October 14, 2015

Eugene Radcliff VCP Unit Manager, Washington State Department of Ecology P.O. Box 47775 Olympia, WA 98504-7775

SUBJECT: PUGET SOUND TRUCK LINES LONGVIEW SITE VCP SW1429 Longview, Washington

Dear Eugene:

Attached is a data report for the Puget Sound Truck Lines Longview site (Site) in Longview, Washington. The report is intended to summarize groundwater monitoring results from the past year, and establish next steps for the Site to meet cleanup requirements under the Voluntary Cleanup Program. Additional information is presented on required testing at petroleum sites, evaluation of the vapor intrusion pathway, and evaluation of terrestrial ecology.

Proposed next steps include a change in groundwater monitoring frequency, and a request for a partial sufficiency letter to document the adequacy of soil remediation. The requested response from the Washington State Department of Ecology is confirmation that the soil cleanup is sufficient to meet Model Toxics Control Act requirements, and that requirements have been met for required testing at petroleum sites, evaluation of the vapor intrusion pathway, and terrestrial ecological evaluation.

Once these issues have been addressed, it is our intent that the path to a "no further action" letter will be simplified, and consist of annual groundwater monitoring and reporting until groundwater compliance can be demonstrated. Please let me know how I can assist you with your review.

Sincerely yours, FLOYD | SNIDER

Brett Beaulieu, LHG Senior Hydrogeologist

Encl.: Puget Sound Truck Lines Longview Site—VCP SW1429 Groundwater Monitoring Results

Memorandum

Eugene Radcliff, VCP Unit Manager, Washington State Department of Ecology
Tom Lovejoy, Puget Sound Truck Lines
Brett Beaulieu, LHG
October 14, 2015
PSTL Longview
Puget Sound Truck Lines Longview Site—VCP SW1429
2014–2015 Groundwater Monitoring Results

OVERVIEW

This data report has been prepared to summarize the groundwater monitoring results for the Puget Sound Truck Lines Longview site (Site) in Longview, Washington (Figure 1) and to describe next steps proposed for the Site to meet cleanup requirements under the Voluntary Cleanup Program (VCP). Proposed next steps are a change in groundwater monitoring frequency and a request for a Partial Sufficiency letter to document the adequacy of soil remediation. Additional information is presented on required testing at petroleum sites, evaluation of the vapor intrusion pathway, and evaluation of terrestrial ecology.

The Site is an approximately 3.3-acre parcel located at 146 Industrial Way in Longview, Washington, in an industrial area between the Columbia and Cowlitz Rivers (Figure 1). The Site is currently used by a shipping company with truck storage and maintenance activities. A site investigation in late 2011 confirmed diesel impacts to soil and groundwater that were likely due to surface spills, leaks, and overfilling associated with a former 10,000-gallon diesel aboveground storage tank (AST). The AST was removed, and soil contaminated with diesel-range organics (DRO) at concentrations greater than Model Toxics Control Act (MTCA) Method A cleanup levels was excavated in 2012. Approximately 2,850 tons of soil was excavated and disposed of at a landfill (3 Kings Environmental, Inc. 2012).

The Site was entered into the VCP in October 2014 under the identifier SW1429. Groundwater impacted with DRO was detected following soil remediation activities. The Site is currently undergoing groundwater monitoring. Four monitoring wells were installed at the edges of the previously excavated area and a total of six quarterly groundwater monitoring events have been completed in accordance with the Groundwater Compliance Sampling and Analysis Plan (SAP; Floyd|Snider 2014a).

The objective of groundwater monitoring is to provide data for establishing compliance with the MTCA Method A groundwater standard for DRO, so that Ecology can issue a "No Further Action" (NFA) letter. This report summarizes groundwater sampling and analysis activities and results from the third and fourth quarter sampling events in 2014, and the first and second quarter sampling events in 2015. The results of the first and second quarterly events of 2014 were presented in a previous report (Floyd|Snider 2014b).

WORK COMPLETED

Four quarterly groundwater sampling events were conducted during this reporting period. These sampling events took place on September 24, 2014; December 22, 2014; March 17, 2015; and June 9, 2015. Work was completed in accordance with the SAP, as summarized below.

Water Level Measurement

During groundwater sampling events, water level measurements were collected from all four wells prior to well purging to provide an indication of the potentiometric surface.

Groundwater Sampling and Analysis

Groundwater samples were collected from all four monitoring wells for each sampling event. In accordance with the SAP, groundwater samples and field duplicates were collected using standard low-flow sampling methods, and submitted to Friedman and Bruya, Inc. (FBI) under standard chain-of-custody procedures and analyzed by NWTPH-Dx for total petroleum hydrocarbon (TPH).

Samples collected during the September and December 2014 events were analyzed by NWTPH-Dx twice, once following a silica gel cleanup step, and once without. Based on a review of chromatograms, the results do not clearly show that silica gel removes only non-toxic compounds. The use of silica gel cleanup was discontinued beginning in 2015.

Investigation-Derived Waste

All water generated during groundwater sampling was collected and transferred to a new, U.S. Department of Transportation-approved 55-gallon steel drum. The lidded, sealed, and labelled drum is being stored on-site for use in ongoing groundwater monitoring.

COMPLIANCE MONITORING RESULTS

Data Validation

For each sampling event in the reporting period, a compliance screening, Tier 1 data quality review was performed on TPH data resulting from laboratory analysis. The analytical data were validated in accordance with the U.S. Environmental Protection Agency (USEPA) *National*

Functional Guidelines for Superfund Organic Data Review (USEPA 2014). Data validation for the June 2014 results were reported in the prior data report (Floyd|Snider 2014b).

Five groundwater samples were submitted for each of the four events, in sample delivery groups FB409452, FB12371, FB503312, and FB506201, to FBI in Seattle, Washington for chemical analysis by NWTPH-Dx for TPH. For all sample delivery groups, the analytical holding times were met and the method blanks had no detections. The surrogate, matrix spike (MS), matrix spike duplicate (MSD), laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) recoveries and MS/MSD and LCS/LCSD relative percent differences all met USEPA requirements.

All data are determined to be of acceptable quality for use as qualified. Additional data validation details are provided below for each event.

September 2014 Event

As part of the validation of TPH data, the detectable hydrocarbons and/or organics within the diesel, gasoline, or residual hydrocarbon chromatogram ranges were reviewed relative to the appropriate laboratory standard. If the hydrocarbons were not identifiable based on a poor chromatographic match with the standards, the data were qualified "MP" to reflect a poor match, and the interpretive qualifier to be used for database entry and project reporting was a "JM" to indicate estimated concentrations due to the poor chromatographic match. Similarly, if the hydrocarbons provided a good chromatographic match with the standards, the data were qualified "MG" to reflect a good match, and no interpretive qualifier was used for database entry or project reporting.

The five samples were analyzed by NWTPH-Dx twice, once following a silica gel cleanup step, and once without. Chromatograms from both analysis were compared to the provided laboratory standard. Following chromatogram review, it was determined that all sample results showed the presence of a paraffin-like contaminant that was separable from the diesel signal and, per the laboratory, was not quantified as part of the diesel results. All detected results from the analysis without silica gel cleanup appeared to be weathered diesel, with the lighter, more soluble part of diesel being more prevalent than it would be in a fresh sample, and were qualified "J" as estimated. All of the samples that did undergo a silica gel cleanup had an adequate standard match and were reported without additional qualifiers.

December 2014 Event

As part of the validation of TPH data, the detectable hydrocarbons and/or organics within the diesel, gasoline, or residual hydrocarbon chromatogram ranges were reviewed relative to the appropriate laboratory standard. If the hydrocarbons were not identifiable based on a poor chromatographic match with the standards, the data were qualified "MP" to reflect a poor match, and the interpretive qualifier to be used for database entry and project reporting was a "JM" to indicate estimated concentrations due to the poor chromatographic match. Similarly, if the hydrocarbons provided a good chromatographic match with the standards, the data were

qualified "MG" to reflect a good match, and no interpretive qualifier was used for database entry or project reporting.

The five samples were analyzed by NWTPH-Dx twice, once following a silica gel cleanup step, and once without. Chromatograms from both analysis were compared to the provided laboratory standard and are considered to have an adequate match to the standards.

March 2015 Event

The analytical holding times were met and the method blanks had no detections. The surrogate, MS, MSD, LCS and LCSD recoveries and MS/MSD and LCS/LCSD relative percent differences all met USEPA requirements.

As part of the validation of TPH data the detectable hydrocarbons and/or organics within the diesel, gasoline, or residual hydrocarbon chromatogram ranges were reviewed relative to the appropriate laboratory standard. If the hydrocarbons were not identifiable based on a poor chromatographic match with the standards, the data were qualified "MP" to reflect a poor match, and the interpretive qualifier to be used for database entry and project reporting was a "JM" to indicate estimated concentrations due to the poor chromatographic match. Similarly, if the hydrocarbons provided a good chromatographic match with the standards, the data were qualified "MG" to reflect a good match, and no interpretive qualifier was used for database entry or project reporting.

Chromatograms were compared to the provided laboratory standard and are considered to have an adequate match to the standards.

June 2015 Event

As part of the validation of TPH data, the detectable hydrocarbons and/or organics within the diesel, gasoline, or residual hydrocarbon chromatogram ranges were reviewed relative to the appropriate laboratory standard. If the hydrocarbons were not identifiable based on a poor chromatographic match with the standards, the data were qualified "MP" to reflect a poor match, and the interpretive qualifier to be used for database entry and project reporting was a "JM" to indicate estimated concentrations due to the poor chromatographic match. Similarly, if the hydrocarbons provided a good chromatographic match with the standards, the data were qualified "MG" to reflect a good match, and no interpretive qualifier was used for database entry or project reporting.

Chromatograms were compared to the provided laboratory standard and are considered to have an adequate match to the standards.

Water Level Measurements and Potentiometric Surface

Water level measurements, elevations, and horizontal hydraulic gradients are reported in Table 1. Groundwater elevations and potentiometric surface contours for each event are illustrated in Figures 2, 3, 4, and 5. The results indicate an overall southerly groundwater flow direction that varied from southwesterly during the September and December events to southeasterly during the March and June events. Water level data indicate low horizontal gradients ranging from approximately 0.003 to 0.001 feet per foot (ft/ft), which is consistent with the flat topography in the vicinity.

Groundwater Results

Analytical results for DRO in groundwater are shown in Table 2. The complete analytical data packages are presented in Attachment 1. Analytical results presented in this data report are being submitted to Washington State Department of Ecology's (Ecology's) Environmental Information Management system. Results following silica gel cleanup are shown for those events for which it is available. Results following silica gel cleanup are not expected to be used for compliance and are not discussed in this section.

During the 1-year reporting period, results for all four monitoring wells fluctuated at concentrations close to the MTCA Method A cleanup level (CUL) for DRO of 500 micrograms per liter (μ g/L). In the most recent event, June 2015, the results for all four monitoring wells exceeded the CUL, and DRO concentrations ranged from 530 to 660 μ g/L. In the previous event, March 2015, the results for all four monitoring wells were less than the CUL, with DRO concentrations ranging from 310 to 460 μ g/L. Based on these concentrations, the area of groundwater with DRO exceeding the CUL corresponds approximately with the former excavation and area defined by the four monitoring wells, and is considered stable.

OTHER REQUIRED INFORMATION

After the submittal of the previous groundwater monitoring report (Floyd | Snider 2014b), Ecology indicated that its review would include consideration of MTCA requirements for analytical testing for petroleum releases listed in Table 830-1 under Washington Administrative Code (WAC) 173-340-900, assessment of the vapor intrusion pathway, and terrestrial ecological evaluation.

Other Required Testing for Petroleum Releases (Table 830-1)

At sites with petroleum releases, MTCA requires testing for constituents associated with the petroleum product(s) released, as described in Table 830-1. Analytical testing completed at the Site meets these requirements, based on the known release of diesel fuel from the AST and the subsequent soil excavation.

Soil analyses conducted as part of investigation and excavation activities (3 Kings Environmental 2012) included TPH-Dx reported as both diesel-range and oil-range concentrations. These and

subsequent analyses (Floyd|Snider 2014b) were used to document removal of petroleumimpacted soil with contaminant concentrations greater than MTCA Method A CULs from the Site. Because contaminated soil was removed, groundwater remains the appropriate medium for assessing related constituents in accordance with Table 830-1. Groundwater samples from direct-push borings analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX) indicate compliance with MTCA Method A CULs, based on the following greatest concentrations: benzene at < 0.3 μ g/L, toluene at 0.9 μ g/L, ethylbenzene at 1.4 μ g/L, and total xylenes at 8.6 μ g/L (3 Kings Environmental 2012). Groundwater analyses for ethylbenzene, toluene, and xylenes from site monitoring wells MW-2 and MW-4, sampled in June 2014, are reported in Table 3. These results indicate no detections of these constituents.

Testing for carcinogenic polycyclic aromatic hydrocarbons (cPAHs) and naphthalenes, which is not required for sites with releases of diesel #1 or diesel #2 for compliance with MTCA Method A CULs, was conducted as part of excavation (3 Kings Environmental 2012) and from site groundwater monitoring wells in June 2014, for potential use in calculating MTCA Method B CULs. As shown in Table 3, these compounds were found to be less than a detection limit of 0.1 μ g/L for all four monitoring wells. Groundwater samples from direct-push borings were analyzed for selected cPAHs and naphthalene, and were found to be less than a detection limit of 0.05 μ g/L.

Vapor Intrusion Pathway

Site data were reviewed according to the tiered approach given in the *Guidance for Evaluating Soil Intrusion in Washington State* (the Guidance; Ecology 2009), which calls for a preliminary assessment to determine whether sufficiently toxic and volatile substances are present at the Site in the vicinity of occupied buildings. Based on this review, there are no potential vapor intrusion concerns at the Site, and no need for further evaluation or data collection.

Because soil contaminated at concentrations greater than MTCA Method A CULs was excavated and removed from the Site, the soil-to-soil-vapor pathway is protective of indoor air. Groundwater data were reviewed relative to screening levels for groundwater given in the 2015 update to Table B-1 of the Guidance (Ecology 2015). Table B-1 lists six constituents analyzed for in site groundwater as potential sources of vapor intrusion concerns: benzene, toluene, ethylbenzene, xylene (m), xylene (o), and naphthalene. Site data (refer to Table 3 and *Remedial Investigation and Cleanup Report* [3 Kings Environmental 2012]) indicate that groundwater concentrations are substantially less than the lesser of the carcinogen- and non-carcinogenbased screening levels for all six constituents. Based on this comparison to these conservative screening levels, site constituents are not sufficiently toxic or volatile to present a concern for vapor intrusion.

In addition, the contamination is generally not close enough to occupied buildings to cause a concern for vapor intrusion, based on the 100-foot rule of thumb presented in the Guidance. The closest occupied building, an office structure, is located approximately 100 feet from the edge of

the excavation. The groundwater contamination extends a few feet closer to the building, but is still nearly 100 feet away. Monitoring well MW-2, which approximately defines the closest edge of the TPH contamination in groundwater, is located approximately 90 feet from the nearest occupied building. The parking lot is unpaved, so there is no continuous low permeability surface that would contribute to vapor transport. There are no utility lines or other backfilled trenches that could serve as preferential pathways between the area of contamination and the building.

Terrestrial Ecological Evaluation

Because soil contaminated at concentrations greater than MTCA Method A CULs was excavated and removed from the Site, no further terrestrial ecological evaluation is required at the Site, in accordance with WAC 173-340-7491.

NEXT STEPS

To support a future request for a NFA letter from Ecology, we propose to decrease monitoring frequency until the data support a compliance demonstration. In addition, to document the extensive soil removal activities already completed, we request a Partial Sufficiency letter for soil. These items are discussed further below.

Annual Groundwater Monitoring

Groundwater monitoring results at the Site indicate relatively stable concentrations, but are yet not suitable for demonstrating compliance in support of a request for a NFA letter. Therefore, groundwater monitoring from the four monitoring wells at the Site will be adjusted to an annual frequency, until a sufficient data set exists for a compliance determination. To be conservative, the monitoring event will be conducted during the second quarter, when DRO concentrations have typically been greatest.

It is expected that the results from approximately eight quarterly and/or annual monitoring events will be used to demonstrate compliance with the MTCA Method A CUL for DRO, and will support a request for a NFA letter from Ecology. A brief monitoring report summarizing annual monitoring results will be prepared and submitted to Ecology, and all data will be submitted to EIM.

Partial Sufficiency Request

To provide clarity and predictability regarding compliance status, we request that Ecology issue a Partial Sufficiency letter to document the adequacy of soil remediation, based on existing postexcavation soil data (3 Kings Environmental 2012; Floyd|Snider 2014b). It is our hope that this documentation will simplify future reporting and focus the compliance demonstration on groundwater contamination.

REFERENCES

- 3 Kings Environmental, Inc. 2012. *Remedial Investigation and Cleanup Report, Puget Sound Freight Lines Facility* 146 Industrial Way, Longview, Washington. Prepared for Puget Sound Freight Lines. 24 December.
- Floyd|Snider. 2014a. *Puget Sound Truck Lines, Longview Groundwater Compliance Sampling and Analysis Plan*. Memorandum to Tom Lovejoy, Puget Sound Freight Lines, from Brett Beaulieu, Floyd|Snider. 13 January.
- ______. 2014b. Puget Sound Truck Lines Longview Site—Groundwater Compliance Well Installation and Monitoring Results. Memorandum to Scott Rose, VCP Unit Manager, Washington State Department of Ecology, from Brett Beaulieu, Floyd|Snider. 3 September.
- U.S. Environmental Protection Agency (USEPA). 2014. *National Functional Guidelines for Superfund Organic Methods Data Review, OSWER 9355.0-132.* EPA-540-R-014-002. Office of Superfund Remediation and Technology Innovation (OSRTI), Washington, D.C. August.
- Washington State Department of Ecology. 2009. Guidance for Evaluation of Soil Vapor Intrusion in Washington State: Investigation and Remedial Action. Publication No. 09-09-047. October.

_____. 2015. Vapor Intrusion Table update April 6 2015. http://www.ecy.wa.gov/programs/ tcp/policies/VaporIntrusion/vig.html. Accessed September 23.

LIST OF ATTACHMENTS

Table 1	Water Level Elevations and Horizontal Gradients
Table 2	Groundwater Analytical Results for Diesel-Range Organics
Table 3	Other Groundwater Constituents and Vapor Intrusion Screening Levels
Figure 1	Vicinity Map
Figure 2	Potentiometric Surface and Groundwater Elevations September 24, 2014
Figure 3	Potentiometric Surface and Groundwater Elevations December 22, 2014
Figure 4	Potentiometric Surface and Groundwater Elevations March 17, 2015
Figure 5	Potentiometric Surface and Groundwater Elevations June 9, 2015
Attachment 1	Laboratory Analytical Data (Provided on Disc)

Geologist Certification

This document was prepared by Floyd|Snider under the professional supervision of Brett Beaulieu.

Name: Brett Beaulieu, LHG Title: Hydrogeologist Date: 10/14/2015

Tables

	Total Depth		Depth to	Horizontal	
	(feet from top	Top of Well Casing	Water	Elevation	Gradient
Well	of casing)	(feet NAVD 88)	(feet)	(feet NAVD 88)	(feet/foot)
June 9, 20	15	•			
MW-1	13.44	14.24	4.65	9.59	
MW-2	13.35	14.08	4.54	9.54	0.001
MW-3	14.12	14.05	4.56	9.49	0.001
MW-4	14.42	14.24	9.57		
March 17,	, 2015				
MW-1	13.44	14.24	2.46	11.78	
MW-2	13.35	14.08	2.37	11.71	0.002
MW-3	14.12	14.05	2.41	11.64	0.002
MW-4	14.42	14.24	2.49	11.75	
December	r 22, 2014				
MW-1	13.44	14.24	1.75	12.49	
MW-2	13.35	14.08	1.64	12.44	0.003
MW-3	14.12	14.05	1.76	12.29	0.005
MW-4	14.42	14.24	1.84	12.40	
Septembe	er 24, 2014				-
MW-1	13.44	14.24	5.92	8.32	
MW-2	13.35	14.08	5.74	8.34	0.001
MW-3	14.12	14.05	5.76	8.29	0.001
MW-4	14.42	14.24	5.99	8.25	
June 24, 2	014				
MW-1	13.44	14.24	3.85	10.39	
MW-2	13.35	14.08	3.76	10.32	0.002
MW-3	14.12	14.05	3.80	10.25	0.002
MW-4	14.42	14.24	3.93	10.31	
March 19,	, 2014				
MW-1	13.44	14.24	1.14	13.10	
MW-2	13.35	14.08	1.06	13.02	0.004
MW-3	14.12	14.05	1.20	12.85	0.004
MW-4	14.42	14.24	1.23	13.01	

Table 1Water Level Elevations and Horizontal Gradients

Abbreviation:

NAVD 88 North American Vertical Datum of 1988

PSTL Longview

FLOYD | SNIDER

		Diesel-Range Organics (µg/L)						
			NWTPH-Dx with					
			Silica Gel					
Well	Date	NWTPH-Dx	Cleanup					
	3/19/2014	390	250					
	3/19/2014 (Duplicate)	490	220					
	6/24/2014	390 JM	210					
	9/24/2014	380 J	230					
MW-1	9/24/2014 (Duplicate)	430 J	230					
	12/22/2014	410	210					
	3/17/2015	350	NA					
	6/9/2015	530	NA					
	3/19/2014	700	370					
	6/24/2014	540 JM	270					
MW-2	6/24/2014 (Duplicate)	540 JM	270					
	9/24/2014	620 J	340					
	12/22/2014	480	280					
	12/22/2014 (Duplicate)	520	310					
	3/17/2015	390	NA					
	3/17/2015 (Duplicate)	390	NA					
	6/9/2015	660	NA					
	6/9/2015 (Duplicate)	670	NA					
	3/19/2014	560	180					
	6/24/2014	470 JM	170					
MW-3	9/24/2014	420 J	170					
10100-2	12/22/2014	480	200					
	3/17/2015	310	NA					
	6/9/2015	530	NA					
	3/19/2014	680	450					
	6/24/2014	560 JM	360 JM					
MW-4	9/24/2014	550 J	380					
17177-4	12/22/2014	440	320					
	3/17/2015	460	NA					
	6/9/2015	580	NA					

Table 2Groundwater Analytical Results for Diesel-Range Organics

Abbreviations:

µg/L Micrograms per liter

NA Not analyzed

Qualifiers:

J Analyte was detected, the concentration is considered an estimate.

JM Analyte was detected, the concentration is considered an estimate due to poor chromatographic match to standard.

 Table 3

 Other Groundwater Constituents and Vapor Intrusion Screening Levels

	Location	MW-1	M	W-2	MW-3	MW-4	Greatest Detected	Most Conservative	
	Sample ID	MW-1-GW-4-14' 062514	MW-2-GW-4-14' 062514			MW-4-GW-4-14' 062514	Concentration in Direct- Push Groundwater Sampling ¹	Vapor Intrusion Screening Level from Table B-1 ²	
Sample Date		6/24/2014	6/24/2014	6/24/2014	6/24/2014	6/24/2014	2/10/2012 to 12/10/2012	(μg/L)	
Analyte	Unit								
Volatile Organic Compound	ls by USEPA	8260C							
Benzene	μg/L						0.3 U	2.4	
Ethylbenzene	μg/L		1 U			1 U	1.4	2,783	
Toluene	μg/L		1 U			1 U	0.9	15,584	
Xylene (meta & para)	μg/L		2 U			2 U	8.6	310	
Xylene (ortho)	μg/L		1 U			1 U	8.0	440	
Semivolatile Organic Comp	ounds by US	EPA 8270D-SIM							
1-Methylnaphthalene	μg/L	0.1 U	0.1 U	0.11	0.1 U	0.1 U		NA	
2-Methylnaphthalene	μg/L	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U		NA	
Benzo(a)anthracene	μg/L	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.05 U	NA	
Benzo(a)pyrene	μg/L	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.05 U	NA	
Benzo(b)fluoranthene	μg/L	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.05 U	NA	
Benzo(k)fluoranthene	μg/L	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.05 U	NA	
Chrysene	μg/L	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.05 U	NA	
Dibenzo(a,h)anthracene	μg/L	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.05 U	NA	
Indeno(1,2,3-cd)pyrene	μg/L	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.05 U	NA	
Naphthalene	μg/L	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.05 U	8.93	

Notes:

-- Not analyzed for.

1 Sources: Vapor Intrusion Update Table (Ecology 2015) and Guidance for Evaluation Soil Vapor Intrusion in Washington State (Ecology 2009).

2 Source: Remedial Investigation and Cleanup Report (3 Kings Environmental, Inc. 2012). Screening level used is for meta-xylene, not meta-xylene and para-xylene.

Abbreviations:

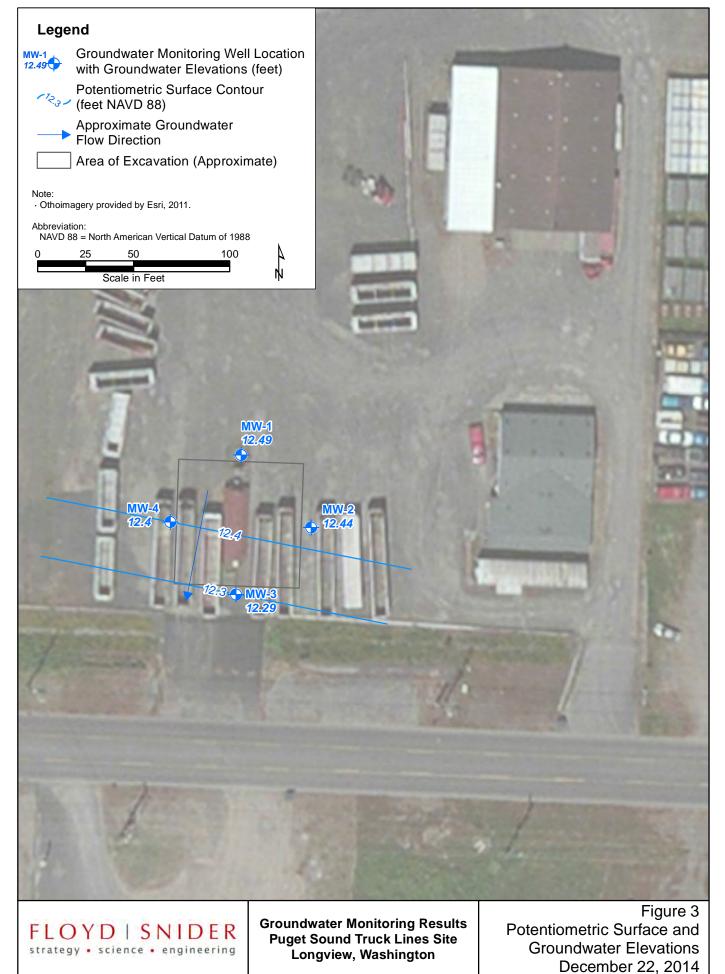
NA Not applicable.

µg/L Micrograms per liter.

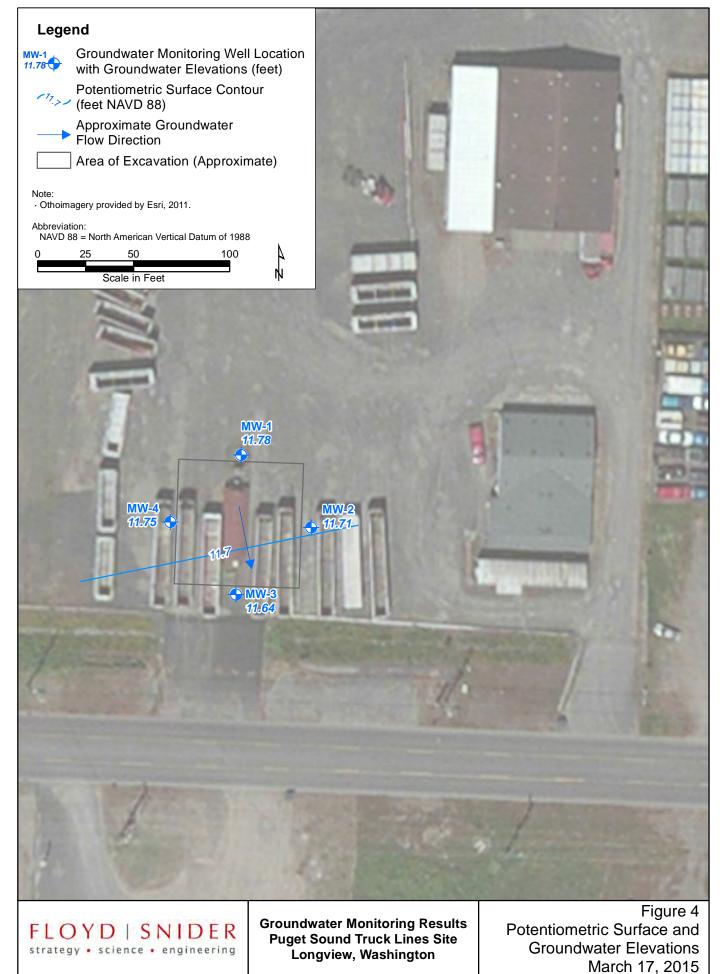
Qualifiers:

U Analyte was not detected at the given reporting limit.

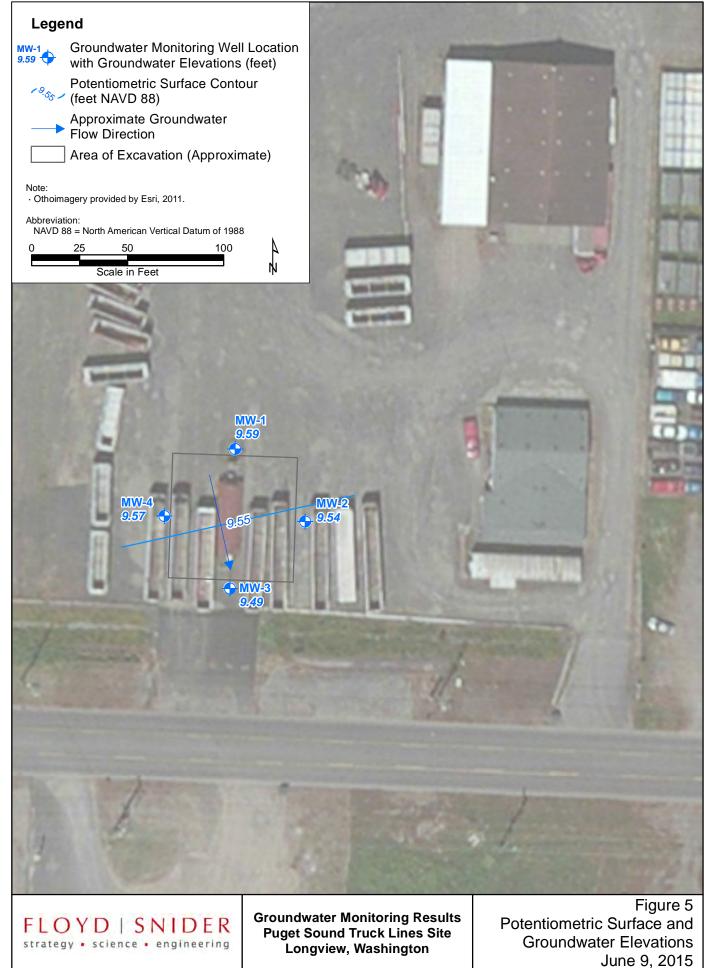
Figures



I:\GIS\Projects\PSTL-Longview\MXD\Figure 1 Vicinity Map.mxd 10/13/2015



I:\GIS\Projects\PSTL-Longview\MXD\Figure 2 Potentiometric Surface and Groundwater Elevations September 24, 2014.mxd 10/13/2015


· ·

I:\GIS\Projects\PSTL-Longview\MXD\Figure 3 Potentiometric Surface and Groundwater Elevations December 22, 2014.mxd 10/13/2015

I:\GIS\Projects\PSTL-Longview\MXD\Figure 4 Potentiometric Surface and Groundwater Elevations March 17, 2015.mxd 10/13/2015

I:\GIS\Projects\PSTL-Longview\MXD\Figure 5 Potentiometric Surface and Groundwater Elevations June 9, 2015.mxd 10/13/2015

Attachment 1 Laboratory Analytical Data

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 1, 2014

Brett Beaulieu, Project Manager Floyd/Snider Two Union Square, Suite 600 601 Union St Seattle, WA 98101

Dear Mr. Beaulieu:

Included are the results from the testing of material submitted on September 24, 2014 from the PSTL-Longview, F&BI 409452 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Gal

Michael Erdahl Project Manager

Enclosures FDS1001R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 24, 2014 by Friedman & Bruya, Inc. from the Floyd/Snider PSTL-Longview, F&BI 409452 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Floyd/Snider</u>
409452 -01	MW-1-GW-4-14
409452 -02	MW-13-GW-4-14
409452 -03	MW-2-GW-4-14
409452 -04	MW-3-GW-4-14
409452 -05	MW-4-GW-4-14

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 10/01/14 Date Received: 09/24/14 Project: PSTL-Longview, F&BI 409452 Date Extracted: 09/25/14 Date Analyzed: 09/26/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Surrogate <u>(% Recovery)</u> (Limit 47-140)
MW-1-GW-4-14 409452-01	230	90
MW-13-GW-4-14 409452-02	230	100
MW-2-GW-4-14 409452-03	340	95
MW-3-GW-4-14 409452-04	170	86
MW-4-GW-4-14 409452-05	380	90
Method Blank 04-1958 MB	<50	96

ENVIRONMENTAL CHEMISTS

Date of Report: 10/01/14 Date Received: 09/24/14 Project: PSTL-Longview, F&BI 409452 Date Extracted: 09/25/14 Date Analyzed: 09/26/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL USING METHOD NWTPH-Dx

Surrogate Sample ID Diesel Range (% Recovery) (Limit 47-140) Laboratory ID $(C_{10}-C_{25})$ 380 MW-1-GW-4-14 87 409452-01 MW-13-GW-4-14 430 101 409452-02 620 MW-2-GW-4-14 104 409452-03 MW-3-GW-4-14 420 88 409452-04 550 97 MW-4-GW-4-14 409452-05 Method Blank <50 91 04-1958 MB

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 10/01/14 Date Received: 09/24/14 Project: PSTL-Longview, F&BI 409452

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL USING METHOD NWTPH-Dx

Laboratory Code: 409452-03 (Matrix Spike) Silica Gel									
			Sample	Percent	Percent				
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD		
Analyte	Units	Level		MS	MSD	Criteria	(Limit 20)		
Diesel	ug/L (ppb)	2,500	340	98	92	64-141	6		
Laboratory Code: L	aboratory Conti	rol Sample	e Silica Gel	l					
			Percent	Percent					
	Reporting	Spike	Recov ery	Recovery	Acceptance	e RPD			
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 2	0)		
Diesel	ug/L (ppb)	2,500	93	89	61-133	4			

ENVIRONMENTAL CHEMISTS

Date of Report: 10/01/14 Date Received: 09/24/14 Project: PSTL-Longview, F&BI 409452

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL USING METHOD NWTPH-Dx

Laboratory Code: 4	09452-03 (Matri	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level		MS	MSD	Criteria	(Limit 20)
Diesel	ug/L (ppb)	2,500	620	102	95	64-141	7
Laboratory Code: L	aboratory Conti	rol Sampl	e				
			Percent	Percent			
	Reporting	Spike	Recovery	Recovery	Acceptance	e RPD	
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 2	0)
Diesel	ug/L (ppb)	2,500	96	97	61-133	1	

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

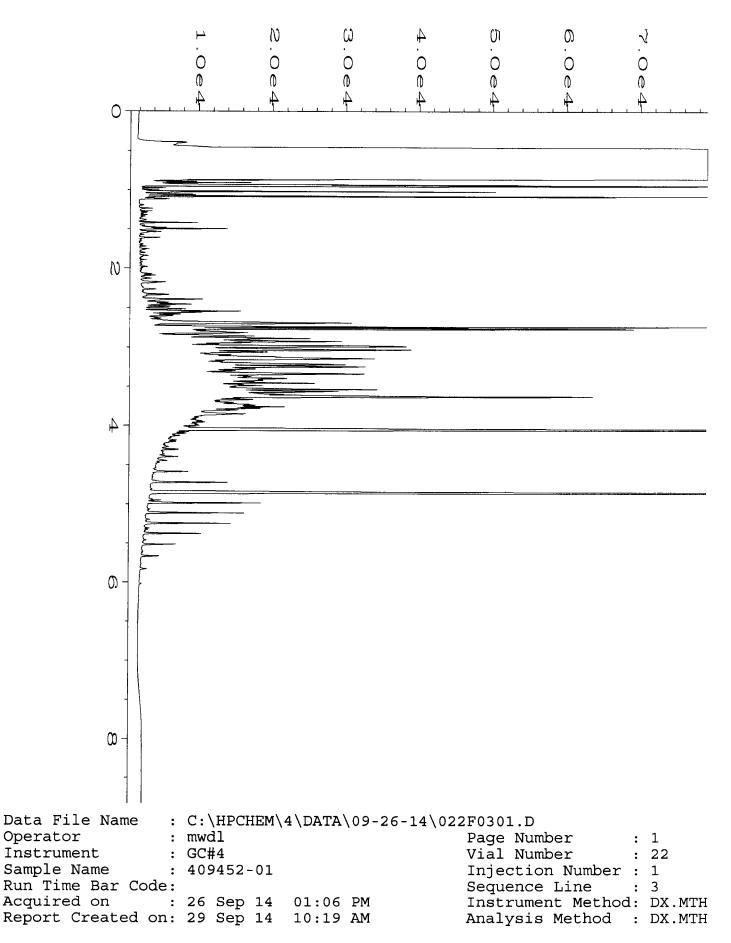
lc - The presence of the analyte is likely due to laboratory contamination.

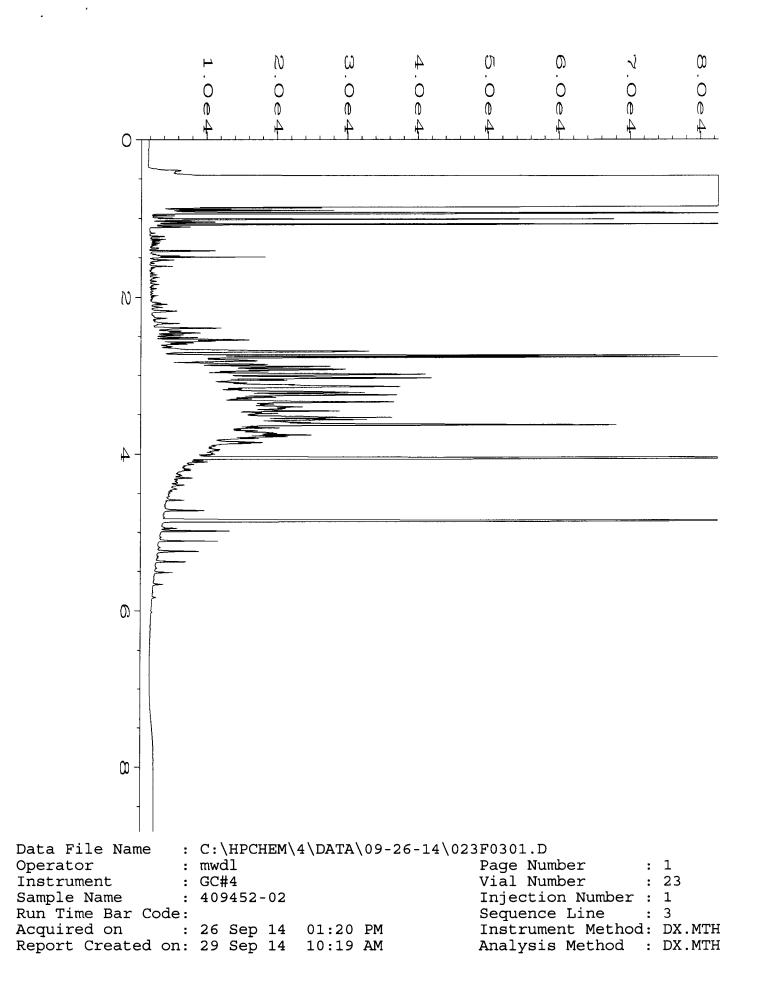
L - The reported concentration was generated from a library search.

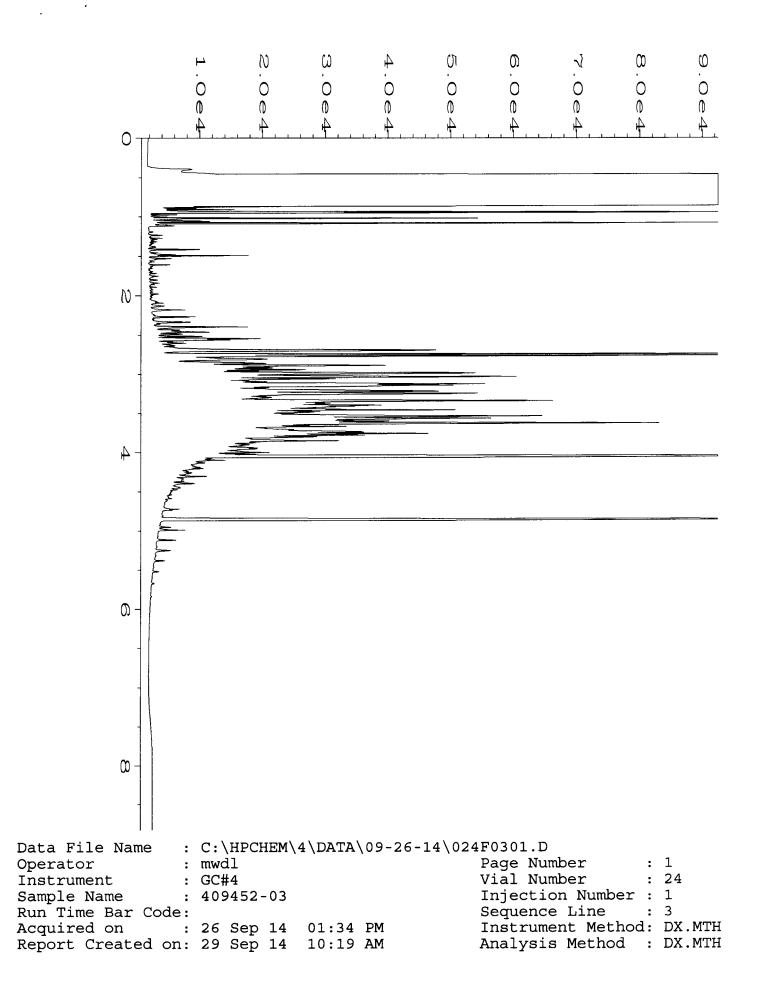
nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

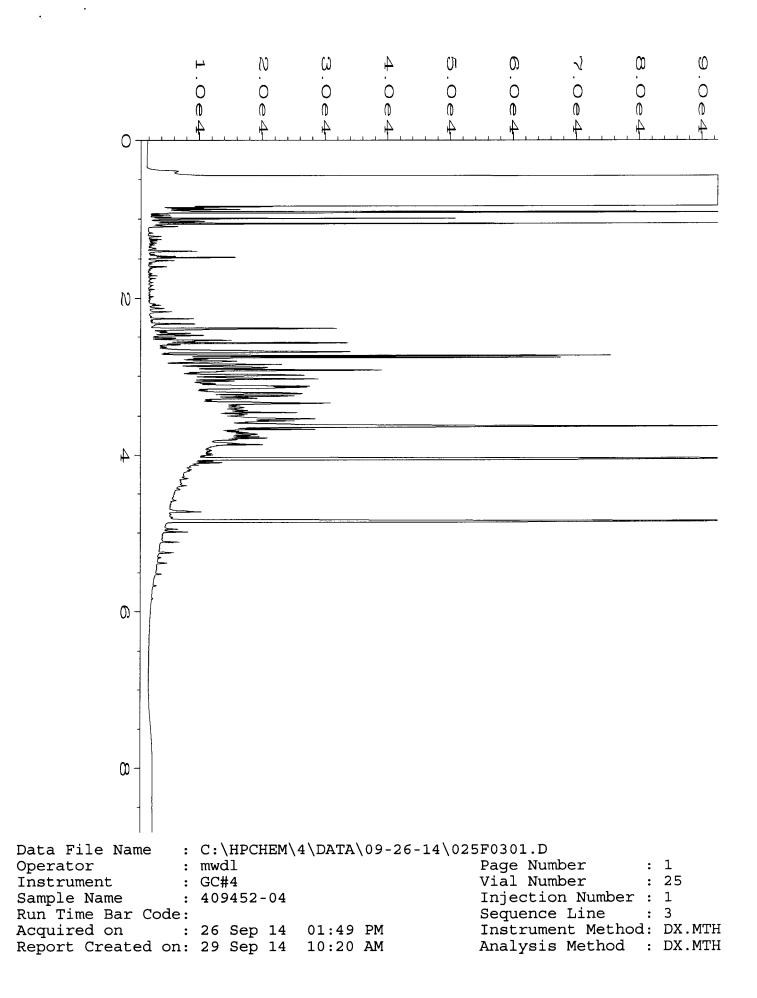
pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

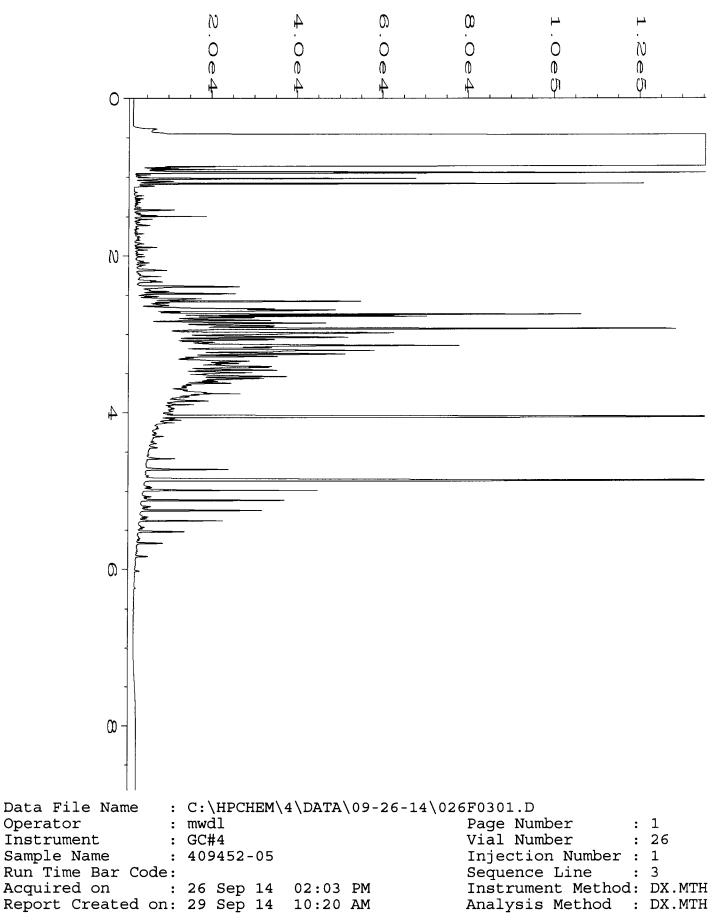
ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

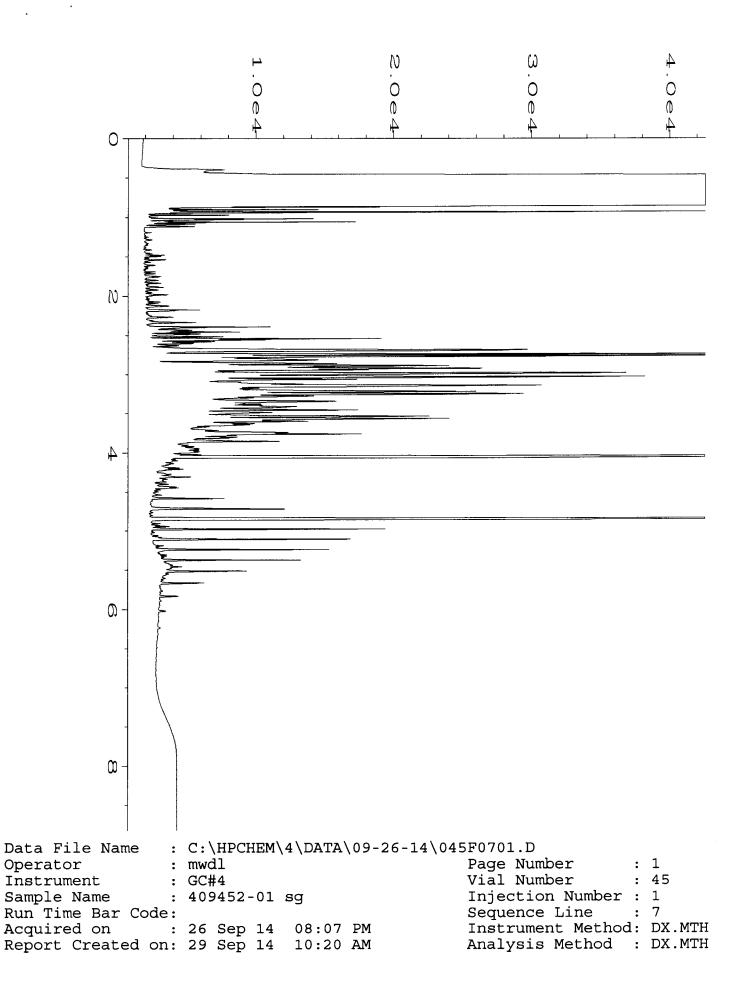

vo - The value reported fell outside the control limits established for this analyte.

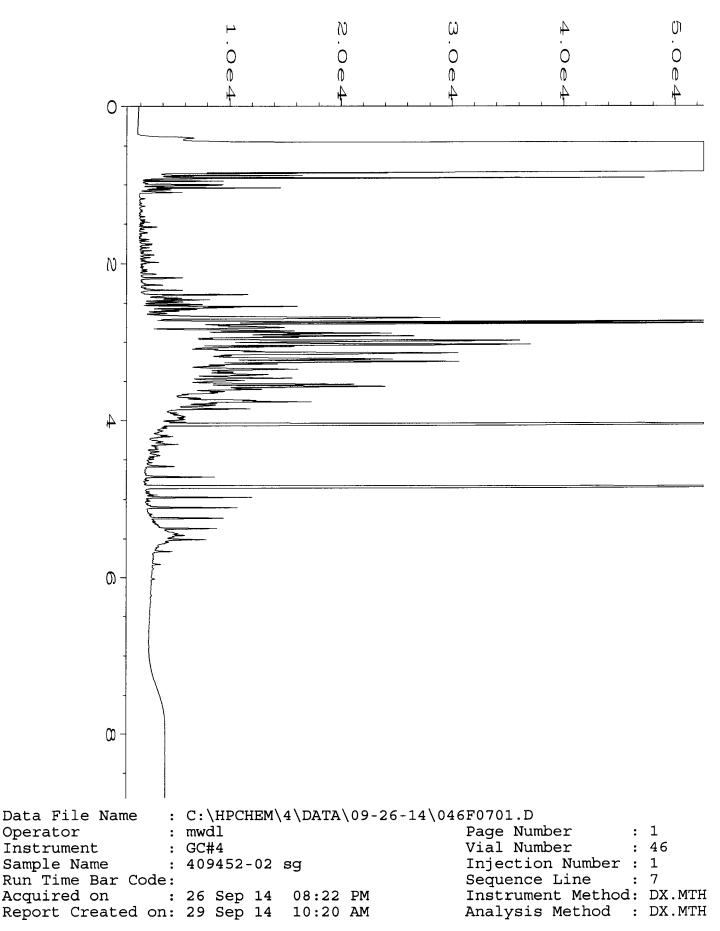

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

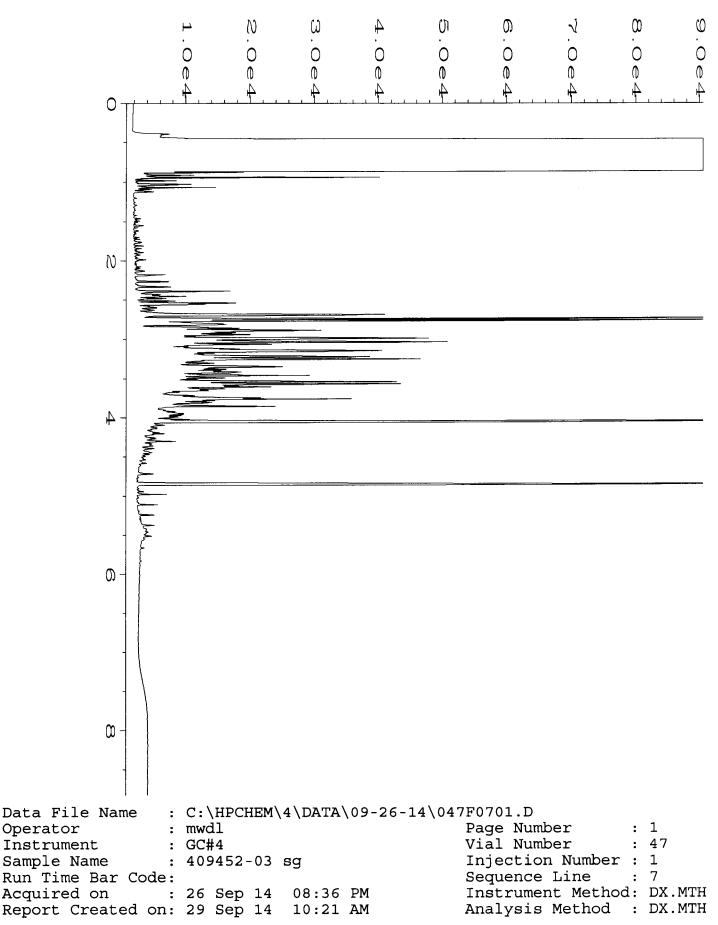

409452	SAMPLE CHA	IN OF CUSTODY	ME 09,	124/14 EU3			
Send Report ToBrett Beaulien Company Floyd[Snich Address601 Union Street, Str. 6	PROJECT N PROJECT N PSTU	· • ·	PO #	rage # of TURNAROUND TIME X Standard (2 Weeks) RUSH Rush charges anthorized by:			
City, State, ZIP_ <u>Sattle</u> , WA 98101 Phone # 206-292-2078 Fax #	REMARKS			SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions			
	<u> </u>	seel bijime (02:133	AMALYSES BERG				

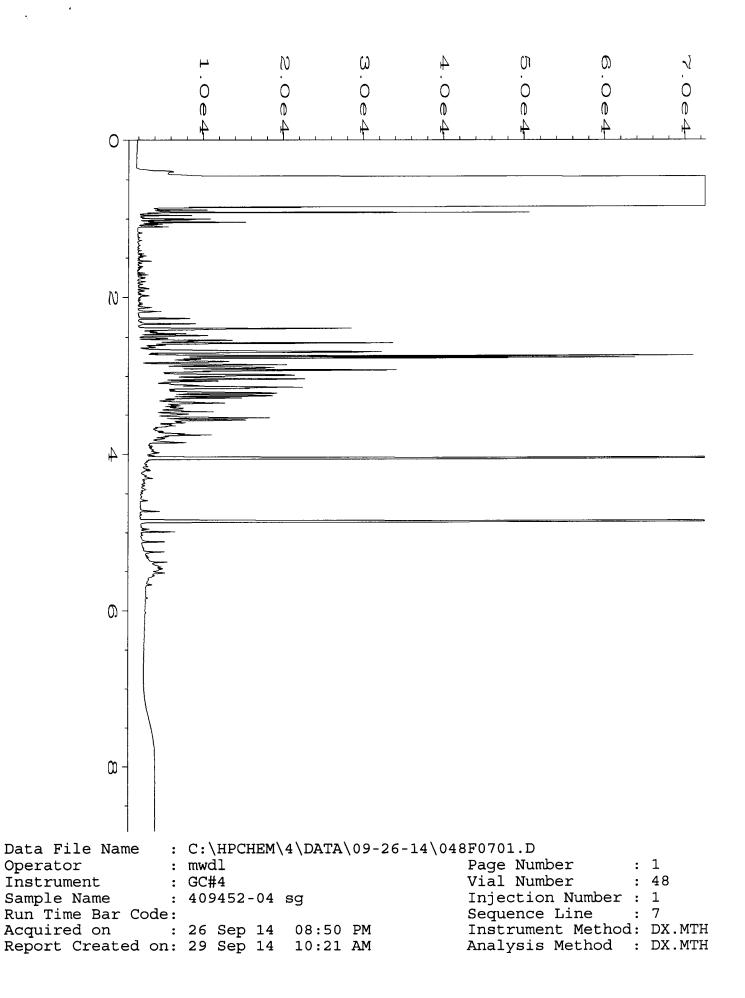

Sample ID	Lab ID	Date	Time	Sample Type	# of containers	TPH-Dissel	TPH-Gasolime	BUBX by 8021	VOCs by \$260	SVOCs by 827	HIFS	See Notes	asm/sm				Notes
MW-1-GW-4-14	.01	39/24/14	1118	GW	١	\mathbf{X}						X			ż		Please only
MW-13-GW-4-14	02		1150		!	X						X					reportdiesel
MW-Z-GW-4-14	03 A-C		1155		3	X						X	X			1 3	range organics
MW-3-6W-4-14	04		1250		1	X						X					Conduct silica
MW-4-6W-4-14	05	\downarrow	1340	J	l	X						X					gel & without
																	<u>Silica gel</u>
																	cleanyp on
			0	- Add								_					
										\neg	\neg	/					all samples. Thanks
· · · · · · · · · · · · · · · · · · ·														~			
Friedman & Bruya, Inc. 3012 16th Avenue West	Balinguishad by	SIGNATUR			PRINT							1	MPA				DATE TIME
	Rolinquicked to				riel Cis.	NCI	20			F	-10	-d	Snie	le:		19/2	24/14 1750
Seattle, WA 98119-2029	m/M/				Jan Shingen					Floyd Snider FBt						· · ·	24/14 1
Ph. (206) 285-8282	Relinquished by		/									+				1	
Fax (206) 283-5044	Received by:									┿				<u>.</u>		+	
FORMIS\COC\COC.DOC	L											••••				1,	

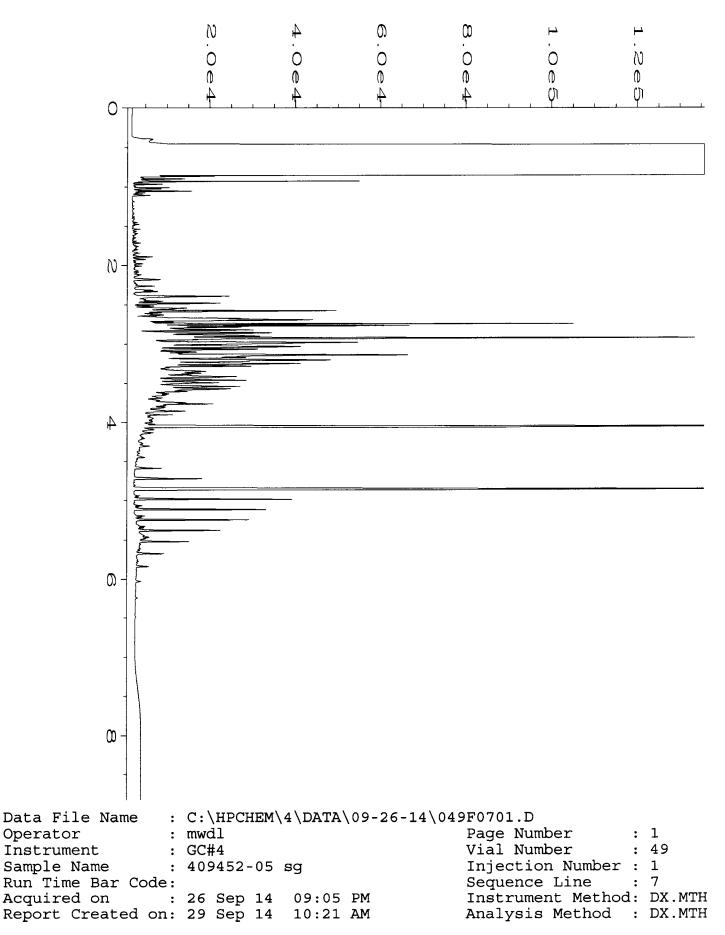

5

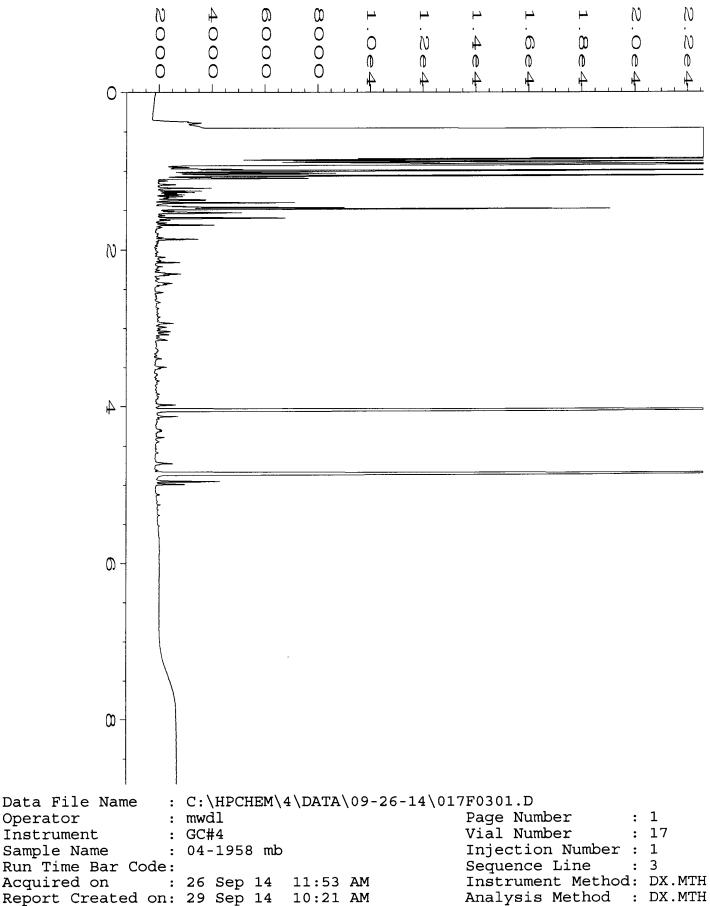




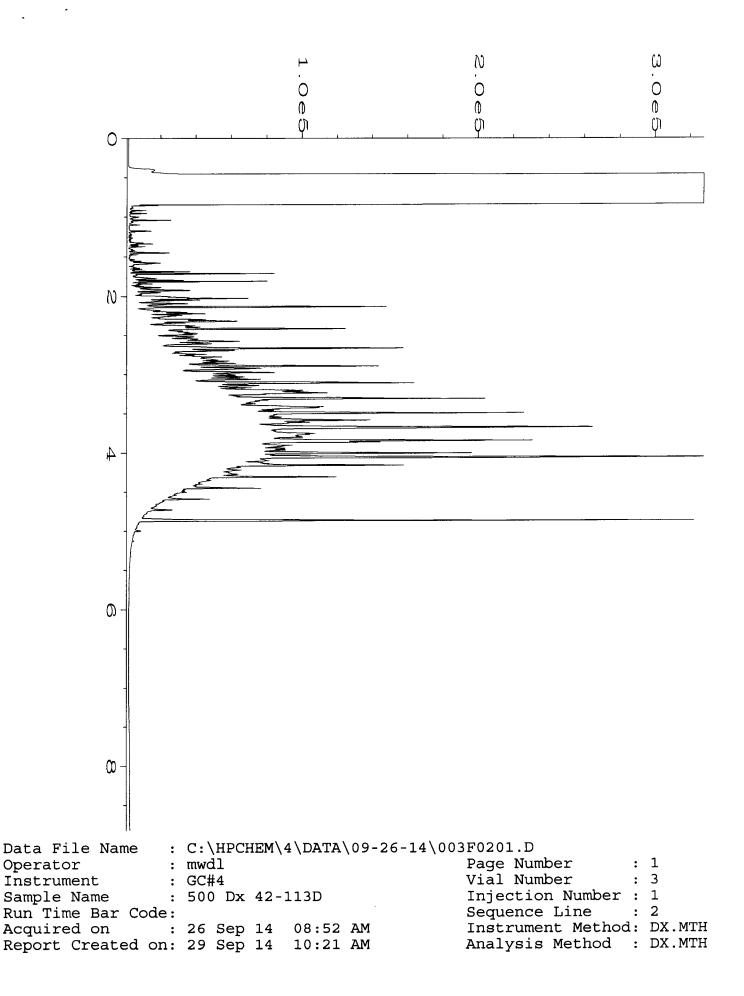



.





•



•

.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 30, 2014

Brett Beaulieu, Project Manager Floyd-Snider Two Union Square, Suite 600 601 Union St Seattle, WA 98101

Dear Mr. Beaulieu:

Included are the results from the testing of material submitted on December 22, 2014 from the PSTL-Longview, F&BI 412371 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures FDS1230R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 22, 2014 by Friedman & Bruya, Inc. from the Floyd-Snider PSTL-Longview, F&BI 412371 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Floyd-Snider</u>
412371 -01	MW-1-GW-4-14
412371 -02	MW-21-GW-4-14
412371 -03	MW-2-GW-4-14
412371 -04	MW-3-GW-4-14
412371 -05	MW-4-GW-4-14

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 12/30/14 Date Received: 12/22/14 Project: PSTL-Longview, F&BI 412371 Date Extracted: 12/23/14 Date Analyzed: 12/26/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL USING METHOD NWTPH-Dx

Surrogate (% Recovery) Sample ID Diesel Range Laboratory ID $(C_{10}-C_{25})$ (Limit 41-152) MW-1-GW-4-14 410 108 412371-01 520 MW-21-GW-4-14 121 412371-02 MW-2-GW-4-14 480 107 412371-03 480 MW-3-GW-4-14 114 412371-04 MW-4-GW-4-14 440 104 412371-05 Method Blank <50 110 04-2550 MB2

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 12/30/14 Date Received: 12/22/14 Project: PSTL-Longview, F&BI 412371 Date Extracted: 12/23/14 Date Analyzed: 12/24/14 and 12/26/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW-1-GW-4-14 412371-01	210	103
MW-21-GW-4-14 412371-02	310	104
MW-2-GW-4-14 412371-03	280	99
MW-3-GW-4-14 412371-04	200	106
MW-4-GW-4-14 412371-05	320	104
Method Blank 04-2550 MB2	<50	104

ENVIRONMENTAL CHEMISTS

Date of Report: 12/30/14 Date Received: 12/22/14 Project: PSTL-Longview, F&BI 412371

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL USING METHOD NWTPH-Dx

Laboratory Code:	412371-03 (Matri	x Spike)					
				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptanc	e RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Diesel	ug/L (ppb)	2,500	480	90	94	50-150	4
Laboratory Code:	Laboratory Conti	ol Sampl	е				
			Percent	Percer	nt		
	Reporting	Spike	Recovery	y Recover	ry Accep	otance	RPD
Analyte	Units	Level	LCS	LCSD	Crit	eria (L	imit 20)
Diesel	ug/L (ppb)	2,500	91	101	63-	142	10

4

ENVIRONMENTAL CHEMISTS

Date of Report: 12/30/14 Date Received: 12/22/14 Project: PSTL-Longview, F&BI 412371

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL USING METHOD NWTPH-Dx

Laboratory Code:	412371-03 (Matri	x Spike) S	Silica Gel				
				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptanc	e RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Diesel	ug/L (ppb)	2,500	280	76	87	50-150	13
Laboratory Code:	Laboratory Contr	ol Sample	e Silica Ge	1			
			Percent	Percer	ıt		
	Reporting	Spike	Recovery	y Recove	ry Accep	otance	RPD
Analyte	Units	Level	LCS	LCSE) Crit	eria (L	imit 20)
Diesel	ug/L (ppb)	2,500	85	95	63-	142	11

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

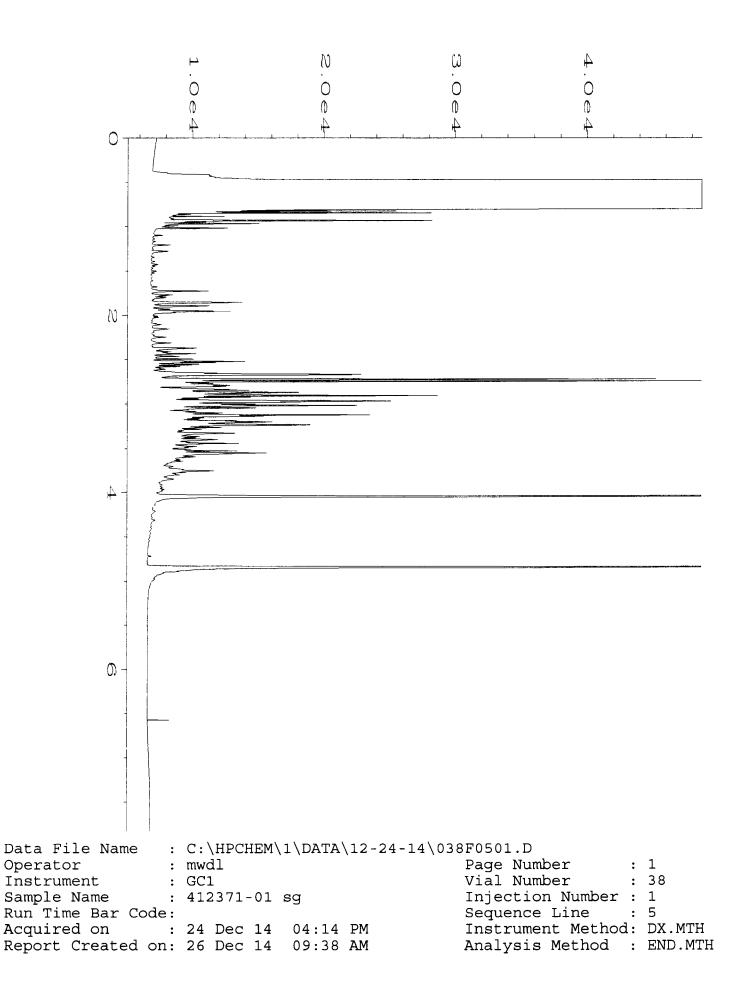
J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

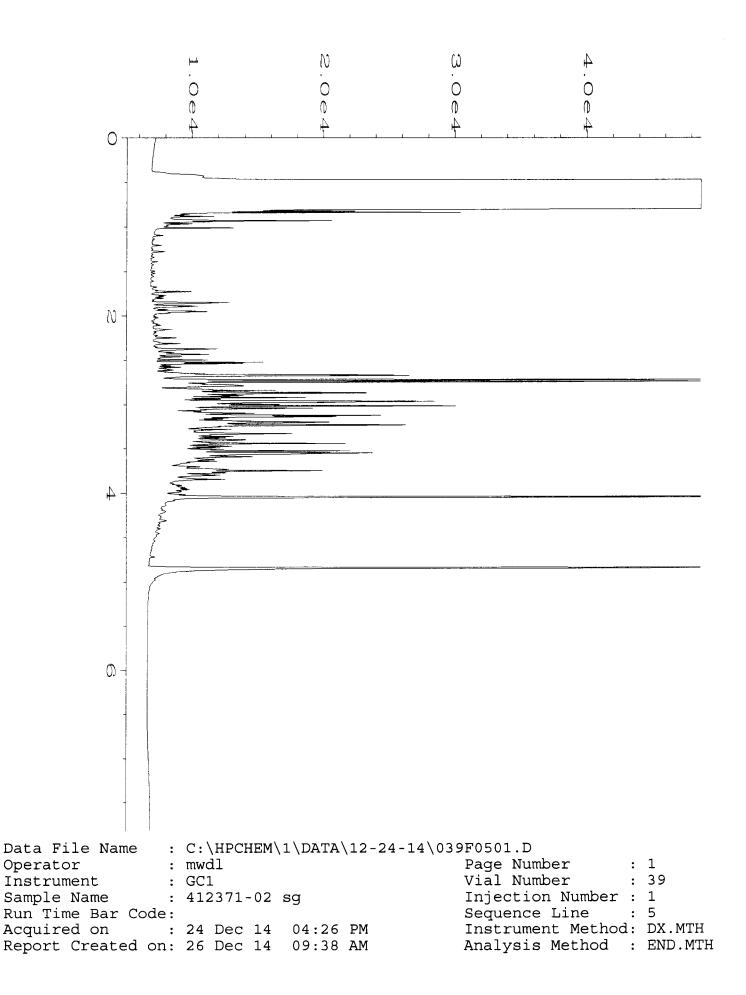
jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

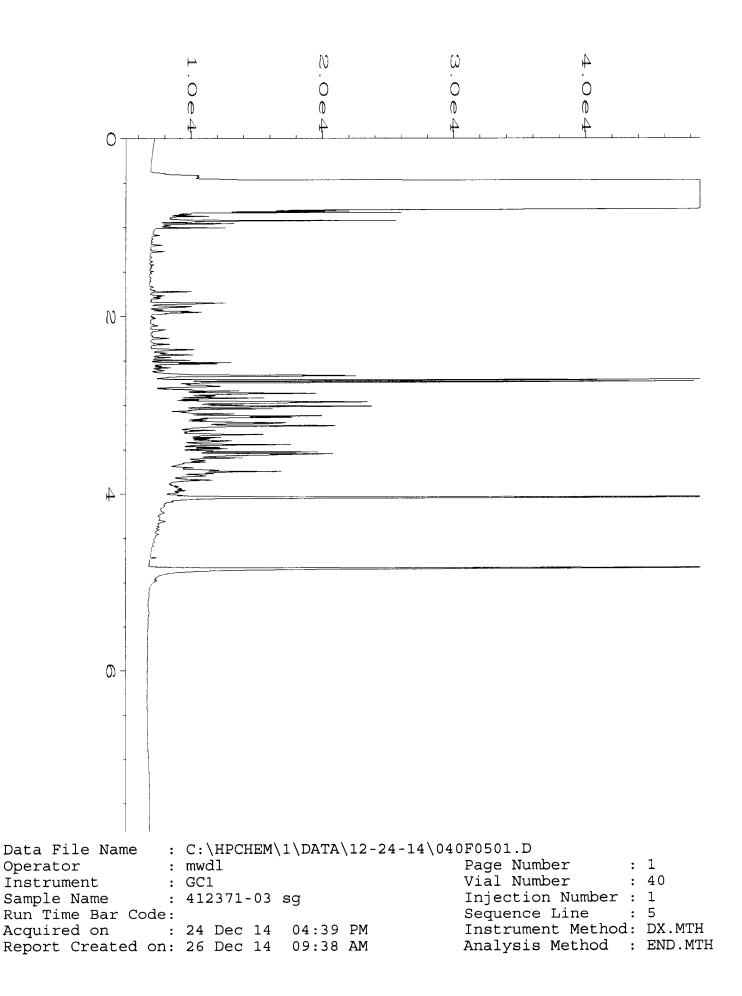
js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

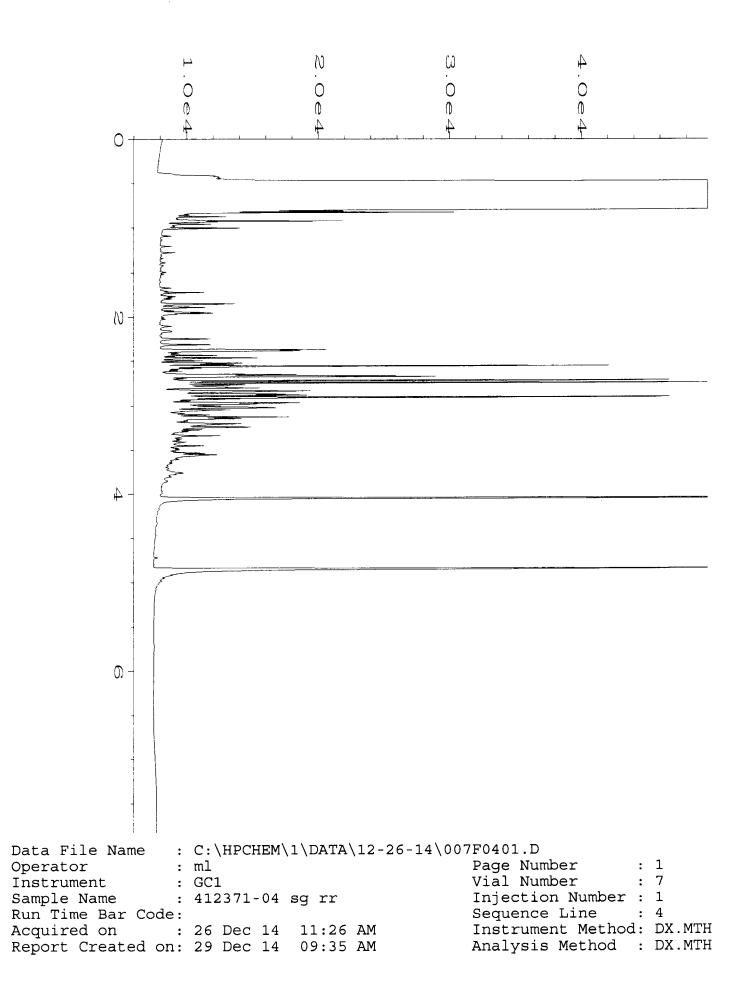
lc - The presence of the analyte is likely due to laboratory contamination.

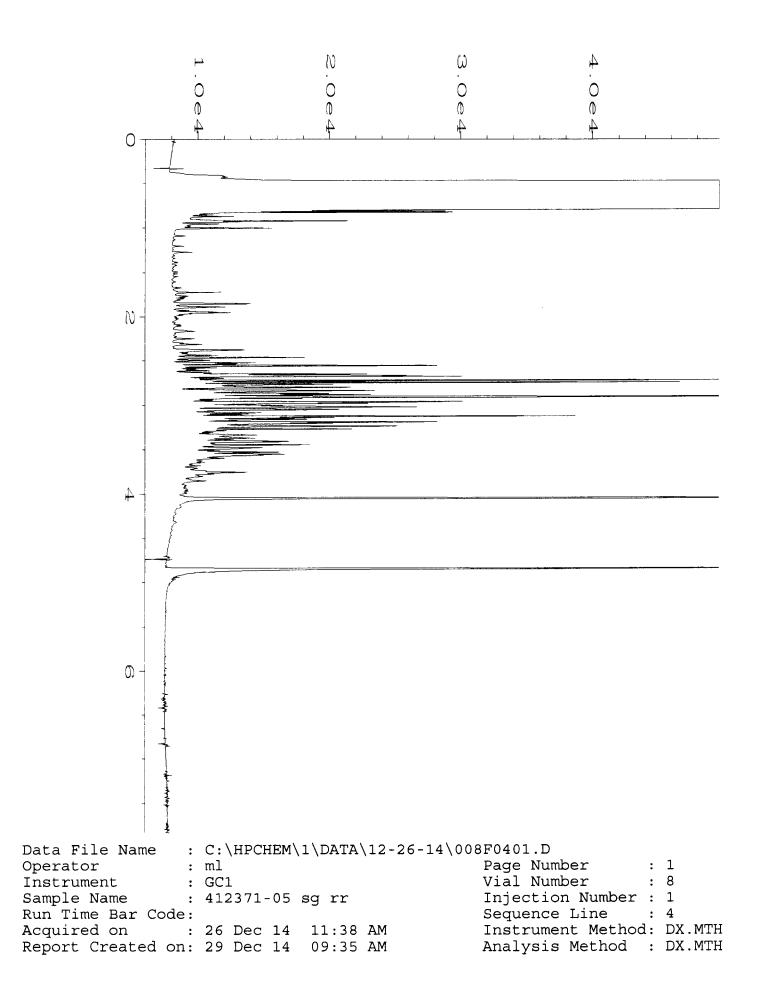
L - The reported concentration was generated from a library search.

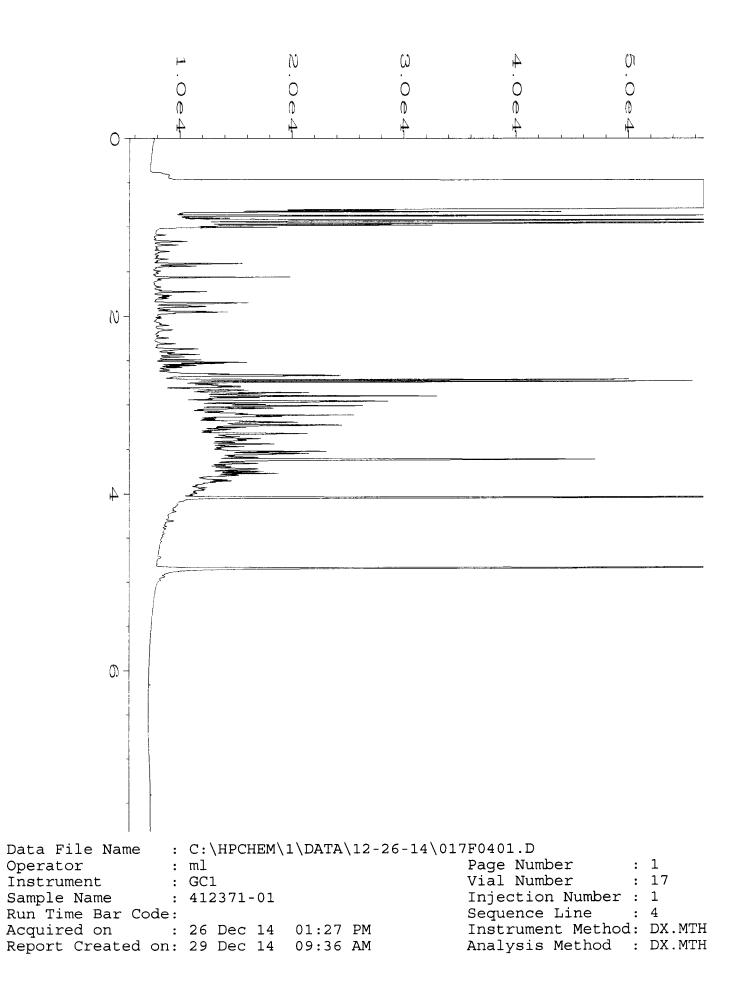

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

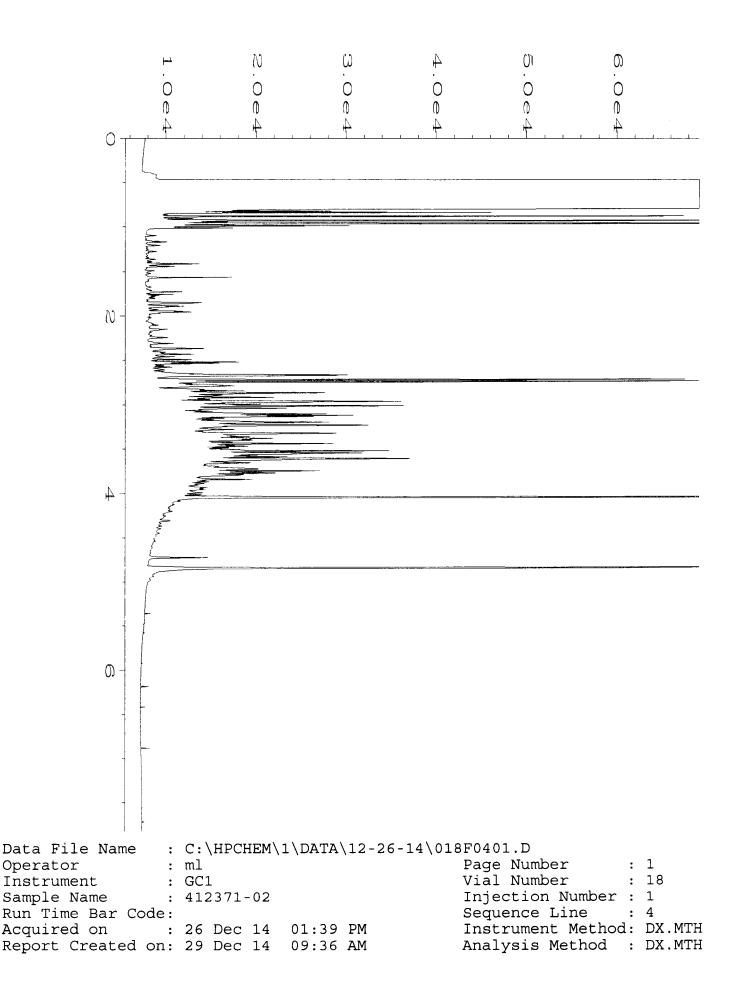

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

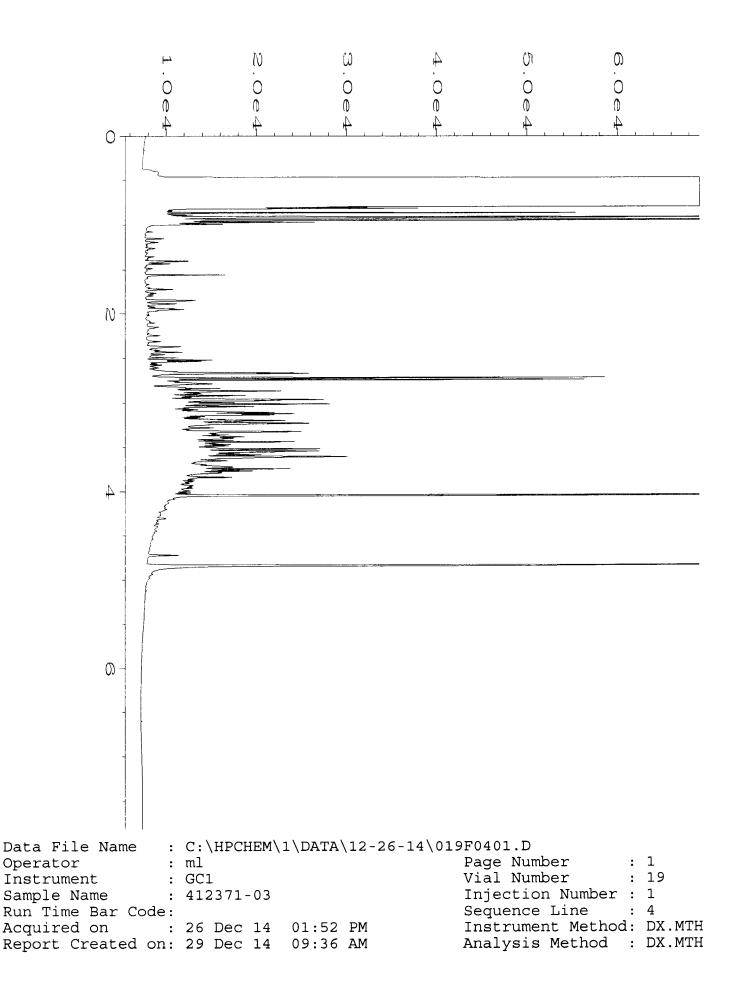

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

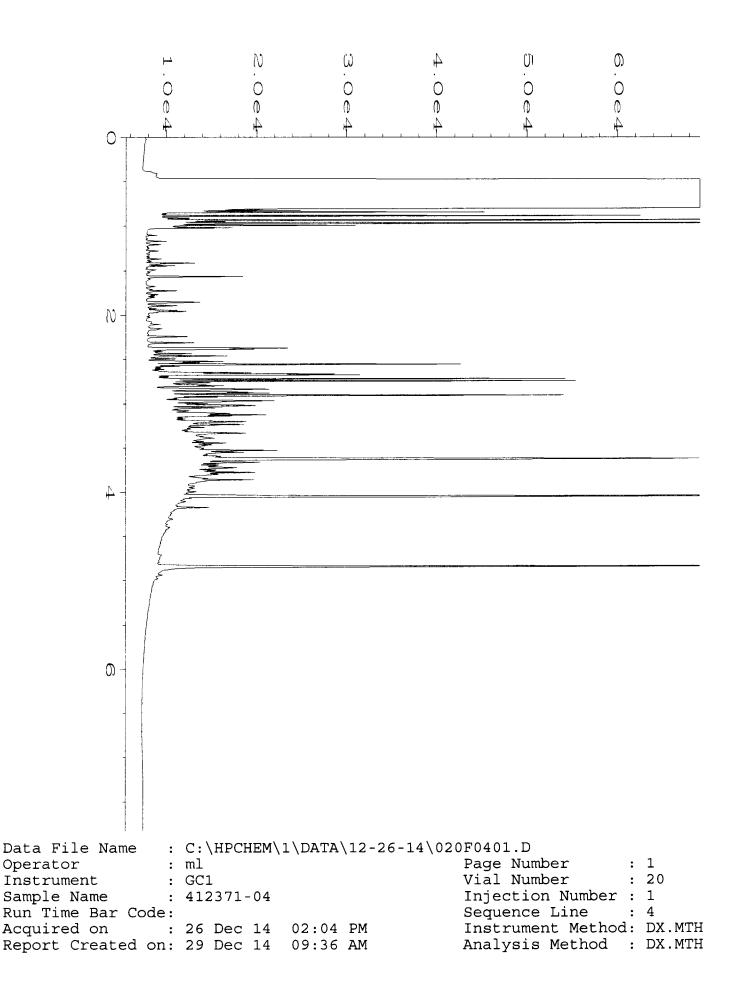

vo - The value reported fell outside the control limits established for this analyte.

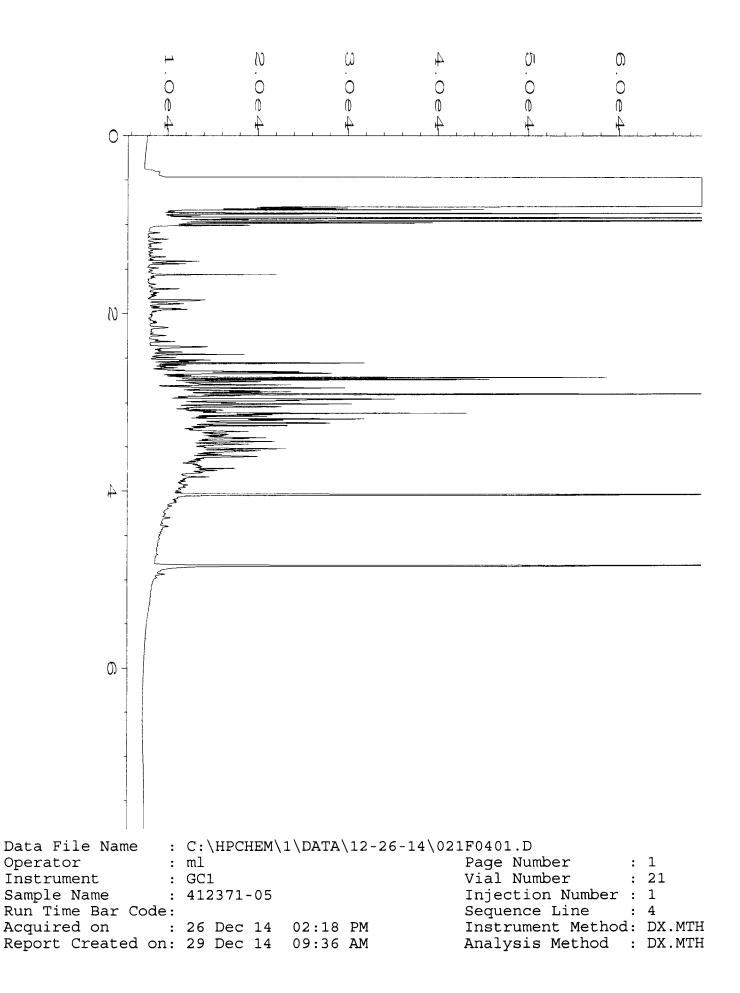

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

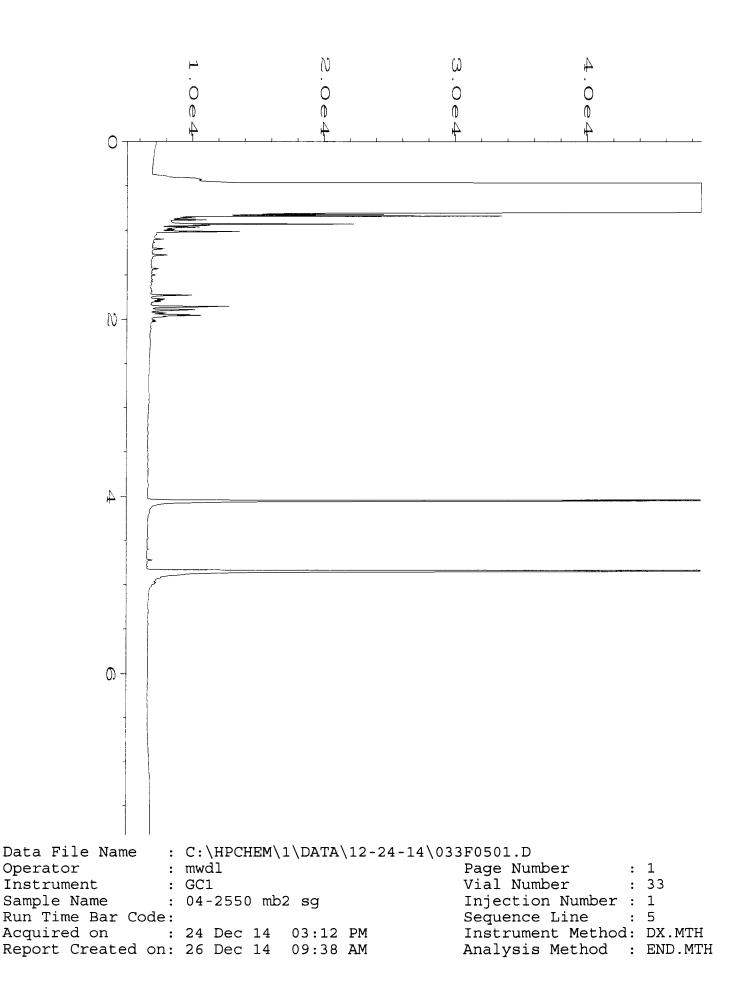


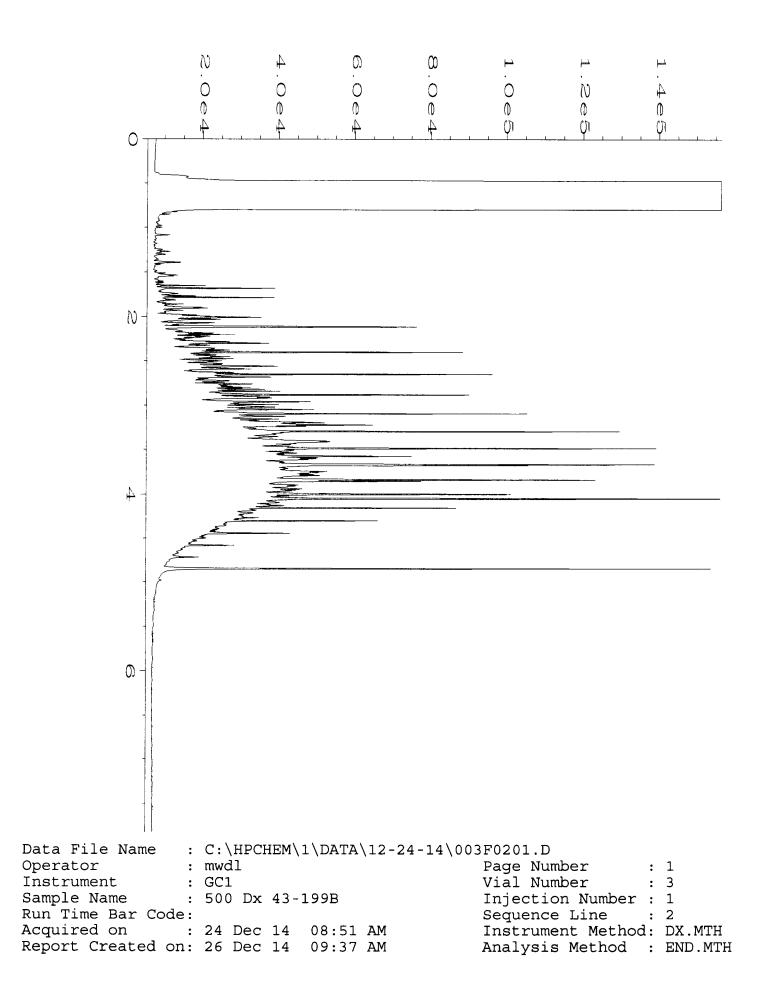












412371			:	SAMPLE	E CHAIN C)F C	CUS	TOD	ŶY		М	Ē	1	2/	26	2/1	'4	AUY
	R.	-		SAM	PLERS (sign	ature	e)				, ((1)-1-1-		of
Send Report To Brett Beaulieu Company Floyd Snider					ECT NAME	/NO					PO# TURNAROUND TIM PO# Standard (2 Weeks) □ RUSH_							
Address 601 Unior			i. tan	- 75'	TL-Long	Uie	しい										s authori	zed by
City, State, ZIP Seattle					ARKS							-		-			PLE DISF	
	· ·														⊐ Disp ⊐ Retu		fter 30 da mples	ys
Phone # <u>206~292-2078</u>	<u>></u> Fax	x #													⊐ Will	l call v	with instr	uctions
		Ţ	r			<u>Г</u> т				1	SES F	REQU	JESTI	ED	r			
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Typ	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	SVOCs hv 8270		Sta Notes	Q <n sm<="" td=""><td></td><td></td><td></td><td></td><td>1</td><td>lotes</td></n>					1	lotes
MW-1-GW-4-14	0/	12/22	1055	GW	t	Х					Ķ			•			Please	only
mw-21-Gw-4-14	02		1100	1	1	X					X							diesel
mw-2-Gw-4-14	03 A C		1125		3.	X					X	X					•	oryanics.
MW-3-GW-4-14	04		1200		i	X					X							t Silico-ge
MW-4-6W-4-14	-		1230	\downarrow	1	X					\checkmark							nont silic
					200	7												inup on
				Re												1	V	mples.
				$\overline{\bigcirc}$	que		\Box		-15	2/			/				Than	. •
							Ī		76	† f	Z	4	7	4				
Friedman & Bruya, Inc.		SIGN	ATURE	1	Pk		NA	ME	- I				MPA	NY	<u> </u>		DATE	TIME
	elinquis	shed by:	4/100								Flo	. 1		id	2 6	12	1721	1556
	eceived		oric	2	Gabrie A.	Poa	m	20	m	-			K	ī. Z	<u> </u>	12/	7 7	4 PM
	elinquis	shed by:	2													1	- / -	
<i>Fax (206) 283-5044</i> R	eceived	l by:		-								Sar	nples	s rec	eive	dat	3 .	

FORMS\COC\C	OC.DOC
-------------	--------

1

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 24, 2015

Brett Beaulieu, Project Manager Floyd-Snider Two Union Square, Suite 600 601 Union St Seattle, WA 98101

Dear Mr. Beaulieu:

Included are the results from the testing of material submitted on March 17, 2015 from the PSTL-Longview, F&BI 503312 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures FDS0324R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 17, 2015 by Friedman & Bruya, Inc. from the Floyd-Snider PSTL-Longview, F&BI 503312 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Floyd-Snider</u>
503312 -01	MW-1-GW-4-14
503312 -02	MW-2-GW-4-14
503312 -03	MW-21-GW-4-14
503312 -04	MW-3-GW-4-14
503312 -05	MW-4-GW-4-14

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 03/24/15 Date Received: 03/17/15 Project: PSTL-Longview, F&BI 503312 Date Extracted: 03/18/15 Date Analyzed: 03/19/15

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL USING METHOD NWTPH-Dx

Surrogate Sample ID Diesel Range (% Recovery) (Limit 47-140) Laboratory ID $(C_{10}-C_{25})$ 350 MW-1-GW-4-14 91 503312-01 MW-2-GW-4-14 390 93 503312-02 MW-21-GW-4-14 390 86 503312-03 MW-3-GW-4-14 310 84 503312-04 460 79 MW-4-GW-4-14 503312-05 Method Blank <50 82 05-551 MB2

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 03/24/15 Date Received: 03/17/15 Project: PSTL-Longview, F&BI 503312

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 503312-02 (Matrix Spike)										
				Percent	Percent					
	Reporting	Spike	Sample	Recovery	Recovery	Accepta	ance	RPD		
Analyte	Units	Level	Result	MS	MSD	Crite	ria	(Limit 20)		
Diesel Extended	ug/L (ppb)	2,500	400	96	96	64-14	41	0		
Laboratory Code:	Laboratory Contr	ol Sampl	e							
			Percent	Percent						
	Reporting	Spike	Recovery	y Recover	y Accept	ance	RF	D		
Analyte	Units	Level	LCS	LCSD	Crite	ria	(Limi	t 20)		
Diesel Extended	ug/L (ppb)	2,500	108	110	63-1-	42	2	2		

3

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

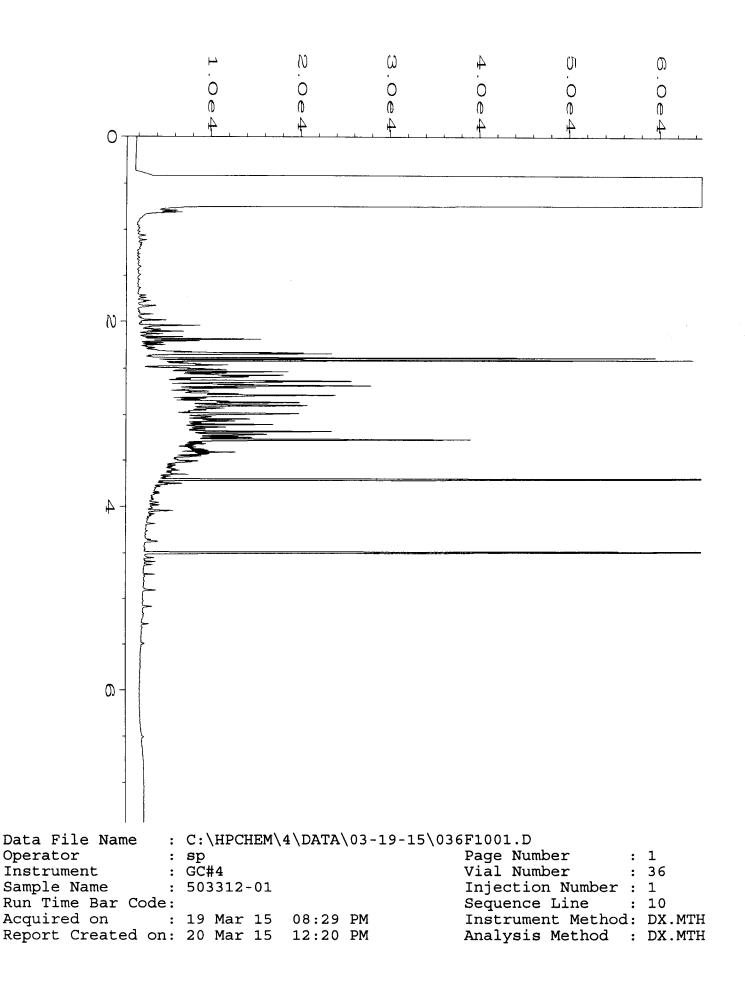
J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

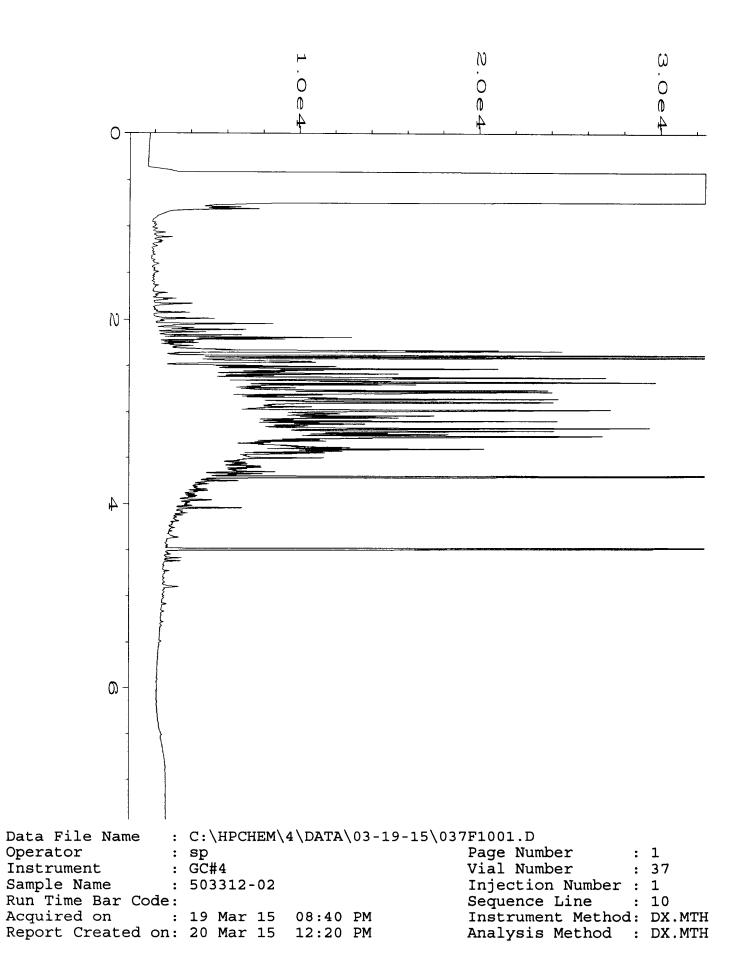
jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

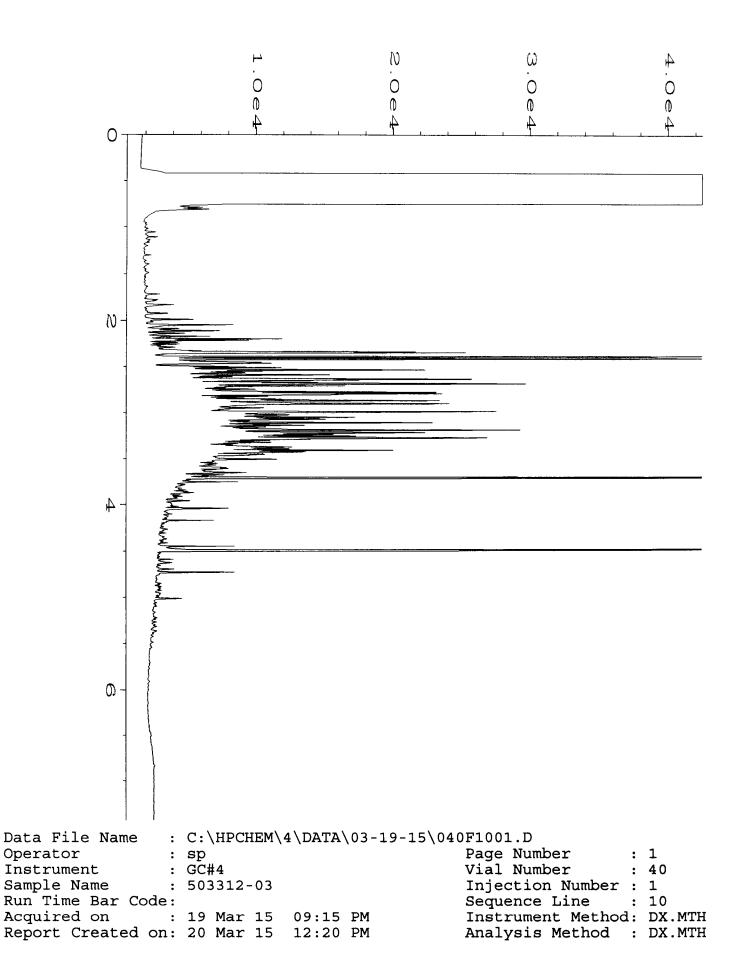
js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

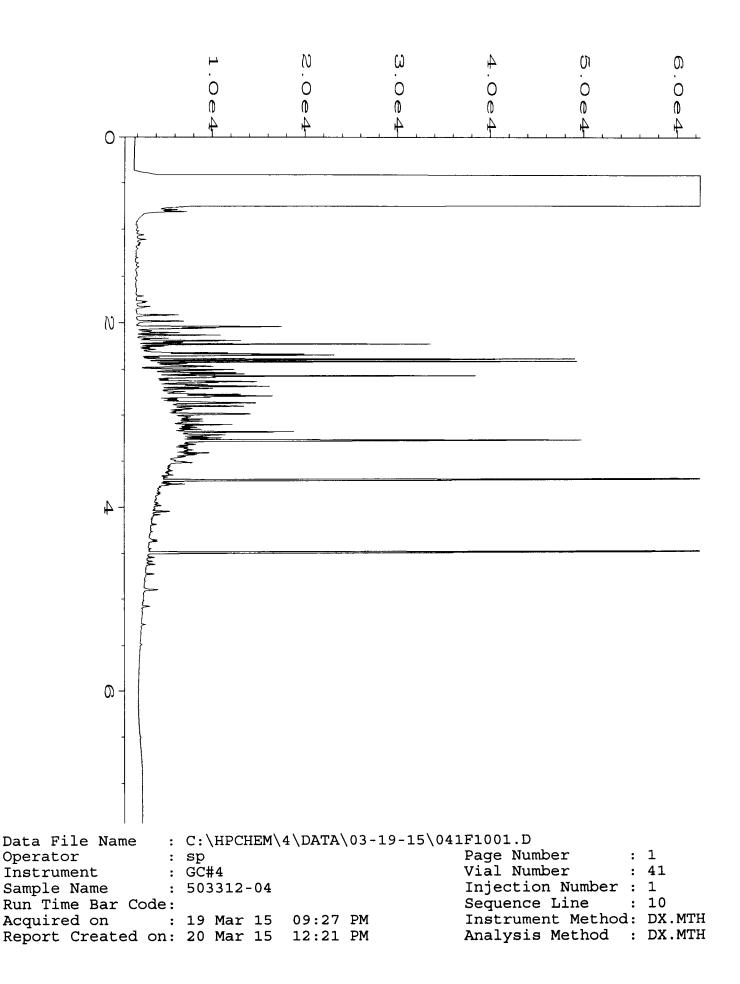
lc - The presence of the analyte is likely due to laboratory contamination.

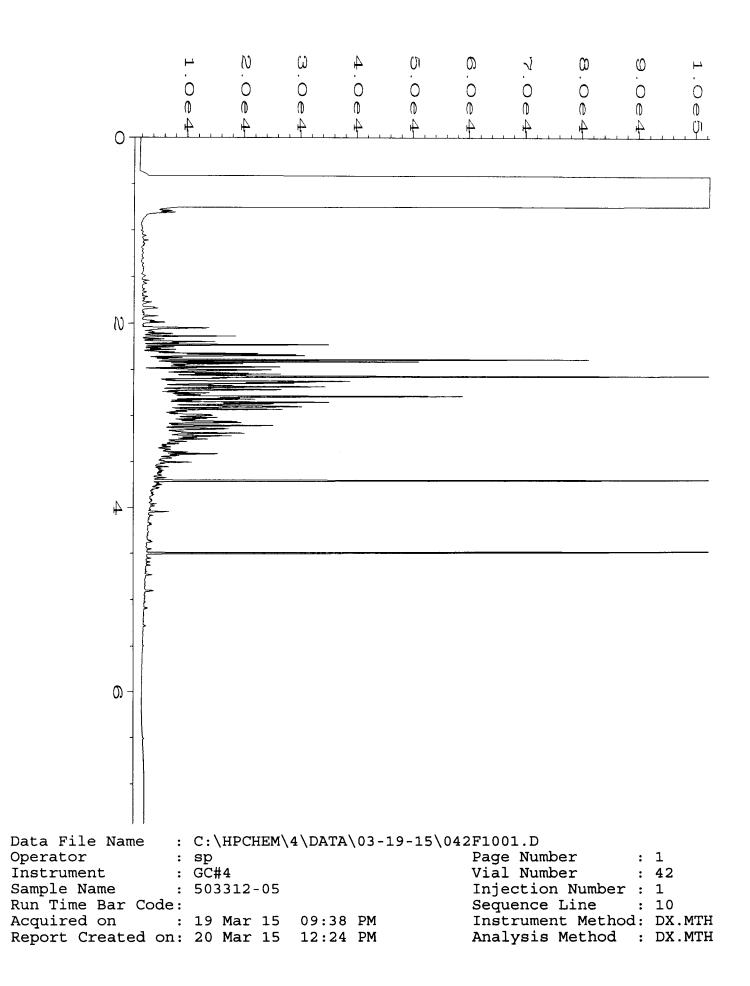
L - The reported concentration was generated from a library search.

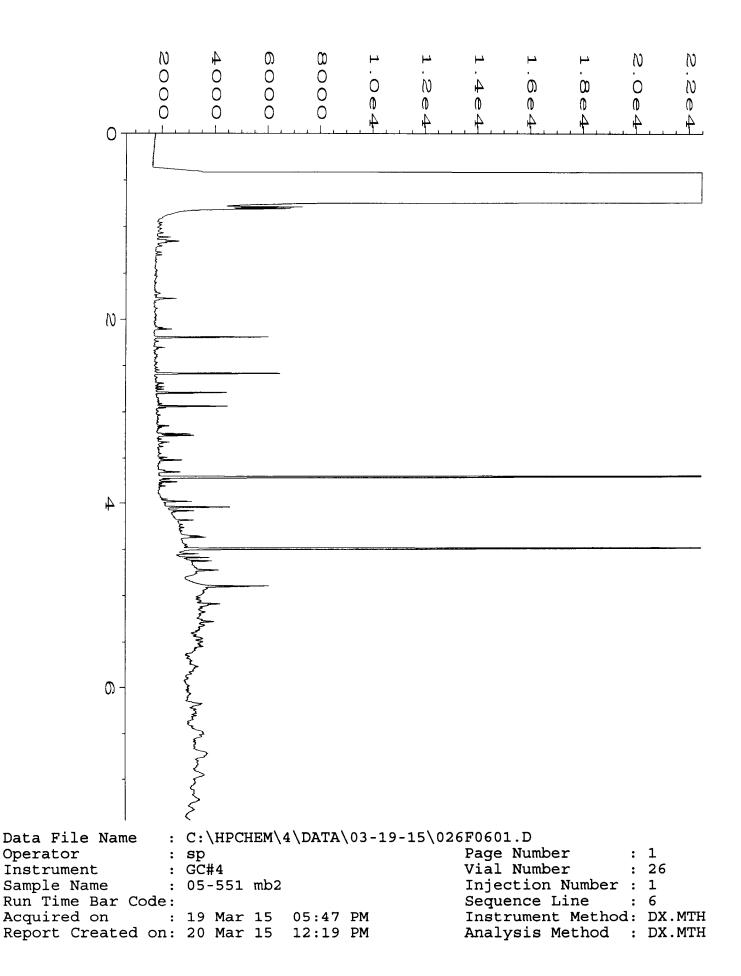

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

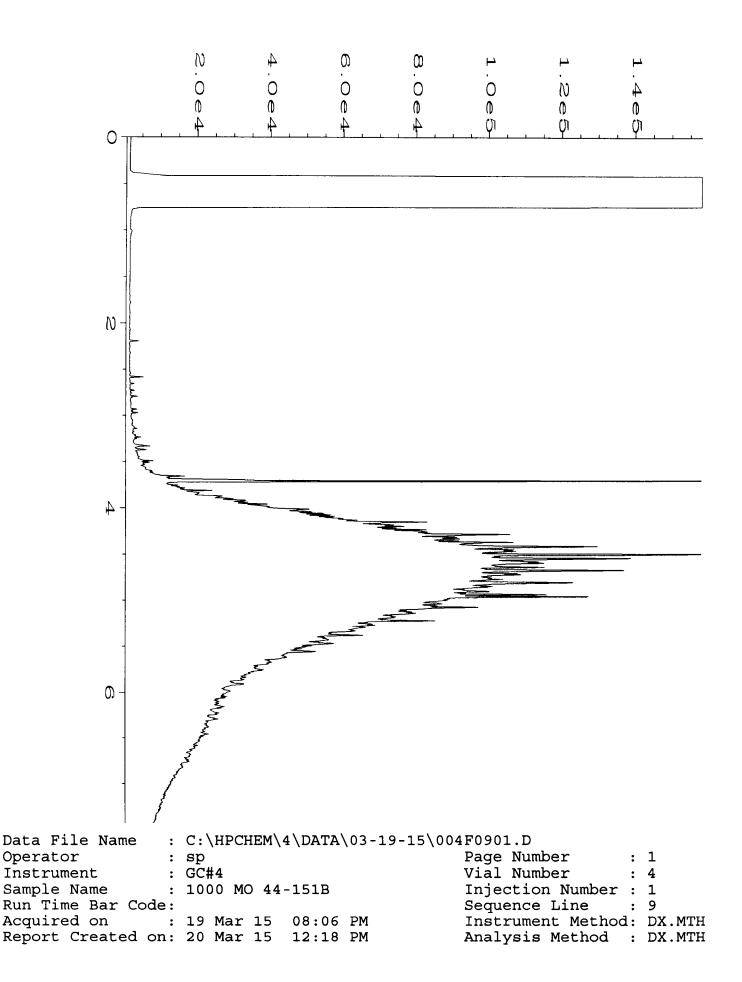

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

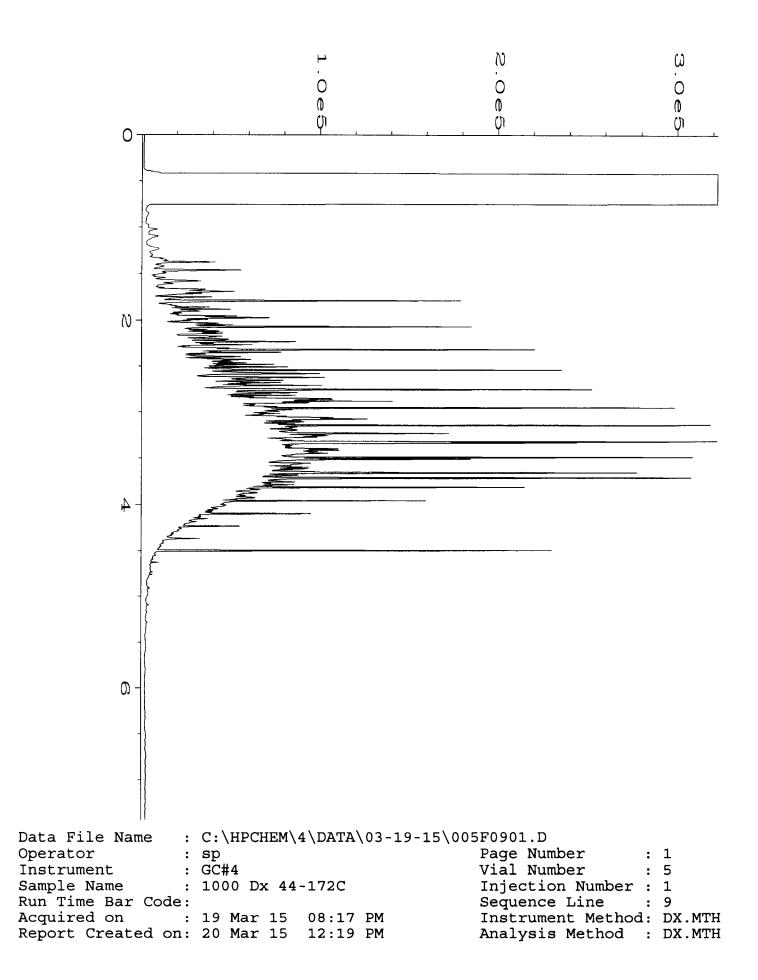

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.


vo - The value reported fell outside the control limits established for this analyte.


x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.







503312/				SAM	IPLE (CHAIN (OF (CUS	бтс	DDY		ME	03.	.17.	15			A05
Send Report To Bre	-Pa	· [·			SAMPL	LERS (sign	natur	Q	ale	ĺ	Z					<u>Р</u>	age #	of AROUND TIME
Company Flord S	aid!	a and the section of			PROJE	CT NAME	E/NC).					PO	#		Star	ndard	(2 Weeks)
Company Floyd (S Address 601 Unic	n St	: Ste	.600	-	l	PSTL-	Lo	лgi	rre	نع						⊐ RUS Rush c		es authorized by
City, State, ZIP Scatt Phone # 206-292-20	tle 1	wA9	8101		REMAI			· i, g				±		· · · · · · · · · · · · · · · · · · ·		∃ Disµ ∃ Retı	pose a urn sa	PLE DISPOSAL after 30 days mples with instructions
				· L							ANTA	i ver	0.0.0				i call	
Sample ID	Lab ID	Date Sampled	Time Sampled	Samı	ole Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by 8260	SVOCs by 8270	HFS	SRE					Notes
MW-1-GW-4-14	01	3/17/15	1005	G	w	l	X											
mw-z-6w-4-14	021-6		1040			3	X											msimsd
MW-21-GW-4-14			1100			1	X											Dup
mw - 3 - Gw - 4 - 14	04		1130			l	X											
mw - 4 - 6w - 4 - 14	०८	\checkmark	iZ40	P	1	1	X											
				S		~ ~			\square						-			* No Silica
				\supset	t	K			$ \downarrow$					_				gel.
											4	+		San	noles	rece	ved	at_ <u>3</u> ℃

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
3012 16th Avenue West	Relinquisted by:	Gabriel Cisneros	Floyd Sich	717/15	1100
Seattle, WA 98119-2029	Received by:		FBB7_	11	1aD
Ph. (206) 285-8282	Relinquished by:		FBBL		161
Fax (206) 283-5044	Received by:				
FORMS\COC\COC.DOC			l l]

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 18, 2015

Brett Beaulieu, Project Manager Floyd-Snider Two Union Square, Suite 600 601 Union St Seattle, WA 98101

Dear Mr. Beaulieu:

Included are the results from the testing of material submitted on June 9, 2015 from the PSTL-Longview, F&BI 506201 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures FDS0618R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 9, 2015 by Friedman & Bruya, Inc. from the Floyd-Snider PSTL-Longview, F&BI 506201 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Floyd-Snider</u>
506201 -01	MW-1-GW-4-14
506201 -02	MW-2-GW-4-14
506201 -03	MW-21-GW-4-14
506201 -04	MW-3-GW-4-14
506201 -05	MW-4-GW-4-14

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/18/15 Date Received: 06/09/15 Project: PSTL-Longview, F&BI 506201 Date Extracted: 06/10/15 Date Analyzed: 06/10/15

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Surrogate <u>(% Recovery)</u> (Limit 47-140)
MW-1-GW-4-14 506201-01	530	110
MW-2-GW-4-14 506201-02	660	109
MW-21-GW-4-14 506201-03	670	111
MW-3-GW-4-14 506201-04	530	108
MW-4-GW-4-14 506201-05	580	105
Method Blank ^{05-1076 MB}	<50	96

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 06/18/15 Date Received: 06/09/15 Project: PSTL-Longview, F&BI 506201

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL USING METHOD NWTPH-Dx

Laboratory Code: 50	6201-02 (Matri	ix Spike)					
				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Diesel	ug/L (ppb)	2,500	660	99 b	129 b	64-141	26 b
Laboratory Code: La	aboratory Conti	rol Sampl	e				
			Percent	Percent			
	Reporting	Spike	Recovery	Recovery	Acceptance	e RPD	
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20	0)
Diesel	ug/L (ppb)	2,500	112	108	61-133	4	

3

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 $\ensuremath{\text{ip}}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

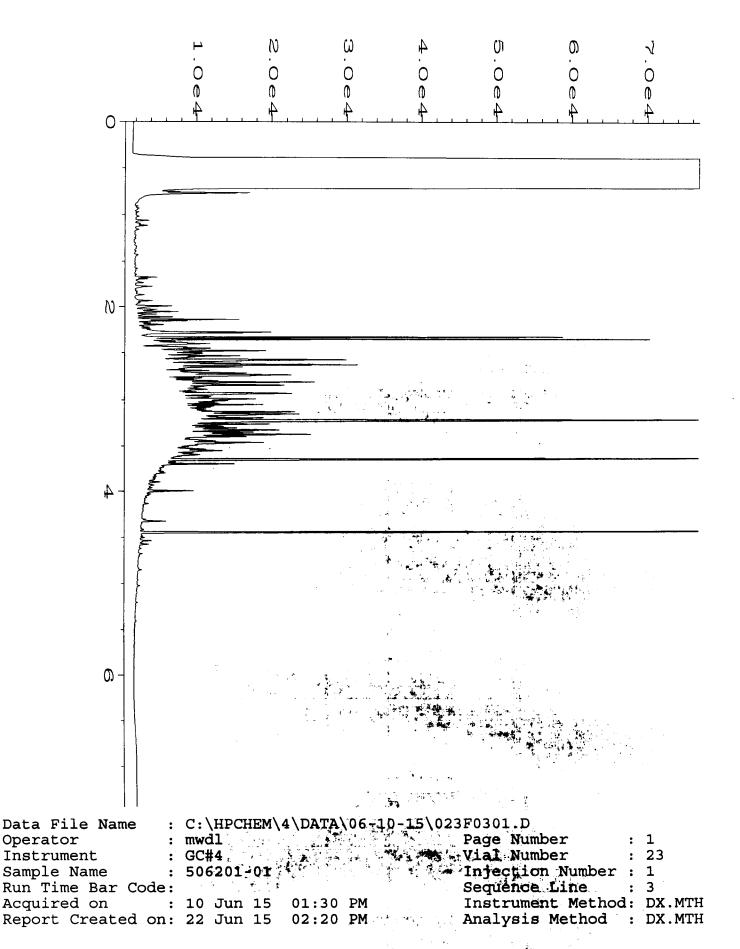
jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

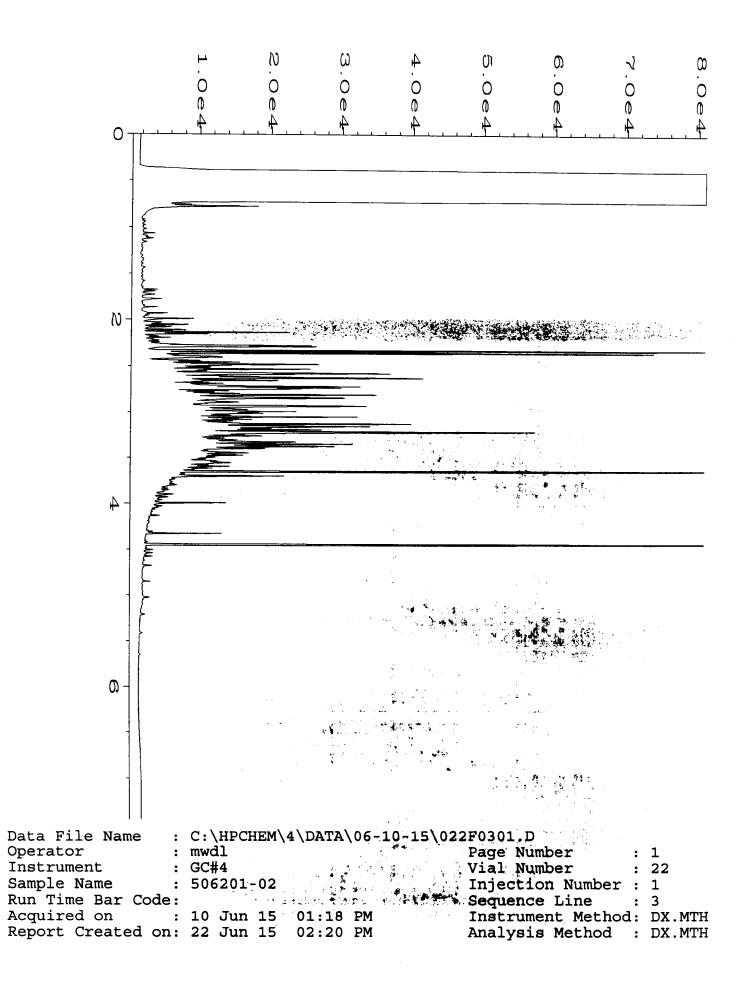
lc - The presence of the analyte is likely due to laboratory contamination.

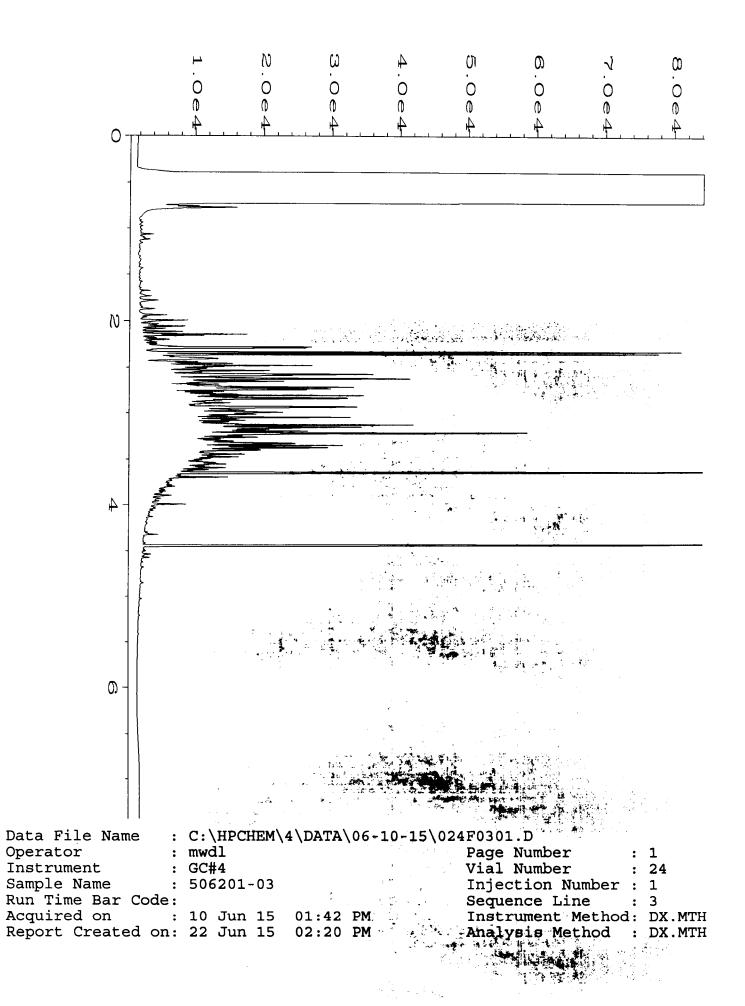
L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

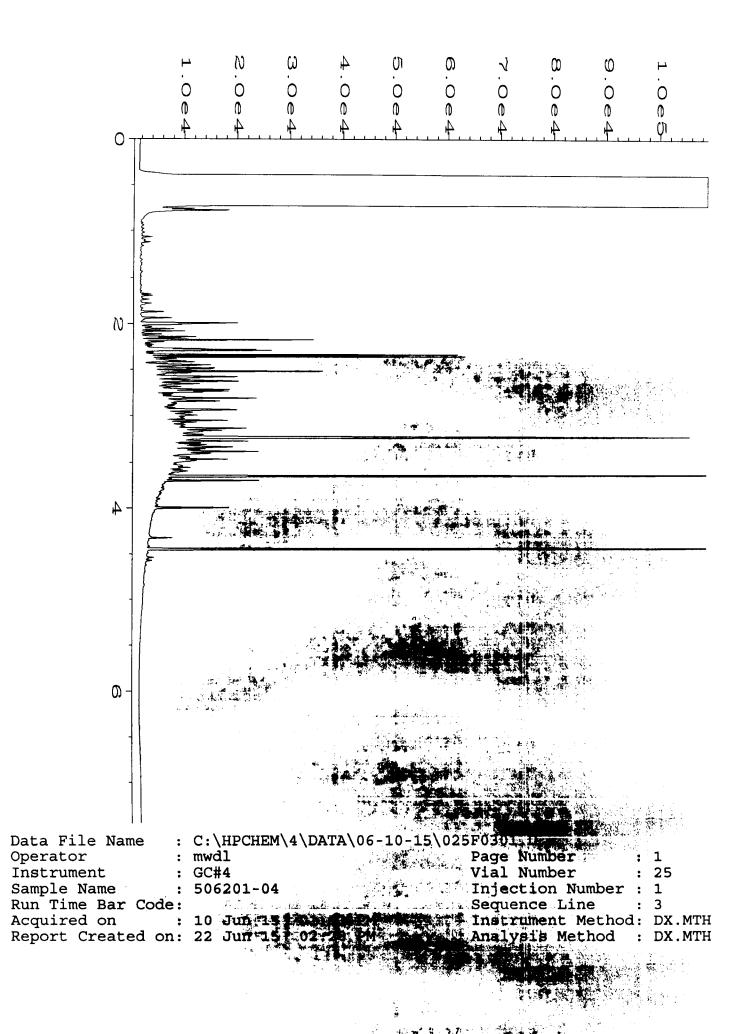

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

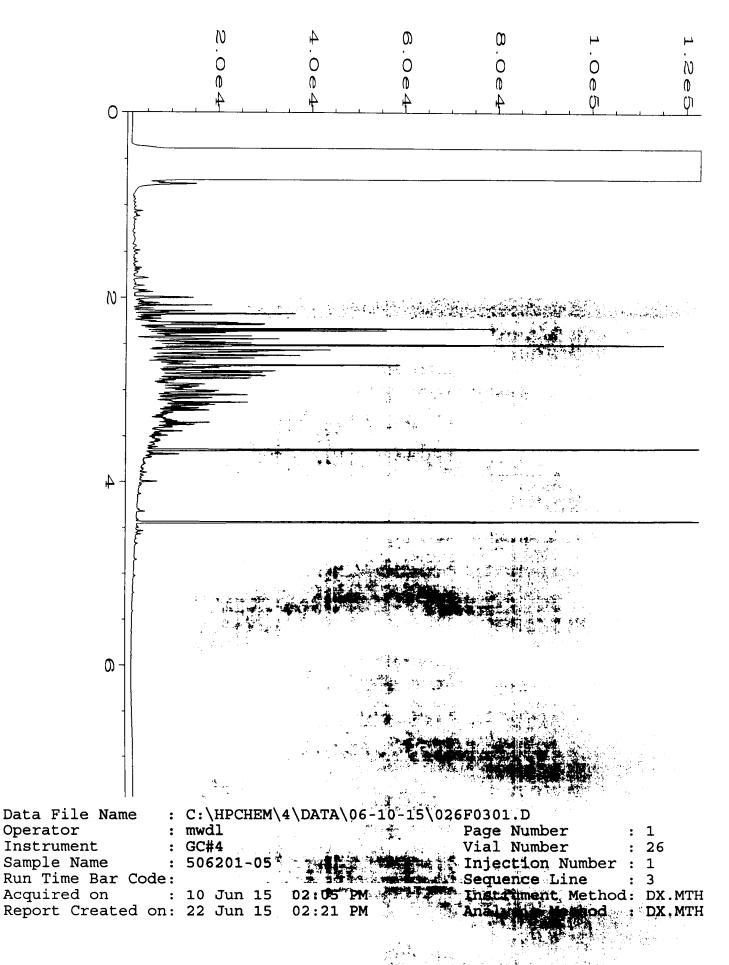
ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

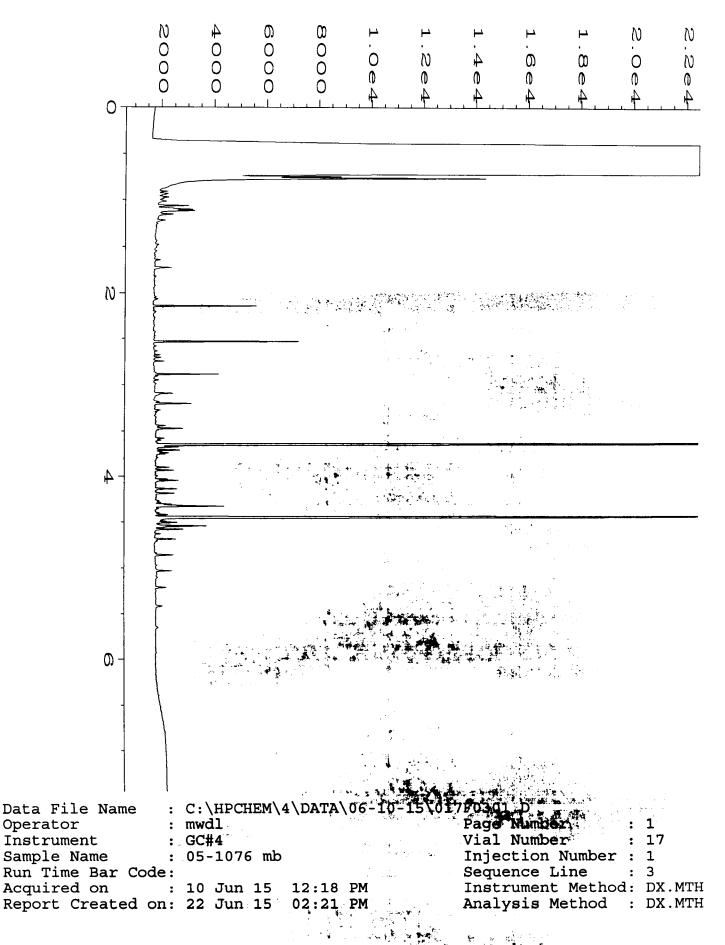

vo - The value reported fell outside the control limits established for this analyte.

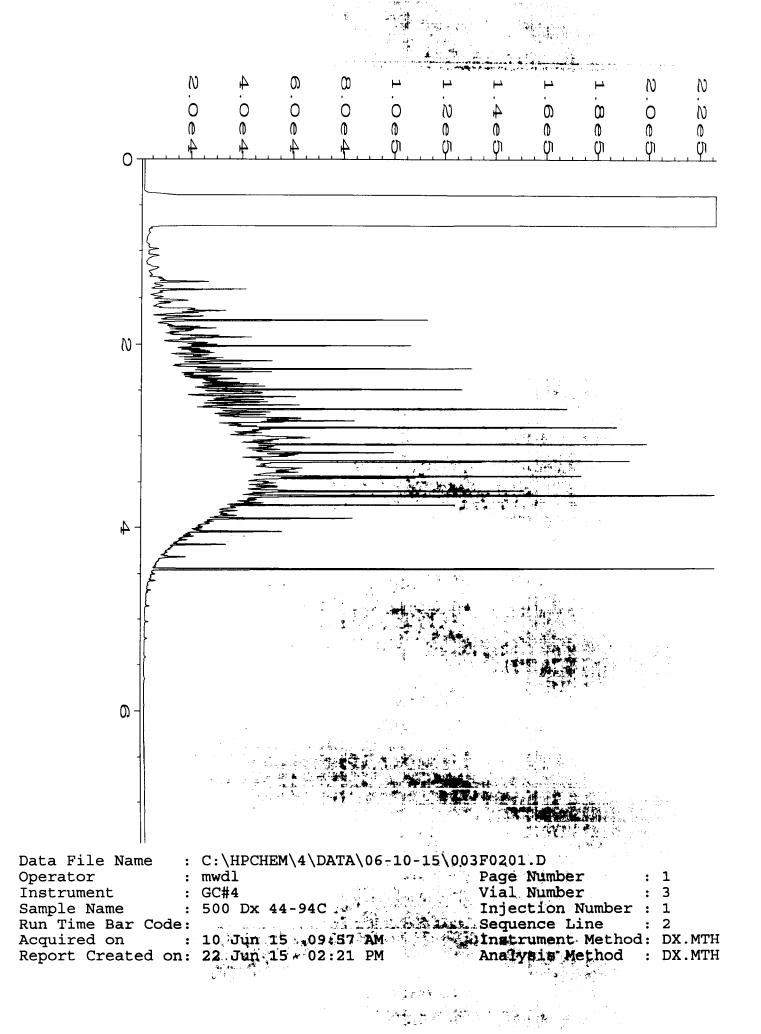

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Send Report To Brett	R	1		SAMPL	ERS (sign	atur	re) ($\overline{\mathbf{O}}$	I.U	Ð,	2	>				Page #		
Company Hoyal Sn				PROJEC	PROJECT NAME/NO. PO#							TURNAROUND TIME Standard (2 Weeks) RUSH						
9	Address 601 Union Street Ste. 600				- Longui	<i>lu</i>											charges authorized by	
City, State, ZIP Seattle, WA 98101			REMA	RKS	<u>د</u>					L			╡╏	SAMPLE DISPOSAL				
Phone # <u>206-292-20</u>	•		·												🗆 Ret	turn s	amples with instructions	
		<u>г</u>								ANA	LYSE	ES RE	QUES	STED		·		
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by8260	SVOCs by 8270	HFS						Notes	
MW-1-GW-4-14	01	69/15	0950	GW		Х												
mw-z-Gw-4-14	02A-		1625	1	3,	Х											mslmsD	
MW-21-GW-4-14	03		1100		1	X											Dup	
MW-3-GW-4-14	04		1110		1	Х												
MW-4-GW-4-14	05		1150	\bigvee		X							-					
	<u> </u>												8		144 J.	eotre	sat 4.8 °C	
								1										
					T	7	A			Ţ							* No Sili	
							-	9		4	\uparrow	$\overline{\mathcal{A}}$			1.		Gel	
	•		-								Ŧ	Ŧ	7		$\overline{\mathbf{L}}$		Sel	
Friedman & Bruya, Inc.		SIGN	ATURE /		PR	INT	'NA	ME		*			COMI	PANY		\geq	DATE TIM	
	Relinquis			- (GAbore	16	is.	eros	\$		Ŧ	For	IT	nid	1	6	ais 153	
	Received	C++		- E	Pro C	Æ)vr	r	\sim			Ţ	-	$-\mathcal{A}$	>	6	9/15 133	
	Relinquis Received					Ľ						(Γ.		1		




.




Ý

ri.

. مرتب بر الم · · · · ·

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Kurt Johnson, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 14, 2014

Brett Beaulieu, Project Manager Floyd/Snider Two Union Square, Suite 600 601 Union St Seattle, WA 98101

Dear Mr. Beaulieu:

Included are the results from the testing of material submitted on June 25, 2014 from the PSTL-Longview, F&BI 406442 project. There are 17 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cali

Michael Erdahl Project Manager

Enclosures FDS0714R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 25, 2014 by Friedman & Bruya, Inc. from the Floyd/Snider PSTL-Longview, F&BI 406442 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Floyd/Snider</u>
406442 -01	MW-1-GW-4-14'
406442 -02	MW-2-GW-4-14'
406442 -03	MW-21-GW-4-14'
406442 -04	MW-3-GW-4-14'
406442 -05	MW-4-GW-4-14'

The samples were sent to Fremont for EPH analysis. Review of the enclosed report indicates that all quality assurance were acceptable.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 07/14/14 Date Received: 06/25/14 Project: PSTL-Longview, F&BI 406442 Date Extracted: 06/26/14 Date Analyzed: 07/07/14 and 07/08/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW-1-GW-4-14' 406442-01	210	<250	82
MW-2-GW-4-14' 406442-02	350	<250	80
MW-21-GW-4-14' 406442-03	270	<250	68
MW-3-GW-4-14' 406442-04	170	<250	73
MW-4-GW-4-14' 406442-05	360	<250	81
Method Blank ^{04-1317 MB}	<50	<250	83

ENVIRONMENTAL CHEMISTS

Date of Report: 07/14/14 Date Received: 06/25/14 Project: PSTL-Longview, F&BI 406442 Date Extracted: 06/26/14 Date Analyzed: 06/30/14

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW-1-GW-4-14' 406442-01	390 x	<250	90
MW-2-GW-4-14' 406442-02	540 x	<250	84
MW-21-GW-4-14' 406442-03	540 x	<250	88
MW-3-GW-4-14' 406442-04	470 x	<250	91
MW-4-GW-4-14' 406442-05	560 x	<250	96
Method Blank ^{04-1317 MB}	<50	<250	94

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-2-GW- 06/25/14 07/02/14 07/02/14 Water ug/L (ppb)	4-14'	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd/Snider PSTL-Longview, F&BI 406442 406442-02 070212.D GCMS4 VM
			Lower	Upper
Surrogates:		% Recovery:	Limit:	Limit:
1,2-Dichloroethane	-d4	102	57	121
Toluene-d8		99	63	127
4-Bromofluorobenz	ene	97	60	133
		Concentration		
Compounds:		ug/L (ppb)		
Toluene		<1		
Ethylbenzene		<1		
m,p-Xylene		<2		
o-Xylene		<1		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-4-GW- 06/25/14 07/02/14 07/02/14 Water ug/L (ppb)	4-14'	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd/Snider PSTL-Longview, F&BI 406442 406442-05 070214.D GCMS4 VM
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 103 100 100	Lower Limit: 57 63 60	Upper Limit: 121 127 133
Compounds: Toluene		Concentration ug/L (ppb) <1		
Ethylbenzene m,p-Xylene o-Xylene		<1 <2 <1		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 07/02/14 07/02/14 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd/Snider PSTL-Longview, F&BI 406442 04-1357 mb 070207.D GCMS4 VM
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 103 102 99	Lower Limit: 57 63 60	Upper Limit: 121 127 133
Compounds: Toluene Ethylbenzene m,p-Xylene o-Xylene		Concentration ug/L (ppb) <1 <1 <1 <2 <1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-1-GW- 06/25/14 06/26/14 06/27/14 Water ug/L (ppb)	4-14'	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd/Snider PSTL-Longview, F&BI 406442 406442-01 1/2 062729.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 85 102	Lower Limit: 50 50	Upper Limit: 150 129
Compounds:		Concentration ug/L (ppb)		
Naphthalene		< 0.1		
2-Methylnaphthale	ene	< 0.1		
1-Methylnaphthale	ene	< 0.1		
Benz(a)anthracene		< 0.1		
Chrysene		< 0.1		
Benzo(a)pyrene		< 0.1		
Benzo(b)fluoranthe	ene	< 0.1		
Benzo(k)fluoranthe	ene	< 0.1		
Indeno(1,2,3-cd)pyr	rene	< 0.1		
Dibenz(a,h)anthrac	cene	< 0.1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-2-GW-4 06/25/14 06/26/14 06/28/14 Water ug/L (ppb)	4-14'	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd/Snider PSTL-Longview, F&BI 406442 406442-02 1/2 062734.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 88 99	Lower Limit: 50 50	Upper Limit: 150 129
Compounds:		Concentration ug/L (ppb)		
Naphthalene		< 0.1		
2-Methylnaphthale	ene	< 0.1		
1-Methylnaphthale	ene	< 0.1		
Benz(a)anthracene		< 0.1		
Chrysene		< 0.1		
Benzo(a)pyrene		< 0.1		
Benzo(b)fluoranthe	ene	< 0.1		
Benzo(k)fluoranthe	ene	< 0.1		
Indeno(1,2,3-cd)pyr	rene	< 0.1		
Dibenz(a,h)anthrac	cene	< 0.1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-21-GW 06/25/14 06/26/14 06/28/14 Water ug/L (ppb)	-4-14'	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd/Snider PSTL-Longview, F&BI 406442 406442-03 1/2 062735.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 87 97	Lower Limit: 50 50	Upper Limit: 150 129
Compounds:		Concentration ug/L (ppb)		
Naphthalene		< 0.1		
2-Methylnaphthale	ene	< 0.1		
1-Methylnaphthale	ene	0.11		
Benz(a)anthracene		< 0.1		
Chrysene		< 0.1		
Benzo(a)pyrene		< 0.1		
Benzo(b)fluoranthe	ene	< 0.1		
Benzo(k)fluoranthe	ene	< 0.1		
Indeno(1,2,3-cd)pyr	rene	< 0.1		
Dibenz(a,h)anthrac	cene	< 0.1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-3-GW- 06/25/14 06/26/14 06/27/14 Water ug/L (ppb)	4-14'	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd/Snider PSTL-Longview, F&BI 406442 406442-04 1/2 062730.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 86 103	Lower Limit: 50 50	Upper Limit: 150 129
Compounds:		Concentration ug/L (ppb)		
Naphthalene		< 0.1		
2-Methylnaphthale	ene	< 0.1		
1-Methylnaphthale	ene	< 0.1		
Benz(a)anthracene		< 0.1		
Chrysene		< 0.1		
Benzo(a)pyrene		< 0.1		
Benzo(b)fluoranthe	ene	< 0.1		
Benzo(k)fluoranthe	ene	< 0.1		
Indeno(1,2,3-cd)pyr	rene	< 0.1		
Dibenz(a,h)anthrac	cene	< 0.1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-4-GW-4 06/25/14 06/26/14 06/27/14 Water ug/L (ppb)	4-14'	Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd/Snider PSTL-Longview, F&BI 406442 406442-05 1/2 062731.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 87 107	Lower Limit: 50 50	Upper Limit: 150 129
Compounds:		Concentration ug/L (ppb)		
Naphthalene		< 0.1		
2-Methylnaphthale	ene	< 0.1		
1-Methylnaphthale	ene	< 0.1		
Benz(a)anthracene		< 0.1		
Chrysene		< 0.1		
Benzo(a)pyrene		< 0.1		
Benzo(b)fluoranthe	ene	< 0.1		
Benzo(k)fluoranthe	ene	< 0.1		
Indeno(1,2,3-cd)pyr	rene	< 0.1		
Dibenz(a,h)anthrac	cene	< 0.1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 06/26/14 06/27/14 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Floyd/Snider PSTL-Longview, F&BI 406442 04-1315 mb 1/2 062726A.D GCMS6 ya
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 88 104	Lower Limit: 50 50	Upper Limit: 150 129
Compounds:		Concentration ug/L (ppb)		
Naphthalene		< 0.1		
2-Methylnaphthale	ene	< 0.1		
1-Methylnaphthale	ene	< 0.1		
Benz(a)anthracene		< 0.1		
Chrysene		< 0.1		
Benzo(a)pyrene		< 0.1		
Benzo(b)fluoranthe	ene	< 0.1		
Benzo(k)fluoranthe	ene	< 0.1		
Indeno(1,2,3-cd)pyr	rene	< 0.1		
Dibenz(a,h)anthrac	cene	< 0.1		

ENVIRONMENTAL CHEMISTS

Date of Report: 07/14/14 Date Received: 06/25/14 Project: PSTL-Longview, F&BI 406442

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	406442-05 (Matri	x Spike)	Silica Gel					
				Percent	Percent			
	Reporting	Spike	Sample	Recovery	Recovery	Accept	tance	RPD
Analyte	Units	Level	Result	MS	MSD	Crite	eria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	350	108	99	50-1	50	9
Laboratory Code:	Laboratory Contr	ol Sampl	e Silica Gel	l				
			Percent	Percent	t			
	Reporting	Spike	Recovery	Recover	y Accepta	ance	RPI)
Analyte	Units	Level	LCS	LCSD	Criter	ria	(Limit	20)
Diesel Extended	ug/L (ppb)	2,500	94	93	63-14	12	1	

ENVIRONMENTAL CHEMISTS

Date of Report: 07/14/14 Date Received: 06/25/14 Project: PSTL-Longview, F&BI 406442

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	406442-05 (Matri	x Spike)						
				Percent	Percent			
	Reporting	Spike	Sample	Recovery	Recovery	Accep	otance	RPD
Analyte	Units	Level	Result	MS	MSD	Cri	teria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	570	116	110	50-	150	5
Laboratory Code:	Laboratory Contr	ol Sampl	e					
5	5	1	Percent	Percent	t			
	Reporting	Spike	Recovery	Recover	y Accepta	ance	RPI)
Analyte	Units	Level	LCS	LCSD	Criter	ria	(Limit	20)
Diesel Extended	ug/L (ppb)	2,500	105	106	63-14	2	1	

14

ENVIRONMENTAL CHEMISTS

Date of Report: 07/14/14 Date Received: 06/25/14 Project: PSTL-Longview, F&BI 406442

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 406442-05 (Matrix Spike)

у У	1			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Toluene	ug/L (ppb)	50	<1	93	76-122
Ethylbenzene	ug/L (ppb)	50	<1	94	69-135
m,p-Xylene	ug/L (ppb)	100	<2	95	69-135
o-Xylene	ug/L (ppb)	50	<1	98	60-140

Laboratory Code: Laboratory Control Sample

	r		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Toluene	ug/L (ppb)	50	94	96	72-122	2
Ethylbenzene	ug/L (ppb)	50	95	97	77-124	2
m,p-Xylene	ug/L (ppb)	100	97	98	83-125	1
o-Xylene	ug/L (ppb)	50	101	103	81-121	2

ENVIRONMENTAL CHEMISTS

Date of Report: 07/14/14 Date Received: 06/25/14 Project: PSTL-Longview, F&BI 406442

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PNA'S BY EPA METHOD 8270D SIM

Laboratory Code: 406442-05 1/2 (Matrix Spike) 1/2

Laboratory Couc. 400442		- 1 - 7	Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	1	<0.1	96	111	23-153	14
2-Methylnaphthalene	ug/L (ppb)	1	< 0.1	91	91	48-124	0
1-Methylnaphthalene	ug/L (ppb)	1	<0.1	99	100	10-214	1
Benz(a)anthracene	ug/L (ppb)	1	< 0.1	86	89	60-93	3
Chrysene	ug/L (ppb)	1	<0.1	92	93	60-102	1
Benzo(b)fluoranthene	ug/L (ppb)	1	<0.1	89	95 vo	62-91	7
Benzo(k)fluoranthene	ug/L (ppb)	1	<0.1	87	85	51-98	2
Benzo(a)pyrene	ug/L (ppb)	1	<0.1	86	94 vo	60-86	9
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	1	< 0.1	83	101 vo	10-98	20
Dibenz(a,h)anthracene	ug/L (ppb)	1	<0.1	78	75	10-97	4

Laboratory Code: Laboratory Control Sample

	9 001101 01 201	1	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	1	83	83	67-116	0
2-Methylnaphthalene	ug/L (ppb)	1	88	87	63-122	1
1-Methylnaphthalene	ug/L (ppb)	1	88	87	65-122	1
Benz(a)anthracene	ug/L (ppb)	1	83	85	60-118	2
Chrysene	ug/L (ppb)	1	91	94	66-125	3
Benzo(b)fluoranthene	ug/L (ppb)	1	90	94	55-135	4
Benzo(k)fluoranthene	ug/L (ppb)	1	88	92	62-125	4
Benzo(a)pyrene	ug/L (ppb)	1	86	88	58-127	2
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	1	90	94	36-142	4
Dibenz(a,h)anthracene	ug/L (ppb)	1	84	86	37-133	2

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 406442 Lab ID: 1406255

July 10, 2014

Attention Michael Erdahl:

Fremont Analytical, Inc. received 5 sample(s) on 6/25/2014 for the analyses presented in the following report.

Extractable Petroleum Hydrocarbons by NWEPH

This report consists of the following:

- Case Narrative

- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

MGR

Michael Dee Sr. Chemist / Principal

Friedman & Bruya 406442 1406255	Work Order Sample Summary	
Client Sample ID	Date/Time Collected	Date/Time Received
MW-1-GW-4-14'	06/24/2014 12:18 PM	06/25/2014 12:02 PM
MW-2-GW-4-14'	06/24/2014 1:00 PM	06/25/2014 12:02 PM
MW-21-GW-4-14'	06/24/2014 11:25 AM	06/25/2014 12:02 PM
MW-3-GW-4-14'	06/24/2014 1:55 PM	06/25/2014 12:02 PM
MW-4-GW-4-14'	06/24/2014 2:40 PM	06/25/2014 12:02 PM
	406442 1406255 Client Sample ID MW-1-GW-4-14' MW-2-GW-4-14' MW-21-GW-4-14' MW-3-GW-4-14'	406442 1406255 Client Sample ID Date/Time Collected MW-1-GW-4-14' 06/24/2014 12:18 PM MW-2-GW-4-14' 06/24/2014 1:00 PM MW-21-GW-4-14' 06/24/2014 1:25 AM MW-3-GW-4-14' 06/24/2014 11:25 AM MW-3-GW-4-14' 06/24/2014 1:55 PM

Case Narrative WO#: 1406255 Date: 7/10/2014

Friedman & Bruya

Project: 406442

I. SAMPLE RECEIPT:

CLIENT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

WO#: **1406255** Date Reported: **7/10/2014**

Client: Friedman & Bruya			(Collection	n Date: 6/2	24/2014 12:18:00 PM
Project: 406442 Lab ID: 1406255-001	4			Matrix: G	roundwate	er
Client Sample ID: MW-1-GW-4-1 Analyses	4 [.] Result	RL	Qual	Units	DF	Date Analyzed
			4			
Extractable Petroleum Hydroca	rbons by NWEF	<u>2H</u>		Bato	h ID: 7964	Analyst: EC
Aliphatic Hydrocarbon (C10-C12)	15.9	0.0200		µg/L	1	7/2/2014 5:20:00 AM
Aliphatic Hydrocarbon (C12-C16)	27.3	0.0200		µg/L	1	7/2/2014 5:20:00 AM
Aliphatic Hydrocarbon (C16-C21)	23.5	0.0200		µg/L	1	7/2/2014 5:20:00 AM
Aliphatic Hydrocarbon (C21-C34)	47.6	0.0200		µg/L	1	7/2/2014 5:20:00 AM
Aliphatic Hydrocarbon (C8-C10)	71.1	0.0200		µg/L	1	7/2/2014 5:20:00 AM
Aromatic Hydrocarbon (C10-C12)	ND	0.0200		µg/L	1	7/2/2014 2:54:00 PM
Aromatic Hydrocarbon (C12-C16)	109	0.0200		µg/L	1	7/2/2014 2:54:00 PM
Aromatic Hydrocarbon (C16-C21)	8.66	0.0200		µg/L	1	7/2/2014 2:54:00 PM
Aromatic Hydrocarbon (C21-C34)	ND	0.0200		µg/L	1	7/2/2014 2:54:00 PM
Aromatic Hydrocarbon (C8-C10)	ND	0.0200		µg/L	1	7/2/2014 2:54:00 PM
Surr: 1-Chlorooctadecane	34.6	65-140	S	%REC	1	7/2/2014 5:20:00 AM
Surr: o-Terphenyl	94.1	65-140		%REC	1	7/2/2014 2:54:00 PM
NOTES:						

Low Recovery for Surrogate 1-Chlorooctadecane.

Qualifiers:

В

Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1406255** Date Reported: **7/10/2014**

Client: Friedman & Bruya			(Collectior	Date: 6/2	24/2014 1:00:00 PM
Project: 406442 Lab ID: 1406255-002				Matrix: G	roundwate	er
Client Sample ID: MW-2-GW-4-14'						
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Extractable Petroleum Hydrocarbo	ons by NWEP	<u>2H</u>		Bato	h ID: 7964	Analyst: EC
Aliphatic Hydrocarbon (C10-C12)	18.4	0.0200		µg/L	1	7/2/2014 6:04:00 AM
Aliphatic Hydrocarbon (C12-C16)	36.2	0.0200		µg/L	1	7/2/2014 6:04:00 AM
Aliphatic Hydrocarbon (C16-C21)	28.7	0.0200		µg/L	1	7/2/2014 6:04:00 AM
Aliphatic Hydrocarbon (C21-C34)	34.8	0.0200		µg/L	1	7/2/2014 6:04:00 AM
Aliphatic Hydrocarbon (C8-C10)	74.7	0.0200		µg/L	1	7/2/2014 6:04:00 AM
Aromatic Hydrocarbon (C10-C12)	ND	0.0200		µg/L	1	7/2/2014 3:41:00 PM
Aromatic Hydrocarbon (C12-C16)	146	0.0200		µg/L	1	7/2/2014 3:41:00 PM
Aromatic Hydrocarbon (C16-C21)	35.9	0.0200		µg/L	1	7/2/2014 3:41:00 PM
Aromatic Hydrocarbon (C21-C34)	ND	0.0200		µg/L	1	7/2/2014 3:41:00 PM
Aromatic Hydrocarbon (C8-C10)	ND	0.0200		µg/L	1	7/2/2014 3:41:00 PM
Surr: 1-Chlorooctadecane	68.3	65-140		%REC	1	7/2/2014 6:04:00 AM
Surr: o-Terphenyl	108	65-140		%REC	1	7/2/2014 3:41:00 PM

Qualifiers:

В

Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

WO#: **1406255** Date Reported: **7/10/2014**

Client: Friedman & Bruya Project: 406442				Collectior	n Date: 6/2	24/2014 11:25:00 AM
Lab ID: 1406255-003				Matrix: G	roundwate	er
Client Sample ID: MW-21-GW-4-14						
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Extractable Petroleum Hydrocarb	ons by NWEF	<u>'H</u>		Bato	h ID: 7964	Analyst: EC
Aliphatic Hydrocarbon (C10-C12)	32.2	0.0200		µg/L	1	7/2/2014 6:49:00 AM
Aliphatic Hydrocarbon (C12-C16)	58.9	0.0200		µg/L	1	7/2/2014 6:49:00 AM
Aliphatic Hydrocarbon (C16-C21)	32.7	0.0200		µg/L	1	7/2/2014 6:49:00 AM
Aliphatic Hydrocarbon (C21-C34)	39.3	0.0200		µg/L	1	7/2/2014 6:49:00 AM
Aliphatic Hydrocarbon (C8-C10)	78.5	0.0200		µg/L	1	7/2/2014 6:49:00 AM
Aromatic Hydrocarbon (C10-C12)	51.4	0.0200		µg/L	1	7/2/2014 4:28:00 PM
Aromatic Hydrocarbon (C12-C16)	147	0.0200		µg/L	1	7/2/2014 4:28:00 PM
Aromatic Hydrocarbon (C16-C21)	55.9	0.0200		µg/L	1	7/2/2014 4:28:00 PM
Aromatic Hydrocarbon (C21-C34)	51.8	0.0200		µg/L	1	7/2/2014 4:28:00 PM
Aromatic Hydrocarbon (C8-C10)	70.8	0.0200		µg/L	1	7/2/2014 4:28:00 PM
Surr: 1-Chlorooctadecane	86.5	65-140		%REC	1	7/2/2014 6:49:00 AM
Surr: o-Terphenyl	136	65-140		%REC	1	7/2/2014 4:28:00 PM

Qualifiers:

В

Analyte detected in the associated Method Blank

- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

WO#: **1406255** Date Reported: **7/10/2014**

Client: Friedman & Bruya Project: 406442				Collectior	n Date: 6/2	24/2014 1:55:00 PM
Lab ID: 1406255-004				Matrix: G	roundwate	er
Client Sample ID: MW-3-GW-4-14'						
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Extractable Petroleum Hydrocarbo	ns by NWE	<u>PH</u>		Bato	h ID: 7964	Analyst: EC
Aliphatic Hydrocarbon (C10-C12)	32.2	0.0200		µg/L	1	7/2/2014 7:33:00 AM
Aliphatic Hydrocarbon (C12-C16)	32.2	0.0200		µg/L	1	7/2/2014 7:33:00 AM
Aliphatic Hydrocarbon (C16-C21)	30.8	0.0200		µg/L	1	7/2/2014 7:33:00 AM
Aliphatic Hydrocarbon (C21-C34)	31.4	0.0200		µg/L	1	7/2/2014 7:33:00 AM
Aliphatic Hydrocarbon (C8-C10)	72.6	0.0200		µg/L	1	7/2/2014 7:33:00 AM
Aromatic Hydrocarbon (C10-C12)	5.15	0.0200		µg/L	1	7/3/2014 8:19:00 PM
Aromatic Hydrocarbon (C12-C16)	129	0.0200		µg/L	1	7/3/2014 8:19:00 PM
Aromatic Hydrocarbon (C16-C21)	22.3	0.0200		µg/L	1	7/3/2014 8:19:00 PM
Aromatic Hydrocarbon (C21-C34)	19.7	0.0200		µg/L	1	7/3/2014 8:19:00 PM
Aromatic Hydrocarbon (C8-C10)	1.72	0.0200		µg/L	1	7/3/2014 8:19:00 PM
Surr: 1-Chlorooctadecane	67.0	65-140		%REC	1	7/2/2014 7:33:00 AM
Surr: o-Terphenyl	98.4	65-140		%REC	1	7/3/2014 8:19:00 PM

Qualifiers:

В

Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

WO#: **1406255** Date Reported: **7/10/2014**

Client: Friedman & Bruya Project: 406442			(Collectior	n Date: 6/2	24/2014 2:40:00 PM
Lab ID: 1406255-005				Matrix: G	roundwate	er
Client Sample ID: MW-4-GW-4-14'						
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Extractable Petroleum Hydrocarbo	ons by NWEF	<u>2H</u>		Bato	h ID: 7964	Analyst: EC
Aliphatic Hydrocarbon (C10-C12)	29.5	0.0200		µg/L	1	7/2/2014 8:17:00 AM
Aliphatic Hydrocarbon (C12-C16)	46.5	0.0200		µg/L	1	7/2/2014 8:17:00 AM
Aliphatic Hydrocarbon (C16-C21)	33.9	0.0200		µg/L	1	7/2/2014 8:17:00 AM
Aliphatic Hydrocarbon (C21-C34)	36.7	0.0200		µg/L	1	7/2/2014 8:17:00 AM
Aliphatic Hydrocarbon (C8-C10)	66.6	0.0200		µg/L	1	7/2/2014 8:17:00 AM
Aromatic Hydrocarbon (C10-C12)	ND	0.0200		µg/L	1	7/3/2014 9:03:00 PM
Aromatic Hydrocarbon (C12-C16)	144	0.0200		µg/L	1	7/3/2014 9:03:00 PM
Aromatic Hydrocarbon (C16-C21)	19.4	0.0200		µg/L	1	7/3/2014 9:03:00 PM
Aromatic Hydrocarbon (C21-C34)	ND	0.0200		µg/L	1	7/3/2014 9:03:00 PM
Aromatic Hydrocarbon (C8-C10)	ND	0.0200		µg/L	1	7/3/2014 9:03:00 PM
Surr: 1-Chlorooctadecane	81.0	65-140		%REC	1	7/2/2014 8:17:00 AM
Surr: o-Terphenyl	97.9	65-140		%REC	1	7/3/2014 9:03:00 PM

Qualifiers:

В

Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Work Order: 1406255 CLIENT: Friedman Project: 406442	& Bruya					Extra	actable F	QC S Petroleum H	SUMMAI Iydrocarbo		_
Sample ID: LCS-7964 ALI	SampType: LCS			Units: µg/L		Prep Da	ite: 7/2/201	4	RunNo: 154	67	
Client ID: LCSW	Batch ID: 7964					Analysis Da	ite: 7/2/201	4	SeqNo: 313	169	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C10-C12)	78.4	0.0200	200.0	0	78.4	70	130				
Aliphatic Hydrocarbon (C12-C16)	185	0.0200	200.0	0	92.3	70	130				
Aliphatic Hydrocarbon (C16-C21)	224	0.0200	200.0	0	112	70	130				
Aliphatic Hydrocarbon (C21-C34)	179	0.0200	200.0	0	89.7	70	130				
Aliphatic Hydrocarbon (C8-C10)	399	0.0200	400.0	0	99.8	70	130				
Surr: 1-Chlorooctadecane	51.3		50.00		103	65	140				
Sample ID: LCSD-7964 ALI	SampType: LCSD			Units: µg/L		Prep Da	ite: 7/2/201	4	RunNo: 154	67	
Client ID: LCSW02	Batch ID: 7964					Analysis Da	ite: 7/2/201	4	SeqNo: 313	170	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C10-C12)	194	0.0200	200.0	0	96.9	70	130	156.7	21.1	20	R
Aliphatic Hydrocarbon (C12-C16)	184	0.0200	200.0	0	92.0	70	130	184.6	0.334	20	
Aliphatic Hydrocarbon (C16-C21)	232	0.0200	200.0	0	116	70	130	224.2	3.23	20	
Aliphatic Hydrocarbon (C21-C34)	185	0.0200	200.0	0	92.5	70	130	179.5	3.03	20	
Aliphatic Hydrocarbon (C8-C10)	433	0.0200	400.0	0	108	70	130	399.3	8.10	20	
Surr: 1-Chlorooctadecane NOTES:	56.7		50.00		113	65	140		0		
R - High RPD noted. Recoverie	es were within range.										
Sample ID: MB-7964 ALI	SampType: MBLK			Units: µg/L		Prep Da	te: 7/2/201	4	RunNo: 154	67	
Client ID: MBLKW	Batch ID: 7964					Analysis Da	ite: 7/2/201	4	SeqNo: 313	171	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C10-C12)	ND	0.0200		0	0						
Aliphatic Hydrocarbon (C12-C16)	ND	0.0200		0	0						
Aliphatic Hydrocarbon (C16-C21)	ND	0.0200		0	0						
Aliphatic Hydrocarbon (C21-C34)	ND	0.0200		0	0						
Qualifiers: B Analyte detected	in the associated Method Blank		D Dilution wa	is required			E Value	e above quantitation ra	ange		
	preparation or analysis exceeded		J Analyte de	tected below quantitation I	ND Not detected at the Reporting Limit						
R RPD outside acce	epted recovery limits		RL Reporting I	Limit			S Spike	e recovery outside acc	epted recovery limit	6	

Work Order: 1406255 CLIENT: Friedman & Project: 406442	Bruya					Extra	ctable P	QC S Petroleum H	SUMMAI		
Sample ID: MB-7964 ALI	SampType: MBLK			Units: µg/L		Prep Dat	e: 7/2/201	4	RunNo: 154	67	
Client ID: MBLKW	Batch ID: 7964					Analysis Dat	e: 7/2/201	4	SeqNo: 313	3171	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	ND	0.0200		0	0						
Surr: 1-Chlorooctadecane	30.0		40.00		75.0	65	140				
Sample ID: 1406255-001ADUP	SampType: DUP			Units: µg/L		Prep Dat	e: 7/3/201	4	RunNo: 154	67	
Client ID: MW-1-GW-4-14'	Batch ID: 7964					Analysis Dat	e: 7/3/201	4	SeqNo: 313	338	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C10-C12)	15.4	0.0200		0	0			0	200	30	
Aromatic Hydrocarbon (C12-C16)	156	0.0200		0	0			0	200	30	
Aromatic Hydrocarbon (C16-C21)	29.8	0.0200		0	0			0	200	30	
Aromatic Hydrocarbon (C21-C34)	ND	0.0200		0	0			0		30	
Aromatic Hydrocarbon (C8-C10)	ND	0.0200		0	0			0		30	
Surr: o-Terphenyl	45.1		50.00		90.2	65	140		0		
Sample ID: LCS-7964 ARO	SampType: LCS			Units: µg/L		Prep Dat	e: 7/2/2014	4	RunNo: 15 4	67	
Client ID: LCSW	Batch ID: 7964					Analysis Dat	e: 7/2/201	4	SeqNo: 313	352	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C10-C12)	36.9	0.0200	100.0	0	73.8	70	130				
Aromatic Hydrocarbon (C12-C16)	44.1	0.0200	100.0	0	88.2	70	130				
Aromatic Hydrocarbon (C16-C21)	35.7	0.0200	100.0	0	71.3	70	130				
Aromatic Hydrocarbon (C21-C34)	46.8	0.0200	100.0	0	93.6	70	130				
Aromatic Hydrocarbon (C8-C10)	37.5	0.0200	100.0	0	75.0	70	130				
Surr: o-Terphenyl	57.5		50.00		115	65	140				

Qualifiers: B Analyte

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

- D Dilution was required
- J Analyte detected below quantitation limits
- RL Reporting Limit

- E Value above quantitation range
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Work Order: 1406255

CLIENT: Friedman & Bruya

406442

QC SUMMARY REPORT

Extractable Petroleum Hydrocarbons by NWEPH

Sample ID: LCSD-7964 ARO	SampType: LCSD		Units: µg/L Prep Date: 7/2/2014					4	RunNo: 154	1 67		
Client ID: LCSW02	Batch ID: 7964					Analysis Date: 7/2/2014				SeqNo: 313353		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Aromatic Hydrocarbon (C10-C12)	40.1	0.0200	100.0	0	80.2	70	130	73.79	8.28	20		
Aromatic Hydrocarbon (C12-C16)	39.5	0.0200	100.0	0	79.1	70	130	88.20	10.9	20		
Aromatic Hydrocarbon (C16-C21)	88.6	0.0200	100.0	0	88.6	70	130	71.32	21.6	20	R	
Aromatic Hydrocarbon (C21-C34)	41.9	0.0200	100.0	0	83.8	70	130	93.56	11.0	20		
Aromatic Hydrocarbon (C8-C10)	34.6	0.0200	100.0	0	69.3	70	130	75.04	8.00	20	S	
Surr: o-Terphenyl	38.5		50.00		76.9	65	140		0			

NOTES:

Project:

Low Recovery for EPH Carbon Range C8-C10 Aromatic Hydrocarbons. The LCS was within range.

R - High RPD noted. Recoveries were within range.

Sample ID: MB-7964 ARO	SampType: MBLK			Units: µg/L		Prep Dat	te: 7/2/2014	ļ	RunNo: 154	67	
Client ID: MBLKW	Batch ID: 7964					Analysis Dat	te: 7/2/2014	Ļ	SeqNo: 313	354	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C10-C12)	ND	0.0200		0	0						
Aromatic Hydrocarbon (C12-C16)	ND	0.0200		0	0						
Aromatic Hydrocarbon (C16-C21)	ND	0.0200		0	0						
Aromatic Hydrocarbon (C21-C34)	ND	0.0200		0	0						
Aromatic Hydrocarbon (C8-C10)	ND	0.0200		0	0						
Surr: o-Terphenyl	46.7		50.00		93.3	65	140				

- H Holding times for preparation or analysis exceeded
- Holding times for preparation of analysis exceeded
- R RPD outside accepted recovery limits

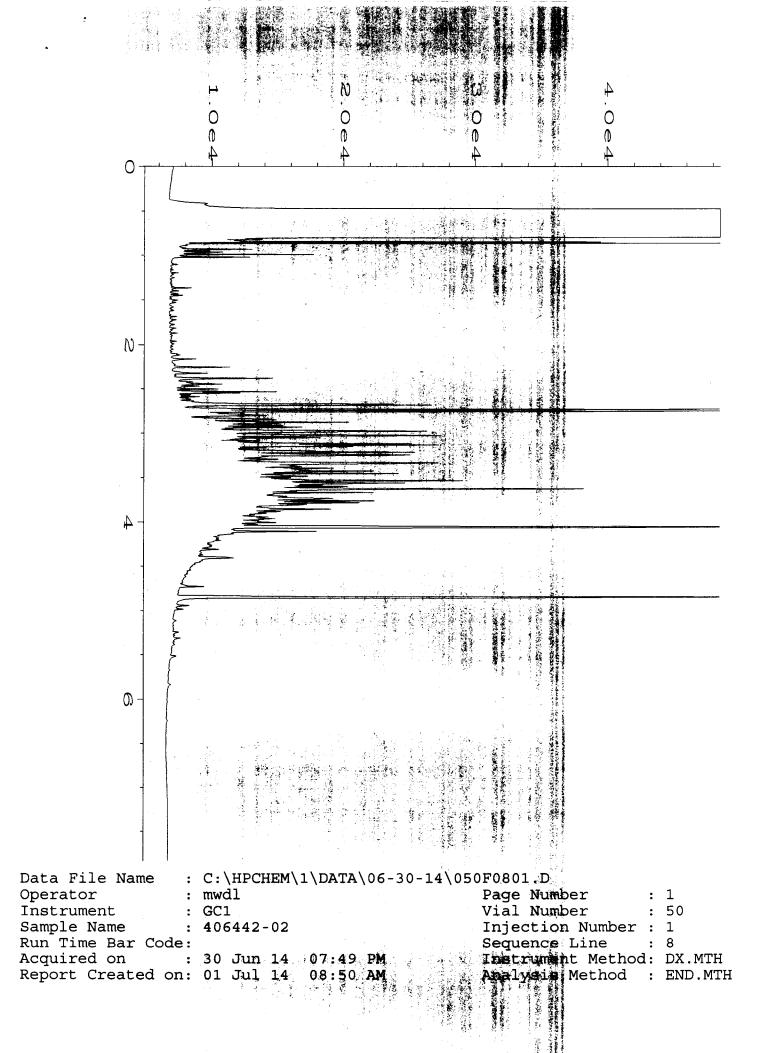
- D Dilution was required
- J Analyte detected below quantitation limits
- RL Reporting Limit

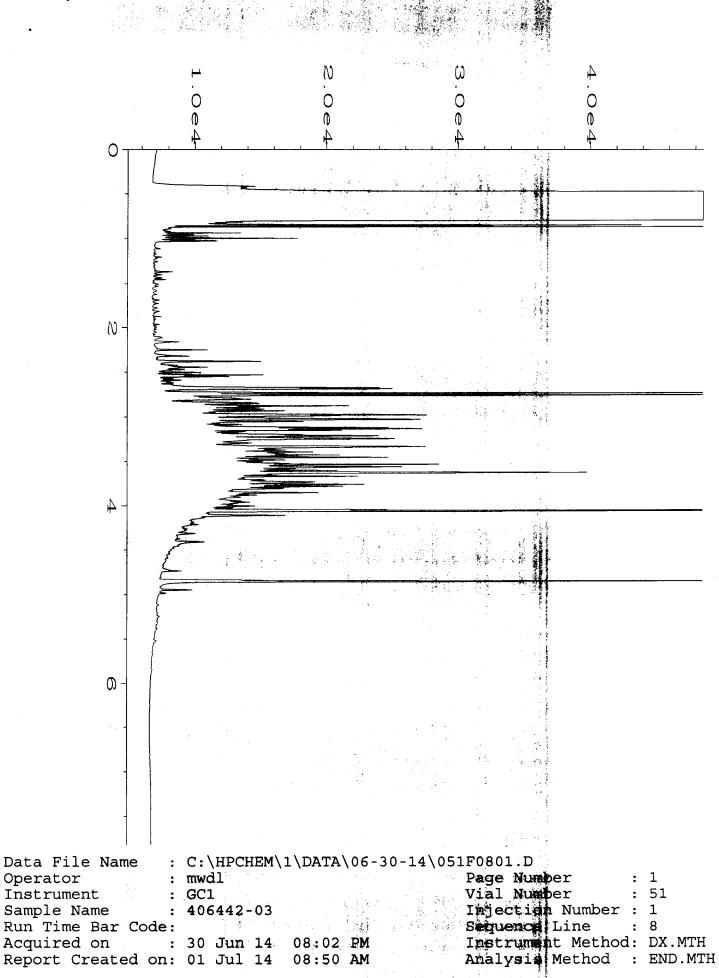
- E Value above quantitation range
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

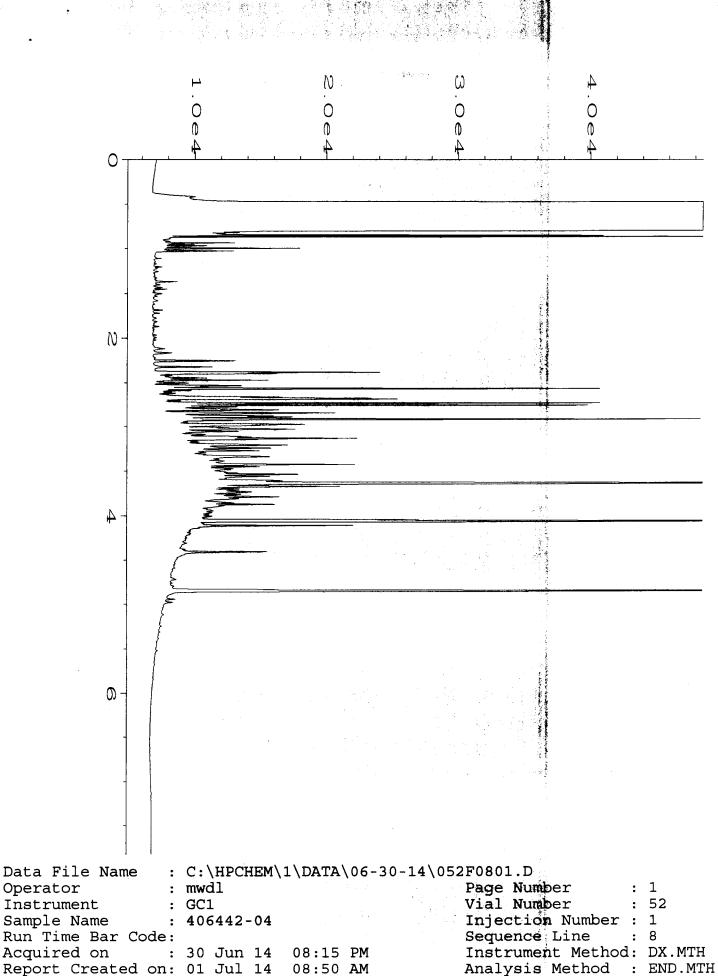
Sample Log-In Check List

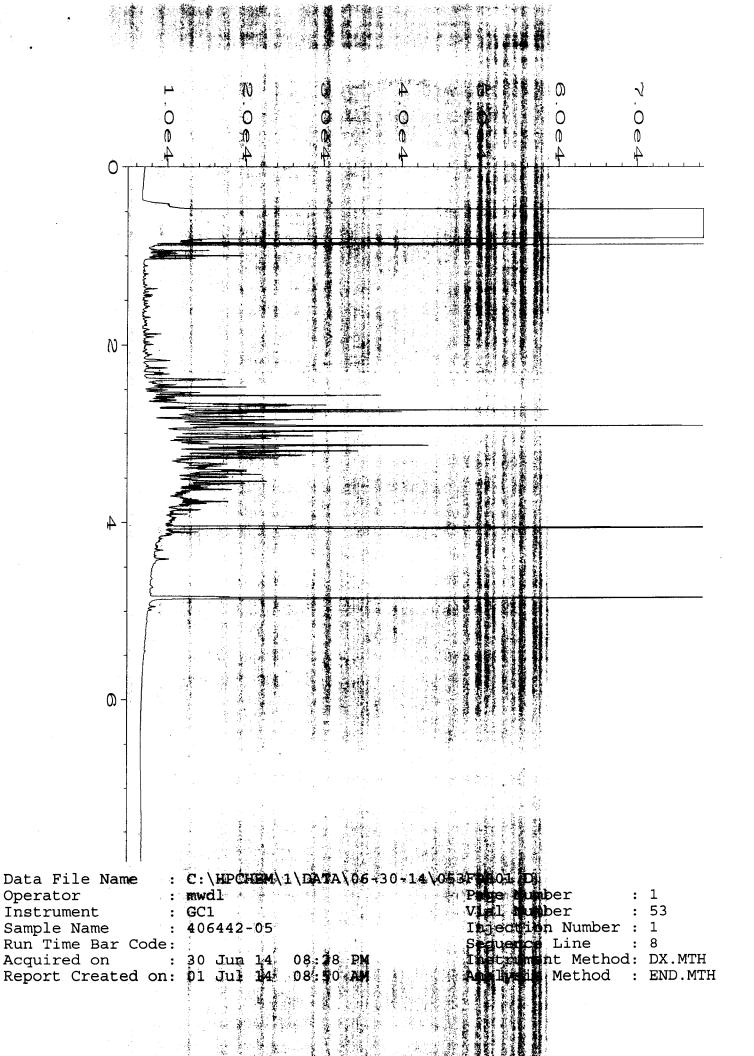
Cli	ent Name:	FB	Work O	der Numb	er: 1406255		
Lo	gged by:	Erica Silva	Date Re	ceived:	6/25/2014	4 12:02:00 PM	
Chai	in of Cust	ody					
1.	ls Chain of Cu	ustody complete?	Yes	\checkmark	No 🗌	Not Present	
2.	How was the	sample delivered?	Clien	<u>t</u>			
Log	<u>In</u>						
3.	Coolers are p	resent?	Yes		No 🗌		
4. 5	Shipping cont	ainer/cooler in good condition?	Yes		No 🗌		
5.	Custody seals	s intact on shipping container/cooler?	Yes		No 🗌	Not Required 🗹	
6.	Was an attem	npt made to cool the samples?	Yes		No 🗌		
7.	Were all coole	ers received at a temperature of $>0^{\circ}$ C to 10.0° C	Yes		No 🗌		
8.	Sample(s) in	proper container(s)?	Yes		No 🗌		
9.	Sufficient san	nple volume for indicated test(s)?	Yes	\checkmark	No 🗌		
10.	ہ Are samples	properly preserved?	Yes	\checkmark	No 🗌		
11.	Was preserva	tive added to bottles?	Yes		No 🗹	NA 🗌	
12.	Is the headsp	ace in the VOA vials?	Yes		No 🗌	NA 🗹	
13.	Did all sample	es containers arrive in good condition(unbroken)?	Yes	\checkmark	No 🗌		
14.	Does paperwo	ork match bottle labels?	Yes	\checkmark	No 🗌		
15.4	Are matrices	correctly identified on Chain of Custody?	Yes		No 🗌		
		t analyses were requested?	Yes	✓	No 🗌		
17.	Were all hold	ing times able to be met?	Yes		No 🗌		
<u>Spe</u>	cial Handl	ing (if applicable)					
		tified of all discrepancies with this order?	Yes		No 🗌	NA 🗹	
Ī	Person I	Notified: Dat	ie:				
	By Who	m: Via	: 🗌 eMa	il 🗌 Pho	one 🗌 Fax	In Person	
	Regardi	ng:					
	Client In	structions:					

Item Information


Item #	Temp °C	Condition
Cooler	11.2	Good
Sample	7.3	Good

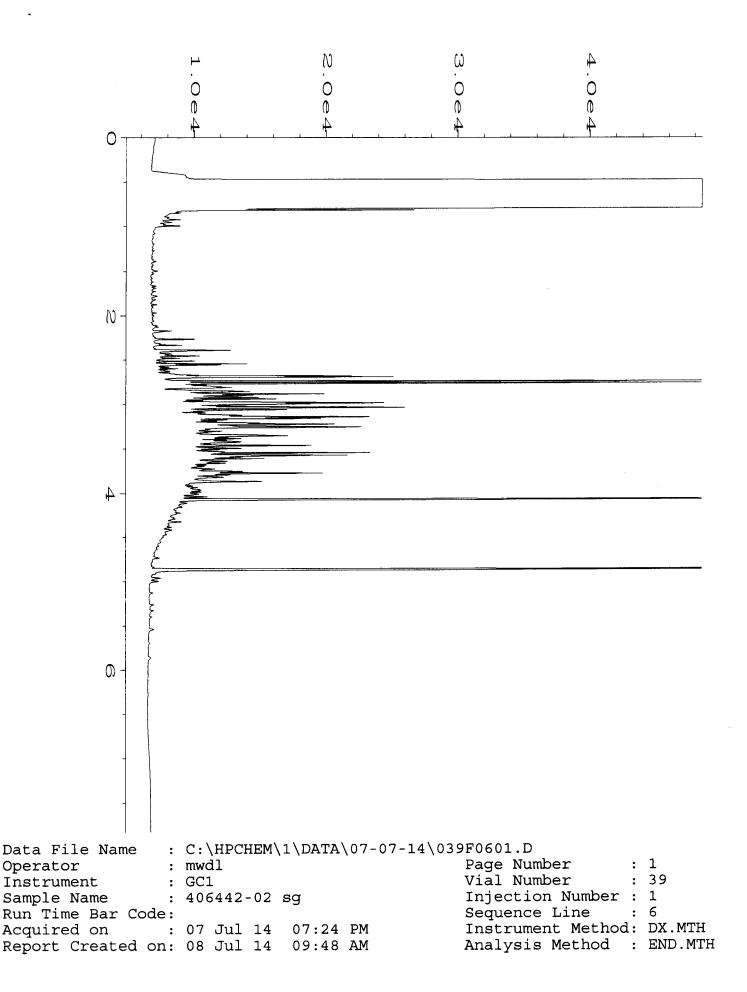

Send Report <u>To</u>	Michael	Erdahl		SUI	BCONT	RACTI	ER	Frem	ont					ROUND TIME
Company	Friedma	n and Bruya th Ave W	. Inc	PRO	PROJECT NAME/NO. PO # 406442 C-993					🗆 RUS	Standard (2 Weeks) RUSH_ Rush charges authorized by:			
	State, ZIP <u>Seattle, WA 98119</u> #_(206) 285-8282 Fax #_(206) 283-5044				REMARKS Please Email Results						🗆 Retu	SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions		
Sample ID	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	Dioxins and Furans by 8290	EPH	HdV	Nitrate	Sulfate	Alkalinity			Notes
NW-1-6W-4 -14"		6/24/14	1218	66	l		×							
1W-2-GW-4-141			1300	1	ſ.		×							
MW-21-6W-4-141			1125		1		×							
1W-3-6W-4-14			1355		1		×							
๚๛-๚-๎๛๛๚๚๚		1	(44*	+	3		×	_						MS/MD
									_					

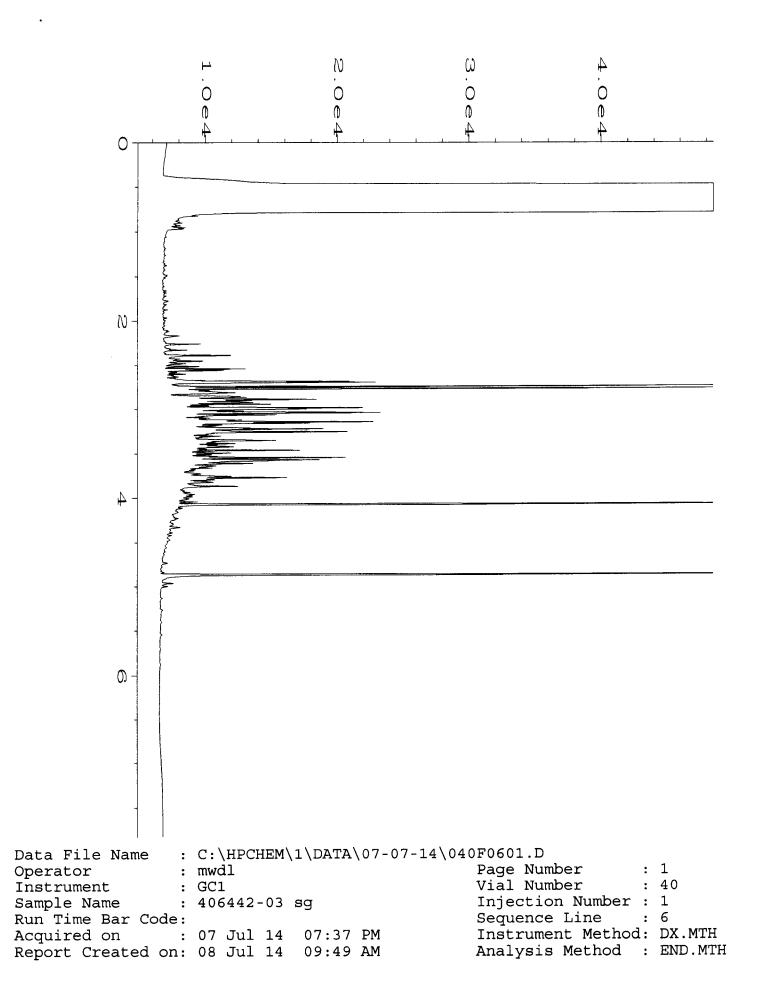

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
8012 16th Avenue West	Bettinguisheet be	Michael Erdahl	Friedman & Bruya	6/25/14	60:48
Seattle, WA 98119-2029	Received by white William	Kerva Zieglez	FAI	6/25/14	12:02
Ph. (206) 285-8282	Relinquished by:	0			
Fax (206) 283-5044	Received by:				

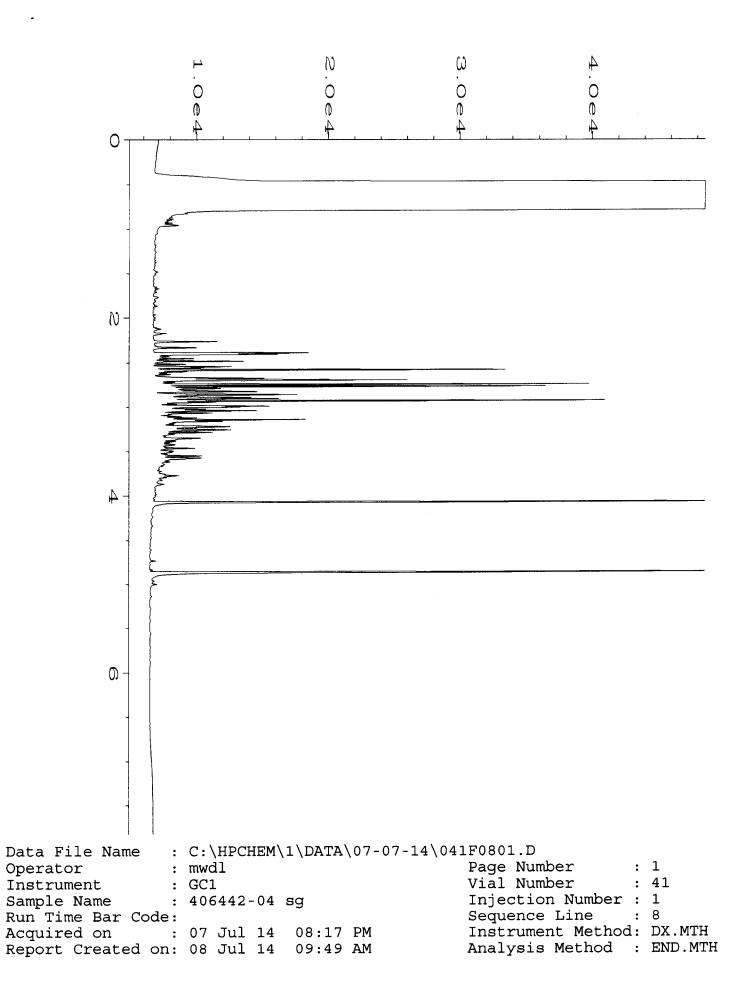

Send Report To Bret	Вели	lieu	•		LERS (sign		-	1,	N	γ						age #	/ V // JAROUN	of
Company Flugt Sniker Address 607 Unim St. Ste 600					PROJECT NAME/NO. PO# PSTL-Longview						TURNAROUND TIME Standard (2 Weeks) RUSH Rush charges authorized by							
City, State, ZIP <u>Seattle</u> Phone # 266-292-20	,m	4 980		REMA рх ц	NITH \$ 10			07	1016		- 	<u> </u>			⊐ Dis ⊐ Ret	pose : urn sa	PLE DIS after 30 c amples with inst	days
	1				1			-1		1	SES	REQ	UEST	ED	r	T		
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by8260		EPH TPH	TE, X 64	24rd				©-pe Orlei	
MW-1-GW-4-14'	OF	4/24/14	1218	GW	6	レ			, Ņ	Em	1		\odot				Hold	BTE
MW-2-GW-4-14	02	1	1300	GW	6	\checkmark			~	1	~	\otimes	\otimes				2), 	4) 1
MW-21-GW-4-14'	03		1125	GW	6	\checkmark			2	1		1	(\mathbf{x})				ห่	2
MW-3-6W-4-11	04		1355	GW	6	\checkmark			٢	1	~	G	T				n n	
MW- 4- GW- 4-14'	05 R		1440	GW	18	V			~	1	~	\bigcirc	\otimes				Ms/	MSD
<u> </u>	<u> </u>								_									
	-																<u> </u>	
	\geq		·									Sa	mpie		oive	l at	2.	6
			m	· · · · · · · · · · · · · · · · · · ·														4.N
Friedman & Bruya, Inc.	Delinoui	SIGN	ATURE				NAM	_				CC	OMPA	NY			DATE	TIM
3012 16th Avenue West	Received	shed by:	m	7	Enn M	lu,	rra	1-			Fl.	'ay-	1/s	n'l	r	4	125/ H	081
	Received by:				- En your			Ft S (12/1 0841										
	Received	.					-	•								` .	-	

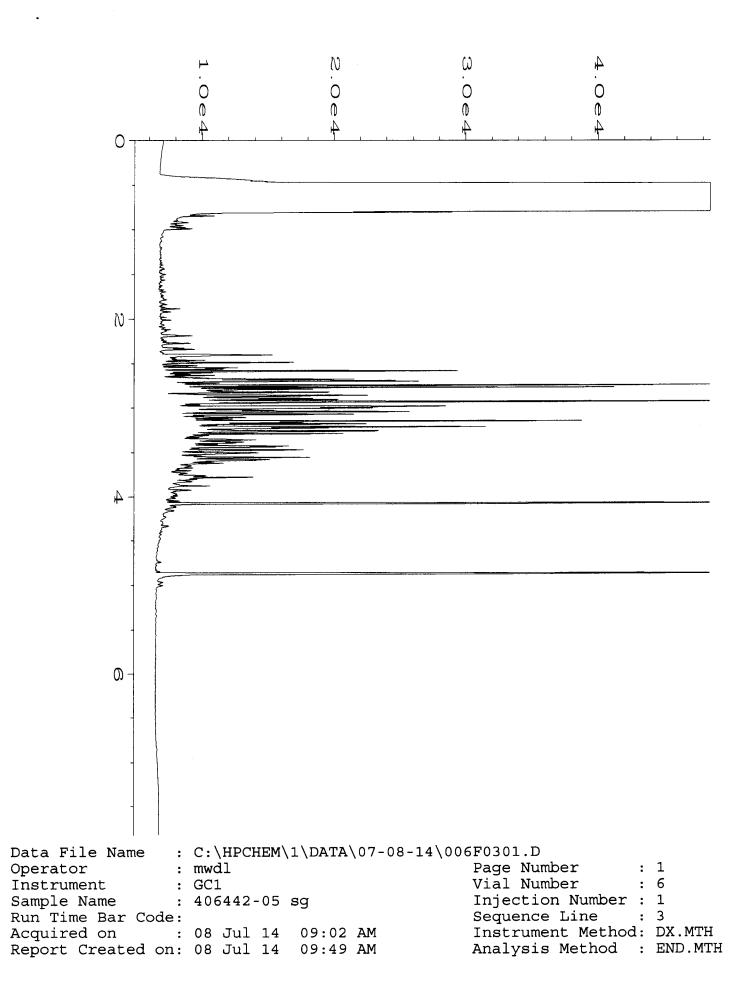
Data File Operator Instrument Sample Nam Run Time B Acquired o Report Cre	·			٠
le Bar Co Dn	4 -	N -	0	
: : : : :	Marca Marca	And a second and a second a se		
C:\\ mwd: \$C1 \$064 30 01				
l 44 2- Jun				
01 14				
07:3 08:5				
а .06 6 рм 0 ам				
3				
FP 15 IA				
🔹 Li				
umber : ne : Method:			4.0e4	
1 49 1 8 DX.MTH END.MTH				

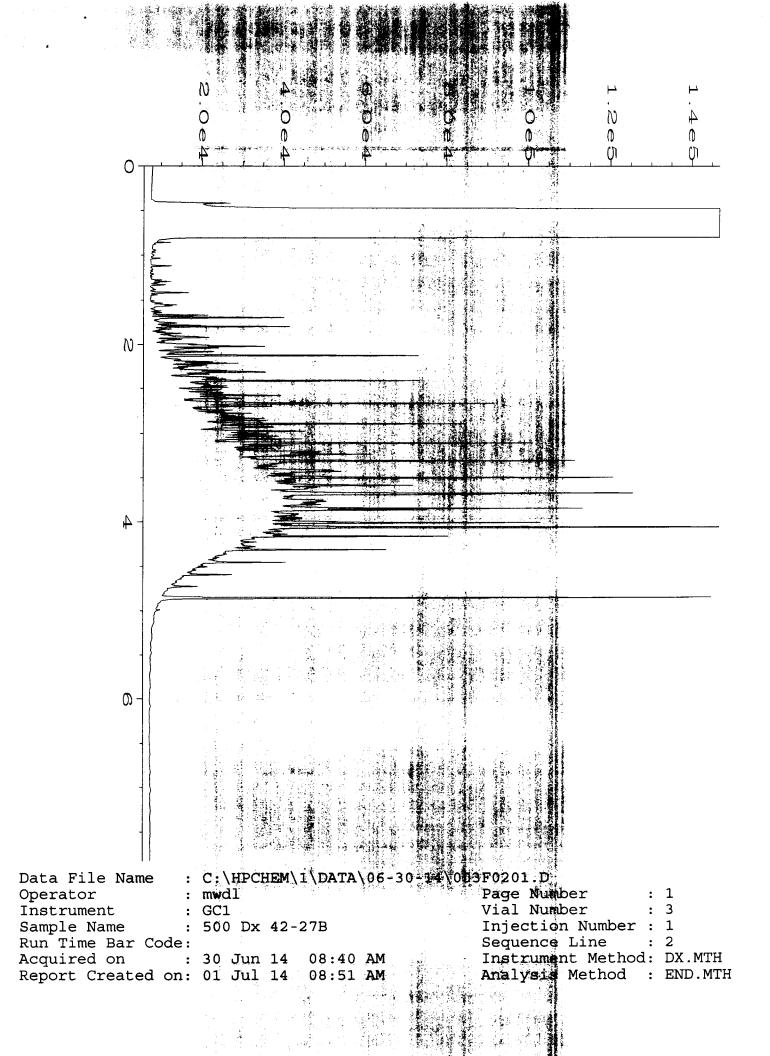









•				4	
0	0 e 4	an a		4.0e4	
80000000000000000000000000000000000000					
N -	\leq				
	}				
4 -		the second s			
Ø –					
Data File Name			FA\06-30-14\021	F 104 01 D	
Operator Instrument Sample Name Run Time Bar Co Acquired on Report Created	: 100 : 101 : 13 : 13 : 10 : 10			l i ber l i ber n Number Line i ht Method	: 4
	And				



ţ

