Terrestrial Ecological Evaluation Summary Report

Northwest Pipeline GP Meter Station Facilities Throughout Washington State

Prepared For:


Northwest Pipeline GP/Williams Gas Pipeline P.O. Box 58900 Salt Lake City, Utah 84158

November 2011

Prepared By:

Williams Gas Pipeline P.O. Box 1396 Houston, Texas 77251-1396 (713) 215-4563

Environmental Partners, Inc. 295 NE Gilman Boulevard Suite 201 Issaquah, Washington 98027 (425) 395-0010

PARTNERS INC

PFT fir Alan Hopkins, P.G.

Portnoy Environmental Principal

1.0	INTR	RODUCTION1					
	1.1	.1 Background					
2.0	OBJECTIVES1						
3.0	METHODOLOGY						
	3.1	Modifie	ed Model TEE based upon Site-Specific TEE	2			
		3.1.1	Problem Formulation	2			
		3.1.2	Site-Specific TEE Method Selection	3			
	3.2	Site G	roupings and Representative Sites	3			
		3.2.1	Northwest Washington Representative Area	4			
		3.2.2	Southwest Washington/Columbia River Basin Representative Area	4			
		3.2.3	Central Washington Representative Area	5			
		3.2.4	Eastern Washington Representative Area	5			
3.3 TEE Sampling and Analysis				6			
		3.3.1	Soil Bioassay	6			
		3.3.2	Bioaccumulation Study	7			
4.0	FIND	INGS		7			
	4.1	Lettuce	e Bioassay Tests	7			
	4.2 Earthworm Bioassay Tests						
	4.3	Earthw	vorm 28-day Bioaccumulation Study	9			
	4.4	Data S	Summary	10			
5.0	CON	CLUSIC	DNS	10			
6.0	CLOSING11						
7.0	REFERENCES11						

FIGURE:

Figure 1 – TEE Test Sites and Representative Area

TABLE:

Table1 – TEE Bioassay and Bioaccumulation Test Results Summary

Table 2 – TEE Cleanup Level Summary

ATTACHMENTS:

Attachment A – Terrestrial Ecological Evaluation Program, May 2011 Attachment B – Washington State Department of Ecology, Conditional Approval Letter, May 13, 2011 Attachment C – Laboratory Analytical Reports Attachment D – Nautilus Environmental, Soil Toxicity Evaluation Report Attachment E – TEE Cleanup Level Calculations

1.0 INTRODUCTION

Environmental Partners, Inc. (EPI) has prepared this Terrestrial Ecological Evaluation Summary Report to document the activities performed and results of the Terrestrial Ecological Evaluations (TEEs) conducted for Northwest Pipeline GP (NWPL GP) meter station facilities located throughout Washington State.

NWPL GP prepared a *Terrestrial Ecological Evaluation Program* document dated April 2011, which was submitted to Ecology on April 15, 2011.

On May 13, 2011, The Washington State Department of Ecology (Ecology) submitted a *Transmittal of Ecology Approval and Comment of the revised Terrestrial Ecological Evaluation Program, Northwest Pipeline GP Meter Station Facilities throughout Washington State, April 2011, prepared by Williams Gas Pipeline; Environmental Partners, Inc; and Portnoy Environmental to NWPL GP, conditionally approving the document. Subsequent to receipt of the conditional approval letter, EPI incorporated the single comment provided by Ecology into the May 2011 <i>Terrestrial Ecological Evaluation Program* document (TEE Program Document). The revised TEE Program Document is included in Attachment A; the conditional approval letter is presented as Attachment B.

1.1 Background

NWPL GP is evaluating the environmental conditions at over 70 meter station facilities throughout Washington State, which have soil impacted with inorganic mercury and/or arsenic, and which have similar site conditions (*i.e.*, uncapped commercial/industrial type facilities, in rural locations, identical site usage, and the same contaminants). The meter station facilities are where gas is being regulated and metered from the main supply pipelines to local distribution companies (LDCs) or wholesale customers.

Based on the similarities of site conditions and COCs, NWPL GP has created a Model TEE approach based on the Site-Specific TEE

2.0 OBJECTIVES

The general objectives of the Model TEE study for NWPL GP meter station facilities were to evaluate the initial soil cleanup levels for inorganic mercury and arsenic of 2 and 20 mg/kg, respectively, for protectiveness of potential ecological receptors.

The specific objectives of the Model TEE were as follows:

- Divide the state into representative areas;
- Establish site groupings and a representative facility within each representative area;
- Collect TEE samples from each representative facility and analyze for appropriate terrestrial and ecological protectiveness through bioassay testing and bioaccumulation study; and

• Establish appropriate TEE cleanup levels that are protective of all terrestrial and ecological receptors for each representative area.

3.0 METHODOLOGY

The methods utilized for conducting the TEEs are described in the following sections and in the TEE Program Document.

3.1 Modified Model TEE based upon Site-Specific TEE

The meter station facilities did not qualify for primary TEE exclusions or for the Simplified TEE process provided in MTCA due to the uncapped and often rural nature of the facilities, and the generally surficial nature of the COCs. As such, a modified model Site-specific TEE process was implemented. The modified model Site-specific TEE is composed of several components. These components include problem formulation and selection and implementation of appropriate terrestrial ecological evaluation methods.

3.1.1 **Problem Formulation**

A problem formulation was conducted as a part of the TEE in accordance with WAC 173-340-7493(2). Problem formulation includes identification of the chemicals of ecological concern, potential exposure pathways, potential terrestrial ecological receptors, and a toxicological assessment. The elements of the TEE problem formulation are detailed in the TEE Program Document and are summarized as follows:

- The identified chemicals of ecological concern are the COCs for the meter station facilities, inorganic mercury and arsenic.
- The primary exposure pathway for inorganic mercury and arsenic in soil at the NWPL GP meter stations occurs via direct contact.
- Contact with contaminated soil can directly impact vegetation and soil biota.
- The secondary exposure pathway is ingestion of affected vegetation and soil biota containing bioaccumulated COCs at significant levels by ground-feeding birds and mammals.

3.1.2 Site-Specific TEE Method Selection

3.1.2.1 Mercury

Soil containing inorganic mercury at the meter stations has been characterized to the MTCA Method A Soil Cleanup Level for Unrestricted Land Uses of 2 milligrams/kilogram (mg/kg), which is the initially selected cleanup level for NWPL GP meter station facilities.

The Ecological Indicator Soil Concentrations for Protection of Terrestrial Plants and Animals (Table 749-3) are specified as 0.3 mg/kg, 0.1 mg/kg, and 5.5 mg/kg for Plants, Soil Biota, and Wildlife, respectively. Since wildlife receptors are protected at a soil concentration greater than the initially selected cleanup level of 2 mg/kg, soil at facilities that are in compliance with the 2 mg/kg mercury cleanup level will be protective of wildlife receptors. However, because the selected cleanup level of 2 mg/kg for the protection of plants and soil biota, modified site-specific TEE methods were selected in accordance with WAC 173-340-7493 for these potential exposures.

The selected TEE methods for mercury are site-specific soil bioassay for plants and soil biota.

3.1.2.2 Arsenic

Soil containing arsenic at the meter stations has been characterized to the MTCA Method A Soil Cleanup Level for Unrestricted Land Uses of 20 mg/kg, which is the initially selected cleanup level for NWPL GP meter station facilities.

The Ecological Indicator Soil Concentrations for Protection of Terrestrial Plants and Animals (Table 749-3) are specified as 10 mg/kg, 60 mg/kg, and 7 mg/kg for Plants, Soil Biota, and Wildlife, respectively. Since soil biota receptors are protected at a soil concentration greater than the initially selected cleanup level of 20 mg/kg, soil at facilities that are in compliance with the 20 mg/kg arsenic cleanup level will be protective of soil biota receptors. However, because the selected cleanup level of 20 mg/kg exceeds the limits established for the protection of plants and wildlife, modified site-specific TEE methods were selected in accordance with WAC 173-340-7493 for these potential exposures.

The selected TEE methods for arsenic are site-specific soil bioassay for plants and site-specific bioaccumulation evaluation for wildlife. Calculated indicator concentrations for the Mammalian herbivore surrogate receptor (vole) using the default values supplied in Tables 749-4 and 749-5 indicate that the established initial soil cleanup level for arsenic of 20 mg/kg is protective of mammalian herbivores. As such, the site-specific bioaccumulation evaluations for wildlife were only for mammalian predator species (shrew) and avian predator species (American Robin).

3.2 Site Groupings and Representative Sites

In the May 13, 2011 conditional approval letter, Ecology approved the division of the meter station facilities into four representative groups based on geographic area and regional climate, and the terrestrial ecological evaluation of appropriate representative facilities within each area. Data collected

at the representative facility(s) will be used for determining compliance with TEE for the other meter stations within each representative area.

The rationale for the site groupings is detailed in the TEE Program Document. The proposed representative areas as they relate to the NWPL GP pipeline are depicted on **Figure 1**. The representative facilities and meter station facilities within each area are presented in the following sections.

3.2.1 Northwest Washington Representative Area

The representative facility for the Northwest Washington Representative Area is the Snohomish Compressor Station for both mercury and arsenic.

Data collected at this facility will be considered representative of the following NWPL GP meter station facilities:

- Chehalis
- Evergreen Shores (Black Lake)
- McCleary Aberdeen
- North Seattle Everett
- North Tacoma
- Oak Harbor Stanwood
- Olympia
- Sedro Woolley
- Shelton
- South Seattle
- South Tacoma
- Toledo

3.2.2 Southwest Washington/Columbia River Basin Representative Area

The representative facility for the Southwest Washington/Columbia River Basin Representative Area is the Washougal Compressor Station for both mercury and arsenic:

Data collected at this facility will be considered representative of the following NWPL GP meter station facilities:

- Deer Island
- Kalama
- Stevenson
- Stevenson #2
- Vanalco
- Vancouver
- Washougal

3.2.3 Central Washington Representative Area

The representative facility for the Central Washington Representative Area is Yakima Firing Center Meter Station for arsenic and Ellensburg Meter Station for mercury.

Data collected at these facilities will be considered representative of the following NWPL GP meter station facilities:

- Alcoa Wenatchee
- Burbank Heights
- Connell
- Ellensburg
- Goldendale
- Grandview
- John Day Dam
- Kawecki Chemical
- Kennewick
- Klickitat
- Lind
- Menan Starch
- Moses Lake
- Pasco
- Prosser
- Quincy
- Ritzville
- Sandvik Special Metals
- Sunnyside
- Unocal Finley
- Walla Walla
- Warden
- Wenatchee
- Yakima
- Zillah Toppenish

3.2.4 Eastern Washington Representative Area

The representative facility for the Eastern Washington Representative Area is Spokane Mead Meter Station for arsenic and Star Road Meter Station for mercury.

Data collected at these facilities will be considered representative of the following NWPL GP meter station facilities:

- Cheney Medical Lake
- Colfax
- Genesee
- Pullman

- Spokane West
- Spokane Mead
- Star Road

Note: In the Ecology approved TEE Program Document; it was originally proposed that the Cheney Medical Lake Meter Station facility would be used for the representative facility in the Eastern Washington sub-region. However, during the approval process for the TEE Program Document, the Cheney Medical Lake facility was remediated and there were no remaining soils at the site with the concentration ranges required for bioassay analysis. Therefore, an alternate location (*i.e.*, Starr Road) was selected as the representative facility for mercury.

3.3 TEE Sampling and Analysis

TEE samples were collected from each representative facility where previously collected data indicated that COCs in soil were close to the initially selected cleanup level for each COC (*i.e.*, 2 mg/kg for mercury and 20 mg/kg for arsenic). Prior to performing the necessary TEE analysis, a sample was collected from each TEE sample and submitted for confirmation analysis to verify the COC concentration.

Samples for confirmation analyses were submitted to Friedman & Bruya, Inc. of Seattle, Washington or ESC Lab Sciences of Mt. Juliet, Tennessee for analysis of mercury by EPA Method 7471 and arsenic by EPA Method 6010B, as applicable.

As indicated in the TEE Program Document, TEE samples qualified for bioassay analysis and bioaccumulation factor (BAF) testing if the concentration for mercury ranged from 2 mg/kg to 6 mg/kg, and/or the concentration for arsenic ranged from 20 mg/kg to 60 mg/kg. The TEE samples selected from each representative facility, original COC concentration, and confirmation concentration are presented in Table 1. Laboratory analytical reports for confirmation soil samples are provided in Attachment C.

With the exception of arsenic in the Southwestern Washington/Colombia River Basin, Central Washington, and Eastern Washington representative areas, each TEE sample presented in Table 1 qualified for bioassay analysis and/or BAF testing in accordance with the concentration ranges presented in the TEE Program Document. For the remaining representative areas, there were no concentrations detected above the initially selected arsenic cleanup level of 20 mg/kg. Therefore, the maximum arsenic concentration detected in each of the representative areas was analyzed for TEE compliance.

3.3.1 Soil Bioassay

Soil bioassay analyses were conducted to evaluate the protectiveness of mercury concentrations in soil to vascular plants and soil biota and arsenic concentrations in soil to vascular plants. Soil for bioassay analyses were submitted to Nautilus Environmental (Nautilus), a Department of Ecology accredited laboratory located in Tacoma, Washington.

As presented in the TEE Program Document, soil bioassay for plants was conducted in accordance with Ecology Publication No. 96-324, *Early Seedling Growth Protocol for Soil Toxicity Screening*. Soil

bioassay for soil biota was conducted in accordance with Ecology Publication No. 96-327, *Earthworm Bioassay Protocol for Soil Toxicity Screening*. No soil dilution was performed prior to analysis.

3.3.2 Bioaccumulation Study

In order to assess the protectiveness of the established initial cleanup level for arsenic in soil of 20 mg/kg for potential wildlife receptors, a 28-day earthworm (Eisenia *fetida*) bioaccumulation study was conducted, as allowed by WAC 173-340-7493(3)(c)(i). For predatory wildlife receptors, the surrogate species are the American Robin and the Shrew; both are ground-feeding carnivorous species. Therefore, in accordance with Ecology's Wildlife Exposure Model for Site-Specific Evaluations (WEM; Table 749-4), the potential exposure pathway for these receptors is through consumption of worms living in contaminated soil.

The selected soil samples were submitted to Nautilus. The methodology used for growing worms in contaminated media was in accordance with the *Standard Guide for Conducting Laboratory Soil Toxicity or Bioaccumulation Tests with the Lumbricid Earthworm Eisenia Fetida* (ASTM E1676-04, 2007).

Following the 28-day bioaccumulation incubation period, the earthworms were removed from the soil, placed in chemistry containers, and submitted to Test America of Seattle, Washington for determination of arsenic concentration by EPA method 6010B.

Results of the earthworm bioaccumulation study and confirmation soil sampling were subsequently used to calculate site-specific BAFs for the selected representative sites. BAFs were calculated by dividing the worm arsenic concentration by the confirmation soil arsenic concentration for each representative facility. The calculated site-specific BAFs were then used to calculate region-specific indicator concentrations that are considered protective of potential wildlife receptors using the equations provided in the WEM, Table 749-4 in MTCA. As no Toxicity Reference Value for the more toxic form of arsenic (arsenic III) was provided in MTCA Table 749-4 for the American Robin, EPI used a value of 2.24 mg/kg-day as provided in the U.S. EPA document, *Ecological Soil Screening Levels for Arsenic*, March 2005, to calculate the region-specific indicator concentrations for the avian predator. This is a more conservative value than that provided in MTCA for the less toxic arsenic V.

4.0 FINDINGS

The results of the bioassay analysis and BAF study are presented in the following sections. The Soil Toxicity Evaluation report prepared by Nautilus is included as Attachment D.

4.1 Lettuce Bioassay Tests

Results of the lettuce bioassay tests conducted on soils from representative meter station facilities impacted with mercury are as follows:

- Snohomish Compressor Station (Northwest Washington Representative Area) mercury concentration 2.5 mg/kg **soil not toxic**.
- Washougal Compressor Station (Southwest Washington/Columbia River Representative Area)
 mercury concentration 2.6 mg/kg soil not toxic.
- Ellensburg Meter Station (Central Washington Representative Area) mercury concentration 2.8 mg/kg **soil not toxic**.
- Star Road Meter Station (Eastern Washington Representative Area) mercury concentration 3.3 mg/kg – soil not toxic.

Results of the lettuce bioassay tests indicate that the initially established soil cleanup level for mercury of 2 mg/kg is protective of plants in each of the representative areas.

Results of the lettuce bioassay tests conducted on soils from representative meter station facilities impacted with arsenic indicate:

- Snohomish Compressor Station (Northwest Washington Representative Area) arsenic concentration 48.1 mg/kg **soil not toxic**.
- Washougal Compressor Station (Southwest Washington/Columbia River Representative Area)

 arsenic concentration 16 mg/kg soil not toxic.
- Yakima Firing Center Meter Station (Central Washington Representative Area) arsenic concentration 14 mg/kg **soil not toxic**.
- Spokane Mead Meter Station (Eastern Washington Representative Area) arsenic concentration 18.1 mg/kg – results inconclusive*.

*Note: The control sample for the lettuce bioassay sample from Spokane Mead Meter Station did not meet the minimum criteria for seeding growth and therefore the results were inconclusive. The lettuce bioassay test will be re-performed on the TEE sample from Spokane Mead.

Results of the lettuce bioassay tests indicate that the initially established soil cleanup level for arsenic of 20 mg/kg is protective of plants in the Northwest Washington Representative Area. For the Southwest Washington/Colombia River and Central Washington Representative Areas, the concentration analyzed represents the arsenic concentration that is protective of plants. No arsenic concentration protective of plants has yet been established for the Eastern Washington Representative Area.

4.2 Earthworm Bioassay Tests

Results of the earthworm bioassay tests conducted on soils from representative meter station facilities impacted with mercury indicate:

- Snohomish Compressor Station (Northwest Washington Representative Area) mercury concentration 2.5 mg/kg **soil not toxic**.
- Washougal Compressor Station (Southwest Washington/Columbia River Representative Area)

 mercury concentration 2.6 mg/kg soil not toxic.
- Ellensburg Meter Station (Central Washington Representative Area) mercury concentration 2.8 mg/kg **soil not toxic**.
- Star Road Meter Station (Eastern Washington Representative Area) mercury concentration 3.3 mg/kg – soil not toxic.

Results of the earthworm bioassay tests indicate that the initially established soil cleanup level for mercury of 2 mg/kg is protective of soil biota in each of the representative areas.

4.3 Earthworm 28-day Bioaccumulation Study

Results of the 28-day earthworm bioaccumulation study conducted using soils from representative meter station facilities impacted with arsenic indicate:

- For the Snohomish Compressor Station (Northwest Washington Representative Area), the calculated BAF was 0.16, and the calculated indicator concentrations for arsenic in soil that are considered protective of avian predators and mammalian predators are 58 mg/kg and 47 mg/kg, respectively.
- For the Washougal Compressor Station (Southwest Washington/Columbia River Representative Area), the calculated BAF was 0.26, and the calculated indicator concentrations for arsenic in soil that are considered protective of avian predators and mammalian predators are 45 mg/kg and 30 mg/kg, respectively.
- For the Yakima Firing Center Meter Station (Central Washington Representative Area), the calculated BAF was 0.53, and the calculated indicator concentrations for arsenic in soil that are considered protective of avian predators and mammalian predators are 29 mg/kg and 15 mg/kg, respectively.
- For the Spokane Mead Meter Station (Eastern Washington Representative Area), the calculated BAF was 0.13, and the calculated indicator concentrations for arsenic in soil that are considered protective of avian predators and mammalian predators are 63 mg/kg and 56 mg/kg, respectively.

Calculation worksheets for region-specific soil indicator concentrations that are considered protective of wildlife calculated using Site-specific BAF values determined from the 28-day earthworm bioaccumulation studies are presented as Attachment E.

4.4 Data Summary

Table 2 summarizes the cumulative TEE data collected during this study.

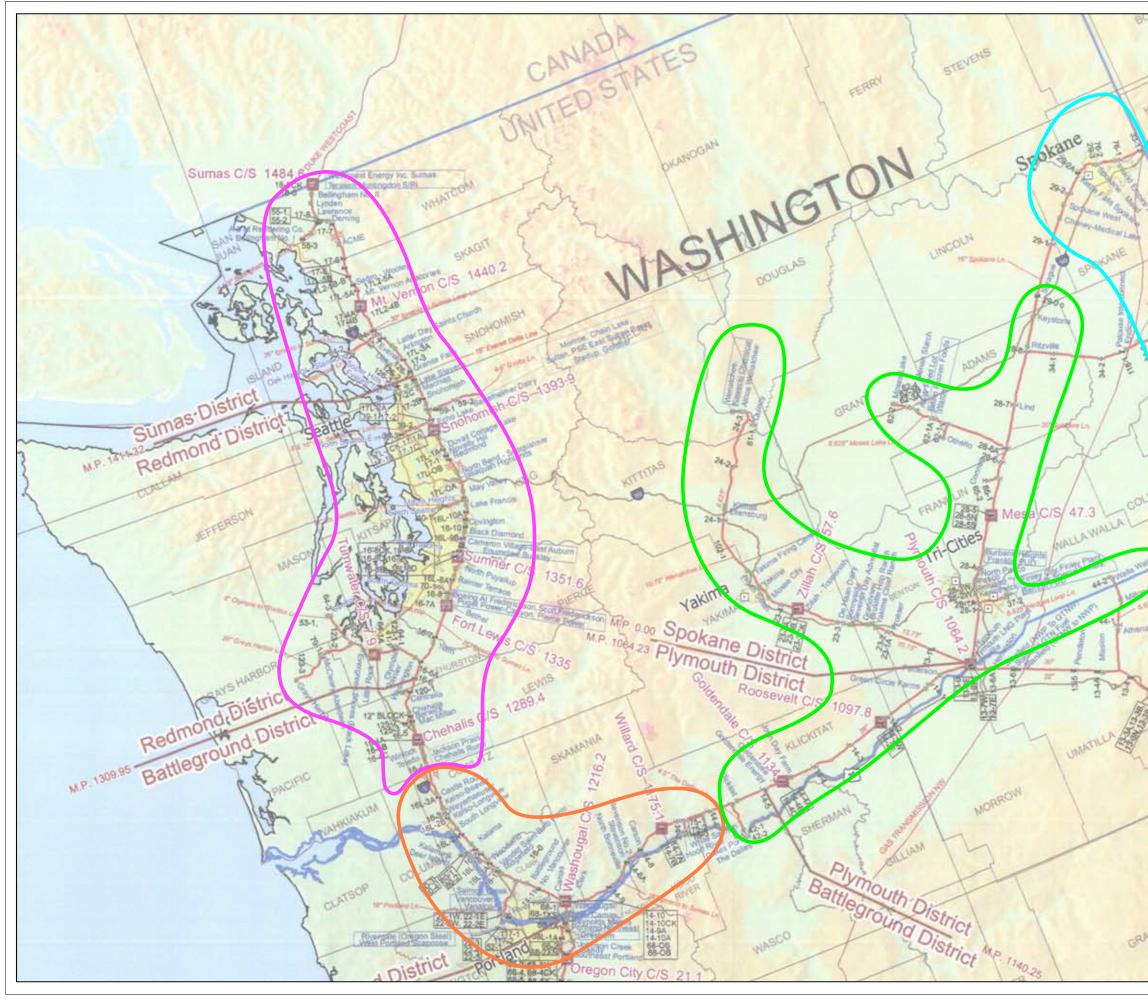
Based on the work documented herein, the TEE cleanup levels that are protective of all potential terrestrial and ecological receptors for the representative areas are as follows:

- Northwest Washington Representative Area
 - Arsenic 47 mg/kg
 - Mercury 2.5 mg/kg
- Southwest Washington/Colombia River Representative Area
 - Arsenic 16 mg/kg
 - Mercury 2.6 mg/kg
- Central Washington Representative Area
 - Arsenic 14 mg/kg
 - Mercury 2.8 mg/kg
- Eastern Washington Representative Area
 - Arsenic No Value Yet Established
 - Mercury 3.3 mg/kg

5.0 CONCLUSIONS

The conclusions of the modified Site-Specific TEE study conducted for the NWPL GP Meter Station Facilities in Washington State are as follows:

- Results of the lettuce and earthworm bioassay tests indicate that the established initial soil cleanup level for mercury of 2 mg/kg is protective of all potential ecological receptors at all of the selected representative meter station facilities.
- Results of the lettuce bioassay and earthworm bioaccumulation tests indicate that the established initial soil cleanup level for arsenic of 20 mg/kg is protective of potential ecological receptors in the Northwest Washington Representative Area.
- The TEE cleanup level for arsenic applicable to the Southwest Washington/Colombia River Representative Area is 16 mg/kg. This cleanup level is based on the protection of plants ecological pathway of concern.
- The TEE cleanup level for arsenic applicable to the Central Washington Representative Area is 14 mg/kg. This cleanup level is based on the protection of plants ecological pathway of concern.


- The TEE cleanup level for arsenic established for the Southwest Washington/Colombia River and Central Washington Representative areas are based upon the maximum concentrations detected in each region. If in the future, arsenic is detected at concentrations that exceed the current maximum concentrations, NWPL GP reserves the right to perform additional lettuce bioassay tests to assess the protectiveness of arsenic in soil for that particular region.
- Based on the work conducted as part of this TEE, no TEE cleanup level for arsenic was established for the Eastern Washington Representative Area. The absence of a TEE cleanup level for arsenic in the Eastern Washington Representative Area represents a data gap for this study. NWPL GP is currently working to fill this data gap and will submit an addendum to this report when complete.

6.0 CLOSING

The representative area data described herein, and the cleanup levels that are protective of the potential ecological receptors developed during the site-specific TEEs will be used as a reference for compliance during the assessment and remediation of the individual meter station facilities. The procedures and methods for assessing and remediating each individual meter station facility will be presented in an *Assessment Results and Remedial Action Report* submitted for each meter station facility. These reports will include a section referencing the TEE work documented herein.

7.0 REFERENCES

- Environmental Partners, Inc. (EPI)¹, Portnoy Environmental², Williams Gas Pipeline², 2011, Terrestrial Ecological Evaluation Program, Northwest Pipeline GP Meter Station Facilities Throughout Washington State; ¹Seattle, Washington; ²Houston, Texas; May.
- U.S. Environmental Protection Agency (EPA), 2005, Ecological Soil Screening Levels for Arsenic; Office of Solid Waste and Emergency Response, Washington, DC; March.

And a second	ASHINGTON ASHINGTON ASHINGTON ASHINGTON/COLUMBIA BASIN ASHINGTON/COLUMBIA BASIN ASHINGTON/C	FIGURE 1	"REPRESENTATIVE AREAS" SHEET DRAWN BY REVIEWED BY DATE 1 of 1 ARM EMK 01/13/1
ANT CO PLYMC OF ON	KEY: NORTHWEST WASHINGTON SOUTHWEST WASHINGTON/COLUMBIA BA	CENTRAL WASHINGTON	NOT TO SCALE

Table 1TEE Bioassay Soil and Bioaccumulation Confirmation Sample Results (in mg/kg)and Bioaccumulation Factor for ArsenicNorthwest Pipeline GPWasington State Meter Station Facilities

		TEE Sample	LAB Report	Mercury			Arsenic				
Region	Representative Facility			Original Concentration ^A	Bioassay Sample Collection Date	Confirmation Sample Analytical Result ^a	Original Concentration ^B	Bioassay Sample Collection Date	Confirmation Sample Analytical Result ^B	E. <i>fetida</i> 28-Day Analytical Result ^c	Bioaccumulation Factor ^D
Northwest Washington Representation Area	Snohomish Compressor Station	SH4-W64	105017	NA	NA	NA	44	5/3/11	48.1	7.8	0.16
Northwest \ Represent		SHSB2-3:18	105180	12	5/13/11	2.5	NA	NA	NA	NA	NA
Southwest Washington / Columbia River Basin Representation Area	Washougal Compressor Station	WS11-AM24	L517283	NA	NA	NA	26	5/17/11	16	4.1	0.26
		WSSB6-0910	L517283	2.7	5/17/01	2.6	NA	NA	NA	NA	NA
Central Washington Representation Area	Yakima Firing Center Meter Station	YFSS-D1	L517283	NA	NA	NA	<0.21	5/17/11	14	7.4	0.53
Central W Represent	Ellensburg Meter Station	ELSS-0810	L517283	2.3	5/17/11	2.8	NA	NA	NA	NA	NA
Eastern Washington Representation Area	Spokane Mead Meter Station	BKG	106382	NA	NA	NA	N/A	5/16/11	18.1	<2.3	0.13 ^E
Eastern W Represent	Star Road Meter Station	1807	105338	3.3	5/16/11	3.3	NA	NA	NA	NA	NA

Notes: All concentrations in milligrams per kilogram (mg/kg) unless otherwise indicated.

^AMercury analysis by EPA Method 1631E and Method 7471

^BArsenic analysis by Method 200.8

^cArsenic analysis by EPA Method 6010B

^DUnitless

^EBioaccumulation Factor calclated using the E. *foetida* 28-day detection limit.

Table 2 TEE Cleanup Level Summary Northwest Pipeline GP Wasington State Meter Station Facilities

Region	Representative Facility	сос	Concentration Protective of Soil Biota	Concentration Protective of Plants	Concentration Protective of Mamallian and Avian Predators	Final TEE Cleanup Level
Vashington ation Area	Snohomish	Arsenic	60ª	48.1	47	47
Northwest Washington Representation Area	Compressor Station	Mercury	2.5	2.5	5.5 ^b	2.5
Southwest Washington / Columbia River Basin Representation Area	Washougal Compressor Station	Arsenic	60ª	16	30	16
Southwest V Columbia F Represent		Mercury	2.6	2.6	5.5 ^b	2.6
Central Washington Representation Area	Yakima Firing Center Meter Station	Arsenic	60ª	14	15	14
Central Wa Represent	Ellensburg Meter Station	Mercury	2.8	2.8	5.5 ^b	2.8
ashington ation Area	Spokane Mead Meter Station	Arsenic	60ª	NVE	56	NVE
Eastern Washington Representation Area	Star Road Meter Station	Mercury	3.3	3.3	5.5 ^b	3.3

Notes: All concentrations in milligrams per kilogram (mg/kg) unless otherwise indicated.

a Book value for arsenic concentration protective of soil biota (MTCA Table 749-3)

b Book value for mercury concentration protective of mamalian and avian predators (MTCA Table 749-3)

NVE Lettuce bioassay control sample not valid, result inconclusive and therefore no value yet established

Attachment A

Terrestrial Ecological Evaluation Program

Northwest Pipeline GP Meter Station Facilities Throughout Washington State

Prepared For:

Northwest Pipeline GP/Williams Gas Pipeline P.O. Box 58900 Salt Lake City, Utah 84158

May 2011

Prepared By:

Williams Gas Pipeline P.O. Box 1396 Houston, Texas 77251-1396 (713) 215-4563

Environmental Partners, Inc. 295 NE Gilman Boulevard Suite 201 Issaquah, Washington 98027 (425) 395-0010

EPI Project Number: 47308.33

PARTNERS INC

homas C. Main For

Alan Hopkins, P.G. Portnoy Environmental Principal

1.0	INTR	NTRODUCTION1					
	1.1	Facility Description1					
	1.2	Conceptual Site Model					
2.0	PRO	BLEM FORMULATION					
	2.1	Primary TEE Exclusions					
	2.2	Simplified TEE Standards					
	2.3	Modified Model TEE based upon Site-Specific TEE					
		2.3.1 Exposure Pathways4					
		2.3.2 Receptors of Concern4					
		2.3.3 Toxicological Assessment					
3.0	MET	THODOLOGY					
	3.1	Soil Bioassay					
3.2 Bioaccumulation Factor Calculation							
4.0	SITE GROUPINGS AND REPRESENTATIVE SITES						
	4.1	Northwest Washington Representative Area					
	4.2	Southwest Washington/Columbia River Basin Representative Area					
	4.3	Central Washington Representative Area					
	4.4	Eastern Washington Representative Area10					
5.0	CLOSING1						

1.0 INTRODUCTION

This *Terrestrial Ecological Evaluation Program* document provides the rationale, methodology, and procedures proposed for Terrestrial Ecological Evaluations (TEEs) for Northwest Pipeline General Partnership (NWPL GP) meter station facilities, as required by the Model Toxics Control Act (RCW 70.105D) and its implementing regulations (WAC 173-340), which are collectively referred to herein as "MTCA".

NWPL GP is evaluating the environmental conditions at over 70 meter station facilities throughout Washington State, which have similar site conditions (*i.e.*, uncapped commercial/industrial type facilities, in rural locations, identical site usage, and the same single contaminant). The meter station facilities are where gas is being regulated and metered from the main supply pipelines to local distribution companies (LDCs) or a wholesale customers. The LDC then distributes the gas to local consumers.

NWPL GP originally submitted a draft *Terrestrial Ecological Evaluation Program* document to Mr. Dave Sternberg at Ecology on October 11, 2010. The October 11, 2010 document was disseminated to and reviewed by each of the four Ecology regional Voluntary Cleanup Program (VCP) managers for NWPL GP facilities. Consolidated comments were returned to NWPL GP via email on November 8, 2010.

NWPL GP submitted a *Technical Memorandum Re: Response to Ecology Comments – Terrestrial Ecological Evaluation Program: Northwest Pipeline GP Meter Station Facilities Throughout Washington State dated January 13, 2011 (Technical Memorandum). The Technical Memorandum was again disseminated to and reviewed by each of the four Ecology regional VCP managers. Ecology comments and concerns were consolidated and communicated via Letter <i>Re: Transmittal of Ecology Comments on the* [Technical Memorandum] dated March 29, 2011.

This revised document incorporates each of the comments and concerns raised by Ecology in the March 29, 2011 transmittal letter.

This document has been prepared in order to evaluate NWPL GP meter station facilities for TEE compliance for the two confirmed contaminants of concern (COCs); inorganic mercury and arsenic. No other COCs have been identified for NWPL GP meter station facilities. The procedures and methods for assessing each individual meter station facility will be presented in an *Assessment Results and Remedial Action Report* submitted for each meter station facility.

1.1 Facility Description

Meter station facilities are small (typically less than ½ acre) and are relatively simple to assess and remediate. A meter station typically consists of several pipe runs and a small meter building or canopy cover, within a fenced, gravel-covered lot. Meter stations are typically located proximal to the main pipeline. The meter stations have controlled access and the general maintenance of these facilities includes active housekeeping, maintenance such as weed suppression, and maintenance of the integrity of the fencing, gates, and interior buildings/structures.

Based on work conducted since 2005 and prior knowledge of site conditions, a thorough understanding of typical site conditions such as mode of release, vertical and horizontal migration of impacts, hot spots, and contaminant distribution has been formed.

1.2 Conceptual Site Model

The principal COC at NWPL GP meter station facilities is inorganic mercury. The primary source of mercury releases has been accidental spillage of inorganic mercury during historic maintenance and calibration of a certain type of differential pressure manometer (meters) that contained mercury (*i.e.*, American A-88 meters). NWPL GP used such manometers to measure the differential pressures across orifice plates in order to calculate flow volumes through the pipelines, laterals, and taps that supply its customers. It is important to note that not all of the manometers historically used by NWPL GP contained mercury and that the installation of manometers that utilized mercury was phased out in the mid-to-late 1980's.

A secondary, and less common source of potential mercury releases at NWPL GP meter station facilities has been from "thermowells". Thermowells are test tube-shaped "wells" installed in the meter station piping into which thermometers were placed to measure gas temperatures. In some instances, mercury was also placed in the well to improve the thermal conductance between the well and thermometer. The practice of placing mercury in thermowells varied regionally along the NWPL GP pipeline system. The thermowells did not contain large amounts of mercury, but there was the potential for some spillage or drippage when a thermowell was filled and/or when a thermometer was inserted and/or removed. The use of mercury in thermowells was phased out by 1993.

Both the former A-88 meters and the thermowells are point sources of release. These releases have generally been to either bare soil or gravel covered surfaces beneath and adjacent to the meters and above grade portions of the piping runs. These areas are typically either under cover of a supported metal roof or inside a metal building to protect the equipment from the weather.

A less common COC at NWPL GP meter station facilities is arsenic. Although the exact source of arsenic is not known, releases of arsenic appear to be operationally related, surficial releases. Arsenic impacts have typically been identified near buildings and operational equipment. Concentrations are highest at or near the ground surface and attenuate quickly with depth.

2.0 PROBLEM FORMULATION

MTCA requires the completion of a TEE in accordance with WAC 173-340-7490.

2.1 Primary TEE Exclusions

The NWPL GP meter station facilities typically do not qualify for the primary exclusions from the TEE documented in WAC 173-340-7491(1) because of their often rural locations, uncapped site conditions (*i.e.*, typically the facilities are gravel-covered), and the contamination is surficial in nature (*i.e.*, typically less than 3 feet). Therefore, further evaluation is required.

2.2 Simplified TEE Standards

On June 23, 2010, NWPL GP participated in a video conference meeting with the Ecology Voluntary Cleanup Program (VCP) managers to present a proposed "model approach" program by which NWPL GP meter stations could qualify for a Simplified TEE based on the qualifying regulations documented in WAC 173-340-7491(2)(a). While Ecology agreed that on an individual basis certain meter station facilities *may* qualify for a Simplified TEE, Ecology had too many concerns to approve the program as a whole using the model approach presented.

2.3 Modified Model TEE based upon Site-Specific TEE

Since Ecology had concerns with approving a model approach for justifying a Simplified TEE for meter station facilities, NWPL GP is proposing a modified model approach TEE program herein based upon the Site-Specific TEE procedures documented in WAC 173-340-7493.

As previously indicated, the primary COC at the meter stations is inorganic mercury and a less common COC is arsenic.

Inorganic mercury soil impacts at the meter stations have been characterized to the MTCA Method A Soil Cleanup Level for Unrestricted Land Uses of 2 milligrams/kilogram (mg/kg), which is the initially selected cleanup level for NWPL GP meter station facilities. The Ecological Indicator Soil Concentrations for Protection of Terrestrial Plants and Animals (Table 749-3) are specified as 0.3 mg/kg, 0.1 mg/kg, and 5.5 mg/kg for Plants, Soil Biota, and Wildlife, respectively. Since wildlife receptors are protected at a soil concentration greater than the initially selected cleanup level of 2 mg/kg, facilities that are in compliance with the 2 mg/kg mercury cleanup level will be protective of wildlife receptors. However, because the selected cleanup level of 2 mg/kg exceeds the limits established for the protection of plants and soil biota, it is proposed to perform a modified Site-Specific TEE according to WAC 173-340-7493 for these potential exposures.

Arsenic soil impacts at the meter stations have been characterized to the MTCA Method A Soil Cleanup Level for Unrestricted Land Uses of 20 mg/kg, which is the initially selected cleanup level for NWPL GP meter station facilities. The Ecological Indicator Soil Concentrations for Protection of Terrestrial Plants and Animals (Table 749-3) are specified as 10 mg/kg, 60 mg/kg, and 7 mg/kg for Plants, Soil Biota, and

Wildlife, respectively. Since soil biota receptors are protected at a soil concentration greater than the initially selected cleanup level of 20 mg/kg, facilities that are in compliance with the 20 mg/kg arsenic cleanup level will be protective of soil biota receptors. However, because the selected cleanup level of 20 mg/kg exceeds the limits established for the protection of plants and wildlife, it is proposed to perform a modified Site-Specific TEE according to WAC 173-340-7493 for these potential exposures.

2.3.1 Exposure Pathways

The primary exposure pathway for inorganic mercury and arsenic at the NWPL GP meter stations occurs via direct contact. The contact with contaminated soil can directly impact vegetation and soil biota. Indirect impacts can occur when animals feed on affected media, resulting in bioaccumulation of contaminants through the food chain. These secondary receptors could include ground-feeding birds and mammals, and small-mammal predators. Plants exposed to contaminants may directly uptake the contamination from the soil in their roots. Animals may be exposed from direct contact with contaminated soil or by consuming affected plants and/or soil biota.

2.3.2 Receptors of Concern

The receptors of concern differ for mercury and arsenic. The receptors of concern for both of these compounds are summarized below.

2.3.2.1 Receptors of Concern – Mercury

As indicated above, the inorganic mercury cleanup level for NWPL GP meter station facilities is 2 mg/kg. The inorganic mercury ecological indicator soil concentration for protection of wildlife receptors is 5.5 mg/kg, which is based on Ecology's Wildlife Exposure Model for Site-specific Evaluations (Table 749-4). Therefore, wildlife receptors such as potentially exposed avian or mammalian receptors are not considered receptors of concern at NWPL GP meter station facilities that meet the 2 mg/kg cleanup level.

Assuming that the 2 mg/kg selected cleanup level for inorganic mercury has been achieved, the primary receptors of concern for mercury include vascular vegetation and soil biota.

2.3.2.2 Receptors of Concern – Arsenic

The arsenic cleanup level for NWPL GP meter stations is 20 mg/kg. The arsenic ecological indicator soil concentration for protection of soil biota receptors is 60 mg/kg. Therefore, soil biota receptors such are not considered receptors of concern at NWPL GP meter station facilities that meet the 20 mg/kg arsenic cleanup level.

Assuming that the 20 mg/kg selected cleanup level for arsenic has been achieved, the primary receptors of concern for arsenic include vascular vegetation and wildlife.

2.3.3 Toxicological Assessment

The mercury cleanup levels established in MTCA on Table 749-3 for the TEE are based on toxicological effects described in the EPA document *Mercury Study: Report to Congress, Volume VI: An Ecological Assessment for Anthropogenic Mercury Emissions in the United States* (EPA-452/R-97-008, December 1997), which stated that "earthworms accumulated an average of 21.3 times the mercury concentration of the soil to which they were exposed" (Beyer *et al.*, 1985).

Much of the research done on the effects of mercury toxicity is based on methylmercury. Methylmercury is a neurotoxin capable of impacting reproductive health, causing nervous tissue and liver damage, and impairing motor functions in birds and mammals (EPA-425/R-97-008).

Since the impacts at NWPL GP meter stations are from inorganic mercury, which can be converted to the more toxic form of methylmercury through biological methylation, collecting site-specific toxicological data is essential for determining if the initially selected cleanup level of 2 mg/kg is protective of vascular vegetation and soil biota.

An initial toxicological literature study was performed to determine if arsenic could be ruled out for any of the potential receptors of concern. Based on the toxicological information obtained, it is unlikely that arsenic can be ruled out of TEE consideration. The sampling proposed herein will provide empirical site- and compound-specific toxicological data to determine protective concentrations of arsenic. This data will be more beneficial than performing an overly exhaustive literature study for arsenic.

3.0 METHODOLOGY

The proposed modified Site-Specific TEE will identify and address the issue of soil toxicity at the NWPL GP meter stations and its effects on vascular plants and soil biota.

The approach proposed herein is to divide Washington State into representative areas based on regional climate and geography and to collect empirical data at a representative facility within each area. The other meter stations assessed and remediated within a given representative area will utilize the data collected at the area's representative facility for determining compliance with TEE.

The proposed division of Washington State includes four ecological regions, focusing mainly on geographic location and its associated climate systems. These proposed representative areas include:

- a. Northwest Washington: located in the Puget Sound trough with a maritime climate, forested foothills, and abundant riparian habitat. Experiences high volumes of rainfall, averaging 40-80-inches annually. Significant development has occurred along the Interstate-5 corridor, which the NWPL GP pipeline parallels.
- b. Southwest Washington/Columbia River Basin: located to the west of the Cascade Mountain Range. Climate is similar to Northwest Washington; however, rainfall is slightly greater, receiving an annual precipitation of 55-140-inches.
- c. Central Washington: located to the east and in the rain shadow of the Cascade Mountain Range and stretches east toward the Columbia Plateau of central Washington. Precipitation averages 20-inches annually, encouraging growth of shrub-steppe vegetation.
- d. Eastern Washington: located near the Washington/Idaho border, near the foothills of the Canadian Rocky Mountain Range. Precipitation averages 30-inches annually and vegetation ranges from a sage-steppe ecosystem to evergreen forests.

The proposed representative areas as they relate to the NWPL GP pipeline are depicted on Figure 1.

3.1 Soil Bioassay

Soil bioassay analysis will be necessary to evaluate the protectiveness of mercury concentrations for vascular plants and soil biota. Bioassay analysis will be necessary to evaluate the protectiveness of arsenic concentrations for vascular plants.

In order to address whether chemical impacts to representative soils are protective of vascular plants and soil biota, soil samples will be subjected to bioassay screening as specified in WAC 173-340-7493(3)(b)(i). The samples for bioassay screening analyses will be collected from areas where the concentrations of impacts are representative of the initial cleanup levels selected for each compound

(*i.e.*, 2 mg/kg for mercury and 20 mg/kg for arsenic). The previously collected assessment data will be used to determine the sampling location. No soil dilution will be performed prior to analysis.

In order to confirm the contaminant concentration prior to bioassay analysis, a sample will be submitted from the bioassay sample collected and will be analyzed for mercury using EPA Method 7471 and arsenic using EPA Method 6010B.

Bioassay tests proposed herein are to be performed on concentrations of soil that are at, or slightly higher than the initially selected cleanup level of 2 mg/kg for mercury and 20 mg/kg for arsenic, meaning that soils that are representative of the cleanup level for each COC, or slightly more contaminated than post-remedial concentrations, will be used for the bioassays. Therefore, if the bioassays on the more-highly contaminated soil are shown to be protective of ecological risks, soils from sites remediated to 2 mg/kg for mercury and 20 mg/kg for arsenic are also considered protective.

For purposes of this TEE, the acceptable range of concentrations for performing the bioassay analysis shall be considered between 2 and 6 mg/kg for mercury, and between 20 mg/kg and 60 mg/kg for arsenic.

If the bioassay screening analysis determines that the soils are not protective of plants and/or soil biota for a particular region, then serial dilutions of samples will be performed to determine concentrations that are protective. If serial dilutions are necessary, contaminant analysis will be performed on the diluted soils to confirm the concentration of COCs prior to performing additional bioassay analysis.

The methodology for the soil bioassay for plants will be in accordance with the Ecology Publication No. 96-324, *Early Seedling Growth Protocol for Soil Toxicity Screening*. The methodology for soil bioassay for soil biota will be in accordance with the Ecology Publication No. 96-327, *Earthworm Bioassay Protocol for Soil Toxicity Screening*. The soil bioassay analysis will be performed by Nautilus Environmental, a Department of Ecology accredited laboratory located in Tacoma, Washington.

3.2 Bioaccumulation Factor Calculation

As presented above, arsenic is the only COC applicable to potential wildlife receptors and requires further evaluation for protectiveness.

For wildlife receptors, the surrogate species are the American Robin and the Shrew; both are ground-feeding carnivorous species. Therefore, in accordance with Ecology's Wildlife Exposure Model for Site-Specific Evaluations (WEM; Table 749-4), the potential exposure pathway for these receptors is through consumption of worms living in contaminated soil. The driving factor in calculating a site-specific indicator concentration using the WEM is the bioaccumulation factor (BAF) for worms living in the contaminated media. In order to calculate site-specific indicator concentrations for wildlife receptors, site-specific BAFs for arsenic will be assessed as allowed by WAC 173-340-7493(3)(c)(i).

The BAFs for biota will be measured by collecting and analyzing worm samples living in representative arsenic-contaminated soils. If worms are not available in the representative soils, other biota (*e.g.*, spiders, potato bug, etc.) will be collected and analyzed in lieu of worms.

If no biotas are present in the representative soils, worms will be grown in contaminated media and then analyzed for arsenic concentration. Using previously collected assessment data to determine the sampling location, contaminated media will be collected for purposes of growing worms. In order to confirm the contaminant concentration prior to growing worms, a sample will be submitted from the contaminated media collected and analyzed for arsenic.

Methodology for growing worms in contaminated media will be in accordance with the *Standard Guide for Conducting Laboratory Soil Toxicity or Bioaccumulation Tests with the Lumbricid Earthworm Eisenia Fetida* (ASTM E1676-04, 2007).

After growing the worms in the contaminated media using the above method, the worms will be analyzed for arsenic.

The BAFs are determined by dividing the concentrations of arsenic within the biota samples by the concentration within the soil in which the biota were collected or grown. The resulting BAFs will then be used in the WEM equations to calculate site-specific concentrations that are protective of wildlife receptors.

4.0 SITE GROUPINGS AND REPRESENTATIVE SITES

The following summarizes the NWPL GP proposed representative areas, the associated NWPL GP meter station facilities, and the proposed representative facility for each area; see **Figure 1**.

4.1 Northwest Washington Representative Area

The representative facility for the Northwest Washington Representative Area is the Snohomish Compressor Station for both arsenic and mercury.

Data collected at this facility will be representative of the following NWPL GP meter station facilities:

- Chehalis
- Evergreen Shores (Black Lake)
- McCleary Aberdeen
- North Seattle Everett
- North Tacoma
- Oak Harbor Stanwood
- Olympia
- Sedro Woolley
- Shelton
- South Seattle
- South Tacoma
- Toledo

4.2 Southwest Washington/Columbia River Basin Representative Area

The representative facility for the Southwest Washington/Columbia River Basin Representative Area is the Washougal Compressor Station for both arsenic and mercury:

Data collected at this facility will be representative of the following NWPL GP meter station facilities:

- Deer Island
- Kalama
- Stevenson
- Stevenson #2
- Vanalco
- Vancouver
- Washougal

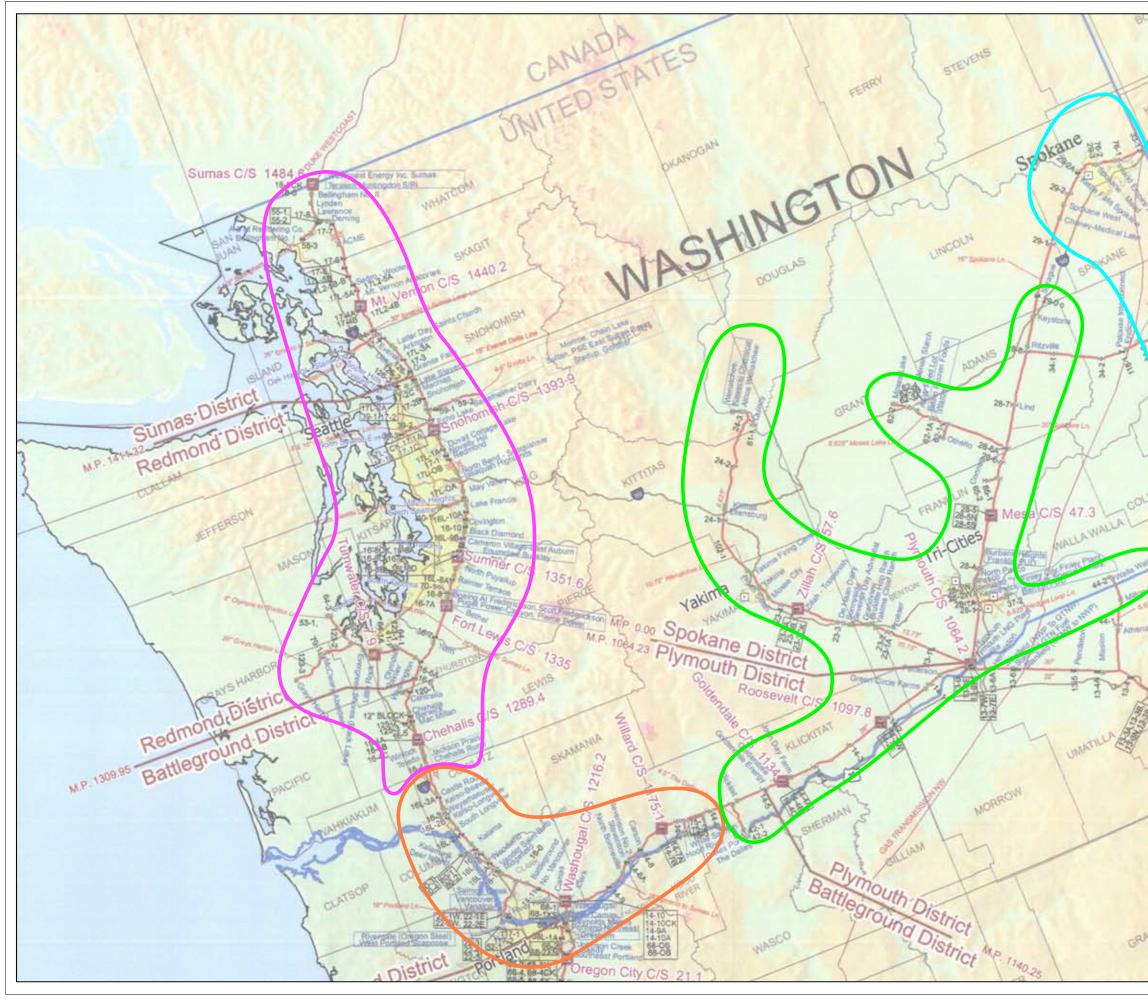
4.3 Central Washington Representative Area

The representative facility for the Central Washington Representative Area is Yakima Firing Center Meter Station for arsenic and Ellensburg Meter Station for mercury.

Data collected at these facilities will be representative of the following NWPL GP meter station facilities:

- Alcoa Wenatchee
- Burbank Heights
- Connell
- Ellensburg
- Goldendale*
- Grandview*
- John Day Dam*
- Kawecki Chemical
- Kennewick
- Klickitat*
- Lind
- Menan Starch
- Moses Lake
- Pasco
- Prosser*
- Quincy
- Ritzville*
- Sandvik Special Metals
- Sunnyside
- Unocal Finley
- Walla Walla
- Warden
- Wenatchee
- Yakima*
- Zillah Toppenish*

4.4 Eastern Washington Representative Area


The representative facility for the Eastern Washington Representative Area is Spokane Mead Meter Station for arsenic and Cheney Medical Lake Meter Station for mercury:

Data collected at these facilities will be representative of the following NWPL GP meter station facilities:

- Cheney Medical Lake
- Colfax
- Genesee
- Pullman
- Spokane West
- Spokane Mead

5.0 CLOSING

Upon written acceptance of this proposed modified Site-Specific TEE program by Ecology, an individual TEE will be submitted for each meter station facility/site using this document and the representative facility data as a reference for compliance.

And a second	ASHINGTON ASHINGTON ASHINGTON ASHINGTON/COLUMBIA BASIN ASHINGTON/COLUMBIA BASIN ASHINGTON/C	FIGURE 1	"REPRESENTATIVE AREAS" SHEET DRAWN BY REVIEWED BY DATE 1 of 1 ARM EMK 01/13/1
ANT CO PLYMC OF ON	KEY: NORTHWEST WASHINGTON SOUTHWEST WASHINGTON/COLUMBIA BA	CENTRAL WASHINGTON	NOT TO SCALE

Attachment B

STATE OF WASHINGTON

19 2011

7-6300

MAY

DEPARTMENT OF ECOLOG

PO Box 47775 • Olympia, Washington 98504-7775 • (360)

May 13, 2011

Mr. Aaron Galer, Environmental Scientist III Williams - Northwest Pipeline 295 Chipeta Way # 1 Salt Lake City, UT 84108-1285

Mr. Mark S. Nelson, P.E., Group Leader, Environmental Remediation Williams Gas Pipeline P.O. Box 1396 Houston, TX 77251

Re: Transmittal of Ecology Approval and Comment on the revised *Terrestrial Ecological Evaluation Program, Northwest Pipeline GP Meter Station Facilities throughout Washington State,* April 2011, prepared by Williams Gas Pipeline; Environmental Partners, Inc; and Portnoy Environmental.

Dear Mr. Galer and Mr. Nelson:

Thank you for submitting the above-referenced revised Terrestrial Ecological Evaluation (TEE) Program document in response to our comments. Ecology approves the above-referenced document <u>provided</u> that the following comment is incorporated:

• The 3rd paragraph of Section 3.1 states that in order to confirm the contaminant concentration prior to bioassay analysis, samples will be analyzed for mercury and arsenic. However, a similar statement is not provided in Section 3.2. Please also add this to Section 3.2.

If you have any questions, please contact me at (360) 407-6247 or via e-mail at stee461@ecy.wa.gov.

Sincerely,

SStel

Steve Teel, LHG Site Manager/Hydrogeologist Toxics Cleanup Program Southwest Regional Office

ST/ksc:TEE M-S approval May 2011

By certified mail: (7010 0780 0002 3400 6118 // 7010 0780 0002 3400 6088)

cc: Eric Koltes, Environmental Partners, Inc. Mr. Alan Hopkins, P.G., Portnoy Environmental Scott Rose – Ecology-SWRO Dale Myers – Ecology-NWRO Norm Peck – Ecology-CRO Jason Shira – Ecology-CRO Patti Carter – Ecology-ERO Mike Hibbler – Ecology-ERO Brendan Dowling – Ecology-ERO

Attachment C

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

May 3, 2011

Clint Moseley, Project Manager Portnoy Environmental 1414 W Sam Houston Pkwy N, Suite 170 Houston, TX 77043

RE: Snohomish TEE 534512-RXG99, F&BI 105017

Dear Mr. Moseley:

Included are the results from the testing of material submitted on May 3, 2011 from the Snohomish TEE 534512-RXG99, F&BI 105017 project. There are 7 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Eric Koltes, Tim Jenkins, Alan Hopkins, Mike Portnoy PRT0503R.DOC

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 3, 2011 by Friedman & Bruya, Inc. from the Portnoy Environmental Snohomish TEE 534512-RXG99 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	<u>Portnoy Environmental</u>
105017-01	SH3-AX36
105017-02	SH4-W64
105017-03	SH9-Q39

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	SH3-AX36 05/03/11 05/03/11 05/03/11 Soil mg/kg (ppm)	Client: Project: Lab ID: Data File: Instrument: Operator:	Portnoy Environmental Snohomish TEE 534512-RXG99 104017-01 104017-01.016 ICPMS1 AP
Internal Standard: Indium	% Recovery: 93	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration mg/kg (ppm)		
Arsenic	40.6		

2

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	SH4-W64 05/03/11 05/03/11 05/03/11 Soil mg/kg (ppm)	Client: Project: Lab ID: Data File: Instrument: Operator:	Portnoy Environmental Snohomish TEE 534512-RXG99 104017-02 104017-02.017 ICPMS1 AP
Internal Standard: Indium	% Recovery: 95	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration mg/kg (ppm)		
Arsenic	48.1		

3

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	SH9-Q39 05/03/11 05/03/11 05/03/11 Soil mg/kg (ppm)	Client: Project: Lab ID: Data File: Instrument: Operator:	Portnoy Environmental Snohomish TEE 534512-RXG99 104017-03 104017-03.018 ICPMS1 AP
Internal Standard: Indium	% Recovery: 88	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration mg/kg (ppm)		
Arsenic	2.17		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Analysis For 100	tal Mictalo Dy Hi		
Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 05/02/11 05/03/11 Soil mg/kg (ppm)	Client: Project: Lab ID: Data File: Instrument: Operator:	Portnoy Environmental Snohomish TEE 534512-RXG99 I1-307 mb I1-307 mb.015 ICPMS1 AP
Internal Standard: Indium	% Recovery: 91	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 05/03/11 Date Received: 05/03/11 Project: Snohomish TEE 534512-RXG99, F&BI 105017

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code	: 104291-22	(Matrix Spi	ike)	Percent	Percent		
Analyte	Reporting Units	Spike Level	Sample Result	Recovery MS	Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Arsenic	mg/kg (ppm)) 10	6.07	89 b	89 b	44-151	0 b

Laboratory Code: Laboratory Control Sample

Laboratory	Out. Habbilatory cont		Percent	
Analyte	Reporting Units	Spike Level	Recovery LCS	Acceptance Criteria
Arsenic	mg/kg (ppm)	10	99	80-120

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

A1 – More than one compound of similar molecule structure was identified with equal probability.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte indicated may be due to carryover from previous sample injections.

d - The sample was diluted. Detection limits may be raised due to dilution.

ds - The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.

dv - Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.

fb - Analyte present in the blank and the sample.

fc – The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.

ht - Analysis performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j – The result is below normal reporting limits. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.

jr - The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the compound indicated is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc – The sample was received in a container not approved by the method. The value reported should be considered an estimate.

pr – The sample was received with incorrect preservation. The value reported should be considered an estimate.

ve - Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

105017			ME	057031	(1)	4	ALI	
Portnoy Environmental	Alternate billing information: Direct Bill to Mark Nelson	nformation:	Analvsis/	Analvsis/Container/Preservative	sservative		ENVIRON OF CONTRACT Page of Dr. Page of Dr	10
	Report to:	Alan Hopkins				12065 Lebanon Road	anon Road	
	Email to:	NWPL TEAM	EDD			Mt Juliet, TN 37122	N 37122	
Project Project Description: Snohowitch TEE	City/Sate Collected				, à l	Phone (61	Phone (615) 758-5858 Dhone (810) 767 - 5850	
Phone: Client Project #: FAX:	ESC Key:	PORTENVTX- WAHG	2 0051	· .	· · · · · · · · · · · · · · · · · · ·	FAX (61	FAX (615) 758-5859	
Collected by: C . Mose fer Site/Facility ID#:	P.O.4	534512-RXG99	S-M	:				
Collected by (signature): Rush? (Lab N	-	Date Results Needed:	ou 6	1999 1999 1999 1999	IZ	GeCode portenvtx		
	Same Day200% Next Day100% Two Day50%	Emai?NoYes of FAX? No Yes of	124-C			Template/Prelogin		
Packed on Ice N Y CompGrab	Matrix [*] Depth					Shipped Via: Remarka/Contaminant	Sample # (lab only)	
9	Soil	1 1/2/5			10	1-per cm	いたたたい	
H4- W64			·	· · · · · · · · · · · · · · · · · · ·	10 S	5/1/11		
5H9- M39			7		1 1 0 3			
			· · ·		1			
					4			
					1. N			
*Matrix: SS - SoiVSolig GW - Groundwater WW - WasteWater	- MO	Drinking Water OT - Other		a	114	Te	Temp	
Remarks:		1			w.n.t.	O	Other	
Relinquished fiy: (Signature)	11 TIME RACE	Received by (Signature)		Samples relurned via (10+4)	ed via () UP-8 ourier ()		(lab use only)	
Relinquished by: (Slower Slower Slowe	1 Time Hacaly	a land Erred		Temp:	Bottos Ferra			
Relinquished by: (Signated)		Nacalvad Britab bya(Signature)		Dete:			NCE	
					Samp ¹	Samples received at A	0. 41	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

May 17, 2011

Eric Koltes, Project Manager Environmental Partners, Inc. 295 NE Gilman Blvd., Suite 201 Issaquah, WA 98027

RE: Snohomish C/S Job 47308.36, F&BI 105180

Dear Mr. Koltes:

Included are the results from the testing of material submitted on May 13, 2011 from the Snohomish C/S Job 47308.36, F&BI 105180 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colorf

Michael Erdahl Project Manager

Enclosures EPI0517R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 13, 2011 by Friedman & Bruya, Inc. from the Environmental Partners Snohomish C/S Job 47308.36, F&BI 105180 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Environmental Partners
105180-01	SHSB2-3:18

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/17/11 Date Received: 05/13/11 Project: Snohomish C/S Job 47308.36, F&BI 105180 Date Extracted: 05/17/11 Date Analyzed: 05/17/11

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Total Mercury

Sample ID Laboratory ID

2.5

SHSB2-3:18 105180-01 1/2

Method Blank

< 0.1

ENVIRONMENTAL CHEMISTS

Date of Report: 05/17/11 Date Received: 05/13/11 Project: Snohomish C/S Job 47308.36, F&BI 105180

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Laboratory Code: 105187-03 (Matrix Spike)

Laboratory Code:	100107-00 (11140)	IIX OPIRC	/	Percent	Percent		
Analyte	Reporting Units	Spike Level	Sample Result	Recovery MS	Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Mercury	mg/kg (ppm)	0.125	<0.1	101	100	45-162	1

Laboratory Code: Laboratory Control Sample

			Percent		
Analyte	Reporting Units	Spike Level	Recovery LCS	Acceptance Criteria	
Mercury	mg/kg (ppm)	0.125	107	63-144	

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

A1 – More than one compound of similar molecule structure was identified with equal probability.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte indicated may be due to carryover from previous sample injections.

d - The sample was diluted. Detection limits may be raised due to dilution.

ds - The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.

dv - Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.

fb - Analyte present in the blank and the sample.

fc – The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.

ht - Analysis performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j – The result is below normal reporting limits. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.

jr - The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the compound indicated is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc – The sample was received in a container not approved by the method. The value reported should be considered an estimate.

pr – The sample was received with incorrect preservation. The value reported should be considered an estimate.

ve - Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

081501			SAMH	SAMPLE CHAIN UT	HAI	<u>C</u>	Ś	8	NUCLI	3	MG	5		111-	-		
	LALTE S	<i>,</i> ,	SA	SAMPLERS (signature)	signature)	M	X	(PAGE #		JRNAR	TURNAROUND TIME	
) (- (-	밁	PROJECT ID/ADDRESS	ADDRE	SS				OL	JOB #			Standard			
Sompany Environmental Farmers, mic	Farme	rs, IIIc.		HSIMOHONSH	ISH	5/0	~		47	47308.	36		Rush o	Rush charges authorized by:	authoriz	ed by:	
uddress 295 NE Gilman Blvd.	Blvd.		S	SITE NAME				-		REMARKS	KS			6	AMPLE	SAMPLEDISPOSAL	
Sity, State, ZIP Issaquah, WA 98027)8027	ie (TEE										Dispose after 30 days Return samples	nples	ays	
395-0010	Fax # _(4	(425) 395-0011											1	Will call with instructions	th instru	ctions	
			2					Þ	ANALYSES	SES R	EQUE	REQUESTED			ŀ		
Sample ID		Date Sampled	Time Sampled	Matrix	# of jars	8015 - GRO	8015 - DRO	BTEX by 8021B	BTEX by 602	VOC by 8260C	VOC by 524	MERCURY				Notes	
SH582-3:18	10	5/13/11	1300	2105								×					
						┢	\uparrow										
							1	1									
					+	╈		\uparrow	T	T							
	T				+-	╈	+	\uparrow	+	T	T	I					
	T	T		-		┽	+	\dagger	╈	+	1						
	T	•				-+											
						-	\vdash		$\left[\right]$			T				-	
			•				╀╴	+	+-		+						
9										\top		•					
							,	\vdash	\vdash								•
Friedman & Bruya, Inc.		S	SIGNATURE				PRINT	NAME	m		$\left \right $		COMPANY	NY		AI	TIME
3012 16th Avenue West	Relinguished	uishedby:	Hot .		AS	Ashley	Hor	A				F				513/11	4:38
Seattle, WA 98119-2029	Received the Relinquished	Received by:	lent		N	Michael	Ede	Z				K.K.	4			11/2/1	-4:3
Fax (206) 283-5044	Receiv	Received by:								Sai	nples	Samples received at H	ved a	ut. H	00		
÷										×							

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Alan Hopkins and NWPL Team Portnoy Environmental 1414 W. Sam Houston Pkwy. N., Suite 170 Houston, TX 77043

Report Summary

Friday May 27, 2011

Report Number: L517283 Samples Received: 05/20/11 Client Project:

Description:

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Tom Mellette , ESC Representative

Laboratory Certification Numbers

Entire Report Reviewed By:

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - I-2327, CT - PH-0197, FL - E87487 GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375/DW21704, ND - R-140 NJ - TN002,NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910, NV - TN000032008A, TX - T104704245, OK-9915

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences. Note: The use of the preparatory EPA Method 3511 is not approved or endorsed by the CA ELAP.

This report may not be reproduced, except in full, without written approval from ESC Lab Sciences. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Page 1 of 13

TOUR LAB OF CHOICE					Mt. Juli (615) 75 1-800-76 Fax (615	57-5859 5) 758-5859 62-081428	
Alan Hopkins and NWPL Team Portnoy Environmental 1414 W. Sam Houston Pkwy. N., Suit Houston, TX 77043		ORT OF .	ANALYSIS	May	27,2011		
Date Received : May 20, Description :	2011				Sample # : ID :	L517283	3-01
Sample ID : YFSS-1110					ect # :		
Collected By : Collection Dat e : 05/19/11 00:00						Method	Date
Parameter	W.Result	RDL	D.Result	RDL	Units		
Total Solids	96.		96.		6	2540G	05/27/11
Arsenic	12.	1.0	12.	1.0	mg/kg	6010B	05/25/11

BDL - Below Detection Limit RDL - Detection Limit- Estimated Quantitation Limit(EQL) Note: The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC. Reported: 05/27/11 13:39 Printed: 05/27/11 13:39

Page 2 of 13

VOUR LAB OF CHOICE					Mt. Jul: (615) 75 1-800-70 Fax (615	67-5859 5) 758-5859 . 62-081428	
Alan Hopkins and NWPL Team Portnoy Environmental 1414 W. Sam Houston Pkwy. N., Suit Houston, TX 77043		PORT OF ;	ANALYSIS	May 2	27,2011		
Date Received : May 20, Description :	2011			ESC S	Sample # : ID :	L51728	3–02
Sample ID : YFSS-D1 Collected By : Collection Date : 05/19/11 00:00				Proje	ect # :		
Collection Dat e : 05/19/11 00:00 Parameter	W.Result	RDL	D.Result	RDL	Units	Method	Date
Total Solids	97.		97.		뭥	2540G	05/27/11
Arsenic	14.	1.0	14.	1.0	mg/kg	6010B	05/25/11

BDL - Below Detection Limit RDL - Detection Limit- Estimated Quantitation Limit(EQL) Note: The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC. Reported: 05/27/11 13:39 Printed: 05/27/11 13:39

Page 3 of 13

TOUR LAB OF CHOICE					Mt. Jul: (615) 7 1-800-70 Fax (61	67-5859 5) 758-5859 . 62-081428	
Alan Hopkins and NWPL Team Portnoy Environmental 1414 W. Sam Houston Pkwy. N., Suit Houston, TX 77043		PORT OF .	ANALYSIS	May	27,2011		
	2011				Sample # :	L517283	3-03
Sample ID : YFSS-D2					ID : ect # :		
Collected By : Collection Date : 05/19/11 00:00							
Parameter	W.Result	RDL	D.Result	RDL	Units	Method	Date
Total Solids	96.		96.		24	2540G	05/27/11
Arsenic	8.4	1.0	8.7	1.0	mg/kg	6010B	05/25/11

BDL - Below Detection Limit RDL - Detection Limit- Estimated Quantitation Limit(EQL) Note: The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC. Reported: 05/27/11 13:39 Printed: 05/27/11 13:39

Page 4 of 13

THE SICILIE INCOME					Mt. Jul: (615) 79 1-800-70 Fax (619	67-5859 5) 758-5859 . 62-081428	
Alan Hopkins and NWPL Team Portnoy Environmental 1414 W. Sam Houston Pkwy. N., Sui Houston, TX 77043		PORT OF	ANALYSIS	May	27,2011		
Date Received : May 20,	2011			ESC	Sample # :	L51728	3-04
Description :				Site	ID :		
Sample ID : WS11-AM24				Proj	ect # :		
Collected By : Collection Dat e : 05/19/11 00:0	0						
Parameter	W.Result	RDL	D.Result	RDL	Units	Method	Date
Total Solids	76.		76.		ş	2540G	05/27/11
Arsenic	12.	1.0	16.	1.3	mg/kg	6010B	05/24/11

BDL - Below Detection Limit RDL - Detection Limit- Estimated Quantitation Limit(EQL) Note: The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC. Reported: 05/27/11 13:39 Printed: 05/27/11 13:39

Page 5 of 13

TOUR LAB OF CHOICE					Mt. Juli (615) 75 1-800-76 Fax (615	57-5859 5) 758-5859 62-081428	
Alan Hopkins and NWPL Team Portnoy Environmental 1414 W. Sam Houston Pkwy. N., Sui Houston, TX 77043		ORT OF A	ANALYSIS	Мау 2	27,2011		
Date Received : May 20,	2011				Sample # :	L517283	3-05
Description : Sample ID : WSSB11-2					ID : ect # :		
Collected By : Collection Dat e : 05/19/11 00:0	0					Mathed	Dato
Parameter	W.Result	RDL	D.Result	RDL	Units	Method	Date
Total Solids	87.		87.		8	2540G	05/27/11
Arsenic	4.8	1.0	5.5	1.1	mg/kg	6010B	05/24/11

BDL - Below Detection Limit RDL - Detection Limit- Estimated Quantitation Limit(EQL) Note: The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC. Reported: 05/27/11 13:39 Printed: 05/27/11 13:39

Page 6 of 13

TOUR LAB OF CHOICE					Mt. Jul. (615) 7 1-800-7 Fax (61	67-5859 5) 758-5859 . 62-081428	
Alan Hopkins and NWPL Team Portnoy Environmental 1414 W. Sam Houston Pkwy. N., Suite Houston, TX 77043		PORT OF A	ANALYSIS	May 2	27,2011		
Date Received : May 20, 2	2011				Sample # :	L51728	3-06
Description :				Site	ID :		
Sample ID : WSSB11-1				Proje	ect # :		
Collected By : Collection Date : 05/19/11 00:00							
Parameter	W.Result	RDL	D.Result	RDL	Units	Method	Date
Total Solids	89.		89.		8	2540G	05/27/11
Arsenic	5.4	1.0	6.0	1.1	mg/kg	6010B	05/24/11

BDL - Below Detection Limit RDL - Detection Limit- Estimated Quantitation Limit(EQL) Note: The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC. Reported: 05/27/11 13:39 Printed: 05/27/11 13:39

Page 7 of 13

TOUR LAB OF CHOICE					Mt. Juli (615) 75 1-800-76 Fax (615	7-5859) 758-5859 62-0814289	
Alan Hopkins and NWPL Team Portnoy Environmental 1414 W. Sam Houston Pkwy. N., S		ORT OF #	NALYSIS	Мау З	27 ,2 011		
Houston, TX 77043	0, 2011			ESC	Sample # :	L517283	3-07
Date Received : May 2 Description :	0, 2011			Site	ID :		
Sample ID : ELSS-0810				Proj	ect # :		
Collected By : Collection Date : 05/19/11 00	:00				w.i.e.	Method	Date
Parameter	W.Result	RDL	D.Result	RDL	Units		
Total Solids	92.		92.		8	2540G	05/27/11
Mercury	2.6	1.0	2.8	1.1	mg/kg	7471	05/25/11

BDL - Below Detection Limit RDL - Detection Limit- Estimated Quantitation Limit(EQL) Note: The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC. Reported: 05/27/11 13:39 Printed: 05/27/11 13:39

Page 8 of 13

ALATE SICILIEINICIEIS					Mt. Jul: (615) 75 1-800-76 Fax (615	57-5859 5) 758-5859 . 62-081428	
Alan Hopkins and NWPL Team Portnoy Environmental 1414 W. Sam Houston Pkwy. N., Sui Houston, TX 77043		ORT OF A	NALYSIS	-	7,2011		
Date Recerved +1	2011				ample # :	L51728	3-08
Description :				Site	ID :		
Sample ID : ELSS-1009				Proje	ct # :		
Collected By : Collection Date : 05/19/11 00:0	0						Data
Parameter	W.Result	RDL	D.Result	RDL	Units	Method	Date
Total Solids	95.		95.		90	2540G	05/27/11
Mercury	1.4	0.20	1.5	0.21	mg/kg	7471	05/25/11

BDL - Below Detection Limit RDL - Detection Limit- Estimated Quantitation Limit(EQL) Note: The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC. Reported: 05/27/11 13:39 Printed: 05/27/11 13:39

Page 9 of 13

VOUR LAB OF CHOICE					Mt. Jul. (615) 7 1-800-7 Fax (61	67-5859 5) 758-5859 . 62-081428	
Alan Hopkins and NWPL Team Portnoy Environmental 1414 W. Sam Houston Pkwy. N., Sui Houston, TX 77043		ORT OF A	ANALYSIS	Мау	27,2011		
	2011				Sample # : ID :	L51728	3-09
Sample ID : ELSS-1109 Collected By :	_			Proj	ect # :		
Collection Date : 05/19/11 00:0 Parameter	0 W.Result	RDL_	D.Result	RDL	Units_	Method	Date
Total Solids	96.		96.		8	2540G	05/27/11
Mercury	13.	2.0	14.	2.1	mg/kg	7471	05/25/11

BDL - Below Detection Limit RDL - Detection Limit- Estimated Quantitation Limit(EQL) Note: The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC. Reported: 05/27/11 13:39 Printed: 05/27/11 13:39

Page 10 of 13

ELA'B SICILIEINICIEIS					Mt. Juli (615) 75 1-800-76 Fax (615	57-5859 5) 758-5859 62-081428	
YOUR LAB OF CHOICE							
Alan Hopkins and NWPL Team Portnoy Environmental 1414 W. Sam Houston Pkwy. N., Sui		ORT OF A	NALYSIS	May 2	27,2011		
Houston, TX 77043				ESC S	ample # :	L51728	3-10
Date Received : May 20,	2011				<u></u> _		
Description :				Site	ID :		
Sample ID : WS6-AT35				Proje	ect # :		
Collected By : Collection Date : 05/19/11 00:0	0					31	
Parameter	W.Result	RDL	D.Result	RDL	Units	Method	Date
Total Solids	90.		90.		8	2540G	05/27/11
Mercury	1.8	0.40	2.0	0.44	mg/kg	7471	05/25/11

BDL - Below Detection Limit RDL - Detection Limit- Estimated Quantitation Limit(EQL) Note: The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC. Reported: 05/27/11 13:39 Printed: 05/27/11 13:39

Page 11 of 13

VOUR LAB OF CHOICE					Mt. Juli (615) 75 1-800-76 Fax (615	7-5859) 758-5859 62-0814289	
Alan Hopkins and NWPL Team Portnoy Environmental 1414 W. Sam Houston Pkwy. N., Suit Houston, TX 77043		ORT OF A	NALYSIS	-	27,2011	L517283	2_11
Date Received : May 20, Description : Sample ID : WSSB6-0910	2011			Site	Sample # : ID : ect # :	F21/593	
Collected By : Collection Date : 05/19/11 00:00 Parameter	W.Result	RDL	D.Result	RDL	Units_	Method	Date 05/27/11
Total Solids Mercury	93. 2.4	1.0	93. 2.6	1.1	% mg∕kg	2540G 7471	05/25/11

BDL - Below Detection Limit RDL - Detection Limit- Estimated Quantitation Limit(EQL) Note: The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC. Reported: 05/27/11 13:39 Printed: 05/27/11 13:39

Page 12 of 13

TOUR LAB OF CHOICE					Mt. Juli (615) 75 1-800-76 Fax (615	7-5859) 758-5859 62-081428	
Alan Hopkins and NWPL Team Portnoy Environmental 1414 W. Sam Houston Pkwy. N., Suite		PORT OF A	ANALYSIS	May 2	27,2011		
Houston, TX 77043 Date Received : May 20, 3	2011			ESC §	Sample # :	L517283	3-12
Description :				Site	ID :		
Sample ID : WSSB6-0911				Proje	ect # :		
Collected By : Collection Date : 05/19/11 00:00						M. Chard	Data
Parameter	W.Result	RDL	D.Result	RDL	Units	Method	Date
Total Solids	93.		93.		<u>ę</u> ,	2540G	05/27/11
Mercury	2.4	1.0	2.5	1.1	mg/kg	7471	05/25/11

BDL - Below Detection Limit RDL - Detection Limit- Estimated Quantitation Limit(EQL) Note: The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC. Reported: 05/27/11 13:39 Printed: 05/27/11 13:39

Page 13 of 13

Summary of Remarks For Samples Printed 05/27/11 at 13:39:32

TSR Signing Reports: 690 R5 - Desired TAT See Tom M prior to all non Template logins for special notes if any. Tom M cell 406-3470 Sample: L517283-01 Account: PORTENVTX Received: 05/20/11 08:45 Due Date: 05/27/11 00:00 RPT Date: 05/27/11 13:39 Sample: L517283-02 Account: PORTENVTX Received: 05/20/11 08:45 Due Date: 05/27/11 00:00 RPT Date: 05/27/11 13:39 Sample: L517283-03 Account: PORTENVTX Received: 05/20/11 08:45 Due Date: 05/27/11 00:00 RPT Date: 05/27/11 13:39 Sample: L517283-04 Account: PORTENVTX Received: 05/20/11 08:45 Due Date: 05/27/11 00:00 RPT Date: 05/27/11 13:39 Refer to 05-0068 Sample: L517283-05 Account: PORTENVIX Received: 05/20/11 08:45 Due Date: 05/27/11 00:00 RPT Date: 05/27/11 13:39 Sample: L517283-06 Account: PORTENVTX Received: 05/20/11 08:45 Due Date: 05/27/11 00:00 RPT Date: 05/27/11 13:39 Sample: L517283-07 Account: PORTENVTX Received: 05/20/11 08:45 Due Date: 05/27/11 00:00 RPT Date: 05/27/11 13:39 Sample: L517283-08 Account: PORTENVTX Received: 05/20/11 08:45 Due Date: 05/27/11 00:00 RPT Date: 05/27/11 13:39 Sample: L517283-09 Account: PORTENVTX Received: 05/20/11 08:45 Due Date: 05/27/11 00:00 RPT Date: 05/27/11 13:39 Sample: L517283-10 Account: PORTENVTX Received: 05/20/11 08:45 Due Date: 05/27/11 00:00 RPT Date: 05/27/11 13:39 Refer to 05-0068 Sample: L517283-11 Account: PORTENVTX Received: 05/20/11 08:45 Due Date: 05/27/11 00:00 RPT Date: 05/27/11 13:39 Sample: L517283-12 Account: PORTENVTX Received: 05/20/11 08:45 Due Date: 05/27/11 00:00 RPT Date: 05/27/11 13:39 Refer to 05-0068

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

June 28, 2011

Eric Koltes, Project Manager Environmental Partners, Inc. 295 NE Gilman Blvd., Suite 201 Issaquah, WA 98027

RE: Job 77380.36, F&BI 106382

Dear Mr. Koltes:

Included are the results from the testing of material submitted on June 28, 2011 from the Job 47380.36, F&BI 106382 project. There are 5 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cali

Michael Erdahl Project Manager

Enclosures EPI0628R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 28, 2011 by Friedman & Bruya, Inc. from the Environmental Partners Job 47380.36, F&BI 106382 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Environmental Partners
106382-01	SMSS-BG

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	SMSS-BG 06/28/11 06/28/11 06/28/11 Soil mg/kg (ppm)	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Partners Job 47380.36, F&BI 106382 106382-01 106382-01.013 ICPMS1 AP
Internal Standard: Indium	% Recovery: 86	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration mg/kg (ppm)		

Analyte:

Arsenic

18.1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 06/27/11 06/28/11 Soil mg/kg (ppm)	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Partners Job 47380.36, F&BI 106382 I1-438 mb I1-438 mb.008 ICPMS1 AP						
Internal Standard: Indium	% Recovery: 88	Lower Limit: 60	Upper Limit: 125						
Analyte:	Concentration mg/kg (ppm)								

Arsenic

<1

ENVIRONMENTAL CHEMISTS

Date of Report: 06/28/11 Date Received: 06/28/11 Project: Job 47380.36, F&BI 106382

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 106364-01 (Matrix Spike)

Laboratory Co	Jue. 100304-01 (M	auna opn		Percent	Percent			
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD	
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)	
Arsenic	mg/kg (ppm)	10	6.60	100 b	95 b	44-151	5 b	

Laboratory Code: Laboratory Control Sample

			Percent		
A 7 1	Reporting Units	Spike Level	Recovery LCS	Acceptance Criteria	
Analyte	Reporting Onits	Lever		00 100	
Arsenic	mg/kg (ppm)	10	100	80-120	

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

A1 – More than one compound of similar molecule structure was identified with equal probability.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte indicated may be due to carryover from previous sample injections.

d - The sample was diluted. Detection limits may be raised due to dilution.

ds - The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.

dv - Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.

fb - Analyte present in the blank and the sample.

fc – The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.

ht - Analysis performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j – The result is below normal reporting limits. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.

jr - The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the compound indicated is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc – The sample was received in a container not approved by the method. The value reported should be considered an estimate.

pr – The sample was received with incorrect preservation. The value reported should be considered an estimate.

ve - Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

14	-	e (5/28					S											TIME		WFOS:E		
-1	OF	TURNAROUND TIME		SAMPLE DISPOSAL	days ructions		Notes									34.00		DATE		6/28/11		
06/28/1	1 # HORE #	□ Standard KRUSH i37 €	th charges aut		 Dispose after 30 days Return samples Will call with instructions 											Samples received at		COMPANY		Rine		
ME		JOB #	SC	K S		ANALYSES REQUESTED	100 PN 254	. X								Sampl				FLR		
DY	5	P P	77308.36	REMARKS		YSES R	VOC by 8260C															
STO						ANA	BTEX by 602 BTEX by 602			_	 		_				-	AME		41		
L C C	N						090 - 2F08											PRINT NAME		Erdah		
	M	SS					8015 - GRO											a		-17		
HAII	ignature)	ADDRE					# of jars	-	i											Michael		
LE CI	SAMPLERS (signature)	PROJECT ID/ADDRESS		SITE NAME	Ee		Matrix	2016														
SAMPLE CHAIN OF CUSTODY	SAI	PR		SIT			Time Sampled											SIGNATURE		hr		
	.0	ers, Inc.	-		(425) 395-0011		Date Sampled	11/22/2											shed by:	Jun	shed by:	d by:
	Lours	ll Partne	n Blvd.	98027	Fax # _(D LAB	ত				`							Relinquished by:	Recorder	Relinquished by:	Received by:
106382		Company Environmental Partners, Inc.	Address 295 NE Gilman Blvd.	City. State. ZIP Issaguah, WA 98027	Phone # (425) 395-0010 F		Sample ID	5M55-BG							•			Friedman & Bruya, Inc.	3012 16th Avenue West	Seattle, WA 98119-2029	Ph. (206) 285-8282	Fax (206) 283-5044

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

May 31, 2011

Eric Koltes, Project Manager Environmental Partners, Inc. 295 NE Gilman Blvd., Suite 201 Issaquah, WA 98027

RE: Tee 47308.36, F&BI 105338

Dear Mr. Koltes:

Included are the results from the testing of material submitted on May 26, 2011 from the Tee 47308.36, F&BI 105338 project. There are 12 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures EPI0531R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 26, 2011 by Friedman & Bruya, Inc. from the Environmental Partners Tee Tee 47308.36, F&BI 105338 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	<u>Environmental Partners</u>
105338-01	SMSS-RA2
105338-02	SMSS-D2
105338-03	SMSS-RA1
105338-04	WSSB11-1
105338-05	WSSB11-2
105338-06	WS11-AM24
105338-07	Starroad-1507
105338-08	Starroad-1705
105338-09	Starroad-1807

All quality control requirements were acceptable.

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	SMSS-RA2 05/26/11 05/27/11 05/27/11 Soil mg/kg (ppm)	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Partners Tee 47308.36, F&BI 105338 105338-01 105338-01.018 ICPMS1 AP
Internal Standard: Indium	% Recovery: 95	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration mg/kg (ppm)		

13.8

Analyte:

Arsenic

 $\mathbf{2}$

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	SMSS-D2 05/26/11 05/27/11 05/27/11 Soil mg/kg (ppm)	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Partners Tee 47308.36, F&BI 105338 105338-02 105338-02.021 ICPMS1 AP
Internal Standard: Indium	% Recovery: 92	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration mg/kg (ppm)		

Analyte:

Arsenic

11.4

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	SMSS-RA1 05/26/11 05/27/11 05/27/11 Soil mg/kg (ppm)	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Partners Tee 47308.36, F&BI 105338 105338-03 105338-03.022 ICPMS1 AP
Internal Standard: Indium	% Recovery: 92	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration mg/kg (ppm)		

16.4

Analyte:

Arsenic

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	WSSB11-1 05/26/11 05/27/11 05/27/11 Soil mg/kg (ppm)	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Partners Tee 47308.36, F&BI 105338 105338-04 105338-04.023 ICPMS1 AP
Internal Standard: Indium	% Recovery: 91	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration mg/kg (ppm)		

Analyte:

Arsenic

1.96

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	WSSB11-2 05/26/11 05/27/11 05/27/11 Soil mg/kg (ppm)	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Partners Tee 47308.36, F&BI 105338 105338-05 105338-05.024 ICPMS1 AP
Internal Standard: Indium	% Recovery: 91	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration mg/kg (ppm)		

2.84

Arsenic

6

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	WS11-AM24 05/26/11 05/27/11 05/27/11 Soil mg/kg (ppm)	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Partners Tee 47308.36, F&BI 105338 105338-06 105338-06.025 ICPMS1 AP
Internal Standard: Indium	% Recovery: 89	Lower Limit: 60	Upper Limit: 125
Analyte:	Concentration mg/kg (ppm)	l	

4.56

Arsenic

Analysis For Total Metals By EPA Method 200.8

Client ID:	Method Blank	Client:	Environmental Partners
Date Received:	Not Applicable	Project:	Tee 47308.36, F&BI 105338
Date Extracted:	05/27/11	Lab ID:	I1-371 mb
Date Analyzed:	05/27/11	Data File:	I1-371 mb.015
Matrix:	Soil	Instrument:	ICPMS1
Units:	mg/kg (ppm)	Operator:	AP
Internal Standard: Indium	% Recovery: 89 Concentration	Lower Limit: 60	Upper Limit: 125

Analyte:

Arsenic

<1

mg/kg (ppm)

ENVIRONMENTAL CHEMISTS

Date of Report: 05/31/11 Date Received: 05/26/11 Project: Tee 47308.36, F&BI 105338 Date Extracted: 05/27/11 Date Analyzed: 05/27/11

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E Results Reported on a Dry Weight Basis

Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Total Mercury</u>
Starroad-1507 105338-07 1/10	13
Starroad-1705 105338-08 1/10	6.1
Starroad-1807 105338-09 1/10	3.3
Method Blank	<0.1

ENVIRONMENTAL CHEMISTS

Date of Report: 05/31/11 Date Received: 05/26/11 Project: Tee 47308.36, F&BI 105338

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 105338-01 (Matrix Spike)

Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)	
Arsenic	mg/kg (ppm)	10	13.8	110 b	103 b	44-151	7 b	-

n

Laboratory Code: Laboratory Control Sample

			Percent	
Analyte	Reporting Units	Spike Level	Recovery LCS	Acceptance Criteria
Arsenic	mg/kg (ppm)	10	108	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 05/31/11 Date Received: 05/26/11 Project: Tee 47308.36, F&BI 105338

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR **TOTAL MERCURY USING EPA METHOD 1631E**

Laboratory Code: 105338-01 1/50 (Matrix Spike)

Laboratory Couc.	100000 01 100	(2.20002222 %	F)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Mercury	mg/kg (ppm)	0.125	62	0 b	0 b	45-162	0 b

Laboratory Code: Laboratory Control Sample

			$\mathbf{Percent}$	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Mercury	mg/kg (ppm)	0.125	129	63-144

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

A1 – More than one compound of similar molecule structure was identified with equal probability.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte indicated may be due to carryover from previous sample injections.

d - The sample was diluted. Detection limits may be raised due to dilution.

ds - The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.

dv - Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.

fb - Analyte present in the blank and the sample.

fc – The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.

ht - Analysis performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j – The result is below normal reporting limits. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.

jr - The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the compound indicated is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc – The sample was received in a container not approved by the method. The value reported should be considered an estimate.

pr – The sample was received with incorrect preservation. The value reported should be considered an estimate.

ve - Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

90	Samples de aven 1, 2	pland	Sam											
			 									by:	Received by:	1x (206) 282-5044
5/26/11 14/5	Lnc	+B	PI	5	2052	a72	L	172	2010		and the	hed by:	Relinquished by	1. (206) 285-8282
5/26/11 1415		EPI			N	octes	1 T		and the second			P.	Received by:	10000 1000 1000 1000 0000
DATE , TIME	COMPANY	co	╀			NAME	PRINI NAME						Relinquished by:	112 16th Avenue West
											SIGNATURA	SIG		riedman & Bruya, Inc.
						F	·		F					
	×								F	v		*	09	MALLOAD - 1807
	×								-	2			8	1
	×								-	N		$\left \right $	10	+
		×							-	v		F	90	22WH-1152
		×								N			2	2 - 11 SISCN
		×							-	s			104	
		×							-	~			50	SMSS-RAI
		×							-	S		ľ	02	
		×							~	V		5/26/11	0/	11
Notes	MERCURY	ALSENIC MERCURY	VOC by 524	VOC by 8260C	BTEX by 602	BTEX by 8021E	8015 - DRO	8015 - GRO	jars	Matrix	Time Sampled	Date Sampled	a Ma	S S
		REQUESTED	REQUI		ANALYSES									
s structions	 Return samples Will call with instructions 		513	1816 LOJ HSOL		7			E	16		(425) 395-0011	Fax #(hone # (425) 395-0010 F
SAMPLE DISPOSAL	Dispose a	/	RKS	REMARKS	0	6				SITE NAME	S		98027	ity, State, ZIP Issaquah, WA 98027
horized by:	ush charges a	3	Ř.	47308.3	r				(Ŋ	TEE			n Blvd.	ddress 295 NE Gilman Blvd.
ંગે વ્યવ	C Standard		JOB #	ب				ESS	DIADDR	PROJECT ID/ADDRESS	Pq	ers, Inc.	ll Partn	ompany Environmental Partners,
	PAGE #							ĥ	(signatur	SAMPLERS (signature)	SA	S	LOLTES	end Report To Euc K
1 BI	05/26/11		ME	DY	JSTODY	SOC	OFC	Z	HA	, , , , , , , , , , , , , ,	SAMPLE CHAIN OF CL			8 5 5 GD1

Attachment D

Soil Toxicity Evaluation

Northwest Pipeline GP Meter Station Facilities throughout Washington State

DRAFT Report

Date: September 1, 2011

Submitted to:

Environmental Partners, Inc. 295 NE Gilman Boulevard Suite 201 Issaquah, Washington 98027

.

Washington Laboratory 5009 Pacific Hwy East Suite 2 Tacoma, WA 98424

TABLE OF CONTENTS

TAB	LE O	F CONTENTS	I
SIGN	JATU	IRE PAGEI	II
1.0	INT	RODUCTION	. 1
2.0	MET	THODS	.1
	2.1	Sample Receipt and Manipulation	.1
	2.2	Lettuce seedling survival and biomass test methods	. 2
	2.3	Earthworm 14- day survival test methods	.4
	2.4	Earthworm 28- day bioaccumulation test methods	. 6
		ULTS	. 6
3.0	RES		
3.0	RES 3.1		
3.0		Lettuce toxicity results Earthworm 14-day toxicity results	. 6
3.0	3.1	Lettuce toxicity results Earthworm 14-day toxicity results Earthworm 28-day bioaccumulation results	.6 .9 .9
3.0	3.1 3.2	Lettuce toxicity results Earthworm 14-day toxicity results	.6 .9 .9
3.0 4.0	 3.1 3.2 3.3 3.4 	Lettuce toxicity results Earthworm 14-day toxicity results Earthworm 28-day bioaccumulation results	. 6 . 9 . 9 10

List of Tables

List of Appendices

APPENDIX A – Summary of Results and Statistics

APPENDIX B – Laboratory Datasheets

APPENDIX C – Reference Toxicant Test Results

APPENDIX D – Chain-of-Custody Forms

SIGNATURE PAGE

Juran

Washington Laboratory Manager

This report has been prepared based on data and/or samples provided by our client and the results of this study are for their sole benefit. Any reliance on the data by a third party is at the sole and exclusive risk of that party.

1.0 INTRODUCTION

Laboratory toxicity testing was conducted on soil samples collected from 7 sites near Northwest Pipeline General Partnership (NWPL GP) meter stations facilities, following site-specific terrestrial ecological evaluation (TEE) methodology under the Model Toxics Control Act (MTCA). The specific contaminants of concern for the bioassay component of the TEE were arsenic and inorganic mercury. Toxicity tests were conducted using the earthworm *Eisenia foetida*, of the family lumbricidae and the butter crunch lettuce seed *Lactuca sativa*. Two different tests were conducted with the earthworm, the 14-day survival test and a 28-day bioaccumulation test. Samples tested for bioaccumulation were then sent to TestAmerica, an analytical laboratory, for arsenic determinations. Testing was initiated June, 2011 at the Washington Laboratory of Nautilus Environmental, located in Tacoma, Washington. Test procedures followed methods published by Washington State Department of Ecology for the Toxics Cleanup Program and ASTM.

DRAFT

2.0 METHODS

2.1 Sample Receipt and Manipulation

Seven soil samples were collected by Environmental Partners personnel between May 3^{rd} and 17^{th} , 2011 into HPDE containers. Individual samples were in labeled plastic jars, transported in coolers, and were received by Nautilus on June 3^{rd} , 2011. All samples were transported in coolers. Individual samples were in labeled plastic jars. Upon receipt in the laboratory, the coolers were opened and the contents inspected and compared with documentation provided on the chain-of-custody forms (COC), where discrepancies occurred, samples identities were confirmed with Environmental Partners. Sample temperatures were measured upon receipt and recorded on both the COC and in a bound logbook maintained in the laboratory. Samples were held in the dark at $4 \pm 2^{\circ}$ C until testing.

Large pieces of wood, debris and rocks were removed from soils prior to testing. No sieving was performed on the samples. Analysis of soil pH, conductivity, and moisture content were performed upon sample receipt.

Sample ID's with corresponding dates of collection, and test initiation dates for all three tests are provided in Table 1.

Nautilus Environmental Washington Laboratory

Client ID	Nautilus Log-In Number	Date Collected	Lettuce Test Initiation	14-day Earthworm Test Initiation	28-day Earthworm Test Initiation	
SHSB2-3:18	S11-061	May 13, 2011	June 7, 2011	June 9, 2011	NT	
WSSB6-0910	S11-055	– May 17, 2011	June 7, 2011	June 9, 2011	NT	
ELSS-0810	S11-057	Widy 17, 2011	June / / 2011	,		
STARROAD 1807	S11-059	May 16, 2011	June 7, 2011	June 9, 2011	NT	
SH4-W64	S11-062	May 3, 2011	June 7, 2011	NT	June 9, 2011	
WS11-AM24	S11-051	– May 17, 2011	June 7, 2011	NT	June 9, 2011	
YFSS-D1	S11-053	1viay 17, 2011	June 7, 2011		,	

Table 1. Sample collection, receipt, expiration, and test initiation dates.

2.2 Lettuce seedling survival and biomass test methods

A lettuce seedling survival and biomass test was conducted on samples received June 3, 2011 using butter crunch lettuce seeds, *Lactuca sativa*. The organisms were obtained from Territorial Seed Company, Oregon. The tests were initiated on June 7, 2011. Tests were performed according to procedures presented by WADOE (1996) and ASTM (1994). Test procedures are summarized in Table 2.

Prior to test initiation, 300 g subsamples were collected from the negative control and each site, for use in the test, as well as for initial pH measurements. Using an Orion 230 meter, pH measurements were taken by making a slurry of de-ionized (DI) water and soil in a 1:1 ratio (i.e., 25 mL DI water: 25 g soil). Soil slurry pH was measured after allowing soil/water mixture to stir for 5 minutes. Once the measurement was taken, the slurry was allowed to settle for 30 minutes, after which the pH of the supernatant liquid was measured. Sample soils were hydrated with DI water to match control friability where necessary, and distributed into three poly flat 36-cell trays with humidity domes. Five replicates per sample, each containing 50 g of soil, were randomly distributed into trays. Sample distribution took place according to a randomization sheet and planting maps created in Excel. Trays were placed in an environmental chamber at 25°C under a 16:8 hour light:dark photoperiod.

Lighting for the test was provided by 2-bulb gro-lights placed over each planting tray. Light measurements were taken upon test initiation, day seven, and at termination using a Milwaukee SM 700 photometer. Test temperatures were measured daily from a surrogate test chamber.

Test start date	June 7, 2011
Test end date	June 21, 2011
Test organism	Lactuca sativa
Test organism source	Territorial Seed Company, Cottage Grove, OR
Test duration	14 days
Test chamber	60-mL planting cell with 4 drainage holes in bottom
Test soil/replicate	50 g dry weight
Water source for hydration	De-ionized water
Control soil	70% sand, 20% kaolin clay, 10% peat moss, 0.45% CaCO ₃
Number of organisms/replicate	12
Number of replicates/sample	5
Test temperature	20-30℃
Illumination	16:8 hr light:dark photoperiod
Test acceptance criterion	≥90% mean germination in control organisms
Positive control reference toxicant	Boric acid

Table 2. Summary of testing conditions for the lettuce survival and biomass test.

The tests were terminated on day 14, June 21, 2011. At test termination, the number of seedlings in each replicate was counted and observations on seedling condition (e.g., chlorosis, wilting) were recorded. The above-soil portion of each seedling was then cut at the soil using scissors; and placed in a pre-tared weigh boat corresponding to the replicate number. A 25 g subsamble of soil from each site was collected for final pH measurements from a randomly chosen replicate.

Weigh boats containing seedlings were weighed immediately after cutting using a Mettler AE 240 scale, in order to obtain wet weights, and were subsequently placed in a Thelco 28 oven to dry for 24 hours. Seedlings were weighed at the end of the drying period in order to obtain dry weights. The endpoints calculated were the number of seedling surviving and their biomass (evaluated on the basis of dry weight divided by final count). The test acceptance criterion for the negative control was seedling survival of \geq 90 percent. Statistics were run using Biostat software on all sites where survival or growth were less than control, using a level of significance of 0.05.

A reference toxicant test (positive control) was conducted in conjunction with the lettuce seedling survival and biomass tests using boric acid as the toxicant. Test organisms were exposed to control, 40, 80, 160, 320 and 640 mg/kg boron for the same duration as the concurrent soil test, and the results of this test were compared with historical data for the species to determine whether the sensitivity of the organisms was appropriate.

Nautilus Environmental Washington Laboratory

2.3 Earthworm 14- day survival test methods

An earthworm survival test was conducted on samples received June 3, 2011 using the red wiggler worm, *Eisenia foetida*. The organisms were obtained from Aquatic Research Organisms, NH. Nautilus Environmental received the organisms at the laboratory on June 2, 2011 in good condition. Tests were initiated on June 9, 2011 according to procedures presented by WADOE (1996) and ASTM (1994). Test procedures are summarized in Table 3.

Test start date	June 9, 2011
Test end date	June 23, 2011
Test organism	Eisenia foetida
Test organism source	Aquatic Research Organisms, Hampton, NH
Test organism age	>90 days
Test duration	14 days
Test chamber	1-L glass jar
Test soil/replicate	200 g dry weight
Water source for hydration	De-ionized water
Control soil	70% sand, 20% kaolin clay, 10% peat moss, 0.45% CaCO $_3$
Number of organisms/replicate	10
Number of replicates/sample	3
Test temperature	22± 2°C
Illumination	Continuous lighting
Test acceptance criterion	≥90% mean survival of control organisms
Positive control reference toxicant	2-chloroacetamide

Table 3. Summary of testing conditions for the earthworm survival test.

Twenty-four hours prior to testing, 25 g of soil was removed from each sample, the initial weight of soil and vessel was obtained, and samples were then placed in a Thelco 28 oven set to between 103 and 105°C to dry for 24 hours. After 24 hours, samples were removed from the oven, allowed to cool, and final weights were obtained to determine the moisture content of each sample. Samples with a moisture content of less than 35 percent were then hydrated to match control levels or control friability, as required. Moisture content upon receipt of the samples, as well as hydration requirements and amount of water added to samples is contained in Table 4.

On test initiation, pH and conductivity measurements were conducted on a slurry of de-ionized (DI) water and soil in a 1:1 ratio (i.e., 25 mL DI water:25 g soil). Soil slurry pH was measured after allowing soil/water mixture to stir for 5 minutes. Once the measurement was taken, the slurry was allowed to settle for 30 minutes, after which the pH of the supernatant liquid was Nautilus Environmental

Washington Laboratory

measured. Conductivity and pH measurements were conducted utilizing an Orion 130A and Orion 320 meter, respectively.

Sample soils were hydrated with DI water where necessary, and distributed into 1-L labeled glass jars prior to test initiation. Three replicates and a surrogate were used for each sample, each containing 200 g of soil. Moisture content was also determined at test initiation. Sample distribution took place according to a randomization sheet created in Excel. Organisms, greater than 90 days old, were added following sample distribution, once samples were confirmed to be within acceptable temperature range. Jars were placed in an environmental chamber at $22 \pm 2^{\circ}$ C under continuous light conditions.

Test temperatures were measured daily from surrogate test chambers. Test chambers were misted daily with DI water in order to maintain proper moisture levels.

Client ID	Nautilus Log-In	Initial Moisture Content (%)	Hydration Needed (%)	Amount of Water Added to Sample (ml)
SHSB2-3:18	S11-061	7.3	27.7	166
WSSB6-0910	S11-055	7.3	27.7	166
ELSS-0810	S11-057	8.7	26.3	158
STARROAD 1807	S11-059	12.1	22.9	137
SH4-W64	S11-062	14.2	20.8	125
WS11-AM24	S11-051	30.1	4.1	24.7
YFSS-D1	S11-053	7.3	27.7	166

Table 4. Pre-test hydration used for visual match of control friability.

The tests were terminated on day 14, June 23, 2011. At test termination, prior to counting, observations were made of each test chamber, including dead organisms on the surface or any behavior abnormalities. To count test organisms, sample replicates were transferred to a flat surface lined with moistened paper towels, animals were counted, and any behavior (e.g., lack of burrowing, coiling, "balling" together), or morphological changes (e.g., contraction, rigidity, ulceration of the integument, segmental constriction, segmental loss) were noted. The surrogate chamber was used to determine final moisture content, and final pH and conductivity measurements.

The endpoint calculated was earthworm survival. The test acceptance criterion for the negative control was earthworm survival of \geq 90 percent. Statistics were run using Biostat software on all sites where survival were less than control, using a level of significance of 0.05.

DRAFT

A reference toxicant test (positive control) was conducted in conjunction with the earthworm survival tests using 2-chloroacetamide. Test organisms were exposed to control, 10, 20, 40, and 80 mg/kg 2-chloroacetamide for the same duration as the concurrent soil tests, and the results of this test were compared with historical data for the species to determine whether the sensitivity of the organisms was appropriate.

2.4 Earthworm 28- day bioaccumulation test methods

Methods for the 28-day tests with earthworms followed the same methods as the 14-day for test initiation and daily monitoring, as outlined in Section 2.3. The test was terminated on July 7, 2011 following the same procedures. Worms were then separated from the soil and were stored in clean glass jars overnight to allow for depuration. The day following termination, worms were placed in chemistry containers by site and sent to an analytical chemical laboratory for analysis. There were no statistical endpoints calculated for this test. The chemistry data is reported here and will be used by Environmental Partners to calculate a bioaccumulation factor.

3.0 RESULTS

Results of toxicity tests conducted using butter crunch lettuce starting June 7, 2011 are summarized in Tables 5 and 6. Results of toxicity tests conducted using *E. foetida* starting June 9, 2011 are summarized in Tables 7 and 8. Detailed results of the soil toxicity tests and statistical analyses are provided in Appendix A. Copies of the laboratory bench sheets, reference toxicant test results, and chain-of-custody forms are in Appendices B, C, and D.

3.1 Lettuce toxicity results

Mean survival was 91.7 percent for the artificial soil control. The mean survival in the test soils ranged from 78.3 to 91.7 percent. None of the sites exhibited significant toxic effects when compared to negative control survival results.

Mean biomass was 1.18 mg per seedling for the artificial soil control. Mean biomass in the test soils ranged from 1.00 to 2.27 mg per seedling. None of the sites were significantly different than the negative control for growth.

Site ID/ Nautilus Log-In Number	% Survival	Mean Survival (%)	% of Control	Significant Decrease from Control? (p<0.05)
	91.7			
	75.0			
Negative Control	91.7	91.7 ± 10.2		
	100			
	100		<u></u>	····
	91.7			
SHSB2-3:18	91.7		100	N T
S11-061	100	91.7 ± 5.9	100	No
511-001	91.7			
	83.3			· · · · · · · · · · · · · · · · · · ·
	100			
WSSB6-0910	91.7			
S11-055	91.7	85.0 ± 16.0	92.7	No
511-000	83.3			
	58.3			
	58.3			
ET CC 0010	91.7	78.3 ± 19.2		
ELSS-0810	83.3		85.4	No
SS11-057	100			
	58.3			
	100		100	
	83.3	91.7 ± 5.9		_
STARROAD 1807	91.7			No
S11-059	91.7			
	91.7			
	75.0			
	100		100	No
SH4-W64	91.7	91.7 ± 10.2		
S11-062	91.7			
	100			
	91.7			
	91.7			
WS11-AM24	91.7	85.0 ± 10.9	92.7	No
S11-051	83.3			
	66.7			
	100			
1000 54	100			
YFSS-D1	58.3	86.7 ± 17.3	94.5	No
S11-053	91.7			
	83.3			

 Table 5. Results (means ± standard deviations) for L. sativa survival

ι

Site ID/Nautilus Log-In Number	Growth per Seedling (mg)	Mean Growth per Organism (mg)	% of Control	Significant Decrease from Control? (p<0.05)
Negative Control	1.56 1.39 0.62 1.34 0.99	1.18 ± 0.38		
SHSB2-3:18 S11-061	1.34 1.67 1.74 0.75 1.56	1.41 ± 0.40	119	No
WSSB6-0910 S11-055	1.11 1.17 1.58 2.12 1.45	1.49 ± 0.40	126	No
ELSS-0810 SS11-057	0.98 0.94 1.27 1.07 0.77	1.01 ± 0.18	85.6	No
STARROAD 1807 S11-059	2.30 1.77 2.31 2.24 2.72	2.27 ± 0.34	192	No
SH4-W64 S11-062	1.23 1.71 1.57 1.93 2.26	1.74 ± 0.38	147	No
WS11-AM24 S11-051	1.22 2.00 0.90 1.00 1.05	1.23 ± 0.44	104	No
YFSS-D1 S11-053	0.56 1.00 0.87 1.38 1.20	1.00 ± 0.31	84.7	No

Table 6. Results (means ± standard deviations) for *L. sativa* growth

DRAFT

Earthworm 14-day toxicity results

3.2

Mean survival was 100 percent for the artificial soil control as well as the test sites, SHSB2-3:18 and WSSB6-0910, and STARROAD 1807. Site ELSS-0810 had 96.7 percent survival. None of the test sites were significantly different from the control.

DRAFT

Site ID/Nautilus Log-In Number	Survival (%)	Mean Survival (%)	% of Control	Significant Decrease from Control? (p<0.05)
	100			
Negative Control	100	100 ± 0.0		
	100			
CUCD2 2.10	100			
SHSB2-3:18 S11-061	100	100 ± 0.0	100	No
511-001	100			
14/CCD (0010	100	100 ± 0.0		
WSSB6-0910	100		100	No
S11-055	100			
ELCC 0010	100			
ELSS-0810	90.0	96.7 ± 5.8	96.7	No
SS11-057	100			
	100	<u> </u>		
STARROAD 1807	100	100 ± 0.0	100	No
S11-059	100			

Table 7. Results (means ± standard	deviations) for <i>E. foetida</i> survival
------------------------------------	--

3.3 Earthworm 28-day bioaccumulation results

Control arsenic concentrations were determined to be 3.6 mg/kg at test termination. Site concentrations ranged from 4.1 to 7.8 mg/kg.

Site ID/Nautilus Log-In Number	Arsenic Concentration (mg/kg)
Negative Control	3.6
SH4-W64	7.8
S11-062	7.0
WS11-AM24	4.1
S11-051	T.1
YFSS-D1	7.4
S11-053	I . (

Table 8. Analytical chemistry results after 28-days for *E. foetida*

3.4 Soil Chemistries

Soil chemistry data are provided in Appendix B. Lettuce test sample pH from test initiation and termination are provided in Tables 9, while pH, conductivity, and percent moisture data for the 14-day earthworm are contained in Table 10. A summary of physical and chemical characteristics measured during testing is provided in Tables 11 through 13.

DRAFT

For the lettuce test temperatures ranged between 21.5 and 28.0°C for the duration of the test. The temperature in the 14-day earthworm test ranged from 21.9-22.0 °C, while the 28-day test ranged from 21.3-22.0 °C for the duration of the tests.

Sample ID	Nautilus Log-In	Soil Slu	ırry pH	Soil Super	natant pH
	Number —	Initial	Final	Initial	Final
SHSB2-3:18	S11-061	5.14	5.66	5.94	5.69
WSSB6-0910	S11-055	7.41	7.73	7.51	7.80
ELSS-0810	S11-057	6.85	7.34	7.28	7.67
STARROAD 1807	S11-059	7.50	8.10	7.52	8.13
SH4-W64	S11-062	7.05	7.58	7.50	7.55
WS11-AM24	S11-051	7.50	7.94	7.51	8.00
YFSS-D1	S11-053	7.51	7.93	7.52	7.93

Table 9. Initial and final pH values for 14-day lettuce tests

Table 10.	Initial and final	soil chemistry	v values for	the <i>E. foetida</i> tests
-----------	-------------------	----------------	--------------	-----------------------------

Sample ID	Nautilus Log-In	% Mo	isture	Soil Sh	urry pH	Soil S Conductivi	
	Number	Initial	Final	Initial	Final	Initial	Final
			14-day 7	Гests			
Negative Control		51.5	38.1	7.63	7.69	285	473
SHSB2-3:18	S11-061	10.1	19.1	8.09	7.59	71	370
WSSB6-0910	S11-055	5.5	16.8	8.10	6.66	17	219
ELSS-0810	S11-057	5.5	22.0	8.28	7.55	30	335
STARROAD 1807	S11-059	14.2	28.9	7.68	6.76	46	603
			28-day 7	Tests			
Negative Control		46.2	50.6	7.54	7.08	529	607
SH4-W64	S11-062	7.76	13.1	8.23	7.50	84	43
WS11-AM24	S11-051	38.9	51.5	6.54	5.54	16	15
YFSS-D1	S11-053	9.17	14.2	7.00	6.80	34	120

Nautilus Environmental

Washington Laboratory

Parameter	Criteria	Count	Minimum	Maximum	Average	Acceptable?
Initial pH (Slurry)	>5.0	7	5.14	7.51	6.99	Yes
Initial pH (Supernatant)	>5.0	7	5.94	7.52	7.25	Yes
Temperature (°C)	20-30	15	21.4	28.0	25.1	Yes
Light Reading (Lux)	>1000	3	2146	2262	2203	Yes

Table 11. Summary of Chemical/Physical Characteristics measured during L. sativa testing

DRAFT

Table 12. Summary of Chemical/Physical Characteristics measured during the 14-day E.

foetida testing

Parameter	Criteria	Count	Minimum	Maximum	Average	Acceptable? Samples affected
Initial Moisture Fraction (%)	35-45	5	5.49	51.5	17.3	No ¹ All three sites
Initial Slurry pH	>5.0	5	7.63	8.28	7.96	Yes
Initial Slurry Conductivity (µS/cm)		5	17	285	90.0	Yes
Temperature (°C)	<u>22+2</u>	15	21.9	22.0	22.0	Yes

¹Deviation from protocol not expected to influence results of the test, see QA/QC for discussion

Table 13. Summary of Chemical/Physical Characteristics measured during the 28-day E.	
foetida testing	

Parameter	Criteria	Count	Minimum	Maximum	Average	Acceptable? Samples affected
Initial Moisture Fraction (%)	35-45	4	7.76	51.5	26.8	No ¹ SH4-W64, YFSS- D1
Initial Slurry pH	>5.0	4	6.54	8.23	7.33	Yes
Initial Slurry Conductivity (µS/cm)		4	16	529	166	Yes
Temperature (°C)	22±2	29	21.3	22	21.9	Yes

¹Deviation from protocol not expected to influence results of the test, see QA/QC for discussion

4.0 QA/QC

In both the 14- and 28-day earthworm tests, due to the nature of some of the soils, (consisting mostly of rocks and little to no organic matter that could hold moisture), all samples except WS11-AM24 were hydrated to 35 percent moisture content based on calculations. However, the measured percent moisture was significantly less than 35 percent. All samples took on the same appearance and friability as the control soil and the low moisture content is not thought to have affected the results.

DRAFT

All three tests met the acceptability criterion for negative control performance. Temperature readings remained within parameters for the duration of the test.

Results of reference toxicant test (positive control) conducted with the test organisms are provided in Table 14. The EC50 values fell within the acceptable range of mean \pm two standard deviations for historical data, indicating that the test organisms appeared to have been of an appropriate degree of sensitivity.

Species	Endpoint	Date Initiated	EC50	Historical range (mean ± 2 SD)	Coefficient of Variation (%)
Lactuca sativa	Survival	6/7/2011	174 mg/kg B	106 - 377	28.1
	Biomass	6/7/2011	123 mg/kg B	96.6 - 194	16.8
Eisenia foetida	Survival	6/9/2011	35.8 mg/kg 2- Chloroacetamide	7.0 - 80.9	42.0

Table 14. Reference toxi	icant test results.
--------------------------	---------------------

5.0 REFERENCES

- American Society of Testing and Materials (ASTM). 1999. Standard guide for conducting terrestrial plant toxicity tests. ASTM designation E1963-98.
- American Society of Testing and Materials (ASTM). 1997. Standard guide for conducting laboratory soil toxicity or bioaccumulation tests with the lumbricid earthworm *Eisenia* fetida. ASTM designation E1676-97.
- Biostat. DMMP/SMS Bioassay Statistics Program for Microsoft Windows. Developed by Corps of Engineers, Seattle District
- Washington State Department of Ecology (WDOE). 1996. Earthworm bioassay protocol for soil toxicity screening. WDOE Environmental Investigations and Laboratory Services Program Publication No. 96-327.

APPENDIX A – Summary of Results and Statistics

			Survival	/al			Growth			
Concentration	Rep	# Alive	% Survival	Mean % St. Survival Dev.	Tare Weight	t Total Dry Weight (g)	Total Seedling Weight (mg)	Growth per Seedling (mg)	Mean Growth per Org (mg)	St. Dev.
	0	÷	91.7 71.0		1.63560	1.65274	17.14 19.60	1.56		
I aboratory Control	V et	א ר	91.7	91.7 10.2	_	1.43108	6.80	0.62	1.18	0.38
) 4	: 64	100.0		-	1.55564	16.04	1.34		
	Ś	12	100.0		1.54137	1.55324	11.87	0.99		
	-	=	91.7		1.73975	1.75454	14.79	1.34		
01-00000	2	1	91.7		-	1.77874	18.37	1.67		
01.0-20000	ო	12	100.0	91.7 5.9	-	1.68107	20.85	1.74	1.41	0.40
100-110	4	ŧ	91.7		1.50294	1.51123	8.29	0.75		-
	ŋ	10	83.3	•	1.49273	1.50835	15.62	1.56		
		12	100.0		1.50121	1.51454	13.33	1.11		
	N	÷	91.7		1.49888	1.51179	12.91	1.17		
VVSSB0-0910	ო	÷	91.7	85.0 16.0	-	1.53038	17.33	1.58	1.49	0.40
CC0-11C	4	10	83.3		1.48985	1.51108	21.23	2.12		
	S	7	58.3		1.48325	1.49343	10.18	1.45		
	-	~	58.3		1.66060	1.66749	6.89	0.98		
	2	11	91.7		1.67227	1.68264	10.37	0.94		
ELSS-U810	ю	10	83.3	78.3 19.2		1.72053	12.67	1.27	1.01	0.18
100-112	4	12	100.0		1.59567	1.60853	12.86	1.07		
	ഹ	7	58.3		1.44806	1.45345	5.39	0.77		
	-	12	100.0		1.54378	1.57139	27.61	2.30		
	N	10	83.3		1.52690	1.54464	17.74	1.77		
STARHUAD 180/	ო	11	91.7	91.7 5.9	-	1.64619	25.46	2.31	2.27	0.34
ACU-110	4	11	91.7		1.69490	1.71952	24.62	2.24		
	5	11	91.7		1.48753	1.51747	29.94	2.72		
	-	6	75.0		1.52711	1.53821	11.10	1.23		
CILA MEA	2	12	100.0		1.49895	1.51949	20.54	1.71		
4014-100	ო	÷	91.7	91.7 10	10.2 1.34947	1.36679	17.32	1.57	1.74	0.38
200-110	4	÷	91.7		1.33579	1.35705	21.26	1.93		
	ى س	12	100.0		1.44537	1.47247	27.10	2.26		
		=	91.7		1.39530	1.40868	13.38	1.22		
NUCLE AND	N	1	91.7		1.75900	1.78095	21.95	2.00		
W311-AM24	<i>с</i> о	=	91.7	85.0 10	10.9 1.75735	1.76722	9.87	0.90	1.23	0.44
100-110	4	10	83.3		1.46752	1.47747	9.95	1.00		
	ŝ	∞	66.7		1.62414	1.63251	8.37	1.05		
	-	12	100.0		1.66880		6.72	0.56		
VECO D4	2	12	100.0		-	*	11.96	1.00		
0-00-LT	ო	7	58.3	86.7 17	17.3 1.51489		6.12	0.87	1.00	0.31
000-110	4	1	91.7		1.53656	-	15.18	1.38		
	ß	10	83.3		1.57413	1.58613	12.00	1.20		

Appendix Table A-1: Lactuca sativa 14-day Survival and Growth Northwest Pipeline GP TEE Program Test Initiated June 7, 2011

Site	Rep	# Alive	% Survival	Mean % Survival	St. Dev.
Leberatory	1	10	100		
Laboratory	2	10	100	100.0	0.0
Control	3	10	100		
01000.0.10	1	10	100		
SHSB2-3:18	2	10	100	100.0	0.0
S11-061	3	10	100		
W00DC 0010	1	10	100		
WSSB6-0910	2	10	100	100.0	0.0
S11-055	3	10	100		
FL 00 0010	1	10	100		
ELSS-0810	2	9	90	96.7	5.8
S11-057	3	10	100		
OTADDOAD 1007	1	10	100		
STARROAD 1807	2	10	100	100.0	0.0
S11-059	3	10	100		

Appendix Table A-21. *Eisenia. fetida* 14-Day Survival Northwest Pipeline GP TEE Program Test Initiated June 9, 2011

Project Name: EPI-Northwest Pipeline GP TEE Program

Sample:	x1
Samp ID:	ELSS-0810
Alias:	Lettuce Survival
Replicates:	5
Mean:	78.32
SD:	19.206
Tr Mean:	70.656
Trans SD:	26.607

Ref Samp:	x2
Ref ID:	Control
Alias:	Lettuce Survival
Replicates:	5
Mean:	91.68
SD:	10.206
Tr Mean:	87.139
Trans SD:	25.638

Shapiro-Wilk Results:	Levene's Results:	Test Results:
Residual Mean: 0 Residual SD: 16.953 SS: 5460.98 K: 5 b: 69.424 Alpha Level: 0.05 Calculated Value: 0.8826	Ref. Residual SD: 7.376 Deg. of Freedom: 8 Alpha Level: 0.1 Calculated Value: 0.4126	Statistic: Student's t Balanced Design: Yes Transformation: ArcSin Experimental Hypothesis Null: x1 >= x2 Alternate: x1 < x2
Critical Value: <= 0.84 Normally Distributed: Yes Override Option: N/A	2 Critical Value: >= 1.860 Variances Homogeneous: Yes	Degrees of Freedom: 8 Experimental Alpha Level: 0.05 Calculated Value: 0.9975 Critical Value: >= 1.860 Accept Null Hypothesis: Yes Power: Min. Difference for Power:

			Trans.	Levene's	Levene's	Mann-		Shipiro-
Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
58.3	49.778	91.7	73.256	20.879	13.883			-27.139
91.7	73.256	75	60	2.599	27.139			-20.879
	65.879	91.7	73.256	4.777	13.883			-20.879
	114.591	100	114.591	43.935	27.453			-13.883
	49.778	100	114.591	20.879	27.453			-13.883
								-4.777
								2.599
								27.453
								27.453
								43.935
-	Data	Data Test Data 58.3 49.778 91.7 73.256 83.3 65.879 100 114.591	Data Test Data Data 58.3 49.778 91.7 91.7 73.256 75 83.3 65.879 91.7 100 114.591 100	Data Test Data Data Data 58.3 49.778 91.7 73.256 91.7 73.256 75 60 83.3 65.879 91.7 73.256 100 114.591 100 114.591	Data Test Data Data Data Residuals 58.3 49.778 91.7 73.256 20.879 91.7 73.256 75 60 2.599 83.3 65.879 91.7 73.256 4.777 100 114.591 100 114.591 43.935	Data Test Data Data Data Residuals Residuals 58.3 49.778 91.7 73.256 20.879 13.883 91.7 73.256 75 60 2.599 27.139 83.3 65.879 91.7 73.256 4.777 13.883 100 114.591 100 114.591 43.935 27.453	Data Test Data Data Data Residuals Residuals Ranks 58.3 49.778 91.7 73.256 20.879 13.883 91.7 73.256 75 60 2.599 27.139 83.3 65.879 91.7 73.256 4.777 13.883 100 114.591 100 114.591 43.935 27.453	Data Test Data Data Data Residuals Residuals Ranks Rankits 58.3 49.778 91.7 73.256 20.879 13.883 91.7 73.256 75 60 2.599 27.139 83.3 65.879 91.7 73.256 4.777 13.883 100 114.591 100 114.591 43.935 27.453

Project Name: EPI-Northwest Pipeline GP TEE Program

Sample:	x1
Samp ID:	ELSS-0810
Alias:	Lettuce Growth
Replicates:	5
Mean:	1.006
SD:	0.183
Tr Mean:	1.173
Trans SD:	0.078

Ref Samp:	x2
Ref ID:	Control
Alias:	Lettuce Growth
Replicates:	5
Mean:	1.18
SD:	0.375
Tr Mean:	1.239
Trans SD:	0.158

Shapiro-Wilk Results:		Levene's Results:		Test Results:	
K: b: Alpha Level: Calculated Value:	0.081 0.124 5 0.343 0.05 0.9541	Test Residual Mean: Test Residual SD: Ref. Residual Mean: Ref. Residual SD: Deg. of Freedom: Alpha Level: Calculated Value:	0.047 0.125 0.073 8 0.1 1.7833	Statistic: Student's t Balanced Design: Yes Transformation: Sqr Root (x + Experimental Hypothesis Null: x1 >= x2 Alternate: x1 < x2	.375)
Critical Value:	<= 0.842	Critical Value:	>= 1.860		
Normally Distributed: Override Option:		Variances Homogeneous:	Yes	Degrees of Freedom: 8 Experimental Alpha Level: (Calculated Value: (Critical Value: 2 Accept Null Hypothesis: 3	0.05 0.8381 >= 1.860
				Power: Min. Difference for Power:	

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	0.98	1.164	1.56	1.391	0.009	0.152			-0.242
2	0.94	1.147	1.39	1.329	0.026	0.09			-0.103
3	1.27	1.283	0.62	0.997	0.109	0.242			-0.071
4	1.07	1.202	1.34	1.31	0.029	0.071			-0.026
5	0.77	1.07	0.99	1.168	0.103	0.071			-0.009
6									0.029
7									0.071
8									0.09
9									0.109
10									0.152
10									

Project Name: EPI-Northwest Pipeline GP TEE Program

Sample:	x1
Samp ID:	WS11-AM24
Alias:	Lettuce Survival
Replicates:	5
Mean:	85.02
SD:	10.868
Tr Mean:	68.08
Trans SD:	8.105

Ref Samp:	x2
Ref ID:	Control
Alias:	Lettuce Survival
Replicates:	5
Mean:	91.68
SD:	10.206
Tr Mean:	87.139
Trans SD:	25.638

Shapiro-Wilk Results:		Levene's Results:		Test Results:	
K: b:	12.337 2892.022 5 51.573	Test Residual Mean: Test Residual SD: Ref. Residual Mean: Ref. Residual SD: Deg. of Freedom:	4.18 21.962 7.376 8	Statistic: Approximate t Balanced Design: Yes Transformation: ArcSin Experimental Hypothesis Null: x1 >= x2	
Alpha Level:		Alpha Level: Calculated Value:		Alternate: $x1 < x2$	
Calculated Value:				Alternate: Al CAL	
Critical Value:	<= 0.842	Critical Value:	>= 1.800		
Normally Distributed: Override Option:		Variances Homogeneous:	No	Degrees of Freedom: 5 Experimental Alpha Level: 0 Calculated Value: 1 Critical Value: >).05 .5849 = 2.015
				Accept Null Hypothesis: Y Power: Min. Difference for Power:	es

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	91.7	73.256	91.7	73.256	5.175	13.883			-27.139
2	91.7	73.256	75	60	5.175	27.139			-13.883
3	91.7	73.256	91.7	73.256	5.175	13.883			-13.883
4	83.3	65.879	100	114.591	2.201	27.453			-13.325
5	66.7	54.756	100	114.591	13.325	27.453			-2.201
6									5.175
7									5.175
8									5.175
9									27.453
10									27.453
10									

Project Name: EPI-Northwest Pipeline GP TEE Program

Sample:	x1
Samp ID:	WSSB6-0910
Alias:	Lettuce Survival
Replicates:	5
Mean:	85
SD:	16.051
Tr Mean:	85
Trans SD:	16.051

Ref Samp:	x2
Ref ID:	Control
Alias:	Lettuce Survival
Replicates:	5
Mean:	91.68
SD:	10.206
Tr Mean:	91.68
Trans SD:	10.206

Shapiro-Wilk Results:		Levene's Results:		Test Results:	
K:	8.728 1447.228	Test Residual Mean: Test Residual SD: Ref. Residual Mean: Ref. Residual SD: Deg. of Freedom:	9.815 6.672 6.966	Statistic: Student's t Balanced Design: Yes Transformation: No Transform	ation
Alpha Level: Calculated Value: Critical Value:	0.05 0.8653	Alpha Level: Calculated Value: Critical Value:	0.1 0.871	Experimental Hypothesis Null: x1 >= x2 Alternate: x1 < x2	
Normally Distributed: Override Option:		Variances Homogeneous:	Yes	Degrees of Freedom: Experimental Alpha Level: Calculated Value: Critical Value: Accept Null Hypothesis:	0.05 0.7853 > = 1.860
				Power: Min. Difference for Power:	

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	100	100	91.7	91.7	15	0.02			-26.7
2	91.7	91.7	75	75	6.7	16.68			-16.68
3	91.7	91.7	91.7	91.7	6.7	0.02			-1.7
4	83.3	83.3	100	100	1.7	8.32			0.02
5	58.3	58.3	100	100	26.7	8.32			0.02
6									6.7
7									6.7
8									8.32
9									8.32
10									15
10									

Project Name: EPI-Northwest Pipeline GP TEE Program

Sample:	x1
Samp ID:	YFSS-D1
Alias:	Lettuce Survival
Replicates:	5
Mean:	86.66
SD:	17.298
Tr Mean:	86.66
Trans SD:	17.298

Ref Samp:	x2
Ref ID:	Control
Alias:	Lettuce Survival
Replicates:	5
Mean:	91.68
SD:	10.206
Tr Mean:	91.68
Trans SD:	10.206

Shapiro-Wilk Results:		Levene's Results:		Test Results:		
K:	9.215 1613.56 5 37.528 0.05 0.8728	Test Residual Mean: Test Residual SD: Ref. Residual Mean: Ref. Residual SD: Deg. of Freedom: Alpha Level: Calculated Value: Critical Value:	9.899 6.672 6.966 8 0.1 1.1114	Balanced Design: Transformation: Experiment	No Transforr al Hypothesis x1 >= x2	
Normally Distributed: Override Option:	Yes	Variances Homogeneous:	Yes	Experimental Calc C Accept Nul	of Freedom: Alpha Level: ulated Value: Critical Value: Il Hypothesis: Power: ce for Power:	0.05 0.5589 >= 1.860

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	100	100	91.7	91.7	13.34	0.02			-28.36
2	100	100	75	75	13.34	16.68			-16.68
3	58.3	58.3	91.7	91.7	28.36	0.02			-3.36
4	91.7	91.7	100	100	5.04	8.32			0.02
5	83.3	83.3	100	100	3.36	8.32			0.02
6									5.04
7									8.32
8									8.32
9									13.34
10									13.34

Project Name: EPI-Northwest Pipeline GP TEE Program

Sample:	x1
Samp ID:	YFSS-D1
Alias:	Lettuce Growth
Replicates:	5
Mean:	1.002
SD:	0.314
Tr Mean:	1.002
Trans SD:	0.314

Ref Samp:	x2
Ref ID:	Control
Alias:	Lettuce Growth
Replicates:	5
Mean:	1.18
SD:	0.375
Tr Mean:	1.18
Trans SD:	0.375

Shapiro-W	ilk Results:		Levene's Results:		Test Results:		
F	K:	0.225 0.959 5 0.942	Test Residual Mean: Test Residual SD: Ref. Residual Mean: Ref. Residual SD: Deg. of Freedom: Alpha Level:	0.18 0.3 0.169 8	Balanced Design: Transformation: Experiment Null:	No Transforr al Hypothesis x1 >= x2	
Ca	Iculated Value: Critical Value:		Calculated Value: Critical Value:		Alternate:	x1 < x2	
0	Normally Distributed: verride Option:	Yes	Variances Homogeneous:	Yes	Experimental Calc C Accept Nul	of Freedom: Alpha Level: ulated Value: Critical Value: Il Hypothesis: Power: ce for Power:	0.05 0.813 >= 1.860

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney	Develoite	Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	0.56	0.56	1.56	1.56	0.442	0.38			-0.56
2	1	1	1.39	1.39	0.002	0.21			-0.442
3	0.87	0.87	0.62	0.62	0.132	0.56			-0.19
4	1.38	1.38	1.34	1.34	0.378	0.16			-0.132
5	1.2	1.2	0.99	0.99	0.198	0.19			-0.002
6									0.16
7									0.198
8									0.21
9									0.378
10									0.38
10									

APPENDIX B - Laboratory Datasheets

14-Day Soll Toxicity Test

Soil Quality Measurements

Sample IDS: 44582-3:18 Wester-0410, ELES-0810, STREPORD 1807, SH4-Wich, WSII-AW24, YESS-DI Test#s: 110 6 - 7004, 7004, 7009, 7009, 7010, 7011, 7012 Nautilus Log-In #s: 5/1-0/01, 5/1-055, 5/1-053, 5/1-053, 5/1-062, 5/1-051, 5/1-053 Client: ENV/NOVIM_ENANTRANS, INC. Start Date/Time: (e17/11/1430 Species: Lactuce sativa (butter crunch lettuce) End Date/Time: (2/21/11/1300

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21.5 - 10 22.0 0 22.0 23.5 - 10 22.0 22.0 22.0 22.0 10 22.0 10 22.0 22.	100 2742 00 14 10 10 14 10 1	0 21.5 -/. 1 25.0 K/K 2 25.0 K/K 3 25.0 K/K 4 23.8 K/K 5 24.0 K/K 6 23.8 K/K 7 23.8 K/K 6 23.0 K/K 7 28.0 K/K 8 34.0 C/C 10 348 R/M 11 26.0 C/C 12 24.0 C/C 13 23.5 B/C 14 210.0 M/M 13 23.5 C/C 14 210.0 M/M Monents: A/C M	Light Tech Intensity Initials (lux)
25.0 0 K K K 24.0 K K K 25.0 K K K 24.0 K K K 23.5 K K K K K 23.5 K K K K K 23.5 K K K K K K K K K K K K K K K K K K K	25.0 0 m/m 24.0 m/m 25.0 m/m 23.8 m/m 24.0 m/m 24.0 m/m 24.0 m/m 25.5 800 25.5 800 24.0 m/m 21.46	The conquest	1 25.0 0.1 2 24.0 11 3 25.0 11 4 23.8 11 5 24.0 11 6 24.0 11 7 28.0 11 9 25.5 20 11 26.0 0.1 12 24.0 0.1 13 25.5 20 14 216.0 0.1 13 23.5 61 14 216.0 0.1 13 23.5 61 14 216.0 0.1 15 23.5 61	
ZLO H/H ZS:0 H/H ZS:0 H/H Z3:5 H/H Z1:0 H/H Z2:0 H/H Z1:0 C/H Z1:0 C/H Z1:0 C/H Z1:1 Z1:4 Z2:5 Z0 Z2:5 Z0 Z2:5 Z0 Z1:1 Z1:4 Z1:1 Z1:4 Z1:1 Z1:4 Z2:5 Z0 Z2:5 Z0 Z2:5 Z0 Z1:5 C/M Z1:0 C/M Z2:5 Z1:0	24.0 H/H 23.6 H/H 23.6 H/H 23.6 H/H 23.0 H/H 28.0 H/H 28.0 H/H 28.0 H/H 28.0 H/H 28.0 H/H 28.0 H/H 214,0 H	The stand	2 24.0 H/H 3 25.0 H/H 4 23.8 H/H 5 24.0 H/H 6 24.0 H/H 7 28.0 H/H 8 34.0 H/H 9 25.5 8 11 26.0 11 12 34.0 11 13 25.5 8 14 210.0 14 13 23.5 8 14 210.0 14 12 240.0 14 13 23.5 8 14 210.0 14 15 213.5 60 14 210.0 14 15 213.5 60 14 210.0 14	١
25.0 H/H 24.0 H/H 23.8 H/H 23.6 H/H 28.0 H/M 28.0 H/M 25.5 8/0 25.5 8/0 25.5 8/0 25.5 8/0 25.5 8/0 25.5 8/0 25.5 8/0 2146 2146 25.5 8/0 2146 25.5 8/0 25.5 8/0 25.5 8/0 2146 2146 2146 2146 2146 2146 2146 2146	25.0 H/R 24.0 H/R 24.0 H/R 23.5 H/R 25.5 800 25.5 800 214.0 800 25.5 800 25.5 800 25.5 800 214.0 800 25.5 800 25.5 800 214.0 800 200 214.0 800 25.5 800 214.0 800 25.5 800 214.0 800 25.5 800 214.0 800 25.5 800 214.0 800 25.5 800 214.0 800 25.5 800 214.0 800 214.0 800 25.5 800 214.0 800 214.0 800 200 200 200 200 200 200 200 200 200	The 214 Congress	3 25.0 M/M 4 23.8 M/M 5 24.0 M/M 6 24.0 M/M 7 28.0 M/M 8 24.0 0 9 25.5 8 10 348 8 11 26.0 0 12 24.0 0 13 25.5 8 14 24.0 0 13 23.5 8 14 24.0 0 13 23.5 8 14 24.0 0 15 24.0 0 16.0 0 0 17 26.0 0 18 24.0 0	H
23.8 M/H 24.0 H/H 28.0 H/M 28.0 H/M 25.5 20 25.5 20 25.5 20 25.5 20 25.5 20 214.0 2146 25.5 20 25.5 20 214.0 2146 25.5 20 214.0 2146 214.0 2146 214.0 2146 214.0 2146 215.5 20 214.0 2146 214.0 2140 214.0 214.0 2140 214.0 214.0 214.0 214.0 214.0 214.0 214.0 214.0 21	23.8 M/M 23.8 M/M 23.8 M/M 23.8 M/M 23.0 M/M 23.10 0 0 25.5 25.5 28/0 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	The 2146 Street Conquert	4 23.8 M/M 5 24.0 M/M 6 24.0 M/M 7 28.0 M/M 8 34.0 M/M 9 25.5 8 11 26.0 6 12 34.8 8 11 26.0 6 12 34.6 6 13 25.5 8 14 216.0 6 13 23.5 6 14 216.0 6 13 23.5 6 14 216.0 6 15 216.0 6 14 216.0 6 15 6 6	W
24.0 K/K 2146 25.0 K/S 2146 25.5 800 25.55 800 25.55 800 214.0 69/80 214.0 69/80 214.0 69/80 214.0 69/80 214.0 69/80 214.0 69/80 214.0 69/80 214.0 69/80 214.0 2146 214.0 69/80 214.0 70 214.0 69/80 214.0 70 214.0 69/80 214.0 70 214.0 70 2100000000000000000	24.0 K/K 2146 23.0 K/M 2146 25.55 20/0 2146 25.55 20/0 2146 25.55 20/0 2146 25.55 20/0 2146 219.0 (10/10) 2200 0	Seed Lonupurey	5 24.0 M. M. 7 28.0 M. M. 7 28.0 M. M. 8 24.0 0.0 9 25.5 8 10 348 14.0 11 26.0 0.0 12 24.0 0.0 13 23.5 8 14 210.0 0.0 13 23.5 6 14 210.0 0.0 15 216.0 0.0 16 215.5 6 13 23.5 6 14 210.0 0.0 15 210.0 0.0	Nr.
23.0 11/2 21/6 21/6 21/6 21/6 21/6 21/6 21/6	23.0 K 2146 2146 2146 2146 2146 2146 2146 2146	The 2146 Stand	6 21.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	K
28.0 11/2 2146 25.5 20 2146 25.5 20 2146 25.5 20 21/20 216.0 (20/00) 216.0 (20/00) 216.0 (20/00) 218.0 (20/00) 218	25.0 11/2 2146 25.5 20 25.5 20 2146 25.55 20 25 25.55 20 25 26.0 (20/00 20 20 210.0 (20/00 20 20 210.0 (20/00 20) 2200 0	2146 2146 2 CCC 2160 C	7 28.0 M-10 60 b 8 24.0 60 b 60 b 9 25.55 80 b 60 b 10 3488 81 - 42 11 11 26.0 60 b 60 b 12 246.0 60 b 60 b 13 13.5 60 b 60 b 14 210.0 60 b 60 b mments: Annorthing 60 b 60 b	િ
25.5 200 25.5 200 24.0 (1/2) 26.0 (0/0) 240.0 (0/0) 240.0 (0/0) 213.5 69/0) 210.0 (0) 2200	24.0 61 D 25.5 20 0 348 81-42 26.0 0 0 00 00 210.0 00 00 00 213.5 610 0 210.0 00 00 2110 0 2100 0 200 0 200000000	A 2200 - 2200 - 2200 - 2200 - 2200 - 2200 - 2200 - 2200 - 2200 - 2200 - 2200 - 2200 - 2200 - 2200 - 2200 - 2200	8 34,6 6/6 9 25.5 8/6 10 3/58 8/74 11 2.6.0 6/6 12 3/6.0 6/6 13 3.3,5 6/6 13 3.3,5 6/6 14 2.6.0 6/6 13 2.3,5 6/6 14 2.10.0 6/6 15 2.6.10 6/6	
25.5 20 00 00 00 00 00 00 00 00 00 00 00 00	25.5 20 24 - 22 00 0 - 22 00 0 - 22 00 0 - 22 00 0 - 22 0 - 22 00 0 - 22 00 -	COC 2200 Seed Congress	9 25.5 86 10 348 81 - 42 11 26.0 62/00 13 23.5 61/00 13 23.5 61/00 14 210.0 62/00 14 210.0 62/00 14 210.0 62/00 14 210.0 62/00	8
246.0 (2/20 240.0 (2/00 212.5 (2/20) 213.5 (2/20) 210.0 (20) 210.0 (20) 210.0 (20) 210.0 (20)	24.6 (1/-42 246.0 (10/00) 23.5 (11/-42 23.5 (11/-42) 21.0 (10) (10) (10)	C/OC 2200 - 2000 - 2000	10 248 R1-42 11 26.0 CN/CC 12 26.0 CN/CC 13 23.5 RN/CO 14 219.0 CO minents: minents:	8
26.0 (0100 210.0 (00/00) 213.5 (01/00) 210.0 (00)	26.0 (2100 240.0 (2100 23.5 (1100) 210.0 (20)	11 2.6.0 CC/CC CC 12 216.0 00/00 00 00 13 23.5 69/00 00 67 14 216.0 00 00 67 minents: 216.0 00 00 67 anism Source: Terretized A 2000 00 00	11 26.0 (C/OC 12 29.0 (D/OC) 13 23.5 69/(D) 14 219.0 (D) minents: t Chamber: R.D.C.M.A	\$
210.0 00 100 100 100 100 100 100 100 100	240.0 (m/m) 23.55 (19/m) 240.0	12 242.0 (2) 10 10 10 10 10 10 10 10 10 10 10 10 10	12 210.0 (20,00) 13 23,5 69,00 14 210.0 00 minents: t chamber: R.D.M.A.	ઝે
23.5 61/20/	23.5 GP(2)	13 23,5 RPK 200 BF 14 210.0 C 200 BF minents: t Chamber: ROOM A t Chamber: ROOM A	13 23,5 81 (2) 14 210.0 00 1 mments: t Chamber: R.D.D.M.A.	È
24.0 00	2(8.0	14 210 0 220 0 amments: minents: ADOMA A COMA	14 ZIQ.O Co	50
		it chamber: RODIN A. anism source: TEVEILDNIN SEED CON DAWA	t Chamber: RDD.M.A.	200 (1)
		co: Tevritorial		ی کې د د مېلې ملکې ورو ورو ورو ورو ورو ورو ورو ورو ورو ور

			0.110	and and a l
Conc. or Sample	Soil Slurry (units)	Slurry pH (units)	Soil Supernatant pri (units)	natant pH (ts)
0	initial	final	initial	final
SI1-051	5.14	5.00	5.94	5.109
511-053	14.1	1.13	1.51	B 7.80
Sil- 055	(e. 85	4.32	1.26	FU-F
2/1-057	3.50	3.10	7.52	8.13
511-059	7.05	7.53	7.50	7.85
S11-062		7.94	151	2.00
511-062		7.93		4.93
and a				
	K. K. Marka			
			2	
Tech Initials	30	3	58	R.

Nautitus Environmental. 5009 Pacific Hwy. E., Ste. 2. Tacoma, WA. 38424

Soil Toxicity Test

Cline: P

Species Trand:

LANDARD SOUTH

Lettuce Seed Daily Gromination Counts

1430 1300

Start Date inte 612/11

End Date/Time: (@/24/II

10100 - TODIO TUNUL TO12

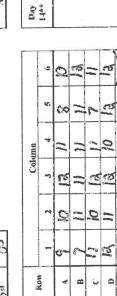
Supe 3 10 10 -2 3 51 w. 00 ××10 202 -15 Ş (numm en, 1 7900 N 69 0 00 5 r 200 -----5 Row Ð 8 4 . Lai * S yed

1				Col	Column		
* 48.51		yes	Př	~	**	aı	9
	X	to a	8	23	-	24	7
	8	rt			10	10	5
	0		6	yarin iya Mana	900 - 147 - 1970 - 147 - 1970 - 147	4	-
	٥	arriya Mange	ورسور رور مور	6	0	M	12
	ы			20000000000 #80000000	n	2	Å
	j.	Q	nalakenye (peringal)	1	3	2	0
An	Analyst	M.					

1				Col	Column		
			7	P	4	w	ġ
	Y	2.	9	12	I	26	6
	8	1+-		4850	attas. Mila s	0	5
	U	da teur Per cata	9	aletting- Billing-	Automa Jimman	9	witersoft
	đ	55		5	9	2	410
			30	-	9	~\$	X
	- H	9	i parateri Singang Sy	-	5		0
	•	16					

2	14	6	11	100	-
	2	11		2	0
مر ر ه	1	4855		0	6-
c II	9	8875/ma- 899/Japp	Addation	9	-
D 12	-	6	0	200	
	8	-	9	-9	X
E 10	2000 2000 2000 2000	900 (name 900 (ng))	r		9
Analyst IF	4				

	E I	4	2					
2 14	Inalyst	Q	-	V	Ħ	ę	۵	and a subscription of the
2	IF.		-	Q.	17	- Ciant Annor	12	
2			N	0	C)Jake-Can Managanak	0	Ciperiol Ciperiol	A REAL
a		Cal	m	12		- EC2000	12	
25		Colama	+		1355 1894 1899-1897	come de	0	
			÷	4		4	12	- Party -
0			6	5	19	-	9	And the second second


Thur 6	Dam			Col	Column	I.	
		-	N	m	-	¥,	9
	<	g	0	11	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	\$	1
	Ħ	17	1730000 5000-000		1000 mm	-	12
	υ	Class.	0	. Scone	-capitor at Material	4	-
	0	12	Compare Colorida	2	0	3	9
	ы	neroran Alexandra	0	_	0	ŕ	X
	- 12a	Ç	Gard 2008		25		12
1.0	Analyst				~		

D			Colt	Column		
	-	N	m	+	¢	ھ
<	<i>6</i> -	0	21	a na	\$	4
₩	4	17300c-140 Simples		1000 1000	-	0
<u>ن</u>	tine terre	9	cacula Grana		4	-
6	12	Constant	2	0	12	9
a	agraidh achaolt	0		10	ń-	X
1	0	Gar ti 2004		R /5		3
Analust	C					

4	D			Column	a mu		
	-	-	N	m	7	¢	9
	~	g	0	2		\$	4
A	B	17	(*)300 100 600				9
£,,	Q	Ciand. Sec.ect	01	- Economic	-come #	4	
	0	12	Citana, re	2	9	2	9
	64	adentes activitati	0		9	ć,	X
	<u>م</u> لة	C	G-81 ⁴⁴ 2014		¢,		5

D AND			(ob	Column		
-	-	N	m	-	÷	6
<	ĝ.	0]	2	di comp	8	1
-	4	0300-10 60000		40000 10000 40000-0000		6
2	tine Sec.re	9	-scale		4	
0	12	Citana, J	121	0	2	9
i cu	-	0		10	ţ,	X
- 24	C	Gand 25add		R	معرف بينه سري الم	12
Analyst	Ċ					CALLY MARRINGS

		-			
Day 10	2				
t	9	1	12		4
	¢	P		4	1
uma	4	angeneration de la panage	1000 1000	-come #	0
(ohuma	m	21			21
	N	0	C*3000;	0	Climbo
	-	8	17	Circuit. Statute	2
	5			0	6

-

5

60

9

0

5

ļа,

Analyst

P

5 63 -

0

-

U -. .

X

5

2 19

1	need			Column	am		
OT AR	MUN	1	ea	3	*	મ	9
	Y	5	0	13		80	0
Los acontina	B	٢	11		-	432M	2
	0	_	0	5		r	anal Anala
	D	13	anna)	3	0	R	3
	Li,	11	U		Г	r -	X
	1.			11	5	3	0
	Analyst	22					

2

0

5 $(\hat{\mathcal{J}})$

9

19 11

æ Q 9

أطر

Analyst

0

0

3 Singer" 1

۵/

al.

m

**

....

Row

Day 9

50

-

5

-

Celumn

Day	Dow			Celumn	um		
***	Ann		ч	m	4	w5	9
	A	2 N	10 M	12-14	(I N	Sa	NO N
	8	4	N	I A	1	***** 1997	2
	Ų	N	ION	12-24	2	4	
ð	٥	12N	Li N	12N	10 N	12N	28
	tai I	N	2		17	- Series	X
	14	2	N I	I N	M L	12-N	12
	Amahat	C					,

	6a.	_	0		-	-
	11	10	11	11	2	17
An	alyst	S				

2

2 2 4

> 04 -5

4 Celumn

0

ie. m

-17

50

10

-67

201

5 1+ -

e,

Kow

Day 7

Column

3 N

F4

----GT

Row

Day 11

1 2 - Co 2

0

1

¢

3

= 1+

NH

11

0

-

4

0

Analyst

Analyst

 \odot

14

2

63

U a

8

Q

straight 2

21

0

	-			Cat	Calema		
71 ÅRA	MDM	,	ei	3	4	¥č.	ý
	Y	6	0	12		00	0
.	æ	ę.	-SMM / SM	Although Milliongay		Appendia Michael	2
	0	=	0	12		t	ACCOUNT Mini-upp
d	a	12		3	0	3	12
	a.	5	2	Access Manage	4	14	X
	14.	0	esente unample		20	B	2

0 5

3 -

5

0

0

*

Becchi

1

8

=

ere

Row

Day 8

0

Column

X= No germination C= Chlorosis W= Wilting

** Day 14: Include sublethal observations:

Nauthus Ewvironmental \$909 Pacific Hwy, E., Suite 2. Tucomu, WA 98424.

E

QC Check:

Comments:

D= Desiccation M= Mottling N= Norroal

Soff Toxicity Test

Clinat: 22

Species N I vay#:

Lacinca subra

Lettuce Seed Daily Germination Counts

1430

Start Pate/Time: 617/11

End Date/Time: 6/21/11 1560

101- 1000- 70000 - 1012-

10 10. ų Caluma en. 1000 2 No No. Spi 0 **** Row C 0 54 # Anglyst e. 1 Day 3

Dav 2	Baw			Column	timit		- 1
-		-	-14	3	*	st,	-
	Y	11-					
	8	2					
	Ú	Q)					
	a	SN10					
	1	20		-	-		
	4	entes					
ų.	Analyst	E.					

Theor &	Dam			Cal	Column		
c (bri		248	3	ŝ	4	30	_
	Y						
	8	2					
	9	01					
	۵	Q					
	u:	10					
	-	SURE					
Ans	Analyst	11				and a second sec	

Tyav 4	Raw	A design of the second s		L'an	anum	and the second se	1
2 (44.2			2	3	*	3 71	
	Y						
	8	2					
	Q	0					
	6	0					
	Line (10					
	-	SURE					
An	Analyst	11					

A 11 B 12 C 10 F 10 F 5 Up	307				1 I	7	0	7	n	8
0	6	0		Y	41 11					
0	6	6		8	21					
р 10 Е 10 г 5 Фед	D 10 F 10 F 5 Wigst	р 10 Е 10 г 5 Чүл М	р [0 г. 5 Чуде илары АК	9	01					
r Supe	r 5 Upp	r Surge Lualyst M	r Sure water Ar	6	1					
r Suya	r Suya wayse Ar	r Suya uaiya <i>M</i>	r Suya wayse M	Ш	10					
vualvyt AF	ualyse AF	unalyst Mr	unatyse AF	4	SURA					
				Analyst	11					

0

a.

li.

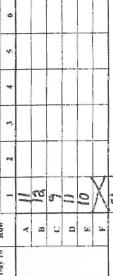
Analyst

9

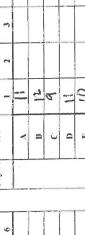
Da

Ų

2


e

ałyst	N.					
a			Column	UMD		
MUN	in	174	m	4	ŝ	9
P						
8	12-					
0	0					
Ø	4393 ⁰⁰ 453704					
***	1					


	-		Cenu	Column		
<u>v</u> 8		174	e	4	ŝ	9
8	1997					
and the state of t	12-					
0	0					
Q	439-744 05-1040					
2	0					
2900000 1440	SURP					
Analyst	R					

um	5						
Column	3						
	174						
	I	-	6	0	43×3 ⁴⁴	0	S 112 0

Dav 10 Row	Row	- Arrent		(winnin	quar	- 1
		-	2	-	*	
	¥	11				
4	B	57				
	ω	5-				
	D	404g				
in the second	541	0				-
	F	X				
Anatest	text.	-Fb			0	

14

w.

-

Column

Row

Day 11

30

-2

۳۴,

-

HUNY

Day 7

13

æ -Q

×C

5

Calumn

7		-						
And a second								
								ł
							II	- 154
							Column	
								•
*	2	e		0)	X	2		,
V	2	U	a	μ	ja,	Aualyst	a a	1000
		l				Aua	Day 17	

				2
Y				
8	13-			
IJ	5			
â	-114 ⁻¹ 17386			
îu	0			
ž	X			
Anaiyst	C			

٢

VC

-3

-

-

-

Row

Day 8

e,

5 o -

Ų

Column

L.

Analyst

20

4

.

Daw 12	Daw			Column	1111		
27 Jan		-	24	M		42	9
	Y						
17,4 0 000A	8	13					
	U	0					
	0						
	-	0					
	i.	X					
N.	Analyst	30					

-2

43

ų

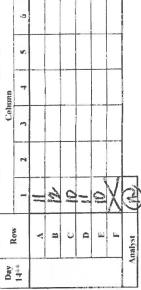
173

**

Row

Day 9.

Column


e/

Ş. 17.

a

20

Analyst

W-Willing

as Day 14: Include sublethal observations:

Voullus Eavironmental 5009 Pacific Hwy. E., Salte 2. Jaconna, WA 98424.

E

QC Check:

Comments:

N= No germination C= Chlorosis

D= Desiccation N= Mottling

N= Normal

Nautilus Environmental

140.02

Washington	Laboratory
------------	------------

	I antreno	entime		Start Date & Time: Stop Date & Time:	4/21/11 1300	
est #'s:	11000-	TROU	, TOD7, TO	08, 7009, 7010,	-TOU, TO12	
Sample ID	Cont.	Rep.	No. Seedlings Emerged	Shoot Pan Tare Wt. (g)	Pan + Wet Shoot Wt. (g)	Pan + Dry Shoot Wt. (g
CON	36	1		1.63560	1.1001073	1.65274
	24	2	9	1.42428	101014	1.43 08
F(0)	11	3 4	12	529100	1.76700	55564
	34	5	12	1.54137	1.72831	1.55324
	32		0-1-1		ON 2.121109	1.75454
511-0/01	21	2		171037	2.04951	1.77874
5	13	3	12	.66022	2.00733	GA.66 1.69107
13	E.	-4		1.30294	1.78289	1.51123
·	38	5	10	41273	34101-	1.50835
511-055	30	1	12	1.50121	.74003	10179
all leader	39	2		1.41882	11600	1.53038
° (3)	17	3	11	1.9 309	103040	1.5108
a good	22	4	10	18703		A State of the second sec
		5		1. 10260	1. 6139(00) 1. 661211 8098	1.66749
511-157	29	1	1	1.66060	1. 102.54	1.68264
. I	12	2		1 ATECT	1.75783	1.72053
43	3	3	10	120510	1.103925	1,60853
P	35	4	14-	1443010	1,43233	145345
	27	1		64329	2.10/010	157/39
511-059	28	2	-18-	152/090	1.980110	1.54464
+ 10-	1	3	81	102023	2.16859	1.64619
*@	14	4		109440	2.15932	171952
	33	5		1.48753	2.0 8108	1.51747
all Mat.	1-12-	1	a	5271	1.75354	1.5382
511-0122	37	2	12	1.49895	388.4	1.51777
*0	118	3	1	1.34943	1.10147	1.366.79
	S	4		1.33534 1.44534 1.39530	1.10703	147247
	16	5	12/	1.445.24	1.705910	40868
511-051	20	1	1	A A A A	1.55903	78075
Sector Sector	30	2			2.0410	1.76722
*0		3		1.75735	1. 96124	147747
	17	4		1.46752	1:14/093	16325
	16	5	12	1.1010880	1.72670	1.67.552
511-053	1.4	$\frac{1}{2}$	112	1.47496	1.57018	148692
der the	4	$\frac{2}{3}$	14	1.51489	56672	1.52.101
×3	23 20 40	4	<u> </u>	1.5359 454		1.55174
	145	5	10	1.57413	1.109235	1,58613
and the state products	1 211	1				
		2				
		3				
		4				
	-	5				9.6
Tech Initi	als:				(1)	<u>i y</u>
Comment	•••	Initial	number of see	ds added to each repli	cate = 12	- ~
Comment			7	and the second se	1: 107.0	QC: (1)
Date/Tim	e 1n:	6/24	11 150 5/11 153			

H Samples rated 0-5 from least rocky (1) to most rocky (5).

50	
I4-Day	11.11
1	Ĩ
Result	ironm,
ity.	ALC: N
Qual	ilus F
12	aut
nen	1.
180	
-	
111	
No.	

Client: Editopophloched Partriers Start Date Time: Lo 19/11/1400 Sumple IIN: 5145 D. 2:18, W55 E.G. Office 14: 1100-7029 to 7032

End Date/Tince: (0/22/11 1309 **Diservici featuria** Day 14

Day 7

finat

initial

Survival

Lan.

e des

9

10 01

90

10 0 01 101 10

00

Observations

Sublethal

	Conductivity (uhom-cm) al initial fingl	245		Marin Mi	04 71 370	A CONTRACTOR OF THE OWNER OWNE	ALL STATE OF LANS	012 11 010			55 30 335			Ho 40 1003					
	pII (units) initial final	1.			8.09 7.59	All and a second se	A State of the second sec	8.10 10.1010			18.28 7.55			7.108 10.710				The second s	
	% Moisture	184 38.12	5/5		1.01 19.1	In a water		5.49 16.8			5.49 22.0			14/10/289					
	Kep. Cont. # #	0/ 1	2 3	3	1 12	2	0	14	2 11	3	1 5	<u>ي</u>	-	1 7	3	3 9	gimer	14	
STARCOAD RUT	Sample ID	CON			541-061			511-255			511-057			SI-059					
	Tiech Init.	52	-M	AT 1	W.	è	5	20	00	t	Cer	(Se)	60	27-	X	Carl.			
E155-0810,	Temp (°C)	220	22.0	21.9	21.9	210	5	22.0	33.0	0.66	22.0	22.0	33.1	31.9	22.0	0.22			
(1)	Test Dav	0	I	ei.	3	+	urs.	9	r	90	0	10	1	12	13	14			

•

0

551

91 10 22

10 10

0

0

2

90

-

0

10

10 00 10 11 9 9 01 0l E

 \odot

Sublethal Observations K	N= Normal burrowed	E= Exposed/on surface	B= Balled together	D= Dead	W= Segmental swelling	L- Lesions/alcers	C= Coiling	S= Shortching/stiffening
Sub	-	1	Ba	Du	1	1	U	2=5

ENN. R.M.A. Test Chamber. ()rganites scarse: QA Review:

N 1 (M)

(m)

C

12/12/

(13)

2

(de)

1(4AP)

9

Lech Initials

03 ۴.

9

2 2

91

10

01

10 01 01 10 10 91 9 9

lest Species:

4.4

Nautilus Environmental Washington Laboratory 5009 Pacific Hwy. E., Suite 2 Tacoma, WA 98424 Raw Data Sheet Soil Data 14-Day Soil Toxicity Test

Client: Environmental Partners Inc. Test #5: 11010-T029 +1 T03	6
Sample IDs: 5/1387 - 3:18, WSSB6-0910, ELSS-0810, Log-In#s: 511-061, 055, 057, Date: 10/9/11 1400 STAPPOAD 1807 Species: E. Dettelo	059
Date: 10/9/11 1400 STRPPOAD 1807 Species: E. DeHiller	

Soil Weights and Moisture Fraction (MF):

		Pre-Test	0		Day 0			Day 14 /	2,5	
	Initial	Final	(*)	Initial	Final	(A)	Initial	Final		
Site	(wet)	(dry)	MF	(wet)	(dry)	MF	(wet)	(dry)	MF	
511-061	264	24.7	7.3	76.7	76.4	10.1	158.0	154.0	19.	
51-055	26,6	24.9	7.3	78.9	77.6	5.49	1110.2	13.4	110.8	
511-057	26.1	24.1	97	77.5	76.5	5.49		88.4	22.0	
511-059	26.4	23.7	12.1	78.4	75.3	14.16	140.5	134.9	38.12	
14 day con				02754	66.9	51.5	101.1	111.0	- Onlar	
		a 4 a	1.10	103.0	100.2	-7 -7/	124.5	121.9	13.	
511-062	264	28.3	14.2	73.1	36.1	7.76	139.2	130.7		5
511-051	26.4	20.5	30.9	05,4	103.3	9.17	1420	121-97-90		0138.9
	26.4		1.2	105.5	494.29		105.7	17.3	50.6	
25 day LON BT 80 makan				92.6	843	49.7	28.4	118.2	10592	\$ 68.
" 40 My/1Kg				70.8	62.7	47.9	105.4	9623	51.2	
N 20 malka				78.1	70.2	46.2	28.5	107.10	77.3	
10 mg kg				82.6	74.6	47.1	143.2	135.0	77.3	
11 UN		11 - co. 114		102.1	94,2	46.2	145.8	13/09	55.3	
	·									
	<u>.</u>									
							1967 - H. J			*
muuta taistata.	A	X	35	X	CF	NF	(R)		X	
Tech Initials:	LØ.		V-1	w .	W73	111-		- Und		

Date/Time in/Temp: Date/Time out/Temp:

1400 1040 6/10/11 1330 109 030 10/28/11 / 830 /1 \$11

MF = (I-F)/[A-(I-F)]*100

MF= Moisture fraction of bulk soil (in %) i= Initial wet weight of sample + pan (g) F=Final dry weight of sample + pan (g) A= Initial aliquot weight (g))

Bdue to texture of samples, matched To moisture on ficularility instead of volume

Environmental Quality Results - 28-Day Soil Bioassay Nautilus Environmental

Client: Sample ID: Test #: Nautilus Cl	Enviror SH4-W 1106-703 heck-In#:	1 minital 64 YESS 03 1106- 511-062	Partn -DI, WSI TO34 11. 1511-01	LVS -A131 (BKG) 06-7035 51, 511-053		·	End	Date/Time: st Species:	6 41 1 1 7 1 1 Eisenia	foetida
Test	Temp	Tech	· [% Mo				Conductivity	
Day	(°C)	Initials		Site	Day 0	Day 28	Day 0	Day 28	Day 0	Day 28
0	22.0	\gg		ION	51.5	50.6	7.54	1.08	529	601
1	22.0	ME		SII-002	7.76	13.1	8.23	7.50,	84	43
2	21.9	ME		SII-051	38.9	51.5	6.54	5.54	16	15
3	21.9	MP		611-053	9.17	14.2	7.00	6.8D	34	120
4	21.9	(D)				,				a 1
5	21.9	C+								
6	22.0	X								
7	21.8	80								
8	22.0	84								
9	1.	TC 1								
10	22.0	(A)								
	21.9	10								
11		01 94								
12	21.9	5								
13	22.D	2		······	<u>.</u>					
14	21.9	2		C					1 a	
15	22.D	<u>IF</u>								
16	22.0	<u>y</u>						ļ		
17	22.0	(1)								
18	22:0		1	analyzer and a subsection of the subsection of						
19	22.0	<u>Q</u>								
20	21.9	Se								
21	21.3	75		an data hasan an						
22	22.0	25					1		1	
23	21.8	84- 19	1				2 2 2 2			
24	22.0	62		an a						
25	22.0									
25	22.0	A State				and the second second				
2.7	12.0	ME					ļ			
- 28	22.0	85				:				
<u>[</u>								1	l	
		alila		Tech initials	X	hington Labor] atory - 5009 Pt	icific Hwy. E.,	Suite 2. Tacon	na, WA 98424.

QA Review/Date D / 9/1/11 Test Chamber: EAN. C.M. A

Eisenia fetida 28-Day Bioassay

Nautilus Environmental Washington Laboratory 5009 Pacific Hwy. E., Suite 2 Tacoma, WA 98424

Client/Project ID: Environmental Partners Test No.: 11000-7033, 11000-7034, 11000-7035

Start Date/Time: (2/9/11 End Date/Time: 7/7/11

Sample ID	Cont. #	Rep. #	Initial Org. wt. (gm)	Initial No. Worms	Initial Avg. per Organism (gm)	Final Org. wt. (gm)	Final No. Worms	Initial Avg. per Organism (gm)
ion	6	1	(8-44-14-902M	10		3.42983	10	
0014	10	2	4.34417	10 70		2.74904	10	
	1	3	442805	10		2.75244	10	
	•	4						
	-	5						
511-062	7	1	4,26905	10		2.53325		
DIFUGO	75.4	2	239522	10		6.05009	10	
	11	3	337532 4.15407	10		2.055	4	
		4	<u> </u>					
		5						
	d	1	3,81916	10		1.86036	10	
511-051	12	2	4.01945	10 10 10	Contractory of the second states of the	2.101031	10	
	104	3	4.44998	10		2.5/0/78	10	
	7	4	19. 7. 7. 7. 112	3.07	States and the second			
		1			Service Contraction of the			
		5	a goolic	10		2.5088	10	
81-053	3	1	3.88745	0 10 10		1,43401	10	
	11	2	408357	10		25521	10	
	12	3	3,98070	10		1. 2. 2. 441		
		4						
		5						
		1						
		2						
	1	3						Contraction of the second s
	1	4						
	1	5					•	
		1					· · · · ·	
	1	2						
		3						
		4						
		5	1				<u> </u>	+
-	1	1						
		2						
		3						
		4	Į.					
		5						- P
	1	1						
		2					1	
		3	1	<u> </u>				
		4					4	
		5 h Initials		1/F			X	

QA (R)

28-Day Soil Survival Results Nautilus Environmental

Client: Test No.: Test Date:

Environmental Partners 11010-T033 to T035 6 9/11 Eisenia foetida

Test Organism:

Sample	Container	Rep. #	Initial Number	Final Number	Sublethal Observations	Tech Initials
1D	#		A	10		S.F.
	6		10 10			X
to 1	10	2	10	10	- 7	X
LOW		3	10		NE	
		4				
		5	In	10	R.	-19
	1	1	10 10	and the second data and the second of the second se	- N	18
511-062	5	2	10	-12-		- A
SILVEL	<u></u>	3	10			Xi
		4 5				
	0		(h)	ID	N.	N
	8		10	10	Ň	X
51-051	12	2		10	N N	-A-
011001		3	10	<u> </u>		<u> </u>
		-4				
		5	10	10		X
	3	1		10	N	- Maria
511-053		2	10	10	N	81-
51-025		3			- ^v	
		4				
		5				
	1					
		2				
		3	and communication of the latter of a state of the second second second second second second second second second	· · · · · · · · · · · · · · · · · · ·		<u>``</u>
		4 5				and a second
A						
		1				
		2				
		3	and a your statement of the state of the statement			
		4				
		1				
		2				
		3				
		4		1		
ter terreter			e 2 Tacoron WA			L

Washington Laboratory - 5009 Pacific Hwy, E., Suite 2. Tacoma, WA 98424

22/

QA Check:

Comments:

Sublethal Observations Nev:

N= Normal/horrowed

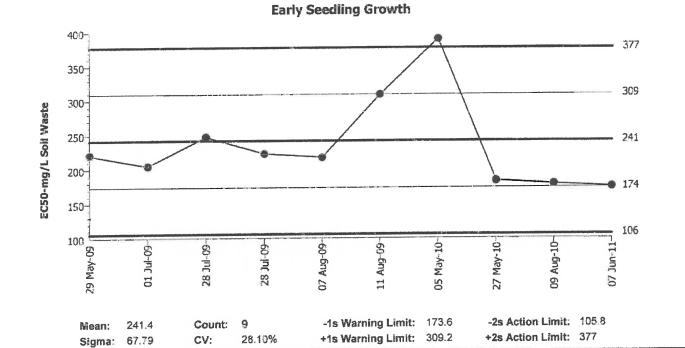
E- Exposed on an face B= Balled together

Li= Dead

3.1

W - Segmental swelling

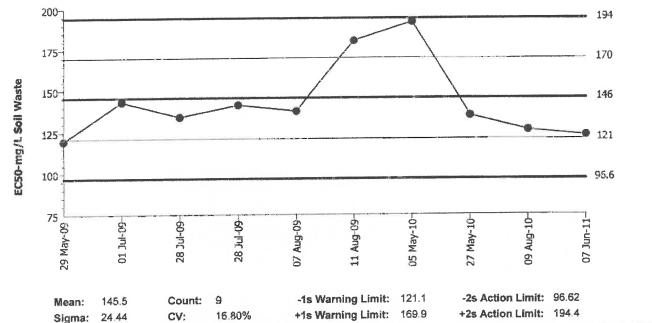
L= Lesions/alcers


C Coiling

S= Shortening/stiffcning

APPENDIX C - Reference Toxicant Test Results

CETIS QC Plot


Early Seedling Growth		 Nautilus Environmental WA
Test Type: Survival-Growth	Organism: Lactuca sativa (Lettuce)	 Soil Waste
Protocol: WDOE 96-324	Endpoint: Survival Rate	Reference Toxicant-REF

Quality Control Data

	·			OC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
Point	2009	1.1. A.B. 11991	29	QC Data 220.6	-20.79	-0.3067	statting		09-0219-1410	
2	2005	Jul	1	204.7	-36.73	-0.5415			11-7520-9930	03-2799-1846
5		301	28	247.1	5.725	0.08445			11-1163-7315	08-7410-7616
			28	222.6	-18.81	-0.2774			18-2758-4943	00-2970-8628
		Aug	7	217.2	-24.18	-0.3567			15-7179-2232	06-8206-1666
			11	308.6	67.19	0.9912			11-5703-1897	11-2523-5381
	2010	May	5	390.1	148.7	2.194	(+)	(+)	18-1256-6303	03-7353-3083
3			27	183	-58.44	-0.8621			07-5797-7609	02-8388-1573
3		Aug	9	178.5	-62.87	-0.9274			12-0568-9729	00-4825-3515
10	2011	Jun	7	174.4	-67.04	-0.9889			14-4891-1513	00-5788-6680

CETIS QC Plot Nautilus Environmental WA Early Seedling Growth Soil Waste Organism: Lactuca sativa (Lettuce) Material: Test Type: Survival-Growth Source: **Reference Toxicant-REF** Endpoint: Mean Dry Biomass-mg Protocol: WDOE 96-324 **Early Seedling Growth** 200-

Quality Control Data

Guant	y con	troi Data	24							
Point	Year	Month	Day	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
	2009			119.5	-25.98	-1.063	(-)		09-0219-1410	17-6385-6463
2		Jul	1	143.2	-2.338	-0.09565			11-7520-9930	03-2381-2203
3			28	134	-11.49	-0.47			11-1163-7315	02-6860-1115
4				141.2	-4.285	-0.1753			18-2758-4943	06-5912-1272
5		Aug	7	137.6	-7.927	-0.3244			15-7179-2232	09-0615-4224
5		rug	11	180.6	35.06	1.435	(+)		11-5703-1897	06-6378-5558
	2010	May	5	192.1	46.62	1.908	(+)		18-1256-6303	11-1099-1174
3	2010	is sury	27	135	-10.5	-0.4295			07-5797-7609	00-1486-3034
					-19.28	-0.7888			12-0568-9729	16-9445-1694
9		Aug	9	126.2	-13.20	-0.1000				
10	2011	Jun	7	123.1	-22.38	-0.9158			14-4891-1513	14-6511-7777

Analyst: IF QA: W

CETIS Sun	nmary Repo	rt						oort Date: t Code:		0711LS 14	
Early Seedling	g Growth								Nautili	us Environ	mental WA
Batch ID: Start Date: Ending Date: Duration:	18-2865-3267 07 Jun-11 14:30 21 Jun-11 13:00 13d 22h)	Species: La	rvival-Growtl DOE 96-324 ctuca sativa rritorial Seed				uent: Not	ghan Feuk Applicable		
	02-9240-0634 07 Jun-11 14:30 07 Jun-11 14:30 N/A		Waterial: So	060711LS il Waste ference Toxi	cant		-	ent: Ref nject:	erence Toxic	cant Test	
Comparison S	Summary										
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Method			
16-6058-4487	Mean Dry Bioma	ass-mg	80	160	113.1	36.9%			ny-One Rani		4
13-0090-5880	Survival Rate		80	160	113.1	15.0%		Dunnett's	Multiple Co	mparison I	
Point Estimat	e Summary										
Analysis ID	Endpoint		Level	mg/kg	95% L.CL	95% UCL	TU	Method			
14-6511-7777	Mean Dry Bioma	ass-mg	IC25	96.96	69.77	107.2		Linear Int	erpolation (I	CPIN)	
	Contract Contractor		IC50 EC50	123.1	103	141.1		Trimmed	Spearman-k	(ärber	(W.S
00-5788-6680			EC30	1/4.4	100.0	100.0		T this is the second se	oposition		
	mass-mg Summ							014 5	Cad Dave	CV%	%Effect
Conc-mg/kg		Count		95% LCL	95% UCL 1,193	Min 0.3375	Max 1,398	0.2003	Std Dev 0.448	43.68%	0.0%
0	Background Soil		1.025	0.8582	1.456	0.3375	1.785	0.1329	0.2972	22:1%	-31.13%
40		5	1.345 1.127	1.035	1.219	0.9242	1.502	0.11	0.246	21.82%	-9.93%
08		5	0.2675	0.2004	0.3346	0.01	0.5108	0.08033	0.1796	67.15%	73.91%
160		5	0.2875	0.005819	0.04818	0	0.1283	0.02537	0.05672	210.1%	97.37%
320		5 5	0.027	0.002146	0.02386	0	0.065	0.013	0.02907	223.6%	98.73%
640		.) 	0,010	0.002 140	0.02000	÷					
Survival Rate									Odd Davi	C) /0/	%Effect
Conc-mg/kg		Count		95% LCL	95% UCL	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Max 1	0.02041	Std Dev 0.04564	CV%	0.0%
D	Background Soil		0.95	0.933	0.967	0.9167	1	0.03333	0.07454	7.71%	-1.75%
40		5	0.9667	0.9388	0.9945 0.9472	0.8333 0.9167	1	0.01667	0.03727	3.99%	1.75%
80		5	0.9333	0.9194 0.4577	0.6423	0.3107	0.9167	0.1106	0.2472	44.95%	42.11%
160		5 =	0.55 0.06667	0.03258	0.1008	0.2.5	0.1667	0.04082	0.09129	136.9%	92.93%
320 640		5 5	0.01667	0.002751	0.03058	0	0.08333	0.01667	0.03727	223.6%	98.25%
	mass-mg Detail		0,01507			-					
Conc-mg/kg		Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	Background Soil		1.232	0.3375	0.8133	1.347					
40		0.9925		1.393	1.786	1.383					
80		0.9242		1.502	1.246	1.031					
160		0.3042		0.01	0.5108	0.2875					
320		0	0.006663	0	0.1283	0					
640		0	0	0	0	0.065	-11 ¹				
Survival Rate	Detail	Stantan - C C. In									
Conc-mg/kg	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	satu,				
0	Background Soil		1	0.9167	0.9167	0.9167					
40		1	1	1	0.8333	1					
80		0.9167		0.9167	0.9167	1					
160		0.5833		0.25	0.9167	0.5833					
320		0	0.1667	0	0.1667	0 0.08333					
640		0	0	0	0	0.00000					

Report Date:

31 Aug-11 16:13 (p 1 of 1)

CETIS Summary Report

14-Day Soil Toxicity Test

Soil Quality Measurements

	a ana ana ana ana ana ana ana ana ana a	ş
Reference Towicard	640mg/Kg B1503	RT000711LS
Cheat:	Sample ID:	Test ID:

Tech Initials	3	(I)	J.	W	15-	H.	È	Hr:	S	3	\$	Z	Ì	66	È
Light Intensity (Lux)	2197							2162							2195
Temperature (°C)	21.5	24.0	27.0	25.0	2.5.X	24.0	25.0	23.8	24,0	25.5	34.5	26.0	26.0	33.5	249.0
Test Day	0	-	7	~	**	â	6	7	æ	6	10		12	13	14

Lactuca source (buller erunch lettere) 1430 Start Date/Time: (0/7/11 I.nd Date/Fine: 12121/11 Test Species:

Conc. (ppm)	Soil sturry pH (units)	pH (units)	Soil super (ur	Soil supernatant pH (units)
	initial	final	initial	fual
Lab Control	1.27	1.81	7.37	1:40
40	T.16	7.100	7.13	1.2
80	7.10	159	1.07	3.05
160	F0.F.3	3.60	Part	3.63
320	7.05	3.4%	1),L	1.5
019	6.93	7.8	1911	立ちの
Tech Initials	30	e	No.	È

Test Chambers RWDINA

a

T2coma, WA 98424

(253) 922-4296

5009 Pacific Hwy. E. Suite 2

Nautilus Environmental Washington Laboratory

QC Checks

Contraents:

Soil Toxicity Test

Client/Sample ID: Reference Toxicant

江 Tray H:

				Column	1101		
C ARA	- MON	1	~	3	ŧ	are	9
	¥	1	E.	i	-	-	
	8	6	ŝ.	1	80	١	
	υ	N	-	200	1	1	
	G	ł	1		Non-Jr	1	
	3	1	l	١	N	-	
	12	-	١	-	3	2	
Analysi	156	15					

	¢			Coli	Column		
NUN - ÁRA	MON	1	2	ñ	мф	w.	0
The later sector was a sector of the later o	Ł		1	ş	n	1	
	~	2	N	ł	8	ŕ	
	0	01	1	ł	Ĭ.	1	
	a	ł	-	ł	M	Ň	
	ы	1	1	1	8	١	
	12	01	1	1	2	9	
Analyst	vet	11-					

14	Thosa			(Column	uuu		
LINN'S	MON	-	ei	~	7	16	9
	V	9	-	-9	9	<u>a-</u>	
	20	20	5		2	5	
	υ	0	-3	ļ	-	1	
	a	ł	1	N	TT	I	1
	12	-	ere G	1	0	L	
	1	10		J	9	-	
Analyst	yst	1					
1				Col	Column		
0 /12/1	MON	p flox	7	•	->	5	9
and the second se	V	0	2	0	-	4-730000 (1000000)	
	8	2	Q.	1	0	egantest besentil	
	0	69,000	0			40-m2	
	a	ſ	-1	2		40.000	
	¥	-	-	١	10		
	H.		and a	-		1	
Analvst	vet	C		A NUMBER OF A DESCRIPTION OF A DESCRIPTI			

-00
CIN
No:
-
Test

Test Species: Lactuca sativa (buttererunch lettuce)

R 1 2 R 10 8 C 11 1 C 11 1 F 1 1	Dan 3	G			Coli	Column		
10 & 10 12 13 1 - 1 - 1 1 - 1 - 3 13 13 1 - 1 1	1 2821	MON	-	7	3	79	5	
[2] 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Y	0	20	10	12		
		22	Q	5	(inclusion)	alimata Minata	12.	
3 3		υ		-	ł	3	*****	~ ~ ~ ~
		A	-	۱	3	2	N-1	
1		E	1	N	1	Minera and	5	
		14		١	J	-	2	

0	a la			Column	uuu		
o ven	WOM	1	6	£	4	40	9
	V		1	=	5	-	
	8	3	10	-	-	2	
	υ			2	m	Ц	
	Q	~	ſ	h	12		
	لننا	,,,,,,,,	З	1	0	diame.	
	-	-	1	-	gyper d	5	
Analyst	st	RO					

Now 1 2 A 1 2 B 1 6 1 7 C 7 1 6 1 7 C 7 1 6 1 7 F 7 1 6 1 7 F 7 1 6 1 7 D 7 1 7	00	G			Column	uuu		
	4 VB/	MON	-	2	3	4	10	9
B 13 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6	Y	1	11	1	2	1	
		8	2	01	~	e	2	
		υ	H		-	t	t	
E C		9	6)	1	-	I	
- - 		B		5	-	ţ		
Analyst 7		1	11	Sector Sector	>	- Îl	874 IZ	
	Anah	St	2		6		p	

D 10	G			Col	Column		
DAY IV	MON	-	2	~	4	5	
	×	1	11	1	g		
	8	3	0	1	decag	3	
	Q	Kine-	(Maran		4	4	
	a	15	ſ	4	2	1	
	H	-	S	1	-	1	
	í.	-	1	4	1	6	
Analyst	N.	10		and the later of t			

Lettuce Seed Daily Germination Counts

-	Start Date/Time:	B	1	MS	ne II		-
nd Dau	End Date/Time:	e	21/11	08.0	1300		
11-11	G			Col	Column		
II ÁRAI	MUM	1	2	3	4	w.	9
	V	-	-	=	12-	11	
	æ	3	01)	(12	
	U			مسر		+	
	a	64)	7	2	1	
	F	-	ø	-		Ĩ	
	2	11)	1		121	
Ant	Analyst	2					
				0	Column		
Day 12	Kow	-	2	m	-	s,	9

	and the second sec					the supervised on the supervis	
	Ą		-	1	2	()	
A	B	10	2	-	angun Chago	2	
	c	tanad				1	
	a	4	1	4	2	-	
	3	-	15	}	datum viteor	ļ	
	ý.		America		-	12	
Ana	Analyst	res l					
					and a second second		
Flaw 12	Dam			Co	Column		
CT VP/T	NON						

MON CI (BII						
P		7	e	4	5	9
		=		58	danerija Ki. saadi	
8	13	0	- and the second	-	12	
C	-	1	*	4	N.	
a	5	E	1	9	1	
E	e.K	5	1	11	1	
4		proved (1997	I	1	1	
Analyst	69					

	and a			Col	Column		
+I ÅRA	MOM	1	7	en	7	16	9
	V	-	-	=	12	12	
	B	6	01	×	1	2	
	U	9	-	Comes	2	6	
	G	3	×	ptim	2	×	
	Э	h	4	×	-	×	
	4		×	×	11	121	
Ana	Analyst	Ĉ					

QC Check:

Comments:

S

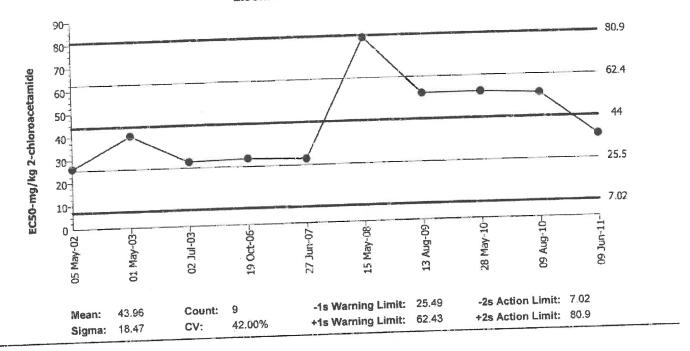
Nautilus Environmental

Washington Laboratory

	EPf	Kefere	Mie Oficant	Start Date & Time:	10/7/11 1430	<u>አ</u> ን
ecies:	Lactuca	sativa		Stop Date & Time:	and the second se	<u><u>'</u><u>U</u></u>
st #'s:	-1106	-TFD	to thread =	DHO RTOLOD	711-s	
ample ID	Cont.	Rep.	No. Seedlings Emerged	Shoot Pan Tare Wt. (g)	Pan + Wet Shoot Wt. (g)	1
	40	1	17	1.627-688-13	1954-40	1.62263
CON	30 2	2	13	159712	1.98134	1.60374
	pass interest of the pass of the second s	3		1.52754	1.3810100	1.53159
	10	<u> </u>		.52307	3307	1.53683
ere - Sustain of Steeler an advancement	23	-+ 5		1.56192 53	34 89805	1.51.5695
-	20	1	12	66/013	34 89805	1.568.04
40	25			100471	1.901020	1.61874
	3	2	12-	121634	2.05702	1.69256
	19	Contraction of the second seco	16	22912	1,93691	1.76086
	8	4		16124	2.0.1103	1.78393
	210	5	12	100268	1.32514	1.101367
80	9	1		1.00258	1329 8	1.1.19/03
	24	2	111	15529	2.040108	171331
		3		1.67500	1.91320	1.108995
	13	4			14503	1.73202
	13	5	12-	1	1. 102073 1.773	
Non	1 /1	1			1.76364	1.73996
	27	2	5	1.73726		1.5506
	21	3	3	1.55054	.56756	1.54741
	17	4		1.94120	1.58.093	1.62738
	110	5	4	1.50213	1.97501.9	1.07 100
320	18	1	0	1.23.27	1.54589	1.53001
and the second s	de fe	2	2	1.52993	1.94907	1.0000
AND	14	3	0	1.528112	5 G A 2. 188	1.81628
	5	4	2	1.81 610-17	1.824095	1.01000
and the second	17	5	0	1.107107		
640	28	1	0	01.547838		
	28	2	8	1.52280		
Per 1 (1999)	10	3	0	1,60600		
	12	4	0	1.490410		11.911.0
	115	5	1	1.10339 090	1.103.1042	1.68168
	en ser	1				
and a second	1	2				
and a second		3				
		4				
		5				
		1				
	-	1 2				
		3	-			
		4				
-		5	1			
		1	•		1	
·····		2				
		3				
		4	-			
and the " Mar many I		5		A MARKEN AND A MARKEN AND AND A MARKEN AND A M		A
ech Initi		+	(n)	(N)	(1)	<u> </u>

Comments: Date/Time in:

Initial number of seeds a	added to each replicate	= 12
<u>ul210</u>	Oven Temp (°C):	107.0
7/6/11 1580	Oven Temp (°C):	102.0


QC:

112 Date/Time out: 7

CETIS QC Plot

					And a second
	and a second		and a second		Nautilus Environmental WA
Eisenia 14-	d Survival Soil Test				2-chioroacetamide
 		Orgoniem'	Eisenia fetida (Red worm)		
Test Type:	Survival			Source:	Reference Toxicant-REF
		Endpoint	Survival Rate	304160.	
Protocol:	WDOE 96-327				

Eisenia 14-d Survival Soil Test

		trol Data					Mouning	Action	Test ID	Analysis ID
Point	Year	Month	Day	QC Data	Delta	Sigma	Warning	Action		
	2002		5	26.17	-17.79	-0.9631			18-0678-2428	
2	2003	-	1	39.91	-4.055	-0.2195			02-9873-1034	
3		Jul	2	28.07	-15.89	-0.8602				
	2006	Oct	19	28.75	-15.21	-0.8232			19-0311-5351	
5	2007		27	28.01	-15.95	-0.8634	0.00		20-3102-3790	
6		May	15	80	36.04	1,951	(+)		20-6120-4139	
7		Aug	13	55.16	11.2	0.6061			13-2033-4602	the second se
8		May	28	55.28	11.32	0.6127				02-4525-0355
9		Aug	9	54.28	10.32	0.5589			14-4766-0393	
10	2011	-	9	35.82	-8.136	-0.4405			14-4:00-0050	10.0100

Analyst:______ QA:_____

CETIS Sum	mary Repo	rt						Report Dat Test Code:			lun-11 14:5 911EF 14	• •
	-				со со — со ф			Test Code:			s Environn	
Eisenia 14-d S	urvival Soil Tes	t						A				
Batch ID: Start Date: Ending Date: Duration:	20-0867-4021 09 Jun-11 14:00 23 Jun-11 14:00 14d Dh		Test Type: Protocol: Species: Source:	Survival WDOE 96-327 Eisenia fetida Aquatic Resear	rch Organisn	ns, NH		Analyst: Diluent: Brine: Age:		han Feuk		
	06-4903-5718 09 Jun-11 14:00 23 Jun-11 14:00 N/A		Code: Material: Source: Station:	RT060911EF 2-chloroacetan Reference Tox			U	Client: Project:	Refe	arence Toxic	ant Test	
Comparison S	Summary					and the state of the		Meti				
Analysis ID	Endpoint		NOEL		TOEL	PMSD	TU			Multiple Cor	nnarison Tr	est
14-8257-9163	Survival Rate		20	40	28.28	6.59%			neu s		invanisori in	****
Point Estimate Analysis ID	e Summary Endpoint		Leve	mg/kg	95% LCL	******	TU	Meti			F10 to a a	
	Survival Rate		EC50	35.82	31.38	40.89		Trim	med	Spearman-k	arber	
Survival Rate				95% LCL	95% UCL	Min	Max	c Std	Err	Std Dev	CV%	%Effect
	Control Type	Cour	nt Mean 1	1 95% LUL	1	1	1	0		0	0.0%	0.0%
0	Control Sed	3	0.933		0.9549	0.9	1	0.03	333	0.05774	6.19%	6.67%
10		3	0,933	1	1	1	1	C		0	0.0%	0.0%
20		3 3	0.366		0.3882	0.3	0.4	0.03	333	0.05774	15.75%	63.33%
40		3	0	0	0	0	0	0		0		100.0%
80												
Survival Rate		-		0 10 2								
Conc-mg/kg	Control Type	Rep										
0	Control Sed	1	1	1 0.9								
10		1	0.9	1								
20		1	1 0.3	0.4								
40		0.4	0.3	0.4								
80		0	V	v							فالمو بالمنطونية وتبادئ وعادي ويترب	

000-089-180-4

Analyst:______ OA:______

Report Date:

29 Jun-11 14:51 (p 1 of 1) PT060011EE114-4766-0393

Environmental Quality Results - 14-Day Soil Nautilus Environmental

final C 0 0 3 0 0 寸 t 0 0 C. 0 0 0 5 3 Survival 400 Eisenia joenido 2) 4 initial 9 10 100 2 1 0 10 3 11 01 Ê Ŧ 1 Gi 21 lation 683 650 612 è Start Date/Time: (019 final HE0/ 45 Conductivity (mbom-cm) 210 End Date/Time: 20 524 **Test Species:** 580 528 initial 7.99 7.30 4.4 4.80 7.65 final R pH (units) initial fin 7.35 1.28 1.29 1.25 12 48.8 572 630 Ruch 44.21 553 final A % Moisture 1-16+ 647 0 initial 10. t t **Tech Inituits** SUD Cont. 3 9 14 09 30 5 the second 0 * 1 2 The second second 5 Rep. $\sigma r_{\rm b}$ e 1 rs, 1.1 - \mathcal{O} ~ e7, Conc. ug/J. Con 01 20 40 08 80 ug/L. 2-Chloroacetamide KTDUR RD911 EI Reference Towicant S Tech Initials S 30 Z 35 10 3 3 25 R -10 14 11 22.0 72.0 23.0 0.12 22.0 21.5 22.0 2.0 22.1) 21.9 32.6 2.9 220 Temp (°C) 219 21.9 Sample ID: Test Day 14 Client: Test #: $\tilde{\mathbf{T}}$ 9 10 -----12 9 -00 -NP) 0 , , ~ PP4

Test Chamber: Rpn A

Washington Laboratory - 5000 Pacific Hwy. F., Suite 2. Incoma, WA 98424

APPENDIX D - Chain-of-Custody Forms

ī

Multilitä Chulkingingingingingingingingingingingingingi	N	(4	TING LOCAT	resting Location (Please Check Box)	Check Box)				Chain of Custody	ustody
maine collection Print Report to: Report to: Report to: Report to: Report to: Report to: Report to: Report to: Conneases Report to: Report to: Report to: Conneases Report to: Report to: Report to: Report to: Conneases Report to: Report to: Report to: Report to: Conneases Report to: Report to: Report to: Report to: Conneases Report to: Report to: Report to: Report to: Report to: Report to: Report to: Report to: Report to: Report to: Report to: Report to: Strict to: Strict to: Report Report Report to: Strict to: Strict to: Report Report Report to: Strict to: Strict to: Report Report Strict to: Strict to: Strict to: Report Report Report to: Strict to: Repor	Autilia	CAUN	onment		Mornia D Morehouse Driv Diego, CA 32121 ne 858,587,335 858,587,3364	di la	Washington 5099 Pacific Highway East, Suite 2 Tacona, WA 59424 Phone 253-922,4296 Fax 253,922,5814	British Colum 8664 Commerce Bunaby, British Phone 694-201 Fax 604.357.136	ibla Court Columbia, C 1773	All AcV ebane	Date 6/3/11	8 ~
Report to: Structure for the foundation of the foundat	amu'a Collartion 5v:									ANAL	ses required	с)
Report to: Company For All Charlos Luc. Company Material State State All PTE All PTE Company Effective AL Europ State All Charlos Luc. Company Material State All PTE All Charlos Luc. Company Material Contact All Charlos Luc. Company Material Contact All Charlos Luc. Contact All Charlos Luc. All Charl					Townships To) _a) (
Address EFF ALE GLUTIAN GLAD FLAC GLAD FLAC Chyl State (zer [55:6:0:14] und 78:0:2:14] und 78:0:0:14] Und 78:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0		JURDNACN			Compan	. >	and the second		371	34		əture
Contract 155-05.0 155-05.0 Сонтакт 155-05.0 Сонтакт 15 1 <td></td> <td>295 NE G</td> <td>(VW)</td> <td></td> <td>Address</td> <td>Alternation of the second s</td> <td>JANE</td> <td>a substantia de la constantia de la constan</td> <td>n JL S</td> <td>70</td> <td></td> <td>Jadı</td>		295 NE G	(VW)		Address	Alternation of the second s	JANE	a substantia de la constantia de la constan	n JL S	70		Jadı
Fridual Each Each Phone Email $eric$ (Eucr ES) Email Email $eric$ (Eucr ES) SHEG 22-31/G 51/3/11 501L 1 1 SHEG 22-0(2) 51/3/11 501L 1 1 SHEG 22-0(2) 51/3/11 501L 1 1 SHE 200-3/27 51/3/11 501L 1 1 SHE 200-3/17/11 501L 1 1 1 SHE 200-3/17/11 501L 1 1 1 SHE 200-3/17/11 501L 2 1 1 SHE 200 5/17/11 501L 1 1 SHE 200 5/17/11 501L 1 1 SHE 200 5/17/11 501L 501L 1 Witt 5/17/11 501L 501L 1 Witt 5/17/11 501L 501L 1 Witt 5/11 501L 501L 1 <td>City/State/Zip Contact-</td> <td>155000Ar</td> <td>WA 0614</td> <td>12086</td> <td>City/Sta Contact</td> <td>ite/Zip</td> <td></td> <td></td> <td>tana iti na panananan</td> <td>pa - j</td> <td></td> <td>m9T Ji</td>	City/State/Zip Contact-	155000Ar	WA 0614	12086	City/Sta Contact	ite/Zip			tana iti na panananan	pa - j		m9T Ji
DATE TARE MATRIX CONVERT MO. OF COMMENTS \mathcal{L}_{2} $S[i_3]_{11}$ $SoiL$ i_1 $SoiL$ i_1 $SoiL$ i_2 $S[i_2]_{11}$ $SoiL$ i_1 $SoiL$ i_1 $SoiL$ i_2 $S[i_2]_{11}$ $SoiL$ i_1 $SoiL$ i_1 $SoiL$ i_2 $S[i_2]_{11}$ $SoiL$ i_1 $SoiL$ i_2 i_2 $S[i_1]_{11}$ $SoiL$ i_1 $SoiL$ i_2 $S[i_1]_{11}$ $SoiL$ i_1 i_2 i_2 $S[i_1]_{11}$ $SoiL$ i_1 i_2 i_2 $S[i_2]_{11}$ $SoiL$ i_2 <	Phone #	0	Korre Pirwa	5 corr	Phone Email					LVSSE		qieceA
SHERZ-3:16 $5[13]_{11}$ SCIL 1 1 2 $2555 - cg_{10}$ $5[17]_{11}$ $5c_{1L}$ 1	And I show the second		A New	MATRIX	CONTAINER	WO, OF	COMMENTS		ar anna 14 17 19,144	10:5		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	OWNER IN	C().		105	2	-			×	×		2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5 4582-3114		ter						X	×	1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	W55B6-0915	121	a a construction of the second	SOLL					×	X	-	
$SHY-M[G]$ $S(S)T$ S_0TL Z Z X X $W(S)(L-M)X2H$ $S(T)T H$ S_0TL S_0TL X X $W(S)(L-M)X2H$ $S(T)T H$ S_0TL S_0TL X $W(S)(L-M)X2H$ $S(T)T H$ S_0TL Z X $W(S)(L-M)X2H$ $S(T)T H$ S_0TL T X $W(S)(L-M)X2H$ $S(T)T H$ S_0TL $RELINOUSHED BY (CLEMT)$ X $W(S)(L-M)X2H$ $S(T)TL$ $S(T)$ $RELINOUSHED BY (CLEMT)$ X $W(S)(L-M)X2H$ T $S(T)TL$ $S(T)$ X X $W(S)(L-M)X2H$ $RELINOUSHED BY (CLEMT)$ $RELINOUSHED BY (CLEMT)$ X $W(S)(L-M)X2H$ $RECINATIONRECINATIONRECINATIONRECINATIONW(S)(L-M)X2HRECINATIONRECINATIONRECINATIONRECINATIONW(S)(L-M)X2HRECINATIONRECINATIONRECINATIONRECINATIONW(S)(L-M)X2HRECINATIONRECINATIONRECINATIONRECINATIONW(R)RECINATIONRECINATIONRECINATIONRECINATIONRECINATIONW(R)RECINATIONRECINATIONRECINATIONRECINATIONRECINATIONW(R)RECINATIONRECINATION$	1200 0000 1607	Shely	A no substitution of the	5012		-				-+-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SHU- Wed	5/5/11		5016		2			-		5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12WU-115m	11/11/21		5016		Ima.			-		1	
Soil Soil Soll Relation Relation Solution Soluti	YF 55-01	5/111		5015		-			<u>× </u> _			
WESC-AW-35/Brc/Strint Soil Soil FR55-56 501 501 FR55-56 511 501 FR055-786 71111 FR055-786 71111 FR055-786 71111 FR055-786 71111 FR055-786 71111 FR055-786 71111 FR055-786 501 FR056-786 501 FR056-786 501 FR058-786 501 FL55-56 511-055 FL55-56 511-055 FL55-56 511-055 FL55-56 511-055 FL55 501 FL55 501 FL55 501 FL55 501 FL55 501 FR050 500 FR050 500 FL55 501 FR050 500 FR050	WS11-A131 (8K	0		Solt		~			~	1000	1	
States - Big S	WSG-AW35 BEL			Sore	and the second se	-				10-14	11	
PROJECT INFORMATION SAMPLE RECEIPT RELINDUGGHED BY (CLIENT) Client: Total No. of Contrainers Separate Client: Total No. of Contrainers Separate PO No.: Recrived Good Condition? EALC Shipped ELSS Contrainers Spectral INSTRUCTIONS/COMMENTS: EACHW OW ELSS Climpt Climpt Received Good Condition? ELSS Shipped Climpt Sective device	<u>i</u>	5/11/11		501L					-	0	NITSHED BY (COURTER	
and No. of Containers (Somether) A A The Annal A		MATION	and the second	SAMPLE RECEIP			RELINOUGHED BY (CLICN)		1 Clonents and			
resived Good Condition? Exic Kory Locyes (2): (mined with the condition of the conduction of the condu	Cleat		Total No	, of Containers		(Signature)	The 1	0				(Date)
atches Test Schedule? Company Company Exit Row MENTAL PARTNELS (MC, Company Lefter & Contrast Schedule? Exit Row Mental RECEIVED BY (COURTER) (Time) 899% (Contrast Schedule) (Time) 899\% (Contrast Schedule) (Time) 899\% (Con	- ON Da		Received	Good Condition		(Printed Name)		(Date)	(Phried Nam	(9		
Letture & Earthwelth (Segnature) RECEIVED BY (COURIER) (1990) (2990) (290)	Shipped	a a constant	Matches	Test Schedule?		(Company)		45/20,	(Company)			
Letter & Earthw BUN (Separate) (1990) (Superation of Converte Parasel Anno) (Superation of Converte Parasel Anno) (Contrar (Converte) (Contrary) (Contrary) (Contrary) (Contrary) (Contrary) (Contrary) (Contrary)	Via: Via:	NS/LOMMEN	ns:		And the second se		RECEIVED BY (COURIER)	MMAA TA ANALYSI A ANA		REC	EIVED BY (LABORATORY	
(Petroof (Petroof (Conpary) (Conpary)	ELSS-06	0-115			Ware Must	(Segnature)		(Time)	S	くちょう	S	2 Tar
(Constant		See A				(Printud Name)		(Date)	Served No.	TOOL	- 1	(e13/1
						(Company)			Company	Aut. Tu	S	

Additional costs may be required for sample disposal or storage. Payment net 30 unless otherwise contr

Table 1 Summany of Soil Sample Analytical Results for Diesel and Oil Range Total Petroleum Hydrocarbons (in mg/kg) Remedial Action Excavation Seattle, WA

PA32117 14 190 2.000 2.000 PA32217 21 190 4.50 4.200 PA32217 21 190 4.50 4.200 PA32112 12 190 4.50 4.200 PA332147 14 190 4.50 4.200 PA332147 14 190 4.50 4.200 PA45114 14 190 4.50 4.200 PA45114 14 190 4.50 4.200 PA45117 15 No. 2.200 4.200 PA45117 17 Yes 4.50 4.200 PA45117 18 Yes 4.50 4.200 PA45217 17 Yes 5.5	Sample ID	Sampia Depth (feet bgs)	Final Performance Sample	Diesel- Range TPH ^{ex}	Oll-Range TPH ⁰¹	
Patholine Tel No.	P-B-1:13					
De11:10 16 Yes 420 -220 PB-22135 13.3 Yes 14.0 -220 PB-22135 13.3 Yes 420 -220 PB-22135 13.3 Yes 420 -220 PB-22135 13.5 Yes 690 -220 PB-22135 15.5 Yes 690 -220 PB-3216 16 Yes 690 -220 PB-3216 16 Yes 690 -220 PB-3216 16 Yes 450 -220 PB-3216 16 Yes 450 -220 PB-3216 16 Yes 450 -220 PB-3216 15 Yes 450 -220 PB-3217 17 Yes 450 -220 PB-3217 13 Yes 450 -220 PB-3217 13 Yes 450 -220 PB-3217 15 Yes 450	P-B-1:16					
Bar		16	Yes	<50	<250	
Base Test Test <thtest< th=""> Test Test <tht< td=""><td></td><td></td><td></td><td></td><td></td><td></td></tht<></thtest<>						
Page 125 12.5 Yes <50 <220 PA3115 13 Yes <50	P-B-22:13.5				<250	
P4-31:16 14 Yes 2.029 -232. P4-31:15 15.5 Yes 856 -232. P4-32:14 14 Yes -252. -252. P4-32:14 14 Yes -450. -252. P4-32:14 14 Yes -450. -252. P4-33:14 14 Yes -450. -252. P4-35:14 14 Yes -50. -250. P2-35:14 14 Yes -50. -250. P2-45:15 15 No. .260. -250. P2-45:17 17 Yes -50. -250. P2-45:17 18 Yes -50. -250. P2-45:17 18 Yes -50. -250. P2-45:17 17 Yes -50. -250. P2-45:17 18 Yes -50. -250. P2-45:17 18 Yes -50. -250. P2-45:17 17 Yes </td <td>P-B-24:12.5</td> <td>12.5</td> <td>Yes</td> <td><50</td> <td></td> <td></td>	P-B-24:12.5	12.5	Yes	<50		
B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-	P-B-3:13					
B-B-32:1/I 14 No. 2.280 420 PA-32:1/I 21 Yes 450 420 PA-32:1/I 12 Yes 470 420 PA-32:1/I 16 Yes 450 420 PA-33:1/I 16 Yes 450 420 PA-32:1/I 16 Yes 450 420 PA-33:1/I 16 Yes 450 420 PA-32:1/I 16 Yes 450 420 PA-45:1.1 15 Yes 450 420 PA-45:1.1 15 Yes 450 420 PA-45:1.1 17 Yes 450 420 PA-45:1.1 18 Yes 450 420 PA-45:1.1 13 Yes 450 420 PA-45:1.1 13 Yes 450 420 PA-45:1.1 13 Yes 450 420 PA-45:1.2 12.5 Yes 450	P-8-31:14					
PA-32:21 21 Yes 450 420 PA-32:12 12 Yes 450 420 PA-35:16 16 Yes 450 420 PA-35:17 17 Yes 450 420 PA-35:17 15 Ne 50 420 PA-35:17 15 Yes 450 420 PA-35:17 15 Yes 450 420 PA-35:17 17 Yes 450 420 PA-35:17 13 Yes 450 420 PA-35:17 13 Yes 450 420 PA-35:17 13 Yes 450 420 PA-35:17 15 Ne 450 420 PA-35:12 15 Yes 450 420	P-B-32:14	14		2.200	<250	
Passing 16 Yes <50 <220 Passing 16 Yes <50	P-B-32:21					
B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-	P-B-34:12					
B-B-B-011 13				<50	<250	
DB-86.14 14 Yes 450 250 DB-86.11 15 No. 2,800 250 DB-86.115 15 No. 2,800 250 DB-85.115 15 Yes 450 420 DB-85.117 17 Yes 450 420 DB-85.117 17 Yes 4,50 420 DB-85.117 17 Yes 4,50 420 DB-85.117 13 Yes 5,50 420 DB-85.117 13 Yes 5,50 420 DB-85.117 13 Yes 5,50 420 DB-86.13 14 Yes 5,50	P-B-37:14					
PA-8.015 15 No J.200 C220 PA-8.017 17 Yms 450 C220 PA-8.017 17 Yms 450 C220 PA-8.015 15 Yms 450 C220 PA-8.115 15 Yms 450 C220 PA-8.115 15 Yms 450 C220 PA-8.112 13 Yms 450 C220 PA-8.113 13 Yms 450 C220 PA-8.113 13 Yms 450 C220 PA-8.12 13 Yms 450 C220 PA-8.12 12 Yms 450 C			Yes			
plsB017 17 Yes 450 220 Pa95315 15 Yes 450 220 Pa95317 13 Yes 450 220 Pa95317 15 Ne 450 220 Pa953212 25 Yes 450 220 Pa95321 43 Yes 50 220		14				
AbbBit 15 Yes 450 220 PABBIT 15 Yes 450 220 PABBIT 15 Yes 450 220 PABBIT 15 Yes 450 420 PABBIT 15 Yes 450 420 PABBIT 13 Yes 450 420 PABBIT 13.5 Yes 450 420 PABBIT 13 Yes 450 420 PABBIT 13 Yes 450 420 <						
B-84:15 15 Yms 4:50 220 P-85:017 17 Yms 1,700 520 P-85:016 15 Yms 4:50 -520 P-85:017 13 Yms 4:50 -520 P-85:016 13 Yms 4:50 -520 P-85:017 13 Yms 1.020 -520 P-85:017 13 Yms 1.020 -520 P-85:017 13 Yms 1.020 -520 P-85:017 13 Yms 4:50 -520 P-85:017 13 Yms 4:50 -520 P-85:017 15 No 2.999 -520 P-85:017 15 No 2.999 -520 P-87:015 15 No 2.990 -520 P-87:024 24 Yms -550 -520 P-87:021 13 Yms -50 -520 P-88:021 2.5 Yms -50 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
p42.65.17 17 Ym 1.700 -220 p42.65.17 15 Ym -220 -220 p42.61.18 13 Ym -220 -220 p42.61.18 13 Ym -220 -220 p42.61.18 13 Ym -250 -220 p43.61.17 13 Ym -650 -220 p43.61.17 13 Ym -650 -220 p43.61.17 13 Ym -650 -220 p43.61.17 12.5						
B-B-0112 19 Yes 450 -520 B-B-0112 13 Yes 4.500 -520 P-B-0112 13 Yes 4.500 -520 P-B-0112 13 Yes 4.500 -520 P-B-0112 13 Yes 4.500 -520 P-B-01125 12.5 Yes 4.500 -520 P-B-01125 12.5 Yes 4.500 -520 P-B-01125 13.5 Yes 4.500 -520 P-B-0125 13.5 Yes 4.500 -520 P-B-0125 12.5 Yes 4.50 -520 P-B-0125 12.5 Yes 4.50 -520 P-B-0125 12.5 Yes -50 -520 P-B-0125 12.5 <td< td=""><td>P-B-55:17</td><td></td><td></td><td></td><td></td><td></td></td<>	P-B-55:17					
Description 1.900 220 P4:95:12 13 Yes 4.50 220 P4:95:13 13 Yes 4.50 220 P4:95:13 13 Yes 4.50 220 P4:95:13 13 Yes 4.50 220 P4:95:12 12.5 Yes 50 220 P4:95:12 12.5 Yes 140 220 P4:95:12 12.5 Yes 160 220 P4:97:12 12.5 Yes 50 220 P4:97:12 12.5 Yes 50 220 P4:97:24 24 Yes 50 220 P4:97:12 13 Yes 50 220 P4:97:12 13 Yes 50 220 P4:97:12 13 Yes 20 220 P4:97:12 10 Yes 20 220 P4:97:12 10 Yes .20						
P4-85.12.0 12.5 Yes - 450 - 220 P4-85.12.0 13 Yes 1.700 520 - 5					<250	
P4-85.117 13 Yes 1.709 520. 520. P4-86.12 13 Yes 450. -220. P4-86.12 13 Yes 450. -220. P4-86.12 13 Yes 450. -220. P4-86.12 13 Yes 440. 520. -220. P4-96.12 13.5 Yes 440. 520. -220. P4-97.12 13.5 Yes 450. -220. P4-97.220. P2-92.021.5	P-B-63:12.5	12.5	Yes	<50	<250	
D_2_B_B_B_17 13 Yes <50 250 <th< td=""><td>P-B-65:13</td><td></td><td></td><td></td><td><250</td><td></td></th<>	P-B-65:13				<250	
62.87.19.26 12.25 12.8 12.8 P4297128 12.25 19.8 12.80 12.80 P4297128 12.3 19.8 12.80 12.80 P4297128 12.3 19.8 12.80 12.80 P4297128 12.3 19.8 12.80 12.80 P4297128 12.5 19.8 5.50 -22.0 P4297128 12.5 19.8 45.50 -22.0 P4297128 12.5 19.8 45.0 -22.0 P4297128 13 19.7 19.8 -20.2 -22.0 P4297128 11 19.8 9.20 -22.0 -22.0 P4297129 10 19.8 9.20 -22.0 -22.0 P42971217 10 19.8 9.20 -22.0<	DLP-8-66:13	13		<50		
L28.41.15 19.5 Yes -520 -520 L28.41.15 19.5 No 2.200 -520 L29.10.15 19. No 2.200 -520 L20.10.15 22.5 No 3.200 -520 L9.17.524 24 Yes -550 -520 L9.27.524 24 Yes -550 -520 L9.27.524 24 Yes -550 -520 L9.26.012.5 12.5 Yes -550 -520 L9.26.012.5 12.5 Yes -550 -520 L9.26.012.5 12.5 Yes -550 -520 L9.26.012.5 13 Yes -550 -520 L9.26.012.7 17 Yes -520 -520 L9.26.012.7 10 Ne -520 -520 L9.26.012.7 17 Yes -520 -520 L9.26.012.7 17 Yes -520 -520 L9.26.012.7 1	P-3 87:12.5				1(350)	B-64:12.
PA-0.015 15 No 2.269						
PA-TO235 P2-55 No. 3.660 -(220) PA-TS24 24 Yes 450 -(20) PA-B20123 13 Yes 450 -(20) PA-B20123 13 Yes 450 -(20) PA-B20123 14 Yes 450 -(20) PA-B20123 28 Yes 450 -(20) PA-B2012 29 Yes 450 -(20) PA-B413 Yes 450 -(22) -(22) PA-B4121 11 Yes 450 -(22) PA-B4121 11 Yes 450 -(22) PA-B42411 11 Yes 450 -(20) PA-B424211 11 Yes 450 -(20) PA-B502717 17 Yes			No	2,900	<250	
P.B.75.24 24 Yes <50	P-B-70:23.5	23.5	No	3,500		
PAB-B12 13 Yes 450 -(280) PAB-B125 12.5 Yes 450 -(280) PAB-B125 12.5 Yes 450 -(280) PAB-B125 12.5 Yes 450 -(280) PAB-B125 25 Yes 450 -(280) PAB-B125 28 Yes -(50) -(280) PAB-B125 28 Yes -(50) -(280) PAB-B125 28 Yes -(50) -(280) PAB-B125 13 Yes -(50) -(280) PAB-B121 11 Yes -(50) -(280) PAB-B121 12 Yes -(50) -(280) PAB-B123 13 Yes -(50) -(280) PAB-B127-11 10 Yes -(50) -(280) PAB-B27-12-16 115 Yes -(50) -(280) PAB-B27-17-17 10 Yes -(50) -(280) PAB-B27-17-16	P-B-75:24					
PAB-0.215 12.5 Yes 450 -220 PAB-0.125 12.5 Yes 450 -220 PAB-0.125 12.5 Yes 450 -220 PAB-0.125 25 Yes 450 -220 PAB-0.125 26 Yes 450 -220 PAB-0.125 26 Yes 450 -220 PAB-0.125 28 Yes 450 -220 PAB-0.125 29 Yes 450 -220 PAB-0.125 29 Yes 450 -220 PAB-0.125 10 Nes 520 -220 PAB-0.117 11 Yes 450 -220 PAB-0.117 11 Yes 450 -220 PAB-0.117 11 Yes 450 -220 PAB-0.118 115 Yes 450 -220 PAB-0.118 115 Yes 450 -220 PAB-0.111 Yes 50 <						
PB-B-13 26 Yes 450 -280 PB-B-13 14 Yes 450 -280 PD-B-B-524 14 Yes 450 -280 PD-B-B-523 28 Yes 450 -280 PD-B-B-523 28 Yes 450 -220 PD-B-B-523 29 Yes 450 -220 PD-B-B-513 13 Yes 450 -220 PB-B-17 17 Yes 450 -220 PB-B-37 12 Yes 450 -220 PB-B-37 12 Yes 450 -220 PB-B-37 10 Yes 450 -220 PB-B-37 10 Yes 450 -220 PB-337 9 Yes 450 -220 PB-337.27 10 Yes 450 -220 PB-337.47 9 Yes 450 -220 PB-337.47 9 Yes 450 <td< td=""><td>P-8-80:12.5</td><td></td><td></td><td></td><td></td><td></td></td<>	P-8-80:12.5					
D-B-B-Stat 14 Yes <50 <280 D-B-B-Stat 29 Yes <50						
DeB:530 29 Yes <50 <220 DPB:552 29 Yes <50						
Applicity 10 Yes 50 -520 Applicity 10 No 6,200 -520 PASS-17 17 Yes 6,50 -520 PASS-17 10 No 6,200 -520 PASS-17 11 Yes 4,50 -520 PASS-17,12,6 12,5 Yes 4,50 -520 PASS-17,12,6 13 Yes 4,50 -520 PASS-17,13 13 Yes 4,50 -520 PASS-17,13 10 Yes 4,50 -520 PASS-17,13 10 Yes 4,50 -520 PASS-17,14 10 Yes 50 -520 PASS-17,15 10 Yes 50 -520 PASS-17,16 10 Yes 50 -520 PASS-17,16 10 Yes 50 -520 PASS-17,16 10 Yes 50 -520 PASS-17,10 10 Yes	LP-8-85:29		Yes			
Lable217 17 Yes -50 -220 PASW2-17 10 No 6.200 -220 PASW2-17 11 Yes 450 -220 PASW2-11 11 Yes 450 -220 PASW2-11 11 Yes 450 -220 PASW2-11 11 Yes 520 -220 PASW2-113 10 Yes 520 -220 PASW2-113 10 Yes 520 -220 PASW2-113 10 Yes 140 -220 PASW2-113 10 Yes 140 -220 PASW2-113 10 Yes 140 -220 PASW2-113 10 Yes 10 -220 PASW2-116 10 Yes 50 -220 PASW2-116 10 No 720 360 PASW2-10 10.5 No 360 220 PASW2-10 10.5 No 360	DLP-8-85:29					
P_ESEV.10 10 No. 6.260 -220. P_ESEV.210 11 11 Yes <			Yes		<250	
LB STVATULE / 12.9 Yes -500 -520 LB STVATULE / 11 Yes -520 -520 LB STVATULE / 11 Yes -520 -520 LP SEWACTILE / 11 Yes -520 -520 LP SEWACTILE / 11 Yes -520 -730 LP SEWACTILE / 115 Yes 1.400 -520 LP SEWACTILE / 115 Yes 1.400 -520 LP SEWACTILE / 14 Yes 1.400 -520 LP SEWACTILE / 10 Yes -520 -520 LP SEWACTILE / 10 Yes -50 -520 LP SEWACTILE / 10 Yes -50 -520 LP SEWACTILE / 115 Yes -50 -520 LP SEWACTILE / 110 Yes -50 -520 LP SEWACTILE / 110 Yes -50 -520 LP SEWACTILE / 110 Yes -50 -520		10				
Lassyster 11 Yes 9,200	P-ESW-42:11					
PLSEW:09:07 0.5 Yes 4.50 -(250) PLSEW:01:07:10 13 Yes 4.600 (250) PLSEW:01:07:10 115 Yes 4.600 (250) PLSEW:01:07:10 115 Yes 1.400 (220) PLSEW:73:11:5 115 Yes 1.400 (220) PLSEW:73:16:18 Yes 1.2200 1.510 PLSEW:73:16:18 Yes 4.500 -4201 PLSEW:14:14 14 Yes 4.500 -4201 PLSEW:15:10 10 Yes -50 -4201 PLSEW:15:10:11 11 Yes -50 -4201 PLSEW:16:11:11 Yes -50 -4201 -4201 PLSEW:16:11:11 Yes -50 -4201 -4201 PLSEW:10:11:11 Yes -50 -4201 -4201 PLSEW:10:10:10:10:5 No \$100 -4201 -4201 PLSEW:40:10:11:11 Yes -4201 -4201 -4201	P-ESW-47:12.5		Yes	9,200		
PLSBW7117 13 Yes 5,449 C230 PLSBW72115 10 Yes 7,468 C230 PLSBW72115 115 Yes 1,460 C220 PLSBW72115 115 Yes 1,460 C220 PLSBW72115 115 Yes 1,2500 C20 PLSBW7215 9 Yes 2,2500 C20 PLSBW7316 10 Yes 2,250 C20 PLSBW14122 2 Yes 5,26 C20 PLSBW71111 11 Yes 5,20 C20 PLSBW71111 11 Yes 5,20 C20 PLSBW71111 11 Yes 5,20 C20 PLSBW71111 11 Ne 5,20 C20 PLSBW74011 11 Ne 5,20 C20 PLSBW74011 11 Yes 2,20 C20 PLSBW74011 11 Yes 2,20 C20 PLSBW74011 11 Y				<50		
UP-ESW-73:11.6 11:5 13:6 14:50 12:20 UP-ESW-73:11.6 11:5 11:5 11:5 12:20:0 12:20:0 UP-ESW-73:11.6 11:5 11:5 11:5 12:20:0 12:20:0 12:20:0 UP-ESW-73:16 13 Yes 4:20:0 -2:20:0 12:20:0 12:20:0 UP-ESW-74:16 14 Yes 4:20:0 -2:20:0 12:20:0 12:20:0 UP-ESW-74:16:2 2:9 Yes 4:20:0 -2:20:0 12:20:0 12:20:0 UP-ESW-74:16:2 10 Yes 5:50 -2:20:0 12:20:0 12:20:0 UP-MSW-11:1 11 Nes 5:50 -2:20:0 12:20:0 12:20:0 UP-MSW-10:1:10 10:5 Yes 2:20:0 12:20:0 12:20:0 12:20:0 UP-MSW-10:1:10 10:5 Yes 2:20:0 12:20:0 12:20:0 12:20:0 12:20:0 12:20:0 12:20:0 12:20:0 12:20:0 12:20:0 12:20:0 12:20:0 12:20:0 <td>LP-ESW-71:13</td> <td></td> <td></td> <td>2,400</td> <td></td> <td></td>	LP-ESW-71:13			2,400		
In-Estiv/32:i07 18 Yes 110 -220 PESW73:07 0 Yes 12.200 370 PESW73:07 0 Yes 12.200 370 PESW73:07 0 Yes 12.200 370 PESW74:14 14 Yes 6.6600 -220 PESW74:17:0 0 Yes 4.200 -220 PASW71:17:0 11 Yes 4.50 -220 PASW71:17:0 11.5 Yes 5.0 -220 PASW1:17:0 11.5 Yes 5.0 -220 PASW1:10:0 10 -50. -220 -220 PASW1:10:0 10.5 No 3.090 370 PASW1:10:1 11 Ne 5.0 -220 PASW2:01:1 11 Ne 5.0 -220 PASW2:01:1 11 Ne 5.0 -220 PSSW2:01:1 11 Ne 5.0 -220 PSSW2:01:1 11				1,400		
LP_SDV:7214:1 14 Yes 6.600 -220 LP_SDV:7214:1 14 Yes 4.500 -220 LP_SDV:7217:1 10 Yes 4.500 -220 LP_SDV:74:17:1 110 Yes 4.500 -220 LP_SDV:74:17:1 110 Yes 4.501 -220 LP_SDV:74:17:1 111 Yes 4.501 -220 LPASW:74:17:1 111 Yes 4.501 -220 LPASW:74:10:1 11 Yes 5.50 -220 LPASW:71:0:1 10:5 No 3.690 270 LPASW:71:0:1 10:5 No 3.690 220 LPSSW:70:0:1 10:5 No 3.690 220 LPSSW:70:10:1 10:5 No 3.690 220 LPSSW:70:11:1 11 No 1.200 220 LPSSW:70:11:1 11 No 3.690 220 LPSSW:70:11:1 11 No 3.690 220 <tr< td=""><td></td><td>18</td><td></td><td></td><td></td><td></td></tr<>		18				
Le Silv 2422 22 Yes 4.800 -230 Le Silv 7442 9 Yes 4.50 -230 PASW 71, 11 No -50 -230 PASW 71, 11 No -700 3.60 PASW 71, 10, 1 No -700 3.60 PASW 71, 10, 1 No -700 3.60 PASW 71, 10, 2 10.5 No 3.60 2.50 PASW 71, 10, 2 10.5 No 13.600 -230 PASW 71, 10, 2 11 No 13.600 2.60 PASW 71, 11 Yes -240 -220 -250 PASW 71, 12 No 13.600 2.60 -250 PASW 71, 13 19 No 14.600 2.60 PASW 71, 13 14<	LP-ESW-73:9					
P_ESW.74.07 B Yes					<250	
LABSY-11:1: 11 Yes -50 -520 LABSY-11:1: 115 115 Yes -50 -520 PASW-11:1: 115 115 Yes -50 -520 PASW-20:10: 10 -50 -520 -520 PASW-41:1: 11 No 77.00 360 PASW-41:1: 11 Yes -50 -520 PASW-76:10: 10.5 No 8.26% 370 PASW-77:10:5: 10.5 Yes 220 -250 PASW-421:1: 11 Ne 13.26% -220 PSSW-321:2: 13 No 13.26% -220 PSSW-321:2: 13 No 13.26% -220 PSSW-40:1:4: 19 No 12.6% -220 PSSW-40:1:4: 19 No 12.6% -220 PSSW-40:1:4: 14 Yes -220 -220 PSSW-40:1:1:1: 11 No 3.260 -220	LP-ESW-74:9					l
DateSite Tip Yes						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					<250	
Bible Web:11 The Yes C20 PASW240:11 T1 Yes 220 C220 PASW27:02 T0.5 Yes 220 C250 PASW27:02 T0.5 Yes 220 C250 PASW27:01:05 T0.5 Yes 220 C250 PASW24:11 T1 No T2.000 C250 PASW24:11 T1 No T2.000 C250 PASW25:11:1 T1 No T2.000 C250 PASW25:11:1 T1 No T2.000 C250 PASW25:11:1 T1 No T2.000 C250 PASW26:11:1 T1 No T2.000 C250 PASW24:11:1 T1 Yes C20 C250 PASW24:11:1 T1 <t< td=""><td>LP-NSW-30:10</td><td>10</td><td></td><td></td><td></td><td></td></t<>	LP-NSW-30:10	10				
Linksyntra 10:5 No. 3,996 370 Linksyntra 10:5 Ves 220 -250 JPSSYL2510:2 10:5 Ves 220 -250 JPSSYL2510:2 10:5 Ves 220 -250 JPSSSL2510:2 10:5 Ves 220 -250 JPSSSL2511:1 11 Nes 3,269 -250 JPSSSL2511:1 13 No 5,269 -250 JPSSSL2511:1 13 No 5,269 -260 JPSSSL2511:1 13 No 5,269 -260 JPSSSL2511:1 13 No 5,269 -260 JPSSSL2511:1 14 Yes -250 -260 JPSSSL2511:1 11 No 3,460 -250 JPSSSL2511:1 11 Ne 3,260 -250 JPSSSL2511:1 11 Ne 4,260 -260 JPSSSL2511:1 11 Ne 4,260 -260 JPSSSL2511						
PL-NSY-77:10.5 10.5 Yes 220 -(25) PL-SSY45.6 8.5 6.5 10 (26) PL-SSY45.11 11 No 13.00 (25) PL-SSY45.11 11 No 13.00 (25) PL-SSY45.11 11 No 13.00 180 PL-SSY45.11 11 No 13.00 180 PL-SSY45.11 15 No 15.00 250 PL-SSY46.13 16 15.00 260 260 PL-SSY46.13 19 No 12.00 260 260 PL-SSY46.14 19 No 12.00 260 260 260 PL-SSY44.13 13 Yes 250	LP-NSW-7:10.5					
SBW-420-11 11 No. 12,000 -220. PSSW-301-17 11 Yes 13,000 -220. PSSW-301-17 12 No. 13,000 360. PSSW-301-17 12 No. 13,000 360. PSSW-301-17 12 No. 13,000 360. PSSW-301-18 13 No. 5,800. -220. PSSW-401-16 14 No. 7,800. -220. PSSW-401-26 20 Yes 7,240. -220. PSSW-401-26 4 Yes 5,240. -250. PSSW-401-26 4 Yes 5,240. -250. PSSW-411-11 No. 4,340. -250. -250. PSSW-4413 13 Yes 5,20. -250. PSSW-4411 14 Yes 5,20. -250. PSSW-4411 14 Yes 5,20. -250. PSSW-4411 14 Yes 5,20. -250. <t< td=""><td>LP-NSW-7R:10.5</td><td></td><td>Yes</td><td></td><td></td><td></td></t<>	LP-NSW-7R:10.5		Yes			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			No			
P_SSW23712 12 No 13.005 320 P_SSW340712 13 No 5.800 <250	LP-SSW-29:11			2,290		
LSSW40:14 14 No 2.200 <250	LP-SSW-37:12	12		13.000		
LSSYM 420:13 19 No. 12.600 280 LSSYM 420:13 19 Yes 720 523 LSSYM 420:13 9 Yes 450 -5230 LSSYM 420:14 14 Yes 2400 -5230 LSSYM 420:14 14 Yes 2400 -5230 LPSSYM 420:14 14 Yes 2400 -5230 LPSSYM 420:14 11 No. 3406 -7230 LPSSYM 441:13 13 Yes 5400 -7230 LPSSYM 441:14 14 Yes -500 -2290 LPSSYM 441:14 14 Yes -500 -2290 LPSSYM 441:14 14 Yes -500 -2290 LPSSYM 491:16 14 Yes -500 -2290 LPSSYM 491:16 14 Yes -500 -5200 LPSSYM 491:16 14 Yes -500 -5200 LPMSW 191:16:11 10 Yes -500 -5200	LP-SSW-38:13					
Lassing Lassing <thlassing< th=""> <thlassing< th=""> <thl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></thl<></thlassing<></thlassing<>						
L_R_SNV-407:14 14 Yes 2.400 <	LP-SSW-40:25					
D_sSYM_40R:1f 19 Yes <				<50		1
D=SSW44:11 11 No. 3.460 <td>LP-SSW-40R:19</td> <td></td> <td>Yas</td> <td><50</td> <td><250</td> <td>ł</td>	LP-SSW-40R:19		Yas	<50	<250	ł
P_SSV4.413 13 Yes 690 220 P_SSV4.423 0.5 0.5 Yes 260 220 P_SSV4.421 11 Yes 4.420 220 220 P_SSV4.421.17 11 Yes 4.420 220 220 P_SSV4.421.17 11 Yes 4.200 220 220 P_SSV4.421.17 11 Yes 4.200 220 220 P_SSV4.91.16 14 Yes 4.500 2200 2200 P_SSV4.91.17 12 Yes 4.500 2500 2500 P_SSV4.91.16 11 Yes 4.500 2500 2500 P_MSV5.91.11 11 No 4.200 2500 2500 P_MSV5.92.11.17 11 Yes 500 2520 2500 P_MSV5.93.11.17 11 Yes 500 2520 2400 P_MSV5.91.17 11 Yes 500 2520 2400 P_MSV5.91.16	LP-SSW-44:11	11	No		<250	
STM Construction Construction STM 14 Yes Construction Construction STM 14 Yes Construction Construction Construction PSSVM-81:01 14 Yes Construction Constructio	LP-SSW-44:13					1
L_RSWH_48:14 14 Yes 5200 -2200 P_SSWH_48:14 14 Yes 5.200 -2200 P_SSWH_48:17 19 Yes 1.400 -2200 P_SSWH_48:17 19 Yes 5.200 -2200 P_SWH_51:12 12 Yes -500 -2200 P_SWH_51:12 12 Yes -500 -2250 P_MSWH_51:12 12 Yes -500 -2250 P_MSWH_51:12 11 Yes -500 -2250 P_MSWH_51:11 11 Ne -2200 -2200 P_MSWH_51:11 11 Ne -500 -2200 P_MSWH_51:12 11 Ne -500 -2200 P_MSWH_51:12 11 Ne -500 -2200 P_MSWH_51:12 12 Ne -500 -2200 P_MSWH_51:13 15 Yes -500 -2200 P_MSWH_51:15 15 Yes -500 -2200 P		11	Yes			1
P_SSW4.01:1 14 Yes 6,289 -250 P_SSW4.01:1 19 Yes 4.60 -252 P_SSW4.01:12 12 Yes -50 -223 P_SW5.141:11 11 Yes -50 -222 P_WSW5.111:11 11 Yes -50 -222 P_WSW5.111:11 11 Yes -50 -222 P_WSW5.111:11 11 Yes -50 -252 P_WSW5.111:11 11 Yes -50 -252 P_WSW5.201:25 10.5 Yes -250 -252 P_WSW5.201:25 11 11 Yes -50 -252 P_WSW5.98:11 11 No 250 -252 -252 P_WSW5.98:11 11 Yes -50 -252 -252 P_WSW5.91:12 12 No 1500 -252 -252 P_WSW5.91:12 12 No 1500 -252 -252 P_WSW5.91:12 12	LP-SSW-48:14	14	Yes	670		1
SYMD-134.22 12 Yea	LP-SSW-49:14			6,300		1
LS_SNS-16:11 11 Yes <50 <220 PMSW-16:12 12 Yes 2.600 <250				<50	<250	1
PLWSW19127 12 Yes 2,500 -	LP-SWS-14:11	11	Yes	<50	<250	4
DWSW-21:11 11 No 12,000 439 DWSW-21:11 11 No 2,000 -725 DWSW-21:11 11 No 2,000 -725 DWSW-31:11 11 No 2,000 -725 DWSW-351:11 11 No 4,000 380 DWSW-51:11 11 No 4,000 380 DWSW-51:11 11 No 4,000 -225 DWSW-51:11 12 No 10,000 -225 DWSW-51:15 15 Yes <50	LP-WSW-19:12					1
DAMSWARD CSD CZD DAMSWARD 11 Ves CSD DAMSWARD 11 No 2,260 CSD DAMSWARD 11 Ves CSD CZSD DAMSWARD 0.5 Ves CSD CZSD DAMSWARD 10.5 No CSD CZSD DAMSWARD				17,000		1
PLMSW-SBC.11' 11 Yes		11	Yes			1
P_WSW-5111 11 No. 5,000 380 P_WSW-55117 11 Yes <50.	LP-WSW-39:11	11		2,900		1
DataStructure 11 Yes <200 DataStructure 12 No 66,060 <260	LP-WSW-39R:11		No			1
Purktyk-51:17 12 No. 100,000 <250 Purktyk-51:15 15 Yen <50	LP-WSW-5R:11	11	Yes	<50	<250	1
DFMSW45125 9.5 Yes <50 <220 DFMSW518127 12 Yes 1500 <223	LP-WSW-51:12					1
D-H301323 12 Yes 1,500 <250					<250	1
DPMSWR5212 12 No 5300 <250 DPMSWr5212 9.5 Ves 430 <252	LP-WSW-51RR-12	12	Yas	1.500	<250	1
D-MSW-M57115 11.5 Yes <50 <220 D-MSW-M5115 11.5 Yes <50	LP-WSW-52:12				<250	1
CHARDWEDTLD TO Yes <250 <250 LPMSW-68:10' 10 Yes <50						1
LP-WSW-59:11' 11 Yes <50 <250 LP-WSW-611.5' 11.5 No 7.200 350 LP-WSW-6R:11.5' 11.5 No 2.800 <250		10	Yes	<50	<250	1
LP-WSW-6R:11.5 11.5 No 2.800 <250 LP-WSW-6R:11.5 11.5 Yes <50 <250	LP-WSW-59:11'	11		<50		1
LP-WSW-6RR:11.5 11.5 Yes <50 <250				2.800		1
1 D WGW 80-12 12 Yes <50 <250	LP-WSW-6RR:11.5	11.5	Yes	<50	<250	1
	LP-WSW-60:12	12	Yes	<50	<250	1
MTCA Method A Soli Cleanup Level for 2,000 2,000		d A Roll Clar-	un i mel for			1

Note: (a) Analysis for disent-ange total particular hydrocebors (DRPH) using Ecology Manud NMTPH-DL (b) Analysis for our range total particular hydrocebors (DRPH) using Ecology Manud NMTPH-DL (b) relation of scannels and analysis (b) analysis analysis patients (b) Products (b) Product (b) Product (b) Product (b) analysis analysis patients (b) Product (b) Product (b) Product (b) Product (b) (b) analysis analysis patients (b) Product (b) Product (b) Product (b) Product (b) (b) analysis (b) Product (b

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-28213-1 Client Project/Site: EPI-As

For: Nautilus Environmental 5009 Pacific Hwy. East Suite 2 Tacoma, Washington 98424

Attn: Cat Curran

Kristine D. allen

Authorized for release by: 09/02/2011 02:20:11 PM Kristine Allen Project Manager I kristine.allen@testamericainc.com

Designee for

..... LINKS

Review your project results through

Total Access

Have a Question?

www.testamericainc.com

Visit us at:

Ask-The

Expert

Melissa Armstrong Project Manager I melissa.armstrong@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Table of Contents

1
2
3
4
5
3
9
10
11
12
13

2

Job ID: 580-28213-1

Laboratory: TestAmerica Seattle

Narrative

Receipt

The following samples were received at the laboratory outside the required temperature criteria: Control (580-28213-1), SMSS-0810 (580-28213-3), SMSS-BG (580-28213-2) at 6.8c.

Sample collection dates and times were not recorded on the sample containers. The samples were logged-in and labeled according to the sample dates and times reported on the Chain of Custody (COC).

Metals

No analytical or quality issues were noted.

Client: Nautilus Environmental Project/Site: EPI-As

4

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
☆	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
EDL	Estimated Detection Limit (Dioxin)
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or method detection limit if shown)
PQL	Practical Quantitation Limit
RL	Reporting Limit
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Seattle 09/02/2011

Client: Nautilus Environmental Project/Site: EPI-As					TestAmeri	ca Job ID: 580-	28213-1
Client Sample ID: Control Date Collected: 08/22/11 10:00 Date Received: 08/23/11 15:25					Lab Sam		8213-1 : Tissue
Method: 6010B - Metals (ICP) Analyte Arsenic	Result Qualifier	<u></u>	MDL Unit mg/Kg	D	Prepared 09/01/11 14:39	Analyzed 09/01/11 23:57	Dil Fac

Client: Nautilus Environmental

Client Sample ID: SMSS-BG							Lab Sam	pie ID: 580-2	8213-2
Date Collected: 08/22/11 10:00								Matrix	: Tissue
Date Received: 08/23/11 15:25									
Method: 6010B - Metals (ICP)		an analan ang propinsi ng marang ng m							
Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client: Nautilus Environmental

Arsenic

5

Project/Site: EPI-As									
Client Sample ID: SMSS-0810							Lab Sam	ple ID: 580-2	8213-3
Date Collected: 08/22/11 10:00								Matrix	: Tissue
Date Received: 08/23/11 15:25									
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		2.1		mg/Kg		09/01/11 14:39	09/02/11 00:11	1

6

Lab Sample ID: MB 580-94336/4-A									Client Sa	ample ID: M	lethod	l Blan
Matrix: Tissue										Prep Ty	pe: To	otal/N/
Analysis Batch: 94381										Prep E	Batch:	: 9433
, maryone material of the second	MB	МВ										
Analyte	Result	Qualifier		RL	M	IDL Unit		D Pr	epared	Analyze	d	Dil Fa
Arsenic	ND			3.0		mg/Kg		09/01	1/11 14:39	09/01/11 23	3:38	
Lab Sample ID: LCS 580-94336/5-A								Client	Sample	ID: Lab Cor	ntrol S	Sample
Matrix: Tissue										Prep Ty	pe: To	otal/N/
Analysis Batch: 94381										Prep E	Batch:	94330
			Spike		LCS	LCS				% Rec.		
Analyte			Added		Result	Qualifier	Unit	Ð	% Rec	Limits		
Arsenic			200		190		mg/Kg		95	80 - 120		
Lab Sample ID: LCSD 580-94336/6-A							Clie	ent Samj	ple ID: La	ab Control	Samp	le Dur
Matrix: Tissue										Prep Ty	pe: To	tal/NA
Analysis Batch: 94381										Prep B	latch:	94336
			Spike		LCSD	LCSD				% Rec.		RPD
Analyte			Added		Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limi
Arsenic			200		190		mg/Kg		95	80 - 120	0	20

Client: Nautilus Environmental Project/Site: EPI-As

onenic wamp	le ID: Contr	ol				L	ab Sample ID	
Date Collected								Matrix: Tissue
Date Received:	: 08/23/11 15:2	25						
	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Prep	30 50 B			94336	09/01/11 14:39	PAB	TAL SEA
Total/NA	Analysis	6010B		1	94381	09/01/11 23:57	SP	TAL SEA
Client Samp	In ID: SMSS	BG				L	ab Sample ID:	580-28213-2
Date Collected							-	Matrix: Tissue
19to I DUDITIOUS	* UNIZZI E EUNZ							
							Mental III - 1997 - 199	·····
				Dilution	Batch	Prepared	NATION OF THE OWNER	
Date Received:	: 08/23/11 15:2 Batch	5	Run	Dilution Factor	Batch Number	Prepared Or Analyzed	Analyst	Lab
Prep Type Total/NA	: 08/23/11 15:2	:5 Batch	Run			•	Analyst PAB	Lab TAL SEA
Date Received: Prep Type	: 08/23/11 15:2 Batch Type	5 Batch Method	Run		Number	Or Analyzed		
Date Received: Prep Type Total/NA Total/NA	: 08/23/11 15:2 Batch Type Prep Analysis	25 Batch Method 3050B 6010B	Run		Number 94336	Or Analyzed 09/01/11 14:39 09/02/11 00:04	PAB	TAL SE A TAL SEA
Date Received: Prep Type Total/NA Total/NA Client Sampl	: 08/23/11 15:2 Batch Type Prep Analysis	Eatch Method 3050B 6010B	Run		Number 94336	Or Analyzed 09/01/11 14:39 09/02/11 00:04	PAB SP	TAL SEA TAL SEA 580-28213-3
Date Received: Prep Type Total/NA Total/NA Client Sampi Date Collected:	: 08/23/11 15:2 Batch Type Prep Analysis ie ID: SMSS : 08/22/11 10:0	Eatch Method 3050B 6010B -0810 00	Run		Number 94336	Or Analyzed 09/01/11 14:39 09/02/11 00:04	PAB SP	TAL SEA TAL SEA 580-28213-3
Date Received: Prep Type Total/NA Total/NA Client Sampl	: 08/23/11 15:2 Batch Type Prep Analysis ie ID: SMSS : 08/22/11 10:0	Eatch Method 3050B 6010B -0810 00	Run		Number 94336	Or Analyzed 09/01/11 14:39 09/02/11 00:04	PAB SP	TAL SE A TAL SEA

1	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			94336	09/01/11 14:39	PAB	TAL SEA
Total/NA	Analysis	6010B		1	94381	09/02/11 00:11	SP	TAL SEA

Laboratory References:

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Certification Summary

Client: Nautilus Environmental Project/Site: EPI-As

8

Laboratory	Authority	Program	EPA Region	Certification ID	
TestAmerica Seattle	Ala ska	Alaska UST	10	UST-022	
TestAmerica Seattle	Alaska	TA-Port Heiden Mobile Lab	10	UST-093	
TestAmerica Seattle	California	NELAC	9	1115CA	
TestAmerica Seattle	Florida	NELAC	4	E871074	
TestAmerica Seattle	L-A-B	DoD ELAP		L2236	
TestAmerica Seattle	L-A-B	ISO/IEC 17025		L2236	
TestAmerica Seattle	Louisiana	NELAC	6	05016	
TestAmerica Seattle	Montana	MT DEQ UST	8	N/A	
TestAmerica Seattle	Oregon	NELAC	10	WA100007	1
TestAmerica Seattle	USDA	USDA		P330-11-00222	
TestAmerica Seattle	Washington	State Program	10	C553	

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

TestAmerica Seattle 09/02/2011

9

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-28213-1	Control	Tissue	08/22/11 10:00	08/23/11 15:25
580-28213-2	SMSS-BG	Tissue	08/22/11 10:00	08/23/11 15:25
580-28213-3	SMSS-0810	Tissue	08/22/11 10:00	08/23/11 15:25

Comments DISTRIBUTION: WHITE - Stays with the Samples; CANARY - Returned to Client with Report; PINK - Field CoppPage 12 of 13	3. Relinquished By Sign/Print	2. Relinquished by SigniPrint	n Around Time Required (business days) 24 Hours	Cooler Ves No Cooler Temp: Non-Hazard Flammable				SMSS-0810 8-22-11	SMSS-BG 8-22-11	CONTRO1 8.22-11	Sample I.D. and Location/Description (Containers for each sample may be combined on one line) Date	Contract/Furchase Underriguote No.	EPT-AS	FIFE WAR and Instant (State) WA 98424	09 Pacific Hu	Wauthus Envir.	EADER IN ENVIRONMENTAL TESTING	
nt with Report, PINK – Field	Date Time	Date Time	0	mable Skin Irritant				loam	loam	10am	Air Aqueous Sed. Soil	Matrix	1	sampler SD	1elephone Number (Are	Client Contact	TestAmerica Seattle 5755 8th Street E. Tacoma, WA 98424 Tel. 253-922-2310 Fax 253-922-5047 www.testamericainc.com	
^{Copy} Page 12 of 13	3. Received By Sign/Pri	Time 1. Received By Sign/Pri 1525	C Requirements (Sp	Poison B Unknown				X	XX		Unpress H2SO4 HNO3 HCI NaOH ZnAc/ NaOH	Containers & Preservatives	Mansouri	Hellssa A	a Code)/Fax Number 122-4296	urran	iom A	ě.
	int	the the lab		Sample Disposal Disposal By Lab						×	Ars	eni	<u> </u>	Ana	Lab Number	Date 7-23-11	Rush Short Hold	
TAL-800408020219)	Date Time	Date Date Time		(A fee may be assessed if samples Months are relatined longer than 1 month)	Wet ice/othey	11(2)=(p. 0)/6.8						Conditions of Receipt	Special Instructions/		Page (of	Chain of Custody Number	Chain of Custody Record	3

ē

Client: Nautilus Environmental

Login Number: 28213 List Number: 1

Creator: Kalicki, Samantha

Job Number: 580-28213-1

11

List Source: TestAmerica Seattle

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	N/A	Not present
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	False	Cooler temperature outside required temperature criteria.
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	Refer to Job Narrative for details.
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	Not needed on tissue.
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	No VOA rec'd.
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

Attachment E

Cleanup Levels for Potential TEE Receptors Northwest Pipeline GP, Washington State Meter Station Facilities Northwest Washington Representation Area ARSENIC

Cleanup Level for Mammalian Predator (Shrew) Equation in Table 749-4

Soil CUL =

T shrew
(FIR shrew X Psb shrew X BAF worm) + (SIR shrew X RGAF shrew)

4

Units

mg/kg

Cleanup Level for Avian Predator (Robin) Equation in Table 749-4

Soil CUL ≃	T robin (FIR robin X Psb robin X BAF worm) + (SIR robin X RGAF robin)	AF robin)
CUL	Units	
58	mg/kg	
Variable	Unit	Value
Psb robin	Unitless	0.52
FIR robin	kg dry food / kg body weight - day	0.207
SIR robin	kg dry soil / kg body weight - day	0.0215
RGAF robin	Unitless (Table 749-5)	1
T robin	mg/kg - day (Table 749-5 footnote a)	2.24
Home Range	Acres	0.6
BAF worm	mg/kg worm / mg/kg soil (Table 749-5 footnote a)	0.16

- Notes: Psb FIR FIR SIR RGAF T BAF Proportion of contaminated food in diet

 - Food ingestion rate Soil ingestion rate Gut Absorbsion Factor
- Toxicity Reference Value from Ecological Screening Levels for Arsenic, US EPA, March 2005 Site Specific Bioaccumulation Factor

FIR P BAF SIR RGAF BAF

Soil ingestion rate Gut Absorbsion Factor Site Specific Bioaccumulation Factor

Toxicity Reference Value Food ingestion rate Proportion of contaminated food in diet Bioaccumulation factor

TEE Book Value CUL Protective of Plants
Table 749-3
CUL Units

10

mg/kg

TEE Book Value CUL Protective of Soil Biota

60 ĉ

mg/kg

Units

Notes: T

SIR shrew BAF worm Psb shrew FIR shrew Variable

shrew

mg/kg - day

Unit

RGAF shrew

Unitless (chemical specific-As) kg dry soil / kg body weight - day mg/kg worm / mg/kg soil (Table 749-5 footnote a)

0.0045 0.16

0.45 1.89 Value

0.5

kg dry food / kg body weight - day

unitless

Cleanup Level for Mammalian Herbivore (Vole) Equation in Table 749-4

Soil CUI =		T vole	
	(FIR vole X P plant,	(FIR vole X P plant, vole X K plant) + (SIR vole X RGAF vole)	AF vole)
CUL	Units		
43	mg/kg		
Variable	Unit		Value
T vole	mg/kg - day		1.15
FIR vole	kg dry food / kg body weight - day	ight - day	0.315
P plant, vole	unitless		1
K plant	mg/kg worm / mg/kg soil		0.06
SIR vole	kg dry soil / kg body weight - day	pht - day	0.0079

Notes: T FIR P RGAF

RGAF vole

Unitless (chemical specific-As)

- Toxicity Reference Value Food ingestion rate
- Proportion of contaminated food in diet

- Plant uptake coefficient Soil ingestion rate Gut Absorbsion Factor

Cleanup Levels for Potential TEE Receptors Northwest Pipeline GP, Washington State Meter Station Facilities Southwest Washington/Columbia River Representation Area ARSENIC

Cleanup Level for Avian Predator (Robin) Equation in Table 749-4

Soil CUL =	T robin (FIR robin X Psb robin X BAF worm) + (SIR robin X RGAF robin)	AF robin)
CUL 45	mg/kg	
Variable	Unit	Value
Psb robin	Unitless	0.52
FIR robin	kg dry food / kg body weight - day	0.207
SIR robin	kg dry soil / kg body weight - day	0.0215
RGAF robin	Unitless (Table 749-5)	1
T robin	mg/kg - day (Table 749-5 footnote a)	2.24
Home Range	Acres	0.6
BAF worm	mg/kg worm / mg/kg soil (Table 749-5 footnote a)	0.26

- Notes: Psb FIR FIR SIR RGAF T BAF
 - Proportion of contaminated food in diet Food ingestion rate Soil ingestion rate

- Gut Absorbsion Factor
- Toxicity Reference Value from Ecological Screening Levels for Arsenic, US EPA, March 2005 Site Specific Bioaccumulation Factor

Cleanup Level for Mammalian Herbivore (Vole) Equation in Table 749-4

Soil CUL =		T vole	
	(FIR vole X P plant	(FIR vole X P plant, vole X K plant) + (SIR vole X RGAF vole)	AF vole)
	Inite		
	Units		
43	mg/kg		
Variable	Unit		Value
T vole	mg/kg - day		1.15
FIR vole	kg dry food / kg body weight - day	ight - day [0.315
P plant, vole	unitless		1
K plant	mg/kg worm / mg/kg soil		0.06
SIR vole	kg dry soil / kg body weight - day	ght - day	0.0079
RGAF vole	Unitless (chemical specific-As)	c-As)	1

Notes: T FIR P P K SIR RGAF Toxicity Reference Value

- Food ingestion rate Proportion of contaminated food in diet Plant uptake coefficient Soli ingestion rate

- Gut Absorbsion Factor

Soil CUL =

(FIR shrew X Psb shrew X BAF worm) + (SIR shrew X RGAF shrew)

T shrew

Cleanup Level for Mammalian Predator (Shrew) Equation in Table 749-4

CUL	Units		
30	mg/kg		
Variable	Unit		Value
T shrew	mg/kg - day		1.89
FIR shrew	kg dry food / kg body weight - day	nt - day	0.45
Psb shrew	unitless		0.5
BAF worm	mg/kg worm / mg/kg soil (Table 749-5 footnote a)	Table 749-5 footnote a)	0.26
SIR shrew	kg dry soil / kg body weight - day	t - day	0.0045
RGAF shrew	Unitless (chemical specific-As)	As)	4

Notes:

- Food ingestion rate Proportion of contaminated food in diet **Bioaccumulation factor** Toxicity Reference Value
- Soll ingestion rate Gut Absorbsion Factor Site Specific Bioaccumulation Factor

FIR P BAF SIR RGAF BAF

Table 749-3

10 CUL

mg/kg

Units

Fable 749-3

60 5 L

mg/kg

Units

TEE Book Value CUL Protective of Soil Biota

TEE Book Value CUL Protective of Plants

Cleanup Levels for Potential TEE Receptors Northwest Pipeline GP, Washington State Meter Station Facilities Central Washington Representation Area ARSENIC

Cleanup Level for Avian Predator (Robin) Equation in Table 749-4

Soil CUL =	(FIR robin X Psb robir	T robin (FIR robin X Psb robin X BAF worm) + (SIR robin X RGAF robin)	AF robin)
CUL 29	Units mg/kg		
Variable	Unit		Value
Psb robin	Unitless		0.52
FIR robin	kg dry food / kg body weight - day	ght - day	0.207
SIR robin	kg dry soil / kg body weight - day	ht - day	0.0215
RGAF robin	Unitless (Table 749-5)		1
T robin	mg/kg - day (Table 749-5 footnote a)	footnote a)	2.24
Home Range	Acres		0.6
BAF worm	mg/kg worm / mg/kg soil (Table 749-5 footnote a)	(Table 749-5 footnote a)	0.53

- Notes: Psb FIR SIR RGAF T BAF
- Proportion of contaminated food in diet Food Ingestion rate Soli Ingestion rate Gut Absorbsion Factor Toxicity Reference Value from Ecological Screening Levels for Arsenic, US EPA, March 2005 Site Specific Bioaccumulation Factor

Cleanup Level for Mammalian Herbivore (Vole) Equation in Table 749-4

Soil CUL =		T vole	
	(FIR vole X P plant,	(FIR vole X P plant, vole X K plant) + (SIR vole X RGAF vole)	AF vole)
CUL	Units		
43	mg/kg		
Variable	Unit		Value
T vole	mg/kg - day		1.15
FIR vole	kg dry food / kg body weight - day	ght - day	0.315
P plant, vole	unitless		1
K plant	mg/kg worm / mg/kg soil		0.06
SIR vole	kg dry soil / kg body weight - day	ht - day	0.0079

Notes: T FIR P P FIR P R GAF

RGAF vole

Unitless (chemical specific-As)

- Toxicity Reference Value
- Food ingestion rate Proportion of contaminated food in diet Plant uptake coefficient Soll ingestion rate Gut Absorbsion Factor

Cleanup Level for Mammalian Predator (Shrew) Equation in Table 749-4

Soil CUL =	(FIR shrew X Psb shre	T shrew (FIR shrew X Psb shrew X BAF worm) + (SIR shrew X RGAF shrew)	RGAF shrew)
CUL	Units		
15	mg/kg		
Variable	Unit		Value
T shrew	mg/kg - day (Table 749-5))	1.89
FIR shrew	kg dry food / kg body weight - day	ght - day	0.45
Psb shrew	unitless		0.5
BAF worm	mg/kg worm / mg/kg soil (Table 749-5 footnote a)	(Table 749-5 footnote a)	0.53
SIR shrew	kg dry soil / kg body weight - day	ht - day	0.0045
RGAF shrew	Unitless (chemical specific-As)	c-As)	1

Notes: T

- Toxicity Reference Value Food ingestion rate Proportion of contaminated food in diet Bioaccumulation factor
- Soil ingestion rate

FIR P BAF SIR RGAF BAF

Gut Absorbsion Factor Site Specific Bloaccumulation Factor

TEE Book Value CUL Protective of Plants

Fable 749-3

5 S

mg/kg Inits

Table 749-3

60

mg/kg Units **TEE Book Value CUL Protective of Soil Biota**

Cleanup Levels for Potential TEE Receptors Northwest Pipeline GP, Washington State Meter Station Facilities Eastern Washington Representation Area ARSENIC

Cleanup Level for Avian Predator (Robin) Equation in Table 749-4

Soil CUL =	(FIR robin X Psb robi	T robin (FIR robin X Psb robin X BAF worm) + (SIR robin X RGAF robin)	SAF robin)
CUL	Units		
63	mg/kg		
Variable	Unit		Value
Psb robin	Unitless		0.52
FIR robin	kg dry food / kg body weight - day	ght - day	0.207
SIR robin	kg dry soil / kg body weight - day	ht - day	0.0215
RGAF robin	Unitless (Table 749-5)		1
T robin	mg/kg - day (Table 749-5 footnote a)	footnote a)	2.24
Home Range	Acres		0.6
BAF worm	mg/kg worm / mg/kg soil (Table 749-5 footnote a)	(Table 749-5 footnote a)	0.13

- Notes: Psb FIR SIR RGAF T BAF
 - Proportion of contaminated food in diet Food ingestion rate Soil ingestion rate Gut Absorbsion Factor
- Toxicity Reference Value from Ecological Screening Levels for Arsenic, US EPA, March 2005 Site Specific Bioaccumulation Factor

Cleanup Level for Mammalian Herbivore (Vole) Equation in Table 749-4

Soil CUL =		T vole	
1	(FIR vole X P plant,	(FIR vole X P plant, vole X K plant) + (SIR vole X RGAF vole)	AF vole)
CUL	Units		
43	mg/kg		
Variahia			V21.0
	mg/kg - day		1.15
FIR vole	kg dry food / kg body weight - day	ight - day	0.315
P plant, vole	unitless		1
K plant	mg/kg worm / mg/kg soil		0.06
SIR vole	kg dry soil / kg body weight - day	ght - day	0.0079

Notes: T FIR P K SIR RGAF

RGAF vole

Unitless (chemical specific-As)

- Toxicity Reference Value
- Food ingestion rate Proportion of contaminated food in diet Plant uptake coefficient Soll ingestion rate Gut Absorbsion Factor

Cleanup Level for Mammalian Predator (Shrew) Equation in Table 749-4

Soil CUL =	(FIR shrew X Psb shre	T shrew (FIR shrew X Psb shrew X BAF worm) + (SIR shrew X RGAF shrew)	RGAF shrew)
50	Units mg/kg		
Variable	Unit		Value
T shrew	mg/kg - day (Table 749-5))	1.89
FIR shrew	kg dry food / kg body weight - day	ght - day	0.45
Psb shrew	unitless		0.5
BAF worm	mg/kg worm / mg/kg soil (Table 749-5 footnote a)	(Table 749-5 footnote a)	0.13
SIR shrew	kg dry soil / kg body weight - day	ht - day	0.0045
RGAF shrew	Unitless (chemical specific-As)	:-As)	

Notes: T FIR BAF SIR RGAF BAF

Site Specific Bioaccumulation Factor

TEE Book Value CUL Protective of Plants

10	CUL	Table 749-3	
mg/kg	Units		

TEE Book Value CUL Protective of Soil Biota Table 749-3

mg/kg	60
Units	CUL