromethane	3.8	4.0	95.0%	3.7	4.0	92.5%	2.7%

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260B

Page 2 of 2

Sample ID: LCS-121206

LAB CONTROL SAMPLE

Lab Sample ID: LCS-121206

LIMS ID: 06-24545

Matrix: Water

QC Report No: KI11-URS Corp Project: LAUREL STATION

33759339

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
1,1,2-Trichloro-1,2,2-trifluoroetha	3.9	4.0	97.5%	4.0	4.0	100%	2.5%
m,p-Xylene	9.1	8.0	114%	8.9	8.0	111%	2.2%
o-Xylene	4.2	4.0	105%	4.2	4.0	105%	0.0%
1,2-Dichlorobenzene	4.1	4.0	102%	3.9	4.0	97.5%	5.0%
1,3-Dichlorobenzene	4.2	4.0	105%	4.0	4.0	100%	4.9%
1,4-Dichlorobenzene	4.1	4.0	102%	3.8	4.0	95.0%	7.6%
Acrolein	13.6	20.0	68.0%	13.8	20.0	69.0%	1.5%
Methyl Iodide	4.7	4.0	118%	4.5	4.0	112%	4.3%
Bromoethane	4.1	4.0	102%	4.0	4.0	100%	2.5%
Acrylonitrile	3.4	4.0	85.0%	3.2	4.0	80.0%	6.1%
1,1-Dichloropropene	3.8	4.0	95.0%	4.0	4.0	100%	5.1%
Dibromomethane	4.2	4.0	105%	4.5	4.0	112%	6.9%
1,1,1,2-Tetrachloroethane	4.0	4.0	100%	3.8	4.0	95.0%	5.1%
1,2-Dibromo-3-chloropropane	2.9	4.0	72.5%	2.8	4.0	70.0%	3.5%
1,2,3-Trichloropropane	3.0	4.0	75.0%	3.2	4.0	80.0%	6.5%
trans-1,4-Dichloro-2-butene	4.2	4.0	105%	3.6	4.0	90.0%	15.4%
1,3,5-Trimethylbenzene	4.0	4.0	100%	3.6	4.0	90.0%	10.5%
1,2,4-Trimethylbenzene	4.0	4.0	100%	3.8	4.0	95.0%	5.1%
Hexachlorobutadiene	4.5	4.0	112%	4.3	4.0	108%	4.5%
Ethylene Dibromide	3.7	4.0	92.5%	4.0	4.0	100%	7.8%
Bromochloromethane	3.7	4.0	92.5%	3.6	4.0	90.0%	2.7%
2,2-Dichloropropane	4.3	4.0	108%	4.2	4.0	105%	2.4%
1,3-Dichloropropane	3.8	4.0	95.0%	3.5	4.0	87.5%	8.2%
Isopropylbenzene	3.9	4.0	97.5%	3.8	4.0	95.0%	2.6%
n-Propylbenzene	4.2	4.0	105%	3.9	4.0	97.5%	7.4%
Bromobenzene	4.4	4.0	110%	4.0	4.0	100%	9.5%
2-Chlorotoluene	4.0	4.0	100%	3.9	4.0	97.5%	2.5%
4-Chlorotoluene	3.9	4.0	97.5%	3.6	4.0	90.0%	8.0%
tert-Butylbenzene	4.0	4.0	100%	3.7	4.0	92.5%	7.8%
sec-Butylbenzene	4.2	4.0	105%	3.9	4.0	97.5%	7.4%
4-Isopropyltoluene	4.2	4.0	105%	3.8	4.0	95.0%	10.0%
n-Butylbenzene	4.2	4.0	105%	3.9	4.0	97.5%	7.4%
1,2,4-Trichlorobenzene	4.1	4.0	102%	3.8	4.0	95.0%	7.6%
Naphthalene	3.3	4.0	82.5%	3.1	4.0	77.5%	6.2%
1,2,3-Trichlorobenzene	4.1	4.0	102%	3.9	4.0	97.5%	5.0%

Reported in μ g/L (ppb)

RPD calculated using sample concentrations per SW846.

	LCS	LCSD
d4-1,2-Dichloroethane	101%	95.0%
d8-Toluene	98.0%	101%
Bromofluorobenzene	94.5%	84.8%
d4-1,2-Dichlorobenzene	103%	98.0%

ORGANICS ANALYSIS DATA SHEET

TPHG by Method NWTPHG

Matrix: Water

Data Release Authorized: VTS

Reported: 12/13/06

QC Report No: KI11-URS Corp

Project: LAUREL STATION Event: 33759339

Date Sampled: 12/07/06 Date Received: 12/09/06

ARI ID	Client ID	Analysis Date	DL	Range	Result
MB-121106 06-24541	Method Blank	12/11/06 VOA_PID	1.0	Gasoline HC ID Trifluorotoluene Bromobenzene	< 0.25 U 93.9% 91.8%
KI11A 06-24541	DW-1	12/11/06 VOA_PID	1.0	Gasoline HC ID Trifluorotoluene Bromobenzene	< 0.25 U 96.4% 95.7%
KI11B 06-24542	DW-2	12/11/06 VOA_PID	1.0	Gasoline HC ID Trifluorotoluene Bromobenzene	< 0.25 Ŭ 96.3% 94.5%
KI11C 06-24543	DW-3	12/11/06 VOA_PID	1.0	Gasoline HC ID Trifluorotoluene Bromobenzene	< 0.25 U 96.3% 94.9%
KI11D 06-24544	DW-4	12/11/06 VOA_PID	1.0	Gasoline HC ID Trifluorotoluene Bromobenzene	< 0.25 U 96.6% 95.9%
KI11E 06-24545	SW-2	12/11/06 VOA_PID	1.0	Gasoline HC ID Trifluorotoluene Bromobenzene	< 0.25 U 96.7% 93.6%
KI11F 06-24546	DW-5	12/11/06 VOA_PID	1.0	Gasoline HC ID Trifluorotoluene Bromobenzene	< 0.25 U 94.1% 92.8%
KI11G 06-24547	DUP	12/11/06 VOA_PID	1.0	Gasoline HC ID Trifluorotoluene Bromobenzene	< 0.25 U 92.8% 91.1%

Gasoline values reported in mg/L (ppm)

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

GAS: Indicates the presence of gasoline or weathered gasoline.

GRO: Positive result that does not match an identifiable gasoline pattern.

ORGANICS ANALYSIS DATA SHEET TPHG by Method NWTPHG

Page 1 of 1

Sample ID: SW-2

MATRIX SPIKE

Lab Sample ID: KI11E LIMS ID: 06-24545

Matrix: Water

Data Release Authorized: VTS

Reported: 12/13/06

QC Report No: KI11-URS Corp

Project: LAUREL STATION

Event: 33759339

Date Sampled: 12/08/06 Date Received: 12/09/06

Date Analyzed MS: 12/11/06 19:26

MSD: 12/11/06 19:50

Instrument/Analyst MS: VOA_PID/PKC

MSD: VOA_PID/PKC

Purge Volume: 5.0 mL

Dilution Factor MS: 1.0 mL

MSD: 1.0 mL

Analyte Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Gasoline Range Hydrocarbons < 0.25	U 0.84	1.00	84.0%	0.87	1.00	87.0%	3.5%

Reported in mg/L (ppm)

RPD calculated using sample concentrations per SW846.

TPHG Surrogate Recovery

	MS	MSD
Trifluorotoluene	96.7%	97.2%
Bromobenzene	94.6%	95.4%

ORGANICS ANALYSIS DATA SHEET TPHG by Method NWTPHG

Page 1 of 1

Sample ID: LCS-121106

LAB CONTROL SAMPLE

Lab Sample ID: LCS-121106

LIMS ID: 06-24541

Matrix: Water

Data Release Authorized: VTS

Reported: 12/13/06

QC Report No: KI11-URS Corp

Project: LAUREL STATION

Event: 33759339

Date Sampled: NA Date Received: NA

Date Analyzed LCS: 12/11/06 13:23

LCSD: 12/11/06 13:48

Instrument/Analyst LCS: VOA_PID/PKC

LCSD: VOA_PID/PKC

Purge Volume: 5.0 mL

Dilution Factor LCS: 1.0 mL

LCSD: 1.0 mL

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Gasoline Range Hydrocarbons	0.94	1.00	94.0%	0.89	1.00	89.0%	5.5%

Reported in mg/L (ppm)

RPD calculated using sample concentrations per SW846.

TPHG Surrogate Recovery

	LCS	LCSD
Trifluorotoluene	98.1%	98.4%
Bromobenzene	95.3%	98.1%

PC 12/12/06

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20061211-2.b/1211a004.d

Data file 2: /chem3/pid3.i/20061211-1.b/1211a004.d

Method: /chem3/pid3.i/20061211-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 06-DEC-2006 BETX Ical Date: 06-DEC-2006 ARI ID: lcs121106w1

Client ID:

Injection Date: 11-DEC-2006 13:23

Matrix: WATER

Dilution Factor: 1.000

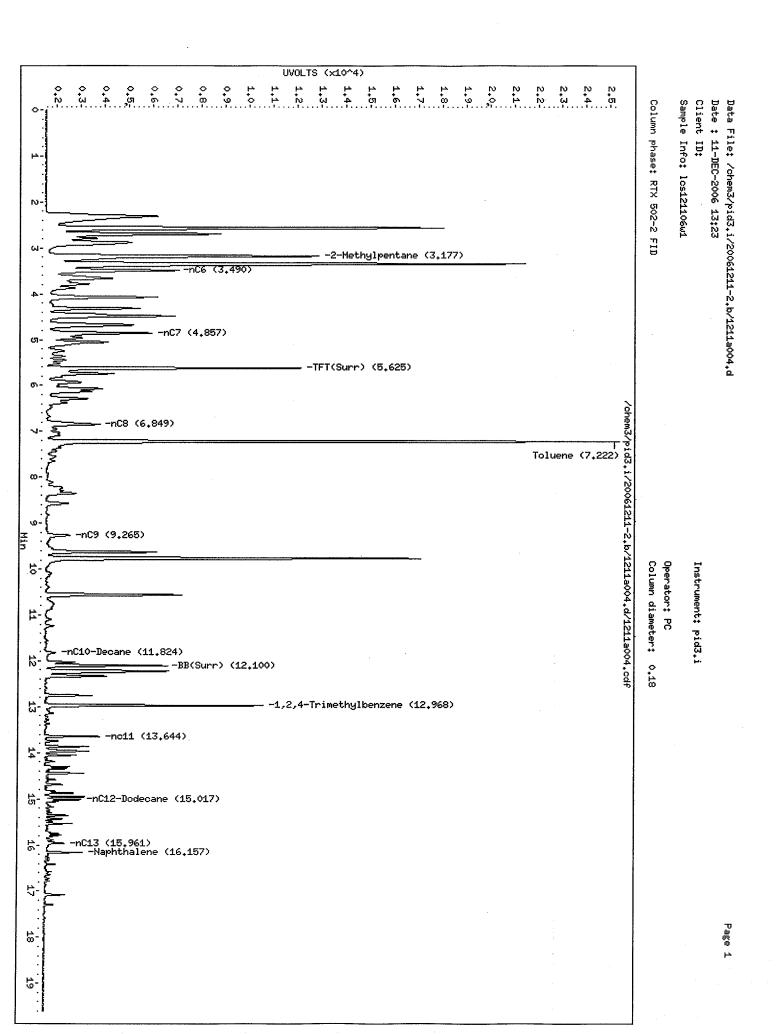
FID Surrogates

RT	Shift	Height	Area	%Rec	Compound
5.625	-0.002	10631	149913	98.1	TFT (Surr)
12.100	0.001	5113	62703	95.3	BB(Surr)

PETROLEUM HYDROCARBONS (FID)

Range	Total Area*	Amount
WAGas (Tol-C12)	1356683	0.927
8015B (2MP-TMB)	2870007	0.938
AKGas (nC6-nC10)	2034187	0.916
NWGas (Tol-Nap)	1459594	0.944

* Surrogate areas are subtracted from Total Area


		PID Surrogate	s	
RT	Shift	Response	%Rec	Compound
5.625	-0.002	43748	92.3	TFT (Surr)
12.099	0.001	69696	91.5	BB (Surr)

AROMATICS (PID)

RT	Shift	Response	Amount	Compound
5.052	-0.001	19508	7.14	Benzene
7.222	0.000	159742	61.21	Toluene
9.624	0.000	25114	11.06	Ethylbenzene
9.763	0.003	101966	42.04	M/P-Xylene
10.558	0.000	30681	14.60	O-Xylene
3.348	-0.005	92531	113.60	MTBE

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak peak was manually integrated

PC 12/12/06

Analytical Resources Inc. BETX/Gas, Quantitation Report

Data file 1: /chem3/pid3.i/20061211-2.b/1211a005.d Data file 2: /chem3/pid3.i/20061211-1.b/1211a005.d

Mathed /-hem2/mid2 i/20061211 1 h/DTDD m

Method: /chem3/pid3.i/20061211-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 06-DEC-2006 BETX Ical Date: 06-DEC-2006 ARI ID: lcsd121106w1

Client ID:

Injection Date: 11-DEC-2006 13:48

Matrix: WATER

Dilution Factor: 1.000

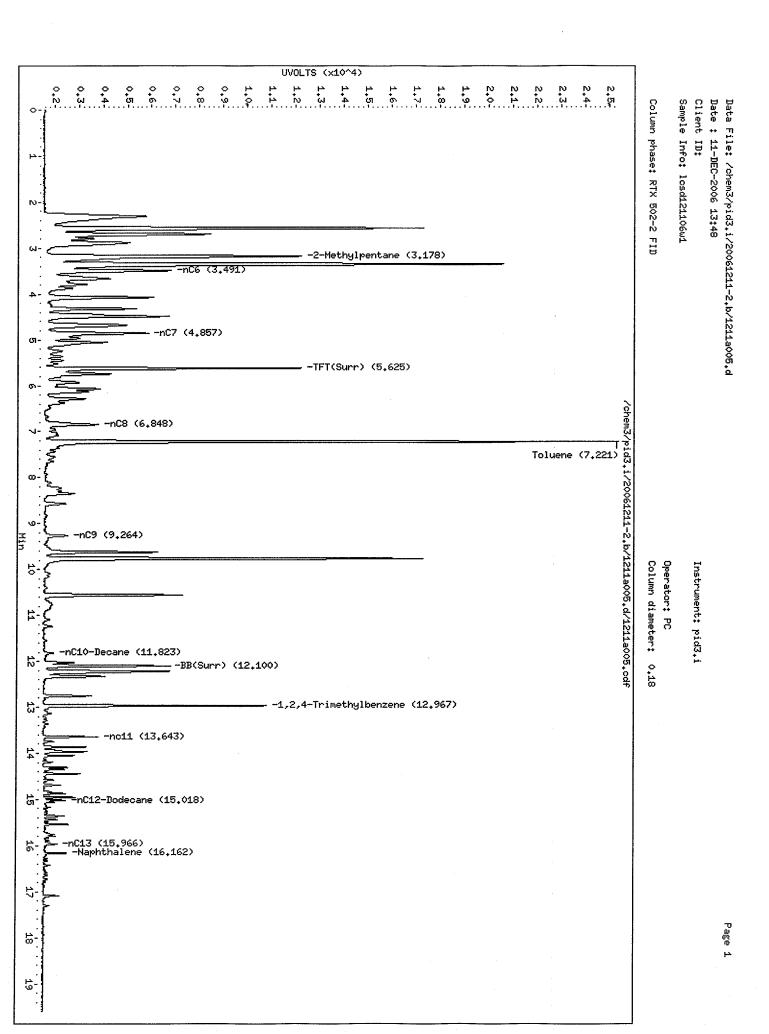
FID Surrogates

RT	Shift	Height	Area	%Rec	Compound
5.625	-0.002	10663	150874	98.4	TFT (Surr)
12.100	0.001	5262	63368	98.1	BB(Surr)

PETROLEUM HYDROCARBONS (FID)

Range	Total Area*	Amount
WAGas (Tol-C12)	1301590	0.890
8015B (2MP-TMB)	2801311	0.916
AKGas (nC6-nC10)	1985162	0.894
NWGas (Tol-Nap)	1373812	0.888

* Surrogate areas are subtracted from Total Area


		PID Surrogate	s	
RT	Shift	Response	%Rec	Compound
5.625	-0.002	43457	91.7	TFT (Surr)
12,100	0.001	71583	94.0	BB (Surr)

AROMATICS (PID)

RT	Shift	Response	Amount	Compound
5.054	0.001	19072	6.98	Benzene
7.222	-0.001	159062	60.95	Toluene
9.624	0.000	25147	11.08	Ethylbenzene
9.762	0.002	102523	42.27	M/P-Xylene
10.557	0.000	30899	14.70	O-Xylene
3.350	-0.003	88300	108.41	MTBE

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak peak was manually integrated

P(12/12/06

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20061211-2.b/1211a006.d

Data file 2: /chem3/pid3.i/20061211-1.b/1211a006.d

Method: /chem3/pid3.i/20061211-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 06-DEC-2006 BETX Ical Date: 06-DEC-2006 ARI ID: mb121106w1

Client ID:

Injection Date: 11-DEC-2006 14:13

Matrix: WATER

Dilution Factor: 1.000

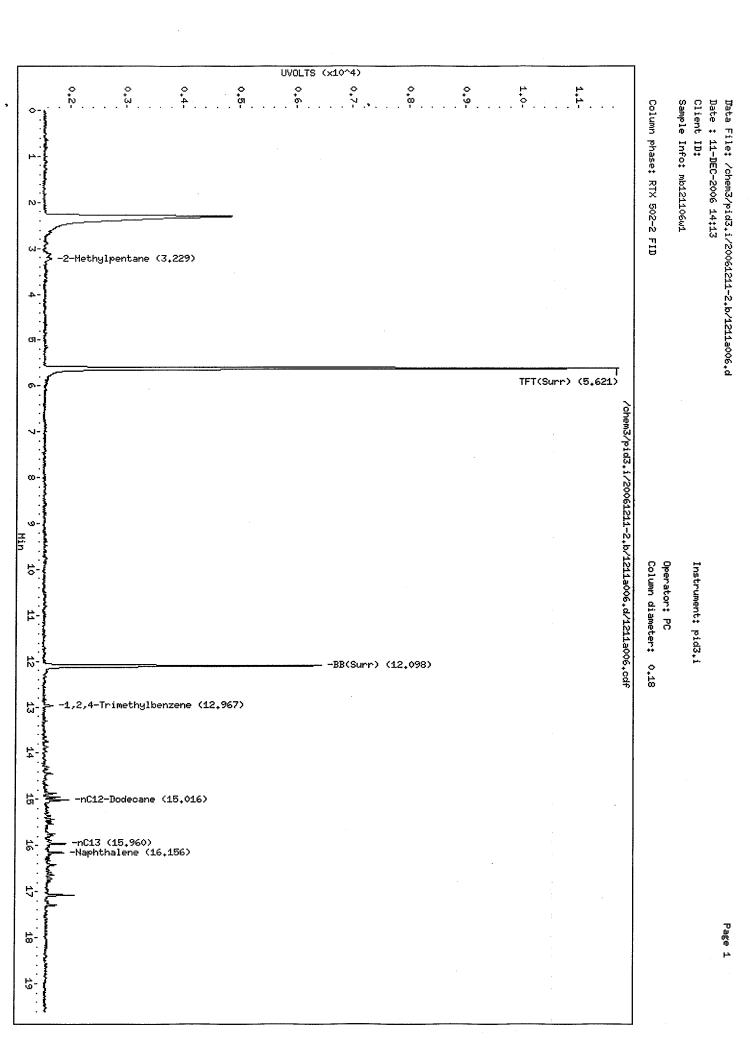
FID Surrogates

RT	Shift	Height	Area	%Rec	Compound
5.621	-0.005	10176	134735	93.9	TFT(Surr)
12.098	0.000	4922	57450	91.8	BB(Surr)

PETROLEUM HYDROCARBONS (FID)

Range	Total Area*	Amount
WAGas (Tol-C12)	10572	0.007
8015B (2MP-TMB)	6742	0.002
AKGas (nC6-nC10)	0	0.000
NWGas (Tol-Nap)	20933	0.014

* Surrogate areas are subtracted from Total Area


		PID Surrogate	S	
RT	Shift	Response	%Rec	Compound
5.622	-0.005	41038	86.6	TFT(Surr)
12.098	0.000	66530	87.4	BB(Surr)

AROMATICS (PID)

RT	Shift	Response	Amount	Compound
ND				Benzene
ND		··· ···		Toluene
ND				Ethylbenzene
ND				M/P-Xylene
ND		** ** **		O-Xylene
ND				MTBE

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak peak was manually integrated

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20061211-2.b/1211a009.d Data file 2: /chem3/pid3.i/20061211-1.b/1211a009.d

Method: /chem3/pid3.i/20061211-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 06-DEC-2006 BETX Ical Date: 06-DEC-2006 ARI ID: killa Client ID: DW-1

Injection Date: 11-DEC-2006 16:07

Matrix: WATER

Dilution Factor: 1.000

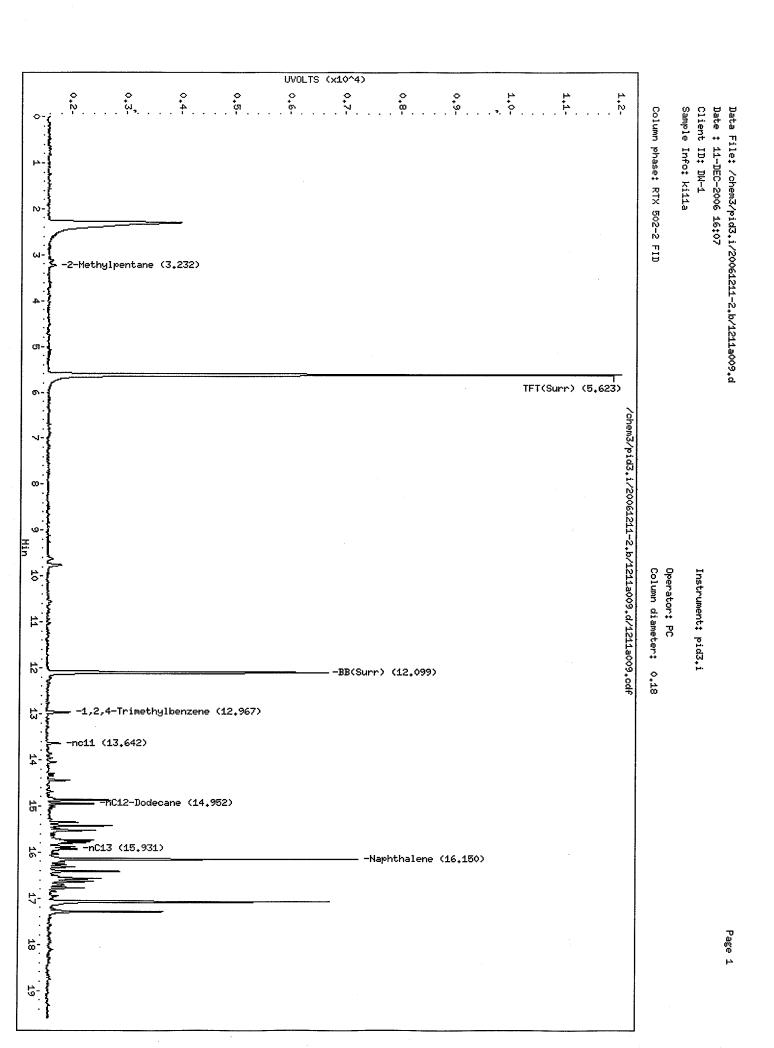
FID Surrogates

RT	Shift	Height	Area	%Rec	Compound
5.623	-0.004	10456	139832	96.4	TFT(Surr)
12.099	0.000	5136	59647	95.7	BB(Surr)

PETROLEUM HYDROCARBONS (FID)

Range	Total Area*	Amount
WAGas (Tol-C12)	36975	0.025
8015B (2MP-TMB)	12486	0.004
AKGas (nC6-nC10)	6118	0.003
NWGas (Tol-Nap)	133019	0.086

* Surrogate areas are subtracted from Total Area



		PID Surrogates	3	
RT	Shift	Response	%Rec	Compound
5.623	-0.003	42294	89.3	TFT (Surr)
12.099	0.000	69441	91.2	BB(Surr)

AROMATICS (PID)

RT	Shift	Response	Amount	Compound
ND				Benzene
ND				Toluene
ND				Ethylbenzene
9.760	0.000	1478	0.61	M/P-Xylene
ND				O-Xylene
ND				MTBE

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak peak was manually integrated

PC IVIn las

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20061211-2.b/1211a010.d

Data file 2: /chem3/pid3.i/20061211-1.b/1211a010.d

Method: /chem3/pid3.i/20061211-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 06-DEC-2006 BETX Ical Date: 06-DEC-2006 ARI ID: killb Client ID: DW-2

Injection Date: 11-DEC-2006 16:32

Matrix: WATER

Dilution Factor: 1.000

FID Surrogates

RT	Shift	Height	Area	%Rec	Compound
5.622	-0.004	10444	140182	96.3	TFT(Surr)
12.098	0.000	5072	59994	94.5	BB(Surr)

PETROLEUM HYDROCARBONS (FID)

_____,

Total Area*	Amount
2309	0.002
2	0.000
1	0.000
14735	0.010
	2309 2 1

* Surrogate areas are subtracted from Total Area

	4	PID Surrogate	s	
RT	Shift	Response	%Rec	Compound
5.623	-0.004	42337	89.4	TFT(Surr)
12.099	0.000	68940	90.5	BB(Surr)

AROMATICS (PID)

. - - - - - - - - - -

RT	Shift	Response	Amount	Compound
ND				Benzene
ND				Toluene
ND				Ethylbenzene
ND				M/P-Xylene
ND				O-Xylene
ND				MTBE

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak peak was manually integrated

12/12/06

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20061211-2.b/1211a011.d Data file 2: /chem3/pid3.i/20061211-1.b/1211a011.d

Method: /chem3/pid3.i/20061211-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 06-DEC-2006

BETX Ical Date: 06-DEC-2006

ARI ID: killc Client ID: DW-3

Injection Date: 11-DEC-2006 16:58

Matrix: WATER

Dilution Factor: 1.000

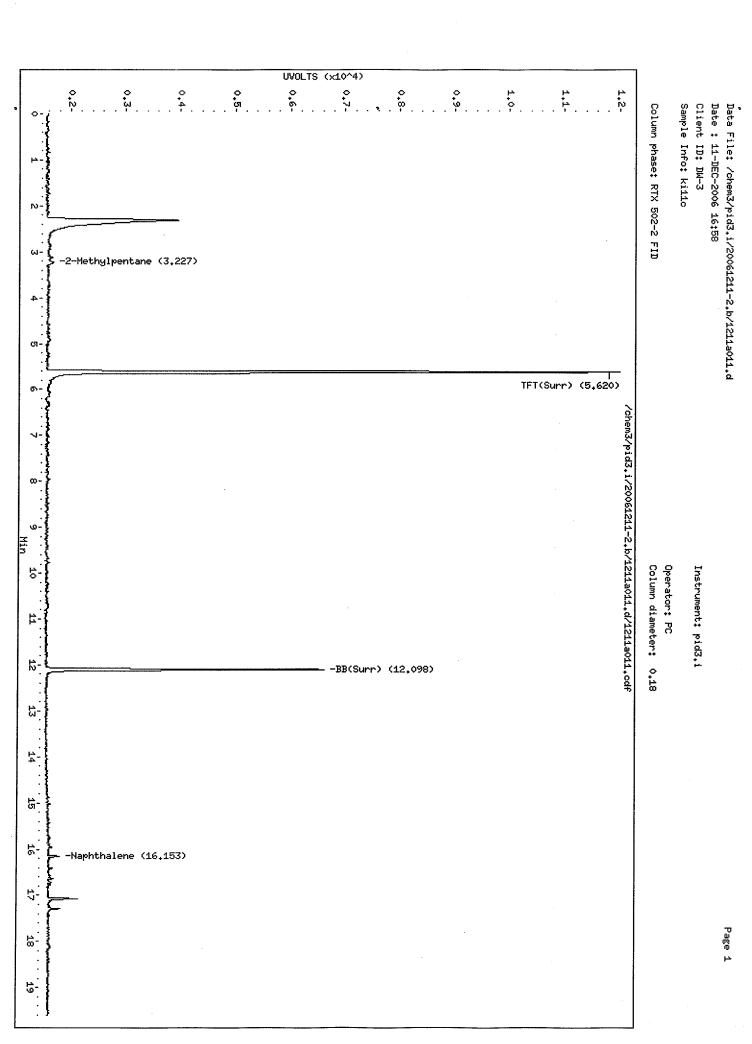
FID Surrogates

RT	Shift	Height	Area	%Rec	Compound
5.620	-0.007	10444	137744	96.3	TFT(Surr)
12.098	-0.001	5090	59552	94.9	BB(Surr)

PETROLEUM HYDROCARBONS (FID)

Range Total Area* Amount

WAGas (Tol-C12) 1 0.000 2574 0.001 8015B (2MP-TMB) AKGas (nC6-nC10) 0 0.000 NWGas (Tol-Nap) 1593 0.001


Surrogate areas are subtracted from Total Area

		PID Surrogate	s	
RT	Shift	Response	%Rec	Compound
5.620	-0.006	42213	89.1	TFT(Surr)
12.098	-0.001	69086	90.7	BB(Surr)

AROMATICS (PID)

RT	Shift	Response	Amount	Compound
ND				Benzene
ND				Toluene
ND				Ethylbenzene
ND				M/P-Xylene
ND				O-Xylene
ND				MTBE

- Indicates Peak Area was used for quantitation instead of Height
- Indicates peak peak was manually integrated

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20061211-2.b/1211a012.d

Data file 2: /chem3/pid3.i/20061211-1.b/1211a012.d

Method: /chem3/pid3.i/20061211-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 06-DEC-2006 BETX Ical Date: 06-DEC-2006 ARI ID: killd Client ID: DW-4

Injection Date: 11-DEC-2006 17:23

Matrix: WATER

Dilution Factor: 1.000

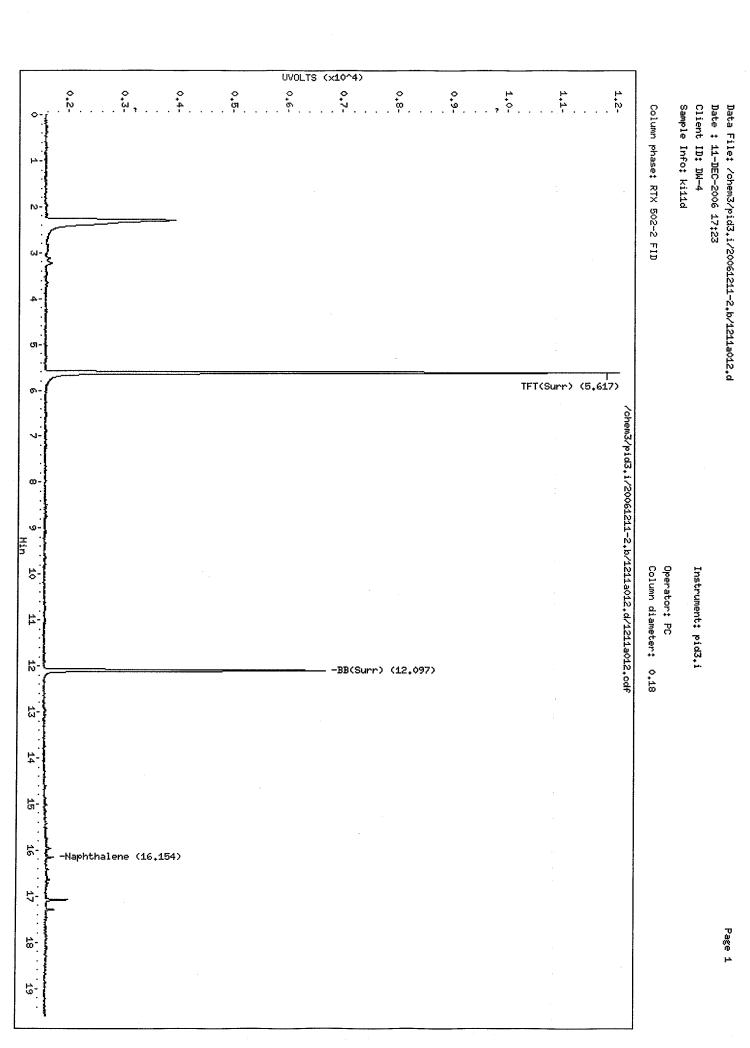
FID Surrogates

RT	Shift	Height	Area	%Rec	Compound
5.617	-0.010	10470	136338	96.6	TFT(Surr)
12.097	-0.001	5145	60328	95.9	BB(Surr)

PETROLEUM HYDROCARBONS (FID)

Range Total Area* Amount
----WAGas (Tol-Cl2) 1 0.000
8015B (2MP-TMB) 1 0.000
AKGas (nC6-nCl0) 0 0.000
NWGas (Tol-Nap) 1507 0.001

* Surrogate areas are subtracted from Total Area


		PID Surrogate	s	
RT	Shift	Response	%Rec	Compound
5.617	-0.009	41551	87.7	TFT(Surr)
12.097	-0.001	68553	90.0	BB(Surr)

AROMATICS (PID)

RT	Shift	Response	Amount	Compound
ND				Benzene
ND				Toluene
ND				Ethylbenzene
ND				M/P-Xylene
ND				O-Xylene
ND				MTBE

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak peak was manually integrated

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20061211-2.b/1211a016.d Data file 2: /chem3/pid3.i/20061211-1.b/1211a016.d

Method: /chem3/pid3.i/20061211-1.b/PIDB.m

mechod: /chems/pids.i/2000izii-i.b/F

Instrument: pid3.i

Gas Ical Date: 06-DEC-2006 BETX Ical Date: 06-DEC-2006 ARI ID: kille Client ID: SW-2

Injection Date: 11-DEC-2006 19:01

Matrix: WATER

Dilution Factor: 1.000

FID Surrogates

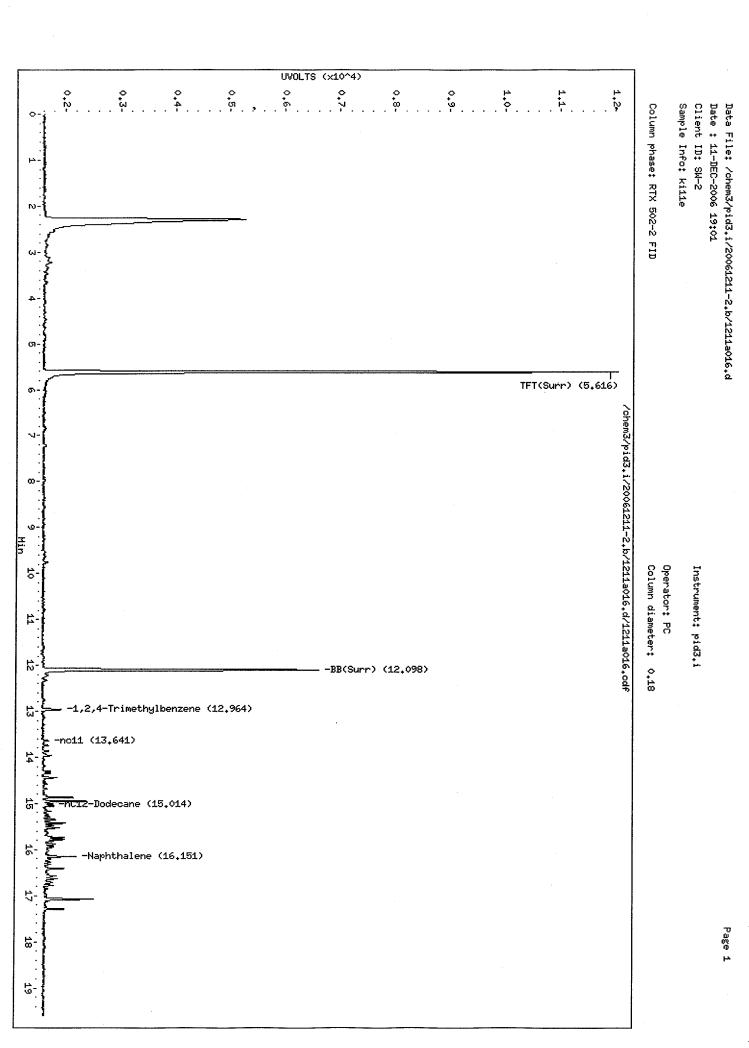
RT	Shift	Height	Area	%Rec	Compound
5.616	-0.011	10488	137684	96.7	TFT(Surr)
12.098	-0.001	5023	57556	93.6	BB(Surr)

PETROLEUM HYDROCARBONS (FID)

re Total Area* Amo

	Range	IOCAL ALEA"	Amount
WAGas	(Tol-C12)	26162	0.018
8015B	(2MP-TMB)	3545	0.001
AKGas	(nC6-nC10)	0	0.000
NWGas	(Tol-Nap)	45270	0.029

* Surrogate areas are subtracted from Total Area


		PID Surrogate	s	
RT	Shift	Response	%Rec	Compound
5.616	-0.010	40372	85.2	TFT(Surr)
12.098	-0.001	66198	86.9	BB(Surr)

AROMATICS (PID)

RT	Shift	Response	Amount	Compound
ND				Benzene
ND				Toluene
ND				Ethylbenzene
9.760	0.000	482	0.20	M/P-Xylene
ND				O-Xylene
ND				MTBE

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak peak was manually integrated

Pc 12/12/06

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20061211-2.b/1211a019.d

Data file 2: /chem3/pid3.i/20061211-1.b/1211a019.d

Method: /chem3/pid3.i/20061211-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 06-DEC-2006 BETX Ical Date: 06-DEC-2006 ARI ID: killf Client ID: DW-5

Injection Date: 11-DEC-2006 20:14

Matrix: WATER

Dilution Factor: 1.000

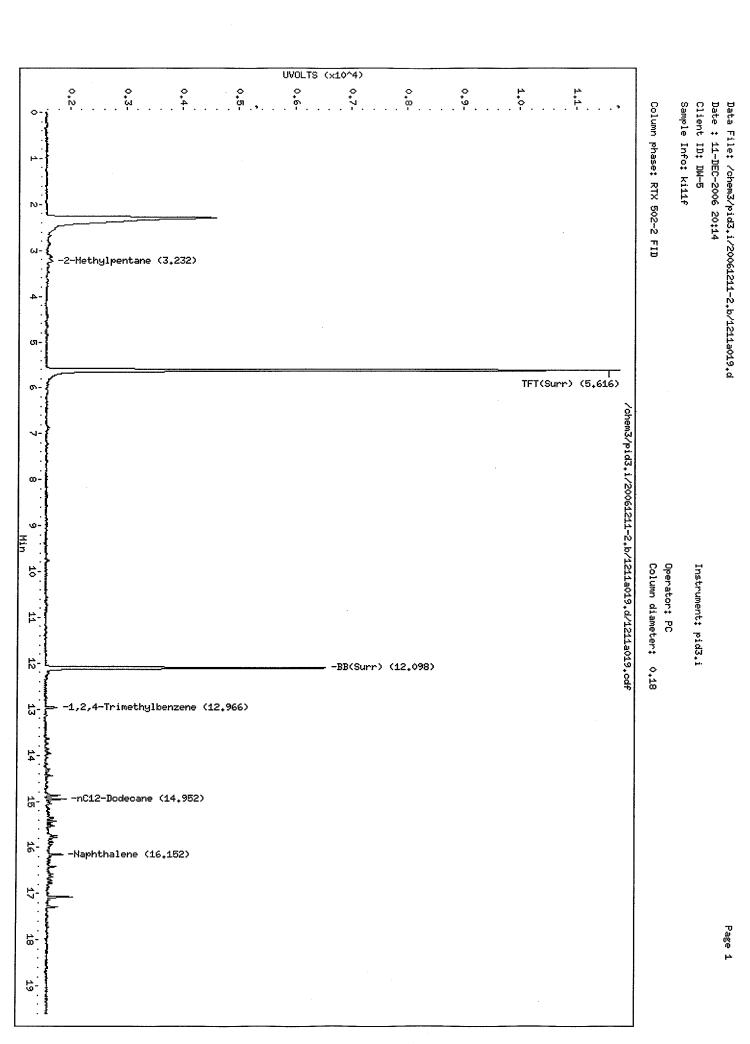
FID Surrogates

RT	Shift	Height	Area	%Rec	Compound
5.616	-0.010	10205	136897	94.1	TFT(Surr)
12.098	-0.001	4978	56932	92.8	BB(Surr)

PETROLEUM HYDROCARBONS (FID)

Range		Total Area*	Amount
WAGas	(Tol-C12)	8392	0.006
8015B	(2MP-TMB)	4026	0.001
AKGas	(nC6-nC10)	1	0.000
NWGas	(Tol-Nap)	15227	0.010

* Surrogate areas are subtracted from Total Area


		PID Surrogate	s	
RT	Shift	Response	%Rec	Compound
5.617	-0.010	39847	84.1	TFT(Surr)
12.098	-0.001	65933	86.6	BB(Surr)

AROMATICS (PID)

RT	Shift	Response	Amount	Compound
ND				Benzene
ND				Toluene
ND				Ethylbenzene
ND				M/P-Xylene
ND				O-Xylene
ND				MTBE

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak peak was manually integrated

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20061211-2.b/1211a020.d

Data file 2: /chem3/pid3.i/20061211-1.b/1211a020.d

Method: /chem3/pid3.i/20061211-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 06-DEC-2006 BETX Ical Date: 06-DEC-2006 ARI ID: killg Client ID: DUP

Injection Date: 11-DEC-2006 20:39

Matrix: WATER

Dilution Factor: 1.000

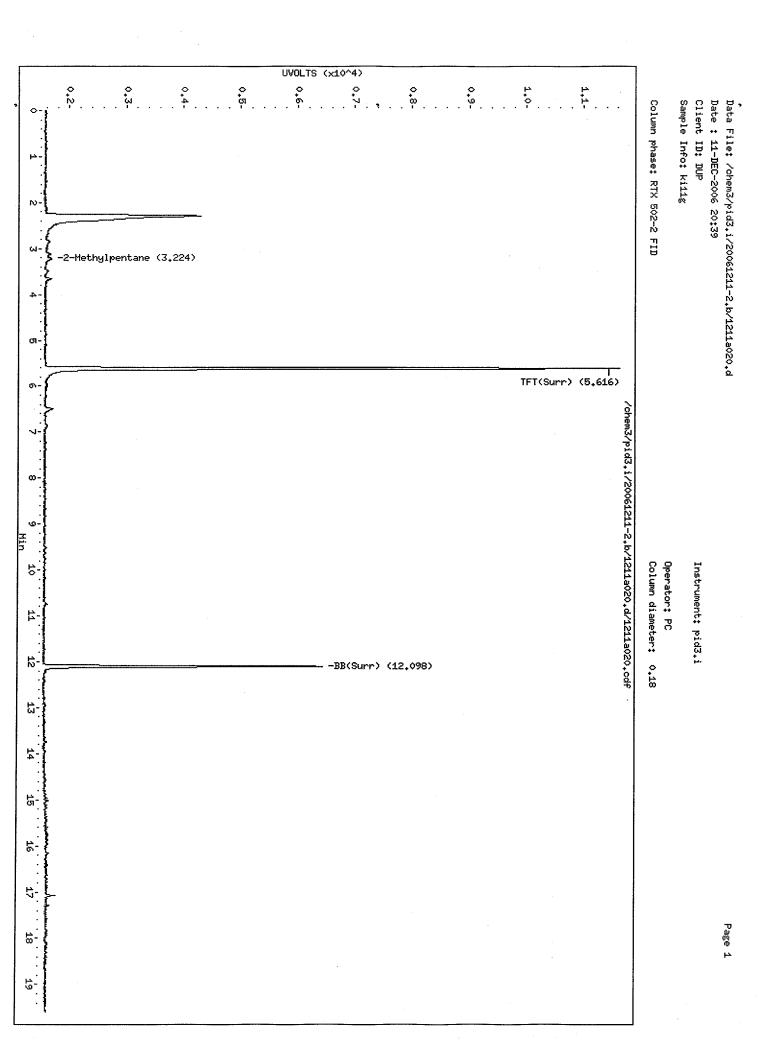
FID Surrogates

RT	Shift	Height	Area	%Rec	Compound
		<i>-</i>			
5.616	-0.010	10055	133807	92.8	TFT(Surr)
12.098	-0.001	4886	56787	91.1	BB(Surr)

PETROLEUM HYDROCARBONS (FID)

Range	Total Area*	Amount
WAGas (Tol-C12)	0	0.000
8015B (2MP-TMB)	5289	0.002
AKGas (nC6-nC10)	3079	0.001
NWGas (Tol-Nap)	0	0.000

* Surrogate areas are subtracted from Total Area


	·	PID Surrogate	s	
RT	Shift	Response	%Rec	Compound
5.617	-0.010	38993	82.3	TFT(Surr)
12.098	0.000	64662	84.9	BB (Surr)

AROMATICS (PID)

RT	Shift	Response	Amount	Compound
ND				Benzene
ND				Toluene
ND				Ethylbenzene
ND				M/P-Xylene
ND				O-Xylene
ND				MTBE

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak peak was manually integrated

PC

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20061211-2.b/1211a017.d

Data file 2: /chem3/pid3.i/20061211-1.b/1211a017.d

Method: /chem3/pid3.i/20061211-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 06-DEC-2006 BETX Ical Date: 06-DEC-2006 ARI ID: killems Client ID: SW-2 MS

Injection Date: 11-DEC-2006 19:26

Matrix: WATER

Dilution Factor: 1.000

FID Surrogates

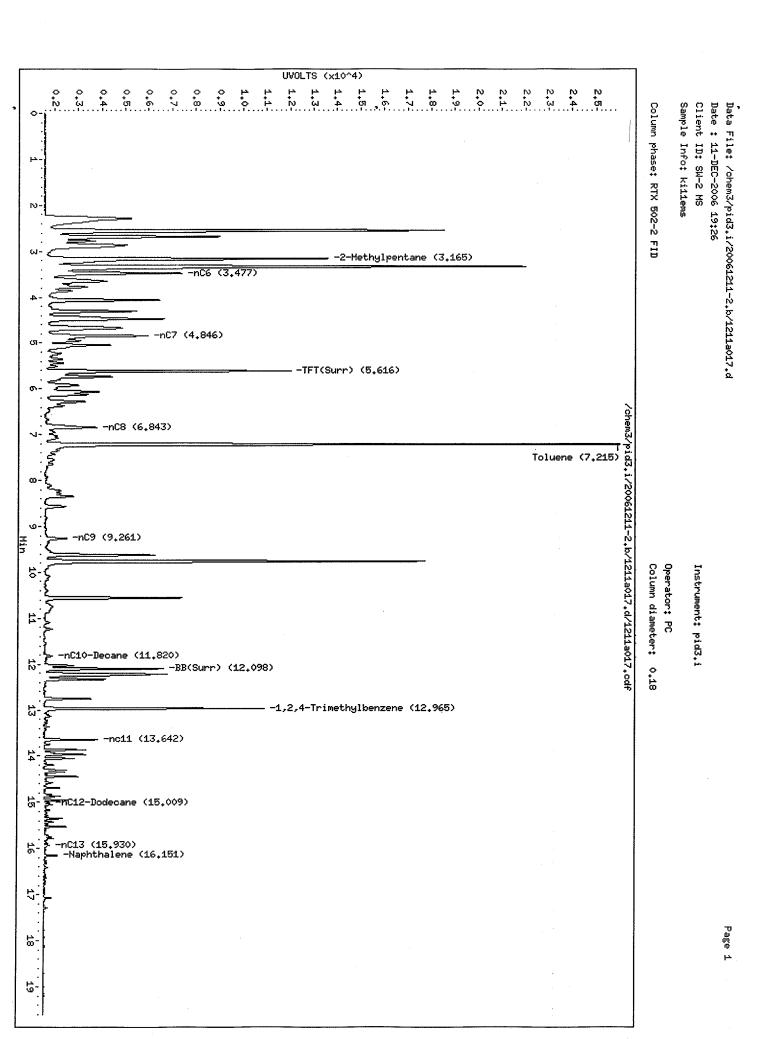
RT	Shift	Height	Area	%Rec	Compound
5.616	-0.011	10486	145021	96.7	TFT(Surr)
12.098	-0.001	5075	60304	94.6	BB (Surr)

PETROLEUM HYDROCARBONS (FID)

_____,

Rai	nge	Total	Area*	Amount
WAGas (To	ol-C12)	12	48057	0.853
8015B (2)	MP-TMB)	27	14254	0.887
AKGas (no	C6-nC10)	19:	19820	0.864
NWGas (To	ol-Nap)	130	01501	0.841

* Surrogate areas are subtracted from Total Area


		PID Surrogate	ន	
RT	Shift	Response	%Rec	Compound
5.616	-0.011	41271	87.1	TFT(Surr)
12.097	-0.001	67309	88.4	BB(Surr)

AROMATICS (PID)

RT	Shift	Response	Amount	Compound
5.044	-0.008	19750	7.23	Benzene
7.215	-0.007	159549	61.14	Toluene
9.620	-0.003	24733	10.90	Ethylbenzene
9.759	-0.001	102860	42.41	M/P-Xylene
10.555	-0.003	30505	14.51	O-Xylene
3.336	-0.017	90529	111.14	MTBE

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak peak was manually integrated

PC 12/11/06

Analytical Resources Inc. BETX/Gas Quantitation Report

Data file 1: /chem3/pid3.i/20061211-2.b/1211a018.d

Data file 2: /chem3/pid3.i/20061211-1.b/1211a018.d

Method: /chem3/pid3.i/20061211-1.b/PIDB.m

Instrument: pid3.i

Gas Ical Date: 06-DEC-2006 BETX Ical Date: 06-DEC-2006 ARI ID: killemsd Client ID: SW-2 MSD

Injection Date: 11-DEC-2006 19:50

Matrix: WATER

Dilution Factor: 1.000

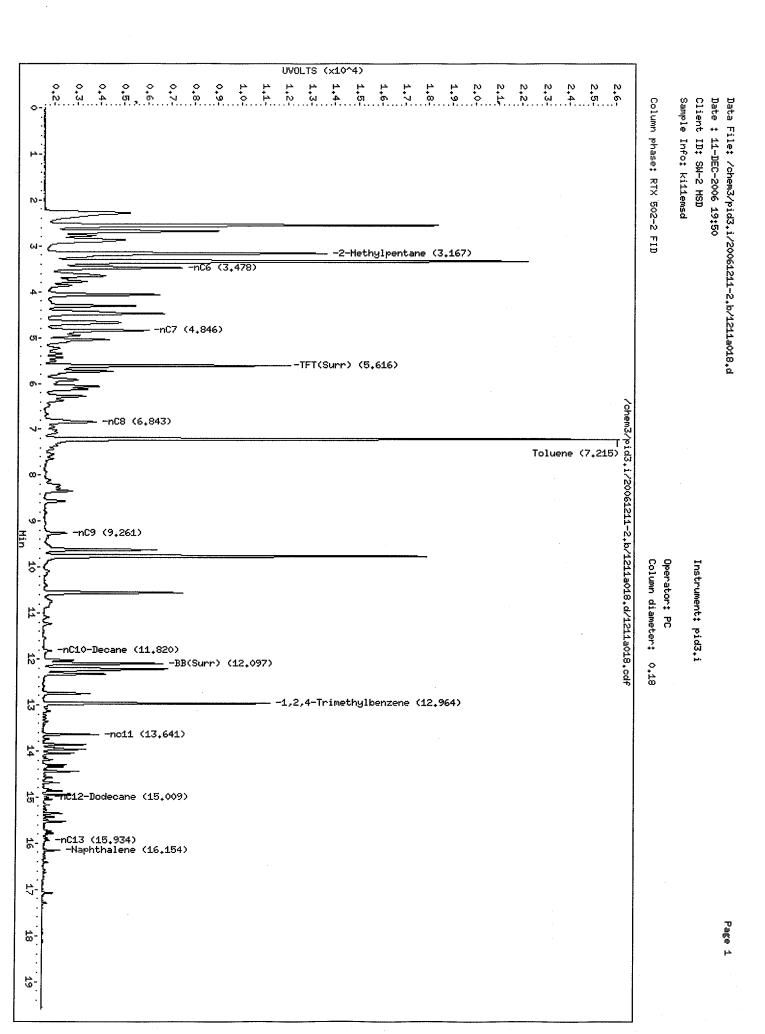
FID Surrogates

RT	Shift	Height	Area	%Rec	Compound
5.616	-0.010	10540	145448	97.2	TFT(Surr)
12.097	-0.001	5116	60832	95.4	BB(Surr)

PETROLEUM HYDROCARBONS (FID)

	Range	Total Area*	Amount
WAGas	(Tol-C12)	1280460	0.875
8015B	(2MP-TMB)	2737554	0.895
AKGas	(nC6-nC10)	1936364	0.872
NWGas	(Tol-Nap)	1341253	0.867

Surrogate areas are subtracted from Total Area


		PID Surrogate	s	
RT	Shift	Response	%Rec	Compound
5.616	-0.010	41326	87.2	TFT(Surr)
12.097	-0.001	67853	89.1	BB(Surr)

AROMATICS (PID)

RT	Shift	Response	Amount	Compound
	~			
5.045	-0.007	19843	7.26	Benzene
7.215	-0.007	160575	61.53	Toluene
9.620	-0.003	25279	11.14	Ethylbenzene
9.758	-0.001	104271	42.99	M/P-Xylene
10.554	-0.003	31093	14.79	O-Xylene
3.337	-0.016	91580	112.43	MTBE

- A Indicates Peak Area was used for quantitation instead of Height
- N Indicates peak peak was manually integrated

Page 1 of 1

Sample ID: MB-121306 METHOD BLANK

Lab Sample ID: MB-121306

LIMS ID: 06-24545 Matrix: Water

Data Release Authorized:

Date Extracted: 12/13/06 Date Analyzed: 12/16/06 14:00

Instrument/Analyst: NT1/VTS

Reported: 12/20/06

QC Report No: KI11-URS Corp Project: LAUREL STATION

Event: 33759339

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL Final Extract Volume: 0.5 mL

Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.01	< 0.01 U
91-57-6	2-Methylnaphthalene	0.01	< 0.01 U
208-96-8	Acenaphthylene	0.01	< 0.01 U
83-32-9	Acenaphthene	0.01	< 0.01 U
86-73-7	Fluorene	0.01	< 0.01 U
85-01-8	Phenanthrene	0.01	< 0.01 U
120-12-7	Anthracene	0.01	< 0.01 U
206-44-0	Fluoranthene	0.01	< 0.01 U
129-00-0	Pyrene	0.01	< 0.01 U
56-55-3	Benzo(a) anthracene	0.01	< 0.01 U
218-01-9	Chrysene	0.01	< 0.01 U
205-99-2	Benzo(b) fluoranthene	0.01	< 0.01 U
207-08-9	Benzo(k)fluoranthene	0.01	< 0.01 U
50-32-8	Benzo(a)pyrene	0.01	< 0.01 U
193-39-5	Indeno (1,2,3-cd) pyrene	0.01	< 0.01 U
53-70-3	Dibenz(a,h)anthracene	0.01	< 0.01 U
191-24-2	Benzo(g,h,i)perylene	0.01	< 0.01 U
132-64-9	Dibenzofuran	0.01	< 0.01 U

Reported in μ g/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 81.3%

d14-Dibenzo(a,h)anthracen 76.7%

Sample ID: DW-1 SAMPLE

Lab Sample ID: KI11A LIMS ID: 06-24541

Project: LAUREL STATION Matrix: Water

Data Release Authorized: Reported: 12/20/06

Event: 33759339
Date Sampled: 12/07/06
Date Received: 12/09/06

Date Extracted: 12/13/06 Date Analyzed: 12/16/06 14:52 Instrument/Analyst: NT1/VTS

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

QC Report No: KI11-URS Corp

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.01	< 0.01 U
91-57-6	2-Methylnaphthalene	0.01	< 0.01 U
208-96-8	Acenaphthylene	0.01	< 0.01 U
83-32-9	Acenaphthene	0.01	< 0.01 U
86-73-7	Fluorene	0.01	< 0.01 U
85-01-8	Phenanthrene	0.01	< 0.01 U
120-12-7	Anthracene	0.01	< 0.01 U
206-44-0	Fluoranthene	0.01	< 0.01 U
129-00-0	Pyrene	0.01	< 0.01 U
56-55-3	Benzo(a)anthracene	0.01	< 0.01 U
218-01-9	Chrysene	0.01	< 0.01 U
205-99-2	Benzo(b) fluoranthene	0.01	< 0.01 U
207-08-9	Benzo(k)fluoranthene	0.01	< 0.01 U
50-32-8	Benzo(a)pyrene	0.01	< 0.01 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.01	< 0.01 U
53-70-3	Dibenz(a,h)anthracene	0.01	< 0.01 U
191-24-2	Benzo(g,h,i)perylene	0.01	< 0.01 U
132-64-9	Dibenzofuran	0.01	< 0.01 U

Reported in μ g/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 68.0% d14-Dibenzo(a,h)anthracen 39.7%

Page 1 of 1

Lab Sample ID: KI11B LIMS ID: 06-24542

Matrix: Water

Data Release Authorized:

Date Extracted: 12/13/06

Date Analyzed: 12/20/06 11:03

Instrument/Analyst: NT1/VTS

Reported: 12/20/06

Sample ID: DW-2 SAMPLE

QC Report No: KI11-URS Corp

Project: LAUREL STATION

Event: 33759339
Date Sampled: 12/08/06
Date Received: 12/09/06

Sample Amount: 500 mL Final Extract Volume: 0.5 mL

Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.01	< 0.01 U
91-57-6	2-Methylnaphthalene	0.01	< 0.01 U
208-96-8	Acenaphthylene	0.01	< 0.01 U
83-32-9	Acenaphthene	0.01	< 0.01 U
86-73-7	Fluorene	0.01	< 0.01 U
85-01-8	Phenanthrene	0.01	< 0.01 U
120-12-7	Anthracene	0.01	< 0.01 U
206-44-0	Fluoranthene	0.01	< 0.01 U
129-00-0	Pyrene	0.01	< 0.01 U
56-55-3	Benzo(a) anthracene	0.01	< 0.01 U
218-01-9	Chrysene	0.01	< 0.01 U
205-99-2	Benzo(b) fluoranthene	0.01	< 0.01 U
207-08-9	Benzo(k) fluoranthene	0.01	< 0.01 U
50-32-8	Benzo(a)pyrene	0.01	< 0.01 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.01	< 0.01 U
53-70-3	Dibenz(a,h)anthracene	0.01	< 0.01 U
191-24-2	Benzo(g,h,i)perylene	0.01	< 0.01 U
132-64-9	Dibenzofuran	0.01	< 0.01 U

Reported in μ g/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 55.3% d14-Dibenzo(a,h)anthracen 22.4%

Page 1 of 1

Lab Sample ID: KI11C LIMS ID: 06-24543

Matrix: Water

Data Release Authorized:

Reported: 12/20/06

Date Extracted: 12/13/06 Date Analyzed: 12/20/06 11:28 Instrument/Analyst: NT1/VTS

Sample ID: DW-3 SAMPLE

QC Report No: KI11-URS Corp

Project: LAUREL STATION

Event: 33759339 Date Sampled: 12/08/06 Date Received: 12/09/06

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.01	< 0.01 U
91-57-6	2-Methylnaphthalene	0.01	< 0.01 U
208-96-8	Acenaphthylene	0.01	< 0.01 U
83-32-9	Acenaphthene	0.01	< 0.01 U
86-73-7	Fluorene	0.01	< 0.01 U
85-01-8	Phenanthrene	0.01	< 0.01 U
120-12-7	Anthracene	0.01	< 0.01 U
206-44-0	Fluoranthene	0.01	< 0.01 U
129-00-0	Pyrene	0.01	< 0.01 U
56-55-3	Benzo(a)anthracene	0.01	< 0.01 U
218-01-9	Chrysene	0.01	< 0.01 U
205-99-2	Benzo(b)fluoranthene	0.01	< 0.01 U
207-08-9	Benzo(k)fluoranthene	0.01	< 0.01 U
50-32-8	Benzo(a)pyrene	0.01	< 0.01 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.01	< 0.01 U
53-70-3	Dibenz(a,h)anthracene	0.01	< 0.01 U
191-24-2	Benzo(g,h,i)perylene	0.01	< 0.01 U
132-64-9	Dibenzofuran	0.01	< 0.01 U

Reported in $\mu g/L$ (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 69.0% d14-Dibenzo(a,h)anthracen 50.7%

Page 1 of 1

Lab Sample ID: KI11D LIMS ID: 06-24544

Matrix: Water

Data Release Authorized: Reported: 12/20/06

Date Extracted: 12/13/06

Date Analyzed: 12/16/06 16:10

Instrument/Analyst: NT1/VTS

SAMPLE

Sample ID: DW-4

QC Report No: KI11-URS Corp Project: LAUREL STATION Event: 33759339 Date Sampled: 12/08/06 Date Received: 12/09/06

Sample Amount: 500 mL Final Extract Volume: 0.5 mL

Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.01	0.02
91-57-6	2-Methylnaphthalene	0.01	< 0.01 U
208-96-8	Acenaphthylene	0.01	< 0.01 U
83-32-9	Acenaphthene	0.01	< 0.01 U
86-73-7	Fluorene	0.01	< 0.01 U
85-01-8	Phenanthrene	0.01	< 0.01 U
120-12-7	Anthracene	0.01	< 0.01 U
206-44-0	Fluoranthene	0.01	< 0.01 U
129-00-0	Pyrene	0.01	< 0.01 U
56-55-3	Benzo(a) anthracene	0.01	< 0.01 U
218-01-9	Chrysene	0.01	< 0.01 U
205-99-2	Benzo(b) fluoranthene	0.01	< 0.01 U
207-08-9	Benzo(k) fluoranthene	0.01	< 0.01 U
50-32-8	Benzo(a)pyrene	0.01	< 0.01 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.01	< 0.01 U
53-70-3	Dibenz(a,h)anthracene	0.01	< 0.01 U
191-24-2	Benzo(g,h,i)perylene	0.01	< 0.01 U
132-64-9	Dibenzofuran	0.01	< 0.01 U

Reported in $\mu g/L$ (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 79.3%

d14-Dibenzo(a,h)anthracen 45.7%

Page 1 of 1

Lab Sample ID: KI11E LIMS ID: 06-24545

Matrix: Water

Data Release Authorized:

Reported: 12/20/06

Date Extracted: 12/13/06 Date Analyzed: 12/16/06 16:36 Instrument/Analyst: NT1/VTS

Sample ID: SW-2 SAMPLE

QC Report No: KI11-URS Corp

Project: LAUREL STATION Event: 33759339

Date Sampled: 12/08/06 Date Received: 12/09/06

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.01	0.01
91-57-6	2-Methylnaphthalene	0.01	< 0.01 U
208-96-8	Acenaphthylene	0.01	< 0.01 U
83-32-9	Acenaphthene	0.01	< 0.01 U
86-73-7	Fluorene	0.01	< 0.01 U
85-01-8	Phenanthrene	0.01	< 0.01 U
120-12-7	Anthracene	0.01	< 0.01 U
206-44-0	Fluoranthene	0.01	< 0.01 U
129-00-0	Pyrene	0.01	< 0.01 U
56-55-3	Benzo(a)anthracene	0.01	< 0.01 U
218-01-9	Chrysene	0.01	< 0.01 U
205-99-2	Benzo(b)fluoranthene	0.01	< 0.01 U
207-08-9	Benzo(k)fluoranthene	0.01	< 0.01 U
50-32-8	Benzo(a)pyrene	0.01	< 0.01 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.01	< 0.01 U
53-70-3	Dibenz(a,h)anthracene	0.01	< 0.01 U
191-24-2	Benzo(g,h,i)perylene	0.01	< 0.01 U
132-64-9	Dibenzofuran	0.01	< 0.01 U

Reported in μ g/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 76.7% d14-Dibenzo(a,h)anthracen 26.4%

Page 1 of 1

Sample ID: SW-2

MATRIX SPIKE

Lab Sample ID: KI11E LIMS ID: 06-24545

Matrix: Water

Data Release Authorized:

Date Extracted: 12/13/06

Date Analyzed: 12/16/06 17:02

Instrument/Analyst: NT1/VTS

Reported: 12/20/06

QC Report No: KI11-URS Corp Project: LAUREL STATION

Event: 33759339 Date Sampled: 12/08/06 Date Received: 12/09/06

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.01	0.01
91-57-6	2-Methylnaphthalene	0.01	< 0.01 U
208-96-8	Acenaphthylene	0.01	< 0.01 U
83-32-9	Acenaphthene	0.01	< 0.01 U
86-73-7	Fluorene	0.01	< 0.01 U
85-01-8	Phenanthrene	0.01	
120-12-7	Anthracene	0.01	< 0.01 U
206-44-0	Fluoranthene	0.01	< 0.01 U
129-00-0	Pyrene	0.01	< 0.01 U
56-55-3	Benzo(a)anthracene	0.01	< 0.01 U
218-01-9	Chrysene	0.01	
205-99-2	Benzo(b) fluoranthene	0.01	< 0.01 U
207-08-9	Benzo(k)fluoranthene	0.01	
50-32-8	Benzo(a)pyrene	0.01	< 0.01 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.01	< 0.01 U
53-70-3	Dibenz(a,h)anthracene	0.01	< 0.01 U
191-24-2	Benzo(g,h,i)perylene	0.01	< 0.01 U
132-64-9	Dibenzofuran	0.01	< 0.01 U

Reported in μ g/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 81.0% d14-Dibenzo(a,h)anthracen 32.6%

Page 1 of 1

Sample ID: SW-2

MATRIX SPIKE DUPLICATE

Lab Sample ID: KI11E LIMS ID: 06-24545

Matrix: Water Data Release Authorized: Reported: 12/20/06

QC Report No: KI11-URS Corp Project: LAUREL STATION Event: 33759339 Date Sampled: 12/08/06 Date Received: 12/09/06

Date Extracted: 12/13/06 Date Analyzed: 12/16/06 17:28 Instrument/Analyst: NT1/VTS

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.01	< 0.01 U
91-57-6	2-Methylnaphthalene	0.01	< 0.01 U
208-96-8	Acenaphthylene	0.01	< 0.01 U
83-32-9	Acenaphthene	0.01	< 0.01 U
86-73-7	Fluorene	0.01	< 0.01 U
85-01-8	Phenanthrene	0.01	
120-12-7	Anthracene	0.01	< 0.01 U
206-44-0	Fluoranthene	0.01	< 0.01 U
129-00-0	Pyrene	0.01	< 0.01 U
56-55-3	Benzo(a)anthracene	0.01	< 0.01 U
218-01-9	Chrysene	0.01	
205-99-2	Benzo(b) fluoranthene	0.01	< 0.01 U
207-08-9	Benzo(k)fluoranthene	0.01	
50-32-8	Benzo(a)pyrene	0.01	< 0.01 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.01	< 0.01 U
53-70-3	Dibenz(a,h)anthracene	0.01	< 0.01 U
191-24-2	Benzo(g,h,i)perylene	0.01	< 0.01 U
132-64-9	Dibenzofuran	0.01	< 0.01 U

Reported in μ g/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 70.0% d14-Dibenzo(a,h)anthracen 29.7%

Page 1 of 1

Lab Sample ID: KI11F LIMS ID: 06-24546

Matrix: Water

Data Release Authorized:

Reported: 12/20/06

Date Extracted: 12/13/06 Date Analyzed: 12/16/06 17:54 Instrument/Analyst: NT1/VTS

Sample ID: DW-5 SAMPLE

QC Report No: KI11-URS Corp

Project: LAUREL STATION

Event: 33759339 Date Sampled: 12/08/06 Date Received: 12/09/06

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.01	< 0.01 U
91-57-6	2-Methylnaphthalene	0.01	< 0.01 U
208-96-8	Acenaphthylene	0.01	< 0.01 U
83-32-9	Acenaphthene	0.01	< 0.01 U
86-73-7	Fluorene	0.01	< 0.01 U
85-01-8	Phenanthrene	0.01	< 0.01 U
120-12-7	Anthracene	0.01	< 0.01 U
206-44-0	Fluoranthene	0.01	< 0.01 U
129-00-0	Pyrene	0.01	< 0.01 U
56-55-3	Benzo(a)anthracene	0.01	< 0.01 U
218-01-9	Chrysene	0.01	< 0.01 U
205-99-2	Benzo(b)fluoranthene	0.01	< 0.01 U
207-08-9	Benzo(k)fluoranthene	0.01	< 0.01 U
50-32-8	Benzo(a)pyrene	0.01	< 0.01 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.01	< 0.01 U
53-70-3	Dibenz(a,h)anthracene	0.01	< 0.01 U
191-24-2	Benzo(g,h,i)perylene	0.01	< 0.01 U
132-64-9	Dibenzofuran	0.01	< 0.01 U

Reported in μ g/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 70.3% d14-Dibenzo(a,h)anthracen 55.7%

Page 1 of 1

Lab Sample ID: KI11G LIMS ID: 06-24547

Matrix: Water Data Release Authorized:

Reported: 12/20/06

Date Extracted: 12/13/06 Date Analyzed: 12/16/06 18:20 Instrument/Analyst: NT1/VTS

Sample ID: DUP SAMPLE

QC Report No: KI11-URS Corp

Project: LAUREL STATION

Event: 33759339 Date Sampled: 12/08/06 Date Received: 12/09/06

Sample Amount: 500 mL Final Extract Volume: 0.5 mL Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
91-20-3	Naphthalene	0.01	< 0.01 U
91-57-6	2-Methylnaphthalene	0.01	< 0.01 U
208-96-8	Acenaphthylene	0.01	< 0.01 U
83-32-9	Acenaphthene	0.01	< 0.01 U
86-73-7	Fluorene	.0.01	< 0.01 U
85-01-8	Phenanthrene	0.01	< 0.01 U
120-12-7	Anthracene	0.01	< 0.01 U
206-44-0	Fluoranthene	0.01	< 0.01 U
129-00-0	Pyrene	0.01	< 0.01 U
56-55-3	Benzo(a) anthracene	0.01	< 0.01 U
218-01-9	Chrysene	0.01	< 0.01 U
205-99-2	Benzo(b)fluoranthene	0.01	< 0.01 U
207-08-9	Benzo(k)fluoranthene	0.01	< 0.01 U
50-32-8	Benzo(a)pyrene	0.01	< 0.01 U
193-39-5	Indeno(1,2,3-cd)pyrene	0.01	< 0.01 U
53-70-3	Dibenz(a,h)anthracene	0.01	< 0.01 U
191-24-2	Benzo(g,h,i)perylene	0.01	< 0.01 U
132-64-9	Dibenzofuran	0.01	< 0.01 U

Reported in $\mu g/L$ (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene d14-Dibenzo(a,h)anthracen 44.0%

Page 1 of 1

Sample ID: SW-2

MATRIX SPIKE

Lab Sample ID: KI11E

LIMS ID: 06-24545

Matrix: Water

Data Release Authorized:

Reported: 12/20/06

QC Report No: KI11-URS Corp

Project: LAUREL STATION

Event: 33759339

Date Sampled: 12/08/06

Date Received: 12/09/06

Date Extracted MS/MSD: 12/13/06

Sample Amount MS: 500 mL MSD: 500 mL

Date Analyzed MS: 12/16/06 17:02

Final Extract Volume MS: 0.50 mL

MSD: 12/16/06 17:28

MSD: 0.50 mL

Dilution Factor MS: 1.00

7TS MSD: 1.00

			Spike	MS		Spike	MSD	
Analyte	Sample	MS	Added-MS	Recovery	MSD	Added-MSD	Recovery	RPD
Phenanthrene	< 0.01 U	0.28	0.30	93.3%	0.27	0.30	90.0%	3.6%
Chrysene	< 0.01 U	0.21	0.30	70.0%	0.21	0.30	70.0%	0.0%
Benzo(k)fluoranthene	< 0.01 U	0.13	0.30	43.3%	0.13	0.30	43.3%	0.0%

Reported in μ g/L (ppb)

RPD calculated using sample concentrations per SW846.

Page 1 of 1

Sample ID: LCS-121306

LAB CONTROL SAMPLE

Lab Sample ID: LCS-121306

LIMS ID: 06-24545 Matrix: Water

Data Release Authorized:

Date Extracted LCS/LCSD: 12/13/06

Date Analyzed LCS: 12/16/06 14:26

Instrument/Analyst LCS: NT1/VTS

Reported: 12/20/06

QC Report No: KI11-URS Corp Project: LAUREL STATION

Event: 33759339

Date Sampled: NA Date Received: NA

Sample Amount LCS: 500 mL Final Extract Volume LCS: 0.50 mL

Dilution Factor LCS: 1.00

Analyte	LCS	Spike Added	Recovery
Naphthalene	0.19	0.30	63.3%
Acenaphthylene	0.24	0.30	80.0%
Acenaphthene	0.24	0.30	80.0%
Fluorene	0.29	0.30	96.7%
Phenanthrene	0.26	0.30	86.7%
Anthracene	0.24	0.30	80.0%
Fluoranthene	0.27	0.30	90.0%
Pyrene	0.26	0.30	86.7%
Benzo(a) anthracene	0.23	0.30	76.7%
Chrysene	0.30	0.30	100%
Benzo(b) fluoranthene	0.28	0.30	93.3%
Benzo(k) fluoranthene	0.26	0.30	86.7%
Benzo(a)pyrene	0.17	0.30	56.7%
Indeno(1,2,3-cd)pyrene	0.24	0.30	80.0%
Dibenz(a,h)anthracene	0.23	0.30	76.7%
Benzo(g,h,i)perylene	0.24	0.30	80.0%
Dibenzofuran	0.22	0.30	73.3%

Reported in μ g/L (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 76.3% d14-Dibenzo(a,h)anthracen 82.0%

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID Page 1 of 1

Matrix: Water

QC Report No: KI11-URS Corp

Project: LAUREL STATION

33759339

Date Received: 12/09/06

Data Release Authorized: Reported: 12/18/06

ARI ID	Sample	ID	Extraction Date	Analysis Date	EFV DL	Range	Result
KI11A 06-24541	DW-1 HC ID:	DRO/RRO	12/13/06	12/14/06 FID3A	1.00	Diesel Motor Oil o-Terphenyl	< 0.25 U < 0.50 U 87.3%
KI11B 06-24542	DW-2 HC ID:		12/13/06	12/14/06 FID3A	1.00	Diesel Motor Oil o-Terphenyl	< 0.25 U < 0.50 U 86.4%
KI11C 06-24543	DW-3 HC ID:		12/13/06	12/14/06 FID3A	1.00	Diesel Motor Oil o-Terphenyl	< 0.25 U < 0.50 U 85.3%
KI11D 06-24544	DW-4 HC ID:		12/13/06	12/14/06 FID3A	1.00	Diesel Motor Oil o-Terphenyl	< 0.25 U < 0.50 U 90.0%
MB-121306 06-24545	Method HC ID:		12/13/06	12/14/06 FID3A	1.00	Diesel Motor Oil o-Terphenyl	< 0.25 U < 0.50 U 80.0%
KI11E 06-24545	SW-2 HC ID:	 ·	12/13/06	12/14/06 FID3A	1.00	Diesel Motor Oil o-Terphenyl	< 0.25 U < 0.50 U 88.0%
KI11F 06-24546	DW-5 HC ID:		12/13/06	12/14/06 FID3A	1.00	Diesel Motor Oil o-Terphenyl	< 0.25 U < 0.50 U 87.1%
KI11G 06-24547	DUP HC ID:		12/13/06	12/14/06 FID3A	1.00	Diesel Motor Oil o-Terphenyl	< 0.25 U < 0.50 U 87.1%

Reported in mg/L (ppm)

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis.

Diesel quantitation on total peaks in the range from C12 to C24. Motor Oil quantitation on total peaks in the range from C24 to C38. HC ID: DRO/RRO indicates results of organics or additional hydrocarbons in ranges are not identifiable.

ORGANICS ANALYSIS DATA SHEET

NWTPHD by GC/FID

Page 1 of 1

Sample ID: SW-2

MS/MSD

Lab Sample ID: KI11E LIMS ID: 06-24545

Matrix: Water

Data Release Authorized:

Reported: 12/18/06

QC Report No: KI11-URS Corp

Project: LAUREL STATION

33759339

Date Sampled: 12/08/06 Date Received: 12/09/06

Date Extracted MS/MSD: 12/13/06

Sample Amount MS: 500 mL

MSD: 500 mL

Date Analyzed MS: 12/14/06 13:47

Final Extract Volume MS: 1.0 mL

MSD: 12/14/06 14:02 Instrument/Analyst MS: FID3A/JGR MSD: 1.0 mL

Dilution Factor MS: 1.00

MSD: 1.00

MSD: FID3A/JGR

Range	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD	
Diesel	< 0.25 U	2.09	3.00	69.7%	2.32	3.00	77.3%	10.4%	

TPHD Surrogate Recovery

MS MSD

o-Terphenyl

82.7% 89.6%

Results reported in mg/L RPD calculated using sample concentrations per SW846.

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID

Page 1 of 1

Sample ID: LCS-121306

LAB CONTROL

Lab Sample ID: LCS-121306

LIMS ID: 06-24545

Matrix: Water

Data Release Authorized,

Date Extracted: 12/13/06

Date Analyzed: 12/14/06 12:15

Instrument/Analyst: FID3A/JGR

Reported: 12/18/06

QC Report No: KI11-URS Corp Project: LAUREL STATION

33759339

Date Sampled: NA Date Received: NA

Sample Amount: 500 mL

Final Extract Volume: 1.0 mL

Dilution Factor: 1.00

Spike Lab Range Control Added Recovery Diesel 2.02 3.00 67.3%

TPHD Surrogate Recovery

o-Terphenyl

80.0%

Results reported in mg/L

Data file: /chem3/fid3a.i/20061214.b/1214a008.d Method: /chem3/fid3a.i/20061214.b/ftphfid3a.m

Instrument: fid3a.i

Operator: JR

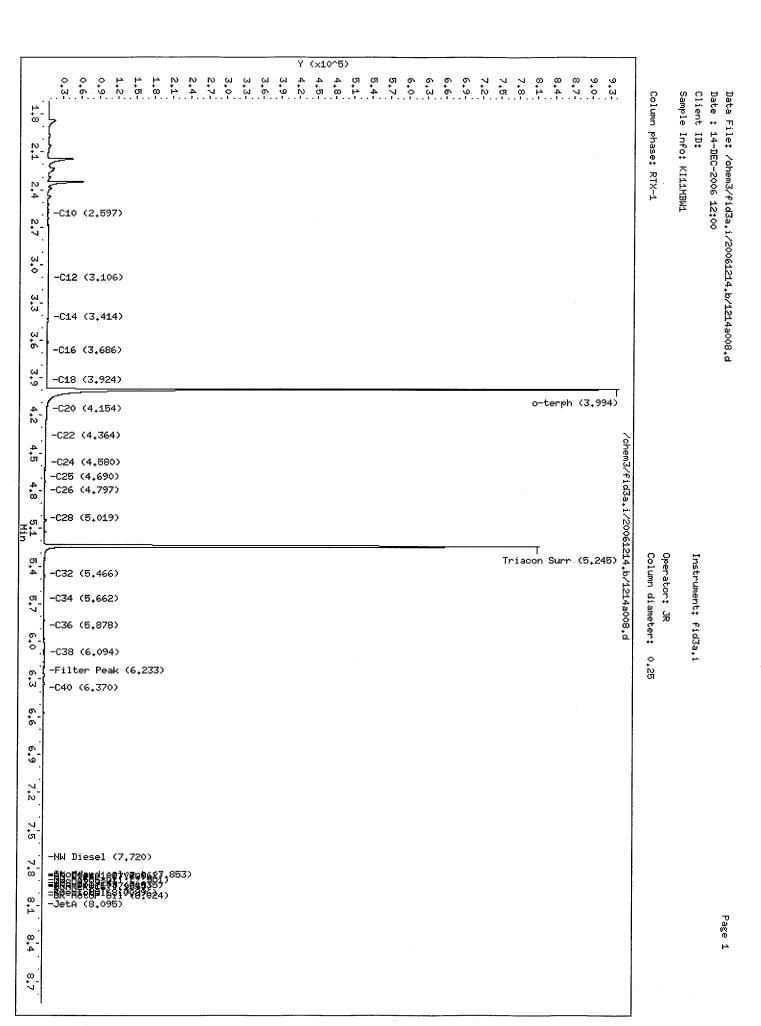
Report Date: 12/16/2006 Macro: FID:3A121406 ARI ID: KI11MBW1

Client ID:

Injection: 14-DEC-2006 12:00

Dilution Factor: 1

FID:3A RESULTS


Compound	RT	Shift	Height	Area	Range	Total Area	Conc
Toluene		: = = = = = = =	========		GAS (Tol-	·C12) 629785	====== 28 /
C8	1.288	0.003	14344	10312	DIESEL (C12-	·C24) 216827	15
C10	2.597	0.002	3901	1765	M.OIL (C24-	·C38) 42725	5
C12	3.106	0.002	4240	1684	AK-102 (C10-	C25) 361833	20
C14	3.414	-0.008	4148	3715	AK-103 (C25-	·C36) 31463	5
C16	3.686	0.000	3360	801			
C18	3.924	-0.002	2732	543	Ì		
C20	4.154	0.004	3286	2075	JET-A (C10-	C18) 313792	27
C22	4.364	-0.004	1574	960	MIN.OIL (C24-	C38) 42725	4
C24	4.580	0.000	866	169	MSPIRIT (Tol-	C12) 629785	40
C25	4.690	0.002	596	175	TRANOIL (C12-	C28) 227778	14
C26	4.797	0.002	388	106	KEROSEN (Tol-	C18) 798571	52
C28	5.019	0.005	575	335			
C32	5.466	0.011	632	657	FUEL OIL(C10-	C24) 361833	1
C34	5.662	-0.006	485	421			
Filter Peak	6.233	-0.007	783	506	JP-4 (Tol-	C14) 708431	64
C36	5.878	0.001	672	494	CREOSOT (C12-	C22) 206992	54
C38	6.094	-0.004	816	753	HYDRAUL (C24-	C38) 42725	5
C40	6.370	-0.001	684	379	BUNKERC (C10-	C38) 404559	134

Range Times: NW Diesel(3.154 - 4.630) NW Gas(1.073 - 3.154) NW M.Oil(4.630 - 6.148) AK102(2.545 - 4.638) AK103(4.638 - 5.927) Jet A(2.545 - 3.976)

Surrogate	Area	Amount	%Rec
o-Terphenyl	653666	36.0	80.0 /
Triacontane	591982	44.1	

JR 12/16/06

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JP5 JetA Min Oil Min Spirit Tran Oil Kerosene Bunker C Creosote Hydraulic Diesel 1	18157.8 13431.5 22216.5 14864.3 8614.6 18075.2 6781.5 11125.0 8746364.4 11580.5 11957.0 15825.3 16409.1 15426.1 3023.0 3823.0 8899.0	15-NOV-2006 10-OCT-2006 14-DEC-2006 15-NOV-2006 15-NOV-2006 15-NOV-2006 18-OCT-2006 12-APR-2004 10-FEB-1999 15-JUL-2006 12-JUL-2004 15-APR-2005 30-SEP-2006 09-NOV-2004 29-JUL-2005 24-MAR-2005 12-JUL-2004
Fuel Oil	530568.2	13-AUG-2002

Data file: /chem3/fid3a.i/20061214.b/1214a009.d Method: /chem3/fid3a.i/20061214.b/ftphfid3a.m

Instrument: fid3a.i

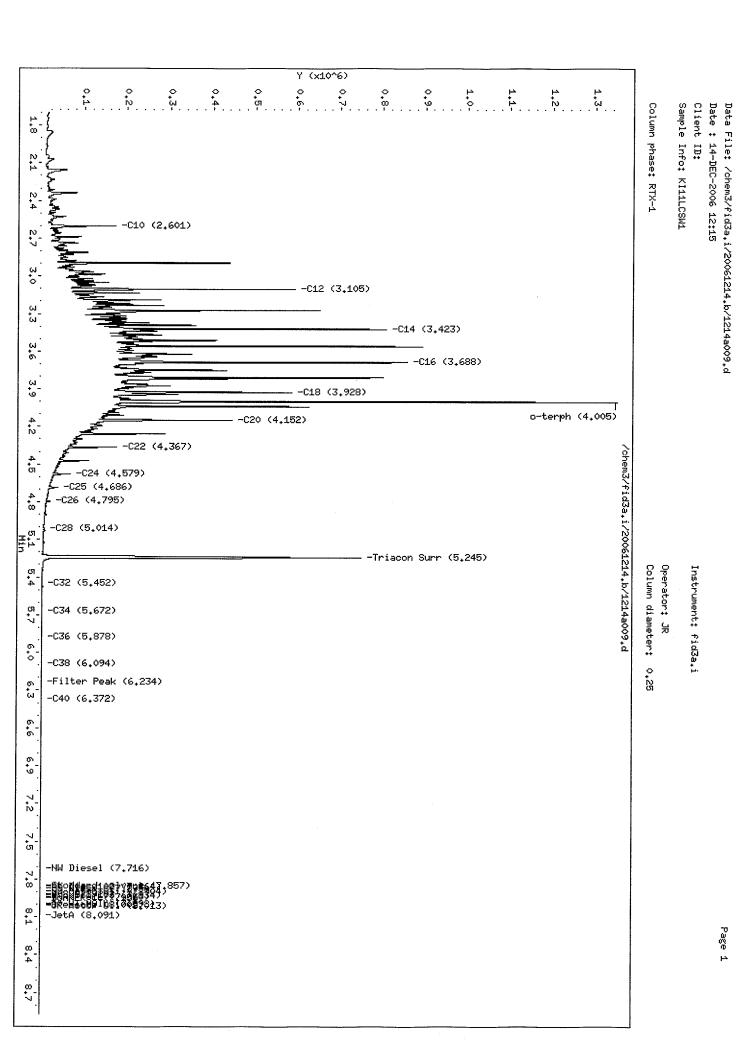
Operator: JR

Report Date: 12/16/2006 Macro: FID:3A121406 ARI ID: KI11LCSW1

Client ID:

Injection: 14-DEC-2006 12:15

Dilution Factor: 1


FID:3A RESULTS

Compound	RT	Shift	Height	Area	Range	Total Area	Conc
Toluene	1.149	0.026	43831	63500	GAS (Tol-C12)	3673495	165
C8	1.291	0.006	15443	18959	DIESEL (C12-C24)	15035136	1011
C10	2.601	0.006	168906	116532	M.OIL (C24-C38)	266097	31 🔨
C12	3.105	0.000	591726	253948	AK-102 (C10-C25)	17555187	971
C14	3.423	0.001	806355	408181	AK-103 (C25-C36)	250132	37
C16	3.688	0.003	854799	629899			
C18	3.928	0.003	583742	447599			
C20	4.152	0.002	442854	265021	JET-A (C10-C18)	13440848	1161
C22	4.367	-0.001	173647	117608	MIN.OIL (C24-C38)	266097	22
C24	4.579	-0.001	65179	45095	MSPIRIT (Tol-C12)	3673495	232
, C25	4.686	-0.002	35841	38453	TRANOIL (C12-C28)	15264357	930
C26	4.795	0.000	18740	16636	KEROSEN (Tol-C18)	14604418	947
C28	5.014	0.000	4979	3677	İ		
C32	5.452	-0.003	568	132	FUEL OIL(C10-C24)	17545061	33
C34	5.672	0.004	275	79			
Filter Peak	6.234	-0.005	428	243	JP-4 (Tol-C14)	7375148	663
C36	5.878	0.001	334	151	CREOSOT (C12-C22)	14583004	3815
C38	6.094	-0.003	456	107	HYDRAUL (C24-C38)	266097	30
C40	6.372	0.001	325	69	BUNKERC (C10-C38)	17811158	5892

Range Times: NW Diesel(3.154 - 4.630) NW Gas(1.073 - 3.154) NW M.Oil(4.630 - 6.148)
AK102(2.545 - 4.638) AK103(4.638 - 5.927) Jet A(2.545 - 3.976)

Surrogate	Area	Amount	%Rec		
o-Terphenyl Triacontane	654350 585864	36.0 43.6	80.1	m	12/16/06

Analyte	RF	Curve Date
Analyte o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JP5 JetA Min Oil Min Spirit Tran Oil Kerosene	RF	Curve Date 15-NOV-2006 10-OCT-2006 14-DEC-2006 15-NOV-2006 15-NOV-2006 15-NOV-2006 12-APR-2004 10-FEB-1999 15-JUL-2006 12-JUL-2004 15-APR-2005 30-SEP-2006 09-NOV-2004
Bunker C Creosote Hydraulic	3023.0 3823.0 8899.0	29-JUL-2005 24-MAR-2005 12-JUL-2004
Fuel Oil	530568.2	13-AUG-2001

Data file: /chem3/fid3a.i/20061214.b/1214a010.d Method: /chem3/fid3a.i/20061214.b/ftphfid3a.m

Instrument: fid3a.i

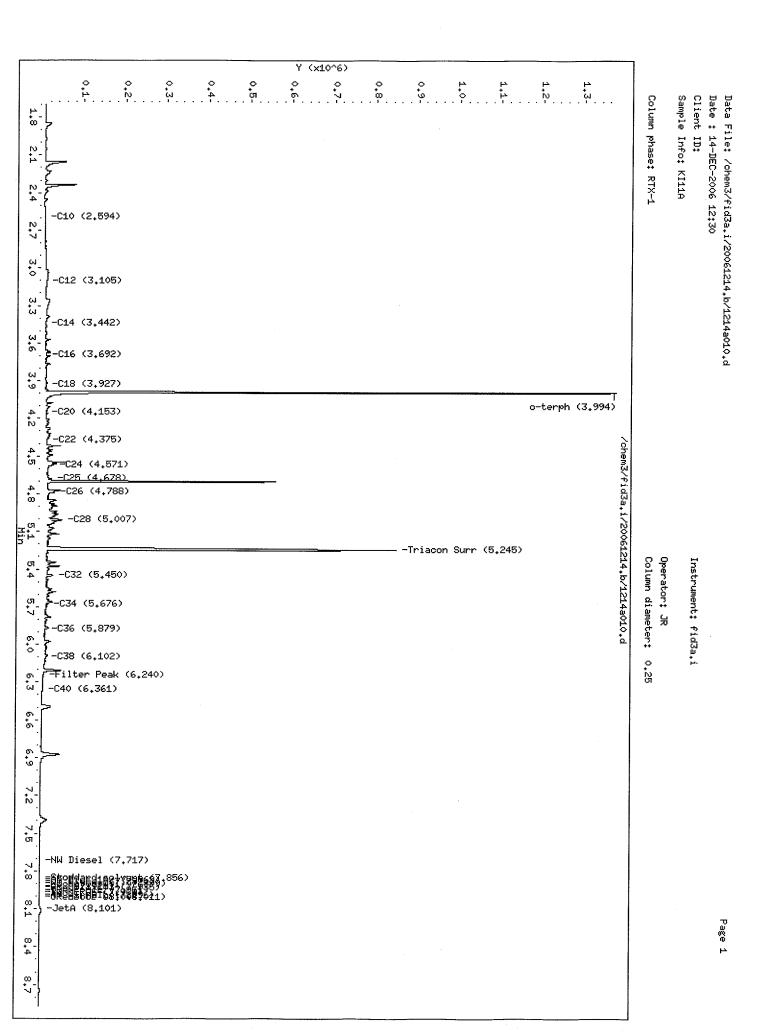
Operator: JR

Report Date: 12/16/2006 Macro: FID:3A121406 ARI ID: KI11A Client ID:

Injection: 14-DEC-2006 12:30

Dilution Factor: 1

FID:3A RESULTS


Compound	RT	Shift	Height	Area		inge	Total Area	Conc
Toluene	1.145	0.022	36885	180359	GAS	(Tol-C12)	931324	= 42
C8	1.294	0.009	18000	52069	DIESEL	(C12-C24)	1025388	69
C10	2.594	-0.001	3806	2864	M.OIL	(C24-C38)	1798007	209
C12	3.105	0.001	10017	1796	AK-102	(C10-C25)	1260167	70
C14	3.442	0.020	7788	3238	AK-103	(C25-C36)	1637865	242
C16	3.692	0.006	8578	3528	į			
C18	3.927	0.001	9357	5686	İ			
C20	4.153	0.003	9928	2340	JET-A	(C10-C18)	687712	59
C22	4.375	0.008	12144	2626	MIN.OIL	(C24-C38)	1798007	150
C24	4.571	-0.008	27412	22505	MSPIRIT	(Tol-C12)	931324	59
C25	4.678	-0.010	23008	18892	TRANOIL	(C12-C28)	1871338	114
C26	4.788	-0.007	30162	28024	KEROSEN	(Tol-C18)	1393556	90
C28	5.007	-0.007	48541	50329	į			
C32	5.450	-0.005	27773	32231	FUEL OIL	(C10-C24)	1250868	2
C34	5.676	0.007	15357	9495				
Filter Peak	6.240	0.001	6244	3715	JP-4	(Tol-C14)	1118419	101
C36	5.879	0.002	10649	4203	CREOSOT	(C12-C22)	786951	206
C38	6.102	0.004	11502	3313	HYDRAUL	(C24-C38)	1798007	202
C40	6.361	-0.010	5394	5874	BUNKERC	(C10-C38)	3048875	1009

Range Times: NW Diesel(3.154 - 4.630) NW Gas(1.073 - 3.154) NW M.Oil(4.630 - 6.148) AK102(2.545 - 4.638) AK103(4.638 - 5.927) Jet A(2.545 - 3.976)

Surrogate	Area	Amount	%Rec
o-Terphenyl	712842	39.3	87.2
Triacontane	662908	49.4	109.7

Analyte	RF	Curve Date
o-Terph Surr	18157.8	15-NOV-2006
Triacon Surr	13431.5	10-OCT-2006
Gas	22216.5	14-DEC-2006
Diesel	14864.3	15-NOV-2006
Motor Oil	8614.6	10-OCT-2006
AK102	18075.2	15-NOV-2006
AK103	6781.5	18-OCT-2006
JP4	11125.0	12-APR-2004
JP5	8746364.4	10-FEB-1999
JetA	11580.5	15-JUL-2006
Min Oil	11957.0	12-JUL-2004
Min Spirit	15825.3	15-APR-2005
Tran Oil	16409.1	30-SEP-2006
Kerosene	15426.1	09-NOV-2004
Bunker C	3023.0	29-JUL-2005
Creosote	3823.0	24-MAR-2005
Hydraulic	8899.0	12-JUL-2004
Diesel 1	100000.0	20-JUN-2001
Fuel Oil	530568.2	13-AUG-2002

ge 12/16/01

Data file: /chem3/fid3a.i/20061214.b/1214a011.d Method: /chem3/fid3a.i/20061214.b/ftphfid3a.m

Instrument: fid3a.i

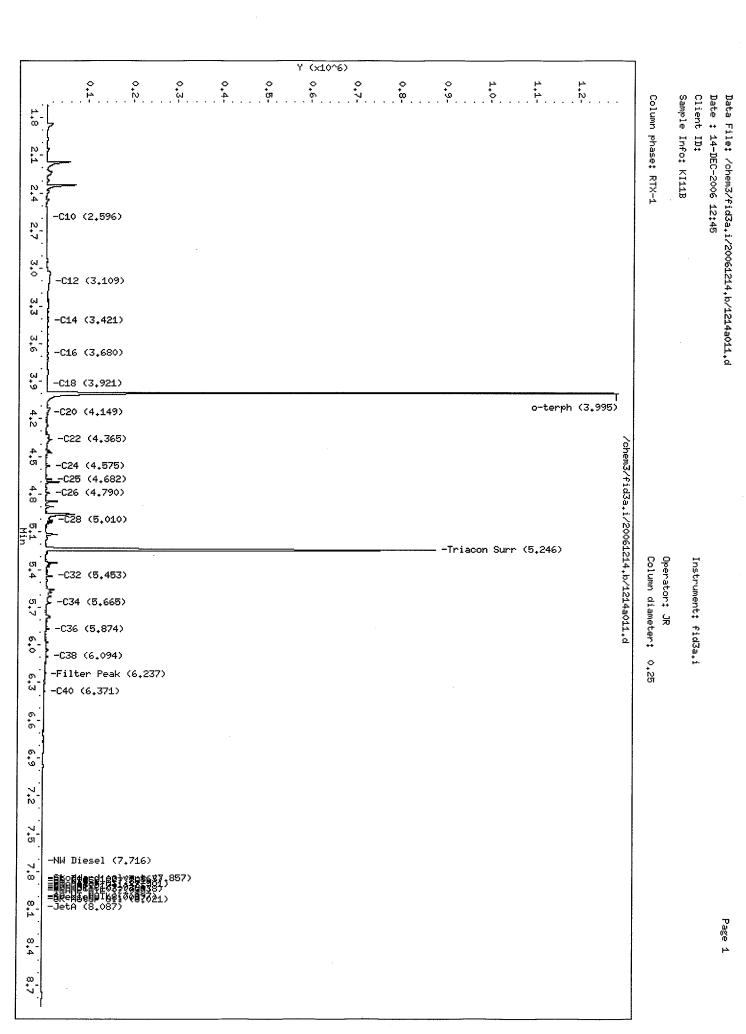
Operator: JR

Report Date: 12/16/2006 Macro: FID:3A121406 ARI ID: KI11B Client ID:

Injection: 14-DEC-2006 12:45

Dilution Factor: 1

FID:3A RESULTS


Compound	RT	Shift	Height	Area	Range	Total Area	Conc
=========	-=====		=======				
Toluene					GAS (Tol-C12)	757947	34
C8	1.292	0.007	19126	53105	DIESEL (C12-C24)	571389	38
C10	2.596	0.001	3727	3085	M.OIL (C24-C38)	736465	85
C12	3.109	0.004	10944	23915	AK-102 (C10-C25)	784306	43
C14	3.421	-0.001	7705	4397	AK-103 (C25-C36)	649061	96
C16	3.680	-0.005	8280	11262			
C18	3.921	-0.004	7471	10778	İ		
C20	4.149	-0.001	8615	8064	JET-A (C10-C18)	550691	48
C22	4.365	-0.003	17332	23992	MIN.OIL (C24-C38)	736465	62
C24	4.575	-0.004	13313	11142	MSPIRIT (Tol-C12)	757947	48
C25	4.682	-0.006	17404	12695	TRANOIL (C12-C28)	822379	50
C26	4.790	-0.005	12525	10628	KEROSEN (Tol-C18)	1096532	71
C28	5.010	-0.004	20383	17413	İ		
C32	5.453	-0.003	19753	18340	FUEL OIL(C10-C24)	783496	1
C34	5.665	-0.003	17417	21726			
Filter Peak	6.237	-0.003	3870	2303	JP-4 (Tol-C14)	886555	80
C36	5.874	-0.003	13092	11956	CREOSOT (C12-C22)	494493	129
C38	6.094	-0.003	10926	14464	HYDRAUL (C24-C38)	736465	83
C40	6.371	-0.001	3847	6573	BUNKERC (C10-C38)	1519961	503

Range Times: NW Diesel(3.154 - 4.630) NW Gas(1.073 - 3.154) NW M.Oil(4.630 - 6.148)
AK102(2.545 - 4.638) AK103(4.638 - 5.927) Jet A(2.545 - 3.976)

Surrogate	Area	Amount	%Rec
o-Terphenyl	707021	38.9	86.5
Triacontane	642765	47.9	106.3

Ja 12/16/02

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103	18157.8 13431.5 22216.5 14864.3 8614.6 18075.2 6781.5	15-NOV-2006 10-OCT-2006 14-DEC-2006 15-NOV-2006 10-OCT-2006 15-NOV-2006 18-OCT-2006
JP4 JP5 JetA Min Oil Min Spirit Tran Oil Kerosene Bunker C Creosote Hydraulic Diesel 1 Fuel Oil	11125.0 8746364.4 11580.5 11957.0 15825.3 16409.1 15426.1 3023.0 3823.0 8899.0 100000.0 530568.2	12-APR-2004 10-FEB-1999 15-JUL-2006 12-JUL-2004 15-APR-2005 30-SEP-2006 09-NOV-2004 29-JUL-2005 24-MAR-2005 12-JUL-2004 20-JUN-2001 13-AUG-2002

Data file: /chem3/fid3a.i/20061214.b/1214a012.d Method: /chem3/fid3a.i/20061214.b/ftphfid3a.m

Instrument: fid3a.i

Operator: JR

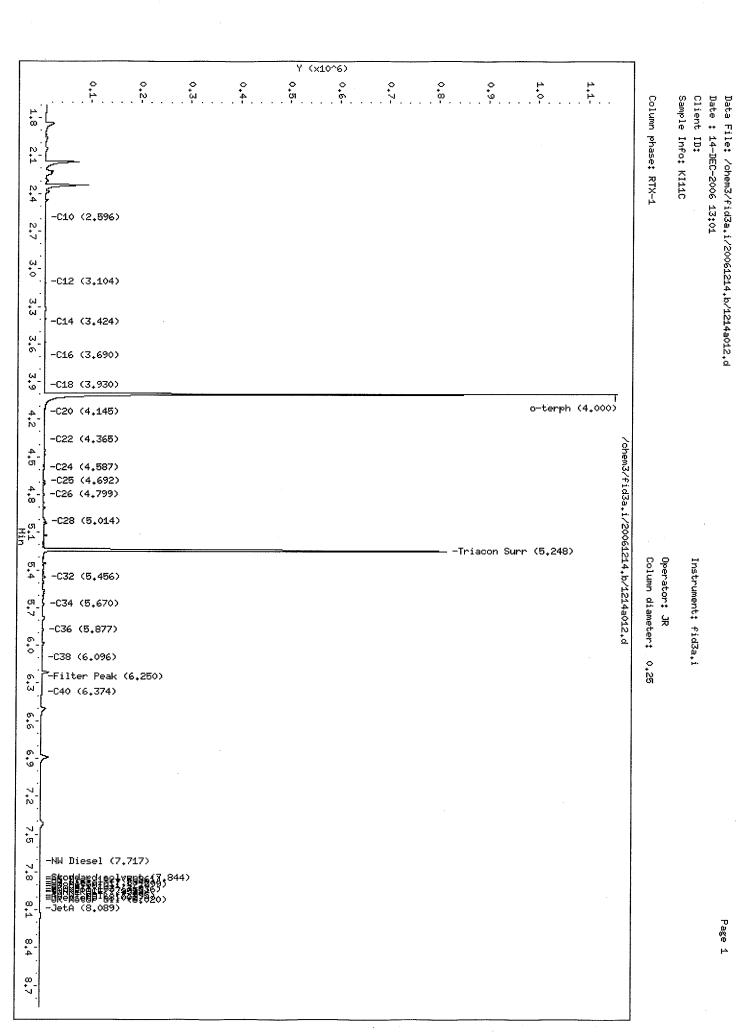
Report Date: 12/16/2006 Macro: FID:3A121406

ARI ID: KI11C Client ID:

Injection: 14-DEC-2006 13:01

Dilution Factor: 1

FID:3A RESULTS


Compound	RT	Shift	Height	Area	Range	Total Area	Conc
Toluene	1.143	0.020	38354	 110458	GAS (Tol-C12)	930137	42
C8	1.284	-0.002	15615	7664	DIESEL (C12-C24)	318077	21
C10	2.596	0.001	3765	4396	M.OIL (C24-C38)	266828	31
C12	3.104	-0.001	4369	1306	AK-102 (C10-C25)	464504	26
C14	3.424	0.002	4508	1165	AK-103 (C25-C36)	239176	35
C16	3.690	0.004	4356	4855	İ		
C18	3.930	0.005	3281	1544		•	
C20	4.145	-0.005	4119	3082	JET-A (C10-C18)	338154	29
C22	4.365	-0.003	3219	1269	MIN.OIL (C24-C38)	266828	22
C24	4.587	0.008	4499	6810	MSPIRIT (Tol-C12)	930137	59
C25	4.692	0.004	4877	5285	TRANOIL (C12-C28)	405407	25
C26	4.799	0.004	4540	5931	KEROSEN (Tol-C18)	1122340	73
C28	5.014	0.000	7931	6284			
C32	5.456	0.001	7312	8072	FUEL OIL(C10-C24)	464028	1
C34	5.670	0.001	5509	7723			
Filter Peak	6.250	0.011	1551	807	JP-4 (Tol-C14)	1012945	91
C36	5.877	0.000	3876	3376	CREOSOT (C12-C22)	276339	72
C38	6.096	-0.002	2676	4046	HYDRAUL (C24-C38)	266828	30
C40	6.374	0.003	1423	1141	BUNKERC (C10-C38)	730857	242

Range Times: NW Diesel(3.154 - 4.630) NW Gas(1.073 - 3.154) NW M.Oil(4.630 - 6.148) AK102(2.545 - 4.638) AK103(4.638 - 5.927) Jet A(2.545 - 3.976)

Surrogate	Area	Amount	%Rec
o-Terphenyl	696979	38.4	85.3
Triacontane	638132	47.5	105.6

De 12/14/04

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JP5 JetA Min Oil Min Spirit Tran Oil Kerosene Bunker C Creosote Hydraulic	18157.8 13431.5 22216.5 14864.3 8614.6 18075.2 6781.5 11125.0 8746364.4 11580.5 11957.0 15825.3 16409.1 15426.1 3023.0 3823.0 8899.0	15-NOV-2006 10-OCT-2006 14-DEC-2006 15-NOV-2006 15-NOV-2006 15-NOV-2006 15-NOV-2006 12-APR-2004 10-FEB-1999 15-JUL-2006 12-JUL-2004 15-APR-2005 30-SEP-2006 09-NOV-2004 29-JUL-2005 24-MAR-2005 12-JUL-2004
Diesel 1 Fuel Oil	100000.0 530568.2	20-JUN-2001 13-AUG-2002

Data file: /chem3/fid3a.i/20061214.b/1214a013.d Method: /chem3/fid3a.i/20061214.b/ftphfid3a.m

Instrument: fid3a.i

Operator: JR

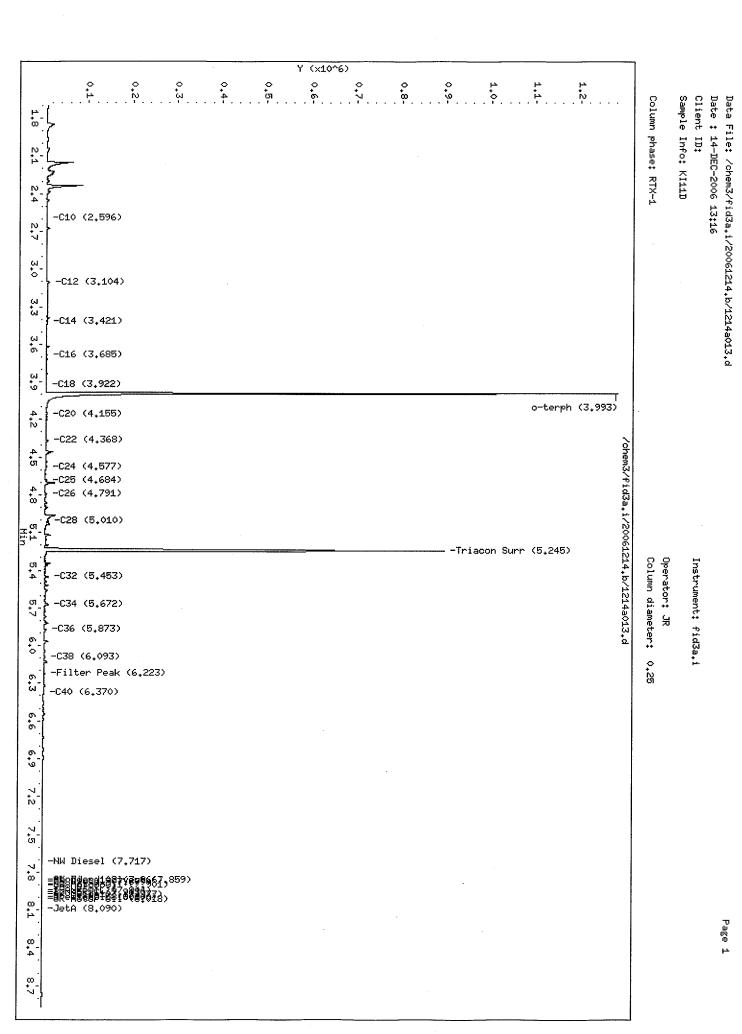
Report Date: 12/16/2006 Macro: FID:3A121406

ARI ID: KI11D Client ID:

Injection: 14-DEC-2006 13:16

Dilution Factor: 1

FID:3A RESULTS


Compound	RT	Shift	Height	Area	Range	Total Area	Conc
Toluene	1.142	0.020	37717	120599	GAS (Tol-C12)	870861	== === 39
C8	1.286	0.000	15721	8565	DIESEL (C12-C24)	387266	26
C10	2.596	0.001	3872	4345	M.OIL (C24-C38)	386470	45
C12	3.104	-0.001	10450	17396	AK-102 (C10-C25)	564062	31
C14	3.421	-0.001	5446	4015	AK-103 (C25-C36)	339886	50
C16	3.685	0.000	5686	6577			
C18	3.922	-0.004	4221	3104			
C20	4.155	0.005	5828	11325	JET-A (C10-C18)	408502	35
C22	4.368	0.000	7697	6236	MIN.OIL (C24-C38)	386470	32
C24	4.577	-0.002	6695	6908	MSPIRIT (Tol-C12)	870861	55
C25	4.684	-0.004	6927	5155	TRANOIL (C12-C28)	531092	32
C26	4.791	-0.004	6345	4852	KEROSEN (Tol-C18)	1105560	72
C28	5.010	-0.004	11688	7548	1		
C32	5.453	-0.003	9879	9139	FUEL OIL(C10-C24)	561069	1
C34	5.672	0.004	11247	12067	İ		
Filter Peak	6.223	-0.017	3955	7814	JP-4 (Tol-C14)	969235	87
C36	5.873	-0.004	5840	8656	CREOSOT (C12-C22)	328010	86
C38	6.093	-0.005	4869	6516	HYDRAUL (C24-C38)	386470	43
C40	6.370	-0.002	2462	4281	BUNKERC (C10-C38)	947539	313

Range Times: NW Diesel(3.154 - 4.630) NW Gas(1.073 - 3.154) NW M.Oil(4.630 - 6.148) AK102(2.545 - 4.638) AK103(4.638 - 5.927) Jet A(2.545 - 3.976)

Surrogate	Area	Amount	%Rec
o-Terphenyl	734750	40.5	89.9
Triacontane	672756		111.3

De 12/14/06

O-Terph Surr 18157.8 15-NOV-2006 Triacon Surr 13431.5 10-OCT-2006 Gas 22216.5 14-DEC-2006 Diesel 14864.3 15-NOV-2006 Motor Oil 8614.6 10-OCT-2006 AK102 18075.2 15-NOV-2006 AK103 6781.5 18-OCT-2006 JP4 11125.0 12-APR-2004 JP5 8746364.4 10-FEB-1999 JetA 11580.5 15-JUL-2006 Min Oil 11957.0 12-JUL-2004 Min Spirit 15825.3 15-APR-2005 Tran Oil 16409.1 30-SEP-2006 Kerosene 15426.1 09-NOV-2004 Bunker C 3023.0 29-JUL-2005 Creosote 3823.0 24-MAR-2005 Hydraulic 8899.0 12-JUL-2004 Diesel 1 100000.0 20-JUN-2001	Analyte	RF	Curve Date
 -	o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JP5 JetA Min Oil Min Spirit Tran Oil Kerosene Bunker C Creosote	18157.8 13431.5 22216.5 14864.3 8614.6 18075.2 6781.5 11125.0 8746364.4 11580.5 11957.0 15825.3 16409.1 15426.1 3023.0	15-NOV-2006 10-OCT-2006 14-DEC-2006 15-NOV-2006 10-OCT-2006 15-NOV-2006 18-OCT-2006 12-APR-2004 10-FEB-1999 15-JUL-2006 12-JUL-2004 15-APR-2005 30-SEP-2006 09-NOV-2004 29-JUL-2005
Fuel Oil 530568.2 13-AUG-2002	Diesel 1	100000.0	20-JUN-2001

Data file: /chem3/fid3a.i/20061214.b/1214a014.d

Method: /chem3/fid3a.i/20061214.b/ftphfid3a.m

Instrument: fid3a.i

Operator: JR

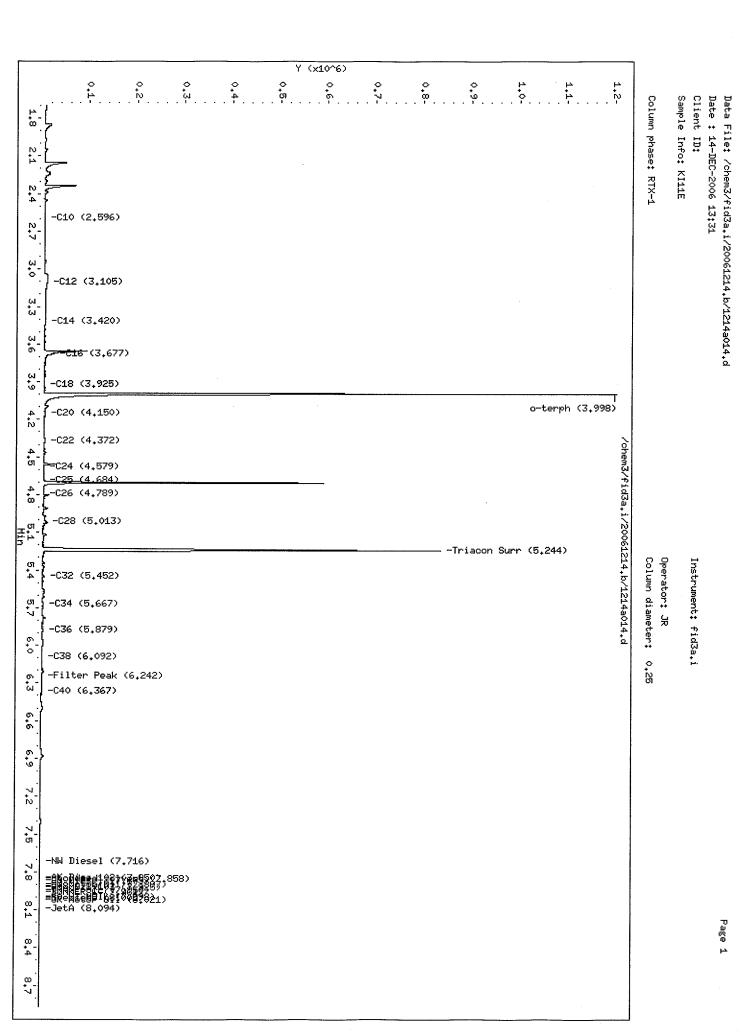
Report Date: 12/16/2006 Macro: FID:3A121406 ARI ID: KI11E

Client ID:

Injection: 14-DEC-2006 13:31

Dilution Factor: 1

FID:3A RESULTS


Compound	RT	Shift	Height	D:3A RESUL Area	Range	Total Area	Conc
Toluene	1.145	0.023	37157	110054	GAS (Tol-C12)	======================================	40
C8	1.298	0.012	15478	48682	DIESEL (C12-C24)	466331	31
C10	2.596	0.001	3657	1153	M.OIL (C24-C38)	628310	73
C12	3.105	0.001	9368	2790	AK-102 (C10-C25)	646260	36
C14	3.420	-0.002	5374	1601	AK-103 (C25-C36)	596463	88
C16	3.677	-0.009	24444	29575			
C18	3.925	-0.001	4909	4845			
C20	4.150	0.000	5855	3309	JET-A (C10-C18)	486508	42
C22	4.372	0.004	6433	9301	MIN.OIL (C24-C38)	628310	53
C24	4.579	-0.001	5010	4394	MSPIRIT (Tol-C12)	878151	55
C25	4.684	-0.004	5019	3102	TRANOIL (C12-C28)	900224	55
C26	4.789	-0.006	4967	3117	KEROSEN (Tol-C18)	1184730	77
C28	5.013	0.000	9772	8267			
C32	5.452	-0.004	5547	7087	FUEL OIL(C10-C24)	646260	1
C34	5.667	-0.001	4199	3660			
Filter Peak	6.242	0.003	1646	544	JP-4 (Tol-C14)	968623	87
C36	5.879	0.002	3162	559	CREOSOT (C12-C22)	403736	106
C38	6.092	-0.006	2554	3056	HYDRAUL (C24-C38)	628310	71
C40	6.367	-0.005	1450	2265	BUNKERC (C10-C38)	1274570	422

Range Times: NW Diesel(3.154 - 4.630) NW Gas(1.073 - 3.154) NW M.Oil(4.630 - 6.148)
AK102(2.545 - 4.638) AK103(4.638 - 5.927) Jet A(2.545 - 3.976)

Surrogate	Area	Amount	%Rec
o-Terphenyl	719964	39.7	88.1
Triacontane	654199	48.7	108.2

JR 12/16/03

Analyte	RF	Curve Date
o-Terph Surr	18157.8	15-NOV-2006
Triacon Surr	13431.5	10-OCT-2006
Gas	22216.5	14-DEC-2006
Diesel	14864.3	15-NOV-2006
Motor Oil	8614.6	10-OCT-2006
AK102	18075.2	15-NOV-2006
AK103	6781.5	18-OCT-2006
JP4	11125.0	12-APR-2004
JP5	8746364.4	10-FEB-1999
JetA	11580.5	15-JUL-2006
Min Oil	11957.0	12-JUL-2004
Min Spirit	15825.3	15-APR-2005
Tran Oil	16409.1	30-SEP-2006
Kerosene	15426.1	09-NOV-2004
Bunker C	3023.0	29-JUL-2005
Creosote	3823.0	24-MAR-2005
Hydraulic	8899.0	12-JUL-2004
Diesel 1	100000.0	20-JUN-2001
Fuel Oil	530568.2	13-AUG-2002

Data file: /chem3/fid3a.i/20061214.b/1214a020.d Method: /chem3/fid3a.i/20061214.b/ftphfid3a.m

Instrument: fid3a.i

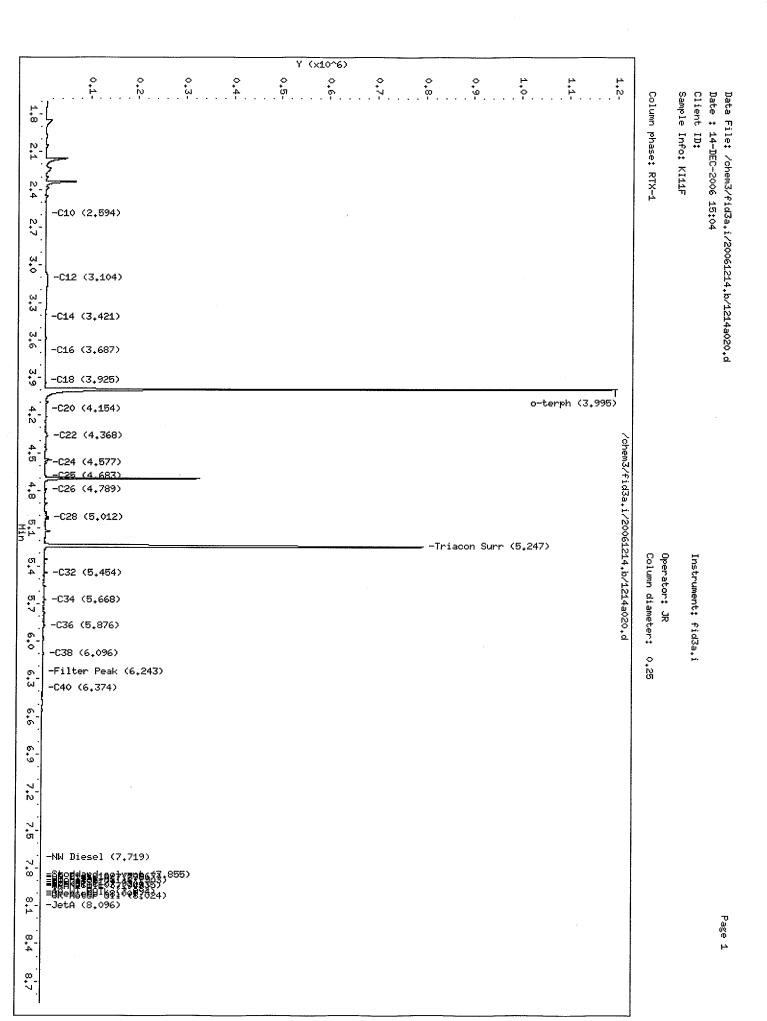
Operator: JR

Report Date: 12/16/2006 Macro: FID:3A121406 ARI ID: KI11F Client ID:

Injection: 14-DEC-2006 15:04

Dilution Factor: 1

FID:3A RESULTS


Compound	RT	Shift	Height	Area	Ra	inge	Total Area	Conc
Toluene	1.208	0.085	22453	 77464	GAS	(Tol-C12)	-=====================================	31
C8	1.298	0.012	14904	18194	DIESEL	(C12-C24)	398071	27
C10	2.594	0.000	3662	2549	M.OIL	(C24-C38)	544453	63
C12	3.104	0.000	9004	7273	AK-102	(C10-C25)	562092	31
C14	3.421	-0.001	4597	2566	AK-103	(C25-C36)	514435	76
C16	3.687	0.001	4033	2155	İ		•	
C18	3.925	-0.001	4354	3351				
C20	4.154	0.004	6524	8561	JET-A	(C10-C18)	377268	33
C22	4.368	0.001	9145	11359	MIN.OIL	(C24-C38)	544453	46
C24	4.577	-0.002	7724	7594	MSPIRIT	(Tol-C12)	687375	43
C25	4.683	-0.005	7719	5206	TRANOIL	(C12-C28)	707944	43
C26	4.789	-0.006	7992	5453	KEROSEN	(Tol-C18)	901204	58
C28	5.012	-0.002	11914	9257	İ			
C32	5.454	-0.001	10618	11253	FUEL OIL	(C10-C24)	561510	1
C34	5.668	0.000	7297	9100				
Filter Peak	6.243	0.004	1651	1035	JP-4	(Tol-C14)	780258	70
C36	5.876	-0.001	5600	6480	CREOSOT	(C12-C22)	328729	86
C38	6.096	-0.002	3600	5503	HYDRAUL	(C24-C38)	544453	61
C40	6.374	0.003	2079	2337	BUNKERC	(C10-C38)	11059 <u>6</u> 3	366

Range Times: NW Diesel(3.154 - 4.630) NW Gas(1.073 - 3.154) NW M.Oil(4.630 - 6.148)
AK102(2.545 - 4.638) AK103(4.638 - 5.927) Jet A(2.545 - 3.976)

Surrogate	Area	Amount	%Rec
o-Terphenyl	711918	39.2	87.1
Triacontane	639478	47.6	105.8

Analyte RF Curve Date ----o-Terph Surr 18157.8 15-NOV-2006 Triacon Surr 13431.5 10-OCT-2006 Gas 22216.5 14-DEC-2006 Diesel 15-NOV-2006 14864.3 Motor Oil 10-OCT-2006 8614.6 AK102 18075.2 15-NOV-2006 AK103 18-OCT-2006 6781.5 JP4 11125.0 12-APR-2004 JP5 8746364.4 10-FEB-1999 JetA 11580.5 15-JUL-2006 Min Oil 11957.0 12-JUL-2004 Min Spirit 15825.3 15-APR-2005 Tran Oil 16409.1 30-SEP-2006 Kerosene 15426.1 09-NOV-2004 Bunker C 3023.0 29-JUL-2005 Creosote 3823.0 24-MAR-2005 Hydraulic 8899.0 12-JUL-2004 Diesel 1 100000.0 20-JUN-2001 Fuel Oil 530568.2 13-AUG-2002

Ja 12/14/06

Data file: /chem3/fid3a.i/20061214.b/1214a021.d Method: /chem3/fid3a.i/20061214.b/ftphfid3a.m

Instrument: fid3a.i

Operator: JR

Report Date: 12/16/2006 Macro: FID:3A121406 ARI ID: KI11G Client ID:

Injection: 14-DEC-2006 15:19

Dilution Factor: 1

FID: 3A RESULTS

Compound	RT	Shift	Height	Area	Ra	nge	Total Area	Conc
Toluene	1.146	0.023	36802	107183	GAS	(Tol-C12)	868947	39
C8	1.291	0.005	15076	8402	DIESEL	(C12-C24)	331206	22
C10	2.591	-0.003	3772	526	M.OIL	(C24-C38)	295262	34
C12	3.110	0.006	6869	9223	AK-102	(C10-C25)	496260	27
C14	3.423	0.001	5005	2392	AK-103	(C25-C36)	257707	38
C16	3.690	0.004	4918	8685				
C18	3.926	0.000	3723	2719				
C20	4.150	0.000	3931	1477	JET-A	(C10-C18)	377677	33
C22	4.376	0.009	7139	12501	MIN.OIL	(C24-C38)	295262	25
C24	4.583	0.003	5394	6283	MSPIRIT	(Tol-C12)	868947	55
C25	4.688	0.000	5520	4110	TRANOIL	(C12-C28)	448139	27
C26	4.795	0.000	5122	4118	KEROSEN	(Tol-C18)	1084565	70
C28	5.011	-0.003	10327	8458				
C32	5.455	0.000	7557	7511	FUEL OIL	(C10-C24)	493265	1
C34	5.675	0.007	9572	9410			•	
Filter Peak	6.231	-0.009	2938	5691	JP-4	(Tol-C14)	964035	87
C36	5.879	0.002	4353	6064	CREOSOT	(C12-C22)	285409	75
C38	6.097	0.000	3056	2028	HYDRAUL	(C24-C38)	295262	33
C40	6.378	0.007	1689	2941	BUNKERC	(C10-C38)	788527	261

Range Times: NW Diesel(3.154 - 4.630) NW Gas(1.073 - 3.154) NW M.Oil(4.630 - 6.148)
AK102(2.545 - 4.638) AK103(4.638 - 5.927) Jet A(2.545 - 3.976)

Curve Date

12-JUL-2004

20-JUN-2001

13-AUG-2002

Surrogate	Area	Amount	%Rec
o-Terphenyl	711073	39.2	87.0
Triacontane	654272	48.7	108.2

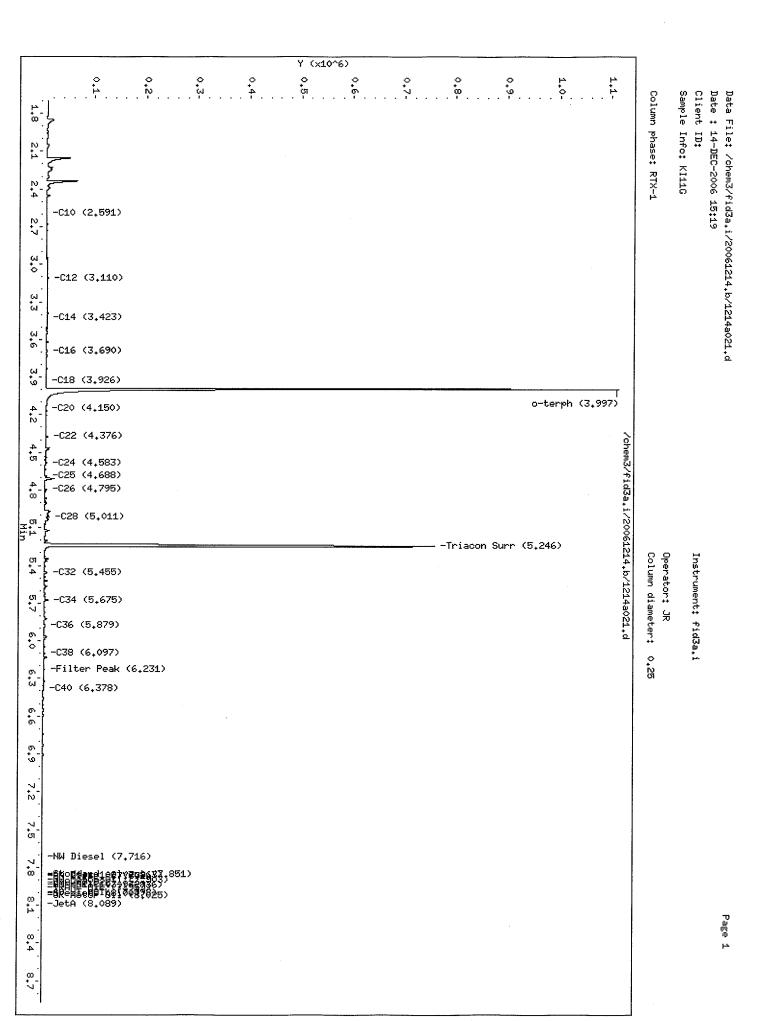
RF

Analyte

Hydraulic

Diesel 1

Fuel Oil


o-Terph Surr 18157.8 15-NOV-2006 Triacon Surr 13431.5 10-OCT-2006 Gas 22216.5 14-DEC-2006 Diesel 14864.3 15-NOV-2006 Motor Oil 8614.6 10-OCT-2006 AK102 18075.2 15-NOV-2006 AK103 6781.5 18-OCT-2006 JP4 11125.0 12-APR-2004 JP5 8746364.4 10-FEB-1999 JetA 15-JUL-2006 11580.5 Min Oil 11957.0 12-JUL-2004 Min Spirit 15825.3 15-APR-2005 Tran Oil 16409.1 30-SEP-2006 Kerosene 15426.1 09-NOV-2004 Bunker C 3023.0 29-JUL-2005 3823.0 Creosote 24-MAR-2005

8899.0

100000.0

530568.2

pe 14/4/0%

Data file: /chem3/fid3a.i/20061214.b/1214a015.d Method: /chem3/fid3a.i/20061214.b/ftphfid3a.m

Instrument: fid3a.i

Operator: JR

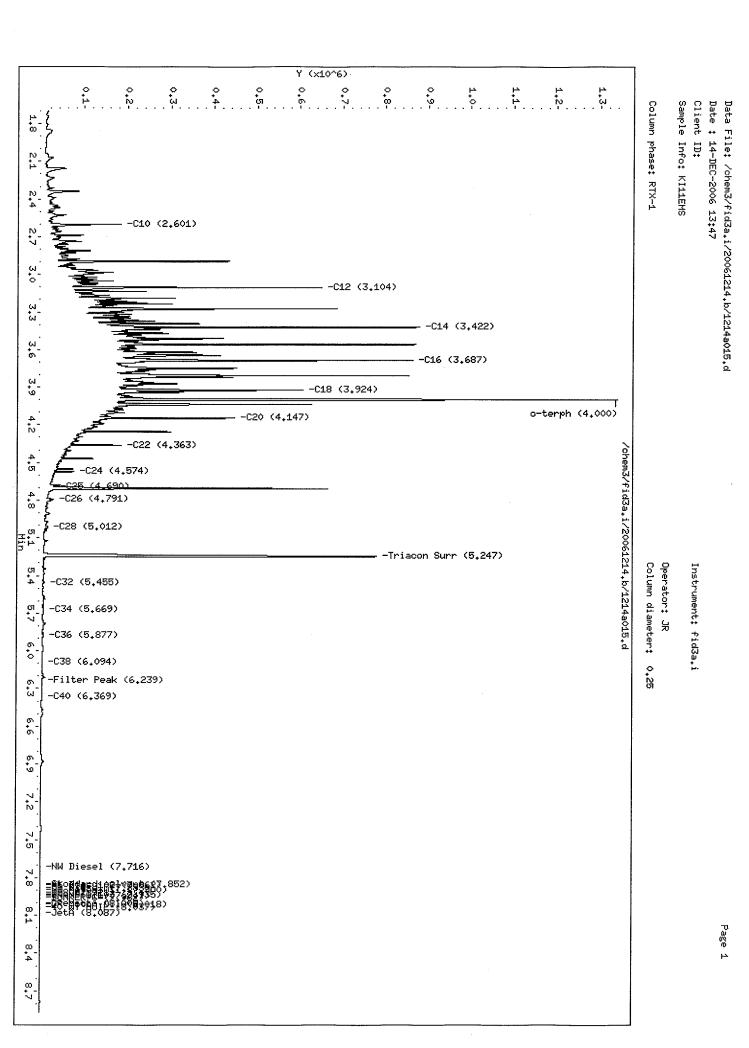
Report Date: 12/16/2006 Macro: FID:3A121406 ARI ID: KI11EMS

Client ID:

Injection: 14-DEC-2006 13:47

Dilution Factor: 1

FID:3A RESULTS


Compound	RT	Shift	Height	Area	Range	Total Area	Conc
Toluene	1.107	-0.016	53163	93158	GAS (Tol-C12)	3902999	176
C8	1.288	0.002	14342	15588	DIESEL (C12-C24)	15517211	1044
C10	2.601	0.006	181435	122527	M.OIL (C24-C38)	991563	115
C12	3.104	0.000	649340	274390	AK-102 (C10-C25)	18159986	1005
C14	3.422	0.000	878124	409961	AK-103 (C25-C36)	949213	140
C16	3.687	0.002	862943	506855			
C18	3.924	-0.001	606449	447672			
C20	4.147	-0.003	446292	266653	JET-A (C10-C18)	13960307	1205
C22	4.363	-0.005	183778	120733	MIN.OIL (C24-C38)	991563	83
C24	4.574	-0.006	74475	55004	MSPIRIT (Tol-C12)	3902999	247
C25	4.690	0.002	28339	4951	TRANOIL (C12-C28)	16269094	991
C26	4.791	-0.004	27466	16035	KEROSEN (Tol-C18)	15226523	987
C28	5.012	-0.002	13721	11180			
C32	5.455	0.000	6808	9325	FUEL OIL(C10-C24)	18153994	34
C34	5.669	0.000	5047	4850			
Filter Peak	6.239	0.000	1803	631	JP-4 (Tol-C14)	7750819	697
C36	5.877	0.000	4010	2931	CREOSOT (C12-C22)	14998297	3923
C38	6.094	-0.004	2907	2237	HYDRAUL (C24-C38)	991563	111
C40	6.369	-0.003	1586	1874	BUNKERC (C10-C38)	19145557	6333

Range Times: NW Diesel(3.154 - 4.630) NW Gas(1.073 - 3.154) NW M.Oil(4.630 - 6.148)
AK102(2.545 - 4.638) AK103(4.638 - 5.927) Jet A(2.545 - 3.976)

Surrogate	Area	Amount	%Rec
o-Terphenyl	675966	37.2	82.7
Triacontane	614784	45.8	101.7

JR 14/14/01

Analyte	RF	Curve Date
Analyte o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 AK103 JP4 JP5 JetA Min Oil	RF	Curve Date 15-NOV-2006 10-OCT-2006 14-DEC-2006 15-NOV-2006 15-NOV-2006 15-NOV-2006 18-OCT-2006 12-APR-2004 10-FEB-1999 15-JUL-2006
Min Spirit Tran Oil Kerosene Bunker C Creosote Hydraulic Diesel 1 Fuel Oil	11957.0 15825.3 16409.1 15426.1 3023.0 3823.0 8899.0 100000.0 530568.2	12-JUL-2004 15-APR-2005 30-SEP-2006 09-NOV-2004 29-JUL-2005 24-MAR-2005 12-JUL-2004 20-JUN-2001 13-AUG-2002

Data file: /chem3/fid3a.i/20061214.b/1214a016.d Method: /chem3/fid3a.i/20061214.b/ftphfid3a.m

Instrument: fid3a.i

Operator: JR

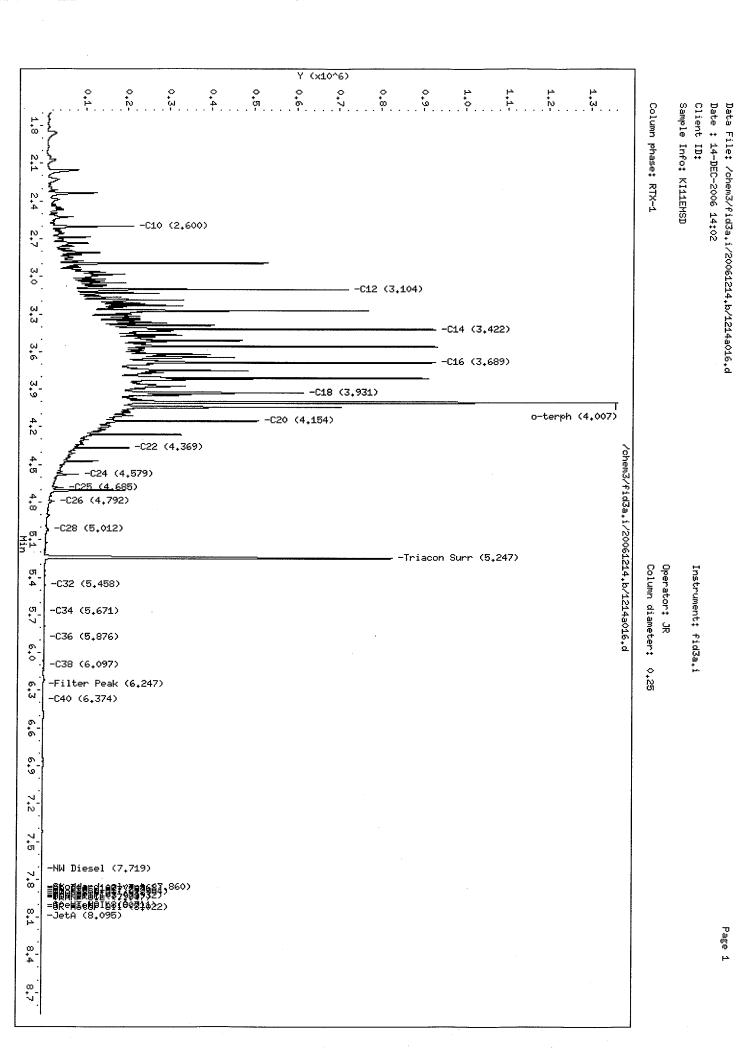
Report Date: 12/16/2006 Macro: FID:3A121406 ARI ID: KI11EMSD

Client ID:

Injection: 14-DEC-2006 14:02

Dilution Factor: 1

ודים	n -	27	ח	DO:	TTT	TS
$\Gamma \perp 1$	J:	.3 A	. ĸ	r.5	UH	


Compound	RT	Shift	Height	Area	Range	Total Area	Conc
Toluene	1.149	0.026	40724	46419	GAS (Tol-C12)	4291668	===== ہم 193
C8	1.280	-0.006	14477	8966	DIESEL (C12-C24)	17271496	1162
C10	2.600	0.006	209143	134385	M.OIL (C24-C38)	558045	65
C12	3.104	0.000	718620	305558	AK-102 (C10-C25)	20286312	1122
C14	3.422	0.000	927814	478115	AK-103 (C25-C36)	531980	78
C16	3.689	0.003	927854	535740			
C18	3.931	0.005	615346	534437			
C20	4.154	0.004	509642	378308	JET-A (C10-C18)	15556850	1343
C22	4.369	0.001	200585	126004	MIN.OIL (C24-C38)	558045	47
C24	4.579	-0.001	82576	75347	MSPIRIT (Tol-C12)	4291668	271
C25	4.685	-0.003	46312	30867	TRANOIL (C12-C28)	17686510	1078
C26	4.792	-0.003	24726	17450	KEROSEN (Tol-C18)	16841656	1092
C28	5.012	-0.002	10680	13236			
C32	5.458	0.003	4452	5511	FUEL OIL(C10-C24)	20278358	38
C34	5.671	0.003	2545	1031			
Filter Peak	6.247	0.008	1100	943	JP-4 (Tol-C14)	8580188	771
C36	5.876	-0.001	1946	1225	CREOSOT (C12-C22)	16710463	4371
C38	6.097	-0.001	1518	673	HYDRAUL (C24-C38)	558045	63
C40	6.374	0.003	906	698	BUNKERC (C10-C38)	20836403	6893

Range Times: NW Diesel(3.154 - 4.630) NW Gas(1.073 - 3.154) NW M.Oil(4.630 - 6.148)
AK102(2.545 - 4.638) AK103(4.638 - 5.927) Jet A(2.545 - 3.976)

Surrogate	Area	Amount	%Rec	
o-Terphenyl	731206	40.3	89.5	_
Triacontane	661079	49.2	109.4	

pp 12/14/06

Analyte	RF	Curve Date
o-Terph Surr	18157.8	15-NOV-2006
Triacon Surr	13431.5	10-OCT-2006
Gas	22216.5	14-DEC-2006
Diesel	14864.3	15-NOV-2006
Motor Oil	8614.6	10-OCT-2006
AK102	18075.2	15-NOV-2006
AK103	6781.5	18-OCT-2006
JP4	11125.0	12-APR-2004
JP5	8746364.4	10-FEB-1999
JetA	11580.5	15-JUL-2006
Min Oil	11957.0	12-JUL-2004
Min Spirit	15825.3	15-APR-2005
Tran Oil	16409.1	30-SEP-2006
Kerosene	15426.1	09-NOV-2004
Bunker C	3023.0	29-JUL-2005
Creosote	3823.0	24-MAR-2005
Hydraulic	8899.0	12-JUL-2004
Diesel 1	100000.0	20-JUN-2001
Fuel Oil	530568.2	13-AUG-2002

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

425.420.9200 fax 425.420.9210

Fast 1115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 2032 Empire Avenue, Suite F-1, Bend, OR 97701-5711 Portland

541.383.9310 fax 541.382.7588

Dames and Moore-Seattle 500 Market Place Tower, 2025 1st Ave

Seattle WA, 98121

Project: Trans Mountain - Laurel Station

Project Number: not provided

Project Manager: David Raubvogel

Reported:

11/07/00 17:27

ANALYTICAL REPORT FOR SAMPLES

,	Sample ID			Laboratory ID	Matrix	Date Sampled	Date Received	٦
Appropriate	SW-1		:	В0Ј0800-01	Water	10/31/00 11:45	10/31/00 17:55	ئــ
6 .1	SW-2			B0J0800-02	Water	10/31/00 12:05	10/31/00 17:55	
	DW-2		1.44	В0J0800-03	Water	 10/31/00 13:40	10/31/00 17:55	
	DW-3	,	1	В0Ј0800-04	Water	10/31/00 13:50	10/31/00 17:55	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kirk Gendron, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network**

Page 1 of 7

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

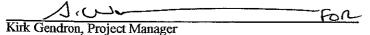
Seattle WA, 98121

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/07/00 17:27


Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B

North Creek Analytical - Bothell

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · · · · · · · · · · · · · · · · · ·	Reporting	***************************************				-		-
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
5W-1 (B0J0800-01) Water	Sampled: 10/31/00 11:45	Received	: 10/31/00	17:55					
Gasoline Range Hydrocarbons	s ND	50.0	ug/l	1	0K02011	11/02/00	11/02/00	NWTPH-Gx/8021B	
Benzene ·	ND	0.500	w .	"	**	"	**	ii .	
Toluene	ND	0.500	н		17	11	"	n	1
Ethylbenzene	ND	0.500	"	Ħ	11	11	17	17	
Xylenes (total)	ND	1.00	17	11	11	"	n	11	
Surrogate: 4-BFB (FID)	103 %	50-150			"	"	"	"	
Surrogate: 4-BFB (PID)	95.4%	50-150			"	"	"	"	
SW-2 (B0J0800-02) Water	Sampled: 10/31/00 12:05	Received	: 10/31/00	17:55					
Gasoline Range Hydrocarbons	ND ND	50.0	ug/l	1	0K02011	11/02/00	11/02/00	NWTPH-Gx/8021B	
Benzene	ND	0.500	и	н	**	11	"	11	
Foluene	. ND	0.500	"	**	"	17	R	11	
Ethylbenzene	ND	0.500	"	и.	11	11	tr	tt .	
Xylenes (total)	ND	1.00	H	#1	#1	**	n	Ħ	
Surrogate: 4-BFB (FID)	92.1 %	50-150			"	"	"	"	·
Surrogate: 4-BFB (PID)	95.2 %	50-150			#	u	"	Ħ	
DW-2 (B0J0800-03) Water	Sampled: 10/31/00 13:40	Received	l: 10/31/0 0	17:55				•	
Gasoline Range Hydrocarbons	ND	50.0	ug/l	1	0K02011	11/02/00	11/02/00	NWTPH-Gx/8021B	
Benzene	ND	0.500	"	. "		"	"	"	
Foluene	ND	0.500	"	н	11	11	11	tt	
Ethylbenzene	ND	0.500	Ħ	11	rr	11	11	11	
Kylenes (total)	ND	1.00	11	11	#1	**	11	11	
Surrogate: 4-BFB (FID)	102 % 5	0-150			#	"	"	n	
Surrogate: 4-BFB (PID)	95.2 % 5	0-150			n	"	"	"	
•	•			•					

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

500 Market Place Tower, 2025 1st Ave

Seattle WA, 98121

Project: Trans Mountain - Laurel Station

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/07/00 17:27

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

F	R	Reporting						· · · · · · · · · · · · · · · · · · ·		
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
DW-3 (B0J0800-04) Water	Sampled: 10/31/00 13:50	Received	: 10/31/00	17:55						
Gasoline Range Hydrocarbons	ND	50.0	ug/l	1	0K02011	11/02/00	11/03/00	NWTPH-Gx/8021B		
Benzene	ND	0.500	**	17	17	n	11		4.54	
Toluene	0.771	0.500	ıı	н	11	11		ш	;	
Ethylbenzene	ND	0.500	,	**	"	. 11	11	n		
Xylenes (total)	1.25	1.00	*		* + *	THE STATE OF THE S	т.,	10		
Surrogate: 4-BFB (FID)	101 % 5	0-150			"	"	"	"		
Surrogate: 4-BFB (PID)	95.6% 5	0-150	-		. "		"	,		

Vorth Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kirk Gendron, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network**

Page 3 of 7

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

- 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave

Project Number: not provided

Reported:

Seattle WA, 98121

11/07/00 17:27 Project Manager: David Raubvogel

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

]	Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SW-1 (B0J0800-01) Water Sampled	l: 10/31/00 11:45	Received	l: 10/31/00	17:55					
Diesel Range Hydrocarbons	0.370	0.250	mg/l	1	0K01010	11/01/00	11/02/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	0.500	н	m	"	n	"	11	
Surrogate: 2-FBP	124 %	50-150			"	"	н	· u	,
SW-2 (B0J0800-02) Water Sampled	l: 10/31/00 12:05	Received	: 10/31/00	17:55					
Diesel Range Hydrocarbons	0.253	0.250	mg/l	1	0K01010	11/01/00	11/02/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	0.500	Ħ	"	91	n,	11	11	
Surrogate: 2-FBP	102 %	50-150			<i>"</i> ·	"	"	"	
DW-2 (B0J0800-03) Water Sample	l: 10/31/00 13:40	Received	l: 10/31/00	17:55					
Diesel Range Hydrocarbons	ND	0.250	mg/l	1	0K01010	11/01/00	11/02/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	0.500	11	"	11	**	11	11	
Surrogate: 2-FBP	106 %	50-150			"	n	"	"	
DW-3 (B0J0800-04) Water Sample	l: 10/31/00 13:50	Received	l: 10/31/00	17:55					
Diesel Range Hydrocarbons	ND	0.250	mg/l	1	0K01010	11/01/00	11/02/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	0.500	"	11	"	11	"	11	
Surrogate: 2-FBP	94.6%	50-150			"	"	"	н	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kirk Gendron, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network**

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

500 Market Place Tower, 2025 1st Ave

Seattle WA, 98121

Project: Trans Mountain - Laurel Station

Project Number: not provided

Project Manager: David Raubvogel

Reported: 11/07/00 17:27

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

3	Reporting			Spike	Source		%REC	 .	RPD	- i.
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0K02011: Prepared 11/02/0	0 Using E	PA 5030B	(P/T)				******		··	 .
3lank (0K02011-BLK1)		1								
Gasoline Range Hydrocarbons	ND	50.0	ug/l							1
Benzene	ND	0.500	11						·	
Toluene	ND	0.500	Ħ							
Ethylbenzene	ND	0.500	*1							
Xylenes (total)	ND	1.00	**							
urrogate: 4-BFB (FID)	48.3		"	48.0		101	50-150			
Surrogate: 4-BFB (PID)	43.8		"	48.0		91.2	50-150			
LCS (0K02011-BS1)						-				4
Fasoline Range Hydrocarbons	461	50.0	ug/l	500		92.2	70-130	,		
Surrogate: 4-BFB (FID)	53.0		"	48.0		110	50-150			
Duplicate (0K02011-DUP1)					Source: B	0J0800- 0	1			
Jasoline Range Hydrocarbons	ND	50.0	ug/l		ND			35.9	25	Q-0
Surrogate: 4-BFB (FID)	41.3		"	48.0		86.0	50-150			
Matrix Spike (0K02011-MS1)					Source: B	оЈ0800-0	3			
Senzene	9.70	0.500	ug/l	10.0	ND	97.0	70-130			
Toluene	9.59	0.500	tr	10.0	ND	95,9	70-130	•		
thylbenzene	9.82	0.500	17	10.0	ND	98.2	70-130			
Kylenes (total)	29.2	1.00	"	30.0	ND	97.3	70-130			
Surrogate: 4-BFB (PID)	45.4		"	48.0		94.6	50-150			
Matrix Spike Dup (0K02011-MSD1)				:	Source: B	0J0800 -0 :	3			
Benzene	9.67	0.500	ug/l	10.0	ND	96.7	70-130	0.310	15	
Toluene	9.49	0.500	11	10.0	ND	94.9	70-130	1.05	15	
thylbenzene	9.62	0.500	11	10.0	ND	96.2	70-130	2.06	15	
kylenes (total)	28.6	1.00	11	30.0	ND	95.3	70-130	2.08	15	
Surrogate: 4-BFB (PID)	45.5		ï,	48.0		94.8	50-150			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kirk Gendron, Project Manager

FUR

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425,420,9200
 fax 425,420,9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509,924,9200
 fax 509,924,9200

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

500 Market Place Tower, 2025 1st Ave

Seattle WA, 98121

Project: Trans Mountain - Laurel Station

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/07/00 17:27

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) - Quality Control North Creek Analytical - Bothell

	Reporting		Spike	Source		%REC		RPD	
Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
0 Using E	PA 3520C/	600 Series		•					
					•				
ND	0.250	mg/l			/				
ND	0.500	Ħ							•
0.358		u	0.320		112	50-150			
2.02	0.250	mg/l	2.00		101	60-140			
0.356		#	0.320		111 .	50-150			
1.92	0.250	mg/l	2.00		96.0	60-140	5.08	40	
0.364		"	0.320		114	50-150			
	Result O Using E ND ND 0.358 2.02 0.356	Result Limit 0 Using EPA 3520C/ ND 0.250 ND 0.500 0.358 2.02 0.250 0.356	ND 0.250 mg/l ND 0.500 " 0.358 " 2.02 0.250 mg/l 0.356 "	Result Limit Units Level	Result Limit Units Level Result	Result Limit Units Level Result %REC 0 Using EPA 3520C/600 Series ND 0.250 mg/l ND 0.500 " 0.358 " 0.320 112 2.02 0.250 mg/l 2.00 101 0.356 " 0.320 111 1.92 0.250 mg/l 2.00 96.0	Result Limit Units Level Result %REC Limits 0 Using EPA 3520C/600 Series ND 0.250 mg/l ND 0.500 " 0.358 " 0.320 112 50-150 2.02 0.250 mg/l 2.00 101 60-140 0.356 " 0.320 111 50-150 1.92 0.250 mg/l 2.00 96.0 60-140	Result Limit Units Level Result %REC Limits RPD	Result Limit Units Level Result %REC Limits RPD Limit

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kirk Gendron, Project Manager

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210 Seattle

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 Spokane

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

500 Market Place Tower, 2025 1st Ave

Seattle WA, 98121

Project: Trans Mountain - Laurel Station

Project Number: not provided

Project Manager: David Raubvogel

Reported:

11/07/00 17:27

Notes and Definitions

Q-05 Analyses are not controlled on RPD values from sample concentrations less than 10 times the reporting limit.

Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kirk Gendron, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 7 of 7

18939 120th Avenue N.E., Suite 101, Bothell, WA 98011-9508 East 11115 Montgomery, Suite B, Spokane, WA 98206-4776 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

FAX 420-9210 FAX 924-9290 FAX 906-9210 FAX 382-7588 (503) 906-9200 (541) 383-9310 (425) 420-9200 (509) 924-9200

CHAIN OF CUSTODY REPORT

NCA WO DATE: (6.31-00 TIME (7:65 Ω TURNAROUND REQUEST in Business Days* *Turnaround Requests less than standard may incur Rush Charges. ~ DATE Petroleum Hydrocarbon Analyses 5 4 3 2 Please Specify 3 2 1 COMMENTS Organic & Inorganic Analyses 6050 800 OTHER CONT. ω 3 ŝ MATRIX (W, S, O) Work Order #: 10 6 70 23 2 PRINT NAME: O. PICAMPACET INVOICE TO: Sume us report REQUESTED ANALYSES RECEIVED BY: RECEIVED BY: PRINT NAME: DATE: 10-31-00 FAX: 1-206-727-3350 P.O. NUMBER: KO-HOTUN KLIB XJ-HOTUTA SHE 5700 FIRM: CR. PROJECT NAME: Trum Mountuin - Luurel 344 SOE1 100-18-01 10-31-10 / 1340 10-31-00/ 17/2/ 10-31-00/13 5C DATE/TIME SAMPLING ADDRESS: 2025 First Ave. Seuttle WA 48374 PHONE: 1-206-728 0744 RELINQUISHED BY: N.C. W. J. I. M. Rubsoyel SAMPLED BY: OKA, KM REPORT TO: Ockid CLIENT SAMPLE IDENTIFICATION ADDITIONAL REMARKS: UR'S PROJECT NUMBER: RELINQUISHED BY: 5W.2 SW-1 K-ma bw-3 PRINT NAME: PRINT NAME: CLIENT 12.

CANCELLE CONTROLLER

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland

503.924.5200 Tax 503.924.9250 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project: Trans Mountain - Laurel Station

Project Number: not provided Project Manager: David Raubvogel Reported:

11/06/00 15:43

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID Matrix	Date Sampled	Date Received
PEX-6-S-5	B0K0103-02 Soil	11/02/00 13:30	11/03/00 17:30
PEX-1-11	B0K0103-03 Soil	11/02/00 09:20	11/03/00 17:30

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 1 of 5

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

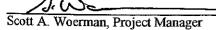
Dames and Moore-Seattle

500 Market Place Tower, 2025 1st Ave

Seattle WA, 98121

Project: Trans Mountain - Laurel Station

Project Number: not provided Project Manager: David Raubvogel Reported:


11/06/00 15:43

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PEX-6-S-5 (B0K0103-02) Soil	Sampled: 11/02/00 13:30	Receive	d: 11/03/00	17:30			,		
Gasoline Range Hydrocarbons	5.41	5.00	mg/kg dry	1	0K04006	11/04/00	11/05/00	NWTPH-Gx/80	
Benzene	ND	0.0500	N	**	n .	**	u u	21B	
Toluene	ND	0.0500	77	**	ti	11	**	n .	1
Ethylbenzene	ND	0.0500	**	11	11	"	#	ŧŧ	
Xylenes (total)	ND	0.100	11	Nr.	. 21	#	11	11	
Surrogate: 4-BFB (FID)		85.2%	50-1	50	"	"	"	"	
Surrogate: 4-BFB (PID)		91.6%	50-1	50	. "	**	n	u	
PEX-1-11 (B0K0103-03) Soil	Sampled: 11/02/00 09:20	Received	l: 11/03/00	17:30					
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K04006	11/04/00	11/05/00	NWTPH-Gx/80	
Benzene	ND	0.0500	11	**	"	u		21B	
Toluene	ND	0.0500	"	**	n	"	*	n .	•
Ethylbenzene	ND	0.0500	**	**	11	"	**	11	
Xylenes (total)	ND	0.100	. п		11	"	11	· tr	
Surrogate: 4-BFB (FID)		72.1 %	50-1	50	"	н	#	- #	
Surrogate: 4-BFB (PID)		87.0 %	50-1	50	"	"	"	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

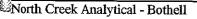
Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave

Project Number: not provided

Reported:


Seattle WA, 98121

Project Manager: David Raubvogel

11/06/00 15:43

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

Analyte	Result	Reporting Limit		Dilution	Batch	Prepared	Analyzed	Method	Notes
PEX-6-S-5 (B0K0103-02) Soil	Sampled: 11/02/00 13:30	Receive	ed: 11/03/0	0 17:30					
Diesel Range Hydrocarbons	767	10.0	mg/kg dry	1	0K04005	11/04/00	11/04/00	NWTPH-Dx	D-09
Lube Oil Range Hydrocarbons	503	25.0	H	. 11	H.	ŧŧ	H		
Surrogate: 2-FBP		79.5 %	50-	150	"	"	<i>"</i>	"	1
PEX-1-11 (B0K0103-03) Soil	Sampled: 11/02/00 09:20	Received	i: 11/03/00	17:30					
Diesel Range Hydrocarbons	. ND	10.0	mg/kg dry	1	0K04005	11/04/00	11/04/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	и	77	11	"	п	n	
Surrogate: 2-FBP		74.6%	50-1	150	<i>u</i> :	. "	"	,	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

500 Market Place Tower, 2025 1st Ave

Seattle WA, 98121

Project: Trans Mountain - Laurel Station

Project Number: not provided

Project Manager: David Raubvogel

Reported:

11/06/00 15:43

Physical Parameters by APHA/ASTM/EPA Methods North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PEX-6-S-5 (B0K0103-02) Soil	Sampled: 11/02/00 13:30	Received	l: 11/03/00	0 17:30	*********				
Dry Weight	90.9	1.00	%	1	0K05004	11/05/00	11/06/00	BSOPSPL003R	
PEX-1-11 (B0K0103-03) Soil	Sampled: 11/02/00 09:20	Received:	11/03/00	17:30				07	
Dry Weight	79.8	1.00	%	1	0K05004	11/05/00	11/06/00	BSOPSPL003R 07	,

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 4 of 5

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 **Portland**

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383,9310 fax 541.382,7588

Dames and Moore-Seattle

500 Market Place Tower, 2025 1st Ave

Seattle WA, 98121

Project: Trans Mountain - Laurel Station

Project Number: not provided

Project Manager: David Raubvogel

Reported: 11/06/00 15:43

Notes and Definitions

D-09 Results in the diesel organics range are primarily due to overlap from a heavy oil range product.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

Sample results reported on a dry weight basis

RPD Relative Percent Difference

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 5 of 5

(425) 420-9200 (503) 906-9200 (541) 383-9310 (509) 924-9200 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 East 11115 Montgomery, Suite B, Spokane, WA 98206-4776 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

FAX 420-9210

FAX 924-9290

FAX 906-9210 FAX 382-7588

CHAIN OF CUSTODY REPORT

NCA WO < 1 A TURNAROUND REQUEST in Business Days* *Turnaround Requests less than standard may incur Rush Charges. Please Specify 24 Petroleum Hydrocarbon Analyses

4 3 12 H < 1 DATE: DATE TIME:/ COMMENTS Organic & Inorganic Analyses 5 4 3 OTHER CONT. MUZONOWED FIRM: NGA S. (W, S, O) MATRIX FIRM: Work Order #: INVOICETO: SUM CO REPUT +0 REQUESTED ANALYSES RECEIVED BY: PRINT NAME: RECEIVED BY PRINT NAME: DATE: 11-3-OD FAX: ACL LAC 133 TO PO, NUMBER TIME TIME: xa-hamo x 30/x0-40 un COH St 700 11-2.00/0835 11-2-60/0941 11-2-010920 11-2-00/0930 11-2-00/00/09/10 PROJECT NAME: Trus Proto Liur | point FIRM: 11-2/00/1330 DATE/TIME SAMPLING ADDRESS: 2025 F. S. A.C. SEUHIL, WY 95374 11-200 REPORT TO: DUNIN RUSSUAL 44 40.50 4-204 SAMPLED BY: KM / KW) المجالة Test Pit Fundst 6. 19x - 3- 12 Base -3 PEX-6-3-5 CLIENT SAMPLE IDENTIFICATION 8. r Ex - 5- 8-5 4. PEX-2-Side-7. Pex-4-B-11 S. Pex 3 side PROJECT NUMBER: ADDITIONAL REMARKS: URS RELINQUISHED BY: RELINQUISHED BY: PRINT NAME: PRINT NAME: CLIENT

COC REV 3/99

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

 425.420.9200
 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

 509.924.9200
 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/07/00 14:17

ANALYTICAL REPORT FOR SAMPLES

	Sample ID		Laboratory ID	Matrix	Date Sampled	Date Received
	PEX-8-B-10		B0K0106-01	Soil	11/03/00 11:06	11/03/00 19:15
6.2	PEX-9-B-10		В0К0106-02	Soil	11/03/00 11:11	11/03/00 19:15
	PEX-10-B-6	•	B0K0106-03	Soil	11/03/00 11:54	11/03/00 19:15
	PEX-11-S-7	1	B0K0106-04	Soil	11/03/00 16:05	11/03/00 19:15
	PEX-12-S-7		B0K0106-05	Soil	11/03/00 16:10	11/03/00 19:15
	PEX-13-S-5		B0K0106-06	Soil	11/03/00 16:15	11/03/00 19:15
€_0	PEX-14-S-1		B0K0106-07	Soil	11/03/00 15:15	11/03/00 19:15

Jorth Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network**

Page 1 of 11

500 Market Place Tower, 2025 1st Ave

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

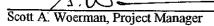
9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Seattle WA, 98121

Project: Trans Mountain - Laurel Station


Project Number: not provided Project Manager: David Raubvogel Reported:

11/07/00 14:17

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

Analyte	Reportin Result Lim		Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PEX-8-B-10 (B0K0106-01) Soil	Sampled: 11/03/00	11:06 Rec	eived: 11/03	/00 19:15					
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K04006	11/04/00	11/05/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	11	n	11	er e	11	11	
Toluene	ND	0.0500	11	11	tt	w	11	n	
Ethylbenzene	ND	ND 0.0500 "		н	n	Rt.	Ħ	tt	
Xylenes (total)	ND	ND 0.100		**	11	11	17	17	
Surrogate: 4-BFB (FID)	83.5 %	50-150			#	"	#	"	
Surrogate: 4-BFB (PID)	89.2 %	50-150			"	"	"	"	
PEX-9-B-10 (B0K0106-02) Soil	Sampled: 11/03/00	11:11 Rec	eived: 11/03/	00 19:15					
Gasoline Range Hydrocarbons	129	10.0	mg/kg dry	2	0K04006	11/04/00	11/05/00	NWTPH-Gx/8021B	
Benzene	ND	0.100	tr.	**	**	**	11		7
Toluene	ND	0.100	**	41	11	"	11	. "	
Ethylbenzene	ND	0.840	"	11	n	**	**	11	R-03
Xylenes (total)	1.34	0.200	TT .	"	11	Ħ	11	11	
Surrogate: 4-BFB (FID)	115 %	50-150			u	"	. "	"	
Surrogate: 4-BFB (PID)	104 %	50-150			"	"	"	"	
PEX-10-B-6 (B0K0106-03) Soil	Sampled: 11/03/00	11:54 Rec	eived: 11/03/	00 19:15					
Gasoline Range Hydrocarbons	17.6	5.00	mg/kg dry	1	0K04006	11/04/00	11/05/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	"	11	**	**	**	11	
Toluene	ND	0.0500	"	н	"	**	"	tr	
Ethylbenzene	ND	0.0500	11	n	τί	n	tr	11	
Xylenes (total)	ND	0.100	1r	ir	11	11	11	**	
Surrogate: 4-BFB (FID)	83.3 %	50-150			n	<i>"</i>	"	"	
Surrogate: 4-BFB (PID)	83.5 %	50-150			"	,,	"	"	

North Creek Analytical - Bothell

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9290 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/07/00 14:17

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
PEX-11-S-7 (B0K0106-04) Soil	Sampled: 11/03/00) 16:05 Rec	eived: 11/03	/00 19:15								
Gasoline Range Hydrocarbons	997	50.0	mg/kg dry	10	0K04006	11/04/00	11/05/00	NWTPH-Gx/8021B				
Benzene	ND	2.00	"	11	**	"	Ħ	17	R-03			
Toluene	ND	0.500	11	н	H	,,,	"	и	,			
Ethylbenzene	ND	7.00		"	47	77	11	n	R-03			
Xylenes (total)	45.0	1.00	17	n	*	11	•	11				
Surrogate: 4-BFB (FID)	248 %	50-150			H	"	"	"	S-02			
Surrogate: 4-BFB (PID)	138 %	50-150			"	"	"	"	2 04			
PEX-12-S-7 (B0K0106-05) Soil	Sampled: 11/03/00	ampled: 11/03/00 16:10 Received: 11/03/00 19:15										
Gasoline Range Hydrocarbons	869	100	mg/kg dry	20	0K04006	11/04/00	11/05/00	NWTPH-Gx/8021B				
Benzene	ND	1.00	"	11	"	11	н	"				
Toluene	ND	1.00		"	11	"	11	rr				
Ethylbenzene	ND	6.00	11	11		11	**	*1	R-03			
Xylenes (total)	32.3	2.00	11	#	TP		tt	**	100			
Surrogate: 4-BFB (FID)	236 %	50-150			"	"	"	rr .	S-06			
Surrogate: 4-BFB (PID)	141 %	5 0 -150			"	"	"	"	5 00			
PEX-13-S-5 (B0K0106-06) Soil	Sampled: 11/03/09	16:15 Rec	eived: 11/03/	00 19:15								
Gasoline Range Hydrocarbons	38.2	5.00	mg/kg dry	1	0K04006	11/04/00	11/05/00	NWTPH-Gx/8021B	•			
Benzene	0.573	0.0500		**	11	"	11	17				
Toluene	ND	0.0500	11	H .	"	11	**	11				
Ethylbenzene	ND	0.150	н	11	n		h		R-03			
Xylenes (total)	2.57	0.100	"	**	"	17	**	n .				
Surrogate: 4-BFB (FID)	85.1 %	50-150			"	"	"	"				
Surrogate: 4-BFB (PID)	97.0 %	50-150			"	n	"					

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 3 of 11

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

425.420.9200 fax 425.420.9210

423-420-3200 Tax 423-420-3210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509-924-9200 Tax 509-924-9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503-906-9200 Tax 503-906-9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel Reported:

11/07/00 14:17

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PEX-14-S-1 (B0K0106-07) Soil	Sampled: 11/03/00	15:15 Rec	eived: 11/03	/00 19:15					
Gasoline Range Hydrocarbons	- 190	10.0	mg/kg dry	2	0K04006	11/04/00	11/05/00	NWTPH-Gx/8021B	
Benzene	ND	0.400	**	11	17	"	11	11	R-03
Toluene	1.27	0.100	Tř	**	11	. #	11		
Ethylbenzene	ND	0.800	"	**	**	91	н	77	R-03
Xylenes (total)	3.79	0.200	"	**	"	**	**	. "	
Surrogate: 4-BFB (FID)	126 %	50-150			"	"	n	. н	
Surrogate: 4-BFB (PID)	110 %	50-150			"	H	u	" 135	

North Creek Analytical - Bothell

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

425.420.9200 fax 425.420.9210
East 11115 Montgomery, Suite B, Spokane, WA 99206-4776
509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

500 Market Place Tower, 2025 1st Ave

Seattle WA, 98121

Project: Trans Mountain - Laurel Station

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/07/00 14:17

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	December	Amalerral	N 1	X T .
	- ACSUIT	TAIMIT	Omts	Diladon	Dawii	Frepareu	Analyzed	Method	Notes
PEX-8-B-10 (B0K0106-01) Soil	Sampled: 11/03/0	0 11:06 Rec	ceived: 11/03	/00 19:15			-		
Diesel Range Hydrocarbons	21.9	10.0	mg/kg dry	1	0K04005	11/04/00	11/04/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	"	Ħ	"	. "	ır	. 17	
Surrogate: 2-FBP	63.9 %	50-150			n	#	"	н .	
PEX-9-B-10 (B0K0106-02) Soil	Sampled: 11/03/06) 11:11 Rec	:eived: 11/03	/00 19:15				N.	
Diesel Range Hydrocarbons	157	10.0	mg/kg dry	1	0K04005	11/04/00	11/04/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	**	"	"		tr	*	
Surrogate: 2-FBP	111 %	50-150			"	"	"	"	
PEX-10-B-6 (B0K0106-03) Soil	Sampled: 11/03/00	11:54 Rec	eived: 11/03	00 19:15					
Diesel Range Hydrocarbons	29.4	10.0	mg/kg dry	1	0K04005	11/04/00	11/04/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	11	"	•	41	**		
Surrogate: 2-FBP	61.9 %	50-150			"	"	"	#	
PEX-11-S-7 (B0K0106-04) Soil	Sampled: 11/03/00	16:05 Rec	eived: 11/03/	00 19:15					
Diesel Range Hydrocarbons	670	10.0	mg/kg dry	1	0K04005	11/04/00	11/04/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	30.0	25.0	It	v	**	11	"	"	
Surrogate: 2-FBP	%	50-150			"	"	#	#	S-05
Surrogate: Octacosane	90.4 %	50-150			Ħ	#	"	"	
PEX-12-S-7 (B0K0106-05) Soil	Sampled: 11/03/00	16:10 Rece	eived: 11/03/	00 19:15					
Diesel Range Hydrocarbons	431	10.0	mg/kg dry	1	0K04005	11/04/00	11/04/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	11	**	**	н	tt	"	
Surrogate: 2-FBP	116 %	50-150			"	77	"	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425,420.9200
 fax 425,420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924,9200
 fax 509.924,9200

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave

Project Number: not provided

Reported:

Seattle WA, 98121

Project Manager: David Raubvogel 11/07/00 14:17

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PEX-13-S-5 (B0K0106-06) Soil	Sampled: 11/03/00	16:15 Rec	eived: 11/03	/00 19:15					·
Diesel Range Hydrocarbons	28.8	10.0	mg/kg dry	1	0K04005	11/04/00	11/04/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	**	11	,,	11	11	n	
Surrogate: 2-FBP	89.5 %	50-150			"	"	"	#	
PEX-14-S-1 (B0K0106-07) Soil	Sampled: 11/03/00	15:15 Rec	eived: 11/03	00 19:15	-			24	
Diesel Range Hydrocarbons	681	110	mg/kg dry	11	0K06032	11/06/00	11/06/00	NWTPH-Dx	-
Lube Oil Range Hydrocarbons	392	275		11	**	11	u .	49	
Surrogate: 2-FBP	%	50-150			" .	"	"	"	S-01
Surrogate: Octacosane	119 %	50-150				"	" .	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 6 of 11

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Spokane

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 **Portland**

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/07/00 14:17

Physical Parameters by APHA/ASTM/EPA Methods

North Creek Analytical - Bothell

9	§		Reporting							
	Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
W-177	PEX-8-B-10 (B0K0106-01) Soil	Sampled: 11/03/0	0 11:06 Reco	eived: 11/0	3/00 19:15					
	Dry Weight	86.8	1.00	%	1	0K05004	11/05/00	11/06/00	BSOPSPL003R07	
	PEX-9-B-10 (B0K0106-02) Soil	Sampled: 11/03/00	0 11:11 Rece	eived: 11/0	3/00 19:15	•				
	Dry Weight	85.5	1.00	%	1	0K05004	11/05/00	11/06/00	BSOPSPL003R07	
	PEX-10-B-6 (B0K0106-03) Soil	Sampled: 11/03/00	0 11:54 Rece	ived: 11/0	3/00 19:15					
	Dry Weight	84.6	1.00	%	i	0K05004	11/05/00	11/06/00	BSOPSPL003R07	
	PEX-11-S-7 (B0K0106-04) Soil	Sampled: 11/03/00	16:05 Rece	ived: 11/0	3/00 19:15					
1	Dry Weight	68.1	1.00	%	1	0K05004	11/05/00	11/06/00	BSOPSPL003R07	
	PEX-12-S-7 (B0K0106-05) Soil	Sampled: 11/03/00	16:10 Rece	ived: 11/0	3/00 19:15					
	Dry Weight	72.0	1.00	%	. 1	0K05004	11/05/00	11/06/00	BSOPSPL003R07	
	PEX-13-S-5 (B0K0106-06) Soil	Sampled: 11/03/00	16:15 Rece	ived: 11/0:	3/00 19:15					
	Dry Weight	70.3	1.00	%	1	0K05004	11/05/00	11/06/00	BSOPSPL003R07	
100 m	PEX-14-S-1 (B0K0106-07) Soil	Sampled: 11/03/00	15:15 Rece	ived: 11/0:	3/00 19:15					
nestar (Dry Weight	79.2	1.00	%	1	0K05004	11/05/00	11/06/00	BSOPSPL003R07	
-										

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 7 of 11

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200
 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200
 fax 509.924.9200

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/07/00 14:17

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

· -			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0K04006:	Prepared 11/04/00	Using 1	EPA 5030E	В (МеОН)							
Blank (0K04006-BL)	K1)	•	;	· · · · · · · · · · · · · · · · · · ·					·		
Gasoline Range Hydroca	rbons	ND	5.00	mg/kg wet							
Benzene		ND	0.0500	17				-			·
Toluene		ND	0.0500								
Ethylbenzene		ND	0.0500	"							
Xylenes (total)		ND	0.100	it							
Surrogate: 4-BFB (FID)		3.69		"	4.00		92.3	50-150			
Surrogate: 4-BFB (PID)		3.92		"	4.00		98.0	50-150			
LCS (0K04006-BS1)	÷										
Gasoline Range Hydroca	rbons	23.5	5.00	mg/kg wet	25.0	-	94.0	70-130			
Surrogate: 4-BFB (FID)		3.78		"	4.00		94.5	50-150			
Duplicate (0K04006-1	DUP1)					Source: E	30K0106-	07			
Gasoline Range Hydroca	rbons	143	10.0	mg/kg dry		190			28.2	50	
Surrogate: 4-BFB (FID)	· · · · · · · · · · · · · · · · · · ·	5.06		"	5.05		100	50-150		· · · · · · · · · · · · · · · · · · ·	
Matrix Spike (0K040	06-MS1)					Source: E	80K0052-	01			
Benzene		0.501	0.0500	mg/kg dry	0.589	ND	85.1	60-140			
Toluene		0.509	0.0500	"	0.589	ND	83.5	60-140			
Ethylbenzene,		0.497	0.0500	" .	0.589	ND	84.4	60-140			
Xylenes (total)		1.54	0.100	11	1.77	ND	86.0	60-140			
Surrogate: 4-BFB (PID)		3.80		"	4.71		80.7	50-150			
Matrix Spike Dup (01	K04006-MSD1)					Source: B	0K0052-	D1			
Benzene	<u> </u>	0.503	0.0500	mg/kg dry	0.589	ND	85.4	60-140	0.398	20	
Toluene		0.504	0.0500	er er	0.589	ND	82.7	60-140	0.987	20	
Ethylbenzene		0.491	0.0500	11	0.589	NĐ	83.4	60-140	1.21	20	
Xylenes (total)		1.52	0.100	**	1.77	ND	84.9	60-140	1.31	20	
Surrogate: 4-BFB (PID)		3.96		"	4.71		84.1	50-150			

North Creek Analytical - Bothell

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

500 Market Place Tower, 2025 1st Ave

Seattle WA, 98121

Project: Trans Mountain - Laurel Station

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/07/00 14:17

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) - Quality Control North Creek Analytical - Bothell

6 77			Reporting	***	Spike	Source		%REC		RPD	
Analyte	,	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0K04005:	Prepared 11/04/00	Using	EPA 3550E	3	-						
Blank (0K04005-BI	LK1)		:		***			•	•	*	
Diesel Range Hydrocar	bons	ND	10.0	mg/kg wet							
Lube Oil Range Hydro	carbons	ND	25.0	**							1
Surrogate: 2-FBP		7.45		11	10.7		69.6	50-150			
LCS (0K04005-BS1)										
Diesel Range Hydrocar	bons	54.2	10.0	mg/kg wet	66.7		81.3	60-140		. .	
Surrogate: 2-FBP		8.30		#	10.7		77.6	50-150			
Duplicate (0K04005	-DUP1)					Source: B	0K0106-0)3			
Diesel Range Hydrocar	bons	19.7	10.0	mg/kg dry		29.4			39.5	50	
Lube Oil Range Hydrod	carbons	ND	25.0	"		ND			29.2	50	•
Surrogate: 2-FBP		9.85		"	12.6		78.2	50-150			
Batch 0K06032:	Prepared 11/06/00	Using l	EPA 3550B								
Blank (0K06032-BL	.K1)			· · ·					·		
Diesel Range Hydrocari	bons	ND	10.0	mg/kg wet							
Lube Oil Range Hydrod	earbons	ND	25.0	"							
Surrogate: 2-FBP		9.24		"	10.7		86.4	50-150			
LCS (0K06032-BS1))										
Diesel Range Hydrocarl	bons	60.9	10.0	mg/kg wet	.66.7		91.3	60-140			
Surrogate: 2-FBP		9.16		"	10.7		85.6	50-150			
Duplicate (0K06032-	,				;	Source: B	0 K00 81-0	9			
Diesel Range Hydrocart	ons	ND	10.0	mg/kg dry		ND			11.1	50	
Lube Oil Range Hydroc	arbons	ND	25.0	**		ND		-	0.725	50	
Surrogate: 2-FBP		9.74		"	12.8		76.1	50-150			···

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network**

Page 9 of 11

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

 425.420.9200
 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave

Project Number: not provided

Reported:

Seattle WA, 98121

Project Manager: David Raubvogel

11/07/00 14:17

Physical Parameters by APHA/ASTM/EPA Methods - Quality Control North Creek Analytical - Bothell

Analyte		Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0K05004:	Prepared 11/05/00	Using D	ry Weight		····						
Blank (0K05004-Bl	LK1)		1								
Dry Weight		100	1.00	%							

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 10 of 11

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 Seattle

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided

Reported:

Project Manager: David Raubvogel

11/07/00 14:17

Notes and Definitions

R-03	The reporting limit for this analyte has been ra	ised to account for interference from coeluting organic compounds present in the
3	sample.	

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interferences.

The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample.

S-05 Due to interference from coeluting organic compounds with the primary surrogate, results of the secondary surrogate have been used to control the analysis.

The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interferences.

Analyte DETECTED

Analyte NOT DETECTED at or above the reporting limit

Not Reported

Sample results reported on a dry weight basis

Relative Percent Difference

orth Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 11 of 11

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 East 11115 Montgomery, Suite B, Spokane, WA 98206-4776 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

FAX 906-9210 FAX 924-9290 FAX 420-9210 (503) 906-9200 (425) 420-9200 (509) 924-9200

FAX 382-7588

(541) 383-9310

CHAIN OF CUSTODY REPORT

NCA WO < <u>1</u> 702 -02 \overline{Q} びり TURNAROUND REQUEST in Business Days* *Turnavound Requests less than standard may incur Rush Charges. DATE: ((, TIME DATE: TIME X 7 Please Specify COMMENTS Organic & Inorganic Analyses Petroleum Hydrocarbon Analysi 5 4 3 Work Order #: BOK ○\0 € 3 OTHER TON Y FIRM: NOW CONT # OF S , (W, S, O) MATRIX FIRM: 2 S 1 S 2 FAMILY REQUESTED ANALYSES RECEIVED BY: PRINT NAME: RECEIVED BY PRINT NAME: SFRE DATE: 4/ 5/ 80 TIME: 1915 P.O. NUMBER: INVOICE TO TIME NwTPH-GX /BTEX × X X EVIN LUNDMARKEIRM: WES NWTPH-DX ADDRESS: 2025 1SI AVE STE. 500 Seattle, WA 98121 605 154 FAX: 106 FIRM: PROJECT NAME: TRANS MOUNTAIN Caster Complexes DATE/TIME SAMPLING REPORT TO: David Raubroge 106-724-0244 11/3/00 n/3/00 1/3/00 1/3/00 11/3/20 (1/2/00 SAMPLED BY: KEVIN 4-PEX-11-5-17 Q SPEX-12-5-7 2. PEX-9-B- 10 6.PEX-13-5-5 1. PEX-8-8-10 CLIENT SAMPLE IDENTIFICATION 3.PEX-10-B-K R5 PROJECT NUMBER: ADDITIONAL REMARKS: RELINQUISHED BY: RELINQUISHED BY: PRINT NAME: PRINT NAME: PHONE: COC-REV 3/99 **CLIENT**; ≘ بي Ξ. 4

1172 Cree v N. Service Bose v 1A 98 East 11115 Montgomery, Suite B, Spokane, WA 98206-4776 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

Construction of the Constr

(Control of

Control

FAT 924-9290 FAX 906-9210 FAX 382-7588 (420-K-20-00) (541) 383-9310 (503) 906-9200 (509) 924-9200

BOKNIOG Work Order #:

NCA WO 4 <1 ₽ TURNAROUND REQUEST in Business Days* *Turnaround Requests less than standard may incur Rush Charges. ~ DATE: (< TIME DATE: TIME Petroleum Hydrocarbon Analyses Please Specify
OTHER 5 4 3 2 3 2 1 COMMENTS CONT FIRM: NV 4 # OF (W, S, O) MATRIX FIRM 92 REQUESTED ANALYSES PRINT NAME: RECEIVEDBY PRINT NAME: CHAIN OF CUSTODY REPORT RECEIVEDAS かれる市 DATE: 11/5/00 TIME: 1915 INVOICE TO: P.O. NUMBER DATE: TIME: NWTPH-GX /BTEX REPORT TO: DAVID RAUBUOGIEL
ADDRESS: 2025 1.51 AVE STE, 506
SCATTLE, WA 49.12)
PHONE: 206-726-0744 FAX: 15551 LUNDWARD Y PRINTNAME: KEVIN LUNDMARK FIRM FIRM: PROJECT NAME: TRANS MOUNTAIN RELINQUISHED BY: CONSTANT COMPANY OF SAMPLING DATE/TIME 41/3/60 SAMPLED BY: KOUN 1.8EX-14-5-1 CLIENT SAMPLE IDENTIFICATION CLIENT: 12/25 PROJECT NUMBER: RELINQUISHED BY: PRINT NAME:

Ģ

PAGE

TEMP:

ADDITIONAL REMARKS:

COC REV 3/99

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200
 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200
 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200
 fax 503.906.9210

 Portland
 96232 Engist Avenue, Stiff F1 Bond, OR 9701 5744

Portfand

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

500 Market Place Tower, 2025 1st Ave

Seattle WA, 98121

Project: Trans Mountain - Laurel Station

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/17/00 16:26

ANALYTICAL REPORT FOR SAMPLES

de la constitución de la constit						
	Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received	_
6.8 	PEX-16-S-3	B0K0272-01	Soil	11/09/00 14:31	11/10/00 15:00	_
i.d	PEX-17-B-5	B0K0272-02	Soil	11/09/00 14:35	11/10/00 15:00	
	PEX-18-S-3	B0K0272-03	Soil	11/09/00 14:40	11/10/00 15:00.	
	PEX-19-S-3	B0K0272-04	Soil	11/09/00 14:45	11/10/00 15:00	
	PEX-20-B-5	B0K0272-05	Soil	11/09/00 14:50	11/10/00 15:00	
	PEX-21-S-3	B0K0272-06	Soil	11/09/00 14:55	11/10/00 15:00	
الفت	PEX-22-S-4	B0K0272-07	Soil	11/09/00 15:05	11/10/00 15:00	
	PEX-23-B-6	B0K0272-08	Soil	11/09/00 15:10	11/10/00 15:00	
1	PEX-24-S-4	B0K0272-09	Soil	11/09/00 15:25	11/10/00 15:00	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 1 of 13

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

425.420.9200 fax 425.420.9210

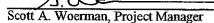
423-420-3200 1ax 423-420-3710 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9290 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 Portland

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121


Project Number: not provided Project Manager: David Raubvogel

Reported: 11/17/00 16:26

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PEX-16-S-3 (B0K0272-01) Soil	Sampled: 11/09/00	14:31 Rec	eived: 11/10/	00 15:00				-	
Gasoline Range Hydrocarbons	25.2	5.00	mg/kg dry	1	0K13016	11/13/00	11/14/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	71	**	**	π	rr	r	
Toluene	ND	0.0520	**	tr	Ħ	51	**	17	R-03
Ethylbenzene	ND	0.0500	11	11	11	"	u	41	
Xylenes (total)	0.166	0.100	tt.	**		77	*1	u	
Surrogate: 4-BFB (FID)	107 %	50-150			"	"	"	"	
Surrogate: 4-BFB (PID)	89.1 %	50-150			n	#	"	H	
PEX-17-B-5 (B0K0272-02) Soil	Sampled: 11/09/00	14:35 Rec	eived: 11/10/	00 15:00					
Gasoline Range Hydrocarbons	11.3	5.00	mg/kg dry	1	0K11008	11/11/00	11/12/00	NWTPH-Gx/8021B	
Benzene	0.139	0.0500	**	11	1f	41	tr	11	
Toluene	ND	0.0500	Ħ	11	11	**	11	Ð	-
Ethylbenzene	0.224	0.0500	tr .	Ħ	11	"	11	"	
Xylenes (total)	1.65	0.100	11	**	**	11	**	11	
Surrogate: 4-BFB (FID)	86.5 %	50-150			"	"	"	n	
Surrogate: 4-BFB (PID)	85.1 %	50-150			"	"	"	"	
PEX-18-S-3 (B0K0272-03) Soil	Sampled: 11/09/00	14:40 Rec	eived: 11/10/	00 15:00					
Gasoline Range Hydrocarbons	8.68	5.00	mg/kg dry	1	0K13016	11/13/00	11/14/00	NWTPH-Gx/8021B	
Benzene	0.0961	0.0500	**	n	11	11	18	11	
Toluene	ND	0.0500	11		11	"	**	**	
Ethylbenzene	ND	0.0500	11	**	"	**	**	11	
Xylenes (total)	0.461	0.100	41	11	**	11	ir	ir	
Surrogate: 4-BFB (FID)	86.8 %	50-150			"	"	"	"	
Surrogate: 4-BFB (PID)	82.0 %	50-150			"	"	"	n .	

North Creek Analytical - Bothell

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

 425,420,9200
 fax 425,420,9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

 509,924,9200
 fax 509,924,9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project: Trans Mountain - Laurel Station

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/17/00 16:26

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

			Reporting							
	Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
E	PEX-19-S-3 (B0K0272-04) Soil	Sampled: 11/09/00) 14:45 Rec	eived: 11/10	/00 15:00					
	Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K13016	11/13/00	11/14/00	NWTPH-Gx/8021B	-
	Benzene	ND	0.0500	"	**	tr	. "	11	"	
100 C 200	Toluene	ND	0.0500	**	11	*1	11	"	ff.	.1
en out	Ethylbenzene	ND	0.0500	11		**	n	17	11	
200	Xylenes (total)	ND	0.100	17	11	rr	H	11	11	e e
	Surrogate: 4-BFB (FID)	73.1 %	50-150			. "	"		и	
	Surrogate: 4-BFB (PID)	80.9 %	50-150			"	<i>n</i> -	"	· n	
	PEX-20-B-5 (B0K0272-05) Soil	Sampled: 11/09/00) 14:50 Rec	eived: 11/10	/00 15:00				4	
ES.	Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	I	0K13016	11/13/00	11/14/00	NWTPH-Gx/8021B	
6770	Benzene	ND	0.0500	"	н	11	11	п	"	,
	Tolu e ne	ND	0.0500		. 17	"	n	11	"	
£ 2	Ethylbenzene	ND	0.0500	4	11	11	n	"	п	٠.
-	Xylenes (total)	ND	0.100	**	"	**	11	n	н	
	Surrogate: 4-BFB (FID)	71.2 %	50-150			"	"	"	"	···
	Surrogate: 4-BFB (PID)	75.8 %	50-150			"	"	. "	"	
]	PEX-21-S-3 (B0K0272-06) Soil	Sampled: 11/09/00	14:55 Rec	eived: 11/10/	00 15:00					
	Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K13016	11/13/00	11/14/00	NWTPH-Gx/8021B	
[]	Benzene	ND	0.0500	11	m.	TT .	n	. 11	"	
	Toluene	ND	0.0500	**	11	11	11	**	11	
[]	Ethylbenzene	ND	0.0500	ır	"	*	**	ti.		
	Kylenes (total)	ND	0.100	1)	11	11	IF	11	11 /	
- 00000	Surrogate: 4-BFB (FID)	71.0 %	50-150	. <u>.</u> .		"	"	"	<i>n</i>	
3	Surrogate: 4-BFB (FID) Surrogate: 4-BFB (PID)	79.1 %	50-150			u	a	"	и	

North Creek Analytical - Bothell

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425,420,9200
 fax 425,420,9210

 Ipokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509,924,9200
 fax 509,924,9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

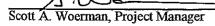
503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

500 Market Place Tower, 2025 1st Ave

Seattle WA, 98121

Project: Trans Mountain - Laurel Station


Project Number: not provided Project Manager: David Raubvogel Reported:

11/17/00 16:26

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PEX-22-S-4 (B0K0272-07) Soil	Sampled: 11/09/00	15:05 Rec	eived: 11/10/	00 15:00					
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K13016	11/13/00	11/14/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	11	Ħ	77	. 41	11	"	
Toluene	ND	0.0500	41	**	#	"		"	j.
Ethylbenzene	ND	0.0500	H	tt.	Ħ	#	Ħ	tt .	
Xylenes (total)	0.107	0.100	11	"	11	**	11	n	
Surrogate: 4-BFB (FID)	77.8 %	50-150			"	. "	"	"	
Surrogate: 4-BFB (PID)	86.7%	50-150			"	n	"	"	
PEX-23-B-6 (B0K0272-08) Soil	Sampled: 11/09/00	15:10 Rec	eived: 11/10	00 15:00					
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K11008	11/11/00	11/12/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	tt	" .	11	**	11	**	
Toluene	ND	0.0500	11	**	**	**	**	Ħ	
Ethylbenzene	ND	0.0500	**	17	**	*1	н	rr	
Xylenes (total)	ND	0.100	11	11	17	"	tř	11	
Surrogate: 4-BFB (FID)	97.2 %	50-150			"	. "	. "	"	
Surrogate: 4-BFB (PID)	87.8 %	50-150			"	"	. "	"	
PEX-24-S-4 (B0K0272-09) Soil	Sampled: 11/09/00	15:25 Rece	eived: 11/10/	00,15:00					
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	I	0K13016	11/13/00	11/14/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	*	•	11	#	*1	и	
Toluene	ND	0.0500	"	"	#1	11	**	W .	
Ethylbenzene	ND	0.0500	lt	н	"	11	"	u	
Xylenes (total)	ND	0.100	ır	11	***	11	rr	e .	
Surrogate: 4-BFB (FID)	78.6 %	50-150			"	"	"	"	
Surrogate: 4-BFB (PID)	83.2 %	50-150			. "	"	#	"	

North Creek Analytical - Bothell

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

500 Market Place Tower, 2025 1st Ave

Seattle WA, 98121

Project: Trans Mountain - Laurel Station

Project Number: not provided

Reported:

Project Manager: David Raubvogel

11/17/00 16:26

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

متامثته		· 	Reporting							
harana ka	Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
الرسيد ة إ	PEX-16-S-3 (B0K0272-01) Soil	Sampled: 11/09/00	14:31 Rec	eived: 11/10	/00 15:00					
	Diesel Range Hydrocarbons	88.6	10.0	mg/kg dry	1	0K14020	11/14/00	11/15/00	NWTPH-Dx	711
S	Lube Oil Range Hydrocarbons	92.0	25.0	**	**	•		**	**	
	Surrogate: 2-FBP	73.4 %	50-150			#	"	#	"	,
	PEX-17-B-5 (B0K0272-02) Soil	Sampled: 11/09/00	14:35 Rec	eived: 11/10	/00 15:00			•		-
	Diesel Range Hydrocarbons	13.1	5.00	mg/kg dry	1	0K12011	11/12/00	11/13/00	NWTPH-Dx	
	Lube Oil Range Hydrocarbons	19.1	12.5	"	11	**	. "	. н	11	
	Surrogate: 2-FBP	71.7%	50-150			"	"	"	"	
رقب	PEX-18-S-3 (B0K0272-03) Soil	Sampled: 11/09/00	14:40 Rec	eived: 11/10/	00 15:00	. :				
A	Diesel Range Hydrocarbons	18.5	10.0	mg/kg dry	1	0K14020	11/14/00	11/15/00	NWTPH-Dx	·
	Lube Oil Range Hydrocarbons	31.7	25.0	**	11	e	**	11	n n	•
	Surrogate: 2-FBP	72.0 %	50-150			" .	"	"	"	
} [PEX-19-S-3 (B0K0272-04) Soil	Sampled: 11/09/00	14:45 Rec	eived: 11/10/	00 15:00				,	
	Diesel Range Hydrocarbons	38.3	10.0	mg/kg dry	1	0K14020	11/14/00	11/15/00	NWTPH-Dx	
E-3)	Lube Oil Range Hydrocarbons	48.7	25.0	11	It	. "	u .	r!	ıı	
1 1	Surrogate: 2-FBP	75.0 %	50-150			"	"	н	и	
1	PEX-20-B-5 (B0K0272-05) Soil	Sampled: 11/09/00	14:50 Rec	eived: 11/10/	00 15:00					
	Diesel Range Hydrocarbons	16.1	10.0	mg/kg dry	1	0K14020	11/14/00	11/15/00	NWTPH-Dx	
I	Lube Oil Range Hydrocarbons	ND	25.0	11	"	11	"	#	"	
1	Surrogate: 2-FBP	65.3 %	50-150			H	"	#	"	
		Sampled: 11/09/00	14:55 Rece	zived: 11/10/0	00 15:00				<i>:</i>	
ĮĪ	Diesel Range Hydrocarbons	18.3	10.0	mg/kg dry		0K14020	11/14/00	11/15/00	NWTPH-Dx	
I	Lube Oil Range Hydrocarbons	ND	25.0	"	H	11	"	11	"	
S	Surrogate: 2-FBP	69.0 %	50-150			<i>n</i>	#	"	"	
er to										

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 Portland

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel Reported:

11/17/00 16:26

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PEX-22-S-4 (B0K0272-07) Soil	Sampled: 11/09/00	15:05 Rec	eived: 11/10	/00 15:00					
Diesel Range Hydrocarbons	28.4	10.0	mg/kg dry	1	0K14020	11/14/00	11/15/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	34.0	25.0	"	"	**	,,	**	"	
Surrogate: 2-FBP	74.2 %	50-150			"	"	"	n ·	,
PEX-23-B-6 (B0K0272-08) Soil	Sampled: 11/09/00	0 15:10 Rec	eived: 11/10	/00 15:00		-			
Diesel Range Hydrocarbons	10.1	5.00	mg/kg dry	1	0K12011	11/12/00	11/13/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	12.5	**	н	Ħ	11		и .	
Surrogate: 2-FBP	73.9 %	50-150			"	"	"	"	
PEX-24-S-4 (B0K0272-09) Soil	Sampled: 11/09/00	15:25 Rec	eived: 11/10	/00 15:00	:			•	
Diesel Range Hydrocarbons	23.4	10.0	mg/kg dry	1	0K14020	11/14/00	11/15/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	11	11	11	e .	tt	, n .	,
Surrogate: 2-FBP	73.2 %	50-150			"	"	"	"	-

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/17/00 16:26

Physical Parameters by APHA/ASTM/EPA Methods North Creek Analytical - Bothell

		Re	porting							
	Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	PEX-16-S-3 (B0K0272-01) Soil	Sampled: 11/09/00 14	:31 Rec	eived: 11/10	/00 15:00					
	Dry Weight	85.3	1.00	%	1	0K13038	11/13/00	11/14/00	BSOPSPL003R07	
	PEX-17-B-5 (B0K0272-02) Soil	Sampled: 11/09/00 14	:35 Rec	eived: 11/10	0/00 15:00					i
(CEX	Dry Weight	79.5	1.00	%	1	0K10040	11/10/00	11/13/00	BSOPSPL003R07	
	PEX-18-S-3 (B0K0272-03) Soil	Sampled: 11/09/00 14:	40 Rec	eived: 11/10	/00 15:00					
C	Dry Weight	87.9	1.00	%	1	0K13038	11/13/00	11/14/00	BSOPSPL003R07	
(PEX-19-S-3 (B0K0272-04) Soil	Sampled: 11/09/00 14:	45 Rec	eived: 11/10	/00 15:00					
	Dry Weight	85.9	1.00	%	1	0K13038	11/13/00	11/14/00	BSOPSPL003R07	
.: *	PEX-20-B-5 (B0K0272-05) Soil	Sampled: 11/09/00 14	:50 Rec	eived: 11/10	/00 15:00					
	Dry Weight	77.4	1.00	%	1	0K13038	11/13/00	11/14/00	BSOPSPL003R07	
	PEX-21-S-3 (B0K0272-06) Soil	Sampled: 11/09/00 14:	55 Reco	eived: 11/10	/00 15:00					
Kerry	Dry Weight	87.2	1.00	%	1	0K13038	11/13/00	11/14/00	BSOPSPL003R07	
ALC: SALAR	PEX-22-S-4 (B0K0272-07) Soil	Sampled: 11/09/00 15:	05 Reco	eived: 11/10	/00 15:00					
	Dry Weight	88.6	1.00	%	. 1	0K13038	11/13/00	11/14/00	BSOPSPL003R07	
E	PEX-23-B-6 (B0K0272-08) Soil	Sampled: 11/09/00 15:	10 Rec	eived: 11/10	/00 15:00					
	Dry Weight	80.0	1.00	%	1	0K13019	11/13/00	11/13/00	BSOPSPL003R07	
	PEX-24-S-4 (B0K0272-09) Soil	Sampled: 11/09/00 15:	25 Rece	eived: 11/10/	/00 15:00					
	Dry Weight	83.8	1.00	%	1	0K13038	11/13/00	11/14/00	BSOPSPL003R07	
1									/	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/17/00 16:26

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

Analyte		Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0K11008: Pre	pared 11/11/00	Using	EPA 5030E	в (МеОН)	-						
Blank (0K11008-BLK1)											•
Gasoline Range Hydrocarbon	s	ND	5.00	mg/kg wet							
Benzene		. ND	0.0500	tr							
Toluene		ND	0.0500	"							
Ethylbenzene		ND	0.0500	n							
Xylenes (total)		ND	0.100	"							
Surrogate: 4-BFB (FID)		4.19		#	4.00		105	50-150			
Surrogate: 4-BFB (PID)		3.70		"	4.00		92.5	50-150			
LCS (0K11008-BS1)											
Gasoline Range Hydrocarbon	s	20.8	5.00	mg/kg wet	25.0		83.2	70-130			•
Surrogate: 4-BFB (FID)		4.12		"	4.00		103	50-150			
Duplicate (0K11008-DUP	P1)					Source: E	0K0272-	02			
Gasoline Range Hydrocarbon	s	10.5	5.00	mg/kg dry		11.3			7.34	50	
Surrogate: 4-BFB (FID)		4.13		n	5.03		82.1	50-150			
Matrix Spike (0K11008-N	AS1)					Source: B	0K0272-	08			
Benzene ·		0.452	0.0500	mg/kg dry	0.625	NĐ	72.3	60-140			
Toluene		0.453	0.0500	11	0.625	ND	71.0	60-140			
Ethylbenzene		0.492	0.0500	**	0.625	ND	78.7	60-140			
Xylenes (total)	•	1.52	0.100	n	1.88	ND	79.9	60-140			
Surrogate: 4-BFB (PID)		3.98		"	5.00		79.6	50-150			
Matrix Spike Dup (0K110	008-MSD1)					Source: B	0K0272-0)8			
Benzene		0.463	0.0500	mg/kg dry	0.625	ND	74.1	60-140	2.40	20	
Toluene		0.468	0.0500	n.	0.625	ND	73.4	60-140	3.26	20	
Ethylbenzene		0.495	0.0500	10	0.625	ND	79.2	60-140	0.608	20	
Xylenes (total)		1.53	0.100	11	1.88	ND	80.5	60-140	0.656	20	
Surrogate: 4-BFB (PID)	· · · · · · · · · · · · · · · · · · ·	4.21		"	5.00		84.2	50-150			

North Creek Analytical - Bothell

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 Spokane 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/17/00 16:26

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0K13016: Prepared 11/13/00	Using E	PA 5030E	в (МеОН)							
Blank (0K13016-BLK1)		1								
Gasoline Range Hydrocarbons	ND	5.00	mg/kg wet							-
Benzene	ND	0.0500	11							
Toluene	ND	0.0500	11							
Ethylbenzene	ND	0.0500	"							
Xylenes (total)	ND	0.100	**							
Surrogate: 4-BFB (FID)	2.95		"	4.00		73.8	50-150			
Surrogate: 4-BFB (PID)	3,29		"	4.00		82.2	50-150			
LCS (0K13016-BS1)										
Gasoline Range Hydrocarbons	26.4	5.00	mg/kg wet	25.0		106	70-130			
Surrogate: 4-BFB (FID)	3.63		"	4.00		90.8	50-150			-
Duplicate (0K13016-DUP1)					Source: B	0K0256-0	32			
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry		ND			47.7	50	
Surrogate: 4-BFB (FID)	3,50		"	4.11		85.2	50-150			
Duplicate (0K13016-DUP2)					Source: B	0K0256-0)3			
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry		ND			15.4	50	
Surrogate: 4-BFB (FID)	3.52		"	4.67		75.4	50-150			
Matrix Spike (0K13016-MS1)				i	Source: B	0K0256-0)1			
Benzene	0.493	0.0500	mg/kg dry	0.571	ND	83.9	60-140		:	
Toluene	0.521	0.0500	".	0.571	0.0673	79.5	60-140			
Ethylbenzene	0.500	0.0500	**	0.571	ND	85.6	60-140			
Xylenes (total)	1.54	0.100	n	1.71	ND	86.9	60-140			
Surrogate: 4-BFB (PID)	3.78		"	4.57		82.7	50-150			
Matrix Spike Dup (0K13016-MSD1)				:	Source: B	0 K 0256-0	1			
Benzene	0.508	0.0500	mg/kg dry	0.571	ND	86.5	60-140	3.00	20	
ຼ Toluene	0.531	0.0500	"	0.571	0.0673	81.2	60-140	1.90	20	
Ethylbenzene	0.509	0.0500	tt .	0.571	ND	87.2	60-140	1.78	20	
Xylenes (total)	1.57	0.100	TP .	1.71	ND	88.6	60-140	1.93	20	
Surrogate: 4-BFB (PID)	3.85		"	4.57		84.2	50-150			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 9 of 13

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

425.420.9200 fax 425.420.9210

423.420.3200 tax 423.420.3210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9290 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 Portland

541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave

Project Number: not provided

Reported:

Seattle WA, 98121

Project Manager: David Raubvogel

11/17/00 16:26

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) - Quality Control North Creek Analytical - Bothell

			Reporting	•	Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0K12011:	Prepared 11/12/00	Using E	PA 3550H	3:							
Blank (0K12011-Bl	LK1)										
Diesel Range Hydroca	rbons	ND	5.00	mg/kg wet							
Lube Oil Range Hydro	carbons	ND	12.5	ŧŧ							
Surrogate: 2-FBP		7.19		#	10.7		67.2	50-150			
LCS (0K12011-BS))										
Diesel Range Hydroca	rbons	51.1	5.00	mg/kg wet	66.7		76.6	60-140			
Surrogate: 2-FBP		8.01		"	10.7		74.9	50-150			
Duplicate (0K1201)	1-DUP1)					Source: I	30K0272-	02			
Diesel Range Hydroca	rbons	20.3	5,00	mg/kg dry		13.1			43.1	50	•
Lube Oil Range Hydro	carbons	13.0	12.5	11		19.1			38.0	50	
Surrogate: 2-FBP		10.0		"	13.4		74.6	50-150			
Batch 0K14020:	Prepared 11/14/00	Using E	PA 3550E	3							
Blank (0K14020-Bl	LK1)										•
Diesel Range Hydrocas	bons	ND	10.0	mg/kg wet							
Lube Oil Range Hydro	carbons	ND	25.0	π							
Surrogate: 2-FBP		6.77		"	10.7		63.3	50-150			
LCS (0K14020-BS1)										
Diesel Range Hydroca	tons	55.8	10.0	mg/kg wet	66.7		83.7	60-140			
Surrogate: 2-FBP		7.82		"	10.7		73.1	50-150			
Duplicate (0K1402()-DUP 1)					Source: E	0K0340-	02			
Diesel Range Hydrocar	bons	5890	849	mg/kg dry		7260	•		20.8	50	
Lube Oil Range Hydro	carbons	4680	2120	11		5590			17.7	50	
Surrogate: 2-FBP		0		"	22.0			50-150			S-

North Creek Analytical - Bothell

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

%REC

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

Spike

500 Market Place Tower, 2025 1st Ave

Project Number: not provided

Reported:

Seattle WA, 98121

Project Manager: David Raubvogel

11/17/00 16:26

RPD

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) - Quality Control North Creek Analytical - Bothell

Reporting

Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0K14020:	Prepared 11/14/00	Using El	A 3550B				•.				
Duplicate (0K14026	,		Î.			Source: E	80K0337-	10			. :
Diesel Range Hydrocar	bons	61.7	10.0	mg/kg dry		69.2			11.5	50	
Lube Oil Range Hydro	carbons	44.1	25.0	17		45.4			2.91	50	,
Surrogate: 2-FBP		10.9		, n	14.2		76.8	50-150			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 11 of 13

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel Reported:

11/17/00 16:26

Physical Parameters by APHA/ASTM/EPA Methods - Quality Control North Creek Analytical - Bothell

Analyte		Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0K10040:	Prepared 11/10/00	Using D	ry Weight	·				: ,			
Blank (0K10040-Bl	LK1)									\.	
Dry Weight		100	1.00	%							
Batch 0K13019:	Prepared 11/13/00	Using D	ry Weight				*.				
Blank (0K13019-Bl	LK1)						·				
Dry Weight		99.8	1.00	%			- · · - · · · · · · · · · · · · · · · ·				
Batch 0K13038:	Prepared 11/13/00	Using D	ry Weight					<			
Blank (0K13038-BI	LK1)										
Dry Weight		100	1.00	%		i					i

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20322 Empire Avenue, Suite F-1, Bend, OR 97701-5711 **Portland**

541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave

Project Number: not provided

Reported:

Seattle WA, 98121

Project Manager: David Raubvogel

11/17/00 16:26

Notes and Definitions

The reporting limit for this analyte has been raised to account for interference from coeluting organic compounds present in the R-03

S-01 The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interferences.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 13 of 13

Data File : D:\HPCHEM\I\DATA\K13018.D

Acq On : 11-13-00 9:20:14

Sample : b0k0272-02

Misc

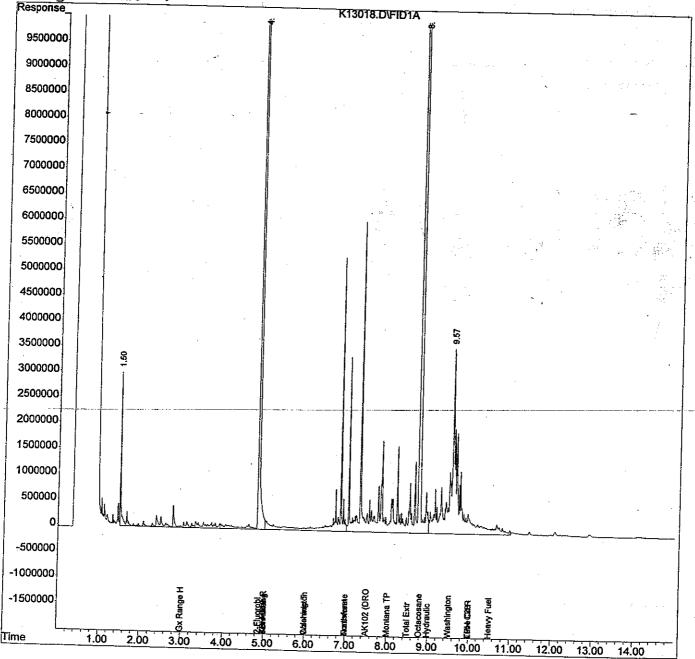
IntFile : SURR.E

Operator: BN Inst : GC# 9

Multiplr: 1.00

Sample Amount: 0.00

Quant Time: Nov 13 11:10 2000 Quant Results File: TPHD.RES


Quant Method : D:\HPCHEM\1\METHODS\TPHD.M (Chemstation Integrator)

: TPH-D Rear Method

Last Update : Mon Oct 23 14:21:52 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. Signal Phase : Signal Info

Data File : D:\HPCHEM\1\DATA.SEC\K13021.DACQ On : 11-13-00 10:04:57

Sample : b0k0272-08

Misc

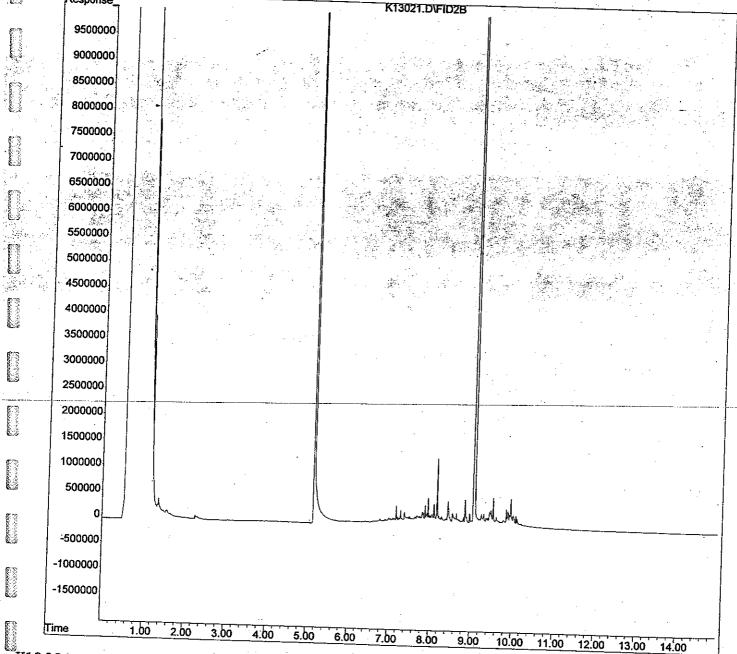
IntFile : SURR.E

Operator: BN

· · · · Inst · · · : GC#19 Multiplr: 1.00

Sample Amount: 0.00

Quant Time: Nov 13 10:20 2000 Quant Results File: TPHD2.RES


Quant Method : D:\HPCHEM\1\METHODS\TPHD2.M (Chemstation Integrator)

: TPH-D Rear Method

Last Update : Mon Oct 23 14:17:42 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. Signal Phase: Signal Info Response

Signal #1 : C:\HPCHEM\2\DATA\111400\K14004.D\FID1A.CH Vial: 4

Signal #2 : C:\HPCHEM\2\DATA\111400\K14004.D\FID2B.CH

: 14 Nov 2000 10:13 am Operator: lp Sample : b0k0272-01 r1 Inst : GC #4 Misc : 100 uL Multiplr: 1.00

Sample Amount: 0.00

IntFile Signal #1: SURR.E IntFile Signal #2: SURR2.E

Quant Time: Nov 14 10:37 2000 Quant Results File: TPHG1100.RES


Quant Method : C:\HPCHEM\2\METHODS\TPHG1100.M (Chemstation Integrator)

Title : TPH-G Method

Last Update : Thu Nov 09 12:22:22 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG1100.M

Volume Inj. Signal #1 Phase :

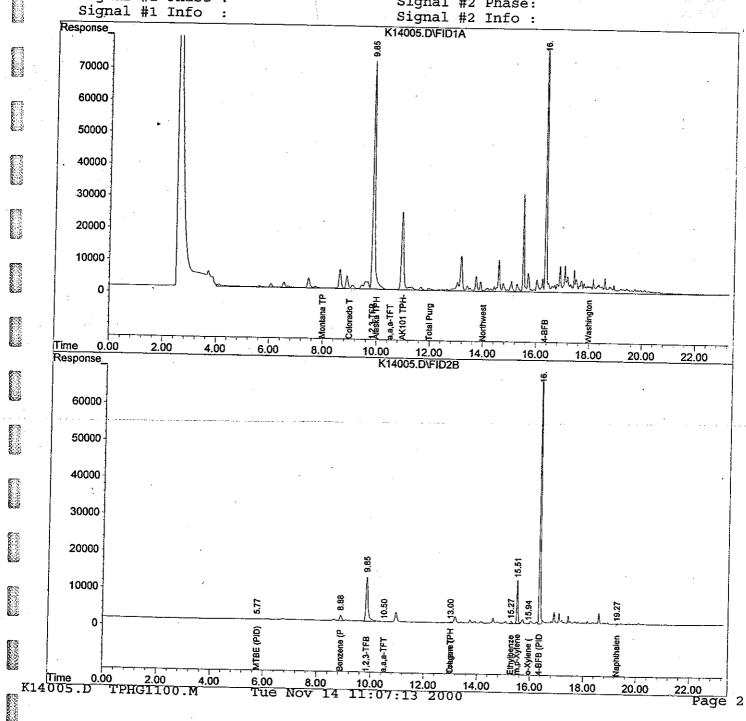
Signal #1 : C:\HPCHEM\2\DATA\111400\K14005.D\FID1A.CH Vial: 5

Signal #2 : C:\HPCHEM\2\DATA\111400\K14005.D\FID2B.CH

Acq On : 14 Nov 2000 10:43 am Operator: lp Sample : b0k0272-03 r1 Inst : GC #4 Misc-: 100 uL Multiplr: 1.00 Sample Amount: 0.00

IntFile Signal #1: SURR.E IntFile Signal #2: SURR2.E

Quant Time: Nov 14 11:07 2000 Quant Results File: TPHG1100.RES


Quant Method : C:\HPCHEM\2\METHODS\TPHG1100.M (Chemstation Integrator)

Title : TPH-G Method

Last Update : Thu Nov 09 12:22:22 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG1100.M

Volume Inj. Signal #1 Phase :

Signal #2 : C:\HPCHEM\2\DATA\111300\K13028.D\FID2B.CH

: 14 Nov 2000 1:41 Operator: lp Sample : b0K0272-04 Inst : GC #4 Misc

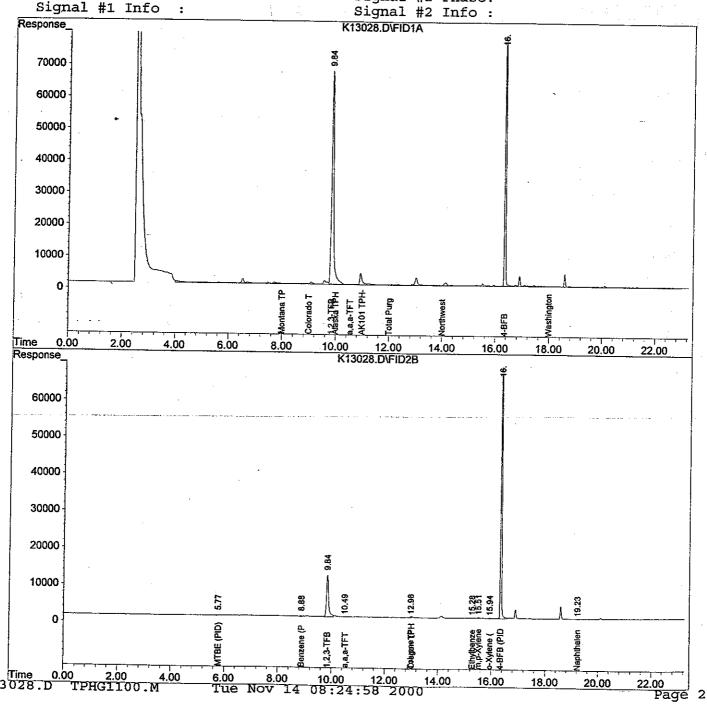
Multiplr: 1.00 Sample Amount: 0.00

IntFile Signal #1: SURR.E

: 100 uL

IntFile Signal #2: SURR2.E

Quant Time: Nov 14 8:24 2000 Quant Results File: TPHG1100.RES


Quant Method : C:\HPCHEM\2\METHODS\TPHG1100.M (Chemstation Integrator)

Title : TPH-G Method

Last Update : Thu Nov 09 12:22:22 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG1100.M

Volume Inj. Signal #1 Phase :

Quantitation Report Signal #1 : C:\HPCHEM\2\DATA\111300\K13029.D\FID1A.CH Vial: 29 Signal #2 : C:\HPCHEM\2\DATA\111300\K13029.D\FID2B.CH : 14 Nov 2000 2:11 Operator: lp Inst Sample : b0K0272-05 : GC #4 Misc : 100 uL Multiplr: 1.00 Sample Amount: 0.00 IntFile Signal #1: SURR.E IntFile Signal #2: SURR2.E Quant Time: Nov 14 8:25 2000 Quant Results File: TPHG1100.RES Quant Method : C:\HPCHEM\2\METHODS\TPHG1100.M (Chemstation Integrator) Title : TPH-G Method Last Update : Thu Nov 09 12:22:22 2000 Response via : Multiple Level Calibration DataAcq Meth : TPHG1100.M Volume Inj. Signal #1 Phase : Signal #2 Phase: Signal #1 Info Signal #2 Info : Response_ K13029.D\FID1A 70000 60000 50000 40000 30000 20000 10000 0 a,a,a-TFT AK101 TPH-Purg 흅 Time 0.00 2.00 6.00 4.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 Response K13029.D\FID2B 60000 50000 40000 30000 20000 10000 0 ITBE (PID) ,2,3-TFB

6.00

K13029.D

8.00

Tue Nov 14

16.00

18.00

20.00

22.00

Page 2

Signal #1: C:\HPCHEM\2\DATA\111300\K13030.D\FID1A.CH Vial: 30

Signal #2 : C:\HPCHEM\2\DATA\111300\K13030.D\FID2B.CH

: 14 Nov 2000 2:41

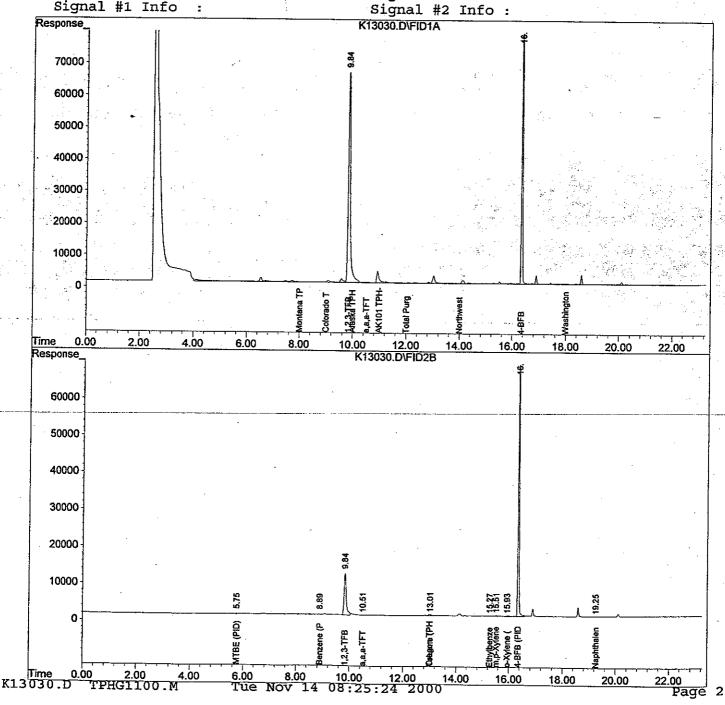
Sample : b0K0272-06 Misc : 100 uL

Operator: 1p Inst : GC #4 Multiplr: 1.00 Sample Amount: 0.00

IntFile Signal #1: SURR.E IntFile Signal #2: SURR2.E

Quant Time: Nov 14 8:25 2000 Quant Results File: TPHG1100.RES

Quant Method : C:\HPCHEM\2\METHODS\TPHG1100.M (Chemstation Integrator)


: TPH-G Method

Last Update : Thu Nov 09 12:22:22 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG1100.M

Volume Inj.

Signal #1 Phase : Signal #1 Info

Quantitation Report Signal #1 : C:\HPCHEM\2\DATA\111300\K13031.D\FID1A.CH Signal #2 : C:\HPCHEM\2\DATA\111300\K13031.D\FID2B.CH : 14 Nov 2000 3:11 Operator: lp Sample : b0K0272-07 Inst : GC #4 Misc : 100 uL Multiplr: 1.00 Sample Amount: 0.00 IntFile Signal #1: SURR.E IntFile Signal #2: SURR2.E Quant Time: Nov 14 8:25 2000 Quant Results File: TPHG1100.RES Quant Method : C:\HPCHEM\2\METHODS\TPHG1100.M (Chemstation Integrator) : TPH-G Method Last Update : Thu Nov 09 12:22:22 2000 Response via : Multiple Level Calibration DataAcq Meth : TPHG1100.M Volume Inj. Signal #1 Phase : Signal #2 Phase: Signal #1 Info Signal #2 Info : Response K13031.D\FID1A 70000 60000 50000 40000 30000 20000 10000 0 /83%3 ГРР .а.в. т ГТ К 101 ТРН-Time 0.00 2.00 4.00 6.00 8.00 14.00 12.00 16.00 20.00 Response_ K13031.D\FID2B 60000 50000 40000 30000 20000 10000 9 0.00 10.00 12.00 08:25:37 2000 16,00 18.00 20,00 22.00 K13031.D TPHG1100.M Tue Nov 14 Page 2

Signal #1 : C:\HPCHEM\2\DATA\111300\K13032.D\FID1A.CH . Vial: 32

Signal #2 : C:\HPCHEM\2\DATA\111300\K13032.D\FID2B.CH

: 14 Nov 2000 3:41

Operator: 1p Sample : b0K0272-09 Inst : GC #4 Misc : 100 uL

Multiplr: 1.00 Sample Amount: 0.00

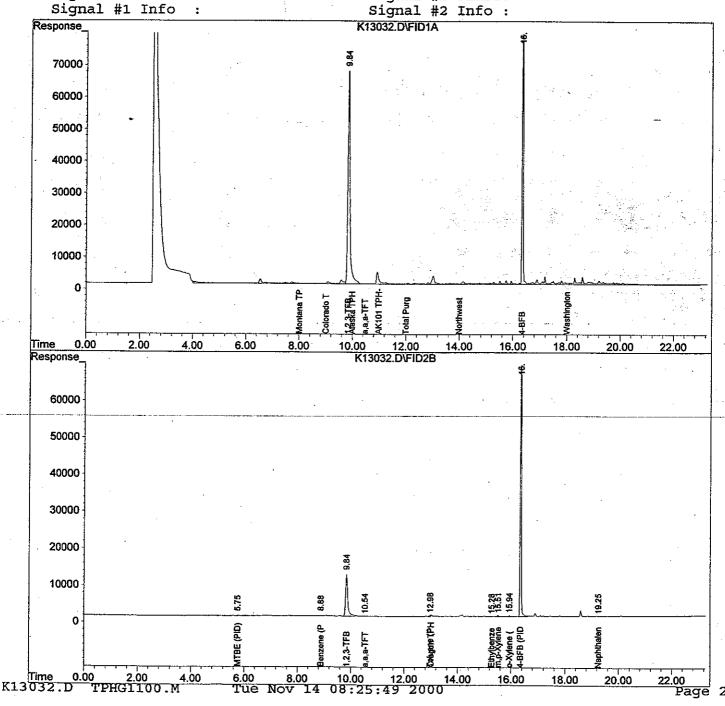
IntFile Signal #1: SURR.E

IntFile Signal #2: SURR2.E

Quant Time: Nov 14 8:25 2000 Quant Results File: TPHG1100.RES

Quant Method : C:\HPCHEM\2\METHODS\TPHG1100.M (Chemstation Integrator)

: TPH-G Method


Last Update : Thu Nov 09 12:22:22 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG1100.M

Volume Inj.

Signal #1 Phase :

Signal #2 Phase:

Data File : C:\HPCHEM\3\DATA.SEC\K15019.D Acq On

: 15 Nov 2000 1:47 pm

Sample : b0k0272-01 Misc

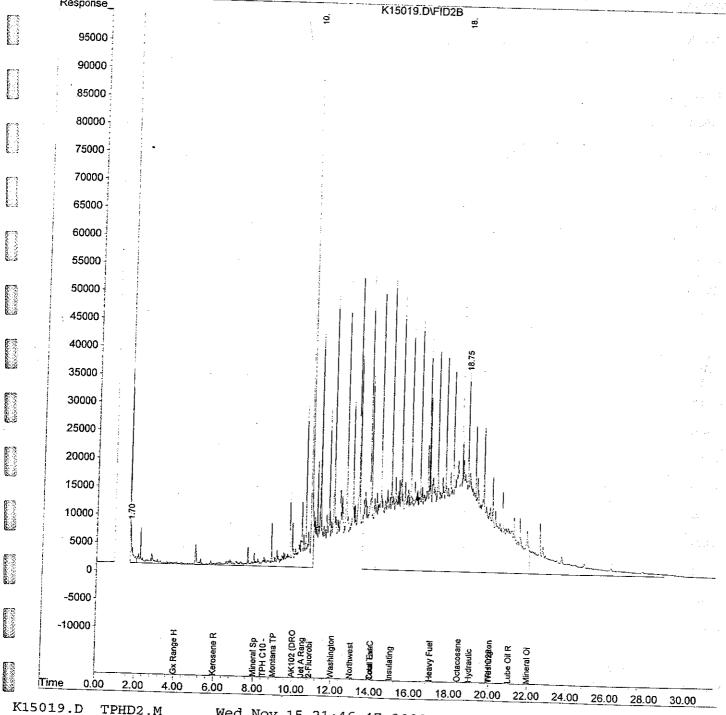
Operator: db Inst : GC #5 Multiplr: 1.00

Vial: 11

IntFile : SURR.E

Quant Time: Nov 15 14:20 2000 Quant Results File: TPHD2.RES

Quant Method : C:\HPCHEM\3\METHODS\TPHD2.M (Chemstation Integrator)


: TPH-D Rear Method

Last Update : Wed Sep 27 08:25:47 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. Signal Phase : Signal Info

Response_

Data File : C:\HPCHEM\3\DATA.SEC\K15023.D

Acq On : 15 Nov 2000

Sample : b0k0272-03

Misc : S

: SURR.E

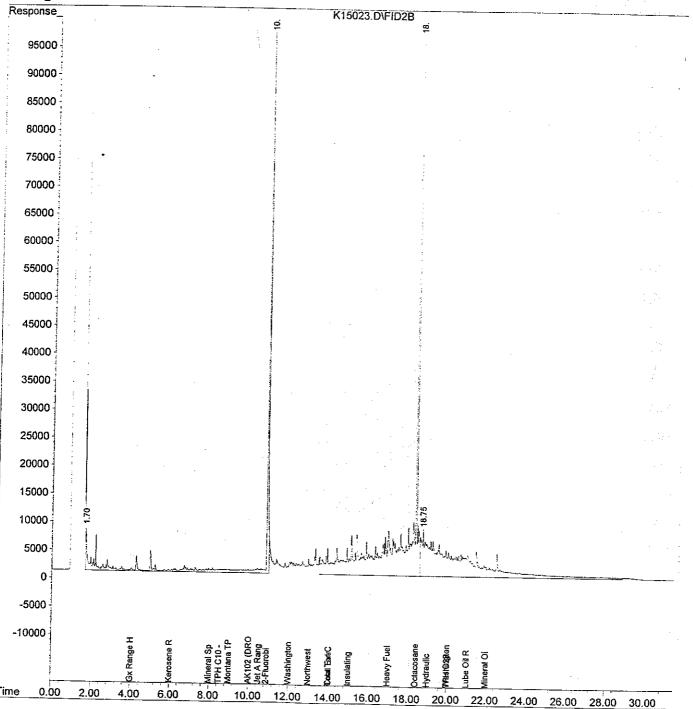
IntFile

3:10 pm

Vial: 12

Operator: db : GC #5 Inst

Multiplr: 1.00


Quant Time: Nov 15 15:42 2000 Quant Results File: TPHD2.RES

Quant Method : C:\HPCHEM\3\METHODS\TPHD2.M (Chemstation Integrator)

: TPH-D Rear Method

Last Update : Wed Sep 27 08:25:47 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Data File : C:\HPCHEM\3\DATA\K15024.D

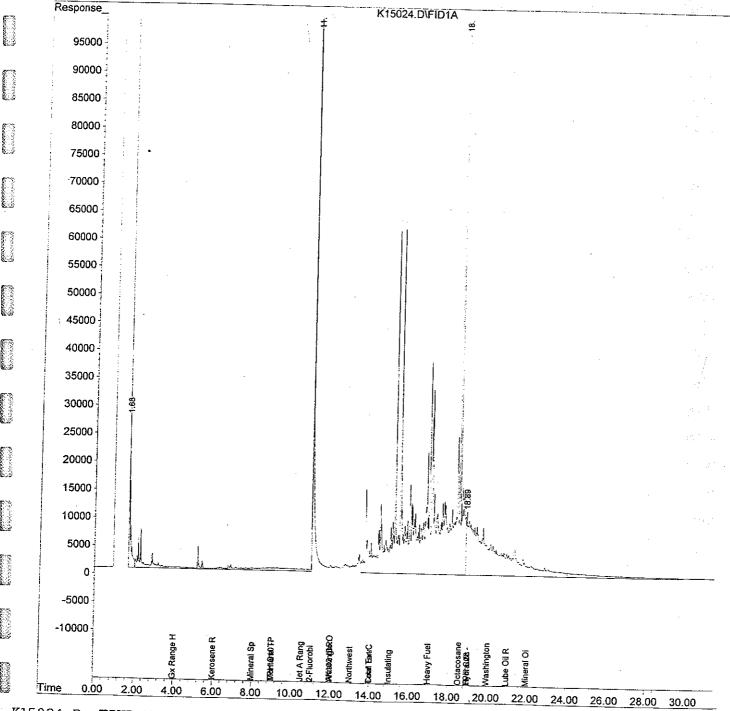
Acq On : 15 Nov 2000 3:10 pm

Sample : b0k0272-04 Misc : S

Operator: db : GC #5 Inst Multiplr: 1.00

Vial: 13

IntFile : SURR.E


Quant Time: Nov 15 15:42 2000 Quant Results File: TPHD.RES

Quant Method : C:\HPCHEM\3\METHODS\TPHD.M (Chemstation Integrator)

: TPH-D Rear Method

Last Update : Wed Sep 27 08:12:03 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Data File : C:\HPCHEM\3\DATA.SEC\K15025.D

: 15 Nov 2000

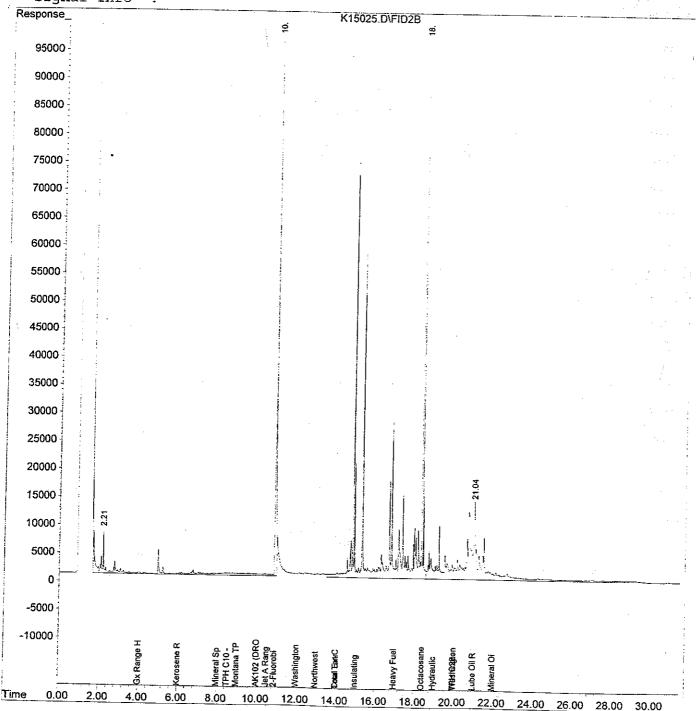
3:51 pm

Vial: 14 Operator: db

Sample : b0k0272-05

Inst : GC #5 Multiplr: 1.00

Misc IntFile : SURR E


Quant Time: Nov 15 16:23 2000 Quant Results File: TPHD2.RES

Quant Method : C:\HPCHEM\3\METHODS\TPHD2.M (Chemstation Integrator)

Title : TPH-D Rear Method

Last Update : Wed Sep 27 08:25:47 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Data File : C:\HPCHEM\3\DATA\K15026.D

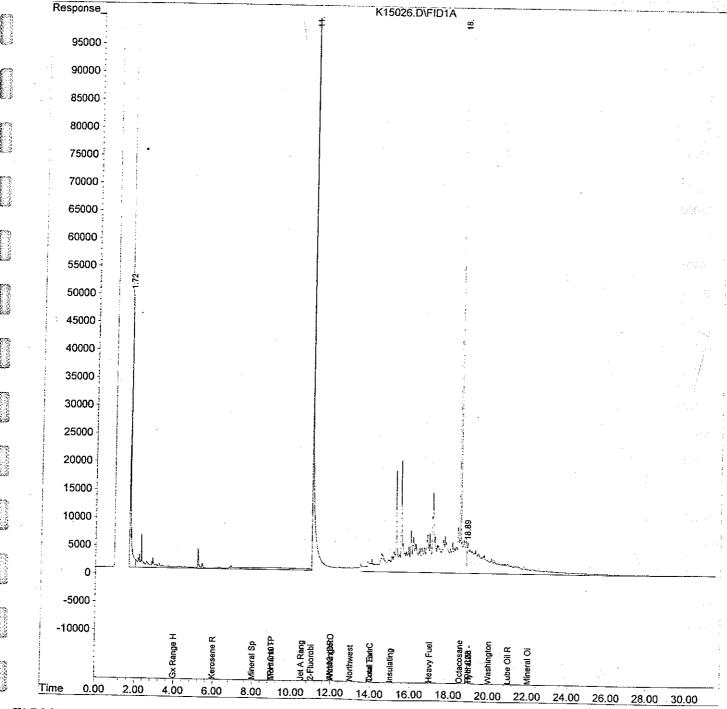
: 15 Nov 2000 3:51 pm

Vial: 15 Operator: db

Sample : b0k0272-06 Misc : \$

: GC #5 Inst Multiplr: 1.00

IntFile : SURR.E


Quant Time: Nov 15 16:23 2000 Quant Results File: TPHD.RES

Quant Method : C:\HPCHEM\3\METHODS\TPHD.M (Chemstation Integrator)

Title : TPH-D Rear Method

Last Update : Wed Sep 27 08:12:03 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Data File : C:\HPCHEM\3\DATA.SEC\K15027.D

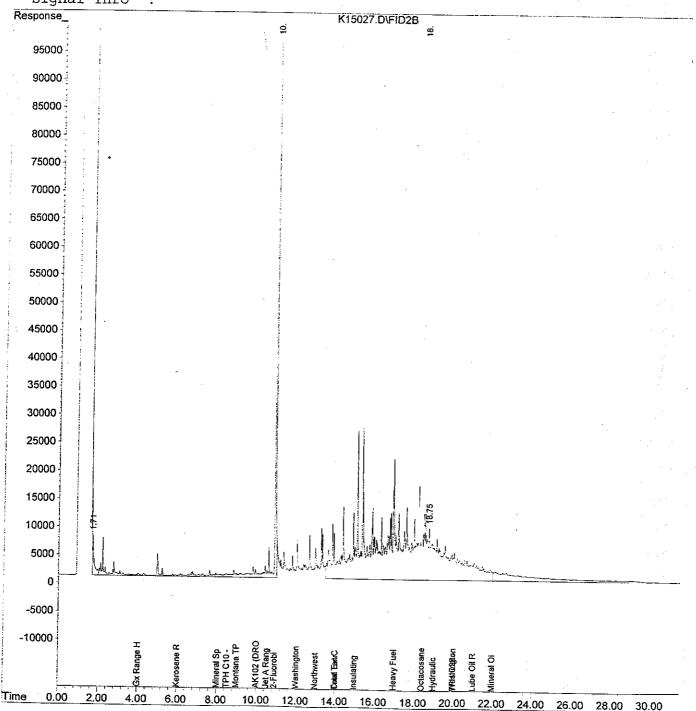
: 15 Nov 2000 4:31 pm Sample : b0k0272-07

Operator: db

Misc : S Inst : GC #5

IntFile : SURR.E Multiplr: 1.00

Vial: 16


Quant Time: Nov 15 17:04 2000 Quant Results File: TPHD2.RES

Quant Method : C:\HPCHEM\3\METHODS\TPHD2.M (Chemstation Integrator)

Title : TPH-D Rear Method

Last Update : Wed Sep 27 08:25:47 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

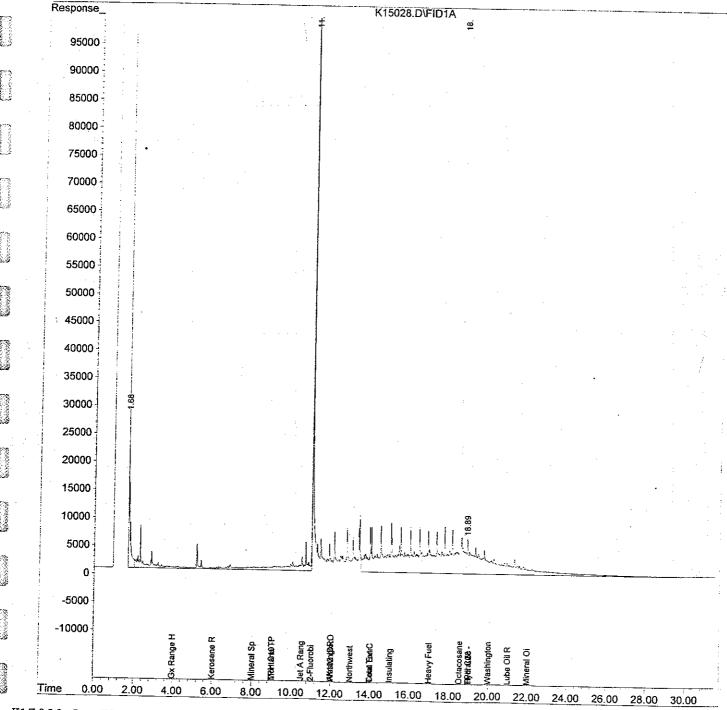
Data File : C:\HPCHEM\3\DATA\K15028.D

cq On : 15 Nov 2000 4:31 pm

Sample : b0k0272-09 Misc : S 4:31 pm Operator: db Inst : GC #5 Multiplr: 1.00

Vial: 17

IntFile : SURR.E


Quant Time: Nov 15 17:03 2000 Quant Results File: TPHD.RES

Quant Method : C:\HPCHEM\3\METHODS\TPHD.M (Chemstation Integrator)

Title : TPH-D Rear Method

Last Update : Wed Sep 27 08:12:03 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

18939 Tzour Avenue INTE, Suite 1017 Bothell, WA-98011-9508 East 11115 Montgomery, Suite B. Spokane, WA 98206-4776

(425) 420-9200 FAX 420-9210

(509) 924-9200 FAX 924-9290

CHAIN OF CUSTODY REPORT Work Order #; Chain Single Itand de 87701.51 CAN 138.9510 RAX CAN 15 CA	!	PRINT NAME:	TIME:	FIRM:	FRINT NAME:
CHAIN OF CUSTODY REPORT Work Order #: Chain Ch		RECEIVED BY:	DATE:		WILLNOUTSHED BAY
CHAIN OF CUSTODY REPORT CHAIN OF CUSTODY REPORT C40 C	ACA.	PRINT NAME: KUELA KA	TIME:	FIRM:	1
CHAIN OF CUSTODY REPORT CHAIN OF CUSTODY REPORT CHAIN OF CUSTODY REPORT CHAIN OF CUSTODY REPORT CHAIN OF CUSTODY REPORT CHAIN Shift Ft, Boad OR 9701.5711 CHAIN COLD TO CH	DATE: ///////	RECEIVED BY: //	DATE: 4-10-	Ĺ,	BELLINOLISHED BY: (CASE
CHAIN OF CUSTODY REPORT Work Order #: CHAIN OF CUSTODY REPORT Work Order #: CHAIN OF CUSTODY REPORT Work Order #: CHAIN OF CUSTODY REPORT Work Order #: CHAIN OF CUSTODY REPORT Work Order #: CHAIN OF CUSTODY REPORT CHAIN OF CUSTO				,	
CHAIN OF CUSTODY REPORT Chairman beament Chairman	2-6C UPON RECEIPT				
CHAIN OF CUSTODY REPORT C C C C C C C C C					e de la companya de l
CHAIN OF CUSTODY REPORT Work Order #: CHAIN OF CUSTODY REPORT Work Order #: CHAIN OF CUSTODY REPORT TURNACOUND REQUEST IN CALLABOUTE TO: TURNACOUND REQUEST IN CALLABOUTE TO: TURNACOUND REQUEST IN CALLABOUTE TO: TURNACOUND REQUEST IN CALLABOUTE REAL STORES TURNACOUND REQUEST IN CALLABOUTE REAL STORES TURNACOUND REQUEST IN CALLABOUTE REAL STORES TURNACOUND REQUEST IN CALLABOUTE REAL STORES TURNACOUND REQUEST IN CALLABOUTE REAL STORES TURNACOUND REQUEST IN CALLABOUTE REAL STORES TURNACOUND REQUEST IN CALLABOUTE REAL STORES TURNACOUND REQUEST IN CALLABOUTE REAL STORES TURNACOUND REQUEST IN CALLABOUTE REAL STORES TURNACOUND REQUEST IN CALLABOUTE REAL STORES TURNACOUND REQUEST IN CALLABOUTE REAL STORES TURNACOUND REQUEST IN CALLABOUTE REAL STORES TURNACOUND REQUEST IN CALLABOUTE REAL STORES TURNACOUND REQUEST IN CONTROL STORES					
CHAIN OF CUSTODY REPORT Work Order #: \(\)					
CHAIN OF CUSTODY REPORT Work Order #: Fig. 133.9310 FA Part					
CHAIN OF CUSTODY REPORT Work Order #: \(\)	1 StD. Tuff		X	1	7-8-4-8-H
CHAIN OF CUSTODY REPORT Work Order #: 500 0 FX 382-7588 RALE ST PLY STEE STEE SANCE LLLY PLY STEE SANCE SAMPLING DATETIME ### OF PLY STEE SANCE ### OF PL	1 24 Hz.		X	1	1/EX-23-B-6
CHAIN OF CUSTODY REPORT Work Order #:	5		X	1	スーパルシーユ
CHAIN OF CUSTODY REPORT Work Order #: 50 0 1 33-9310 FAX 382-7588 CHAIN OF CUSTODY REPORT Work Order #: 50 0 1 33-9310 FAX 382-7588 CHAIN OF CUSTODY REPORT Work Order #: 50 0 1 3 3 2 1 1			X	11-07-00 1455	FX-21-5-3
CHAIN OF CUSTODY REPORT Work Order #: 00 10 33.0310 FAX 382-7588 CHAIN OF CUSTODY REPORT Work Order #: 00 10 33.0310 FAX 382-7588 TURNAROUND REQUEST in Business De Commission Analyses 1. C.T. A.V. E. S.T.E. S.C.C. S. A. A.E.C.C. S. C.C. S. C.C. S.C.C. S.C.C. S.C.C. S.C.C. S.C.C. S.C.C. S.C.C. S.C.C. S.C.C. S.C.C. S.C.C. S.C.C. S.C.C. S.C.C. S.C.C. S.C.C. S.C.C. S.C.C. S.C.C.C. S	5 1 (550)		X	11-02-00 1450	PEX-20-B-5
CHAIN OF CUSTODY REPORT Work Order #: \$\(\frac{1}{2}\)\$\(\fra	5 1 / -00		╌		EX-17-5-3
CHAIN OF CUSTODY REPORT Work Order #: D) \(\lambda \rightarrow{\text{PONT}} \) Reference to the property of	<u>-</u>		-	1	18-5-3
CHAIN OF CUSTODY REPORT Work Order #: \$\(\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	5 1 24 HE OTHER -02			i	18-17-8-5
CHAIN OF CUSTODY REPORT Work Order #: CHAIN OF CUSTODY REPORT Work Order #: CHAIN OF CUSTODY REPORT Work Order #: CHAIN OF CUSTODY REPORT TURNAROUND REQUEST in Business De Organic & Inorganic Analyses ST. A-1/12 STE. 5-2-C ST. A-1/12 STE. 5-2-C ST. A-1/12 STE. 5-2-C FOR MAIN TALLS SAMPLING SAMPLING DATE/TIME TURNAROUND REQUEST in Business De Organic & Inorganic Analyses TURNAROUND REQUEST in Business De Organic & Inorganic Analyses STD. Petroleum Hydrocarbon Analyses FOR TURNAROUND REQUEST in Business De Organic & Inorganic Analyses STD. Petroleum Hydrocarbon Analyses Turnaround Requests less than standard more incure Rush Club SAMPLING TURNAROUND REQUEST in Business De Organic & Inorganic Analyses STD. Petroleum Hydrocarbon Analyses STD. Petroleum Hydrocarbon Analyses OTHER SEE COMMENTS AARTIX # OF ROUND TALLS TURNAROUND REQUEST in Business De Organic & Inorganic Analyses A STD. OTHER SEE COMMENTS OTHER SEE COMMENTS TURNAROUND REQUEST in Business De Organic & Inorganic &			X	1	1.184-16-5-3
CHAIN OF CUSTODY REPORT CHAIN OF CUSTODY REPORT Work Order #: 80 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	CONT. COMMENTS		194	DATE/TIME	IDENTIFICATION
CHAIN OF CUSTODY REPORT CHAIN OF CUSTODY REPORT CHAIN OF CUSTODY REPORT Work Order #: \(\) \	#OF RAVAGAG		7-H	SAMPLING	CLIENT SAMPLE
CHAIN OF CUSTODY REPORT Work Order #: 50 1 383-5	*Turnarrand Requests less than standard may incur Rush Charges.		1970 1970	MARARE	IPLED BY: だがつがく
TURNAROUND REPORT Work Order #: \(\) \(OTHER SEE COMMENTS		~W		PROJECT NUMBER:
Environmental Laboratory Retwork CHAIN OF CUSTODY REPORT Work Order #: 60 \ 201383-9310 FAX 382-7588 Work Order #: 60 \ 2013 FAX 382-7588 TURNAROUND REQUEST in Business Days Organic & Invoice To: SEATTCE; WIN 95 (2) FAX: 76: -124-312, PO. NUMBER: PORTION OF CUSTODY REPORT Work Order #: 60 \ 2013 FAX 382-7588 TURNAROUND REQUEST in Business Days Organic & Invoice To: SAME FOR Petroleum Hydrocarbon Analyses FOR Petroleum Hydrocarbon Analyses FOR Petroleum Hydrocarbon Analyses FOR Petroleum Hydrocarbon Analyses FOR PETROLEUM HYDROCARBON Analyses FOR PETROLEUM HYDROCARBON Analyses FOR PETROLEUM HYDROCARBON Analyses FOR PETROLEUM HYDROCARBON Analyses FOR PETROLEUM HYDROCARBON Analyses FOR PETROLEUM HYDROCARBON Analyses FOR PETROLEUM HYDROCARBON Analyses FOR PETROLEUM HYDROCARBON Analyses		STED ANALYSES		シーよ	SECT NAME: TALANS
CHAIN OF CUSTODY REPORT Work Order #: 50 \$\times \text{Organic & Involce TO:} TC: Describe Step in Particular Avenue, Suite F-1, Bend, OR 97701-5711 (541) 383-9310 FAX 382-7588 (William Avenue) For the involvemental score and the score and the involvemental score and the inv	4 3 2				974 - WS
CHAIN OF CUSTODY REPORT Work Order # OF TO: 13 653135 QAAR 81307, EL. TO: 13 653135 QAAR 81307, EL. TO: 15 653135 QAAR 81307, EL. TO: 15 653135 QAAR 81307, EL. TO: 15 653135 QAAR 81307, EL. TO: 15 653135 QAAR 81307, EL. TO: 15 653135 QAAR 81307, EL. TO: 15 653135 QAAR 81307, EL.	7 S 4 3 2 1		- 3	L,	DRESS: ZCZS 1.
Environmental Laboratory Network Work OF CUSTODY REPORT Work Order # 11. P- 5 INVOICE TO:	Organic & Inorganic Analyses	SAME		- []	REPORT TO: 12 Sect (1)
CHAIN OF CUSTODY REPORT Work Order #: 5(1) \(\frac{1}{2}\) 383-9310	TURNAROUND REQUEST in Business Days*		INVOICE TO:	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	CLIENT: U.
20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 (541) 383-9310	k Order #: 00 × 0242		N OF CUSTODY R		
	(541) 383-9310	20332 Empire Avenue, Suite F		ratory Network	Environmental Labr

7. 擂

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

425.420.9200 fax 425.420.9210

425.420.9200 fax 425.420.9210
East 11115 Montgomery, Suite B, Spokane, WA 99206-4776
509.924.9200 fax 509.924.9290
9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
503.906.9200 fax 503.906.9210
20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
541.383.9310 fax 541.382.7588

Portland

Dames and Moore-Seattle

500 Market Place Tower, 2025 1st Ave

Seattle WA, 98121

Project: Trans Mountain - Laurel Station

Project Number: not provided *** Project Manager: David Raubvogel

Reported:

...11/17/00 15:36

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
PEX-15-S-2	B0K0285-01	Soil	11/06/00 16:05	11/10/00 15:00

North Creek Analytical - Bothell

Kirk Gendron For Scott A. Woerman, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> North Creek Analytical, Inc. **Environmental Laboratory Network**

Page 1 of 8

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel Reported:

11/17/00 15:36

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note:
PEX-15-S-2 (B0K0285-01) Soil S	ampled: 11/06/00	16:05 Rec	eived: 11/10/	/00 15:00					
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K13029	11/13/00	11/16/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	**	Ħ	n	Ħ	17	rr .	
Toluene	ND	0.0500	н	10	u	R		ti	ı
Ethylbenzene	ND	0.0500	11		u	rr	π .	π	
Xylenes (total)	ND	0.100	*	- n	Ħ	н .	11	n	
Surrogate: 4-BFB (FID)	78.9 %	50-150			"	Ħ	0	n	
Surrogate: 4-BFB (PID)	86.8 %	50-150			"	"	"	"	

Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kirk Gendren For Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 2 of 8

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9290 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/17/00 15:36

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up)

North Creek Analytical - Bothell

	Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
-	PEX-15-S-2 (B0K0285-01) Soil	Sampled: 11/06/00	16:05 Rec	eived: 11/10	/00 15:00	i	. 1		,	
	Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons	73.9 33.3	10.0 25.0	mg/kg dry	1 "	0K14001	11/14/00	11/15/00	NWTPH-Dx	
	Surrogate: 2-FBP	93.5 %	50-150			"	"	n .	н	

North Creek Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kirk Gendron For Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 3 of 8

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 **Portland**

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported:

11/17/00 15:36

Physical Parameters by APHA/ASTM/EPA Methods North Creek Analytical - Bothell

Analyte	:	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PEX-15-S-2 (B0K0285-0	1) Soil Samp	led: 11/06/00	16:05 Rece	ived: 11/10	9/00 15:00					ı a
Dry Weight		85.3	1.00	%	1	0K14029	11/14/00	11/15/00	BSOPSPL003R07	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 **Portland**

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/17/00 15:36

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0K13029: Prepared 11/13/0	00 Using F	PA 5030E	В (МеОН)							
Blank (0K13029-BLK1)		;								
Gasoline Range Hydrocarbons	ND	5.00	mg/kg wet							
Benzene	ND	0.0500	н							
Toluene	ND	0.0500	н					1		
Ethylbenzene	ND	0.0500	**							
Xylenes (total)	ND	0.100	tt							
Surrogate: 4-BFB (FID)	3 .72		"	4.00		93.0	50-150			· · · · · · · · · · · · · · · · · · ·
Surrogate: 4-BFB (PID)	<i>3.47</i>		tr	4.00		86.8	50-150			
LCS (0K13029-BS1)										
Gasoline Range Hydrocarbons	22.3	5.00	mg/kg wet	25.0		89.2	70-130			•
Surrogate: 4-BFB (FID)	4.27		"	4.00		107	50-150		<u> </u>	
Duplicate (0K13029-DUP1)					Source: B	0K0151-0)4			
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry		ND			58.3	50	R-03
Surrogate: 4-BFB (FID)	3.83		<i>"</i>	4.33		88.5	50-150			
Duplicate (0K13029-DUP2)					Source: B	0K0151-0)9			
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry		ND			71.1	50	R-03
Surrogate: 4-BFB (FID)	3.86		"	4.38		88.1	50-150			
Matrix Spike (0K13029-MS1)					Source: B	0K0151-2	21			
Benzene	0.452	0.0500	mg/kg dry	0.543	ND	82.5	60-140			
Toluene	0.454	0.0500	st	0.543	ND	81.5	60-140			
Ethylbenzene	0.485	0.0500	Ħ	0.543	ND	88.4	60-140			
Xylenes (total)	1.48	0.100	19	1.63	ND	89.2	60-140			
Surrogate: 4-BFB (PID)	3.92		"	4.34		90.3	50-150			
Matrix Spike Dup (0K13029-MSD1)					Source: B	0K0151-2	:1			
Benzene	0.451	0.0500	mg/kg dry	0.543	ND	82.3	60-140	0.221	20	
Toluene	0.442	0.0500	"	0.543	ND	79.2	60-140	2.68	20	
Ethylbenzene	0.467	0.0500	ŧŧ	0.543	ND	85.1	60-140	3.78	20	
Xylenes (total)	1.41	0.100	n	1.63	ND	84.9	60-140	4.84	20	
Surrogate: 4-BFB (PID)	3.68	·	ı.	4.34		84.8	50-150			· •

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kirk Gendron For Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network**

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

Portland

509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave

Project Number: not provided

Reported:

Seattle WA, 98121

Project Manager: David Raubvogel

11/17/00 15:36

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) - Quality Control North Creek Analytical - Bothell

i			Reporting		Spike	Source		%REC		RPD	
Analyte	. ,	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0K14001:	Prepared 11/14/00	Using 1	EPA 3550B					·			
Blank (0K14001-BL	K1)	·	:								
Diesel Range Hydrocarl	oons	ND	10.0	mg/kg wet							1
Lube Oil Range Hydroc	arbons	ND	25.0	10							·
Surrogate: 2-FBP		9.29		"	10.7		86.8	50-150			
LCS (0K14001-BS1)	1										
Diesel Range Hydrocart	ons	67.8	10.0	mg/kg wet	66.7		102	60-140			
Surrogate: 2-FBP		10.8	,	#	10.7		101	50-150			
Duplicate (0K14001-	-DUP1)					Source: I	30K0256-	10			
Diesel Range Hydrocart	oons	ND	10.0	mg/kg dry		13.5			41.9	50	
Lube Oil Range Hydroc	arbons	ND	25.0	**		35.8			55.3	50	Q-0:
Surrogate: 2-FBP		9.23		"	11.1		83.2	50-150			
Duplicate (0K14001-	-DUP2)					Source: I	30K0256-	11			
Diesel Range Hydrocart	опѕ	23.0	10.0	mg/kg dry		14.4		•	46.0	50	
Lube Oil Range Hydroc	arbons	55.1	25.0	19		45.4			19.3	50	
Surrogate: 2-FBP		11.6		"	11.5		101	50-150			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

or Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 6 of 8

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200
 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200
 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel Reported:

11/17/00 15:36

Physical Parameters by APHA/ASTM/EPA Methods - Quality Control North Creek Analytical - Bothell

Analyte	í	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Notes	1
	Prepared 11/14/00	Using D					70100	Banko			110003	Ţ
Blank (0K14029-B)	LK1)		:				· · · · · · · · · · · · · · · · · · ·			A		_
Dry Weight		100	1.00	%					:			-

North Creek Analytical

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kirk Gendron For Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 7 of 8

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave

Project Number: not provided

Reported:

Seattle WA, 98121

Project Manager: David Raubvogel

11/17/00 15:36

Notes and Definitions

Q-05 Analyses are not controlled on RPD values from sample concentrations less than 10 times the reporting limit.

The reporting limit for this analyte has been raised to account for interference from coefuting organic compounds present in the R-03

sample.

DET Analyte DETECTED

Analyte NOT DETECTED at or above the reporting limit ND

NR Not Reported

Sample results reported on a dry weight basis dry

RPD Relative Percent Difference

North Creek Analytical - Both

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kirk Gendron For Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 8 of 8

Quantitation Report Signal #1 : D:\HPCHEM\3\DATA\111600\K16013.D\FID1A.CH Signal #2 : D:\HPCHEM\3\DATA\111600\K16013.D\FID2B.CH : 16 Nov 2000 2:21 pm Operator: GAP Sample : b0k0285-01 Inst : GC #6 Misc : 100 uL 0k13029 Multiplr: 1.00 Sample Amount: 0.00 IntFile Signal #1: SURR.E IntFile Signal #2: SURR2.E Quant Time: Nov 16 14:45 2000 Quant Results File: TPHG0800.RES Quant Method: D:\HPCHEM\3\METHODS\TPHG0800.M (Chemstation Integrator) : TPH-G Water Method Last Update : Tue Nov 14 14:57:50 2000 Response via : Multiple Level Calibration DataAcq Meth : TPHG0800.M Volume Inj. Signal #1 Phase : Signal #2 Phase: Signal #1 Info Signal #2 Info : Response K16013.D\FID1A 70000 60000 50000 40000 -30000 20000 10000 0 H_H AK101 TPH-1,2,3-TFB aska Time 0.00 2.00 4.00 6.00 8.00 12.00 14.00 Response 16.00 18.00 20.00 22.00 K16013.D\FID2B 140000 120000 100000 80000 60000 40000 20000 0 (<u>P</u> 9 6

4.00

TPHG0800.M

6.00

Thu Nov 16

10.00

14:45:09 2000

16.00

18.00

20.00

22.00

Page 2

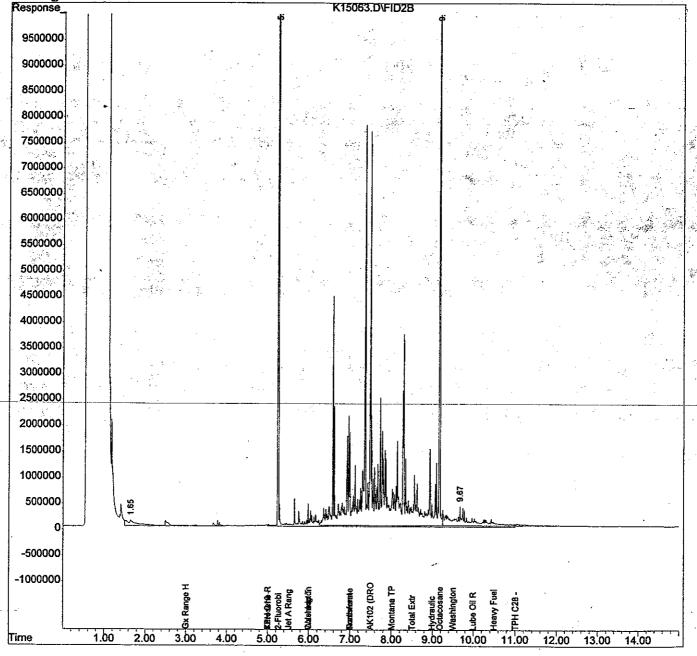
Data File : D:\HPCHEM\4\DATA.SEC\K15063.D Acq.On : 11-15-00\20:56:48 Sample : b0k0285-01 Misc : S RE1

IntFile : SURR.E

Operator: DB

Inst : GC# 7 Multiplr: 1.00

Sample Amount: 0.00


Quant Time: Nov 15 21:12 2000 Quant Results File: TPHD2.RES

Quant Method: D:\HPCHEM\4\METHODS\TPHD2.M (Chemstation Integrator)

Title : TPH-D Rear Method

Last Update : Wed Nov 15 06:58:16 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Part of the second

[1897]th Av]E., S[], Bot[] A 98(] 8 East 11115 Montgomery, Suite B, Spokane, WA 98206-4776 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

(509) 924-9200 FAX 924-9290 FAX 906-9210 FAX 382-7588 (541) 383-9310 (503) 906-9200

WWW.ncalabs.com CHAIN OF C	CHAIN OF CUSTODY REPORT	Work Order #:	1. #: BOKO285	uin P ^{ry}
CLIENT: (1/25	INVOICE TO:		TURNAROUND REQUEST in Business Days*	ST in Business Days*
REPORT TO: DANID CANBUD GEL ADDRESS: 7075 PIEST ANG STE 500	2年2日		Organic & Inorganic Analyses	anic Analyses 3 2 1 < 1
			Petroleum Hydroc	
PHONE: 206-723-0744 FAX:	P.O. NUMBER:		- - - -	2 1 <1
PROJECT NAME: TRANS MTN - LARET	REQUESTED ANALYSES		STD. Plet	Please Specify
PROJECT NUMBER: LAUNTER X X SAMPLED BY: L'. LUADONNAG X			*Turnenmed Remember best then samplered may inene Roch Charace	had may have Ruch Charmes
LING			MATRIX # OF	NCA WO
			CONT.	COMMENTS
1. Pex-15-8-2. 14/6/100 1605 XX		10	502	34R
2.				1
4,				
S				
9				16.
7.				
တ်				
6				
11.			To the second se	
12.				
13.				
14,	MEG.	SAMPLES WERE NOT UP	SAMPLES WEH.	MPLES WEEL CO.
15.		_		
IDBY: CONCEN		,	0 7) -	DATE: 11/10/02
PRINT NAME: CEVIN CUNDALARIAN: URS	TIME: 1205 PRINT NAME:	S. YARAMINGER	FIRM: VCA	TIME: K.D)
RELINQUISHED BY:	DATE: RECEIVED BY:			DATE
PRINT NAME;	TIME: PRINT NAME:		FIRM:	TIME:
ADDITIONAL REMARKS:			1.	TEMP.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

Portland

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Dames and Moore- Seattle 500 Market Place Tower, 2025 1st Ave

Seattle WA, 98121

Project: Trans Mountain - Laurel Station

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/20/00 13:15

ANALYTICAL REPORT FOR SAMPLES

2				-		
	Sample ID		Laboratory ID	Matrix	Date Sampled	Date Received
	PEX-28-S-3	1.4	B0K0337-01	Soil	11/13/00 08:10	11/13/00 19:10
8.3	PEX-27-S-3		B0K0337-02	Soil	11/13/00 08:15	11/13/00 19:10
	PEX-26-S-3		B0K0337-03	Soil	11/13/00 08:19	11/13/00 19:10
	PEX-25-S-3		B0K0337-04	Soil	11/13/00 08:24	11/13/00 19:10
	PEX-29-S-1.5	•	B0K0337-05	Soil	11/13/00 08:45	11/13/00 19:10
	PEX-30-S-2		B0K0337-06	Soil	11/13/00 08:49	11/13/00 19:10
	PEX-31-S-2	•	B0K0337-07	Soil	11/13/00 09:04	11/13/00 19:10
	PEX-32-S-1.5		B0K0337-08	Soil	11/13/00 09:07	11/13/00 19:10
	PEX-33-S-1.5		B0K0337-09	Soil	11/13/00 09:11	11/13/00 19:10
ಕ್ಷಾರಣ	PEX-34-S-1		B0K0337-10	Soil	11/13/00 09:55	11/13/00 19:10
	PEX-36-S-1		B0K0337-11	Soil	11/13/00 10:00	11/13/00 19:10
E	PEX-35-S-1	•	B0K0337-12	Soil	11/13/00 10:05	11/13/00 19:10
Constraint	PEX-37-S-3		B0K0337-13	Soil	11/13/00 10:34	11/13/00 19:10
	PEX-38-S-4		B0K0337-14	Soil	11/13/00 11:27	11/13/00 19:10
6 239	PEX-39-B-10	4 - 43	B0K0337-15	Soil	11/13/00 11:45	11/13/00 19:10
	PEX-46-B-11		B0K0337-16	Soil	11/13/00 13:09	11/13/00 19:10
	PEX-47-S-5	:	B0K0337-17	Soil	11/13/00 13:41	11/13/00 19:10
	PEX-48-S-4		B0K0337-18	Soil	11/13/00 14:32	11/13/00 19:10
	PEX-40-B-4		B0K0337-19	Soil	11/13/00 12:45	11/13/00 19:10
F	PEX-41-B-4	•	B0K0337-20	Soil	11/13/00 12:50	11/13/00 19:10
Control of the second	PEX-42-B-4		B0K0337-21	Soil	11/13/00 14:05	11/13/00 19:10
	PEX-43-B-4		B0K0337-22	Soil	11/13/00 14:10	11/13/00 19:10
	PEX-44-B-4		B0K0337-23	Soil	11/13/00 15:02	11/13/00 19:10
C.S	PEX-45-B-3		B0K0337-24	Soil	11/13/00 14:58	11/13/00 19:10
400						•

orth Creek Analytical Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kirk Gendron For Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network**

Page 1 of 24

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave

Project Number: not provided

Reported:

Seattle WA, 98121

Project Manager: David Raubvogel

11/20/00 13:15

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

Analyte .	Result	Reporting Limit	Units	Dilution	Batch.	Prepared	Analyzed	Method	Notes
PEX-28-S-3 (B0K0337-01) Soil	Sampled: 11/13/00	08:10 Rec	eived: 11/13/	00 19:10					
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K15009	11/15/00	11/16/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	11	**	77	41	Ħ	"	
Toluene	ND	0.0500	ø	U	Ħ	11	"	π	i
Ethylbenzene	ND	0.0500	tr .	n	11	"	11	n	
Xylenes (total)	ND	0.100	tr	It	"	11	Ħ	11	
Surrogate: 4-BFB (FID)	69.9 %	50-150			<i>(1)</i>	Ħ	"	н	
Surrogate: 4-BFB (PID)	72.4 %	50-150			"	#	"	"	
PEX-27-S-3 (B0K0337-02) Soil	Sampled: 11/13/00	08:15 Rec	eived: 11/13/	00 19:10					
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K15009	11/15/00	11/16/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	Ħ	"	**	fi	H	rr	4
Toluene	ND	0.0500	11		н	11	11	n	
Ethylbenzene	ND	0.0500	11	"	11	"		11	
Xylenes (total)	ND	0.100	*	ti	11	**	n	41	
Surrogate: 4-BFB (FID)	69.7.%	50-150			"	"	n	"	,
Surrogate: 4-BFB (PID)	73.3 %	50-150			n	"	n	"	
PEX-26-S-3 (B0K0337-03) Soil	Sampled: 11/13/00	08:19 Rece	eived: 11/13/	00 19:10				•	
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K15009	11/15/00	11/16/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	n	11	W.	H .	ŧŧ	17	
Toluene	ND	0.0500	H	**	n	11	11	н .	
Ethylbenzene	ND	0.0500	. 4		fr	11	11	n	
Xylenes (total)	ND	0.100	. "	**	N	v	17	11	
Surrogate: 4-BFB (FID)	70.6 %	50-150			"	n	. 11	"	
Surrogate: 4-BFB (PID)	7 3 .9 %	50-150			"	"	"	n	

North Creek nalytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kirk Gendron For Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 2 of 24

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/20/00 13:15

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

8225			Reporting							1
	Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
-	PEX-25-S-3 (B0K0337-04) Soil	Sampled: 11/13/00	0 08:24 Rec	eived: 11/13	/00 19:10				-	
3	Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K15009	11/15/00	11/16/00	NWTPH-Gx/8021B	
	Benzene	ND	0.0500		**	**		ħ	н	
	Toluene	ND	0.0500	rr	н		er .	11	11	1
<i>(</i>	Ethylbenzene	ND	0.0500	ħ		n	Ħ	n	**	21.24
	Xylenes (total)	ND	0.100	11	n	н	11	Ħ	n	
ec.s	Surrogate: 4-BFB (FID)	79.5 %	50-150			,,	"	"	<i>u</i>	
er Program	Surrogate: 4-BFB (PID)	82.9 %	50-150			. "	"	"	11	
0.000	PEX-29-S-1.5 (B0K0337-05) Soil	Sampled: 11/13/	00 08:45 R	eceived: 11/1	3/00 19:10) .:				
ن <i>ن</i>	Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K15009	11/15/00	11/16/00	NWTPH-Gx/8021B	-
6 73	Benzene	ND	0.0500	ų	n	16	w	fi	11	
Received A	Toluene	ND	0.0500	n	"		n	10	m	
ంత	Ethylbenzene	ND	0.0500	11	ır	11	11	ŧŧ	n .	
	Xylenes (total)	ND	0.100	u	**	11 .	W.	Ħ	11	
200	Surrogate: 4-BFB (FID)	66.5 %	50-150			"	"	,,	"	
3	Surrogate: 4-BFB (PID)	72.0 %	50-150			"	"	11	· #	
67 TO	PEX-30-S-2 (B0K0337-06) Soil	Sampled: 11/13/00	08:49 Rec	eived: 11/13/	00 19:10					
3	Gasoline Range Hydrocarbons Benzene	ND	5.00	mg/kg dry	1	0K15009	11/15/00	11/16/00	NWTPH-Gx/8021B	
	Benzene	ND	0.0500	#	11	11	II.	**		
	Toluene	ND	0.0500	н	"	tr	n	tr	Ħ	
	Ethylbenzene	ND	0.0500	ø	H	ti	u	lt	. 41	. :
3	Xylenes (total)	ND	0.100	tt	11	w	**	11	n ,	
	Surrogate: 4-BFB (FID)	76.4 %	50-150			n	н	tt	#	
News Co	Surrogate: 4-BFB (PID)	82.4 %	50-150			"	"	n	rr .	

k Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave

Project Number: not provided

Reported:

Seattle WA, 98121

Project Manager: David Raubvogel

11/20/00 13:15

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
PEX-31-S-2 (B0K0337-07) Soil	Sampled: 11/13/00	09:04 Rec	eived: 11/13/	/00 19:10					
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K15009	11/15/00	11/16/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	**	"	•			n	
Toluene	ND	0.0500		n	H	Ħ	n	tf	1
Ethylbenzene	ND	0.0500	"	n	Ħ	"	11	n ·	: 5
Xylenes (total)	ND	0.100	rr	11	q	"		n	
Surrogate: 4-BFB (FID)	66.8 %	50-150			"	"	"	и :	
Surrogate: 4-BFB (PID)	69.5 %	50-150			"	**	"	<i>"</i>	
PEX-32-S-1.5 (B0K0337-08) Soil	Sampled: 11/13/	00 09:07 Re	eceived: 11/1	3/00 19:10					
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K15009	11/15/00	11/16/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	ø	91	n	п	H	ir .	÷
Toluene	ND	0.0500	u	Ħ	п	11	Ħ	n	
Ethylbenzene	ND	0.0500	rr	н	U	11	11 -	11	
Xylenes (total)	ND	0.100	tt	11	19	u	ar .	11	
Surrogate: 4-BFB (FID)	63.2 %	50-150			"	"	"	"	·
Surrogate: 4-BFB (PID)	66.9 %	50-150			"	"	"	"	
PEX-33-S-1.5 (B0K0337-09) Soil	Sampled: 11/13/0	00 09:11 Re	ceived: 11/1	3/00 19:10					
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K15009	11/15/00	11/16/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	40	n	Ħ	11	Ħ	u	
Toluene	ND	0.0500	n	ii.	n	11	n	n	
Ethylbenzene	ND	0.0500	n	11	11	11	10	11	
(total)	ND	0.100	11	**	10	r	n	u /	
Surrogate: 4-BFB (FID)	65.0 %	50-150			· ·	rt .	"	<i>n</i>	
Surrogate: 4-BFB (PID)	69.9 %	50-150			"	#	11	"	

North Creek halytical - Bothell The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kirk Gendron For Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 4 of 24

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

425.420.9200 fax 425.420.9210

425.420.9210 Tax 425.420.9210
East 11115 Montgomery, Suite B, Spokane, WA 99206-4776
509.924.9200 fax 509.924.9290
9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
503.906.9200 fax 503.906.9210
20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/20/00 13:15

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B

North Creek Analytical - Bothell

	_		Reporting							
September 1	Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
V 00.5	PEX-34-S-1 (B0K0337-10) Soil	Sampled: 11/13/00	09:55 Rec	eived: 11/13	/00 19:10					
	Gasoline Range Hydrocarbons	11.5	5.00	mg/kg dry	1	0K14005	11/14/00	11/15/00	NWTPH-Gx/8021B	
	Benzene	0.125	0.0500	19	**	*	"	n	п	
	Toluene	0.332	0.0500	II.	11	Ħ	n	tę.	Ħ	j.
(C)	Ethylbenzene	0.0896	0.0500	п	n	. 11	**	Ħ	w	
	Xylenes (total)	0.605	0.100	10	H	n	u	11	n	
Togs.	Surrogate: 4-BFB (FID)	85.3 %	50-150			"	и .	11	"	
e Ti	Surrogate: 4-BFB (PID)	79.0 %	50-150			. " :	"	**	· "	
Section 2	PEX-36-S-1 (B0K0337-11) Soil	Sampled: 11/13/00	10:00 Rec	eived: 11/13/	00 19:10					
C 41.5	Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K15009	11/15/00	11/16/00	NWTPH-Gx/8021B	
5	Benzene	ND	0.0500	IF.	#	Ħ	Ħ	v	II	4
Service Control	Toluene	ND	0.0500	п	er 🕝	4		n	II.	
6.3	Ethylbenzene	ND	0.0500	10	н	ŧř	tt	19	*1	
	Xylenes (total)	ND	0.100	n	17	н	n	**	19	
T.	Surrogate: 4-BFB (FID)	68.7 %	50-150			"	"	"	"	
	Surrogate: 4-BFB (PID)	74.0 %	50-150			"	"	"	n	
en en	PEX-35-S-1 (B0K0337-12) Soil	Sampled: 11/13/00	10:05 Rec	eived: 11/13/	00 19:10					,
	Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	<u> </u>	0K15009	11/15/00	11/16/00	NWTPH-Gx/8021B	
تغشية	Benzene	ND	0.0500	н	"			. 11	**	
	Toluene	ND	0.0500	19	U	4	н	TI TI	Н	
	Ethylbenzene Xylenes (total)	ND	0.0500	п	17	Ħ	и	п	11	
Š	Xylenes (total)	ND	0.100	п	tr .	#	"	n	m j	
	Surrogate: 4-BFB (FID)	64.3 %	50-150			н	"	"	"	
Programme of the second	Surrogate: 4-BFB (PID)	69.8 %	50-150			"	"	"	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kirk Gendron For Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network**

Page 5 of 24

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

425.420.9200 fax 425.420.9210

Portland

425.420.9200 fax 425.420.9210
East 11115 Montgomery, Suite B, Spokane, WA 99206-4776
509.924.9200 fax 509.924.9290
9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
503.906.9200 fax 503.906.9210
20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave

Project Number: not provided

Reported:

Seattle WA, 98121

Project Manager: David Raubvogel

11/20/00 13:15

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PEX-37-S-3 (B0K0337-13) Soil	Sampled: 11/13/06	10:34 Rec	eived: 11/13	/00 19:10					
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K15009	11/15/00	11/16/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	Ħ	*	14	31		11	
Toluene	ND	0.0500	и	ŧ	u	U	n	ŚI	1
Ethylbenzene	ND	0.0500	n	Ħ		#	H	n	
Xylenes (total)	ND	0.100	11	**	n	#	"	Ħ	
Surrogate: 4-BFB (FID)	72.5 %	50-150			н	If	и .	. #	
Surrogate: 4-BFB (PID)	78.8 %	50-150			n	"	"	, "	
PEX-38-S-4 (B0K0337-14) Soil	Sampled: 11/13/00								
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K15009	11/15/00	11/17/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	TF	11	n	11	R	n	
Toluene	ND	0.0500	11	v	11	"	rr .	v	
Ethylbenzene	ND	0.0500	11	n	•	**	n	II.	
Xylenes (total)	ND	0.100	**	n	"	tt	11	n	
Surrogate: 4-BFB (FID)	72.7 %	50-150			"	"	"	"	
Surrogate: 4-BFB (PID)	78.9 %	50-150			"	"	"	. · · · #	
PEX-39-B-10 (B0K0337-15) Soil	Sampled: 11/13/0								
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K15009	11/15/00	11/17/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	rr ·	10	n	**	••	11	
Toluene	ND	0.0500	IT	11	41	"	п	ti	
Ethylbenzene	ND	0.0500	n	n	11	"	н	er e	
Xylenes (total)	ND	0.100	**	Ħ	"	Ħ	11	II	
Surrogate: 4-BFB (FID)	70.7 %	50-150			и	Ħ	**	. "	
Surrogate: 4-BFB (PID)	79.0 %	50-150			"	n	"	n .	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kirk Gerdron For Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network**

Page 6 of 24

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/20/00 13:15

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B

North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PEX-46-B-11 (B0K0337-16) S	oil Sampled: 11/13/	00 13:09 R	eceived: 11/1	3/00 19:10)				
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K15009	11/15/00	11/17/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	10	Ħ	Ħ	1 †	n	w	
Toluene	ND	0.0500	Ħ	π	11	п	11	**	1 .
Ethylbenzene	ND	0.0500	n	11	. "	10	"	Ħ	
Xylenes (total)	ND	0.100	11	W	n	n	H	w	
Surrogate: 4-BFB (FID)	73.7 %	50-150				"	"	"	
Surrogate: 4-BFB (PID)	78.3 %	50-150				"	u	. H	
PEX-47-S-5 (B0K0337-17) Soi	l Sampled: 11/13/00	13:41 Rec	eived: 11/13	/00 19:10		:			
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K15009	11/15/00	11/17/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	"	17	ti	п	Ħ	11	•
Toluene	ND	0.0500	"	rr	11	н	11	et	
Ethylbenzene	ND	0.0500	H	14	"	11	**	11	
Xylenes (total)	ND	0.100	19	"	H	tr	**	*	
Surrogate: 4-BFB (FID)	73.1 %	50-150			**	,,,	н	н	
Surrogate: 4-BFB (PID)	75.9 %	50-150			71	n	"	Ħ	
PEX-48-S-4 (B0K0337-18) Soil	Sampled: 11/13/00	14:32 Rec	eived: 11/13/	00 19:10					
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K15009	11/15/00	11/17/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	10		#	ří.	rr	11	
Toluene	ND	0.0500	n .	н	11	п	н	п	
Ethylbenzene	ND	0.0500	п	11	. 11	"	**	n	
Xylenes (total)	ND	0.100	11	**	н	**	tr	u j	
Surrogate: 4-BFB (FID)	71.0 %	50-150			"	ır	"	<i>u</i> ,	
Surrogate: 4-BFB (PID)	77.4 %	50-150			"	"	"	"	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kirk Gendren For Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 7 of 24

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

17720 North Cleek F. Kwy N, 3dite 400, Bullell, WA 38011-6. 425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 · 541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave

Project Number: not provided

Reported:

Seattle WA, 98121

Project Manager: David Raubvogel

11/20/00 13:15

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
PEX-40-B-4 (B0K0337-19) Soil	Sampled: 11/13/00) 12:45 Rec	eived: 11/13	/00.19:10					
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K14005	11/14/00	11/14/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	tt		H	**		tr	
Toluene	ND	0.0500	Ħ	n	11	н	ŧŧ	Ħ	,
Ethylbenzene	ND -	0.0500	. н	Ħ	•	Ħ	Ħ	(I	
Xylenes (total)	ND	0.100	11	**	u	"	11	a a	
Surrogate: 4-BFB (FID)	93.7 %	50-150	,		n	"	и	"	
Surrogate: 4-BFB (PID)	82.7 %	50-150			**	"	"	· "	
PEX-41-B-4 (B0K0337-20) Soil	Sampled: 11/13/00	12:50 Rec	eived: 11/13/	/00 19:10				•	
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K15009	11/15/00	11/17/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	11	11	n	u .	10	tt	7
Toluene	ND	0.0500	tr	v	n	"	e	п	
Ethylbenzene	ND	0.0500	N	**	n	Ħ	Ħ	11	
Xylenes (total)	ND	0.100	H	U	#	11	н	11	
Surrogate: 4-BFB (FID)	65.8 %	50-150			"	·n	п	"	
Surrogate: 4-BFB (PID)	71.9 %	50-150			"	#	"	"	
PEX-42-B-4 (B0K0337-21) Soil	Sampled: 11/13/00	14:05 Rec	eived: 11/13/	00 19:10					
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K15009	11/15/00	11/17/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	11	#	**	41	U	**	
Toluene	ND	0.0500	17	**	. #	ŧ	11	n	
Ethylbenzene	ND	0.0500	ti.	· e	Ħ	**	11	11	
Xylenes (total)	ND	0.100	. "	rr	II	Ħ	н	# :	
Surrogate: 4-BFB (FID)	76.8 %	50-150			n	Ħ	"	n	
Surrogate: 4-BFB (PID)	76.0 %	50-150			"	H	11		

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kirk Genden For Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network**

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210

 Spokane
 425.420.9200
 743x 425.420.9210
 743x 425.420.9210
 743x 425.420.9210
 743x 425.420.9210
 842.9210
 743x 425.420.9210
 843.9320.63200
 743x 425.420.9210
 843.9320
 743x 425.420.9210
 843.9320
 743x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843x 425.420.9210
 843

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/20/00 13:15

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

	Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	PEX-43-B-4 (B0K0337-22) Soil	Sampled: 11/13/0	0 14:10 Rec	eived: 11/13			.			710103
	Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K15009	11/15/00	11/17/00	NWTPH-Gx/8021B	
	Benzene	ND	0.0500	"	· ·	N N	11,15,00	11/1//00	# ITTI-OX/60/21D	·
ACT 17.3	Toluene	ND	0.0500	n	h	W.	19	u	Ħ	i
e n	Ethylbenzene	ND	0.0500	11	11	τt	11	Ħ	11	·
	Xylenes (total)	ND	0.100	**	17	n	ü		ŧŧ	. :
	Surrogate: 4-BFB (FID)	75.7 %	50-150			"	"	"		
erio	Surrogate: 4-BFB (PID)	74.4 %	50-150			"	"	"	<i>n</i> .	
Opening and	PEX-44-B-4 (B0K0337-23) Soil	Sampled: 11/13/00) 15:02 Rec	eived: 11/13	/00 19:10					
الا دنده	Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K16010	11/16/00	11/19/00	NWTPH-Gx/8021B	<u> </u>
(53)	Benzene	ND	0.0500	н	n	11	n	n	n n	
4	Toluene	ND	0.0500		19	n	**	n	11	
1	Ethylbenzene	ND	0.0500	rr .	"	11	ti	17	**	
	Xylenes (total)	ND	0.100	11	н	ø	n	tt .	и	
	Surrogate: 4-BFB (FID)	90.3 %	50-150			"	"	tt.	n .	· · · · · · · · · · · · · · · · · · ·
6.3	Surrogate: 4-BFB (PID)	85.7 %	50-150			#	"	"	u	
6539	PEX-45-B-3 (B0K0337-24) Soil	Sampled: 11/13/00	14:58 Rec	eived: 11/13	/00 19:10					. •
	Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K16010	11/16/00	11/19/00	NWTPH-Gx/8021B	
8.3	Benzene	ND	0.0500	"		n	v	п	"	
	Toluene	. ND	0.0500	n	**	ti	n	9	Ħ	**
	Ethylbenzene	ND	0.0500	11	ıı.	37	19	Ħ	н ′ :	200
	Xylenes (total)	ND	0.100	"	10	n	R	Ħ	w /	
	Surrogate: 4-BFB (FID)	84.0 %	50-150			#	n	"	rr .	
O.A.	Surrogate: 4-BFB (PID)	87.9 %	50-150			"	"	"	n en	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kirk Gendron For Scott A. Woerman, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 9 of 24

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

500 Market Place Tower, 2025 1st Ave

Seattle WA, 98121

Project: Trans Mountain - Laurel Station

Project Number: not provided

Project Manager: David Raubvogel

Reported: 11/20/00 13:15

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PEX-28-S-3 (B0K0337-01) Soil	Sampled: 11/13/00	08:10 Rec	eived: 11/13	/00 19:10		,	, .	-	
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	Ī	0K16033	11/16/00	11/17/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	"	11	11	**	•	Ħ	
Surrogate: 2-FBP	55.7 %	50-150			"	n	,,	et	
PEX-27-S-3 (B0K0337-02) Soil	Sampled: 11/13/00	08:15 Rec	eived: 11/13	/00 19:10					
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	0K16033	11/16/00	11/17/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	v	"	11	H	n	11	
Surrogate: 2-FBP	66.0 %	50-150			If	11	"	"	
PEX-26-S-3 (B0K0337-03) Soil	Sampled: 11/13/00	08:19 Reco	eived: 11/13/	00 19:10	*			-	
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	0K16033	11/16/00	11/17/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	H	II	II.		n	**	•

Surrogate: 2-FBP	61.1 % 50-150	0	"	
PEX-25-S-3 (B0K0337-04) Soil	Sampled: 11/13/00 08:24	Received: 11/13/00 19:10		

50-150

61 1 %

Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	0K16033	11/16/00	11/17/00	NWTPH-Dx
Lube Oil Range Hydrocarbons	ND	25.0	n	Ħ	"		19	п
Surrogate: 2-FBP	50.7 %	50-150			"	"	"	. #:- <u>;</u>

PEX-29-S-1 5 (ROK0337-05) Soil	Sampled: 11/13/00 08:45	Pacaivad: 11/13/00 10:10

7 227 27 3 (BORO337-03) 5011	Sampled: 11/15/								
Diesel Range Hydrocarbons	16.8	10.0	mg/kg dry	1	0K16033	11/16/00	11/17/00	NWTPH-Dx	D-06
Lube Oil Range Hydrocarbons	27.9	25.0	н	Ħ	11	Ħ	**	н	
Surrogate: 2-FBP	62.7 %	50-150			11	"	"	"	

TEA-30-5-2 (DUKU337-00) 50H	Sampled: 11/15/00	08:49 Rec	eivea: 11/13/	00 19:10					
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	ī	0K16033	11/16/00	11/17/00	NWTPH-Dx	•
Lube Oil Range Hydrocarbons	ND	25.0	a	"	н	tt	"	'11	
Surrogate: 2-FRP	68.2%	50-150			"	#	"		

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290 **Portland**

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave

Project Number: not provided

Reported:

Seattle WA, 98121

Project Manager: David Raubvogel

11/20/00 13:15

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

		·····	Reporting	****							
1	Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
	PEX-31-S-2 (B0K0337-07) Soil	Sampled: 11/13/00	09:04 Red	ceived: 11/13	/00 19:10		,				
	Diesel Range Hydrocarbons	10.7	10.0	mg/kg dry	1	0K16033	11/16/00	11/17/00	NWTPH-Dx	D-00	
	Lube Oil Range Hydrocarbons	ND	25.0	n	11	H	n	19	. #		
	Surrogate: 2-FBP	61.6%	50-150			. "	"	"	" .	1	
	PEX-32-S-1.5 (B0K0337-08) Soil Sampled: 11/13/00 09:07 Received: 11/13/00 19:10										
ش	Diesel Range Hydrocarbons	10.3	10.0	mg/kg dry	1	0K16033	11/16/00	11/17/00	NWTPH-Dx	D-06	
	Lube Oil Range Hydrocarbons	ND	25.0	rr	tr	. #	и	11	π		
	Surrogate: 2-FBP	66.9 %	50-150			"	. "	"	"		
	PEX-33-S-1.5 (B0K0337-09) Soi	Sampled: 11/13/6	00 09:11 R	eceived: 11/1	3/00 19:10	,					
e e	Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	0K16033	11/16/00	11/17/00	NWTPH-Dx	• ;	
	Lube Oil Range Hydrocarbons	ND	25.0	п	11	Ħ	H	11	п		
6.9	Surrogate: 2-FBP	73.2 %	50-150			" .	"		н		
7 3	PEX-34-S-1 (B0K0337-10) Soil Sampled: 11/13/00 09:55 Received: 11/13/00 19:10										
	Diesel Range Hydrocarbons	69.2	10.0	mg/kg dry	1	0K14020	11/14/00	11/15/00	NWTPH-Dx		
W.35	Lube Oil Range Hydrocarbons	45.4	25.0	**	17	н	, m	H	, 11		
Ø 78	Surrogate: 2-FBP	72.5 %	50-150			#	. "	· · ·	<i>n</i>	- :	
	PEX-36-S-1 (B0K0337-11) Soil	Sampled: 11/13/00	10:00 Rec	eived: 11/13/	00 19:10					.*	
	Diesel Range Hydrocarbons	20.6	10.0	mg/kg dry	1	0K16033	11/16/00	11/17/00	NWTPH-Dx	D-06	
	Lube Oil Range Hydrocarbons	ND	25.0	n	W	п	H	H	ч		
	Surrogate: 2-FBP	76.7 %	50-150			#	"	"	<i>n</i>		
40,40	PEX-35-S-1 (B0K0337-12) Soil	Sampled: 11/13/00	10:05 Rec	eived: 11/13/	00 19:10			٠			
986	Diesel Range Hydrocarbons	14.0	10.0	mg/kg dry	1	0K16033	11/16/00	11/17/00	NWTPH-Dx	D-06	
	Lube Oil Range Hydrocarbons	30.5	25.0	n	"	н	n	Ħ	11		
	Surrogate: 2-FBP	69.5 %	50-150			"	"	"	n .		
de s											

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kirk Gendron For Scott A. Woerman, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 11 of 24

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave

Project Number: not provided

Reported:

Seattle WA, 98121

Project Manager: David Raubvogel

11/20/00 13:15

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

	D 14	Reporting	TT-1-	Dil.d.	D-4-L	n	4	14.1	
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
PEX-37-S-3 (B0K0337-13) Soil	Sampled: 11/13/06	10:34 Rec	eived: 11/13	/00 19:10					
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	0K16033	11/16/00	11/17/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	Ħ	"	н	"	11	. "	
Surrogate: 2-FBP	72.9 %	50-150			н	#	u	н	i
PEX-38-S-4 (B0K0337-14) Soil	Sampled: 11/13/00	11:27 Rec	eived: 11/13	/00 19:10	-				
Diesel Range Hydrocarbons	20.7	10.0	mg/kg dry	1	0K16033	11/16/00	11/17/00	NWTPH-Dx	D-0
Lube Oil Range Hydrocarbons	41.1	25.0	n	11	n	. 11	11	H	-
Surrogate: 2-FBP	75.4 %	50-150			"	11	"	n	-
PEX-39-B-10 (B0K0337-15) Soil	Sampled: 11/13/0	00 11:45 Re	ceived: 11/1	3/00 19:10	-				
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	0K16033	11/16/00	11/17/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	ti	n	н	e	н	Ħ	
Surrogate: 2-FBP	69.6 %	50-150			"	"	н	"	• • •
PEX-46-B-11 (B0K0337-16) Soil	Sampled: 11/13/0	00 13:09 Re	ceived: 11/1	3/00 19:10					
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	. 1	0K16033	11/16/00	11/17/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	ri	H	п	. #	41	п	•
Surrogate: 2-FBP	72.0 %	50-150			#	et .	"	"	
PEX-47-S-5 (B0K0337-17) Soil	Sampled: 11/13/00	13:41 Rec	eived: 11/13/	00 19:10					
Diesel Range Hydrocarbons	16.7	10.0	mg/kg dry	1	0K16033	11/16/00	11/17/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	31.5	25.0	**	11	tr	н	n	. "	
Surrogate: 2-FBP	70.5 %	50-150			,#	Ħ	н	"	
PEX-48-S-4 (B0K0337-18) Soil	Sampled: 11/13/00	14:32 Rec	eived: 11/13/	00 19:10					
Diesel Range Hydrocarbons	57.8	10.0	mg/kg dry	1	0K17030	11/17/00	11/19/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	76.4	25.0	"	11	Ħ	"	н	rr r	
Surrogate: 2-FBP	74.4 %	50-150			"	н	н	н	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety,

Kirk Gendron For Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 12 of 24

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel Reported:

11/20/00 13:15

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

		Reporting				***************************************		· · · · · · · · · · · · · · · · · · ·			
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
PEX-40-B-4 (B0K0337-19) Soil	Sampled: 11/13/0	0 12:45 Rec	eived: 11/13	/00 19:10							
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	0K14020	11/14/00	11/15/00	NWTPH-Dx			
Lube Oil Range Hydrocarbons	ND	25.0	y	tr	**	11	**	n .			
Surrogate: 2-FBP	65.2 %	50-150			"	"	"	"			
PEX-41-B-4 (B0K0337-20) Soil	Sampled: 11/13/0	0 12:50 Rec	eived: 11/13	/00 19:10							
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	0K17030	11/17/00	11/19/00	NWTPH-Dx			
Lube Oil Range Hydrocarbons	ND	25.0	н	. "	**	tt	11	R			
Surrogate: 2-FBP	72.6 %	50-150			"	"	"	"	·		
PEX-42-B-4 (B0K0337-21) Soil	Sampled: 11/13/00 14:05 Received: 11/13/00 19:10										
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	0K17030	11/17/00	11/19/00	NWTPH-Dx	p.		
Lube Oil Range Hydrocarbons	ND	25.0	W.	Ħ	"	"	H _.	п			
Surrogate: 2-FBP	68.8 %	50-150			и .	"	#	#			
PEX-43-B-4 (B0K0337-22) Soil	2) Soil Sampled: 11/13/00 14:10 Received: 11/13/00 19:10										
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	0K17030	11/17/00	11/19/00	NWTPH-Dx			
Lube Oil Range Hydrocarbons	ND	25.0	n	17	н	11	**	ŧı			
Surrogate: 2-FBP	68.5 %	50-150			H	"	н	#	· .		
PEX-44-B-4 (B0K0337-23) Soil	Sampled: 11/13/00	15:02 Rec	eived: 11/13/	00 19:10							
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	0K17030	11/17/00	11/19/00	NWTPH-Dx			
Lube Oil Range Hydrocarbons	ND	25.0	tt .	19	"	**	11	"			
Surrogate: 2-FBP	67.3 %	50-150			11	"	"	"			
PEX-45-B-3 (B0K0337-24) Soil											
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	0K17030	11/17/00	11/19/00	NWTPH-Dx	-		
Lube Oil Range Hydrocarbons	ND	25.0	u	н	11	n	н	п			
Surrogate: 2-FBP	71.0 %	50-150			"	"	"	"			
€ TO											

Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kirk Gendron For Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 13 of 24

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

Portland 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/20/00 13:15

Physical Parameters by APHA/ASTM/EPA Methods

North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note:
PEX-28-S-3 (B0K0337-01) Soil	Sampled: 11/13/00 0	8:10 Recei	ived: 11/1	3/00 19:10					
Dry Weight	82.5	1.00	%	1	0K15047	11/15/00	11/16/00	BSOPSPL003R07	
PEX-27-S-3 (B0K0337-02) Soil	Sampled: 11/13/00 0	8:15 Recei	ived: 11/1	3/00 19:10					i
Dry Weight	80.2	1.00	%	1	0K15047	11/15/00	11/16/00	BSOPSPL003R07	
PEX-26-S-3 (B0K0337-03) Soil	Sampled: 11/13/90 0	8:19 Recei	ved: 11/1.	3/00 19:10					
Dry Weight	74.5	1.00	·%	1	0K15048	11/15/00	11/16/00	BSOPSPL003R07	
PEX-25-S-3 (B0K0337-04) Soil	Sampled: 11/13/00 0	8:24 Recei	ved: 11/1:	3/00 19:10					
Dry Weight	85.4	1.00	%	1	0K15048	11/15/00	11/16/00	BSOPSPL003R07	
PEX-29-S-1.5 (B0K0337-05) Soi	il Sampled: 11/13/00	08:45 Rec	eived: 11/	13/00 19:10	· ·			•	
Dry Weight	79.0	1.00	%	1	0K15048	11/15/00	11/16/00	BSOPSPL003R07	
PEX-30-S-2 (B0K0337-06) Soil	Sampled: 11/13/00 0	8:49 Recei	ved: 11/13	3/00 19:10					
Ory Weight	84.9	1.00	% .	1	0K15048	11/15/00	11/16/00	BSOPSPL003R07	
PEX-31-S-2 (B0K0337-07) Soil	Sampled: 11/13/00 0	9:04 Recei	ved: 11/13	3/00 19:10					
Dry Weight	67.4	1.00	%	1	0K15048	11/15/00	11/16/00	BSOPSPL003R07	
PEX-32-S-1.5 (B0K0337-08) Soi	i Sampled: 11/13/00	09:07 Rec	eived: 11/	13/00 19:10					
Ory Weight	67.9	1.00	%	1	0K15048	11/15/00	11/16/00	BSOPSPL003R07	
PEX-33-S-1.5 (B0K0337-09) Soi	l Sampled: 11/13/00	09:11 Rec	eived: 11/	13/00 19:10					
Dry Weight	69.6	1.00	%	1	0K15048	11/15/00	11/16/00	BSOPSPL003R07	

North Creak Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kirk Gendron For Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 14 of 24

 Seattle
 11720 North Creek Pkwy N, Suite 400, Botheli, WA 98011-8223

 425.420.9200
 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

 509.924.9200
 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/20/00 13:15

Physical Parameters by APHA/ASTM/EPA Methods North Creek Analytical - Bothell

<i>E</i>	3		Reporting									
Maria Maria	Analyte	- Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
	PEX-34-S-1 (B0K0337-10) Soil	Sampled: 11/13/00 0	9:55 Rece	ived: 11/13	3/00 19:10							
A STATE	Dry Weight	74.5	1.00	%	1	0K14029	11/14/00	11/15/00	BSOPSPL003R07	-		
ૄ	PEX-36-S-1 (B0K0337-11) Soil	Sampled: 11/13/00 1	0:00 Rece	ived: 11/13	3/00 19:10				*	ı		
	Dry Weight	73.1	1.00	%	1	0K15048	11/15/00	11/16/00	BSOPSPL003R07			
	PEX-35-S-1 (B0K0337-12) Soil	Sampled: 11/13/00 1	0:05 Rece	ived: 11/13	3/00 19:10							
1000	Dry Weight	70.7	1.00	%	1	0K15048	11/15/00	11/16/00	BSOPSPL003R07			
	PEX-37-S-3 (B0K0337-13) Soil	Sampled: 11/13/00 1	0:34 Recei	ived: 11/13	3/00 19:10	:				•		
	Dry Weight	85.9	1.00	%	1	0K15048	11/15/00	11/16/00	BSOPSPL003R07			
	PEX-38-S-4 (B0K0337-14) Soil	Sampled: 11/13/00 1	1:27 Recei	ved: 11/13	/00 19:10							
	Dry Weight	87.8	1.00	%	i	0K15048	11/15/00	11/16/00	BSOPSPL003R07			
	PEX-39-B-10 (B0K0337-15) Soil Sampled: 11/13/00 11:45 Received: 11/13/00 19:10											
e e e e e e e e e e e e e e e e e e e	Dry Weight	86.7	1.00	%	1	0K15048	11/15/00	11/16/00	BSOPSPL003R07			
1	PEX-46-B-11 (B0K0337-16) Soil Sampled: 11/13/00 13:09 Received: 11/13/00 19:10											
823	Dry Weight	86.9	1.00	%	1	0K15048	11/15/00	11/16/00	BSOPSPL003R07			
	PEX-47-S-5 (B0K0337-17) Soil	Sampled: 11/13/00 13	3:41 Recei	ved: 11/13	/00 19:10							
	Dry Weight	92.6	1.00	%	1	0K15048	11/15/00	11/16/00	BSOPSPL003R07			
	PEX-48-S-4 (B0K0337-18) Soil	Sampled: 11/13/00 14	:32 Recei	ved: 11/13	/00 19:10							
	Dry Weight	91.3	1.00	%	1	0K15048	11/15/00	11/16/00	BSOPSPL003R07	·		

Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kirk Gendron For Scott A. Woerman, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 15 of 24

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave

Project Number: not provided

Reported:

Seattle WA, 98121

Project Manager: David Raubvogel

11/20/00 13:15

Physical Parameters by APHA/ASTM/EPA Methods North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PEX-40-B-4 (B0K0337-19) Soil	Sampled: 11/13/00	12:45 Rece	eived: 11/1	3/00 19:10					
Dry Weight	81.4	1.00	%	1	0K14029	11/14/00	11/15/00	BSOPSPL003R07	
PEX-41-B-4 (B0K0337-20) Soil	Sampled: 11/13/00	12:50 Rece	eived: 11/1	3/00 19:10				:	1
Dry Weight	81.5	1.00	%	1	0K15048	11/15/00	11/16/00	BSOPSPL003R07	
PEX-42-B-4 (B0K0337-21) Soil	Sampled: 11/13/00	14:05 Rece	ived: 11/1	3/00 19:10					
Dry Weight	82.2	1.00	%	. 1	0K15048	11/15/00	11/16/00	BSOPSPL003R07	
PEX-43-B-4 (B0K0337-22) Soil	Sampled: 11/13/00	14:10 Rece	eived: 11/1	3/00 19:10	1				-
Dry Weight	85.2	1.00	%	1	0K15048	11/15/00	11/16/00	BSOPSPL003R07	
PEX-44-B-4 (B0K0337-23) Soil	Sampled: 11/13/00	15:02 Rece	ived: 11/1	3/00 19:10					• .
Dry Weight	82.8	1.00	%	. 1	0K16029	11/16/00	11/17/00	BSOPSPL003R07	
PEX-45-B-3 (B0K0337-24) Soil	Sampled: 11/13/00	14:58 Rece	ived: 11/1	3/00 19:10					
Dry Weight	81.0	1.00	%	1	0K16029	11/16/00	11/17/00	BSOPSPL003R07	

North Creek Analytical - Bothell

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/20/00 13:15

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

(Reporting		Spike	Source		%REC		RPD	****
(in the second	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
	Batch 0K14005: Prepared 11/14/00	Using l	EPA 5030E	3 (MeOH)						-,	
Part of the Part o	Blank (0K14005-BLK1)		i			******			 	<u></u>	
	Gasoline Range Hydrocarbons	ND	5.00	mg/kg wet							
	Benzene	ND	0.0500	u							
Const.	Toluene	ND	0.0500	tt							
	Ethylbenzene	ND	0.0500	it							
	Xylenes (total)	ND	0.100	11							
Control of the Contro	Surrogate: 4-BFB (FID)	4.18		" .	4.00		104	50-150			
	Surrogate: 4-BFB (PID)	3.61		"	4.00		90.2	50-150			
5 112	LCS (0K14005-BS1)										
3	Gasoline Range Hydrocarbons	21.7	5.00	mg/kg wet	25.0		86.8	70-130			
	Surrogate: 4-BFB (FID)	4.27		"	4.00		107	50-150			
6	Duplicate (0K14005-DUP1)					Source: B	0K0273-	03			
900	Gasoline Range Hydrocarbons	21.6	5.00	mg/kg dry		8.07			91.2	50	Q-05
to de	Surrogate: 4-BFB (FID)	4.87			5.21		93.5	50-150			
	Duplicate (0K14005-DUP2)					Source: B	0K0273-	16			
1	Gasoline Range Hydrocarbons	11.2	5.00	mg/kg dry		16.6			38.8	50	
	Surrogate: 4-BFB (FID)	5.99		"	6.44		93.0	50-150			
	Matrix Spike (0K14005-MS1)					Source: B					
	Benzene	0.488	0.0500	mg/kg dry	0.614	ND	78.9	60-140			·
	Toluene	0.485	0.0500	n	0.614	ND	77.1	60-140			
	Ethylbenzene	0.507	0.0500	11	0.614	ND	82.6	60-140			
0	Xylenes (total)	1.54	0.100	**	1.84	ND	83.0	60-140			
	Surrogate: 4-BFB (PID)	4.09		11	4.91		83.3	50-150			
BOWN S	Matrix Spike Dup (0K14005-MSD1)					Source: B	0K0273_1				
W. 28	Benzene	0.503	0.0500	mg/kg dry	0.614	ND	81.4	60-140	3.03	20	_
er er	Toluene	0.494	0.0500	"	0.614	ND	78.6	60-140	1.84	20	
1.5	Ethylbenzene	0.519	0.0500	ŧŧ	0.614	ND	84.5	60-140	2.34	20	
	Xylenes (total)	1.58	0.100	11	1.84	ND	85.2	60-140	2.56	20	
	Surrogate: 4-BFB (PID)	4.14		n	4.91	***	84.3	50-150			

Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kirk Gendon For Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 17 of 24

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Portland

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/20/00 13:15

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

	D14	Reporting	T.T *+ -	Spike	Source	A/DEG	%REC	DDD	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0K15009: Prepared 11/15/0	Using 1	EPA 5030B	В (МеОН)							
Blank (0K15009-BLK1)		1							-	
Gasoline Range Hydrocarbons	ND	5.00	mg/kg wet							
Benzene	ND	0.0500	ti							•
Toluene	ND	0.0500	11							
Ethylbenzene	ND	0.0500	Ü							
Kylenes (total)	ND	0.100	"							
Surrogate: 4-BFB (FID)	3.45		н	4.00		86.3	50-150			
Surrogate: 4-BFB (PID)	3.5 I		"	4.00		87.7	<i>50-150</i>			
LCS (0K15009-BS1)										
Gasoline Range Hydrocarbons	25.3	5.00	mg/kg wet	25.0		101	70-130			· ·
Surrogate: 4-BFB (FID)	3.87		"	4.00		96.7	50-150		1	
Duplicate (0K15009-DUP1)					Source: B	0K0337-0	18			
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry		ND			7.81	50	
urrogate: 4-BFB (FID)	3.83		"	5.89		65.0	50-150			
Ouplicate (0K15009-DUP2)	•				Source: B	0K0337-1	16			
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry		ND			5.60	50	
urrogate: 4-BFB (FID)	3.42		"	4.60		74.3	50-150		•	
Matrix Spike (0K15009-MS1)				:	Source: B	0K0337(11			
enzene	0.510	0.0500	mg/kg dry	0.606	ND	82.8	60-140			
oluene	0.530	0.0500	п	0.606	ND	84.4	60-140			
thylbenzene	0.514	0.0500	11	0.606	ND	83.0	60-140			
(ylenes (total)	1.57	0.100	**	1.82	ND	84.3	60-140			
urrogate: 4-BFB (PID)	3.72		"	4.85		76.7	50-150			
Matrix Spike Dup (0K15009-MSD1)					Source: B	0K0337-0)1			
enzene	0.509	0.0500	mg/kg dry	0.606	ND	82.6	60-140	0.196	20	
oluene	0.551	0.0500	"	0.606	ND	87.8	60-140	3.89	20	
thylbenzene	0.527	0.0500	n	0.606	ND	85.1	60-140	2.50	20	
(ylenes (total)	1.61	0.100	11	1.82	ND	86.5	60-140	2.52	20	
-										

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kirk Gendron For Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 18 of 24

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210

423-420-3200 Montgomery, Suite B, Spokane, WA 99206-4776 509-924-9200 fax 509-924-9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906-9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/20/00 13:15

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

20 24	3			Reporting	·	Spike	Source		%REC	-	RPD	
e de	Analyte	:	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
	Batch 0K16010:	Prepared 11/16/00	Using	EPA 50301	В (МеОН)						<u></u>	*****
	Blank (0K16010-B)	LK1)		}-					***************************************			
	Gasoline Range Hydro	carbons	ND	5.00	mg/kg wet							· · · · · · · · · · · · · · · · · · ·
	Benzene		ND	0.0500	. #							,
	Toluene		ND	0.0500	. 11							
	Ethylbenzene	•	ND	0.0500	Ħ							
٠.	Xylenes (total)		ND	0.100	11							
	Surrogate: 4-BFB (FIL))	4.11		"	4.00		103	50-150			······························
	Surrogate: 4-BFB (PIL))	3.68		"	4.00		92.0	50-150			
	Blank (0K16010-BI	LK2)										
5	Gasoline Range Hydro	carbons	ND	5.00	mg/kg wet							· · · · · · · · · · · · · · · · · · ·
	Benzene		ND	0.0500	11							
	Toluene		ND	0.0500	**							
F 3	Ethylbenzene		ND	0.0500	н							
	Xylenes (total)		ND	0.100	v							
	Surrogate: 4-BFB (FID		4.14		н	4.00		103	50-150			 -
	Surrogate: 4-BFB (PID LCS (0K16010-BS1))	4.01		"	4.00		100	50-150			
	LCS (0K16010-BS1)										
	Gasoline Range Hydrod	carbons	22.8	5.00	mg/kg wet	25.0		91.2	70-130			
	Surrogate: 4-BFB (FID)	4.23		#	4.00		106	50-150			
	Duplicate (0K16010	-DUPi)					Source: Be	0 K0372- 0)1			
	Gasoline Range Hydrod	carbons	23.6	5.00	mg/kg dry		74.2			103	50	Q-14
30000	Surrogate: 4-BFB (FID))	2.36		"	4.14		57.0	50-150			-
Water 1	Duplicate (0K16010					;	Source: B()K0337-2	3			
6 (A)	Gasoline Range Hydroc	arbons	ND	5.00	mg/kg dry		ND			88.8	50	Q-05
	Surrogate: 4-BFB (FID))	4.13		n	4.83		85.5	50-150			

orth Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kirk Gendron For Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 19 of 24

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel Reported:

11/20/00 13:15

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit -	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0K16010: Prepared 11/16/	00 Using E	PA 5030B	(МеОН)		*	; · · · · ·				
Matrix Spike (0K16010-MS1)		Ŷ,			Source: 1	B0K0372-	03			
Benzene	0.476	0.0500	mg/kg dry	0.521	ND	90.6	60-140			
Toluene	0.473	0.0500	n	0.521	ND	87.4	60-140			
Ethylbenzene	0.507	0.0500	tt	0.521	ND	96.3	60-140			*
Xylenes (total)	1.55	0.100	Ħ	1.56	ND	94.7	60-140			and the same
Surrogate: 4-BFB (PID)	4.00		Ħ	4.17		95.9	50-150			
Matrix Spike Dup (0K16010-MSD1)	·	•			Source: l	B0K0372-	03			
Benzene	0.494	0.0500	mg/kg dry	0.521	ND	94.1	60-140	3.71	20	
Toluene	0.479	0.0500	. н	0.521	ND	88.6	60-140	1.26	20	
Ethylbenzene	0.511	0.0500	н	0.521	ND	97.0	60-140	0.786	20	
Xylenes (total)	1.57	0.100	11	1.56	ND	96.0	60-140	1.28	20	2011
Surrogate: 4-BFB (PID)	3.88	<u> </u>	"	4.17		93.0	50-150			:

alytical - Bothell

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200
 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200
 fax 509.924.9290

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/20/00 13:15

Seattle WA, 98121

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) - Quality Control North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte	9	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0K14020:	Prepared 11/14/00	Using	EPA 3550E	:						****	•
Blank (0K14020-B)	LK1)		;								
Diesel Range Hydroca	rbons	ND	10.0	mg/kg wet							
Lube Oil Range Hydro	carbons	ND	25.0	"							•
Surrogate: 2-FBP		6.77		"	10.7		63.3	50-150			
LCS (0K14020-BS1	<u>.</u> .										
Diesel Range Hydrocar	rbons	55.8	10.0	mg/kg wet	66.7		83.7	60-140			
Surrogate: 2-FBP		7.82		"	10.7		73. I	50-150			
Duplicate (0K14020)-DUP1)					Source: B	0K0340-	02			
Diesel Range Hydrocar	bons	5890	849	mg/kg dry	· · · · · · · · · · · · · · · · · · ·	7260			20.8	50	<u></u>
Lube Oil Range Hydro	carbons	4680	2120	н		5590			17.7	50	
Surrogate: 2-FBP		0		"	22.0			50-150			S-0.
Duplicate (0K14020	-DUP2)					Source: B	0 K0337 -1	10			
Diesel Range Hydrocar	bons	61.7	10.0	mg/kg dry		69.2			11.5	50	· · · · · · · · · · · · · · · · · · ·
Lube Oil Range Hydro	carbons	44.1	25.0	п		45.4			2.91	50	
Surrogate: 2-FBP		10.9		"	14.2		76.8	50-150			
Batch 0K16033:	Prepared 11/16/00	Using 1	EPA 3550B	,							
Blank (0K16033-BL	JK1)						•				•
Diesel Range Hydrocar	bons	ND	10.0	mg/kg wet							
Lube Oil Range Hydrod	carbons	ND	25.0	11							
Surrogate: 2-FBP		6.48	· · · · · · · · · · · · · · · · · · ·	"	10.7		60.6	50-150			
LCS (0K16033-BS1))										
Diesel Range Hydrocard		60.8	10.0	mg/kg wet	66.7		91.2	60-140			
Surrogate: 2-FBP		7.36		"	10.7		68.8	50-150			.

halytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kirk Gondron For Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 21 of 24

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave

Project Number: not provided

Reported:

Seattle WA, 98121

Project Manager: David Raubvogel

11/20/00 13:15

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) - Quality Control North Creek Analytical - Bothell

···			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0K16033:	Prepared 11/16/00	Using	EPA 3550B	1			-				
Duplicate (0K16033	-DUP1)		:			Source: E	B0K0423-	06			
Diesel Range Hydrocar	bons	ND	10.0	mg/kg dry		ND			5.04	50	
Lube Oil Range Hydro	carbons	ND	25.0	11		ND			24.7	50	•
Surrogate: 2-FBP		7.91		"	11.7		67.6	50-150			
Duplicate (0K16033	-DUP2)					Source: B	0K0423-	09		•	
Diesel Range Hydrocar	bons	4210	210	mg/kg dry	1.0	5080			18.7	50	
Lube Oil Range Hydro	carbons	ND	525	11		ND			28.6	50	
Surrogate: 2-FBP		0		"	12.0			50-150			S-
Surrogate: Octacosane		11.4	•	"	12.0		95.0	50-150			
Batch 0K17030:	Prepared 11/17/00	Using 1	EPA 3550B								
Blank (0K17030-BL	K1)										
Diesel Range Hydrocar	bons	ND	10.0	mg/kg wet	•						
Lube Oil Range Hydrod	earbons	ND	25.0	tr .						;	
Surrogate: 2-FBP	- · · · · · · · ·	7.83		"	10.7		73.2	50-150			
LCS (0K17030-BS1))									į.	
Diesel Range Hydrocar	bons	56.5	10.0	mg/kg wet	66.7		84.7	60-140			
Surrogate: 2-FBP		7.83		"	10.7		73.2	50-150			
LCS Dup (0K17030	-BSD1)									i	
Diesel Range Hydrocar	bons	62.3	10.0	mg/kg wet	66.7		93.4	60-140	9.76	40	
Surrogate: 2-FBP		7.29		"	10.7		68.1	50-150			
Duplicate (0K17030	-DUP1)				;	Source: B	0K0337-2	24			
Diesel Range Hydrocart	oons	ND	10.0	mg/kg dry		ND				50	
Lube Oil Range Hydroc	arbons	ND	25.0	**		ND				50	
Surrogate: 2-FBP		8.52		"	13.1		65.0	50-150		· · · · · · · · · · · · · · · · · · ·	

North Creek A halytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kirk Gendion For Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 22 of 24

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel Reported:

11/20/00 13:15

Physical Parameters by APHA/ASTM/EPA Methods - Quality Control North Creek Analytical - Bothell

	Analyte	Contract of	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Batch 0K14029:	Prepared 11/14/00	Using D	ry Weight		·				1000		·
Service of the servic	Blank (0K14029-Bl	LKI)		:	-		 					
100 S	Dry Weight		100	1.00	%	astronomic			· · · · · · · · · · · · · · · · · · ·	an en mañ e a		, .
	Batch 0K15047:	Prepared 11/15/00	Using D	ry Weight	·				<u>e najaje na</u>	,		
	Blank (0K15047-Bl	LK1)							j. se t	44		
6 773	Dry Weight		99.8	1.00	%					1940 113	and the second	
	Batch 0K15048:	Prepared 11/15/00	Using D	ry Weight		Section 1				To provide a	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Blank (0K15048-BI	LK1)				*****						
	Dry Weight		99.8	1.00	%							
فانتأ	Batch 0K16029:	Prepared 11/16/00	Using D	ry Weight						·		
೧ ೦೪	Blank (0K16029-BI	.K1)			·		•					
	Blank (0K16029-BI Dry Weight		100	1.00	%					•		

nalytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kirk Gendron For Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 23 of 24

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave

Project Number: not provided

Reported:

Seattle WA, 98121

Project Manager: David Raubvogel

11/20/00 13:15

Notes and Definitions

D-06 The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Q-05 Analyses are not controlled on RPD values from sample concentrations less than 10 times the reporting limit.

Visual examination indicates the RPD and/or matrix spike recovery is outside the control limit due to a non-homogeneous sample Q-14

S-01 The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or

matrix interferences.

Due to interference from coeluting organic compounds with the primary surrogate, results of the secondary surrogate have been S-05

used to control the analysis.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

Sample results reported on a dry weight basis dry

RPD Relative Percent Difference

Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kirk Gendren For Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network**

Page 24 of 24

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

 425,420,9200
 fax 425,420,9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

 509,924,9200
 fax 509,924,9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 Portland

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore-Seattle 500 Market Place Tower, 2025 1st Ave

Seattle WA, 98121

Project: Trans Mountain - Laurel Station

Project Number: not provided

Project Manager: David Raubvogel

Reported: 11/21/00 14:14

ANALYTICAL REPORT FOR SAMPLES

	Sample ID		Laboratory ID	Matrix	Date Sampled	Date Received	_
	PEX-49-S-6		B0K0362-01	Soil	11/14/00 10:20	11/14/00 18:38	_
	PEX-50-S-1		B0K0362-02	Soil	11/14/00 13:30	11/14/00 18:38	
	PEX-51-S-2	4	B0K0362-03	Soil	11/14/00 13:33	11/14/00 18:38	
	PEX-52-S-2	\$ 1	B0K0362-04	Soil	11/14/00 13:35	11/14/00 18:38	
	PEX-53-S-1.5		B0K0362-05	Soil	11/14/00 13:39	11/14/00 18:38	
	PEX-54-B-8		B0K0362-06	Soil	11/14/00 13:45	11/14/00 18:38	
C	PEX-55-S-2		B0K0362-07	Soil	11/14/00 13:50	11/14/00 18:38	
	PEX-56-B-5		B0K0362-08	Soil	11/14/00 13:55	11/14/00 18:38	
	PEX-57-B-8	•	B0K0362-09	Soil	11/14/00 14:13	11/14/00 18:38	
6778	PEX-58-S-3		B0K0362-10	Soil	11/14/00 14:17	11/14/00 18:38	
	PEX-59-S-2		B0K0362-11	Soil	11/14/00 14:22	11/14/00 18:38	
Sin self	PEX-60-B-4		B0K0362-12	Soil	11/14/00 14:28	11/14/00 18:38	
	PEX-61-S-1.5		B0K0362-13	Soil	11/14/00 14:33	11/14/00 18:38	
ŁŹ	PEX-62-B-6		B0K0362-14	Soil	11/14/00 14:44	11/14/00 18:38	
	PEX-63-B-6		B0K0362-15	Soil	11/14/00 14:49	11/14/00 18:38	
	PEX-64-S-4		B0K0362-16	Soil	11/14/00 14:57	11/14/00 18:38	
	PEX-65-S-4		B0K0362-17	Soil	11/14/00 15:02	11/14/00 18:38	
	PEX-66-S-3.5		B0K0362-18	Soil	11/14/00 15:10	11/14/00 18:38	
	PEX-67-S-2		B0K0362-19	Soil	11/14/00 15:20	11/14/00 18:38	
F	PEX-68-B-2		B0K0362-20	Soil	11/14/00 15:46	11/14/00 18:38	
Sec. A.P.	PEX-69-B-2.5	•	B0K0362-21	Soil	11/14/00 15:50	11/14/00 18:38	
*	PEX-70-B-3		B0K0362-22	Soil	11/14/00 15:53	11/14/00 18:38	
	PEX-71-B-3		B0K0362-23	Soil	11/14/00 15:57	11/14/00 18:38	
62	PEX-72-B-1		B0K0362-24	Soil	11/14/00 16:12	11/14/00 18:38	
	PEX-73-B-1.5		B0K0362-25	Soil	11/14/00 16:20	11/14/00 18:38	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network**

Page 1 of 24

425.420.9200 fax 425.420.9210
East 11115 Montgomery, Suite B, Spokane, WA 99206-4776
509.924.9200 fax 509.924.9290
9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
503.906.9200 fax 503.906.9210 Portland

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave

Project Number: not provided

Reported:

Seattle WA, 98121

Project Manager: David Raubvogel

11/21/00 14:14

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PEX-49-S-6 (B0K0362-01) Soil	Sampled: 11/14/00	10:20 Rec	eived: 11/14/	00 18:38					
Gasoline Range Hydrocarbons	21.5	5.00	mg/kg dry	1	0K17009	11/17/00	11/18/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	*1	*	17	19	11	rr .	
Toluene	ND	0.0840	er	11	11	11	Ħ	TP .	R-03
Ethylbenzene	ND	0.0600	"	**	17	11	11	11	R-03
Xylenes (total)	ND	0.500	er e	"	Ħ	11	11	11	R-03
Surrogate: 4-BFB (FID)	95.5 %	50-150			ff.	н	#	Ħ	
Surrogate: 4-BFB (PID)	96.3 %	50-150			#	"	"	"	
PEX-50-S-1 (B0K0362-02) Soil	Sampled: 11/14/00	13:30 Rec	eived: 11/14/	00 18:38					-
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K17009	11/17/00	11/17/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	11	tr		**		**	
Toluene	ND	0.0500	**	11	**	"	H	"	
Ethylbenzene	ND	0.0500	**	11	•	**	**	"	
Xylenes (total)	ND	0.100	"	11	71	11	. 41	#	
Surrogate: 4-BFB (FID)	83.6 %	50-150			"	"	"	"	
Surrogate: 4-BFB (PID)	90.3 %	50-150			"	"	"	"	
PEX-51-S-2 (B0K0362-03) Soil	Sampled: 11/14/00	13:33 Rec	eived: 11/14/	00 18:38					
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K17009	11/17/00	11/17/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	tt	n	rt	17	11	π	
Toluene	ND	0.0500	Ħ .	**	Ħ	11	11	**	
Ethylbenzene	ND	0.0500	Ħ	ų	11	tr	v	π	
Xylenes (total)	ND	0.100	17	н	II.	11	11	11	
Surrogate: 4-BFB (FID)	96.7%	50-150			"	H	"	"	
Surrogate: 4-BFB (PID)	91.9 %	50-150			#	н	"	ff .	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain c custody document. This analytical report must be reproduced in its entirety.

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9290 fax 509.924.9290

503.324.3260 fax 503.324.3250 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/21/00 14:14

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

	TO 11	Reporting	·						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PEX-52-S-2 (B0K0362-04) Soil	Sampled: 11/14/00	13:35 Rec	eived: 11/14	/00 18:38					
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	. 1	0K17009	11/17/00	11/18/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500		**	11	TI	**	π	
Toluene	ND	0.0500	TT .	"	**	11	н	н	1
Ethylbenzene	ND	0.0500	e ,	11	n	n	n	"	
Xylenes (total)	ND	0.100	"	"	11	π	**	11	
Surrogate: 4-BFB (FID)	95.4%	50-150			. "	"	"	"	·
Surrogate: 4-BFB (PID)	86.4 %	50-150			"	"	#	"	
PEX-53-S-1.5 (B0K0362-05) Soil	Sampled: 11/14/	00 13:39 R	eceived: 11/1	.4/00 18:38	;				
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K17009	11/17/00	11/18/00	NWTPH-Gx/8021B	
geog Benzene	ND	0.0500	u	11	- 11	"	11	11	
Toluene	ND	0.0500	н	п	*1	"	*	"	
Ethylbenzene	ND	0.0500	11	**		11	**	**	
Xylenes (total)	ND	0.100	11	11	rr .	11	11	D.	
Surrogate: 4-BFB (FID)	90.2 %	50-150			"	"	"	"	
Surrogate: 4-BFB (PID)	88.1 %	50-150			"	. "	"	"	1 .
PEX-54-B-8 (B0K0362-06) Soil	Sampled: 11/14/00	13:45 Rec	eived: 11/14	/00 18:38					
Gasoline Range Hydrocarbons	30.5	5.00	mg/kg dry	1	0K17009	11/17/00	11/18/00	NWTPH-Gx/8021B	
Benzene .	ND	0.0500	#1	17	"	, u	17	**	
Toluene	ND	0.0500	"	41	11		11	11	
Ethylbenzene	ND	0.0500	"	н .	11	11	ıı	91	
Xylenes (total)	ND	0.100	11	"	**	11	H	u	
Surrogate: 4-BFB (FID)	124 %	50-150			rr r	"	#	"	
Surrogate: 4-BFB (PID)	93.6 %	50-150			tt.	"	"	n	

Jorth Creek Analytical - Bothell

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave

Project Number: not provided

Reported:

Seattle WA, 98121

Project Manager: David Raubvogel

11/21/00 14:14

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PEX-55-S-2 (B0K0362-07) Soil	Sampled: 11/14/00) 13:50 Rec	eived: 11/14/	00 18:38					
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K17009	11/17/00	11/18/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	**	n	n	11	u	tt	
Toluene	ND	0.0500	n	n	**	31	**	n	3
Ethylbenzene	ND	0.0500	11	11	rı	*	11	n	•
Xylenes (total)	ND	0.100	"	11	11	**	11	11	
Surrogate: 4-BFB (FID)	88.9 %	50-150			"	#	"	u	
Surrogate: 4-BFB (PID)	81.2 %	50-150			"	"	"	"	
PEX-56-B-5 (B0K0362-08) Soil	Sampled: 11/14/06	13:55 Rec	:eived: 11/14/	00 18:38					
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K17009	11/17/00	11/18/00	NWTPH-Gx/8021B	- A A.
Benzene	ND	0.0500	1)	17	Ħ	11	rr	п	
Toluene	ND	0.0500	**	11	71*	"	11	11	
Ethylbenzene	ND	0.0500	**	*1	11	11	**	"	
Xylenes (total)	ND	0.100	tr	"	**	11	er	rr .	
Surrogate: 4-BFB (FID)	86.5 %	50-150		-	. "	"	"	"	·
Surrogate: 4-BFB (PID)	81.9 %	50-150			"	"	"	"	
PEX-57-B-8 (B0K0362-09) Soil	Sampled: 11/14/00	14:13 Rec	eived: 11/14/	00 18:38					
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K17009	11/17/00	11/18/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	"	11	11	n	11	11	
Toluene	ND	0.0500	"		**	11	**	п	
Ethylbenzene	ND	0.0500	n	n		**	tt	n	
Xylenes (total)	ND	0.100	11	11	Ħ	"	11	tr .	
Surrogate: 4-BFB (FID)	77.4 %	50-150			"	"	н		· · · · · · · · · · · · · · · · · · ·
Surrogate: 4-BFB (PID)	82.5 %	50-150			"	"	"	"	

North Creek Analytical - Bothell

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland

9405 SVV Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project: Trans Mountain - Laurel Station

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/21/00 14:14

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

a ©©n			Reporting				**		-	- i
ANAMAS AN	Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Mari SA	PEX-58-S-3 (B0K0362-10) Soil	Sampled: 11/14/06	14:17 Rec	eived: 11/14	/00 18:38					
	Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K17009	11/17/00	11/18/00	NWTPH-Gx/8021B	
	Benzene	ND	0.0500	"	**	11	11	17	"	
	Toluene	ND	0.0500	"	"		и ,	11	11	1
(C)	Ethylbenzene	ND	0.0500	17	11	**	T T		11	
1	Xylenes (total)	ND	0.100	11	u	**	*1	11	n	
6	Surrogate: 4-BFB (FID)	92.9 %	50-150			"	"	"·	"	
eti ini	Surrogate: 4-BFB (PID)	89.7%	50-150			"	"	"	<i>"</i>	•
No.	PEX-59-S-2 (B0K0362-11) Soil	Sampled: 11/14/00	14:22 Rec	eived: 11/14/	00 18:38				en en en en en en en en en en en en en e	
	Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K17009	11/17/00	11/18/00	NWTPH-Gx/8021B	
Ø 170	Benzene	ND	0.0500	"	**	11	"		1)	
	Toluene	ND	0.0500	II .	11	ff	11	"	11	
(I	Ethylbenzene	ND	0.0500	**		**	**	11	re .	
	Xylenes (total)	ND	0.100	Ħ	tr	H	. fr	TI TI	11	
	Surrogate: 4-BFB (FID)	90.7 %	50-150		·-·	"	"	"	"	·
Ú.	Surrogate: 4-BFB (PID)	88.1 %	50-150			"	u	"	Ħ	
green (PEX-60-B-4 (B0K0362-12) Soil	Sampled: 11/14/00	14:28 Rec	eived: 11/14/	00 18:38					
	Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K17009	11/17/00	11/18/00	NWTPH-Gx/8021B	
الله الله	Benzene.	ND	0.0500	"	11	11	11	n	"	
	Toluene Toluene	ND	0.0500	"	**	**		n	H	
	Ethylbenzene	ND	0.0500	tr	ır	n	11	TF.	11	
	Xylenes (total)	ND	0.100	11	**	11	11	11	n /	
í	Surrogate: 4-BFB (FID)	93.9 %	50-150				11	"	#	
	Surrogate: 4-BFB (PID)	93.6 %	50-150			н	"	"	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

Portland 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave

Project Number: not provided

Reported:

Seattle WA, 98121

Project Manager: David Raubvogel

11/21/00 14:14

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
PEX-61-S-1.5 (B0K0362-13) Soi	l Sampled: 11/14/	00 14:33 R	eceived: 11/1	4/00 18:38	3			· .	
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K17009	11/17/00	11/18/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	n	**	#1	11	n	11	
Toluene	ND	0.0500	'n	ŧı	17	**	**	11	į
Ethylbenzene	ND	0.0500	**	**	11	"	"	11	
Xylenes (total)	ND	0.100	11	π	"		**	11	
Surrogate: 4-BFB (FID)	95.3 %	50-150			"	"	#	"	
Surrogate: 4-BFB (PID)	90.5 %	50-150			"	"	"	"	
PEX-62-B-6 (B0K0362-14) Soil	Sampled: 11/14/00	14:44 Rec	eived: 11/14	/00 18:38					
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K18010	11/18/00	11/19/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	tt	11	n	17	11	11	÷
l'oluene	ND	0.0500	17	"	11	1)	"	11	
Ethylbenzene	ND	0.0500	11	10	11	11	n	u	
Kylenes (total)	ND	0.100	"	ŧŧ	**		II.		
Surrogate: 4-BFB (FID)	103 %	50-150			"	"	"	a.	
Surrogate: 4-BFB (PID)	96.4 %	50-150			. "	"	n	"	
PEX-63-B-6 (B0K0362-15) Soil	Sampled: 11/14/00	14:49 Rec	eived: 11/14/	00 18:38					
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K18010	11/18/00	11/19/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	"	**	17	rr	11	u	
Toluene	ND	0.0500	**		ır	Tr	**	11	
Ethylbenzene	ND	0.0500	11	n	11	11	•	11	
Kylenes (total)	ND	0.100	11	It	11	**	H		
Surrogate: 4-BFB (FID)	105 %	50-150			"	t,	n.	"	
Surrogate: 4-BFB (PID)	101 %	50-150			"	"	"	rr .	

North Creek Analytical - Bothell

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425,420,9200
 fax 425,420,9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509,924,9200
 fax 509,924,9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/21/00 14:14

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PEX-64-S-4 (B0K0362-16) Soil	Sampled: 11/14/0	0 14:57 Rec	eived: 11/14	/00 18:38				· · · · · · · · · · · · · · · · · · ·	
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K18010	11/18/00	11/21/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	н	**		**	**	ff	
Toluene	ND	0.0500	fi fi	"	n	#	17	41	:1
Ethylbenzene	ND	0.0500	11	**	n	91	11	,,	
Xylenes (total)	ND	0.100	11	**	**	"		11	
Surrogate: 4-BFB (FID)	100 %	50-150		•••	"	"	Ħ	"	
Surrogate: 4-BFB (PID)	94.6%	50-150			,,,	"	"	"	1
PEX-65-S-4 (B0K0362-17) Soil	Sampled: 11/14/00	15:02 Rec	eived: 11/14/	00 18:38				*	
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K18010	11/18/00	11/19/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	"	rı.	11	11	19	#	
Toluene	ND	0.0500	11	Ħ	"	n	"	II.	
Ethylbenzene Ethylbenzene	ND	0.0500	**	11	tt	11	11	11	
Xylenes (total)	ND	0.100	**	"	11	n	\$ \$	**	
Surrogate: 4-BFB (FID)	88.6%	50-150			"	"	"	"	· · · · · · · · · · · · · · · · · · ·
Surrogate: 4-BFB (PID)	91.1 %	50-150			"	"	н	"	
PEX-66-S-3.5 (B0K0362-18) Soil	l Sampled: 11/14/	00 15:10 Re	eceived: 11/1	4/00 18:38					1 4
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K18010	11/18/00	11/19/00	NWTPH-Gx/8021B	1
Benzene Benzene	ND	0.0500	"	14	11	ti	11	"	
Toluene	ND	0.0500	*	"	11	. "	*1	tt	÷
Ethylbenzene	ND	0.0500	"	Iř	**	n	"	11	
Xylenes (total)	ND	0.100	11	Ħ	rt .	n	**	n /	
Surrogate: 4-BFB (FID)	94.5 %	50-150			"	н	"	#	
Surrogate: 4-BFB (PID)	88.8 %	50-150			"	"	"	H	

North Creek Analytical - Bothell

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121


Project Number: not provided Project Manager: David Raubvogel Reported:

11/21/00 14:14

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PEX-67-S-2 (B0K0362-19) Soil	Sampled: 11/14/00	15:20 Rec	eived: 11/14	/00 18:38				- · · · · · · · · · · · · · · · · · · ·	
Gasoline Range Hydrocarbons	69.5	5.00	mg/kg dry	1	0K18010	11/18/00	11/19/00	NWTPH-Gx/8021B	
Benzene	ND	0.0600	"	11	11	"	- 11	11	R-03
Toluene	ND	0.120	ır	**	41	n	н	u	R-03
Ethylbenzene	ND	0.154	41	"		11	**	π	R-03
Xylenes (total)	ND	0.585	11	n	n	11	n ·	11	R-03
Surrogate: 4-BFB (FID)	131 %	50-150			"	"	п	"	
Surrogate: 4-BFB (PID)	96.2 %	50-150			"	. "	"	u .	
PEX-68-B-2 (B0K0362-20) Soil	Sampled: 11/14/00	15:46 Rec	eived: 11/14	/00 18:38					
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K18010	11/18/00	11/19/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	"	π	**	Ħ	11	11	
Toluene	ND	0.0500	Ħ	11	11	**	31	**	
Ethylbenzene	ND	0.0500	11	"	u	n	**	"	
Xylenes (total)	ND	0.100	n	"	er .	11	11	tt.	
Surrogate: 4-BFB (FID)	85.8 %	50-150			"	"	"	"	· · · · · · · · · · · · · · · · · · ·
Surrogate: 4-BFB (PID)	98.5 %	50-150			"	"	"	"	
PEX-69-B-2.5 (B0K0362-21) Soi	l Sampled: 11/14/	00 15:50 R	eceived: 11/1	4/00 18:38	;				
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K18010	11/18/00	11/19/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	11	tt	rr .	11	17	11	
Toluene	ND	0.0500	"	17	11	*1	11	"	
Ethylbenzene	ND	0.0500	**	17	tt .	"	*1	**	
Xylenes (total)	ND	0.100	rr	**	71	H	**	17	
Surrogate: 4-BFB (FID)	93.2 %	50-150			"	"	"	" .	
Surrogate: 4-BFB (PID)	98.5 %	50-150			"	"	n	"	

North Creek Analytical - Bothell

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200
 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9290
 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/21/00 14:14

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

	Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
]	PEX-70-B-3 (B0K0362-22) Soil	Sampled: 11/14/00	0 15:53 Rec	eived: 11/14	/00 18:38					
	Gasoline Range Hydrocarbons	6.76	5.00	mg/kg dry	1	0K18010	11/18/00	11/19/00	NWTPH-Gx/8021B	
. I	Benzene	ND	0.0500	#	17	**	**	n ·	19	
]	l'oluene	ND	0.0500	n	"	**	11		11	1
r I	Ethylbenzene	ND	0.0500	n	H	41	"	**	11	•
7	Kylenes (total)	ND	0.100	11	11		17	17	п	
5	Surrogate: 4-BFB (FID)	104 %	50-150	····		"	#	"	"	
S S	Surrogate: 4-BFB (PID)	96.5 %	50-150			"	"	"	"	
I	PEX-71-B-3 (B0K0362-23) Soil	Sampled: 11/14/00	15:57 Rec	eived: 11/14	/00 18:38					
(Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K18010	11/18/00	11/19/00	NWTPH-Gx/8021B	
r E	Benzene	ND	0.0500	er e		rı .	17	11	n .	
(5) 34	Toluene	ND	0.0500	17	tt	tr.	**	*	11	
E	Ethylbenzene	ND	0.0500	91	11	**	11	17	*	
go 03	(ylenes (total)	ND	0.100	н	. #	**	a	**	Ħ	
S	urrogate: 4-BFB (FID)	101 %	50-150			"	"	"	"	
۩ S	urrogate: 4-BFB (PID)	96.4 %	50-150			"	"	H	n	
P	PEX-72-B-1 (B0K0362-24) Soil	Sampled: 11/14/00	16:12 Rec	eived: 11/14/	00 18:38					
C	Sasoline Range Hydrocarbons	97.1	5.00	mg/kg dry	1	0K18010	11/18/00	11/19/00	NWTPH-Gx/8021B	*
E B	Senzene	0.181	0.0500	11	**	0	**	*	41	
er Con	Coluene	1.06	0.0500	**	11	*1	11	11	11	
E	thylbenzene	0.580	0.0500	*	**	m	11	**	m	
ξģ X	(ylenes (total)	3.77	0.100	11	rr	17	"	m .	"	
S	urrogate: 4-BFB (FID)	165 %	50-150			"	. "	"	"	S-02
S	urrogate: 4-BFB (PID)	114 %	50-150			rr	"	"	"	5-02

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

500 Market Place Tower, 2025 1st Ave

Project: Trans Mountain - Laurel Station

Project Number: not provided

Reported:

Seattle WA, 98121

Project Manager: David Raubvogel

11/21/00 14:14

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PEX-73-B-1.5 (B0K0362-25) Soil	Sampled: 11/14/	00 16:20 R	eceived: 11/1	14/00 18:38	3.				
Gasoline Range Hydrocarbons	10.2	5.00	mg/kg dry	1	0K18010	11/18/00	11/19/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	ni		"		11	11	
Toluene	ND	0.0500	17			**	11	**	i
Ethylbenzene	ND	0.0500	91		n .:		ij	#	
Xylenes (total)	ND	0.100	"	π.		11	•	"	
Surrogate: 4-BFB (FID)	104 %	50-150			"	"	"	. #	
Surrogate: 4-BFB (PID)	94.8 %	50-150			"	n	"	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 10 of 24

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425,420,9200
 fax 425,420,9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509,924,9200
 fax 509,924,9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided

Reported:

Project Manager: David Raubvogel

11/21/00 14:14

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

	Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
WC.J	PEX-49-S-6 (B0K0362-01) Soil	Sampled: 11/14/00	10:20 Rec	eived: 11/14	/00 18:38				· :	
8	Diesel Range Hydrocarbons	17.6	10.0	mg/kg dry	I	0K18005	11/18/00	11/19/00	NWTPH-Dx	
	Lube Oil Range Hydrocarbons	ND	25.0	**	47	"	Ħ	11	# .	
	Surrogate: 2-FBP	78.5 %	50-150			#	"	"	#	
	PEX-50-S-1 (B0K0362-02) Soil	Sampled: 11/14/00	13:30 Rec	eived: 11/14	/00 18:38					
Č.	Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	0K18005	11/18/00	11/19/00	NWTPH-Dx	
	Lube Oil Range Hydrocarbons	ND	25.0	17	"	11	n		. #	
	Surrogate: 2-FBP	78.7 %	50-150			"	"	"	"	
	PEX-51-S-2 (B0K0362-03) Soil	Sampled: 11/14/00	13:33 Rec	eived: 11/14/	00 18:38		•			-1
€ ~3	Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	0K18005	11/18/00	11/19/00	NWTPH-Dx	
200	Lube Oil Range Hydrocarbons	ND	25.0	"	17	н	"	Ħ	n .	
	Surrogate: 2-FBP	84.4 %	50-150			"	"	"	" .	
6 -3	PEX-52-S-2 (B0K0362-04) Soil	Sampled: 11/14/00	13:35 Rec	eived: 11/14/	00 18:38					
	Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1 .	0K18005	11/18/00	11/19/00	NWTPH-Dx	
& 3	Lube Oil Range Hydrocarbons	ND	25.0	77	**	11	11	11	и	
6 73	Surrogate: 2-FBP	73.1 %	50-150			#	. 11	#	H	
	PEX-53-S-1.5 (B0K0362-05) Soil	Sampled: 11/14/0	00 13:39 Re	ceived: 11/1	4/00 18:38					
2.20	Diesel Range Hydrocarbons	16.2	10.0	mg/kg dry	1	0K18005	11/18/00	11/19/00	NWTPH-Dx	D-06
	Lube Oil Range Hydrocarbons	ND	25.0	11	**	"	**	**	11	
2000	Surrogate: 2-FBP	91.1 %	50-150			#	"	#	" /	
	PEX-54-B-8 (B0K0362-06) Soil	Sampled: 11/14/00	13:45 Rec	eived: 11/14/	00 18:38					
	Diesel Range Hydrocarbons	113	10.0	mg/kg dry	1	0K18005	11/18/00	11/19/00	NWTPH-Dx	····
	Lube Oil Range Hydrocarbons	ND	25.0	*	er er	11	#	n	i v ti	
	Surrogate: 2-FBP	87.7 %	50-150			n	"	"	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

503.906.9200 fax 503.324.3250 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/21/00 14:14

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up)

North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Anatyte	Result	LRIU	Omes —	Dilution	Dawn	Trepared	Anaryzeu	Wicaloa	Nous
PEX-55-S-2 (B0K0362-07) Soil	Sampled: 11/14/00	13:50 Rec	eived: 11/14	/00 18:38					
Diesel Range Hydrocarbons	22.4	10.0	mg/kg dry	1	0K18005	11/18/00	11/19/00	NWTPH-Dx	D-06
Lube Oil Range Hydrocarbons	28.3	25.0	III	**	81	11	"	#	
Surrogate: 2-FBP	79.9 %	50-150			"	#	"	te	į.
PEX-56-B-5 (B0K0362-08) Soil	Sampled: 11/14/00	13:55 Rec	eived: 11/14	/00 18:38					
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	0K18005	11/18/00	11/19/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	**	11	17	"	**	#	
Surrogate: 2-FBP	72.9 %	50-150		1	"	"	"	"	
PEX-57-B-8 (B0K0362-09) Soil	Sampled: 11/14/00	14:13 Rec	eived: 11/14	/00 18:38					
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	0K18005	11/18/00	11/19/00	NWTPH-Dx	,
Lube Oil Range Hydrocarbons	ND	25.0	v	TP .	77	"	Ħ	11	
Surrogate: 2-FBP	92.0 %	50-150			"	"	"	"	
PEX-58-S-3 (B0K0362-10) Soil	Sampled: 11/14/00	14:17 Rec	eived: 11/14	/00 18:38					
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	0K18005	11/18/00	11/19/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	ч	"	11	н	**	11	
Surrogate: 2-FBP	65.0 %	50-150			"	"	"	. "	
PEX-59-S-2 (B0K0362-11) Soil	Sampled: 11/14/00	14:22 Rec	eived: 11/14/	/00 18:38					
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	I	0K18005	11/18/00	11/19/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	Ħ	11	**	rr	**	**	
Surrogate: 2-FBP	83.1 %	50-150			"	,,	"	"	
PEX-60-B-4 (B0K0362-12) Soil	Sampled: 11/14/00	14:28 Rec	eived: 11/14	/00 18:38					
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	0K18005	11/18/00	11/19/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	**	"	н	#	n	"	
Surrogate: 2-FBP	65.0 %	50-150			"	"	"	"	

North Creek Analytical - Bothell

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/21/00 14:14

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

	, - (-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
PEX-61-S-1.5 (B0K0362-13) Soi	l Sampled: 11/14/	00 14:33 R	eceived: 11/1	4/00 18:38	3				
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	0K18005	11/18/00	11/19/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	"	11	tr	"	11	n .	
Surrogate: 2-FBP	82.5 %	50-150			n	"	"	"	
PEX-62-B-6 (B0K0362-14) Soil	Sampled: 11/14/0	0 14:44 Rec	ceived: 11/14	/00 18:38					
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	0K18005	11/18/00	11/19/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	19	n	n		n ,	11	
Surrogate: 2-FBP	68.3 %	50-150	· · · · · · · · · · · · · · · · · · ·		. "	"	r	"	
PEX-63-B-6 (B0K0362-15) Soil	Sampled: 11/14/06	0 14:49 Rec	eived: 11/14	/00 18:38					
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	0K18005	11/18/00	11/19/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	tt	11	**	n	н	10	
Surrogate: 2-FBP	84.8 %	50-150			"	"	"	" .	
PEX-64-S-4 (B0K0362-16) Soil	Sampled: 11/14/00	14:57 Rec	eived: 11/14/	00 18:38		-			
Diesel Range Hydrocarbons	15.2	10.0	mg/kg dry	1	0K18005	11/18/00	11/19/00	NWTPH-Dx	÷.
Lube Oil Range Hydrocarbons	ND	25.0	e	"	11	"	11	,,	
Surrogate: 2-FBP	74.8 %	50-150	·····		. н	#	"	#	
PEX-65-S-4 (B0K0362-17) Soil	Sampled: 11/14/00	15:02 Reco	eived: 11/14/	00 18:38					
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	0K18005	11/18/00	11/19/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	17	**	**	11	"	**	
Surrogate: 2-FBP	79.2 %	50-150			н,	"	. #	" :	
PEX-66-S-3.5 (B0K0362-18) Soil	Sampled: 11/14/	00 15:10 Re	ceived: 11/1	4/00 18:38				;	
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	0K18005	11/18/00	11/20/00	NWTPH-Dx	***
Lube Oil Range Hydrocarbons	ND	25.0	"	11	11	77	61	17	
Surrogate: 2-FBP	48.8 %	50-150			"	. #	"	"	S-07
Surrogate: Octacosane	60.5 %	50-150			#	"	"	"	

North Creek Analytical - Bothell

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425,420,9200
 fax 425,420,9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509,924,9200
 fax 509,924,9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave

Project Number: not provided

Reported:

Seattle WA, 98121

Project Manager: David Raubvogel

11/21/00 14:14

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PEX-67-S-2 (B0K0362-19) Soil	Sampled: 11/14/00) 15:20 Rec	eived: 11/14	/00 18:38				· .	
Analyte									
Lube Oil Range Hydrocarbons	25.0	25.0	77	17	"	"	11	, #1	
Surrogate: 2-FBP	88.7 %	50-150			#	n	u	"	i
PEX-68-B-2 (B0K0362-20) Soil	Sampled: 11/14/00	0 15:46 Rec	eived: 11/14	/00 18:38					
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	0K18005	11/18/00	11/20/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	tr	**	77	"	rr	**	
Surrogate: 2-FBP	77.7 %	50-150			"	"	"	"	
PEX-69-B-2.5 (B0K0362-21) Soi	l Sampled: 11/14/	'00 15:50 R	eceived: 11/1	4/00 18:38	3 -				
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	0K18006	11/18/00	11/20/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	"	"	74	11	H	u	
Surrogate: 2-FBP	91.8 %	50-150		-	"	"	"	"	
PEX-70-B-3 (B0K0362-22) Soil	Sampled: 11/14/00	15:53 Rec	eived: 11/14	/00 18:38					
Diesel Range Hydrocarbons	18.8	10.0	mg/kg dry	1	0K18006	11/18/00	11/20/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	11	"	"	11	n	"	
Surrogate: 2-FBP	77.0 %	50-150			"	"	"	"	
PEX-71-B-3 (B0K0362-23) Soil	Sampled: 11/14/00	15:57 Rec	eived: 11/14/	/00 18:38					
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	0K18006	11/18/00	11/20/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	"	**	••	II .	"	"	
Surrogate: 2-FBP	81.7%	50-150			"	"	#	"	
PEX-72-B-1 (B0K0362-24) Soil	Sampled: 11/14/00	16:12 Rec	eived: 11/14/	00 18:38					
Diesel Range Hydrocarbons	270	10.0	mg/kg dry	1	0K18006	11/18/00	11/20/00	NWTPH-Dx	•
Lube Oil Range Hydrocarbons	173	25.0	n	**	"	11	**	12	
Surrogate: 2-FBP	72.6 %	50-150			"	н	"	"	

North Creek Analytical - Bothell

425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/21/00 14:14

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PEX-73-B-1.5 (B0K0362-25) Soil	Sampled: 11/14/	00 16:20 R	eceived: 11/	14/00 18:38	3				
Diesel Range Hydrocarbons	50.8	10.0	mg/kg dry	1	0K18006	11/18/00	11/20/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	41.7	25.0	**	"	11	W	"	H	
Surrogate: 2-FBP	89.9 %	50-150			#	"	"	n	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 15 of 24

425.420.9200 fax 425.420.9210

423-420-3200 Tax 443-420-3210
East 11115 Montgomery, Suite B, Spokane, WA 99206-4776
509.924.9290 Tax 509.924.9290
9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
503.906.9200 Tax 503.906.9210

Portland

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

500 Market Place Tower, 2025 1st Ave

Seattle WA, 98121

Project: Trans Mountain - Laurel Station

Project Number: not provided

Project Manager: David Raubvogel

Reported:

11/21/00 14:14

Physical Parameters by APHA/ASTM/EPA Methods North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PEX-49-S-6 (B0K0362-01) Soil	Sampled: 11/14/00 1	0:20 Recei	ved: 11/1	4/00 18:38					
Dry Weight	82.3	1.00	%	1	0K17051	11/17/00	11/20/00	BSOPSPL003R07	
PEX-50-S-1 (B0K0362-02) Soil	Sampled: 11/14/00 1	3:30 Recei	ved: 11/1	4/00 18:38					
Dry Weight	84.2	1.00	%	1	0K17051	11/17/00	11/20/00	BSOPSPL003R07	
PEX-51-S-2 (B0K0362-03) Soil	Sampled: 11/14/00 1	3:33 Recei	ved: 11/1	4/00 18:38					
Ory Weight	87.5	1.00	%	I	0K17051	11/17/00	11/20/00	BSOPSPL003R07	
PEX-52-S-2 (B0K0362-04) Soil	Sampled: 11/14/00 1	3:35 Recei	ved: 11/1	4/00 18:38					
Ory Weight	88.0	1.00	%	1	0K17051	11/17/00	11/20/00	BSOPSPL003R07	
PEX-53-S-1.5 (B0K0362-05) Soil	Sampled: 11/14/00	13:39 Rec	eived: 11/	14/00 18:38					
Ory Weight	86.8	1.00	%	1	0K17051	11/17/00	11/20/00	BSOPSPL003R07	
PEX-54-B-8 (B0K0362-06) Soil	Sampled: 11/14/00 1	3:45 Recei	ved: 11/1	4/00 18:38					
Ory Weight	82.4	1.00	%	1	0K17051	11/17/00	11/20/00	BSOPSPL003R07	
PEX-55-S-2 (B0K0362-07) Soil	Sampled: 11/14/00 1	3:50 Receiv	ved: 11/14	1/00 18:38					
)ry Weight	71.7	1.00	%	l	0K17051	11/17/00	11/20/00	BSOPSPL003R07	
PEX-56-B-5 (B0K0362-08) Soil	Sampled: 11/14/00 1	3:55 Recei	ved: 11/1	4/00 18:38					
Ory Weight	84.5	1.00	%	. 1	0K17051	11/17/00	11/20/00	BSOPSPL003R07	
PEX-57-B-8 (B0K0362-09) Soil	Sampled: 11/14/00 1	4:13 Recei	ved: 11/1	4/00 18:38					
ry Weight	85.2	1.00	%	1	0K17051	11/17/00	11/20/00	BSOPSPL003R07	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

425.420.9200 fax 425.420.9210
East 11115 Montgomery, Suite B, Spokane, WA 99206-4776
509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/21/00 14:14

Physical Parameters by APHA/ASTM/EPA Methods North Creek Analytical - Bothell

(E)	5		eporting						1-v/v-/4	1
Sec. 25	Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
V	PEX-58-S-3 (B0K0362-10) Soil	Sampled: 11/14/00 14	:17 Rece	ived: 11/14	/00 18:38					
Constant of	Dry Weight	84.1	1.00	%	1	0K17051	11/17/00	11/20/00	BSOPSPL003R07	
	PEX-59-S-2 (B0K0362-11) Soil	Sampled: 11/14/00 14	:22 Rece	ived: 11/14	/00 18:38					
gran.	Dry Weight	86.2	1.00	%	1	0K17051	11/17/00	11/20/00	BSOPSPL003R07	
Contract of	PEX-60-B-4 (B0K0362-12) Soil	Sampled: 11/14/00 14	4:28 Rece	ived: 11/14	1/00 18:38		.*		÷.	
· 6	Dry Weight	84.8	1.00	%	-1	0K17051	11/17/00	11/20/00	BSOPSPL003R07	
6 3	PEX-61-S-1.5 (B0K0362-13) Soil	Sampled: 11/14/00	14:33 Re	ceived: 11/	14/00 18:38	:				
100	Dry Weight	84.8	1.00	%	1	0K17051	11/17/00	11/20/00	BSOPSPL003R07	
	PEX-62-B-6 (B0K0362-14) Soil	Sampled: 11/14/00 14	:44 Rece	ived: 11/14	/00 18:38					
	Dry Weight	85.0	1.00	%	1	0K20044	11/20/00	11/21/00	BSOPSPL003R07	•
	PEX-63-B-6 (B0K0362-15) Soil	Sampled: 11/14/00 14	1:49 Rece	ived: 11/14	/00 18:38					
67.77	Dry Weight	85.5	1.00	%	1	0K20044	11/20/00	11/21/00	BSOPSPL003R07	
2000	PEX-64-S-4 (B0K0362-16) Soil	Sampled: 11/14/00 14	:57 Recei	ived: 11/14	/00 18:38					-
83	Dry Weight	83.5	1.00	%	1	0K20044	11/20/00	11/21/00	BSOPSPL003R07	
6 70	PEX-65-S-4 (B0K0362-17) Soil	Sampled: 11/14/00 15	:02 Recei	ived: 11/14	/00 18:38					
3300	Dry Weight	84.5	1.00	%	1	0K20044	11/20/00	11/21/00	BSOPSPL003R07	-
	PEX-66-S-3.5 (B0K0362-18) Soil	Sampled: 11/14/00 1	5:10 Rec	eived: 11/1	4/00 18:38					
	Dry Weight	81.2	1.00	%	1	0K20044	11/20/00	11/21/00	BSOPSPL003R07	
2.3										

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 Portland 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave

Project Number: not provided

Reported:

Seattle WA, 98121

Project Manager: David Raubvogel

11/21/00 14:14

Physical Parameters by APHA/ASTM/EPA Methods North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PEX-67-S-2 (B0K0362-19) Soil	Sampled: 11/14/00	15:20 Recei	ved: 11/1	4/00 18:38					
Dry Weight	80.3	1.00	%	1 .	0K20044	11/20/00	11/21/00	BSOPSPL003R07	
PEX-68-B-2 (B0K0362-20) Soil	Sampled: 11/14/00	15:46 Recei	ved: 11/1	4/00 18:38					
Dry Weight	85.8	1.00	%	1	0K20044	11/20/00	11/21/00	BSOPSPL003R07	
PEX-69-B-2.5 (B0K0362-21) Soi	l Sampled: 11/14/0	00 15:50 Rec	eived: 11	/14/00 18:38	3				
Dry Weight	87.2	1.00	%	1	0K20044	11/20/00	11/21/00	BSOPSPL003R07	
PEX-70-B-3 (B0K0362-22) Soil	Sampled: 11/14/00	15:53 Recei	ved: 11/1	4/00 18:38	·				
Dry Weight	87.6	1.00	%	1	0K20044	11/20/00	11/21/00	BSOPSPL003R07	
PEX-71-B-3 (B0K0362-23) Soil	Sampled: 11/14/00	15:57 Recei	ved: 11/1	4/00 18:38					•
Dry Weight	84.6	1.00	%	1	0K20044	11/20/00	11/21/00	BSOPSPL003R07	
PEX-72-B-1 (B0K0362-24) Soil	Sampled: 11/14/00	16:12 Recei	ved: 11/1	4/00 18:38				- · ·	
Dry Weight	88.3	1.00	%	1	0K20044	11/20/00	11/21/00	BSOPSPL003R07	
PEX-73-B-1.5 (B0K0362-25) Soi	I Sampled: 11/14/0	00 16:20 Rec	eived: 11	/14/00 18:38	3				
Dry Weight	89.9	1.00	%	1	0K20044	11/20/00	11/21/00	BSOPSPL003R07	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

Portland 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/21/00 14:14

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0K17009: Prepared 11/17/0	0 Using H	EPA 5030 I	3 (МеОН)					- 		
Blank (0K17009-BLK1)		:			·	<u></u>	***			
Gasoline Range Hydrocarbons	ND	5,00	mg/kg wet							
Benzene	ND	0.0500	n							,
Toluene	ND	0.0500	11							
Ethylbenzene	ND	0.0500	11							
Xylenes (total)	ND	0.100	"							
Surrogate: 4-BFB (FID)	4.06		"	4.00		101	50-150		· · ·	.
🐧 Surrogate: 4-BFB (PID)	3.76		u	4.00		94.0	50-150			-
LCS (0K17009-BS1)										
Gasoline Range Hydrocarbons	21.9	5.00	mg/kg wet	25.0		87.6	70-130			:
Surrogate: 4-BFB (FID)	4.62		"	4.00		115	50-150			
Duplicate (0K17009-DUP1)					Source: B	0K0342-	15			
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry		ND			2.37	50	
Surrogate: 4-BFB (FID)	4.32		"	4.69		92.1	50-150			·
Duplicate (0K17009-DUP2)	Source: B0K0342-47									
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry		ND			15.7	50	
Surrogate: 4-BFB (FID)	3.99		"	4.54		87.9	50-150			
Matrix Spike (0K17009-MS1)				:	Source: B	0K0342-4	14			
Benzene	0.434	0.0500	mg/kg dry	0.600	ND	72.3	60-140			
Toluene	0.433	0.0500	. "	0.600	ND	70.8	60-140			
Ethylbenzene	0.463	0.0500	rr	0.600	ND	77.2	60-140			
Xylenes (total)	1.42	0.100	n	1.80	ND	77.8	60-140			
Surrogate: 4-BFB (PID)	3.85		"	4.80		80.2	50-150			······································
Matrix Spike Dup (0K17009-MSD1)				5	Source: B	0K0342-4				
Benzene	0.483	0.0500	mg/kg dry	0.600	ND	80.5	60-140	10.7	20	
Toluene	0.485	0.0500	"	0.600	ND	79.5	60-140	11.3	20	
Ethylbenzene	0.526	0.0500	**	0.600	ND	87.7	60-140	12.7	20	
Xylenes (total)	1.63	0.100	u	1.80	ND	89.5	60-140	13.8	20	
Surrogate: 4-BFB (PID)	4.11		n	4.80		85.6	50-150			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

425.420.9200 fax 425.420.9210

425.420.9200 fax 425.420.9210
East 11115 Montgomery, Suite B, Spokane, WA 99206-4776
509.924.9200 fax 509.924.9290
9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
503.906.9200 fax 503.906.9210
20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Seattle WA, 98121

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave

Project Number: not provided Project Manager: David Raubvogel Reported:

11/21/00 14:14

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0K18010: Prepared 11/18/0	0 Using	EPA 5030E	(МеОН)							
Blank (0K18010-BLK1)										
Gasoline Range Hydrocarbons	ND	5.00	mg/kg wet							
Benzene	ND	0.0500	N							1
Toluene	ND	0.0500	11							
Ethylbenzene	ND	0.0500	u							
Xylenes (total)	ND	0.100	11							
Surrogate: 4-BFB (FID)	4.23		"	4.00		106	50-150			
Surrogate: 4-BFB (PID)	4.04		" .	4.00		101	50-150			
LCS (0K18010-BS1)										
Gasoline Range Hydrocarbons	24.3	5.00	mg/kg wet	25.0		97.2	70-130			
Surrogate: 4-BFB (FID)	4.84		н	4.00		121	50-150			
Duplicate (0K18010-DUP1)			•		Source: I	30K0366-	01			
Gasoline Range Hydrocarbons	2660	250	mg/kg dry		3320			22.1	50	
Surrogate: 4-BFB (FID)	0		"	4.44			50-150			S-0
Duplicate (0K18010-DUP2)					Source: I	30K0367-	04			
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	. ·	ND			82.7	50	Q-0
Surrogate: 4-BFB (FID)	4.50		н	4.25		106	50-150	***		
Matrix Spike (0K18010-MS1)					Source: H	30K0367-	03			
Benzene	0.469	0.0500	mg/kg dry	0.514	ND	90.7	60-140			
Toluene	0.479	0.0500	Ħ	0.514	ND	91.7	60-140			
Ethylbenzene	0.513	0.0500	11 .	0.514	ND	98.9	60-140			
Xylenes (total)	1.53	0.100	11	1.54	ND	97.3	60-140			
Surrogate: 4-BFB (PID)	4.27		"	4.12	 	104	50-150			
Matrix Spike Dup (0K18010-MSD1)					Source: H	30K0367-	03			
Benzene	0.512	0.0500	mg/kg dry	0.514	ND	99.1	60-140	8.77	20	
Toluene	0.513	0.0500	rr	0.514	ND	98.3	60-140	6.85	20	
Ethylbenzene	0.555	0.0500	ee	0.514	ND	107	60-140	7.87	20	
Xylenes (total)	1.65	0.100	Ħ	1.54	ND	105	60-140	7.55	20	
Surrogate: 4-BFB (PID)	4.37		"	4.12		106	50-150			

North Creek Analytical - Bothell

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

503.924.3200 Jan 503.324.3250 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588 Portland

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/21/00 14:14

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) - Quality Control North Creek Analytical - Bothell

	A1d-	m 4:	Reporting	***	Spike	Source		%REC		RPD	
	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
	Batch 0K18005: Prepared 11/18/00	Using	EPA 3550E	3							
	Blank (0K18005-BLK1)		- 1						· · · · · · · · · · · · · · · · · · ·		
	Diesel Range Hydrocarbons	ND	10.0	mg/kg wet							
5 ***	Lube Oil Range Hydrocarbons	ND	25.0	п							
	Surrogate: 2-FBP	9.39	<u></u>	ıı	10.7		87.8	50-150		<u> </u>	
	LCS (0K18005-BS1)										art Seats
F 3	Diesel Range Hydrocarbons	61.0	10.0	mg/kg wet	66.7		91.5	60-140			
	Surrogate: 2-FBP	9.84		n	10.7		92.0	50-150			
	Duplicate (0K18005-DUP1)					Source: B	0K0362-0	03			
	Diesel Range Hydrocarbons	ND	10.0	mg/kg dry		ND			13.9	50	·
	Lube Oil Range Hydrocarbons	ND	25.0	н		ND			9.17	50	
	Surrogate: 2-FBP	10.4		"	12.2		85.2	50-150			
90. 10	Duplicate (0K18005-DUP2)	Source: B0K0362-11									
	Diesel Range Hydrocarbons	ND	10.0	mg/kg dry		ND			8.41	50	
07 0	Lube Oil Range Hydrocarbons	ND	25.0	"		ND			14.0	50	
A Security of	Surrogate: 2-FBP	8.82		"	12.4		71.1	50-150			
	Batch 0K18006: Prepared 11/18/00	Using 1	EPA 3550B								
	Blank (0K18006-BLK1)							17000			****
	Diesel Range Hydrocarbons	ND	10.0	mg/kg wet							
	Lube Oil Range Hydrocarbons	ND	25.0	tr							
Service Control	Surrogate: 2-FBP	9.45		и	10.7		88.3	50-150			
	LCS (0K18006-BS1)										
E STOR	Diesel Range Hydrocarbons	60.0	10.0	mg/kg wet	66.7		90.0	60-140			
W. COOK	Surrogate: 2-FBP	7.65		"	10.7		71.5	50-150	····		
100											

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 21 of 24

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 Portland

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave

Project Number: not provided

Reported:

Seattle WA, 98121

Project Manager: David Raubvogel

11/21/00 14:14

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) - Quality Control North Creek Analytical - Bothell

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0K18006: Prepared 11/18/00	Using I	EPA 3550B								
Duplicate (0K18006-DUP1)		t .			Source: I	30K0362-	21	1		
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry		ND		,		50	•
Lube Oil Range Hydrocarbons	ND	25.0	70		ND	•		3.19	50	4
Surrogate: 2-FBP	9.49		"	12.2		77.8	50-150			
Duplicate (0K18006-DUP2)					Source: H	30K0412-	16		:	era e e e
Diesel Range Hydrocarbons	273	10.0	mg/kg dry		217			22.9	50	
Lube Oil Range Hydrocarbons	307	25.0	***		260			16.6	50	
Surrogate: 2-FBP	9.90		"	13.1		75.6	50-150			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave

Project Number: not provided

Reported:

Seattle WA, 98121

Project Manager: David Raubvogel

11/21/00 14:14

Physical Parameters by APHA/ASTM/EPA Methods - Quality Control North Creek Analytical - Bothell

Analyte	٠.	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0K17051:	Prepared 11/17/00	Using	Dry Weight				_				
Blank (0K17051-Bl	LK2)		:			*****	· · · · · · · · · · · · · · · · · · ·	*******			
Dry Weight		100	1.00	%					,,,,		1
Batch 0K20044:	Prepared 11/20/00	Using	Dry Weight							in the Alexander The Alexander	
Blank (0K20044-BI	LK2)					W	·····				
Dry Weight		100	1.00	%						<u> </u>	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 23 of 24

Relative Percent Difference

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210

Portland

Fast 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

RPD.

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel Reported:

11/21/00 14:14

Notes and Definitions

D-06	The sample chromatographic pattern does not resemble the fuel standard used for quantitation.
Q-05	Analyses are not controlled on RPD values from sample concentrations less than 10 times the reporting limit.
R-03	The reporting limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.
S-01	The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interferences.
S-02	The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample.
S-07	Due to an extraction anomaly, results of the secondary surrogate have been used to control the analysis.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis

Quantitation Report Signal #1 : D:\HPCHEM\3\DATA\111800\K18024.D\FID1A.CH Vial: 24 Signal #2 : D:\HPCHEM\3\DATA\111800\K18024.D\FID2B.CH : 18 Nov 2000 18:37 Operator: GAP Sample : b0k0362-01 r1 Inst : GC #6 Misc : 100 uL Multiplr: 1.00 Sample Amount: 0.00 IntFile Signal #1: SURR.E IntFile Signal #2: SURR2.E Quant Time: Nov 18 19:01 2000 Quant Results File: TPHG0800.RES Quant Method : D:\HPCHEM\3\METHODS\TPHG0800.M (Chemstation Integrator) : TPH-G Water Method Last Update : Fri Nov 17 14:27:05 2000 Response via : Multiple Level Calibration DataAcq Meth : TPHG0800.M Volume Inj. Signal #1 Phase : Signal #2 Phase: Signal #1 Info Signal #2 Info : Response K18024.D\FID1A 70000 60000 50000 40000 30000 20000 10000 0 K101 TPH ontana TP laska TPH ,2,3-TFB Time 0.00 2.00 4.00 6.00 8.00 10.00 12.00 16.00 14.00 18.00 20.00 22.00 Response K18024.D\FID2B 140000 120000 100000 80000 60000 40000 20000

ITBE (PID)

2.00

TPHG0800.M

0.00

nzene (P

6.00

Sun Nov 19

Foluene (P Oregon TPH

10.00 12.00 07:05:45 2 2-Xylene (4-BFB (PID

16.00

18.00

20.00

22.00

Page 2

14.00

Quantitation Report

Signal #1 : D:\HPCHEM\3\DATA\111700\K17029.D\FID1A.CH Vial: 29

Signal #2 : D:\HPCHEM\3\DATA\111700\K17029.D\FID2B.CH : 17 Nov 2000 21:00

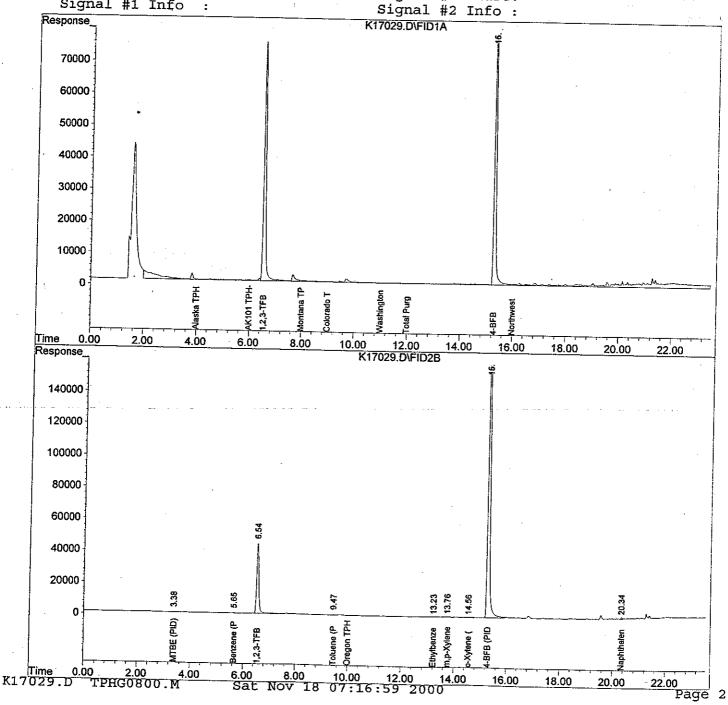
Operator: GAP Sample : B0K0362-02 Inst : GC #6 Misc : 100 ul Multiplr: 1.00

Sample Amount: 0.00 IntFile Signal #1: SURR.E

IntFile Signal #2: SURR2.E

Quant Time: Nov 17 21:24 2000 Quant Results File: TPHG0800.RES

Quant Method : D:\HPCHEM\3\METHODS\TPHG0800.M (Chemstation Integrator) Title


: TPH-G Water Method

Last Update : Fri Nov 17 14:27:05 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG0800.M

Volume Inj. Signal #1 Phase :

Signal #2 Phase: Signal #1 Info

Quantitation Report

Signal #1 : D:\HPCHEM\3\DATA\111700\K17030.D\FID1A.CH Vial: 30

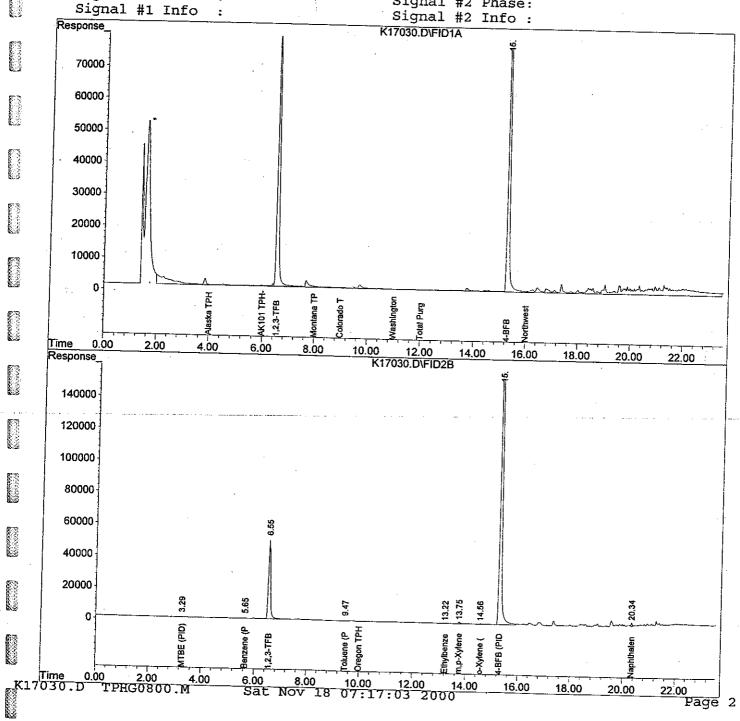
Signal #2 : D:\HPCHEM\3\DATA\111700\K17030.D\FID2B.CH : 17 Nov 2000 21:30

Operator: GAP Sample : B0K0362-03 Inst : GC #6 Misc : 100 ul Multiplr: 1.00

Sample Amount: 0.00 IntFile Signal #1: SURR.E IntFile Signal #2: SURR2.E

Quant Time: Nov 17 21:54 2000 Quant Results File: TPHG0800.RES

Quant Method : D:\HPCHEM\3\METHODS\TPHG0800.M (Chemstation Integrator)


: TPH-G Water Method

Last Update : Fri Nov 17 14:27:05 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG0800.M

Volume Inj. Signal #1 Phase :

Signal #2 Phase:

Signal #1 : D:\HPCHEM\3\DATA\111800\K18004.D\FID1A.CH Vial: 4

8:39 am

Signal #2 : D:\HPCHEM\3\DATA\111800\K18004.D\FID2B.CH

: 18 Nov 2000 Sample : b0k0362-04

Operator: GAP Inst : GC #6

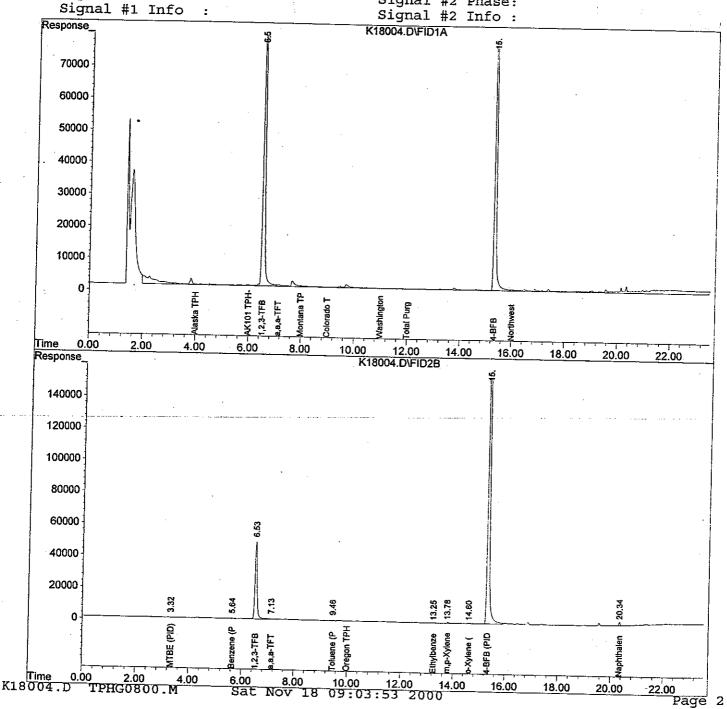
Misc : 100 uL

Multiplr: 1.00 Sample Amount: 0.00

IntFile Signal #1: SURR.E

IntFile Signal #2: SURR2.E

Quant Time: Nov 18 9:03 2000 Quant Results File: TPHG0800.RES


Quant Method : D:\HPCHEM\3\METHODS\TPHG0800.M (Chemstation Integrator)

: TPH-G Water Method

Last Update : Fri Nov 17 14:27:07 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG0800.M

Volume Inj. Signal #1 Phase :

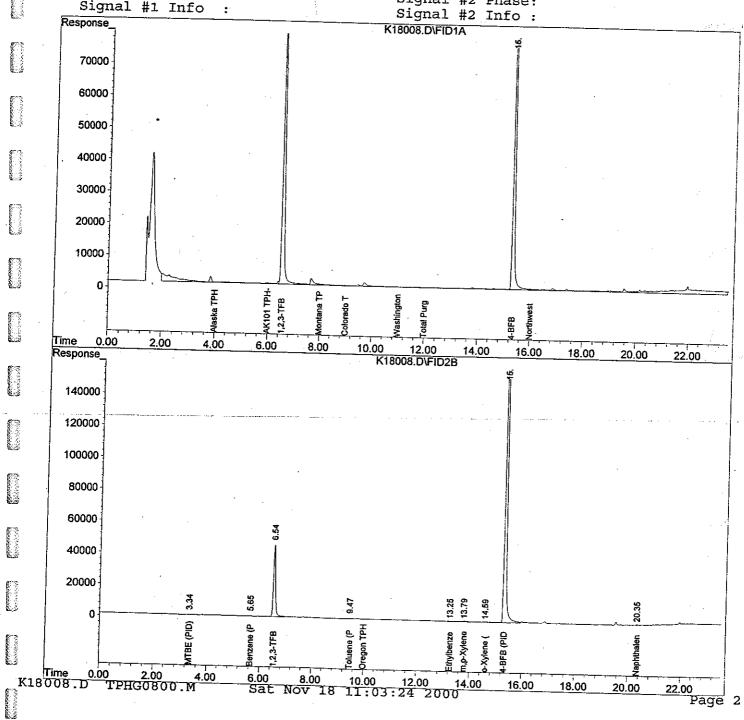
Signal #2 : D:\HPCHEM\3\DATA\111800\K18008.D\FID2B.CH

: 18 Nov 2000 10:39 am Operator: GAP Sample : b0k0362-05 Inst : GC #6 Misc : 100 uL Multiplr: 1.00

Sample Amount: 0.00 IntFile Signal #1: SURR.E IntFile Signal #2: SURR2.E

Quant Time: Nov 18 11:03 2000 Quant Results File: TPHG0800.RES

Quant Method : D:\HPCHEM\3\METHODS\TPHG0800.M (Chemstation Integrator)


: TPH-G Water Method

Last Update : Fri Nov 17 14:27:07 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG0800.M

 $(a_{n+1}, b_{n+1},$

Volume Inj. Signal #1 Phase : Signal #2 Phase: Signal #1 Info

Signal #1 : D:\HPCHEM\3\DATA\111800\K18009.D\FID1A.CH Vial: 9

Signal #2 : D:\HPCHEM\3\DATA\111800\K18009.D\FID2B.CH

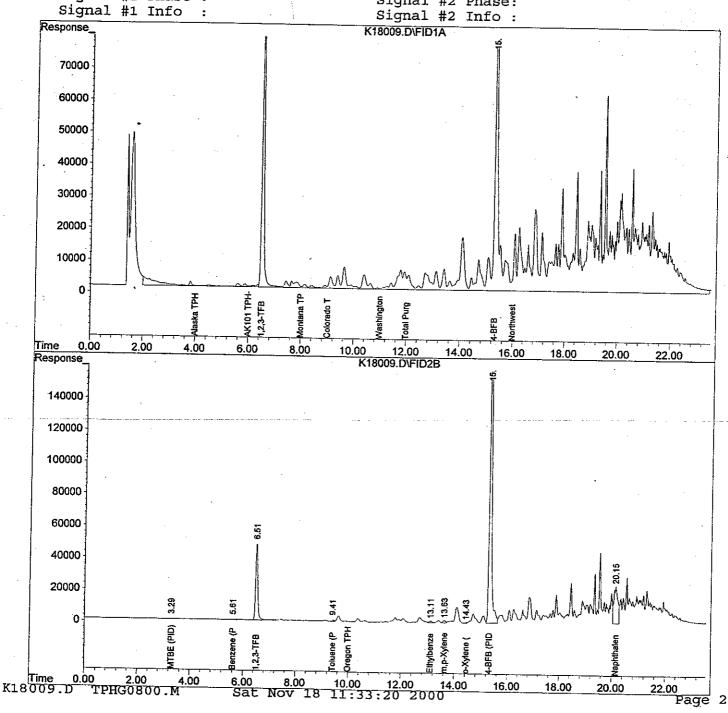
: 18 Nov 2000 11:09 am Operator: GAP Sample : b0k0362-06 Inst : GC #6 Misc : 100 uL

Multiplr: 1.00 Sample Amount: 0.00

IntFile Signal #1: SURR.E

IntFile Signal #2: SURR2.E

Quant Time: Nov 18 11:33 2000 Quant Results File: TPHG0800.RES


Quant Method : D:\HPCHEM\3\METHODS\TPHG0800.M (Chemstation Integrator)

Title : TPH-G Water Method

Last Update : Fri Nov 17 14:27:07 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG0800.M

Volume Inj. : Signal #1 Phase :

Signal #1 : D:\HPCHEM\3\DATA\111800\K18010.D\FID1A.CH Vial: 10 Signal #2 : D:\HPCHEM\3\DATA\111800\K18010.D\FID2B.CH

: 18 Nov 2000 11:39 am Sample : b0k0362-07

Operator: GAP Inst : GC #6 Multiplr: 1.00

IntFile Signal #1: SURR.E

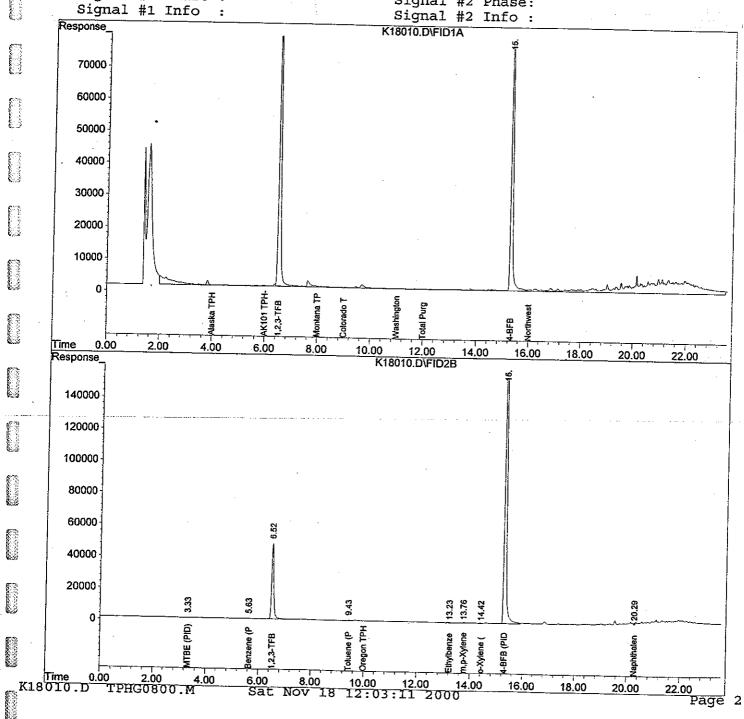
: 100 uL

Sample Amount: 0.00

IntFile Signal #2: SURR2.E

Quant Time: Nov 18 12:03 2000 Quant Results File: TPHG0800.RES

Quant Method : D:\HPCHEM\3\METHODS\TPHG0800.M (Chemstation Integrator)


: TPH-G Water Method

Last Update : Fri Nov 17 14:27:07 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG0800.M

Volume Inj. Signal #1 Phase :

Misc

Signal #1 : D:\HPCHEM\3\DATA\111800\K18011.D\FID1A.CH

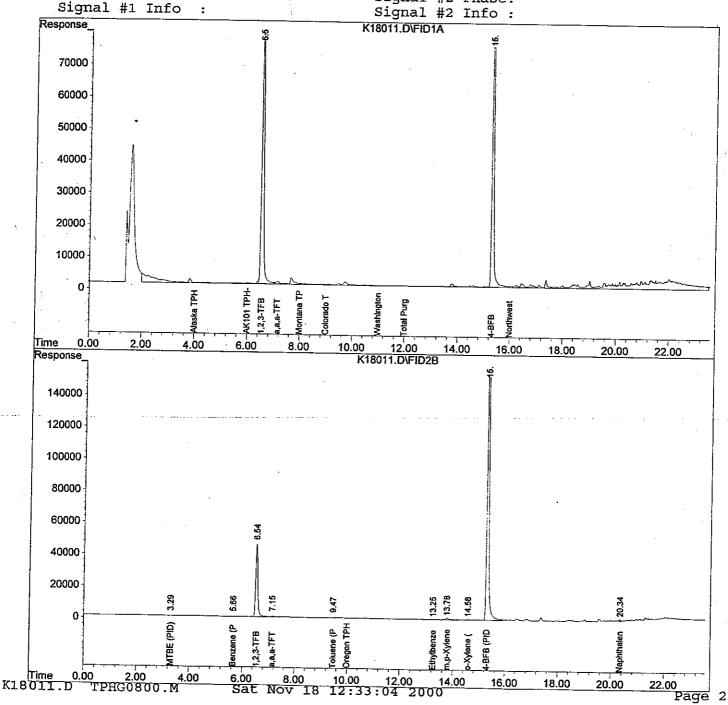
Signal #2 : D:\HPCHEM\3\DATA\111800\K18011.D\FID2B.CH

: 18 Nov 2000 12:09 pm Operator: GAP Sample : b0k0362-08 Inst : GC #6 Misc : 100 uL Multiplr: 1.00

Sample Amount: 0.00

IntFile Signal #1: SURR.E IntFile Signal #2: SURR2.E

Quant Time: Nov 18 12:33 2000 Quant Results File: TPHG0800.RES


Quant Method: D:\HPCHEM\3\METHODS\TPHG0800.M (Chemstation Integrator)

Title : TPH-G Water Method

Last Update : Fri Nov 17 14:27:07 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG0800.M

Volume Inj. Signal #1 Phase :

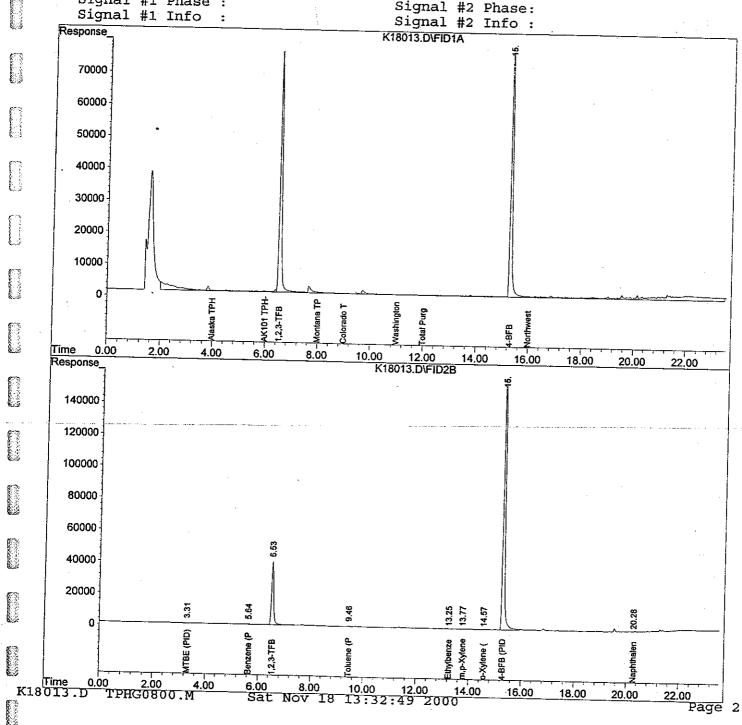
Signal #1 : D:\HPCHEM\3\DATA\111800\K18013.D\FID1A.CH Vial: 13

Signal #2 : D:\HPCHEM\3\DATA\111800\K18013.D\FID2B.CH

: 18 Nov 2000 1:08 pm Operator: GAP Sample : b0k0362-09 Inst : GC #6 Misc : 100 uL Multiplr: 1.00 Sample Amount: 0.00

IntFile Signal #1: SURR.E IntFile Signal #2: SURR2.E

Quant Time: Nov 18 13:32 2000 Quant Results File: TPHG0800.RES


Quant Method : D:\HPCHEM\3\METHODS\TPHG0800.M (Chemstation Integrator)

Title : TPH-G Water Method

Last Update : Fri Nov 17 14:27:07 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG0800.M

Volume Inj. Signal #1 Phase :

Data File : C:\HPCHEM\3\DATA\K18038.D Acq On

: 18 Nov 2000 10:49 pm Sample : b0k0443-01

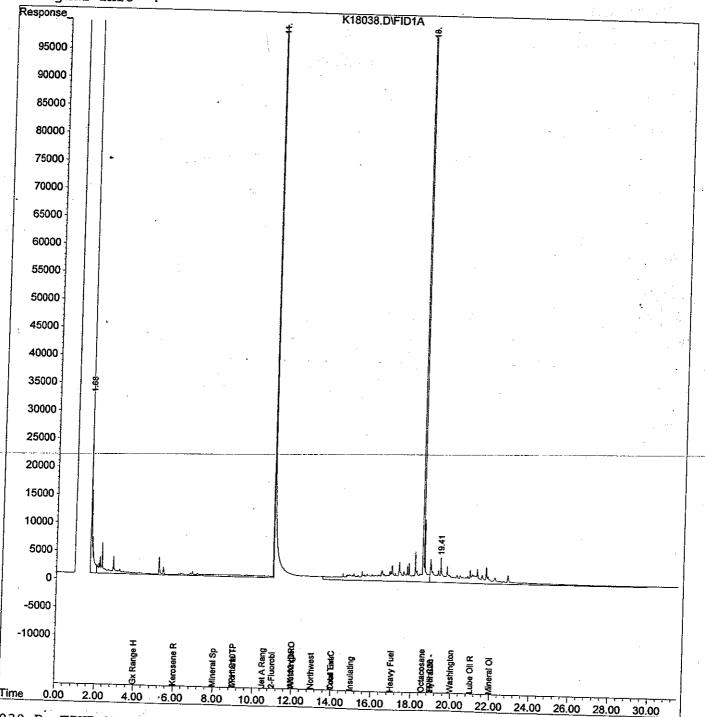
Operator: db Inst : GC #5 Multiplr: 1.00

455-01 IntFile : SURR.E

: S

Misc

Quant Time: Nov 18 23:21 2000 Quant Results File: TPHD.RES


Quant Method : C:\HPCHEM\3\METHODS\TPHD.M (Chemstation Integrator)

: TPH-D Rear Method

Last Update : Wed Sep 27 08:12:03 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. Signal Phase : Signal Info

K18038.D TPHD.M

Sun Nov 19 12:22:39 2000

Quantitation Report Signal #1 : D:\HPCHEM\3\DATA\111800\K18014.D\FID1A.CH Signal #2 : D:\HPCHEM\3\DATA\111800\K18014.D\FID2B.CH : 18 Nov 2000 1:38 pm Operator: GAP Sample : b0k0362-10 Inst : GC #6 Misc : 100 uL Multiplr: 1.00 Sample Amount: 0.00 IntFile Signal #1: SURR.E IntFile Signal #2: SURR2.E Quant Time: Nov 18 14:02 2000 Quant Results File: TPHG0800.RES Quant Method: D:\HPCHEM\3\METHODS\TPHG0800.M (Chemstation Integrator) : TPH-G Water Method Last Update : Fri Nov 17 14:27:07 2000 Response via : Multiple Level Calibration DataAcq Meth : TPHG0800.M Volume Inj. Signal #1 Phase : Signal #2 Phase: Signal #1 Info : Signal #2 Info : Response K18014.D\FID1A 70000 60000 50000 40000 30000 20000 10000 0 표 a,a-TFT 0.00 Time 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 Response K18014.D\FID2B 140000 120000 100000 80000 60000 40000

9,47

Toluene (P Oregon TPH

Sat Nov 18 14:02:44 2000

12.00

16.00

18.00

20.00

22.00

Page 2

a.a-TFT

8.00

20000

0.00

K18014.D

0 2.00 4 TPHG0800.M

Signal #1: D:\HPCHEM\3\DATA\111800\K18020.D\FID1A.CH Signal #2: D:\HPCHEM\3\DATA\111800\K18020.D\FID2B.CH

: 18 Nov 2000 4:38 pm

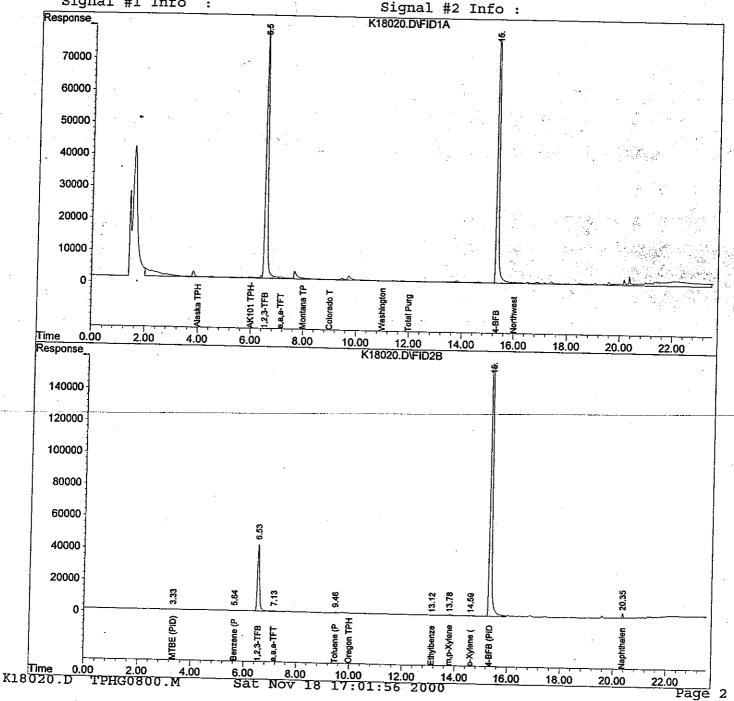
Sample : b0k0362-12 Misc : 100 uL

Operator: GAP Inst : GC #6 Multiplr: 1.00 Sample Amount: 0.00

IntFile Signal #1: SURR.E

IntFile Signal #2: SURR2.E

Quant Time: Nov 18 17:01 2000 Quant Results File: TPHG0800.RES


Quant Method : D:\HPCHEM\3\METHODS\TPHG0800.M (Chemstation Integrator)

: TPH-G Water Method

Last Update : Fri Nov 17 14:27:07 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG0800.M

Volume Inj. Signal #1 Phase : Signal #1 Info

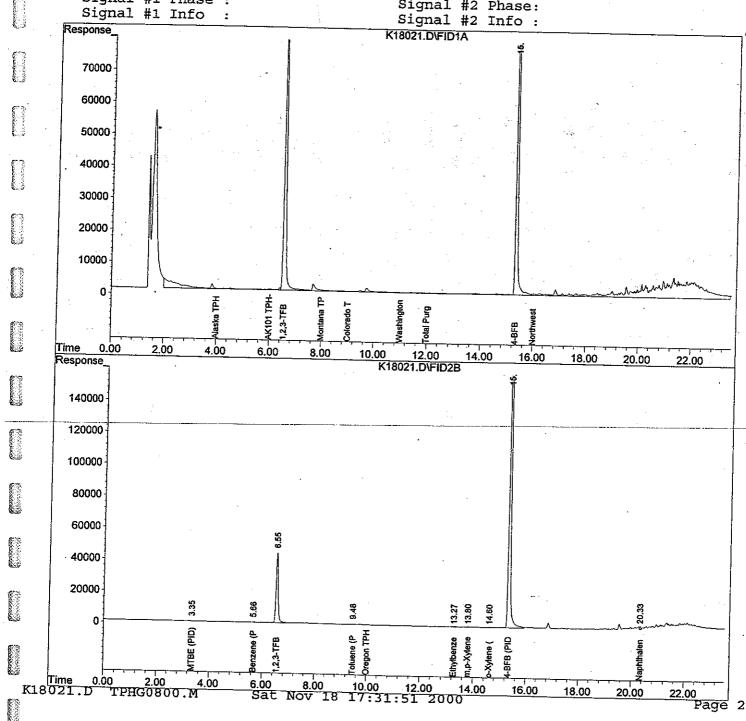
Signal #1: D:\HPCHEM\3\DATA\111800\K18021.D\FID1A.CH

Signal #2: D:\HPCHEM\3\DATA\111800\K18021.D\FID2B.CH : 18 Nov 2000

5:07 pm Operator: GAP Sample : b0k0362-13 Inst : GC #6 Misc : 100 uL Multiplr: 1.00 Sample Amount: 0.00

IntFile Signal #1: SURR.E IntFile Signal #2: SURR2.E

Quant Time: Nov 18 17:31 2000 Quant Results File: TPHG0800.RES


Quant Method : D:\HPCHEM\3\METHODS\TPHG0800.M (Chemstation Integrator)

Title : TPH-G Water Method

Last Update : Fri Nov 17 14:27:07 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG0800.M

Volume Inj. Signal #1 Phase :

Signal #1 : D:\HPCHEM\4\DATA\111900\K19013.D\FID1A.CH

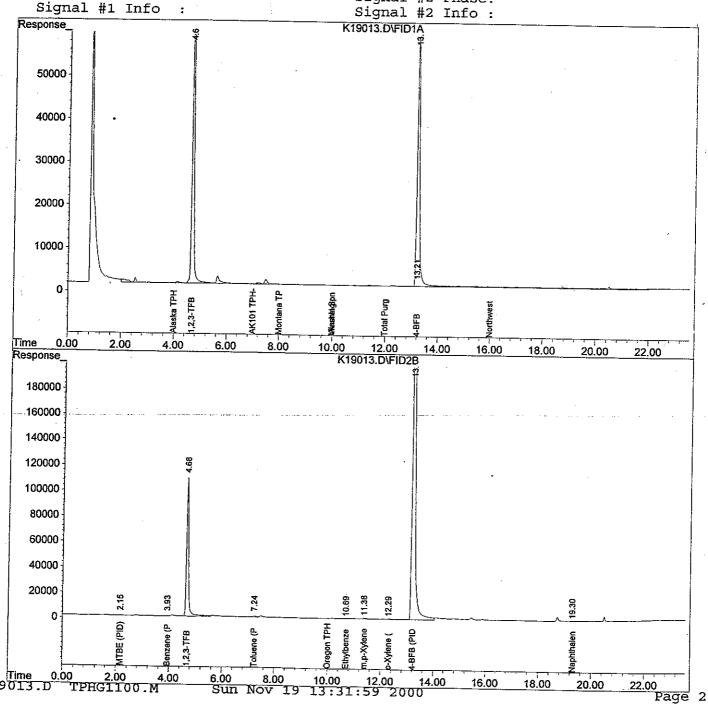
Signal #2 : D:\HPCHEM\4\DATA\111900\K19013.D\FID2B.CH

: 19 Nov 2000 1:07 pm Operator: GAP Sample : b0k0362-14 Inst : GC #8 Misc : 100 uL Multiplr: 1.00

Sample Amount: 0.00 IntFile Signal #1: TPH.E

IntFile Signal #2: SURR2.E

Quant Time: Nov 19 13:31 2000 Quant Results File: TPHG1100.RES


Quant Method : D:\HPCHEM\4\METHODS\TPHG1100.M (Chemstation Integrator)

Title : TPH-G Water Method

Last Update : Fri Nov 17 09:37:09 2000 Response via : Multiple Level Calibration

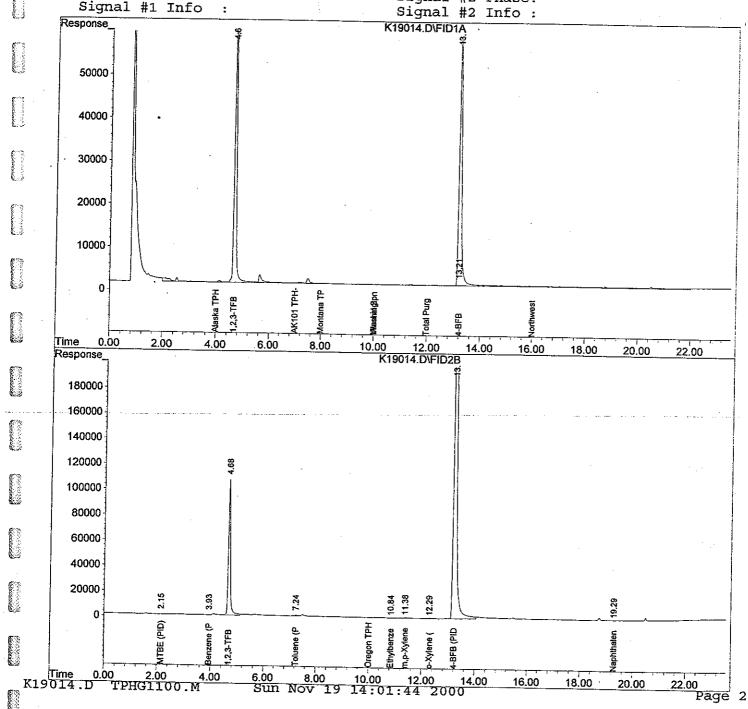
DataAcq Meth : TPHG1100.M

Volume Inj. Signal #1 Phase :

Signal #1 : D:\HPCHEM\4\DATA\111900\K19014.D\FID1A.CH Vial: 14 Signal #2 : D:\HPCHEM\4\DATA\111900\K19014.D\FID2B.CH

IntFile Signal #1: TPH.E IntFile Signal #2: SURR2.E

Quant Time: Nov 19 14:01 2000 Quant Results File: TPHG1100.RES


Quant Method : D:\HPCHEM\4\METHODS\TPHG1100.M (Chemstation Integrator)

Title : TPH-G Water Method

Last Update : Fri Nov 17 09:37:09 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG1100.M

Volume Inj. :
Signal #1 Phase : Signal #2 Phase:
Signal #1 Info : Signal #2 Info :

Signal #1 : D:\HPCHEM\4\DATA\112100\K21010.D\FID1A.CH Vial: 10

Signal #2 : D:\HPCHEM\4\DATA\112100\K21010.D\FID2B.CH

: 21 Nov 2000 12:35 Operator: GAP Acq On : b0k0362-16 Inst : GC #8 Sample Multiplr: 1.00 Misc : 100 ul r1

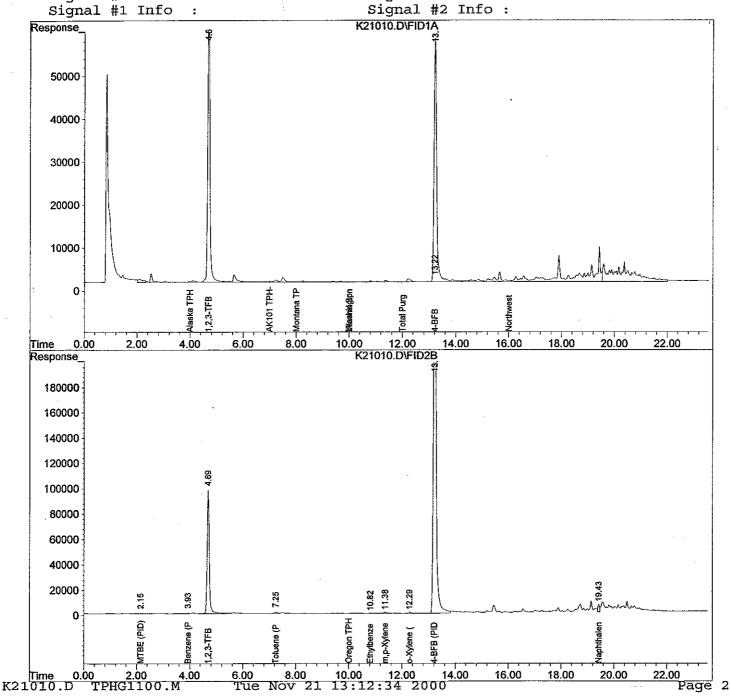
Sample Amount: 0.00

IntFile Signal #1: TPH.E

IntFile Signal #2: SURR2.E

Quant Time: Nov 21 12:59 2000 Quant Results File: TPHG1100.RES

Quant Method : D:\HPCHEM\4\METHODS\TPHG1100.M (Chemstation Integrator)


: TPH-G Water Method Title

Last Update : Mon Nov 20 13:42:44 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG1100.M

Volume Inj.

Signal #1 Phase : Signal #2 Phase:

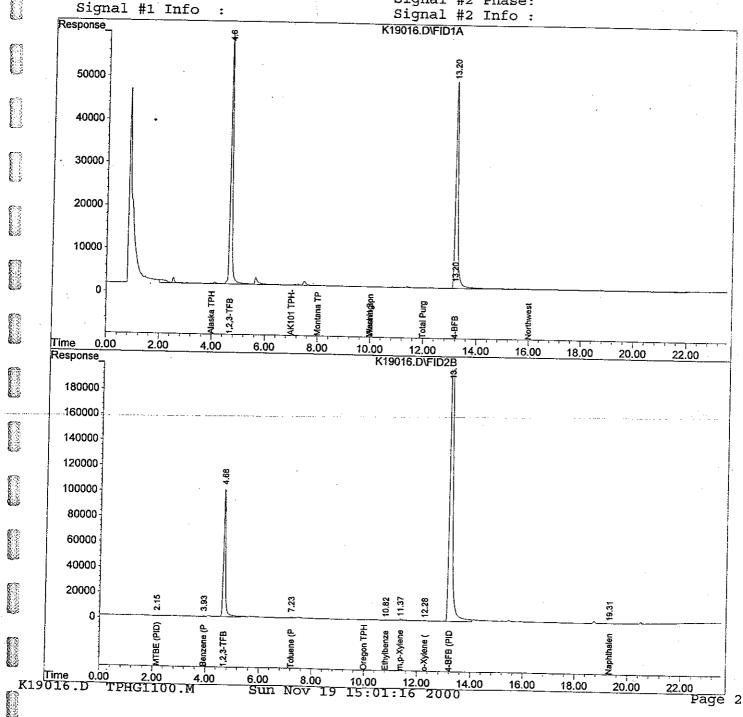
Signal #1 : D:\HPCHEM\4\DATA\111900\K19016.D\FID1A.CH Vial: 16

Signal #2 : D:\HPCHEM\4\DATA\111900\K19016.D\FID2B.CH

: 19 Nov 2000 2:37 pm Operator: GAP Sample : b0k0362-17 Inst : GC #8 Misc : 100 uL Multiplr: 1.00

Sample Amount: 0.00 IntFile Signal #1: TPH.E IntFile Signal #2: SURR2.E

Quant Time: Nov 19 15:01 2000 Quant Results File: TPHG1100.RES


Quant Method : D:\HPCHEM\4\METHODS\TPHG1100.M (Chemstation Integrator)

Title : TPH-G Water Method

Last Update : Fri Nov 17 09:37:09 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG1100.M

Volume Inj. Signal #1 Phase :

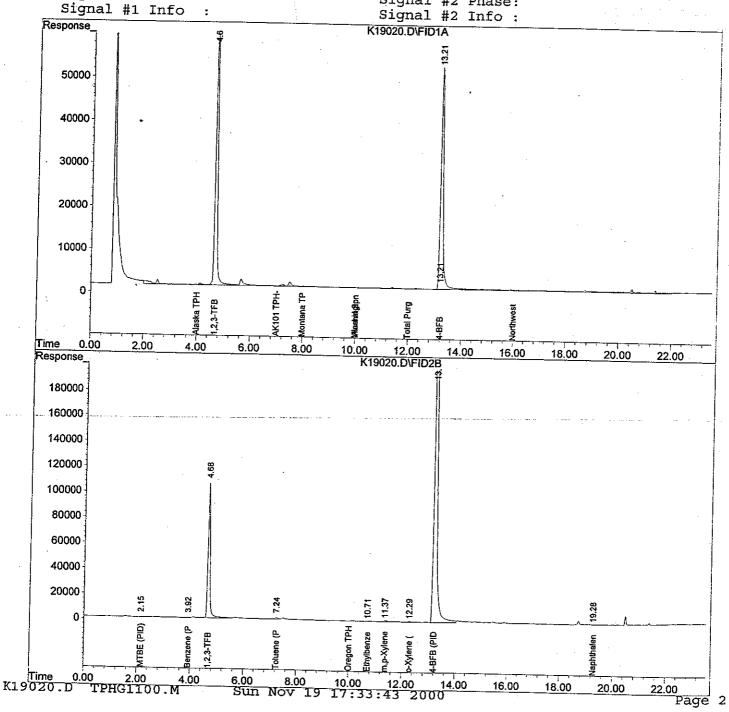
Signal #2 : D:\HPCHEM\4\DATA\111900\K19020.D\FID2B.CH

: 19 Nov 2000 5:09 pm Operator: GAP Sample : b0k0362~18 // Inst : GC #8 Misc : 100 uL Multiplr: 1.00

Sample Amount: 0.00

IntFile Signal #1: TPH.E IntFile Signal #2: SURR2.E

Quant Time: Nov 19 17:33 2000 Quant Results File: TPHG1100.RES


Quant Method : D:\HPCHEM\4\METHODS\TPHG1100.M (Chemstation Integrator)

: TPH-G Water Method

Last Update : Fri Nov 17 09:37:09 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG1100.M

Volume Inj. Signal #1 Phase :

Signal #1 : D:\HPCHEM\4\DATA\111900\K19021.D\FID1A.CH Vial: 21

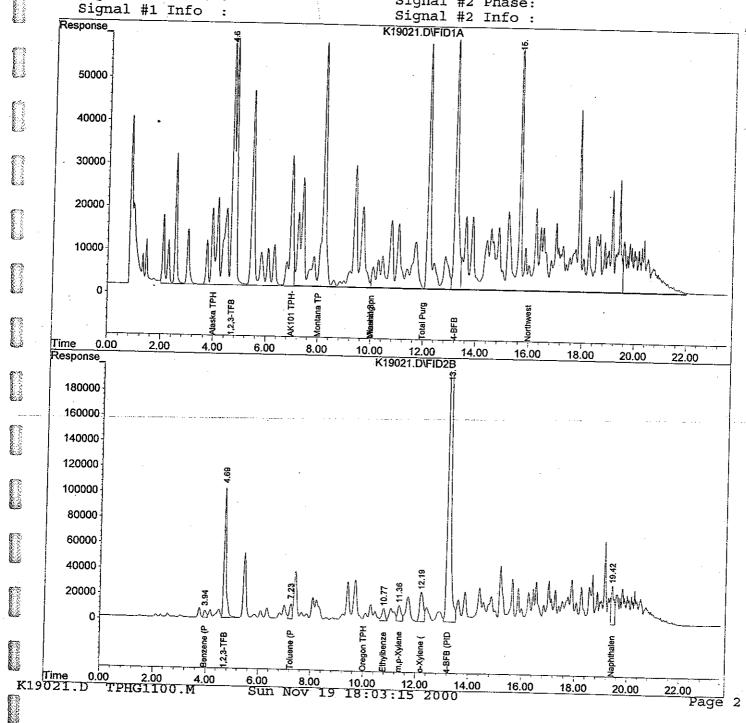
Signal #2 : D:\HPCHEM\4\DATA\111900\K19021.D\FID2B.CH

: 19 Nov 2000 5:39 pm Operator: GAP Sample : b0k0362-19 Inst : GC #8 Misc : 100 uL Multiplr: 1.00

Sample Amount: 0.00

IntFile Signal #1: TPH.E IntFile Signal #2: SURR2.E

Quant Time: Nov 19 18:03 2000 Quant Results File: TPHG1100.RES


Quant Method : D:\HPCHEM\4\METHODS\TPHG1100.M (Chemstation Integrator)

: TPH-G Water Method

Last Update : Fri Nov 17 09:37:09 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG1100.M

Volume Inj. Signal #1 Phase :

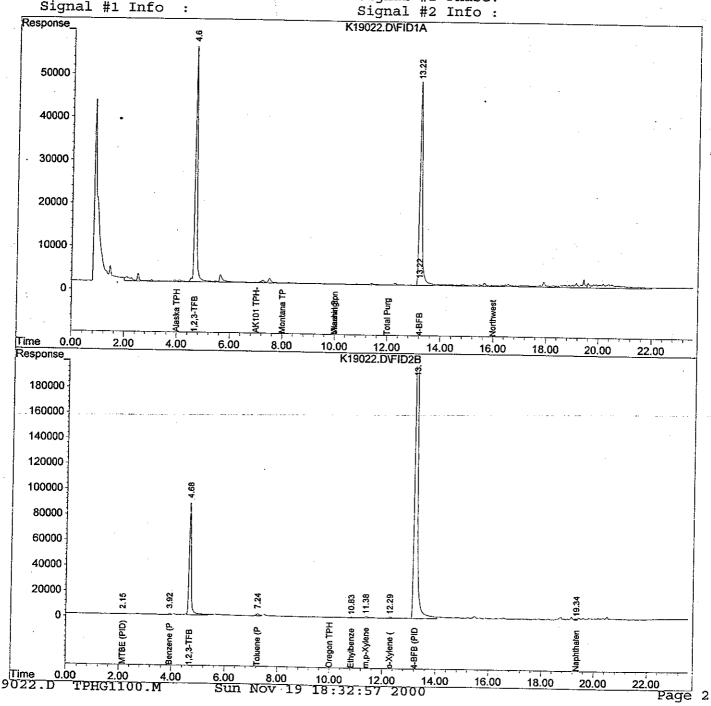
Signal #2 : D:\HPCHEM\4\DATA\111900\K19022.D\FID2B.CH

: 19 Nov 2000 6:09 pm Operator: GAP Sample : b0k0362-20 Inst : GC #8 Misc : 100 uL Multiplr: 1.00

Sample Amount: 0.00

IntFile Signal #1: TPH.E IntFile Signal #2: SURR2.E

Quant Time: Nov 19 18:32 2000 Quant Results File: TPHG1100.RES


Quant Method : D:\HPCHEM\4\METHODS\TPHG1100.M (Chemstation Integrator)

Title : TPH-G Water Method

Last Update : Fri Nov 17 09:37:09 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG1100.M

Volume Inj. Signal #1 Phase :

Signal #1 : D:\HPCHEM\4\DATA\111900\K19024A.D\FID1A.CH Vial: 23

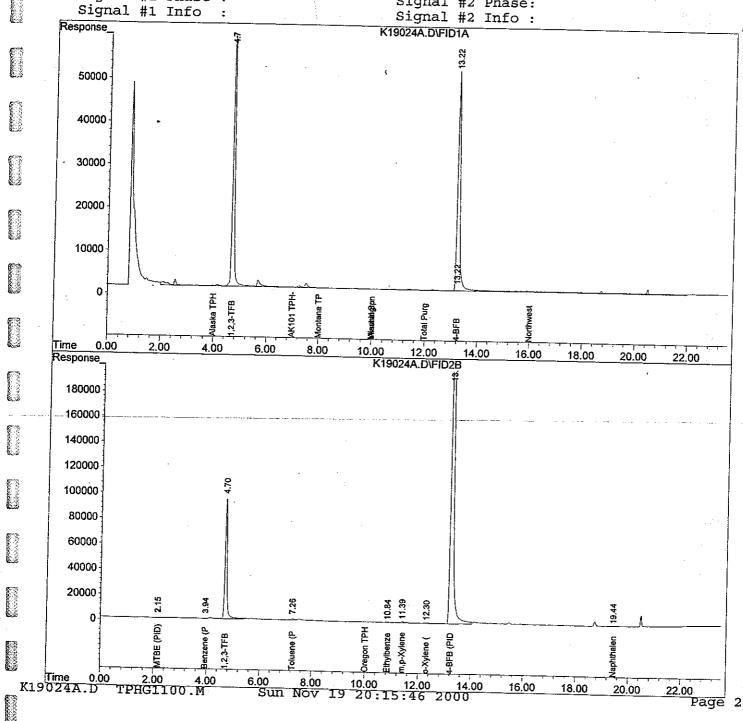
Signal #2 : D:\HPCHEM\4\DATA\111900\K19024A.D\FID2B.CH

: 19 Nov 2000 7:51 pm Operator: GAP Sample : b0k0362-21 Inst : GC #8 Misc : 100 uL Multiplr: 1.00

Sample Amount: 0.00

IntFile Signal #1: TPH.E IntFile Signal #2: SURR2.E

Quant Time: Nov 19 20:15 2000 Quant Results File: TPHG1100.RES


Quant Method : D:\HPCHEM\4\METHODS\TPHG1100.M (Chemstation Integrator)

: TPH-G Water Method

Last Update : Fri Nov 17 09:37:09 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG1100.M

Volume Inj. Signal #1 Phase :

Signal #1 : D:\HPCHEM\4\DATA\111900\K19024.D\FID1A.CH Vial: 24

Signal #2 : D:\HPCHEM\4\DATA\111900\K19024.D\FID2B.CH

: 19 Nov 2000 8:21 pm Sample : b0k0362-22

Operator: GAP Inst : GC #8 Multiplr: 1.00

Sample Amount: 0.00

IntFile Signal #1: TPH.E

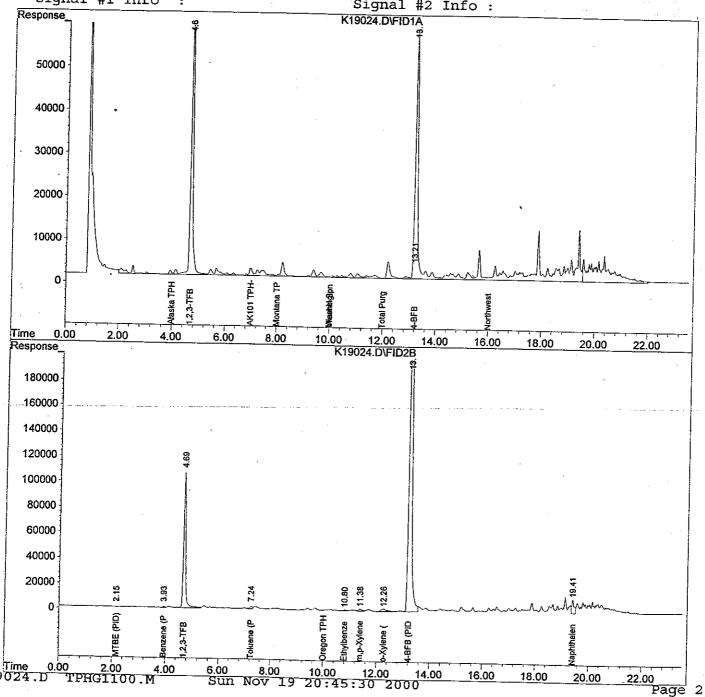
: 100 uL

IntFile Signal #2: SURR2.E

Quant Time: Nov 19 20:45 2000 Quant Results File: TPHG1100.RES

Quant Method : D:\HPCHEM\4\METHODS\TPHG1100.M (Chemstation Integrator)

Title : TPH-G Water Method


Last Update : Fri Nov 17 09:37:09 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG1100.M

Volume Inj. Signal #1 Phase : Signal #1 Info

Misc

Signal #2 Phase: Signal #2 Info :

Signal #1 : D:\HPCHEM\4\DATA\111900\K19026.D\FID1A.CH Vial: 26

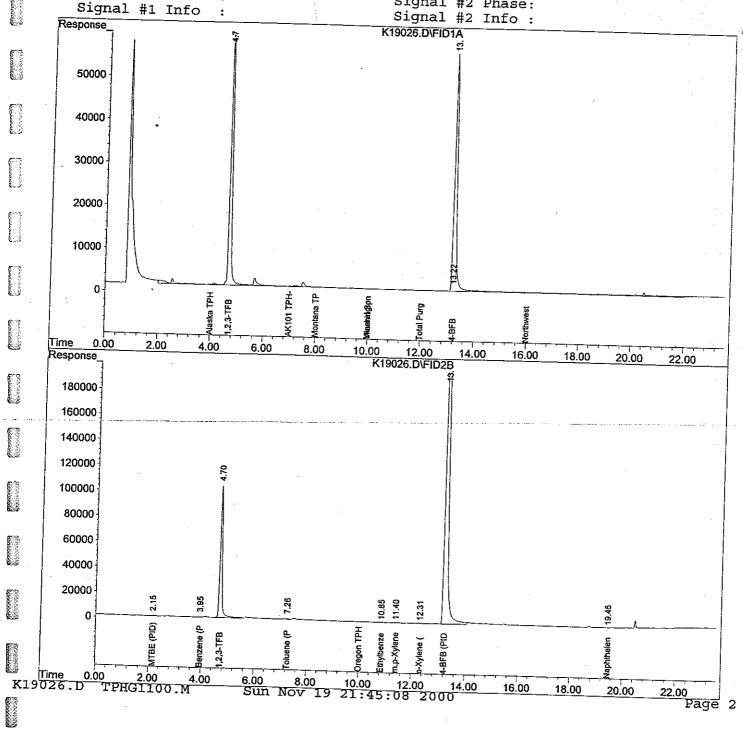
Signal #2 : D:\HPCHEM\4\DATA\111900\K19026.D\FID2B.CH

: 19 Nov 2000 9:21 pm Operator: GAP Sample : b0k0362-23 Inst Misc : GC #8 : 100 uL Multiplr: 1.00

Sample Amount: 0.00

IntFile Signal #1: TPH.E IntFile Signal #2: SURR2.E

Quant Time: Nov 19 21:45 2000 Quant Results File: TPHG1100.RES


Quant Method : D:\HPCHEM\4\METHODS\TPHG1100.M (Chemstation Integrator)

: TPH-G Water Method

Last Update : Fri Nov 17 09:37:09 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG1100.M

Volume Inj. Signal #1 Phase :

Signal #1 : D:\HPCHEM\4\DATA\111900\K19027.D\FID1A.CH Vial: 27

Signal #2 : D:\HPCHEM\4\DATA\111900\K19027.D\FID2B.CH

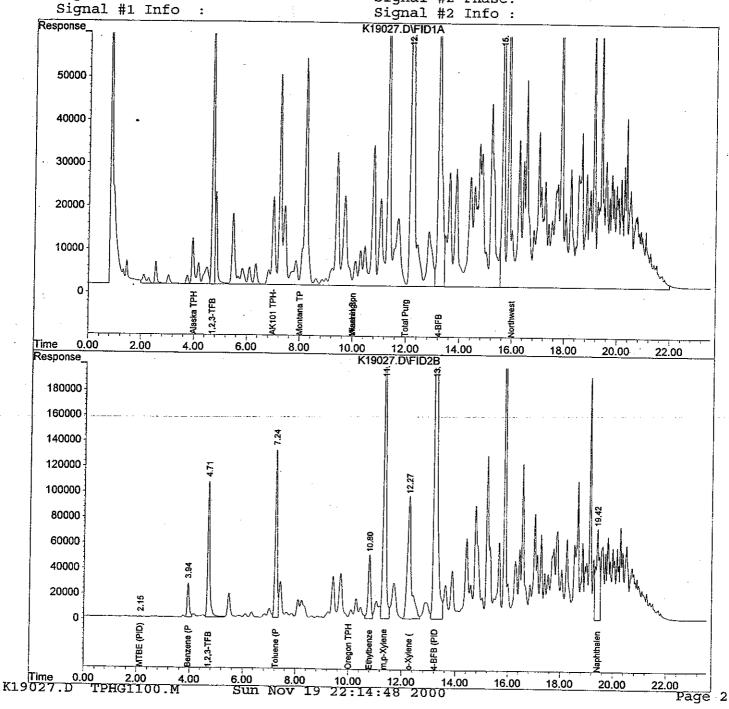
Acq On : 19 Nov 2000 9:50 pm Operator: GAP Sample : b0k0362-24 Inst : GC #8 Misc : 100 uL Multiplr: 1.00

Sample Amount: 0.00

IntFile Signal #1: TPH.E

IntFile Signal #2: SURR2.E

Quant Time: Nov 19 22:14 2000 Quant Results File: TPHG1100.RES


Quant Method : D:\HPCHEM\4\METHODS\TPHG1100.M (Chemstation Integrator)

Title : TPH-G Water Method

Last Update : Fri Nov 17 09:37:09 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG1100.M

Volume Inj. Signal #1 Phase :

Signal #1 : D:\HPCHEM\4\DATA\111900\K19029.D\FID1A.CH Vial: 29

Signal #2 : D:\HPCHEM\4\DATA\111900\K19029.D\FID2B.CH

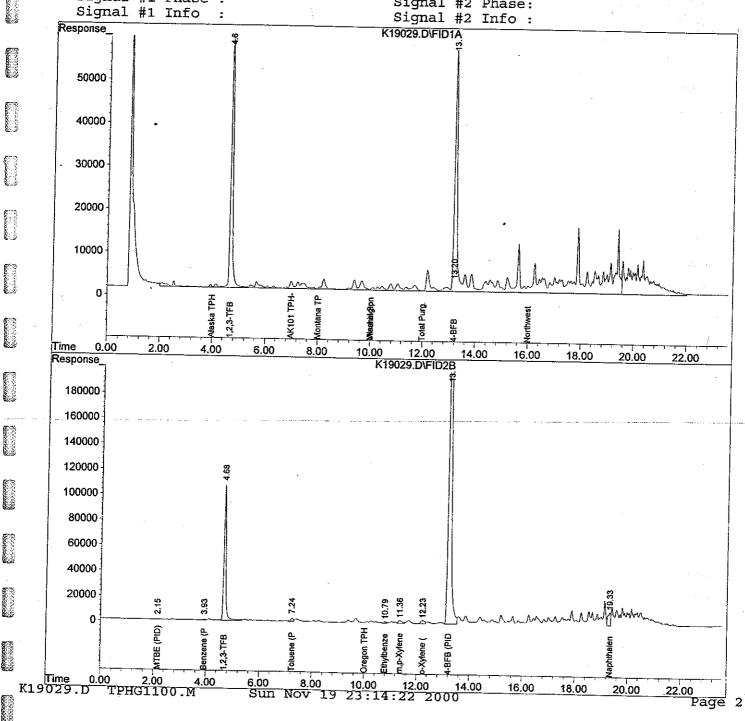
: 19 Nov 2000 10:50 pm Operator: GAP Sample : b0k0362-25 Inst : GC #8 Misc : 100 uL Multiplr: 1.00

Sample Amount: 0.00 IntFile Signal #1: TPH.E IntFile Signal #2: SURR2.E

Quant Time: Nov 19 23:14 2000 Quant Results File: TPHG1100.RES

Quant Method : D:\HPCHEM\4\METHODS\TPHG1100.M (Chemstation Integrator)

Title : TPH-G Water Method


Last Update : Fri Nov 17 09:37:09 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG1100.M

Volume Inj. Signal #1 Phase :

Signal #2 Phase:

1/1/10 Str 1988

Data File : D:\HPCHEM\1\DATA.SEC\K19011.D

Acq On : 11-19-00 16:47:28

Sample : b0k0362-01

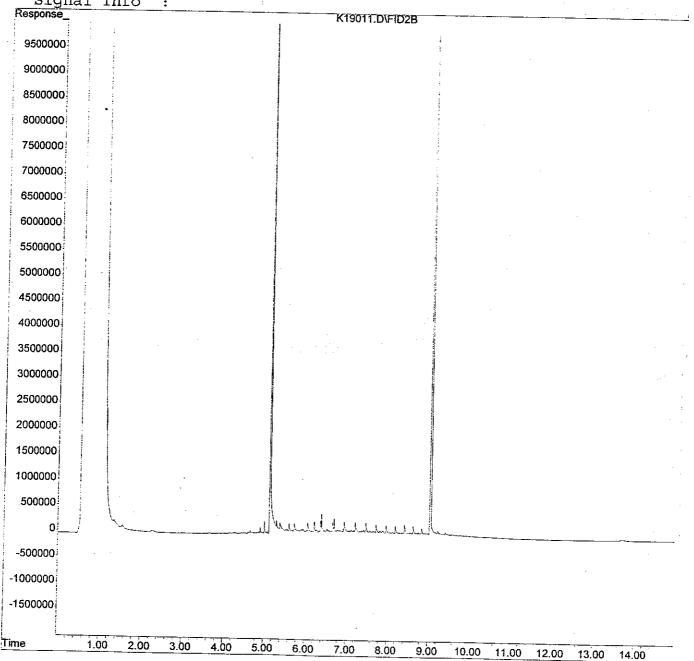
Misc

Operator: BN Inst : GC# 9 Multiplr: 1.00

Sample Amount: 0.00

Vial: 8

IntFile : SURR.E


Quant Time: Nov 19 17:03 2000 Quant Results File: TPHD2.RES

Quant Method : D:\HPCHEM\1\METHODS\TPHD2.M (Chemstation Integrator)

Title : TPH-D Rear Method

Last Update : Wed Nov 15 07:12:24 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Data File : D:\HPCHEM\1\DATA\K19012.D

: 11-19-00 16:47:28

Sample : b0k0362-02

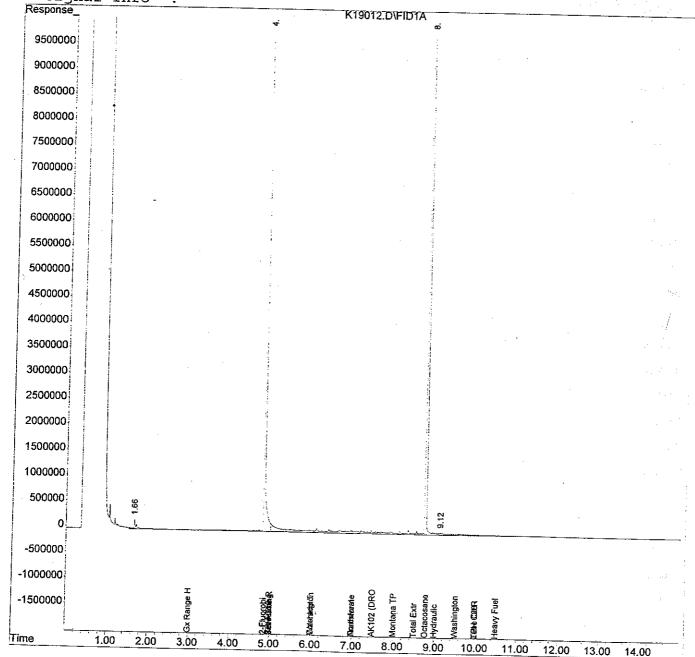
Misc : s

Vial: 9 Operator: BN

Inst : GC# 9 Multiplr: 1.00

Sample Amount: 0.00

IntFile : SURR.E


Quant Time: Nov 19 17:02 2000 Quant Results File: TPHD.RES

Quant Method : D:\HPCHEM\1\METHODS\TPHD.M (Chemstation Integrator)

Title : TPH-D Rear Method

Last Update : Wed Nov 15 07:07:18 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Data File : D:\HPCHEM\1\DATA.SEC\K19013.D

: 11-19-00 17:09:06 Acq On

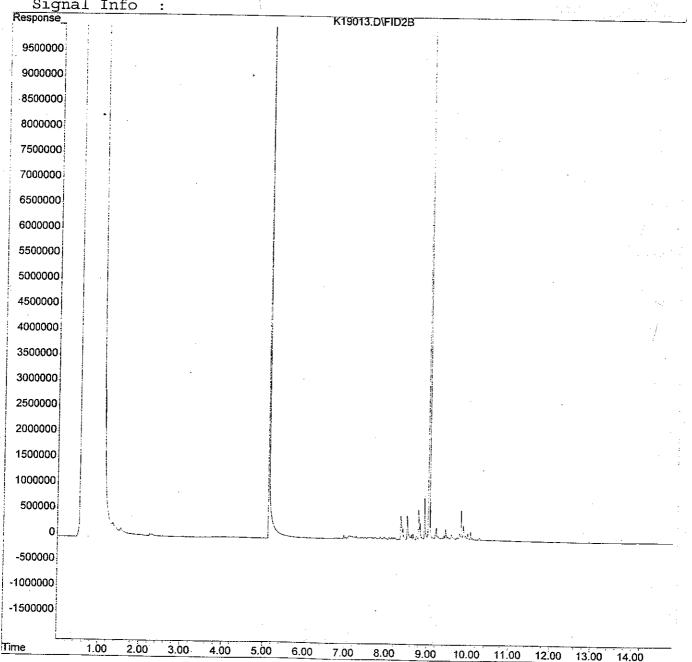
Sample : b0k0362-03

Misc

Operator: BN Inst : GC# 9 Multiplr: 1.00 Sample Amount: 0.00

Vial: 10

IntFile : SURR.E


Quant Time: Nov 19 17:24 2000 Quant Results File: TPHD2.RES

Quant Method : D:\HPCHEM\1\METHODS\TPHD2.M (Chemstation Integrator)

: TPH-D Rear Method Title

Last Update : Wed Nov 15 07:12:24 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Data File : D:\HPCHEM\1\DATA\K19014.D

Acq On : 11-19-00 17:09:06

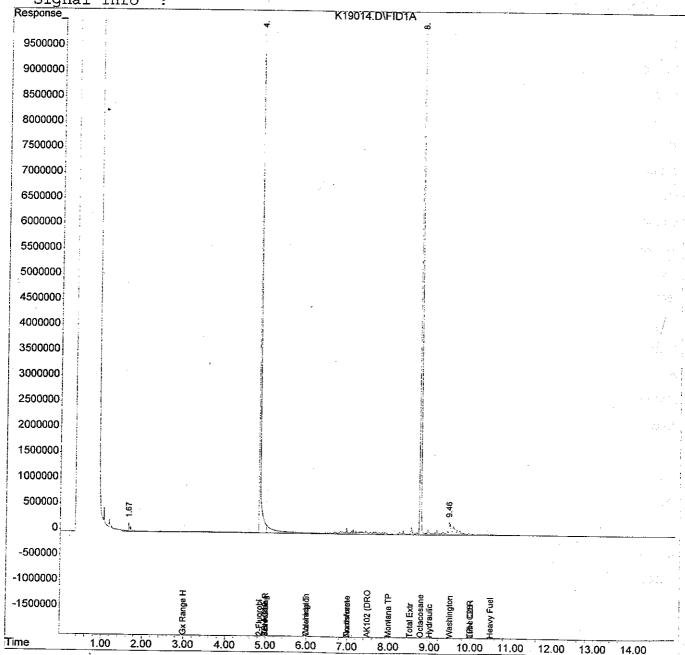
Sample : b0k0362-04

Misc : s

Vial: 11 Operator: BN Inst : GC# 9

Multiplr: 1.00 Sample Amount: 0.00

IntFile : SURR.E


Quant Time: Nov 19 17:24 2000 Quant Results File: TPHD RES

Quant Method: D:\HPCHEM\1\METHODS\TPHD.M (Chemstation Integrator)

Title : TPH-D Rear Method

Last Update : Wed Nov 15 07:07:18 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Data File : D:\HPCHEM\1\DATA.SEC\K19015.D

: 11-19-00 17:31:11 Acq On

Sample : b0k0362-05

Misc

Multiplr: 1.00 Sample Amount: 0.00

Vial: 12

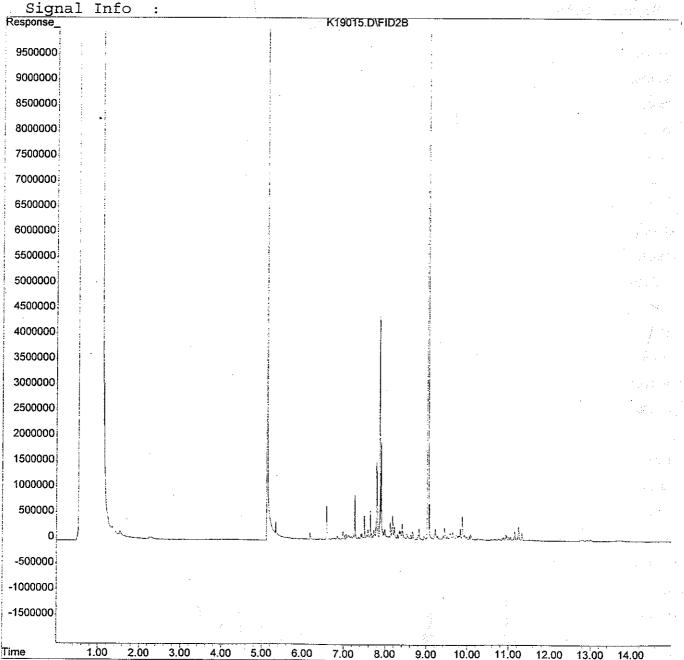
Inst

Operator: BN

: GC# 9

IntFile : SURR.E

Quant Time: Nov 19 17:46 2000 Quant Results File: TPHD2.RES


Quant Method: D:\HPCHEM\1\METHODS\TPHD2.M (Chemstation Integrator)

: TPH-D Rear Method Title

Last Update : Wed Nov 15 07:12:24 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. Signal Phase :

Data File : D:\HPCHEM\1\DATA\K19016.D

: 11-19-00 17:31:11

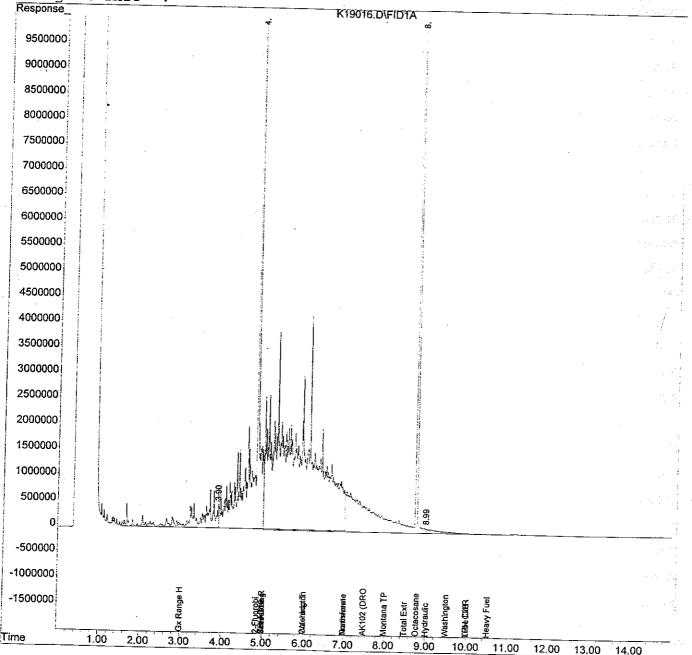
Sample : b0k0362-06

Misc

Vial: 13 Operator: BN Inst

: GC# 9 Multiplr: 1.00 Sample Amount: 0.00

IntFile : SURR.E


Quant Time: Nov 19 17:46 2000 Quant Results File: TPHD.RES

Quant Method: D:\HPCHEM\1\METHODS\TPHD.M (Chemstation Integrator)

Title : TPH-D Rear Method

Last Update : Wed Nov 15 07:07:18 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Data File : D:\HPCHEM\1\DATA.SEC\K19019.D

On : 11-19-00 18:15:50

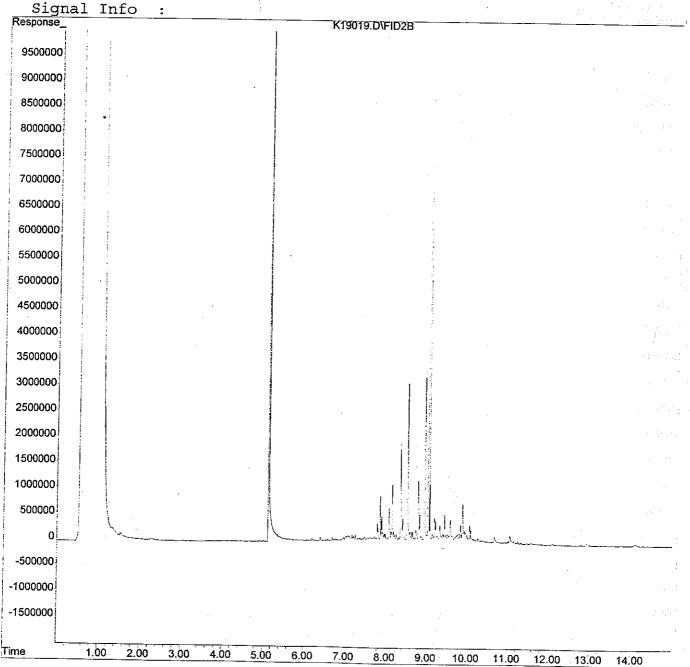
Sample : b0k0362-07

Misc : s

Vial: 14
Operator: BN
Inst : GC# 9

Multiplr: 1.00 Sample Amount: 0.00

IntFile : SURR.E


Quant Time: Nov 19 18:31 2000 Quant Results File: TPHD2.RES

Quant Method: D:\HPCHEM\1\METHODS\TPHD2.M (Chemstation Integrator)

Title : TPH-D Rear Method

Last Update : Wed Nov 15 07:12:24 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Data File : D:\HPCHEM\1\DATA\K19020.D

: 11-19-00 18:15:50

Sample

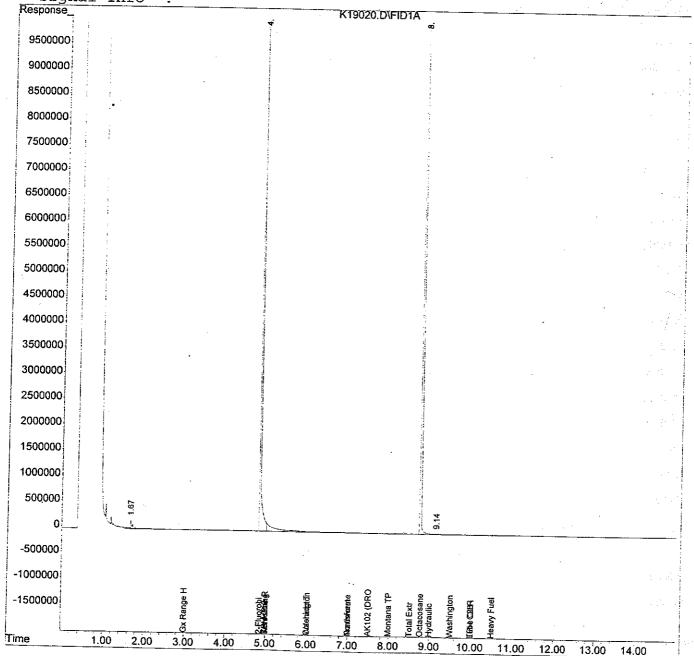
Misc

: b0k0362-08

Operator: BN Inst : GC# 9 Multiplr: 1.00 Sample Amount: 0.00

Vial: 15

IntFile : SURR.E


Quant Time: Nov 19 18:31 2000 Quant Results File: TPHD.RES

Quant Method: D:\HPCHEM\1\METHODS\TPHD.M (Chemstation Integrator)

Title : TPH-D Rear Method

Last Update : Wed Nov 15 07:07:18 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Data File : D:\HPCHEM\1\DATA.SEC\K19021.D

: 11-19-00 18:37:38

Sample : b0k0362-09

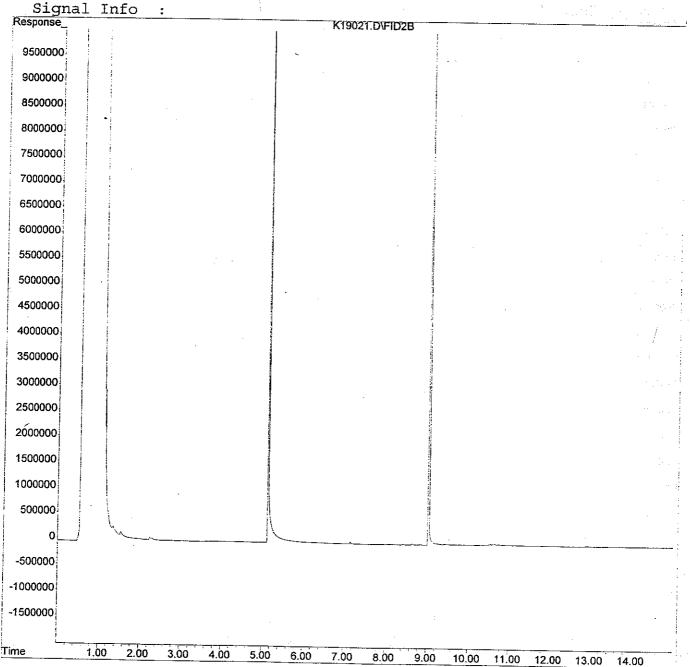
Misc

Vial: 16 Operator: BN Inst : GC# 9

Multiplr: 1.00 Sample Amount: 0.00

IntFile : SURR.E

Quant Time: Nov 19 18:53 2000 Quant Results File: TPHD2.RES


Quant Method : D:\HPCHEM\1\METHODS\TPHD2.M (Chemstation Integrator)

Title : TPH-D Rear Method

Last Update : Wed Nov 15 07:12:24 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. Signal Phase :

Data File : D:\HPCHEM\1\DATA\K19022.D

: 11-19-00 18:37:38

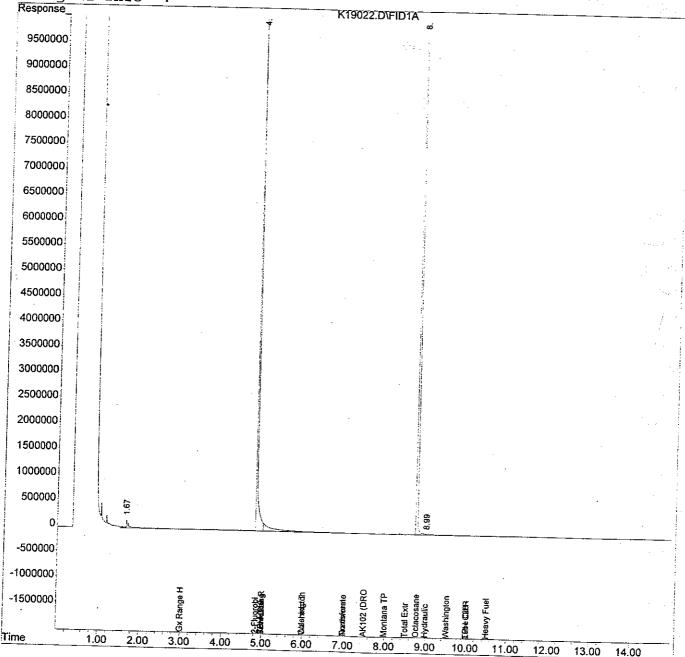
Sample : b0k0362-10

Misc

Vial: 17 Operator: BN Inst : GC# 9

Multiplr: 1.00 Sample Amount: 0.00

IntFile : SURR.E


Quant Time: Nov 19 18:52 2000 Quant Results File: TPHD.RES

Quant Method : D:\HPCHEM\1\METHODS\TPHD.M (Chemstation Integrator)

: TPH-D Rear Method

Last Update : Wed Nov 15 07:07:18 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Data File : D:\HPCHEM\1\DATA.SEC\K19023.D

: 11-19-00 18:59:33 Acq On

Sample : b0k0362-11

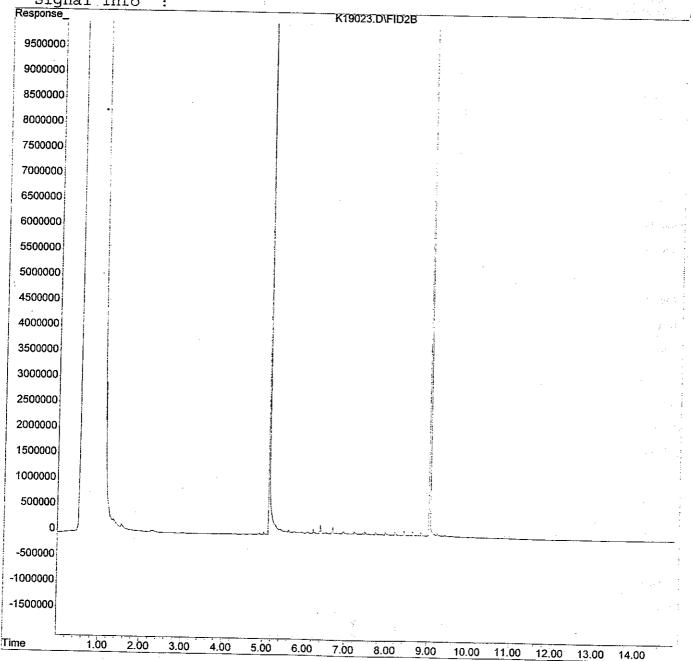
Misc

Operator: BN Inst : GC# 9

Vial: 18

Multiplr: 1.00 Sample Amount: 0.00

IntFile : SURR.E


Quant Time: Nov 19 19:15 2000 Quant Results, File: TPHD2.RES

Quant Method : D:\HPCHEM\1\METHODS\TPHD2.M (Chemstation Integrator)

Title : TPH-D Rear Method

Last Update : Wed Nov 15 07:12:24 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Data File : D:\HPCHEM\1\DATA\K19024.D

: 11-19-00 18:59:33

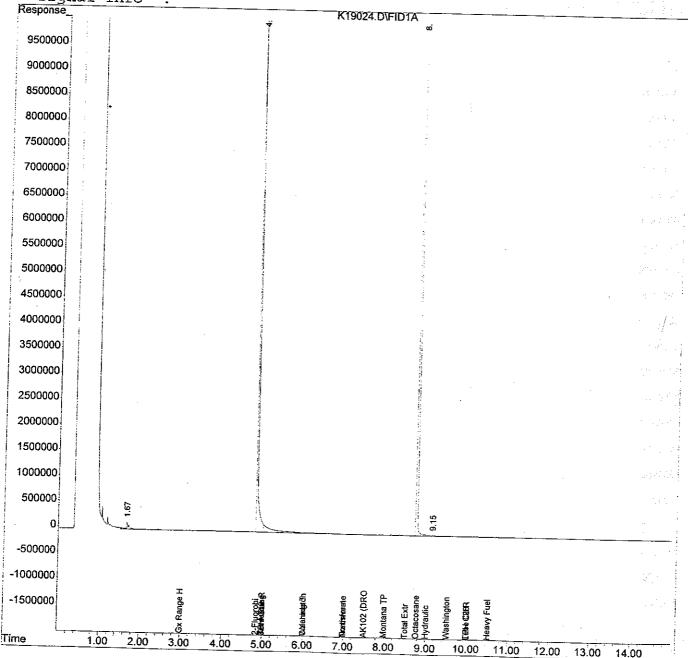
Sample : b0k0362-12

Misc

Vial: 19 Operator: BN Inst : GC# 9

Multiplr: 1.00 Sample Amount: 0.00

IntFile : SURR.E


Quant Time: Nov 19 19:14 2000 Quant Results, File: TPHD.RES

Quant Method: D:\HPCHEM\1\METHODS\TPHD.M (Chemstation Integrator)

: TPH-D Rear Method

Last Update : Wed Nov 15 07:07:18 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Data File : D:\HPCHEM\1\DATA.SEC\K19025.D

Acq On : 11-19-00 19:21:47

Sample : b0k0362-13

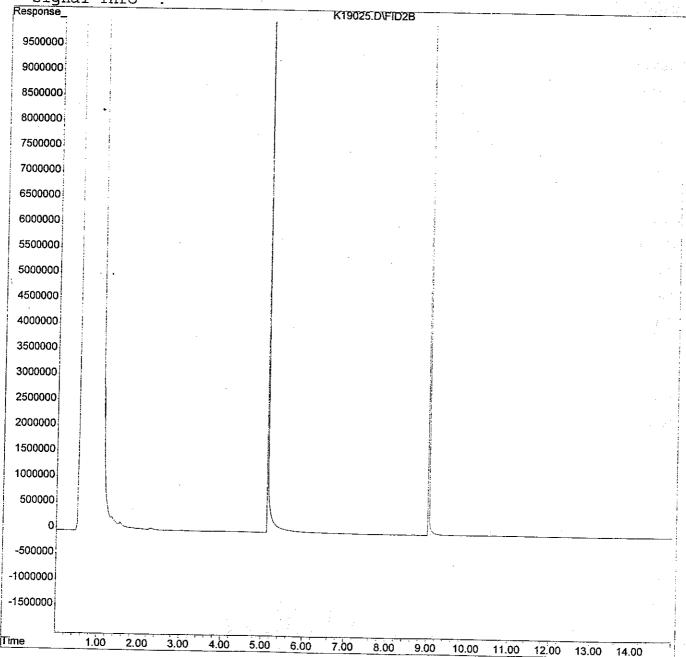
Misc : S

Operator: BN Inst : GC# 9 Multiplr: 1.00

Vial: 20

Sample Amount: 0.00

IntFile : SURR.E


Quant Time: Nov 19 19:37 2000 Quant Results File: TPHD2.RES

Quant Method: D:\HPCHEM\1\METHODS\TPHD2.M (Chemstation Integrator)

Title : TPH-D Rear Method

Last Update : Wed Nov 15 07:12:24 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Data File : D:\HPCHEM\1\DATA\K19026.D

: 11-19-00 19:21:47

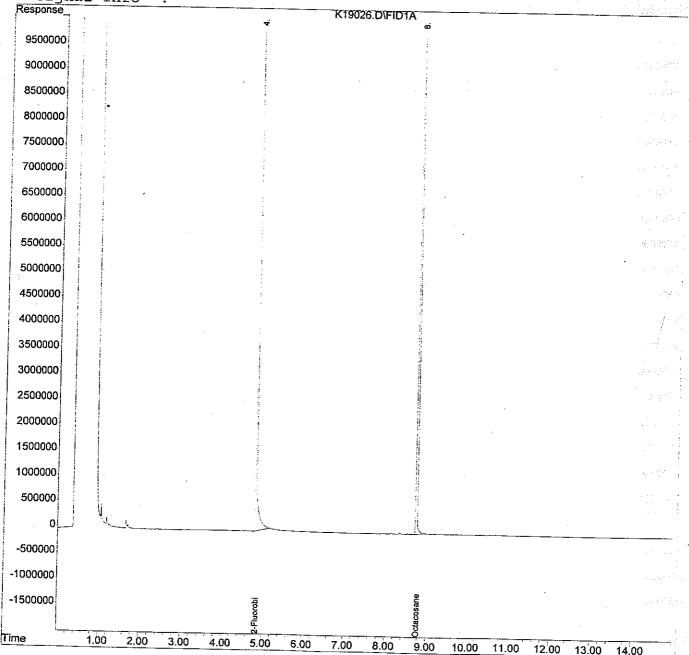
Sample : b0k0362-14

Misc : s

Vial: 21 Operator: BN Inst : GC# 9

Multiplr: 1.00 Sample Amount: 0.00

IntFile : SURR.E


Quant Time: Nov 19 19:37 2000 Quant Results, File: TPHD.RES

Quant Method: D:\HPCHEM\1\METHODS\TPHD.M (Chemstation Integrator)

Title : TPH-D Rear Method

Last Update : Wed Nov 15 07:07:18 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Data File: D:\HPCHEM\1\DATA.SEC\K19027.D

: 11-19-00 19:44:10

Acq On Sample

Misc

: b0k0362-15

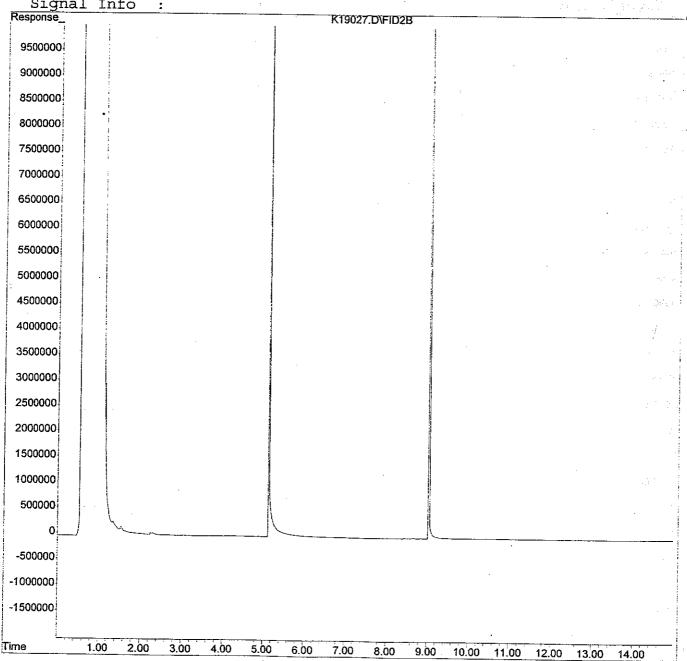
Inst : GC# 9 Multiplr: 1.00 Sample Amount: 0.00

Vial: 22

Operator: BN

IntFile : SURR.E

Quant Time: Nov 19 19:59 2000 Quant Results File: TPHD2.RES


Quant Method: D:\HPCHEM\1\METHODS\TPHD2.M (Chemstation Integrator)

Title : TPH-D Rear Method

Last Update : Wed Nov 15 07:12:24 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. Signal Phase : Signal Info

Data File : D:\HPCHEM\1\DATA\K19028.D

: 11-19-00 19:44:10

Sample : b0k0362-16

Misc : s

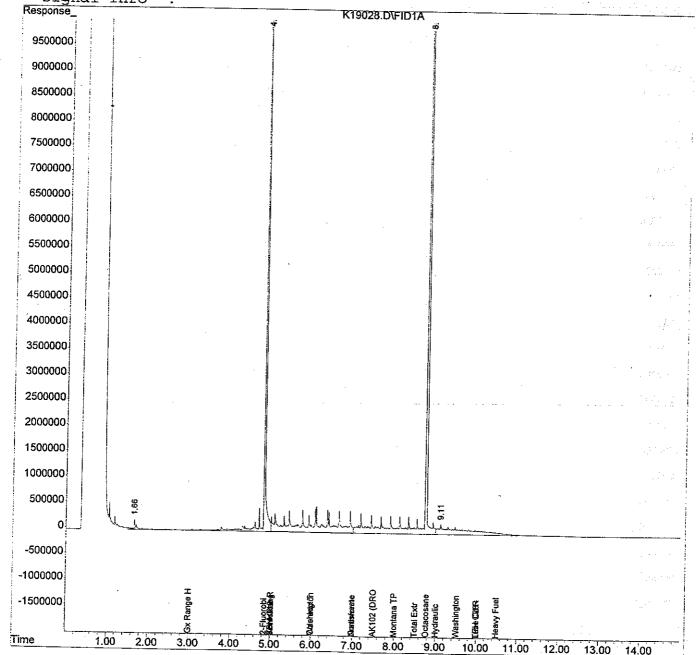
Operator: BN Inst : GC# 9 Multiplr: 1.00

Vial: 23

Sample Amount: 0.00

IntFile : SURR.E

Quant Time: Nov 19 19:59 2000 Quant Results File: TPHD.RES


Quant Method : D:\HPCHEM\1\METHODS\TPHD.M (Chemstation Integrator)

Title : TPH-D Rear Method

Last Update : Wed Nov 15 07:07:18 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. Signal Phase : Signal Info

Data File : D:\HPCHEM\1\DATA.SEC\K19035.D

: 11-19-00 21:12:12

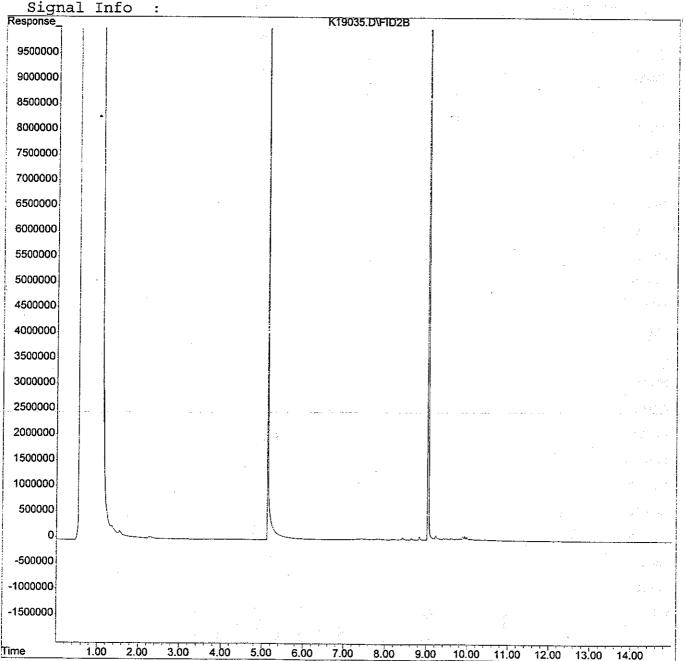
Sample : b0k0364-17 Misc : S

Vial: 24 Operator: BN Inst : GC# 9

Multiplr: 1.00 Sample Amount: 0.00

IntFile : SURR.E

Quant Time: Nov 19 21:27 2000 Quant Results File: TPHD2.RES


Quant Method : D:\HPCHEM\1\METHODS\TPHD2.M (Chemstation Integrator)

Title : TPH-D Rear Method

Last Update : Wed Nov 15 07:12:24 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. Signal Phase :

Data File : D:\HPCHEM\1\DATA.SEC\K20007.D

Acq On : 11-20-00 6:28:19

Sample

Misc : S R1

: b0k0362-18

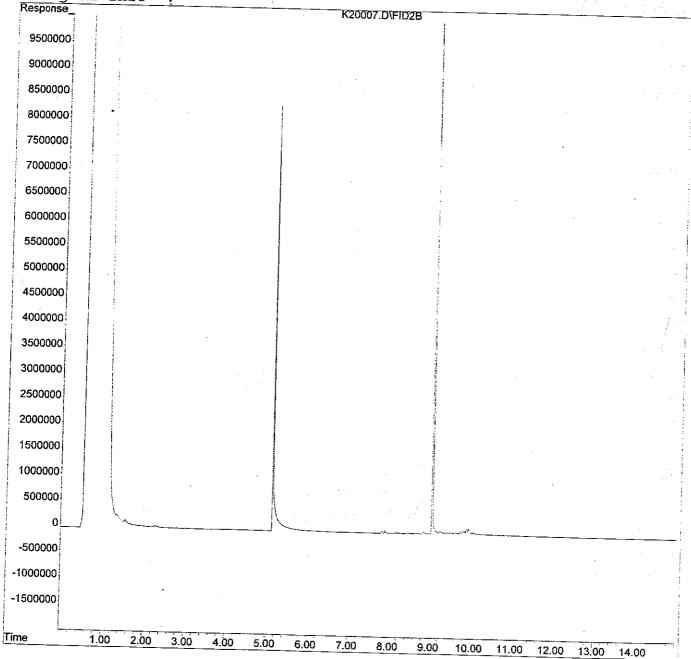
Inst : GC# 9 Multiplr: 1.00 Sample Amount: 0.00

Vial: 4

Óperator: BN

IntFile : SURR.E

Quant Time: Nov 20 6:44 2000 Quant Results File: TPHD2.RES


Quant Method: D:\HPCHEM\1\METHODS\TPHD2.M (Chemstation Integrator)

: TPH-D Rear Method

Last Update : Wed Nov 15 07:12:24 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. Signal Phase : Signal Info

Data File : D:\HPCHEM\1\DATA.SEC\K19037.D

Acq On : 11-19-00 21:34:28

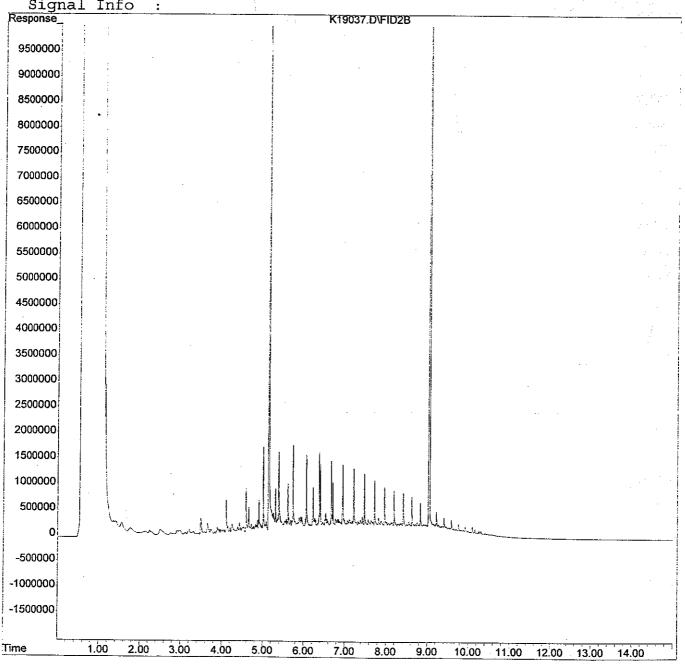
Sample : b0k036#-19

Misc : s 2

Vial: 26 Operator: BN Inst : GC# 9 Multiplr: 1.00

IntFile : SURR.E Sample Amount: 0.00

Quant Time: Nov 19 21:50 2000 Quant Results File: TPHD2.RES


Quant Method : D:\HPCHEM\1\METHODS\TPHD2.M (Chemstation Integrator)

Title : TPH-D Rear Method

Last Update : Wed Nov 15 07:12:24 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. : Signal Phase : Signal Info :

Data File : D:\HPCHEM\1\DATA\K20008.D

Acq On . : 11-20-00 6:28:19

Sample : b0k0362-20

Misc

IntFile

: S R1

: SURR.E

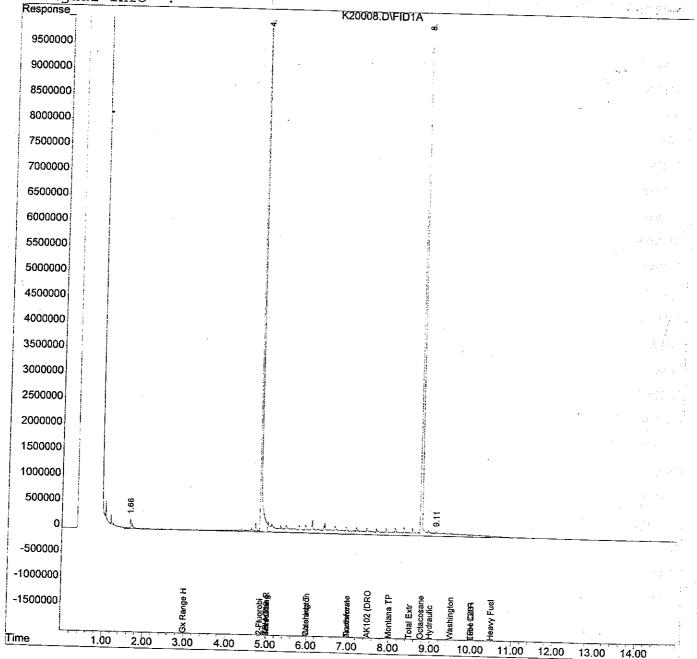
Vial: 5

Operator: BN Inst : GC# 9

Multiplr: 1.00

Sample Amount: 0.00

Quant Time: Nov 20 6:43 2000 Quant Results File: TPHD.RES


Quant Method : D:\HPCHEM\1\METHODS\TPHD.M (Chemstation Integrator)

: TPH-D Rear Method

Last Update : Wed Nov 15 07:07:18 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. Signal Phase : Signal Info

Data File : D:\HPCHEM\1\DATA.SEC\K20013.D

Acq On : 11-20-00 7:34:35

Sample : b0k0362-21

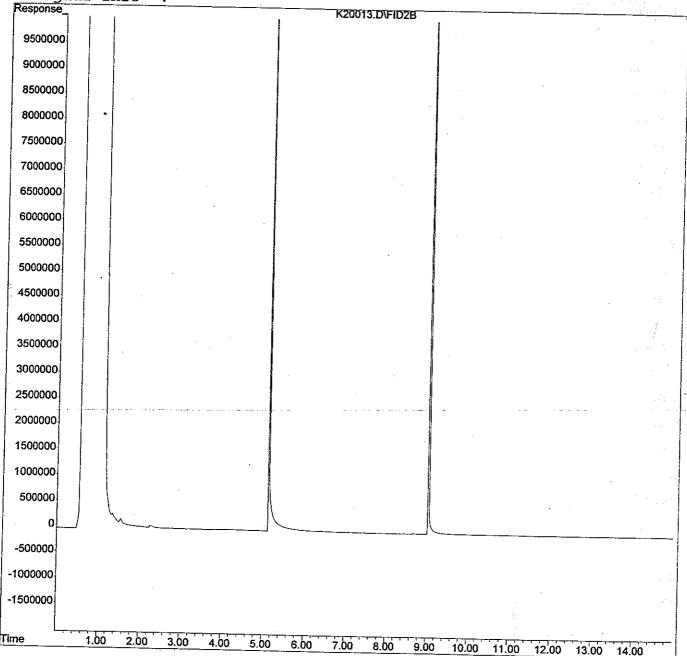
Misc : S

IntFile : SURR.E Vial: 10

Operator: BN Inst : GC# 9

Multiplr: 1.00 Sample Amount: 0.00

Quant Time: Nov 20 7:50 2000 Quant Results File: TPHD2.RES


Quant Method : D:\HPCHEM\1\METHODS\TPHD2.M (Chemstation Integrator)

: TPH-D Rear Method Title

Last Update : Wed Nov 15 07:12:24 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. Signal Phase : Signal Info

Data File : D:\HPCHEM\1\DATA\K20014.D

Acq On : 11-20-00 7:34:35

Sample : b0k0362-22

Misc : S

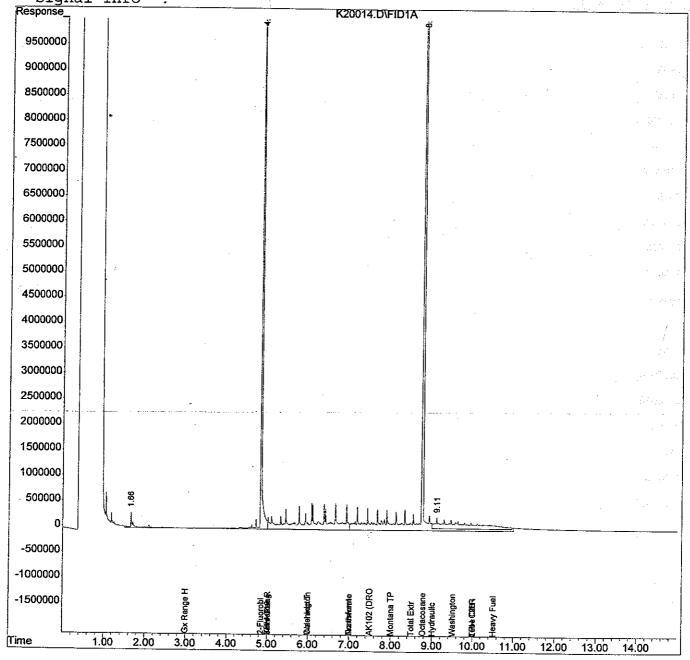
IntFile : SURR.E

Vial: 11 Operator: BN Inst : GC# 9

Multiplr: 1.00

Sample Amount: 0.00

Quant Time: Nov 20 7:49 2000 Quant Results File: TPHD.RES


Quant Method: D:\HPCHEM\1\METHODS\TPHD.M (Chemstation Integrator)

Title : TPH-D Rear Method

Last Update : Wed Nov 15 07:07:18 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. : Signal Phase : Signal Info :

Snamer cheron vehore

Data File : D:\HPCHEM\1\DATA.SEC\K20015.D

Acq On : 11-20-00 7:56:41

Sample : b0k0362-23

Misc : S

. DUNUJUZ-Z

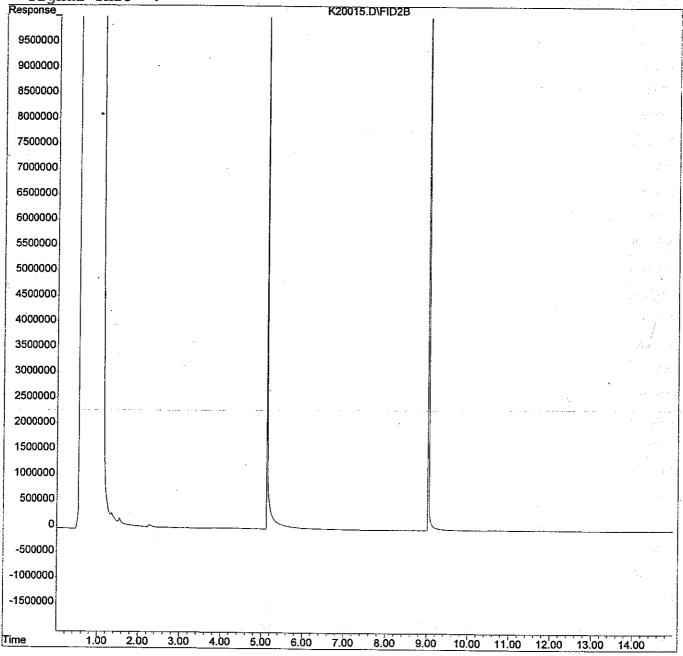
IntFile : SURR.E

Vial: 12 Operator: BN

Inst : GC# 9

Multiplr: 1.00 Sample Amount: 0.00

Quant Time: Nov 20 8:12 2000 Quant Results File: TPHD2.RES


Quant Method: D:\HPCHEM\1\METHODS\TPHD2.M (Chemstation Integrator)

Title : TPH-D Rear Method

Last Update : Wed Nov 15 07:12:24 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. : Signal Phase : Signal Info :

Data File : D:\HPCHEM\1\DATA\K20016.D

: 11-20-00 7:56:41 Acq On

Sample : b0k0362-24

Misc : S

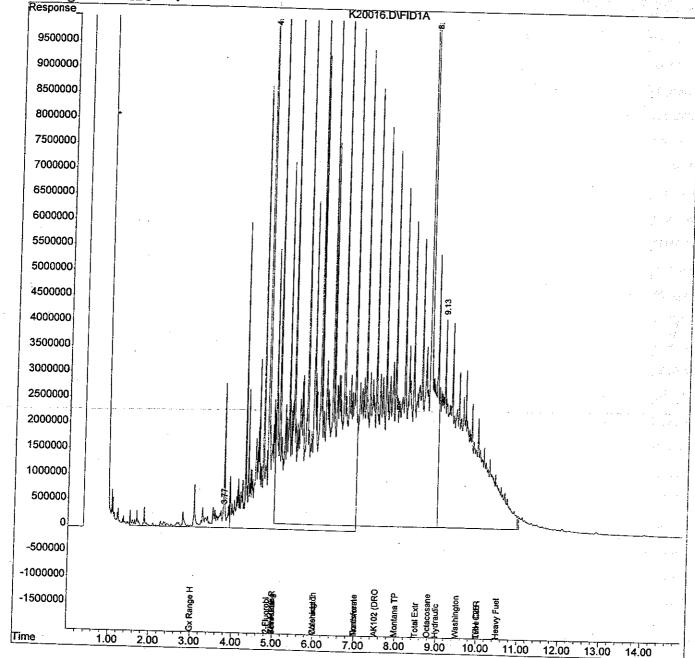
IntFile : SURR.E

Vial: 13 Operator: BN

Inst : GC# 9 Multiplr: 1.00

Sample Amount: 0.00

Quant Time: Nov 20 10:30 2000 Quant Results File: TPHD.RES


Quant Method: D:\HPCHEM\1\METHODS\TPHD.M (Chemstation Integrator)

: TPH-D Rear Method

Last Update : Wed Nov 15 07:07:18 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. : Signal Phase : Signal Info

Data File : D:\HPCHEM\1\DATA.SEC\K20019.D

: 11-20-00 8:41:11 Acq On

Sample : b0k0362-25

Misc : S

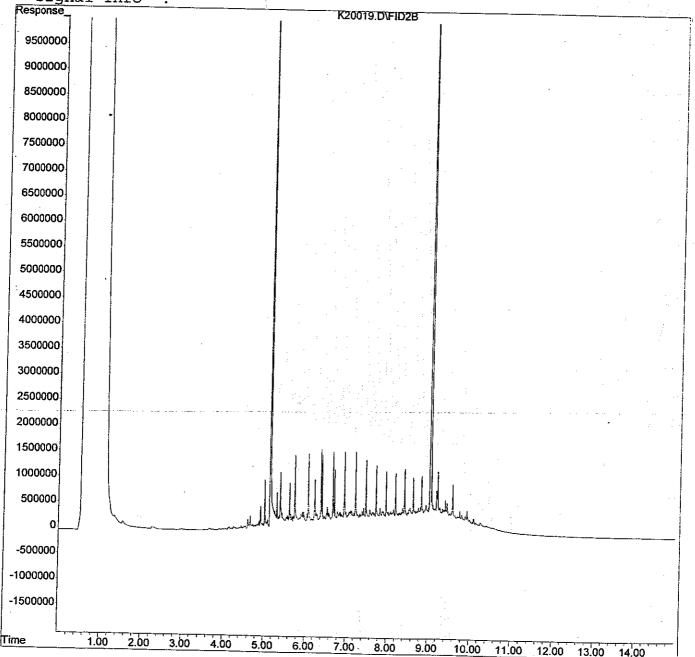
IntFile : SURR.E

Vial: 14 Operator: BN

Inst : GC# 9

Multiplr: 1.00 Sample Amount: 0.00

Quant Time: Nov 20 8:56 2000 Quant Results File: TPHD2.RES


Quant Method : D:\HPCHEM\1\METHODS\TPHD2.M (Chemstation Integrator)

Title : TPH-D Rear Method

Last Update : Wed Nov 15 07:12:24 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. Signal Phase : Signal Info

Environmental Laboratory Network www.ncalabs.com

11/20 North Creek Exwy N, Suine 419, Bothell, WA 98011.8244
East 1715 Montgomery, State 5, Spokane, WA 99200-47/6

Service Control

Section 1

Sections

9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

FAX 924-9290 FAX 906-9210 (509) 924-9200 (503) 906-9200

FAX 429, 9210 FAX 382-7588 (475) 420-9200 (541) 383-9310

CHAIN OF CUSTODY REPORT

NCA WO 70 9% ھ 6 1 <1 Ω 0 ģ တ S TURNAROUND REQUEST in Business Days* *Turnaround Requests less than standard may incur Rush Charges. DATE: (| 7 TIME DATE: TIME Petroleum Hydrocarbon Analyses COMMENTS Please Specify 4 3 ~ Work Order#: Boko361 SAMPHAN WEREN OTHER R 6G UPON RECEIPT ĸ 4 CONT. # OF 10 7 MATRIX (W, S, O) V Jan La TVC France PRANL かかえの REQUESTED ANALYSES RECEIVED BY: RECEIVED BY: PRINT NAME. PRINT NAME: DATE: 14/14/00 FAX: 266-727-33 50 PO. NUMBER TIME: 1840 INVOICE TO: DATE: TIME: NWTPH-GX /BETX FIRM: CRS ADDRESS: 2025 FIRST AVE SUE 500 1433 1424 五 五 子 h6h1 1345 22h' 1339 1370 (333 1335 1355 1350 6413 10 20 SAMPLED BY: LENIN LUND MARK PROJECT NAME: TRANS MOUNTALL DATE/TIME SAMPLING との女としの, ひれんかって REPORT TO: DIM D RANBY OGEL LANDMARK 00/41/1 00/51/11 30/11/1 30/14/1 30/4/11 00/h1/17 20/4/20 714/00 4/14/00 09/21/09 00/51/2 13.PEX-61-5-1.5 1/4/00 00/h1/m 00/h//n RELINQUISHED BY: LENGTH CL PHONE: 206-724-0744 202 15. PEX-63- B-6 9 PEX -57 - 13 -4 5.PEX-53-5-1.5 14 PEX-62- B-6 0. PEX-58-5-3 8. PEX- 56-B-5 11. PEX-59-5-2 12. PEX-60-B-4 1. PEX-49-5-6 3. TEX-51-5-2 1 (Ex -52-5.2 6PEX-54-B-4 Z-S-55-X-201 PRINT NAME: KEVIN CLIENT SAMPLE IDENTIFICATION 2. PEX-50-5-ADDITIONAL REMARKS: PROJECT NUMBER: RELINQUISHED BY: PRINT NAME: CLIENT:

COC REV 3/99

9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

FAX 382-7588 (503) 906-9200 (509) 924-9200 (425) 420-9200

FAX 906-9210 FAX 420-9210 FAX 924-9290

Work Order #: BOK0362 (541) 383-9310

NCA WO -23 Q 48 5 TEMP. 9 PAGE 2 OF 2 ٩ **a** ત 1 <1 TURNAROUND REQUEST in Business Days* *Turnaround Requests less than standard may incur Rush Charges. DATE: TIME TIME: DATE: Petroleum Hydrocarbon Analyses 10 7 5 4 3 2 Please Specify COMMENTS Organic & Inorganic Analyses OTHER Nex SAMPLES WERE NOT @ CONT. 2-6C UPON' PECEIPI # OF FIRM: MATRIX (W, S, O) TONTA (DIENTS) SAMB REQUESTED ANALYSES RECEIVED BY RECEIVED BY: PRINT NAME: PRINT NAME CHAIN OF CUSTODY REPORT DATE: 11/14/00 TIME: 1837 FAX: 26 - 724-3350 P.O. NUMBER INVOICE TO DATE TIME NOTPH-GX /BETX NOTPH-DX Ð PROJECT NAME: TRANS MON NITANN 1550 KENN LUNDAN ARK 1553 1520 97.5) 1557 FIRM: FIRM: 2. 0Ex-65-5-4 1/14/00 1502 PEX-64-5-4 1/4/00 1457 ADDRESS: 2025 151 ANG STG DATE/FIME REPORT TO: DANID RAWB VOGEL SAMPLING 12186 AW undmark 6. PEX-69-B-2.5 "/14/00 20/41/2 414/00 5. PEX-64-B-2 14/14/00 1,4/00 3. PEX-66-5-3.5 "/14/00 00/41/m 10. PEx - 23 - B-1.5 4/14/00 PHONE 206-728-6744 W/25 SBATTLE 4. PEX-67-5-2 8. PEX-71-8-3 7. PEX-70-8-3 RELINQUISHED BY: 9 DEX-72- B-1 CLIENT SAMPLE IDENTIFICATION ADDITIONAL REMARKS: PROJECT NUMBER: SAMPLED BY: RELINQUISHED BY: PRINT NAME: PRINT NAME: CLIENT 5 4

COC REV 3/99

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

 425,420,9200
 fax 425,420,9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

 509,924,9200
 fax 509,924,9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project: Trans Mountain - Laurel Station

Project Number: not provided Project Manager: David Raubvogel

Reported: 12/04/00 15:36

ANALYTICAL REPORT FOR SAMPLES

	Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
	Stock-1	B0K0455-01	Soil	11/16/00 15:05	11/16/00 18:45
	Stock-2	B0K0455-02	Soil	11/16/00 15:10	11/16/00 18:45
8 73	Baker-3-F	 B0K0455-03	Water	11/16/00 15:25	11/16/00 18:45
	Baker-4-N	B0K0455-04	Water	11/16/00 15:30	11/16/00 18:45
71.,,,-	CELL2-G	B0K0455-05	Soil	11/16/00 16:30	11/16/00 18:45
	CELL2-H	B0K0455-06	Soil	11/16/00 16:33	11/16/00 18:45
20	CELL2-J	B0K0455-08	Soil	11/16/00 16:38	11/16/00 18:45
	CELL2-K	B0K0455-09	Soil	11/16/00 16:40	11/16/00 18:45
	CELL2-L	B0K0455-10	Soil	11/16/00 16:43	11/16/00 18:45
a	CELL2-M	B0K0455-11	Soil	11/16/00 16:45	11/16/00 18:45
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CELL2-N	B0K0455-12	Soil	11/16/00 16:48	11/16/00 18:45
2	PEX-74-B-4	B0K0455-13	Soil	11/16/00 12:00	11/16/00 18:45
***	PEX-75-B-4	B0K0455-14	Soil	11/16/00 12:00	11/16/00 18:45
ΙŠ					

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 1 of 19

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

425.420.9200 fax 425.420.9210

423-420-3200 Max 445-420-3710 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509-924-9290 fax 509-924-9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503-906-9200 fax 503-906-9210

Portland

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 12/04/00 15:36

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B

North Creek Analytical - Bothell

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
Analyte Result Limit Units Dilution Batch Prepared Analyzed Method N									
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K17009	11/17/00	11/17/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	ч	н	17	11	**	e	
l'oluene	ND	0.0500	"	*1	**	**	**	"	4 -
Ethylbenzene	ND	0.0500	TT TT	11	n	H	**	n	
Kylenes (total)	ND	0.100	Ħ	11	н		11	τι	
Surrogate: 4-BFB (FID)	94.9 %	50-150	· · · · · · · · · · · · · · · · · · ·		"	"	"	"	
• .	83.5 %	50-150			"	"	ţţ	"	
Analyte Result Limit Units Dilution Batch Prepared Analyzed Method						•			
Gasoline Range Hydrocarbons	6.67	5.00	mg/kg dry	1	0K17009	11/17/00	11/17/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	T	**	"		n	#	
Toluene -	ND	0.0500	11	**	11	n	**	u :	
Ethylbenzene	ND	0.0500	"	u	***	17	11	u	
(ylenes (total)	ND	0.100	**	"	11	11	11	н .	
Surrogate: 4-BFB (FID)	95.8 %	50-150			. "	u	"	"	
·	84.1 %	50-150			"	"	"	"	
Baker-3-F (B0K0455-03) Water	Sampled: 11/16/00	15:25 Re	ceived: 11/16	6/00 18:45					
Gasoline Range Hydrocarbons	258	50.0	ug/i	1	0K16036	11/16/00	11/16/00	NWTPH-Gx/8021B	
Benzene	33.8	0.500	=	**	17	**	•	"	
Toluene	38.6	0.500	"	"		u ·		**	
lthylbenzene	2.14	0.500	Ħ	11	11	**	"	#	
(ylenes (total)	25.8	1.00	11	11	W	*	17	lf .	
urrogate: 4-BFB (FID)	110 %	50-150	····		"	"	n		
, ,	1000/	50 150							

North Creek Analytical - Bothell

425.420.9200 fax 425.420.9210
East 11115 Montgomery, Suite B, Spokane, WA 99206-4776
509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 Portland 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

500 Market Place Tower, 2025 1st Ave

Seattle WA, 98121

Project: Trans Mountain - Laurel Station

Project Number: not provided Project Manager: David Raubvogel

Reported: 12/04/00 15:36

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Baker-4-N (B0K0455-04) Water S	ampled: 11/16/	00 15:30 Re	ccived: 11/1	6/00 18:45	*				
Gasoline Range Hydrocarbons	Analyte Result Limit Units Dilution Batch Prepared Analyzed Method		NWTPH-Gx/8021B						
Benzene	1200	25.0	11	**	. 4	. #	11	11	
Toluene	2180	25.0	17	11	11	11	11	n .	1
Ethylbenzene	123	25.0	н	"	n		**	**	
Xylenes (total)	1340	50.0	11	н	17	77	11	u .	
Surrogate: 4-BFB (FID)	Result		"						
Surrogate: 4-BFB (PID)	109 %	50-150			"	· . //	"	"	
CELL2-G (B0K0455-05) Soil Sam	pled: 11/16/00 1	l6:30 Recei	ved: 11/16/0	0 18:45		:			٠
Gasoline Range Hydrocarbons				****	0K22020	11/22/00	11/25/00	NWTPH-Gy/8021B	
Benzene	ND	0.0500	11					"	
Toluene	ND	0.117	и	11	11	. "	**	Ħ	R-03
Ethylbenzene	0.149	0.0500	11	"	47	0	11	**	10-0.
Xylenes (total)	0.881	0.100	11	ţſ	11	**	91	tr	
Surrogate: 4-BFB (FID)	133 %	50-150			"	"	"		
Surrogate: 4-BFB (PID)	98.0 %	<i>50-150</i>			tf .	"	"	"	
CELL2-H (B0K0455-06) Soil Samp	oled: 11/16/00 1	6:33 Receiv	ved: 11/16/00	D 18:45				14.	
Gasoline Range Hydrocarbons	26.9	5.00	mg/kg dry	1	0K22020	11/22/00	11/25/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	#	n	11	11	11		
Toluene	ND	0.0500	17		tt	17	11	11	
Ethylbenzene	0.0521	0.0500	11	tr.		17	**		
Xylenes (total)	ND	0.231	н	**	11	**	n	m ;	R-03
Surrogate: 4-BFB (FID)	115 %	50-150			n	ır	,,	<i>"</i>	
Surrogate: 4-BFB (PID)		50-150			"	"	"	"	

North Creek Analytical - Bothell

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 12/04/00 15:36

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B

North Creek Analytical - Bothell

A 1 d-	D16		TT :4	D.:14:	D-4-1	D J	4 1 1	3.6.4. 1	37.
Analyte	Resun	Limit	Units	Dilution	Batch	Prepared	Anaiyzea	Method	Notes
CELL2-J (B0K0455-08) Soil Sampl	ed: 11/16/00 1	6:38 Receiv	ed: 11/16/00	18:45					
Gasoline Range Hydrocarbons	41.3	5.00	mg/kg dry	1	0K22020	11/22/00	11/25/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	**	tr .	tr	n	*1	tt	
Toluene	ND	0.0844	11	н .	H	11	н	**	, R-0
Ethylbenzene	0.0925	0.0500	17	#	11	"	"	17	
Kylenes (total)	0.484	0.100	**	ारा	11	**	Ħ	31	
ELL2-J (B0K0455-08) Soil Sampled: 11/16/00 16:38 Received: 11/16/00 18:45 asoline Range Hydrocarbons				"					
Surrogate: 4-BFB (PID)	103 %	50-150			#	"	"	tt .	
Analyte									
CELL2-J (B0K0455-08) Soil Sampled: 11/16/00 16:38 Received: 11/16/00 18:45									
Benzene	ND	0.0851	11	**		**	11	n	R-0
Tolu e ne	ND	0.205	11	er .	11	II.	11	n	R-0
Ethylbenzene	0.296	0.0500	"		h	11	11	Ħ	
Kylenes (total)	1.23	0.100	**	11	***		**	n	
Surrogate: 4-BFB (FID)	199 %	50-150			u	"	"	"	S-c
lurrogate: 4-BFB (PID)	L2-J (B0K0455-08) Soil Sampled: 11/16/00 16 Ine Range Hydrocarbons 41.3 ene ND ND Ine Range Hydrocarbons ND Ine Range Hydrocarbons 0.0925 Ines (total) 0.484 Ingate: 4-BFB (FID) 136 % Ines (total) Ine Range Hydrocarbons Ines (total) Ine Range Hydrocarbons Ine Range Hydrocarbons Ines (total) I				"	"	"	. "	
Analyte									
Analyte Result Limit Units Dilution Batch Prepared Analyzed Method No No CELL2-J (B0K0455-08) Soil Sampled: 11/16/00 16:38 Received: 11/16/00 18:45									
oluene	ND	0.0849	n	17	**	rr	11	rr	R-0
thylbenzene	ND	0.149	n	**	Ħ .	Ħ	**	11	R-0
(ylenes (total)			er	R-0					
urrogate: 4-BFB (FID)	133 %	50-150			"	"	"	"	
urrogate: 4-RFR (PID)	101 %	50-150			"	"	"	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain o custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network**

425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 12/04/00 15:36

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

		*******	Reporting							
	Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
West 20	CELL2-M (B0K0455-11) Soil	Sampled: 11/16/00	16:45 Rece	ived: 11/16/(00 18:45				-	·1
	Gasoline Range Hydrocarbons	62.7	5.00	mg/kg dry	1	0K22020	11/22/00	11/25/00	NWTPH-Gx/8021B	
	Benzene	0.0567	0.0500	и	"	TT.	14	11	"	
	Toluene	ND	0.171	77	tr	#1	**	п	11	R-03
€ES®	Ethylbenzene	0.158	0.0500	11	**	**	tr	11	n	2000
	Xylenes (total)	0.919	0.100	**	**	**	17	ŧı	π	
E 3	Surrogate: 4-BFB (FID)	142 %	50-150		-,	#	"	#	и .	
	Surrogate: 4-BFB (PID)	99.6%	50-150			"	"	"	"	
	CELL2-N (B0K0455-12) Soil	Sampled: 11/16/00 1	6:48 Recei	ved: 11/16/0	0 18:45					
Ø2:0	Gasoline Range Hydrocarbons	69.3	5.00	mg/kg dry	1	0K22020	11/22/00	11/25/00	NWTPH-Gx/8021B	
e e	Benzene	ND	0.0500		rr	n	11	н	n	
87 . 13	Toluene	ND	0.114	**	11	H	"	11	11	R-03
لأسطة	Ethylbenzene	ND	0.146	11	v	11	ır	**	Ħ	R-03
	Xylenes (total)	ND	0.513	n	π	**	11	"	11	R-03
	Surrogate: 4-BFB (FID)	139 %	50-150			"	"	"	"	
	Surrogate: 4-BFB (PID)	97.2 %	50-150			tt	. "	"	n	
er or i	PEX-74-B-4 (B0K0455-13) Soil	Sampled: 11/16/00	12:00 Rec	eived: 11/16/	00 18:45					
	Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K22020	11/22/00	11/24/00	NWTPH-Gx/8021B	
	Benzene	ND	0.0500	n	17	,,	**	tr	11	
	Toluene	ND	0.0500	17	**	tt	n	17	н	
	Ethylbenzene	ND	0.0500	н	H	11	11	н	17	
	Xylenes (total)	ND	0.100	n	Ħ	н	w v	**	11	
	Surrogate: 4-BFB (FID)	111 %	50-150			#	"	**	"	
Sec.	Surrogate: 4-BFB (FID) Surrogate: 4-BFB (PID)	103 %	50-150			#	Ħ	"	"	

North Creek Analytical - Bothell

425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 Portland 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave

Project Number: not provided

Reported:

Seattle WA, 98121

Project Manager: David Raubvogel

12/04/00 15:36

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PEX-75-B-4 (B0K0455-14) Soil	Sampled: 11/16/00	12:00 Rec	eived: 11/16	/00 18:45					:
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K22020	11/22/00	11/24/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	**	*1	11	ú	71	u	
Toluene	ND	0.0500	17		I†		**	ti .	1
Ethylbenzene	ND	0.0500	**	Ħ	"	rt	***	11	
Xylenes (total)	ND	0.100	u	п	"	n	17	tr	
Surrogate: 4-BFB (FID)	108 %	50-150			"	"	"	"	
Surrogate: 4-BFB (PID)	100 %	50-150			# .	"	"	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain o custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9290 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 12/04/00 15:36

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

Contract of the Contract of th	Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
V 2	Stock-1 (B0K0455-01) Soil S	ampled: 11/16/00 15:05	Receive	d: 11/16/00 1	8:45					-
	Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	0K17005	11/17/00	11/18/00	NWTPH-Dx	
	Lube Oil Range Hydrocarbons	ND	25.0	n	O	"	O	н	n	
*****	Surrogate: 2-FBP	80.0 %	50-150			"	"	и	"	
	Stock-2 (B0K0455-02) Soil Sa	ampled: 11/16/00 15:10	Receive	d: 11/16/00 1	8:45					
	Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	0K17005	11/17/00	11/19/00	NWTPH-Dx	
	Lube Oil Range Hydrocarbons	ND	25.0	**	**	. 11	77	11		
2	Surrogate: 2-FBP	79.7 %	50-150			"	"	"	. "	
1	Baker-3-F (B0K0455-03) Wate	r Sampled: 11/16/00	15:25 Re	ceived: 11/16	5/00 18:45					
	Diesel Range Hydrocarbons	ND	0.250	mg/l	1	0K17010	11/17/00	11/17/00	NWTPH-Dx	
100	Lube Oil Range Hydrocarbons	ND	0.500	11	17	11	tt	19	Ħ	•
	Surrogate: 2-FBP	84.2 %	50-150			"	"	"	"	· · · · · · · · · · · · · · · · · · ·
Fr 17	Baker-4-N (B0K0455-04) Water	er Sampled: 11/16/00	15:30 Re	ceived: 11/16	5/00 18:45					
Secondary of	Diesel Range Hydrocarbons	2.68	0.250	mg/l	1	0K17010	11/17/00	11/17/00	NWTPH-Dx	
C.A	Lube Oil Range Hydrocarbons	0.840	0.500	II .	11	ŧŧ	**	17	11	•
#OTO	Surrogate: 2-FBP	95.7%	50-150			"	"	"	n	
A SACRA	CELL2-G (B0K0455-05) Soil	Sampled: 11/16/00 16:	30 Receiv	ved: 11/16/00	18:45					
೯ತ	Diesel Range Hydrocarbons	86.2	10.0	mg/kg dry	1	0K24013	11/24/00	11/26/00	NWTPH-Dx	
er e	Lube Oil Range Hydrocarbons	72.1	25.0	11	11	"	17	"	11	
5000	Surrogate: 2-FBP	73.8 %	50-150		-	#	"	"	"	-
	Surrogate: Octacosane	94.7%	50-150			"	"	#	"	
		•								

North Creek Analytical - Bothell

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

425.420.9200 fax 425.420.9210

Spokane

423-420-3200 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

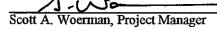
20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Dames and Moore-Seattle


Project Number: not provided Project Manager: David Raubvogel

Reported: 12/04/00 15:36

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

Result									
Printing to	·			Diagon	Buch	Тторшов	Timaryzod	TATORIOG	11000
CELL2-H (B0K0455-06) Soil	Sampled: 11/16/00 1	6:33 Rec	ceived: 11/16/0	0 18:45					
Diesel Range Hydrocarbons	113	10.	0 mg/kg dry	1	0K24013	- 11/24/00	11/26/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	75.4	25.	0 "	11	rr	. #	11		
Surrogate: 2-FBP	92.1 %	50-150			rr .	(1	"	"	1.
Surrogate: Octacosane	84.1 %	50-150			Ħ	Ħ	"		
CELL2-J (B0K0455-08) Soil	Sampled: 11/16/00 1	6:38 Rec	eived: 11/16/00	3 18:45					
Diesel Range Hydrocarbons	82.0	10.	0 mg/kg dry	1	0K24013	11/24/00	11/26/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	54.1	25.	0 "	Ħ	**	. #	17	и ·	
Surrogate: 2-FBP	72.0 %	50-150			"	"	"	"	
Surrogate: Octacosane	101 %	<i>50-150</i>			"	"	n	"	
CELL2-H (B0K0455-06) Soil Sampled: 11/16/00 16:33 Received: 11/16/00 18:45		4							
Diesel Range Hydrocarbons	92.4	10.	0 mg/kg dry	1	0K24013	11/24/00	11/26/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	41.5	25.	0 "	11	**	. "	11	n	
Surrogate: 2-FBP	66.0 %	50-150			"	"	"	"	
Surrogate: Octacosane	78.2 %	50-150	•		e	"	"	#	
CELL2-L (B0K0455-10) Soil	Sampled: 11/16/00 1	6:43 Rec	eived: 11/16/0	0 18:45					
Diesel Range Hydrocarbons	169	10.	0 mg/kg dry	1	0K24013	11/24/00	11/26/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	94.7	25.	0 "	u	**	17	. 11		
Surrogate: 2-FBP	66.4 %	50-150	· · · · · · · · · · · · · · · · · · ·		"	n	н	"	
_	84.1 %	50-150			"	"	"	"	
CELL2-M (B0K0455-11) Soil	Sampled: 11/16/00 1	6:45 Re	ceived: 11/16/0	0 18:45					
Diesel Range Hydrocarbons	60.4	10.	0 mg/kg dry	1	0K24013	11/24/00	11/26/00	NWTPH-Dx	
Lube Oil Range Hydrocarbons	30.0	25.		n	11	#	"	11	
Surrogate: 2-FBP	84.2 %	50-150			"	n	"	"	
Surrogate: Octacosane	83.5 %	50-150			"	#	"	u	

North Creek Analytical - Bothell

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

503.924-9200 Tax 503.924.9250 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 12/04/00 15:36

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

Course .	Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
€ .,.,sÀ	CELL2-N (B0K0455-12) Soil	Sampled: 11/16/00 1	l6:48 Recei	ved: 11/16/00	18:45					
6 3	Diesel Range Hydrocarbons	42.4	10.0	mg/kg dry	1	0K24013	11/24/00	11/26/00	NWTPH-Dx	 -
	Lube Oil Range Hydrocarbons	27.1	25.0	N .	"	**	H	n	17	
W (33	Surrogate: 2-FBP	85.4 %	50-150			"	"	u	. "	ı
(Surrogate: Octacosane	103 %	50-150			n	#	"	"	
	PEX-74-B-4 (B0K0455-13) Soil	Sampled: 11/16/00	0 12:00 Rec	eived: 11/16/	00 18:45					
	Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	0K24013	11/24/00	11/26/00	NWTPH-Dx	
F	Lube Oil Range Hydrocarbons	ND	25.0		**	11 :	11		и	
	Surrogate: 2-FBP	95.9 %	50-150			" .	"	"	"	
	Surrogate: Octacosane	88.6 %	50-150				"	u	#	1 1
	PEX-75-B-4 (B0K0455-14) Soil	Sampled: 11/16/00	12:00 Rec	eived: 11/16/	00 18:45					
	Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	· 1	0K24013	11/24/00	11/26/00	NWTPH-Dx	
	Lube Oil Range Hydrocarbons	ND	25.0	n	Ħ	H	17	"	11	
(Surrogate: 2-FBP	74.2 %	50-150			"	"	н	"	
-	Surrogate: Octacosane	85.8 %	50-150	• •		n	"	"	"	

North Creek Analytical - Bothell

425.420.9200 fax 425.420.9210

Portland

425.420.9200 fax 425.420.9210
East 11115 Montgomery, Suite B, Spokane, WA 99206-4776
509.924.9200 fax 509.924.9290
9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
503.906.9200 fax 503.906.9210
20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

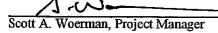
500 Market Place Tower, 2025 1st Ave

Seattle WA, 98121

Project: Trans Mountain - Laurel Station

Project Number: not provided

Project Manager: David Raubvogel


Reported:

12/04/00 15:36

Physical Parameters by APHA/ASTM/EPA Methods North Creek Analytical - Bothell

	Rep	orting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Stock-1 (B0K0455-01) Soil S	ampled: 11/16/00 15:05 R	eceived:	11/16/00 1	18:45					
Dry Weight	85.6	1.00	%	1	0K16055	11/16/00	11/17/00	BSOPSPL003R07	
Stock-2 (B0K0455-02) Soil S	ampled: 11/16/00 15:10 F	leceived:	11/16/00 1	18:45					
Dry Weight	83.8	1.00	%	1	0K16055	11/16/00	11/17/00	BSOPSPL003R07	•
CELL2-G (B0K0455-05) Soil	Sampled: 11/16/00 16:30	Receive	ed: 11/16/0	0 18:45					
Dry Weight	80.0	1.00	%	1	0L01042	12/01/00	12/02/00	BSOPSPL003R07	
CELL2-H (B0K0455-06) Soil	Sampled: 11/16/00 16:33	Receive	ed: 11/16/0	0 18:45				·	
Dry Weight	84.4	1.00	%	1	0L01042	12/01/00	12/02/00	BSOPSPL003R07	
CELL2-J (B0K0455-08) Soil	Sampled: 11/16/00 16:38	Receive	d: 11/16/00	18:45					
Dry Weight	80.0	1.00	%	. 1	0L01042	12/01/00	12/02/00	BSOPSPL003R07	
CELL2-K (B0K0455-09) Soil	Sampled: 11/16/00 16:40	Receive	ed: 11/16/0	0 18:45					
Dry Weight	80.4	1.00	%	1	0L01042	12/01/00	12/02/00	BSOPSPL003R07	
CELL2-L (B0K0455-10) Soil	Sampled: 11/16/00 16:43	Receive	d: 11/16/00	18:45					
Dry Weight	81.1	1.00	%	1	0L01042	12/01/00	12/02/00	BSOPSPL003R07	
CELL2-M (B0K0455-11) Soil	Sampled: 11/16/00 16:45	Receive	ed: 11/16/0	0 18:45					
Dry Weight	80.2	1.00	%	1	0L01042	12/01/00	12/02/00	BSOPSPL003R07	
CELL2-N (B0K0455-12) Soil	Sampled: 11/16/00 16:48	Receive	d: 11/16/00	0 18:45					
Dry Weight	86.4	1.00	%	1	0L01042	12/01/00	12/02/00	BSOPSPL003R07	,

North Creek Analytical - Bothell

425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 **Portland**

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

500 Market Place Tower, 2025 1st Ave

Seattle WA, 98121

Project: Trans Mountain - Laurel Station

Project Number: not provided Project Manager: David Raubvogel

Reported: 12/04/00 15:36

Physical Parameters by APHA/ASTM/EPA Methods North Creek Analytical - Bothell

	Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
.8	PEX-74-B-4 (B0K0455-13) Soil	Sampled: 11/16/00	12:00 Rece	ived: 11/1	6/00 18:45					<u> </u>
30	Dry Weight	86.8	1.00	%	1	0K24004	11/24/00	11/27/00	BSOPSPL003R07	
1	PEX-75-B-4 (B0K0455-14) Soil	Sampled: 11/16/00	12:00 Rece	ived: 11/1	6/00 18:45					
	Dry Weight	88.9	1.00	%	1	0K24004	11/24/00	11/27/00	BSOPSPL003R07	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 11 of 19

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 12/04/00 15:36

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0K16036:	Prepared 11/16/00	Using	EPA 5030B	(P/T)			•				
Blank (0K16036-BI	-K1)							·			
Gasoline Range Hydro	carbons	ND	50.0	ug/l							
Benzene		ND.	0.500	W							- 1
Toluene		ND	0.500	**							
Ethylbenzene		ND	0.500	n							
Xylenes (total)		ND	1.00	**							•
Surrogate: 4-BFB (FID)	54.7		"	48.0		114	50-150			
Surrogate: 4-BFB (PID)	53.0		"	48.0		110	50-150			
Blank (0K16036-BL	.K2)										
Gasoline Range Hydrod	earbons	ND	50.0	ug/l						•	•
Benzene		ND	0.500	11							
Toluene		ND	0.500	"							
Ethylbenzene		ND	0.500								
Xylenes (total)		ND	1.00	n							
Surrogate: 4-BFB (FID))	54.3		"	48.0		113	50-150			
Surrogate: 4-BFB (PID))	51.8		"	48.0		108	50-150			
LCS (0K16036-BS1))										
Gasoline Range Hydroc	arbons	484	50.0	ug/l	500		96.8	70-130	······································		
Surrogate: 4-BFB (FID))	55.6		"	48.0		116	50-150			
LCS (0K16036-BS2))										
Gasoline Range Hydroc	arbons	499	50.0	ug/l	500		99.8	70-130			
Surrogate: 4-BFB (FID))	57.4		н	48.0		120	50-150			
Duplicate (0K16036	-DUP1)					Source: B	0K0414-()6			
Gasoline Range Hydroc	arbons	2430	50.0	ug/l		2010			18.9	25	
Surrogate: 4-BFB (FID))	134		"	48.0		279	50-150			S-

North Creek Analytical - Bothell

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel Reported:

12/04/00 15:36

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

		Donastina			Spike Source %REC				DDD			
Analyte	,	Result	Reporting Limit	Units	Spike Level	Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch 0K16036;	Prepared 11/16/00	Using	EPA 5030E	B (P/T)		. ,						
Duplicate (0K16036	-DUP2)	••••	:			Source: I	30K0422-	02	·····			
Gasoline Range Hydroc	arbons	ND	50.0	ug/l		ND				25		
Surrogate: 4-BFB (FID)		48.3	*****	"	48.0		101	50-150			· · · · · · · · · · · · · · · · ·	
Matrix Spike (0K16	036-MS1)					Source: F	80K0414-	01				
Benzene		10.4	0.500	ug/l	10.0	ND	102	70-130				
Toluene		11.7	0.500	Ħ	10.0	0.750	109	70-130				
Ethylbenzene		11.4	0.500	11	10.0	ND	113	70-130				
Xylenes (total)		33.8	1.00	17	30.0	ND	110	70-130			:	
Surrogate: 4-BFB (PID)	·····	53.7		и	48.0		112	50-150				
Matrix Spike Dup (0	K16036-MSD1)					Source: B	0K0414-0	01				
Benzene		10.7	0.500	ug/l	10.0	ND	105	70-130	2.84	15		
Toluene		11.9	0.500	11	10.0	0.750	111	70-130	1.69	15		
Ethylbenzene		11.6	0.500	"	10.0	ND	115	70-130	1.74	15		
Surrogate: 4-BFB (PID)		53.3		"	48.0		111	50-150				
Batch 0K17009:	Prepared 11/17/00	Using 1	EPA 5030B	(MeOH)								
Blank (0K17009-BL	K1)				7.47.4.4.4.4							
Gasoline Range Hydroc	arbons	ND	5.00	mg/kg wet				·				
Benzene		ND	0.0500	#								
Toluene		· ND	0.0500	•								
Ethylbenzene		ND	0.0500	11								
Xylenes (total)		ND	0.100	11								
Surrogate: 4-BFB (FID)		4.06		"	4.00		101	50-150				
Surrogate: 4-BFB (PID)		3.76		"	4.00		94.0	50-150				

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network**

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel Reported:

12/04/00 15:36

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

Analyte		Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	*				Devel	- IXCOURT	, and c	Zinna	IGD	- Diffit	110003
Batch 0K17009:	Prepared 11/17/00	Using .	EPA 5030E	(MeOH)							
LCS (0K17009-BS1)											
Gasoline Range Hydroca	arbons	21.9	5.00	mg/kg wet	25.0		87.6	70-130			
Surrogate: 4-BFB (FID)		4.62		11	4.00		115	50-150			i
Duplicate (0K17009-	DUP1)					Source: E	0K0342-	45			
Gasoline Range Hydroca	arbons	ND	5.00	mg/kg dry		ND			2.37	50	
Surrogate: 4-BFB (FID)		4.32		n	4.69		92.1	50-150			
Duplicate (0K17009-	DUP2)			•		Source: B	0K0342-	47			
Gasoline Range Hydroca	·	ND	5.00	mg/kg dry		ND			15.7	50	
Surrogate: 4-BFB (FID)		3.99			4.54		87.9	50-150			· · · · · · · · · · · · · · · · · · ·
Matrix Spike (0K170	009-MS1)					Source: B	0K0342-	44			
Benzene		0.434	0.0500	mg/kg dry	0.600	ND	72.3	60-140	·		
Toluene		0.433	0.0500	#	0.600	ND	70.8	60-140			
Ethylbenzene		0.463	0.0500	11	0.600	ND	77.2	60-140			
Xylenes (total)	•	1.42	0.100	17	1.80	ND	77.8	60-140			
Surrogate: 4-BFB (PID)		3.85		"	4.80		80.2	50-150			
Matrix Spike Dup (0	K17009-MSD1)					Source: B	0K0342-4	14		:	
Benzene		0.483	0.0500	mg/kg dry	0.600	ND	80.5	60-140	10.7	20	
Toluene		0.485	0.0500	Ħ	0.600	NĐ	79.5	60-140	11.3	20	
Ethylbenzene		0.526	0.0500	11	0.600	ND	87.7	60-140	12.7	20	
Xylenes (total)		1.63	0.100	11	1.80	ND	89.5	60-140	13.8	20	
Surrogate: 4-BFB (PID)		4.11		"	4.80		85.6	50-150			
Batch 0K22020;	Prepared 11/22/00	Using l	EPA 5030B	(MeOH)			٠			*. .*	
Blank (0K22020-BLI											
Gasoline Range Hydroca	*	ND	5.00	mg/kg wet							
Benzene		ND	0.0500	"							
Toluene		ND	0.0500	ĮI.							
Ethylbenzene	,	ND	0.0500	11		-					
Xylenes (total)		ND	0.100	11							
Surrogate: 4-BFB (FID)		4.03	-	п	4.00	······	101	50-150			
Surrogate: 4-BFB (PID)		4.06		"	4.00		101	50-150			

North Creek Analytical - Bothell

425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project: Trans Mountain - Laurel Station

Project Number: not provided Project Manager: David Raubvogel

Reported: 12/04/00 15:36

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

en con			Reporting			Spike	Source		%REC			
	Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
الد ريخ	Batch 0K22020:	Prepared 11/22/00	Using	EPA 5030F	(МеОН)							
	LCS (0K22020-BS1))										
	Gasoline Range Hydroc	arbons	21.8	5.00	mg/kg wet	25.0		87.2	70-130			
	Surrogate: 4-BFB (FID))	4.28		"	4.00		107	50-150			· · · · · · · · · · · · · · · · · · ·
	Duplicate (0K22020	-DUP1)					Source: E	0K0455-	14			
	Gasoline Range Hydroc	arbons	NĐ	5.00	mg/kg dry		ND			33.7	50	
777	Surrogate: 4-BFB (FID))	4.77		"	4.50	:	106	50-150			
	Duplicate (0K22020-DUP2) Gasoline Range Hydrocarbons						Source: E	0K0602-				
	Gasoline Range Hydroc	arbons	ND	5.00	mg/kg dry		ND			32.8	50	
3	Surrogate: 4-BFB (FID)		4.60		"	4.10		112	50-150			
ر اور	Matrix Spike (0K22	020-MS1)		Source: B0K0455-13								
	Benzene		0.540	0.0500	mg/kg dry	0.576	ND	93.8	60-140			
.5	Toluene Ethylbenzene		0.540	0.0500	11	0.576	ND	91.5	60-140			
j	Ethylbenzene		0.587	0.0500	**	0.576	ND	102	60-140			
	Xylenes (total)		1.76	0.100	11	1.73	ND	101	60-140			
- T	Surrogate: 4-BFB (PID) Matrix Spike Dup (0		4.53		"	4.61		98.3	50-150			
3	Matrix Spike Dup (0	K22020-MSD1)					Source: B	0K0455-1	13			
	Benzene		0.533	0.0500	mg/kg dry	0.576	ND	92.5	60-140	1.30	20	
3	Toluene		0.535	0.0500	tt	0.576	ND	90.7	60-140	0.930	20	
	Ethylbenzene		0.582	0.0500	11	0.576	ND	101	60-140	0.855	20	
	Xylenes (total)		1.75	0.100	11	1.73	ND	100	60-140	0.570	20	
To the second	Surrogate: 4-BFB (PID)		4.45		и	4.61		96.5	50-150			

North Creek Analytical - Bothell

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 12/04/00 15:36

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) - Quality Control North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte	1	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0K17005;	Prepared 11/17/00	Using l	EPA 3550E	3					ů.		
Blank (0K17005-BL)	K1)		4								
Diesel Range Hydrocarb	ons	ND	10.0	mg/kg wet							
Lube Oil Range Hydroca	urbons	ND	25.0	tr							1
Surrogate: 2-FBP		5.64		"	10.7		52.7	50-150			
LCS (0K17005-BS1)											
Diesel Range Hydrocarb	ons	56.5	10.0	mg/kg wet	66.7		84.7	60-140			
Surrogate: 2-FBP		8.42		"	10.7		78.7	50-150			
Duplicate (0K17005-	DUP1)					Source: I	30K0310-	92			
Diesel Range Hydrocarb	ons	ND	10.0	mg/kg dry		10.2			19.5	50	
Lube Oil Range Hydroca	urbons	ND	25.0			ND			29.5	50	
Surrogate: 2-FBP		10.4		"	15.3		68.0	50-150			
Batch 0K17010:	Prepared 11/17/00	Using I	EPA 3510C	7/600 Series							
Blank (0K17010-BLI	K1)										
Diesel Range Hydrocarb	ons	ND	0.250	mg/l							
Lube Oil Range Hydroca	arbons	ND	0.500	41							
Surrogate: 2-FBP		0.259		"#	0.320		80.9	50-150			
LCS (0K17010-BS1)											
Diesel Range Hydrocarb	ons	1.43	0.250	mg/l	2.00		71.5	60-140			
Surrogate: 2-FBP		0.272		fr .	0.320		85.0	50-150			
LCS Dup (0K17010-1	BSD1)										
Diesel Range Hydrocarb	ons	1.37	0.250	mg/l	2.00		68.5	60-140	4.29	40	
Surrogate: 2-FBP		0.263		"	0.320		82.2	50-150		·	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 12/04/00 15:36

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) - Quality Control North Creek Analytical - Bothell

ger To			Reporting		Spike	Source		%REC		RPD	
	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
6.3	Batch 0K24013: Prepared 11/24/00	Using I	EPA 3550B	3							e e e
	Blank (0K24013-BLK1)									- - ,/	
	Diesel Range Hydrocarbons	ND	10.0	mg/kg wet							
	Lube Oil Range Hydrocarbons	ND	25.0	u							j.
	Surrogate: 2-FBP	8.38		"	10.7		78.3	50-150			·
	Surrogate: Octacosane	8.67		"	10.7		81.0	50-150		.:	
	LCS (0K24013-BS1)	•	4				ž				
	Diesel Range Hydrocarbons	62.9	10.0	mg/kg wet	66.7	· · · · · · · · · · · · · · · · · · ·	94.3	60-140			
	Surrogate: 2-FBP	8.35		tf	10.7		78.0	50-150			
æ.≅	Duplicate (0K24013-DUP2)					Source: I	30K0612-1	10			
	Diesel Range Hydrocarbons	41.0	10.0	mg/kg dry		50.4			20.6	50	
	Lube Oil Range Hydrocarbons	138	25.0	#		211	•		41.8	50	
8 3	Surrogate: 2-FBP	10.5		и	11.8		89.0	50-150			
Control of the Contro	Surrogate: Octacosane	8.9 7		"	11.8		76.0	<i>50-150</i>			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 Portland 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave

Project Number: not provided

Reported:

Seattle WA, 98121

Project Manager: David Raubvogel

12/04/00 15:36

Physical Parameters by APHA/ASTM/EPA Methods - Quality Control North Creek Analytical - Bothell

Analyte	,	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0K16055:	Prepared 11/16/00	Using Dr	y Weight								i
Blank (0K16055-B)	LK1)										
Dry Weight		100	1.00	%							
Batch 0K24004:	Using Dry Weight										
Blank (0K24004-B	LK2)									•	
Dry Weight		100	1.00	%						. , , ,	
Batch 0L01042: Prepared 12/01/00		Using Dr	y Weight			:				nina :	inja in
Blank (0L01042-BI	LK1)							_			
Dry Weight		100	1.00	%							ŧ

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 18 of 19

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Dames and Moore- Seattle 500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project: Trans Mountain - Laurel Station

Project Number: not provided Project Manager: David Raubvogel

Reported: 12/04/00 15:36

Notes and Definitions

R-03 The reporting limit for this analyte has been raised to account for interference from coeluting organic compounds present in the

The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample.

The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interferences.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

S-06

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 19 of 19

Signal #1 : D:\HPCHEM\4\DATA\112500\K25006.D\FID1A.CH Vial: 6

Signal #2 : D:\HPCHEM\4\DATA\112500\K25006.D\FID2B.CH

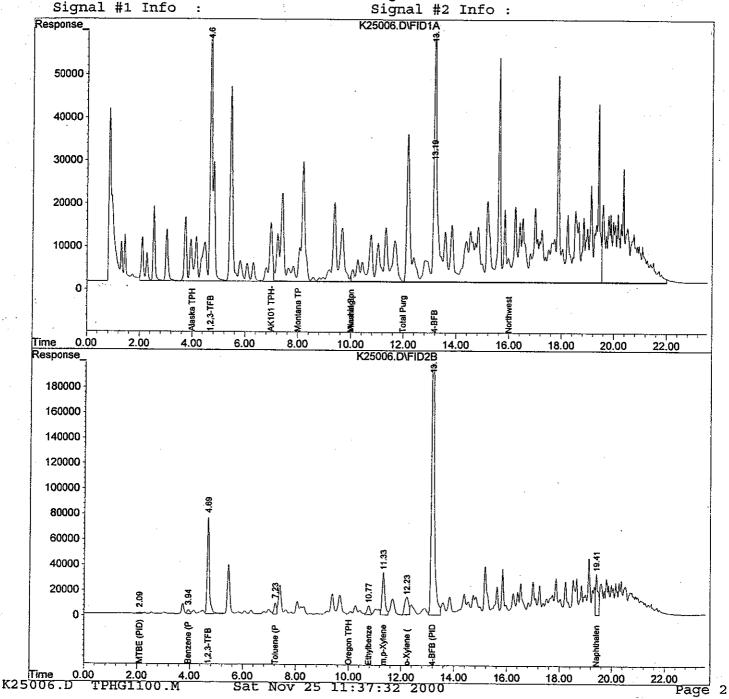
: 25 Nov 2000 11:13 am Operator: GAP Sample : b0k0455-05 r1 Inst : GC #8 Misc : 100 uL Multiplr: 1.00

Sample Amount: 0.00

IntFile Signal #1: TPH.E IntFile Signal #2: SURR2.E

Quant Time: Nov 25 11:37 2000 Quant Results File: TPHG1100.RES

Quant Method : D:\HPCHEM\4\METHODS\TPHG1100.M (Chemstation Integrator)


Title : TPH-G Water Method

Last Update : Mon Nov 20 13:50:56 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG1100.M

Volume Inj. Signal #1 Phase :

Signal #2 Phase: Signal #2 Info :

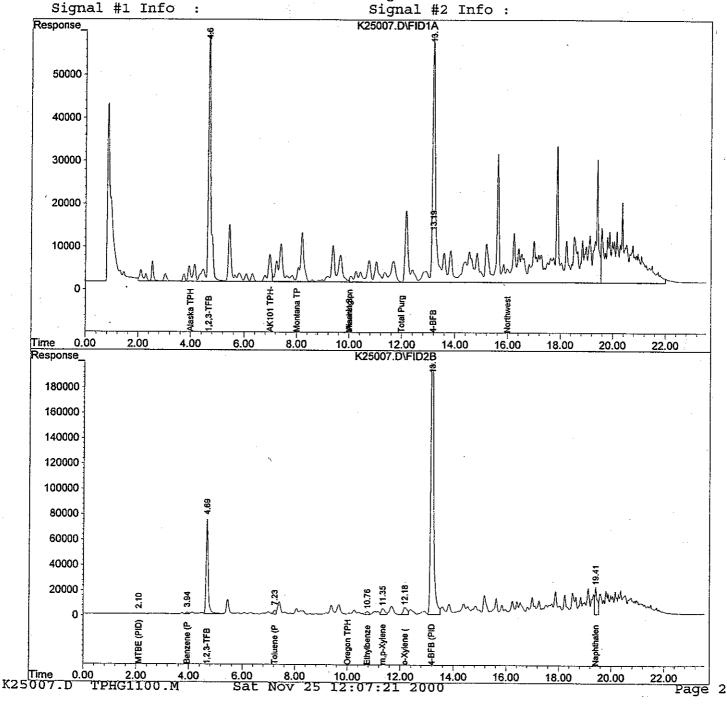
Signal #1 : D:\HPCHEM\4\DATA\112500\K25007.D\FID1A.CH Vial: 7 Signal #2 : D:\HPCHEM\4\DATA\112500\K25007.D\FID2B.CH

: 25 Nov 2000 11:43 am Operator: GAP Sample : b0k0455-06 r1 Inst : GC #8 Misc : 100 uL Multiplr: 1.00 Sample Amount: 0.00

IntFile Signal #1: TPH.E IntFile Signal #2: SURR2.E

Quant Time: Nov 25 12:07 2000 Quant Results File: TPHG1100.RES

Quant Method: D:\HPCHEM\4\METHODS\TPHG1100.M (Chemstation Integrator)


Title : TPH-G Water Method

Last Update : Mon Nov 20 13:50:56 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG1100.M

Volume Inj. Signal #1 Phase :

Signal #2 Phase: Signal #2 Info :

Signal #1 : D:\HPCHEM\4\DATA\112500\K25005.D\FID1A.CH Vial: 5

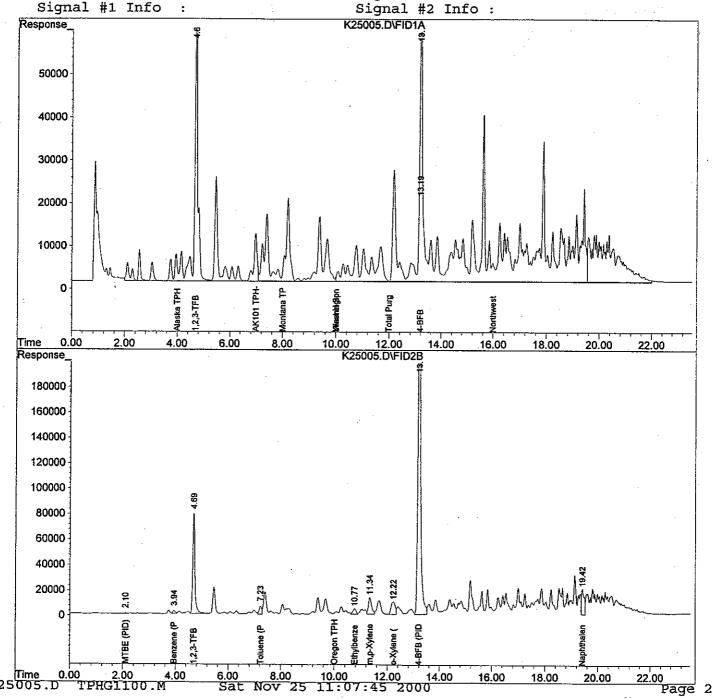
Signal #2 : D:\HPCHEM\4\DATA\112500\K25005.D\FID2B.CH

: 25 Nov 2000 10:43 am Operator: GAP Sample : b0k0455-08 r1 Inst : GC #8 Misc : 100 uL Multiplr: 1.00 Sample Amount: 0.00

IntFile Signal #1: TPH.E IntFile Signal #2: SURR2.E

Quant Time: Nov 25 11:07 2000 Quant Results File: TPHG1100.RES

Quant Method: D:\HPCHEM\4\METHODS\TPHG1100.M (Chemstation Integrator)


Title : TPH-G Water Method

Last Update : Mon Nov 20 13:50:56 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG1100.M

Volume Inj. Signal #1 Phase :

Signal #2 Phase:

Quantitation Report Signal #2 : D:\HPCHEM\4\DATA\112500\K25008.D\FID2B.CH : 25 Nov 2000 12:13 pm Operator: GAP Sample : b0k0455-09 r1 Inst : GC #8 : 100 uL Misc Multiplr: 1.00 Sample Amount: 0.00 IntFile Signal #1: TPH.E IntFile Signal #2: SURR2.E Quant Time: Nov 25 12:37 2000 Quant Results File: TPHG1100.RES Quant Method : D:\HPCHEM\4\METHODS\TPHG1100.M (Chemstation Integrator) Title : TPH-G Water Method Last Update : Mon Nov 20 13:50:56 2000 Response via : Multiple Level Calibration DataAcq Meth : TPHG1100.M Volume Inj. Signal #1 Phase : Signal #2 Phase: Signal #1 Info Signal #2 Info : Response K25008.D\FID1A 50000 40000 30000 20000 10000 0 Ŧ Ē laska TPH 1,2,3-TFB 2.00 Time 0.00 4.00 6.00 10.00 12.00 16.00 14.00 20.00 18.00 22.00 Response K25008.D\FID2B 180000 160000 140000 120000 100000 00008 60000 40000 20000

BFB (PID

14.00

16.00

18.00

20,00

22.00

Page 2

10.00 12.00 1 12:37:08 2000

0

٩

TPHG1100.M

8.00

25

Nov

Signal #1 : D:\HPCHEM\4\DATA\112500\K25009.D\FID1A.CH Vial: 9

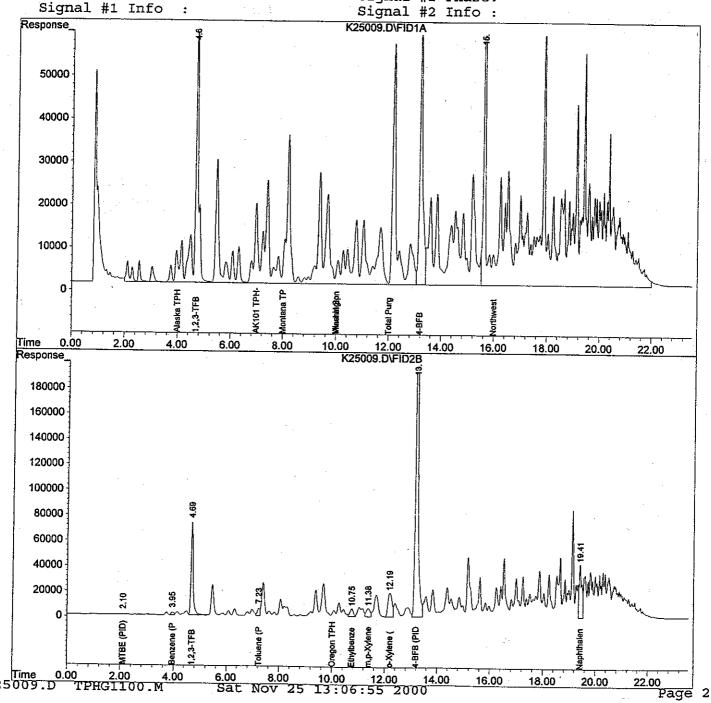
Signal #2 : D:\HPCHEM\4\DATA\112500\K25009.D\FID2B.CH

: 25 Nov 2000 12:43 pm Operator: GAP Sample : b0k0455-10 r1 Inst : GC #8 Misc : 100 uL Multiplr: 1.00

Sample Amount: 0.00

IntFile Signal #1: TPH.E IntFile Signal #2: SURR2.E

Quant Time: Nov 25 13:06 2000 Quant Results File: TPHG1100.RES


Quant Method : D:\HPCHEM\4\METHODS\TPHG1100.M (Chemstation Integrator)

Title : TPH-G Water Method

Last Update : Mon Nov 20 13:50:56 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG1100.M

Volume Inj. Signal #1 Phase :

Signal #1 : D:\HPCHEM\4\DATA\112500\K25010.D\FID1A.CH Vial: 10 Signal #2 : D:\HPCHEM\4\DATA\112500\K25010.D\FID2B.CH

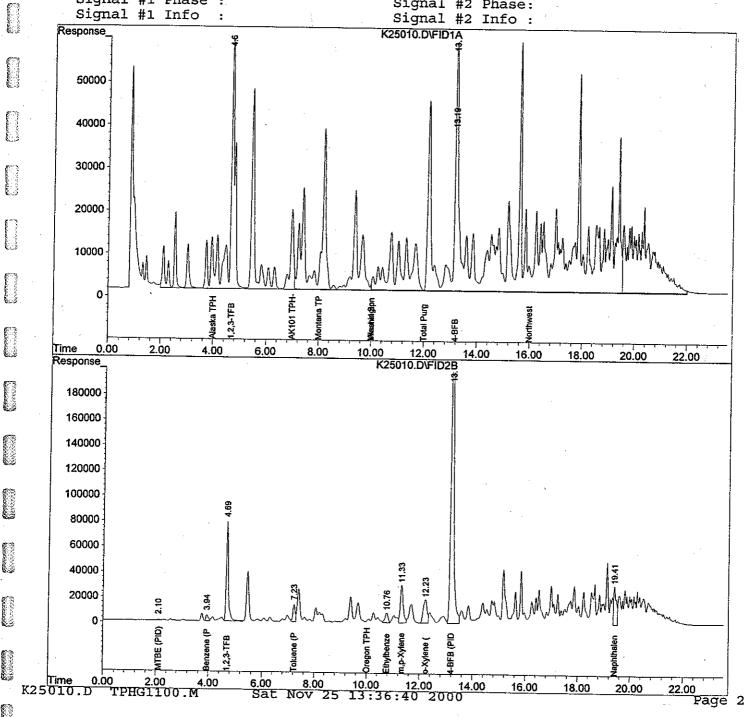
Acq On : 25 Nov 2000 1:12 pm Operator: GAP Sample : b0k0455-11 r1 Inst : GC #8 Misc : 100 uL Multiplr: 1.00

Sample Amount: 0.00

IntFile Signal #1: TPH.E

IntFile Signal #2: SURR2.E

Quant Time: Nov 25 13:36 2000 Quant Results File: TPHG1100.RES


Quant Method : D:\HPCHEM\4\METHODS\TPHG1100.M (Chemstation Integrator)

Title : TPH-G Water Method

Last Update : Mon Nov 20 13:50:56 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG1100.M

Volume Inj. Signal #1 Phase :

Signal #2 : D:\HPCHEM\4\DATA\112500\K25011.D\FID2B.CH

 Acq On
 : 25 Nov 2000
 1:42 pm
 Operator: GAP

 Sample
 : b0k0455-12 r1
 Inst : GC #8

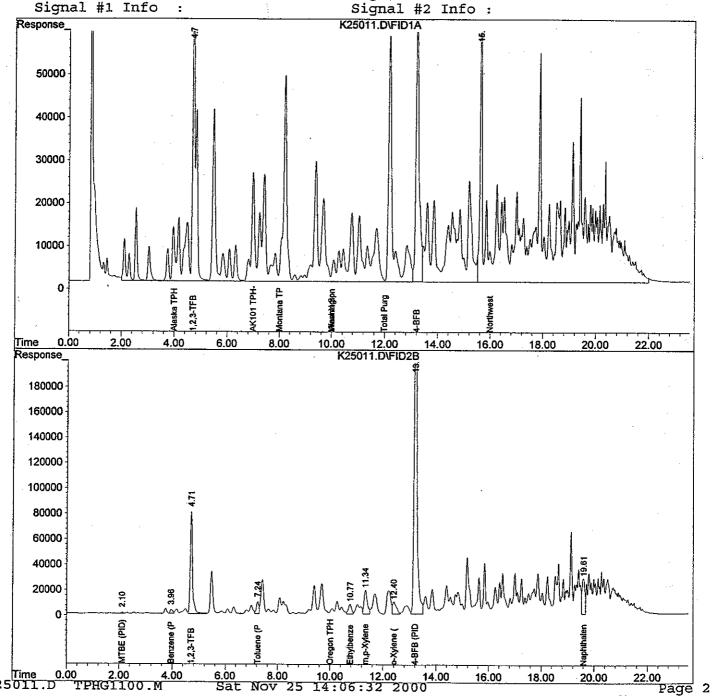
 Misc
 : 100 uL
 Multiplr: 1.00

Sample Amount: 0.00

IntFile Signal #1: TPH.E IntFile Signal #2: SURR2.E

Quant Time: Nov 25 14:06 2000 Quant Results File: TPHG1100.RES

Quant Method : D:\HPCHEM\4\METHODS\TPHG1100.M (Chemstation Integrator)


Title : TPH-G Water Method

Last Update : Mon Nov 20 13:50:56 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG1100.M

Volume Inj. : Signal #1 Phase : Signal #1 Info

Signal #2 Phase: Signal #2 Info:

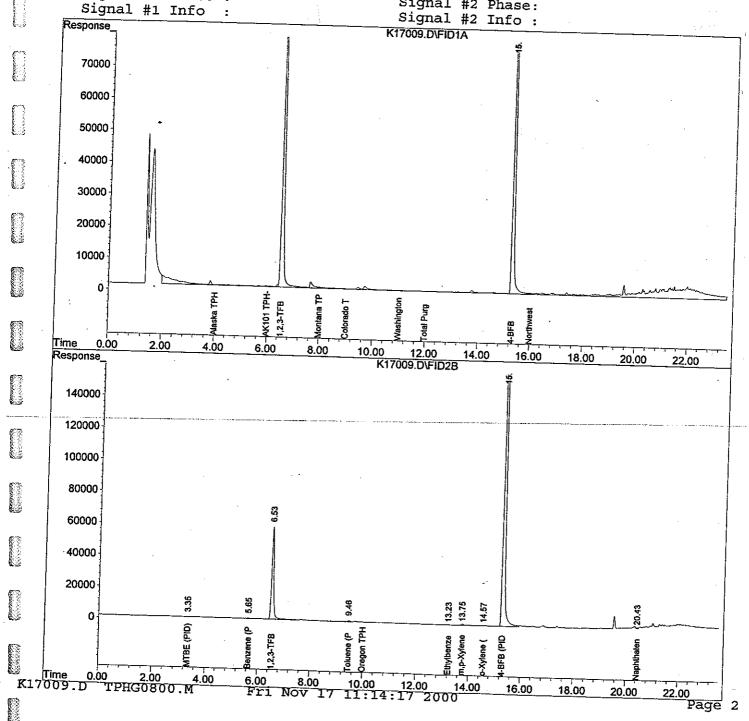
Signal #1 : D:\HPCHEM\3\DATA\111700\K17009.D\FID1A.CH Vial: 9

Signal #2 : D:\HPCHEM\3\DATA\111700\K17009.D\FID2B.CH Acq On

: 17 Nov 2000 10:50 am Operator: GAP Sample : B0K0455-01 . Inst Misc : GC #6 : 100 ul Multiplr: 1.00 Sample Amount: 0.00

IntFile Signal #1: SURR.E IntFile Signal #2: SURR2.E

Quant Time: Nov 17 11:14 2000 Quant Results File: TPHG0800.RES


Quant Method : D:\HPCHEM\3\METHODS\TPHG0800.M (Chemstation Integrator)

: TPH-G Water Method

Last Update : Tue Nov 14 14:57:50 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG0800.M

Volume Inj. Signal #1 Phase :

Signal #1 : D:\HPCHEM\3\DATA\111700\K17010.D\FIDLA.CH Signal #2 : D:\HPCHEM\3\DATA\111700\K17010.D\FID2B.CH

: 17 Nov 2000 11:20 am

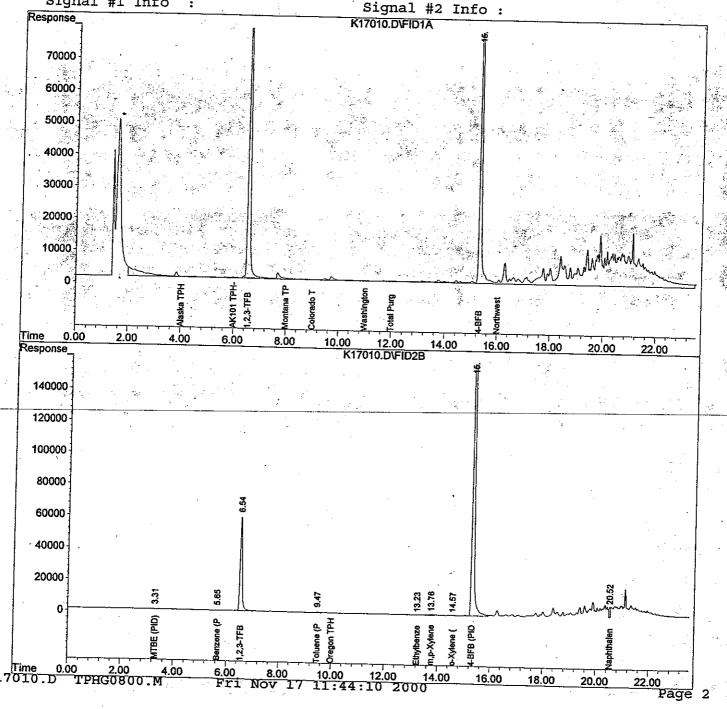
Sample : : B0K0455-02 Misc 100 ul

Operator: GAP Inst : GC #6 Multiplr: 1.00 Sample Amount: 0.00

IntFile Signal #1: SURR.E

IntFile Signal #2: SURR2.E

Quant Time: Nov 17 11:44 2000 Quant Results File: TPHG0800.RES


Quant Method: D:\HPCHEM\3\METHODS\TPHG0800.M (Chemstation Integrator)

: TPH-G Water Method

Last Update : Tue Nov 14 14:57:50 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG0800.M

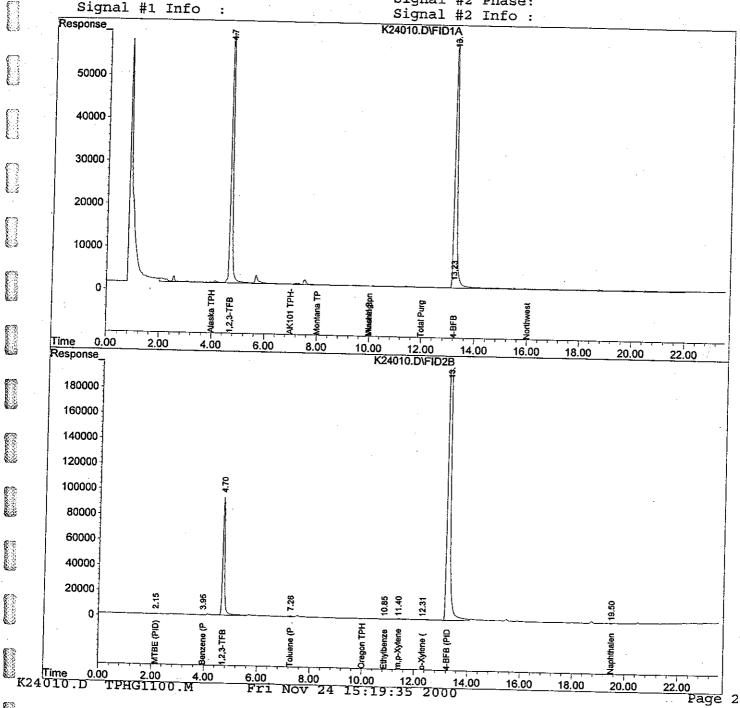
Volume Inj. Signal #1 Phase : Signal #1 Info

Signal #1 : D:\HPCHEM\4\DATA\112400\K24010.D\FID1A.CH Vial: 10 Signal #2 : D:\HPCHEM\4\DATA\112400\K24010.D\FID2B.CH : 24 Nov 2000 2:55 pm

Operator: GAP Sample : b0k0455-13 Inst : GC #8 Misc : 100 uL Multiplr: 1.00 Sample Amount: 0.00

IntFile Signal #1: TPH.E IntFile Signal #2: SURR2.E

Quant Time: Nov 24 15:19 2000 Quant Results File: TPHG1100.RES


Quant Method : D:\HPCHEM\4\METHODS\TPHG1100.M (Chemstation Integrator)

: TPH-G Water Method

Last Update : Mon Nov 20 13:50:56 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG1100.M

Volume Inj. Signal #1 Phase :

Annuer carron Kebolc

Signal #1 : D:\HPCHEM\4\DATA\112400\K24011.D\FID1A.CH Vial: 11 Signal #2 : D:\HPCHEM\4\DATA\112400\K24011.D\FID2B.CH

: 24 Nov 2000 3:25 pm Sample : b0k0455-14

Operator: GAP Inst : GC #8 Multiplr: 1.00

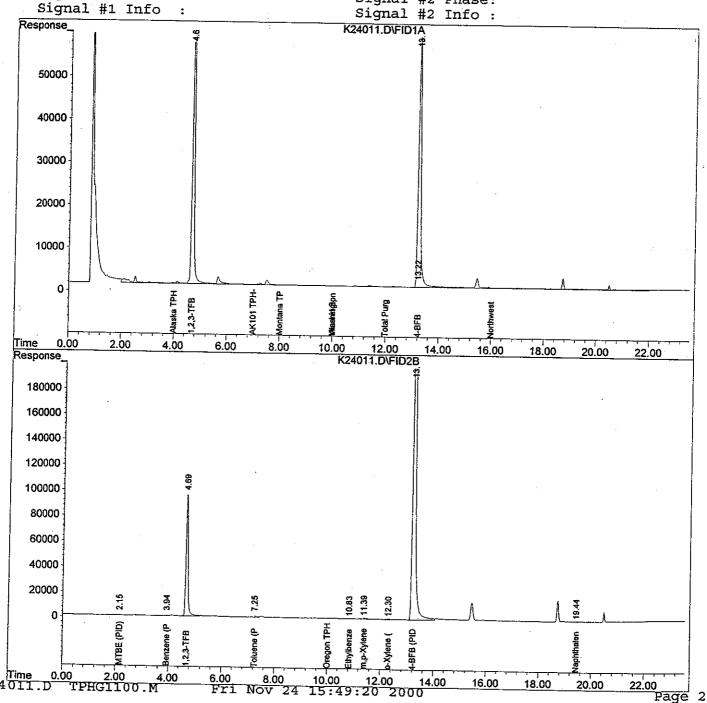
Misc : 100 uL

Sample Amount: 0.00

IntFile Signal #1: TPH.E

IntFile Signal #2: SURR2.E

Quant Time: Nov 24 15:49 2000 Quant Results File: TPHG1100.RES


Quant Method : D:\HPCHEM\4\METHODS\TPHG1100.M (Chemstation Integrator)

Title : TPH-G Water Method

Last Update : Mon Nov 20 13:50:56 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG1100.M

Volume Inj. Signal #1 Phase :

Data File : D:\HPCHEM\4\DATA.SEC\K17027.D

Acq On : 11-17-00 11:22:17

Sample : b0k0455-03

Misc

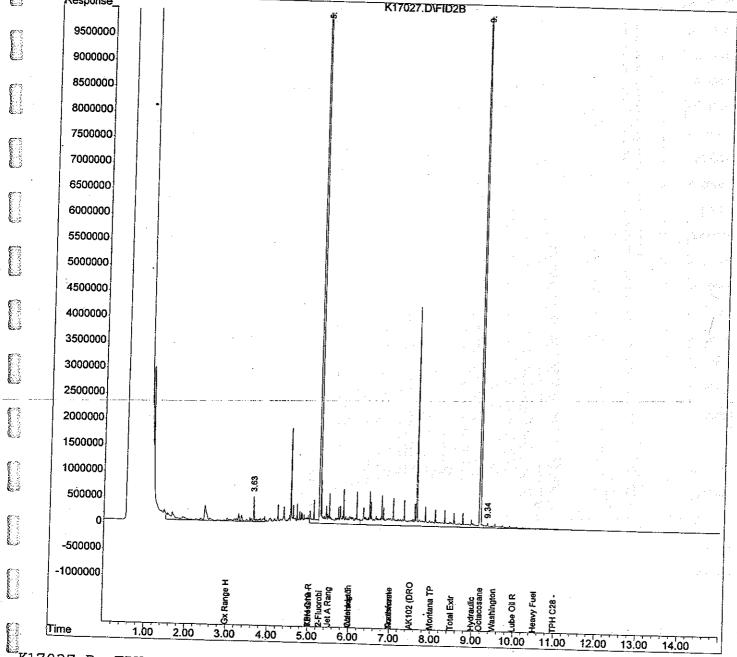
IntFile : SURR.E

Vial: 21 Operator: DB

Inst : GC# 7 Multiplr: 1.00

Sample Amount: 0.00

Quant Time: Nov 17 11:37 2000 Quant Results File: TPHD2.RES


Quant Method : D:\HPCHEM\4\METHODS\TPHD2.M (Chemstation Integrator)

: TPH-D Rear Method

Last Update : Wed Nov 15 06:58:16 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. Signal Phase : Signal Info Response

Data File : D:\HPCHEM\4\DATA.SEC\K17043.D

Acq On : 11-17-00 14:20:37

Sample : b0k0455-04

Misc : W R1

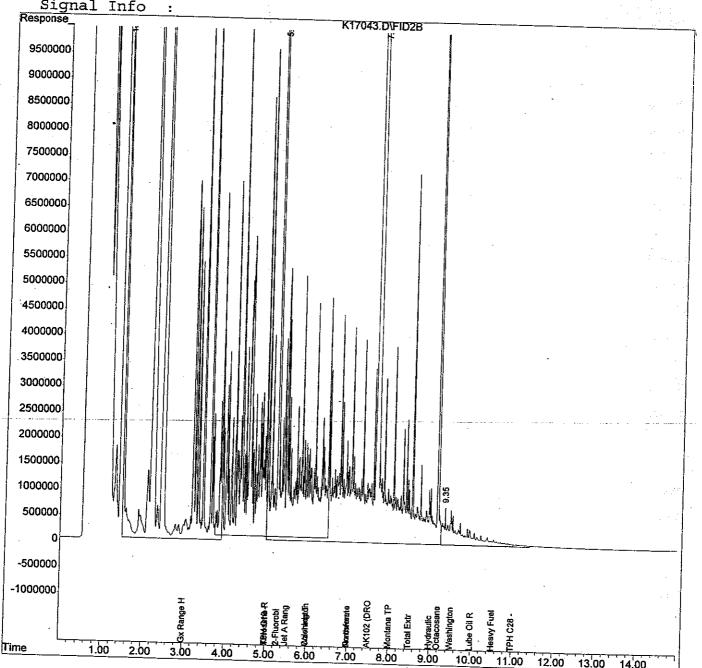
IntFile : SURR.E

Vial: 22 Operator: DB

Inst : GC# 7 Multiplr: 1.00

Sample Amount: 0.00

Quant Time: Nov 17 14:36 2000 Quant Results File: TPHD2.RES


Quant Method : D:\HPCHEM\4\METHODS\TPHD2.M (Chemstation Integrator)

: TPH-D Rear Method

Last Update : Wed Nov 15 06:58:16 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. Signal Phase: Signal Info

14.00

13.00

Operator: db

Multiplr: 1.00

Inst

: GC #5

Data File : C:\HPCHEM\3\DATA.SEC\K18041.D

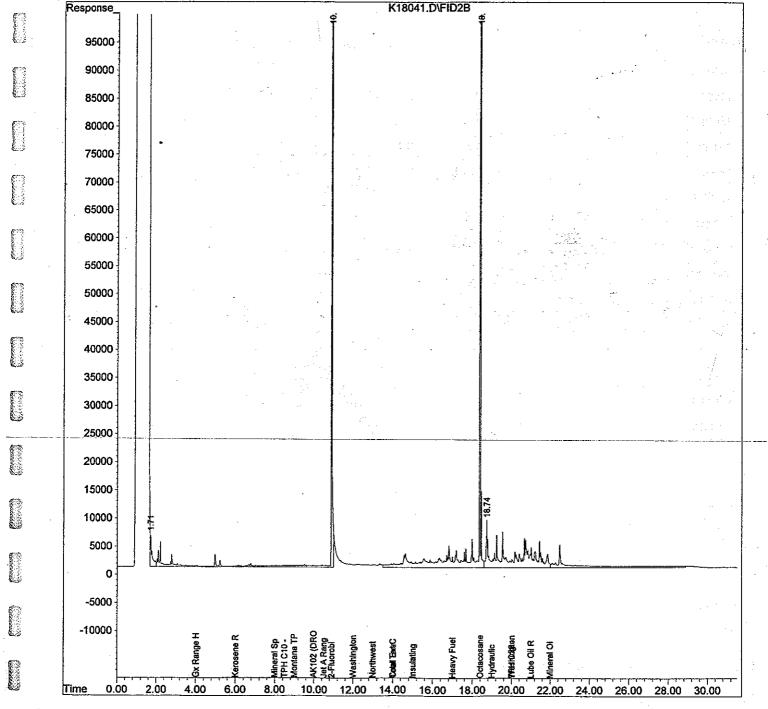
Acq On : 19 Nov 2000 12:10 am

Sample : b0k0455-02

Misc : S

IntFile : SURR.E

Quant Time: Nov 19 0:43 2000 Quant Results File: TPHD2.RES


Quant Method : C:\HPCHEM\3\METHODS\TPHD2.M (Chemstation Integrator)

Title : TPH-D Rear Method

Last Update : Wed Sep 27 08:25:47 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. : Signal Phase : Signal Info :

Data File : D:\HPCHEM\1\DATA.SEC\K17037.D

Acq On : 11-17-00 13:22:27

Sample : b0k0445-09

Misc S

三人类的一种

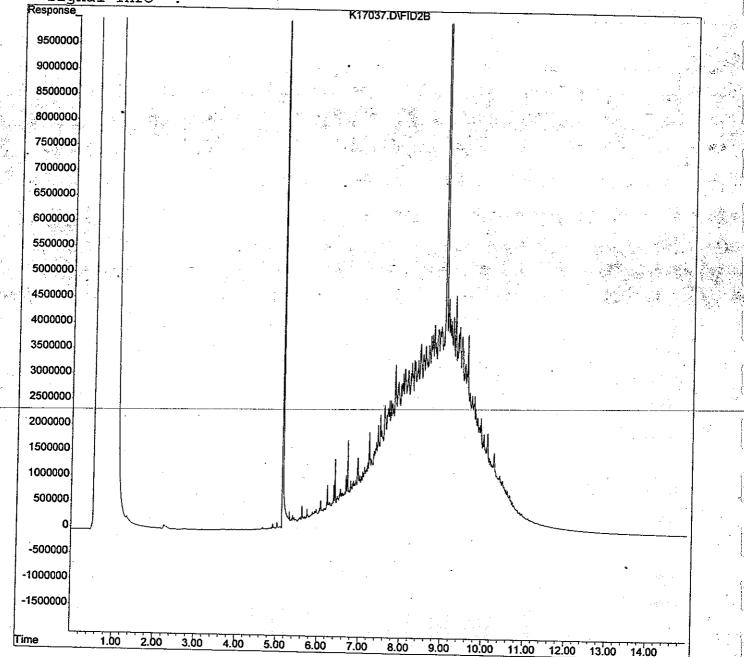
IntFile : SURR.E Vial:

Operator: BN Inst : GC# 9

Multiplr: 1.00

Sample Amount: 0.00

Quant Time: Nov 17 13:38 2000 Quant Results File: TPHD2.RES


Quant Method: D:\HPCHEM\1\METHODS\TPHD2.M (Chemstation Integrator)

Title : TPH-D Rear Method

Last Update : Wed Nov 15 07:12:24 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. Signal Phase : Signal Info

Data File : D:\HPCHEM\1\DATA\K17038.D

Acq On : 11-17-00 13:22:27

Sample : b0k0445-10

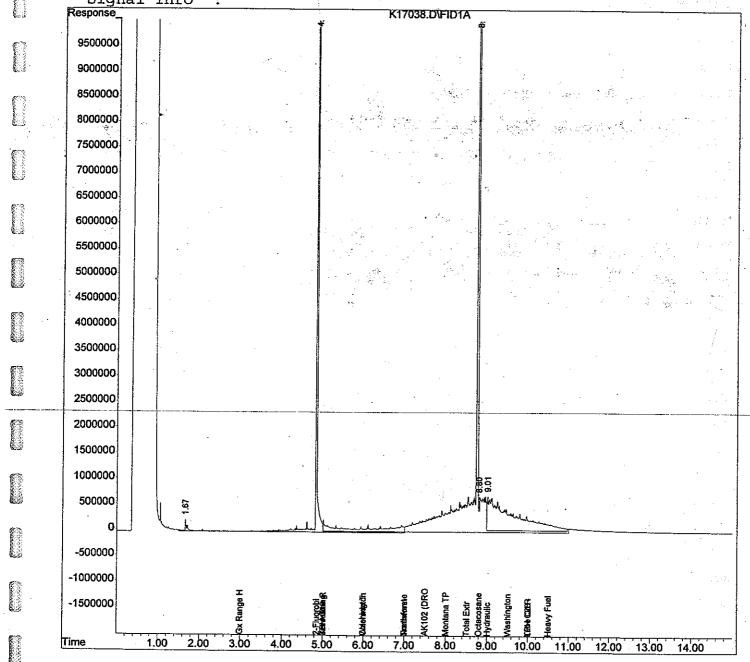
Misc : S

IntFile : SURR.E

Vial: 25
Operator: BN
Inst : GC# 9

Multiplr: 1.00 Sample Amount: 0.00

Quant Time: Nov 17 13:37 2000 Quant Results File: TPHD.RES


Quant Method : D:\HPCHEM\1\METHODS\TPHD.M (Chemstation Integrator)

Title : TPH-D Rear Method

Last Update : Wed Nov 15 07:07:18 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. : Signal Phase : Signal Info :

Data File : D:\HPCHEM\1\DATA\K26014.D

Acq On : 11-26-00 8:33:25

Sample : b0k0455-05

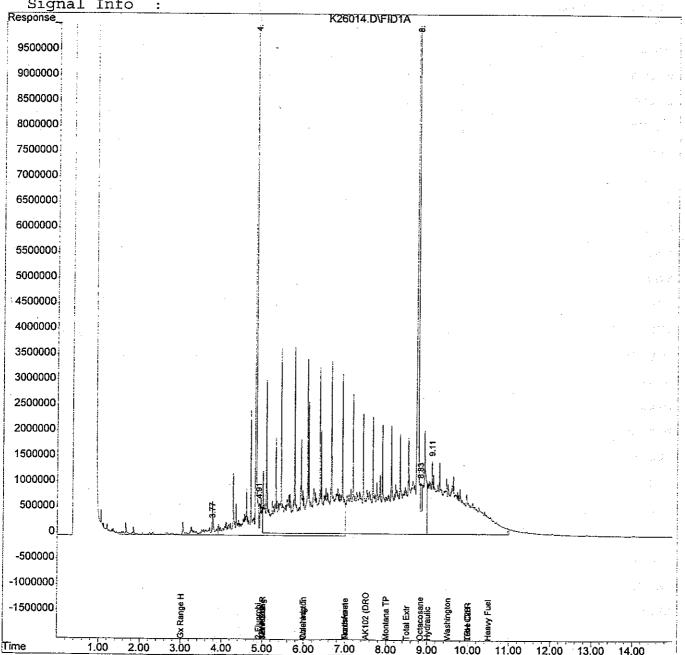
Misc : S 5x-

Vial: 11 Operator: EP Inst : GC# 9 Multiplr: 1.00

Sample Amount: 0.00

IntFile : SURR.E

Quant Time: Nov 26 8:48 2000 Quant Results File: TPHD.RES


Quant Method : D:\HPCHEM\1\METHODS\TPHD.M (Chemstation Integrator)

Title : TPH-D Rear Method

Last Update : Wed Nov 15 07:07:18 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. Signal Phase : Signal Info

Data File: D:\HPCHEM\1\DATA.SEC\K26015.D

Acq On : 11-26-00 8:55:25

Sample : b0k0455-06

Misc

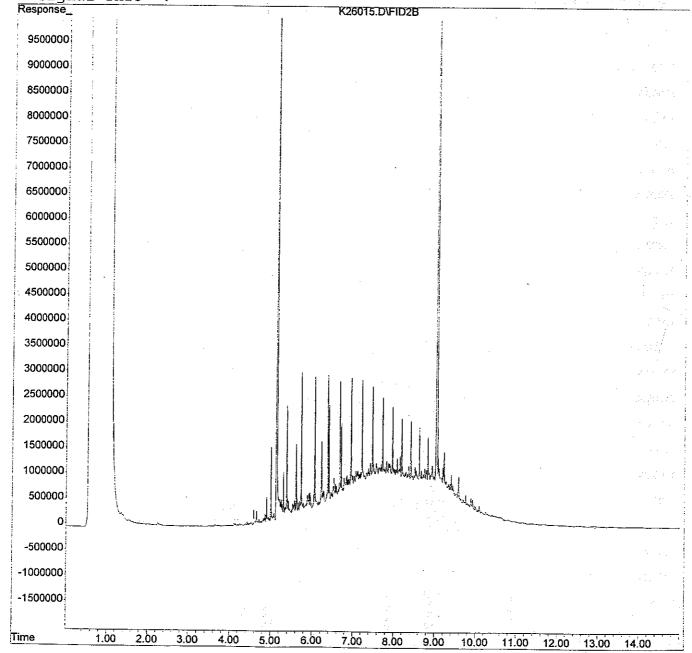
: s 524=

Vial: 12 Operator: EP Inst : GC# 9

Multiplr: 1.00 Sample Amount: 0.00

IntFile : SURR.E

Quant Time: Nov 26 9:11 2000 Quant Results File: TPHD2.RES


Quant Method: D:\HPCHEM\1\METHODS\TPHD2.M (Chemstation Integrator)

: TPH-D Rear Method Title

Last Update : Wed Nov 15 07:12:24 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. Signal Phase : Signal Info :

Data File : D:\HPCHEM\1\DATA\K26016.D

: 11-26-00 8:55:25 Acq On

Sample : b0k0455-08

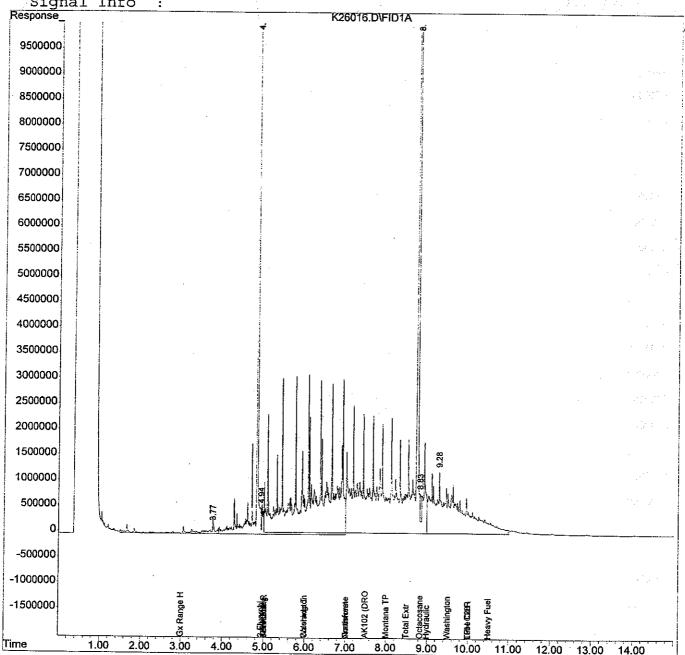
Misc : s 5x

Vial: 13 Operator: EP Inst : GC# 9 Multiplr: 1.00

Sample Amount: 0.00

IntFile : SURR.E

Quant Time: Nov 26 9:10 2000 Quant Results File: TPHD.RES


Quant Method: D:\HPCHEM\1\METHODS\TPHD.M (Chemstation Integrator)

Title : TPH-D Rear Method

Last Update : Wed Nov 15 07:07:18 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. Signal Phase : Signal Info

Data File : D:\HPCHEM\1\DATA.SEC\K26019.D

Acq On : 11-26-00 9:40:31 Sample : b0k0455-09

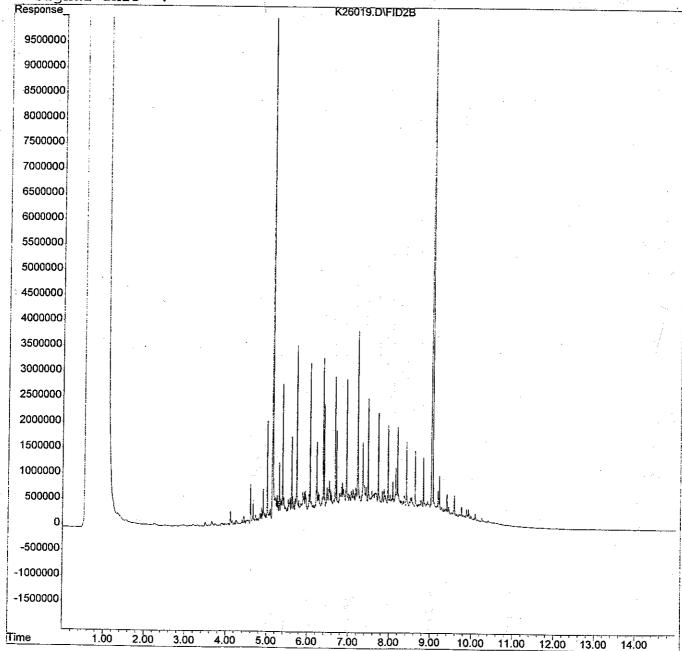
Sample : b0k0455-09 Misc : s Operator: EP
Inst : GC# 9
Multiplr: 1.00

Vial: 14

Sample Amount: 0.00

IntFile : SURR.E

Quant Time: Nov 26 9:56 2000 Quant Results File: TPHD2.RES


Quant Method : D:\HPCHEM\1\METHODS\TPHD2.M (Chemstation Integrator)

Title : TPH-D Rear Method

Last Update : Wed Nov 15 07:12:24 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. : Signal Phase : Signal Info :

Data File : D:\HPCHEM\1\DATA\K26020.D

Acq On : 11-26-00 9:40:31

Sample : b0k0455-10

Misc

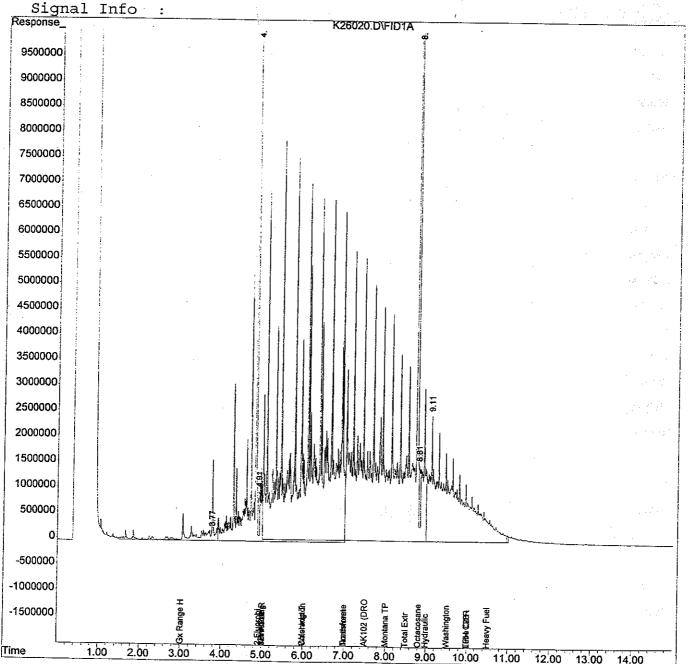
Operator: EP Inst : GC# 9 Multiplr: 1.00

Vial: 15

Sample Amount: 0.00

IntFile : SURR.E

Quant Time: Nov 26 9:55 2000 Quant Results File: TPHD.RES


Quant Method : D:\HPCHEM\1\METHODS\TPHD.M (Chemstation Integrator)

Title : TPH-D Rear Method

Last Update : Wed Nov 15 07:07:18 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. Signal Phase :

Manicheachou kebort

Data File : D:\HPCHEM\1\DATA.SEC\K26021.D

: 11-26-00 10:02:46

Sample : b0k0455-11

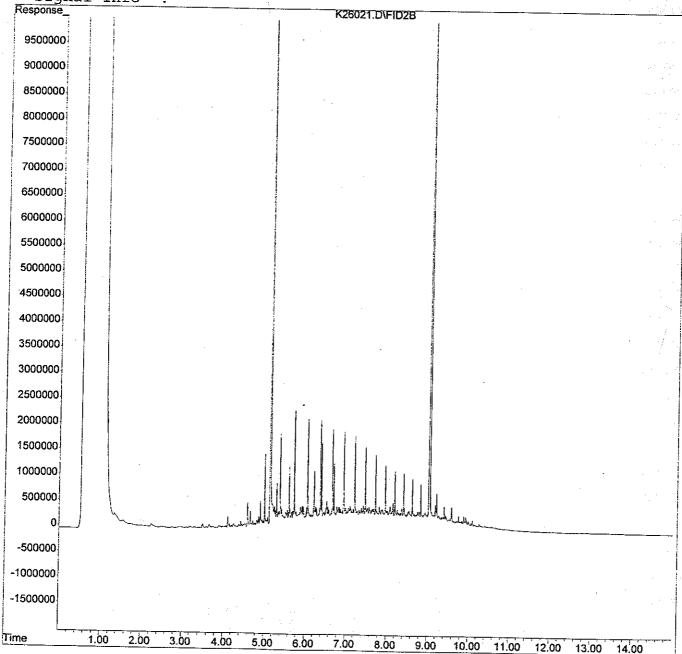
Misc

Vial: 16 Operator: EP Inst : GC# 9

Multiplr: 1.00 Sample Amount: 0.00

IntFile : SURR.E

Quant Time: Nov 26 10:18 2000 Quant Results File: TPHD2.RES


Quant Method: D:\HPCHEM\1\METHODS\TPHD2.M (Chemstation Integrator)

Title : TPH-D Rear Method

Last Update : Wed Nov 15 07:12:24 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. Signal Phase : Signal Info

Anamerenerion Kebolf

Data File : D:\HPCHEM\1\DATA\K26022.D

Acq On : 11-26-00 10:02:46

Sample : b0k0455-12

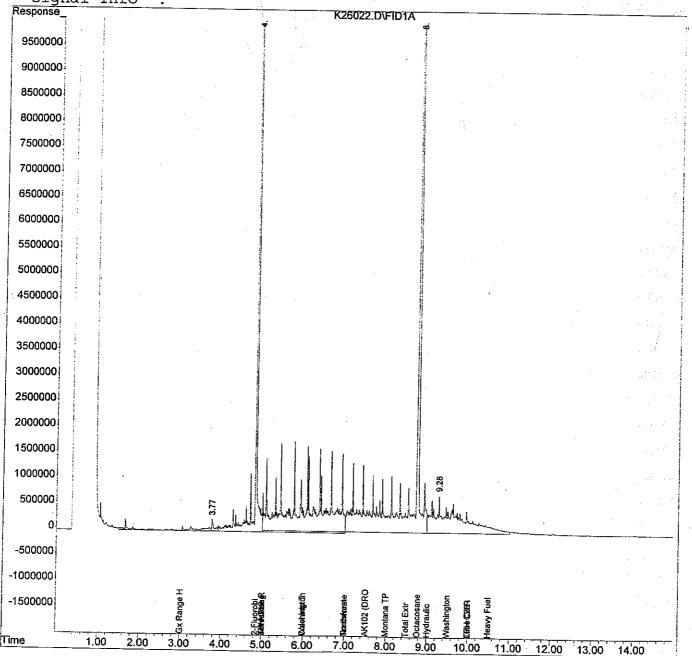
Misc

Operator: EP Inst : GC# 9 Multiplr: 1.00 Sample Amount: 0.00

Vial: 17

IntFile : SURR.E

Quant Time: Nov 26 10:18 2000 Quant Results File: TPHD.RES


Quant Method: D:\HPCHEM\1\METHODS\TPHD.M (Chemstation Integrator)

: TPH-D Rear Method

Last Update : Wed Nov 15 07:07:18 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. Signal Phase : Signal Info

*********** WODOLE

Data File : D:\HPCHEM\1\DATA.SEC\K26023.D

Acq On : 11-26-00 10:24:43

Sample : b0k0455-13

Misc : s

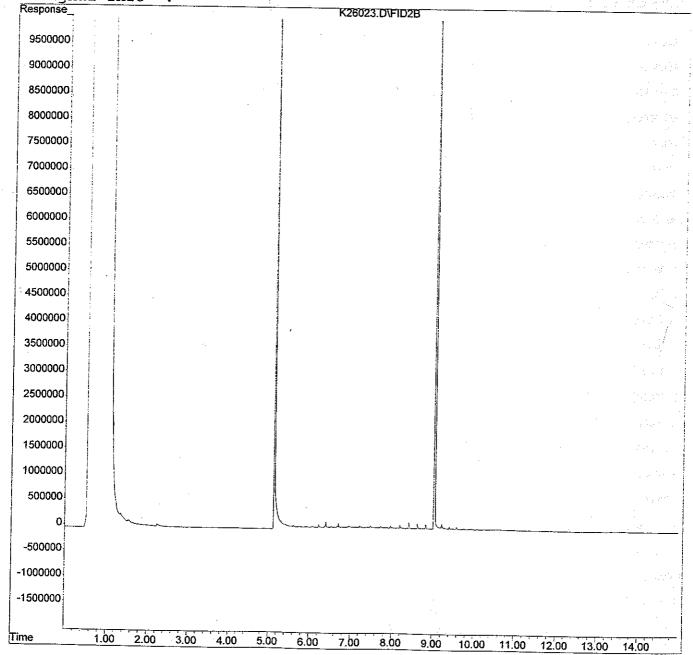
itsc : S

Vial: 18 Operator: EP Inst : GC# 9

Multiplr: 1.00 Sample Amount: 0.00

IntFile : SURR.E

Quant Time: Nov 26 10:40 2000 Quant Results File: TPHD2.RES


Quant Method: D:\HPCHEM\1\METHODS\TPHD2.M (Chemstation Integrator)

Title : TPH-D Rear Method

Last Update : Wed Nov 15 07:12:24 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. : Signal Phase : Signal Info :

Data File : D:\HPCHEM\1\DATA\K26024.D

: 11-26-00 10:24:43 Acq On

Sample : b0k0455-14

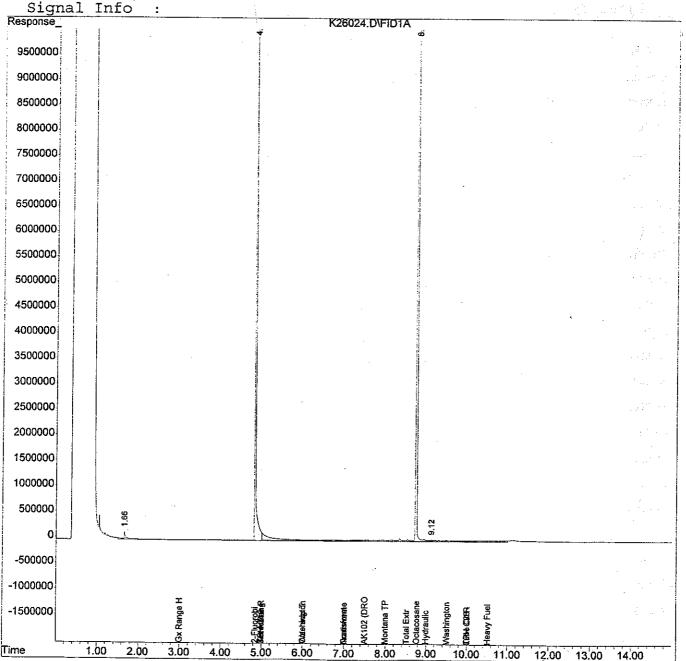
Misc

IntFile : SURR.E Vial: 19

Operator: EP : GC# 9 Inst

Multiplr: 1.00 Sample Amount: 0.00

Quant Time: Nov 26 10:40 2000 Quant Results File: TPHD.RES


Quant Method : D:\HPCHEM\1\METHODS\TPHD.M (Chemstation Integrator)

Title : TPH-D Rear Method

Last Update : Wed Nov 15 07:07:18 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. : Signal Phase :

www.ncelabs.com

11.20 runn creek rawy 14, oune avo, doublett, was 2011-02-11
Ecc. 315 Mongainery, Ecc. 3, Spoisson, VA 99ggg 776

9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

(503) 906-9200

(423) 420-2200

FA. 39290

(541) 383-9310

Bokouss

Work Order #:

CHAIN OF CUSTODY REPORT

INVOICE TO:

FAX 906-9210 FAX 382-7588

TURNAROUND REQUEST in Business Days* Organic & Inorganic Analyses 4 ro.

91

ンヤスの

P.O. NUMBER:

FAX: 200-227-3550

500

ADDRESS: 2025 FIRST AVE. STE SCATTLE, WA 98/21

PHONE: 200-124-0744

REPORT TO: DAVID RAUBYOGE

スアン

CLIENT

STD.

Petroleum Hydrocarbon Analyses 7 3

(1) 18 (1

5

_						T	ī	T	Г	 	Τ-	Τ	-	Т	_	T	_	
7.7.3.3.7.7.3.7.7.7.7.7.7.7.7.7.7.7.7.7	: :		 17ges.	NCA WO	9	Q.												
	- Please Specify		*Turnaround Requests less than standard may incur Rush Charges.		COMMENTS	C. 25	O'CAN Y NA	11 82 3	50 CV 20			SAV'A	7 X X V					
	Į	OTHER	md Requests le	#OF	CONT.	-	_	iv	50 J	-	-	-	-		_	_		_
	SID.		"Turnaron	MATRIX	(W, S, O)	\$	5	3	3	V	š	2	N	V	V	S	S	S
						10	20	03	50	20	76	10	80	69	Q)	"	13	13
IALVERS	ALISES			•				,										
DEOLIGETED AMAI VEES	ES IED A																	
PEOL	3																	
27.7		H	0 L	D	-													V
	-	لمنا	TPI	1- (aΧ	X	X	Χ	×	Х	X	×	×	X	X	Х	×	
		NM.	τρμ	5×	>×	×	メ	Х	X	メタ	×	X	×	×	X	X	×	
			7	LING	TIME	1505	1510	1525	1530	1650	1633	1635	1658	1640	1643	1645	1648	
	ر ک		UND MACK	SAMPLING	DATE/TIME	1/16/60	01/10/00	1/16/06	06/91/	00/91/11	1/16/00	1/10/00	11/16/60	11/16/00	09/91/11	11/16/00	14/16/00	116/00
PROJECT NAME:	574X	PROJECT NUMBER:	SAMPLED BY: KEVIN L	CLIENT SAMPLE	IDENTIFICATION	1. 570(K-1	2. STOCK-2	3. BAKER-3-F	4. BAKER-4- N	s. Cell 2 - G	6. CELL 2 - H	1. CELL 2 - I	8. CEU2 - T	9. CEU2-K	10.CELLZ - L	11.CELL2-M	12.0元に7-1	13 PEX-74-B-4 14/16/00

DATE: ///

TIME: / DATE: TIME

FIRM:

PRAM

RECEIVED BY:

DATE: 11/16/00 TIME: 1810

KEVIN LANDYARKERM: LAN

RELINQUISHED BY: PRINT NAME:

PRINT NAME:

RELINQUISHED BY: Ly Bachuman

11/16/60

14.0Ex-75-B-4

RECEIVED BY: PRINT NAME:

PRINT NAME:

TIME: DATE:

FIRM:

40 7 grock-1,

FOR SAMPLES FOR OTHERS)

COCREVING STOCK-2, BAKER-3-F, AND BAKER-4-N. (STD. T.A.T.

FIRM:

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210

425.420.9200 fax 425.420.9210
East 11115 Montgomery, Suite B, Spokane, WA 99206-4776
509.924.9200 fax 509.924.9290
9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
503.906.9200 fax 503.906.9210
20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
541.383.9310 fax 541.382.7588 Portland

Dames and Moore-Seattle

500 Market Place Tower, 2025 1st Ave

Seattle WA, 98121

Project: Trans Mountain - Laurel Station

Project Number: not provided

Project Manager: David Raubvogel

Reported:

11/28/00 17:54

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
PEX-76-B-4	B0K0591-01	Soil	11/22/00 12:12	11/22/00 12:12
PEX-77-B-11	B0K0591-02	Soil	11/22/00 09:10	11/22/00 12:12

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network**

Page 1 of 8

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 . 541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave

Project Number: not provided

Reported:

Seattle WA, 98121

Project Manager: David Raubvogel

11/28/00 17:54

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Analyte	Kesuit	Limit	Omus	Diation	Dawn	Trepated	Amaryzon	Wedlod	1100
PEX-76-B-4 (B0K0591-01) Soil	Sampled: 11/22/00	12:12 Rec	eived: 11/22	/00 12:12					
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K26005	11/26/00	11/28/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	*	#	**	,,			
Toluene	ND	0.0500	Ħ	47	н		. "	n n	*
Ethylbenzene	ND	0.0500	n	**		17	"	n	
Xylenes (total)	ND	0.100	п	**	*	11	11	**	
Surrogate: 4-BFB (FID)	79.0 %	50-150			"	н	er .	. "	
Surrogate: 4-BFB (PID)	82.7 %	<i>50-150</i>			"	"	"	"	
PEX-77-B-11 (B0K0591-02) Soil	Sampled: 11/22/0	00 09:10 Re	ceived: 11/2	2/00 12:12				4.	
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	0K26005	11/26/00	11/28/00	NWTPH-Gx/8021B	
Benzene	ND	0.0500	Ħ	11	*1	n		11	
Toluene	ND	0.0500	rr ·	**		**	"	"	
Ethylbenzene	ND	0.0500	tt	11	"	r	*	Tr.	
Xylenes (total)	ND	0.100	Ħ	11	17	11	n	. 17	
Surrogate: 4-BFB (FID)	82.2 %	50-150			"	"	"	"	
Surrogate: 4-BFB (PID)	84.4 %	50-150			"	"	"	**	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain custody document. This analytical report must be reproduced in its entirety.

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided

Reported:

Project Manager: David Raubvogel

11/28/00 17:54

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

No.	Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	PEX-76-B-4 (B0K0591-01) Soil	Sampled: 11/22/00	12:12 Rec	eived: 11/22	/00 12:12		. •			
	Diesel Range Hydrocarbons Lube Oil Range Hydrocarbons	ND ND	10.0 25.0	mg/kg dry	1 "	0K27023	11/27/00	11/28/00	NWTPH-Dx	
	Surrogate: 2-FBP	76.2 %	50-150			"	#	11	"	,
	Surrogate: Octacosane	76.4 %	50-150			"	"	"	. #	•
76 7.	PEX-77-B-11 (B0K0591-02) Soil	Sampled: 11/22/0	0 09:10 Re	ceived: 11/2	2/00 12:12					
	Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	0K27023	11/27/00	. 11/28/00	NWTPH-Dx	
	Lube Oil Range Hydrocarbons	ND	25.0	11	н	m ·	11	-11	11	
	Surrogate: 2-FBP	80.6%	50-150	·		"	"	"	"	
	Surrogate: Octacosane	79.9 %	50-150			"	#	rr .	"	
##										

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

500 Market Place Tower, 2025 1st Ave

Seattle WA, 98121

Project: Trans Mountain - Laurel Station

Project Number: not provided

Project Manager: David Raubvogel

Reported:

11/28/00 17:54

Physical Parameters by APHA/ASTM/EPA Methods North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PEX-76-B-4 (B0K0591-01) Soil San	npled: 11/22/00 1	2:12 Rece	ived: 11/2	2/00 12:12		j+ 1			
Dry Weight	85.6	1.00	%	. 1	0K27059	11/27/00	11/28/00	BSOPSPL003R07	
PEX-77-B-11 (B0K0591-02) Soil Sa	mpled: 11/22/00	09:10 Rec	eived: 11/	22/00 12:12				1,000	er e e
Dry Weight	86.8	1.00	%	1	0K27059	11/27/00	11/28/00	BSOPSPL003R07	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 4 of 8

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore-Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/28/00 17:54

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B - Quality Control North Creek Analytical - Bothell

			D 1	Reporting	TT 1.	Spike	Source		%REC		RPD	
	Analyte	,	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
	Batch 0K26005:	Prepared 11/26/00	Using 1	EPA 5030B	(MeOH)						* -	
	Blank (0K26005-BL	K1)										
	Gasoline Range Hydroc	arbons	ND	5.00	mg/kg wet						1	
	Benzene		ND	0.0500	"							,
6 73	Toluene		ND	0.0500	π							
	Ethylbenzene		ND	0.0500	n							
	Xylenes (total)		ND	0.100	. "							
	Surrogate: 4-BFB (FID))	3.47		"	4.00		86.8	50-150			
	Surrogate: 4-BFB (PID))	3.59		"	4.00		89.7	50-150			
	LCS (0K26005-BS1))										
	Gasoline Range Hydroc	arbons	25.0	5.00	mg/kg wet	25.0		100	70-130			· · ·
	Surrogate: 4-BFB (FID)	·	3.98		"	4.00		99.5	50-150			
ett on	Duplicate (0K26005-	-DUP2)					Source: B	0K0574-2	26			
	Gasoline Range Hydroc	arbons	37.2	5.00	mg/kg wet		16.8			75.6	50	Q-13
108	Surrogate: 4-BFB (FID)		4.88		"	4.00		122	50-150			Q-13
	Matrix Spike (0K260	005-MS1)					Source: B	0K0563-0)3		.*	
	Benzene		0.574	0.100	mg/kg dry	0.619	ND	90.6	60-140			
200	Toluene		0.590	0.100	н	0.619	ND	94.4	60-140			
1 000	Ethylbenzene		0.619	0.100	tt	0.619	ND	94.2	60-140			
	Xylenes (total)		1.87	0.200	π	1.86	ND	94.0	60-140			
Okerie#	Surrogate: 4-BFB (PID)		5.06		"	4.95		102	50-150			
	Matrix Spike Dup (0	K26005-MSD1)				i	Source: B	0K0563-0	3			
	Benzene		0.583	0.100	mg/kg dry	0.619	ND	92.1	60-140	1.56	20	
	Toluene		0.578	0.100	"	0.619	ND	92.5	60-140	2.05	20	
8 5	Ethylbenzene		0.618	0.100	"	0.619	ND	94.0	60-140	0.162	20	
	Xylenes (total)		1.93	0.200	ŧŧ	1.86	ND	97.2	60-140	3.16	20	
	Surrogate: 4-BFB (PID)		5.35		"	4.95		108	50-150			
8 7739												

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel

Reported: 11/28/00 17:54

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) - Quality Control North Creek Analytical - Bothell

		Reporting		Spike	Source	+	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0K27023: Prepared 11/27/00) Using	EPA 3550F	3							
Blank (0K27023-BLK1)										
Diesel Range Hydrocarbons	ND	10.0	mg/kg wet							·
Lube Oil Range Hydrocarbons	ND	25.0	11							4
Surrogate: 2-FBP	9.38		"	10.7		87.7	50-150	··········		
Surrogate: Octacosane	9.05		"	10.7		84.6	50-150			
LCS (0K27023-BS1)										*.
Diesel Range Hydrocarbons	54.7	10.0	mg/kg wet	66.7		82.0	60-140			
Surrogate: 2-FBP	9.38		#	10.7		87.7	50-150			
Duplicate (0K27023-DUP1)					Source: 1	B0K0538-	24		•	•
Diesel Range Hydrocarbons	. ND	10.0	mg/kg dry		ND				50	
Lube Oil Range Hydrocarbons	ND	25.0	**		ND			32.4	50	
Surrogate: 2-FBP	11.6		"	13.2		87.9	50-150			***************************************
Surrogate: Octacosane	11.5		"	13.2		87.1	50-150			
Duplicate (0K27023-DUP2)					Source: 1	B0K0538-	23			
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry		ND				50	
Lube Oil Range Hydrocarbons	ND	25.0	*		ND			55.7	50	Q-0
Surrogate: 2-FBP	10.7		"	12.9		82.9	50-150			
Surrogate: Octacosane	11.7		"	12.9		90.7	50-150			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain custody document. This analytical report must be reproduced in its entirety.

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

Project: Trans Mountain - Laurel Station

500 Market Place Tower, 2025 1st Ave Seattle WA, 98121

Project Number: not provided Project Manager: David Raubvogel Reported:

11/28/00 17:54

Physical Parameters by APHA/ASTM/EPA Methods - Quality Control North Creek Analytical - Bothell

900000	Analyte	:	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
9	Batch 0K27059:	Prepared 11/27/00	Using D	y Weight									
5	Blank (0K27059-BL	.K1)		:									•
à	Dry Weight		100	1.00	06								-

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223

425.420.9200 fax 425.420.9210

East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

Portland

503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

541.383.9310 fax 541.382.7588

Dames and Moore- Seattle

500 Market Place Tower, 2025 1st Ave

Seattle WA, 98121

Project: Trans Mountain - Laurel Station

Project Number: not provided

Project Manager: David Raubvogel

Reported:

11/28/00 17:54

Notes and Definitions

Q-05 Analyses are not controlled on RPD values from sample concentrations less than 10 times the reporting limit.

Q-13 Multiple analyses indicate the percent recovery is outside the control limits due to a matrix effect.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

Sample results reported on a dry weight basis dry

RPD Relative Percent Difference

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. **Environmental Laboratory Network** Page 8 of 8

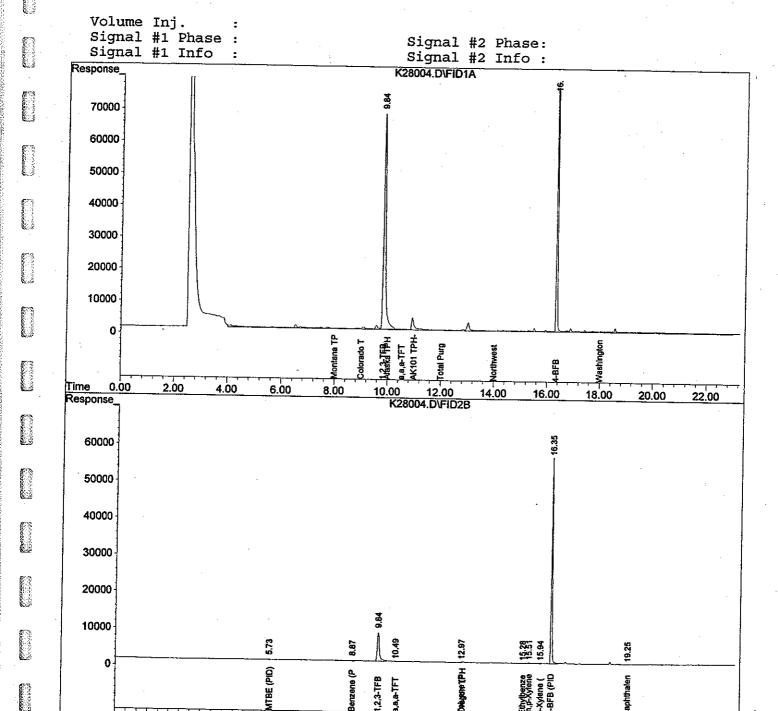
Signal #1 : C:\HPCHEM\2\DATA\112800\K28004.D\FID1A.CH Vial: 4

Signal #2 : C:\HPCHEM\2\DATA\112800\K28004.D\FID2B.CH

: 28 Nov 2000 10:19 am Operator: lp Sample : b0k0591-01 Inst : GC #4 Misc : 100 uL

Multiplr: 1.00 Sample Amount: 0.00

IntFile Signal #1: SURR.E


IntFile Signal #2: SURR2.E

Quant Time: Nov 28 10:43 2000 Quant Results File: TPHG1100.RES Quant Method : C:\HPCHEM\2\METHODS\TPHG1100.M (Chemstation Integrator)

Title : TPH-G Method

Last Update : Thu Nov 09 12:22:22 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG1100.M

8.00

Tue Nov

K28004.D

TPHG1100.M

10.00

28 10:43:40 2000

16.00

20.00

22.00

Page 2

Signal #2 : C:\HPCHEM\2\DATA\112800\K28015.D\FID2B.CH

 Acq On
 : 28 Nov 2000 3:49 pm
 Operator: lp

 Sample
 : b0k0591-02 rl
 Inst : GC #4

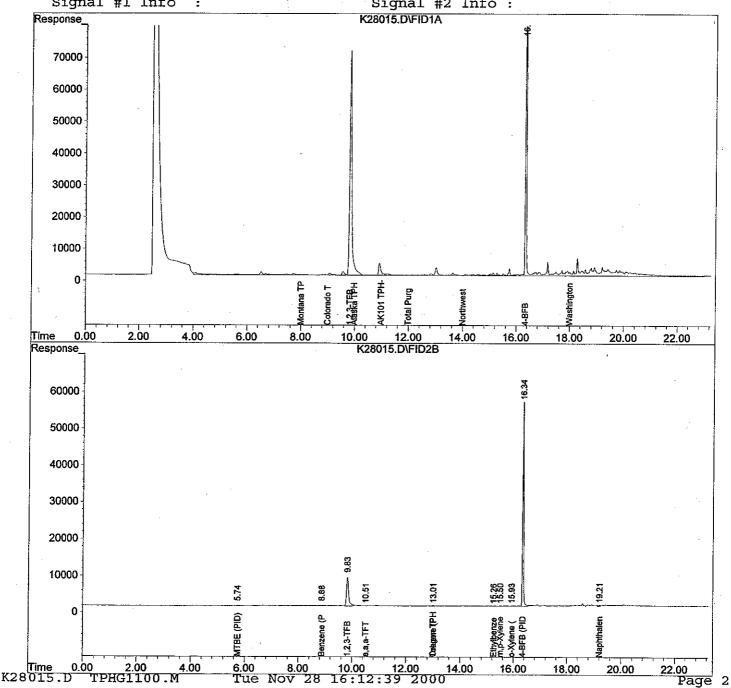
 Misc
 : 100 uL
 Multiplr: 1.00

Sample Amount: 0.00

IntFile Signal #1: SURR.E IntFile Signal #2: SURR2.E

Quant Time: Nov 28 16:12 2000 Quant Results File: TPHG1100.RES

Quant Method : C:\HPCHEM\2\METHODS\TPHG1100.M (Chemstation Integrator)


Title : TPH-G Method

Last Update : Thu Nov 09 12:22:22 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHG1100.M

Volume Inj. : Signal #1 Phase : Signal #1 Info :

Signal #2 Phase: Signal #2 Info:

Data File : D:\HPCHEM\1\DATA.SEC\K27069.D

Acq On : 11-28-00 00:10:51

Sample : b0k0591-01

Misc : S Operator: BN Inst : GC# 9

Multiplr: 1.00 Sample Amount: 0.00

Vial: 34

IntFile : SURR.E

Quant Time: Nov 28 0:26 2000 Quant Results File: TPHD2.RES

Quant Method: D:\HPCHEM\1\METHODS\TPHD2.M (Chemstation Integrator)

: TPH-D Rear Method Title

Last Update : Wed Nov 15 07:12:24 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. Signal Phase: Signal Info

Anametracton Kehotr

Data File : D:\HPCHEM\1\DATA.SEC\K28019.D

Acq On : 11-28-00 9:33:31

Sample : b0k0591-02

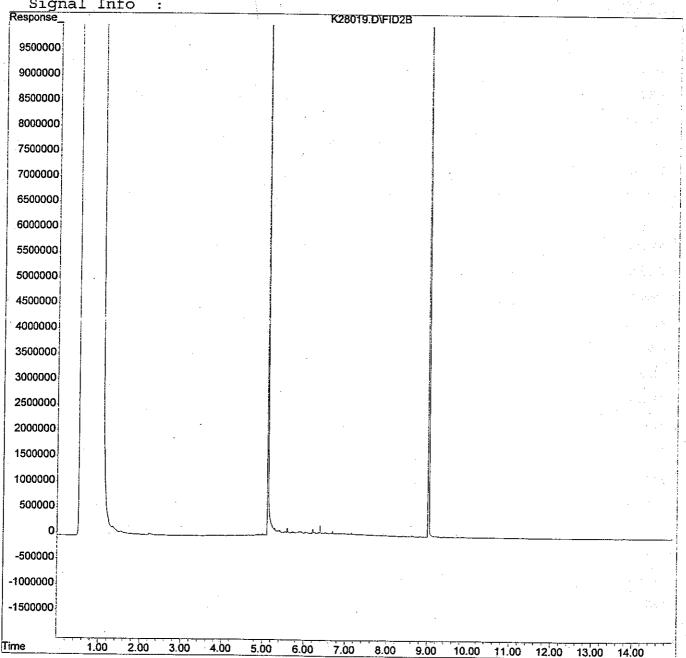
Misc : s r1

28-00 9:33:31 Operator: BN
0591-02 Inst : GC# 9
Multiplr: 1.00

Vial: 14

IntFile : SURR.E Sample Amount: 0.00

Quant Time: Nov 28 9:49 2000 Quant Results File: TPHD2.RES


Quant Method: D:\HPCHEM\1\METHODS\TPHD2.M (Chemstation Integrator)

Title : TPH-D Rear Method

Last Update : Wed Nov 15 07:12:24 2000 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. : Signal Phase : Signal Info :

11 3nth C wy N 400, N 400, NA 8244 325 4 500 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 (509) 924-9200 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132 The state of

Processor.

RANGE LAND

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

20-92 FAX 924-9290 FAX 906-9210 FAX 382-7588

(541) 383-9310

(503) 906-9200

BOX059 Work Order #: CHAIN OF CUSTODY REPORT

NCA WO ٠ ا DATE: U 82/00 TIME: 12: () ₽ TURNAROUND REQUEST in Business Days* *Tirnaround Requests less than standard may incur Rush Charges. 5 4 3 2 Petroleum Hydrocarbon Analyses 3 2 1 Please Specify COMMENTS Organic & Inorganic Analyses OTHER CONT. 2 #OF SAMPLES WERE NOT @ 2-6C UPON RECEIPT (W, S, O) MATRIX 10 V 02 0 たるるち、の REQUESTED ANALYSES RECEIVED BY: RECEIVED BY: PRINT NAME: PRINT NAME: DATE: 4/22/00 FAX: 206-722-5325 RO. NUMBER: INVOICE TO: TIME: DATE: TIME NUTPH-GX /BTEX NUTPH-DX 0843 28EX-77-B-11 yazloo 0910 ADDRESS: 2025 121 AVE STE. 500 SEATTLE, WA 98121 LUND MARKERM FIRM: CENTRA SAMPLING DATE/TIME 11/22/00 RELINQUISHED BY: KEUIN PHONE: 206-228-PROJECT NAME: 7,8435 2 RS 1. PEX-26-B-4 PRINT NAME: LEU/N CLIENT SAMPLE IDENTIFICATION ADDITIONAL REMARKS: PROJECT NUMBER: RELINQUISHED BY: SAMPLED BY: PRINT NAME: COC REV 3/99 Ö 12. 13

CHAIN OF CUSTODY RECORD

PROJECT:	2: Teans			P.O./JC	DB NO.: 9109	8	
Lab No.	Sample No.	Date	Time	Cont.	Analysis Re	quired	
	A	1/17/91	Dim	4,0	TAT 8015 In	ny dified)	
	B	1/17/41		11	11		
	С	1/17/91		11	11	É BETY 8	-020
	D	1/17/91		/1	//	·	
	E	1/17/91		7.1	11		
	F	1/17/41	ı	1)	,,		
T. K.	nished by:	1/	18/9/ 1	1:00 W	eceived by: Aufatta	Date -18-9 Date	Time //55/P
Dispato	ched by:	Da	ate T	ime Re	eceived at lab h	by: Date	Time

SOUND ANALYTICAL SERVICES, INC. 4630 Pacific Hwy East Suite B-14
Tacoma. WA 98424 (206) 922-2310

SOUND ANALYTICAL SERVILES, INC. JAN 24 1991

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W.D. Purnell & Assoc.

Date: January 22, 1991

Report On: Analysis of Water

Lab No.: 15544

IDENTIFICATION:

Samples Received on 01-18-91 Confied 1-17-9.

91008 Trans. Mountain Project:

<u>ANA</u>	<u>LYS</u>	<u> IS:</u>

ANALISIS.		*Total Petroleum
Lab Sample No.	Client ID	Fuel Hydrocarbons, ppm
1	A (control)	< 1.0
2	B (Drainage East of	< 1.0
3	c (Site Outra) s.	smth Rd) 12 as Gas
4	D Darr I, N. Sm	12 as Gas
5	E Dome, Mary)	3.9 as Gas
6	F Dan F, range	as Gas

*TPH by EPA SW-846 Modified Method 8015

Lab Sample No. 3

Client ID:

Concentration, ppm

1.40 Benzene 2.17 Toluene < 0.001 Ethyl Benzene Xylenes

BTEX by EPA SW-846 Method 8020

SOUND ANALYTICAL SERVICES

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

QUALITY CONTROL REPORT

DUPLICATES

Lab No:

15544 (3)

Client ID: C

Date:

January 22, 1991

Matrix:

Water

Client:

W.D. Purnell & Assoc.

Units:

ppm

Compound	Sample(S)	Duplicate(D)	RPD*
Benzene	1.40	1.43	2.1
Toluene	2.17	2.17	
Ethyl Benzene	< 0.001	< 0.001	
Xylenes	2.33	2.36	1.3
Total Petroleum Hydrocarbons	12	13	8.0

*RPD = relative percent difference = [(S - D) / ((S + D) / 2)] x 100

JAN 24 1991

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W. D. Purnell & Assoc.

Date: January 23, 1991

Report On: Analysis of Water

Lab No.: 15573

IDENTIFICATION:

Samples Received on 01-21-91 Sampled on Project: 91008 Trans Mountain

ANALYSIS:

Lab Sample No.	<u>Client ID</u>	*Total Petroleum Fuel Hydrocarbons, ppm
RUSH 1	D (Smith) Dam 1	3.8 Gas - Diesel
RUSH 2	E (Pond) Dam 2	2.4 Gas - Diesel
RUSH 3	F (Hannigan) Dam 3	2.3 Gas - Diesel
RUSH 4	G (Meridian)	< 1.0

^{*}TPH by EPA SW-846 Modified Method 8015

^{*} Note - Results reported on an as received, wet basis.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

JAN 24 1991

QUALITY CONTROL REPORT

DUPLICATES

Lab No: 15573

Client ID: G (Meridian)

Date: January 23, 1991

Matrix: Water

Client: W.D. Purnell & Assoc.

Units:

ppm

Compound	Sample(S)	Duplicate(D)	RPD*
Total Petroleum Fuel Hydrocarbons	< 1.0	< 1.0	

*RPD = relative percent difference $= [(S - D) / ((S + D) / 2)] \times 100$

CHAIN OF CUSTODY RECORD

JAN 2 4 1991 91008 TRANS MIN

Page	1	of	/

CUSTOMER: W.D. PURNEW & ASSEC. Inc

PROJECT: TRANS MUNIMAN P.O./JOB NO.: 9/088

SAMPLER: THE

					· · · · · · · · · · · · · · · · · · ·
Lab No.	Sample No.	Date	Time	Cont.	Analysis Required
	A (Briggion no)	1/19/91	12:30	H20	(TPH) 8015 MODIFIED
	D (Smith) DAM	• /	·	1/	
·	E (Pono) Z	74		17	
	E (Pono) 2 F (Hannican) 3	11		11	
	a (menion)	70		1/	
					*NOTE-Sample A (Background
					broken water spiller on timbo
					coler-Contaminated and whate
					rotified of breakage, 1:15pm 1-21-91. 3.A. Giara
					3.7. Giara
				1	
		+			
		+		1	
					Date Time

Relinquished by:	Date	Time	Received by:	Date	Time
Thetas	1/21/91				
Relinquished by:	Date	'Time	Received by:	'Date	Time
	1	! 			77
Dispatched by:	Date	Time	Received at lab by:	Date,	Time

SOUND ANALYTICAL SERVICES, INC.

4630 Pacific Hwy East Suite B-14

JAN 24 1991

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W. D. Purnell & Assoc.

Date: January 23, 1991

Report On: Analysis of Water

Lab No.: 15573

IDENTIFICATION:

Samples Received on 01-21-91 Sampled on Project: 91008 Trans Mountain

ANALYSIS:

Lab Sample No.	<u>Client ID</u>	*Total Petroleum Fuel Hydrocarbons, ppm
RUSH 1	D (Smith) Dam 1	3.8 Gas - Diesel
RUSH 2	E (Pond) Dam 2	2.4 Gas - Diesel
RUSH 3	F (Hannigan) Dam 3	2.3 Gas - Diesel
RUSH 4	G (Meridian)	< 1.0

^{*}TPH by EPA SW-846 Modified Method 8015

^{*} Note - Results reported on an as received, wet basis.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

JAN 24 1991

QUALITY CONTROL REPORT

DUPLICATES

Lab No: 15573

Client ID: G (Meridian)

Date: January 23, 1991

Matrix: Water

Client: W.D. Purnell & Assoc.

Units:

ppm

Compound	Sample(S)	Duplicate(D)	RPD*
Total Petroleum Fuel Hydrocarbons	< 1.0	< 1.0	

*RPD = relative percent difference $= [(S - D) / ((S + D) / 2)] \times 100$

ROJECT:	R: WD PU TRANS 199 THR					9/018	•
Lab No.	Sample No.	Date	Time	Cont.	Analys	is Required	
	A-3	1/21/91	2:20	420	TPH	8015	
	0-3	11	2:15	11	, 1	//	
	F-3	11	2:10	//	11	"	
	F-3	11	1152	"	,,	()	
	SATER GETER	1/2491	1:30	<i>;</i> 7	. /1	"	
	SATER	1/22/41		/)	11	"	
	SATER RES	11	1.'21	/ \	BETY	8020	Loving
<u> </u>	5F-1	1/20/91	12:30	/1	7074L SUL	105 /10 700 11 10 10 10 10 10 10 10 10 10 10 10 1	
	5F-2	11	APTER-	11	/1	"	18:0
	5=-3	1/21/4		"	//	// V //	
	<i>J</i> , <i>Z</i>	172114		·			
				•	1	1H	
<u> </u>					1/1	i hmk	
	n/2009	Trus	ar 15A.		2		<i>`</i>
	1 1/0° F	T W	10-			//	
Relinqu	uished by:	Da	ate Ti	me Re	eceived by:	Date	e Time
Relinqu	ished by:	D.	ate Ti	ime Re	eceived by:	Dat	e Time
Dispat	ched by:	D	ate T:	ime Re	eceived at	lab by: Dat	e/ Time

SOUND ANALYTICAL SERVICES, INC.

8/3 A630 Pacific Hwy East Suite B-14

13 08474 (206) 022-2310

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W.D. Purnell & Assoc. Inc. Date: January 28, 1991

Sort led 1-21-3

Lab No.: 15645 Report On: Analysis of Water

IDENTIFICATION:

Samples Received on 01-24-91

Project: 91008 Trans Mountain

ANALYSIS:

Lab Sample No.	Client ID	*Total Petroleum Fuel Hydrocarbons, mg/l
RUSH 1	A-3	< 1.0
RUSH 2	D-3	< 1.0
RUSH 3	E-3	< 1.0
RUSH 4	F-3	< 1.0
RUSH 5	Sater Creek	< 1.0
RUSH 6	Sater	< 1.0
*TPH by EPA SW-846	Modified Method 8015	
Note - TPH 8015 res	ults reported on an	as received, wet basis.

W.D. Purnell & Assoc. Inc. Project: 91008 Page 2 of 2 Lab No. 15645 January 28, 1991

Lab Sample No. RUSH 7	Client ID: Sater Res
Benzene, mg/l	< 0.001
Toluene, mg/l	< 0.001

Ethyl Benzene, mg/l < 0.001 Xylenes, mg/l < 0.001

BTEX by EPA SW-846 Method 8020

Lab Sample No.	Client ID	Total Suspended Solids, mg/l
RUSH 8	SF-1	7.5
RUSH 9	SF-2	46
RUSH 10	SF-3	2.4

SOUND AMALYTICAL SERVICES

LARRY ZURAW

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

QUALITY CONTROL REPORT

DUPLICATES

Lab No: 15645

Client ID: A-3

Date: January 28, 1991

Matrix:

Water

Client: W.D. Purnell & Assoc.

Units:

mg/l

Compound	Sample(S)	Duplicate(D)	RPD*
Total Petroleum Fuel Hydrocarbons	< 1.0	< 1.0	

*RPD = relative percent difference

 $= [(S - D) / ((S + D) / 2)] \times 100$

CHAIN OF CUSTODY RECORD

	c of <u>/</u> R: <u>W.D. R</u>	MIELL_	5 A	ssp	Tinc		
	Thans 1					91088	
	THR					e.	
ab No.	Sample No.	Date	Time	Cont.	Analy	sis Required	
	A-Y (work	1/23/91			TPH	8015	
	#	#			Y	"	<u> </u>
	D-4 (Dan 1)	1(11		y hu
	5-4/ (De 13)	k			1(" (Mrsh
	F-4 (Dan 3)	"			IL	i()	
	D-4B(12m1)				BETK	8020	(How)
				•			
Relinqu	lished by:	Da	ite T	ime R	eceived by	: Date	e Time
Relinqu	uished by:	Dē	te T	ime R	eceived by	: Dat	e Time
Dispat	ched by:	Da	ate I		eceived at		e Time 1-9/12:3

SOUND ANALYTICAL

1883 4630 Pacific Hwy East Suite B-14

1800m2 W3 08424 (206) 922-2310

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W.D. Purnell & Assoc.

Date: January 28, 1991

Report On: Analysis of Water

Lab No.: 15661

IDENTIFICATION:

Samples Received on 01-24-91 Project: 91008 Trans Mountain

ANALYSIS:

Lab Sample No.	Client ID	*Total Petroleum Fuel Hydrocarbons, ppm
RUSH 1	A-4	< 1.0
RUSH 2	D-4	< 1.0
RUSH 3	E-4	< 1.0
RUSH 4	F-4	2.2 Diesel

*TPH by EPA SW-846 Modified Method 8015

* Note - Results reported on an as received, wet basis.

SOUND AMALYTICAL SERVICES

C. ZARRY ZUHAW

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

QUALITY CONTROL REPORT

DUPLICATES

Lab No: 15661

Client ID: A-4

Date: January 28, 1991

Matrix: Water

Client: W.D. Purnell & Assoc.

Units:

and the control of the control of the control of the control of the control of the control of the comment of the control of th

mq/l

Compound	Sample(S)	Duplicate(D)	RPD*
Total Petroleum Fuel Hydrocarbons	< 1.0	< 1.0	

*RPD = relative percent difference = [(S - D) / ((S + D) / 2)] x 100

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

FEB | 1 1991

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W.D. Purnell & Assoc.

Date: February 6, 1991

Report On: Analysis of Water

Lab No.: 15829

IDENTIFICATION:

Samples Received on 02-05-91 Project: 91008 Trans Mountain

Client ID: RUSH Sater 2

ANALYSIS:

Concentration, ppm

 Benzene
 < 0.001</td>

 Toluene
 < 0.001</td>

 Ethyl Benzene
 < 0.001</td>

 Xylenes
 < 0.001</td>

BTEX by EPA SW-846 Method 8020

Total Petroleum Fuel Hydrocarbons by EPA SW-846 Modified Method 8015 < 1.0

SOUND ANALYTICAL SERVICES

C. CARRY SURAN

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

QUALITY CONTROL REPORT

DUPLICATES

Lab No: 15829

Client ID: Sater 2

Date: February 6, 1991

Water

Client: W.D. Purnell & Assoc.

Matrix: Units:

ppm

Compound	Sample(S)	Duplicate(D)	RPD*
Total Petroleum Fuel Hydrocarbons	< 1.0	< 1.0	·

*RPD = relative percent difference $= [(S - D) / ((S + D) / 2)] \times 100$

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W.D. Purnell & Assoc.

Date: February 12, 1991

Report On: Analysis of Water

Lab No.: 15834

IDENTIFICATION:

Samples Received on 02-05-91

Trans Mountain Project:

SAMPLED 2/1/91

AN	Ά	T	Υ	S	Т	S	:
2 7T A							

ANALYSIS:		*Total Petroleum
Lab Sample No.	Client ID	Fuel Hydrocarbons, ppm
1	Control	< 1.0
2	Dam 1	< 1.0
3	Dam 2	< 1.0
4 4	Dam 3	< 1.0
Lab Sample No. 4		Client ID: Dam 3
		Concentration, ppm
Benzene Toluene Ethyl Benzene Xylenes		< 0.001 < 0.001 < 0.001 < 0.001
BTEX by EPA SW-846		

Total Suspended Solids

Method 3020

3.6

*TPH by EPA SW-846 Modified Method 8015 Note - TPH 8015 and BTEX results reported on an as received, wet basis.

This report is issued solely for the use of the person or company to whom it is addressed. This laboratory accepts responsibility only for the due performance of analysis in accordance with industry acceptable practice. In no event shall Sound Analytical Services, Inc. or its employees be responsible for consequential or special damages in any kind or in any amount.

•	CHA	IN O	F C	JSTO	DY RECORI	>
Page _	of <u>/</u>	•				
CUSTOME	R: WD A	Durnel	18	ASSO		
					de no.: <u>91008</u>	
SAMPLER	· Doug Dil	lenberg	184		•	
	1					
Lab No.	Sample No.	Date	Time	Cont.	Analysis Requ	uired
	CONTROL	2-4-91		H20	TPH	
	DAM 1	i (•	1(TPH	
	DAm 3	1(1(TPH BI	ETH
				1		
Relinqu	rished by	/ ,		ime Re	sceived by:	Date Time 2-6-9/ 1026
Relinqu	uished by	De	ate T	ime R	Acry Cutter	Date Time 2/6/91 3 pr
Dispate	ched by:	Da 	ate T	ime R	eceived at lab by	: Date Time

SOUND ANALYTICAL SERVICES, INC. 4630 Pacific Hwy East Suite B-14

91008

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W.D. Purnell & Assoc.

Date: February 8, 1991

Report On: Analysis of Water

Lab No.: 15861

IDENTIFICATION:

Samples Received on 02-06-91

Project: 91008 Trans Mountain

Supled 2-4

ANALYSIS:			
Lab Sample No.	RUSH 1	RUSH 2	RUSH 3
Client Identification	Control	Dam 1	Dam 3
Matrix/Units	Water mg/l	Water mg/l	Water mg/l
Benzene Toluene Ethyl Benzene Xylenes BTEX by EPA SW-846 Method 8020	NT NT NT NT	NT NT NT NT	< 0.001 < 0.001 < 0.001 < 0.001
Total Petroleum Fuel Hydrocarbons by EPA SW-846 Modified Method 8015	< 1.0	< 1.0	< 1.0

NT = Not Tested

Note - Results reported on an as received basis.

SOUND AMALYTICAL SERVICES

C. JARRY ZURA

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

QUALITY CONTROL REPORT

DUPLICATES

Lab No:

15861 (3)

Client ID: Dam 3

Date:

February 8, 1991

Matrix:

Water

Client:

W.D. Purnell & Assoc.

Units:

mg/l

Compound	Sample(S)	Duplicate(D)	RPD*
Benzene	< 0.001	< 0.001	
Toluene	< 0.001	< 0.001	
Ethyl Benzene	< 0.001	< 0.001	
Xylenes	< 0.001	< 0.001	

*RPD = relative percent difference $= [(S - D) / ((S + D) / 2)] \times 100$

Keg. Turnanund Per D. D. Henberger CUSTODY RECORD CHAIN 2130pn Dis Phone Page ____ of 2__ CONV. FEB 2 2 1991 CUSTOMER: W. D. Purnell & ASSO PROJECT: Trans 1/10447910 P.O./JOB NO.: 91008 SAMPLER: T. RoberTs Analysis Required Cont. Time Date Sample No. Lab No. 5:13 TPH 2015 H20 DAM 3 2-8-91 TPH 7615 4:58 Hao DAM 2 2-8-91 5:07 Hao $\neg PH$ 2-8-91 JAM TOTAL Suspendent Solids 2-8-91 5:13 Hao) *411* 3 BETX 2-8-91 5:13 H20 DAM 3 Time Date Received by: Time | Date Relinquished by: 9:50 aug 1)1/len/perger Time Date Received by: Time () Date Relinquished by: Date Time Received at lab by: Time Date Dispatched by: SOUND ANALYTICAL SERVICES INC.

4630 Pacific Hwy East Suite B-14 Tacoma. WA 98424 (206) 922-2310

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W. D. Purnell & Assoc.

Date: February 19, 1991

Report On: Analysis of Water

Lab No.: 15937

IDENTIFICATION:

Santied 2-7-91

Samples Received on 02-11-91 Project: 91008 Trans Mountain

ANALYSIS:

Lab Sample No.	Client ID	*Total Petroleum Fuel Hydrocarbons, ppm
1	Dam 1	< 1.0
2	Dam 2	< 1.0
3	Dam 3	< 1.0

*TPH by EPA SW-846 Modified Method 8015

Lab Sample No.	4	Client	ID:	Dam	3
Benzene, ppm			<	0.00)1
Toluene, ppm			<	0.00)1
Ethyl Benzene,	ppm		<	0.00	1
Xylenes, ppm			<	0.00)1

BTEX by EPA SW-846 Method 8020

Client ID: Dam 3 Lab Sample No. 5

Total Suspended Solids, ppm 17.7

SOUND ANALYTICAL, SERVICES

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

QUALITY CONTROL REPORT

DUPLICATES

Lab No:

15937 (4)

Client ID: Dam 3

Date:

February 20, 1991

Matrix:

Water

Client:

W.D. Purnell & Assoc.

Units:

ppm

Sample(S)	Duplicate(D)	RPD*
< 0.05 < 0.05	< 0.05 < 0.05	
< 0.05	< 0.05	
	< 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05

Lab No:

15937 (1)

Client ID: Dam 1

Date:

February 20, 1991

Matrix:

Water

Client:

W.D. Purnell & Assoc.

Units:

ppm

RPD* Duplicate(D) Sample(S) Compound Total Petroleum < 1.0 < 1.0 Fuel Hydrocarbons

*RPD = relative percent difference $= [(S - D) / ((S + D) / 2)] \times 100$

CHAIN OF CUSTODY RECORD

Page <u>l</u>	of 1 W.D.	Our ne	11 d	Acco		
CUSTOME	R: 4405	SALA	W 747	<i>y</i>		
PROJECT	: Trans A	10447	9/9	P.O./J	DB NO.: 91008	
SAMPLER	: Doug	Dillen	berger		e de	
	l		·			
Lab No.	Sample No.	Date	Time	Cont.	Analysis Required	
	Control	2-11-91	3:45	Hao	TPH 8015	·)
	DAMI	2-11-91	3:54	Hao	TPH 8015	
	DAM 3	2-11-91	4:00	H20	TPH 8015	
	DAM3	2-11-91	1	Hao	BE1X	
	·					
,						
				1		
Reling	uished by:	1	1	ime Re	eceived by: Date 12-1	4 ,
Reling	wished by:		0 /3 //2		eceived by! Dar	
Dispat	ched by:	Di	ate T	ime R	Scriang Da	te Time
SOU	ND ANA	LYTI	CAL		VICES. INC.	1
4630 P	acific Hwy Ea	st Sui	te B-14			

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W. D. Purnell & Assoc.

Date: February 15, 1991

Report On: Analysis of Water

Lab No.: 15964

IDENTIFICATION:

Samples Received on 02-12-91 Sampled 2-11-91
Project: 91008 Trans Mountain

ANALYSIS:

Lab Sample No.	Client ID	*Total Petroleum Fuel Hydrocarbons, ppm
1	Control	< 1.0
2	Dam 1	< 1.0
3	Dam 3	< 1.0
AMDII bee DDA CUI OA	c walsiad wathed	0015

*TPH by EPA SW-846 Modified Method 8015

Lab Sample No.	4	Client	ID:	Dam	3
Benzene, ppm Toluene, ppm Ethyl Benzene, Xylenes, ppm	ppm		< <	0.001 0.001 0.001	L L

BTEX by EPA SW-846 8020

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

QUALITY CONTROL REPORT

DUPLICATES

Lab No:

15964 (4)

Client ID: Dam 3

Date:

February 15, 1991

Matrix:

Water

Client: W.D. Purnell & Assoc.

Units:

ppm

Compound	Sample(S)	Duplicate(D)	RPD*
Benzene	< 0.001	< 0.001	
Toluene	< 0.001	< 0.001	
Ethyl Benzene	< 0.001	< 0.001	
Xylenes	< 0.001	< 0.001	

Lab No:

15964 (1)

Client ID: Control

Date:

February 15, 1991

Matrix:

Water

Client: W.D. Purnell & Assoc.

Units:

ppm

Compound	Sample(S)	Duplicate(D)	RPD*
Total Petroleum Fuel Hydrocarbons	< 1.0	< 1.0	

*RPD = relative percent difference

 $= [(S - D) / ((S + D) / 2)] \times 100$

CHAIN OF CUSTODY RECORD

	CHAI	LN O.	r CC			
Page _				•		
ar : amo) and	W.D.	Purn	e// d	OLLA	·	
	R: TONS			D 0 /70	DB NO.: 91008	
		Traus n	ADUM 4.	P.0./30	DB NO.:	<u> </u>
SAMPLER	: <u>DD</u>			•		e.
Lab No.	Sample No.	Date	Time	Cont.	Analysis Requ	
<u></u>	SATER-3	2-13-91	2:10	H20	TPH 8015	<u>-</u>
	SATER-3	1 1		1	BE7X_	
				का V		
				<u> </u>		
Relingi	uished by:	3	, 1	ime Re	eceived by:	Date Time 2-14-91 1005
Relinqu	we Malker uished by:				eceived by:	Date Time
Dispat	ched by:	Da 	ate T	1	eceived at lab by:	Date Time
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CAT		VICES. IN	

SOUND ANALYTICAL SERVICES, INC 4630 Pacific Hwy East Suite B-14 Tacoma Wa 08424 (206) 922-2310

FEB 22 1991

# SOUND ANALYTICAL SERVICES, INC.

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W.D. Purnell & Assoc.

Date: February 19, 1991

Report On: Analysis of Water

Lab No.: 16003

IDENTIFICATION:

Samples Received on 02-14-91

Soupled 2-13-91

Project: 91008 Trans Mountain

Client ID: Sater-3

ANALYSIS:

Concentration, ppm

 Benzene
 < 0.001</td>

 Toluene
 < 0.001</td>

 Ethyl Benzene
 < 0.001</td>

 Xylenes
 < 0.001</td>

BTEX by EPA SW-846 Method 8020

Total Petroleum Fuel Hydrocarbons by EPA SW-846 Modified Method 8015

< 1.0

SOUND AMALYTICAL SERVICES

C. LARRY ZIVEA

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

### QUALITY CONTROL REPORT

### DUPLICATES

Lab No:

16003

Client ID: Sater-3

Date:

February 19, 1991

Matrix:

Water

Client:

W.D. Purnell & Assoc.

Units:

ppm

Compound	Sample(S)	Duplicate(D)	RPD*
Benzene Toluene Ethyl Benzene	< 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001	
Total Petroleum Fuel Hydrocarbons	< 1.0	< 1.0	

*RPD = relative percent difference  $= [(S - D) / ((S + D) / 2)] \times 100$ 

# 3- DAY

	CHAI	N O	F CU	STO	DY RECO	ORD	
Page	of 2 W [	Du	irnell	<b>£</b> A	<del>1</del> 250.		
CUSTOME	R: GIAGS	1 bo as	Tao				
PROJECT	CO DETEN	Trans 1	NavuTain	P.O./JO	B NO.: 910	208	
SAMPLER:	DD			la			
					MANA	and -	
Lab No.	Sample No.	Date	Time	Cont.	Analysis		
	JARI	2-14-91	1402	Soil	TPH	BETX	
	JAR 2	1 (	1430	/(	TPH	BETX	
	Jar 3	11	1450	11	TPH.	BETX	
	Jar 4	11	1510	/1	TPH		
	Jar 5	- 11	1530	11	TPH	BETX	
	Jar 6	10	1550	11	TPH	BETX	
	Jar 7	11	1610	11	TPH,	BETX	
	Jar 8	2-15-91	1136	11	TPH,	BETX	
	Jar 9	10	1150	11	TPH		
	Jario	11	1230	11	TPH	BETX	
	Jaril	1,	1250	4	TPH.	BETX	
	Jan 12	11	1300	. 11	TPH.		
	Jan 13	11	1322	11	TPH	BETX	
	Jar 14	11	1338	11	TPH		
	Jar 15	11	1345	/1	TPH.	RETX	
Relinqu	rished by:	Da	ite Ti	me Re	ceived by:		Time
Mari				0.30 /4		Cadler 7/4/9/ Date	Time
Rélinqu	uished by:	Da	ate Ti	me Re	eceived by:	1 1	
Dispate	ched by:	Da 	ate Ti		Sceived at la	b by: Date 12/19/11	Time

SOUND ANALYTICAL SERVICES, INC. 4630 Pacific Hwy East Suite B-14 Tacoma. WA 98424 (206) 922-2310

# Z-DAY MAR 5 INC. CHAIN OF CUSTODY RECORD

	: WD Trans A					008
SAMPLER	: <u>DD</u>			e e e e e e e e e e e e e e e e e e e		·
Lab No.	Sample No.	Date	Time	Cont.	Analysis	Required
	Jan 16	2-15-91	1405	SOIL	TPH.	BETX
	Jar 17	1	1420	11	TPH	
	Jan 18	11	1437	11	TPH	
	Jar 19	.,	1450	11	TPH	RETX
	Jar 20	ц	1505	11	TPH	
	Jar 21	11	1519	11	TPH,	
	Jar 22	Ч	1526	11	TPH,	BETX
	Jar 23	11	1536	(1	TPH	
	Jar 24	И	1545	11	TPH	
	Jar 25	/,	1554	11	TPH	
				<u> </u>		
				:		
Mer	uished by:  Malfuished by:		1/8/9/	0:30 /9/	ceived by:  A Rose   Associated by:	Date Time  Date Time  Date Time
ue i ilidi	mranem by:	1	.			1 1
Dispat	ched by:	Da 	ate T	ime   Re	eceived at la	by: Date Time    \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

4630 Pacific Hwy East Suite B-14 Tacoma. WA 98424 (206) 922-2310

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W D Purnell & Assoc.

Date: February 28, 1991

Report On: Analysis of Soil

Lab No.: 16045

Page 1 of 5

**IDENTIFICATION:** 

Samples Received on 02-19-91

Sampled 2-14-91, 2-15-51

Project: 910086Trans Mountain

### ANALYSIS:

	•				
Lab Sample No.	1	2	3	4	5
Client ID	Jar 1	Jar 2	Jar 3	Jar 4	Jar 5
Matrix/Units	Soil ppm	Soil ppm	Soil ppm	Soil ppm	Soil ppm
Total Petroleum Fuel Hydro- carbons by EPA SW-846 Modified Method 8015	3,976	4,215	78	< 10	2,946
TPH as	Gas - Diesel	Gas - Diesel	Diesel		Aged Gas Diesel
Benzene Toluene Ethyl Benzene Xylenes BTEX by EPA SW-846 Method 8020	6.83 57.3 8.64 89.9	0.26 5.80 0.67 17.9	< 0.05 < 0.05 < 0.05 0.08	NT NT NT NT	< 0.05 < 0.05 0.07 0.88

NT - Not Tested.

Note - Results reported on an as received basis.

W D Purnell & Assoc. Project: 91008 Page 2 of 5 Lab No. 16045 February 28, 1991

· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	
Lab Sample No.	6	7	8	9	10
Client ID	Jar 6	Jar 7	Jar 8	Jar 9	Jar 10
Matrix/Units	Soil ppm	Soil ppm	Soil ppm	Soil ppm	Soil ppm
Total Petroleum Fuel Hydro- carbons by EPA SW-846 Modified Method 8015	8,085	1,863	1,551	< 10	857
TPH as	Aged Gas Diesel	Aged Gas Diesel	Aged Gas Diesel		Gas - Diesel
Benzene Toluene Ethyl Benzene Xylenes BTEX by EPA SW-846 Method 8020	< 0.05 1.68 0.21 3.73	< 0.05 0.21 0.08 1.54	< 0.05 0.28 0.24 5.00	TN NT NT NT	0.86 8.30 0.42 16.8

NT - Not Tested.

Note - Results reported on an as received basis.

W D Purnell & Assoc. Project: 91008 Page 3 of 5 Lab No. 16045 February 28, 1991

Lab Sample No.	11	12	13	14	15
Client ID	Jar 11	Jar 12	Jar 13	Jar 14	Jar 15
Matrix/Units	Soil ppm	Soil ppm	Soil ppm	Soil ppm	Soil ppm
Total Petroleum Fuel Hydro- carbons by EPA SW-846 Modified Method 8015	1,222	< 10	15,411	< 10	1,501
TPH as	Gas - Diesel		Gas - Diesel		Diesel
Benzene Toluene Ethyl Benzene Xylenes BTEX by EPA SW-846 Method 8020	< 0.05 < 0.05 0.08 1.05	NT NT NT NT	1.94 31.4 6.01 109	TN TN TN	< 0.05 0.12 < 0.05 0.45

NT - Not Tested.

Note - Results reported on an as received basis.

W D Purnell & Assoc. Project: 91008 Page 4 of 5 Lab No. 16045 February 28, 1991

					<b>.</b>
Lab Sample No.	16	17	18	19	20
Client ID	Jar 16	Jar 17	Jar 18	Jar 19	Jar 20
Matrix/Units	Soil ppm	Soil ppm	Soil ppm	Soil ppm	Soil ppm
Total Petroleum Fuel Hydro- carbons by EPA SW-846 Modified Method 8015	4,169	< 10	< 10	344	50
TPH as	Gas - Diesel			Diesel	Diesel
Benzene Toluene Ethyl Benzene Xylenes BTEX by EPA SW-846 Method 8020	0.13 3.70 1.05 19.8	NT NT NT NT	NT NT NT NT	< 0.05 < 0.05 < 0.05 0.18	TN NT NT NT

NT - Not Tested.

Note - Results reported on an as received basis.

W D Purnell & Assoc. Project: 91008 Page 5 of 5 Lab No. 16045 February 28, 1991

	_				• *
Lab Sample No.	21	22	23	24	25
Client ID	Jar 21	Jar 22	Jar 23	Jar 24	Jar 25
Matrix/Units	Soil ppm	Soil ppm	Soil ppm	Soil ppm	Soil ppm
Total Petroleum Fuel Hydro- carbons by EPA SW-846 Modified Method 8015	12,523	3,649	< 10	< 10	< 10
TPH as	Gas - Diesel	Diesel			
Benzene Toluene Ethyl Benzene Xylenes BTEX by EPA SW-846 Method 8020	0.98 16.1 1.75 51.3	< 0.05 0.42 0.13 2.47	NT NT NT NT	NT NT NT NT	NT NT NT NT

NT - Not Tested.

Note - Results reported on an as received basis.

SOUND ANALYTICAL SERVICES

C. MARRY ZURAN

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

#### QUALITY CONTROL REPORT

#### **DUPLICATES**

Lab No:

16045 (10)

Client ID: Jar 10

Date:

February 28, 1991

Matrix:

Soil

Client:

W D Purnell & Assoc.

Units:

ppm

Compound	Sample(S)	Duplicate(D)	RPD*
Benzene Toluene Ethyl Benzene Xylenes	0.86 8.30 0.42 16.8	0.87 8.57 0.54 20.5	1.1 3.2 25.0 19.9
Total Petroleum Fuel Hydrocarbons	857	1,001	15.5

Lab No: Date:

Client:

16045 (20)

February 28, 1991 W D Purnell & Assoc. Client ID: Jar 20

Matrix:

Soil

Units:

ppm

Compound	Sample(S)	Duplicate(D)	RPD*
Total Petroleum Hydrocarbons	50	57	13.1

Lab No:

16045 (22)

Date:

February 28, 1991

Client:

W D Purnell & Assoc.

Client ID: Jar 22

Matrix:

Soil

Units:

ppm

Compound	Sample(S)	Duplicate(D)	RPD*
Benzene Toluene Ethyl Benzene Xylenes	< 0.05 0.42 0.13 2.47	< 0.05 0.48 0.15 3.28	13.3 7.1 28.2

*RPD = relative percent difference

 $= [(S - D) / ((S + D) / 2)] \times 100$ 

# CHAIN OF CUSTODY RECORD

1	CIIA.				2200
	_ of <u> </u>			,	
CUSTOME	R: <u>WD</u>	Dy	rne	11 4	Asso
PROJECT	: Trans /	10447	919	P.O./J	DB NO.: 91008
	: <u>DD</u>				
					0015
Lab No.	Sample No.	Date	Time	Cont.	Analysis Required
	DAMI	2-15-91	1615	Hao	TPH
	DAM 2	((	(1)	11	TPH
	DAm3	((	/(	11	TPH, BETX Suspended Solve
	CONTrol	11	u	11	TPH
	·				
·		-		•	
Relinqu	uished by:	De	2 1	ime Re	althe (Room) Assoc Camers 2/18/91 1030
Reling	uished by:	Da		ime //Re	eceived by: Date Time
Dispat	ched by:	D:	ate T	ime   R	eceived at lab by: Date Time
SOU	ND ANAI	_YTI	CAL	SER	VICES, INC.

4630 Pacific Hwy East Suite B-14
Tacoma. WA 98424 (206) 922-2310

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

91008

Report To: W D Purnell & Assoc.

Date: February 26, 1991

Report On: Analysis of Water

Lab No.: 16046

**IDENTIFICATION:** 

Samples Received on 02-19-91 Sampled = 15-3

Project: 91008 Trans Mountain

ANALYSIS:

		*Total Petroleum
Lab Sample No.	Client ID	Fuel Hydrocarbons, mg/l
1	Dam 1	< 1.0
2	Dam 2	< 1.0
3	Dam 3	< 1.0
4	Control	< 1.0

*TPH by EPA SW-846 Modified Method 8015

Lab Sample No. 3

Client ID: Dam 3

BTEX by EPA SW-846 Method 8020

Concentration, mg/l

Benzene Toluene < 0.001 < 0.001

Ethyl Benzene

< 0.001

Xylenes

< 0.001

Total Suspended Solids

6

SOUND ANALYTICAL SERVICES

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

### QUALITY CONTROL REPORT

#### DUPLICATES

Lab No:

16046 (3)

Client ID: Dam 3

Date:

Matrix:

Water

Client:

February 26, 1991 W D Purnell & Assoc.

Units:

mg/1

Compound	Sample(S)	Duplicate(D)	RPD*
Benzene	< 0.001	< 0.001	
Toluene	< 0.001	< 0.001	
Ethyl Benzene	< 0.001	< 0.001	
Xylenes	< 0.001	< 0.001	

Lab No:

16046 (4)

Client ID: Control

Date: Client: February 26, 1991 W D Purnell & Assoc. Matrix: Water

Units:

mg/l

Compound	Sample(S)	Duplicate(D)	RPD*
Total Petroleum Fuel Hydrocarbons	< 1.0	< 1.0	

*RPD = relative percent difference  $= [(S - D) / ((S + D) / 2)] \times 100$ 

1991

### SOUND ANALYTICAL SERVICES, INC.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W D Purnell & Assoc.

Date: February 27, 1991

Report On: Analysis of Water

Lab No.: 16062

IDENTIFICATION:

Samples Received on 02-19-91 Sampled 2-18-91

Project: 91008 Trans Mountain

ANALYSIS:

Lab Sample No.	Client ID	*Total Petroleum Fuel Hydrocarbons, mg/l
1	Pond #1	< 1.0
2	West Boundary	< 1.0
3	Up Gradient	< 1.0
4	Dam 1	< 1.0
5	Dam 2 (Labeled: Control)	< 1.0
6	Dam 3	< 1.0

*TPH by EPA SW-846 Modified Method 8015

Lab Sample No. 6 Client ID: Dam 3

BTEX by EPA SW-846 Method 8020

< 0.001 Benzene < 0.001 Toluene < .0.001 Ethyl Benzene < 0.001 Xylenes

SOUND AMALYTICAL SERVICES

Concentration, mg/l

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

### QUALITY CONTROL REPORT

#### **DUPLICATES**

Lab No: 16062

Date: February 27, 1991 Client: W D Purnell & Assoc.

Client ID:

Dam 3

Matrix: Units:

Water mg/l

Compound	Sample(S)	Duplicate(D)	RPD*
Benzene	< 0.001	< 0.001	
Toluene	< 0.001	< 0.001	
Ethyl Benzene	< 0.001	< 0.001	
Xylenes	< 0.001	< 0.001	
Total Petroleum Fuel Hydrocarbons	< 1.0	< 1.0	

*RPD = relative percent difference  $= [(S - D) / ((S + D) / 2)] \times 100$ 

· <i>j</i>		)	4	- .j
104	CHAIN	OF	CUSTODY	RECORI
Page 1 of	2			
			•	

CUSTOMER: WD Puruell & Asso

PROJECT: Trans Mayutain P.O./JOB NO.: 9/008

SAMPLER: DD

Lab No.	Sample No.	Date	Time	Cont.	Analysis Required
	Jay 26	2-18-91	10:55	SOLL	Analysis Required
	Jar 27	1	11:00	į (t	4
	Jan 28	, l	11:15	1,	4
	Jan 29	"(	11:26	- (1	C ₁
	Jav 30	4	11:37	(1	11
	Jur 31	(t	1:00	(t	lc
	Jar 32	10	1:10	- 4	(C)
	Jar 23	"	1:20.	Ce	4
	Jar 34	1	1:30	(e	(1
	Jur35	1	1:40	"	(1
	04135				
				•	
				: ::	
	<u> </u>				

Relinquished by:  Mison Walky	Date 2/19/5/	Time   10,35	Received by:  - John G. Coggen	Date 2-/9-9/	Time /035
Relinquished by:	Date	Time	Received by:	Date	Time
Dispatched by:	Date	Time	Received at lab by:	Date 13/9/9/	Time

SOUND ANALYTICAL 4630 Pacific Hwy East Suite B-14 Tacoma. WA 98424 (206) 922-2310

SERVICES, INC.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W D Purnell & Assoc.

Date: February 27, 1991

Report On: Analysis of Soil

Lab No.: 16063

IDENTIFICATION:

Samples Received on 02-19-91 Sampled 2-18-9

### ANALYSIS:

Lab Sample No.	Client ID	*Total Petroleum Fuel Hydrocarbons, ppm
1	Jar 26	< 10
2	Jar 27	< 10
3	Jar 28	< 10
4	Jar 29	< 10
5	Jar 30	< 10
6	Jar 31	863 Diesel
7	Jar 32	< 10
8	Jar 33	35 Gas, Diesel
9	Jar 34	65 Gas, Diesel
10	Jar 35	18 Gas

*TPH by EPA SW-846 Modified Method 8015

Note - Results reported on an as received basis.

SOUND ANALYTICAL SERVICES

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

### QUALITY CONTROL REPORT

#### **DUPLICATES**

Lab No: 16063 (10)

Client ID:

Jar 35

Date: February 27, 1991

Matrix:

Soil

Client: W D Purnell & Assoc.

Units:

ppm

Compound	Sample(S)	Duplicate(D)	RPD*
Total Petroleum Fuel Hydrocarbons	18	15	18.2

*RPD = relative percent difference

 $= [(S - D) / ((S + D) / 2)] \times 100$ 

	CHA	IN O	F Cl	JSTO:	DY REC	ORD	
Page _	of					M/	1R 6 1991
CUSTOMER	2: <u>WD</u>	Durne	11 4	ASSO			
PROJECT:	Traus 1	louuTai	<u>u</u>	P.O./JC	B NO.: 910	108	
SAMPLER:	: — ( 6	24- H	Hour	Rusl	d au all	TesTs	
Lab No.	Sample No.	Date	Time	Cont.	Analysis	Required	
	Jar 36	2-19-91	JS!.S0	Soil	TPH	(8015)	
	Jar 37	11	1610	11	/(	(I	
	Jar 38	11	1630	1(	(( )	11	
	Jav 39	11	1640	11	"(	4	
	Jar 40	2+20-91	14:30	1(	((	11	
	Jar 41	H	1446	11	I(	· ti	
							i cz
	T.H-1	2-20-91	1030	Hagso	K TPH	(8015)	BETX
	TH-3	11	1230	H20/501	K /I	11	
	TH-4	It	1340	Had/sor	á –	/(	
	Ì			ADID NO	reine		
	TH-1 So	ov'/	TPHE	30/5		Did rece	ive
	77+-1 Wa	to_	TPH	8015	BTEX	a tota	
	TH-3 SO,	<del>-' </del>	TP118	915	10 TO YO		1 Sample
	TH-3W	ates	1915	00/5 J			Time
Relingu	uished by:	12,	12/9/10	15 1	ohn E. log		21-9/ 1015
Relingu	rished by:	Do	ate T	ime / Re	eceived by !	Da:	te Time
Dispato	ched by:	Di	ate T	1 /	lang butters	ab by: Da	te Time
SOU	ND ANAI	TALI	CAL	SER	VICES,	INC.	9 x

SOUND ANALYTICAL 4630 Pacific Hwy East Suite B-14 Tacoma. WA 98424 (206) 922-2310 NOTE - Talked to D. Dillenberger & son

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 6 1991 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W D Purnell & Assoc.

Date: February 25, 1991

Revised: February 28, 1991

Report On: Analysis of Soil & Water

Lab No.: 16127

Page 1 of 2

IDENTIFICATION:

Samples Received on 02-21-91 Sampled 2-19 2 2-20-91

Project: 91008 Trans. Mountain

ANALYSIS:		*Total Petroleum
Lab Sample No.	Client ID	
RUSH 1	Jar 36 (soil)	45 Diesel
RUSH 2	Jar 37 (soil)	194 Diesel
RUSH 3	Jar 38 (soil)	< 10
RUSH 4	Jar 39 (soil)	< 10
RUSH 5	Jar 40 (soil)	< 10
RUSH 6	Jar 41 (soil)	439 Diesel
RUSH 7	TH-1 (soil)	< 10
RUSH 8	TH-1 (water)	< 1.0
RUSH 9	TH-3 (soil)	72 Diesel
RUSH 10	TH-3 (water)	< 1.0
RUSH 11 *TPH by EPA SW-846	TH-4 (soil) Modified Me	12 Diesel ethod 8015

Note - Soil results reported on an as received basis.

Continued . . . .

W D Purnell & Assoc. Project: 91008 Page 2 of 2 Lab No. 16127 February 25, 1991 Revised on February 28, 1991

Lab Sample No. RUSH 8

Client ID: TH-1 (Water)

### Concentration, ppm

 Benzene
 < 0.001</td>

 Toluene
 < 0.001</td>

 Ethyl Benzene
 < 0.001</td>

 Xylenes
 < 0.001</td>

SOUND AMALYTICAL SERVICES

C. YARRY ZUKA

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

#### QUALITY CONTROL REPORT

#### **DUPLICATES**

Lab No:

16127 (8)

Client ID: TH-1

Date:

February 25, 1991

Matrix:

Water

Client:

W. D. Purnell & Assoc.

Units:

ppm

Compound	Sample(S)	Duplicate(D)	RPD*
Benzene Toluene Ethyl Benzene Xylenes	< 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001	  
Total Petroleum Fuel Hydrocarbons	< 1.0	< 1.0	

Lab No:

16127 (6)

Client ID: Jar 41

Date:

February 28, 1991

Matrix:

Soil

W. D. Purnell & Assoc.

Units:

ppm

Compound	Sample(S)	Duplicate(D)	RPD*
Total Petroleum Fuel Hydrocarbons	439	471	7.0

*RPD = relative percent difference

 $= [(S - D) / ((S + D) / 2)] \times 100$ 

CHA	IN O	F Cl	JSTO	DY RE	CORD	·
of					MAR	6 1991
r: <u>wD</u>	Purn	ell &	Ass	`O		
: Trans r	nounTa	<u> </u>	P.O./JC	DB NO.: 9	1008	
: <u>DD</u>					e e	
Sample No.	Date	Time	Cont.	Analys	sis Required	
ConTrol	2-22-91	1524	Hao	TPH	8015	
	11	1540	11	11	U	
	11	1530	11	"	( )	`
	/(	1545	ίκ	K	1 1	
DAM 3	/ (	11	11	BE	$\tau_{\chi}$	
DAM 3	11	11	11	545Pene	dend Solic	1/5
GUICE	/1	1600	11	TPH	8015	
			•			
wished by:	De	ate T	ime   Re	eceived by	Dat	e Time
one Walk				John E.		
uished by:	, D	ate T:	ime   UR	eceived by	pat	.e lime
ched by:	<b>D</b> ,	ate T	1	_	,	e Time
			-W	lary wo	to 12/2	<u> 19114:30</u>
	Sample No.  ConTrol  DAM  DAM  DAM  DAM  DAM  DAM  Suick  Ameridian	Sample No. Date  Control 2-22-91  DAM 1  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM 3  II  DAM	Sample No. Date Time  Control 2-22-91 1524  DAM 1 1540  DAM 3 11 1545  DAM 3 11 11  Guide Ameridian 11 1600  Date Time  Alished by: Date Time  Jos 10  Date Time  Alished by: Date Time	Sample No.   Date   Time   Cont.	Sample No. Date Time Cont. Analys  Control 2-22-91 1524 Had TPH  DAM 1 11 1545 h  DAM 3 11 1545 h  DAM 3 11 1545 h  DAM 3 11 1545 h  DAM 3 11 1600 11 TPH  Associated by:  Date Time Received by:  Date Time Received by:  Date Time Received by:	Sample No. Date Time Cont. Analysis Required  Control 2-22-91 1524 Had TPH 80/5  DAM 1 11 1540 11 11  DAM 3 11 1545 # 11  DAM 3 11 11 11 Suspendend Solve  Course Meridian 11 1600 11 TPH 80/5  Analysis Required  The Solve Man 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SOUND ANALYTICAL SERVICES, 4630 Pacific Hwy East Suite B-14 INC.

6 1991

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W D Purnell & Assoc.

Date: March 4, 1991

Report On: Analysis of Water

Lab No.: 16178

**IDENTIFICATION:** 

Samples Received on 02-26-91 Project: 91008 Trans Mountain

ANAL	Y	S	I	S	:

ANALYSIS:		*Total Petroleum
Lab Sample No.	<u>Client ID</u>	Fuel Hydrocarbons, ppm
1	Control	< 1.0
2	Dam 1	< 1.0
3	Dam 2	< 1.0
4	Dam 3	< 1.0
5	Guide Meridian	< 1.0
*TPH by EPA SW-846	Modified Method	8015
Lab Sample No. 6		Client ID: Dam 3
Benzene, ppm Toluene, ppm Ethyl Benzene, ppm Xylenes, ppm BTEX by EPA SW-846	Method 8015	< 0.001 < 0.001 < 0.001 < 0.001

Lab Sample No. 7

Client ID: Dam 3

Total Suspended Solids, ppm

18

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

### QUALITY CONTROL REPORT

#### DUPLICATES

Lab No:

16178 (6)

Client ID: Dam 3

Date:

March 4, 1991

Matrix:

Water

Client:

W D Purnell & Assoc.

Units:

ppm

Compound	Sample(S)	Duplicate(D)	RPD*
Benzene	< 0.001	< 0.001	
Toluene	< 0.001	< 0.001	
Ethyl Benzene	< 0.001	< 0.001	
Xylenes	< 0.001	< 0.001	

Lab No:

16178 (1)

Client ID: Control

Date:

March 4, 1991

Matrix:

Water

Client:

W D Purnell & Assoc.

Units:

ppm

Compound	Sample(S)	Duplicate(D)	RPD*
Total Petroleum Fuel Hydrocarbons	< 1.0	< 1.0	

*RPD = relative percent difference  $= [(S - D) / ((S + D) / 2)] \times 100$ 

### CHAIN OF CUSTODY RECORD MAR | 9 1991

•	CHA	IN O	F CL	)S.T.O	DY RECO	ופפו כו אוויו כבאי
Page _						
CUSTOME	R: WD F	Dyrn	e/1 2	<u> </u>	50	
PROJECT	: Trans /	110447	Tain	P.O./JC	DB NO.: 91	008
SAMPLER	: <u>DD</u>		<del></del>			e e
Lab No.	Sample No.	Date	Time	Cont.	Analysis	Required
	Control	2-25-9	3:35	Hao	TPH	8015
	DAm 1	11	3.40	/ (	11	( (
	DAM 3	11	3:45	/(	/ (	
	DAm 3	1(	3:45	11	BETX	
					·	
Relinqu	uished by:	1	1	24 10	eceived by:	Date Time   8/27/9/08/9
Reling	lished by:				ceiked by:	Date Time
Dispate	ched by:	Da 	ate T:	ime   Re	lary Coats	by: Date Time
					a ·	•

SOUND ANALYTICAL SERVICES, INC. 4630 Pacific Hwy East Suite B-14

MAR 1919

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W.D. Purnell & Assoc.

Date: March 6, 1991

Report On: Analysis of Water

Lab No.: 16218

**IDENTIFICATION:** 

Samples Received on 02-27-91 Samples 2-25-9

Project: 91008 Trans. Mountain

ANALYSIS:

Lab Sample No.	Client ID	*Total Petroleum Fuel Hydrocarbons, ppm
1	Control	< 1.0
2	Dam 1	< 1.0
<b>3</b>	Dam 3	< 1.0

*TPH by EPA SW-846 Modified Method 8015

Lab Sample No. 4

Client ID: Dam 3

Concentration, ppm

 Benzene
 < 0.001</td>

 Toluene
 < 0.001</td>

 Ethyl Benzene
 < 0.001</td>

 Xylenes
 < 0.001</td>

BTEX by EPA SW-846 Method 8020

Note - Results reported on an as received basis.

SOUND ANALYTICAL SERVICES

C INDDV ZIJENI

ı		IN O	F CU	JSTO	DY RE	CORD		
	_ of							
CUSTOME	R: <u>W D</u>	, Pu	vnell	\$	Asso			
PROJECT	Trans N	nount	915	P.O./J	DB NO.: <u>9</u>	1008		
	DD							
Lab No.	Sample No.	Date	Time	Cont.	Analys	sis Requi	red	
·	Control	3-1-91	3,56	H20	TPH	8015		
	Dam 1	"	4:01	11	TPH	8015		
	DAmz	"	4:06	11	TPH	8015		
	Dam 3	4	4:17	λ.	TPH	8075		
	DAm3	((	4:17	11	BETX			
	DAM 3	()	4:17	jί	Suspend	end So	Lide	
	Guide	( c	4:30	11	TPH	895		······································
. "	,							
					·			
				,				
Relinqu	uished by:	Da 	ate Ti	ime   Re	eceived by	:	Date	Time
Relinqu	uished by:	D.	ate T	ime R	eceived by	:	Date	Time
Dispat	ched by:	D	ate T	ime R	eceived at	lab by:	Date   3/4/9/	Time 14/35
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			th SEB	laylustes	) IN(	13/4/91	14:2

SOUND ANALYTICAL 4630 Pacific Hwy East Suite B-14 Tacoma. WA 98424 (206) 922-2310

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W.D. Purnell & Assoc.

Date: March 14, 1991

Report On: Analysis of Water

Lab No.: 16308

Page 1 of 2

IDENTIFICATION:
Samples Received on 03-04-91 Sampled 3-1-9
Project: 91008 Trans. Mountain

#### ANALYSIS:

Lab Sample No.	Client ID	*Total Petroleum <u>Fuel Hydrocarbons, ppm</u>
1	Control	< 1.0
2	Dam 1	< 1.0
3	Dam 2	< 1.0
4	Dam 3	< 1.0
5	Guide Meridian	< 1.0

*TPH by EPA SW-846 Modified Method 8015

Note - Results reported on an as received basis.

Continued . .

W.D. Purnell & Assoc. Project: 91008 Page 2 of 2 Lab No. 16308 March 14, 1991

Lab Sample No. 6

Client ID: Dam 3

### Concentration, ppm

 Benzene
 < 0.001</td>

 Toluene
 < 0.001</td>

 Ethyl Benzene
 < 0.001</td>

 Xylenes
 < 0.001</td>

BTEX by EPA SW-846 Method 8020

Lab Sample No. 7

Client ID: Dam 3

Total Suspended Solids

5.33

SOUND AMALYTICAL SERVICES

C. GARRY ZURAY

	CHA	IN O	F C	JSTO:	DY RECORD	
Page 1	of <u>(</u>	-				
CUSTOMER	R: <u>WD</u>	Punn	ell =	As	50	
PROJECT:	Trans Mc	y u Tain		P.O./JC	DB NO.: 91008	•
SAMPLER:	DD_					
Lab No.	Sample No.	Date	Time	Cont.	Analysis Required	
	Control	3-4-91	4:00	Hao	TPH 8015	
	DAM I	3-4-91	4:25	H20	TPH 8015	
	DAM 3	3-4-91	4:30	1420	TPH 8015, RETX	
					·	
						,
	·					
					Table Table	me
Relingu	yished by:	. 1	1	ime Re		me 140
Relinqu	uished by:	77	<del>~ // / ·</del>		eceived by: // Date Ti	me
Dispate	ched by:	D I	ate I	ime R		me 2:302
					LICES INC	

SOUND ANALYTICAL SERVICES, INC. 4630 Pacific Hwy East Suite B-14

### MAR | 9 | 1991

### SOUND ANALYTICAL SERVICES, INC.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W.D. Purnell & Assoc.

Date: March 18, 1991

Report On: Analysis of Water

Lab No.: 16329

IDENTIFICATION:

Lab Sample No.

Samples Received on 03-05-91 Samples 3-4-9/
Project: 91008 Trans. Mountain

<u>Client ID</u>

Dam 3

Dam 1

Control

ANALYSIS:

1

2

3

*Total Petroleum Fuel Hydrocarbons, ppm < 1.0 < 1.0

< 1.0

Client ID: Dam 3

*TPH by EPA SW-846 Modified Method 8015

Lab Sample No. 1

< 0.001 Benzene, ppm < 0.001 Toluene, ppm < 0.001 Ethyl Benzene, ppm < 0.001 Xylenes, ppm

BTEX by EPA SW-846 Method 8020

Note - Results reported on an as received basis.

SOUND AMALYTICAL SERVICES

### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

### QUALITY CONTROL REPORT

#### **DUPLICATES**

Lab No: 16329 (2)

Client ID:

Control

Date: March 18, 1991

Matrix:

Water

Client: W.D. Purnell & Assoc.

Units:

ppm

Compound	Sample(S)	Duplicate(D)	RPD*
Total Petroleum Fuel Hydrocarbons	< 1.0	< 1.0	

*RPD = relative percent difference

 $= [(S - D) / ((S + D) / 2)] \times 100$ 

Page <u> </u>	of					
CUSTOMER	2: <u>WD</u>	Ourn	ell 4	& As	so me	·
PROJECT:	Trans 1	104479	114	P.O./J	db no.: <u>91008</u>	
SAMPLER:	: Doug ]	Dille	sherge		SUFFICIE	have nt Sample
Lab No.	Sample No.	Date	Time	Cont.	Analysis Req	uired
/	CONTrol	3-8-91		H20	TPH 8015 &	418.1*
2	DAMI	11		40	TPH IL	11
3	DAM 2	11		HO	TPH 11	10
4	DAM 3	11		H.0	TPH IL	11
	DAM3	111		H.0	BE7	<u>X</u>
	DAM3	11		H20	Sus pended	Solids
5	Guide	11		Hac	TPH 8015	4 418.1
·				`	-	
Relinqu	uished by:	1	1	3.20 /	eceived by:	Date Time 3:2
Relinqu	uished by:	Da	ate T	3	eceived by:	'Date 'Time
Dispate	ched by:	D:	ate T	ime 1	eceived at lab by	: Date Time
SOUT 4630 P	ND ANAI		CAL te B-14	:	VICES, I	NC.

MAR 2 | 1991

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W D Purnell & Assoc.

Date: March 19, 1991

Report On: Analysis of Water

Lab No.: 16469

IDENTIFICATION:

Samples Received on 03-13-91

Sapled 3-8-01

Project: 91008 Trans. Mountain

#### **ANALYSIS:**

Lab Sample No.	4	2	3	A	5
Client ID	Control	Dam 1	Dam 2	Dam 3	Guide
Matrix/Units	Water mg/l	Water mg/l	Water mg/l	Water mg/l	Water mg/l
Total Petroleum Hydrocarbons by EPA Method 418.1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Petroleum Fuel Hydro- carbons by EPA SW-846 Modified Method 8015	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Lab Sample No. 6

Client ID: Dam 3

Benzene, mg/l
Toluene, mg/l
Ethyl Benzene, mg/l
Xylenes, mg/l

< 0.001 < 0.001

< 0.001 < 0.001

BTEX by EPA SW-846 Method 8020

Lab Sample No. 7

Client ID: Dam 3

Total Suspended Solids, mg/l

3

SOUND AMALYTICAL SERVICES

C. LARRY ZURAW

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

### QUALITY CONTROL REPORT

#### **DUPLICATES**

Lab No: 16469 (2)
Date: March 19, 1991

Client: W D Purnell & Assoc.

Client ID:

Dam 1

Matrix:

Water

Units:

mg/l

Compound	Sample(S)	Duplicate(D)	RPD*
Total Petroleum Hydrocarbons	< 1.0	< 1.0	
Total Petroleum Fuel Hydrocarbons	< 1.0	< 1.0	

*RPD = relative percent difference  $= [(S - D) / ((S + D) / 2)] \times 100$ 

	CHA:	IN O	F Cl	JSTO	DY	RECOR	MAR (
Page	of						
PROJECT	E: <u>UD</u> ( Trans /1 DD	Durnel Ant	<u> </u>	4500 P.O./JO	//~ C	9/00	8
Lab No.	Sample No.	Date	Time	Cont.	A	nalysis Re	quired
/	Control	3-12-91	1600	Hao	TPH	(8015)	(418
2	Dam I	11	1617	HZC	1(	1 (	/1
3	DAm 3	((	1630	H20	10	((	11

$\prec$	UAM		1/01/	1720	1	' \ \		
3	DAm 3	((	1630	H20	10	((	11	
	DAm3	1,	1630	Had	RE	ETX	8020	
· · · · · · · · · · · · · · · · · · ·							and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	
						<del></del>		
			<del>                                     </del>					
····								
<u></u>								
						·		
			-					
	uished by:	1	ate T.	ime Re	eceived	by: logge1	Date   3-13-9/	Time /0:24
Relinqu	uished by:		ate T	ime R	eceived	by:	Date	Time
Dispat	ched by:	D	ate T	1	eceived	at lab		Time  2:25

SOUND ANALYTICAL SERVICES, 4630 Pacific Hwy East Suite B-14 INC.

# SOUND ANALYTICAL SERVICES, INC. MAR 2 1 1991

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W.D. Purnell & Assoc.

Date: March 19, 1991

Report On: Analysis of Water

Lab No.: 16483

IDENTIFICATION:

Samples Received on 03-13-91 Project: 91008 Trans. Mountain

ANALYSIS:

	A		
Lab Sample No.	1	2	3
Client Identification	Control	Dam 1	Dam 3
Matrix/Units	Water mg/l	Water mg/l	Water mg/l
Benzene Toluene Ethyl Benzene Xylenes BTEX by EPA SW-846 Method 8020	NT NT NT NT	NT NT NT NT	< 0.001 < 0.001 < 0.001 < 0.001
Total Petorleum Hydrocarbons by EPA Method 418.1	< 1.0	< 1.0	< 1.0
Total Petroleum Fuel Hydrocarbons by EPA SW-846 Modified Method 8015	< 1.0	< 1.0	< 1.0

NT = Not Tested

Note - Results reported on an as received basis.

SOUND ANALYTICAL SERVICES

#### CUSTODY RECORD CHAIN OF

91008

Page ___ of _

Durnell &

P.O./JOB NO.: 9/008 PROJECT: Trans 114T

Lab No.	Sample No.	Date	Time	Cont.	Analysis Required
	mw-1	3-15-91	11:40	Hao	TPH-418.1
	mu-2		11,45	13	TPH- 418.1
	mw-3		11:50	l _y	TPH - 418,1
	B Control	4	12:20	r _i	TPH - 418.1
	DAM (	11	12:30	11	TPH - 418.1
	DAM2	11	12:30	1	TPH - 418,1
	DAm3	((	12:45	٠,	TPH - 418.1
	((	1	12:45	٠,	BETX
		11	12:45	1	
					TOTAL Suspended Solids
				•	
					·
L					

Relinquished by:	Date 3/89/	Time	Received by:	Date 3-18	Time //:05
Relinquished by:	Date	Time	Received by:	Date	Time
Dispatched by:	Date	Time	Received at lab by:		Time

SERVICES, INC. ANALYTICAL SOUND

Suite B-14 4630 Pacific Hwy East

11668

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W D Purnell & Assoc.

Date: March 25, 1991

Report On: Analysis of Water

16561 Lab No.:

Page 1 of 2

IDENTIFICATION:

Samples Received on 03-18-91 Sampled 3-15-9: Project: 91008 Trans Mountain

Project: 91008 Trans Mountain

ANALYSIS:

Lab Sample No.		1	2	3
Client Identification	MW-1	MW-2	₩ <b>M</b> -3	
Matrix/Units	Water mg/l	Water mg/l	Water mg/l	
Total Petroleum Hydrod by EPA Method 418.1	< 1.0	25.8	< 1.0	
Total Petroleum Fuel Hydrocarbons by EPA SV Modified Method 8015	< 1.0	21.0	< 1.0	
TPH as			Gasoline	
Lab Sample No.	4	5	6	7
Client Identification	Control	Dam 1	Dam 2	Dam 3
Matrix/Units	Water mg/l	Water mg/l	Water mg/l	Water mg/l
Total Petroleum Hydrocarbons by EPA Method 418.1	< 1.0	< 1.0	< 1.0	< 1.0
Total Petroleum Fuel Hydrocarbons by EPA SW-846 Modified Method 8015	< 1.0	< 1.0	< 1.0	< 1.0

Note - Results reported on an as received basis.

Continued . . .

W D Purnell & Assoc. Page 2 of 2 Lab No. 16561 March 25, 1991

Lab	Ç2	mn	۵ [	No	
עטע	ρa	ши	TE	NO	. 0

Client ID: Dam 3

Benzene, mg/l Toluene, mg/l		< 0.001 < 0.001
Ethyl Benzene, Xylenes, mg/l	mg/l	< 0.001 < 0.001

BTEX by EPA SW-846 Method 8020

Lab Sample No. 9

Client ID: Dam 3

Total Suspended Solids, mg/l

3

Note - BTEX results reported on an as received basis.

SOUND ANALYTICAL SERVICES

C. LARRY ZURAW

### CHAIN OF CUSTODY RECORD

Page	$\overline{\mathcal{A}}$	of	<u>2</u>
_			

CUSTOMER: LED PUVNELL & ASSC INC ADD 1 1991

PROJECT: TVOUS 1/107 P.O./JOB NO.: 9/008

SAMPLER: DD

ab No.	Sample No.	Date	Time	Cont.	Analysis Req	
	COUTVOL	3-20-91	10:50	Hao	704 418H	8015 Macdifie
	DAM (	(	1(130	()		16 11
	DAM 3	11	11:45	11	-	(( ((
	DAM 3	11	11:45	((	BETX	
	DAM3	11	11:45	(	Disolved So	
	accele Mevidian	11	12:15	/ (	TPH TOP	8015 Modif
			+		1	
					·	
						·
· · · · · · · · · · · · · · · · · · ·				,		

	·				
Relinquished by:	Date	Time	Received by:	Date	Time
Minna Walker	3/21	10:15	John E. logge	3/21	16:15
Relinquished by:	Date	Time	Received by:	Date	Time
Dispatched by:	Date	Time	Received at lab by	: Date 13/21/9/	Time 13:/54
			<del>J</del>		

SOUND ANALYTICAL SERVICES, INC. 4630 Pacific Hwy East Suite B-14 Tacoma. WA 98424 (206) 922-2310

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W.D. Purnell

Date: April 1, 1991

Report On: Analysis of Water

16653 Lab No.:

Page 1 of 2

**IDENTIFICATION:** 

Samples Received on 03-21-91

Sarpled 3-20-91

Project: 91008 Trans. Mountain

ANALYSIS:

Lab Sample No. 1

Client ID: Dam 3

Concentration, mg/l

Benzene Toluene Ethyl Benzene < 0.001 < 0.001 < 0.001

Xylenes

< 0.001

BTEX by EPA SW-846

Method 8020

Lab Sample No. 2

Client ID: Dam 3

Total Petroleum Fuel Hydrocarbons, mg/l by EPA SW-846 Modified Method 8015

Lab Sample No. 3

Client ID: Dam 3

Total Dissolved Solids, mg/l

350

Continued . . .

W.D. Purnell Project: 91008 Page 2 of 2 Lab No. 16653 April 1, 1991

Lab Sample No.	Client ID	*Total Petroleum Fuel Hydrocarbons, mg/l
4	Control	< 1.0
5	Dam 1	< 1.0
6	Guide Meridian	< 1.0

*TPH by EPA SW-846 Modified Method 8015

SOUND AMALYTICAL SERVICES

C CARRY ZIRAL

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

#### QUALITY CONTROL REPORT

#### **DUPLICATES**

Lab No: 16653 (2)

Date: April 1, 1991

Client: W.D. Purnell & Assoc.

Client ID:

Dam 3

Matrix:

Water

Units:

mq/1

Compound	Sample(S)	Duplicate(D)	RPD*
Total Petroleum Fuel Hydrocarbons	< 1.0	< 1.0	

*RPD = relative percent difference

 $= [(S - D) / ((S + D) / 2)] \times 100$ 

	CHA	EN O	F CL	JSTO	DY REC	CORD APR	4 1991
Page <u></u>	of						
CUSTOMES	a: WD F	urnel	( t	Asso:			
PROJECT:	: Trans 1/	1uT		P.O./JC	DB NO.: 9/	1008	
	DD						
						·	
Lab No.	Sample No.	Date	Time	Cont.	Analys:	is Required	
	CONTrol	3-22-91	4:00	420	TPH	8015	
	DAMI	/(	4:10	11	TPH	8015	
	DANZ	· //	4:30	11	TPH &	3015	
	DAM3	14	4:40	"	TPH 8	3015	
	DAM3	11	4:40	"(	BETX	8020	
	DAN 3	/1	4:40	((	TOTAL	Sus pende	1 Solia
· <u></u>	GuidE Mendi	1	5:00	+ 11	TPH	8015	
					·		
				•			
Relinga	ished by:	Da			eceived by:	Dat	1
Min	ne Welker				edn 6. logged by:	13.2. Da	5-9/ 10-14 te Time
Relinqu	uished by:	ا ا	te T	Ime ( R	Joor ven by:	1	
Dispat	ched by:	D:	ate T	1.	eceived at Pany Custos	lab by: Da	1 .
•					TICES	TNC	

SOUND ANALYTICAL SERVIC 4630 Pacific Hwy East Suite B-14 Tacoma, WA 98424 (206) 922-2310

4 1991 APR

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W.D. Purnell & Assoc.

Date: April 2, 1991

Report On: Analysis of Water

Lab No.: 16695

IDENTIFICATION:

Samples Received on 03-25-91 Sampled 3-22-91

Project: 91008 Trans. Mountain

#### ANALYSIS:

Tab Cample No	aliant TD	*Total Petroleum
Lab Sample No.	<u>Client ID</u>	Fuel Hydrocarbons, mg/l
1	Control	< 1.0
2	Dam 1	< 1.0
3	Dam 2	< 1.0
4	Dam 3	< 1.0
5	Guide Meridian	< 1.0

*TPH by EPA SW-846 Modified Method 8015

Client ID: Lab Sample No. 6 Dam 3

Concentration, mg/l

Benzene < 0.001 Toluene < 0.001 < 0.001 Ethyl Benzene < 0.001 Xylenes

BTEX by EPA SW-846 Method 8020

Client ID: Lab Sample No. 7 Dam 3

Total Suspended Solids, mg/l

SOUND ANALYTICAL SERVICES

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

#### QUALITY CONTROL REPORT

#### **DUPLICATES**

Lab No: 16695 (5)

Client ID:

Guide Meridian

Date: April 2, 1991

Matrix:

Water

Client: W.D. Purnell & Assoc.

Units:

mg/l

Compound	Sample(S)	Duplicate(D)	RPD*
Total Petroleum Fuel Hydrocarbons	< 1.0	< 1.0	·

*RPD = relative percent difference  $= [(S - D) / ((S + D) / 2)] \times 100$ 

	,		IN O	f Cu	JSTO	DY REC	APR 5 1991	
P	age 🖊	_ of <u>/</u>					AFR 3 1001	
		R: <u>W.D.</u>						
P	PROJECT: Trans Mountain P.O./JOB NO.: 91008							
S	AMPLER	: <u>Craig</u> Er	dman			-	·	
		J						
I	ab No.	Sample No.	Date	Time	Cont.	Analys	is Required	
		CONTROL	3/25/91	3:10PM	Water	TPH	8015	
	,	DAM1		3:40Pm		TPH	8015	
Γ		DAM3	3/25/91	4:10PM	Water	TPH	8015	
Γ		DAM3		4:10 PM	•	Total Sus	pended Solids	
Γ		DAM3		4;05PM	i	BETX	1	
		GUIDE	3/25/1					
			-				-	
		·						
T								
r								
	:							
-								
-								
-								
H								
L	Reling	uished by:	1	1	ime   Re	ceived by:	Date Time	
	Reling	uished by:			ime Re	eceived by:	13-26-9/ 10/6 Date Time	
	Dispat	ched by:	D	ate T	l l	eceived at	lab by: Date Time	

SOUND ANALYTICAL SERVICES, 4630 Pacific Hwy East Suite B-14
Tacoma. WA 98424 (206) 922-2310

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W.D. Purnell & Assoc.

Date: April 3, 1991

5 1991

Report On: Analysis of Water

Lab No.: 16723

IDENTIFICATION:

Samples Received on 03-26-91 Sampled 3.25-9/

Project: 91008 Trans. Mountain

ANALYSIS:

*Total Petroleum Lab Sample No. Client ID Fuel Hydrocarbons, ppm 1 Control < 1.0 2 Dam 1 < 1.0 3 Dam 3 < 1.0

*TPH by EPA SW-846 Modified Method 8015

Lab Sample No. 4 Client ID: Dam 3

Total Suspended Solids, ppm 16

Lab Sample No. 5 Client ID: Dam 3

Benzene, ppm < 0.001 Toluene, ppm < 0.001 Ethyl Benzene, ppm < 0.001 Xylenes, ppm < 0.001

BTEX by EPA SW-846 Method 8020

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

### QUALITY CONTROL REPORT

#### DUPLICATES

Lab No: 16723 (1)

Client ID:

Control

Matrix:

Water

Date: April 3, 1991 Client: W.D. Purnell & Assoc.

Units:

ppm

Compound	Sample(S)	Duplicate(D)	RPD*
Total Petroleum Fuel Hydrocarbons	< 1.0	< 1.0	

*RPD = relative percent difference  $= [(S - D) / ((S + D) / 2)] \times 100$ 

#### CHAIN OF CUSTODY RECORD

APR

Page ___ of ___

91008

CUSTOMER: W.D. Purnell & Assoc

PROJECT: TRANS MOUNTAIN P.O./JOB NO.: 9/008

SAMPLER: <u>CE</u>

Lab No.	Sample No.	Date	Time	Cont.	Analysis Requir	red
	Cook	3/28/91	17:15	H20	TPH 418.1	RUSH
	COOK	3/28/91	17:15	H20	BTEX 8020	RusH
	ALLRED	3/29/91	8:40	H20	TPH 418.1	RUSH
	ALLRED	3/29/91	8:40	H20	BTEX 8020	RUSH
	GREY HOUSE		8:50	H20	TPH 418.1	RusH
	GREY HOUSE	1	8:50	H20	BTEX 8020	RUSH
	1 410031	100.1			and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	·
						·
				•	·	
·						
			_1			2:

Relinquished by:	Date	Time	Received by:	Date	Time
	3/29/11	10:12	John E, logge	1-29-91	106
Relinquished by:	Date	Time	Received by:	Date	Time
		<u> </u>			\ 
Dispatched by:	Date	Time	Received at lab by:		Time
	1	1	1000	B/29 /2	11

ANALYTICAL SERVICES. SOUND 4630 Pacific Hwy East Suite B-14 Tacoma. WA 98424 (206) 922-2310

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W. D. Purnell & Assoc.

Date: April 1, 1991

Report On: Analysis of Water

Lab No.: 16807

IDENTIFICATION:

Samples Received on 03-29-91

Project: 91008 Trans Mountain

SAM pled 3-28-91 \$

**ANALYSIS:** 

Lab Sample No.	RUSH 1	RUSH 2	RUSH 3
Client Identification	Cook	Allred	Grey House
Matrix/Units	Water mg/l	Water mg/l	Water mg/l
Benzene Toluene Ethyl Benzene Xylenes BTEX by EPA SW-846 Method 8020	< 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001
Total Petroleum Hydrocarbons by EPA Method 418.1	< 1.0	< 1.0	< 1.0

SOUND ANALYTICAL SERVICES

STAN P. PALMOUTST

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

#### QUALITY CONTROL REPORT

#### DUPLICATES -

Lab No:

Client ID: Cook

Date:

16807 (1) April 1, 1991

Water Matrix:

Client:

W.D. Purnell & Assoc.

Units:

mg/1

Compound	Sample(S)	Duplicate(D)	RPD*
Benzene Toluene Ethyl Benzene Xylene	< 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001	
Total Petroleum Hydrocarbons	< 1.0	< 1.0	

*RPD = relative percent difference =  $[(S - D) / ((S + D) / 2)] \times 100$ 

### CHAIN OF CUSTODY ECORD

Page i of

APR 1 1 1991

CUSTOMER: WD Purnell

PROJECT: Trans // P.O./JOB NO.: 91008

SAMPLER: CE

Lab No.	Sample No.	Date	Time	Cont.	Analysis Required
	Control	3-29-91	15:30	Water	TPH 8015
	Dam!	13	16:00	(1	TPH 8015
	Dam 2	( \	16:20	(1	TPH 8015
	DAm 3	11	16:35	"	TPH 8015
	DAm 3	٤(	16:35	1	TOTAL Suspended Soliels
	Damz	((	16.35	1	BETX 8020
	Guide	11	17:00	1	TPH 8015
	VICTOR-TM	3-28-9	17:30	"	TPH 8015
	VICTOR-TM	- 11	17:30	1	Berx 8020
	Jar # 42	11	1	Soil	TPH 418.1
	Jar # 43	10	1	Soil	TPH 418.1
	Jar # 44	11	ī	Soll	TPH 418.1
	Jar = 45	((	1	Soil	TPH 418.1

!					
Relinquished by:	Date	Time	Received by:	Date	Time
Meson Wolken	4-2-91	10:30	John E. Cogge	74-2-91	10:30
Relinquished by:	Date	Time	Received by:	Date	Time
Dispatched by:	Date	Time	Received at lab by:	Date	Time
	1	1	Mary Cutton	14/2/91	14pr

INC.

SOUND ANALYTICAL SERVICES, 4630 Pacific Hwy East Suite B-14

APR | 1 1991

### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W D Purnell & Assoc.

Date: April 8, 1991

Report On: Analysis of Water & Soil Lab No.:

16854

IDENTIFICATION:

Samples Received on 04-03-91 Sampled 3-28-91 Project: 91008 Trans. Mountain

ANALYSIS:		tmatal Datus laum
Lab Sample No.	Client ID	*Total Petroleum Fuel Hydrocarbons, ppm

Lab Sample No.	Client ID	Fuel Hydrocarbons, ppm
1	Control (water)	< 1.0
2	Dam 1 (water)	< 1.0
3	Dam 2 (water)	< 1.0
4	Dam 3 (water)	< 1.0
5	Guide (water)	< 1.0
6	Victor - TM (water)	< 1.0

*TPH by EPA SW-846 Modified Method 8015

		Total Petroleum Hydrocarbons, ppm
Lab Sample No.	Client ID	by EPA Method 418.1
7	Jar #42 (soil)	2,150
8	Jar #43 (soil)*	2,080
9	Jar #44 (soil)	182
10	Jar #45 (soil)	3,260

^{*} Sample very inconsistant, full of grass and roots.

Continued . . .

W D Purnell & Assoc.

Project: 91008 Page 2 of 2 Lab No. 16854 April 8, 1991

Lab Sample No.	11	12
Client Identification	Dam 3	Victor - TM
Matrix/Units	Water ppm	Water ppm
Benzene Toluene Ethyl Benzene Xylenes	< 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001
BTEX by EPA SW-846 Method 8020		

Lab Sample No. 13

Total Suspended Solids, ppm

Client ID: Dam 3 (water)

6

SOUND ANALYTICAL SERVICES

C. LARRY ZURA

### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

#### QUALITY CONTROL REPORT

#### **DUPLICATES**

Lab No: 16854 (12)

Client ID: Victor - TM

Date:

April 8, 1991

Matrix:

Water

Client: W D Purnell & Assoc.

Units:

ppm

Compound	Sample(S)	Duplicate(D)	RPD*
Benzene	< 0.001	< 0.001	
Toluene	< 0.001	< 0.001	
Ethyl Benzene	< 0.001	< 0.001	
Xylenes	< 0.001	< 0.001	

Lab No:

16854 (1)

Client ID: Control

Matrix:

Water

Date: April 8, 1991 Client: W D Purnell & Assoc. W D Purnell & Assoc.

Units:

ppm

Compound	Sample(S)	Duplicate(D)	RPD*
Total Petroleum Hydrocarbons	< 1.0	< 1.0	

Lab No: 16854 (8)

Client ID: Jar # 43

Matrix:

Water

Date: April 8, 1991 Client: W D Purnell & Assoc. W D Purnell & Assoc.

Units:

ppm

Compound	Sample(S)	Duplicate(D)	RPD*
Total Petroleum Hydrocarbons	2,080	1,870	10.6

*RPD = relative percent difference

 $= [(S - D) / ((S + D) / 2)] \times 100$ 

### CHAIN OF CUSTODY RECORD

Page  $\frac{1}{2}$  of  $\frac{2}{2}$ 

CUSTOMER: W.D. Purnell and Associates

PROJECT: Trans Mountain P.O./JOB NO.: 91008

SAMPLER: BU & CE

		_			3	landa Damina	
Lab No.	Sample No.	Date	Time	Cont.	Ana	lysis Require	- <del></del>
	Jar# 47	4-8-91		Soil	TPH	8015	RUSH
	Jar#48	4-8-91	•	Soil	TPH	8015	RUSH
	Jar#49	4-8-91		Soil	TPH	8015	RUSH
	Jar #50	4-8-91		Soil	TPH	8015	RUSH
	Jar #51	4-8-91		Soil	TPH	8015	RusH
	Jar#52	4-8-91		Soil	TPH	8015	RUSH
	Jar#53	4-8-91		Soil	TPH-	8015	RUSH
	SH-1, 4-6"			Soil	TPH	8015	RUSH
		4-8-91		Soil	TPH	8015	RUSH
	SH-1,28-30"	4-8-91	1	Soil	TPH	8015	RUSH
	SH-2, 4-6''	4-8-91		Soil	TPH	8015	RUSH
	SH-2, 10-12"	4-8-9/		Soil	TPH	8015	RUSH
	SH-2, 16-18"	4-8-91		Soil	TPH	8015	RUSH
	SH-2, 22-24"	4-8-91		Soil	TPH	8015	RusH
	SH-2, 28-30"	4-8-91		Soi/	TPH	8015	RUSH
Relingt	lished by:		te T	ime   Re	ceived	- 4 <u></u>	ate Time

Relinquished by:

Date Time Received by:

Date Time Received by:

Date Time Received by:

Date Time Received by:

Date Time Received by:

Date Time Received by:

Date Time

Dispatched by: Date Time Received at lab by: Date Time Many Control 4/9/9/2:30

SOUND ANALYTICAL 4630 Pacific Hwy East Suite B-14 Tacoma. WA 98424 (206) 922-2310

SERVICES, INC.

### CHAIN OF CUSTODY RECORD

Page 2 of 2

CUSTOMER: Ham W. D. Purnell and Associates

PROJECT: Trans Mountain P.O./JOB NO.: 9/008

SAMPLER: BU & CE

					·
Sample No.	Date	Time	Cont.	Analysis Re	equired
SH-3.4-6"	4-8-91		Soil	TPH BOIS	RUSH
SH-3 10-12"	4-8-91	·	Soil	TPH 8015	RUSH
,	i 1		Soil	TPH 8015	RUSH
	1 1		Soil	TPH 8015	RUSH
	1		Soil	TPH 8015	RUSH
SH-4 4-6"	4-8-91		Soil	TPH 8015	RUSH
			Soil	TPH 8015	RusH
				TPH 8015	Rush
	1			TPH 8015	RusH
1					
			•		
	SH-3, 4-6" SH-3, 10-12" SH-3, 16-18" SH-3,22-24" SH-3,28-30" SH-4, 4-6" SH-4, 18-20" SH-4, 28-30"	SH-3, 4-6" 4-8-91 SH-3, 10-12" 4-8-91 SH-3, 16-18" 4-8-91 SH-3, 22-24" 4-8-91 SH-3, 28-30" 4-8-91 SH-4, 4-6" 4-8-91 SH-4, /8-20" 4-8-91 SH-4, 28-30" 4-8-91	SH-3, 4-6" 4-8-91 SH-3, 10-12" 4-8-91 SH-3, 16-18" 4-8-91 SH-3, 22-24" 4-8-91 SH-3, 28-30" 4-8-91 SH-4, 4-6" 4-8-91 SH-4, 18-20" 4-8-91 SH-4, 28-30" 4-8-91	SH-3, 4-6" 4-8-91 Soil  SH-3, 10-12" 4-8-91 Soil  SH-3, 16-18" 4-8-91 Soil  SH-3, 22-24" 4-8-91 Soil  SH-3, 28-30" 4-8-91 Soil  SH-4, 4-6" 4-8-91 Soil  SH-4, 28-30" 4-8-91 Soil	SH-3, 4-6" 4-8-91 Soil TPH 8015  SH-3, 10-12" 4-8-91 Soil TPH 8015  SH-3, 16-18" 4-8-91 Soil TPH 8015  SH-3, 22-24" 4-8-91 Soil TPH 8015  SH-3, 28-30" 4-8-91 Soil TPH 8015  SH-4, 18-20" 4-8-91 Soil TPH 8015  SH-4, 18-20" 4-8-91 Soil TPH 8015  SH-4, 28-30" 4-8-91 Soil TPH 8015

	i				
Relinquished by:	Date	Time	Received by:	Date	Time
$\sim$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$	49-91	9.37	John E. Logals	4-9-91	0937
Rélinquished by:	Date	Time	Received by:	Date	Time
Dispatched by:	Date	Time	Received at lab by:	Date V//	Time

SOUND ANALYTICAL SERVICES. INC.

# SOUND ANALYTICAL SERVICES, INCAPR 18 1991

### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W D Purnell & Assoc.

9108B
Date: April 10, 1991

Report On: Analysis of Soil

Lab No.: 16941

IDENTIFICATION:

Samples Received on 04-09-91 Sampled 4-7-91
Project: 91008 Trans. Mountain

ANALYSIS:		*Total Petroleum
Lab Sample No.	Client ID	Fuel Hydrocarbons, ppm
RUSH 1	Jar #47	1,395 Aged Gas - Diesel
RUSH 2	Jar #48	< 10
RUSH 3	Jar #49	< 10
RUSH 4	Jar #50	< 10
RUSH 5	Jar #51	< 10
RUSH 6	Jar #52	< 10
RUSH 7	Jar #53	38 Diesel
RUSH 8	SH-1, 4-6"	843 Aged Gas - Diesel
RUSH 9	SH-1, 16-18"	< 10
RUSH 10	SH-1, 28-30"	< 10

*TPH by EPA SW-846 Modified Method 8015

Note - Results reported on an as received basis.

Continued . . .

W D Purnell & Assoc. Project: 91008 Page 2 of 3 Lab No. 16941 April 10, 1991

		•
Lab Sample No.	Client ID	*Total Petroleum Fuel Hydrocarbons, ppm
RUSH 11	SH-2, 4-6"	2,053 Aged Gas - Diesel
RUSH 12	SH-2, 10-12"	4,907 Aged Gas - Diesel
RUSH 13	SH-2, 16-18"	1,667 Aged Gas - Diesel
RUSH 14	SH-2, 22-24"	< 10
RUSH 15	SH-2, 28-30"	< 10
RUSH 16	SH-3, 4-6"	< 10
RUSH 17	SH-3, 10-12"	< 10
RUSH 18	SH-3, 16-18"	< 10
RUSH 19	SH-3, 22-24"	< 10
RUSH 20	SH-3, 28-30"	< 10
RUSH 21	SH-4, 4-6"	< 10

*TPH by EPA SW-846 Modified Method 8015

Note - Results reported on an as received basis.

Continued . . .

W D Purnell & Assoc. Project: 91008 Page 3 of 3 Lab No. 16941 April 10, 1991

Lab Sample No.	Client ID	*Total Petroleum Fuel Hydrocarbons, ppm
RUSH 22	SH-4, 18-20"	< 10
RUSH 23	SH-4, 28-30"	< 10
RUSH 24	Jar #54< 10	< 10

*TPH by EPA SW-846 Modified Method 8015
Note - Results reported on an as received basis.

SOUND ANALYTICAL SERVICES

C. ZARRY ZURA

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

#### QUALITY CONTROL REPORT

#### **DUPLICATES**

Lab No: 16941 (1)

Client ID:

Jar # 47

Date: April 10, 1991

Matrix:

Soil

Client: W D Purnell & Assoc.

Units:

ppm

Compound	Sample(S)	Duplicate(D)	RPD*
Total Petroleum Fuel Hydrocarbons	1,395	1,517	8.3

Lab No: 16941 (10)

Client ID:

SH-1, 28-30"

Date: April 10, 1991

Matrix:

Soil

Client: W D Purnell & Assoc.

Units:

ppm

Compound	Sample(S)	Duplicate(D)	RPD*
Total Petroleum Fuel Hydrocarbons	< 10	< 10	· <del></del>

Client ID:

SH-3, 4-6"

Lab No: 16941 (20)
Date: April 10, 1991

Matrix:

Soil

Client: W D Purnell & Assoc.

Units:

ppm

Compound	Sample(S)	Duplicate(D)	RPD*
Total Petroleum Fuel Hydrocarbons	< 10	< 10	

*RPD = relative percent difference

 $= [(S - D) / ((S + D) / 2)] \times 100$ 

# Samples TAKE

### SOUND ANALYTICAL SERVICES, INC.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047 9 1991

Report To: W D Purnell & Assoc.

Date: April 16, 1991

Report On: Analysis of Soil

Lab No.: 17001-1

Concentration

POL

Page 1 of 2

**IDENTIFICATION:** 

Original samples received on 04-09-91, reference lab report number 17001, lab number 1. Request for additional testing

received on 04-11-91.

Sampled 4-8-9

Project: 91008 Trans Mountain

Client ID: Jar #47

______

#### ANALYSIS:

Sample was analyzed for polynuclear aromatic hydrocarbons in accordance with EPA SW 846 Method 8270.

CAS No. Compound

CAB NO.	Compound	ug/kg	FQD
91-20-3	Naphthalene	* (810)	1,000
208-96-8	Acenaphthylene	ND	1,000
83-32-9	Acenaphthene	ND	1,000
86-73-7	Fluorene	* (400)	1,000
85-01-8	Phenanthrene	* (250)	1,000
120-12-7	Anthracene	ND	1,000
206-44-0	Fluoranthene	ND	1,000
129-00-0	Pyrene	ND	1,000
56-55-3	Benzo(a)anthracene	ND	1,000
218-01-9	Chrysene	ND	1,000
205-99-2	Benzo(b)fluoranthene	ND	1,000
207-08-9	Benzo(k) fluoranthene	ND	1,000
50-32-8	Benzo(a)pyrene	ND	1,000
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1,000
53-70-3	Dibenz(a,h)anthracene	ND	1,000
191-24-2	Benzo(g,h,i)perylene	ND	1,000

Continued . . . . .

W D Purnell & Assoc. Page 2 of 2 Lab No. 17001-1 April 17, 1991

Client ID: Jar #47

ND = Not Detected

PQL - Practical Quantitation Limit - These are the quantitation limits for this sample. This number is based on sample size, matrix and dilution required.

- * = Compound was detected but below PQL.
- () = value shown is estimated concentration.

Note: All soil samples are reported on a dry weight basis.

Semi-Volatile Surrogates

Surrogate	Percent	Control Limits	
Compound	Recovery	Water	Soil
Nitrobenzene - d ₅	46	35 - 114	23 - 120
2-Fluorobiphenyl	52	43 - 116	30 - 115
p-Terphenyl-d ₁₄	56	33 - 141	18 - 137
Phenol-d ₆	28	10 - 94	24 - 113
Phenol-d ₆ 2-Fluorophenol	41	21 - 100	25 - 121
2,4,6-Tribromophenol	51	10 - 123	19 - 122

SOUND ANALYTICAL SERVICES

DENNIS BEAN

APR 1 9 1991

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W D Purnell & Assoc.

Date: April 17, 1991

Report On: Analysis of Soil

Lab No.: 17001-2

Page 1 of 2

#### **IDENTIFICATION:**

Original samples received on 04-09-91, reference lab report number 17001, lab number 7. Request for additional testing

received on 04-11-91.

Project: 91008 Trans Mountain

Client ID: Jar #53

### ANALYSIS:

Sample was analyzed for polynuclear aromatic hydrocarbons in

accordance with EPA SW 846 Method 8270. Concentration PQL CAS No. Compound ug/kg 1,000 91-20-3 ND Naphthalene ND 1,000 208-96-8 Acenaphthylene Acenaphthene ND 1,000 83-32-9 86-73-7 Fluorene ND 1,000 85-01-8 Phenanthrene ND 1,000 120-12-7 Anthracene ND 1,000 Fluoranthene ND 1,000 206-44-0 ND 1,000 129-00-0 Pyrene 56-55-3 Benzo(a) anthracene ND 1,000 Chrysene ND 1,000 218-01-9 ND 1,000 205-99-2 Benzo(b) fluoranthene 207-08-9 Benzo(k) fluoranthene ND 1,000 ND 1,000 50-32-8 Benzo(a)pyrene 193-39-5 Indeno(1,2,3-cd)pyrene ND 1,000 ND 1,000 53-70-3 Dibenz(a,h)anthracene 1,000 191-24-2 Benzo(g,h,i)perylene ND

Continued . . . . .

W D Purnell & Assoc. Page 2 of 2 Lab No. 17001-2 April 17, 1991

Client ID: Jar #53

ND = Not Detected

PQL - Practical Quantitation Limit - These are the quantitation limits for this sample. This number is based on sample size, matrix and dilution required.

- * = Compound was detected but below PQL.
- () = value shown is estimated concentration.

Note: All soil samples are reported on a dry weight basis.

Semi-Volatile Surrogates

Surrogate Compound	Percent Recovery	Control Water	Limits Soil
Nitrobenzene - d ₅ 2-Fluorobiphenyl p-Terphenyl-d ₁₄	46 49 48 24	35 - 114 43 - 116 33 - 141 10 - 94	23 - 120 30 - 115 18 - 137 24 - 113
Phenol-d ₆ 2-Fluorophenol 2,4,6-Tribromophenol	36	21 - 100 10 - 123	25 - 121 19 - 122

SOUND ANALYTICAL SERVICES

DENNIS BEAN

W D Purnell & Assoc. Page 2 of 2 Lab No. 17001-3 April 17, 1991

Client ID: SH-1, 4-6"

#### ND = Not Detected

PQL - Practical Quantitation Limit - These are the quantitation limits for this sample. This number is based on sample size, matrix and dilution required.

- * = Compound was detected but below PQL.
- () = value shown is estimated concentration.

Note: All soil samples are reported on a dry weight basis.

Semi-Volatile Surrogates

Surrogate	Percent	Control Limits		
Compound	Recovery	Water	Soil	
Nitrobenzene - d ₅	57	35 - 114	23 - 120	
2-Fluorobiphenyl	65	43 - 116	30 - 115	
p-Terphenyl-d ₁₄	59	33 - 141	18 - 137	
Phenol-d ₆	60	10 - 94	24 - 113	
Phenol-d ₆ 2-Fluorophenol	52	21 - 100	25 - 121	
2,4,6-Tribromophenol	57	10 - 123	19 - 122	

SOUND ANALYTICAL SERVICES

DENNIS BEAN

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS APR 19 10 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W D Purnell & Assoc.

Date: April 17, 1991

Report On: Analysis of Soil

Lab No.: 17001-4

Page 1 of 2

#### IDENTIFICATION:

Original samples received on 04-09-91, reference lab report number 17001, lab number 11. Request for additional testing

received on 04-11-91.

Project: 91008 Trans Mountain

Client ID: SH-2, 4-6"

#### ANALYSIS:

Sample was analyzed for polynuclear aromatic hydrocarbons in

accordance with EPA SW 846 Method 8270.

CAS No.	Compound	Concentration ug/kg	PQL
91-20-3	Naphthalene	* (500)	900
208-96-8	Acenaphthylene	ND	900
83-32-9	Acenaphthene	ND	900
86-73-7	Fluorene	* (500)	900
85-01-8	Phenanthrene	* (400)	900
120-12-7	Anthracene	ND	900
206-44-0	Fluoranthene	ND	900
129-00-0	Pyrene	ND	900
56-55-3	Benzo(a)anthracene	ND	900
218-01-9	Chrysene	ND	900
205-99-2	Benzo(b)fluoranthene	ND	900
207-08-9	Benzo(k)fluoranthene	ND	900
50-32-8	Benzo(a)pyrene	ND	900
193-39-5	Indeno(1,2,3-cd)pyrene	ND	900
53-70-3	Dibenz(a,h)anthracene	ND	900
191-24-2	Benzo(g,h,i)perylene	ND	900

Continued . . . . . .

This report is issued solely for the use of the person or company to whom it is addressed. This laboratory accepts responsibility only for the due performance of analysis in accordance with industry acceptable practice. In no event shall Sound Analytical Services, Inc. or its employees be responsible for consequential or special damages in any kind or in any amount.

W D Purnell & Assoc. Page 2 of 2 Lab No. 17001-4 April 17, 1991

Client ID: SH-2, 4-6"

ND = Not Detected

PQL - Practical Quantitation Limit - These are the quantitation limits for this sample. This number is based on sample size, matrix and dilution required.

- * = Compound was detected but below PQL.
- () = value shown is estimated concentration.

Note: All soil samples are reported on a dry weight basis.

Semi-Volatile Surrogates

Surrogate	Percent	Control Limits		
Compound	Recovery	Water	Soil	
Nitrobenzene - d ₅	45	35 - 114	23 - 120	
2-Fluorobiphenyl	49	43 - 116	30 <b>-</b> 115	
p-Terphenyl-d ₁₄	47	33 - 141	18 - 137	
Phenol-d ₆	27	10 - 94	24 - 113	
Phenol-d ₆ 2-Fluorophenol	39	21 - 100	25 - 121	
2,4,6-Tribromophenol	48	10 - 123	19 - 122	

SOUND ANALYTICAL SERVICES

DENNIS BEAN

APR 1 9 1991

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W D Purnell & Assoc.

Date: April 17, 1991

Report On: Analysis of Soil

Lab No.: 17001-5

Page 1 of 2

#### **IDENTIFICATION:**

Original samples received on 04-09-91, reference lab report number 17001, lab number 12. Request for additional testing

received on 04-11-91.

Project: 91008 Trans Mountain

Client ID: SH-2, 10-12"

#### ANALYSIS:

Sample was analyzed for polynuclear aromatic hydrocarbons in accordance with EPA SW 846 Method 8270.

CAS No.	Compound	Concentration ug/kg	PQL
91-20-3	Naphthalene	3,700	900
208-96-8	Acenaphthylene	ND	900
83-32-9	Acenaphthene	ND	900
86-73-7	Fluorene	1,100	900
85-01-8	Phenanthrene	* (600)	900
120-12-7	Anthracene	ND	900
206-44-0	Fluoranthene	ND	900
129-00-0	Pyrene	ND	900
56-55-3	Benzo(a)anthracene	ND	900
218-01-9	Chrysene	ND	900
205-99-2	Benzo(b) fluoranthene	ND	900
207-08-9	Benzo(k)fluoranthene	ND	900
50-32-8	Benzo(a)pyrene	ND	900
193-39-5	Indeno(1,2,3-cd)pyrene	ND	900
53-70-3	Dibenz(a,h)anthracene	ND	900
191-24-2	Benzo(g,h,i)perylene	ND	900

Continued . . . . .

W D Purnell & Assoc. Page 2 of 2 Lab No. 17001-5 April 17, 1991

Client ID: SH-2, 10-12"

ND = Not Detected

PQL - Practical Quantitation Limit - These are the quantitation limits for this sample. This number is based on sample size, matrix and dilution required.

- * = Compound was detected but below PQL.
- () = value shown is estimated concentration.

Note: All soil samples are reported on a dry weight basis.

Semi-Volatile Surrogates

Surrogate	Percent	Control	
Compound	Recovery	Water	Soil
Nitrobenzene - d ₅	67	35 - 114	23 - 120
2-Fluorobiphenyl	69	43 - 116	30 - 115
p-Terphenyl-d ₁₄	65	33 - 141	18 - 137
Phenol-d ₆	62	10 - 94	24 - 113
2-Fluorophenol	62	21 - 100	25 - 121
2,4,6-Tribromophenol	66	10 - 123	19 - 122

SOUND ANALYTICAL SERVICES

DENNIS BEAN

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

APR 1 9 1991

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W D Purnell & Assoc.

Date: April 17, 1991

Report On: Analysis of Soil

Lab No.: 17001-6

Page 1 of 2

IDENTIFICATION:

Original samples received on 04-09-91, reference lab report number 17001, lab number 13. Request for additional testing

received on 04-11-91.

Project: 91008 Trans Mountain

Client ID: SH-2, 16-18"

#### ANALYSIS:

Sample was analyzed for polynuclear aromatic hydrocarbons in

accordance with EPA SW 846 Method 8270.

CAS No.	Compound	Concentration ug/kg	PQL
91-20-3	Naphthalene	3,000	. 800
208-96-8	Acenaphthylene	ND	800
83-32-9	Acenaphthene	ND	800
86-73-7	Fluorene	* (500)	800
85-01-8	Phenanthrene	* (300)	800
120-12-7	Anthracene	ND	800
206-44-0	Fluoranthene	ND	800
129-00-0	Pyrene	ND	800
56-55-3	Benzo(a)anthracene	ND	800
218-01-9	Chrysene	ND	800
205-99-2	Benzo(b)fluoranthene	ND	800
207-08-9	Benzo(k)fluoranthene	ND	800
50-32-8	Benzo(a)pyrene	ND	800
193-39-5	Indeno(1,2,3-cd)pyrene	ND	800
53-70-3	Dibenz(a,h)anthracene	ND	800
191-24-2	Benzo(g,h,i)perylene	ND	800

Continued . . . . . .

This report is issued solely for the use of the person or company to whom it is addressed. This laboratory accepts responsibility only for the due performance of analysis in accordance with industry acceptable practice. In no event shall Sound Analytical Services, Inc. or its employees be responsible for consequential or special damages in any kind or in any amount.

W D Purnell & Assoc. Page 2 of 2 Lab No. 17001-6 April 17, 1991

Client ID: SH-2, 16-18"

ND = Not Detected

PQL - Practical Quantitation Limit - These are the quantitation limits for this sample. This number is based on sample size, matrix and dilution required.

- * = Compound was detected but below PQL.
- () = value shown is estimated concentration.

Note: All soil samples are reported on a dry weight basis.

Semi-Volatile Surrogates

Surrogate	Percent	Control	Limits
Compound	Recovery	Water	Soil
Nitrobenzene - d ₅ 2-Fluorobiphenyl p-Terphenyl-d ₁₄ Phenol-d ₆ 2-Fluorophenol 2,4,6-Tribromophenol	49	35 - 114	23 - 120
	61	43 - 116	30 - 115
	60	33 - 141	18 - 137
	35	10 - 94	24 - 113
	44	21 - 100	25 - 121
	64	10 - 123	19 - 122

SOUND ANALYTICAL SERVICES

DENNIS REAN

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

APR 1 9 1991

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W D Purnell & Assoc.

Date: April 17, 1991

Report On: Analysis of Soil

Lab No.: 17001-6D

Page 1 of 2

#### **IDENTIFICATION:**

Original samples received on 04-09-91, reference lab report number 17001, lab number 13. Request for additional testing

received on 04-11-91.

Project: 91008 Trans Mountain

Client ID: SH-1, 16-18" (DUPLICATE)

#### **ANALYSIS:**

Sample was analyzed for polynuclear aromatic hydrocarbons in

accordance with EPA SW 846 Method 8270.

CAS No.	Compound	Concentration ug/kg	PQL
91-20-3	Naphthalene	2,800	800
208-96-8	Acenaphthylene	ND	800
83-32-9	Acenaphthene	ND	800
86-73-7	Fluorene	* (400)	800
85-01-8	Phenanthrene	* (300)	800
120-12-7	Anthracene	ND	800
206-44-0	Fluoranthene	ND	800
129-00-0	Pyrene	ND	800
56-55-3	Benzo(a)anthracene	ND	800
218-01-9	Chrysene	ND	800
205-99-2	Benzo(b)fluoranthene	ND	800
207-08-9	Benzo(k)fluoranthene	ND	800
50-32-8	Benzo(a)pyrene	ND	800
193-39-5	Indeno(1,2,3-cd)pyrene	ND	800
53-70-3	Dibenz(a,h)anthracene	ND	800
191-24-2	Benzo(g,h,i)perylene	ND	800

Continued . . . . .

W D Purnell & Assoc. Page 2 of 2 Lab No. 17001-6D April 17, 1991

Client ID: SH-1, 16-18" (DUPLICATE)

ND = Not Detected

PQL - Practical Quantitation Limit - These are the quantitation limits for this sample. This number is based on sample size, matrix and dilution required.

- * = Compound was detected but below PQL.
- () = value shown is estimated concentration.

Note: All soil samples are reported on a dry weight basis.

Semi-Volatile Surrogates

Surrogate	Percent	Control Limits		
Compound	Recovery	Water	Soil	
Nitrobenzene - d ₅	52	35 - 114	23 - 120	
2-Fluorobiphenyl	61	43 - 116	30 - 115	
p-Terphenyl-d ₁₄	60	33 - 141	18 - 137	
Phenol-d ₆	40	10 - 94	24 - 113	
2-Fluorophenol	50	21 - 100	25 - 121	
2,4,6-Tribromophenol	59	10 - 123	19 - 122	

SOUND ANALYTICAL SERVICES

DENNIS BEAN

APR 1 9 1991

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W D Purnell & Assoc.

Date: April 17, 1991

Report On: Method Blank for Soil

Lab No.: 17001-MB

Page 1 of 2

**IDENTIFICATION:** 

Original samples received on 04-09-91, reference lab report number 17001, lab number 7. Request for additional testing

received on 04-11-91.

Project: 91008 Trans Mountain

Client ID: METHOD BLANK

#### ANALYSIS:

Sample was analyzed for polynuclear aromatic hydrocarbons in

accordance with EPA SW 846 Method 8270.

CAS No.	Compound	Concentration ug/kg	PQL
91-20-3	Naphthalene	ND	660
208-96-8	Acenaphthylene	ND	660
83-32-9	Acenaphthene	ND	660
86-73-7	Fluorene	ND	660
85-01-8	Phenanthrene	ND	660
120-12-7	Anthracene	ND	660
206-44-0	Fluoranthene	ND	660
129-00-0	Pyrene	ND	660
56-55-3	Benzo(a)anthracene	ND	660
218-01-9	Chrysene	ND	660
205-99-2	Benzo(b)fluoranthene	ND	660
207-08-9	Benzo(k)fluoranthene	ND	660
50-32-8	Benzo(a)pyrene	ND	660
193-39-5	Indeno(1,2,3-cd)pyrene	ND	660
53-70-3	Dibenz(a,h)anthracene	ND	660
191-24-2	Benzo(g,h,i)perylene	ND	660

Continued . . . . . .

W D Purnell & Assoc. Page 2 of 2 Lab No. 17001-MB April 17, 1991

Client ID: METHOD BLANK

ND = Not Detected

PQL - Practical Quantitation Limit - These are the quantitation limits for this sample. This number is based on sample size, matrix and dilution required.

- * = Compound was detected but below PQL.
- () = value shown is estimated concentration.

Note: All soil samples are reported on a dry weight basis.

Semi-Volatile Surrogates

Surrogate	Percent	Control Limits		
Compound	Recovery	Water	Soil	
Nitrobenzene - d ₅	61	35 - 114	23 - 120	
2-Fluorobiphenyl	59	43 - 116	30 - 115	
p-Terphenyl-d ₁₄	56	33 - 141	18 - 137	
Phenol-d ₆	71	10 - 94	24 - 113	
2-Fluorophenol	26	21 - 100	25 - 121	
2,4,6-Tribromopheno	55	10 - 123	19 - 122	

### CHAIN OF CUSTODY RECORD

APR | 9 | 1991

Page ___ of CUSTOMER: Tras Mantain PROJECT: Laurel Pamo Station P.O./JOB NO.: 91048 SAMPLER: Baks Wishow & Cock Erdman

Lab No.	Sample No.	Date	Time	Cont.	Analysis Required
	Contal	4-12-91	8:30	Water	TPH 8015 malified
	Calvert 1		8:45	15	TPH 8015 Modified
	Damz		9:00	**	
	Dm 3	( (	9:20	11	
	Calvert I	1,1	8:45	1 (	BETX
	Damz	(,	9:00	И	BETX
	Dam3-		9:20		BETX
	Dam3	1.0	- 1	11	Total Disabled Solids
					Suspended Suspended Helephone Conv. telephone Conv. 4-17-91 2:530
					telephone Conv.
				•	
		+			

} }					
Relinquished by:	Date	Time	Received by:	Date	Time
Purks Wishaw	是4-12-91		John E. Logg	es 4-12-9	1005
Relinquished by:	Date	Time	Received by:	Date	Time
		i	<u> </u>		
Dispatched by:	Date	Time	Received at la		Time
	1	1	Sign	r 14-12-	111.77
					Am

SOUND ANALYTICAL SERVICES, )INC. 4630 Pacific Hwy East Suite B-14 Tacoma. WA 98424 (206) 922-2310

91008 PK APR 1 9 1991

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047 Sanges TAKN +1241

Report To: W D Purnell & Assoc.

Date: April 18, 1991

Report On: Analysis of Water

Lab No.: 17025

IDENTIFICATION:

Samples Received on 04-12-91 Sampled 4-12-91
Project: 91048 Trans. Mountain, Laurel Pump Station

ANALYSIS:

Lab Sample No.	<u>Client ID</u>	*Total Petroleum <u>Fuel Hydrocarbons, ppm</u>
1	Control	< 1.0
2	Culvert 1	< 1.0
3	Dam 2	< 1.0
4	Dam 3	< 1.0

*TPH by EPA SW-846 Modified Method 8015

Lab Sample No.	<u>Client ID</u>	Total Suspended Solids, mg/l
5	Dam 3	< 2

Continued . .

W D Purnell & Assoc. Project: 91048 Page 2 of 2 Lab No. 17025 April 18, 1991

Lab Sample No.	6	7	8
Client Identification	Culvert 1	Dam 2	Dam 3
Units	mg/l	mg/l	mg/l
Benzene Toluene Ethyl Benzene Xylenes	< 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001
BTEX by EPA SW-846 Method 8020			

SOUND ANALYTICAL SERVICES

C. JARRY ZURÁW

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

#### QUALITY CONTROL REPORT

#### DUPLICATES

Lab No:

17025 (1)

Client ID: Control

Matrix:

Date:

April 18, 1991

Water

Client:

W D Purnell & Assoc.

Units:

mq/l

Compound	Sample(S)	Duplicate(D)	RPD*
Total Petroleum Fuel Hydrocarbons	< 1.0	< 1.0	

Lab No:

17025 (6)

Client ID: Culvert 1

Date:

April 18, 1991

Matrix:

Water

Client:

W D Purnell & Assoc.

Units:

mg/l

Compound	Sample(S)	Duplicate(D)	RPD*
Benzene	< 0.001	< 0.001	
Toluene Ethyl Benzene	< 0.001 < 0.001	< 0.001 < 0.001	
Xylenes	< 0.001	< 0.001	

*RPD = relative percent difference

 $= [(S - D) / ((S + D) / 2)] \times 100$ 

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W D Purnell & Assoc.

Date: April 26, 1991

Report On: Analysis of Water

Lab No.: 17151-1

Page 1 of 2

**IDENTIFICATION:** 

Samples Received on 04-18-91

Project: 91008 Trans Mountain (sampled on 04-17-91)

Client ID: Culvert 1

#### ANALYSIS:

Sample was analyzed for polynuclear aromatic hydrocarbons in accordance with EPA SW 846 Method 8270.

CAS No.	Compound	Concentration ug/l	PQL
91-20-3	Naphthalene	ND	13
208-96-8	Acenaphthylene	ND	13
83-32-9	Acenaphthene	ND	13
86-73-7	Fluorene	ND	13
85-01-8	Phenanthrene	ND	13
120-12-7	Anthracene	ND	13
206-44-0	Fluoranthene	ND	13
129-00-0	Pyrene	ND	13
56-55-3	Benzo(a)anthracene	ND	13
218-01-9	Chrysene	ND	13
205-99-2	Benzo(b)fluoranthene	ND	13
207-08-9	Benzo(k)fluoranthene	ND	13
50-32-8	Benzo(a)pyrene	ND	13
193-39-5	Indeno(1,2,3-cd)pyrene	ND	13
53-70-3	Dibenz(a,h)anthracene	ND	13
191-24-2	Benzo(g,h,i)perylene	ND	13

Continued .

W D Purnell & Assoc. Page 2 of 2 Lab No. 17151-1 April 26, 1991

Client ID: Culvert 1

ND = Not Detected

PQL - Practical Quantitation Limit - These are the quantitation limits for this sample. This number is based on sample size, matrix and dilution required.

- * = Compound was detected but below PQL.
- () = value shown is estimated concentration.

Note: All soil samples are reported on a dry weight basis.

Semi-Volatile Surrogates

Surrogate	Percent	Control	Limits
Compound	Recovery	Water	Soil
Nitrobenzene - d ₅ 2-Fluorobiphenyl p-Terphenyl-d ₁₄ Phenol-d ₆ 2-Fluorophenol 2,4,6-Tribromophenol	71	35 - 114	23 - 120
	65	43 - 116	30 - 115
	91	33 - 141	18 - 137
	25	10 - 94	24 - 113
	47	21 - 100	25 - 121
	76	10 - 123	19 - 122

Total Petroleum Fuel Hydrocarbons, mg/kg by EPA SW-846 Modified Method 8015

< 1.0

SOUND ANALYTICAL SERVICES

DENNIS BEAN

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W D Purnell & Assoc.

Date: April 26, 1991

Report On: Analysis of Water

Lab No.: 17151-2

Page 1 of 2

**IDENTIFICATION:** 

Samples Received on 04-18-91

Project: 91008 Trans Mountain (sampled on 04-17-91)

Client ID: Dam 2

-----

#### ANALYSIS:

Sample was analyzed for polynuclear aromatic hydrocarbons in accordance with EPA SW 846 Method 8270.

CAS No.	Compound	Concentration ug/l	PQL
91-20-3	Naphthalene	ND	11
208-96-8	Acenaphthylene	ND	11
83-32-9	Acenaphthene	ND	11
86-73-7	Fluorene	ND	11
85-01-8	Phenanthrene	ND	11
120-12-7	Anthracene	ND	11
206-44-0	Fluoranthene	ND	11
129-00-0	Pyrene	ND	11
56-55-3	Benzo(a)anthracene	ND	11
218-01-9	Chrysene	ND	11
205-99-2	Benzo(b)fluoranthene	ND	11
207-08-9	Benzo(k)fluoranthene	ND	11
50-32-8	Benzo(a)pyrene	ND	11
193-39-5	Indeno(1,2,3-cd)pyrene	ND	11
53-70-3	Dibenz(a,h)anthracene	ND	11
191-24-2	Benzo(g,h,i)perylene	ND	11

Continued . . . . .

W D Purnell & Assoc. Page 2 of 2 Lab No. 17151-2 April 26, 1991

Client ID: Dam 2

ND = Not Detected

PQL - Practical Quantitation Limit - These are the quantitation limits for this sample. This number is based on sample size, matrix and dilution required.

- * = Compound was detected but below PQL.
- () = value shown is estimated concentration.

Note: All soil samples are reported on a dry weight basis.

Semi-Volatile Surrogates

Surrogate	Percent	Control	
Compound	Recovery	Water	Soil
Nitrobenzene - d ₅	75	35 - 114	23 - 120
2-Fluorobiphenyl	68	43 - 116	30 - 115
p-Terphenyl-d ₁₄	89	33 - 141	18 - 137
Phenol-d	24	10 - 94	24 - 113
2-Fluorophenol	47	21 - 100	25 - 121
2,4,6-Tribromophenol	76	10 - 123	19 - 122

Total Petroleum Fuel Hydrocarbons, mg/kg by EPA SW-846 Modified Method 8015

< 1.0

SOUND ANALYTICAL SERVICES
DENNIS BEAN

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

MAY | 1991

Report To: W D Purnell & Assoc.

Date: April 26, 1991

Report On: Analysis of Water

Lab No.: 17151-3

Page 1 of 2

**IDENTIFICATION:** 

Samples Received on 04-18-91

Project: 91008 Trans Mountain (sampled on 04-17-91)

Client ID: Dam 3

______

#### ANALYSIS:

Sample was analyzed for polynuclear aromatic hydrocarbons in accordance with EPA SW 846 Method 8270.

CAS No.	Compound	Concentration ug/l	PQL
91-20-3	Naphthalene	ND	11
208-96-8	Acenaphthylene	ND	11
83-32-9	Acenaphthene	ND	11
86-73-7	Fluorene	ND	11
85-01-8	Phenanthrene	ND	11
120-12-7	Anthracene	ND	11
206-44-0	Fluoranthene	ND	11
129-00-0	Pyrene	ND	11
56-55 <b>-</b> 3	Benzo(a)anthracene	ND	11
218-01-9	Chrysene	ND	11
205-99-2	Benzo(b) fluoranthene	ND	11
207-08-9	Benzo(k)fluoranthene	ND	11
50-32-8	Benzo(a)pyrene	ND	11
193-39-5	Indeno(1,2,3-cd)pyrene	ND	11
53-70-3	Dibenz(a,h)anthracene	ND	11
191-24-2	Benzo(g,h,i)perylene	ND	11

Continued . . . . .

MAY | 1991

W D Purnell & Assoc. Page 2 of 2 Lab No. 17151-3 April 26, 1991

Client ID: Dam 3

ND = Not Detected

PQL - Practical Quantitation Limit - These are the quantitation limits for this sample. This number is based on sample size, matrix and dilution required.

- * = Compound was detected but below PQL.
- () = value shown is estimated concentration.

Note: All soil samples are reported on a dry weight basis.

<u>Semi-Volatile Surrogates</u>

Surrogate	Percent	Control	Limits
Compound	Recovery	Water	Soil
Nitrobenzene - d ₅	79	35 - 114	23 - 120
2-Fluorobiphenyl	71	43 - 116	30 - 115
p-Terphenyl-d ₁₄	90	33 - 141	18 - 137
Phenol-d ₆	26	10 - 94	24 - 113
Phenol-d ₆ 2-Fluorophenol	50	21 - 100	25 - 121
2,4,6-Tribromophenol	73	10 - 123	19 - 122

Total Petroleum Fuel Hydrocarbons, mg/kg < 1.0 by EPA SW-846 Modified Method 8015

SOUND ANALYTICAL SERVICES

MAY | 1991

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W D Purnell & Assoc.

Date: April 26, 1991

Report On: Analysis of Water

Lab No.: 17151-4

Page 1 of 2

**IDENTIFICATION:** 

Samples Received on 04-18-91

Project: 91008 Trans Mountain (sampled on 04-17-91)

Client ID: MW-2

#### ANALYSIS:

Sample was analyzed for polynuclear aromatic hydrocarbons in accordance with EPA SW 846 Method 8270.

CAS No.	Compound	Concentration ug/l	PQL
91-20-3	Naphthalene	120	12
208-96-8	Acenaphthylene	ND	12
83-32-9	Acenaphthene	ND	12
86-73-7	Fluorene	* (5.0)	12
85-01-8	Phenanthrene	* (2.0)	12
120-12-7	Anthracene	ND	12
206-44-0	Fluoranthene	ND	12
129-00-0	Pyrene	ND	12
56-55-3	Benzo(a)anthracene	ND	12
218-01-9	Chrysene	ND	12
205-99-2	Benzo(b)fluoranthene	ND	12
207-08-9	Benzo(k)fluoranthene	ND	12
50-32-8	Benzo(a)pyrene	ND	12
193-39-5	Indeno(1,2,3-cd)pyrene	ND	12
53-70-3	Dibenz(a,h)anthracene	ND	12
191-24-2	Benzo(g,h,i)perylene	ND	12

Continued . . . . .

W D Purnell & Assoc. Page 2 of 2 Lab No. 17151-4 April 26, 1991

Client ID: MW-2

ND = Not Detected

PQL - Practical Quantitation Limit - These are the quantitation limits for this sample. This number is based on sample size, matrix and dilution required.

- * = Compound was detected but below PQL.
- () = value shown is estimated concentration.

Note: All soil samples are reported on a dry weight basis.

Semi-Volatile Surrogates

Surrogate	Percent	Control	Limits
Compound	Recovery	Water	Soil
Nitrobenzene - d ₅ 2-Fluorobiphenyl p-Terphenyl-d ₁₄ Phenol-d ₆ 2-Fluorophenol 2,4,6-Tribromophenol	73	35 - 114	23 - 120
	66	43 - 116	30 - 115
	90	33 - 141	18 - 137
	30	10 - 94	24 - 113
	50	21 - 100	25 - 121
	86	10 - 123	19 - 122

Total Petroleum Fuel Hydrocarbons, mg/kg 7.3
by EPA SW-846 Modified Method 8015

TPH as Gas

SOUND ANALYTICAL SERVICES

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W D Purnell & Assoc.

Date: April 26, 1991

Report On: Analysis of Water

Lab No.: 17151-5

**IDENTIFICATION:** 

Samples Received on 04-18-91

Project: 91008 Trans. Mountain (sampled on 04-17-91)

ANALYSIS:

Lab Sample No.	Client ID	*Total Petroleum <u>Fuel Hydrocarbons, mg/l</u>
5	Control	< 1.0
6	MW-1	< 1.0
7	MW-3	< 1.0

*TPH by EPA SW-846 Modified Method 8015

Lab Sample No.	8	9	10	11	12
Client ID	Dam 2	Dam 3	MW-1	MW-2	MW-3
Units	mg/l	mg/l	mg/l	mg/l	mg/l
Benzene Toluene Ethyl Benzene Xylenes	<0.001 <0.001 <0.001 <0.001	<0.001 <0.001 <0.001 <0.001	0.057 <0.001 <0.001 0.021	0.290 0.066 0.037 0.632	0.021 0.015 <0.001 0.010
BTEX by EPA SW-846 Method 8020					

Lab Sample No. 13

Client ID: Dam 3

Total Suspended Solids, mg/l

9

SOUND AMALYTICAL SERVICES

C./LARRY ZURAW

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

#### QUALITY CONTROL REPORT

#### **DUPLICATES**

Lab No:

17151-5

Client ID: MW-3

Date:

April 26, 1991

Matrix: Water

Client: W D Purnell & Assoc.

Units:

mg/1

Compound	Sample(S)	Duplicate(D)	RPD*
Benzene	0.021	0.022	4.7
Toluene	0.015	0.017	12.5
Ethyl Benzene	< 0.001	< 0.001	
Xylenes	0.010	0.011	9.5

*RPD = relative percent difference  $= [(S - D) / ((S + D) / 2)] \times 100$ 

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: W D Purnell & Assoc.

Date: April 26, 1991

1 1991

Report On: METHOD BLANK for Water

Lab No.: 17151-MB

Page 1 of 2

**IDENTIFICATION:** 

Samples Received on 04-18-91

Project: 91008 Trans Mountain (sampled on 04-17-91)

Client ID: METHOD BLANK

#### ANALYSIS:

Sample was analyzed for polynuclear aromatic hydrocarbons in accordance with EPA SW 846 Method 8270.

CAS No.	Compound	Concentration ug/l	· PQL
91-20-3	Naphthalene	ND	10
208-96-8	Acenaphthylene	ИД	10
83-32-9	Acenaphthene	ИД	10
86-73-7	Fluorene	ND	10
85-01-8	Phenanthrene	ИД	10
120-12-7	Anthracene	ИД	10
206-44-0	Fluoranthene	ИД	10
129-00-0	Pyrene	. ND	10
56-55-3	Benzo(a)anthracene	ND	10
218-01-9	Chrysene	ИД	10
205-99-2	Benzo(b)fluoranthene	ND	10
207-08-9	Benzo(k)fluoranthene	ND	10
50-32-8	Benzo(a)pyrene	ND	10
193-39-5	Indeno(1,2,3-cd)pyrene	ND	10
53-70-3	Dibenz(a,h)anthracene	ND	10
191-24-2	Benzo(g,h,i)perylene	ND	10

Continued .

This report is issued solely for the use of the person or company to whom it is addressed. This laboratory accepts responsibility only for the due performance of analysis in accordance with industry acceptable practice. In no event shall Sound Analytical Services, Inc. or its employees be responsible for consequential or special damages in any kind or in any amount.

W D Purnell & Assoc. Page 2 of 2 Lab No. 17151-MB April 26, 1991

Client ID: METHOD BLANK

ND = Not Detected

PQL - Practical Quantitation Limit - These are the quantitation limits for this sample. This number is based on sample size, matrix and dilution required.

- * = Compound was detected but below PQL.
- () = value shown is estimated concentration.

Note: All soil samples are reported on a dry weight basis.

Semi-Volatile Surrogates

Surrogate Compound	Percent Recovery	Control Water	Limits Soil
Nitrobenzene - d ₅	67	35 - 114	23 - 120
2-Fluorobiphenyl	60	43 - 116	30 - 115
p-Terphenyl-d ₁₄	84	33 - 141	18 - 137
Phenol-d ₆ 2-Fluorophenol	22 43	10 - 94 21 - 100	24 - 113 25 - 121
2,4,6-Tribromophenol		10 - 123	19 - 122

Total Petroleum Fuel Hydrocarbons, mg/kg < 1. by EPA SW-846 Modified Method 8015

**ANALYTICAL & ENVIRONMENTAL CHEMISTS** 

4813 Pacific Hwy. East Tacoma, Washington 98424 (206) 922-2310 • FAX (206) 922-5047

Page.

#### CHAIN OF CUSTODY / REQUEST FOR LABORATORY ANALYSIS

	CLIENT: 1: 2 D 1/2 A ANALYSIS REQUESTED: (Circle, check box or write preferred method in box) OTHER:																								
CLIENT: W.D	. R	urn	ell i A	ssoc.	ANA	LYSIS	REQU	ESTE	D:	(	Circle,	check	box o		prefer	red me	thod ir	box)				ОТН	ER:	 	 <del></del>
PROJECT NAM	E: T	91 ran	008A S Mou	intain				Q	atiles			MS)		Pest., PCB's			(ZHE)		bicides		Suspended				
CONTACT: BA	NKS	UP	SHAW	•		_	8015	5 Com Only	ed Vol. 3010	3020	3270	s (GC/1 1240	3270	orine P 1080	gens	raction	action	action	action & Heri	SE .	3538				
PHONE NO:	<u> (                                   </u>		6-958	39	втех	TPH 418.1	TPH Mod 8015	BTEX/8015 Combo Gasoline Only	Halogenated Volatile EPA 601/8010	Aromatics EPA 602/8020	PAH EPA 625/8270	Purgeables (GC/MS) EPA 624/8240	BNA's EPA 625/8270	Organochlorine I EPA 608/8080	Total Halogens EPA 9076	TCLP Extraction Metals	TCLP Extraction ( Volatile Organics	TCLP Extraction Semi-volatiles	TCLP Extracti Pesticides & I	Total Metals ICP GFAA	Total				
	DATE	TIME	PRES.	MATRIX	150	₽	<u>p</u>	B G	표마	¥⊞	₹ü	조대	S G	S. C.	둳믮	<b>₽</b>	호호	<u>5</u> %	ក្នុង	호합	۲				
1. CONTROL	4/24	1:35	HCL	HZU		X																			
2 CULVERT1	4/24		HCL	H20		×																			
3.CULVERT1	4/24	1155		HLD	80 2 <i>0</i>																				
4. GUEVERT																									
5. DAM 2.	4/24	2:20	HCL	H20		X																			
6. DAMZ	4/24	2:20		HzD	Bor																				
	4/24	Z:40	HCL	H, O		X																			
8. DAM3	4/24	2:40			8020																				
9. DAM3	4/24	2:40		H,0																	X				
9. DAM3 10.	7																				-23.				
11.																									
12.					<b> </b>														· · · · · ·						
RELINQUISHED BY:		RELINC	UISHED BY	<del>!</del>	RELI	NQUISI	HED B	Y:	l	SPEC	IAL IN	STRUC	CTIONS	S / CO	MMEN	ITS:						L	L	 	 
Signature Ma	ele	Signatu	re:		Signa	iture:	•																		
Printed Name:		Printed	Name:		Printe	d Nam	e:																		
WINDHA WA	iksp						_																		
		Firm:			Firm:																				
WAP PURNEL	<u> </u>																								
Date/Time:	://	Date/Ti				Time:																			
RECEIVED BY:		<b>!</b>	/ED BY:			IVED	BY:																		
Signature: L. Cog		Signatu	Curto	10	Signa	iture:																			
Printed Name: VV		Printed	Name:	`<<	Printe	d Nam	ю:																		
Firm:	ruz/	Firm:	curi	ردن	Firm:		<del></del>			1															
AC1		S#	15																						
Date/Time: 4-25-9/	1011	Daje/Ti	<b>5/9/</b>	3:25	Date/	Time:																		 	
		•	•																					 	 

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

2 1991 MAY

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: WD Purnell

April 30, 1991

Report On: Analysis of Water

Lab No.: 17277

IDENTIFICATION:

Samples Received on 04-25-91 Sampled on 4-24-91

91008A Trans Mountain

#### ANALYSIS:

Client Identification Control Culvert 1 Dam 2 Dam  Units mg/l mg/l mg/l mg/l mg/  Benzene NT 0.001 < 0.001 < 0.00  Toluene NT 0.003 < 0.001 < 0.00  Ethyl Benzene NT < 0.001 < 0.001 < 0.00  Xylenes NT 0.003 < 0.001 < 0.00  Ethyl Benzene NT 0.003 < 0.001 < 0.00  Total Petroleum Hydrocarbons by EPA					·
Units mg/l mg/l mg/l mg/l  Benzene	Lab Sample No.	1	2	3	4
Benzene Toluene Toluene Ethyl Benzene NT NT NT NT NT NT NT NT NT NT NT NT NT	Client Identification	Control	Culvert 1	Dam 2	Dam 3
Toluene	Units	mg/l	mg/l	mg/l	mg/l
Hydrocarbons by EPA < 1.0 < 1.0 < 1.0 < 1. Method 418.1 < 1.0 Total Suspended	Toluene Ethyl Benzene Xylenes BTEX by EPA SW-846	NT NT	0.003 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001
	Hydrocarbons by EPA	< 1.0	< 1.0	< 1.0	< 1.0
		NT	NT	NT	17

NT = Not Tested.

#### SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

#### QUALITY CONTROL REPORT

#### **DUPLICATES**

Lab No:

17277 (4)

Client ID: Dam 3

Date:

April 30, 1991

Matrix:

Water

Client:

WD Purnell

Units:

mg/l

Compound	Sample(S)	Duplicate(D)	RPD*
Benzene Toluene Ethyl Benzene Xylenes	< 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001	
Total Petroleum Hydrocarbons	< 1.0	< 1.0	
Total Suspended Solids	17	17	

*RPD = relative percent difference  $= [(S - D) / ((S + D) / 2)] \times 100$ 

## APPENDIX E SUPPORTING DOCUMENTATION FOR ENFORCEMENT ORDER-RELATED ACTIVITIES

Appendix E contains the following:

- Ecology's July 26, 1995 letter to TMOPL which states that no further action is required by TMOPL at the former PCS Storage Cells.
- Figures 2, 5, 6, and 7 of W.D. Purnell and Associates, Inc.'s *Response to Enforcement Order DE 91-N192*, *Item I.I.1*, *Wetlands Delineation*; *Areas 1 3*, *Trans Mountain*, *Laurel Pump Station*, dated February 20, 1992.
- URS' January 11, 2010 letter regarding Wetlands Investigations at Laurel Station, Bellingham, WA.
- Aqua-Terr Systems, Inc.'s Laurel Station Project Area, Terasen Pipeline, Wetland/Fish & Wildlife Study, Whatcom County, Washington, dated March 2007.



#### STATE OF WASHINGTON

#### DEPARTMENT OF ECOLOGY

Northwest Regional Office, 3190 - 160th Ave S.E. * Bellevue, Washington 98008-5452 * (206) 649-7000

January 26, 1995

Mr. Dan O'Rourke Trans Mountain Oil Pipe Line Corporation 1333 West Broadway, Suite 900 Vancouver, B.C. V6H 4C2 Canada

Dear Dan:

Re:

Trans Mountain - Laurel Station Interim Action - Contaminated Soil Stockpiles First Amended Enforcement Order No. DE91-N192

Exhibit A, Section III, Subsection I.

ENVIRONMENTAL SERVICES

GRM (O10) JLD JWL 1400 JLP

JAN 3 1 1995

CIRCULATE TO:

FILE

The Washington Department of Ecology (Ecology) has completed its review of Trans Mountain Oil Pipe Line Corporation's (Trans Mountain) November 14, 1994, Petroleum Contaminated Soil Stockpile Interim Cleanup Action Report, Trans Mountain Oil Pipe Line Corporation, Laurel Pump Station Facility (Report). The Report presents the results of the interim cleanup action conducted by Trans Mountain from June to October 1994 for the petroleum contaminated soil (PCS) storage cells.

The PCS was excavated from the storage cells located at the Laurel Station and transported to permitted treatment and disposal facilities. The Report indicates that the project was completed according to the Remedial Action Plan approved by Ecology with one exception. A portion of the oversized screened contaminated soil was sent to a PCS treatment facility rather than disposed at the Roosevelt Landfill as originally planned. Ecology verbally agreed to Trans Mountain's proposed modification for the oversized soil remediation.

According to the Report, the majority of the petroleum contaminated soil was remediated at the Holnam Inc. cement facility, Seattle, Washington; the remaining screened portion was transported to Roosevelt Landfill, Roosevelt, Washington or remediated at Associated Sand & Gravel in Everett, Washington.

Based on this information and the results presented in the Report, Ecology considers the interim cleanup action for the PCS Storage Cells completed. No further action is required by Trans Mountain at the former PCS Storage Cells.

no Alleria

Mr. Dan O'Rourke January 26, 1995 Page 2

Ecology has no additional comments on the Report. The November 14, 1994 Report is considered a final document.

If you have any questions, please contact me at (206) 649-7206.

Sincerely,

Barbara J. Trejo

Toxics Cleanup Program

BJT:bt

cc: David Raubvogel, Dames & Moore

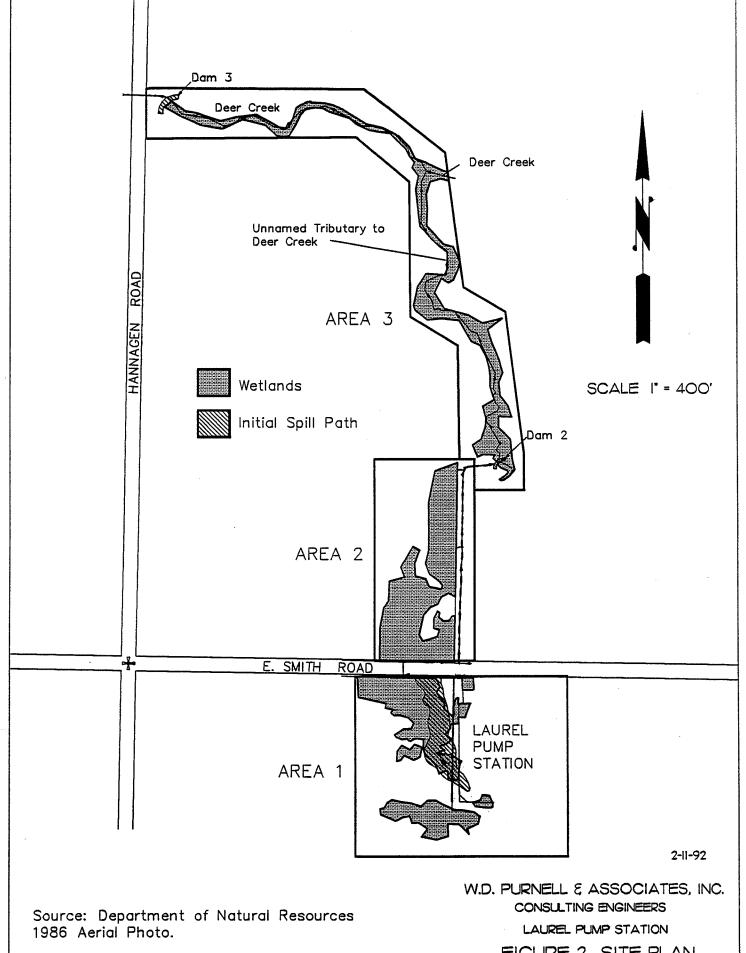
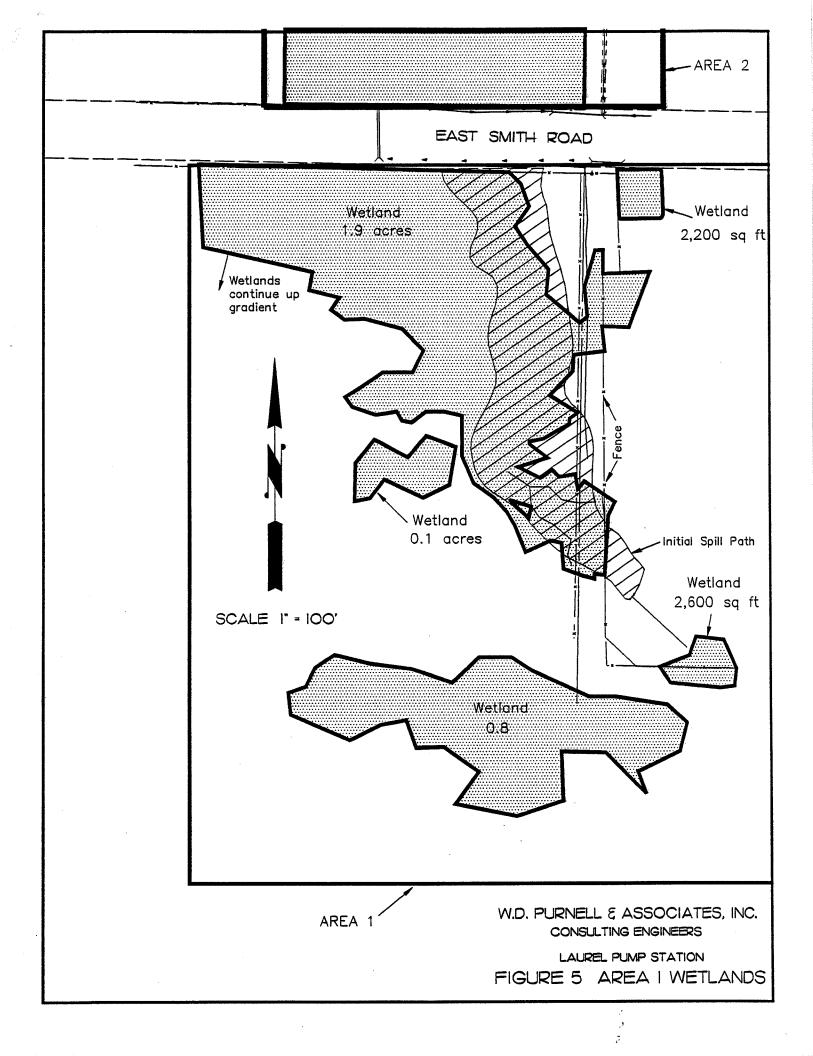
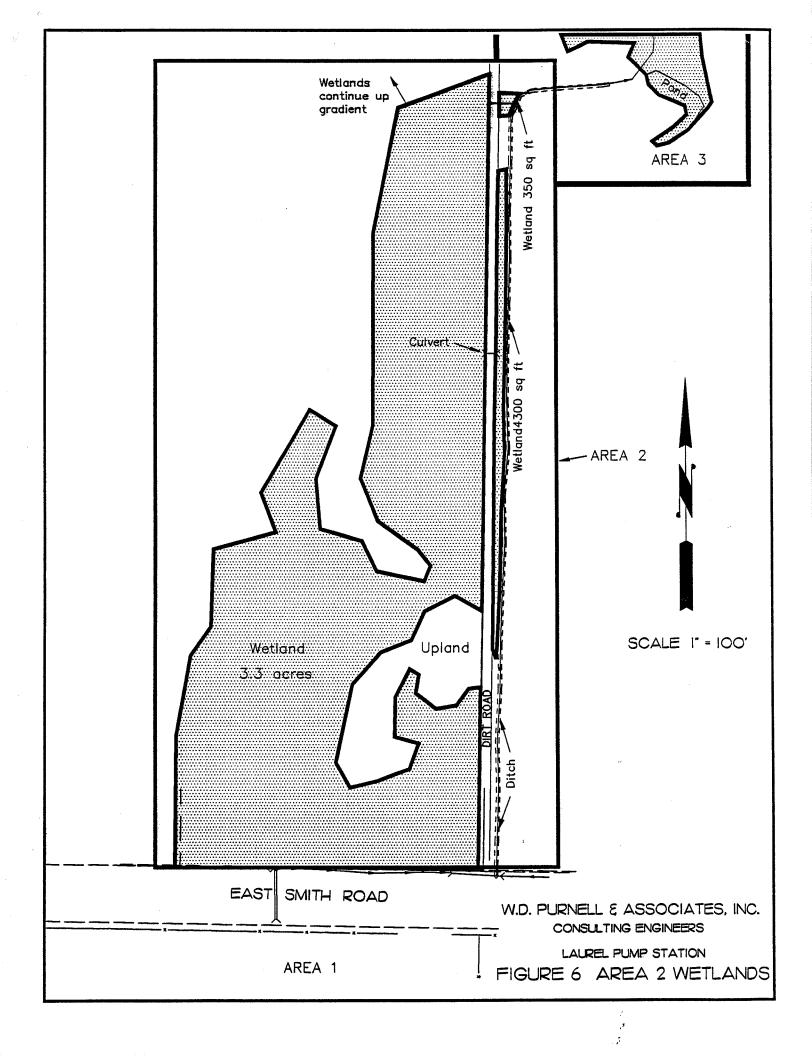
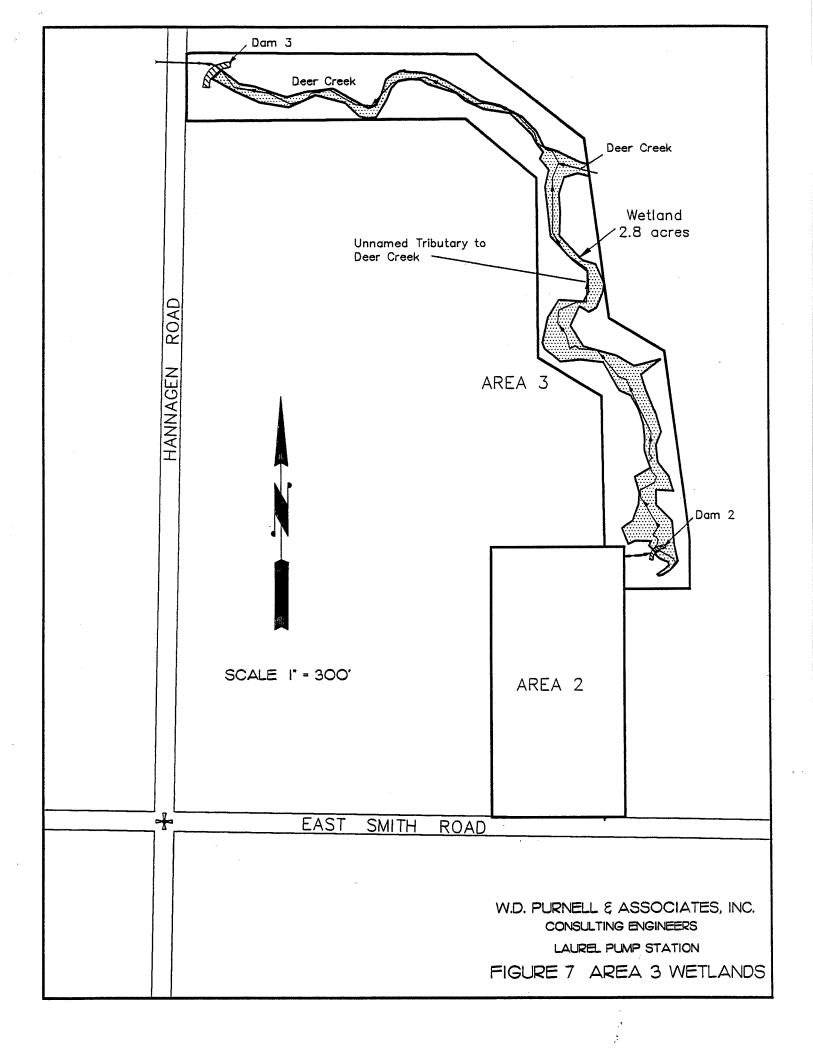






FIGURE 2 SITE PLAN









January 11, 2010

Mr. Mike Droppo Kinder Morgan 300 5th Avenue SW, Suite 2700 Calgary, Alberta Canada, T2P5JZ

Re: Wetland Investigations at Laurel Station, Bellingham, WA

Dear Mr. Droppo:

URS reviewed existing documentation for the wetlands at the Laurel Station spill sites (1991 and 1992 spills). This included the Department of Ecology Enforcement Order, the Dames & Moore Remedial Investigation/Feasibility Study Work Plan (Dames & Moore 1992), and the Response to the Enforcement Order documents prepared by W.D. Purnell & Associates (1992), which included a wetland delineation for areas affected by the 1991 spill. URS also reviewed a description of the existing vegetation in field observations from Dames & Moore's March 1992 inspection of the 1992. In addition, current aerial photographs, National Wetland Inventory maps, and soil survey maps were reviewed.

Paul Hamidi and Bill Kidder of URS visited the Laurel Station spill sites on August 6, 2009. Mr. Patrick Davis, Kinder Morgan facility supervisor, met with them, briefly explained the history of the sites, and showed them the areas which had been impacted by the spills. The intent of the site visit was to document existing conditions (vegetation, soils and hydrology) of the wetlands in order to compare existing conditions with site conditions as they existed immediately after the spills. All of the wetland areas impacted by spills were traversed on foot. Detailed wetland data forms were completed at five sample plots (see Attachment 1 for sample plot locations, and Attachment 2 for wetland data sheets). The locations were recorded by GPS. Numerous check plots were also observed. Representative photographs were taken throughout the sites (see Attachment 3).

Based on the site visit, it appears that wetland conditions have persisted in the spill areas. Wetland hydrology indicators were observed in representative areas previously delineated as wetlands. Hydric soils were also confirmed in these areas. Native hydrophytic vegetation is dominant across most of the wetland areas, with the exception of a few patches of reed canary grass and Himalayan blackberry. Plant species were similar to those documented in the 1991 wetland delineation, and in the field observations from 1992.

Three check dams were installed after the spills. Dam #3 on Deer Creek next to Hannegan Road appears to have naturally degraded since installation in 1991. Dam #2 on the Deer Creek tributary is still in place and a small, unvegetated pond has formed behind the dam. Reed canarygrass and blackberries are growing around the pond. The

URS Corporation 1501 4th Avenue, Suite 1400 Seattle, WA 98101-1616 Tel: 206.438.2700 Fax: 206.438.2699



March 7, 1992 Spill Containment Dam is a plastic structure installed to contain the 1992 spill. There is also a small pond behind this dam. If these dams are no longer needed for containment purposes, they could be removed and the dam and pond areas restored to native wetland vegetation. If they are necessary for future containment, it is recommended that each location be inspected annually and maintained as needed. URS understands that Kinder Morgan is currently assessing upgrading Dam #2 to provide an ongoing physical containment barrier useful in the event of a future release from the site. Additionally, the relief tank where the March 7, 1992 release occurred is no longer used to contain product so the utility of continuing the March 7, 1992 containment dam is no longer apparent.

Since the wetlands affected by the spills appear to have recovered to be very similar to what was previously documented, no other wetland mitigation activities appear necessary at this time.

We trust this information meets your current requirements. If you have any questions, or if we can be of further assistance, please do not hesitate to contact this office.

Sincerely,

URS CORPORATION

David Every

Principal Ecologist

Karen L. Mixon

Project Manager

References

Dames & Moore, 1992a. Remedial Investigation/Feasibility Study Work Plan, Trans Mountain Oil Pipe Line, Corp., Laurel Station, Bellingham, Washington. September 30.

W.D. Purnell and Associates, Inc., 1992. Response to Enforcement Order DE 91-N192, Item I.I.1, Wetlands Delineation; Areas 1 – 3, Trans Mountain, Laurel Pump Station. April 9.

Attachments:

Sample Point Locations Map Wetland Data Forms Wetland Photos

## ATTACHMENT 1 SAMPLE POINT LOCATIONS

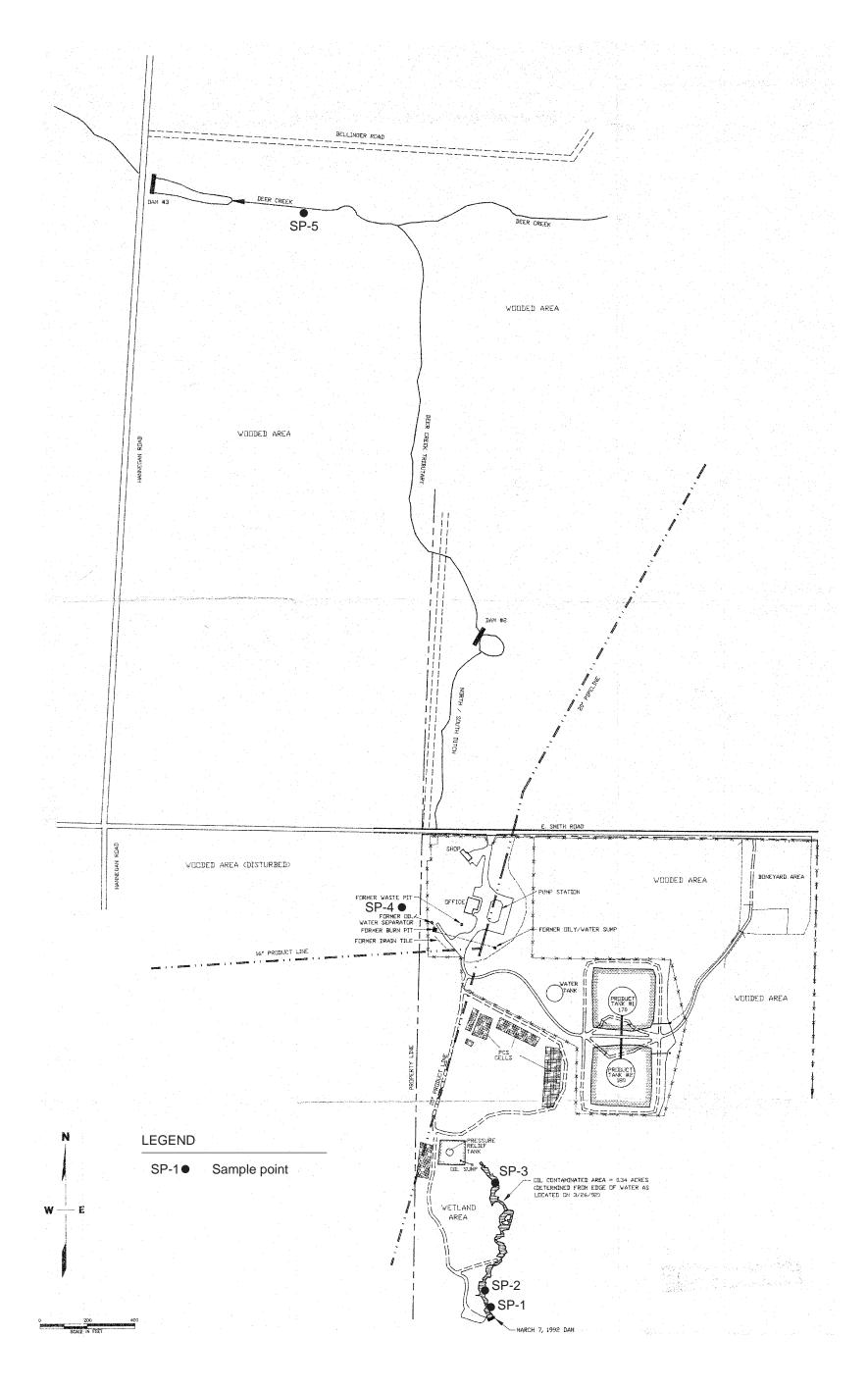



Figure 1
Wetland Data Points

# ATTACHMENT 2 WETLAND DELINEATION DATA FORMS

Project/Site: Laurel Station, 1009 East Smith Road		City/Count	Sampling Date:8-6-09		
Applicant/Owner: Kinder Morgan				State: WA	Sampling Point: SP-1
Investigator(s): Hamidi, Kidder					
Landform (hillslope, terrace, etc.): glaciomarine drift plain					
Subregion (LRR): A					
Soil Map Unit Name: Whatcom-Labounty silt loam, 0-8% slc					tion: PSSC/PEMC
Are climatic / hydrologic conditions on the site typical for this	-				
Are Vegetation, Soil, or Hydrology sign	nificantly dis	turbed?	Are "No	ormal Circumstances" pres	ent? Yes ⊠ No □
Are Vegetation, Soil <u>ves</u> , or Hydrology natural	ly problema	tic?	(If needed,	explain any answers in R	emarks.)
SUMMARY OF FINDINGS - Attach site map	showing	samplin	g point l	ocations, transects,	important features, etc.
Hydrophytic Vegetation Present? Yes ⊠ No □					
Hydric Soil Present? Yes ⊠ No □			ne Sampled		
Wetland Hydrology Present? Yes ⊠ No □		with	nin a Wetlar	nd? Yes⊠ N	0 📙
Remarks:		II.			
<b>VEGETATION</b> – Use scientific names of plan	ts.				
	Absolute			Dominance Test works	sheet:
Tree Stratum (Plot size: 15' radius)	% Cover			Number of Dominant Sp	
1				That Are OBL, FACW, o	r FAC: <u>4</u> (A)
2				Total Number of Domina	
3.				Species Across All Strat	a: <u>5</u> (B)
4				Percent of Dominant Sp	ecies
Sapling/Shrub Stratum (Plot size: 15' radius)		= Total C	Cover	That Are OBL, FACW, o	r FAC: <u>80</u> (A/B)
1. Rubus spectabilis	20	ves	FAC	Prevalence Index work	sheet:
2. Sambucus racemosa				Total % Cover of:	Multiply by:
Acer Circinatum				OBL species 4	x 1 = <u>4</u>
4. Rubus armeniacus	10				x 2 = <u>60</u>
5				FAC species 45	x 3 = <u>135</u>
	45	= Total C	Cover	FACU species 20	x 4 = <u>80</u>
Herb Stratum (Plot size: 5' radius)				UPL species 0	x 5 = <u>0</u>
1. Polystichum munitum	5		<u>FACU</u>	Column Totals: 99	(A) <u>279</u> (B)
2. Athyrium filix-femina			<u>FAC</u>	Dravalance Index	D/A 2.0
3. Equisetum telmateia				Prevalence Index	
4. Phalaris arundinacea		•		Hydrophytic Vegetatio  Dominance Test is >	
5. <u>Urtica dioica</u>			FAC+	☐ Dominance Test is >	
6. Tolmiea menziesii			FAC ORL		tations ¹ (Provide supporting
7. Veronica americana			OBL_		or on a separate sheet)
8. Oenanthe sarmentosa				☐ Wetland Non-Vascu	lar Plants ¹
9				☐ Problematic Hydropl	nytic Vegetation ¹ (Explain)
10					and wetland hydrology must
11		= Total C		be present, unless distu	rbed or problematic.
Woody Vine Stratum (Plot size:)	54	= Total C	ovei		
1				Hydrophytic	
2				Vegetation Present? Yes	s⊠ No □
	0			riesent: Tes	
% Bare Ground in Herb Stratum <u>0</u>		and a section	af al-1		
Remarks: Thuja plicata, Alnus rubra and Populus balsamif	era are root	ea outside	or plot.		

Depth	cription: (Descri Matrix		eptn ne		i <b>ment the</b> ox Featui		or confi	irm the a	psence	e or indicators.)
(inches)	Color (moist)	%	Colo	or (moist)	<u>%</u>	Type ¹	Loc ²	Text	ure	Remarks
0-8	10YR 3/1.5	100						SiCL		
8-12	10YR 4/3	90	10Y	R 4/6, 4/4	10		PL, M			
12-16	10YR 4/3	90		R 4/6, 4/4	10	C	<u>,</u> М	VGR-		
12-10	101K 4/3	90	101	K 4/0, 4/4	10		IVI	VGR-	<u>L</u>	
	-									· ———
	-									·
								_		
¹Type: C=C	concentration, D=D	epletion, R	M=Red	uced Matrix, C	S=Cover	ed or Coat	ed Sand	Grains.	²Lo	cation: PL=Pore Lining, M=Matrix.
	Indicators: (App									ors for Problematic Hydric Soils ³ :
☐ Histosol	` '			Sandy Redox (	S5)				☐ 2 cm	m Muck (A10)
	oipedon (A2)			Stripped Matrix	` '					Parent Material (TF2)
☐ Black Hi	` ,			_oamy Mucky I			t MLRA	1)	⊠ Oth	er (Explain in Remarks)
	en Sulfide (A4) d Below Dark Surf	000 (011)		Loamy Gleyed		·2)				
	ark Surface (A12)	ace (ATT)		Depleted Matri: Redox Dark Su	. ,	3)		5	3Indicate	ors of hydrophytic vegetation and
	lucky Mineral (S1)			Depleted Dark	•	•				and hydrology must be present,
-	Gleyed Matrix (S4)			Redox Depress		` '				ss disturbed or problematic.
Restrictive	Layer (if present)	):								
Type: fine	e glaciomarine drif	t material	_							
Depth (in	iches): within 24 in	ches						Hyd	Iric Soi	l Present? Yes ⊠ No □
										s within 10", it is assumed that this soil
meets the de	efinition of a hydrid	soil. It is a	assume	d to meet the h	nydric soi	I criteria fo	r long du	ration por	nding (t	wo weeks during the growing season).
HYDROLO	GY									
Wetland Hy	drology Indicato	rs:								
Primary Indi	cators (minimum o	of one requi	red; ch	eck all that app	oly)				Seco	indary Indicators (2 or more required)
☐ Surface	` '			☐ Water-Sta	ined Lea	ves (B9) (	except M	LRA	□ V	Vater-Stained Leaves (B9) (MLRA 1, 2,
_ •	ater Table (A2)				A, and 4	•				4A, and 4B)
☐ Saturation				☐ Salt Crust						Prainage Patterns (B10)
☐ Water M	` '			Aquatic In		. ,				Ory-Season Water Table (C2)
	nt Deposits (B2)			Hydrogen		` '				saturation Visible on Aerial Imagery (C9)
	posits (B3)					_		oots (C3)		Geomorphic Position (D2)
_	at or Crust (B4)					ced Iron (C		00)		Shallow Aquitard (D3)
	oosits (B5) Soil Cracks (B6)					tion in Tille	•	,		AC-Neutral Test (D5)
	on Visible on Aeria	al Imagany (	D7\	☐ Other (Ex		d Plants (E	)) (LKK	A)		taised Ant Mounds (D6) ( <b>LRR A</b> ) Frost-Heave Hummocks (D7)
	Vegetated Conca			☐ Other (EX	piaiii iii ix	terriarks)			ш'	TOSE-HEAVE HUITIMOCKS (DT)
Field Obser		ave Guilace	(DO)							
	ter Present?	Yes 🗌	No 🛛	Depth (inche	·e).					
Water Table			No 🛛	Depth (inche						
Saturation F			No 🖾	Depth (inche			10/	etland L	vdroloo	y Present? Yes ⊠ No □
	pillary fringe)	169 🖂	140 🖂	pehri (iliche			***	cuanu ny	y ar orog	gy i resent: 1es 🖂 NO 🗀
	ecorded Data (stre	am gauge,	monitor	ing well, aerial	photos, p	previous in	spections	s), if avail	able:	
Remarks: S	oils are moist; pon	ding and su	ırface s	aturation are a	ssumed 1	for the earl	y part of	the growi	ng seas	son (i.e. March).

Project/Site: Laurel Station, 1009 East Smith Road		City/County	y: <u>Bellingha</u>	m	Sampling Date:8-6-09
Applicant/Owner: Kinder Morgan				State: WA	Sampling Point: SP-2
Investigator(s): Hamidi, Kidder					
Landform (hillslope, terrace, etc.): glaciomarine drift plain					
Subregion (LRR): A					
Soil Map Unit Name: Whatcom-Labounty silt loam, 0-8% sl					lion: PSSC/PEIVIC
Are climatic / hydrologic conditions on the site typical for the	-				
Are Vegetation, Soil, or Hydrology sig	nificantly dis	turbed?	Are "No	ormal Circumstances" pres	ent? Yes ⊠ No □
Are Vegetation, Soil, or Hydrology nat	urally proble	matic?	(If need	ed, explain any answers in	Remarks.)
SUMMARY OF FINDINGS - Attach site map	showing	samplin	g point l	ocations, transects,	important features, etc.
Hydrophytic Vegetation Present? Yes ⊠ No □					
Hydric Soil Present? Yes ⊠ No □			ne Sampled		. 🗖
Wetland Hydrology Present? Yes ⊠ No □		with	nin a Wetlar	nd? Yes⊠ N	2 🗆
Remarks:		l .			
VEGETATION – Use scientific names of plan	nts.				
Tree Stratum (Plot size: 15' radius)		Dominant Species?		Dominance Test works	
1. Alnus rubra				Number of Dominant Sp That Are OBL, FACW, o	
2		-		That Are OBL, I ACVV, O	11 AC. 4 (A)
3				Total Number of Domina Species Across All Strat	
4	-			Species Across Air Strat	a. <u>4</u> (b)
	25	= Total C	Cover	Percent of Dominant Sp	
Sapling/Shrub Stratum (Plot size: 15' radius)	20	Total C	ovei	I nat Are OBL, FACW, o	r FAC: <u>100</u> (A/B)
1. Rubus spectabilis	<u>25</u>	yes	FAC	Prevalence Index work	sheet:
2. Sambucus racemosa	2		FACU	Total % Cover of:	Multiply by:
Oemleria cerasiformis	5		FACU	OBL species 0	x 1 = <u>0</u>
4. Lonicera involnucrata	2		FAC	FACW species 16	x 2 = <u>32</u>
5				1	x 3 = <u>207</u>
Harb Stratum (Diat aiza: El radiua)	34	= Total C	Cover		x 4 = <u>48</u>
Herb Stratum (Plot size: 5' radius)  1. Polystichum munitum	5		FACU		x 5 = 0
Polystichum munitum     Athyrium filix-femina		yes	FAC	Column Totals: 97	(A) <u>287</u> (B)
Equisetum telmateia		-	FACW	Prevalence Index	= B/A = 2.96
Stachys cooleyae				Hydrophytic Vegetatio	n Indicators:
5. Geum macrophylum					
6. Tolmiea menziesii			FAC	☑ Prevalence Index is	
7					tations ¹ (Provide supporting
8.				data in Remarks	or on a separate sheet)
9.				☐ Wetland Non-Vascu	
10					nytic Vegetation ¹ (Explain)
11				'Indicators of hydric soil be present, unless distu	and wetland hydrology must
		= Total C		be present, unless dista	
Woody Vine Stratum (Plot size:)					
1		<del></del>		Hydrophytic	
2				Vegetation Present? Yes	s ⊠ No □
% Bare Ground in Herb Stratum 20	0	= Total C	Cover		
Remarks: Acer macrophylum rooted outside of plot.					
, , , , , , , , , , , , , , , , , , ,					

Depth	cription: (Describ Matrix				lox Featur			ar	301100	
(inches)	Color (moist)	%	Colo	or (moist)	%	Type ¹	Loc ²	Textu	re	Remarks
0-8	10YR 3/1	90	<u>10Y</u>	R 3/3	10	C	M	SiCL		
8-12	2.5Y 4/2.5	90	10Y	R 4/4	10	С	M	<u>L</u>		
	_									
								-		
	-				_					
										-
	-									
¹ Type: C=C	oncentration, D=D	epletion, f	RM=Red	luced Matrix, (	CS=Cover	ed or Coat	ed Sand G	rains.	² Lo	cation: PL=Pore Lining, M=Matrix.
Hydric Soil	Indicators: (App	licable to	all LRR	s, unless oth	erwise no	ted.)		li	ndicate	ors for Problematic Hydric Soils ³ :
☐ Histosol			□ :	Sandy Redox	(S5)				] 2 cn	n Muck (A10)
	oipedon (A2)			Stripped Matri	` ,					Parent Material (TF2)
☐ Black Hi	` '			Loamy Mucky			t MLRA 1)		Oth	er (Explain in Remarks)
	en Sulfide (A4)	(* ( * )		Loamy Gleyed		2)				
•	d Below Dark Surfa	ace (A11)		Depleted Matr Redox Dark S	` '	٠,		3	n di not	are of hydrophytic vegetation and
	ark Surface (A12) Iucky Mineral (S1)		_	Depleted Dark	•	,		l		ors of hydrophytic vegetation and and hydrology must be present,
-	Bleyed Matrix (S4)			Redox Depres	,	•				ss disturbed or problematic.
	Layer (if present)	):			0.0 (. 0)	'			4	
	e glaciomarine drif									
	ches): within 24 in							Hydı	ic Soi	l Present? Yes ⊠ No □
Remarks:	,									
HYDROLO	ogy									
	drology Indicator	rs:								
Primary Indi	cators (minimum o	of one requ	uired; ch	eck all that ap	ply)				Seco	ndary Indicators (2 or more required)
Surface	Water (A1)			☐ Water-Sta	ained Leav	ves (B9) (	except MLF	RA	□ v	Vater-Stained Leaves (B9) (MLRA 1, 2,
☐ High Wa	iter Table (A2)			1, 2, 4	4A, and 4I	В)	-			4A, and 4B)
☐ Saturation	on (A3)			☐ Salt Crus	t (B11)					rainage Patterns (B10)
☐ Water M	larks (B1)			☐ Aquatic In	nvertebrat	es (B13)				ry-Season Water Table (C2)
☐ Sedimer	nt Deposits (B2)			☐ Hydroger	Sulfide C	Odor (C1)			□s	aturation Visible on Aerial Imagery (C9)
☐ Drift Dep	oosits (B3)			☐ Oxidized	Rhizosph	eres along	Living Roc	ots (C3)	⊠G	Geomorphic Position (D2)
☐ Algal Ma	at or Crust (B4)			☐ Presence	of Reduc	ed Iron (C	4)		⊠s	hallow Aquitard (D3)
☐ Iron Dep	oosits (B5)			☐ Recent Ir	on Reduct	tion in Tille	ed Soils (C6	6)	⊠F	AC-Neutral Test (D5)
☐ Surface	Soil Cracks (B6)			☐ Stunted of	or Stressed	d Plants (D	01) ( <b>LRR A</b> )	)	☐ R	taised Ant Mounds (D6) (LRR A)
☐ Inundation	on Visible on Aeria	l Imagery	(B7)	Other (Ex	plain in R	emarks)			☐ F	rost-Heave Hummocks (D7)
☐ Sparsely	/ Vegetated Conca	ve Surfac	e (B8)							
Field Obser	vations:									
Surface Wat	ter Present?	Yes 🗌	No 🛛	Depth (inche	es):					
Water Table	Present?	Yes 🗌	No 🛛	Depth (inche	es):					
Saturation P		Yes 🗌	No 🛛	Depth (inche	es):		Wetl	land Hy	drolog	yy Present? Yes 🗵 No 🗌
Describe Re	pillary fringe) ecorded Data (strea	am gauge.	, monito	ring well, aeria	l photos. r	orevious in	spections).	if availa	able:	
	(0.100	J		J - 2, Seria	,,		, , ,			
Remarks: So	oils are moist; pone	ding and s	surface s	aturation are	assumed f	or the earl	y part of the	e growir	ig seas	son (i.e. March).

Project/Site: Laurel Station, 1009 East Smith Road	y: <u>Bellingha</u>	m	Sampling Date:8-6-09				
Applicant/Owner: Kinder Morgan				State: WA	_ Sampling Point: SP-3		
Investigator(s): Hamidi, Kidder							
Landform (hillslope, terrace, etc.): glaciomarine drift plain							
Subregion (LRR): A							
Soil Map Unit Name: Whatcom-Labounty silt loam, 0-8% slc							
					11011. <u>1100</u>		
Are climatic / hydrologic conditions on the site typical for this	-				vento Ven 🗸 Na 🗖		
Are Vegetation, Soil, or Hydrology sign				ormal Circumstances" pres			
Are Vegetation, Soil, or Hydrology natu				ed, explain any answers in			
SUMMARY OF FINDINGS – Attach site map	showing	samplin	g point l	ocations, transects,	important features, etc.		
Hydrophytic Vegetation Present? Yes ☒ No ☐		1. 4	0 1 1				
Hydric Soil Present? Yes ⊠ No □			ne Sampled		<u>,</u> —		
Wetland Hydrology Present? Yes ⊠ No □		WILL	in a Wetlar	nd? Yes⊠ N	J □		
Remarks:							
VEGETATION – Use scientific names of plan	ts.						
Tree Stratum (Plot size: 15' radius)	Absolute % Cover		Indicator Status	Dominance Test works			
1. Alnus rubra		yes		Number of Dominant Sp That Are OBL, FACW, o			
Betula papyrifera	•	yes					
3. Thuja plicata				Total Number of Domina Species Across All Strat			
4.				,	、 ,		
	70	= Total C	Cover	Percent of Dominant Sp That Are OBL, FACW, or	ecies r FAC: <u>100</u> (A/B)		
Sapling/Shrub Stratum (Plot size: 15' radius)							
1. Rubus spectabilis		<u>yes</u>		Prevalence Index work			
2. Acer circinatum					Multiply by:		
3. Oemleria cerasiformis					x 1 = 10 x 2 = 0		
4				· · · · · · · · · · · · · · · · · · ·	x = 0 x = 214		
5		= Total C	`ovor	1	x = 4 = 8		
Herb Stratum (Plot size: 5' radius)	<del>54</del>	- Total C	ovei		x = 0 $x = 0$		
1. Lysichitun americanum	<u>10</u>	yes	OBL	Column Totals: 119			
2. Athyrium filix-femina	5		FAC		( / ( /		
3				Prevalence Index			
4				Hydrophytic Vegetatio			
5				□ Dominance Test is >     □			
6				☐ Prevalence Index is			
7					tations ¹ (Provide supporting or on a separate sheet)		
8				☐ Wetland Non-Vascu			
9				☐ Problematic Hydropl	nytic Vegetation ¹ (Explain)		
10					and wetland hydrology must		
11				be present, unless distu	rbed or problematic.		
Woody Vine Stratum (Plot size:)	10	= Total C	OVEI				
1				Hydrophytic			
2				Vegetation Present? Yes	s⊠ No∏		
		= Total C		riesent: Tes			
% Bare Ground in Herb Stratum <u>50</u>							
Remarks:							

Depth	cription: (Describ Matrix				ox Featur			uk		
(inches)	Color (moist)	%	Cold	or (moist)	%	Type ¹	Loc ²	Textu	re	Remarks
0-8	2.5Y 3/1	98	2.5	Y 3/2	2	С	M	SiL		
8-16	2.5Y 5/1.5	85	10Y	'R 4/6	15	С	M	CL		
	•									
					1					
	-									
	-									
	-									
¹ Type: C=C	concentration, D=D	epletion, l	RM=Red	duced Matrix, C	S=Cover	ed or Coat	ed Sand G	rains.	²Lo	ocation: PL=Pore Lining, M=Matrix.
Hydric Soil	Indicators: (App	licable to	all LRR	Rs, unless othe	erwise no	oted.)		lı	ndicate	ors for Problematic Hydric Soils ³ :
☐ Histosol				Sandy Redox (				2 cm Muck (A10)		
	pipedon (A2)			Stripped Matrix	` ,					Parent Material (TF2)
☐ Black Hi	` '			Loamy Mucky			t MLRA 1)		_ Oth	er (Explain in Remarks)
	en Sulfide (A4)	(0.4.4)		Loamy Gleyed		2)				
•	d Below Dark Surfa ark Surface (A12)	ace (A11)		Depleted Matri Redox Dark Su	` '	:\		3	Indicat	ors of hydrophytic vegetation and
	Aucky Mineral (S1)			Depleted Dark		•				and hydrology must be present,
-	Bleyed Matrix (S4)			Redox Depress		,				ss disturbed or problematic.
	Layer (if present)	:				<u> </u>				
Type: fine	e glaciomarine drif	t material								
Depth (in	nches): within 24 in	ches						Hydı	ric Soi	I Present? Yes ⊠ No □
Remarks:										
HYDROLO	OGY odrology Indicator	rs.								
-	cators (minimum o		uired: ch	eck all that apr	olv)				Seco	ondary Indicators (2 or more required)
	Water (A1)		<u></u>	Water-Sta	•	ves (B9) (	except MLF	RA		Vater-Stained Leaves (B9) (MLRA 1, 2,
<del></del>	ater Table (A2)				A, and 4					4A, and 4B)
_									Пр	Orainage Patterns (B10)
☐ Water Marks (B1) ☐ Aquatic Invertebrates (B13)										Ory-Season Water Table (C2)
	nt Deposits (B2)			 ☐ Hydrogen		, ,				Saturation Visible on Aerial Imagery (C9)
	posits (B3)						Living Roo	ts (C3)		Geomorphic Position (D2)
<ul><li>☐ Drift Deposits (B3)</li><li>☐ Oxidized Rhizospheres along Living Roc</li><li>☐ Algal Mat or Crust (B4)</li><li>☐ Presence of Reduced Iron (C4)</li></ul>										Shallow Aquitard (D3)
_										AC-Neutral Test (D5)
☐ Surface Soil Cracks (B6) ☐ Stunted or Stressed Plants (D1) (LRR A										Raised Ant Mounds (D6) (LRR A)
☐ Inundation	on Visible on Aeria	l Imagery	(B7)	☐ Other (Ex						rost-Heave Hummocks (D7)
	y Vegetated Conca	ve Surfac	e (B8)							
Field Obser	rvations:									
Surface Wat	ter Present?	Yes 🗌	No 🛛	Depth (inche	es):					
Water Table	Present?	Yes 🗌	No 🛛	Depth (inche	es):					
Saturation P		Yes 🗌	No 🛛	Depth (inche	es):		Wetl	and Hy	drolog	gy Present? Yes 🗵 No 🗌
(includes ca	pillary fringe) ecorded Data (strea	am daylaa	monito	ring well porio	I nhotos	arevious in	spections)	if availe	ahla.	
Describe Re	ecorded Data (Sirea	am gauge	, monito	ning well, aerial	i priotos, į	orevious in	spections),	ıı avalıa	abie:	
Remarks: So	oils are moist; pon	ding and s	surface s	saturation are a	ssumed f	or the earl	y part of the	e growir	ng seas	son (i.e. March).
										· · · · · · · · · · · · · · · · · · ·

Project/Site: Laurel Station, 1009 East Smith Road		City/County	y: <u>Bellingha</u>	m	Sampling Date:8-6-09						
Applicant/Owner: Kinder Morgan				Sampling Point: SP-4							
Investigator(s): Hamidi, Kidder											
Landform (hillslope, terrace, etc.): glaciomarine drift plain											
Subregion (LRR): A											
Soil Map Unit Name: Whatcom-Labounty silt loam, 0-8% slo					.1011: <u>PFOC</u>						
Are climatic / hydrologic conditions on the site typical for this	-										
Are Vegetation, Soil, or Hydrology significantly disturbed? Are "Normal Circumstances" present? Yes 🛛 No 🗌											
Are Vegetation, Soil, or Hydrology natu	rally probler	natic?	(If need	ed, explain any answers in	Remarks.)						
SUMMARY OF FINDINGS - Attach site map s	showing	samplin	g point le	ocations, transects,	important features, etc.						
Hydrophytic Vegetation Present? Yes ⊠ No ☐ Hydric Soil Present? Yes ⊠ No ☐		Is th	e Sampled	Area							
Wetland Hydrology Present? Yes ⊠ No □		with	in a Wetlar	nd? Yes⊠ No□							
Remarks:											
VEGETATION – Use scientific names of plant	ts.										
	Absolute	Dominant	Indicator	Dominance Test works	heet:						
Tree Stratum (Plot size: 15' radius)	% Cover			Number of Dominant Spe							
1. Alnus rubra				That Are OBL, FACW, or	r FAC: <u>4</u> (A)						
2. Acer macrophylum				Total Number of Domina							
3. Thuja plicata			<u>FAC</u>	Species Across All Strata	a: <u>5</u> (B)						
4				Percent of Dominant Spe							
Sapling/Shrub Stratum (Plot size: 15' radius)	90	= Total C	over	That Are OBL, FACW, or FAC: 80 (A/B)							
1. Rubus spectabilis	2		FAC	Prevalence Index work	sheet:						
2. Lonicera involnucrata				Total % Cover of:	Multiply by:						
3. Oemleria cerasiformis	20	yes	FACU	OBL species 0	x 1 = <u>0</u>						
4. Thuja plicata	5		FAC	FACW species 75	x 2 = <u>150</u>						
5. Symphoricarpus albus	5		FACU	FAC species <u>139</u>	x 3 = <u>417</u>						
	52 = Total Cover			FACU species <u>30</u> x 4 = <u>120</u>							
Herb Stratum (Plot size: 5' radius)			E4 014/		x 5 = <u>0</u>						
1. Ranunculus repens	<u>75</u>		FACW	Column Totals: 244	(A) <u>687</u> (B)						
Athyrium filix-femina     Tolmiea menziesii		-	FAC	Prevalence Index :	= B/A = 2 82						
				Hydrophytic Vegetation							
4.       5.				□ Dominance Test is >							
6.				☐ Prevalence Index is:							
7				☐ Morphological Adapt	ations ¹ (Provide supporting						
8					or on a separate sheet)						
9.				☐ Wetland Non-Vascul							
10					nytic Vegetation ¹ (Explain)						
11				'Indicators of hydric soil is be present, unless distur	and wetland hydrology must						
		= Total C		be present, unless distar	bed of problematic.						
Woody Vine Stratum (Plot size:)											
1				Hydrophytic Vegetation							
2					⊠ No □						
% Bare Ground in Herb Stratum <u>0</u>	U	= Total C	over								
Remarks:				<u> </u>							

Depth	Matrix	%	Color (no c	Redox Feat	ures Type ¹	Loc ²	Taut	re	Da	
(inches)	Color (moist)		Color (mo					<u> </u>	Remarks	
0-8	10YR 3/2	<u>95</u>	10YR 3/3	5	<u>C</u>	<u>M</u>	<u>SiL</u>			
<u>8-13</u>	10YR 4/2	<u>95</u>	10YR 4/4	<u>5</u>	<u>C</u>	<u>M</u>	SiL			
<u>13-16</u>	2.5Y 5/2	80	10YR 5/6	20	<u>C</u>	<u>M</u>	<u>L</u>			
			<u> </u>							
			· -			<del>-</del>				
			<u> </u>							
	Concentration, D=D					ted Sand G			PL=Pore Lining, M	
-	Indicators: (App	licable to a			iotea.)				Problematic Hydri	c Solls :
☐ Histosol☐ Histic Ep	(A1) pipedon (A2)			Redox (S5) ed Matrix (S6)				2 cm Muck	(A10) : Material (TF2)	
-	istic (A3)			Mucky Mineral	(F1) (excer	of MIRA 1)	_ 		ain in Remarks)	
	en Sulfide (A4)			y Gleyed Matrix (		JC INILIXA I)		J Other (Expi	alli ili Romarkoj	
	d Below Dark Surfa	ace (A11)		ted Matrix (F3)	. –,					
☐ Thick Da	ark Surface (A12)		Redox	Dark Surface (F	⁻ 6)		³	ndicators of h	ydrophytic vegetati	on and
-	Mucky Mineral (S1)			ted Dark Surface				•	rology must be pre	
-	Gleyed Matrix (S4)		☐ Redox	Depressions (F	8)			unless distu	rbed or problemation	<b>;.</b>
	Layer (if present)									
,, <u> </u>	e glaciomarine drif		_							
	nches): within 24 in	ches	_				Hydr	ic Soil Prese	nt? Yes⊠ No	· <u> </u>
Remarks:										
HYDROLO	OGY									
Wetland Hy	drology Indicator	rs:								
•	icators (minimum o		red; check al	I that apply)				Secondary In	ndicators (2 or more	e required)
☐ Surface	•			Vater-Stained Le	aves (B9) (	except MLF	RA		ained Leaves (B9)	
	ater Table (A2)		_	1, 2, 4A, and		•			ind 4B)	
☐ Saturation				Salt Crust (B11)	,			•	Patterns (B10)	
☐ Water M	larks (B1)		$\Box$ A	quatic Invertebra	ates (B13)			☐ Dry-Seas	son Water Table (C	2)
☐ Sedimer	nt Deposits (B2)		□ +	lydrogen Sulfide	Odor (C1)			☐ Saturation	n Visible on Aerial	Imagery (C9)
☐ Drift Dep	posits (B3)			Oxidized Rhizosp	heres along	g Living Roo	ts (C3)	□ Geomorp	ohic Position (D2)	
☐ Algal Ma	at or Crust (B4)		□ F	Presence of Redu	uced Iron (C	24)		Shallow      A     Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Shallow      Sha	Aquitard (D3)	
☐ Iron Dep	oosits (B5)		□ F	Recent Iron Redu	ction in Tille	ed Soils (C6	i)	☐ FAC-Neu	utral Test (D5)	
			_	Stunted or Stress	ed Plants (I	11) (I RR A)	)	☐ Raised A	nt Mounds (D6) (L	RR A)
-	Soil Cracks (B6)				`	) ( <b>LIXIX A</b> )	'	_	ini inidanao (Bo) ( <b>E</b>	,
Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface     Surface	Soil Cracks (B6) on Visible on Aeria	al Imagery (		Other (Explain in		31) ( <b>ERR A</b> )			ave Hummocks (D	,
<ul><li>Surface</li><li>Inundation</li><li>Sparsely</li></ul>	on Visible on Aeria y Vegetated Conca		B7) 🔲 (	Other (Explain in		51) (ERR A)			` , `	,
Surface ☐ Inundation	on Visible on Aeria y Vegetated Conca		B7) 🔲 (	Other (Explain in		) (ERR A)			` , `	,
<ul><li>Surface</li><li>Inundation</li><li>Sparsely</li><li>Field Obser</li></ul>	on Visible on Aeria y Vegetated Conca	ave Surface	B7)	Other (Explain in oth (inches):	Remarks)	) (ERR A)			` , `	,
<ul><li>Surface</li><li>Inundation</li><li>Sparsely</li><li>Field Obser</li></ul>	on Visible on Aeria y Vegetated Conca rvations: ter Present?	Yes	B7)		Remarks)				` , `	,
Surface Inundati Sparsely Field Obser Surface Wat Water Table Saturation F	on Visible on Aeria y Vegetated Conca rvations: ter Present? e Present? Present?	Yes  Yes  Yes	B7)	oth (inches):	Remarks)			Frost-He	ave Hummocks (D	,
Surface Inundati Sparsely Field Obser Surface Wat Water Table Saturation F (includes ca	on Visible on Aeria y Vegetated Conca rvations: ter Present? e Present? Present? upillary fringe)	Yes  Yes  Yes  Yes  Yes	B7) □ 0  (B8)  No ☑ Dep  No ☑ Dep  No ☑ Dep	oth (inches): oth (inches): oth (inches):	Remarks)	Wetl	and Hy	Frost-He	ave Hummocks (D	7)
Surface Inundati Sparsely Field Obser Surface Wat Water Table Saturation F (includes ca	on Visible on Aeria y Vegetated Conca rvations: ter Present? e Present? Present?	Yes  Yes  Yes  Yes  Yes	B7) □ 0  (B8)  No ☑ Dep  No ☑ Dep  No ☑ Dep	oth (inches): oth (inches): oth (inches):	Remarks)	Wetl	and Hy	Frost-He	ave Hummocks (D	7)
Surface □ Inundati □ Sparsely Field Obser Surface Wat Water Table Saturation F (includes ca Describe Re	on Visible on Aeria y Vegetated Conca rvations: ter Present? e Present? Present? upillary fringe) ecorded Data (strea	Yes	B7)	oth (inches):oth (inches):oth (inches):oth (inches):oth (inches):oth	Remarks)	Wetl	and Hyo	Frost-He	ave Hummocks (D	7)
Surface Inundati Sparsely Field Obser Surface Wat Water Table Saturation F (includes ca Describe Re	on Visible on Aeria y Vegetated Conca rvations: ter Present? e Present? Present? upillary fringe)	Yes	B7)	oth (inches):oth (inches):oth (inches):oth (inches):oth (inches):oth	Remarks)	Wetl	and Hyo	Frost-He	ave Hummocks (D	7)
Surface Inundati Sparsely Field Obser Surface Wat Water Table Saturation F (includes ca Describe Re	on Visible on Aeria y Vegetated Conca rvations: ter Present? e Present? Present? upillary fringe) ecorded Data (strea	Yes	B7)	oth (inches):oth (inches):oth (inches):oth (inches):oth (inches):oth	Remarks)	Wetl	and Hyo	Frost-He	ave Hummocks (D	7)
Surface Inundati Sparsely Field Obser Surface Wat Water Table Saturation F (includes ca Describe Re	on Visible on Aeria y Vegetated Conca rvations: ter Present? e Present? Present? upillary fringe) ecorded Data (strea	Yes	B7)	oth (inches):oth (inches):oth (inches):oth (inches):oth (inches):oth	Remarks)	Wetl	and Hyo	Frost-He	ave Hummocks (D	7)

## WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys, and Coast Region

Project/Site: Laurel Station, 1009 East Smith Road		City/Count	ty: <u>Bellingha</u>	m	Sampling Date:8-6-09	
Applicant/Owner: Kinder Morgan				State: WA	Sampling Point: SP-5	
Investigator(s): Hamidi, Kidder						
Landform (hillslope, terrace, etc.): glaciomarine drift plain						
Subregion (LRR): A						
Soil Map Unit Name: Whatcom silt loam, 30-60% slopes				=		
Are climatic / hydrologic conditions on the site typical for this					1011. <u>1 1 0 0</u>	
	-				ont? Voc M. No 🗆	
Are Vegetation, Soil, or Hydrology sign				ormal Circumstances" pres		
Are Vegetation, Soil, or Hydrology natu	rally probler	matic?	(If neede	ed, explain any answers in	Remarks.)	
SUMMARY OF FINDINGS – Attach site map	showing	samplir	ng point l	ocations, transects,	important features, etc.	
Hydrophytic Vegetation Present? Yes ⊠ No □						
Hydric Soil Present? Yes ☒ No ☐			he Sampled			
Wetland Hydrology Present? Yes ⊠ No □		With	nin a Wetlar	nd? Yes ⊠ No	) 📙	
Remarks:		I I			-	
VEGETATION – Use scientific names of plant	ts.					
Tree Stratum (Diet eine 451 radius)			t Indicator	Dominance Test works	heet:	
Tree Stratum (Plot size: 15' radius)  1. Alnus rubra	% Cover 50			Number of Dominant Spo	ecies r FAC: <u>5</u> (A)	
	20		· ·	That Are OBL, FACW, or	rac. <u>5</u> (a)	
3				Total Number of Domina Species Across All Strata		
4.						
	70	= Total C	Cover	Percent of Dominant Spe	ecies r FAC: <u>100</u> (A/B)	
Sapling/Shrub Stratum (Plot size: 15' radius)						
1. Rubus spectabilis				Prevalence Index work		
2. Lonicera involnucrata					Multiply by:	
3. Acer circinatum					x 1 = <u>10</u>	
4. Rubus armeniacus	5		FACU	-	x 2 = <u>12</u>	
5		= Total 0	20105	*	x 3 = 390 x 4 = 40	
Herb Stratum (Plot size: 5' radius)	00	= Total C	Jovei		$x = \frac{40}{0}$ $x = \frac{1}{0}$	
1. Polystichum munitum	5		FACU	Column Totals: 156		
2. Glyceria elata	5		FACW+		(-)	
Geum macrophylum	1		FACW-	Prevalence Index		
Lysichitun americanum	10	<u>yes</u>	OBL	Hydrophytic Vegetation		
5				□ Dominance Test is >     □		
6				☐ Prevalence Index is:		
7					ations ¹ (Provide supporting or on a separate sheet)	
8				☐ Wetland Non-Vascul		
9				☐ Problematic Hydroph	nytic Vegetation ¹ (Explain)	
10					and wetland hydrology must	
11		= Total 0		be present, unless distur	bed or problematic.	
Woody Vine Stratum (Plot size:)	<u> </u>	= Total C	Jovei			
1				Hydrophytic		
2				Vegetation Present? Yes	⊠ No □	
Of Page Crayed in Hart Office 40	0	= Total C	Cover	103	_ ··· _	
% Bare Ground in Herb Stratum 40  Remarks:						
Tromains.						

Profile Desc	ription: (Describe	e to the d	epth ne				or confirm	n the al	osence	of indicators.)
Depth (inches)	Depth Matrix (inches) Color (moist) %		Colo		x Feature	es Tuno ¹	Loc ²	Toutu		Domorko
				or (moist)	%	Type ¹		rextu	ire	Remarks
<u>0-12</u>	10YR 3/2	90	<u>10Y</u>	R 4/4, 4/6	10	_ <u>C</u>	<u>M</u>	<u>L</u>		
					_					
					''-					
								-		
·										
	-									
¹Type: C=C	oncentration, D=De	nletion F	M-Rad	luced Matrix C	S-Cover	ad or Coat	ed Sand Gi	raine	² l o	cation: PL=Pore Lining, M=Matrix.
	Indicators: (Appli						ca Garia Gi			ors for Problematic Hydric Soils ³ :
☐ Histosol				Sandy Redox (		,				n Muck (A10)
	ipedon (A2)			Stripped Matrix					_	Parent Material (TF2)
☐ Black His				Loamy Mucky N	` '	1) (excep	t MLRA 1)	Ī		er (Explain in Remarks)
☐ Hydroge	n Sulfide (A4)		□ I	Loamy Gleyed	Matrix (F2	2)				
	Below Dark Surfa	ce (A11)		Depleted Matrix	. ,					
	rk Surface (A12)			Redox Dark Su	` '			3		ors of hydrophytic vegetation and
-	ucky Mineral (S1)			Depleted Dark	•					and hydrology must be present,
	leyed Matrix (S4)		I	Redox Depress	ions (F8)				unles	s disturbed or problematic.
	_ayer (if present):									
			_					l		
	ches):		_					Hyd	ric Soil	Present? Yes ⊠ No □
Remarks:										
HYDROLO	GY									
-	drology Indicators	<u> </u>								
_	cators (minimum of		ired: ch	eck all that ann	lv)				Seco	ndary Indicators (2 or more required)
	Water (A1)	0110 1044	1100, 011	☐ Water-Sta	•	ر (RQ) (	vcent MI F	2Δ		/ater-Stained Leaves (B9) (MLRA 1, 2,
	ter Table (A2)				A, and 4E		xoopt mer		ш "	4A, and 4B)
☐ Saturation				☐ Salt Crust	,	٥,			Πр	rainage Patterns (B10)
☐ Water Ma	, ,			☐ Aquatic In	, ,	es (B13)				ry-Season Water Table (C2)
	t Deposits (B2)			☐ Hydrogen		, ,				aturation Visible on Aerial Imagery (C9)
	osits (B3)					, ,	Living Roo	ts (C3)		eomorphic Position (D2)
-	t or Crust (B4)			☐ Presence		_	-	(00)		hallow Aquitard (D3)
_	osits (B5)					•	d Soils (C6	)		AC-Neutral Test (D5)
_	Soil Cracks (B6)						1) (LRR A)	,		aised Ant Mounds (D6) ( <b>LRR A</b> )
	on Visible on Aerial	Imagery	(B7)	Other (Exp			, , ,			rost-Heave Hummocks (D7)
	Vegetated Concav			_ ` '		,			_	,
Field Obser	vations:									
Surface Wat	er Present?	Yes 🗌	No 🏻	Depth (inche	s):					
Water Table	Present?		No ⊠	Depth (inches	,					
Saturation P			— No ⊠	Depth (inches			Wetl	and Hv	droloa	y Present? Yes ⊠ No □
(includes car	oillary fringe)	_								,
Describe Re	corded Data (stream	m gauge,	monitor	ing well, aerial	photos, p	revious in	spections),	if availa	able:	
Remarks: Flo	ooding and surface	saturatio	n are as	ssumed for the	early part	of the gro	wing seaso	n (i.e. N	March).	

## ATTACHMENT 3 WETLAND PHOTOS



Dam 1 at south end of project site



Sample Point 1 near Dam 1



Sample Point 2



**Near Sample Point 2** 



Dense blackberry north of Sample Point 2



Sample Point 3



**South of Sample Point 3** 



Sample Point 4



Ditch north of E. Smith Road



Dam 2 and ponded area



Deer Creek tributary north of Dam 2



Sample Point 5 along Deer Creek, east of Hannegan Road

# LAUREL STATION PROJECT AREA, TERASEN PIPELINE WETLAND/FISH & WILDLIFE STUDY WHATCOM COUNTY, WASHIGTON

March 2007

Prepared for:

Pete Hellstrom Anvil Corporation 1675 West Bakerview Road Bellingham, WA 98226

Prepared by:

ATSI 21993 Grip Rd Sedro-Woolley, WA 98284



## LAUREL STATION PROJECT AREA, TERASEN PIPELINE WETLAND/FISH & WILDLIFE STUDY WHATCOM COUNTY, WASHIGTON

March 2007

Prepared for:

Pete Hellstrom

Anvil Corporation

1675 West Bakerview Road
Bellingham, WA 98226

Prepared by:

Jim Wiggins, MS, PWS President

**ATSI** 

21993 Grip Rd Sedro-Woolley, WA 98284

TABLE OF CONTENTS	
LIST OF FIGURES	iii
EXECUTIVE SUMMARY	1
INTRODUCTION	1
METHODS AND PROCEDURES	1
Regulations & Preliminary Analysis	
Field Reconnaissance & Personnel	
Wetland Identification & Assessment	2
General	4
Whatcom County CAO Map	4
NWI	
Vegetation	
Soils	5
NRCS Soil DescriptionField ObservationsHydrology	5
Field Observations	
Hydrology	8
WII DLIFE & PRIORITY SPECIES	
DETERMINATION	
LIMITATIONS	
BIBLIOGRAPHY	

#### LIST OF FIGURES

- Figure 1. Vicinity map of the Laurel Station parcel project area.
- Figure 2. Subject parcel indicating project area and data plots locations.
- Figure 3. NWI map of the Laurel Station parcel project area (Bellingham North, Wash. 1987); location, size, and shape of project area as indicated on the map are approximate.
- Figure 4. NRCS soils map of the Laurel Station parcel project area (Sheet 26; Goldin 1992); Location, size, and shape of project area as indicated on the map are approximate. 179-Whatcom silt loam, 3 to 8 percent slopes; 180-Whatcom silt loam, 8 to 15 percent slopes; 182-Whatcom-Labounty silt loams, 0 to 8 percent slopes.

#### **EXECUTIVE SUMMARY**

Anvil Corporation has contracted with ATSI to review a portion of the 29-acre Terasen Pipeline parcel for the proposed reconstruction (installation of new pumps, pipes, and an electrical line) project that extends from Smith Road, south/southeast approximately 850 feet to existing on-site storage tanks.

ATSI conducted a wetland reconnaissance level on-site review (3-parameter data collection) within the approximate 6-acre project area and a cursory review of the entire Terasen Pipeline parcel on 12 February 2007. ATSI staff made observations for wetlands and protected habitat within 300 feet of the project area. Wetlands were not observed within the project area nor within 300 feet of the project area on the parcel, however, there appears to be a forested wetland immediately north of Smith Road separate from the project area. ATSI staff did not observe local species of concern, or state and federally listed species in the project area.

#### INTRODUCTION

As requested, Aqua-Terr Systems, Inc. (ATSI) reviewed a portion of an approximate 29-acre Terasen Pipeline (Puget Sound) Corp, (Terasen Pipeline) Laurel Station parcel located near the southeast corner of Smith and Hannegan Roads, Whatcom County, Washington, within a portion of Section 33, Township 39 North, Range 3 East, W.M. (Figure 1). The project area is a narrow corridor extending from Smith Road south, and then southeast, to two existing oil tanks in an existing tank farm (Figure 2).

The purpose of our review is to provide an assessment of the presence, location, and extent of wetlands, streams, and other biological critical areas and their regulated buffers under the jurisdiction of Whatcom County, the Washington State Department of Ecology (Ecology), and the U.S. Army Corps of Engineers (Corps) that are within the project area or within 300 feet of said project area.

#### METHODS AND PROCEDURES

## Regulations & Preliminary Analysis

The wetlands referred to in this report follow the Corps definition: "...those areas that are inundated or saturated by surface or ground water at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions." (Environmental Laboratory 1987) and the State of Washington, Washington State Wetlands Identification and Delineation Manual, March, 1997. Through Section 404 of the Clean Water Act, the Corps has the authority to regulate the placement of fill materials in wetlands and other waters of the U.S., and requires permits for such activities. Whatcom County also regulates all activities in and around wetlands, streams, and other critical areas through the Whatcom County Critical Areas Ordinance, Chapter 16.16 (WCC).

#### Field Reconnaissance & Personnel

A two-step procedure is used to determine the presence and extent of wetlands and other critical areas on the subject parcel. This procedure includes preliminary data

review and an on-site reconnaissance. A qualitative analysis of biota and habitats is performed. We observe the general terrain and traverse the entire parcel to identify wetlands and other critical areas/habitats. Data are collected from the dominant plant communities and soils. In addition, aerial photographs, soil data, and topographic maps are used for orientation and to assist in locating wetlands, streams, and other unique or critical habitats.

The goal of this analysis and site review is to describe the biological aspects of the parcel in order to provide sufficient information for the client and regulating agency to make informed decisions regarding wetlands, streams, and other critical areas.

A preliminary review of public resource documents is used to provide initial information on soils, vegetation, hydrology, and critical areas of the site and surrounding area. These resources include but are not limited to:

- USDA, Natural Resource Conservation Service soil surveys.
- Natural Resource Conservation Service hydric soil list.
- National Wetland Inventory maps.
- Local jurisdiction inventory maps.

An on-site field reconnaissance was conducted on 12 February 2007 by Dr. Elizabeth Binney, Jim Wiggins, and Amy Dearborn. Both Mr. Wiggins and Dr. Binney are Professional Wetland Scientists (P.W.S.) certified through the Society of Wetland Scientist. Dr. Binney is provisionally certified through the Seattle District of the U.S. Army Corps of Engineers as a Wetland Delineator. Both Dr. Binney and Ms. Dearborn have completed the five-day training course for the Washington State Wetland Function Assessment Project Methods for Assessing Wetland Functions. All three have completed the two-day training for the Department of Ecology wetland rating system.

#### Wetland Identification & Assessment

All wetlands are identified based on the presence of hydrophytic vegetation, hydric soils, and wetland hydrology as described in the Corps of Engineers *Wetland Delineation Manual* (Environmental Laboratory 1987) and the State of Washington, *Washington State Wetlands Identification and Delineation Manual, March 1997.* All three parameters must be present for an area to be considered a jurisdictional wetland under normal circumstances. Atypical situations and problem areas are treated per the Corps and state manuals. Figure 2 depicts the approximate location of the project area and the approximate locations of the sample plots within the project area; Data Forms for individual sample plots are at the back of this report.

An area has hydrophytic vegetation if greater than 50 percent of the total composition of the dominant plant species from all strata have an indicator status of Facultative (FAC), Facultative Wetland (FACW), or Obligate Wetland (OBL) (Environmental Laboratory 1987) as defined in the *National List of Plant Species that Occur in Wetlands: 1988 Washington* (Reed 1988) and the *1993 Supplement to List of Plant Species that Occur* 

in Wetlands: Northwest (Region 9) (Reed 1993). Additional indicator status of Facultative Upland (FACU) and Obligate Upland (UPL) are given to plants that usually occur in nonwetlands or nearly always occur in nonwetlands respectively (Reed 1988, 1993). No Indicator (NI) is given to species where sufficient information is lacking to give the species an indicator status (Reed 1988). The percent cover of the dominant plant species is estimated for each stratum (e.g. canopy, shrub layer, and herbaceous layer) within a thirty-foot radius plot and the indicator status of each species is determined.

Hydric soils, in general, are those soils that have high organic-matter, sulfidic material, reduced conditions, aquic or peraquic moisture regimes, soil colors with a chroma of 1, soil colors with a chroma of 2 with mottles, or the presence of iron or manganese concretions (Environmental Laboratory 1987). On-site soils are observed and described from a 20-inch (+/-) soil pit. Hydric characteristics and indicators such as redoxymorphic features (e.g. mottles) are examined within the profile and specifically just below the A-horizon or at 10 inches. Soil color, texture, and hydric indicators, if present, are recorded. Color is determined using a Munsell soil color chart (Kollmorgen 1998).

Wetland hydrology is present when direct or indirect indicators of seasonal or permanent soil saturation or inundation are observed. Indicators include: soil saturation; surface inundation; free water within the top 12 inches of the soil pit; oxidized rhizospheres, water-stained leaves; water marks; drift lines; sediment deposits; drainage patterns; or previously recorded data.

In order to categorize wetlands we use the local jurisdiction system or the revised Washington State Wetland Rating System for Western Washington (Hruby 2004) if the local jurisdiction lacks a categorization system. This system takes into account the hydrogeomorphic class of the wetland, sensitivity to disturbance, significance of the wetland, its degree of rarity, replacement potential, and functions the wetland provides.

We evaluate wetland functions with the *Methods for Assessing Wetland Functions Volume I: Riverine and Depressional Wetlands in the Lowlands of Western Washington* (Hruby et al. 1999).

When this method is not applicable, e.g., slope, lacustrine fringe, or flats wetlands, or wetlands outside of the lowlands, or wetlands too small for this method we use an evaluation method that we derived from a combination of best professional judgment, the wetland functions listed in the *Washington State Wetland Rating System for Western Washington* (Hruby 2004), and several other wetland functional assessment methods. This assessment provides information that aids in categorization of the wetlands and baseline information if mitigation is required. Below is a list of functions and attributes addressed (for detailed methods please contact ATSI personnel); a similar list of functions is used to assess other critical areas and habitats:

- 1. Age and classes of wetland communities or populations.
- 2. Buffer size and character.
- 3. Cultural, heritage, recreational, and local value.
- 4. Ecotone complexity and transition zone between dry land and watercourses (sinuosity).
- 5. Enhancement potential.
- 6. Flood and storm drainage protection.
- 7. Habitat for fish and/or wildlife.
- 8. Presence of sensitive, threatened, or endangered species.
- 9. Presence and number of habitat features.
- 10. Shoreline stabilization.
- 11. Size of wetland or habitat.
- 12. Support of baseflow and surface or groundwater recharge or discharge.
- 13. Uniqueness of habitat to area or in general.
- 14. Water quality functions.
- 15. Wetland/habitat classification diversity.
- 16. Wildlife corridors and linkage to other habitats.

#### SITE DESCRIPTION

#### General

The project area is located on the south side of Smith Road, in Whatcom County, Washington (Figure 1). Land use in the vicinity is low-density residential and open space. The project area is developed as an oil pump station that is fenced with a chain link fence. Facilities on the site include oil tanks with containment dikes, maintenance buildings, an equipment yard, an underground oil pipeline with above ground pump structures, parking areas, storage areas, and an office. Topography in the project area slopes to the north. The project area is maintained lawn, but there are patches of trees and shrubs adjacent to the project area. Much of the project area was recontoured in the past to facilitate stormwater drainage into a catch basin and buried pipelines. No wetlands or streams were identified on or within 300 feet of the project area. There appears to be a forested wetland immediately north of Smith Road.

## Whatcom County CAO Map

The Whatcom County critical area maps indicate that there are wetland areas to the south and east of the project area. The mapped wetland areas are greater than 300 feet from the project area. We concur with this mapping. The maps do not indicate any fish or wildlife areas on or within 300 feet of the project area.

#### NW!

The National Wetlands Inventory (NWI) maps do not indicate any wetlands on or within 300 feet of the project area (Figure 3). We concur with this assessment; however, there appears to be a forested wetland immediately north of Smith Road.

#### Vegetation

The project area is predominantly maintained lawn and patches of trees and shrubs that contain a sparse herbaceous understory. The reconnaissance occurred in the winter therefore some herbaceous plant species may not be evident this time of year.

The patches of trees and shrubs consists of herbaceous plants such as sword fern (*Polystichum munitum*; FACU), bracken fern (*Pteridium aquilinum*; FACU), trailing blackberry (*Rubus ursinus*; FACU), and evergreen blackberry (*Rubus lacinatus*; FACU+) in the herbaceous layer. The shrub layer is dominated by salmonberry (*Rubus spectabilis*; FAC+), snowberry (*Symphoricarpos albus*; FACU), vine maple (*Acer circinatum*; FACU), osoberry (*Oemleria cerasiformis*; FACU), beaked hazelnut (*Corylus cornuta*; FACU), and Himalayan blackberry (*Rubus procerus*; FACU). The upland canopy is dominated by deciduous trees such as red alder (*Alnus rubra*; FAC), paper birch (*Betula papyrifera*; FAC), bigleaf maple (*Acer macrophyllum*; FACU), and black cottonwood (*Populus balsamifera*; FAC); and evergreen trees such as western hemlock (*Tsuga heterophylla*; FACU-), Douglas fir (*Pseudotsuga menziesii*, FACU), and western red cedar (*Thuja plicata*; FAC).

#### Soils

NRCS Soil Description

The Natural Resource Conservation Service (NRCS) maps three soil units on the subject parcel. These are: 179-Whatcom silt loam, 3 to 8 percent slopes; 180-Whatcom silt loam, 8 to 15 percent slopes; 182-Whatcom-Labounty silt loams, 0 to 8 percent slope (Goldin 1992) (Figure 4). The NRCS does not list Whatcom soil units as a hydric soil. Labounty is listed as a hydric soil. Whatcom soils may have inclusions of hydric soils.

Excerpts of the NRCS descriptions (Goldin 1992) for the soil units are listed below:

**179-Whatcom silt loam, 3 to 8 percent slopes.** This very deep, moderately well drained soil is in the higher areas of glaciomarine drift plains. It formed in a mixture of loess and volcanic ash over glaciomarine drift. The native vegetation is mainly conifers and shrubs. Elevation is 50 to 600 feet. The average annual precipitation is about 45 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is about 170 days.

Typically, the surface layer is dark brown silt loam 9 inches thick. The upper 7 inches of the subsoil is dark brown silt loam. The lower 10 inches is light olive brown, mottled loam. The upper 9 inches of the substratum is olive gray, mottled loam. The lower part of a depth of 60 inches is dark gray loam. In some areas the surface layer is loam or gravelly silt loam. In other areas the substratum has lenses of sandy material, is 10 to 18 percent clay, is 35 to 45 percent clay, or is 5 to 10 percent cobbles, stones, or boulders.

Included in this unit are small areas of Skipopa, Labounty, Bellingham, Birchbay, Laxton, Shalcar, and Whitehorn soils, somewhat poorly drained soils that are mottled at a depth of 12 inches, and Whatcom soils that have slopes of more than 8 percent or less than 3 percent. Included areas make up about 20 percent of the total acreage.

Permeability is moderate in the upper part of the Whatcom soil and slow in the lower part. Available water capacity is high. The effective rooting depth is limited

by a seasonal high water table, which is at a depth of 1.5 to 3.0 feet from December through April. Runoff is slow, and the hazard of water erosion is slight.

**180-Whatcom silt loam, 8 to 15 percent slopes.** This very deep, moderately well drained soil is in the higher areas of glaciomarine drift plains. It formed in a mixture of loess and volcanic ash over glaciomarine drift. The native vegetation is mainly conifers and shrubs. Elevation is 50 to 600 feet. The average annual precipitation is about 45 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is about 170 days.

Typically, the surface is covered with a mat of needles, leaves, and twigs 1 inch thick. The surface layer is dark brown silt loam 5 inches thick. The upper 14 inches of the subsoil is dark yellowish brown and yellowish brown silt loam. The lower 15 inches is yellowish brown and olive brown, mottled loam. The upper 9 inches of the substratum is light olive brown, mottled loam. The lower part to a depth of 60 inches is grayish brown, mottled loam. In some areas the surface layer is loam or gravelly silt loam. In other areas the substratum has lenses of sandy material, is 10 to 18 percent clay, or is 5 to 10 percent cobbles, stones, or boulders.

Included in this unit are small areas of Skipopa, Labounty, Bellingham, Birchbay, Laxton, Squalicum, Shalcar, and Whitehorn soils and small areas of Whatcom soils have slope more than 15 percent or less than 8 percent. Included areas make up about 15 percent of the total acreage.

Permeability is moderate in the upper part of the Whatcom soil and slow in the lower part. Available water capacity is high. The effective rooting depth is limited by a seasonal high water table, which is at a depth of 1.5 to 3.0 feet from December through April. Runoff is medium, and the hazard of water erosion is moderate.

**182-Whatcom-Labounty silt loams, 0 to 8 percent slope.** This map unit is on glaciomarine drift plains that are hummocky. The Whatcom soil is on 0 to 8 percent slopes, and the Labounty soil is on 0 to 2 percent slopes. The native vegetation is mainly trees and shrubs. Elevation is 50 to 600 feet. The average annual precipitation is about 45 inches, the average annual air temperature is about 50 degrees F, and the average frost-free period is about 170 days.

This unit is 55 percent Whatcom silt loam and 25 percent Labounty silt loam. The components of this unit occur as areas so intricately intermingled that mapping them separately was not practical at the selected scale of mapping.

Included in this unit are small areas of Skipopa, Bellingham, and Shalcar soils, somewhat poorly drained soils that are mottled at a depth of about 12 inches, Labounty soils that have been artificially drained, and Whatcom soils that have slopes more than 8 percent. Included areas make up about 20 percent of the total acreage.

The **Whatcom** soil is very deep and moderately well drained. It formed in a mixture of loess and volcanic ash over glaciomarine deposits. Typically, the surface layer is dark brown silt loam 9 inches thick. The upper 7 inches of the subsoil is dark brown silt loam. The lower 10 inches is light olive brown, mottled loam. The upper 9 inches of the substratum is light olive gray, mottled loam. The lower part to a depth of 60 inches is dark gray loam. In some areas the surface layer is loam or gravelly silt loam. In other areas the substratum has lenses of sandy material, is 10 to 18 percent clay, is 35 to 45 percent clay, or is 5 to 10 percent cobbles, stones, or boulders.

Permeability is moderate in the upper part of the Whatcom soil and slow in the lower part. Available water capacity is high. The effective rooting depth is limited by a seasonal high water table, which is at depth of 1.5 to 3.0 feet from December through April. Runoff is slow, and the hazard of water erosion is slight.

The Labounty soil is very deep and poorly drained. It formed in glaciomarine drift with an admixture of loess and volcanic ash. Typically, the surface layer is very dark grayish brown silt loam 10 inches thick. The upper 6 inches of the subsoil is grayish brown and light brownish gray, mottled loam. The lower 19 inches is grayish brown, olive gray, and light olive ray, mottled loam. The substratum to a depth of 60 inches is gray loam. In some areas the surface layer is loam. In other areas the soil has 10 to 18 percent or 35 to 45 percent clay in the subsoil and substratum, has lenses of sand in the substratum, or has 5 to 15 percent cobbles in the substratum.

Permeability is moderately slow in the Labounty soil. Available water capacity is high. The effective rooting depth is limited by a seasonal high water table, which is at or near the surface from November through May. Runoff generally is very slow, but the soil may be ponded during the winter. There is no hazard of erosion. Runoff from the higher areas of the micro-relief increases the poorly drained conditions in the depressions.

#### Field Observations

Most of the project area consisted of soils that were characteristic of the Whatcom soil unit. However, much of the soil surface layer in the project area was disturbed at some point in the past from site re-contouring. The soils in the tree and shrub patches were the least disturbed and provided reference for the re-contoured areas.

The soils were generally very dark grayish brown (10YR 3/2) loam from the surface down to six to 10 inches. From six to 10 inches and deeper the soils were very dark grayish brown (10YR 3/2) silt loam, with dark brown, grayish brown, and yellowish brown (7.5YR 3/4,10YR 5/2 and 5/6) mottles. In some areas the surface layer was very dark brown (10YR 2/2) loam from the surface to 7 to 12 inches in depth, with dark brown (10YR 3/3) silt loam to greater than 18 inches in depth.

#### Hydrology

The dominant source of hydrology in the project area is from precipitation. Water generally flows northwest through the project area. We observed saturation to the surface and free water at 11 inches at the north end of the project area within the drainage containment area that was developed in 1991-1992. We observed soil saturation from one to three inches in two locations; however, there was no saturation in these plots below three inches. This indicates that the saturation is a result of recent precipitation and the water is percolating through the soil.

Water from the project site flows north to the Deer Creek watershed.

#### WILDLIFE & PRIORITY SPECIES

We did not observe endangered, threatened, or sensitive plant or animal species regulated by Whatcom County, Washington State, or the federal government in the project area or within the immediate vicinity. Nor did we observe any Whatcom County Habitat Conservation Areas (WCC Article 7).

Habitats within the project area are grass lawn with a mixed deciduous and coniferous forest with a partially mowed understory, and parking area, pumps, outbuildings, and storage tanks. We observed black-tailed deer (*Odocoileus hemionus*) tracks on the project site and a red-tailed hawk (*Buteo jamaicensis*) fly over the site. Wildlife that may use habitats in or near the project area are typical of developed rural areas such as raptors, passerine birds, small mammals such as mice and voles, and large mammals such as coyote (*Canis latrans*). The forested area to the south increases wildlife habitat potential within the project area however the project area is fenced decreasing the opportunity for large mammals on the site.

#### **DETERMINATION**

We did not observe jurisdictional wetlands, streams, or other fish and wildlife habitat areas on or within 300 feet of the project area. The wetland north of Smith Road is functionally isolated from the project area by Smith Road.

#### **LIMITATIONS**

We have used the most current, established methods to make determinations as to the location, size, and types of wetlands on this parcel. All of the above statements are based on our best professional judgment. Although we follow the federal, state, and local criteria, we cannot guarantee that the U.S. Army Corps of Engineers or the local jurisdiction determination will correspond to ours. Please note that regulations pertaining to critical areas are subject to change over time.

#### **BIBLIOGRAPHY**

- Azous, A.L. and R.R. Horner, eds. 2001. Wetlands and Urbanization: Implications for the Future. Boca Raton, FL: CRC Press (Lewis Publishers).
- Cooke, S.S. May 1996. Wetland and Buffer Functions Semi-Quantitative Assessment Methodology. Cook Scientific Services. Seattle, WA.
- Cooke, S.S., Editor. 1997. A Field Guide to the Common Wetland Plants of Western Washington and Northwestern Oregon. Seattle Audubon Society, Washington Native Plant Society. Seattle, WA.
- Cowardin, L.M. V. Carter, F.C. Golet, and E.T. LaRoe. 1979. *Classification of Wetlands and Deepwater Habitats of the United States*. Office of Biological Services, Fish and Wildlife Service, U. S. Dept. of the Interior. FWS/OBS-79/31.
- Cronk, J.K. and M.S. Fennessy. 2001. *Wetland Plants: Biology and Ecology.* Boca Raton, FL: CRC Press (Lewis Publishers).
- Department of Natural Resources. July 1995. Washington Forest Practices (WAC 222).

  Department of Natural Resources, Forest Practices Division.
- Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual, Technical Report Y-87-1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss.
- Federal Register. 15 January 2002. Part II. Final Notice of Issuance of Nationwide Permits;
- Franklin, J.F. and C.T. Dyrness. 1973. Natural Vegetation of Oregon and Washington. Oregon State University Press. Corvallis, Oregon.
- Granger, T., T. Hruby, A. McMillan, D. Peters, D. Sheldon, S. Stanley, and E. Stockdale. April 2005. Wetlands in Washington State Volume 2: Guidance for Protecting and Managing Wetlands. Washington State Department of Ecology. Publication #05-06-008. Olympia, WA.
- Goldin, Alan. 1992. Soil Survey of Whatcom County Area, Washington. U.S.D.A. Soil Conservation Service, Washington State Department of Natural Resources, and Washington State University, Agriculture Research Center.
- Haeussler, S., D. Coates, and J. Mather. 1990. Autecology of Common Plants in British Columbia: A Literature Review. FRDA Report 158. B.C. Ministry of Foresty and Canada B.V. Forest Resource Development Agreement; Victoria, B.C.
- Hickman, J.C, ed., 1993, *The Jepson Manual, Higher Plants of California*, University of California Press, Berkely, CA.
- Hitchcock, C.L. and A. Cronquist. 1973. Flora of the Pacific Northwest. University of Washington Press. Seattle, Washington.

- Holling, C.S. (ed.). 1978. Adaptive Environmental Assessment and Management. John Wiley, New York.
- Hruby, T. 2004. Washington State wetland rating system for western Washington revised. Washington State Department of Ecology Publication # 04-06-025.
- Hruby, T., T.Granger, K. Brunner, S. Cooke, K. Dublanica, R. Gersib, L. Reinelt, K. Richter, D. Sheldon, E. Teachout, A. Wald, and F. Weinmann. July 1999. Methods for Assessing Wetland Functions Volume 1: Riverine and Depressional Wetlands in the Lowlands of Western Washington. Washington State Department Ecology Publication #99-115.
- Keddy, P. A. 2000. Wetland Ecology: Principles and Conservation. New York: Cambridge University Press.
- Kollmorgen Corporation. 1998. Munsell soil color charts, Baltimore, MD.
- Leonard W.P., H.A. Brown, L.L.C. Jones, K.R. McAllister, and R.M. Storm. 1993. *Amphibians of Washington and Oregon*. Seattle Audubon Society. Seattle, WA.
- Mitsch, W.J. and J.G. Gosselink. 2000. *Wetlands*, 3rd ed. John Wiley & Sons, New York. 920 pp.
- Peterson, R.T. 1990. A Field Guide to Western Birds. Peterson Field Guides. Houghton Mifflin Co. Boston, Massachusetts.
- Reed, P.B., Jr. 1988. *National List of Plant Species that Occur in Wetlands:* 1988 Northwest. Biological Report 88 (26.9), U.S. Fish and Wildlife Service, St. Petersburg, Florida.
- Richardson, J.L. and M.J. Vepraskas (Eds.). 2001. Wetland Soils: Genesis, Hydrology, Landscapes, and Classification. Lewis Publishers, Boca Raton, Florida.
- Sheldon, D., T. Hruby, P. Johnson, K. Harper, A. McMillan, T. Granger, S. Stanley, and E. Stockdale. March 2005. Wetlands in Washington State Volume 1: A Synthesis of the Science. Washington State Department of Ecology. Publication #05-06-006. Olympia, WA.
- Stebbins, R.C. 1985. A Field Guide to Western Reptiles and Amphibians, 2nd edition. Houghton Mifflin Co. Boston, Massachusetts.
- Tiner, R. W. 1999. Wetland Indicators, A Guide to Wetland Identification, Delineation, Classification, and Mapping. Lewis Publishers, Boca Raton, Florida.
- United States Department of the Interior, Fish and Wildlife Service. 1977. ANational Wetlands Inventory Maps,≅ Scale 1:24,000. Office of Biological Services.
- Washington Department of Ecology. 1993. Washington State Wetlands Rating System for Western Washington. Publication #93-74.

- Washington State Department of Ecology, Washington State Wetlands Identification and Delineation Manual, March, 1997; Pub. No. 96-94.
- Washington State Department of Wildlife. 1993. *Priority Habitats and Species*. Olympia, WA. 22 pp.
- Whatcom County. 2005. Whatcom County Critical Areas Ordinance, Title 16, Chapter 16.16 Whatcom County Planning Department, Whatcom County, Washington.



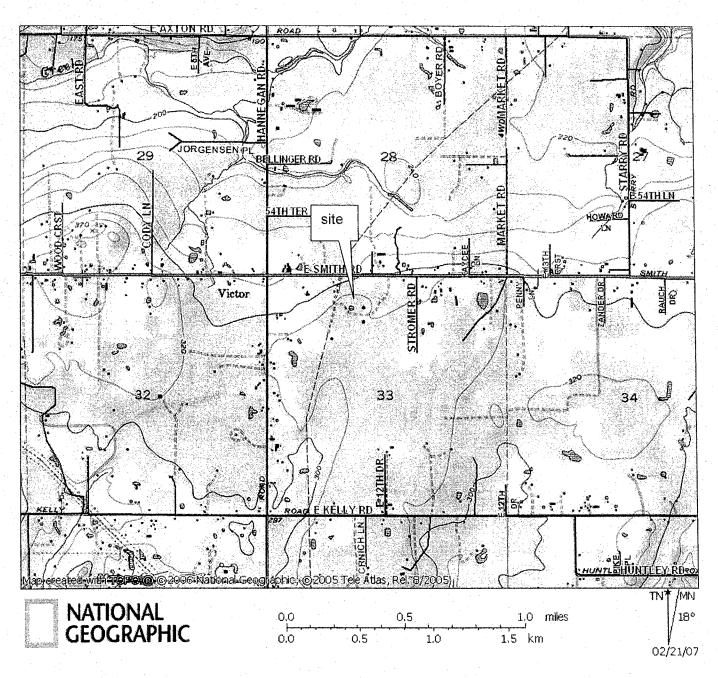
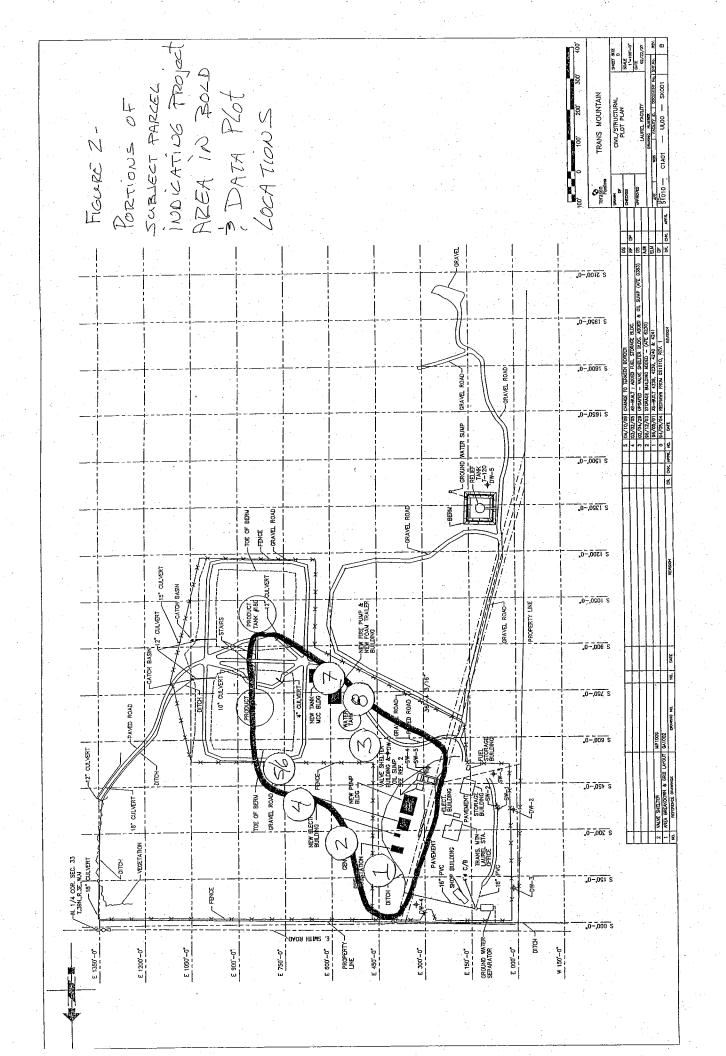




Figure 1. Vicinity map of the Laurel Station parcel project area.



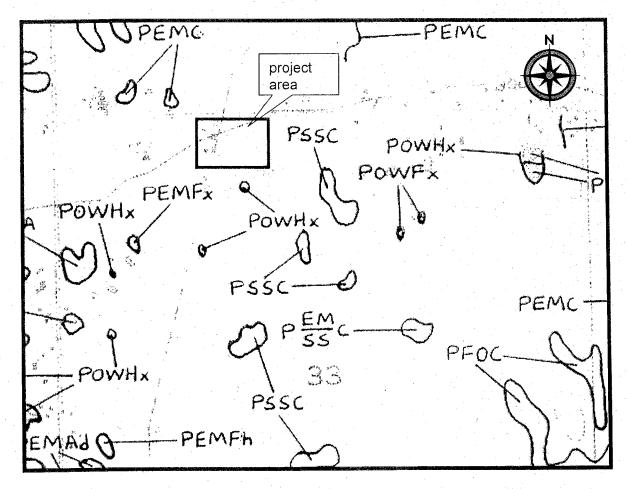



Figure 3. NWI map of the Laurel Station parcel project area (Bellingham North, Wash. 1987); location, size, and shape of project area as indicated on the map are approximate.

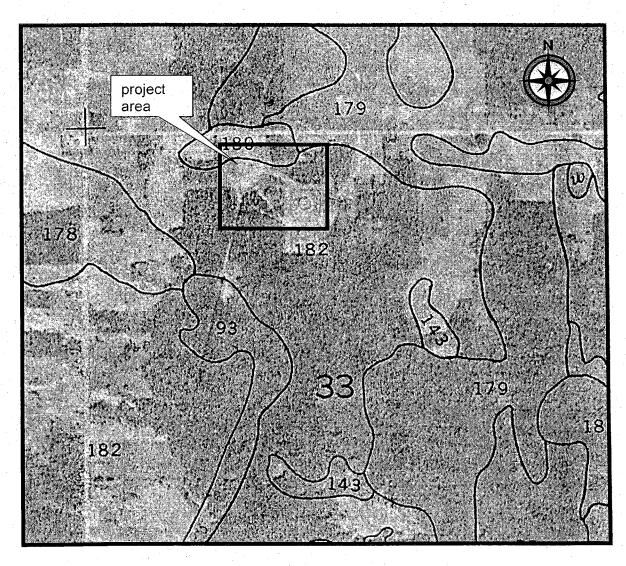



Figure 4. NRCS soils map of the Laurel Station parcel project area (Sheet 26; Goldin 1992); Location, size, and shape of project area as indicated on the map are approximate. 179-Whatcom silt loam, 3 to 8 percent slopes; 180-Whatcom silt loam, 8 to 15 percent slopes; 182-Whatcom-Labounty silt loams, 0 to 8 percent slopes.



Plot 1 of 8

(1987 COE Wetlands Delineation Manual)

· Project Name:

Terasen

12 Feb 07 Date: County: Whatcom

S-T-R:

Applicant/agent: Field Investigator(s):

Anvil Wiggins/Binney/Dearborn

WA

State:

Do Normal Circumstances exist on the site?

Is this site significantly disturbed (Atypical Situation)?

Description: Project area extends south from Smith Road and then s.e. to existing tanks. The area is moved lawn/field that was

33-39-3

Is the Area a potential Problem Area?

recontoured to facilitate stormwater drainage.

**VEGETATION** 

Dominant Species	Stratum	%cover	Indicate	or Dominant Species	Stratum	%cover Indicator
1 Poa pratensis	Herb	40	fac	9		
2 Agrostis capillaris	н	40	fac	10		
3 Ranunculus repens	H	15	facw	11		
4 Trifolium repens	, н -	trace	fac	12		
5 Hypocharis radiata	Н	trace	facu	13		
6 Moss sp.	Н	trace	?.	14		
7				15		
8				16		

Percent of Dominant Species that are OBL, FACW, or FAC: >50

Other hydrophytic indicators:

Remarks: weedy lawn species that qualify as hydric but are not indicative of wetlands

#### **HYDROLOGY**

Depth to Surface Water:	Depth to saturated soil: see below	Depth to free standing water in soil pit:
Recorded Data	☐ Primary Indicators	Secondary Indicators (2 or more required)
Stream, Lake, or Tide Gauge	Inundated	Oxidized Root Channels in upper 12 inches
Aerial Photographs	Saturated in Upper 12 Inches	Water-Stained Leaves
Other (Explain in Remarks)	☐ Water Marks	Local Soil Survey data
4.0	Drift Lines	FAC-Neutral Test
No Recorded Data Available	Sediment Deposits	Other (Explain in Remarks)
	Drainage Patterns in Wetland	

Remarks: This area is managed as a stormwater management area that is designed to convey all surface flow....It is a lawn that is a broad stormwater swale that conveys all precipitation into a stormwater drainage, then into an oil water separator. Water is present in lenses.

### SOILS

Series/Phase-Mapped: Whatcom Silt Loam

Field observation confirm mapped type? yes

Profile Description:

Depth (in.)	Color	Mottle	Mottle %	Texture
0-6	10YR 3/2 and 3/3			Loam with gravel
6-18	10YR 3/2 - 7.5 YR 3/4			Silt loam with gravel
	÷ :			

Hydric Soil Indicators:

Histosol	Concretions
Histic Epipedon	High Organic Content
Sulfidic Odor	Organic Streaking (sand)
Aquic Moisture Regime	On Hydric Soils List
Reducing Conditions	Gleyed or Low Chroma

Remarks: soils have been recontoured and amended to promote drainage

#### WETLAND DETERMINATION

Hydrophytic Vegetation present?	yes Is this sample plot within a wetland? no						
Wetland Hydrology present?	no						
Hydric Soil present?	no						
Remarks: not a wetland							

Plot 2 of 8

Project Name:

Terasen

(1987 COE Wetlands Delineation Manual)

Applicant/agent:

Field Investigator(s):

Anvil

Wiggins/Binney/Dearborn

Date:

12 Feb 07 County: Whatcom

State: WA

S-T-R: 33-39-3.

Do Normal Circumstances exist on the site?

Is the Area a potential Problem Area?

yes

Is this site significantly disturbed (Atypical Situation)?

Description: Project area extends south from Smith Road and then s.e. to existing tanks. The area is moved lawn/field that was

recontoured to facilitate stormwater drainage.

**VEGETATION** 

Dominant Species	Stratum	%cover	Indicat	or	Dominant Species		Stratum	%cover Indicator
1 Festuca arundinacea	Herb	80	fac-	9				
2 Agrostis stolonifera	herb	70	fac	10				
3 Ranunculus repens	herb	20	facw	11				
A Agrostis capillaris	herb	20	fac	12		- 4		
5 Hypocharis radiata	herb	trace	facu	13				
6				14				
7	* .		•	15				
8				16				

Percent of Dominant Species that are OBL, FACW, or FAC: >50

Other hydrophytic indicators:

Remarks: weedy lawn species that qualify as hydric but are not indicative of wetlands

#### **HYDROLOGY**

Depth to Surface Water:	Depth to saturated soil: see below Dep	oth to free standing water in soil pit:
Recorded Data	Primary Indicators	Secondary Indicators (2 or more required)
Stream, Lake, or Tide Gauge	☐ Inundated	Oxidized Root Channels in upper 12 inches
Aerial Photographs	Saturated in Upper 12 Inches	☐ Water-Stained Leaves ☐
Other (Explain in Remarks)	☐ Water Marks	Local Soil Survey data
	Drift Lines	FAC-Neutral Test
No Recorded Data Available	Sediment Deposits	Other (Explain in Remarks)
	Drainage Patterns in Wetlands	

Remarks: This area is managed as a stormwater management area that is designed to convey all surface flow....It is a lawn that is a broad stormwater swale that conveys all precipitation into a stormwater drainage, then into an oil water separator. Water is present in lenses.

## SOILS

Series/Phase-Mapped: Whatcom Silt Loam

Field observation confirm mapped type? yes

Profile Description:

Depth (in.)	Color	Mottle	Mottle %	Texture	
0-6	10YR 3/2			loam	
6-18	10 YR 3/2	10-YR 5/2 & 5/6	30	Silt loam	

Hydric Soil Indicators:

Histosol	Concretions
Histic Epipedon	High Organic Content
Sulfidic Odor	Organic Streaking (sand)
Aquic Moisture Regime	On Hydric Soils List
Reducing Conditions	Gleyed or Low Chroma

Remarks: Soils are jumbled, mixed matrix and subsoils together....this area is a recontoured very broad drainage swale.

#### WETLAND DETERMINATION

Hydrophytic Vegetation present?	yes	Is this sample plot within a wetland? no
Wetland Hydrology present?	No*	
Hydric Soil present?	No*	

Remarks: Veg is indicative of weedy lawn species. Hydrology is recent precip in lenses, not entire column saturated. Soils are mixed and recontoured.

#### of 8

	ROUTIN				ERMINATION D nds Delineation Manua		ORM		Plot	t 3
Project Name:	Terasen			, , , ,		Date:	12 F	eb 07		
Applicant/agent:	Anvil					County:				
Field Investigator(s):	Wiggins/Binney/De	arborn				State:	WA			
r leid investigator(s).	Wiggins/ Diffice// De	our Dorry				S-T-R:	33-3	0_3		
Do Normal Circumstand Is this site significantly of Is the Area a potential F	disturbed (Atypical Situ	uation)? r	/es 10 10		Description: Projecthen s.e. to existing recontoured to facility	tanks. Th	ie area	is mowed l		
Dominant Species	Stratum	%cover	Indicator		Dominant Species	**************************************		Stratum	%cover Indi	cat
1 Festuca arundinacea	Herb	40	fac-	9						
2 Agrostis stolonifera	herb	30	fac	10						
3 Peritidium aquilinum	herb	20	upl	11					and the second second	
4 Agrostis capillaris	herb	15	fac	12					*.	
5 Mahonia nervosa	shrub	20	facu	13						
6 Thuja plicata	canopy	60	fac	14.						
7 Acer macrophyllum	canopy	40	facu	15						
8 Betula papyrifera	canopy	15	fac	16						
Percent of Dominant Sp Remarks:	pecies that are OBL, F	ACW, or f	FAC: bare	ly 5	O Other hyd	Irophytic	indicate	ors:		

#### HYDROLOGY

Depth to Surface Water:	Depth to saturated soil:	Depth to free standing water in soil pit:
Recorded Data	Primary Indicators	Secondary Indicators (2 or more required)
Stream, Lake, or Tide Gauge	☐ Inundated	Oxidized Root Channels in upper 12 inches
Aerial Photographs	Saturated in Upper 12 Inc	ches Water-Stained Leaves
Other (Explain in Remarks)	Water Marks	Local Soil Survey data
and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t	Drift Lines	FAC-Neutral Test
No Recorded Data Available	Sediment Deposits	Other (Explain in Remarks)
200	Drainage Patterns in We	tlands 🗌

Remarks: no evidence of water

#### SOILS

Series/Phase-Mapped: Whatcom Silt Loam

Field observation confirm mapped type? yes

Profile Description:

Depth	i (in.)	Color	Mottle Mottle %	Texture
0-6		10YR 2/2		Loam with a thin layer of duff
6-18		10YR 3/3		silt loam
	<del></del>			

Hydric Soil Indicators:

Trydric Coll Indicators.	
Histosol	Concretions
Histic Epipedon	High Organic Content
Sulfidic Odor	Organic Streaking (sand)
Aquic Moisture Regime	On Hydric Soils List
Reducing Conditions	Gleyed or Low Chroma

Remarks: not hydric but a bit jumbled/mixed

## WETLAND DETERMINATION

Hydrophytic Vegetation present?	yes	Is this sample plot within a	wetland? no	
Wetland Hydrology present?	no			
Hydric Soil present?	no			
Remarks: not a wetland	 			 ٠.

				(1987 COE W	etlands Delin	eation Manua	ıl)		
Project Name:	T ₀	erasen					Date:	12 Feb 07	
Applicant/agent	: A	nvil					County:	Whatcom	
Field Investigate		/iaains/B	inney/Dearborn				State:	WA	
							S-T-R:	33-39-3	
Do Normal Circ	umstances (	exist on t	he site?	yes	Descript	ion: Projec	t area ex	tends south fron	Smith Road and
			ypical Situation)?		then s.e.	to existing	tanks. The	e area is mowed lo	wn/field that was
Is the Area a po				no	recontou	red to facilit	tate stormi	water drainage.	
is the Alica a po	Mondai i ioo								
VEGETATION	1								
Dominant Speci	ies		Stratum %cov	er Indicator	Domina	nt Species		Stratum	%cover Indicator
1 Agrostis stolo	nifera		Herb 60	fac	9				
2 Agrostis capill	laris		herb 50	fac	10				
3 Festuca arund	linacea		herb 30		11				
4 Ranunculus rep	pens		herb 20		12				
5 Rubus proceru	ıs		shrub 40		13				
6 Alnus rubra			canopy 60		14				
7					15				
8					16				
					1				
			re OBL, FACW, o			Other hyd	Irophytic ir	ndicators:	
Remarks: weed	y lawn specie	s, edge o	f weedy forested	area					
							-		
HYDROLOG	Υ								
Depth to Surfac	e Water:		Depth to saturate		Dept			er in soil pit:	
Recorded Data			Primary In	dicators				ndicators (2 or	
Stream, Lake, o		ge   📙	Inundated	10 40.1				ot Channels in up	oper 12 inches
Aerial Photogra		ᆜ片		in Upper 12 I	nches		iter-Staine		
Other (Explain I	in Remarks)		Water Mar Drift Lines	ns .			cal Soil Su C-Neutral		무
No Recorded I	Dota Availa	ble 🖂	Sediment	Denosite			***************************************	in in Remarks)	
NO Recorded I	Jata Avana	Die 2		atterns in W	etlands	=   "	ior (Expid	in mixemana)	
Remarks: no ev	vidence of wo	iter	politica de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la						
				•					
SOILS									
Series/Phase-M	/lapped: Wh	natcom Si	lt Loam			Fie	eld observ	ation confirm ma	pped type? yes
							100		
Profile Descript			NJ = 14] =		1-41- O/	T. 4			
Depth (in.)	Color		Mottle	ı ı	Mottle %	Texture loam			
0-8.5	7.5YR 2.5/ 2.5Y 4/2	۷			<del></del>	Gravelly sa	ndy cil+	· · · · · · · · · · · · · · · · · · ·	
8.5-16+	2.59 4/2				<del> </del>	Gravelly sa	indy SIII		
	<u> </u>	<u> </u>							
	<u></u>			· · · · · · · · · · · · · · · · · · ·	<del></del>	l		<del></del>	<del></del> ! .
Hydric Soil Indi	ootors:								
Histosol	Cators.		Concre	etions					
Histic Epipedor	1	一十片		rganic Conte	ent				
Sulfidic Odor		一十百		c Streaking (		40.0			
Aquic Moisture	Regime			dric Soils List					
Reducing Cond				l or Low Chro					
Remarks: no h									
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1									
WETLAND D									
Hydrophytic Ve				oarely	is th	is sample p	lot within	a wetland? no	
Wetland Hydro		t?	no						
Hydric Soil pres	sent?		no						

Remarks: not wetland

(1987 COE Wetlands Delineation Manual)

Project Name:		rasen								ate:	12 Feb				
Applicant/agent:	An				-						Whatco	om :			
Field Investigator	(s): W	iggins/l	Binney/D	earborn						ate:	WA	_			
							<b>.</b>			T-R:	33-39-				
Do Normal Circur					yes				•					Road and	
Is this site signific	cantly distu	rbed (Al	typical Si	tuation)?	no								iwn/Tieia	that was	
Is the Area a pote	ential Probl	em Are	a?		no		recontol	rea to t	racilitate	STORM	water dro	iinage.			
VEGETATION															
The second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with the second livery with			Stratum	º/- cov	er Indica	tor	Domina	nt Spec	iec	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Ś	tratum	%cove	r Indicator	
Dominant Specie	85		Herb	15	ei iiidica	9	Domina	in Opec	,103		•	datam	700000	i maioatoi	
1 Rubus ursinus	nitum		herb/shi			10					-				
2 Polystichum mur 3 Oemleria ceraci			shrub	20		11									
4 Rubus procerus			shrub	15		12									
5 Thuja plicata			canopy	90		13									
6			ошор <i>/,</i> .			14									
7						15									
8						16									
					÷										
Percent of Domin	nant Specie	s that a	re OBL,	FACW, d	or FAC: >5	0		Othe	r hydror	ohytic ir	ndicators	:			
Remarks: barely															
HYDROLOGY	Y												· · · · ·		
Depth to Surface	: Water:		Depth to	saturat	ed soil:		Dep	th to fre			er in soi				
Recorded Data					ndicators			personal distribution of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the c					more re		
Stream, Lake, or		e L		undated				<u> </u>					<u>per 12 i</u>	nches	<u> </u>
Aerial Photograp		4-			in Upper	12 Inc	nes				d Leave				<del>     </del>
Other (Explain in	Remarks)			ater Mar ift Lines				<del> </del>		Veutral	irvey dat	a :			H
No Recorded Da	ata Availah	ole 🗵			Deposits			<u>H</u>			in in Rer	narks)			H
No Recorded Da	ata Avanus		D	ainage l	Patterns in	ı Wetl	ands		3.33.57	<u> </u>		,			
Remarks: no wat	ter present	nor evid													
	•														
SOILS		· · · · · · · · · · · · · · · · · · ·													
Series/Phase-Ma	apped: Wh	atcom S	ilt Loam						Field	observ	ation co	nfirm ma	pped typ	e? yes	
Profile Description	on:		vikona kankinina Minara					100		-					
Depth (in.)			M	ottle		Mo	ttle %		ıre						
0-10	7.5 YR 2.5/	/2				<b></b>		loam	. 1		<del></del> .	<del></del>			
10-18	10YR 3/3					+		Sandy	loam	<del></del>	<del></del>	<del></del>	<del></del>	<del></del>	
	<u> </u>	_ <del></del>						-							-
		· ·								-; ·	<del></del>				
Hydric Soil Indica	ators.														
Histosol	ators.		<del></del> ].	Concr	etions									* *	
Histic Epipedon			<u></u>		Organic Co	ontent									
Sulfidic Odor					ic Streakir		nd)								
Aquic Moisture F	Regime				dric Soils			4.			Д				
Reducing Condi				Gleye	d or Low C	Chrom	a								
Remarks: not hy	ydric														
		TION			•										
WETLAND DE					<u>.</u>			- and the first		• •	· ·	10	1 .		
Hydrophytic Veg					barely		ls ti	nis sam	ple plot	within	a wetlan	d? no	•		
Wetland Hydrolo		?		no											
Hydric Soil prese				no			. <del></del>						· · · · · · · · · · · · · · · · · · ·	·	i
Remarks: not we	etland														

(1987 COE Wetlands Delineation Manual)

Project Name: Applicant/agent:

Field Investigator(s):

Terasen

Anvil

Wiggins/Binney/Dearborn

Date:

12 Feb 07

County: Whatcom

State: WA

S-T-R: 33-39-3

Do Normal Circumstances exist on the site?

no

Is this site significantly disturbed (Atypical Situation)?

Is the Area a potential Problem Area?

Description: Project area extends south from Smith Road and then s.e. to existing tanks. The area is mowed lawn/field that was

recontoured to facilitate stormwater drainage.

#### VEGETATION

Dominant Species	Stratum	%cover	Indicat	or D	ominant Species	Stratum	%cover Indicator
1 Agrostis stolonifera	herb	90	fac	9			
2 Festuca arundinacea	herb	40	fac-	10			
3 Taraxicum officinale	herb	20	facu	11			
4 Trifolium repens	herb	15	fac	12			
5 Juncus effusus	herb	15	facw	13			
6 Hypocharis radicata	herb	5	facu	14	*		
7				15			
8				16			

Percent of Dominant Species that are OBL, FACW, or FAC: >50

Other hydrophytic indicators:

Remarks: compacted soils, weedy lawn species

#### **HYDROLOGY**

Depth to Surface Water:	Depth to saturated soil:	Depth to free standing water in soil pit:
Recorded Data	Primary Indicators	Secondary Indicators (2 or more required)
Stream, Lake, or Tide Gauge	Inundated	Oxidized Root Channels in upper 12 inches
Aerial Photographs	Saturated in Upper 12 In	ches Water-Stained Leaves
Other (Explain in Remarks)	☐ Water Marks	Local Soil Survey data
100	Drift Lines	FAC-Neutral Test
No Recorded Data Available	Sediment Deposits	Other (Explain in Remarks)
	Drainage Patterns in We	tlands

Remarks: about two inches of water saturation on the soil surface layer...dry below...historically compacted area.

#### SOILS

Series/Phase-Mapped: Whatcom Silt Loam

Field observation confirm mapped type? yes

Profile Description:

-15	2.5y 5/2	10YR 4/3 & 4/4	50	Sandy silt loam
Test.				

Hydric Soil Indicators:

Histosol	Concretions
Histic Epipedon	High Organic Content
Sulfidic Odor	Organic Streaking (sand)
Aquic Moisture Regime	On Hydric Soils List
Reducing Conditions	Gleyed or Low Chroma

Remarks: soils are mixed and compacted what appears to be subsoil, this area is an historic cut.

#### WETI AND DETERMINATION

WE LEARD BE LEIGHNOUTHOU		
Hydrophytic Vegetation present? Yes, barely	Is this sample plot within a wetland? no	
Wetland Hydrology present? No		
Hydric Soil present? yes		

Remarks: historic cut into subsoil, water does not remain, has sheet flow

Plot 7 of 8

#### ROUTINE WETLAND DETERMINATION DATA FORM

(1987 COE Wetlands Delineation Manual)

Project	Name:
Applica	nt/agent:

Field Investigator(s):

Terasen

reruse

Anvil

Wiggins/Binney/Dearborn

Date:

12 Feb 07

County: Whatcom

State: WA

S-T-R: 33-39-3

Do Normal Circumstances exist on the site?

Is this site significantly disturbed (Atypical Situation)? no

Is the Area a potential Problem Area?

Description: Project area extends south from Smith Road and

then s.e. to existing tanks. The area is moved lawn/field that was

recontoured to facilitate stormwater drainage.

#### **VEGETATION**

Dominant Species	Stratum	%cove	r Indicato	or	Dominant Species	Stratum %cover Indicator
1 Phalaris arundinacea	herb	100	facw	9		
2 Festuca arundinacea	herb	20	fac-	10		
3 Agrostis stolonifera	herb	trace	fac-	11		
4 Agrostis capillaris	herb	trace	fac	12		
5 Rubus procerus	shrub	40	facu	13		
6 Betula papyrifera	canopy	40	fac	14		
7 Thuja plicata	canopy	15	fac	15		
8				16		

no

Percent of Dominant Species that are OBL, FACW, or FAC: >50

Other hydrophytic indicators:

Remarks: Data plot is directly adjacent to a ditch, that is periodically cleaned and mowed, reed canarygrass is in the ditch, with facu and facu species directly adjacent to. Therefore the plot is not hydrophytic except for the reed canarygrass in the ditch.

#### **HYDROLOGY**

Depth to Surface Water:	Depth to saturated soil:	Depth to free standing water in soil pit:
Recorded Data	Primary Indicators	Secondary Indicators (2 or more required)
Stream, Lake, or Tide Gauge	Inundated	Oxidized Root Channels in upper 12 inches
Aerial Photographs	Saturated in Upper 12 In	ches x Water-Stained Leaves
Other (Explain in Remarks)	Water Marks	Local Soil Survey data
	Drift Lines	FAC-Neutral Test
No Recorded Data Available	Sediment Deposits	Other (Explain in Remarks)
	Drainage Patterns in We	tlands

Remarks: saturated at 10 inches from ditch water

#### SOILS

Series/Phase-Mapped: Whatcom Silt Loam

Field observation confirm mapped type? yes

Profile Description:

Depth (in.)	Color		Mottle	Mottle %	Texture		
0-18	7.5YR 3/2						
		. *					
						1	_
<del></del>							-

Hydric Soil Indicators:

Histosol	Concretions
Histic Epipedon	High Organic Content
Sulfidic Odor	Organic Streaking (sand)
Aguic Moisture Regime	On Hydric Soils List
Reducing Conditions	Gleyed or Low Chroma

Remarks: not hydric

#### WETLAND DETERMINATION

Hydrophytic Vegetation present?

Wetland Hydrology present?

Hydric Soil present?

Yes, barely

Yes, but from ditch

no

Remarks: area adjacent to a ditch with periodic flow within the ditch. Soils not hydric indicating that the area does not retain sufficient saturation to create hydric soil conditions.

#### **ROUTINE WETLAND DETERMINATION DATA FORM**

(1987 COE Wetlands Delineation Manual)

Project Name:
Applicant/agent:

Field Investigator(s):

Terasen

Anvil

Wiggins/Binney/Dearborn

Date:

12 Feb 07

County: Whatcom State: WA

S-T-R: 33-39-3

Do Normal Circumstances exist on the site?

Is this site significantly disturbed (Atypical Situation)? no

Is the Area a potential Problem Area?

Description: Project area extends south from Smith Road and then s.e. to existing tanks. The area is mowed lawn/field that was

recontoured to facilitate stormwater drainage.

#### **VEGETATION**

Dominant Species	Stratum	%cover	Indicator	•	Dominant Species	Stratum	%cover Indicator
1 Moss sp.	herb	80		9			
2 Festuca arundinacea	herb	60	fac-	10			
3 Agrostis stolonifera	herb	30	fac	11			
4 Agrostis capillaris	herb	20	fac	12	<u> </u>		
5				13	<b>3</b>		
6				14			
7				15	5	*	
8	view in the second			16	3		

Percent of Dominant Species that are OBL, FACW, or FAC: <50

Other hydrophytic indicators:

Remarks: weedy species, in field/lawn, close but no cigar

#### **HYDROLOGY**

Depth to Surface Water:	Depth to saturated soil: Depth	to free standing water in soil pit:
Recorded Data	Primary Indicators	Secondary Indicators (2 or more required)
Stream, Lake, or Tide Gauge	Inundated	Oxidized Root Channels in upper 12 inches
Aerial Photographs	Saturated in Upper 12 Inches	Water-Stained Leaves
Other (Explain in Remarks)	Water Marks	Local Soil Survey data
	Drift Lines	FAC-Neutral Test
No Recorded Data Available	Sediment Deposits	Other (Explain in Remarks)
No. 20 September 1997	Drainage Patterns in Wetlands	

Remarks: no water present nor evidence

# SOILS

Series/Phase-Mapped: Whatcom Silt Loam

Field observation confirm mapped type? yes

Profile Description:

0-12	10YR 3/3		loam	
12+	10YR 3/3		Silt loam	

Hydric Soil Indicators:

Histosol	Concretions
Histic Epipedon	High Organic Content
Sulfidic Odor	Organic Streaking (sand)
Aguic Moisture Regime	On Hydric Soils List
Reducing Conditions	Gleyed or Low Chroma

Remarks: soils not hydric

#### WETLAND DETERMINATION

			totale in the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control	
Hydrophytic Vegetation present?	no	*	Is this sample plot within a wetland? no	
Wetland Hydrology present?	no			
Hydric Soil present?	no			

Remarks: not wetland

# APPENDIX F KINDER MORGAN 2009 DISCHARGE MONITORING REPORTS



Kinder Morgan Canada Inc. 7815 Shellmont Street Burnaby, BC V5A 4S9 Tel: (604) 268-3000 Fax: (604) 268-3001 Toll Free: 1 (800) 535-7219 www.kindermorgan.com

July 30, 2009

Joyce Smith Industrial Stormwater Permit Coordinator Washington State Dept. of Ecology PO Box 47696 Olympia, WA 98504-7696

Dear Ms. Smith:

Re:

Discharge Monitoring Report for Laurel Station

(Permit No. SO3-001522D)

Enclosed please find Terasen Pipelines (Puget Sound) Inc. discharge monitoring report for the 2nd quarter of 2009.

The name of our operating company has changed to Kinder Morgan Canada Inc., however this does not affect the name of the entity holding the permit. If you have any questions about this, please do not hesitate to contact me at (direct) 604-268-3008 or (toll free) 1-866-268-3001.

Sincerely,

Dan Chow, BSc, AScT Environmental Coordinator

**Enclosures** 

/DC

File: Stormwater Discharge Permit – Laurel Station (SO301522)
Word File: \\cgyfs03\home1\users\dan_chow\My Documents\Laurel\SWPPP\2009 Q2 DMR Submission.doc

# SO3-001522D

# INDUSTRIAL STORMWATER GENERAL PERMIT DISCHARGE MONITORING REPORT

MONITORING PERIOR	O for (year/quarter): 2009 Year		b/Mar 🛮 Apr	/May/Jun	☐ Jul/Aug/Sep	☐ Oct/Nov/Dec		
Facility/S	ite Information		١	Mailina I	nformation			
LAUREL STATION	TW IIII III III III	VINI	DER MORGAN					
Location: 1009 E SM	IITH BOAD				A INC.			
			SHELLMONT					
County: WHATCOM			NABY, BC V5	A 489				
	Primary SIC Code: 5	5171 CAN	IADA		ATT	EN: Dan Chow		
You must send a Disc	harge Monitoring Repo	rt (DMR) to E	cology avery ar	artor Ift	horo woo no dia	ahawaa ay yaa		
have suspended same	pling because of consist	ant attainment	of honology every qu		liele was no uis	charge or you		
the DMP to Easless	Diago and diagonates		of benchmark v	alues, mar	k the appropriate	e boxes and send		
the DMR to Ecology.	Please read the instruct	tions before co	mpleting the DI	MR.				
Discharge Point Outfall 001								
There was no qu	alifying storm event t	his quarter so	no values are	entered be	elow (see expla	nation)		
Quarterly Monitoring		AVERAGE	MAXIMUM	UNITS	Sample Type	Events Sampled		
Turbidity	Consistent Attainment		4.10	NTU				
PH	Consistent Attainment		7.22	Standard Units				
Zinc (total)	Consistent Attainment		10	μg/L				
Oil & Grease	Consistent Attainment		< 6.0	mg/L				
Copper (total)	Consistent Attainment		3	μg/L				
Lead (total)	Consistent Attainment		< 20	μg/L				
Hardness	Consistent Attainment		120	mg/L				
I CERTIFY UNDER PENALTY OF LAW THAT I HAVE PERSONALLY EXAMINED AND AM FAMILIAR WITH THE INFORMATION SUBMITTED HEREIN AND BASED ON MY INQUIRY OF THOSE INDIVIDUALS RESPONSIBLE FOR OBTAINING THE INFORMATION, I BELIEVE THE SUBMITTED INFORMATION IS TRUE, ACCURATE, AND COMPLETE. I AM AWARE THAT THERE ARE SIGNIFCANT PENALTIES FOR SUBMITTING FALSE INFORMATION INCLUDING THE POSSIBILITY OF FINE AND IMPRISONMENT. SEE 18 USC § 1319. (PENALALTIES UNDER THESE STATUES MAY INCLUDE FINES UP TO \$10,000.00 AND OR MINIMUM IMPRISONMENT OF BETWEEN SIX MONTHS AND FIVE YEARS.)  Dan Chow, Environmental Coordinator  NAME/TITLE PRINCIPAL EXECUTIVE OFFICER (TYPED OR PRINTED)  DATE: MO DAY YEAR  (604) 268-3008  SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED AGENT  TELEPHONE NUMBER  COMMENTS / EXPLANATIONS  Rain accumulation for the day was approximately 0.54 inches.								

# SO3-001522D

# INDUSTRIAL STORMWATER GENERAL PERMIT DISCHARGE MONITORING REPORT

MONITORING PERIO	o for (year/quarter): ZOO	[ ☐ Jan/Fe	b/Mar 🗌 Apr	/May/Jun	Jul/Aug/Sep	Oct/Nov/Dec
		10 mg/mg/1986 10 mg/mg/mg/1986 10 mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/m				
Facility/S	ite Information			Charles of the Control	nformation	
LAUREL STATION			DER MORGAN	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	AINC.	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s
Location: 1009 E SM	to the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of	Tel. 1 11.1 16.1 188	SHELLMONT	STREET, STATE	anger Nagger	
County: WHATCON		4.4 (4.4)	NABY, BC V: IADA	A 489	A Trit	EN: Dan Chow
e emineral e emineral e	Primary SIC Code: 5	171 CAN	AUA		AII	EN. Dan Chow
have suspended sam	harge Monitoring Reportance of consister Please read the instruct	ent attainment	of benchmark v	/alues, mar	here was <b>no dis</b> k the appropriat	<b>charge</b> <i>or</i> you e boxes and send
Discharge Point	Outfall 002	2				
There was no qu	alifying storm event tl	nis quarter so	no values are	entered be	elow (see expla	nation)
Quarterly Monitoring		AVERAGE	MAXIMUM	UNITS	Sample Type	Events Sampled
Turbidity	Consistent Attainment			NTU	Grab	
	Consistent Attainment			Standard Units	Grab	
Zinc (total)	Consistent Attainment			μg/L	Grab	e di tipuga iku si sa sibat silika sila sila sila sila sila sila sila sil
Oil & Grease	Consistent Attainment		aline prin dia mpi in meneralah sebah sebah sebah sebah sebah sebah sebah sebah sebah sebah sebah sebah sebah Peringan sebah sebah sebah sebah sebah sebah sebah sebah sebah sebah sebah sebah sebah sebah sebah sebah sebah	mg/L	Grab	
Copper (total)	Consistent Attainment			ug/L	Grab	
Lead (total)	Consistent Attainment	Santa a de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de la casa de		jig/L	Grab	ang tool to Dant also try
Hardness	Consistent Attainment			mg/L	Grab	
INQUIRY OF THOSE INDIVIDUA AM AWARE THAT THERE ARE S 1319. (PENALALTIES UNDER THE	LAW THAT I HAVE PERSONALLY I LS RESPONSIBLE FOR OBTAINING IGNIFCANT PENALTIES FOR SUBM SE STATUES MAY INCLUDE FINES U	THE INFORMATION, ITTING FALSE INFOI P TO \$10,000,00 AND	I BELIEVE THE SUBMI RMATION INCLUDING OR MINIMUM IMPRISOI	TTED INFORMA THE POSSIBILIT	tion is true, accura y of fine and impris een six months and f	TE, AND COMPLETE. I DNMENT: SEE 18 USC §
DAN CHOU NAME/TITLE PRIN	U, ENVIRONMEN			DATE: MO	04 2 DAY YE	609 vr
A.	le			60	4-268-300	08
SIGNATURE OF PRINC	TPAL EXECUTIVE OFFICER OR AUT	THORIZED AGENT	•	TELEPI	IONE NUMBER	
COMMENTS/EXPLANATIONS  No 0	lischarge at C	Urfall O	02 dum	gual)	Hying ston	



soil | water | air compliance consulting

228 East Champion Street, Suite 101 Bellingham, WA 98225 tel 360.752.9571 | fax 360.752.9573 www.whatcomenvironmental.com

October 28, 2009

Department of Ecology Water Quality Program – Industrial Stormwater PO Box 47696 Olympia, WA 98504-7696

RE: Transmountain Oil Pipeline (Kinder Morgan) Laurel Site (Permit# SO3-001522D) – addition of sampling point – Outfall 002

To whom it may concern:

This correspondence is written on behalf of Trans Mountain Pipeline – Laurel Station. The site is located at 1009 East Smith Road, Bellingham WA, 98226-7415 (Whatcom County). Construction activities of the tank containment area have been completed. As a result, a new discharge point has been added (Outfall 002). It is located at the East Smith Road Ditch downstream of the tank containment area and oil/water separator. The SWPPP has been updated to reflect these changes.

Quarterly stormwater sampling will be performed at Outfall 001 and Outfall 002. Lab testing will be performed on the samples from both outfalls for the parameters listed on the DMR provided by Ecology.

Sincerely.

David Westerlund

Whatcom Environmental Services

#### Date CA Complete Certification by Responsible Company Official: I certify under penalty of law, that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel property gathered and evaluated the information. Based on my inquiry of the person or persons who manage the systems or those persons directly responsible for gathering the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. Am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. completed by: David Westerland Services Stormwater Inspectar - Cescu certifitial claved leaf building of Grate @ OUTFLOW proje from Stammator pond Matron Follow-up Actions 11/25/09 Corrective Actions Recommended Sore Sold Title: Inspection Date: Note 2: Outfall 003 must be inspected once per year in the winter quarter during a storm event. List observed pollutants in all discharges and carefully assess the pollutant sources and action steps needed to control the pollutants. Record pollutant sources/generating activities, BMP adequacy, site map accuracy, and other facility information. sloot dochayng water clear dischaging Stormwater Observations Note 1: Conduct quarterly visual monitoring at time of stormwater sample collection. Signature 3 Required? ફ Add'I BMPs TITLE CAU GOORDINIATOR S 2 Odor? Stormwater Compliance Inspection Sight NO 2 Turbidity? Location: Laurel Statlon 1009 East Smith Road, Bellingham WA Initials: Ş Piscolored? Facility: Trans Mountain Pipeline (Puget Sound) LLC 2ивви5 Ş Ş **eldiziV** Floating Materials? S Ş 不则 Ş Discharge Date:Signed 09/12/2009 Name DAN CHOW ₽ 003(2) 11/25/09 2009 100111 002(1) Site Is in Compliance? (Yes/No) Additional BMPs needed? 282 Jan - Mar Quarter so, where and why? Other Notes or 11/25/09 Comments Date

# Date CA Complete Certification by Responsible Company Official: I certify under penalty of faw, that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel property gathered and evaluated the information. Based on my inquiry of the person or persons who manage the systems or those persons directly responsible for gathering the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Z Follow-up Actions 8 completed by: Alicia Martifulz THE CEST INSPECTOR Recommended Corrective Actions Inspection Date: 9-17-09 5 Note 2: Outfall 003 must be inspected once per year in the winter quarter during a storm event. List observed pollutants in all discharges and carefully assess the pollutant sources and action steps needed to control the pollutants. Record pollutant sources/generating activities, BMP adequacy, site,map accuracy, and other facility information. Discharge Note 1: Conduct quarterly visual monitoring at time of stormwater sample collection. Observations **∑** Title ENV COORDINATER Signature 2 Required? sqM8 l'bbA <u>S</u> Odor? Stormwater Compliance Inspection डे Turbidity? Initials: Location: Laurel Station 1009 East Smith Road, Bellingham WA 3 Discolored? Facility: Trans Mountain Pipeline (Puget Sound) LLC S S շրեցու **eldisiV** Ş Floating materials? 20 305 Discharge ID Date Signed 04/12/2000 (1) 003(3) 902₍₁₎ Site is in Compliance (Yes/No) Name () 4V Jan - Mar Additional BMPs needed? Quarter If so, where and why? ż Other Notes or Comments 917109 2 L D Date

# APPENDIX G SAMPLING AND ANALYSIS PLAN

# APPENDIX G

SAMPLING AND ANALYSIS PLAN DATA GAP INVESTIGATION LAUREL STATION

# TABLE OF CONTENTS

G1.0	INTR	ODUCTIO	N	1
	G1.1	BACKGI	ROUND	1
	G1.2	PURPOS	E AND OBJECTIVES	2
G2.0	PROJ	ECT ORGA	ANIZATION AND RESPONSIBILITY	2
G3.0	HEAI	TH AND	SAFETY	3
G4.0	SCHE	EDULE AN	D REPORTING	3
G5.0	FIELI	O SAMPLI	NG PLAN	3
	G5.1		DS OF INVESTIGATION	
		G5.1.1	Planning and Reconnaissance	
		G5.1.2	Direct Push-Probe Soil Sampling Procedures	
		G5.1.3	Hollow Stem Auger Soil Sampling Procedures	
		G5.1.4	Hand Auger Soil Sample Procedures	
		G5.1.5	Surface Water Sampling	
		G5.1.6	Wetland Sediment/Soil Sample Collection Procedures	
		G5.1.7	Field Screening and Equipment Calibration	
		G5.1.8	Field Documentation	
		G5.1.9	Chemical Analytical Methods For Samples	
		G5.1.10	Collection And Testing Of Investigation Derived Waste (IDW)	
G6.0	SAMI	PLE DESIG	GNATIONS	9
G7.0	SAMI	PLE HAND	DLING, SHIPPING, AND LABORATORY RECEIPT	9
07.0	G7.1	CHAIN (	OF CUSTODY	9
	G7.2		ORTATION	
G8.0	-		JRANCE PLAN	
	G8.1		E COLLECTION AND HANDLING	
	G8.2		E CUSTODY	
		G8.2.1	Field Custody Procedures	
			Transfer of Custody	
	G0.0	G8.2.3	Laboratory Custody Procedures	
	G8.3		AL QUALITY CONTROL	
		G8.3.1	Field Rinsate Blank	
		G8.3.2	Trip Blanks	
		G8.3.3	Blind Field Duplicates	11
G9.0	ANAI		PROCEDURES	
	G9.1	LABORA	ATORY ANALYSES	11
		G9.1.1	Data Validation – Chemical Analyses	11
		G9.1.2	Field QA/QC Sample Evaluation	

G10.0 DAT	A REDUCTION, VALIDATION, AND REPORTING	13
G10.	1 CHEMICAL ANALYSES	13
G11.0 REFI	ERENCES	14
<b>TABLES</b>		
Table G-1	Proposed Soil, Surface Water, Wetland Sediment/Soil Sampling Locations Rationale	and
Table G-2	Parameters, Methods, and Reporting Limits	
Table G-3	Sample Collection, Parameters, and Holding Time Criteria	

### SAMPLING AND ANALYSIS PLAN DATA GAP INVESTIGATION LAUREL STATION

#### **G1.0 INTRODUCTION**

This Sampling and Analysis Plan (SAP) presents the tasks, methods, and procedures that will be used during additional environmental data collection at Kinder Morgan Canada's (Kinder Morgan) Laurel Station facility located at 1009 East Smith Road in Bellingham, Washington (site). The data collection described herein is intended to address data gaps identified during the compilation and review of previous data collected at the site and reported in the Final Supplemental Remedial Investigation/Feasibility Study (RI/FS) Work Plan (hereafter referred to as Work Plan) to which this SAP is appended. The previous data collected and described in the Work Plan was obtained to complete requirements in the Amended Enforcement Order (No. DE 91-N192) issued for the site by Washington State Department of Ecology (Ecology) effective June 15, 1992 following multiple releases at the site. Kinder Morgan and URS Corporation (URS) met with Ecology on August 25, 2009 to discuss the activities necessary to close the Order. The presentation of the Work Plan with the historical data compilation and identification of pending data gaps is the first step toward closure on the Order. Ecology requested that the Work Plan include a SAP to address the data gaps. The data collection described in this SAP will be reported in a Draft RI/FS report.

The release history at the site, contents of the Order, and previous data are described in detail in the Work Plan in Sections 1 through 4. A discussion on Preliminary Cleanup Levels (PCLs) is presented in Section 5 of the Work Plan and the analytical program presented in this SAP is based on collecting data to directly compare to the PCLs. The discussion of the data collected thus far at the site is included in Section 6 of the Work Plan. Based on those data, the nature and extent of contamination was determined and data gaps were identified in Sections 7 and 8. The rationale for the data gaps investigation and basis for the data collection activities described in this SAP is included in Section 9 of the Work Plan and is not repeated in this SAP. Tables 24 and 25 and Figures 34 through 41 in the Work Plan summarize the rationale and present the sample locations selected for additional data collection. As the SAP is appended to the Work Plan, tables and figures from the Work Plan are identified for reference as appropriate but are not represented in the SAP.

#### G1.1 BACKGROUND

The site is located in Bellingham, Washington. The developed site is approximately 15 acres and is bounded by an additional 135 acres of Kinder Morgan-owned undeveloped or agricultural land on three sides. Current facility improvements include 20-inch and 16-inch pipelines, a pump station and associated valve manifolds, an oil drain system, and two 96,000 barrel aboveground (1 barrel equivalent to 42 gallons) break-out tanks. Auxiliary facilities which support the industrial activities include a fire fighting system, electrical building, Tank Motor Control Center (MCC) Building, Puget Sound Energy (PSE) Substation, an emergency generator, transformer, HVAC heat pump, the Trans Mountain administrative office and maintenance facilities. The Laurel Station facility supplies crude oil to refineries in Ferndale and Anacortes, Washington and has been in operation since 1956. A site plan showing current facility features is presented on Figure 2B in the Work Plan.

In October 1991, the initial Enforcement Order was issued by Ecology concerning assessment and cleanup of a natural gas condensate release at the site on January 15, 1991. Ecology issued an Amended Order on June 15, 1992 to address two additional releases (crude oil) on December 11, 1991 and March 7, 1992 and soil contamination unrelated to the three releases that was discovered during facility upgrades following the January 15, 1992 release. The Amended Order defines the facility or "site" as three areas of concern (Areas 1 through 3), as well as "all other properties in the vicinity of the pump station property which have been affected or are potentially affected by spills, leaks, or discharges of petroleum products or other hazardous substances from the pump station". Non-Order-defined areas of concern identified at the site were divided into seven individual "Study Units" (Study Units 1 through 7). These areas of concern as well as the Order defined areas are depicted on Figure 2A in the Work Plan. Areas 1 through 3 are situated on the adjacent properties to the west (Area 1) and north (Areas 2 and 3). With the exception of Study Unit 5, all of the other Study Units are located on the Laurel Station facility.

#### G1.2 PURPOSE AND OBJECTIVES

The primary purpose of this investigation is to further evaluate the present environmental conditions in areas where prior sampling efforts had not fully characterized the nature and extent of petroleum impacts to the soil, surface water and wetland sediment/soils both on site and at off-site locations. The results of this investigation will be used to determine whether or not cleanup actions are necessary at the site. The data will be presented to Ecology in a Draft RI/FS Report.

#### G2.0 PROJECT ORGANIZATION AND RESPONSIBILITY

The project team will consist of personnel from URS, their subcontractors, Analytical Resources, Inc. (ARI, Kinder Morgan's contract laboratory), and Kinder Morgan. URS and their subcontractors will conduct the field investigation including the following:

- Establish the field sampling locations depicted on Figures 34 through 41 of the Work Plan,
- Perform direct push-probe soil sampling, collect soil samples and log each boring according to USCS classification,
- Complete hand augers and collect soil samples if field conditions are not favorable to direct push-probe sampling methods. Several of the proposed deeper borings may need to be drilled using hollow stem auger methods.
- Collect surface water samples,
- Collect wetland sediment/soil samples,
- Label and submit samples to ARI under appropriate chain-of-custody protocols,
- Arrange for a container(s) for aqueous investigation-derived waste and storage of the container(s) pending analytical results,
- Coordinate with the Kinder Morgan Laurel Station operations manager (Patrick Davis) and project manager (Mike Droppo) for all field activities, as appropriate, and

• Ensure compliance with the provisions of the project Health and Safety Plan (HSP) and facility protocols. All field personnel will have the required Kinder Morgan safety training as well 40-hour Hazwoper health and safety training.

Samples collected during this investigation that are selected for chemical analysis will be analyzed for the chemical parameters specified in this plan. Chemical analyses of soil, surface water and sediment/soil samples will be performed by ARI, an Ecology-accredited laboratory, located in Tukwila, Washington. Quality assurance and quality control (QA/QC) measures as outlined in the SAP will be implemented to ensure that data obtained from the chemical analyses are representative of the field conditions, valid, and accurately reported.

URS will submit a Draft RI/FS Report to Kinder Morgan presenting the data collected under this SAP and recommendations appropriate based on the data. The report will be submitted to Ecology following Kinder Morgan's review.

#### G3.0 HEALTH AND SAFETY

A site specific HSP will be prepared to cover the proposed investigation activities associated with the scope of work described herein. URS' site safety officer will be responsible for assuring that field personnel are properly trained, fully aware of potential site hazards, have undergone any Kinder Morgan specific training required for work at Laurel Station, conduct all work in a safe manner, wear appropriate PPE and confirm that the provisions outlined in the site HSP are adhered to.

#### **G4.0 SCHEDULE AND REPORTING**

The analytical results and locations of each sampling location will be included in a Microsoft Access database for submittal to Ecology. The sample analytical results will be compared to the PCLs established in Tables 3 and 5 of the Work Plan.

The data gap investigation will be implemented within 60 days of receiving formal acceptance of the proposed investigation from Ecology. The Draft RI/FS Report will be submitted within 120 days of receiving the final analytical results from the laboratory.

#### **G5.0 FIELD SAMPLING PLAN**

The scope of work for this investigation includes the collection of soil samples from hand auger, hollow-stem auger, and/or direct push borings, the collection of surface water and wetland sediment/soil samples from Areas 1, 2 and 3 and Study Units 1, 2 and 3. The proposed boring and sampling locations are shown on Figures 34 through 41 of the Work Plan. The proposed sampling rationale, locations, sampling depths and analytical parameters are presented in Table G-1 included in this SAP but also in Table 25 of the Work Plan. The tasks to be completed include:

- complete twenty-five direct push probe borings (A1-B1 through A1-B25) within Area 1 to a depth of 5 feet below ground surface (bgs) and collect soil samples for analysis of gasoline, diesel, and motor oil-range petroleum hydrocarbons, BTEX, and PAHs
- collecting 3 surface water (A1-SW1 through A1-SW3) and 9 wetland sediment/soil samples from 3 locations (A1-SED1 through A1-SED3) within the wetland area in

- Area 1 during a one-time sampling event and submitting the samples for gasoline, diesel, and motor oil-range petroleum hydrocarbons and BTEX analysis
- complete one direct push boring (A2-B1) within Area 2 to a depth of 3 feet bgs and collect soil samples for analysis of gasoline, diesel, and motor oil-range petroleum hydrocarbons, BTEX, and PAHs
- collecting one surface water (A2-SW1) and 3 wetland sediment/soil samples from one location (A2-SED1) within the wetland area in Area 2 during a one-time sampling event and submitting the samples for gasoline, diesel, and motor oil-range petroleum hydrocarbons and BTEX
- collecting 2 surface water (A3-Dam 2 and A3-Dam 3) and 9 sediment/soil samples from 3 locations (A3-SED1 through A3-SED3) within the wetland areas in Area 3 during a one-time sampling event and submitting the samples for gasoline, diesel, and motor oil-range petroleum hydrocarbons and BTEX
- complete 20 direct push probe borings (SU1-B1 through SU1-B20) within Study Unit 1 at depths from 5 to 30 feet bgs and collect soil samples for analysis for gasoline, diesel, and motor oil-range petroleum hydrocarbons, BTEX, and PAHs,
- complete 8 direct push probe borings (SU2-B1 through SU2-B8) within Study Unit 2 to a depth of 10 feet bgs and collect soil samples for analysis for gasoline, diesel, and motor oil-range petroleum hydrocarbons, BTEX, and PAHs,
- complete 7 direct push probe borings (SU3-B1 through SU3-B7) within Study Unit 3 to depths ranging between 4 and 7 feet bgs and collect soil samples for analysis for gasoline, diesel, and motor oil-range petroleum hydrocarbons, BTEX, and PAHs
- collecting 3 surface water (SU3-SW1 through SU3-SW3) and 9 wetland sediment/soil samples from 3 locations (SU3-SED1 through SU3-SED3) within the wetland areas in Study Unit 3 during a one-time sampling event and submitting the samples for gasoline, diesel, and motor oil-range petroleum hydrocarbons and BTEX analysis
- collecting GPS coordinates from the outer limit of the wetland area associated with the March 1992 release to complete delineation of this wetland.

#### **G5.1 METHODS OF INVESTIGATION**

This section describes the methodologies to be used during this investigation, including field and laboratory methods. General operating procedures (GOPs) will be implemented during this investigation such that information that is obtained is accurate and defensible and is of adequate technical quality to meet the data quality objectives of the investigation. GOPs include:

consistent field procedures throughout the program

- accurate documentation of field observations, sampling procedures, and decontamination procedures
- sample location selection and collection are representative of the site conditions
- proper calibration of field equipment to obtain accurate field measurements

\\Seaprojects\\WM&RD\\Kinder Morgan\\Laurel Station\Enforcement Order Support\\RI-FS Workplan\\Appendix G\\Laurel Station SAP.doc

• procedures that minimize potential for cross-contamination and introduction of artificial contaminants to samples

Field methods to be used in the investigation are generally described below.

### **G5.1.1** Planning and Reconnaissance

The following planning and reconnaissance tasks will be performed prior to initiation of the field program.

A site-specific HSP will be created and all URS field staff and subcontractors will review and acknowledge the contents.

URS will conduct field reconnaissance to locate and mark preferred sampling locations and assess access for sampling. The proposed drilling and sampling locations shown on Figures 34 through 41 in the Work Plan will be established in the field using a global positioning system (GPS) device.

A utility locate for underground utilities will be conducted using a public utility locating service and a private utility locator. Facility drawings will also be reviewed and Kinder Morgan personnel will be consulted to identify potential underground utilities in the proposed boring areas. If underground utilities are identified at the proposed boring locations, alternative boring locations will be selected.

Pre-coring of concrete at the direct push-probe sample locations prior to initiating the subsurface exploration will be conducted, if necessary.

### **G5.1.2 Direct Push-Probe Soil Sampling Procedures**

A direct push drill rig will be used to advance borings in the areas shown on Figures 34 through 41 of the Work Plan. The drilling and push-probe sampling services will be provided by a Washington State licensed drilling subcontractor. The drilling subcontractor will be responsible for obtaining and submitting all drilling permits and boring logs as required by the State of Washington. The borings will be advanced to the depths indicated in Table G-1 (a maximum of 30 feet bgs) or refusal, whichever is encountered first.

Soil samples will be collected continuously to the total depth of each boring. Monitoring of drilling and soil sampling activities will be conducted by a qualified URS geologist or engineer. The field personnel will maintain a detailed log of the subsurface materials encountered and record photo-ionization detector (PID) screening data. Particular attention will be given to noting visible evidence of contamination, odors, or other relevant factors indicative of the presence of contaminants. Soils will be classified in general accordance with the Unified Soil Classification System (USCS) (ASTM D 2487-93). Soil samples will be selected for laboratory analysis based on the field screening results and the proposed sampling depths outlined in Table G-1.

All soil sampling equipment will either be steam cleaned or washed in dilute Liquinox® detergent solution, rinsed in tap water, and dried prior to initiating each boring and before collecting each soil sample. The Liquinox® solution will be mixed in the field to the manufacturer's specification (i.e., 100:1 dilution and pH approximately 8.5). The subsurface drilling equipment will be decontaminated prior to initiating each boring. Upon completion of

the field sampling, the boreholes will be filled with bentonite and patched with concrete, asphalt, or topsoil to match the existing surface conditions at each location.

#### **G5.1.3** Hollow Stem Auger Soil Sampling Procedures

Hollow stem auger drilling methods may be necessary for the deeper proposed borings. If required, auger drilling will be performed by a licensed drilling subcontractor. The drilling subcontractor will be responsible for obtaining and submitting all drilling permits and boring logs as required by the State of Washington.

Samples from the auger borings will be collected using a standard penetration test (SPT) or other split spoon sampler. The sampler will be driven 18-inches (or until refusal which is defined as 50 blow counts for less than 6-inches) using a 30-inch drop of the appropriate hammer (140 lb or 300 lb). Sub-samples for laboratory analysis will be placed in laboratory prepared jars. Monitoring of drilling and soil sampling activities will be conducted by a qualified URS geologist or engineer. The field personnel will maintain a detailed log of the subsurface materials encountered and record photo-ionization detector (PID) screening data. Particular attention will be given to noting visible evidence of contamination, odors, or other relevant factors indicative of the presence of contaminants. Soils will be classified in general accordance with the Unified Soil Classification System (USCS) (ASTM D 2487-93).

All soil sampling equipment will either be steam cleaned or washed in dilute Liquinox® detergent solution, rinsed in tap water, and dried prior to initiating each boring and before collecting each soil sample. The Liquinox® solution will be mixed in the field to the manufacturer's specification (i.e., 100:1 dilution and pH approximately 8.5). The subsurface drilling equipment will be decontaminated prior to initiating each boring. Upon completion of the field sampling, the boreholes will be filled with bentonite and patched with concrete, asphalt, or topsoil to match the existing surface conditions at each location.

#### **G5.1.4** Hand Auger Soil Sample Procedures

Hand auger borings will be performed in Areas 1 and 2 and Study Unit 3 if these areas will not allow access by a drill rig. Up to twenty-seven hand auger borings may be performed in these areas. The borings will be advanced to the depths indicated in Table G-1 (to a maximum of 5 feet bgs) or refusal, whichever is encountered first. The soil samples will be field screened and logged as described above in Section G5.1.2. Soil samples will be selected for chemical testing based on field screening results and the proposed sample depths outlined in Table G-1.

The hand auger head will be washed in dilute Liquinox® detergent solution, rinsed in tap water, and dried prior to initiating each hand auger boring and before collecting each soil sample. The Liquinox® solution will be mixed in the field to the manufacturer's specification (i.e., 100:1 dilution and pH approximately 8.5). In the event that hand auger tools prove inadequate, a power-driven manual auger tool, or equivalent, will be considered.

#### **G5.1.5** Surface Water Sampling

Surface water samples will be collected prior to wetland sediment/soil sampling in channels to avoid disturbance of the areas and suspending solids into the water. Samples will be collected directly into the laboratory-provided containers at each location from mid-span of the water

channel. Each container will be placed such that the mouth of the container is facing upstream of the flow while sampling personnel are standing downstream of the location. Analyses that typically require preservation will be collected into non-preserved containers to avoid preservative being lost and entering the channel flow. The omission of a preservative will result in the need to reduce the hold times for both BTEX and petroleum hydrocarbons testing. Surface water sampling locations are shown on Figures 39 through 41 in the Work Plan.

#### **G5.1.6** Wetland Sediment/Soil Sample Collection Procedures

Discrete sediment/soil samples will be collected within the wetland area located in Areas 1, 2 and 3 and Study Unit 3. The sediment/soil sample locations generally coincide with the proposed surface water sampling locations. Care will be taken to minimize disturbing the wetland areas sampled. The approximate sampling locations within Areas 1, 2, and 3 are shown on Figure 39 and within Study Unit 3 on Figure 40. A transect across the drainage will be made at each sample location and three discrete samples will be collected as follows: center of the channel/depression, right bank and left bank (based on looking downstream).

Surficial sediment/soil (approximately uppermost 12 inches) representative of depositional material will be collected using a hand-driven stainless steel sediment sampler, or equivalent. Sediment samples will be field screened consistent with the soil sampling procedures. The sample will be placed directly from the core/sampler into the sample jar. The resulting corehole will not require backfilling based on the non-cohesive nature of the sediment in within the submerged areas.

### **G5.1.7** Field Screening and Equipment Calibration

Soil and wetland sediment/soil samples will be visually examined for evidence of petroleum hydrocarbons (e.g., sheen or staining) contamination and classified in accordance with the USCS. The samples will be field screened for volatile organic vapors using a PID. To obtain reliable and accurate data from the use of field screening instruments, the PID will be calibrated in accordance with the manufacturer's instructions. Soil exhibiting field evidence of contamination will be preferentially retained for laboratory analysis.

Field parameters (e.g., temperature, pH, specific conductance and dissolved oxygen) will be measured during surface water sampling using a portable meter calibrated in accordance with the manufacturer's instructions.

#### **G5.1.8** Field Documentation

Accurate documentation of field procedures will be guided by the procedure for field documentation. A daily field report will be prepared summarizing the daily activities, or equivalent notes will be maintained in a bound field notebook. A detailed log of the soil materials encountered, field screening data, and pertinent sampling and drilling details will be prepared in the field by the field personnel. Surface water and sediment field sampling forms will be used to record sampling information at each sample locations. In addition, sample collection data and requested analyses will be recorded on the laboratory chain-of-custody (COC) forms.

\\Seaprojects\WM&RD\Kinder Morgan\Laurel Station\Enforcement Order Support\RI-FS Workplan\Appendix G\Laurel Station SAP.doc

# **G5.1.9** Chemical Analytical Methods For Samples

The analytical testing of soil, surface water and wetland sediment/soil samples will be performed by ARI. Samples will be shipped within 48 hours of collection to ARI via commercial shipper for next day delivery or hand-delivered by URS personnel. The samples will be analyzed for the parameters outlined in Table G-1. Selected testing methods for each media are summarized in Table G-2. The analytical methods were selected to achieve the reporting limits necessary to directly compare data to the proposed PCLs presented in the Work Plan. TPH analyses will be conducted for gasoline-, diesel- and oil-range hydrocarbons to determine concentrations of TPH within each range. However, samples with the highest concentrations of TPH will be selected for NWTPH-HCID analysis to confirm the type of TPH to confirm chemical data are appropriately compared to PCLs. The laboratory reporting limits, method detection limits, and the PCLs are included in Table G-2.

Soil samples selected for BTEX and gasoline-range petroleum hydrocarbons (NWTPH-Gx) analysis will be collected using EPA SW-846 Method 5035A as outlined in Appendix A of Ecology's Toxics Cleanup Program Implementation Memorandum #5 (Ecology, 2004). However, very dense and/or gravelly soils may necessitate sample collection directly into the laboratory provided glassware if difficulties are encountered using the 5035A technique. If so, this will be documented in the field and the impact to data quality will be assessed during data review. All other soil samples for diesel and motor oil-range petroleum hydrocarbons (NWTPH-Dx) and PAHs will be transferred directly to laboratory-provided glassware as described in Table G-3.

As noted previously, surface water samples will be collected in non-preserved containers to avoid losing the preservative during sampling to the water channel. The laboratory will be notified prior to the sampling event that non-preserved containers will be used and holding times will be adjusted accordingly.

#### **G5.1.10** Collection And Testing Of Investigation Derived Waste (IDW)

The proposed drilling methods will not generate soil cuttings, thus, soil cutting IDW is not anticipated. With the exception of cleaning of the direct-push probe equipment, all sampling equipment is dedicated so decontamination fluids generated during the field program will be minimal. If generated, the fluids will be contained onsite in labeled Department of Transportation (DOT) approved 55-gallon steel drums pending laboratory analysis. Samples will be collected directly from a representative number of the drums for BTEX, gasoline, diesel, and motor oil-range petroleum hydrocarbons. The drums will be temporarily stored at location on the facility designated by Kinder Morgan personnel pending laboratory analysis and off-site disposal/treatment, if necessary.

As discussed in Section G5.1.3, hollow stem auger drilling methods may be necessary for the deeper proposed borings. If required, IDW generated during auger drilling will be contained onsite in labeled DOT-approved 55-gallon steel drums pending laboratory analysis. Samples will be collected directly from a representative number of the drums for BTEX, gasoline, diesel, and motor oil-range petroleum hydrocarbons. The drums will be temporarily stored at location on the facility designated by Kinder Morgan personnel pending laboratory analysis and off-site disposal/treatment, if necessary.

\\Seaprojects\WM&RD\Kinder Morgan\Laurel Station\Enforcement Order Support\RI-FS Workplan\Appendix G\Laurel Station SAP.doc

#### G6.0 SAMPLE DESIGNATIONS

Samples will be labeled based on the location names presented in Table G-1 and on the proposed sampling location shown on Figures 34 through 41 of the Work Plan.

Push-probe, hand auger and wetland sediment/soil samples will be labeled as follows: Area of Concern (e.g., Study Unit 1 [SU1]), sample type, sample location name abbreviation and sample depth. For example, the 5-foot bgs sample collected from the first boring drilled in Study Unit 1 will be labeled SU1–B1–5.

Surface water samples will be labeled with the area of concern and sample location name. For example, the surface water sample collected from Area 1 at sample location number 2 will be labeled A1-SW2.

At each wetland sediment/soil sample location, three discrete samples will be collected across the drainage. The left and right banks of the drainages are distinguished by looking downstream. Thus, for a sediment/soil sample collected within Area 1 at location 2, the following sample designation would be used:

- Left bank sample would be labeled: A1-SED2-L
- Center of channel/depression sample would be labeled: A1-SED2-C; and
- Right bank sample would be labeled: A1-SED2-R.

#### G7.0 SAMPLE HANDLING, SHIPPING, AND LABORATORY RECEIPT

Sample custody and documentation procedures will include completion of COC forms, tracking transportation methodologies, and laboratory acceptance procedures. Sample integrity will be maintained through strict adherence to these procedures.

#### **G7.1 CHAIN OF CUSTODY**

COC forms will be maintained as samples are collected and shipped with corresponding samples. The requested turnaround will be communicated to ARI verbally and on the COC forms.

#### G7.2 TRANSPORTATION

The sample containers will be packed in coolers with ice. Shipping dates and method of shipment will be recorded on the field report form and on the COC forms and the samples transported to ARI.

#### **G8.0 QUALITY ASSURANCE PLAN**

This section describes QA/QC procedures developed to ensure that data quality objectives are met.

#### **G8.1 SAMPLE COLLECTION AND HANDLING**

Sampling procedures are described in Section G5.1, Methods of Investigation. When a permanent modification of an approved sampling protocol is necessary, the modification will be

included in this document. Temporary modifications caused by non-typical field conditions or equipment malfunction shall be recorded on the appropriate sample collection form and the URS project manager shall be notified. Modifications to Ecology-approved sampling protocols require prior Ecology approval. If non-typical field conditions or equipment malfunction results in a field modification to an Ecology-approved procedure, Ecology will be notified of this modification by phone and email within 24-hours of knowledge of this modification. Depending on the nature of the variation, Ecology will notify URS if resampling is necessary.

Sample containers, preservatives and holding times will be appropriate for the type of sample collected and the analytical method to be used. Maximum sample holding times will be strictly adhered to. Each sample will be documented, labeled and identified as noted in Section G6.0. Complete documentation of sample collection and handling will be maintained by URS.

#### **G8.2 SAMPLE CUSTODY**

A sample is under an individual's custody if one or more of the following criteria are met:

- it is in the sampler's possession
- it is in the sampler's view after being in possession
- it is in the sampler's possession and secured to prevent tampering
- it is in a designated secure area

In order to maximize sample integrity and accountability, strict COC procedures will be adhered to.

#### **G8.2.1** Field Custody Procedures

A limited number of people will handle the samples. The sampler will be personally responsible for completion of the COC form and the care and custody of collected samples until they are transferred to another person.

## **G8.2.2** Transfer of Custody

When samples transfer possession, the individuals relinquishing and receiving the samples will sign the COC form and document the date and time of transfer. The sample collector will sign the form in the first signature space. The sample receiver will then sign the form in the second signature space.

#### **G8.2.3** Laboratory Custody Procedures

A designated sample custodian in the laboratory will accept custody of the samples. The custodian will verify that the sample identification numbers match those on the chain-of-custody record. The laboratory will maintain sample security and custody as appropriate.

#### **G8.3 INTERNAL QUALITY CONTROL**

Quality Control (QC) checks will consist of measurements performed in the field and laboratory. QC checks include analysis of a number of field and laboratory QC samples as outlined below.

These samples will be evaluated to verify accuracy, comparability, completeness, and precision of analytical results for this sampling routine. The following QC samples will be obtained and analyzed.

#### **G8.3.1** Field Rinsate Blank

A field rinsate blank will be collected and analyzed only if non-disposable equipment is used. Field rinsate blanks will consist of distilled, deionized water (supplied by the analytical laboratory) passed over and/or through decontaminated sampling equipment. Surfaces and materials exposed during actual sampling will be rinsed to evaluate the effectiveness of sampling equipment decontamination procedures and potential for equipment or field cross contamination. Rinsate blanks shall be collected at a rate of one per sampling event per media and analyzed for all parameters specified for the area. The sample will be labeled "rinsate blank" with the date in MM/DD/YY format.

#### **G8.3.2** Trip Blanks

Trip blanks will accompany all volatile samples (BTEX and gasoline-range petroleum hydrocarbons) as they are transported to and from the sampling site and then to the laboratory. They will consist of 40-ml glass vials filled with distilled/carbon-free water provided by the laboratory. One trip blank will be included with each cooler of sample containers destined for volatiles analysis. Trip blanks will be prepared by the laboratory at the time sample containers are prepared for the site sampling.

### **G8.3.3** Blind Field Duplicates

One field duplicate soil sample will be collected for every 20 soil samples collected. One field duplicate for surface water and one for sediment/soil from the wetland areas will be collected during the single sampling event for these media. Samples will be coded such that the laboratory cannot identify which samples are duplicates from the information on the sample label. The soil field duplicates will be collected from a location where the widest range of parameters is included in the analytical suite. The samples will be analyzed for the same parameters as the primary sample. Field duplicates shall be noted on the sample collection form and the location recorded in the field sampling documentation.

#### **G9.0 ANALYTICAL PROCEDURES**

#### **G9.1 LABORATORY ANALYSES**

The analytical procedures that will be used during the field program are summarized in Table G-3. The URS project manager or their designee will be responsible for scheduling analyses and will serve as a primary contact for all laboratory issues and problem resolution. The laboratory will be requested to submit a fully validatable data package(s) to URS.

#### **G9.1.1** Data Validation – Chemical Analyses

Data validation reviews will be performed for each laboratory report by a URS chemist. The review will be conducted based on the method criteria, the current laboratory control limits when

samples are received at the laboratory, and adherence to the reporting limit requirements for the project.

The components of all data validation reviews will include the following items:

- Holding Time
- Initial and Continuing Calibrations
- System Performance
- Method Blanks
- Matrix Spike/Matrix Spike Duplicates
- Field Duplicates
- Compound Identification
- Compound Quantification
- Reported RLs

Data will be reviewed and validated based on the QA/QC criteria specified in the methods and based on current laboratory control limits in use at the time samples are submitted to the laboratory. If required, data qualifiers will be assigned based on the definition and guidance of qualifiers used in the Functional Guidelines (USEPA, 2008).

A summary validation will be performed on all data generated by the laboratory. A "summary" data validation review refers to conducting reviews that involve evaluating only the data summary and QA/QC summary sheets provided with all data packages. The "summary" reviews do not involve spot-checking the raw data packages and calculations.

If "summary" reviews indicate potential problematic areas within a data set, a "standard" data validation review may be conducted. A "standard" data validation review refers to conducting a data validation review that requires spot-checking the laboratory's raw data package and calculations in accordance with the Functional Guidelines (USEPA, 2008). The URS chemist will contact the laboratory to discuss the problematic areas; however, if questions still exist, the URS chemist may elect to conduct a "standard" review of the data.

Data validation memoranda for all data validation reviews will be prepared for each analytical data package. Completed QA/QC memoranda will be submitted to the Project Manager and copies will be retained in the project file.

#### **G9.1.2** Field QA/QC Sample Evaluation

Following the data validation reviews of each set of analytical data, field QA/QC sample results will be evaluated. Field QA/QC sample results will provide information regarding the potential for introducing artificial contaminants during the sample collection process, cross-contamination and field variability. If the introduction of contaminants is evident due to problems with sample containers, sample collection procedures and/or sampling equipment, the URS chemist will notify the URS project manager. The project manager will assess sampling procedural changes with Kinder Morgan and if significant, Ecology. Upon approval by URS, Kinder Morgan, and Ecology, procedural changes will be documented and followed from the effective date. The change and its effectiveness will be documented in the field record.

#### G10.0 DATA REDUCTION, VALIDATION, AND REPORTING

Data obtained in the field will be recorded daily in bound field notebooks or other formats as indicated in Section G5.0 and will be maintained by the URS field task lead. The field data package will be reviewed by the URS project manager or their designee to determine if the field records are complete and measurements specified in the SAP have been performed. If the field records are incomplete, corrective actions will be implemented to rectify the issue to the extent possible.

#### **G10.1 CHEMICAL ANALYSES**

Data validation and review of laboratory and field measurement analytical data collected during the investigation will be conducted as described in Section 9.0. Data validation memoranda and associated data summary sheets will be provided to the URS project manager upon completion. Field measurements will be tabulated.

Data collected during the investigation will be stored, compiled, and managed in an ACCESS database for the project. Chemical parameters, concentrations, and data qualifiers for each sample analysis will be entered into the project database. Regular backups of the database will be performed to avoid data loss due to equipment failure.

#### **G11.0 REFERENCES**

- USEPA, 1998, Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW-846), 3rd Ed., September 1986: Final Update I, July 1992; Final Update IIA, August 1993; Final Update II, September 1994; Final Update IIB, January 1995, Final Update III, December 1996, Final Update IIIA, April 1998, Final Update IIIB, November 2004, Final Update IVA and IVB, January 2008.
- USEPA, 2008. USEPA Contract Laboratory Program, National Functional Guidelines for Organic Data Review, June.
- Washington State Department of Ecology. 2004. Collecting and preparing Soil Samples for VOC Analysis, Implementation Memorandum #5, Publication 04-09-087, June 2004.

Table G-1 Proposed Soil, Surface Water, and Wetland Sediment/Soil Sampling Locations and Rational Laurel Station Bellingham, Washington

Area of Concern / Final RI/FS Report Figure No.	Proposed Sample Location/Sample ID	Media	Proposed Sampling Depth (feet bgs)	Analytical Testing	Rationale			
Area 1 / Figure 34	A1-B1 through A1-B25	Soil	3 and 5	NWTPH-Gx, NWTPH-Dx ¹ , and BTEX. PAHs for A1-B1, A1-B9, A1-B12, A1- B16, A1-B17, and A1-B20	Characterization of the vertical and lateral extent of hydrocarbon impacts exceeding the PCL in Area 1. Characterization of the vertical extent of PAHs where TPH was previously elevated. Assessment of BTEX.			
Area 1 / Figure 39	A1-SW1 through A1-SW3	Surface Water	NA	NWTPH-Gx, NWTPH-Dx, and BTEX	Establish current surface water quality within Area 1.			
Area 1 / Figure 39	A1-SED1 through A1-SED3 ²	Wetland Sediment/Soil	0-1	NWTPH-Gx, NWTPH-Dx ¹ , and BTEX	Establish current wetland sediment/soil quality within Area 1.			
Area 2 / Figure 35	A2-B1	Soil	1, 2, and 3	NWTPH-Gx, NWTPH-Dx ¹ , BTEX, and PAHs ³	Characterization of the vertical extent of hydrocarbon impacts exceeding the PCL in Area 2. Assessment of BTEX.			
Area 2 / Figure 39	A2-SW1	Surface Water	NA	NWTPH-Gx, NWTPH-Dx, and BTEX	Establish current surface water quality within Area 2.			
Area 2 / Figure 39	A2-SED1 ²	Wetland Sediment/Soil	0-1	NWTPH-Gx, NWTPH-Dx ¹ , and BTEX	Establish current wetland sediment/soil quality within Area 2.			
Area 3 / Figure 39	A3-DAM 2 and A3-DAM 3	Surface Water	NA	NWTPH-Gx, NWTPH-Dx, and BTEX	Establish current surface water quality within Area 3.			
Area 3 / Figure 39	A3-SED1 through A3-SED3 ²	Wetland Sediment/Soil	0-1	NWTPH-Gx, NWTPH-Dx ¹ , and BTEX	Establish current wetland sediment/soil quality within Area 3.			
Study Unit 1 / Figure 36	SU1-B1 through SU1-B4	Soil	5, 10 and 15	NWTPH-Gx, NWTPH-Dx, BTEX, and PAHs ³	Characterization of the lateral extent of hydrocarbon impacts exceeding the PCL at historical test pits TP-6 and TP-7.			
Study Unit 1 / Figure 36	SU1-B5	Soil	2 and 5	NWTPH-Gx, NWTPH-Dx, BTEX, and PAHs ³	Characterization of the vertical extent of hydrocarbon impacts exceeding the PCL at sample location DTE-1.			
Study Unit 1 / Figure 36	SU1-B6 through SU1-B9, SU1-B17 and SU1-B18	Soil	3, 5 and 10	NWTPH-Gx, NWTPH-Dx, BTEX, and PAHs ³	Characterization of the vertical and lateral extent of hydrocarbon impacts exceeding the PCL at sample locations PEX-11-S-7, PEX-17-B-5, PEX-18-S-3, and PEX-34-S-1.			
Study Unit 1 / Figure 36	SU1-B10 and SU1-B11	Soil	5, 10 and 15	NWTPH-Gx, NWTPH-Dx, BTEX, and PAHs ³	Characterization of the vertical and lateral extent of hydrocarbon impacts exceeding the PCL at sample location PB-2.			
Study Unit 1 / Figure 36	SU1-B12 through SU1-B16	Soil	5, 10, 15, 20 and 25	NWTPH-Gx, NWTPH-Dx, BTEX, and PAHs ³	Characterization of the lateral extent of hydrocarbon impacts exceeding the PCL at soil borings TM-B4 and TM-B16.			
Study Unit 1 / Figure 36	SU1-B19	Soil	6, 8 and 10	NWTPH-Gx, NWTPH-Dx, BTEX, and PAHs ³	Confirmatory sampling at test pit PB-4.			
Study Unit 1 / Figure 36	SU1-B20	Soil	29 and 30	NWTPH-Gx, NWTPH-Dx, BTEX, and PAHs ³	Confirmatory sampling at boring TM-B15.			
Study Unit 2 / Figure 37	SU2-B1 through SU2-B8	Soil	2, 5 and 10	NWTPH-Gx, NWTPH-Dx, BTEX, and PAHs ³	Characterization of the vertical and lateral extent of hydrocarbon impacts exceeding the PCL within the bulk storage tank containment berms.			
Study Unit 3 / Figure 38	SU3-B1 through SU3-B6	Soil	2 and 4	NWTPH-Gx, NWTPH-Dx, BTEX, and PAHs ³	Characterization of the vertical and lateral extent of hydrocarbon impacts exceeding the PCL within the former relief tank containment berm.			
Study Unit 3 / Figure 38	SU3-B7	Soil	5 and 7	NWTPH-Gx, NWTPH-Dx, BTEX, and PAHs ³	Confirmatory sampling at test pit TP-3-2.			
Study Unit 3 / Figure 40	SU3-SW1 through SU3-SW3	Surface Water	NA	NWTPH-Gx, NWTPH-Dx, and BTEX	Establish current surface water quality within Study Unit 3.			
Study Unit 3 / Figure 40	SU3-SED1 through SU3-SED3 ²	Wetland Sediment/Soil	0-1	NWTPH-Gx, NWTPH-Dx ¹ , and BTEX	Establish current wetland sediment/soil quality within Study Unit 3.			

#### Notes:

PCL - Preliminary Cleanup Level

NWTPH-Gx - Northwest Total Petroleum Hydrocarbons Gasoline

NWTPH-Dx - Northwest Total Petorleum Hydrocarbons Diesel extended

BTEX - Benzene, toluene, ethylbenzene, and xylenes

PAHs - Polycyclic aromatic hydrocarbons

bgs - below ground surface

NA - not applicable

NWTPH-HCID analyses will be performed on select samples to evaluate the type of TPH for comparison to PCLs as described in Section G.5.19.

 $\verb|\Seaprojects| WM\&RD \land G Table G1 Proposed Boring Location and Sampling Rationale \\$ 

1 of 1 URS Corporation

¹ Acid and/or silica gel cleanup

² Three samples per location: (a) right bank, (b) mid-drainage, and (c) left bank

³ PAH analysis will be conducted when the NWTPH-Dx result exceeds the PCL of 460 milligrams per kilogram.

Table G-2 Parameters, Methods, and Reporting Limits Laurel Station Bellingham, Washington

Parameter	Method	MI		R		Preliminary Cleanup Levels a		
i ai ainetei	Method	Soil/Solids	Water	Soil/Solids	Water	Soil/Sediment	Surface Water	
Total Petroleum Hydrocarbons	Ecology June 1997	mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L	
Gasoline Range	NWTPH-Gx	2.49	0.049	5.0	0.25	30/100 b	0.8/1.0 b	
Diesel Range	NWTPH-Dx	0.50	0.012	5	0.25	460	0.5	
Oil Range	NWTPH-Dx, Extended	1.91	0.049	10	0.50	2,000	NE	
HCID	NWTPH-HCID	NA	NA	100	0.63	NA	NA	
W. C. O C	TICEDA GOSTA		σ.		σ.		σ.	
<i>Volatile Organic Compounds</i> Benzene	<u>USEPA 8021B</u>	ug/kg 4.70	ug/L	<u>ug/kg</u> 25	<u>ug/L</u> 1.0	ug/kg 30	ug/L 1.2	
Ethylbenzene		4.70	0.094 0.091	25 25	1.0		530	
Ethylbenzene Toluene		4.65 3.15	0.091	25 25	1.0	6,000 7,000	1,300	
		6.28	0.057	25 25	1.0	9,000 °	1,300 NE	
m,p-Xylene		4.24	0.122	25 25	1.0	9,000°	NE NE	
o-Xylene		4.24	0.133	25	1.0	9,000	NE	
Polycyclic Aromatic Hydrocarbons		ug/kg	ug/L	ug/kg	ug/L	ug/kg	ug/L	
Acenaphthene	USEPA 8270D-SIM	1.29	0.00355	5.0	0.01	4,800	643	
Acenaphthylene	(soil)/low-level (water)	1.74	0.00333	5.0	0.01	4,800 NE	NE	
Anthracene	(SOII)/IOW-IEVER (Water)	1.16	0.00216	5.0	0.01	24,000	8,300	
Benzo (a) pyrene ^d		1.80	0.00501	5.0	0.01	See Note d	See Note d	
Benzo(a)anthracene d		0.99	0.00270	5.0	0.01	See Note d	See Note d	
Benzo(b)fluoranthene d		1.49	0.00395	5.0	0.01	See Note d	See Note d	
Benzo(g,h,i)perylene		1.49	0.00393	5.0	0.01	NE	NE	
Benzo(k)fluoranthene d								
		1.54	0.00608	5.0	0.01	See Note d	See Note d	
Chrysene ^d		1.56	0.00562	5.0	0.01	See Note d	See Note d	
Dibenz(a,h)anthracene d		1.55	0.00414	5.0	0.01	See Note d	See Note d	
Dibenzofuran		1.90	0.00349	5.0	0.01	160	NE	
Fluoranthene		3.80	0.00294	5.0	0.01	3,200	90	
Fluorene		2.39	0.00338	5.0	0.01	3,200	1,100	
Indeno(1,2,3-cd)pyrene d		1.62	0.00305	5.0	0.01	See Note d	See Note d	
2-Methylnaphthalene		1.05	0.00314	5.0	0.01	320	NE	
Naphthalene		1.93	0.00226	5.0	0.01	1,600	4938	
Phenanthrene		1.41	0.00477	5.0	0.01	NE	NE	
Pyrene		1.40	0.00246	5.0	0.01	2,400	830	

#### Notes:

mg/kg - milligrams per kilogram mg/L - milligrams per lite:

ug/kg - micrograms per kilogram

ug/L - micrograms per liter

MDL - Method Detection Limit

NA - not applicable

NE - not established RL - Reporting Limit

^a Preliminary Cleanup Levels are found on Table 3 (soil) and Table 5 (surface water) of the Final Supplemental RI/FS Work Plan.

^b gasoline mixtures with benzene/gasoline mixtures without benzene

^cPCL for total xylenes

d Carcinogenic PAH (cPAH) cleanup levels under MTCA are based on the calculated total toxicity of the mixture using the Toxicity Equivalency Methodology in WAC 173-340-708(8). The mixture of cPAHs shall be considered a single hazardous substance and compared to the applicable MTCA Method B cleanup level for benzo(a)pyrene.

Table G-3 Sample Collection, Preservation, and Holding Time Criteria Laurel Station Bellingham, Washington

			Water					Soil/Sediment Media					
Parameter	Method Reference	Method	Minimum Sample Amount	Container Type	Preservation	Extraction Holding Time	Analysis Holding Time	Minimum Sample Amount	Container Type	Preservation	Extraction Holding Time	Analysis Holding Time	
Gasoline-Range Petroleum Hydrocarbons	WA Dept. of Ecology	NWTPH-Gx	5 ml	2-40 ml VOA glass vials with teflon septum (No Headspace)	HCI pH<2, cool to 4°C ^a	N/A	14 days ^a	10 g	2-40 mL VOA vials w/MeOH (from Easy-Draw Syringe) and 2-oz glass jar with teflon-lined lid (minimize headspace)	Methanol (for VOA vial), No headspace (for 2-oz glass jar) Cool to 4°C [5 gms of sample to 5 mls of preservative]	N/A	14 days	
Diesel- and Motor Oil Range Petroleum Hydrocarbons (TPH)	WA Dept. of Ecology	NWTPH-Dx	500 ml	2-500 ml amber glass, Teflon lined cap	Cool to 4°C	7 days	40 days ^b	30 g	8-oz glass jar with teflon- lined lid	Cool to 4°C	14 days	40 days b	
Hydrocarbon Identification	WA Dept. of Ecology	NWTPH-HCID	500 ml	2-500 ml amber glass, Teflon lined cap	Cool to 4°C	7 days	40 days b	10 g	2-oz glass jar with teflon- lined lid	Cool to 4°C	14 days	40 days b	
Purgeable Aromatic Compounds (BTEX)	SW-846	EPA 8021B	5 ml	2-40 ml VOA glass vials with teflon septum (No Headspace)	HCI pH<2, cool to 4°C ^a	N/A	14 days ^a	5 g	2-40 mL VOA vials w/MeOH (from Easy-Draw Syringe) and 2-oz glass jar with teflon-lined lid (minimize headspace)	Methanol (for VOA vial), No headspace (for 2-oz glass jar) Cool to 4°C [5 gms of sample to 5 mls of preservative]	N/A	14 days	
Polycyclic Aromatic Hydrocarbons (PAHs)	SW-846	8270D-SIM			Not Applicable			30 g	8-oz glass jar with teflon- lined lid	Cool to 4°C	14 days	40 days ^b	

Notes:
ml - milliliters
BTEX - Benzene, toluene, ethylbenzene, and xylenes
N/A - not applicable

a Surface water samples will be collected in non-preserved containers due to the sampling technique. The holding time will be shortened to 7 days due to no preservation.

^b Days from extraction date

# APPENDIX H ECOLOGY-APPROVED SPCC PLAN LETTER

# APPENDIX H ECOLOGY-APPROVED SPCC PLAN LETTER





# STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

PO Box 47600 • Olympia, WA 98504-7600 • 360-407-6000
711 for Washington Relay Service • Persons with a speech disability can call 877-833-6341

August 27, 2009

Dan O'Rourke Transmountain Pipeline, Kinder Morgan Canada 300 5th Ave SW Ste 2700 Calgary, Alberta Canada T2P 512

Dear Mr. O'Rourke:

Congratulations, I am granting final approval to the Transmountain Pipeline oil spill contingency plan. The plan meets Washington's statutory and regulatory requirements and must be maintained in an accurate condition. Please add a copy of the enclosed certificate to the front of each plan as proof of compliance. This approval expires on August 27, 2014.

Your work to improve this plan is a significant milestone in the history of Washington's preparedness program. The new regulatory standards have improved plans and resulted in:

- Response equipment pre-staged in more than 45 locations around the state, effective in fast flowing rivers, shallow waters, estuaries, and open waters.
- Commitment to a variety of drills that will test all aspects of your plan over time.
- Participation in our program to verify maintenance of all spill response equipment including boats, trucks, boom, vacuum devices and skimmers.
- New standards for non-dedicated workboats, shoreline cleanup crews, and aerial surveillance.

Thank you for your cooperation and patience throughout the process. If you have questions, please contact your plan manager, Kelli Gustaf at (425) 649-7194 or at kgus@ecy.wa.gov.

Sincerely,

Linda Pilkey-Jarvis
Preparedness Section Manager

Grida Jaken James

Spill Prevention, Preparedness, and Response

LP: bl

Enclosure: Certificate

cc: Patrick Davis, Transmountain
Niki Affleck, Transmountain
USCG Sector Seattle
Dale Jensen, Spills Program

Kelli Gustaf, Spills Program