TECHNICAL MEMORANDUM

TO: David South, Washington State Department of Ecology

FROM: Lawrence Beard, P.E., L.H.G.

DATE: July 21, 2011

RE: RIVERSIDE BUSINESS PARK FILL THICKNESS EVALUATION EVERETT, WASHINGTON

This technical memorandum presents the results of an evaluation of the thickness of existing and planned clean fill material at the Port of Everett (Port) Riverside Business Park property (the Property). The purpose of this evaluation was to determine the extent to which clean fill and existing pavement and structures provide adequate protection against direct human contact with soil that may be affected by arsenic contamination associated with slag or affected fill from the ASARCO Everett Smelter site (Smelter Site). It is expected that any arsenic originating from direct ASARCO emissions is overlain by approximately 4 to 8 ft of fill soil placed on the Property in the early 1900's.

BACKGROUND

The Property is located adjacent to the Snohomish River in Everett, Washington, as shown on Figure 1. It consists of approximately 75 acres owned by the Port, 5 acres at the north end on the property that is owned by the Cymbaluk's. The Port-owned property includes a 40-acre parcel immediately south of the access road an access trail along the shoreline bordering the Cymbaluk property, the inter model yard to the south of the 40-acre parcel, and the dredge spoils storage area at the south end of the Property. The Cymbaluk property, the shoreline trail, and the stormwater pond area to the north of the Cymbaluk property are collectively referred to as the North Area, as shown on Figure 2.

Historical operations associated with the former Weyerhaeuser East Site resulted in environmental impacts to Property soil and groundwater that were addressed by an environmental cleanup conducted by Weyerhaeuser under a consent decree with the Washington State Department of Ecology (Ecology). The cleanup included the removal of contaminated soil above the cleanup levels established for the Property which were based on MTCA industrial cleanup levels, and containment of residual contamination above the unrestricted cleanup levels on the Property. The property zoning designation is M-2, Heavy Industrial. Within the shoreline management zone the designation is Urban Industrial. A restrictive covenant has been placed on the Property under the consent decree to ensure that future development activities do not compromise the containment element of the cleanup action and that residential development will not occur on the site. In addition to residual contamination associated with former Weyerhaeuser operations, elevated arsenic concentrations in soil that appear to be related to slag or affected fill associated with the former Smelter Site have been detected in shallow soil on the Property associated with the operational surface during Weyerhaeuser operations.

Ecology has established performance standards for remediation of arsenic-contaminated soil in the upland (residential) area of the former Smelter Site that identifies arsenic remediation levels based on the depth of the arsenic-affected soil below ground surface. The upland area performance standards identify remediation levels of 60 milligrams per kilogram (mg/kg) average concentration and 150 mg/kg maximum concentration for affected soil between 1 ft and 2 ft below ground surface (BGS), and an average concentration of 150 mg/kg and maximum concentration of 500 mg/kg for affected soil located greater than 2 ft BGS. Containment of these concentrations beneath pavement or permanent structures is also considered adequately protective for the former Smelter Site upland area.

The upland area performance standards were established for unrestricted site use and, as such, are very conservative for application to the Property because the restrictive covenant does not allow residential development and planned future site use is commercial/industrial. As a result, the use of the upland area remediation levels for soil deeper than 2 ft (150 mg/kg average and 500 mg/kg maximum) are considered appropriate screening levels for all soil on the Property that is deeper than 1 ft BGS or covered by pavement or buildings. An arsenic screening level of 88 mg/kg, the Model Toxics Control Act (MTCA) industrial soil cleanup level for arsenic based on direct contact, is considered appropriate for soil in the upper foot of soil because of the restrictive covenant and planned future site use.

ARSENIC CONCENTRATIONS IN SOIL

Arsenic soil quality data for the former Smelter Site Lowlands Area, including the Property, was recently presented in *The Everett Smelter Site - Conditions and Data Gaps Report* (SAIC 2010) that was prepared for Ecology. Figure 9 from that report (Attachment 1) presents maximum arsenic concentrations in soil for environmental explorations conducted in the Lowlands Area. As indicated on the figure, only two locations (HP-46 and TP-30) exhibited arsenic concentrations that exceeded the screening level maximum concentration (500 mg/kg) for soil identified above. HP-46 is located in an area currently under a number of feet of clean fill and asphalt, as discussed below. TP-30 is located in the current solid waste intermodal yard at 2 ft BGS. The figure also illustrates that arsenic concentrations in soil are generally below the MTCA industrial soil cleanup level based on direct contact (88 mg/kg) south of the Riverside Business Park access road.

PREVIOUS AND PLANNED PLACEMENT OF CLEAN FILL MATERIAL

Following the Weyerhaeuser cleanup action, clean fill material has been placed on the property and additional clean fill material is planned to be imported to the property in the near future to raise grades to support redevelopment. Five known events have occurred where clean fill material was placed at the Property since Weyerhaeuser operations ceased at the Property:

- In 1991, the Weyerhaeuser Company imported approximately 100,000 cubic yards (cy) of fill material and placed the material in the 40-acre central portion of the Property, south of the current access road. Analytical results for the fill material (Attachment 2) indicate that fill material is below the MTCA Method A soil cleanup levels for unrestricted site uses.
- In 2001, the Port imported approximately 80,000 to 100,000 cy of fill material consisting of sediment removed from the Snohomish River upper settling basin. This fill material was also placed in the central portion of the Property, south of the current access road. Although analytical results are not available for this dredging event, the material is anticipated to have similar sediment quality as discussed below for the 2009 settling basin fill.
- In 2002, the Port imported fill material consisting of excavated soil from the city of Everett Grand Avenue sewer project, amended with soil from the 2001 upper settling basin fill, and placed the fill in the portion of the North Area currently owned by the Cymbaluks to raise site grades in this area, as shown on Attachment 3).
- In 2009, the Cymbaluks imported fill material from an unknown source and placed the fill material over their portion of the North Area to achieve the planned grades for their planned development. The portion of the Cymbaluk property not covered by buildings was paved with asphalt following site grading (Attachment 4).
- In 2009, the Port imported approximately 2,000 cy (approximately a 1 ft thick layer) of fill material consisting of sediment from the Snohomish River upper settling basin amended with organic material to create top soil. The fill was used in the North Area for a shoreline trail and slope stabilization to the east of the Cymbaluk property. Analytical results for the fill material (Attachment 5) indicate that fill material is below the MTCA Method A soil cleanup levels for unrestricted site use. For bank stabilization purposes, a portion of the shoreline near the trail project was armored with an approximate 1-ft thick layer of quarry spalls, amended with several inches of sandy gravel.

Future placement of clean fill material on the Port-owned 40-acre parcel is planned as part of the Property redevelopment. As part of the redevelopment, the Port plans to raise the Property grades above the Federal Emergency Management Agency (FEMA) 100-year flood plain elevation. The estimated 100-year flood plain elevations for various portions of the Property range from 12.0 to 12.4 ft NAVD88, as shown on a figure developed by Reid Middleton for the Port of Everett in 2011 (Attachment 6). The Port plans on raising Property grades a minimum of 0.5 ft above the FEMA 100-year flood plain elevation that this would be the minimum elevation achieved throughout this portion of the Property. The Property is relatively flat and the Port plans on doing substantial additional filling in the future to create sufficient grades for

stormwater drainage. Much of the Property will ultimately be raised significantly above the 100-year flood plain elevation.

FILL MATERIAL THICKNESS ESTIMATION

The thickness of clean fill material placed on the Property since wood products manufacturing ceased at the Property was estimated by comparing pre-fill surface elevations to the current ground surface elevations, or to the planned ground surface elevations following filling to exceed the FEMA 100-year flood plain elevation, whichever is greater. The fill thickness estimates were developed for the 40-acre parcel and the Cymbaluk property. The intermodal area has not received appreciable fill since Weyerhaeuser completed its cleanup, although a large portion of the area is asphalt paved. The dredge spoils storage area has been filled and emptied of river sediment from the Snohomish River upper settling basin numerous times since the completion of the Weyerhaeuser cleanup and soil quality in this area is not of concern.

Pre-Fill Surface Elevations

Pre-fill surface elevations for the Port-owned portion of the Property were determined based on ground surface elevations measured for 32 historical explorations that were conducted by Weyerhaeuser for environmental characterization. Although many more explorations have been conducted at the Property, the ground surface elevation was not documented for most explorations. The location of the explorations where historical ground surface elevations are available is shown on Figure 3. Ground surface elevations for these locations were recorded in 1989, 1990, 1992, and 1994, and were based on NVGD29 datum. The ground surface elevations and dates for each exploration are summarized in Table 1.

Pre-fill surface elevations for the portion of the North Area owned by the Cymbaluks were estimated using existing topographic contours presented on a 2002 grading plan for that portion of the Property (Attachment 3). As shown on this grading plan, the ground surface elevation in this portion of the Property was generally 8 to 10 ft NGVD29. Attachment 3 also shows that the planned filling by the Port in 2002 was intended to raise grades in this portion of the property by 1 to 2 ft.

Planned and/or Current Ground Surface Elevation (Top of Fill Material)

The 2011 topographic survey prepared by Reid Middleton to evaluate Property grades relative to the FEMA 100-year flood plain elevations (Attachment 6) was used to estimate existing ground surface elevations, and the ground surface elevations that will be achieved to address the FEMA flood plain elevations, within the portion of the Property south of the access road. The estimated current elevation

and the estimated elevation that will be achieved to address the FEMA 100-year flood plain elevation were estimated for each of the 32 exploration locations. The existing ground surface elevations were estimated using the elevation contours on Attachment 6. The required ground surface elevations to address the FEMA 100-year floodplain elevations were estimated at each of the explorations by adding 0.5 ft to the nearest 100-year flood elevation on Attachment 6. If the current ground surface elevation was higher than the estimated 100-year flood elevation plus 0.5 ft, the current ground surface elevation was used to estimate the thickness of clean fill. Otherwise, the required elevation to raise grades 0.5 ft above the 100-year floodplain elevation was used.

The estimated ground surface elevations based on this evaluation are presented in Table 1. As noted in Table 1, the estimated current ground surface elevation is above the FEMA 100-year flood elevation plus 0.5 ft at all but one location (TP-105), so the estimated clean fill thickness is largely based on current conditions and not dependent on future planned filling.

A 2008 figure prepared by David Evans and Associates showing developed conditions for the Cymbaluk's portion of the North Area (Attachment 4) was used to estimate the existing ground surface elevations for this portion of the Property. Based on the rim elevations for stormwater catch basins and the finish floor elevation for the building, current elevations in this area range from about 13.5 ft to more than 17 ft NAVD88.

Estimation of Clean Fill Thickness

The estimated thickness of clean fill material that overlies, or will soon overly, the historical ground surface that may be impacted by arsenic was estimated by subtracting pre-fill ground surface elevations from the current or planned ground surface elevation at each of the 32 exploration locations. However, because the pre-fill ground surface elevations and the planned ground surface elevations reference different datums, a conversion was necessary prior to calculating the thickness. All pre-fill elevations referencing NGVD29 were converted to NAVD88 by adding 3.58 ft. The results of the calculations are presented in Table 2.

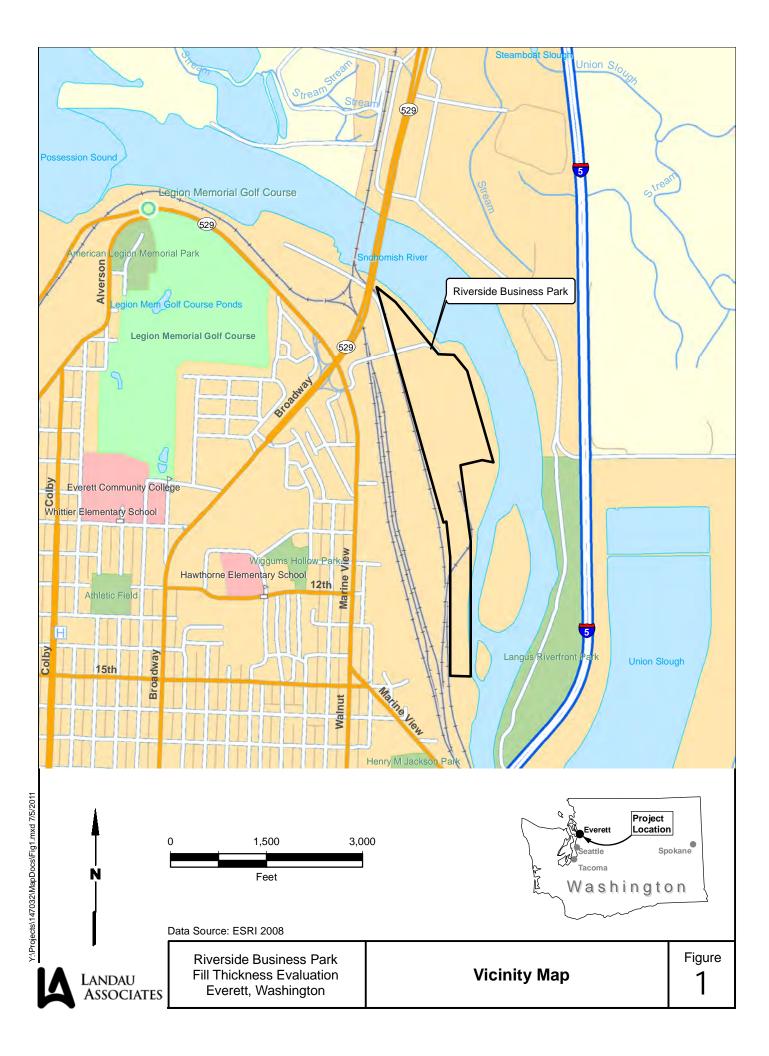
As shown in Table 1, the clean fill material thickness ranges from 0 ft to 2.8 ft with an average thickness of about 1.5 ft. With the exception of one location (TP-106), all the locations where the fill thickness was less than 1 ft were near the Snohomish River shoreline. As shown on Attachment 6, the ground surface is significantly higher along most of the shoreline, which is likely the reason significant filling has not occurred in this area. Additionally, the ground surface slopes steeply toward the river, which may affect the accuracy of the estimates of the current elevation at near-shore explorations. It should also be noted that, based on Attachment 1, arsenic concentrations in soil along the shoreline and in

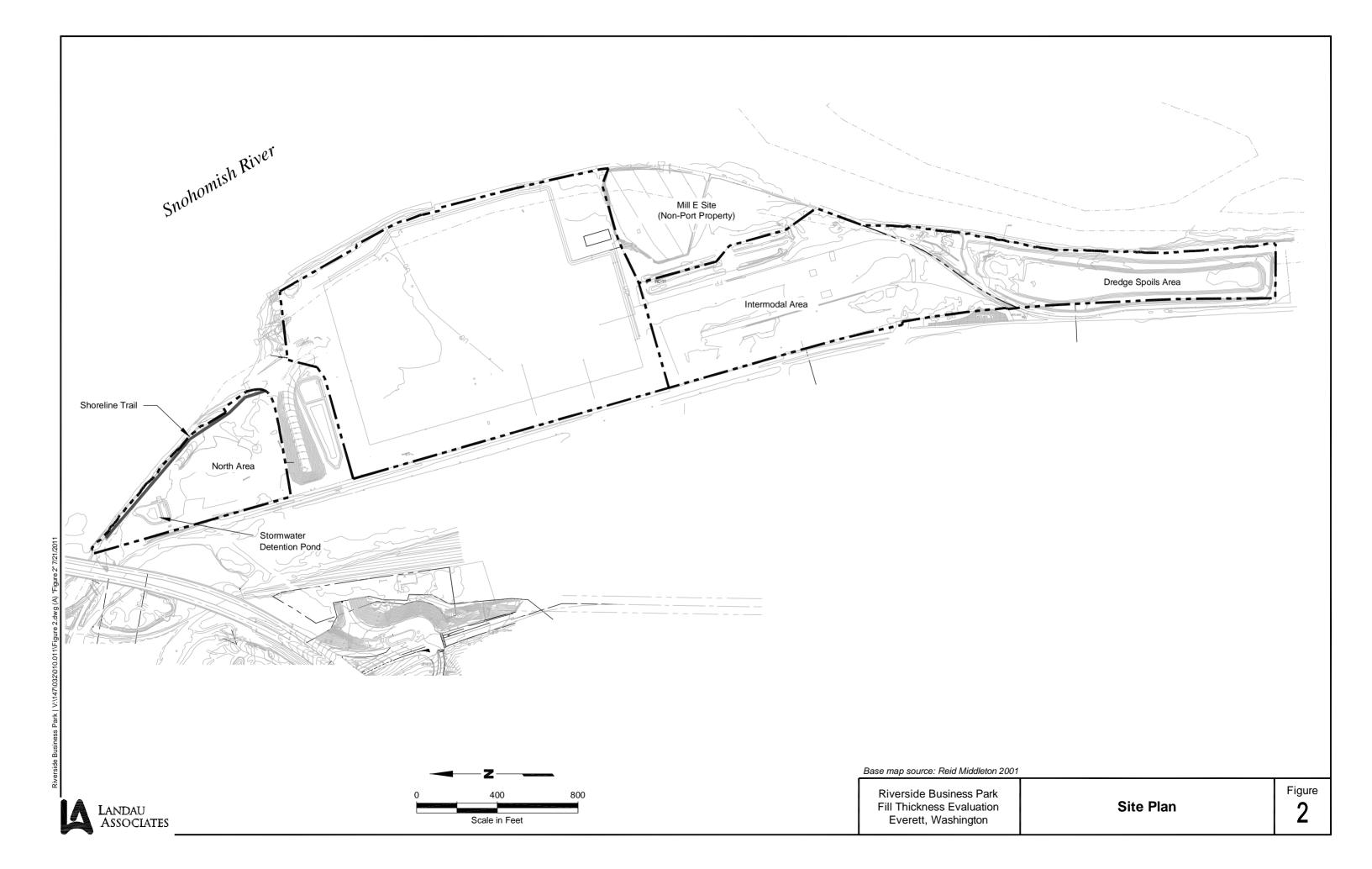
the vicinity of the TP-106 are all below the MTCA industrial soil cleanup level for arsenic based on direct contact.

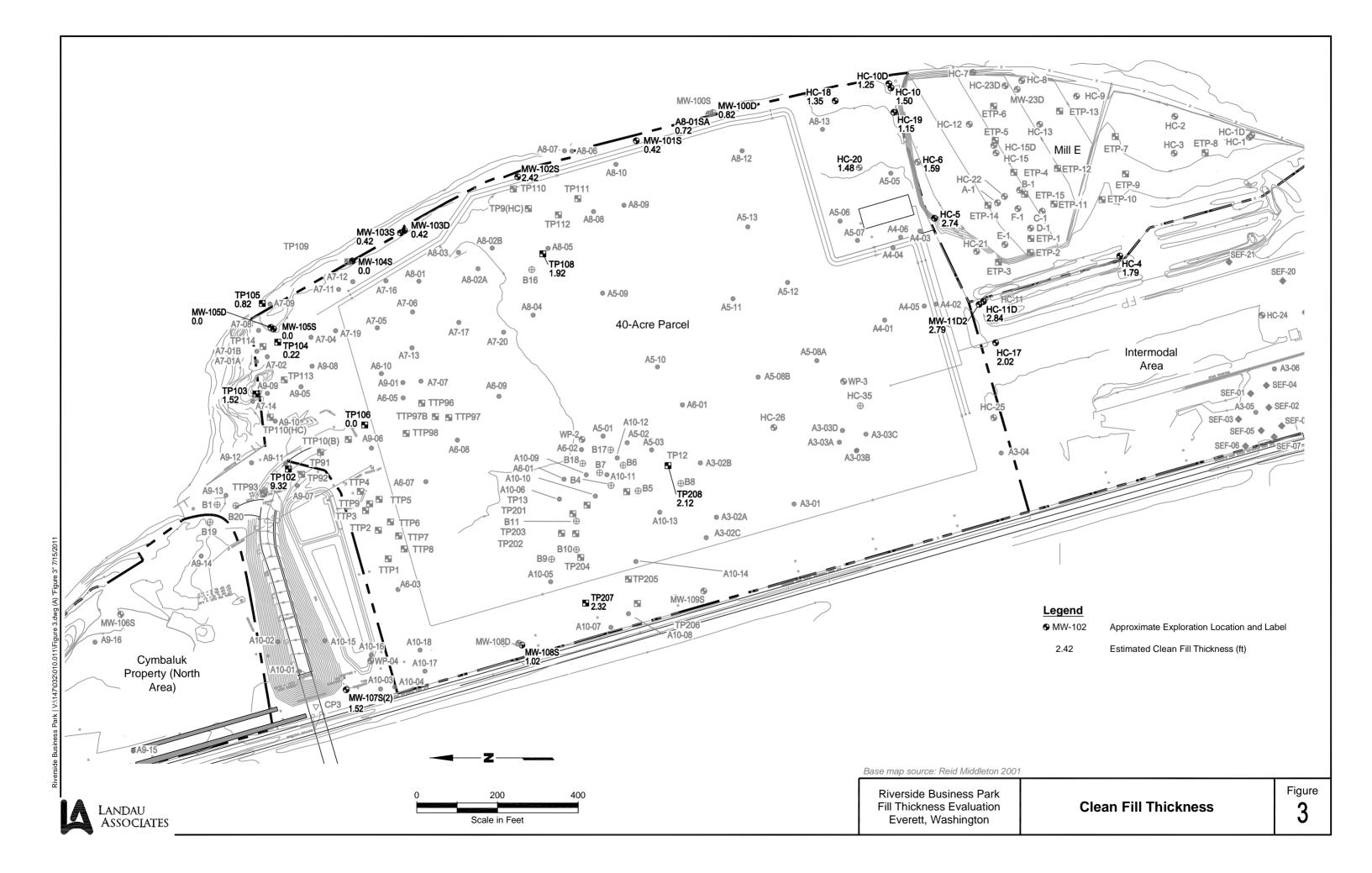
The estimated thickness of the fill material that overlays the historical environmentally impacted soil in the North Area was estimated for the Cymbaluk property by comparing 2002 ground surface elevations (Attachment 3) to the finish elevations following development by the Cymbaluks (Attachment 4), relying on comparison of the existing catch basin rim elevations to the original 2002 ground surface. Similar to ground surface elevations for previous explorations, the pre-2002 ground surface elevations were converted from NGVD29 to NAVD88 for the fill thickness estimates. The results of the calculations are presented in Table 2. As shown in Table 2, the clean fill material thickness ranges from about 0.4 ft to 3.7 ft. Additionally, almost the entire area is now covered by either buildings or asphalt and concrete pavement.

The fill thickness for the shoreline trail area to the east of the Cymbaluk property was estimated based on the construction drawings for the trail and conversations with Port personnel. Clean fill cover was determined to be a minimum of 1 ft thick in landscape areas and consisted of the 10-ft wide asphalt-paved pathway over the remainder of the shoreline area. Clean fill thickness to the north of the Cymbaluk property was not determined, although the area largely consists of a stormwater detention pond system that contains a low-permeability liner a paved turnaround area.

CONCLUSIONS


Based on the results of this evaluation, the Property is generally covered by more than 1 ft of clean fill that was placed over the historic ground surface that may contain soil affected by slag or affected fill from the former Smelter Site. Clean fill thicknesses of less than 1 ft are largely limited to the shoreline area and the intermodal area, and available analytical results indicate that arsenic concentrations in soil in areas with less than 1 ft of clean soil cover or asphalt pavement are below the MTCA industrial soil cleanup level based on direct contact. Based on the presence of more than 1 ft of clean fill over most of the Property, the low concentrations of arsenic in those areas that do not have at least 1 ft of clean soil cover, and the restrictive covenant that precludes residential development on the Property, the Property is adequately protective of human health against contact with arsenic-affected soil, with the possible exception of limited areas along the shoreline and in the intermodal area. The clean fill cover soil is also protective of human health against contact with residual contamination associated with the Weyerhaeuser East Site.


USE OF THIS DOCUMENT


This document has been prepared for the exclusive use of the Port of Everett for specific application to the Riverside Business Park. No other party is entitled to rely on the information, conclusions, and recommendations included in this document without the express written consent of the Port and Landau Associates. Further, the reuse of information, conclusions, and recommendations provided herein for extensions of the project or for any other project, without review and authorization by the Port and Landau Associates, shall be at the user's sole risk. Landau Associates warrants that within the limitations of scope, schedule, and budget, our services have been provided in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions as this project. We make no other warranty, either express or implied.

References

SAIC. 2010. Draft Site Conditions and Data Gap Report, Everett Smelter Site – Lowland Area, Everett, Washington. Prepared for Washington State Department of Ecology. September 29.

TABLE 1 CLEAN FILL THICKNESS EVALUATION RIVERSIDE BUSINESS PARK

Boring	Estimate Ground Surface Elevation Prior to Fill Material (ft)	Estimate Ground Surface Elevation Prior to Fill Material (ft)	Estimated Current Ground Surface Elevation (ft)	LOT #	FEMA Base Flood Elevation (ft)	FEMA + 0.5	MAX (Current or FEMA+.5)	Current or Planned Fill Thickness (ft)
	NVGD29	NAVD88	NAVD88		NAVD88	NAVD88	NAVD88	
HC-4	7.63	11.21	13	3	12.4	12.9	13	1.79
HC-5	6.68	10.26	13	3	12.4	12.9	13	2.74
HC-6	7.83	11.41	13	3	12.4	12.9	13	1.59
HC-10	7.82	11.40	11	3	12.4	12.9	12.9	1.5
HC-10D	8.07	11.65		3	12.4	12.9	12.9	1.25
HC-11	6.58	10.16	13	6	12.4	12.9	13	2.84
HC-11D	6.63	10.21	13	6	12.4	12.9	13	2.79
HC-17	7.40	10.98	13	6	12.4	12.9	13	2.02
HC-18	7.97	11.55	8	3	12.4	12.9	12.9	1.35
HC-19	8.17	11.75	11.5	3	12.4	12.9	12.9	1.15
HC-20	7.84	11.42	12	3	12.4	12.9	12.9	1.48
MW-100D	9.60	13.18	14	3	12.4	12.9	14	0.82
MW-100S	9.70	13.28	14	3	12.4	12.9	14	0.72
MW-101S	9.00	12.58	13	3	12.4	12.9	13	0.42
MW-102S	9.00	12.58	15	2	12.1	12.6	15	2.42
MW-103D	11.00	14.58	15	2	12.1	12.6	15	0.42
MW-103S	11.00	14.58	15	2	12.1	12.6	15	0.42
MW-104S	12.00	15.58	14	2	12.1	12.6	14	0
MW-105D	9.70	13.28	13	2	12.1	12.6	13	0
MW-105S	9.40	12.98	13	2	12.1	12.6	13	0.02
MW-107S(2)	7.90	11.48	13	4	12	12.5	13	1.52
MW-108S	8.40	11.98	13	4	12	12.5	13	1.02
TP-102	7.10	10.68	20	4	12	12.5	20	9.32
TP-103	10.90	14.48	16	2	12.1	12.6	16	1.52
TP-104	10.20	13.78	14	2	12.1	12.6	14	0.22
TP-105	8.20	11.78	12	2	12.1	12.6	12.6	0.82
TP-106	9.80	13.38	13	2	12.1	12.6	13	0
TP-108	7.50	11.08	13	2	12.1	12.6	13	1.92
TP-109	11.40	14.98	14	2	12.1	12.6	14	0
TP-207	7.10	10.68	13	4	12	12.5	13	2.32
TP-208	7.30	10.88	13	5	12.4	12.9	13	2.12
	•					Av	verage Cover Thickness =>	1.5

Date of previous ground surface elevations are as follows: HC-4 through HC-20 = June 1989

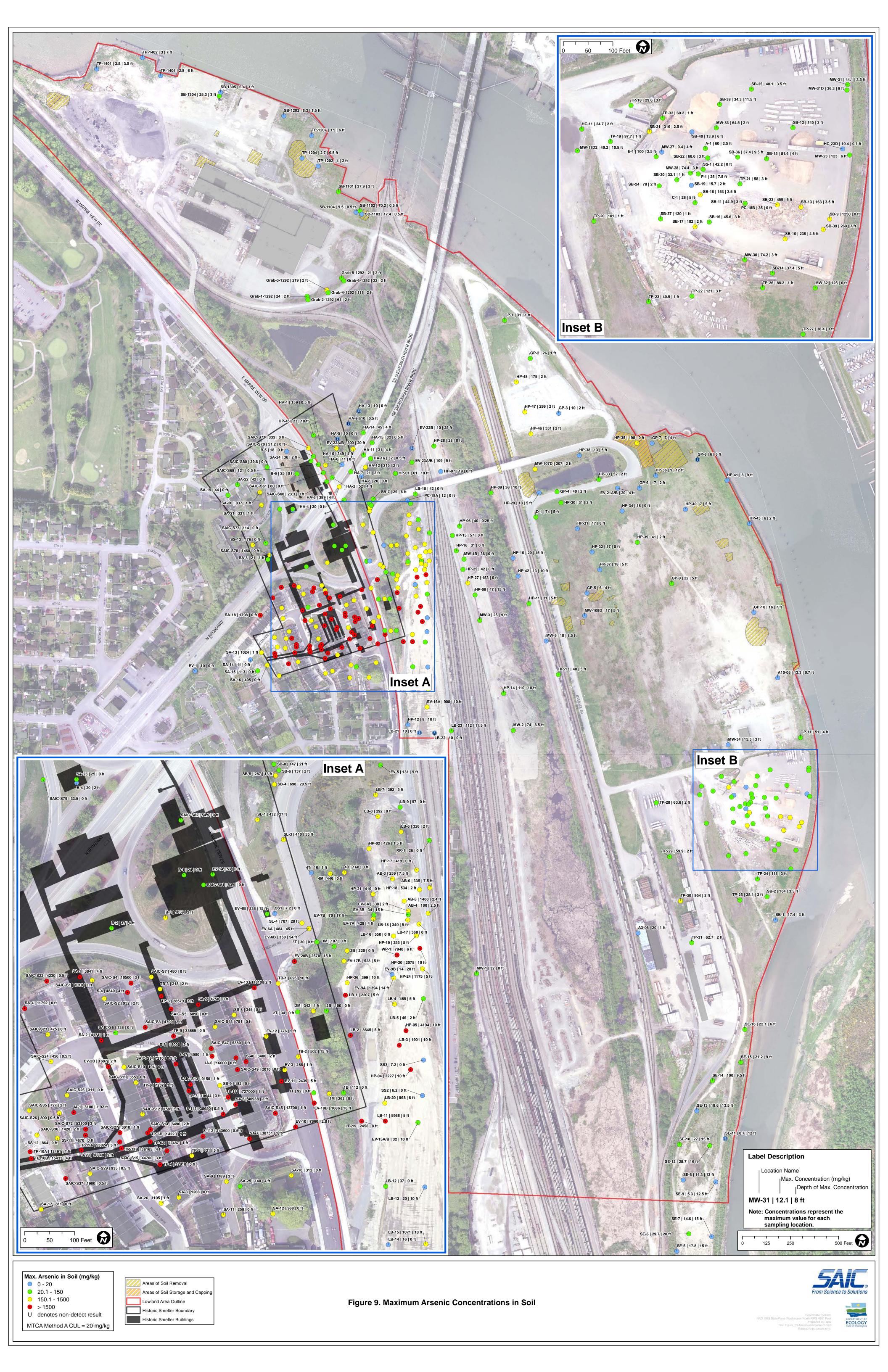

MW-100D through MW-108S = Dec 1992, except MW-107S(2) = 1994 TP-102 through TP-208 = June 1990

TABLE 2 CLEAN FILL ESTIMATE FOR CYMBALUK PROPERTY

Catch Basin (Attachment 6)	Previous Ground Surface Elevation - 2002 (ft)	Estimate Ground Surface Elevation Prior to Fill Material (ft)	Current Ground Surface Elevation (ft)	Estimated Clean Fill Thickness (ft)
	NVGD29	NAVD88	NAVD88	
CB-2	9.00	12.58	14.18	1.60
CB-3	8.00	11.58	15.24	3.66
CB-4	8.00	11.58	15.09	3.51
CB-7	10.00	13.58	14.85	1.27
CB-8	11.00	14.58	14.95	0.37
CB-9	10.00	13.58	15.24	1.66
CB-10	10.00	13.58	15.46	1.88
			Average	2.0

Page 1 of 1

Figure 9 Maximum Arsenic Concentrations in Soil (SAIC 2010)

Weyerhaeuser 1991 Fill Analytical Data

10/29/91 14:55 FAX 206 339 2527 PATTERSON, et al 10/28/91 14:38 FAX i 646 C283 SEACOR SENT BY: SEACOM :10-28-91 :11:08AH : N. Creek Analytical-206 646 0283;#

18939 120th Avenue N.E., Suite 101 . Bothell, WA 98011-2559 Phons (208) 481-9200 . FAX (206) 485-2992

101111

10 LA

HUNDER THE PARTY AND THE PARTY	Client Project ID:	Ames Const.	Sampled:	Oct 18, 18
330 112th Avenue N.E., #104	Sample Descript:	Soll SP-1 @2.0'	Received:	Oct 18, 19
Bellevue, WA 88004	Analysis Method:	EPA 5030/8010	Analyzed:	Oct 24, 19
Attention: George Ehlers	I sh Number:	110-0754	Reported:	Oct 28, 18

HALOGENATED VOLATILE ORGANICS (EPA 8010)

	Analyte	Detection Limit µg/kg (ppb)		Sample Results µg/kg (ppb)
	Bromodichloromethane	20		N.D.
	Bromotorn	20	*****	N.D.
	Bromomethane	20	******	N.D.
	Carbon tetrachloride	20		N.D.
	Chlorobanzerie	20		N.D.
	Chloroethane	100	********	N.D.
d	2-Chloroethylvinyl ether	20	******	N.D.
	Chiotofotth	20		N.D.
	Chloromethang	20	A 24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	N.D.
	Dibromochloromethane	20	·	N.D.
	1.2-Dichlorobenzene.	40		N.D.
		40		N.D.
	1,3-Dichlorobenzene	40		N.D.
	1,4-Dichlorobenzena			N.D.
	1,1-Dichlorosthane		****************	N.D.
	1,2-Dichloresthane			N.D.
	1,1-Dichlorosthane	20		N.D.
	Total 1,2-Dichlorosthene	20		N.D.
	1,2-Dichloropropane	20		N.D.
	cls-1,3-Dichloropropena		****	N.D.
	trans-1,3-Dichloropropene	1.	***********************************	N.D.
	Methylene chloride			N.D.
	1,1,2,2-Tetrachloroethana		***************************************	N.D.
	Tetrachloroethene		222-2272727474747777777778848444874874	N.D.
	1.1.1-Trichloroathane	20		N.D.
	1,1,2-Trichlorosthans	20	**********************************	
	Trichlotoethene	20		N.D.
	Trichlorofluoromethane	20	**************************************	N.D.
	Vinyl chloride	40	*****************	N.D.

2

Surrogate Recovery, %: 88 Analytes reported as N.D. were not present above the stated limit of detection.

HORTH CREEK ANALYTICAL at Serve

.

10/29/91 14:54 PAA 200 339 2921 646 0283 14:39 FAX 2 . . 10/28/91

TALIERSUN, EL HI SEACOR

SENT BY: SEACON

18939 120th Avenue N.E., Suite 101 · Bothell, WA 98011-2689 Phone (206) 481-8200 · FAX (206) 485-2992

REFERENCE REPORT	Client Project ID:	Ames Const	Sampled:	Oct 18,	199
330 112th Avenue N.E., #104	Sample Descript:	Soll SP-2 @3.0'	Received:	Oct 18.	199
	Analysis Method:	EPA 5030/8010	Analyzed:	Oct 24.	199
Bellevus, WA 98004 SAttention: George Ehlers	Lob blumbor	110-0765	Reported	Oct 28.	199

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte

Detection Limit µg/kg (ppb)

Sample Results µg/kg (ppb)

	20		N.D.
Bromodichloromathana	20		N.D.
Bromotottt	20	++++++++++++++++++++++++++++++++++++++	N.D.
Bromomelhane			N.D.
Carbon tetrachloride	20	-11-11/201221212121212121212121212	N.D.
Chlorobenzene	20		N.D.
Chloroethane	100	**************************************	
2.Chloroethylvinyl ether	20	***************************************	N.D.
Chloroform	20		N.D.
Chloromethane	20	**************************************	N.D.
Dibromochloromethane	20		N.D.
1,2-Dichlorobenzene,	40	**********************************	N.D.
1.3-Dichlorobenzene	40	[+L];	N.D.
1,4-D[chlorobenzen8	40	**********************	N.D.
1.1-Dichlorosthane	20	****	N.D.
1.2-Dichlorosthane	20	***************************************	N.D.
1,1-Dichloroethene	20		N.D.
Total 1.2-Dichloroethene	20	-	N.D.
1.2-Dichioropropane	20	******	N.D.
	20		N.D.
cis-1,3-Dichloropropane	20		N.D.
trans-1,3-Dichloropropene	100	*******	N.D.
Mathylena chlorida	20		N.D.
1,1,2,2-Tetrachieroethane	20		N.D.
Teirachloroethane			N.D.
1,1,1-Trichloroethane	20	************************************	N.D.
1.1.2-Trichloroethane	20		N.D.
Trichlotoethene	20		
Trichlorofluoromethane	20		N.D.
Vinyi chloride	40	****************	N.D.

Surrogate Recovery. S: 62 Analyles reported as N.D. were not present above the stated limit of detection.

NORTH CREEK ANALYTICAL May 1

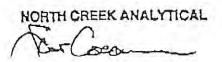
Analyte Detection time 20 N.D. Brandoffine 20 N.D. N.D. Brandoffine 20 N.D. Brandoffine 20 N.D. Statement Detection Limit Sample Description Statement Cleret Project ID: Ames Const. Statement Cleret Project ID: Ames Const. Statement Cleret Project ID: Ames Const. Attement Cleret Project ID: Ames Const. Ballevue, WA S8004 Analysis Method: EPA 5030/6010 Analyzed: Oct Attemtor: George Enters Lab Number: ELK (026)41 Reported: Oct HALOGENATED VOLATILE ORGANICS (EPA 2010) Analyte N.D. N.D. Bronnoffinne 20 N.D. N.D. Charoscharea 20 N.D. N.D. Charosch	영양 지방상은 거야? 집 것은 지나와 방법이 있는 것을 가야 한다.	0 339 2327 ^ 646 0283	FALLERDON, 9 SEACOR		ئور 1000 بھا 100
Lisson 120th Avenue N.E., Suite 101 - Berthell, WA securit. SEACOR Client Project ID: Arres Const. Status Tital Avenue N.E., 4104 Sample Descript: Method Blank Bellavie, WA 98004 Analysis Method Blank Attantion: Gaorge Ehlers Lab Number: BLK102491 HALOGENATED VOLATILE ORGANICS (EPA 8010) Analyzed: Oct Reported: Reported: Oct Reported: Oct Reported: Oct Reported: Oct Reported: Oct Reported: Oct Reported: Reported: Reported: Reported: N.D. Charactiver, Reported: Description: Reported:	SENT BY: SEACOM	;10-28-91 ;1	1:10AN ; N. Cre	ek mulytical-	206 646 0283;#
Phone (206) 481-4200 + FAX (206) 485- SEACOR Cilent Project ID: Ames Const. SSACOR Cilent Project ID: Ames Const. 330 112h Avenua N.E., #104 Sample Descript: Method Blank. Bellevue, WA 98004 Analysis Method: HALOGENATED VOLATILE ORGANICS (EPA 8010) Analyzed: Oct. Analyte Detection Limit Sample Description Fromodichloromethane. 20 N.D. Bromodichloromethane. 20 N.D. Chorosenae. 20 <th>CREEK</th> <th></th> <th></th> <th>and the second second</th> <th></th>	CREEK			and the second	
SEACOR Clear Project ID: Ames Const. 330 112th Avenus N.E., #104 Sample Descript: Method Blank Bellevue, WA 98004 Analysis Method: EPA 5030/8010 Analyzed: Oct Attantion: George Enters Lab Number: ELK102491 Reported: Oct Attantion: George Enters Lab Number: ELK102491 Reported: Oct Analysis Method: EPA 5030/8010 Analysis Method: EPA 5030/8010 Not Analysis Method: EPA 5030/8010 Reported: Oct Not HALOGENATED VOLATILE ORGANICS (EPA 8010) Analysis Method: EPA 5030/8010 Not Analysis Method: Detection Limit Sample Res Pg/kg (pp) Bromodichloromethane. 20 N.D. Not Stormomethane. 20 N.D. Not Chorobenzene. 20 N.D. Not Not Altorothane. 20 N.D. Not Not Chorobenzene. 20 N.D. Not Not Altorothane. 20 N.D. Not Not Altorothane.			18030 120th A	Venue N.E., Suite 101 - Bon Phone (206) 481-9200 -	hell, WA 98011-2569 FAX (205) 465-2992
330 112th Avenue N.E., #104 Sample Descript: Method Blenk Ballevue, WA 98004 Analysis Method: EPA 5030/8010 Analyzed: Oct Attention: George Enlers Lab Number: BLK102491 Reported: Oct HALOGENATED VOLATILE ORGANICS (EPA 8010) Analysis Method: Detection Limit Sample Res µg/kg (ppb) Pig/kg (ppb) N.D. Pig/kg (ppb) N.D. Bromodichloromethane 20 N.D. N.D. Bromodichloromethane 20 N.D. N.D. Bromodichloromethane 20 N.D. N.D. Choroetname 20 N.D. N.D. N.D		Harris and a second			
HALOGENATED VOLATILE ORGANICS (EPA 8010) Analyte Detection Limit µg/kg (ppb) Sample Reg µg/kg (pp) Bromoform 20 N.D. Chorothane 20 N.D. Chiorobenzene 20 N.D. Chiorothane 20 N.D. Ly-Diblorobenzene 20 N.D. J2-Diblorobenzene 40 N.D. 13-Dichlorobenzene 20 N.D. 14-Dichlorobenzene 20 N.D. 14-Dichlorobenzene 20 N.D. 14-Dichlorobenzene 20 N.D. 14-Dichlorobenzene 20 N.D. 14-Dichlorobenze	330 112th Avenus N.E., #104 Bellevue, WA 98004 Attention: George Ehlers	Sample Descript: Analysis Method: Lab Number:	Method Blank EPA 5030/8010 BLK102491	Be	
Analyte Detection Limit µd/kg (ppb) Sample Res µg/kg (pp Bromodichloromethane					
μά/kg (ppb) μά/kg (ppb) Bromodichloromethane	in the second second			(,	Semola Deputte
Bromodefinane					halka (bbp)
Bromoform 20 N.D. Stomortathane 20 N.D. Carbon tetrachloride 20 N.D. Chlorobenzene 40 N.D. 1,2-Dichlorobenzene 40 N.D. 1,4-Dichlorobenzene 20 N.D. 1,1-Dichloroethane 20 N.D. 1,1-Dichloroethane 20 N.D. 1,1-Dichloroethane 20 N.D. 1,2-Dichloroptropene 20 N.D. 1,1-Dichloroethane 20 N.D. 1,2-Dichloroptropene 20 N.D. <tr< td=""><td>Sromodichloromethane</td><td>*****</td><td>20</td><td></td><td>ND</td></tr<>	Sromodichloromethane	*****	20		ND
Stomornethane					
Carbon tetrachloride 20 N.D. Moroethane 20 N.D. Aloroethane 100 N.D. Chioroethylvinyl ether 20 N.D. Soloroethane 20 N.D. Soloroethoromethane 20 N.D. Soloroethoromethane 20 N.D. Soloroethoromethane 20 N.D. Soloroothoromethane 20 N.D. Solorhoroethane 20 N.D. A-Dichloroethane 40 N.D. Solorhoroethane 20 N.D. Solorhoroethane 20 N.D. Solorhoroethane 20 N.D. Soloroethane 20 N.D. Solorhoroethane 20 N.D. Soloroethane 20 N.D. Soloroethane 20 N.D. Soloroethane 20 N.D. <					
hlorobenzene 20 N.D. hloroethane 100 N.D. Chloroethylvinyl ether 20 N.D. hloromethane 20 N.D. hloromethane 20 N.D. hloromethane 20 N.D. y-Dichorobenzene 20 N.D. g-Dichlorobenzene 40 N.D. g-Dichlorobenzene 20 N.D. g-Dichlorobenzene 20 N.D. g-Dichlorobenzene 20 N.D. g-Dichloroptopane 20 N.D. g-J-Dichloroptopene 20 N.D. g-J-Jichloroptopene 20 N.D. g-J-Jichloroptopene 20 N.D. g-J-Jichloroptopene 20 N.D. g-J-Jichloroptopene 20	arbon tetrachloride		20	and the second	
hloroethane				10.1 10 The second s	
-Chloroethylvinyl ether. 20					
hloroform	Chiomethylvinvi ether		20		
hloromethane				and the second	
bitromochloromethane. 20 N.D. g-Dichlorobenzene. 40 N.D. g-Dichlorobenzene. 20 N.D. g-Dichlorobenzene. 20 N.D. g-Dichloroethane. 20 N.D. g-Dichloroethane. 20 N.D. g-Dichloroethane. 20 N.D. g-Dichloropropane. 20 N.D. g-J.Dichloropropane. 20 N.D. g-J.S-Dichloropropene. 20 N.D. g-J.S-Dichloropropene. 20 N.D. g-J.S-Dichloropropene. 20 N.D. g-J.S-Z-Tetrachloroethane. 20 N.D. g-J.1,2-Trichloroethane. 20 N.D. g-J.1,2-Trichloroethane. 20 N.D. g-J.1,2-Trichloroethane. 20 N.D.					
2-Dichlorobenzene					
3-Dichlorober2ene	6 Dishistahatrana		. 20	and the state of the	
44-Dichlorobenzene					
1-Dichloroethana 20 N.D. 2-Dichloroethana 20 N.D. 1-Dichloroethana 20 N.D. 1-Dichloroethana 20 N.D. 1-Dichloroethana 20 N.D. 2-Dichloroethana 20 N.D. 2-Dichloroethana 20 N.D. 2-Dichloroethana 20 N.D. 2-Dichloropropana 20 N.D. 2-Dichloropropana 20 N.D. ans-1,3-Dichloropropena 20 N.D. ans-1,3-Dichloropropena 20 N.D. iethylene chlorkle 100 N.D. iethylene chlorkle 20 N.D. 1,2,2-Tetrachloroethana 20 N.D. 1,1-Trichloroethana 20 N.D. 1,2-Trichloroethana 20 N.D.				The state of the s	
2-Dichloroethans 20 N.D. 1-Dichloroethans 20 N.D. otal 1,2-Dichloroethane 20 N.D. 2-Dichloroptopane 20 N.D. 20 N.D. N.D. ans-1,3-Dichloroptopene 20 N.D. 10-1,2-Z-Tetrachloroptopane 20 N.D. 11,2,2-Tetrachloroethane 20 N.D. 1,1-Trichloroethane 20 N.D. 1,2-Tichloroethane 20 N.D. 1,2-Tichloroethane 20 N.D. 1,2-Tichloroethane 20 N.D.				**************************************	
11-Dichloroethene				**************************************	
otal 1,2-Dichloroethane.20N.D.,2-Dichloropropane.20N.D.,ans-1,3-Dichloropropene.20N.D.ans-1,3-Dichloropropene.20N.D.lethylene chloride.100N.D.,1,2,2-Tetrachloroethane.20N.D.,1,1-Trichloroethane.20N.D.,1,2-Trichloroethane.20N.D.,1,2-Trichloroethane.20N.D.,1,2-Trichloroethane.20N.D.,1,2-Trichloroethane.20N.D.,1,2-Trichloroethane.20N.D.,1,2-Trichloroethane.20N.D.,1,2-Trichloroethane.20N.D.	2-Dichloroetnane	*********		**********************************	
2-Dichloropropane				***************************************	
is-1,3-Dichloropropene				******************************	2 3 4 0 V
ans-1,3-Dichloropropene 20 N.D. lethylene chloride 100 N.D. 1,2,2-Tetrachloroethane 20 N.D. etrachloroethane 20 N.D. 1,1,2-Trichloroethane 20 N.D. 1,1,2-Trichloroethane 20 N.D. 1,2-Trichloroethane 20 N.D. 1,2-Trichloroethane 20 N.D.				***************************************	N.D.
Isthylene chloride 100 N.D. 1,2,2-Tetrachloroethane 20 N.D. etrachloroethane 20 N.D. 1,1-Trichloroethane 20 N.D. 1,2-Trichloroethane 20 N.D. 1,2-Trichloroethane 20 N.D. 1,2-Trichloroethane 20 N.D.				********	N.D.
1,2,2-Tetrachloroethane					N.D.
1,2,2-Tetrachloroethane 20 N.D. etrachloroethane 20 N.D. 1,1-Trichloroethane 20 N.D. 1,2-Trichloroethane 20 N.D. 1,2-Trichloroethane 20 N.D.				********************************	N.D.
etrachloroethene	1,2,2-Tetrachloroethane		20	******	
1,1-Trichloroethane 20 N.D. 1,2-Trichloroethane 20 N.D.	etrachloroethene		20		
1,2-Trichloroethane					
				Concerning and a concerning a second of	6 10 2 25
richloroethene				and the second second second second second second	
				Contraction of the contraction of the state.	
/Invi chloride					

Sumgate Recovery, %: 85 Analytes reported as N.D. were not present above the stated limit of detection.

-

NORTH CREEK ANALYTICAL to fold

5


÷....

•

10/29'91 14:53 FAX 2 -10/28/91 14:41 FAX 2 SENT BY:SEACOM		PATTERSON, et al SEACOR 1:10AM ; N. Greek Analytical-	205	لط 1006 سط 10 546 0283;#
ANORTH CREEK ANALYTIC	AL	and the second		
		18939 120th Avenue N.E., Suite 1 Phone (206) 481	01 • Bothell, WA 1 -8200 • FAX (200	18011-2569 3) 485-2202
SEACOR SEACOR 330 112th Avenus N.E., #104 Bellevue, WA 88004 Attention: George Ehlers	Cilent Project ID: Sample Descript: Matrix: Sample Number.	Soll	Sampled: Received: Digested: Analyzed: Reported:	Oct 18, 19 Oct 18, 19 Oct 22, 18 Oct 22, 18 Oct 25, 19 Oct 28, 19
		PRIORITY METALS		9493 <u>176917</u> 2
Ansiyts		Detection Limit mg/kg (ppm)		e Results <g (ppm)<="" td=""></g>
Antimony		. 25		1.0.
Beryllum	COMPANY CAN IN COMPANY	0.50	And a state of the second	2#://i.ake/e
			AND ADDRESS A	40.00
Nichola Victoria Antonio	Miniating Sulface Distant	20	THE REAL PROPERTY OF LESS	I.D.
14 CACLASSASSASSASSASSASSASSASSASSASSASSASSASS		ERC1910201250		
Seleniuminger and anternation	A CONTRACT OF A DATA DATA DATA DATA DATA DATA DATA D		12-2-1007.010-210.023	* 5 the bold to be
	AT A CASE AND A C	0.050		Y.D.

000061

Analytes reported as N.D. were not present above the stated limit of deteorion.

10/29/91 14:52 FAX	206 339 2527 PATTERSON, et al 646 0283 SEACOR	മ്രവാട മ്ര 0
SENT BY:SEACON	:10-28-91 :11:11AM : N. Creek Analyt	A CONTRACT OF A
ANORTH		
CREEK		
AJANALYTIC	AL .	
Education of the second s	18639 120th Avenue N.E., S	ute 101 - Bothell, WA 98011-2569 3) 481-9200 - FAX (206) 485-2992
		0) 401-0100 - 1 AA (C40) 400-2882
2SEACOR	Cilent Project ID: Ames Const-	Sampled: Oct 18, 19
1330 112th Avenue N.E., #104	Sample Descript: SP-2 @3.0'	Received: Oct 18, 19
Bellevue, WA S8004	Matric Sol	Digested: Oct 22, 19
#Attention: George Ehlers	Sample Number: 110-0755	Analyzed: Oct 25, 19 Reported: Oct 28, 19
	CONTRACTOR OF THE OWNER OWNER OF THE OWNER OWN	and a second and a second state of the second
Analyta	Detection Limit mg/kg (ppm)	Sample Results mg/kg (ppm)
Antimony	25	N.D.
ATTERN OF MARKANNESS PARTY AND		
Beryllum		N.D.
Cacmium: and a statistication of the		
Chronaldenessanallering		
Cooperation in the second second		
	Contraction	AN ARRAY CONTRACTOR OF THE REAL
NCK8	20	N.D.
HEIDERHAMMER		
Silvernamhermannantan	ALL MANAGEMANY CONTRACTORS IN MULTICASY AND	
	0.050	N.O.
Thellum	0.050	

Analytes reported as N.D. were not present above the etated limit of detection.

NOBTH CREEK ANALYTICAL

SENT BY:	14:52 FAX 2 SEACOM		PATTERSON, 6 1:12AM ; N. Gre		200	1010 040 U28.	
	North Creek Analytic	AL		-			
			18939 120th A	venue N.E., Suite 101 - E Phone (206) 481-920	othell, WA 0 • FAX (20	98011-258(8) (85-299)	9
SN:CRIEEZO				ATTENT AND A STATE		and the second	Willie
SEACOR			Ames Const.				
330 112th A	ivenue N.E., #104	Semple Descript:	Method Blank				
Bellevue, W		Matrix:	Water	. 13	Digested:	Oct 22,	18
anention: (Séorga Ehlers	Sample Number:	BLK102291	1	Analyzad:	Oct 25,	19
					Reported:	Oct 28,	
nalyte			Detection Limit µg/L			e Results g/L	
		*******	500	****	K	.D.	
voomitot.							
	Construction of the second second second	and the second second second second second second second		and the second state of th			
Arsenic				***************************************		1,D.	
Arsenic Beryillum			10		1	V.D.	
lesonic Servillum Sedmium			10 10		1	1.D.	
Arsenic Beryillum Sedmium Shromium		, , , , , , , , , , , , , , , , , , ,	10 10 200		1 1 1	1.D. 1.D.	
Arsenic Seryilium Sedmium Shromium Sopper		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10 10 200 50		1 7 1	4.D. 4.D. 4.D.	
Arsenic Seryilium Sedmium Stromium Sopper ead		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10 10 200 60 150		1	V.D. V.D. V.D. V.D.	
Arsenic Beryillum Chromium Copper ead Meroury		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10 10 200 50 150 0.50			4.D. 4.D. 4.D. 4.D.	
Arsenic Beryilium Dedmium. Chromium. Copper ead Vickel			10 10 200 50 150 0.50 400			4.D. 4.D. 4.D. 4.D. 4.D.	
Arsenic Beryillum Chromlum. Chromlum. Copper ead Veroury Vieroury Vickel Selenlum			10 10 200 50 150 0.50 400 6.0			4.D. 4.D. 4.D. 4.D. 4.D. 4.D. 4.D.	
Arsenic Beryillum Chromlum Copper ead Weroury Nickel Selenlum Silveg			10 10 200 50 150 0.50 400 6.0 10		······································	4.D. 4.D. 4.D. 4.D. 4.D. 4.D. 4.D. 4.D.	
Arsenic Beryllum Coromium Copper Lead Meroury Nickel Selenium Silver Thallium			10 10 200 50 150 0.50 400 6.0		······································	4.D. 4.D. 4.D. 4.D. 4.D. 4.D. 4.D.	

 $\hat{\varepsilon}(n) \geq$

Analyies reported as N.D. were not present above the stated limit of detection.

NORTH CREEK ANALYTICAL

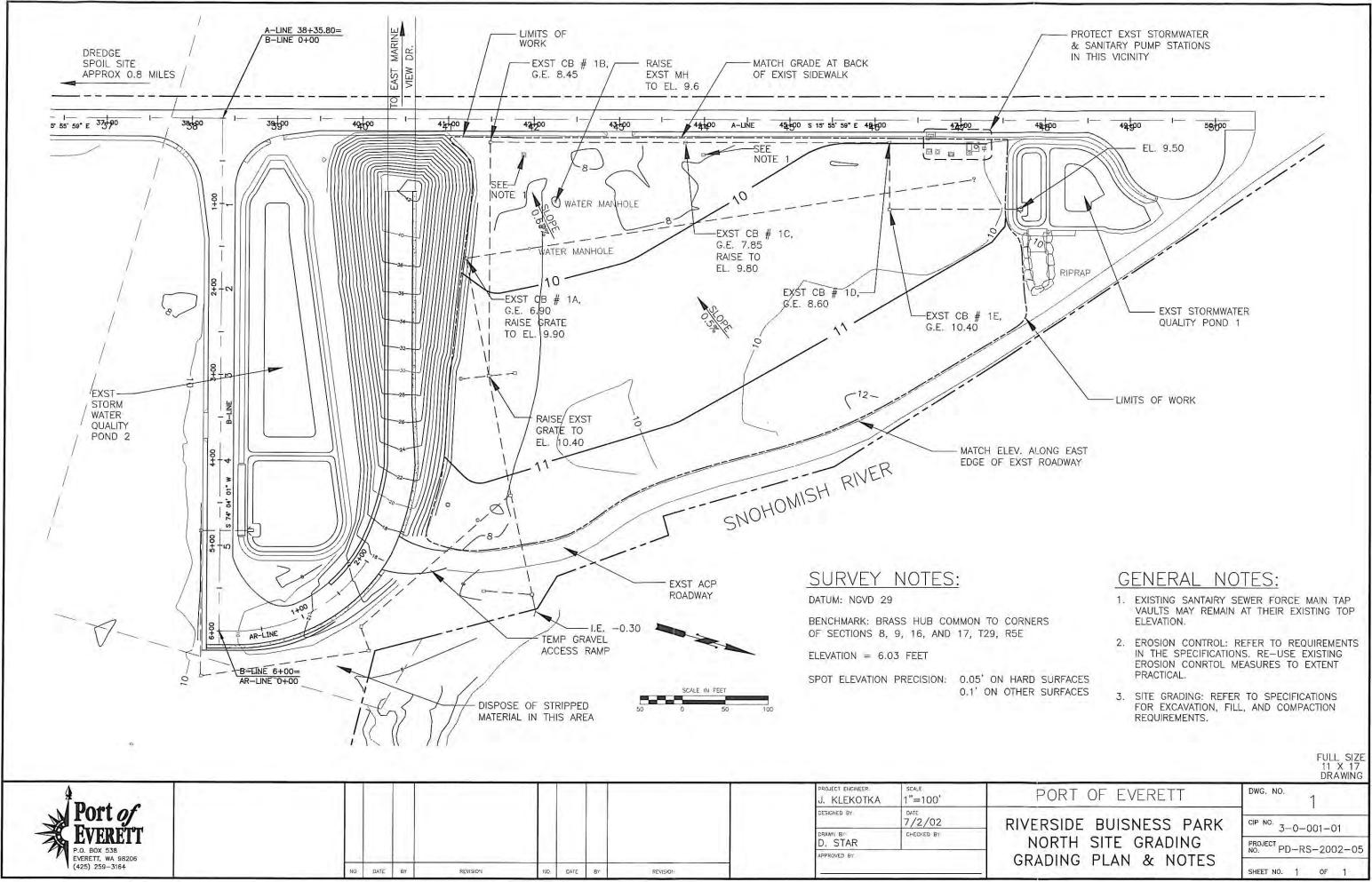
sol Boot Cocanour

1	10.29.91 14:51 SENT BY:SEACON	FAN 200 339 2527 10-28-91	PATTERSON, ET AT 1 111-06AN & N. Creek AP"'YLICAI"	(1100.) ユビロ ビヤロ キビマビデオ し
		*		
	CREEK	FICAL		North Control of Contr

18939 120th Avenue N.E., Suito 101 · Bothall, WA 98011-2569 Phone (208) 481-9200 · FAX (208) 485-2892

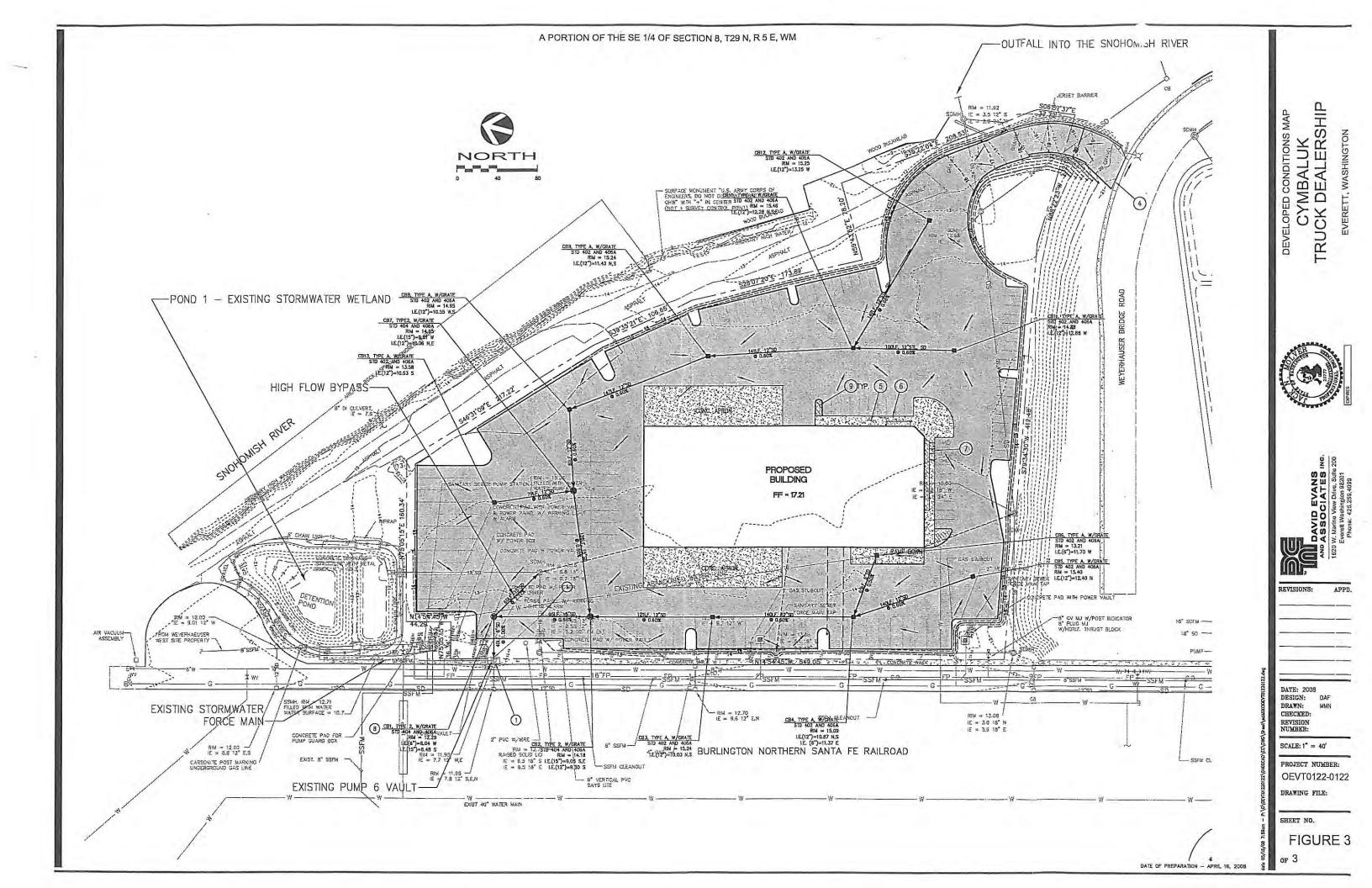
SEACOR	Client Project ID:	Ames Const.	Sampled:	Oct 18, 1991
330 112th Avenue N.E., #104	Matrix Descript:	Sol	Received:	Oct 18, 1991
Bellevue, WA 98004	Analysia Method:	EPA 418.1 Modified (I.R. w/clean-up)	Extracted:	Oct 21, 1991
Attention: George Ehlers	First Sample #:	110-0754	Analyzed:	Oct 21, 1991
Andinone aborgo ertoro	. Har amilia a .		Reported:	Oct 28, 1991

TOTAL RECOVERABLE PETROLEUM HYDROCARBONS (WTPH-418.1)


Sample Number	Sample Description	Petroleum Oll mg/kg (ppm)
110-0754	8P-1 @2.0	14
110-0755	SP-2 @3.0'	29
BLK102191	Method Biznk	N.D.

Detection Limits:

Analytes reported as ND, were not present above the stated limit of detection.


NOETH CREEK ANALYTICAL

2002 RBP North Site Grading Plan

	FULL SIZE 11 X 17 DRAWING
PORT OF EVERETT	dwg. no. 1
IVERSIDE BUISNESS PARK	CIP NO. 3-0-001-01
NORTH SITE GRADING	PROJECT PD-RS-2002-05
GRADING PLAN & NOTES	SHEET NO. 1 OF 1

Cymbaluk Property Developed Conditions Map (David Evans and Associates)

2009 Upper Settling Basin Fill Analytical Data

CENWS-OD-TS-DM

MEMORANDUM FOR: RECORD

July 7, 2004 Updated October 1, 2004

SUBJECT: DETERMINATION ON THE SUITABILITY OF PROPOSED FEDERAL OPERATIONS AND MAINTENANCE DREDGED MATERIAL FROM THE UPPER SNOHOMISH RIVER SETTLING BASIN AND UPSTREAM NAVIGATION CHANNEL (Reference: CENWS OD-TS-NS-22) EVALUATED UNDER SECTION 404 OF THE CLEAN WATER ACT (CWA) FOR OPEN-WATER DISPOSAL AT THE PORT GARDNER NONDISPERSIVE DISPOSAL SITE AND/OR FOR BENEFICIAL USE.

1. <u>Introduction</u>. The following summary reflects the consensus determination of the Dredged Material Management Program (DMMP) Agencies (U.S. Army Corps of Engineers, Department of Ecology, Department of Natural Resources, and the Environmental Protection Agency) with jurisdiction on dredging and disposal on the suitability of approximately 800,000 cy of sediment from the upper settling basin and adjacent navigational channel over the next five dredging seasons. Approximately 200,000 cy is scheduled for dredging and beneficial use in 2005, with the remainder dredged in two or three of the following four years (alternately with dredging in the downstream basin). This federal maintenance material from the **Upper Snohomish Navigation Channel** in Everett, Washington is proposed to be disposed at the Port Gardner DMMP unconfined open-water disposal site or at an approved beneficial use site.

This determination of suitability for open-water disposal is based on the acceptability of the sampling conducted by Seattle District, Corps of Engineers contractors and subcontractors in March 2004. All relevant test data from this sampling event is contained in a report submitted by Anchor Environmental dated June 2004. These data were considered sufficient and acceptable for decision-making by the agencies.

Time of proposed dredging	October 16 – February 14, as needed, throughout the 5-year public notice period (FY 2005 – 2009)
Proposed disposal sites	Port Gardner non-dispersive disposal site, or beneficial use
Sediment ranking	Low moderate, homogenous
Project last dredged	January 2002 (170,000 cy; upland beneficial use disposal)

Table 1. Project Summary.

Table 2.	Regulator	y Tracking	Table.
I GUIDALIA MAL		1	

Dredging Year	2005
SAP received	February 9, 2004
SAP Approval date	March 26, 2004
Sampling date(s)	March 29 - 31, 2004
Data report submittal date	June 15, 2004
DAIS Tracking # (DY05 Project)	EVEUS-1-A-F-194
Recency Determination Date: LM Concern (5-7 years)	March 2009 - 2011

2. <u>Background</u>. As part of the federal Snohomish River navigation channel the Upper settling basin provides a wide, deep spot in the river for sediments moving downstream to settle out. In general, settling basins allow navigation maintenance dredging to be concentrated in given areas, reducing the dredging footprint while continuing to provide depths necessary for navigation. Sediments in the Upper Snohomish Settling Basin are considered "homogenous" as they are dredged regularly and accumulate predictably on a seasonal basis.

The area proposed for maintenance dredging has not been previously characterized by the DMMP, as no previously dredged material has been disposed in open water. Dredging sediments have been used regularly for upland beneficial uses by local entities. Dredging was last performed in 2002 with disposal in a contained upland beneficial use site.

3. <u>Sampling</u>. The area proposed for dredging was ranked "low-moderate" by the DMMP agencies, based on results from downstream testing and a lack of upstream contaminant sources. For low-moderate homogenous material, the DMMP requires a minimum of one field sample for each 8,000 cy and one laboratory analysis for each 40,000 cy. For the current characterization, 21 core samples were combined into 12 composites for analysis. Each analysis represented one DMMU of between 27,000 and 38,000 cy of material (Table 3). Each DMMU also met the requirement of dredging independence, such that the area represented by each sample could be dredged independently from surrounding DMMUs should they have different suitabilities for open water disposal or beneficial use.

Sampling took place on March 29 – 31, 2004 aboard the Corps vessel *Puget*. The approved SAP was followed. Twenty-four core samples were taken with a Vibracore sampler and processed on board the vessel. The sampling equipment was unable to penetrate to the full depth of the dredge prism (see Table 3), so all sample material from a given DMMU came from the upper portion of the DMMU. Material from each core was composited with other cores from a given DMMU. No Z-samples were collected for any of the samples due to core the depth of the sampling prism.

PARAMETER	S1	S2	S 3	S4	S5	S6	S7	S8	S 9	S10	S11	S12
Sampling Depth Interval	0-4 ft	0-4 ft	4-11.5 ft	4-9.5 ft	4-11 ft	4-10.5 ft	4-10.5 ft	4-9 ft	4-10 ft	4-10 ft	4-11.5 ft	4-9.2 f
DMMO Depth Interval (to bottom of 2' overdepth)			18	16.5	17.6	19	24.4	23.2	36.7	35.8	35.5	34.3
Volume, cubic yards	27,500	27,300	37,300	37,900	37,500	37,800	37,900	37,700	38,000	38,000	36,800	36,700

Table 3. Sampling Details, Upper Snohomish Settling Basin, DY 2005.

4. <u>Conventional and Chemical Analysis</u>. The Agencies' approved sampling and analysis plan was followed. Conventional (Table 4) and chemical analyses (Appendix A) were performed by Columbia Analytical Services (CAS) of Kelso, Washington. Chemical analysis results demonstrated that there were no detected or non-detected SL exceedances of any DMMP chemical of concern in any sample. All data complied with general QA/QC requirements of the DMMP (Table 5) and were acceptable as qualified by the laboratory.

Because this material has been proposed for use as capping material, it was also tested for Atterberg limits--a test used to estimate strength and settling characteristics. All material tested was found to be "non-plastic" by the Atterberg limit testing.

Table 4. Conv	ventional Results,	Upper Snohomish	Settling Basin, DY 2004.
---------------	--------------------	------------------------	--------------------------

PARA	WETER	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12
	Gravel	1.40	1.86	0.51	0.72	0.73	1.65	2.45	8.49	6.10	0.74	0.50	1.23
Size	Total Sand	89.7	94.4	96.3	82.3	71.3	81.8	90.4	78.8	90.8	93.5	96.9	97.1
	Silt	3.11	1.04	2.78	11.00	21.70	11.20	4.05	7.77	1.29	2.90	0.42	0.52
Grain	Clay	1.35	0.78	1.94	6.21	5.47	2.66	1.73	2.51	0.70	1.64	0.64	0.60
-	Fines (silt + clay)	4.46	1.82	4.72	17.21	27.17	13.86	5.78	10.28	1.99	4.54	1.06	1.12
Total	Organic Carbon (%)	0.45	0.28	0.61	0.99	1.30	2.71	3.00	5.39	1.22	0.98	0.27	0,25
	solids (%)	75.4	78.3	76.4	73.6	72.3	65.3	72.2	56.6	73.4	72.4	75.8	79.2
	volatile solids (%)	2.06	1.53	2.3	2.81	4.42	8.05	5.32	10.6	3.97	3.18	1.77	1.29
	monia (mg/kg)	11.8	2.3	5.5	25.3	36.1	66.4	14.8	46.9	2.6	2.9	2.0	1.1
	e (mg/kg)	23.7	17.8	10.3	86.3	20.3	30.9	189	272	1.3	33.1	38.6	1.8

Table 5. QA/QC Warning and Action Limits (DMMP Program).

	QA Element	Warning Limits	Action Limits
B. 1.1.	Metals	None	20% RPD or COV
Precision	Organics	35% RPD or COV	50% COV or a factor of 2 for duplicates
	Metals	None	75-125% recovery
Matrix Spikes	Organics: Volatiles Semivolatiles and Pesticides	70-150% 50-150%	None (however, zero percent recovery may be cause for data rejection)
Reference	Metals	None	95% Cl if specified for a particular CRM; 80-120% recovery if not.
Materials	Organics	None	95% CI for CRMs. No action limit for uncertified RMs.
	Volatiles	85% minimum recovery	
Surrogate Spikes	Pesticides	60% minimum recovery	EPA CLP chemical-specific recovery limits
	Semi-volatiles	50% minimum recovery	

5. <u>Comparison to SMS Guidelines.</u> All results of the chemical analyses were organic carbon normalized, if necessary, and compared to Washington State Sediment Management Standards (Appendix B). As shown in Table 4, there was a wide variation in total organic carbon (TOC) content in the twelve analyzed samples. Samples with a TOC content of greater than 0.5% but less than 3.0% were carbon normalized (Appendix B, Table 1). Samples with TOC outside these ranges typically have their dry weight concentrations compared with dry weight Apparent Effects thresholds Appendix B, Table 2).

The analyses showed that levels of all detected and most undetected contaminants were below the Sediment Quality Standards (SQS) set by Washington State. One chemical (hexachlorobenzene) was not detected, but the reporting limit of the carbon-normalized value (0.46 mg/kg-OC) exceeded the SMS guidelines (0.38 mg/kg-OC) in one DMMU (C3). Though the TOC content of this DMMU exceeded 0.5%, it still had very little TOC (0.61%) and thus most likely showed this elevated non-detect for reasons related to the low TOC (see Michelson and Bragdon-Cook 1993). The DMMP agencies agreed that there is no reason to believe that this non-detected chemical is actually present at any level of concern. Thus, this analysis indicates that all sediments tested are suitable for beneficial uses under Washington State Sediment Management Standards, including use as cap material.

6. <u>Suitability</u>. This memorandum documents the suitability of proposed dredged sediments from the upper Snohomish settling basin and adjacent navigation channel for disposal at a DMMP open-water disposal site, or at an approved beneficial use site. The data gathered were deemed sufficient and acceptable for regulatory decision-making under the DMMP program. Based on the results of the previously described testing, the DMMP agencies concluded that all **430,000 cy are suitable** for open water disposal. This determination of suitability does not preclude the consideration of this material for an appropriate beneficial use. It does not constitute final agency approval of the project. During the public comment period that follows a public notice, the resource agencies will provide input on the overall project. A final decision will be made after full consideration of agency input, and after an alternatives analysis is done under section 404(b)(1) of the Clean Water Act.

7. References.

- Anchor Environmental 2004. Data Report: Sediment characterization results for the Upper Snohomish River settling basin and upstream navigation channel. Prepared for the Seattle District, US Army Corps of Engineers, June 2004.
- Michelson, T and Bragdon-Cook, K 1993. Technical Information Memorandum: Organic Carbon Normalization of Sediment Data. Washington State Dept. of Ecology.

Concur:

117/04 11 Date

Latiran Cole Warner, Seattle District Corps of Engineers

BNON 2004

Date

Malle

John Malek, Environmental Protection Agency

Copies Furnished: George Hart, Corps Patty Miller, Corps Miriam Gilmer, Corps Peter Leon, DNR Tom Gries, Ecology Loree' Randall, Ecology John Malek, EPA Sally Thomas, EPA DMMO file

Tom Gries, Washington Department of Ecology

Peter Leon, Washington Department of Natural Resources

0

APPENDIX A

Detected chemicals of concern compared with DMMP guidelines for the Upper Snohomish Turning Basin, DY 05.

Upper Snohomish				Surface	ICe			S	ubsurfac	Subsurface (progressing upstream)	idn Bujss	stream)			
DY04 DMMP chemistry	SL	BT	ML	(downstream) (upstream)	2 (upstream)	e	4	2	9	7	8	6	10	11	12
Metals (mg/kg)														111.00	1407 0
Antimonv	150	1	200	0.08N	0.08N	0.07N	0.12N	0.16N	0.17N	0.13N	0.15N	0.13N	N60.0	0.24N	NOL O
Arsenic	57	507.1	700	5.9	5.7	5.5	6.6	7.3	7.2	6.5	7.7	5.0	5.7	5.1	5.9
Cadmium	5.1	1	14	0.10	0.10	0.08	0.15	0.14	0.16	0.15	0.24	0.09	0.13	0.08	0.09
Chromium	1	767	1	18.3	17.2	20.4	26.9	29.0	22.3	21.1	21.9	17.8	17.9	22.5	18.0
Conner	390	1	1300	20.2	16.9	16.9	24.8	28.4	26.0	24.4	26.7	17.2	18,9	18.2	18.0
l aad	450	1	1200	4.24	3.60	3.96	6.30	8.32	6.42	4.74	5.34	3.81	3.94	3.45	3.78
Marcurv	0.41	1.5	2.3	0.02	0.02J	0.02	0.04	0.05	0.04	0.02	0.04	0.03	0.02	0.01J	0.02
Nickel	140	370	370	21.5	21.1	21.3	26.5	29.1	25.1	23.4	23.5	20.5	20.6	22.1	22.0
Salanium	1	3	1			LE.0			0.3J	0.4J	0.4J		0.3J		
Cilver	61	61	84	0.05	0.04	0.03	0.10	0.10	0.08	0.06	0.08	0.04	0.04	0.05	0.04
Zinc	410	1	3800	37.5	36.8	34.4	43.4	44.7	42.1	41.3	102	36.0	37.7	39.7	37.3
LPAHs (ua/ka-DW)															
Total I PAH	5200		29000	15.1	2J	6.1	46J	55J	444.1	43.1	67J	18.1	21.3J	16.6J	-
Nanhthalene	2100	'	2400	3.2.1	2.3J	2.5J	9.1J	14	370	5.0J	23	4.9.1	7.5J	6.2.1	
Acenanhthvlene	560	1	1300				6.8.	3.4J	2.3J						
Arenenhthene	500	1	2000	1.6J			4.7.1	6.8.1	14	4.7.1	9.4J	1.7.1	2.0.1	1.87	
Elinnana	540	1	3600				4.0.1	P0.9	12	5.5J	8.8.1	2.4J			
Dhananthrana	1500		21000	6.4.1		1.9.1	13	16	37	18	8	6.9.1	7.8.7	6.3J	
Anthracana	960	1	13000	3.5J		1.9.1	1.9.1	8.8.1	8.4J	9.5J	3.4J	2.1J	4.0.7	2.3J	
2-Methvinaphthalene	670	1	1900				4.8J	5.8J	7.3J	2.2.1	4.2.1		1.8.1	2.01	
HPAHs (ug/kg-DW)													i	1.00	107
Total HPAH	12000	1	00069	11.6J		17.1	225J	89J	2007	42.1	32.1	16.1	CIL .	227	rni
Fluoranthene	1700	4600	30000	4.8.1		1.9.1	ន	20	33	17	13	4.6.	6.5J	7.5J	
Durana	2600	11980	1	4.4.1		6.2J	40	19	90	12	10	3.6J	5.5J	8.2.1	
Renzolalanthracene	1300	1					26	9.4J	25	4.2.1		3.0J	2.1J	5.0J	
Chrysene	1400	1	21000	2.4J		2.4J	30	12	29	6.5.1	4.6J	4.4.)	2.8.1	4.3J	
Benzo(b)fluoranthene		1	1				13	6.1	17						
Renzo(k)fluoranthene	1	1	1				13		£						3.4J

July 7, 2004 October 1, 2004 Update

Page 6/12

Upper Snohomish O&M Suitability Determination Memorandum

Unde unitative fundamentifications ist it it<	ry anthenes		-		Surface	ace			S	Subsurface (progressing upstream)	e (progre	dn Buiss	stream			
960 970 960 970 <th>anthenes</th> <th></th> <th>BT</th> <th>ML</th> <th>1 (downstream)</th> <th>2 (upstream)</th> <th></th> <th>4</th> <th>2</th> <th>9</th> <th>7</th> <th>8</th> <th>6</th> <th>10</th> <th>11</th> <th>12</th>	anthenes		BT	ML	1 (downstream)	2 (upstream)		4	2	9	7	8	6	10	11	12
3800 1 271 400 1 410 1 451 601 714 400 4400 1 8.54 331 7 40 1 451 601 1 1 2600 1 8.54 331 7 1		8	1	0066				26	6.1	28						3.4J
		8	1	3600				21	8.7.J	14	2.7.J	4.0.1				3.2J
		0	1	4400				11	4.5.)	6.0.1						
3200 85.0 85.1 33.1 9 10		9	1	1900				3.4J		L4.7						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0	1	3200				8.5J	3.3J							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	orinated Hydrocarbons (up	d-pyla	M													
	3-Dichlorobenzene 17	0	1	1										-		
		0	1	120												
		5	1	110												
22 168 230 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 <td>-</td> <td>-</td> <td>1</td> <td>64</td> <td></td>	-	-	1	64												
		2	168	230												
	thalates (µg/kg-DW)															
	-	8	r	1												
5100 - 92.1 6.7 4.5 7.3 7.8 8.7 7.3 7.5 8.5 870 - 92.1 6.7 4.5 3.7 3.5 3.5 3.5 3.7 3.5 3.5 3.7 3.5 3.5 3.7 3.5 3.7 3.5 3.7 3.5 3.7 3.5 3.7 3.5 3.5 3.7 3.5 <t< td=""><td></td><td>8</td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td></t<>		8	1	1												1
970 -		00	1	ı	9.2.1	6.7J	4.5J	7.3J	7.8J	8.2.1	13	6.7J	1.9.1	16	8.5J	15
Ialate 6300 - - 6.2.1 3.9.1 4.9.1 25.1 5.1.1 27.1 3.9.1 8.1.1 5.6.1 6200 -		0	1	1												3.01
$(6200 \ -)$ $(-)$		00	1	1	6.2.1	3.9.1	4.9J	255	5.1J	27J	3.9.1	8.1J		6.17	5.6J	C0.C
420 - 1200 9.3.1 8.2.1 10.1 11.1 $=$ 97 18.1 13.1 $=$ 7.4.1 63 - 77 - 3600 14 7.6.1 8.8.1 15 20 64 7 49 23 25 17 29 - 210 - 14 7.6.1 8.8.1 15 20 64 7 49 23 25 17 400 504 600 - 140 - 670 12 49 23 25 17 400 504 600 - 140 - 670 - 13 10 650 - 700 - 53.1 12 31.1 56.1 13 10 650 - 170 - 53.1 12 31.1 56.1 13.1 13 10 650 - 1400 - 27.1 <	1.5	00	1	1												
420 - 1200 9.3.3 8.2.1 10.1 11.1 97 18.1 13.1 6.8.1 7.4.1 63 - 7.7 - 860 14 7.6.1 8.8.1 15 20 64 49 23 25 17 29 - 210 - 210 - 8.8.1 15 20 64 49 23 25 17 400 504 690 - 8.8.1 15 20 64 49 23 25 17 97 51 - 870 - 8.9.1 12 12 13 10 190 57 - 870 - 8.7.1 3.2.1 12 13 10 190 57 - 17 23 12 12 13 10 13 10 13 10 13 10 14 15 14 16 16 16 <td>enols (µg/kg-DW)</td> <td></td> <td>1</td>	enols (µg/kg-DW)															1
Iphenol63- 77 06.8J(phenol670-3600147.6J8.8J152064492325(althylphenol29-2108.8J152064492325Inforphenol29-2108.8J152064492325Inforphenol29-2108.8J152064492325Inforphenol57-8708096.8J96.8JInforphenol57-8708098.8J121213Inforphenol57-87095.3J12315.6J13Information540-760927J3.2J6.7J3.1J5.6J13/JInformation29-1700999913/J13/J13/J13/JInformation29-1309999913/J13/J13/J13/J13/JInformation28-13099999913/J13/J13/J13/J13/J13/JInformation28-1309999999913/J13/J13/J13/J13/J13/J13/J13/JInformation28-130 <td< td=""><td></td><td>0</td><td>1</td><td>1200</td><td>9.3J</td><td>8.2J</td><td>101</td><td>111</td><td></td><td></td><td>26</td><td>18.1</td><td>13J</td><td></td><td>1</td><td>5.5.1</td></td<>		0	1	1200	9.3J	8.2J	101	111			26	18.1	13J		1	5.5.1
670 - 3600 14 7.6J 8.8J 15 20 64 49 23 25 29 - 210 29 23 25 25 400 504 690 29 23 25 29 23 25 33 25 33 25 26 31	Aphenol	3	1	11										6.8.1	7.4.1	
29 - 210 29 - 210 690 901 610 504 690 91 13 Kg-DW 57 - 870 50 1 12 31 12 31 13 57 - 870 - 760 - 770 32.1 6.7.1 3.1.1 5.6.3 13 650 - 760 - 1700 - 1700 - 18.0 - 18.0 650 - 1700 - 1700 - 14000 - 14000 - 14000 - 18.0 - 18.0 - 16 29 - 1300 - 14000 - 14000 - 18.0 - 18.0 - 18.0 - 18.0 - 18.0 - - - 18.0 - - - - - 18.0 - 18.0 - - - 18.0 - 18.0 - 18.0 - - - 18.0		02	1	3600	14	7.6J	8.8.	5	20	64		49	23	52	11	
400 504 690 690 90 71 12 31 13 Mi 57 - 870 90 533 12 31 13 13 Mi 57 - 870 90 93 91 91 13 Mi 57 - 870 90 93 91 91 13 540 - 760 90 93 32J 6.7J 3.1J 5.6J 1.8J 1400 - 14000 - 14000 - 14000 - 1.8J - 28 - 130 - 130 0 1 0		-	1	210												
MJ 57 - 870 31 12 31 13 13 650 - 760 - 760 - 760 - 1700 - 1700 - 1810 131 5.61 1.81 181 1400 - 1700 - 1700 2.71 3.21 6.71 3.11 5.61 1.81 230 - 1700 - 14000 - 14000 - 14000 - 1.81 1.81 1.81 239 - 2700 - 1300 0.11 0.10 0.11 0.10 </td <td>1.0</td> <td>-</td> <td>504</td> <td>690</td> <td></td>	1.0	-	504	690												
57 870 531 12 31 13 650 760 760 760 1700 540 1700 1700 1700 1700 1400 14000 14000 14000 180 28 130 130 160 180 28 130 130 160 180	scellaneous (µg/kg-DW)															
650 760 760 760 540 1700 2.7J 3.2J 6.7J 3.1J 5.6J 1400 14000 14000 14000 29 270 130 130		7	1	870					5,3J	12		31		13	10	
540 - 1700 2.7J 3.2J 6.7J 3.1J 5.6J 1400 14000 - 14000 - 14000 29 270 - 270 - - 170 28 130 - 130 - - - - -		00	1	760												
1400 1 29 1 28 1		9	1	1700				2.7J	3.2J	6.7.1	3.1J	5.6J		1.8.1		
29 1		00	1	14000												
28		<u>о</u>	1	270												
	-	8	1	130												
			1													

.

July 7, 2004 October 1, 2004 Update

Page 7/12

Upper Snohomish O&M Suitability Determination Memorandum

Upper Snohomish				Surt	Surface				0)	ubsurfac	Subsurface (progressing upstream)	u Buiss	stream)			
DY04 DMMP chemistry	SL	BT	WF	1 (downstream	ream) (upstream)	(m) 3		4	ŵ	9	7	8	đ	9	11	12
Volatiles (µg/kg-DW)															1	
Trichloroethene	160	1	1600													
Tetrachloroethene	57	1	210			+										1
Ethylbenzene	10	1	ß			-										1
m,p-Xylenes	1	1	1							1						
o-Xylene	1	1	1			-										
Xviene (total)	40	1	160			-										1
PCBs/Pesticides (ug/kg-DW)	M						R							_		-
DDT (total)	6.9	50	69					1.3	0.99J	0.27JP	1.15JP	1.4	1.2P	-+		-
000-17 V	1	1	Ĩ					0.54JP	0.99J	0.27JP				0.41J		1
AUL-NR	1	1	1								0.32JP					-
		1	1			-	-	0.8J			0.83J	1.4	1.2P			_
Aldrin	10	1	1			-	-						0.94J			-
Dieldrin	9	1	I.													-
gamma-BHC (Lindane)	10	1	1			+	1									_
alpha-Chlordane	10	37	1			+	1									
Heptachlor	10	1	1			+	+									-
Total PCBs	130	1	3100			-			8.6J	9.01						+
PCBs/Pesticides (mg/kg-OC)	00)					-										-
alpha-BHC	1	10	1			+										1
Total PCBs	1	38	1			-										-

Notes:

J: The result is an estimated concentration based on either a laboratory quality control sample exceedance, or the reported concentration is less than the method reporting limit (MRL) but greater than the MDL.
 DW: Dry weight
 OC: Organic carbon
 2-Methylnaphthalene is not added to other LPAHs as part of the total LPAH levels.

July 7, 2004 October 1, 2004 Update

Upper Snohomish O&M Suitability Determination Memorandum

Page 8/12

APPENDIX B

Table 1. SMS chemicals of concern for DMMUs with TOC greater than 0.5% and less than 3.9%, compared with Washington State guidelines for the Upper Snohomish Turning Basin, DY 05.

Upper Snonomism D 194 Sino circuitury - Co normalized					SUNO	/meanedn AmeestAnid) aneiland	words Amers	1	
	units	sos	CSL	3	4	â	9	0	6
Conventionals							42.0		0 08
Total Organic Carbon (%)	ł	ı	Ţ	0.61	AR'O	nc.1	117	77	00.0
Metals		I	5	IJ	9	52	62	LC.	5.7
Arsenic	mg/kg	21	59	0.0	0.0	0.1	11		0.13
Cadmium	mg/kg	5.1	6.7	0.08	c1.0	0.14	0.00	0.02	17.0
Chromium	mg/kg	260	270	20.4	26.9	RZ	27.3	0.11	0.0
Conport	ma/ka	390	390	16.9	24.8	28.4	26	271	16.9
	malkn	450	530	3.96	6.3	8.32	6.42	3.81	3.94
raan	malka	0.41	0.59	0.02	0.04	0.05	0.04	0.03	0.02
IMPICULY CONTRACTOR	and ka	19	6.1	0.03	0.1	0.1	0.08	0.04	0.04
Silver Zinc	mg/kg	410	960	34.4	43.4	44.7	42.1	36	37.7
				Ż					1000
Total PCBs	mg/kg-OC	12	65	3.27 U	2.02 U	0.66	0.33	1.63 U	2.04 U
svocs									
LPAH			8				1.000	0.0411	1 41 0
2-Methvinanhthalene	ma/kg-OC	38	64	1.63 U	0.48 J	0.44.0	r 97.0	0.010	201.0
Account theory	ma/kn-OC	16	21	1,63 U	0.47 J	0.52 J	0.51	0.13.1	r 7 0
	malka-OC	99	99	1.63 U	0.68 J	0.26 J	0.08 J	0.81 U	1.01 U
Acenaphunyiene	OC Byfur	000	1200	031J	L 97.0	0.67 J	0.3 J	0.17 J	0.4 J
Anthracene	DO-RVBII	777	20	1 63 1	170	0.46.1	0.44	0.19 J	1.01 U
Fluorene	ng/kg-UC	38	CL.		1 100	107	14	0.4.0	0.76 J
Naphthalene	mg/kg-OC	55	0/1	0.4.0	N 10'0	10.1	1 36	0.56.1	0.79.1
Phenanthrene	mg/kg-OC	100	460	0.31 J	10.1	3.5	3.4	4 47	247
Total LPAH	mg/kg-OC	370	780	1.03	4.59	4.23	0	1	4
НРАН			010	11 00 1	500	1 02.0	0.00	0.24.1	0.14
Benzo(a)anthracene	mg/kg-OC	110	5/0	0.001	20.2	1 220	0.44	11180	1 04 11
Benzo(a)ovrene	mg/kg-OC	66	210	1.63 U	21.2	0.00	10.0	1.000	1 10 1
Benzola h ihrendene	ma/ka-OC	31	78	1.63 U	0.85 J	0.25 J	0.36 0	0.81 0	1.01 0
Delizo(Biriri)del Jucio	malka-OC	110	460	L 95.0	3.03	0.92	1.07	0.36 J	0.28.1
Dihonzola hiathmana	ma/kn-OC	12	33	1.63 U	0.34 J	0.76 U	0.27 J	0.81 U	1.01 U
	ma/ka-OC	160	1200	1.29 J	3.33	1.53	1.21	0.37 J	0.66 J
Incleno(1 2 3-cd)nvrene	mg/kg-OC	34	88	1.63 U	1.11	0.34 J	0.22 J	0.81 U	1.01 U
Indeno(1,2,3-ca)pyrene		5	}						

July 7, 2004 October 1, 2004 Update

Page 9/12

Upper Snohomish O&M Suitability Determination Memorandum

					Subs	Subsurface (progressing upstream)	essing upstro	eam)	
Upper Snohomish DY04 SMS chemistry - OC normalized	units	SQS	CSL		4	5	9	Ø	9
Darrow Contraction of the second se	malka-OC	1000	1400	1.01 J	4.04	1.46	11	0.29 J	0.56 J
	DO Bullou	020	450	1.63 U	2.62	0.46	1.03	0.81 U	1.01 U
l otal Benzonuorantnenes (0+j+k) Total HPAH	mg/kg-oc	960	2300	2.7	20	6.37	6.36	1.27	1.72
Chlorinated Hydrocarbons		4146			1100	1198.0	11 00 0	0.4711	0.21 U
1 2 4-Trichlorobenzene	mg/kg-OC	0.81	1.8	0.330 U	0.12.0	0.10 0	0.00		1011
1 2. Dichlorohanzana	ma/ka-OC	2.3	2.3	1.63 U	1.11 U	0.76 U	1 95.0	0.010	
	molka-OC	3.1	5	1.63 U	1.11 U	0.76 U	0.36 U	0.81 U	0101
1,4-uticituouserizerise Hexachlorobenizerie	mg/kg-OC	0.38	2.3	0.46 U	0.29 U	0.23 U	0.12 U	0.24 U	0.31 U
Phthalates		I	C T	1 0 0	2 53 1	1.95.0	0.99.1	16 U	0.62 J
bis(2-Ethylhexyl)phthalate	mg/kg-OC	41	8/	0.01	n 70.7	0.02.0	11 95 0	0.8111	10111
Ruthbenzvinhthalate	ma/kg-OC	4.9	64	1.63 U	1.11 U	0.70 0	0.000		11101
Distridution	ma/ka-OC	61	110	1.63 U	1.11 U	0.76 U	0.36 U	0.81 0	1.101
	OO-Dallow	2	23	1.63 U	1.11 U	0.76 U	0.36 U	0.81 U	1.01 U
Dimethylphthalate	OO Bylow	000	1700	0.73 J	0.73 J	C 9.0	0.3 J	0.64 J	1.63
Di-n-butyiphthalate Di a contributibalate	malka-00	88	4500	1.63 U	1.11 U	0.76 U	0.36 U	0.81 U	1.01 U
Dhanale								C L t	1102
	unlkn	29	29	7.2 U	7.5 U	U 1.7 U	8.5 U	ne'	0.0
	nalka		63	10 U	11 U	0.9 U	10 U	10 U	6.8.3
Z-IMETRYIPhenol	Supp.	670	670	8.8.1	15	20	64	23	25
4-Methylphenoi	Ruffin	360	690	50 U	51 U	50 U	50 U	50 U	20 0
Pentachlorophenol	ug/ka	420	1200	101	11.1	11.1	30 0	13 J	30 U
Microlishoolis	>	Si .						1 10 0	1 46 0
	ma/ka-OC	15	58	1.63 U	0.27 J	0.24 J	0.24 J	0.010	0.100
	OC andrea	39	62	1.63 U	1.11 U	0.76 U	0.36 U	0.81 U	0 10.1
Hexachlorobutadiene	DO-RUA		11	1 6311	1110	0.76 U	0.36 U	0.81 U	1.01 U
n-Nitrosodiphenylamine	mg/kg-uc	H	= 5	11000	11070	11000	11000	20011	200 U
Benzoic acid	ng/kg	650	009	500.0			10.00	1011	13
Benzid almohol	ua/ka	21	73	10 0	N LL I	0.0.0	71	202	2

Notes:

-

.

U: The compound was analyzed for, but not detected ("Non-detect") at or above the method detection limit (MDL). OC: Organic carbon Values shaded in yellow with italic font are non-detects that exceed SQS levels when OC normalized. See text for explanation. a

July 7, 2004 October 1, 2004 Update

Upper Snohomish O&M Suitability Determination Memorandum

Page 10/12

Table 2. SMS chemicals of concern for DMMUs with TOC less than 0.5% and greater than 3.9%, compared with Washington State dry wt. AETs, for the Upper Snohomish Turning Basin, DY 05.

comparisons for dry wt. criteria units conventionals Total Organic Carbon (%) Arsenic Cadmium Chromium	-			Uns	Surface	Subs	Subsurface (progressing upstream)	essing upstre	am)
t tionals Irganic Carbon (%) um lum	units	SQS	CSL	1 (down- stream)	2 (up- stream)	7	8	Ħ	5
ugano vanou va m lum		15	I	0.45	0.28	3.00	5.39	0.27	0.25
un mi		2					1	ì	c L
εE	ha/ka	57	93	5.9	5.7	6.5	7.7	5.1	5.4
	a/ka	ы	6.7	0.1	0.1	0.15	0.24	0.08	60.0
	a/ka	260	270	18.3	17.2	21.1	21.9	22.5	8
	only on	390	390	20.2	16.9	24.4	26.7	18.2	8
	Bulka	450	530	4.24	3.6	4.74	5.34	3.45	3.78
	Dup.		0.59	0.02	0.02 B	0.02	0.04	0.01 B	0.02
2	Rufi	о «	61	0.05	0.04	0.06	0.08	0.05	0.04
	By/Bu	410	096	37.5	36.8	41.3	102	39.7	37,3
, Į	>								
DCBs	ua/ka	130		20 U	20 U	20 U	20 U	20 U	20 U
		2						1	
LPAH								- 00	101
nyhaphthalene	lg/kg	670		10 0	10 0	5.2.3	4.2 J	7.0.7	
	ug/kg	500		1.6 J	10 U	4.7.9	9.4.1	1.0.1	
	ua/ka	560		10 U	10 U	10 U	10 U	9.9 U	
	in/ka	960		3.5 J	10 U	9.5 J	3.4 J	2.3 J	10 C
	inder o	540		10 U	10 U	5.5 J	8.8 J	9.9 U	10 U
	Bulle	0100		321	1.50	5.0.1	23	6.2 J	10 U
	By/R	2' 100		641	1011	18	22	6.3 J	10 U
Ле	By/Br	000'1		L **	200	101	999	. 16.6	101
Total LPAH u	ng/kg	9,200		14.1	C'7	1.24	0.00	2.21	2
HPAH u	ng/kg						11.01	103	10.11
Benzo(a)anthracene	ug/kg	1,300		10.0	10 0	4.4.0			
	ug/kg	1,600		10 0	10 0	2.1.7	4.0.1	3.2 4	
viene	uq/kg	670		10 U	10 U	10 U	10 U	9.9 U	0.01
	ud/ka	1.400		2.4 J	10 U	6.5 J	4.6 J	4.3 J	10 1
h)anthracene	un/ka	230		10 UJ	10 UJ	10 UJ	10 UJ	0.9 UJ	10 01
	un/ka	1 700		4.8 J	10 U	17	13	7.5 J	10 U
od)pyrene	ua/ka	600		10 U	10 U	10 U	10 U	0.9 U	10 U

July 7, 2004 October 1, 2004 Update

Page 11/12

Upper Snohomish O&M Suitability Determination Memorandum

				Surface	ace	Subs	Subsurface (progressing upstream)	essing upstr	am)
upper Snonomish u tu4 swis comparisons for dry wt. criteria	units	SQS	CSL	1 (down- stream)	2 (up- stream)	7	-	æ	12
	rid/ku	2,600		4.4.J	10 U	12	10	8.2 J	10 U
	E Support	3 200		1011	10 U	10 U	10 U	3.4	10 U
1 otal Benzonuoraninenes (p+1+k)	Sylfin	12,000		116	1011	47.4	31.6	31.6	10 U
Total HPAH	Byrgu	12,000		2.1.1	2	i			
Chlorinated Hydrocarbons					HUC	1110	1126	000	1161
1,2,4-Trichlorobenzene	ng/kg	51		5.0 U	2.0.0	01.2	21.2		1104
1 2-Dichlorohenzene	ua/ka	35		10 U	10 U	10 N	10.0	2.20	2
1 / Dicklomhonzana	na/ka	110		10 U	10 U	10 U	10 U	9.9 U	10 0
Hexachiorobenzene	ng/kg	22		2.8 U	2.7 U	3.0 U	3.8 U	2.8 U	2.2 U
Phthalates		9						-	-
hia/O Ethidhawd)mhithalata	11/ku	1300		6.2 J	3.9 J	3.9 J	8.1.J	P.9.9	0.0 J
	Della	ES		10 11	10 U	10 U	10 U	0.9 U	3.0 J
Butyipenzyipninalate		0		101	10.11	10.01	10 U	0.9 U	10 U
Diethy(phthalate	5y/6n	? i		2 4		104	10.11	1100	10.01
Dimethylphthalate	ng/kg	5		0.01	0.10			- 40	ţ
Di-n-butwhhhalate	ng/kg	1,400		9.2.0	6.1.9	13	0.1.0	20.00	2
Di-n-octylphthalate	ng/kg	420		10 U	10 U	10 U	10 01		20
Phenols					:		1.00	1162	101
2 4-Dimethylphenol	ug/kg	29	29	7.3 U	n1.7	1.1.0	2.0 0	00.1	
	tud/ku	83	83	10 U	10 U	10 U	10 U	1.4.1	n nL
	a line	670	670	14	7.6 J	10 U	49	17	10 U
	Callon.	140	690	50.0	50 U	50 U	50 U	50 U	50 U
Phanol	ng/kg	420	1,200	9.3 J	8.2 J	26	18 J	30 N	5.5 J
	2								
Niscentarieurs	in/ka	540		10 U	10 U	3.1J	5.6 J	0.9 U	10 U
	Bullan Bullan	11		10 U	10 U	10 U	10 U	0.9.0	10 U
Hexachioroputadiene		00		1011	1011	10 U	10 U	0.9 U	10 U
n-Nitrosodiphenylamine	6y/6n	07 0	010		11 UUC	11006	20011	20011	200 U
Benzoic acid	ng/kg	099	009				2007	10	101
Renzvi alrohol	ua/ka	25	73	10 U	10 U	10 01	31	2	0.01

July 7, 2004 October 1, 2004 Update

X

Page 12/12

Upper Snohomish O&M Suitability Determination Memorandum

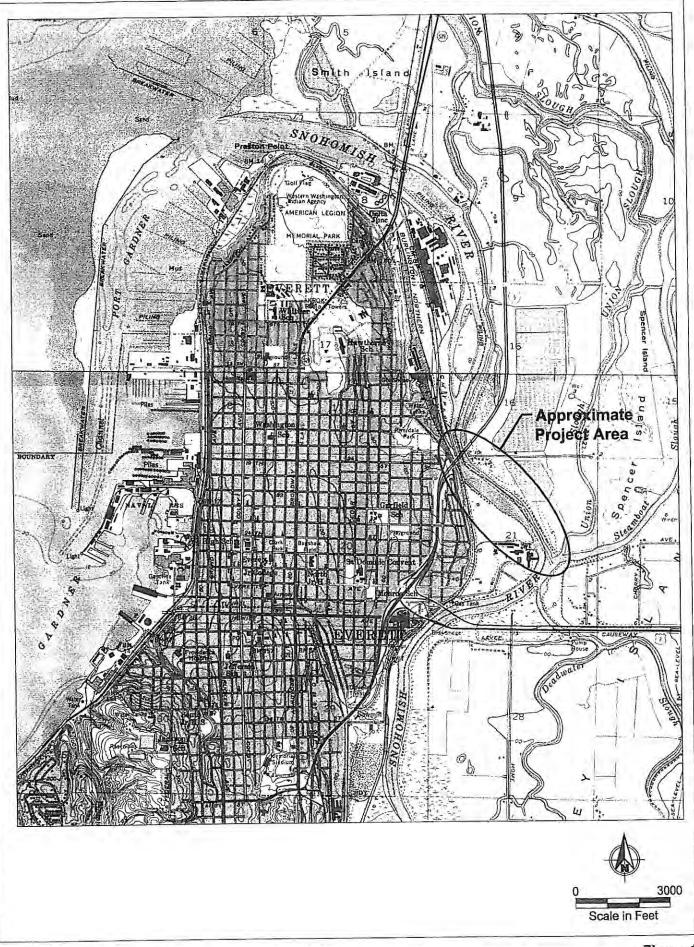
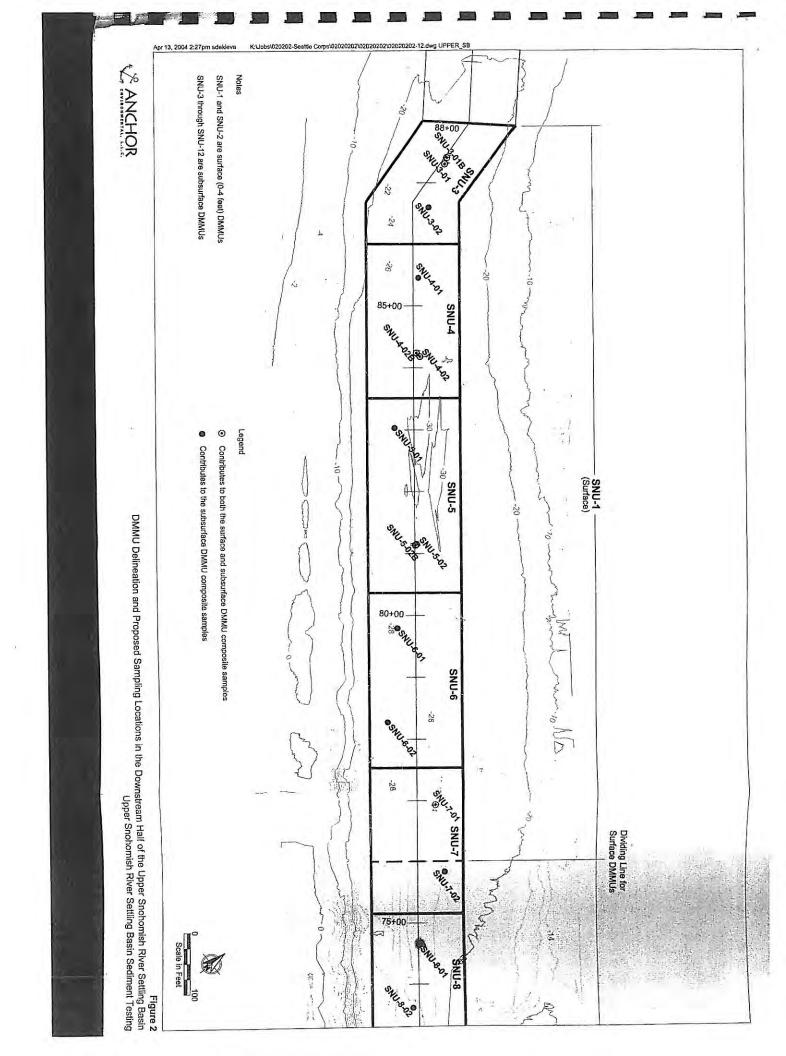
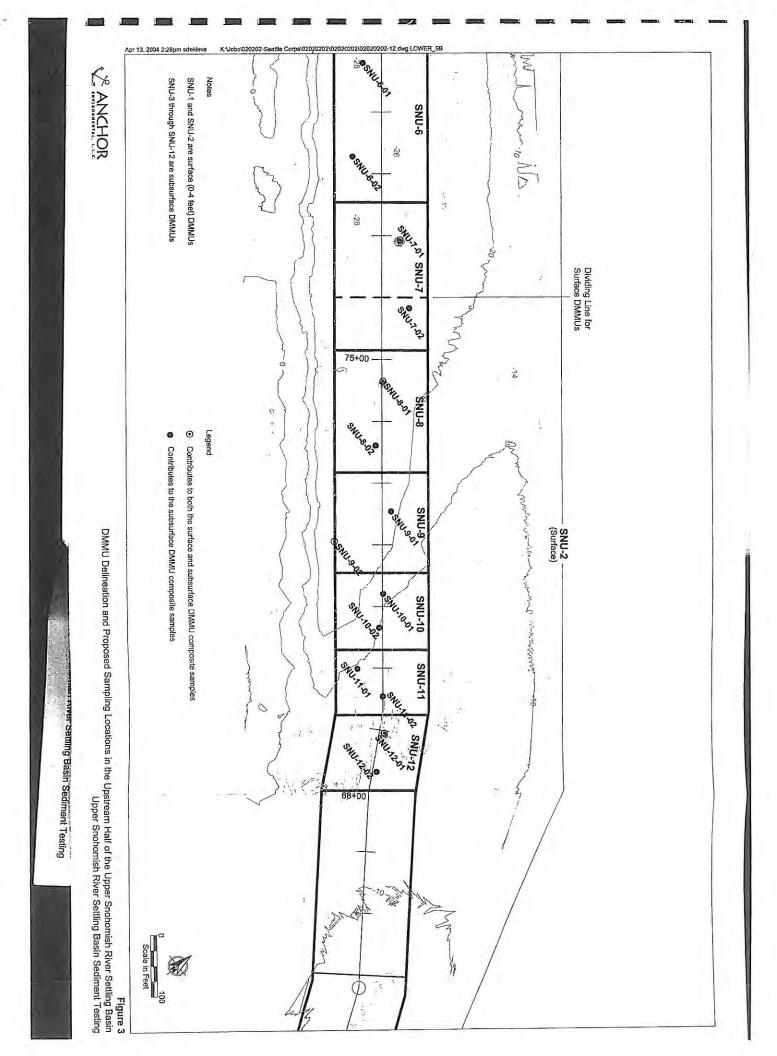
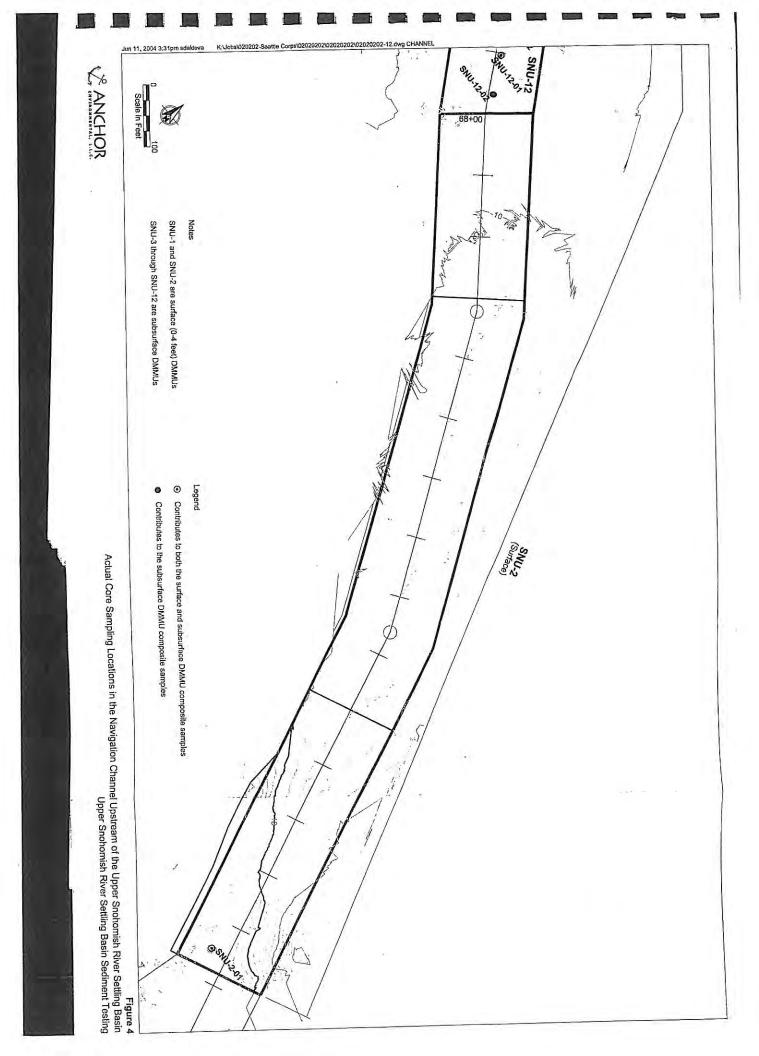
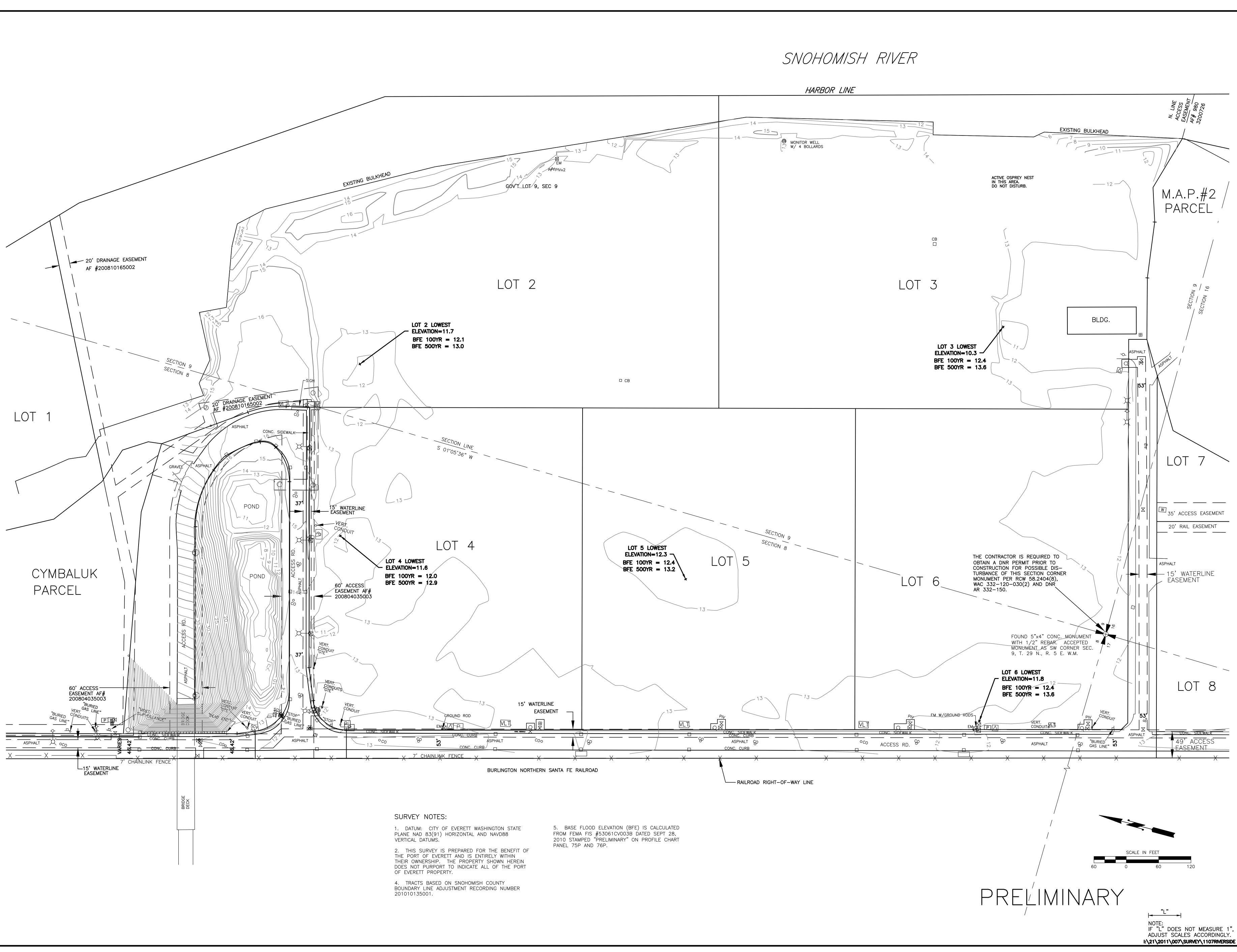
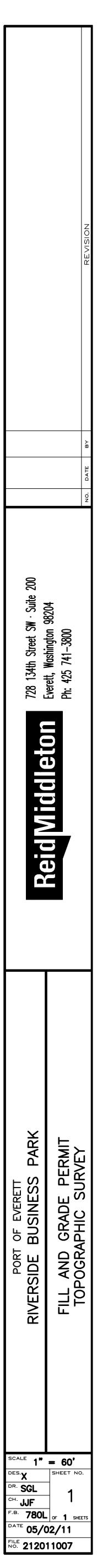





Figure 1 Vicinity Map Upper Snohomish River Settling Basin


ANCHOR ENVIRONMENTAL, LL.G.



2011 Topographic Survey (Reid Middleton)

