

December 28, 2011

Ms. Marni Solheim Senior Regulatory & Facilities Specialist Waste 2 Resources Program Washington State Department of Ecology 4601 North Monroe Street Spokane, Washington 99205-1295

RE: RESPONSES TO ECOLOGY LETTER DATED NOVEMBER 30, 2011 REGARDING: SUDBURY ROAD LANDFILL - OCTOBER 2011 DRAFT DATA SUMMARY AND RI WORK PLAN (INCLUDING SAP/QAPP AND HSP) AND INDEPENDENT REMEDIAL INVESTIGATION FIELD METHODS

Dear Ms. Solheim:

Schwyn Environmental Services, LLC (Schwyn), on behalf of the City of Walla Walla (City) prepared this letter to respond to the comments in your letter dated November 30, 2011ⁱ, regarding the Sudbury Road Landfill Remedial Investigation (RI) Work Planⁱⁱ including the Sampling and Analysis Plan (SAP), Quality Assurance Project Plan (QAPP), and Health and Safety Plan (HASP). Each of your comments is addressed below by restating the comment in italics, followed by the response. Two modifications to the RI Work Plan are also described at the end of the letter. The attached revised RI Work Plan, SAP/QAPP, and HASP incorporate the corresponding actions described herein.

RESPONSES TO ECOLOGY COMMENTS

RI Work Plan

COMMENT 1

Section 1.3.3.1 states that Well #2 is located south of Area 5 and east of Area 6. Well #2 is west of Area 6.

RESPONSE

Correction made.

COMMENT 2

Section 1.4.2.4: The last sentence states that the health department and Ecology approved the final cover system for Area 6. Only the health department has approval authority. Ecology provides comments on landfill design, but has no authority to approve or deny.

RESPONSE

The sentence was revised to state that "The final cover system design was incorporated into the Area 6 Specifications and Plans (JUB 2010), which was reviewed by Ecology and approved by the WWCHD."

COMMENT 3

Section 1.6 lists redesign and construction of a composite liner and leachate collection system for Area 7 as an interim action. This was not an interim action as defined under MTCA. Please remove it from this section to avoid confusion. Likewise, place Section 1.6.1 somewhere other than in the Interim Actions section.

RESPONSE

The Area 7 information has been removed Section 1.6 and incorporated into the Area 7 history described in Section 1.4.2.5.

COMMENT 4

Section 3.4.2 states that contaminants in the Camp and Small domestic wells are from area wide groundwater contamination and not the site. The remedial investigation will help resolve if site contaminants are affecting the domestic wells. Until then, the City cannot exclude the site as a potential source. The report needs to clarify this.

RESPONSE

The statement has been eliminated and the following sentence has been added: "However, the source has not been fully determined and will be further evaluated in the RI".

COMMENT 5

Section 3.6 states that landfill gas poses a possible, but low, likelihood of direct risk of vapor intrusion. Is there data to support this statement? The RI work includes gas monitoring to assess the risk of vapor intrusion to on-site structures. Until the City completes this work, risks are not known.

RESPONSE

The paragraph has restructured to eliminate the sentence discussing the relative level of risks.

The statement was based on the fact that there are few structures in landfill area, and meter testing in and around those structures has not indicated the presence of gas intrusion.

COMMENT 6

Section 3.6.1 explains the rationale for a terrestrial ecological evaluation exclusion. In addition to the reasons stated, any contaminated soil would be more than 15 feet below ground surface, which is the standard point of compliance.

Response

True. A sentence was added to strengthen the exclusion.

COMMENT 7

1. Section 4.2 outlines specific work proposed in table format. Ecology offers the following comments, most of which we discussed during our meeting last week:

COMMENT 7a

a. Instead of drilling two co-located soil borings and gas wells in Area 1, consider only one. Along with the proposed gas well near the east edge of Area 1, one placed nearer the expected point of compliance (west edge of Area 1) may be enough to show whether Area 1 is contributing to contamination at the site.

RESPONSE

Based on information collected to date, Area 1 is considered to pose a lower risk of impacting the Site media by the City and Schwyn. During the November 22, 2011 meeting, Frank Nicholson also indicated that additional material from the northeastern end of Area 1 was recently removed and placed in Area 7. Therefore, we agree with your suggestion and have eliminated the eastern-most boring (SB-21/GW-11). However, an additional test pit was added in the borings place to assess the soil cover thickness in the former boring location.

GW-13 located on the western property line was relabeled GW-12.

COMMENT 7b

b. Two groundwater monitoring wells (MW-17 and -24) are proposed at the Area 5/Area 6 boundary. We discussed moving MW-24 farther north, in the proximity of MW-4, to better gauge off-site contaminant impacts to the site. We encourage you to explore placement of MW-24 in different locations that may better help characterize the site.

We also discussed whether MW-17 would be able to distinguish contaminants from Area 5 or Area 6. To establish if Area 6 is a possible source, Ecology recommends the City place a groundwater monitoring well at the west edge of Area 6, far enough south of Area 5 to isolate any Area 6 impacts.

RESPONSE

Proposed groundwater monitoring wells MW-17 and MW-24 were positioned to gather specific information relating to contribution from Area 6 to groundwater contamination, and more specifically to allow us to determine the area within Area 5 that is causing the greatest impact to groundwater. Preliminary data gathered during the Independent Remedial Investigation leads us to believe that the source location may be along the northern boundary of Area 5. These two monitoring wells, along with other proposed downgradient wells, will allow us to verify or discredit the hypothesis. Therefore, we believe MW-17 and MW-24 are properly located for the intended purposes and we do not recommend any modification to their placement.

We agree that a groundwater monitoring well placed south of Area 5 and west of Area 6 would provide valuable information. An additional monitoring well (MW-26) has been added to the proposed RI scope of work.

COMMENT 7c

c. The City proposes work on MW-5, -7 and -9 to assess off-site impacts. MW-7 is screened in much deeper groundwater than other wells. As such, monitoring data from it may not be useful. Ecology encourages the City to consider whether or not work on this well and subsequent monitoring will help characterize the site.

During our meeting, we speculated also that MW-9 may be a deep well, but have since found that though it is deep, the screen is much shallower.

RESPONSE

Upon review of the MW-7 construction we agree that the well screen depth is too great to optimally monitor the area-wide groundwater contamination. The construction and placement of monitoring wells MW-9 and MW-10 provide adequate upgradient coverage of the upgradient area-wide groundwater contamination. Groundwater sample collection from MW-7 has therefore been removed from the sampling plan. However, the calculated groundwater table elevation in MW-7 corresponds with the regional elevations, and therefore the depth to groundwater will be measured during each monitoring event.

MW-9 was drilled to 210 feet; however, the screen is set near the water table surface from 63 to 83 feet below ground level. On March 18, 2011 the depth to water in MW-9 was 61.00 feet below the top of casing. Therefore the well construction provides for adequate monitoring of the shallow aquifer. Based on the groundwater flow paths shown on Figure 9, it appears that groundwater passing MW-9 would travel by the northern portion of the landfill. This information suggests that monitoring MW-9 will provide valuable information concerning the area-wide contamination that may be impacting the landfill and off-site domestic water supply users. For this reason no changes to the MW-9 work plan are proposed.

COMMENT 7d

d. The City proposed MW-19 to see if contaminants are migrating north/northwest and a possible source for contaminants in the Camp domestic well. Because MW-19 is quite close to the landfill, Ecology is not confident the well is outside of likely groundwater flow to the southwest, or outside areas of landfill gas influence. We recommend the City place MW-19 farther from the site to ensure contaminants found are truly due to migration to the north/northwest.

RESPONSE

The City has agreed to pursue an off-site access agreement with the Camp's and place the well approximately 100 feet further northwest from the proposed position. The new MW-19 position will be approximately 250 feet northwest of MW-15 and the northwest corner of Area 5. See Figure 13 for the well placement.

COMMENT 7e

e. The City proposes a landfill gas monitoring well at the household hazardous waste facility (HHWF) to assess vapor intrusion. We discussed the possibility of using an existing flammable gas monitor inside the HHWF to assess these impacts. After further discussion, Ecology recommends the installation of the gas monitoring well as proposed. The flammable gas monitor would not be capable of measuring volatile organic compounds (VOCs) needed to gauge vapor intrusion.

RESPONSE

The vapor intrusion investigation will proceed as proposed.

COMMENT 7f

f. Regarding measurement of VOCs in gas wells, the City proposes to test several wells for VOCs only if it observes methane above a certain percentage. Methane is not an indicator of the presence of VOCs. Ecology recommends monitoring for VOCs in all gas wells that are planned for assessing the site. The frequency of VOC monitoring should also be included.

RESPONSE

Landfill gas (LFG) samples will be collected from each gas monitoring well, adding four VOC samples to the proposed monitoring plan. The additional VOC data will be valuable in assessing the landfill gas impact on groundwater quality.

It was implied that VOCs would be collected during one sampling event. The SAP was modified to indicate that VOC sampling of LFG will be performed during a single sampling event.

COMMENT 7g

g. The City proposes to test groundwater for VOCs and conventional chemistry parameters. To help ensure contaminants of concern are the same as they were when identified years ago, Ecology recommends testing for parameters found in Appendix III of Chapter 173-351 WAC prior to finalizing the list of groundwater parameters.

Federal regulations (40 CFR, Part 258) require testing for Appendix III parameters annually during assessment monitoring. Though Ecology's landfill regulations (Chapter 173-351 WAC) do not reflect this, we have advised staff at landfills in assessment monitoring about the federal requirement. Ecology is not aware of the City having annually tested Appendix III parameters.

RESPONSE

Groundwater samples will be collected and analyzed for Appendix III assessment monitoring parameters from the downgradient compliance groundwater monitoring wells (MW-11, MW-14, and MW-15) during the first groundwater monitoring event of the RI. Upon receipt of the analytical results, the RI groundwater sampling program will be reviewed to assure that any significant Appendix III analytical detections exceeding MTCA screening levels are included during the remaining sampling events. If no new constituents are reported then the RI monitoring would revert to the groundwater sample plan as proposed in the SAP.

COMMENT 8

The City must continue to monitor compliance wells on a quarterly basis and for parameters identified in monitoring plans, including inorganic constituents, as part of the landfill's routine groundwater monitoring program. Though not part of the Remedial Investigation, it might be helpful to include such a statement in the Work Plan.

RESPONSE

It is understood that the Compliance Groundwater Monitoring Program conducted as a requirement of chapter 173-351 WAC and the RI groundwater sampling program are two separate entities. The wells

that are/will be sampled, analytical requirements and monitoring frequency is different between the two programs. Overlapping data from the RI may be used for the compliance reporting if the opportunity arises; however, compliance monitoring will proceed in accordance with the Solid Waste Permit.

The RI Work Plan and SAP was revised to indicate that the Compliance Groundwater Monitoring Data will be incorporated into the RI database of information. This was intended, but not specifically stated in the draft documents.

COMMENT 9

Be sure to update both the Work Plan and the Sampling and Analysis Plan to reflect any changes to proposed work.

RESPONSE

Acknowledged

Sampling and Analysis Plan and Quality Assurance Project Plan

COMMENT 1

Section 2.11.2: Please describe methods for storing and movement of development, purge and decontamination water for downgradient wells.

RESPONSE

The SAP was modified as follows:

The following waters generated during the project will be stored in 55-gallon drums stationed at each well head pending a review of the laboratory analytical results:

- New downgradient or off site well development, purge, and decontamination water.
- Purge water from site, downgradient or off –site wells that have constituent concentrations greater than the MTCA Method A or B screening levels.

Waters that have constituent concentrations greater than the MTCA Method A or B screening levels will be disposed of in the landfill's leachate evaporation pond. Based on at least two sets of laboratory analytical results, waters that have constituent concentrations less than the MTCA screening levels may be discharged to the ground surface and the drums may be removed from the well head area. The City may also opt to discharge the waters directly into the leachate evaporation pond prior to the receipt and evaluation of the analytical results. The water will be transported by the City using available equipment from the landfill, or by a contractor employed by the City.

COMMENT 2

Section 2.12 needs to include the frequency of testing for VOCs in gas wells.

RESPONSE

Section 2.12 addresses the Site Surveying, so no changes to that section have been made.

Testing for VOCs in the landfill gas will be performed during a single monitoring event. The frequency is now clearly stated in the SAP, Section 2.5.3.

COMMENT 3

Section 2.8 states "Laboratory analyses will be performed by an Ecology-accredited laboratory in accordance with Chapter 173-50 WAC (Ecology 2002)." Please change it to read "Laboratory analyses will be performed by an Ecology-accredited laboratory accredited for appropriate parameters and media..."

RESPONSE

The text was modified as requested.

COMMENT 4

Section 2.8.2 states that total organic carbon (TOC) will be analyzed using USEPA Method 420.1. This method is for measuring phenolic compounds. Please clarify if this is correct and if not, correct the method proposed for TOC here and in tables where also referenced.

RESPONSE

Total organic carbon will be analyzed by USEPA Method 415.1. The text in the SAP and accompanying tables have been changed to reflect the correct procedure.

COMMENT 5

Section 3.1 lists information a lab must include with test results. Please include "test method" on this list. Likewise, in Section 3.4.2 include review of test methods among the items Schwyn Environmental will verify upon receipt of test results.

RESPONSE

No change has been made to Section 3.1 Data Quality Objectives, because the review of the test methods is part of the data validation procedure.

Verification of the test method was added to Section 3.4.2 Data Validation.

COMMENT 6

In Section 3.4.3, please add that the City will submit lab data to Ecology's Site Manager in an electronic format suitable for entry into Sanitas Statistical Software.

RESPONSE

All data will be entered into Ecology's EIM system from which the data can be downloaded into Sanitas. Schwyn may enter and evaluate specific data sets (such as VOCs in groundwater) using Sanitas for Groundwater. Those files will be provided to Ecology as used for internal evaluations; however, the Sanitas files may not include all data.

The following sentence was added to Section 3.4.3: "Data sets entered in Sanitas For Groundwater format that are used in the RI evaluation process will also be provided to Ecology."

Health and Safety Plan

COMMENT 1

Section 5.1 lists potential toxic effects from exposure to individual contaminants. Some contaminants are carcinogenic, though cancer is not listed anywhere. Please list cancer by those contaminants that are known or suspected carcinogens.

RESPONSE

Carcinogenic parameters are now identified in Table 5.1.

COMMENT 2

Movement of downgradient well development, purge and decontamination water to leachate lagoons could pose a hazard. Please describe how workers will move and transfer materials to lagoons.

RESPONSE

Safe handling practices for the storage, movement, and discharge of well development, purge and decontamination water to leachate lagoons were added to the HASP.

Independent Remedial Investigation Field Methods

COMMENT 1

Referenced figures were not included in the report. Please submit the figures for our records.

RESPONSE

Appendix C figures were emailed to you on December 5, 2011.

ADDITIONAL WORK PLAN MODIFICATIONS

MW-14 Replacement

During a recent meeting with the City, Dennis Rakestraw indicated that MW-14 is very temperamental and difficult to sample during the compliance groundwater monitoring required each quarter. The water level in the well has dropped considerably over the years, and the well many times goes dry before the samples are collected. Sometimes the water level is below the top of the pump and the level cannot be measured.

MW-14 is an important monitoring point proposed for use in the RI. A replacement well will therefore be installed so that consistent depth to water measurements and groundwater quality can be obtained during the RI. The new well (MW-14b) will be constructed consistent with the methods described in the SAP for shallow groundwater wells, and MW-14 will be decommissioned consistent with applicable state regulation.

GW-12 Depth (formerly labeled as GW-13)

The screened interval of GW-12 was proposed to be constructed 15 to 20 feet below surface; however, the former medical waste and asbestos trenches were cut approximately 10 feet deep in the vicinity of the proposed gas well. It is preferred that the screen section be set below the trench bottom to best monitor gas migration potential on the western boundary. Therefore, the screened interval of GW-13 will be constructed from 25 to 30 feet below surface.

Attached is the Revised Sudbury Road Landfill Remedial Investigation Work Plan incorporating the modifications described in this letter. If you have any questions please call Frank Nicholson at (509) 524-4510.

Sincerely,

SCHWYN ENVIRONMENTAL SERVICES, LLC

Craig C. Schwyn

Craig C. Schwyn, L.Hg. Principal

Cc: Frank Nicholson, City Engineering Bill Joyce, Salter Joyce Ziker, PLLC

Attachments: Sudbury Road Landfill Remedial Investigation Work Plan

ⁱ Marni Solheim, Washington State Department of Ecology letter to Frank Nicholson, City of Walla Walla Public Works. *Sudbury Road Landfill – October 2011 Draft Data Summary and RI Work Plan (including SAP/QAPP and HSP) and independent Remedial Investigation Field Methods.* November 30, 2011.

ⁱⁱ Schwyn Environmental Services, LLC. *Data Summary and Remedial Investigation Work Plan, Sudbury Road Landfill, Walla Walla, Washington*. Review Draft for Washington State Department of Ecology. October 2011.

Data Summary and Remedial Investigation Work Plan Sudbury Road Landfill Walla Walla, Washington

December 28, 2011

Prepared for:

City of Walla Walla

Prepared by:

4621 South Custer Spokane, WA 99223 (509) 448-3187

TABLE OF CONTENTS

1.0	INT	RODUCTION	V	1-1		
	1.1	PURPOSE	1-1			
	1.2	REPORT C	RGANIZATION	1-1		
	1.3	SITE DESC	CRIPTION AND SETTING	1-1		
		1.3.1 Sur	rounding Land Use	1-2		
		1.3.2 Sur	rounding Residential Populations	1-2		
		1.3.3 Ber	iefficial Use	1-2		
		1.3	3.1 Water Uses and Water Rights	1-3		
		1.3	3.2 Ecological Resources	1-4		
		1.3	3.3 Cultural Resources	1-5		
		1.3.4 Geo	morphology and Drainage	1-5		
		1.3.5 Site	Geology	1-6		
		1.3.6 Hy	irogeology	1-6		
	1.4	LANDFILL	HISTORY AND DESCRIPTION	1-7		
		1.4.1 Lar	idfill Development	1-8		
		1.4.2 Wa	ste Disposal Process	1-9		
		1.4	2.1 Area 1	1-9		
		1.4	2.2 Area 2	1-9		
		1.4	2.3 Area 5	1-10		
		1.4	2.4 Area 6	I-11		
		1.4.	2.5 Area /	1-12		
		1.4	2.6 Asbestos Waste Area (Area 4)	1-13		
		1.4.	2.7 Medical Waste Cell (Area 3)	1-14		
		1.4.	2.8 Compositing Area	1-14		
		1.4.3 Reg	gulatory Criteria	1-14		
		1.4.4 Wa	ste Composition	1-15		
	1.5	GROUND	ROUNDWATER MONITORING			
		1.5.1 Mo	nitoring Well Installations	1-16		
		1.5.2 Gro	oundwater Monitoring Program	1-17		
		1.5.3 Sur	nmary of Groundwater Contamination	1-18		
		1.5	3.1 Area-Wide Contamination	1-19		
		1.5.	3.2 Localized Landfill Contamination	1-20		
	1.0	1.5.4 Prio	or Groundwater Studies	1-20		
	1.6		ACTIONS	1-21		
		1.6.1 Are	a 6 Closure	1-21		
		1.6.2 Noi	th Drainage Stormwater Controls	1-21		
2.0	BAS	BASIS FOR RI SCOPE				
	2.1	PREVIOUS	S INVESTIGATIONS AND EXISTING DATA	2-1		
		2.1.1 Hy	lrogeologic Report	2-1		
		2.1.2 Ass	essment Monitoring Program	2-1		
		2.1.3 Ind	ependent Remedial Investigation	2-2		
		2.1	3.1 Summary of Work	2-2		
		2.1.	3.2 Findings	2-2		
	2.2	DETAILED	EVALUATION OF GROUNDWATER QUALITY	2-6		

Page

		2.2.1 N	AW-15 (Groundwater Quality	2-7			
		2.2.2 L	andfill S	Specific Freon Compounds	2-7			
		2.2.3 A	Area-Wie	de Groundwater Quality	2-8			
		2	.2.3.1	Regional Groundwater Quality	2-8			
		2	.2.3.2	Domestic Well Groundwater Quality	2-8			
3.0	PRELIMINARY CONCEPTUAL SITE MODEL							
	3.1	SUSPECTED SOURCES OF HAZARDOUS SUBSTANCES						
	3.2	PRELIM	LIMINARY CONTAMINANTS OF CONCERN FOR GROUNDWATER					
	3.4	POTENT	DTENTIALLY CONTAMINATED MEDIA					
		3.4.1 S	loil		3-4			
		3.4.2 A	Area-Wie	de Groundwater	3-4			
		3.4.3 L	localized	d Groundwater Near MW-15	3-4			
		3.4.4 L	andfill A	Area Groundwater	3-4			
		3.4.5 L	andfill (Gas	3-4			
		3.4.6 S	tormwa	ter	3-5			
	3.5	5 FATE AND TRANSPORT						
	3.6	RECEPT	CEPTORS/PATHWAYS OF EXPOSURE					
		3.6.1 Т	<i>Cerrestria</i>	al Ecological Evaluation Exclusion	3-6			
4.0	RI W	WORK TASKS						
	4.1	DATA G	APS		4-1			
		4.1.1 L	lateral a	nd Vertical Extent of Landfill	4-1			
		4.1.2 L	andfill (Cover	4-1			
		4.1.3 S	loil		4-1			
		4.1.4 C	Groundw	ater	4-1			
		4.1.5 L	andfill (Gas	4-2			
	4.2	REMED	AL INV	/ESTIGATION TASKS	4-2			
		4.2.1 F	Reporting	g	4-5			
	4.3	SCHEDU	JLE		4-5			
5.0	REFERENCES				5-1			

TABLES

<u>Table</u>	<u>Title</u>
1	Well Construction Summary
2	Soil Sample Analytical Data

- 2
- Soil Sample Analytical Data Independent Remedial Investigation Groundwater Analytical Data Independent Remedial Investigation Landfill Gas Data Independent Remedial Investigation Statistical Summary of Groundwater VOC Data 3
- 4
- 5

FIGURES

Figure Title

- 1 Site Location
- 2 Vicinity Map
- 3 Site Map
- 4 Regional Land Uses
- 5 Locations of Geologic Cross Sections
- 6 Geologic Cross Section A-A'
- 7 Geologic Cross Section B-B'
- 8 Geologic Cross Section C-C'
- 9 Groundwater Elevation Map
- 10 Groundwater Elevation Trend
- 11 Maximum Historical VOC Concentrations in Area Wells
- 12 Most-recent VOC Concentrations in Area Wells
- 13 Proposed Exploration Locations

APPENDICES

- A Beneficial Use Information
- B Site Well Logs and Drillers Well Reports
- C Independent Remedial Investigation Methods
- D Groundwater Quality Data Summary
- E Sudbury Road Landfill Sampling and Analysis Plan

LIST OF ABBREVIATIONS AND ACRONYMS

AO	Agreed Order No. 8456
ARARs	Applicable or relevant and appropriate requirements
bgl	Below ground level
BNSF	The Burlington Northern Santa Fe Railway Company
BPA	Bonneville Power Association
City	City of Walla Walla, Washington
CLARC	Cleanup Levels and Risk Calculation
cm/sec	Centimeters per second
CSI/A	Contaminant Source Identification/Assessment
Ecology	Washington State Department of Ecology
EDR	Environmental Data Resources, Inc.
ET	Evapotranspiration
FEMA	Federal Emergency Management Agency
Freon 11	Trichlorofluoromethane
Freon 12	Dichlorodifluoromethane
FS	Feasibility Study
Ft	Feet
Ft/ft	Feet per foot
HASP	Health and Safety Plan
HHWF	Household Hazardous Waste Facility
JUB	J-U-B Engineers, Inc.
LCRS	Leachate collection and removal system
LFG	Landfill gas
mg/L	Milligram per liter
mm	Millimeter
MRL	Method reporting level
MSL	Mean sea level
MSW	Municipal solid waste
MTCA	Washington State Model Toxics Control Act
PCB	Polychlorinated biphenyl's
PCE	Tetrachloroethene
PCOC	Preliminary Contaminant of Concern
PLP	Potentially liable party

PP&L	Pacific Power and Light
QAPP	Quality Assurance Project Plan
RCW	Revised Code of Washington
RI	Remedial Investigation
RI/FS	Remedial Investigation/Feasibility Study
SAP	Sampling and Analysis Plan
Site	Sudbury Road Landfill
Schwyn	Schwyn Environmental Services, LLC
S&W	Shannon & Wilson, Inc.
TCE	Trichloroethene
TDS	Total dissolved solids
TOC	Total Organic Carbon
TWL	Tausick Way Landfill
µg/L	Micrograms per liter
USEPA	U.S. Environmental Protection Agency
VOC	Volatile organic compound
Work Plan	Remedial Investigation Work Plan
WAC	Washington Administrative Code
WSDOT	Washington State Department of Transportation
WSP	Washington State Penitentiary
WWCHD	Walla Walla County Health Department

THIS PAGE LEFT INTENTIONALLY BLANK

SIGNATURES OF ENVIRONMENTAL PROFESSIONALS

The technical material and data contained in this document were prepared by Schwyn Environmental Services, LLC with assistance from Floyd|Snider, Inc., Herrera Environmental Consultants, Inc., and J-U-B Engineers, Inc., under the supervision and direction of the undersigned Washington Licensed Hydrogeologist.

Craig C. Schurgen

Craig C. Schwyn, L.HG. Principal Hydrogeologist

December 28, 2011

Date

THIS PAGE LEFT INTENTIONALLY BLANK

1.0 INTRODUCTION

On behalf of the City of Walla Walla, Washington (City), Schwyn Environmental Services, LLC (Schwyn) prepared this Remedial Investigation (RI) Work Plan (Work Plan) for the Sudbury Road Landfill (Site) pursuant to Agreed Order No. 8456 (AO). This Work Plan presents the approach to complete an RI of the Site that will close data gaps, present a conceptual site model, and provide the site characterization necessary to conduct a Feasibility Study (FS). This Work Plan was prepared in accordance with the AO and the Washington State Model Toxics Control Act (MTCA) Chapter 173-340 of the Washington Administrative Code (WAC) regulations (Ecology 2007).

1.1 PURPOSE AND OBJECTIVES

In March 2010, the Washington State Department of Ecology (Ecology) submitted a Notice of Potential Liability Letter to the City (Ecology 2010). The City and Ecology subsequently initiated Agreed Order No. 8456, effective May 26, 2011. The AO stipulated the scope of work and schedule for the preparation of the Remedial Investigation and Feasibility Study (RI/FS). The first task of the AO is to prepare a Work Plan to supplement existing data and determine the nature and extent of contamination at the Site. This Work Plan, with the accompanying Sampling and Analysis Plan (SAP), Quality Assurance Project Plan (QAPP), and Health and Safety Plan (HASP), were prepared to fulfill Task I of the required Scope of Work presented in Exhibit D of the AO.

1.2 REPORT ORGANIZATION

The document is organized as follows:

- Section 1 summarizes existing data and information from the Site;
- Section 2 presents the basis of information from which the RI scope was derived;
- Section 3 presents a conceptual site model; and
- Section 4 identifies data gaps and a work plan to fill the data gaps.

1.3 SITE DESCRIPTION AND SETTING

According to the AO, the Site is referred to as the Sudbury Road Landfill and is generally located at 414 Sudbury Road, Walla Walla, Washington 99362, about 4 miles west of the City of Walla Walla and one-quarter mile north of Highway 12, in the southwest quarter of Section 14, southeast quarter of Section 15, northeast quarter of Section 22, and northwest quarter of Section 23, Township 7 North, Range 35 East, Willamette Meridian (Figure 1). The landfill area itself is approximately 125 acres in size and is located within the western portion of an 828.86-acre City-owned parcel of land zoned and used for various waste management purposes (Figure 2 and Figure 3). The Site is designated by Ecology as Facility No. 4446540. The AO defines the Site as the extent of contamination caused by the release of hazardous substances at the Site. The Site constitutes a Facility under Revised Code of Washington (RCW) 70.105D.020(5).

1.3.1 SURROUNDING LAND USE

The landfill is located in rural southeastern Washington and entirely surrounded by large expanses of rolling land used for dry-land wheat farming. The northern border of the landfill is defined by the 100-foot wide Burlington Northern Santa Fe (BNSF) railroad right-of-way, which was abandoned in 1988. The Washington State Penitentiary is located immediately east of the City property, about 6,400 feet east of the landfill. The new State Highway 12 right-of-way lies approximately 300 feet south of the landfill entrance station and approximately 1,200 feet south of the landfill disposal areas. No significant changes to these land uses in the vicinity of the Site are expected in the near future.

1.3.2 SURROUNDING RESIDENTIAL POPULATIONS

Rural housing is located south of State Highway 12, approximately 500 feet south of the landfill scale house and more than 1,400 feet from the southern boundary of the landfill disposal area. Three residences are located to the west of the landfill, between 4,500 feet and more than 8,000 feet from the western landfill boundary. One additional residence lies approximately 9,000 feet southwest of the landfill. The nearest residence north of the landfill is over 7,500 feet away. The Washington State Penitentiary and its inmate population are located immediately east of the site property boundary and more than 1.2 miles east of the landfill itself.

1.3.3 BENEFICIAL USE

Under WAC 173-200 (Ecology 1990), beneficial uses for waters of the state are defined as the "uses of waters of the state which include but are not limited to use for domestic, stock watering, industrial, commercial, agricultural, irrigation, mining, fish and wildlife maintenance and enhancement, recreation, generation of electric power and preservation of environmental and aesthetic values, and all other uses compatible with the enjoyment of the public waters of the state".

The land use, ecological resources, and cultural resources also were considered herein because surface water and groundwater quality may influence other resources and their beneficial uses. In order to evaluate the potential beneficial uses in the vicinity of the landfill a search was conducted by Environmental Data Resources, Inc. (EDR), of state, federal, and local databases as well as independent searches of State of Washington Water Resources and Water Well information databases. Beneficial use information and reports are provided in Appendix A. Surrounding land uses and wells are shown on Figure 4.

The following list describes the potential beneficial uses that may be affected by activities at the landfill if a completed pathway to exposure of site contaminants is present.

- Water Uses and Water Rights:
 - Groundwater wells (domestic, municipal, industrial, stock watering, or irrigation)
 - Surface water rights (irrigation, stock watering)
- Ecological Uses:
 - Wetland areas
 - Threatened and endangered species habitat areas
 - Flood plain
- Cultural Resources:
 - Historic sites
 - U.S. Indian reservations

1.3.3.1 Water Uses and Water Rights

Groundwater Use

One active supply well, Well #2 (also termed MW-2), is used for landfill operations. Well #2 is located south of Area 5 and west of Area 6. The deep well water is used for dust control and the compost facility. The well is used for non-potable uses only. Bottled drinking water is provided at the Site for potable purposes.

Searches for groundwater use in the vicinity of the landfill focused on wells and water rights within 1.5 miles in the hydraulically downgradient directions (northwest, west, and southwest), and 2,000 feet in the upgradient and side gradient directions (north, east, and south) of the landfill. The search distances conservatively encompass a region around the landfill that could possibly be affected by site releases. Well information for surrounding properties was collected from several sources: EDR searches; Ecology's water rights informational database (Water Resources Explorer), which provided copies of water right certificates and other documents detailing location, quantities of water allowed, and original water right holder; Ecology's Well Log Database, which provided available well logs maintained by Ecology detailing depth of well and information on the screened aquifer; in some cases property owners provided various well information and allowed sampling. The water well reports obtained during this study are provided in Appendix A.

No residences or water use was evident within the 2,000-foot search area to the north or east of the landfill. As mentioned above, the nearest wells to the northwest, west, and southwest are approximately 1 to 1.5 miles from the landfill boundary. The Washington State Penitentiary is located approximately 1.2 miles east of the landfill. The resident populations of the State Penitentiary are provided City water for potable purposes. Penitentiary grounds are irrigated with well water. The Penitentiary property is hydraulically upgradient of the Site and is not impacted by landfill activities.

The area south of the landfill is generally rural residential housing. Two water districts provide water to most of the rural housing developments located south of State Highway 12. Several properties

maintain water rights related to domestic or irrigation wells that are listed as active. Only two of these properties are within the search area of 2,000 feet.

- The Smith Well property, located approximately 1,800 feet south of the landfill, has a certified water right on file with Ecology (January 1995) that allotted up to 11 acre-feet per year to be withdrawn from the old gravel and clay aquifer for irrigation and domestic purposes (Ecology Water Resources Explorer Record #G3-24731CWRIS).
- The Bonneville Power Association (BPA) property and substation is located 2,000 feet south of the landfill (3072 Heritage Road) and maintains an active water right (Water Resources Explorer). Several test wells are located on the property (Well logs available in Hydrogeologic Report), but one well is listed for domestic use. Originally the domestic use well was installed in 1941 to a depth of 515 feet into the bedrock and then reconditioned in 1976. No water right information is available for this well in the Ecology Water Resources Explorer.

Four residential properties located northwest, west, and southwest of the landfill maintain their

own domestic wells for water supply. No water rights were available in Ecology's Water Resources Explorer for any of these well users. The locations of these wells are shown on Figure 4.

- The Camp Well is located approximately ³/₄-mile northwest of the landfill and owned by Camp Properties. A well log is not available for the well.
- The Small Well is located approximately ³/₄-mile west of the landfill on a parcel owned by Mark and Kathleen Small. The well was installed in 1998 to a depth of 100 feet and is screened within gravels.
- The Kinman Well is located approximately 1.5 miles west of the landfill and designated for domestic use. The well was installed in 2002 to a depth of 180 feet. The well is screened within a water-bearing gravel layer (Kinman Well Log).
- Two wells are located on the Schmidt property, which is located approximately 1.5-miles southwest of the landfill. One well is 122 feet deep and designated for domestic purposes. The second is 780 feet deep, constructed in basalt, and is designated for irrigation purposes. No water rights are available for the irrigation well at this time.

Surface Water Use

No perennial creeks or waterways are located within 2,000 feet of the landfill. Three creeks or intermittent streams are identified within one mile of the landfill. Mill Creek is the largest and approximately 1 mile south of the landfill in the Walla Walla Valley. Mud Creek is an intermittent stream and lies more than ¹/₂ mile northwest of the landfill at its closest point. A tributary of Mud Creek extends along the northern boundary of the landfill (the north drainage ditch). Several surface water rights are listed on Mud Creek and its tributaries. Very little information is available regarding whether these surface water rights are actively used.

1.3.3.2 Ecological Resources

No officially designated wilderness areas, or wildlife preserves are located within a mile of the landfill. No state designated critical habitat areas are located within one mile of the landfill. Bald eagles,

steelhead and bull trout are endangered species listed for Walla Walla County; however, it is unlikely these species will be impacted by work at the landfill. Endangered salmon and steelhead species are also listed for Walla Walla County, but limited to the Walla Walla River, Mill Creek, Snake and Columbia Rivers, so no impacts from the landfill would be expected (refer to relevant material from EDR Report in Appendix).

The National Wetland Inventory identifies wetland areas within the Mill Creek basin, just over a mile from the landfill site (Appendix A). No wetlands are identified within 2,000 feet of the landfill.

The nearest Federal Emergency Management Agency (FEMA) mapped 100-year floodplain is on Mill Creek and does not impact the Site.

1.3.3.3 Cultural Resources

No state or federal historic sites or U.S. Indian Reservations are located within the 1 mile search radius.

1.3.4 GEOMORPHOLOGY AND DRAINAGE

The Sudbury Road Landfill is located on Pleistocene terrace deposits on the northern flank of the Walla Walla Valley. The terrace surface has been dissected by intermittent drainages formed entirely in unconsolidated soils of the Palouse Formation and the Touchet Beds. The southern property boundary of the site generally coincides with the edge of the terrace where it drops steeply (approximately 50 feet) down to the Mill Creek and Walla Walla River flood plain (EMCON 1995).

The site topography ranges in elevation from 900 feet above mean sea level (MSL) at the top of Area 6 to 780 feet above MSL in the southern drainage area. Natural slopes in the area are 20 percent or lower (EMCON 1995). The site topography is shown on Figure 2.

The landfill area consists of a central plateau with elevations dropping to the north, east, and south. The central plateau elevation lies at approximately 840 feet MSL in the vicinity of Well #2. Drainage bottoms located to the south and north lie at approximately 780 and 800 feet MSL, respectively. The landfill disposal cells have historically been cut into the central plateau or built up on the side slopes of the plateau.

Intermittent drainages flow to the west and southwest around the landfill disposal areas. One intermittent drainage originates in the terrace upland to the east of the landfill and wraps around the east and south edges of Area 1 and Area 7. A second drainage borders the north side of Areas 5 and 6, originating near a minor drainage divide approximately 1,000 feet northeast of Area 7. The drainage extends west to southwest along the northwest property boundary. The draw is commonly called the "north stormwater drainage." Site drainages are shown on Figure 2.

Historically, stormwater passed through the north stormwater drainage ditch and flowed off-site, westward toward Mud Creek. During the last 100 years the "natural channel" was altered significantly by the Northern Pacific Railroad and by agricultural activities that follow the channel to Mud Creek. More recently, stormwater drainage from portions of MSW disposal Areas 5, 6, and 7, and farmland located north of the landfill, was diverted to the valley bottom. Excavations were constructed adjacent to Area 5, where the stormwater either infiltrated into the soils and/or evaporated, rather than flowing off-site.

1.3.5 SITE GEOLOGY

The Site lies on the northern flank of the Walla Walla Valley. The valley is bounded on the east by the Blue Mountains, which consist of a northeast-trending uplifted arch of the Columbia River basalt; to the south by Horse Heaven Ridge, which is an extension of the Yakima Fold Belt; and to the north by the Touchet slope, which is an undulating surface of the Columbia Plateau that slopes gently southeast into the Walla Walla Valley. The Walla Walla Valley ends at the Columbia River at Wallula, approximately 27 miles west of the Site.

The subsurface geology beneath the landfill consists of (from upper to lower) the Palouse silt; reworked lacustrine silt and clay of the Touchet beds; interbedded alluvial gravels in a clayey, silty, or sandy matrix, underlain by a basal clay comprising a unit informally termed the "old gravel and clay" by R.C. Newcomb (Newcomb 1965); and Columbia River basalt. The unconsolidated to semi-consolidated deposits overlying the Columbia River basalts may be 600 feet or more in thickness.

Vadose zone soils in the landfill area consist of silt, clayey silt, and fine sandy silt, which are interpreted to be soils of the Palouse Formation and the Touchet Beds. These silty soils exhibit laboratory permeabilities in the range of 10⁻⁶ to 10⁻⁵ centimeters per second (cm/sec, EMCON 1995 and Schwyn 2010a). Underlying the silty soils is a unit consisting of consolidated to semi-consolidated, poorly-graded gravel, silty gravel, and silt, which are interpreted to correlate with the "old gravel and clay" unit. Remolded samples of the gravelly silt unit indicated a permeability in the order of 10⁻⁷ cm/sec (EMCON 1995). Geologic cross-sections of the region and site are presented on Figures 5, 6, 7, and 8.

1.3.6 Hydrogeology

Groundwater is first encountered beneath the Site at depths from approximately 30 to 80 feet below surface in the lower silt horizon of the Touchet beds and/or the underlying alluvial gravel termed the "old gravel and clay" aquifer. This aquifer is locally utilized for domestic water supply purposes. A groundwater elevation contour map constructed with depth-to-groundwater measurements collected on May 18, 2011 is provided on Figure 9. The groundwater levels in the vicinity of the landfill have been declining since 1997. During this period, the water level has declined as much as 10 feet in MW-12 (resulting in the deepening of the well in 2008). The water level trends in the landfill monitoring wells are shown on Figure 10.

The inferred groundwater flow direction is to the west and southwest with an approximate horizontal gradient of 0.004 feet per foot (ft/ft) beneath the landfill. A vertical downward gradient has been observed between the water levels in MW-3 and MW-15 (749.58 and 753.73 feet MSL respectively on May 18, 2011). The vertical gradient between MW-3 and MW-15 was calculated to be 0.054 ft/ft.

The horizontal hydraulic conductivity (geometric mean) of the uppermost aquifer beneath the Site is 1.52×10^{-3} cm/sec, based on rising head slug tests conducted in monitoring wells MW-1, MW-3, MW-11, and MW-12 (EMCON 1995). Using this information and an effective porosity of 0.3, the average groundwater flow velocity beneath the Site has been reported to be approximately 2.03 x 10^{-5} cm/sec (21 feet per year). These parameters will be confirmed in the RI.

A second, more regional, aquifer is present in the underlying Columbia River basalts. Information from the driller's water well reports, within the vicinity of the Site, indicate that the basalt aquifer had a potentiometric surface in the range of 150 to 200 feet below ground surface and a positive upward gradient (EMCON 1995).

1.4 LANDFILL HISTORY AND DESCRIPTION

The Site is developed within a much larger city-owned parcel of land that was established for various waste management purposes before the development of the Site. The earliest references to the City property date back to 1970 when the City proposed to purchase land to develop a spray irrigation farm for disposal of industrial wastewater from the canning plants that were operating within the City, provide land on which to dispose of future domestic waste, and to make needed improvements to the existing sewage treatment facilities. In 1970 and 1973, the City purchased a total of 967.17 acres of farmland and had it designated for waste management purposes. The westernmost 125 acres of the City property were set aside for landfill development. Approximately 600 acres of the remaining property were utilized for the agronomic application of non-hazardous food processing wastewater from 1971 to 2004. In April 2004, Seneca Foods, Inc. canceled the sprayfarm lease with the City and terminated the State Waste Discharge Permit with Ecology due to the declining cannery industry. Since 2004, the sprayfarm portion of the property has been dry land wheat farmed under leases to another party. Additionally, portions of the former sprayfarm and the northwestern 200 acres of the City property are used for the agronomic application of biosolids, and the City has built an emergency sewer lagoon for the City wastewater/reuse water plant on 10 acres in the south east corner of the property.

Currently, the City property is split by several linear parcels owned by Pacific Power and Light (PP&L), BNSF, and the Washington State Department of Transportation (WSDOT). PP&L owns a northsouth trending strip of land that cuts across the eastern side of the City property (approximately 6,000 feet east of the landfill area). Large transmission lines extend over the PP&L land. The City property is further dissected by a BNSF railroad right-of-way that roughly cuts the property into north and south halves. The 100-foot wide right-of-way was part of BNSF's former Attalia to Walla Walla rail line and forms the northern boundary of the landfill. The railroad tracks were removed circa 1988 and the right-of-way functions as a road across the property.

In 2007, 57.79 acres of the original 967.17-acre parcel was acquired by WSDOT for the development of new State Highway 12. This resulted in approximately 80.5 acres of City land becoming orphaned from the original City property on the south side of the highway. As of 2011, the parcel that is located on the north side of the highway and contiguous with the landfill is 828.86 acres as shown on Figure 2.

1.4.1 LANDFILL DEVELOPMENT

The City used the Tausick Way Landfill (TWL), located within the eastern Walla Walla City limits, for solid waste disposal from the late 1930s until 1978. By the mid-1970s the TWL was nearing capacity and in March 1976 the Walla Walla County Health Department (WWCHD) would not issue a "Conforming Permit" for the TWL due to the limited remaining area.

Records indicate that planning for the Site began in earnest during the middle of 1976 and continued through 1977. In 1976, the City Engineering Department prepared preliminary design plans for the Site. The plans called for a road into the property extending north from Sudbury Road and construction of a scale house and equipment building in the low valley of the intermittent drainage on the south side of the existing landfill site. Three monitoring wells, now known as MW-1a, MW-2, and MW-3a were installed in late 1976, and background groundwater samples were collected on a monthly program from August 1977 through June 1978. On February 28, 1977, the Walla Walla Regional Planning Board of Adjustment granted a Conditional Use Permit to operate the Site on the property which was formerly zoned for agriculture use. In March 1977 the City submitted an Engineers Report with an Environmental Impact Statement, Department of Ecology Application for Disposal Site Permit, and General Plan of Operation to the WWCHD. The Conforming Permit for the Site was issued on June 27, 1977. News publications announced that the "New City Landfill on Sudbury Road" was opened to the public on July 10, 1978 (Walla Walla Union 1978).

1.4.2 WASTE DISPOSAL PROCESS

Municipal solid waste (MSW), asbestos waste, and medical waste have been placed on the landfill site. Hazardous wastes have never been accepted at the landfill. MSW has been placed in five separate areas, commonly referred to as Areas 1, 2, 5, 6, and 7. The disposal area numbers are based on location, rather than sequence of disposal. Asbestos waste has been disposed of in two separate cells. A single medical waste cell has been used. The approximate limits of the refuse disposal areas are shown on Figure 3. Descriptions of the waste filling practices are fully described in the Historical Report (Schwyn 2006) and are summarized below.

1.4.2.1 Area 1

Area 1 is located on the southeast arc of the landfill property. The Engineers Report, dated March 1977, states that "disposal of the refuse would start at the toe of the south slope of the landfill site then proceed up the slope to the edge of the plateau. After the south slope has been utilized, refuse would be disposed at the north slope in a similar sequence. Trenches would be excavated as needed perpendicular to the side slopes, generally following the final contour lines." Records indicate that this process was followed for the most part.

Waste was first placed in Area 1, located on the southeast face of the landfill area, starting in 1978 and continued off and on until about 1980 (City 1988 and Schwyn 2006). Review of photographs and preliminary design plans indicate that up to three trenches were excavated parallel with the curvature of the hillside. The design plans called for the trenches to be excavated 10 feet deep and 30 feet wide, with a bottom slope of 0.01 and side slope of 0.15. The 1988 Operation Plan states that "the waste was placed with no compaction equipment on hand."

1.4.2.2 Area 2

Area 2 is located west of the equipment building on the south-central slope of the landfill property. Reports of Area 2 disposal practices are limited. According to Mr. Al Prouty, the landfill supervisor from 1985 into 1997, waste in Area 2 was placed for temporary disposal while the first trench in Area 5 was excavated. Mr. Prouty thought the waste was placed in a shallow gully and on the native surface without trenching. An aerial photograph taken in July 1979 indicates that minor trenching may have occurred west of the equipment building; however, deliberate trenches do not appear to have been excavated for Area 2. The limits of Area 2 were vague until a test pit program was conducted on May 24, 2005 by Schwyn. Based on the findings of the test pit program, the approximate limits of Area 2 are shown on Figure 3. MSW observed in the test pits ranged from several inches to 4 feet thick, and was covered with 2 to 4 feet of silty soil.

1.4.2.3 Area 5

Areas 5 is located at the northwest corner of the landfill parcel and was one of the first areas used for MSW disposal. The waste in Area 5 exists approximately 50 to 300 feet east of the western property line, extends north to the base of a draw that separates the landfill from the BNSF right-of-way (commonly referred to as the north drainage ditch), and is bounded on the east by Area 6 and on the south by the central plateau. The north drainage ditch routes stormwater west around the landfill and was part of the original natural drainage. Based on an early topographic map for the landfill area (dated June 2, 1979), the natural surface elevation of the north drainage ditch was about 790 feet above MSL and sloped upward to the south to an elevation of approximately 830 feet MSL on the central plateau.

Based on available information, Area 5 was active from as early as 1978 through 1990. Historical maps and records suggest that Area 5 consists of four refuse-filled trenches (Trenches 5a, 5b, 5c, and 5d). Recent information indicates that the MSW disposal area is larger than the maps describe. The historical maps and records suggest that each trench extends approximately 950 to 1100 feet east to west. The four trenches were excavated side by side and extend about 450 feet south of the draw. Waste was first placed at the northern base of the hill along the draw. Trench profile drawings prepared for the 1980 Sanitary Landfill Permit indicate Trench 5a may have started as an excavation parallel and within the draw and that the depth of the trench was planned to be about 17 feet. As the trench was filled, another trench would be used for cover of the active cell. By this method the trenches would stair-step up the hillside to the south.

Mr. Prouty stated that when he became the landfill supervisor in May 1985 that Trench 5b was approximately two-thirds full. Reports indicate that Trenches 5c and 5d were operated from 1986 through 1989; however, minor discrepancies in the actual duration of disposal are apparent in the records.

A dual-purpose lysimeter/gas vent was installed against the northern wall of Trench 5d. Mr. Prouty installed the gas vent and lysimeter and stated that the pipe was set on the trench bottom and provided an accurate measure of the bottom elevation of the trench. Historic literature, hand notes, and verification measurements collected by Mr. Dennis Rakestraw (landfill supervisor from 1997 to present) in 2005 indicate that the bottom elevation of the gas vent and presumably the corresponding bottom elevation of these two trenches is about 777 feet MSL.

Mr. Prouty stated that in 1985 minimal soil cover (less than 1 foot) had been placed over the waste in Trenches 5a and 5b, so he placed a 5- to 8-foot soil cover over the waste during 1985 and 1986. Temporary soil cover was placed over Trenches 5c and 5d during 1988 and 1989 (1988 Operating Plan). Final cover material was placed over Trenches 5c and 5d during 1994 consistent with the WAC 173-304-

407 general closure and post-closure requirements. Recent information indicates that the cover thickness may range from 3- to 20-feet thick.

Mr. Prouty set stakes at the corners of each trench in March 1986. The trench corners and boundaries were presented in the 1988 Sudbury Road Landfill Utilization Plan (Dahl et al. 1987); however, the boundaries do not correspond with the surface morphology of the fill area today and MSW has been verified outside the drawn trench boundaries. A test pit program was conducted by the City and Schwyn in 2005 to determine where the edges of the trenches were located and the findings did not correspond with previous documents either.

Verbal reports by Mr. Prouty and several written reports suggest that sections of Trench 5a and possibly Trench 5b may have been excavated near to or below the water table. Based on the planned profile, the northern Area 5 trenches were to be excavated 17 feet below the level of the draw. If excavated as designed, the bottom of Trench 5a would be about 773 feet MSL or approximately 16 feet above the high water table elevation recorded in March 2008; however, Mr. Prouty recollected that Trenches 5a and 5b were being excavated 25 to 30 feet below the surface level of the draw and were being filled with uncompacted waste. He stated that when he took over, Trench 5b was approximately level with the draw. Based on Mr. Prouty's estimate that the trenches were excavated 25 to 30 feet below the level of the draw, the bottom of these trenches could be as low as 760 feet MSL. The groundwater elevation in MW-15, located at the northwest corner of the landfill site has measured as high as 757 feet MSL (March 2008 measurement). Based on this information, there is potential that the bottom of these trenches and waste placement could have been within 3 feet of the water table.

1.4.2.4 Area 6

Area 6 is north-centrally located on the landfill parcel, adjacent to the eastern side of Area 5. Excavation of Area 6 began in late 1987 and deposition of MSW into the waste cell began as early as 1988. Area 6 was initially permitted and operated consistent with Chapter 173-304 WAC regulations. In September 1993, a WAC 173-351 Transition Permit was issued for Area 6 operation. In July 1997 use of Area 6 was granted a Full Permit for operation as an arid landfill in accordance with WAC 173-351. Closure of Area 6 was completed in 2010 in accordance with the WAC 173-351 Operating Permit and the Revised Interim Action Plan (Schwyn 2010b).

Area 6 consists of three trenches extending roughly 1,400 feet north to south and 450 to 600 feet east to west. The northwestern half of the area abuts, and in some areas overlaps, Area 5, and the southeast corner touches Area 1. Area 7 abuts the eastern side of Area 6. The northern edge of Area 6 is bounded by the north drainage ditch and BNSF right-of-way. The Area 6 trenches are designated from west to east; Trench 6a, 6, and 6b. The trench floor has a bottom elevation of 792 to 806 feet MSL at the north end and is graded with an upward slope of 1 or 2 percent toward the south (Schwyn 2006). The Area 6 cell bottom is composed of compacted native silt without leachate collection. Six lysimeters were installed during the cell construction. Fluids were not detected in the lysimeters until 2005, during which time a small volume (several gallons) of fluid was discharged and sampled from one of the six lysimeter ports. Leachate has not been observed in the lysimeter sampling ports since that time.

In 2001 the City submitted a vertical expansion permit application to the WWCHD for Area 6. The application proposed upward expansion over the three trenches to a projected top elevation of 884 feet MSL. The expansion permit was approved, and Area 6 reached its permitted maximum elevation in 2005. Waste disposal was transitioned into Area 7 during 2006. Limited additional waste was placed in Area 6 until 2008.

Full closure of Area 6 occurred in 2010 in accordance with the Operating Permit and Interim Action Plan. The closure consisted of an evapotranspiration (ET) cover that meets the requirements of WAC 173-351-500(1)(b) for arid areas, a gas collection and treatment system, and surface water controls. The final cover system design was incorporated into the Area 6 Specifications and Plans (JUB 2010), which was reviewed by Ecology and approved by the WWCHD.

1.4.2.5 Area 7

In 1995 Area 6 and the initial design of the proposed lateral expansion into Area 7 was permitted as an arid design landfill consistent with WAC 173-351-300(2)(b). Chapter 173-351 does not specifically require landfill designs to incorporate liners or leachate collection systems in arid locations and Area 7 was designed without these systems.

Initially, Area 6 was expected to reach capacity in 2002, at which time operations would have transferred into Area 7. In September 2001, the City submitted a Solid Waste Permit renewal for the Site that included the lateral expansion into Area 7. In 2002, the agencies approved a vertical expansion of Area 6, which resulted in additional waste capacity and life of the cell. In 2004, Ecology submitted a letter to the WWCHD that indicated the department could no longer support expansion into Area 7 without a liner system. The decision was based upon the groundwater contamination detected in MW-15, which suggested that the existing unlined cell design without leachate collection may not be protective of groundwater. The November 2004 Permit Application for the Area 7 Lateral Expansion was subsequently not approved.

In 2005, Shaw/EMCON/OWT, on behalf of the City, submitted a revised permit modification for the lateral expansion into Area 7. The revised Area 7 landfill design included significant modifications to the original design including a composite liner, a leachate collection and removal system (LCRS), and an

LFG collection and control system. The Area 7 composite liner consisted of a 12-inch layer of soil with permeability less than $1 \ge 10^{-5}$ cm/sec, geosynthetic clay liner, 60-mil HDPE geomembrane, and a 250-mil bi-planer geocomposite LCRS with collection piping as needed to maintain a leachate head below 1 foot. An LFG and collection system was not required by Federal New Source Performance Standards, but was proposed as a proactive and appropriate means to control potential VOC impacts to groundwater.

The City started excavating soil from the proposed area in 1996, using the excavated material for daily cover in Area 6. Waste disposal into the Area 7 began in 2006. Area 7 is 17.3 acres and authorized to accept approximately 1,592,000 cubic yards of waste (Schwyn 2006). The bottom elevation of Area 7 is designed to range from 789 to 797 feet MSL (Shaw et al. 2005). The active leachate evaporation ponds are located on the north side of the BNSF right-of-way.

1.4.2.6 Asbestos Waste Area (Area 4)

WWCHD correspondence to the City dated July 24, 1985 (Schwyn 2006), indicated that the City had "been allowing the disposal of asbestos in the landfill under certain specific conditions for the past several years." The correspondence goes on to state that WWCHD recommends that the City adopt the new U.S. Environmental Protection Agency (USEPA) Asbestos Waste Management Guidance (USEPA 1985) before accepting more asbestos for disposal in the landfill.

In accordance with the WWCHD recommendation, the City adopted the asbestos management guidance and two asbestos waste cells were subsequently excavated at the Site. The oldest cell (Area 4a) is located between the western property line and Area 5, at the northwest corner of the landfill property (Figure 3). Mr. Prouty stated in 2005 (Schwyn 2006) that the first asbestos disposal cell consisted of several trenches excavated approximately 12 feet deep (bottom approximately level with the north drainage ditch at 790 feet MSL). The west edge of the cell was cut 8 to 10 feet east of the fence so that a vehicle could get by. Area 4a was small and filled very quickly due to the amount of asbestos projects being conducted at that time. Mr. Prouty recalled that the cell was filled and covered by the end of 1985. Area 4a was closed along with Area 5 consistent with the Chapter 173-304 WAC closure and post-closure requirements for limited purpose landfills.

The second asbestos trench (Area 4) located at the southwest corner of the landfill area was cut much bigger to accommodate the quantity of material coming in. The "Asbestos Waste Area" was operated from 1985 into 2004 in accordance with the Solid Waste Landfill General Facility Permit.

The asbestos waste trench extended approximately 860 feet north to south, and was cut approximately 40 feet from the western property line. The trench was about 40 feet wide at its base, with nearly vertical sidewalls about 40 feet high. The trench was sloped to the south and records indicate that the deepest point of the trench was 787.27 feet MSL. Mr. Rakestraw indicated that approximately 3 lifts

of asbestos were placed in the trench before its closure. Standard operating procedure was to cover the waste within 24 hours of disposal. "Extreme care was taken to not rupture any of the protective coating of the asbestos wrappings" (1988 Operations Plan). The Asbestos Waste Area was closed in 2004, consistent with the WAC 173-304 closure and post-closure criteria for limited purpose landfills. Asbestos wastes are now placed directly into Area 7.

1.4.2.7 Medical Waste Cell (Area 3)

Records indicate that before 1992 medical wastes generated by local medical facilities were either incinerated by the generator or transported out of the Walla Walla area for disposal. City Council documents indicate that the Site began accepting medical wastes on a three-month trial basis on December 31, 1991 (City file). In March 1992 the City Council approved the continued collection and handling of medical waste at the Site. Medical wastes were accepted at the Site until 2004 when the trench was closed in accordance with the WAC 173-304 closure and post-closure requirements for limited purpose landfills.

During operation, the medical wastes were placed in a trench that ran parallel to the east side of the Asbestos Waste Area and was separated by a high soil berm. The trench measured approximately 880 feet long by 80 feet wide at its base. The deepest point of the trench was 785 feet MSL (Schwyn 2006).

Several site maps show an area labeled "Existing Covered Medical Waste" located to the east of the Medical Waste Trench. During closure of the asbestos and medical waste areas in 2004, soil was removed from the area and medical waste was not encountered. Based on these soil excavations, file documents, and aerial photographs reviewed during this study, it is believed that the maps were labeled improperly.

1.4.2.8 Compositing Area

In 2006, a temporary compositing facility was constructed above the former asbestos and medical waste cells. A design for a WAC 173-350 compliant facility was designed in 2007 and 2008. The composting facility was constructed and opened in 2009. The facility has an asphalt surface for working the compost. Stormwater is collected and diverted into a lined evaporation pond located on the southeast side of the compositing area.

1.4.3 REGULATORY CRITERIA

The operation of the Site has been and continues to be conducted in accordance with the applicable regulations of the time. Development and permitting of the Site began in 1976 in accordance with Ecology's Regulation Relating to Minimum Functional Standards for Solid Waste Handling, Chapter 173-301 WAC (Ecology 1972). Conforming Permits were issued by the WWCHD annually under WAC

173-301 until the regulation was superseded by Chapter 173-304 WAC in 1985. All of Areas 1 and 2, and Area 5 Trenches 5a and 5b were operated during the effective period of Chapter 173-301 WAC.

The Minimum Functional Standards For Solid Waste Handling, Chapter 173-304 WAC was filed on October 28, 1985 (Ecology 1988), and the City conducted operational changes and prepared documents to comply with the new regulation. Area 5 Trenches 5c and 5d, and Area 6 operated from 1985 into 1993 consistent with Chapter 173-304 WAC regulatory criteria. Area 5 was also closed consistent with Chapter 173-304 WAC closure and post closure requirements.

Operation of Area 6 was transitioned into the new operating standards of Chapter 173-351 WAC Criteria For Municipal Solid Waste landfills, which became effective on November 27, 1993 (Ecology 1993). A Solid Waste Transition Permit for the facility was issued on September 27, 1993, and on July 14, 1997, the WWCHD issued a WAC 173-351 Full Permit for Municipal Solid Waste Landfilling in Area 6. The closure of Area 6 in 2011 was also conducted in accordance with the requirements of WAC 173-351-500(1)(b) for arid areas.

All design and operations of Area 7 have been conducted consistent with WAC 173-351 and the Municipal Solid Waste Landfilling Permit.

The Asbestos and Medical Waste disposal trenches were operated as limited purpose landfills in accordance with Chapter 173-304 WAC into 2004. The Solid Waste Handling Standards, chapter 173-350 WAC replaced Chapter 173-304 WAC and became effective on February 10, 2003. The City determined that it would not be economical to upgrade the Asbestos and Medical Waste Areas to meet the new standards, and, therefore, these two areas were closed in 2004 consistent with Chapter 173-304 WAC closure standards.

The composting facility was designed, constructed, and permitted in accordance with the Chapter 173-350 WAC standards.

1.4.4 WASTE COMPOSITION

Most of the waste disposed at the Site is mixed MSW transported to the Site by commercial and public garbage disposal service contractors from the City, and Walla Walla and Columbia Counties, which are predominantly rural counties with an agricultural economic base and little manufacturing or heavy industry. Permitted waste disposal at the Site has been limited to MSW, asbestos, and medical wastes. The Site has also provided special areas for animal carcass disposal. Hazardous materials have never been allowed into the landfill.

Appliances ("white goods") have historically been set aside for salvage and recycling. The appliances are stored (normally in the vicinity of Area 2) and retrieved by a salvage operation. When market conditions were not economical for recycling, or the appliances were not retrieved by the salvage

operation within a reasonable time period, the appliances were disposed of in the active disposal area in use at that time, according to verbal reports (Schwyn 2006).

Extensive City records indicate that measures to prevent disposal of hazardous materials in the landfill were initiated during the early years of operation. Correspondence from Ecology and WWCHD, as early as February 8, 1979, recommended that landfill operators screen loads to keep hazardous waste out of the landfill. Shortly thereafter, the City requested information about hazardous waste disposal practices from the WWCHD for incorporation into the landfill policy and procedure manual. The City posted notice at the scale house in 1980 regarding disposal of dangerous wastes.

Landfill records report several patron attempts to dispose of small quantities of hazardous waste in the landfill suggesting that the landfill operators diligently tried to keep the materials out of the landfill. Mr. Prouty stated in 2005 that he was not aware of any large quantities of non-permitted materials being disposed of in the landfill, but did remove unacceptable materials from the disposal area occasionally. Mr. Prouty also stated that he never allowed or observed disposal of large quantities of hazardous waste, such as 55-gallon drums. He indicated that the established practice was to only allow disposal of empty rinsed drums.

On June 3, 1986 the Dangerous Waste Regulation (Chapter 173-303 WAC) formerly prohibited the disposal of certain hazardous wastes in MSW landfills. In 1993, the City constructed a Household Hazardous Waste Facility (HHWF) at the landfill to accept, recycle, and/or appropriately dispose of hazardous waste from non-commercial persons. The HHWF facility remains in operation and continues to divert disposal of hazardous materials from the landfill.

1.5 GROUNDWATER MONITORING

1.5.1 MONITORING WELL INSTALLATIONS

The City installed the first monitoring wells (MW-1a, Well #2 (also referred to as MW-2), and MW-3a) in November and December 1976 to monitor shallow groundwater downgradient of the landfill and provide background groundwater quality information. Well #2 was installed to greater depth for additional use as the landfill potable water supply well; however, in 1984 or 1985 landfill staff quit using Well #2 as a potable water source and began using bottled water.

Since 1976, numerous additional wells have been installed to monitor upgradient and downgradient water quality beneath the landfill, sprayfarm, and sludge application areas. A summary of installation dates, well uses, casing sizes, screen intervals, and other information are summarized on Table 1. Site Well Logs and Drillers Well Reports are provided in Appendix B.

Some of the wells have been decommissioned or are no longer in use. MW-1a and MW-3a either went dry or had poor surface seals. These two wells were abandoned in 1986 and replaced with MW-1

and MW-3. Monitoring wells MW-1 and MW-3 had screens installed deep into the underlying aquifer and were replaced with MW-14 and MW-15 in 1999 and 2001 to better monitor the top of the first encountered water bearing zone. Monitoring Well MW-1 is currently unusable due to a pump stuck in the casing. Monitoring Well MW-3 is still in usable condition. Monitoring Well MW-6 is no longer usable. The parking area of the landfill office was apparently constructed on top of MW-6, and its location is unknown.

Monitoring wells MW-4, MW-5, MW-7, MW-9, and MW-10 were originally installed to monitor the sprayfield and biosolids application areas; however, these wells have also been used to monitor upgradient groundwater quality for the landfill. Monitoring wells MW-11 and MW-12 were installed in 1995 as part of the chapter 173-351 hydrogeologic study and were incorporated into the approved monitoring program in 1995. MW-12 historically produced low quantities of water and eventually the water table dropped below the screen section and water samples could not be obtained. In August 2008, MW-12b was drilled to a deeper depth in the close vicinity of MW-12, which was decommissioned in accordance with state regulation. Monitoring Well MW-16 was installed in 2005 as part of the Independent RI to evaluate groundwater quality south of MW-15, downgradient of Area 5, and at the western property boundary. The locations of the wells are shown on Figure 2.

The permitted groundwater monitoring system in 2011 consists of three downgradient monitoring wells (MW-11, MW-14, and MW-15) and one upgradient monitoring well (MW-12b). Upgradient Well MW-5 may be included in the quarterly evaluations, primarily as a method of monitoring volatile organic compounds (VOCs) in the upgradient groundwater; however, the pump in MW-5 is not operating and the well has not been sampled since June 2004.

Other wells located on the City property include MW-4 and the Garver Well. MW-4 was installed to monitor the biosolids application area, though the well has historically had very poor groundwater production and has not been used in years. The Garver Well was the original irrigation well installed on the property and is still used for irrigation, dust control, construction and the compost facility.

1.5.2 GROUNDWATER MONITORING PROGRAM

Monitoring began in 1976 after the installation of MW-1a, Well #2, and MW-3a. Initially, only groundwater elevations were measured so that the landfill cell bottom elevation could be designed to be above the water table. Collection of groundwater samples began the following year in August 1977 and continued on a monthly sampling frequency through July 1978. The sampling program was conducted at the request of Ecology to establish "baseline" groundwater quality before the landfill began operation. The groundwater samples were analyzed for pH, biological oxygen demand, chemical oxygen demand, chlorides, iron, total dissolved solids (TDS), total alkalinity, and total coliform.

Groundwater monitoring has been conducted on a quarterly schedule since the landfill was opened in July 1978. The analytical parameters have been modified through time to address changes in the groundwater monitoring regulatory requirements. Since September 1994 the landfill monitoring well samples have been analyzed for Appendix I and II detection monitoring constituents, per WAC 173-351-990. Numerous additional analyses were performed in 2002 and 2003 as part of an assessment monitoring program conducted to evaluate statistically significant detections of VOCs at levels greater than background levels in downgradient Well MW-15. Dichlorodifluoromethane (Freon 12) was added to the analytical suite as a result of the assessment monitoring program.

Currently, in accordance with the 2011 Operating Permit, monitoring Wells MW-11, MW-12b, MW-14, and MW-15 are sampled quarterly. The groundwater samples are analyzed for Appendix I and II detection monitoring constituents, per WAC 173-351-990, plus Freon 12, by an accredited laboratory in accordance with Chapter 173-50 WAC.

1.5.3 Summary of Groundwater Contamination

Groundwater monitoring data collected since 1993 indicate the presence of groundwater contamination (primarily VOCs) in samples collected from monitoring wells located upgradient and downgradient of the sprayfarm and landfill areas. Since 2001, when MW-15 was installed, groundwater contamination with slightly different characteristics (VOCs with inorganic constituents) has been detected in downgradient Monitoring Well MW-15.
The maximum detected VOC concentrations in each monitoring well are summarized as follows:

Well	1,1-Dichloroethane (μg/L)	Chloroethane (µg/L)	Chloroform (µg/L)	cis-1,2-Dichloroethene (µg/L)	Dichlorodifluoromethane (µg/L)	Tetrachloroethene $(\mu g/L)$	Toluene (µg/L)	Trichloroethene (µg/L)	Trichlorofluoromethane (µg/L)	Vinyl Chloride (µg/L)
MW-1	ND	ND	1.1	ND	ND	0.90	ND	ND	ND	ND
MW-3	ND	ND	1.0	ND	ND	0.75	2.2	ND	ND	ND
MW-5	ND	ND	1.3	ND	ND	7.10	1.0	4.0	0.6	ND
MW-11	ND	ND	1.5	ND	0.94	2.3	1.1	2.8	1.0	ND
MW-12/12b	ND	ND	2.2	ND	ND	0.9	0.97	ND	ND	ND
MW-14	ND	ND	0.9	ND	1.9	ND	0.61	ND	ND	ND
MW-15	7.6	1.9	ND	12.0	13.0	11	0.68	3.8	1.6	3.8
MW-16	ND	ND	0.57	ND	0.74	0.64	ND	ND	1.8	ND
MW-7	ND	ND	0.6	ND	ND	1.26	ND	ND	ND	ND
MW-9	ND	ND	1.5	ND	ND	4.10	ND	8.3	ND	ND
MW-10	ND	ND	2.0	ND	ND	0.52	ND	ND	ND	ND
Small	ND	ND	0.62	ND	ND	1.5	ND	ND	ND	ND
Camp	ND	ND	ND	ND	ND	0.76	ND	ND	ND	ND
Kinman	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Note:

Values indicate the maximum concentration reported in well sample, based on data collected from 1991 through March 24, 2011.

Abbreviation:

ND Not detected at or at levels greater than the laboratory method reporting level

1.5.3.1 Area-Wide Contamination

Groundwater monitoring data indicate that a number of VOCs (including chloroform, trichloroethene [TCE], and tetrachloroethene [PCE]) are present in upgradient wells on the eastern property boundary (over 1.4 miles east, and upgradient, of the landfill). The VOCs in groundwater have been present since at least 1993 when the City began monitoring for VOCs, and persist in samples collected as recently as 2011. Similarly, slightly lower VOC concentrations have regularly been detected in the downgradient landfill monitoring wells (MW-1, MW-3, MW-11, and MW-14) and two domestic water supply wells (Small and Camp Wells). The Small and Camp residences are located approximately ³/₄-mile west and northwest of the landfill, respectively.

In 1999 Ecology, under cooperative agreement with the USEPA, published a Contaminant Source Identification/Assessment Report (CSI/A, Ecology 1999). The CSI/A indicated that the relatively high contaminant concentrations observed both up- and downgradient of the landfill, and the persistence of the concentrations with time, implied that a large continuous source is present. Ecology identified the Washington State Penitentiary (WSP), which lies just east (and upgradient) of the Site to be a potential source for the VOC contamination at the landfill, because similar VOCs have been used and potentially disposed of on the penitentiary property.

1.5.3.2 Localized Landfill Contamination

In July 2001, Monitoring Well MW-15 was installed in the northwest corner of the landfill to monitor the downgradient groundwater quality of the uppermost aquifer immediately downgradient from Area 5. VOCs (including TCE, PCE, trichlorofluoromethane (Freon 11), Freon 12, vinyl chloride, chloroethane, 1,1-dichloroethane, and cis-1,2-dichloroethane) and inorganic constituents (including calcium, sodium, bicarbonate/alkalinity, chloride, and TDS) have been detected at higher levels in this well as compared to other site wells and background conditions. All of these constituents except chloride and TDS have exceeded the site-specific WAC 173-351 compliance levels (prediction intervals) on at least two consecutive occasions.

1.5.4 PRIOR GROUNDWATER STUDIES

Various initial groundwater studies of the landfill were conducted in the 1970s and 1980s to comply with the landfill Operating Permit requirements, but shed little light on the nature of the area-wide or localized VOC contamination. Three later studies are more significant.

The first was a 1993 hydrogeologic investigation (EMCON 1995) prepared to meet the requirements of WAC 173-351-490. The resulting Hydrogeologic Report provided the first extensive report of the geology, hydrogeology, and groundwater quality of the landfill.

The second was an assessment monitoring program that was initiated in September 2002 in accordance with WAC 173-351-440. The extensive testing requirements of the assessment monitoring program did not indicate the presence of other constituents in the landfill's groundwater monitoring wells at concentrations greater than background levels, with exception of Freon 12. Freon 12was subsequently added to the landfill's compliance monitoring program.

The third was a recent study to characterize the MW-15 contamination and fulfill the requirements of WAC 173-351-440(6). A work plan was prepared to guide the RI process (LAI 2004), and is referred to from here-on as the 2004 RI Work Plan. An Independent RI was initiated in 2005 in general accordance with the 2004 RI Work Plan; however, a number of factors including available

funding and off-site access stalled the program in 2006 before all tasks were completed. Relevant information from these previous studies is described in Section 2 of this report.

1.6 INTERIM ACTIONS

The detection of VOC and inorganic constituents in the MW-15 groundwater samples at concentrations greater than statistical background/upgradient levels in 2001 prompted the following interim actions:

- Redesign and construction of an alternate Area 6 closure; and
- Design and construction of stormwater controls on the north side of Area 5 and Area 6.

Each of these interim actions is described below.

1.6.1 AREA 6 CLOSURE

The closure of Area 6 was performed as an interim action in 2010. Area 6 does not have a geosynthetic bottom liner or leachate collection system, and prior to 2010 Area 6 did not have an engineered or permitted top cover, LFG extraction and treatment system, or adequate surface water collection and control facilities. Therefore, on March 31, 2010, a Revised Interim Action Plan (Schwyn 2010b) was submitted to the agencies to address these landfill design features. The closure/interim action was approved by Ecology and constructed in 2010.

The interim action for the Area 6 closure consisted of the design and construction of 1) an ET cover that meets the requirements of WAC 173-351-500(1)(b) for arid areas, 2) an LFG collection and control system and 3) a stormwater collection and conveyance system to divert water away from the active refuse disposal areas and the northern stormwater drainage area where percolating waters could potentially migrate into the Area 5 refuse. Details on the northern stormwater drainage system are provided in the section below.

1.6.2 NORTH DRAINAGE STORMWATER CONTROLS

Construction of stormwater drainage controls in the drainage located on the north side of Area 5 was determined to be an important engineering control to minimize a possible contaminant transport mechanism for waste constituents to migrate to groundwater. The drainage features of the north drainage ditch valley bottom have historically been modified to trap sediments and stormwater. This was accomplished by excavating depressions in the natural drainage channel along the northern boundary of Area 5. Stormwater formerly pooled in the depressions, where it either infiltrated and/or evaporated. Preliminary studies of Area 5 indicated that a possible source of leachate generation could be from the infiltration of the pooled surface water in the north drainage area migrating south in the underlying soils into the Area 5 refuse.

The interim action that was constructed in 2010 was designed to promote stormwater flow through the valley adjacent to Area 5 and minimize pooling, thereby reducing the quantity of surface water available for infiltration through the refuse. The engineering design features of the interim action included 1) a sedimentation basin, 2) filling of depressions excavated in the valley bottom and surface grading to slope the valley to the west along the natural drainage channel, 3) installation of a culvert under the western perimeter roadway to allow the stormwater to flow off-site, and 4) installation of erosion control mats in the stormwater channel.

2.0 BASIS FOR RI SCOPE

2.1 PREVIOUS INVESTIGATIONS AND EXISTING DATA

2.1.1 HYDROGEOLOGIC REPORT

In 1993, landfill operations began the transition into the new operating standards of Chapter 173-351 WAC Criteria For Municipal Solid Waste landfills (Ecology 1993). A hydrogeologic investigation was performed and a Hydrogeologic Report (EMCON 1995) was prepared to meet the requirements of WAC 173-351-490. The report was prepared to transition the Area 6 operations into the new operating standards and for the Area 7 Lateral Expansion Permit application.

The hydrogeologic investigation included the installation of 10 borings (8 soil borings and 2 monitoring wells). Data from the new borings and monitoring wells were supplement by data obtained from 11 existing monitoring wells, 2 abandoned wells, and numerous test pits.

Among other regulatory requirements of the WAC, the Hydrogeologic Report provides a summary of:

- the regional and local geology and hydrogeology including a summary of the hydrostatigraphy and geologic cross-sections of the site;
- soils testing data including moisture content, grain size analyses, and laboratory permeability of the vadose zone soils;
- geologic logs for site and regional borings and wells; and
- a groundwater characterization summary including laboratory analytical data, depth to groundwater, groundwater flow; and in-situ hydraulic testing using rising head slug test methods.

The Hydrogeologic Report provides valuable baseline information for the Site, and much of the reported data remain valid today, especially as they concern site geology and hydrogeology.

2.1.2 Assessment Monitoring Program

On June 14, 2002, a memorandum was submitted to the Site operating record, the WWCHD, and Ecology, to provide notice that several constituents had shown statistically significant concentrations greater than background levels in downgradient Monitoring Well MW-15 groundwater samples. An assessment monitoring program was initiated in September 2002 and analysis of the WAC 173-351-990 Appendix III suite of constituents was conducted during two sampling events. The Appendix III suite of constituents includes an extensive list of VOCs, metals, semi-volatile organic constituents, polyaromatic hydrocarbons, pesticides, herbicides, and polychlorinated biphenyls (PCBs). The results of the assessment monitoring program did not reveal any additional Appendix III constituents in the downgradient groundwater samples, with exception of Freon 12 reported in the MW-14 and MW-15 samples, and cyanide in one MW-14 sample. On May, 14 2003 a letter was submitted to the WWCHD requesting

modifications to the assessment monitoring program. The WWCHD responded on June 9, 2003 and indicated that the Appendix III constituents could be limited to Freon 12 and cyanide, with background data for these two parameters to be collected during the regular quarterly sampling events. Background levels were established at less than the method reporting level (MRL) for cyanide, and with approval by the WWCHD and Ecology the cyanide has not been sampled since December 2004. Freon 12 was reported at levels greater than the MRL and continues to be analyzed during the regular quarterly monitoring events.

2.1.3 INDEPENDENT REMEDIAL INVESTIGATION

2.1.3.1 Summary of Work

In 2004, the City initiated an Independent RI to characterize the MW-15 contamination and fulfill the requirements of WAC 173-351-440(6). The 2004 RI Work Plan was prepared to guide the RI process.

The following tasks of the 2004 RI Work Plan were accomplished:

- A Historical Study Report of the landfilling operations was completed (Schwyn 2006). The Historical Study Report describes the site history, waste disposal processes, and groundwater monitoring history.
- RI field studies were conducted in 2005 and 2006 by Schwyn with additional work conducted in 2009 during the interim action. The Independent RI field work included the following activities:
 - Assessed the extent and thickness of the MSW in Areas 2 and 5;
 - Conducted a Geoprobe investigation and installed borings in the vicinity of Area 5, Area 6, and Area 7, as well as along the north drainage ditch;
 - Installed one monitoring well (MW-16) on the western property boundary, south of MW-15;
 - Installed LFG Wells GW-5 and GW-6; and
 - Conducted LFG monitoring in MW-14, MW-15, MW-16, GW-5, and GW-6.

The field methods for the Independent RI work are documented in Appendix C. The findings are summarized in the following sections.

2.1.3.2 Findings

Waste Screening

Information reviewed during the historical study did not suggest that any significant hazardous substances (other than standard MSW) were placed in the landfill. In fact, the reviewed information establishes that the City responsibly tried to prevent hazardous or dangerous wastes and chemicals from being placed in the disposal areas.

Area 5 MSW Thickness

The MSW thickness observed in the Independent RI borings ranged from 12.5 to 38 feet. The approximate bottom elevations of the MSW observed in the borings ranged from 776 to 819 feet above MSL. The MSW lowest elevation (observed at GP-6), provided approximately 19 feet of separation from groundwater, based on the measured high in MW-15 of 757 feet MSL (March 2008 measurement).

Verbal reports indicated that the northern trench of Area 5 may have been excavated near, or into, the groundwater table, implying that MSW may have been placed in close contact with groundwater; however, due to access difficulties, borings were not drilled through the northern most trench of Area 5 during the Independent RI to verify or discount the verbal reports.

Source Evaluation

Eight Geoprobe explorations (GP-1 through GP-8) and ten TUBEX borings (B-9RI through B-12RI, B-14RI through B-18RI, and MW-16) were drilled to provide preliminary information about the possible source area, waste extent and thickness, subsurface lithology, depth to groundwater, and soil and groundwater quality in the vicinity of Area 5. The boring logs are provided in Appendix C. The boring locations are shown on Figure 3. The soil sample analytical results are summarized in Table 2. The groundwater sample analytical results are summarized in Table 3. The findings of the investigation are summarized below.

Geoprobe Borings GP-1(a, b, and c) and GP-2:

GP-1(a, b, and c) and GP-2 were drilled to assess groundwater quality on the south central side of Area 5. Maps of the Area 5 waste disposal area indicated that these locations would be outside of the disposal area. Interception of MSW at approximately 3 feet below ground level (bgl) in GP-1 indicated that many of the maps of the Area 5 waste disposal area were not correct. The explorations accurately located the disposal area boundary between GP-1c and GP-2.

Geoprobe Borings GP-3 through GP-6:

GP-3 through GP-6 were drilled to assess the lithology and groundwater quality on the north side of Area 5. The lithology in the upper 20 to 25 feet in these borings was composed primarily of silt with some layers of clay and sand. Whitish brown clayey silt with nodules or thin layers (2 millimeters [mm] or less) of calcite cementation (caliche) was encountered below approximately 20 feet bgl. Wet soil zones were observed above the less permeable caliche layers, creating alternating wet and dryer soils within the deeper vadose zone. Landfill gas odors were observed in the vadose zone in several of the borings.

Soil samples were collected from GP-3 at 21.5–22 feet, GP-4 at 18–18.5 feet, and GP-6 at 15– 15.5 feet and analyzed for VOCs. The soil analytical results are summarized in Table 2. The analytical results did not detect VOCs at concentrations at or greater than the MRLs in any of the soil samples. Groundwater samples were collected from well points set in GP-3 GP-4, GP-5, and GP-6. The sample point locations represent a general hydraulically upgradient (GP-6) to downgradient (GP-3) profile along the northern boundary of Area 5.

The groundwater results indicated the presence of Freon 12 (all samples), 1,1, dichloroethane (all samples except GP-5), 1,2-dichloroethane (GP-4 only), 1,2-dichloropropane (GP-4 only), chloroethane (GP-3 and GP-4 only), cis-1,2-dichloroethene (GP-3 and GP-4 only), PCE (GP-4 only), TCE (GP-3 and GP-4), Freon 11 (GP-3 only), and vinyl chloride (GP-3 and GP-4 only). The VOC results show a general increasing concentration trend from GP-5 westward, with the highest levels reported in downgradient probe GP-3. These data suggest that a possible VOC source area may exist between GP-5 and GP-4 near the northern side of Area 5. The groundwater analytical results are summarized in Table 3.

Geoprobe Boring GP-7

GP-7 was drilled to assess the thickness of the MSW in the northernmost trench area, and the separation between the MSW and groundwater. Refusal was encountered approximately 11 feet into the MSW at 17 feet bgl so the full thickness could not be determined. The boring did indicate the presence of approximately 6 feet of soil cover over the MSW at that point.

Geoprobe Boring GP-8

GP-8 was drilled in Area 7 to assess the lithology and water quality immediately upgradient of Areas 5 and 6. The lithology in the upper 10 feet was generally composed of low plasticity silt with some layers of clay and sand. Whitish brown clayey silt with nodules or thin layers (2 mm or less) of caliche was encountered below 11 feet bgl. Alternating wet and dryer zones were encountered below approximately 24.5 feet bgl. The wet soil zones were observed above the less permeable clay and cemented zones. A sand layer (1.5 feet thick) was encountered 27 feet bgl and basaltic gravels were encountered in a sandy silt matrix at 34 feet bgl. Landfill gas odors were not observed in the vadose zone.

A water quality sample was collected from a temporary well point set 32 to 34 feet bgl. The sample was submitted for VOC analysis. No VOCs were reported in the sample at or greater than the MRL suggesting that a significant source of the VOCs detected in MW-15 does not lie upgradient of Area 6.

Borings B-9RI through B-18RI

Soil borings B-9RI through B-18RI were drilled in Area 5 by the TUBEX method to assess the MSW cover thickness, limits, and depositional depth, as well as the lithology, and soil and groundwater quality. The soil cover over the MSW was composed of loose silt and the cover thickness ranged from 3 feet in B-9RI and B-16RI to 20.5 feet in B-11RI. The limits of the waste were not found in accordance with the maps, and the eastern extent of Area 5 appeared to extend beneath Area 6. The MSW thickness observed in the borings ranged from 12.5 feet in B-11RI to 38 feet in B-14RI.

Soil samples were collected from beneath the MSW in B-10RI, B-11RI, and B-12RI to assess the possible impact of leachate on the sub-soils. No VOC concentrations were reported at or greater than the MRL in any sample. The soil sample results are summarized in Table 2.

Groundwater samples were collected from temporary wells constructed in borings B-9RI and B-17RI. The laboratory results did not indicate the presence of VOCs at concentrations at or greater than the MRLs in either sample. These borings are located south of GP-3 where the highest VOC concentrations were recorded. The data suggest that the contamination source located upgradient of MW-15 may be confined to a very narrow band along the northern edge of Area 5.

Groundwater Monitoring of MW-16

Groundwater monitoring of MW-16, the single well installed to comply with the requirements of WAC 173-351-440(6)(b), was conducted during September 2005, June and September 2006, and March 2011. Laboratory analysis included VOCs during each monitoring event, and assorted conventional parameters and metals during several of the other events.

The VOC results indicated the presence of Freon 12 (three of four events) up to 0.74 μ g/L, Freon 11 (three of four events) up to 1.8 μ g/L, chloroform (two of four events) up to 0.57 μ g/L, and p-isopropyltoluene at 1.6 micrograms per liter (μ g/L, single analysis). The reported concentrations of conventional chemistry parameters appear in the normal background ranges for the Site.

The specific VOCs observed in MW-16 are more representative of the landfill and area-wide wells than the VOCs observed in MW-15. These data, along with the borings B-9RI and B-17RI groundwater data, further suggest that the contamination source located upgradient of MW-15 may be confined to a very narrow band along the northern edge of Area 5.

Landfill Gas Evaluation

In 2006, monitoring for LFG constituents and collection of samples for laboratory analysis was conducted within the casings of monitoring wells MW-14, MW-15, and MW-16 to assess the potential for VOCs from LFG to impact groundwater. Real-time measurements of methane, carbon dioxide, and oxygen levels, along with the meter pumping period (measured in seconds) were recorded using a handheld multi-gas meter. Gas samples were also collected in 1-liter Tedlar bags for laboratory analysis from monitoring Wells MW-15 and MW-16. The gas samples were analyzed for VOCs using USEPA method TO-15. The field measurements and analytical results are presented in Table 4.

The field measurements did not indicate the presence of methane, elevated carbon dioxide, or reduced oxygen in MW-14 or MW-16. Low level methane (0.9%), elevated carbon dioxide (13.9%), and low oxygen (2.7%) were reported in MW-15. The laboratory analytical results indicated the presence of 16 VOCs in the MW-15 sample and 11 VOCs in the MW-16 sample. With exception of Freon 11 and ethylbenzene, the reported VOC concentrations in MW-15 were significantly higher than the reported

concentrations in the MW-16 sample. The MW-15 sample also indicated the presence of constituents such as 1,1-dichloroethane, chloroethane, PCE, and vinyl chloride, which are commonly detected in the MW-15 groundwater samples. These data indicate the potential for VOCs in the LFG to partition into the groundwater at the well.

In July 2009, J-U-B Engineers (JUB) was contracted by the City to design the closure for Area 6; including LFG extraction and cover systems. JUB teamed with Shannon & Wilson, Inc. (S&W) for LFG extraction system design, and Schwyn for hydrogeologic and remedial investigation coordination activities. JUB's design took into consideration that LFG extraction and stormwater designs for the Area 6 closure could potentially impact the remedial activities. Therefore, JUB requested that the Area 5 LFG monitoring wells that were described in the 2004 RI Work Plan, but never installed, be installed to complement JUB's closure design. A scope of work was submitted to Ecology in July 2009 (Schwyn 2009) and the installation and monitoring of gas wells GW-5 and GW-6 in Area 5 was conducted in August 2009. A report of the gas well installation and monitoring with S&W's complementary report (S&W 2010) of the LFG studies that included three other gas wells located in Area 6 is provided in Appendix C.

The LFG studies indicated the presence of LFG in Area 5 and Area 6 under positive pressure containing VOCs, methane, carbon dioxide, and low oxygen. The laboratory analytical results indicated the presence of 23 VOCs in the GW-5 sample and 39 VOCs in the GW-6 sample. Methane concentrations up to 61% and 53% were reported in the GW-5 and GW-6 samples, respectively. The recorded field measurements and laboratory analytical results are presented on Table 4.

2.2 DETAILED EVALUATION OF GROUNDWATER QUALITY

Groundwater monitoring data collected from January 1991 through March 24, 2011 from monitoring wells are summarized in Appendix D. Based on this data, statistical data including mean, standard deviation, standard error, median, lower and upper quartile, maximum and minimum concentrations, and percent of detects are provided in Table 5.

Statistical evaluation of the historical groundwater quality data collected from the monitoring wells indicates three well-constituent groupings. The three groupings include:

- VOC and inorganic constituents specific to MW-15;
- Landfill specific Freon compounds; and
- Area-wide presence of PCE, TCE, and chloroform.

2.2.1 MW-15 GROUNDWATER QUALITY

Reported MW-15 constituents that have been reported at levels greater than the site-specific WAC 173-351 compliance levels (also referred to as prediction intervals) on at least two consecutive occasions are summarized as follows:

Analyte	Maximum Concentration
1,1-Dichloroethane (µg/L)	7.6
Chloroethane (µg/L)	1.9
cis-1,2-Dichloroethene (µg/L)	12.0
Dichlorodifluoromethane ($\mu g/L$)	13.0
Tetrachloroethene (µg/L)	11.0
Trichloroethene (µg/L)	3.8
Trichlorofluoromethane (µg/L)	1.6
Vinyl Chloride (µg/L)	3.8
Calcium (mg/L)	176
Sodium (mg/L)	118
Alkalinity (mg/L)	658

VOCs that are unique to the MW-15 samples include 1,1-dichloroethane, chloroethane, cis-1,2dichloroethene, and vinyl chloride. Freon 12 and Freon 11, which are commonly reported in the Site monitoring wells, are also commonly reported in MW-15 sample results. Regionally (area-wide) reported constituents that are also found in MW-15 include PCE and TCE. Chloroform, which is found regionally, has never been reported in MW-15.

Inorganic constituents, including calcium, sodium, and alkalinity, measured in milligrams per liter (mg/L), in the MW-15 samples have been reported at levels greater than the site-specific WAC 173-351 compliance levels. TDS concentrations in MW-15 are also commonly reported at levels greater than those observed in the other site wells, but have not exceeded the prediction interval on consecutive events.

2.2.2 LANDFILL SPECIFIC FREON COMPOUNDS

Review of the historical groundwater quality data collected from the downgradient site monitoring wells indicates the common presence of Freon compounds, Freon 12 and Freon 11, in the MW-11, MW-14, MW-15, and MW-16 samples. These two constituents do not appear to be associated with the area-wide VOC contamination and were not reported in any of the samples collected from MW-1 or MW-3, which are screened deeper in the aquifer.

Freon 12 and Freon 11 have been reported in the samples at levels greater than the site-specific WAC 173-351 compliance levels (prediction intervals) on at least two consecutive occasions.

2.2.3 AREA-WIDE GROUNDWATER QUALITY

2.2.3.1 Regional Groundwater Quality

Regionally, the groundwater in the vicinity of the landfill contains low-level concentrations of chloroform, PCE, and TCE. Each of these constituents, except TCE, has been detected in all upgradient wells. The upgradient concentrations of PCE (up to 7.1 μ g/L) and TCE (up to 4.0 μ g/L) have routinely exceeded the MTCA Method A and/or B cleanup levels for groundwater and Washington State Groundwater Standards. Similarly, slightly lower VOC concentrations have regularly been detected in the downgradient landfill monitoring wells (MW-1, MW-3, MW-11, MW-14, and MW-16) and two domestic water supply wells (Small and Camp Wells). The maximum historical VOC detections are illustrated on Figure 11. Figure 12 illustrates the most recent VOC concentrations reported in each well.

Toluene has also been reported in samples collected from upgradient and site monitoring Wells MW-3, MW-5, MW-11, MW-12, MW-14, and MW-15; however, since 1991 toluene has only been reported once in each well, except for MW-11 which has had two detections. The reported concentrations are far less than the applicable regulatory criteria. Based on the sporadic detections of toluene, a groundwater trend was not apparent, and at this time is not considered an indicator parameter or a constituent of significant concern.

2.2.3.2 Domestic Well Groundwater Quality

The groundwater sample results from three domestic supply wells have indicated the presence of chloroform (up to 0.62 μ g/L) and PCE (up to 1.5 μ g/L) in the Small Well samples, and PCE (up to 0.74 μ g/L) in the Camp Well. VOCs have not been detected in the two samples collected from the Kinman Well.

The fingerprint of the VOCs detected in the Small and Camp groundwater samples (chloroform and PCE) appear to correspond with the fingerprint of the area-wide contamination (chloroform, PCE, and TCE). VOCs that are unique to the Site have not been detected in the domestic well samples. Furthermore, the groundwater flow path from the Site (flow to the southwest) does not extend within the reach of the Camp Well (located ³/₄-mile northwest of the landfill). The VOC fingerprints and direction of groundwater flow suggest that the contamination in the domestic wells is the result of area-wide contamination and not the Site. This preliminary conclusion will be reassessed or confirmed as part of the RI.

3.0 PRELIMINARY CONCEPTUAL SITE MODEL

The following section describes the preliminary conceptual site model derived from the available information on the landfill as described in the preceding sections. According to the MTCA, the goal of the conceptual site model is to identify the potential or suspected sources of hazardous substances, the types and concentrations of hazardous substances, the potentially contaminated media, and the potential exposure pathways and receptors. The conceptual site model is typically developed during the scoping of the RI and further refined as additional information is collected at the Site. The conceptual site model provides the essential foundation for conducting the feasibility study.

3.1 SUSPECTED SOURCES OF HAZARDOUS SUBSTANCES

Most of the waste disposed at the Site is mixed MSW transported to the Site by commercial and public garbage disposal service contractors from the City, as well as Walla Walla and Columbia Counties, which are predominantly rural counties with an agricultural economic base and little manufacturing or heavy industry. Permitted waste disposal at the Site has been limited to MSW, asbestos, and medical wastes. The Site has also provided special areas for animal carcass disposal. Hazardous materials have never been allowed into the landfill.

Based on the Independent RI data, the suspected sources of hazardous substances found in groundwater at the landfill are the MSW placed in Areas 5, and possibly Area 6. While it is possible that the MSW in Area 1 and Area 2 have potential to impact the groundwater, sufficient investigation has not been conducted to verify a source of contamination from these areas.

The most likely source of the chlorinated and Freon-based VOCs detected in landfill groundwater is from small quantities of legally disposed household wastes and spent aerosols cans or white goods containing Freon gas. Historical records do not indicate that large quantities of industrial or hazardous wastes have been disposed of at the landfill.

3.2 PRELIMINARY CONTAMINANTS OF CONCERN FOR GROUNDWATER

There is a large amount of existing data for site groundwater showing frequent detections of multiple VOCs and inorganic constituents. A preliminary screening process was undertaken in order to identify which of the detected compounds pose the most concern to human health and the environment. (Note: this screening process is preliminary only and will be reevaluated during the RI, at which time the final contaminants of concern will be established). Compounds that are not screened out are called Preliminary Contaminants of Concern (PCOCs). They are identified by evaluating the site data against the following criteria:

- **Data must be of acceptable quality.** Only data that were collected and analyzed under standard field and laboratory methodologies are used. Data that did not meet laboratory Quality Assurance limits are not considered.
- **Background concentration comparisons for metals and inorganics.** Metals or other naturally occurring inorganics with concentrations less than or equal to established site background concentrations are not considered PCOCs.
- **Frequency of detection evaluation.** Chemicals that were not detected with standard USEPA laboratory methods with analytical reporting limits equal to or less than the screening level were eliminated. Also, chemicals detected at a frequency of 5% or less are generally not retained, especially if they are only detected in association with other PCOCs.
- **Risk-based screening.** Maximum concentrations of any detected compound are screened against the following conservative risk-based screening levels:
 - **Groundwater:** Method B and Method A (Residential) cleanup levels from Ecology's Cleanup Levels and Risk Calculation (CLARC) on-line database or Washington State Groundwater Standards (Chapter 173-200 WAC).
 - Soil Gas: Ecology's Soil Gas Screening Levels from Table B-1 of the 2009 Draft Guidance for Evaluation Soil Vapor Intrusion in Washington State. The deep soil gas screening levels listed in Table B-1 were used, instead of the sub slab concentrations because the soil gas samples were collected at depths well below ground surface.

Using this process, the PCOCs for VOCs in groundwater are PCE, TCE, and vinyl chloride, as noted in the table below. Other contaminants have been detected at the Site including 1,1-dichloroethane, chloroform, chloroethane, cis-1,2-dichloroethene, Freon-12, Freon-11, and toluene, although not at concentrations that exceed screening levels. These other compounds are considered "fingerprint compounds" in that they imply landfill or upgradient impacts, but are not at concentrations that present environmental risk. The concentrations of metals detected in site wells appear to reflect background levels and were not retained as PCOCs. Other WAC 173-351-990 Appendix III constituent groups, including semi-volatile organic constituents, polyaromatic hydrocarbons, organo-chlorine and organo-phosphorus pesticides, chlorophenoxy herbicides, and PCBs that were not detected at levels greater than MRLs during the assessment monitoring program were also eliminated as PCOCs.

The PCOCs for soil gas are PCE, TCE, and cis-1,2-dichloroethene, whose maximum concentrations detected in the sample from GW-6 exceed Ecology MTCA Method B and C screening levels for deep soil gas.

Well	$1,1$ -Dichloroethane ($\mu g/L$)	Chloroethane (µg/L)	Chloroform (µg/L)	cis-1,2-Dichloroethene (µg/L)	Dichlorodifluoromethane (µg/L)	Tetrachloroethene (µg/L)	Toluene (µg/L)	Trichloroethene (µg/L)	Trichlorofluoromethane (µg/L)	Vinyl Chloride (µg/L)
MW-1	ND	ND	1.1	ND	ND	0.90	ND	ND	ND	ND
MW-3	ND	ND	1.0	ND	ND	0.75	2.2	ND	ND	ND
MW-5	ND	ND	1.3	ND	ND	7.10	1.0	4.0	0.6	ND
MW-11	ND	ND	1.5	ND	0.94	2.3	1.1	2.8	1.0	ND
MW-12/12b	ND	ND	2.2	ND	ND	0.9	0.97	ND	ND	ND
MW-14	ND	ND	0.9	ND	1.9	ND	0.61	ND	ND	ND
MW-15	7.6	1.9	ND	12.0	13.0	11	0.68	3.8	1.6	3.8
MW-16	ND	ND	0.57	ND	0.74	0.64	ND	ND	1.8	ND
MW-7	ND	ND	0.6	ND	ND	1.26	ND	ND	ND	ND
MW-9	ND	ND	1.5	ND	ND	4.10	ND	8.3	ND	ND
MW-10	ND	ND	2.0	ND	ND	0.52	ND	ND	ND	ND
Small	ND	ND	0.62	ND	ND	1.5	ND	ND	ND	ND
Camp	ND	ND	ND	ND	ND	0.76	ND	ND	ND	ND
Kinman	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Screening Level (a)	1600	NR	80	16	1600	0.8(b)	640	2.4(b)	2400	0.029

Maximum Concentrations vs. Screening Levels for VOCs

Notes:

(a) Screening level based on MTCA Chapter 173-340 WAC Method B standard groundwater cleanup levels. CLARC formula values based on 10^{-6} cancer risk.

(b) Current CLARC cleanup level recommended for protection of groundwater. Values indicate the maximum concentration reported in well sample, based on data collected from 1991 through March 24, 2011.

Single or sporadic constituent detections may not be included in screening.

Bold Indicates exceedance of screening level.

Abbreviation:

CLARC Cleanup Levels and Risk Calculation

MTCA Model Toxics Control Act

- NR Not researched
- VOC Volatile organic compound
- WAC Washington Administrative Code

3.4 POTENTIALLY CONTAMINATED MEDIA

3.4.1 SOIL

While preliminary soil testing data from beneath Area 5 has not indicated the presence of any VOCs in the soil underlying the MSW, soil is retained as a potentially contaminated media at the Site. This conclusion is based on limited data from Area 5, primarily on the north boundary, and no soil data from beneath Area 1 and Area 2.

3.4.2 AREA-WIDE GROUNDWATER

Groundwater monitoring data collected since 1993 have indicated the presence of groundwater contamination in samples collected from monitoring wells located up- and downgradient of the landfill. The area-wide preliminary contaminants of concern include chloroform, TCE, and PCE, and based on the 1999 USEPA/Ecology CSI/A, these contaminants may be originating from the WSP. However, the source has not been fully determined and will be further evaluated in the RI.

3.4.3 LOCALIZED GROUNDWATER NEAR MW-15

Contaminants found in groundwater monitored by MW-15 are distinct from all other site wells and downgradient domestic wells in that they contain a broader list of VOCs than detected area-wide. This list includes PCE, TCE, chloroethane, 1,1-dichloroethane, cis-1,2-dichloroethane, Freon 12, Freon 11, and vinyl chloride, but not chloroform. There are also inorganic substances at elevated levels that include calcium, sodium, bicarbonate, chloride, alkalinity, and TDS that are possible indicators of landfill leachate impacts to groundwater.

3.4.4 LANDFILL AREA GROUNDWATER

Contaminants found in groundwater monitored by MW-11, MW-14, MW-15, and MW-16, which are located downgradient of the disposal areas, indicate the common presence of the Freon compounds Freon 12 and Freon 11. These two constituents do not appear to be associated with the regional VOC contamination and were not reported in any of the samples collected from MW-1 or MW-3, which are screened deeper in the aquifer. The constituent levels are less than the screening levels, but suggest LFG impact to groundwater over a broad area of the landfill.

3.4.5 LANDFILL GAS

Landfill gas is generated by the decomposition of refuse by anaerobic bacteria and is retained as a potentially contaminated media. The LFG studies conducted during the Independent RI and Area 6 closure indicated the presence of LFG in Area 5 and Area 6 under positive pressure containing VOCs, methane, carbon dioxide, and low oxygen. TCE and PCE, and cis-dichloroethene in LFG exceed Ecology screening levels for risk to indoor air and their presence in LFG poses a risk of LFG contaminating

underlying groundwater (cross-media pathway). Area 6 has an LFG collection system (active since 2010); Area 5 does not, and therefore the LFG generated by the MSW in Area 5 is a potentially impacted media. The potential impact of LFG generation from Area 1 and Area 2 is also unknown; however, these disposal areas are much smaller and less likely to generate significant volumes of LFG. In addition, the presence of LFG and the VOC concentrations near existing structures in the vicinity of Area 1 and 2 (the HHWF and equipment building) are unknown.

3.4.6 STORMWATER

Stormwater itself is not considered a potentially contaminated media as there are no pathways for stormwater at the Site to encounter hazardous materials before running off-site; however, stormwater <u>infiltration</u> in the north drainage ditch has been identified as a possible cause of groundwater contamination via the infiltration of the stormwater into the Area 5 MSW, and the subsequent generation and downward migration of leachate to groundwater.

3.5 FATE AND TRANSPORT

Chlorinated VOCs are very persistent in the environment and can travel downgradient significant distances before attenuating. Attenuation can occur by direct adsorption of molecules onto soil organic carbon, or via biodegradation, or simple dispersion of the molecules away from the core of the plume into surrounding groundwater as it travels downgradient. Concerning biodegradation, the presence of biodegradation "daughter products" such as cis-1,2-dichloroethene and vinyl chloride (found at elevated concentrations in several of the Geoprobe samples collected adjacent to the Area 5 waste) suggests that biodegradation of the plume is significant and occurring in the source area. This is typical of plumes in anaerobic environments found in groundwater impacted by landfill leachate or LFG, as the bacteria that are capable of biodegradation is expected to occur in the oxidizing environment found in downgradient groundwater. Additionally, the very low relative concentrations of VOCs in downgradient groundwater would typically not support significant bacteriologic growth as there is not enough "food" in the plume to sustain an active bacteriological population.

Therefore, the primary fate and transport mechanism in downgradient groundwater is advective transport and dispersion of the contaminants downgradient until the contaminants eventually attenuate via dispersion or become firmly bound onto soil organic matter in the aquifer. The growth or decay of the plume is dependent on balance between groundwater flow and the amount of contaminant mass being replenished to the aquifer. If the source of the contamination can be controlled, it is expected that the

plume will diminish in size as it is transported downgradient via groundwater. Alternatively, if the source mass is increased, the plume will grow in size, as it overwhelms the attenuation ability of the aquifer.

3.6 RECEPTORS/PATHWAYS OF EXPOSURE

Groundwater and LFG are the primary impacted media at this Site. Possible receptors to contaminants found in groundwater are downgradient domestic well users, should it be found that contaminants from the landfill are migrating off-site to any significant degree. There are no current completed exposure pathways from groundwater at the Site itself, because groundwater from site wells is not utilized for potable purposes. The pathways of exposure to possible downgradient domestic users impacted by site groundwater are via drinking of contaminated waters and/or inhalation of vapors that are volatilized from water (e.g., during showering).

The other primary impacted media is LFG. The pathways for exposure are inhalation and crossmedia contamination of underlying groundwater. Inhalation risks include accumulation of LFG contaminants from vapor accumulation within habitable structures, or through inhalation of LFG seeping up through the soil cover to the atmosphere. Exposure to VOCs in LFG could occur to landfill employees residing in the HHWF or equipment building. Due to distance and the Site topography, exposure to soil gas vapors in the office/scale-house is not considered an exposure pathway. Additionally, landfill workers and the public may be exposed to LFGs escaping to the atmosphere during periods of work or site visitation.

3.6.1 TERRESTRIAL ECOLOGICAL EVALUATION EXCLUSION

It is expected that a terrestrial ecological evaluation will not be required at this Site in accordance with WAC 173-340-7491. Terrestrial ecological evaluations are required for sites with soil contamination. Based on current data, soil at the Site is not contaminated; MSW in inactive cells is covered by several feet of clean soil and institutional controls are in effect for the landfill. Additionally, any possible soil contamination is expected to be greater than 15 feet below ground level, and would therefore also meet the standard point of compliance described in WAC 173-340-7490(b). These conditions are sufficient to meet the exclusion criteria described in WAC 173-340-7491(1).

4.0 RI WORK TASKS

4.1 DATA GAPS

A substantial amount of investigation work has already been conducted at the Site; however, some aspects of site conditions are inadequately known and need to be addressed to complete the conceptual site model. The data gaps presented below were identified based upon review of existing data as described in the previous sections. Further evaluation is deemed necessary in order to fully characterize the Site and prepare the FS.

4.1.1 LATERAL AND VERTICAL EXTENT OF LANDFILL

The lateral and vertical (subsurface) extents of MSW placed in Areas 1, 2, and 5 have not been fully determined. The lateral extents of the waste are unclear on the north, west, and southern boundaries of Area 5. The vertical extent (thickness) of Area 5 waste along the northern-most trenches is also unknown, and reportedly may extend nearly to groundwater. The extent of MSW in Area 1, either laterally or vertically, has not been determined. The extent of Area 2 has been roughly determined, but needs more accuracy for mapping and waste volume calculation purposes.

4.1.2 LANDFILL COVER

The soil cover thickness over Area 5 is variable, and the Area 1 cover thickness has not been determined. Additional data is required to determine if the cover thicknesses in these two areas are sufficient to prevent infiltration of precipitation.

4.1.3 SOIL

There is partial data indicating the absence of contaminants in the Area 5 subsurface soil, however, additional soil data are needed in the northernmost trench area to assess potential impact from leachate. Additionally, soil data are needed to characterize the presence or absence of PCOCs in soil beneath the MSW in Area 1 and Area 2. Area 6 is constructed over a soil base in accordance with the Solid Waste Permit, with six lysimeters installed to monitor leachate infiltration. Leachate has seldom been detected in the lysimeters, and therefore the soil quality beneath Area 6 is not considered a data gap, and further sampling in this area will not be conducted.

4.1.4 GROUNDWATER

Available hydrogeological information is sufficient to describe most aspects of the shallow aquifer; however, the following data gaps exist:

• The hydrostatigraphy of the shallow aquifer varies considerably due to the fluvial deposition of sediments, and it is expected that a complete understanding of the hydrostatigraphy will never be determined. As additional boring and monitoring wells are

installed, however, the understanding of the hydrostatigraphy will be further developed to complete the RI and facilitate the FS.

- It has been determined that the shallow aquifer has been impacted by VOCs and inorganic constituents in MW-15, and Freon compounds in the landfill monitoring wells. With respect to groundwater contamination, the following data gaps are identified:
 - Neither the extent nor the source(s) of the VOC contamination in the MW-15 specific samples have been fully identified. In particular, it has not been established if Area 6 is contributing to the contamination found at MW-15;
 - Neither the extent nor the source(s) of the Freon 11 and 12 contamination in the landfill monitoring wells has been fully identified;
 - The source(s) of inorganic constituent contamination in the MW-15 specific samples has not been fully identified;
 - The downgradient extent(s) of contamination found in MW-15 has not been determined;
 - The vertical extent of contamination and the interaction of the contaminants with deeper zones within the aquifer have not been determined;
 - The impact of the upgradient area-wide contamination on the Site and domestic well groundwater has not been fully characterized; and
 - The current concentration of VOCs in all upgradient and site monitoring wells has not been fully established.
- Analysis of the domestic well VOC fingerprint and groundwater flow path suggest that the chloroform and PCE detections in the Small and Camp Wells are associated with the areawide contamination and not the Site. The RI will utilize all available groundwater data to assess the source of the impacts to the Small and Camp Wells including data collected from the domestic wells outside of the RI process.

4.1.5 LANDFILL GAS

The following data gaps exist with respect to the LFG collected to date:

- The presence/absence or character of LFG in Areas 1 and 2;
- The potential impact of the LFG on groundwater quality near Area 1 and Area 5;
- The migration extent and pathways—there is lack of data on the presence or absence of LFG extending beyond the waste limits for Areas 1, 2, and 5;
- The stabilized gas quality and flow rate from the gas extraction system, and the radius of influence of the Area 6 LFG extraction wells to determine the effectiveness of the Area 6 interim action; and
- The presence/absence and quality of LFG near to the HHWF has not been characterized for VOCs consistent with vapor intrusion guidelines.

4.2 REMEDIAL INVESTIGATION TASKS

The following tasks provide the general approach that will be used to close the data gaps. The details of the technical approach are described in the SAP, which includes the sampling strategy,

locations, methods, and procedures. The SAP is provided in Appendix E. The QAPP and HASP are provided in the SAP. The proposed exploration locations are shown on Figure 13.

Data Gap	Investigation Method
Lateral extents of the wastes in Areas 1, 2, and 5	Conduct geophysical surveys with verification test pit program if needed.
Vertical extent of the waste in Area 1	Drill one boring to 5 feet below the bottom of the MSW.
Vertical extent of the MSW at the northern extent of Area 5	Drill three borings to 5 feet below the bottom of the MSW.
Landfill cover thickness in Areas 1 and 5	Conduct a test pit program and log the soil cover thicknesses.
Soil quality beneath Areas 1, 2, and 5	Collect soil samples for laboratory analysis from each boring that extends through the MSW.
Area 5 and/or Area 6 as source of groundwater contamination at MW-15	 Install and monitor one monitoring well adjacent to GW-5 to distinguish groundwater quality at Area 5/Area 6 boundary and the interaction of LFG on groundwater. Install and monitor two monitoring wells along the north drainage ditch to verify Geoprobe sampling data and the groundwater quality at Area 5/Area 6 boundary. Install and monitor one monitoring well south of Area 5 and west of Area 6 to distinguish groundwater quality at the Area 6 boundary. Replace monitoring well MW-14 to provide for an adequate sample collection point at the southwest corner of the site.
Impact of area-wide groundwater contamination on the landfill	 Develop and install dedicated groundwater sampling pumps in MW-5 and MW-9. Install and monitor monitoring well upgradient of Area 1.
Extent of downgradient groundwater contamination from vicinity of MW-15 and Area 5.	 Install and monitor two downgradient monitoring wells southwest of MW-15 (located approximately 350 feet and 700 feet from property line). Install and monitor one monitoring well in former railroad right-of-way. Install and monitor one monitoring well approximately 250 northwest of MW-15 on the Camp property. Install and monitor one monitoring well between MW-15 and MW-16.

Vertical component of contaminant transport in groundwater	 Install and monitor two deeper monitoring wells at the two off-site locations. Install and monitor one deeper monitoring well located adjacent to MW-15. The screen section will be constructed between the MW-3 and MW-15 screened sections. Conduct pumping tests to assess hydraulic connection between MW-15 (shallow and deep) and MW-3, and to assess aquifer parameters.
Possible impact of landfill on domestic wells in region	Collect and analyze groundwater samples for VOCs from the Small, Camp, Kinman, and Schmidt (shallow) Wells.
Groundwater quality monitoring	 Collect groundwater samples for laboratory analysis of Appendix III parameters from site wells MW-11, MW-14, and MW-15 and modify the sampling plan to incorporate detected constituents that exceed MTCA screening levels. Collect groundwater samples for laboratory analysis from site wells (MW-11, MW-12, MW-14, MW-15, MW-16), upgradient wells (MW-5, MW-9, MW-10, MW-12b), domestic wells (Small, Camp, Kinman, Schmidt), and new monitoring wells installed during the RI. Analyze the site well samples and samples from all new monitoring wells for VOCs, and other conventional chemistry parameters that could be indicative of possible leachate impacts to groundwater including calcium, sodium, magnesium, potassium, sulfate, chloride, manganese, iron, ammonia, nitrate, alkalinity, TOC, and TDS. Analyze the upgradient and domestic well samples for VOCs. Incorporate the quarterly compliance groundwater monitoring data (collected as a requirement of the Solid Waste Operating Permit) into the RI data base of information.
Extent and characteristics of LFG and the potential impact of LFG on groundwater	 Install and monitor LFG monitoring wells at the perimeters of the waste cells and adjacent to structures. Install and monitor one gas well in Area 1 Conduct barhole monitoring study at Area 2.
Effectiveness of existing LFG extraction system	 Monitor existing and new LFG monitoring wells to determine if existing extraction system operation is controlling gas migration. Conduct radius of influence tests if preliminary monitoring results indicate the potential for gas migration.

LFG vapor intrusion	 Install and monitor one LFG monitoring well adjacent to the HHWF. Conduct additional testing if potential for impacts is observed during the preliminary monitoring program. Conduct vapor intrusion modeling if MTCA screening levels are exceeded.
LFG monitoring	 Perform field monitoring for the presence of methane, carbon dioxide, oxygen, and gas, and barometric pressure in all LFG monitoring wells. Collect and analyze gas samples for VOCs from LFG monitoring Wells GW-5, GW-6, GW-7S, GW-7D, GW-8, GW-9, GW-10, GW-11, and GW-12 during one monitoring event.

Abbreviations:

- HHWF Household Hazardous Waste Facility
 - LFG Landfill gas
 - MSW Municipal solid waste
- MTCA Model Toxics Control Act
 - TDS Total dissolved solids
 - TOC Total organic carbon
 - VOC Volatile organic compound

4.2.1 **Reporting**

A draft RI report will be prepared after all investigation phases of the RI are complete and the field and laboratory data are compiled and validated. The documentation will consolidate and incorporate data generated during each phase of the investigation. The report will describe general facility information, site history, RI investigation activities, geologic and hydrogeologic conditions, identify site-specific applicable or relevant and appropriate requirements (ARARs), and make a preliminary determination of indicator hazardous substances, the nature and extent of contamination including exposure pathways and identification of preliminary cleanup levels and points of compliance, and contaminant fate and transport.

The RI Report will be presented in draft format to Ecology for review and comment. A Final RI Report will be prepared, pursuant to discussion of comments between Ecology and the City.

4.3 SCHEDULE

The schedule for the RI/FS was established and presented in the AO. Field work is scheduled to begin during the spring of 2012. Groundwater sampling and other field activities are scheduled to extend into February 2013. Laboratory analytical results of samples collected during the RI will be loaded into the Ecology database for environmental monitoring data in the Environmental Information Management

System format within sixty days of receiving the laboratory report. The draft RI Report is scheduled for delivery to Ecology on June 17, 2013. If needed, this schedule will be updated as the project progresses.

5.0 REFERENCES

City of Walla Walla (City). 1988. City of Walla Walla, Sudbury Road Landfill Operating Plan. 20 June.

Dahl, Norman & Associates (Dahl) with Anderson-Perry & Associates, Inc. 1987. *Final Report, Sudbury Road Landfill Utilization Plan for City of Walla Walla*. December.

Washington State Department of Ecology (Ecology). 2010. Notice of Potential liability under the Model Toxics Control Act for the Release of Hazardous Substances at the Sudbury Road Landfill, 414 Sudbury Road, Walla Walla, WA 99362, Facility 4446540. Letter from the Washington State Department of Ecology Waste 2 Resources Program to Mr. Craig Sivley, City of Walla Walla Public Works Director. 29 March.

———. 2007. *Model Toxics Control Act Cleanup Regulation Chapter 173-340 WAC*. Compiled by Ecology's Toxics Cleanup Program. Publication No. 94-06. November.

———. 1999. Sudbury Road Landfill Site, Contaminant Source Identification/Assessment Report. Prepared under a Site Assessment Cooperative Agreement between Ecology and the U.S. Environmental Protection Agency. Washington State Department of Ecology. June.

———. 1993. Chapter 173-351 WAC, Criteria for Municipal Solid Waste Landfills. Washington State Department of Ecology. October.

———. 1990. Chapter 173-200 WAC, Water Quality Standards for Ground Waters of the State of Washington. Washington State Department of Ecology. December.

———. 1988. Chapter 173-304 WAC, Minimum Functional Standards for Solid Waste handling. Washington State Department of Ecology. October.

———. 1972. Washington State Department of Ecology Regulation Relating to Minimum Functional Standards for Solid Waste Handling, Chapter 175-301 WAC. Adopted October 24, 1972. Effective November 27, 1972.

EMCON. 1995. Hydrogeologic Report, Sudbury Road Landfill, Walla Walla County, Washington. June.

U.S. Environmental Protection Agency (USEPA). 1985. *Asbestos Waste Management Guidance*. Publication 530-SW-85-007. May.

J-U-B Engineers, Inc (JUB). 2010. *Specifications and Plans, Area 6 Closure, Sudbury Road Landfill*. Prepared by J-U-B Engineers, Kennewick, Washington for the City of Walla Walla. January.

Landau Associates, Inc (LAI). 2004. *Remedial Investigation Work Plan, Sudbury Road Landfill, Walla Walla, Washington*. Prepared for the City of Walla Walla. 22 April.

Newcomb, R.C. 1965. *Groundwater and Ground-Water Resources of the Walla Walla River Basin, Washington-Oregon.* State of Washington, Division of Water Resources. Water Supply Bulletin 21.

Schwyn Environmental Services, LLC (Schwyn). 2010a. Area 5 Landfill Gas Probe Installation and Sampling Report for the Sudbury Road Landfill, Walla Walla, Washington. Prepared by Schwyn for the City of Walla Walla. 22 January.

———. 2010b. *Revised Interim Action Plan, Sudbury Road Remedial Action, Walla Walla, Washington.* Prepared by Schwyn for the City of Walla Walla Solid Waste Division. 31 March.

——. 2009. Landfill Gas Probe Installation Work Plan for the Sudbury Road Landfill Remedial Investigation, Walla Walla, Washington. Prepared by Schwyn for the Walla Walla Department of Health and Washington State Department of Ecology . 31 July.

———. 2006. *Sudbury Road Landfill Historical Study Report, Walla Walla, Washington.* Prepared by Schwyn for the City of Walla Walla Solid Waste Division . 17 January.

Shaw, EMCON/OWT, Inc. 2005. Solid Waste Permit Modification for Lateral Expansion of Sudbury Road Landfill in compliance with WAC 173-351. Prepared for the City of Walla Walla. May.

Shannon & Wilson (S&W). 2010. Sudbury Road Landfill, Field Studies – Gas Sampling At Areas 5 and 6, Walla Walla, Washington. Prepared by S&W for JUB. 14 January.

Walla Walla Union Bulletin. 1978. *New city landfill on Sudbury Road opens Monday*. Whitman College Penrose Library, microfiche. 9 July.

liance Wells	6		Compost Area				
dient Wells			Compost Lagoon		11		
Wells	Sedimentation Pond						
obe Locatio	ocation		Landfill Gas Collection Syster				
Ionitoring Well			/// Drainage Pipe				
Il Extraction Well		\sim	── Creek				
ment Monitoring Station		Spring					
ll Areas		<u></u>	Intermittent				
ll Boundary		✓ Street					
roperty		✓ Highway					
			a general state				
Vork Plan dfill igton		Site	мар	Figure 3			

norty		• Orthoimage provided by N Program (NAIP) and dated	lational Agricultu d 2009.	ire Imagery
perty		A/14/-9	1	
		Parameter	Date	Result in ug/L
		Chloroform	4/13/1993	1.5
	Martin Martin	Tetrachloroethene	4/13/1993	4.1
		Trichloroethene	1/31/2002	4
	-	MW-9		
		Parameter	Date	Result in ug/L
arver		Chloroform	1/31/2001	0.6
well	A COLOR DE ANTING	Tetrachloroethene	7/1/1998	1.26
3/1/1995 11/25/1997 Date	2.2 0.6 Result in µg/L	101	WASH ST PENITE	INGTON TATE ENTIARY
6/21/2011	0.94	MW-10		I
9/24/2008	0.9	Parameter	Date	Result in µg/L
+++++++++++++++++++++++++++++++++++++++			2/1/1998	2.04
	WASTE- WATER LAGOON	MW-10		*
				(and
		Screeni	ing Levels:	
			ing Levels:	Screening Level (a) (µg/L)
		Screenii Ar	ing Levels: halyte	ccreening Level (a) (μg/L) 1,600
		Screeni Ar 1,1-1	ing Levels: halyte	Screening Level (a) (µg/L) 1,600 NR

Analyte	Screening Level (a) (µg/L)
1,1-Dichloroethane	1,600
Chloroethane	NR
Chloroform	80
cis-1,2-Dichloroethene	16
Dichlorodifluoromethane	1,600
Tetrachloroethene	0.8(b)
Toluene	640
Trichloroethene	2.4(b)
Trichlorofluoromethane	2,400
Vinyl Chloride	0.03 (c)
Notes:	

- ND = not detected at or above the laboratory method reporting level. NR = Not researched.
- Values indicate the maximum concentration reported in well sample, based on data collected from 1991 though March 24, 2011.
- Bolded values indicate concentrations
- at or above screening level. (a) MTCA chapter 173-340 WAC Method B standard groundwater cleanup levels based on CLARC formula values.
- (b) Ecology recommended cleanup level.
 (c) Standard Method B- children may be
- exposed

Maximum Historical VOC Concentrations in Area Wells

Figure 11

	Con and				
	Notes: • Map layers compiled Walla data Files. • Map created by Floy • Orthoimage provided Program (NAIP) and	l by JUB Engineers d Snider, Inc. d by National Agricu dated 2009.	from City of Walla Iture Imagery		
erty	11-4	1.1.1.1.1	1 mil		
	MW-9				
	Parameter	Date	Result in µg/L		
	Chloroform	2/10/201	1 0.72		
	Tetrachloroethene	2/10/201	1 0.49		
	Trichloroethene	2/10/201	1 1.2		
ITT I	M	W-9			
ver	MW-7		D 1 1 1 1 1		
Vell 7	Parameter	Date	Kesult in µg/i		
	All VOCs	2/10/201			
Date Result in µg/L '21/2011 0.94 '21/2011 0.73	MW-10 Parameter	PENI	Result in µg		
121/2011 0.75	Parameter	Date	Result in µg/I		
		2/10/201	1 1.5		
			(and the second		
	Scr	eening Levels	S:		
			Screening Level		
	1201-18	Analyte	(a) (μg/L)		
- No Elevision		1,1-Dichloroethane	1,600 NR		
		Chloroform	80		
Cont in the second	ci	s-1,2-Dichloroethene	16		
19 18 B. B. B.	Dich	lorodifluoromethane	1,600		
		Tetrachloroethene	0.8(b)		
- The man Bill and a		Toluene	640		
A		Trichloroethene	2.4(b)		
	Tri	chlorofluoromethane	2,400		
Mill Creek	Note: • ND met • NR • Val rep coll	s: = not detected at or ab hod reporting level. = Not researched. ues indicate the most re orted in well sample, be ected from 1991 though	ove the laboratory ecent concentration ased on data n March 24, 2011.		
to a second	(a) star	add values indicate cour r above screening leve MTCA chapter 173-34 ndard groundwater clea CLARC formula values.	ncentrations I. 0 WAC Method B nup levels based		

- (b) Ecology recommended cleanup level.
 (c) Standard Method B- children may be exposed

Figure

12

4122.201

Most-recent VOC Concentrations in Area Wells

/ork Plan Proposed Ex	reloration	Figure					
	Highway						
	✓ Street						
	C Intermittent						
ogradient Wells	🔨 Spring	-					
ompliance Wells	🔷 Creek	-					
as Monitoring Well	/// Drainage Pi	ре					
oposed Test Pit Location	Compost Lagoon						
a Gas vveil location	Compost Ar	ea					
oposed Co-located Soil Boring	Sedimentati	ion Pond					
oposed Soil Boring Location	City Propert	v					
oposed Monitoring Well Location ¹	Landfill Bou	ndary					
oposed Gas Well Location ¹	C Landfill Area	as					

Page 1 of 1

TABLE 1 WELL CONSTRUCTION SUMMARY City of Walla Walla Sudbury Road Landfill

		Well El	evation	Depth	Casing		Screer	n Depth	Screen E	levation		
	Date	Ground	TOC	Drilled	Diameter	Screen	Тор	Bottom	Тор	Bottom		
Well	Drilled	(Ft Above I	MSL)	(Ft-BGL)	(Inches)	Туре	(Ft-	BGL)	(Ft Abov	e MSL)	Purpose	Comments
NA)A/ 1 A	11/15/1076	794.0		65	5	Dorforated Steel	25	6E	750.0	710.0	DC Londfill MW	Abandonad 1096
	0/06/10/19/0	704.0	700.00	60 101	5	Periorateu Steel	25	00	759.U	719.0		Abandoned 1900
	8/20/1980	180.0	188.88	121	2	U.UT SIDE 5.5.	00	118	0/0.U	000.0		
	12/1/19/0	800.0	ļ	100	5 5	Perforated Steel	80	155	720.0	045.U	Water Supply	Abordoned 1096
IVIVV-3A	11/14/19/0	702.0	700.50	80	5	Periorated Steel	25	80	151.0	702.0		Abandoned 1986
MIVV-3	9/18/1986	/85.8	/88.53	121	2	0.01 SIOT 5.5.	108	118	6/7.8	567.8	DG Landfill IVIVV	
MVV-4	8/1/1983	800.4	803.91	/1	5	Perforated Steel	51	/1	/49.4	729.4	DG Spraytarm MVV	
MW-5	9/8/1983	820.4	823.87	82	5	Perforated Steel	62	82	758.4	738.4	DG Sprayfarm MW	
MW-6	8/18/1986	830.3	831.70	151	2	0.01 slot S.S.	138	148	692.3	682.3	UG Landfill MW	Abandoned
MW-7	10/1/1986	883.1	884.89	181	2	0.01 slot S.S.	168	178	715.1	705.1	UG Sprayfarm MW	
MW-8	10/10/1989	845.5	848.14	220	5	0.02 slot PVC	90	105	755.5	740.5	DG Sprayfarm MW	Two Screens
MW-8 cont.	l		ļ		1	0.02 slot PVC	115	130	730.5	715.5		
MW-8A	10/30/1991	845.5	847.42	95	2	0.01 slot S.S.	63	78	782.5	767.5	Replace MW-8	
MW-9	9/20/1991	898.7	901.44	210	5	0.01 slot PVC	63	83	835.7	815.7	UG Sprayfarm MW	
MW-10	12/27/1993	867.4	869.81	47	2	0.01 slot PVC	29.4	44.7	838.0	822.7	UG Sprayfarm MW	
MW-11	2/10/1995	791.7	794.75	41	2	0.01 slot PVC	25.5	40.5	766.2	751.2	DG Landfill MW	
MW-12	2/9/1995	823.5	826.33	62	2	0.01 slot PVC	46.5	61.5	777.0	762.0	UG Landfill MW	Decommissioned 2008
MW-12b	8/28/2008	825.4	828.16	80.5	2	0.01 slot PVC	60	80	765.4	745.4	Replace MW-12	
MW-14	8/12/1999	830.5	833.23	82	2	0.01 slot PVC	66	82	764.5	748.5	DG Landfill MW	
MW-15	7/17/2001	787.0	789.93	46.5	2	0.01 slot PVC	28	43	759.0	744.0	DG Landfill MW	
MW-16	8/31/2005	810.9	813.39	69	2	0.01 slot PVC	54	69	756.9	741.9	DG Landfill MW	
Garver	12/8/1967	870	ļ	1227	10	?	?	?			Water Supply	
GW-5	8/6/2009	841.1	ļ	48.5	0.5	0.03 slot Sch 80 PVC	25	30	816.1	811.1	Landfill Gas MW	
GW-6	8/6/2009	798.3		39	0.5	0.03 slot Sch 80 PVC	20	25	778.3	773.3	Landfill Gas MW	
Notes:		<u> </u>		<u>ا</u> ــــــــــا	<u> </u>		<u> </u>					<u></u> _
TOC = Top	of casing				DG = Downar	adient						
Et Above M	SI – Feet above	mean sea l	امريما		LIG – Upgradi	ient						
	ot bolow ground	Hovol				dwatar Manitaring wall						
	et below ground	levei			CW = Ground							
5.5. = Stain	less sleel				GW = Gas With	Shitoning wen						
MW-16 Garver GW-5 GW-6 Notes: TOC = Top 0 Ft Above MS Ft-BGL = Fe S.S. = Stain	8/31/2005 12/8/1967 8/6/2009 8/6/2009 of casing SL = Feet above set below ground dess steel	810.9 870 841.1 798.3 mean sea I	level	69 1227 48.5 39	2 10 0.5 0.5 DG = Downgr UG = Upgradi MW = Grounc GW = Gas Mr	0.01 slot PVC ? 0.03 slot Sch 80 PVC 0.03 slot Sch 80 PVC adient ient dwater Monitoring well onitoring Well	54 ? 25 20	69 ? 30 25	756.9 816.1 778.3	741.9 811.1 773.3	DG Landfill MW Water Supply Landfill Gas MW Landfill Gas MW	

TABLE 2 SOIL ANALYTICAL DATA INDEPENDENT REMEDIAL INVESTIGATION City of Walla Walla Sudbury Road Landfill

Exploration	Date Sampled	Matrix	1,1-Dichloroethane (mg/kg)	Chloroethane (mg/kg)	Chloroform (mg/kg)	cis-1,2-Dichloroethene (mg/kg)	Dichlorodifluoromethane (mg/kg)	Tetrachloroethene(mg/kg)	Trichloroethene (mg/kg)	Trichlorofluoromethane (mg/kg)	Vinyl Chloride (mg/kg)
GP-3-21.5-22	7/6/2005	Soil	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.030 U	0.030 U	0.10 U	0.10 U
GP-4-18-18.5	7/6/2005	Soil	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.030 U	0.030 U	0.10 U	0.10 U
GP-6-15-15.5	7/6/2005	Soil	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.030 U	0.030 U	0.10 U	0.10 U
B-9RI-35'	8/29/2005	Soil	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.030 U	0.030 U	0.10 U	0.10 U
B-10RI-34'	8/30/2005	Soil	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.030 U	0.030 U	0.10 U	0.10 U
B-11RI-34'	8/30/2005	Soil	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.030 U	0.030 U	0.10 U	0.10 U
B-12RI-44'	8/30/2005	Soil	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.030 U	0.030 U	0.10 U	0.10 U

Notes

Samples collected from temporary Geoprobe well points.

Only volatile organic compounds detected on a regular basis in the landfill area groundwater are presented on table.

U = analyte not detected at or above the indicated laboratory reporting level.

mg/kg = milligrams per kilogram.

TABLE 3 GROUNDWATER ANALYTICAL DATA INDEPENDENT REMEDIAL INVESTIGATION City of Walla Walla Sudbury Road Landfill

Exploration	Date Sampled	Matrix	1,1-Dichloroethane (µg/L)	1,2-Dichloroethane (µg/L)	1,2-Dichloropropane (µg/L)	Chloroethane (µg/L)	Chloroform (µg/L)	cis-1,2-Dichloroethene (µg/L)	Dichlorodifluoromethane (µg/L)	p-Isopropyltoluene (µg/L)	Tetrachloroethene (µg/L)	Trichlorofluoromethane (µg/L)	Trichloroethene (µg/L)	Vinyl Chloride (µg/L)	Calcium (mg/L)	Potassium (mg/L)	Magnesium (mg/L)	Sodium (mg/L)	Total Dissolved Solids (mg/L)	Chloride (mg/L)	Nitrate-Nitrogen (mg/L)	Sulfate (mg/L)	Alkalinity (mg/L)
GP-3	7/6/2005	Water	12.0	1.0 U	1.0 U	1.59	1.0 U	24.5	31.0	1.0 U	1.0 U	2.08	1.88	0.603									
GP-4	7/6/2005	Water	19.0	4.51	6.2	2.43	1.0 U	62.8	9.57	1.0 U	6.21	1.0 U	9.97	3.76									
GP-5	7/6/2005	Water	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.58	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	248	42.2	156	43.7	878	214	12.7	52.4	
GP-6	7/7/2005	Water	1.47	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	3.10	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	399	68.6	246	46.9	933	199	12.6	38.6	
GP-8	7/7/2005	Water	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U									
B-9RI	8/29/2005	Water	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U									
B-17RI	9/1/2005	Water	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U									
MW-16	9/1/2005	Water	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.6	1.0 U	1.0 U	1.0 U	1.0 U	213	17.2		21.8		185	11.6	45.1	541
MW-16	6/21/2006	Water	0.5 U	1.0 U	1.0 U	0.5 U	0.54	0.5 U	0.74		1.0 U	1.8	0.5 U	0.5 U	213	7.80	51.9	23.6	618	130	9.5	42.6	256
MW-16	9/21/2006	Water	0.5 U	1.0 U	1.0 U	0.5 U	0.5 U	0.5 U	0.63		1.0 U	1.4	0.5 U	0.5 U	213	7.97	51.8	23.5	671	163	9.9	42.1	262
MW-16	3/24/2011	Water	0.5 U	1.0 U	1.0 U	0.5 U	0.57	0.5 U	0.54		1.0 U	0.74	0.5 U	0.5 U	213								

Notes

Samples collected from temporary Geoprobe well points.

Only volatile organic compounds historically detected on a regular basis in the landfill area are presented on table. Sampling methods for VOC may bias analytical results low.

Blank space indicates no analysis for that particular analyte.

U = analyte not detected at or above the indicated laboratory reporting level.

 μ g/L = micrograms per liter.

mg/L = milligrams per liter.

Page 1 of 1

TABLE 4LANDFILL GAS DATAINDEPENDENT REMEDIAL INVESTIGATIONCity of Walla Walla Sudbury Road Landfill

Sample Location	MW-14	-14 MW-15		MW-16		G	N-5	GW-6	
Field Measurements	(Percent)	(Per	cent)	(Pei	cent)	(Per	cent)	(Per	cent)
Methane	0.0	0	.9	, ().0	. 61	.40	53	3.60
Carbon Dioxide	0.0	13	3.9	(0.0	39	.60	35	5.00
Oxygen	16.6	2	.7	1	5.4	0	.20	0	.00
EPA Method 25 C Analyte	(Vmqq)	(pp	mV)	(pr	omV)	(pp	mV)	(pr	mV)
Total Gaseous Nonmethane O	rganics as Hex	ane	,		,	1	50		70
EPA TO-15 Analyte	No Analysis	(µg/m³)	(ppbV)	(µg/m³)	(ppbV)	(µg/m³)	(ppbV)	(µg/m³)	(ppbV)
Propene						430 U	250 U	13,000	7,600
Dichlorodifluoromethane (CFC	12)	650 M	130 M	150	29	430 U	88 U	7,900	1,600
Chloromethane		6.7 U	3.2 U	5.0 U	2.4 U	430 U	210 U	150	74
1,2-Dichloro-1,1,2,2-tetrafluoro	ethane					430 U	62 U	1,600	230
Vinyl Chloride		220	87	5.0 U	2.0 U	430 U	170 U	2,200	870
Chloroethane		36	14	5.0 U	1.9 U	430 U	160 U	970	370
Ethanol						10,000	5,300	6,600	3,500
Trichlorofluoromethane		6.7 U	1.2 U	16	2.9	430 U	77 U	160	29
2-Propanol (Isopropyl Alcohol)						5,100	2,100	1,300	530
1,1-Dichloroethene		8.8	2.2	5.0 U	1.3 U	430 U	110 U	220	55
Methylene Chloride		55	16	46	13	1,100	310	2,300	670
Carbon Disulfide		20	6.5	15	4.7	430 U	140 U	130 U	42 U
trans-1,2-Dichloroethene		6.7 U	1.7 U	5.0 U	1.3 U	430 U	110 U	260	67
1,1-Dichloroethane		99	24	5.0 U	1.2 U	430 U	110 U	470	120
2-Butanone (MEK)		6.7 U	2.3 U	5.0 U	1.7 U	3,000	1,000	990	330
cis-1,2-Dichloroethene		65	16	5.0 U	1.3 U	11,000	2,700	19,000	4,700
Ethyl Acetate						870 U	240 U	1,200	350
n-Hexane						1,900	530	5,800	1,700
Chloroform		6.7 U	1.4 U	5.0 U	1.0 U	430 U	89 U	130 U	27 U
Tetrahydrofuran (THF)						790	270	580	200
Benzene		6.7 U	2.1 U	5.0 U	1.6 U	940	290	1,700	540
Cyclohexane						1,600	450	5,300	1,500
1,2-Dichloropropane		12	2.5	5.0 U	1.10 U	430 U	94 U	130 U	28 U
Trichloroethene		190	36	20	3.8	2,000	380	3,200	600
n-Heptane						8,800	2,100	14,000	3,500
4-Methyl-2-pentanone		6.7 U	1.6 U	5.0 U	1.20 U	920	230	1,100	260
Toluene		28	7.4	23	6.0	52,000	14,000	26,000	6,900
n-Butyl Acetate						430 U	91 U	390	82
n-Octane						7,200	1,500	8,000	1,700
Tetrachloroethene		550	82	5.0 U	0.74 U	4,000	590	9,900	1,500
Ethylbenzene		6.7 U	1.5 U	6.5	1.5	6,400	1,500	3,900	910
m,p-Xylenes		24	5.4	23	5.4	15,000	3,500	8,200	1,900
Styrene		12	2.7	14	3.4	430 U	100 U	230	55
o-Xylene		8.0	1.9	6.1	1.4	3,300	760	2,400	550
n-Nonane						4,700	890	4,900	940
Cumene						430 U	88 U	250	50
alpha-Pinene						8,300	1,500	8,400	1,500
n-Propylbenzene						430 U	88 U	200	41
4-Ethyltoluene						430 U	88 U	220	44
1,3,5-Trimethylbenzene						450	92	230	47
1,2,4-Trimethylbenzene						970	200	420	86
d-Limonene						2,300	420	8,300	1,500

TABLE 4 LANDFILL GAS DATA INDEPENDENT REMEDIAL INVESTIGATION City of Walla Walla Sudbury Road Landfill

Notes:

MW-14, MW-15, and MW-16 gas samples collected on August 9, 2006 using a Landtech Gem 500 and tedlar bag. GW-5 and GW-6 samples collected on August 12, 2009, using Lantec GA-90 and 6-liter Summa Canister. Samples analyzed by Columbia Analytical Services by EPA Methods 25C and TO-15. Blank indicates no analysis for particular analyte. U = Compound was analyzed for, but not detected above the laboratory reporting limit.

M = Laboratory reported matrix interference. Result may be biased high.

Only detected analytes in one or more of the samples are reported on table.

				Standard	Standard		Lower	Upper			% Non-
Constituent Name	Well	Ν	Mean	Deviation	Error	Median	Quartile	Quartile	Min.	Max.	Detects
1,1-Dichloroethane (ug/L)	MW05 (bg)	24	0.36	0.13	0.03	0.25	0.25	0.50	0.25	0.5	100
1,1-Dichloroethane (ug/L)	MW07 (bg)	4	0.21	0.08	0.04	0.25	0.18	0.25	0.1	0.25	100
1,1-Dichloroethane (ug/L)	MW09 (bg)	9	0.23	0.05	0.02	0.25	0.25	0.25	0.1	0.25	100
1,1-Dichloroethane (ug/L)	MW10 (bg)	4	0.21	0.08	0.04	0.25	0.18	0.25	0.1	0.25	100
1,1-Dichloroethane (ug/L)	MW12 (bg)	56	0.33	0.12	0.02	0.25	0.25	0.50	0.25	0.5	100
1,1-Dichloroethane (ug/L)	MW01	29	0.40	0.13	0.02	0.50	0.25	0.50	0.25	0.5	100
1,1-Dichloroethane (ug/L)	MW11	66	0.33	0.12	0.01	0.25	0.25	0.50	0.25	0.5	100
1,1-Dichloroethane (ug/L)	MW14	46	0.28	0.09	0.01	0.25	0.25	0.25	0.25	0.5	100
1,1-Dichloroethane (ug/L)	MW15	39	4.45	1.23	0.20	4.50	3.30	5.50	2.4	7.6	0
1,1-Dichloroethane (ug/L)	MW16	4	0.31	0.13	0.06	0.25	0.25	0.38	0.25	0.5	100
1,1-Dichloroethane (ug/L)	Camp	5	0.25	0.00	0.00	0.25	0.25	0.25	0.25	0.25	100
1,1-Dichloroethane (ug/L)	Kinman	2	0.25	0.00	0.00	0.25	0.25	0.25	0.25	0.25	100
1,1-Dichloroethane (ug/L)	Small	10	0.25	0.00	0.00	0.25	0.25	0.25	0.25	0.25	100
Chloroethane (ug/L)	MW05 (bg)	28	0.38	0.13	0.02	0.50	0.25	0.50	0.25	0.5	100
Chloroethane (ug/L)	MW07 (bg)	4	0.31	0.13	0.06	0.25	0.25	0.38	0.25	0.5	100
Chloroethane (ug/L)	MW09 (bg)	9	0.42	0.13	0.04	0.50	0.25	0.50	0.25	0.5	100
Chloroethane (ug/L)	MW10 (bg)	4	0.31	0.13	0.06	0.25	0.25	0.38	0.25	0.5	100
Chloroethane (ug/L)	MW12 (bg)	56	0.33	0.12	0.02	0.25	0.25	0.50	0.25	0.5	100
Chloroethane (ug/L)	MW01	29	0.40	0.13	0.02	0.50	0.25	0.50	0.25	0.5	100
Chloroethane (ug/L)	MW03	29	0.40	0.13	0.02	0.50	0.25	0.50	0.25	0.5	100
Chloroethane (ug/L)	MW11	66	0.33	0.12	0.01	0.25	0.25	0.50	0.25	0.5	100
Chloroethane (ug/L)	MW14	46	0.28	0.09	0.01	0.25	0.25	0.25	0.25	0.5	100
Chloroethane (ug/L)	MW15	39	0.76	0.49	0.08	0.69	0.25	1.20	0.25	1.9	35.9
Chloroethane (ug/L)	MW16	4	0.31	0.13	0.06	0.25	0.25	0.38	0.25	0.5	100
Chloroethane (ug/L)	Camp	5	0.25	0.00	0.00	0.25	0.25	0.25	0.25	0.25	100
Chloroethane (ug/L)	Kinman	2	0.25	0.00	0.00	0.25	0.25	0.25	0.25	0.25	100
Chloroethane (ug/L)	Small	10	0.25	0.00	0.00	0.25	0.25	0.25	0.25	0.25	100
Chloroform (ug/L)	MW05 (bg)	24	0.72	0.22	0.05	0.73	0.50	0.89	0.5	1.3	41.67
Chloroform (ug/L)	MW07 (bg)	5	0.29	0.19	0.08	0.25	0.18	0.43	0.1	0.6	80
Chloroform (ug/L)	MW09 (bg)	11	0.85	0.48	0.14	0.87	0.25	1.30	0.1	1.5	27.27
Chloroform (ug/L)	MW10 (bg)	6	1.61	0.28	0.11	1.60	1.35	1.87	1.2	2.04	0
Chloroform (ug/L)	MW12 (ba)	56	0.59	0.26	0.04	0.51	0.50	0.61	0.25	2.2	41.07
Chloroform (ug/L)	MW01	29	0.66	0.23	0.04	0.50	0.50	0.90	0.25	1.1	58.62
Chloroform (ug/L)	MW03	29	0.54	0.12	0.02	0.50	0.50	0.60	0.25	1	58.62
Chloroform (ug/L)	MW11	66	1.02	0.26	0.03	1.10	0.98	1.20	0.5	1.5	16.67
Chloroform (ug/L)	MW14	46	0.55	0.20	0.03	0.56	0.38	0.73	0.25	0.9	39.13
Chloroform (ug/L)	MW15	39	0.26	0.06	0.01	0.25	0.25	0.25	0.25	0.5	100
Chloroform (ug/L)	MW16	4	0.47	0.15	0.07	0.52	0.38	0.56	0.25	0.57	50
Chloroform (ug/L)	Camp	5	0.25	0.00	0.00	0.25	0.25	0.25	0.25	0.25	100
Chloroform (ug/L)	Kinman	2	0.25	0.00	0.00	0.25	0.25	0.25	0.25	0.25	100
Chloroform (ug/L)	Small	10	0.46	0.15	0.05	0.52	0.25	0.56	0.25	0.62	30

TABLE 5 STATISTICAL SUMMARY OF GROUNDWATER VOC DATA City of Walla Walla Sudbury Road Landfill

Page 1 of 4

		,			,						
Constituent Name	Well	N	Mean	Standard Deviation	Standard Error	Median	Lower Quartile	Upper Quartile	Min.	Max.	% Non- Detects
cis-1 2-Dichloroethene (ug/L)	MW(05 (ba)	24	0.36	0.13	0.03	0.25	0.25	0.50	0.25	0.5	100
cis-1 2-Dichloroethene (ug/L)	MW07 (bg)	4	0.00	0.08	0.00	0.25	0.20	0.00	0.20	0.25	100
cis-1 2-Dichloroethene (ug/L)	MW09 (bg)	9	0.21	0.00	0.04	0.20	0.10	0.20	0.1	0.20	100
cis-1,2-Dichloroethene (ug/L)	MW(10 (bg))	<u>л</u>	0.20	0.00	0.02	0.25	0.20	0.25	0.1	0.25	100
cis-1,2-Dichloroethene (ug/L)	MW10 (bg)	- - 56	0.21	0.00	0.04	0.25	0.10	0.25	0.1	0.25	100
cis 1.2 Dichloroothono (ug/L)	MW/01	20	0.55	0.12	0.02	0.20	0.25	0.50	0.25	0.5	100
cis-1,2-Dichloroethene (ug/L)	MW/03	29	0.40	0.13	0.02	0.50	0.25	0.50	0.25	0.5	100
cis 1.2 Dichloroothono (ug/L)	M\A/11	23	0.40	0.13	0.02	0.50	0.25	0.50	0.25	0.5	100
cis-1,2-Dichloroethene (ug/L)		46	0.00	0.12	0.01	0.25	0.25	0.50	0.25	0.5	100
cis 1.2 Dichloroethene (ug/L)		40	0.20	0.09	0.01	0.25	0.25	0.25	0.25	0.5	100
cis-1,2-Dichloroethene (ug/L)		39	0.44	1.19	0.19	0.40	0.25	0.00	0.0	12	100
cis-1,2-Dichloroethene (ug/L)		4	0.31	0.13	0.00	0.25	0.25	0.30	0.25	0.5	100
cis-1,2-Dichloroethene (ug/L)	Camp	5	0.25	0.00	0.00	0.25	0.25	0.25	0.25	0.25	100
cis-1,2-Dichloroethene (ug/L)	Kinman	2	0.25	0.00	0.00	0.25	0.25	0.25	0.25	0.25	100
cis-1,2-Dichloroethene (ug/L)	Small	10	0.25	0.00	0.00	0.25	0.25	0.25	0.25	0.25	100
Dichlorodifluoromethane (ug/L)	MW05 (bg)	1	0.25	0.00	0.00	0.25	0.25	0.25	0.25	0.25	100
Dichlorodifluoromethane (ug/L)	MW07 (bg)	3	0.20	0.09	0.05	0.25	0.10	0.25	0.1	0.25	100
Dichlorodifluoromethane (ug/L)	MW09 (bg)	3	0.20	0.09	0.05	0.25	0.10	0.25	0.1	0.25	100
Dichlorodifluoromethane (ug/L)	MW10 (bg)	3	0.20	0.09	0.05	0.25	0.10	0.25	0.1	0.25	100
Dichlorodifluoromethane (ug/L)	MW12 (bg)	25	0.26	0.05	0.01	0.25	0.25	0.25	0.25	0.5	100
Dichlorodifluoromethane (ug/L)	MW11	35	0.61	0.23	0.04	0.69	0.50	0.80	0.25	0.94	28.57
Dichlorodifluoromethane (ug/L)	MW14	34	0.90	0.46	0.08	0.87	0.53	1.25	0.25	1.9	20.59
Dichlorodifluoromethane (ug/L)	MW15	35	6.19	3.11	0.53	5.30	3.80	9.40	0.285	13	2.857
Dichlorodifluoromethane (ug/L)	MW16	4	0.60	0.11	0.05	0.59	0.52	0.69	0.5	0.74	25
Dichlorodifluoromethane (ug/L)	Camp	5	0.25	0.00	0.00	0.25	0.25	0.25	0.25	0.25	100
Dichlorodifluoromethane (ug/L)	Kinman	2	0.25	0.00	0.00	0.25	0.25	0.25	0.25	0.25	100
Dichlorodifluoromethane (ug/L)	Small	10	0.25	0.00	0.00	0.25	0.25	0.25	0.25	0.25	100
Tetrachloroethene (ug/L)	MW05 (bg)	28	3.21	1.59	0.30	3.00	2.00	4.02	0.7	7.1	0
Tetrachloroethene (ug/L)	MW07 (bg)	5	0.42	0.47	0.21	0.25	0.18	0.76	0.1	1.26	80
Tetrachloroethene (ug/L)	MW09 (ba)	11	2.01	1.31	0.40	1.80	0.62	3.10	0.49	4.1	0
Tetrachloroethene (ug/L)	MW10 (bg)	6	0.34	0.13	0.05	0.25	0.25	0.51	0.25	0.52	66.67
Tetrachloroethene (ug/L)	MW12 (bg)	56	0.46	0.17	0.02	0.50	0.25	0.52	0.25	0.9	67.86
Tetrachloroethene (ug/L)	MW01	29	0.61	0.15	0.03	0.50	0.50	0.79	0.5	0.9	58.62
Tetrachloroethene (ug/L)	MW03	29	0.56	0.11	0.02	0.50	0.50	0.70	0.25	0.75	62.07
Tetrachloroethene (ug/L)	MW/11	66	0.00	0.28	0.04	0.78	0.50	0.03	0.25	23	30.3
Tetrachloroethene (ug/L)	M\\/14	46	0.70	0.20	0.04	0.75	0.00	0.00	0.20	0.5	100
Tetrachloroethene (ug/L)	MW/15	30	6.91	1.83	0.01	6 70	5 50	8.60	4	11	0
Tetrachloroethene (ug/L)	MW/16	4	0.01	0.16	0.20	0.70	0.00	0.58	0.25	0.64	50
Tetrachloroethene (ug/L)	Camp	- 5	00	0.70	0.00	0.73	0.00	0.55	0.25	0.04	20
Tetrachloroethene (ug/L)	Kinman	2	0.03	0.22	0.10	0.75	0.40	0.75	0.25	0.70	100
Tetrachloroethene (ug/L)	Small	∠ 10	1.06	0.00	0.00	1 10	1 00	1 20	0.20	1.5	100
rendonioroenierie (ug/L)	Smail	10	1.00	0.33	0.11	1.10	1.00	1.30	0.20	1.0	10

Page 2 of 4

Constituent Name	Well	N	Mean	Standard Deviation	Standard Error	Median	Lower Quartile	Upper Quartile	Min.	Max.	% Non- Detects
Toluene (ug/L)	MW05 (bg)	28	0.36	0.17	0.03	0.25	0.25	0.50	0.25	1	96.43
Toluene (ug/L)	MW07 (bg)	3	0.33	0.14	0.08	0.25	0.25	0.50	0.25	0.5	100
Toluene (ug/L)	MW09 (bg)	3	0.33	0.14	0.08	0.25	0.25	0.50	0.25	0.5	100
Toluene (ug/L)	MW10 (bg)	3	0.33	0.14	0.08	0.25	0.25	0.50	0.25	0.5	100
Toluene (ug/L)	MW12 (bg)	57	0.34	0.14	0.02	0.25	0.25	0.50	0.25	0.97	98.25
Toluene (ug/L)	MW01	29	0.40	0.13	0.02	0.50	0.25	0.50	0.25	0.5	100
Toluene (ug/L)	MW03	29	0.46	0.36	0.07	0.50	0.25	0.50	0.25	2.2	96.55
Toluene (ug/L)	MW11	66	0.34	0.15	0.02	0.25	0.25	0.50	0.25	1.1	96.97
Toluene (ug/L)	MW14	46	0.29	0.09	0.01	0.25	0.25	0.25	0.25	0.61	97.83
Toluene (ug/L)	MW15	39	0.26	0.07	0.01	0.25	0.25	0.25	0.25	0.68	97.44
Toluene (ug/L)	MW16	4	0.31	0.13	0.06	0.25	0.25	0.38	0.25	0.5	100
Toluene (ug/L)	Camp	5	0.25	0.00	0.00	0.25	0.25	0.25	0.25	0.25	100
Toluene (ug/L)	Kinman	2	0.25	0.00	0.00	0.25	0.25	0.25	0.25	0.25	100
Toluene (ug/L)	Small	10	0.25	0.00	0.00	0.25	0.25	0.25	0.25	0.25	100
Trichloroethene (ug/L)	MW05 (bg)	28	2.31	1.04	0.20	2.55	2.00	3.00	0.25	4	14.29
Trichloroethene (ug/L)	MW07 (bg)	5	0.22	0.07	0.03	0.25	0.18	0.25	0.1	0.25	100
Trichloroethene (ug/L)	MW09 (bg)	11	2.09	1.03	0.31	2.30	1.40	2.60	0.25	4	9.091
Trichloroethene (ug/L)	MW10 (bg)	6	0.23	0.06	0.03	0.25	0.18	0.25	0.1	0.25	100
Trichloroethene (ug/L)	MW12 (bg)	56	0.33	0.12	0.02	0.25	0.25	0.50	0.25	0.5	100
Trichloroethene (ug/L)	MW01	29	0.40	0.13	0.02	0.50	0.25	0.50	0.25	0.5	100
Trichloroethene (ug/L)	MW03	29	0.40	0.13	0.02	0.50	0.25	0.50	0.25	0.5	100
Trichloroethene (ug/L)	MW11	66	0.36	0.33	0.04	0.25	0.25	0.50	0.25	2.8	98.48
Trichloroethene (ug/L)	MW14	46	0.28	0.09	0.01	0.25	0.25	0.25	0.25	0.5	100
Trichloroethene (ug/L)	MW15	39	2.46	0.65	0.10	2.50	1.90	3.00	1.4	3.8	0
Trichloroethene (ug/L)	MW16	4	0.31	0.13	0.06	0.25	0.25	0.38	0.25	0.5	100
Trichloroethene (ug/L)	Camp	5	0.34	0.20	0.09	0.25	0.25	0.48	0.25	0.7	80
Trichloroethene (ug/L)	Kinman	2	0.25	0.00	0.00	0.25	0.25	0.25	0.25	0.25	100
Trichloroethene (ug/L)	Small	10	0.25	0.00	0.00	0.25	0.25	0.25	0.25	0.25	100

TABLE 5 STATISTICAL SUMMARY OF GROUNDWATER VOC DATA City of Walla Walla Sudbury Road Landfill

Constituent Name	Well	N	Mean	Standard Deviation	Standard Error	Median	Lower Quartile	Upper Quartile	Min.	Max.	% Non- Detects	
Trichlorofluoromethane (ug/L)	MW05 (bg)	28	0.37	0.14	0.03	0.25	0.25	0.50	0.25	0.6	92.86	
Trichlorofluoromethane (ug/L)	MW07 (bg)	4	0.21	0.08	0.04	0.25	0.18	0.25	0.1	0.25	100	
Trichlorofluoromethane (ug/L)	MW09 (bg)	9	0.23	0.05	0.02	0.25	0.25	0.25	0.1	0.25	100	
Trichlorofluoromethane (ug/L)	MW10 (bg)	4	0.21	0.08	0.04	0.25	0.18	0.25	0.1	0.25	100	
Trichlorofluoromethane (ug/L)	MW12 (bg)	56	0.33	0.12	0.02	0.25	0.25	0.50	0.25	0.5	100	
Trichlorofluoromethane (ug/L)	MW01	29	0.40	0.13	0.02	0.50	0.25	0.50	0.25	0.5	100	
Trichlorofluoromethane (ug/L)	MW03	29	0.40	0.13	0.02	0.50	0.25	0.50	0.25	0.5	100	
Trichlorofluoromethane (ug/L)	MW11	66	0.36	0.19	0.02	0.25	0.25	0.50	0.25	1	93.94	
Trichlorofluoromethane (ug/L)	MW14	46	0.28	0.09	0.01	0.25	0.25	0.25	0.25	0.5	100	
Trichlorofluoromethane (ug/L)	MW15	39	1.04	0.24	0.04	1.10	0.92	1.10	0.25	1.6	2.564	
Trichlorofluoromethane (ug/L)	MW16	4	1.11	0.60	0.30	1.07	0.62	1.60	0.5	1.8	25	
Trichlorofluoromethane (ug/L)	Camp	5	0.25	0.00	0.00	0.25	0.25	0.25	0.25	0.25	100	
Trichlorofluoromethane (ug/L)	Kinman	2	0.25	0.00	0.00	0.25	0.25	0.25	0.25	0.25	100	
Trichlorofluoromethane (ug/L)	Small	10	0.25	0.00	0.00	0.25	0.25	0.25	0.25	0.25	100	
Vinyl chloride (ug/L)	MW05 (bg)	28	0.33	0.15	0.03	0.25	0.25	0.50	0.1	0.5	100	
Vinyl chloride (ug/L)	MW07 (bg)	4	0.21	0.08	0.04	0.25	0.18	0.25	0.1	0.25	100	
Vinyl chloride (ug/L)	MW09 (bg)	9	0.15	0.08	0.03	0.10	0.10	0.25	0.1	0.25	100	
Vinyl chloride (ug/L)	MW10 (bg)	4	0.21	0.08	0.04	0.25	0.18	0.25	0.1	0.25	100	
Vinyl chloride (ug/L)	MW12 (bg)	56	0.33	0.12	0.02	0.25	0.25	0.50	0.25	0.5	100	
Vinyl chloride (ug/L)	MW01	29	0.40	0.13	0.02	0.50	0.25	0.50	0.25	0.5	100	
Vinyl chloride (ug/L)	MW03	29	0.40	0.13	0.02	0.50	0.25	0.50	0.25	0.5	100	
Vinyl chloride (ug/L)	MW11	66	0.33	0.12	0.01	0.25	0.25	0.50	0.25	0.5	100	
Vinyl chloride (ug/L)	MW14	46	0.28	0.09	0.01	0.25	0.25	0.25	0.25	0.5	100	
Vinyl chloride (ug/L)	MW15	39	1.83	0.92	0.15	1.60	0.96	2.40	0.55	3.8	0	
Vinyl chloride (ug/L)	MW16	4	0.21	0.08	0.04	0.25	0.18	0.25	0.1	0.25	100	
Vinyl chloride (ug/L)	Camp	5	0.25	0.00	0.00	0.25	0.25	0.25	0.25	0.25	100	
Vinyl chloride (ug/L)	Kinman	2	0.25	0.00	0.00	0.25	0.25	0.25	0.25	0.25	100	
Vinyl chloride (ug/L)	Small	10	0.25	0.00	0.00	0.25	0.25	0.25	0.25	0.25	100	

TABLE 5 STATISTICAL SUMMARY OF GROUNDWATER VOC DATA City of Walla Walla Sudbury Road Landfill

Notes:

Statistics based on data collected from 1991 - March 24, 2011.

Statistics calculated with Sanitas for Groundwater V9.2.

MW-12 data include samples collected from MW-12 and MW-12b.

N = number of samples (sample population).

APPENDIX A

Beneficial Use Information

File Original and First Copy with
Department of Ecology
Second Copy — Owner's Copy
Third Copy - Driller's Cony

The Department of Ecology does NOT Warranty the Data and/or the Information on this Well Report.

WATER WELL REPORT

Application No.

	Permit No.
(1) OWNER: Name Bonneville Power Administration	n Address P.O. Box 1518. Walla Walla, Wa. 99362
21 LOCATION OF WELL: County Walla Walla	NW SW
and distance from section or subdivision corper	III 14 Sec 22 T. [N, R22E W
3) PROPOSED USE: Domestic 🐴 Industrial 🗆 Municipal 🗆	(10) WELL LOG:
Irrigation 🗌 Test Well 🗌 Other 🗌	Formation: Describe by color, character, size of material and structure, those the material is a structure of the kind and nature of the material is
4) TYPE OF WORK. Owner's number of well	stratum penetrated, with at least one entry for each change of format
(if more than one)	MATERIAL FROM TO
Deepened D Cable Driven D	CREANAlly well was 10"
Reconditioned 📴 🖉 Rotary 🗋 Jetted 🗋	with B" J Linex to Rock
5) DIMENSIONS:	450. The seal between the
Drilled	10 cassing & The 8" wasn't
	holding out some sound that
6) CONSTRUCTION DETAILS:	was compared 100 th, where
Casing installed: 8 " Diam. from O ft. to	The stiner was cut off the
Threaded Diam. from ft. to ft.	So we ran AST of P' Cassing
Welded IV	with a over shot of the end,
Perforations: Yes 🗆 No 🖅	Conto the orginal & cassing a
Type of perforator used	OH CALSIN
SIZE of perforations in. by in.	ORGING Well
merforations from	
perforations from	Demut,
	Grout
	10 cassing 11
Manufacturer's Name	- oversho
Diam. Slot size from ft. to ft.	17 outo ording
Diam	& Lince COSSING
Gravel necked:	
Gravel placed from the to the state of gravel:	fill seal sed ill
Charter placed Hold	┃ ┃
Surface seal: Yes D No B To what depth? ft.	│ │││
Material used in seal	│ ┟┨╿╎ ──── ────┤ ╱┤│┼┼┼──┼───┼───
Type of water?	
Method of sealing strata off	
7) PUMP: Manufacture Name	
Туре:	
a) WATER I DIVERS	
b) WATER LEVELS: above mean sea level	
tatic levelft, below top of well Date to	
Artesian water is controlled by	DEPARTMENT OF ECOLOGY
(Cap, valve, etc.)	SPOKANE REGIONAL OFFICE
9) WELL TESTS: Drawdown is amount water level is	
as a pump test made? Yes I No D If yes, by whom?	Work started D Huy 19.16. Completed D Sept. 19.
eld: gal./min. with ft. drawdown after hrs.	WELL DRILLER'S STATEMENT:
······································	This well was drilled under my jurisdiction and this report
ч II	true to the best of my knowledge and belief.
ecovery data (time taken as zero when pump turned off) (water level measured from well top to water level)	
Time Water Level Time Water Level Time Water Level	NAME UNGMAND & KOHLK UTILING (0
	TO, box 4 7/1 1 1 1 2 (1 and
	Address 17 Walla WJ 99362
	LA H VA
Date of test	[Signed] THURS AYUN
rtesian flow	(Well Driller)
emperature of water	License No. 610 Date 19
$\cdot \cdot $	l de la construcción de la constru

WATER WELL REPORT	Notice of Intent No. WIS Q	54	
Original & 1st copy - Ecology, 2nd copy - owner, 3rd copy - driller	Unique Ecology Well ID Tag No.	C-28;	8
Construction/Decommission ("x" in circle)	Water Dicht Demuit No		
O Decommission ORIGINAL CONSTRUCTION Notice			<u></u>
of Intent Number	Property Owner Name BERT M	NMAN	
PROPOSED USE: Domestic Industrial Municipal	Well Street Address NOVE		
Dewater Infigation Test well Other	City County:		
TYPE OF WORK: Owner's number of well (if more than one)	Location 5 1/4- 1/4 5 1/4 Sec 16 T	<u>~1~ R35</u> €	WM
Deepened - Detted	Lat/Long: Lat Dag	W	/WN
DIMENSIONS: Diameter of well inches, drilled ft.	(s,t,r still)	at Min/Sec	
Depth of completed well <u>180</u> ft.	Ter Derest No	.ong Min/Sec	
CONSTRUCTION DETAILS		N BROCEDUBE	_
Installed: Liner installed Liner "Diam. fromft. toft.	Formation: Describe by color, character, size of ma	terial and structure, a	and
Threaded Diam. fromft. toft.	kind and nature of the material in each stratum pend entry for each change of information. Indicate all w	strated, with at least of ater encountered.	one
Perforations: Ves No	(USE ADDITIONAL SHEETS IF NECESSARY.)		
Type of perforator used <u>Spre</u>	MATERIAL	FROM 7	го
Size of peris variation in by the and no. of peris to from 190 it. to 10 it.	SOIL (LOESS)	06	7
Manufacturer's Name	BROWN CLAY	67 8	¥
TypeModel No	1) Ago Barris Class	- 84 70	<u>5</u>
DiamSlot Sizefromtt. tott. DiamSlot Sizefromft_toft_	CEMENTER GRAVEL	148 18	20
Materials placed from ft.			
Surface Seal: XYes No To what depth? ft			
Materials used in seal <u>BENTONITK</u>			
Did any strata contain unusable water? Yes KNo			
Type of water?Depth of strata Method of sealing strata off			
PUMP: Manufacturer's Name	· · · · · · · · · · · · · · · · · · ·		
Туре:Н.Р			
WATER LEVELS: Land-surface elevation above mean sea levelft.			
Static level 70 ft. below top of well Date 12-2-0			
Artesian water is controlled by			
(cap,valve, etc.)			
WELL TESTS: Drawdown is amount water level is lowered below static level.			
Yield:ft. drawdown afterhrs.			
Yield: gal/min. with ft. drawdown after hrs.			
Recovery data (time taken as zero when pump turned off)(water level measured from			
well top to water level) Time Water Level Time Water Level Time Water Level		<u>EM</u>	
		2/	
Date of test	3		
Airtest $\underline{\neg \sigma}$ gal/min. with stem set at $\underline{\neg \sigma}$ ft. for $\underline{\neg }$ hrs.		137 - 1	
Artesian flow g.p.m. Date	Start Date 11-29-0 Completed Da	te 12-2-0	~
remperature or water was a chemical analysis made? Li Yes X No			•
WELL CONSTRUCTION CERTIFICATION: I constructed and/or accept respo Washington well construction standards. Materials used and the information re	nsidinity for construction of this well, and its c ported above are true to my best knowledge ar	ompliance with all id belief.	ł
Driller Engineer Trainee Name (Print) B.W. VOTH	Drilling Company FlvE Snon	DRILLIM	4,
Driller/Engineer/Trainee Signature			•••
	- Address	A 0621	8
Driller or Trainee License No.			- 1
Driller or Trainee License No Log 7	Contractor's	2	<u>v</u>

.

Ecology is an Equal Opportunity Employer. ECY 050-1-20 (Rev 4/01)

acona Copy—Owner's Copy hird Copy—Driller's Copy	STATE C	F WASHINGTON	t Permir No.	
mark and	athleen Sma	11 Address Pt. 1 B	PATIE LOULIED II	JFJ 993/
1) OWNEH: Name ZIRE A	And the series		rk ale al	
2) LOCATION OF WELL: County	Dalla Walla	PI Wallaw	K Secol T. T.N	N., R352W.M.
28) STREET ADDDRESS OF WELL (or near	rest address) _U.d.DU	ry ra unanaw	2114, WF4 49-	slack.
3) PROPOSED USE: Domestic	ndustrial 🗍 Municipal	(10) WELL LOG or AB/	NDONMENT PROCEDURE	DESCRIPTION
	Test Well Other	Formation: Deacribe by color.	character, size of material and mind and nature of the material in each a	ructure, and show stratum penatreted.
4) TYPE OF WORK: Owner's number of well	" AAS716	with at least one entry for each ct	ange of information.	
Abandoned 🖓 New well	hod: Dug 🗌 Bored			
Deepenad Reconditioned	Cable 🗋 Driven Rotary 🗍 Jetted	a Bravel		1 100 11
	Za insh			a rug n
Difference of the second of th		ft		
(6) CONSTRUCTION DETAILS:		≝ ==== ==		
Casing Installed: O Diam from	+L 11.10 95	n. Nale Nine	ofor.	
Waided Diam. from	n (t to	-n. 10" 0 to 2	5	
Throaded Digm. from	n	h. 6" 25tols	20	
Perforations: Yes No No				
SIZE of performings	in. by	in.		
pertariations from	fl. 10	11.		
pertorations from	II. 10	_h.		
perforations from	fl. to	<u>n.</u>		
Тура	Model No			
DiamSlot wizeKo	mh.19			į
DiamSlot aiza	mft. to			
Gravel packed: Yes No Size of	gravol			
Gravel placed from	1.10	χ ^{π.}		
Surface seal: Yos No No Townal	onite llosack	/m		
Did eny strate contain unuable weter? Yes	NO			
Typs of water?	Depth of airata		· · · · · · · · · · · · · · · · ·	
Method of sealing strats off				,,
(7) PUMP: Manufacturer's Name		-		
Туре	H.P.,			<u> </u>
(8) WATER LEVELS: Land Burnace of a bove mean sea	level n_11_0	7 ^{n.}	· · · · · · · · · · · · · · · · · · ·	~
Static level ft, below top Actes and prosture fts, ber	square inch Date			
Artemen water is controlled by	(Cap, valve, etc.))			
(9) WELL TESTS: Drawdown is amount	ner level is lowered below static	level Work staned 2-9-	70 19. Completed	1/-7810
Wessoump teat made? Yes No La II	1 yee, by whom?	WELL CONSTRUCTO	R CERTIFICATION:	
		- hrs. I constructed and/or	accept responsibility for constru-	uction of this wall,
· · · · · · · · · · · · · · · · · · ·		Malerials used and th	e information reported above ar	e true to my best
Recovery data (lime taken es zero when pump trom well top to water level)	p lurned of() (weter level measure	d knowledge and beijet.		111
Time WaterLevel Time Water	rlaval Timg WaterLa	NAME Wallace)rilling, tatrick,	Wallace
		(PERSON.	18th Parallat	AR9-7PA
		Address / 10/SW	1011, rendieton,	,01 1. 100
DBIA 0/1061		(Signed) etruit	6) alloc License No	_1lele3
	. II. drawdown shor	hra. Contractor's	DAILYER	00
Surger gav, min, with stem set a	······································	- me Hegisthetion AD-09	ON/K 3-2	-41

File Original and First Copy with Department of Ecology Second Copy — Owner's Copy Third Copy — Driller's Copy	ELL REPORT Application No. WASHINGTON 40,669 Permit No.	131 P
(1) OWNER: Name Kabin M ANd Sharon R. S.	n'Harries 50 BROOKSIde DR. W.C	W, WN.
) LOCATION OF WELL: County WALLA WALLA	2 NW_ Htt y, Std y, sec. 23 т. 7 N., R.	35 _{.w.м.}
(3) PROPOSED USE: Domestic 🙀 Industrial 🗌 Municipal Irrigation 🗌 Test Well 🗌 Other	(10) WELL LOG: Formation: Describe by color, character, size of material and structure of the ma	cture, and
(4) TYPE OF WORK: Owner's number of well (if more than one)	stratum penetrated, with at least one entry for each change of f MATERIAL FROM FROM	ormation. TO
New well Method: Dug Deepened Cable More Deepened Cable Jetted	BROWN TOP SOIL D BROWN CLAYF BRAYEL 60	60
(5) DIMENSIONS: Diameter of well 6 inche Drilled 9 2 ft. Depth of completed well 9 2	BROWNCLAY + GRAVEL 125 ROWNCLAY + GRAVEL 125 * PRAVEL WATER BEARING 176	176
(6) CONSTRUCTION DETAILS:	CRAVEL-WITH SOME 185 CLAY (WATERISEARING	192
Casing installed: Diam. from ft. to ft. t	t. t. t.	
Perforations: Yes D No X	-	<u> </u>
SIZE of perforations in. by it perforations from	h. t.	
perforations from ft. to		
[·] Screens: Yes □ No pr Manufacturer's Name	i De	
Type Model No Diam. Slot size from		
Gravel packed: Yes No A Size of gravel:	THE FRED	
Surface seal: Yes No D To what depth? Material used in seal CLAY FROM WELL	t. 10: 275 10/0	
Did any strata contain unusable water? Yes No Type of water? Depth of strata Method of sealing strata off	DEPARTMENT DEFECCIOGY	
(7) PUMP: Manufacturer's Name		
(8) WATER LEVELS: Land-surface elevation above mean sea level:		
Artesian pressurelbs. per square inch Date	·····	
(9) WELL TESTS: Drawdown is amount water level is lowered below static level	- Work started 2 X 3- 19 76 Completed 2/13	19 7/
Was a pump test made? Yes No not if yes, by whom? Yield: gal./min. with ft. drawdown after hr " " " "	WELL DRILLER'S STATEMENT:	, <u>10</u> .
" " " "	true to the best of my knowledge and belief.	eport 1S
measured from well top to water level) Time Water Level Time Water Level Time Water Level	NAME <u>HARDING</u> <u>DRILLING</u> (Person, firm, or corporation) (Type or pri	<u>(° 0.</u>
	Address IT / 3 St 3RD W ALLA WALLA	W45
Date of test Bailer test 30 gal/min. with 6 ft. drawdown after. hr Artesian flow	[Signed] A ayment / ta Acting	
Temperature of water	License No. 917 H Date 6/ 21	, 19 7 6
S. F. No. 7356-OS-(Rev. 4-71).	SHEETS IF NECESSARY)	3

WATER WELL REPORT	CURRENT Notice of Intent No. W 206289
Original & 1" copy - Ecology, 2" copy - owner, 3" copy - driller E C 0 L 0 G Y	Unique Ecology Well ID Tag No. $APC - G99$
Construction/Decommission ("x" in circle)	Water Right Permit No
O Decommission ORIGINAL INSTALLATION Notice	Bronarty Owner Name Rad SCHIMINT
of Intent Number	Property owner Name $100.3 = 10000000$
PROPOSED LISE: Domestic Industrial Municipal	Well Street Address 737800 FJ00 9 [
DeWater	City WIELER WIELE County WIELE WIELE
TYPE OF WORK: Owner's number of well (if more than one)	Location $N = 1/4 - 1/4 N M 1/4$ Sec 28 Twn $N R 33$ with circle
Kew well Reconditioned Method Dug Bored Driven	Lat/Long (str. Lat Deg. Lat Min/Sec.
Deepened Cable Decorary Detted	
Depth of completed well 6 20 ft.	Long Deg Long Min/Sec
CONSTRUCTION DETAILS	Tax Parcel No. 350128110017
Casing \mathcal{D} Welded $[O]$ " Diam. from $+$ ft. to S \mathcal{P} ft. Installed \square Liner installed \mathbb{R} " Diam. from \mathcal{D} \mathcal{D} ft to $L/\Delta \mathbb{C}$ ft.	
Threaded Diam. from ft. to	CONSTRUCTION OR DECOMMISSION PROCEDURE
Perforations: Ves Servo	nature of the material in each stratum penetrated, with at least one entry for each change of
SIZE of perfs in. by in. and no. of perfs from ft. to ft.	information. (USE ADDITIONAL SHEETS IF NECESSARY.)
Screens: Yes Xes Location Location	MATERIAL FROM TO
Manufacturer's Name	LOSSE CRAVEL SG 175
Type Model No	BROWN CLAY WIGRAVEL 135 154
Diam. Slot size from ft. to ft. Diam. Slot size from ft. to ft.	TAN CLAY WISAND 154 194
Gravel/Filter packed: Yes No Size of gravel/sand	LOUSE GRAVEL 194 215
Materials placed fromft. toft.	BWG/GRAY CLAY 215 320
Surface Seal: \bigcirc Yes \square No To what depth? \bigcirc \bigcirc \bigcirc ft.	GRAY CLAYSTONTZ W/ 320 440
Material used in seal <u><u><u><u></u></u><u><u><u></u><u><u></u><u></u><u><u></u><u><u></u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u><u></u><u></u></u></u></u></u></u></u></u></u></u>	BLACK SKNDSTUMPZ
Type of water? UDDLA TONE Depth of strata 86-215	BIGWACHAY STONE 440 450
Method of sealing strata off C 13 5 EO	BUSCK 13/03/00 430 710
PUMP: Manufacturer's Name	CRAY CLAYSTONE 511 519
Туре: Н.Р	GRAN BASALA 519 526
WATER LEVELS: Land-surface elevation above mean sea levelft.	HARD GROW BASALT 526 579
Static level 20 ft. below top of well Date $7/27/0$	MEDIVIN 11 11 579 589
Artesian water is controlled by	HARD 11 11 589 593
(cap, valve, etc.)	GRAY 13135ACT W/ 13W ~ 595 60
WELL TESTS: Drawdown is amount water level is lowered below static level	LARD GRAY RASALE (402 620
Was a pump test made? Yes INO If yes, by whom?	There aread 12102 12 10 - 10 - 10 - 10 - 10 - 10 -
Yield:gal/min. withft. drawdown afterhrs.	
Yield:gal/min. withft. drawdown afterhrs.	
top to water level)	
Time Water Level Time Water Level Time Water Level	
<u> </u>	AUG 27 2007
Date of test	
Bailer test gal./min. with ft. drawdown after hrs.	DEPARTMENT OF ECOLOGY
Airtest 400 gal/min. with stem set at 620 ft. for 2 hrs.	EASTERN REGIONAL OF HOE
Artesian flow g.p.m. Date	
Temperature of water 69 Was a chemical analysis made? 🗆 Yes 🏂 No	
······································	Start Date Completed Date
WELL CONSTRUCTION CERTIFICATION: I constructed and/or acc	ept responsibility for construction of this well, and its compliance with all
Washington well construction standards. Materials used and the informatio	n reported above are true to my best knowledge and belief.
Driller Engineer Trainee Name (Print) 131 LL MLCHN2FFIE SI	C, Drilling Company <u>FIVE SIJOR</u>
Driller/Engineer/Trainee Signature	Address 36 201 ATUNG 1 L
	_ City, State, Zip WR 1 5 Contractor's
IT I KAINEE, Driller's Licensed No.	- Registration No. FIVE SPOKOTTMB Date 7/31/07
Driller's Signature Bill WE NGA	Ecology is an Equal Obportunity Employer
l/	

. . .

. . .

. *

-

 $(\cdot,\cdot)_{i=1}^{n}$

ECY 050-1-20 (Rev 3/05) The Department of Ecology does NOT warranty the Data and/or Information on this Well Report.

	and the second se
270137	
WATER WELL REPORT	CURRENT Notice of Intent No. WZ06287
Construction/Decommission ("x" in circle)	Unique Ecology Well ID Tag No. APC 700
© Construction	Water Right Permit No.
O Decommission ORIGINAL INSTALLATION Notice of Intent Number	Property Owner Name <u>ROB</u> SCHMDT
PROPOSED USE: Domestic Industrial Municipal DeWater Irrigation Test Well Other	City WALGAWALLA County WALLA WALLA
TYPE OF WORK: Owner's number of well (if more than one)	Location V1744-1/4 MM/4 Sec 28 Twn 7 R35 GWM or circle www one
Deepend Deepend Difference Cable Depend Defection Defect	Lat/Long (s, t, r Lat Deg Lat Min/Sec
Depth of completed wellft.	Tax Parcel No. 3 179 5 11 0 00 7
Construction DetAils. Casing St Welded Diam. from ft. to ft. to ft.	
Installed: Liner installed" Diam. fromft. toft. toft. toft. toft. toft. toft.	CONSTRUCTION OR DECOMMISSION PROCEDURE
Perforations: Yes X No Type of perforator used	nature of the material in each stratum penetrated, with at least one entry for each change of information. (USE ADDITIONAL SHEETS IF NECESSARY.)
SIZE of perfsin. byin. and no. of perfsfromft. toft.	MATERIAL FROM TO
Screens: Yes DX No K-Pac Location	LOR55 0 86
Type Model No.	600 5 K 4 RAVA (86 122
Diam. Slot size from ft. to ft. Diam. Slot size from ft. to ft.	
Gravel/Filter packed: Yes Yes No Size of gravel/sand	
Surface Seal: X Yes \Box No To what depth? Notice is and $X = \frac{1}{2} \sqrt{\frac{1}{2} \sqrt{\frac{1}{2}}} \sqrt{\frac{1}{2} \sqrt{\frac{1}{2}}} \sqrt{\frac{1}{2} \sqrt{\frac{1}{2}}}$	
Did any strata contain unusable water? Yes St No	
Type of water? Depth of strata	
Method of sealing strata off	
PUMP: Manufacturer's Name Type: H.P.	
WATER LEVELS: Land-surface elevation above mean sea levelft.	
Artesian pressure Ibs. per square inchr Date	
Artesian water is controlled by	
WELL TESTS: Drawdown is amount water level is lowered below static level	
Was a pump test made? 🗆 Yes 🛛 No If yes, by whom?	· · · · · · · · · · · · · · · · · · ·
Yield: gal/min. with ft. drawdown after hrs. Yield: gal/min. with ft. drawdown after hrs. Vield: gal/min. with ft. drawdown after hrs.	
Recovery data (time taken as zero when pump turned off) (water level measured from well	
Time Water Level Time Water Level Time Water Level	
	AUG 27 2007
Date of test	DEPARTMENT OF FCOLOGY
Bailer test gal./min. withft. drawdown afterhrs.	EASTERN REGIONAL OFFICE
Airtest 40 gal/min. with stem set at 120 ft. for 1 hrs.	├
Arressan now g.p.m. Date Temperature of water Was a chemical analysis made?	
· · · · · · · · · · · · · · · · · · ·	Start Date 7/27/07 Completed Date 7/27/07
WELL CONSTRUCTION CERTIFICATION: I constructed and/or acc Washington well construction standards. Materials used and the informatic	ept responsibility for construction of this well, and its compliance with all on reported above are true to my best knowledge and belief.
Driller Engineer Trainee Name (Print) BILL MCHAFFIE	INDrilling Company FIVE STOR DRILLING
Driller/Engineer/Trainee Signature	_ Address 36 301 KTWY (22) City state Zin DAT TAK 141A 9937-8
If TRAINEE,	Contractor's
Driller's Licensed No.	- Registration No. FIVESD + 01/143 Date 7/31/07
	Ecology is an Equal Opportunity Employer.

• `

The Department of Ecology does NOT Warranty the Data and/or the Information on this Well Report.

The Department of Ecology does NOT warranty the Data and/or Information on this Well Report. ECY 050-1-20 (Rev 3/05)

	34302
WATER WELL REPORT Original & 1 st copy – Ecology, 2 ^{sd} copy – owner, 3 rd copy – driller	CURRENT Notice of Intent No. WE09797
E C 0 L 0 C Y Construction/Decommission ("x" in circle)	Unique Ecology Well ID Tag No. <u>APC-699</u>
Construction	Water Right Permit No G 3-27490C
O Decommission ORIGINAL INSTALLATION Notice	Property Owner Name 208 SCHM10 T
0j 1/1em Number	Well Street Address 4598 W. HIGHWAY12
PROPOSED USE: Domestic Industrial Municipal DeWater Irrigation Test Well Other	City WALLA WALLA County WALLA WALLA
TYPE OF WORK: Owner's number of well (if more than one)	Location <u>N C</u> 1/4-1/4 <u>M</u> 1/4 Sec <u>C</u> 1 Win <u>M</u> <u>K</u> <u>S</u> or arcle www.one
New well Reconditioned Method: Dug Bored Driven Deepened Cable Rotary Jetted	Lat/Long (s, t, r Lat Deg Lat Min/Sec
DIMENSIONS: Diameter of well $\frac{108}{6}$ inches, drilled $\frac{-780}{780}$ ft. Depth of completed well 780 ft.	Still REQUIRED) Long Deg Long Min/Sec
CONSTRUCTION DETAILS	Tax Parcel No. 350728110017
Installed: \Box Liner installed \Box "Diam. from -55 ft. to -405 ft. Threaded \Box "Diam. from -257 ft. to -405 ft.	CONSTRUCTION OR DECOMMISSION PROCEDURE
Perforations: Ves No	Formation: Describe by color, character, size of material and structure, and the kind and nature of the material in each stratum penetrated, with at least one entry for each change of
SIZE of perfs in. by in. and no. of perfsfromft. toft	Information. (USE ADDITIONAL SHEETS IF NECESSARY.)
Screens: Ves K-Pac Location	DEEPENER FROM 120 780
Manufacturer's Name	
Diam. Slot size from ft. to ft.	HARU GRAY ISASALT 620 633
DiamSlot sizetromtt. tott.	ILAD CONGRACION (1) 150
Materials placed fromft.	CRAL CIA STRUE 642 637
aurface Seal: Ves I No. To what denth? A	Can CACALOT (17788
Material used in seal	WED CRAG BASALT 72 780
Did any strata contain unusable water?	VARG GIA 7 15/85/6 150 100
Type of water? Depth of strata = 100	W/BLUECHAJSTONE
Method of sealing strata off	
PUMP: Manufacturer's Name	I G" CACUAL QUILLE
Гуре:	EXTENDED TO 523
WATER LEVELS: Land-surface elevation above mean sea levelft.	
Static level ft. below top of well Date	# 6X8 K PACKERS PLACED
Artesian pressure lbs. per square inclr Date	AT 382.5' AND
Artesian water is controlled by	AT 288.51
(cap; vaive; cit.)	BENTONITE PLUG PLACED
Was a numn test made? Ves No. If yes hy whom?	BRANERN PACKERS.
Yield: gal/min. with ft. drawdown after hrs.	
Yield:ft. drawdown afterhrs.	
Yield: gal/min. with ft. drawdown after hrs.	
nop to water level)	
Fime Water Level Time Water Level Time Water Level	
Date of test	
Bailer testgal./min. withft. drawdown afterhrs.	DEPARTMENT OF FOOLOGY
Airtest 500 gal./min. with stem set at 780 ft. for 2 hrs.	FASTERN REGIONAL OFFICE
Artesian flow g.p.m. Date	<u>├</u>
Cemperature of water 69 V Was a chemical analysis made? D Yes X No	
	Start Date 7/11/2009 Completed Date 1/27/09
/ELL CONSTRUCTION CERTIFICATION: I constructed and/or a	ccept responsibility for construction of this well, and its compliance with all
/ashington well construction standards. Materials used and the informat	ion reported above are true to my best knowledge and belief.
Driller DEngineer DTrainee Nerson B. M. VOTH	Drilling Company FIVE STAN DRILLIN G
riller/Engineer/Trainee Signature	Address 36301 HIGHWAN 12
iller or trainee License No7_094	City, State, Zip DAUTEM INA G9328
	Contractor's
riller's Licensed No.	Registration No. F/VE DX 67114 Date 4/30/05
riller's Signature	Ecology is an Equal Ormortunity Employer

ECY 050-1-20 (Rev 3/05)

The Department of Ecology does NOT Warranty the Data and/or the Information on this Well Report.

The Department of Ecology does NOT warranty the Data and/or Information on this Well Report.

Sudbury Landfill

414 Sudbury Road Walla Walla, WA 99362

Inquiry Number: 3106242.2s June 24, 2011

EDR NEPACheck®

440 Wheelers Farms Road Milford, CT 06461 Toll Free: 800.352.0050 www.edrnet.com

TABLE OF CONTENTS

SECTION	PAGE
EDR NEPACheck [®] Description	. 1
Map Findings Summary	2
Natural Areas	3
Historic Sites	5
Flood Plain	11
Wetlands	13
Wetlands Classification System	15
FCC & FAA Sites	19
Key Contacts and Government Records Searched	29

Thank you for your business. Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Sit Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2010 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

EDR NEPACheck[®] DESCRIPTION

The National Environmental Policy Act of 1969 (NEPA) requires that Federal agencies include in their decision-making processes appropriate and careful consideration of all environmental effects and actions, analyze potential environmental effects of proposed actions and their alternatives for public understanding and scrutiny, avoid or minimize adverse effects of proposed actions, and restore and enhance environmental quality as much as possible.

The EDR NEPACheck provides information which may be used, in conjunction with additional research, to determine whether a proposed site or action will have significant environmental effect.

The report provides maps and data for the following items (where available). Search results are provided in the Map Findings Summary on page 2 of this report.

Section Natural Areas Map • Federal Lands Data:	Regulation
 Officially designated wilderness areas Officially designated wildlife preserves, sanctuaries and refuges 	47 CFR 1.1307(1) 47 CFR 1.1307(2)
- Wild and scenic rivers - Fish and Wildlife	40 CFR 6.302(e) 40 CFR 6.302
Threatened or Endangered Species, Fish and Wildlife, Critical Habitat Data (where available)	47 CFR 1.1307(3); 40 CFR 6.302
Historic Sites Map • National Register of Historic Places • State Historic Places (where available) • Indian Reservations	47 CFR 1.1307(4); 40 CFR 6.302
Flood Plain Map • National Flood Plain Data (where available)	47 CFR 1.1307(6); 40 CFR 6.302
Wetlands Map National Wetlands Inventory Data (where available) 	47 CFR 1.1307(7); 40 CFR 6.302
FCC & FAA Map • FCC antenna/tower sites, FAA Markings and Obstructions, Airports, Topographic gradient	47 CFR 1.1307(8)
Key Contacts and Government Records Searched	

MAP FINDINGS SUMMARY

Inquiry #: 3106242.2s

Date: 6/24/11

The databases searched in this report are listed below. Database descriptions and other agency contact information is contained in the Key Contacts and Government Records Searched section on page 29 of this report.

TARGET PROPERTY ADDRESS

SUDBURY LANDFILL 414 SUDBURY ROAD WALLA WALLA, WA 99362

TARGET PROPERTY COORDINATES

Latitude (North): Longitude (West): Universal Tranverse Mercator: UTM X (Meters):	46.077099 - 46° 4' 37.6" 118.403702 - 118° 24' 13.3" Zone 11 391456.4 5102352 5			
Applicable Regulation from 47 CFR/FCC Checklist	Database	Search Distance (Miles)	Within Search	Within 1/8 Mile
NATURAL AREAS MAP				
1.1307a (1) Officially Designated Wilderness Area	US Federal Lands	1.00	NO	NO
1.1307a (2) Officially Designated Wildlife Preserve	US Federal Lands	1.00	NO	NO
1.1307a (3) Threatened or Endangered Species or Critical Habitat	WA Natural Heritage-Puget Soun	1.00	NO	NO
1.1307a (3) Threatened or Endangered Species or Critical Habitat	Priority Habitats and Species	1.00	NO	NO
1.1307a (3) Threatened or Endangered Species or Critical Habitat	WA Streamnet	1.00	NO	NO
1.1307a (3) Threatened or Endangered Species or Critical Habitat	County Endangered Species	County	YES	N/A
HISTORIC SITES MAP				
1.1307a (4) Listed or eligible for National Register	National Register of Hist. Pla	1.00	NO	NO
1.1307a (4) Listed or eligible for National Register	WA Historic Sites	1.00	NO	NO
	Indian Reservation	1.00	NO	NO
FLOODPLAIN MAP				
1.1307 (6) Located in a Flood Plain	FLOODPLAIN	1.00	NO	NO
WETLANDS MAP				
1.1307 (7) Change in surface features (wetland fill)	NWI	1.00	NO	NO
FCC & FAA SITES MAP				
	Cellular	1.00	NO	NO
	4G Cellular	1.00	NO	NO
	Antenna Structure Registration	1.00	YES	NO
	Towers	1.00	YES	NO
	AM Antenna	1.00	YES	NO
	FM Antenna	1.00	NO	NO
	FAA DOF	1.00	YES	NO
	Airports	1.00	NO	
	Power Lines	1.00	YES	

SITE NAME: Sudbury Landfill	CLIENT: Floyd Snider	
ADDRESS: 414 Sudbury Road Walla Walla WA 99362	CONTACT: Tina Gary	
LAT/LONG: 46.0771 / 118.4037	DATE: June 24, 2011	TC3106242.2s Page 3 of 35

NATURAL AREAS MAP FINDINGS

Endangered Species Listed for: WALLA WALLA County, WA.

Source: EPA Endangered Species Protection Program Database		
BIRD:	EAGLE, BALD	
FISH:	SALMON, CHINOOK (SNAKE RIVER SPRING/SUMMER)	
FISH:	SALMON, SOCKEYE (SNAKE RIVER POPULATION)	
FISH:	STEELHEAD, MIDDLE COLUMBIA RIVER POPULATION	
FISH:	STEELHEAD, UPPER COLUMBIA RIVER POPULATION	
FISH:	STEELHEAD, SNAKE RIVER BASIN POPULATION	
FISH:	SALMON, CHINOOK (UPPER COLUMBIA RIVER SPRING)	
FISH:	SALMON, CHINOOK (SNAKE RIVER FALL RUN)	
FISH:	TROUT, BULL	

Direction Distance EDR ID	Map ID	
Distance EDR ID	Direction	
	Distance	EDR ID
Distance (ft.) Database	Distance (ft.)	Database

No mapped sites were found in EDR's search of available government records within the search radius around the target property.

SITE NAME:	Sudbury Landfill	CLIENT: Floyd Snider	
ADDRESS:	414 Sudbury Road	CONTACT: Tina Gary	
	Walla Walla WA 99362	INQUIRY #: 3106242.2s	
LAT/LONG:	46.0771 / 118.4037	DATE: June 24, 2011	TC3106242.2s Page 5 of 35

HISTORIC SITES MAP FINDINGS

Map ID Direction Distance Distance (ft.)

EDR ID Database

No mapped sites were found in EDR's search of available government records within the search radius around the target property.

Due to poor or inadequate address information, the following sites were not mapped:

Status EDR ID Database

Unmappable WA2008000001663 WA Historic Sites

Fname: Faddress: Fcity: Fcnty: Flisted: Remark: Edr id: Bruce, William Perry, House 4th and Main Streets Waitsburg Walla Walla County (11/20/1975) Not Reported WA2008000001663

> Unmappable WA2008000001671 WA Historic Sites

Fname: Faddress: Fcity: Fcnty: Flisted: Remark: Edr id: Dacres Hotel 4th and Main Streets Walla Walla Walla Walla County (11/5/1974) Not Reported WA2008000001671

> Unmappable WA2008000001691 WA Historic Sites

Fname: Faddress: Fcity: Fcnty: Flisted: Remark: Edr id: Maxson School Russell Creek Road and Foster Road Walla Walla VICINITY Walla Walla County (11/22/1991) * WA2008000001691

> Unmappable WA2008000001679 WA Historic Sites

Fname: Faddress: Fcity: Fcnty: Flisted: Remark: Edr id: Moore, Miles C., House 720 Bryant Walla Walla Walla Walla County (11/13/1989) Not Reported WA2008000001679

> Unmappable WA2008000001682 WA Historic Sites

Due to poor or inadequate address information, the following sites were not mapped:

Status EDR ID Database

Fname:Saint Patrick Church, School and RectoryFaddress:West Alder Street, 400 BlockFcity:Walla WallaFcnty:Walla Walla CountyFlisted:(1/20/1995)Remark:*Edr id:WA200800001682

Unmappable 95000606 National Register of Hist. Places

Refnum: Resname: Address: Resource Type: Number buildings: Number sites: Number structs: Number objects: Non-contrib bldg: Non-contrib sites: Non-contrib structs: Non-contrib objects: Primary Certification: Certification date: Acreage: Alternate name: County: City: Applicable Criteria: Applicable Criteria: Areas of significance: Areas of significance: Areas of significance: Current Function: **Current Function: Building Material:** Building Material: Building Material: **Building Material: Building Material:**

95000606 Saint Patrick Church, School and Rectory 400 Blk. W. Alder St. Building 000003 000000 000000 000000 000000 000000 000000 000000 Determined eligible/owner objection 19950505 10 Not Reported Walla Walla Walla Walla Event Architecture/Engineering Architecture Education Exploration/settlement Religion Vacant/not in use Stone Brick Concrete Adobe Asphalt

> Unmappable 76002273 National Register of Hist. Places

Refnum: Resname: Address: Resource Type: 76002273 Schwarz, Adolph, Building 27--33 E. Main St. Building

address information, the following sites were not mapped:
000001
000000
000000
000000
000000
000000
000000
000000
Removed from national register
19990101
9
Not Reported
Walla Walla
Walla Walla
Event
Commerce
Commerce/trade
None listed
Brick
Stucco
Other
None listed
Walla Walla Armory;Arcadia Dance Hall

Unmappable WA2008000001667 WA Historic Sites

Status EDR ID Database

Fname: Faddress: Fcity: Fcnty: Flisted: Remark: Edr id: Waitsburg Historic District Main Street Waitsburg Walla Walla County (3/31/1978) Not Reported WA200800001667

> Unmappable WA2008000001685 WA Historic Sites

Fname: Faddress: Fcity: Fcnty: Flisted: Remark: Edr id: Walla Walla Armory/Arcadia Dance Hall 27-33 East Main Street Walla Walla Walla Walla County (7/12/1990) Not Reported WA2008000001685

> Unmappable WA2008000001686 WA Historic Sites

Status EDR ID Database

Walla Walla Fair Pavilion 363 Orchard Street Walla Walla Walla Walla County (1/28/2005) * WA2008000001686

Fname: Faddress: Fcity: Fcnty: Flisted: Remark: Edr id:

Fname: Faddress:

Fcity: Fcnty:

Flisted:

Edr id:

Remark:

Washington School 501 North Cayuse Walla Walla Walla Walla County (11/21/1991) Not Reported WA2008000001689 Unmappable WA2008000001689 WA Historic Sites

Unmappable WA2008000001692 WA Historic Sites

Fname: Faddress: Fcity: Fcnty: Flisted: Remark: Edr id: Whitman Mission National Historic Site 6 Miles West of Walla Walla off U.S. 410 Walla Walla VICINITY Walla Walla County (10/15/1966) Not Reported WA2008000001692

TC3106242.2s Page 10 of 35

Flood Plain Map

E:	June 24, 2011		TC3106242.2s	Page 11 of 35
	Copyright © 2011 EDR. Inc. © 2010 Tele Atlas Rel.	07/2009.		

3106242.2s

INQUIRY #:

DATE:

LAT/LONG:

46.0771 / 118.4037

FLOOD PLAIN MAP FINDINGS

Source: FEMA DFIRM Flood Data, FEMA Q3 Flood Data

County	FEMA flood data	a electronic coverage
WALLA WALLA, WA	YES	
Flood Plain panel at target property: Additional Flood Plain panel(s) in search area: 5301940430B (FEMA Q3 Flood data)	5301970000A)	(FEMA Q3 Flood data)

TC3106242.2s Page 12 of 35

National Wetlands Inventory Map

SITE NAME: Sudbury Landfill	CLIENT: Floyd Snider	
ADDRESS: 414 Sudbury Road	CONTACT: Tina Gary	
Walla Walla WA 99362	INQUIRY #: 3106242.2s	
LAT/LONG: 46.0771 / 118.4037	DATE: June 24, 2011	TC3106242.2s Page 13 of 35

WETLANDS MAP FINDINGS

Source: Fish and Wildlife Service NWI data

NWI hardcopy map at target property: College Place Additional NWI hardcopy map(s) in search area: Not reported in source data

Map ID Direction Distance Distance (ft.)

Code and Description*

Database

No Sites Reported.
WETLANDS CLASSIFICATION SYSTEM

National Wetland Inventory Maps are produced by the U.S. Fish and Wildlife Service, a sub-department of the U.S. Department of the Interior. In 1974, the U.S. Fish and Wildlife Service developed a criteria for wetland classification with four long range objectives:

- · to describe ecological units that have certain homogeneous natural attributes,
- · to arrange these units in a system that will aid decisions about resource management,
- · to furnish units for inventory and mapping, and
- · to provide uniformity in concepts and terminology throughout the U.S.

High altitude infrared photographs, soil maps, topographic maps and site visits are the methods used to gather data for the productions of these maps. In the infrared photos, wetlands appear as different colors and these wetlands are then classified by type. Using a hierarchical classification, the maps identify wetland and deepwater habitats according to:

- system
- subsystem
- class
- · subclass
- modifiers

(as defined by Cowardin, et al. U.S. Fish and Wildlife Service FWS/OBS 79/31. 1979.)

The classification system consists of five systems:

- 1. marine
- 2. estuarine
- 3. riverine
- 4. lacustrine
- 5. palustrine

The marine system consists of deep water tidal habitats and adjacent tidal wetlands. The riverine system consists of all wetlands contained within a channel. The lacustrine systems includes all nontidal wetlands related to swamps, bogs & marshes. The estuarine system consists of deepwater tidal habitats and where ocean water is diluted by fresh water. The palustrine system includes nontidal wetlands dominated by trees and shrubs and where salinity is below .5% in tidal areas. All of these systems are divided in subsystems and then further divided into class.

National Wetland Inventory Maps are produced by transferring gathered data on a standard 7.5 minute U.S.G.S. topographic map. Approximately 52 square miles are covered on a National Wetland Inventory map at a scale of 1:24,000. Electronic data is compiled by digitizing these National Wetland Inventory Maps.

* STREAMBED is limited to TIDAL and INTERMITTENT SUBSYSTEMS, and comprises the only CLASS in the INTERMITTENT SUBSYSTEM. **EMERGENT is limited to TIDAL and LOWER PERENNIAL SUBSYSTEMS.

TC3106242.2s Page 17 of 35

SUBSYSTEM			P - PALUSTRINE						
CLASS Bottom	RBROCK BOTTOM	UBUNCONSOLIDATED BOTTOM	AB-AQUATIC BED	USUNCONSOLIDATED SHORE	MLMOSS- LICHEN	EMEMERGENT	SSSCRUB-SHRUB	FOFORESTED	OW-OPEN WATER/ Unknown
Subclass	1 Bedrock 2 Rubble 3 Mud 4 Organic	1 Cobble-Gravel 2 Sand	1 Algal 2 Aquatic Moss 3 Rooted Vascular 4 Floating Vascular 5 Unknown Submergent 6 Unknown Surface	1 Cobble-Gravel 2 Sand 3 Mud 4 Organic 5 Vegetated	1 Moss 2 Lichen	1 Persistent 2 Nonpersistent	1 Broad-Leaved Deciduous 2 Needle-Leaved Deciduous 3 Broad-Leaved Evergreen Evergreed 4 Needle-Leaved Evergreen Evergreed 5 Dead 6 Deciduous 6Decid 7 Evergreen	1 Broad-Leaved Deciduous 2 Needle-Leaved Deciduous 3 Broad-Leaved 4 Needle-Leaved 5 Dead uous 7 Evergreen	

MODIFIERS In order to more adequately describe wetland and deepwater habitats one or more of the water regime, water chemistry, soil, or special modifiers may be applied at the class or lower level in the hierarchy. The farmed modifier may also be applied to the ecological system.								
	WATER REGIME			WATER CHEMISTRY			SOIL	SPECIAL MODIFIERS
Non-TidalTidalA Temporarily FloodedFB SaturatedJC Seasonally FloodedKD Seasonally Flooded/WWell DrainedEE Seasonally Flooded/YSaturatedFF SemipermanentlyZFloodedGG IntermittentlyUExposedU	lal CoastalHal H Permanently Flooded I Intermittently Flooded K Artificially Flooded W Intermittently Flooded/Temporary Y Saturated/Semipermanent/ Seasonal Z Intermittently Exposed/Permanent U Unknown	inityInlandSalinitypHMod K Artificially Flooded L Subtidal M Irregularly Exposed N Regularly Flooded P Irregularly Flooded *These water regi tidally influence	lifiersfor *S Temporary-Tidal *R Seasonal-Tidal *T Semipermanent -Tidal V Permanent -Tidal U Unknown mes are only used in d, freshwater systems.	1 Hyperhaline 2 Euhaline 3 Mixohaline (Brackish) 4 Polyhaline 5 Mesohaline 6 Oligohaline 0 Fresh	7 Hypersaline 8 Eusaline 9 Mixosaline 0 Fresh	all Fresh Water a Acid t Circumneutral i Alkaline	g Organic n Mineral	b Beaver d Partially Drained/Ditched f Farmed h Diked/Impounded r Artificial Substrate s Spoil x Excavated

Source: U.S. Department of the Interior Fish and Wildlife Service National Wetlands Inventory

FCC & FAA Sites Map

SITE NAME: Sudbury Landfill	CLIENT: Floyd Snider
ADDRESS: 414 Sudbury Road	CONTACT: Tina Gary
Walla Walla WA 99362	INQUIRY #: 3106242.2s
LAT/LONG: 46.0771 / 118.4037	DATE: June 24, 2011 TC3106242.2s Page 19 of 35

Map ID		
Direction Distance		EDR ID
Distance (ft.)		Database
A1		TOW10000066200
South		TOWER
1/2-1 mi		
3553		
Tower id:	53947	
City:	WALLA WALLA	
Date active:	May 9 1994	
Date const:	99/99/1999	
Date faa:	Not Reported	
Date fcc:	Not Reported	
Hgt antenna:	0.0000	
Hgt antenna (M):	0.0000	
Hgt beacon:	0.0000	
Hgt beacon (M):	0.0000	
Elevation:	984.0000	
Elev FAA:	0.0000	
Elev FAA (M):	0.0000	
	299.9000	
Hgt structure:	204.0000	
Hat stru foo (M):	0.0000	
Higt strue (M):	62 2000	
Supporting Strue Hat:	0.0000	
Supporting Office Figt.	0.0000	
Tower Hat:	0.0000	
Tower (M):	0.0000	
Id asb acc:	Y	
Faa id:	Not Reported	
File num:	BR-69 (KUJ)	
Name owner:	KUJ	
State:	WA	
Address:	US HWY 410 & SUDBURY RD	
Action:	MOD	
Type stru:	TOW	
Type tower:	E	
Key site:	69877	
ld exam:	PRB5	
Xmit lat:	460403	
Xmit long:	1182408	
Lat deg:	46	
Lat min:	4	
Lat sec:	3	
Lat second:	165843	
Long deg:	110	
	24 0	
Long secon:	0 426248	
Kov rom:	Hot Reported	
The date:	Not Reported	
Type nl.	1 12 21 3	
Spec cond1	Not Reported	
opoo oonan.		

Map ID Direction Distance Distance (ft.)

EDR ID Database

Spec cond2:Not RepRemarks:Not RepEdr id:TOW10

Not Reported Not Reported TOW10000066200

This record is for a license, and it may or may not indicate a site which has been built.

A2 South 1/2-1 mi 3673		AMT10000004830 AM_ANTENNA
Callsign: Frequency: Service: Class: Status: City: State: Country: Filenum: Facid: Lat: Lon:	KUJ 1420 kHz AM B LIC WALLA WALLA WA US BL -20051107AGD 35718 46-4-2N 118-24-5W	
Licensee:	ALEXANDRA COMMUNICATIONS, INC.	
Latdd:	46.0672	
Londd:	118.4014	
Edr id:	AMT10000004830	

This record is for a license, and it may or may not indicate a site which has been built.

Map ID Direction Distance Distance (ft.)		EDR ID Database
٨3		DOF200000132724
South		NOAA DOF
1/2-1 mi		
3721		
Obstacle n:	53-000097	
O or u:	0	
Country:	US	
State:	WA	
City:	WALLA WALLA	
Lat deg:	46	
Lat min:	4	
Lat sec:	01.00N	
Lon deg:	118	
Lon min:	24	
Lon sec:	08.00W	
Obstacle type:	TOWER	
Quantity:	2	
Agl ht:	204	
Amsl ht:	984	
Lighting:	R	
Horiz acc:	1	
Vert acc:	D	
Marking:	M	
Faa num:	Not Reported	
Action:	C	
Julian:	1983355 22	
Edr id:	DOF200000132724	

Map ID Direction Distance Distance (ft.)		EDR ID Database
A4		ANT200000110872
South		ANTREG
1/2-1 mi		
3/31		
Reanum:	1037809	
Filenum:	A0044557	
Issuedate:	2/12/1998	
Entity:	THOMAS D. HODGINS	
Lat dms:	46,4,1	
Lat dir:	1	
Lon dms:	118,24,9	
Lon dir:	-1	
Dd temp:	46.0669	
Dd temp0:	-118.4025	
Strucht:		
Strucadd:	TWR 1 - INT OF CAMPBELL RD & RT 12	
Struccity:		
Sirucsiale. Eaastudy:		
Faacirc	70/7460-1 I	
Licid:	Not Reported	
Contname:	TOM HODGINS	
Contadd:	ROUTE # 5 BOX 513	
Contpo:	Not Reported	
Contcity:	WALLA	
Contstate:	WA	
Contzip:	99362	
Edr id:	ANT200000110872	

This record is for a license, and it may or may not indicate a site which has been built.

	EDR ID Database
	ANT200000110873 ANTREG
1037810 A0044558 2/12/1998 THOMAS D. HODGINS 46,4,1 1 118,24,8 -1 46,0669 -118.4022 60.2 TWR 2 - INT OF CAMPBELL RD & RT 12 WALLA WALLA WA 97-ANM-1364-OE Not Reported Not Reported Not Reported TOM HODGINS ROUTE # 5 BOX 513 Not Reported WALLA WALLA WA 99362 ANT20000110873	
	1037810 A0044558 2/12/1998 THOMAS D. HODGINS 46,4,1 1 118,24,8 -1 46.0669 -118.4022 60.2 TWR 2 - INT OF CAMPBELL RD & RT 12 WALLA WALLA WA 97-ANM-1364-OE Not Reported Not Reported Not Reported Not Reported Not Reported TOM HODGINS ROUTE # 5 BOX 513 Not Reported WALLA WALLA WA 99362 ANT200000110873

This record is for a license, and it may or may not indicate a site which has been built.

Map ID

Map ID Direction Distance Distance (ft.)		EDR ID Database
B6 SE 1/2-1 mi		DOF200000132727 NOAA_DOF
4979		
Obstacle n:	53-020482	
O or u:	0	
Country:	US	
State:	WA	
City:	WALLA WALLA	
Lat deg:	46	
Lat min:	4	
Lat sec:	04.00N	
Lon deg:	118	
Lon min:	23	
Lon sec:	21.70W	
Obstacle type:	T-L TWR	
Quantity:	1	
Agl ht:	86	
Amsl ht:	899	
Lighting:	Ν	
Horiz acc:	5	
Vert acc:	D	
Marking:	Ν	
Faa num:	2009ANM01560OE	
Action:	C	
Julian:	2009335 31	
Edr id:	DOF200000132727	

Map ID Direction Distance Distance (ft.)		EDR ID Database
B7 SE 1/2-1 mi		DOF200000132729 NOAA_DOF
5069		
Obstacle n:	53-020485	
O or u:	0	
Country:	US	
State:	WA	
City:	WALLA WALLA	
Lat deg:	46	
Lat min:	4	
Lat sec:	04.41N	
Lon deg:	118	
Lon min:	23	
Lon sec:	19.41W	
Obstacle type:	T-L TWR	
Quantity:	1	
Agl ht:	86	
Amsl ht:	902	
Lighting:	Ν	
Horiz acc:	5	
Vert acc:	D	
Marking:	Ν	
Faa num:	2009ANM01565OE	
Action:	С	
Julian:	2009335 31	

DOF200000132729

Edr id:

FCC & FAA SITES MAP FINDINGS AIRPORTS

EDR ID Database

No Sites Reported.

EDR ID Database

POW1000004877 POWERLINES

Name:	OR618
ld:	5619
Kv:	115
Label:	115 kV
Company:	PacifiCorp
Companyabb:	PacifiCorp
Edr id:	POW1000004877

POW10000014641 POWERLINES

Name:	WA546
ld:	2547
Kv:	230
Label:	230 kV
Company:	Bonneville Power A
Companyabb:	BPA
Edr id:	POW10000014641

Name: ld: Kv: Label: Company: Companyabb: Edr id:

WA153 6154 115 115 kV PacifiCorp PacifiCorp POW1000005834

Power Administration

POW1000005834 POWERLINES

Various Federal laws and executive orders address specific environmental concerns. NEPA requires the responsible offices to integrate to the greatest practical extent the applicable procedures required by these laws and executive orders. EDR provides key contacts at agencies charged with implementing these laws and executive orders to supplement the information contained in this report.

NATURAL AREAS

Officially designated wilderness areas Government Records Searched in This Report FED_LAND: Federal Lands Source: USGS Telephone: 703-648-5094 Federal data from Bureau of Land Management, National Park Service, Forest Service, and Fish and Wildlife Service. - National Parks - Forests - Monuments - Wildlife Sanctuaries, Preserves, Refuges - Federal Wilderness Areas.

Date of Government Version: 12/31/2005

Federal Contacts for Additional Information

National Park Service, Pacific West Region 600 Harrison Street, Suite 600 San Francisco, CA 94107 415-427-1300

USDA Forest Service, Pacific Northwest 333 SW First Street P.O. Box 3623 Portland, OR 97208 503-326-3865

BLM - Oregon State Office 1515 SW 5th Ave. Portland, OR 92208-2965 503-952-6002

Fish & Wildlife Service, Region 1 Eastside Federal Complex 911 NE 11th Avenue Portland, OR 97232-4181 503-231-6188

Officially designated wildlife preserves, sanctuaries and refuges Government Records Searched in This Report

FED_LAND: Federal Lands Source: USGS Telephone: 703-648-5094 Federal data from Bureau of Land Management, National Park Service, Forest Service, and Fish and Wildlife Service. - National Parks - Forests - Monuments - Wildlife Sanctuaries, Preserves, Refuges - Federal Wilderness Areas.

Date of Government Version: 12/31/2005

Federal Contacts for Additional Information Fish & Wildlife Service, Region 1

Eastside Federal Complex 911 NE 11th Avenue Portland, OR 97232-4181 503-231-6188

State Contacts for Additional Information Dept. of Fish & Wildlife 360-902-2200

Wild and scenic rivers

Government Records Searched in This Report

FED_LAND: Federal Lands Source: USGS Telephone: 703-648-5094 Federal data from Bureau of Land Management, National Park Service, Forest Service, and Fish and Wildlife Service. - National Parks - Forests Macuments

- Monuments
- Wildlife Sanctuaries, Preserves, Refuges
- Federal Wilderness Areas.
- Date of Government Version: 12/31/2005

Federal Contacts for Additional Information

Fish & Wildlife Service, Region 1 Eastside Federal Complex 911 NE 11th Avenue Portland, OR 97232-4181 503-231-6188

Endangered Species

Government Records Searched in This Report

Endangered Species Protection Program Database A listing of endangered species by county. Source: Environmental Protection Agency Telephone: 703-305-5239

WA Natural Heritage-Puget Soun: Washington Natural Heritage Information System Locations of endangered, threatened and sensitive species and select ecosystems. Source: Department of Natural Resources. Telephone: 360-902-1349

Priority Habitats and Species Database: WA Endangered Plants and Rare Ecosystems Rare plant species and endangered ecosystems Source: Dept. of Natural Resources. Telephone: 360-902-1125

WA Streamnet: WA Streamnet Source: Dept of Fish and Wildlife. Telephone: 360-902-2543

Federal Contacts for Additional Information

Fish & Wildlife Service, Region 1 Eastside Federal Complex 911 NE 11th Avenue Portland, OR 97232-4181 503-231-6188

State Contacts for Additional Information Natural Heritage Program, Dept. of Natural Resources 360-902-1340

LANDMARKS, HISTORICAL, AND ARCHEOLOGICAL SITES Historic Places

Government Records Searched in This Report

National Register of Historic Places:

The National Register of Historic Places is the official federal list of districts, sites, buildings, structures, and objects significant in American history, architecture, archeology, engineering, and culture. These contribute to an understanding of the historical and cultural foundations of the nation. The National Register includes:

- All prehistoric and historic units of the National Park System;
- National Historic Landmarks, which are properties recognized by the Secretary of the Interior as possessing national significance; and
- Properties significant in American, state, or local prehistory and history that have been nominated by State Historic Preservation Officers, federal agencies, and others, and have been approved for listing by the National Park Service.

Date of Government Version: 03/23/2006

WA Historic Sites: Historic Places in Washington Listing of historic sites on the National and State Register. Source: Office of Community Development. Office of Archaeology and Historic Preservation Telephone: 360-407-0753

Federal Contacts for Additional Information Park Service; Advisory Council on Historic Preservation 1849 C Street NW Washington, DC 20240 Phone: (202) 208-6843

State Contacts for Additional Information Office of Archeology & Historic Preservation 360-407-0753

Indian Religious Sites

Government Records Searched in This Report

Indian Reservations: This map layer portrays Indian administrated lands of the United States that have any area equal to or greater than 640 acres. Source: USGS Phone: 888-275-8747 Date of Government Version: 12/31/2005

Federal Contacts for Additional Information Department of the Interior- Bureau of Indian Affairs Office of Public Affairs 1849 C Street, NW Washington, DC 20240-0001 Office: 202-208-3711 Fax: 202-501-1516

National Association of Tribal Historic Preservation Officers 1411 K Street NW, Suite 700 Washington, DC 20005 Phone: 202-628-8476 Fax: 202-628-2241

State Contacts for Additional Information A listing of local Tribal Leaders and Bureau of Indian Affairs Representatives can be found at: http://www.doi.gov/bia/areas/agency.html

Portland Area Office, Bureau of Indian Affiars 911 N.E. 11th Avenue Portland, OR 97232 503-231-6702

Spokane Tribe of Indians P.O. Box 100 Wellpinit, WA 99040

Confederated Tribes of the Colville Reservation P.O. Box 150 Nespelem, WA 99155

Scenic Trails

State Contacts for Additional Information Pacific Crest Trail Association 5325 Elkhorn Boulevard, #256 Sacramento, California 95842 916-349-2109

FLOOD PLAIN, WETLANDS AND COASTAL ZONE

Flood Plain Management

Government Records Searched in This Report

Flood Zone Data: This data, available in select counties across the country, was obtained by EDR in 2003 & 2011 from the Federal Emergency Management Agency (FEMA). Data depicts 100-year and 500-year flood zones as defined by FEMA.

Federal Contacts for Additional Information Federal Emergency Management Agency 877-3362-627

State Contacts for Additional Information State Military Department, Emergency Management 253-512-7000

Wetlands Protection

Government Records Searched in This Report NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2004 from the U.S. Fish and Wildlife Service.

Federal Contacts for Additional Information Fish & Wildlife Service 813-570-5412

State Contacts for Additional Information Dept. of Fish & Wildlife 360-902-2200

Coastal Zone Management

Government Records Searched in This Report CAMA Management Areas Dept. of Env., Health & Natural Resources 919-733-2293

Federal Contacts for Additional Information

Office of Ocean and Coastal Resource Management N/ORM, SSMC4 1305 East-West Highway Silver Spring, Maryland 20910 301-713-3102

State Contacts for Additional Information Shorelands & Env. Assistance Program, Dept. of Ecology 360-407-6600

FCC & FAA SITES MAP

For NEPA actions that come under the authority of the FCC, the FCC requires evaluation of Antenna towers and/or supporting structures that are to be equipped with high intensity white lights which are to be located in residential neighborhoods, as defined by the applicable zoning law.

Government Records Searched in This Report

Cellular

Federal Communications Commission 445 12th Street, SW Washington, DC 20554 888-225-5322

4G Cellular

Federal Communications Commission 445 12th Street, SW Washington, DC 20554 888-225-5322

Antenna Structure Registration

Federal Communications Commission 445 12th Street, SW Washington, DC 20554 888-225-5322

Towers

Federal Communications Commission 445 12th Street, SW Washington, DC 20554 888-225-5322

AM Antenna

Federal Communications Commission 445 12th Street, SW Washington, DC 20554 888-225-5322

FM Antenna

Federal Communications Commission 445 12th Street, SW Washington, DC 20554 888-225-5322

FAA Digital Obstacle File

Federal Aviation Administration (FAA) 1305 East-West Highway, Station 5631 Silver Sprinng, MD 20910-3281 Telephone: 301-713-2817 Describes known obstacles of interest to aviation users in the US. Used by the Federal Aviation Administration (FAA) and the National Oceanic and Atmospheric Administration to manage the National Airspace System.

Airport Landing Facilities

Federal Aviation Administration Telephone (800) 457-6656 Private and public use landing facilities.

Electric Power Transmission Line Data

Rextag Strategies Corp. 14405 Walters Road, Suite 510 Houston, TX 77014 281-769-2247 U.S. Electric Transmission and Power Plants systems Digital GIS Data.

Excessive Radio Frequency Emission

For NEPA actions that come under the authority of the FCC, Commission actions granting construction permits, licenses to transmit or renewals thereof, equipment authorizations or modifications in existing facilities, require the determination of whether the particular facility, operation or transmitter would cause human exposure to levels of radio frequency in excess of certain limits.

Federal Contacts for Additional Information

Office of Engineering and Technology Federal Communications Commission 445 12th Street SW Washington, DC 20554 Phone: 202-418-2470

OTHER CONTACT SOURCES

STREET AND ADDRESS INFORMATION

(c) 2010 Tele Atlas North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.

APPENDIX B

Site Well Logs and Drillers Well Reports

Department of Ecology Second Copy — Owner's Copy Third Copy — Driller's Copy	WATER WE State of V	LL REPORT	Application	n No	
1) OWNER: Name CITY OF 11/	- ila Ini-ila	<u> </u>		• • • • • • • • • • • • • • • • • • • •	
LOCATION OF WELL	IR CLAIG	Address 3CX 7/1	5		~
Bearing and distance from section or subdivision co	ner	TaY	NE VA Sec 22 T	7	<u>, </u>
(3) PROPOSED USE: Domestic	trial 🗇 Municipal 🗇	(10) WELL LOG			
Irrigation 📋 Test V	Well 🕅 Other	Formation: Describe by color,	character, size of mate	rial and stru	cture
(4) TYPE OF WORK. Owner's number of	weil /	show thickness of aquifers and stratum penetrated, with at l	i the kind and nature o east one entry for each	f the materi change of	ial in forma
(if more than one) New well 1921 Method:	Dug Dered D	MATER	IAL	FROM	Т
Deepened	Cable 👷 Driven 🗍	- I.c.pscil		0	2
Reconditioned	Rotary 🗌 Jetted 🔲	- Sand + BR	own (lay	23	4
(5) DIMENSIONS:	2"	Sa	rel	42	- 4
Drilled 121 ft. Depth of completed	well (7) tt	BROW, Clay	+ GRAVEL	48	2
		- BROW	2 Clay	73	7
(6) CONSTRUCTION DETAILS:		BROWN Clay	* GRAVEL	29	_8
Casing installed: Diam. from T	2 ft. to 118 ft.	- Brown	lay	\$7	9
Threaded [2]	ft. to ft.	- IKEWA (lay +	- GRAVEL	72	Ľ
Weided Diam. from	ft. to ft.	- CRavel-	M. CER	77	
Perforations: Yes 🗆 No 🕱					
Type of perforator used					
SIZE of perforations in. h	by in.				1
perforations from	ft. to ft.	7 Sacks Fili	FRR Sand 10-	20	
perforations from	ft. to ft.	- FROM 121	TO 90 FT		
Screens: Var H					
Manufacturer's Name Johnson	N	Tumped in 15	Sacks Va	A Cla	L
Type 316 Mod	el No	FROM 90 TO	6'	1	
Diam. 2. Slot size $\times 010$ from 10	28 ft. to 118 ft.				
Diam Slot size from	ft. to ft.	_ IFT OF Same	<u>6 To</u>	5	
Gravel packed: Yes I No X Size of a	zravel.	- p - (<u> </u>		
Gravel placed from ft. to	ft.	ERO OL T	SACKS TORI	LAND	
Surface seal: yes of No. 7. The second			CROUND A	erer!	
Material used in seal	ptn? ft.		······		
Did any strata contain unusable water?	Yes 🗌 No 🗌	· · · · · · · · · · · · · · · · · · ·		1	
Type of water? Depth of	strata		-	1	
method of sealing strata off					
7) PUMP: Manufacturer's Name			- · · · ·		
Туре:					
8) WATER LEVELS: Land-surface elevati	ion				
atic level 23' above mean sea leve	ei				
rtesian pressure	Date		· · · · · · · · · · · · · · · · · · ·	+	
Artesian water is controlled by	n value etc.)			1.	
	P, VAIVE, E(C.)			+ +	
b) WELL IESIS: Drawdown is amount lowered below static	water level is	Work started 8-77	10 86 0000 9	-14	~ 10
as a pump test made? Yes 🖉 No 🗌 If yes, by who	om? URI IIER	WITH A DESCRIPTION	19. u. Completed	I Ø	.
tt. drawdown	a after hrs.	WELL DRILLER'S ST.	ATEMENT:		
		This well was drilled un true to the best of my in-	ider my jurisdiction	and this r	eport
covery data (time taken as zero when pump turn	ed off) (water level	vo viac best of my Kill	micuge and Denei.		~
measured from well top to water level)		NAME HARDTA	10 DETIII	NG (\sum_{n}
Dico 23	me Water Level	(Person, firm,	or corporation) (Type or prin	nt)
.00 24'		Address RT3 Bo	x 67 Daalla	Walla	ĩ.
01 23'		un	······································		/
Date of test 7-8-56		[Signed] Mike	Hardina		
ner testft. drawdow	m afterhrs.	·	(Well Driller	•••••••••••••••••	
g.p.m. Date		1 7 7	4	- /	c
mperature of water	made? Yes (No de	License No 1/3	Data 10~) (/	10 4

STATE OF W WNER: Name_tIIUUUU	Address Add
WNER: Name.till(1 U ull (L ull (L ull (U ull	Address <u>JEE BELOID</u> <u>I FY A FY A FY A FY SCC</u> (10) WELL LOG: <u>T A A 35</u> Formation: Describe by color, character, size of material and structure, of show thickness of aquifers and the kind and nature of the material in eq stratum penetrated, with at least one entry for each change of formati <u>MATERIAL</u> FROM TO <u>T CP SOI</u> SOU <i>SHOW Clux C</i> 35 Brown <i>Clay WITL Fille</i> Sand <i>Same waTec</i> 35 36 <i>Clay Brown 38</i> 49 <i>Clay Brown 49</i> 53
OCATION OF WELL: County Unit a full a fu	(10) WELL LOG: TOTATION: Describe by color, character, size of material and structure, of show thickness of aquifers and the kind and nature of the material in el stratum penetrated, with at least one entry for each change of formati MATERIAL FROM TO TOP SOIL & Brown Clux O 35 Brown Clay with Filthe Saud Some water 35 36 Clay Brown 49 53
and distance from section or subdivision corner COPOSED USE: Domestic Industrial Municipal Irrigation Test Well Other PE OF WORK: Owner's number of well # / New well Method: Dug Bored Deepened Cable Driven Reconditioned Rotary Jetted MENSIONS: Diameter of well	(10) WELL LOG: 77 M P. 35 Formation: Describe by color, character, size of material and structure, of show thickness of aquifers and the kind and nature of the material in en- stratum penetrated, with at least one entry for each change of formati MATERIAL FROM TO TOP SOIL & Brown Cluy, O 35 Brown Clay wiTh Fine Sand Some water 35 36 Clay Brown 36 38 Clay - Brown 49 53
COPOSED USE: Domestic Industrial Municipal Irrigation Test Well Other Irrigation TPE OF WORK: Owner's number of well # / New well Method: Dug Bored Deepened Cable Driven Reconditioned Rotary Jetted MENSIONS: Diameter of well 5 Ided 5 inches. NSTRUCTION DETAILS: Sing installed: 5 Sing installed: 7 Diam. from ft. to Welded "Diam. from ft. to ft.	(10) WELL LOG: <u>7</u> <u>M</u> <u>7</u> <u>35</u> Formation: Describe by color, character, size of material and structure, of show thickness of aquifers and the kind and nature of the material in edistratum penetrated, with at least one entry for each change of formation <u>MATERIAL</u> FROM TO <u>MATERIAL</u> FROM TO <u>7</u> <u>0</u> <u>6</u> <u>50</u> <u>1</u> <u>5</u> <u>5</u> <u>6</u> <u>7</u> <u>6</u> <u>5</u> <u>6</u> <u>7</u> <u>6</u> <u>50</u> <u>1</u> <u>5</u> <u>6</u> <u>7</u> <u>6</u> <u>50</u> <u>1</u> <u>5</u> <u>7</u> <u>6</u> <u>7</u> <u>6</u> <u>5</u> <u>6</u> <u>7</u> <u>6</u> <u>5</u> <u>6</u> <u>7</u>
Irrigation [] Test Well [] Other Image: Stransform of the strain one) New well [] Method: Dug [] Bored [] Deepened [] Cable [] Driven [] Reconditioned [] Rotary [] Jetted [] MENSIONS: Diameter of well 5 Ided [] S ft. Depth of completed well (] S NSTRUCTION DETAILS: sing installed: S " Diam. from ft. to ft. Yelded [] "Diam. from ft. to ft. Yelded [] "Diam. from ft. to ft.	(10) WELL LOG. Formation: Describe by color, character, size of material and structure, of show thickness of aquifers and the kind and nature of the material in ed- stratum penetrated, with at least one entry for each change of formati MATERIAL FROM TO TOP SOIL & Brown Clux, O 35 Brown Clay Luith Fille Sand Same water 35 36 Clay Brown 36 38 Clay - Brown 49 53
TPE OF WORK: Owner's number of well # / (if more than one)	Pormation: Describe of color, character, size of material and structure, of show thickness of aquifers and the kind and nature of the material in en- stratum penetrated, with at least one entry for each change of formati <u>MATERIAL</u> FROM TO <u>Top Soil + Brown cluy</u> 0 35 <u>Brown clay with Fine Saud</u> <u>Some water</u> 35 36 <u>Clay Brown</u> 36 38 <u>Clay - Brown</u> 49 53
PE OF WORK: Owner's number of well # New well Method: Dug Bored Deepened Cable Driven Reconditioned Rotary Jetted MENSIONS: Diameter of well 5 Ied 5 inches. NSTRUCTION DETAILS: sing installed: 5 Sing installed: 5 Diam. from ft. to C Welded "Diam. from ft. to ft. rforations: Yes No Machine	MATERIAL FROM TO TOP SOIL & Brown clux 0 35 Brown clay with Fine Sand Some water 35 36 Clay Brown 36 38 Clay - Brown 49 53
New well Method: Dug Bored Deepened Cable Driven Reconditioned Rotary Jetted MENSIONS: Diameter of well 5 Ied .5 ft. Depth of completed well NSTRUCTION DETAILS: sing installed: 5 Diam. from ft. to .	Top Soil & Brown clux 0 35 Brown clay with Fine Sand Some water 35 36 Clay Brown 36 38 Gravel - Cement - Brown 38 49 Clay - Brown 49 53
Deepened Cable Driven Cable Dri	Brown 2 Jay with Fine Sand Some water 35 36 Clay Brown 36 38 Clay - Brown 49 53
MENSIONS: Diameter of well inches. Iedft. Depth of completed well ft. Instruction DETAILS: sing installed: Diam. fromft. toft. toft. Threaded Diam. fromft. toft.	Brown 2 Jay with Fine Sand Some water 35 36 Clay Brown 36 38 Gravel - Cement - Brown 38 49 Clay - Brown 49 53
MENSIONS: Diameter of well 5 inches. Ied 5 ft. Depth of completed well 6 ft. NSTRUCTION DETAILS: sing installed: 5 Diam. from 6 ft. to 65 ft. Threaded 7 Diam. from ft. to ft. C Welded 7 Diam. from ft. to ft. ft. to ft. to ft. to ft. MA Chine	Clay Brown 49 53
Iedft. Depth of completed wellft. INSTRUCTION DETAILS: sing installed: 5 " Diam. fromft. toft. Threaded Diam. fromft. toft. 65 ft. Welded Diam. fromft. toft. 65 ft. C Welded Diam. fromft. toft. 65 ft. forations: Yes No	Clay Brown 36 38 Cravel - Cement - Brown 38 49 Clay - Brown 49 53
NSTRUCTION DETAILS: sing installed: <u>5</u> "Diam. from <u>0</u> ft. to <u>65</u> ft. Threaded <u>1</u> "Diam. from <u>ft. to</u> ft. <u>6</u> Welded <u>1</u> "Diam. from <u>ft. to</u> ft. ft. to <u>ft.</u> to <u>ft. to</u> ft. Welded <u>1</u> "Diam. from <u>ft. to</u> ft. Threaded <u>1</u> "Diam. from <u>ft. to</u> ft. The forations: Yes <u>1</u> No <u>1</u> What for the ft.	Clay-Brown 49 53
sing installed: <u>5</u> "Diam. from <u>0</u> ft. to <u>65</u> ft. Threaded <u>"Diam. from ft. to ft.</u> <u>C Welded <u>U</u> <u>Diam. from ft. to ft.</u> t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. t. </u>	Clay-Brown 49 53
Threaded Diam. from ft. to ft. Threaded Diam. from ft. to ft. Welded Diam. from ft. to ft. fforations: Yes No HA closed	Clay - Brown 49 53
C Welded " Diam. from ft. to ft.	Clay - Brown 49 53
rforations: Yes INO I MACLING	
IES IT NO WAR	
Type of perforator used 110 MIAC	Dravel - Lemen 1 - 10+04-53 6
SIZE of perforations in. by in.	
perforations from ft. to ft.	
TU perforations from	IN. W. Fid Fil #1
periorations from ft. to ft.	
eens: Yes D No D	SEGIN AT THE NORTHEAST CORNER
Manufacturer's Name	SECTION 22 IN THOUSHIP 7 NORTH.
Diam. Slot size from ft to ft	RANGE 35. EAST OF THE WILLAMETTE
Diam Slot size from ft. to ft.	MERIDIAN AND RUNNING THENCE
2/ 1//d	SOUTHERY ALONG THE EAST LINE OF
Gravel placed from 35 Size of gravel: 74	SAID SECTION 22, A DISTANCE OF
t. to	533 REET ; THENCE WESTERLY
face seal: Yes - No - To what depth? ft.	AT RIAGHT ANGLES TO THE EAST
Material used in seal DE4 164 11C	LINE OT SAID SECTION 22, A
Type of water? Depth of strata	DISTANCE OF 4/1 FEFF 10
Method of sealing strata off	THE STIE OF TEST WELL T
MP	
Type:	
TER LEVELS: Land-surface elevation above mean sea levelft.	JAN 1 19/1
1 27_ft. below top of well Date // DY 21-76	>
Artegian water is controlled by	DEPARTMENT OF EQULOGY
(Cap, valve, etc.)	SPOKA _ NECTONAL OFFICE
LL TESTS: Drawdown is amount water level is	
iowered below static level	Work started 1/04 15
gal./min. with ft. drawdown after hrs.	WELL DRILLER'S STATEMENT:
·· · · ·	This well was drilled under my jurisdiction and this report
·· · · · · ·	true to the best of my knowledge and belief.
data (time taken as zero when pump turned off) (water level red from well top to water level)	
Water Level Time Water Level Time Water Level	NAME LOW CI W MAHAI
	(rerson, nrm, or corporation) (Type or print) RTH - T +
	Address MI - 2 BOX /// MII 104 Freewalcy
	P it at int int
f test	[Signed]. Jowell Mathewall
	(Well Driller)
re of water S. Was a chemical analysis made? Yes D No	License No. C-81 Date Nec. 16, 1971
	40 perforations from 25 ft. to 45 ft. perforations from ft. to ft. to ft. weinight for the state of the state o

File Origina, and First Copy with Department of Ecology Second Copy — Owner's Copy Third Copy — Driller's Copy

WATER WELL REPORT

.pplication No.

-

Permit	No.			
Permit	NO.	٠	•	

STATE OF	WASHINGTON Well-2 Permit No.
(1) OWNER: Name Walk Walk City	Address
(2) LOCATION OF WELL: County	, SELABELOW
paring and distance from section or subdivision corner	124 NEU NEU 21- 6 2:
(3) PROPOSED USE: Domestic [] Industrial [] Municipal [(10) WELL LOG: $T = A' P = T$
Irrigation 🗌 Test Well 🗗 Other	Formation: Describe by color, character, size of material and structure show thickness of aquifers and the kind and nature of the material in stratum penetrated, with at least one entry for each charge of form
(4) TYPE OF WORK: Owner's number of well # 2	MATERIAL FROM
New well Method: Dug Bored	Tip soil & clay Brown D
Reconditioned Rotary Jetted	
(5) DIMENSIONS:	Clay-Tan 57 7
Drilled <u>155</u> ft. Depth of completed well <u>155</u> ft	
(6) CONSTRUCTION DETENT	- (stavel Lement-1stown 79
Cosing installed	CLAV - REQUISE 95 C
Threaded []	· · · · · · · · · · · · · · · · · · ·
π DVC Welded π	Gravel Lement - Brown 471
Porferetion -	
Type of perforator used MLChine	6 tavel Med- Joure Water 106 1
SIZE of perforations in. by in	
perforations from	. Oraver cement - Rucun 115
perforations from <u>d.C.</u> ft. to <u>135</u> ft	CLAN - Require 120 1
	2
Screens: Yes No	Gravel & Cement - Brown 122 1.
Type Model No	
Diam Slot size from ft. to ft	- Cal Ay - Brown 124 1
Diam	
Gravel packed: Yes No Size of gravel: 34 / 1/4	BENET WATER BEALING, 12/ 15
Surface seel	BEGIN AT ITTE NORTHEAST CORM
Material used in seal	NOPTH RAUGE 35 EAST OF THE
Did any strata contain unusable water? Yes 🗌 No 🛛	WILLAMETTE MERIDIAN AND
Type of water? Depth of strata	RULING THEIRE SOUTHERAN
Method of sealing strata of	ALONG THE EAST LINE OF SAIL
(7) PUMP: Manufacturer's Name	SECTION 22, A DISTANCE OF
Туре:	1270 FEET, THE WESTERIC
(8) WATER LEVELS: Land-surface elevation above mean sea level.	(1) RIGHI ANGLE / MALTHE
Static level ft. below top of well Date Dec. 14-	TO DISTANCE OF 150 FEET TO THE
Artesian pressure	SITE OF TEST WELL # 2
(Cap, valve, etc.)	
(9) WELL TESTS: Drawdown is amount water level is	
Was a pump test made? Yes 🗌 No 🕒 If yes, by whom?	Work started DCC. 1. 19 / 6 Completed DCC. 1.5. 15
field: gal./min. with ft. drawdown after hrs.	WELL DRILLER'S STATEMENT:
······································	This well was drilled under my jurisdiction and this repo
Recovery data (time taken as zero when numn turned off) (motor laural	a de to the best of my knowledge and bener.
measured from well top to water level) Time Water Level Time Water Level Time Water Level	NAME LOWCH W, MANATT (Person. firm, or corporation) (Type or print)
	Address R.T. # 2 Box 111 MITTON Free
	Found of Ma D. H
Date of test	
ailer test gal./min. with 3.0tt. drawdown after hrs.	[Signed]

Department of Ecology with Second Copy — Owner's Copy Third Copy — Diller's Copy	WATER: WEL	L REPORT	Application	No	
	STATE OF WA	SHINGTON	Permit No.	••••	
OWNER: Name TY OF	Unita Wall	Address BEY 178	7 }		
(4) LOCATION OF WELL: County.	112 LUSIL	· _ NW · NE	Z1/4 Sec 2 2 T	7	35 w.m
(3) PROPOSED USE: Domestic Industrial	□ Municipai □	(10) WELL LOG:			
Irrigation 🗋 Test Well	🕅 Other 🗌	Formation: Describe by color, char	acter, size of materi	al and stru	cture, an
(4) TYPE OF WORK: Owner's number of well	2	show inickness of aquifers and the stratum penetrated, with at least i	kind and nature of one entry for each	the materi change of	al in eac. formation
(if more than one)	□ Bored □	MATERIAL		FROM	ТО
Deepened Cable	e 🗖 Driven 🗌 -	1 opsail		0	23
Reconditioned 🗌 Rota	ry 🗌 Jetted 🔲 .	DRawa (lay	+ ind	23	42
(5) DIMENSIONS: Diameter of well	inches.	12 and	<u> </u>	42	59
Drilledft. Depth of completed well	L	- OROHIN	=1ay	57	-61
(6) CONSTRUCTION DETAILS:		BROWN Clay +	· C. Ravel	74	96
Casing installed: 2	110	BRUM	Clay	96	101
Threaded (M Diam. from	ft. to <u>1.1.2</u> ft.	GRavel . W.	ster	101	121
Welded Diam. from	ft. to ft			1	
Perforations: Vor C No W	-				
Type of perforator used	-	PTSE	·		(
SIZE of perforations in. by	in	For 121 To	<u>s p-20 [</u>	TITER	o
perforations from	to ft			i	
perforations from	to ft. -	Pumped in 13	Sacks 1	Kol C	Jay
Screens: w		FROM 90 TO	/6 [']		
Manufacturer's Name JOAASCA	/ -				
Type 316 Model N	To	Put in Sand	FROM /	6 10	10
Diam. 2. Slot size	ft. to	D.T. G.C.	· · · · · · · · · · · · · · · · · · ·		
Slot size from	ft. to ft	FRD IN TO	ACKS OR	LANK	<u> </u>
Gravel packed: Yes 🗌 No 🕅 Size of grave	ei:		LACONA	K PE	(
Gravel placed from ft. to					
Surface seal: Yes 🙀 No 🗌 To what depth?	n				
Material used in seal				i	
Type of water?	Yes No D		•		
Method of sealing strata off					
(7) PUMP: Manufacture No.					
Type:	н.р. –	· · ·			
(8) WATER LEVELS Land-surface elevenes			· · · · ·		
above mean sea level	ft. =				
Artesian pressure	te / C - 2 - 2 - 2				
Artesian water is controlled by					
(Cap, va	=				
(9) WELL TESTS: Drawdown is amount water lowered below static level	er level is $-\frac{1}{2}$	lork started 9-14 19 8	6 Completed	0-21	-10 86
Was a pump test made? Yes Y No \Box If yes, by whom?	URILLER -				
" " "	er / hrs. V	VELL DRILLER'S STATE	LMEN1:		
	tr	This well was drilled under ue to the best of my knowle	my jurisdiction a dge and belief.	and this r	eport is
Recovery data (time taken as zero when pump turned o	off) (water level	. /	.1		-
Time Water Leyel Time Water Level Time	Water Level N	AME HARDING	DRELLIN	V6 (-0
00 28 00 26		(Person, firm, or o	corporation) (1	Cype or pri	nt)
	A	ddress (YT3 Boy67	Walla W.	a.[.].e	Un,
Data of tas: $10-1-94$		n.1. 11	1.		
Bailer test	fter b [:	Signed]	Loling		
rtesian flow			(men Dimer)	2-1	
emperature of water	e? Yes I No 🙀 L	icense No///	Date	29	, 19 <i>S</i> .6
10/29/06 10	1				

MW-3

File Original and First Copy with
Department of Ecology
Second Copy - Owner's Copy
Third Copy - Driller's Copy

WATER-WELL REPORT STATE OF WASHINGTON

MW-3A

Application	No.	

Permit No. ..

(1) OWNER: Name Walla Walla CiTy	Address		
LOCATION OF WELL: County LUCITA LUC	A. SEE BELOW 7	35	
cearing and distance from section or subdivision corner	AllALINEHLIEH C	H.A. W.M.	
(3) PROPOSED USE: Domestic Industrial Municipal	(10) WELL LOG: $\overline{\tau} = 1$	0 20	
Irrigation [] Test Well [] Other	Formation: Describe by color character size of material and	<u> .75</u>	
(4) TVPF OF WORK ()wher's number of well 7	show thickness of aquijers and the kind and nature of the mat stratum penetrated, with at least one entry jor each change	erial in each	
(4) THE OF WORK: Owner's number of went 3 (if more than one)	MATERIAL FROM	M TO	
Deepened Cable P- Driven	Top Soil & Clar Brown A	20	
Reconditioned [] Rotary [] Jetted []			
(5) DIMENSIONS: Diameter of weil 5 inches	- Gravel in Brown clay 20	21	
Drilled <u><u>S</u>ft. Depth of completed well <u><u>S</u>(<u>t</u>. tt.</u></u>			
(6) CONSTRUCTION DETAILS.	- Clay- Drow 4 21	29	
Cosing installed $\overline{\Gamma}$	CLAN- TAK TO	1 74	
Casing instanted: "Diam. from ft. to			
25 [#] Py C Welded - "Diam. from ft. to ft.	Gravel Brown Astron 3	4 62	
Perforations			
Type of perforator used MAChine	- Clay-Browhy 62	64	
SIZE of perforations in. by in.			
perforations fromft. toft.	- OFAVET SOM ERAUTER 62		
perforations from ft. to ft.	- CARINA 80-81 /-4	81.	
A. O	00 00 01		
Screens: Yes No			
Type Model No	BEGIN AT THE NORTHWES	7	
Diam	CORVER OF THE NORTH EAST OF	LARTER	
Diam Slot size from ft. to ft.	OF THE NORTHENST QUARTER O	<u>_</u>	
Gravel packed: Yes No D Size of gravel: 14	PANCE 3E EAST OF THE	PRIH	
Gravel placed from ft. to ft. to ft.	MILL AMETTE MEDIALAD	wn	
Surface seal: Yes B No D To what depth? 25 " RUNNING THENCE SOUTHERLY			
Material used in seal $BrnTon Tc$	ALONG THE WESTLINE OF.	SKID	
Did any strata contain unusable water? Yes I No B	WORTHEAST QUARTER OF THE	:	
Method of sealing strata off	NORTHEAST QUARTER OF STALL	2	
(7) PIIMP: W	SECTION 22, ADISTANCE OF		
Type: H P	AT RIGHT ANGI IS TO SAID		
	WEST LING OF THE NORTHEA	57	
(o) WAIER LEVELS: Land-surface elevation above mean sea level	QUARTER OT THE NORTH FAST	-	
Artesian pressure	QUARTER of SAUD SECTION 22	<u> </u>	
Artesian water is controlled by	A DISTANCE OF 50 FEET TO		
(Cap, valve, etc.)	ITESILE OF TEST WELL M	73	
(9) WELL TESTS: Drawdown is amount water level is lowered below static level	Wart started MAY 14 10 76 amelian MAY 2	$\frac{1}{1}$ 10 7(-	
Was a pump test made? Yes No 4 If yes, by whom?		<u></u>	
" " " " "	WELL DRILLER'S STATEMENT:		
<u>, , , , , , , , , , , , , , , , , , , </u>	This well was drilled under my jurisdiction and this true to the best of my knowledge and belief.	report is	
Recovery data (time taken as zero when pump turned off) (water level			
Time Water Level Time Water Level Time Water Level	NAME LOW ell W. MANDATT		
	(Person, firm, or corporation) (Type or)	print)	
	Address Ret 2 Box /11 Miller Fre	manaTer	
Date of text	D I I II II II		
Bailer test 25 gal/min, with 40 ft drawdown after / [Signed] Foewell The Marsh att			
Artesian flow			
Temperature of water . A Was a chemical analysis mades Yes I No - License No. C-81 Date Detc. 16, 1976			
1 117 NX			
III'VI I YUSE ADDITIONAL SHE	ETS IF NECESSARY)	-	

File Original and First Copy with Department of Ecology Second Copy — Owner's Copy Third Copy — Driller's Copy

	MW-4
WATER. WELL REPORT	

Application No.

STATE OF W	ASHINGTON	Permit No.		
(1) OWNER: Name CITY OF WALLA WALLA	C/o Publ	ic Works Departmen	t wa o	0262
') LOCATION OF WELL: county Walla Walla	<u><u><u></u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	Sul - in -	.,иАЭ	2504
Bearing and distance from (section) or subdivision corner Shi a far 1	$4 - 111^{\circ} = 10$	1, 200 , Sec. 14 T	[N., R:	355Ew
(3) PROPOSED LISE: Denote a la l		ico i ii jupprox.		
Irrigation Test Well 51 Other	(10) WELL LUG:		······································	
	show thickness of aquifer.	s and the kind and nature of t at least one entry for each cl	he materi	cture, a al in ec torman
4) TYPE OF WORK: Owner's number of well (if more than one)	MA	TERIAL	FROM	TO
New well 🕅 Method: Dug 🗌 Bored 🗌 Deepened	Tu	DSUIL	0	2
Reconditioned Rotary Jetted		4 6 2 1	23	25
(5) DIMENSIONS:	BROWN	Vay + GRAVEL	25	38
Drilled 32 ft. Depth of completed well 33 ft.	Set	ad	35	_6 3
CONCERNICE CONCERNING	- Oravel	- ivetra	63	
6) CONSTRUCTION DETAILS:				·
3/ Casing installed: 5 " Diam. from O it. to 52 ft.				
Welded				
Dian. Hom				
Perforations: Yes X No C				
SIZE of perforations				
160 perforations from 62 ft. to \$2 ft.			. i	
perforations from ft. to ft.				
ft. to ft. to ft.				
Screens: Yes 🗆 No 🕱				
Manufacturer's Name		· · · · · · · · · · · · · · · · · · ·		
Diam				·
Diam				
Gravel nacked: we do not not not not not not not not not no				
Gravel placed from ft. to ft.		· · · · · · · · · · · · · · · · · · ·		· .
Surface and 2.5				
Surface seal: Yes ∇ No \Box To what depth? 35 ft.	DEPARTAL			
Did any strata contain unusable water? Yes 🗍 No 🕅	SOURTHE HE	MONAL CECIPE		
Type of water? Depth of strata			÷	
Method of sealing strata off		1		**
7) PUMP: Manufacturer's Name	·			
Type:			1	
8) WATER LEVELS: Land-surface elevation 3/2	· · · · · · · · · · · · · · · · · · ·			
tatic level 41 ft. below top of well Date 9-14-53				
rtesian pressurelbs. per square inch Date				
Artesian water is controlled by(Cap, valve. etc.)		i		
9) WELL TESTS: Drawdown is amount water level is				
as a pump test made? Yes I No OF If yes by whom?	Work started 9-8	19.373 Completed 9.	15	., 19.5
eld: gal/min. with ft. drawdown after hrs.	WELL DRILLER'S	STATEMENT:	· 24	
· · · · · ·	This well was drille	d under my jurisdiction a	d this r	anort
· · · · · ·	true to the best of my	knowledge and belief.	ia tins i	cpore i
ecovery data (time taken as zero when pump turned off) (water level measured from well top to water level)	11	0	12	
Time Water Level Time Water Level Time Water Level	NAME TAROLA	14 DRILLINE	Co	nt)
		· · RO 1. I II	//	, /. /
	Address MT J So	3" Walla Wa	/l.a	WA.
Date of test	2-1	11 1.		
iler test	[Signed] Multi	(Well Driller)		
estan flow		(wen bittlet)	A	-
nperature of water	License No. 173			190.
		•		

File (Original	and	First (Copy	with
Depa	rtment o	of Ec	ology		
Secor	ld Copy	O1	wner's	Cop	v
Third	I Сору –	- Dri	ller's (Copy	•

	MW-5
WATER WELL REPORT	Application No.
STATE OF WASHINGTON	Permit No.
LLA C/O Pub Address P, O, B	Lic Works Department Dx 478, Walla Walla, WA 99362
la Walla	NW 1 SE 1 Sec 14 T 7 N. R 35EW

(1) OWNER: Name CITY OF WALLA WALLA	C/o Public Works Department	TYLA 00262
1) LOCATION OF WELL: County Walla Walla	$\lambda w v \leq F$	1
Bearing and distance from (section) or subdivision corner SW of Sec.	14-N.55°E 4100 FT (APDCA	(\mathbf{X})
(3) PROPOSED USE: Domestic	(10) WELL LOG:	
Irrigation 🗌 Test Well 🕅 Other	Formation: Describe by color, character, size of materia show thickness of aquifers and the kind and nature of	il and structure, $a\tau$ the material in eac
(4) TYPE OF WORK: Owner's number of well (if more than one)	MATERIAL	FROM 1 TO
New well 📜 Method: Dug 🗌 Bored 🗌	Trace	
Reconditioned Retary Jetted	- GRaus (41 56
(5) DIMENSIONS: Diameter of well 6 inches.	BROWS Chy + GARVel- wester	56 71
(b) CONSTRUCTION DETAILS: Plasf Casing installed: <u>5</u> "Diam. from <u>Q</u> ft. to <u>21</u> ft. Threaded <u>I</u> Diam. from ft. to <u>ft.</u> Welded <u>I</u> Diam. from ft. to <u>ft.</u>		
Perforations: Yes 🕱 No 🗆		
Type of perforator used DR111 SIZE of perforations 10. by 6. CCATCASIN. ACO perforations from ft. 5. ft. to perforations from ft. to ft. ft. to perforations from ft. to	ECEMED	
Screens:	JT 2 4 1983	
Manufacturer's Name		
Type	DEPARIMENT OF ELOLOGY	
Diam. Slot size from the to the ft.	SPOKANE RECTONAL OFFICE	~
Statt. Stot size		
Gravel packed: Yes No D Size of gravel:		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Surface seal: w T w T + 40		
Material used in seal PURCLAND Coment		
Did any strata contain unusable water? Yes 🗌 No 🙀		
Type of water? Depth of strata Method of sealing strata off		
(7) DIIMD.		
(1) I UMII: Manufacturer's Name		
(8) WATER LEVELS: Land-surface elevation 3/C/ above mean sea level. 5/C/ ft. Static level 3/2 ft. Artesian pressure lbs. per square inch Date. 5/2	· · · · · · · · · · · · · · · · · · ·	
Artesian water is controlled by		1
(9) WELL TESTS: Drawdown is amount water level is		1
Was a pump test made? Yes No 🛛 If yes, by whom?	Work started	5-6 19 5
Yield: gal./min. with ft. drawdown after hrs.	WELL DRILLER'S STATEMENT:	
······································	This well was drilled under my jurisdiction a	nd this report is
Recovery data (time taken as zero when nump turned off) (mater loud)	true to the best of my knowledge and belief.	
measured from well top to water level) Time Water Level Time Water Level Time Water Level	NAME HARDING (Person. firm. or corporation) (T	ype or print)
	Address K F 3 So 3 to Walla 4	1/1a Wr.
Date of test	mile IL	
Bailer test	[Signed]	••••••
Artesian flow	License No 172 Data 9-1	9 105
10/24/33 Via	Jale	
USE ADDITIONAL SHE	ETS IF NECESSARY)	

MW-6

File Original and First Copy with Department of Ecology Second Copy — Owner's Copy Third Copy — Driller's Copy	WATER WE STATE OF V	LL REPORT VASHINGTON	Application : Permit No	No	
OWNER: Name CITY of UUA	1/a Waila	Address Bux 4-	73		
) LOCATION OF WELL: County	Marta Ma	110 541	NIN San 23 T	7 x B	35
Bearing and distance from section or subdivision of	orner	<i>4</i>	4	ZN., A	VV .IVI .
(3) PROPOSED USE: Demotion [] Indu		(10) WELL LOG			
Irrigation Test	Well M Other	Formation: Describe by colo	r character size of materia	l and stru	cture and
		show thickness of aquifers a stratum penetrated, with at	nd the kind and nature of least one entry for each c	the materi hange of	al in each
(4) IYPE OF WORK: Owner's number of (if more than one)	well 6	MATE	RIAL	FROM	то
Deepened	Dug 📋 Bored 📋	TOPS	oil	C	20
Reconditioned	Rotary [] Jetted []	Sand + 1	Run Clay	20	25
(5) DIMENSIONS:		BRice	n (lay	25	77
Drilled 5 ft. Depth of complete	d well 15^{-1} inches.	Sand +	CRavel	77	83
		- Jana		83	75
(6) CONSTRUCTION DETAILS:		- DROWN (1	ay + C-Ravel-un	1.95	143
Casing installed: \mathcal{L} Diam. from \mathcal{T}	2. ft. to 148 ft.	OKGUEL	- 4/otca	143	15-1
Welded Welded Welded	ft. to ft.	· · ·			
Diani. Itom	π.				
Perforations: Yes No M					
Type of perforator used					
perforations from	ft. to ft.				
perforations from	ft. to ft.		2 2. E.U. C		Ē.a
perforations from	ft. to ft.	- Dacks I	U-10 FILTER SG	inct	<u>[Rom</u>
Screens: Yes 🖉 No 🗆 🕋					
Manufacturer's Name 20h n Son	1	Punced in	15 Sacks	1.1	Clay
Diam 2 Slot size - 010 from 1	del No	FROM 122	To 16'		<u>y</u>
Diam Slot size					
Gravel nacked:		_ Sand FRO.	n 16 To	10'	·
Gravel placed from ft	f gravel:				·····
		-Tul in 12	Sacks Ce	menl	ERC
Surface seal: Yes X No To what	depth? ft.	66	ROMPLE Lev	2/	
Did any strata contain unusable water	? Yes 🗋 No 🗖				
Type of water? Depth of	of strata				
Method of sealing strata off					
(7) PUMP: Manufacturer's Name					
Туре:	н.р	······································			
(8) WATER LEVELS: Land-surface eleva	ation		<u> 101 - 101 - 101</u>		
Static level 6.3 ft. below top of we	evel	·····			
Artesian pressure	h Date				
Artesian water is controlled by	an valve etc.)				
		·····		1	
(9) WELL IESIS: Drawdown is amoun lowered below statio	c level	Work started 8-18	19.86 Completed	1-19	× 19 86
was a pump test made? Yes M No \square If yes, by w Yield: S' gal/min with $?$ ft drawdow	thom? URIIIER	WELL DRILLER'S S	TATEMENT.		
	" "		A A A A A A A A A A A A A A A A A A A	nd this .	ti-
		true to the best of my k	nowledge and belief.	na tris i	eport is
Recovery data (time taken as zero when pump tur	rned off) (water level	14	4		
Time Water Level Time Water Level 7	Time Water Level	NAME HARDIN	6 URILING	<u> </u>	2
00 63 01 63		(Person, fir	m, or corporation) (1	ype or pr	int)
······		Address KT 3 303	O Walla	Wall	a W,
		hi-1	11 1.		
Bailer test gal /min with # doomed	own often be-	[Signed] [Muke	Marding		
Artesian flow	with addition of the second se		(Men Dimel)	7-1	-
Temperature of water 5	is made? Yes 🗌 No 🕱	License No. // 3		27	, 19.8.6
10/29/86 10	1				

(

MW - 7

File O Depar Secon Third	riginal and First Copy with tment of Ecology d Copy — Owner's Copy Copy — Driller's Copy	WATER WE state of w	LL REPORT Ashington	Application Permit No.	No	
(\cdot)	OWNER: Name CITY OF	Willa Willy	Address Box	4,75		
	LOCATION OF WELL: County	Walla ilia	11	14 SIV 14 Sec 13 T	7 N. R. 3	3-W.M.
Bearin	ng and distance from section or subdivision	corner	••••••••••••••••••••••••••••••••••••••			
(3)	PROPOSED USE: Domestic 🗆 In	dustrial 📋 Municipal 🗍	(10) WELL LOG:	·		
	Irrigation 🗌 Te	est Well 🛱 Other 🗌	Formation: Describe by cold show thickness of aquifers	or, character, size of materia and the kind and nature of	il and struct the materia	ture, ana l in each
(4)	TYPE OF WORK: Swrier's number	of well 7	MAT	ERIAL	FROM	TO
	New well 🕱 Metho Deepened 📋	Dug 🗌 Bored 🗌 Cable 🕅 Driven 🗍	Taria	211	: 0	
	Reconditioned []	Rotary 🗌 Jetted 📋	BRown	Clay	28	40
(5)	DIMENSIONS: Diameter of Drilled / 7 / ft. Depth of complete	well 2 inches.	- MRown C	d	- 45	68
(6)	CONSTRUCTION DETAILS		- Sand +	BROWN (1Ay	-68	29
(0)	Construction Defails:	2 178	GRAVEL + 9	1, It le Brown Cla	×145	160
	Threaded []	ft. to ft. to ft.	6ravel	'- water	<i>j60</i>	181
]	Perforations: Yes No 🕅					
	SIZE of perforations	ın. by 1n.				
	perforations from	ft. to ft. ft.				
	perforations from	ft. to			<u> </u>	
	Screens: Yes No Manufacturer's Name JOA2 Type 304 Diam 2 Slot size from	Model No	7 Sack 10 181 TO 14	-20 Filter Se 8	ad F	ßen.
(Gravel packed: Yes No 🕢 Size	e of gravel:	Pumped in 148 To 16	15 Sack Vol	1_C/a	y_ F.R.
S	Surface seal: Yes 🔐 No 🗌 To wh Material used in seal Did any strata contain unusable wa Type of water?	at depth? ft. hter? Yes No hof strata	PUT in G. PUT in 9 To GROUND	Sacks fort	6' To LANG	10'_ 1_Cer
(7)	Method of sealing strata off					
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Type:				+	
(8) Static Artesia	WATER LEVELS: Land-surface e above mean se level 39 ft. below top of an pressure lbs. per square Artesian water is controlled by	levation a level				
(9) 1	WELL TESTS: Drawdown is am lowered below s	nount water level is tatic level	Work started / (2 - /	1986 Completed	10-21-	1486
Was a Vield:	pump test made? Yes 21 No 11 If yes, h 10^{-2} sail/min, with 3^{-11} it draw	y whom? $D\mathcal{R}_{i}/\mathcal{R}_{i}$	WELL DRILLER'S	STATEMENT:		
· · · · · · · · · · · · · · · · · · ·		······································	This well was drilled	i under my jurisdiction	and this re	eport is
Recove me Dum	ery data (time taken as zero when pump assured from well top to water level) water Level + Time Water Level $2 - \frac{4}{2} - \frac{2}{2} - \frac{2}{3} - $	turned off) (water level Time Water Level	NAME HARDIN	6 DRILLING	Co Type or prin	nt)
· · ·		· ·····	Address RT 3 BO	× 67 Wella	Wa 1 la	Wn
Da Bailer	te of test $10^{-1}3$ $3^{-8}6$	nudown off	[Signed] Mike	Harding		
Artesia	in dow	lwaown after	License No 177	(Well-Driller)	28	1986
	10/79/17C M	uysis mauer res 📋 No 💥	Lacense 110	Date	ur	

File Depa Seco	Original and First Copy with urtment of Ecology and Copy—Owner's Copy	ELL. REPORT
Third	Copy-Driller's Copy STATE OF V	WASHINGTON Water Right Permit No
1)	OWNER: Name CITY - Liglla willa	Address
(2)	LOCATION OF WELL: County Walls Walls	White UE year ?? + 74 y p 35 yuu
(2a)	STREET ADDDRESS OF WELL (or nearest address)	
(3)	PROPOSED USE: Domestic Industrial Municipal	(10) WELL LOG or ABANDONMENT PROCEDURE DESCRIPTION
(4)	DeWater Test Well X Other	Formation: Describe by color, character, size of material and structure, and show thickness of aquifers and the kind and nature of the material in each stratum penetrated with the strategy end of the structure of the material in each stratum penetrated
(-)	Abadaard 2	MATERIAL FROM TO
	Abandoned □ New well A Method: Dug □ Bored □ Deepened □ Cable ⊠ Driven □ Reconditioned □ Rotary □ Jetted □	1 0 21 1 0 21
(5)	DIMENSIONS: Discussion in 10	Made Garal 1 Sec. 1 57 -94
/	Drilled 2.20 fact Death of second days in 13.0	Med - Gauge 15-8 (3
(6)	CONCEPTION DEPTH OF COMDIETED Well 120 Ht.	Med-Gravel + proun Clas 63 76
(O)	CONSTRUCTION DETAILS:	Med-GRavel- (water) 76 84
	Casing installed: Diam. from JUft. toft.	Med- E-Ravel + BROWN (1ay 84 121
	Liner installed [] t. toft. toft.	BROWN (lay 121 124
	Diam. fromtt. tott.	M-d GRaver (Water) 124 132
	Perforations: Yes No	BROWN (1ay 132 134
	SIZE of perforations	Med-GRALIT & DROWA (Tay 134 169
	in. byin.	BROWN Clay + Small GRAver 163 175
		Med Gravel + Drown Clay 115 178
	perforations from ft to ft	BROWN Clay 118 220
	Manufacturer's Name_Johnson	Intra Eilter Sa I Adam I S" Schapper
	Type PVC Sch 40 Model Not A-98	For 120 The 25'
	Diam. 5" Slot size ,020 from 90 ft. to 105 ft.	
	Diam. 5" Slot aize .0.20 from 115 ft. to 130 ft.	FROM 75' TO 13' - Filled W. Th Famer
	Gravel packed: Yes X No Size of gravel Ky TD 3/4	
	Gravel placed from 220 th to 130 th	FROM 13 TU 10 - Send Cushion
	Surface seal: Yes A No to what depth?	FROM 10 0' - Neat CEMENT
		In ER
	Type of water?	
	Method of seeling strata off	
7)	DIIMO	HU DEC 2 0 mm
• ,	- Manufacturer's Name	
	Туре: Н.Р	DEPARTITIE
8)	WATER LEVELS: above mean sea level ft.	SPOKANE RECION ECOLORY
	Static level ft, below top of well DateQ -2.4	OCHAL OFFICE
	Arresian pressureIbs. per square inch Date	
	(Cap. valve, etc.))	10-10 39 12-2 195
9)	WELL TESTS: Drawdown is amount water level is lowered below static level	Work started_/L. / C
•	Was a pump test made? Yes A No If yes, by whom?	WELL CONSTRUCTOR CERTIFICATION:
4	rield gal./min. with ft. drawdown after hrs.	I constructed and/or accept responsibility for construction of this well.
		and its compliance with all Washington well construction standards. Materials used and the information reported above are true to my best
I	Recovery data (time taken as zero when pump turned off) (water level measured	knowledge and belief.
1	rom well top to water level) Time Water Level Time Water Level Time Water Level	Hanney Dat UTAK Co
<u>) (</u>	20 125	NAME TAROTNE LIA OR CORPORATION (TYPE OR PRINT)
<u></u>	<u>3 +5</u>	Lac we list 1 111 11 111
1.5	27 59	Address $\Lambda / 3 DCX / YC W 3/19 W 3/19 U 3.$
	Date of test 12-5-59	mika 1/2 1/ 177
ε	Bailer test gal./min, with ft. drawdown after hrs.	(Signed) ////////////////////////////////////
ļ	lirtest gal./min. with stem set at ft. for hrs.	Contractor's Registration
,	rtesian flow	No. HARDIOC 1321 Date 12-11 . 1987

Artesian flow

_g.p.m. Date

Temperature of water 2 Was a chemical analysis made? Yes No

(USE ADDITIONAL SHEETS IF NECESSARY)

MW -8

	(2A)	MW-8A
File		Start Card No. 0.55642
Depa	riment of Écology TVAIEN VVE	
Third	Copy-Driller's Copy STATE OF W	Water Right Permit No.
	OWNER: Name City of Walla Walla	Address Box 478 Walla Walla
		SHI CH, 35 7 KI
2)	LOCATION OF WELL: County Walla Walla	<u>,,,,,,,</u>
(2a)	STREET ADDDRESS OF WELL (or nearest address)	Walla Land Fill
(3)	PROPOSED USE: Domestic Industrial Municipal	(10) WELL LOG or ABANDONMENT PROCEDURE DESCRIPTION
	DeWater Test Well 🔀 Other	Formation: Describe by color, character, size of material and structure, and sho
(4)	TYPE OF WORK: Owner's number of well	with at least one entry for each change of information.
	Abandoned New well S Method: Dug Bored	MATERIAL FROM TO
	Deepened Cable 🛛 Driven Cable	$\begin{array}{c c} 10pso_{11} \\ \hline \\ $
		GRavelt Sand 52 58
(5)	DIMENSIONS: Diameter of wellinches.	GRAVEL-WATER 58 63
	Drilledfeet. Depth of completed wellf.	Gravel + Brown Clay 63 76
(6)	CONSTRUCTION DETAILS:	GRAVEL- WATER 76 84
	Casing installed: • Diam. from ft. to ft.	GRAVEL & BROWN Clay 84 45
	Welded Diam. from tt. to tt. Liner installed 7	
	Threaded M_{1} M_{2} Diam. from M_{2} $ft. to f_{2} ft. to ft. ft. ft. ft. ft. ft. ft. ft. ft. ft.$	
	Perforations: Yes Nola	1101-Ch. Edom 95 TO 84
	SIZE of perforationa in. by in.	Por cray promining and
	perforations from ft. to ft.	10/20 Filter Sand 84 TO 61
	perforations from ft. to ft.	
	perforations from ft. to ft.	Vol-Clay FRom 61 To 10
	Screens: Yes X No	
	Manufacturer's Name	Neat Cement FRom 10 10 0
	Type J(AIA 1855 JPEI Model No 2102	
	DiamSlot sizetromStt. tott.	
<u>.</u>		
	Gravel placed from ft to ft	
	Surface seal: Yes No I to what deputy	
	Did any strata contain unusable water? Yes No X	
	Type of water?Depth of strata	
	Method of sealing strata off	
(7)	PUMP: Manufacturer's Name	
	Туре: Н.Р	
(8)	WATER LEVELS: Land-surface elevation	
	Static level 62 ft. below top of well Date 11-18-91	
	Artesian pressureIbs. per square inch Date	
	Artesian water is controlled by(Cap, valve, etc.))	19/completed 11-18
(9)	WELL TESTS: Drawdown is amount water level is lowered below static level	Work started, ray comprove
	Was a pump test made? Yes No K If yes, by whom?	WELL CONSTRUCTOR CERTIFICATION:
	Yield: gai./min. with n. drawoown andre nis.	I constructed and/or accept responsibility for construction of this will and its compliance with all Washington well construction standar
	n n n	Materials used and the information reported above are true to my be
	Recovery data (time taken as zero when pump turned off) (water level measured from well top to water level)	knowledge and belief.
	Time WaterLevel Time WaterLevel Time WaterLevel	NAME HARDING DRILLING CO.
		(PERSON, FIRM, OR CORPORATION) (TYPE OR PRINT)
		Address XT8 130× 106 WALLA WALLA,
. –	Date of test	mih. M. 1
	Bailer teat 15 gal/min with 3 ft. drawdown after 1 hra.	(Signed) // Well DRILLER) License No. E
	Airtest gal./min, with stem set at ft. for hrs.	Contractor's Registration
	Artesian flow g.p.m. Date9_	No. HARVING #1321 Date, 19_
	Temperature of water 3 Z Was a chemical analysis made? Yes 🗌 . No 🕱	(USE ADDITIONAL SHEETS IF NECESSARY)
ECY 05	0-1-20 (10/87) -1329- -€€€€ 3	

50P0	$C \sim 27 \circ 0 \sim -$	We (If MU)		T.
File C Depa Seco Third	Driginal and First Copy with rtment of Ecology nd Copy—Owner's Copy Copy—Driller's Copy Copy—Driller's Copy	ASHINGTON Water Right Permit No.		
-	OWNER NAME CITY OF WALLA WALLA	Address Bry 472 Walls	<u>[].]]</u>	2
.}_		NE NE	· · · ·	F835.
(2)	LOCATION OF WELL: County 1/1/1/ WHALFA	V Sec_PE_1_	N., H	<u>~~</u>
(2a)	STREET ADDDRESS OF WELL (or nearest address)			DIDTION
(3)	PROPOSED USE: Domestic Industrial Municipal Irrigation DeWater Test Well Other	(10) WELL LOG or ABANDONMENT PROCEDUR Formation: Describe by color, character, size of material and thickness of aquifers and the kind and nature of the material in ea	d structure, ich stratum	and show penetrated,
(4)	TYPE OF WORK: Owner's number of well 9	with at least one entry for each change of information.	FROM	тот
	Abandoned Dew well A Method: Dug Debug Bored D	Towsil - Berchert	0	35 1
	Reconditioned Rotary Jetted	it's clay	35	47
(5)	DIMENSIONS: Diameter of well (1) inches	mediumaroich Brichay	47	55
(0)	Drilled 210 feet Depth of completed well 83 ft.	Smart gravel Br. Clay	55	66
(6)		12 clay	66	
(0)	Casing installed: $73 + 12$	Smigravel pretay wary	15	83.
	Welded \Box S · Diam, from $\frac{1}{7}$ 2. ft. to $\frac{2}{7}$ ft.	Smight Drouriclay	\$-3	102
	Liner installed ft. to ft. to ft.	Proun-Kedelay smgraul	102	119
	Perforations: Yes No X	Sagrand provalut	119	140
	Type of perforator used	Bround Real Charles Gungrand	140	182
	SIZE of perforations in. by in.	Fine site gainet type or clay	185	710
	perforations fromft. toft.	Fine sond Super Property application	210	211
	perforations fromft. toft.			4
	Screens: Yes No X		L	· · ·
	Manufacturer's Name	Vali Chy Fran 211 To 3	5	
1	Diam	10/20 Filter Sound Advance	5-12	YC
$\underline{\mathcal{D}}$	DiamSlot sizefromft. toft.	Schen From Som Fro GI		
	Gravel packed: Yes No Size of gravel	VICT SUIT	Va	
	Gravel placed fromft. toft.	Vor- Chay From Charles		
	Surface seal: Yes No To what depth? 6.1 tt.	MEAT CONST 16 TO C		
	Did any strata contain unusable water? Yes No X			
	Type of water?Depth of strata	DIFILED		
	Method of sealing strata off	Ky C		· ·
(7)	PUMP: Manufacturer's Name GAUDEUS			
	Туре:Н.Р			
(8)	WATER LEVELS: Land-surface elevation above mean sea level ft.		+	
	Static level ft. below top of well Date			
	Artesian water is controlled by // Consider the W			1
·		Work started 7-70, 19! Completed	<u></u>	, 19
(9)	Was a pump test made? Yes No Hyper, by whom?	WELL CONSTRUCTOR CERTIFICATION:	struction	of this well.
		and its compliance with all Washington well co	nstruction	standards.
		Materials used and the information reported above knowledge and belief.	3 are tive	to my bost
	Recovery data (time taken as zero when pump turned off) (water level measured from well top to water level)	1 1. 1. 1. 1	÷	•
	Time WaterLevel Time WaterLevel Time WaterLevel	NAME A ration CHIMA (D	TYPE	OR PRINT)
		RtS Box 106 U/sllal	Villel	1/2 11
$\overline{}$		li A al d	 	
	Date of test	(Signed) delate Latachia License	3 No/69	13
\bigcirc	Bailer test gal./min. with ft. drawdown after hrs.	(WELL DRILLER)		~
	Airtest gal./min. with stem set at ft. for hrs.	Not AN MACHTIZZA Date 11-25		19 7/
	Temperature of water 5 4 Was a chemical analysis made? Yes No	ALIGE ADDITIONIAL QUEETS IE NECE	SSARY)	
		I (USE ADDITIONAL SPEETS IF NEOL		

•	y — Dviller's Copy	F WASHINGTON Water Right Permit No	
(1) OW	THER: NET CATY of WALLA WALLA		
(2) LO	CATION OF WELL: COUNT WALLA WALLA	. NW 14 14500 12 T	-7N N
(2a) STI	REET ADDRESS OF WELL (or reasons address) far may s	field	
(3) PR		(10) WELL I OG OF ABANDONMENT PROCEDURE	DESCR
•••	☐ Irrigation Test Wall 😥 Other □	Formation: Describe by color, cheracter, size of material and structure, a	and show thi
(4) TYI	PE OF WORK: Owner's number of well M \ / - 10	and the kind and nature of the material in each stratum penetrated, wi change of information.	th at least o
Abs	ndoned New well Marked Dag Bared	I) II FF ID MATERIAL	FRO
•	Despended Cable Driven		<u> </u>
(5) DIM	IENSIONS: Diameter of well R	- JUTT TIDIST SILT	+0
Drille	d 1 heat. Depth of completed well 45.4	R MARE SILL TRACE DE COMAL	125
(8) CO			
Cas	indiratelled: \propto Diam from $T = 3$ it is $3D / L_2$	MELT MONTH HED BODDAL	126
Weik	Sed* Diam. fromft. to	the design of the transferred states as a	111
Thre	aded #* Diam. fromt. to	n hush bont the cover to south,	- 40
Port	onationa: Yes No 🕅	GRAVEL FILLE to COURSE	
Type Sizf	of perforation used		
		n Laturated	
	perforations fromft. to	n	
	perforations from tt. to	R. [
Scre		MERCHED WORLER	d
Туре	PVI, Sch 40 Model No	•	
Diam	Slot sizeft_ to	h.	
Diam	Slot sizefromft. to	ħ.	
Grav	el pecked: Yes X No Size of gravel 13-20 40 Mi	<u> </u>	
CHAV		n	
Surfi Mater	tal used in seel 12213 TO State 1 400 (5	n.	
Did a	ny strata contain unusable water? Yes No		
Тура	of water? Depth of strata		_
Metho	ରd of sealing strata ୦೫	-	
7) PUN	IP: Manufacturer's NameN		
Туре:	H.P		
8) WAT	ER LEVELS: Land-surface elevation above mean sez level	R	
Static Artest	Iz below top of well Date	-	
	Artesian water is controlled by		·
	(Cap, valve, stc.)	Work Started in a 243 19. Completed 100	27.4
rj V¥EL Wasa	L pump test made? Yes No X If yes, by whom?	WELL CONSTRUCTOR CERTIFICATION	
Yheid:	gal./min.withft. drawdown alter hra	L constructed and/or appart responsibility for constructed	on of this
N	r 17	compliance with all Washington well construction standar the information reported above are true to my best knowled	das and h
17 12		- LANIN HALAG	
top to	ery cause jume autorn as zero when plump turned off) (water level measured from well Water level) Weiter level = Thme = turned off.	NAME TOVIK UN/ MCN/HL WEST EX (PERSON, FRANCON CORPORATION) (NYPE)	CHIPPUNT .
		Address	•
	1.5	- island Wind HELLE ANDER	neo N-
	Data of test	- (SAUTHOU)	1090 (NO]
	A and A last		
Baker	testgai./min. withft_ drawdown after hra		

LOG OF EXPLORATORY BORING							
PROJECT NAME Stokely USA, Inc. LOCATION Walla Walla, Washington DRILLED BY Environmental West Exploration DRILL METHOD Hollow Stem Auger LOGGED BY Craig Schwyn				SA, In Ila, Wa ental V em Au wyn	nc. ashingt West Ex uger	BORING NO.10PAGE1 OF 3GROUND ELEV.TOTAL DEPTH47.00'DATE COMPLETED12/27/93	
SAMPLING METHOD AND NUMBER	PID (in ppm)	BLOWS PER 6-INCHES	GROUND WATER LEVELS	DEPTH IN FEET	SAMPLES LITHOLOGIC COLUMN	WELL Details	LITHOLOGIC DESCRIPTION
		5-11-15 8-7-8 3-5-6 4-4-4		- 20-			 0 to 27.0 feet: SILT (ML), grayish brown, trace fine to medium sand, low plasticity, damp. ④ 5.0 feet: no sand, mottled white, 1/8-inch laminations. ④ 10.0 feet: light olive brown, trace angular fine sand. ④ 14.5 to 14.8 feet: lense with some medium to fine sand.
		REMARK	5			·	

EMCON Northwest, Inc.

۰.
LOG OF EXPLORATORY BORING

PROJECT NAME Stokely USA, Inc. LOCATION DRILLED BY DRILL METHOD LOGGED BY

Walla Walla, Washington **Environmental West Exploration** Hollow Stem Auger Craig Schwyn

BORING NO. 10 PAGE 2 OF 3 GROUND ELEV. TOTAL DEPTH 47.00' DATE COMPLETED 12/27/93

LOG OF EXPLORATORY BORING

DRILLED BY DRILL METHOD LOGGED BY -

PROJECT NAMEStokely USA, Inc.LOCATIONWalla Walla, WashingtonDRILLED BYEnvironmental West Exploration Hollow Stem Auger Craig Schwyn

BORING NO. 10 PAGE GROUND ELEV. 3 OF 3 TOTAL DEPTH 47.00' DATE COMPLETED 12/27/93

SAMPLING METHOD AND NUMBER	PID (in ppm)	BLOWS PER 6-INCHES >	GROUND WATER LEVELS	DEPTH IN FEET	SAMPLES	NWN COLUMN LITHOLOGKC	WELL DETAILS	LITHOLOGIC DESCRIPTION
				45 - 50 -				 ③ 47.0 feet: SILTY GRAVEL (GM), continued. ④ 47.0 feet: no sample attempt: hard gravel. Total depth drilled = 47.0 feet. WELL COMPLETION DETAILS: + 2.3 to 29.4 feet: 2-inch-diameter, flush-threaded, schedule 40 PVC blank riser pipe. 29.4 to 44.7 feet: 2-inch-diameter, flush-threaded, schedule 40 PVC well screen with 0.010-inch machined slots and a 2-inch-diameter threaded end cap. + 3.0 to 3.0 feet: 6-inch-diameter, locking steel riser pipe. + 0.4 to 2.0 feet: Concrete. 2.0 to 27.0 feet: Bentonite chips hydrated with potable water. 27.0 to 47.0 feet: 10 - 20 Colorado Silica Sand.
			5	 .			æ. • •	0896-001.01.STOKE.L52/se:2.01/09/94STOKE

File C Depa Seco Third	Driginal and First Copy with rtment of Ecology nd Copy — Owner's Copy Copy — Driller's Copy STATE OF W	Start Card No. 19172 Start Card No. 19172 UNIQUE WELL I.D. # ABJ 9 (ASHINGTON Water Right Permit No	26
Įn	OWNER: Name City of Walla Walla Add	1055 P.O. Box 478 Walla Walla, wa 99:	362
(iz) (29)	LOCATION OF WELL: County Walla Walla	- <u>NE 1/4 NE 1/4 Soc 22 T. JN N. R.</u>	<u>358,</u> w.
(3)	PROPOSED USE: Domestic Industrial Municipal I Irrigation Test Well X Other I	(10) WELL LOG or ABANDONMENT PROCEDURE DESCRIPT Formation: Describe by color, character, size of material and structure, and show thickne and the kind and nature of the material in each stratum penetrated, with at least one	10N ess of aquife entry for eac
(4)	TYPE OF WORK: Owner's number of well (If more than one) multiple Abandoned New well Method: Dug Bored Deepened Cable Driven Reconditioned Rotary Jetted	change of information. → → → → → → → → → → → → → → → → → → →	то
(5)	DIMENSIONS: Diameter of well 8 inches. Drilled 41 feet. Depth of completed well 41 ft.	silt dash brown 0 saturated at 29 ft.	411
(6)	CONSTRUCTION DETAILS: Casing installed: Diam. from ft. to		
	Perforations: Yes No Xe Type of perforator used		
, · · ·	Screens: Yes X No		
	Surface seal: Yes Yes No Jo what depth? 23 ft. Material used in seal Bantonute Church Did any strata contain unusable water? Yes No No Xet Did any strata contain unusable water? Yes No Xet No Xet Type of water? Depth of strata Method of sealing strata off		
(7)	PUMP: Manufacturer's Name H.P.		
(8)	WATER LEVELS: Land-surface elevation above mean sea level	Work Started	ell, and its
(9)	WELL TESTS: Drawdown is amount water level is lowered below static level Was a pump test made? Yes No If yes, by whom? Yield: ft. drawdown after " " " " " " " " " "	the information reported above are true to my best knowledge and belic NAME ENVICED MEASON FIRM OF CORPORATION Address P O BLOX HDPS SYCLONE	11 <u>Cn</u> 11 <u>Cn</u> 11 <u>A</u>
т	Recovery data (time taken as zero when pump turned off) (water level measured from well top to water level) ime Water Level Time Water Level Time Water Level Time Date of test	(Signed) (JUCM (JEAAMEN License No.] (WELL DRILLER) Contractor's Registration No. <u>ENVIRIUE INFP</u> Date <u></u> (USE ADDITIONAL SHEETS IF NECESSARY)	19 <u></u>
	Date of test	Ecology is an Equal Opportunity and Affirmative Action employer. cial accommodation needs, contact the Water Resources Program 407-6600. The TDD number is (206) 407-6006.	. For spe- n at (206)

PRC LOC DRII DRI LOC)JECT N. XTION LLED BY LL METH GGED BY	AME Wa Sud Env IOD Ho Jol	Illa Walla, Was dbury Road La vironmental W llow Stem Auç hn Latta	shington ndfill est ger		BORING NO. MW-11 PAGE 2 OF 2 GROUND ELEV. 791.65' TOTAL DEPTH 41.00' DATE COMPLETED 02/10/95
SAMPLING METHOD AND NUMBER	ground Water Levels	BLOWS PER 6 INCHES	DEPTH N FEET SAMPLES	BORING DETAILS	LITHOLOGIC	LITHOLOGIC DESCRIPTION
SS		11-30- 50/5"				 14.0 to 41.5 feet: SILT (ML), continued. 40.0 feet: orange gray to light brownish gray, very stiff to hard, wet, mottled iron oxide stain. Total depth drilled = 41.0 feet. Total depth sampled = 41.5 feet. WELL COMPLETION DETAILS: 0 to 25.5 feet: 2-inch-diameter, flush-threaded, Schedule 40 PVC blank riser pipe. 25.5 to 40.5 feet: 2-inch-diameter, flush-threaded, Schedule 40 PVC well screen with 0.010-inch machined slots (screened 26.0 to 40.0 feet). 40.5 to 41.0 feet: 2-inch-diameter threaded end cap. 0 to 1.0 foot: Concrete. 1.0 to 23.0 feet: Bentonite chips hydrated with potable water. 23.0 to 41.0 feet: 10 - 20 Colorado Silica Sand.

counts.

(

\bigcap	LOG OF EXPLORATORY BORING										
PRO LOC DRII DRII LOC	JECT NAM ATION LLED BY LL METHO GED BY	ME Wa Suc Env D Hol Jot	lla Walla, Ibury Roa vironmenta Iow Stem In Latta	Wa: Id La al W I Au	shington andfill /est ger		BORING NO. MW-12 PAGE 1 OF 2 GROUND ELEV. 823.53' TOTAL DEPTH 62.00' DATE COMPLETED 02/10/95				
SAMPLING METHOD AND NUMBER	GROUND WATER LEVELS	BLOWS PER 6 INCHES	DEPTH	IN FEET SAMPLES	BORING DETAILS	COLUMN	LITHOLOGIC DESCRIPTION				
SS		2-4-6	5	;			O to 17.0 feet: SILT (ML), light brownish gray with a trace of fine to medium sand, stiff, damp. Bedded and laminated locally. Micaceous.				
SS	9	1-13-17	10)							
SS	9	-20-20	15	;			17.0 to 23.0 feet: CLAYEY SILT (ML/CL), light				
SS	14	1-20-25	20				brownish gray to brown, silt with a little to few percent clay, very stiff, damp. Laminated and bedded.				
SS	7.	-26-40	- 25				23.0 to 45.0 feet: SILT (ML), light brownish gray to brown, hard, damp.				
SS	29	∂-50/5 "					@ 30.0 feet: 1/2-inch-thick vertical clastic dike filled with fine to medium sand.				
SS	36	3-33-39	- 35				بیر .				
	(1) W hamr coun	Vashington mer with a its.	Department 30-inch drop	of Ec	ology Unique it-spoon is 2-	Well No. 1/2 I.D. u	ABJ 927. (2) SS = Split-spoon sampler driven by a 140-pound nless otherwise noted. (3) Consistency of fines based upon blow				

PRC LOC DRII DRII LOC	DJECT N ATION LED BY L METH GED BY	AME Wa Sud Env IOD Hol	LOC Illa Walla, V dbury Road vironmental llow Stem A nn Latta	Vas La W Auç	DF EXP shington ndfill est ger	ATORY BORING BORING NO. MW-12 PAGE 2 OF 2 GROUND ELEV. 823.53' TOTAL DEPTH 62.00' DATE COMPLETED 02/10/95	
SAMPLING METHOD AND NUMBER	ground Water Levels	BLOWS PER 6 INCHES	DEPTH IN FEET	SAMPLES	BORING DETAILS	COLUMN LITHOLOGIC	LITHOLOGIC DESCRIPTION
SS		14-30- 50/3"					23.0 to 45.0 feet: SILT (ML) , continued. @ 40.0 feet: mottled appearance due to caliche.
3" SS		8-23-50	- 45- 				45.0 to 50.0 feet: SILTY GRAVEL (GP-GM) , brown, medium to coarse subrounded basaltic gravel and some silt, hard, wet.
3" SS	⊻ 2/10/95 50.75'	40-50/5"	50- - - - -				50.0 to 58.0 feet: GRAVEL (GP), dark brownish gray, coarse to medium subrounded basaltic gravel, a few percent fine subrounded basaltic gravel, a few percent coarse to fine sand, and a trace silt, hard drilling, wet to moist.
3" SS		9/1'- 50/4"	- 55- - 			<u>هارام</u> م م م م م	58.0 to 62.0 feet: SILTY SANDY GRAVEL
3" SS		6/1"- 50/2"	- 60- -				(GP-GM), brown, fine subrounded basaltic gravel with a few percent of medium to coarse; subrounded basaltic gravel, some coarse to medium sand, some fine sand and some silt, hard drilling, wet.
			- - 65- -				Total depth drilled = 62.0 feet. Total depth sampled = 62.0 feet.
			70-				 WELL COMPLETION DETAILS: 0 to 46.5 feet: 2-inch-diameter, flush-threaded, Schedule 40 PVC blank riser pipe. 46.5 to 61.5 feet: 2-inch-diameter, flush-threaded, Schedule 40 PVC well screen with 0.010-inch machined slots (screened 47.0 to 61.0 feet). 61.5 to 62.0 feet: 2-inch-diameter threaded end cap.
		FMARKS	80-				0 to 41.0 feet: Bentonite chips hydrated with potable water. 41.0 to 62.0 feet: 10 - 20 Colorado Silica Sand.

(1) Washington Department of Ecology Unique Well No. ABJ 927. (2) SS = Split-spoon sampler driven by a 140-pound hammer with a 30-inch drop. Split-spoon is 2-1/2 I.D. unless otherwise noted. (3) Consistency of fines based upon blow counts.

ile C Depa Seco Third	original and First Copy with rtment of Ecology nd Copy — Owner's Cópy Copy — Driller's Copy	VELL REPORT UNIQUE WELL I.D. # 1 OF WASHINGTON Water Right Permit No	ABJ	920
	DWNER: Name City of Walla Walla	Address P.O. Box 478 Walk Walks we	99	362
2) 28)	LOCATION OF WELL: County Walla Walla	SE 1/4 SW 1/4 Sec 14 T_	7 N.R.	35E
, 		(10) WELLING of ABANDONMENT PROCEDURE	DESCRIPT	ION
3)	Irrigation Test Well X Other	Formation: Describe by color, character, size of material and structure, ar and the kind and nature of the material in each stratum penetrated, with	id show thickne	ess of aquentry for
4)	TYPE OF WORK: Owner's number of well mw#12	change of information.	FROM	Т
	Abandoned New well Method: Dug Bored Deepened Cable Driven Reconditioned Rotary Jetted	nitt light barren dad	0	2
5)	DIMENSIONS: Diameter of well in Drilled 62 feet. Depth of completed well62	ches. H. Clary silt, brown	20	2
6)	CONSTRUCTION DETAILS:		20	
-,	Casing Installed: Diam. from ft. to Welded Diam. from ft. to Liner installed biam. from ft. to	n sitty gravel, cobbels, some	45	6
	Perforations: Yes No X	fine rand. I saturated at 50 ft.		
	SIZE of perforations in. by perforations from ft. to perforations from ft. to	in		
	perforations from ft. to	ft.		
-	Screens: Yes Yes No Diamufacturer's Name Johnson /pe PVC Sch 40 Model No.	ft.		
	Diam. Slot size from ft. to Gravel packed: Yes No Size of gravel 10/20 Standow Gravel placed from 41 ft. to 62	ft.		
	Surface seal: Yes No To what depth? 41 Material used in seal Buildownite Chips Did any strata contain unusable water? Yes No No			
	Type of water? Depth of strata			
7)	PUMP: Manufacturer's Name Type: H.P.			
8)	WATER LEVELS: Land-surface elevation above mean sea level	τη του <u>το τρομούο το διαδού</u> τατο το τ		
-	Arteslan pressure Ibs. per square inch Date			
	Artesian water is controlled by(Cap, valve, etc.)	Work Started 2 - 9 . 19. Completed	1-10	, 19
9)	WELL TESTS: Drawdown is amount water level is lowered below static level Was a pump test made? Yes No If yes, by whom? Yield: gal./min. with ft, drawdown after	brs. Legestructed and/or accept responsibility for construction	on of this w	ell. and
	11 11 11	" compliance with all Washington well construction standar the information reported above are true to my best knowle	ds. Materials dge and beli	s used ef.
	" " Recovery data (time taken as zero when pump turned off) (water level measured from top to water level) me Water Level Time Water Level Time Water Level	I WALL NAME EAULITION MAN PARAMA AND AND AND AND AND AND AND AND AND AN	A CACIL	
		(Signed) (Si	nse No. 1 8	327
	Date of test	Contractor's		
	Bailer test gal./min. with ft. drawdown after Airtest gal./min. with stem set at ft. for	hrs. Registration hrs. No. ENUIRWEIDIPP Date 2.		_, 19 _

2

;

Garver Well

Appli. 8758 STATE OF WASHINGTON POR. 8090 DEPARTMENT OF CONSERVATION DIVISION OF WATER RESOURCES

Record by Driller Source Driller's Record Location: State of WASHINGTON County Walla Walla Area Map NE. 4 SW. 4 secl4. T. 7. N. R. 35E. E. Drilling Co. Moore & Anderson Address. P. O. Box 1228- Walla Wall Method of Drilling. Cable Date. No Dwner. Richard Garver	Diagram o	f Section
Source Driller's Record Location: State of WASHINGTON CountyWalla Walla Area	Diagram o	f Section
Location: State of WASHINGTON CountyWalla Walla Area	Diagram o	f Section
CountyWalla Walla Area Map ME. 4 SW. 4 secl4. T. 7. N. R. 35E. E. Drilling CoMoore & Anderson AddressP. O. Box 1228- Walla Wall Method of DrillingCable DateNo DwnerRichard Garver	Diagram o	f Section
Area Map NE. ¼ SW. ¼ secl4T. 7N., R. 35E. E. Drilling Co Moore & Anderson AddressP. OBox 1228- Walla Wall Method of Drilling	Diagram o	f Section
Map NE. ¼ SW. ¼ secl4T7N., R35E. E. Drilling CoMoore & Anderson AddressP. O. Box 1228- Walla Wall Method of DrillingCable DateNo DwnerRichard Garver	Diagram o	f Section
NE. 1/4 SW. 1/4 secl4T. 7N., R. 35E. E. Drilling Co Moore & Anderson Address. P. O. Box 1228- Walla Wall Method of Drilling cable Date. No Dwner. Richard Garver	Diagram o	f Section
Drilling Co Moore & Anderson AddressPOBox 1228- Walla Wall Method of DrillingCable Date. No Dwner. Richard Garver	Diagram o	f Section
Address P. O. Box 1228- Walla Wall Method of Drilling cable Date No Dwner, Richard Garver	a, Maal	ningto
Method of Drilling cable Date No Dwner Richard Garver		
Dwner_Richard Garver	Vanhan	2010
		19 ليكر
Address P. O. Box 1002 Walla Wal	la. Wa.	ahinat
WL: 150' Date Dec. 8 19.67	Dims.:]	227 X
CORRS- LATION MATERIAL	From (feet)	To (feet)
Irrigation	screens, etc	.)
Clay and soil		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Clay w/coarse sand & gravel hrm		
Clay, brown, some gravel		2
Clay, brown	28	- 4
Claw and manal	3	(
MAY ALL FRYAL		10
Gravel	. 14	88
Gravel Clay & gravel	14	88
Gravel Gravel Gravel (water to drill with at	14	88 93
Gravel Clay & gravel Gravel (water to drill with at 116')	14 5 57	88 93 150
Gravel Gravel Gravel (water to drill with at 116') Gravel with clay	14 5 57 10	88 93 150 160
Gravel Gravel (water to drill with at ll6') Gravel with clay Gravel (Static level 100')	14 5 57 10 19	88 93 150 160 179
Gravel Gravel (water to drill with at ll6') Gravel with clay Gravel (Static level 100') Gravel & clay	14 5 57 10 19 18	88 93 150 160 179 197
Gravel Gravel (water to drill with at 116') Gravel with clay Gravel (Static level 100') Gravel & clay Gravel	14 5 57 10 19 18 13	88 93 150 160 179 197 210
Gravel Gravel (water to drill with at ll6') Gravel with clay Gravel (Static level 100') Gravel & clay Gravel Clay & Gravel, sticky brown	14 5 57 10 19 18 13 6	88 93 150 160 179 197 210 216

Garver Well

10

	No	/			
CORES	KATEGAL	from (feet	n .)	To (feet)	*
LATION	Durth (organd				¥.,
	Deputien star	6	8	288	1
	CIAY, president of the	2	1	309	
	blay, blue	2	5	334	
	Clay, dain die graan	3	8	372	
	Liay, dara, ground with some				
	Clay, Henter Broom Hat		0		4.3 ⁴ 5.
	hard shale		28	_410_	
	Clay, dark green hand		2	412	
	Shale, dark gray, hard	8			
	Rock & Gravel, broken with		io	1.22	8
	clay		10	432	
	Shale, brwon	1	13	445	
	Gravel, with some clay	1	14	459	
	Clay, brown		2	1.62	
	Clay, brown, sticky		35	497	
	Clay, brown		25	522	
	Clay, blue		10	532	2
	Shale, blue		10	540)
	Blackrock	<u>_</u>	0	ESI	
	Rock gray				
	Sometone, vellow-white, red	<u>-</u>			<u>د</u> الأ
	dich hm.				
	Rock reddish brown, harder		<u></u>		7
	Rock, gray, hard		57		
	Rock dark gray		23	04	V
	Deck, dark grav, softer		_10	0	
	Rock black w/some blue, br	oken			
	acceptione (Static level 200	T)	13	60	22
-	BOBUSICONS (Deater		23	61	36
	Rock, DIACK		33	7	19
	Rock, black W/ But Shate		2	7	21
	Shale, brown		9	7	30
	Rock, black	8	2	7 7	57
_	Rock, blck w/blue soapston	731)	2	4 7	181
	Rock, black(Static level 1	15 1			

STATE OF WASHINGTON DEPARTMENT OF CONSERVATION DIVISION OF WATER RESOURCES WELL LOG Record by.... Source..... Location: State of WASHINGTON County..... Area Map..... Diagram of Section Drilling Co..... Address Owner_____ Address SWL:_____ Date_____ 19____ Dims:_____ COLER From (feet) To (feet) MATERIAL LATION (Transcribe driller's terminology literally but furaphrase as necessary, in parentheses, If material water-bearing, so state and record static level if reported. Give depths in feet below iand-surface datum unless otherwise indicated. Correlate with stratigraphic column, if feasible. Following log of materials, list all casings, perforations, screens, etc.) Rock, black, harder 15 796 33 829 Rock, black, softer 36 865 Rock, gray, softer 11 876 Rock, gray, hard Rock, black 176 1052 1061 9 Rock, gray 1198 Rock, black(Water at 1077') 137 Changed to 10" hole at 1100' Static level 169' hole at 1131' Static level 162' hole at 1136' Static level 159' hole at 1151' Static level 157' hole at 1170' 2 1200 Rock, gray

Rock, black (Static level 155'

n

Rock, gray

1

After pumping Static level was at 150

154'

Turn up

Sheet____of___sheets

9

18

1218

1227

Log of Exploration

Exploration No. MW-12b

	Ser	víces	>			Sheet	1 of 5
Proj	ect: C	ity of	Walla \	Nalla S	Sudbu	ry Road Landfill Monitoring Well MW-12 Replacement	
Star Finis Wea Geo Drille Meth	t Date: sh Date ather Co logist: (er: Env nod: 6-	8/28/2 8/29 onditio Craig S vironm in dia.	2008 //2008 /ns: Cle Schwyn ental W TUBE	ear, Wa l /est Ex X	arm p.	Well Construction Ground El: 825.37 PVC Casing El: 828.26 Datum: NAVD 88 Total Depth (BGL): 80.5 ft Completion: 6-in. dia. locking steel monument with concrete s Seal (BGL): Bentonite chips 1.5 to 58 ft Sandpack (BGL): Colo. silica sand (6 ft 10/20 & 16.5 ft 20/40) Casing: 2-in. dia. flush threaded PVC +2.8 to 60.0 ft BGL Screen: 0.01-in. slot PVC 60 to 80 ft BGL, with 4 in. bottom ca	} urface pad 58 to 80.5 ft.
ample Number	는 Sample 이 Interval	slows per 6-inch nterval	ampler Type)epth (feet)	ISCS Symbol	Water Level InformationDate:8/28/08 8/29/08Time:3:00 1:40Depth to Water (ft BGL):59.7Depth to Water (ft BTOC):62.20	Comments
0	BOL	шт	の Crob			Sample Description	Drilling Action
	5 <u>9.5</u>	<u>10</u>	Drill Chips 1.5-in			Damp	
	11	<u>12</u> 11	SPT Drill Chips	10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 -			
	<u>19.5</u> 21	<u>7</u> <u>10</u> 14	1.5-in SPT	18 - 19 - 20 -		Moist	

Exploration No. MW-12b

Sheet 2 of 5

Proj	ect: C	ity of	Walla V	Valla S	Sudbu	ry Road Landfill Monitoring Well MW-12 Replacement	
ole Number	Sample Interval	s per 6-inch ⁄al	oler Type	(feet)	S Symbol		
Samp	<u>Top</u> Bot	Blow: Interv	Samp	Dept	USC:	Sample Description	Comments Drilling Action
.,					ML	Light brown Silt (continued)	
				 22-		trace sand, low plasticity, laminated, stiff, moist.	
				 23-			
				 24 -			
	25		Drill	 25 -			
			Chips	 26-			
				 27 -			
				 28-			
	oo -	40		 29-			
	<u>29.5</u> 31	<u>12</u> <u>16</u>	1.5-in SPT	 30-			
		17		 31 -			
				 32_			
				 33-			
				 34 -			
	35		Drill Chips	 35 -			
			onpo	 36 -			
				37 -			
				 38 -			
				39-		Clayey silt, whitish mottling, moderate plasticity.	
	<u>39.5</u> 41	<u>8</u> 12	1.5-in SPT	40 -			
		16	0. 1	 41 -			
				42 -			
				43 -			
				44 -			
	45		Drill Chips	45 -			

Exploration No. MW-12b

Sheet 3 of 5

Proj	ect: C	ity of \	Walla V	Valla S	Sudbu	ry Road Landfill Monitoring Well MW-12 Replacement	
ple Number	Sample Interval	s per 6-inch val	pler Type	h (feet)	S Symbol		
Sam	<u>Top</u> Bot	Blow Inter	Sam	Dept	nsc	Sample Description	Comments Drilling Action
				46 -	ML	Light brown Silt (continued) trace sand, low plasticity, laminated, stiff, moist.	
				47 -			
				48-		Drilling slows @ 48	
	<u>49.5</u>	<u>100</u>	1.5-in	49-	GM	Brown silty Gravel with sand, 0.5 - 1" sub-rounded basalt gravel,	
	50) 8"	SPT	50-		up to 40% clay/silt matrix, very dense, moist.	
				_ 51 -			
				_ 52 -			
				_ 53 -			
				_ 54 -			
	55		Drill Chips	_ 55 -		Dark brown, sandy Gravel with little silt.	
				_ 56 _			
				57 -			
	<u>59.5</u> 61	<u>9</u> 16	1.5-in SPT		SM	Dark reddish brown fine Sand with little silt, dense, wet.	⊻ Water @ ATD 59.7' BGL
	0.	<u>25</u>	01.1	60		@ 60.5: Whitish brown Silt with some fine sand.	
				61 -	GM	Grayish brown gravely Sand with silt. Sub-rounded gravel up to 1/2 inch, very dense, wet.	
				62-			Interlayered wet and moist zones
				63-			from 60 to 72 ft.
	<u>64.5</u>	<u>100</u>	1.5-in	64		Dark brown fine Gravel with silty sand matrix, sub-angular gravel,	
	65	6"	SPT	65-		approx. 40% silty sand matrix, very dense, wet.	
				_ 66 _			
				67			
				68-			
	<u>69.5</u> 71	<u>6</u>	1.5-in	69- 	ML	Reddish brown Silt with clay and little fine to medium sand,	
	7.1	<u> </u>	571	70 -		with day and little line to medium sand, hematite red staining,	

Exploration No. MW-12b

Sheet 4 of 5

Pro	ject: C	ity of V	Walla V	Valla S	udbu	ry Road Landfill Monitoring Well MW-12 Replacement				
ple Number	l Sample Interval	rs per 6-inch val	pler Type	:h (feet)	S Symbol					
Sam	<u>Top</u> Bot	Blow Inter	Sam	Dept	USC	Sample Description	Comments Drilling Action			
					ML	Reddish brown Silt (continued) with clay and little fine to medium sand, hematite red staining, very stiff, moist to wet.	Ŭ			
							Drilling slows			
				73-		Grayish brown Gravel with little silty sand, sub-rounded				
	74.5 100 75 5"	<u>100</u>	1.5-in	74-	GM					
		SPT	75 -		basaltic gravel up to 1.5 inches, very dense, wet.					
				76 -			Producing substantial water			
				 77 -						
				 78-						
	79.5	100	1.5-in	 79 -		Approximate 30% silt sand matrix	Water @ 59.7' BGL			
	80	7"	SPT	80 -						
						Boring terminated at 80.5 ft				
	 Lithologic descriptions and stratigraphic contacts are based on field interpretations and are approximate. Refer to "Soil Classification and Key" figure for explanation of graphics and symbols. BGL = below ground level BTOC = blow top of casing 									

SOIL CLASSIFICATION SYSTEM

Μ	AJOR DIVISIONS		GROUP SYMBOL	GROUP NAME
	GRAVEL	CLEAN	GW	WELL-GRADED GRAVEL, FINE TO COARSE GRAVEL
COURSE	ORAVEE	GRAVEL	GP	POORLY-GRADED GRAVEL
GRAINED SOILS	More than 50% of coarse	GRAVEL	GM	SILTY GRAVEL
	sieve	WITH FINES	GC	CLAYEY GRAVEL
	SAND	CLEAN	SW	WELL-GRADED SAND, FINE TO COARSE SAND
More than 50% retained on No. 200 sieve	SAND	SAND	SP	POORLY-GRADED SAND
	More than 50% of coarse	SAND	SM	SILTY SAND
	sieve	WITH FINES	SC	CLAYEY SAND
			ML	SILT
FINE GRAINED SOILS	SILT AND CLAY liquid limit less than 50	INORGANIC	CL	CLAY
		ORGANIC	OL	ORGANIC SILT, ORGANIC CLAY
			MH	HIGH-PLASTICITY SILT, ELASTIC SILT
More than 50% passes No. 200 sieve	SILT AND CLAY liquid limit more than 50	INOROANIC	СН	HIGH-PLASTICITY CLAY, FAT CLAY
		ORGANIC	ОН	ORGANIC CLAY, ORGANIC SILT
Н	GHLY ORGANIC SOILS		PT	PEAT

Notes:

- 1. Field classification is based on visual examination of soil in general accordance with ASTM D2488.
- 2. Where laboratory index testing has been conducted, soil classification is based on ASTM D2487.
- 3. USCS group symbols correspond to the symbols used by the Unified Soil Classification System and ASTM Classification methods.

Soil Classification and Key

	MAJOR		GRAPHIC SYMBOL S	LETTER YMBOL ⁽¹⁾	TYPICAL DESCRIPTIONS ⁽²⁾⁽³⁾		
e)	GRAVEL AND GRAVELLY SOIL	CLEAN GRAVEL (Little or no fines)		GW	Well-graded gravel; gravel/sand mixture(s); little or no fines Poorly graded gravel; gravel/sand mixture(s); little or no fines		
HED SO material i sieve siz	(More than 50% of coarse fraction retained	GRAVEL WITH FINES (Appreciable amount of		GM	Silty gravel; gravel/sand/silt mixture(s)		
RAIN % of . 200		fines)	1211	GC	Clayey gravel; gravel/sand/clay mixture(s)		
an No	SAND AND	CLEAN SAND		SW	Well-graded sand; gravelly sand; little or no fines		
ARS ore th jer thi	SANDY SOIL	(Little of no intes)		SP	Poorly graded sand; gravelly sand; little or no fines		
N N N	(More than 50% of coarse fraction passed	SAND WITH FINES		SM	Silty sand; sand/silt mixture(s)		
	through No. 4 sieve)	(Appreciable amount of fines)"	1111	SC	Clayey sand; sand/clay mixture(s)		
L	SILT A	ND CLAY		ML	Inorganic silt and very fine sand; rock flour; silty or clayey fine sand or clayey silt with slight plasticity		
SOI mater 00 sid	(Liquid limi	t less than 50)	///h	CL	Inorganic clay of low to medium plasticity; gravelly clay; sandy clay; silty clay; lean clay		
NED % of 1 No. 2	(OL	Organic silt; organic, silty clay of low plasticity		
SRAI an 50 than size	CII T A			MH	Inorganic silt; micaceous or diatomaceous fine sand		
NE-O ore the naller				СН	Inorganic clay of high plasticity; fat clay		
FII (Mo is sn	(Liquia limit	greater than 50)		ОН	Organic clay of medium to high plasticity; organic silt		
	HIGHLY ORGA	ANIC SOIL	FEELEN A	PT	Peat; humus; swamp soil with high organic content		
			GRAPHIC	LETTER			
	OTHER MAT	ERIALS	SYMBOL S	SYMBOL	TYPICAL DESCRIPTIONS		
	PAVEM	ENT	A	AC or PC	Asphalt concrete pavement or Portland cement pavement		
	ROCI	<		RK	Rock (See Rock Classification)		
-	WOO	D	Harris and	WD	Wood, lumber, wood chips		
	DEBR	IS	1/2/2/2	DB	Construction debris, garbage		
2. Soil as c of S 3. Soil	ousterptions are based on poutlined in ASTM D 2488. \ Solls for Engineering Purp description terminology is Primary Secondary C Additional C	Where laboratory index testi oses, as outlined in ASTM D based on visual estimates (i Constituent: > 5 ionstituents: > 30% and < 5 > 15% and < 3 ionstituents: > 5% and < 1 <	nee in the Stand ng has been condu- 2487. n the absence of 0% - "GRAVEL," ' 0% - "very gravell 0% - "gravelly," 's 5% - "with gravel, 5% - "trace grave	aru Practice I lucted, soil clas "SAND," "SILT y," "very sand andy," "silty," " "with sand," I," "trace sand	stifications are based on the Standard Test Method for Classifications at data) of the percentages of each soil type and is defined as follow T, "CLAY," etc. etc. "with silt," etc. "with silt," etc., or not noted.		
SAMPLE	Drilling a	and Sampling Ke	ey YPE		Field and Lab Test Data		
Code Description Sample Identification Number a 3.25-inch O.D., 2.42-inch I.D. Split Spoon Pocket Penetrometer, tsf Recovery Depth Interval c Shelby Tube TV = 0.5 Torvane, tsf Sample Depth Interval d Grab Sample Other - See text if applicable Description Portion of Sample Retained for Archive or Analysis 1 300-lb Hammer, 30-inch Drop Other - See text if applicable Description Question 2 140-lb Hammer, 30-inch Drop GS Grain Size - See separate figure for data Approximate water elevation at time of drilling (ATD) or on date noted. Groundwater Groundwater CA Chemical Analysis							
G V Ap	proximate water elevation	at time of drilling (ATD) of or					
G	proximate water elevation els can fluctuate due to pre	actime of drilling (ATD) of or ecipitation, seasonal conditio	ris, and other fact	tors.			

Drill Date: 8/31/2005

Monitoring Well ID: MW-16

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road Landfill Ground Surf Elev. & Datum: 810.9 ft. MSL Casing Elevation: 813.39 ft. MSL Coordinate System: NAD 83 Latitude/Northing: 278,211.43 Longitude/Easting: 2,169,578.97

Logged By: Craig Schwyn Drilled By: Environmental West Exp. Drill Type: 6" Tubex Sample Method: Grab/2.4" SS Boring Diameter: 6.5-in Boring Depth (ft BGS): 69 ft. Groundwater (ft BTOC): 58.02

Remarks:

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Cons Det	struction ail
							Locking Steel Casing
							PVC Cap
Grab					ML: Brown Silt, trace sand and clay, low plasticity, damp.		Concrete Pad
			-2 -3 -				
Drill Chips							
Drill Chips							
							2-in. dia. flush
Drill			13 				threaded PVC, 2.4 ft AGL to 54 ft
Chips							BGL
			17 				
Drill Chips			19 20				
			21 22				
Drill			23 24				
Chips			25 26				Bentonite Chips
			27				
Notaa			29				
ft BGS =	feet belo = feet bel	w groui ow top	nd surfa of well	ace casing	USCS = Unified Soil Classification System	Pa	ge 1 of 2

Notes:

ft BGS = feet below ground surface ft BTOC = feet below top of well casing

Exploration No. **GW-5**

	Sen	rices	>			Log of Exploration	Sheet	1 of	3
Start Date: 8/6/2009 Finish Date: 8/6/2009 Weather Conditions: Warm, Windy Geologist: Craig Schwyn Drilling Method: 6-in dia. Sonic Sample Method: 4-in. dia. Core Operator: Enviro. West Exp.						Landfill Gas Well Completion Surface E Total Boring Depth (BGL): 48.5 ft Total Cas Completion: Locking steel above ground monur Seal (BGL): Bentonite chips, 2 to 18.3 ft and 35 Gravel pack (BGL): 5/8-minus rounded gravel, 1 Casing: 1/2-in. dia. flush threaded Sch. 80 PVC Screen (BGL): 0.03-in. slot Sch. 80 PVC, 25 to I Landfill Onsite RI	Elevation: 841 sing Depth (B ment with con- to 48.5 ft 8.3 to 35 ft 3 +2.80 to 25 30 ft BGL, wit	.05 ft MSL TOC): 32.80 crete surface ft BGL h bottom cap	ft pad
		ċ		_					
mple Number	H Sample B Interval	w Counts / 6-i	mpler Type	pth (feet)	CS Symbol			Comme	nts
Sai	Bot	Blo	Sar	Del	N	Sample Description		Drilling A	ction
	<u>0</u> 7		4-in Core 4-in Core	$ \begin{array}{c} - 1$	ML	Grayish brown Silt , trace sand, low plasticity, soft, o 2 ft recovery, saturated with drilling water	Jry.		
	<u>17</u> 27		4-in Core	- 13- - 14- - 15- - 16- - 17- - 18- - 19-		 Municipal Solid Waste. Medium dense MSW consisting of fabric, wood, yard waste, with 6" thick layers of silt interspondent of the second state of the second sta	paper, & ersed. I.		

Exploration No. GW-5

3

Sheet 2 of

Proj	Project: Walla Walla Sudbury Road Landfill Onsite RI								
		Ľ.				Start Date: 8/6/2009 Surface Elevation	on: 841.05 ft MSL		
er		6-i			_	Finish Date: 8/7/2009			
g	al /al	ts /	/pe	÷	oqu	Geologist: Craig Schwyn			
nZ	terv	un	τ,	eet	ym	Drilling Method: 6-in dia. Sonic			
ole	ы S	ŏ	olei	h (f	S S	Sample Method: 4-in. dia. Core			
a lu	<u>Top</u>	мо	aml	ept	SC		Comments		
ő	Bot	Β	ŝ	Ď	Ű	Sample Description	Drilling Action		
				_ 20 _		Municipal Solid Waste (cont.)			
						@ 20 to 22 ft: gray silt, moist, compact.			
				<u> </u>					
						@ 22 to 27 ft; black wood tires and decomposed MSW			
				<u> </u>					
				- 23 -					
				24					
				_ 24 _					
				_ 25_					
				20					
					_ 26 _				
	07		4			© 27 to 20 ft black paper wood and decomposed MCW			
	<u>21</u> 37		4-IN Core	<u> </u>		@ 27 to 30 It: black, paper, wood, and decomposed MSW.			
	57		Cole						
				<u> </u>					
					- 29 -				
						- 20-	0 —	@ 30 to 31 ft: silt.	
						_ 30 _			
				_ 31 _		@ 31 to 36 ft: glass, rock, and paper.			
				•••					
				<u> </u>					
				<u> </u>					
				— 34 —					
				— 35 —		@ 35.5 to 36.5 ft: disturbed silt.			
				26					
				_ 30 _	ML	Grayish brown Silt, with little clay and fine sand, stiff,			
	<u>37</u>		4-in	_ 37_		low plasticity, moist.			
	47		Core			Some bedding structure observed in the silt with medium			
				<u> </u>		to coarse sand.			
				— 39 —					

Total Depth: 48.5 ft.

Continued X

Exploration No. **GW-5**

Sheet <u>3</u> of <u>3</u>

Proj	Project: Walla Walla Sudbury Road Landfill Onsite RI						
ole Number	Sample Interval	Counts / 6-in.	oler Type	h (feet)	S Symbol	Start Date:8/6/2009Surface ElevatioFinish Date:8/7/2009Geologist:Craig SchwynDrilling Method:6-in dia. SonicSample Method:4-in. dia. Core	n: 841.05 ft MSL
Sam	<u>Top</u> Bot	Blow	Sam	Deptl	JSC	Sample Description	Comments Drilling Action
S-1a S-1b S-1c	47 48.5	on <u>23</u> <u>33</u> 51	3-in SS		SN ML	Grey brown Silt, with little clay and sand, stiff, low plasticity, mo @ 42 ft: Light brown Light brown Silt with medium to coarse subangular basaltic sand interspersed with layers of brown, very dense, silt; moist. Grades to very fine Sand with silt and medium to coarse sand. Boring drilled to 47 feet and sampled to 48.5 feet. Gas well constructed in boring to 30 ft BGL.	Drilling Action st.
Not	es:	1. Lith 2. Ref 3. BG 4. AG 5. TO 6. BT 6. BT 7. SS 8. SP	ologic d er to "So L = belo L = abov C = top o DC = be = Split S T = Stan	escription bil Classif w ground ve ground of casing low top of Spoon Sau dard Pen	is and s ication a level level f casing mpler (2 etration	tratigraphic contacts are based on field interpretations and are approximate. and Key" figure for explanation of graphics and symbols. 2.42 -in. I.D.) Test Sampler (1.5 -in. I.D.)	

Exploration No. **GW-6**

2	Serv	rices	\geq			Shee	t <u>1</u> of <u>2</u>
Start Date: 8/6/2009 Finish Date: 8/7/2009 Weather Conditions: Warm, Windy Geologist: Craig Schwyn Drilling Method: 6-in dia. Sonic Sample Method: 4-in. dia. Core Operator: Enviro. West Exp.					ndy	Landfill Gas Well CompletionSurface Elevation: 79Total Boring Depth (BGL): 39 ftTotal Casing Depth (Completion:Locking steel above ground monument with coSeal (BGL):Bentonite chips, 1.5 to 13 ft and 30 to 39 ftGravel pack (BGL):5/8-minus rounded gravel, 13 to 30 ftCasing:1/2-in. dia. flush threaded Sch. 80 PVC, +2.48 to 2Screen (BGL):0.03-in. slot Sch. 80 PVC, 20 to 25 ft BGL, y	8.25 ft MSL BTOC): 27.48 ft phorete surface pad 0 ft BGL with bottom cap
		ċ					
Sample Number	g I Sample to Interval	Blow Counts / 6-ii	Sampler Type	Depth (feet)	USCS Symbol	Sample Description	Comments Drilling Action
	0		4-in		ML	Gravish brown Silt , trace sand, low plasticity, soft, dry.	
	7		Core	- 1 - - 2 - - 3 -		(Landfill Cover)	
				_ 4 _		Municipal Solid Waste @ about 3 to 5 ft.	
				- 5 -		Medium dense MSW consisting of wood, yard waste, with 6" thick layers of silt interspersed. Plug of paper @ 7 ft is dated 8/10/1980	
				- 6 -		Flug of paper @ 7 it is dated of 10/1960	
	<u>7</u> 17		4-in Core	- 7 -		@ 7 to 11 ft: 4 ft recovery Silt, paper, glass, and kitchen rubbish.	
				- 8 -			
				<u> </u>			
				— 10 — _ 11 —			
				12			
				— 13 —			
				— 14 —			
				— 15 —			
	<u>17</u>		4-in	- 16 -		@ 17 to 27 ft: tires, paper, cardboard, carpet pads, wood,	Rapid drilling
	27		Core	- 17 - - 18 -		MSW interspersed with layers of silt. Material with sales prediction date of 1979.	
				— 19 —			
	· · · · · ·						

Exploration No. **GW-6**

2

Sheet 2 of

Proj	ect: W	alla W	Valla S	udbury	Road	Landfill Onsite RI	
le Number	Sample Interval	Counts / 6-in.	ler Type	(feet)	Symbol	Start Date:8/6/2009Surface ElevationFinish Date:8/7/2009Geologist:Craig SchwynDrilling Method:6-in dia. SonicSample Method:4-in. dia. Core	n: 798.25 ft MSL
dui	<u>Top</u>	ŇC	dm	epth	SCo	· ·	Comments
Sa	Bot	B	Sa	De	n	Sample Description	Drilling Action
				_ 20 _		Municipal Solid Waste (cont.)	
	<u>27</u> 37		4-in Core	-20 - 20 - 21 - 22 - 23 - 23 - 24 - 25 - 26 - 27 - 28 - 29 - 29 - 30 - 31 - 32 - 32 - 32 - 32 - 32 - 32 - 32		@ 27 to 32 ft: black, paper, wood, metal, and decomposed M Newspaper dated October 1979.	ISW.
S-1a S-1b S-1c S-1d	<u>37</u> 39	<u>7</u> 9 <u>12</u> 15	3-in SS	- 33 - - 34 - - 35 - - 36 - - 37 - - 38 -	ML	 @ 36 to 37 ft: Olive brown Silt, with little clay and fine to medium grained sand lenses up to 1/2-in. thick, firm, very @ 37 to 39 ft: Olive Silt, with trace clay and some fine to medium grained sand, mottled, low plasticity, wet. 	moist.
						Boring drilled to 37 feet and sampled to 39 feet.	
						Gas well constructed in boring to 25 ft BGL.	
Not	es:	 Lith Ref BGI AGI AGI TOO TOO BTO SS SPT 	ologic de er to "So L = belov L = abov C = top o DC = bel = Split S Γ = Stan	escription bil Classif w ground re ground of casing low top of Spoon Sa dard Pen	s and s ication a level level casing mpler (2 etration	ratigraphic contacts are based on field interpretations and are approximate. Ind Key" figure for explanation of graphics and symbols. .42 -in. I.D.) Test Sampler (1.5 -in. I.D.)	

APPENDIX C

Independent Remedial Investigation Methods

Independent Remedial Investigation Field Methods Sudbury Road Landfill Remedial Action Walla Walla, Washington

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	1-1
	1.1 BACKGROUND AND PURPOSE	1-1
2.0	FIELD METHODS	2-1
	2.1 AREA 2 WASTE EVALUATION	2-1
	2.2 GEOPROBE INVESTIGATION	2-1
	2.3 BORING INVESTIGATION	2-3
	2.4 LANDFILL GAS SAMPLING	2-4
3.0	REFERENCES	3-1

FIGURES

<u>Figure</u>	Title
1	Site Location
2	Site Plan
3	Area 2 Waste Delineation
4	Independent RI Boring Locations

ATTACHMENTS

Exploration Boring Logs Laboratory Analytical Reports Landfill Gas Well Installation Report

LIST OF ABBREVIATIONS AND ACRONYMS

AO	Agreed Order No. 8456
bgl	Below ground level
City	City of Walla Walla, Washington
Ecology	Washington State Department of Ecology
FS	Feasibility Study
LFG	Landfill gas
MSW	Municipal solid waste
MTCA	Washington State Model Toxics Control Act
PVC	Polyvinyl chloride
RI	Remedial Investigation
RI/FS	Remedial Investigation/Feasibility Study
Site	Sudbury Road Landfill
Schwyn	Schwyn Environmental Services, LLC
TDS	Total dissolved solids
TOC	Total Organic Carbon
USCS	Uniform Soil Classification System
USEPA	U.S. Environmental Protection Agency
VOC	Volatile organic compound
Work Plan	Remedial Investigation Work Plan
WAC	Washington Administrative Code
WWCHD	Walla Walla County Health Department

1.0 INTRODUCTION

This appendix summarizes the Independent Remedial Investigation (RI) field activities conducted in 2005, 2006, and 2009 at the Sudbury Road Landfill (Site) in Walla Walla, Washington. The RI activities were conducted by Schwyn Environmental Services, LLC (Schwyn) on behalf of the City of Walla Walla, Washington (City) in general accordance with the Washington Administrative Code (WAC) Chapter 173-351 Criteria for Municipal Solid Waste Landfills (Ecology 1993) and the Washington State Model Toxics Control Act (MTCA) regulations (Ecology 2001).

The scope of work for this investigation was described in the RI Work Plan, dated April 22, 2004 (LAI 2004). The scope of work for the installation of two gas wells was further developed in the Landfill Gas Probe Work Plan submitted to the Walla Walla County Health Department (WWCHD) and Ecology on July 31, 2009 (Schwyn 2009). The Independent RI field work included the following activities:

- Assessed the extent and thickness of the municipal solid waste (MSW) in Areas 2 and 5;
- Conducted a Geoprobe investigation and installed borings in the vicinity of Area 5, Area 6, and Area 7, and along the north drainage ditch;
- Installed one monitoring well on the western property boundary, south of MW-15; and
- Installed landfill gas (LFG) Wells GW-5 and GW-6; and
- Conducted LFG monitoring in MW-14, MW-15, MW-16, GW-5, and GW-6.

1.1 BACKGROUND AND PURPOSE

The Site is an active MSW landfill operated by the City consistent with chapter WAC 173-351. The landfill encompasses approximately 125 acres and is located on the western side of a much larger City-owned property (Figures 1 and 2). The City installed a groundwater monitoring system in 1976 and has monitored groundwater quality hydraulically upgradient and downgradient of the landfill since 1977. A number of monitoring system changes have occurred since inception. In 2001, Monitoring Well MW-15 was installed to replace MW-3, which is screened deeper into the aquifer. Numerous volatile organic compounds (VOCs) and inorganic constituents were detected at statistically elevated levels in groundwater samples collected from MW-15. An assessment monitoring program was initiated in September 2002 in accordance with WAC 173-351-440, and the results suggested that some of the VOCs and inorganic constituents detected in the MW-15 samples were indicators of landfill impact to groundwater. Subsequent steps required by the solid waste regulation are described in WAC 173-351-440(6), which states that when constituents are detected at levels greater than background levels and the groundwater protection standard, the owner must:

• (6)(a): Characterize chemical composition of the release, the contaminant fate and transport characteristics, and extent of contamination in all groundwater flow paths by installing additional monitoring wells; and

• (6)(d): Initiate an assessment, selection, and implementation of corrective measures as required by the MTCA.

In 2004, the City initiated an Independent RI to fulfill the requirements of WAC 173-351-440(6). A remedial action work plan was prepared to guide the RI process (LAI 2004). A historical study report of the landfilling operations was published in 2006 (Schwyn 2006). RI field studies were conducted in 2005 and 2006 by Schwyn; however, funding was not available to complete the report at that time. In 2009 and 2010, additional Independent RI field studies were initiated and documented as part of an Interim Action associated with the closure of Area 6. In January 2010, the Washington State Department of Ecology (Ecology) submitted an Early Notice Letter to the City. The Early Notice Letter indicated that Ecology was aware that a release of hazardous substances had occurred at the Sudbury Road Landfill, and that the Site would be added to the database of known or suspected contaminated sites, with further remedial actions to be taken in accordance with the MTCA. In 2011, the City and Ecology entered into an Agreed Order (AO) to initiate a cleanup action in accordance with the MTCA. The AO stipulated that the methods and findings of the work conducted in 2005 and 2006 be documented in a report. The field methods for the work conducted in 2005 and 2006 are documented in the following sections. The field methods for the work conducted in 2009 are provided in the attached Landfill Gas Well Installation Report (Schwyn 2010).
2.0 FIELD METHODS

2.1 AREA 2 WASTE EVALUATION

MSW was placed in Area 2 during the late 1970s with little documentation of the area boundaries, disposal method, or waste thickness. On May 24, 2005, 28 test pits were excavated at the locations shown on Figure 3 to determine the extent and thickness of the waste. The test pits were excavated by City personnel using a John Deere 410D backhoe. Schwyn logged the soil cover thickness, waste thicknesses, and the extent of the MSW.

The findings of the test pit program indicate that the volume of MSW in Area 2 is small. The waste appeared to be deposited directly on the native soil surface, with little to no preliminary soil excavation. Over most of the area, MSW was observed to be less than 2 feet thick. The MSW was up to 4 feet thick in the central portion of the area, but the extent of the thicker layer of waste appeared to be limited. All of the MSW was covered with a silty-soil layer between 2 and 3 feet thick. Based on the test pit program, the limits of the solid waste are shown on Figure 3.

2.2 GEOPROBE INVESTIGATION

Geoprobe explorations GP-1 through GP-8 (Figure 4) were drilled by Environmental West Exploration of Spokane, Washington, from July 5 to 8, 2005. The explorations were drilled to provide preliminary information about the waste extent and thickness, subsurface lithology, depth to groundwater, and groundwater quality in the vicinity of Area 5, Area 6, and Area 7. The Geoprobe program was abandoned before all of these objectives were gained because the penetration into the subsurface silt was very slow, penetration refusal was encountered at shallow depths in the waste areas, collapsing silts obstructed the Geoprobe boring during macro-core change out, and groundwater samples could not be collected by industry standard sampling practices.

When successful, the Geoprobe borings were advanced to depths up to 52 feet below ground level (bgl) using static force and percussion to drive a 4-foot long, 2.125-inch diameter macro-core sampler into the subsurface soils. The macro-core sampler was lined with a disposable polyethylene liner, pushed through its 4-foot length and then retrieved to the surface. The liner was removed from the macro-core sampler and sliced open for lithologic evaluation of the soil core. Selected soil samples were also collected from the macro-core sampler for laboratory analysis. After retrieval of each soil core a new disposable liner was loaded into a macro-core sampler, and the sampler was driven through the next 4-foot interval using 4-foot long, 1-inch diameter drive rods. This process was continued until the desired depth was reached, groundwater samples were collected, or until refusal. To collect groundwater samples, a retractable stainless steel screen with disposable drive point was inserted into the macro-core sampler and driven to the desired sampling depth. At that point the macro-core sampler was pulled back 3 to 4 feet

to expose the screen section to the native materials and allow the macro-core and drive rod interior void to fill with groundwater. Groundwater samples were then collected as described below. When the Geoprobe sampling process was finished the borehole was filled with fine granular bentonite.

Soil samples collected from the macro-core sampler were classified according to the Uniform Soil Classification System (USCS), and lithologic descriptions were recorded on a field log along with information on drilling conditions, LFG odor, and locations of water-bearing strata. This information is summarized on the attached boring logs presented in this Appendix. Soil cuttings generated while drilling were either spread on the ground surface around the boring or placed in drums. Other investigationderived waste generated while drilling was placed in drums and disposed of in the active cell (Area 6) of the landfill.

Select soil samples were collected for laboratory analysis of VOCs from GP-3 at 21.5 to 22 feet bgl, GP-4 at 18 to 18.5 feet bgl, and GP-6 at 15 to 15.5 feet bgl. The sample intervals were selected to assess the soil quality in the vadose zone near to the Area 5 MSW. Five-gram soil samples were collected from the selected sample interval using an EasyDraw Syringe[®] and Powerstop Handle[®] and placed in methanol preserved 40-milliliter glass vials with septum screw cap in accordance with U.S. Environmental Protection Agency (USEPA) Method 5035A Closed System Analysis for VOCs. The soil vials were labeled, logged onto a chain-of-custody form, placed in a chilled cooler, and transported to North Creek Analytical (now TestAmerica Analytical Testing Corporation) in Spokane, Washington via next day delivery service. The laboratory analytical reports are attached within this Appendix.

Groundwater samples were collected for analysis of VOCs from GP-3, GP-4, GP-5, GP-6, and GP-8. Groundwater samples were also collected for analysis of inorganic constituents (alkalinity, calcium, chloride, magnesium, nitrate as nitrogen, potassium, sodium, sulfate, and total dissolved solids [TDS]) from GP-5 and GP-6. Standard sampling protocols were not achieved during the sampling process. Silt in the groundwater tended to prop the sampling bailer check valve open allowing the groundwater to drain out of the bailer during retrieval. Therefore, the sampling method consisted of lowering 0.25-inch diameter polyethylene tubing to the base of the screen, using a peristaltic pump to draw groundwater up into the tubing (approximately 20 feet), and then pulling the tubing to the surface to discharge the groundwater from the tubing. Samples were collected into laboratory prepared sample vials after three to eight tubing volumes were purged from the boring. The groundwater sample vials were labeled, logged onto a chain-of-custody form, placed in a chilled cooler, and transported to North Creek Analytical for analysis. The laboratory analytical reports are attached within this Appendix.

2.3 BORING INVESTIGATION

Ten borings (B-9RI through B-12RI, B-14RI through B-18 RI, and MW-16) were drilled by Environmental West Exploration of Spokane, Washington, from August 29 through September 1, 2005, in accordance with the Washington State Minimum Standards for Construction and Maintenance of Wells, WAC 173-160. The boring locations are shown on Figure 4. The boring program was conducted to provide preliminary information about the waste extent and thickness, subsurface lithology, depth to groundwater, and groundwater quality in the vicinity of Area 5 and Area 6 that could not be obtained from the Geoprobe investigation conducted in July 2005. Difficulties were encountered during the boring program when drilling through the waste. Differential lateral pressure from the solid waste tended to bind or bend the drill casing, causing breakage. This prevented achievement of the desired depth and collection of groundwater samples in some borings, and shortened the exploration program to reduce costs for the equipment damage.

The borings were advanced using air rotary drilling methods with 6-inch diameter casing (TUBEX) to total depths that ranged from 13 feet (B-15RI) to 69 feet (MW-16) bgl. Soil samples were collected at 5 foot intervals from drill cuttings as drilling progressed. Select soil samples were collected with a split spoon sampler. All samples were classified according to the USCS, and lithologic descriptions were recorded on a field log along with information on drilling conditions, LFG odor, and location of water-bearing strata. This information is summarized on the boring logs presented in this Appendix. Soil cuttings and other investigation-derived waste generated while drilling were placed in drums and disposed of in the active cell (Area 6) of the landfill. All borings except MW-16 were backfilled to the surface with bentonite chips (3/8-inch minus) and hydrated with potable water as the casing was withdrawn.

Select soil samples were collected for laboratory analysis of VOCs from B-9RI at 35 feet bgl, B-10RI at 34 feet bgl, B-11RI at 34 feet bgl, and B-12RI at 44 feet bgl. The sample intervals were selected to assess the soil quality in the vadose zone beneath the MSW. Five-gram soil samples were collected from the selected sample intervals in accordance with USEPA Method 5035A Closed System Analysis for VOCs. The soil vials were labeled, logged onto a chain-of-custody form, placed in a chilled cooler, and transported to North Creek Analytical in Spokane, Washington via next day delivery service. The laboratory analytical reports are attached within this Appendix.

Temporary monitoring wells were installed in borings B-9RI and B-17RI so that groundwater samples could be collected. The temporary wells were constructed with 5 feet of 2-inch diameter, 0.010-inch machine slotted polyvinyl chloride (PVC) screen with a flush threaded end cap on the bottom. Flush threaded 2-inch diameter PVC casing was extended to the surface and number 10/20, washed, rounded silica sand was placed in the annular space around the screen. Each temporary well was developed with a bailer or Grundfos RediFlow2 submersible pump prior to sample collection. After the

groundwater samples were collected, the PVC casing was removed and the boring was filled to surface with bentonite chips.

A permanent monitoring well was installed in MW-16 using flush-threaded 2-inch diameter schedule 40 PVC screen and riser pipe. The well was screened using 15 feet of 0.010-inch machine slotted PVC screen with a flush threaded end cap on the bottom. Number 10/20, washed, rounded silica sand was placed in the annular space around the screen to 3.5 feet above the top of the screened section. Bentonite chips (3/8-inch minus) were placed above the sandpack to within 0.5 feet of ground surface and hydrated with potable water. The PVC casing was protected with a concrete surface pad, aboveground locking steel vault, and three steel bollards. The top of casing elevation was surveyed by USKH, Inc., of Walla Walla, Washington. Monitoring well construction details are recorded on the exploration logs presented in this Appendix.

Monitoring Well MW-16 was developed by bailing fine grained soil and groundwater from the screened interval, followed by purging approximately 40 gallons of groundwater from the well using a Grundfos RediFlo2 submersible pump. Groundwater samples were collected with a disposable bailer the following day after purging three additional well volumes of groundwater with a decontaminated Grundfos RediFlo2 submersible pump.

Groundwater samples from B-9RI, B-17RI, and MW-16 were collected into laboratory prepared sample vials, labeled, logged onto a chain-of-custody form, placed in a chilled cooler, and transported to North Creek Analytical for analysis. All samples were analyzed for VOCs and the sample from MW-16 was also analyzed for alkalinity, calcium, chloride, nitrate as nitrogen, potassium, sodium, and sulfate. The laboratory analytical reports are presented in this Appendix.

2.4 LANDFILL GAS SAMPLING

On August 9, 2006, LFG samples were collected from Monitoring Wells MW-14, MW-15, and MW-16 to assess the potential impact for VOCs from landfill gas to impact groundwater. Each sample was collected from directly above the water table using a Landtec GEM 500 LFG sampling meter. Prior to use, the meter was calibrated with oxygen and methane calibration gases in accordance with manufacture specifications. Polyethylene tubing (0.0625-inch inside diameter) was lowered to within one foot of the water table and connected to the gas sampler. Measurements of methane, carbon dioxide, oxygen, other gas balances, and the meter pumping period (measured in seconds) were recorded.

Gas samples were collected in 1-liter Tedlar bags for laboratory analysis from Monitoring Wells MW-15 and MW-16. Ambient gas readings observed in MW-14 did not indicate the presence of landfill gases and therefore a gas sample was not obtained for laboratory analysis from that well.

The MW-15 and MW-16 gas samples were collected by attaching a Tedlar bag to the Landtec GEM 500 exhaust port with flexible nylon tubing, opening the Tedlar bag port and filling the bag approximately ¹/₂ to ³/₄ full, and then closing the sample port and detaching the bag from the tubing. Manufacturer information indicates that the GEM 500 pumps approximately 300 cubic centimeters per minute and this was verified during the sampling procedure. Prior to sampling MW-15 and MW-16 the polyethylene tubing was purged for 340 and 600 seconds, respectively. After the samples were collected the gas samples were labeled, placed in a shipping container, and transported to Columbia Analytical Services air quality laboratory in Simi Valley, California, using standard chain-of-custody procedures. Each gas sample was analyzed using USEPA method TO-15. The laboratory analytical report is attached.

3.0 REFERENCES

Washington State Department of Ecology (Ecology). 2010. *Early Notice Letter for Groundwater Contamination at the Sudbury Road Landfill, 414 Sudbury Road, Walla Walla, WA 9932*. Letter from Ecology Waste 2 Resources Program to Mr. Craig Sivley, City of Walla Walla Public Works Director. 7 January.

———. 2002. *Chapter 173-50 WAC, Accreditation of Environmental Laboratories*. State of Washington Department of Ecology. 1 October.

———. 2001. *Model Toxics Control Act Cleanup Regulation Chapter 173-340 WAC*. Compiled by Ecology's Toxics Cleanup Program. Publication No. 94-06. 12 February.

———. 1993. Chapter 173-351 WAC, Criteria for Municipal Solid Waste Landfills. Washington State Department of Ecology. October.

Landau Associates, Inc. (LAI). 2004. *Remedial Investigation Work Plan, Sudbury Road Landfill, Walla Walla, Washington*. Prepared for the City of Walla Walla. 22 April.

Schwyn Environmental Services, LLC (Schwyn). 2010. Area 5 Landfill Gas Well Installation and Sampling Report, Sudbury Road Landfill, Walla Walla, Washington. Prepared for the City of Walla Walla Solid Waste Division by Schwyn. 22 January.

——. 2009. Landfill Gas Probe Installation Work Plan for the Sudbury Road Landfill Remedial Investigation, Walla Walla, Washington. Prepared for the Walla Walla Department of Health and Washington State Department of Ecology by Schwyn Environmental Services, LLC. 31 July.

——. 2006. *Sudbury Road Landfill Historical Study Report, Walla Walla, Washington.* Prepared by Schwyn Environmental Services, LLC for the City of Walla Walla Solid Waste Division . 17 January.

Source: City of Walla Walla, March 10, 2003 Aerial Photograph.

Waste Delineation

Walla Walla, Washington

3

Exploration Boring Logs

Sample Method: 2.125" macro-core

Drill Date: 7/5/2005

Drill Type: Geoprobe

Boring Diameter: 2.125"

Groundwater (ft BTOC):

Boring Depth (ft BGS): 14 ft.

Logged By: Craig Schwyn

Boring ID: GP-1a

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road, Walla Walla, WA Ground Surf Elev. & Datum: 834 ft. MSL (Topo Map) Casing Elevation: Coordinate System: NAD 83 Latitude/Northing: 278,296.29 Longitude/Easting: 2,170,203.40

Remarks:

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
core					ML: brown Silt, trace sand, low plasticity, soft, dry.	
core					MW: Municipal Solid Waste with 1.5 ft thick layers of silt, damp.	^^/ ^^/ ^^/ ^^/ ^^/ ^^/
core						AAA AAA AAA AAA AAA AAAA AAAAAAAAAAAAA
core					@ 14 ft. Refusal in municipal solid waste.	

Sample Method: 2.125" macro-core

Drill Date: 7/5/2005

Drill Type: Geoprobe

Boring Diameter: 2.125"

Groundwater (ft BTOC):

Boring Depth (ft BGS): 6 ft.

Logged By: Craig Schwyn

Boring ID: GP-1b

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road, Walla Walla, WA Ground Surf Elev. & Datum: 834 ft. MSL (Topo Map) Casing Elevation: Coordinate System: NAD 83 Latitude/Northing: 278,266.63 Longitude/Easting: 2, 170, 193.10

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
core			0 1 2 3		ML: Brown Silt, trace sand, low plasticity, soft, dry.	AAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
core					MW: Municipal Solid Waste with silt, damp. @6 ft: Refusal in municipal solid waste.	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Sample Method: 2.125" macro-core

Drill Date: 7/5/2005

Drill Type: Geoprobe

Boring Diameter: 2.125"

Groundwater (ft BTOC):

Boring Depth (ft BGS): 7 ft.

Logged By: Craig Schwyn

Boring ID: GP-1c

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road, Walla Walla, WA Ground Surf Elev. & Datum: 833 ft. MSL (Topo Map) Casing Elevation: Coordinate System: NAD 83 Latitude/Northing: 278,256.33 Longitude/Easting: 2,170,178.66

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction
						Bottan
core					ML: Brown Silt, trace fine sand, low plasticity, soft, dry.	^^^ ^^ ^^ ^^
core					MW: Municipal Solid Waste with 1.5 ft thick layers of silt, damp. @7 ft: Refusal in municipal solid waste.	A Chips

Boring ID: GP-2

Drill Date: 7/8/2005 Logged By: Craig Schwyn Drilled By: Environmental West Exp. Drill Type: Geoprobe Sample Method: 2.125" macro-core Boring Diameter: 2.125" Boring Depth (ft BGS): 52 ft. Groundwater (ft BTOC): Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road, Walla Walla, WA Ground Surf Elev. & Datum: 831 ft. MSL (Topo Map) Casing Elevation: Coordinate System: NAD 83 Latitude/Northing: 278,227.90 Longitude/Easting: 2,170,142.79

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW DEPTH COUNT FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
core				ML: Light brown Silt, trace sand, low plasticity, soft, dry.	
				@ 1 ft: grey brown, laminated, stiff	
core				@ 4 ft: brown	
		6 7		@ 7 ft: damp.	
core				@ 8-12 ft: layered damp and dry silts.	
core				@12-30 ft: layered sandly silt and clayey silt.	
		14 			
core					
0010					
core					
core		23 24		@ 24-27.5 ft: clavey Silt. massive structure, damp.	
					AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
core		27		@27.5 ft: Silt.	^^/ Chips ^^/ ^^/
		29 			
core		31		@ 31-34 ft: layered (6-inch lenses) clayey silt, silt, and fine sandy silt. Clayey silts damp. Sandy silts dry.	
Notes: ft BGS = ft BTOC	feet belo = feet bel	w ground surfa ow top of well	ace casing	USCS = Unified Soil Classification System = denotes groundwater table	Page 1 of 2

S	chwyn Enwironn Services	nental	Boring ID: GP-2			
SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW DEPTH COUNT FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail	
core				Brown Silt (continued), damp to dry.		
Drv Pt				@38 ft: Drive solid point due to slit sloughing into hole and filling core barrel.		
core		43 				
core		46		/		
core		48 		V SM: Silty fine Sand, loose, dry. ML: Brown clayey Silt, blocky structure, firm, damp.		

Sample Method: 2.125" macro-core

Drill Date: 7/6/2005

Drill Type: Geoprobe

Boring Diameter: 2.125"

Groundwater (ft BTOC):

Boring Depth (ft BGS): 39 ft.

Logged By: Craig Schwyn

Boring ID: GP-3

Project: Sudbury Road Landfill Remedial Investigation
Client: City of Walla Walla
Site Location:Sudbury Road, Walla Walla, WA
Ground Surf Elev. & Datum: 787 ft. MSL (Topo Map)
Casing Elevation:
Coordinate System: NAD 83
Latitude/Northing: 278,716.05
Longitude/Easting: 2,169,730.66

Remarks: Groundwater sample collected from screened section set 36-39 BGS. SAMPLE DRIVE / BLOW DEPTH USCS Well Construction Sample Description TYPE / ID RECOVERY SYMBOL COUNT FT BGS Detail core ML: Light brown Silt, trace sand, soft, dry. @ 2 ft: grey brown core @ 7-8 ft: trace medium sand, subangular. core @ 12 ft: damp. core 13 core @ 18-20 ft: little medium to coarse sand. Notes: ft BGS = feet below ground surface USCS = Unified Soil Classification System Page 1 of 2 ft BTOC = feet below top of well casing

S	chwyn Envíronn Servíces	nental				Boring ID: GP-3
SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
core GP3 21.5-22			20 21 22		@ 21 ft: Grey brown clayey Silt, blocky structure, wet.@ 21.5-22 ft: collect soil sample for analysis	AA AA AA AA AA AA AA AA AA AA AA AA AA
core			23 24 25			A A A A A A A A A A A A A A A Check water A A Ievel. Not Sufficient
core			26 27 27		SM: Brown silty fine Sand, damp ML: Brown clayey Silt, laminated structure @ 27 -28.5 ft: little fine to medium sand.	A quantity for A sampling.
			29 29 30		SM: Brown silty Sand with clay, fine to coarse angular sand, trace gravel, damp to wet.	 ^^/ ^^/ ^^/ ^^/ ^^/ ^^/ A^/ A^/
core					ML: Brown clayey Silt with sand and silty Sand with clay.	
Wtr. smplr GP-3					@ 35 ft: drive water sampler to 39 ft, pull back 3 ft to expose 3 ft of stainless steel screen. Collect groundwater sample.	^^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^ ^ ^ ^ ^ ^ ^

Notes: ft BGS = feet below ground surface ft BTOC = feet below top of well casing

Sample Method: 2.125" macro-core

Drill Date: 7/6/2005

Drill Type: Geoprobe

Boring Diameter: 2.125"

Groundwater (ft BTOC):

Boring Depth (ft BGS): 34 ft.

Logged By: Craig Schwyn

Boring ID: GP-4

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road, Walla Walla, WA Ground Surf Elev. & Datum: 788 ft. MSL (Topo Map) Casing Elevation: Coordinate System: NAD 83 Latitude/Northing: 278,841.80 Longitude/Easting: 2,169,959.43

Remarks: Groundwater sample collected from screen section set 30-34 ft. BGS Well Construction SAMPLE DRIVE / BLOW DEPTH USCS Sample Description TYPE / ID RECOVERY SYMBOL COUNT FT BGS Detail core ML: Grey brown Silt, trace sand, low plasticity, soft, dry. @ 4 ft: brown, trace clay, laminated core core @ 12 ft: reddish brown core 13 core Bentonite Chips @ 18-18.5 ft soil sample collected. GP-4 18-18.5 Notes: USCS = Unified Soil Classification System ft BGS = feet below ground surface Page 1 of 2 ft BTOC = feet below top of well casing

6	chwyn Envíronn Servíces	nental					Boring ID: GP-4
SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	US SYI	SCS MBOL	Sample Description	Well Construction Detail
core			20				
core						@ 24-25.5 ft: clayey Silt.	
core			28			@ 27.5 ft: drive water sampler to 34 ft, pull back 4 ft to expose 4 ft of stainless steel screen. Collect groundwater sample.	
Wtr Smplr			29 				
GP-4			31				

Sample Method: 2.125" macro-core

Drill Date: 7/6/2005

Drill Type: Geoprobe

Boring Diameter: 2.125"

Groundwater (ft BTOC):

Boring Depth (ft BGS): 36 ft.

Logged By: Craig Schwyn

Boring ID: GP-5

Project: Sudbury Road Landfill Remedial Investigation
Client: City of Walla Walla
Site Location:Sudbury Road, Walla Walla, WA
Ground Surf Elev. & Datum: 790 ft. MSL (Topo Map)
Casing Elevation:
Coordinate System: NAD 83
Latitude/Northing: 278.968.22
Longitude/Easting: 2,170,208.23

Remark	Remarks: Groundwater sample collected from screen section set 33-36 ft BGS										
SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail					
core					ML: Grey brown Silt, trace fine sand and clay, low plasticity, soft, damp. Sandy silts laminated, dry, periodic root tubes.Clayey silts blocky, damp.						
core					@ 3 ft: brown, dry						
core											
core					@ 12 ft: dark reddish brown, moisture increasing.						
core					@ 19 ft: increasing clay content.	A A A A A A A A Bentonite Chips					
Notes: ft BGS = ft BTOC	feet belo = feet bel	w groui ow top	nd surfa	ace casing	USCS = Unified Soil Classification System \mathbf{x} = denotes groundwater table	Page 1 of 2					

	chwyn Envíronn Servíces	nental				Boring ID: GP-5
SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
core					 @ 21-23 ft: saturated. @ 23 ft: whitish brown clayey silt with calcite cementation, nodules, and thin (2 mm) lenses, very stiff, damp. 	
Wtr Sampler			24 		@ 24 ft: drive water sampler to 30 ft, pull back 4 ft to expose 4 ft of stainless steel screen. Dry. Pull back 1 ft to 25 ft. Dry.	No sample
core			28 29 30 31		Reddish brown clayey silt, blocky structure, damp to wet.	
Wtr Smplr GP-5					@ 32 ft: drive water sampler to 36 ft, pull back 3 ft to expose 3 ft of stainless steel screen. Collect groundwater sample.	

Sample Method: 2.125" macro-core

Drill Date: 7/7/2005

Drill Type: Geoprobe

Boring Diameter: 2.125"

Groundwater (ft BTOC):

Boring Depth (ft BGS): 35 ft.

Logged By: Craig Schwyn

Boring ID: GP-6

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road, Walla Walla, WA Ground Surf Elev. & Datum: 791 ft. MSL (Topo Map) Casing Elevation: Coordinate System: NAD 83 Latitude/Northing: 279,108.41 Longitude/Easting: 2,170,513.94

Remarks: Groundwater sample collected from screen section set 32-35 ft. BGS BLOW DEPTH SAMPLE DRIVE / USCS Well Construction Sample Description TYPE / ID SYMBOL RECOVERY COUNT FT BGS Detail core ML: Light brown Silt, trace clay and fine sand, low plasticity, soft, dry. Sandy silts laminated, dry, periodic root tubes. Clayey silts blocky, damp. core @ 6 ft: damp. @ 8 to 10 ft: little sand, clay increasing with depth. core @ 10 to 15 ft: little clay, very stiff. core 13 @ 15 ft: trace clay, laminated, firm, methane odor. GP-6 15 15-15.5 @ 15-15.5 ft: collect soil sample for analysis. core Bentonite Chips Notes: USCS = Unified Soil Classification System ft BGS = feet below ground surface Page 1 of 2 ft BTOC = feet below top of well casing

6	Boring ID: GP-6									
SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail				
core			20 21 22 22 23							
core			23		@ 24.5 -27.5 ft: little fine to medium sand, wet.					
core			27 		 @ 27.5 to 28.5 ft: whitish brown clayey Silt with calcite cementation, nodules, and thin (2 mm) lenses, very stiff, damp. @ 28.5 to 30 ft: sandy Silt with calcite, wet. @ 30 ft: clayey Silt with calcite, damp. 					
Wtr Smplr GP-6					31 ft: drive water sampler to 35 ft, pull back 3 ft to expose 3 ft of stainless steel screen. Collect groundwater sample.					

Sample Method: 2.125" macro-core

Drill Date: 7/7/2005

Drill Type: Geoprobe

Boring Diameter: 2.125"

Groundwater (ft BTOC):

Boring Depth (ft BGS): 17 ft.

Logged By: Craig Schwyn

Boring ID: GP-7

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road, Walla Walla, WA Ground Surf Elev. & Datum: 799 ft. MSL (Topo Map) Casing Elevation: Coordinate System: NAD 83 Latitude/Northing: 278,687.45 Longitude/Easting: 2,169,801.15

Remarks:

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
core					ML: Brown Silt, trace fine sand , low plasticity, soft, dry.	
core			6 7 8 9 10 11		MW: Municipal Solid Waste with 1.5 ft thick layers of silt, damp.	 A^^^^^^^^ A^^^^^^^ A^^^^^^ A^^^^^^ A^^^^^^ A^^^^^^ A^^^^^^ A^^^^^^ Bentonite A^^^^^^< A^^^^^^< Chips A^^^^^^^< A^^^^^^< A^^^^^< A^^^^< A^^^^< A^^^^^< A^^^^^< A^^^^^< A^^^^^< A^^^^^< A^^^^^< A^^^^^< A^^^^^< A^^^^^< A^^^^^^< A^^^^^< A^^^^^< A^^^^^< A^^^^^<
core			12 13 14 15 16		∫ @ 17 ft: Befusal in municipal solid waste	
core			13 		@ 17 ft: Refusal in municipal solid waste.	

Sample Method: 2.125" macro-core

Boring Depth (ft BGS): 36.4 ft.

Drill Date: 7/7/2005

Drill Type: Geoprobe

Boring Diameter: 2.125"

Groundwater (ft BTOC):

Logged By: Craig Schwyn

Boring ID: GP-8

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road, Walla Walla, WA Ground Surf Elev. & Datum: 803 ft. MSL (Topo Map) Casing Elevation: Coordinate System: NAD 83 Latitude/Northing: 279,078.75 Longitude/Easting: 2,171,351.86

Remarks: Groundwater sample collected from screen set 32.4-36.4 ft. BGS DRIVE / SAMPLE BLOW DEPTH USCS Well Construction Sample Description TYPE / ID RECOVERY SYMBOL COUNT FT BGS Detail core ML: Brown Silt, trace fine sand, low plasticity, soft, damp. Sandy silts laminated, dry, periodic root tubes. Clayey silts blocky, damp. core core @ 11 ft: whitish brown, calcite cementation, nodules, and thin core lenses (2 mm), very stiff, dry. 12 13 core 15 Bentonite Chips core Notes: ft BGS = feet below ground surface USCS = Unified Soil Classification System Page 1 of 2 ft BTOC = feet below top of well casing

S	Boring ID: GP-8										
SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail					
core					@ 24.5 to 25 ft: wet. Calcitic Silt above and below are damp.						
			27		SM: @ 27 ft: Olive brown silty fine Sand, wet.						
core			29 		ML: Light olive brown calcitic clayey Silt, blocky structure, very stiff, damp. @ 31 ft: Medium brown sandy Silt, wet.						
Wtr Smplr GP-8			33 		 @ 34 ft: brown sandy Silt with red mottling and coarse basaltic gravel. @ 36 ft: Refusal. Total Depth of soil core 						
					@ 36 ft: drive water sampler to 36.4 ft, pull back 4 ft to expose 4 ft of stainless steel screen within borehole. Collect groundwater sample.	L					

Boring ID: B-9RI

Drilled By: Environmental West Exp.Casing Elevation:Drill Type: 6-in. dia. TUBEXGround Surf Elev. & Datum: 798 ft. MSL (Topo Map)Sample Method: Grab/1.5-in SPTCasing Elevation:Boring Diameter: 6.5"Coordinate System: NAD 83Boring Depth (ft BGS): 53 ft.Latitude/Northing: 278,698.49Coreurdwater (ft BTOC): 40.0Longitude/Easting: 2,169,820,80	
Groundwater (ft BTOC): 43.2 Longitude/Easting: 2,169,820.80	

Remarks: Installed and sampled temporary well screened from 48-53 ft. Purged 2.5 gal. of groundwater and collected VOC samples. Remove casing and bentonite boring to surface.

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Const Deta	ruction il
Grab					ML: Light brown Silt, trace sand, low plasticity, soft, dry.		
Chips Drill Chips			3 4 5		MW: Municipal Solid Waste with silt, damp.		
Drill Chips			6 				
Drill Chips			13 14 15 16 17 18				
Drill Chips			19 				
Drill Chips			24 				Bentonite Chips
Drill Chips			28 29 30 31 32				
Notes: ft BGS = ft BTOC	feet belo = feet bel	w grour ow top	nd surf	ace casing	USCS = Unified Soil Classification System	Pag	e 1 of 2

Chwyn Environmental Services						Boring ID: B-9RI
SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
1.5-in SPT B935		8 20 17	33 		ML: Olive grey Silt, damp. Dark grey Silt with little clay and sand, stiff, landfill gas odor, moist, @35.5 ft up to 1.5 " dia. basalt gravel.	
Drill Chips			39 40 41 42 43		Brown Silt , very damp.	
Drill Chips			44 		 @ 45 ft: brown clayey silt @ 48-53 ft: collect water sample 	
Drill Chips			48 49 50 51			
Drill Chips			52		GM: Brownish fine Gravel with sand and silt, wet.	

Drill Date: 8/30/2005

Logged By: Craig Schwyn

Drill Type: 6-in. dia. TUBEX

Boring Diameter: 6.5-in

Groundwater (ft BTOC):

Boring Depth (ft BGS): 35

Sample Method: Grab/2.4-in SS

Boring ID: B-10RI

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road, Walla Walla, WA Ground Surf Elev. & Datum: 800 ft. MSL (Topo Map) Casing Elevation: Coordinate System: NAD 83 Latitude/Northing: 278,833.60 Longitude/Easting: 2,170,046.97

6	chwyn Enwironn Services	nental			Boring ID: B-10RI
SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW DEPTH COUNT FT BG	USCS SYMBOL	Sample Description	Well Construction Detail
Drill Chips					
Drill Chips					
Drill Chips				ML: Olive grey Silt, damp.	
2.4-in SS B1034		4 6		ML: Brown Silt with trace medium rounded sand, some vertical root tubes and stringers of calcite, wet.	

Drill Date: 8/30/2005

Boring Diameter: 6.5

Groundwater (ft BTOC):

Logged By: Craig Schwyn

Drill Type: 6-in. dia. TUBEX

Boring Depth (ft BGS): 35.5

Sample Method: Grab/2.4" SS

Boring ID: B-11RI

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road, Walla Walla, WA Ground Surf Elev. & Datum: 806 ft. MSL (Topo Map) Casing Elevation: Coordinate System: NAD 83 Latitude/Northing: 278,995.06 Longitude/Easting: 2,170385.77

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
Grab					ML: Light brown Silt, trace sand, low plasticity, soft, dry.	
Drill Chips			4 			
Drill Chips			9 			
Drill Chips					@ 15 ft: grey	AAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAA
			19			
Notes: ft BGS = ft BTOC	feet belo = feet bel	w groui ow top	nd surfa of well	ace casing	USCS = Unified Soil Classification System	Page 1 of 2

Boring ID: B-12RI

Drill Date: 8/30/2005 Logged By: Craig Schwyn Drilled By: Environmental West Exp. Drill Type: 6-in. dia. TUBEX Sample Method: Grab/2.4-in SS Boring Diameter: 6.5 Boring Depth (ft BGS): 48.5 Groundwater (ft BTOC): Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road, Walla Walla, WA Ground Surf Elev. & Datum: 820 ft. MSL (Topo Map) Casing Elevation: Coordinate System: NAD 83 Latitude/Northing: 278,876.57 Longitude/Easting: 2,170, 269.11

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW DEPTH COUNT FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
Grab				ML: Light brown Silt, trace sand, low plasticity, soft, dry.	
Drill Chips					
Drill Chips					
Drill Chips				MW: Municipal Solid Waste, dry to damp.	
Drill Chips					
Drill Chips		24 			AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Drill Chips					
ft BGS =	feet belo = feet be	w ground surfa low top of well	ace casing	USCS = Unified Soil Classification System	Page 1 of 2

6	chwyn Environn Services	nental				Boring ID: B-12RI
SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
Drill Chips			33 		MW: Municipal Solid Waste (cont.)	
Drill Chips						
2.4-in SS B1244		7 11 14	41 42 43 43 44 44 45 46		ML: Brown Silt ML: Brown Silt, trace sand and clay, iron mottling, 0.25-in., laminations, stiff, damp.	
			47		Snap casing, boring terminated at 48.5'	

Drill Date: 8/30/2005

Logged By: Craig Schwyn

Drill Type: 6-in. diam. TUBEX

Sample Method: Drill Chips

Boring Depth (ft BGS): 53.5

Boring Diameter: 6.5-in

Groundwater (ft BTOC):

Boring ID: B-14RI

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road, Walla Walla, WA Ground Surf Elev. & Datum: 840 ft. MSL (Topo Map) Casing Elevation: Coordinate System: NAD 83 Latitude/Northing: 278,909.90 Longitude/Easting: 2,170,703.74

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
Grab					ML: Light brown Silt, trace sand, low plasticity, soft, dry.	
Drill Chips			4 			
Drill Chips			9 10 11 11 12 13		MW: Municipal Solid Waste with silt, damp.	
Drill Chips						
Drill Chips						
Drill Chips			24 25 26 27 28			AAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Drill Chips			29 			
ft BGS =	= feet belo	w grour	nd surfa	ace	USCS = Unified Soil Classification System	Page 1 of 2
6	chwyn Envíronn Servíces	nental			Boring ID: B-14RI	
---------------------	-------------------------------	----------------------------	----------------	-----------------------------------	-----------------------------	
SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW DEPTH COUNT FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail	
Drill Chips				MW: Municipal Solid Waste (cont.)		
Drill Chips						
Drill Chips						
Drill Chips				ML: Brown Silt		

Drilled By: Environmental West Exp.

Drill Date: 8/31/2005

Logged By: Craig Schwyn

Drill Type: 6-in. dia. TUBEX

Sample Method: Drill Chips

Boring Depth (ft BGS): 13 ft.

Boring Diameter: 6.5-in

Groundwater (ft BTOC):

Boring ID: B-15RI

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road, Walla Walla, WA Ground Surf Elev. & Datum: 840 ft. MSL (Topo Map) Casing Elevation: Coordinate System: NAD 83 Latitude/Northing: 278,902.61 Longitude/Easting: 2,170,693.33

Remarks:

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
Grab Drill Chips					ML: Light brown Silt, trace sand, low plasticity, soft, dry.	^^^^^^^^ ^^^^^^^^ ^^^^^^^^ ^^^^^^^^ ^^^^^^^^ ^^^^^^^^<
Drill Chips						
Drill Chips					MW: Municipal Solid Waste with silt, damp.	

Drilled By: Environmental West Exp.

Drill Date: 8/31/2005

Logged By: Craig Schwyn

Drill Type: 6-in. dia. TUBEX

Sample Method: Drill Chips

Boring Depth (ft BGS): 15 Ft.

Boring Diameter: 6.5-in

Groundwater (ft BTOC):

Boring ID: B-16RI

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road, Walla Walla, WA Ground Surf Elev. & Datum: 828 ft. MSL (Topo Map) Casing Elevation: Coordinate System: NAD 83 Latitude/Northing: 279,012.25 Longitude/Easting: 2,170,679.78

Remarks:

SAMPLE TYPE / ID	DRIVE / BLOW DEPTH USCS RECOVERY COUNT FT BGS SYMBOL Sample Description		Well Construction Detail		
Grab				ML: Light brown Silt, trace sand, low plasticity, soft, dry. MW: Municipal Solid Waste with silt, damp.	
Drill Chips					^^^^^^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
Drill Chips			9 		
Drill Chips			14		

Boring ID: B-17RI

Remarks: Installed and sampled temporary well screened from 63-68 ft. Purge 16 gal. and collect VOC sample with Grundfos pump. Remove casing and bentonite boring to surface.

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW DEPTH	USCS SYMBOL	Sample Description	Well Construction Detail
Grab				ML: Light brown Silt, trace sand, low plasticity, soft, dry.	
Drill Chips					
Drill Chips				MW: Municipal Solid Waste with silt, damp.	
Drill Chips					
Drill Chips					
Drill Chips					
Drill Chips		28 			
Notes: ft BGS = ft BTOC	feet belo = feet be	w ground surf	ace casing	USCS = Unified Soil Classification System	Page 1 of 2

	chwyn Envíronn Servíces	nental				Boring ID: B-17RI
SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Construction Detail
Drill Chips						AAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Drill Chips					ML: Grey Silt, low plasticity, damp.	
Drill Chips			43 44 45 46 47		@ 45 ft: Brown, trace clay, damp	
Drill Chips			48 49 50 51 51			
Drill Chips			53 54 55 55 56 57		@ 54 ft: clayey, moist to wet.	
Drill Chips		-	58 59 60 61 62			
Drill Chips Drill			63 64 65 66		@63-68 ft: collect water sample@ 64.5 ft: Brown sandy Silt, with clay, moist.	
Chips			67		GM: Brown silty Gravel, wet.	

Drilled By: Environmental West Exp.

Drill Date: 9/1/2005

Logged By: Craig Schwyn

Drill Type: 6-in. dia. TUBEX

Sample Method: 2.4-in SS

Boring Depth (ft BGS): 31.5

Boring Diameter: 6.5-in

Groundwater (ft BTOC):

Boring ID: B-18RI

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road, Walla Walla, WA Ground Surf Elev. & Datum: 840 ft. MSL (Topo Map) Casing Elevation: Coordinate System: NAD 83 Latitude/Northing: 278,543.76 Longitude/Easting: 2,169,823.27

Remarks:

Notes:

ft BGS = feet below ground surface ft BTOC = feet below top of well casing USCS = Unified Soil Classification System = denotes groundwater table

Drill Date: 8/31/2005

Monitoring Well ID: MW-16

Project: Sudbury Road Landfill Remedial Investigation Client: City of Walla Walla Site Location:Sudbury Road Landfill Ground Surf Elev. & Datum: 810.9 ft. MSL Casing Elevation: 813.39 ft. MSL Coordinate System: NAD 83 Latitude/Northing: 278,211.43 Longitude/Easting: 2,169,578.97

Logged By: Craig Schwyn Drilled By: Environmental West Exp. Drill Type: 6" Tubex Sample Method: Grab/2.4" SS Boring Diameter: 6.5-in Boring Depth (ft BGS): 69 ft. Groundwater (ft BTOC): 58.02

Remarks:

SAMPLE TYPE / ID	DRIVE / RECOVERY	BLOW COUNT	DEPTH FT BGS	USCS SYMBOL	Sample Description	Well Cons Det	struction ail
							Locking Steel Casing
							PVC Cap
Grab					ML: Brown Silt, trace sand and clay, low plasticity, damp.		Concrete Pad
			2 3 				
Drill Chips							
Drill Chips			9 10				
							2-in. dia. flush
Drill			13 				threaded PVC, 2.4 ft AGL to 54 ft
Chips							BGL
			17 				
Drill Chips							
			21 				
Drill			23 				
Chips			25 26				Bentonite Chips
			27				-
Net			29				
ft BGS =	feet belo = feet bel	w groui ow top	nd surfa of well	ace casing	USCS = Unified Soil Classification System	Pa	ge 1 of 2

Notes:

ft BGS = feet below ground surface ft BTOC = feet below top of well casing

Laboratory Analytical Reports

From: Dennis Wells [Dwells@ncalabs.com]
Sent: Friday, April 21, 2006 4:32 PM
To: craigs@cet.com
Cc: Kristine Graf
Subject: [Norton AntiSpam] Data Recall S5G0044

DATA RECALL NOTICE

S5G0044 - 01, 02, 04 - Sudbury RI

In a recent audit of PT results for EPA 8260 Volatiles it was discovered that the retention time assignments for two compounds were not correct. This resulted in the misidentification of two compounds, 1,1- Dichloroethane and 1,1- Dichloropropene.

All results reported as 1,1-Dichloroethane should read 1,1-Dichloropropene and all results reported as 1,1-Dichloropropene should read 1,1-Dichloroethane.

Attached is a revised report for work order S5G0044 containing the corrections outlined above.

We apologize for any inconvenience this error may have caused you.

North Creek Analytical, Inc.

?

Dennis D. Wells Lab Manager - Spokane

Dennis D. Wells Regional Operations Manager Anchorage, Bend, Spokane North Creek Analytical, Inc., a Test America Co. Phone - 509-924-9200 Fax - 509-924-9290 Cell - 509-993-1349

The information contained in this communication is confidential and priviledged, propietary information intended only for the individual or entity to whom it is addressed. Any unauthorized use, distribution, copying or disclosure of this communication is prohibited. If you have received this communication in error, please contact the sender immediately. It is our policy that e-mails are intended for and should be used for business purposes only.

--

This message has been scanned for viruses and dangerous content by MailScanner, and is believed to be clean.

Schwyn Environmental Services, LLC 4621 S. Custer Ct. Spokane, WA 99223 Project: Sudbury RI

Project Number: [none]

Project Manager: Craig Schwyn

Reported: 07/27/05 16:39

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
GP-3	S5G0044-01	Water	07/06/05 10:30	07/08/05 13:58
GP-4	S5G0044-02	Water	07/06/05 12:50	07/08/05 13:58
GP-5	S5G0044-03	Water	07/06/05 02:30	07/08/05 13:58
GP-6	S5G0044-04	Water	07/07/05 09:30	07/08/05 13:58
GP-8	S5G0044-05	Water	07/07/05 10:30	07/08/05 13:58
GP-3-21.5-22	S5G0044-06	Soil	07/06/05 00:00	07/08/05 13:58
GP-4-18-18.5	S5G0044-07	Soil	07/06/05 00:00	07/08/05 13:58
GP-6-15-15.5	S5G0044-08	Soil	07/06/05 00:00	07/08/05 13:58

North Creek Analytical - Spokane

bel

Dennis D Wells, Laboratory Director

Schwyn Environmental Services, LLC 4621 S. Custer Ct. Spokane, WA 99223 Project: Sudbury RI

Project Number: [none]

Project Manager: Craig Schwyn

Reported: 07/27/05 16:39

Total Metals by EPA 200 Series Methods

North Creek Analytical - Spokane

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-5 (S5G0044-03) Water Sampl	led: 07/06/05 02:30 Rece	ived: 07/08/05	5 13:58						
Calcium	248	0.0400	mg/l	1	5070132	07/19/05	07/19/05	EPA 200.7	
Potassium	42.2	0.500	"	"	"	"	"	"	
Magnesium	156	0.0400	"	"	"	"	"	"	
Sodium	43.7	0.500	"	"	"	"	"		
GP-6 (85G0044-04) Water Samp	led: 07/07/05 09:30 Rece	ived: 07/08/05	5 13:58						
Calcium	399	0.0400	mg/l	1	5070132	07/19/05	07/19/05	EPA 200.7	
Potassium	68.6	0.500	"	"	"	"	"	"	
Magnesium	246	0.0400	"	"	"	"	"	"	
Sodium	46.9	0.500	"	"	"	"	"	"	

North Creek Analytical - Spokane

bel

Dennis D Wells, Laboratory Director

Schwyn Environmental Services, LLC 4621 S. Custer Ct. Spokane, WA 99223 Project: Sudbury RI Project Number: [none]

Project Manager: Craig Schwyn

Reported: 07/27/05 16:39

Volatile Organic Compounds by EPA Method 8260B

North Creek Analytical - Spokane

		Reporting								
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
GP-5 (S5G0044-03) Water Sampled: ()7/06/05 02:30 Receiv	ed: 07/08/05	13:58							
Acetone	ND	25.0	ug/l	1	5070186	07/20/05	07/20/05	EPA 8260B		
Benzene	ND	1.00	"	"	"	"	"	"		
Bromobenzene	ND	1.00	"	"	"	"	"	"		
Bromochloromethane	ND	1.00	"	"	"	"	"	"		
Bromodichloromethane	ND	1.00	"	"	"	"	"	"		
Bromoform	ND	1.00	"	"	"	"	"	"		
Bromomethane	ND	5.00	"	"	"	"	"	"		
2-Butanone	ND	10.0	"	"	"	"	"	"		
n-Butylbenzene	ND	1.00	"	"	"	"	"	"		
sec-Butylbenzene	ND	1.00	"	"	"	"	"	"		
tert-Butylbenzene	ND	1.00	"	"	"	"	"	"		
Carbon disulfide	ND	1.00	"	"	"	"	"	"		
Carbon tetrachloride	ND	1.00	"	"	"	"	"	"		
Chlorobenzene	ND	1.00	"	"	"	"	"	"		
Chloroethane	ND	1.00	"	"	"	"	"	"		
Chloroform	ND	1.00	"	"	"	"	"	"		
Chloromethane	ND	5.00	"	"	"	"	"	"		
2-Chlorotoluene	ND	1.00	"	"	"	"	"	"		
4-Chlorotoluene	ND	1.00	"	"	"	"	"	"		
Dibromochloromethane	ND	1.00	"	"	"	"	"	"		
1,2-Dibromo-3-chloropropane	ND	5.00	"	"	"	"	"	"		
1,2-Dibromoethane	ND	1.00	"	"	"	"	"	"		
Dibromomethane	ND	1.00	"	"	"	"	"	"		
1,2-Dichlorobenzene	ND	1.00	"	"	"	"	"	"		
1,3-Dichlorobenzene	ND	1.00	"	"	"	"	"	"		
1,4-Dichlorobenzene	ND	1.00	"	"	"	"	"	"		
Dichlorodifluoromethane	2.58	1.00	"	"	"	"	"	"		
1,1-Dichloroethane	ND	1.00	"	"	"	"	"	"		
1,2-Dichloroethane (EDC)	ND	1.00	"	"	"	"	"	"		
1,1-Dichloroethene	ND	1.00	"	"	"	"	"	"		
cis-1,2-Dichloroethene	ND	1.00	"	"	"	"	"	"		
trans-1,2-Dichloroethene	ND	1.00	"	"	"	"	"	"		
1,2-Dichloropropane	ND	1.00	"	"	"	"	"	"		
1,3-Dichloropropane	ND	1.00	"	"	"	"	"	"		
2,2-Dichloropropane	ND	1.00	"	"	"	"	"	"		
1,1-Dichloropropene	ND	1.00	"	"	"	"	"	"		
cis-1,3-Dichloropropene	ND	1.00	"	"	"	"	"	"		
trans-1,3-Dichloropropene	ND	1.00	"	"	"	"	"	"		

North Creek Analytical - Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dennis D Wells, Laboratory Director

Schwyn Environmental Services, LLC 4621 S. Custer Ct. Spokane, WA 99223 Project: Sudbury RI Project Number: [none]

Project Manager: Craig Schwyn

Reported: 07/27/05 16:39

Volatile Organic Compounds by EPA Method 8260B

North Creek Analytical - Spokane

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-5 (85G0044-03) Water Sampled: 07	/06/05 02:30 Re	ceived: 07/08/05	13:58						
Ethylbenzene	ND	1.00	ug/l	1	5070186	07/20/05	07/20/05	EPA 8260B	
Hexachlorobutadiene	ND	1.00	"	"	"	"	"	"	
2-Hexanone	ND	10.0	"	"	"	"	"	"	
Isopropylbenzene	ND	1.00	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.00	"	"	"	"	"	"	
Methylene chloride	ND	5.00	"	"	"	"	"	"	
4-Methyl-2-pentanone	ND	10.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.00	"	"	"	"	"	"	
Naphthalene	ND	1.00	"	"	"	"	"	"	
n-Propylbenzene	ND	1.00	"	"	"	"	"	"	
Styrene	ND	1.00	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.00	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.00	"	"	"	"	"	"	
Tetrachloroethene	ND	1.00	"	"	"	"	"	"	
Toluene	ND	1.00	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.00	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.00	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.00	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.00	"	"	"	"	"	"	
Trichloroethene	ND	1.00	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.00	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.00	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.00	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.00	"	"	"	"	"	"	
Vinyl chloride	ND	0.200	"	"	"	"	"	"	
o-Xylene	ND	1.00	"	"	"	"	"	"	
m,p-Xylene	ND	2.00	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane	88.2	62.9-131			"	"	"	"	
Surrogate: Toluene-d8	97.2	58.7-133			"	"	"	"	
Surrogate: 4-bromofluorobenzene	<i>88.3</i>	60.8-140			"	"	"	"	

North Creek Analytical - Spokane

bel

Dennis D Wells, Laboratory Director

Schwyn Environmental Services, LLC 4621 S. Custer Ct. Spokane, WA 99223 Project: Sudbury RI Project Number: [none]

Project Manager: Craig Schwyn

Reported: 07/27/05 16:39

Volatile Organic Compounds by EPA Method 8260B

North Creek Analytical - Spokane

	Reporting								
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-8 (85G0044-05) Water Sampled:	07/07/05 10:30 Receiv	ed: 07/08/05	5 13:58						
Acetone	ND	25.0	ug/l	1	5070186	07/20/05	07/20/05	EPA 8260B	
Benzene	ND	1.00	"	"	"	"	"	"	
Bromobenzene	ND	1.00	"	"	"	"	"	"	
Bromochloromethane	ND	1.00	"	"	"	"	"	"	
Bromodichloromethane	ND	1.00	"	"	"	"	"	"	
Bromoform	ND	1.00	"	"	"	"	"	"	
Bromomethane	ND	5.00	"	"	"	"	"	"	
2-Butanone	ND	10.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.00	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.00		"	"	"	"	"	
tert-Butylbenzene	ND	1.00		"	"	"	"	"	
Carbon disulfide	ND	1.00		"	"	"	"	"	
Carbon tetrachloride	ND	1.00		"	"	"	"	"	
Chlorobenzene	ND	1.00		"	"	"	"	"	
Chloroethane	ND	1.00		"	"		"	"	
Chloroform	ND	1.00		"	"		"	"	
Chloromethane	ND	5.00		"	"		"	"	
2-Chlorotoluene	ND	1.00		"	"		"	"	
4-Chlorotoluene	ND	1.00		"	"		"		
Dibromochloromethane	ND	1.00		"	"		"	"	
1.2-Dibromo-3-chloropropage	ND	5.00		"	"		"	"	
1.2-Dibromoethane	ND	1.00		"	"		"		
Dibromomethane	ND	1.00		"	"		"		
1.2 Diablarabanzana	ND	1.00			"		"	"	
1.2 Dichlorobenzene	ND	1.00					"	"	
1,3-Dichlarchargene	ND	1.00		"					
Dishlara diffuaramethana	ND	1.00		"			"	"	
	ND	1.00							
1,1-Dichlore thank (EDC)	ND	1.00							
1,2-Dichloroethane (EDC)	ND	1.00							
I,I-Dichloroethene	ND	1.00							
cis-1,2-Dichloroethene	ND	1.00		"			"	"	
trans-1,2-Dichloroethene	ND	1.00	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.00	"	"	"	"		"	
1,3-Dichloropropane	ND	1.00	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.00	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.00	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.00	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.00	"		"	"	"	"	

North Creek Analytical - Spokane

00

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dennis D Wells, Laboratory Director

Schwyn Environmental Services, LLC 4621 S. Custer Ct. Spokane, WA 99223 Project: Sudbury RI Project Number: [none]

Project Manager: Craig Schwyn

Reported: 07/27/05 16:39

Volatile Organic Compounds by EPA Method 8260B

North Creek Analytical - Spokane

	Reporting								
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-8 (85G0044-05) Water Sampled: 07	//07/05 10:30 Re	ceived: 07/08/05	13:58						
Ethylbenzene	ND	1.00	ug/l	1	5070186	07/20/05	07/20/05	EPA 8260B	
Hexachlorobutadiene	ND	1.00	"	"	"	"	"	"	
2-Hexanone	ND	10.0	"	"	"	"	"	"	
Isopropylbenzene	ND	1.00	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.00	"	"	"	"	"	"	
Methylene chloride	ND	5.00	"	"	"	"	"	"	
4-Methyl-2-pentanone	ND	10.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.00	"	"	"	"	"	"	
Naphthalene	ND	1.00	"	"	"	"	"	"	
n-Propylbenzene	ND	1.00	"	"	"	"	"	"	
Styrene	ND	1.00	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.00	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.00	"	"	"	"	"	"	
Tetrachloroethene	ND	1.00	"	"	"	"	"	"	
Toluene	ND	1.00	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.00	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.00	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.00	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.00	"	"	"	"	"	"	
Trichloroethene	ND	1.00	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.00	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.00	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.00	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.00	"	"	"	"	"	"	
Vinyl chloride	ND	0.200	"	"	"	"	"	"	
o-Xylene	ND	1.00	"	"	"	"	"	"	
m,p-Xylene	ND	2.00	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane	89.3	62.9-131			"	"	"	"	
Surrogate: Toluene-d8	96.2	58.7-133			"	"	"	"	
Surrogate: 4-bromofluorobenzene	86.9	60.8-140			"	"	"	"	

North Creek Analytical - Spokane

bel

Dennis D Wells, Laboratory Director

Schwyn Environmental Services, LLC 4621 S. Custer Ct. Spokane, WA 99223 Project: Sudbury RI Project Number: [none]

Project Manager: Craig Schwyn

Reported: 07/27/05 16:39

Volatile Organic Compounds by EPA Method 8260B

North Creek Analytical - Spokane

AnalysicReaditLimitUnitsDilutionBatchPreparedAnalyzedMethodNotesGP-3-21.5-22 (SSG004-06) SollSsmplet: 07/06/05 00:00Received: 07/08/05 13:585AcetoneND1.00mg/kg dy1S07012507/78/05kP/A 25/01BenzneeND0.100BromachloromethaneND0.100BromachloromethaneND0.100BromachloromethaneND0.100BromachloromethaneND0.100BromachloromethaneND0.100			Reporting							
OP-3-21.5-22 (SSG004-40.6) Sol Sampled: 07/06/05 00:00 Received: 07/08/05 13.5S Accione ND 1.00 mgkg dry 1 5070/25 07/28/05 UPA S2600B Branzene ND 0.100 - - - - - Bromoshizzene ND 0.100 - - - - - Bromoshizene ND 0.100 - - - - - Bromoshizene ND 0.100 - - - - - Carbon disul	Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
AcenceND1myk dry1S7012597.180597.2005EPA 25088BanzenND0.030 <th>GP-3-21.5-22 (85G0044-06) Soil</th> <th>Sampled: 07/06/05 00:00</th> <th>Received: 07</th> <th>7/08/05 13:58</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	GP-3-21.5-22 (85G0044-06) Soil	Sampled: 07/06/05 00:00	Received: 07	7/08/05 13:58						
BanzeneND0.0300*** <t< td=""><td>Acetone</td><td>ND</td><td>1.00</td><td>mg/kg dry</td><td>1</td><td>5070125</td><td>07/18/05</td><td>07/20/05</td><td>EPA 8260B</td><td></td></t<>	Acetone	ND	1.00	mg/kg dry	1	5070125	07/18/05	07/20/05	EPA 8260B	
BromodelatoremethaneND0.100**	Benzene	ND	0.0300		"	"	"	"	"	
BromochloromethaneND0.100** <t< td=""><td>Bromobenzene</td><td>ND</td><td>0.100</td><td></td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></t<>	Bromobenzene	ND	0.100		"	"	"	"	"	
BromodichloromethaneND0.100	Bromochloromethane	ND	0.100	"	"	"	"	"	"	
BromoformND0.100***<	Bromodichloromethane	ND	0.100	"		"	"	"	"	
BromonethaneND0.500*** <td>Bromoform</td> <td>ND</td> <td>0.100</td> <td>"</td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Bromoform	ND	0.100	"		"	"	"	"	
2-ButanoneND1.00111<	Bromomethane	ND	0.500		"	"	"	"	"	
n-BurylbenzeneND0.100'''<	2-Butanone	ND	1.00			"	"	"	"	
sec-ButybenzeneND0.100'''	n-Butylbenzene	ND	0.100		"	"	"	"	"	
Inter-BurybenzeneND0.100'' <th< td=""><td>sec-Butylbenzene</td><td>ND</td><td>0.100</td><td></td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></th<>	sec-Butylbenzene	ND	0.100		"	"	"	"	"	
Carbon disulfide ND 0.100 I I I I I I Carbon tetrachloride ND 0.100 I </td <td>tert-Butylbenzene</td> <td>ND</td> <td>0.100</td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	tert-Butylbenzene	ND	0.100		"	"	"	"	"	
Carbon tetrachlorideND0.100""	Carbon disulfide	ND	0.100		"	"	"	"	"	
ChlorobenzeneND0.100""" </td <td>Carbon tetrachloride</td> <td>ND</td> <td>0.100</td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Carbon tetrachloride	ND	0.100		"	"	"	"	"	
ChloroethaneND0.100""" <td>Chlorobenzene</td> <td>ND</td> <td>0.100</td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Chlorobenzene	ND	0.100		"	"	"	"	"	
ChloroformND0.100"""	Chloroethane	ND	0.100	"	"	"	"	"	"	
ChloromethaneND0.500""" </td <td>Chloroform</td> <td>ND</td> <td>0.100</td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Chloroform	ND	0.100		"	"	"	"	"	
2-ChlorotolueneND0.100"""	Chloromethane	ND	0.500	"	"	"	"	"	"	
4-ChlorotolueneND0.100"""	2-Chlorotoluene	ND	0.100		"	"	"	"	"	
DibromochloromethaneND0.100""	4-Chlorotoluene	ND	0.100		"	"	"	"	"	
1,2-Dibromo-3-chloropropane ND 0.500 "	Dibromochloromethane	ND	0.100		"	"	"	"	"	
1,2-Dibromoethane ND 0.100 " <td>1,2-Dibromo-3-chloropropane</td> <td>ND</td> <td>0.500</td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	1,2-Dibromo-3-chloropropane	ND	0.500		"	"	"	"	"	
DibromomethaneND 0.100 "" <th< td=""><td>1,2-Dibromoethane</td><td>ND</td><td>0.100</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></th<>	1,2-Dibromoethane	ND	0.100	"	"	"	"	"	"	
1,2-Dichlorobenzene ND 0.100 " </td <td>Dibromomethane</td> <td>ND</td> <td>0.100</td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Dibromomethane	ND	0.100		"	"	"	"	"	
1,3-Dichlorobenzene ND 0.100 " </td <td>1,2-Dichlorobenzene</td> <td>ND</td> <td>0.100</td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	1,2-Dichlorobenzene	ND	0.100		"	"	"	"	"	
1,4-DichlorobenzeneND0.100""<	1,3-Dichlorobenzene	ND	0.100			"	"	"	"	
DichlorodifluoromethaneND0.100"" </td <td>1,4-Dichlorobenzene</td> <td>ND</td> <td>0.100</td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	1,4-Dichlorobenzene	ND	0.100		"	"	"	"	"	
1,1-DichloroethaneND0.100""""""""1,2-Dichloroethane (EDC)ND0.100""""""""1,1-DichloroetheneND0.100""""""""cis-1,2-DichloroetheneND0.100""""""""trans-1,2-DichloroetheneND0.100""""""""1,2-DichloropropaneND0.100"""""""""1,3-DichloropropaneND0.100""" <td>Dichlorodifluoromethane</td> <td>ND</td> <td>0.100</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Dichlorodifluoromethane	ND	0.100	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)ND0.100"""""""1,1-DichloroetheneND0.100""""""""cis-1,2-DichloroetheneND0.100""""""""trans-1,2-DichloroetheneND0.100""""""""1,2-DichloroptopaneND0.100""""""""1,3-DichloroptopaneND0.100""""""""2,2-DichloroptopaneND0.100""""""""1,1-DichloroptopaneND0.100""""""""1,1-DichloroptopaneND0.100""""""""1,1-DichloroptopaneND0.100""""""""1,1-DichloroptopeneND0.100"""""""""1,2-DichloroptopeneND0.100""" </td <td>1,1-Dichloroethane</td> <td>ND</td> <td>0.100</td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	1,1-Dichloroethane	ND	0.100		"	"	"	"	"	
1,1-Dichloroethene ND 0.100 " <td>1,2-Dichloroethane (EDC)</td> <td>ND</td> <td>0.100</td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	1,2-Dichloroethane (EDC)	ND	0.100		"	"	"	"	"	
ND 0.100 " <td>1,1-Dichloroethene</td> <td>ND</td> <td>0.100</td> <td></td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	1,1-Dichloroethene	ND	0.100			"	"	"	"	
trans-1,2-Dichloroethene ND 0.100 " <t< td=""><td>cis-1,2-Dichloroethene</td><td>ND</td><td>0.100</td><td></td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></t<>	cis-1,2-Dichloroethene	ND	0.100		"	"	"	"	"	
ND 0.100 " <td>trans-1,2-Dichloroethene</td> <td>ND</td> <td>0.100</td> <td>"</td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	trans-1,2-Dichloroethene	ND	0.100	"		"	"	"	"	
ND 0.100 " <th"< th=""> " " <th"< th=""></th"<></th"<>	1,2-Dichloropropane	ND	0.100	"		"	"	"	"	
ND 0.100 " <th"< th=""> " " <th"< th=""></th"<></th"<>	1,3-Dichloropropane	ND	0.100			"	"	"	"	
ND 0.100 " " " " isi-1,3-Dichloropropene ND 0.100 " " " " trues 1.2 Dichloropropene ND 0.100 " " " "	2,2-Dichloropropane	ND	0.100	"			"	"	"	
ND 0.100 " <th"< th=""> " "<td>1.1-Dichloropropene</td><td>ND</td><td>0.100</td><td>"</td><td></td><td></td><td>"</td><td>"</td><td>"</td><td></td></th"<>	1.1-Dichloropropene	ND	0.100	"			"	"	"	
	cis-1.3-Dichloropropene	ND	0.100	"			"	"	"	
trans-1,3-Dichloropropene ND 0.100	trans-1,3-Dichloropropene	ND	0.100	"		"	"	"	"	

North Creek Analytical - Spokane

00

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dennis D Wells, Laboratory Director

North Creek Analytical, Inc. Environmental Laboratory Network

Schwyn Environmental Services, LLC 4621 S. Custer Ct. Spokane, WA 99223 Project: Sudbury RI Project Number: [none] Project Manager: Craig Schwyn

Reported:

07/27/05 16:39

Volatile Organic Compounds by EPA Method 8260B

North Creek Analytical - Spokane

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-3-21.5-22 (85G0044-06) Soil	Sampled: 07/06/05 00:00	Received: 02	7/08/05 13:58						
Ethylbenzene	ND	0.100	mg/kg dry	1	5070125	07/18/05	07/20/05	EPA 8260B	
Hexachlorobutadiene	ND	0.100	"	"	"	"	"	"	
2-Hexanone	ND	1.00		"	"	"	"	"	
Isopropylbenzene	ND	0.100		"	"	"	"	"	
p-Isopropyltoluene	ND	0.100	"	"	"	"	"	"	
Methylene chloride	ND	1.00		"	"	"	"	"	
4-Methyl-2-pentanone	ND	1.00	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	0.100		"	"	"	"	"	
Naphthalene	ND	0.100		"	"	"	"	"	
n-Propylbenzene	ND	0.100	"	"	"	"	"	"	
Styrene	ND	0.100		"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.100	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.100		"	"	"	"	"	
Tetrachloroethene	ND	0.0300	"	"	"	"	"	"	
Toluene	ND	0.100	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.100		"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.100	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.100		"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.100	"	"	"	"	"	"	
Trichloroethene	ND	0.0300	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.100		"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.100	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.100	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.100	"	"	"	"	"	"	
Vinyl chloride	ND	0.100	"	"	"	"	"	"	
o-Xylene	ND	0.200	"	"	"	"	"	"	
m,p-Xylene	ND	0.400	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane	82.9	44.8-146			"	"	"	"	
Surrogate: Toluene-d8	94.6	62.3-143			"	"	"	"	
Surrogate: 4-bromofluorobenzene	90.7	52.5-138			"	"	"	"	

North Creek Analytical - Spokane

bol

Dennis D Wells, Laboratory Director

Schwyn Environmental Services, LLC 4621 S. Custer Ct. Spokane, WA 99223 Project: Sudbury RI Project Number: [none]

Project Manager: Craig Schwyn

Reported: 07/27/05 16:39

Volatile Organic Compounds by EPA Method 8260B

North Creek Analytical - Spokane

AnalyseResultLinitUnitsDilutionBatchPreparedAnalyzedMethodNotesGP-418-18.5 (SSG0044-07) SoilSampled: 07.06.05 00:00Received: 07.0805 13:585AcetoneND0.100mkg dy1507012507.1005EPA A25008BronzeneND0.0100BronzeneND0.100BronzeneND0.100BronzeneND0.100BronzeneND0.100BronzeneND0.100 </th <th></th> <th></th> <th>Reporting</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>			Reporting							
OP+1818.5 (SSC0044-07) Soil Sampled: 07/06/05 00:00 Received: 07/08/05 13.5S Acetone ND 0.0300 -<	Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Accence ND 1.00 mg/kg dry i S070125 071805 072005 EPA 3260B Benzenk ND 0.000 - - - - - Bromochozene ND 0.100 - - - - - - Bromochozene ND 0.100 - - - - - - Bromochozene ND 0.100 - - - - - - Paulybenzne ND 0.100 - - - - - - Carbon disulifié ND 0.100 - - - - - - Chorondehane <th>GP-4-18-18.5 (S5G0044-07) Soil</th> <th>Sampled: 07/06/05 00:00</th> <th>Received: 07</th> <th>7/08/05 13:58</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	GP-4-18-18.5 (S5G0044-07) Soil	Sampled: 07/06/05 00:00	Received: 07	7/08/05 13:58						
BanzeneND0.0300*** <t< td=""><td>Acetone</td><td>ND</td><td>1.00</td><td>mg/kg dry</td><td>1</td><td>5070125</td><td>07/18/05</td><td>07/20/05</td><td>EPA 8260B</td><td></td></t<>	Acetone	ND	1.00	mg/kg dry	1	5070125	07/18/05	07/20/05	EPA 8260B	
BromochloromethaneND0.100** <t< td=""><td>Benzene</td><td>ND</td><td>0.0300</td><td></td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></t<>	Benzene	ND	0.0300		"	"	"	"	"	
BromodironethaneND0.100""	Bromobenzene	ND	0.100		"	"	"	"	"	
BromodilationmethaneND0.100**	Bromochloromethane	ND	0.100		"	"	"	"	"	
BromoframND0.100"""<	Bromodichloromethane	ND	0.100		"	"	"	"	"	
BromomethaneND0.500*** <td>Bromoform</td> <td>ND</td> <td>0.100</td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Bromoform	ND	0.100		"	"	"	"	"	
2-ButanoneND1.00 <t< td=""><td>Bromomethane</td><td>ND</td><td>0.500</td><td></td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></t<>	Bromomethane	ND	0.500		"	"	"	"	"	
n-ButylbenzeneND0.100'''<	2-Butanone	ND	1.00		"	"	"	"	"	
sec-ButybenzeneND0.100'''	n-Butylbenzene	ND	0.100		"	"	"	"	"	
rert-BurybenzeneND0.100''	sec-Butylbenzene	ND	0.100		"	"	"	"	"	
Carbon disulfideND0.100""	tert-Butylbenzene	ND	0.100		"	"	"	"	"	
Carbon tetrachlorideND0.100""	Carbon disulfide	ND	0.100		"	"	"	"	"	
ChlorobenzeneND0.100""" </td <td>Carbon tetrachloride</td> <td>ND</td> <td>0.100</td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Carbon tetrachloride	ND	0.100		"	"	"	"	"	
ChloroethaneND0.100""" <td>Chlorobenzene</td> <td>ND</td> <td>0.100</td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Chlorobenzene	ND	0.100		"	"	"	"	"	
ChloroformND0.100"""	Chloroethane	ND	0.100		"	"	"	"	"	
ChloromethaneND0.500""" </td <td>Chloroform</td> <td>ND</td> <td>0.100</td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Chloroform	ND	0.100		"	"	"	"	"	
2-ChlorotolueneND0.100"""	Chloromethane	ND	0.500		"	"	"	"	"	
4-ChlorotolueneND0.100"""	2-Chlorotoluene	ND	0.100		"	"	"	"	"	
DibromochloromethaneND0.100""""""""1,2-Dibromo-3-chloropropaneND0.500""""""""1,2-DibromoethaneND0.100"""""""""DibromomethaneND0.100"" <td< td=""><td>4-Chlorotoluene</td><td>ND</td><td>0.100</td><td></td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></td<>	4-Chlorotoluene	ND	0.100		"	"	"	"	"	
1,2-Dibromo-3-chloropropaneND0.500""" <th< td=""><td>Dibromochloromethane</td><td>ND</td><td>0.100</td><td></td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></th<>	Dibromochloromethane	ND	0.100		"	"	"	"	"	
1.2-Dibromoethane ND 0.100 " " " " " " " Dibromomethane ND 0.100 "<	1,2-Dibromo-3-chloropropane	ND	0.500		"	"	"	"	"	
Dibromomethane ND 0.100 "	1,2-Dibromoethane	ND	0.100		"	"	"	"	"	
1,2-Dichlorobenzene ND 0.100 " </td <td>Dibromomethane</td> <td>ND</td> <td>0.100</td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Dibromomethane	ND	0.100		"	"	"	"	"	
ND0.100""" <td>1,2-Dichlorobenzene</td> <td>ND</td> <td>0.100</td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	1,2-Dichlorobenzene	ND	0.100		"	"	"	"	"	
1,4-DichlorobenzeneND0.100""<	1,3-Dichlorobenzene	ND	0.100		"	"	"	"	"	
DichlorodifluoromethaneND0.100""""""""1,1-DichloroethaneND0.100""""""""1,2-Dichloroethane (EDC)ND0.100""""""""1,1-DichloroetheneND0.100""""""""1,1-DichloroetheneND0.100""""""""cis-1,2-DichloroetheneND0.100""""""""trans-1,2-DichloroetheneND0.100""""""""1,3-DichloropropaneND0.100"""""""""1,1-DichloropropaneND0.100"""""""""1,1-DichloropropaneND0.100""" <td>1,4-Dichlorobenzene</td> <td>ND</td> <td>0.100</td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	1,4-Dichlorobenzene	ND	0.100		"	"	"	"	"	
1,1-DichloroethaneND0.100""""""""1,2-Dichloroethane (EDC)ND0.100""""""""1,1-DichloroetheneND0.100""""""""cis-1,2-DichloroetheneND0.100""""""""trans-1,2-DichloroetheneND0.100""""""""1,2-DichloroptopaneND0.100"""""""""1,3-DichloropropaneND0.100"""""""""1,1-DichloropropaneND0.100""<	Dichlorodifluoromethane	ND	0.100			"		"	"	
1,2-Dichloroethane (EDC) ND 0.100 " <t< td=""><td>1.1-Dichloroethane</td><td>ND</td><td>0.100</td><td></td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></t<>	1.1-Dichloroethane	ND	0.100		"	"	"	"	"	
1,1-DichloroetheneND0.100"""""""cis-1,2-DichloroetheneND0.100""""""""trans-1,2-DichloroetheneND0.100""""""""1,2-DichloropropaneND0.100""""""""1,3-DichloropropaneND0.100""""""""2,2-DichloropropaneND0.100""""""""1,1-DichloropropaneND0.100""""""""1,1-DichloropropaneND0.100""""""""1,1-DichloropropeneND0.100""""""""1,3-DichloropropeneND0.100""""""""1,1-DichloropropeneND0.100""""""""1,3-DichloropropeneND0.100""""""""1,1-DichloropropeneND0.100"""""""""1,3-DichloropropeneND0.100""""""""""1,1-Dichloropro	1,2-Dichloroethane (EDC)	ND	0.100		"	"	"	"	"	
cis-1,2-Dichloroethene ND 0.100 "	1.1-Dichloroethene	ND	0.100			"	"	"	"	
trans-1,2-Dichloroethene ND 0.100 " <t< td=""><td>cis-1.2-Dichloroethene</td><td>ND</td><td>0.100</td><td></td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></t<>	cis-1.2-Dichloroethene	ND	0.100		"	"	"	"	"	
1,2-Dichloropropane ND 0.100 " </td <td>trans-1,2-Dichloroethene</td> <td>ND</td> <td>0.100</td> <td></td> <td></td> <td>"</td> <td></td> <td>"</td> <td>"</td> <td></td>	trans-1,2-Dichloroethene	ND	0.100			"		"	"	
1,3-Dichloropropane ND 0.100 " </td <td>1.2-Dichloropropane</td> <td>ND</td> <td>0.100</td> <td></td> <td></td> <td>"</td> <td></td> <td>"</td> <td>"</td> <td></td>	1.2-Dichloropropane	ND	0.100			"		"	"	
2,2-Dichloropropane ND 0.100 " </td <td>1.3-Dichloropropane</td> <td>ND</td> <td>0.100</td> <td></td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	1.3-Dichloropropane	ND	0.100			"	"	"	"	
1,1-Dichloropropene ND 0.100 " " " " cis-1,3-Dichloropropene ND 0.100 " " " " " trans-1,3-Dichloropropene ND 0.100 " " " " "	2.2-Dichloropropane	ND	0.100	"		"	"	"	"	
ris-1,3-Dichloropropene ND 0.100 " " " " trans-1,3-Dichloropropene ND 0.100 " " " " "	1.1-Dichloropropene	ND	0 100	"		"	"	"	"	
trans-1,3-Dichloropropene ND 0.100 " " " " " " "	cis-1.3-Dichloropropene	ND	0.100	"		"	"	"	"	
	trans-1.3-Dichloropropene	ND	0.100	"		"	"	"	"	

North Creek Analytical - Spokane

00

Schwyn Environmental Services, LLC 4621 S. Custer Ct. Spokane, WA 99223 Project: Sudbury RI Project Number: [none] Project Manager: Craig Schwyn

Reported:

07/27/05 16:39

Volatile Organic Compounds by EPA Method 8260B

North Creek Analytical - Spokane

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-4-18-18.5 (S5G0044-07) Soil	Sampled: 07/06/05 00:00	Received: 02	7/08/05 13:58						
Ethylbenzene	ND	0.100	mg/kg dry	1	5070125	07/18/05	07/20/05	EPA 8260B	
Hexachlorobutadiene	ND	0.100	"	"	"	"	"	"	
2-Hexanone	ND	1.00		"	"	"	"	"	
Isopropylbenzene	ND	0.100		"	"	"	"	"	
p-Isopropyltoluene	ND	0.100	"	"	"	"	"	"	
Methylene chloride	ND	1.00		"	"	"	"	"	
4-Methyl-2-pentanone	ND	1.00	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	0.100		"	"	"	"	"	
Naphthalene	ND	0.100		"	"	"	"	"	
n-Propylbenzene	ND	0.100	"	"	"	"	"	"	
Styrene	ND	0.100		"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.100	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.100		"	"	"	"	"	
Tetrachloroethene	ND	0.0300	"	"	"	"	"	"	
Toluene	ND	0.100	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.100		"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.100	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.100		"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.100	"	"	"	"	"	"	
Trichloroethene	ND	0.0300	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.100		"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.100	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.100		"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.100	"	"	"	"	"	"	
Vinyl chloride	ND	0.100	"	"	"	"	"	"	
o-Xylene	ND	0.200	"	"	"	"	"	"	
m,p-Xylene	ND	0.400	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane	81.5	44.8-146			"	"	"	"	
Surrogate: Toluene-d8	85.8	62.3-143			"	"	"	"	
Surrogate: 4-bromofluorobenzene	78.3	52.5-138			"	"	"	"	

North Creek Analytical - Spokane

bol

Dennis D Wells, Laboratory Director

Schwyn Environmental Services, LLC 4621 S. Custer Ct. Spokane, WA 99223 Project: Sudbury RI Project Number: [none]

Project Manager: Craig Schwyn

Reported: 07/27/05 16:39

Volatile Organic Compounds by EPA Method 8260B

North Creek Analytical - Spokane

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-6-15-15.5 (85G0044-08) Soil	Sampled: 07/06/05 00:00	Received: 0'	7/08/05 13:58						
Acetone	ND	1.00	mg/kg dry	1	5070125	07/18/05	07/20/05	EPA 8260B	
Benzene	ND	0.0300			"		"	"	
Bromobenzene	ND	0.100		"	"	"	"	"	
Bromochloromethane	ND	0.100		"	"	"	"	"	
Bromodichloromethane	ND	0.100		"	"	"	"	"	
Bromoform	ND	0.100		"	"	"	"	"	
Bromomethane	ND	0.500			"		"	"	
2-Butanone	ND	1.00			"		"	"	
n-Butylbenzene	ND	0.100			"	"	"	"	
sec-Butylbenzene	ND	0.100		"	"	"	"	"	
tert-Butylbenzene	ND	0.100			"	"	"	"	
Carbon disulfide	ND	0.100		"	"	"	"	"	
Carbon tetrachloride	ND	0.100			"	"	"	"	
Chlorobenzene	ND	0.100		"	"	"	"	"	
Chloroethane	ND	0.100		"	"	"	"	"	
Chloroform	ND	0.100		"	"	"	"	"	
Chloromethane	ND	0.500		"	"	"	"	"	
2-Chlorotoluene	ND	0.100			"	"	"	"	
4-Chlorotoluene	ND	0.100		"	"	"	"	"	
Dibromochloromethane	ND	0.100		"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	0.500			"		"	"	
1,2-Dibromoethane	ND	0.100		"	"	"	"	"	
Dibromomethane	ND	0.100			"	"	"	"	
1,2-Dichlorobenzene	ND	0.100			"	"	"	"	
1,3-Dichlorobenzene	ND	0.100		"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.100			"	"	"	"	
Dichlorodifluoromethane	ND	0.100		"	"	"	"	"	
1,1-Dichloroethane	ND	0.100			"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.100		"	"	"	"	"	
1,1-Dichloroethene	ND	0.100		"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.100			"	"	"	"	
trans-1,2-Dichloroethene	ND	0.100			"	"	"	"	
1,2-Dichloropropane	ND	0.100			"	"	"	"	
1,3-Dichloropropane	ND	0.100		"	"	"	"	"	
2,2-Dichloropropane	ND	0.100	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.100	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.100	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.100	"		"	"	"	"	

North Creek Analytical - Spokane

Schwyn Environmental Services, LLC 4621 S. Custer Ct. Spokane, WA 99223 Project: Sudbury RI Project Number: [none] Project Manager: Craig Schwyn

Reported: 07/27/05 16:39

Volatile Organic Compounds by EPA Method 8260B

North Creek Analytical - Spokane

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-6-15-15.5 (85G0044-08) Soil	Sampled: 07/06/05 00:00	Received: 0'	7/08/05 13:58						
Ethylbenzene	ND	0.100	mg/kg dry	1	5070125	07/18/05	07/20/05	EPA 8260B	
Hexachlorobutadiene	ND	0.100		"	"	"	"	"	
2-Hexanone	ND	1.00		"	"	"	"	"	
Isopropylbenzene	ND	0.100		"	"	"	"	"	
p-Isopropyltoluene	ND	0.100		"	"	"	"	"	
Methylene chloride	ND	1.00		"	"	"	"	"	
4-Methyl-2-pentanone	ND	1.00		"	"	"	"	"	
Methyl tert-butyl ether	ND	0.100		"	"	"	"	"	
Naphthalene	ND	0.100		"	"	"	"	"	
n-Propylbenzene	ND	0.100		"	"	"	"	"	
Styrene	ND	0.100		"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.100		"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.100		"	"	"	"	"	
Tetrachloroethene	ND	0.0300		"	"	"	"	"	
Toluene	ND	0.100		"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.100		"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.100		"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.100		"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.100		"	"	"	"	"	
Trichloroethene	ND	0.0300		"	"	"	"	"	
Trichlorofluoromethane	ND	0.100		"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.100		"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.100		"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.100		"	"	"	"	"	
Vinyl chloride	ND	0.100		"	"	"	"	"	
o-Xylene	ND	0.200		"	"	"	"	"	
m,p-Xylene	ND	0.400	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane	86.9	44.8-146			"	"	"	"	
Surrogate: Toluene-d8	85.5	62.3-143			"	"	"	"	
Surrogate: 4-bromofluorobenzene	82.5	52.5-138			"	"	"	"	

North Creek Analytical - Spokane

bol

Dennis D Wells, Laboratory Director

Schwyn Environmental Services, LLC 4621 S. Custer Ct. Spokane, WA 99223 Project: Sudbury RI Project Number: [none]

Project Manager: Craig Schwyn

Reported: 07/27/05 16:39

Conventional Chemistry Parameters by APHA/EPA Methods

North Creek Analytical - Spokane

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-5 (S5G0044-03) Water Sam	pled: 07/06/05 02:30 Rece	eived: 07/08/(05 13:58						
Total Dissolved Solids	878	2.00	mg/l	1	5070096	07/13/05	07/22/05	EPA 160.1	
GP-6 (S5G0044-04) Water Sam	pled: 07/07/05 09:30 Rece	eived: 07/08/0	05 13:58						
Total Dissolved Solids	933	2.00	mg/l	1	5070096	07/13/05	07/22/05	EPA 160.1	
GP-3-21.5-22 (S5G0044-06) Soil	Sampled: 07/06/05 00:00	Received: 0	7/08/05 13:58						
% Solids	77.8	0.0100	% by Weight	1	5070176	07/21/05	07/22/05	Gravimetry	
GP-4-18-18.5 (S5G0044-07) Soil	Sampled: 07/06/05 00:00	Received: 0	7/08/05 13:58						
% Solids	83.3	0.0100	% by Weight	1	5070176	07/21/05	07/22/05	Gravimetry	
GP-6-15-15.5 (S5G0044-08) Soil	Sampled: 07/06/05 00:00	Received: 0	7/08/05 13:58						
% Solids	87.6	0.0100	% by Weight	1	5070176	07/21/05	07/22/05	Gravimetry	

North Creek Analytical - Spokane

bel

Dennis D Wells, Laboratory Director

Schwyn Environmental Services, LLC 4621 S. Custer Ct. Spokane, WA 99223 Project: Sudbury RI

Project Number: [none] Project Manager: Craig Schwyn Reported:

07/27/05 16:39

Anions by EPA Method 300.0

North Creek Analytical - Spokane

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-5 (S5G0044-03) Water Sam	pled: 07/06/05 02:30 Recei	ved: 07/08/05	13:58						
Chloride	214	5.00	mg/l	10	5070056	07/08/05	07/12/05	EPA 300.0	
Nitrate-Nitrogen	12.7	5.00	"	"	"	"	07/08/05	"	
Sulfate	52.4	5.00	"	"	"	"	07/12/05	"	
GP-6 (S5G0044-04) Water Sam	pled: 07/07/05 09:30 Recei	ved: 07/08/05	13:58						
Chloride	199	5.00	mg/l	10	5070056	07/08/05	07/12/05	EPA 300.0	
Nitrate-Nitrogen	12.6	5.00	"	"	"	"	07/08/05	"	
Sulfate	38.6	5.00	"	"	"	"	07/12/05	"	

North Creek Analytical - Spokane

bel

Dennis D Wells, Laboratory Director

Schwyn Environmental Services, LLC 4621 S. Custer Ct. Spokane, WA 99223 Project: Sudbury RI Project Number: [none] Project Manager: Craig Schwyn

Reported: 07/27/05 16:39

Total Metals by EPA 200 Series Methods - Quality Control

North Creek Analytical - Spokane

			Reporting		Snike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5070132:	Prepared 07/19/05	Using Metals									
Blank (5070132-BI	LK1)										
Calcium		ND	0.0400	mg/l							
Potassium		ND	0.500	"							
Magnesium		ND	0.0400	"							
Sodium		ND	0.500	"							
LCS (5070132-BS1)										
Calcium		10.6	0.0400	mg/l	10.0		106	70-130			
Potassium		10.5	0.500	"	10.0		105	70-130			
Magnesium		10.9	0.0400	"	10.0		109	70-130			
Sodium		10.6	0.500	"	10.0		106	70-130			
Duplicate (5070132	2-DUP1)					Source: S5	G0071-01				
Calcium		53.9	0.0400	mg/l		54.3			0.739	20	
Potassium		251	0.500	"		252			0.398	20	
Magnesium		31.9	0.0400	"		32.1			0.625	20	
Sodium		32.6	0.500	"		33.1			1.52	20	
Matrix Spike (5070)132-MS1)					Source: S5	G0071-01				
Calcium		64.8	0.0400	mg/l	10.0	54.3	105	75-125			
Potassium		262	0.500	"	10.0	252	100	75-125			
Magnesium		42.8	0.0400	"	10.0	32.1	107	75-125			
Sodium		42.3	0.500	"	10.0	33.1	92.0	75-125			
Matrix Spike Dup	(5070132-MSD1)					Source: S5	G0071-01				
Calcium		64.3	0.0400	mg/l	10.0	54.3	100	75-125	0.775	20	
Potassium		261	0.500	"	10.0	252	90.0	75-125	0.382	20	
Magnesium		42.7	0.0400	"	10.0	32.1	106	75-125	0.234	20	
Sodium		42.6	0.500	"	10.0	33.1	95.0	75-125	0.707	20	

North Creek Analytical - Spokane

bel

Dennis D Wells, Laboratory Director

Seattle	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244
	425.420.9200 fax 425.420.9210
Spokane	11922 E. 1st Avenue, Spokane Valley, WA 99206-5302
	509.924.9200 fax 509.924.9290
Portland	9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
	503.906.9200 fax 503.906.9210
Bend	20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
	541.383.9310 fax 541.382.7588
Anchorage	2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119
_	907.563.9200 fax 907.563.9210

Project: Sudbury RI Project Number: [none]

Project Manager: Craig Schwyn

Reported: 07/27/05 16:39

Volatile Organic Compounds by EPA Method 8260B - Quality Control

North Creek Analytical - Spokane

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5070125:	Prepared 07/18/05	Using GC/MS V	olatiles								
Blank (5070125-BI											
Acetone		ND	1.00	mg/kg wet							
Benzene		ND	0.0300	"							
Bromobenzene		ND	0.100	"							
Bromochloromethane		ND	0.100	"							
Bromodichloromethan	e	ND	0.100	"							
Bromoform		ND	0.100	"							
Bromomethane		ND	0.500	"							
2-Butanone		ND	1.00	"							
n-Butylbenzene		ND	0.100	"							
sec-Butylbenzene		ND	0.100	"							
tert-Butylbenzene		ND	0.100	"							
Carbon disulfide		ND	0.100	"							
Carbon tetrachloride		ND	0.100	"							
Chlorobenzene		ND	0.100	"							
Chloroethane		ND	0.100	"							
Chloroform		ND	0.100	"							
Chloromethane		ND	0.500	"							
2-Chlorotoluene		ND	0.100	"							
4-Chlorotoluene		ND	0.100	"							
Dibromochloromethan	e	ND	0.100	"							
1,2-Dibromo-3-chlorop	propane	ND	0.500	"							
1,2-Dibromoethane		ND	0.100	"							
Dibromomethane		ND	0.100	"							
1,2-Dichlorobenzene		ND	0.100	"							
1,3-Dichlorobenzene		ND	0.100	"							
1,4-Dichlorobenzene		ND	0.100	"							
Dichlorodifluorometha	ane	ND	0.100	"							
1,1-Dichloroethane		ND	0.100	"							
1,2-Dichloroethane (E	DC)	ND	0.100	"							
1,1-Dichloroethene		ND	0.100	"							
cis-1,2-Dichloroethene	2	ND	0.100	"							
trans-1,2-Dichloroethe	ne	ND	0.100	"							
1,2-Dichloropropane		ND	0.100	"							
1,3-Dichloropropane		ND	0.100	"							
2.2-Dichloropropane		ND	0.100								

North Creek Analytical - Spokane

00

Dennis D Wells, Laboratory Director

Seattle	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244
	425.420.9200 fax 425.420.9210
Spokane	11922 E. 1st Avenue, Spokane Valley, WA 99206-5302
	509.924.9200 fax 509.924.9290
Portland	9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
	503.906.9200 fax 503.906.9210
Bend	20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
	541.383.9310 fax 541.382.7588
Anchorage	2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119
	907.563.9200 fax 907.563.9210

Project: Sudbury RI Project Number: [none]

Project Manager: Craig Schwyn

Reported: 07/27/05 16:39

Volatile Organic Compounds by EPA Method 8260B - Quality Control

North Creek Analytical - Spokane

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5070125:	Prepared 07/18/05	Using GC/MS	Volatiles								
Blank (5070125-BI	LK1)										
1,1-Dichloropropene		ND	0.100	mg/kg wet							
cis-1,3-Dichloroproper	ne	ND	0.100	"							
trans-1,3-Dichloroprop	bene	ND	0.100	"							
Ethylbenzene		ND	0.100	"							
Hexachlorobutadiene		ND	0.100	"							
2-Hexanone		ND	1.00	"							
Isopropylbenzene		ND	0.100	"							
p-Isopropyltoluene		ND	0.100	"							
Methylene chloride		ND	1.00	"							
4-Methyl-2-pentanone		ND	1.00	"							
Methyl tert-butyl ether		ND	0.100	"							
Naphthalene		0.115	0.100	"							
n-Propylbenzene		ND	0.100	"							
Styrene		ND	0.100	"							
1,1,1,2-Tetrachloroeth	ane	ND	0.100	"							
1,1,2,2-Tetrachloroeth	ane	ND	0.100	"							
Tetrachloroethene		ND	0.0300	"							
Toluene		ND	0.100	"							
1,2,3-Trichlorobenzen	e	ND	0.100	"							
1,2,4-Trichlorobenzen	e	ND	0.100	"							
1,1,1-Trichloroethane		ND	0.100	"							
1,1,2-Trichloroethane		ND	0.100	"							
Trichloroethene		ND	0.0300	"							
Trichlorofluoromethan	ie	ND	0.100	"							
1,2,3-Trichloropropane	e	ND	0.100	"							
1,2,4-Trimethylbenzen	ie	ND	0.100	"							
1,3,5-Trimethylbenzen	ie	ND	0.100	"							
Vinyl chloride		ND	0.100	"							
o-Xylene		ND	0.200	"							
m,p-Xylene		ND	0.400	"							
Surrogate: Dibromofli	ioromethane	0.799		"	1.00		79.9	44.8-146			
Surrogate: Toluene-d8	2	0.960		"	1.00		96.0	62.3-143			
Surrogate: 4-bromoflu	orobenzene	0.810		"	1.00		81.0	52.5-138			

North Creek Analytical - Spokane

00

Dennis D Wells, Laboratory Director

Seattle	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244
	425.420.9200 fax 425.420.9210
Spokane	11922 E. 1st Avenue, Spokane Valley, WA 99206-5302
	509.924.9200 fax 509.924.9290
Portland	9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
	503.906.9200 fax 503.906.9210
Bend	20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
	541.383.9310 fax 541.382.7588
Anchorage	2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119
	907.563.9200 fax 907.563.9210

Project: Sudbury RI Project Number: [none]

Project Manager: Craig Schwyn

Reported: 07/27/05 16:39

Volatile Organic Compounds by EPA Method 8260B - Quality Control

North Creek Analytical - Spokane

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5070125:	Prepared 07/18/05	Using GC/MS	Volatiles								
LCS (5070125-BS1	1)										
Benzene		0.552	0.0300	mg/kg wet	0.500		110	72.5-130			
Chlorobenzene		0.542	0.100	"	0.500		108	78.4-120			
1,1-Dichloroethene		0.445	0.100	"	0.500		89.0	50-150			
Toluene		0.508	0.100	"	0.500		102	75.3-120			
Trichloroethene		0.517	0.0300	"	0.500		103	64.5-131			
Surrogate: Dibromofl	uoromethane	0.907		"	1.00		90.7	44.8-146			
Surrogate: Toluene-d&	3	0.988		"	1.00		98.8	62.3-143			
Surrogate: 4-bromoflu	orobenzene	0.883		"	1.00		<i>88.3</i>	52.5-138			
Matrix Spike (5070	0125-MS1)					Source: S5	G0044-06				
Benzene		0.525	0.0300	mg/kg dry	0.643	ND	81.6	62-130			
Chlorobenzene		0.584	0.100	"	0.643	ND	90.8	70.3-119			
1,1-Dichloroethene		0.302	0.100	"	0.643	ND	47.0	50-150			Q-01
Toluene		0.521	0.100	"	0.643	ND	81.0	63.8-120			
Trichloroethene		0.507	0.0300	"	0.643	ND	78.8	73.9-122			
Surrogate: Dibromoflu	uoromethane	0.931		"	1.29		72.2	44.8-146			
Surrogate: Toluene-d&	3	0.985		"	1.29		76.4	62.3-143			
Surrogate: 4-bromoflu	orobenzene	0.943		"	1.29		73.1	52.5-138			
Matrix Spike Dup	(5070125-MSD1)					Source: S5	G0044-06				
Benzene		0.501	0.0300	mg/kg dry	0.643	ND	77.9	62-130	4.68	25	
Chlorobenzene		0.560	0.100	"	0.643	ND	87.1	70.3-119	4.20	25	
1,1-Dichloroethene		0.334	0.100	"	0.643	ND	51.9	50-150	10.1	25	
Toluene		0.505	0.100	"	0.643	ND	78.5	63.8-120	3.12	25	
Trichloroethene		0.487	0.0300	"	0.643	ND	75.7	73.9-122	4.02	25	
Surrogate: Dibromofle	uoromethane	0.909		"	1.29		70.5	44.8-146			
Surrogate: Toluene-d8	3	0.964		"	1.29		74.7	62.3-143			
Surrogate: 4-bromoflu	iorobenzene	0.926		"	1.29		71.8	52.5-138			

North Creek Analytical - Spokane

00

Dennis D Wells, Laboratory Director

Seattle	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244
	425.420.9200 fax 425.420.9210
Spokane	11922 E. 1st Avenue, Spokane Valley, WA 99206-5302
	509.924.9200 fax 509.924.9290
Portland	9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
	503.906.9200 fax 503.906.9210
Bend	20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
	541.383.9310 fax 541.382.7588
Anchorage	2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119
	907.563.9200 fax 907.563.9210

Project Sudbury RI Project Number: [none] Project Manager: Craig Schwyn

Reported: 07/27/05 16:39

Volatile Organic Compounds by EPA Method 8260B - Quality Control

North Creek Analytical - Spokane

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5070186:	Prepared 07/20/05	Using GC/MS	Volatiles								
Blank (5070186-BLl	K1)										
Acetone		ND	25.0	ug/l							
Benzene		ND	1.00	"							
Bromobenzene		ND	1.00	"							
Bromochloromethane		ND	1.00	"							
Bromodichloromethane		ND	1.00	"							
Bromoform		ND	1.00	"							
Bromomethane		ND	5.00	"							
2-Butanone		ND	10.0	"							
n-Butylbenzene		ND	1.00	"							
sec-Butylbenzene		ND	1.00	"							
tert-Butylbenzene		ND	1.00	"							
Carbon disulfide		ND	1.00	"							
Carbon tetrachloride		ND	1.00	"							
Chlorobenzene		ND	1.00	"							
Chloroethane		ND	1.00	"							
Chloroform		ND	1.00	"							
Chloromethane		ND	5.00	"							
2-Chlorotoluene		ND	1.00	"							
4-Chlorotoluene		ND	1.00	"							
Dibromochloromethane		ND	1.00	"							
1,2-Dibromo-3-chloropi	ropane	ND	5.00	"							
1,2-Dibromoethane		ND	1.00	"							
Dibromomethane		ND	1.00	"							
1,2-Dichlorobenzene		ND	1.00	"							
1,3-Dichlorobenzene		ND	1.00	"							
1,4-Dichlorobenzene		ND	1.00	"							
Dichlorodifluoromethan	ie	ND	1.00	"							
1,1-Dichloroethane		ND	1.00	"							
1,2-Dichloroethane (ED	C)	ND	1.00	"							
1,1-Dichloroethene		ND	1.00	"							
cis-1,2-Dichloroethene		ND	1.00	"							
trans-1,2-Dichloroethen	e	ND	1.00	"							
1,2-Dichloropropane		ND	1.00	"							
1,3-Dichloropropane		ND	1.00	"							
2 2-Dichloropropage		ND	1.00	"							

North Creek Analytical - Spokane

00

Dennis D Wells, Laboratory Director

Seattle	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244
	425.420.9200 fax 425.420.9210
Spokane	11922 E. 1st Avenue, Spokane Valley, WA 99206-5302
	509.924.9200 fax 509.924.9290
Portland	9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
	503.906.9200 fax 503.906.9210
Bend	20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
	541.383.9310 fax 541.382.7588
Anchorage	2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119
	907.563.9200 fax 907.563.9210

Project: Sudbury RI Project Number: [none]

Project Manager: Craig Schwyn

Reported: 07/27/05 16:39

Volatile Organic Compounds by EPA Method 8260B - Quality Control

North Creek Analytical - Spokane

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5070186:	Prepared 07/20/05	Using GC/MS	Volatiles								
Blank (5070186-BI	LK1)										
1,1-Dichloropropene		ND	1.00	ug/l							
cis-1,3-Dichloroprope	ne	ND	1.00	"							
trans-1,3-Dichloroprop	pene	ND	1.00	"							
Ethylbenzene		ND	1.00	"							
Hexachlorobutadiene		ND	1.00	"							
2-Hexanone		ND	10.0	"							
Isopropylbenzene		ND	1.00	"							
p-Isopropyltoluene		ND	1.00	"							
Methylene chloride		ND	5.00	"							
4-Methyl-2-pentanone		ND	10.0	"							
Methyl tert-butyl ether	r	ND	1.00	"							
Naphthalene		ND	1.00	"							
n-Propylbenzene		ND	1.00	"							
Styrene		ND	1.00	"							
1,1,1,2-Tetrachloroeth	ane	ND	1.00	"							
1,1,2,2-Tetrachloroeth	ane	ND	1.00	"							
Tetrachloroethene		ND	1.00	"							
Toluene		ND	1.00	"							
1,2,3-Trichlorobenzen	e	ND	1.00	"							
1,2,4-Trichlorobenzen	e	ND	1.00	"							
1,1,1-Trichloroethane		ND	1.00	"							
1,1,2-Trichloroethane		ND	1.00	"							
Trichloroethene		ND	1.00	"							
Trichlorofluoromethar	ne	ND	1.00	"							
1,2,3-Trichloropropan	e	ND	1.00	"							
1,2,4-Trimethylbenzer	ne	ND	1.00	"							
1,3,5-Trimethylbenzer	ne	ND	1.00	"							
Vinyl chloride		ND	0.200	"							
o-Xylene		ND	1.00	"							
m,p-Xylene		ND	2.00	"							
Surrogate: Dibromofli	uoromethane	7.80		"	10.0		78.0	62.9-131			
Surrogate: Toluene-d&	3	9.63		"	10.0		96.3	58.7-133			
Surrogate: 4-bromoflu	orobenzene	8.25		"	10.0		82.5	60.8-140			

North Creek Analytical - Spokane

00

Dennis D Wells, Laboratory Director

Seattle	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244
	425.420.9200 fax 425.420.9210
Spokane	11922 E. 1st Avenue, Spokane Valley, WA 99206-5302
	509.924.9200 fax 509.924.9290
Portland	9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
	503.906.9200 fax 503.906.9210
Bend	20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
	541.383.9310 fax 541.382.7588
Anchorage	2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119
	907.563.9200 fax 907.563.9210

Project: Sudbury RI Project Number: [none]

Project Manager: Craig Schwyn

Reported: 07/27/05 16:39

Volatile Organic Compounds by EPA Method 8260B - Quality Control

North Creek Analytical - Spokane

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5070186: Prepared 07	7/20/05 Using GC/MS	S Volatiles								
LCS (5070186-BS1)										
Benzene	8.78	1.00	ug/l	10.0		87.8	67.4-116			
Chlorobenzene	8.89	1.00	"	10.0		88.9	68.3-123			
1,1-Dichloroethene	10.5	1.00	"	10.0		105	67-137			
Toluene	8.40	1.00	"	10.0		84.0	68.8-139			
Trichloroethene	8.17	1.00	"	10.0		81.7	68.1-128			
Surrogate: Dibromofluoromethane	8.96		"	10.0		89.6	62.9-131			
Surrogate: Toluene-d8	9.75		"	10.0		97.5	58.7-133			
Surrogate: 4-bromofluorobenzene	8.64		"	10.0		86.4	60.8-140			
LCS Dup (5070186-BSD1)										
Benzene	9.43	1.00	ug/l	10.0		94.3	67.4-116	7.14	10	
Chlorobenzene	9.60	1.00	"	10.0		96.0	68.3-123	7.68	11	
1,1-Dichloroethene	11.0	1.00	"	10.0		110	67-137	4.65	14	
Toluene	9.14	1.00	"	10.0		91.4	68.8-139	8.44	12	
Trichloroethene	8.69	1.00	"	10.0		86.9	68.1-128	6.17	10	
Surrogate: Dibromofluoromethane	9.03		"	10.0		90.3	62.9-131			
Surrogate: Toluene-d8	9.76		"	10.0		97.6	58.7-133			
Surrogate: 4-bromofluorobenzene	8.84		"	10.0		88.4	60.8-140			

North Creek Analytical - Spokane

00

Dennis D Wells, Laboratory Director

Project: Sudbury RI Project Number: [none] Project Manager: Craig Schwyn

Reported: 07/27/05 16:39

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

North Creek Analytical - Spokane

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5070096: Prepared 07	7/13/05 Using Wet Che	m								
Blank (5070096-BLK1)										
Total Dissolved Solids	ND	2.00	mg/l							
Duplicate (5070096-DUP1)					Source: St	5G0044-03				
Total Dissolved Solids	858	2.00	mg/l		878			2.30	24	

North Creek Analytical - Spokane

Dennis D Wells, Laboratory Director

Project: Sudbury RI

Project Number: [none] Project Manager: Craig Schwyn **Reported:** 07/27/05 16:39

Anions by EPA Method 300.0 - Quality Control

North Creek Analytical - Spokane

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5070056:	Prepared 07/08/05	Using Wet Chem									
Blank (5070056-BI	L K1)										
Chloride		ND	0.500	mg/l							
Nitrate-Nitrogen		ND	0.500	"							
Sulfate		ND	0.500	"							
LCS (5070056-BS1	1)										
Chloride		4.83	0.500	mg/l	5.00		96.6	80-120			
Nitrate-Nitrogen		4.57	0.500	"	5.00		91.4	80-120			
Sulfate		4.82	0.500	"	5.00		96.4	80-120			
Duplicate (5070050	5-DUP1)					Source: S5	5G0037-01				
Chloride		0.690	0.500	mg/l		0.690			0.00	20	
Nitrate-Nitrogen		ND	0.500			ND				20	
Sulfate		20.0	0.500	"		20.1			0.499	20	

North Creek Analytical - Spokane

00

Dennis D Wells, Laboratory Director

Seattle	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210
Spokane	11922 E. 1st Avenue, Spokane Valley, WA 99206-5302
	509.924.9200 fax 509.924.9290
Portland	9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
	503.906.9200 fax 503.906.9210
Bend	20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
	541.383.9310 fax 541.382.7588
Anchorage	2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119
-	907.563.9200 fax 907.563.9210
udhury RI	

Project: Sudbury RI Project Number: [none]

Project Manager: Craig Schwyn

Reported: 07/27/05 16:39

Notes and Definitions

- E Estimated value. The reported value exceeds the calibration range of the analysis.
- Q-01 The spike recovery for this QC sample is outside of NCA established control limits. Review of associated batch QC indicates the recovery for this analyte does not represent an out-of-control condition for the batch.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

North Creek Analytical - Spokane

Dennis D Wells, Laboratory Director

Seattle	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone: (425) 420.9200 fax: (425) 420.9210
Spokane	11922 East 1st Avenue, Spokane Valley, WA 99206-5302 phone: (509) 924.9200 fax: (509) 924.9290
Portland	9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 phone: (503) 906.9200 fax: (503) 906.9210
Bend	20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 phone: (541) 383.9310 fax: 541.382.7588
Anchorage	2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563.9200 fax: (907) 563.9210

Schwyn Environmental Services, LLC

4621 S. Custer Ct. Spokane, WA 99223 <u>Sudbury RI</u>

[none] Craig Schwyn Report Created: 04/21/06 16:20

ANALYTICAL REPORT FOR SAMPLES

Project Name:

Project Number:

Project Manager:

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
GP-3	S5G0044-01	Water	07/06/05 10:30	07/08/05 13:58
GP-4	S5G0044-02	Water	07/06/05 12:50	07/08/05 13:58
GP-6	S5G0044-04	Water	07/07/05 09:30	07/08/05 13:58

North Creek Analytical - Spokane

oll

Dennis D Wells, Laboratory Director

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> North Creek Analytical, Inc. Environmental Laboratory Network

Seattle	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244								
	phone: (425) 420.9200 fax: (425) 420.9210								
Spokane	11922 East 1st Avenue, Spokane Valley, WA 99206-5302								
	phone: (509) 924.9200 fax: (509) 924.9290								
Portland	9405 SW Nimbus Avenue, Beaverton, OR 97008-7132								
	phone: (503) 906.9200 fax: (503) 906.9210								
Bend	20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711								
	phone: (541) 383.9310 fax: 541.382.7588								
Anchorage	2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119								
	phone: (907) 563.9200 fax: (907) 563.9210								

Schwyn Environmental Services, LLC

4621 S. Custer Ct. Spokane, WA 99223 Sudbury RI

[none] Craig Schwyn Report Created: 04/21/06 16:20

Volatile Organic Compounds by EPA Method 8260B

Project Name:

Project Number:

Project Manager:

North Creek Analytical - Spokane												
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes	_
S5G0044-01	Water	GP-3	Sampled: 07/06/05 10:30									
Acetone		EPA 8260B	ND		25.0	ug/l	1x	5070186	07/20/05	07/20/05 18:34		
Benzene		"	ND		1.00	"	"	"	"	"		
Bromobenzene		"	ND		1.00	"	"	"	"	"		
Bromochlorometha	ne	"	ND		1.00	"	"	"	"	"		
Bromodichlorometh	nane	"	ND		1.00	"	"	"	"	"		
Bromoform		"	ND		1.00	"	"	"	"	"		
Bromomethane		"	ND		5.00	"	"	"	"	"		
2-Butanone		"	ND		10.0	"	"	"	"	"		
n-Butylbenzene		"	ND		1.00	"	"	"	"	"		
sec-Butylbenzene		"	ND		1.00	"	"	"	"	"		
tert-Butylbenzene		"	ND		1.00	"	"	"	"	"		
Carbon disulfide		"	ND		1.00	"	"	"	"	"		
Carbon tetrachlorid	e	"	ND		1.00	"	"	"	"	"		
Chlorobenzene		"	ND		1.00	"	"	"	"	"		
Chloroethane		"	1.59		1.00	"	"	"	"	"		
Chloroform		"	ND		1.00	"	"	"	"	"		
Chloromethane		"	ND		5.00	"	"	"	"	"		
2-Chlorotoluene		"	ND		1.00	"	"	"	"	"		
4-Chlorotoluene		"	ND		1.00	"	"	"	"	"		
Dibromochlorometl	hane	"	ND		1.00	"	"	"	"	"		
1,2-Dibromo-3-chlo	oropropane	"	ND		5.00	"	"	"	"	"		
1,2-Dibromoethane		"	ND		1.00	"	"	"	"	"		
Dibromomethane		"	ND		1.00	"	"	"	"	"		
1,2-Dichlorobenzen	ie	"	ND		1.00	"	"	"	"	"		
1,3-Dichlorobenzen	ie	"	ND		1.00	"	"	"	"	"		
1,4-Dichlorobenzen	ie	"	ND		1.00	"	"	"	"	"		
Dichlorodifluorom	ethane	"	31.0		1.00	"	"	"	"	"		
1,1-Dichloroethane	2	"	12.0		1.00	"	"	"	"	"		
1,2-Dichloroethane	(EDC)	"	ND		1.00	"	"	"	"	"		
1,1-Dichloroethene		"	ND		1.00	"	"	"	"	"		
cis-1,2-Dichloroeth	ene	"	24.5		1.00	"	"	"	"	"		
trans-1,2-Dichloroe	thene	"	ND		1.00	"	"	"	"	"		
1,2-Dichloropropan	ie	"	ND		1.00	"	"	"	"	"		
1,3-Dichloropropan	ie	"	ND		1.00	"	"	"	"	"		
2,2-Dichloropropan	ie	"	ND		1.00	"	"	"	"	"		
1,1-Dichloropropen	ie	"	ND		1.00	"	"	"	"	"		
cis-1,3-Dichloropro	pene	"	ND		1.00	"	"	"	"	"		
trans-1,3-Dichlorop	ropene	"	ND		1.00		"	"	"	"		
Ethylbenzene	×	"	ND		1.00		"	"	"	"		
Hexachlorobutadier	ne	"	ND		1.00	"	"	"	"	"		
2-Hexanone		"	ND		10.0	"	"	"	"	"		
Isopropylbenzene		"	ND		1.00		"	"	"	"		

North Creek Analytical - Spokane

beh

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> North Creek Analytical, Inc. Environmental Laboratory Network

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone: (425) 420.9200
 fax: (425) 420.9210

 Spokane
 11922 East 1st Avenue, Spokare Valley, WA 99206-5302 phone: (509) 924.9200
 fax: (509) 924.9290

 Portiand
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 phone: (503) 906.9200
 fax: (503) 906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 phone: (541) 383.9310
 fax: 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563.9200
 fax: (907) 563.9210

Schwyn Environmental Services, LLC

4621 S. Custer Ct. Spokane, WA 99223 <u>Sudbury RI</u>

[none] Craig Schwyn Report Created: 04/21/06 16:20

Volatile Organic Compounds by EPA Method 8260B

Project Name:

Project Number:

Project Manager:

			North Cr	eek Analyt	ical - Spok	ane					
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
S5G0044-01	Water	GP-3	Sampled: 07/06/05	10:30							
p-Isopropyltoluer	ne	EPA 8260B	ND		1.00	ug/l	1x	5070186	07/20/05	07/20/05 18:34	
Methylene chlori	de	"	ND		5.00	"	"	"	"	"	
4-Methyl-2-penta	none	"	ND		10.0	"	"	"	"	"	
Methyl tert-butyl	ether	"	ND		1.00	"	"	"	"	"	
Naphthalene		"	ND		1.00	"	"	"	"	"	
n-Propylbenzene		"	ND		1.00	"	"	"	"	"	
Styrene "		"	ND		1.00	"	"	"	"	"	
1,1,1,2-Tetrachlo	roethane	"	ND		1.00	"	"	"	"	"	
1,1,2,2-Tetrachlo	roethane	"	ND		1.00	"	"	"	"	"	
Tetrachloroethen	e	"	ND		1.00	"	"	"	"	"	
Toluene		"	ND		1.00	"	"	"	"	"	
1,2,3-Trichlorobe	enzene	"	ND		1.00	"	"	"	"	"	
1,2,4-Trichlorobe	enzene	"	ND		1.00	"	"	"	"	"	
1,1,1-Trichloroet	hane	"	ND		1.00	"	"	"	"	"	
1,1,2-Trichloroet	hane	"	ND		1.00	"	"	"	"	"	
Trichloroethene		"	1.88		1.00	"	"	"	"	"	
Trichlorofluoror	nethane	"	2.08		1.00	"	"	"	"	"	
1,2,3-Trichloropr	opane	"	ND		1.00	"	"	"	"	"	
1,2,4-Trimethylb	enzene	"	ND		1.00	"	"	"	"	"	
1,3,5-Trimethylb	enzene	"	ND		1.00	"	"	"	"	"	
Vinyl chloride		"	0.603		0.200	"	"	"	"	"	
o-Xylene		"	ND		1.00	"	"	"	"	"	
m,p-Xylene		"	ND		2.00	"	"	"	"	"	
Surrogate(s):	Dibromofluorometh	nane	Recovery: 83.69	%	Limits: 6	2.9 - 131 %	"			"	
	Toluene-d8		96.99	%	5	8.7 - 133 %	"			"	
	4-bromofluorobenz	ene	89.49	%	6	0.8 - 140 %	"			"	

S5G0044-02 Water GP-4 Sampled: 07/06/05 12:50

Acetone	EPA 8260B	ND	 25.0	ug/l	1x	5070186	07/20/05	07/20/05 19:04	
Benzene	"	ND	 1.00	"	"	"	"	"	
Bromobenzene	"	ND	 1.00	"	"	"	"	"	
Bromochloromethane	"	ND	 1.00	"	"	"	"	"	
Bromodichloromethane	"	ND	 1.00	"	"	"	"	"	
Bromoform	"	ND	 1.00	"	"	"	"	"	
Bromomethane	"	ND	 5.00	"	"	"	"	"	
2-Butanone	"	ND	 10.0	"	"	"	"	"	
n-Butylbenzene	"	ND	 1.00	"	"	"	"	"	
sec-Butylbenzene	"	ND	 1.00	"	"	"	"	"	
tert-Butylbenzene	"	ND	 1.00	"	"	"	"	"	
Carbon disulfide	"	ND	 1.00	"	"	"	"	"	
Carbon tetrachloride	"	ND	 1.00	"	"	"	"	"	
Chlorobenzene	"	ND	 1.00	"	"	"	"	"	

North Creek Analytical - Spokane

been

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone: (425) 420.9200 fax: (425) 420.9210

 Spokane
 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 phone: (509) 924.9200 fax: (509) 924.9290

 Portiand
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 phone: (503) 906.9200 fax: (503) 906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 phone: (541) 383.9310 fax: 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563.9200 fax: (907) 563.9210

Schwyn Environmental Services, LLC

4621 S. Custer Ct. Spokane, WA 99223

<u>Sudbury RI</u>

[none] Craig Schwyn Report Created: 04/21/06 16:20

Volatile Organic Compounds by EPA Method 8260B

Project Name:

Project Number:

Project Manager:

North Creek Analytical - Spokane												
Analyte			Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
S5G0044-02	Water	GP-4		Sampled: 07/06/05	12:50							
Chloroethane				2.43		1.00		"	"	"		
Chloroform			"	ND		1.00		"	"	"		
Chloromethane			"	ND		5.00		"	"	"		
2-Chlorotoluene			"	ND		1.00		"	"	"		
4-Chlorotoluene			"	ND		1.00		"	"	"		
Dibromochlorometl	nane		"	ND		1.00		"	"	"		
1,2-Dibromo-3-chlo	propropane		"	ND		5.00		"	"	"		
1,2-Dibromoethane			"	ND		1.00		"	"	"		
Dibromomethane			"	ND		1.00	"	"	"	"	"	
1,2-Dichlorobenzen	ie		"	ND		1.00	"	"	"	"	"	
1,3-Dichlorobenzen	ie		"	ND		1.00	"	"	"	"	"	
1,4-Dichlorobenzen	ie		"	ND		1.00		"	"	"		
Dichlorodifluorom	ethane		"	9.57		1.00		"	"	"	"	
1,1-Dichloroethane	•		"	19.0		1.00	"	"	"	"	"	
1,2-Dichloroethane	(EDC)		"	4.51		1.00	"	"	"	"	"	
1,1-Dichloroethene			"	ND		1.00		"	"	"		
cis-1,2-Dichloroeth	ene		"	62.8		1.00		"	"	"		Е
trans-1,2-Dichloroe	thene		"	ND		1.00	"	"	"	"		
1,2-Dichloropropa	ne		"	6.20		1.00		"	"	"		
1,3-Dichloropropan	e		"	ND		1.00	"	"	"	"	"	
2,2-Dichloropropan	e		"	ND		1.00	"	"	"	"	"	
1,1-Dichloropropen	e		"	ND		1.00	"	"	"	"	"	
cis-1,3-Dichloropro	pene		"	ND		1.00	"	"	"	"	"	
trans-1,3-Dichlorop	ropene		"	ND		1.00	"	"	"	"	"	
Ethylbenzene			"	ND		1.00		"	"	"		
Hexachlorobutadier	ne		"	ND		1.00	"	"	"	"	"	
2-Hexanone			"	ND		10.0	"	"	"	"	"	
Isopropylbenzene			"	ND		1.00	"	"	"	"	"	
p-Isopropyltoluene			"	ND		1.00	"	"	"	"	"	
Methylene chloride			"	ND		5.00	"	"	"	"	"	
4-Methyl-2-pentance	one		"	ND		10.0	"	"	"	"	"	
Methyl tert-butyl et	her		"	ND		1.00		"	"	"		
Naphthalene			"	ND		1.00		"	"	"		
n-Propylbenzene			"	ND		1.00		"	"	"		
Styrene			"	ND		1.00	"	"	"	"	"	
1,1,1,2-Tetrachloro	ethane		"	ND		1.00	"	"	"	"	"	
1,1,2,2-Tetrachloro	ethane		"	ND		1.00	"	"	"	"	"	
Tetrachloroethene			"	6.21		1.00	"	"	"	"		
Toluene				ND		1.00	"	"	"	"		
1,2,3-Trichlorobenz	ene			ND		1.00		"	"	"		
1,2,4-Trichlorobenz	ene			ND		1.00		"	"	"		
1,1,1-Trichloroetha	ne		"	ND		1.00		"	"	"		

North Creek Analytical - Spokane

00-

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244
	phone: (425) 420.9200 fax: (425) 420.9210
Spokane	11922 East 1st Avenue, Spokane Valley, WA 99206-5302
	phone: (509) 924.9200 fax: (509) 924.9290
Portland	9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
	phone: (503) 906.9200 fax: (503) 906.9210
Bend	20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
	phone: (541) 383.9310 fax: 541.382.7588
Anchorage	2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119
	phone: (907) 563.9200 fax: (907) 563.9210

Schwyn Environmental Services, LLC

4621 S. Custer Ct. Spokane, WA 99223

Sudbury RI

[none] Craig Schwyn Report Created: 04/21/06 16:20

Volatile Organic Compounds by EPA Method 8260B

North Creek Analytical - Spokane

Project Name:

Project Number:

Project Manager:

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
S5G0044-02	Water	GP-4	Sampled: 07/06/05 12	2:50							
1,1,2-Trichloroet	hane	EPA 8260B	ND		1.00	ug/l	1x	5070186	07/20/05	07/20/05 19:04	
Trichloroethene		"	9.97		1.00	"	"	"	"	"	
Trichlorofluorom	ethane	"	ND		1.00	"	"	"	"	"	
1,2,3-Trichloropr	opane	"	ND		1.00	"	"	"	"	"	
1,2,4-Trimethylbe	enzene	"	ND		1.00	"	"	"	"	"	
1,3,5-Trimethylbe	enzene	"	ND		1.00	"	"	"	"	"	
Vinyl chloride		"	3.76		0.200	"	"	"	"	"	
o-Xylene		"	ND		1.00	"	"	"	"	"	
m,p-Xylene		"	ND		2.00	"	"	"	"	"	
Surrogate(s):	Dibromofluorometh	ane	Recovery: 84.0%		Limits: 6.	2.9 - 131 %	"			"	
	Toluene-d8		97.6%		5	8.7 - 133 %	"			"	
	4-bromofluorobenze	ene	89.4%		6	0.8 - 140 %	"			"	

S5G0044-04 Water GP-6 Sampled: 07/07/05 09:30

Acetone	EPA 8260B	ND	 25.0	ug/l	1x	5070186	07/20/05	07/20/05 20:02	
Benzene	"	ND	 1.00	"	"	"	"	"	
Bromobenzene	"	ND	 1.00	"	"	"	"	"	
Bromochloromethane	"	ND	 1.00	"	"	"	"	"	
Bromodichloromethane	"	ND	 1.00	"	"	"	"	"	
Bromoform	"	ND	 1.00	"	"	"	"	"	
Bromomethane	"	ND	 5.00	"	"	"	"	"	
2-Butanone	"	ND	 10.0	"	"	"	"	"	
n-Butylbenzene	"	ND	 1.00	"	"	"	"	"	
sec-Butylbenzene	"	ND	 1.00	"	"	"	"	"	
tert-Butylbenzene	"	ND	 1.00	"	"	"	"	"	
Carbon disulfide	"	ND	 1.00	"	"	"	"	"	
Carbon tetrachloride	"	ND	 1.00	"	"	"	"	"	
Chlorobenzene	"	ND	 1.00	"	"	"	"	"	
Chloroethane	"	ND	 1.00	"	"	"	"	"	
Chloroform	"	ND	 1.00	"	"	"	"	"	
Chloromethane	"	ND	 5.00	"	"	"	"	"	
2-Chlorotoluene	"	ND	 1.00	"	"	"	"	"	
4-Chlorotoluene	"	ND	 1.00	"	"	"	"	"	
Dibromochloromethane	"	ND	 1.00	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	"	ND	 5.00	"	"	"	"	"	
1,2-Dibromoethane	"	ND	 1.00	"	"	"	"	"	
Dibromomethane	"	ND	 1.00	"	"	"	"	"	
1,2-Dichlorobenzene	"	ND	 1.00	"	"	"	"	"	
1,3-Dichlorobenzene	"	ND	 1.00	"			"	"	
1,4-Dichlorobenzene	"	ND	 1.00	"			"	"	
Dichlorodifluoromethane	"	3.10	 1.00	"			"	"	

North Creek Analytical - Spokane

oll

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone: (425) 420.9200 fax: (425) 420.9210

 Spokane
 11922 East 1st Avenue, Spokane Valley, WA 99206-5302 phone: (509) 924.9200 fax: (509) 924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 phone: (503) 906.9200 fax: (503) 906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 phone: (541) 383.9310 fax: 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563.9200 fax: (907) 563.9210

Schwyn Environmental Services, LLC

4621 S. Custer Ct. Spokane, WA 99223

Sudbury RI

[none] Craig Schwyn Report Created: 04/21/06 16:20

Volatile Organic Compounds by EPA Method 8260B

Project Name:

Project Number:

Project Manager:

North Creek Analytical - Spokane											
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
S5G0044-04	Water	GP-6	Sampled: 07/07/05	09:30							
1,1-Dichloroeth	ane	EPA 8260B	1.47		1.00	ug/l	1x	5070186	07/20/05	07/20/05 20:02	
1,2-Dichloroetha	ane (EDC)	"	ND		1.00	"	"	"	"	"	
1,1-Dichloroethe	ene	"	ND		1.00	"	"	"	"	"	
cis-1,2-Dichloro	ethene	"	ND		1.00	"	"	"	"	"	
trans-1,2-Dichlo	roethene	"	ND		1.00	"	"	"	"	"	
1,2-Dichloroprop	pane	"	ND		1.00	"	"	"	"	"	
1,3-Dichloroprop	pane	"	ND		1.00	"	"	"	"	"	
2,2-Dichloroprop	pane	"	ND		1.00	"	"	"	"	"	
1,1-Dichloropro	pene	"	ND		1.00	"	"	"	"	"	
cis-1,3-Dichloro	propene	"	ND		1.00	"	"	"	"	"	
trans-1,3-Dichlo	ropropene	"	ND		1.00	"	"	"	"	"	
Ethylbenzene		"	ND		1.00	"	"	"	"	"	
Hexachlorobutad	liene	"	ND		1.00	"	"	"	"	"	
2-Hexanone		"	ND		10.0	"	"	"	"	"	
Isopropylbenzen	e	"	ND		1.00	"	"	"	"	"	
p-Isopropyltolue	ne	"	ND		1.00	"	"	"	"	"	
Methylene chlor	ide	"	ND		5.00	"	"	"	"	"	
4-Methyl-2-pent	anone	"	ND		10.0	"	"	"	"	"	
Methvl tert-butv	l ether	"	ND		1.00	"	"	"	"	"	
Naphthalene		"	ND		1.00	"	"	"	"	"	
n-Propylbenzene		"	ND		1.00	"	"	"	"	"	
Styrene		"	ND		1.00	"		"	"	"	
1 1 1 2-Tetrachl	oroethane	"	ND		1.00	"		"	"	"	
1 1 2 2-Tetrachl	proethane	"	ND		1.00	"		"	"	"	
Tetrachloroether	ne	"	ND		1.00	"		"	"	"	
Toluene		"	ND		1.00	"		"	"	"	
1 2 3-Trichlorob	enzene	"	ND		1.00	"		"	"	"	
1.2.4-Trichlorob	enzene	"	ND		1.00	"		"	"	"	
1 1 1-Trichloroe	thane	"	ND		1.00	"		"	"	"	
1 1 2-Trichloroe	thane	"	ND		1.00	"		"	"	"	
Trichloroethene	ululie	"	ND		1.00	"		"	"	"	
Trichlorofluoror	nethane	"	ND		1.00	"		"	"	"	
1 2 3 Trichloron	ropane	"	ND		1.00			"	"	"	
1.2.4 Trimathylk	opzono	"	ND		1.00	"		"	"	"	
1,2,4-Trimethylt	onzono	"	ND		1.00	"		"	"	"	
1,5,5-11iiieuiyit	benzene	"	ND		0.200	"		"	"	"	
vinyi chioride		"	ND		1.00				"	"	
o-Xylene			ND		1.00						
m,p-xyiene			ND		2.00						
Surrogate(s):	Dibromofluorome	ethane	Recovery: 88.5%	ó	Limits: 6	2.9 - 131 %	"			"	
	Toluene-d8		97.9%	ó	5	8.7 - 133 %	"			"	
	4-bromofluorober	nzene	88.4%	ó	6	0.8 - 140 %	"			"	

North Creek Analytical - Spokane

ol

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Schwyn Environmental Services, LLC

4621 S. Custer Ct.

Spokane, WA 99223

	Seattle	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244
	Spokane	phone: (425) 420.9200 Tax: (425) 420.9210 11922 East 1st Avenue, Spokane Valley, WA 99206-5302
		phone: (509) 924.9200 fax: (509) 924.9290
	Portland	9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
		phone: (503) 906.9200 fax: (503) 906.9210
	Bend	20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
		phone: (541) 383.9310 fax: 541.382.7588
	Anchorage	2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119
	-	phone: (907) 563.9200 fax: (907) 563.9210
	C 11	DI
Project Name:	Sudbur	<u>y RI</u>
Project Number:	[none]	Report Created:
D M	<u> </u>	04/21/06 16:20
Project Manager:	Craig Se	chwyn 04/21/06 16.20

Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % (Limits) Amt REC	% RPD (I	Limits) Analyzed	Notes

North Creek Analytical - Spokane

beh

Dennis D Wells, Laboratory Director

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone: (425) 420.9200 fax: (425) 420.9210
Spokane	11922 East 1st Avenue, Spokane Valley, WA 99206-5302
Portland	9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
Bend	20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
Anchorage	phone: (541) 383.9310 fax: 541.382.7588 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119
	phone: (907) 563.9200 fax: (907) 563.9210
Sudbur	v RI

Schwyn Environmental Services, LLC	Project Name:	<u>Sudbury RI</u>
4621 S. Custer Ct.	Project Number:	[none]
Spokane, WA 99223	Project Manager:	Craig Schwyn

Report Created: 04/21/06 16:20

Notes and Definitions

Report Specific Notes:

E - Estimated value. The reported value exceeds the calibration range of the analysis.

Laboratory Reporting Conventions:

- <u>DET</u> Analyte <u>DETECTED</u> at or above the Reporting Limit. Qualitative Analyses only.
- <u>ND</u> Analyte <u>NOT DETECTED</u> at or above the reporting limit (MDL or MRL, as appropriate).

NR / NA - Not Reported / Not Available

- dry Sample results reported on a dry weight basis. Reporting Limits have been corrected for %Solids.
- wet Sample results and reporting limits reported on a wet weight basis (as received).
- <u>RPD</u> <u>Relative Percent Difference</u>. (RPDs calculated using Results, not Percent Recoveries).
- <u>MRL</u> <u>METHOD REPORTING LIMIT</u>. Reporting Level at, or above, the lowest level standard of the Calibration Table.
- <u>MDL*</u> <u>METHOD DETECTION LIMIT</u>. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated results.
- <u>Dil</u> Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.
- Reporting Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.

North Creek Analytical - Spokane

٥0.

Dennis D Wells, Laboratory Director

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Source						2000	11720 North W Internation	Creek Pkv 115 9405 SW 20332 Er 20332 Er	vy N Sulte 122 E 1st A Nimbus Av npire Ave, Rd Ste A10	400, Bothel ve, Spokan /e, Beavertc Ste F1, Ben 0, Anchorag	l, WA 98011-824 e, WA 99206-530 n, OR 97008-714 d, OR 97701-571 e, AK 99502-111	14 425-4 15 509-5 12 541-5 19 907-5	420-9200 FA) 924-9200 FA) 906-9200 FA) 383-9310 FA) 563-9200 FA)	(420-9210 (924-9290 (906-9210 (382-7588 (563-9210	
CHA	AIN OF	CUS	[OT	DY R	LEPC	RT					Work Order	Å	70044	~- }-	
NCA CLIENT: SCAWYA ENVINO	Servic	5		Í	VOICE 1	۱ ö						TURNAF	KOUND REQUES	LI I	
REPORT TO:					2	ig Sa	といい					fin F	3usiness Days *		
ADDRESS: Mary JChary											_	Organic & I	norganic Analyses	Ţ	
PHONE: 4748 2346 PAX: 4448 7	7238			P.0	. NUMB	ER:						Petroleum I	نا لنا لنا Avdrocarbon Analys	;] -] ₂	
PROJECT NAME: Sudbur & T				$\left\{ \right \right\}$		PRESER	VATIVE					•		5	
PROJECT NUMBER:											81D.				
· · · · · · · · · · · · · · · · · · ·		-	2		[™] > 	EQUESTED	ANALYSES					OTHER	Specify:		
SAMPLED BY: Craig JChuyn		2	7?:- ~~	<u> 거</u>	472	r.						control personal -	less than standard may incur Rush Chu	ž	
CLIENT SAMPLE SAMPLING IDENTIFICATION DATE/TIME	<u>гэ ш</u>	<u>20</u> 201	9,42	15W 501	41"5	ry!N					MATRIX (W, S, O)	# OF CONT.	LOCATION / COMMENTS	NCA WO ID	
1 GP 3 7/6/05 14	20 1	×	JA .								3	X		9	-
2 GP-\$Y 7/6/05 12	2:50	×									3	2	Check Air Subble	6 01 6	Ŋ
3 GP-5 7/6/05 2	502	X	× ×	メ	×	X					ľ.			Ŷ	ŝ
4 GP - 6 7/7/05 4	9:30	X	\sim	X	X	×					C		#C/2	Phr DU act	$,\pm$
5 6 P - 8 17/105 3	30 5:3	, ,									E L		fram L	10230	ŝ
		-												9	Å
1 CP-3-21.5-22 7/6/05		~									S			-0	د '
8 GP-4-18-18-185 7/6105	\sim	~									Ś			þ	F
· 6P-6-15-155 7/7/05	\geq	~									S			19	g
10			· <u>-</u> .	· · · ·						-	/				
RELEASED BY: Con C AChar				DAT	E E	50/8,	RECEIVI	ED BY:	DONA	ROLU I	Mon		DATE:	7/8/05	
PRINT NAME: Craig Schay - FIR	W: S £'Ś			MIT	E: / 3	70 :	PRINT N.	AME: A_i	Mall	AN VI	K NON FIR	M: NCP	LIME:	13:06	
RELEASED BY:				DAT	ய்		RECEIVE	DBY:		2			DATE:		
PRINT NAME: FIR	tM:			MIT	ш		PRINT N	AME:			FIR	ÿ	TIME:		
ADDITIONAL REMARKS: 201 2012 2 505 501	il samp	Les 1	B	UN.CK	5	:							TEMP:		
COC REV 09/04			-	2									19.4 PA	GE DF	

•

Schwyn Environmental Services, LLC 4621 S. Custer Ct. Spokane, WA 99223 Project: Sudbury RI Project Number: [none]

Project Manager: Craig Schwyn

Reported: 09/15/05 13:18

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B-9RI-35'	S5H0238-01	Soil	08/29/05 11:30	08/31/05 11:00
B-9RI	S5H0238-02	Water	08/29/05 18:00	08/31/05 11:00
B-10RI-34'	S5H0238-03	Soil	08/30/05 08:30	08/31/05 11:00
B-11RI-34'	S5H0238-04	Soil	08/30/05 13:15	08/31/05 11:00

North Creek Analytical - Spokane

bel

Dennis D Wells, Laboratory Director

Schwyn Environmental Services, LLC 4621 S. Custer Ct. Spokane, WA 99223 Project: Sudbury RI Project Number: [none]

Project Manager: Craig Schwyn

Reported: 09/15/05 13:18

Volatile Organic Compounds by EPA Method 8260B

North Creek Analytical - Spokane

Parting of SH0213-601 Sail Statut Luin Data Data <thdata< th=""> Data Data <t< th=""><th>Analyta</th><th>Regult</th><th>Reporting</th><th>Unite</th><th>Dilution</th><th>Batch</th><th>Prepared</th><th>Analyzad</th><th>Method</th><th>Notes</th></t<></thdata<>	Analyta	Regult	Reporting	Unite	Dilution	Batch	Prepared	Analyzad	Method	Notes
B-98.1-35' (SSH0238-01) Sol Nampled: 08/20/05 11-30 Received: 08/21/05' 1 500000 09/13/05 EPA 82:06 Acetone ND 0.100 "	Analyte	Kesuit	Liint	Ollits	Dilution	Batch	riepaieu	Analyzeu	Method	Notes
AcetoneND1.00mg/kg weit15000000001100001100EPA 250BBenzeneND0.0300···<	B-9RI-35' (S5H0238-01) Soil	Sampled: 08/29/05 11:30 R	eceived: 08/31	/05 11:00						I-02
BenzenceND0.0300***<	Acetone	ND	1.00	mg/kg wet	1	5090090	09/13/05	09/13/05	EPA 8260B	
BromochloromethaneND0.100** <t< td=""><td>Benzene</td><td>ND</td><td>0.0300</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></t<>	Benzene	ND	0.0300	"	"	"	"	"	"	
BromodichloromethaneND0.100""	Bromobenzene	ND	0.100	"	"	"	"	"	"	
BromotichloromethaneND0.100""	Bromochloromethane	ND	0.100	"	"	"	"	"	"	
Bromore MDND0.100"""	Bromodichloromethane	ND	0.100	"	"	"	"	"	"	
BromonchaneND0.500*** <td>Bromoform</td> <td>ND</td> <td>0.100</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Bromoform	ND	0.100	"	"	"	"	"	"	
2-buinomeND1.00111 <t< td=""><td>Bromomethane</td><td>ND</td><td>0.500</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></t<>	Bromomethane	ND	0.500	"	"	"	"	"	"	
n-BaylbazeneND0.100'' <td>2-Butanone</td> <td>ND</td> <td>1.00</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	2-Butanone	ND	1.00	"	"	"	"	"	"	
sec-BarybenzeneND0.100"""	n-Butylbenzene	ND	0.100	"	"	"	"	"	"	
tert-ButylenzeneND0.100""	sec-Butylbenzene	ND	0.100	"	"	"	"	"	"	
Carbon disulfideND0.100""	tert-Butylbenzene	ND	0.100	"	"	"	"	"	"	
Carbon tetrachlorideND0.100""	Carbon disulfide	ND	0.100	"	"	"	"	"	"	
ChlorobenzeneND0.100""" </td <td>Carbon tetrachloride</td> <td>ND</td> <td>0.100</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Carbon tetrachloride	ND	0.100	"	"	"	"	"	"	
ChloroethaneND0.100""" <td>Chlorobenzene</td> <td>ND</td> <td>0.100</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Chlorobenzene	ND	0.100	"	"	"	"	"	"	
ChloroformND0.100"""	Chloroethane	ND	0.100	"	"	"	"	"	"	
ChloromethaneND0.500""" </td <td>Chloroform</td> <td>ND</td> <td>0.100</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Chloroform	ND	0.100	"	"	"	"	"	"	
2-ChlorotolueneND0.100"""	Chloromethane	ND	0.500	"	"	"	"	"	"	
4-ChlorotolueneND0.100"""	2-Chlorotoluene	ND	0.100	"	"	"	"	"	"	
DibromochloromethaneND0.100""	4-Chlorotoluene	ND	0.100	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane ND 0.500 "	Dibromochloromethane	ND	0.100	"	"	"	"	"	"	
1,2-Dibromoethane ND 0.100 " <td>1,2-Dibromo-3-chloropropane</td> <td>ND</td> <td>0.500</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	1,2-Dibromo-3-chloropropane	ND	0.500	"	"	"	"	"	"	
Dibromomethane ND 0.100 "	1,2-Dibromoethane	ND	0.100	"	"	"	"	"	"	
1,2-Dichlorobenzene ND 0.100 " " " " " " 1,3-Dichlorobenzene ND 0.100 " " " " " " 1,4-Dichlorobenzene ND 0.100 " " " " " " Dichlorodifluoromethane ND 0.100 " " " " " " 1,1-Dichloroethane ND 0.100 " " " " " " " 1,2-Dichloroethane (EDC) ND 0.100 "	Dibromomethane	ND	0.100	"	"	"	"	"	"	
ND 0.100 " <td>1,2-Dichlorobenzene</td> <td>ND</td> <td>0.100</td> <td>"</td> <td>"</td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td></td>	1,2-Dichlorobenzene	ND	0.100	"	"		"	"	"	
1,4-DichlorobenzeneND0.100""<	1,3-Dichlorobenzene	ND	0.100	"	"		"	"	"	
Dicklorodifluoromethane ND 0.100 " <th< td=""><td>1.4-Dichlorobenzene</td><td>ND</td><td>0.100</td><td>"</td><td></td><td></td><td>"</td><td>"</td><td>"</td><td></td></th<>	1.4-Dichlorobenzene	ND	0.100	"			"	"	"	
1,1-DichloroethaneND0.100""""""""1,2-Dichloroethane (EDC)ND0.100""""""""1,1-DichloroetheneND0.100""""""""cis-1,2-DichloroetheneND0.100""""""""trans-1,2-DichloroetheneND0.100""""""""1,2-DichloroptopaneND0.100"""""""""1,3-DichloropropaneND0.100""" <td>Dichlorodifluoromethane</td> <td>ND</td> <td>0.100</td> <td>"</td> <td></td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Dichlorodifluoromethane	ND	0.100	"			"	"	"	
1,2-Dichloroethane (EDC) ND 0.100 " <t< td=""><td>1.1-Dichloroethane</td><td>ND</td><td>0.100</td><td>"</td><td></td><td></td><td>"</td><td>"</td><td>"</td><td></td></t<>	1.1-Dichloroethane	ND	0.100	"			"	"	"	
1,1-Dichloroethene ND 0.100 " <td>1,2-Dichloroethane (EDC)</td> <td>ND</td> <td>0.100</td> <td>"</td> <td>"</td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td></td>	1,2-Dichloroethane (EDC)	ND	0.100	"	"		"	"	"	
ND 0.100 " <td>1.1-Dichloroethene</td> <td>ND</td> <td>0.100</td> <td>"</td> <td></td> <td></td> <td>"</td> <td>"</td> <td></td> <td></td>	1.1-Dichloroethene	ND	0.100	"			"	"		
trans-1,2-Dichloroethene ND 0.100 " <t< td=""><td>cis-1.2-Dichloroethene</td><td>ND</td><td>0.100</td><td>"</td><td></td><td></td><td>"</td><td>"</td><td></td><td></td></t<>	cis-1.2-Dichloroethene	ND	0.100	"			"	"		
ND 0.100 " <td>trans-1.2-Dichloroethene</td> <td>ND</td> <td>0.100</td> <td>"</td> <td></td> <td></td> <td>"</td> <td>"</td> <td></td> <td></td>	trans-1.2-Dichloroethene	ND	0.100	"			"	"		
1,3-Dichloropropane ND 0.100 " </td <td>1.2-Dichloropropane</td> <td>ND</td> <td>0.100</td> <td>"</td> <td></td> <td></td> <td>"</td> <td>"</td> <td></td> <td></td>	1.2-Dichloropropane	ND	0.100	"			"	"		
2,2-Dichloropropane ND 0.100 " </td <td>1.3-Dichloropropane</td> <td>ND</td> <td>0.100</td> <td>"</td> <td></td> <td></td> <td>"</td> <td>"</td> <td></td> <td></td>	1.3-Dichloropropane	ND	0.100	"			"	"		
1,1-Dichloropropene ND 0.100 " " " " cis-1,3-Dichloropropene ND 0.100 " " " " trans-1 3-Dichloropropene ND 0.100 " " " "	2.2-Dichloropropane	ND	0.100	"	"		"	"	"	
Cis-1,3-Dichloropropene ND 0.100 " " " trans-1 3-Dichloropropene ND 0.100 " " "	1.1-Dichloropropene	ND	0 100	"	"		"	"	"	
trans-1 3-Dichloropropene ND 0 100 " " " " " " "	cis-1.3-Dichloropropene	ND	0 100	"	"		"	"	"	
	trans-1.3-Dichloropropene	ND	0.100	"	"		"	"	"	

North Creek Analytical - Spokane

00

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dennis D Wells, Laboratory Director

Schwyn Environmental Services, LLC 4621 S. Custer Ct. Spokane, WA 99223 Project: Sudbury RI Project Number: [none]

Project Manager: Craig Schwyn

Reported: 09/15/05 13:18

Volatile Organic Compounds by EPA Method 8260B

North Creek Analytical - Spokane

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-9RI-35' (S5H0238-01) Soil	Sampled: 08/29/05 11:30	Received: 08/31	1/05 11:00						I-02
Ethylbenzene	ND	0.100	mg/kg wet	1	5090090	09/13/05	09/13/05	EPA 8260B	
Hexachlorobutadiene	ND	0.100	"	"	"	"	"	"	
2-Hexanone	ND	1.00	"	"	"	"	"	"	
Isopropylbenzene	ND	0.100	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.100	"	"	"	"	"	"	
Methylene chloride	ND	1.00	"	"	"	"	"	"	
4-Methyl-2-pentanone	ND	1.00	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	0.100	"	"	"	"	"	"	
Naphthalene	ND	0.200	"	"	"	"	"	"	
n-Propylbenzene	ND	0.100	"	"	"	"	"	"	
Styrene	ND	0.100	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.100	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.100	"	"	"	"	"	"	
Tetrachloroethene	ND	0.0300	"	"	"	"	"	"	
Toluene	ND	0.100	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.100	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.100	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.100	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.100	"	"	"	"	"	"	
Trichloroethene	ND	0.0300	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.100	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.100	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.100	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.100	"	"	"	"	"	"	
Vinyl chloride	ND	0.100	"	"	"	"	"	"	
o-Xylene	ND	0.200	"	"	"	"	"	"	
m,p-Xylene	ND	0.400	"	"	"	"	"	"	
Surrogate: Dibromofluoromethe	ane 104	44.8-146			"	"	"	"	
Surrogate: Toluene-d8	98.7	62.3-143			"	"	"	"	
Surrogate: 4-bromofluorobenze	ne 104	52.5-138			"	"	"	"	

North Creek Analytical - Spokane

bol

Dennis D Wells, Laboratory Director

Schwyn Environmental Services, LLC 4621 S. Custer Ct. Spokane, WA 99223 Project: Sudbury RI Project Number: [none]

Project Manager: Craig Schwyn

Reported: 09/15/05 13:18

Volatile Organic Compounds by EPA Method 8260B

North Creek Analytical - Spokane

AnalyzeResultLinitUnitsDilurionBatchPreparedAnalyzedMethodNoteB-R1 (SS10238-02) WaterSampled: 98/29/05 18:00Received: 08/31/05 11:001555555AcetoneND2.5.0ug/1159/00099/13/05EPA 22/01855555BromochicomethaneND1.00555 <td< th=""><th></th><th></th><th>Reporting</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>			Reporting							
Berli (SH0238-02) Water Sampled: 08/29/05 18:00 Received: 08/31/05 11:00 5000093 09/13/05 09/13/05 EPA 8/26/08 Accone ND 1.00 * </th <th>Analyte</th> <th>Result</th> <th>Limit</th> <th>Units</th> <th>Dilution</th> <th>Batch</th> <th>Prepared</th> <th>Analyzed</th> <th>Method</th> <th>Notes</th>	Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
AccenceND25.0ugl1599093091305091305EPA 520BBrazeneND1.00BromochloromethaneND1.00BromochloromethaneND1.00BromochloromethaneND1.00BromochloromethaneND1.00BromochloromethaneND1.00BromochloromethaneND1.00<	B-9RI (S5H0238-02) Water Samp	bled: 08/29/05 18:00 Rece	ived: 08/31/0	5 11:00						I-02
BenzenéNDI,00	Acetone	ND	25.0	ug/l	1	5090093	09/13/05	09/13/05	EPA 8260B	
BromodichoronethaneNDI,00I,	Benzene	ND	1.00	"	"	"	"	"	"	
BromochloromethaneND1.001.0	Bromobenzene	ND	1.00	"	"	"	"	"	"	
BromodichloromethaneND1.001	Bromochloromethane	ND	1.00	"	"	"	"	"	"	
BromoformND1.00 <th< td=""><td>Bromodichloromethane</td><td>ND</td><td>1.00</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></th<>	Bromodichloromethane	ND	1.00	"	"	"	"	"	"	
BromomethaneNDS.00''' <td>Bromoform</td> <td>ND</td> <td>1.00</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Bromoform	ND	1.00	"	"	"	"	"	"	
2-butanoneND10.0 <t< td=""><td>Bromomethane</td><td>ND</td><td>5.00</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></t<>	Bromomethane	ND	5.00	"	"	"	"	"	"	
n-ButylbenzeneND100<	2-Butanone	ND	10.0	"	"	"	"	"	"	
sec-ButylbenzeneND1.00<	n-Butylbenzene	ND	1.00	"	"	"	"	"	"	
International Carbon disulfideND1.00III </td <td>sec-Butylbenzene</td> <td>ND</td> <td>1.00</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	sec-Butylbenzene	ND	1.00	"	"	"	"	"	"	
Carbon disulfideND1.00"""	tert-Butylbenzene	ND	1.00	"	"	"	"	"	"	
Carbon ettachlorideND1.00"" <t< td=""><td>Carbon disulfide</td><td>ND</td><td>1.00</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></t<>	Carbon disulfide	ND	1.00	"	"	"	"	"	"	
ChlorobenzeneND1.00""" <td>Carbon tetrachloride</td> <td>ND</td> <td>1.00</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Carbon tetrachloride	ND	1.00	"	"	"	"	"	"	
ChloroethaneND1.00""" <td>Chlorobenzene</td> <td>ND</td> <td>1.00</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Chlorobenzene	ND	1.00	"	"	"	"	"	"	
ChloroformND1.00"""<	Chloroethane	ND	1.00	"	"	"	"	"	"	
ChloromethaneND5.00""""""""2-ChlorotolueneND1.00""""""""4-ChlorotolueneND1.00""""""""DibromochloromethaneND1.00""""""""1,2-Dibromo-3-chloropropaneND5.00"" <td< td=""><td>Chloroform</td><td>ND</td><td>1.00</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></td<>	Chloroform	ND	1.00	"	"	"	"	"	"	
2-ChlorotolueneND1.00"""""""4-ChlorotolueneND1.00"""""""DibromochloromethaneND1.00"""""""1,2-Dibromo-3-chloropropaneND5.00""""""""1,2-DibromoethaneND1.00"""""""""1,2-DichlorobenzeneND1.00"" <td>Chloromethane</td> <td>ND</td> <td>5.00</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Chloromethane	ND	5.00	"	"	"	"	"	"	
4-ChlorotolueneND1.00"""<	2-Chlorotoluene	ND	1.00	"	"	"	"	"	"	
DibromochloromethaneND1.00""""""""1,2-Dibromo-3-chloropropaneND5.00"""""""1,2-DibromoethaneND1.00"""""""1,2-DichlorobenzeneND1.00"""""""1,3-DichlorobenzeneND1.00"""""""1,4-DichlorobenzeneND1.00"""""""1,4-DichlorobenzeneND1.00""""""""1,4-DichlorobenzeneND1.00"""""""""1,1-DichloroethaneND1.00""" <td>4-Chlorotoluene</td> <td>ND</td> <td>1.00</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	4-Chlorotoluene	ND	1.00	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropaneND5.00"""	Dibromochloromethane	ND	1.00	"	"	"	"	"	"	
1,2-DibromoethaneND1.00"""""""DibromoethaneND1.00""""""""1,2-DichlorobenzeneND1.00""""""""1,3-DichlorobenzeneND1.00""""""""1,4-DichlorobenzeneND1.00""""""""1,4-DichlorobenzeneND1.00"""""""""1,1-DichloroethaneND1.00"""	1,2-Dibromo-3-chloropropane	ND	5.00	"	"	"	"	"	"	
DibromomethaneND1.00""" </td <td>1,2-Dibromoethane</td> <td>ND</td> <td>1.00</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	1,2-Dibromoethane	ND	1.00	"	"	"	"	"	"	
1,2-DichlorobenzeneND1.00"""""""1,3-DichlorobenzeneND1.00"""""""1,4-DichlorobenzeneND1.00"""""""DichlorodifluoromethaneND1.00"""""""1,1-Dichloroethane (EDC)ND1.00"""""""1,1-Dichloroethane (EDC)ND1.00"""""""1,2-DichloroetheneND1.00"""""""1,2-DichloroetheneND1.00"""""""1,2-DichloroetheneND1.00""""""""1,2-DichloroetheneND1.00""""""""1,2-DichloroetheneND1.00"""""""""1,2-DichloroetheneND1.00""" <td< td=""><td>Dibromomethane</td><td>ND</td><td>1.00</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></td<>	Dibromomethane	ND	1.00	"	"	"	"	"	"	
1,3-DichlorobenzeneND1.00"""""""1,4-DichlorobenzeneND1.00"""""""DichlorodifluoromethaneND1.00"""""""1,1-DichloroethaneND1.00"""""""1,2-Dichloroethane (EDC)ND1.00"""""""1,1-DichloroetheneND1.00"""""""1,2-DichloroetheneND1.00"""""""1,2-DichloroetheneND1.00""""""""1,2-DichloroetheneND1.00"""""""""1,2-DichloroetheneND1.00"""""""""1,2-DichloroetheneND1.00""	1,2-Dichlorobenzene	ND	1.00	"	"	"	"	"	"	
1,4-DichlorobenzeneND1.00"""""""DichlorodifluoromethaneND1.00"""""""1,1-DichloroethaneND1.00"""""""1,2-Dichloroethane (EDC)ND1.00"""""""1,1-DichloroetheneND1.00"""""""1,1-DichloroetheneND1.00"""""""1,2-DichloroetheneND1.00"""""""1,2-DichloroetheneND1.00"""""""1,2-DichloroptopaneND1.00"""""""1,3-DichloroptopaneND1.00"""""""2,2-DichloroptopaneND1.00"""""""1,3-DichloroptopaneND1.00""""""""2,2-DichloroptopaneND1.00""""""""2,2-DichloroptopaneND1.00""""""""2,2-DichloroptopaneND1.00""""""""1,10" <t< td=""><td>1,3-Dichlorobenzene</td><td>ND</td><td>1.00</td><td>"</td><td>"</td><td></td><td>"</td><td>"</td><td>"</td><td></td></t<>	1,3-Dichlorobenzene	ND	1.00	"	"		"	"	"	
Dichlorodifluoromethane ND 1.00 "	1.4-Dichlorobenzene	ND	1.00	"	"	"	"	"	"	
1,1-DichloroethaneND1.00"""""""1,2-Dichloroethane (EDC)ND1.00"""""""1,1-DichloroetheneND1.00"""""""cis-1,2-DichloroetheneND1.00"""""""trans-1,2-DichloroetheneND1.00"""""""1,2-DichloropropaneND1.00"""""""1,3-DichloropropaneND1.00"""""""2,2-DichloropropaneND1.00"""""""	Dichlorodifluoromethane	ND	1.00	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)ND1.00"""""""1,1-DichloroetheneND1.00"""""""cis-1,2-DichloroetheneND1.00"""""""trans-1,2-DichloroetheneND1.00"""""""1,2-DichloroptopaneND1.00"""""""1,3-DichloropropaneND1.00""""""2,2-DichloropropaneND1.00""""""	1,1-Dichloroethane	ND	1.00	"	"	"	"	"	"	
ND1.00""""""cis-1,2-DichloroetheneND1.00"""""""trans-1,2-DichloroetheneND1.00"""""""1,2-DichloropropaneND1.00"""""""1,3-DichloropropaneND1.00"""""""2,2-DichloropropaneND1.00"""""""	1,2-Dichloroethane (EDC)	ND	1.00	"	"	"	"	"	"	
cis-1,2-Dichloroethene ND 1.00 "	1,1-Dichloroethene	ND	1.00	"	"		"	"	"	
trans-1,2-DichloroetheneND1.00""""""1,2-DichloropropaneND1.00""""""1,3-DichloropropaneND1.00""""""2,2-DichloropropaneND1.00""""""	cis-1.2-Dichloroethene	ND	1.00	"	"	"	"	"	"	
1,2-Dichloropropane ND 1.00 " <td>trans-1,2-Dichloroethene</td> <td>ND</td> <td>1.00</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	trans-1,2-Dichloroethene	ND	1.00	"	"	"	"	"	"	
ND 1.00 " " " " 2,2-Dichloropropane ND 1.00 " " " "	1.2-Dichloropropane	ND	1.00	"	"	"	"	"	"	
2,2-Dichloropropane ND 1.00 " " " " " " "	1.3-Dichloropropane	ND	1.00	"	"		"	"	"	
y · · · · · · · · · · · · · · · · · · ·	2.2-Dichloropropane	ND	1.00	"	"		"	"	"	
1.1-Dichloropropene ND 1.00 " " " " " " "	1.1-Dichloropropene	ND	1.00	"	"		"	"	"	
cis-1,3-Dichloropropene ND 1.00 " " " " " "	cis-1,3-Dichloropropene	ND	1.00	"	"		"	"	"	
trans-1,3-Dichloropropene ND 1.00 " " " " " "	trans-1,3-Dichloropropene	ND	1.00	"	"	"	"	"	"	

North Creek Analytical - Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dennis D Wells, Laboratory Director

Schwyn Environmental Services, LLC 4621 S. Custer Ct. Spokane, WA 99223 Project: Sudbury RI Project Number: [none]

Project Manager: Craig Schwyn

Reported: 09/15/05 13:18

Volatile Organic Compounds by EPA Method 8260B

North Creek Analytical - Spokane

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-9RI (S5H0238-02) Water Sampled: ()8/29/05 18:00 R	eceived: 08/31/0	5 11:00						I-02
Ethylbenzene	ND	1.00	ug/l	1	5090093	09/13/05	09/13/05	EPA 8260B	
Hexachlorobutadiene	ND	1.00	"	"	"	"	"	"	
2-Hexanone	ND	10.0	"	"	"	"	"	"	
Isopropylbenzene	ND	1.00	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.00	"	"	"	"	"	"	
Methylene chloride	ND	5.00	"	"	"	"	"	"	
4-Methyl-2-pentanone	ND	10.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.00	"	"	"	"	"	"	
Naphthalene	ND	2.00	"	"	"	"	"	"	
n-Propylbenzene	ND	1.00	"	"	"	"	"	"	
Styrene	ND	1.00	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.00	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.00	"	"	"	"	"	"	
Tetrachloroethene	ND	1.00	"	"	"	"	"	"	
Toluene	ND	1.00	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.00	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.00	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.00	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.00	"	"	"	"	"	"	
Trichloroethene	ND	1.00	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.00	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.00	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.00	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.00	"	"	"	"	"	"	
Vinyl chloride	ND	0.200	"	"	"	"	"	"	
o-Xylene	ND	1.00	"	"	"	"	"	"	
m,p-Xylene	ND	2.00	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane	101	62.9-131			"	"	"	"	
Surrogate: Toluene-d8	101	58.7-133			"	"	"	"	
Surrogate: 4-bromofluorobenzene	103	60.8-140			"	"	"	"	

North Creek Analytical - Spokane

bol

Dennis D Wells, Laboratory Director

Schwyn Environmental Services, LLC 4621 S. Custer Ct. Spokane, WA 99223 Project: Sudbury RI Project Number: [none]

Project Manager: Craig Schwyn

Reported: 09/15/05 13:18

Volatile Organic Compounds by EPA Method 8260B

North Creek Analytical - Spokane

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-10RI-34' (S5H0238-03) Soil	Sampled: 08/30/05 08:30	Received: 08/3	31/05 11:00						
Acetone	ND	0.901	mg/kg wet	1	5090090	09/13/05	09/13/05	EPA 8260B	
Benzene	ND	0.0270	"	"	"	"	"	"	
Bromobenzene	ND	0.0901	"	"	"	"	"	"	
Bromochloromethane	ND	0.0901	"	"	"	"	"	"	
Bromodichloromethane	ND	0.0901	"	"	"	"	"	"	
Bromoform	ND	0.0901	"	"	"	"	"	"	
Bromomethane	ND	0.450	"	"	"	"	"	"	
2-Butanone	ND	0.901	"	"	"	"	"	"	
n-Butylbenzene	ND	0.0901	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.0901	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.0901	"	"	"	"	"	"	
Carbon disulfide	ND	0.0901	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.0901	"	"	"	"	"	"	
Chlorobenzene	ND	0.0901	"	"	"	"	"	"	
Chloroethane	ND	0.0901	"	"	"	"	"	"	
Chloroform	ND	0.0901	"	"	"	"	"	"	
Chloromethane	ND	0.450	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.0901	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.0901	"	"	"	"	"	"	
Dibromochloromethane	ND	0.0901	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	0.450	"	"	"	"	"	"	
1,2-Dibromoethane	ND	0.0901	"	"	"	"	"	"	
Dibromomethane	ND	0.0901	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.0901	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.0901	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.0901	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.0901	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.0901	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.0901	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.0901	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.0901	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.0901	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.0901	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.0901	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.0901	"	"		"	"	"	
1.1-Dichloropropene	ND	0.0901	"	"		"	"	"	
cis-1,3-Dichloropropene	ND	0.0901	"	"		"	"	"	
trans-1,3-Dichloropropene	ND	0.0901	"	"	"	"	"	"	

North Creek Analytical - Spokane

00

Dennis D Wells, Laboratory Director

Schwyn Environmental Services, LLC 4621 S. Custer Ct. Spokane, WA 99223 Project: Sudbury RI Project Number: [none] Project Manager: Craig Schwyn

Reported:

09/15/05 13:18

Volatile Organic Compounds by EPA Method 8260B

North Creek Analytical - Spokane

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-10RI-34' (S5H0238-03) Soil	Sampled: 08/30/05 08:30	Received: 08/3	31/05 11:00						
Ethylbenzene	ND	0.0901	mg/kg wet	1	5090090	09/13/05	09/13/05	EPA 8260B	
Hexachlorobutadiene	ND	0.0901	"	"	"	"	"	"	
2-Hexanone	ND	0.901	"	"	"	"	"	"	
Isopropylbenzene	ND	0.0901	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.0901	"	"	"	"	"	"	
Methylene chloride	ND	0.901	"	"	"	"	"	"	
4-Methyl-2-pentanone	ND	0.901	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	0.0901	"	"	"	"	"	"	
Naphthalene	ND	0.180		"	"	"	"	"	
n-Propylbenzene	ND	0.0901		"	"	"	"	"	
Styrene	ND	0.0901	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.0901		"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.0901	"	"	"	"	"	"	
Tetrachloroethene	ND	0.0270	"	"	"	"	"	"	
Toluene	ND	0.0901		"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.0901	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.0901	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.0901	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.0901	"	"	"	"	"	"	
Trichloroethene	ND	0.0270	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.0901	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.0901	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.0901	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.0901	"	"	"	"	"	"	
Vinyl chloride	ND	0.0901	"	"	"	"	"	"	
o-Xylene	ND	0.180	"	"	"	"	"	"	
m,p-Xylene	ND	0.360	"	"	"	"	"	"	
Surrogate: Dibromofluoromethe	ane 101	44.8-146			"	"	"	"	
Surrogate: Toluene-d8	101	62.3-143			"	"	"	"	
Surrogate: 4-bromofluorobenzel	ne 104	52.5-138			"	"	"	"	

North Creek Analytical - Spokane

bol

Dennis D Wells, Laboratory Director

Schwyn Environmental Services, LLC 4621 S. Custer Ct. Spokane, WA 99223 Project: Sudbury RI Project Number: [none]

Project Manager: Craig Schwyn

Reported: 09/15/05 13:18

Volatile Organic Compounds by EPA Method 8260B

North Creek Analytical - Spokane

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-11RI-34' (S5H0238-04) Soil	Sampled: 08/30/05 13:15	Received: 08/3	31/05 11:00						
Acetone	ND	1.00	mg/kg wet	1	5090090	09/13/05	09/13/05	EPA 8260B	
Benzene	ND	0.0300	"	"	"	"	"	"	
Bromobenzene	ND	0.100	"	"	"	"	"	"	
Bromochloromethane	ND	0.100	"	"	"	"	"	"	
Bromodichloromethane	ND	0.100	"	"	"	"	"	"	
Bromoform	ND	0.100	"	"	"	"	"	"	
Bromomethane	ND	0.500	"	"	"	"	"	"	
2-Butanone	ND	1.00	"	"	"	"	"	"	
n-Butylbenzene	ND	0.100	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.100	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.100	"	"	"	"	"	"	
Carbon disulfide	ND	0.100	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.100	"	"	"	"	"	"	
Chlorobenzene	ND	0.100	"	"	"	"	"	"	
Chloroethane	ND	0.100	"	"	"	"	"	"	
Chloroform	ND	0.100	"	"	"	"	"	"	
Chloromethane	ND	0.500	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.100	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.100	"	"	"	"	"	"	
Dibromochloromethane	ND	0.100	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	0.500	"	"	"	"	"	"	
1,2-Dibromoethane	ND	0.100	"	"	"	"	"	"	
Dibromomethane	ND	0.100	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.100	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.100	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.100	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.100	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.100	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.100	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.100	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.100	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.100	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.100	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.100	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.100	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.100	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.100	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.100	"	"		"	"	"	

North Creek Analytical - Spokane

00

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dennis D Wells, Laboratory Director

Schwyn Environmental Services, LLC 4621 S. Custer Ct. Spokane, WA 99223 Project: Sudbury RI Project Number: [none]

Project Manager: Craig Schwyn

Reported: 09/15/05 13:18

Volatile Organic Compounds by EPA Method 8260B

North Creek Analytical - Spokane

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-11RI-34' (S5H0238-04) Soil	Sampled: 08/30/05 13:15	Received: 08/3	31/05 11:00						
Ethylbenzene	ND	0.100	mg/kg wet	1	5090090	09/13/05	09/13/05	EPA 8260B	
Hexachlorobutadiene	ND	0.100	"	"	"	"	"	"	
2-Hexanone	ND	1.00	"	"	"	"	"	"	
Isopropylbenzene	ND	0.100	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.100	"	"	"	"	"	"	
Methylene chloride	ND	1.00	"	"	"	"	"	"	
4-Methyl-2-pentanone	ND	1.00	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	0.100	"	"	"	"	"	"	
Naphthalene	ND	0.200	"	"	"	"	"	"	
n-Propylbenzene	ND	0.100	"	"	"	"	"	"	
Styrene	ND	0.100	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.100	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.100	"	"	"	"	"	"	
Tetrachloroethene	ND	0.0300	"	"	"	"	"	"	
Toluene	ND	0.100	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.100	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.100	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.100	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.100	"	"	"	"	"	"	
Trichloroethene	ND	0.0300	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.100	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.100	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.100	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.100	"	"	"	"	"	"	
Vinyl chloride	ND	0.100	"	"	"	"	"	"	
o-Xylene	ND	0.200	"	"	"	"	"	"	
m,p-Xylene	ND	0.400	"	"	"	"	"	"	
Surrogate: Dibromofluoromethe	ine 87.5	44.8-146			"	"	"	"	
Surrogate: Toluene-d8	98.4	62.3-143			"	"	"	"	
Surrogate: 4-bromofluorobenzel	ne 106	52.5-138			"	"	"	"	

North Creek Analytical - Spokane

bol

Dennis D Wells, Laboratory Director

Seattle	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244
	425.420.9200 fax 425.420.9210
Spokane	11922 E. 1st Avenue, Spokane Valley, WA 99206-5302
	509.924.9200 fax 509.924.9290
Portland	9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
	503.906.9200 fax 503.906.9210
Bend	20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
	541.383.9310 fax 541.382.7588
Anchorage	2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119
	907.563.9200 fax 907.563.9210

Project: Sudbury RI Project Number: [none] Project Manager: Craig Schwyn

Reported: 09/15/05 13:18

Volatile Organic Compounds by EPA Method 8260B - Quality Control

North Creek Analytical - Spokane

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5090090: Prepared 09/13/0	5 Using GC/MS	Volatiles								
Blank (5090090-BLK1)										
Acetone	ND	1.00	mg/kg wet							
Benzene	ND	0.0300	"							
Bromobenzene	ND	0.100	"							
Bromochloromethane	ND	0.100	"							
Bromodichloromethane	ND	0.100	"							
Bromoform	ND	0.100	"							
Bromomethane	ND	0.500	"							
2-Butanone	ND	1.00	"							
n-Butylbenzene	ND	0.100	"							
sec-Butylbenzene	ND	0.100	"							
tert-Butylbenzene	ND	0.100	"							
Carbon disulfide	ND	0.100	"							
Carbon tetrachloride	ND	0.100	"							
Chlorobenzene	ND	0.100	"							
Chloroethane	ND	0.100	"							
Chloroform	ND	0.100	"							
Chloromethane	ND	0.500	"							
2-Chlorotoluene	ND	0.100	"							
4-Chlorotoluene	ND	0.100	"							
Dibromochloromethane	ND	0.100	"							
1,2-Dibromo-3-chloropropane	ND	0.500	"							
1,2-Dibromoethane	ND	0.100	"							
Dibromomethane	ND	0.100	"							
1,2-Dichlorobenzene	ND	0.100	"							
1,3-Dichlorobenzene	ND	0.100	"							
1,4-Dichlorobenzene	ND	0.100	"							
Dichlorodifluoromethane	ND	0.100	"							
1,1-Dichloroethane	ND	0.100	"							
1,2-Dichloroethane (EDC)	ND	0.100	"							
1,1-Dichloroethene	ND	0.100	"							
cis-1,2-Dichloroethene	ND	0.100	"							
trans-1,2-Dichloroethene	ND	0.100	"							
1,2-Dichloropropane	ND	0.100	"							
1,3-Dichloropropane	ND	0.100	"							

North Creek Analytical - Spokane

bel

Dennis D Wells, Laboratory Director

Seattle	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244
	425.420.9200 fax 425.420.9210
Spokane	11922 E. 1st Avenue, Spokane Valley, WA 99206-5302
	509.924.9200 fax 509.924.9290
Portland	9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
	503.906.9200 fax 503.906.9210
Bend	20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
	541.383.9310 fax 541.382.7588
Anchorage	2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119
-	907.563.9200 fax 907.563.9210

Project: Sudbury RI Project Number: [none]

Project Manager: Craig Schwyn

Reported: 09/15/05 13:18

Volatile Organic Compounds by EPA Method 8260B - Quality Control

North Creek Analytical - Spokane

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5090090:	Prepared 09/13/05	Using GC/MS	Volatiles								
Blank (5090090-BL	_K1)										
2,2-Dichloropropane		ND	0.100	mg/kg wet							
1,1-Dichloropropene		ND	0.100	"							
cis-1,3-Dichloroproper	ne	ND	0.100	"							
trans-1,3-Dichloroprop	bene	ND	0.100	"							
Ethylbenzene		ND	0.100	"							
Hexachlorobutadiene		ND	0.100	"							
2-Hexanone		ND	1.00	"							
Isopropylbenzene		ND	0.100	"							
p-Isopropyltoluene		ND	0.100	"							
Methylene chloride		ND	1.00	"							
4-Methyl-2-pentanone		ND	1.00	"							
Methyl tert-butyl ether		ND	0.100	"							
Naphthalene		ND	0.200	"							
n-Propylbenzene		ND	0.100	"							
Styrene		ND	0.100	"							
1,1,1,2-Tetrachloroetha	ane	ND	0.100	"							
1,1,2,2-Tetrachloroetha	ane	ND	0.100	"							
Tetrachloroethene		ND	0.0300	"							
Toluene		ND	0.100	"							
1,2,3-Trichlorobenzene	e	ND	0.100	"							
1,2,4-Trichlorobenzene	e	ND	0.100	"							
1,1,1-Trichloroethane		ND	0.100	"							
1,1,2-Trichloroethane		ND	0.100	"							
Trichloroethene		ND	0.0300	"							
Trichlorofluoromethan	e	ND	0.100	"							
1,2,3-Trichloropropane	2	ND	0.100	"							
1,2,4-Trimethylbenzen	e	ND	0.100	"							
1,3,5-Trimethylbenzen	e	ND	0.100	"							
Vinyl chloride		ND	0.100	"							
o-Xylene		ND	0.200	"							
m,p-Xylene		ND	0.400	"							
Surrogate: Dibromoflu	oromethane	878		"	1000		87.8	44.8-146			
Surrogate: Toluene-d8	1	1010		"	1000		101	62.3-143			
Surrogate: 4-bromoflu	orobenzene	1090		"	1000		109	52.5-138			

North Creek Analytical - Spokane

00

Dennis D Wells, Laboratory Director

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Seattle	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244
	425.420.9200 fax 425.420.9210
Spokane	11922 E. 1st Avenue, Spokane Valley, WA 99206-5302
	509.924.9200 fax 509.924.9290
Portland	9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
	503.906.9200 fax 503.906.9210
Bend	20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
	541.383.9310 fax 541.382.7588
Anchorage	2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119
	907.563.9200 fax 907.563.9210

Project: Sudbury RI Project Number: [none]

Project Manager: Craig Schwyn

Reported: 09/15/05 13:18

Volatile Organic Compounds by EPA Method 8260B - Quality Control

North Creek Analytical - Spokane

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5090090: Prepared 09/13/05	Using GC/MS	Volatiles								
LCS (5090090-BS1)										
Benzene	0.868	0.0300	mg/kg wet	1.00		86.8	72.5-130			
Chlorobenzene	0.936	0.100	"	1.00		93.6	78.4-120			
1,1-Dichloroethene	0.958	0.100	"	1.00		95.8	50-150			
Toluene	0.870	0.100	"	1.00		87.0	75.3-120			
Trichloroethene	0.901	0.0300	"	1.00		90.1	64.5-131			
Surrogate: Dibromofluoromethane	960		"	1000		96.0	44.8-146			
Surrogate: Toluene-d8	987		"	1000		98.7	62.3-143			
Surrogate: 4-bromofluorobenzene	1040		"	1000		104	52.5-138			
LCS Dup (5090090-BSD1)										
Benzene	0.897	0.0300	mg/kg wet	1.00		89.7	72.5-130	3.29	25	
Chlorobenzene	0.992	0.100	"	1.00		99.2	78.4-120	5.81	25	
1,1-Dichloroethene	1.03	0.100	"	1.00		103	50-150	7.24	25	
Toluene	0.939	0.100	"	1.00		93.9	75.3-120	7.63	25	
Trichloroethene	0.954	0.0300	"	1.00		95.4	64.5-131	5.71	25	
Surrogate: Dibromofluoromethane	974		"	1000		97.4	44.8-146			
Surrogate: Toluene-d8	990		"	1000		99.0	62.3-143			
Surrogate: 4-bromofluorobenzene	1050		"	1000		105	52.5-138			

Batch 5090093: Prepared 09/13/05 Using GC/MS Volatiles

Blank (5090093-BLK1)			
Acetone	ND	25.0	ug/l
Benzene	ND	1.00	"
Bromobenzene	ND	1.00	"
Bromochloromethane	ND	1.00	"
Bromodichloromethane	ND	1.00	"
Bromoform	ND	1.00	"
Bromomethane	ND	5.00	"
2-Butanone	ND	10.0	"
n-Butylbenzene	ND	1.00	"
sec-Butylbenzene	ND	1.00	"
tert-Butylbenzene	ND	1.00	"
Carbon disulfide	ND	1.00	"
Carbon tetrachloride	ND	1.00	"
Chlorobenzene	ND	1.00	"

North Creek Analytical - Spokane

Seattle	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244
	425.420.9200 fax 425.420.9210
Spokane	11922 E. 1st Avenue, Spokane Valley, WA 99206-5302
	509.924.9200 fax 509.924.9290
Portland	9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
	503.906.9200 fax 503.906.9210
Bend	20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
	541.383.9310 fax 541.382.7588
Anchorage	2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119
	907.563.9200 fax 907.563.9210

Project Sudbury RI Project Number: [none] Project Manager: Craig Schwyn

Reported: 09/15/05 13:18

Volatile Organic Compounds by EPA Method 8260B - Quality Control

North Creek Analytical - Spokane

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5090093:	Prepared 09/13/05	Using GC/MS	Volatiles								
Blank (5090093-Bl	L K1)										
Chloroethane		ND	1.00	ug/l							
Chloroform		ND	1.00								
Chloromethane		ND	5.00	"							
2-Chlorotoluene		ND	1.00	"							
4-Chlorotoluene		ND	1.00	"							
Dibromochloromethar	ne	ND	1.00	"							
1,2-Dibromo-3-chloro	propane	ND	5.00	"							
1,2-Dibromoethane		ND	1.00	"							
Dibromomethane		ND	1.00	"							
1,2-Dichlorobenzene		ND	1.00	"							
1,3-Dichlorobenzene		ND	1.00	"							
1,4-Dichlorobenzene		ND	1.00	"							
Dichlorodifluorometha	ane	ND	1.00	"							
1,1-Dichloroethane		ND	1.00	"							
1,2-Dichloroethane (E	DC)	ND	1.00	"							
1,1-Dichloroethene		ND	1.00	"							
cis-1,2-Dichloroethene	e	ND	1.00	"							
trans-1,2-Dichloroethe	ene	ND	1.00	"							
1,2-Dichloropropane		ND	1.00	"							
1,3-Dichloropropane		ND	1.00	"							
2,2-Dichloropropane		ND	1.00	"							
1,1-Dichloropropene		ND	1.00	"							
cis-1,3-Dichloroprope	ne	ND	1.00	"							
trans-1,3-Dichloroprop	pene	ND	1.00	"							
Ethylbenzene		ND	1.00	"							
Hexachlorobutadiene		ND	1.00	"							
2-Hexanone		ND	10.0	"							
Isopropylbenzene		ND	1.00	"							
p-Isopropyltoluene		ND	1.00	"							
Methylene chloride		ND	5.00								
4-Methyl-2-pentanone	•	ND	10.0								
Methyl tert-butyl ether	r	ND	1.00	"							
Naphthalene		ND	2.00								
n-Propylbenzene		ND	1.00	"							
Styrene		ND	1.00	"							

North Creek Analytical - Spokane

00

Dennis D Wells, Laboratory Director

Seattle	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244
	425.420.9200 fax 425.420.9210
Spokane	11922 E. 1st Avenue, Spokane Valley, WA 99206-5302
	509.924.9200 fax 509.924.9290
Portland	9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
	503.906.9200 fax 503.906.9210
Bend	20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
	541.383.9310 fax 541.382.7588
Anchorage	2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119
	907.563.9200 fax 907.563.9210

Project: Sudbury RI Project Number: [none]

Project Manager: Craig Schwyn

Reported:

09/15/05 13:18

Volatile Organic Compounds by EPA Method 8260B - Quality Control

North Creek Analytical - Spokane

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5090093:	Prepared 09/13/05	Using GC/MS V	olatiles								
Blank (5090093-BI	L K1)										
1,1,1,2-Tetrachloroeth	ane	ND	1.00	ug/l							
1,1,2,2-Tetrachloroeth	ane	ND	1.00	"							
Tetrachloroethene		ND	1.00	"							
Toluene		ND	1.00	"							
1,2,3-Trichlorobenzen	e	ND	1.00	"							
1,2,4-Trichlorobenzen	e	ND	1.00	"							
1,1,1-Trichloroethane		ND	1.00	"							
1,1,2-Trichloroethane		ND	1.00	"							
Trichloroethene		ND	1.00	"							
Trichlorofluoromethan	ne	ND	1.00	"							
1,2,3-Trichloropropan	e	ND	1.00	"							
1,2,4-Trimethylbenzer	ne	ND	1.00	"							
1,3,5-Trimethylbenzer	ne	ND	1.00	"							
Vinyl chloride		ND	0.200	"							
o-Xylene		ND	1.00	"							
m,p-Xylene		ND	2.00	"							
Surrogate: Dibromofli	uoromethane	8.75		"	10.0		87.5	62.9-131			
Surrogate: Toluene-d8	3	10.4		"	10.0		104	58.7-133			
Surrogate: 4-bromoflu	ıorobenzene	10.9		"	10.0		109	60.8-140			
LCS (5090093-BS1	1)										
Benzene		9.79	1.00	ug/l	10.0		97.9	67.4-116			
Chlorobenzene		10.8	1.00	"	10.0		108	68.3-123			
1,1-Dichloroethene		11.6	1.00	"	10.0		116	67-137			
Toluene		10.5	1.00	"	10.0		105	68.8-139			
Trichloroethene		10.5	1.00	"	10.0		105	68.1-128			
Surrogate: Dibromofli	uoromethane	10.3		"	10.0		103	62.9-131			
Surrogate: Toluene-d8	3	10.3		"	10.0		103	58.7-133			
Surrogate: 4-bromoflu	iorobenzene	10.8		"	10.0		108	60.8-140			

North Creek Analytical - Spokane

00

Dennis D Wells, Laboratory Director

Schwyn Environmental Services, LLC 4621 S. Custer Ct. Spokane, WA 99223 Project: Sudbury RI Project Number: [none]

Project Manager: Craig Schwyn

Reported: 09/15/05 13:18

Volatile Organic Compounds by EPA Method 8260B - Quality Control

North Creek Analytical - Spokane

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5090093:	Prepared 09/13/05	Using GC/MS V	olatiles								
Matrix Spike (5090	093-MS1)					Source: S5	510014-01				
Benzene		9.68	1.00	ug/l	10.0	ND	96.8	59.7-129			
Chlorobenzene		10.4	1.00	"	10.0	ND	104	75.8-121			
1,1-Dichloroethene		11.2	1.00	"	10.0	ND	112	63.8-137			
Toluene		10.1	1.00	"	10.0	ND	101	84.5-127			
Trichloroethene		9.83	1.00		10.0	ND	98.3	75.5-129			
Surrogate: Dibromoflue	oromethane	9.33		"	10.0		93.3	62.9-131			
Surrogate: Toluene-d8		10.1		"	10.0		101	58.7-133			
Surrogate: 4-bromofluo	orobenzene	10.5		"	10.0		105	60.8-140			
Matrix Spike Dup (5090093-MSD1)					Source: S5	10014-01				
Benzene		9.53	1.00	ug/l	10.0	ND	95.3	59.7-129	1.56	10	
Chlorobenzene		10.4	1.00	"	10.0	ND	104	75.8-121	0.00	11	
1,1-Dichloroethene		11.2	1.00	"	10.0	ND	112	63.8-137	0.00	14	
Toluene		9.95	1.00	"	10.0	ND	99.5	84.5-127	1.50	12	
Trichloroethene		9.83	1.00	"	10.0	ND	98.3	75.5-129	0.00	10	
Surrogate: Dibromoflue	oromethane	9.21		"	10.0		92.1	62.9-131			
Surrogate: Toluene-d8		10.2		"	10.0		102	58.7-133			
Surrogate: 4-bromofluo	orobenzene	10.7		"	10.0		107	60.8-140			

North Creek Analytical - Spokane

00

Dennis D Wells, Laboratory Director

Seattle	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210
Spokane	11922 E. 1st Avenue, Spokane Valley, WA 99206-5302
	509.924.9200 fax 509.924.9290
Portland	9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
	503.906.9200 fax 503.906.9210
Bend	20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
	541.383.9310 fax 541.382.7588
Anchorage	2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119
	907.563.9200 fax 907.563.9210
udburv RI	

Project: Sudbury RI Project Number: [none]

Project Manager: Craig Schwyn

Reported: 09/15/05 13:18

Notes and Definitions

- I-02 Sample was analyzed outside of the EPA recommended holding time.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

North Creek Analytical - Spokane

000

Dennis D Wells, Laboratory Director

	2000	 11720 North Creek Pkwy N Suite 400, Bothell, 11922 E 1st Ave, Spokane, 9405 SW Nimbus Ave, Beaverton, 20332 Empire Ave, Ste FI, Bend, N International Airport Rd Ste AI0, Anchorage, 	, WA 98011-8244 , WA 99206-5302 4, OR 97008-7145 1, OR 97701-5712 5, AK 99502-1115	 425-420-5 509-924-6 503-906-9 541-383-6 907-563-9 	9200 FAX 42 9200 FAX 92 9200 FAX 90 9310 FAX 35 9200 FAX 55	0-9210 4-9290 6-9210 2-7588 3-9210
CHAIN OF CUS	STODY REPORT		Work Order #:		FUCH	Ł
NCA CLIENT: Schuyn Environnenfel SerVices REPORT TO: Con Schung	Craig Schi			rURNAROU in Busin	ND REQUEST	
ADDRESS: 7415 June pa			- - - -	rganic & Inorg	anic Analyses	Ţ
PHONE: 509 448 3189 FAX: 448 9238	P.O. NUMBER:]] _ë	etroleum Hydr	Carbon Analyses]]]
PRUJECT NAME: Sudbury Rd Landfill RI	PRESER	VATIVE	5	- -	-	<u>ل</u>
PROJECT NUMBER:			[
SAMPLED BY: Cran) Schr		AINALI 253	•]·	THER Specification	y. Mendard mey incer Ruth Churger.	
CLIENT SAMPLE SAMPLING SAMPLING SAMPLING SAMPLING DATE/TIME SAMPLE			MATRIX (W, S, O)	# OF L CONT. C	OCATION / OMMENTS	NCA WO ID
1 B-9RI-35' 8/29/05 X			S	~		
2B-9RT 8/29/05 X			3	<u> </u>		
3B-10RT-34' 8/30/25						
4B-11 RT-34 8/30/05 X			S			
2						
9						
7						
6						
01					•	
RELEASED BY: Gof Schor	DATE: 8/32/05	RECEIVED BY: FER EX			DATE:	
PRINT NAME: Craig Schurge FIRM: SES	TIME: / ŚĴ Û	PRINT NAME:	HIRM	Ĩ	TIME:	
RELEASED BY:	DATE:	RECEIVED BY: XOWAN	a la	JUL C	DATE	2010
FRINT NAME: FIRM:	TIME:	PRINT NAME: KOM W PRINT	JV JERM	NCA	TIME:	8
ADDITIONAL REMARKS:				<u> </u>	FEMP:	
COC REV 09/04					JOC PAGE	ØF

Seattle	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244
	425.420.9200 fax 425.420.9210
Spokane	11922 E. 1st Avenue, Spokane Valley, WA 99206-5302
	509.924.9200 fax 509.924.9290
Portland	9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
	503.906.9200 fax 503.906.9210
Bend	20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
	541.383.9310 fax 541.382.7588
Anchorage	2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119
	907.563.9200 fax 907.563.9210

Project: None provided

Project Number: [none] Project Manager: Craig Schwyn **Reported:** 09/28/05 17:03

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-16	S5I0014-01	Water	09/01/05 15:00	09/02/05 13:45
B-17RI	S5I0014-02	Water	09/01/05 14:00	09/02/05 13:45
B12-RI-44	S5I0014-03	Soil	08/30/05 16:30	09/02/05 13:45

North Creek Analytical - Spokane

bel

Dennis D Wells, Laboratory Director

Project: None provided

Project Number: [none] Project Manager: Craig Schwyn **Reported:** 09/28/05 17:03

Total Metals by EPA 200 Series Methods

North Creek Analytical - Spokane

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-16 (S5I0014-01) Water	Sampled: 09/01/05 15:00 Re	ceived: 09/02/	05 13:45						
Calcium	213	0.0400	mg/l	1	5090094	09/13/05	09/28/05	EPA 200.7	
Sodium	21.8	0.500	"	"	"	"	"	"	

North Creek Analytical - Spokane

bel

Dennis D Wells, Laboratory Director

Schwyn Environmental Services, LLC 4621 S. Custer Ct. Spokane, WA 99223 Project: None provided

Project Number: [none] Project Manager: Craig Schwyn **Reported:** 09/28/05 17:03

Volatile Organic Compounds by EPA Method 8260B

North Creek Analytical - Spokane

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-16 (S5I0014-01) Water Sampled: 09/01/	/05 15:00 Reco	eived: 09/02/0)5 13:45						
Acetone	ND	25.0	ug/l	1	5090093	09/13/05	09/13/05	EPA 8260B	
Benzene	ND	1.00	"	"	"	"	"	"	
Bromobenzene	ND	1.00	"	"	"	"	"	"	
Bromochloromethane	ND	1.00	"	"	"	"	"	"	
Bromodichloromethane	ND	1.00	"	"	"	"	"	"	
Bromoform	ND	1.00	"	"	"	"	"	"	
Bromomethane	ND	5.00	"	"	"	"	"	"	
2-Butanone	ND	10.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.00	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.00	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.00	"	"	"	"	"	"	
Carbon disulfide	ND	1.00	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.00	"	"	"	"	"	"	
Chlorobenzene	ND	1.00	"	"	"	"	"	"	
Chloroethane	ND	1.00	"	"	"	"	"	"	
Chloroform	ND	1.00	"	"	"	"	"	"	
Chloromethane	ND	5.00	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.00	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.00	"	"	"	"	"	"	
Dibromochloromethane	ND	1.00	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.00	"	"	"	"	"	"	
1,2-Dibromoethane	ND	1.00	"	"	"	"	"	"	
Dibromomethane	ND	1.00	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.00	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.00	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.00	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	1.00	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.00	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	1.00	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.00	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.00	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.00	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.00	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.00	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.00	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.00	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.00	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.00	"	"		"	"	"	

North Creek Analytical - Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dennis D Wells, Laboratory Director

Schwyn Environmental Services, LLC 4621 S. Custer Ct. Spokane, WA 99223 Project: None provided

Project Number: [none] Project Manager: Craig Schwyn **Reported:** 09/28/05 17:03

Volatile Organic Compounds by EPA Method 8260B

North Creek Analytical - Spokane

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-16 (S5I0014-01) Water Sam	pled: 09/01/05 15:00 R	Received: 09/02/0	05 13:45						
Ethylbenzene	ND	1.00	ug/l	1	5090093	09/13/05	09/13/05	EPA 8260B	
Hexachlorobutadiene	ND	1.00	"	"	"	"	"	"	
2-Hexanone	ND	10.0	"	"	"	"	"	"	
Isopropylbenzene	ND	1.00	"	"	"	"	"	"	
p-Isopropyltoluene	1.61	1.00	"	"	"	"	"	"	
Methylene chloride	ND	5.00	"	"	"	"	"	"	
4-Methyl-2-pentanone	ND	10.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.00	"	"	"	"	"	"	
Naphthalene	ND	2.00	"	"	"	"	"	"	
n-Propylbenzene	ND	1.00	"	"	"	"	"	"	
Styrene	ND	1.00	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.00	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.00	"	"	"	"	"	"	
Tetrachloroethene	ND	1.00	"	"	"	"	"	"	
Toluene	ND	1.00	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.00	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.00	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.00	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.00	"	"	"	"	"	"	
Trichloroethene	ND	1.00	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.00	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.00	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.00	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.00	"	"	"	"	"	"	
Vinyl chloride	ND	0.200	"	"	"	"	"	"	
o-Xylene	ND	1.00	"	"	"	"	"	"	
m,p-Xylene	ND	2.00	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane	106	62.9-131			"	"	"	"	
Surrogate: Toluene-d8	99.1	58.7-133			"	"	"	"	
Surrogate: 4-bromofluorobenzene	104	60.8-140			"	"	"	"	

North Creek Analytical - Spokane

bel

Dennis D Wells, Laboratory Director

Schwyn Environmental Services, LLC 4621 S. Custer Ct. Spokane, WA 99223 Project: None provided

Project Number: [none] Project Manager: Craig Schwyn **Reported:** 09/28/05 17:03

Volatile Organic Compounds by EPA Method 8260B

North Creek Analytical - Spokane

Analyta	Pecult	Reporting	Unita	Dilution	Datah	Droporod	Analyzad	Mathad	Notos
Analyte	Kesuit	Liint	Units	Dilution	Batch	riepaieu	Allalyzeu	Method	Notes
B-17RI (S5I0014-02) Water Sample	ed: 09/01/05 14:00 Rece	ived: 09/02/0	5 13:45						
Acetone	ND	25.0	ug/l	1	5090093	09/13/05	09/13/05	EPA 8260B	
Benzene	ND	1.00	"	"	"	"	"	"	
Bromobenzene	ND	1.00	"	"	"	"	"	"	
Bromochloromethane	ND	1.00	"	"	"	"	"	"	
Bromodichloromethane	ND	1.00	"	"	"	"	"	"	
Bromoform	ND	1.00	"	"	"	"	"	"	
Bromomethane	ND	5.00	"	"	"	"	"	"	
2-Butanone	ND	10.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.00	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.00	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.00	"	"	"	"	"	"	
Carbon disulfide	ND	1.00	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.00	"	"	"	"	"	"	
Chlorobenzene	ND	1.00	"	"	"	"	"	"	
Chloroethane	ND	1.00	"	"	"	"	"	"	
Chloroform	ND	1.00	"	"	"	"	"	"	
Chloromethane	ND	5.00	"	"			"	"	
2-Chlorotoluene	ND	1.00	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.00	"	"			"	"	
Dibromochloromethane	ND	1.00	"	"	"	"	"	"	
1.2-Dibromo-3-chloropropane	ND	5.00	"	"		"	"	"	
1.2-Dibromoethane	ND	1.00	"	"	"	"	"	"	
Dibromomethane	ND	1.00	"	"		"	"	"	
1.2-Dichlorobenzene	ND	1.00	"	"	"	"	"	"	
1 3-Dichlorobenzene	ND	1.00	"	"	"		"	"	
1 4-Dichlorobenzene	ND	1.00	"	"	"		"	"	
Dichlorodifluoromethane	ND	1.00	"	"			"	"	
1 1-Dichloroethane	ND	1.00	"	"	"		"	"	
1 2-Dichloroethane (FDC)	ND	1.00	"	"			"	"	
1 1-Dichloroethene	ND	1.00	"	"			"	"	
cis-1 2-Dichloroethene	ND	1.00	"	"			"	"	
trans_1.2-Dichloroethene	ND	1.00	"	"			"	"	
1.2 Dichloropropage	ND	1.00	"	"			"	"	
1.3 Dichloropropage	ND	1.00	"	"	"		"		
2.2 Dichloropropage		1.00					"	"	
1.1 Dishlarapropaga		1.00					"	"	
ais 1.2 Dishlaranranana		1.00					"	"	
tis-1,3-Dichloroptopene	ND	1.00							
trans-1,3-Dicnioropropene	ND	1.00							

North Creek Analytical - Spokane

00

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dennis D Wells, Laboratory Director

Schwyn Environmental Services, LLC 4621 S. Custer Ct. Spokane, WA 99223 Project: None provided

Project Number: [none] Project Manager: Craig Schwyn **Reported:** 09/28/05 17:03

Volatile Organic Compounds by EPA Method 8260B

North Creek Analytical - Spokane

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-17RI (S510014-02) Water Sampled: 0	9/01/05 14:00 R	eceived: 09/02/0	5 13:45						
Ethylbenzene	ND	1.00	ug/l	1	5090093	09/13/05	09/13/05	EPA 8260B	
Hexachlorobutadiene	ND	1.00	"	"	"	"	"	"	
2-Hexanone	ND	10.0	"	"	"	"	"	"	
Isopropylbenzene	ND	1.00	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.00	"	"	"	"	"	"	
Methylene chloride	ND	5.00	"	"	"	"	"	"	
4-Methyl-2-pentanone	ND	10.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.00	"	"	"	"	"	"	
Naphthalene	ND	2.00	"	"	"	"	"	"	
n-Propylbenzene	ND	1.00	"	"	"	"	"	"	
Styrene	ND	1.00	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.00	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.00	"	"	"	"	"	"	
Tetrachloroethene	ND	1.00	"	"	"	"	"	"	
Toluene	ND	1.00	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.00	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.00	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.00	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.00	"	"	"	"	"	"	
Trichloroethene	ND	1.00	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.00	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.00	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.00	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.00	"	"	"	"	"	"	
Vinyl chloride	ND	0.200	"	"	"	"	"	"	
o-Xylene	ND	1.00	"	"	"	"	"	"	
m,p-Xylene	ND	2.00	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane	103	62.9-131			"	"	"	"	
Surrogate: Toluene-d8	98.2	58.7-133			"	"	"	"	
Surrogate: 4-bromofluorobenzene	109	60.8-140			"	"	"	"	

North Creek Analytical - Spokane

bel

Dennis D Wells, Laboratory Director

Schwyn Environmental Services, LLC 4621 S. Custer Ct. Spokane, WA 99223 Project: None provided

Project Number: [none] Project Manager: Craig Schwyn **Reported:** 09/28/05 17:03

Volatile Organic Compounds by EPA Method 8260B

North Creek Analytical - Spokane

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B12-RI-44 (S510014-03) Soil Sample	ed: 08/30/05 16:30 Rec	eived: 09/02	/05 13:45						
Acetone	ND	1.00	mg/kg wet	1	5090090	09/13/05	09/13/05	EPA 8260B	
Benzene	ND	0.0300	"	"	"	"	"	"	
Bromobenzene	ND	0.100	"	"	"	"	"	"	
Bromochloromethane	ND	0.100	"	"	"	"	"	"	
Bromodichloromethane	ND	0.100	"	"	"	"	"	"	
Bromoform	ND	0.100	"	"	"	"	"	"	
Bromomethane	ND	0.500	"	"	"	"	"	"	
2-Butanone	ND	1.00	"	"	"	"	"	"	
n-Butylbenzene	ND	0.100	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.100	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.100	"	"	"	"	"	"	
Carbon disulfide	ND	0.100	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.100	"	"	"	"	"	"	
Chlorobenzene	ND	0.100	"	"	"	"	"	"	
Chloroethane	ND	0.100	"	"	"	"	"	"	
Chloroform	ND	0.100	"	"	"	"	"	"	
Chloromethane	ND	0.500	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.100	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.100	"	"	"	"	"	"	
Dibromochloromethane	ND	0.100	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	0.500	"	"	"	"	"	"	
1,2-Dibromoethane	ND	0.100	"	"	"	"	"	"	
Dibromomethane	ND	0.100	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.100	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.100	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.100	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.100	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.100	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.100	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.100	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.100	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.100	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.100	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.100	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.100	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.100	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.100	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.100	"	"	"	"	"	"	

North Creek Analytical - Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dennis D Wells, Laboratory Director

Schwyn Environmental Services, LLC 4621 S. Custer Ct. Spokane, WA 99223 Project: None provided

Project Number: [none] Project Manager: Craig Schwyn **Reported:** 09/28/05 17:03

Volatile Organic Compounds by EPA Method 8260B

North Creek Analytical - Spokane

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B12-RI-44 (8510014-03) Soil Sa	mpled: 08/30/05 16:30 R	eceived: 09/02	/05 13:45						
Ethylbenzene	ND	0.100	mg/kg wet	1	5090090	09/13/05	09/13/05	EPA 8260B	
Hexachlorobutadiene	ND	0.100	"	"	"	"	"	"	
2-Hexanone	ND	1.00	"	"	"	"	"	"	
Isopropylbenzene	ND	0.100	"	"	"	"	"	"	
p-Isopropyltoluene	ND	0.100	"	"	"	"	"	"	
Methylene chloride	ND	1.00	"	"	"	"	"	"	
4-Methyl-2-pentanone	ND	1.00	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	0.100	"	"	"	"	"	"	
Naphthalene	ND	0.200	"	"	"	"	"	"	
n-Propylbenzene	ND	0.100	"	"	"	"	"	"	
Styrene	ND	0.100	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.100	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.100	"	"	"	"	"	"	
Tetrachloroethene	ND	0.0300	"	"	"	"	"	"	
Toluene	ND	0.100	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.100	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.100	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.100	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.100	"	"	"	"	"	"	
Trichloroethene	ND	0.0300	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.100	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.100	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.100	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.100	"	"	"	"	"	"	
Vinyl chloride	ND	0.100	"	"	"	"	"	"	
o-Xylene	ND	0.200	"	"	"	"	"	"	
m,p-Xylene	ND	0.400	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane	97.0	44.8-146			"	"	"	"	
Surrogate: Toluene-d8	103	62.3-143			"	"	"	"	
Surrogate: 4-bromofluorobenzene	105	52.5-138			"	"	"	"	

North Creek Analytical - Spokane

bol

Dennis D Wells, Laboratory Director

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

 425.420.9200 fax 425.420.9210

 Spokane
 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302

 509.924.9200 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503.906.9200 fax 503.996.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

 541.383.9310 fax 541.382.7588

 Anchorage
 907.553.9200 fax 907.553.9210

Schwyn Environmental Services, LLC 4621 S. Custer Ct. Spokane, WA 99223 Project: None provided Project Number: [none]

Project Manager: Craig Schwyn

Reported: 09/28/05 17:03

Conventional Chemistry Parameters by APHA/EPA Methods

North Creek Analytical - Spokane

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-16 (S510014-01) Water	Sampled: 09/01/05 15:00 Re	ceived: 09/02/	05 13:45						
Total Alkalinity	541	2.00	mg/l	1	5090010	09/02/05	09/13/05	EPA 310.1	

North Creek Analytical - Spokane

bel

Dennis D Wells, Laboratory Director

Schwyn Environmental Services, LLC 4621 S. Custer Ct. Spokane, WA 99223 Project: None provided

Project Number: [none] Project Manager: Craig Schwyn Reported:

09/28/05 17:03

Anions by EPA Method 300.0

North Creek Analytical - Spokane

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-16 (S5I0014-01) Water	Sampled: 09/01/05 15:00 Re	eceived: 09/02/	/05 13:45						
Chloride	185	5.00	mg/l	10	5090009	09/02/05	09/02/05	EPA 300.0	
Nitrate-Nitrogen	11.6	5.00	"	"	"	"	09/02/05	"	
Sulfate	45.1	5.00	"		5090015	09/02/05	09/06/05	"	

North Creek Analytical - Spokane

bel

Dennis D Wells, Laboratory Director

Project: None provided

Project Number: [none] Project Manager: Craig Schwyn **Reported:** 09/28/05 17:03

Total Metals by EPA 200 Series Methods

North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-16 (S510014-01) Water	Sampled: 09/01/05 15:00 Re	ceived: 09/02/	05 13:45						
Potassium	17.2	2.00	mg/l	1	5115039	09/15/05	09/19/05	EPA 200.7	

North Creek Analytical - Spokane

bel

Dennis D Wells, Laboratory Director

Project: None provided Project Number: [none]

Project Number: [none] Project Manager: Craig Schwyn **Reported:** 09/28/05 17:03

Total Metals by EPA 200 Series Methods - Quality Control

North Creek Analytical - Spokane

			Reporting		Snike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5090094:	Prepared 09/13/05	Using Metals									
Blank (5090094-BI	LK1)										
Calcium		ND	0.0400	mg/l							
Sodium		ND	0.500	"							
LCS (5090094-BS1)										
Calcium		9.34	0.0400	mg/l	10.0		93.4	70-130			
Sodium		9.45	0.500	"	10.0		94.5	70-130			
Duplicate (5090094-DUP1)			Source: S510069-04								
Calcium		0.430	0.0400	mg/l		0.424			1.41	20	
Sodium		11.5	0.500	"		11.2			2.64	20	
Matrix Spike (5090094-MS1)		Source: S510069-04									
Calcium		9.83	0.0400	mg/l	10.0	0.424	94.1	75-125			
Sodium		19.9	0.500	"	10.0	11.2	87.0	75-125			
Matrix Spike Dup (5090094-MSD1)				Source: S510069-04							
Calcium		9.99	0.0400	mg/l	10.0	0.424	95.7	75-125	1.61	20	
Sodium		20.4	0.500	"	10.0	11.2	92.0	75-125	2.48	20	

North Creek Analytical - Spokane

bel

Dennis D Wells, Laboratory Director

Seattle	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244
	425.420.9200 fax 425.420.9210
Spokane	11922 E. 1st Avenue, Spokane Valley, WA 99206-5302
	509.924.9200 fax 509.924.9290
Portland	9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
	503.906.9200 fax 503.906.9210
Bend	20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
	541.383.9310 fax 541.382.7588
Anchorage	2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119
	907.563.9200 fax 907.563.9210

Project: None provided

Project Number: [none] Project Manager: Craig Schwyn **Reported:** 09/28/05 17:03

Volatile Organic Compounds by EPA Method 8260B - Quality Control

North Creek Analytical - Spokane

			Reporting		Snike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5090090:	Prepared 09/13/05	Using GC/MS V	olatiles								
Blank (5090090-BL	-K1)										
Acetone		ND	1.00	mg/kg wet							
Benzene		ND	0.0300	"							
Bromobenzene		ND	0.100	"							
Bromochloromethane		ND	0.100	"							
Bromodichloromethan	e	ND	0.100	"							
Bromoform		ND	0.100	"							
Bromomethane		ND	0.500	"							
2-Butanone		ND	1.00	"							
n-Butylbenzene		ND	0.100	"							
sec-Butylbenzene		ND	0.100	"							
tert-Butylbenzene		ND	0.100	"							
Carbon disulfide		ND	0.100	"							
Carbon tetrachloride		ND	0.100	"							
Chlorobenzene		ND	0.100	"							
Chloroethane		ND	0.100	"							
Chloroform		ND	0.100	"							
Chloromethane		ND	0.500	"							
2-Chlorotoluene		ND	0.100	"							
4-Chlorotoluene		ND	0.100	"							
Dibromochloromethan	e	ND	0.100	"							
1,2-Dibromo-3-chlorop	oropane	ND	0.500	"							
1,2-Dibromoethane		ND	0.100	"							
Dibromomethane		ND	0.100	"							
1,2-Dichlorobenzene		ND	0.100	"							
1,3-Dichlorobenzene		ND	0.100	"							
1,4-Dichlorobenzene		ND	0.100	"							
Dichlorodifluorometha	ne	ND	0.100	"							
1,1-Dichloroethane		ND	0.100	"							
1,2-Dichloroethane (El	DC)	ND	0.100	"							
1,1-Dichloroethene		ND	0.100	"							
cis-1,2-Dichloroethene		ND	0.100	"							
trans-1,2-Dichloroethe	ne	ND	0.100	"							
1,2-Dichloropropane		ND	0.100	"							
1,3-Dichloropropane		ND	0.100	"							
2 2-Dichloropropane		ND	0.100	"							

North Creek Analytical - Spokane

00

Dennis D Wells, Laboratory Director

Seattle	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244
	425.420.9200 fax 425.420.9210
Spokane	11922 E. 1st Avenue, Spokane Valley, WA 99206-5302
	509.924.9200 fax 509.924.9290
Portland	9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
	503.906.9200 fax 503.906.9210
Bend	20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
	541.383.9310 fax 541.382.7588
Anchorage	2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119
	907.563.9200 fax 907.563.9210

Project: None provided

Project Number: [none] Project Manager: Craig Schwyn **Reported:** 09/28/05 17:03

Volatile Organic Compounds by EPA Method 8260B - Quality Control

North Creek Analytical - Spokane

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5090090:	Prepared 09/13/05	Using GC/MS	Volatiles								
Blank (5090090-BL	LK1)										
1,1-Dichloropropene		ND	0.100	mg/kg wet							
cis-1,3-Dichloroproper	ne	ND	0.100	"							
trans-1,3-Dichloroprop	bene	ND	0.100	"							
Ethylbenzene		ND	0.100	"							
Hexachlorobutadiene		ND	0.100	"							
2-Hexanone		ND	1.00	"							
Isopropylbenzene		ND	0.100	"							
p-Isopropyltoluene		ND	0.100	"							
Methylene chloride		ND	1.00	"							
4-Methyl-2-pentanone		ND	1.00	"							
Methyl tert-butyl ether		ND	0.100	"							
Naphthalene		ND	0.200	"							
n-Propylbenzene		ND	0.100	"							
Styrene		ND	0.100	"							
1,1,1,2-Tetrachloroetha	ane	ND	0.100	"							
1,1,2,2-Tetrachloroetha	ane	ND	0.100	"							
Tetrachloroethene		ND	0.0300	"							
Toluene		ND	0.100	"							
1,2,3-Trichlorobenzene	2	ND	0.100	"							
1,2,4-Trichlorobenzene	5	ND	0.100	"							
1,1,1-Trichloroethane		ND	0.100	"							
1,1,2-Trichloroethane		ND	0.100	"							
Trichloroethene		ND	0.0300	"							
Trichlorofluoromethan	e	ND	0.100	"							
1,2,3-Trichloropropane	2	ND	0.100	"							
1,2,4-Trimethylbenzen	e	ND	0.100	"							
1,3,5-Trimethylbenzen	e	ND	0.100	"							
Vinyl chloride		ND	0.100	"							
o-Xylene		ND	0.200	"							
m,p-Xylene		ND	0.400	"							
Surrogate: Dibromoflu	oromethane	878		"	1000		87.8	44.8-146			
Surrogate: Toluene-d8		1010		"	1000		101	62.3-143			
Surrogate: 4-bromoflu	orobenzene	1090		"	1000		109	52.5-138			

North Creek Analytical - Spokane

00

Dennis D Wells, Laboratory Director

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

 425.420.9200
 fax 425.420.9210

 Spokane
 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302

 509.924.9200
 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503.906.9200
 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

 541.383.9310
 fax 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119

 907.563.9200
 fax 907.563.9210

Schwyn Environmental Services, LLC 4621 S. Custer Ct. Spokane, WA 99223 Project: None provided

Project Number: [none] Project Manager: Craig Schwyn **Reported:** 09/28/05 17:03

Volatile Organic Compounds by EPA Method 8260B - Quality Control

North Creek Analytical - Spokane

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5090090: Prepared 09/13/05	Using GC/MS	Volatiles								
LCS (5090090-BS1)										
Benzene	0.868	0.0300	mg/kg wet	1.00		86.8	72.5-130			
Chlorobenzene	0.936	0.100	"	1.00		93.6	78.4-120			
1,1-Dichloroethene	0.958	0.100	"	1.00		95.8	50-150			
Toluene	0.870	0.100	"	1.00		87.0	75.3-120			
Trichloroethene	0.901	0.0300	"	1.00		90.1	64.5-131			
Surrogate: Dibromofluoromethane	960		"	1000		96.0	44.8-146			
Surrogate: Toluene-d8	987		"	1000		98.7	62.3-143			
Surrogate: 4-bromofluorobenzene	1040		"	1000		104	52.5-138			
LCS Dup (5090090-BSD1)										
Benzene	0.897	0.0300	mg/kg wet	1.00		89.7	72.5-130	3.29	25	
Chlorobenzene	0.992	0.100	"	1.00		99.2	78.4-120	5.81	25	
1,1-Dichloroethene	1.03	0.100	"	1.00		103	50-150	7.24	25	
Toluene	0.939	0.100	"	1.00		93.9	75.3-120	7.63	25	
Trichloroethene	0.954	0.0300	"	1.00		95.4	64.5-131	5.71	25	
Surrogate: Dibromofluoromethane	974		"	1000		97.4	44.8-146			
Surrogate: Toluene-d8	990		"	1000		99.0	62.3-143			
Surrogate: 4-bromofluorobenzene	1050		"	1000		105	52.5-138			

Batch 5090093: Prepared 09/13/05 Using GC/MS Volatiles

lank (5090093-BLK1)			
Icetone	ND	25.0	ug/l
lenzene	ND	1.00	"
romobenzene	ND	1.00	"
romochloromethane	ND	1.00	"
romodichloromethane	ND	1.00	"
romoform	ND	1.00	"
romomethane	ND	5.00	"
Butanone	ND	10.0	"
utylbenzene	ND	1.00	"
-Butylbenzene	ND	1.00	"
t-Butylbenzene	ND	1.00	"
rbon disulfide	ND	1.00	"
rbon tetrachloride	ND	1.00	"
lorobenzene	ND	1.00	"

North Creek Analytical - Spokane

Dennis D Wells, Laboratory Director

Seattle	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244
	425.420.9200 fax 425.420.9210
Spokane	11922 E. 1st Avenue, Spokane Valley, WA 99206-5302
	509.924.9200 fax 509.924.9290
Portland	9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
	503.906.9200 fax 503.906.9210
Bend	20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
	541.383.9310 fax 541.382.7588
Anchorage	2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119
	907.563.9200 fax 907.563.9210

Project: None provided

Project Number: [none] Project Manager: Craig Schwyn **Reported:** 09/28/05 17:03

Volatile Organic Compounds by EPA Method 8260B - Quality Control

North Creek Analytical - Spokane

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5090093:	Prepared 09/13/05	Using GC/MS	Volatiles								
Blank (5090093-Bl	LK1)										
Chloroethane		ND	1.00	ug/l							
Chloroform		ND	1.00	"							
Chloromethane		ND	5.00	"							
2-Chlorotoluene		ND	1.00	"							
4-Chlorotoluene		ND	1.00	"							
Dibromochloromethar	ne	ND	1.00	"							
1,2-Dibromo-3-chloro	propane	ND	5.00	"							
1,2-Dibromoethane		ND	1.00	"							
Dibromomethane		ND	1.00	"							
1,2-Dichlorobenzene		ND	1.00	"							
1,3-Dichlorobenzene		ND	1.00	"							
1,4-Dichlorobenzene		ND	1.00	"							
Dichlorodifluorometh	ane	ND	1.00	"							
1,1-Dichloroethane		ND	1.00	"							
1,2-Dichloroethane (E	EDC)	ND	1.00	"							
1,1-Dichloroethene		ND	1.00	"							
cis-1,2-Dichloroethen	e	ND	1.00	"							
trans-1,2-Dichloroethe	ene	ND	1.00	"							
1,2-Dichloropropane		ND	1.00	"							
1,3-Dichloropropane		ND	1.00	"							
2,2-Dichloropropane		ND	1.00	"							
1,1-Dichloropropene		ND	1.00	"							
cis-1,3-Dichloroprope	ne	ND	1.00	"							
trans-1,3-Dichloropro	pene	ND	1.00	"							
Ethylbenzene		ND	1.00	"							
Hexachlorobutadiene		ND	1.00	"							
2-Hexanone		ND	10.0	"							
Isopropylbenzene		ND	1.00	"							
p-Isopropyltoluene		ND	1.00	"							
Methylene chloride		ND	5.00	"							
4-Methyl-2-pentanone	2	ND	10.0	"							
Methyl tert-butyl ethe	r	ND	1.00	"							
Naphthalene		ND	2.00	"							
n-Propylbenzene		ND	1.00	"							
Styrene		ND	1.00								

North Creek Analytical - Spokane

00

Dennis D Wells, Laboratory Director

Seattle	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244
	425.420.9200 fax 425.420.9210
Spokane	11922 E. 1st Avenue, Spokane Valley, WA 99206-5302
	509.924.9200 fax 509.924.9290
Portland	9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
	503.906.9200 fax 503.906.9210
Bend	20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
	541.383.9310 fax 541.382.7588
Anchorage	2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119
	907.563.9200 fax 907.563.9210

Project: None provided

Project Number: [none] Project Manager: Craig Schwyn **Reported:** 09/28/05 17:03

Volatile Organic Compounds by EPA Method 8260B - Quality Control

North Creek Analytical - Spokane

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5090093:	Prepared 09/13/05	Using GC/MS V	Volatiles								
Blank (5090093-BI	LK1)										
1,1,1,2-Tetrachloroeth	ane	ND	1.00	ug/l							
1,1,2,2-Tetrachloroeth	ane	ND	1.00	"							
Tetrachloroethene		ND	1.00	"							
Toluene		ND	1.00	"							
1,2,3-Trichlorobenzen	e	ND	1.00	"							
1,2,4-Trichlorobenzen	e	ND	1.00	"							
1,1,1-Trichloroethane		ND	1.00	"							
1,1,2-Trichloroethane		ND	1.00	"							
Trichloroethene		ND	1.00	"							
Trichlorofluoromethar	ie	ND	1.00	"							
1,2,3-Trichloropropan	e	ND	1.00	"							
1,2,4-Trimethylbenzer	ie	ND	1.00	"							
1,3,5-Trimethylbenzer	ne	ND	1.00	"							
Vinyl chloride		ND	0.200	"							
o-Xylene		ND	1.00	"							
m,p-Xylene		ND	2.00	"							
Surrogate: Dibromofli	voromethane	8.75		"	10.0		87.5	62.9-131			
Surrogate: Toluene-d8	3	10.4		"	10.0		104	58.7-133			
Surrogate: 4-bromoflu	orobenzene	10.9		"	10.0		109	60.8-140			
LCS (5090093-BS1)										
Benzene		9.79	1.00	ug/l	10.0		97.9	67.4-116			
Chlorobenzene		10.8	1.00	"	10.0		108	68.3-123			
1,1-Dichloroethene		11.6	1.00	"	10.0		116	67-137			
Toluene		10.5	1.00	"	10.0		105	68.8-139			
Trichloroethene		10.5	1.00	"	10.0		105	68.1-128			
Surrogate: Dibromofle	oromethane	10.3		"	10.0		103	62.9-131			
Surrogate: Toluene-d8	3	10.3		"	10.0		103	58.7-133			
Surrogate: 4-bromoflu	orobenzene	10.8		"	10.0		108	60.8-140			

North Creek Analytical - Spokane

00

Dennis D Wells, Laboratory Director

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

 425,420.9200
 fax 425.420.9210

 Spokane
 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302

 509.924.9200
 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503.906.9200
 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

 541.383.9310
 fax 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119

 907.563.9200
 fax 907.563.9210

Schwyn Environmental Services, LLC 4621 S. Custer Ct. Spokane, WA 99223 Project: None provided

Project Number: [none] Project Manager: Craig Schwyn **Reported:** 09/28/05 17:03

Volatile Organic Compounds by EPA Method 8260B - Quality Control

North Creek Analytical - Spokane

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5090093:	Prepared 09/13/05	Using GC/MS V	olatiles								
Matrix Spike (5090)093-MS1)					Source: S5	10014-01				
Benzene		9.68	1.00	ug/l	10.0	ND	96.8	59.7-129			
Chlorobenzene		10.4	1.00	"	10.0	ND	104	75.8-121			
1,1-Dichloroethene		11.2	1.00	"	10.0	ND	112	63.8-137			
Toluene		10.1	1.00	"	10.0	ND	101	84.5-127			
Trichloroethene		9.83	1.00		10.0	ND	98.3	75.5-129			
Surrogate: Dibromofluoromethane		9.33		"	10.0		93.3	62.9-131			
Surrogate: Toluene-d8	3	10.1		"	10.0		101	58.7-133			
Surrogate: 4-bromoflu	orobenzene	10.5		"	10.0		105	60.8-140			
Matrix Spike Dup	(5090093-MSD1)					Source: S5	10014-01				
Benzene		9.53	1.00	ug/l	10.0	ND	95.3	59.7-129	1.56	10	
Chlorobenzene		10.4	1.00	"	10.0	ND	104	75.8-121	0.00	11	
1,1-Dichloroethene		11.2	1.00	"	10.0	ND	112	63.8-137	0.00	14	
Toluene		9.95	1.00	"	10.0	ND	99.5	84.5-127	1.50	12	
Trichloroethene		9.83	1.00	"	10.0	ND	98.3	75.5-129	0.00	10	
Surrogate: Dibromofli	voromethane	9.21		"	10.0		92.1	62.9-131			
Surrogate: Toluene-d8	3	10.2		"	10.0		102	58.7-133			
Surrogate: 4-bromoflu	orobenzene	10.7		"	10.0		107	60.8-140			

North Creek Analytical - Spokane

00

Dennis D Wells, Laboratory Director

Project: None provided Project Number: [none]

Reported: 09/28/05 17:03

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

Project Manager: Craig Schwyn

North Creek Analytical - Spokane

		a	oporting		Spilco	Source		0/DEC		מס	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
							,				
Batch 5090010:	Prepared 09/02/05	Using Wet Chem									
Blank (5090010-BI	LK1)										
Total Alkalinity		ND	2.00	mg/l							
LCS (5090010-BS1)										
Total Alkalinity		9.83	2.00	mg/l	10.0		98.3	80-120			
Duplicate (5090010)-DUP1)					Source: S5	510006-01				
Total Alkalinity		155	2.00	mg/l		144			7.36	20	

North Creek Analytical - Spokane

Dennis D Wells, Laboratory Director

Schwyn Environmental Services, LLC	Project: None provided	
4621 S. Custer Ct.	Project Number: [none]	Reported:
Spokane, WA 99223	Project Manager: Craig Schwyn	09/28/05 17:03

Anions by EPA Method 300.0 - Quality Control

North Creek Analytical - Spokane

				-	-						
		R	eporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5090009:	Prepared 09/02/05	Using Wet Chem									
Blank (5090009-Bl	LK1)										
Chloride		ND	0.500	mg/l							
Nitrate-Nitrogen		ND	0.500								
LCS (5090009-BS1	1)										
Chloride		4.87	0.500	mg/l	5.00		97.4	80-120			
Nitrate-Nitrogen		4.77	0.500	"	5.00		95.4	80-120			
Duplicate (509000	9-DUP1)					Source: S5	10006-01				
Chloride		1.17	0.500	mg/l		1.13			3.48	20	
Nitrate-Nitrogen		0.560	0.500	"		0.560			0.00	20	
Batch 5090015:	Prepared 09/02/05	Using Wet Chem									
Blank (5090015-Bl	LK1)										
Sulfate		ND	0.500	mg/l							
LCS (5090015-BS1	l)										
Sulfate		4.90	0.500	mg/l	5.00		98.0	80-120			
Duplicate (509001	5-DUP1)					Source: S5	10006-01				
Sulfate		5.33	0.500	mg/l		5.23			1.89	20	

North Creek Analytical - Spokane

00

Dennis D Wells, Laboratory Director

Project: None provided

Project Number: [none] Project Manager: Craig Schwyn **Reported:** 09/28/05 17:03

Total Metals by EPA 200 Series Methods - Quality Control

North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5I15039:	Prepared 09/15/05	Using EPA 200 S	Series								
Blank (5115039-Bl	LK1)										
Potassium		ND	2.00	mg/l							
LCS (5115039-BS1	1)										
Potassium		10.2	2.00	mg/l	10.0		102	85-115			
LCS Dup (5115039	9-BSD1)										
Potassium		10.4	2.00	mg/l	10.0		104	85-115	1.94	20	
Duplicate (511503)	9-DUP1)					Source: B	510287-01				
Potassium		6.14	2.00	mg/l		6.29			2.41	20	
Matrix Spike (511	5039-MS1)					Source: B	510287-01				
Potassium		16.0	2.00	mg/l	10.0	6.29	97.1	80-120			

North Creek Analytical - Spokane

00

Dennis D Wells, Laboratory Director

Seattle	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244
	425.420.9200 fax 425.420.9210
Spokane	11922 E. 1st Avenue, Spokane Valley, WA 99206-5302
	509.924.9200 fax 509.924.9290
Portland	9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
	503.906.9200 fax 503.906.9210
Bend	20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
	541.383.9310 fax 541.382.7588
Anchorage	2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119
	907.563.9200 fax 907.563.9210
	_

Project: None provided Project Number: [none]

Project Manager: Craig Schwyn

Reported: 09/28/05 17:03

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

North Creek Analytical - Spokane

bel

Dennis D Wells, Laboratory Director

Conca				2000	 11720 North Creek Pkwy N Suite 400, Bothel 11922 E 1st Ave, Spokant 9405 SW Nimbus Ave, Beaverto 20332 Empire Ave, Ste FI, Ben W International Airport Rd Ste A10, Anchorag 	ll, WA 98011-8244 e, WA 99206-5302 nl, OR 97008-7145 id, OR 97701-5712 ge, AK 99502-1119	425-420-9200 509-924-9200 503-906-9200 541-383-9310 907-563-9200	FAX 420-9210 FAX 924-9290 FAX 906-9210 FAX 382-7588 FAX 563-9210	
	CHAIN OI	r CUST	QDY	REPORT		Work Order #:	55700	14	
NCA CLIENT: Schwyn	Enviro Sauce a			INVOICE TO:			URNAROUND RE	QUEST	
REPORT TO: ADDRESS: Call	Scharge			Claip	Schenge	ď	in Business Days anic & Inorganic Ana	+ lyses	
PHONE: 44 2127	FAX:			O. NUMBER:			Solution Hardenstein	1 	
PROJECT NAME:				PRESER	VATIVE				
PROJECT NUMBER:)] []	
SAMPLED BY:			77		ANALYSES	5	HER Specify.	er Ruch Charges.	
CLIENT SAMPLE IDENTHICATION	SAMPLING DATE/TIME	162 162 781	'res YN	\$0N		MATRIX (W, S, O)	# OF LOCATI ONT. COMME	ON / NCA NTS WO ID	1
1 MW-16	9/1/05 1500	X X	×	X		S	4		1
2 B12-RI-44	8/32/25 16:30	、 ۲				Ś			
3 B #7.KT	\$ 7/1/05/400	${}^{\times}$				3	2		1
4	•								r
S									
9									1
7									1
8									T
6									
10								,	
RELEASED BY: C S	Lelon FIRM: 5		D L	ATE: 9/2/05	RECEIVED BY: LONOL	A HIMIE	NO DA M	<u> 第一名</u> 1000	· · · · ·
RELEASED BY:	n vkn		D.	ATE:	RECEIVED BY:		DA		
PRINT NAME:	FIRM:		F	ME:	PRINT NAME:	HRM:	TIN	Æ	
ADDITIONAL REMARKS:							TEMP		i
COC REV 09/04							10.3	PAGE (OF /	

(805) 526-7270 fax

Columbia Analytical Services M An Employee - Owned Company

August 28, 2006

Mr. Craig Schwyn Schwyn Environmental Services 4621 S. Custer Court Spokane, WA 99223

RE: P2602168 Sudbury Rd Landfill

Dear Mr. Schwyn:

Enclosed are the results of the sample(s) submitted to our laboratory on August 10, 2006. For your reference, these analyses have been assigned our service request number P2602168.

All analyses were performed in accordance with our laboratory's quality assurance program. Results are intended to be considered in their entirety and apply only to the samples analyzed. Columbia Analytical Services is not responsible for use of less than the complete report. Your report contains 12 pages.

Columbia Analytical Services is certified by the California Department of Health Services, Certificate No. 2380; Arizona Department of Health Services, Certificate No. AZ0550; New Jersey Department of Environmental Protection, NELAP Laboratory Certification ID #CA009; New York State Department of Health, NELAP NY Lab ID No: 11221; Oregon Environmental Laboratory Accreditation Program, NELAP ID: CA20007; The American Industrial Hygiene Association, Laboratory #101661. Please contact me for specific method(s) and analyte(s) corresponding to a particular certification.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

Columbia Analytical Services, Inc.

Kelly M. Horischi

Kelly Horiuchi Project Manager

2655 Park Center	Drive, Suite A	Simi Valley, California 93065	(805) 526-716	1 (805) 526-7270 fax	Columbia Analytical Services MC
		LABORATO	RY REPORT		An Employee - Owned Company
Client:	SCHWY	N ENVIRONMENTAL SEF	RVICES	Date of Report:	08/28/06
Address:	4621 S. (Custer Court		Date Received:	08/10/06
	Spokane,	WA 99223		CAS Project No:	P2602168
Contact:	Mr. Craig	g Schwyn		Purchase Order:	Verbal
Client Proje	ect ID: Sudbu	ury Rd Landfill			
Two (2) Teo	llar Bag Sam	ples labeled:		"MW-15" "MW-	-16"

The samples were received at the laboratory under chain of custody on August 10, 2006. The samples were received intact. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time that they were received at the laboratory.

Volatile Organic Compound Analysis

The samples were analyzed by combined gas chromatography/mass spectrometry (GC/MS) for selected volatile organic compounds. The analyses were performed according to the methodology outlined in EPA Method TO-15. However, the method was modified to include the use of Tedlar bags. The analyses were performed by gas chromatography/mass spectrometry, utilizing a direct cryogenic trapping technique. The analytical system used was comprised of a Hewlett Packard Model 5972 GC/MS/DS interfaced to a Tekmar AutoCan Elite whole air inlet system/cryogenic concentrator. A 100% Dimethylpolysiloxane capillary column (RT_x -1, Restek Corporation, Bellefonte, PA) was used to achieve chromatographic separation.

The results of analyses are given on the attached data sheets. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for utilization of less than the complete report.

Reviewed and Approved:

Chancy Holts

Chaney Bolster Analytical Chemist Air Quality Laboratory

Reviewed and Approved:

Chris Parnell GCMS-VOA Team Leader Air Quality Laboratory

RESULTS OF ANALYSIS

Page 1 of 2

Schwyn Environmental Services Client: Client Sample ID: MW-15 Client Project ID: Sudbury Rd Landfill

CAS Project ID: P2602168 CAS Sample ID: P2602168-001

Test Code: Instrument ID: Analyst: Sampling Media: Test Notes:

EPA TO-15 Modified Tekmar AUTOCAN/HP5972/HP5890 II+/MS2 **Chaney Bolster** Tedlar Bag

Date Collected: 8/9/06 Date Received: 8/10/06 Date(s) Analyzed: 8/11/06 Volume(s) Analyzed: 0.15 Liter(s)

D.F. = 1.00

CAS#	Compound	Result µg/m ³	MRL µg/m ³	Result ppbV	MRL ppbV	Data Qualifier
75-71-8	Dichlorodifluoromethane (CFC 12)	650	6.7	130	1.3	M
74-87-3	Chloromethane	ND	6.7	ND	3.2	
75-01-4	Vinyl Chloride	220	6.7	87	2.6	
83-9	Bromomethane	ND	6.7	ND	1.7	
75-00-3	Chloroethane	36	6.7	14	2.5	
67-64-1	Acetone	45	33	19	14	M
75-69-4	Trichlorofluoromethane	ND	6.7	ND	1.2	
75-35-4	1,1-Dichloroethene	8.8	6.7	2.2	1.7	
75-09-2	Methylene chloride	55	6.7	16	1.9	
76-13-1	Trichlorotrifluoroethane	ND	6.7	ND	0.87	
75-15-0	Carbon Disulfide	20	6.7	6.5	2.1	
156-60-5	trans-1,2-Dichloroethene	ND	6.7	ND	1.7	
75-34-3	1,1-Dichloroethane	99	6.7	24	1.6	
1634-04-4	Methyl tert-Butyl Ether	ND	6.7	ND	1.8	
108-05-4	Vinyl Acetate	ND	6.7	ND	1.9	
78-93-3	2-Butanone (MEK)	ND	6.7	ND	2.3	
156-59-2	cis-1,2-Dichloroethene	65	6.7	16	1.7	
67-66-3	Chloroform	ND	6.7	ND	1.4	
107-06-2	1,2-Dichloroethane	ND	6.7	ND	1.6	
71-55-6	1,1,1-Trichloroethane	ND	6.7	ND	1.2	
71-43-2	Benzene	ND	6.7	ND	2.1	
56-23-5	Carbon Tetrachloride	ND	6.7	ND	1.1	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

- Matrix interference; results may be biased high.

3

RESULTS OF ANALYSIS Page 2 of 2

Schwyn Environmental Services Client: Client Sample ID: MW-15 Client Project ID: Sudbury Rd Landfill

CAS Project ID: P2602168 CAS Sample ID: P2602168-001

Test Code: Instrument ID: Analyst: Sampling Media: Test Notes:

EPA TO-15 Modified Tekmar AUTOCAN/HP5972/HP5890 II+/MS2 Chaney Bolster Tedlar Bag

Date Collected: 8/9/06 Date Received: 8/10/06 Date(s) Analyzed: 8/11/06 Volume(s) Analyzed: 0.15 Liter(s)

D.F. = 1.00

CAS #	Compound	Result µg/m ³	MRL µg/m ³	Result ppbV	MRL ppbV	Data Qualifier
78-87-5	1,2-Dichloropropane	12	6.7	2.5	1.4	
75-27-4	Bromodichloromethane	ND	6.7	ND	1.0	
79-01-6	Trichloroethene	190	6.7	36	1.2	
/061-01-5	cis-1,3-Dichloropropene	ND	6.7	ND	1.5	
108-10-1	4-Methyl-2-pentanone	ND	6.7	ND	1.6	
10061-02-6	trans-1,3-Dichloropropene	ND	6.7	ND	1.5	
79-00-5	1,1,2-Trichloroethane	ND	6.7	ND	1.2	
108-88-3	Toluene	28	6.7	7.4	1.8	
591-78-6	2-Hexanone	ND	6.7	ND	1.6	
124-48-1	Dibromochloromethane	ND	6.7	ND	0.78	
106-93-4	1,2-Dibromoethane	ND	6.7	ND	0.87	
127-18-4	Tetrachloroethene	550	6.7	82	0.98	
108-90-7	Chlorobenzene	ND	6.7	ND	1.4	
100-41-4	Ethylbenzene	ND	6.7	ND	1.5	
179601-23-1	<i>m,p</i> -Xylenes	24	6.7	5.4	1.5	
75-25-2	Bromoform	ND	6.7	ND	0.65	
100-42-5	Styrene	12	6.7	2.7	1.6	
95-47-6	o-Xylene	8.0	6.7	1.9	1.5	М
79-34-5	1,1,2,2-Tetrachloroethane	ND	6.7	ND	0.97	
541-73-1	1,3-Dichlorobenzene	ND	6.7	ND	1.1	
106-46-7	1,4-Dichlorobenzene	ND	6.7	ND	1.1	
95-50-1	1,2-Dichlorobenzene	ND	6.7	ND	1.1	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

* - Matrix interference; results may be biased high.

RESULTS OF ANALYSIS

Page 1 of 2

Schwyn Environmental Services Client: Client Sample ID: MW-16 Client Project ID: Sudbury Rd Landfill

CAS Project ID: P2602168 CAS Sample ID: P2602168-002

Test Code: Instrument ID: Analyst: Sampling Media: Tedlar Bag Test Notes:

EPA TO-15 Modified Tekmar AUTOCAN/HP5972/HP5890 II+/MS2 Chaney Bolster

Date Collected: 8/9/06 Date Received: 8/10/06 Date(s) Analyzed: 8/10/06 Volume(s) Analyzed: 0.20 Liter(s)

D.F. = 1.00

CAS#	Compound	Result µg/m³	MRL µg/m ³	Result ppbV	MRL ppbV	Data Qualifier
75-71-8	Dichlorodifluoromethane (CFC 12)	150	5.0	29	1.0	
74-87-3	Chloromethane	ND	5.0	ND	2.4	
75-01-4	Vinyl Chloride	ND	5.0	ND	2.0	
-83-9	Bromomethane	ND	5.0	ND	1.3	
75-00-3	Chloroethane	ND	5.0	ND	1.9	
67-64-1	Acetone	37	25	16	11	
75-69-4	Trichlorofluoromethane	16	5.0	2.9	0.89	
75-35-4	1,1-Dichloroethene	ND	5.0	ND	1.3	
75-09-2	Methylene chloride	46	5.0	13	1.4	
76-13-1	Trichlorotrifluoroethane	ND	5.0	ND	0.65	
75-15-0	Carbon Disulfide	15	5.0	4.7	1.6	
156-60-5	trans-1,2-Dichloroethene	ND	5.0	ND	1.3	
75-34-3	1,1-Dichloroethane	ND	5.0	ND	1.2	
1634-04-4	Methyl tert-Butyl Ether	ND	5.0	ND	1.4	
108-05-4	Vinyl Acetate	ND	5.0	ND	1.4	
78-93-3	2-Butanone (MEK)	ND	5.0	ND	1.7	
156-59-2	cis-1,2-Dichloroethene	ND	5.0	ND	1.3	
67-66-3	Chloroform	ND	5.0	ND	1.0	
107-06-2	1,2-Dichloroethane	ND	5.0	ND	1.2	
71-55-6	1,1,1-Trichloroethane	ND	5.0	ND	0.92	
71-43-2	Benzene	ND	5.0	ND	1.6	
56-23-5	Carbon Tetrachloride	ND	5.0	ND	0.80	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: Rc. Date: 824.06

5

RESULTS OF ANALYSIS Page 2 of 2

Schwyn Environmental Services Client: Client Sample ID: MW-16 Client Project ID: Sudbury Rd Landfill

CAS Project ID: P2602168 CAS Sample ID: P2602168-002

Test Code: Instrument ID: Analyst: Sampling Media: Test Notes:

EPA TO-15 Modified Tekmar AUTOCAN/HP5972/HP5890 II+/MS2 Chaney Bolster Tedlar Bag

Date Collected: 8/9/06 Date Received: 8/10/06 Date(s) Analyzed: 8/10/06 Volume(s) Analyzed: 0.20 Liter(s)

D.F. = 1.00

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
78-87-5	1,2-Dichloropropane	ND	5.0	ND	1.1	
75-27-4	Bromodichloromethane	ND	5.0	ND	0.75	
79-01-6	Trichloroethene	20	5.0	3.8	0.93	
061-01-5	cis-1,3-Dichloropropene	ND	5.0	ND	1.1	
108-10-1	4-Methyl-2-pentanone	ND	5.0	ND	1.2	
10061-02-6	trans-1,3-Dichloropropene	ND	5.0	ND	1.1	
79-00-5	1,1,2-Trichloroethane	ND	5.0	ND	0.92	
108-88-3	Toluene	23	5.0	6.0	1.3	
591-78-6	2-Hexanone	ND	5.0	ND	1.2	
124-48-1	Dibromochloromethane	ND	5.0	ND	0.59	
106-93-4	1,2-Dibromoethane	ND	5.0	ND	0.65	
127-18-4	Tetrachloroethene	ND	5.0	ND	0.74	
108-90-7	Chlorobenzene	ND	5.0	ND	1.1	
100-41-4	Ethylbenzene	6.5	5.0	1.5	1.2	
179601-23-1	<i>m,p</i> -Xylenes	23	5.0	5.4	1.2	
75-25-2	Bromoform	ND	5.0	ND	0.48	
100-42-5	Styrene	14	5.0	3.4	1.2	
95-47-6	o-Xylene	6.1	5.0	1.4	1.2	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.0	ND	0.73	
541-73-1	1,3-Dichlorobenzene	ND	5.0	ND	0.83	
106-46-7	1,4-Dichlorobenzene	ND	5.0	ND	0.83	
95-50-1	1,2-Dichlorobenzene	ND	5.0	ND	0.83	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 1 of 2

Schwyn Environmental Services Client: Client Sample ID: Method Blank Client Project ID: Sudbury Rd Landfill

CAS Project ID: P2602168 CAS Sample ID: P060810-MB

Test Code: Instrument ID: Analyst: Sampling Media: Test Notes:

EPA TO-15 Modified Tekmar AUTOCAN/HP5972/HP5890 II+/MS2 Chaney Bolster Tedlar Bag

Date Collected: NA Date Received: NA Date(s) Analyzed: 8/10/06 Volume(s) Analyzed: 1.00 Liter(s)

D.F. = 1.00

CAS#	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	1.0	ND	0.20	
74-87-3	Chloromethane	ND	1.0	ND	0.48	
75-01-4	Vinyl Chloride	ND	1.0	ND	0.39	
83-9	Bromomethane	ND	1.0	ND	0.26	
75-00-3	Chloroethane	ND	1.0	ND	0.38	
67-64-1	Acetone	ND	5.0	ND	2.1	
75-69-4	Trichlorofluoromethane	ND	1.0	ND	0.18	
75-35-4	1,1-Dichloroethene	ND	1.0	ND	0.25	
75-09-2	Methylene chloride	ND	1.0	ND	0.29	
76-13-1	Trichlorotrifluoroethane	ND	1.0	ND	0.13	
75-15-0	Carbon Disulfide	ND	1.0	ND	0.32	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	ND	0.25	
75-34-3	1,1-Dichloroethane	ND	1.0	ND	0.25	
1634-04-4	Methyl tert-Butyl Ether	ND	1.0	ND	0.28	
108-05-4	Vinyl Acetate	ND	1.0	ND	0.28	
78-93-3	2-Butanone (MEK)	ND	1.0	ND	0.34	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	ND	0.25	
67-66-3	Chloroform	ND	1.0	ND	0.20	
107-06-2	1,2-Dichloroethane	ND	1.0	ND	0.25	
71-55-6	1,1,1-Trichloroethane	ND	1.0	ND	0.18	
71-43-2	Benzene	ND	1.0	ND	0.31	
56-23-5	Carbon Tetrachloride	ND	1.0	ND	0.16	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

7

RESULTS OF ANALYSIS Page 2 of 2

Client: Schwyn Environmental Services Client Sample ID: Method Blank Client Project ID: Sudbury Rd Landfill

CAS Project ID: P2602168 CAS Sample ID: P060810-MB

EPA TO-15 Modified Test Code: Tekmar AUTOCAN/HP5972/HP5890 II+/MS2 Instrument ID: Analyst: Chaney Bolster Sampling Media: Tedlar Bag Test Notes:

Date Collected: NA Date Received: NA Date(s) Analyzed: 8/10/06 Volume(s) Analyzed: 1.00 Liter(s)

D.F. = 1.00

CAS #	Compound	Result µg/m ³	MRL µg/m ³	Result ppbV	MRL ppbV	Data Qualifier
78-87-5	1,2-Dichloropropane	ND	1.0	ND	0.22	
75-27-4	Bromodichloromethane	ND	1.0	ND	0.15	
79-01-6	Trichloroethene	ND	1.0	ND	0.19	
061-01-5	cis-1,3-Dichloropropene	ND	1.0	ND	0.22	
108-10-1	4-Methyl-2-pentanone	ND	1.0	ND	0.24	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	ND	0.22	
79-00-5	1,1,2-Trichloroethane	ND	1.0	ND	0.18	
108-88-3	Toluene	ND	1.0	ND	0.27	
591-78-6	2-Hexanone	ND	1.0	ND	0.24	
124-48-1	Dibromochloromethane	ND	1.0	ND	0.12	
106-93-4	1,2-Dibromoethane	ND	1.0	ND	0.13	
127-18-4	Tetrachloroethene	ND	1.0	ND	0.15	
108-90-7	Chlorobenzene	ND	1.0	ND	0.22	
100-41-4	Ethylbenzene	ND	1.0	ND	0.23	
179601-23-1	m,p-Xylenes	ND	1.0	ND	0.23	
75-25-2	Bromoform	ND	1.0	ND	0.097	
100-42-5	Styrene	ND	1.0	ND	0.23	
95-47-6	o-Xylene	ND	1.0	ND	0.23	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	ND	0.15	
541-73-1	1,3-Dichlorobenzene	ND	1.0	ND	0.17	
106-46-7	1,4-Dichlorobenzene	ND	1.0	ND	0.17	
95-50-1	1,2-Dichlorobenzene	ND	1.0	ND	0.17	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 1 of 2

Schwyn Environmental Services Client: Client Sample ID: Method Blank Client Project ID: Sudbury Rd Landfill

CAS Project ID: P2602168 CAS Sample ID: P060811-MB

Test Code: Instrument ID: Analyst: Sampling Media: Test Notes:

EPA TO-15 Modified Tekmar AUTOCAN/HP5972/HP5890 II+/MS2 **Chaney Bolster** Tedlar Bag

Date Collected: NA Date Received: NA Date(s) Analyzed: 8/11/06 Volume(s) Analyzed: 1.00 Liter(s)

D.F. = 1.00

CAS#	Compound	Result µg/m ³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	1.0	ND	0.20	
74-87-3	Chloromethane	ND	1.0	ND	0.48	
75-01-4	Vinyl Chloride	ND	1.0	ND	0.39	
-83-9	Bromomethane	ND	1.0	ND	0.26	
75-00-3	Chloroethane	ND	1.0	ND	0.38	
67-64-1	Acetone	ND	5.0	ND	2.1	
75-69-4	Trichlorofluoromethane	ND	1.0	ND	0.18	
75-35-4	1,1-Dichloroethene	ND	1.0	ND	0.25	
75-09-2	Methylene chloride	ND	1.0	ND	0.29	
76-13-1	Trichlorotrifluoroethane	ND	1.0	ND	0.13	
75-15-0	Carbon Disulfide	ND	1.0	ND	0.32	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	ND	0.25	
75-34-3	1,1-Dichloroethane	ND	1.0	ND	0.25	
1634-04-4	Methyl tert-Butyl Ether	ND	1.0	ND	0.28	
108-05-4	Vinyl Acetate	ND	1.0	ND	0.28	
78-93-3	2-Butanone (MEK)	ND	1.0	ND	0.34	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	ND	0.25	
67-66-3	Chloroform	ND	1.0	ND	0.20	
107-06-2	1,2-Dichloroethane	ND	1.0	ND	0.25	
71-55-6	1,1,1-Trichloroethane	ND	1.0	ND	0.18	
71-43-2	Benzene	ND	1.0	ND	0.31	
56-23-5	Carbon Tetrachloride	ND	1.0	ND	0.16	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 2 of 2

Schwyn Environmental Services Client: Client Sample ID: Method Blank Client Project ID: Sudbury Rd Landfill

CAS Project ID: P2602168 CAS Sample ID: P060811-MB

Test Code: Instrument ID: Analyst: Sampling Media: Test Notes:

EPA TO-15 Modified Tekmar AUTOCAN/HP5972/HP5890 II+/MS2 Chaney Bolster Tedlar Bag

Date Collected: NA Date Received: NA Date(s) Analyzed: 8/11/06 Volume(s) Analyzed: 1.00 Liter(s)

D.F. = 1.00

CAS #	Compound	Result µg/m ³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
78-87-5	1,2-Dichloropropane	ND	1.0	ND	0.22	
75-27-4	Bromodichloromethane	ND	1.0	ND	0.15	
79-01-6	Trichloroethene	ND	1.0	ND	0.19	
,061-01-5	cis-1,3-Dichloropropene	ND	1.0	ND	0.22	
108-10-1	4-Methyl-2-pentanone	ND	1.0	ND	0.24	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	ND	0.22	
79-00-5	1,1,2-Trichloroethane	ND	1.0	ND	0.18	
108-88-3	Toluene	ND	1.0	ND	0.27	
591-78-6	2-Hexanone	ND	1.0	ND	0.24	
124-48-1	Dibromochloromethane	ND	1.0	ND	0.12	
106-93-4	1,2-Dibromoethane	ND	1.0	ND	0.13	
127-18-4	Tetrachloroethene	ND	1.0	ND	0.15	
108-90-7	Chlorobenzene	ND	1.0	ND	0.22	
100-41-4	Ethylbenzene	ND	1.0	ND	0.23	
179601-23-1	m,p-Xylenes	ND	1.0	ND	0.23	
75-25-2	Bromoform	ND	1.0	ND	0.097	
100-42-5	Styrene	ND	1.0	ND	0.23	
95-47-6	o-Xylene	ND	1.0	ND	0.23	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	ND	0.15	
541-73-1	1,3-Dichlorobenzene	ND	1.0	ND	0.17	
106-46-7	1,4-Dichlorobenzene	ND	1.0	ND	0.17	
95-50-1	1,2-Dichlorobenzene	ND	1.0	ND	0.17	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Columbia Analytical Services, Inc.

Sample Acceptance Check Form

'ien	: Schwyn Environmental	Services		Work order:	P2602168			
moject	: Sudbury Rd Landfill							
	Sample(s) received on:	8/10/06	Date opened:	8/10/0	6 by:	MZ		
Note: This	form is used for all samples receiv	ed by CAS. The use of this for	m for custody seals is str	ictly meant to indicate	presence/absence a	and not as ar	indicatio	on of
complianc	e or nonconformity. Thermal presen	rvation and pH will only be eval	luated either at the reque	est of the client or as rec	quired by the meth	od/SOP.	D.I.	
						Yes	No	<u>N/A</u>
1	Were custody seals on out	side of cooler/Box?					X	
	Location of seal(s)?				_Sealing Lid?			×
	Were signature and date i	included?						X
	Were seals intact?							X
	Were custody seals on outs	ide of sample container?					X	
	Location of seal(s)?				Sealing Lid?			\times
	Were signature and date i	included?						X
	Were seals intact?							X
2	Were sample containers p	roperly marked with clien	nt sample ID?			X		
3	Did sample containers arr	ive in good condition?				\times		
4	Were chain-of-custody pag	pers used and filled out?				X		
5	Did sample container labo	els and/or tags agree with	custody papers?			×		
6	Was sample volume receiv	ved adequate for analysis?	2			X		
7	Are samples within specific	ed holding times?				X		
8	Was proper temperature (thermal preservation) of c	cooler at receipt adh	ered to?				×
		Cooler Temperature	NA	°C				
		Blank Temperature	NA	°C				
9	Is pH (acid) preservation	necessary, according to m	ethod/SOP or Clien	t specified informa	tion?			X
	Is there a client indication	that the submitted sample	es are pH (acid) pre	eserved?				X
	Were VOA vials checked	for presence/absence of a	ir bubbles?					X
	Does the client/method/SC)P require that the analyst	check the sample p	H and if necessary	y alter it?			X
10	Tubes: Are the t	ubes capped and intact?						X
	Do they	contain moisture?						X
11	Badges: Are the	badges properly capped a	ind intact?					X
	Are dual	bed badges separated and	l individually cappe	d and intact?				X
	Lab Samula ID	Required nH	nH	VOA Headenaco	Page	int / Pres	ervation	
	Lau dampie ID	nequireu pri	pm	· OF Eleauspace	Acce	when a rear	or cargings	

Lab Sample ID	(as received, if required)	pH (as received, if required)	(Presence/Absence)	Receipt / Preservation Comments
P2602168-001			NA	
P2602168-002			NA	

Explain any discrepancies: (include Iab sample ID numbers):

Columbia	Air Quality I 2665 Park C	Laboratory enter Drive,	Suite D		Chain of C	ustor' Recor	d & Analytic	cal Service	Request		Page _/	of
Analytical	Simi Valley,	California 9	3065	Requested	furnaround T	ime by Close of B	usiness Day (S	Surcharges) P	lease Circle:		CAS Project N	0.
Services NC	Phone (805)	526-7161		1 Day (100%) 2 Day (75%)) 3 Day (50%) 4 D	ay (35%) 5 Da	y (15%) 10 Da	ay-Standard		1260	268.
An Employee - Chened Company	Fax (805) 52	6-7270						CAS Contac	t:			. '
Reporting Information (Comp.	any Name & Add	dress)		P.O. # / Billin	g Information			-				ø
Schwyn Environmental Services		"Vices	Sann	K			Analy	sis Method	and/or An	alytes		
4621 S. C.s	fer Cy	L										
Attention: Specience	· LUA			Project Nam	0			-				
CI-cia	Selan	in		Sint	how Re	1 Landfil	1					
Phone	Fax			Project Num	ber	and summer of the fee		1				Comments
509 448 718	3 44	\$ 9 2	20									e.g. Preservative or
Email Address for Result Ren	porting	012	20	Sampler (Pri	nt & Sign)		11	- n				specific instructions
(tain	SAC	at 1		Crail	C./	6 -	1	1			1 1	
- crig	-	er i e	6	Sample Type	Jehner	1 P	V Le	0. 1				
Client Sample ID	Date Collected	Time Collected	Lab Sample No.	(Air/Liquid /Solid/Tube)	Canister ID (Bar Code#)	Flow Controller (Bar Code #)	Sample Volume	2				
Mu1-15	8/9/06	700		Air	0127		14					
Anisli	aid	1.20		1.	12110		11					
11/12/16	8900	1.20		All	010		12					
										1		
addenter and a statement of the statement of the								-				
							4					
									-		3	
								-				
Report Tier Levels - please s Tier I - (default if not specifier Tier II (QC forms)	d)	Tier III (QC Other	, Raw Data, S	Spectra) 10%	Surcharge		EDD required	Yes / No			Project Requi	rements (MRLs, QAPP
Relinquished by: (Signature)	m		Date:	Time:	Received by: (Signature)			Date:	Time:	-	× ,
Relinquished by: (Signature)	Feil	C 10	Date:	Time:	Received by (alloc			Date: Did ou	Time: OUUS		
Relinquished by: (Signature)			Date:	Time:	Received by: (Signature)			Date:	Time:	Cooler / Blan	k
-											Temperature	°C
• N)												

Landfill Gas Well Installation Report

Area 5 Landfill Gas Well Installation and Sampling Report Sudbury Road Landfill Walla Walla, Washington

January 22, 2010

Prepared for:

City of Walla Walla Solid Waste Division

Prepared by:

4621 South Custer Spokane, WA 99223 (509) 448-3187

TABLE OF CONTENTS

1.0	INTRODUCTION 1.1 BACKGROUND 1.2 SCOPE OF WORK	1-1 1-1 1-2
2.0	 GAS PROBE INSTALLATION AND SAMPLING METHODS 2.1 DRILLING PROCEDURES 2.2 WELL CONSTRUCTION 2.3 LANDFILL GAS MONITORING 	2-1 2-1 2-1 2-2
3.0	REPORT USE AND LIMITATIONS	3-1
4.0	REFERENCES	4-1

TABLES

Table	Title	

1 Area 5 Landfill Gas Sample Data

FIGURES

<u>Figure</u>	<u>Title</u>

- 1 Site Location
- 2 Area 5 Gas Probe Locations

APPENDICES

<u>Appendix</u>	Title
А	Boring Logs and Well Construction Details
В	Soil Laboratory Testing Report
С	Landfill Gas Monitoring & Analytical Reports

Page

1.0 INTRODUCTION

This gas well installation report was prepared to document the installation and sampling of two landfill gas wells within Area 5 of the City of Walla Walla (City) Washington Sudbury Road Landfill. The work was conducted by Schwyn Environmental Services, LLC (Schwyn) as part of the ongoing remedial investigation (RI). HWA GeoSciences, Inc. (HWA) and Shannon & Wilson, Inc. (S&W) were also involved in the gas probe installation and testing, respectively, as part of the Area 6 closure design investigation. The RI activities were conducted in general accordance with the Criteria for Municipal Solid Waste Landfills (chapter 173-351 WAC, Ecology 1993), and the Washington State Model Toxics Control Act (MTCA) regulations (chapter 173-340 WAC, Ecology 2007).

1.1 BACKGROUND

The Sudbury Road Landfill is a municipal solid waste (MSW) landfill operated by the City consistent with chapter 173-351 WAC. The landfill encompasses approximately 125 acres and is located on the western side of a 909.38 acre City-owned property (Figures 1 and 2). The City installed a groundwater monitoring system in 1976 and has monitored groundwater quality hydraulically upgradient and downgradient of the landfill since 1977. A number of monitoring system changes have occurred since inception. In 2001, monitoring well MW-15 was installed to replace MW-3 which is screened deeper into the aquifer. Numerous volatile organic compounds (VOCs) and inorganic constituents were detected at statistically elevated levels in groundwater samples collected from MW-15. An assessment monitoring program was initiated in September 2002 in accordance with WAC 173-351-440, and the results suggested that some of the VOC and inorganic constituents detected in the MW-15 samples were indicators of landfill impact to groundwater. Subsequent steps required by the solid waste regulation are described in WAC 173-351-440(6), which states that, when constituents are detected above background levels and the groundwater protection standard, the owner must initiate an assessment, selection, and implementation of corrective measures as required by the MTCA: In 2005, the City initiated an RI to address these requirements and to characterize the contamination for the purpose of developing and evaluating cleanup action alternatives. In January 2010, the Washington State Department of Ecology (Ecology) submitted an Early Notice Letter to the City (Ecology 2010) indicating that Ecology was aware that a release of hazardous substances had occurred at the Sudbury Road Landfill. The Early Notice Letter also indicated that the site would be added to the database of known or suspected contaminated sites, with further remedial actions to be taken in accordance with the MTCA.

In July 2009, J-U-B Engineers (JUB) was contracted by the City to design the closure for Area 6; including landfill gas extraction and cover systems. JUB teamed with HWA for geotechnical services,

S&W for landfill gas extraction system design, and Schwyn for hydrogeologic and remedial investigation coordination activities. JUB is taking into consideration that landfill gas extraction and stormwater designs for the Area 6 closure have the potential to impact Area 5. Therefore, JUB requested that the Area 5 landfill gas monitoring probes that were described in the RI Work Plan (LAI 2004) be installed at this time to complement JUB's closure design.

1.2 SCOPE OF WORK

Two landfill gas wells were installed and sampled in the Area 5 waste to accommodate Area 6 closure engineering, gather additional information for the ongoing RI, and provide future landfill gas monitoring points. The work was conducted consistent with the Landfill Gas Probe Work Plan submitted to the Walla Walla County Health Department (WWCHD) and Ecology on July 31, 2009 (Schwyn 2009).

The following scope items were performed during this study:

- Two borings were drilled within the Area 5 municipal solid waste (MSW) to evaluate and record the soil/MSW lithology and stratigraphy,
- Soil samples were collected from each boring and analyzed for lithologic properties.
- Gas wells were installed in each boring;
- Landfill gas samples were collected for laboratory analysis; and
- Preparation of this report documenting the methods and findings of the work.

2.0 GAS PROBE INSTALLATION AND SAMPLING METHODS

2.1 DRILLING PROCEDURES

Gas wells GW-5 and GW-6 were installed on August 6 and 7, 2009 under the observation of Schwyn and HWA. GW-5 was installed along the east side of Area 5 adjacent to Area 6 and GW-6 was installed at the northwest corner of Area 5 (Figure 2). The wells were drilled by Environmental West Exploration of Spokane, Washington, in accordance with the Washington State Minimum Standards for Construction and Maintenance of Wells, chapter 173-160 WAC.

The borings were advanced using sonic drilling methods to total depths that ranged from 37 ft (GW-6) to 47 ft (GW-5) below ground level. The Sonic drilling method employs the use of high-frequency, resonant energy to first advance a 10 foot-long, 4.25-inch diameter core barrel into the subsurface formation. A larger diameter drill casing (6.625-inch outside diameter) is then used to over-drill the core barrel and case the formation. The casing prevents formation collapse and allows the core barrel to be removed to the surface for sample removal. At surface, the material contents from within the core barrel were extruded into long, clear plastic bags, providing a continuous section of the penetrated formation. The sample liner was sliced open for lithologic evaluation of the core by the geologist. Soils were classified according to the Uniform Soil Classification System (USCS), and lithologic descriptions of the soil and MSW were recorded on a field log. The exploration logs are provided in Appendix A.

Each boring was advanced through the MSW into the underlying native soil. Non-Standard-Penetration Test (NSPT) samples were collected from the native soil at the bottom of the boring using a 3.25-inch outside diameter split-spoon sampler with brass liners. Each sample was driven 18 to 24 inches into the undisturbed soil with a 300-pound automatic hammer. The number of blows required for each 6-inches of penetration was recorded. One sample from each boring was submitted to HWA for laboratory analysis of particle size and hydraulic conductivity. Particle size distribution was determined in general accordance with ASTM D422, using the wet sieve and hydrometer method. The hydraulic conductivity of each sample was measured in general accordance with ASTM D 5084 (Flexiwall Triaxial Chamber Method). The soil laboratory testing report is provided in Appendix B.

2.2 WELL CONSTRUCTION

Gas wells were installed in each boring using flush-threaded ¹/₂-inch diameter, Schedule 80 PVC casing with a 5-ft long screen section. The bottom of the well screen was set approximately seven ft above the base of the MSW observed in each boring and consisted of 0.030-in machine slotted PVC capped with a flush threaded end cap. The PVC casing in each well extended approximately 2.5 ft above

surface and was completed with a laboratory stop cock. A two foot bentonite seal was placed in the bottom of each boring. Washed pea gravel was placed above the bentonite seal in the annular space around the screen and extended approximately 7 feet above the top of the screen. Bentonite chips were placed from the top of the gravel pack to within 1 foot of ground surface. The PVC casing was protected with a concrete surface pad, above ground locking steel vault, and three steel bollards. The location and elevation of the concrete pad and top of steel casing of each gas well was surveyed and .reported by JUB. Gas well construction details are recorded on the exploration logs and illustrated on Figures A1 and A2 provided in Appendix A.

2.3 LANDFILL GAS MONITORING

On August 12, 2009, landfill gas monitoring was conducted by an S&W representative with assistance by Schwyn. Samples were collected from GW-5 and GW-6 to assess the potential impact for vapor phase interchange of VOCs from landfill gas to groundwater. Prior to sample collection, three casing volumes of air were purged from each well using a pneumatic pump. A laboratory-calibrated rotometer was placed in line during the purge to measure the flow rate and track the purging process. After purging each well the concentration of methane, carbon dioxide and oxygen were measured with a calibrated Landtec GA-90 landfill gas sampling meter.

Landfill gas samples were then collected in laboratory prepared, pre-evacuated 6-liter stainless steel summa canisters. The summa canisters were attached to the wellhead using flexible tubing supplied by the laboratory, which was purged of ambient air during the well purging process. The summa canisters were opened to allow sample collection, then closed when full, labeled, and delivered under chain of custody to Columbia Analytical Services for total gaseous non-methane organics (TGNMO) as hexane by the U.S. Environmental Protection Agency (EPA) Method 25C, and VOCs by EPA method TO-15. The field measurements, TGNMO, and VOC results are summarized on Table 1. The laboratory report from Columbia Analytical Services, is provided in Appendix C.

3.0 REPORT USE AND LIMITATIONS

This report has been prepared for the exclusive use of the City of Walla Walla, Washington and J-U-B Engineers, Inc., for specific application to the Sudbury Road Landfill remedial investigation. The services were performed consistent with generally accepted professional consulting principals and practices within the limitations of scope, schedule, and budget. Findings, opinions, and recommendations contained in the report apply to conditions existing when the services were performed and are intended only for the client, and the purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to the performance of these services. We do not warrant the accuracy or information supplied by others or the use of segregated portions of this report. Schwyn warrants that within the limitations of scope, schedule, and budget, our services have been provided in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions as this project. We make no other warranty, either express or implied.

SCHWYN ENVIRONMENTAL SERVICES, LLC

Craig C. Schurgen

Craig C. Schwyn, L.HG. Principal Hydrogeologist

4.0 REFERENCES

Ecology. 2010. *Early Notice Letter for groundwater contamination at the Sudbury Road Landfill, 414 Sudbury Road, Walla Walla, WA 9932.* Letter from the Washington State Department of Ecology Waste 2 Resources Program to Mr. Craig Sivley, City of Walla Walla Public Works Director. January 7.

Ecology. 2007. *Model Toxics Control Act Cleanup Regulation Chapter 173-340 WAC*. Compiled by the Washington State Department of Ecology Toxics Cleanup Program. Publication No. 94-06. Revised November 2007.

Ecology. 1993. *Chapter 173-351 WAC, Criteria for Municipal Solid Waste Landfills*. Washington State Department of Ecology. October.

Ecology. 2002. *Chapter 173-50 WAC, Accreditation of Environmental Laboratories.* State of Washington Department of Ecology. October 1.

Ecology. 1990. Chapter 173-200 WAC, Water Quality Standards for Ground Waters of the State of Washington. Washington State Department of Ecology. December.

LAI. 2004. *Remedial Investigation Work Plan, Sudbury Road Landfill, Walla Walla, Washington.* Prepared for the City of Walla Walla. Landau Associates, Inc. April 22.

Schwyn. 2009. Landfill Gas Probe Installation Work Plan for the Sudbury Road Landfill Remedial Investigation, Walla Walla, Washington. Prepared for the Walla Walla Department of Health and Washington State Department of Ecology by Schwyn Environmental Services, LLC. July 31.

TABLE 1 AREA 5 LANDFILL GAS SAMPLE DATA City of Walla Walla Sudbury Road Landfill

Sample Location	GV	V-5	GW-6		
Field Measurements (concentration)	(Per	cent)	(Percent)		
Methane	61	.40	53.	60	
Carbon Dioxide	39.60		35.00		
Oxygen	0.1	20	0.00		
EPA Method 25 C Analyte (concentration)	(pp	mV)	(ppr	nV)	
Total Gaseous Nonmethane Organics as Hexane	15	50	70)	
EPA TO-15 Analyte (concentration)	(µg/m³)	(ppbV)	(µg/m³)	(ppbV)	
Propene	430 U	250 U	13,000	7,600	
Dichlorodifluoromethane (CFC 12)	430 U	88 U	7,900	1,600	
Chloromethane	430 U	210 U	150	74	
1,2-Dichloro-1,1,2,2-tetrafluoroethane (CFC 114)	430 U	62 U	1,600	230	
Vinyl Chloride	430 U	170 U	2,200	870	
Chloroethane	430 U	160 U	970	370	
Ethanol	10,000	5,300	6,600	3,500	
Trichlorofluoromethane	430 U	77 U	160	29	
2-Propanol (Isopropyl Alcohol)	5,100	2,100	1,300	530	
1,1-Dichloroethene	430 U	110 U	220	55	
Methylene Chloride	1,100	310	2,300	670	
trans-1,2-Dichloroethene	430 U	110 U	260	67	
1,1-Dichloroethane	430 U	110 U	470	120	
2-Butanone (MEK)	3,000	1,000	990	330	
cis-1,2-Dichloroethene	11,000	2,700	19,000	4,700	
Ethyl Acetate	870 U	240 U	1,200	350	
n-Hexane	1,900	530	5,800	1,700	
Tetrahydrofuran (THF)	790	270	580	200	
Benzene	940	290	1,700	540	
Cyclohexane	1,600	450	5,300	1,500	
Trichloroethene	2,000	380	3,200	600	
n-Heptane	8,800	2,100	14,000	3,500	
4-Methyl-2-pentanone	920	230	1,100	260	
Toluene	52,000	14,000	26,000	6,900	
n-Butyl Acetate	430 U	91 U	390	82	
n-Octane	7,200	1,500	8,000	1,700	
Tetrachloroethene	4,000	590	9,900	1,500	
Ethylbenzene	6,400	1,500	3,900	910	
m,p-Xylenes	15,000	3,500	8,200	1,900	
Styrene	430 U	100 U	230	55	
o-Xylene	3,300	760	2,400	550	
n-Nonane	4,700	890	4,900	940	
Cumene	430 U	88 U	250	50	
alpha-Pinene	8,300	1,500	8,400	1,500	
n-Propylbenzene	430 U	88 U	200	41	
4-Ethyltoluene	430 U	88 U	220	44	
1,3,5-Trimethylbenzene	450	92	230	47	
1,2,4-Trimethylbenzene	970	200	420	86	
d-Limonene	2,300	420	8,300	1,500	

Notes:

Samples collected by Schwyn and Shannon & Wilson, Inc. on August 12, 2009.

Field measurements taken with Landtec GA-90. Measurments in percent by volume. Gas samples collected using a 6 liter Summa Canister.

Samples analyzed by Columbia Analytical Services by EPA Methods 25C and TO-15.

U = Compound was analyzed for, but not detected above the laboratory reporting limit.

Only detected analytes in one or more of the samples are reported on table.

APPENDIX A

Boring Logs & Well Construction Details

SOIL CLASSIFICATION SYSTEM

Μ	AJOR DIVISIONS		GROUP SYMBOL	GROUP NAME
	GRAVEL	CLEAN	GW	WELL-GRADED GRAVEL, FINE TO COARSE GRAVEL
COURSE	GRAVEL	GRAVEL	GP	POORLY-GRADED GRAVEL
GRAINED SOILS	More than 50% of coarse	GRAVEL	GM	SILTY GRAVEL
	sieve	WITH FINES	GC	CLAYEY GRAVEL
	SAND		SW	WELL-GRADED SAND, FINE TO COARSE SAND
More than 50%	SAND	CLEAN SAND	SP	POORLY-GRADED SAND
200 sieve	More than 50% of coarse	SAND	SM	SILTY SAND
	sieve	WITH FINES	SC	CLAYEY SAND
			ML	SILT
FINE GRAINED SOILS	SILT AND CLAY liquid limit less than 50	INORGANIC	CL	CLAY
		ORGANIC	OL	ORGANIC SILT, ORGANIC CLAY
			MH	HIGH-PLASTICITY SILT, ELASTIC SILT
More than 50% passes No. 200 sieve	SILT AND CLAY liquid limit more than 50	INORGANIC	СН	HIGH-PLASTICITY CLAY, FAT CLAY
		ORGANIC	ОН	ORGANIC CLAY, ORGANIC SILT
н	IGHLY ORGANIC SOILS		PT	PEAT

Notes:

- 1. Field classification is based on visual examination of soil in general accordance with ASTM D2488.
- 2. Where laboratory index testing has been conducted, soil classification is based on ASTM D2487.
- 3. USCS group symbols correspond to the symbols used by the Unified Soil Classification System and ASTM Classification methods.

Soil Classification and Key

Exploration No. **GW-5**

	Sen	rices	>			Log of Exploration	Sheet	1 of	3
Start Finis Wea Geol Drilli Sam Ope	t Date: ther Co logist: (ng Met ple Me rator: E ect: W	8/6/20 8/6/2 2 8/6/2 2 7 8 2 7 8 2 8 2 8 2 8 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	009 2009 ns: W Schwyr 6-in dia 4-in. d West I Valla S	arm, Wi n a. Sonic lia. Core Exp. Sudbury	indy e v Road	Landfill Gas Well Completion Surface E Total Boring Depth (BGL): 48.5 ft Total Cas Completion: Locking steel above ground monur Seal (BGL): Bentonite chips, 2 to 18.3 ft and 35 Gravel pack (BGL): 5/8-minus rounded gravel, 1 Casing: 1/2-in. dia. flush threaded Sch. 80 PVC Screen (BGL): 0.03-in. slot Sch. 80 PVC, 25 to 3 I Landfill Onsite RI	Elevation: 841 sing Depth (B nent with con to 48.5 ft 8.3 to 35 ft 4, +2.80 to 25 30 ft BGL, with	.05 ft MSL TOC): 32.80 crete surface ft BGL h bottom cap	ft pad
		Ľ.		_					
mple Number	H Sample B Interval	w Counts / 6-i	mpler Type	pth (feet)	CS Symbol]	Comme	nts
Sai	Bot	Blo	Sar	Del	N	Sample Description		Drilling A	ction
	<u>0</u> 7 17		4-in Core 4-in Core	$ \begin{array}{c} - 1$	ML	Grayish brown Silt , trace sand, low plasticity, soft, c 2 ft recovery, saturated with drilling water	iry.		
	<u>17</u> 27		4-in Core	- 13- - 14- - 15- - 16- - 17- - 18- - 19-		Municipal Solid Waste. Medium dense MSW consisting of fabric, wood, yard waste, with 6" thick layers of silt interspe @ 17 to 20 ft: engine parts, metal, wire, and soil	paper, & ersed.		

Exploration No. GW-5

3

Sheet 2 of

Proj	ect: W	alla V	Valla S	udbury	Road	Landfill Onsite RI	
		Ľ.				Start Date: 8/6/2009 Surface Elevation	on: 841.05 ft MSL
er		-i-9			_	Finish Date: 8/7/2009	
g	al /al	ts /	/pe	()	oqu	Geologist: Craig Schwyn	
nZ	terv	un	τ,	eet	λu	Drilling Method: 6-in dia. Sonic	
ole	ы S	ŏ	olei	h (f	S S	Sample Method: 4-in. dia. Core	
am a	<u>Top</u>	MO	am	eptl	Ö		Comments
ő	Bot	В	ŝ	Ď	ΰ	Sample Description	Drilling Action
				<u> </u>		Municipal Solid Waste (cont.)	
						@ 20 to 22 ft: gray silt, moist, compact.	
				<u> </u>			
						@ 22 to 27 ft; black wood tires and decomposed MSW	
				<u> </u>			
				- 23 -			
				24			
				- 24 -			
				_ 25 _			
				20			
				<u> </u>			
	07		4			© 27 to 20 ft black paper wood and decomposed MCW	
	<u>21</u> 37		4-IN Core	<u> </u>		@ 27 to 30 It: black, paper, wood, and decomposed MSW.	
	57		Cole				
				<u> </u>			
				- 29 -			
				- 20-		@ 30 to 31 ft: silt.	
				_ 30 _			
				- 31 -		@ 31 to 36 ft: glass, rock, and paper.	
				01			
				<u> </u>			
				— 33 —			
				— 34 —			
				- 35 -		@ 35.5 to 36.5 ft: disturbed silt.	
				26			
				- 30 -	ML	Grayish brown Silt, with little clay and fine sand, stiff,	
	<u>37</u>		4-in	_ 37_		low plasticity, moist.	
	47		Core	<u> </u>		Some bedding structure observed in the silt with medium	
				- 38 -		to coarse sand.	
				— 39 —			

Total Depth: 48.5 ft.

Continued X

Exploration No. **GW-5**

Sheet <u>3</u> of <u>3</u>

Proj	ect: W	alla V	Valla S	udbury	Road	I Landfill Onsite RI	
ole Number	Sample Interval	Counts / 6-in.	oler Type	h (feet)	S Symbol	Start Date:8/6/2009Surface ElevationFinish Date:8/7/2009Geologist:Craig SchwynDrilling Method:6-in dia. SonicSample Method:4-in. dia. Core	n: 841.05 ft MSL
Sam	<u>Top</u> Bot	Blow	Sam	Deptl	JSC	Sample Description	Comments Drilling Action
S-1a S-1b S-1c	<u>47</u> 48.5	23 33 51	3-in SS	$\begin{array}{c} \textcircled{0} \\ -40 \\ -41 \\ -42 \\ -43 \\ -44 \\ -45 \\ -46 \\ -47 \\ -48 $	ML	Grey brown Silt, with little clay and sand, stiff, low plasticity, mo @ 42 ft: Light brown Light brown Silt with medium to coarse subangular basaltic sand interspersed with layers of brown, very dense, silt; moist. Grades to very fine Sand with silt and medium to coarse sand. Boring drilled to 47 feet and sampled to 48.5 feet. Gas well constructed in boring to 30 ft BGL.	Drilling Action ist.
Not	es:	1. Lith 2. Ref 3. BG 4. AG 5. TO 6. BT 6. BT 7. SS 8. SP	ologic d er to "Se L = belo L = abov C = top e DC = be = Split S T = Stan	escription bil Classif w ground ve ground of casing low top of Spoon Sau dard Pen	is and s ication a level level f casing mpler (2 etration	tratigraphic contacts are based on field interpretations and are approximate. and Key" figure for explanation of graphics and symbols. 2.42 -in. I.D.) Test Sampler (1.5 -in. I.D.)	

Exploration No. **GW-6**

2	Serv	rices	\geq			Shee	t <u>1</u> of <u>2</u>
Start Finis Wea Geol Drilli Sam Oper	t Date: the Date ther Co logist: 0 ng Met ple Me rator: E ect: W	8/6/20 8/7/2 2 anditio Craig S hod: 6 hod: 6 thod: nviro.	009 2009 ns: W Schwyr S-in dia 4-in. d West I Valla S	arm, Wi n I. Sonic ia. Core Exp.	ndy	Landfill Gas Well CompletionSurface Elevation: 79Total Boring Depth (BGL): 39 ftTotal Casing Depth (Completion:Locking steel above ground monument with coSeal (BGL):Bentonite chips, 1.5 to 13 ft and 30 to 39 ftGravel pack (BGL):5/8-minus rounded gravel, 13 to 30 ftCasing:1/2-in. dia. flush threaded Sch. 80 PVC, +2.48 to 2Screen (BGL):0.03-in. slot Sch. 80 PVC, 20 to 25 ft BGL, y	8.25 ft MSL BTOC): 27.48 ft phorete surface pad 0 ft BGL with bottom cap
		ċ					
Sample Number	g I Sample to Interval	Blow Counts / 6-ii	Sampler Type	Depth (feet)	USCS Symbol	Sample Description	Comments Drilling Action
	0	_	4-in		ML	Gravish brown Silt , trace sand, low plasticity, soft, dry.	
	7		Core	- 1 - - 2 - - 3 -		(Landfill Cover)	
				_ 4 _		Municipal Solid Waste @ about 3 to 5 ft.	
				- 5 -		Medium dense MSW consisting of wood, yard waste, with 6" thick layers of silt interspersed. Plug of paper @ 7 ft is dated 8/10/1980	
				- 6 -		Flug of paper @ 7 it is dated of 10/1960	
	<u>7</u> 17		4-in Core	- 7 -		@ 7 to 11 ft: 4 ft recovery Silt, paper, glass, and kitchen rubbish.	
				- 8 -			
				<u> </u>			
				— 10 —			
				_ 11_ _ 12_			
				— 13 —			
				— 14 —			
				— 15 —			
	17		4-in	- 16 -		@ 17 to 27 ft: tires, paper, cardboard, carpet pads, wood.	Rapid drilling
	27		Core	- 1/- - 18-		MSW interspersed with layers of silt. Material with sales prediction date of 1979.	
	-						

Exploration No. **GW-6**

2

Sheet 2 of

Proj	ect: W	alla W	Valla S	udbury	Road	Landfill Onsite RI	
le Number	Sample Interval	Counts / 6-in.	ler Type	(feet)	Symbol	Start Date:8/6/2009Surface ElevationFinish Date:8/7/2009Geologist:Craig SchwynDrilling Method:6-in dia. SonicSample Method:4-in. dia. Core	n: 798.25 ft MSL
dui	<u>Top</u>	ŇC	dm	spth	SS	· ·	Comments
Sa	Bot	B	Sa	De	n	Sample Description	Drilling Action
				_ 20 _		Municipal Solid Waste (cont.)	
	<u>27</u> 37		4-in Core	-20212223232325262728272829282930313232323232323233		@ 27 to 32 ft: black, paper, wood, metal, and decomposed M Newspaper dated October 1979.	ISW.
S-1a S-1b S-1c S-1d	<u>37</u> 39	<u>7</u> 9 <u>12</u> 15	3-in SS	- 33 - - 34 - - 35 - - 36 - - 37 - - 38 -	ML	 @ 36 to 37 ft: Olive brown Silt, with little clay and fine to medium grained sand lenses up to 1/2-in. thick, firm, very @ 37 to 39 ft: Olive Silt, with trace clay and some fine to medium grained sand, mottled, low plasticity, wet. 	moist.
						Boring drilled to 37 feet and sampled to 39 feet.	
						Gas well constructed in boring to 25 ft BGL.	
Not	es:	1. Lith 2. Ref 3. BGI 4. AGI 5. TO(6. BT(7. SS 8. SPT	ologic de er to "So L = belov L = abov C = top o DC = bel = Split S T = Stan	escription bil Classifi w ground re ground of casing low top of Spoon Sar dard Pen	s and s cation a level level casing mpler (2 etration	ratigraphic contacts are based on field interpretations and are approximate. Ind Key" figure for explanation of graphics and symbols. .42 -in. I.D.) Test Sampler (1.5 -in. I.D.)	

APPENDIX B

Soil Laboratory Testing Report

HWA GEOSCIENCES INC.

Geotechnical & Pavement Engineering • Hydrogeology • Geoenvironmental • Inspection & Testing

September 3, 2009 HWA Project No. 2009-000, Task 19

Schwyn Environmental Services 4621 South Custer Court Spokane, Washington 99223

Mr. Craig Schwyn, L.G. Attention:

SOIL LABORATORY TESTING REPORT Subject: **Gas Well Soil Samples** Area 5: Sudbury Road Landfill Walla Walla, Washington

Dear Mr. Schwyn:

As requested, HWA GeoSciences Inc. (HWA) performed laboratory testing for the above referenced project. Herein we present the results of our laboratory analyses summarized on figures 1 through 3, which are attached. The laboratory testing program was performed in general accordance with your instructions and appropriate ASTM Standards as outlined below.

SAMPLE INFORMATION: Two relatively undisturbed soil samples related to your project were delivered to our laboratory on August 18, 2009 by HWA GeoSciences Inc. personnel. The samples were delivered in two sealed 3" diameter brass tubes and were designated as GW-5, S-1b, 47.5-48 feet and GW-6, S-1a, 37-37.5 feet. These samples were obtained from the native soils immediately underlying refuse at these locations.

Based on manual-visual methods, the soils descriptions for the samples are as follows:

GW-5, S-1b, 47.5-48'	Dense, yellowish brown, SILT with fine sand (ML)
GW-6,-S-1a, 37-37.5'	Dense, yellowish brown, SILT (ML)

PARTICLE SIZE ANALYSIS OF SOILS: The particle size distribution of each sample was determined in general accordance with ASTM D422, using the wet sieve and hydrometer method. The results are summarized on the attached Particle Size Analysis report depicted on Figure 1, which also provides information regarding the classification of the sample and the moisture content at the time of testing.

HYDRAULIC CONDUCTIVITY OF SOIL (FLEXI-WALL TRIAXIAL CHAMBER METHOD): The hydraulic conductivity (also commonly referred to as coefficient of permeability) of both samples was measured in general accordance with method ASTM D 5084. 19730 - 64th Avenue W. Each sample was removed from its brass tube, trimmed, and weighed prior to placement within a flexible membrane within a triaxial pressure chamber. An

Suite 200 Lynnwood, WA 98036.5957 Tel: 425.774.0106

Fax: 425.774.2714 www.hwageo.com September 3, 2009 HWA Project No. 2009-000, Task 19

effective confining pressure of 25 psi was applied to simulate overburden pressure conditions. Saturation was induced by subjecting the test specimens to flow gradient ranging from about 13-18 generated by a back-pressure differential of 3 psi and testing was conducted until inflow was approximately equal to outflow and the hydraulic conductivity was essential steady. The test results are presented in detail on Figures 2 and 3.

CLOSURE: Experience has shown that test values on soil and other natural materials vary with each representative sample. This report should not be duplicated except in its entirety.

We appreciate the opportunity to provide laboratory testing services on this project. Should you have any questions or comments, or if we may be of further service, please call.

Sincerely,

HWA GEOSCIENCES INC.

Steven E. Greene, L.G., L.E.G. Vice-President

Attachments

Figure 1Particle Size AnalysisFigures 2-3Hydraulic Conductivity Test Reports

George Minassian, P.E., Ph.D. Geotechnical Engineer

HWAGRSZ 2009-000, TASK 19.GPJ 9/3/09

Hydraulic Conductivity (a.k.a. Permeability) Test Report Method ASTM D 5084

Date

100.2

Final saturation (%)

HWAGEOSCIENCES INC. Assumed Specific Gravity 2.68 Project Sudbury Road LF-Area 5 Client Schwyn Environmental Services Initial Sample Area (cm2) 41.85 Final Sample Area (cm2) 41.85 Initial Sample Length (cm) Project number 2009000 Task 18 12.76 Final Sample Length (cm) 12.76 08/19/2009 Initial Sample Volume (cc) 534.1 Final Sample Volume (cc) 534.1 Technician Initial moisture (%) 10.5 Final moisture (%) 21.4 ejb GW-5 Initial wet unit wt. (pcf) Final wet unit weight (pcf) Sample point 116.0 129.1 Final dry unit weight (pcf) Initial dry unit wt. (pcf) Sample number S-1b 105.0 106.4 Sample depth 47.5-48 Initial void ratio 0.593 Final void ratio 0.572 Sample description Light yellowish brown, SILT with fine sand. (ML) Initial porosity 0.372 Final porosity 0.364

Initial saturation (%)

47.4

		Running	Maximum % Deviation			Other
	Hydraulic	Average of	from Average		Effective	Information
	Conductivity	4 Readings	(should be less	Flow Ratio	Confining	Maximum Gradient
Run No.	(cm/s)	(cm/s)	than 25%)	(0.75 to 1.25 required)	Stress (psi)	18.0
1	3.8E-06	n.a.		1.03	3.5	Minimum Gradient
2	3.6E-06	n.a.		1.04	3.5	14.0
3	3.7E-06	n.a.		0.98	3.5	Max. Back Pressure (psi)
4	3.7E-06	3.7E-06	2.0%	0.98	3.5	25.0
5	3.9E-06	3.7E-06	5.9%	0.95	3.5	Min. Back Pressure (psi)
6	4.3E-06	3.9E-06	10.2%	0.94	3.5	25.0
7	4.7E-06	4.2E-06	13.2%	0.97	3.5	
Final	5.0E-06	4.5E-06] 11.9%	0.96	3.5	

Hydraulic Conductivity (a.k.a. Permeability) Test Report

Method ASTM D 5084

Project	Sudbury Road LF-Area 5	Assur
Client	Schwyn Environmental Services	Initial
Project number	2009000 Task 18	Initial
Date	08/19/2009	Initial
Technician	ejb	Initial
Sample point	GW-6	Initial
Sample number	S-1a	Initial
Sample depth	37-37.5	Initial
Sample description	Light yellowish brown, SILT (ML).	Initial

HWAGEOSCIENCES INC. Final Sample Area (cm2) 41.88

Final Sample Area (cm2)	41.88
Final Sample Length (cm)	12.83
Final Sample Volume (cc)	537.2
Final moisture (%)	24.6
Final wet unit weight (pcf)	123.0
Final dry unit weight (pcf)	98.7
Final void ratio	0.675
Final porosity	0.403
Final saturation (%)	96.5

		Running	Maximum % Deviation			Other
	Hydraulic	Average of	from Average		Effective	Information
	Conductivity	4 Readings	(should be less	Flow Ratio	Confining	Maximum Gradient
Run No.	(cm/s)	(cm/s)	than 25%)	(0.75 to 1.25 required)	Stress (psi)	17.8
1	5.5E-06	n.a.		1.00	3.5	Minimum Gradient
2	5.5E-06	n.a.		1.00	3.5	12.8
3	5.5E-06	n.a.		1.01	3.5	Max. Back Pressure (psi)
4	5.5E-06	5.5E-06	0.4%	1.01	3.5	25.0
5	5.6E-06	5.5E-06	1.5%	0.99	3.5	Min. Back Pressure (psi)
6	5.6E-06	5.5E-06	1.3%	1.00	3.5	25.0
Final	5.5E-06	5.5E-06	1.0%	1.01	3.5	

APPENDIX C

Landfill Gas Monitoring & Analytical Reports

ALASKA COLORADO FLORIDA MISSOURI OREGON WASHINGTON

January 14, 2010

Mr. Alex Fazarri JUB Engineers, Inc. 2810 Clearwater Avenue, Suite 201 Kennewick, WA 99336

RE: SUDBURY ROAD LANDFILL, FIELD STUDIES – GAS SAMPLING AT AREAS 5 AND 6, WALLA WALLA, WASHINGTON

Dear Mr. Fazarri:

Shannon & Wilson visited the Sudbury Road Landfill in Walla Walla, Washington, on August 12, 2009, to collect field data to assist in the design of a gas collection and control system (GCCS) for the landfill. Shannon & Wilson personnel collected gas samples from recently installed gas wells for laboratory analysis, monitored gas extracted from these wells for typical landfill gas constituents, and measured differential pressure exerted at the wellheads by gas generation within the refuse. This letter summarizes the monitoring and sampling procedures, and presents the monitoring results and the results of chemical analyses.

GAS WELLS

Between August 5 and 10, 2009, HWA Geosciences advanced five borings at the landfill using sonic drilling methods. The borings were advanced to investigate physical properties of the waste including density, moisture content, total depth of refuse, and cover soil thickness. Gas wells were installed into each of these five borings consisting of ½-inch-diameter straight and slotted casing. Three gas wells were installed at Area 6 (GW-2, GW-3, and GW-4) and two installed into Area 5 (GW-5 and GW-6). The slotted intervals (screened intervals) are 5-foot sections of perforated piping encapsulated by 15 to 20 feet of pea gravel. Outside of the screened interval gravel-pack, the boring annulus around the casing was sealed using hydrated bentonite chips. The gas wells were completed above ground with lockable steel pipe monuments. Additional details of the well installation and exploration performed by HWA Geosciences for JUB Engineers, dated October 23, 2009.

Mr. Alex Fazarri JUB Engineers, Inc. January 14, 2010 Page 2 of 4

GAS MONITORING

A Shannon & Wilson representative visited the site on August 12, 2009, to perform gas monitoring in support of the GCCS design. The field study was designed to provide background data for comparison to modeling results, which are used in the GCCS design and associated permit applications.

The gas monitoring process typically begins by purging gas from the well to reduce impacts to the monitoring or sampling results caused by stagnant air residing in the casing or gravel-pack. The Washington State Department of Ecology and the U.S. Army Corps of Engineers recommend purging one to two well volumes of gas prior to monitoring or sampling^{1,2}. Because the sampling event was scheduled soon after well installation, three well volumes of gas were purged from the wells using a pneumatic pump prior to reading gas concentrations or collecting gas samples. A laboratory-calibrated rotometer was placed in line during the purge to measure the flow rate and track the purging process. Total purge volumes are presented in Table 1. During the purging process, site personnel observed that gas could not be drawn from GW-4, likely due to an obstruction in the piping. Because repeated efforts failed, subsequent gas monitoring and sample collection were not performed at this well.

After the purging process, gas removed from the well is presumed to represent conditions within the refuse. The concentration of methane, carbon dioxide, and oxygen were measured using a calibrated portable measuring device (Landtec GA-90). The measured gas concentrations are presented in Table 1. The average concentration of landfill gas constituents were as follows:

- Area 6
 - Methane 57.3 percent
 - Carbon Dioxide 43.9 percent
 - Oxygen 0.1 percent

¹ Parametrix, Inc., 1987, Solid waste landfill design manual: Olympia, Wash., Washington State Department of Ecology, Report no. 87-13.

² U.S. Army Corps of Engineers, 2008, Engineering and design: landfill off-gas collection and treatment systems: Washington, D.C., Corps of Engineers Engineer Manual EM 1110-I-4016, available: <u>http://140.194.76.129/publications/eng-manuals/</u>.

SHANNON & WILSON, INC.

Mr. Alex Fazarri JUB Engineers, Inc. January 14, 2010 Page 3 of 4

- Area 5
 - Methane 57.5 percent
 - -- Carbon Dioxide 37.3 percent
 - Oxygen 0.1 percent

GAS SAMPLING

After the gas purge described in the previous section, samples of landfill gas were collected for laboratory analysis. The samples were collected into certified-clean and laboratory preevacuated stainless steel summa canisters. The supplied canisters are under vacuum so when opened, they draw a gas sample in until pressure equilibrium is achieved. The canisters were attached to the wellhead using flexible tubing supplied by the laboratory, which was purged of ambient air during the well purging process. The canisters were opened to allow sample collection, then closed when full, labeled, and delivered under chain of custody to Columbia Analytical Services for total gaseous non-methane organics as hexane by the U.S. Environmental Protection Agency (EPA) Method 25C, and volatile organic compounds by EPA method TO-15. The laboratory report from Columbia Analytical Services, which summarizes the results and laboratory quality assurance and control measures is provided an enclosure this letter. The average non-methane organic compound concentration in Area 6 was 270 parts per million by volume.

PRESSURE MONITORING

During biodegradation of the buried refuse, landfill gas is produced, which increases the subsurface pressure within the landfill cell. Throughout the day, normal fluctuations in atmospheric pressure cause changes in the pressure measured within the landfill, although with a delayed response. Shannon & Wilson field personnel performed five measurements throughout the day in order to evaluate an appropriate average differential pressure. The differential pressure is useful in verifying gas production estimates generated by modeling. The pressure differential measurements are presented in Table 2. The average pressure exerted above atmospheric in Area 6 was 2.8 inches of water. The average pressure above atmospheric in Area 5 was 0.3 inch of water.

21-1-12295-001

Mr. Alex Fazarri JUB Engineers, Inc. January 14, 2010 Page 4 of 4

LIMITATIONS

All work has been performed in accordance with generally accepted professional consulting principles and practices. We make no warranty, either express or implied. This report is solely for the use and information of the City of Walla Walla and its representatives. Any reliance on this report by a third party is at such party's sole risk.

Opinions, findings, and recommendations presented in this letter apply to conditions existing at the time our services were performed and are intended only for the City of Walla Walla and the purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to the performance of these services. We do not warrant the accuracy of information supplied by others or the use of segregated portions of this report. Shannon & Wilson, Inc. has prepared the enclosed "Important Information About Your Geotechnical/Environmental Report" to assist you and others in understanding the use and limitations of this information.

We appreciate the opportunity to be of service to you.

Sincerely,

SHANNON & WILSON, INC.

Jeren Davis, P.E., C.H.M.M. Senior Environmental Engineer

JMD:SWG/jmd

Enc: Table 1 – Gas Monitoring
 Table 2 – Pressure Monitoring
 Laboratory Analytical Report (Columbia Analytical Services)
 Important Information About Your Geotechnical/Environmental Report

SHANNON & WILSON, INC.

TABLE 1 GAS MONITORING

	Casing Length	1 Volume	3 Volumes	Flow Rate	Start Purge	End Purge	Purge Time	Total Purged	CH4	CO ₂	O 0	Flow
Probe ID	(feet)	(liters)	(liters)	(LPM)	(time)	(time)	(minutes)	(liters)	(%)	(%)	(%)	(LPM)
GW-5	33	1.3	3.8	0.50	13:30	13:38	∞	4.00	61.40	39.60	0.20	<0.2
GW-6	28	1.1	3.2	0.50	13:44	13:52	∞	4.00	53.60	35.00	0.00	<0.2
GW-2	98	3.8	11.3	0.60	11:12	11:31	19	11.40	55.60	44.00	0.10	1.60
GW-3	67	3.7	11.2	0.60	11:43	12:02	19	11.40	59.00	43.70	0.00	2.10
GW-4*	93	3.6	10.8	J	12:26	13:10	44	ı	1	1	1	I
Mataci		V										

Notes:

* Probe obstruction - purging was attempted unsuccessfully, sampling was not performed.

LPM = liters per minute

21-1-12295-001-L3-T1-T2.xlsx

21-1-12295-001

and a state of the second

......

ł

and a second of the second second

1

,,

SHANNON & WILSON, INC.

TABLE 2 PRESSURE MONITORING

	Screened	Refuse	Diff	erential	Dif	ferential	Dit	ferential	Dif	ferential	Dif	[erential
Probe ID	(feet)	(feet)	(time)	(in. WC)	t) (time)	(in. WC)	(time)	(in. WC)	(time)	(in. WC)	r (time)	(in. WC)
GW-5	25-30	13-36.5	8:20	0.25	10:12	0.07	13:28	0.49	14:49	0.63	15:50	0.66
GW-6	20-25	3-32.0	8:14	-0.02	10:26	-0.17	13:43	0.21	14:45	0.30	15:45	0.33
GW-2	90-95	2-103	9:10	1.99	10:45	1.83	11:12	1.89	14:20	2.48	15:32	2.61
GW-3	89-94	1.5-101	9:03	3.39	10:48	3.02	11:43	3.13	14:15	3.58	15:25	3.77
GW-4*	84.5-89.5	3-96.5	I	ı	1		1	I	1	I	1	I

Notes:

* Probe obstruction - purging was attempted unsuccessfully, sampling was not performed.

in. WC = pressure in units of inches of water column

21-1-12295-001

•

ļ

21-1-12295-001-L3-T1-T2.xlsx

.

Attachment to and part of Report 21-1-12295-001

Date: January 14, 2010

To: Mr. Alex Fazarri JUB Engineers, Inc.

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include: the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used: (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors which were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events, and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimation always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland

· · · · · ·

+ - 4

Columbia Analytical Services*

2655 Park Center Drive, Suite A

Simi Valley, CA 93065

805.526.7161 I 805.526.7270 fax

www.caslab.com

Page

LABORATORY REPORT

September 2, 2009

Jeremy Davis Shannon & Wilson, Incorporated 400 N 34th Street Seattle, WA 98103

RE: Walla Walla-Sudbury Landfill / 21-1-12295-001

Dear Jeremy:

Enclosed are the results of the samples submitted to our laboratory on August 18, 2009. For your reference, these analyses have been assigned our service request number P0902831.

All analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein. Your report contains <u>\Q</u> pages.

Columbia Analytical Services, Inc. is certified by the California Department of Health Services, NELAP Laboratory Certificate No. 02115CA; Arizona Department of Health Services, Certificate No. AZ0694; Florida Department of Health, NELAP Certification E871020; New Jersey Department of Environmental Protection, NELAP Laboratory Certification ID #CA009; New York State Department of Health, NELAP NY Lab ID No: 11221; Oregon Environmental Laboratory Accreditation Program, NELAP ID: CA20007; The American Industrial Hygiene Association, Laboratory #101661; Department of the Navy (NFESC); Pennsylvania Registration No. 68-03307; TX Commission of Environmental Quality, NELAP ID T104704413-08-TX. Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact me for information corresponding to a particular certification.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

Columbia Analytical Services, Inc.

ne Judison

Sue Anderson Project Manager

2655 Park Center Drive, Suite A

Simi Valley, CA 93065

www.caslah.com

Client:Shannon & Wilson, IncorporatedCAS Project No:P0902831Project:Walla Walla-Sudbury Landfill / 21-1-12295-001

CASE NARRATIVE

The samples were received intact under chain of custody on August 18, 2009 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

Total Gaseous Non-Methane Organics as Hexane Analysis

The samples were analyzed for total gaseous non-methane organics as hexane according to EPA Method 25C. The analyses included a triplicate sample injection analyzed by gas chromatography using flame ionization detection/total combustion analysis.

Volatile Organic Compound Analysis

The samples were also analyzed for selected volatile organic compounds in accordance with EPA Method TO-15 from the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), January, 1999. The analytical system was comprised of a gas chromatograph / mass spectrometer (GC/MS) interfaced to a whole-air preconcentrator.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for utilization of less than the complete report.

Folder: P0902831

Client: Shannon & Wilson, Incorporated Project: Walla Walla-Sudbury Landfill 21-1-12295-001

Detailed Sample Information

CAS Sample ID	Client Sample ID	Container Type	FIG 101	<u>Pi1</u> (psig)	<u>Pf1</u>	2i2 (pH	<u>Pi2</u> psig) Pf2	Cont ID	Order #	FC ID	Bottle <u>Order #</u>
P0902831-001.01	GW-5	6.0 L-Summa Canister Source	-1.4	-0.7	3.5			SC00109	14246		
P0902831-002.01	GW-6	6.0 L-Summa Canister Source	-1.5	-0.7	3.5			SC00033	14247	# 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
P0902831-003.01	SC0006	6.0 L-Summa Canister Source	-17.0	-8.3		1		SC00006	14246		

Miscellaneous Items - received

הם וומלחבטו	
רוומואוורמ	
וומרטות מ	
Cusicay	
	0.000

A Columbia	2655 P; Simi Va	ark Center Ilev Califo	Drive, Suit	A									
🖒 Analytical Service	S [*] Phone (Fax (80	(805) 526- (5) 526-72	7161 70	₩ -	quested Tur Day (100%)	naround Time 2 Day (75%) 3	in Busines: Day (50%)	s Days (Surchar 4 Day (35%) 5	ges) please (Day (25%) (10	irele Day - Standard	CAS Proje	gt No7 8 S1	
								CAS Contact					
Company Name & Address (Rep	orting Inform	lation)	Project Na	me /			-						
Shannon HUIlson	FUC FUC	,	1/2/1/2	Wally -	Sult	/ - IIII			Analysis Metho	I and/or Analytes		-	
400 N 344 St Sid	x (8	<u></u>	Project Nu	mber	h.n.m.	114 mar							
Suttle, NA 78103			-1-R	20221-	-401								
Project Manager			P.O. # / Bill	ing Informat	ion			57				Comments	
Jermy DAVI3			ط اا:Ci	王力	155 F	yn Erinm	Intra	0]				e.g. Actual Preservative	
Phone Fax			-		モット	s. custe	1 cout)			·····	or specific instructions	
306 . 695-6071		-	144(685)	5-3187		6 AM Jun	1323	~	2.				
Email Address for Result Reporti	bu		Sampler (I	^o rint & Sign)				÷1-	St			-	
Judd shandil. com			NUM	Rund L		M		- C	2				
Client Sample ID	Laboratory ID Number	Date Collected	Time Collected	Sample Type (Air/Tube/	Canister ID (Bar Code # -	Flow Controller (Bar Code -	Sample Volume		[ניין				
	-	1		Solid)	AC, SC, etc.)	тС #)							
GW-S		60/e1/8	1340	Hir .	60)00			8	8				
0-M0)	7	8/0/03	1353	Asr	00033			8	8				
	(-								
					-								
		2								•			
					-						-		
						-						-	
													-
										-			Access
												-	
											-		
Report Tier Levels - please select Tier 1 - (Results/Default if nof specified) \		Tier III - (Data	Validation Pac	kage) 10% Surc	harge		EDD required Y	s / No			Project Re	quirements (MRLs, QAPP)	
Tier II - (Results + QC)		Tier V - (client	specified)		((Type:		EDD Units				
Relinquished by: (Signature)			Date 1409	Time: 093	Beceved by	(Signature)		A A		1K/14/ TIDIES	0		
Relinquisherky: (Signature)	-		Date: 1	Time:	Received by	(Signature)			Dat	: 7° Time:	Cooler / B	ank	-
Relinquished by: (Signature)			Date:	Time:	Received by:	(Signature)		ľ	Date	: Time:	Temperatu	re	-

raye 📰 ui

Columbia Analytical Services, Inc. Sample Acceptance Check Form

Client:	Shannon & W	ilson, Incorporated	Sump	ie meeeptumee		Work order:	P0902831			
Project	: Walla Walla-S	Sudbury Landfill / 21-	1-12295-001		-					****
Sample	(s) received on:	08/18/09		-	Date opened:	08/18/09	by:	SSTAF	'LES	
<i>Note:</i> This	form is used for al	l samples received by CAS	. The use of this	form for custody	seals is strictly n	neant to indicate pres	sence/absence and i	not as an	indication	1 of
compliance	e or nonconformity	Thermal preservation and	l pH will only be	evaluated either a	t the request of t	he client and/or as re	quired by the meth	od/SOP.	No	<u>N/A</u>
1	Were sample	containers properly r	marked with c	lient sample II)?			X		
2	Container(s) s	supplied by CAS?						\mathbf{X}		
3	Did sample c	ontainers arrive in go	od condition?					X		
. 4	Was a chain-	of-custody provided?						\mathbf{X}		
5	Was the chain	n-of-custody properly	completed?					X		
6	Did sample c	ontainer labels and/o	r tags agree w	ith custody pap	pers?			X		
7	Was sample v	olume received adeq	uate for analys	sis?				×		
8	Are samples v	vithin specified holdin	ng times?					X		
9	Was proper te	emperature (thermal j	preservation)	of cooler at rec	eipt adhered	to?				X
	C	cooler Temperature		°C Blank	Гетрегаture		°C			
10	Was a trip bla	ank received?							\mathbf{X}	
	Trip blank s	upplied by CAS:								
11	Were custody	seals on outside of co	ooler/Box?						X	
	Location of	seal(s)?			11-12-11-12-12-12-12-12-12-12-12-12-12-1		_Sealing Lid?			\mathbf{X}
	Were signat	ure and date included	?							$[\times]$
	Were seals i	ntact?								\mathbf{X}
	Were custody	seals on outside of sa	mple containe	r?					\mathbf{X}	
	Location of	seal(s)?					_Sealing Lid?			X
	Were signat	ure and date included	?							X
	Were seals i	ntact?								X
12	Do containers	have appropriate pre	servation, ac	cording to met	hod/SOP or C	Client specified in	nformation?			\times
	Is there a clie	nt indication that the s	submitted sam	ples are pH p	reserved?					\mathbf{X}
	Were <u>VOA v</u>	ials checked for prese	ence/absence c	of air bubbles?						X
	Does the clie	nt/method/SOP requir	e that the anal	yst check the s	ample pH and	d if necessary al	ter it?			X
13	Tubes:	Are the tubes cap	ped and intact	t?		· · · ·				X
		Do they contain n	noisture?							\mathbf{X}
14	Badges:	Are the badges p	roperly cappe	d and intact?			. •			\times
	20080	Are dual bed bad	ges separated	and individual	v capped and	l intact?				$\left[\times\right]$
Tab	Samula ID	Containor	Doguirod	Bacaitrad	Adjusted	VOA Haadenae	a Racain	t / Pres	ormation	
Cau	Sample ID	Description	pH *	pH	pH	(Presence/Absence)		Commei	its	
P090283	1-001 01	6 0 L Source Can								
P090283	1-002.01	6.0 L Source Can								
P090283	1-003.01	6.0 L Source Can					Returned Can			

			I			l				

Explain any discrepancies: (include lab sample ID numbers):

*Required pH: Phenols/COD/NH3/TOC/TOX/NO3+NO2/TKN/T.PHOS, H2SO4 (pH<2); Metals, HNO3 (pH<2); CN (NaOH or NaOH/Asc Acid) (pH>12);

Diss. Sulfide, NaOH (pH>12); T. Sulfide, NaOH/ZnAc (pH>12) f090283]_Shamlon & Wilson, Incorporated_Walla Walla-Sudbury Landfill _ 21-1-12295-001 - Page 1 of 1

RESULTS OF ANALYSIS

Page 1 of 1

Client:Shannon & Wilson, IncorporatedClient Project ID:Walla Walla-Sudbury Landfill / 21-1-12295-001

CAS Project ID: P0902831

Total Gaseous Nonmethane Organics (TGNMO) as Hexane

Test Code:	EPA Method 25C
Instrument ID:	HP5890II/GC1/FID/TCA
Analyst:	Wade Henton
Sampling Media:	6.0 L Summa Canister(s)
Test Notes:	

Date(s) Collected: 8/12/09 Date Received: 8/18/09 Date Analyzed: 8/20/09

		Injection			Data
Client Sample ID	CAS Sample ID	Volume	Result	MRL*	Qualifier
		ml(s)	ppmV	ppmV	
GW-5	P0902831-001	0.50	150	0.22	
GW-6	P0902831-002	0.50	70	0.22	
Method Blank	P090820-MB	0.50	ND	0.17	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. * = For consistency purposes, the actual MRL was divided by six and reported as hexane.

_____Date: 8/3//64 IGAS.XLT - Page No.

RESULTS OF ANALYSIS

Page 1 of 3

Client:	Shannon & Wilson, Incorporated	
Client Sample ID:	GW-5	CAS Project ID: P0902831
Client Project ID:	Walla Walla-Sudbury Landfill / 21-1-12295-001	CAS Sample ID: P0902831-001
Test Code:	EPA TO-15	Date Collected: 8/12/09
Instrument ID:	Tekmar AUTOCAN/HP5972/HP5890 II+/MS2	Date Received: 8/18/09
Analyst:	Simon Cao	Date Analyzed: 8/24/09
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 0.0015 Liter(s)
Test Notes:		
Container ID:	SC00109	
	Initial Pressure (psig): -0.7	Final Pressure (psig): 3.5

Canister Dilution Factor: 1.30

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
115-07-1	Propene	ND	430	ND	250	
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	430	ND	88	
74-87-3	Chloromethane	ND	430	ND	210	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	430	ND	62	
75-01-4	Vinyl Chloride	ND	430	ND	170	
106-99-0	1,3-Butadiene	ND	430	ND	200	
74-83-9	Bromomethane	ND	430	ND	110	
75-00-3	Chloroethane	ND	430	ND	160	
64-17-5	Ethanol	10,000	4,300	5,300	2,300	
75-05-8	Acetonitrile	ND	430	ND	260	
107-02-8	Acrolein	ND	430	ND	190	
67-64-1	Acetone	ND	4,300	ND	1,800	
75-69-4	Trichlorofluoromethane	ND	430	ND	77	
67-63-0	2-Propanol (Isopropyl Alcohol)	5,100	870	2,100	350	
107-13-1	Acrylonitrile	ND	430	ND	200	
75-35-4	1,1-Dichloroethene	ND	430	ND	110	
75-09-2	Methylene Chloride	1,100	430	310	120	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	430	ND	140	
76-13-1	Trichlorotrifluoroethane	ND	430	ND	57	
75-15-0	Carbon Disulfide	ND	430	ND	140	
156-60-5	trans-1,2-Dichloroethene	ND	430	ND	110	
75-34-3	1,1-Dichloroethane	ND	430	ND	110	
1634-04-4	Methyl tert-Butyl Ether	ND	430	ND	120	
108-05-4	Vinyl Acetate	ND	4,300	ND	1,200	
78-93-3	2-Butanone (MEK)	3,000	430	1,000	150	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	4	Date: 8/3Vag
		TO15scan.xls - 75 Compounds - PageNo.:

RESULTS OF ANALYSIS

Page 2 of 3

Client:	Shannon & Wilson, Incorporated	
Client Sample ID:	GW-5	CAS Project ID: P0902831
Client Project ID:	Walla Walla-Sudbury Landfill / 21-1-12295-001	CAS Sample ID: P0902831-001
Test Code:	EPA TO-15	Date Collected: 8/12/09
Instrument ID:	Tekmar AUTOCAN/HP5972/HP5890 II+/MS2	Date Received: 8/18/09
Analyst:	Simon Cao	Date Analyzed: 8/24/09
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 0.0015 Liter(s)
Test Notes:		
Container ID:	SC00109	

-0.7

Initial Pressure (psig):

Final Pressure (psig):

3.5

Canister Dilution Factor: 1.30

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m³	µg/m³	ppbV	ppbV	Qualifier
156-59-2	cis-1,2-Dichloroethene	11,000	430	2,700	110	
141-78-6	Ethyl Acetate	ND	870	ND	240	
110-54-3	n-Hexane	1,900	430	530	120	
67-66-3	Chloroform	ND	430	ND	89	
109-99-9	Tetrahydrofuran (THF)	790	430	270	150	
107-06-2	1,2-Dichloroethane	ND	430	ND	110	
71-55-6	1,1,1-Trichloroethane	ND	430	ND	79	
71-43-2	Benzene	940	430	290	140	
56-23-5	Carbon Tetrachloride	ND	430	ND	69	
110-82-7	Cyclohexane	1,600	870	450	250	
78-87-5	1,2-Dichloropropane	ND	430	ND	94	
75-27-4	Bromodichloromethane	ND	430	ND	65	
79-01-6	Trichloroethene	2,000	430	380	81	
123-91-1	1,4-Dioxane	ND	430	ND	120	
80-62-6	Methyl Methacrylate	ND	870	ND	210	
142-82-5	n-Heptane	8,800	430	2,100	110	
10061-01-5	cis-1,3-Dichloropropene	ND	430	ND	95	
108-10-1	4-Methyl-2-pentanone	920	430	230	110	
10061-02-6	trans-1,3-Dichloropropene	ND	430	ND	95	
79-00-5	1,1,2-Trichloroethane	ND	430	ND	79	
108-88-3	Toluene	52,000	430	14,000	120	
591-78-6	2-Hexanone	ND	430	ND	110	
124-48-1	Dibromochloromethane	ND	430	ND	51	
106-93-4	1,2-Dibromoethane	ND	430	ND	56	
123-86-4	n-Butyl Acetate	ND	430	ND	91	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

8

RESULTS OF ANALYSIS

Page 3 of 3

Client: Client Sample ID:	Shannon & Wilson, Incorporated GW-5	CAS Project ID: P0902831 CAS Sample ID: P0902831-001
Client Project ID:	Walla Walla-Sudbury Landfill / 21-1-12295-00	1
Test Code:	EPA TO-15	Date Collected: 8/12/09
Instrument ID:	Tekmar AUTOCAN/HP5972/HP5890 II+/MS2	Date Received: 8/18/09
Analyst:	Simon Cao	Date Analyzed: 8/24/09
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 0.0015 Liter(s)
Test Notes: Container ID:	SC00109	
	Initial Pressure (psig): -0.7	Final Pressure (psig): 3.5
		Canister Dilution Factor:

		Result	MRL	Result	MRL	Data
CAS #	Compound	μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
111-65-9	n-Octane	7,200	430	1,500	93	
127-18-4	Tetrachloroethene	4,000	430	590	64	
108-90-7	Chlorobenzene	ND	430	ND	94	
100-41-4	Ethylbenzene	6,400	430	1,500	100	
179601-23-1	m,p-Xylenes	15,000	870	3,500	200	
75-25-2	Bromoform	ND	430	ND	42	
100-42-5	Styrene	ND	430	ND	100	
95-47-6	o-Xylene	3,300	430	760	100	
111-84-2	n-Nonane	4,700	430	890	83	
79-34-5	1,1,2,2-Tetrachloroethane	ND	430	ND	63	
98-82-8	Cumene	ND	430	ND	88	
80-56-8	alpha-Pinene	8,300	430	1,500	78	
103-65-1	n-Propylbenzene	ND	430	ND	88	
622-96-8	4-Ethyltoluene	ND	430	ND	88	
108-67-8	1,3,5-Trimethylbenzene	450	430	92	88	
95-63-6	1,2,4-Trimethylbenzene	970	430	200	88	
100-44-7	Benzyl Chloride	ND	430	ND	84	
541-73-1	1,3-Dichlorobenzene	ND	430	ND	72	
106-46-7	1,4-Dichlorobenzene	ND	430	ND	72	
95-50-1	1,2-Dichlorobenzene	ND	430	ND	72	
5989-27-5	d-Limonene	2,300	430	420	78	
96-12-8	1,2-Dibromo-3-chloropropane	ND	430	ND	45	
120-82-1	1,2,4-Trichlorobenzene	ND	430	ND	58	
91-20-3	Naphthalene	ND	430	ND	83	
87-68-3	Hexachlorobutadiene	ND	430	ND	41	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: ______ Date: ______ Date: ______ TO15scan.xls - 75 Compounds - PageNo.: 9

1.30

RESULTS OF ANALYSIS

Page 1 of 3

Client: Client Sample ID:	Shannon & Wilson, Incorporated GW-6	CAS Project ID: P0902831		
Client Project ID:	Walla Walla-Sudbury Landfill / 21-1-12295-001	CAS Sample ID: P0902831-002		
Test Code:	EPA TO-15	Date Collected: 8/12/09		
Instrument ID:	Tekmar AUTOCAN/HP5972/HP5890 II+/MS2	Date Received: 8/18/09		
Analyst:	Simon Cao	Date Analyzed: 8/24/09		
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 0.0050 Liter(s)		
Container ID:	SC00033			

-0.7

Initial Pressure (psig):

Final Pressure (psig): 3.5

Canister Dilution Factor: 1.30

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m ³	μg/m³	ppbV	ppb V	Qualifier
115-07-1	Propene	13,000	130	7,600	76	M1
75-71-8	Dichlorodifluoromethane (CFC 12)	7,900	130	1,600	26	
74-87-3	Chloromethane	150	130	74	63	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	1,600	130	230	19	
75-01-4	Vinyl Chloride	2,200	130	870	51	
106-99-0	1,3-Butadiene	ND	130	ND	59	
74-83-9	Bromomethane	ND	130	ND	33	
75-00-3	Chloroethane	970	130	370	49	
64-17-5	Ethanol	6,600	1,300	3,500	690	
75-05-8	Acetonitrile	ND	130	ND	77	
107-02-8	Acrolein	ND	130	ND	57	
67-64-1	Acetone	ND	1,300	ND	550	
75-69-4	Trichlorofluoromethane	160	130	29	23	
67-63-0	2-Propanol (Isopropyl Alcohol)	1,300	260	530	110	
107-13-1	Acrylonitrile	ND	130	ND	60	
75-35-4	1,1-Dichloroethene	220	130	55	33	
75-09-2	Methylene Chloride	2,300	130	670	37	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	130	ND	42	
76-13-1	Trichlorotrifluoroethane	ND	130	ND	17	
75-15-0	Carbon Disulfide	ND	130	ND	42	
156-60-5	trans-1,2-Dichloroethene	260	130	67	33	
75-34-3	1,1-Dichloroethane	470	130	120	32	
1634-04-4	Methyl tert-Butyl Ether	ND	130	ND	36	
108-05-4	Vinyl Acetate	ND	1,300	ND	370	
78-93-3	2-Butanone (MEK)	990	130	330	44	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

M1 = Matrix interference due to coelution with a non-target compound; results may be biased high.

10

RESULTS OF ANALYSIS

Page 2 of 3

Client:	Shannon & Wilson, Incorporated	
Client Sample ID:	GW-6	CAS Project ID: P0902831
Client Project ID:	Walla Walla-Sudbury Landfill / 21-1-12295-00	1 CAS Sample ID: P0902831-002
Test Code:	EPA TO-15	Date Collected: 8/12/09
Instrument ID:	Tekmar AUTOCAN/HP5972/HP5890 II+/MS2	Date Received: 8/18/09
Analyst:	Simon Cao	Date Analyzed: 8/24/09
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 0.0050 Liter(s)
Test Notes:		
Container ID:	SC00033	
	Initial Pressure (psig): -0.7	Final Pressure (psig): 3.5

Initial Pressure (psig):

Final Pressure (psig): 3.5

Canister Dilution Factor: 1.30

CAS #	Compound	Result	MRL	Result	MRL	Data
	. •	μg/m³	μg/m³	ppbV	ppbV	Qualifier
156-59-2	cis-1,2-Dichloroethene	19,000	130	4,700	33	
141-78-6	Ethyl Acetate	1,200	260	350	72	
110-54-3	n-Hexane	5,800	130	1,700	37	
67-66-3	Chloroform	ND	130	ND	27	
109-99-9	Tetrahydrofuran (THF)	580	130	200	44	
107-06-2	1,2-Dichloroethane	ND	130	ND	32	
71-55-6	1,1,1-Trichloroethane	ND	130	ND	24	
71-43-2	Benzene	1,700	130	540	41	
56-23-5	Carbon Tetrachloride	ND	130	ND	21	
110-82-7	Cyclohexane	5,300	260	1,500	76	
78-87-5	1,2-Dichloropropane	ND	130	ND	28	
75-27-4	Bromodichloromethane	ND	130	ND	19	
79-01-6	Trichloroethene	3,200	130	600	24	
123-91-1	1,4-Dioxane	ND	130	ND	36	
80-62-6	Methyl Methacrylate	ND	260	ND	64	
142-82-5	n-Heptane	14,000	130	3,500	32	
10061-01-5	cis-1,3-Dichloropropene	ND	130	ND	29	
108-10-1	4-Methyl-2-pentanone	1,100	130	260	32	
10061-02-6	trans-1,3-Dichloropropene	ND	130	ND	29	
79-00-5	1,1,2-Trichloroethane	ND	130	ND	24	
108-88-3	Toluene	26,000	130	6,900	35	
591-78-6	2-Hexanone	ND	130	ND	32	
124-48-1	Dibromochloromethane	ND	130	ND	15	
106-93-4	1,2-Dibromoethane	ND	130	ND	17	
123-86-4	n-Butyl Acetate	390	130	82	27	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	P	Date:	8/31/09	11
		TO15scan.xls	- 75 Compounds - PageNo.:	

RESULTS OF ANALYSIS

Page 3 of 3

Client: Client Sample ID: Client Project ID:	Shannon & Wilson, Incorporated GW-6 Walla Walla-Sudbury Landfill / 21-1-12295-001	CAS Project ID: P0902831 CAS Sample ID: P0902831-002
Test Code: Instrument ID: Analyst: Sampling Media: Test Notes: Container ID:	EPA TO-15 Tekmar AUTOCAN/HP5972/HP5890 II+/MS2 Simon Cao 6.0 L Summa Canister SC00033	Date Collected: 8/12/09 Date Received: 8/18/09 Date Analyzed: 8/24/09 Volume(s) Analyzed: 0.0050 Liter(s)

-0.7

Initial Pressure (psig):

Final Pressure (psig): 3.5

Canister Dilution Factor: 1.30

		Result	MRL	Result	MRL	Data
CAS #	Compound	μg/m³	μg/m³	ppbV	ppbV	Qualifier
111-65-9	n-Octane	8,000	130	1,700	28	
127-18-4	Tetrachloroethene	9,900	130	1,500	19	
108-90-7	Chlorobenzene	ND	130	ND	28	
100-41-4	Ethylbenzene	3,900	130	910	30	
179601-23-1	m,p-Xylenes	8,200	260	1,900	60	
75-25-2	Bromoform	ND	130	ND	13	
100-42-5	Styrene	230	130	55	31	
95-47-6	o-Xylene	2,400	130	550	30	
111-84-2	n-Nonane	4,900	130	940	25	
79-34-5	1,1,2,2-Tetrachloroethane	ND	130	ND	19	
98-82-8	Cumene	250	130	50	26	
80-56-8	alpha-Pinene	8,400	130	1,500	23	
103-65-1	n-Propylbenzene	200	130	41	26	
622-96-8	4-Ethyltoluene	220	130	44	26	
108-67-8	1,3,5-Trimethylbenzene	230	130	47	26	
95-63-6	1,2,4-Trimethylbenzene	420	130	86	26	
100-44-7	Benzyl Chloride	ND	130	ND	25	
541-73-1	1,3-Dichlorobenzene	ND	130	ND	22	
106-46-7	1,4-Dichlorobenzene	ND	130	ND	22	
95-50-1	1,2-Dichlorobenzene	ND	130	ND -	22	
5989-27-5	d-Limonene	8,300	130	1,500	23	
96-12-8	1,2-Dibromo-3-chloropropane	ND	130	ND	13	
120-82-1	1,2,4-Trichlorobenzene	ND	130	ND	18	
91-20-3	Naphthalene	ND	130	ND	25	
87-68-3	Hexachlorobutadiene	ND	130	ND	12	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

RESULTS OF ANALYSIS Page 1 of 3

Client:	Shannon & Wilson, Incorporated
Client Sample ID:	Method Blank
Client Project ID:	Walla Walla-Sudbury Landfill / 21-1-12295-001
Test Cada	EDA TO 15

Test Code:	EPA 10-15
Instrument ID:	Tekmar AUTOCAN/HP5972/HP5890 II+/MS2
Analyst:	Simon Cao
Sampling Media:	6.0 L Summa Canister
Test Notes:	

CAS Project ID: P0902831 CAS Sample ID: P090824-MB

Date Collected: NA Date Received: NA Date Analyzed: 8/24/09 Volume(s) Analyzed: 1.00 Liter(s)

Canister Dilution Factor: 1.00

CAS #	Compound	Result	MRL	Result	MRL pphV	Data Qualifier
115-07-1	Pronene	μg/m ND	<u> </u>	ND	0.29	Quinner
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	0.50	ND	0.10	
74-87-3	Chloromethane	ND	0.50	ND	0.24	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	0.50	ND	0.072	
75-01-4	Vinyl Chloride	ND	0.50	ND	0.20	
106-99-0	1,3-Butadiene	ND	0.50	ND	0.23	
74-83-9	Bromomethane	ND	0.50	ND	0.13	
75-00-3	Chloroethane	ND	0.50	ND	0.19	
64-17-5	Ethanol	ND	5.0	ND	2.7	
75-05-8	Acetonitrile	ND	0.50	ND	0.30	
107-02-8	Acrolein	ND	0.50	ND	0.22	
67-64-1	Acetone	ND	5.0	ND	2.1	
75-69-4	Trichlorofluoromethane	ND	0.50	ND	0.089	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	1.0	ND	0.41	
107-13-1	Acrylonitrile	ND	0.50	ND	0.23	
75-35-4	1,1-Dichloroethene	ND	0.50	ND	0.13	
75-09-2	Methylene Chloride	ND	0.50	ND	0.14	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.50	ND	0.16	
76-13-1	Trichlorotrifluoroethane	ND	0.50	ND	0.065	
75-15-0	Carbon Disulfide	ND	0.50	ND	0.16	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
156-60-5	trans-1,2-Dichloroethene	ND	0.50	ND	0.13	
75-34-3	1,1-Dichloroethane	ND	0.50	ND	0.12	
1634-04-4	Methyl tert-Butyl Ether	ND	0.50	ND	0.14	
108-05-4	Vinyl Acetate	ND	5.0	ND	1.4	
78-93-3	2-Butanone (MEK)	ND	0.50	ND	0.17	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: Date: 8/3/64 TO15scan.xls - 75 Compounds - PageNo.: 13
RESULTS OF ANALYSIS Page 2 of 3

Client:	Shannon & Wilson, Incorporated	
Client Sample ID:	Method Blank	CAS Project ID: P0902831
Client Project ID:	Walla Walla-Sudbury Landfill / 21-1-12295-001	CAS Sample ID: P090824-MB
Test Code:	EPA TO-15	Date Collected: NA
Instrument ID:	Tekmar AUTOCAN/HP5972/HP5890 II+/MS2	Date Received: NA
Analyst:	Simon Cao	Date Analyzed: 8/24/09
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:		

Canister Dilution Factor: 1.00

CAS #	Compound	Result	MRL	Result	MRL ppbV	Data Qualifier
156 50 2	cis 1.2 Dichloroethene	μg/m ND	$\frac{\mu g/m}{0.50}$	ND	0.13	Quinner
141 78 6	Ethyl A cetate	ND	1.0	ND	0.28	
110 54 3	n-Hevane	ND	0.50	ND	0.14	
67 66 2	Chloroform	ND	0.50	ND	0.10	
100.00.0	Tetrahydrofuran (THF)	ND	0.50	ND	0.17	
107.06.2	1.2 Diablaroathane	ND	0.50	ND	0.12	· · · · · · · · · · · · · · · · · · ·
107-00-2	1,1,1 Trichleroothane	ND	0.50	ND	0.092	
/1-55-0	Dangana	ND	0.50	ND	0.16	
/1-43-2	Gerhen Tetrechlarida	ND	0.50	ND	0.10	
56-23-5	Carbon Tetrachloride	ND	0.30	ND	0.080	
110-82-7		ND	1.0	ND	0.29	
78-87-5	1,2-Dichloropropane	ND	0.30	ND	0.11	
75-27-4	Bromodichloromethane	ND	0.50	ND	0.073	
79-01-6	Trichloroethene	ND	0.50	ND	0.093	
123-91-1	1,4-Dioxane	ND	0.50	ND	0.14	
80-62-6	Methyl Methacrylate	ND	1.0	ND	0.24	
142-82-5	n-Heptane	ND	0.50	ND	0.12	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	ND	0.11	
108-10-1	4-Methyl-2-pentanone	ND	0.50	ND	0.12	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	ND	0.11	
79-00-5	1,1,2-Trichloroethane	ND	0.50	ND	0.092	19.4 (d)
108-88-3	Toluene	ND	0.50	ND	0.13	
591-78-6	2-Hexanone	ND	0.50	ND	0.12	
124-48-1	Dibromochloromethane	ND	0.50	ND	0.059	
106-93-4	1,2-Dibromoethane	ND	0.50	ND	0.065	
123-86-4	n-Butyl Acetate	ND	0.50	ND	0.11	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By: ______ Date: ______ **9/3 1/09 14**

RESULTS OF ANALYSIS Page 3 of 3

Client:	Shannon & Wilson, Incorporated	CAS Project ID: P0902831	
Client Sample ID:	Method Blank	CAS Sample ID: P090824-MI	В
Client Project ID:	Walla Walla-Sudbury Landfill / 21-1-12295-001		
Test Code:	EPA TO-15	Date Collected: NA	
Instrument ID:	Tekmar AUTOCAN/HP5972/HP5890 II+/MS2	Date Received: NA	
Analyst:	Simon Cao	Date Analyzed: 8/24/09	
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Li	ter(s)
Test Notes:			

Canister Dilution Factor: 1.00

		Result	MRL	Result	MRL	Data
CAS #	Compound	μg/m³	μg/m³	ppbV	ppbV	Qualifier
111-65-9	n-Octane	ND	0.50	ND	0.11	
127-18-4	Tetrachloroethene	ND	0.50	ND	0.074	
108-90-7	Chlorobenzene	ND	0.50	ND	0.11	
100-41-4	Ethylbenzene	ND	0.50	ND	0.12	
179601-23-1	m,p-Xylenes	ND	1.0	ND	0.23	
75-25-2	Bromoform	ND	0.50	ND	0.048	
100-42-5	Styrene	ND	0.50	ND	0.12	
95-47-6	o-Xylene	ND	0.50	ND	0.12	
111-84-2	n-Nonane	ND	0.50	ND	0.095	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	ND	0.073	
98-82-8	Cumene	ND	0.50	ND	0.10	
80-56-8	alpha-Pinene	ND	0.50	ND	0.090	
103-65-1	n-Propylbenzene	ND	0.50	ND	0.10	
622-96-8	4-Ethyltoluene	ND	0.50	ND	0.10	
108-67-8	1,3,5-Trimethylbenzene	ND	0.50	ND	0.10	
95-63-6	1,2,4-Trimethylbenzene	ND	0.50	ND	0.10	
100-44-7	Benzyl Chloride	ND	0.50	ND	0.097	
541-73-1	1,3-Dichlorobenzene	ND	0.50	ND	0.083	
106-46-7	1,4-Dichlorobenzene	ND	0.50	ND	0.083	
95-50-1	1,2-Dichlorobenzene	ND	0.50	ND	0.083	
5989-27-5	d-Limonene	ND	0.50	ND	0.090	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.50	ND	0.052	
120-82-1	1,2,4-Trichlorobenzene	ND	0.50	ND	0.067	
91-20-3	Naphthalene	ND	0.50	ND	0.095	
87-68-3	Hexachlorobutadiene	ND	0.50	ND	0.047	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

P0902831	TO15	0908270821	RE.xls -	MBlank
			A.P.W.	

SURROGATE SPIKE RECOVERY RESULTS

Page 1 of 1

Client:Shannon & Wilson, IncorporatedClient Project ID:Walla Walla-Sudbury Landfill / 21-1-12295-001

CAS Project ID: P0902831

Test Code: Instrument ID: Analyst: Sampling Media: Test Notes: EPA TO-15 Tekmar AUTOCAN/HP5972/HP5890 II+/MS2 Simon Cao 6.0 L Summa Canister(s)

Date(s) Collected: 8/12/09 Date(s) Received: 8/18/09 Date(s) Analyzed: 8/24/09

	1,2-Dichloroethane-d4		Toluene-d8		Bromofluorobenzene		
CAS Sample ID	%	Acceptance	%	Acceptance	%	Acceptance	Data
-	Recovered	Limits	Recovered	Limits	Recovered	Limits	Qualifier
P090824-MB	85	70-130	102	70-130	104	70-130	
P090824-LCS	89	70-130	104	70-130	106	70-130	
P0902831-001	88	70-130	102	70-130	107	70-130	
P0902831-002	85	70-130	100	70-130	104	70-130	
	CAS Sample ID P090824-MB P090824-LCS P0902831-001 P0902831-002	1,2-Dichlor CAS Sample ID % Recovered 85 P090824-MB 85 P090824-LCS 89 P0902831-001 88 P0902831-002 85	1,2-Dichloroethane-d4 CAS Sample ID % Acceptance Recovered Limits P090824-MB 85 70-130 P090824-LCS 89 70-130 P0902831-001 88 70-130 P0902831-002 85 70-130	1,2-Dichloroethane-d4 Tolue CAS Sample ID % Acceptance % Recovered Limits Recovered P090824-MB 85 70-130 102 P090824-LCS 89 70-130 104 P0902831-001 88 70-130 102 P0902831-002 85 70-130 100	I,2-Dichloroethane-d4 Toluer-d8 CAS Sample ID % Acceptance % Acceptance Recovered Limits Recovered Limits Control P090824-MB 85 70-130 102 70-130 P090824-LCS 89 70-130 104 70-130 P0902831-001 88 70-130 102 70-130 P0902831-002 85 70-130 100 70-130	CAS Sample ID 1,2-Dichlorethane-d4 Tolued8 Bromofluo % Acceptance % Acceptance % Recovered Limits Recovered Limits Recovered P090824-MB 85 70-130 102 70-130 104 P090824-LCS 89 70-130 104 70-130 106 P0902831-001 88 70-130 102 70-130 107 P0902831-002 85 70-130 100 70-130 104	L2-Dichlor>thane-d4 Tolue-d8 Bromoflu->enzene CAS Sample ID % Acceptance % Acceptance % Acceptance P090824-MB 85 70-130 102 70-130 104 70-130 P090824-LCS 89 70-130 104 70-130 106 70-130 P0902831-001 88 70-130 102 70-130 107 70-130 P0902831-002 85 70-130 100 70-130 104 70-130

P0902831_T015_0908270821_RE.xls - Surrogates

Verified By:____

16 Date: TO15scan.xls - 75 Compounds - PageNo.

LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 3

Client:	Shannon & Wilson, Incorporated			
Client Sample ID:	Lab Control Sample	CAS Project ID: P090	02831	
Client Project ID:	Walla Walla-Sudbury Landfill / 21-1-12295-001	CAS Sample ID: P090824-LCS		
Test Code:	EPA TO-15	Date Collected: NA		
Instrument ID:	Tekmar AUTOCAN/HP5972/HP5890 II+/MS2	Date Received: NA		
Analyst:	Simon Cao	Date Analyzed: 8/24	/09	
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed:	NA Liter(s)	
Test Notes:				

					CAS	
CAS #	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
	•	ng	ng		Limits	Qualifier
115-07-1	Propene	26.3	24.5	93	58-134	
75-71-8	Dichlorodifluoromethane (CFC 12)	26.0	21.6	83	61-118	
74-87-3	Chloromethane	25.0	23.7	95	46-132	
	1,2-Dichloro-1,1,2,2-	26.0	24.0	06	65 122	
76-14-2	tetrafluoroethane (CFC 114)	26.0	24.9	90	03-122	
75-01-4	Vinyl Chloride	25.3	26.2	104	57-132	
106-99-0	1,3-Butadiene	26.8	30.2	113	66-161	
74-83-9	Bromomethane	25.8	27.1	105	67-130	
75-00-3	Chloroethane	25.5	25.2	99	68-123	
64-17-5	Ethanol	130	139	107	50-155	
75-05-8	Acetonitrile	26.0	25.9	100	48-148	
107-02-8	Acrolein	26.3	24.6	94	67-138	
67-64-1	Acetone	132	119	90	59-121	
75-69-4	Trichlorofluoromethane	26.3	22.1	84	67-132	
67-63-0	2-Propanol (Isopropyl Alcohol)	48.0	51.1	106	54-126	
107-13-1	Acrylonitrile	25.8	27.1	105	65-134	
75-35-4	1,1-Dichloroethene	27.5	28.4	103	70-123	
75-09-2	Methylene Chloride	26.8	24.7	92	66-121	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	27.0	28.6	106	63-149	
76-13-1	Trichlorotrifluoroethane	27.5	27.1	99	69-126	
75-15-0	Carbon Disulfide	26.0	22.6	87	66-115	
156-60-5	trans-1,2-Dichloroethene	25.5	24.8	97	69-125	
75-34-3	1,1-Dichloroethane	26.5	25.3	95	72-130	
1634-04-4	Methyl tert-Butyl Ether	26.3	23.8	90	72-132	
108-05-4	Vinyl Acetate	126	136	108	73-158	
78-93-3	2-Butanone (MEK)	26.8	26.5	99	68-126	

Verified By:_

P

LABORATORY CONTROL SAMPLE SUMMARY

Page 2 of 3

Client:	Shannon & Wilson, Incorporated	
Client Sample ID:	Lab Control Sample	CAS Project ID:
Client Project ID:	Walla Walla-Sudbury Landfill / 21-1-12295-001	CAS Sample ID:
Test Code:	EPA TO-15	Date Collected:
Instrument ID:	Tekmar AUTOCAN/HP5972/HP5890 II+/MS2	Date Received:
Analyst:	Simon Cao	Date Analyzed:
Sampling Media:	6.0 L Summa Canister	Volume(s) Analyzed:
Test Notes:		

P0902831 P090824-LCS

NA NA 8/24/09 NA Liter(s)

					CAS	
CAS #	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		ng	ng		Limits	Qualifier
156-59-2	cis-1,2-Dichloroethene	27.0	25.3	94	69-124	-
141-78-6	Ethyl Acetate	52.0	55.9	108	65-126	
110-54-3	n-Hexane	26.0	25.2	97	63-125	
67-66-3	Chloroform	27.5	24.4	89	68-126	
109-99-9	Tetrahydrofuran (THF)	26.5	25.0	94	65-124	
107-06-2	1,2-Dichloroethane	26.3	22.3	85	61-129	
71-55-6	1,1,1-Trichloroethane	26.0	23.0	88	69-127	
71-43-2	Benzene	25.8	22.4	87	68-122	
56-23-5	Carbon Tetrachloride	26.3	26.8	102	68-137	
110-82-7	Cyclohexane	51.8	48.8	94	68-121	
78-87-5	1,2-Dichloropropane	26.0	27.6	106	69-128	
75-27-4	Bromodichloromethane	26.3	26.3	100	71-131	
79-01-6	Trichloroethene	25.8	25.8	100	72-122	
123-91-1	1,4-Dioxane	26.0	28.1	108	73-127	
80-62-6	Methyl Methacrylate	52.8	52.7	100	80-133	
142-82-5	n-Heptane	25.8	26.2	102	69-126	
10061-01-5	cis-1,3-Dichloropropene	24.5	24.4	100	73-122	
108-10-1	4-Methyl-2-pentanone	26.8	27.2	101	67-122	
10061-02-6	trans-1,3-Dichloropropene	27.0	28.1	104	75-131	
79-00-5	1,1,2-Trichloroethane	26.0	28.2	108	76-125	
108-88-3	Toluene	26.8	24.0	90	74-119	
591-78-6	2-Hexanone	27.0	27.3	101	64-118	
124-48-1	Dibromochloromethane	28.3	29.0	102	79-129	
106-93-4	1,2-Dibromoethane	26.3	26.9	102	79-125	
123-86-4	n-Butyl Acetate	27.5	27.3	99	70-136	

Verified By:_____

2

Date: 8/31/49 TO15scan.xls - 75 Compounds - PageNo.:

18

LABORATORY CONTROL SAMPLE SUMMARY

Page 3 of 3

Shannon & Wilson, Incorporated **Client:** CAS Project ID: P0902831 Client Sample ID: Lab Control Sample Client Project ID: Walla Walla-Sudbury Landfill / 21-1-12295-001 CAS Sample ID: P090824-LCS Date Collected: NA Test Code: EPA TO-15 Tekmar AUTOCAN/HP5972/HP5890 II+/MS2 Date Received: NA Instrument ID: Date Analyzed: 8/24/09 Simon Cao Analyst: Volume(s) Analyzed: Sampling Media: 6.0 L Summa Canister

					CAS	
CAS #	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
	•	ng	ng	-	Limits	Qualifier
111-65-9	n-Octane	26.3	25.7	98	75-126	
127-18-4	Tetrachloroethene	25.3	26.1	103	72-125	
108-90-7	Chlorobenzene	26.5	24.9	94	74-121	
100-41-4	Ethylbenzene	26.3	24.7	94	76-120	
179601-23-1	m,p-Xylenes	51.5	46.2	90	75-120	
75-25-2	Bromoform	26.5	25.5	96	76-143	
100-42-5	Styrene	26.3	25.6	97	78-124	
95-47-6	o-Xylene	26.0	24.0	92	76-121	
111-84-2	n-Nonane	25.8	24.5	95	69-129	
79-34-5	1,1,2,2-Tetrachloroethane	27.0	28.1	104	77-126	
98-82-8	Cumene	25.3	23.1	91	78-125	
80-56-8	alpha-Pinene	24.8	24.3	98	78-125	
103-65-1	n-Propylbenzene	25.3	23.8	94	80-127	
622-96-8	4-Ethyltoluene	26.3	23.4	89	75-123	
108-67-8	1,3,5-Trimethylbenzene	26.5	24.7	93	76-124	
95-63-6	1,2,4-Trimethylbenzene	25.5	24.0	94	76-123	
100-44-7	Benzyl Chloride	26.8	29.5	110	80-137	
541-73-1	1,3-Dichlorobenzene	26.0	26.1	100	74-125	
106-46-7	1,4-Dichlorobenzene	26.3	25.1	95	74-126	
95-50-1	1,2-Dichlorobenzene	25.8	25.8	100	75-124	
5989-27-5	d-Limonene	26.5	26.3	99	66-129	
96-12-8	1,2-Dibromo-3-chloropropane	27.0	29.5	109	79-144	
120-82-1	1,2,4-Trichlorobenzene	27.3	26.5	97	70-139	
91-20-3	Naphthalene	25.0	27.0	108	69-141	
87-68-3	Hexachlorobutadiene	26.8	25.9	97	68-138	

19 Verified By: Date: TO15scan.xls - 75 Compounds - PageNo .:

NA Liter(s)

Test Notes:

APPENDIX D

Data Summary

Location	Sample ID	Sample Date	Conventionals	Metals	VOCs
Upgradient Wells					
MW-05	MW-5 Q1-91	03/01/1991	Х	Х	
MW-05	MW-5 Q2-91	06/01/1991	Х	Х	
MW-05	MW-5 Q3-91	09/01/1991	Х	Х	
MW-05	MW-5 Q4-91	12/01/1991	Х	Х	
MW-05	MW-5 Q1-92	03/01/1992	Х	Х	
MW-05	MW-5 Q2-92	06/01/1992	Х	Х	
MW-05	MW-5 Q3-92	09/01/1992	Х	Х	
MW-05	MW-5 Q4-92	12/01/1992	Х	Х	
MW-05	MW-5 Q1-93	03/30/1993	Х	Х	Х
MW-05	MW-5 Q2-93	04/13/1993			Х
MW-05	MW-5 Q2(Jun)-93	06/14/1993	Х	Х	Х
MW-05	MW-5 Q3-93	09/01/1993	Х	Х	Х
MW-05	MW-5 Q4- 93	12/01/1993	Х	Х	
MW-05	MW-5 Q1-94	03/01/1994	Х		
MW-05	MW-5 Q2-94	04/01/1994		Х	
MW-05	MW-5 Q3-94	08/01/1994	Х	Х	Х
MW-05	MW-5 Q3(Sept)-94	09/01/1994	Х	Х	Х
MW-05	MW-5 Q4-94	10/01/1994		Х	
MW-05	MW-5 Q4(Nov)-94	11/01/1994	Х	Х	Х
MW-05	MW-5 Q4(Dec)-94	12/01/1994	Х	Х	Х
MW-05	MW-5 Q1-95	01/01/1995	Х	Х	Х
MW-05	MW-5 Q1(Feb)-95	02/01/1995	Х	Х	Х
MW-05	MW-5 Q4-95	10/30/1995	Х		
MW-05	MW-5 Q4(Dec)-95	12/20/1995	Х	Х	Х
MW-05	MW-5 Q1-96	02/01/1996	Х		
MW-05	MW-5 Q2-96	05/01/1996	Х	Х	Х
MW-05	MW-5 Q3-96	09/01/1996	Х	Х	Х
MW-05	MW-5 Q4-96	10/01/1996	Х	Х	Х
MW-05	MW-5 Q1-97	03/24/1997	Х	Х	
MW-05	MW-5 Q2-97	06/24/1997	Х	Х	Х
MW-05	MW-5 Q3-97	09/11/1997	Х	Х	Х
MW-05	MW-5 Q4-97	11/25/1997	Х	Х	Х
MW-05	MW-5 Q1-98	03/25/1998	Х	Х	Х
MW-05	MW-5 Q3-98	09/21/1998	Х	Х	Х
MW-05	MW-5 Q4-98	12/30/1998	Х	Х	Х
MW-05	MW-5 Q1-99	03/03/1999	Х	Х	Х
MW-05	MW-5 Q2-99	06/14/1999	Х	Х	Х
MW-05	MW-5 Q1-00	03/15/2000	Х		Х
MW-05	MW-5 Q3-00	09/27/2000	Х		Х
MW-05	MW-5 Q3-01	09/06/2001	Х		Х
MW-05	MW-5 Q4-01	12/14/2001	X		X
MW-05	MW-5 Q1-02	03/27/2002	X		X
MW-05	MW-5 Q2-04	06/17/2004	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		X
MW-07	MW-7 Q3-98	07/01/1998			X
MW-07	MW-7 Q1-01	01/31/2001			X
MW-07	MW-7 Q3-10	07/15/2010			X
MW-07	MW-7 Q4-10	11/03/2010			X
MW-07	SI F-MW-07-GW-110510	11/05/2010	X	X	x
MW-07	SI F-MW-07-GW-021011	02/10/2011	X	X	X
MW-09	MW-9 Q1-93	03/30/1003	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	X
MW-09	MW-9 02-93	04/13/1003			× ×
14144-00	WINT - J & Z - J J	0001001000			~

Location	Sample ID	Sample Date	Conventionals	Metals	VOCs
Upgradient Wells Con	tinued				
MW-09	MW-9 Q2(Jun)-93	06/14/1993			Х
MW-09	MW-9 Q3-93	08/31/1993			Х
MW-09	MW-9 Q3(Sept)-93	09/01/1993			Х
MW-09	MW-9 Q1-98	02/01/1998			Х
MW-09	MW-9 Q2-98	07/01/1998			Х
MW-09	MW-9 Q1-02	01/31/2002			Х
MW-09	MW-9 Q3-10	07/15/2010			Х
MW-09	SLF-MW-09-GW-110410	11/04/2010	Х	Х	Х
MW-09	MW-9 Q4-10	11/04/2010			Х
MW-09	SLF-MW-09-GW-021011	02/10/2011	Х	Х	Х
MW-10	MW-10 Q1-98	02/01/1998			Х
MW-10	MW-10 Q3-98	07/01/1998			Х
MW-10	MW-10 Q1-02	03/27/2002			Х
MW-10	MW-10 Q3-10	07/15/2010			Х
MW-10	MW-10 Q4-10	11/04/2010			Х
MW-10	SLF-MW-10-GW-110410	11/04/2010	Х	Х	Х
MW-10	SLF-MW-10-GW-021011	02/10/2011	Х	Х	Х
MW-12	MW-12 Q1-95	03/01/1995	Х	Х	Х
MW-12	MW-12 Q3-95	07/01/1995	Х	Х	Х
MW-12	MW-12 Q3(Sept)-95	09/20/1995	Х	Х	Х
MW-12	MW-12 Q4t-95	10/30/1995	Х	Х	Х
MW-12	MW-12 Q4(Nov)-95	11/29/1995	Х	Х	
MW-12	MW-12 Q4(Dec)-95	12/20/1995	Х	Х	Х
MW-12	MW-12 Q1-96	02/01/1996	Х	Х	Х
MW-12	MW-12 Q2-96	05/29/1996	Х	Х	Х
MW-12	MW-12 Q2(Jun)-96	06/01/1996			Х
MW-12	MW-12 Q3-96	09/01/1996	Х	Х	Х
MW-12	MW-12 Q4-96	10/01/1996	Х	Х	Х
MW-12	MW-12 Q1-97	03/24/1997	Х	Х	Х
MW-12	MW-12 Q2-97	06/24/1997	Х	Х	Х
MW-12	MW-12 Q3-97	09/11/1997	Х	Х	
MW-12	MW-12 Q4-97	11/25/1997	Х	Х	Х
MW-12	MW-12 Q1-98	03/25/1998	Х	Х	Х
MW-12	MW-12 Q2-98	06/29/1998	Х	Х	
MW-12	MW-12 Q3-98	09/21/1998	Х	Х	Х
MW-12	MW-12 Q4-98	12/30/1998	Х	Х	Х
MW-12	MW-12 Q1-99	03/03/1999	Х	Х	Х
MW-12	MW-12 Q2-99	06/14/1999	Х	Х	Х
MW-12	MW-12 Q3-99	09/22/1999	Х	Х	Х
MW-12	MW-12 Q4-99	12/09/1999	Х	Х	Х
MW-12	MW-12 Q1-00	03/15/2000	Х	Х	Х
MW-12	MW-12 Q2-00	06/21/2000	Х	Х	Х
MW-12	MW-12 Q3-00	09/27/2000	Х	Х	Х
MW-12	MW-12 Q4-00	12/05/2000	Х	Х	Х
MW-12	MW-12 Q1-01	03/27/2001	Х	Х	Х
MW-12	MW-12 Q2-01	06/27/2001	Х	Х	Х
MW-12	MW-12 Q3-01	09/06/2001	Х	Х	Х
MW-12	MW-12 Q4-01	12/14/2001	Х	Х	Х
MW-12	MW-12 Q1-02	03/27/2002	Х	Х	Х
MW-12	MW-12 Q2-02	06/13/2002	Х	Х	Х
MW-12	MW-12 Q3-02	09/18/2002	Х	Х	Х

Upgendlent Wells Commund Normality MW-12 MW-12 Q4-02 12/17/2002 X X MW-12 MW-12 Q4-03 002/26/2003 X X X MW-12 MW-12 Q4-03 002/26/2003 X X X MW-12 MW-12 Q4-03 002/26/2003 X X X MW-12 MW-12 Q4-03 12/18/2003 X X X MW-12 MW-12 Q4-04 00/17/2004 X X X MW-12 MW-12 Q4-04 12/18/2004 X X X MW-12 MW-12 Q4-04 12/18/2004 X X X MW-12 MW-12 Q4-05 003/20/2005 X X X MW-12 MW-12 Q4-06 003/20/2006 X X X MW-12 MW-12 Q3-06 008/21/2006 X X X MW-12 MW-12 Q3-07 002/2/2006 X X X MW-12 MW-12 Q3-07 002/2/2006	Location	Sample ID	Sample Date	Conventionals	Metals	VOCs
NM-12 NM-12 0-02 12/17/2002 X X X NM-12 NM-12 02-03 06/25/2003 X X X NM-12 NM-12 02-03 06/25/2003 X X X NM-12 NM-12 03-03 06/25/2003 X X X NM-12 NM-12 04-03 12/15/2004 X X X NM-12 NM-12 02-04 06/17/2004 X X X NM-12 NM-12 02-04 06/17/2004 X X X NM-12 NM-12 02-04 09/17/2004 X X X NM-12 NM-12 02-06 06/23/2005 X X X NM-12 MM-12 02-06 06/23/2005 X X X NM-12 MM-12 02-06 09/21/2006 X X X NM-12 MM-12 02-07 09/26/2007 X X X NM-12 MM-12 02-09 09/21/2006 X X X	Upgradient Wells Con	tinued				
NM-12 NM-12 01-03 0.92/82/2003 X X X NM-12 NM-12 02-03 0.66/26/2003 X X X NM-12 MM-12 02-03 0.66/26/2003 X X X NM-12 MM-12 02-04 0.917/2004 X X X NM-12 MM-12 02-04 0.917/2004 X X X NM-12 MM-12 02-04 0.917/2004 X X X NM-12 MM-12 02-04 0.937/2005 X X X NM-12 MM-12 02-06 0.622/2005 X X X NM-12 MM-12 02-06 0.92/2/2006 X X X <	MW-12	MW-12 Q4-02	12/17/2002	Х	Х	Х
NM-12 NM-12 02-03 06/28/2003 X X X NM-12 NM-12 03-03 06/28/2003 X X X NM-12 NM-12 04-03 12/18/2003 X X X NM-12 NM-12 04-04 03/17/2004 X X X NM-12 NM-12 02-04 06/17/2004 X X X NM-12 NM-12 04-04 12/15/2004 X X X NM-12 NM-12 01-05 003/12/005 X X X NM-12 NM-12 02-05 06/23/2/005 X X X NM-12 NM-12 03-06 09/21/2/006 X X X NM-12 NM-12 03-07 09/26/2/07 X X X	MW-12	MW-12 Q1-03	03/26/2003	Х	Х	Х
NM-12 NM-12 04-03 09/25/2003 X X X NM-12 MM-12 04-03 12/16/2003 X X X NM-12 MM-12 04-04 00/17/2004 X X X NM-12 MM-12 02-04 06/17/2004 X X X NM-12 MM-12 02-04 06/17/2004 X X X NM-12 MM-12 04-04 12/15/2004 X X X NM-12 MM-12 04-05 00/31/2005 X X X NM-12 MM-12 02-06 06/22/2006 X X X NM-12 MM-12 02-07 06/22/2006 X X X NM-12 MM-12 02-07 06/22/2006 X X X NM-12 MM-12 02-07 06/22/2006 X X X NM-12 MM-12 02-09 06/24/2008 X X X NM-12 MM-12 02-09 06/24/2008 X X X	MW-12	MW-12 Q2-03	06/26/2003	Х	Х	Х
NMV-12 NMV-12 OL-03 12/19/2003 X X X NMV-12 MW-12 Q1-04 03/17/2004 X X X NMV-12 MW-12 Q2-04 06/17/2004 X X X NMV-12 MW-12 Q2-04 08/30/2004 X X X NMV-12 MW-12 Q2-04 09/30/2006 X X X NMV-12 MW-12 Q2-06 06/23/2005 X X X NMV-12 MW-12 Q2-06 06/23/2006 X X X NMV-12 MW-12 Q2-06 08/21/2006 X X X NMV-12 MW-12 Q3-07 09/28/2007 X X X NMV-12 MW-12 Q3-06 08/24/2006 X X X NMV-12 MW-12 Q3-07 09/28/2007 X X X NMV-12 MW-12 Q3-07 09/28/2006 X X X NMV-12 MW-12 Q3-08 00/24/2008 X X X	MW-12	MW-12 Q3-03	09/25/2003	Х	Х	Х
NW-12 NW-12 01-04 03/17/2004 X X X NW-12 NW-12 03-04 06/17/2004 X X X NW-12 NW-12 03-04 09/30/2004 X X X NW-12 NW-12 04-04 12/15/2004 X X X NW-12 NW-12 02-05 09/31/2005 X X X NW-12 NW-12 03-05 09/22/2006 X X X NW-12 NW-12 03-05 09/22/2006 X X X NW-12 NW-12 03-06 09/22/2006 X X X NW-12 NW-12 03-06 09/22/2006 X X X NW-12 NW-12 03-06 09/22/2008 X X X NW-12 NW-12 03-08 09/22/2009 X X X NW-12 NW-12 02-09 09/22/2009 X X X NW-12 NW-12 03-09 09/22/2009 X X X	MW-12	MW-12 Q4-03	12/18/2003	Х	Х	Х
NW-12 NW-12 Q2-04 06/17/2004 X X X NW-12 NW-12 Q3-04 09/30/2004 X X X NW-12 NW-12 Q1-05 09/31/2005 X X X NW-12 NW-12 Q3-05 09/23/2006 X X X NW-12 NW-12 Q3-05 09/22/2006 X X X NW-12 NW-12 Q3-05 09/22/2006 X X X NW-12 NW-12 Q3-06 09/22/2006 X X X NW-12 NW-12 Q3-06 09/22/2006 X X X NW-12 NW-12 Q3-07 09/26/2007 X X X NW-12 NW-12 D-0-08 09/27/2008 X X X NW-12b NW-12 D-0-09 09/20/2009 X X X NW-12b NW-12 D-0-09 09/20/2009 X X X NW-12b NW-12 D-0-09 09/20/2009 X X X	MW-12	MW-12 Q1-04	03/17/2004	Х	Х	Х
NW-12 NW-12 (03-04) (93/30/2004) X X X NW-12 NW-12 (04-04) 12/16/2004) X X X NW-12 NW-12 (01-05) 09/31/2005 X X X NW-12 NW-12 (02-05) 09/22/2005 X X X NW-12 NW-12 (01-05) 09/22/2006 X X X NW-12 NW-12 (02-05) 09/22/2006 X X X NW-12 NW-12 (02-06) 09/21/2006 X X X NW-12 NW-12 (03-06) 09/21/2006 X X X NW-12 NW-12 (03-06) 09/21/2008 X X X NW-12b NW-12b (02-09) 09/24/2009 X X X NW-12b NW-12b (02-09) 09/24/2009 X X X NW-12b NW-12b (02-01) 09/24/2009 X X X NW-12b NW-12b (02-01) 09/24/2009 X X	MW-12	MW-12 Q2-04	06/17/2004	Х	Х	Х
NW-12 NW-12 (A+04 12/15/2004 X X X NW-12 NW-12 (21-06 03/31/2006 X X X NW-12 NW-12 (32-05 06/23/2005 X X X NW-12 NW-12 (32-05 06/23/2005 X X X NW-12 NW-12 (22-06 06/21/2006 X X X NW-12 NW-12 (32-06 09/21/2006 X X X NW-12 NW-12 (32-07 09/26/2007 X X X NW-12 NW-12 (32-06 09/21/2008 X X X NW-12 NW-12 (32-07 09/26/2007 X X X NW-12b NW-12b (23-07 09/26/2008 X X X NW-12b NW-12b (24-09 02/24/2009 X X X NW-12b NW-12b (24-09 12/18/2008 X X X NW-12b NW-12b (24-01 06/24/2009 X X X </td <td>MW-12</td> <td>MW-12 Q3-04</td> <td>09/30/2004</td> <td>Х</td> <td>Х</td> <td>Х</td>	MW-12	MW-12 Q3-04	09/30/2004	Х	Х	Х
NW-12 NW-12 (1-06) 03/31/2006 X X X NW-12 NW-12 (02-06) 06/23/2005 X X X NW-12 NW-12 (03-06) 09/29/2005 X X X NW-12 NW-12 (03-06) 09/29/2006 X X X NW-12 NW-12 (03-06) 09/21/2006 X X X NW-12 NW-12 (03-06) 09/22/2007 X X X NW-12 NW-12 (03-07) 09/26/2007 X X X NW-12b NW-12 (03-08) 09/22/2008 X X X NW-12b NW-12b (02-09) 05/20/2009 X X X NW-12b NW-12b (02-09) 09/22/2008 X X X NW-12b NW-12b (02-09) 09/22/2009 X X X NW-12b NW-12b (04-10) 12/15/2010 X X X NW-12b NW-12b (04-10) 12/15/2010 X X <	MW-12	MW-12 Q4-04	12/15/2004	Х	Х	Х
NW-12 NW-12 Q2:06 06/23/2005 X X X NW-12 NW-12 Q3:05 09/28/2005 X X X NW-12 NW-12 Q3:06 09/28/2006 X X X NW-12 NW-12 Q2:06 06/21/2006 X X X NW-12 NW-12 Q3:06 09/24/2006 X X X NW-12 NW-12 Q3:07 09/26/2007 X X X NW-12b NW-12 Q3:06 09/24/2008 X X X NW-12b NW-12 Q3:04 09/24/2009 X X X NW-12b NW-12b Q3:09 09/24/2009 X X X NW-12b NW-12b Q3:01 Q9/24/2009 X X X	MW-12	MW-12 Q1-05	03/31/2005	Х	Х	Х
NW-12 NW-12 Q3-05 09/29/2005 X X X NW-12 NW-12 Q1-06 03/30/2006 X X X NW-12 NW-12 Q2-06 06/21/2006 X X X NW-12 NW-12 Q3-07 09/26/2007 X X X NW-12 NW-12 Q3-07 09/26/2008 X X X NW-12 NW-12 D3-08 09/24/2008 X X X NW-12b NW-12b Q3-08 09/24/2009 X X X NW-12b NW-12b Q3-09 06/24/2009 X X X NW-12b NW-12b Q3-09 09/24/2009 X X X NW-12b NW-12b Q3-10 06/23/2010 X X X NW-12b NW-12b Q3-10 09/29/2010 X X X NW-12b NW-12b Q3-10 09/29/2010 X X X NW-12b NW-12b Q1-2011 03/24/2011 X X X	MW-12	MW-12 Q2-05	06/23/2005	Х	Х	Х
MW-12 MW-12 Q1-06 03/30/2006 X X X MW-12 MW-12 Q2-06 06/21/2006 X X X MW-12 MW-12 Q3-06 09/21/2006 X X X MW-12 MW-12 Q3-07 09/26/2007 X X X MW-12b MW-12b G3-08 09/24/2008 X X X MW-12b MW-12b Q4-08 12/17/2008 X X X MW-12b MW-12b Q4-09 03/20/2009 X X X MW-12b MW-12b Q3-09 06/24/2009 X X X MW-12b MW-12b Q3-10 06/24/2009 X X X MW-12b MW-12b Q3-10 06/24/2010 X X X MW-12b MW-12b Q3-10 09/29/2010 X X X MW-12b MW-12b Q3-10 09/29/2010 X X X MW-12b MW-12b Q3-10 09/29/2010 X X X <td>MW-12</td> <td>MW-12 Q3-05</td> <td>09/29/2005</td> <td>Х</td> <td>Х</td> <td>Х</td>	MW-12	MW-12 Q3-05	09/29/2005	Х	Х	Х
MW-12 MW-12 Q2-06 06/21/2006 X X X MW-12 MW-12 Q3-07 09/24/2006 X X X MW-12 MW-12 Q3-07 09/24/2008 X X X MW-12b MW-12b Q3-08 09/24/2008 X X X MW-12b MW-12b Q4-08 12/17/2008 X X X MW-12b MW-12b Q2-09 06/24/2009 X X X MW-12b MW-12b Q2-09 06/24/2009 X X X MW-12b MW-12b Q3-09 09/24/2009 X X X MW-12b MW-12b Q2-10 06/23/2010 X X X MW-12b MW-12b Q3-10 09/24/2010 X X X MW-12b MW-12b Q4-10 12/15/2010 X X X MW-12b MW-12 Q3-11 03/24/2011 X X X MW-101 MW-12 Q-91 01/01/1991 X X X	MW-12	MW-12 Q1-06	03/30/2006	Х	Х	Х
MW-12 MW-12 Q3-06 09/21/2006 X X X MW-12 MW-12 Q3-07 09/28/2007 X X X MW-12 MW-12b Q3-08 09/24/2008 X X X MW-12b MW-12b Q3-08 09/24/2008 X X X MW-12b MW-12b Q1-09 03/20/2009 X X X MW-12b MW-12b Q2-09 06/24/2009 X X X MW-12b MW-12b Q2-09 06/24/2009 X X X MW-12b MW-12b Q2-10 06/23/2010 X X X MW-12b MW-12b Q2-10 06/23/2010 X X X MW-12b MW-12b Q1-2011 03/24/2011 X X X MW-12b MW-12b Q1-2011 03/24/2011 X X X MW-01 MW-11 Q-91 01/01/1991 X X X MW-01 MW-11 Q-92 01/01/1991 X X X <td>MW-12</td> <td>MW-12 Q2-06</td> <td>06/21/2006</td> <td>Х</td> <td>Х</td> <td>Х</td>	MW-12	MW-12 Q2-06	06/21/2006	Х	Х	Х
MW-12 MW-12 03-07 09/26/2007 X X X MW-12b MW-12b 03-08 09/24/2008 X X X MW-12b MW-12b 04-08 12/17/2008 X X X MW-12b MW-12b 04-09 03/20/2009 X X X MW-12b MW-12b 02-09 06/24/2009 X X X MW-12b MW-12b 02-09 09/24/2009 X X X MW-12b MW-12b 02-09 09/24/2009 X X X MW-12b MW-12b 02-010 09/29/2010 X X X MW-12b MW-12b 03-10 09/29/2010 X X X MW-12b MW-12b 04-10 12/15/2010 X X X MW-12b MW-12b 01-2011 03/24/2011 X X X MW-01 MW-101-91 01/01/1991 X X X MW-01 MW-102-92 01/01/1991 X X X <td>MW-12</td> <td>MW-12 Q3-06</td> <td>09/21/2006</td> <td>Х</td> <td>Х</td> <td>Х</td>	MW-12	MW-12 Q3-06	09/21/2006	Х	Х	Х
MW-12b MW-12b Q3-08 09/24/2008 X X X MW-12b MW-12b Q1-09 03/20/2009 X X X MW-12b MW-12b Q2-09 06/22/2009 X X X MW-12b MW-12b Q2-09 06/22/2009 X X X MW-12b MW-12b Q2-09 06/22/2009 X X X MW-12b MW-12b Q2-10 06/23/2010 X X X MW-12b MW-12b Q3-10 09/29/2010 X X X MW-12b MW-12b Q1-2011 03/20/2010 X X X MW-12b MW-12b Q1-2011 01/01/1991 X X X MW-01 MW-12 Q2-91 01/01/1991 X X <td< td=""><td>MW-12</td><td>MW-12 Q3-07</td><td>09/26/2007</td><td>Х</td><td>Х</td><td>Х</td></td<>	MW-12	MW-12 Q3-07	09/26/2007	Х	Х	Х
MW-12b MW-12b Q4-08 12/17/2008 X X X MW-12b MW-12b Q1-09 03/20/2009 X X X MW-12b MW-12b Q2-09 06/24/2009 X X X MW-12b MW-12b Q2-09 09/24/2009 X X X MW-12b MW-12b Q2-10 06/23/2010 X X X MW-12b MW-12b Q2-10 09/29/2010 X X X MW-12b MW-12b Q3-10 09/29/2010 X X X MW-12b MW-12b Q3-10 09/24/2011 X X X MW-12b MW-12b Q3-10 09/24/2011 X X X MW-12b MW-12b Q1-2011 03/24/2011 X X X MW-12b MW-12b Q1-2011 03/24/2011 X X X MW-01 MW-10 Q1-91 01/01/1991 X X X MW-01 MW-1 Q2-91 04/01/1991 X X X	MW-12b	MW-12b Q3-08	09/24/2008	Х	Х	Х
MW-12b MW-12b Q1-09 O3/20/2009 X X X MW-12b MW-12b Q2-09 O6/24/2009 X X X MW-12b MW-12b Q3-09 O9/24/2009 X X X MW-12b MW-12b Q3-09 O9/24/2009 X X X MW-12b MW-12b Q4-09 12/18/2009 X X X MW-12b MW-12b Q2-10 O6/23/2010 X X X MW-12b MW-12b Q4-10 12/15/2010 X X X MW-12b MW-12b Q1-2011 03/24/2011 X X X Downgradient Wells MW-01 MW-10 1-91 O1/01/1991 X X MW-01 MW-1 Q2-91 O4/01/1991 X X M MW-01 MW-1 Q3-91 O7/01/1991 X X M MW-01 MW-1 Q3-92 O1/01/1992 X X M MW-01 MW-1 Q3-92 O7/01/1992 X X M </td <td>MW-12b</td> <td>MW-12b Q4-08</td> <td>12/17/2008</td> <td>Х</td> <td>Х</td> <td>Х</td>	MW-12b	MW-12b Q4-08	12/17/2008	Х	Х	Х
MW-12b MW-12b Q2-09 06/24/2009 X X X MW-12b MW-12b Q3-09 09/24/2009 X X X MW-12b MW-12b Q4-09 12/18/2009 X X X MW-12b MW-12b Q2-10 06/23/2010 X X X MW-12b MW-12b Q3-10 09/29/2010 X X X MW-12b MW-12b Q4-10 12/15/2010 X X X MW-12b MW-12b Q4-101 03/24/2011 X X X Downgradient Wells MW-12b Q1-2011 03/24/2011 X X X MW-01 MW-12-2011 03/24/2011 X X X X MW-01 MW-10-291 04/01/1991 X X X X MW-01 MW-1 Q3-91 07/01/1991 X X X X MW-01 MW-1 Q3-92 04/01/1992 X X X X MW-01 MW-1 Q3-92 <t< td=""><td>MW-12b</td><td>MW-12b Q1-09</td><td>03/20/2009</td><td>Х</td><td>Х</td><td>Х</td></t<>	MW-12b	MW-12b Q1-09	03/20/2009	Х	Х	Х
MW-12b MW-12b Q3-09 09/24/2009 X X X MW-12b MW-12b Q4-09 12/18/2009 X X X MW-12b MW-12b Q2-10 06/23/2010 X X X MW-12b MW-12b Q3-10 09/28/2010 X X X MW-12b MW-12b Q4-10 12/15/2010 X X X MW-12b MW-12b Q1-2011 03/24/2011 X X X Downgradient Wells MW-01 MW-1 Q3-91 O1/01/1991 X X X MW-01 MW-1 Q3-91 01/01/1991 X X X M MW-01 MW-1 Q3-91 01/01/1991 X X X M MW-01 MW-1 Q4-91 10/01/1992 X X X M MW-01 MW-1 Q3-92 01/01/1992 X X X M MW-01 MW-1 Q3-93 01/01/1993 X X X M MW-01	MW-12b	MW-12b Q2-09	06/24/2009	Х	Х	Х
MW-12b MW-12b Q2-10 06/23/2010 X X X MW-12b MW-12b Q3-10 09/29/2010 X X X MW-12b MW-12b Q3-10 09/29/2010 X X X MW-12b MW-12b Q4-10 12/15/2010 X X X MW-12b MW-12b Q1-2011 03/24/2011 X X X Downgradient Wells MW-01 MW-10 Q2-91 01/01/1991 X X X MW-01 MW-1 Q2-91 01/01/1991 X X X M MW-01 MW-1 Q2-91 01/01/1991 X X X M MW-01 MW-1 Q2-92 01/01/1992 X X M M MW-01 MW-1 Q2-92 01/01/1992 X X M M MW-01 MW-1 Q3-92 07/01/1992 X X M M MW-01 MW-1 Q3-93 01/01/1993 X X M M M	MW-12b	MW-12b Q3-09	09/24/2009	Х	Х	Х
MW-12b MW-12b Q2-10 06/23/2010 X X X MW-12b MW-12b Q3-10 09/29/2010 X X X MW-12b MW-12b Q4-10 12/15/2010 X X X MW-12b MW-12b Q4-1011 03/24/2011 X X X Downgradient Wells MW-10 Q1-2011 03/24/2011 X X X MW-01 MW-10 Q1-2011 03/24/2011 X X X MW-01 MW-10 Q1-91 01/01/1991 X X X MW-01 MW-1 Q2-91 04/01/1991 X X X MW-01 MW-1 Q4-91 10/01/1992 X X X MW-01 MW-1 Q1-92 01/01/1992 X X X MW-01 MW-1 Q2-92 01/01/1992 X X X MW-01 MW-1 Q3-93 01/01/1993 X X X MW-01 MW-1 Q3-93 01/01/1993 X X X <	MW-12b	MW-12b Q4-09	12/18/2009	Х	Х	Х
MW-12b MW-12b Q3-10 09/29/2010 X X X MW-12b MW-12b Q4-10 12/15/2010 X X X MW-12b MW-12b Q1-2011 03/24/2011 X X X Downgradient Wells MW-01 MW-12 Q1-2011 01/01/1991 X X X MW-01 MW-12 Q1-291 01/01/1991 X X X MW-01 MW-1 Q2-91 04/01/1991 X X X MW-01 MW-1 Q2-91 01/01/1991 X X X MW-01 MW-1 Q2-92 01/01/1992 X X X MW-01 MW-1 Q2-92 04/01/1992 X X X MW-01 MW-1 Q3-92 01/01/1992 X X X MW-01 MW-1 Q3-93 01/01/1993 X X X MW-01 MW-1 Q2-93 04/01/1993 X X X MW-01 MW-1 Q3-93 07/01/1993 X X	MW-12b	MW-12b Q2-10	06/23/2010	Х	Х	Х
MW-12b MW-12b Q4-10 12/15/2010 X X X MW-12b MW-12b Q1-2011 03/24/2011 X X X Downgradient Wells X X X MW-01 MW-1 Q1-91 01/01/1991 X X X MW-01 MW-1 Q2-91 04/01/1991 X X X MW-01 MW-1 Q3-91 07/01/1991 X X X MW-01 MW-1 Q2-92 01/01/1992 X X X MW-01 MW-1 Q2-92 04/01/1992 X X X MW-01 MW-1 Q3-92 07/01/1992 X X X MW-01 MW-1 Q3-92 01/01/1993 X X X MW-01 MW-1 Q3-93 01/01/1993 X X X MW-01 MW-1 Q3-93 01/01/1993 X X X MW-01 MW-1 Q3-93 03/01/1994 X X X MW-01 </td <td>MW-12b</td> <td>MW-12b Q3-10</td> <td>09/29/2010</td> <td>Х</td> <td>Х</td> <td>Х</td>	MW-12b	MW-12b Q3-10	09/29/2010	Х	Х	Х
MW-12b MW-12b Q1-2011 03/24/2011 X X X Downgradient Wells MW-01 MW-1 Q1-91 01/01/1991 X X X MW-01 MW-1 Q2-91 04/01/1991 X X X MW-01 MW-1 Q3-91 07/01/1991 X X X MW-01 MW-1 Q4-91 07/01/1991 X X X MW-01 MW-1 Q2-92 01/01/1992 X X X MW-01 MW-1 Q3-92 07/01/1992 X X X MW-01 MW-1 Q3-92 07/01/1992 X X X MW-01 MW-1 Q3-92 07/01/1992 X X X MW-01 MW-1 Q3-93 01/01/1993 X X X MW-01 MW-1 Q4-93 01/01/1993 X X X MW-01 MW-1 Q4-93 01/01/1993 X X X MW-01 MW-1 Q4-93 00/01/1994 X X X <td>MW-12b</td> <td>MW-12b Q4-10</td> <td>12/15/2010</td> <td>Х</td> <td>Х</td> <td>Х</td>	MW-12b	MW-12b Q4-10	12/15/2010	Х	Х	Х
Downgradient Wells MW-01 MW-1 Q1-91 01/01/1991 X X MW-01 MW-1 Q2-91 04/01/1991 X X MW-01 MW-1 Q3-91 07/01/1991 X X MW-01 MW-1 Q3-91 07/01/1991 X X MW-01 MW-1 Q4-91 10/01/1991 X X MW-01 MW-1 Q1-92 01/01/1992 X X MW-01 MW-1 Q2-92 04/01/1992 X X MW-01 MW-1 Q3-92 07/01/1992 X X MW-01 MW-1 Q4-92 10/01/1992 X X MW-01 MW-1 Q2-92 07/01/1992 X X MW-01 MW-1 Q3-93 01/01/1993 X X MW-01 MW-1 Q3-93 07/01/1993 X X MW-01 MW-1 Q4-93 10/01/1993 X X MW-01 MW-1 Q3-94 03/01/1994 X X MW-01 MW-1 Q3-94 08/01/1994 <td>MW-12b</td> <td>MW-12b Q1-2011</td> <td>03/24/2011</td> <td>Х</td> <td>Х</td> <td>Х</td>	MW-12b	MW-12b Q1-2011	03/24/2011	Х	Х	Х
MW-01 MW-1 Q1-91 01/01/1991 X X MW-01 MW-1 Q2-91 04/01/1991 X X MW-01 MW-1 Q3-91 07/01/1991 X X MW-01 MW-1 Q3-91 07/01/1991 X X MW-01 MW-1 Q1-92 01/01/1991 X X MW-01 MW-1 Q1-92 01/01/1992 X X MW-01 MW-1 Q1-92 01/01/1992 X X MW-01 MW-1 Q3-92 01/01/1992 X X MW-01 MW-1 Q4-92 10/01/1992 X X MW-01 MW-1 Q4-92 01/01/1993 X X MW-01 MW-1 Q2-93 01/01/1993 X X MW-01 MW-1 Q3-93 07/01/1993 X X MW-01 MW-1 Q2-94 04/01/1993 X X MW-01 MW-1 Q3-93 09/01/1994 X X MW-01 MW-1 Q3-94 09/01/1994 X X	Downgradient Wells					
MW-01 MW-1 Q2-91 04/01/1991 X X MW-01 MW-1 Q3-91 07/01/1991 X X MW-01 MW-1 Q4-91 10/01/1991 X X MW-01 MW-1 Q4-91 10/01/1992 X X MW-01 MW-1 Q2-92 04/01/1992 X X MW-01 MW-1 Q2-92 04/01/1992 X X MW-01 MW-1 Q3-92 07/01/1992 X X MW-01 MW-1 Q3-92 07/01/1992 X X MW-01 MW-1 Q3-92 10/01/1993 X X MW-01 MW-1 Q2-93 01/01/1993 X X MW-01 MW-1 Q3-93 01/01/1993 X X MW-01 MW-1 Q4-93 10/01/1994 X X MW-01 MW-1 Q2-94 04/01/1994 X X MW-01 MW-1 Q2-94 04/01/1994 X X MW-01 MW-1 Q3-94 08/01/1994 X X	MW-01	MW-1 Q1-91	01/01/1991	Х	Х	
MW-01 MW-1 Q3-91 07/01/1991 X X MW-01 MW-1 Q4-91 10/01/1991 X X MW-01 MW-1 Q1-92 01/01/1992 X X MW-01 MW-1 Q2-92 04/01/1992 X X MW-01 MW-1 Q2-92 04/01/1992 X X MW-01 MW-1 Q4-92 07/01/1992 X X MW-01 MW-1 Q4-92 07/01/1992 X X MW-01 MW-1 Q4-92 10/01/1993 X X MW-01 MW-1 Q2-93 04/01/1993 X X MW-01 MW-1 Q2-93 04/01/1993 X X MW-01 MW-1 Q2-93 07/01/1993 X X MW-01 MW-1 Q2-94 03/01/1994 X X MW-01 MW-1 Q2-94 04/01/1994 X X MW-01 MW-1 Q3(Sept)-94 09/01/1994 X X MW-01 MW-1 Q4(Nev)-94 10/01/1994 X X	MW-01	MW-1 Q2-91	04/01/1991	Х	Х	
MW-01 MW-1 Q4-91 10/01/1991 X X MW-01 MW-1 Q1-92 01/01/1992 X X MW-01 MW-1 Q2-92 04/01/1992 X X MW-01 MW-1 Q3-92 07/01/1992 X X MW-01 MW-1 Q3-92 07/01/1992 X X MW-01 MW-1 Q4-92 10/01/1993 X X MW-01 MW-1 Q4-93 01/01/1993 X X MW-01 MW-1 Q3-93 01/01/1993 X X MW-01 MW-1 Q4-93 07/01/1993 X X MW-01 MW-1 Q4-93 07/01/1993 X X MW-01 MW-1 Q4-93 10/01/1993 X X MW-01 MW-1 Q4-93 03/01/1994 X X MW-01 MW-1 Q3-94 08/01/1994 X X MW-01 MW-1 Q3(Sept)-94 09/01/1994 X X MW-01 MW-1 Q4(Nov)-94 10/01/1994 X X	MW-01	MW-1 Q3-91	07/01/1991	Х	Х	
MW-01 MW-1 Q1-92 01/01/1992 X X MW-01 MW-1 Q2-92 04/01/1992 X X MW-01 MW-1 Q3-92 07/01/1992 X X MW-01 MW-1 Q3-92 07/01/1992 X X MW-01 MW-1 Q4-92 10/01/1992 X X MW-01 MW-1 Q1-93 01/01/1993 X X MW-01 MW-1 Q2-93 04/01/1993 X X MW-01 MW-1 Q3-93 01/01/1993 X X MW-01 MW-1 Q3-93 07/01/1993 X X MW-01 MW-1 Q4-93 10/01/1993 X X MW-01 MW-1 Q1-94 03/01/1994 X X MW-01 MW-1 Q3-94 04/01/1994 X X X MW-01 MW-1 Q3-94 09/01/1994 X X X MW-01 MW-1 Q4(Nov)-94 11/01/1994 X X X MW-01 MW-1 Q4(Nov)-94 1	MW-01	MW-1 Q4-91	10/01/1991	Х	Х	
MW-01 MW-1 Q2-92 04/01/1992 X X MW-01 MW-1 Q3-92 07/01/1992 X X MW-01 MW-1 Q4-92 10/01/1992 X X MW-01 MW-1 Q4-92 10/01/1993 X X MW-01 MW-1 Q2-93 01/01/1993 X X MW-01 MW-1 Q2-93 04/01/1993 X X MW-01 MW-1 Q2-93 07/01/1993 X X MW-01 MW-1 Q3-93 07/01/1993 X X MW-01 MW-1 Q3-93 07/01/1993 X X MW-01 MW-1 Q4-93 10/01/1993 X X MW-01 MW-1 Q1-94 03/01/1994 X X MW-01 MW-1 Q2-94 04/01/1994 X X X MW-01 MW-1 Q3(Sept)-94 08/01/1994 X X X MW-01 MW-1 Q4/94 10/01/1994 X X X MW-01 MW-1 Q4/95 01/01	MW-01	MW-1 Q1-92	01/01/1992	Х	Х	
MW-01 MW-1 Q3-92 07/01/1992 X X MW-01 MW-1 Q4-92 10/01/1992 X X MW-01 MW-1 Q1-93 01/01/1993 X X MW-01 MW-1 Q2-93 04/01/1993 X X MW-01 MW-1 Q2-93 04/01/1993 X X MW-01 MW-1 Q3-93 07/01/1993 X X MW-01 MW-1 Q3-93 07/01/1993 X X MW-01 MW-1 Q3-93 07/01/1993 X X MW-01 MW-1 Q4-93 10/01/1993 X X MW-01 MW-1 Q1-94 03/01/1994 X X MW-01 MW-1 Q2-94 04/01/1994 X X MW-01 MW-1 Q3(Sept)-94 08/01/1994 X X X MW-01 MW-1 Q4(Sept)-94 09/01/1994 X X X MW-01 MW-1 Q4(Nov)-94 11/01/1994 X X X MW-01 MW-1 Q4(Dec)-94	MW-01	MW-1 Q2-92	04/01/1992	Х	Х	
MW-01 MW-1 Q4-92 10/01/1992 X X MW-01 MW-1 Q1-93 01/01/1993 X X MW-01 MW-1 Q2-93 04/01/1993 X X MW-01 MW-1 Q3-93 07/01/1993 X X MW-01 MW-1 Q3-93 07/01/1993 X X MW-01 MW-1 Q4-93 07/01/1993 X X MW-01 MW-1 Q4-93 03/01/1994 X X MW-01 MW-1 Q1-94 03/01/1994 X X MW-01 MW-1 Q2-94 04/01/1994 X X MW-01 MW-1 Q3(Sept)-94 08/01/1994 X X X MW-01 MW-1 Q3(Sept)-94 09/01/1994 X X X MW-01 MW-1 Q4(Nov)-94 11/01/1994 X X X MW-01 MW-1 Q4(Dec)-94 12/01/1994 X X X MW-01 MW-1 Q4(Dec)-94 12/01/1994 X X X <	MW-01	MW-1 Q3-92	07/01/1992	Х	Х	
MW-01 MW-1 Q1-93 01/01/1993 X X MW-01 MW-1 Q2-93 04/01/1993 X X MW-01 MW-1 Q3-93 07/01/1993 X X MW-01 MW-1 Q3-93 07/01/1993 X X MW-01 MW-1 Q4-93 10/01/1993 X X MW-01 MW-1 Q1-94 03/01/1994 X X MW-01 MW-1 Q2-94 04/01/1994 X X MW-01 MW-1 Q3-94 08/01/1994 X X MW-01 MW-1 Q3(Sept)-94 09/01/1994 X X X MW-01 MW-1 Q4(Nov)-94 11/01/1994 X X X X MW-01 MW-1 Q4(Nov)-94 11/01/1994 X X X X MW-01 MW-1 Q4(Dec)-94 12/01/1994 X X X X MW-01 MW-1 Q4(Dec)-94 02/01/1995 X X X X MW-01 MW-1 Q4(Dec)-95 02	MW-01	MW-1 Q4-92	10/01/1992	Х	Х	
MW-01 MW-1 Q2-93 04/01/1993 X X MW-01 MW-1 Q3-93 07/01/1993 X X X MW-01 MW-1 Q4-93 10/01/1993 X X X MW-01 MW-1 Q1-94 03/01/1994 X X X MW-01 MW-1 Q2-94 04/01/1994 X X X MW-01 MW-1 Q2-94 04/01/1994 X X X MW-01 MW-1 Q2-94 09/01/1994 X X X MW-01 MW-1 Q3-94 08/01/1994 X X X MW-01 MW-1 Q3(Sept)-94 09/01/1994 X X X MW-01 MW-1 Q4(Pag4 10/01/1994 X X X MW-01 MW-1 Q4(Dec)-94 11/01/1994 X X X MW-01 MW-1 Q4(Dec)-94 12/01/1995 X X X MW-01 MW-1 Q1(Feb)-95 02/01/1995 X X X MW-0	MW-01	MW-1 Q1-93	01/01/1993	Х	Х	
MW-01 MW-1 Q3-93 07/01/1993 X X MW-01 MW-1 Q4-93 10/01/1993 X X X MW-01 MW-1 Q1-94 03/01/1994 X X X MW-01 MW-1 Q2-94 04/01/1994 X X X MW-01 MW-1 Q3-94 08/01/1994 X X X MW-01 MW-1 Q3(Sept)-94 09/01/1994 X X X MW-01 MW-1 Q4-94 10/01/1994 X X X MW-01 MW-1 Q4-94 10/01/1994 X X X MW-01 MW-1 Q4(Nov)-94 11/01/1994 X X X MW-01 MW-1 Q4(Dec)-94 12/01/1994 X X X MW-01 MW-1 Q1-95 01/01/1995 X X X MW-01 MW-1 Q1(Feb)-95 02/01/1995 X X X MW-01 MW-1 Q3-95 07/01/1995 X X X MW-01<	MW-01	MW-1 Q2-93	04/01/1993	Х	Х	
MW-01 MW-1 Q4-93 10/01/1993 X X X MW-01 MW-1 Q1-94 03/01/1994 X MW-01 MW-1 Q2-94 04/01/1994 X X X MW-01 MW-1 Q3-94 08/01/1994 X X X MW-01 MW-1 Q3-94 08/01/1994 X X X MW-01 MW-1 Q3(Sept)-94 09/01/1994 X X X MW-01 MW-1 Q4-94 10/01/1994 X X X MW-01 MW-1 Q4(Nov)-94 11/01/1994 X X X MW-01 MW-1 Q4(Dec)-94 12/01/1994 X X X MW-01 MW-1 Q4(Dec)-94 12/01/1995 X X X MW-01 MW-1 Q1(Feb)-95 02/01/1995 X X X MW-01 MW-1 Q3-95 07/01/1995 X X X MW-01 MW-1 Q1(Sep)-95 09/20/1995 X X X	MW-01	MW-1 Q3-93	07/01/1993	Х	Х	
MW-01 MW-1 Q1-94 03/01/1994 X X MW-01 MW-1 Q2-94 04/01/1994 X X MW-01 MW-1 Q3-94 08/01/1994 X X X MW-01 MW-1 Q3(Sept)-94 09/01/1994 X X X MW-01 MW-1 Q3(Sept)-94 09/01/1994 X X X MW-01 MW-1 Q4-94 10/01/1994 X X X MW-01 MW-1 Q4(Nov)-94 11/01/1994 X X X MW-01 MW-1 Q4(Dec)-94 12/01/1994 X X X MW-01 MW-1 Q1(Feb)-95 01/01/1995 X X X MW-01 MW-1 Q1(Feb)-95 02/01/1995 X X X MW-01 MW-1 Q3-95 07/01/1995 X X X MW-01 MW-1 Q1(Sep)-95 09/20/1995 X X X MW-01 MW-1 Q4-95 12/18/1995 X X X	MW-01	MW-1 Q4-93	10/01/1993	Х	Х	
MW-01 MW-1 Q2-94 04/01/1994 X X MW-01 MW-1 Q3-94 08/01/1994 X X X MW-01 MW-1 Q3(Sept)-94 09/01/1994 X X X MW-01 MW-1 Q4(Sept)-94 09/01/1994 X X X MW-01 MW-1 Q4-94 10/01/1994 X X X MW-01 MW-1 Q4(Nov)-94 11/01/1994 X X X MW-01 MW-1 Q4(Dec)-94 12/01/1994 X X X MW-01 MW-1 Q1(Sep)-95 01/01/1995 X X X MW-01 MW-1 Q1(Feb)-95 02/01/1995 X X X MW-01 MW-1 Q3-95 07/01/1995 X X X MW-01 MW-1 Q1(Sep)-95 09/20/1995 X X X MW-01 MW-1 Q4-95 12/18/1995 X X X	MW-01	MW-1 Q1-94	03/01/1994	Х		
MW-01 MW-1 Q3-94 08/01/1994 X X X MW-01 MW-1 Q3(Sept)-94 09/01/1994 X X X MW-01 MW-1 Q4-94 10/01/1994 X X X MW-01 MW-1 Q4(Nov)-94 11/01/1994 X X X MW-01 MW-1 Q4(Dec)-94 12/01/1994 X X X MW-01 MW-1 Q1(Sept)-95 01/01/1995 X X X MW-01 MW-1 Q1(Feb)-95 02/01/1995 X X X MW-01 MW-1 Q1(Sep)-95 07/01/1995 X X X MW-01 MW-1 Q1(Sep)-95 09/20/1995 X X X MW-01 MW-1 Q1(Sep)-95 09/20/1995 X X X MW-01 MW-1 Q4-95 12/18/1995 X X X	MW-01	MW-1 Q2-94	04/01/1994		Х	
MW-01 MW-1 Q3(Sept)-94 09/01/1994 X X X MW-01 MW-1 Q4-94 10/01/1994 X X X MW-01 MW-1 Q4(Nov)-94 11/01/1994 X X X MW-01 MW-1 Q4(Dec)-94 12/01/1994 X X X MW-01 MW-1 Q1(Pec)-94 12/01/1995 X X X MW-01 MW-1 Q1-95 01/01/1995 X X X MW-01 MW-1 Q1(Feb)-95 02/01/1995 X X X MW-01 MW-1 Q3-95 07/01/1995 X X X MW-01 MW-1 Q1(Sep)-95 09/20/1995 X X X MW-01 MW-1 Q4-95 12/18/1995 X X X	MW-01	MW-1 Q3-94	08/01/1994	Х	Х	Х
MW-01 MW-1 Q4-94 10/01/1994 X X MW-01 MW-1 Q4(Nov)-94 11/01/1994 X X X MW-01 MW-1 Q4(Dec)-94 12/01/1994 X X X MW-01 MW-1 Q1(Dec)-94 12/01/1994 X X X MW-01 MW-1 Q1-95 01/01/1995 X X X MW-01 MW-1 Q1(Feb)-95 02/01/1995 X X X MW-01 MW-1 Q3-95 07/01/1995 X X X MW-01 MW-1 Q1(Sep)-95 09/20/1995 X X X MW-01 MW-1 Q4-95 12/18/1995 X X X	MW-01	MW-1 Q3(Sept)-94	09/01/1994	Х	Х	Х
MW-01 MW-1 Q4(Nov)-94 11/01/1994 X X X MW-01 MW-1 Q4(Dec)-94 12/01/1994 X X X MW-01 MW-1 Q1-95 01/01/1995 X X X MW-01 MW-1 Q1(Feb)-95 02/01/1995 X X X MW-01 MW-1 Q3-95 07/01/1995 X X X MW-01 MW-1 Q1(Sep)-95 09/20/1995 X X X MW-01 MW-1 Q4-95 12/18/1995 X X X	MW-01	MW-1 Q4-94	10/01/1994		Х	
MW-01 MW-1 Q4(Dec)-94 12/01/1994 X X X MW-01 MW-1 Q1-95 01/01/1995 X X X MW-01 MW-1 Q1(Feb)-95 02/01/1995 X X X MW-01 MW-1 Q3-95 07/01/1995 X X X MW-01 MW-1 Q1(Sep)-95 09/20/1995 X X X MW-01 MW-1 Q4-95 12/18/1995 X X X	MW-01	MW-1 Q4(Nov)-94	11/01/1994	Х	Х	Х
MW-01 MW-1 Q1-95 01/01/1995 X X X MW-01 MW-1 Q1(Feb)-95 02/01/1995 X X X MW-01 MW-1 Q3-95 07/01/1995 X X X MW-01 MW-1 Q1(Sep)-95 09/20/1995 X X X MW-01 MW-1 Q4-95 12/18/1995 X X X	MW-01	MW-1 Q4(Dec)-94	12/01/1994	Х	Х	Х
MW-01 MW-1 Q1(Feb)-95 02/01/1995 X X X MW-01 MW-1 Q3-95 07/01/1995 X X X MW-01 MW-1 Q1(Sep)-95 09/20/1995 X X X MW-01 MW-1 Q4-95 12/18/1995 X X X	MW-01	MW-1 Q1-95	01/01/1995	Х	Х	Х
MW-01 MW-1 Q3-95 07/01/1995 X X X MW-01 MW-1 Q1(Sep)-95 09/20/1995 X X X MW-01 MW-1 Q4-95 12/18/1995 X X X	MW-01	MW-1 Q1(Feb)-95	02/01/1995	Х	Х	Х
MW-01 MW-1 Q1(Sep)-95 09/20/1995 X X X MW-01 MW-1 Q4-95 12/18/1995 X X X	MW-01	MW-1 Q3-95	07/01/1995	Х	Х	Х
MW-01 MW-1 Q4-95 12/18/1995 X X X	MW-01	MW-1 Q1(Sep)-95	09/20/1995	Х	Х	Х
	MW-01	MW-1 Q4-95	12/18/1995	Х	Х	X

Location	Sample ID	Sample Date	Conventionals	Metals	VOCs
Downgradient Wells C	Continued				
MW-01	MW-1 Q1-96	02/01/1996	Х	Х	Х
MW-01	MW-1 Q2-96	05/01/1996	Х	Х	Х
MW-01	MW-1 Q3-96	09/01/1996	Х	Х	Х
MW-01	MW-1 Q4-96	10/01/1996	Х	Х	Х
MW-01	MW-1 Q1-97	03/24/1997	Х	Х	
MW-01	MW-1 Q2-97	06/24/1997	Х	Х	Х
MW-01	MW-1 Q3-97	09/11/1997	Х	Х	Х
MW-01	MW-1 Q4-97	11/25/1997			Х
MW-01	MW-1 Q1-98	03/25/1998	Х	Х	Х
MW-01	MW-1 Q2-98	06/29/1998	Х	Х	Х
MW-01	MW-1 Q3-98	09/21/1998	Х	Х	Х
MW-01	MW-1 Q1-99	03/03/1999	Х	Х	Х
MW-01	MW-1 Q2-99	06/14/1999	Х	Х	Х
MW-01	MW-1 Q3-99	09/22/1999	Х	Х	Х
MW-01	MW-1 Q4-99	12/09/1999	Х	Х	Х
MW-01	MW-1 Q1-00	03/15/2000	Х	Х	Х
MW-01	MW-1 Q2-00	06/21/2000	Х	Х	Х
MW-01	MW-1 Q3-00	09/27/2000	Х	Х	Х
MW-01	MW-1 Q4-00	12/05/2000	Х	Х	Х
MW-01	MW-1 Q1-01	03/27/2001	Х	Х	Х
MW-01	MW-1 Q2-01	06/27/2001	Х	Х	Х
Well #2	MW-13 Q4-02	12/17/2002			Х
MW-03	MW-3 Q1-91	01/01/1991	Х	Х	
MW-03	MW-3 Q2-91	04/01/1991	Х	Х	
MW-03	MW-3 Q3-91	07/01/1991	Х	Х	
MW-03	MW-3 Q4-91	10/01/1991	Х	Х	
MW-03	MW-3 Q1-92	01/01/1992	Х	Х	
MW-03	MW-3 Q2-92	04/01/1992	Х	Х	
MW-03	MW-3 Q3-92	07/01/1992	Х	Х	
MW-03	MW-3 Q4-92	10/01/1992	Х	Х	
MW-03	MW-3 Q1-93	01/01/1993	Х	Х	
MW-03	MW-3 Q2-93	04/01/1993	Х	Х	
MW-03	MW-3 Q3-93	07/01/1993	Х	Х	
MW-03	MW-3 Q4-93	10/01/1993	Х	Х	
MW-03	MW-3 Q1-94	02/01/1994	Х		
MW-03	MW-3 Q1(Mar)-94	03/01/1994	Х		
MW-03	MW-3 Q2-94	04/01/1994		Х	
MW-03	MW-3 Q3-94	08/01/1994	Х	Х	Х
MW-03	MW-3 Q3(Sept)-94	09/01/1994	Х	Х	Х
MW-03	MW-3 Q4-94	10/01/1994		Х	
MW-03	MW-3 Q4(Nov)-94	11/01/1994	Х	Х	Х
MW-03	MW-3 Q4(Dec)-94	12/01/1994	Х	Х	Х
MW-03	MW-3 Q1-95	01/01/1995	Х	Х	Х
MW-03	MW-3 Q1(Feb)-95	02/01/1995	Х	Х	Х
MW-03	MW-3 Q3-95	07/01/1995	Х	Х	Х
MW-03	MW-3 Q3(Sept)-95	09/20/1995		Х	Х
MW-03	MW-3 Q4-95	12/18/1995	Х	Х	Х
MW-03	MW-3 Q1-96 Dup	02/01/1996		Х	Х
MW-03	MW-3 Q1-96	02/01/1996	Х	Х	Х
MW-03	MW-3 Q2-96	05/01/1996	Х	Х	Х
MW-03	MW-3 Q3-96	09/01/1996	Х	Х	Х

Downgradent Wells Continued MW-03 MW-3 01-97 03/24/1997 X X MW-03 MW-3 02-97 06/24/1997 X X X MW-03 MW-3 02-97 06/24/1997 X X X MW-03 MW-3 02-97 09/21/1997 X X X MW-03 MW-3 02-97 01/22/1998 X X X MW-03 MW-3 02-98 00/22/1998 X X X MW-03 MW-3 02-98 00/22/1998 X X X MW-03 MW-3 02-98 00/22/1998 X X X MW-03 MW-3 02-99 00/22/1999 X X X MW-03 MW-3 02-99 09/22/1999 X X X MW-03 MW-3 02-90 08/22/12000 X X X MW-03 MW-3 02-00 08/22/12000 X X X MW-03 MW-3 02-00 08/22/12000 X X <t< th=""><th>Location</th><th>Sample ID</th><th>Sample Date</th><th>Conventionals</th><th>Metals</th><th>VOCs</th></t<>	Location	Sample ID	Sample Date	Conventionals	Metals	VOCs
MW-33 MW-3 04-96 10/01/1996 X X X MW-33 MW-3 02-97 09/24/1997 X X X MW-33 MW-3 02-97 09/11/1997 X X X MW-33 MW-3 02-97 09/11/1997 X X X MW-33 MW-3 04-97 11/25/1997 X X X MW-33 MW-3 04-97 11/25/1997 X X X MW-33 MW-3 04-97 00/25/1998 X X X MW-33 MW-3 02-98 09/21/1998 X X X MW-33 MW-3 02-99 00/03/1989 X X X MW-33 MW-3 02-90 09/21/1998 X X X MW-33 MW-3 02-90 09/21/2090 X X X MW-33 MW-3 02-00 09/21/2000 X X X MW-33 MW-3 02-01 00/27/2001 X X X MW-33 <td>Downgradient Wells C</td> <td>Continued</td> <td></td> <td></td> <td></td> <td></td>	Downgradient Wells C	Continued				
NM-03 NM-3 01-97 03/24/1997 X X X NM-03 NM-3 02-97 06/21/1977 X X X NM-03 MM-3 02-97 11/25/1997 X X X NM-03 MM-3 02-96 0025/1998 X X X NM-03 MM-3 02-96 06/25/1998 X X X NM-03 MM-3 02-98 06/21/1998 X X X NM-03 MM-3 02-99 06/14/1999 X X X NM-03 MM-3 02-99 06/22/1998 X X X NM-03 MM-3 02-99 06/22/1999 X X X NM-03 MM-3 02-00 06/22/1000 X X X NM-03 MM-3 02-00 06/22/2000 X X X NM-03 MM-3 02-01 05/27/2001 X X X NM-03 MM-3 02-01 05/27/2001 X X X NM-33 <td>MW-03</td> <td>MW-3 Q4-96</td> <td>10/01/1996</td> <td>Х</td> <td>Х</td> <td>Х</td>	MW-03	MW-3 Q4-96	10/01/1996	Х	Х	Х
MW-03 MW-3 02-97 06/24/1997 X X X MW-03 MW-3 04-97 11/25/1997 X X X MW-03 MW-3 01-98 06/22/1998 X X X MW-03 MW-3 02-98 06/22/1998 X X X MW-03 MW-3 02-98 06/21/1998 X X X MW-03 MW-3 02-99 06/14/1999 X X X MW-03 MW-3 02-99 06/14/1999 X X X MW-03 MW-3 02-99 06/14/1999 X X X MW-03 MW-3 02-00 09/27/2000 X X X MW-03 MW-3 02-00 06/27/2000 X X X MW-03 MW-3 02-00 06/27/2000 X X X MW-03 MW-3 02-01 02/27/2001 X X X MW-03 MW-3 02-01 02/27/2001 X X X MW-03 <td>MW-03</td> <td>MW-3 Q1-97</td> <td>03/24/1997</td> <td>Х</td> <td>Х</td> <td></td>	MW-03	MW-3 Q1-97	03/24/1997	Х	Х	
MW-03 MW-3 03-97 0911/1997 X X X MW-03 MW-3 01-88 03/25/1998 X X X MW-03 MW-3 02-88 06/23/1998 X X X MW-03 MW-3 03-86 06/21/1998 X X X MW-03 MW-3 04-98 12/30/1998 X X X MW-03 MW-3 02-99 06/14/1999 X X X MW-03 MW-3 02-99 06/22/1998 X X X MW-03 MW-3 02-99 02/22/1998 X X X MW-03 MW-3 02-00 06/22/2000 X X X MW-03 MW-3 02-00 09/27/2000 X X X MW-03 MW-3 02-01 09/27/2001 X X X MW-03 MW-3 02-01 02/27/2001 X X X MW-03 MW-3 02-01 06/27/2001 X X X MW-03 <td>MW-03</td> <td>MW-3 Q2-97</td> <td>06/24/1997</td> <td>Х</td> <td>Х</td> <td>Х</td>	MW-03	MW-3 Q2-97	06/24/1997	Х	Х	Х
NW-03 NW-3 04-97 11/25/1997 X X X NW-03 NW-3 01-98 00/29/1998 X X X NW-03 NW-3 02-98 06/29/1998 X X X NW-03 NW-3 04-98 12/20/1998 X X X NW-03 NW-3 04-98 12/20/1998 X X X NW-03 NW-3 02-99 06/1/14/1999 X X X NW-03 NW-3 02-99 09/22/1999 X X X NW-03 NW-3 02-99 09/22/1999 X X X NW-03 NW-3 02-00 09/22/1999 X X X NW-03 NW-3 02-00 09/22/2000 X X X NW-03 NW-3 02-00 09/22/2000 X X X NW-03 NW-3 02-01 02/27/2001 X X X NW-03 NW-3 02-01 02/27/2001 X X X NW-03<	MW-03	MW-3 Q3-97	09/11/1997	Х	Х	Х
NW-03 NW-3 01-98 04225/1998 X X X NW-03 NW-3 02-98 06/22/1998 X X X NW-03 NW-3 02-98 06/21/1998 X X X NW-03 NW-3 02-98 00/21/1998 X X X NW-03 NW-3 02-99 00/21/1998 X X X NW-03 NW-3 02-99 06/21/1998 X X X NW-03 NW-3 02-99 12/06/1999 X X X NW-03 NW-3 04-99 12/06/1998 X X X NW-03 NW-3 02-00 06/27/2000 X X X NW-03 NW-3 02-01 02/07/2001 X X X NW-03 NW-3 02-01 02/07/2001 X X X NW-03 NW-3 02-01 02/07/2001 X X X NW-03 NW-3 02-01 02/07/1905 X X X NW-11 <td>MW-03</td> <td>MW-3 Q4-97</td> <td>11/25/1997</td> <td>Х</td> <td>Х</td> <td></td>	MW-03	MW-3 Q4-97	11/25/1997	Х	Х	
NW-03 NW-3 02-98 06/22/1998 X X X NW-03 NW-3 02-98 09/27/1998 X X X NW-03 NW-3 02-99 02/07/1999 X X X NW-03 NW-3 02-99 02/17/1998 X X X NW-03 NW-3 02-99 02/12/1999 X X X NW-03 NW-3 02-99 02/12/1999 X X X NW-03 NW-3 02-99 02/12/1999 X X X NW-03 NW-3 02-00 03/15/2000 X X X NW-03 NW-3 02-00 09/27/2000 X X X NW-03 NW-3 02-01 02/27/2001 X X X NW-03 NW-3 02-01 02/27/2001 X X X NW-03 NW-3 02-01 03/27/2001 X X X NW-03 NW-3 02-01 03/07/1995 X X X NW-11 <td>MW-03</td> <td>MW-3 Q1-98</td> <td>03/25/1998</td> <td>Х</td> <td>Х</td> <td>Х</td>	MW-03	MW-3 Q1-98	03/25/1998	Х	Х	Х
NM-03 NM-3 03-98 092/17988 X X X NM-03 NM-3 01-99 0303/1999 X X X NM-03 NM-3 01-99 0303/1999 X X X NM-03 NM-3 02-99 062/2/1999 X X X NM-03 NM-3 04-99 12/200/1999 X X X NM-03 NM-3 02-90 062/21/2000 X X X NM-03 NM-3 02-00 062/21/2000 X X X NM-03 NM-3 02-00 10/27/2001 X X X NM-03 NM-3 02-01 062/27/2001 X X X NM-03 NM-3 02-01 062/27/2001 X X X NM-11 NM-11 01-85 03/01/1995 X X X NM-11 NM-11 03/5P/049 07/01/1995 X X X NM-11 NM-11 03/5P/049 09/20/1995 X X X	MW-03	MW-3 Q2-98	06/29/1998	Х	Х	Х
MW-303 MW-3 04-88 12/30/1998 X X X MW-33 MW-3 02-99 06/14/1999 X X X MW-33 MW-3 03-99 09/22/1999 X X X MW-33 MW-3 03-99 12/02/1999 X X X MW-33 MW-3 04-99 12/02/1999 X X X MW-33 MW-3 02-00 03/15/2000 X X X MW-33 MW-3 02-00 06/27/2000 X X X MW-33 MW-3 02-01 02/07/2001 X X X MW-33 MW-3 02-01 02/07/2001 X X X MW-33 MW-3 02-01 03/07/1995 X X X MW-34 MW-10 1-95 03/07/1995 X X X MW-11 MW-11 03/95 Dup 07/07/1995 X X X MW-11 MW-11 03/05 Dup 10/30/1995 X X X <	MW-03	MW-3 Q3-98	09/21/1998	Х	Х	Х
MW-303 MW-3 01-99 0303/1999 X X X MW-03 MW-3 02-99 06/14/1999 X X X MW-03 MW-3 03-99 09/22/1999 X X X MW-03 MW-3 04-99 12/06/1999 X X X MW-03 MW-3 02-00 09/27/2000 X X X MW-03 MW-3 03-00 19/27/2000 X X X MW-03 MW-3 04-00 12/06/2000 X X X MW-03 MW-3 04-01 06/27/2001 X X X MW-03 MW-3 02-01 06/27/2001 X X X MW-11 MW-11 04-95 09/07/1995 X X X MW-11 MW-11 03/95 09/07/1995 X X X MW-11 MW-11 03(Sept)-95 09/20/1995 X X X MW-11 MW-11 04(No/)-85 11/29/1995 X X X	MW-03	MW-3 Q4-98	12/30/1998	Х	Х	Х
MM-03 MW-3 02-99 06/14/1999 X X X MW-03 MW-3 04-99 12/06/1999 X X X MW-03 MW-3 04-99 12/06/1999 X X X MW-03 MW-3 01-00 03/15/2000 X X X MW-03 MW-3 02-00 06/27/2000 X X X MW-03 MW-3 03-00 09/27/2001 X X X MW-03 MW-3 04-00 12/05/2001 X X X MW-03 MW-3 02-01 09/27/2001 X X X MW-03 MW-3 02-01 09/27/2001 X X X MW-03 MW-3 02-01 09/27/2001 X X X MW-11 MW-11 01-95 03/01/1995 X X X MW-11 MW-11 02/95 09/20/1995 X X X MW-11 MW-11 02/96 09/20/1995 X X X MW-11	MW-03	MW-3 Q1-99	03/03/1999	Х	Х	Х
NW-03 NW-3 Q3-99 09/22/1999 X X X NW-03 NW-3 Q4-99 12/09/1999 X X X NW-03 NW-3 Q1-00 03/15/2000 X X X NW-03 NW-3 Q2-00 06/21/2000 X X X NW-03 MW-3 Q4-00 12/06/2000 X X X NW-03 MW-3 Q4-01 06/27/2001 X X X NW-11 MW-101-95 03/01/1995 X X X NW-11 MW-11 Q3-95 03/01/1995 X X X NW-11 MW-11 Q3(Sept)-95 09/20/1995 X X X NW-11 MW-11 Q4(Sept)-95 10/30/1995 X X X	MW-03	MW-3 Q2-99	06/14/1999	Х	Х	Х
NW-03 NW-3 Q4-99 1209/1999 X X X NW-03 MW-3 Q1-00 03/15/2000 X X X NW-03 MW-3 Q2-00 06/21/2000 X X X NW-03 MW-3 Q2-00 09/27/2000 X X X NW-03 MW-3 Q4-00 12/05/2001 X X X NW-03 MW-3 Q4-00 03/27/2001 X X X NW-03 MW-3 Q4-01 03/27/2001 X X X NW-03 MW-3 Q2-01 06/27/2001 X X X NW-11 MW-11 Q1-95 Dup 03/01/1995 X X X NW-11 MW-11 Q3(Sept)-95 09/20/1995 X X X NW-11 MW-11 Q3(Sept)-95 Dup 09/20/1995 X X X NW-11 MW-11 Q4-95 Dup 10/30/1995 X X X NW-11 MW-11 Q4-95 Dup 11/29/1995 X X X <td>MW-03</td> <td>MW-3 Q3-99</td> <td>09/22/1999</td> <td>Х</td> <td>Х</td> <td>Х</td>	MW-03	MW-3 Q3-99	09/22/1999	Х	Х	Х
NW-03 NW-3 Q1-00 Q3/15/2000 X X X NW-03 MW-3 Q2-00 06/21/2000 X X X MW-03 MW-3 Q3-00 99/27/2000 X X X MW-03 MW-3 Q3-00 12/05/2000 X X X MW-03 MW-3 Q2-01 05/27/2001 X X X MW-11 MW-3 Q2-01 06/27/2001 X X X MW-11 MW-11 Q1-95 03/01/1995 X X X MW-11 MW-11 Q3-95 07/01/1995 X X X MW-11 MW-11 Q3/Sep1/95 09/20/1995 X X X MW-11 MW-11 Q3/Sep1/95 09/20/1995 X X X MW-11 MW-11 Q3/Sep1/95 09/20/1995 X X X MW-11 MW-11 Q4/SDup 10/30/1995 X X X MW-11 MW-11 Q4/SDup 10/30/1995 X X X	MW-03	MW-3 Q4-99	12/09/1999	Х	Х	Х
NW-03 NW-3 Q2-00 06/21/2000 X X X MW-03 MW-3 Q3-00 09/27/2000 X X X MW-03 MW-3 Q4-00 12/05/2000 X X X MW-03 MW-3 Q2-01 06/27/2001 X X X MW-11 MW-11 Q1-95 Q3/01/1995 X X X MW-11 MW-11 Q3-95 Q7/01/1995 X X X MW-11 MW-11 Q3-95 Dup Q7/01/1995 X X X MW-11 MW-11 Q3(Sept)-95 09/20/1995 X X X MW-11 MW-11 Q3(Sept)-95 Dup 09/20/1995 X X X MW-11 MW-11 Q4-95 Dup 10/30/1995 X X X MW-11 MW-11 Q4(De)-95 11/29/1995 X X X MW-11 MW-11 Q4(De)-95 12/18/1995 X X X MW-11 MW-11 Q4(De)-95 12/18/1995 X X X	MW-03	MW-3 Q1-00	03/15/2000	Х	Х	Х
NW-03 NW-3 03-00 09/27/2000 X X X MW-03 MW-3 04-00 12/05/2000 X X X MW-03 MW-3 02-01 03/27/2001 X X X MW-03 MW-3 02-01 06/27/2001 X X X MW-11 MW-11 01-95 03/01/1995 X X X MW-11 MW-11 01-95 03/01/1995 X X X MW-11 MW-10 30-95 07/01/1995 X X X MW-11 MW-11 03(Sept)-95 09/20/1995 X X X MW-11 MW-11 03(Sept)-95 09/20/1995 X X X MW-11 MW-11 04(Nov)-95 11/29/1995 X X X MW-11 MW-11 04(Nov)-95 12/26/1995 X X X MW-11 MW-11 04(Nov)-95 12/26/1995 X X X MW-11 MW-10 04(Dec)-95 12/26/1995 X X X <td>MW-03</td> <td>MW-3 Q2-00</td> <td>06/21/2000</td> <td>Х</td> <td>Х</td> <td>Х</td>	MW-03	MW-3 Q2-00	06/21/2000	Х	Х	Х
NW-03 NW-3 Q4-00 12/08/2000 X X X MW-03 MW-3 Q1-01 03/27/2001 X X X MW-03 MW-3 Q2-01 06/27/2001 X X X MW-11 MW-11 Q1-95 03/01/1995 X X X MW-11 MW-11 Q1-95 Dup 03/01/1995 X X X MW-11 MW-11 Q3-95 Dup 07/01/1995 X X X MW-11 MW-11 Q3(Sept)-95 Dup 07/01/1995 X X X MW-11 MW-11 Q3(Sept)-95 Dup 09/20/1995 X X X MW-11 MW-11 Q4(Sept)-95 Dup 10/30/1995 X X X MW-11 MW-11 Q4(Nov)-95 11/29/1995 X X X MW-11 MW-11 Q4(Nov)-95 12/18/1995 X X X MW-11 MW-11 Q4(Nov)-95 12/18/1995 X X X MW-11 MW-11 Q4(Nov)-95 12/18/1995 X <	MW-03	MW-3 Q3-00	09/27/2000	Х	Х	Х
MW-03 MW-3 Q1-01 Q3/27/2001 X X X MW-03 MW-3 Q2-01 06/27/2001 X X X MW-11 MW-11 Q1-95 03/01/1995 X X X MW-11 MW-11 Q1-95 Dup 03/01/1995 X X X MW-11 MW-11 Q3-95 Dup 07/01/1995 X X X MW-11 MW-11 Q3(Sept)-95 09/20/1995 X X X MW-11 MW-11 Q4(Sept)-95 Dup 09/20/1995 X X X MW-11 MW-11 Q4-95 Dup 10/30/1995 X X X MW-11 MW-11 Q4(Nov)-95 11/29/1995 X X X MW-11 MW-11 Q4(Nov)-95 12/18/1995 X X X MW-11 MW-11 Q4(Dec)-95 12/18/1996 X X X MW-11 MW-11 Q2-96 05/01/1996 X X X MW-11 MW-11 Q2-96 06/6/01/1996 X X	MW-03	MW-3 Q4-00	12/05/2000	Х	Х	Х
MW-03 MW-3 Q2-01 06/27/2001 X X X MW-11 MW-11 Q1-95 03/01/1995 X X X MW-11 MW-11 Q3-95 Dup 03/01/1995 X X X MW-11 MW-11 Q3-95 Dup 07/01/1995 X X X MW-11 MW-11 Q3-95 Dup 07/01/1995 X X X MW-11 MW-11 Q3(Sept)-95 Dup 09/20/1995 X X X MW-11 MW-11 Q4-95 10/30/1995 X X X MW-11 MW-11 Q4-95 Dup 10/30/1995 X X X MW-11 MW-11 Q4-95 Dup 11/29/1995 X X X MW-11 MW-11 Q4(Dec)-95 11/29/1995 X X X MW-11 MW-11 Q4-96 02/01/1996 X X X MW-11 MW-11 Q2-96 Dup 05/01/1996 X X X MW-11 MW-11 Q2-96 Dup 05/01/1996 X X	MW-03	MW-3 Q1-01	03/27/2001	Х	Х	Х
NW-11 NW-11 Q1-95 Q3001/1995 X X X MW-11 MW-11 Q1-95 Dup Q3001/1995 X X X MW-11 MW-11 Q3-95 Q7/01/1995 X X X MW-11 MW-11 Q3-95 Dup Q7/01/1995 X X X MW-11 MW-11 Q3(Sept)-95 Q9/20/1995 X X X MW-11 MW-11 Q3(Sept)-95 Dup Q9/20/1995 X X X MW-11 MW-11 Q4/95 Dup 10/30/1995 X X X MW-11 MW-11 Q4/205 Dup 11/29/1995 X X X MW-11 MW-11 Q4(Nov)-95 12/18/1995 X X X MW-11 MW-11 Q4(Dec)-95 12/18/1995 X X X MW-11 MW-11 Q4(Dec)-95 12/18/1995 X X X MW-11 MW-11 Q4/206 05/01/1996 X X X MW-11 MW-11 Q4/206 06/01/1996 X X<	MW-03	MW-3 Q2-01	06/27/2001	Х	Х	Х
MW-11 MW-11 Q1-95 Dup 03/01/1995 X X X MW-11 MW-11 Q3-95 Dup 07/01/1995 X X X MW-11 MW-11 Q3-95 Dup 07/01/1995 X X X MW-11 MW-11 Q3-95 Dup 09/20/1995 X X X MW-11 MW-11 Q3-95 Dup 09/20/1995 X X X MW-11 MW-11 Q3-95 Dup 09/20/1995 X X X MW-11 MW-11 Q4-95 Dup 10/30/1995 X X X MW-11 MW-11 Q4-95 Dup 11/29/1995 X X X MW-11 MW-11 Q4-06-95 12/16/1995 X X X MW-11 MW-11 Q4-06 02/01/1996 X X X MW-11 MW-11 Q2-96 05/01/1996 X X X MW-11 MW-11 Q2-96 09/01/1996 X X X MW-11 MW-11 Q2-96 09/01/1996 X X <t< td=""><td>MW-11</td><td>MW-11 Q1-95</td><td>03/01/1995</td><td>Х</td><td>Х</td><td>Х</td></t<>	MW-11	MW-11 Q1-95	03/01/1995	Х	Х	Х
MW-11 MW-11 Q3-95 O7/01/1995 X X X MW-11 MW-11 Q3(Sept)-95 09/20/1995 X X X MW-11 MW-11 Q3(Sept)-95 09/20/1995 X X X MW-11 MW-11 Q3(Sept)-95 Dup 09/20/1995 X X X MW-11 MW-11 Q4-95 Dup 10/30/1995 X X X MW-11 MW-11 Q4-95 Dup 11/29/1995 X X X MW-11 MW-11 Q4(Nov)-95 11/29/1995 X X X MW-11 MW-11 Q4(Dec)-95 12/18/1995 X X X MW-11 MW-11 Q4(Dec)-95 12/18/1995 X X X MW-11 MW-11 Q2-96 05/01/1996 X X X MW-11 MW-11 Q2-96 06/01/1996 X X X MW-11 MW-11 Q2-97 03/24/1997 X X X MW-11 MW-11 Q3-97 09/11/1997 X X	MW-11	MW-11 Q1-95 Dup	03/01/1995	Х	Х	Х
MW-11 MW-11 Q3-95 Dup 07/01/1995 X X X X MW-11 MW-11 Q3(Sept)-95 09/20/1995 X X X MW-11 MW-11 Q4:95 09/20/1995 X X X MW-11 MW-11 Q4:95 10/30/1995 X X X MW-11 MW-11 Q4:95 10/30/1995 X X X MW-11 MW-11 Q4(Nov)-95 11/29/1995 X X X MW-11 MW-11 Q4(Nov)-95 12/18/1995 X X X MW-11 MW-11 Q4(Nov)-95 Dup 11/29/1996 X X X MW-11 MW-11 Q4(Nov)-95 Dup 12/18/1995 X X X MW-11 MW-11 Q2-96 02/01/1996 X X X MW-11 MW-11 Q2-96 05/01/1996 X X X MW-11 MW-11 Q2-96 09/01/1996 X X X MW-11 MW-11 Q3-96 09/01/1996 X	MW-11	MW-11 Q3-95	07/01/1995	Х	Х	Х
MW-11 MW-11 Q3(Sept)-95 09/20/1995 X X X MW-11 MW-11 Q3(Sept)-95 Dup 09/20/1995 X X X MW-11 MW-11 Q4-95 Dup 10/30/1995 X X X MW-11 MW-11 Q4-95 Dup 10/30/1995 X X X MW-11 MW-11 Q4(Nov)-95 11/29/1995 X X X MW-11 MW-11 Q4(Dec)-95 12/18/1995 X X X MW-11 MW-11 Q4(Dec)-95 12/18/1995 X X X MW-11 MW-11 Q4(Dec)-95 12/18/1995 X X X MW-11 MW-11 Q4(Dec)-95 05/01/1996 X X X MW-11 MW-11 Q2-96 05/01/1996 X X X MW-11 MW-11 Q2-96 06/01/1996 X X X MW-11 MW-11 Q2-97 03/24/1997 X X X MW-11 MW-11 Q2-97 06/24/1997 X X </td <td>MW-11</td> <td>MW-11 Q3-95 Dup</td> <td>07/01/1995</td> <td>Х</td> <td>Х</td> <td>Х</td>	MW-11	MW-11 Q3-95 Dup	07/01/1995	Х	Х	Х
MW-11 MW-11 Q3(Sept)-95 Dup 09/20/1995 X X X MW-11 MW-11 Q4-95 10/30/1995 X X X MW-11 MW-11 Q4(Nov)-95 11/29/1995 X X X MW-11 MW-11 Q4(Nov)-95 11/29/1995 X X X MW-11 MW-11 Q4(Nov)-95 Dup 11/29/1995 X X X MW-11 MW-11 Q4(Dec)-95 12/18/1995 X X X MW-11 MW-11 Q2-96 05/01/1996 X X X MW-11 MW-11 Q2-96 Dup 05/01/1996 X X X MW-11 MW-11 Q2-96 Dup 05/01/1996 X X X MW-11 MW-11 Q2-96 Dup 06/01/1996 X X X MW-11 MW-11 Q2-96 Dup 06/24/1997 X X X MW-11 MW-11 Q2-97 06/24/1997 X X X MW-11 MW-11 Q1-97 03/26/1998 X X<	MW-11	MW-11 Q3(Sept)-95	09/20/1995	Х	Х	Х
MW-11 MW-11 Q4-95 10/30/1995 X X X MW-11 MW-11 Q4-95 Dup 10/30/1995 X X X MW-11 MW-11 Q4(Nov)-95 Dup 11/29/1995 X X X MW-11 MW-11 Q1-96 02/01/1996 X X X MW-11 MW-11 Q2-96 Dup 05/01/1996 X X X MW-11 MW-11 Q2/Jun)-96 06/01/1996 X X X MW-11 MW-11 Q2/97 03/24/1997 X X X MW-11 MW-11 Q2-97 06/24/1997 X X X MW-11 MW-11 Q3-97 09/11/1997 X X X MW-11 MW-11 Q3-98 03/25/1998 X X </td <td>MW-11</td> <td>MW-11 Q3(Sept)-95 Dup</td> <td>09/20/1995</td> <td>Х</td> <td>Х</td> <td>Х</td>	MW-11	MW-11 Q3(Sept)-95 Dup	09/20/1995	Х	Х	Х
MW-11 MW-11 Q4-95 Dup 10/30/1995 X X X MW-11 MW-11 Q4(Nov)-95 11/29/1995 X X X MW-11 MW-11 Q4(Nov)-95 Dup 11/29/1995 X X X MW-11 MW-11 Q4(Dec)-95 12/18/1995 X X X MW-11 MW-11 Q4(Dec)-95 12/18/1995 X X X MW-11 MW-11 Q2-96 05/01/1996 X X X MW-11 MW-11 Q2-96 05/01/1996 X X X MW-11 MW-11 Q2-96 06/01/1996 X X X MW-11 MW-11 Q2-96 06/01/1996 X X X MW-11 MW-11 Q2-97 03/24/1997 X X X MW-11 MW-11 Q2-97 06/24/1997 X X X MW-11 MW-11 Q2-97 09/11/1997 X X X MW-11 MW-11 Q2-97 06/24/1997 X X X <td>MW-11</td> <td>MW-11 Q4-95</td> <td>10/30/1995</td> <td>Х</td> <td>Х</td> <td>Х</td>	MW-11	MW-11 Q4-95	10/30/1995	Х	Х	Х
MW-11 MW-11 Q4(Nov)-95 11/29/1995 X X MW-11 MW-11 Q4(Nov)-95 Dup 11/29/1995 X X MW-11 MW-11 Q4(Dec)-95 12/18/1995 X X X MW-11 MW-11 Q1-96 02/01/1996 X X X MW-11 MW-11 Q2-96 05/01/1996 X X X MW-11 MW-11 Q2-96 Dup 05/01/1996 X X X MW-11 MW-11 Q2-96 Dup 05/01/1996 X X X MW-11 MW-11 Q2-96 Dup 06/01/1996 X X X MW-11 MW-11 Q3-96 09/01/1996 X X X MW-11 MW-11 Q4-96 10/01/1996 X X X MW-11 MW-11 Q4-97 03/24/1997 X X X MW-11 MW-11 Q2-97 06/24/1997 X X X MW-11 MW-11 Q2-97 09/11/1997 X X X MW	MW-11	MW-11 Q4-95 Dup	10/30/1995	Х	Х	Х
MW-11 MW-11 Q4(Nov)-95 Dup 11/29/1995 X X MW-11 MW-11 Q4(Dec)-95 12/18/1995 X X X MW-11 MW-11 Q1-96 02/01/1996 X X X MW-11 MW-11 Q2-96 05/01/1996 X X X MW-11 MW-11 Q2-96 Dup 05/01/1996 X X X MW-11 MW-11 Q2-97 06/24/1997 X X X MW-11 MW-11 Q3-97 09/11/1997 X X X MW-11 MW-11 Q4-97 11/25/1997 X X X MW-11 MW-11 Q3-98 09/21/1998 X X X	MW-11	MW-11 Q4(Nov)-95	11/29/1995	Х	Х	
NW-11 NW-11 Q4(Dec)-95 12/18/1995 X X X NW-11 NW-11 Q1-96 02/01/1996 X X X NW-11 MW-11 Q2-96 05/01/1996 X X X NW-11 MW-11 Q2-96 Dup 05/01/1996 X X X NW-11 MW-11 Q2-96 Dup 05/01/1996 X X X NW-11 MW-11 Q2-96 06/01/1996 X X X NW-11 MW-11 Q4-96 09/01/1996 X X X NW-11 MW-11 Q4-96 10/01/1996 X X X NW-11 MW-11 Q2-97 03/24/1997 X X X NW-11 MW-11 Q2-97 09/11/1997 X X X NW-11 MW-11 Q2-97 09/11/1997 X X X NW-11 MW-11 Q2-97 09/25/1998 X X X NW-11 MW-11 Q2-98 09/21/1998 X X X	MW-11	MW-11 Q4(Nov)-95 Dup	11/29/1995	Х	Х	
NW-11 NW-11 Q1-96 02/01/1996 X X X NW-11 MW-11 Q2-96 05/01/1996 X X X NW-11 MW-11 Q2-96 Dup 05/01/1996 X X X NW-11 MW-11 Q2(Jun)-96 06/01/1996 X X X MW-11 MW-11 Q3-96 09/01/1996 X X X MW-11 MW-11 Q4-96 10/01/1996 X X X MW-11 MW-11 Q1-97 03/24/1997 X X X MW-11 MW-11 Q2-97 06/24/1997 X X X MW-11 MW-11 Q3-97 09/11/1997 X X X MW-11 MW-11 Q4-97 11/25/1997 X X X MW-11 MW-11 Q2-98 06/29/1998 X X X MW-11 MW-11 Q3-98 09/21/1998 X X X MW-11 MW-11 Q3-99 03/03/1999 X X X <tr< td=""><td>MW-11</td><td>MW-11 Q4(Dec)-95</td><td>12/18/1995</td><td>Х</td><td>Х</td><td>Х</td></tr<>	MW-11	MW-11 Q4(Dec)-95	12/18/1995	Х	Х	Х
MW-11 MW-11 Q2-96 05/01/1996 X X X MW-11 MW-11 Q2-96 Dup 05/01/1996 X X MW-11 MW-11 Q2(Jun)-96 06/01/1996 X X MW-11 MW-11 Q2(Jun)-96 06/01/1996 X X MW-11 MW-11 Q3-96 09/01/1996 X X X MW-11 MW-11 Q4-96 10/01/1996 X X X MW-11 MW-11 Q1-97 03/24/1997 X X X MW-11 MW-11 Q2-97 06/24/1997 X X X MW-11 MW-11 Q3-97 09/11/1997 X X X MW-11 MW-11 Q3-97 09/11/1997 X X X MW-11 MW-11 Q3-97 09/11/1997 X X X MW-11 MW-11 Q3-97 09/21/1997 X X X MW-11 MW-11 Q3-98 03/25/1998 X X X MW-11 MW-11 Q3-98 <td>MW-11</td> <td>MW-11 Q1-96</td> <td>02/01/1996</td> <td>Х</td> <td>Х</td> <td>Х</td>	MW-11	MW-11 Q1-96	02/01/1996	Х	Х	Х
MW-11 MW-11 Q2-96 Dup 05/01/1996 X MW-11 MW-11 Q2(Jun)-96 06/01/1996 X X MW-11 MW-11 Q3-96 09/01/1996 X X X MW-11 MW-11 Q4-96 10/01/1996 X X X MW-11 MW-11 Q4-96 10/01/1996 X X X MW-11 MW-11 Q1-97 03/24/1997 X X X MW-11 MW-11 Q2-97 06/24/1997 X X X MW-11 MW-11 Q3-97 09/11/1997 X X X MW-11 MW-11 Q3-97 09/11/1997 X X X MW-11 MW-11 Q3-97 09/11/1997 X X X MW-11 MW-11 Q3-98 03/25/1998 X X X MW-11 MW-11 Q2-98 06/29/1998 X X X MW-11 MW-11 Q3-98 09/21/1998 X X X MW-11 MW-11 Q1-99	MW-11	MW-11 Q2-96	05/01/1996	Х	Х	Х
MW-11 MW-11 Q2(Jun)-96 06/01/1996 X X MW-11 MW-11 Q3-96 09/01/1996 X X X MW-11 MW-11 Q4-96 10/01/1996 X X X MW-11 MW-11 Q1-97 03/24/1997 X X X MW-11 MW-11 Q2-97 06/24/1997 X X X MW-11 MW-11 Q2-97 06/24/1997 X X X MW-11 MW-11 Q2-97 09/11/1997 X X X MW-11 MW-11 Q3-97 09/11/1997 X X X MW-11 MW-11 Q4-97 11/25/1997 X X X MW-11 MW-11 Q1-98 03/25/1998 X X X MW-11 MW-11 Q2-98 06/29/1998 X X X MW-11 MW-11 Q3-98 09/21/1998 X X X MW-11 MW-11 Q2-99 06/14/1999 X X X MW-11 <td>MW-11</td> <td>MW-11 Q2-96 Dup</td> <td>05/01/1996</td> <td></td> <td>Х</td> <td></td>	MW-11	MW-11 Q2-96 Dup	05/01/1996		Х	
MW-11 MW-11 Q3-96 09/01/1996 X X X MW-11 MW-11 Q4-96 10/01/1996 X X X MW-11 MW-11 Q1-97 03/24/1997 X X X MW-11 MW-11 Q2-97 06/24/1997 X X X MW-11 MW-11 Q2-97 06/24/1997 X X X MW-11 MW-11 Q2-97 09/11/1997 X X X MW-11 MW-11 Q3-97 09/11/1997 X X X MW-11 MW-11 Q4-97 11/25/1997 X X X MW-11 MW-11 Q1-98 03/25/1998 X X X MW-11 MW-11 Q2-98 06/29/1998 X X X MW-11 MW-11 Q3-98 09/21/1998 X X X MW-11 MW-11 Q1-99 03/03/1999 X X X MW-11 MW-11 Q2-99 06/14/1999 X X X	MW-11	MW-11 Q2(Jun)-96	06/01/1996			Х
MW-11 MW-11 Q4-96 10/01/1996 X X X MW-11 MW-11 Q1-97 03/24/1997 X X X MW-11 MW-11 Q2-97 06/24/1997 X X X MW-11 MW-11 Q3-97 09/11/1997 X X X MW-11 MW-11 Q3-97 09/11/1997 X X X MW-11 MW-11 Q4-97 11/25/1997 X X X MW-11 MW-11 Q1-98 03/25/1998 X X X MW-11 MW-11 Q2-98 06/29/1998 X X X MW-11 MW-11 Q3-98 09/21/1998 X X X MW-11 MW-11 Q3-98 09/21/1998 X X X MW-11 MW-11 Q1-99 03/03/1999 X X X MW-11 MW-11 Q2-99 06/14/1999 X X X MW-11 MW-11 Q3-99 09/22/1999 X X X	MW-11	MW-11 Q3-96	09/01/1996	Х	Х	Х
MW-11 MW-11 Q1-97 03/24/1997 X X X MW-11 MW-11 Q2-97 06/24/1997 X X X MW-11 MW-11 Q3-97 09/11/1997 X X X MW-11 MW-11 Q4-97 11/25/1997 X X X MW-11 MW-11 Q1-98 03/25/1998 X X X MW-11 MW-11 Q2-98 06/29/1998 X X X MW-11 MW-11 Q3-98 09/21/1998 X X X MW-11 MW-11 Q1-99 03/03/1999 X X X MW-11 MW-11 Q2-99 06/14/1999 X X X MW-11 MW-11 Q3-99 09/22/1999 X X X	MW-11	MW-11 Q4-96	10/01/1996	Х	Х	Х
MW-11 MW-11 Q2-97 06/24/1997 X X X MW-11 MW-11 Q3-97 09/11/1997 X X X MW-11 MW-11 Q4-97 11/25/1997 X X X MW-11 MW-11 Q1-98 03/25/1998 X X X MW-11 MW-11 Q2-98 06/29/1998 X X X MW-11 MW-11 Q2-98 06/29/1998 X X X MW-11 MW-11 Q2-98 09/21/1998 X X X MW-11 MW-11 Q3-98 09/21/1998 X X X MW-11 MW-11 Q2-98 02/30/1998 X X X MW-11 MW-11 Q1-99 03/03/1999 X X X MW-11 MW-11 Q2-99 06/14/1999 X X X MW-11 MW-11 Q3-99 09/22/1999 X X X MW-11 MW-11 Q1-00 03/15/2000 X X X	MW-11	MW-11 Q1-97	03/24/1997	Х	Х	Х
MW-11 MW-11 Q3-97 09/11/1997 X X MW-11 MW-11 Q4-97 11/25/1997 X X X MW-11 MW-11 Q1-98 03/25/1998 X X X MW-11 MW-11 Q2-98 06/29/1998 X X X MW-11 MW-11 Q2-98 06/29/1998 X X X MW-11 MW-11 Q2-98 09/21/1998 X X X MW-11 MW-11 Q3-98 09/21/1998 X X X MW-11 MW-11 Q4-98 12/30/1998 X X X MW-11 MW-11 Q1-99 03/03/1999 X X X MW-11 MW-11 Q2-99 06/14/1999 X X X MW-11 MW-11 Q3-99 09/22/1999 X X X MW-11 MW-11 Q3-99 12/09/1999 X X X MW-11 MW-11 Q4-99 12/09/1999 X X X MW-11	MW-11	MW-11 Q2-97	06/24/1997	Х	Х	Х
MW-11 MW-11 Q4-97 11/25/1997 X X X MW-11 MW-11 Q1-98 03/25/1998 X X X MW-11 MW-11 Q2-98 06/29/1998 X X X MW-11 MW-11 Q2-98 06/29/1998 X X X MW-11 MW-11 Q3-98 09/21/1998 X X X MW-11 MW-11 Q4-98 12/30/1998 X X X MW-11 MW-11 Q4-98 12/30/1998 X X X MW-11 MW-11 Q1-99 03/03/1999 X X X MW-11 MW-11 Q2-99 06/14/1999 X X X MW-11 MW-11 Q3-99 09/22/1999 X X X MW-11 MW-11 Q4-99 12/09/1999 X X X MW-11 MW-11 Q2-00 03/15/2000 X X X MW-11 MW-11 Q2-00 06/21/2000 X X X	MW-11	MW-11 Q3-97	09/11/1997	Х	Х	
MW-11 MW-11 Q1-98 03/25/1998 X X X MW-11 MW-11 Q2-98 06/29/1998 X X X MW-11 MW-11 Q3-98 09/21/1998 X X X MW-11 MW-11 Q3-98 09/21/1998 X X X MW-11 MW-11 Q4-98 12/30/1998 X X X MW-11 MW-11 Q1-99 03/03/1999 X X X MW-11 MW-11 Q2-99 06/14/1999 X X X MW-11 MW-11 Q2-99 09/22/1999 X X X MW-11 MW-11 Q3-99 09/22/1999 X X X MW-11 MW-11 Q4-99 12/09/1999 X X X MW-11 MW-11 Q1-00 03/15/2000 X X X MW-11 MW-11 Q2-00 06/21/2000 X X X MW-11 MW-11 Q3-00 09/27/2000 X X X	MW-11	MW-11 Q4-97	11/25/1997	Х	Х	Х
MW-11 MW-11 Q2-98 06/29/1998 X X X MW-11 MW-11 Q3-98 09/21/1998 X X X MW-11 MW-11 Q4-98 12/30/1998 X X X MW-11 MW-11 Q1-99 03/03/1999 X X X MW-11 MW-11 Q2-99 06/14/1999 X X X MW-11 MW-11 Q2-99 06/14/1999 X X X MW-11 MW-11 Q2-09 09/22/1999 X X X MW-11 MW-11 Q3-99 09/22/1999 X X X MW-11 MW-11 Q3-00 03/15/2000 X X X MW-11 MW-11 Q2-00 06/21/2000 X X X MW-11 MW-11 Q3-00 09/27/2000 X X X	MW-11	MW-11 Q1-98	03/25/1998	Х	Х	Х
MW-11 MW-11 Q3-98 09/21/1998 X X X MW-11 MW-11 Q4-98 12/30/1998 X X X MW-11 MW-11 Q1-99 03/03/1999 X X X MW-11 MW-11 Q2-99 06/14/1999 X X X MW-11 MW-11 Q3-99 09/22/1999 X X X MW-11 MW-11 Q3-99 09/22/1999 X X X MW-11 MW-11 Q3-99 09/22/1999 X X X MW-11 MW-11 Q4-99 12/09/1999 X X X MW-11 MW-11 Q1-00 03/15/2000 X X X MW-11 MW-11 Q2-00 06/21/2000 X X X MW-11 MW-11 Q3-00 09/27/2000 X X X	MW-11	MW-11 Q2-98	06/29/1998	Х	Х	Х
MW-11 MW-11 Q4-98 12/30/1998 X X X MW-11 MW-11 Q1-99 03/03/1999 X X X MW-11 MW-11 Q2-99 06/14/1999 X X X MW-11 MW-11 Q2-99 06/14/1999 X X X MW-11 MW-11 Q3-99 09/22/1999 X X X MW-11 MW-11 Q4-99 12/09/1999 X X X MW-11 MW-11 Q1-00 03/15/2000 X X X MW-11 MW-11 Q2-00 06/21/2000 X X X MW-11 MW-11 Q3-00 09/27/2000 X X X	MW-11	MW-11 Q3-98	09/21/1998	Х	Х	Х
MW-11 MW-11 Q1-99 03/03/1999 X X X MW-11 MW-11 Q2-99 06/14/1999 X X X MW-11 MW-11 Q3-99 09/22/1999 X X X MW-11 MW-11 Q4-99 12/09/1999 X X X MW-11 MW-11 Q1-00 03/15/2000 X X X MW-11 MW-11 Q2-00 06/21/2000 X X X MW-11 MW-11 Q2-00 06/21/2000 X X X	MW-11	MW-11 Q4-98	12/30/1998	Х	Х	Х
MW-11 MW-11 Q2-99 06/14/1999 X X X MW-11 MW-11 Q3-99 09/22/1999 X X X MW-11 MW-11 Q4-99 12/09/1999 X X X MW-11 MW-11 Q1-00 03/15/2000 X X X MW-11 MW-11 Q2-00 06/21/2000 X X X MW-11 MW-11 Q2-00 06/21/2000 X X X MW-11 MW-11 Q3-00 09/27/2000 X X X	MW-11	MW-11 Q1-99	03/03/1999	Х	Х	Х
MW-11 MW-11 Q3-99 09/22/1999 X X X MW-11 MW-11 Q4-99 12/09/1999 X X X MW-11 MW-11 Q1-00 03/15/2000 X X X MW-11 MW-11 Q2-00 06/21/2000 X X X MW-11 MW-11 Q3-00 09/27/2000 X X X	MW-11	MW-11 Q2-99	06/14/1999	Х	Х	Х
MW-11 MW-11 Q4-99 12/09/1999 X X X MW-11 MW-11 Q1-00 03/15/2000 X X X MW-11 MW-11 Q2-00 06/21/2000 X X X MW-11 MW-11 Q3-00 09/27/2000 X X X	MW-11	MW-11 Q3-99	09/22/1999	Х	Х	Х
MW-11 MW-11 Q1-00 03/15/2000 X X X MW-11 MW-11 Q2-00 06/21/2000 X X X MW-11 MW-11 Q3-00 09/27/2000 X X X	MW-11	MW-11 Q4-99	12/09/1999	Х	Х	Х
MW-11 MW-11 Q2-00 06/21/2000 X X X MW-11 MW-11 Q3-00 09/27/2000 X X X	MW-11	MW-11 Q1-00	03/15/2000	Х	Х	Х
MW-11 Q3-00 09/27/2000 X X X X	MW-11	MW-11 Q2-00	06/21/2000	Х	Х	Х
	MW-11	MW-11 Q3-00	09/27/2000	Х	Х	Х

Location	Sample ID	Sample Date	Conventionals	Metals	VOCs
Downgradient Wells C	Continued				
MW-11	MW-11 Q4-00	12/05/2000	Х	Х	Х
MW-11	MW-11 Q1-01	03/27/2001	Х	Х	Х
MW-11	MW-11 Q2-01	06/27/2001	Х	Х	Х
MW-11	MW-11 Q3-01	09/06/2001	Х	Х	Х
MW-11	MW-11 Q4-01	12/14/2001	Х	Х	Х
MW-11	MW-11 Q1-02	03/27/2002	Х	Х	Х
MW-11	MW-11 Q2-02	06/13/2002	Х	Х	Х
MW-11	MW-11 Q3-02	09/18/2002	Х	Х	Х
MW-11	MW-11 Q4-02	12/17/2002	Х	Х	Х
MW-11	MW-11 Q1-03	03/26/2003	Х	Х	Х
MW-11	MW-11 Q2-03	06/26/2003	Х	Х	Х
MW-11	MW-11 Q3-03	09/25/2003	Х	Х	Х
MW-11	MW-11 Q4-03	12/18/2003	Х	Х	Х
MW-11	MW-11 Q1-04	03/17/2004	Х	Х	Х
MW-11	MW-11 Q2-04	06/17/2004	Х	Х	Х
MW-11	MW-11 Q3-04	09/30/2004	Х	Х	Х
MW-11	MW-11 Q4-04	12/15/2004	Х	Х	Х
MW-11	MW-11 Q1-05	03/31/2005	Х	Х	Х
MW-11	MW-11 Q2-05	06/23/2005	Х	Х	Х
MW-11	MW-11 Q3-05	09/29/2005	Х	Х	Х
MW-11	MW-11 Q4-05	12/14/2005	Х	Х	Х
MW-11	MW-11 Q1-06	03/30/2006	Х	Х	Х
MW-11	MW-11 Q2-06	06/21/2006	Х	Х	Х
MW-11	MW-11 Q3-06	09/21/2006	Х	Х	Х
MW-11	MW-11 Q4-06	12/28/2006	Х	Х	Х
MW-11	MW-11 Q1-07	03/22/2007	Х	Х	Х
MW-11	MW-11 Q2-07	06/28/2007	Х	Х	Х
MW-11	MW-11 Q3-07	09/26/2007	Х	Х	Х
MW-11	MW-11 Q4-07	12/27/2007	Х	Х	Х
MW-11	MW-11 Q1-08	03/27/2008	Х	Х	Х
MW-11	MW-11 Q2-08	06/25/2008	Х	Х	Х
MW-11	MW-11 Q3-08	09/24/2008	Х	Х	Х
MW-11	MW-11 Q4-08	12/17/2008	Х	Х	Х
MW-11	MW-11 Q1-09	03/20/2009	Х	Х	Х
MW-11	MW-11 Q2-09	06/24/2009	Х	Х	Х
MW-11	MW-11 Q3-09	09/24/2009	Х	Х	Х
MW-11	MW-11 Q4-09	12/18/2009	Х	Х	Х
MW-11	MW-11 Q1-10	03/30/2010	Х	Х	Х
MW-11	MW-11 Q2-10	06/23/2010	Х	Х	Х
MW-11	MW-11 Q3-10	09/29/2010	Х	Х	Х
MW-11	MW-11 Q4-10	12/15/2010	Х	Х	Х
MW-11	MW-11 Q1-2011	03/24/2011	Х	Х	Х
MW-14	MW-14 Q3-99	09/22/1999	Х	Х	Х
MW-14	MW-14 Q4-99	12/09/1999	Х	Х	Х
MW-14	MW-14 Q1-00	03/15/2000	Х	Х	Х
MW-14	MW-14 Q2-00	06/21/2000	Х	Х	Х
MW-14	MW-14 Q3-00	09/27/2000	Х	Х	Х
MW-14	MW-14 Q4-00	12/05/2000	Х	Х	Х
MW-14	MW-14 Q1-01	03/27/2001	Х	Х	Х
MW-14	MW-14 Q2-01	06/27/2001	Х	Х	Х
MW-14	MW-14 Q3-01	09/06/2001	Х	Х	Х

Location	Sample ID	Sample Date	Conventionals	Metals	VOCs
Downgradient Wells C	Continued				•
MW-14	MW-14 Q4-01	12/14/2001	Х	Х	Х
MW-14	MW-14 Q1-02	03/27/2002	Х	Х	Х
MW-14	MW-14 Q2-02	06/13/2002	Х	Х	Х
MW-14	MW-14 Q3-02	09/18/2002	Х	Х	Х
MW-14	MW-14 Q4-02	12/17/2002	Х	Х	Х
MW-14	MW-14 Q1-03	03/26/2003	Х	Х	Х
MW-14	MW-14 Q2-03	06/26/2003	Х	Х	Х
MW-14	MW-14 Q3-03	09/25/2003	Х	Х	Х
MW-14	MW-14 Q4-03	12/18/2003	Х	Х	Х
MW-14	MW-14 Q1-04	03/17/2004	Х	Х	Х
MW-14	MW-14 Q2-04	06/17/2004	Х	Х	Х
MW-14	MW-14 Q3-04	09/30/2004	Х	Х	Х
MW-14	MW-14 Q4-04	12/15/2004	Х	Х	Х
MW-14	MW-14 Q1-05	03/31/2005	Х	Х	Х
MW-14	MW-14 Q2-05	06/23/2005	Х	Х	Х
MW-14	MW-14 Q3-05	09/29/2005	Х	Х	Х
MW-14	MW-14 Q4-05	12/14/2005	Х	Х	Х
MW-14	MW-14 Q1-06	03/30/2006	Х	Х	Х
MW-14	MW-14 Q3-06	09/21/2006	Х	Х	Х
MW-14	MW-14 Q4-06	12/28/2006	Х	Х	Х
MW-14	MW-14 Q1-07	03/22/2007	Х	Х	Х
MW-14	MW-14 Q2-07	06/28/2007	Х	Х	Х
MW-14	MW-14 Q3-07	09/26/2007	Х	Х	Х
MW-14	MW-14 Q4-07	12/27/2007	Х	Х	Х
MW-14	MW-14 Q1-08	03/27/2008	Х	Х	Х
MW-14	MW-14 Q2-08	06/25/2008	Х	Х	Х
MW-14	MW-14 Q3-08	09/24/2008	Х	Х	Х
MW-14	MW-14 Q4-08	12/17/2008	Х	Х	Х
MW-14	MW-14 Q1-09	03/20/2009	Х	Х	Х
MW-14	MW-14 Q2-09	06/24/2009	Х	Х	Х
MW-14	MW-14 Q3-09	09/24/2009	Х	Х	Х
MW-14	MW-14 Q4-09	12/18/2009	Х	Х	Х
MW-14	MW-14 Q1-10	03/30/2010	Х	Х	Х
MW-14	MW-14 Q2-10	06/23/2010	Х	Х	Х
MW-14	MW-14 Q3-10	09/29/2010	Х	Х	Х
MW-14	MW-14 Q4-10	12/15/2010	Х	Х	Х
MW-14	MW-14 Q1-2011	03/24/2011	Х	Х	Х
MW-15	MW-15 Q3-01	09/06/2001	Х	Х	Х
MW-15	MW-15 Q4-01	12/14/2001	Х	Х	Х
MW-15	MW-15 Q1-02	03/27/2002	Х	Х	Х
MW-15	MW-15 Q2-02	06/13/2002	Х	Х	Х
MW-15	MW-15 Q3-02	09/18/2002	Х	Х	Х
MW-15	MW-15 Q4-02	12/17/2002	Х	Х	Х
MW-15	MW-15 Q1-03	03/26/2003	Х	Х	Х
MW-15	MW-15 Q2-03	06/26/2003	Х	Х	Х
MW-15	MW-15 Q3-03	09/25/2003	Х	Х	Х
MW-15	MW-15 Q4-03	12/18/2003	Х	Х	Х
MW-15	MW-15 Q1-04	03/17/2004	Х	Х	Х
MW-15	MW-15 Q2-04	06/17/2004	Х	Х	х
MW-15	MW-15 Q3-04	09/30/2004	Х	Х	Х
MW-15	MW-15 Q4-04	12/15/2004	Х	Х	Х
-			-	-	-

Location	Sample ID	Sample Date	Conventionals	Metals	VOCs
Downgradient Wells (Continued				•
MW-15	MW-15 Q1-05	03/31/2005	Х	Х	Х
MW-15	MW-15 Q2-05	06/23/2005	Х	Х	Х
MW-15	MW-15 Q3-05	09/29/2005	Х	Х	Х
MW-15	MW-15 Q4-05	12/14/2005	Х	Х	Х
MW-15	MW-15 Q1-06	03/30/2006	Х	Х	Х
MW-15	MW-15 Q2-06	06/21/2006	Х	Х	Х
MW-15	MW-15 Q3(Sept)-06	09/21/2006	Х	Х	Х
MW-15	MW-15 Q4-06	12/28/2006	Х	Х	Х
MW-15	MW-15 Q1-07	03/22/2007	Х	Х	Х
MW-15	MW-15 Q2-07	06/28/2007	Х	Х	Х
MW-15	MW-15 Q3-07	09/26/2007	Х	Х	Х
MW-15	MW-15 Q4-07	12/27/2007	Х	Х	Х
MW-15	MW-15 Q1-08	03/27/2008	Х	Х	Х
MW-15	MW-15 Q2-08	06/25/2008	Х	Х	Х
MW-15	MW-15 Q3-08	09/24/2008	Х	Х	Х
MW-15	MW-15 Q4-08	12/17/2008	Х	Х	Х
MW-15	MW-15 Q1-09	03/20/2009	Х	Х	Х
MW-15	MW-15 Q2-09	06/24/2009	Х	Х	Х
MW-15	MW-15 Q3-09	09/24/2009	Х	Х	Х
MW-15	MW-15 Q4-09	12/18/2009	Х	Х	Х
MW-15	MW-15 Q1-10	03/30/2010	Х	Х	Х
MW-15	MW-15 Q2-10	06/23/2010	Х	Х	Х
MW-15	MW-15 Q3-10	09/29/2010	Х	Х	Х
MW-15	MW-15 Q4-10	12/15/2010	Х	Х	Х
MW-15	MW-15 Q1-2011	03/24/2011	Х	Х	Х
MW-16	MW-16 Q3-05	09/01/2005	Х	Х	Х
MW-16	MW-16 Q2-06	06/21/2006	Х	Х	Х
MW-16	MW-16 Q3(Sept)-06	09/21/2006	Х	Х	Х
MW-16	MW-16 Q1-2011	03/24/2011			Х
Residential Wells	•	•			•
Camp Ranch	Camp Q1-05	03/31/2005			Х
Camp Ranch	Camp Q2-05	06/23/2005			Х
Camp Ranch	Camp Q3-05	09/29/2005			Х
Camp Ranch	Camp Q3-06	09/21/2006			Х
Camp Ranch	Camp Q2-09	06/24/2009			Х
Kinman Ranch	Kinman Q1-05	03/31/2005			Х
Kinman Ranch	Kinman Q2-05	06/23/2005			Х
Small Ranch	Small 061302	06/13/2002			Х
Small Ranch	Small 062602	06/26/2002			Х
Small Ranch	Small Q1-04	03/17/2004			Х
Small Ranch	Small Q3-04	09/30/2004			Х
Small Ranch	Small Q4-04	12/15/2004			Х
Small Ranch	Small Q1-05	03/31/2005			Х
Small Ranch	Small Q3-05	09/29/2005			Х
Small Ranch	Small Q3-06	09/21/2006			Х
Small Ranch	Small Q2-09	06/24/2009			Х
Small Ranch	Small Q3-10	09/29/2010			Х
Notes:					

X indicates that a sample was collected and analyzed for the specified chemical group.

TABLE D2 ADDITIONAL ASSESSMENT MONITORING RESULTS City of Walla Walla Sudbury Road Landfill

Parameter Class	Analysis Method	Number of Samples	Number of Samples with a Detected Result
Polychlorinated Biphenyls	EPA 8082	6	0
Organochlorine Pesticides	EPA 8081A	6	0
Organophosphorus Pesticides	EPA 8141A	6	0
Chlorinated Herbicides	EPA 8151A	6	0
SVOCs	EPA 8270C	5	0
VOCs ¹	EPA 8260C	9	0
Notes:			

1 This includes an expanded parameter list of 63 VOCs. Not all samples were tested for every VOC parameter on the expanded list. All reported VOC concentrations on the expanded list were below the method reporting limit.

Page 1 of 15

Location	Sample ID	Parameter Sample Date	Alkalinity (mg/L)	Ammonia (mg/L)	Bicarbonate (mg/L)	Carbonate (mg/L)	Chloride (mg/L)	Conductivity (uohm/cm)	Nitrate (mg/L)	pH (std pH units)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)	Total Organic Carbon (mg/L)
Upgradie	nt Wells	-											
MW-05	MW-5 Q1-91	03/01/1991	NA	0.05	NA	NA	56	700	9.87	NA	NA	NA	NA
MW-05	MW-5 Q2-91	06/01/1991	NA	0.05	NA	NA	39.6	640	10	NA	NA	NA	NA
MW-05	MW-5 Q3-91	09/01/1991	NA	0.025	NA	NA	65	750	10.25	NA	NA	NA	NA
MW-05	MW-5 Q4-91	12/01/1991	NA	NA	NA	NA	151	1080	1.3	NA	NA	NA	NA
MW-05	MW-5 Q1-92	03/01/1992	NA	0.05	NA	NA	80.8	710	10.9	NA	NA	NA	NA
MW-05	MW-5 Q2-92	06/01/1992	NA	0.05	NA	NA	74.7	700	9.7	NA	NA	NA	NA
MW-05	MW-5 Q3-92	09/01/1992	NA	0.05	NA	NA	50.1	600	11.5	NA	NA	NA	NA
MW-05	MW-5 Q4-92	12/01/1992	NA	0.05	NA	NA	49.4	610	11.4	NA	NA	NA	NA
MW-05	MW-5 Q1-93	03/30/1993	NA	0.1 U	NA	NA	55	735	53.8	NA	NA	NA	NA
MW-05	MW-5 Q2(Jun)-93	06/14/1993	NA	0.1 U	NA	NA	51.6	610	11.6	NA	NA	NA	NA
MW-05	MW-5 Q3-93	09/01/1993	NA	0.1 U	NA	NA	54.8	575	11.8	NA	NA	NA	NA
MW-05	MW-5 Q4- 93	12/01/1993	NA	0.1 U	NA	NA	61.2	582	11.7	NA	NA	NA	NA
MW-05	MW-5 Q1-94	03/01/1994	220	NA	NA	NA	NA	593	NA	7.1	NA	512	NA
MW-05	MW-5 Q3-94	08/01/1994	204.1	0.0025 U	NA	NA	58.5	570	14.2	6.9	32.8	431	5.5
MW-05	MW-5 Q3(Sept)-94	09/01/1994	195	0.0025 U	NA	NA	49.6	570	11.6	7	19.1	195	1.3
MW-05	MW-5 Q4(Nov)-94	11/01/1994	206	0.0025 U	257	NA	49.9	630	11.5	6.8	26.3	428	1.4
MW-05	MW-5 Q4(Dec)-94	12/01/1994	200	0.0025 U	261	NA	64.6	740	13	6.8	26.6	387	1.37
MW-05	MW-5 Q1-95	01/01/1995	204	0.0025 U	263	NA	56.8	810	14.4	6.8	22.2	468	0.8
MW-05	MW-5 Q1(Feb)-95	02/01/1995	116	0.0025 U	265	NA	61.1	770	14.5	6.7	21.6	456	0.865
MW-05	MW-5 Q4-95	10/30/1995	NA	NA	NA	NA	NA	840	14.5	NA	NA	NA	NA
MW-05	MW-5 Q4(Dec)-95	12/20/1995	210	0.0025 U	185	NA	166.5	961	16.2	NA	23.1	660	1.07
MW-05	MW-5 Q1-96	02/01/1996	NA	NA	NA	NA	NA	910	NA	7.1	NA	NA	NA
MW-05	MW-5 Q2-96	05/01/1996	NA	NA	NA	NA	NA	840	NA	7.2	NA	NA	NA
MW-05	MW-5 Q3-96	09/01/1996	219	0.05 U	219	NA	70	850	16	7.04	33	494	0.05 U
MW-05	MW-5 Q4-96	10/01/1996	212	0.05 U	212	NA	76	860	14	7.2	29	492	0.5 U

Page 2 of 15

Location	Sample ID	Parameter Sample Date	Alkalinity (mg/L)	Ammonia (mg/L)	Bicarbonate (mg/L)	Carbonate (mg/L)	Chloride (mg/L)	Conductivity (uohm/cm)	Nitrate (mg/L)	pH (std pH units)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)	Total Organic Carbon (mg/L)
Upgradie	nt Wells Continued												
MW-05	MW-5 Q1-97	03/24/1997	216	0.05 U	NA	NA	68	880	14	5.35	28	503	0.5 U
MW-05	MW-5 Q2-97	06/24/1997	210	0.05 U	210	NA	57	640	13	6.9	27	453	0.5 U
MW-05	MW-5 Q3-97	09/11/1997	210	NA	210	NA	56.3	712	12	7.23	24.6	424	NA
MW-05	MW-5 Q4-97	11/25/1997	212	0.05 U	NA	NA	55.6	612	13.7	7.81	NA	403	0.5 U
MW-05	MW-5 Q1-98	03/25/1998	207	0.05 U	207	NA	47.7	515	NA	7.12	25.8	408	0.5 U
MW-05	MW-5 Q3-98	09/21/1998	222	0.05 U	NA	NA	44.4	705	12.8	7.27	24.5	418	0.8
MW-05	MW-5 Q4-98	12/30/1998	212	0.05 U	212	NA	47	680	13.8	7.2	27.8	412	0.6
MW-05	MW-5 Q1-99	03/03/1999	207	0.05 U	207	NA	43.7	436	13.3	7.8	26	416	0.5 U
MW-05	MW-5 Q2-99	06/14/1999	215	0.05 U	215	NA	41.8	353	NA	7.31	24	449	0.6
MW-05	MW-5 Q1-00	03/15/2000	NA	NA	NA	NA	NA	729	NA	7.53	NA	NA	NA
MW-05	MW-5 Q3-00	09/27/2000	NA	NA	NA	NA	NA	640	NA	7.75	NA	NA	NA
MW-05	MW-5 Q3-01	09/06/2001	NA	NA	NA	NA	NA	560	NA	7.7	NA	NA	NA
MW-05	MW-5 Q4-01	12/14/2001	NA	NA	NA	NA	NA	120	NA	7.54	NA	NA	NA
MW-05	MW-5 Q1-02	03/27/2002	NA	NA	NA	NA	NA	490	NA	7.25	NA	NA	NA
MW-07	SLF-MW-07-GW-110510	11/05/2010	74	0.073	NA	20 U	NA	NA	1.6	NA	5 U	NA	NA
MW-07	SLF-MW-07-GW-021011	02/10/2011	74	0.05 U	NA	NA	NA	NA	1.4	NA	5 U	NA	NA
MW-09	SLF-MW-09-GW-110410	11/04/2010	330	0.1	NA	20 U	NA	NA	16	NA	28	NA	NA
MW-09	SLF-MW-09-GW-021011	02/10/2011	320	0.05 U	NA	NA	NA	NA	12	NA	27	NA	NA
MW-10	SLF-MW-10-GW-110410	11/04/2010	160	0.08	NA	20 U	NA	NA	6.6	NA	36	NA	NA
MW-10	SLF-MW-10-GW-021011	02/10/2011	150	0.05 U	NA	NA	NA	NA	6.8	NA	24	NA	NA
MW-12	MW-12 Q1-95	03/01/1995	321	0.0025 U	393.7	NA	182.8	1397	11.7	8.13	51.7	903	78.04
MW-12	MW-12 Q3-95	07/01/1995	346	0.0025 U	NA	NA	202.4	1400	10.6	6.2	53.6	849	2.21
MW-12	MW-12 Q3(Sept)-95	09/20/1995	320	0.0025 U	290	NA	193.1	157.5	10.8	6.5	57.9	815.3	NA
MW-12	MW-12 Q4t-95	10/30/1995	330	0.0025 U	310	NA	NA	162	10.6	7.78	5.8	762.9	NA
MW-12	MW-12 Q4(Nov)-95	11/29/1995	345	0.0025 U	310	NA	210.7	132	16.4	NA	39.6	782.3	24.5

Page 3 of 15

Location	Sample ID	Parameter Sample Date	Alkalinity (mg/L)	Ammonia (mg/L)	Bicarbonate (mg/L)	Carbonate (mg/L)	Chloride (mg/L)	Conductivity (uohm/cm)	Nitrate (mg/L)	pH (std pH units)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)	Total Organic Carbon (mg/L)
Upgradie	nt Wells Continued												
MW-12	MW-12 Q4(Dec)-95	12/20/1995	230	0.0025 U	200	NA	221.7	1142	17.7	NA	41	770	3.1
MW-12	MW-12 Q1-96	02/01/1996	NA	NA	NA	NA	NA	1400	NA	6.8	NA	NA	NA
MW-12	MW-12 Q2-96	05/29/1996	NA	NA	NA	NA	NA	1390	NA	6.26	NA	NA	NA
MW-12	MW-12 Q3-96	09/01/1996	338	0.05 U	338	NA	190	1420	12	6.68	41	764	0.6
MW-12	MW-12 Q4-96	10/01/1996	320	0.1	320	NA	220	1390	12	6.62	48	840	0.7
MW-12	MW-12 Q1-97	03/24/1997	342	0.05 U	342	NA	220	1270	12	7.13	45	818	0.9
MW-12	MW-12 Q2-97	06/24/1997	339	0.05 U	339	NA	180	1280	12	7.09	40	800	0.5
MW-12	MW-12 Q3-97	09/11/1997	328	0.05 U	328	NA	182	1308	10.4	7.23	43.7	738	0.5
MW-12	MW-12 Q4-97	11/25/1997	335	0.05 U	NA	NA	210	822	11.6	7.65	NA	752	0.8
MW-12	MW-12 Q1-98	03/25/1998	298	0.05 U	298	NA	194	690	NA	7.2	54.6	725	0.7
MW-12	MW-12 Q2-98	06/29/1998	325	0.05 U	325	NA	199	884	12.2	7.1	41.4	791	0.7
MW-12	MW-12 Q3-98	09/21/1998	321	0.05 U	NA	NA	196	633	11.5	7.55	45	808	0.8
MW-12	MW-12 Q4-98	12/30/1998	295	0.05 U	295	NA	230	696	12.2	7.51	44.9	764	0.6
MW-12	MW-12 Q1-99	03/03/1999	302	0.05 U	302	NA	205	546	12.2	7.46	43.6	799	0.7
MW-12	MW-12 Q2-99	06/14/1999	317	0.05 U	317	NA	194	769	NA	7.23	44.2	800	0.8
MW-12	MW-12 Q3-99	09/22/1999	313	0.05 U	313	NA	193	742	11.3	6.96	42	852	0.5
MW-12	MW-12 Q4-99	12/09/1999	329	0.05 U	329	NA	200	1361	11.8	7.53	43.2	714	0.8
MW-12	MW-12 Q1-00	03/15/2000	316	NA	316	NA	186	1352	10.9	7.6	40.8	NA	NA
MW-12	MW-12 Q2-00	06/21/2000	323	0.05 U	323	NA	206	1384	11.8	7.79	42.7	823	0.8
MW-12	MW-12 Q3-00	09/27/2000	308	0.05 U	308	NA	189	1147	NA	8	NA	747	0.5 U
MW-12	MW-12 Q4-00	12/05/2000	305	0.05 U	305	NA	199	1030	11.1	7.98	41.1	792	0.8
MW-12	MW-12 Q1-01	03/27/2001	314	0.05 U	314	NA	184	620	11	8.3	39.9	816	0.7
MW-12	MW-12 Q2-01	06/27/2001	318	0.05 U	318	NA	191	530	11.9	7.4	41.5	644	0.9
MW-12	MW-12 Q3-01	09/06/2001	314	0.05 U	314	NA	205	590	12.4	7.65	45	736	0.8
MW-12	MW-12 Q4-01	12/14/2001	320	0.05 U	320	NA	209	490	12.1	7.65	43	700	0.6

Page 4 of 15

Location	Sample ID	Parameter Sample Date	Alkalinity (mg/L)	Ammonia (mg/L)	Bicarbonate (mg/L)	Carbonate (mg/L)	Chloride (mg/L)	Conductivity (uohm/cm)	Nitrate (mg/L)	pH (std pH units)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)	Total Organic Carbon (mg/L)
Upgradie	nt Wells Continued												
MW-12	MW-12 Q1-02	03/27/2002	314	0.05 U	314	NA	184	849	12.1	7.4	44.5	976	0.7
MW-12	MW-12 Q2-02	06/13/2002	289	0.05 U	289	NA	194	877	12	7.39	46.8	868	0.6
MW-12	MW-12 Q3-02	09/18/2002	322	0.05 U	322	NA	182	859	11.9	7.35	42.6	632	1
MW-12	MW-12 Q4-02	12/17/2002	315	0.05 U	315	NA	184	877	13	7.32	42	776	1
MW-12	MW-12 Q1-03	03/26/2003	310	0.05 U	315	NA	173	877	12	7.32	45	772	1.1
MW-12	MW-12 Q2-03	06/26/2003	307	0.05 U	307	NA	174	853	10	7.2	45	804	1
MW-12	MW-12 Q3-03	09/25/2003	304	0.05 U	304	NA	161	863	10.9	7.14	46	760	0.5 U
MW-12	MW-12 Q4-03	12/18/2003	301	0.05 U	301	NA	190	791	10	7.28	51	865	1.1
MW-12	MW-12 Q1-04	03/17/2004	305	0.05 U	305	NA	199	684	10	7.37	45	890	1
MW-12	MW-12 Q2-04	06/17/2004	304	0.05 U	304	NA	186	737	9.4	7.37	44.9	820	1.1
MW-12	MW-12 Q3-04	09/30/2004	303	0.05 U	303	NA	190	737	9.6	6.84	43.6	856	0.9
MW-12	MW-12 Q4-04	12/15/2004	308	0.05 U	308	NA	240	700	9.8	7.13	44.6	880	1.1
MW-12	MW-12 Q1-05	03/31/2005	302	0.05 U	302	2 U	185	NA	11.4	NA	54	750	0.9
MW-12	MW-12 Q2-05	06/23/2005	300	0.05 U	300	NA	183	NA	11.5	NA	47	780	1
MW-12	MW-12 Q3-05	09/29/2005	291	0.05 U	291	2 U	176	NA	11.2	NA	48	785	1.5
MW-12	MW-12 Q1-06	03/30/2006	300	0.05 U	300	NA	174	769	12.1	7.22	45.5	755	1
MW-12	MW-12 Q2-06	06/21/2006	477	0.05 U	477	NA	100	751	19.8	7.18	31.6	788	1.2
MW-12	MW-12 Q3-06	09/21/2006	397	0.05 U	397	NA	126	NA	20.2	NA	37.5	735	1.4
MW-12	MW-12 Q3-07	09/26/2007	292	NA	292	NA	59	NA	NA	NA	17.8	NA	NA
MW-12b	MW-12b Q3-08	09/24/2008	295	0.05 U	295	NA	165	818	11.7	7.12	33.9	713	1
MW-12b	MW-12b Q4-08	12/17/2008	296	0.05 U	NA	NA	170	831	NA	7.2	35.6	NA	0.9
MW-12b	MW-12b Q1-09	03/20/2009	293	0.05 U	295	NA	173	825	12.5	7.15	37	737	0.5 U
MW-12b	MW-12b Q2-09	06/24/2009	304	0.05 U	295	NA	157	724	13	7.37	40	691	0.8
MW-12b	MW-12b Q3-09	09/24/2009	295	0.05 U	295	NA	168	748	12.4	7.38	39	700	0.84
MW-12b	MW-12b Q4-09	12/18/2009	287	0.05 U	NA	NA	164	758	12.9	7.38	41.2	669	0.76

Page 5 of 15

Location	Sample ID	Parameter Sample Date	Alkalinity (mg/L)	Ammonia (mg/L)	Bicarbonate (mg/L)	Carbonate (mg/L)	Chloride (mg/L)	Conductivity (uohm/cm)	Nitrate (mg/L)	pH (std pH units)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)	Total Organic Carbon (mg/L)
Upgradie	nt Wells Continued												
MW-12b	MW-12b Q2-10	06/23/2010	292	0.05 U	295	NA	126	854	12.8	6.7	42.3	696	0.71
MW-12b	MW-12b Q3-10	09/29/2010	299	0.05 U	NA	NA	161	NA	12.6	NA	41.7	1360	1.2
MW-12b	MW-12b Q4-10	12/15/2010	299	0.05 U	NA	NA	161	847	11.5	6.77	39.6	709	0.83
MW-12b	MW-12b Q1-2011	03/24/2011	284	0.05 U	NA	NA	158	NA	11.7	NA	39.3	556	0.69
Downgra	dient Wells	-											
MW-01	MW-1 Q1-91	01/01/1991	NA	0.05	NA	NA	111	750	0.0069	NA	NA	NA	NA
MW-01	MW-1 Q2-91	04/01/1991	NA	0.05	NA	NA	100	740	0.0091	NA	NA	NA	NA
MW-01	MW-1 Q3-91	07/01/1991	NA	0.05	NA	NA	99	750	0.0088	NA	NA	NA	NA
MW-01	MW-1 Q4-91	10/01/1991	NA	0.05	NA	NA	107	780	0.0013	NA	NA	NA	NA
MW-01	MW-1 Q1-92	01/01/1992	NA	0.05	NA	NA	105.7	740	0.0083	NA	NA	NA	NA
MW-01	MW-1 Q2-92	04/01/1992	NA	0.05	NA	NA	109.2	725	0.0097	NA	NA	NA	NA
MW-01	MW-1 Q3-92	07/01/1992	NA	0.05	NA	NA	110.7	740	0.0084	NA	NA	NA	NA
MW-01	MW-1 Q4-92	10/01/1992	NA	0.05	NA	NA	110.1	700	0.0084	NA	NA	NA	NA
MW-01	MW-1 Q1-93	01/01/1993	NA	0.1 U	NA	NA	112.3	900	0.0379	NA	NA	NA	NA
MW-01	MW-1 Q2-93	04/01/1993	NA	0.1 U	NA	NA	112.9	750	0.0086	NA	NA	NA	NA
MW-01	MW-1 Q3-93	07/01/1993	NA	0.1 U	NA	NA	102.6	465	0.0079	NA	NA	NA	NA
MW-01	MW-1 Q4-93	10/01/1993	NA	0.1 U	NA	NA	102.4	725	0.0084	NA	NA	NA	NA
MW-01	MW-1 Q1-94	03/01/1994	160	NA	NA	NA	NA	694	NA	6.2	NA	601	NA
MW-01	MW-1 Q3-94	08/01/1994	162.5	0.0025 U	NA	NA	118.8	796	8.6	NA	41.1	545	32.3
MW-01	MW-1 Q3(Sept)-94	09/01/1994	165	0.0025 U	NA	NA	117.5	670	8.4	7	37.7	535	33.1
MW-01	MW-1 Q4(Nov)-94	11/01/1994	174	0.0025 U	NA	NA	116.9	840	8.4	7	49.2	525	39.4
MW-01	MW-1 Q4(Dec)-94	12/01/1994	210	0.0025 U	NA	NA	119.4	800	9	6.6	50	543	0.9
MW-01	MW-1 Q1-95	01/01/1995	172.2	0.0025 U	NA	NA	103.7	880	9.3	6.4	40.8	508	1.3
MW-01	MW-1 Q1(Feb)-95	02/01/1995	156	0.0025 U	NA	NA	99.4	870	9.1	7.2	38.7	527	0.655
MW-01	MW-1 Q3-95	07/01/1995	165	0.0025 U	NA	NA	119.4	840	9	6.3	54.7	397	0.73

Page 6 of 15

Location	Sample ID	Parameter Sample Date	Alkalinity (mg/L)	Ammonia (mg/L)	Bicarbonate (mg/L)	Carbonate (mg/L)	Chloride (mg/L)	Conductivity (uohm/cm)	Nitrate (mg/L)	pH (std pH units)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)	Total Organic Carbon (mg/L)
Downgra	dient Wells Continued												
MW-01	MW-1 Q1(Sep)-95	09/20/1995	170	0.0025 U	NA	NA	120.7	830	9.9	6.2	53.7	586.8	NA
MW-01	MW-1 Q4-95	12/18/1995	180	0.0025 U	NA	NA	139.7	820	13.9	NA	46.5	608	3.34
MW-01	MW-1 Q1-96	02/01/1996	NA	NA	NA	NA	NA	750	NA	6.8	NA	NA	NA
MW-01	MW-1 Q2-96	05/01/1996	NA	NA	NA	NA	NA	740	NA	7.2	NA	NA	NA
MW-01	MW-1 Q3-96	09/01/1996	175	0.05 U	NA	NA	110	940	9.2	6.43	47	525	0.5 U
MW-01	MW-1 Q4-96	10/01/1996	171	0.05 U	NA	NA	130	960	9	7.2	49	582	0.5 U
MW-01	MW-1 Q1-97	03/24/1997	172	0.05 U	NA	NA	120	710	9.2	7.15	49	531	0.5 U
MW-01	MW-1 Q2-97	06/24/1997	166	0.05 U	NA	NA	110	720	9	6.62	110	560	0.5 U
MW-01	MW-1 Q3-97	09/11/1997	160	0.05 U	NA	NA	103	822	7.6	6.93	40.2	486	0.5 U
MW-01	MW-1 Q1-98	03/25/1998	150	0.05 U	NA	NA	103	548	NA	7.12	79	464	0.5 U
MW-01	MW-1 Q2-98	06/29/1998	165	0.05 U	NA	NA	119	642	9.1	7.3	45.5	523	0.5 U
MW-01	MW-1 Q3-98	09/21/1998	174	0.05 U	NA	NA	113	475	9.1	7.55	42.2	574	0.5 U
MW-01	MW-1 Q1-99	03/03/1999	161	0.05 U	NA	NA	104	384	8.5	7.34	39.3	475	0.5 U
MW-01	MW-1 Q2-99	06/14/1999	162	0.05 U	NA	NA	104	440	NA	7.29	39.4	1080	0.5 U
MW-01	MW-1 Q3-99	09/22/1999	156	0.05 U	NA	NA	95.1	409	8	7.01	36.6	468	0.5 U
MW-01	MW-1 Q4-99	12/09/1999	156	0.05 U	NA	NA	101	790	8.5	7.54	38.2	463	0.5 U
MW-01	MW-1 Q1-00	03/15/2000	150	NA	NA	NA	88.8	733	7.8	7.65	34.5	NA	NA
MW-01	MW-1 Q2-00	06/21/2000	152	0.05 U	NA	NA	97.6	746	8.3	7.85	35.7	476	0.5 U
MW-01	MW-1 Q3-00	09/27/2000	150	0.05 U	NA	NA	93.4	598	NA	8.03	NA	408	0.5 U
MW-01	MW-1 Q4-00	12/05/2000	154	0.05 U	NA	NA	93.6	567	8.3	8.07	38.4	472	0.5 U
MW-01	MW-1 Q1-01	03/27/2001	151	0.05 U	NA	NA	95.7	300	8	7.9	33.1	416	0.5 U
MW-01	MW-1 Q2-01	06/27/2001	156	0.05 U	NA	NA	90.1	320	9	7.51	34.9	438	0.7
MW-03	MW-3 Q1-91	01/01/1991	NA	0.05	NA	NA	74	525	7	NA	NA	NA	NA
MW-03	MW-3 Q2-91	04/01/1991	NA	0.05	NA	NA	107	750	9.14	NA	NA	NA	NA
MW-03	MW-3 Q3-91	07/01/1991	NA	0.05	NA	NA	100	750	8.46	NA	NA	NA	NA

Page 7 of 15

Location	Sample ID	Parameter Sample Date	Alkalinity (mg/L)	Ammonia (mg/L)	Bicarbonate (mg/L)	Carbonate (mg/L)	Chloride (mg/L)	Conductivity (uohm/cm)	Nitrate (mg/L)	pH (std pH units)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)	Total Organic Carbon (mg/L)
Downgra	dient Wells Continued												
MW-03	MW-3 Q4-91	10/01/1991	NA	0.05	NA	NA	77	600	1.3	NA	NA	NA	NA
MW-03	MW-3 Q1-92	01/01/1992	NA	0.05	NA	NA	96.2	660	8.1	NA	NA	NA	NA
MW-03	MW-3 Q2-92	04/01/1992	NA	0.05	NA	NA	104.6	660	9.4	NA	NA	NA	NA
MW-03	MW-3 Q3-92	07/01/1992	NA	0.05	NA	NA	105.3	625	8.2	NA	NA	NA	NA
MW-03	MW-3 Q4-92	10/01/1992	NA	0.05	NA	NA	111.9	680	0.97	NA	NA	NA	NA
MW-03	MW-3 Q1-93	01/01/1993	NA	0.1 U	NA	NA	126.4	934	41.2	NA	NA	NA	NA
MW-03	MW-3 Q2-93	04/01/1993	NA	0.1 U	NA	NA	113.1	740	8.7	NA	NA	NA	NA
MW-03	MW-3 Q3-93	07/01/1993	NA	0.1 U	NA	NA	115.7	770	8.8	NA	NA	NA	NA
MW-03	MW-3 Q4-93	10/01/1993	NA	0.1 U	NA	NA	123.3	790	9.2	NA	NA	NA	NA
MW-03	MW-3 Q1-94	02/01/1994	NA	NA	NA	NA	6.9	NA	NA	NA	NA	NA	NA
MW-03	MW-3 Q1(Mar)-94	03/01/1994	190	NA	NA	NA	7.5	730	NA	7	NA	703	NA
MW-03	MW-3 Q3-94	08/01/1994	177.4	0.0025 U	NA	NA	127.5	918	9.1	NA	37.2	619	34.9
MW-03	MW-3 Q3(Sept)-94	09/01/1994	165	0.0025 U	NA	NA	131.2	710	8.9	7.2	33.6	608	32.2
MW-03	MW-3 Q4(Nov)-94	11/01/1994	170	0.0025 U	NA	NA	130.1	880	8.7	7	43.9	531	38.4
MW-03	MW-3 Q4(Dec)-94	12/01/1994	150	0.0025 U	NA	NA	129.6	850	9.4	7.1	44.1	539	1
MW-03	MW-3 Q1-95	01/01/1995	162.4	0.0025 U	NA	NA	111.3	830	9.5	6.7	35.1	489	0.7
MW-03	MW-3 Q1(Feb)-95	02/01/1995	144	0.0025 U	NA	NA	112.5	850	9.7	NA	35.4	546	0.624
MW-03	MW-3 Q3-95	07/01/1995	200	0.0025 U	NA	NA	153.6	950	10.4	6.3	54	626	1.11
MW-03	MW-3 Q4-95	12/18/1995	190	0.0025 U	NA	NA	154.2	853	14.9	NA	40.6	590	0.82
MW-03	MW-3 Q1-96	02/01/1996	NA	NA	NA	NA	NA	1320	NA	7.1	NA	NA	NA
MW-03	MW-3 Q2-96	05/01/1996	NA	NA	NA	NA	NA	780	NA	7.5	NA	NA	NA
MW-03	MW-3 Q3-96	09/01/1996	183	0.05 U	NA	NA	140	1040	10.2	NA	44	583	0.5 U
MW-03	MW-3 Q4-96	10/01/1996	179	0.1 U	NA	NA	160	1070	10	7.4	47	674	0.5 U
MW-03	MW-3 Q1-97	03/24/1997	185	0.05 U	NA	NA	150	834	11	7.08	49	586	0.5
MW-03	MW-3 Q2-97	06/24/1997	196	0.05 U	NA	NA	160	930	10	7.03	44	632	0.5 U

Page 8 of 15

Location	Sample ID	Parameter Sample Date	Alkalinity (mg/L)	Ammonia (mg/L)	Bicarbonate (mg/L)	Carbonate (mg/L)	Chloride (mg/L)	Conductivity (uohm/cm)	Nitrate (mg/L)	pH (std pH units)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)	Total Organic Carbon (mg/L)
Downgra	dient Wells Continued												
MW-03	MW-3 Q3-97	09/11/1997	153	0.05 U	NA	NA	124	830	8.4	7.99	39.2	528	0.5 U
MW-03	MW-3 Q4-97	11/25/1997	146	0.05 U	NA	NA	117	444	9.5	7.95	NA	416	0.5 U
MW-03	MW-3 Q1-98	03/25/1998	163	0.05 U	NA	NA	139	880	NA	7.72	39.4	480	0.5 U
MW-03	MW-3 Q2-98	06/29/1998	189	0.05 U	NA	NA	154	751	10.7	7.43	45.1	614	0.5 U
MW-03	MW-3 Q3-98	09/21/1998	195	0.05 U	NA	NA	156	539	10.7	7.49	41.8	656	0.7
MW-03	MW-3 Q4-98	12/30/1998	142	0.05 U	NA	NA	85.4	486	7.3	8.4	31	372	0.9
MW-03	MW-3 Q1-99	03/03/1999	138	0.05 U	NA	NA	86	285	7.1	8.7	28.9	365	0.5 U
MW-03	MW-3 Q2-99	06/14/1999	206	0.05 U	NA	NA	152	620	NA	7.46	41.2	696	0.5
MW-03	MW-3 Q3-99	09/22/1999	214	0.05 U	NA	NA	98.2	574	10.6	7.4	43.3	680	0.5 U
MW-03	MW-3 Q4-99	12/09/1999	225	0.05 U	NA	NA	154	928	10.3	8.28	41.9	593	0.5
MW-03	MW-3 Q1-00	03/15/2000	198	NA	NA	NA	154	986	10	7.72	39.9	NA	NA
MW-03	MW-3 Q2-00	06/21/2000	210	0.05 U	NA	NA	169	1048	10.7	7.73	42.9	600	0.5 U
MW-03	MW-3 Q3-00	09/27/2000	177	0.05 U	NA	NA	150	844	NA	8.04	NA	561	0.5 U
MW-03	MW-3 Q4-00	12/05/2000	196	0.05 U	NA	NA	138	708	9.8	7.9	40.2	612	0.5 U
MW-03	MW-3 Q1-01	03/27/2001	158	0.05 U	NA	NA	125	410	9.5	7.6	36.4	616	0.5 U
MW-03	MW-3 Q2-01	06/27/2001	206	0.05 U	NA	NA	155	410	10.9	7.5	39.1	620	0.6
MW-11	MW-11 Q1-95	03/01/1995	318	0.0025 U	401.1	NA	169.7	1262	13.3	7.44	50.9	845	75.97
MW-11	MW-11 Q1-95 Dup	03/01/1995	NA	NA	400.5	NA	NA	NA	NA	NA	NA	NA	NA
MW-11	MW-11 Q3-95	07/01/1995	335	0.0025 U	NA	NA	181.3	1320	11.4	6.2	54.7	814	1.6
MW-11	MW-11 Q3-95 Dup	07/01/1995	336	0.0025 U	NA	NA	179	1320	11.4	6.2	55	823	2.67
MW-11	MW-11 Q3(Sept)-95	09/20/1995	323	0.0025 U	280	NA	177.7	1320	12.9	6.3	54	816.7	NA
MW-11	MW-11 Q3(Sept)-95 Dup	09/20/1995	325	0.0025 U	280	NA	177.7	1320	12.8	6.3	54.3	793	NA
MW-11	MW-11 Q4-95	10/30/1995	360	0.0025 U	340	NA	NA	150	11.6	7.37	49.3	754.3	NA
MW-11	MW-11 Q4-95 Dup	10/30/1995	360	0.0025 U	340	NA	177.7	150	11.2	7.36	49.2	768	NA
MW-11	MW-11 Q4(Nov)-95	11/29/1995	310	0.0025 U	270	NA	174.5	124	15.5	NA	41.4	766.2	3.7

Page 9 of 15

Location	Sample ID	Parameter Sample Date	Alkalinity (mg/L)	Ammonia (mg/L)	Bicarbonate (mg/L)	Carbonate (mg/L)	Chloride (mg/L)	Conductivity (uohm/cm)	Nitrate (mg/L)	pH (std pH units)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)	Total Organic Carbon (mg/L)
Downgra	dient Wells Continued												
MW-11	MW-11 Q4(Nov)-95 Dup	11/29/1995	330	0.0025 U	310	NA	186.4	123	16.5	NA	43.6	750.7	4.85
MW-11	MW-11 Q4(Dec)-95	12/18/1995	320	0.0025 U	280	NA	194.2	1172	17.6	NA	44.4	812	8.25
MW-11	MW-11 Q1-96	02/01/1996	NA	NA	NA	NA	NA	1290	NA	6.5	NA	NA	NA
MW-11	MW-11 Q2-96	05/01/1996	NA	NA	NA	NA	NA	840	NA	6.29	NA	NA	NA
MW-11	MW-11 Q3-96	09/01/1996	319	0.05 U	319	NA	170	1140	14	6.43	46	750	0.06
MW-11	MW-11 Q4-96	10/01/1996	308	0.05 U	398	NA	200	1145	12	6.5	48	860	0.5 U
MW-11	MW-11 Q1-97	03/24/1997	326	0.05 U	326	NA	200	1400	12	6.32	48	754	0.8
MW-11	MW-11 Q2-97	06/24/1997	321	0.05	321	NA	180	1200	11	6.52	43	786	0.5
MW-11	MW-11 Q3-97	09/11/1997	310	0.05 U	310	NA	182	1288	10.3	7.39	42.4	720	0.5 U
MW-11	MW-11 Q4-97	11/25/1997	327	0.05 U	NA	NA	192	1185	11.2	7.33	NA	788	0.5 U
MW-11	MW-11 Q1-98	03/25/1998	312	0.05 U	312	NA	182	810	NA	6.94	44.3	741	0.6
MW-11	MW-11 Q2-98	06/29/1998	324	0.05 U	324	NA	188	894	12	7.18	44.9	784	0.7
MW-11	MW-11 Q3-98	09/21/1998	336	0.05 U	NA	NA	183	1553	11.5	7.27	48.7	806	0.8
MW-11	MW-11 Q4-98	12/30/1998	318	0.05 U	318	NA	197	592	12.4	7.49	49.8	744	0.6
MW-11	MW-11 Q1-99	03/03/1999	312	0.05 U	312	NA	184	664	12.2	7.3	47.2	769	0.7
MW-11	MW-11 Q2-99	06/14/1999	316	0.05 U	316	NA	177	823	NA	7.2	47	773	0.8
MW-11	MW-11 Q3-99	09/22/1999	320	0.05 U	320	NA	168	603	11.4	7.1	41	804	0.6
MW-11	MW-11 Q4-99	12/09/1999	326	0.05 U	326	NA	190	603	12	7.4	46	745	0.8
MW-11	MW-11 Q1-00	03/15/2000	320	NA	320	NA	181	1392	11.1	7.57	43.4	NA	NA
MW-11	MW-11 Q2-00	06/21/2000	320	0.05 U	320	NA	190	1319	11.8	7.5	48	775	0.7
MW-11	MW-11 Q3-00	09/27/2000	307	0.05 U	307	NA	183	1317	NA	7.71	NA	726	0.6
MW-11	MW-11 Q4-00	12/05/2000	312	0.05 U	312	NA	182	1005	11.5	7.73	46.1	824	0.7
MW-11	MW-11 Q1-01	03/27/2001	314	0.05 U	314	NA	170	560	11.3	7.1	43.5	688	0.7
MW-11	MW-11 Q2-01	06/27/2001	310	0.05 U	310	NA	170	580	12.1	7.18	42.5	732	2.1
MW-11	MW-11 Q3-01	09/06/2001	314	0.05 U	314	NA	175	575	12.5	7.14	46.6	688	0.9

Page 10 of 15

Location	Sample ID	Parameter Sample Date	Alkalinity (mg/L)	Ammonia (mg/L)	Bicarbonate (mg/L)	Carbonate (mg/L)	Chloride (mg/L)	Conductivity (uohm/cm)	Nitrate (mg/L)	pH (std pH units)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)	Total Organic Carbon (mg/L)
Downgra	dient Wells Continued	•											
MW-11	MW-11 Q4-01	12/14/2001	322	0.05 U	322	NA	180	730	12.8	7.38	44.9	816	0.6
MW-11	MW-11 Q1-02	03/27/2002	312	0.05 U	312	NA	191	822	13	7.21	42.3	836	0.7
MW-11	MW-11 Q2-02	06/13/2002	291	0.05 U	291	NA	184	894	13.3	7.16	44.6	796	0.8
MW-11	MW-11 Q3-02	09/18/2002	320	0.05 U	320	NA	172	883	13.2	7.14	40.8	788	0.7
MW-11	MW-11 Q4-02	12/17/2002	320	0.05 U	320	NA	177	879	13	7.09	39	940	0.9
MW-11	MW-11 Q1-03	03/26/2003	313	0.05 U	320	NA	174	879	13	7.09	39	916	0.9
MW-11	MW-11 Q2-03	06/26/2003	316	0.05 U	316	NA	175	864	11	7.14	41	808	1
MW-11	MW-11 Q3-03	09/25/2003	310	0.05 U	310	NA	151	855	12.3	6.94	41	700	0.5 U
MW-11	MW-11 Q4-03	12/18/2003	304	0.05 U	304	NA	177	776	11	7.14	42	820	0.9
MW-11	MW-11 Q1-04	03/17/2004	307	0.05 U	307	NA	198	665	10	7.73	38	750	1.6
MW-11	MW-11 Q2-04	06/17/2004	311	0.05 U	311	NA	170	714	10.7	7.02	36.9	792	1
MW-11	MW-11 Q3-04	09/30/2004	310	0.05 U	310	NA	177	683	10.6	7.04	36.1	848	0.7
MW-11	MW-11 Q4-04	12/15/2004	304	0.05 U	304	NA	147	659	10.3	7.01	36.6	880	1
MW-11	MW-11 Q1-05	03/31/2005	302	0.05 U	302	2 U	151	NA	12.5	NA	44	700	0.6
MW-11	MW-11 Q2-05	06/23/2005	302	0.05 U	302	NA	150	NA	12.1	NA	39.2	705	0.8
MW-11	MW-11 Q3-05	09/29/2005	302	0.05 U	302	2 U	140	NA	11.9	NA	39.7	740	0.7
MW-11	MW-11 Q4-05	12/14/2005	296	0.05 U	296	NA	142	686	12.4	7.15	36	665	1.1
MW-11	MW-11 Q1-06	03/30/2006	318	0.05 U	318	NA	131	699	11.7	7.14	37.6	730	0.9
MW-11	MW-11 Q2-06	06/21/2006	301	0.05 U	301	NA	128	718	11.2	7	37.6	663	0.6
MW-11	MW-11 Q3-06	09/21/2006	296	0.05 U	296	NA	132	NA	11.3	NA	37.1	656	0.9
MW-11	MW-11 Q4-06	12/28/2006	294	0.05 U	294	NA	151	736	10.9	7.36	35.3	671	0.8
MW-11	MW-11 Q1-07	03/22/2007	310	0.05 U	310	NA	136	730	11.5	7.07	36.8	643	1
MW-11	MW-11 Q2-07	06/28/2007	294	0.05 U	294	NA	132	728	11.2	7.45	36.8	631	0.7
MW-11	MW-11 Q3-07	09/26/2007	286	0.05 U	286	NA	127	732	10.8	6.91	35.2	575	0.6
MW-11	MW-11 Q4-07	12/27/2007	287	0.05 U	287	NA	126	730	10.9	6.89	34.9	623	0.9

Page 11 of 15

Location	Sample ID	Parameter Sample Date	Alkalinity (mg/L)	Ammonia (mg/L)	Bicarbonate (mg/L)	Carbonate (mg/L)	Chloride (mg/L)	Conductivity (uohm/cm)	Nitrate (mg/L)	pH (std pH units)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)	Total Organic Carbon (mg/L)
Downgra	dient Wells Continued												
MW-11	MW-11 Q1-08	03/27/2008	288	0.05 U	288	NA	126	745	11.1	6.94	35.5	635	0.7
MW-11	MW-11 Q2-08	06/25/2008	282	0.05 U	282	NA	128	748	10.8	6.99	36.5	703	0.8
MW-11	MW-11 Q3-08	09/24/2008	284	0.05 U	284	NA	124	726	10.3	7.09	33.3	539	0.9
MW-11	MW-11 Q4-08	12/17/2008	286	0.05 U	NA	NA	99	735	NA	7.03	31	NA	0.8
MW-11	MW-11 Q1-09	03/20/2009	282	0.05 U	288	NA	117	717	10.9	7.14	33.7	608	0.6
MW-11	MW-11 Q2-09	06/24/2009	296	0.05 U	282	NA	113	639	10.8	7.26	34	593	0.8
MW-11	MW-11 Q3-09	09/24/2009	281	0.05 U	284	NA	110	649	10.7	7.1	33	599	0.79
MW-11	MW-11 Q4-09	12/18/2009	278	0.05 U	NA	NA	107	654	10.9	7.15	33.8	579	0.59
MW-11	MW-11 Q1-10	03/30/2010	288	0.05	NA	NA	102	NA	9.9	NA	32	557	0.51
MW-11	MW-11 Q2-10	06/23/2010	289	0.05 U	282	NA	80.3	719	10.6	6.67	34.2	573	0.88
MW-11	MW-11 Q3-10	09/29/2010	290	0.05 U	NA	NA	102	NA	10.4	NA	33.8	139	1.22
MW-11	MW-11 Q4-10	12/15/2010	288	0.05 U	NA	NA	101	716	9.51	6.71	31.8	515	0.83
MW-11	MW-11 Q1-2011	03/24/2011	286	0.05 U	NA	NA	101	NA	9.8	NA	33.9	540	0.5 U
MW-14	MW-14 Q3-99	09/22/1999	150	0.05 U	150	NA	109	280	7.5	7.36	44.1	538	0.5 U
MW-14	MW-14 Q4-99	12/09/1999	168	0.05 U	168	NA	110	584	8.1	8.12	45.5	485	0.5
MW-14	MW-14 Q1-00	03/15/2000	119	NA	119	NA	79.9	571	6.8	8.16	32.7	NA	NA
MW-14	MW-14 Q2-00	06/21/2000	117	0.05 U	117	NA	79.6	581	7	8.25	33.4	414	0.5 U
MW-14	MW-14 Q3-00	09/27/2000	111	0.05 U	111	NA	69.2	533	NA	8.58	NA	353	0.5 U
MW-14	MW-14 Q4-00	12/05/2000	108	0.05 U	108	NA	92.4	497	6.8	8.48	29.5	394	0.5 U
MW-14	MW-14 Q1-01	03/27/2001	112	0.05 U	112	NA	43.3	350	5.9	8.8	15.4	278	0.5 U
MW-14	MW-14 Q2-01	06/27/2001	112	0.05 U	112	NA	42.8	405	6.1	8.01	18.1	278	0.5 U
MW-14	MW-14 Q3-01	09/06/2001	118	0.05 U	118	NA	85.3	375	8	7.81	34.7	350	0.5 U
MW-14	MW-14 Q4-01	12/14/2001	134	0.05 U	134	NA	92	340	7.8	8.36	38.6	420	0.5 U
MW-14	MW-14 Q1-02	03/27/2002	124	0.05 U	124	NA	65.2	388	7.2	8.04	25	302	0.5 U
MW-14	MW-14 Q2-02	06/13/2002	103	0.05 U	106	NA	71.7	422	7.7	8.02	30.6	420	0.1 U

Page 12 of 15

Location	Sample ID	Parameter Sample Date	Alkalinity (mg/L)	Ammonia (mg/L)	Bicarbonate (mg/L)	Carbonate (mg/L)	Chloride (mg/L)	Conductivity (uohm/cm)	Nitrate (mg/L)	pH (std pH units)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)	Total Organic Carbon (mg/L)
Downgra	dient Wells Continued												
MW-14	MW-14 Q3-02	09/18/2002	129	0.05 U	129	NA	62.8	352	7.6	8.08	24.8	358	0.5 U
MW-14	MW-14 Q4-02	12/17/2002	117	0.05 U	117	NA	58	419	6.7	7.99	27	354	0.5 U
MW-14	MW-14 Q1-03	03/26/2003	120	0.05 U	117	NA	61	419	7	7.99	27	408	0.5 U
MW-14	MW-14 Q2-03	06/26/2003	136	0.05 U	136	NA	84	370	6	8.02	38	420	0.5 U
MW-14	MW-14 Q3-03	09/25/2003	110	0.05 U	110	NA	52	354	6	7.94	23	332	0.5 U
MW-14	MW-14 Q4-03	12/18/2003	140	0.05 U	140	NA	99	491	7	7.83	53	404	0.6
MW-14	MW-14 Q1-04	03/17/2004	136	0.05 U	136	NA	78	385	6.5	7.82	33	368	0.5 U
MW-14	MW-14 Q2-04	06/17/2004	132	0.05 U	132	NA	57.8	372	5.5	7.8	30.7	424	0.5 U
MW-14	MW-14 Q3-04	09/30/2004	136	0.05 U	136	NA	65.8	373	5.6	7.82	31.5	436	0.5 U
MW-14	MW-14 Q4-04	12/15/2004	131	0.05 U	131	NA	65.4	357	5.6	7.55	31.6	396	0.5 U
MW-14	MW-14 Q1-05	03/31/2005	148	0.05 U	148	2 U	79.1	NA	6.7	NA	46.2	408	0.5 U
MW-14	MW-14 Q2-05	06/23/2005	115	0.08	115	NA	40.5	NA	5.3	NA	18.5	252	0.5 U
MW-14	MW-14 Q3-05	09/29/2005	122	0.05 U	122	2 U	44.8	NA	5.4	NA	23.2	344	0.5 U
MW-14	MW-14 Q4-05	12/14/2005	131	0.05 U	131	NA	44.8	374	5.6	7.69	23.4	336	0.5 U
MW-14	MW-14 Q1-06	03/30/2006	157	0.05 U	157	NA	59.3	345	5.9	7.75	37.7	376	0.5 U
MW-14	MW-14 Q3-06	09/21/2006	127	0.05 U	127	NA	43.6	NA	6	NA	22.3	313	0.5 U
MW-14	MW-14 Q4-06	12/28/2006	123	0.05 U	123	NA	49.8	487	6.3	7.48	26.5	345	0.5 U
MW-14	MW-14 Q1-07	03/22/2007	156	0.05 U	156	NA	81.7	430	6.2	8.03	48.3	458	0.6
MW-14	MW-14 Q2-07	06/28/2007	127	0.05 U	127	NA	42.1	374	5.1	7.85	23.2	287	0.5 U
MW-14	MW-14 Q3-07	09/26/2007	134	0.05 U	134	NA	36.9	415	5.4	7.23	19.9	259	0.5 U
MW-14	MW-14 Q4-07	12/27/2007	148	0.05 U	148	NA	41.8	415	5.8	7.33	23.9	322	0.5 U
MW-14	MW-14 Q1-08	03/27/2008	168	0.05 U	168	NA	58	488	6.4	7.59	33.7	364	0.5
MW-14	MW-14 Q2-08	06/25/2008	138	0.05 U	138	NA	38.9	425	5.4	7.23	20.6	345	0.5 U
MW-14	MW-14 Q3-08	09/24/2008	142	0.05 U	142	NA	38.1	462	5.9	7.35	22.5	284	0.6
MW-14	MW-14 Q4-08	12/17/2008	146	0.05 U	NA	NA	52	502	NA	7.68	28.6	NA	0.5 U

Page 13 of 15

Location	Sample ID	Parameter Sample Date	Alkalinity (mg/L)	Ammonia (mg/L)	Bicarbonate (mg/L)	Carbonate (mg/L)	Chloride (mg/L)	Conductivity (uohm/cm)	Nitrate (mg/L)	pH (std pH units)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)	Total Organic Carbon (mg/L)
Downgra	dient Wells Continued	•											
MW-14	MW-14 Q1-09	03/20/2009	136	0.05 U	168	NA	42.8	504	5.6	7.29	22.2	304	0.5 U
MW-14	MW-14 Q2-09	06/24/2009	164	0.05 U	138	NA	53.3	382	6.4	7.58	27.9	373	0.5 U
MW-14	MW-14 Q3-09	09/24/2009	152	0.05 U	142	NA	52.5	415	6.24	7.78	27.1	354	5 U
MW-14	MW-14 Q4-09	12/18/2009	152	0.05 U	NA	NA	72.7	448	6.62	7.46	46.9	427	0.5 U
MW-14	MW-14 Q1-10	03/30/2010	166	0.05	NA	NA	52.2	NA	6.78	NA	28.3	334	0.5
MW-14	MW-14 Q2-10	06/23/2010	165	0.05 U	138	NA	78.7	448	7.81	7.21	44.3	428	0.5 U
MW-14	MW-14 Q3-10	09/29/2010	151	0.05 U	NA	NA	54	NA	5.1	NA	25.9	677	0.65
MW-14	MW-14 Q4-10	12/15/2010	151	0.05 U	NA	NA	49.8	512	4.86	7.38	22.2	121	0.5 U
MW-14	MW-14 Q1-2011	03/24/2011	160	0.05 U	NA	NA	77	NA	5.8	NA	38.1	437	0.5 U
MW-15	MW-15 Q3-01	09/06/2001	648	0.05 U	648	NA	105	415	9.5	7.55	44.8	992	1.7
MW-15	MW-15 Q4-01	12/14/2001	568	0.05 U	568	NA	116	360	9.3	7.35	43.4	924	1.3
MW-15	MW-15 Q1-02	03/27/2002	570	0.05 U	570	NA	114	985	9.6	7.04	44	856	1
MW-15	MW-15 Q2-02	06/13/2002	613	0.05 U	613	NA	99.2	1053	9.3	7.03	47	1060	1.2
MW-15	MW-15 Q3-02	09/18/2002	658	0.05 U	658	NA	109	1046	9.6	7.02	42.1	868	2.2
MW-15	MW-15 Q4-02	12/17/2002	598	0.05 U	598	NA	120	1012	10	7.07	41	812	1.6
MW-15	MW-15 Q1-03	03/26/2003	634	0.05 U	598	NA	274 J	1012	9	7.07	43	936	2
MW-15	MW-15 Q2-03	06/26/2003	658	0.05 U	658	NA	117	1012	7	6.95	44	980	2.4
MW-15	MW-15 Q3-03	09/25/2003	618	0.05 U	618	NA	99	1049	8	6.97	41	890	0.9
MW-15	MW-15 Q4-03	12/18/2003	593	0.05 U	593	NA	115	902	8	7.02	45	940	2.2
MW-15	MW-15 Q1-04	03/17/2004	513	0.05 U	513	NA	145	761	8.7	7.01	42	920	1.8
MW-15	MW-15 Q2-04	06/17/2004	564	0.05 U	564	NA	113	818	7.1	6.9	39.3	820	2.1
MW-15	MW-15 Q3-04	09/30/2004	566	0.05 U	566	NA	133	782	7.3	6.9	38.6	880	1.7
MW-15	MW-15 Q4-04	12/15/2004	520	0.05 U	520	NA	130	780	7.8	6.8	39.6	915	1.5
MW-15	MW-15 Q1-05	03/31/2005	716	0.05 U	716	2 U	101	NA	7.7	NA	49	965	2.1
MW-15	MW-15 Q2-05	06/23/2005	94	0.19	94	NA	132	NA	8.1	NA	42.9	945	2.4

Page 14 of 15

Location	Sample ID	Parameter Sample Date	Alkalinity (mg/L)	Ammonia (mg/L)	Bicarbonate (mg/L)	Carbonate (mg/L)	Chloride (mg/L)	Conductivity (uohm/cm)	Nitrate (mg/L)	pH (std pH units)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)	Total Organic Carbon (mg/L)
Downgra	dient Wells Continued												
MW-15	MW-15 Q3-05	09/29/2005	532	0.05 U	532	2 U	125	NA	8.2	NA	44.9	890	1.6
MW-15	MW-15 Q4-05	12/14/2005	502	0.05 U	502	NA	131	820	8.8	7.05	39.8	875	1.7
MW-15	MW-15 Q1-06	03/30/2006	64	0.05 U	64	NA	111	859	7.5	7	45.6	898	1.7
MW-15	MW-15 Q2-06	06/21/2006	528	0.05 U	528	NA	124	876	7.7	7	45	880	1.5
MW-15	MW-15 Q3(Sept)-06	09/21/2006	582	0.05 U	582	NA	128	NA	8.1	NA	45.1	905	1.6
MW-15	MW-15 Q4-06	12/28/2006	628	0.05 U	628	NA	107	969	7.3	7.02	43.6	931	2.5
MW-15	MW-15 Q1-07	03/22/2007	606	0.05 U	606	NA	133	935	8.9	7.04	43.4	853	2
MW-15	MW-15 Q2-07	06/28/2007	555	0.05 U	555	NA	133	947	7.6	6.99	46.6	885	1.5
MW-15	MW-15 Q3-07	09/26/2007	586	0.05 U	586	NA	115	945	7.2	6.93	43.4	924	1.9
MW-15	MW-15 Q4-07	12/27/2007	557	0.05 U	557	NA	133	943	9.2	6.9	39.9	855	2
MW-15	MW-15 Q1-08	03/27/2008	498	0.05 U	498	NA	148	952	10	6.98	41.1	812	1.3
MW-15	MW-15 Q2-08	06/25/2008	512	0.05 U	512	NA	144	961	9.1	6.98	39.8	820	1.5
MW-15	MW-15 Q3-08	09/24/2008	488	0.05 U	488	NA	132	949	9.9	7.04	40.6	777	1.9
MW-15	MW-15 Q4-08	12/17/2008	475	0.05 U	NA	NA	147	946	NA	7.14	42.1	NA	1.3
MW-15	MW-15 Q1-09	03/20/2009	467	0.05 U	498	NA	151	947	9.3	7.11	42.6	824	1.1
MW-15	MW-15 Q2-09	06/24/2009	507	0.05 U	512	NA	141	826	9.9	7.26	39	856	1.3
MW-15	MW-15 Q3-09	09/24/2009	489	0.05 U	488	NA	140	851	7.5	7.12	38.3	861	1.63
MW-15	MW-15 Q4-09	12/18/2009	447	0.05 U	NA	NA	138	877	8.91	7.27	44.5	857	1.01
MW-15	MW-15 Q1-10	03/30/2010	490	0.05	NA	NA	138	NA	8.2	NA	42.4	796	1.06
MW-15	MW-15 Q2-10	06/23/2010	472	0.05 U	512	NA	144	1002	9.01	6.59	45.4	837	1.22
MW-15	MW-15 Q3-10	09/29/2010	467	0.05 U	NA	NA	144	NA	9.17	NA	44	488	1.81
MW-15	MW-15 Q4-10	12/15/2010	488	0.05 U	NA	NA	139	1005	8.12	6.76	42.7	837	1.43
MW-15	MW-15 Q1-2011	03/24/2011	499	0.05 U	NA	NA	136	NA	8.18	NA	44.8	860	1.57
MW-16	MW-16 Q3-05	09/01/2005	541	NA	NA	NA	185	NA	11.6	NA	45.1	NA	NA
MW-16	MW-16 Q2-06	06/21/2006	256	0.05 U	256	NA	130	690	9.5	7.23	42.6	618	0.6
MW-16	MW-16 Q3(Sept)-06	09/21/2006	262	0.05 U	262	NA	163	NA	9.9	NA	42.1	671	0.5

Page 15 of 15

		Parameter	lkalinity (mg/L)	mmonia (mg/L)	icarbonate (mg/L)	arbonate (mg/L)	hloride (mg/L)	onductivity (uohm/cm)	itrate (mg/L)	H (std pH units)	ulfate (mg/L)	otal Dissolved Solids (mg/L)	otal Organic Carbon (mg/L)
Location	Sample ID	Sample Date	∢	A	•	0	0	0	z	d	s	F	⊢
Notes: Only s J Analyte U Analyte	amples that were tes e was detected, the r e was not detected a	ted for at least one result is an estimate t the given reporting	Convention d value. g limit.	al Analyte ap	pear in this ⊺	Table. See T	able D.1 for a	n complete	Analytical So	chedule by s	ample.		

		Parameter	ntimony (µg/L)	rsenic (µg/L)	arium (µg/L)	eryllium (µg/L)	admium (µg/L)	hromium (µg/L)	obalt (µg/L)	opper (µg/L)	ead (µg/L)	lercury (µg/L)	ickel (µg/L)	elenium (µg/L)	ilver (µg/L)	hallium (µg/L)	anadium (µg/L)	inc (µg/L)	alcium (mg/L)	yanide (mg/L)	on (mg/L)	lagnesium (mg/L)	langanese (mg/L)	otassium (mg/L)	odium (mg/L)
Location	Sample ID	Sample Date	A	A	В	B	с	с	U U	U	Ľ	Σ	z	ů.	S	F	>	R	U	U	-	Σ	Σ	ē.	S
Upgradie	nt Wells	-	-	-	-								-				-			-	-				
MW-05	MW-5 Q1-91	03/01/1991	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.39	NA	0.005	NA	NA
MW-05	MW-5 Q2-91	06/01/1991	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.01	NA	0.005	NA	NA
MW-05	MW-5 Q3-91	09/01/1991	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.76	NA	0.005	NA	NA
MW-05	MW-5 Q4-91	12/01/1991	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.17	NA	0.025	NA	NA
MW-05	MW-5 Q1-92	03/01/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.18	NA	0.0005	NA	NA
MW-05	MW-5 Q2-92	06/01/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.69	NA	0.0005	NA	NA
MW-05	MW-5 Q3-92	09/01/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.46	NA	0.006	NA	NA
MW-05	MW-5 Q4-92	12/01/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.94	NA	0.0005	NA	NA
MW-05	MW-5 Q1-93	03/30/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.96	NA	0.001	NA	NA
MW-05	MW-5 Q2(Jun)-93	06/14/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.262	NA	0.003 U	NA	NA
MW-05	MW-5 Q3-93	09/01/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.086	NA	0.003 U	NA	NA
MW-05	MW-5 Q4- 93	12/01/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.433	NA	0.003 U	NA	NA
MW-05	MW-5 Q2-94	04/01/1994	NA	7	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-05	MW-5 Q3-94	08/01/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	68.5	NA	NA	33.4	NA	9.3	14.4
MW-05	MW-5 Q3(Sept)-94	09/01/1994	10 U	0.01 U	NA	2E-04 U	2 U	9.4	0.005 U	3.5	20	NA	0.5 U	50	50	0.002 U	0.013	231.6	66.7	NA	0.0137	22.4	NA	6.4	13.1
MW-05	MW-5 Q4-94	10/01/1994	NA	50	NA		NA	NA	NA	NA	NA	NA	NA	5.7	NA	NA 0.000 LL	NA	NA	NA	NA	NA	NA	NA	NA	
MVV-05	MVV-5 Q4(Nov)-94	11/01/1994	10 0	0.01 U	NA	2E-04 U	20	6.3	0.005 U	20	20	NA	0.5 0	50	50	0.002 0	0.011	158.8	61.7	NA	0.0091	31.7	NA	7.5	15.7
MW-05	MW-5 Q4(Dec)-94	12/01/1994	10 U	0.01 U	NA 100	2E-04 U	20	5.7	0.005 U	20	20	NA	0.5 U	50	50	0.002 U	0.012	259.7	/4.1	NA	0.0219	19.4	NA 10.11	6.5	13.7
IVIVV-05	MW-5 Q1-95	01/01/1995	10 0	10 0	130	20	20	13	10 0	2.01	20	NA	0.5 0	50	50	20	19	293.4	95.1	NA	0.0177	34.6	10 0	7.4	22.9
IVIVV-05	MW-5 Q1(Feb)-95	02/01/1995	50	10 0	290	20	20	10 0	10 0	20.0	20	NA	0.04 0	50	10 0	20	49	580	48.3	NA NA	0.33	19.4	10 0	6.5	13.1
		12/20/1995	0.02	0.5 0	93.0	0.02 0	0.03	0.7	0.2	C0.1	1.41	NA NA	1.7	50	0.02 0	0.02 0	10.5	100	141.Z		230	40.7	0.00141	7.4	30.0
IVIV-05	WW 5 02 96	05/01/1996	0.03	0.5 0	81.1 NA	50	0.07	0.5	0.38	1.1 NA	0.52 NA		4.3		0.11	0.02 0	10.2	150	NA 91.6		0.176	NA 25.9			NA 22.4
MW/ 05	MW 5 Q3-90	10/01/1996	50 U	5.11	NA 64		1NA 4 11	NA 5 11	10.11	10.11	NA 211	NA NA	20.11	5 U	10.11	5 U	11	212	01.0		0.170	20.6	0.005 U	0.9	22.1
MW/ 05	MW 5 01 07	03/24/1007	50 U	50	62	0.02 0	40	50	10 0	10 0	20		20 0	50	10 U	50	12	101	79.9		0.135	30.0	0.005 U	9.07	10.6
MW-05	MW-5 Q1-97 MW-5 O2-97	06/24/1997	50 U	50	66	50	40	50	10 U	10 0	6	NA NA	20 0	50	10 U	511	14	303	75.2	NA NA	1.36	32.8	0.003 0	7 1	20.5
MW-05	MW-5 Q2 97 MW-5 03-97	09/11/1997	50 U	50	65	50	4 11	50	10 U	10 0	211	NΔ	20 0	50	10 U	50	13	212	74.7	ΝΔ	0.115	32.0	0.007	6.86	20.5
MW-05	MW-5 Q4-97	11/25/1997	50 U	5.0	5.0	5.0	4 U	5.0	10 U	10 U	21	NA	20 0	50	10 U	5.0	15	215	70.6	NA	0.110	31.1	0.005 U	6.00	19.6
MW-05	MW-5 Q1-98	03/25/1998	50 U	5 U	59	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5.0	10 U	5 U	12	206	73	NA	0.314	31.2	0.005 U	6.7	18.7
MW-05	MW-5 Q3-98	09/21/1998	0.04 U	1 U	58.4	0.04 U	0.2	0.6	0.4	0.8	0.79	NA	8.4	5 U	0.04 U	0.04 U	10.4	196	70	NA	0.171	31.4	0.00128	7.6	17.4
MW-05	MW-5 Q4-98	12/30/1998	50 U	5 U	58	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	12	275	77.2	NA	1.32	32.6	0.008	7	16.8
MW-05	MW-5 Q1-99	03/03/1999	50 U	5 U	55	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14	185	72.5	NA	0.239	32.1	0.005 U	6.38	15.5
MW-05	MW-5 Q2-99	06/14/1999	0.02 U	2.4	58.2	0.02 U	0.03	5.3	0.5	0.8	5.7	NA	6.9	15	0.02 U	0.03	10.9	371	73.1	NA	0.464	31.4	0.005 U	7.78	15.5
MW-07	SLF-MW-07-GW-110510	11/05/2010	NA	3 U	NA	NA	4 U	10 U	NA	10 U	1 U	0.5 U	NA	NA	NA	NA	NA	NA	15	NA	NA	NA	0.01 U	NA	6.3
MW-07	SLF-MW-07-GW-021011	02/10/2011	NA	3 U	NA	NA	4 U	10 U	NA	10 U	1 U	0.5 U	NA	NA	NA	NA	NA	NA	14	NA	NA	NA	0.011 U	NA	6.4
MW-09	SLF-MW-09-GW-110410	11/04/2010	NA	3.3 U	NA	NA	4.4 U	11 U	NA	11 U	6.6	0.5 U	NA	NA	NA	NA	NA	NA	88	NA	NA	NA	0.012	NA	34
MW-09	SLF-MW-09-GW-021011	02/10/2011	NA	3 U	NA	NA	4 U	10 U	NA	10 U	1 U	0.5 U	NA	NA	NA	NA	NA	NA	90	NA	NA	NA	0.011 U	NA	35
MW-10	SLF-MW-10-GW-110410	11/04/2010	NA	3 U	NA	NA	4 U	10 U	NA	10 U	1 U	0.5 U	NA	NA	NA	NA	NA	NA	48	NA	NA	NA	0.01 U	NA	16
MW-10	SLF-MW-10-GW-021011	02/10/2011	NA	3 U	NA	NA	4 U	10 U	NA	10 U	1 U	0.5 U	NA	NA	NA	NA	NA	NA	45	NA	NA	NA	0.011 U	NA	17
MW-12	MW-12 Q1-95	03/01/1995	5 U	10 U	410	2 U	4	10 U	10 U	20 U	2 U	NA	0.04 U	5 U	10 U	2 U	36	NA	52.7	NA	380	34.5	0.172	10.1	6.3
MW-12	MW-12 Q3-95	07/01/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	10 U	5 U	NA	NA	30 U	140.5	NA	NA	58.6	NA	10.4	65
MW-12	MW-12 Q3(Sept)-95	09/20/1995	0.1	0.7	93.1	0.02 U	0.44	1.4	1.69	2.81	0.05	NA	13.2	5 U	0.04	0.02 U	9.4	6.9	76.6	NA	0.039	50.4	0.0994	9.2	61.2
MW-12	MW-12 Q4t-95	10/30/1995	0.1	0.6	97.9	0.07	0.31	5.5	4.1	2.93	0.05	NA	66.3	5 U	0.02 U	0.02 U	10.8	5.5	143.1	NA	0.039	59.5	0.109	8.5	45.1

			hg/L)	(T)	رL)	hg/L)	hg/L)	(hg/L)	L)	(L)		g/L)	((-1/Br	(g/L)	(hg/L)		ig/L)	g/L)		(mg/L)	(mg/L)	(mg/L)	g/L)
		Paramotor	imony (enic (µg	ium (µg	yllium (l) mium (I	.omium	oalt (µg/	oper (µg	ld (µg/L)	rcury (µ	kel (µg/I	enium (I	/er (µg/L	u) milli) adium (c (hg/L)	cium (m	anide (m	(mg/L) ר	gnesium	nganese	assium	dium (m
Location	Sample ID	Sample Date	Ant	Ars	Bar	Ber	Cac	Ū.	Col	S	Lea	Me	Nic	Sel	Silv	Tha	Var	Zin	Cal	Š	Iroi	Ma	Ma	Pot	Soc
Location Sample D Sample Date																				11					<u> </u>
MW-12	MW-12 Q4(Nov)-95	11/29/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	109.5	NA	NA	62.2	NA	9.3	72
MW-12	MW-12 Q4(Dec)-95	12/20/1995	0.12	0.5 U	106	0.03	0.15	9.9	3.97	5.6	1.35	NA	35.1	5 U	0.02 U	0.02 U	13.6	5.5	160.7	NA	3.29	69.8	0.0978	9.3	75.1
MW-12	MW-12 Q1-96	02/01/1996	0.22	0.5 U	90.3	0.02 U	0.13	4.4	7.58	2.15	0.03	NA	175	5 U	0.02 U	0.02 U	10.1	3.3	NA	NA	0.039	NA	0.073	NA	NA
MW-12	MW-12 Q2-96	05/29/1996	0.62	0.7	98	0.02 U	0.21	1.7	5.29	2.9	0.22	NA	12.7	5 U	0.35	0.02 U	10.2	33.1	NA	NA	0.041	NA	0.0275	NA	NA
MW-12	MW-12 Q3-96	09/01/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	125	NA	2.33	56.8	0.046	9.1	59.9
MW-12	MW-12 Q4-96	10/01/1996	50 U	5 U	84	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14	10 U	127	NA	2.32	58	0.062	8.7	59.2
MW-12	MW-12 Q1-97	03/24/1997	50 U	5 U	90	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	11	10 U	128	NA	3.49	59.3	0.08	9.47	59.6
MW-12	MW-12 Q2-97	06/24/1997	50 U	5 U	102	5 U	4 U	8	10 U	10 U	2 U	NA	26	5 U	10 U	22	18	10 U	130	NA	4.29	60.6	0.099	9.9	60.9
MW-12	MW-12 Q3-97	09/11/1997	50 U	5 U	96	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14	10 U	132	NA	2.03	60.2	0.065	9.73	59.3
MW-12	MW-12 Q4-97	11/25/1997	50 U	5 U	144	5 U	4 U	25	16	42	5	NA	46	5 U	10 U	5 U	58	46	119	NA	7.39	54.7	0.161	10.7	58.4
MW-12	MW-12 Q1-98	03/25/1998	50 U	5 U	88	5 U	4 U	8	10 U	10 U	2 U	NA	24	5 U	10 U	5 U	13	10 U	125	NA	0.854	55.8	0.029	10.2	57.8
MW-12	MW-12 Q2-98	06/29/1998	50 U	5 U	102	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	10 U	10 U	124	NA	1.49	57.2	0.027	7.9	58.2
MW-12	MW-12 Q3-98	09/21/1998	0.13	1 U	100	0.05	0.3	21.7	3.21	2.5	0.62	NA	46.4	5 U	0.04 U	0.04 U	14.2	3	126	NA	3.78	58.9	0.032	10.5	57.1
MW-12	MW-12 Q4-98	12/30/1998	50 U	5 U	89	5 U	4 U	5 U	10 U	10 U	2 U	NA	67	5 U	10 U	5 U	14	3 U	135	NA	2.09	59.4	0.054	10.3	56.2
MW-12	MW-12 Q1-99	03/03/1999	50 U	5 U	83	5 U	4 U	5 U	10 U	10 U	20	NA	41	5 U	10 U	5 U	12	10 U	130	NA	3.9	59.9	0.097	9.34	54.3
MW-12	MW-12 Q2-99	06/14/1999	0.1	3.6	92	0.03	0.04	18.1	2.55	2.5	6.94	NA	53.3	24	0.02 U	0.03	12.8	1.24	124	NA	1.38	55.9	0.043	10.2	52.7
MW-12	MW-12 Q3-99	09/22/1999	50 U	50	83	5 U	4 U	5 U	10 U	10 U	20	NA	20 U	5 U	10 U	50	13	10 U	137	NA	35.1	61	0.567	10.2	55.4
MW-12	MW-12 Q4-99	12/09/1999	50 U	50	90	50	4 U	50	10 U	10 U	20	NA	41	50	10 U	50	16	10 U	137	NA	9.18	62	0.167	11	55.8
IVIVV-12	MW-12 Q1-00	03/15/2000	50 0	10 0	80	50	40	50	10 0	10 0	20	NA	20 0	50	10 0	50	13	10 0	132	NA	4.02	62.2	0.071	8.8	57.8
	MW 12 Q2-00	06/21/2000	50 U	50	84 90	50	40	50	10 0	10 0	20	NA	20 0	50	10 0	50	10	10 0	122		5.93	55.8	0.026	8.7 0.2	49.3
	MW 12 Q3-00	12/05/2000	50 0	50	00 07	50	40	50	10 0	10 0	20	NA	20 0	50	10 0	50	14	10 0	122		1.00	50.0	0.020	0.2	49.7 52.4
MN/-12	MW-12 Q4-00	03/27/2001	50 U	50	07	50	40	50	10 0	10 0	20	NA	20.0	50	10 0	50	10	10 0	121		0.042	50.4 62.1	0.033	9 63	52.4
MW-12	MW-12 Q1 01	06/27/2001	50 U	50	85	50	4 11	50	26	10 U	211	NA	20 0	5.0	10 U	50	14	10 U	135	NA	2 47	62	0.010	83	51.2
MW-12	MW-12 Q2 01	09/06/2001	50 U	511	82	511	5 []	511	11	10 U	211	NA	20 0	511	10 U	511	15	10 U	133	NA	1 49	61.2	0.00	9.36	50.1
MW-12	MW-12 Q4-01	12/14/2001	50 U	5 U	88.5	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	15.9	10 U	133	NA	0.652	61.3	0.0195	9.24	50.4
MW-12	MW-12 Q1-02	03/27/2002	50 U	5 U	85.4	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	12	10 U	131	NA	0.884	61.9	0.0197	8.82	49.2
MW-12	MW-12 Q2-02	06/13/2002	50 U	5 U	89	5 U	5 U	6	19	10 U	2 U	NA	20 U	10 U	10 U	5 U	20	10 U	131	NA	1.2	62.4	0.0228	9.67	50.8
MW-12	MW-12 Q3-02	09/18/2002	50 U	5 U	84.6	5 U	5 U	5 U	17	10 U	2 U	NA	20 U	5 U	10 U	5 U	17	10 U	124	NA	1.24	58.4	0.0251	8.63	47.1
MW-12	MW-12 Q4-02	12/17/2002	50 U	5 U	83.4	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	12.7	10 U	124	NA	0.423	60.2	0.0086	8.41	47.9
MW-12	MW-12 Q1-03	03/26/2003	50 U	5 U	80.2	5 U	5 U	8	30	10 U	2 U	NA	20 U	10 U	10 U	5 U	13	10 U	122	0.01 U	5.53	57.2	0.0952	8.54	45.2
MW-12	MW-12 Q2-03	06/26/2003	50 U	5 U	78	5 U	5 U	6.6	12	10 U	2 U	NA	20 U	10 U	10 U	5 U	17	10 U	127	0.01 U	0.382	56	0.0085	7.63	43.5
MW-12	MW-12 Q3-03	09/25/2003	50 U	5 U	72	5 U	5 U	7.1	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	11	10 U	123	0.01 U	0.173	55.5	0.0074	7.97	42.8
MW-12	MW-12 Q4-03	12/18/2003	50 U	8 U	75	5 U	5 U	7.6	11	10 U	2 U	NA	20 U	8 U	10 U	5 U	14	10 U	127	0.01 U	0.131	55.4	0.005 U	8.32	44.1
MW-12	MW-12 Q1-04	03/17/2004	50 U	5 U	78	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	13.2	10 U	127	NA	0.16	58.7	0.005 U	9.19	44.1
MW-12	MW-12 Q2-04	06/17/2004	50 U	5 U	75.3	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	14	10 U	124	NA	0.603	60.5	0.0106	9.19	45.2
MW-12	MW-12 Q3-04	09/30/2004	50 U	5 U	81.9	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	16	10 U	130	NA	0.604	59.2	0.0132	8.44	44.5
MW-12	MW-12 Q4-04	12/15/2004	50 U	5 U	78.8	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	15.5	10 U	125	NA	0.182	58.1	0.005 U	8.65	42.7
MW-12	MW-12 Q1-05	03/31/2005	50 U	5 U	79	5 U	5 U	5 U	26	10 U	2 U	NA	20 U	10 U	10 U	5 U	16	10 U	127	NA	1.92	58.4	0.0447	7.67	43.7
MW-12	MW-12 Q2-05	06/23/2005	50 U	5 U	82	5 U	5 U	5 U	14	10 U	4 U	NA	20 U	5 U	10 U	5 U	12	10 U	126	NA	0.443	58.1	0.012	8.82	43.2
MW-12	MW-12 Q3-05	09/29/2005	50 U	5 U	80.6	5 U	5 U	5 U	88	10 U	2 U	NA	20 U	5 U	10 U	5 U	10	10 U	12.8	NA	1.32	60.7	0.0249	8.4	46.6
MW-12	MW-12 Q1-06	03/30/2006	50 U	5 U	76.5	5 U	5 U	5 U	107	10 U	2 U	NA	20 U	5 U	10 U	5 U	11	10 U	143	NA	4.59	58.8	0.091	9.65	42
MW-12	MVV-12 Q2-06	06/21/2006	50 U	5 U	90.6	5 U	5 U	5 U	189	15	20	NA	37	5 U	10 U	5 U	17	10 U	138	NA	0.287	63.6	0.0277	9.31	45.6

		2	imony (µg/L)	enic (µg/L)	ium (µg/L)	yllium (µg/L)	mium (µg/L)	omium (µg/L)	alt (µg/L)	per (µg/L)	d (µg/L)	cury (µg/L)	kel (µg/L)	ənium (µg/L)	er (µg/L)	llium (µg/L)	adium (µg/L)	; (hg/L)	cium (mg/L)	nide (mg/L)	(mg/L)	jnesium (mg/L)	ıganese (mg/L)	assium (mg/L)	lium (mg/L)
Location	Sample ID	Parameter Sample Date	Ant	Ars	Bar	Ber	Cac	- Ch	Cot Cot	Cop	Lea	Mer	Nic	Selo	Silv	Tha	Van	Zin	Calo	Cya	Iron	Maç	Mar	Pot	Soc
Ungradien	t Wells Continued	Sample Date																							
MW-12	MW-12 Q3-06	09/21/2006	50 U	5 U	86.3	5 U	5 U	5 U	85	10 U	2.U	NA	20 U	5 U	10 U	5 U	16	10 U	132	NA	0.738	60.1	0.018	9.2	43.5
MW-12	MW-12 Q3-07	09/26/2007	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	123	NA	7.98	57.7	0.19	9.1	43.3
MW-12b	MW-12b Q3-08	09/24/2008	50 U	5 U	86.5	5.0	5 U	5 U	10 U	10 U	10 U	NA	20 U	5 U	10 U	5 U	14	10 U	111	NA	0.228	52.3	0.0053	8.11	29.5
MW-12b	MW-12b Q4-08	12/17/2008	50 U	5 U	73	5 U	5 U	5 U	10 U	10 U	10 U	NA	20 U	5 U	10 U	5 U	12	10 U	112	NA	0.093	52.7	0.005 U	7.96	30.8
MW-12b	MW-12b Q1-09	03/20/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	120	NA	0.088	55.3	0.005 U	8.46	33.5
MW-12b	MW-12b Q2-09	06/24/2009	50 U	5 U	86.1	5 U	5 U	5 U	10 U	10 U	10 U	NA	20 U	5 U	10 U	5 U	14	10 U	118	NA	0.0448	54.7	0.005 U	8.14	33.4
MW-12b	MW-12b Q3-09	09/24/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	118	NA	0.024	54	0.005 U	8.14	34.2
MW-12b	MW-12b Q4-09	12/18/2009	50 U	5 U	85.2	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	13.6	10 U	120	NA	0.0362	56.7	0.005 U	8.4	35.4
MW-12b	MW-12b Q2-10	06/23/2010	50 U	5 U	84.5	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	4 U	10 U	5 U	15	10 U	117	NA	5.71	52.4	0.0835	8.66	32.7
MW-12b	MW-12b Q3-10	09/29/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	117	NA	0.235	54.6	0.005 U	8.33	33.5
MW-12b	MW-12b Q4-10	12/15/2010	50 U	5 U	71.6	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	13	10 U	117	NA	0.101	53.1	0.005 U	8.1	33.2
MW-12b	MW-12b Q1-2011	03/24/2011	50 U	5 U	79.2	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	14.5	10 U	113	NA	0.2	52	0.005 U	7.77	32.6
Downgrad	ient Wells	•						•	,					,									·!		
MW-01	MW-1 Q1-91	01/01/1991	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.9	NA	0.005	NA	NA
MW-01	MW-1 Q2-91	04/01/1991	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.02	NA	0.005	NA	NA
MW-01	MW-1 Q3-91	07/01/1991	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.69	NA	0.04	NA	NA
MW-01	MW-1 Q4-91	10/01/1991	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.16	NA	0.05	NA	NA
MW-01	MW-1 Q1-92	01/01/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.025	NA	0.001	NA	NA
MW-01	MW-1 Q2-92	04/01/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.48	NA	0.001	NA	NA
MW-01	MW-1 Q3-92	07/01/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.38	NA	0.001	NA	NA
MW-01	MW-1 Q4-92	10/01/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.12	NA	0.001	NA	NA
MW-01	MW-1 Q1-93	01/01/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.2	NA	0.006	NA	NA
MW-01	MW-1 Q2-93	04/01/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.438	NA	0.014	NA	NA
MW-01	MW-1 Q3-93	07/01/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.096	NA	0.0003 U	NA	NA
MW-01	MW-1 Q4-93	10/01/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.432	NA	0.001	NA	NA
MW-01	MW-1 Q2-94	04/01/1994	NA	7.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	7.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-01	MW-1 Q3-94	08/01/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	82.5	NA	NA	43.8	NA	6.6	13.3
MW-01	MW-1 Q3(Sept)-94	09/01/1994	10 U	0.01 U	NA	0.002 U	2 U	9.8	0.005 U	2 U	2 U	NA	50 U	5 U	5 U	0.002 U	0.015 U	80 U	86.7	NA	NA	40.2	NA	7	11.1
MW-01	MW-1 Q4-94	10/01/1994	NA	5 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	6.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-01	MW-1 Q4(Nov)-94	11/01/1994	10 U	0.01 U	NA	0.002 U	2 U	9.9	0.005 U	2 U	2 U	NA	50 U	5 U	5 U	0.002 U	0.016	80 U	72.8	NA	0.005 U	38.3	NA	7.6	11.8
MW-01	MW-1 Q4(Dec)-94	12/01/1994	10 U	0.01 U	NA	0.002 U	2 U	8.5	0.005 U	2 U	2 U	NA	50 U	5 U	5 U	0.002 U	0.012	80 U	81.6	NA	0.005 U	36	NA	6.7	12.8
MW-01	MW-1 Q1-95	01/01/1995	10 U	10 U	220	2 U	2 U	12.4	10 U	2.8	2 U	NA	50 U	5 U	10 U	2 U	12	80 U	70.8	NA	0.005 U	29.3	0.001 U	10.3	52.4
MW-01	MW-1 Q1(Feb)-95	02/01/1995	5 U	10 U	380	2 U	2 U	10 U	10 U	20 U	2 U	NA	40 U	5 U	5 U	2 U	55	50 U	51.1	NA	0.08	19.9	0.001 U	6.3	9.2
MW-01	MW-1 Q3-95	07/01/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	10 U	5 U	NA	NA	30 U	82.9	NA	NA	37	NA	7.5	13.5
MW-01	MW-1 Q1(Sep)-95	09/20/1995	0.04	0.5 U	61	0.02 U	0.08	0.7	0.42	0.72	0.12	NA	6.6	5 U	0.06	0.02 U	10.6	11.4	58.8	NA	0.027	86.2	0.00016	6.5	12.7
MW-01	MW-1 Q4-95	12/18/1995	0.04	0.5 U	65.8	0.02 U	0.08	1.4	0.16	1.97	0.28	NA	1.6	5 U	0.02 U	0.02 U	12.8	5.2	114.2	NA	0.079	42.5	0.00099	6.43	14.99
MW-01	MW-1 Q1-96	02/01/1996	0.02 U	0.5	61.7	0.02 U	0.07	2.5	0.14	1.55	0.06	NA	1.7	5 U	0.02 U	0.02 U	13.2	5.7	NA	NA	0.027	NA	0.00012	NA	NA
MW-01	MW-1 Q2-96	05/01/1996	0.02 U	0.6	63.9	0.02 U	0.16	0.8	0.36	1.3	0.17	NA	4.3	5 U	0.1	0.02 U	12	10.7	NA	NA	NA	NA	NA	NA	NA
MW-01	MW-1 Q3-96	09/01/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	90.2	NA	0.052	41.6	0.005 U	7	12.5
MW-01	MW-1 Q4-96	10/01/1996	0.5 U	5	57	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	16	10	89.7	NA	0.071	41.2	0.005 U	6.2	12.3
MW-01	MW-1 Q1-97	03/24/1997	50 U	5 U	58	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	15	11	79.2	NA	0.087	36.9	0.005 U	6.58	12
MW-01	MW-1 Q2-97	06/24/1997	50 U	5 U	60 U	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	15	10 U	84	NA	0.063	38.8	0.005 U	7.1	12.1
MW-01	MW-1 Q3-97	09/11/1997	50 U	5 U	62	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	13	56	78.6	NA	0.034	36.2	0.005 U	6.61	11.6

		Parameter	timony (µg/L)	senic (µg/L)	rium (µg/L)	ryllium (µg/L)	dmium (µg/L)	ıromium (µg/L)	balt (µg/L)	pper (µg/L)	ad (µg/L)	srcury (µg/L)	ckel (µg/L)	lenium (µg/L)	ver (µg/L)	allium (µg/L)	nadium (µg/L)	ıc (µg/L)	llcium (mg/L)	anide (mg/L)	n (mg/L)	ıgnesium (mg/L)	nganese (mg/L)	tassium (mg/L)	dium (mg/L)
Location	Sample ID	Sample Date	An	A.	Ba	Be	ပဳ	ភ	ပိ	ပိ	Le	Ĕ	ž	Se	Sil	۲ ۲	Va	Zir	ca	Š	lz	Ma	Ř	Ро	So
Downgrad	ient Wells Continued			1		11																			
MW-01	MW-1 Q1-98	03/25/1998	50 U	5 U	60	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14	10 U	82.6	NA	0.72	37.2	0.005 U	6.8	12.5
MW-01	MW-1 Q2-98	06/29/1998	50 U	5 U	59	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14	10 U	81.2	NA	0.043	37.2	0.005 U	6	12.2
MW-01	MW-1 Q3-98	09/21/1998	0.04 U	1 U	62.1	0.04 U	0.2	1.3	0.47	1.2	0.12	NA	12.5	5 U	0.04 U	0.04 U	12	3	82.2	NA	0.08	39.1	0.00122	7.9	1.2
MW-01	MW-1 Q1-99	03/03/1999	50 U	5 U	54	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	15	10 U	81.1	NA	0.267	37.3	0.006	6.4	11.5
MW-01	MW-1 Q2-99	06/14/1999	0.02 U	2.3	56.8	0.02 U	0.11	4.5	0.57	1.5	0.41	NA	7.6	15	0.02 U	0.04	10.9	2.5	82.9	NA	0.102	37.4	0.005 U	7.7	12
MW-01	MW-1 Q3-99	09/22/1999	50 U	5 U	53	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	16	10 U	76.1	NA	0.029	34.3	0.005 U	6.1	11.6
MW-01	MW-1 Q4-99	12/09/1999	50 U	5 U	55	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	16	10 U	77.4	NA	0.167	35.9	0.006	6.5	11.9
MW-01	MW-1 Q1-00	03/15/2000	50 U	10 U	54	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	18	10 U	75.4	NA	0.136	35.5	0.005 U	5.9	12.3
MW-01	MW-1 Q2-00	06/21/2000	50 U	5 U	49	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	17	10 U	72.9	NA	0.09	33.8	0.005 U	6.1	11.4
MW-01	MW-1 Q3-00	09/27/2000	50 U	5 U	49	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	15	10 U	72.4	NA	0.077	33.3	0.005 U	6	11.1
MW-01	MW-1 Q4-00	12/05/2000	50 U	5 U	53	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	15	10 U	71.2	NA	0.098	34.3	0.005 U	6.4	11.8
MW-01	MW-1 Q1-01	03/27/2001	50 U	5 U	56	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	16	10 U	76.6	NA	0.061	35.1	0.005	5.82	12.1
MW-01	MW-1 Q2-01	06/27/2001	50 U	5 U	54	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14	10 U	78.1	NA	0.063	35.8	5 U	5.4	11.8
MW-03	MW-3 Q1-91	01/01/1991	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.1	NA	0.005	NA	NA
MW-03	MW-3 Q2-91	04/01/1991	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.03	NA	0.005	NA	NA
MW-03	MW-3 Q3-91	07/01/1991	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.12	NA	0.005	NA	NA
MW-03	MW-3 Q4-91	10/01/1991	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.09	NA	0.05	NA	NA
MW-03	MW-3 Q1-92	01/01/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.05	NA	0.005	NA	NA
MW-03	MW-3 Q2-92	04/01/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.51	NA	0.005	NA	NA
MW-03	MW-3 Q3-92	07/01/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.42	NA	0.002	NA	NA
MW-03	MW-3 Q4-92	10/01/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.029	NA	0.0005	NA	NA
MW-03	MW-3 Q1-93	01/01/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.9	NA	0.003	NA	NA
IVIVV-03	MW-3 Q2-93	04/01/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.2	NA	0.0003 U	NA	NA
IVIVV-03	MW-3 Q3-93	07/01/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.11	NA	0.0003 U	NA	NA
MW 02	MW-3 Q4-93	10/01/1993	NA	NA 7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA 0.007	NA	NA	NA	NA	NA	NA	0.383	NA	0.0003 0	NA	NA
IVIVV-03	MW 2 02 04	04/01/1994						NA NA	NA NA	NA NA	NA NA	NA NA		0.007	NA NA	NA NA	NA NA	NA NA		NA NA	INA NA	14.0	NA NA	INA C.C	17
MW 03	$\frac{1000-3 Q_3-94}{MW/3 Q_3(S_{opt}) Q_4}$	00/01/1994					211	10.2	0.005.11	211	211	NA NA	50 U	5 U	NA NA		0.016	80 LL	93.2	NA NA	NA NA	44.0		0.0	1/ 2
MW-03	MW-3 04-94	10/01/1004	NA	511	NΔ	NA	NA	NA	NA	NA	NA	NA	50 U	0.005	NA	NA	NA NA	NA	NA	NA	NA	NA	NΔ	NΔ	NA
MW-03	MW-3 Q4(Nov)-94	11/01/1994	10 11	0.01.11	NA	0.002.11	211	77	0.005.11	211	211	NA	50 11	5.000	511	0.005.11	0.014	80.11	73.7	NA	511	41	NA	7.6	16.3
MW-03	MW-3 Q4(Dec)-94	12/01/1994	10 U	0.01 []	NA	0.002 U	211	9.2	0.005 U	211	211	NA	50 U	50	5.0	0.005 U	0.016	80 U	79.8	NA	5.0	37	NA	7.6	16.8
MW-03	MW-3 Q1-95	01/01/1995	10 U	10 U	230	2 U	211	14.5	10 U	211	211	NA	50 U	5.0	5.0	211	14	80 U	68.9	NA	5.0	29.8	10 U	7	12.8
MW-03	MW-3 Q1(Feb)-95	02/01/1995	5 U	10 U	390	2 U	3	10 U	10 U	20 U	2 U	NA	40 U	5 U	10 U	2 U	10 U	50 U	50.9	NA	50	21.6	10 U	6.3	11.4
MW-03	MW-3 Q3-95	07/01/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	10 U	5 U	NA	NA	30 U	101.4	NA	NA	46.3	NA	7.7	16.3
MW-03	MW-3 Q3(Sept)-95	09/20/1995	0.1	0.6	62.4	0.02 U	0.06	1.6	0.36	2.69	0.19	NA	8.6	5 U	0.07	0.02	12.4	6.4	NA	NA	0.021	NA	0.00035	NA	NA
MW-03	MW-3 Q4-95	12/18/1995	0.05	0.5 U	76.2	0.02 U	0.04	1.9	0.17	2.52	0.23	NA	3.5	5 U	0.02 U	0.02 U	14.9	4.4	112.9	NA	0.044	47.6	0.00038	6.62	20.5
MW-03	MW-3 Q1-96 Dup	02/01/1996	0.02 U	0.5	61.8	0.02 U	0.03	2.5	0.11	1.33	0.06	NA	1.7	5 U	0.02 U	0.02 U	15.5	3.4	NA	NA	0.021	NA	0.00011	NA	NA
MW-03	MW-3 Q1-96	02/01/1996	0.02 U	0.5 U	59.9	0.02 U	0.02 U	2.7	0.11	1.37	0.06	NA	1.9	5 U	0.02 U	0.02 U	15.5	7	NA	NA	0.02 U	NA	0.00029	NA	NA
MW-03	MW-3 Q2-96	05/01/1996	0.04	0.5	75.8	0.02 U	0.27	1.9	0.36	2.9	0.64	NA	5.1	5 U	0.2	0.02 U	13.3	23	NA	NA	NA	NA	NA	NA	NA
MW-03	MW-3 Q3-96	09/01/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	110	NA	0.042	53.3	0.005 U	8.1	18.7
MW-03	MW-3 Q4-96	10/01/1996	50 U	50 U	73	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	17	10 U	93.3	NA	0.034	45.2	0.005 U	7.4	16.5
MW-03	MW-3 Q1-97	03/24/1997	50 U	5 U	76	5 U	4 U	5 U	10 U	<u>10</u> U	2 U	NA	20 U	5 U	10 U	5 U	15	10	93.9	NA	0.032	46.1	0.005 U	6.96	16.4
MW-03	MW-3 Q2-97	06/24/1997	50 U	5 U	84	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	17	10 U	99.9	NA	0.046	49	0.005 U	7.4	17

Location	Samala ID	Parameter	Antimony (µg/L)	Arsenic (µg/L)	Barium (µg/L)	Beryllium (µg/L)	Cadmium (µg/L)	Chromium (µg/L)	Cobalt (µg/L)	Copper (µg/L)	Lead (µg/L)	Mercury (µg/L)	Nickel (µg/L)	Selenium (µg/L)	Silver (µg/L)	Thallium (µg/L)	Vanadium (µg/L)	Zinc (µg/L)	Calcium (mg/L)	Cyanide (mg/L)	lron (mg/L)	Magnesium (mg/L)	Manganese (mg/L)	Potassium (mg/L)	Sodium (mg/L)
Downgrad	Sample ID	Sample Date																							L
		00/11/1007	50.11	5 11	82	5.11	4.11	5.11	10.11	10.11	211	NΙΔ	20.11	5.11	10 11	511	17	10.11	08.5	NΙΔ	0.027	18.6	0.005.11	7 27	17.5
MW-03	MW-3 Q3-97	11/25/1007	50 11	50	511	50	40	5.11	10 U	10 U	20	NA	20 0	50	10 U	50	10	10 0	90.3 62.8	NA	0.027	37.2	0.005 U	7	10.2
MW-03	MW-3 Q1-98	03/25/1998	50 U	50	67	511	4 0	5.0	10 U	10 U	211	NA	20 0	511	10 U	50	16	10 U	90.9	NA	0.000	44.8	0.005 U	72	17.9
MW-03	MW-3 Q2-98	06/29/1998	50 U	5 U	82	5 U	4 U	5 U	10 U	10 U	20	NA	20 U	5 U	10 U	5 U	15	10 U	95.6	NA	0.055	46.8	0.005 U	6.3	17.1
MW-03	MW-3 Q3-98	09/21/1998	0.04 U	1 U	79.8	0.04 U	0.2	1.2	0.52	1.4	0.08	NA	11.6	5 U	0.05	0.04 U	12.8	2	96.2	NA	0.032	47.6	0.00025	8.1	16.5
MW-03	MW-3 Q4-98	12/30/1998	50 U	5 U	37	5 U	4 U	5 U	10 U	18	2 U	NA	20 U	5 U	10 U	5 U	16	10 U	29.5	NA	0.648	43.1	0.022	9.4	32.8
MW-03	MW-3 Q1-99	03/03/1999	50 U	5 U	33	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	15	10 U	26.4	NA	0.126	40.8	0.005 U	8.4	29
MW-03	MW-3 Q2-99	06/14/1999	0.02 U	4.1	86.4	0.02 U	0.04	8.8	0.8	1.3	0.1	NA	10.4	28	0.02 U	0.03	13	2.8	107	NA	0.094	50.6	0.005 U	8.5	17.2
MW-03	MW-3 Q3-99	09/22/1999	50 U	5 U	42	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	17	10 U	104	NA	0.265	49.4	0.006	6.4	16.4
MW-03	MW-3 Q4-99	12/09/1999	50 U	5 U	79	5 U	4 U	5 U	10 U	10 U	2 U	NA	330	5 U	10 U	5 U	16	10 U	97.4	NA	0.373	54.4	0.011	8.1	18.5
MW-03	MW-3 Q1-00	03/15/2000	50 U	10 U	82	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	17	10 U	106	NA	0.06	52.8	0.005 U	6.9	18.3
MW-03	MW-3 Q2-00	06/21/2000	50 U	5 U	82	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	18	10 U	105	NA	0.051	49.6	0.005 U	7.1	16.7
MW-03	MW-3 Q3-00	09/27/2000	50 U	5 U	75	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	18	10 U	97	NA	0.042	47.8	0.005 U	6.8	17
MW-03	MW-3 Q4-00	12/05/2000	50 U	5 U	80	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	17	10 U	92.3	NA	0.199	47.7	0.006	7.1	17.6
MW-03	MW-3 Q1-01	03/27/2001	50 U	5 U	77	5 U	4 U	5 U	10 U	10 U	2 U	NA	78	5 U	10 U	5 U	18	10 U	88.2	NA	0.054	42	0.005	6.28	17.8
MW-03	MW-3 Q2-01	06/27/2001	50 U	5 U	84	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	18	10 U	108	NA	0.062	52.3	5 U	6.5	17.5
MW-11	MW-11 Q1-95	03/01/1995	5 U	10 U	500	2 U	3	10 U	10 U	20 U	2 U	NA	4 U	5 U	10 U	2 U	40	50 U	66.6	NA	NA	36	0.027	10.3	1
MW-11	MW-11 Q1-95 Dup	03/01/1995	5 U	10 U	410	2 U	3	10 U	10 U	20 U	2 U	NA	4 U	5 U	10 U	2 U	37	NA	NA	NA	NA	NA	NA	NA	NA
MW-11	MW-11 Q3-95	07/01/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	10 U	5	NA	NA	30 U	151.8	NA	NA	54.1	NA	9.9	48.7
MW-11	MW-11 Q3-95 Dup	07/01/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	10 U	5	NA	NA	30 U	149.1	NA	NA	53.6	NA	9.9	49.2
IVIVV-11	MW-11 Q3(Sept)-95	09/20/1995	0.05	0.05 U	109	0.02 U	0.06	1.7	0.6	0.61	0.05	NA	9.7	50	0.08	0.02 U	9.1	1.2	/1.6	NA	0.035	96.5	0.00048	8.6	46.3
	MW-11 Q3(Sept)-95 Dup	09/20/1995	0.03	0.05 0	109	0.02 0	0.06	1.7	0.64	1.03	0.07		9.3	50	0.03	0.02 0	9.4	1.8	141.0	NA NA	0.035	126.1	0.00054	8.5 9.5	45.6
M\\\/_11	MW-11 04-95 MW-11 04-95 Dup	10/30/1995	0.02 0	0.5 0	113	0.0	0.05	8.2	0.57	1.02	0.05	NA	0.4	50	0.02 0	0.02 0	11.7	3.9	141.9	NA	0.030	60.2	0.00047	8.5	45.1
M\\\/_11	MW-11 Q4-95 Dup	10/30/1995	0.02 Ο ΝΔ	0.5 C	NΔ	0.03 NA	0.05 NA	0.2 NA	0.30 NA	ΝΔ	0.05 NA	NA	ΝΔ	NΔ	0.02 U	0.02 O	ΝΔ	5.7 NA	111 88	ΝA	0.033 NA	52 33	0.00044 NA	8 75	53.63
MW-11	MW-11 Q4(Nov)-95 Dup	11/29/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	111.18	NA	NA	55.57	NA	9.05	53.23
MW-11	MW-11 Q4(Dec)-95	12/18/1995	0.13	0.6	133	0.11	0.18	6.5	3.47	37.4	3.57	NA	18.3	5 U	0.02 U	0.03	16.3	17.3	186.4	NA	7.86	59.5	0.0822	8.7	55.7
MW-11	MW-11 Q1-96	02/01/1996	0.02 U	0.5 U	95.7	0.02 U	0.02	5.3	1.5	0.88	0.03	NA	2.9	5 U	0.02 U	0.02 U	11.5	4.3	NA	NA	0.034	NA	0.00107	NA	NA
MW-11	MW-11 Q2-96	05/01/1996	0.03	0.5 U	107	0.02 U	0.04	1.6	1.8	2.6	0.27	NA	6.4	5 U	0.21	0.02 U	10	1.5	NA	NA	0.038	NA	0.0017	NA	NA
MW-11	MW-11 Q2-96 Dup	05/01/1996	0.02	0.5 U	109	0.02 U	0.04	1.6	1.9	0.6	0.16	NA	6.3	5 U	0.64	0.02 U	10.2	0.9	NA	NA	0.041	NA	0.00128	NA	NA
MW-11	MW-11 Q3-96	09/01/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	129	NA	0.116	51.6	0.005 U	9.2	45.9
MW-11	MW-11 Q4-96	10/01/1996	50 U	5 U	94	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14	10 U	133	NA	0.316	52.8	0.007	8.8	46.5
MW-11	MW-11 Q1-97	03/24/1997	50 U	5 U	96	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	11	10 U	130	NA	2.53	53.1	0.044	9.46	48
MW-11	MW-11 Q2-97	06/24/1997	50 U	5 U	107	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14	10 U	135	NA	0.152	54	0.005 U	9.8	51.1
MW-11	MW-11 Q3-97	09/11/1997	50 U	5 U	100	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	11	10 U	132	NA	0.338	53.6	0.009	9.71	53.1
MW-11	MW-11 Q4-97	11/25/1997	50 U	5 U	5 U	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	18	10 U	129	NA	1.04	51.9	0.02	9.6	50.4
MW-11	MW-11 Q1-98	03/25/1998	50 U	5 U	99	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	13	10 U	133	NA	1.4	52.5	0.032	9.9	54.1
MW-11	MW-11 Q2-98	06/29/1998	50 U	5 U	86	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	13	10 U	125	NA	0.129	49.9	0.005 U	7.9	51.2
MW-11	MW-11 Q3-98	09/21/1998	0.09	1 U	106	0.05	0.3	3.4	1.18	1.9	0.64	NA	16	5 U	0.05	0.04 U	10.6	2	132	NA	2.04	54	0.0174	10.8	53.5
MVV-11	MW-11 Q4-98	12/30/1998	50 U	5 U	101	5 U - · ·	4 U	50	10 U	10 U	20	NA	20 U	5 U	10 U	5 U	14		142	NA	3.56	56	0.051	10.7	56.5
IVIVV-11	MW 44 00 00	03/03/1999	50 U	50	102	5 U	4 U	50	10 U	10 U	20	NA	20 U	50	10 U	50	12	10 0	134	NA	0.305	54.1	0.005	9.23	52.8
	MW 11 Q2-99	06/14/1999	0.02 U	2.6	103	0.02 0	0.03	5 11.8	1.26	1.3	0.08	NA	13./	18	0.02 U	0.04	11.2	0.33	133	NA NA	0.308	52.1	0.005	10.8	53.2
	10100-11 00-99	09/22/1999	50.0	50	90	50	4 U	50	10.0	10 0	20	INA	20.0	5 ป	10.0	50	14	10.0	129	NA	0.485	50.9	0.005	9.1	34.1
		Parameter	ntimony (µg/L)	senic (µg/L)	arium (µg/L)	əryllium (µg/L)	admium (µg/L)	hromium (µg/L)	obalt (µg/L)	opper (µg/L)	sad (µg/L)	ercury (µg/L)	ckel (µg/L)	elenium (µg/L)	lver (µg/L)	allium (µg/L)	anadium (µg/L)	nc (µg/L)	alcium (mg/L)	/anide (mg/L)	on (mg/L)	agnesium (mg/L)	anganese (mg/L)	otassium (mg/L)	odium (mg/L)
----------	----------------------	-------------	----------------	--------------	--------------	-----------------	---------------	----------------	--------------	--------------	------------	---------------	-------------	----------------	-------------	---------------	----------------	-----------	---------------	---------------	-----------	-----------------	-----------------	-----------------	--------------
Location	Sample ID	Sample Date	Ā	A	ä	ă	ö	Ū	Ŭ	ŏ	Ľ	Σ	ž	Ň	Si	Ē	Ś	z	Ö	Ű.	Ire	Δ	Σ	ď	Ň
Downgrad	ient Wells Continued				-						-														_
MW-11	MW-11 Q4-99	12/09/1999	50 U	5 U	108	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	16	10 U	134	NA	0.189	53.8	0.005 U	10	54.4
MW-11	MW-11 Q1-00	03/15/2000	50 U	10 U	104	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14	10 U	129	NA	0.554	52.5	0.01	9.2	55.8
MW-11	MW-11 Q2-00	06/21/2000	50 U	5 U	97	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14	10 U	125	NA	0.02 U	49	0.005 U	8.5	49.8
MW-11	MW-11 Q3-00	09/27/2000	50 U	5 U	92	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	12	10 U	124	NA	0.109	50.5	0.005 U	9	53
MW-11	MW-11 Q4-00	12/05/2000	50 U	5 U	99	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	13	10 U	123	NA	0.455	52	0.007	9.7	55.1
MW-11	MW-11 Q1-01	03/27/2001	50 U	5 U	110	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14	10 U	131	NA	0.03	52.3	0.006	9.46	56.1
MW-11	MW-11 Q2-01	06/27/2001	50 U	5 U	105	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	12	10 U	133	NA	20 U	52.7	5 U	9	54.2
MW-11	MW-11 Q3-01	09/06/2001	50 U	5 U	95	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	12	10 U	129	NA	0.07	52	0.005 U	9.86	54
MW-11	MW-11 Q4-01	12/14/2001	50 U	5 U	105	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	13.1	10 U	133	NA	0.02 U	53.3	0.005 U	9.82	55.1
MW-11	MW-11 Q1-02	03/27/2002	50 U	5 U	100	50	5 U	50	10 U	10 U	20	NA	20 U	10 U	10 U	50	12	10 U	126	NA	0.104	52.1	0.005 U	8.9	52.6
IVIVV-11	MW-11 Q2-02	06/13/2002	50 0	50	107	50	50	50	10 0	10 0	20	NA	20 0	10 0	10 0	50	14	10 0	131	NA 0.04 LL	2.08	54.9	0.0344	10.5	57.3
	MW 11 Q3-02	09/18/2002	50 0	50	96.2	50	50	50	10 0	10 0	20		20.0	50	10 0	50	10	10 0	129	0.01 U	0.02 0	52.9	0.005 U	10.1	55
	MW 11 01 02	02/26/2002	50 0	50	100	50	50	50	10 U	10 0	20	NA NA	20.0	10 U	10 U	50	11.4	10 0	129	0.01 U	1.21	50 ST	0.005 0	9.63	51.0
M\\\/_11	MW-11 Q1-03	06/26/2003	50 U	511	97.5	511	511	50	10 U	10 U	20	NA	20 0	10.0	10 U	50	14	10 U	121	0.01 U	0.02.11	51.7	0.0230	9.4	53.8
M\\\/_11	MW-11 Q2-03	09/25/2003	50 U	511	88	511	511	50	10 U	10 U	20	ΝA	20 0	10 0	10 U	50	10	10 U	122	0.01 U	1.69	49.1	0.003 0	9.20	50.5
MW-11	MW-11 Q3-03	12/18/2003	50 U	811	88	511	5.0	50	10 U	10 U	211	NA	20 0	811	10 U	50	12	10 U	122	NA	0.183	48.9	0.005 11	9.31	52.5
MW-11	MW-11 Q1-04	03/17/2004	50 U	5.0	89.4	511	511	50	10 U	10 U	211	NA	20 0	511	10 U	50	13.5	10 U	127	NA	0.026	49.8	0.005 U	10.3	52.6
MW-11	MW-11 Q2-04	06/17/2004	50 U	5.0	87.2	50	5 U	50	10 U	10 U	20	NA	20 0	10 U	10 U	50	13	10 U	117	NA	0.020	49.7	0.0063	9.78	52.8
MW-11	MW-11 Q3-04	09/30/2004	50 U	5 U	90.4	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5.0	12	10 U	120	NA	0.072	47.4	0.005 U	9.49	51.8
MW-11	MW-11 Q4-04	12/15/2004	50 U	5 U	94.6	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	15.1	10 U	117	NA	0.104	47.6	0.005 U	9.21	51.5
MW-11	MW-11 Q1-05	03/31/2005	50 U	5 U	87	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	13	10 U	116	NA	0.45	46.7	0.0102	8.49	51.7
MW-11	MW-11 Q2-05	06/23/2005	50 U	5 U	91	5 U	5 U	5 U	10 U	10 U	4 U	NA	20 U	5 U	10 U	5 U	11	10 U	115	NA	0.142	46.3	0.005 U	10	51.4
MW-11	MW-11 Q3-05	09/29/2005	50 U	5 U	92.9	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	13	10 U	117	NA	0.038	48.3	0.005 U	8.8	54.7
MW-11	MW-11 Q4-05	12/14/2005	50 U	5 U	89	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	11	10 U	118	NA	0.02 U	46	0.005 U	9.04	50.5
MW-11	MW-11 Q1-06	03/30/2006	50 U	5 U	82.4	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	10 U	10 U	116	NA	0.407	43.3	0.0083	9.83	48.7
MW-11	MW-11 Q2-06	06/21/2006	50 U	5 U	88.9	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	15	10 U	114	NA	0.03	45.8	0.005 U	9.31	49.9
MW-11	MW-11 Q3-06	09/21/2006	50 U	5 U	86.4	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14	10 U	110	NA	0.128	43.4	0.005 U	10	46.7
MW-11	MW-11 Q4-06	12/28/2006	50 U	5 U	84.8	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	13	10 U	114	NA	0.223	43.9	0.005 U	9.1	47.3
MW-11	MW-11 Q1-07	03/22/2007	50 U	5 U	82.4	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	15	10 U	111	NA	0.454	44.9	0.0071	7.8	49.5
MW-11	MW-11 Q2-07	06/28/2007	50 U	5 U	83.3	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	13	10 U	110	NA	0.406	43.7	0.005 U	10	48.2
MW-11	MW-11 Q3-07	09/26/2007	50 U	5 U	74.3	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	11	10 U	108	NA	0.084	43.1	0.005 U	9	46.8
MW-11	MW-11 Q4-07	12/27/2007	50 U	5 U	78.3	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	12	10 U	111	NA	0.043	44	0.005 U	8.65	47
MW-11	MW-11 Q1-08	03/27/2008	50 U	5 U	69.8	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	10 U	10 U	101	NA	0.297	41.6	0.005 U	9.3	43.1
MW-11	MW-11 Q2-08	06/25/2008	50 U	5 U	71.7	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	10 U	10 U	103	NA	0.035	41.6	0.005 U	9.11	44.6
MW-11	MW-11 Q3-08	09/24/2008	50 U	5 U	79.8	5 U	5 U	5 U	10 U	10 U	10 U	NA	20 U	5 U	10 U	5 U	13	10 U	96.2	NA	0.02 U	39.7	0.005 U	8.83	43.1
MW-11	MW-11 Q4-08	12/17/2008	50 U	5 U	65	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	11	10 U	94.1	NA	6.23	39.5	0.0939	8.62	40.9
MW-11	MW-11 Q1-09	03/20/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	101	NA	0.02 U	40.7	0.005 U	8.92	44.5
MW-11	MW-11 Q2-09	06/24/2009	50 U	5 U	79.3	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	12	10 U	97.9	NA	0.0254	39.4	0.005 U	8.46	42.5
MW-11	MW-11 Q3-09	09/24/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	97.6	NA	0.02 U	39.4	0.005 U	8.47	42.7
MW-11	MW-11 Q4-09	12/18/2009	50 U	5 U	77.8	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	12.5	10 U	100	NA	0.02 U	40.8	0.005 U	8.66	43.4
MW-11	MW-11 Q1-10	03/30/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA 	NA	NA	95.1	NA	0.02 U	38.5	0.005	8.44	41.1
MVV-11	MVV-11 Q2-10	06/23/2010	50 U	5 U	//.7	5 U	5 U	5 U	10 U	10 U	20	NA	20 U	4 U	10 U	5 U	14	10 U	95.8	NA	0.05 U	37.3	0.005 U	8.35	38.9

		Parameter	ntimony (µg/L)	rsenic (µg/L)	arium (µg/L)	eryllium (µg/L)	admium (µg/L)	hromium (µg/L)	obalt (µg/L)	opper (µg/L)	ad (µg/L)	ercury (µg/L)	ickel (µg/L)	elenium (µg/L)	ilver (µg/L)	(J/gr/) muiller	anadium (µg/L)	nc (µg/L)	alcium (mg/L)	yanide (mg/L)	on (mg/L)	agnesium (mg/L)	anganese (mg/L)	otassium (mg/L)	odium (mg/L)
Location	Sample ID	Sample Date	A	A	ä	ă	ö	ΰ	Ŭ	Ŭ	Ľ	ω	ž	ŭ	Si	F	»	zi	ö	Ú.	Ire	Μ	Σ	ď	Ň
Downgra	lient Wells Continued																								
MW-11	MW-11 Q3-10	09/29/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	98.4	NA	0.569	39.5	0.0101	8.73	40.5
MW-11	MW-11 Q4-10	12/15/2010	50 U	5 U	63.9	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	11	10 U	95.6	NA	0.027	38.1	0.005 U	8.59	40.2
MW-11	MW-11 Q1-2011	03/24/2011	50 U	5 U	71.9	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	13.6	10 U	95	NA	0.0353	37.9	0.005 U	8.05	39.6
MW-14	MW-14 Q3-99	09/22/1999	50 U	5 U	49	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	11	10 U	102	NA	8.83	36	0.213	7.2	12.4
MW-14	MW-14 Q4-99	12/09/1999	50 U	5 U	64	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14	10 U	127	NA	24.8	46.6	0.468	9.5	13
MW-14	MW-14 Q1-00	03/15/2000	50 U	10 U	40	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	16	10 U	62.9	NA	1.35	27.5	0.032	4.6	10.6
MW-14	MW-14 Q2-00	06/21/2000	50 U	5 U	32	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14	10 U	57.9	NA	0.108	25.4	0.008	5	9.96
MW-14	MW-14 Q3-00	09/27/2000	50 U	5 U	35	5 U	4 U	5 U	10 U	10 U	2 U	NA	35	5 U	10 U	5 U	14	10 U	59	NA	0.162	24.6	0.008	4.5	9.93
MW-14	MW-14 Q4-00	12/05/2000	50 U	5 U	31	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	17	10 U	59.7	NA	1.2	24.6	0.24	5.4	10.4
MW-14	MW-14 Q1-01	03/27/2001	50 U	5 U	31	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	22	10 U	51.8	NA	0.267	23.5	0.008	4.09	9.76
MW-14	MW-14 Q2-01	06/27/2001	50 U	15	26	5 U	4 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	20	10 U	51.5	NA	0.334	22.7	0.01	3.2	9.31
MW-14	MW-14 Q3-01	09/06/2001	50 U	5 U	32	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	15	10 U	62.1	NA	0.154	26.3	0.005	5.07	10
MW-14	MW-14 Q4-01	12/14/2001	50 U	5 U	37	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	15.6	10 U	70.2	NA	0.129	29.2	0.0057	5.52	11.2
MW-14	MW-14 Q1-02	03/27/2002	50 U	5 U	25.1	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	20	10 U	57.1	NA	0.082	25.7	0.005 U	4.41	9.98
MW-14	MW-14 Q2-02	06/13/2002	50 U	5 U	30.2	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	18	10 U	61.4	NA	0.122	27.1	0.005 U	5.74	10.6
MW-14	MW-14 Q3-02	09/18/2002	50 U	5 U	25.8	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	19	10 U	56.8	NA	0.035	23.8	0.005 U	4.95	9.86
MW-14	MW-14 Q4-02	12/17/2002	50 U	5 U	39.6	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	10.5	10 U	50.3	0.02	0.213	22.2	0.005 U	4.79	9.57
MW-14	MW-14 Q1-03	03/26/2003	50 U	5 U	33	5 U	5 U	5 U	10 U	10 U	2 U	NA	21	10 U	10 U	5 U	14	10 U	48.2	0.01 U	0.521	21.1	0.0132	4.49	8.69
MW-14	MW-14 Q2-03	06/26/2003	50 U	5 U	35.1	5 U	5 U	50	10 U	10 U	20	NA	20 U	10 U	10 U	5 U	18	10 U	69.6	0.01 U	0.45	26.7	0.011	4.98	10.8
MW-14	MW-14 Q3-03	09/25/2003	50 U	50	27	50	50	50	10 U	10 U	20	NA	20 U	10 U	10 U	50	18	10 U	54.1	0.01 U	0.097	22.4	0.005 U	4.49	9.21
MVV-14	MW-14 Q4-03	12/18/2003	50 U	80	37	50	50	50	10 U	10 U	20	NA	20 0	80	10 U	50	11	10 U	86.2	NA	1.72	31.5	0.041	5.94	12.4
IVIVV-14	MW-14 Q1-04	03/17/2004	50 0	50	32.8	50	50	50	10 0	10 0	20	NA	20 0	50	10 0	50	14	10 0	50.0	0.01 U	0.102	27.1	0.005 U	6.06	10.8
	MW-14 Q2-04	06/17/2004	50 0	50	29.2	50	50	50	10 0	10 0	20	NA	20.0	10 0	10 0	50	15	10 0	59.2	0.01 U	0.056	25.9	0.005 0	5.19	10.6
		12/15/2004	50 0	50	33.7	50	50	50	10 0	10 0	20	NA NA	20.0	5 11	10 U	50	10	10 0	04.1	0.01 U	0.479	24.3	0.0133	4.97	10.4
		02/21/2005	50 U	50	34.2	50	50	5.0	10 U	10 U	20	NA NA	20.0	5 U 10 U	10 U	50	10	10 U	03.0 79.1	0.01 0	7.21	24.0	0.005 0	5.35	11.0
		06/22/2005	50 U	50	25	50	50	50	10 U	10 0	20	NA	20 0	5 11	10 U	50	17	10 U	70.1		0.45	10	0.0932	1.09	0.02
M\N/_14	MW-14 Q2-05	09/29/2005	50 U	50	26.5	511	511	50	10 U	10 U	211	NA	44	511	10 U	50	17	10 U	51.6	ΝA	0.43	20.8	0.005.11	3.84	10.3
MW-14	MW-14 Q4-05	12/14/2005	50 U	511	20.0	511	511	511	10 U	10 U	211	NA	46	511	10 U	511	15	10 U	54	NA	0.081	20.0	0.005 U	4 53	9.67
MW-14	MW-14 Q1-06	03/30/2006	50 U	511	34.4	511	511	58	10 U	10 11	211	NA	62	511	10 U	511	10	10 U	60.8	NA	1 4	23.7	0.034	5 31	9.73
MW-14	MW-14 Q3-06	09/21/2006	50 U	5.0	30	5.0	5.0	5.0	10 U	10 U	20	NA	35	5.0	10 U	5.0	10	10 U	56.3	NA	0.18	21.7	0.005 U	4 7	10.2
MW-14	MW-14 Q4-06	12/28/2006	50 U	5.0	38.8	5.0	5.0	5.0	10 U	10 U	211	NA	36	5.0	10 U	5.0	12	10 U	47.3	NA	0.28	19.6	0.0085	4.6	8.56
MW-14	MW-14 Q1-07	03/22/2007	50 U	5 U	25.8	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	18	10 U	81.8	NA	0.818	31.2	0.0198	5.5	12.7
MW-14	MW-14 Q2-07	06/28/2007	50 U	5 U	27.7	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	16	10 U	55.5	NA	0.143	21.7	0.005 U	5.5	10.2
MW-14	MW-14 Q3-07	09/26/2007	50 U	5 U	21.6	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	18	10 U	49.1	NA	0.137	20.4	0.005 U	4.6	9.19
MW-14	MW-14 Q4-07	12/27/2007	50 U	5 U	30.7	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	13	10 U	56.5	NA	0.144	22.3	0.0057	5.35	10
MW-14	MW-14 Q1-08	03/27/2008	50 U	5 U	32.9	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10.5	10 U	5 U	11.5	10 U	85.8	NA	0.439	32.9	0.012	6.37	12.3
MW-14	MW-14 Q2-08	06/25/2008	50 U	5 U	28.4	5 U	5 U	6.1	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	12	10 U	53.6	NA	0.089	21.9	0.005 U	4.95	9.76
MW-14	MW-14 Q3-08	09/24/2008	50 U	5 U	29.7	5 U	5 U	5.6	10 U	10 U	10 U	NA	20 U	5 U	10 U	5 U	16	10 U	48.2	NA	0.104	19.9	0.005 U	4.46	9.04
MW-14	MW-14 Q4-08	12/17/2008	50 U	5 U	25	5 U	5 U	5.1	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	12	10 U	49	NA	0.096	20.4	0.005 U	4.46	9.1
MW-14	MW-14 Q1-09	03/20/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	52.7	NA	0.225	21.3	0.0068	4.75	9.71
MW-14	MW-14 Q2-09	06/24/2009	50 U	5 U	36.8	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14	10 U	68.4	NA	0.143	26.5	0.0057	5.21	11.5
MW-14	MW-14 Q3-09	09/24/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	63.9	NA	0.049	25.1	0.005 U	5.16	11.2

		Parameter	timony (µg/L)	senic (µg/L)	rium (µg/L)	ryllium (µg/L)	dmium (µg/L)	romium (µg/L)	balt (µg/L)	pper (µg/L)	ad (µg/L)	rcury (µg/L)	ckel (µg/L)	lenium (µg/L)	ver (µg/L)	allium (µg/L)	nadium (µg/L)	ic (hg/L)	lcium (mg/L)	anide (mg/L)	n (mg/L)	gnesium (mg/L)	nganese (mg/L)	tassium (mg/L)	dium (mg/L)
Location	Sample ID	Sample Date	An	Ars	Ba	Be	Ca	ರ	ပိ	ပိ	Le	Me	ĬŽ	Se	Sil	f	Va	zir	Ca	δ	lro	Ma	Ma	Ъ	So
Downgrad	lient Wells Continued												· · · ·												
MW-14	MW-14 Q4-09	12/18/2009	50 U	5 U	36.1	5 U	5 U	5	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14.1	10 U	65.9	NA	1.13	26.7	0.0324	5.4	11.2
MW-14	MW-14 Q1-10	03/30/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	79.5	NA	0.507	29.7	0.0133	5.82	12.2
MW-14	MW-14 Q2-10	06/23/2010	50 U	5 U	43.2	5 U	5 U	5.3	10 U	10 U	2 U	NA	20 U	2 U	10 U	5 U	14	10 U	73.7	NA	0.905	27.6	0.0219	5.7	11.2
MW-14	MW-14 Q3-10	09/29/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	71.9	NA	1.22	27.2	0.0294	5.68	11
MW-14	MW-14 Q4-10	12/15/2010	50 U	5 U	33.4	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	13	10 U	70.8	NA	1.86	26.4	0.0461	5.65	10.7
MW-14	MW-14 Q1-2011	03/24/2011	50 U	5 U	31.3	5 U	5 U	5.8	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	14.5	10 U	83.3	NA	1.59	31.6	0.0409	5.97	12.4
MW-15	MW-15 Q3-01	09/06/2001	50 U	5 U	245	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14	10 U	170	NA	0.034	56.2	0.025	9.92	102
MW-15	MW-15 Q4-01	12/14/2001	50 U	5 U	240	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	17.9	10 U	175	NA	0.0719	58.3	0.0101	10.1	95.1
MW-15	MW-15 Q1-02	03/27/2002	50 U	5 U	228	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	16	10 U	174	NA	0.061	59.3	0.0072	9.58	93.8
MW-15	MW-15 Q2-02	06/13/2002	58	5 U	320	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	18	10 U	177	NA	0.02 U	60.2	0.0104	11.4	118
MW-15	MW-15 Q3-02	09/18/2002	50 U	5 U	274	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	17	10 U	175	NA	0.047	59.4	0.0073	10.8	99.8
MW-15	MW-15 Q4-02	12/17/2002	50 U	5 U	242	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	13.2	10 U	162	0.01 U	0.163	56.9	0.0065	10.2	87
MW-15	MW-15 Q1-03	03/26/2003	50 U	5 U	263	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	14	10 U	165	0.01 U	0.16	55.7	0.0101	9.46	110
MW-15	MW-15 Q2-03	06/26/2003	50 U	5 U	226	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	16	10 U	176	0.01 U	0.048	56	0.0053	8.56	99.3
MW-15	MW-15 Q3-03	09/25/2003	50 U	5 U	229	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	13	10 U	167	0.01 U	0.026	54	0.005 U	8.7	91.6
MW-15	MW-15 Q4-03	12/18/2003	50 U	8 U	225	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	8 U	10 U	5 U	18	10 U	168	NA	0.064	51.5	0.005	8.95	92.1
MW-15	MW-15 Q1-04	03/17/2004	50 U	5 U	202	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14.8	10 U	158	NA	0.061	53.5	0.005 U	10.3	90.4
MW-15	MW-15 Q2-04	06/17/2004	50 U	5 U	201	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	15	10 U	152	NA	0.024	52.2	0.0051	9.46	94.4
MW-15	MW-15 Q3-04	09/30/2004	50 U	50	205	5 U	5 U	5 U	10 U	10 U	20	NA	20 U	10 U	10 U	50	14	10 U	154	NA	0.02 U	50.6	0.005 U	8.47	74.7
MW-15	MW-15 Q4-04	12/15/2004	50 U	50	202	50	50	50	10 U	10 U	20	NA	20 U	50	10 U	50	14	10 U	163	NA	0.02 U	55.7	0.005 U	10.1	/5
MW-15	MW-15 Q1-05	03/31/2005	50 U	50	251	50	50	50	10 U	10 U	20	NA	20 0	10 U	10 U	50	16	10 U	1/8	NA	0.02 U	57.1	0.0165	9.4	124
MW-15	MW-15 Q2-05	06/23/2005	50 U	50	221	50	50	50	10 U	10 U	40	NA	20 0	50	10 U	50	14	10 U	167	NA	0.02 U	55.2	0.0185	9.44	87.1
	MW 45 Q4 05	09/29/2005	50 0	50	213	50	50	50	10 0	10 0	20	NA NA	20.0	50	10 0	50	15	10 0	108	NA NA	0.02 U	57.2	0.0163	8.7	75.1
	WW 15 Q4-05	12/14/2005	50 0	50	190	50	50	50	10 0	10 0	20	NA NA	20.0	50	10 0	50	11	10 0	170	NA NA	0.02 0	50.1	0.0240	9.11	74.0
MW 15	MW 15 02 06	06/21/2006	50 U	50	194 212	50	50	50	10 U	10 U	20	NA NA	20.0	50	10 U	50	14	10 0	1/4	NA NA	0.02 0	53	0.036	9.49	75.6
MW-15	MW-15 Q2-00	00/21/2006	50 U	50	212	50	50	50	10 U	10 0	2.1	NA	20 0	50	10 U	50	14	10 0	167	NA	0.02 0	53.2	0.0430	9.34	82.2
MW-15	MW-15 Q3(36pt)-00	12/28/2006	50 U	50	221	511	5.11	50	10 U	10 U	211	NA	20 0	50	10 U	50	14	10 U	107	ΝA	0.02 U	52.5	0.0521	9.50	90.5
MW-15	MW-15 Q1-07	03/22/2007	50 U	5.0	200	5.0	5 U	5.0	10 U	10 U	20	NA	20 U	5 U	10 U	5.0	17	10 U	163	NA	0.02 U	52.0	0.0588	8.8	86.5
MW-15	MW-15 Q2-07	06/28/2007	50 U	50	211	5 U	5 U	5.0	10 U	10 U	211	NA	20 U	50	10 U	50	16	10 U	169	NA	0.02 U	55.4	0.0477	10.1	78
MW-15	MW-15 Q3-07	09/26/2007	50 U	5 U	188	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	13	10 U	169	NA	0.795	55.1	0.0655	9.4	81.1
MW-15	MW-15 Q4-07	12/27/2007	50 U	5 U	208	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14	10 U	163	NA	0.02 U	53.5	0.0505	8.98	66.8
MW-15	MW-15 Q1-08	03/27/2008	50 U	5 U	163	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	11.8	10 U	149	NA	0.02 U	51.3	0.0369	9.38	57
MW-15	MW-15 Q2-08	06/25/2008	50 U	5 U	178	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14	10 U	160	NA	0.024	52.8	0.0375	9.12	62.2
MW-15	MW-15 Q3-08	09/24/2008	50 U	5 U	193	5 U	5 U	5 U	10 U	10 U	10 U	NA	20 U	5 U	10 U	5 U	15	10 U	151	NA	0.02 U	51.3	0.04	9.02	61.7
MW-15	MW-15 Q4-08	12/17/2008	50 U	5 U	151	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	11	10 U	145	NA	0.02 U	49.4	0.0273	8.38	59
MW-15	MW-15 Q1-09	03/20/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	158	NA	0.02 U	53.2	0.0342	9.01	57.2
MW-15	MW-15 Q2-09	06/24/2009	50 U	5 U	198	5 U	5 U	5 U	10 U	19	2 U	NA	20 U	5 U	10 U	5 U	14	10 U	160	NA	0.02 U	53	0.0409	8.86	66.5
MW-15	MW-15 Q3-09	09/24/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	159	NA	0.02 U	52.5	0.0343	8.87	65.5
MW-15	MW-15 Q4-09	12/18/2009	50 U	5 U	194	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	14.2	10 U	161	NA	0.02 U	53.8	0.0331	8.86	62.1
MW-15	MW-15 Q1-10	03/30/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	159	NA	0.02 U	52.9	0.0327	8.78	58.2
MW-15	MW-15 Q2-10	06/23/2010	50 U	5 U	186	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	16	10 U	159	NA	0.02 U	50.3	0.036	8.76	52.6
MW-15	MW-15 Q3-10	09/29/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	161	NA	0.0214	53.9	0.0299	8.9	55.3

		Parameter	ntimony (µg/L)	rrsenic (µg/L)	iarium (µg/L)	ieryllium (µg/L)	admium (µg/L)	:hromium (µg/L)	obalt (µg/L)	topper (µg/L)	ead (µg/L)	fercury (µg/L)	lickel (µg/L)	ielenium (µg/L)	ilver (µg/L)	hallium (µg/L)	ʻanadium (µg/L)	inc (µg/L)	alcium (mg/L)	:yanide (mg/L)	on (mg/L)	lagnesium (mg/L)	langanese (mg/L)	otassium (mg/L)	iodium (mg/L)
Location	Sample ID	Sample Date	٩	٩	ш	ш	0	0	0	0	_	2	2	S	S	F	>	N	0	0	=	2	2	e.	0 U
Downgrad	lient Wells Continued																								
MW-15	MW-15 Q4-10	12/15/2010	50 U	5 U	166	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	15	10 U	154	NA	0.023	51.3	0.0297	8.57	55
MW-15	MW-15 Q1-2011	03/24/2011	50 U	5 U	198	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	10 U	10 U	5 U	15.4	10 U	163	NA	0.02 U	51.5	0.0472	8.56	63.8
MW-16	MW-16 Q3-05	09/01/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	213	NA	NA	NA	NA	17.2	21.8
MW-16	MW-16 Q2-06	06/21/2006	50 U	5 U	88.8	5 U	5 U	7.2	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	20	15	119	NA	0.313	51.9	0.0345	7.8	23.6
MW-16	MW-16 Q3(Sept)-06	09/21/2006	50 U	5 U	85.6	5 U	5 U	5 U	10 U	10 U	2 U	NA	20 U	5 U	10 U	5 U	19	10 U	119	NA	2.04	51.8	0.0275	7.97	23.5
Notes: Only sar U Aní	nples that were tested for	at least one metal	analyte ap	opear in th	nis Table.	See Table D	0.1 for a co	omplete an	alytical sche	edule by s	ample.					ſ					•				

ıy лу У eh

NA Not analyzed

Location	Sample ID	Parameter	1,1-Dichloroethane (µg/L)	1,2-Dichloroethane (µg/L)	1,2-Dichloropropane (µg/L)	Benzene (µg/L)	Chloroethane (µg/L)	Chloroform (µg/L)	Chloromethane (µg/L)	cis-1,2-Dichloroethene (µg/L)	p-Isopropyltoluene (p-Cymene) (µg/L)	Dichlorodifluoromethane (µg/L)	iso-Propylbenzene (µg/L)	Tetrachloroethene (µg/L)	Toluene (µg/L)	Trichloroethene (µg/L)	Trichlorofluoromethane (µg/L)	Vinyl chloride (µg/L)	Xylene (meta & para) (µg/L)	Xylene (ortho) (µg/L)	Хуlene (total) (µg/L)
	Sample ID	Sample Date							I		1		1								
Upgradier																					
MW-05	MW-5 Q1-93	03/30/1993	NA	NA	NA	0.5 U	1 U	NA	NA	NA	NA	NA	NA	5.3	0.5 U	0.5 U	0.5 U	0.2 U	NA	NA	0.5 U
MW-05	MW-5 Q2-93	04/13/1993	NA	NA	NA	0.5 U	1 U	NA	NA	NA	NA	NA	NA	7.1	0.5 U	2.6	0.5 U	0.2 U	NA	NA	0.5 U
MW-05	MW-5 Q2(Jun)-93	06/14/1993	NA	NA	NA	0.5 U	1 U	NA	NA	NA	NA	NA	NA	6.5	0.5 U	4	0.5 U	0.2 U	NA	NA	0.5 U
MW-05	MW-5 Q3-93	09/01/1993	NA	NA	NA	0.5 U	1 U	NA	NA	NA	NA	NA	NA	5.5	0.5 U	3.7	0.5 U	0.2 U	NA	NA	0.5 U
MW-05	MW-5 Q3-94	08/01/1994	0.5 U	NA	NA	0.5 U	0.5 U	1.3	NA	0.5 U	NA	NA	NA	5.6	0.5 U	3.4	0.6	0.5 U	NA	NA	0.5 U
MW-05	MW-5 Q3(Sept)-94	09/01/1994	0.5 U	NA	NA	0.5 U	0.5 U	1	NA	0.5 U	NA	NA	NA	4.2	0.5 U	2.6	0.5 U	0.5 U	NA	NA	0.5 U
MW-05	MW-5 Q4(Nov)-94	11/01/1994	0.5 U	NA	NA	0.5 U	0.5 U	0.9	NA	0.5 U	NA	NA	NA	4.2	0.5 U	0.5 U	0.6	0.5 U	NA	NA	0.5 U
MW-05	MW-5 Q4(Dec)-94	12/01/1994	0.5 U	NA	NA	0.5 U	0.5 U	0.9	NA	0.5 U	NA	NA	NA	3.83	0.5 U	2.39	0.5 U	0.5 U	NA	NA	0.5 U
MW-05	MW-5 Q1-95	01/01/1995	0.5 U	NA	NA	0.5 U	0.5 U	0.9	NA	0.5 U	NA	NA	NA	3.7	0.5 U	2.4	0.5 U	0.5 U	NA	NA	0.5 U
MW-05	MW-5 Q1(Feb)-95	02/01/1995	0.5 U	NA	NA	0.5 U	0.5 U	0.6	NA	0.5 U	NA	NA	NA	0.7	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-05	MW-5 Q4(Dec)-95	12/20/1995	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	2	1 U	1	1 U	1 U	NA	NA	1 U
MW-05	MW-5 Q2-96	05/01/1996	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	3	1 U	2	1 U	1 U	NA	NA	1 U
MW-05	MW-5 Q3-96	09/01/1996	1 U	NA	NA	1 U	1 U	1	NA	1 U	NA	NA	NA	3	1 U	2	1 U	1 U	NA	NA	1 U
MW-05	MW-5 Q4-96	10/01/1996	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	3	1 U	2	1 U	1 U	NA	NA	1 U
MW-05	MW-5 Q2-97	06/24/1997	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	3	1	2	1 U	1 U	NA	NA	1 U
MW-05	MW-5 Q3-97	09/11/1997	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	3	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-05	MW-5 Q4-97	11/25/1997	0.5 U	NA	NA	0.5 U	0.5 U	0.8	NA	0.5 U	NA	NA	NA	3	0.5 U	2.5	0.5 U	0.5 U	NA	NA	0.5 U
MW-05	MW-5 Q1-98	03/25/1998	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	3	1 U	2	1 U	1 U	NA	NA	1 U
MW-05	MW-5 Q3-98	09/21/1998	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	3	1 U	3	1 U	1 U	NA	NA	1 U
MW-05	MW-5 Q4-98	12/30/1998	0.5 U	NA	NA	0.5 U	0.5 U	0.7	NA	0.5 U	NA	NA	NA	2.3	0.5 U	2.7	0.5 U	0.5 U	NA	NA	0.5 U
MW-05	MW-5 Q1-99	03/03/1999	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	2	1 U	2	1 U	1 U	NA	NA	1 U
MW-05	MW-5 Q2-99	06/14/1999	0.5 U	NA	NA	0.5 U	0.5 U	0.8	NA	0.5 U	NA	NA	NA	2.5	0.5 U	2.8	0.5 U	0.5 U	NA	NA	0.5 U
MW-05	MW-5 Q1-00	03/15/2000	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	2	0.6 U	3	1 U	1 U	NA	NA	1 U
MW-05	MW-5 Q3-00	09/27/2000	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1.9	1 U	2.8	1 U	1 U	NA	NA	1 U
MW-05	MW-5 Q3-01	09/06/2001	0.5 U	NA	NA	0.5 U	0.5 U	0.87	NA	0.5 U	NA	NA	NA	1.8	0.5 U	3.4	0.5 U	0.5 U	NA	NA	0.5 U
MW-05	MW-5 Q4-01	12/14/2001	0.5 U	NA	NA	0.5 U	0.5 U	0.83	NA	0.5 U	NA	NA	NA	1.8	0.5 U	3.1	0.5 U	0.5 U	NA	NA	0.5 U
MW-05	MW-5 Q1-02	03/27/2002	0.5 U	NA	NA	0.5 U	0.5 U	0.84	NA	0.5 U	NA	NA	NA	1.7	0.5 U	3.2	0.5 U	0.5 U	NA	NA	0.5 U
MW-05	MW-5 Q2-04	06/17/2004	0.5 U	NA	NA	0.5 U	0.5 U	0.75	NA	0.5 U	NA	0.5 U	NA	1.3	0.5 U	2.8	0.5 U	0.5 U	NA	NA	NA
MW-07	MW-7 Q3-98	07/01/1998	NA	NA	NA	NA	NA	0.5 UJ	NA	NA	NA	NA	NA	1.26	NA	0.5 UJ	NA	NA	NA	NA	NA
MW-07	MW-7 Q1-01	01/31/2001	0.5 U	NA	NA	NA	0.5 U	0.6	NA	0.5 U	NA	NA	NA	0.5 U	NA	0.5 U	0.5 U	0.5 U	NA	NA	NA
MW-07	MW-7 Q3-10	07/15/2010	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-07	MW-7 Q4-10	11/03/2010	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-07	SLF-MW-07-GW-110510	11/05/2010	0.2 U	0.2 U	0.2 U	0.2 U	1 U	0.2 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	1 U	0.2 U	0.2 U	0.2 U	0.4 U	0.2 U	NA
MW-07	SLF-MW-07-GW-021011	02/10/2011	0.2 U	0.2 U	0.2 U	0.2 U	1 U	0.2 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	1 U	0.2 U	0.2 U	0.2 U	0.4 U	0.2 U	NA
MW-09	MW-9 Q1-93	03/30/1993	0.5 U	NA	NA	NA	1 U	0.5 U	NA	0.5 U	NA	NA	NA	3.6	NA	0.5 U	0.5 U	0.2 U	NA	NA	NA
MW-09	MW-9 Q2-93	04/13/1993	0.5 U	NA	NA	NA	1 U	1.5	NA	0.5 U	NA	NA	NA	4.1	NA	2.6	0.5 U	0.2 U	NA	NA	NA
MW-09	MW-9 Q2(Jun)-93	06/14/1993	0.5 U	NA	NA	NA	1 U	0.2 U	NA	0.5 U	NA	NA	NA	2.3	NA	1.7	0.5 U	0.2 U	NA	NA	NA
MW-09	MW-9 Q3-93	08/31/1993	0.5 U	NA	NA	NA	1 U	1.3	NA	0.5 U	NA	NA	NA	3.1	NA	2.3	0.5 U	0.2 U	NA	NA	NA
MW-09	MW-9 Q3(Sept)-93	09/01/1993	0.5 U	NA	NA	NA	1 U	1.3	NA	0.5 U	NA	NA	NA	3.1	NA	2.3	0.5 U	0.2 U	NA	NA	NA
MW-09	MW-9 Q1-98	02/01/1998	NA	NA	NA	NA	NA	1.05	NA	NA	NA	NA	NA	1.8	NA	2.5	NA	NA	NA	NA	NA

			Dichloroethane (µg/L)	Dichloroethane (µg/L)	Dichloropropane (µg/L)	zene (µg/L)	oroethane (µg/L)	oroform (µg/L)	oromethane (µg/L)	1,2-Dichloroethene (µg/L)	opropyltoluene Symene) (µg/L)	nlorodifluoromethane (µg/L)	Propylbenzene (µg/L)	achloroethene (µg/L)	(T/brl) əuər	hloroethene (µg/L)	hlorofluoromethane (µg/L)	/l chloride (µg/L)	ene (meta & para) (µg/L)	sne (ortho) (µg/L)	sne (total) (µg/L)
		Parameter			,2	3en	Chle	, N	, N	-is-	p-C	Dict	-so-	Tetr	lolt	Lric	Lric	/in/	¢yle	کل ا	کار ا
Location	Sample ID	Sample Date	,	,	,	-	•	Ũ	U U	, s		-		'		1		-	~	~	^
Upgradiei	nt Wells Continued	07/04/4000	NIA	NIA	NIA	NIA	NIA	0.5.111	NIA	NIA				4.0	NIA	0.0	NIA	NIA	NIA	NIA	N 1 A
MW-09	MW-9 Q2-98	07/01/1998	NA	NA	NA	NA	NA	0.5 UJ	NA	NA 0.5.LL	NA	NA	NA	1.6	NA	3.2	NA	NA	NA	NA	NA
MW-09	MW-9 Q1-02	01/31/2002	0.5 0				0.5 0	1.2		0.5 0	NA		NA	0.9		4	0.5 0	0.5 0	NA 0.5.11		NA
IVIVV-09	MW-9 Q3-10	07/15/2010	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.87	0.5 0	0.5 0		0.5 0		0.62	0.5 0	1.5	0.5 0	0.5 0	0.5 0	0.5 0	NA NA
IVIVV-09	SLF-MW-09-GW-110410	11/04/2010	0.2 0	0.2 0	0.2 0	0.2 0	10	0.63	10	0.2 0	0.2 0	0.2 0	0.2 0	0.53	10	1.1	0.2 0	0.2 0	0.4 0	0.2 0	
WW-09	MW-9 Q4-10	02/10/2010	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.77	0.5 0	0.5 0		0.5 0		0.54	0.5 0	1.4	0.5 0	0.5 0	0.5 0	0.5 0	NA NA
WW 10	SLF-WW-09-GW-021011	02/10/2011	0.2 0	0.2 0	0.2 0	0.2 0	I U NA	0.72		0.2 0	0.2 0	0.2 0	0.2 0	0.49	I U NA	1.Z	0.2 0	0.2 0	0.4 0	0.2 0	NA NA
MW 10	MW 10 03 08	02/01/1998			NA NA	NA NA	NA NA	2.04	NA NA	NA NA	NA NA	NA NA	NA NA	0.5 03	NA NA	0.5 00	NA NA			NA NA	NA NA
MW 10	MW 10 01 02	07/01/1990			NA NA			1.49			NA NA	NA NA	NA NA	0.5 05	NA NA	0.5 00				NA NA	NA NA
MW 10	MW 10 02 10	03/21/2002	0.5 0				0.5 0	1.7		0.5 0				0.5 0		0.5 0	0.5 0	0.5 0			
MW 10	MW 10 04 10	11/04/2010	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	1.7	0.5 0	0.5 0		0.5 0	NA NA	0.52	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	NA NA
MW 10	SIE MW 10 GW 110410	11/04/2010	0.3 0	0.3 0	0.3 0	0.3 0	0.5 0	1.2	0.5 0	0.3 0	0.2.11	0.3 0	0.2.11	0.3 0	0.5 0	0.3 0	0.3 0	0.3 0	0.3 0	0.3 0	NA NA
MW-10	SLF-MW-10-GW-110410	02/10/2011	0.2 0	0.2 0	0.2 0	0.2 0	1 11	1.1	111	0.2 0	0.2 0	0.2 0	0.2 0	0.39	111	0.2 0	0.2 0	0.2 0	0.4 0	0.2 0	NA
M\\/_12	MW-12 01-95	03/01/1005	0.2 0	0.2 U	0.2 U	0.2 0	0511	2.2	NA	0.2 0	0.2 U	0.2 0 NA	0.2 U	0.43	0511	0.2 0	0.2 0	0.2 0	0.4 O	0.2 O	0.5.11
M\\/_12	MW-12 Q1-95	03/01/1995	0.5 0		NA	0.5 0	0.5 0	0.7	NA	0.5 0	NA	NA	NA	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	NA	ΝA	0.5 U
MW-12	MW-12 Q3 55 MW-12 Q3(Sept)-95	09/20/1995	0.5 0	NA	NA	0.0 0	0.5 0	111	NA	1 1	NA	NA	NA	0.0 0	1 1	0.0 0	0.0 0	0.0 0	NA	NA	1 11
MW-12	MW-12 Q0(00pt) 00	10/30/1995	1	NA	NA	1	1	111	NA	111	NA	NA	NA	1	1	1	1	1	NA	NA	1 []
MW-12	MW-12 Q4(Dec)-95	12/20/1995	1 U	NA	NA	10	1 U	1 U	NA	1 U	NA	NA	NA	1 U	10	1 U	1 U	1 U	NA	NA	1 U
MW-12	MW-12 Q1-96	02/01/1996	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-12	MW-12 Q2-96	05/29/1996	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-12	MW-12 Q2(Jun)-96	06/01/1996	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-12	MW-12 Q3-96	09/01/1996	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-12	MW-12 Q4-96	10/01/1996	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-12	MW-12 Q1-97	03/24/1997	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-12	MW-12 Q2-97	06/24/1997	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-12	MW-12 Q4-97	11/25/1997	0.5 U	NA	NA	0.5 U	0.5 U	0.6	NA	0.5 U	NA	NA	NA	0.6	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-12	MW-12 Q1-98	03/25/1998	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-12	MW-12 Q3-98	09/21/1998	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-12	MW-12 Q4-98	12/30/1998	0.5 U	NA	NA	0.5 U	0.5 U	0.5	NA	0.5 U	NA	NA	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-12	MW-12 Q1-99	03/03/1999	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-12	MW-12 Q2-99	06/14/1999	0.5 U	NA	NA	0.5 U	0.5 U	0.5	NA	0.5 U	NA	NA	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-12	MW-12 Q3-99	09/22/1999	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-12	MW-12 Q4-99	12/09/1999	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-12	MW-12 Q1-00	03/15/2000	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-12	MW-12 Q2-00	06/21/2000	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-12	MW-12 Q3-00	09/27/2000	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-12	MW-12 Q4-00	12/05/2000	0.5 U	NA	NA	0.5 U	0.5 U	0.54	NA	0.5 U	NA	NA	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-12	MW-12 Q1-01	03/27/2001	0.5 U	NA	NA	0.5 U	0.5 U	0.56	NA	0.5 U	NA	NA	NA	0.51	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-12	MW-12 Q2-01	06/27/2001	0.5 U	NA	NA	0.5 U	0.5 U	0.54	NA	0.5 U	NA	NA	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-12	MW-12 Q3-01	09/06/2001	0.5 U	NA	NA	0.5 U	0.5 U	0.61	NA	0.5 U	NA	NA	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U

Leade Sample bio Sample bio </th <th></th> <th></th> <th></th> <th>loroethane (µg/L)</th> <th>loroethane (µg/L)</th> <th>loropropane (µg/L)</th> <th>(hg/L)</th> <th>thane (µg/L)</th> <th>orm (µg/L)</th> <th>hethane (µg/L)</th> <th>Dichloroethene (µg/L)</th> <th>pyltoluene :ne) (µg/L)</th> <th>difluoromethane (µg/L)</th> <th>ylbenzene (µg/L)</th> <th>oroethene (µg/L)</th> <th>(µg/L)</th> <th>oethene (µg/L)</th> <th>ofluoromethane (µg/L)</th> <th>loride (µg/L)</th> <th>meta & para) (µg/L)</th> <th>ortho) (µg/L)</th> <th>total) (µg/L)</th>				loroethane (µg/L)	loroethane (µg/L)	loropropane (µg/L)	(hg/L)	thane (µg/L)	orm (µg/L)	hethane (µg/L)	Dichloroethene (µg/L)	pyltoluene :ne) (µg/L)	difluoromethane (µg/L)	ylbenzene (µg/L)	oroethene (µg/L)	(µg/L)	oethene (µg/L)	ofluoromethane (µg/L)	loride (µg/L)	meta & para) (µg/L)	ortho) (µg/L)	total) (µg/L)
Lease Supple 10 S				Dich	Dich	Dich	cene	loe	rofe	Lon Lon	7,	v me	loro	dor dor	achl	ene	lor	lor	l ch	ne (ne (ne (
Lacettor Strange Date P P <			Parameter	,1-C	,2-C	,2-L	3enz	old	oliti	oli	is-1		Dich	So-F	etra	olu	rich	rich	/iny	(yle	(yle	(yle
Unput Unput Unput NM OM OM OM <	Location	Sample ID	Sample Date	-	-	-	ш	0	0	0	0	4 C		.=		F	F	F		<u>^</u>	^	^
Min 10	Upgradier	nt Wells Continued			1																	
Mini-12 Mini-12 Control Object Obje	MW-12	MW-12 Q4-01	12/14/2001	0.5 U	NA	NA	0.5 U	0.5 U	0.61	NA	0.5 U	NA	NA	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MM 10 MM 10 OUV MM 10 M	MW-12	MW-12 Q1-02	03/27/2002	0.5 U	NA	NA	0.5 U	0.5 U	0.63	NA	0.5 U	NA	NA	NA	0.5	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MM / 2 MM / 2<	MW-12	MW-12 Q2-02	06/13/2002	0.5 U	NA	NA	0.5 U	0.5 U	0.5	NA	0.5 U	NA	NA	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MM-12 MM-12 L1/12/002 D.S.U N.M. N.M. D.S.U N.M. D.S.U N.M. D.S.U D.S.U D.S.U N.M. D.S.U D.S.U D.S.U D.S.U N.M. D.S.U D.S.U D.S.U N.M. D.S.U D.S.U D.S.U N.M. D.S.U N.M. D.S.U D.S.U D.S.U N.M. D.S.U N.M. D.S.U D.S.U D.S.U N.M. D.S.U D.S.U D.S.U D.S.U N.M. D.S.U N.M. D.S.U D.S.U N.M. D.S.U N.M. D.S.U N.M. D.S.U N.M. D.S.U N.M. D.S.U N.M. <	MW-12	MW-12 Q3-02	09/18/2002	1 U	NA	NA	0.5 U	10	1 U	NA	10	NA	10	NA	10	0.5 U	1 U	1 U	1 U	NA	NA	0.5 U
NM-12 VM-12 VM-12 <th< td=""><td>MW-12</td><td>MW-12 Q4-02</td><td>12/17/2002</td><td>0.5 U</td><td>NA</td><td>NA</td><td>0.5 U</td><td>0.5 U</td><td>0.59</td><td>NA</td><td>0.5 U</td><td>NA</td><td>NA</td><td>NA</td><td>0.5 U</td><td>0.5 U</td><td>0.5 U</td><td>0.5 U</td><td>0.5 U</td><td>NA</td><td>NA</td><td>0.5 U</td></th<>	MW-12	MW-12 Q4-02	12/17/2002	0.5 U	NA	NA	0.5 U	0.5 U	0.59	NA	0.5 U	NA	NA	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
Mm-12 MM-12 <th< td=""><td>MW-12</td><td>MW-12 Q1-03</td><td>03/26/2003</td><td>0.5 U</td><td>NA</td><td>NA</td><td>0.5 U</td><td>0.5 U</td><td>0.5 U</td><td>NA</td><td>0.5 U</td><td>NA</td><td>0.5 U</td><td>NA</td><td>0.5 U</td><td>0.5 U</td><td>0.5 U</td><td>0.5 U</td><td>0.5 U</td><td>NA</td><td>NA</td><td>0.5 U</td></th<>	MW-12	MW-12 Q1-03	03/26/2003	0.5 U	NA	NA	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.5 U	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
NM-12 NM-12 <th< td=""><td>MW-12</td><td>MW-12 Q2-03</td><td>06/26/2003</td><td>0.5 U</td><td>NA</td><td>NA</td><td>0.5 U</td><td>0.5 U</td><td>0.53</td><td>NA</td><td>0.5 U</td><td>NA</td><td>0.5 U</td><td>NA</td><td>0.5 U</td><td>0.97</td><td>0.5 U</td><td>0.5 U</td><td>0.5 U</td><td>NA</td><td>NA</td><td>0.5 U</td></th<>	MW-12	MW-12 Q2-03	06/26/2003	0.5 U	NA	NA	0.5 U	0.5 U	0.53	NA	0.5 U	NA	0.5 U	NA	0.5 U	0.97	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
NM-12 NM-14 NM-14 NM-14 NM-14 NM-14 NM-14 NM-14 NM-12 NM-12 NM-12 NM-12 NM-14 NM-12 NM-14 NM-14 <th< td=""><td>MVV-12</td><td>MVV-12 Q3-03</td><td>09/25/2003</td><td>0.5 U</td><td>NA</td><td>NA</td><td>0.5 U</td><td>0.5 U</td><td>0.5 U</td><td>NA</td><td>0.5 0</td><td>NA</td><td>0.5 U</td><td>NA</td><td>0.5 0</td><td>0.5 U</td><td>0.5 U</td><td>0.5 U</td><td>0.5 U</td><td>NA</td><td>NA</td><td>0.5 U</td></th<>	MVV-12	MVV-12 Q3-03	09/25/2003	0.5 U	NA	NA	0.5 U	0.5 U	0.5 U	NA	0.5 0	NA	0.5 U	NA	0.5 0	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
NM-12 WM-12 WM-12 <th< td=""><td>MVV-12</td><td>MVV-12 Q4-03</td><td>12/18/2003</td><td>0.5 U</td><td>NA</td><td>NA</td><td>0.5 U</td><td>0.5 U</td><td>0.5</td><td>NA</td><td>0.5 U</td><td>NA</td><td>0.5 0</td><td>NA</td><td>0.58</td><td>0.5 U</td><td>0.5 U</td><td>0.5 U</td><td>0.5 U</td><td>NA</td><td>NA</td><td>0.5 U</td></th<>	MVV-12	MVV-12 Q4-03	12/18/2003	0.5 U	NA	NA	0.5 U	0.5 U	0.5	NA	0.5 U	NA	0.5 0	NA	0.58	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
NM-12 NM-12 <th< td=""><td>MVV-12</td><td>MW-12 Q1-04</td><td>03/17/2004</td><td>0.5 U</td><td>NA</td><td>NA</td><td>0.5 U</td><td>0.5 0</td><td>0.57</td><td>NA</td><td>0.5 0</td><td>NA</td><td>0.5 0</td><td>NA</td><td>0.5 0</td><td>0.5 U</td><td>0.5 U</td><td>0.5 U</td><td>0.5 U</td><td>NA</td><td>NA</td><td>0.5 U</td></th<>	MVV-12	MW-12 Q1-04	03/17/2004	0.5 U	NA	NA	0.5 U	0.5 0	0.57	NA	0.5 0	NA	0.5 0	NA	0.5 0	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
NM-12 NM-12 <th< td=""><td>IVIVV-12</td><td>MW-12 Q2-04</td><td>06/17/2004</td><td>0.5 0</td><td>NA</td><td>NA</td><td>0.5 0</td><td>0.5 0</td><td>0.56</td><td>NA</td><td>0.5 0</td><td>NA</td><td>0.5 0</td><td>NA</td><td>0.5</td><td>0.5 0</td><td>0.5 0</td><td>0.5 0</td><td>0.5 0</td><td>NA</td><td>NA</td><td>0.5 0</td></th<>	IVIVV-12	MW-12 Q2-04	06/17/2004	0.5 0	NA	NA	0.5 0	0.5 0	0.56	NA	0.5 0	NA	0.5 0	NA	0.5	0.5 0	0.5 0	0.5 0	0.5 0	NA	NA	0.5 0
NM-12 NM-12 <th< td=""><td>MVV-12</td><td>MVV-12 Q3-04</td><td>09/30/2004</td><td>0.5 U</td><td>NA</td><td>NA</td><td>0.5 U</td><td>0.5 U</td><td>0.56</td><td>NA</td><td>0.5 U</td><td>NA</td><td>0.5 U</td><td>NA</td><td>0.52</td><td>0.5 U</td><td>0.5 U</td><td>0.5 U</td><td>0.5 U</td><td>NA</td><td>NA</td><td>0.5 U</td></th<>	MVV-12	MVV-12 Q3-04	09/30/2004	0.5 U	NA	NA	0.5 U	0.5 U	0.56	NA	0.5 U	NA	0.5 U	NA	0.52	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MM-12 MM-12 <th< td=""><td>IVIVV-12</td><td>MW-12 Q4-04</td><td>12/15/2004</td><td>0.5 0</td><td>NA</td><td>NA</td><td>0.5 0</td><td>0.5 0</td><td>0.54</td><td>NA</td><td>0.5 0</td><td>NA</td><td>0.5 0</td><td>NA</td><td>0.55</td><td>0.5 0</td><td>0.5 0</td><td>0.5 0</td><td>0.5 0</td><td>NA</td><td>NA</td><td>0.5 0</td></th<>	IVIVV-12	MW-12 Q4-04	12/15/2004	0.5 0	NA	NA	0.5 0	0.5 0	0.54	NA	0.5 0	NA	0.5 0	NA	0.55	0.5 0	0.5 0	0.5 0	0.5 0	NA	NA	0.5 0
MM-12 MM-12/20-05 D63/20/05 0.5.0	MVV-12	MVV-12 Q1-05	03/31/2005	0.5 U	0.5 U	0.5 U	0.5 U	0.5 0	0.58	0.5 0	0.5 0	NA	0.5 0	NA	0.52	0.5 U	0.5 U	0.5 U	0.5 0	0.5 U	0.5 U	NA
NM-12 MM-12 Last Use Value Use V MV-12D <t< td=""><td>MVV-12</td><td>MW-12 Q2-05</td><td>06/23/2005</td><td>0.5 U</td><td>0.5 U</td><td>0.5 U</td><td>0.5 U</td><td>0.5 U</td><td>0.52</td><td>0.5 U</td><td>0.5 U</td><td>NA</td><td>0.5 U</td><td>NA</td><td>0.5 U</td><td>0.5 U</td><td>0.5 U</td><td>0.5 U</td><td>0.5 U</td><td>0.5 U</td><td>0.5 U</td><td>NA</td></t<>	MVV-12	MW-12 Q2-05	06/23/2005	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.52	0.5 U	0.5 U	NA	0.5 U	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
NMV-12 NMV-12<	IVIVV-12	MW-12 Q3-05	09/29/2005	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5	0.5 0	0.5 0	NA	0.5 0	NA	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	NA
NMV-12 NMV-12 Oxor 12025 Obs U NA OSU NA OSU NA OSU NA NA NA OSU NA OSU NA OSU NA OSU NA OSU NA OSU OSU OSU OSU OSU	MVV-12	MW-12 Q1-06	03/30/2006	0.5 U	NA	NA	0.5 U	0.5 U	0.51	NA	0.5 U	NA	0.5 0	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
Immonic Numic 2000 Obsol O.S.D NA NA NA O.S.D NA O.S.D NA O.S.D NA O.S.D NA O.S.D NA NA <td>IVIVV-12</td> <td>MW-12 Q2-06</td> <td>06/21/2006</td> <td>0.5 U</td> <td>NA</td> <td>NA</td> <td>0.5 0</td> <td>0.5 0</td> <td>0.5 U</td> <td></td> <td>0.5 0</td> <td>NA</td> <td>0.5 0</td> <td>NA</td> <td>0.5 0</td> <td>0.5 0</td> <td>0.5 0</td> <td>0.5 0</td> <td>0.5 0</td> <td>NA</td> <td></td> <td>0.5 0</td>	IVIVV-12	MW-12 Q2-06	06/21/2006	0.5 U	NA	NA	0.5 0	0.5 0	0.5 U		0.5 0	NA	0.5 0	NA	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	NA		0.5 0
NW-12 MW-12b 30/2 UB26/2007 NA N	IVIVV-12	MW-12 Q3-06	09/21/2006	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	NA	0.5 0	NA	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	
NW-12b US08 09/24/2008 0.5 U NA NA 0.5 U 0.5 U <th0.5 th="" u<=""> 0.5 U 0.5 U</th0.5>	IVIVV-12	MW-12 Q3-07	09/26/2007	NA 0.5.11	NA	NA	0.5 0	NA 0.5.11	NA 0.75	NA	NA 0.5.11	NA		NA	NA	0.5 0	NA	NA	NA 0.5.11	NA	NA	0.5 0
NWV-12b NWV-12b OLSU NA NA OLSU OLSU OLSU OLSU NA OLSU NA OLSU NA OLSU NA NA OLSU OLSU NA NA OLSU NA NA OLSU NA OLSU NA NA OLSU NA OLSU OLSU NA NA OLSU NA NA OLSU NA OLSU NA NA OLSU NA NA OLS	IVIVV-12D	MW-12D Q3-08	09/24/2008	0.5 0	NA	NA	0.5 0	0.5 0	0.75	NA	0.5 0	NA	0.5 0	NA	0.9	0.5 0	0.5 0	0.5 0	0.5 0	NA	NA	0.5 0
NW-12b NW-12b O.3 U NA NA O.3 U NA NA O.5 U NA O.5 U NA NA O.	IVIVV-12D	MW-12D Q4-08	12/17/2008	0.5 U	NA	NA	0.5 0	0.5 0	0.78	NA	0.5 0	NA	0.5 0	NA	0.72	0.5 0	0.5 U	0.5 U	0.5 0	NA	NA	0.5 0
NW-12b NW-12b 2030 0.30		MW 12b Q1-09	03/20/2009	0.5 0	NA NA	NA NA	0.5 0	0.5 0	0.73	NA NA	0.5 0	NA NA	0.5 0	NA NA	0.81	0.5 0	0.5 0	0.5 0	0.5 U	NA	NA NA	0.5 0
NW-12b OW-12b Q3-09 OBS242009 O.S.U NA O.S.U O.S.U NA O.S.U O.S.U O.S.U O.S.U NA O.S.U O.S.U O.S.U O.S.U O.S.U O.S.U NA O.S.U NA O.S.U O.S.U NA NA O.S.U NW-12b MW-12b Q2-10 O6/23/2010 O.S.U NA NA O.S.U O.S.U O.S.U NA NA NA O.S.U O.S.U NA NA NA O.S.U NA NA NA O.S.U NA NA O.S.U NA NA NA O.S.U NA NA O.S.U NA NA O.S.U NA NA O.S.U NA O.S.U NA NA O.S.U NA O.S.U O.S.U O.S.U NA NA NA NA O.S.U NA	NIVI 120	MW 12b Q2-09	06/24/2009	0.5 0	NA NA	NA	0.5 0	0.5 U	0.89	NA NA	0.5 0	NA NA	0.5 0	NA NA	0.73	0.5 0	0.5 0	0.5 0	0.5 U	NA NA	NA NA	0.5 0
NWV-12b NWV-12b NWV-12b NWV-12b NWV-12b NVV-12b NVV-10 NVV-12b NVV-10 NVV-12b NVV-11 NVV-10 NVV-11 NVV-10 NVV-10 NVV-10 NVV-10 NVV-10<		WW 12b Q3-09	09/24/2009	0.5 0	NA NA	NA NA	0.5 0	0.5 0	0.9	NA NA	0.5 0	NA NA	0.5 0	NA NA	0.09	0.5 0	0.5 0	0.5 0	0.5 0	NA NA	NA NA	0.5 0
Immonifying for the formation of t		MM/ 126 02 10	12/10/2009	0.5 0			0.5 U	0.5 0	0.00		0.5 0		0.5 0		0.07	0.5 0	0.5 0	0.5 0	0.5 U			0.5 0
MW-12b MW-12b GS 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.7 0 0.5 0 <t< td=""><td>MW 120</td><td>MW 12b 02 10</td><td>00/20/2010</td><td>0.5 0</td><td></td><td></td><td>0.5 0</td><td>0.5 0</td><td>0.00</td><td></td><td>0.5 0</td><td></td><td>0.5 0</td><td>NA NA</td><td>0.01</td><td>0.5 0</td><td>0.5 0</td><td>0.5 U</td><td>0.5 U</td><td></td><td></td><td>0.5 0</td></t<>	MW 120	MW 12b 02 10	00/20/2010	0.5 0			0.5 0	0.5 0	0.00		0.5 0		0.5 0	NA NA	0.01	0.5 0	0.5 0	0.5 U	0.5 U			0.5 0
MW-12b MM 12b MA	MW 12b	MW 12b Q3-10	12/15/2010	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.93	0.5 0	0.5 0		0.5 0		0.65	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	
Image: Normal binder	MW 12b	MW 12b Q4-10	02/24/2011	0.5 0			0.5 0	0.5 0	0.00		0.5 0	NA NA	0.5 0	NA NA	0.00	0.5 0	0.5 0	0.5 0	0.5 0			0.5 0
Debuggradient webs Net of the second se	Downgroe		03/24/2011	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.03	0.5 0	0.5 0	INA	0.5 0	INA	0.02	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	INA
IMM-01 IMM-02/94 Odd/1/1994 O.3 U IMA IMA O.3 U IMA IMA O.3 U <			08/01/100/	0511	NΛ	NΙΔ	0511	0.5.11	11	ΝΔ	0.5.11	ΝΔ	ΝΑ	ΝΔ	0.0	0511	0511	0511	0.5.11	NΙΔ	NΛ	0511
IMW-01 IMW-124(Sept)-94 0.5 0 IMA IMA 0.5 0 IMA IMA 0.5 0	MW/_01	MW-1 Q3-94	00/01/1994	0.5 0	NA	NA	0.5 0	0.5 0	1.1	NA	0.5 0	NA		NA	0.9	0.5 0	0.5 0	0.5 0	0.5 0	ΝA	NA	0.5 0
INVOL INVOLUTION	M\\/_01	MW-1 O4(Nov)-94	11/01/100/	0.50	ΝA	ΝA	0.50	0.50	0.0	NA	0.50	NA		ΝΔ	0.9	0.50	0.50	0.50	0.50	ΝA	ΝA	0.5 0
MW -1 MW -1 Q1-95 O1/01/1995 O.5 U NA NA O.5 U NA NA O.5 U O.5 U O.5 U NA NA O.5 U O.5 U O.5 U NA NA O.5 U NA NA O.5 U O.5 U O.5 U NA NA O.5 U NA NA O.5 U O.5 U O.5 U NA NA O.5 U NA O.5 U O.5 U O.5 U NA NA O.5 U O.5 U O.5 U NA O.5 U NA O.5 U NA O.5 U	MW-01	MW-1 Q4(Dec)-94	12/01/1994	0.5 0	NΔ	NΔ	0.5 0	0.50	0.9	ΝΔ	0.50	ΝΔ	ΝA	ΝΔ	0.0	0.5 0	0.5 0	0.5 0	0.5 0	NΔ	NΔ	0.5 0
Image: Normal of the second	MW/-01	MW-1 01-95	01/01/1005	0.5 0	NA	NΔ	0.5 0	0.50	0.01	NA	0.50	NA	NΔ	NΔ	0.70	0.5 0	0.5 0	0.5 0	0.5 0	NΔ	NΔ	0.5 U
MW-01 MW-1 Q3-95 07/01/1995 0.5 U NA NA 0.5 U 1.1 NA 0.5 U NA NA 0.5 U 0.6 U<	MW-01	MW-1 Q1(Feb)-95	02/01/1995	0.5 U	NA	NA	0.5 U	0.5 U	0.9	NA	0.5 U	NA	NA	NA	0.7	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-01 MW-1 Q4:95 12/18/1995 1 NA NA 1 1 1 1 1 1 1 1 1 1	MW-01	MW-1 Q3-95	07/01/1995	0.5 U	NA	NA	0.5 U	0.5 U	1.1	NA	0.5 U	NA	NA	NA	0.8	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-01 MW-1Q4-95 12/18/1995 1U NA NA 1U 1U 1U NA 1U NA NA 1U	MW-01	MW-1 Q1(Sep)-95	09/20/1995	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
	MW-01	MW-1 Q4-95	12/18/1995	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U

		Berry da	·Dichloroethane (µg/L)	Dichloroethane (µg/L)	Dichloropropane (µg/L)	izene (µg/L)	oroethane (µg/L)	oroform (µg/L)	oromethane (µg/L)	-1,2-Dichloroethene (µg/L)	copropyltoluene Cymene) (µg/L)	hlorodifluoromethane (µg/L)	-Propylbenzene (µg/L)	rachloroethene (µg/L)	uene (µg/L)	:hloroethene (µg/L)	:hlorofluoromethane (µg/L)	yl chloride (µg/L)	ene (meta & para) (µg/L)	ene (ortho) (µg/L)	ene (total) (µg/L)
Leastien	Comple ID	Parameter	-, ,	1,2	1,2	Ber	Chl	Chl	망	cis-	sl-q 0-d	Dic	iso	Tet	Tol	Trio	Tric	Vin	Xyl	Xyl	Xyl
Downgroe	Sample ID	Sample Date																			
MW-01	MW-1 01-96	02/01/1996	1	NΔ	NΔ	1	1	1	NΔ	1	NΔ	ΝΔ	ΝΔ	111	1	1	1	1	NΔ	NΔ	1
MW-01	MW-1 Q1-90	05/01/1990	1 11	NΔ	ΝA	1 11	1	1 11	NA	1 11	NA		NA	111	1 11	1	1 11	1 11	NA	ΝA	1 11
MW-01	MW-1 Q2-90 MW-1 Q3-96	09/01/1996	1 []	NA	NA	1 []	1 []	1 11	NA	1 11	NA	NA	NA	1 1	1 []	1 []	1 []	1 []	NA	NA	1 []
MW-01	MW-1 Q4-96	10/01/1996	1	NA	NA	1 []	1	1	NA	1	NA	NA	NA	1 1	1	1	1	1 []	NA	NA	1 []
MW-01	MW-1 Q2-97	06/24/1997	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-01	MW-1 Q3-97	09/11/1997	1 U	NA	NA	1 U	1 U	1	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-01	MW-1 Q4-97	11/25/1997	0.5 U	NA	NA	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	NA	NA	0.8	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-01	MW-1 Q1-98	03/25/1998	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-01	MW-1 Q2-98	06/29/1998	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-01	MW-1 Q3-98	09/21/1998	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-01	MW-1 Q1-99	03/03/1999	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-01	MW-1 Q2-99	06/14/1999	0.5 U	NA	NA	0.5 U	0.5 U	0.9	NA	0.5 U	NA	NA	NA	0.8	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-01	MW-1 Q3-99	09/22/1999	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-01	MW-1 Q4-99	12/09/1999	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-01	MW-1 Q1-00	03/15/2000	1 U	NA	NA	1 U	1 U	0.9 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-01	MW-1 Q2-00	06/21/2000	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-01	MW-1 Q3-00	09/27/2000	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-01	MW-1 Q4-00	12/05/2000	0.5 U	NA	NA	0.5 U	0.5 U	0.76	NA	0.5 U	NA	NA	NA	0.64	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-01	MW-1 Q1-01	03/27/2001	0.5 U	NA	NA	0.5 U	0.5 U	0.77	NA	0.5 U	NA	NA	NA	0.66	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-01	MW-1 Q2-01	06/27/2001	0.5 U	NA	NA	0.5 U	0.5 U	0.78	NA	0.5 U	NA	NA	NA	0.66	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
Well #2	MW-13 Q4-02	12/17/2002	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.79	0.5 U	0.5 U	NA	NA	NA	0.67	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-03	MW-3 Q3-94	08/01/1994	NA	NA	NA	0.6	0.5 U	0.6	NA	0.5 U	NA	NA	NA	0.6	2.2	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-03	MW-3 Q3(Sept)-94	09/01/1994	NA	NA	NA	0.5 U	0.5 U	0.7	NA	0.5 U	NA	NA	NA	0.7	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-03	MW-3 Q4(Nov)-94	11/01/1994	NA	NA	NA	0.5 U	0.5 U	0.6	NA	0.5 U	NA	NA	NA	0.7	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-03	MW-3 Q4(Dec)-94	12/01/1994	NA	NA	NA	0.5 U	0.5 U	0.6	NA	0.5 U	NA	NA	NA	0.7	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-03	MW-3 Q1-95	01/01/1995	NA	NA	NA	0.5 U	0.5 U	0.6	NA	0.5 U	NA	NA	NA	0.7	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-03	MW-3 Q1(Feb)-95	02/01/1995	NA	NA	NA	0.5 U	0.5 U	0.6	NA	0.5 U	NA	NA	NA	0.7	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-03	MW-3 Q3-95	07/01/1995	NA	NA	NA	0.5 U	0.5 U	0.6	NA	0.5 U	NA	NA	NA	0.7	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-03	MW-3 Q3(Sept)-95	09/20/1995	NA	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-03	MW-3 Q4-95	12/18/1995	NA	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-03	MW-3 Q1-96 Dup	02/01/1996	NA	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-03	MW-3 Q1-96	02/01/1996	NA	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-03	MW-3 Q2-96	05/01/1996	NA	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-03	MW-3 Q3-96	09/01/1996	NA	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-03	MW-3 Q4-96	10/01/1996	NA	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-03	MW-3 Q2-97	06/24/1997	NA	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-03	MW-3 Q3-97	09/11/1997	NA	NA	NA	1 U	1 U	1	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-03	MW-3 Q1-98	03/25/1998	NA	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-03	MW-3 Q2-98	06/29/1998	NA	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-03	MW-3 Q3-98	09/21/1998	NA	NA	NA	1 U	1 U	1 U	NA	10	NA	NA	NA	10	1 U	1 U	1 U	1 U	NA	NA	1 U

												VL)					(T				
			roethane (µg/L)	roethane (µg/L)	ropropane (µg/L)	(µg/L)	ane (µg/L)	(hg/L)	thane (µg/L)	chloroethene (µg/L)	yltoluene e) (µg/L)	ifluoromethane (µg	lbenzene (µg/L)	roethene (µg/L)	(T/Br	sthene (µg/L)	luoromethane (µg/l	ride (µg/L)	eta & para) (μg/L)	tho) (µg/L)	ıtal) (µg/L)
			ichlo	ichlo	ichlo	ene (roeth	rofor	ome	2-Dic	prop	orod	ropy	chloi	l) aua	loroe	lorof	chlo	m) ər	ie (or	ne (to
	-	Parameter	,1-D	,2-D	,2-D	enz	chloi	iold	iold	is-1	-Iso -Cy	lichl	- 0%	etra	olue	rich	rich	inyl	yler	yler	yler
Location	Sample ID	Sample Date	-	-	-	ш	0	0	0	Ö	d 9			F	F	F	F	>	×	×	×
Downgrad	lient Wells Continued																				
MW-03	MW-3 Q4-98	12/30/1998	NA	NA	NA	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	NA	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-03	MW-3 Q1-99	03/03/1999	NA	NA	NA	10	10	10	NA	10	NA	NA	NA	10	10	10	10	10	NA	NA	10
MW-03	MW-3 Q2-99	06/14/1999	NA	NA	NA	0.5 U	0.5 U	0.6	NA	0.5 U	NA	NA	NA	0.7	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MVV-03	MW-3 Q3-99	09/22/1999	NA	NA	NA	10	10	10	NA	10	NA	NA	NA	10	10	10	10	10	NA	NA	10
MW-03	MW-3 Q4-99	12/09/1999	NA	NA	NA	10	10	10	NA	10	NA	NA	NA	10	10	10	10	10	NA	NA	10
IVIVV-03	MW-3 Q1-00	03/15/2000	NA NA		NA NA	10	10	10	NA NA	10	NA NA	NA NA	NA NA	10	10	10	10	10	NA NA	NA NA	10
N/W/ 02	MW 3 02 00	06/21/2000	NA NA		NA NA	1 1	1 1	111	NA NA	111	NA NA	NA NA	NA NA	111	1 1	1 1	1 1	1 1	NA NA	NA NA	1 1
MW-03	MW-3 Q3-00	12/05/2000	NA		NA	0511	0511	0.56		0511	NA	NA		0.63	0511	0511	0.5.11	0511	NA	NA	0511
MW-03	MW-3 Q4-00	03/27/2001	NA		NA	0.5 0	0.5 U	0.50	NA	0.5 0		NA	NA	0.05	0.5 0	0.5 0	0.5 U	0.5 0	NA	NA	0.5 0
MW-03	MW-3 Q1-01	06/27/2001	ΝA		ΝΔ	0.5 0	0.5 0	0.51	NA	0.5 U	ΝA	ΝA	ΝA	0.73	0.5 U	0.5 0	0.5 U	0.5 U	ΝΔ	ΝA	0.5 U
MW-11	MW-11 01-95	03/01/1995	0.5.11	NA	NA	0.5 U	0.00	1	NA	0.5 U	NA	NA	NA	0.72	0.5 U	0.5 U	0.8	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q1-95 Dup	03/01/1995	0.5 U	NA	NA	0.5 U	0.5 U	0.9	NA	0.5 U	NA	NA	NA	0.7	0.5 U	0.5 U	0.0	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q3-95	07/01/1995	0.5 U	NA	NA	0.5 U	0.5 U	1	NA	0.5 U	NA	NA	NA	0.8	0.5 U	0.5 U	1	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q3-95 Dup	07/01/1995	0.5 U	NA	NA	0.5 U	0.5 U	1	NA	0.5 U	NA	NA	NA	0.8	0.5 U	0.5 U	1	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q3(Sept)-95	09/20/1995	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-11	MW-11 Q3(Sept)-95 Dup	09/20/1995	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-11	MW-11 Q4-95	10/30/1995	1 U	NA	NA	1 U	1 U	1	NA	1 U	NA	NA	NA	1	1 U	1 U	1	1 U	NA	NA	1 U
MW-11	MW-11 Q4-95 Dup	10/30/1995	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-11	MW-11 Q4(Dec)-95	12/18/1995	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-11	MW-11 Q1-96	02/01/1996	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-11	MW-11 Q2-96	05/01/1996	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-11	MW-11 Q2(Jun)-96	06/01/1996	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-11	MW-11 Q3-96	09/01/1996	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-11	MW-11 Q4-96	10/01/1996	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-11	MW-11 Q1-97	03/24/1997	1 U	NA	NA	1 U	1 U	1	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-11	MW-11 Q2-97	06/24/1997	1 U	NA	NA	1 U	1 U	1	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-11	MW-11 Q4-97	11/25/1997	0.5 U	NA	NA	0.5 U	0.5 U	1.1	NA	0.5 U	NA	NA	NA	0.9	0.5 U	0.5 U	1	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q1-98	03/25/1998	1 U	NA	NA	1 U	1 U	1	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-11	MW-11 Q2-98	06/29/1998	1 U	NA	NA	1 U	1 U	1	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-11	MW-11 Q3-98	09/21/1998	1 U	NA	NA	1 U	1 U	1	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	1 U	NA	NA	1 U
MW-11	MW-11 Q4-98	12/30/1998	0.5 U	NA	NA	0.5 U	0.5 U	1.2	NA	0.5 U	NA	NA	NA	0.7	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q1-99	03/03/1999	1 U	NA	NA	1 U	1 U	1 U	NA	1 U	NA	NA	NA	1 U	1 U	1 U	1 U	10	NA	NA	1 U
MW-11	MW-11 Q2-99	06/14/1999	0.5 U	NA	NA	0.5 U	0.5 U	0.8	NA	0.5 U	NA	NA	NA	2.3	0.5 U	2.8	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q3-99	09/22/1999	1 U	NA	NA	10	1 U	1 U	NA	10	NA	NA	NA	10	10	1 U	1 U	10	NA	NA	1 U
IVIVV-11	WWV-11 Q4-99	12/09/1999	1 U	NA	NA	10	1 U	10	NA	10	NA	NÁ	NÁ	10	10	10	10	10	NA	NA	10
	WWV-11 Q1-00	03/15/2000	1 U	NA	NA	10	10	1	NA	10	NA	NA	NA	10	10	10	10	10	NA	NA	10
	NIN 11 02 00	00/21/2000	1 U 4 U		NA NA	10	10	10		10	NA NA			10	10	10	10	10	INA NA	NA NA	10
	NIV 11 Q3-00	12/05/2000	10	NA NA	NA NA		10	1.1	NA NA	10	NA NA	NA NA	NA NA	10	10	10	10	10	NA NA	NA	10
1/1-//1/1	10100-11 Q4-00	12/03/2000	0.5 U	INA	INA	0.5 0	0.5 U	0.90	INA	0.5 0	INA	INA	INA	0.04	0.5 0	0.5 U	0.5 U	0.5 0	INA	INA	0.5 0

			oroethane (µg/L)	oroethane (µg/L)	oropropane (µg/L)	(hg/L)	hane (µg/L)	rm (µg/L)	ethane (µg/L)	ichloroethene (µg/L)	ууltoluene ne) (µg/L)	difluoromethane (µg/L)	/lbenzene (µg/L)	sroethene (µg/L)	(hg/L)	ethene (µg/L)	fluoromethane (µg/L)	oride (µg/L)	neta & para) (µg/L)	rtho) (µg/L)	otal) (µg/L)
			ichle	ichle	ichle	ene	oeth	ofor	- mo	2-Di	prop	oroc	ropy	chlo	ene (loro	loro	chlo	ne (n	o) əı	le (to
		Parameter	1-D	2-D	2-D	enz	hlor	hlor	hlor	s-1,	-Cy -	ichl	<u> </u>	etra	olue	rich	rich	inyl	ylen	ylen	ylen
Location	Sample ID	Sample Date	-	-	۲	B	o	o	Ö	ö	d 3		. <u></u>	F	F F	F	F	>	×	×	×
Downgrad	lient Wells Continued																				
MW-11	MW-11 Q1-01	03/27/2001	0.5 U	NA	NA	0.5 U	0.5 U	0.98	NA	0.5 U	NA	NA	NA	0.68	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q2-01	06/27/2001	0.5 U	NA	NA	0.5 U	0.5 U	0.99	NA	0.5 U	NA	NA	NA	0.69	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q3-01	09/06/2001	0.5 U	NA	NA	0.5 U	0.5 U	1.1	NA	0.5 U	NA	NA	NA	0.75	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q4-01	12/14/2001	0.5 U	NA	NA	0.5 U	0.5 U	1.1	NA	0.5 U	NA	NA	NA	0.73	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q1-02	03/27/2002	0.5 U	NA	NA	0.5 U	0.5 U	1.2	NA	0.5 U	NA	NA	NA	0.78	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MVV-11	MW-11 Q2-02	06/13/2002	0.5 U	NA	NA	0.5 U	0.5 U	0.97	NA	0.5 U	NA	NA	NA	0.67	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
	MW-11 Q3-02	09/18/2002	10	NA	NA	0.5 U	10	1.1	NA	10	NA	10	NA	10	0.5 0	10	10	10	NA	NA	0.5 0
	MW 11 01 02	12/17/2002	0.5 U	NA NA	NA NA	0.5 0	0.5 U	1.2		0.5 0	NA NA	0.5.11		0.62	0.5 0	0.5 U	0.5 U	0.5 0	NA NA	NA NA	0.5 0
	MW 11 02 02	03/20/2003	0.5 0	NA NA	NA NA	0.5 0	0.5 0	0.94		0.5 0		0.5 0		0.03	0.5 0	0.5 0	0.5 0	0.5 0	NA NA		0.5 U
	MW/ 11 02 03	00/20/2003	0.5 U	NA NA	NA NA	0.5 U	0.5 U	1.1	NA NA	0.5 0	NA NA	0.64	NA NA	0.02	0.5.11	0.5 0	0.5 U	0.5 0	NA NA	NA NA	0.5 U
$M_{\rm M}/_11$	MW-11 QJ-03	12/18/2003	0.5 0	NA	NA	0.5 0	0.5 0	1	NA	0.5 0	NA	0.30	NA	0.71	0.5 0	0.5 0	0.5 0	0.5 0	ΝA	NA	0.5 U
M\\/_11	MW-11 Q4-05	03/17/2004	0.5 0	NΔ	NΔ	0.5 0	0.5 0	11	NA	0.5 0	ΝA	0.75	NA	0.07	0.5 0	0.5 U	0.5 U	0.5 0	NΔ	NΔ	0.5 U
MW-11	MW-11 02-04	06/17/2004	0.00	NA	NA	0.00	0.5 U	1.1	NA	0.5 U	NA	0.0	NA	0.75	0.00	0.5 U	0.5 U	0.00	NA	NA	0.00
MW-11	MW-11 Q3-04	09/30/2004	0.5 U	NA	NA	0.5 U	0.5 U	12	NA	0.5 U	NA	0.71	NA	0.84	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q4-04	12/15/2004	0.5 U	NA	NA	0.5 U	0.5 U	1.1	NA	0.5 U	NA	0.63	NA	0.85	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q1-05	03/31/2005	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.3	0.5 U	0.5 U	NA	0.8	NA	0.84	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-11	MW-11 Q2-05	06/23/2005	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.1	0.5 U	0.5 U	NA	0.77	NA	0.81	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-11	MW-11 Q3-05	09/29/2005	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.2	0.5 U	0.5 U	NA	0.5 U	NA	0.88	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-11	MW-11 Q4-05	12/14/2005	0.5 U	NA	NA	0.5 U	0.5 U	1.2	NA	0.5 U	NA	0.76	NA	0.93	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q1-06	03/30/2006	0.5 U	NA	NA	0.5 U	0.5 U	1.2	NA	0.5 U	NA	0.94	NA	0.91	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q2-06	06/21/2006	0.5 U	NA	NA	0.5 U	0.5 U	1.2	NA	0.5 U	NA	0.8	NA	1.1	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q3-06	09/21/2006	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.2	0.5 U	0.5 U	NA	0.84	NA	0.87	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-11	MW-11 Q4-06	12/28/2006	0.5 U	NA	NA	0.5 U	0.5 U	1.2	NA	0.5 U	NA	0.93	NA	0.81	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q1-07	03/22/2007	0.5 U	NA	NA	0.5 U	0.5 U	1.2	NA	0.5 U	NA	0.72	NA	0.78	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q2-07	06/28/2007	0.5 U	NA	NA	0.5 U	0.5 U	1.2	NA	0.5 U	NA	0.69	NA	0.93	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q3-07	09/26/2007	0.5 U	NA	NA	0.5 U	0.5 U	1.1	NA	0.5 U	NA	0.69	NA	0.9	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q4-07	12/27/2007	0.5 U	NA	NA	0.5 U	0.5 U	1.2	NA	0.5 U	NA	0.63	NA	0.93	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q1-08	03/27/2008	0.5 U	NA	NA	0.5 U	0.5 U	1.3	NA	0.5 U	NA	0.92	NA	1.1	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q2-08	06/25/2008	0.5 U	NA	NA	0.5 U	0.5 U	1.1	NA	0.5 U	NA	0.8	NA	1.1	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q3-08	09/24/2008	0.5 U	NA	NA	0.5 U	0.5 U	1.1	NA	0.5 U	NA	0.76	NA	1	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q4-08	12/17/2008	0.5 U	NA	NA	0.5 U	0.5 U	1.2	NA	0.5 U	NA	0.83	NA	0.99	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q1-09	03/20/2009	0.5 U	NA	NA	0.5 U	0.5 U	1.2	NA	0.5 U	NA	0.52	NA	1.1	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q2-09	06/24/2009	0.5 U	NA	NA	0.5 U	0.5 U	1.3	NA	0.5 U	NA	0.5 U	NA	0.98	0.69	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q3-09	09/24/2009	0.5 U	NA	NA	0.5 U	0.5 U	1.3	NA	0.5 U	NA	0.55	NA	0.91	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q4-09	12/18/2009	0.5 U	NA	NA	0.5 U	0.5 U	1.4	NA	0.5 U	NA	0.5 U	NA	1	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-11	MW-11 Q1-10	03/30/2010	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.3	0.5 U	0.5 U	NA	0.52	NÁ	1.1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MVV-11	MW 44 00 40	06/23/2010	0.5 U	NA	NA	0.5 U	0.5 U	1	NA	0.5 U	NA	0.5 U	NA	0.85	0.5 0	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
		09/29/2010	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.5	0.5 U	0.5 U	NA	0.5 U	NÁ	1.1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
10100-11	IVIVV-11 Q4-10	12/15/2010	0.5 U	NA	NA	0.5 U	0.5 U	0.98	NA	0.5 U	NA	0.5 U	NA	0.94	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U

		Desemator	-Dichloroethane (µg/L)	-Dichloroethane (µg/L)	-Dichloropropane (µg/L)	(J/br) suesc	oroethane (µg/L)	oroform (µg/L)	oromethane (µg/L)	-1,2-Dichloroethene (µg/L)	sopropyltoluene Cymene) (µg/L)	hlorodifluoromethane (µg/L)	-Propylbenzene (µg/L)	rachloroethene (µg/L)	uene (µg/L)	chloroethene (µg/L)	chlorofluoromethane (µg/L)	yl chloride (µg/L)	ene (meta & para) (µg/L)	ene (ortho) (µg/L)	ene (total) (µg/L)
Leastion	Samula ID	Parameter	- -	1,2.	1,2	Ber	Chl	ChI	ChI	cis.	sl-q)	Dic	iso	Tet	Tol	Ţ	Tric	Vin	Xyi	Xyl	Xyl
Downgroe	Sample ID	Sample Date																			
		03/24/2011	0.5.11	0511	0511	0.5.11	0511	1.2	0511	0511	NΙΔ	0.5.11	ΝΔ	1	0.5.11	0.5.11	0511	0511	0511	0511	ΝΔ
	MW 14 02 00	00/22/1000	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	1.2	0.5 0	0.5 0	NA NA	0.5 0		111	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	1.11
	MW 14 Q4 99	12/00/1000	1 U	NA NA	NA NA	1 U	1 1	10	NA NA	1 1	NA NA		NA NA	111	1 1	1 1	1 1	1 1	NA NA	NA NA	1 1
	MW 14 01 00	02/15/2000	1 1	NA NA	NA NA	1 1	1 1	10	NA NA	1 1	NA NA			111	111	1 1	1 1	1 1	NA NA	NA NA	1 1
	MW 14 02 00	06/21/2000	1 1	NA NA	NA NA	1 1	1 1	111	NA NA	1 11	NA NA	NA NA	NA NA	111	1 1	1 1	1 1	1 11	NA NA	NA NA	1 11
MW-14	MW-14 Q2-00	09/27/2000	1 11	NΔ	NA	1 11	1	1 11	NA	1 11	NΔ	NA	NA	111	1	1 11	1	1 11	NA	NA	1
MW-14	MW-14 Q3 00	12/05/2000	0511	NΔ	NΔ	0511	0511	0.9	NΔ	0511	NΔ	NΔ	NΔ	0511	0511	0511	0511	0511	NΔ	NΔ	0511
MW-14	MW-14 Q1-01	03/27/2001	0.5 U	NA	NA	0.5 U	0.5 U	0.5	NA	0.5 U	NA	NA	NA	0.5 U	0.5 0	0.5 U	0.5 U	0.5 0	NA	NA	0.5 U
MW-14	MW-14 Q2-01	06/27/2001	0.5 U	NA	NA	0.5 U	0.5 U	0.00	NA	0.00	NA	NA	NA	0.00	0.00	0.5 U	0.5 U	0.00	NA	NA	0.00
MW-14	MW-14 Q3-01	09/06/2001	0.5 U	NA	NA	0.5 U	0.5 U	0.82	NA	0.5 U	NA	NA	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q4-01	12/14/2001	0.5 U	NA	NA	0.5 U	0.5 U	0.85	NA	0.5 U	NA	NA	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q1-02	03/27/2002	0.5 U	NA	NA	0.5 U	0.5 U	0.76	NA	0.5 U	NA	NA	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q2-02	06/13/2002	0.5 U	NA	NA	0.5 U	0.5 U	0.66	NA	0.5 U	NA	NA	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q3-02	09/18/2002	1 U	NA	NA	0.5 U	1 U	1 U	NA	1 U	NA	1 U	NA	1 U	0.5 U	1 U	1 U	1 U	NA	NA	0.5 U
MW-14	MW-14 Q4-02	12/17/2002	0.5 U	NA	NA	0.5 U	0.5 U	1 U	NA	0.5 U	NA	1.6	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q1-03	03/26/2003	0.5 U	NA	NA	0.5 U	0.5 U	0.68	NA	0.5 U	NA	1.2	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q2-03	06/26/2003	0.5 U	NA	NA	0.5 U	0.5 U	0.76	NA	0.5 U	NA	0.5 U	NA	0.5 U	0.61	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q3-03	09/25/2003	0.5 U	NA	NA	0.5 U	0.5 U	0.67	NA	0.5 U	NA	1.1	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q4-03	12/18/2003	0.5 U	NA	NA	0.5 U	0.5 U	0.82	NA	0.5 U	NA	1.9	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q1-04	03/17/2004	0.5 U	NA	NA	0.5 U	0.5 U	0.82	NA	0.5 U	NA	1.7	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q2-04	06/17/2004	0.5 U	NA	NA	0.5 U	0.5 U	0.63	NA	0.5 U	NA	1.3	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q3-04	09/30/2004	0.5 U	NA	NA	0.5 U	0.5 U	0.76	NA	0.5 U	NA	1.4	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q4-04	12/15/2004	0.5 U	NA	NA	0.5 U	0.5 U	0.7	NA	0.5 U	NA	1.2	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q1-05	03/31/2005	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.78	0.5 U	0.5 U	NA	1	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-14	MW-14 Q2-05	06/23/2005	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.51	0.5 U	0.5 U	NA	0.5 U	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-14	MW-14 Q3-05	09/29/2005	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.57	0.5 U	0.5 U	NA	0.83	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-14	MW-14 Q4-05	12/14/2005	0.5 U	NA	NA	0.5 U	0.5 U	0.63	NA	0.5 U	NA	0.94	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q1-06	03/30/2006	0.5 U	NA	NA	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.58	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q3-06	09/21/2006	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U	0.5 U	NA	0.86	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-14	MW-14 Q4-06	12/28/2006	0.5 U	NA	NA	0.5 U	0.5 U	0.65	NA	0.5 U	NA	1.7	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q1-07	03/22/2007	0.5 U	NA	NA	0.5 U	0.5 U	0.56	NA	0.5 U	NA	0.85	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q2-07	06/28/2007	0.5 U	NA	NA	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.5 U	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q3-07	09/26/2007	0.5 U	NA	NA	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.5 U	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q4-07	12/27/2007	0.5 U	NA	NA	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.5 U	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q1-08	03/27/2008	0.5 U	NA	NA	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.74	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q2-08	06/25/2008	0.5 U	NA	NA	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	1	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q3-08	09/24/2008	0.5 U	NA	NA	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.74	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q4-08	12/17/2008	0.5 U	NA	NA	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.53	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q1-09	03/20/2009	0.5 U	NA	NA	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.68	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q2-09	06/24/2009	0.5 U	NA	NA	0.5 U	0.5 U	0.52	NA	0.5 U	NA	0.91	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U

					(-					g/L)		(µg/L)					(1/6r		ĥ		
			ichloroethane (µg/L)	ichloroethane (µg/L)	ichloropropane (µg/l	ene (µg/L)	oethane (µg/L)	oform (µg/L)	omethane (µg/L)	2-Dichloroethene (µ	propyltoluene mene) (µg/L)	orodifluoromethane	ropylbenzene (µg/L)	chloroethene (µg/L)	ne (µg/L)	loroethene (µg/L)	lorofluoromethane (I	chloride (µg/L)	ıе (meta & para) (µg/l	ie (ortho) (µg/L)	ie (total) (µg/L)
		Parameter	Ē	2-D	2-Di	žué	Jor	lor	lor	s-1,	င် 🔋	chi	Ē	etra	olue	ich	ich	lyn	/len	/len	/len
Location	Sample ID	Sample Date	÷.	-	,	ă	ö	ō	ō	Ċ	4 G	ā	<u>.</u>	Ĕ	Ĕ	μ,	Ļ	i>	×	×	×
Downgrad	lient Wells Continued																				
MW-14	MW-14 Q3-09	09/24/2009	0.5 U	NA	NA	0.5 U	0.5 U	0.65	NA	0.5 U	NA	1.4	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q4-09	12/18/2009	0.5 U	NA	NA	0.5 U	0.5 U	0.61	NA	0.5 U	NA	0.88	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q1-10	03/30/2010	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.61	0.5 U	0.5 U	NA	1.3	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-14	MW-14 Q2-10	06/23/2010	0.5 U	NA	NA	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.53	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q3-10	09/29/2010	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.76	0.5 U	0.5 U	NA	0.5 U	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-14	MW-14 Q4-10	12/15/2010	0.5 U	NA	NA	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	1.1	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
MW-14	MW-14 Q1-2011	03/24/2011	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.55	0.5 U	0.5 U	NA	0.71	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
MW-15	MW-15 Q3-01	09/06/2001	7.6	NA	NA	0.5 U	1.7	0.5 U	NA	9.2	NA	NA	NA	11	0.5 U	3.8	1.6	1.4	NA	NA	0.5 U
MW-15	MW-15 Q4-01	12/14/2001	5.8	NA	NA	0.5 U	1.2	0.5 U	NA	8.1	NA	NA	NA	9.2	0.5 U	3.4	1.4	2.1	NA	NA	0.5 U
MW-15	MW-15 Q1-02	03/27/2002	5.8	NA	NA	0.5 U	1.4	0.5 U	NA	8.1	NA	NA	NA	8.6	0.5 U	3.1	1.3	2.8	NA	NA	0.5 U
MW-15	MW-15 Q2-02	06/13/2002	5.5	NA	NA	0.5 U	1.5	0.5 U	NA	8.5	NA	NA	NA	9.4	0.5 U	3	1	3.4	NA	NA	0.5 U
MW-15	MW-15 Q3-02	09/18/2002	6.2	NA	NA	0.5 U	1.5	1 U	NA	8.9	NA	9.4	NA	9.5	0.5 U	3.5	1	3.7	NA	NA	0.5 U
MW-15	MW-15 Q4-02	12/17/2002	6.1	NA	NA	0.5 U	1.4	1 U	NA	8.8	NA	13	NA	9.9	0.5 U	3.7	1.4	3.3	NA	NA	0.5 U
MW-15	MW-15 Q1-03	03/26/2003	4.8	NA	NA	0.5 U	1.1	0.5 U	NA	6.8	NA	10	NA	7.4	0.5 U	2.8	1.1	2.4	NA	NA	0.5 U
MW-15	MW-15 Q2-03	06/26/2003	5.2	NA	NA	0.5 U	1.2	0.5 U	NA	8.4	NA	11	NA	9.5	0.5 U	3.3	1.2	2.7	NA	NA	0.5 U
MW-15	MW-15 Q3-03	09/25/2003	5.9	NA	NA	0.5 U	1.4	0.5 U	NA	9.4	NA	10	NA	9.2	0.5 U	3.4	1.1	3.8	NA	NA	0.5 U
MW-15	MW-15 Q4-03	12/18/2003	5.1	NA	NA	0.5 U	1.1	0.5 U	NA	8.6	NA	11	NA	9.9	0.5 U	3	1	2.8	NA	NA	0.5 U
MW-15	MW-15 Q1-04	03/17/2004	4.5	NA	NA	0.5 U	0.78	0.5 U	NA	7.7	NA	9.9	NA	6.7	0.68	2.6	0.97	1.8	NA	NA	0.5 U
MW-15	MW-15 Q2-04	06/17/2004	4.6	NA	NA	0.5 U	1.9	0.5 U	NA	7.5	NA	11	NA	7	0.5 U	2.5	1	2.3	NA	NA	0.5 U
MW-15	MW-15 Q3-04	09/30/2004	4.5	NA	NA	0.5 U	0.78	0.5 U	NA	8	NA	8.4	NA	7.5	0.5 U	2.7	1.2	1.9	NA	NA	0.5 U
MW-15	MW-15 Q4-04	12/15/2004	4.1	NA	NA	0.5 U	0.74	0.5 U	NA	1.1	NA	7.6	NA	7.6	0.5 U	2.5	1.1	1.9	NA	NA	0.5 U
MW-15	MW-15 Q1-05	03/31/2005	5.6	0.5 U	0.5 U	0.5 U	1.2	0.5 U	0.5 U	8.9	NA	9.4	NA	8.6	0.5 U	3	1.1	3.1	0.5 U	0.5 U	NA
IVIVV-15	MW-15 Q2-05	06/23/2005	4.9	0.5 U	0.5 U	0.5 U	0.93	0.5 0	0.5 0	8.3	NA	8.2	NA	7.5	0.5 0	2.7	1.1	2.4	0.5 0	0.5 0	NA
IVIVV-15	MW-15 Q3-05	09/29/2005	5.5	0.5 U	0.5 U	0.5 U	0.85	0.5 U	0.5 0	11	NA	67	NA	/	0.5 U	3	1.1	2.1	0.5 0	0.5 0	NA 0.5.11
	MW 15 01 06	12/14/2005	4.5	NA NA	NA NA	0.5 0	0.74	0.5 0	NA NA	0.0	NA NA	0.7	NA NA	0.9	0.5 0	2.0	1.0	1.0	NA NA	NA NA	0.5 U
MM/_15	MW-15 02-06	06/21/2000	4.0	NA	NA	0.5 0	0.60	0.5 0	NA	7.5	NA	5.0	NA	0.0	0.5 0	2.4 0.1	1.2	1.0	NA	NA	0.5 0
MW-15	MW-15 03(Sent)-06	00/21/2000	4.1 6.3	0.5.11	0.5.11	0.5 0	0.09	0.5 0	0.5.11	1.0	NA NA	0.9 3.9		7.0	0.5 0	2.1	0.5.11	1.0 2	0.5.11	0.5.11	0.5 U NA
MW-15	MW-15 Q3(3ept)-00	12/28/2006	1.3	0.5 U	0.5 C	0.5 0	0.61	0.5 0	0.5 C	8.6	NA	0.57.11	NA	63	0.5 0	21	0.60	10	0.5 C	0.5 C	0.5.11
MW-15	MW-15 Q1-07	03/22/2007	4.5	NA	NA	0.5 U	0.57	0.5 U	NA	8.7	NA	43	NA	5.6	0.5 0	2.1	0.03	1.5	NA	NA	0.5 U
MW-15	MW-15 Q2-07	06/28/2007	3.7	NA	NA	0.5 U	0.511	0.5 U	NA	8	NA	53	NA	6.0	0.00	2.2	12	1.0	NA	NA	0.5 U
MW-15	MW-15 Q3-07	09/26/2007	5.4	NA	NA	0.5 U	0.66	0.5 U	NA	12	NA	4	NA	6.9	0.5 U	2.1	0.56	2	NA	NA	0.5 U
MW-15	MW-15 Q4-07	12/27/2007	3.9	NA	NA	0.5 U	0.64	0.5 U	NA	87	NA	4 1	NA	5.5	0.5 U	2.0	1 1	16	NA	NA	0.5 U
MW-15	MW-15 Q1-08	03/27/2008	3.7	NA	NA	0.5 U	0,5 U	0.5 U	NA	8.8	NA	4.8	NA	6.4	0.5 U	2.2	1.1	1.2	NA	NA	0.5 U
MW-15	MW-15 Q2-08	06/25/2008	3.1	NA	NA	0.5 U	0.5 U	0.5 U	NA	7.3	NA	5.4	NA	5.5	0.5 U	1.9	1.1	0.96	NA	NA	0.5 U
MW-15	MW-15 Q3-08	09/24/2008	3.2	NA	NA	0.5 U	0.5 U	0.5 U	NA	7.8	NA	4.1	NA	6	0.5 U	1.7	1.1	1.1	NA	NA	0.5 U
MW-15	MW-15 Q4-08	12/17/2008	3.3	NA	NA	0.5 U	0.5 U	0.5 U	NA	8.8	NA	5.2	NA	4.9	0.5 U	1.9	0.84	1.1	NA	NA	0.5 U
MW-15	MW-15 Q1-09	03/20/2009	3	NA	NA	0.5 U	0.5 U	0.5 U	NA	8.1	NA	3.9	NA	5.6	0.5 U	1.9	1.1	0.8	NA	NA	0.5 U
MW-15	MW-15 Q2-09	06/24/2009	3.6	NA	NA	0.5 U	0.5 U	0.5 U	NA	8.5	NA	3.5	NA	5.1	0.5 U	1.9	0.9	0.95	NA	NA	0.5 U
MW-15	MW-15 Q3-09	09/24/2009	2.9	NA	NA	0.5 U	0.5 U	0.5 U	NA	7.1	NA	4.1	NA	4.5	0.5 U	1.7	1.1	0.68	NA	NA	0.5 U

Location	Sample ID	Parameter Sample Date	1,1-Dichloroethane (µg/L)	1,2-Dichloroethane (µg/L)	1,2-Dichloropropane (µg/L)	Benzene (µg/L)	Chloroethane (µg/L)	Chloroform (µg/L)	Chloromethane (µg/L)	cis-1,2-Dichloroethene (µg/L)	p-Isopropyltoluene (p-Cymene) (µg/L)	Dichlorodifluoromethane (µg/L)	iso-Propylbenzene (µg/L)	Tetrachloroethene (µg/L)	Toluene (µg/L)	Trichloroethene (µg/L)	Trichlorofluoromethane (µg/L)	Vinyl chloride (µg/L)	Xylene (meta & para) (µg/L)	Xylene (ortho) (µg/L)	Xylene (total) (µg/L)
Downgrad	lient Wells Continued																				
MW-15	MW-15 Q4-09	12/18/2009	3.3	NA	NA	0.5 U	0.5 U	0.5 U	NA	8.1	NA	3.6	NA	4.8	0.5 U	1.8	0.92	0.9	NA	NA	0.5 U
MW-15	MW-15 Q1-10	03/30/2010	2.7	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	6.5	NA	3.6	NA	5	0.5 U	1.6	1.1	0.66	0.5 U	0.5 U	NA
MW-15	MW-15 Q2-10	06/23/2010	2.4	NA	NA	0.5 U	0.5 U	0.5 U	NA	6.7	NA	2.4	NA	4	0.5 U	1.5	0.72	0.55	NA	NA	0.5 U
MW-15	MW-15 Q3-10	09/29/2010	3.3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	8.9	NA	3.3	NA	5.1	0.5 U	1.9	0.89	0.84	0.5 U	0.5 U	NA
MW-15	MW-15 Q4-10	12/15/2010	2.4	NA	NA	0.5 U	0.5 U	0.5 U	NA	7.2	NA	3.1	NA	4.3	0.5 U	1.4	0.79	0.76	NA	NA	0.5 U
MW-15	MW-15 Q1-2011	03/24/2011	3.6	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	9.4	NA	2.6	NA	4.6	0.5 U	1.7	0.65	0.77	0.5 U	0.5 U	NA
MW-16	MW-16 Q3-05	09/01/2005	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	5 U	1 U	1.61	1 U	1 U	1 U	1 U	0.2 U	2 U	1 U	NA
MW-16	MW-16 Q2-06	06/21/2006	0.5 U	NA	NA	0.5 U	0.5 U	0.54	NA	0.5 U	NA	0.74	NA	0.52	0.5 U	0.5 U	1.8	0.5 U	NA	NA	0.5 U
MW-16	MW-16 Q3(Sept)-06	09/21/2006	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	0.63	NA	0.5 U	0.5 U	0.5 U	1.4	0.5 U	0.5 U	0.5 U	NA
MW-16	MW-16 Q1-2011	03/24/2011	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.57	0.5 U	0.5 U	NA	0.54	NA	0.64	0.5 U	0.5 U	0.74	0.5 U	0.5 U	0.5 U	NA
Residentia	al Wells																				
Camp	Camp Q1-05	03/31/2005	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.74	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
Camp	Camp Q2-05	06/23/2005	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.67	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
Camp	Camp Q3-05	09/29/2005	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.73	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
Camp	Camp Q3-06	09/21/2006	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.76	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
Camp	Camp Q2-09	06/24/2009	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.7	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
Kinman	Kinman Q1-05	03/31/2005	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
Kinman	Kinman Q2-05	06/23/2005	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
Small	Small 061302	06/13/2002	0.5 U	NA	NA	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.5 U	NA	1	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
Small	Small 062602	06/26/2002	0.5 U	NA	NA	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.5 U	NA	1	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
Small	Small Q1-04	03/17/2004	0.5 U	NA	NA	0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.5 U	NA	0.99	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
Small	Small Q3-04	09/30/2004	0.5 U	NA	NA	0.5 U	0.5 U	0.52	NA	0.5 U	NA	0.5 U	NA	1.1	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
Small	Small Q4-04	12/15/2004	0.5 U	NA	NA	0.5 U	0.5 U	0.51	NA	0.5 U	NA	0.5 U	NA	1.1	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	0.5 U
Small	Small Q1-05	03/31/2005	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.55	0.5 U	0.5 U	NA	0.5 U	NA	1.1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
Small	Small Q3-05	09/29/2005	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.54	0.5 U	0.5 U	NA	0.5 U	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
Small	Small Q3-06	09/21/2006	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.51	0.5 U	0.5 U	NA	0.5 U	NA	1.2	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
Small	Small Q2-09	06/24/2009	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.56	0.5 U	0.5 U	NA	0.5 U	NA	1.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
Small	Small Q3-10	09/29/2010	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.62	0.5 U	0.5 U	NA	0.5 U	NA	1.5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA

Notes:

Only VOC analytes that had at least one detection, or are a chemical of concern are appear in this Table. See Table D.5 for the list of the VOC analytes that were 100% non-detects and their reporting limit range. Only samples that were tested for at least one VOC Analyte appear in this Table. See Table D.1 for an complete Analytical Schedule by sample.

J Analyte was detected, the result is an estimated value.

U Analyte was not detected at the given reporting limit.

UJ Analyte was not detected, and the given reporting limit is an estimated value.

NA Not analyzed

					Minimum	Maximum
		No. of	No. of	Dercent of	Minimum	Maximum
Peromotor	Unit	NO. UI Beculte	NO. OT	Percent or	Non-Detect	Non-Detect
Casoline Range Hydrocarbons		Results	NOII-Delecis	100 00%		100
1 1 1 2-Tetrachloroethane	µg/⊏ ⊔a/l	63	63	100.0078	0.2	1
1 1 1-Trichloroethane	μg/L μα/Ι	63	63	100.00%	0.2	1
1 1 2 2-Tetrachloroethane	ug/l	63	63	100.00%	0.2	1
1 1 2-Trichloroethane	ua/l_	63	63	100.00%	0.2	1
1.1-Dichloroethene	ua/L	93	93	100.00%	0.2	1
1.1-Dichloropropene	µq/L	14	14	100.00%	0.2	1
1.2.3-Trichlorobenzene	ug/L	14	14	100.00%	0.2	1
1,2,3-Trichloropropane	µg/L	63	63	100.00%	0.2	1
1,2,4-Trichlorobenzene	µg/L	14	14	100.00%	0.2	1
1,2,4-Trimethylbenzene	μg/L	14	14	100.00%	0.2	1
1,2-Dibromo-3-chloropropane	μg/L	63	63	100.00%	1	5
1,2-Dibromoethane	µg/L	63	63	100.00%	0.2	2
1,2-Dichlorobenzene	µg/L	63	63	100.00%	0.2	1
1,3,5-Trimethylbenzene	µg/L	14	14	100.00%	0.2	1
1,3-Dichlorobenzene	µg/L	14	14	100.00%	0.2	1
1,3-Dichloropropane	µg/L	14	14	100.00%	0.2	1
1,4-Dichlorobenzene	µg/L	63	63	100.00%	0.2	1
2,2-Dichloropropane	µg/L	14	14	100.00%	0.2	1
2-Chloroethyl vinyl ether	µg/L	6	6	100.00%	1	1
2-Chlorotoluene	µg/L	14	14	100.00%	0.2	1
2-Hexanone	µg/L	63	63	100.00%	2	20
4-Chlorotoluene	µg/L	14	14	100.00%	0.2	1
Acetone	µg/L	63	63	100.00%	5	25
Acrylonitrile	µg/L	49	49	100.00%	5	5
Bromobenzene	µg/L	14	14	100.00%	0.2	1
Bromochloromethane	µg/L	63	63	100.00%	0.2	1
Bromodicniorometnane	µg/L	63	63	100.00%	0.2	1
Bromomothana	µg/L	63	63	100.00%	0.5	5
Carbon disulfide	µg/L	63	63	100.00%	0.2	
Carbon tetrachloride	µg/L	63	63	100.00%	0.2	1
Chlorobenzene	µg/L	63	63	100.00%	0.2	1
Chloromethane	µg/∟ ⊔a/l	63	63	100.00%	0.2	5
cis-1 3-Dichloropropene	μg/L μα/l	63	63	100.00%	0.3	1
cis-1.4-Dichloro-2-butene	ua/l	48	48	100.00%	10	10
Dibromochloromethane	ua/L	63	63	100.00%	0.2	1
Dibromomethane	µa/L	63	63	100.00%	0.2	1
Dichloromethane	µg/L	63	63	100.00%	1	10
Ethylbenzene	µg/L	63	63	100.00%	0.2	1
Hexachlorobutadiene	μg/L	14	14	100.00%	0.2	1
lodomethane	μg/L	55	55	100.00%	1	5
Methyl ethyl ketone	µg/L	63	63	10 <mark>0.00%</mark>	5	20
Methyl iso butyl ketone	µg/L	63	63	10 <mark>0.00%</mark>	1	20
Methyl-Tert-Butyl Ether	µg/L	12	12	100.00%	0.2	1
Naphthalene	µg/L	14	14	100.00%	1	2
n-Butylbenzene	µg/L	14	14	100.00%	0.2	1
n-Propylbenzene	µg/L	14	14	100.00%	0.2	1
p-Isopropyltoluene (p-Cymene)	µg/L	14	14	100.00%	0.2	5
sec-Butylbenzene	µg/L	14	14	100.00%	0.2	1
Styrene	µg/L	63	63	100.00%	0.2	1
tert-Butylbenzene	µg/L	14	14	100.00%	0.2	1
trans-1,2-Dichloroethene	µg/L	63	63	100.00%	0.2	1
trans-1,3-Dichloropropene	µg/L	63	63	100.00%	0.2	1
trans-1,4-Dichloro-2-butene	µg/L	63	63	100.00%	10	10
Vinyl acetate	µg/L	55	55	100.00%	2	5
Xylene (meta & para)	µg/L	63	63	100.00%	0.4	2
	µg/∟	211	211	100.00%	0.5	1

APPENDIX E

Sudbury Road Landfill Sampling and Analysis Plan

Sampling and Analysis Plan for Sudbury Road Landfill Remedial Action Walla Walla, Washington

December 28, 2011

Prepared for:

City of Walla Walla

Prepared by:

4621 South Custer Spokane, WA 99223 (509) 448-3187

TABLE OF CONTENTS

					Page
1.0	INTE	RODUC	TION		1-1
	1.1	PURPO	1-1		
	1.2	SITE I	1-1		
	1.3	1-2			
2.0	FIEL	D AND	LABOR	ATORY PROCEDURES	2-1
	2.1	GEOP	2-3		
	2.2	SUBSU	JRFACE	EXPLORATION PROCEDURES	2-4
		2.2.1	Utility L	Locate	2-4
		2.2.2	Test Pits	S	2-4
		2.2.3	Drilling	and Well Construction Procedures	2-5
			2.2.3.1	Drilling Procedures	2-5
			2.2.3.2	Groundwater Monitoring Well Construction	2-5
			2.2.3.3	Landfill Gas Monitoring Well Construction	2-6
			2.2.3.4	Boring and Well Decommissioning Procedures	2-6
	2.3	SOIL S	SAMPLIN	NG	2-7
		2.3.1	Sample	Designation	2-7
		2.3.2	Soil San	nple Locations	2-8
		2.3.3	Sample	Collection Methods	2-8
			2.3.3.1	Grab Samples	2-8
			2.3.3.2	Split Spoon Sampling	2-8
		0.0.1	2.3.3.3	Sonic Core Samples	2-8
		2.3.4	Sample	Depth Intervals	2-9
	~ (2.3.5	Soil San	nple Screening and Packaging	2-9
	2.4	GROU	NDWAT	ER SAMPLING PROCEDURES	2-10
		2.4.1	Samplin	ig Locations	2-10
		2.4.2	Monitor	ring Program	2-10
		2.4.3	Monitor	ring Frequency	2-10
		2.4.4	Monitor	ring Well Sample Collection Methods	2-11
	25	2.4.5	Domesti EU L CA	IC Well Sample Collection Methods	2-12
	2.5	LAND	FILL GA	IS MONITORING AND SAMPLING	2-12
		2.3.1		Ing Program Derhole Monitoring	2-12
		2.5.2	Gos Son	Damole Monitoring	2-13
		2.5.5	Vacuum	a Dadius Influence Testing	2-13
		2.5.4	Vapor I	ntrusion Modeling	2-14
	26	2.3.3 SAMD	ν αροι Π Ι Ε ΤΟ ΛΝ	NEDODTATION AND HANDI INC	2-13
	2.0	SAMP	2-15		
	2.7	CHEM	ICAL AN	NAL YSES	2-15
	2.0	2 8 1	Soil San	nnles	2-10
		2.8.1	Groundy	water Samples	2-10
		2.0.2	Landfill	Gas Samples	2-10 2_17
	29		FER TES	TING	2-17 2_17
	$\frac{2.7}{2.10}$	FOUIF	MENT L	DECONTAMINATION	2-17 2_18
	2.10	2.10.1	Samplin	ng Equipment	2-18
		2.10.2	Drilling	Rig	2-18
			8		= 10

	2.11	RESID	DUAL WASTE MANAGEMENT	2-19
		2.11.1	Soil Cuttings	2-19
		2.11.2	Well Development, Purge, and Decontamination Water	2-19
	2.12	SURV	EYING	2-19
3.0	QUA	3-1		
	3.1	LABO	RATORY DATA QUALITY OBJECTIVES	3-1
		3.1.1	Precision	3-1
		3.1.2	Accuracy	3-2
		3.1.3	Representativeness	3-3
		3.1.4	Comparability	3-3
		3.1.5	Completeness	3-3
	3.2	LABO	RATORY ANALYSIS AND TESTING	3-4
		3.2.1	Detection Limits	3-4
	3.3	QUAL	JITY CONTROL SAMPLING	3-4
		3.3.1	Field Quality Control Samples	3-5
		3.3.2	Laboratory Quality Control Procedures	3-5
			3.3.2.1 Laboratory Quality Control Criteria	3-5
			3.3.2.2 Initial and Continuing Calibration	3-5
			3.3.2.3 Laboratory Duplicates	3-6
			3.3.2.4 Matrix Spikes and Matrix Spike Duplicates	3-6
			3.3.2.5 Laboratory Control Samples	3-6
			3.3.2.6 Surrogate Spikes	3-6
			3.3.2.7 Method Blanks	3-6
	3.4	DATA	REDUCTION, VALIDATION AND MANAGEMENT	3-6
		3.4.1	Data Reduction and laboratory Reporting	3-6
		3.4.2	Data Validation	3-8
		3.4.3	Data Management	3-8
4.0	HEA	LTH A	ND SAFETY PLAN	4-1
5.0	REP	ORTIN	G	5-1
6.0	REF	ERENC	ES	6-1

TABLES

Table <u>Title</u>

- 1 Data Quality Assurance Criteria
- 2 Analytical Methods, Detection Limits, and Reporting Limits
- 3 Analytical Requirements, Methods, Preservation, Bottle Type, and Holding Times

FIGURES

Figure <u>Title</u>

- 1 Site Location
- 2 Vicinity Map
- 3 Proposed Exploration Locations

APPENDIX

E1 Health and Safety Plan

LIST OF ABBREVIATIONS AND ACRONYMS

AO	Agreed Order No. 8456
ARARs	Applicable or relevant and appropriate requirements
CH_4	Methane
City	City of Walla Walla, Washington
CO_2	Carbon dioxide
COC	Chain of custody
DGPS	Differential Global Positioning System
DQO	Data Quality Objective
Ecology	Washington State Department of Ecology
EM	Electromagnetic
gal/ft ³	Gallons per cubic foot
GPS	Global Positioning System
HASP	Health and Safety Plan
HHWF	Household Hazardous Waste Facility
LFG	Landfill gas
MAG	Magnetic
MDL	Method detection limit
MRL	Method reporting level
MS/MSD	Matrix spike/matrix spike duplicate
MSW	Municipal solid waste
MTCA	Washington State Model Toxics Control Act
PARCC	Precision, accuracy, representativeness, completeness, and comparability
O_2	Oxygen
PID	Photo ionization detector
PLP	Potentially liable party
PQL	Practical quantitation limit
PVC	Polyvinyl chloride
QA	Quality assurance
QC	Quality control
QAPP	Quality Assurance Project Plan
RI	Remedial Investigation
RI/FS	Remedial Investigation/Feasibility Study
RPD	Relative percent difference

SAP	Sampling and Analysis Plan
Site	Sudbury Road Landfill
Schwyn	Schwyn Environmental Services, LLC
SM	Standard Method
TDS	Total dissolved solids
TOC	Total organic carbon
μg/L	Micrograms per liter
USCS	Unified Soil Classification System
USEPA	U.S. Environmental Protection Agency
VOA	Volatile organic analysis
VOC	Volatile organic compound
WAC	Washington Administrative Code

1.0 INTRODUCTION

This Sampling and Analysis Plan (SAP), prepared by Schwyn Environmental Services, LLC (Schwyn), describes procedures for conducting field activities and laboratory analyses during the Remedial Investigation (RI) at the City of Walla Walla (City) Sudbury Road Landfill (Site) located in Walla Walla, Washington. The RI is being conducted pursuant to Agreed Order No. 8456 (AO). The primary objective of this plan is to provide field and laboratory procedures that will maximize accuracy, reproducibility, and comparability of data between sampling events.

This SAP is organized as follows:

- Section 1 summarizes general information for the Site;
- Section 2 presents the Field and Laboratory Procedures;
- Section 3 presents the Quality Assurance (QA) procedures;
- Section 4 identifies the Health and Safety requirements; and
- Section 5 describes the Reporting submittals.

1.1 PURPOSE AND OBJECTIVES

In March 2010, the Washington State Department of Ecology (Ecology) submitted a Potentially Liable Person (PLP) Status Letter to the City (Ecology 2010). The City and Ecology subsequently initiated the AO, effective May 26, 2011. The AO stipulated the scope of work and schedule for the preparation of the Remedial Investigation/Feasibility Study (RI/FS). The first task of the AO is to prepare a Work Plan for the RI to supplement existing data and determine the nature and extent of contamination at the Site. The objective of the Work Plan is to identify the specific tasks and scope of work to complete the RI. This SAP pertains to the RI field and laboratory tasks that will be completed to assess the source location, transport mechanism(s), and the extent of contamination. This SAP, along with the accompanying Quality Assurance Project Plan (QAPP) and Health and Safety Plan (HASP), were prepared to fulfill Task 1 of the required Scope of Work presented in Exhibit D of the AO.

1.2 SITE DESCRIPTION

According to the AO, the Site is referred to as the Sudbury Road Landfill and is generally located at 414 Sudbury Road, Walla Walla, Washington 99362, about 4 miles west of the City and ½ mile north of Highway 12, in the southwest quarter of Section 14, southeast quarter of section 15, northeast quarter of Section 22, and northwest quarter of Section 23, Township 7 North, Range 35 East, Willamette Meridian (Figure 1). The landfill area itself is approximately 125 acres in size and is located within the western portion of an 828.86-acre City-owned parcel of land zoned and used for various waste management purposes (Figure 2). The Site is designated by Ecology as Facility No. 4446540.

1.3 BASIS FOR RI SCOPE

The RI Scope of Work is based on an evaluation of all existing data obtained during previous RI work and compliance monitoring data collected from the Site. These data were utilized to formulate a preliminary conceptual model of the Site, establish data gaps, and to formulate a work plan to complete the RI. The basis for the RI Scope of Work is detailed in the RI Work Plan. The field program that will be used to close the data gaps and the technical approach for each program including the sampling strategy, locations, methods, and procedures, are presented in the following sections of this SAP.

2.0 FIELD AND LABORATORY PROCEDURES

This section describes the sampling strategy and procedures (sample location, collection methods, and laboratory analyses) that will be used during the RI for the Site. The exploration locations are shown on Figure 3.

The following field programs will be conducted to complete the RI:

- Geophysical Survey: A geophysical survey will be performed to assess the limit of the solid waste in Areas 1, 2, and 5.
- Test Pit Program: A test pit program will be conducted to collect samples for soil characteristic (geotechnical) analysis and to evaluate the soil cover thickness over Areas 1 and 5. Test pits may also be excavated to verify the limits of the municipal solid waste (MSW) indicated by the geophysical survey.
- Soil Boring Program: Five borings will be drilled to assess the vertical extent of the MSW in Area 1 (one boring), Area 2 (one boring), and in the northern trench of Area 5 (three borings). The Area 2 boring may be installed using a backhoe if test pit studies indicate that the backhoe sampling method would be more efficient.
- Groundwater Monitoring Well Program: Fourteen groundwater monitoring wells will be installed as follows:
 - One monitoring well will be installed adjacent to GW-5. The well will be sampled and monitored to distinguish groundwater quality at the Area 5/Area 6 boundary and to assess the interaction of landfill gas (LFG) on groundwater.
 - Two monitoring wells will be installed along the north drainage ditch to verify Geoprobe sampling data and the groundwater quality at Area 5/Area 6 boundary.
 - One monitoring well will be installed adjacent to Area 1 to assess the impact of the area-wide groundwater contamination on the Site and the interaction of LFG with groundwater at the southeast corner of the Site.
 - Two shallow and two deep off-property monitoring wells will be installed approximately 350 feet and 700 feet southwest (hydraulically downgradient) of MW-15. The wells will be sampled and monitored to assess downgradient groundwater quality in the lateral and vertical groundwater flow regimes.
 - One monitoring well will be installed in the former railroad right-of-way and one monitoring well will be installed northwest of Area 5 on the Camp property to assess the extent of contamination in the first encountered aquifer to the north and northwest of MW-15.
 - One deeper monitoring well will be installed adjacent to MW-15 with the screened section set midway between the MW-3 and MW-15 screens. The well will be identified as MW-15D. The well will be installed with 4-inch diameter casing so that pumping tests can be conducted. The well will provide information about the vertical components of groundwater flow and contamination, hydraulic continuity between MW-3 and MW-15, and aquifer parameters.
 - One monitoring well will be installed between MW-15 and MW-16 to assess groundwater quality in the first encountered aquifer downgradient of Area 5.
 - One monitoring well will be installed south of Area 5 and west of Area 6 to assess groundwater quality in the first encountered aquifer downgradient of Area 6.

- Soil Sampling Program: Soil samples will be collected and analyzed as follows:
 - One soil sample will be collected in each boring that is drilled through the MSW. The sample will be collected from a depth approximately 5 feet below the bottom of the waste (total of six soil samples). The samples will be analyzed for volatile organic compounds (VOCs).
 - Two soil samples will be collected from the test pits and analyzed by a soils testing laboratory for permeability, grain size distribution, soil moisture content, moisture-density relationship (Proctor test), and the soil hydraulic conductivity. The analyses will be used to characterize the geotechnical nature of the landfill cover soils.
 - Soil samples will be collected for geologic logging purposes from all subsurface explorations.
- Well Rehabilitation: The following rehabilitation tasks will be conducted to revitalize wells that have not been used in an extended period of time and to provide a means for consistent monitoring procedures between the wells:
 - The existing submersible pump in Monitoring Well MW-5 will be removed and the well will be developed. A dedicated Grundfos RediFlo2 electric submersible sampling pump will be installed for future sample collection purposes.
 - The existing submersible pump in Monitoring Well MW-9 will be removed and a dedicated Grundfos RediFlo2 sampling pump will be installed for future sample collection purposes.
 - One monitoring well will be installed to replace MW-14. A dedicated Grundfos RediFlo2 electric submersible sampling pump will be installed in the well for future sample collection purposes. MW-14 will be decommissioned consistent with applicable state regulation.
- Groundwater Monitoring Program:
 - Groundwater samples will be collected for laboratory analysis of WAC 173-351-990 Appendix III parameters from site wells MW-11, MW-14b, and MW-15 during the first sampling event. The data will be reviewed and the sampling plan will be modified to incorporate detected constituents that exceed MTCA screening levels.
 - Groundwater samples will be collected for laboratory analysis as follows from site wells (MW-11, MW-12b, MW-14b, MW-15, MW-16), upgradient wells (MW-5, MW-9, MW-10, MW-12b), domestic wells (Small, Camp, Kinman, Schmidt), and each new monitoring wells installed during the RI.
 - The site well samples and samples from all new monitoring wells will be analyzed for VOCs and conventional chemistry constituents.
 - Samples collected from the upgradient and domestic wells will be analyzed for VOCs only.
 - Field parameters will be measured in each well sampled.
 - Depth-to-groundwater will be measured in each groundwater monitoring well, including MW-7.
- Compliance Groundwater Monitoring Program Data Incorporation: Compliance Groundwater Monitoring is a requirement of WAC 173-351. Compliance Groundwater Monitoring data will be incorporated into the groundwater database established for the RI. Compliance monitoring procedures will be conducted in accordance with the Solid Waste Operating Permit and are not addressed in this SAP.

- Aquifer Testing Program: Aquifer testing will be conducted to determine a sustainable pumping rate, specific yield, transmissivity, hydraulic conductivity, and storage coefficient of the first encountered aquifer beneath the landfill. The aquifer testing will also be conducted to assess the hydraulic connection between the hydrostratigraphic zones screened in MW-3 and MW-15.
- Landfill Gas Program: The following LFG program will be conducted to evaluate gas migration and occurrence, identify gas characteristics, determine the effectiveness of the existing gas extraction system, identify the potential for impacts to groundwater, and assess the potential for vapor intrusion in the site structure of concern (Household Hazardous Waste Facility [HHWF]):
 - Six gas monitoring wells will be installed at the perimeters of the waste cells and adjacent to structures to assess potential gas migration.
 - One gas monitoring well will be installed and monitored in Area 1. The gas well will be installed in boring SB-22 to assess gas characteristics.
 - LFG field measurements (methane, carbon dioxide, and oxygen) will be collected from the new and existing gas wells to establish the baseline conditions in the vicinity of the refuse areas and at the perimeter of the landfill during four monitoring events.
 - LFG field measurements will be collected from Area 2 using a barhole probe survey to monitor LFG generation and migration potential.
 - LFG samples will be collected for laboratory analysis of VOCs from gas Monitoring Wells GW-5, GW-6, GW-7S, GW-7D, GW-8, GW-9, GW-11, and GW-12 to assess the potential LFG impact to groundwater during one sampling event.
 - The potential LFG migration to the HHWF will be evaluated by collecting a VOC sample from gas Monitoring Well GW-10. Additional testing will be performed within the structure if the testing indicates the potential for LFG to enter the building. Vapor intrusion modeling will be conducted if interior testing results exceed soil gas screening levels.
 - An operational evaluation of the existing gas extraction system will be conducted to determine if the system is effectively removing gas from Area 6 and preventing outward migration of gas. The evaluation will include collection of LFG pressures, flow, and gas characteristics in the Area 6 and surrounding LFG monitoring wells, along with the operating parameters of the flare station and existing Area 6 LFG extraction wells. Based on the preliminary evaluations, supplemental radius of influence testing may be conducted if methane is observed consistently above 2% in gas Monitoring Wells GW-7S, GW-7D, or GW-8. Installation of additional gas observation wells may be required at 50- and 100-foot spacing to perform the influence testing. These wells would be installed following at least one round of monitoring of the new LFG monitoring wells.

The procedures for each of these field programs are described in the following sections.

2.1 GEOPHYSICAL SURVEY

A geophysical evaluation will be conducted to evaluate the limits of the MSW in Areas 1, 2, and 5. The horizontal extents of the buried debris will be evaluated with the combined use of electromagnetic (EM) and magnetic (MAG) techniques.

EM data will be acquired using a Geonics EM-31 (or similar) terrain conductivity meter. Both quadrature (conductivity) and in-phase data will be recorded. The instrument will be run in the

"continuous" sampling mode, recording the EM response at 0.2-second intervals (approximately 1 foot). Use of a nominal line spacing of 20 feet is anticipated.

The MAG survey will be conducted using a Geometrics G858G cesium magnetometer/ gradiometer (or similar instrument). The instrument will be run in the "continuous" sampling mode, recording the magnetic field at 0.1- or 0.2-second intervals (approximately 0.5 or 1 feet). Use of a nominal line spacing of 20 feet is anticipated.

Location data will be acquired simultaneously with the MAG and EM-31 data using a Trimble AG132 Differential Global Positioning System (DGPS). The system provides visual feedback to the operator to assure an "on-line" course and that the survey area is covered uniformly. The system is a real time DGPS using the Omnistar satellite subscription service or a Coast Guard beacon for the differential correction. The DGPS system has "sub-meter" accuracy; hence positions are generally good to $\pm 1-2$ feet, but may be off by 2–3 feet. Interpreted locations of buried debris will be tied into the site coordinate system and plotted on a base map.

2.2 SUBSURFACE EXPLORATION PROCEDURES

Subsurface conditions will be explored through the excavation of test pits or by drilling borings. Groundwater monitoring wells and LFG monitoring wells may be constructed in the borings for future groundwater and LFG monitoring. This section describes the exploration and monitoring point construction procedures.

2.2.1 UTILITY LOCATE

Prior to conducting the subsurface exploration program each monitoring point will be checked for the presence of underground utilities by a utility location company. Exploration locations may be moved to a limited degree if underground or aboveground utility locations, and/or site operational constraints, are present.

2.2.2 TEST PITS

A test pit program will be conducted to log the soil cover thickness above the MSW in Area 1 and Area 5. Test pits may also be used to calibrate and/or verify the results of the geophysical survey. The test pits will also be utilized for soil sample collection to assess the geotechnical characteristics of the cover soil.

A backhoe or track-mounted excavator will be used to excavate the test pits. Each test pit will be excavated from the surface to the level of the first encountered MSW. The depth to MSW from ground surface will be measured and recorded. Soil excavated from each pit will be placed back in the test pit and lightly compacted with the backhoe or excavator. A stake will be placed in the center of the test pit to mark its location for subsequent surveying. Figure 3 provides the approximate locations of the test pits.

2.2.3 DRILLING AND WELL CONSTRUCTION PROCEDURES

2.2.3.1 Drilling Procedures

A drilling program will be conducted to evaluate the soil, groundwater, and LFG characteristics in the vicinity of the landfill. Explorations include 5 soil borings, 14 monitoring wells, and 7 LFG monitoring wells. The boring locations are shown on Figure 3. Drilling, boring abandonment, and well construction will be performed in accordance with Chapter 173-160 of the Washington Administrative Code (WAC), Minimum Standards for Construction and Maintenance of Wells. Exploration logs will be completed for each boring and include descriptions of the soil lithology consistent with the Unified Soil Classification System (USCS), MSW observations, photoionization detector (PID) values, water level measurements, sample locations, and drilling action.

The borings will be advanced with sonic or air rotary (TUBEX) equipment. Boring diameters will be commensurate with the drilling objectives (i.e., soil boring, 2-inch diameter monitoring well, 4-inch diameter monitoring well, or LFG monitoring well). Soil samples will be collected while drilling and lithologic descriptions will be prepared from the soil samples. All down-hole drilling equipment will be decontaminated prior to use and between drilling locations as described in Section 2.10. All residuals collected during drilling or sampling will be handled and disposed of following the procedures described in Section 2.11.

2.2.3.2 Groundwater Monitoring Well Construction

Groundwater monitoring wells will be constructed with flush threaded, 2-inch diameter Schedule 40 polyvinyl chloride (PVC) screen and riser pipe. The monitoring well screens for shallow wells (installed at the water table) will be 15 feet in length, and set with the screen section approximately 5 feet above and 10 feet below the water table. The monitoring well screens for the deeper wells will be installed with a 5-foot screen section set approximately 30 feet below the water table. Each well will be constructed with 0.010-inch machine slotted PVC pipe and a flush threaded end cap will be installed at the bottom of each screen. Number 10/20, washed, rounded sand will be packed around the screens to a minimum of 2 feet above the screened section. The sandpack will be completed with a bentonite seal to within 1.5 feet of the surface. Each monitoring well will be surrounded with three steel protective bollards.

Monitoring Well MW-15D will be constructed for the purposes of future groundwater monitoring and to conduct pumping tests. The well will be constructed with flush threaded, 4-inch diameter, Schedule 40 PVC screen and riser pipe. The well will be constructed with a 10-foot screen section set approximately 30 feet below the water table. The screen will consist of 0.020-inch machine slotted PVC pipe and a flush threaded end cap will be installed at the bottom of the screen. Number 10/20, washed, rounded sand will be packed around the screen to a minimum of 2 feet above the screened section. The

sandpack will be capped with a bentonite seal to within 1.5 feet of the surface. The monitoring well will be completed with a flush or aboveground locking protective cover. Aboveground completions will be surrounded with three steel protective bollards.

Each groundwater monitoring well will be developed using surging, bailing, or pumping techniques. Development will continue until at least 5 to 10 casing volumes have been removed and turbidity of the purge water is visibly low. All well development information will be recorded on a Well Development Record form.

2.2.3.3 Landfill Gas Monitoring Well Construction

Seven LFG monitoring wells will be installed to complement the existing gas monitoring system. Each boring will be advanced with sonic or air rotary (TUBEX) equipment. Each LFG well shall consist of a ³/₄-inch diameter PVC casing with a 5 foot screen section installed in the boring. The screen sections shall be placed at the following approximate locations:

- GW-7D: 1 foot above the high water table elevation;
- GW-7S: 15 feet above the screen in Well GW-7D;
- GW-8, and GW-9: 10 to 15 feet below ground surface;
- GW-10: 5 to 10 feet below ground surface;
- GW-11: 3 feet above the bottom of the MSW; and
- GW-12: 25 to 30 feet below ground surface.

A filter pack will be installed around each screen, extending from the bottom of the end cap to about 1 foot above the screen for each of the gas wells except for GW-11 and GW-12. In those wells the filter pack will extend for the length of the MSW. Filter pack material will consist of commercially prepared, pre-sized, and pre-washed rounded free-flowing pea-gravel. The filter pack will be carefully poured down the annulus between the probe casing and the drill casing, as the casing is slowly withdrawn. During filter pack placement, the distribution and depth of the filter pack will be monitored with a weighted tape.

The annular space above the filter pack will be filled with bentonite chips to about 1 foot below the surface. An aboveground steel monument will be cemented in place at the surface to a depth of at least 1-foot. The monument and concrete will be slightly raised at ground surface and the concrete sloped away from the monument to divert rainfall away from the monument. Each probe will be labeled to indicate the screen depth (shallow or deep), and will be capped with a threaded or slip cap.

2.2.3.4 Boring and Well Decommissioning Procedures

All soil borings that are not converted to groundwater or gas monitoring wells, and existing groundwater monitoring well MW-14 will be decommissioned in accordance with Chapter 173-160 of the

Washington Administrative Code (WAC), Minimum Standards for Construction and Maintenance of Wells. Each soil boring will be filled with bentonite chips and hydrated with water as the drill casing is removed from the ground. Monitoring well MW-14 was installed in accordance with current regulation and will be decommissioned by filling the casing from bottom to surface with bentonite.

2.3 SOIL SAMPLING

Potential soil contamination is expected to be limited to soils beneath the solid waste disposal areas or in soils impacted by contaminated groundwater. Therefore, for the most part, chemical analysis of soil samples will be limited to the one sample collected from beneath the MSW in Area 1, one soil sample collected beneath the MSW in Area 2, and the three samples collected from beneath the MSW or above the Area 5. Each sample will be collected approximately 5 feet below the bottom of the MSW or above the water table. Soil samples will also be collected, on an as-needed basis, for lithologic evaluation. The specific depth intervals from which samples will be submitted for laboratory analysis will be based on field observations (i.e., a sample will be collected from a depth interval where soil discoloration, PID results, or odor are identified).

2.3.1 SAMPLE DESIGNATION

The prefix "TP-" will precede all test pit soil sample numbers. Each test pit location will be numbered, and each soil sample will receive a suffix denoting the approximate depth from which it was collected. For example, TP-1-2 represents the soil sample collected from TP-1 from 2 feet below ground level.

Soil sample numbers collected from designated soil borings, groundwater monitoring wells, and gas monitoring wells will be preceded with the prefix "SB-", "MW-", or "GW-", respectively. Each soil sample will receive a suffix denoting the approximate depth from which it was collected. Boring numbers will begin with SB-19, groundwater monitoring wells numbers will begin with MW-17, and gas monitoring well numbers will begin with GW-7, so they will not be confused with previous site exploration points.

Groundwater samples will be labeled with the soil boring or monitoring well prefix and a date suffix. The date suffix will include the month and year. For example, MW-17-0712 will represent the water sample collected from MW-17 in July 2012.

LFG samples will be labeled with the gas monitoring well prefix and a date suffix. The date suffix will include the month and year. For example, GW-7-0712 will represent the gas sample collected from GW-7 in July 2012.

QA samples will be submitted blind (i.e., not identified as QA samples) to the laboratory. The QA samples will be given a fictitious sample name (e.g., for a non-existent sampling location) and time.

2.3.2 SOIL SAMPLE LOCATIONS

As described in the RI Work Plan, specific sampling locations have been selected to identify the source and extent of contamination. The following sampling points are specifically identified for collection of soil samples for laboratory analysis:

- One boring will be drilled through the MSW in Area 1 and a soil sample will be collected approximately 5 feet below the MSW.
- One boring or test pit will be drilled/excavated through the MSW in Area 2 and a soil sample will be collected approximately 5 feet below the MSW.
- Three borings will be drilled through the MSW in Area 5 and soil samples will be collected approximately 5 feet below the MSW.

The sample locations associated with each area are shown on Figure 3.

2.3.3 SAMPLE COLLECTION METHODS

Grab samples will be collected for soil and geologic characterization purposes. During drilling activities, soil samples collected for laboratory analysis using air rotary drilling methods will be collected with a split spoon sampler, if possible. Soil samples may be collected from the sonic core material, when drilling situations prevent the use of a split spoon sampler. Soil samples will not be collected for laboratory analysis from the cuttings retrieved using the air rotary method. Specific methods for soil sample collection are described below.

2.3.3.1 Grab Samples

Soil grab samples obtained from the test pits will be obtained from material collected with the backhoe bucket. The soil material will be collected from the center of the bucket to assure that a sample representative of the selected soil interval is obtained.

Soil grab samples will also be collected at the surface of each subsurface exploration point, and from drill cuttings. These soils will be used for geotechnical analysis and lithologic descriptions only.

2.3.3.2 Split Spoon Sampling

Soil samples obtained by conventional drilling methods will be collected using a 2.5- to 3.5-inch diameter split spoon sampler whenever, possible. The split spoon sampler will be attached to a drive hammer, lowered to the target depth, and driven into the native soil ahead of the drill bit. Upon retrieval the split spoon will be opened and the soil will be field-screened and packaged for transportation and analysis as described in Section 2.3.5.

2.3.3.3 Sonic Core Samples

The Sonic drilling method employs the use of high-frequency, resonant energy to first advance a 20-foot long, 4.25-inch diameter core barrel into the subsurface formation. A larger diameter drill casing (6.625-inch outside diameter) is then used to over-drill the core barrel and case the formation. The casing

prevents formation collapse and allows the core barrel to be removed to the surface for soil sample removal. A disadvantage of the technology is the use of water to cool the drill string when the outer casing is drilled to depth over the core barrel. Water is not applied directly to the inside of the core barrel; however, the high pressure water injection process can penetrate the core through the drill string joints and wet the soil sample inside. The water does, however; cool the core barrel so the VOCs are not vaporized from the soil. Water used in the drilling process will be obtained from a potable water source.

At surface, the soil contents from within the core barrel are extruded into long, clear plastic bags, providing a continuous section of the penetrated formation. The soil sample liner will be sliced open for lithologic evaluation of the soil core by the geologist, and when desired, soil sample collection for laboratory analysis. A portable PID will be used to assess the presence or absence of total VOCs in the soil at approximately 5-foot intervals. Select soil samples may be collected for laboratory analysis based on PID measurements and visual/olfactory evaluation of the soil. Each sample selected for laboratory analysis will be packaged for transportation as described in Section 2.3.5.

2.3.4 SAMPLE DEPTH INTERVALS

Soil samples will be collected from all borings drilled. The samples will be collected at the surface (grab sample), and attempted at a minimum of 10-foot intervals within the vadose zone. Collection of soil samples below the water table shall be attempted; however, the sampling sequence may be dictated by drilling conditions. Soil samples will also be collected approximately 5 feet below the MSW in borings that penetrate the MSW.

2.3.5 SOIL SAMPLE SCREENING AND PACKAGING

After collection, the soil samples will be observed for the presence of contamination, and then field-screened using a PID. An examination for discoloration, odor, and the presence of sheen or non-aqueous phase liquid (NAPL) will then be made and the observations will be recorded on the Log of Exploration form. A portion of the soil sample will be placed in a sealed container (e.g., plastic reclosable bag or foil-topped plastic or glass container) and allowed to equilibrate to ambient air temperature for a minimum of 10 minutes. A PID reading will then be measured from a small puncture in the sample container and recorded on the Log of Exploration form. The presence of any odor will also be documented.

Once the field screening has been completed, the soil sample will be classified in accordance with the USCS and recorded on the Log of Exploration form. A portion of the soil sample representing the specified depth interval will be placed in a decontaminated stainless-steel bowl and homogenized using a stainless-steel spoon. Larger-sized material (gravel greater than about ¹/₄- to ¹/₂-inch in diameter) may be removed by hand sorting. The sample will then be transferred to the appropriate sample container,

labeled, and placed in a chilled cooler for transport to the laboratory. Any samples to be analyzed for VOCs will not be placed in a bowl for homogenization. Instead, the samples will be collected immediately in accordance with U.S. Environmental Protection Agency (USEPA) Method 5035A Closed System Analysis for VOCs directly from the soil sample.

The Log of Exploration form will also be used to document the following information: sampling depths, sampling methods, sample recoveries, soil types, any stratification observed, any evidence of contamination as indicated through visual observation and the use of a PID, groundwater conditions, and other pertinent information. Soil sample data may also be documented on a Soil Sample Collection form. To preserve sample integrity, sample handling and documentation will be conducted in accordance with the procedures described in Sections 2.6 and 2.7.

2.4 GROUNDWATER SAMPLING PROCEDURES

Groundwater samples will be collected for laboratory analyses from existing and new groundwater monitoring wells. This section describes the procedures for sampling groundwater from the monitoring wells.

2.4.1 SAMPLING LOCATIONS

Groundwater samples will be collected for laboratory analysis from the following wells:

- Site Wells: MW-11, MW-12b, MW-14b, MW-15, and MW-16;
- New Wells: MW-15D, MW-17, MW-18, MW-19, MW-20, MW-21S, MW-21D, MW-22S, MW-22D, MW-23, MW-24, and MW-25;
- Upgradient Wells: MW-5, MW-9, MW-10, and MW-12b; and
- Domestic Wells: Small, Camp, Kinman, and Schmidt.

The domestic and upgradient well sampling locations are shown on Figure 2. The site and new well sampling locations are shown on Figure 3.

2.4.2 MONITORING PROGRAM

The groundwater monitoring program will include the measurement of depth-to-water in each monitoring well and collection of groundwater samples from the specified sampling locations. In addition, depth-to-groundwater measurements will also be collected during each monitoring event in MW-7. Depth-to-groundwater will most likely not be measured in the domestic wells.

2.4.3 MONITORING FREQUENCY

Eight groundwater monitoring events will be conducted for the RI during a one-year period. Each groundwater monitoring event will be conducted between 30 and 45 days apart until the program is complete.

2.4.4 MONITORING WELL SAMPLE COLLECTION METHODS

Groundwater samples will be collected from the monitoring wells with dedicated (preferable) or portable (less likely) groundwater sampling pumps. The following procedures will be used to collect groundwater samples from the site, new, and upgradient groundwater monitoring wells:

- Before sampling, depth-to-water will be measured to the nearest 0.01 feet and recorded on the sample collection form. From this, the water column height in the well will be calculated.
- Specific conductivity, pH, and temperature meters will be calibrated according to manufacturer's specifications at the beginning of each sample day. Calibration data will be recorded in a log maintained for each instrument. The meters will be calibrated with solutions buffered closest to known field parameters.
- Before sampling, the well will be purged using a dedicated or decontaminated portable sampling pump. The well will not be purged at a rate that allows formation water to vigorously cascade down the sides of the screen. Purging will continue until at least three casing volumes of water have been removed, the specific conductance and temperature has stabilized within 10 percent of the proceeding value, or until the well is dry. Purge volume will be calculated based on the following formula:

1 well volume (gallons) = $\pi r^2 h \ge 7.48 \text{ gal/ft}^3$, where $\pi = 3.14$, r = inside radius of well casing in feet, h = height of water column from the bottom of the well, in feet, gal/ft³ = gallons per cubic foot.

- Purge data will be recorded on the sample collection form, including purge volume, time of beginning and termination of purging, and observations regarding color, turbidity, or other factors that may be important in evaluation of sample quality.
- Purge and decontamination water will be contained and disposed of in accordance with the procedures described in Section 2.11.
- Groundwater sampling will begin immediately following purging or, if the well purges dry, as soon as enough water is available in the well for sampling. Sample data will be recorded on the sample collection form, including sample number and time collected, the observed physical characteristics of the sample (e.g., color, turbidity, etc.), field parameters (pH, specific conductance, and temperature), and other data that may be important in the evaluation of sample quality.
- On low-yielding wells, pH, temperature, and specific conductance will be measured at the beginning and end of sampling.
- Groundwater samples will be collected for all parameters using a bailer, or a dedicated or decontaminated portable groundwater sampling pump. Clean gloves will be worn when collecting each sample.
- The sample water will be discharged slowly and carefully into appropriate sample containers to minimize aeration. Volatile organic analyses (VOA) containers will be completely filled so that no head space remains. VOA sample containers will be checked for air bubbles by turning the bottle upside down and tapping it lightly to make air bubbles move to the bottom of the sample bottle. If air bubbles are observed in any of the VOA containers, the container will be topped off (once only) or a new container used. Water for major ion or dissolved metal analyses will be collected last and field filtered through a 0.45-micron, in-line, disposable filter. A note will be made on the sample label, sample collection form, and

chain-of-custody form to indicate the sample has been field filtered. Samples will be chilled on ice immediately after sample collection.

• Duplicate samples will be collected by alternately discharging the groundwater into duplicate sample bottles. Duplicate samples will be labeled with a separate sample number and the number will be noted on the sample collection form. Duplicate samples will receive a designation unrelated to the primary sample and traceable to the sample location only through sample collection forms and log notation.

All sampling will be conducted in accordance with the appropriate provisions of the project SP

HASP.

2.4.5 DOMESTIC WELL SAMPLE COLLECTION METHODS

Groundwater samples will be collected from the domestic wells using the exiting pumps and discharge apparatus available on the premise. The following unique procedures will be used to collect the groundwater samples from the domestic wells:

- The groundwater sample will be collected directly from the nearest spigot after the wellhead or pressure tank.
- Before sampling, the well will be purged using the existing pump for a minimum of 10 minutes. Purge data will be recorded on the sample collection form, including time of beginning and termination of purging; pH, temperature, and specific conductance measurements; and observations regarding color, turbidity, or other factors that may be important in evaluation of sample quality.
- Groundwater sampling will begin immediately following purging as described in Section 2.4.3.

2.5 LANDFILL GAS MONITORING AND SAMPLING

2.5.1 MONITORING PROGRAM

Field testing will be performed at two existing LFG wells (GW-5 and GW-6) to establish the baseline conditions in refuse areas where active LFG collection is not being performed, and three LFG wells (GW-2, GW-3, and GW-4) to establish baseline conditions within the Area 6 refuse where active LFG collection is currently being performed. Additionally, seven new LFG monitoring wells (GW-7S, GW-7D, GW-8, GW-9, GW-10, GW-11, and GW-12) will be monitored at the north, east, and west perimeters of the landfill area. The following parameters will be monitored at each gas well:

- Methane (CH₄)
- Carbon Dioxide (CO₂)
- Oxygen (O₂)
- Gas Pressure
- Barometric Pressure

Additionally the operating parameters of the flare station and 11 existing extraction wells in Area 6 will be monitored for vacuum and flow rate. Extraction well valve position will also be noted.

 CH_4 , CO_2 , and O_2 percentages, as well as gas pressure and barometric pressure will be measured using a LandTec GEM 2000 Gas Analyzer. The instrument will be properly calibrated according to manufacturer instructions each day prior to gas monitoring activities. The gas wells will be monitored by connecting the GEM 2000 using silicone tubing and a water trap to the well head.

To ensure that representative measurements are collected, the gas wells will be purged until the CH_4 , CO_2 , and O_2 percentages have stabilized. To provide an adequate purge rate, purging will be conducted using the GEM 2000 (purge rate of 300 milliliters/minute [ml/min]). Purge times will be calculated for each well based on construction details.

Gas pressure and barometric pressure will be measured at the well head prior to the purging of each well. CH_4 , CO_2 , and O_2 percentages will be monitored every ¹/₄ well volume purged from the respective gas well. It will be assumed that the parameters have stabilized when they vary by less than 10% for three consecutive measurements. The final recorded measurements will include the stabilized CH_4 , CO_2 , and O_2 percentages.

Gas monitoring will be performed every other month for a period of eight months (four monitoring events) to assess seasonal variability. If CH_4 , greater than 2% is detected in GW-10, monthly monitoring may be conducted at that location.

2.5.2 AREA 2 BARHOLE MONITORING

A barhole-probe survey will be conducted at Area 2 to evaluate the potential for LFG occurrence and migration. Five locations around the perimeter and two locations within Area 2 will be selected for monitoring. A 1-inch diameter steel casing with a 6-inch steel mesh screen will be driven at each of the seven locations to a depth of 1.5 to 2 feet with a slide hammer. Polyethylene tubing will be placed within the casing, extending from the screened zone to the surface. A GEM 2000 will be connected to the tubing and the temporary well will be monitored for CH_4 , CO_2 , and O_2 , static pressure, and barometric pressure. A minimum of one well volume will be evacuated prior to recording measurements. The well will be purged until CH_4 , CO_2 , and O_2 measurements have stabilized (when they vary by less than 10% over three measurements). Measurements will be recorded at each ¹/₄ well volume.

2.5.3 GAS SAMPLING PROCEDURES

One round of gas samples will be collected from Gas Wells GW-5, GW-6, GW-7S, GW-7D, GW-8, GW-9, GW-10, GW-11 and GW-12 for laboratory analysis of VOCs. The gas samples will be collected in a specially-prepared canister (Summa canister) and analyzed for VOCs by gas chromatography/mass spectrometry in accordance with USEPA Method TO-15. Laboratory certified Summa canisters (6 liter volume), flow controllers, and Teflon Tubing will be acquired from the analytical laboratory for collection of the gas samples.

Prior to sampling the respective gas well will be purged according to the procedures discussed in the previous section until the CH_4 , CO_2 , and O_2 percentages have stabilized. The flow controller will then be connected to the gas well and a passive integrated sample will be collected over a 1-hour sampling period. The gas pressure of the Summa canister will be recorded prior to, during, and after the collection of the gas sample. The gas sample will be shipped to the analytical laboratory under standard chain-of-custody procedures within the 14-day hold time.

2.5.4 VACUUM RADIUS INFLUENCE TESTING

Vacuum radius influence testing of the current LFG extraction system may be conducted, based on the results of the following preliminary evaluations of the existing LFG extraction system. First the vacuum, flow rate, and valve position at each of the 11 extraction wells in Area 6 will be recorded. The pressure will then be monitored in Wells GW-2, GW-3, and GW-4 and if the measured pressure is negative, gas probe GW-8 will be monitored to determine the presence of CH_4 . If CH_4 is present at levels greater than 2% in GW-8, the extraction system will be adjusted to increase the pressure and Well GW-8 will be re-monitored to determine the CH_4 concentration. If the CH_4 concentration does not drop to levels less than 2% after 3 days in GW-8 following system adjustment, influence testing will be performed to determine optimum spacing of the extraction wells.

If positive pressure is observed in GW-2, GW-3, and GW-4, the extraction system will be adjusted to increase the vacuum (negative pressure). If the system is not able to produce a negative pressure at the three wells, influence testing will be performed to determine optimum well spacing to mitigate gas migration and potential impacts to groundwater.

Influence testing also may be required in Area 1 and Area 5 if CH₄ concentrations exceed 2% in perimeter gas Wells GW-7S, GW-7D, or GW-9.

Testing will identify a radius of influence from each test well at different vacuum pressures. Gas observation wells will be needed approximately 50 feet and 100 feet from the test well. Additional wells may need to be constructed if there are no wells located close to the test well.

Each extraction well and the two observation wells will have a Pitot tube installed at the wellhead for testing pressure differential or a Magnehelic gauge will be used. One blower will be set up at the extraction well to draw a water column vacuum of 1 to 3 inches. The two or more observation wells adjacent to each extraction well will be monitored at 12-hour intervals to record the vacuum and a GEM 2000 will be used to monitor CH_4 , CO_2 , and O_2 in each extraction well, also at 12-hour intervals. Testing will continue for 24 hours, then the vacuum will be increased to 4 to 7 inches of water and monitoring will continue in the observation and extraction wells. The vacuum will be increased a third time to 10 inches of water after 48 hours and monitoring will continue for another 24 hours.
2.5.5 VAPOR INTRUSION MODELING

Well GW-10 will be located as close as possible to the foundation of the Household Hazardous Waste building to determine if LFG is present adjacent to the structure. Building monitoring for CH_4 (using a flame ionization detector) and collection of VOC samples would be conducted if CH_4 is detected at levels greater than 5% or VOC analysis indicates the presence of LFG in Well GW-10. Subsequent under-slab testing (by coring the building slab) may also be conducted based on the interior monitoring results.

Vapor Intrusion Modeling will be performed if the Soil Gas Screening Levels for the Model Toxics Control Act (MTCA) Method C shown in Table B-1 of the *Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action* (Ecology 2009) are exceeded. The Johnson and Ettinger Vapor Intrusion Model or an equivalent model will be used to conduct the modeling.

2.6 SAMPLE TRANSPORTATION AND HANDLING

The transportation and handling of soil, groundwater, and gas samples will be accomplished in a manner that protects the integrity of the sample and also prevents release of hazardous substances from the samples. Samples will be kept in coolers on ice until delivery to the analytical laboratory. All samples will be logged on a chain-of-custody (COC) form that will accompany each shipment of samples to the laboratory.

2.7 SAMPLE CUSTODY AND DOCUMENTATION

The primary objective of sample custody is to create an accurate, written record that can be used to trace the possession and handling of samples so that the equality and integrity of each sample is maintained from collection until completion of all required analyses. Adequate sample custody will be achieved by means of approved field and analytical documentation. Such documentation includes the COC record that is initially completed by the sampler and is, thereafter, signed by those individuals who sequentially accept custody of the sample. A sample is in custody if at least one of the following is true:

- It is in someone's physical possession.
- It is in someone's view.
- It is secured in a locked container or otherwise sealed so that tampering will be evident.
- It is kept in a secured area, restricted to authorized personnel only.

Sample control and COC in the field and during transportation to the laboratory will be conducted in general conformance with the procedures described below:

• As few persons as possible will handle samples.

- Sample bottles will be obtained new or pre-cleaned from the laboratory performing the analyses.
- The sampler will be personally responsible for the completion of the COC record and the care and custody of samples collected until the samples are transferred to another person or dispatched properly under COC rules.
- The coolers in which the samples are shipped will be accompanied by the COC record identifying their contents. The original COC record and the laboratory copy will accompany the shipment (sealed inside the shipping container). The other copy will be retained by the responsible party.
- Coolers will be sealed with strapping tape for shipment to the laboratory. The method of shipment, name of courier, and other pertinent information will be entered in the "remarks" section of the COC record and traffic report.

When samples are transferred, the individuals relinquishing and receiving the samples will sign the COC form and record the date and time of transfer. The sample collector will sign the form in the first signature space. Each person taking custody will observe whether the shipping container is correctly sealed and in the same condition as noted by the previous custodian. Any deviations in the procedure will be noted on the appropriate section of the COC record.

All documentation and other project records will be safeguarded to prevent loss, damage, or alteration. If an error is made on a document, the necessary corrections will be made by drawing a single line through the error, and entering the correct information. The erroneous information will not be obliterated. Corrections will be initialed and dated and, if necessary, a footnote explaining the correction will be included. Errors will be corrected by the person who made the entry, whenever possible.

2.8 CHEMICAL ANALYSES

This section describes the chemical analyses to be conducted on the soil, groundwater, and gas samples collected at the subject property. Laboratory analyses will be performed by an Ecology-accredited laboratory, accredited for appropriate parameters and media, in accordance with Chapter 173-50 WAC (Ecology 2002).

2.8.1 SOIL SAMPLES

Soil samples selected for laboratory analysis will be analyzed for VOCs using USEPA Method 8260.

2.8.2 GROUNDWATER SAMPLES

The site well samples and samples from all new monitoring wells will be analyzed for VOCs, and the following conventional chemistry constituents: calcium, sodium, magnesium, potassium, sulfate, chloride, manganese, iron, ammonia, nitrate, alkalinity, total organic carbon (TOC), and total dissolved solids (TDS). Samples collected from the upgradient and domestic wells will be analyzed for VOCs. The laboratory analytical methods are as follows:

- Standard VOCs will be analyzed by USEPA Method 8260. Wells that show no detectable levels of vinyl chloride at the standard method reporting level (MRL) of 0.5 micrograms per liter (μ g/L) will be analyzed by USEPA Method 8260 SIM to reach an MRL of 0.02 μ g/L.
- Total calcium, iron, manganese, magnesium, potassium, and sodium will be analyzed by USEPA Method 6010C.
- Chloride, nitrate, and sulfate will be analyzed by Standard Method (SM) 300.0.
- Alkalinity will be analyzed by SM 2320B.
- Ammonia will be analyzed by SM 4500.
- TOC will be analyzed by USEPA Method 415.1.
- TDS will be analyzed by SM 2540C.

During the first groundwater monitoring event, groundwater samples collected from site wells MW-11, MW-14b, and MW-15 will be analyzed for WAC 173-350-990 Appendix III parameters. The sampling and analysis plan for subsequent sampling events will be modified to incorporate detected Appendix III constituents that exceed a MTCA screening level. The laboratory analytical methods are as follows:

- Dissolved metals (antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, nickel, selenium, silver, thallium, tin, vanadium, and zinc) will be analyzed by USEPA Method 6010C.
- Total mercury will be analyzed by USEPA Method 7470A.
- Organochlorine pesticides will be analyzed by USEPA Method 8081A.
- PCBs (Aroclors) will be analyzed by USEPA Method 8082.
- Organophosphorus compounds will be analyzed by USEPA Method 8141A.
- Chlorinated herbicides will be analyzed by USEPA Method 8151A.
- VOCs will be analyzed by USEPA Method 8260C.
- Semivolatile organic compounds will be analyzed by USEPA Method 8270D.
- Total cyanide and sulfide will be analyzed by SM 4500.

2.8.3 LANDFILL GAS SAMPLES

LFG samples will be analyzed by the laboratory for VOCs by USEPA Method TO-15.

2.9 AQUIFER TESTING

Aquifer testing will be conducted to determine a sustainable pumping rate, specific yield, transmissivity, hydraulic conductivity, and storage coefficient of the first encountered aquifer beneath the

landfill. The aquifer testing will also be conducted to assess the hydraulic connection between the hydrostratigraphic zones screened in MW-3 and MW-15. Aquifer testing will consist of four parts:

- 1. Baseline water-level survey;
- 2. Step-discharge pumping tests;
- 3. 24-hour constant-discharge pumping test, and
- 4. Water-level recovery test.

Monitoring Well MW-15D will be used as the extraction well. Monitoring Wells MW-15 and MW-3 (at a minimum) will be used as water-level observation wells.

The water levels in the wells will be measured with pressure transducers. The pressure transducer measurements will be recorded with a data logger at logarithmic time intervals during the duration of the tests. Water discharges will be pumped into the leachate evaporation ponds for disposal.

2.10 EQUIPMENT DECONTAMINATION

The decontamination procedures described below are to be used by field personnel to clean drilling, sampling, and related field equipment. Deviation from these procedures must be documented in field records.

2.10.1 SAMPLING EQUIPMENT

All sampling equipment used (i.e., stainless-steel bowls, stainless-steel spoons, etc.) will be cleaned using a three-step process, as follows:

- 1. Scrub surfaces of equipment that would be in contact with the sample with brushes using an Alconox solution.
- 2. Rinse and scrub equipment with clean tap water.
- 3. Rinse equipment a final time with deionized water to remove tap water impurities.

Decontamination of the reusable sampling devices will occur between the collection of each sample. Decontamination of sampling equipment that is suspected to have come into contact with free-phase liquid or that contains a visible sheen will be scrubbed with Simple-Green (or other appropriate solvent or multi-purpose cleaner) prior to cleaning by the above described procedures. In addition to these decontamination processes, any sampling or monitoring equipment used in a domestic well will be rinsed in a bleach solution.

2.10.2 DRILLING RIG

The drilling equipment that are used downhole, or that come in contact with material and equipment going downhole, will be cleaned by high-pressure wash before use, between each exploration point, and at the completion of the project.

2.11 RESIDUAL WASTE MANAGEMENT

This section describes the waste management of the soil, purge water, and decontamination water generated during this investigation.

2.11.1 SOIL CUTTINGS

Soil cuttings generated from Areas 1, 2, or 5 and from off-site agricultural areas will be placed in 55-gallon drums or other containers and disposed of in the active solid waste disposal area (Area 7). Soil cuttings generated from boring locations outside of the waste disposal areas may be deposited on the ground near the boring or disposed of in Area 7.

2.11.2 Well Development, Purge, and Decontamination Water

Purge and well development water from upgradient and domestic wells will be discharged to the ground surface. Additionally, any well that has historical analytical data showing constituent concentrations less than the MTCA Method A or B screening levels will be discharged to the ground surface.

The following waters generated during the project will be stored in 55-gallon drums stationed at each well head pending a review of the laboratory analytical results:

- New downgradient or off site well development, purge, and decontamination water.
- Purge water from site, downgradient or off –site wells that have constituent concentrations greater than the MTCA Method A or B screening levels.

Waters that have constituent concentrations greater than the MTCA Method A or B screening levels will be disposed of in the landfill's leachate evaporation pond. Based on at least two sets of laboratory analytical results, waters that have constituent concentrations less than the MTCA screening levels may be discharged to the ground surface and the drums may be removed from the well head area. The City may also opt to discharge the waters directly into the leachate evaporation pond prior to the receipt and evaluation of the analytical results. The water will be transported by the City using available equipment from the landfill, or by a contractor employed by the City.

2.12 SURVEYING

Site features will be surveyed by a registered surveyor and tied into the existing site benchmark. Each boring or test pit location will be surveyed for ground surface elevations to the nearest 0.1 feet, and horizontal position to the nearest 1.0 feet.

The top of each monitoring well PVC casing will be surveyed for horizontal (plus or minus 1.0 foot) and vertical (plus or minus 0.01 feet) control. A small notch will be filed into the well casing rim indicating the surveyed point. Vertical surveys will be of third-order accuracy. The horizontal datum will be the Washington State Plane Coordinate System. The vertical datum will be the site-specific Landfill

Datum with a conversion to National Geodetic Vertical Datum of 1988 provided. The Site specific Landfill Datum is based on an elevation of 832.13 on the brass monument located near the southwest corner of the landfill (established in 1994).

3.0 QUALITY ASSURANCE PROJECT PLAN

This QAPP establishes quality control (QC) procedures and QA criteria to meet the Data Quality Objectives (DQOs) set forth for the soil, groundwater, and landfill gas sampling to be conducted as described in Section 2. This QAPP was developed in accordance with the Ecology *Guidelines for Preparing Quality Assurance Project Plans for Environmental Studies* (Ecology 2004).

3.1 LABORATORY DATA QUALITY OBJECTIVES

The DQOs for the field activities described in Section 2 are to obtain the type and quantity of data in a manner such that the data are of sufficient quality to meet project objectives, as well as to maximize accuracy, reproducibility, and comparability of data between sampling events. The quality of the field sampling methods and laboratory data will be assessed using the principle data quality indicators of precision, accuracy, representativeness, completeness, and comparability (PARCC) as defined in Ecology and USEPA guidance (Ecology 2004, USEPA 1998). Data quality assurance criteria are described below and presented in Table 1.

The quality of analytical data generated is assessed by the frequency and type of internal QC checks developed for analysis type. Laboratory results will be evaluated by reviewing results for analyses of method blanks, matrix spikes, duplicate samples, laboratory control samples, calibrations, performance evaluation samples, and interference checks as specified by the specific analytical methods.

3.1.1 PRECISION

Precision measures the reproducibility of measurements under a given set of conditions. Specifically, it is a quantitative measure of the variability of a group of measurements compared to their average values. Analytical precision is measured through matrix spike/matrix spike duplicate (MS/MSD) samples for organic analysis and through laboratory duplicate samples for inorganic analyses.

Analytical precision measurements will be carried out on project-specific samples at a minimum frequency of one per laboratory analysis group of approximately 20 samples, as practical. Laboratory precision will be evaluated against quantitative relative percent difference (RPD) performance criteria, presented in Table 1.

Field precision during groundwater and air sampling will be evaluated by the collection of field duplicates in groundwater and air at a minimum frequency of one per laboratory analysis group or 1 duplicate in 20 samples (5%). As stated in Section 2.3.5, VOC soil sampling will be conducted in accordance with USEPA Method 5035A, with soil samples collected with a corer directly from the split spoon sampler or sonic core. This method is used to prevent of loss of VOCs via volatilization during soil homogenization that would be performed for collection and analysis of other compounds. Therefore, as

the soil samples are not homogenized to truly access field precision and sample heterogeneity, a modified quality control approach will be used to evaluate field precision in soil. During sampling, the soil collected in the split spoon will be visually inspected. If the soil sampling interval appears to be homogenous across the sample interval, two VOC sample cores (approximately 5 grams of soil) will be collected adjacent to one another to assess the precision between the two locations. If the soil appears heterogeneous across the sample interval (e.g., different soil types, staining, etc.), then a laboratory duplicate will be requested for the specific sample batch. There are no performance criteria for field precision, as it is an inherent function of the media sampled Therefore, data will not be qualified based solely on field duplicate precision.

Precision measurements can be affected by the nearness of a chemical concentration to the method detection limit, where the percent error (expressed as RPD) increases. Therefore, precision criteria will be used to evaluate data only when analyte concentrations are greater than five times the laboratory quantitation limit. The equations used to express precision are as follows:

$$\text{RPD} = \frac{(\text{C}_1 - \text{C}_2) \times 100\%}{(\text{C}_1 + \text{C}_2)/2}$$

Where:

RPD = relative percent difference C_1 = larger of the two observed values C_2 = smaller of the two observed values

3.1.2 ACCURACY

Accuracy is an expression of the degree to which a measured or computed value represents the true value. Field accuracy is controlled by adherence to sample collection procedures outlined in earlier sections of this document.

Analytical accuracy may be assessed by analyzing "spiked" samples with known standards (surrogates, laboratory control samples, and/or matrix spike) and measuring the percent recovery. Accuracy measurements on matrix spike samples will be carried out at a minimum frequency of 1 in 20 samples per matrix analyzed. Because MS/MSDs measure the effects of potential matrix interferences of a specific matrix, the laboratory will perform MS/MSDs only on samples from this investigation and not from other projects. Surrogate recoveries will be determined for every sample analyzed for organics.

Laboratory accuracy will be evaluated against quantitative laboratory control sample, matrix spike, and surrogate spike recovery using limits from Table 2 for each applicable analyte. Accuracy can be expressed as a percentage of the true or reference value, or as a percent recovery in those analyses

where reference materials are not available and spiked samples are analyzed. The equation used to express accuracy is as follow:

$$\%R = \frac{(S - U) \times 100\%}{Csa}$$

Where:

%R = percent recovery

S = measured concentration in the spiked aliquot

U = measured concentration in the unspiked aliquot

 C_{sa} = actual concentration of spike added

3.1.3 **Representativeness**

Representativeness expresses the degree to which sample data accurately and precisely represent a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Care will be taken in the design of the sampling program to ensure sample locations are selected properly, sufficient numbers of samples are collected to accurately reflect conditions at the location(s), and samples are representative of the sampling location(s). A sufficient volume of sample will be collected at each sampling location to minimize bias or errors associated with sample particle size and heterogeneity.

3.1.4 COMPARABILITY

Comparability is a qualitative parameter expressing the confidence with which one data set can be compared to another, either older or younger, set of data or data generated by another laboratory. In order to insure results are comparable, samples will be analyzed using standard USEPA methods and protocols as described in *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods* (USEPA 2007). Calibration and reference standards will be traceable to certified standards and standard data reporting formats will be employed. Data will also be reviewed to verify that precision and accuracy criteria have been achieved and, if not, that data have been appropriately qualified.

3.1.5 COMPLETENESS

Completeness is a measure of the amount of data that is determined to be valid in proportion to the amount of data collected. Completeness will be calculated as follows:

$$C = \frac{Na \times 100}{N}$$

Where:

C = completeness Na = number of acceptable data points

N = total number of data points

The data quality objective for completeness for all components of this project is 95%. Data that have been qualified as estimated because the quality control criteria were not met will be considered valid for the purpose of assessing completeness. Data that have been qualified as rejected will not be considered valid for the purpose of assessing completeness.

3.2 LABORATORY ANALYSIS AND TESTING

Soil, groundwater, and landfill gas samples will be analyzed for the constituent groups identified above in Section 2.8. Analytical methods and requirements are presented in Tables 2 and 3. Table 3 includes sample size requirements, container type, preservation method, and holding times for the soil, groundwater, and landfill gas analytes. Table 2 includes analytical methods, method detection limits (MDLs), and reporting limits (also referred to as Practical Quantitation Limits [PQLs]). Standard Ecology and USEPA sample preparation, cleanup, and analytical methods will be used for all chemical analyses. The laboratory internal QAPP and standard operating procedures will provide data quality procedures at a level sufficient to meet the analytical DQOs, discussed above in Section 3.1.

3.2.1 DETECTION LIMITS

The analytical methods identified in this Work Plan result in the lowest analytically achievable MDLs and PQLs for groundwater and landfill gas. The lowest analytically achievable limits were selected in order to meet conservative MTCA Method B Cleanup Levels for groundwater and indoor air. For a smaller group of groundwater and landfill gas analytes, however, even the most sensitive laboratory methodologies will be unable to achieve MTCA Method B limits. The selected analytical method for VOCs for the soil analysis results in standard, normally accepted, MDLs and PQLs. The method for soil has been selected in order to identify source areas within the landfill and therefore ultra low-level reporting limits are not required. Table 2 presents the target reporting limits and the project data quality assurance criteria for each analytical method as performed by TestAmerica Analytical Testing Corporation. These reporting limits are goals only, insofar as instances may arise where high sample concentrations, non-homogeneity of samples, or matrix interferences preclude achieving the desired reporting limit and associated QC criteria. In such instances, the laboratory will report the reason for any deviation from these reporting limits.

3.3 QUALITY CONTROL SAMPLING

Sampling procedures for this investigation are described in detail in Section 2.0 of this document. Field and laboratory quality control procedures for the sampling are described in detail below.

3.3.1 FIELD QUALITY CONTROL SAMPLES

To measure if any cross contamination has occurred, trip blanks will be included in each cooler with samples being analyzed for VOCs to ensure the sample containers do not contribute to any detected analyte concentrations and to identify any artifacts of improper sample handling, storage, or shipping.

Although validation guidelines have not been established by USEPA for field quality control samples, the analysis of these samples is useful in identifying possible problems resulting from sample collection or sample processing in the field. All field quality control samples will be documented in the field logbook and verified by the QA Manager, or designee.

3.3.2 LABORATORY QUALITY CONTROL PROCEDURES

3.3.2.1 Laboratory Quality Control Criteria

Results of the QC samples from each sample delivery group will be reviewed by the analyst immediately after a sample group has been analyzed. The QC sample results will then be evaluated to determine whether control limits have been exceeded. If control limits are exceeded in the sample group, the Project Manager will be contacted immediately, and corrective actions (e.g., method modifications followed by reprocessing the affected samples) will be initiated prior to processing a subsequent group of samples.

All primary chemical standards and standard solutions used in this project will be traceable to documented, reliable, commercial sources. Standards will be validated to determine their accuracy by comparison with an independent standard. Any impurities identified in the standard will be documented.

The following sections summarize the procedures that will be used to assess data quality throughout sample analysis.

3.3.2.2 Initial and Continuing Calibration

Multipoint initial calibration will be performed on each instrument at the start of the project, after each major interruption to the analytical instrument, and when any ongoing calibration does not meet control criteria. Ongoing calibration will be performed daily for organic analyses and with every sample batch for conventional parameters (when applicable) to track instrument performance.

Instrument blanks or continuing calibration blanks provide information on the stability of the baseline established. Continuing calibration blanks will be analyzed immediately prior to continuing calibration verification at a frequency of one continuing calibration blank for every 10 samples analyzed at the instrument for inorganic analyses and every 12 hours for organic analyses. If the ongoing calibration is out of control, the analysis must come to a halt until the source of the control failure is eliminated or reduced to meet control specifications. All project samples analyzed while instrument calibration was out of control will be reanalyzed.

3.3.2.3 Laboratory Duplicates

Analytical duplicates provide information on the precision of the analysis and are useful in assessing potential sample heterogeneity and matrix effects. Analytical duplicates are subsamples of the original sample that are prepared and analyzed as a separate sample. A minimum of 1 duplicate will be analyzed per sample group or for every 20 samples, whichever is more frequent.

3.3.2.4 Matrix Spikes and Matrix Spike Duplicates

Analysis of MS samples provides information on the extraction efficiency of the method on the sample matrix. By performing MSD analyses, information on the precision of the method is also provided for organic analyses. A minimum of 1 MS/MSD will be analyzed for every sample group or for every 20 samples, whichever is more frequent. MS/MSD analyses will be performed on project-specific samples (i.e., using samples from other projects is not permitted).

3.3.2.5 Laboratory Control Samples

A laboratory control sample is a method blank sample carried throughout the same process as the samples to be analyzed, with a known amount of standard added. The blank spike compound recovery assesses analytical accuracy in the absence of any sample heterogeneity or matrix effects

3.3.2.6 Surrogate Spikes

All project samples analyzed for organic compounds will be spiked with appropriate surrogate compounds as defined in the analytical methods. Surrogate recoveries will be reported by the laboratories; however, no sample result will be corrected for recovery using these values.

3.3.2.7 Method Blanks

Method blanks are analyzed to assess possible laboratory contamination at all stages of sample preparation and analysis. A minimum of 1 method blank will be analyzed for every extraction batch or for every 20 samples (10 samples for conventional parameters), whichever is more frequent.

3.4 DATA REDUCTION, VALIDATION AND MANAGEMENT

Initial data reduction, evaluation, and reporting at the laboratory will be carried out as described in the appropriate analytical protocols and the laboratory's QA Manual. QC data resulting from methods and procedures described in this document will also be reported.

3.4.1 DATA REDUCTION AND LABORATORY REPORTING

The laboratory will be responsible for internal checks on data reporting and will correct errors identified during the QA review. Close contact will be maintained with the laboratories to resolve any QC problems in a timely manner. The analytical laboratories will be required, where applicable, to report the following:

- **Project/Case Narrative.** This summary, in the form of a cover letter, will discuss problems, if any, encountered during any aspect of analysis. This summary should discuss, but not be limited to, QC, sample transport/shipment, sample storage, and analytical difficulties. Any problems encountered (actual or perceived) and their resolutions will be documented in as much detail as necessary.
- **Sample Identification.** Records will be produced that clearly match all blind duplicate QA samples with laboratory sample identification.
- **Chain-of-Custody Records.** Legible copies of the custody forms will be provided as part of the data package. This documentation will include the time of receipt and condition of each sample received by the laboratory. Additional internal tracking of sample custody by the laboratory will also be documented.
- **Sample Results.** The data package will summarize the results for each sample analyzed. The summary will include the following information when applicable:
 - Field sample identification code and the corresponding laboratory identification code:
 - Sample matrix
 - Date of sample extraction
 - Date and time of analysis
 - Weight and/or volume used for analysis
 - Final dilution volumes or concentration factor for the sample
 - Percent moisture in solid samples
 - Identification of the instrument used for analysis
 - Method reporting and quantitation limits
 - Analytical results reported with reporting units identified
 - All data qualifiers and their definitions
 - Electronic data deliverables
- Quality Assurance/Quality Control Summaries. This section will contain the results of all QA/QC procedures. Each QA/QC sample analysis will be documented with the same information required for the sample results (refer to above). No recovery or blank corrections will be made by the laboratory. The required summaries are listed below; additional information may be requested.
- **Method Blank Analysis.** The method blank analyses associated with each sample and the concentration of all compounds of interest identified in these blanks will be reported.
- **Surrogate Spike Recovery.** All surrogate spike recovery data for organic compounds will be reported. The name and concentration of all compounds added, percent recoveries, and range of recoveries will be listed.
- **Matrix Spike Recovery.** All matrix spike recovery data for metals and organic compounds will be reported. The name and concentration of all compounds added, percent recoveries, and range of recoveries will be listed. The RPD for all duplicate analyses will be reported.
- Matrix Duplicate. The RPD for all matrix duplicate analyses will be reported.
- **Blind Duplicates.** Blind duplicates will be reported in the same format as any other sample. RPDs will be calculated for duplicate samples and evaluated as part of the data quality review.

3.4.2 DATA VALIDATION

Schwyn will review the laboratory reports for internal consistency, transmittal errors, laboratory protocols, and for adherence to the data quality objectives as specified in this QAPP. A Level 1/Tier 1 Compliance Screening data validation will be performed on analytical data and will include the following:

- Verification that the required analytical methods have been utilized.
- Evaluation of package completeness.
- Verification that sample numbers and analyses match those requested on the COC Record.
- Review of method-specified preservation and sample holding times.
- Verification that the required detection limits and reporting limits have been achieved.
- Verification that the field duplicates, matrix spikes/matrix spike duplicates, and laboratory control samples were analyzed at the proper frequency.
- Verification of analytical precision and accuracy via replicate analysis and analyte recovery values.
- Verification that the surrogate compound analyses have been performed and meet QC criteria.
- Verification that the laboratory method blanks are free of contaminants.

Data validation will be based on the QC criteria as recommended in the methods identified in this QAPP and in the National Functional Guidelines for Inorganic and Organic Data Review (USEPA 2004 and 2008).

Data usability, conformance with the DQOs, and any deviations that may have affected the quality of the data, as well as the basis for application of qualifiers will be included in the final reporting of the data. Any required corrective actions based on the evaluation of the analytical data will be determined by the laboratory Project Manager in consultation with the Schwyn Data Validator, and may include qualification of the data or rejection of the data.

3.4.3 DATA MANAGEMENT

All data will be entered into a database used to store and query environmental chemistry results. The database will be used to store and query data as needed, and provide data to Ecology in their Environmental Information Management system. Data sets entered in Sanitas For Groundwater format that are used in the RI evaluation process will also be provided to Ecology. Field data will be entered into the database. Analytical laboratory data will be received in an electronic data deliverable format suitable for importation into the database. Both laboratory data qualifiers and external data validation qualifiers are stored in the database. The database is managed and stored in on-site and off-site servers and is subject to electronic backup.

4.0 HEALTH AND SAFETY PLAN

A HASP for implementation of field activities described in the Work Plan and this SAP is provided in Appendix E1 of this SAP. All Schwyn employees will follow the procedures described in the HASP. All subcontractors will either adopt this HASP or prepare their own HASP that is at least as protective as this plan.

5.0 REPORTING

A draft RI report will be prepared after all investigation phases of the RI are complete and the field and laboratory data are compiled and validated. The documentation will consolidate and incorporate data generated during each phase of the investigation. The report will describe general facility information, site history, RI activities, and geologic and hydrogeologic conditions; identify site-specific applicable or relevant and appropriate requirements (ARARs); and make a preliminary determination of indicator hazardous substances, the nature and extent of contamination including exposure pathways and identification of preliminary cleanup levels, points of compliance, and contaminant fate and transport.

The RI Report will be presented in draft format to Ecology for review and comment. A Final RI Report will be prepared, pursuant to discussion of comments between Ecology and the City.

6.0 REFERENCES

Washington State Department of Ecology (Ecology). 2010. *Notice of Potential Liability Under the Model Toxics Control Act for the Release of Hazardous Substances at the Sudbury Road Landfill, 414 Sudbury Road, Walla Walla, WA 99362, Facility 4446540*. Letter from the Washington State Department of Ecology Waste 2 Resources Program to Mr. Craig Sivley, City of Walla Walla Public Works Director. 29 March.

——. 2009. Guidelines for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action Review Draft. Publication No. 09-09-047. Washington State Department of Ecology. October.

———. 2004. *Guidelines for Preparing Quality Assurance Project Plans for Environmental Studies*. Publication No. 04-03-030. Washington State Department of Ecology. July.

———. 2002. *Chapter 173-50 WAC, Accreditation of Environmental Laboratories*. State of Washington Department of Ecology. 1 October.

U.S. Environmental Protection Agency (USEPA). 2008. USEPA Contract Laboratory Program, National Functional Guidelines for Organic Data Review. EPA-540/R-99/008. October.

———. 2007. *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods*. EPA Publication SW-846. Revision 6. February.

——. 2004. USEPA National Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. OSWER 9240.1-45, EPA 540-R-04-004. Office of Superfund Remediation and Technology Innovation (OSRTI). Washington, D.C. October.

———. 1998. *Guidance on Quality Assurance Project Plans*. EPA QA/G-5. United States Environmental Protection Agency, Office of Research and Development. EPA/600/R-98/018. February.

TABLE 1 DATA QUALITY ASSURANCE CRITERIA City of Walla Walla Sudbury Road Landfill

			Reporting				
Parameter	Matrix	Units	Limit/PQL'	Precision	Accuracy	Completeness	Reference
Soil Samples							
Volatile Organic Compounds	Soil	µg/kg	8 - 40	<u>+</u> 30%	<u>+</u> 50%	95%	USEPA Method 8260B
Groundwater Samples							
Volatile Organic Compounds	Water	µg/L	0.02 - 6	<u>+</u> 20%	<u>+</u> 50%	95%	USEPA Method 8260B-Low-Level
Chloride, Nitrate, Sulfate	Water	mg/L	0.5 - 0.8	<u>+</u> 20%	<u>+</u> 10%	95%	USEPA 300.0
Calcium, Iron, Magnesium, Manganese, Potassium, Sodium	Water	mg/L	0.01-1.0	<u>+</u> 20%	<u>+</u> 15%	95%	USEPA 6010
Alkalinity	Water	mg/L	4.0	<u>+</u> 20%	<u>+</u> 10%	95%	USEPA 2320B
Ammonia	Water	mg/L	3.0	<u>+</u> 25%	<u>+</u> 25%	95%	SM4500 NH3 C
Total Organic Carbon	Water	mg/L	1.0	<u>+</u> 20%	<u>+</u> 15%	95%	USEPA 415.1
Total Dissolved Solids	Water	mg/L	25	<u>+</u> 20%	<u>+</u> 20%	95%	SM2540C
Total dissolved gas - methane, ethane, ethene	Water	µg/L	1.1	<u>+</u> 30%	<u>+</u> 25%	95%	RSK 175
Appendix III Groundwater Sample	es		• •	•	- -	-	
Total Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Copper, Lead, Nickel, Selenium, Thallium Tin, Vanadium, Zinc,	Water	μg/L	0.02 – 20	<u>+</u> 20%	<u>+</u> 25%	95%	USEPA 6010
Total Mercury	Water	µg/L	0.2	<u>+</u> 20%	<u>+</u> 25%	95%	USEPA 7470A
Total Cyanide	Water	mg/L	0.01	<u>+</u> 20%	<u>+</u> 15%	95%	SM 4500 CN-E
Total Sulfide	Water	mg/L	0.05	<u>+</u> 20%	<u>+</u> 25%	95%	SM 4500 S2-D
Organochlorine Pesticides	Water	µg/L	0.01 – 0.5	<u>+</u> 30%	<u>+</u> 90%	95%	USEPA 8081
Polychlorinated Biphenyls (PCBs) - Aroclors	Water	µg/L	0.2 - 0.4	<u>+</u> 30%	<u>+</u> 50%	95%	USEPA 8082
Organophosphorus Compounds	Water	µg/L	0.2 – 1.0	<u>+</u> 30%	<u>+</u> 60%	95%	USEPA 8141
Chlorinated Herbicides	Water	µg/L	0.2 - 0.4	<u>+</u> 30%	<u>+</u> 80%	95%	USEPA 8151

TABLE 1 DATA QUALITY ASSURANCE CRITERIA City of Walla Walla Sudbury Road Landfill

			Reporting				
Parameter	Matrix	Units	Limit/PQL'	Precision	Accuracy	Completeness	Reference
Volatile Organic Compounds	Water	µg/L	0.5 – 100.0	<u>+</u> 30%	<u>+</u> 70%	95%	USEPA 8260B
Semivolatile Organic Compounds	Water	µg/L	10 - 100.0	<u>+</u> 30%	<u>+</u> 70%	95%	USEPA 8270
Air Samples							
Volatile Organic Compounds	Air	Ppb v/v	0.2 - 5.0	<u>+</u> 25%	<u>+</u> 30%	95%	USEPA TO15
Fixed Gases - Methane, Ethane, Ethene	Air	ppmv	20	<u>+</u> 25%	<u>+</u> 30%	95%	ASTM D1945
Total Gaseous non-methane organics	Air	ppm-c	6	<u>+</u> 30%	<u>+</u> 30%	95%	USEPA 25C
Notes:							

Notes:

1) All reporting limits shown are method Practical Quantitation Limits (PQLs) from TestAmerica, Spokane, WA, or Columbia Analytical Services, Kelso WA.

ASTM = American Society for Testing and Materials

NA = Not Applicable

USEPA = United States Environmental Protection Agency

Page 1 of 3

TABLE 2 ANALYTICAL METHODS, DETECTION AND REPORTING LIMITS City of Walla Walla Sudbury Road Landfill

Parameter	Analytical Method	Detection Limit ¹	Reporting Limit (PQL) ¹
Soil Samples	· · · · · ·	<u>.</u>	_ ,
Volatile Organic Compounds ²	USEPA Method 8260B	3.0 - 66 µg/kg	8 - 400 µg/kg
Chloroethane	USEPA Method 8260B	100 µg/kg	400 µg/kg
Chloroform	USEPA Method 8260B	10 µg/kg	40 µg/kg
1,1-Dichloroethane	USEPA Method 8260B	10 µg/kg	40 µg/kg
cis-1,2-Dichloroethene	USEPA Method 8260B	10 µg/kg	40 µg/kg
Dichlorodifluoromethane	USEPA Method 8260B	10 µg/kg	40 µg/kg
Tetrachloroethene	USEPA Method 8260B	5.0 µg/kg	20 µg/kg
Toluene	USEPA Method 8260B	10 µg/kg	40 µg/kg
Trichloroethene	USEPA Method 8260B	4.0 µg/kg	16 µg/kg
Trichlorofluoromethane	USEPA Method 8260B	10 µg/kg	40 µg/kg
Vinyl chloride	USEPA Method 8260B	2.0 µg/kg	8 µg/kg
Groundwater Samples			
Volatile Organic Compounds ²	USEPA Method 8260B Low-Level	0.025 - 2.5 μg/L	0.02 – 6 µg/L
Chloroethane	USEPA Method 8260B Low-Level	0.075 μg/L	0.25 μg/L
Chloroform	USEPA Method 8260B Low-Level	0.03 µg/L	0.10 μg/L
1,1-Dichloroethane	USEPA Method 8260B Low-Level	0.025 μg/L	0.10 µg/L
cis-1,2-Dichloroethene	USEPA Method 8260B Low-Level	0.025 μg/L	0.10 µg/L
Dichlorodifluoromethane	USEPA Method 8260B Low-Level	0.1 μg/L	0.40 µg/L
Tetrachloroethene	USEPA Method 8260B Low-Level	0.025 μg/L	0.10 µg/L
Toluene	USEPA Method 8260B Low-Level	0.025 μg/L	0.10 μg/L
Trichloroethene	USEPA Method 8260B Low-Level	0.025 μg/L	0.10 µg/L
Trichlorofluoromethane	USEPA Method 8260B Low-Level	0.025 μg/L	0.10 µg/L
Vinyl chloride	USEPA Method 8260B Low-Level	0.013 µg/L	0.02 µg/L
Chloride	USEPA 300.0	0.500 µg/L	0.8 µg/L
Nitrate	USEPA 300.0	0.250 μg/L	0.5 µg/L
Sulfate	USEPA 300.0	0.400 µg/L	0.5 µg/L
рН	SM 4500 H+B	NA	NA
Conductivity	USEPA 120.1	0.312 mg/L	1.0 mg/L
Calcium	USEPA 6010	0.3 mg/L	1.0 mg/L
Iron	USEPA 6010	0.02 mg/L	0.03 mg/L
Magnesium	USEPA 6010	0.084 mg/L	0.5 mg/L
Manganese	USEPA 6010	0.003 mg/L	0.01 mg/L
Potassium	USEPA 6010	0.5 mg/L	1.0 mg/L
Sodium	USEPA 6010	0.360 mg/L	0.5 mg/L
Alkalinity	SM 2320B	1.68 mg/L	4.0 mg/L
Ammonia	SM 4500 NH3 C	2.0 mg/L	3.0 mg/L

TABLE 2 ANALYTICAL METHODS, DETECTION AND REPORTING LIMITS City of Walla Walla Sudbury Road Landfill

Parameter	Analytical Method		Reporting Limit (PQL) ¹		
Groundwater Samples	•		· · · ·		
Total Organic Carbon	USEPA 415.1	0.032 mg/L	1.0 mg/L		
Total Dissolved Solids	SM2540C	13 mg/L	25 mg/L		
Total dissolved gas - methane, ethane, ethene	RSK 175	0.55 μg/L	1.1 µg/L		
Appendix III Groundwater Samples					
Total Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Copper, Lead, Nickel, Selenium, Thallium Tin, Vanadium, Zinc,	USEPA 6010	0.09 - 5 μg/L	0.02 – 20 µg/L		
Total Mercury	USEPA 7470A	0.02 µg/L	0.2 μg/L		
Total Cyanide	SM 4500 CN-E	0.003 mg/L	0.01 mg/L		
Total Sulfide	SM 4500 S2-D	0.02 mg/L	0.05 mg/L		
Organochlorine Pesticides	USEPA 8081	0.00039 - 0.2 μg/L	0.01 – 0.5 μg/L		
Polychlorinated Biphenyls (PCBs) - Aroclors	USEPA 8082	0.49 μg/L	0.2 – 0.4 µg/L		
Organophosphorus Compounds	USEPA 8141	0.049 - 0.03 µg/L	0.2 – 1.0 μg/L		
Chlorinated Herbicides	USEPA 8151	0.049 - 0.058 μg/L	0.2 – 0.4 μg/L		
Volatile Organic Compounds	USEPA 8260B	0.032 - 7.3 μg/L	0.5 – 100.0 μg/L		
Semivolatile Organic Compounds	USEPA 8270	0.26 - 9.3 µg/L	10 – 100.0 µg/L		
Air Samples		•			
Volatile Organic Compounds	USEPA TO15	0.011 – 0.066 ppb v/v	0.2 – 5.0 ppb v/v		
Acetone	USEPA TO15	0.045 ppb v/v	5.0 ppb v/v		
Carbon Disulfide	USEPA TO15	0.066 ppb v/v	0.50 ppb v/v		
Chloroethane	USEPA TO15	0.016 ppb v/v	0.50 ppb v/v		
Chloroform	USEPA TO15	0.031 ppb v/v	0.20 ppb v/v		
1,1-Dichloroethane	USEPA TO15	0.035 ppb v/v	0.20 ppb v/v		
1,2-Dichloroethane	USEPA TO15	0.031 ppb v/v	0.20 ppb v/v		
1,1-Dichloroethene	USEPA TO15	0.035 ppb v/v	0.20 ppb v/v		
cis-1,2-Dichloroethene	USEPA TO15	0.014 ppb v/v	0.20 ppb v/v		
Dichlorofluoromethane	USEPA TO15	0.038 ppb v/v	0.50 ppb v/v		
1,2-Dichloropropane	USEPA TO15	0.014 ppb v/v	0.20 ppb v/v		
Ethylbenzene	USEPA TO15	0.022 ppb v/v	0.20 ppb v/v		
Methylene chloride	USEPA TO15	0.013 ppb v/v	0.50 ppb v/v		
Styrene	USEPA TO15	0.030 ppb v/v	0.20 ppb v/v		
Tetrachloroethene	USEPA TO15	0.011 ppb v/v	0.20 ppb v/v		
Trichloroethene	USEPA TO15	0.030 ppb v/v	0.20 ppb v/v		
Trichlorofluoromethane	USEPA TO15	0.034 ppb v/v	0.20 ppb v/v		
Toluene	USEPA TO15	0.018 ppb v/v	0.20 ppb v/v		

TABLE 2 ANALYTICAL METHODS, DETECTION AND REPORTING LIMITS City of Walla Walla Sudbury Road Landfill

Parameter	Analytical Method	Detection Limit ¹	Reporting Limit (PQL) ¹
Vinyl Chloride	USEPA TO15	0.029 ppb v/v	0.20 ppb v/v
m,p -Xylenes	USEPA TO15	0.048 ppb v/v	0.50 ppb v/v
o-Xylene	USEPA TO15	0.022 ppb v/v	0.20 ppb v/v
Fixed Gases - Methane, Ethane, Ethene	ASTM D1945	20 ppmv	20 ppmv
Total Gaseous non-methane organics	USEPA 25C	3 ppm-c	6 ppm-c

Notes:

1) All reporting limits shown are method Practical Quantitation Limits (PQLs) from TestAmerica or Columbia Analytical Services.

2) For soil and groundwater, detection and reporting limits are presented for the individual VOCs identified in the work plan as PCOCs or indicator compounds. A range of detection and reporting limits are presented for remaining VOCs to be analyzed for in the full analytical suite by TestAmerica, Spokane, Washington.

ASTM = American Society for Testing and Materials

USEPA = United States Environmental Protection Agency

ppm-c = parts per million carbon

PQL = Practical Quantitation Limit

ppb v/v = parts per billion volume to volume

ppmv = parts per million by volume

TABLE 3ANALYTICAL REQUIREMENTSCity of Walla Walla Sudbury Road Landfill

Analyses	Method	Bottle Type	Preservative	Holding Time		
Soil Samples		· · · · ·		·		
Volatile Organic Compounds ^{1,2}	USEPA 8260B	(3) 40-mL VOA vials	Methanol, cool to 6°C	14 days to analyze		
Groundwater Samples						
Volatile Organic Compounds ²	USEPA 8260B Low-Level	(3) 40 mL VOA vials	HCI, cool to 6°C	14 days to analyze		
Nitrate	USEPA 300.0	(1) 500 mL HDPE	None, cool to 6°C	48 hours to analyze		
Chloride, Sulfate	USEPA 300.0	(1) 500 mL HDPE	None, cool to 6°C	28 days to analyze		
Calcium, Iron, Magnesium, Manganese, Potassium, Sodium	USEPA 6010	(1) 500 mL HDPE	HNO3 to pH <2, cool to 6°C	180 days to analyze		
Alkalinity	SM 2320B	(1) 500 mL HDPE	None, cool to 6°C	14 days to analyze		
Ammonia	SM 4500 NH3 C	500 mL HDPE	H2SO4 to pH <2, cool to 6°C	28 days to analyze		
Total Organic Carbon	USEPA 415.1	(1) 250 mL amber glass	H2SO4 to pH <2, cool to 6°C	28 days to analyze		
Total Dissolved Solids	SM 2540C	(1) 500 mL HDPE	None, cool to 6°C	7 days to analyze		
Total dissolved gas - methane, ethane, ethene	RSK 175	(3) 40 mL VOA vial	None, cool to 6°C	14 days to analyze		
Appendix III Groundwater Sample	Appendix III Groundwater Samples					
Total Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Copper, Lead, Nickel, Selenium, Thallium Tin, Vanadium, Zinc,	USEPA 6010C	(1) 500 mL HDPE	HNO3 to pH <2, cool to 6°C	180 days to analyze		
Total Mercury	USEPA 7470A	(1) 500 mL HDPE	HNO3 to pH <2, cool to 6°C	28 days to analyze		
Total Cyanide	SM 4500 CN-E	(1) 250 mL Plastic	NaOH to pH <2, cool to 6° C	14 days to analyze		
Total Sulfide	SM 4500 S2-D	(1) 500 mL Plastic	Zinc Acetate/NaOH to pH >9, cool to 6°C	7 days to analyze		
Organochlorine Pesticides	USEPA 8081A	(1) 1L Amber Glass	None, cool to 6°C	7 days to analyze		
Polychlorinated Biphenyls (PCBs) - Aroclors	USEPA 8082	(1) 1L Amber Glass	None, cool to 6°C	7 days to analyze		
Organophosphorus Compounds	USEPA 8141A	(1) 1L Amber Glass	None, cool to 6°C	7 days to analyze		
Chlorinated Herbicides	USEPA 8151	(1) 1L Amber Glass	None, cool to 6°C	7 days to analyze		
Volatile Organic Compounds	USEPA 8260B	(3) 40 mL VOA Vial	HCI, cool to 6°C	14 days to analyze		
Semivolatile Organic Compounds	USEPA 8270	(1) 1L Amber Glass	None, cool to 6°C	7 days to analyze		

TABLE 3ANALYTICAL REQUIREMENTSCity of Walla Walla Sudbury Road Landfill

Analyses	Method	Bottle Type	Preservative	Holding Time			
Air Samples							
Volatilo Organic Compounds		Tedlar Bag or		72 hours for Tedlar bag,			
Volatile Organic Compounds	03LFA 1013	Summa Canister	Ampient temperature	30 days for Summa Canister			
Fixed Cases Mathema Ethana Ethana		Tedlar Bag or	Ambient temperature	72 hours for Tedlar bag,			
Fixed Gases - Methane, Ethane, Ethene	ASTM D1945	Summa Canister	Ampient temperature	30 days for Summa Canister			
Total Casacila par mathema arganica		Tedlar Bag or	A subject to sure the set	72 hours for Tedlar bag,			
Total Gaseous non-methane organics	05EPA 250	Summa Canister	Ampient temperature	30 days for Summa Canister			
Notes:							
1) 1 Soil samples for volatile organic compo	und analyses collected using USEF	PA Method 5035A with a soil Tefle	on corer.				
2) No head space in sample container.							
ASTM = American Society for Testing and Ma	aterials						
USEPA = United States Environmental Protection Agency							
HCI = Hydrochloric Acid							
HNO3 = Nitric Acid							
NaOH = Sodium Hydroxide							
H2SO4 = Sulfuric Acid							
HDPE = High-density polyethylene			HDPE = High-density polyethylene				

Vork Plan	Proposed Ex	ploration	Figure
ettlement Monitoring Station		✓ Highway	
andfill Extraction Well		✓ Street	
ther Wells		Intermittent	
pgradient Wells		Spring	
ompliance \	Vells	Creek	
as Monitoring Well		/// Drainage Pi	ipe
oposed Test Pit Location		Compost La	agoon
roposed Co nd Gas Well	-located Soil Boring Location	Sedimentat	ion Pond
roposed So	il Boring Location	City Propert	iy 🛛
roposed Mo	nitoring Well Location ¹	C Landfill Bou	ndary
roposed Ga	s Well Location ¹	C Landfill Area	as

APPENDIX E1

Sudbury Road Landfill Health and Safety Plan

Health and Safety Plan for Sudbury Road Landfill Remedial Action Walla Walla, Washington

December 28, 2011

Prepared for:

City of Walla Walla

Prepared by:

FLOYD|SNIDER

Two Union Square 601 Union Street, Suite 600 Seattle, WA 98101

and

4621 South Custer Spokane, WA 99223 (509) 448-3187

Table of Contents

Table	e of Co	ntents		i
1.0	Plan	Objectiv	es and Applicability	1
2.0	Emer 2.1	gency C DIAL 911 HOSPITA	ontacts and Information 1 ALAND POISON CONTROL	3 3
Figur	е 1 Нс	snital D	irections	
rigui	2.3	PROVID	E INFORMATION TO EMERGENCY PERSONNEL	3
Figur	e 2 Su	dbury R	oad Landfill Site	4
-	2.4	EMERGE Emergen	ENCY CONTACTS	4 4
3.0	Back	ground I	nformation	5
	3.1 3.2	SITE BA	CKGROUND OF WORK	5 5
4.0	Prima	ary Resp	onsibilities and Requirements	7
	4.1	HEALTH		. 7
	4.2	SITE SA		7
5.0	4.3		ig Regulkements	
J.U	naza	'a Evalua	ation and RISK Analysis	9
	51	CHEMIC	AL EXPOSURE HAZARDS	9
	5.1 5.2	CHEMIC FIRE AN	AL EXPOSURE HAZARDS ID EXPLOSION HAZARDS	. 9 12
	5.1 5.2 5.3	CHEMIC FIRE AN PHYSIC/	AL EXPOSURE HAZARDS ID EXPLOSION HAZARDS AL HAZARDS	. 9 12 12
	5.1 5.2 5.3	CHEMIC FIRE AN PHYSIC/ 5.3.1	AL EXPOSURE HAZARDS ID EXPLOSION HAZARDS AL HAZARDS Cold Stress	. 9 12 12 16
	5.1 5.2 5.3	CHEMIC FIRE AN PHYSIC/ 5.3.1 (5.3.2 I	AL EXPOSURE HAZARDS ID EXPLOSION HAZARDS AL HAZARDS Cold Stress Heat Stress	. 9 12 12 16 18
	5.1 5.2 5.3	CHEMIC FIRE AN PHYSIC/ 5.3.1 (5.3.2 I 5.3.3 I 5.3.3 I	AL EXPOSURE HAZARDS ID EXPLOSION HAZARDS AL HAZARDS Cold Stress Heat Stress Biohazards	9 12 12 16 18 19 20
6.0	5.1 5.2 5.3	CHEMIC FIRE AN PHYSIC/ 5.3.1 (5.3.2 I 5.3.3 I 5.3.4	AL EXPOSURE HAZARDS ID EXPLOSION HAZARDS AL HAZARDS Cold Stress Heat Stress Biohazards Traffic Hazards	9 12 12 16 18 19 20 21
6.0	5.1 5.2 5.3 Site M 6.1	CHEMIC FIRE AN PHYSIC/ 5.3.1 (5.3.2 I 5.3.3 I 5.3.4 Monitorir SITE MC	AL EXPOSURE HAZARDS ID EXPLOSION HAZARDS AL HAZARDS Cold Stress Heat Stress Biohazards Traffic Hazards DNITORING	9 12 12 16 18 19 20 21 21
6.0 7.0	5.1 5.2 5.3 Site M 6.1 Haza	CHEMIC FIRE AN PHYSIC/ 5.3.1 (5.3.2 I 5.3.3 I 5.3.4 Monitorin SITE MC	AL EXPOSURE HAZARDS ID EXPLOSION HAZARDS AL HAZARDS Cold Stress Heat Stress Biohazards Traffic Hazards DNITORING sis by Task	9 12 12 16 18 19 20 21 21 23
6.0 7.0 8.0	5.1 5.2 5.3 Site M 6.1 Hazar Perso	CHEMIC FIRE AN PHYSIC/ 5.3.1 (5.3.2 I 5.3.3 I 5.3.4 Monitorin SITE MC d Analys	AL EXPOSURE HAZARDS ID EXPLOSION HAZARDS AL HAZARDS Cold Stress Heat Stress Biohazards Traffic Hazards ONITORING sis by Task	9 12 12 16 18 19 20 21 21 21 23 25
6.0 7.0 8.0 9.0	5.1 5.2 5.3 Site M 6.1 Hazar Perso Site C	CHEMIC FIRE AN PHYSIC/ 5.3.1 (5.3.2 I 5.3.3 I 5.3.4 Monitorin SITE MC d Analys onal Prot	AL EXPOSURE HAZARDS ID EXPLOSION HAZARDS AL HAZARDS Cold Stress Heat Stress Heat Stress Biohazards Traffic Hazards ng DNITORING sis by Task tective Equipment	9 12 12 16 18 19 20 21 21 23 25 27
6.0 7.0 8.0 9.0	5.1 5.2 5.3 Site M 6.1 Hazar Perso Site C 9.1	CHEMIC FIRE AN PHYSIC/ 5.3.1 (5.3.2 I 5.3.3 I 5.3.4 Monitorin SITE MC onal Prot Control a SITE CO	AL EXPOSURE HAZARDS ID EXPLOSION HAZARDS AL HAZARDS Cold Stress Heat Stress Biohazards Traffic Hazards NITORING sis by Task tective Equipment NITROL	9 12 12 16 18 19 20 21 21 23 25 27 27
6.0 7.0 8.0 9.0	5.1 5.2 5.3 Site M 6.1 Hazar Perso Site C 9.1 9.2	CHEMIC FIRE AN PHYSIC/ 5.3.1 (5.3.2 I 5.3.3 I 5.3.4 Monitorin SITE MC onal Prot Control a SITE CO COMMU	AL EXPOSURE HAZARDS	9 12 12 16 18 19 20 21 21 23 25 27 27 27
6.0 7.0 8.0 9.0 10.0	5.1 5.2 5.3 Site M 6.1 Hazar Perso Site C 9.1 9.2 Deco	CHEMIC FIRE AN PHYSIC/ 5.3.1 (5.3.2 I 5.3.3 I 5.3.4 Monitorin SITE MC ontrol a SITE CO COMMU ntamina	CAL EXPOSURE HAZARDS ID EXPLOSION HAZARDS AL HAZARDS Cold Stress Heat Stress Biohazards Traffic Hazards NITORING Sis by Task tective Equipment Ind Communication NITROL NICATION tion	9 12 12 16 18 19 20 21 21 23 25 27 27 27 27 29

Signature Page			
Appr	ovals	35	
11.5	EMERGENCY EQUIPMENT	32	
11.4	EMERGENCY COMMUNICATIONS	32	
11.3	GENERAL EMERGENCIES	32	
11.2	ACCIDENTAL RELEASE OF HAZARDOUS MATERIALS OR WASTES	32	
11.1	MEDICAL EMERGENCIES	31	
	 11.1 11.2 11.3 11.4 11.5 	 11.1 MEDICAL EMERGENCIES	

1.0 Plan Objectives and Applicability

Schwyn Environmental Services, LLC (Schwyn) and Floyd|Snider developed this Health and Safety Plan (HASP) to comply with the standards prescribed by the Occupational Safety and Health Act (OSHA) and the Washington Industrial Safety and Health Act (WISHA).

The purpose of this HASP is to establish protection standards and mandatory safe practices and procedures for all personnel involved with Remedial Investigation (RI) activities at the City of Walla Walla, Washington, (City) Sudbury Road Landfill (Site). The field components of the Sudbury Road Landfill RI include geophysical survey; test pit excavation and sampling; soil boring installation and sampling; groundwater monitoring well installation, development, and sampling; landfill gas well installation and sampling; groundwater sample collection; and aquifer testing at the Site and surrounding areas. This HASP assigns responsibilities, establishes standard operating procedures, and provides for contingencies that may occur during field work activities. This plan consists of site descriptions, a summary of work activities, an identification and evaluation of chemical and physical hazards, monitoring procedures, personnel responsibilities, a description of site zones, decontamination and disposal practices, emergency procedures, and administrative requirements.

The provisions and procedures outlined by this HASP apply to all personnel on-site that are conducting work associated with the RI. Contractors, subcontractors, other oversight personnel, and all other persons involved with the field work activities described herein are required to comply with this HASP or develop and comply with their own HASP. Staff conducting field activities are required to read this HASP and indicate that they understand its contents by signing a copy of this plan.

A Health and Safety Officer (HSO) has field responsibility for ensuring that the provisions outlined herein adequately protect worker health and safety and that the procedures outlined by this HASP are properly implemented. In this capacity, the HSO will conduct regular site inspections to ensure that this HASP remains current with potentially changing site conditions. The HSO has the authority to make health and safety decisions that may not be specifically outlined in this HASP, should site conditions warrant such actions. In the event that the HSO leaves the Site while work is in progress, an alternate Site Safety Officer (SSO) will be designated. Personnel responsibilities are further described in Section 4.0.

This HASP has been reviewed by the Project Manager (PM) and the HSO prior to commencement of work activities. All personnel shall review the plan and be familiar with on-site health and safety procedures. A copy of the HASP will be on-site at all times.

This page intentionally left blank.

2.0 Emergency Contacts and Information

2.1 DIAL 911

In the event of any emergency, dial 911 to reach fire, police, and first aid.

2.2 HOSPITAL AND POISON CONTROL

Nearest Hospital Location and Telephone: Refer to Figure 1 below for map and directions to the hospital.	St. Mary's Hospital 401 West Poplar Street Walla Walla, WA 99362 (509) 525-3320 or (509) 522-5900
Washington Poison Control Center:	(800) 222-1222

Figure 1 Hospital Directions

2.3 PROVIDE INFORMATION TO EMERGENCY PERSONNEL

All project personnel should be prepared to give the following information:

Information to Give to Emergency Personnel				
Site Location: Refer to Figure 2 below for directions and map to the Site.	Sudbury Road Landfill Site 414 Sudbury Road Walla Walla, WA 99362			
Number that You are Calling from:	Look on the phone you are calling from.			
Type of Accident or Type(s) of Injuries:	Describe accident and/or incident and numbers of personnel needing assistance.			

Figure 2 Sudbury Road Landfill Site

2.4 EMERGENCY CONTACTS

After contacting emergency response crews as necessary, contact the PM/HSO to report the emergency. Contact other emergency contacts listed below as necessary.

Emergency Contacts:

Contact	Off-site Phone Number	On-site Phone Number
Craig Schwyn, PM and HSO	(509) 448-3187	(509) 499-6583
Dennis Rakestraw, Landfill Supervisor		(509)-524-4572
Frank Nicholson, Project Engineer		(509)-524-4510

3.0 Background Information

3.1 SITE BACKGROUND

Schwyn will conduct field investigation and data collection activities on behalf of the City at the Site located at 414 Sudbury Road in Walla Walla, Washington. The Site occupies approximately 125 acres of a currently operational landfill that is bounded to the north, west, and east by agricultural land and to the south by Highway US-12. The northern border of the landfill is defined by the abandoned 100-foot wide Burlington Northern Santa Fe railroad right-of-way.

The landfill is developed within a much larger City-owned parcel of land that was established for various waste management purposes before the development of the landfill. The westernmost 125 acres of the City property were set aside for landfill development. The landfill was opened in 1978 and designated for municipal solid waste (MSW), asbestos waste, and medical waste. MSW has been placed in five separate areas. Asbestos waste has been placed in two areas, and medical waste in one. The Site is currently owned by the City, who entered into a Remedial Investigation/Feasibility Study (RI/FS) Agreed Order (AO) for the Site with the Washington State Department of Ecology (Ecology) in May 2011.

3.2 SCOPE OF WORK

The scope of work for this field investigation and data collection activities is described in detail in the Work Plan. Schwyn will conduct the following field work activities:

- A geophysical survey will be performed to assess the limit of the solid waste in Areas 1, 2, and 5.
- Five borings will be drilled to assess the vertical extent of the MSW in Area 1 (two borings), Area 2 (one boring), and in the northern trench of Area 5 (three borings).
- Excavation of test pits will be performed to collect soil samples for soil characteristic analysis and soil cover thickness.
- Installation of soil borings, groundwater monitoring wells, and landfill gas monitoring wells with Sonic drilling equipment or Hollow-stem auger will be performed.
- Development of newly installed groundwater monitoring wells and re-development of previously installed monitoring wells will occur.
- Groundwater and landfill gas will be monitored.
- Groundwater, soil, and landfill gas samples will be collected for analysis.
- Aquifer testing will be performed.
4.0 Primary Responsibilities and Requirements

4.1 HEALTH AND SAFETY OFFICER

The HSO will direct all personnel involved in field work at the Site. The HSO will ensure that all personnel on-site have received the required training, are familiar with the HASP, and understand the procedures to follow should an accident and/or incident occur on-site. The HSO will advise project personnel on all potential health and safety issues of the field investigation activities to be conducted at the Site. The HSO will specify required exposure monitoring to assess site health and safety conditions, modify the Site's HASP based on field assessment of health and safety accidents and/or incidents, and recommend corrective action if needed. If the HSO observes unsafe working conditions by any personnel, the HSO will suspend all work until the hazard has been addressed.

4.2 SITE SAFETY OFFICER

The SSO will be a person dedicated to assist the HSO during field work activities and occupy the role of the HSO should the HSO be off-site. The SSO will ensure that all personnel have appropriate personal protective equipment (PPE) on-site and that PPE is properly used. The SSO will assist the HSO in field observation of personnel safety. If a health or safety hazard is observed, the SSO shall suspend all work activity. The SSO will conduct on-site safety meetings before work commences. All health and safety equipment will be calibrated daily and records kept in the field logbook. The SSO may perform exposure monitoring if needed and will ensure that equipment is properly maintained.

4.3 TRAINING REQUIREMENTS

All project personnel must comply with applicable regulations specified in the Hazardous Waste Operations (HAZWOP) Chapter 296-843 of the Washington Administrative Code (WAC), administered by the Washington State Department of Labor and Industries (L&I). Project personnel will be 40-hour HAZWOP trained and maintain their training with an annual 8-hour refresher. Personnel with limited tasks and minimal exposure potential will be required to have 24-hour training and a site hazard briefing and be escorted by a trained employee. Personnel with defined tasks that do not include potential contact with disturbed site soils, waste, or groundwater, or exposures to visible dust, are not required to have any level of hazardous waste training beyond a site emergency briefing and hazard orientation by the HSO. Project personnel will fulfill the medical surveillance program requirements.

In addition to the 40-hour course and 8-hour refreshers, the HSO will have completed an 8-hour HAZWOP Supervisor training or equivalent as required by WAC 296-843-20015. At least one person on-site during field work will have current cardiopulmonary resuscitation (CPR)/First Aid certification. All field personnel will have a minimum of 3 days of hazardous materials field experience under the direction of a skilled supervisor. Documentation of all required training will be maintained in a three-ring binder, or similar, on-site and kept either in the HSO vehicle or equipment storage bin. Additional site-specific training that covers on-site hazards, PPE requirements, use and limitations, decontamination procedures, and emergency response information as outlined in this HASP will be given by the HSO before on-site work activities begin.

5.0 Hazard Evaluation and Risk Analysis

In general, there are three broad hazard categories that may be encountered during site work: chemical exposure hazards, fire/explosion hazards, and physical hazards. Sections 5.1 through 5.3 discuss the specific hazards that fall within each of these broad categories.

5.1 CHEMICAL EXPOSURE HAZARDS

This section describes potential chemical hazards associated with test pit excavation, soil boring installation, monitoring well installation and development, landfill gas boring installation, hydraulic conductivity testing, and soil, groundwater, and landfill gas sample collection. Based on previous site investigation information, the majority of the chemicals previously detected at this Site are summarized below. Additional volatile organic compounds (VOCs) have been detected in landfill gas at the Site; however, chemicals included below are expected to be representative of hazards posed by exposure to landfill gas while conducting site activities:

- VOCs—tetrachloroethene (PCE), trichloroethene (TCE), vinyl chloride (VC), 1,1-dichloroethane (1,1-DCA), chloroform, chloroethane, cis-1,2-dichloroethene (cis-1,2-DCE), dichlorodifluoromethane (Freon-12), trichlorofluoromethane (Freon-11), and toluene in soil, groundwater, and landfill gas.
- Other potential landfill gases including carbon dioxide, methane, and hydrogen sulfide.

Human health hazards of these chemicals are presented in the table below. This information covers potential toxic effects that might occur if relatively significant acute and/or chronic exposure were to happen. This information does not mean that such effects will occur from the planned site activities. Potential routes of exposure include inhalation, dermal contact, ingestion, and eye contact. The primary exposure route of concern during site work is ingestion of contaminated water or MSW, or inhalation of landfill gas, though such exposure is considered unlikely and highly preventable. In general, the chemicals that may be encountered at this Site are not expected to be present at concentrations that could produce significant exposures. The types of planned work activities and use of monitoring procedures and protective measures will limit potential exposures at this Site. The use of appropriate PPE and decontamination practices will assist in controlling exposure through all pathways to the contaminants listed in the table below.

Chemical Hazard	DOSH Permissible Exposure Limits (8-hour TWA/STEL)	Routes of Exposure	Potential Toxic Effects
Tetrachloroethene	25 ppm/38 ppm	Inhalation, skin absorption, ingestion, skin/eye contact	Irritation to eyes, nose, and throat; nausea; flushed skin; vertigo; dizziness; incoherence; sleepiness; liver damage, cancer
Trichloroethene	50 ppm/200 ppm	Inhalation, skin absorption, ingestion, skin/eye contact	Irritation to eyes and skin; headache; vertigo; vision disturbance; fatigue; tremors/jitters; sleepiness; nausea; dermatitis; cardiac arrhythmia; paresthesia; liver injury, cancer
1,2- Dichloroethane	1 ppm/2 ppm	Inhalation, skin absorption, ingestion, skin/eye contact	Irritation to eyes; corneal opacity; central nervous system depression; nausea; dermatitis; liver, kidney, cardiovascular system damage, cancer
cis-1,2- dichloroethene	TWA: 200 ppm (790 mg/m ³)	Inhalation, skin absorption, ingestion, skin/eye contact	Irritation to eyes and respiratory system; central nervous system depression
Vinyl chloride	1 ppm/5 ppm	Inhalation, skin absorption, ingestion, skin/eye contact	Lassitude; abdominal pain; GI bleeding; enlarged liver; pallor or cyanosis of extremities, cancer
Chloroethane	TWA: 1000 ppm (2600 mg/m ³)	Inhalation, skin absorption, ingestion, skin/eye contact	Inebriation; abdominal cramps; cardiac arrhythmia; cardiac arrest; liver and kidney damage; incoordination

Chemical Hazard	DOSH Permissible Exposure Limits (8-hour TWA/STEL)	Routes of Exposure	Potential Toxic Effects
Chloroform	STEL: 2 ppm/9.78 mg/m ³	Inhalation, skin absorption, ingestion, skin/eye contact	Irritation to eyes and skin; dizziness; mental dullness; nausea; confusion; headache; lassitude; anesthesia; liver damage, cancer
Toluene	100 ppm/150 ppm	Inhalation, skin absorption, ingestion, skin/eye contact	Irritation to eyes; lassitude; euphoria; dizziness; headache; dilated pupils; anxiety; muscle fatigue; liver and kidney damage; confusion; insomnia; dermatitis
Freon-11	TWA: 1000 ppm (5600 mg/m ³)	Inhalation, skin absorption, ingestion, skin/eye contact	Dizziness; tremors; asphyxia; unconsciousness; cardiac arrhythmia; cardiac arrest; Liquid: frostbite
Freon-12	TWA: 1000 ppm (4,950 mg/mg ³)	Inhalation, skin absorption, ingestion, skin/eye contact	Dizziness; tremors; asphyxia; unconsciousness; cardiac arrhythmia; cardiac arrest; Liquid: frostbite
Carbon dioxide (CO ₂)	5,000 ppm/30,000 ppm	Inhalation	Asphixia; nausea; respiratory problems; vasodilation leading to circulatory collapse
Hydrogen Sulfide (H ₂ S)	10 ppm/15 ppm	Inhalation	Irritation to eyes and respiratory system; apnea; coma; convulsions; eye pain; dizziness; headache; lassitude; GI distress. Most individuals can smell the "rotten egg" smell at concentrations as low as 0.005 ppm.
Methane (CH ₄)	Not Established	Inhalation	Defined as an asphysiant

Chemical Hazard	DOSH Permissible Exposure Limits (8-hour TWA/STEL)	Routes of Exposure	Potential Toxic Effects
Laboratory Preservatives (HCI, MeOH, Sodium Bisulfate, HNO ₃)	Not Applicable	Dermal contact, eye contact	Irritation to skin or eyes.

Abbreviations:

bbiotiationio.	
DOSH	Department of Health and Safety
GI	Gastro-intestinal
HCI	Hydrochloric acid
HNO₃	Nitric acid
MeOH	Methanol
mg/m3	Milligrams per cubic meter
PPE	Personal protective equipment
ppm	Parts per million
STEL	Short term exposure limit
TWA	Time-weighted average

5.2 FIRE AND EXPLOSION HAZARDS

Flammable and combustible liquid hazards may occur from fuels and lubricants brought to the property to support heavy equipment or landfill gases, such as methane, encountered during field work. When on-site storage is necessary for fuels and lubricants, such material will be stored in containers approved by the Washington State Department of Transportation (WSDOT) in a location not exposed to strike hazards and provided with secondary containment. A minimum 2-A:20-B fire extinguisher will be located within 25 feet of the storage location and where refueling occurs. Any subcontractors bringing flammable and combustible liquid hazards to the Site are responsible for providing appropriate material for containment and spill response. Transferring of flammable liquids (e.g., gasoline) will occur only after making positive metal to metal connection between the containers, which may be achieved by using a bonding strap. Storage of ignition and combustible materials will be kept away from fueling operations.

This work includes drilling in a landfill, where flammable/explosive gas such as methane may be present. Absolutely *no* open flames or spark source is allowed in the work area. This includes no lit cigarettes, lighters, matches, welding torches, or other potential sources of open flames or sparks. A minimum 2-A:20-B fire extinguisher will be located within 25 feet of the work area. Additionally, a source of ventilation such as a box fan will be kept on-site as a contingency. If air monitoring thresholds described in Section 6.1 are exceeded, ventilation will be used to ensure flammable/explosive vapors are dissipated prior to continuation of work.

5.3 PHYSICAL HAZARDS

When working in or around any hazardous or potentially hazardous substances or situations, all site personnel should plan all activities before starting any task. Site

personnel shall identify health and safety hazards involved with the work planned and consult with the HSO as to how the task can be performed in the safest manner, and if personnel have any reasons for concern or uncertainty.

All field personnel will adhere to general safety rules including wearing appropriate PPE—hard hats, steel-toed boots, high-visibility vests, safety glasses, gloves, and hearing protection, as appropriate. Eating, drinking, and/or use of tobacco or cosmetics will be restricted in all work areas. Personnel will prevent splashing of liquids containing chemicals and minimize dust emissions.

The following table summarizes a variety of physical hazards that may be encountered on the Site during work activities. For convenience, these hazards have been categorized into several general groupings with recommended preventative measures.

Hazard	Cause	Prevention
Head strike	Falling and/or sharp objects, bumping hazards.	Hard hats will be worn by all personnel at all times when overhead hazards exist, such as during drilling activities and around large, heavy equipment.
Foot/ankle twist, crush, slip/trip/fall	Sharp objects, dropped objects, uneven and/or slippery surfaces.	Steel-toed boots must be worn at all times on- site while heavy equipment is present. Pay attention to footing on uneven or wet terrain and do not run. Keep work areas organized and free from unmarked trip hazards.
Hand cuts, splinters, and chemical contact	Hands or fingers pinched or crushed, chemical hazards including dermal expo- sure to laboratory sample preservatives. Cut or splinters from handling sharp/rough objects and tools.	Nitrile safety gloves will be worn to protect the hands from dust and chemicals. Leather or cotton outer gloves will be used when handling sharp-edged rough materials or equipment. Refer to preventive measures for mechanical hazards below.
Eye damage from flying materials, or splash hazards	Sharp objects, poor lighting, exposure due to flying debris or splashes.	Safety glasses will be worn at all times on-site. If a pressure washer is used to decontaminate heavy equipment, a face shield will be worn over safety glasses or goggles. Care will be taken during decontamination procedures, soil sampling, and groundwater sampling to avoid splashing, as well as when dropping equipment into decontamination water. Face shields may be worn over safety glasses if splashing is occurring during sampling, decontamination, well testing, or disposal.

Hazard	Cause	Prevention
Electrical hazards	Underground utilities, overhead utilities. Electrical cord hazards, such as well development pumps.	Utility locator service will be used prior to any investigation to locate all underground utilities. Visual inspection of work areas will be con- ducted prior to starting work. Whenever possi- ble, avoid working under overhead high vol- tage lines. Make sure that no damage to extension cords occurs. If an extension cord is used, make sure it is the proper size for the load that is being served, properly rated and inspected prior to use for defects. The plug connection on each end should be of good integrity. Insulation must be intact and extend to the plugs at either end of the cord. All portable power tools will be inspected for defects before use and must either be a double-insulated design or grounded with a ground-fault circuit interrupter (GFCI).
Mechanical hazards	Heavy equipment such as drill rigs, service trucks, mowing equip- ment, saws, drills, etc. Conducting work in road right-of-ways (on the road shoulder).	Ensure the use of competent operators, backup alarms, regular maintenance, daily mechanical checks, and proper guards. Sub- contractors will follow this HASP or supply their own HASP. All project personnel will make eye contact with operator and obtain a clear OK before approaching or working within swing radius of heavy equipment, staying clear of swing radius. Obey on-site speed limits.
Traffic hazards	Vehicle traffic and hazards when working near public right-of- ways.	When working near public access areas or on the shoulder of any roadway, orange cones and/or flagging will be placed around the work area. Safety vests will be worn at all times while conducting work. Multiple field staff will work together (buddy system) and spot traffic for each other. Avoid working with your back to traffic whenever possible. Further detail on traffic hazards is provided in Section 5.3.4 .
Damage to hearing from noise	Machinery creating more than 85 decibels TWA, less than 115 decibels continuous noise, or peak at less than 140 decibels.	Wear earplugs or protective ear covers when a conversational level of speech is difficult to hear at a distance of 3 feet; when in doubt, a sound level meter may be used on-site to doc-ument noise exposure.

Hazard	Cause	Prevention
Strains from improper lifting	Injury due to improper lifting techniques, over- reaching/ overextend- ing, lifting overly heavy objects.	Use proper lifting techniques and mechanical devices where appropriate. The proper lifting procedure first involves testing the weight of the load by tipping it. If in doubt, ask for help. Do not attempt to lift a heavy load alone. Take a good stance and plant your feet firmly with legs apart, one foot farther back than the other. Make sure you stand on a level area with no slick spots or loose gravel. Use as much of your hands as possible, not just your fingers. Keep your back straight, almost vertical. Bend at the hips, holding load close to your body. Keep the weight of your body over your feet for good balance. Use large leg muscles to lift. Push up with one foot positioned in the rear as you start to lift. Avoid quick, jerky movements and twisting motions. Turn the forward foot and point it in the direction of the eventual movement. Never try to lift more than you are accustomed to lifting. During the transfer of monitoring well purge water to the disposal area (leachate ponds), mechanical lifting devices (drum tongs or dolly) will be used to move the drums. Lifting hazards may also be minimized by pumping from drums directly to a water to the ponds.
Cold stress	Cold temperatures and related exposure.	Workers will ensure appropriate clothing, stay dry, and take breaks in a heated environment when working in cold temperatures. Further detail on cold stress is provided in Section 5.3.1.
Heat exposure	High temperatures exacerbated by PPE, dehydration.	Workers will ensure adequate hydration, shade, and breaks when temperatures are elevated. Further detail on heat stress is provided in Section 5.3.2.
Accidents due to inadequate lighting	Improper illumination.	Work will proceed during daylight hours only, or under sufficient artificial light.

Abbreviations:

HASP Hand and Safety Plan

Personal protective equipment Time-weighted average PPE

TWA

5.3.1 Cold Stress

The majority of field work is expected to be completed in spring or summer months; however, some activities such as groundwater sampling may be conducted in winter months and exposure to cold temperatures may occur. Exposure to moderate levels of cold can cause the body's internal temperature to drop to a dangerously low level, causing hypothermia. Symptoms of hypothermia include slow, slurred speech, mental confusion, forgetfulness, memory lapses, lack of coordination, and drowsiness.

To prevent hypothermia, site personnel will stay dry and avoid exposure. Site personnel will have access to a warm, dry area, such as a vehicle, to take breaks from the cold weather and warm up. Site personnel will be encouraged to wear sufficient clothing in layers such that outer clothing is wind- and waterproof and inner layers retain warmth (wool or polypropylene), if applicable. Site personnel will keep hands and feet well protected at all times. The signs and symptoms and treatment for hypothermia are summarized below.

Signs and Symptoms

- Mild hypothermia (body temperature of 98–90° F)
 - o Shivering
 - Lack of coordination, stumbling, fumbling hands
 - o Slurred speech
 - o Memory loss
 - o Pale, cold skin
- Moderate hypothermia (body temperature of 90–86° F)
 - Shivering stops
 - Unable to walk or stand
 - Confused and irrational
- Severe hypothermia (body temperature of 86–78° F)
 - Severe muscle stiffness
 - Very sleepy or unconscious
 - o Ice cold skin
 - o Death

Treatment of Hypothermia—Proper Treatment Depends on the Severity of the Hypothermia

- Mild hypothermia
 - Move to warm area.
 - o Stay active.

- Remove wet clothes and replace with dry clothes or blankets and cover the head.
- Drink warm (not hot) sugary drinks.
- Moderate hypothermia
 - All of the above, plus:
 - call 911 for an ambulance.
 - cover all extremities completely.
 - place very warm objects such as hot packs or water bottles on the victim's head, neck, chest, and groin.
- Severe hypothermia
 - Call 911 for an ambulance.
 - Treat the victim very gently.
 - Do not attempt to re-warm—the victim should receive treatment in a hospital.

Frostbite

Frostbite occurs when the skin actually freezes and loses water. In severe cases, amputation of the frostbitten area may be required. While frostbite usually occurs when the temperatures are 30°F or lower, wind chill factors can allow frostbite to occur in above-freezing temperatures. Frostbite typically affects the extremities, particularly the feet and hands. Frostbite symptoms include cold, tingling, stinging, or aching feeling in the frostbitten area followed by numbness and skin discoloration from red to purple, then white or very pale. Should any of these symptoms be observed, wrap the area in soft cloth, do not rub the affected area, and seek medical assistance. Call 911 if the condition is severe.

Protective Clothing

Wearing the right clothing is the most important way to avoid cold stress. The type of fabric also makes a difference. Cotton loses its insulation value when it becomes wet. Wool, on the other hand, retains its insulation even when wet. The following are recommendations for working in cold environments:

- Wear at least three layers of clothing.
 - An outer layer to break the wind and allow some ventilation (like Gortex or nylon).
 - A middle layer of down or wool to absorb sweat and provide insulation even when wet.
 - o An inner layer of cotton or synthetic weave to allow ventilation.
- Wear a hat—up to 40 percent of body heat can be lost when the head is left exposed.
- Wear insulated boots or other footwear.

- Keep a change of dry clothing available in case work clothes become wet.
- Do not wear tight clothing—loose clothing allows better ventilation.

Work Practices

- Drinking—Drink plenty of liquids, avoiding caffeine and alcohol. It is easy to become dehydrated in cold weather.
- Work Schedule—If possible, heavy work should be scheduled during the warmer parts of the day. Take breaks out of the cold in heated vehicles.
- Buddy System—Try to work in pairs to keep an eye on each other and watch for signs of cold stress.

5.3.2 Heat Stress

To avoid heat-related illness, current regulations in WAC 296-62-095 through 296-62-09570 will be followed during all outdoor work activities. These regulations apply to any outdoor work environment from May 1 through September 30, annually, when workers are exposed to temperatures greater than 89°F when wearing breathable clothing, greater than 77°F when wearing double-layered woven clothing (such as jackets or coveralls) or greater than 52°F when wearing non-breathing clothing such as chemical resistant suits or tyvek. Schwyn will identify and evaluate temperature, humidity, and other environmental factors associated with heat-related illness including, but not limited to, the provision of rest breaks that are adjusted for environmental factors, and encourage frequent consumption of drinking water. Drinking water will be provided and made readily accessible in sufficient quantity to provide at least 1 quart per employee per hour. All personnel will be informed and trained for responding to signs or symptoms of possible heat-related illness and accessing medical aid.

Employees showing signs or demonstrating symptoms of heat-related illness must be relieved from duty and provided with a sufficient means to reduce body temperature, including rest areas or temperature-controlled environments (i.e., air conditioned vehicle). Any employee showing signs or demonstrating symptoms of heat-related illness must be carefully evaluated to determine whether it is appropriate to return to work or if medical attention is necessary.

Any incidence of heat-related illness must be immediately reported to the employer directly through the HSO.

Condition	Signs/Symptoms	Treatment
Heat cramps	Painful muscle spasms and heavy sweating.	Increase water intake, rest in shade/cool environment.
Heat syncope	Brief fainting and blurred vision.	Increase water intake, rest in shade/cool environment.

The signs, symptoms, and treatment of heat stress include the following:

Dehydration	Fatigue, reduced move- ment, headaches.	Increase water intake, rest in shade/cool environment.
Heat exhaustion	Pale and clammy skin, possible fainting, weak- ness, fatigue, nausea, diz- ziness, heaving sweating, blurred vision, body temperature slightly elevated.	Lie down in cool environ- ment, increase water intake, loosen clothing, and call 911 for ambulance transport if symptoms continue once in cool environment.
Heat stroke	Cessation of sweating, skin hot and dry, red face, high body temperature, unconsciousness, collapse, convulsions, confusion or erratic behavior, life threatening condition.	Medical Emergency! Call 911 for ambulance trans- port. Move victim to shade and immerse in water.

If site temperatures are forecast to exceed 85°F and physically demanding site work will occur in impermeable clothing, the HSO will promptly consult with a certified industrial hygienist and a radial pulse monitoring method will be implemented to ensure that heat stress is properly managed among the affected workers. The following heat index chart indicates the relative risk of heat stress.

Temperature (°E)

									. ,							
	80	82	84	86	88	90	92	94	96	98	100	102	104	106	108	110
40	80	81	83	85	88	91	94	97	101	105	109	114	119	124	130	136
45	80	82	84	87	89	93	96	100	104	109	114	119	124	130	137	
50	81	83	85	88	91	95	99	103	108	113	118	124	131	137		
55	81	84	86	89	93	97	101	106	112	117	124	130	137			
60	82	84	88	91	95	100	105	110	116	123	129	137				
65	82	85	89	93	98	103	108	114	121	128	136					
70	83	86	90	95	100	105	112	119	126	134						
75	84	88	92	97	103	109	116	124	132							
80	84	89	94	100	106	113	121	129								
85	85	90	96	102	110	117	126	135								
90	86	91	98	105	113	122	131									
95	86	93	100	108	117	127										
100	87	95	103	112	121	132										

5.3.3 Biohazards

Bees and other insects may be encountered during the field work tasks. Persons with allergies to bees will make the HSO aware of their allergies and will avoid areas where bees are identified. Controls such as repellents, hoods, nettings, masks, or other

personal protection may be used. Report any insect bites or stings to the HSO and seek first aid, if necessary.

Site personnel will maintain a safe distance from any urban wildlife encountered, including stray dogs, raccoons, and rodents, to preclude a bite from a sick or injured animal. Personnel will be gloved and will use tools to lift covers from catch basins and monitoring wells.

5.3.4 Traffic Hazards

While performing work conducted nearby or alongside a roadway, signs, signals, and barricades should be utilized. Because signs, signals, and barricades do not always provide appropriate protection, spotters will be used to ensure traffic is monitored during work activities along active roadways. All workers will wear high visibility reflective neon orange or yellow vests.

6.0 Site Monitoring

The following sections describe site monitoring techniques and equipment that are to be used during site field activities. The HSO, or a designated alternate, is responsible for site control and monitoring activities.

6.1 SITE MONITORING

Air monitoring will be conducted during all intrusive field activities such as drilling or test pitting. The following equipment will be used to monitor air quality in the breathing zone during work activities:

Monitoring Instrument	Calibration Frequency	Parameters of Interest	Sampling Frequency
Photoionization detector (PID)	Daily	VOCs	During drilling activities
H ₂ S meter	As recommended by manufacturer	H ₂ S	During drilling activities
Combined gas/O ₂ meter	As recommended by manufacturer	CO ₂ , CH ₄ , H ₂ S, O ₂	During drilling activities

Abbreviations:

CH₄ Methane

CO₂ Carbon dioxide

H₂S Hydrogen sulfide

O₂ Oxygen

VOC Volatile organic compound

The following action levels are established to determine the appropriate level of personal protection to be used during field activities:

Instrument	Reading in Breathing Zone	Action	Comments
PID	5 PID units greater than background for 5 minutes	Upgrade to Level C PPE (air purifying respirator with organic vapor cartridge).	Alternatively, employ engineering controls (ventilation) or leave location and return at a later time.
PID	100 PID units greater than background for 5 minutes	Leave location pending further evaluation by HSO or SSO.	
H2S meter	Greater than	Leave location pending	

	10 ppm	further evaluation by HSO or SSO.	
Combined Gas/O2 meter	Greater than 5% by volume	Leave location pending further evaluation by HSO or SSO.	

Abbreviations:

H_2S	Hydrogen sulfide
HSO	Health and Safety Officer
02	Oxygen
PID	Photoionization detector
PPE	Personal protective equipment
SSO	Site Safety Officer

Visual monitoring for dust will be conducted by the HSO to ensure that inhalation of contaminated soil particles does not occur. Water may be used to suppress any dust clouds generated during work activities. The concentrations of VOCs encountered at the Site are lower than the exposure limits developed by OSHA. Since the concentrations of VOCs are low, and all work will be conducted outdoors in an open-air ventilated environment, vapor concentrations are not expected to exceed allowable levels.

The HSO will visually inspect the work site at least daily to identify any new potential hazards. If new potential hazards are identified, immediate measures will be taken to eliminate or reduce the risks associated with these hazards.

7.0 Hazard Analysis by Task

The following section identifies potential hazards associated with each task listed in Section 3.2 of this HASP. Tasks have been grouped according to the types of potential hazard associated with them.

Task	Potential Hazard		
Installation of soil borings, test pits, and wells; soil sampling	Exposure to landfill gas (flammable and explosive); loud noise; overhead hazards; head, foot, ankle, hand, and eye hazards; electrical and mechanical hazards; lifting hazards; dust inhalation hazards; potential dermal or eye exposure to site contaminants in groundwater and soil; fall hazards; heat and cold exposure hazards; and biological hazards.		
Groundwater sampling from monitoring wells, well development, decontamination, and aquifer testing	Chemical hazards include potential dermal or eye exposure to site contaminants in groundwater. Physical hazards include slip, trip, or fall hazards; heat and cold exposure hazards; and biological hazards.		
Installation of landfill gas wells, landfill gas sampling	Exposure to landfill gas (flammable and explosive); loud noise; overhead hazards; head, foot, ankle, hand, and eye hazards; electrical and mechanical hazards; lifting hazards; dust inhalation hazards; potential dermal or eye exposure to site contaminants in groundwater and soil; fall hazards; heat and cold exposure hazards; and biological hazards.		
Transfer of monitoring well purge water to leachate lagoons.	Chemical hazards include potential dermal or eye exposure to site contaminants in groundwater. Physical hazards including head, foot, ankle, hand, and eye hazards; and lifting hazards.		

8.0 Personal Protective Equipment

All work involving heavy equipment, drilling, and well installation will proceed in Level D PPE, which shall include hard hat, steel-toed boots, hearing protection, eye protection, gloves, and sturdy cotton outer work clothing or removable cotton outer clothing.

All personnel will be properly fitted and trained in the use of PPE. The level of protection will be upgraded by the HSO whenever warranted by conditions present in the work area. The HSO will periodically inspect equipment such as gloves and hard hats for defects.

For all work involving potential exposure to soil, groundwater, or landfill gas, workers will wear nitrile gloves and Level D PPE.

High visibility vests will be worn during all work activities.

9.0 Site Control and Communication

9.1 SITE CONTROL

Unauthorized personnel will not be allowed in the work areas. Access to the work site will be restricted to designated personnel. The purpose of site control is to minimize the public's potential exposure to site hazards.

Work area controls and decontamination areas will be provided to limit the potential for chemical exposure associated with site activities and transfer of contaminated media from one area of the Site to another. The support zone (SZ) for the Site includes all outside the work area and decontamination areas. An exclusion areas zone/contamination reduction zone (EZ/CRZ) and SZ will be set up for work being conducted within the limits of the Site. Only authorized personnel shall be permitted access to the EZ/CRZ. For work being conducted in public access areas, the EZ/CRZ around work locations will be demarcated with cones and/or barrier hazard tape as needed to effectively limit unauthorized access. Staff will decontaminate all equipment and gear as necessary prior to exiting the CRZ. Decontamination areas will be constructed with plastic sheeting on the ground, to reduce transport of contaminated soils from the EZ to the SZ.

9.2 COMMUNICATION

All site work will occur in teams and the primary means of communication on-site and with off-site contacts will be via cell phones. An agreed-upon system of alerting via air horns and/or vehicle horns may be used around heavy equipment to signal an emergency if shouting is ineffective.

10.0 Decontamination

Decontamination procedures will be strictly followed to prevent off-site spread of contaminated soil or water. The HSO will assess the effectiveness of decontamination procedures by visual inspection. Refer to the Sampling Analysis Plan/Quality Assurance Project Plan (SAP/QAPP; Appendix E of the RI/FS Work Plan) for additional details.

Before eating, drinking, and use of tobacco, hands must be thoroughly washed.

11.0 Emergency Response and Contingency Plan

This section defines the emergency action plan for the Site. It will be rehearsed with all site personnel and reviewed whenever the plan is modified or the HSO believes that site personnel are unclear about the appropriate emergency actions.

A muster point of refuge (that is clear of adjacent hazards and not located downwind of site investigation activities) will be identified by the HSO and communicated to the field team each day. In an emergency, all site personnel and visitors will evacuate to the muster point for roll call. It is important that each person on-site understand their role in an emergency, and that they remain calm and act efficiently to ensure everyone's safety.

After each emergency is resolved, the entire project team will meet and debrief on the incident—the purpose is not to fix blame, but to improve the planning and response to future emergencies. The debriefing will review the sequence of events, what was done well, and what can be improved. The debriefing will be documented in a written format. Modifications to the emergency plan will be approved by the HSO.

Reasonably foreseeable emergency situations include medical emergencies, accidental release of hazardous materials (such as gasoline or diesel) or hazardous waste, and general emergencies such as vehicle accident, fire, thunderstorm, and earthquake. Expected actions for each potential incident are outlined below.

11.1 MEDICAL EMERGENCIES

In the event of a medical emergency, the following procedures should be used:

- Stop any imminent hazard if you can safely do so.
- Remove ill, injured, or exposed person(s) from immediate danger if moving them will clearly not cause them harm and no hazards exist to the rescuers.
- Evacuate other on-site personnel to a safe place in an upwind or cross-wind direction until it is safe for work to resume.
- If serious injury or a life-threatening condition exists, call **911** for paramedics, fire department, and police.
 - Clearly describe the location, injury, and conditions to the dispatcher. Designate a person to go to the site entrance and direct emergency equipment to the injured person(s). Provide the responders with a copy of this HASP to alert them to chemicals of potential concern.
- Trained personnel may provide first aid/cardiopulmonary resuscitation if it is necessary and safe to do so. Remove contaminated clothing and PPE only if this can be done without endangering the injured person.
- Call the HSO.
- Immediately implement steps to prevent recurrence of the accident.

Refer to Figure 1 in Section 2.2 for a map showing the nearest hospital location with phone number and address.

11.2 ACCIDENTAL RELEASE OF HAZARDOUS MATERIALS OR WASTES

- 1. Evacuate all on-site personnel to a safe place in an upwind direction until the HSO determines that it is safe for work to resume.
- 2. Instruct a designated person to contact the PM and confirm a response.
- 3. Contain the spill, if it is possible and can be done safely.
- 4. If the release is not stopped, contact 911 to alert the fire department.
- 5. Contact the Washington State Emergency Response Commission at 1-800-258-5990 to report the release.
- 6. Initiate cleanup.
- 7. The PM will submit a written report to Ecology in the event of a reportable release of hazardous materials or wastes.

11.3 GENERAL EMERGENCIES

In the case of fire, explosion, earthquake, or imminent hazards, work shall be halted and all on-site personnel will be immediately evacuated to a safe place. The local police/fire department shall be notified if the emergency poses a continuing hazard by calling 911.

In the event of a thunderstorm, outdoor work will be discontinued until the threat of lightning has abated.

During the incipient phase of a fire, the available fire extinguisher(s) may be used by persons trained in putting out fires, if it is safe for them to do so. Contact the fire department as soon as feasible.

11.4 EMERGENCY COMMUNICATIONS

In the case of an emergency, an air horn or car horn will be used as needed to signal the emergency. One long (5-second) blast will be given as the emergency/stop work signal. If the air horn is not working, a vehicle horn and/or overhead waving of arms will be used to signal the emergency. In any emergency, all personnel will evacuate to the designated refuge area and await further instruction.

11.5 EMERGENCY EQUIPMENT

The following minimum emergency equipment will be readily available on-site and functional at all times:

- First Aid Kit—contents approved by the HSO, including two blood borne pathogen barriers.
- Sorbent materials capable of absorbing the volume of liquids/fuels brought to the Site by Schwyn personnel.

- Portable fire extinguisher (2-A:10 B/C minimum).
- A copy of the current HASP.

12.0 Approvals

Project Manager	Date	
Project Health & Safety Officer	Date	

14.0 Signature Page

I have read this Health and Safety Plan and understand its contents. I agree to abide by its provisions and will immediately notify the HSO if site conditions or hazards not specifically designated herein are encountered.

Name (Print)	Signature	Date	Company/Affiliation
		·	
	,		