

September 21, 2015

Mr. Steve Teel Site Manager/Hydrogeologist Washington State Department of Ecology Toxics Cleanup Program, Southwest Regional Office P.O. Box 47775 Olympia, Washington 98504-7775

Subject: Direct-push Groundwater Investigation and Groundwater Monitoring Report, July 2015 CenturyLink Longview Facility 1305 Washington Way, Longview, Washington 98632

Dear Mr. Teel:

This memorandum provides a summary report for the direct-push groundwater investigation and groundwater sampling event conducted on July 20 to July 22, 2015. The groundwater monitoring events are being conducted as a continuation of the Groundwater Monitoring Plan developed in 2008 under the Voluntary Cleanup Program. Direct-push groundwater monitoring was conducted in accordance with the Final Direct-Push Sampling Plan, dated March 2, 2015, and approved by Washington Department of Ecology (Ecology).

Direct-push Groundwater Sampling

Six temporary groundwater sampling wells, DPGW-1 through DPGW-6, were installed at the site on July 20 and July 21. Cascade Drilling, L.P., of Woodinville, Washington used a Geoprobe 7720 to install the temporary wells. Temporary wells were installed by direct-pushing a 2-inch outside diameter (OD) direct bush core, to 17 feet below ground surface (bgs). The soil cores were retracted and logged. In general, at approximately 9 to 10 feet bgs, soils were typically sand and silty sand with clay stringers. In the screened intervals for the temporary wells, approximately 12 to 17 feet bgs, soils were typically coarse sand. Boring logs are included as Attachment A. No visual signs of contamination, such as staining or a sheen, were noted in the soil cores. No detections of volatile organic compounds were detected by the photoionization detector. No petroleum hydrocarbon or other odors were noted.

At DPGW-1 through DPGW-4, a 5-foot long, polyvinylchloride (PVC), 2-inch OD by ³/₄-inch inside diameter prepacked screen, was installed at a depth of 12 to 17 feet bgs. At DPGW-5 and DPGW-6, a 4-foot long, ³/₄-inch diameter stainless steel screen was installed at a depth of 13 to 17 feet bgs. The different screens installed at DPGW-5 and DPGW-6 were the result of the driller forgetting to bring the correct pre-packed screens. A field decision was made to use the non-prepacked screens at these two upgradient (DPGW-5) and sidegradient (DPGW-6) temporary wells. Attachment B shows the well construction logs for each temporary well.

Groundwater levels were measured at each of the six temporary wells and were 13 to 15 feet bgs. Each of the temporary wells was screened across the water table.

At each of the temporary wells, low-flow purging with a peristaltic pump and new ¼-inch diameter polyethylene tubing was conducted for 15 to 20 minutes at a rate of 300 to 500 milliliters per minute.

A calibrated YSI 556 multi-probe water meter was used to measure field parameters during well purging, and before sampling. Water quality parameters included pH, dissolved oxygen (DO), oxidation reduction potential (ORP), and specific conductance. Attachment C includes the logs of field parameters measured during the low-flow sampling.

After sampling, all of the temporary wells were removed by pulling the casing and screen, backfilling the hole with bentonite pellets, and resurfacing with cold-patch asphalt or concrete to match the surrounding pavement.

Groundwater Levels in Permanent Monitoring Wells

The depth to groundwater was measured using an electronic static water level indicator that was lowered into each well. Depth to groundwater was measured to the nearest hundredth of a foot from the top of the well casing. Static water levels ranged from 1.77 to 1.92 feet above mean sea level, and are summarized in the table below and shown in Figure 1. Groundwater levels were approximately 2 feet lower than observed in March 2015. Groundwater levels from the temporary direct-push wells are not included in the table or the figure, as the temporary wells were not developed, were not allowed to equilibrate with the aquifer for 24 hours, and the top of casing elevations were not surveyed.

Location	Surveyed Top of Casing (ft amsl)	2015 Quarter 2 Depth to Water (ft)	2015 Quarter 2 Groundwater Elevation (ft amsl)
MW-01	15.64	13.76	1.88
MW-02	16.17	14.32	1.85
MW-03	15.02	13.10	1.92
MW-04	14.55	12.74	1.81
MW-05	14.75	12.98	1.77

JULY 21, 2015 GROUNDWATER ELEVATIONS

Notes:

ft Feet ft amsl Feet above mean sea level

Based on groundwater level data shown on Figure 1, the direction of groundwater flow appears to be toward the west, with a relatively flat gradient of 0.0004 foot per foot. Historically, groundwater flow direction has ranged from west to northwest.

Groundwater Sampling from Permanent Monitoring Wells

Groundwater samples were obtained from all five permanent monitoring wells at the facility on July 21 and July 22, 2015. After groundwater level measurements were documented, field personnel collected groundwater samples using a peristaltic pump. Dedicated tubing was used for each well. In accordance with the work plan, low-flow sampling procedures were used. Sampling flow rates ranged from 300 to 450 milliliters per minute for purging and groundwater sample collection.

A calibrated YSI 556 multi-probe water meter was used to measure field parameters during well purging, and before sampling. Water quality parameters included pH, DO, ORP, and specific conductance. Low-flow pumping continued until field parameters stabilized within acceptable parameter limits, before samples were collected. Attachment C includes the logs of field parameters measured during the low-flow sampling.

Groundwater Sample Analysis

Once obtained, groundwater samples were labeled in accordance with Tetra Tech, Inc. (Tetra Tech) standard operating procedures, placed in a cooler, and chilled to below 4 degrees Celsius. Samples were delivered directly to ALS Laboratories (ALS), located at 1317 S. 13th Avenue in Kelso, Washington. Samples were delivered following standard chain-of-custody protocol. Chain of custody forms are included with the laboratory data packages in Attachment E.

ALS analyzed the samples for total petroleum hydrocarbons-diesel (TPH-DRORO) and total petroleum hydrocarbons-residual range organics (TPH-RRO) by Method Northwest Total Petroleum Hydrocarbons-Diesel Extended Range (Ecology 1997), without silica gel cleanup. ALS also analyzed the samples for polycyclic aromatic hydrocarbons (PAHs) by modified U.S. Environmental Protection Agency Method 625-Selected Ion Monitoring. The samples were passed through a 0.7-micron (μ m) filter before analysis by the PAH method.

Groundwater Sample Results

Table 1 presents analyte concentrations for the sample analyses of temporary and permanent groundwater wells sampled during the July 2015 investigation. TPH-DRO was detected at low levels in samples from all 11 wells, ranging from approximately 15 micrograms per liter (μ g/L) to 77 μ g/L, as shown on Figure 2. TPH-RRO was detected at low levels in all 11 samples, ranging from 27 μ g/L to 71 μ g/L, as shown on Figure 4. All TPH-DRO and TPH RRO concentrations were well below the 500 μ g/L Washington Model Toxic Control Act Method A limit for groundwater.

All TPH-DRO and TPH-RRO detections carry a J qualifier that indicates that the constituent was detected below the method detection limit, but above zero. The method blank was nondetect for TPH-DRO, and 25 ug/L with a J qualifier for TPH-RRO.

Low levels of TPH-DRO and TPH-RRO detected in samples from the upgradient well (DPGW-5) and sidegradient well (DPGW-6) suggest that there may be other dilute sources of TPH-DRO and TPH-RRO near the site.

As shown on Figures 1 and 2, the locations with the highest TPH-DRO and TPH-RRO concentrations are MW-1, MW-2, MW-4, MW-5 and DPGW-4. These locations are all in the UST source area or are downgradient from the source area.

Total PAH results shown on Table 1 and Figure 4 are the sum of all the individual PAH analytes. Individual PAH analyte results are not provided in the table, but are available in Attachment D. Low levels of PAHs were detected in all permanent monitoring wells and in all temporary wells, except DPGW-6. Total PAH concentrations ranged from 0.0042 μ g/L in upgradient temporary well DPGW-5, to 0.29 J μ g/L in MW-04. The highest total PAH concentrations were detected in downgradient wells MW-04, MW-05, and DPGW-4.

There are no Total PAH or compound specific MTCA PAH action levels. MTCA action levels for PAHs are based on the benzo(a)pyrene toxic equivalent quotient (BaP TEQ). The MTCA action level for BaP TEQ is 0.1 μ g/L. The BaP TEQ results are also shown on Table 1 and Figure 5, and are based on the individual PAH analytical results in Appendix D. PAHs contributing to BaP TEQ were below detection limits in all permanent and temporary monitoring wells, except for MW-01 (BAP TEQ = 0.00029 J μ g/L) and DPGW-4 (BAP TEQ = 0.00027 J μ g/L). These BaP TEQ concentrations were well below the MTCA action level of 0.1 μ g/L.

Table 2 summarizes the historical results for DRO and RRO for each well. Table 3 summarizes the historical results for BaP TEQ for each well.

Conclusions and Recommendations

The direct-push groundwater investigation provided further delineation of the petroleum hydrocarbon plume and demonstrated that low levels of TPH and PAHs have migrated to west and northwest from the former UST location; however, levels of all constituents of concern are well below Washington MTCA action levels. In 2015, two rounds of sampling at the site and an expanded groundwater investigation have shown that TPH-DRO, TPH-RRO, and BaP TEQ concentrations are below Washington MTCA limits throughout the site.

Tetra Tech recommends that annual groundwater sampling be conducted at the five permanent groundwater monitoring wells for the next two years (2016 and 2017 calendar years). If the results from these two events demonstrate that contaminant concentrations remain below MTCA levels and are stable or decreasing, Tetra Tech recommends that the site be issued a "no further action" status letter.

If you have any questions or concerns, please call me at (303) 312-8843.

Sincerely,

D- Na

David Berestka, P.E. Project Manager Tetra Tech, Inc.

Rotto Jula

Rob Tisdale, Ph.D. Chemist and Program Manager Tetra Tech, Inc.

cc: Ed Clement, Regional Environmental Health and Safety Manager, CenturyLink

ANALYTICAL RESULTS TABLES

TABLE 1 **GROUNDWATER SAMPLE RESULTS CENTURYLINK LONGVIEW, WASHINGTON FACILITY**

Analy	/te	TPH-DRO	TPH-RRO	Total PAH	BaP TEQ	
MTCA Method A Clea	anup Level	500 (µg/L)	500 (μg/L)	NA	0.1 (µg/L)	
Location	Date					
MW-01	7/22/2015	22 J	52 J	0.0077 J	0.00029 J	
MW-02	7/22/2015	77 J	71 J	0.019 J	ND	
MW-03	7/21/2015	21 J	49 J	0.0056 J	ND	
MW-04 7/21/2015		24 J	52 J	0.29 J	ND	
MW-05	7/21/2015	30 J	42 J	0.15 J	ND	
DPGW-1	7/20/2015	17 J	28 J	0.011 J	ND	
DPGW-2	7/20/2015	19 J	27 J	0.013 J	ND	
DPGW-3	7/21/2015	15 J	34 J	0.0059 J	ND	
DPGW-4	DPGW-4 7/21/2015		68 J	0.085 J	0.00027 J	
DPGW-5	7/20/2015	18 J	40 J	0.0042 J	ND	
DPGW-6	7/20/2015	21 J	45 J	ND	ND	

Notes:

All concentrations in micrograms per liter (µg/L) For wells with duplicate samples, the highest value reported is shown for each constituent BaP TEQ Benzo(a)Pyrene Toxic Equivalent Quotient Estimated quantity below reporting limit Model Toxics Control Act Method A for groundwater J

MTCA NA Not applicable (no applicable MTCA standard)

ND Analyte not detected

PAH Polycyclic aromatic hydrocarbon

TPH-DRO Total petroleum hydrocarbons diesel range organics

TPH-RRO Total petroleum hydrocarbons residual range organics

Analyte	Date	Sampling Method	MW-01	MW-02	MW-03	MW-04	MW-05				
	3/25/1992	Bailer	82	112							
	12/16/2003	Bailer	ND	ND	ND						
	8/10/2006	Bailer	ND	140	ND						
	9/23/2008	9/23/2008	9/23/2008	9/23/2008	9/23/2008	Bailer				ND	ND
	2/26/2010	Bailer				ND	140				
TPH-DRO	9/2/2011	Bailer				73	120				
	2/26/2013	Bailer				1,700	ND				
	6/3/2013	Bailer	ND	66	ND	210	ND				
$= 500 \mu q/L$	12/5/2013	Bailer	ND	ND	ND	1,500	ND				
	3/27/2014	Bailer	63	87	ND	550	47				
	6/25/2014	Bailer	50	33	ND	1,100	ND				
	9/10/2014	Bailer	240	90	36	790	48				
	3/5/2015	Low Flow	22	82	20	20	27				
	7/20/2015	Low Flow	22	77	21	24	30				
	8/10/2006	Bailer	ND	ND	ND						
	9/23/2008	Bailer				ND	140				
	2/26/2010	Bailer				140	200				
	9/2/2011	Bailer				350	210				
TPH-RRO	2/26/2013	Bailer				11,000	140				
	6/3/2013	Bailer	150	ND	ND	1,600	ND				
(MICA Method	12/5/2013	Bailer	440	120	120	11,000	170				
$= 500 \mu a/L$	3/27/2014	Bailer	370	63	ND	3,900	190				
	6/25/2014	Bailer	340	62	21	8,400	51				
	9/10/2014	Bailer	1,500	ND	ND	6,600	82				
	3/5/2015	Low Flow	43	70	37	48	53				
	7/20/2015	Low Flow	52	71	49	52	42				

TABLE 2 HISTORICAL GROUNDWATER SAMPLE RESULTS - DRO AND RRO **CENTURYLINK LONGVIEW, WASHINGTON FACILITY**

Notes:

J

All concentrations in micrograms per liter (µg/L) **Bold** values indicate exceedance of the MTCA Cleanup Level

For wells with duplicate samples, the highest value reported is shown for each constituent

Estimated quantity below reporting limit Model Toxics Control Act Method A for groundwater MTCA

Analyte not detected ND

TPH-DRO Total petroleum hydrocarbons diesel range organics

TPH-RRO Total petroleum hydrocarbons residual range organics

Not sampled --

TABLE 3 HISTORICAL GROUNDWATER SAMPLE RESULTS - BAP TEQ **CENTURYLINK LONGVIEW, WASHINGTON FACILITY**

Analyte	Date	Sampling Method	MW-01	MW-02	MW-03	MW-04	MW-05
BaP TEQ	6/3/2013	Bailer	2.2	ND	ND	0.36	ND
Unfiltered analysis	12/5/2013	Bailer	0.20	0.027	0.074	1.4	0.0062
	3/27/2014	Bailer	0.37	0.080	0.049	0.27	0.073
(MTCA Method A	6/25/2014	Bailer	0.39	0.012	0.00033	0.40	0.0054
0.1 μg/L)	9/10/2014	Bailer	0.14	0.090	ND	0.39	ND
Pop TEO	12/5/2013	Bailer	ND		ND	ND	
Bariew	3/27/2014	Bailer	ND	ND		ND	ND
Filtered analysis	6/25/2014	Bailer	ND			ND	
(MTCA Method A	9/10/2014	Bailer	0.0003	0.00027		ND	
Cleanup Level =	3/5/2015	Low Flow	0.00074	0.00038	ND	0.00044	0.00029
υ. ι μg/L)	7/20/2015	Low Flow	0.00029	ND	ND	ND	ND

Notes:

All concentrations in micrograms per liter (µg/L) **Bold** values indicate exceedance of the MTCA Cleanup Level For wells with duplicate samples, the highest value reported is shown for each constituent BaP TEQ Benzo(a)Pyrene Toxic Equivalent Quotient J Estimated quantity below reporting limit MTCA Model Toxics Control Act Method A for groundwater ND Analyte not detected

Analyte not detected Not analyzed ND

--

FIGURES

ATTACHMENT A DIRECT-PUSH TEMPORARY WELL BORING LOGS

Sheet	(of	1
Sheet		_ 01	

DO:

Bldg./Site:

Project Name:

Boring Number: DPGW-	Date Started: 7/20/15
Drilling Method: (<i>Circle one</i>) HSA Continuous Core/Direct Push/Hand Auger	Date Completed: 7/20/15
Air Rotary/Mud Rotary/Dual Tube Percussion/Sonic/Vacuum	Logged By: MP
Outer Diameter of Boring:	Drilling Subcontractor: Cascad R
Inner Diameter of Well Casing: 3/1/1	Driller:
Depth to Water (ft./bgs.)	Location Sketch:

Time	Depth (ft) bgs	Drive Interval	Recovered Interval	Sample ID	Blow count V.B. utility (per 6 inches) type, dia.	Description	USCS soil symbol	Well construction	OVM (ppm)
5	 		0%	-		0'-5' cleared by hand due to proximity of utilities -no log 0'-5'-		-	564
			9,5%			5'-8.5' - Sandy silt, brownish gray 8.5'-10' - clay with red rains) readil
			80°b			101-17 - coarse sand, brown, grez, and white			o PTC
15			70%			columned and : 121		-	rer
					-	Patricia Vienne			-

S \AECRU\Hunters Point Shipyard\DO 0019 (PLOB X027) WE2-Plans\Draft SAP\for Angela\appendices\Appendix C\04 Soil Boring and Well Installation Log doc

DO: Bldg./Site:

Project Name:

Sheet of 2

Boring Number: DPGCo-O2	Date Started: 120/15
Drilling Method: (<i>Circle one</i>) HSA Continuous Core/ <u>Direct Push</u> /Hand Auger	Date Completed: 7/20/15
Air Rotary/Mud Rotary/Dual Tube Percussion/Sonic/Vacuum	Logged By: VP
Outer Diameter of Boring:	Drilling Subcontractor: Coscade
Inner Diameter of Well Casing: 💈 🎉 🕅	Driller:
Depth to Water (ft./bgs.)	Location Sketch:
tites to second so	
1000 084000	102-3) 1.51

Je	h (ft) bgs	e Interval	vered Interval କିଲ୍ଲ	ple ID	unt V.B. utility [.] ches) type, dia.	248 Oto SENOO	CS soil symbol	ll construction	M (ppm)
Ţ	Dept	Driv	Reco	Sam	Blow col (per 6 in	Description	nso	We	OVN
		0' to a5'	803			Asphall/ gravel	ī.		
		0.81 40 3.5	a de la compañía de			Bown silty sand, cohesive			
		35 40 5'	T		-	Groy silty sond		-	
		5' 10 9'		80%		brown silty sand			
		9' to 10'				Brown clay, red stans			

S \AECRU\Hunters Point Shipyard\DO 0019 (PLOB X027)\WE2-Plans\Draft SAP\for Angela\appendices\Appendix C\04 Soil Boring and Well Installation Log doc

AND VISUAL CLASSIFICATION LOG **Bldg./Site:** Project Name: Well construction Blow count V.B. utility (per 6 inches) type, dia. **USCS soil symbol** Drive Interval Recovered Interval Depth (ft) bgs OVM (ppm) Sample ID Time Description Gray coarse sond, rocky セ 96% 151 GROY coorse sand 171 course unite, small gravel 20' LEURID VALONGEA 0' +5 :5: 350 17.0 Process sille transfer the crass 21- $\mathbb{Z}\mathcal{S}$ hope phie was 7.8 40'5' onte ette neone : : : 1 $\gtrsim \frac{1}{2}$ 10 10 Energy red Stans C) ----

SOIL BORING AND WELL INSTALLATION

1

DO:

DO: Bldg./Site:

Project Name:

Sheet _____ of ____

Boring Number: DPGW-3	Date Started: 7/2 1/15
Drilling Method: (<i>Circle one</i>) HSA Continuous Core/Direct Push Hand Auger	Date Completed: 7/2///5
Air Rotary/Mud Rotary/Dual Tube Percussion/Sonic/Vacuum	Logged By: MP + UP
Outer Diameter of Boring: 2 11	Drilling Subcontractor: CASCAd R
Inner Diameter of Well Casing: 3/1/1/	Driller:
Depth to Water (ft./bgs.)	Location Sketch:

Time	Depth (ft) bgs	Drive Interval	Recovered Interval	Sample ID	Blow count V.B. utility (per 6 inches) type, dia.	Description	USCS soil symbol	Well construction	OVM (ppm)
5 10 15 17 10 10			75% 100%			0-2.5' concrete chips and sub- surface asphalt 2.5-4.5 Sondy sitt, brown, very 4.5-5 brown sondy sitt, more coarse s-9.5 brown sondy sitt, more coarse 9.5-10 Clary (brown), Moist, red Markings, gray markings 0-12' Soft, brown clay, high Moisture, high plasticity Ned markings 12-15 coarse sond with brown gray, white specst high moisture Water table at 11' 15-17' coarse sand with white, gney, brown specs. Gray color More promune			Zero PLD readings

ard DO 0019 (PLOB X027)) WE2-Plans Wratt SAP vor Angela vappendices vappendix C/04 Soil Boring and Well Installation Log doc Fifth NCV FM

DO: Bldg./Site:

Project Name:

Boring Number: DPGW-4	Date Started: 7/21/05
Drilling Method: (Circle one) HSA Continuous Core/Direct Push Hand Auger	Date Completed: 7/2//15
Air Rotary/Mud Rotary/Dual Tube Percussion/Sonic/Vacuum	Logged By: MP
Outer Diameter of Boring:	Drilling Subcontractor:
Inner Diameter of Well Casing: 3/4//	Driller: Cascade
Depth to Water (ft./bgs,)	Location Sketch:
	—

						•			
Time	Depth (ft) bgs	Drive Interval	ে Recovered Interva l	Sample ID	Blow-count V.B. utility (per 6 inches) type, dia.	. Description	USCS soil symbol	Well construction	OVM (ppm)
5 10 15 17- tuta			2 90% 85% 100%	ÿ	Biov	0'-1' - csphilt surface and subsurface 1'-4.5' - sahly silt, grezish prowh. 4.5'-13' - coarse sahl. Grez, boay, and chilo: specks - unsatureted 13'-17' coarse sawl, grez, brown, t whete. Saturated Zone et Z 13'			Zero PID realings c

S \AECRU\Hunters Point Shipyard\DO 0019 (PLOB X027)\WE2-Plans\Draft SAP\for Angela\appendices\Appendix C\04 Soil Boring and Well Installation Log doc

DO: Bldg./Site:

Project Name:

Sheet _____ of ____

Boring Number: PPGW-5	Date Started: 7/20/15
Drilling Method: (<i>Circle one</i>) HSA Continuous Core/Direct Push Hand Auger	Date Completed: 7/20/15
Air Rotary/Mud Rotary/Dual Tube Percussion/Sonic/Vacuum	Logged By:
Outer Diameter of Boring:	Drilling Subcontractor:
Inner Diameter of Well Casing: 3/4//	Driller:
Depth to Water (ft./bgs.)	Location Sketch:
e 11:20 2 13.8'	` •

Time	Depth (ft) bgs	Drive Interval	Recovered Interval	Sample ID	Blow count V.B. utility (per 6 inches) type, dia.	Description	USCS soil symbol	Well construction	OVM (ppm)
		5	80%		-	0-3" - Concrete 3-6" - subside walk Monterial/asplat 0.5'- " - sawdy silt, brownish grey		5	-00000 -0000
		10	80%			4'- q'-Silty send, brownish q'-10.5' -gras clay with red veins, mo	st	10	0.0 1 1
		15	40%		-	12-12' - coarse gras speckled 12'-14' - reader saw with	V	15	0.0
		-17+	eta		-	19-17-reglb course sand with since stone + gravel			
						Saturated whe starts at 213'			

DO:

Sheet _____ of _____

Bldg./Site:

Project Name:

Boring Number: DP6W-6	Date Started: 7/20/15
Drilling Method: (<i>Circle one</i>) HSA Continuous Core/Direct Push/Hand Auger	Date Completed: 7/20/15
Air Rotary/Mud Rotary/Dual Tube Percussion/Sonic/Vacuum	Logged By:
Outer Diameter of Boring: 2 "	Drilling Subcontractor:
Inner Diameter of Well Casing: 3/1/1/	Driller: •
Depth to Water (ft./bgs.) 3.65 ·	Location Sketch:
	c .
• • • • • • • • • • • • • • • • • • •	α • α το

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Timę	Depth (ft) bgs	Drive Interval	Recovered Interval	Sample ID	Blow count V.B. utility (per 6 inches) type, dia.	•. Description	USCS soil symbol	Well construction	OVM (ppm)
10 10 10 10 10 10 10 10 10 10	5			802		• -	0-4" concrete 0.5'-d' soudy silt, branish gres d'-11' brown clay with red veins		-	564: pb
15	(0			80%	-		11-12'- reddish colored sandkill 12'-17'- course sand with 15-17' pebbles - brown		-	PLD re
	17' 17' 10fal				-		Saturated when starts at 1000 13"		-	rero

S \AECRU\Hunters Point Shipyard\DO 0019 (PLOB X027)\WE2-Plans\Draft SAP\for Angela\appendices\Appendix C\04 Soil Boring and Well Installation Log doc

ATTACHMENT B DIRECT-PUSH TEMPORARY WELL CONSTRUCTION DIAGRAMS

J. Tylical	of all Temp fo	1C _ PPGW 1-4
TriEco A Joint Venture	Wells MONITORING WE	LL COMPLETION RECORD
DRILLING INFORMATION DRILLING BEGAN: DATE 7/20 - 7/21/TIME WELL INSTALLATION BEGAN: DATE TIME WELL COMPLETION FINISHED: DATE 7/20-/ 7/24/ISTME DRILLING CO. CAJCOODE DRILLING CO. CAJCOODE DRILLER FRAME SCOTH LICENSE DRILL RIG <u>Geo Prote</u> DRILLING METHOD: HOLLOW STEM AUGER AIR ROTARY DIAMETER OF AUGERS: ID OD 211	SURFACE COMPLETION	MONITORING WELL MONITORING WELL NO. <u>tehp well</u> PROJECT SITE <u>hot haked</u> BOREHOLE NO. WELL PERMIT NO. TO BOTTOM OF WELL <u>7'</u> GS ANNULAR SEAL AMOUNT CALCULATED AMOUNT CALCULATED AMOUNT USED GROUT FORMULA PORTLAND CEMENT BENTONITE WATER PREPARED MIX PRODUCT
BENTONITE SEAL AMOUNT CALCULATED //oh.@ AMOUNT USED PELLETS, SIZE CHIPS, SIZE PRODUCT MFG. BY METHOD INSTALLED POURED TREMIE AMOUNT OF WATER USED	DEPTH FT BGS	MFG. BY METHOD INSTALLED POURED TREMIE CASING CASING PRODUCT MFG BY. CASING DIAMETER (in): ID JMU LENGTH OF CASING
FILTER PACK AMOUNT CALCULATED PVC pre AMOUNT USED PACKED SAND, SIZE SCREPS FORMATION COLLAPSE: FROM FROM TO PRODUCT MFG. BY METHOD INSTALLED: TREMIE		WELL SCREEN
SURVEY INFORMATION TOC ELEVATION GROUND ELEVATION NORTHING COORD. EASTING COORD. DATE SURVEYED SURVEY CO. CENTRALIZERS USED? YES INO CENTRALIZER DEPTHS:	DEPTH FT BGS	BOREHOLE BACKFILL AMOUNT CALCULATED AMOUNT USED METHOD INSTALLED: POURED

ANT Typical o	of all Temp Ste	el - DPGW 5t
TriEco DY GW A Joint Venture		
DRILLING INFORMATION DRILLING BEGAN: DATE 7/20/15 TIME WELL INSTALLATION BEGAN: DATE 7/20/15 TIME WELL COMPLETION FINISHED: DATE 7/20/15 TIME DATE 7/20/15 TIM	SURFACE COMPLETION	MONITORING WELL MONITORING WELL NO. <u>Tenp, hot</u> PROJECT <u>baked</u> SITE BOREHOLE NO. WELL PERMIT NO. FOC TO BOTTOM OF WELL <u>7</u> GS ANNULAR SEAL AMOUNT CALCULATED AMOUNT CALCULATED AMOUNT USED GROUT FORMULA PORTLAND CEMENT BENTONITE WATER
ID OD 211 ID OD 211 BENTONITE SEAL AMOUNT CALCULATED AMOUNT USED ID PELLETS, SIZE Image: Chips, Size ID CHIPS, SIZE Image: Chips, Size ID PRODUCT Image: Chips, Size ID Image: Chips, Size Image: Chips, Size	DEPTH FT BGS	
AMOUNT OF WATER USED FILTER PACK AMOUNT CALCULATED AMOUNT USED SAND, SIZE FORMATION COLLAPSE: FROM TO	DEPTH FT BGS	D 799.00 LENGTH OF CASING US WELL SCREEN □ SCHEDULE 40 PVC V Steet PRODUCT MFG. BY:
	DEPTH FT BGS	CASING DIAMETER (in): IDOD SLOT SIZE LENGTH OF SCREEN
TOC ELEVATION NORTHING COORD. EASTING COORD. DATE SURVEYED SURVEY CO.	DEPTH FT BGS	AMOUNT CALCULATEDAMOUNT USEDABENTONITE CHIPS, SIZE BENTONITE PELLETS, SIZE SLURRYA FORMATION COLLAPSEA FROMTOA PRODUCT
CENTRALIZERS USED?	•	MFG. BY METHOD INSTALLED: POURED TREMIE

ATTACHMENT C LOW-FLOW GROUNDWATER SAMPLING PARAMETER FORMS

MICROPURGING GROUNDWATER SAMPLING DATA SHEET

Page <u>1</u> of <u>1</u> Date <u>7/20/15</u>

Well N	lame	PG	v-1		Scree	n Interval									
Projec	t Century Li	nk - Longvie	w GW Sa	mpling	Statio	n Elevation		_ GND	Immis	Immiscible Phases Present 🏾 Yes 🗌 No					
Projec	t No.				- Static	Water Lev	el (from TC))		Туре	Туре				
Well L	ocation				- Well :	Stick Up Z	13"			Meas	Measured with				
Samp	e Date	7/20	75		- Static	Elevation	(3.	8	TW	PID F	PID Readings (background)				
Sampl	ing Person	nel h	re	P	 Well∣	Depth U	71	MEAS	RPTD	PID F	Reading (TC	DC)()C			
		Va	nesse	× 1.	- Feet o	of Water				Wells	Wells Installed by				
Samp	le ID				- Gallo	ns/Foot				Instal	Installation Date				
Duplic	ate ID		_		- Casin	a Volume			Devel	lopment Dat	te(s)				
				NS	``\```\```_	lot	+ 15								
FIELD CHEMISTRY CALIBRATIONS					Spec. (Conductanc	e: Standar	rd	µmhos/cr	n at 25• C	Reading	μn	nhos/cm at•C		
pH: pH 4.00 - at •C					pH 7.0	0	at	_•C	 pH 10.00) at	t•	C Slope	NA		
Dissol	ved Oxyge	n: D.O. Me	eter	mg/L	. at	-•C	PID: Ca	libration Ga	as	PPM	Span	Re	ading		
_											101				
						·	PUR	GING	- 15:0	N Ste	×+4	1 1			
	Discharge	Dissolved				Specific Conduct		Cumulativ Water Rem	e Volume of oved (Purged)	PID/OVA	A Reading	Depth to			
Time	Rate	Oxygen		Eh/ORP	Temp.	(µmhos/cm	Turbidity	Gallons	Casing Vol	Location	Value	Water (ft)	Comments		
15.15	USD .		622	1.2	12.1	1.361	IPCI	Galiona	Cubing ton			(,			
10.00	HED	0.07	615		15 28	201	226		+			++			
10	750	0.04	I AT	12 2	17.54	0.316	212								
1510	400	0.08	LAU	25 1	16 36	0.34Z	11		+		1	+ +			
1917	-130	0.04	0.01	M3.	U.D. P.	0.534									
	-		+	<u> </u>	+	-				1					
					ł						<u> </u>		····		
	<u> </u>	+	+												
		+	+												
<u> </u>	+	+			<u> </u>										
	<u> </u>	+	+		<u> </u>										
L	1	1				10	120								
SAMPL	E PARAN	IETERS	22	miler	1 97		200								
12:59	450	0.07	604	25.1	6.76	0237	2						··-		
Conditio	on of well:														
Remark	(S:												<u> </u>		
	FOUIDME	NT								Field Chen	nistry Calik	orations			
					Sorio	Numbor				Fractions	matry cam	Jations			
	er				Seria	I Number _							·······		
Spec. C	Jona. Mete	r			Seria	I Number _									
Pump_	numl Motor				Seria Čorio	I Number _				Number of	Bottles				
	_evel ivieter			•	Seria	I Number _	•			Sample De	oth				
					Seria			•		Field Notob	ample Depth				
Terra	pparatus _				riter	°				Sample Me	thod				
i empe		sule	· · · · ·		Soria	I Number				Sample Me			<u>. </u>		
	e Piobe				Seria	I Number				Discharge	Mator Cont	ainarized I			
FID/UV	'A				Seria	- nanunnei -				Discharge	vvaler Conta	amenzeu			

MICROPURGING GROUNDWATER SAMPLING DATA SHEET

Page		_of	1	
Date	71	20	51	15

Well N	ame D	POV		r	Scree	n Interval									
Proiec	t Century Li	nk - Longvie	w GW Sa	mpling	Statio	n Elevation		GND	тос	 Immis	Immiscible Phases Present				
Project	t No.				- Static	Water Lev	el (from T			Туре	Туре				
Well L	ocation				- Well	Stick Up	2'	ų 17		Meas	Measured with				
Samp	le Date	7120	115			Elevation	109	13.81	1	PID F	PID Readings (background)				
Sampl	ina Person	nel Mi	Ke	Pa		Depth 17	10	MEAS	RPTD	PID F	Reading (TO	C)	······································		
	V	anessi	Â	1	- Feetr	of Water			- —	Wells Installed by					
						/E				Instal	lation Data				
Sampl					- Gallo				Instai	ation Date _	a (a)				
Dupito							of al	- 157	S' Bl	► C Devel	opment Dat	e(s)			
FIELD Date/T	CHEMIS I	RY CALIE	BRATIO	NS	Spec (Conductanc	c / Mi	rd	umhos/cr	mat 25•C	Reading	ur	nhos/cm at • C		
pH: pH	H 4.00 -	at		۰C	pH 7.00) -	at	•C	pH 10.00)- at	•(C Slope	NA 0		
Dissol	ved Oxyger	n: D.O. Me	ter	mg/L	at	•C	PID: Ca	alibration Ga	is	PPM	Span	Re	ading		
											1.1				
		T	т — —			·			(5:37	stor	ted				
	Discharge	Dissolved				Specific Conduct.		Water Remo	e Volume of oved (Purged)	PID/OVA	Reading	Depth to			
Time	Rate (ml/min)	Oxygen (mg/l)		Eh/ORP	Temp.	(µmhos/cm	Turbidity	Gallons	Casing Vol	Location	Value	Water (ft)	Comments		
16.90	400	0.05	6 61	1 L	17.9	0.877	610					(,			
14:65	222	DOF	1 29	~1	12 42	025	766								
16:10	200	0.04	6.20	-2.4	17.04	0.327	60.2			<u> </u>					
16:15	400	0.04	16.28	-0.5	1701	0.232	76.2	1		+					
10.02			100				100.0						· · <u></u>		
	<u> </u>														
	1		1												
									1						
									1						
									ľ	ľ					
SAMDI		ETERS	50	maled	at	- 16	:15								
SAWPL	U DO		16 2 2	-0.5	11701	0.229	262	<u></u>	1						
		0.01	0.07		101.01	0.090	0.0			1	1				
Conditio	on of well:	<u></u>													
Remark	(S:														
FIELD I	EQUIPME	NT								Field Chen	nistry Calib	rations			
pH Mete	er				Serial	Number _				Fractions _					
Spec. Cond. Meter					Serial	Number _									
Pump_	_				Seria	Number _									
Water L	evel Meter	·			Seria	Number _				Number of	Bottles		·····		
D.O. Me	eter				Serial	Number _				Sample De	pth				
Filter Ap	oparatus _				Filters	š				Field Noteb	ook	_			
Temper	rature Meas	sure								Sample Me	thod				
Interfac	e Probe				Seria	Number						_			

PID/OVA ______ Discharge Water Containerized Yes No

Tetra Tech EM Inc.					CRO	ROPURGING GROUNDWATER Page of SAMPLING DATA SHEET Page _ 7/2///3										
					SA	101 - L				67	7			Date		
Well N	ame _D	PGW	-3		Scree	n Interval	2-17	1 Et a	e q		0					
Project	Century Li	nk - Longviev	w GW Sa	mpling	Statio	n Elevation		_ GND	_ тос	lmi	miso	ible Phase	es Present	Yes No		
Project	No				Static Water Level (from TOC)											
Well Lo	ocation				Well Stick Up 2'5"							red with				
Sampl	e Date	7/21	115		Static	Elevation _	14.	281	DTW	[56 5pit	565PID Readings (background)					
Sampli	ng Person	nel 🔨	i Kr	la	Well Depth 17 MEAS RPTD							PID Reading (TOC)				
		Vinz	<u> </u>	_ <u>P</u>	Feet o	of Water				We	ells	nstalled by	/			
Sampl	e ID				- Gallor	is/Foot				Ins	talla	tion Date				
Duplic	ate ID				- Casin	q Volume				De	velo	- pment Dat	e(s)			
FIFI D	CHEMIST	RY CALIE	RATIO	NS		111	- 64	15.5	7							
Date/T	ime				Spec. C	onductanc	e: Standar	db	µmhos/cn	n at 25• C	; F	Reading	μ	imhos/cm at∙C		
pH: pH	4.00	at		•C	pH 7.00)	at	•C	pH 10.00		_at_		C Slope	e <u>NA</u>		
Dissolv	ed Oxyge	n: D.O. Me	ter	mg/L	at	_•C	PID: Ca	libration Ga	IS	PPM		Span	R	eading		
							DUR	GING 8	+1100	0 L		108				
		1	r		T	Specific		Cumulative	e Volume of	~ 1	<u> </u>		1			
	Discharge	Dissolved				Conduct.		Water Remo	oved (Purged)	PID/C	I AVC	Reading	Depth to			
Time	Rate (mL/min)	Oxygen (mg/L)	рН	Eh/ORP (mV)	Temp. (•C)	(µmhos/cm at • C)	Turbidity (NTU)	Gallons	Casing Vol.	Location	n	Value	(ft)	Comments		
11:10	500	0.21	6.61	-7.8	16.91	0.418	63.4		1							
11.15	400	0.49	6.33	E.a	16.31	0.407	13.5	12								
11:20	400	13	633	1.7	16.07	0.20>	5.9									
11:23	400	0.17.	6.28	16.0	15.92	0.408	2.3									
	-															
					1											
									1							
		1														
						i i			1							
SAMPL	E PARAM	IETERS		5	amp	Nel	at	1(:2	5					······		
11:25	400	0.12	6.28	16.0	15.92	0,908	2.3	L <u></u>								
Conditio	on of well:															
Remark	s:															
FIELD I		NT								Field Ch	nemi	istry Calib	orations			
pH Mete	er				Serial	Number		·		Fractions	s					
Spec. C	ond. Mete	r			Serial	Number _	-									
Pump_					Serial	Number _										
Water L	evel Meter				Serial	Number			<u></u>	Number	of B	ottles				
D.O. Me	eter				Serial	Number				Sample I	Dep	th				
Filter Ap	oparatus _				Filters	;				Field Not	tebo	ok				
Temper	ature Mea	sure								Sample I	Meth	nod				
Interfac	e Probe				Serial	Number										
PID/OV	A				Serial	Number				Discharge Water Containerized Yes No						

Page _ l _ of / Tetra Tech EM Inc. MICROPURGING GROUNDWATER Date 7/24/5 SAMPLING DATA SHEET 16.48 Well Name DPGW-Screen Interval Station Elevation _____ GND ____ TOC ____ Immiscible Phases Present Yes No Project Century Link - Longview GW Sampling Туре Project No. Static Water Level (from TOC) Well Stick Up _____ 2 11 Measured with Well Location 14.38 Static Elevation PID Readings (background) Sample Date マノンししい 7' MEAS RPTD PID Reading (TOC) Sampling Personnel Mike Well Depth VANESSA Feet of Water Wells Installed by Installation Date Gallons/Foot Sample ID Duplicate ID Casing Volume Development Date(s) inlet at 15.51 B 865 FIELD CHEMISTRY CALIBRATIONS ___µmhos/cm at 25• C Reading ______µmhos/cm at ____• C Spec. Conductance: Standard Date/Time pH 7.00 - _____ at ______ • C pH 10.00 - ____ at _____ • C Slope NA pH: pH 4.00 - _____ at _____•C PID: Calibration Gas PPM _____ Span ____ Reading ____ Dissolved Oxygen: D.O. Meter _____ mg/L at _____ •C AF 9:24 PURGING Started Cumulative Volume of Specific Water Removed (Purged) PID/OVA Reading Depth to Discharge Dissolved Conduct. Eh/ORP Turbidity Water Rate Oxvaen Temp (µmhos/cm Time (mL/min) рH (mV) (•C) at • C) (NTU) Gallons Casing Vol. Location Value (ft) Comments (mg/L)a:25 2.22 6.33 17.5 0.416 139.3 500 -16 9:30 450 625 17.2 0.410 37.4 6.61 9:35 17. 0.407 12.6 450 5.1 6.42 14.9 a:40 450 17.04 0.401 4.09 6.42 7. -11 . 1 9:40 sampled at SAMPLE PARAMETERS 940 450 4.09 6.42 -11. 1704 0.406 7. Condition of well: Remarks: **Field Chemistry Calibrations** FIELD EQUIPMENT pH Meter _____ Fractions Serial Number Spec. Cond. Meter _____ Serial Number _____ Pump Serial Number Serial Number of Bottles Water Level Meter Serial Number Sample Depth D.O. Meter Filters Field Notebook Filter Apparatus Sample Method Temperature Measure _____ Serial Number Interface Probe PID/OVA ______ Discharge Water Containerized 🔲 Yes 🗌 No

Tetra Tech EM Inc. MICROPURGING GROUNDWATER Page _ [of] SAMPLING DATA SHEET Date 71215 Screen Interval 13'-17' BGS DP6W-5 Well Name Project Century Link - Longview GW Sampling Station Elevation _____ GND ____ TOC _____ Immiscible Phases Present Yes No Static Water Level (from TOC) _____ Type _____ Project No. Measured with Well Stick Up _____ Well Location Static Elevation _____ 3.8 ' PID Readings (background) 7/2/15 Sample Date Well Depth U7' MEAS RPTD PID Reading (TOC) Sampling Personnel Mile + Wells Installed by Cascad R VALASS0 Feet of Water Installation Date 7120/15 Gallons/Foot Sample ID Development Date(s) Developed for Casing Volume Duplicate ID 86S inlet set of 15' 20 mins, 5 gal remove FIELD CHEMISTRY CALIBRATIONS Spec. Conductance: Standard _____μmhos/cm at 25•C Reading ______μmhos/cm at ___ Date/Time pH 7.00 - _____at _____•C pH 10.00 - ____at ____•C Slope <u>NA</u> pH: pH 4.00 - _____ at _____•C Dissolved Oxygen: D.O. Meter _____ mg/L at _____•C PID: Calibration Gas ______ PPM _____ Span _____ Reading ____ PURGING star at 12:08 Cumulative Volume of Specific PID/OVA Reading Water Removed (Purged) Depth to Discharge Dissolved Conduct. Eh/ORP Rate Oxygen Temp (umhos/cm Turbidity Water Gailons pН Casing Vol. Location Value Comments (ft) Time (mL/min) (mg/L) (mV) (•C) at • C) (NTU) 2:10 400 47. 1.23 15.P 0.491 2.3 400 6.24 -0.3 15.36 12:15 0.477 U6.1 6:51 400 8.23 517 0.471 5 0 0. A 8.2 12:25 400 49.1 6.26 6.5 0.470 15.10 accident % tb0 record ed 64 SAMPLE PARAMETERS Sampled at 12:25 1225 400 44 626 6.5 15.10 0.470 6.2 Condition of well: Remarks: ____ Field Chemistry Calibrations FIELD EQUIPMENT Fractions pH Meter Serial Number Spec. Cond. Meter ______ Serial Number Pump _____ _____ Serial Number Water Level Meter _____ Serial Number _____ Number of Bottles _____ Serial Number ______ Sample Depth _____ D.O. Meter Filter Apparatus Filters Filters Field Notebook Sample Method Temperature Measure Interface Probe ______ Serial Number _____ PID/OVA Serial Number Discharge Water Containerized Yes No

MICROPURGING GROUNDWATER SAMPLING DATA SHEET

Page	1	of	
Date	712	0/	15

Well Name DP6W-6	Screen Interval 13-17' BGS	
Project Century Link - Longview GW Sampling	Station Elevation GND TOC	Immiscible Phases Present 🔲 Yes 🔲 No
Project No.	Static Water Level (from TOC)	Туре
Well Location	Well Stick Up	Measured with
Sample Date 7/20/15	Static Elevation 800 13.65' DTW	PID Readings (background)
Sampling Personnel Mike	Well Depth 17' MEAS RPTD	PID Reading (TOC)
Vahessa P.	Feet of Water	Wells Installed by
Sample ID	Gallons/Foot	Installation Date
Duplicate ID	Casing Volume	Development Date(s)
FIELD CHEMISTRY CALIBRATIONS	inlet set it 15.5' BGS	
Date/Time	Spec. Conductance: Standard µmhos/cm at 3	25• C Reading µmhos/cm at• C
рН: рН 4.00 at •С	pH 7.00 at • C pH 10.00	at•C Slope NA
Dissolved Oxygen: D.O. Meter mg/L	at•C PID: Calibration GasF	PPM Span Reading
	PURGING Q 3;40	· · · · · · · · · · · · · · · · · · ·

	Discharge	Dissolved				Specific Conduct.		Cumulative Water Remo	e Volume of wed (Purged)	PID/OVA	Reading	Depth to	
Time	Rate (mL/min)	Oxygen (mg/L)	рН	Eh/ORP (mV)	Temp. (*C)	(µmhos/cm at ∙C)	Turbidity (NTU)	Gallons	Casing Vol.	Location	Value	Water (ft)	Comments
15:40	500	32.9	6.08	41.9	1539	0.537	121						
13:45	400	26.7	6.47	50.2	15.29	0.537	17.0						
15:50	400	26.7	6.49	54.1	15.24	0.537	10.9						
			rec	Lorde	1 10	D0 2	7 60	cider	ht_				
							<u> </u>						
											•	L.	
]			
SAMPL	E PARAM	ETERS	so	mples	1 a t	- 13,	50						
1350	400	26.7	6.49	54.1	15.24	0.537	(2.9						
Conditio	n of well:												
Remark	s:		•			· ·							
FIELD E		NT				• :• :	8			Field Chemistry Calibrations			
pH Mete	er				Serial	Number		<u>_</u>		_ Fractions			
					• • •								

Spec. Cond. Meter	Serial Number	
Pump	Serial Number	
Water Level Meter	Serial Number	Number of Bottles
D.O. Meter	Serial Number	Sample Depth
Filter Apparatus	Filters	Field Notebook
Temperature Measure		Sample Method
Interface Probe	Serial Number	·
PID/OVA	Serial Number	Discharge Water Containerized 🔲 Yes 🛄 No

MICROPURGING GROUNDWATER SAMPLING DATA SHEET

Page _____ of ____ Date _____

Well Name MW-	Screen Interval GND TOC	Immiscible Phases Present Ves No
Project No	Static Water Level (from TOC) 13.78'	Туре
Well Location	Well Stick Up	Measured with
Sample Date 7/22/15	Static Elevation	PID Readings (background)
Sampling Personnel Mike P	Well Depth MEAS RPTD	PID Reading (TOC)
Van 2554 P	Feet of Water	Wells installed by
Sample ID	Gallons/Foot	Installation Date
Duplicate ID	Caşing Volume	Development Date(s)
FIELD CHEMISTRY CALIBRATIONS Date/Time pH: pH 4.00at•C Dissolved Oxygen: D.O. Metermg/L =	+ubing inlet set et ls.s/ Spec. Conductance: Standard µmhos/cm at µmhos/cm at	25• C Reading µmhos/cm at• C at• C Slope <u>NA</u> PPM Span Reading

	PURGING Started at 10:57													
		Discharge	Dissolved				Specific Conduct.		Cumulative Volume of Water Removed (Purged)		PID/OVA	Reading	Depth to	
	Time	Rate (mL/min)	Oxygen (mg/L)	рН	Eh/ORP (mV)	Temp. (•C)	(µmhos/cm at ∙ C)	(µmhos/cm Turbidity at • C) (NTU)	Gallons	Casing Vol.	Location	Value	Water (ft)	Comments
	11:00	400	1.47	6.50	203.5	14.98	0.359	23.5						
	1105	400	0.76	6.35	183.4	14.70	0.359	26.5						
	1110	400	0.45	6.40	70.3	14.62	0.360	55.0						
	IIIS	400	0.50	6.40	52.0	14.59	0.300							
		Our	ainc		Que	ed (Sue.	tor	UNO	6016	in de	ANG		
; · · ·	1130	450	0.39	6.44	17.34	15.21	0.365	4.1			-			
	1135		0.40	6.41	13.1	14.7)	0.365	4.2						
	1140	400	0.48	6.41	7.1	14.75	0.366	6.1						
	145	400	0.54	6.42	0.1	(4.7)	0.369	0.7						
	1150	400	0.31	642	-2.8	14.67	0.369	-1.1						
post ,	1200		0.97	6.41	2.2	14.72	0.571	-1.9						

SAMPLE PARAMETERS SAMPLE LINE 1150. 1150 400 0.31 6.42 -28 14.400.369 -(11).

Condition of well:		
Remarks:		
		Field Chemistry Calibrations
pH Meter	Serial Number	Fractions
Spec. Cond. Meter	Serial Number	
Pump	Serial Number	
Water Level Meter	Serial Number	Number of Bottles
D.O. Meter	Serial Number	Sample Depth
Filter Apparatus	Filters	Field Notebook
Temperature Measure		Sample Method
Interface Probe	Serial Number	
PID/OVA	Serial Number	Discharge Water Containerized 🔲 Yes 🗌 No

MICROPURGING GROUNDWATER SAMPLING DATA SHEET

Page	l	of	
Date	712	2/	15

	Woll N	ama M	· W-2			Scree	n Interval									
	Project	Century Li	nk - Longvie	w GW Sa	mpling	Statio	n Elevation		GND	TOC	 Immis	Immiscible Phases Present Ves No				
	Project	t No				- Static	Water Lev	el (from Ti		321	Type					
	Mall					- Wells	Stick Un				Meas	ured with			_	
	Sampl		7,77	115			Elevation				PID 6	eadings (b)	ackground)		_	
	Sampli		Mi Mi	20	P		Denth		MEAS	RPTD	PID 6	eading (TC)C)			
	Sampi		Van	SSA	19						\A/=!!=					
						- Feet o	of VVater				vveiis	Installed b	y		-	
	Sampl	e ID				- Gallor	ns/Foot				Instal	lation Date			_	
	Duplic	ate ID				Casin	g Volume _				Devel	opment Dat	te(s)			
	FIELD	CHEMIST	RY CALIE	BRATIO	NS	tu	linz	inler	Set	at 16'	DIC	De estime		-h/		
	Date/T	ime				Spec. (Conductant	e: Standa	ra	µmnos/cn	1 at 25°C	Reading	μπ C Slope	NA	, C	
	pH: pr	1 4.00		tor	•C	pH / UL	•C	PID: Ca	•C	рп 10.00 as	PPM	Span	C Slope Re	ading		
	DISSUN	veu Oxygei	11. D.O. NIC		"."g/c		_ 0	110.00				open:				
								PUR	GING 5-	<i>arted</i>	ef q	157				
							Specific		Cumulative Water Remo	e Volume of oved (Purged)	PID/OVA	Reading	Dopth to			
		Discharge Rate	Dissolved Oxygen		Eh/ORP	Temp	(µmhos/cm	Turbidity					Water	Querra entre		
	Time	(mL/min)	(mg/L)	рH	(mV)	(•C)	at •C)	(NTU)	Gallons	Casing Vol.	Location	Value	(ft)	Comments	_	
	10:00	500	5.04	6.15	216.7	16.28	0.582	0.3				<u> </u>	+ +			
	1005	450	5.65	6.11	210.4	15.90	0.555	-1.5					+		_	
	1010	400	446	6.0	204.0	15.80	0.54	-0.0							_	
	1018	ļ	4.22	6.11	202.8	15.86	0.51	1.4					<u> </u>			
iande	1020		3.97	6.66	203.6	15.9	0.500	2.0	- · ·	<u> </u>		<u> </u>			_	
Parantes	1023	400	3.46	6.26	203.0	15.9	0.201	0.0							_	
7															_	
													+			
				<u> </u>		· · · · · ·							+		_	
													+			
		a water													-	
	SAMPL	E PARAN	IETERS	SQM	pie =	FINCE		790								
<i>bo21</i>	1046	400	2.54	6.13	204.6	15.91	0.414	18.7								
	Conditio	on of well:													_	
	Remark	s:														
											Field Chen	nistry Calib	rations			
						Serial	Number				Fractions	listry ound				
		ond Mete	r			Serial	Number									
	Dump	Jonu. wiete				Serial	Number									
	Pump					Serial	Number			· · · · · · · · · · · · · · · · · · ·	Number of	lumber of Bottles				
		eter				Serial	Number			· · · · · ·	Sample De	ample Depth				
	Filter A	nnaratus				Filter	s				Field Noteb	ald Notebook				
	Temper	rature Mea	sure								Sample Me	ample Method				
	Interfac	e Probe				Seria	Number					·				

PID/OVA _____ Discharge Water Containerized Yes No

MICROPURGING GROUNDWATER SAMPLING DATA SHEET

Page	of
Date	7/21/15

	Well N	ame M	W-:	3		Scree	n Interval				_						
	Project	Century Li	nk - Longviev	w GW Sa	mpling	 Statio	n Elevation		GND	тос	Immis	Immiscible Phases Present Yes No					
	Proiect	No.				- Static	Water Leve	- ∋l (from T(DC) 3	Туре	Туре						
	Well L	ocation				- Well S	Stick Up			Meas	Measured with						
	Sampl	e Date	7126	115			Elevation					leadings (ba	ckground)				
	Sampli	ng Person	nel Mi	Fe	P	 Well [- Depth		MEAS	RPTD	PID R	leading (TO	C)				
		Va	herry	P	' +	- Feet o	of Water		-		Wells	Installed by	,				
	Samol					Gallor	ns/Foot				Instal	lation Date					
	Duplic	ate ID				- Casin	a Volume				 Devel	opment Dat	e(s)				
						+.10	tubing inlet set it 15.5' ATC										
	Date/T	ime	NT CALIE	<u>BRATIO</u>	<u>NO</u>	Spec. C	Conductanc	e: Standa	rd	µmhos/cm	n at 25• C	Reading	µn	nhos/cm at•			
	pH: pł	-1 4.00	at		•C	рН 7.00)	at		pH 10.00	at	•(C Slope	NA			
	Dissol	ved Oxyger	n: D.O. Me	ter	mg/L	at	_•C	PID: Ca	libration Ga	as	PPM	Span	Re	ading			
										Les d al		17.15					
	ļ	, <u> </u>	1				F		GING S	TArten	RT	10,12	, TT				
	l.	Discharge	Dissolved				Specific Conduct		Water Rem	oved (Purged)	PID/OVA	Reading	Depth to				
	Time	Rate (ml/min)	Oxygen	рH	Eh/ORP (mV)	Temp (•C)	(µmhos/cm at • C)	Turbidity (NTU)	Gallons	Casing Vol	Location	Value	Water (ft)	Comments			
	16:15	62.5	-95	640	117 7	15.00	0.399	0.5									
	16.7.0	USD		616	121.7	15 79	0.410	-2.2									
	10.75	LA '	059	600	166.2	15.31	0.417	-42									
	1000	450	0.01	665	161.7	15.09	OHILA	-4.3									
	1630	MED.	0.20	603	1656	14.94	0417	-4.3									
	lides	470	0.51	4.07	1511	14 99	0.419	-47									
		USO	0.41	6.09	ILIS. I	14.94	0.417	-42				<u> </u>					
	10 13			1921	17011												
							<u> </u>		-								
				1													
h L	1555	450	0.25	6.15	130,7	15.02	0.418	-4.2									
POST				<u> </u>			mt	16.	ЧГ								
	SAMPL	E PARAM	IETERS		ann	C / .		10.	<u> </u>								
	16:45	950	0.91	6.09	193.	19.99	0.41/	-9.0	1								
	Conditio	on of well															
	Remark	s:															
	FIELD	EQUIPME	NT								Field Chen	nistry Calib	rations				
	pH Met	er				Serial	Number				Fractions	-					
	Spec. C	Cond. Mete	r			Serial	Number										
	Pump					Serial	Number										
	Water L	evel Meter				 Serial	Number			Number of	lumber of Bottles						
	D.O. M	eter				Serial Number Sar						ample Depth					
	Filter A	oparatus				Filters	s —				Field Noteb	eld Notebook					
	Tempe	rature Mea	sure								Sample Me	mple Method					
	Interfac	e Probe				Seria	Number										
	PID/OV	/Α				Seria	I Number				Discharge	ischarge Water Containerized 🔳 Yes 🏹 No					

MICROPURGING GROUNDWATER SAMPLING DATA SHEET

Page	1	of	
Date	7/2	2115	

Well Name (MW - 4	Screen Interval	_
Project Century Link - Longview GW Sampling	Station Elevation GND TOC	Immiscible Phases Present 🔲 Yes 🗌 No
Project No.	Static Water Level (from TOC)	Туре
Well Location	Well Stick Up	Measured with
Sample Date	Static Elevation	PID Readings (background)
Sampling Personnel	Well Depth MEAS RPTD	_ PID Reading (TOC)
	Feet of Water	Wells Installed by
	Casing volume	5
FIELD CHEMISTRY CALIBRATIONS	Spec Conductance: Standard umbos/cm a	t 25• C Reading umbos/cm at • C
nH· nH 4 00 - at •C	pH 7.00at •CpH 10.00	at ·C Slope NA
Dissolved Oxygen: D.O. Meter mg/L	Lat •C PID: Calibration Gas	PPM Span Reading
	PURGING STAFT IN	<u>At 13:53</u>
Displara Dispolyed	Specific Cumulative Volume of Conduct Water Removed (Purged)	PID/OVA Reading Depth to
Rate Oxygen Eh/ORP	Temp. (µmhos/cm Turbidity	Water (ft) Comments
Time (mL/min) (mg/L) pH (mv) 19:000	(·C) at ·C) (N(0) Gallons Casing vol.	
15.35 450 -0.04 618 118.2		
1400 450 -0.16 9 89.0		
1405 480 -1.92 6.15 76.2	13.55 0.577 5.1	
1410 450 -6.8 6121 6+.1	15.52 0.591 23.71	
1415 450 00.16 6.000.7	15.500.870 -4.3	
1920 50 1.24 6.19 54.5		
425 (3" 1.16 6.19 67.0	15.4 0.314 -1.4	
14.25 750 17 4 6 19 62 6	15450206 -4.5	
	ad at 111'25	
SAMPLE PARAMETERS 5CM/1		
Condition of well		
Remarks:		
	Fi	eld Chemistry Calibrations
	Sorial Number	ractions
	Serial Number	
Spec. Cond. Meter	Serial Number	
Pump	Serial Number N	umber of Bottles
	Serial Number Serial Number Serial Number	ample Depth
	Eiltere	eld Notebook
	I IIIEI3 [ample Method
remperature measure	Serial Number	
	Serial Number D	
PID/OVA		

Post
Tetra Tech EM Inc.

MICROPURGING GROUNDWATER SAMPLING DATA SHEET

Page	1.	f
Date 🔀	12	1/13

Welt N	ame 🖊	W-	5		Scree	n Interval										
Project	Century Lir	nk - Longvier	w GW Sa	mpling	Statio	n Elevation		_ GND _	тос	Immis	Immiscible Phases Present Yes No					
Project	No.				Static	Water Leve	el (from T(DC) [2	2.98	Туре						
Well Lo	ocation				Wells	Stick Up				Meas	ured with					
Sampl	e Date				Static	Elevation _	42	ap	DIA	PID R	PID Readings (background)					
Sampli	ng Personi	nel			_ Well [Depth		MEAS	PID R	eading (TC)C)					
					Feet c	of Water				Wells	Installed by	/				
Sampl	e ID				- Gallor	ns/Foot				Install	ation Date					
Duplic	ate ID				Casin	Casing Volume Development Date(s)										
FIELD	CHEMIST	RY CALIE	BRATIO	NS	+	iha I	et a	4 15	51 B	TC						
Date/T	ime				Spec. C	Conductanc	e Standa	rd	µmhos/cr	n at 25• C	Reading	µı	mhos/cm at•C			
pH∑ pH	4.00	at _		_•C	pH 7.00)	_ at	•C	pH 10.00	at	*	C Slope	NA			
Dissolv	/ed Oxyger	n D.O. Me	ter	mg/L	at	_•C	PID: Ca	libration G	as	PPM	Span	Re	eading			
							PUR		torted	at	1242					
			Γ			Specific		Cumulati	ve Volume of							
	Discharge	Dissolved		EN/ORP	Temp	Conduct.	Turbidity	Water Ren	noved (Purged)	PID/OVA	Reading	Depth to Water				
Time	(mL/min)	(mg/L)	рH	(mV)	(•C)	at • C)	(NTU)	Gallons	Casing Vol.	Location	Value	(ft)	Comments			
1245	500	-0.8	6.11	16Y.D	15.52	0.501	D									
1250	400	PU	rgin	1 5- S-	-00-	ed a	lve	10	pump	ent-1-	ery	Harli	ha			
12:55	350	-0.72	6.10	193.2	15.86	0.509	0.1									
13:00	350	3.4	5.97	204.8	15.51	0.511	0.5			ļ						
305	350	-3.9	5.98	207.5	15.39	0.511	-3.0			-						
BP .	350	0.33	5.98	211.3	15.35	0.511	-3.7									
1315	350	0.35	5.98	212.0	15.45	0.511	-37			ļ						
320	350	0,29	6.00	216.1	15.33	0.509	-3.7			<u> </u>						
			ļ			ļ										
							24			<u> </u>						
1550	350	1.67	6.01	217.2	10.01	0.510	1214	2			L		1			
SAMPL	E PARAM	ETERS	-	Samp	er	94	1350	0								
										Ι						
Conditic	n of well															
Remark	s:															
											lister Calib	untio no				
FIELDE		NT			0 mint	NI				Field Chen	listry Calic	rations				
pH Mete	er				Serial					Fractions _						
Spec. C	ond. Meter				Serial	Number _										
rump					Serial	Number				Number of	Bottles					
	evei ivieter				Serial	Number				Sample Dei	oth		·			
Filter Ar	naratus				Genal		·	···		Field Noteh	ook					
Temper	ature Meas				i inters	·			······································	Sample Me	thod					
Interface	a Prohe				Serial	Number										
menace																

PID/OVA _____ Discharge Water Containerized Yes No

436

ATTACHMENT D LABORATORY ANALYTICAL REPORTS AND CHAIN OF CUSTODY RECORDS

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626 **T**:+1 360 577 7222 **F**:+1 360 636 1068 www.alsglobal.com

Analytical Report for Service Request No: K1507840

August 06, 2015

Dr. Rob Tisdale Tetra Tech EM, Incorporated 216 16th St, Suite 1500 Denver, CO 80202

RE: CenturyLink Longview WA / 103P3080177

Dear Dr.Tisdale,

Enclosed are the results of the sample(s) submitted to our laboratory July 20, 2015 For your reference, these analyses have been assigned our service request number **K1507840**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at gregory.salata@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

ay Salt

Gregory Salata, Ph.D. Client Services Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626 **T**: +1 360 577 7222 **F**: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms Qualifiers State Certifications, Accreditations, And Licenses Case Narrative Chain of Custody Diesel and Residual Range Organics

Polynuclear Aromatic Hydrocarbons

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH tr	Total Petroleum Hydrocarbons Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- $i \,$ $\,$ The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$ The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Page 4 of 27

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEC UST	http://dec.alaska.gov/applications/eh/ehllabreports/USTLabs.aspx	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L14-51
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	Not available	-
Idaho DHW	http://www.healthandwelfare.idaho.gov/Health/Labs/CertificationDrinkingWaterLabs/tabid/1833/Default.aspx	-
ISO 17025	http://www.pjlabs.com/	L14-50
Louisiana DEQ	http://www.deq.louisiana.gov/portal/DIVISIONS/PublicParticipationandPer mitSupport/LouisianaLaboratoryAccreditationProgram.aspx	03016
Maine DHS	Not available	WA01276
Michigan DEQ	http://www.michigan.gov/deq/0,1607,7-135-3307_4131_4156,00.html	9949
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Montana DPHHS	http://www.dphhs.mt.gov/publichealth/	CERT0047
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/oqa/	WA005
North Carolina DWQ	http://www.dwqlab.org/	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEO (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/envserv/	61002
Texas CEO	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wisconsin DNR	http://dnr.wi.gov/	998386840
Wyoming (EPA Region 8)	http://www.epa.gov/region8/water/dwhome/wyomingdi.html	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 6 of 27

ALS ENVIRONMENTAL

Client:Tetra Tech EM, IncorporatedProject:CentruyLink Longview WA/ 103P3080177Sample Matrix:Water

Service Request No.: Date Received: K1507840 07/20/15

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

Sample Receipt

Four water samples were received for analysis at ALS Environmental on 07/20/15. The samples were received in good condition and consistent with the accompanying chain of custody form, except where noted on the cooler receipt and preservation form included in this report. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Diesel Range Organics by Method NWTPH-Dx

Sample Notes and Discussion:

Insufficient sample volume was received to perform a Matrix Spike/Matrix Spike Duplicate (MS/MSD). A Laboratory Control Sample/Duplicate Laboratory Control Sample (LCS/DLCS) was analyzed and reported in lieu of the MS/MSD for these samples.

No other anomalies associated with the analysis of these samples were observed.

Polynuclear Aromatic Hydrocarbons by EPA Method 8270

Sample Notes and Discussion:

A Matrix Spike/Matrix Spike Duplicate (MS/MSD) was not extracted with this sample batch. A Laboratory Control Sample/Duplicate Laboratory Control Sample (LCS/DLCS) was analyzed and reported in lieu of the MS/MSD for these samples.

No other anomalies associated with the analysis of these samples were observed.

Degay Salata

Approved by_

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 8 of 27

Chain of Custody

KI	507840
----	--------

Project Manager: David Client Name: Tetra Address: 216 City, State ZIP: Denv Email: David Project Name: Cent Project Number: 103F P.O. Number: Sampler's Name: Mike Temperature ('C): Received Intact: Cooler Custody Seals: Sample Custody Seals: Sample Identification	id Berestka a Tech 16th Street ver, CO 8020 id.Berestka@t turyLink Longy																				
Client Name: Tetra Address: 216 City, State ZIP: Denvious Email: Davia Project Name: Centra Project Number: 103F P.O. Number: Sampler's Name: Mike Temperature ('C): Received Intact: Cooler Custody Seals: Sample Custody Seals: Sample Identification	a Tech 16th Street ver, CO 8020 id.Berestka@t turyLink Longy			a Tach						Bill t	0:		Var	nessa	Pine	da					
Address: 216 City, State ZIP: Denvior Email: Davior Project Name: Cent Project Number: 103F Project Number: 103F Project Number: 103F Sampler's Name: Mike Temperature ('C): Received Intact: Cooler Custody Seals: Sample Custody Seals: Sample Identification Sample Identification	16th Street ver, CO 8020 id.Berestka@t turyLink Longv								-	Com	pany:		Tet	ra Te	ch						
City, State ZIP: Denvior Email: Davia Project Name: Cent Project Number: 103F P.O. Number: Sampler's Name: Sampler's Name: Mike Temperature ('C): Received Intact: Cooler Custody Seals: Sample Custody Seals: Sample Identification Sample Identification	ver, CO 8020 id.Berestka@t turyLink Longv	enver, CO 80202								Addr	ess:		216	5 16t	h Stre	et Suit	te 15	00			
Email: David Project Name: Cent Project Number: 103F P.O. Number: Sampler's Name: Sampler's Name: Mike Temperature ('C): Mike Received Intact: Cooler Custody Seals: Sample Custody Seals: Sample Identification	id.Berestka@t turyLink Long	2								City,	State	ZIP:	Der	nver,	CO 8	0202					· · · · · · · · · · · · · · · · · · ·
Project Name: Cent Project Number: 103F P.O. Number: Sampler's Name: Mike Temperature ('C): Received Intact: Cooler Custody Seals: Sample Custody Seals: Sample Identification	turyLink Long	etratech.com		Phone:	303	-312	-885	6		Emai	l:	vanessa.pineda@tetratech.com Phone 303-31						3-312-8812			
Project Number: 103F P.O. Number: Sampler's Name: Mike Temperature ('C): Received Intact: Cooler Custody Seals: Sample Custody Seals: Sample Identification	02000177	view WA									REQU	ESTE	D AN	IALY	SIS		1.1				ТАТ
P.O. Number: Sampler's Name: Mike Temperature ('C): Received Intact: Cooler Custody Seals: Sample Custody Seals: Sample Identification	r30801//						Τ														Routine
Sampler's Name: Mike Temperature ('C): Received Intact: Cooler Custody Seals: Sample Custody Seals: Sample Identification	_				1. 1	lica															Same Day ***
Temperature ('C): Received Intact: Cooler Custody Seals: Sample Custody Seals: Sample Identification	e Pavarini/Va	nessa Pineda	1]	o si															Next Day ***
Temperature ('C): Received Intact: Cooler Custody Seals: Sample Custody Seals: Sample Identification	SAMPLE R	ECEIPT				ŭ	gel														3 Day
Received Intact: Cooler Custody Seals: Sample Custody Seals: Sample Identification		Temp Bla	ink Present	T		or oi	ilica														6 Day
Cooler Custody Seals: Sample Custody Seals: Sample Identification	Yes	No N/A	Wet Ice / I	Blue Ice		Jote	5 0														
Sample Custody Seals: Sample Identification	Yes	No N/A	Total Cont	ainers:	1	u p															*** Please call for
Sample Identification	Yes	No N/A		an a	ers	lan	ter														availability
	1 Matrix	Date Sampled	Time Sampled	Lab ID	o. of Contail	NTPHDx dies el cleanup)	AH 625 SIM (f eanup)														Due Date:
D D/alu/ - E	144	7/70/15	12:25		Ž U	žő I	a j Z			ГТ					T	1					Comments
DD64-5	114	1	12.20	-	u		3		+	┼──┼							+				
DPGW-0		+ 1	15.20		14		7			+	_										
prow-1	W_		16:10			•							_								
JFGW-C			10.15				>														
ner tra a la companya de la companya		1				L															
Dissolved		Ag, AI, As, B, Ag, Al, As, B,	Ba, Be, Ca, Co Ba, Be, Ca, Co	1, Co, Cr, 1, Co, Cr,	Cu, F Cu, F	e, K, e, K,	Li, Mo	g, Mn, I g, Mn, I	/10, Na /10, Na	, Ní, P, , Ni, P.	Pb, Sb Pb, Sb	o, Se, 9 o, Se, 9	Si, Sn, Si, Sn,	Sr, T Sr, T	i, V, Zı i, V, Zı	n, Zr n, Zr			Addi	tiona Ul	I Methods Available pon Request
	R	ELINQUISH	IED BY						T					Star	F	ECEI	VED	BY			
Print Name		S	ignature			Da	te/Ti	me			Prin	t Nar	ne				Sig	natur	e		Date/Time
Vanessa Pine	eda	Vin	\sim	\checkmark	7/7	12/12	5	1725	56	RBI	TOR	4	SAL	AT	4	ah eg	def	de	let	k	7/20/15 1725

	Cooler Receipt and Preservation Form	Р	c <u></u>	>
(Vient / Project: TT2TP A TT5T A CTA TURY / Mikervice Request K15	840		
י	Received: #120 (15 Opened: 7/21/15 By: Unloaded: 7/21/19	Bv:~	0	
			<i>₩</i>	
]	. Samples were received via? Mail Fed Ex UPS DHL PDX Courier Hand Delivered		NI A	
4	Were custody seals on coolers? NA Y N. If yes how many and where?		IVA	
-	If present, were custody seals intact? Y N If present, were they signed and dated?		Y	N
times 2 mar	Raw Gameted Bau Constant Corr. Thermometer Cooler/COC ID Tracking	y Number	~	
S.	Cooler Temp Cooler Temp Blank Temp Blank Factor ID (NA)			Filed
¥	$-\frac{1}{10} \boxed{1 \cdot 1} \boxed{0 \cdot 1}$			
-				
L	Packing material: Insants Ranging Rubble Warms Cal Packs (Wat Ica) Dry Ica Slagues			
-	Were custody papers properly filled out (ink signed, etc.)?	NA	R	N
1	b. Did all bottles arrive in good condition (unbroken)? Indicate in the table below.	NA	(Y)	N
,	. Were all sample labels complete (i.e analysis, preservation, etc.)?	NA	\widetilde{Y}	N
{	. Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2.	NA	Ì	N
9	. Were appropriate bottles/containers and volumes received for the tests indicated?	NA	Þ	N
•	0. Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below	NA	Y	N
-	1. Were VOA vials received without headspace? Indicate in the table below.	NA	Y	Ν
	2. Was C12/Res negative?	NA	<u>(¥)</u>	N
	Sample ID on Bottle Sample ID on COC Identified I	ov:		
				antel de la Calenda

Sample ID	Bottle Count Bottle Type	Out of Temp	Head- space	Broke	pН	Reagent	Volume added	Reagent Lot Number	Initials	Time
								Armananan ar an		

Notes, Discrepancies, & Resolutions:

Turo	bottles	for "D	PG1W-2"	arrived	outside	of the	me	cooler.	Placed in	
	TOGO	overni	aht unti	1 cample	s I coard	in the	AM.			
			7	<i>y</i> ,,						

Page____of___

Diesel and Residual Range Organics

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 11 of 27

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507840
Project:	CenturyLink Longview WA/103P3080177	Date Collected:	07/20/2015
Sample Matrix:	Water	Date Received:	07/20/2015

Diesel and Residual Range Organics

Sample Name:	DPGW-5	Units:	ug/L
Lab Code:	K1507840-001	Basis:	NA
Extraction Method: Analysis Method:	METHOD NWTPH-Dx	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	18 J	260	12	1	07/24/15	07/30/15	KWG1506770	
Residual Range Organics (RRO)	40 J	520	20	1	07/24/15	07/30/15	KWG1506770	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	83	50-150	07/30/15	Acceptable
n-Triacontane	82	50-150	07/30/15	Acceptable

Comments:

Merged

Form 1A - Organic

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507840
Project:	CenturyLink Longview WA/103P3080177	Date Collected:	07/20/2015
Sample Matrix:	Water	Date Received:	07/20/2015

Diesel and Residual Range Organics

Sample Name:	DPGW-6	Units:	ug/L
Lab Code:	K1507840-002	Basis:	NA
Extraction Method: Analysis Method:	METHOD NWTPH-Dx	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	21 J	260	12	1	07/24/15	07/30/15	KWG1506770	
Residual Range Organics (RRO)	45 J	520	20	1	07/24/15	07/30/15	KWG1506770	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	96	50-150	07/30/15	Acceptable
n-Triacontane	92	50-150	07/30/15	Acceptable

Comments:

Merged

Form 1A - Organic

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507840
Project:	CenturyLink Longview WA/103P3080177	Date Collected:	07/20/2015
Sample Matrix:	Water	Date Received:	07/20/2015

Diesel and Residual Range Organics

Sample Name:	DPGW-1	Units:	ug/L
Lab Code:	K1507840-003	Basis:	NA
Extraction Method: Analysis Method:	METHOD NWTPH-Dx	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	17 J	260	12	1	07/24/15	07/30/15	KWG1506770	
Residual Range Organics (RRO)	28 J	520	20	1	07/24/15	07/30/15	KWG1506770	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	82	50-150	07/30/15	Acceptable
n-Triacontane	80	50-150	07/30/15	Acceptable

Comments:

Merged

Form 1A - Organic

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507840
Project:	CenturyLink Longview WA/103P3080177	Date Collected:	07/20/2015
Sample Matrix:	Water	Date Received:	07/20/2015

Diesel and Residual Range Organics

Sample Name:	DPGW-2	Units:	ug/L
Lab Code:	K1507840-004	Basis:	NA
Extraction Method: Analysis Method:	METHOD NWTPH-Dx	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	19 J	260	12	1	07/24/15	07/30/15	KWG1506770	
Residual Range Organics (RRO)	27 J	520	20	1	07/24/15	07/30/15	KWG1506770	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	69	50-150	07/30/15	Acceptable
n-Triacontane	69	50-150	07/30/15	Acceptable

Comments:

Merged

Form 1A - Organic

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507840
Project:	CenturyLink Longview WA/103P3080177	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA

Diesel and Residual Range Organics

Sample Name:	Method Blank	Units:	ug/L
Lab Code:	KWG1506770-3	Basis:	NA
Extraction Method: Analysis Method:	METHOD NWTPH-Dx	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	ND U	250	11	1	07/24/15	07/30/15	KWG1506770	
Residual Range Organics (RRO)	25 J	500	19	1	07/24/15	07/30/15	KWG1506770	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	77	50-150	07/30/15	Acceptable
n-Triacontane	77	50-150	07/30/15	Acceptable

Comments:

Merged

Form 1A - Organic

QA/QC Report

Client:	Tetra Tech EM, Incorporated
Project:	CenturyLink Longview WA/103P3080177
Sample Matrix:	Water

Surrogate Recovery Summary **Diesel and Residual Range Organics**

METHOD **Extraction Method: Analysis Method:**

NWTPH-Dx

Units: Percent Level: Low

Sample Name	Lab Code	<u>Sur1</u>	<u>Sur2</u>
DPGW-5	K1507840-001	83	82
DPGW-6	K1507840-002	96	92
DPGW-1	K1507840-003	82	80
DPGW-2	K1507840-004	69	69
Method Blank	KWG1506770-3	77	77
Lab Control Sample	KWG1506770-1	96	91
Duplicate Lab Control Sample	KWG1506770-2	95	91

Surrogate Recovery Control Limits (%)

Sur1 = o-Terphenyl Sur2 = n-Triacontane 50-150 50-150

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Service Request: K1507840

QA/QC Report

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507840
Project:	CenturyLink Longview WA/103P3080177	Date Extracted:	07/24/2015
Sample Matrix:	Water	Date Analyzed:	07/30/2015

Lab Control Spike/Duplicate Lab Control Spike Summary Diesel and Residual Range Organics

Extraction Method: Analysis Method:	METHOD NWTPH-Dx							l 1 I Extraction	Units: Basis: Level: 1 Lot:	ug/L NA Low KWG1506770	
	Lab Control Sample KWG1506770-1 Lab Control Spike		e	Duplicate Lab Control Sample KWG1506770-2 Duplicate Lab Control Spike							
Analyte Name	_	Result	Spike Amount	%Rec	Result	Spike Amount	%Rec	%Rec Limits	RPD	RPD Limit	
Diesel Range Organics (DR	RO)	2850	3200	89	3110	3200	97	46-140	9	30	
Residual Range Organics (I	RRO)	1440	1600	90	1550	1600	97	45-159	8	30	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Page 18 of 27

Polynuclear Aromatic Hydrocarbons

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 19 of 27

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507840
Project:	CenturyLink Longview WA/103P3080177	Date Collected:	07/20/2015
Sample Matrix:	Water	Date Received:	07/20/2015

Polynuclear Aromatic Hydrocarbons

Sample Name:	DPGW-5	Units:	ug/L
Lab Code:	K1507840-001	Basis:	NA
Extraction Method:	EPA 3520C 8270D SIM	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	0.0042 J	0.019	0.0038	1	07/22/15	07/31/15	KWG1506668	
2-Methylnaphthalene	ND U	0.019	0.0023	1	07/22/15	07/31/15	KWG1506668	
1-Methylnaphthalene	ND U	0.019	0.0035	1	07/22/15	07/31/15	KWG1506668	
Acenaphthylene	ND U	0.019	0.0034	1	07/22/15	07/31/15	KWG1506668	
Acenaphthene	ND U	0.019	0.0044	1	07/22/15	07/31/15	KWG1506668	
Fluorene	ND U	0.019	0.0038	1	07/22/15	07/31/15	KWG1506668	
Phenanthrene	ND U	0.019	0.0050	1	07/22/15	07/31/15	KWG1506668	
Anthracene	ND U	0.019	0.0036	1	07/22/15	07/31/15	KWG1506668	
Carbazole	ND U	0.019	0.0045	1	07/22/15	07/31/15	KWG1506668	
Fluoranthene	ND U	0.019	0.010	1	07/22/15	07/31/15	KWG1506668	
Pyrene	ND U	0.019	0.0053	1	07/22/15	07/31/15	KWG1506668	
Benz(a)anthracene	ND U	0.019	0.0026	1	07/22/15	07/31/15	KWG1506668	
Chrysene	ND U	0.019	0.0034	1	07/22/15	07/31/15	KWG1506668	
Benzo(b)fluoranthene†	ND U	0.019	0.0041	1	07/22/15	07/31/15	KWG1506668	
Benzo(k)fluoranthene	ND U	0.019	0.0030	1	07/22/15	07/31/15	KWG1506668	
Benzo(a)pyrene	ND U	0.019	0.0043	1	07/22/15	07/31/15	KWG1506668	
Indeno(1,2,3-cd)pyrene	ND U	0.019	0.0026	1	07/22/15	07/31/15	KWG1506668	
Dibenz(a,h)anthracene	ND U	0.019	0.0025	1	07/22/15	07/31/15	KWG1506668	
Benzo(g,h,i)perylene	ND U	0.019	0.0029	1	07/22/15	07/31/15	KWG1506668	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	90	46-114	07/31/15	Acceptable
Fluoranthene-d10	102	51-121	07/31/15	Acceptable
Terphenyl-d14	78	58-140	07/31/15	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Merged

Form 1A - Organic Page 20 of 27

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507840
Project:	CenturyLink Longview WA/103P3080177	Date Collected:	07/20/2015
Sample Matrix:	Water	Date Received:	07/20/2015

Polynuclear Aromatic Hydrocarbons

Sample Name:	DPGW-6	Units:	ug/L
Lab Code:	K1507840-002	Basis:	NA
Extraction Method: Analysis Method:	EPA 3520C 8270D SIM	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND U	0.019	0.0038	1	07/22/15	07/31/15	KWG1506668	
2-Methylnaphthalene	ND U	0.019	0.0023	1	07/22/15	07/31/15	KWG1506668	
1-Methylnaphthalene	ND U	0.019	0.0035	1	07/22/15	07/31/15	KWG1506668	
Acenaphthylene	ND U	0.019	0.0034	1	07/22/15	07/31/15	KWG1506668	
Acenaphthene	ND U	0.019	0.0044	1	07/22/15	07/31/15	KWG1506668	
Fluorene	ND U	0.019	0.0038	1	07/22/15	07/31/15	KWG1506668	
Phenanthrene	ND U	0.019	0.0050	1	07/22/15	07/31/15	KWG1506668	
Anthracene	ND U	0.019	0.0036	1	07/22/15	07/31/15	KWG1506668	
Carbazole	ND U	0.019	0.0045	1	07/22/15	07/31/15	KWG1506668	
Fluoranthene	ND U	0.019	0.010	1	07/22/15	07/31/15	KWG1506668	
Pyrene	ND U	0.019	0.0053	1	07/22/15	07/31/15	KWG1506668	
Benz(a)anthracene	ND U	0.019	0.0026	1	07/22/15	07/31/15	KWG1506668	
Chrysene	ND U	0.019	0.0034	1	07/22/15	07/31/15	KWG1506668	
Benzo(b)fluoranthene†	ND U	0.019	0.0041	1	07/22/15	07/31/15	KWG1506668	
Benzo(k)fluoranthene	ND U	0.019	0.0030	1	07/22/15	07/31/15	KWG1506668	
Benzo(a)pyrene	ND U	0.019	0.0043	1	07/22/15	07/31/15	KWG1506668	
Indeno(1,2,3-cd)pyrene	ND U	0.019	0.0026	1	07/22/15	07/31/15	KWG1506668	
Dibenz(a,h)anthracene	ND U	0.019	0.0025	1	07/22/15	07/31/15	KWG1506668	
Benzo(g,h,i)perylene	ND U	0.019	0.0029	1	07/22/15	07/31/15	KWG1506668	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	92	46-114	07/31/15	Acceptable
Fluoranthene-d10	103	51-121	07/31/15	Acceptable
Terphenyl-d14	78	58-140	07/31/15	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Merged

Form 1A - Organic Page 21 of 27

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507840
Project:	CenturyLink Longview WA/103P3080177	Date Collected:	07/20/2015
Sample Matrix:	Water	Date Received:	07/20/2015

Polynuclear Aromatic Hydrocarbons

Sample Name:	DPGW-1	Units:	ug/L
Lab Code:	K1507840-003	Basis:	NA
Extraction Method: Analysis Method:	EPA 3520C 8270D SIM	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	0.0085 J	0.019	0.0038	1	07/22/15	07/31/15	KWG1506668	
2-Methylnaphthalene	0.0029 J	0.019	0.0023	1	07/22/15	07/31/15	KWG1506668	
1-Methylnaphthalene	ND U	0.019	0.0035	1	07/22/15	07/31/15	KWG1506668	
Acenaphthylene	ND U	0.019	0.0034	1	07/22/15	07/31/15	KWG1506668	
Acenaphthene	ND U	0.019	0.0044	1	07/22/15	07/31/15	KWG1506668	
Fluorene	ND U	0.019	0.0038	1	07/22/15	07/31/15	KWG1506668	
Phenanthrene	ND U	0.019	0.0050	1	07/22/15	07/31/15	KWG1506668	
Anthracene	ND U	0.019	0.0036	1	07/22/15	07/31/15	KWG1506668	
Carbazole	ND U	0.019	0.0045	1	07/22/15	07/31/15	KWG1506668	
Fluoranthene	ND U	0.019	0.010	1	07/22/15	07/31/15	KWG1506668	
Pyrene	ND U	0.019	0.0053	1	07/22/15	07/31/15	KWG1506668	
Benz(a)anthracene	ND U	0.019	0.0026	1	07/22/15	07/31/15	KWG1506668	
Chrysene	ND U	0.019	0.0034	1	07/22/15	07/31/15	KWG1506668	
Benzo(b)fluoranthene†	ND U	0.019	0.0041	1	07/22/15	07/31/15	KWG1506668	
Benzo(k)fluoranthene	ND U	0.019	0.0030	1	07/22/15	07/31/15	KWG1506668	
Benzo(a)pyrene	ND U	0.019	0.0043	1	07/22/15	07/31/15	KWG1506668	
Indeno(1,2,3-cd)pyrene	ND U	0.019	0.0026	1	07/22/15	07/31/15	KWG1506668	
Dibenz(a,h)anthracene	ND U	0.019	0.0025	1	07/22/15	07/31/15	KWG1506668	
Benzo(g,h,i)perylene	ND U	0.019	0.0029	1	07/22/15	07/31/15	KWG1506668	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	88	46-114	07/31/15	Acceptable
Fluoranthene-d10	101	51-121	07/31/15	Acceptable
Terphenyl-d14	78	58-140	07/31/15	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Merged

Form 1A - Organic Page 22 of 27

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507840
Project:	CenturyLink Longview WA/103P3080177	Date Collected:	07/20/2015
Sample Matrix:	Water	Date Received:	07/20/2015

Polynuclear Aromatic Hydrocarbons

Sample Name:	DPGW-2	Units:	ug/L
Lab Code:	K1507840-004	Basis:	NA
Extraction Method: Analysis Method:	EPA 3520C 8270D SIM	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	0.010 J	0.019	0.0038	1	07/22/15	07/31/15	KWG1506668	
2-Methylnaphthalene	0.0032 J	0.019	0.0023	1	07/22/15	07/31/15	KWG1506668	
1-Methylnaphthalene	ND U	0.019	0.0035	1	07/22/15	07/31/15	KWG1506668	
Acenaphthylene	ND U	0.019	0.0034	1	07/22/15	07/31/15	KWG1506668	
Acenaphthene	ND U	0.019	0.0044	1	07/22/15	07/31/15	KWG1506668	
Fluorene	ND U	0.019	0.0038	1	07/22/15	07/31/15	KWG1506668	
Phenanthrene	ND U	0.019	0.0050	1	07/22/15	07/31/15	KWG1506668	
Anthracene	ND U	0.019	0.0036	1	07/22/15	07/31/15	KWG1506668	
Carbazole	ND U	0.019	0.0045	1	07/22/15	07/31/15	KWG1506668	
Fluoranthene	ND U	0.019	0.010	1	07/22/15	07/31/15	KWG1506668	
Pyrene	ND U	0.019	0.0053	1	07/22/15	07/31/15	KWG1506668	
Benz(a)anthracene	ND U	0.019	0.0026	1	07/22/15	07/31/15	KWG1506668	
Chrysene	ND U	0.019	0.0034	1	07/22/15	07/31/15	KWG1506668	
Benzo(b)fluoranthene†	ND U	0.019	0.0041	1	07/22/15	07/31/15	KWG1506668	
Benzo(k)fluoranthene	ND U	0.019	0.0030	1	07/22/15	07/31/15	KWG1506668	
Benzo(a)pyrene	ND U	0.019	0.0043	1	07/22/15	07/31/15	KWG1506668	
Indeno(1,2,3-cd)pyrene	ND U	0.019	0.0026	1	07/22/15	07/31/15	KWG1506668	
Dibenz(a,h)anthracene	ND U	0.019	0.0025	1	07/22/15	07/31/15	KWG1506668	
Benzo(g,h,i)perylene	ND U	0.019	0.0029	1	07/22/15	07/31/15	KWG1506668	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	89	46-114	07/31/15	Acceptable
Fluoranthene-d10	101	51-121	07/31/15	Acceptable
Terphenyl-d14	77	58-140	07/31/15	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Merged

Form 1A - Organic Page 23 of 27

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507840
Project:	CenturyLink Longview WA/103P3080177	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA

Polynuclear Aromatic Hydrocarbons

Sample Name:	Method Blank	Units:	ug/L
Lab Code:	KWG1506668-3	Basis:	NA
Extraction Method: Analysis Method:	EPA 3520C 8270D SIM	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND U	0.019	0.0038	1	07/22/15	07/31/15	KWG1506668	
2-Methylnaphthalene	ND U	0.019	0.0023	1	07/22/15	07/31/15	KWG1506668	
1-Methylnaphthalene	ND U	0.019	0.0035	1	07/22/15	07/31/15	KWG1506668	
Acenaphthylene	ND U	0.019	0.0034	1	07/22/15	07/31/15	KWG1506668	
Acenaphthene	ND U	0.019	0.0044	1	07/22/15	07/31/15	KWG1506668	
Fluorene	ND U	0.019	0.0038	1	07/22/15	07/31/15	KWG1506668	
Phenanthrene	ND U	0.019	0.0050	1	07/22/15	07/31/15	KWG1506668	
Anthracene	ND U	0.019	0.0036	1	07/22/15	07/31/15	KWG1506668	
Carbazole	ND U	0.019	0.0045	1	07/22/15	07/31/15	KWG1506668	
Fluoranthene	ND U	0.019	0.010	1	07/22/15	07/31/15	KWG1506668	
Pyrene	ND U	0.019	0.0053	1	07/22/15	07/31/15	KWG1506668	
Benz(a)anthracene	ND U	0.019	0.0026	1	07/22/15	07/31/15	KWG1506668	
Chrysene	ND U	0.019	0.0034	1	07/22/15	07/31/15	KWG1506668	
Benzo(b)fluoranthene†	ND U	0.019	0.0041	1	07/22/15	07/31/15	KWG1506668	
Benzo(k)fluoranthene	ND U	0.019	0.0030	1	07/22/15	07/31/15	KWG1506668	
Benzo(a)pyrene	ND U	0.019	0.0043	1	07/22/15	07/31/15	KWG1506668	
Indeno(1,2,3-cd)pyrene	ND U	0.019	0.0026	1	07/22/15	07/31/15	KWG1506668	
Dibenz(a,h)anthracene	ND U	0.019	0.0025	1	07/22/15	07/31/15	KWG1506668	
Benzo(g,h,i)perylene	ND U	0.019	0.0029	1	07/22/15	07/31/15	KWG1506668	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	92	46-114	07/31/15	Acceptable
Fluoranthene-d10	101	51-121	07/31/15	Acceptable
Terphenyl-d14	80	58-140	07/31/15	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Merged

Form 1A - Organic Page 24 of 27

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507840
Project:	CenturyLink Longview WA/103P3080177	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA

Polynuclear Aromatic Hydrocarbons

Sample Name:	Method Blank	Units:	ug/L
Lab Code:	KWG1506668-4	Basis:	NA
Extraction Method: Analysis Method:	EPA 3520C 8270D SIM	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND U	0.019	0.0038	1	07/22/15	07/31/15	KWG1506668	
2-Methylnaphthalene	ND U	0.019	0.0023	1	07/22/15	07/31/15	KWG1506668	
1-Methylnaphthalene	ND U	0.019	0.0035	1	07/22/15	07/31/15	KWG1506668	
Acenaphthylene	ND U	0.019	0.0034	1	07/22/15	07/31/15	KWG1506668	
Acenaphthene	ND U	0.019	0.0044	1	07/22/15	07/31/15	KWG1506668	
Fluorene	ND U	0.019	0.0038	1	07/22/15	07/31/15	KWG1506668	
Phenanthrene	ND U	0.019	0.0050	1	07/22/15	07/31/15	KWG1506668	
Anthracene	ND U	0.019	0.0036	1	07/22/15	07/31/15	KWG1506668	
Carbazole	ND U	0.019	0.0045	1	07/22/15	07/31/15	KWG1506668	
Fluoranthene	ND U	0.019	0.010	1	07/22/15	07/31/15	KWG1506668	
Pyrene	ND U	0.019	0.0053	1	07/22/15	07/31/15	KWG1506668	
Benz(a)anthracene	ND U	0.019	0.0026	1	07/22/15	07/31/15	KWG1506668	
Chrysene	ND U	0.019	0.0034	1	07/22/15	07/31/15	KWG1506668	
Benzo(b)fluoranthene†	ND U	0.019	0.0041	1	07/22/15	07/31/15	KWG1506668	
Benzo(k)fluoranthene	ND U	0.019	0.0030	1	07/22/15	07/31/15	KWG1506668	
Benzo(a)pyrene	ND U	0.019	0.0043	1	07/22/15	07/31/15	KWG1506668	
Indeno(1,2,3-cd)pyrene	ND U	0.019	0.0026	1	07/22/15	07/31/15	KWG1506668	
Dibenz(a,h)anthracene	ND U	0.019	0.0025	1	07/22/15	07/31/15	KWG1506668	
Benzo(g,h,i)perylene	ND U	0.019	0.0029	1	07/22/15	07/31/15	KWG1506668	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	93	46-114	07/31/15	Acceptable
Fluoranthene-d10	102	51-121	07/31/15	Acceptable
Terphenyl-d14	80	58-140	07/31/15	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Merged

Form 1A - Organic Page 25 of 27

QA/QC Report

Client:	Tetra Tech EM, Incorporated
Project:	CenturyLink Longview WA/103P3080177
Sample Matrix:	Water

Surrogate Recovery Summary **Polynuclear Aromatic Hydrocarbons**

Extraction Method: EPA 3520C **Analysis Method:**

8270D SIM

Units: Percent Level: Low

Service Request: K1507840

Sample Name	Lab Code	<u>Sur1</u>	Sur2	<u>Sur3</u>
DPGW-5	K1507840-001	90	102	78
DPGW-6	K1507840-002	92	103	78
DPGW-1	K1507840-003	88	101	78
DPGW-2	K1507840-004	89	101	77
Method Blank	KWG1506668-3	92	101	80
Method Blank	KWG1506668-4	93	102	80
Lab Control Sample	KWG1506668-1	92	101	82
Duplicate Lab Control Sample	KWG1506668-2	93	102	83

Surrogat	Surrogate Recovery Control Limits (%)				
Sur1 =	Fluorene-d10	46-114			
Sur2 =	Fluoranthene-d10	51-121			
Sur3 =	Terphenyl-d14	58-140			

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:	Tetra Tech EM, Incorporated	S
Project:	CenturyLink Longview WA/103P3080177	I
Sample Matrix:	Water	-

 Service Request:
 K1507840

 Date Extracted:
 07/22/2015

 Date Analyzed:
 07/31/2015

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons

Extraction Method:	EPA 3520C			Units:	ug/L
Analysis Method:	8270D SIM			Basis:	NA
				Level:	Low
				Extraction Lot:	KWG1506668
		Lab Control Sample	Duplicate Lab Control Sample		

	KWG1506668-1 Lab Control Spike			KWG1506668-2 Duplicate Lab Control Spike					
Analyte Name	Result	Spike Amount	%Rec	Result	Spike Amount	%Rec	%Rec Limits	RPD	RPD Limit
Naphthalene	1.90	2.50	76	1.89	2.50	76	39-110	0	30
2-Methylnaphthalene	1.76	2.50	70	1.75	2.50	70	39-115	1	30
1-Methylnaphthalene	1.69	2.50	68	1.68	2.50	67	40-122	1	30
Acenaphthylene	1.98	2.50	79	1.99	2.50	79	44-115	0	30
Acenaphthene	1.96	2.50	78	1.95	2.50	78	44-113	0	30
Fluorene	2.00	2.50	80	1.99	2.50	80	48-118	0	30
Phenanthrene	2.00	2.50	80	1.99	2.50	80	47-120	1	30
Anthracene	1.81	2.50	73	1.77	2.50	71	44-117	2	30
Carbazole	2.17	2.50	87	2.16	2.50	86	45-134	0	30
Fluoranthene	2.12	2.50	85	2.14	2.50	85	48-128	1	30
Pyrene	1.96	2.50	79	1.97	2.50	79	42-133	0	30
Benz(a)anthracene	2.02	2.50	81	2.01	2.50	81	48-125	0	30
Chrysene	2.00	2.50	80	2.00	2.50	80	50-128	0	30
Benzo(b)fluoranthene	2.03	2.50	81	2.05	2.50	82	49-131	1	30
Benzo(k)fluoranthene	1.93	2.50	77	1.94	2.50	78	54-131	1	30
Benzo(a)pyrene	1.90	2.50	76	1.91	2.50	77	43-134	1	30
Indeno(1,2,3-cd)pyrene	1.89	2.50	75	1.87	2.50	75	45-133	1	30
Dibenz(a,h)anthracene	1.93	2.50	77	1.93	2.50	77	49-133	0	30
Benzo(g,h,i)perylene	1.85	2.50	74	1.85	2.50	74	51-124	0	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626 **T**:+1 360 577 7222 **F**:+1 360 636 1068 www.alsglobal.com

Analytical Report for Service Request No: K1507897

August 06, 2015

Dr. Rob Tisdale Tetra Tech EM, Incorporated 216 16th St, Suite 1500 Denver, CO 80202

RE: CenturyLink Longview WA / 103P3080177

Dear Dr.Tisdale,

Enclosed are the results of the sample(s) submitted to our laboratory July 22, 2015 For your reference, these analyses have been assigned our service request number **K1507897**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at gregory.salata@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

my All

Gregory Salata, Ph.D. Client Services Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626 **T**: +1 360 577 7222 **F**: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms Qualifiers State Certifications, Accreditations, And Licenses Case Narrative Chain of Custody General Chemistry Diesel and Residual Range Organics Polynuclear Aromatic Hydrocarbons (Soil) Polynuclear Aromatic Hydrocarbons (Water)

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH tr	Total Petroleum Hydrocarbons Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- $i \,$ $\,$ The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$ The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Page 4 of 47

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEC UST	http://dec.alaska.gov/applications/eh/ehllabreports/USTLabs.aspx	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L14-51
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	Not available	-
Idaho DHW	http://www.healthandwelfare.idaho.gov/Health/Labs/CertificationDrinkingW aterLabs/tabid/1833/Default.aspx	
ISO 17025	http://www.pjlabs.com/	L14-50
Louisiana DEQ	http://www.deq.louisiana.gov/portal/DIVISIONS/PublicParticipationandPer mitSupport/LouisianaLaboratoryAccreditationProgram.aspx	03016
Maine DHS	Not available	WA01276
Michigan DEQ	http://www.michigan.gov/deq/0,1607,7-135-3307_4131_4156,00.html	9949
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Montana DPHHS	http://www.dphhs.mt.gov/publichealth/	CERT0047
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/oqa/	WA005
North Carolina DWQ	http://www.dwqlab.org/	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon DEO (NEL AD)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator	WA 100010
Oregon – DEQ (NELAP)	http://www.scdhec.gov/environment/envserv/	WA100010
South Carolina DHEC	http://www.tceq.texas.gov/field/ga/env_lab_accreditation.html	61002
Texas CEQ	http://www.ecv.wa.gov/programs/eap/labs/lab-accreditation.html	T104704427
Washington DOE	http://dnr.wi.gov/	C544
Wisconsin DNR	http://cmr.wi.gov/	998386840
Wyoming (EPA Region 8)	nup://www.epa.gov/region8/water/dwhome/wyomingdi.html	
Kelso Laboratory Website	www.aisglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 6 of 47

ALS ENVIRONMENTAL

Client:Tetra Tech EM, IncorporatedProject:CentruyLink Longview WA/ 103P3080177Sample Matrix:Water and Soil

Service Request No.: Date Received: K1507897 07/21/15-07/22/15

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

Sample Receipt

Six water and one soil sample was received for analysis at ALS Environmental between 07/21/15 and 07/22/15. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Diesel Range Organics by Method NWTPH-Dx

Relative Percent Difference Exceptions:

The Relative Percent Difference (RPD) criterion for the replicate analysis of Diesel Range Organics (DRO) and Residual Range Organics (RRO) in sample DP-I DW-1 was not applicable because the analyte concentration was not significantly greater than the Method Reporting Limit (MRL). Analytical values derived from measurements close to the detection limit are not subject to the same accuracy and precision criteria as results derived from measurements higher on the calibration range for the method.

Sample Notes and Discussion:

Insufficient sample volume was received to perform a Matrix Spike/Matrix Spike Duplicate (MS/MSD) in preparation group KWG1506771. A Laboratory Control Sample/Duplicate Laboratory Control Sample (LCS/DLCS) was analyzed and reported in lieu of the MS/MSD for these samples.

No other anomalies associated with the analysis of these samples were observed.

Polynuclear Aromatic Hydrocarbons by EPA Method 8270 (Soil)

Relative Percent Difference Exceptions:

The Relative Percent Difference (RPD) for the replicate analysis of several analytes in sample Batch QC KWG1506909-9 were outside the control limits. The variability in the results was attributed to the suspected heterogeneous character of the sample. Standard mixing techniques were used, but were not sufficient for complete homogenization of this sample.

Approved by

George Salata
The Relative Percent Difference (RPD) criterion for the replicate analysis of several analytes in sample Batch QC KWG1506909-9 was not applicable because the analyte concentration was not significantly greater than the Method Reporting Limit (MRL). Analytical values derived from measurements close to the detection limit are not subject to the same accuracy and precision criteria as results derived from measurements higher on the calibration range for the method.

No other anomalies associated with the analysis of these samples were observed.

Polynuclear Aromatic Hydrocarbons by EPA Method 8270 (Water)

Sample Notes and Discussion:

The results reported for Fluorene in samples DPGW-4 and MW-5 may contain a slight bias. The chromatogram indicated the presence of non-target background components. The matrix interference may have resulted in a slight high bias in the affected samples. The results were flagged with "X" to indicate the issue.

No other anomalies associated with the analysis of these samples were observed.

Hegary Salata

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 9 of 47

Chain of Custody

Work Order No.:

(Columbia Analytical Ser	vices, Inc.		
	Part of the ALS Group	A Campbell	Brothers I	imited Co

ADDRESS 1317 South 13th Ave., Kelso, WA 98626 PHONE 1 360 577 7222 FAX 1 360 636 1068

	Part of th	e ALS Grou	p A Campbe	ell Brothers Li	mited Cor	mpan	у							1								
Project Manager:	David Be	restka									Bil	to:		Van	essa	Pined	neda					
Client Name:	Tetra Teo	ch									Co	npany:		Tetr	Tetra Tech							
Address:	216 16th	Street									Ad	iress:		216 16th Street Suite 1500								
City, State ZIP:	Denver, (CO 80202				-					Cit	y, State	ZIP:	Den	ver, (20 80)202			0000000000		
Email:	David.Be	restka@te	tratech.com	·	Phone:	30	3-31	2-88	56	l	Em	ail:		vanessa.pine			@tetra	tech.co	om Ph	ione	303-	312-8812
Project Name:	CenturyL	ink Longvi	ew WA					<u>;</u>			ų fi	REQU	JESTE	D AN	ALYS	SIS	112.2	<u> </u>				
Project Number:	103P308	30177																				Routine
P.O. Number:				***************************************		- 33	ilic															Same Day ***
Sampler's Name:	Mike Pav	/arini/Var	iessa Pineda) 2010-10-00-00-00-00-00-00-00-00-00-00-00-			202	-														Next Day ***
	S/	AMPLE RE	CEIPT				1	96		[3 Day
Гemperature ('C):			Temp Bla	ink Present			0 10															6 Day
Received Intact:		Yes	No N/A	Wet Ice / I	Blue Ice		ğ	0 2														
Cooler Custody Seals	5:	Yes	No N/A	Total Cont	ainers:	1	n pr	ed-I		l												*** Please call fo
Sample Custody Seal	S:	Yes	No N/A			lers	el ar	Iter														availability
Sample Identifica	ation	Matrix	Date Sampled	Time Sampled	Lab ID	. of Contair	TPHDx diese	H 625 SIM (fi														Due Date:
						2	NN Te		<u> </u>						r			I			 	Comments
DUP	<u> </u>	Gis	31211	0000		4		13														······
DPGW-4	2	60	3121115	0940		<u><u> </u></u>		5														
<u> DPGW - 3</u>	3	66	3/4/15	1125		4	1	3														
MW-5	4	G W	3121/15	1320		4	1	3														
MW-4	5	66	7/21/15	1425		4	1	3														
MW-3	6	6W	7/215	1645		4	1	3														
DP-IDV-1	1	Soil	7/2415	1500		2	1	1	1													
					1	1	1	1						1								
					1	1	1	1	1											1		
					1			1	1													•
					-		1	1	1											1		
otal			a Al As B	Ba Be Ca Co	d Co Cr	<u>с</u>	I Fe K	 _ i N	Ja M	n Mo	Na Ni	P Ph Sł	h Se S	L Si Sn	Sr Ti	V Zn	 7r		Δ	dditi	onal	Methods Availabl
Dissolved				Ba Be Ca Co	d Co Cr	<u>Cu</u>	Fe K	i,, ,	Ma M	n Mo	Na Ni	P Ph SI	h Se S	Si Sn	Sr Ti	V 7n	 7r				Up	on Request
		RE	LINOUISH	IED BY	<u>, co, cr,</u>	<u>-u,</u>		., LI , ľ	<u>9</u> , M		, 194, 191,	.,,	о, эе, з 	<i></i> , <i></i> ,	<u>, 1</u>	R	ECEI	VED	3Y		- F	
Print N	ame		S	ignature			Da	ate/1	Time			Prir	nt Nar	ne	·····	<u>्।</u> `		Sian	ature			Date/Time
VonceR		;			1.441 ·	117	$\frac{1}{2}$		1211					-								
ILLUSSA VINO	104	<i>F</i>	m			<u> 14</u>	٢٦	4	1211	15	p	a		\sim	$\underline{}$	\leq		_				/
						1					-	3	1	12	-			- 1				2/2/161

ALS	РС	Give	9
Cooler Receipt and Preservation Form	n1-		1
Client / Project: ONA / ONA / ONA / ONA / ONA / ONA / ONA	<u>97</u>		
Received: $\frac{7}{21}$ Opened: $\frac{7}{22}$ (15 By: Unloaded: $\frac{7}{22}$ (15	By:) <	****
1. Samples were received via? Mail Fed Ex UPS DHL PDX Courier Hand Delivere	d		
2. Samples were received in: (circle) Cooler Box Envelope Other	N	VA .	
3. Were <u>custody seals</u> on coolers? NA Y N If yes, how many and where?			
If present, were custody seals intact? Y N If present, were they signed and dated?		Y	N
Raw Corrected, Raw Corrected Corr. Thermometer Cooler/COC ID Tracking	Number	NA	Filed
\mathcal{D} if \mathcal{D}			1 neu
15.4 15.4 7.9 F.9 0 32 9 Noice			
	······································		
4. Packing material: Inserts Baggies Bubble Wrap Gel Packs Wet Ice Dry Ice Sleeves		2	
5. were custody papers properly filled out (ink, signed, etc.)?	NA (Y A	N
6. Did all bottles arrive in good condition (unbroken)? Indicate in the table below.	NA (r K	N
7. Were all sample labels complete (i.e analysis, preservation, etc.)?	NA		N
8. Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2.	NA (N
9. Were appropriate bottles/containers and volumes received for the tests indicated?		L V	IN N
10. Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below	NA	Y	N
11. Were VOA vials received without headspace? Indicate in the table below.	NA	$\frac{\mathbf{Y}}{\mathbf{Y}}$	N
12. was C12/Res negative?			IN
Sample ID on Bottle Sample ID on COC Identified by	v:		

Sample ID	Bottle Count Bottle Type	Out of Temp	Head- space	Broke	pН	R	eagent	Volume added	Reagent Lot Number	Initials	Time
		†									
		<u> </u>				<u> </u>					

Notes, Discrepancies, & Resolutions:_____

Page____of____

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 12 of 47

Analytical Report **Client:** Tetra Tech EM, Incorporated Service Request: K1507897 **Date Collected:** 07/21/15 **Project:** CenturyLink Longview WA/103P3080177 **Date Received:** 07/22/15 **Sample Matrix:** Soil Analysis Method: 160.3 Modified Units: Percent **Prep Method: Basis:** As Received None

Solids, Total

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
DP-I DW-1	K1507897-007	87.1	-	1	07/22/15 13:12	

			QA/QC Repor	t			
Client:	Tetra Tech EM, Incorpor	ated			Service Req	uest: K150	7897
Project	CenturyLink Longview V	VA/103P308	0177		Date Colle	cted: 07/21	/15
Sample Matrix:	Soil				Date Rece	ived: 07/22	/15
					Date Anal	yzed: 07/22	/15
		Repli	cate Sample Si	ımmary			
		Genera	l Chemistry Pa	arameters			
Sample Name:	DP-I DW-1				Ţ	Units: Perce	ent
Lab Code:	K1507897-007]	Basis: As R	eceived
			Sample	Duplicate Sample K1507897- 007DUP			
Analyte Name	Analysis Method	MRL	Result	Result	Average	RPD	RPD Limi
Solids, Total	160.3 Modified	-	87.1	88.2	87.7	1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Diesel and Residual Range Organics

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 15 of 47

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507897
Project:	CenturyLink Longview WA/103P3080177	Date Collected:	07/21/2015
Sample Matrix:	Water	Date Received:	07/21/2015

Diesel and Residual Range Organics

Sample Name:	DUP	Units:	ug/L
Lab Code:	K1507897-001	Basis:	NA
Extraction Method: Analysis Method:	METHOD NWTPH-Dx	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	14 J	260	12	1	07/24/15	07/30/15	KWG1506770	
Residual Range Organics (RRO)	30 J	520	20	1	07/24/15	07/30/15	KWG1506770	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	85	50-150	07/30/15	Acceptable Acceptable
n-Triacontane	82	50-150	07/30/15	

Comments:

Merged

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507897
Project:	CenturyLink Longview WA/103P3080177	Date Collected:	07/21/2015
Sample Matrix:	Water	Date Received:	07/21/2015

Diesel and Residual Range Organics

Sample Name:	DPGW-4	Units:	ug/L
Lab Code:	K1507897-002	Basis:	NA
Extraction Method: Analysis Method:	METHOD NWTPH-Dx	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	41 J	260	12	1	07/24/15	07/30/15	KWG1506770	
Residual Range Organics (RRO)	68 J	520	20	1	07/24/15	07/30/15	KWG1506770	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	88	50-150	07/30/15	Acceptable
n-Triacontane	87	50-150	07/30/15	Acceptable

Comments:

Merged

Form 1A - Organic

Page 17 of 47

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507897
Project:	CenturyLink Longview WA/103P3080177	Date Collected:	07/21/2015
Sample Matrix:	Water	Date Received:	07/21/2015

Diesel and Residual Range Organics

Sample Name:	DPGW-3	Units:	ug/L
Lab Code:	K1507897-003	Basis:	NA
Extraction Method: Analysis Method:	METHOD NWTPH-Dx	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	15 J	260	12	1	07/24/15	07/30/15	KWG1506770	
Residual Range Organics (RRO)	34 J	520	20	1	07/24/15	07/30/15	KWG1506770	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	73	50-150	07/30/15	Acceptable
n-Triacontane	73	50-150	07/30/15	Acceptable

Comments:

Merged

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507897
Project:	CenturyLink Longview WA/103P3080177	Date Collected:	07/21/2015
Sample Matrix:	Water	Date Received:	07/21/2015

Diesel and Residual Range Organics

Sample Name:	MW-5	Units:	ug/L
Lab Code:	K1507897-004	Basis:	NA
Extraction Method: Analysis Method:	METHOD NWTPH-Dx	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	30 J	260	12	1	07/24/15	07/30/15	KWG1506770	
Residual Range Organics (RRO)	42 J	520	20	1	07/24/15	07/30/15	KWG1506770	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	82	50-150	07/30/15	Acceptable
n-Triacontane	81	50-150	07/30/15	Acceptable

Comments:

Merged

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507897
Project:	CenturyLink Longview WA/103P3080177	Date Collected:	07/21/2015
Sample Matrix:	Water	Date Received:	07/21/2015

Diesel and Residual Range Organics

Sample Name:	MW-4	Units:	ug/L
Lab Code:	K1507897-005	Basis:	NA
Extraction Method: Analysis Method:	METHOD NWTPH-Dx	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	24 J	260	12	1	07/24/15	07/30/15	KWG1506770	
Residual Range Organics (RRO)	52 J	520	20	1	07/24/15	07/30/15	KWG1506770	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	78	50-150	07/30/15	Acceptable
n-Triacontane	79	50-150	07/30/15	Acceptable

Comments:

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507897
Project:	CenturyLink Longview WA/103P3080177	Date Collected:	07/21/2015
Sample Matrix:	Water	Date Received:	07/21/2015

Diesel and Residual Range Organics

Sample Name:	MW-3	Units:	ug/L
Lab Code:	K1507897-006	Basis:	NA
Extraction Method: Analysis Method:	METHOD NWTPH-Dx	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	21 J	260	12	1	07/24/15	07/30/15	KWG1506770	
Residual Range Organics (RRO)	49 J	520	20	1	07/24/15	07/30/15	KWG1506770	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	73	50-150	07/30/15	Acceptable
n-Triacontane	71	50-150	07/30/15	Acceptable

Comments:

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507897
Project:	CenturyLink Longview WA/103P3080177	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA

Diesel and Residual Range Organics

Sample Name:	Method Blank	Units:	ug/L
Lab Code:	KWG1506770-3	Basis:	NA
Extraction Method: Analysis Method:	METHOD NWTPH-Dx	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	ND U	250	11	1	07/24/15	07/30/15	KWG1506770	
Residual Range Organics (RRO)	25 J	500	19	1	07/24/15	07/30/15	KWG1506770	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	77	50-150	07/30/15	Acceptable
n-Triacontane	77	50-150	07/30/15	Acceptable

Comments:

Merged

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507897
Project:	CenturyLink Longview WA/103P3080177	Date Collected:	07/21/2015
Sample Matrix:	Soil	Date Received:	07/22/2015

Diesel and Residual Range Organics

Sample Name:	DP-I DW-1	Units:	mg/Kg
Lab Code:	K1507897-007	Basis:	Dry
Extraction Method: Analysis Method:	EPA 3550B NWTPH-Dx	Level:	Low

				Dilution	Date	Date	Extraction		
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note	
Diesel Range Organics (DRO)	16 J	29	1.4	1	07/23/15	07/29/15	KWG1506816		
Residual Range Organics (RRO)	140 O	120	3.4	1	07/23/15	07/29/15	KWG1506816		

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	91	50-150	07/29/15	Acceptable
n-Triacontane	81	50-150	07/29/15	Acceptable

Comments:

Merged

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507897
Project:	CenturyLink Longview WA/103P3080177	Date Collected:	NA
Sample Matrix:	Soil	Date Received:	NA

Diesel and Residual Range Organics

Sample Name:	Method Blank	Units:	mg/Kg
Lab Code:	KWG1506816-3	Basis:	Dry
Extraction Method: Analysis Method:	EPA 3550B NWTPH-Dx	Level:	Low

				Dilution	Date	Date	Extraction		
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note	
Diesel Range Organics (DRO)	2.5 J	25	1.2	1	07/23/15	07/25/15	KWG1506816		
Residual Range Organics (RRO)	5.7 J	99	2.9	1	07/23/15	07/25/15	KWG1506816		

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	77	50-150	07/25/15	Acceptable
n-Triacontane	73	50-150	07/25/15	Acceptable

Comments:

Merged

QA/QC Report

Client:	Tetra Tech EM, Incorporated
Project:	CenturyLink Longview WA/103P3080177
Sample Matrix:	Water

Surrogate Recovery Summary **Diesel and Residual Range Organics**

Extraction Method:	METHOI
Analysis Method:	NWTPH-

D -Dx Units: Percent Level: Low

Service Request: K1507897

Sample Name	Lab Code	<u>Sur1</u>	<u>Sur2</u>
DUP	K1507897-001	85	82
DPGW-4	K1507897-002	88	87
DPGW-3	K1507897-003	73	73
MW-5	K1507897-004	82	81
MW-4	K1507897-005	78	79
MW-3	K1507897-006	73	71
Method Blank	KWG1506770-3	77	77
Lab Control Sample	KWG1506770-1	96	91
Duplicate Lab Control Sample	KWG1506770-2	95	91

Surrogate	Recovery	Control	Limits (%)
-----------	----------	---------	------------

Sur1 = o-Terphenyl Sur2 = n-Triacontane 50-150 50-150

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Page 25 of 47

QA/QC Report

Client:	Tetra Tech EM, Incorporated
Project:	CenturyLink Longview WA/103P3080177
Sample Matrix:	Soil

Surrogate Recovery Summary **Diesel and Residual Range Organics**

Extraction Method:	EPA 355
Analysis Method:	NWTPH

0B -Dx Units: Percent Level: Low

Lab Code	<u>Sur1</u>	Sur2
K1507897-007	91	81
KWG1506816-1	90	81
KWG1506816-3	77	73
KWG1506816-2	93	83
	<u>Lab Code</u> K1507897-007 KWG1506816-1 KWG1506816-3 KWG1506816-2	Lab CodeSur1K1507897-00791KWG1506816-190KWG1506816-377KWG1506816-293

Surrogate Recovery Control Limits (%)

Sur1 = o-Terphenyl Sur2 = n-Triacontane 50-150 50-150

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Service Request: K1507897

QA/QC Report

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507897
Project:	CenturyLink Longview WA/103P3080177	Date Extracted:	07/23/2015
Sample Matrix:	Soil	Date Analyzed:	07/29/2015

Duplicate Sample Summary Diesel and Residual Range Organics

Sample Name: Lab Code:	DP-I DW-1 K1507897-00	7					Units: Basis:	mg/Kg Dry
Extraction Method: Analysis Method:	EPA 3550B NWTPH-Dx						Level: Extraction Lot:	Low KWG1506816
				Sampla	DP-I DW KWG150 Duplicate	-1DUP 6816-1 Sampla	Relative Percent	PPD I imit
A		MDI	MDI	Result	Duplicate	Sampie	Difference	KI D LIIIII

Analyte Name	MRL	MDL	Result	Result	Average	Difference	
Diesel Range Organics (DRO)	29	1.4	16	5.1	11	103 #	40
Residual Range Organics (RRO)	120	3.4	140	39	90	112 #	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507897
Project:	CenturyLink Longview WA/103P3080177	Date Extracted:	07/24/2015
Sample Matrix:	Water	Date Analyzed:	07/30/2015

Lab Control Spike/Duplicate Lab Control Spike Summary **Diesel and Residual Range Organics**

Extraction Method: Analysis Method:	METHOD NWTPH-Dx							l I Extraction	Units: Basis: Level: 1 Lot:	ug/L NA Low KWG1506770
		Lab (KW Lab	Control Sampl /G1506770-1 Control Spike	le	Duplicate KW Duplicate	Lab Control S VG1506770-2 e Lab Control (Sample Spike			
Analyte Name		Result	Spike Amount	%Rec	Result	Spike Amount	%Rec	%Rec Limits	RPD	RPD Limit
Diesel Range Organics (DF	RO)	2850	3200	89	3110	3200	97	46-140	9	30
Residual Range Organics (I	RRO)	1440	1600	90	1550	1600	97	45-159	8	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:	Tetra Tech EM, Incorporated
Project:	CenturyLink Longview WA/103P3080177
Sample Matrix:	Soil

Service Request: K1507897 Date Extracted: 07/23/2015 Date Analyzed: 07/25/2015

Lab Control Spike Summary Diesel and Residual Range Organics

Extraction Method: Analysis Method:	EPA 3550B NWTPH-Dx					Units: Basis: Level: Extraction Lot:	mg/Kg Dry Low KWG1506816
	_	Lab C KW Lab	Control Sampl G1506816-2 Control Spike	e			
Analyte Name		Result	Spike Amount	%Rec	%Rec Limits		
Diesel Range Organics (DR	30)	249	267	94	42-134		
Residual Range Organics (I	RRO)	118	133	88	48-141		

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Page 29 of 47

Polynuclear Aromatic Hydrocarbons

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 30 of 47

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507897
Project:	CenturyLink Longview WA/103P3080177	Date Collected:	07/21/2015
Sample Matrix:	Soil	Date Received:	07/22/2015

Polynuclear Aromatic Hydrocarbons

Sample Name:	DP-I DW-1	Units:	ug/Kg
Lab Code:	K1507897-007	Basis:	Dry
Extraction Method: Analysis Method:	EPA 3541 8270D SIM	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	1.0 J	5.1	0.61	1	07/28/15	08/03/15	KWG1506909	
2-Methylnaphthalene	1.6 J	5.1	0.40	1	07/28/15	08/03/15	KWG1506909	
1-Methylnaphthalene	1.2 J	5.1	0.52	1	07/28/15	08/03/15	KWG1506909	
Acenaphthylene	ND U	5.1	0.60	1	07/28/15	08/03/15	KWG1506909	
Acenaphthene	ND U	5.1	0.77	1	07/28/15	08/03/15	KWG1506909	
Fluorene	ND U	5.1	0.62	1	07/28/15	08/03/15	KWG1506909	
Phenanthrene	4.3 J	5.1	1.5	1	07/28/15	08/03/15	KWG1506909	
Anthracene	ND U	5.1	0.59	1	07/28/15	08/03/15	KWG1506909	
Carbazole	ND U	5.1	2.4	1	07/28/15	08/03/15	KWG1506909	
Fluoranthene	1.8 J	5.1	0.99	1	07/28/15	08/03/15	KWG1506909	
Pyrene	2.3 J	5.1	0.77	1	07/28/15	08/03/15	KWG1506909	
Benz(a)anthracene	1.1 J	5.1	0.73	1	07/28/15	08/03/15	KWG1506909	
Chrysene	2.0 J	5.1	0.81	1	07/28/15	08/03/15	KWG1506909	
Benzo(b)fluoranthene†	1.8 J	5.1	0.93	1	07/28/15	08/03/15	KWG1506909	
Benzo(k)fluoranthene	ND U	5.1	0.88	1	07/28/15	08/03/15	KWG1506909	
Benzo(a)pyrene	1.4 J	5.1	0.77	1	07/28/15	08/03/15	KWG1506909	
Indeno(1,2,3-cd)pyrene	1.2 J	5.1	0.88	1	07/28/15	08/03/15	KWG1506909	
Dibenz(a,h)anthracene	ND U	5.1	0.81	1	07/28/15	08/03/15	KWG1506909	
Benzo(g,h,i)perylene	2.5 J	5.1	0.86	1	07/28/15	08/03/15	KWG1506909	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	78	17-104	08/03/15	Acceptable
Fluoranthene-d10	92	27-106	08/03/15	Acceptable
Terphenyl-d14	71	35-109	08/03/15	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Merged

Form 1A - Organic Page 31 of 47

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507897
Project:	CenturyLink Longview WA/103P3080177	Date Collected:	NA
Sample Matrix:	Sediment	Date Received:	NA

Polynuclear Aromatic Hydrocarbons

Sample Name:	Method Blank	Units:	ug/Kg
Lab Code:	KWG1506909-7	Basis:	Dry
Extraction Method: Analysis Method:	EPA 3541 8270D SIM	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND U	2.6	0.60	1	07/28/15	08/03/15	KWG1506909	
2-Methylnaphthalene	ND U	2.6	0.39	1	07/28/15	08/03/15	KWG1506909	
1-Methylnaphthalene	ND U	2.6	0.51	1	07/28/15	08/03/15	KWG1506909	
Acenaphthylene	ND U	2.6	0.59	1	07/28/15	08/03/15	KWG1506909	
Acenaphthene	ND U	2.6	0.76	1	07/28/15	08/03/15	KWG1506909	
Fluorene	ND U	2.6	0.61	1	07/28/15	08/03/15	KWG1506909	
Phenanthrene	ND U	2.6	1.4	1	07/28/15	08/03/15	KWG1506909	
Anthracene	ND U	2.6	0.58	1	07/28/15	08/03/15	KWG1506909	
Carbazole	ND U	2.6	2.3	1	07/28/15	08/03/15	KWG1506909	
Fluoranthene	ND U	2.6	0.98	1	07/28/15	08/03/15	KWG1506909	
Pyrene	ND U	2.6	0.76	1	07/28/15	08/03/15	KWG1506909	
Benz(a)anthracene	ND U	2.6	0.72	1	07/28/15	08/03/15	KWG1506909	
Chrysene	ND U	2.6	0.80	1	07/28/15	08/03/15	KWG1506909	
Benzo(b)fluoranthene†	ND U	2.6	0.92	1	07/28/15	08/03/15	KWG1506909	
Benzo(k)fluoranthene	ND U	2.6	0.87	1	07/28/15	08/03/15	KWG1506909	
Benzo(a)pyrene	ND U	2.6	0.76	1	07/28/15	08/03/15	KWG1506909	
Indeno(1,2,3-cd)pyrene	ND U	2.6	0.87	1	07/28/15	08/03/15	KWG1506909	
Dibenz(a,h)anthracene	ND U	2.6	0.80	1	07/28/15	08/03/15	KWG1506909	
Benzo(g,h,i)perylene	ND U	2.6	0.85	1	07/28/15	08/03/15	KWG1506909	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	76	17-104	08/03/15	Acceptable
Fluoranthene-d10	86	27-106	08/03/15	Acceptable
Terphenyl-d14	70	35-109	08/03/15	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Merged

Form 1A - Organic Page 32 of 47

QA/QC Report

Client:	Tetra Tech EM, Incorporated
Project:	CenturyLink Longview WA/103P3080177
Sample Matrix:	Sediment

Surrogate Recovery Summary **Polynuclear Aromatic Hydrocarbons**

Extraction Method: EPA 3541 **Analysis Method:**

8270D SIM

Units: Percent Level: Low

Service Request: K1507897

Sample Name	Lab Code	<u>Sur1</u>	Sur2	<u>Sur3</u>
Batch QC	K1507730-036	73	87	69
DP-I DW-1	K1507897-007	78	92	71
Batch QCDUP	KWG1506909-9	59	71	54
Method Blank	KWG1506909-7	76	86	70
Batch QCMS	KWG1506909-3	69	86	68
Batch QCDMS	KWG1506909-4	75	91	73
Lab Control Sample	KWG1506909-5	85	96	78
Duplicate Lab Control Sample	KWG1506909-6	80	90	73

Surro	Surrogate Recovery Control Limits (%)					
Sur1	=	Fluorene-d10	17-104			
Sur2	=	Fluoranthene-d10	27-106			
Sur3	=	Terphenyl-d14	35-109			

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:	Tetra Tech EM, Incorporated
Project:	CenturyLink Longview WA/103P3080177
Sample Matrix:	Sediment

Service Request: K1507897 Date Extracted: 07/28/2015 Date Analyzed: 08/03/2015

Matrix Spike/Duplicate Matrix Spike Summary Polynuclear Aromatic Hydrocarbons

Sample Name: Lab Code:	Batch QC K1507730-036	Units: Basis:	ug/Kg Dry
Extraction Method:	EPA 3541	Level:	Low
Analysis Method:	8270D SIM	Extraction Lot:	KWG1506909

		Batch QCMS KWG1506909-3 Matrix Spike		Batch QCDMS KWG1506909-4 Duplicate Matrix Spike						
Analyte Name	Sample Result	Result	Spike Amount	%Rec	Result	Spike Amount	%Rec	%Rec Limits	RPD	RPD Limit
Naphthalene	18	293	503	55	339	505	64	23-114	15	40
2-Methylnaphthalene	6.6	270	503	52	317	505	61	24-115	16	40
1-Methylnaphthalene	6.4	258	503	50	301	505	58	26-133	15	40
Acenaphthylene	13	309	503	59	358	505	68	32-117	15	40
Acenaphthene	20	302	503	56	351	505	66	33-118	15	40
Fluorene	19	319	503	60	363	505	68	33-125	13	40
Phenanthrene	200	388	503	37	413	505	42	29-125	6	40
Anthracene	63	366	503	60	400	505	67	30-127	9	40
Carbazole	3.0	360	503	71	417	505	82	37-182	15	40
Fluoranthene	290	537	503	48	562	505	53	35-139	5	40
Pyrene	310	501	503	38	518	505	42	27-134	3	40
Benz(a)anthracene	140	437	503	59	474	505	66	35-122	8	40
Chrysene	140	439	503	59	476	505	66	36-126	8	40
Benzo(b)fluoranthene	160	437	503	55	471	505	61	35-124	7	40
Benzo(k)fluoranthene	55	369	503	62	411	505	71	38-124	11	40
Benzo(a)pyrene	170	446	503	54	475	505	60	37-123	6	40
Indeno(1,2,3-cd)pyrene	130	423	503	58	450	505	63	28-133	6	40
Dibenz(a,h)anthracene	22	359	503	67	392	505	73	32-125	9	40
Benzo(g,h,i)perylene	140	463	503	64	487	505	68	33-128	5	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:Tetra Tech EM, IncorporatedProject:CenturyLink Longview WA/103P3080177Sample Matrix:Sediment

 Service Request:
 K1507897

 Date Extracted:
 07/28/2015

 Date Analyzed:
 08/03/2015

Duplicate Sample Summary Polynuclear Aromatic Hydrocarbons

Sample Name:	Batch QC	Units:	ug/Kg
Lab Code:	K1507730-036	Basis:	Dry
Extraction Method:	EPA 3541	Level:	Low
Analysis Method:	8270D SIM	Extraction Lot:	KWG1506909

				Batch Q	CDUP		
				06909-9	Relative		
			Sample	Duplicate	e Sample	Percent	RPD Limit
Analyte Name	MRL	MDL	Result	Result	Average	Difference	
Naphthalene	5.1	0.61	18	11	15	51 *	40
2-Methylnaphthalene	5.1	0.40	6.6	4.3	5.5	42 #	40
1-Methylnaphthalene	5.1	0.52	6.4	3.7	5.0	54 #	40
Acenaphthylene	5.1	0.60	13	7.3	10	54 #	40
Acenaphthene	5.1	0.78	20	7.3	14	92 #	40
Fluorene	5.1	0.62	19	8.8	14	74 #	40
Phenanthrene	5.1	1.5	200	84	140	82 *	40
Anthracene	5.1	0.59	63	28	46	75 *	40
Carbazole	5.1	2.4	3.0	ND	NC	NC *	40
Fluoranthene	5.1	1.0	290	160	230	58 *	40
Pyrene	5.1	0.78	310	170	240	56 *	40
Benz(a)anthracene	5.1	0.74	140	72	110	63 *	40
Chrysene	5.1	0.82	140	80	110	57 *	40
Benzo(b)fluoranthene	5.1	0.94	160	92	130	55 *	40
Benzo(k)fluoranthene	5.1	0.89	55	31	43	54 *	40
Benzo(a)pyrene	5.1	0.78	170	100	140	51 *	40
Indeno(1,2,3-cd)pyrene	5.1	0.89	130	80	110	49 *	40
Dibenz(a,h)anthracene	5.1	0.82	22	11	17	66 *	40
Benzo(g,h,i)perylene	5.1	0.87	140	90	120	46 *	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Form 3B - Organic Page 35 of 47

QA/QC Report

Client:	Tetra Tech EM, Incorporated
Project:	CenturyLink Longview WA/103P3080177
Sample Matrix:	Sediment

 Service Request:
 K1507897

 Date Extracted:
 07/28/2015

 Date Analyzed:
 08/03/2015

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons

Extraction Method:	EPA 3541			Units:	ug/Kg
Analysis Method:	8270D SIM			Basis:	Dry
				Level:	Low
				Extraction Lot:	KWG1506909
		Lab Control Sample	Duplicate Lab Control Sample		

	KWG1506909-5 Lab Control Spike			KWG1506909-6 Duplicate Lab Control Spike					
Analyte Name	Result	Spike Amount	%Rec	Result	Spike Amount	%Rec	%Rec Limits	RPD	RPD Limit
Naphthalene	356	500	71	334	500	67	32-124	6	40
2-Methylnaphthalene	336	500	67	315	500	63	27-126	6	40
1-Methylnaphthalene	320	500	64	301	500	60	37-129	6	40
Acenaphthylene	382	500	76	360	500	72	38-126	6	40
Acenaphthene	377	500	75	356	500	71	39-124	6	40
Fluorene	388	500	78	368	500	74	39-129	5	40
Phenanthrene	385	500	77	362	500	72	39-123	6	40
Anthracene	406	500	81	379	500	76	38-130	7	40
Carbazole	433	500	87	407	500	81	10-156	6	40
Fluoranthene	433	500	87	403	500	81	39-135	7	40
Pyrene	377	500	75	352	500	70	39-134	7	40
Benz(a)anthracene	428	500	86	392	500	78	46-120	9	40
Chrysene	421	500	84	384	500	77	49-120	9	40
Benzo(b)fluoranthene	468	500	94	432	500	86	51-121	8	40
Benzo(k)fluoranthene	459	500	92	420	500	84	55-120	9	40
Benzo(a)pyrene	424	500	85	391	500	78	49-122	8	40
Indeno(1,2,3-cd)pyrene	412	500	82	383	500	77	40-128	7	40
Dibenz(a,h)anthracene	465	500	93	429	500	86	43-125	8	40
Benzo(g,h,i)perylene	446	500	89	420	500	84	49-122	6	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Polynuclear Aromatic Hydrocarbons

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 37 of 47

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507897
Project:	CenturyLink Longview WA/103P3080177	Date Collected:	07/21/2015
Sample Matrix:	Water	Date Received:	07/21/2015

Polynuclear Aromatic Hydrocarbons

Sample Name:	DUP	Units:	ug/L
Lab Code:	K1507897-001	Basis:	NA
Extraction Method: Analysis Method:	EPA 3520C EPA 625	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND U	0.021	0.0039	1	07/22/15	07/31/15	KWG1506706	
2-Methylnaphthalene	ND U	0.021	0.0024	1	07/22/15	07/31/15	KWG1506706	
1-Methylnaphthalene	ND U	0.021	0.0036	1	07/22/15	07/31/15	KWG1506706	
Acenaphthylene	ND U	0.021	0.0035	1	07/22/15	07/31/15	KWG1506706	
Acenaphthene	ND U	0.021	0.0045	1	07/22/15	07/31/15	KWG1506706	
Fluorene	ND U	0.021	0.0039	1	07/22/15	07/31/15	KWG1506706	
Phenanthrene	ND U	0.021	0.0051	1	07/22/15	07/31/15	KWG1506706	
Anthracene	ND U	0.021	0.0037	1	07/22/15	07/31/15	KWG1506706	
Carbazole	ND U	0.021	0.0046	1	07/22/15	07/31/15	KWG1506706	
Fluoranthene	ND U	0.021	0.011	1	07/22/15	07/31/15	KWG1506706	
Pyrene	ND U	0.021	0.0054	1	07/22/15	07/31/15	KWG1506706	
Benz(a)anthracene	ND U	0.021	0.0027	1	07/22/15	07/31/15	KWG1506706	
Chrysene	ND U	0.021	0.0035	1	07/22/15	07/31/15	KWG1506706	
Benzo(b)fluoranthene†	ND U	0.021	0.0042	1	07/22/15	07/31/15	KWG1506706	
Benzo(k)fluoranthene	ND U	0.021	0.0031	1	07/22/15	07/31/15	KWG1506706	
Benzo(a)pyrene	ND U	0.021	0.0044	1	07/22/15	07/31/15	KWG1506706	
Indeno(1,2,3-cd)pyrene	ND U	0.021	0.0027	1	07/22/15	07/31/15	KWG1506706	
Dibenz(a,h)anthracene	ND U	0.021	0.0026	1	07/22/15	07/31/15	KWG1506706	
Benzo(g,h,i)perylene	ND U	0.021	0.0030	1	07/22/15	07/31/15	KWG1506706	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	92	46-114	07/31/15	Acceptable
Fluoranthene-d10	98	51-121	07/31/15	Acceptable
Terphenyl-d14	78	58-140	07/31/15	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Merged

Form 1A - Organic Page 38 of 47

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507897
Project:	CenturyLink Longview WA/103P3080177	Date Collected:	07/21/2015
Sample Matrix:	Water	Date Received:	07/21/2015

Polynuclear Aromatic Hydrocarbons

Sample Name:	DPGW-4	Units:	ug/L
Lab Code:	K1507897-002	Basis:	NA
Extraction Method: Analysis Method:	EPA 3520C EPA 625	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	0.011 J	0.020	0.0038	1	07/22/15	07/31/15	KWG1506706	
2-Methylnaphthalene	0.0096 J	0.020	0.0023	1	07/22/15	07/31/15	KWG1506706	
1-Methylnaphthalene	0.0093 J	0.020	0.0035	1	07/22/15	07/31/15	KWG1506706	
Acenaphthylene	0.0046 J	0.020	0.0034	1	07/22/15	07/31/15	KWG1506706	
Acenaphthene	ND U	0.020	0.0044	1	07/22/15	07/31/15	KWG1506706	
Fluorene	0.0071 JX	0.020	0.0038	1	07/22/15	07/31/15	KWG1506706	
Phenanthrene	0.0084 J	0.020	0.0050	1	07/22/15	07/31/15	KWG1506706	
Anthracene	0.032	0.020	0.0036	1	07/22/15	07/31/15	KWG1506706	
Carbazole	ND U	0.020	0.0045	1	07/22/15	07/31/15	KWG1506706	
Fluoranthene	ND U	0.020	0.010	1	07/22/15	07/31/15	KWG1506706	
Pyrene	ND U	0.020	0.0053	1	07/22/15	07/31/15	KWG1506706	
Benz(a)anthracene	0.0027 J	0.020	0.0026	1	07/22/15	07/31/15	KWG1506706	
Chrysene	ND U	0.020	0.0034	1	07/22/15	07/31/15	KWG1506706	
Benzo(b)fluoranthene†	ND U	0.020	0.0041	1	07/22/15	07/31/15	KWG1506706	
Benzo(k)fluoranthene	ND U	0.020	0.0030	1	07/22/15	07/31/15	KWG1506706	
Benzo(a)pyrene	ND U	0.020	0.0043	1	07/22/15	07/31/15	KWG1506706	
Indeno(1,2,3-cd)pyrene	ND U	0.020	0.0026	1	07/22/15	07/31/15	KWG1506706	
Dibenz(a,h)anthracene	ND U	0.020	0.0025	1	07/22/15	07/31/15	KWG1506706	
Benzo(g,h,i)perylene	ND U	0.020	0.0029	1	07/22/15	07/31/15	KWG1506706	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	80	46-114	07/31/15	Acceptable
Fluoranthene-d10	102	51-121	07/31/15	Acceptable
Terphenyl-d14	81	58-140	07/31/15	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Merged

Form 1A - Organic Page 39 of 47

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507897
Project:	CenturyLink Longview WA/103P3080177	Date Collected:	07/21/2015
Sample Matrix:	Water	Date Received:	07/21/2015

Polynuclear Aromatic Hydrocarbons

Sample Name:	DPGW-3	Units:	ug/L
Lab Code:	K1507897-003	Basis:	NA
Extraction Method: Analysis Method:	EPA 3520C EPA 625	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	0.0059 J	0.020	0.0038	1	07/22/15	07/31/15	KWG1506706	
2-Methylnaphthalene	ND U	0.020	0.0023	1	07/22/15	07/31/15	KWG1506706	
1-Methylnaphthalene	ND U	0.020	0.0035	1	07/22/15	07/31/15	KWG1506706	
Acenaphthylene	ND U	0.020	0.0034	1	07/22/15	07/31/15	KWG1506706	
Acenaphthene	ND U	0.020	0.0044	1	07/22/15	07/31/15	KWG1506706	
Fluorene	ND U	0.020	0.0038	1	07/22/15	07/31/15	KWG1506706	
Phenanthrene	ND U	0.020	0.0050	1	07/22/15	07/31/15	KWG1506706	
Anthracene	ND U	0.020	0.0036	1	07/22/15	07/31/15	KWG1506706	
Carbazole	ND U	0.020	0.0045	1	07/22/15	07/31/15	KWG1506706	
Fluoranthene	ND U	0.020	0.010	1	07/22/15	07/31/15	KWG1506706	
Pyrene	ND U	0.020	0.0053	1	07/22/15	07/31/15	KWG1506706	
Benz(a)anthracene	ND U	0.020	0.0026	1	07/22/15	07/31/15	KWG1506706	
Chrysene	ND U	0.020	0.0034	1	07/22/15	07/31/15	KWG1506706	
Benzo(b)fluoranthene†	ND U	0.020	0.0041	1	07/22/15	07/31/15	KWG1506706	
Benzo(k)fluoranthene	ND U	0.020	0.0030	1	07/22/15	07/31/15	KWG1506706	
Benzo(a)pyrene	ND U	0.020	0.0043	1	07/22/15	07/31/15	KWG1506706	
Indeno(1,2,3-cd)pyrene	ND U	0.020	0.0026	1	07/22/15	07/31/15	KWG1506706	
Dibenz(a,h)anthracene	ND U	0.020	0.0025	1	07/22/15	07/31/15	KWG1506706	
Benzo(g,h,i)perylene	ND U	0.020	0.0029	1	07/22/15	07/31/15	KWG1506706	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	72	46-114	07/31/15	Acceptable
Fluoranthene-d10	98	51-121	07/31/15	Acceptable
Terphenyl-d14	81	58-140	07/31/15	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Merged

Form 1A - Organic Page 40 of 47

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507897
Project:	CenturyLink Longview WA/103P3080177	Date Collected:	07/21/2015
Sample Matrix:	Water	Date Received:	07/21/2015

Polynuclear Aromatic Hydrocarbons

Sample Name: Lab Code:	MW-5 K1507897-004	Units: Basis:	ug/L NA
Extraction Method:	EPA 3520C	Level:	Low
Analysis Method:	EPA 625		

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	0.010 J	0.021	0.0039	1	07/22/15	07/31/15	KWG1506706	
2-Methylnaphthalene	ND U	0.021	0.0024	1	07/22/15	07/31/15	KWG1506706	
1-Methylnaphthalene	ND U	0.021	0.0036	1	07/22/15	07/31/15	KWG1506706	
Acenaphthylene	0.0055 J	0.021	0.0035	1	07/22/15	07/31/15	KWG1506706	
Acenaphthene	0.088	0.021	0.0045	1	07/22/15	07/31/15	KWG1506706	
Fluorene	0.016 JX	0.021	0.0039	1	07/22/15	07/31/15	KWG1506706	
Phenanthrene	ND U	0.021	0.0051	1	07/22/15	07/31/15	KWG1506706	
Anthracene	0.029	0.021	0.0037	1	07/22/15	07/31/15	KWG1506706	
Carbazole	0.0047 J	0.021	0.0046	1	07/22/15	07/31/15	KWG1506706	
Fluoranthene	ND U	0.021	0.011	1	07/22/15	07/31/15	KWG1506706	
Pyrene	ND U	0.021	0.0054	1	07/22/15	07/31/15	KWG1506706	
Benz(a)anthracene	ND U	0.021	0.0027	1	07/22/15	07/31/15	KWG1506706	
Chrysene	ND U	0.021	0.0035	1	07/22/15	07/31/15	KWG1506706	
Benzo(b)fluoranthene†	ND U	0.021	0.0042	1	07/22/15	07/31/15	KWG1506706	
Benzo(k)fluoranthene	ND U	0.021	0.0031	1	07/22/15	07/31/15	KWG1506706	
Benzo(a)pyrene	ND U	0.021	0.0044	1	07/22/15	07/31/15	KWG1506706	
Indeno(1,2,3-cd)pyrene	ND U	0.021	0.0027	1	07/22/15	07/31/15	KWG1506706	
Dibenz(a,h)anthracene	ND U	0.021	0.0026	1	07/22/15	07/31/15	KWG1506706	
Benzo(g,h,i)perylene	ND U	0.021	0.0030	1	07/22/15	07/31/15	KWG1506706	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	71	46-114	07/31/15	Acceptable
Fluoranthene-d10	98	51-121	07/31/15	Acceptable
Terphenyl-d14	79	58-140	07/31/15	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Merged

Form 1A - Organic Page 41 of 47

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507897
Project:	CenturyLink Longview WA/103P3080177	Date Collected:	07/21/2015
Sample Matrix:	Water	Date Received:	07/21/2015

Polynuclear Aromatic Hydrocarbons

Sample Name: Lab Code:	MW-4 K1507897-005	Units: Basis:	ug/L NA
Extraction Method:	EPA 3520C	Level:	Low
Analysis Method:	EPA 625		

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	0.0067 J	0.021	0.0039	1	07/22/15	07/31/15	KWG1506706	
2-Methylnaphthalene	ND U	0.021	0.0024	1	07/22/15	07/31/15	KWG1506706	
1-Methylnaphthalene	ND U	0.021	0.0036	1	07/22/15	07/31/15	KWG1506706	
Acenaphthylene	0.0056 J	0.021	0.0035	1	07/22/15	07/31/15	KWG1506706	
Acenaphthene	0.22	0.021	0.0045	1	07/22/15	07/31/15	KWG1506706	
Fluorene	0.015 J	0.021	0.0039	1	07/22/15	07/31/15	KWG1506706	
Phenanthrene	ND U	0.021	0.0051	1	07/22/15	07/31/15	KWG1506706	
Anthracene	0.012 J	0.021	0.0037	1	07/22/15	07/31/15	KWG1506706	
Carbazole	0.024	0.021	0.0046	1	07/22/15	07/31/15	KWG1506706	
Fluoranthene	ND U	0.021	0.011	1	07/22/15	07/31/15	KWG1506706	
Pyrene	0.0079 J	0.021	0.0054	1	07/22/15	07/31/15	KWG1506706	
Benz(a)anthracene	ND U	0.021	0.0027	1	07/22/15	07/31/15	KWG1506706	
Chrysene	ND U	0.021	0.0035	1	07/22/15	07/31/15	KWG1506706	
Benzo(b)fluoranthene†	ND U	0.021	0.0042	1	07/22/15	07/31/15	KWG1506706	
Benzo(k)fluoranthene	ND U	0.021	0.0031	1	07/22/15	07/31/15	KWG1506706	
Benzo(a)pyrene	ND U	0.021	0.0044	1	07/22/15	07/31/15	KWG1506706	
Indeno(1,2,3-cd)pyrene	ND U	0.021	0.0027	1	07/22/15	07/31/15	KWG1506706	
Dibenz(a,h)anthracene	ND U	0.021	0.0026	1	07/22/15	07/31/15	KWG1506706	
Benzo(g,h,i)perylene	ND U	0.021	0.0030	1	07/22/15	07/31/15	KWG1506706	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	73	46-114	07/31/15	Acceptable
Fluoranthene-d10	94	51-121	07/31/15	Acceptable
Terphenyl-d14	79	58-140	07/31/15	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Merged

Form 1A - Organic Page 42 of 47

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507897
Project:	CenturyLink Longview WA/103P3080177	Date Collected:	07/21/2015
Sample Matrix:	Water	Date Received:	07/21/2015

Polynuclear Aromatic Hydrocarbons

Sample Name:	MW-3	Units:	ug/L
Lab Code:	K1507897-006	Basis:	NA
Extraction Method:	EPA 3520C	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	0.0056 J	0.020	0.0038	1	07/22/15	07/31/15	KWG1506706	
2-Methylnaphthalene	ND U	0.020	0.0023	1	07/22/15	07/31/15	KWG1506706	
1-Methylnaphthalene	ND U	0.020	0.0035	1	07/22/15	07/31/15	KWG1506706	
Acenaphthylene	ND U	0.020	0.0034	1	07/22/15	07/31/15	KWG1506706	
Acenaphthene	ND U	0.020	0.0044	1	07/22/15	07/31/15	KWG1506706	
Fluorene	ND U	0.020	0.0038	1	07/22/15	07/31/15	KWG1506706	
Phenanthrene	ND U	0.020	0.0050	1	07/22/15	07/31/15	KWG1506706	
Anthracene	ND U	0.020	0.0036	1	07/22/15	07/31/15	KWG1506706	
Carbazole	ND U	0.020	0.0045	1	07/22/15	07/31/15	KWG1506706	
Fluoranthene	ND U	0.020	0.010	1	07/22/15	07/31/15	KWG1506706	
Pyrene	ND U	0.020	0.0053	1	07/22/15	07/31/15	KWG1506706	
Benz(a)anthracene	ND U	0.020	0.0026	1	07/22/15	07/31/15	KWG1506706	
Chrysene	ND U	0.020	0.0034	1	07/22/15	07/31/15	KWG1506706	
Benzo(b)fluoranthene†	ND U	0.020	0.0041	1	07/22/15	07/31/15	KWG1506706	
Benzo(k)fluoranthene	ND U	0.020	0.0030	1	07/22/15	07/31/15	KWG1506706	
Benzo(a)pyrene	ND U	0.020	0.0043	1	07/22/15	07/31/15	KWG1506706	
Indeno(1,2,3-cd)pyrene	ND U	0.020	0.0026	1	07/22/15	07/31/15	KWG1506706	
Dibenz(a,h)anthracene	ND U	0.020	0.0025	1	07/22/15	07/31/15	KWG1506706	
Benzo(g,h,i)perylene	ND U	0.020	0.0029	1	07/22/15	07/31/15	KWG1506706	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	74	46-114	07/31/15	Acceptable
Fluoranthene-d10	98	51-121	07/31/15	Acceptable
Terphenyl-d14	80	58-140	07/31/15	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Merged

Form 1A - Organic Page 43 of 47
Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507897
Project:	CenturyLink Longview WA/103P3080177	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA

Polynuclear Aromatic Hydrocarbons

Sample Name:	Method Blank	Units:	ug/L
Lab Code:	KWG1506706-3	Basis:	NA
Extraction Method: Analysis Method:	EPA 3520C EPA 625	Level:	Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND	U	0.020	0.0038	1	07/22/15	07/31/15	KWG1506706	
2-Methylnaphthalene	ND	U	0.020	0.0023	1	07/22/15	07/31/15	KWG1506706	
1-Methylnaphthalene	ND	U	0.020	0.0035	1	07/22/15	07/31/15	KWG1506706	
Acenaphthylene	ND	U	0.020	0.0034	1	07/22/15	07/31/15	KWG1506706	
Acenaphthene	ND	U	0.020	0.0044	1	07/22/15	07/31/15	KWG1506706	
Fluorene	ND	U	0.020	0.0038	1	07/22/15	07/31/15	KWG1506706	
Phenanthrene	ND	U	0.020	0.0050	1	07/22/15	07/31/15	KWG1506706	
Anthracene	ND	U	0.020	0.0036	1	07/22/15	07/31/15	KWG1506706	
Carbazole	ND	U	0.020	0.0045	1	07/22/15	07/31/15	KWG1506706	
Fluoranthene	ND	U	0.020	0.010	1	07/22/15	07/31/15	KWG1506706	
Pyrene	ND	U	0.020	0.0053	1	07/22/15	07/31/15	KWG1506706	
Benz(a)anthracene	ND	U	0.020	0.0026	1	07/22/15	07/31/15	KWG1506706	
Chrysene	ND	U	0.020	0.0034	1	07/22/15	07/31/15	KWG1506706	
Benzo(b)fluoranthene†	ND	U	0.020	0.0041	1	07/22/15	07/31/15	KWG1506706	
Benzo(k)fluoranthene	ND	U	0.020	0.0030	1	07/22/15	07/31/15	KWG1506706	
Benzo(a)pyrene	ND	U	0.020	0.0043	1	07/22/15	07/31/15	KWG1506706	
Indeno(1,2,3-cd)pyrene	ND	U	0.020	0.0026	1	07/22/15	07/31/15	KWG1506706	
Dibenz(a,h)anthracene	ND	U	0.020	0.0025	1	07/22/15	07/31/15	KWG1506706	
Benzo(g,h,i)perylene	ND	U	0.020	0.0029	1	07/22/15	07/31/15	KWG1506706	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	95	46-114	07/31/15	Acceptable
Fluoranthene-d10	102	51-121	07/31/15	Acceptable
Terphenyl-d14	83	58-140	07/31/15	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Merged

Form 1A - Organic Page 44 of 47

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507897
Project:	CenturyLink Longview WA/103P3080177	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA

Polynuclear Aromatic Hydrocarbons

Sample Name:	Method Blank	Units:	ug/L
Lab Code:	KWG1506706-4	Basis:	NA
Extraction Method: Analysis Method:	EPA 3520C EPA 625	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND U	0.020	0.0038	1	07/22/15	07/31/15	KWG1506706	
2-Methylnaphthalene	ND U	0.020	0.0023	1	07/22/15	07/31/15	KWG1506706	
1-Methylnaphthalene	ND U	0.020	0.0035	1	07/22/15	07/31/15	KWG1506706	
Acenaphthylene	ND U	0.020	0.0034	1	07/22/15	07/31/15	KWG1506706	
Acenaphthene	ND U	0.020	0.0044	1	07/22/15	07/31/15	KWG1506706	
Fluorene	ND U	0.020	0.0038	1	07/22/15	07/31/15	KWG1506706	
Phenanthrene	ND U	0.020	0.0050	1	07/22/15	07/31/15	KWG1506706	
Anthracene	ND U	0.020	0.0036	1	07/22/15	07/31/15	KWG1506706	
Carbazole	ND U	0.020	0.0045	1	07/22/15	07/31/15	KWG1506706	
Fluoranthene	ND U	0.020	0.010	1	07/22/15	07/31/15	KWG1506706	
Pyrene	ND U	0.020	0.0053	1	07/22/15	07/31/15	KWG1506706	
Benz(a)anthracene	ND U	0.020	0.0026	1	07/22/15	07/31/15	KWG1506706	
Chrysene	ND U	0.020	0.0034	1	07/22/15	07/31/15	KWG1506706	
Benzo(b)fluoranthene†	ND U	0.020	0.0041	1	07/22/15	07/31/15	KWG1506706	
Benzo(k)fluoranthene	ND U	0.020	0.0030	1	07/22/15	07/31/15	KWG1506706	
Benzo(a)pyrene	ND U	0.020	0.0043	1	07/22/15	07/31/15	KWG1506706	
Indeno(1,2,3-cd)pyrene	ND U	0.020	0.0026	1	07/22/15	07/31/15	KWG1506706	
Dibenz(a,h)anthracene	ND U	0.020	0.0025	1	07/22/15	07/31/15	KWG1506706	
Benzo(g,h,i)perylene	ND U	0.020	0.0029	1	07/22/15	07/31/15	KWG1506706	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	94	46-114	07/31/15	Acceptable
Fluoranthene-d10	102	51-121	07/31/15	Acceptable
Terphenyl-d14	80	58-140	07/31/15	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Merged

Form 1A - Organic Page 45 of 47

QA/QC Report

Client:	Tetra Tech EM, Incorporated
Project:	CenturyLink Longview WA/103P3080177
Sample Matrix:	Water

Surrogate Recovery Summary **Polynuclear Aromatic Hydrocarbons**

Extraction Method: EPA 3520C **Analysis Method:**

EPA 625

Lab Code	Sur1	Sur2	Sur3
K1507897-001	92	98	78
K1507897-002	80	102	81
K1507897-003	72	98	81
K1507897-004	71	98	79
K1507897-005	73	94	79
K1507897-006	74	98	80
KWG1506706-3	95	102	83
KWG1506706-4	94	102	80
KWG1506706-1	93	102	83
KWG1506706-2	95	104	84
	Lab Code K1507897-001 K1507897-002 K1507897-003 K1507897-004 K1507897-005 K1507897-006 KWG1506706-3 KWG1506706-4 KWG1506706-1 KWG1506706-2	Lab CodeSur1K1507897-00192K1507897-00280K1507897-00372K1507897-00471K1507897-00573K1507897-00674KWG1506706-395KWG1506706-494KWG1506706-193KWG1506706-295	Lab CodeSur1Sur2K1507897-0019298K1507897-00280102K1507897-0037298K1507897-0047198K1507897-0057394K1507897-0067498KWG1506706-395102KWG1506706-494102KWG1506706-193102KWG1506706-295104

Surro	gate	e Recovery Control Limits (%)	
Sur1	=	Fluorene-d10	46-114
Sur2	=	Fluoranthene-d10	51-121
Sur3	=	Terphenyl-d14	58-140

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Service Request: K1507897

Units: Percent Level: Low

QA/QC Report

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507897
Project:	CenturyLink Longview WA/103P3080177	Date Extracted:	07/22/2015
Sample Matrix:	Water	Date Analyzed:	07/31/2015

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons

Extraction Method:	EPA 3520C	Units:	ug/L
Analysis Method:	EPA 625	Basis:	NA
		Level:	Low
		Extraction Lot:	KWG1506706

	Lab (KV Lab	Control Sampl /G1506706-1 Control Spike	e	Duplicate KV Duplicat	Lab Control S VG1506706-2 e Lab Control	Sample Spike			
Analyte Name	Result	Spike Amount	%Rec	Result	Spike Amount	%Rec	%Rec Limits	RPD	RPD Limit
Naphthalene	2.26	2.50	91	2.32	2.50	93	39-110	3	30
2-Methylnaphthalene	2.07	2.50	83	2.13	2.50	85	39-115	3	30
1-Methylnaphthalene	1.97	2.50	79	2.04	2.50	82	40-122	3	30
Acenaphthylene	2.35	2.50	94	2.39	2.50	96	44-115	2	30
Acenaphthene	2.33	2.50	93	2.37	2.50	95	44-113	2	30
Fluorene	2.35	2.50	94	2.41	2.50	97	48-118	3	30
Phenanthrene	2.35	2.50	94	2.43	2.50	97	47-120	3	30
Anthracene	2.27	2.50	91	2.28	2.50	91	44-117	0	30
Carbazole	2.53	2.50	101	2.59	2.50	103	45-134	2	30
Fluoranthene	2.51	2.50	101	2.58	2.50	103	48-128	3	30
Pyrene	2.34	2.50	94	2.38	2.50	95	42-133	2	30
Benz(a)anthracene	2.43	2.50	97	2.46	2.50	98	48-125	1	30
Chrysene	2.37	2.50	95	2.42	2.50	97	50-128	2	30
Benzo(b)fluoranthene	2.48	2.50	99	2.53	2.50	101	49-131	2	30
Benzo(k)fluoranthene	2.35	2.50	94	2.43	2.50	97	54-131	3	30
Benzo(a)pyrene	2.24	2.50	90	2.30	2.50	92	43-134	2	30
Indeno(1,2,3-cd)pyrene	2.06	2.50	82	2.09	2.50	83	45-133	1	30
Dibenz(a,h)anthracene	2.15	2.50	86	2.17	2.50	87	49-133	1	30
Benzo(g,h,i)perylene	2.07	2.50	83	2.10	2.50	84	51-124	2	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626 **T**:+1 360 577 7222 **F**:+1 360 636 1068 www.alsglobal.com

Analytical Report for Service Request No: K1507921

August 06, 2015

Dr. Rob Tisdale Tetra Tech EM, Incorporated 216 16th St, Suite 1500 Denver, CO 80202

RE: CenturyLink Longview WA / 103P3080177

Dear Dr.Tisdale,

Enclosed are the results of the sample(s) submitted to our laboratory July 22, 2015 For your reference, these analyses have been assigned our service request number **K1507921**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at gregory.salata@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

ay Salt

Gregory Salata, Ph.D. Client Services Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626 **T**: +1 360 577 7222 **F**: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms Qualifiers State Certifications, Accreditations, And Licenses Case Narrative Chain of Custody Diesel and Residual Range Organics

Polynuclear Aromatic Hydrocarbons

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH tr	Total Petroleum Hydrocarbons Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- $i \,$ $\,$ The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$ The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Page 4 of 23

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEC UST	http://dec.alaska.gov/applications/eh/ehllabreports/USTLabs.aspx	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L14-51
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	Not available	_
Idaho DHW	http://www.healthandwelfare.idaho.gov/Health/Labs/CertificationDrinkingWaterLabs/tabid/1833/Default.aspx	-
ISO 17025	http://www.pjlabs.com/	L14-50
Louisiana DEQ	http://www.deq.louisiana.gov/portal/DIVISIONS/PublicParticipationandPer mitSupport/LouisianaLaboratoryAccreditationProgram.aspx	03016
Maine DHS	Not available	WA01276
Michigan DEQ	http://www.michigan.gov/deq/0,1607,7-135-3307_4131_4156,00.html	9949
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Montana DPHHS	http://www.dphhs.mt.gov/publichealth/	CERT0047
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/oqa/	WA005
North Carolina DWQ	http://www.dwqlab.org/	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEO (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/envserv/	61002
Texas CEO	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wisconsin DNR	http://dnr.wi.gov/	998386840
Wyoming (EPA Region 8)	http://www.epa.gov/region8/water/dwhome/wyomingdi.html	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 6 of 23

ALS ENVIRONMENTAL

Client:Tetra Tech EM, IncorporatedProject:CentruyLink Longview WA/ 103P3080177Sample Matrix:Water

Service Request No.: Date Received:

K1507921 07/22/15

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

Sample Receipt

Three water samples were received for analysis at ALS Environmental on 07/22/15. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Diesel Range Organics by Method NWTPH-Dx

Sample Notes and Discussion:

Insufficient sample volume was received to perform a Matrix Spike/Matrix Spike Duplicate (MS/MSD). A Laboratory Control Sample/Duplicate Laboratory Control Sample (LCS/DLCS) was analyzed and reported in lieu of the MS/MSD for these samples.

No other anomalies associated with the analysis of these samples were observed.

Polynuclear Aromatic Hydrocarbons by EPA Method 8270

Elevated Detection Limits:

The detection limit was elevated for Pyrene in sample MW-2. The chromatogram indicated the presence of non-target background components. The result was flagged to indicate the matrix interference.

Sample Notes and Discussion:

The result reported for Fluorene in sample MW-2 may contain a slight bias. The chromatogram indicated the presence of non-target background components. The matrix interference may have resulted in a slight high bias in the affected sample. The result was flagged with "X" to indicate the issue.

No other anomalies associated with the analysis of these samples were observed.

Approved by_

Hegery Salata

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 8 of 23

Chain of Custody

ALS)	ADDRESS PHONE 1 3 Columbia Part of the	1317 South 860 577 72 Analytical 8 ALS Grou	1 13th Ave., Ke 22 FAX 1 360 Services, Inc. p A Campbe	elso, WA 986 636 1068 <u>Il Brothers Li</u>	26 mited Col	npan	<u>y</u>			Wo	ork	Orde	er N	o.:									
Project Manager:	David Ber	restka								Bill	to:			Vanes	sa Pir	ieda							
Client Name:	Tetra Tec	h		· · · · · · · · · · · · · · · · · · ·		Company:			Tetra Tech														
Address:	216 16th	Street								Address: 216 16				6th St	reet S	Suite	150	0					
City, State ZIP:	Denver, C	CO 80202								City, State ZIP: Denver, CO 80202													
Email:	David.Ber	restka@te	tratech.com	·····	Phone:	303	-31	2-88	56	Em	ail:			vanes	sa.pin	eda@t	tetrat	ech.c	com	Phon	e 303	-312-8812	2
Project Name:	CenturvLi	nk Lonavi	ew WA								RE	QUES	TED	ANA	LYSIS							1	TAT
Project Number:	103P308	0177					l l	T		-internationality									<u></u>			Rout	ine
P.O. Number:							G															Same	e Day ***
Sampler's Name:	Mike Pav	arini/Van	essa Pineda			1	sil															H Next	: Day ***
	SA		CEIPT				lael														H _{3Da}	, IV	
Temperature ('C):			Temp Bla	nk Present			r oil	ilica														6 Da	l y
Received Intact:		Yes	No N/A	Wet Ice /	Blue Ice		ğ	0 5															
Cooler Custody Se	als	Yes	No N/A	Total Cont	ainers:		E	- - -														*** Plea	ase call for
Sample Custody Se	als	Yes	No N/A			1 S	a	tere														ava	ilability
Sample Identif	ication	Matrix	Date Sampled	Time Sampled	Lab ID	Vo. of Contain	VWTPHDx diese ael cleanup)	AH 625 SIM (fil cleanup)														Du	e Date:
11 10/	7	12101	שונגרוד	10:30	er son an ar stra. H	Z		2		<u> </u>	T	ТТ					Т	Т	T		Т		
T D a/ - 1		1-14	7/22/12	11.25		2	i	17			+	┼──┼			-								
$\frac{1}{M}$ $\frac{1}{M}$ $\frac{1}{M}$	<u></u>	law	7172/15	11.50	-	ź	ļ,	17			+	┼─┼	-+			┼─╂			+				
	<u> </u>		1/0103																		+		
- alda								-													1		
								+				$\left \right $			_	+						<u> </u>	
															_						1		
																$\left\{ \begin{array}{c} \\ \end{array} \right\}$					_		
Total Dissolved			ig, Al, As, B, E	Ba, Be, Ca, Co	d, Co, Cr,	Cu, F	e, K	, Li, N	1g, Mn, Mo	, Na, Ni,	P, Pb	, Sb, S	e, Si,	Sn, Sr	, Ti, V,	Zn, Zr	r r			Addi	tional	Method	s Available
		RE	LINQUISH	IED BY	u, CO, CF,	Cu, r	е, К	, LI, N	ny, mn, Mo	, ind, ini,	r, r0	<u>, or o</u>	ie, 31,	511, 51	, II, V,		CEIV	ED	BY				<u></u>
Print	Name		S	ignature			Da	ate/T	ïme	,	F	Print N	Nam	e				Sig	natu	re		Dat	te/Time
Vanessa	Pineda	-	In	m		71	Щ	15	1240	40 hSmith		ith	_	d		H	Horish				7/22	15 1240	
		Enu	lironmenta	at 200	www	.cas	lab.	.com	= ww	w.alsgl	oba	l.com)									L	

ALS	P	c long	La							
Cooler Receipt and Preservation Form	•	C 011-	+							
Client / Project: Tetvatech Service Request K15 0792			7							
Received: $\frac{1}{22}$ / $\frac{1}{12}$ Opened: $\frac{1}{22}$ / $\frac{1}{12}$ By: for Unloaded: $\frac{1}{22}$ / $\frac{1}{15}$ By: for										
1. Samples were received via? Mail Fed Ex UPS DHL PDX Courier Hand Delivered										
2 Samples were received in: (circle) Cooler Box Envelope Other NA										
3. Were <u>custody seals</u> on coolers? NA Y (N ²) If yes, how many and where?										
If present, were custody seals intact? Y N If present, were they signed and dated?		Y	N							
Raw Corrected. Raw Corrected Corr. Thermometer Cooler/COC ID Tracking	Number									
$\frac{\text{CoolerTemp}}{1} \frac{\text{CoolerTemp Blank}}{1} \frac{\text{Temp Blank}}{1} \text{Temp Blank$		<u> </u>	Filed							
4. Packing material: Inserts Baggies Bubble Wrap Gel Packs Wet Ice Dry Ice Sleeves										
5. Were custody papers properly filled out (ink, signed, etc.)?	NA	Ì	Ν							
6. Did all bottles arrive in good condition (unbroken)? Indicate in the table below.	NA	Ľ	Ν							
7. Were all sample labels complete (i.e analysis, preservation, etc.)?	NA	$\overline{\tilde{\mathbf{Y}}}$	Ν							
8. Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2.	NA	Ŷ	Ν							
9. Were appropriate bottles/containers and volumes received for the tests indicated?	NA	Ē	Ν							
10. Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below	NA	Y	Ν							
11. Were VOA vials received without headspace? Indicate in the table below.	NA	Y	Ν							
12. Was C12/Res negative?	NA	Y	Ν							
		en en en en en								
Sample ID on Bottle Sample ID on COC Identified by	•									

1		

Sample ID	Bottle Count Bottle Type	Out of Temp	Head- space	Broke	pН	Reagent	Volume added	Reagent Lot Number	Initials	Time
	<u> </u>									

Notes, Discrepancies, & Resolutions:

Page____of___

Gregory Salata

From: Sent: To: Cc: Subject: Pineda, Vanessa <Vanessa.Pineda@tetratech.com> Thursday, July 23, 2015 9:40 AM Tisdale, Rob; Gregory Salata Berestka, David RE: COC for samples from Longview

Greg,

The IDW ID for water is: IDW-GW and the sample was taken on 7/22/2015.

Thanks!

From: Tisdale, Rob Sent: Thursday, July 23, 2015 10:13 AM To: Greg Salata (<u>gsalata@caslab.com</u>) Cc: Pineda, Vanessa; Berestka, David Subject: COC for samples from Longview

Greg,

Our field team collected two IDW samples in this investigation, and one of them (for water) we do not need analyzed. I don't have a copy of the COC yet to tell you what sample ID it is (assuming it isn't obvious), but Vanessa can provide that sample ID. Please do analyze the soil IDW sample, however, since we will likely need that result to dispose of the IDW soil from the investigation.

Please let me know if you have any questions. Vanessa, please identify the IDW sample ID for Greg so the lab knows which one it is. Thanks!

Rob Tisdale, PhD | Program Manager/Chemist

Direct: 303.312.8843 | Main: 303.312.8800 | Mobile: 303.910.3995 | Fax: 303.295.2818 rob.tisdale@tetratech.com

Tetra Tech 216 16th St , Suite 1500 | Denver, CO 80202 | <u>www.tetratech.com</u>

PLEASE NOTE: This message, including any attachments, may include privileged, confidential and/or inside information. Any distribution or use of this communication by anyone other than the intended recipient is strictly prohibited and may be unlawful. If you are not the intended recipient, please notify the sender by replying to this message and then delete it from your system.

ALS Group: Click here to report this email as spam.

Diesel and Residual Range Organics

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 12 of 23

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507921
Project:	CenturyLink Longview WA/103P3080177	Date Collected:	07/22/2015
Sample Matrix:	Water	Date Received:	07/22/2015

Diesel and Residual Range Organics

Sample Name:	MW-2	Units:	ug/L
Lab Code:	K1507921-001	Basis:	NA
Extraction Method: Analysis Method:	METHOD NWTPH-Dx	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	77 J	260	12	1	07/24/15	07/30/15	KWG1506770	
Residual Range Organics (RRO)	71 J	520	20	1	07/24/15	07/30/15	KWG1506770	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	85	50-150	07/30/15	Acceptable
n-Triacontane	81	50-150	07/30/15	Acceptable

Comments:

Form 1A - Organic

1 of 1

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507921
Project:	CenturyLink Longview WA/103P3080177	Date Collected:	07/22/2015
Sample Matrix:	Water	Date Received:	07/22/2015

Diesel and Residual Range Organics

Sample Name:	MW-1	Units:	ug/L
Lab Code:	K1507921-003	Basis:	NA
Extraction Method: Analysis Method:	METHOD NWTPH-Dx	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	22 J	260	12	1	07/24/15	07/30/15	KWG1506770	
Residual Range Organics (RRO)	52 J	520	20	1	07/24/15	07/30/15	KWG1506770	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	81	50-150	07/30/15	Acceptable
n-Triacontane	79	50-150	07/30/15	Acceptable

Comments:

Form 1A - Organic

1 of 1

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507921
Project:	CenturyLink Longview WA/103P3080177	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA

Diesel and Residual Range Organics

Sample Name:	Method Blank	Units:	ug/L
Lab Code:	KWG1506770-3	Basis:	NA
Extraction Method: Analysis Method:	METHOD NWTPH-Dx	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	ND U	250	11	1	07/24/15	07/30/15	KWG1506770	
Residual Range Organics (RRO)	25 J	500	19	1	07/24/15	07/30/15	KWG1506770	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	77	50-150	07/30/15	Acceptable
n-Triacontane	77	50-150	07/30/15	Acceptable

Comments:

Merged

Form 1A - Organic

QA/QC Report

Client: Tetra Tech EM, Incorporated CenturyLink Longview WA/103P3080177 **Project:** Sample Matrix: Water

Surrogate Recovery Summary **Diesel and Residual Range Organics**

METHOD **Extraction Method: Analysis Method:**

NWTPH-Dx

Units:	Percent
Level:	Low

Service Request: K1507921

Sample Name	Lab Code	<u>Sur1</u>	<u>Sur2</u>
MW-2	K1507921-001	85	81
MW-1	K1507921-003	81	79
Method Blank	KWG1506770-3	77	77
Lab Control Sample	KWG1506770-1	96	91
Duplicate Lab Control Sample	KWG1506770-2	95	91

Surrogate Recovery Control Limits (%)

Sur1 = o-Terphenyl Sur2 = n-Triacontane 50-150 50-150

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

1 of 1

QA/QC Report

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507921
Project:	CenturyLink Longview WA/103P3080177	Date Extracted:	07/24/2015
Sample Matrix:	Water	Date Analyzed:	07/30/2015

Lab Control Spike/Duplicate Lab Control Spike Summary Diesel and Residual Range Organics

Extraction Method: Analysis Method:	METHOD NWTPH-Dx	x						l I Extraction	Units: Basis: Level: 1 Lot:	ug/L NA Low KWG1506770	
		Lab Control Sample KWG1506770-1 Lab Control Spike			Duplicate Lab Control Sample KWG1506770-2 Duplicate Lab Control Spike						
Analyte Name	_	Result	Spike Amount	%Rec	Result	Spike Amount	%Rec	%Rec Limits	RPD	RPD Limit	
Diesel Range Organics (DR	.0)	2850	3200	89	3110	3200	97	46-140	9	30	
Residual Range Organics (F	RRO)	1440	1600	90	1550	1600	97	45-159	8	30	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Page 17 of 23

Polynuclear Aromatic Hydrocarbons

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 18 of 23

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507921
Project:	CenturyLink Longview WA/103P3080177	Date Collected:	07/22/2015
Sample Matrix:	Water	Date Received:	07/22/2015

Polynuclear Aromatic Hydrocarbons

Sample Name:	MW-2	Units:	ug/L
Lab Code:	K1507921-001	Basis:	NA
Extraction Method: Analysis Method:	EPA 3520C EPA 625	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND U	0.020	0.0038	1	07/22/15	07/31/15	KWG1506706	
2-Methylnaphthalene	ND U	0.020	0.0023	1	07/22/15	07/31/15	KWG1506706	
1-Methylnaphthalene	ND U	0.020	0.0035	1	07/22/15	07/31/15	KWG1506706	
Acenaphthylene	ND U	0.020	0.0034	1	07/22/15	07/31/15	KWG1506706	
Acenaphthene	ND U	0.020	0.0044	1	07/22/15	07/31/15	KWG1506706	
Fluorene	0.0061 JX	0.020	0.0038	1	07/22/15	07/31/15	KWG1506706	
Phenanthrene	ND U	0.020	0.0050	1	07/22/15	07/31/15	KWG1506706	
Anthracene	0.013 J	0.020	0.0036	1	07/22/15	07/31/15	KWG1506706	
Carbazole	ND U	0.020	0.0045	1	07/22/15	07/31/15	KWG1506706	
Fluoranthene	ND U	0.020	0.010	1	07/22/15	07/31/15	KWG1506706	
Pyrene	ND Ui	0.020	0.0067	1	07/22/15	07/31/15	KWG1506706	
Benz(a)anthracene	ND U	0.020	0.0026	1	07/22/15	07/31/15	KWG1506706	
Chrysene	ND U	0.020	0.0034	1	07/22/15	07/31/15	KWG1506706	
Benzo(b)fluoranthene†	ND U	0.020	0.0041	1	07/22/15	07/31/15	KWG1506706	
Benzo(k)fluoranthene	ND U	0.020	0.0030	1	07/22/15	07/31/15	KWG1506706	
Benzo(a)pyrene	ND U	0.020	0.0043	1	07/22/15	07/31/15	KWG1506706	
Indeno(1,2,3-cd)pyrene	ND U	0.020	0.0026	1	07/22/15	07/31/15	KWG1506706	
Dibenz(a,h)anthracene	ND U	0.020	0.0025	1	07/22/15	07/31/15	KWG1506706	
Benzo(g,h,i)perylene	ND U	0.020	0.0029	1	07/22/15	07/31/15	KWG1506706	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	94	46-114	07/31/15	Acceptable
Fluoranthene-d10	101	51-121	07/31/15	Acceptable
Terphenyl-d14	80	58-140	07/31/15	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Merged

Form 1A - Organic Page 19 of 23

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507921
Project:	CenturyLink Longview WA/103P3080177	Date Collected:	07/22/2015
Sample Matrix:	Water	Date Received:	07/22/2015

Polynuclear Aromatic Hydrocarbons

Sample Name:	MW-1	Units:	ug/L
Lab Code:	K1507921-003	Basis:	NA
Extraction Method: Analysis Method:	EPA 3520C EPA 625	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	0.0048 J	0.020	0.0038	1	07/22/15	08/03/15	KWG1506706	
2-Methylnaphthalene	ND U	0.020	0.0023	1	07/22/15	08/03/15	KWG1506706	
1-Methylnaphthalene	ND U	0.020	0.0035	1	07/22/15	08/03/15	KWG1506706	
Acenaphthylene	ND U	0.020	0.0034	1	07/22/15	08/03/15	KWG1506706	
Acenaphthene	ND U	0.020	0.0044	1	07/22/15	08/03/15	KWG1506706	
Fluorene	ND U	0.020	0.0038	1	07/22/15	08/03/15	KWG1506706	
Phenanthrene	ND U	0.020	0.0050	1	07/22/15	08/03/15	KWG1506706	
Anthracene	ND U	0.020	0.0036	1	07/22/15	08/03/15	KWG1506706	
Carbazole	ND U	0.020	0.0045	1	07/22/15	08/03/15	KWG1506706	
Fluoranthene	ND U	0.020	0.010	1	07/22/15	08/03/15	KWG1506706	
Pyrene	ND U	0.020	0.0053	1	07/22/15	08/03/15	KWG1506706	
Benz(a)anthracene	0.0029 J	0.020	0.0026	1	07/22/15	08/03/15	KWG1506706	
Chrysene	ND U	0.020	0.0034	1	07/22/15	08/03/15	KWG1506706	
Benzo(b)fluoranthene†	ND U	0.020	0.0041	1	07/22/15	08/03/15	KWG1506706	
Benzo(k)fluoranthene	ND U	0.020	0.0030	1	07/22/15	08/03/15	KWG1506706	
Benzo(a)pyrene	ND U	0.020	0.0043	1	07/22/15	08/03/15	KWG1506706	
Indeno(1,2,3-cd)pyrene	ND U	0.020	0.0026	1	07/22/15	08/03/15	KWG1506706	
Dibenz(a,h)anthracene	ND U	0.020	0.0025	1	07/22/15	08/03/15	KWG1506706	
Benzo(g,h,i)perylene	ND U	0.020	0.0029	1	07/22/15	08/03/15	KWG1506706	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	97	46-114	08/03/15	Acceptable
Fluoranthene-d10	106	51-121	08/03/15	Acceptable
Terphenyl-d14	79	58-140	08/03/15	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Merged

Form 1A - Organic Page 20 of 23

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507921
Project:	CenturyLink Longview WA/103P3080177	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA

Polynuclear Aromatic Hydrocarbons

Sample Name:	Method Blank	Units:	ug/L
Lab Code:	KWG1506706-4	Basis:	NA
Extraction Method: Analysis Method:	EPA 3520C EPA 625	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND U	0.020	0.0038	1	07/22/15	07/31/15	KWG1506706	
2-Methylnaphthalene	ND U	0.020	0.0023	1	07/22/15	07/31/15	KWG1506706	
1-Methylnaphthalene	ND U	0.020	0.0035	1	07/22/15	07/31/15	KWG1506706	
Acenaphthylene	ND U	0.020	0.0034	1	07/22/15	07/31/15	KWG1506706	
Acenaphthene	ND U	0.020	0.0044	1	07/22/15	07/31/15	KWG1506706	
Fluorene	ND U	0.020	0.0038	1	07/22/15	07/31/15	KWG1506706	
Phenanthrene	ND U	0.020	0.0050	1	07/22/15	07/31/15	KWG1506706	
Anthracene	ND U	0.020	0.0036	1	07/22/15	07/31/15	KWG1506706	
Carbazole	ND U	0.020	0.0045	1	07/22/15	07/31/15	KWG1506706	
Fluoranthene	ND U	0.020	0.010	1	07/22/15	07/31/15	KWG1506706	
Pyrene	ND U	0.020	0.0053	1	07/22/15	07/31/15	KWG1506706	
Benz(a)anthracene	ND U	0.020	0.0026	1	07/22/15	07/31/15	KWG1506706	
Chrysene	ND U	0.020	0.0034	1	07/22/15	07/31/15	KWG1506706	
Benzo(b)fluoranthene†	ND U	0.020	0.0041	1	07/22/15	07/31/15	KWG1506706	
Benzo(k)fluoranthene	ND U	0.020	0.0030	1	07/22/15	07/31/15	KWG1506706	
Benzo(a)pyrene	ND U	0.020	0.0043	1	07/22/15	07/31/15	KWG1506706	
Indeno(1,2,3-cd)pyrene	ND U	0.020	0.0026	1	07/22/15	07/31/15	KWG1506706	
Dibenz(a,h)anthracene	ND U	0.020	0.0025	1	07/22/15	07/31/15	KWG1506706	
Benzo(g,h,i)perylene	ND U	0.020	0.0029	1	07/22/15	07/31/15	KWG1506706	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	94	46-114	07/31/15	Acceptable
Fluoranthene-d10	102	51-121	07/31/15	Acceptable
Terphenyl-d14	80	58-140	07/31/15	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Merged

Form 1A - Organic Page 21 of 23

QA/QC Report

Client:	Tetra Tech EM, Incorporated
Project:	CenturyLink Longview WA/103P3080177
Sample Matrix:	Water

Surrogate Recovery Summary **Polynuclear Aromatic Hydrocarbons**

Extraction Method: EPA 3520C **Analysis Method:**

EPA 625

Sample Name	Lab Code	Sur1	Sur2	Sur3
MW-2	K1507921-001	94	101	80
MW-1	K1507921-003	97	106	79
Method Blank	KWG1506706-4	94	102	80
Lab Control Sample	KWG1506706-1	93	102	83
Duplicate Lab Control Sample	KWG1506706-2	95	104	84

Surrogate Recovery Control Limits (%)			
Sur1	=	Fluorene-d10	46-114
Sur2	=	Fluoranthene-d10	51-121
Sur3	=	Terphenyl-d14	58-140

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Service Request: K1507921

Units: Percent Level: Low

QA/QC Report

Client:	Tetra Tech EM, Incorporated	Service Request:	K1507921
Project:	CenturyLink Longview WA/103P3080177	Date Extracted:	07/22/2015
Sample Matrix:	Water	Date Analyzed:	07/31/2015

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons

Extraction Method:	EPA 3520C	Units:	ug/L
Analysis Method:	EPA 625	Basis:	NA
		Level:	Low
		Extraction Lot:	KWG1506706

	Lab Control Sample KWG1506706-1 Lab Control Spike		Duplicate Lab Control Sample KWG1506706-2 Duplicate Lab Control Spike						
Analyte Name	Result	Spike Amount	%Rec	Result	Spike Amount	%Rec	%Rec Limits	RPD	RPD Limit
Naphthalene	2.26	2.50	91	2.32	2.50	93	39-110	3	30
2-Methylnaphthalene	2.07	2.50	83	2.13	2.50	85	39-115	3	30
1-Methylnaphthalene	1.97	2.50	79	2.04	2.50	82	40-122	3	30
Acenaphthylene	2.35	2.50	94	2.39	2.50	96	44-115	2	30
Acenaphthene	2.33	2.50	93	2.37	2.50	95	44-113	2	30
Fluorene	2.35	2.50	94	2.41	2.50	97	48-118	3	30
Phenanthrene	2.35	2.50	94	2.43	2.50	97	47-120	3	30
Anthracene	2.27	2.50	91	2.28	2.50	91	44-117	0	30
Carbazole	2.53	2.50	101	2.59	2.50	103	45-134	2	30
Fluoranthene	2.51	2.50	101	2.58	2.50	103	48-128	3	30
Pyrene	2.34	2.50	94	2.38	2.50	95	42-133	2	30
Benz(a)anthracene	2.43	2.50	97	2.46	2.50	98	48-125	1	30
Chrysene	2.37	2.50	95	2.42	2.50	97	50-128	2	30
Benzo(b)fluoranthene	2.48	2.50	99	2.53	2.50	101	49-131	2	30
Benzo(k)fluoranthene	2.35	2.50	94	2.43	2.50	97	54-131	3	30
Benzo(a)pyrene	2.24	2.50	90	2.30	2.50	92	43-134	2	30
Indeno(1,2,3-cd)pyrene	2.06	2.50	82	2.09	2.50	83	45-133	1	30
Dibenz(a,h)anthracene	2.15	2.50	86	2.17	2.50	87	49-133	1	30
Benzo(g,h,i)perylene	2.07	2.50	83	2.10	2.50	84	51-124	2	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.