

REVISED SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT

PREPARED BY:

THE RILEY GROUP, INC. 17522 BOTHELL WAY NORTHEAST BOTHELL, WASHINGTON 98011

PREPARED FOR:

MR. MATT SEGREST ALAMO MANHATTAN BELLEVUE, LLC 2808 FAIRMOUNT STREET, SUITE 200 DALLAS, TEXAS 75201

RGI PROJECT NO. 2012-107L

REVISED SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT

MAIN STREET APARTMENTS DEVELOPMENT 10505 MAIN STREET BELLEVUE, WASHINGTON 98004

JANUARY 18, 2017

Corporate Office 17522 Bothell Way Northeast Bothell, Washington 98011 Phone 425.415.0551 ♦ Fax 425.415.0311

www.riley-group.com

TABLE OF CONTENTS

1	INTRODUCTION	.1
	1.1 PURPOSE	1
	1.2 PROPERTY AND SITE LOCATIONS	1
	1.3.1 Property Location	. 1
	1.3.2 Site Location	2
	1.3 PROPERTY HISTORY	2
	1.3.1 Former Parcel 0005 (Eastern Portion of Property)	. 2
	1.3.2 Former Parcel 0015 (Western Portion of Property)	2
	1.4 Previous Investigations	2
	1.4.1 Remedial Action (2013)	.3
	1.4.2 Groundwater Characterization (2014-2015)	.4
	1.4.3 Correspondences with Ecology	.4
2	SCOPE OF WORK	.5
2		c
3	REGULATORY ANALYSIS OF PROPERTY CONDITIONS UNDER MITCA	.0
	3.1 MTCA CLEANUP REGULATION	6
	3.2 SOIL CLEANUP LEVELS	6
	3.3 GROUNDWATER CLEANUP LEVELS	6
	3.4 VAPOR INTRUSION SCREENING LEVELS	7
4	SUPPLEMENTAL REMEDIAL INVESTIGATION	.7
	4.1 Utility Locatina & Concrete Corina	7
	4.2 SUBSURFACE INVESTIGATION	7
	4.3 GROUNDWATER MONITORING WELL SURVEYING	8
	4.4 GROUNDWATER MONITORING WELL SAMPLING EVENTS	9
	4.5 INVESTIGATION DERIVED WASTE	10
5	ANALYTICAL LABORATORY ANALYSES	L O
	5.1 GROUNDWATER ANALYTICAL RESULTS	11
	5.1.1 On-Property Groundwater Analytical Results	11
	5.1.2 Off-Property Groundwater Analytical Results	11
6	FINDINGS	12
		12
	6.2 SOIL	13
	6.3 GROUNDWATER	14
7		
/		14
	7.1 VAPOR INTRUSION REGULATIONS	14
	7.2 IDENTIFICATION OF COMPOUNDS FOR VAPOR INTRUSION ASSESSMENT	15
	7.2.1 Compounds Identified in Soil	15
	7.2.2 Compounds Identified in Groundwater	15
	7.3 SOIL VAPOR INTRUSION ASSESSMENT	16
С	DNCLUSIONS & RECOMMENDATIONS	18

LIST OF APPENDICES

Figure 1	Property Vicinity Map
Figure 2 Property Rep	presentation With Groundwater Monitoring Well Locations
Figure 3 Property Representation With	Previous Investigation Locations and Select Analytical Data
Figure 4 Property Re	epresentation With Subsurface Silt Contours and Elevations
Figure 5	Groundwater Elevation Contours August 29, 2016
Figure 6	Groundwater Elevation Contours October 28, 2016
Figure 7	Groundwater Elevation Contours January 4, 2017
Figure 8Post 2013 RA Groundwater Analyt	tical Data With Estimated Extent of Remaining Soil Impacts
Figure 9	Cross Section B-B' With Select Soil and Groundwater Data
Table 1	Summary of Groundwater Analytical Laboratory Results
Appendix A	2013 Remedial Action Report Tables, Figures, and Borelogs
Appendix B	MTCA Method B Evaluation Spreadsheets
Appendix C	Borelogs
Appendix D	Investigation Derived Waste Disposal Documentation
Appendix E	Analytical Laboratory Reports

1 INTRODUCTION

1.1 PURPOSE

The Riley Group, Inc. (RGI) is pleased to present this Supplemental Remedial Investigation Report (SRI Report) documenting additional environmental work performed on the Alamo Manhattan Main Street project located at 10505 Main Street in Bellevue, Washington (herein referred to as the Property). The general location of the Property is depicted on Figure 1.

The Property is currently owned by Alamo Manhattan Bellevue, LLC (Alamo) and has been enrolled in the Washington State Department of Ecology (Ecology) Voluntary Cleanup Program (VCP) since December of 2013. The Property is identified by Ecology as the Alamo Manhattan Main Street project with VCP project number NW2811.

RGI has had frequent correspondence with Ecology over the past few years and most recently Ecology has requested the SRI be performed to determine if the Property qualifies for regulatory closure.

Alamo has retained RGI to complete the environmental work requested by Ecology. The work presented herein is intended to supplement the work documented in previous investigations and remedial action reports with the ultimate objective of obtaining a No Further Action determination with an Environmental Covenant (NFA/EC) for the Property from Ecology.

This work documented in this SRI Report was performed in general accordance with the Model Toxics Control Act (MTCA) regulation, the *Supplemental Remedial Investigation Work Plan* and RGI's *Proposal for Additional Tasks Required by Ecology* and *Change Order No. 1* dated August 23 and October 26, 2016, respectively. Authorization to proceed with this work was granted by Mr. Matt Segrest of Alamo Manhattan Bellevue, LLC.

1.2 PROPERTY AND SITE LOCATIONS

The Property is defined as the area situated with the Property boundaries. The Site is defined as the location were soil and/or groundwater containing containing concentrations of contaminants of potential concern (COPCs) exceeding applicable MTCA cleanup levels have come to be located, irrespective of the Property boundary. The Property and Site locations are depicted on Figure 2 and discussed below.

1.3.1 PROPERTY LOCATION

The Property is located at 10505 Main Street in Bellevue, Washington and is located on the United States Geologic Survey (USGS) Bellevue South, Washington, 7.5-Minute Topographic Map at an elevation of approximately 100 feet above mean sea level (See Figure 1).

The Property is located in the southwest quarter of Section 32 of Township 25 North, Range 5 East of the Willamette Meridian. The King County tax parcel number associated with the Property is 5223300005 and the Property occupies approximately 1.45 acres of land. Prior to the redevelopment of the Property in 2013 as the Main Street Apartments, the Property consisted of two King County tax parcels. Parcel 5223300005 (Parcel 0005) represented the eastern half of the Property and parcel 5223300015 (Parcel 0015) represented the western half of the Property.

The Property is generally flat except for a steep slope along the southern boundary of the Property. The surrounding area also slopes down to the northwest. Typical property use in the vicinity is a mixture of retail and residential properties.

1.3.2 SITE LOCATION

The Site consists of two Areas (Area 1 and Area 2), which are both situated on the southwestern portion of the Property. In Area 1, diesel-range total petroleum hydrocarbons (TPH) impacted soil is present between approximately elevations 74' to 62'. In Area 2, diesel-range TPH and PCE impacted soil is present between approximately elevations 62' and 59'. The Site is confined to within the Property boundaries.

1.3 PROPERTY HISTORY

Prior to 1946, the Property consisted of undeveloped, vegetated land. The Property history of both parcels is discussed below.

1.3.1 FORMER PARCEL 0005 (EASTERN PORTION OF PROPERTY)

Development was first observed on Parcel 0005 in 1946 when a building was constructed for use as an automobile repair garage, gas station, and a sales facility. Historical records indicated that this building was originally heated by an oil burner, but no indications as to how the fuel was stored was encountered.

Historical tax assessor records and previous reports indicated that three 1,000-gallon tanks and dispenser pumps were present. Historical records also indicated that underground hydraulic hoists were also present at one time. Historical city directories indicated this building was previously occupied by a gas station, auto repair facilities, car dealerships and other general retail businesses. The building on the eastern portion of the Property was demolished in 2013 prior to the redevelopment of the Property as the current Main Street Apartments.

1.3.2 FORMER PARCEL 0015 (WESTERN PORTION OF PROPERTY)

Development was first observed on Parcel 0015 in 1953 when a building was constructed and primarily used for retail stores. Historical records indicated that this building was originally heated by an oil burner, but no indications as to how the fuel was stored were encountered during previous investigations.

Historical records and previous reports indicated that a 2,000-gallon UST and dispenser pump were present. Previous uses considered environmentally significant included use as a dry cleaning facility, machine shop, Puget Power, McCall Oil Fuel, RP Automotive, Bellevue Camera Shop, Overlake Photo Company photo developing, and B&B Auto Parts. The building was demolished in 2013 prior to the redevelopment of the Property as the current Main Street Apartments.

1.4 PREVIOUS INVESTIGATIONS

Several documents pertaining to previous environmental investigations on the Property have been prepared and are described in the following documents:

- Phase I Environmental Site Assessment Report (Phase I ESA); Aaron Bothers Retail Property dated March 21, 2012 by RGI.
- Phase II Subsurface Investigation Report (Phase II); Proposed Main Street Development dated July 24, 2012 by RGI.
- Additional Groundwater Monitoring Well Installation and Sampling Report (Well and Sampling Report) Proposed Main Street Development dated June 19, 2013 by RGI.
- Phase I Environmental Site Assessment Update Report (Phase I ESA Update) Main Street Development dated June 26, 2013 by RGI.

- Excavation Work Plan, Main Street Development (RA Work Plan) dated July 17, 2013 by RGI.
- Remedial Action Report (RA Report) dated June 13, 2014 by RGI.
- *Groundwater Characterization Work Plan* (GC Work Plan) dated October 30, 2014 by RGI.
- Scoundwater Characterization Report (GC Report) dated July 21, 2015 by RGI.
- Further Action at the following Site: Alamo Manhattan Main Street (2016 Opinion Letter) dated June 6, 2016 by Ecology.
- Method B Groundwater Evaluation Technical Memorandum (GE Memorandum) dated July 21, 2016 by RGI.
- Supplemental Remedial Investigation Work Plan (2016 Work Plan) dated August 11, 2016 by RGI.
- Response to Ecology June 6, 2016 Opinion Letter Technical Memorandum (2016 Response Memorandum) dated August 11, 2016. This document was included as an attachment to the 2016 Work Plan.
- Draft Focused Feasibility and Disproportionate Cost Analysis dated January 18, 2017 by RGI.

All environmental investigation work conducted prior to the RA in 2013 is summarized in the RA Report. Summaries of the work performed during the RA and subsequent investigations are provided below.

1.4.1 REMEDIAL ACTION (2013)

RGI completed a RA on the Property in 2013 where soil was remediated in seven areas in accordance with the MTCA regulation. Groundwater monitoring wells RW1 and RW2 were also installed. Copies of tables, figures, and borelogs pertaining to the RA Report are included in Appendix A.

Based on the results of the RA, RGI drew the following conclusions:

- All soil contamination on the Property had been fully remediated to a depth of approximately 23 feet below ground surface (bgs) or elevation 74'. The cleanup levels selected for COPCs in soil were the MTCA Method A Soil Cleanup Levels for Unrestricted Land Uses (WAC 173-340-740). A total of approximately 1,434 tons of contaminated soil were removed from the Property and disposed of in accordance with applicable regulations.
- A limited amount of diesel-range total petroleum hydrocarbons (TPH) remains on the Property at depths between approximately 23 and 32 feet bgs (elevations 74' and 65') on the southwestern portion of the Property. A limited amount of diesel-range TPH and tetrachloroethene (PCE) impacted soil is also present at approximately 36 feet bgs. None of the observed soil impacts have migrated off the Property.
- Groundwater was encountered between approximately 42 and 50 feet bgs (elevations 56' to 48') on the western portions of the Property. Benzene was detected in groundwater at concentrations that slightly exceeded the MTCA Method A Cleanup Levels for Ground Water on the southwestern portion of the Property and the extent of this benzene-impacted groundwater appeared to be confined to a relatively small area. The observed groundwater impacts did not represent a threat to human health and the environment.

- > The impacted soil and groundwater that remained on the Property did not represent a vapor intrusion risk for Property.
- No further action was necessary at the Property.

Based on the results of the RA, RGI and Alamo enrolled the Property into Ecology's VCP program and requested that Ecology grant a NFA determination for the Property.

After Ecology reviewed the RA report and previous investigation reports, Ecology indicated that prior to issuing a NFA determination for the Property, additional groundwater characterization would be required.

1.4.2 GROUNDWATER CHARACTERIZATION (2014-2015)

RGI completed the Groundwater Characterization on the Property between December 2014 and May of 2015. This work primarily consisted of installing, developing and sampling groundwater monitoring well MW5 off-Property to the west on 105th Avenue Southeast. This work also included groundwater sampling of wells RW1 and RW2 on the Property. The work was performed in accordance with the GC Work Plan, which was approved by Ecology prior to performing the work.

Based on the findings of this investigation, RGI drew the following conclusions;

- > The completed cleanup has met the substantive requirements of the MTCA regulation.
- Groundwater on the Property had been characterized and groundwater on the Property was in compliance with the MTCA regulation. In addition, no evidence of off-Property migration of contaminants was observed.
- RGI concluded that the limited nature and extent of any residual groundwater contamination underlying the southwest portion of the Property no longer posed a threat to human health and the environment.

RGI submitted the GC Report to Ecology for review on July 23, 2015 and requested that Ecology grant a NFA determination for the Property. On January 27, 2016, the Ecology Project Manager (PM) at the time verbally indicated to RGI that he had completed his review of all files pertaining to the Alamo Manhattan Main Street project and was recommending that the Property receive a NFA determination.

1.4.3 CORRESPONDENCES WITH ECOLOGY

On May 6, 2016, Ecology indicated that the project was being transferred to a different Ecology PM in an effort to expedite the issuance of the Ecology Opinion Letter.

On June 9, 2016, Ecology forwarded a copy of the June 2016 Opinion Letter to RGI and Alamo. Pertinent information in this letter included that Ecology indicated that additional environmental work was necessary for the Property prior to issuing a NFA determination. Ecology also indicated that they would not accept diesel-range TPH groundwater data that was obtained using silica gel cleanup.

This information contradicted what was verbally indicated to RGI in early 2016 and led to a meeting between Ecology, RGI, and Alamo Manhattan, which took place on June 16, 2016 at Ecology's Northwest Regional office in Bellevue, Washington. Pertinent points discussed during this meeting and subsequent follow-up communications included the following:

RGI and Ecology agreed that MTCA Method B was appropriate to evaluate groundwater for compliance with the MTCA regulation.

- RGI and Alamo Manhattan indicated that no additional soil or groundwater characterization was warranted for the eastern portion of the Property. Ecology subsequently agreed with RGI and Alamo after further review of Property data pertaining to the eastern portion of the Property.
- Ecology requested that the potential for vapor intrusion be evaluated using the most recent Ecology and EPA vapor intrusion guidance's and that RGI prepare an east-west cross section for the Property.
- Ecology requested that RGI conduct a SRI and subsequently prepare a Focused Feasibility Study and Disproportionate Cost Analysis (FS/DCA) to address remaining known contamination on the Property.
- Ecology requested that a Work Plan be submitted to Ecology prior to performing any additional work on the Property.

Based on what was discussed during this meeting and subsequent correspondences, RGI prepared the SRI Work Plan to install well MW6 and address all of Ecology's concerns regarding the Property. The SRI Work Plan was reviewed by Ecology and approved on August 11, 2016. The scope of work presented in this SRI report was generally consistent with the SRI Work Plan.

2 SCOPE OF WORK

The scope of work for the SRI included the following tasks:

- Performed public and private utility locating in an attempt to identify the locations of buried utility lines located beneath the Main Street Apartments building in the drilling area.
- Installed and developed groundwater monitoring well MW6 in the parking garage of the Main Street Apartments building using limited access hollow stem auger (HSA) drilling techniques. Diesel exhaust generated by the drill rig was vented to the outside during drilling.
- Retained the services of a licensed surveyor to survey the elevations at the north side of the top of the PVC casing and ground surface at MW6.
- Obtained Right-Of-Way Permit 16 139863 TE from the City of Bellevue and traffic control necessary to sample well MW5 situated on 105th Avenue Southeast.
- Collected and analyzed groundwater samples obtained from groundwater monitoring wells for COPCs during quarters 2, 3, and 4 of 2016 and quarter 1 of 2017.
- Obtained depth to groundwater data from all groundwater monitoring wells and utilized this data to generate groundwater elevations contours and determine groundwater flow direction and hydraulic gradient across the Property. RGI also performed a hydrogeological evaluation to further assess groundwater conditions and flow direction beneath the Property.
- Compared groundwater analytical results to MTCA Method B Cleanup Levels for Groundwater and calculated a MTCA Method B TPH groundwater cleanup levels in accordance with the MTCA regulation.
- Coordinated removal of Investigation Derived Waste (IDW) generated during well installation, development and sampling.

- Evaluated the vapor intrusion risk for the Property in accordance with significant changes to vapor intrusion regulations, which occurred in 2015.
- Corresponded with the Client and Ecology as necessary.
- Prepared this SRI Report presenting our findings, observations, conclusions, and recommendations.

3 REGULATORY ANALYSIS OF PROPERTY CONDITIONS UNDER MTCA

3.1 MTCA CLEANUP REGULATION

In Washington State, the Model Toxics Control Act (MTCA, RCW 70.105D), mandates that site cleanups protect human health and the environment. The MTCA Cleanup Regulation (173-340 WAC) defines the approach for establishing cleanup requirements for individual sites, including the establishment of cleanup standards and selection of cleanup actions.

The MTCA regulation provides three options for establishing generic and site-specific cleanup levels for soil and groundwater. Method A cleanup levels have been adopted for specific purposes and are intended to provide conservative cleanup levels for sites undergoing routine site characterization or cleanup actions or those sites with relatively few hazardous substances. Method B and C cleanup levels are set using a site risk assessment, which focuses on the use of "reasonable maximum exposure" assumptions based on site-specific characteristics and toxicity of COPCs.

3.2 SOIL CLEANUP LEVELS

Soil assessment was not included in the SRI due to the fact that soil on the Property has been remediated to the fullest extent possible. Soil cleanup levels compliant with the MTCA regulation were previously used to demonstrate that soil was remediated on the Property to the fullest extent practicable.

The soil cleanup was documented in great detail in the RA Report. Tables and figures summarizing previous soil analytical data and MTCA soil cleanup levels are included in Appendix A.

3.3 GROUNDWATER CLEANUP LEVELS

Groundwater samples obtained during SRI and previous investigations were previoulsy analyzed for a suite of COPCs including gasoline-, diesel-, and oil-range TPH, extractable petroleum hydrocarbons (EPH), volatile petroleum hydrocarbons (VPH), volatile organic compounds (VOCs), carcinogenic polycyclic aromatic hydrocarbons (cPAHs), and naphthalenes.

Diesel-range TPH and benzene were the only compounds detected in groundwater at concentrations above applicable groundwater cleanup levels at a few locations on the southwestern portion of the Property and are therefore considered the only Contaminants of Concern (COCs) for groundwater on the Property. However, as requested by Ecology, RGI submitted groundwater samples collected during the SRI for the additional analyses described in Section 5 in order to confirm that these are the only COCs for the Property.

Prior to June of 2016, the MTCA Method A Cleanup Levels for Groundwater were selected for evaluating groundwater quality on the Property. However beginning in June of 2016, the MTCA Method B Cleanup Levels for Groundwater were selected for determining if groundwater concentrations of COPCs were in compliance with the MTCA regulation. Ecology agreed that MTCA Method B cleanup levels are appropriate for evaluating groundwater on the Property.

In order to evaluate petroleum hydrocarbons (diesel-range TPH) using Method B, RGI utilized the Ecology *Worksheet for Calculating Potable Groundwater Cleanup Levels* (Cleanup Level Worksheet), which uses MTCA Equation 720-3 [WAC 173-340-720(4)(C)] and calculates a Method B groundwater cleanup level. This approach takes into account the additive effects of the petroleum fractions and VOCs present in the mixture. Copies of spreadsheets used to execute the calculation are included in Appendix B and groundwater analytical data and cleanup levels are summarized in Table 1.

3.4 VAPOR INTRUSION SCREENING LEVELS

A relatively isolated amount of PCE remains in soil on the southwestern portion of the Property at approximately elevation 62', which is situated approximately 16 feet below the ground floor of the existing parking garage floor. Given that PCE is considered sufficiently volatile and toxic enough to cause a vapor intrusion concern, RGI evaluated whether or not a vapor intrusion concern exists for the Property.

Ecology has established screening levels for groundwater and soil vapor that are considered protective of MTCA Method B Indoor Air Cleanup Levels. These screening levels were used to determine if there was the potential for a vapor intrusion concern for the Property. These screening levels were obtained from *Table B-1 Indoor Air Cleanup Levels, Groundwater Screening Levels, and Soil Gas Screening Levels* (Amended April 6 of 2015) of the *Draft Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action* (Draft Ecology VI Guidance) dated 2009 by Ecology. Groundwater screening levels protective of MTCA Method B Indoor Air Cleanup Levels are summarized in Table 1 and the soil vapor screening level for PCE is discussed in Section 7.

4 SUPPLEMENTAL REMEDIAL INVESTIGATION

Fieldwork associated with the SRI was performed between June of 2016 and January of 2017. Details pertaining to this work are described below.

4.1 UTILITY LOCATING & CONCRETE CORING

At least 48 hours prior to commencing with the subsurface investigation activities, RGI contacted One-Call, public locate service, to locate public underground utilities situated in the drilling location. In addition, RGI reviewed utility maps associated with the construction of the Main Street Apartments and retained the services of Applied Professional Services, Inc. (APS) to locate privately owned utilities.

After utility locating was completed, RGI retained the services of Evergreen Concrete Coring, Inc. to core concrete in the garage floor slab in the location well MW6.

4.2 SUBSURFACE INVESTIGATION

The subsurface investigation was conducted on August 24, 2016 and consisted of the installation and development of groundwater monitoring well MW6. Groundwater monitoring well construction details, subsurface conditions and the results of field screening are presented on the borelog in Appendix C.

RGI retained the services of Cascade Drilling, Inc. (Cascade) to advance one boring to approximately elevation 39', which is situated approximately 40 feet below the grade of the garage floor slab, using limited access hollow stem auger (HSA) drilling techniques. MW6 was installed in the north-central portion of the parking garage in the location indicated on Figure 2

and subsequent figures.

Diesel exhaust generated by the HSA drill rig during drilling was routed to exhaust fans situated in the southern portion of the garage using ducting and blowers.

Soil assessment was not necessary during the SRI since soil contamination was not suspected to be present in the location of MW6. Therefore, the boring was advanced directly to approximately ten feet above where groundwater was anticipated to be present without logging soils. This depth was approximately 17.5 feet below the garage floor slab (or elevation 61'). Logging at this point was necessary to accurately identify the depth that saturated soils were encountered. Starting at elevation 61', a decontaminated 18-inch long, steel split spoon sampler was inserted into the auger stem and driven through an 18-inch interval. Blow counts were recorded during sample collection. After driving the sampler a total of 18 inches or encountering refusal (i.e., >50 blows per 6-inch interval) the sampler was retrieved and the soil samples were removed from the split spoon sampler.

The soil conditions encountered during drilling were described using the Unified Soil Classification System (USCS) and subsurface conditions generally consisted of medium sand to approximately elevation 56' beneath which a silty sand layer was encountered to the maximum depth of exploration of elevation 39'. Soil was screened for the presence of VOCs using a photoionization detector (PID). Field screening did not indicate the presence of soil contamination. Groundwater was encountered at approximately elevation 49' at the time of drilling. Subsurface conditions encountered during drilling are described on the borelog presented in Appendix C.

The boring was completed as groundwater monitoring well MW6 in accordance with the well construction standards found in the Minimum Standards for Construction and Maintenance of Water Wells (Chapter 173-160 WAC).

MW6 was constructed of 2-inch diameter, flush-threaded, Schedule 40 polyvinylchloride (PVC) well casing and screen. The well screen was placed between approximately elevations 39' and 54' in order to allow the water table to intersect the well screen throughout the normal annual fluctuations in water table elevation. Flush-threaded, Schedule 40 PVC blank casing was placed from the top of the screened interval to a few inches below the grade of the garage floor slab. A sand filter pack was placed in the annulus and extended to approximately 2-feet above the top of the screened interval. Hydrated bentonite chips were placed in the annular space immediately above the sand filter pack and extended to approximately one foot below the grade of the garage floor. The well was secured with flush-completion steel protective monument set in approximately one foot of concrete. A 2-inch diameter, locking, watertight PVC well cap was used to secure the well.

After installation, the well was developed by Cascade using a combination of pumping and surging. Well development was terminated once the turbidity of the discharge water decreased to the satisfaction of RGI personnel. Approximately 30 gallons of groundwater were purged from MW6 during well development.

4.3 GROUNDWATER MONITORING WELL SURVEYING

On September 6, 2016, the Client retained the services of Bush, Roed, and Hitchings (BRH) to survey the horizontal position and vertical elevations at the north side of the PVC casing, the top of the well monument and the ground surface in the immediate vicinity of well MW6.

Vertical elevations were surveyed to the North American Vertical Datum of 1988 (NAVD88) to an accuracy of ± 0.01 foot and horizontal position was surveyed to the North American Datum of 1983 and 1991 (NAD 83/91) accuracy of ± 0.01 foot.

Page 9

4.4 GROUNDWATER MONITORING WELL SAMPLING EVENTS

On June 24, August 29 and 30, September 21, and October 28 of 2016 and January 4 of 2017, RGI collected groundwater elevation data and/or groundwater samples from groundwater monitoring wells situated in the Main Street Apartments parking garage (RW1, RW2, and MW6) and/or off-Property well MW5, which is situated adjacent to the west of the Property on 105th Avenue Southeast.

Details pertaining to groundwater sampling events are included below. Groundwater elevation contours pertaining to the August 29 and October 28, 2016 and January 4, 2017 sampling events are included on Figures 5, 6, 7, respectively. Groundwater elevations do not appear to be a good indicator of groundwater flow direction across the Property. These figures are presented for information purposes and to demonstrate why further evaluation of groundwater flow across the Property was necessary. A Preliminary Hydrogeological Evaluation was conducted for the Property and is presented in Section 6.1.

Prior to groundwater sampling, the depth to groundwater in all wells was measured from the northernmost point of the top of the well casing using an electronic water level meter.

After collection of groundwater level data, each well was purged using a submersible geosub pump and dedicated tubing. Measurements of water quality parameters (temperature, pH, conductivity, dissolved oxygen, turbidity, oxidation/reduction potential, and/or total dissolved solids) were recorded during purging to ensure that water entering the well casing had stabilized prior to sample collection. Purging continued until either water quality parameters had stabilized or three wetted casing volumes were purged from each well.

During sample collection, the flow rate of the pump was reduced to less than 100 milliliters per minute (mL/min) and groundwater was pumped directly through dedicated tubing into laboratory-supplied containers appropriate for the intended analyses.

Immediately after collection, samples were labeled and placed in an iced cooler pending submittal to the analytical laboratory under standard chain of custody protocols.

Purge water was temporarily stored in 55-gallon drums and later removed from the Property. Investigation derived waste (IDW) disposal is discussed in Section 4.5.

On June 24, 2016, RGI collected groundwater samples from wells RW1 and RW2. A total of two samples were submitted to the laboratory for analysis of COPCs. Groundwater elevation data collected from these wells prior to sampling and indicated elevations of 51.61' in RW1 and 48.90' in RW2. Groundwater elevation contours were not generated for this sampling event as only two data points were available.

On August 29 and 30, 2016, RGI collected samples from on-Property wells (RW1, RW2, and newly installed well MW6) and off-Property well MW5. In order to sample MW5, which is situated on 105th Avenue SE, RGI obtained Right of Way Street Use Permit No. 16 139863 TE from the City of Bellevue. This permit allowed RGI to sample well MW5 from August 24 through December 30 of 2016. RGI also provided the signage and traffic control services required to complete the work in accordance with the permit.

A total of four groundwater samples were submitted to the laboratory for analysis of COPCs. Groundwater elevation data was collected from all four wells and ranged from elevations 48.61' to

51.11'. Groundwater elevation contours generated from data obtained during this sampling event are presented on Figure 5.

On September 21, 2016, RGI collected groundwater elevation data from on-Property wells RW1, RW2, and MW6. Groundwater elevation data was collected from all three wells and ranged from elevations 48.50' to 50.45'. The data was determined to be consistent with the August 30, 2016 sampling event and no groundwater elevation contours were generated for this event.

On October 28, 2016, RGI collected groundwater samples from on-Property wells RW1, RW2, and MW6. A total of three groundwater samples were collected and submitted to the laboratory for analysis of COPCs. Groundwater elevation data was collected from all three wells and ranged from elevation 48.23' to 50.41'. Groundwater elevation contours generated from data obtained during this sampling event are presented on Figure 6.

On January 4, 2017, RGI collected groundwater samples from on-Property wells RW1, RW2, and MW6. A total of three groundwater samples were collected and submitted to the laboratory for analysis of COPCs. Groundwater elevation data was collected from all three wells and ranged from elevation 48.07' to 50.07'. Groundwater elevation contours generated from data obtained during this sampling event are presented on Figure 7.

4.5 INVESTIGATION DERIVED WASTE

IDW consisted of soil cuttings and decontamination/purge water generated during installation and development of well MW6 and sampling of wells during groundwater sampling events. IDW was stored in seven 55-gallon Department of Transportation (DOT) approved drums, which were appropriately labeled and temporarily stored in the southwest corner of parking garage level P4.

On September 21, 2016, three soil drums and three water drums were removed from the Property by Marine Vacuum Services, Inc. (Marvac) and transported off-Property. All IDW was removed from the Property and disposed of in accordance with applicable regulations. One drum of purge water remains in the southwest corner of the garage. Documentation pertaining to IDW disposal is included in Appendix D.

5 ANALYTICAL LABORATORY ANALYSES

During the SRI, a total of 12 groundwater samples were submitted to ALS Laboratory in Everett, Washington for one or more of the following analyses:

- Benzene, toluene, ethylbenzene, xylenes, and halogenated VOCs [PCE, trichloroethene (TCE), cis 1,2-dichloroethene (DCE), trans 1,2-DCE, 1,1-DCE, and vinyl chloride] using EPA Method 8260C.
- > Extractable petroleum hydrocarbons (EPH) using Method NWEPH.
- > Volatile petroleum hydrocarbons (VPH) using Method NWVPH.
- Carcinogenic polycyclic aromatic hydrocarbons (cPAHs) using EPA Method 8260 Select Ion Monitoring (SIM).

In addition, the following analyses were requested by Ecology for the sole purpose of comparing data to historical analytical data:

- Sasoline-range TPH using Method NWTPH-Gx.
- Diesel-range- and oil-range TPH using Northwest Method NWTPH-Dx without silica gel cleanup

All groundwater sample analytical results are summarized in Table 1 and post-2013 RA groundwater analytical results are displayed graphically on Figure 8. Copies of final analytical laboratory reports for groundwater samples collected during the SRI are included in Appendix E.

5.1 GROUNDWATER ANALYTICAL RESULTS

Groundwater samples were analyzed for COPCs from locations on-Property in wells RW1, RW2, and MW6 and off-Property to the west in well MW5.

5.1.1 On-Property Groundwater Analytical Results

A total of 12 groundwater samples were analyzed for COPCs from on-Property groundwater monitoring wells RW1, RW2, and MW6 and off-Property well MW5.

TPH (diesel-range fractions) was the only COPC detected in groundwater on the Property in the location of RW1 on June 24, 2016 and January 4, 2017. The detected concentrations were 675 μ g/L and 614 μ g/L, respectively. These concentrations were below the corresponding calculated MTCA Method B TPH groundwater cleanup levels of 795 μ g/L and 684 μ g/L. RGI utilized a conservative approach when calculating these cleanup levels using half the detection limit instead of zero for TPH fractions that were not detected at concentration above laboratory method detection limits. The spreadsheets used to calculate the MTCA Method B cleanup levels for TPH are included in Appendix B.

It should be noted that aromatic and aliphatic TPH fractions were not detected at concentrations above laboratory detection limits during the August and October groundwater sampling events. Therefore, no Method B groundwater cleanup levels were calculated for these events.

At the request of Ecology, RGI also analyzed samples for diesel-range TPH using Method NWTPH-Dx. Diesel-range TPH was detected in these samples at concentrations ranging from 400 μ g/L to 1200 μ g/L during the August and October of 2016 and January of 2017 sampling events in wells RW1 and RW2. These concentrations were flagged by the laboratory and the laboratory report indicated that these results were likely biased high due to biogenic interference. Oil-range TPH was detected in groundwater at a concentration of 280 μ g/L in the January 4, 2017 sampling event and was not detected at concentrations above laboratory detection limits in the June, August, and October of 2016 sampling events. All groundwater analytical results are summarized in Table 1. As discussed with Ecology, the data obtained using the NWTPH-Dx analytical method were obtained for comparison purposes only and the EPH/VPH data was used to demonstrate groundwater compliance with the MTCA regulation under MTCA Method B.

No other COPCs were detected in groundwater at concentrations above compound-specific laboratory detection limits during any of the four sampling events.

5.1.2 Off-Property Groundwater Analytical Results

One groundwater sample was collected and analyzed for COPCs from off-Property groundwater monitoring well MW5 on August 29, 2016. MW5 is situated adjacent to the west of the Property on 105th Avenue Southeast.

No COPCs were detected in groundwater at concentrations above compound-specific laboratory detection limits during this sampling event.

This data represented the fourth sampling event since December of 2014 for MW5. COPCs have never been detected at concentrations exceeding applicable MTCA groundwater cleanup levels in this location during any of the four sampling events. Based on these data, Ecology and RGI agreed that further groundwater sampling of MW5 was necessary.

6 FINDINGS

During the SRI and previous investigations, data was obtained and analyzed pertaining to subsurface conditions including soil and groundwater. These findings are discussed below.

Soil analytical results pertaining to contaminated soil that remains in place on the Property is summarized in the RA tables and figures included in Appendix A. The estimated extent of remaining soil contamination on the Property is displayed on Figures 8 and 9. Groundwater analytical results are summarized in Table 1 and post-2013 RA results are displayed on Figure 8. Figure 4 presents contours generated from the elevations where the silt layer was encountered on the Property. Borelogs depicting subsurface conditions encountered in the location of well MW6 and locations used to generate the silt surface elevation contours are included in Appendix C. A cross section depicting subsurface condition in areas where soil contamination remains is included as Figure 9.

6.1 PRELIMINARY HYDROGEOLOGICAL EVALUATION

In order to conduct the preliminary hydrogeological evaluation, RGI obtained information from this SRI and the following reports:

- Phase II dated July 24, 2012 by RGI.
- Seotechnical Engineering Report dated July 12, 2012 by RGI.
- Well and Sampling Report dated June 19, 2013 by RGI.
- RA Report dated June 13, 2014 by RGI.
- GC Report dated July 21, 2015 by RGI.

The Main Street Property is located on the northern slope of a north-south trending ridge. Based on regional geologic mapping and our subsurface explorations at the Property the geologic stratigraphy at the Property includes Vashon-age lodgment till mapped as the surficial unit on the ridge, underlain by a fine sand interpreted to be Vashon-age advance outwash deposits. The advance outwash deposits are underlain by silt, interpreted to be a pre-Vashon age deposit (preglacial).

Groundwater is present at the Property in the lower portion of the advance outwash deposits, with the underlying very low permeability pre-glacial silt unit forming the base of the groundwater system or perching layer. RGI has collected approximately four years of periodic groundwater elevation data from the Property monitoring wells from 2012 through 2016.

Based on data collected during previous investigations, the inferred orientation of the silt layer surface appears to influence groundwater flow direction generally to the north across the Property. Contours generated from the elevation that the silt layer was encountered on the Property along with estimated groundwater flow direction at different portions of the Property is presented on Figure 4.

Borehole data obtained from borings B3 and MW3 situated on the western portion of the Property indicates the surface of the silt layer drops in elevation from approximately 63' in the southwest corner of the Property to an elevation of approximately 45' in the northwest portion of the site. Borehole data for well MW-5 situated adjacent to the west of the Property on 105th Ave SE and on-Property locations B3, RW1, RW2, and MW3 also indicate that the surface of the silt unit on the west half of the Property is sloping to the northeast. Therefore, groundwater on this portion of the Property is anticipated to flow to the northeast towards the location of MW6.

Borehole data obtained from borings B4 and B2 situated on the eastern portion of the Property indicates that the surface of the silt layer is present at an elevation of approximately 69' in the southeast corner of the Property and rises to an elevation of approximately 74' in the northeast corner of the Site. Borehole data pertaining to borings B2, B3, B4, RW2, and MW3 indicates the surface of the silt unit on the east half of the Property is sloping to the northwest towards the location of MW6. Therefore, groundwater on the eastern portion of the Property is anticipated to flow to the northwest. Borelogs obtained from previous investigations and used to assess the silt layer across the Property are included in Appendix C.

The groundwater system is relatively thin and varies in thickness across the Property. In monitoring well RW-1 located in the southwest portion of the Property, approximately 6 to 7 feet of groundwater overlying the silt layer has been documented from water level measurements. However, in monitoring well RW2, located only 40 feet east of well RW2 only approximately 2 to 3 feet of groundwater overlying the silt layer has been documented. The elevation of the silt surface in the locations of wells RW1 and RW2 is approximately elevation 46'.

In monitoring well MW5, located approximately 25 feet west of the Property boundary on 105th Avenue Southeast, approximately 8 to 9 feet of groundwater has been documented above the silt layer based on water level measurements. The elevation of the silt layer is approximately 5 feet lower than the elevation at RW1 and RW2. In monitoring well MW-6 there is at least 10 feet of groundwater thickness based on the depth to groundwater and the depth of the monitoring well. The silt unit was not encountered in well MW6 to the maximum depth of exploration of approximately elevation 39' indicating that the groundwater thickness at this location is likely greater than 10 feet.

The variability in the thickness of the groundwater is likely controlled by undulations and preferential flow paths on the silt surface. The configuration of the surface of the silt layer appears to strongly influence groundwater flow direction across the Property, with localized gradients, as opposed to a classic unconfined aquifer of significant thickness (i.e. Marysville Valley aquifer) where regional gradients exist.

Groundwater flow direction and thickness beneath the Property is variable based on the geometry of the surface of the silt unit. As discussed above, based on our understanding of the orientation of the surface of the silt unit, we would expect groundwater flow to generally be from southwest to northeast on the west half of the Property and from southeast to northwest on the east half of the Property, with groundwater flow generally to the north as groundwater as it leaves the northern Property boundary.

6.2 SOIL

As previously indicated, soil cleanup on the Property was completed to the maximum extent practicable in 2013 and the soil cleanup was documented thoroughly in the RA Report. Therefore, no further soil investigation was required during the SRI. Contaminated soil remains in place in two locations on the Property, which are described below. The estimated lateral and vertical extent of soil contamination in these locations is displayed on Figures 8 and 9, respectively.

On the southwestern portion of the Property in the location of Area 1 (former RA Area 3), a limited amount of diesel-range TPH impacted soil remains on the Property between approximately elevations 74' and 62', which is approximately 4 to 16 feet below the garage floor slab.

On the southwestern portion of the Property in the location of Area 2 (former well MW4), a limited amount of diesel-range TPH and PCE impacted soil remains on the Property between

approximately elevations 62' and 59', which is approximately 16 to 19 feet below the garage floor slab situated approximately 20 feet below the surface.

Since diesel-range TPH and PCE impacted soil remains on the Property, Ecology required that a vapor intrusion assessment be performed to determine if there is a vapor intrusion concern for the Main Street Apartments building. The vapor intrusion evaluation is presented in Section 7.

6.3 GROUNDWATER

Groundwater has been encountered on and off-Property between elevations of approximately elevations 52' to 48' and groundwater movement across the Property is generally to the northeast on the western portion of the Property, to the north on the northern portion of the Property, and to the northwest on the eastern portion of the Property.

Groundwater concentrations of COPCs have decreased significantly since the RA performed in 2013. This is attributed to source removal in conjunction with natural attenuation.

Groundwater is currently in compliance with the MTCA regulation in locations on- and off-Property and groundwater has been in compliance with the MTCA regulation for the past four groundwater sampling events, which took place in quarters 2, 3, and 4 of 2016 and quarter 1 of 2017.

Ecology previously indicated that prior to granting a NFA with EC for the Property, groundwater must be in compliance with the MTCA regulation for four consecutive quarters. Therefore, the property currently qualifies for a NFA/EC.

7 VAPOR INTRUSION EVALUATION

Vapor intrusion is the migration of volatile hazardous substances in the vapor phase from the subsurface to indoor air. The MTCA regulation stipulates that subsurface soil and groundwater contaminant concentrations must be protective of indoor air. The following section presents RGI's evaluation of the vapor intrusion risk associated with the COPCs encountered in soil and groundwater on the Property.

7.1 VAPOR INTRUSION REGULATIONS

In 2009, Ecology published the Draft VI Guidance. Which provides guidelines for evaluating the vapor intrusion pathway in Washington State and is consistent with MTCA rule requirements.

As discussed in Section 1.4.1, RGI performed a Vapor Intrusion Assessment for the Property in 2013, which was documented in the RA Report. Based on the results of that assessment, RGI concluded that vapor intrusion was not a concern for the Property.

Since that time, there have been significant changes to the vapor intrusion regulations and the following documents pertaining to vapor intrusion have been released by Ecology and the Environmental Protection Agency (EPA):

- Updated Process for Initially Assessing the Potential for Petroleum Vapor Intrusion Implementation Memorandum No. 14 (2016 Ecology PVI Guidance Memorandum) dated March 31, 2016 by Ecology.
- OSWER Technical Guide For Assessing and Mitigating the Vapor Intrusion Pathway From Subsurface Vapor Sources to Indoor Air (2015 EPA VI Guidance) dated June 2015 by the EPA.

- Technical Guide For Assessing Petroleum Vapor Intrusion at Leaking Underground Storage Tank Sites (2015 EPA PVI Guidance) dated June 2015 by the EPA.
- Updated Table B-1 Indoor Air Cleanup Levels, Groundwater Screening Levels, and Soil Gas Screening Levels revised April 6, 2015 by Ecology. Table B-1 was originally included in the Draft Ecology Draft VI Guidance dated 2009 by Ecology.

One of the major changes in the vapor intrusion regulations was that the EPA no longer recommended the use of the Johnson & Ettinger Model (JEM) for assessing vapor intrusion risks. The JEM model had been an accepted method of assessing for vapor intrusion since 1991 prior to the release of these documents. JEM was used to assess the potential for vapor intrusion at the Property in the 2013 vapor intrusion assessment.

In a meeting with Ecology which took place in June of 2016, Ecology indicated that the vapor intrusion risk for the Property must be evaluated in accordance with the recent changes to vapor intrusion regulations.

7.2 IDENTIFICATION OF COMPOUNDS FOR VAPOR INTRUSION ASSESSMENT

RGI utilized data obtained during the SRI and previous investigations in order to identify compounds in soil and groundwater that could potentially pose a vapor intrusion risk for the Property.

Soil analytical data pertaining to impacted soil that remains in place on the Property is summarized in the RA tables and figures, which are included in Appendix A. Cross section B-B' displays the two locations where contaminated soil remains in place on the Property and is presented on Figure 9.

Groundwater analytical data with corresponding groundwater screening levels that Ecology considers protective of MTCA Method B Indoor Air Cleanup Levels are summarized in Table 1.

7.2.1 COMPOUNDS IDENTIFIED IN SOIL

After soil on the Property was remediated to the maximum extent practicable in 2013, RGI identified all the compounds which remained in soil on the Property that would be considered sufficiently volatile and toxic enough to cause a vapor intrusion concern. The following compounds were identified and targeted for further vapor intrusion assessment:

- Diesel-range TPH
- ➢ PCE

WAC 173-340-740(3)(C)(III) stipulates that the soil to vapor pathway be evaluated for diesel-range organics whenever the TPH concentration is greater than 10,000 mg/kg. No soils were left in place on Property that contained concentrations of diesel-range TPH greater than 10,000 mg/kg after the RA was completed. Therefore, no vapor intrusion evaluation pertaining to diesel-range TPH in soil was required and diesel-range TPH in soil was eliminated from further vapor intrusion assessment.

The evaluation of the vapor intrusion risk associated with the PCE impacted soil that remains in place on the southwestern portion of the Property is presented in Section 7.3.

7.2.2 COMPOUNDS IDENTIFIED IN GROUNDWATER

RGI compared concentrations of all compounds historically detected in groundwater on the Property to the appropriate groundwater screening levels considered protective of indoor air summarized in Table 1. After evaluation of all detected compounds in groundwater, RGI

determined that no further vapor intrusion evalution pertaining to groundwater was necessary due to the fact that all detected concentrations of COPCs have been below applicable groundwater screening levels considered protective of indoor air since December of 2013.

The only compound to historically exceed the groundwater screening level was chloroform, which was detected in wells RW1 and RW2 in November of 2013. This was the only sampling event where chloroform was detected. Chloroform is byproduct of the chlorination process used in the public water supply. The November 2013 sampling event took place shortly after wells RW1 and RW2 were installed. Therefore, the detected chloroform may have been associated with public water used during installation of these wells. Chloroform has not been detected at a concentration above the laboratory detection limit since November of 2013.

7.3 SOIL VAPOR INTRUSION ASSESSMENT

As discussed above, all compounds detected in soil and groundwater have been elimated from the vapor intrusion evaluation except for a small amount of PCE impacted soil situated on the southwestern portion of the Property. This PCE impacted soil extends from approximately elevations 62' to 59', which is approximately 16 to 19 feet below the parking garage floor. The detected PCE concentration in this location was 0.40 mg/kg in 2013. This concentration also exceeds the MTCA Method A Soil Cleanup Level for Unrestricted Land Uses of 0.05 mg/kg for PCE. Diesel-range TPH was also present in this location at a concentration of 7,500 mg/kg, however, as previously indicated, MTCA does not require evaluation of the vapor intrusion pathway for soil concentrations of diesel-range TPH less than 10,000 mg/kg. Therefore, assessment of diesel-range TPH was not warranted.

Soil screening levels considered protective of indoor air have not been established by Ecology. Therefore, it was necessary to generate a predicted PCE soil vapor concentration that would result from a PCE soil concentration of 0.4 mg/kg.

RGI discussed the methodology for performing the soil vapor intrusion assessment with Mr. Charles San Juan (Hydrogeologist at Ecology) and confirmed that Ecology concurred with the methodology used to conduct the assessment described below. Mr. San Juan provided RGI with a spreadsheet used to calculate a predicted soil vapor concentration from a soil concentration along with references to the equations used to perform the calculations.

The first step in this process was to obtain a predicted soil porewater PCE concentration that would result from a PCE soil concentration of 0.4 mg/kg. After a discussion with Mr. Juan at Ecology, RGI referenced the equations obtained from page 129 of the *Groundwater Monitoring & Remediation Spring 1991 Edition: A Method for Assessing Residual NAPL Based on Organic Chemical Concentrations in Soil Samples* by Stan Feenstra, Douglas M. Mackay, and John A. Cherry. The first equation is a rearrangement of MTCA Equation 747-1 and used to obtain the predicted PCE soil porewater concentration (C_w), the second equation is MTCA Equation 747-2 and used to obtain the distribution coefficient (K_d), and the third equation is used to predict the soil vapor concentration (C_a) from the predicted soil porewater concentration.

1) Rearranged MTCA Equation 747-1 used to determine soil porewater concentration

$$C_{w} = \frac{C_{t}\rho_{b}}{K_{d}\rho_{b} + \phi_{w} + H_{c}\phi_{a}}$$

Where: C_w= Soil porewater concentration (mg/L).

C_t = Soil concentration. (PCE 0.4 µg/g)

 ρ_{b} = Dry soil bulk density (1.5 g/cm³)

 K_d = Distribution coefficient (cm³/g). 0.265 for PCE obtained from equation 2.

 ϕ_w = Water filled soil porosity (volume fraction). Default value of 0.3 for unsaturated zone soil.

 ϕ_a = Air filled soil porosity (volume fraction). Default value of 0.13 for unsaturated zone soil.

 H_c = Henry's law constant (dimensionless) 0.399 for PCE at 55 F.

2) MTCA Equation 747-2 used to obtain the distribution coefficient

 $K_d = K_{oc} * f_{oc}$

Where:

 K_d = Distribution coefficient (cm³/g or L/kg).

 K_{oc} = Soil organic carbon-water partitioning coefficient (ml/g). For PCE 265 obtained from MTCA Table 747-1

 f_{oc} = Soil fraction organic carbon. Default value of 0.1%

3) Equation used to determine soil vapor concentration

C_a = C_w*H_c*VAF*UCF

Where:

 C_a = Soil vapor concentration (µg/m³).

 C_w = Soil porewater concentration. PCE 801 $\mu g/L$ obtained from equation 2.

 H_c = Henry's law constant (dimensionless) 0.399 for PCE at 55 F.

VAF= Vapor attenuation factor. 0.002 (obtained from *Groundwater Monitoring & Remediation Fall 2014 Edition: Estimation of Generic Subslab Attenuation Factors for Vapor Intrusion* by Roger Brewer, Josh Nagashima, Mark Rigby, Martin Schmidt, and Harry O'Neil).

UCF= Unit conversion factor (1 μ g/L /1000 μ g/m³).

The first step is to use equation 747-2 to calculate the distribution coefficient value of 0.265 cm 3 /g for PCE.

Using the distribution coefficient value of 0.265 cm³/g and the actual PCE soil concentration of 0.4 mg/kg, rearranged MTCA Equation 747-1 is used to determine the PCE soil porewater concentration of 0.801 μ g/g or 801 μ g/L.

In order to obtain the predicted soil vapor concentration resulting from the predicted PCE soil porewater concentration of 801 μ g/L, the third equation is utilized. The resulting predicted PCE soil vapor concentration is 639 μ g/m³ based on a PCE soil concentration of 0.4 mg/kg.

Given that the PCE impacted soil in question is situated at a depth greater than 15 feet below the parking garage floor slab, the Ecology deep (>15 ft) soil vapor screening level of 962 μ g/m³ for PCE (obtained from Ecology's CLARC database on November 18, 2016) was referenced. Since the conservatively predicted soil vapor concentration of 639 μ g/m³ is well below the Ecology screening level of 962 μ g/m³, a vapor intrusion risk does not exist for the Property and no further vapor intrusion assessment is warranted.

It should be noted that in addition to the predicted soil vapor concentration being below the Ecology soil vapor screening level, there are three levels of underground parking situated above this location. RGI obtained actual air exchange values (ACH) for all three levels of the parking garage which ranged from 3.7 to 5.0. These ACH values are at least 10 times higher than the ACH

value used to calculate the Ecology soil vapor screenining levels. Therefore, PCE soil vapor concentrations much higher than Ecology screening level of 962 μ g/m³ would have to be present in order for a vapor intrusion concern to exist for the Property. This data further supports the conclusion that no further vapor intrusion assessment is required for the Property.

CONCLUSIONS & RECOMMENDATIONS

Based on the data obtained during the SRI and previous investigations, RGI draws the following conclusions:

- Groundwater situated on and off-Property is currently in compliance with the MTCA regulation and has been in compliance for the past four consecutive quarters. Therefore, no further groundwater investigation is warranted and the Property qualifies for a No Further Action with Environmental Covenant.
- Groundwater flow direction across the Property appears to be strongly influenced by the silt layer underlying the Property. Groundwater flow direction is generally to the north across the Property.
- Diesel-range TPH impacted soil remains in place on the southwestern portion of the Property in Area 1 (former RA Area 3). Soil impacts in this location extend from approximately elevation 74' to 62', which is the equivalent of 4 to 16 feet below the parking garage floor. Diesel-range TPH and PCE impacted soil also remains in place approximately 40 feet east of this location in Area 2 (former location of well MW4). Soil impacts in this location extend from approximately elevations 62' and 59', which is the equivalent of 16 to 19 feet below the parking garage floor. The estimated lateral and vertical extent of these soil impacts has been well characterized and these areas of impacted soil have not reached the level of groundwater. Additionally, both of these areas are covered by the parking garage floor of the Main Street Apartments building, which would prevent any exposure to this soil contamination. Therefore, these soil impacts do not represent a threat to human health or the environment.
- The impacted soil that remains on the Property does not represent a vapor intrusion concern for the Property and no further vapor intrusion assessment is necessary.

RGI also recommends the following:

- Submit this SRI Report to Ecology with a request for a No Further Action with an Environmental Covenant for the Property.
- Dispose of the one drum of purge water stored in the southwest portion of the parking garage in accordance with applicable regulations.
- After the NFA/EC is received and recorded for the Property, decommission all four onand off-Property groundwater monitoring wells provided that the well decommissioning complies with the terms of the NFA/EC.

If you have any questions, or need additional information pertaining to this SRI report, please contact us at (425) 415-0551.

Sincerely,

THE RILEY GROUP, INC.

Jerry Sawetz Senior Environmental Scientist

Nash logool 1079 nsed Geo David J. Baumgarten

Dave Baumgarten, LHG Senior Hydrogeologist

Report Distribution

Mr. Matt Segrest, Alamo Manhattan, LLC, (1 PDF copy) Mr. Michael Warfel, Ecology (1 hard copy and 1 PDF copy)

Paul D. Riley, LG, LHG

Principal

Table 1, Page 1 of 2. Summary of Current and Historical Groundwater Analytical Data

Main Street Apartments Development																					
10505 Main St	treet, Bellev	vue, Washi	ngton 98004	Ļ																	
The Riley Grou	up, Inc. Proj	ect No. 20	12-107L																		
Sample	Sample	TOC Elevation	Depth to	Groundwater	Gas TPH		ВТ	EX		Diesel TPH	Oil TPH	Diesel TPH	Oil TPH	C5-C8 ⁸	C8-C12 ⁹	C8-C12 ¹⁰	Total Naphthalenes ²	PCE	1,1,1-TCA	MTCA Method B for	Other VOCs
Number	Date	(feet)	Water (feet)	Elevation (feet)		В	Т	E	х	w/out	silica gel	with	silica gel	Aliphatics	Aliphatics	Aromatics	•			ТРН°	
											Current G	roundwa	ter Monito	oring Well Data							
RW1, Screened fr	om approxima	ate elevation	of 58.3' to 43.3	3', Total well lengt	h 35.5'																
RW-1	01/04/17	78,78	28.71	50.07	ND<50	ND<2.0	ND<2.0	ND<2.0	ND<6.0	1.200 h	280			ND	ND	ND		ND<2.0		614	ND
RW-1	10/28/16	78 78	28.37	50.41	ND<50	ND<2.0	ND<2.0	ND<2.0	ND<6.0	470 h	ND<250			ND	ND	ND		ND<2.0		ND	ND
RW-1	09/21/16	78.78	28.33	50.45																	
RW-1	08/30/16	78.78	27.67	51.11	ND<50	ND<2	ND<2	ND<2	ND<6	700	ND<250			ND	ND	ND		ND<2		ND	ND
RW-1	06/24/16	78.78	27.17	51.61		ND<2	ND<2	ND<2	ND<4					ND	ND	ND	ND<0.02			675	
RW1	05/07/15	78.78	26.49	52.29	ND<100	ND<0.35	ND<1	ND<1	ND<2			440	ND<250				ND<1	ND<1	ND<1		ND
RW1	01/29/15	78.78	27.08	51.7	ND<100	0.39	ND<1	ND<1	ND<2	2,800x	540x	240	ND<250				ND<1	ND<1	ND<1		ND
RW1	12/12/14	78.78	27.45	51.33	ND<100	ND<0.35	ND<1	ND<1	ND<2	4,400x	840x	1,200	ND<250				ND<1	1.5	ND<1		ND
																					Acetone = 770
RW1	11/13/13	78.78	27.57*	51.21	ND<100	ND<0.35	14	ND<1	ND<2	190 x	ND<250						ND<1	ND<1	ND<1		Chloroform = 13 ¹²
																					2-Butanone = 1,100
RW2, Screened from approximate elevation of 57.2' to 42.2', Total well length 37.3'																					
RW-2	01/04/17	79.46	31.39	48.07	ND<50	ND<2.0	ND<2.0	ND<2.0	ND<6.0	330 h	ND<250			ND	ND	ND		ND<2.0		ND	ND
RW-2	10/28/16	79.46	31.23	48.23	ND<50	ND<2.0	ND<2.0	ND<2.0	ND<6.0	400 h	ND<250			ND	ND	ND		ND<2.0		ND	ND
RW-2	09/21/16	79.46	30.96	48.5																	
RW-2	08/30/16	79.46	30.85	48.61	ND<50	ND<2	ND<2	ND<2	ND<6	500	ND<250			ND	ND	ND		ND<2		ND	ND
RW-2	06/24/16	79.46	30.56	48.90		ND<2	ND<2	ND<2	ND<4					ND	ND	ND	ND<0.060			ND	
RW2	05/07/15	79.46	29.68	49.78	ND<100	ND<0.35	ND<1	ND<1	ND<2			ND<50	ND<250				ND<1	ND<1	ND<1		ND
RW2	01/29/15	79.46	29.87	49.59	ND<100	ND<0.35	ND<1	ND<1	ND<2	2,000x	360x	ND<50	ND<250				ND<1	ND<1	ND<1		ND
RW2	12/12/14	79.46	29.99	49.47	ND<100	0.82	3.1	1.8	9.7	1,400x	ND<250	ND<50	ND<250				2.2	ND<1	ND<1		1,3,5-1 MB = 1.3 1.2.4-TMB = 4.0
																					Acetone = 110
RW/2	11/13/13	79 46	30.68*	48 78	ND<100	ND<0.35	3.7	ND<1	ND<2	180 x	ND<250						ND<1	ND<1	ND<1		BDM = 1.2
1002	11/15/15	75.40	50.00	40.70	100 100	10 0.55	5.7	NDVI	ND V2	100 Å	ND \230							NDVI	ND VI		$Chloroform = 26^{5/12}$
															2-Butanone = 170						
NIVUS, Screeneu I			54 00			ND	ND -2		ND	ND 420	ND		<u> </u>	ND		ND		ND .2	Т	ND	
IVI VV-5	08/29/16	101.44	51.90	49.54	ND<50	ND<2	ND<2	ND<2	ND<6	ND<130	ND<250			ND	ND	ND		ND<2		UN	ND
IVIW5	05/07/15	101.44	50.91	50.53	ND<100	ND<0.35	ND<1	ND<1	ND<2				ND<250				ND<1	ND<1	1.4		ND
IVIW5	01/29/15	101.44	51.31	50.13	ND<100	ND<0.35	ND<1	ND<1	ND<2	ND<50	ND<250	ND<50	ND<250				ND<1	ND<1	1.6		ND
	12/12/14	101.44	51.59	49.85	<100	ND<0.35	ND<1	ND<1	ND<2	230X	ND<250	67	ND<250				ND<1	ND<1	1.4		ND
NIVIG, Screened f	rom approxim	ate elevation	1 01 /3 to 58,	total well length 4		ND .2.0		ND .2.0		ND 420	ND			ND	ND			ND -2.0		ND	
MW-6	01/04/17	/8./	29.32	49.38	ND<50	ND<2.0	ND<2.0	ND<2.0	ND<6.0	ND<130	ND<250			ND	ND	ND		ND<2.0		ND	ND
MW-6	10/28/16	/8./	29.27	49.43	ND<50	ND<2.0	ND<2.0	ND<2.0	ND<6.0	ND<130	ND<250							ND<2.0		ND	ND
IVI VV-6	09/21/16	78.7	28.96	49.74																	
IVI VV-6	08/29/16	/8./	28.75	49.95	ND<50	ND<2	ND<2	ND<2	ND<6	ND<130	ND<250							ND<2		ND	ND
244 (2											Historical	srounaw	ater wonit	toring well Data	1						
B1A (Decommissi	ioned) Screene	ed from appro	oximate elevati	ion of 57' to 47', T	otal well lengt	h 50'			1	T		1	<u> </u>		1	1	1		T	1	
UST1-B1A-W	09/03/13	~97	43.5	~53.5	360	<mark>6.9</mark>	28	6.1	44	5,200 x	1,000 x	420	ND<300				2.3	ND<1	ND<1		ND
	MTCA Method A Cleanup Levels				800/1,000 ¹	¹ 5	1,000	700	1,000	500	500	500	500				160	5	200	Not Applicable	Analyte
	ARAR State a	nd Federal P	rimary Maxim																	Specific	
	ANAN State a	Lev	rinary waxin			5	1,000	700	10,000									5	200	Not Applicable	Specific
		MTCA Metho	d B Cleanun Le	evels																795 ⁷ (6/24/16)	1 3 5-TMB = 80
Groundwater	•	for Gr	ound Water		5	5 ⁶											160	20.8	16,000 ⁴	684 ⁷ (1/04/17)	1,2,4-TMB = NVE
Screening					<u> </u>					1				<u> </u>					1		1,3,5-TMB = NVE
LEVEIS											1										1,2,4-TMB = 28.4
	Ecology G	roundwater	Screening Leve	l Protective of		2.4	15600 4	2780 ⁴	310 ⁴					140	2.9	1,300	8.93	22.9	5 240 ⁴		2- Butanone = 1,740,000 ⁴
		Indoor Air (n	nicrograms/lite	er) ¹¹										1-1-	2.5	1,000	0.00		5,240		Acetone = NVE
											1										BDM = 1.84
					I	1	l		I	I	1		I			1			1	1	Chioroform = 1.2

Table 1, Page 2 of 2. Summary of Current and Historical Groundwater Analytical Data

Main Street A	partments D	evelopme	nt																		
10505 Main S The Riley Gro	treet, Bellev up. Inc. Proie	ue, Washin ect No. 201	igton 98004 2-107L																		
Sample Number	Sample Date	TOC Elevation	Depth to Water (feet)	Groundwater Elevation (feet)	Gas TPH		Diesel TPH	Oil TPH	Dil Diesel Oil PH TPH TPH	C5-C8 ⁸ Aliphatics	C8-C12 ⁹ Alinhatics	C8-C12 ¹⁰	Total Naphthalenes ²	PCE	1,1,1-TCA	MTCA Method B for трн ³	Other VOCs				
		(feet)				В	<u> </u>	E	X	w/out s	ilica gel	with s	ilica gel		Alipilatics						
MW3 (Decommis	ssioned), Screer	ned from app	roximate eleva	ation of 52.41' to 3	37.41', Total we	ell length 60	0'		<u> </u>					1	1	T				I	
MW-3	06/11/13	97.41	43.44	53.97	ND<100	ND<1	ND<1	ND<1	ND<3			ND<50	ND<250								
MW-3	05/22/13	97.41	43.1	54.31																	
MW-3	05/14/12	97.41	50.51	46.90														ND<0.20	0.40		Chloroform = 0.24
MW4 (Decommis	W4 (Decommissioned), Screened from approximate elevation of 55.29' to 45.29', Total well length 53'																				
MW4	06/11/13	98.29	42.06	56.23	800	17	62	15	90			220 x	ND<250								
MW4	05/22/13	98.29	43.51	54.78	340	6	25	5.7	39	7,900 x	1,300 x	190	ND<250					ND<1	ND<1		ND
	N	800/1,000 ¹	5	1,000	700	1,000	500	500	500	500				160	5	200	Not Applicable	Analyte Specific			
	ARAR State a	nd Federal Pr Leve	um Contaminant		5	1,000	700	10,000									5	200	Not Applicable	Analyte Specific	
Groundwater Screening	Ν	ITCA Methoo for Gro	5	5 ⁶											160	20.8	16,000 ⁴	795 ⁷ (6/24/16) 684 ⁷ (1/04/17)	1,3,5-TMB = 80 1,2,4-TMB = NVE		
Levels	Ecology Gr	oundwater S ndoor Air (m	creening Leve icrograms/lite	l Protective of rr) ¹¹		2.4	15600 ⁴	2780 ⁴	310 ⁴					140	2.9	1,300	8.93	22.9	5,240 ⁴		1,3,5-TMB = NVE 1,2,4-TMB = 28.4 2- Butanone = 1,740,000 ⁴ Acetone = NVE BDM = 1.84 Chloroform = 1.2
Notes: Samples collecter Unless otherwise Gasoline-range T BTEX (benzene, t Diesel and Oil-Ra Silica gel = Sampl PCE (tetrachlorog	d by RGI field st noted, all anal PH (total petro oluene, ethylbe nge TPH deterr e extract is pas ethene), 1,1,1-T	aff using a su ytical results leum hydroca enzene and xy nined used N sed through a CA (1,1,1-tric	Ibmersible pur are given in m arbons) determ /lenes) determ orthwest Test a silica gel colu chloroethane),	np under low flow icrograms per lite nined used Northv ined using EPA Te Method NWTPH- mn prior to analy 2-butanone, acet	v conditions. r (ug/L), equiva west Test Meth est Method 802 Dx with and wi 'sis. The silica ge cone, BMD (Bro	llent to part od NWTPH 1B or 8260 thout silica el column r modichlorc	ts per billion -Gx. IC. gel cleanup emoves nat omethane),	n (ppb). b. cural occuri chloroforr	ring biogen n, TMB (Tri	ic material	that can ir zene), and	nterfere w	vith the TP DCs (volatil	H result when pr e organic compo	resent. bunds) determin	ned using EPA Te	st Method 8260C.				

ND = Not detected above noted analytical detection limit.

NVE = No value established.

TOC = Top of casing. Depth to water measurements were obtained from TOC (in feet).

--- = Not analyzed or not applicable.

x = According to the analytical chemist, the sample chromatographic pattern does not resemble the fuel standard used for quantification.

= Chromatogram indicates that it is likely that sample contains a diesel range product that is likely biased high due to biogenic interference.

Depth to water measurements obtained on December 23, 2013.

The higher cleanup level is allowed if no benzene is detected in the sample and the total of toluene, ethylbenzene and xylenes is less than 1% of the gasoline mixture.

Analyzed using EPA Test Method 8260C.

Measured TPH groundwater concentration used for Method B evaluation (as approved in advance by Ecology). As discussed with Ecology and stated in the Ecology approved SRI Work Plan, beginning in June of 2016 MTCA Method B was used to evaluate total petroleum hydrocarbons (TPH) concentrations in groundwater.

The non-carcinogenic MTCA Method B value was referenced due to the fact that a carcinogenic Method B value does not exist.

No carcinogenic Method B was available in the searchable CLARC database at the time the Remedial Action report was prepared. Therefore, this concentration was compared to the Method B non-carcinogenic level of 80 micrograms/liter at that time.

RGI evaluated the cancer risk for the ARAR which was determined to be greater than 10⁻⁵. Therefore, the ARAR is adjusted down to a cancer risk of 10⁻⁵.

Method B groundwater cleanup level calculated using the Ecology Worksheet for Calculating Potable Groundwater Cleanup Levels . See Section 3.3 of the SRI Report and Appendix B of report for details. The calculated TPH cleanup levels were 795 ug/L for the 6/24/16 event and 684 ug/L for the 1/4/17 event. Concentration obtained by adding the C5-6 and C6-8 aliphatic concentrations from the NWVPH analysis. ND indicates none of the indicated compounds were detected at a concentration above the laboratory detection limit.

Concentration obtained by adding the C8-C10 and C10-12 aliphatic concentrations from the NWVPH and NWEPH analyses. ND indicates none of the indicated compounds were detected at a concentration above the laboratory detection limit.

² Concentration obtained by adding the C8-10 and C10-12 aromatic concentrations from the NWVPH and NWEPH analyses and subtracting the naphthalene concentration. ND indicates none of the indicated compounds were detected at a concentration above the laboratory detection limit. Washington State Department of Ecology (Ecology) Model Toxics Control Act (MTCA) Method B groundwater screening level considered protective of indoor air. Obtained from Ecology's Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action dated October 2009 (Table B-1, amended April 6, 2015)

⁴ Groundwater concentration exceeded Ecology's Screening Level Protective of Indoor Air.

Ecology Model Toxics Control Act Method A or B Cleanup Levels for Ground Water and groundwater ARARs obtained from WAC 173-340-900, Table 720-1 and CLARC database.

ARAR = Applicable or Relavent and Appropriate Requirement. ARARs for the Property are the Federal and State Primary Maximum Contaminant Levels (MCLs) as established under the Environmental Protection Agency (EPA) National Primary Drinking Water Regulations. ARARs are referenced in Ecoloy's CLARC databse.

Bold results indicated concentrations above laboratory detection limits.

Bold and yellow highlighted results indicate concentrations (if any) that were not in compliance with MTCA Method A groundwater cleanup levels from May of 2013 to June of 2016 or Method B from June of 2016 to January of 2017.

Appendix A

of		Ор	-			
ee F	igure	8				
Stre		nartments Devel	onment		-igure 2	
per		Property Repr	esentation Map	· · · · ·	Date Drawn:	
Ires	s: 105	505 Main Street, B	ellevue, Washing	ton 980	06/2014	

A7-1:6 Date Date A7-2:9 Date Gas Date <t< th=""><th></th></t<>	
Boundary of Area 7 Remedial Excavation: Gasoline-range TPH impacted soil was detected in soil at concentrations above the MTCA Method A Cleanup Level. See Figure 8 for details. Oundary of Area 5 (UST 3) Remedial Excavation: Former 500-gallon waste oil UST location and vaction where oil-range TPH was detected in soil at concentrations exceeding MTCA Method A Cleanup Levels. See Figure 8 for details. Detail of the second second second second second second second second details and the second se	E-4 ID) A7-1:6 IO/10/13 4.7 ND ND ND A7-2:9 Date Gas BTEX Diesel Oil 10/10/13 5.1 ND ND ND
UST5-B:6 (ND) 5-S:5. Former approximately 660-gallon UST location. UST was decommissioned on 09/03/13. No contamination encountered. ct Soil Analytical Results in Milligrams per Kilogram (mg/kg) as/Dsl/Oil = Gasoline/Diesel/Oil Total Petroleum Hydrocarbons (TPH) TEX = Benezene, Toluene, Ethylbenzene, Xylenes CE = Tetrachloroethene HyOCS = (Halogentated) Volatile Organic Compounds D = Not Detected Above Laboratory Dection Limits Not Analyzed Old and yellow highlighted result exceeds the MTCA Method A Cleanup Level. old areyellow highlighted result exceeds the MTCA Method A Cleanup Level. old results indicate compound was detected at a concentration above the laboratory detection limit. attes sample was collected from inside septic tank. ontaminants of concern (COCs) detected at concentractions above laboratory detection limits. lue) Temporary Monitoring Well Location B-1A Installed by RGI on 09/03/13 ray) Former Monitoring Well Location Installed by RGI on 09/03/13 ray) Former Monitoring Well Location by RGI ray) Soil Characterization Sample Location by RGI ray) Soil Characterization Sample Location by RGI ing Groundwater Monitoring Well Installed by RGI ing Groundwater Monitoring Well Installed by RGI ry Pole Location erty Boundary ed & Hitchings, Inc., ALTA/ACSM Land Title Survey, dated 03/2012. Street Apartments Development Figure 4 Assessment Soil Sample Locations and Analytical Data OP Property Plan with Supplemental Phase II and UST Site Assessment Soil Sample Locations and Analytical Data Of/2014 Terse: 10505 Main Street, Bellevue, Washington 98004	Boundary of <u>Area 7</u> Remedial Excavation: Gasoline-range TPH impacted soil was detected in soil at concentrations above the MTCA Method A Cleanup Level. See Figure 8 for details. oundary of <u>Area 5</u> (UST 3) Remedial Excavation: Former 500-gallon waste oil UST location and potation where oil-range TPH was detected in soil at concentractions exceeding MTCA Method A Cleanup Levels. See Figure 8 for details.
ct Soil Analytical Results in Milligrams per Kilogram (mg/kg) as/Dsl/Oil = Gasoline/Diesel/Oil Total Petroleum Hydrocarbons (TPH) TEX = Benezene, Toluene, Ethylbenzene, Xylenes CE = Tetrachloroethene HyOCs = (Halogentated) Volatile Organic Compounds D = Not Detected Above Laboratory Dection Limits = Not Analyzed old and yellow highlighted result exceeds the MTCA Method A Cleanup Level. old results indicate compound was detected at a concentration above the laboratory detection limit. rates sample was collected from inside septic tank. ontaminants of concern (COCs) detected at concentractions above laboratory detection limits. lue) Temporary Monitoring Well Location B-1A Installed by RGI on 09/03/13 raray) Former Monitoring Well Location Installed by RGI on 09/03/13 raray) Former Monitoring Well Location by RGI ray) Soil Characterization Sample Location by RGI ray) Soil Characterization Sample Location by RGI ray Soil Characterization Sample Location by RGI ray Boundary ed & Hitchings, Inc., ALTA/ACSM Land Title Survey, dated 03/2012. Street Apartments Development Figure 4 Der Property Plan with Supplemental Phase II and UST Site Date Drawn: Assessment Soil Sample Locations and Analytical Data 06/2014 <	• UST5-B:6 (ND) 5-S:5.5 ND) Former approximately 660-gallon UST location. UST was decommissioned on 09/03/13. No contamination encountered.
ray) Former Monitoring Well Location Installed by RGI [MW-3 on 05/11/12 and 1W-4 on 05/21/13] lue) Hollow Stem Auger (HSA) Boring Location by RGI ray) Soil Characterization Sample Location by RGI ing Groundwater Monitoring Well Installed by RGI cy Pole Location erty Boundary ed & Hitchings, Inc., ALTA/ACSM Land Title Survey, dated 03/2012. Street Apartments Development Figure 4 Deer Property Plan with Supplemental Phase II and UST Site Assessment Soil Sample Locations and Analytical Data O6/2014	 Ct Soil Analytical Results in Milligrams per Kilogram (mg/kg) as/Dsl/Oil = Gasoline/Diesel/Oil Total Petroleum Hydrocarbons (TPH) TEX = Benezene, Toluene, Ethylbenzene, Xylenes CE = Tetrachloroethene IVOCs = (Halogentated) Volatile Organic Compounds D = Not Detected Above Laboratory Dection Limits = Not Analyzed bid and yellow highlighted result exceeds the MTCA Method A Cleanup Level. bid results indicate compound was detected at a concentration above the laboratory detection limit. ates sample was collected from inside septic tank. contaminants of concern (COCs) detected at concentractions above laboratory detection limits. lue) Temporary Monitoring Well Location B-1A Installed by RGI on 09/03/13
Street Apartments Development Figure 4 Deer Property Plan with Supplemental Phase II and UST Site Date Drawn: Assessment Soil Sample Locations and Analytical Data 06/2014 dress: 10505 Main Street, Bellevue, Washington 98004	ray) Former Monitoring Well Location Installed by RGI [MW-3 on 05/11/12 and IW-4 on 05/21/13] Iue) Hollow Stem Auger (HSA) Boring Location by RGI ray) Soil Characterization Sample Location by RGI ing Groundwater Monitoring Well Installed by RGI ry Pole Location erty Boundary ed & Hitchings, Inc., ALTA/ACSM Land Title Survey, dated 03/2012.
dress: 10505 Main Street, Bellevue, Washington 98004	Street Apartments Development Figure 4 per Property Plan with Supplemental Phase II and UST Site Date Drawn: Assessment Soil Sample Locations and Analytical Data Oct 2011
	Assessment Son Sample Locations and Analytical Data 06/2014 Aress: 10505 Main Street, Bellevue, Washington 98004

feet bgs. Excavation starting depth was approximately 4 feet bgs. (xxx) = Soil concentration of PCE in mg/kg. Sample prefix (A6-EX) not included in sample ID.

Approximate Scale: 1"=6'

- = Green boundary indicates excavation for MTCA compliance.
- = Brown boundary indicates excavation in support of redevelopment activities.
- = Below ground surface, which was the grade of the Property prior to redevelopment. bgs
 - = Sludge sample was collected from inside septic tank. See Table 7 for analytical data.
- (0.053)= Red indicates soil concentration exceeds MTCA Method A Cleanup Level.
- = Blue indicates soil concentration was below the MTCA Method A Cleanup Level. (0.032)
- = No contaminants of concern (COCs) detected at concentractions above laboratory detection limits. ND
 - = Soil Characterization sample
 - = Performance sample. Black indicates final performance sample.
 - = Hollow stem auger boring location by RGI
 - = Slope

X

0

- = Former monitoring well location
- = Existing 4-inch groundwater monitoring well installed by RGI
- Drawn from Bush, Roed & Hitchings, Inc., ALTA/ACSM Land Title Survey, dated 03/2012.

Address: 10505 Main Street, Bellevue, Washington 98004

Limits of Area 7 - Remedial Excavation - Area where gasoline-range TPH was detected in soil at concentrations above MTCA Method A Soil Cleanup Levels in the vicinity of the former gasoline station. Approximately 73 tons of impacted soil was removed from the excavation for MTCA compliance. Sample depths were referenced from the surface grade on the eastern portion of the Property. The grade at the northern portion of the excavation was approximately 2' bgs and 9' bgs at the southern portion of the excavation (xxx) = Soil concentration of gasoline-range TPH in mg/kg. Sample prefix (A7) not included in sample ID. X6E:10 ND

Street Apartments Development Figure 8											
Der Excavation Areas 5 and 7 with Soil Sample Date Drawn: Locations and Analytical Data 06/2014											
Ires	ress: 10505 Main Street, Bellevue, Washington 98004										

Table 1. Summary of UST, Pump Island, and Septic Drain Line Assessment Soil Sample Analytical Laboratory Results

Main Street Apartments Development

10505 Main S The Riley Gro	Street, Bello Sup, Inc. Pro	evue, Washir oject No. 201	ngton 98004 .2-107J																					
Sample	Sample	Approximate Flevation	Sample	Gas		BI	TEX		Diesel	Oil		HCID		PCBs	Carcinogenic	Other	VC	TCF	PCF	trans-	cis-	1.1-DCF	Other	Lead
Number	Depth	(Feet)	Date	ТРН	В	Т	E	х	ТРН	ТРН	Gasoline	Diesel	Heavy Oil		PAHs	PAHs				1,2-DCE	1,2-DCE	1,1 000	VOCs	
					-	-		•			Pu	Imp Islan	nd				-		-	-	-			
PI-W-4	4	93	08/26/13	ND<2	ND<0.02	ND<0.02	ND<0.02	ND<0.06	ND<50	ND<250														
PI-E-4	4	93	08/26/13	ND<2	ND<0.02	ND<0.02	ND<0.02	ND<0.06	ND<50	ND<250														
PI-C-4	4	93	08/26/13	ND<2	ND<0.02	ND<0.02	ND<0.02	ND<0.06	ND<50	ND<250														
PUST3-C			08/26/13																					
												UST1												
UST1-C-1	1	96	08/19/13																					
UST1-B:7	7	90	08/19/13	98 x					21,000	1,100 x							ND<0.05	ND<0.03	0.28	ND<0.05	ND<0.05	ND<0.05	ND	
UST1-N:7	7	90	08/19/13						ND<50	ND<250														
UST1-W:7	7	90	08/19/13	180 x					13,000	650 x							ND<0.05	ND<0.03	0.36	ND<0.05	ND<0.05	ND<0.05	ND	
												UST2												
UST2-B7	7	90	08/20/13						ND<25	ND<40														
UST2-E7	7	90	08/20/13						ND<25	ND<40														
UST2-W7	7	90	08/20/13						ND<25	ND<40														
	UST3																							
UST3-N-6	6	91	08/27/13	2	ND<0.02	ND<0.02	ND<0.02	ND<0.06	2,300 x	10,000														
UST3-S-6	6	91	08/27/13	ND<2	ND<0.02	ND<0.02	ND<0.02	ND<0.06	190 x	500														
UST3-C-6	6	91	08/27/13	ND<2	ND<0.03	ND<0.05	ND<0.05	ND<0.1	1,800 x	3,700				ND<0.1	ND<0.1	Fluoranthene = 0.02	ND<0.05	ND<0.03	ND<0.025	ND<0.05	ND<0.05	ND<0.05	ND	1.95
						-	-					UST4	-						-	-				-
UST4-W-7	7	90	08/27/13	ND<2	ND<0.02	ND<0.02	ND<0.02	ND<0.06	ND<50	ND<250														
UST4-C-7	7	90	08/27/13	ND<2	ND<0.02	ND<0.02	ND<0.02	ND<0.06	ND<50	ND<250														34.2
UST4-E-7	7	90	08/27/13	ND<2	ND<0.02	ND<0.02	ND<0.02	ND<0.06	ND<50	ND<250														
		•		•		•					•	UST5	•		•	•			•	•	•			
UST5-SP			09/03/13	ND<2	ND<0.02	ND<0.02	ND<0.02	ND<0.06	ND<50	ND<250														1.87
UST5-W:5.5	5.5	91.5	09/03/13	ND<2	ND<0.02	ND<0.02	ND<0.02	ND<0.06	ND<50	ND<250														
UST5-S:5.5	5.5	91.5	09/03/13	ND<2	ND<0.02	ND<0.02	ND<0.02	ND<0.06	ND<50	ND<250														
UST5-B:6	6	91	09/03/13	ND<2	ND<0.02	ND<0.02	ND<0.02	ND<0.06	ND<50	ND<250														
i									<u> </u>		Sept	ic Drain	Line				•			•				4
SP-W:5			09/03/13		ND<0.03	ND<0.05	ND<0.05	ND<0.1			ND<20	ND<50	ND<250											T
SP-E:5	5.5	91.5	09/03/13		ND<0.03	ND<0.05	ND<0.05	ND<0.1			ND<20	ND<50	ND<250											
	MTCA Met	thod A Soil Clea	nup Levels		0.00	-				00			000	_			ND /5		0.07	AD (5	ND /5	AU (5	Analyte	1
Soil Screening	For U	nrestricted Lan	d Uses	100/301	0.03	/	6	9	2,0		100/301	2	,000	1	0.1		NVE	0.03	0.05	NVE	NVE	NVE	Specific	250
Levels	MTCA Met	thod B Soil Clea (Direct Contact	nup Levels)													Fluoranthene = 3,200 ³	0.67 ²			1,600 ³	160 ³	4,000 ³	Analyte Specific	

Table 1. Summary of UST, Pump Island, and Septic Drain Line Assessment Soil Sample Analytical Laboratory Results Main Street Apartments Development 10505 Main Street, Bellevue, Washington 98004 The Riley Group, Inc. Project No. 2012-107J Notes: All results and detection limits are given in mg/kg; equivalent to parts per million (ppm). Sample Depth = soil sample depth interval in feet below ground surface (bgs). Gasoline-range TPH (total petroleum hydrocarbons) determined using Ecology Test Method NWTPH Gx. BTEX (benzene, toluene, ethylbenzene, and xylenes) determined using EPA Test Method 8021B or 8260C. Diesel- and Oil- Range TPH (total petroleum hydrocarbons) determined using Ecology Test Method NWTPH Dx. Gasoline, Diesel, and Oil HCID (Hydrocarbon Identification) determined using Ecology Test Method NWTPH-HCID. PCBs (Polychlorinated Biphenyls) determined using EPA Test Method 8082A for Arcolor 1221, 1232, 1016, 1242, 1248, 1254, and 1260. PAHs (Polynuclear Aromatic Hydrocarbons) determined using EPA Test Method 8270D SIM. VC (vinyl chloride), TCE (trichloroethene), PCE (tetrachloroethene), trans-1,2-DCE (trans-1,2-dichloroethene), and 1,1-DCE (1,2-dichloroethene) anod other VOCS (volatile organic compounds) determined using EPA Test Method 8260C. Total lead determined using EPA Method 200.8. ND = Not detected above noted analytical detection limit. NVE = No value established. --- = Not analyzed or not applicable. The higher cleanup level is allowed if no benzene is detected in the sample and the total of toluene, ethylbenzene and xylenes is less than 1% of the gasoline mixture. Indicates that the MTCA Method B carcinogenic value was referenced. Indicates that the MTCA Method B non-carcinogenic value was referenced. Ecology Model Toxics Control Act Method A Soil Cleanup Levels for Unrestricted Land Uses (WAC 173-340-900, Table 740-1). **Bold** results indicated concentrations above laboratory detection limits.

Bold and yellow highlighted results indicate concentrations (if any) that exceed the applicable soil screening level.

Table 2. Summary of Soil Sample Analytical Laboratory Results For Area 1 Redevelopment ExcavationMain Street Apartments Development10505 Main Street, Bellevue, Washington 98004The Riley Group, Inc. Project No. 2012-107J

Sample Number	Sample Depth (bgs)	Approximate Elevation (feet)	Sample Date	VC	TCE	PCE	trans- 1,2-DCE	cis- 1,2-DCE	1,1-DCE
		Pre-Re	edevelopmen	t Soil Chara	cterization S	Samples			
P-18:1*	1	96	07/09/13	ND<0.01	ND<0.01	ND<0.01	ND<0.01	ND<0.01	ND<0.01
P-18:3*	3	94	07/09/13	ND<0.01	ND<0.01	ND<0.01	ND<0.01	ND<0.01	ND<0.01
P-18:5.5*	5.5	92	07/09/13	ND<0.01	ND<0.01	ND<0.01	ND<0.01	ND<0.01	ND<0.01
P-19:2*	2	95	07/09/13	ND<0.01	ND<0.01	0.014	ND<0.01	ND<0.01	ND<0.01
P-19:5*	5	92	07/09/13	ND<0.01	ND<0.01	ND<0.01	ND<0.01	ND<0.01	ND<0.01
P-19:8*	8	89	07/09/13	ND<0.01	ND<0.01	ND<0.01	ND<0.01	ND<0.01	ND<0.01
P-20:2*	2	95	07/09/13	ND<0.01	ND<0.01	0.016	ND<0.01	ND<0.01	ND<0.01
P-20:5*	5	92	07/09/13	ND<0.01	ND<0.01	ND<0.01	ND<0.01	ND<0.01	ND<0.01
P-20:8*	8	89	07/09/13	ND<0.01	ND<0.01	0.023	ND<0.01	ND<0.01	ND<0.01
		R	edevelopme	nt Excavatio	n Soil Samp	les			
DC-N1:5	5	92	08/20/13	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05
DC-E2:5	5	92	08/20/13	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05
DC-E3:5	5	92	08/20/13	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05
DC-S4:5	:5 5 92		08/20/13	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05
DC-W5:5	5 5 92		08/20/13	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05
DC-W6:5	5	92	08/20/13	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05
DC-B7:10	10	87	08/20/13	ND<0.02	ND<0.03	0.034	ND<0.02	ND<0.02	ND<0.05
DC-B8:10	10	87	08/20/13	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05
DC-B9:10	10	87	08/20/13	ND<0.02	ND<0.03	0.021	ND<0.02	ND<0.02	ND<0.05
DC-B10:10	10	87	08/20/13	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05
DC-B11:15	15	82	08/20/13	ND<0.02	ND<0.03	0.021	ND<0.02	ND<0.02	ND<0.05
DC-B11:20	20	77	08/20/13	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05
DC-B12:15	15	82	08/20/13	ND<0.02	ND<0.03	0.022	ND<0.02	ND<0.02	ND<0.05
DC-B12:20	20	77	08/20/13	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05
DC-N13:12	12	85	08/21/13	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05
DC-N14:12	12	85	08/21/13	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05
DC-W15:12	12	85	08/21/13	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05
DC-E16:12	12	85	08/21/13	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05
DC-E17:12	12	85	08/21/13	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05
DC-B18:15	15	85	08/21/13	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05
Soil	MTCA Metl Un	nod A Soil Cleanur restricted Land Us	o Levels For ses	NVE	0.03	0.05	NVE	NVE	NVE
Levels	MTCA Me	ethod B Soil Clean (Direct Contact)	up Levels	0.67 ¹	12	480	1,600 ²	160 ²	4,000 ²

THE RILEY GROUP, INC.

Table 2. Summary of Soil Sample Analytical Laboratory Results For Area 1 Redevelopment Excavation Main Street Apartments Development 10505 Main Street, Bellevue, Washington 98004 The Riley Group, Inc. Project No. 2012-107J

Notes:

All results and detection limits are given in mg/kg; equivalent to parts per million (ppm).

Sample Depth = soil sample depth interval in feet below ground surface (bgs).

VC (vinyl chloride), TCE (trichloroethene), PCE (tetrachloroethene), trans-1,2-DCE (trans-1,2-dichloroethene), cis-1,2-DCE (cis-1,2-dichloroethene), and 1,1-DCE (1,1-dichloroethene) determined using EPAs Test Method 8260C and 8021B.

ND = Not detected above noted analytical detection limit.

NVE = No value established.

---- = Not analyzed or not applicable.

¹ Indicates that the MTCA Method B carcinogenic value was referenced.

² Indicates that the MTCA Method B noncarcinogenic value was referenced.

*Sample collected during RGI's 2012 Phase II Investigation.

Ecology Model Toxics Control Act Method A Soil Cleanup Levels for Unrestricted Land Uses (WAC 173-340-900, Table 740-1).

Bold results indicated concentrations above laboratory detection limits.

Bold and yellow highlighted results indicate concentrations (if any) that exceed the applicable soil screening level.

Table 3. Summary of Soil Sample Analytical Laboratory Results For Area 2 Remedial Excavation Main Street Apartments Development

10505 Main Street, Bellevue, Washington 98004

The Riley Group, Inc. Project No. 2012-107J

		-,	-	Final							ł
Sample Number	Sample Depth (bgs)	Elevation (feet)	Sample Date	Sample Performance Date Sample (Status) Soil Chara		TCE	PCE	trans- 1,2-DCE	cis-1,2-DCE	1,1-DCE	Other VOCs
				Soil Chara	cterization	Samples					
DC-D:4**	4	93	08/19/13	No (Excavated)	ND<0.05	ND<0.03	0.17	ND<0.05	ND<0.05	ND<0.05	ND
A2-B1:10	10	87	09/03/13	No (Excavated*)	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
A2-B1:15	15	82	09/03/13	No (Excavated*)	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
A2-B1:20	20	77	09/03/13	No (In-Situ)	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
A2-B2:5	5	92	09/03/13	No (Excavated*)	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
A2-B2:10	10	87	09/03/13	No (Excavated*)	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
A2-B2:15	15	82	09/03/13	No (Excavated*)	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
A2-B2:20	20	77	09/03/13	No (In-Situ)	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
A2-B3:5	5	92	09/03/13	No (Excavated*)	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
A2-B3:10	10	87	09/03/13	No (Excavated*)	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
A2-B3:15	15	82	09/03/13	No (Excavated*)	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
A2-B3:20	20	77	09/03/13	No (In-Situ)	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
				Remedial Excavatio	on Perform	ance Soil S	Samples				
A2-5B:5	5	92	09/11/13	Yes (Excavated*)	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
A2-1N:3	3	94	09/11/13	Yes (Excavated*)	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
A2-2E:3	3	94	09/11/13	Yes (Excavated*)	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
A2-3S:3	3	94	09/11/13	Yes (Excavated*)	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
A2-4W:3	3	94	09/11/13	Yes (Excavated*)	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
Soil	MTC	A Method <i>A</i> Unrestr	A Soil Clean icted Land	up Levels For Uses	NVE	0.03	0.05	NVE	NVE	NVE	Analyte Specific
Levels	МТ	CA Methoo (Dir	B Soil Clea	nup Levels	0.67 ¹	12	480	1,600 ²	160 ²	4,000 ²	Analyte Specific

All results and detection limits are given in mg/kg; equivalent to parts per million (ppm).

Sample Depth = soil sample depth interval in feet below ground surface (bgs).

VC (vinyl chloride), TCE (trichloroethene), PCE (tetrachloroethene), trans-1,2-DCE (trans-1,2-dichloroethene), cis-1,2-DCE (cis-1,2dichloroethene), and 1,1-DCE (1,1-dichloroethene) and other VOCs (volatile organic compounds) determined using EPA Test Methods 8260C and 8021B.

ND = Not detected above noted analytical detection limit.

NVE = No value established.

¹ Indicates that the MTCA Method B carcinogenic value was referenced.

² Indicates that the MTCA Method B non-carcinogenic value was referenced.

* Soil was excavated as part of routine mass excavation activities and was not disposed of as contaminated soil.

**Sample collected from track hoe bucket at approximately 3 feet bgs. All other soil characterization samples were collected during drilling.

Ecology Model Toxics Control Act Method A Soil Cleanup Levels for Unrestricted Land Uses (WAC 173-340-900, Table 740-1).

Bold results indicated concentrations above laboratory detection limits.

Bold and yellow highlighted results indicate concentrations (if any) that exceed the applicable soil screening level.

THE RILEY GROUP, INC.

Table 4. Summary of Soil Sample Analytical Laboratory Results For Area 3 (UST1) Remedial Excavation

Main Street Apartments Development

10505 Main St	05 Main Street, Bellevue, Washington 98004 Biley Group, Inc. Project No. 2012-1071																
The Riley Grou	p, Inc. Pro	oject No. 2012	2-107J														
Sample	Sample	Approximate	Sample	Final Performance Sample	Gas	Diesel TPH	Oil TPH	Diesel TPH	Oil TPH	Total				trans-	cis-		
Number ⁷	Depth (bgs)	Elevation (feet)	Date	(Status)	TPH	W/O Si	lica Gel	With Si	lica Gel	Naphthalenes ³	VC	TCE	PCE	1,2-DCE	1,2-DCE	1,1-DCE	Other VOCs
	(553)	(1661)				UST	Assessment	and Soil Char	acterization S	amples							
LIST1-C-1	1	96	08/19/13	No (Excavated)													
	7	90	08/19/13	No (Excavated)	98 x			21 000	1 100 x		ND<0.05	ND<0.03	0.28	ND<0.05	ND<0.05	ND<0.05	ND
UST1-N:7	7	90	08/19/13	No (Excavated)				ND<50	ND<250								
UST1-W:7	7	90	08/19/13	No (Excavated)	180 x			13.000	650 x	ND<0.05 ⁴	ND<0.05	ND<0.03	0.36	ND<0.05	ND<0.05	ND<0.05	ND
UST1-CDF ⁴			08/21/13	No (Excavated)	13	640	ND<100				ND<0.02	ND<0.03	0.037	ND<0.02	ND<0.02	ND<0.05	
UST1-B1:2.5	2.5	94.5	08/24/13	No (Excavated)													
UST1-B1:7.5	7.5	89.5	08/24/13	No (Excavated)		6,470	ND<100				ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
UST1-B1:10	10	87	08/24/13	No (Excavated)		10,950	ND<100				ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
UST1-B1:12.5	12.5	84.5	08/24/13	No (Excavated)													
UST1-B1:15	15	82	08/24/13	No (Excavated)													
UST1-B1:17.5	17.5	79.5	08/24/13	No (Excavated)													
UST1-B1:20	20	77	08/24/13	No (Excavated)		19,900	ND<100				ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
UST1-B1:22.5	22.5	74.5	08/24/13	No (Excavated)													
UST1-B1:25	25	72	08/24/13	No (Excavated)		20,200	ND<100				ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
UST1-B1A:30	30	67	09/03/13	No (Excavated)		2,830	ND<100				ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
UST1-B1A:35	35	62	09/03/13	No (In-Situ)		ND<25	ND<100				ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
UST1-B1A:40	40	57	09/03/13	No (In-Situ)		ND<25	ND<100				ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
UST1-B1A:45	45	52	09/03/13	No (In-Situ)		ND<25	ND<100				ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
UST1-B1A:50	50	47	09/03/13	No (In-Situ)		100	ND<100	170	ND<100		ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
UST1-B2:2.5	2.5	94.5	08/24/13	No (Excavated)													
UST1-B2:5	5	92	08/24/13	No (Excavated)		ND<25	ND<100				ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
UST1-B2:7.5	7.5	89.5	08/24/13	No (Excavated)													
UST1-B2:10	10	87	08/24/13	No (Excavated)		ND<25	ND<100				ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
UST1-B2:12.5	12.5	84.5	08/24/13	No (Excavated)													
UST1-B2:15	15	82	08/24/13	No (Excavated)		ND<25	ND<100				ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
UST1-B2:17.5	17.5	79.5	08/24/13	No (Excavated)													
UST1-B2:20	20	77	08/24/13	No (In-Situ)		ND<25	ND<100				ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
UST1-B2:22.5	22.5	74.5	08/24/13	No (In-Situ)													
UST1-B2:25	25	72	08/24/13	No (In-Situ)													
Soil Screening	MTCA Me	ethod A Soil Cle	anup Levels	For Unrestricted Land Uses	100/30 ¹	2,0	00	2,0	000	5	NVE	0.03	0.05	NVE	NVE	NVE	Analyte Specific
Levels	Cleanup Levels act)						1,600 ²	0.67 ¹	12	480	1,600 ²	160 ²	4,000 ²	Analyte Specific			
	Category 1 Soil Ranges ⁵						<25	<25	<25	<0.05							
		5 to 30	25 to 200	25 to 200⁶	25 to 200	25 to 200⁶	0.05 to 5										
	Category 3 Soil Ranges ⁵					200 to 500	200 to 500	200 to 500	200 to 500	5 or less							
	Category 4 Soil Ranges ⁵					>500	>500	>500	>500	>5							

THE RILEY GROUP, INC.

 Table 4 Continued. Summary of Soil Sample Analytical Laboratory Results
 For Area 3 (UST1) Remedial Excavation

Main Street Apartments Development 10505 Main Street, Bellevue, Washington 98004

The Riley Grou	ey Group, Inc. Project No. 2012-107J																
Sample	Sample	Approximate	Sample	Final Performance Sample	Gas	Diesel TPH	Oil TPH	Diesel TPH	Oil TPH	Total				trans-	cis-		
Number ⁷	Depth (bgs)	Elevation (feet)	Date	(Status)	ТРН	W/O Si	lica Gel	With Si	ilica Gel	Naphthalenes ³	VC	TCE	PCE	1,2-DCE	1,2-DCE	1,1-DCE	Other VOCs
UST1-B3:2.5	2.5	94.5	08/24/13	No (Excavated)													
UST1-B3:5	5	92	08/24/13	No (Excavated)		ND<25	ND<100				ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
UST1-B3:7.5	7.5	89.5	08/24/13	No (Excavated)													
UST1-B3:10	10	87	08/24/13	No (Excavated)		ND<25	ND<100				ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
UST1-B3:12.5	12.5	84.5	08/24/13	No (Excavated)		90	ND<100	110	ND<100		ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
UST1-B3:15	15	82	08/24/13	No (Excavated)		110		100	ND<100		ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
UST1-B3:17.5	17.5	79.5	08/24/13	No (Excavated)													
UST1-B3:20	20	77	08/24/13	No (In-Situ)													
UST1-B3:22.5	22.5	74.5	08/24/13	No (In-Situ)													
UST1-B3:25	25	72	08/24/13	No (In-Situ)		92	ND<100	90	ND<100		ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
UST1-B4:2.5	2.5	94.5	08/24/13	No (Excavated)													
UST1-B4:5	5	92	08/24/13	No (Excavated)		89	ND<100	ND<25	ND<100		ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
UST1-B4:7.5	7.5	89.5	08/24/13	No (Excavated)													
UST1-B4:10	10	87	08/24/13	No (Excavated)		122	ND<100	ND<25	ND<100		ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
UST1-B4:12.5	12.5	84.5	08/24/13	No (Excavated)													
UST1-B4:15	15	82	08/24/13	No (Excavated)		ND<25	ND<100				ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
UST1-B4:17.5	17.5	79.5	08/24/13	No (Excavated)													
UST1-B4:20	20	77	08/24/13	No (In-Situ)		ND<25	ND<100				ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
UST1-B4:22.5	22.5	74.5	08/24/13	No (In-Situ)													
UST1-B4:25	25	72	08/24/13	No (In-Situ)													
		•	•			Phase	I Remedial Ex	cavation Per	formance So	il Samples							
A3-1S:7.0	7	90	09/11/13	No (Excavated)		600	ND<100				ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
A3-2B:8	8	89	09/11/13	No (Excavated)		10,300	ND<100				ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
A3-3W:7.0	7	90	09/11/13	No (Excavated)		6,900	ND<100				ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
A3-4N:7	7	90	09/11/13	No (Excavated)		4,100	ND<100				ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
A3-5E:7.0	7	90	09/11/13	No (Excavated)		7,800	ND<100				ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05	
Soil Screening	MTCA Me	ethod A Soil Cle	anup Levels	s For Unrestricted Land Uses	100/30 ¹	2,0	000	2,0	000	5	NVE	0.03	0.05	NVE	NVE	NVE	Analyte Specific
Levels		MTCA Met	hod B Soil (Direct Cont	Cleanup Levels act)						1,600 ²	0.67 ¹	12	480	1,600 ²	160 ²	4,000 ²	Analyte Specific
	Category 1 Soil Ranges ⁵						<25	<25	<25	<0.05							
	Category 2 Soil Ranges ⁵					25 to 200	25 to 200⁶	25 to 200	25 to 200⁶	0.05 to 5							
	Category 3 Soil Ranges ⁵					200 to 500	200 to 500	200 to 500	200 to 500	5 or less							
	Category 4 Soil Ranges ⁵					>500	>500	>500	>500	>5							

 Table 4 Continued. Summary of Soil Sample Analytical Laboratory Results
 For Area 3 (UST1) Remedial Excavation

 Main Street Apartments Development

10505 Main Street, Bellevue, Washington 98004 The Riley Group, Inc. Project No. 2012-107JSample NumberSample Depth (bgs)Approximate Elevation (feet)Sample DateFinal Performance Sample (Status)Diesel TPHOil TPH Diesel TPHOil TPH Diesel TPHTotal NumberVCTCEPCEtrans- 1,2-DCE <th>1,1-DCE Other VOCs</th>	1,1-DCE Other VOCs
Sample Number Sample Levation (feet) Sample Depth (feet) Approximate Elevation (feet) Sample Sample (Status) Diesel TPH (Status) Oil TPH (Status) Diesel TPH (Status) Oil TPH (Status) Total Naphthalenes ³ VC TCE PCE trans- 1,2-DCE cis- 1,2-DCE 1, 1,2-DCE 1, 1,2-DCE 1, A3-6N:6 6 91 09/24/13 No (Excavated) 170 ND<100	1,1-DCE Other VOCs
Sample NumberApproximate Depth (bgs)Approximate Elevation (feet)Sample DateFinal Performance Sample (Status)Gas TPHDiesel TPHOil TPHOil TPHOil TPHTotal Naphthalenes3VCTCEPCEtrans- 1,2-DCEtrans- 1,2-DCEtrans- 1,2-DCEtrans- 	1,1-DCE Other VOCs
NumberDepth (bgs)Elevation (feet)Date(Status)TPHW/O Silica GelWith Silica GelNaphthalenes3VCTCEPCE1,2-DCE<	1,1-DCE Other VOCs
Phase II Remedial Excavation Performance Soil Samples A3-6N:6 6 91 09/24/13 No (Excavated) 170 ND<100 <th< td=""><td></td></th<>	
A3-6N:6 6 91 09/24/13 No (Excavated) 170 ND<100	
A3-6N:9 9 88 09/24/13 No (Excavated) 170 ND<100	
A3-7W:9 9 88 09/24/13 Yes (In-Situ) ND<25 ND<100	
A3-8B:11 11 86 09/24/13 No (Excavated) 10,800 ND<100	
A3-9W:9 9 88 09/24/13 Yes (In-Situ) ND<25 ND<100	
A3-10S:6 6 91 09/24/13 No (Excavated) ND<25 ND<100	
A3-10S:9 9 88 09/24/13 No (Excavated) ND<25 ND<100	
A3-11B:11 11 86 09/24/13 No (Excavated) 900 ND<100	
A3-12E:9 9 88 09/24/13 Yes (Excavated*) ND<25 ND<100	
A3-13E:9 9 88 09/24/13 No (Excavated) 230 ND<100	
A3-14S:9 9 88 09/24/13 No (Excavated) 130 ND<100	
A3-15N:9 9 88 09/24/13 Yes (Excavated*) ND<25 ND<100	
A3-16E:6 6 91 09/24/13 Yes (Excavated*) ND<25 ND<100	
A3-16E:10 10 87 09/24/13 Yes (Excavated*) ND<25 ND<100	
A3-17S:10 10 87 09/24/13 No (Excavated) 130 ND<100	
A3-18S:9 9 88 09/24/13 Yes (Excavated*) ND<25 ND<100	
A3-19B:11 11 86 09/27/13 Yes (Excavated*) ND<25 ND<100	
A3-20N:10 10 87 09/27/13 Yes (Excavated*) ND<25 ND<100	
A3-21E:10 10 87 09/27/13 Yes (Excavated*) ND<25 ND<100	
A3-22E:10 10 87 09/27/13 Yes (Excavated*) ND<25 ND<100	
A3-23E:10 10 87 09/27/13 Yes (Excavated*) ND<25 ND<100	
A3-24S:10 10 87 09/27/13 Yes (Excavated*) ND<25 ND<100	
A3-25E:10 10 87 09/27/13 Yes (Excavated*) ND<25 ND<100	
A3-26B:11 11 86 09/27/13 No (Excavated) 130 ND<100	
A3-27B:11 11 86 09/27/13 Yes (Excavated*) ND<25 ND<100	
Phase III Remedial Excavation Performance Soil Samples	
A3-8B:17 17 80 10/07/13 No (Excavated) 1,200 ND<100	
A3-26B:17 17 80 10/07/13 No (Excavated) 140 ND<100 <	
Soil Screening MTCA Method A Soil Cleanup Levels For Unrestricted Land Uses 100/30 ¹ 2,000 2,000 5 NVE 0.03 0.05 NVE NVE	NVE Analyte Specific
LevelsMTCA Method B Soil Cleanup Levels (Direct Contact)1,600 ² 0.67 ¹ 124801,600 ² 160 ² 4	4,000 ² Analyte Specific
Category 1 Soil Ranges ⁵ <5 <25 <25 <25 <0.05	
Category 2 Soil Ranges ⁵ 5 to 30 25 to 200 25 to 200 ⁶ 25 to 200 ⁶ 0.05 to 5	
Category 3 Soil Ranges ⁵ 30 to 100 200 to 500 200 to 500 200 to 500 5 or less	
Category 4 Soil Ranges ⁵ >100 >500	

Table 4 Continued. Summary of Soil Sample Analytical Laboratory Results For Area 3 (UST1) Remedial Excavation

Main Street Apartments Development

10505 Main Str The Riley Grou	reet, Belle	evue, Washin	gton 9800 2-1071	94													
	Sample	Approximate				Diesel TPH	Oil TPH	Diesel TPH	Oil TPH	Tet							
Sample Number ⁷	Depth (bgs)	Elevation (feet)	Sample Date	Final Performance Sample (Status)	Gas TPH	W/O Si	lica Gel	With Si	lica Gel	Naphthalenes ³	vc	TCE	PCE	trans- 1,2-DCE	cis- 1,2-DCE	1,1-DCE	Other VOCs
A3-27S:16	16	81	10/07/13	No (Excavated)		ND<25	ND<100										
A3-28E:16	16	81	10/07/13	Yes (Excavated*)		ND<25	ND<100										
A3-29E:16	16	81	10/07/13	Yes (Excavated*)		ND<25	ND<100										
A3-30N:16	16	81	10/07/13	Yes (Excavated*)		ND<25	ND<100										
A3-31S:16	16	81	10/07/13	No (Excavated)		150	ND<100										
A3-32W-15	15	82	10/07/13	Yes (In-Situ)		145	ND<100										
A3-33S-16	16	81	10/07/13	Yes (Excavated*)		ND<25	ND<100										
						Phase I	V Remedial E	xcavation Pe	rformance Sc	oil Samples						-	
A3-7W:19	19	78	10/14/13	Yes (In-Situ)		130	ND<100										
A3-9W:19	19	78	10/14/13	Yes (In-Situ)		140	ND<100										
A3-34S:20	20	77	10/14/13	No (Excavated)		6,400	ND<100			22							Ethylbenzene = 0.12 Xylenes = 1.63
A3-35E:20	20	77	10/14/13	Yes (In-Situ)		150	ND<100										
A3-36B:23	23	74	10/14/13	No (Excavated)		13,900	ND<100			55							Ethylbenzene = 0.11 Xylenes = 2.3
A3-37N:20	20	77	10/14/13	Yes (In-Situ)		215	ND<100										
A3-38E:20	20	77	10/14/13	Yes (In-Situ)		130	ND<100										
A3-39W:21	21	76	10/14/13	Yes (In-Situ)		140	ND<100										
A3-40S:21	21	76	10/14/13	Yes (In-Situ)		ND<25	ND<100										
A3-41E:20**	20	77	10/14/13	No (Excavated)		ND<25	ND<100										
A3-42E:20**	20	77	10/14/13	No (Excavated)		130	ND<100										
A3-43N:20**	20	77	10/14/13	No (Excavated)		ND<25	ND<100										
A3-44B:23	23	74	10/14/13	Yes (In-Situ)		140	ND<100										
		-	-			Phase	V Remedial E	xcavation Pe	rformance So	il Samples						_	
A3-45S:27	27	70	10/25/13	Yes (In-Situ)		ND<50	ND<250										
A3-46N:27	27	70	10/25/13	Yes (In-Situ)		3,000	ND<100										
A3-47W:27	27	70	10/28/13	Yes (In-Situ)		1,100	ND<250			2.83							
A3-48E:27	27	70	10/28/13	Yes (In-Situ)		6,100	ND<250										
A3-49B:31	31	66	10/28/13	Yes (In-Situ)		2,100	ND<250										
Soil Screening	For Unrestricted Land Uses	100/30 ¹	2,0	000	2,0	000	5	NVE	0.03	0.05	NVE	NVE	NVE	Ethylbenzene = 6 Xylenes = 9			
Levels		MTCA Met (hod B Soil C Direct Cont	leanup Levels act)						1,600 ²	0.67 ¹	12	480	1,600 ²	160 ²	4,000 ²	Analyte Specific
	Category 1 Soil Ranges ⁵					<25	<25	<25	<25	<0.05							
	Category 2 Soil Ranges ⁵					25 to 200	25 to 200⁶	25 to 200	25 to 200⁶	0.05 to 5							
	Category 3 Soil Ranges ⁵					200 to 500	200 to 500	200 to 500	200 to 500	5 or less							
		Category 4 So		>100	>500	>500	>500	>500	>5								

Table 4 Continued. Summary of Soil Sample Analytical Laboratory Results For Area 3 (UST1) Remedial Excavation Main Street Apartments Development 10505 Main Street, Bellevue, Washington 98004 The Riley Group, Inc. Project No. 2012-107J Notes: All results and detection limits are given in mg/kg; equivalent to parts per million (ppm). Sample Depth = soil sample depth interval in feet below ground surface (bgs). Gasoline-range TPH (total petroleum hydrocarbons) determined using Ecology Test Method NWTPH Gx. Diesel- and Oil- Range TPH (total petroleum hydrocarbons) determined using Ecology Test Method NWTPH Dx. VC (vinyl chloride), TCE (trichloroethene), PCE (tetrachloroethene), trans-1,2-DCE (trans-1,2-dichloroethene), and 1,1-DCE (1,2-dichloroethene) and other VOCs (volatile organic compounds) determined using EPA Test Method 8021B or 8260C. bgs = Below ground surface. The grade of the surface immeidately west of Area 3 was referenced. ND = Not detected above noted analytical detection limit. NVE = No value established. --- = Not analyzed or not applicable. Indicates that the MTCA Method B carcinogenic value was referenced. Indicates that the MTCA Method B non-carcinogenic value was referenced. Analyzed using EPA Test Method 8270 SIM unless otherwise indicated. Naphthalenes are factored into the TPH screening level calculation but are evaluated separately due to the fact that some mixtures of TPH may contain amounts of naphthalenes that did not match the assumptions used in the TPH calculations. Analyzed using EPA Test Method 8260C. Sample was collected from inside the bottom of the UST. Values obtained from Guidance for Remediation of Petroleum Contaminated Sites dated September, 2011 by Ecology. For heavy oils (diesel-range TPH in the C12-C34 range), the Category 1 range is <100 and the Category 2 range is 100-200. The remaining categories are the same. Does not include waste oil contaminated soils, which should be disposed of in a landfill. Shade color in sample number column indicates soil category designation. * Soil was excavated as part of routine mass excavation activities and was not disposed of as contaminated soil. ** Test pit sample collected from outside the final limits of the Area 3 remedial excavation. Soil samples collected from UST-B1 through UST1-B4 were collected during drilling. All other soil samples were collected from the track hoe bucket. Ecology Model Toxics Control Act Method A Soil Cleanup Levels for Unrestricted Land Uses (WAC 173-340-900, Table 740-1). **Bold** results indicated concentrations above laboratory detection limits. Bold and yellow highlighted results indicate concentrations (if any) that exceed the applicable soil screening level. Bold and brown highlighted sample indicates concentrations (if any) that deem soil a Category 2 petroleum contaminated soil. Bold and green highlighted sample indicates concentrations (if any) that deem soil a Category 3 petroleum contaminated soil. Bold and blue highlighted sample indicates concentrations (if any) that deem soil a Category 4 petroleum contaminated soil.

Table 5. Summary of Soil Sample Analytical Laboratory Results For Area 4 Remedial Excavation

Main Street Apartments Development

10505 M The Riley	ain Stre [,] Group,	et, Bellevue, Inc. Project	Washingt No. 2012-	ton 98004 107J												
Sample	Sample	Approximate	Sample	Final Performance Sample	Gas		BTE	x	-	Diesel TPH	Oil TPH	Diesel TPH	Oil TPH	Total	VOCs Included in TPH Screening Level	_
Number ⁶	Depth	Elevation (feet)	Date	(Status)	ТРН	В	т	Е	х	W/O Si	ilica Gel	With Si	lica Gel	Naphthalenes ²	Calculation ³	Other VOCs
									Characteriza	tion Soil Sam	nple					
A4-C:3	3	94	08/22/13	No (Excavated)	34	ND<0.03	0.24	ND<0.05	ND<0.1			12,000 x	46,000	0.36	n-Propylbenzene = 0.052 1,3,5-Trimethylbenzene = 0.30 1,2,4-Trimethylbenzene = 0.64 sec-Butylbenzene = 0.052	2-Chlorotoluene = 0.63 4-Chlorotoluene = 0.11 Methylene chloride = 0.83 lc Tetrachloroethene = 0.031
								Re	medial Exac	ation Soil Sa	mples					
A4-S:3	3	94	08/27/13	Yes (Excavated*)	ND<2	ND<0.02	ND<0.02	ND<0.02	ND<0.06			ND<50	ND<250			
A4-B:5	5	92	08/27/13	No (Excavated)	ND<2	ND<0.02	ND<0.02	ND<0.02	ND<0.06			79 x	490			
A4-W:3	3	94	08/27/13	Yes (Excavated*)	ND<2	ND<0.02	ND<0.02	ND<0.02	ND<0.06			ND<50 ND<250				
A4-E:3	3	94	08/27/13	Yes (Excavated*)	ND<2	ND<0.02	ND<0.02	ND<0.02	ND<0.06			ND<50	ND<250			
A4-1W:5	5	92	08/29/13	Yes (Excavated*)	ND<5	ND<0.01	ND<0.1	ND<0.1	ND<0.1	ND<25	ND<100					
A4-2N:5	5	92	08/29/13	Yes (Excavated*)	ND<5	ND<0.01	ND<0.1	ND<0.1	ND<0.1	ND<25	ND<100					
A4-3E:5	5	92	08/29/13	Yes (Excavated*)	ND<5	ND<0.01	ND<0.1	ND<0.1	ND<0.1	ND<25	ND<100					
A4-4B:8	8	89	08/29/13	Yes (Excavated*)	ND<5	ND<0.01	ND<0.1	ND<0.1	ND<0.1	ND<25	ND<100					
Soil Scre	eening	MTCA Metho	d A Soil Clea Lan	anup Levels For Unrestricted d Uses	100/30 ¹	0.03	7	6	9	2,(000	2,0	00	5		Methylene chloride = 0.02 Tetrachloroethene = 0.05
Leve	Levels MTCA Method B Soil Cleanup Levels (Direct Contact)													1,600 ²		2-Chlorotoluene = 1,600 4-Chlorotoluene = NVE ⁴
		Category	1 Soil Rang	es ⁶	<5	<0.005	<0.005	<0.005	<0.015	<25	<25	<25	<25	<0.05		
		Category	2 Soil Rang	es ⁶	5 to 30	0.005 to 0.03	0.005 to 6	0.005 to 7	0.015 to 9	25 to 200	25 to 200 ⁷	25 to 200	25 to 200⁷	0.05 to 5		
		Category	3 Soil Rang	;es ⁶	30 to 100	0.03 or less	6 or less	7 or less	9 or less	200 to 500	200 to 500	200 to 500	200 to 500	5 or less		
		Category	4 Soil Rang	jes ⁶	>100	5	>6	>7	>9	>500	>500	>500	>500	>5		

Notes:

All results and detection limits are given in mg/kg; equivalent to parts per million (ppm).

Sample Depth = soil sample depth interval in feet below ground surface (bgs).

Gasoline-range TPH (total petroleum hydrocarbons) determined using Ecology Test Method NWTPH Gx.

BTEX (benzene, toluene, ethylbenzene, and xylenes) determined using EPA Test Method 8021B or 8260C.

Diesel- and Oil- Range TPH (total petroleum hydrocarbons) determined using Ecology Test Method NWTPH Dx.

VOCs (volatile organic compounds) determined using EPA Test Method 8260C.

ND = Not detected above noted analytical detection limit.

NVE = No value established.

Ic = The presence of methylene chloride is likely due to laboratory contamination.

x = The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

--- = Not analyzed or not applicable.

The higher cleanup level is allowed if no benzene is detected in the sample and the total of toluene, ethylbenzene and xylenes is less than 1% of the gasoline mixture.

Analyzed using EPA Test Method 8260C. Naphthalenes are factored into the TPH screening level calculation but are evaluated separately due to the fact that some mixtures of TPH may contain amounts of naphthalenes that did not match the assumptions used in the TPH calculations.

Table 5. Summary of Soil Sample Analytical Laboratory Results For Area 4 Main Street Apartments Development 10505 Main Street, Bellevue, Washington 98004 The Riley Group, Inc. Project No. 2012-107J

Notes Continued:

³ It is not necessary to evaluate these compounds for screening level exceedances due to the fact that they are factored into the TPH screening level calculations.

⁴ No MTCA cleanup levels have been established for the indicated compound.

⁵ Toxic characteristic leaching procedure (TCLP) testing must be conducted for soil containing concentrations of lead and benzene exceeding 220 mg/kg and 0.03 mg/kg, respectively. Soils that fail the TCLP test must be disposed of as hazardous waste unless exempt under WAC 173-303-071(3)(t).

⁶ Values obtained from Guidance for Remediation of Petroleum Contaminated Sites dated September, 2011 by Ecology.

⁷ For heavy oils (diesel-range TPH in the C12-C34 range), the Category 1 range is <100 and the Category 2 range is 100-200. The remaining categories are the same. Does not include waste oil contaminated soils, which should be disposed of in a landfill.

⁸ Shade color in sample number column indicates soil category designation.

* Soil was excavated as part of routine mass excavation activities and was not disposed of as contaminated soil.

Ecology Model Toxics Control Act Method A Soil Cleanup Levels for Unrestricted Land Uses (WAC 173-340-900, Table 740-1).

Bold results indicated concentrations above laboratory detection limits.

Bold and yellow highlighted results indicate concentrations (if any) that exceed the applicable soil screening level.

Bold and brown highlighted sample indicates concentrations (if any) that deem soil a Category 2 petroleum contaminated soil.

Bold and green highlighted sample indicates concentrations (if any) that deem soil a Category 3 petroleum contaminated soil.

Bold and blue highlighted sample indicates concentrations (if any) that deem soil a Category 4 petroleum contaminated soil.

Table 6. Summary of Soil Sample Analytical Laboratory Results For Area 5 (UST3) Remedial Excavation

Main Street Apartments Development

10505 Mai The Riley (n Street, B Group, Inc.	ellevue, Wash Project No. 20	ington 980 012-107J	04												
Sample Number ⁵	Sample Depth (bgs)	Approximate Elevation (feet)	Sample Date	Final Performance Sample (Status)	Gas TPH	В	Т	E	х	Diesel TPH	Oil TPH	PCBs ¹	Carcinogenic PAHs	Other PAHs	Other VOCs	Lead
							UST Ass	essment and Soil	Characterization	Samples						
UST3-N-6	6	92	08/27/13	No (Excavated)	2	ND<0.02	ND<0.02	ND<0.02	ND<0.06	2,300 x	10,000					
UST3-S-6	6	92	08/27/13	No (Excavated)	ND<2	ND<0.02	ND<0.02	ND<0.02	ND<0.06	190 x	500					
UST3-C-6	6	92	08/27/13	No (Excavated)	3,700	ND<0.1	ND<0.1	Fluoranthene = 0.02	ND	1.95						
						amples										
A5-1W:7	7	91	08/29/13	Yes (Excavated*)	ND<5.0	ND<0.01	ND<0.10	ND<0.10	ND<0.10	ND<25	ND<100					
A5-2N:7	7	91	08/29/13	Yes (Excavated*)	ND<5.0	ND<0.01	ND<0.10	ND<0.10	ND<0.10	ND<25	ND<100					
A5-3S:7	7	91	08/29/13	Yes (Excavated*)	ND<5.0	ND<0.01	ND<0.10	ND<0.10	ND<0.10	ND<25	ND<100					
A5-4E:7	7	91	08/29/13	Yes (Excavated*)	ND<5.0	ND<0.01	ND<0.10	ND<0.10	ND<0.10	ND<25	ND<100					
A5-5B:10	10	88	08/29/13	Yes (Excavated*)	ND<5.0	ND<0.01	ND<0.10	ND<0.10	ND<0.10	ND<25	ND<100					
Soil Screening	MTCA Meth	hod A Soil Cleanu L	Ip Levels For U Jses	Unrestricted Land	100/30 ¹	0.03	7	6	9	2,0	000	1	0.1		Analyte Specific	250
Levels	Non-Carc	inogenic MTCA N Direct)	Aethod B Soil Contact)	Cleanup Levels										Fluoranthene = 3,200	Analyte Specific	
		Category 1 Soil R	anges ³		<5	<0.005	<0.005	<0.005	<0.015	<25	<25		<0.05			<17
		Category 2 Soil R	anges ³		5 to 30	0.005 to 0.03	0.005 to 6	0.005 to 7	0.015 to 9	25 to 200	25 to 200⁴		0.05 to 0.1			17 to 50
		Category 3 Soil R	anges ³		30 to 100	0.03 or less	6 or less	7 or less	9 or less	200 to 500	200 to 500		0.1 to 2			50 to 220
		Category 4 Soil R	anges ³		>100	2	>6	>7	>9	>500	>500		>2			2

Notes:

All results and detection limits are given in mg/kg; equivalent to parts per million (ppm).

Sample Depth = soil sample depth interval in feet below ground surface (bgs).

Gasoline-range TPH (total petroleum hydrocarbons) determined using Ecology Test Method NWTPH Gx.

BTEX (benzene, toluene, ethylbenzene, and xylenes) determined using EPA Test Method 8021B.

Diesel- and Oil- Range TPH (total petroleum hydrocarbons) determined using Ecology Test Method NWTPH Dx.

PCBs (Polychlorinated Biphenyls) determined using EPA Test Method 8082 for Aroclor 1221, 1232, 1016, 1242, 1248, 1254, and 1260.

PAHs (Polynuclear Aromatic Hydrocarbons) determined using EPA Test Method 8270D SIM.

VC (vinyl chloride), TCE (trichloroethene), PCE (tetrachloroethene), trans-1,2-DCE (trans-1,2-dichloroethene), and 1,1-DCE (1,2-dichloroethene), and 0 other VOCS (volatile organic compounds) determined using EPA Test Method 8260C. Total lead determined using EPA Method 200.8.

ND = Not detected above noted analytical detection limit.

NVE = No value established.

---- = Not analyzed or not applicable.

¹ The higher cleanup level is allowed if no benzene is detected in the sample and the total of toluene, ethylbenzene and xylenes is less than 1% of the gasoline mixture.

² Toxic characteristic leaching procedure (TCLP) testing must be conducted for soil containing concentrations of lead and benzene exceeding 220 mg/kg, respectively. Soils that fail the TCLP test must be disposed of as hazardous waste unless exempt under WAC 173-303-071(3)(t).

 3 Values obtained from Guidance for Remediation of Petroleum Contaminated Sites dated September, 2011 by Ecology.

⁴ For heavy oils (diesel-range TPH in the C12-C34 range), the Category 1 range is <100 and the Category 2 range is 100-200. The remaining categories are the same. Does not include waste oil contaminated soils, which should be disposed of in a landfill. ⁵ Shade color in sample number column indicates soil category designation.

Table 6. Summary of Soil Sample Analytical Laboratory Results For Area 5 (UST3) Remedial Excavation Main Street Apartments Development 10505 Main Street, Bellevue, Washington 98004 The Riley Group, Inc. Project No. 2012-107J

Notes Continued:

* Soil was excavated as part of routine mass excavation activities and was not disposed of as contaminated soil.

Ecology Model Toxics Control Act Method A Soil Cleanup Levels for Unrestricted Land Uses (WAC 173-340-900, Table 740-1).

Bold results indicated concentrations above laboratory detection limits.

Bold and yellow highlighted results indicate concentrations (if any) that exceed the applicable soil screening level.

Bold and brown highlighted sample indicates concentrations (if any) that deem soil a Category 2 petroleum contaminated soil.

Bold and green highlighted sample indicates concentrations (if any) that deem soil a Category 3 petroleum contaminated soil.

Bold and blue highlighted sample indicates concentrations (if any) that deem soil a Category 4 petroleum contaminated soil.

Table 7 Summary of Soil Sample Analytical Laboratory Results For Area 6 Remedial Excavation

Table 7. St	7. Summary of Soil Sample Analytical Laboratory Results For Area 6 Remedial Excavation Street Anartments Development																									
Main Stree	1 Street Apartments Development 15 Main Street, Bellevue, Washington 98004																									
10505 Mai	n Street	t, Bellevue, V	Vashingto	on 98004																						
The Riley G	iroup, l	nc. Project N	lo. 2012-1	07J		-					-	-			-	-	-	-	-							
	с I	Approximate		Final			BT	EX		<u>.</u>	0.1									0.1		٦	Total MTCA	5 Met	tals	
Sample Number	Sample Depth	Elevation (feet)	Sample Date	Performance Sample (Status)	Gas TPH	В	т	E	х	Diesei TPH	ОШ ТРН	VC	TCE	PCE	trans- 1,2-DCE	cis- 1,2-DCE	1,1-DCE	Naphthalene⁵	Screening Level Calculation ⁶	VOCs	As	Cd	Cr	Pb	TCLP Pb) Hg
													Sep	otic Tank C	Contents											
Septic Sludge			09/13/13	No (Excavated)	750	ND<0.03	0.16	0.22	1.72	670 x	1,400	ND<0.05	ND<0.03	0.073	ND<0.05	ND<0.05	ND<0.05	0.81	Isopropylbenzene = 0.26 n-Propylbenzene = 0.98 1,3,5-Trimethylbenzene = 2.2 1,2,4-Trimethylbenzene = 8.3 sec-Butylbenzene = 0.46 p-Isopropyltoluene = 0.80	Chlorobenzene = 0.098 1,3-Dichlorobenzene = 1.4 1,4-Dichlorobenzene = 16 1,2-Dichlorobenzene = 81 1,2,4-Trichlorobenzene = 0.38	2.84	3.69	15.0	503	1.74	0.14
													Soil Cha	aracterizat	tion Sampl	es										
A6-1:9	9	88	09/17/13	No (Excavated)	ND<2	ND<0.03	ND<0.05	ND<0.05	ND<0.1	ND<50	ND<250	ND<0.05	ND<0.03	0.053	ND<0.05	ND<0.05	ND<0.05			ND		ND<1		1.80		
A6-2:9	9	88	09/17/13	No (Excavated)	ND<2	ND<0.03	ND<0.05	ND<0.05	ND<0.1	ND<50	ND<250	ND<0.05	ND<0.03	0.032	ND<0.05	ND<0.05	ND<0.05			ND		ND<1		2.12		
												Reme	dial Excava	ation Perfo	ormance S	oil Sample	S									
A6-EX-1B:9	11	86	09/18/13	Yes (Excavated*)	ND<25					ND<25	ND<100	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05									
A6-EX-2W:7	9	88	09/18/13	Yes (Excavated*)	ND<25					ND<25	ND<100	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05									
A6-EX-3S:7	9	88	09/18/13	Yes (Excavated*)	ND<25					ND<25	ND<100	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05									
A6-EX-4N:7	9	88	09/18/13	Yes (Excavated*)	ND<25					ND<25	ND<100	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05									
A6-EX-5N:7	9	88	09/18/13	Yes (Excavated*)	ND<25					ND<25	ND<100	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05									
A6-EX-6E:7	9	88	09/18/13	Yes (Excavated*)	ND<25					ND<25	ND<100	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05									
A6-EX-7S:7	9	88	09/18/13	Yes (Excavated*)	ND<25					ND<25	ND<100	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05					J				
A6-EX-8B:9	11	86	09/18/13	Yes (Excavated*)	ND<25					ND<25	ND<100	ND<0.02	ND<0.03	ND<0.02	ND<0.02	ND<0.02	ND<0.05									
MTCA Meth	iod A Soi	l Cleanup Level	ls For Unres	tricted Land Uses	100/30 ¹	0.03	7	6	9	2,0	000	NVE	0.03	0.05	NVE	NVE	NVE	5		1,3-Dichlorobenzene = NVE ⁴ 1,4-Dichlorobenzene = NVE ⁴	20	2	19/2,000 ²	250	250	2
	MTCA	Method B Soil (Direct Cont	Cleanup Lev tact) ⁴	vels						-		0.67 ²			1,600	160	4,000	1,600 ⁵		Chlorobenzene = 1,600 ^{3,4} 1,2-Dichlorobenzene = 7,200 ^{3,4} 1,2,4-Trichlorobenzene = 35 ^{2,4}						

Notes:

All results and detection limits are given in mg/kg; equivalent to parts per million (ppm). TCLP Lead results in mg/L

Sample Depth = soil sample depth interval in feet below ground surface (bgs).

Gasoline-range TPH (total petroleum hydrocarbons) determined using Ecology Test Method NWTPH Gx.

BTEX (benzene, toluene, ethylbenzene, and xylenes) determined using EPA Test Method 8260C.

Diesel- and Oil- Range TPH (total petroleum hydrocarbons) determined using Ecology Test Method NWTPH Dx.

HCID (hydrocarbon identification) determined using Ecology Test Method NWTPH-HCID.

VC (vinyl chloride), TCE (trichloroethene), PCE (tetrachloroethene), trans-1,2-DCE (trans-1,2-dichloroethene), and 1,1-DCE (1,2-dichloroethene) and other VOCS (volatile organic compounds) determined using EPA Test Methods 8021B or 8260C. MTCA 5 Metals (As = Arsenic, Cd = Cadmium, Cr = Chromium, Pb = Lead, Hg = Mercury) determined using EPA Method 200.8 and 1631E.

TCLP (toxicity characteristic leaching procedure) determined using EPA Method 200.8 and 40 CFR Part 261.

ND = Not detected above noted analytical detection limit.

NVE = No value established.

--- = Not analyzed or not applicable.

¹ The higher cleanup level is allowed if no benzene is detected in the sample and the total of toluene, ethylbenzene and xylenes is less than 1% of the gasoline mixture.

² Indicates that the MTCA Method B carcinogenic value was referenced.

³ Indicates that the MTCA Method B non-carcinogenic value was referenced.

¹ No MTCA Method B value protective of groundwater was calculated for the indicated compounds due to the fact that they were only encountered inside the septic tank and not in the soil surrounding the tank.

³ Analyzed using EPA Test Method 8260C. Naphthalenes are factored into the TPH screening level calculation but are evaluated separately due to the fact that some mixtures of TPH may contain amounts of naphthalenes that did not match the assumptions used in the TPH calculations. ⁵ It is not necessary to evaluate these compounds for screening level exceedances due to the fact that they are factored into the TPH screening level calculations.

Table 7. Summary of Soil Sample Analytical Laboratory Results For Area 6Main Street Apartments Development

10505 Main Street, Bellevue, Washington 98004

The Riley Group, Inc. Project No. 2012-107J

Notes Continued:

* Soil was excavated as part of routine mass excavation activities and was not disposed of as contaminated soil.

Ecology Model Toxics Control Act Method A Soil Cleanup Levels for Unrestricted Land Uses (WAC 173-340-900, Table 740-1).

Bold results indicated concentrations above laboratory detection limits.

Bold and yellow highlighted results indicate concentrations (if any) that exceed the applicable soil screening level.

Table Q C 7 0 4:~I L

Table 8. Su	mmary of	Soli Sample An	alytical Labora	atory Res	ults For A	rea / Remed	al Excavat	tion						
Main Street	Apartme	nts Developme	nt											
10505 Main	Street, B	ellevue, Washir	ngton 98004											
The Riley Gr	oup, Inc.	Project No. 201	2-107J											
	Sample	Final					BTE	х						
Sample Number	Depth (bgs)	Performance Sample (Status)	Approximate Elevation (feet)	Sample Date	Gas TPH	В	т	E	х	Diesel TPH	Oil TPH	VOCs Included in TPH Screening Level Calculation ²	Other VOCs	Total Lead
						S	oil Characte	rization San	nples					
A7-1:6	6	No (Excavated)	91	10/10/13	4.7	ND<0.03	ND<0.05	ND<0.05	ND<0.1	ND<50	ND<250	1,3,5-Trimethylbenzene = 0.065 1,2,4-Trimethylbenzene = 0.13	ND	2.92
A7-2:9	9	No (Excavated)	88	10/10/13	5.1	ND<0.03	ND<0.05	ND<0.05	ND<0.1	ND<50	ND<250		ND	2.24
						Remedial	Excavation I	Performance	e Soil Sample	es				
A7-3:10	10	No (Excavated)	87	10/14/13	990	ND<0.01	ND<0.10	6.16	10.2					
A7-4S:12	12	Yes (Excavated*)	85	10/14/13	ND<5.0	ND<0.01	ND<0.10	ND<0.10	ND<0.10					
A7-5W:10	10	Yes (Excavated*)	87	10/14/13	ND<5.0	ND<0.01	ND<0.10	ND<0.10	ND<0.10					
A7-6E:10	10	Yes (Excavated*)	87	10/14/13	ND<5.0	ND<0.01	ND<0.10	ND<0.10	ND<0.10					
A7-7N:5	5	Yes (Excavated*)	92	10/14/13	ND<5.0	ND<0.01	ND<0.10	ND<0.10	ND<0.10					
A7-7N:11	11	Yes (Excavated*)	86	10/14/13	ND<5.0	ND<0.01	ND<0.10	ND<0.10	ND<0.10					
A7-8B:13	13	Yes (Excavated*)	84	10/14/13	ND<5.0	ND<0.01	ND<0.10	ND<0.10	ND<0.10					
MTCA Met	hod A Soil (Cleanup Levels For	Unrestricted Lan	nd Uses	100/30 ¹	0.03	7	6	9	2,0	000		Analyte Specific	250
	Ca	ategory 1 Soil Rang	ges⁵		<5	<0.005	<0.005	<0.005	<0.015	<25	<25			<17
	Ca	ategory 2 Soil Rang	ges⁵		5 to 30	0.005 to 0.03	0.005 to 6	0.005 to 7	0.015 to 9	25 to 200	25 to 200⁷			17 to 50
	Ca	ategory 3 Soil Rang	ges⁵		30 to 100	0.03 or less	6 or less	7 or less	9 or less	200 to 500	200 to 500			50 to 220
	Ca	ategory 4 Soil Rang	ges ⁵		>100	5	>6	>7	>9	>500	>500			²

Notes:

All results and detection limits are given in mg/kg; equivalent to parts per million (ppm).

Sample Depth = soil sample depth interval in feet below ground surface (bgs). The grade of the surface immediately east of Area 7 was referenced.

Gasoline-range TPH (total petroleum hydrocarbons) determined using Ecology Test Method NWTPH Gx.

BTEX (benzene, toluene, ethylbenzene, and xylenes) determined using EPA Test Method 8021B or 8260C.

Diesel- and Oil- Range TPH (total petroleum hydrocarbons) determined using Ecology Test Method NWTPH Dx.

VOCS (volatile organic compounds) determined using EPA Test Method 8260C.

Total lead determined using EPA Method 200.8.

ND = Not detected at noted analytical detection limit.

NVE = No value established.

---- = Not analyzed or not applicable.

¹ The higher cleanup level is allowed if no benzene is detected in the sample and the total of toluene, ethylbenzene and xylenes is less than 1% of the gasoline mixture.

² It is not necessary to evaluate these compounds for screening level exceedances due to the fact that they are factored into the TPH screening level calculations.

* Soil was excavated as part of routine mass excavation activities and was not disposed of as contaminated soil.

Ecology Model Toxics Control Act Method A Soil Cleanup Levels for Unrestricted Land Uses (WAC 173-340-900, Table 740-1).

Bold results indicated concentrations above laboratory detection limits.

Bold and yellow highlighted results indicate concentrations (if any) that exceed MTCA Method A Soil Cleanup Levels for Unrestricted Land Uses.

Bold and brown highlighted sample indicates concentrations (if any) that deem soil a Category 2 petroleum contaminated soil.

Bold and green highlighted sample indicates concentrations (if any) that deem soil a Category 3 petroleum contaminated soil.

Bold and blue highlighted sample indicates concentrations (if any) that deem soil a Category 4 petroleum contaminated soil.

Table 9. Sum	nmary of (Current a	nd Historica	al Groundwat	ter Analytic	al Data															
Main Street	Apartme	nts Devel	opment																		
10505 Main	Street, Be	ellevue, V	Vashington	98004																	
The Riley Gr	oup, Inc.	Project N	o. 2012-107	7B																	
Sample	Sample	тос	Depth to	Groundwater			BT	EX		Diesel	Oil	Diesel	Oil	Total		1.1.1-	2-		Bromo-		
Number	Date	Elevation	Water (feet)	Elevation	Gas TPH			—		TPH	TPH	TPH	TPH	Naphthalenes ²	PCE	TCA	– Butanone	Acetone	dichloro-	Chloroform	Other VOCs
		(feet)		(feet)		В	Т	E	Х	w/out	silica gel	with	silica gel						methane		
B1A, Screened	from appro	ximate elev	/ation of 57' to	o 47', Total well	length 50'			-		1	1			•	-		T		-		
UST1-B1A-W	09/03/13	~97	43.5	~53.5	360	6.9	28	6.1	44	5,200 x	1,000 x	420	ND<300	2.3	ND<1	ND<1	ND<10	ND<10	ND<1	ND<1	ND
RW1, Screened	from appro	oximate ele	vation of 56.2	' to 41.2', Total v	well length 35.	.5'															
RW1	11/13/13	~76.7	27.57*	~49.1	ND<100	ND<0.35	14	ND<1	ND<2	190 x	ND<250			ND<1	ND<1	ND<1	1,100	770	ND<1	13	ND
RW2, Screened	from appro	oximate ele	vation of 56.3	' to 41.3', Total v	well length 37.	.3'															
RW2	11/13/13	~78.6	30.68*	~47.9	ND<100	ND<0.35	3.7	ND<1	ND<2	180 x	ND<250			ND<1	ND<1	ND<1	170	110	1.2	26	ND
				4					Histor	ical Mon	itoring We	ell Data		<u> </u>						<u></u>	
MW3. Screened	d from appr	oximate el	evation of 52.4	41' to 37.41'. To	tal well length	60'															
MW-3	06/11/13	97 41	43 44	53.97	ND<100	ND<1	ND<1	ND<1	ND<3			ND<50	ND<250								
MW-3	05/22/13	97.41	43.1	54 31																	
	03/22/13	57.41	45.1	54.51																	
MW-3	05/14/12	97.41	50.51	46.90											ND<0.20	0.40			ND<0.20	0.24	ND
MW4. Screened	d from appr	oximate el	evation of 55.2	29' to 45.29'. To	tal well length	53'														<u></u>	
MW4	06/11/13	98.29	42.06	56.23	800	17	62	15	90			220 x	ND<250								
	05/22/13	98.29	/3.51	54.78	340		25	57	39	7 900 v	1 300 v	190	ND<250		ND<1	ND<1					ND
101004	03/22/13 N	ITCA Meth	od A Cleanup	Levels	540		25	5.7	35	7,500 X	1,300 X	150	100<250			ND				[]	Analyte
		for G	round Water	201010	800/1,000 ¹	5	1,000	700	1,000	500	500	500	500	160	5	200					Specific
Groundwater	N	1TCA Meth	od B Cleanup	Levels		0.0 ⁴									Î	4.6 0005	4 0005	7 2005	- 4,6	005	Analyte
Levels		for G	round Water			0.8										16,000	4,800	7,200	7.1	80	Specific
	ARAR S	State and F	ederal Primar	y Maximum		5	1,000	700	10,000						5	200			80	80	Analyte
Samples collect	ed by RGI fi	Contami	nant Level (IVI	CL) sible numn unde	r low flow con	ditions															Specific
Unless otherwi	se noted, al	l analytical	results are giv	en in microgran	ns per liter (ug	/L), equiva	alent to	parts p	er billion	(ppb).											
Gasoline-range	TPH (total)	oetroleum	hvdrocarbons) determined us	ed Northwest	Test Meth	od NW	TPH-Gx		(PP=).											
BTEX (benzene,	, toluene, et	hylbenzen	, e and xylenes)	, determined usi	ing EPA Test M	lethod 802	21B or 8	260C.													
Diesel and Oil-F	Range TPH c	letermined	used Northw	est Test Method	NWTPH-Dx w	ith and wi	thout si	ilica gel	cleanup.												
Silica gel = Sam	ple extract	is passed th	nrough a silica	gel column prio	or to analysis. T	he silica g	el colun	nn rem	oves natu	iral occur	ring bioge	nic mat	erial that o	can interfere with	the TPH re	esult whe	n present.				
PCE (tetrachlor	oethene) de	etermined	using EPA Test	t Method 8260B	•																
VOCs (volatile o	organic com	pounds) de	etermined usir	ng EPA Test Met	hod 8260B.																
ND = Not detec	ted above r	noted analy	tical detection	n limit.																	
NVE = No value	established	d.																			
TOC = Top of ca	asing. Deptl	h to water	measurement	s were obtained	from TOC (in	feet).															
= Not analy	zed or not a	pplicable.																			
x = According to	o the analyt	ical chemis	t, the sample	chromatographi	ic pattern does	s not reser	nble th	e fuel s	tandard ι	ised for q	uantificati	ion.									
* Depth to wat	er measure	ments obta	ined on Decer	mber 23, 2013.																	
¹ The higher cle	The higher cleanup level is allowed if no benzene is detected in the sample and the total of toluene, ethylbenzene and xylenes is less than 1% of the gasoline mixture.																				

Table 9. Summary of Groundwater Sample Analytical Laboratory Results Main Street Apartments Development 10505 Main Street, Bellevue, Washington 98004 The Riley Group, Inc. Project No. 2012-107B

² Analyzed using EPA Test Method 8260C. Naphthalenes are factored into the TPH screening level calculation but are evaluated separately due to the fact that some mixtures of TPH may contain amounts of naphthalenes that did not match the assumptions used in the TPH calculations.

³ It is not necessary to evaluate these compounds for screening level exceedances due to the fact that they are factored into the TPH screening level calculations.

¹ The carcinogenic MTCA Method B Cleanup Level was referenced.

⁵ The non-carcinogenic MTCA Method B Cleanup Level was referenced

⁵ RGI evaluated the cancer risk for the ARAR which was determined to be greater than 10⁻⁵. Therefore, the correct screening level in this case is 10x the Method B value of 0.71 or 7.1 ug/L.

Ecology Model Toxics Control Act Method A or B Cleanup Levels for Ground Water (WAC 173-340-900, Table 720-1 and CLARC database).

ARAR = Applicable or Relavent and Appropriate Requirement. ARARs for the Property are the Federal and State Primary Maximum Contaminant Levels (MCLs) as established under the Environmental Protection Agency (EPA) National Primary Drinking Water Regulations. ARARs are referenced in Ecoloy's CLARC databse.

Bold results indicated concentrations above laboratory detection limits.

Bold and yellow highlighted results indicate concentrations (if any) that exceed the applicable groundwater screening level.

Table 10. Summary of Contaminated Soil Removed From Areas 1 Through 7

Main Street Apartments Development

10505 Main Street, Bellevue, Washington 98004

The Ril	ey Group, Inc. Projec	t No. 2012-107B						
	Location	Dates (2013) ¹	Category 2 Soil Removed (Tons) ²	Category 3/4 Soil Removed (Tons) ³	PCE-Impacted Contained-In Soil (Tons) ⁴	Soil Removed for MTCA Compliance (Tons) ⁵	Soil Removed Soley for Support of Redevelopment (Tons) ⁶	Total Tons Removed
Area 1		Aug. 20-22	265	0	0	0	265	265
Area 2		Sep. 11	0	0	7	7	0	7
	Phase I	Sep. 11	0	0	38			38
	Phase II	Sep. 24 and 27	112	109	0			221
Aroa 2	Phase III	Oct. 7	86	166	0			252
Area 5	Phase IV	Oct. 14	147	137	0			284
	Phase V	Oct. 25 & 28	0	88	0			88
	Total (Phases I - V)	Sep. 11 through Oct. 28	345	500	38	538	345	883
Area 4	-	Aug. 27 & 29	0	41	0	26	15	41
Area 5		Aug. 29 & 30	0	103	0	103	0	103
Area 6		Sep. 18 & 19	13	0	49	49	13	62
Area 7	Area 7 Oct. 14		0	73	0	73	0	73
TOTAL			623	717	94	796	638	1434

Notes:

1) Dates remedial excavations were performed. Not necessarily the date soil was removed from the Property as on some ocassions contaminated soil was stockpiled on the Property and removed at a later date. 2) Category 2 soil consisted of soil containing PCE at concentrations below the MTCA Method A Soil Cleanup Level and petroleum containing concentrations of containing concern (COCs) that fell within the ranges indicated for Category 2 soil in Ecology's Guidance For Remediation of Petroleum Impacted Soil (See Appendix X). All Category 2 soil was disposed of at the CEMEX Facility in Everett, WA.

3) Category 3 and 4 soil consisted of PCS containing concentrations of COCs that fell within the ranges indicated for Category 3 and 4 soil in Ecology's Guidance For Remediation of Petroleum Impacted Soil. All Category 3 and 4 soil was disposed of at the CEMEX facility in Everett, WA.

4) PCE-Impacted Contained-In soil containing PCE concentrations ranging from 0.05 milligrams/kilogram (mg/kg) to 0.36 mg/kg was managed under a Contained-In determination from Ecology (See Section 4.1). All Contained-In soils were transported to the Republic Services transfer station in Seattle for disposal at the Roosevelt Regional Landfill in Roosevelt, Washington (a Subtitle D landfill).

5) The estimated amount of soil removed that contained concentrations of COCs exceeding MTCA Method A Soil Cleanup Levels. It was necessary to remove these soils for compliance under MTCA.

6) The estimated amount of soil removed that contained concentrations of COCs below MTCA Method A Soil Cleanup Levels. These soils were removed soley for redevelopment support and not for compliance under MTCA. Since it is not possible to determine the exact point which soil concentrations drop to below MTCA Method A Soil Cleanup Levels, the amount of tons is a conservative estimate.

Table 11. Summary of Vapor Intrusion Assessment of Groundwater Data

Main Street Apartments Development

10505 Main Street, Bellevue, Washington

The Riley Group, Inc. Project No. 2012-107J

									BTEX &	VOCs					
Sample Number	Sample Date	Sample Depth (feet bgs)	В	Predicted Indoor Air Concentration of Benzene ⁶	т	E	x	1,2,4- Trimethyl benzene	1,3,5- Trimethyl benzene	Naphthalenes	Methyl Ethyl Ketone	Cumene	1,1,1-TCA	Bromo dichloro methane	Chloro form
UST1-B1A-W	09/03/13	~43	6.9	0.027	25	6.4	33.8	10	2.3	2.3	ND	1.7	ND	ND	ND
RW1	11/13/13	~48	ND		14	ND	ND			ND	1,100	ND	ND	ND	13 ⁴
RW2	11/13/13	~50	ND		3.7	ND	ND			ND	170	ND	ND	1.2 ⁴	26 ⁴
MW-3	5/14/12 & 6/11/13 ⁵	~43	ND		ND	ND	ND						0.40	ND	0.24
MW-4	5/22/13 & 6/11/2013 ⁵	~42	17	0.067	62	15	90						ND		
Ecology Routin Protective of	e Groundwate Indoor Air (mio	r Screening Level crograms/liter)	2.4		15,735 ³	2,800	310	28 ³	25	170	1,773,323 ³	720	5,543 ³	0.09	1.2
MTCA Metho (micr	od B Indoor Air rograms/cubic	Cleanup Levels meter)		0.32 ¹	2,300 ²	460	46	3.2 ²	2.7	1.4	2,300 ²	180	2,300 ²	0.0033 ¹	0.11 ¹

All analytical results are given in micrograms per liter (ug/L). MTCA Method B Indoor Air Cleanup Levels and predicted indoor air concentrations are given in micrograms per cubic meter (ug/m ^{3).}

When more than one sampling event applied, the highest detected groundwater concenterations between both sampling events are displayed.

BTEX (benzene, toluene, ethylbenzene, total xylenes) determined using EPA Method 8260C or 8021B

Volatile organic compounds (VOCs) determined using EPA Method 8260C

Cumene= Isobutylene, TCA = trichloroethane

ND = Not detected above the laboratory detection limit.

Bold and blue highlighted results indicate that the detected concentration exceeeded the applicable groundwater screening level considered protective of indoor air

"--" = Not applicable.

¹ Indicates the carcinogenic screening level was referenced. For all other results, no carcinogenic screening level has been established the the non-carcinogenic screening level was referenced.

² The MTCA Method B Indoor Air Cleanup Level has been revised since preparation of the Ecology's Draft Guidance For Evaluating Vapor Intrusion In Wasthington State. The current values referenced were obtained from Ecology's Cleanup Levels and Risk Calculations (CLARC) database.

³ The groundwater screening level protective of indoor air was calculated based on the revised MTCA Method B Indoor Air Cleanup Level obtained from CLARC.

⁴ Although the detected concentration exceeds the Ecology Routine Groundwater Screening Level considered protective of indoor air, it is not necessary to perform risk assessment on bromochloromethane and chloroform due to the fact that they are byproducts of chlorine associated with chlorinated water supplied to the Property.

⁵ The highest detected groundwater concentration between both sampling events is displayed for the purpose of evaluating vapor intrusion.

⁶ The EPA online Johnson & Ettinger Model (JEM) calculator was utilized to predict the highest indoor air concentration based on the highest observed groundwater concentration. A very conservative air exchange rate of 1.5 was used to represent the future parking garage.

Ecology Routine Screening Level = Ecology's groundwater screening level protective of indoor air per Ecology's draft Guidance for Evaluating Soil Vapor Intrusion in Washington State (DRAFT October 2009).

Appendix B

Washington State Department of Ecology, Toxics Cleanup Program: Method B Ground Water Cleanup Level for TPH Sites

B. Worksheet for Calculating Potable Ground Water Cleanup Levels

(Method B only) WAC	173-340-720			3 5 8						TEST	CURRENT	CONDITI	ION			
1. Enter Site Information										Measured TPH GW Conc, $ug/L = 675.03$ HI = 8.492E-01						
Date:	6/24/2016											HI =	8.492E-01			
Site Name:	Main Street De	evelopment	Project									RISK =	1.257E-06			
Sample info:	Groundwater s	ample: RW-	1			_						Pass or Fail?	Pass			
2. Enter Ground Water Concentr	ration Measured			Notes for D	ata Entry		5		5	Please	check WAC	246-290-3	10!			
			Cur	rent Condi	tion		Adjusted	Condition								
	Manurad GW	GW			Pass or	GW Conc			Pass or	CALCULAT	E PROTEC	CTIVE CO	NDITION			
Chemical of Concern	Conc	Cleanup	HQ	RISK	Fail?	being tested	HQ	RISK	Fail?	This tool allows the user to cal	culate a protect	ctive TPH				
or EC Group		Level								water quality criteria. The Wo	rkbook uses th	e same	Calculate I	Protective		
	ug/L	ug/L	unitless	unitless		ug/L	unitless	unitless		composition ratio as for the me	easured data.		IPH GV	v Conc		
Petroleum EC Fraction	-	-														
AL_EC >5-6	25		1.84E-03		2	1.25E+04	9.19E-01			Selected Criterion:	HI = 1					
AL_EC >6-8	25		1.84E-03			1.25E+04	9.19E-01	() (Most Stringent?	YES					
AL_EC >8-10	25		1.04E-01		~	1.25E+04	5.21E+01			Protect	ive TPH GW (Conc, ug/L =	794.86			
AL_EC >10-12	25		1.04E-01			1.25E+04	5.21E+01			52 S		HI =	1.00E+00			
AL_EC >12-16	130		2.71E-01			6.50E+04	1.35E+02					RISK =	1.48E-06			
AL_EC >16-21	230		7.19E-03			1.15E+05	3.59E+00							<i>5</i>		
AL_EC >21-34	82		2.56E-03			4.10E+04	1.28E+00			SUMMARY OF PI	ROTECTIVE	GW CONC	ENTRATIO	ONS		
AR_EC >8-10	22		2.75E-02			1.10E+04	1.38E+01			Protective GW TPH Conc,	ug/L		794.86			
AR_EC >10-12	26		1.63E-01			1.30E+04	8.13E+01			Most Stringent Criterion HI = 1						
AR_EC >12-16	26	S.	3.25E-02			1.30E+04	1.63E+01		2	Ground Water Criteria	Most	GW TPH,	RISK @	HI @		
AR_EC >16-21	27		5.63E-02			1.35E+04	2.81E+01				Stringent?	ug/L				
AR_EC >21-34	27		4.22E-02			1.35E+04	2.11E+01			HI = 1	YES	7.95E+02	1.48E-06	1.00E+00		
Benzene	1	5	3.13E-02	1.26E-06		5.00E+02	1.56E+01	6.29E-04	Fail	Total Risk = 1E-5	NO	5.37E+03	1.00E-05	6.76E+00		
Toluene	1	1000	1.56E-03			5.00E+02	7.81E-01			Total Risk = 1E-6	YES	5.37E+02	1.00E-06	6.76E-01		
Ethylbenzene	1	700	1.25E-03			5.00E+02	6.25E-01			Benzene MCL = 5 ug/L	NO	3.38E+03	6.29E-06	4.25E+00		
Total Xylenes	2	1000	1.25E-03			1.00E+03	6.25E-01			MTBE = 20 ug/L	NA	NA	NA	NA		
Naphthalene	0.01	160	6.25E-05			5.00E+00	3.13E-02			Risk of cPAHs = 1E-5	NA	NA	NA	NA		
1-Methyl Naphthalene	0.01		2.50E-05			5.00E+00	1.25E-02			Toluene =1000 ug/L	NO	6.75E+05	1.26E-03	8.49E+02		
2-Methyl Naphthalene	0.01		3.13E-04			5.00E+00	1.56E-01			Ethylbenzene = 700 ug/L	NO	4.73E+05	8.80E-04	5.94E+02		
n-Hexane	0 ·									Total Xylenes = 1000 ug/L	NO	3.38E+05	6.29E-04	4.25E+02		
MTBE	0	20														
Ethylene Dibromide (EDB)	0	0.01					8									
1,2 Dichloroethane (EDC)	0	5								TEST A	ADJUSTED	O CONDIT	ION			
Benzo(a)anthracene	0	for			for				for	This tool allows the user to te	st whether a pa	articular TPH	Test Ad	insted TPH		
Benzo(b)fluoranthene	0	all			all				all	Workbook uses the same con	position ratio	as for the	GW	Conc		
Benzo(k)fluoranthene	0	cPAHs			cPAHs				cPAHs	measured dața.	2		\			
Benzo(a)pyrene	0	Risk =	5						*	Te	sted TPH GW	Conc, ug/L=				
Chrysene	0	1E-05										HI=				
Dibenz(a,h)anthracene	0				Σ Risk=				Σ Risk=			RISK=				
Indeno(1,2,3-cd)pyrene	0				0.00E+00		1 P		0.00E+00	-00 Pass or Fail?						
Sum	675.03		8.49E-01	1.26E-06		3.38E+05	4.25E+02	6.29E-04	Fail							

10:15 AM1/18/2017

Main Street MTCATPH11.1_MSExcel_2007_compatible.xls

B. Worksheet for Calculating Potable Ground Water Cleanup Levels (Method B only) WAC 173-340-720

(Method B only) WAC	173-340-720									TEST	CURRENT	CONDIT	ION		
1. Enter Site Information										Measured TPH GW Conc, ug/L = 614 HI = 8 972E-01					
Date:	<u>1/4/2017</u>	25. SA4										HI =	8.972E-01		
Site Name:	Main Street De	evelopment]	Project									RISK =	1.257E-06		
Sample info:	Groundwater s	ample: RW-	1 7			~					Carl IN DEPARTURE	Pass or Fail?	Pass		
2. Enter Ground Water Concenti	ration Measured		~	Notes for D	ata Entry					Please	check WAC	246-290-3	310!		
	÷		Cur	rent Condi	tion		Adjusted	Condition							
5	Magurad GW	GW			Page or	GW Conc			Pass or	CALCULAT	E PROTEC	CTIVE CO	NDITION		
Chemical of Concern	Conc	Cleanup	HQ	RISK	Fail?	being tested	HQ	RISK	Fail?	This tool allows the user to ca	Iculate a protect	ctive TPH	()	
or EC Group		Level								water quality criteria. The Wo	orkbook uses th	ie same	Calculate I	Protective	
	ug/L	ug/L	unitless	unitless		ug/L	unitless	unitless		composition ratio as for the m	easured data.		IrnG	v Conc	
Petroleum EC Fraction		1													
AL_EC >5-6	25		1.84E-03			1.25E+04	9.19E-01			Selected Criterion:	HI = 1				
AL_EC >6-8	25		1.84E-03			1.25E+04	9.19E-01		~	Most Stringent?	YES				
AL_EC >8-10	25		1.04E-01			1.25E+04	5.21E+01			Protect	ive TPH GW (Conc, ug/L =	684.38		
AL_EC >10-12	25		1.04E-01			1.25E+04	5.21E+01					HI =	1.00E+00		
AL_EC >12-16	74	- 22	1.54E-01			3.70E+04	7.71E+01					RISK =	1.40E-06		
AL_EC >16-21	170	_	5.31E-03			8.50E+04	2.66E+00								
AL_EC>21-34	25		7.81E-04			1.25E+04	3.91E-01			SUMMARY OF P	ROTECTIVE	E GW CONG	CENTRATIO	ONS	
AR_EC >8-10	25	~ ~	3.13E-02			1.25E+04	1.56E+01			Protective GW TPH Conc,	ug/L		684.38		
AR_EC >10-12	25		1.56E-01			1.25E+04	7.81E+01			Most Stringent Criterion			HI = 1		
AR_EC >12-16	25	a.	3.13E-02		98 î	1.25E+04	1.56E+01	201		Ground Water Criteria	Most	GW TPH,	RISK @	HI @	
AR_EC >16-21	25		5.21E-02			1.25E+04	2.60E+01				Stringent?	ug/L			
AR_EC >21-34	140	5	2.19E-01			7.00E+04	1.09E+02			HI = 1	YES	6.84E+02	1.40E-06	1.00E+00	
Benzene	1	5	3.13E-02	1.26E-06		5.00E+02	1.56E+01	6.29E-04	Fail	Total Risk = 1E-5	ŅO	4.88E+03	1.00E-05	7.14E+00	
Toluene	1	1000	1.56E-03		Γ a	5.00E+02	7.81E-01			Total Risk = 1E-6	YES	4.88E+02	1.00E-06	7.14E-01	
Ethylbenzene	1	700	1.25E-03			5.00E+02	6.25E-01			Benzene MCL = 5 ug/L	NO	3.07E+03	6.29E-06	4.49E+00	
Total Xylenes	2	1000	1.25E-03			1.00E+03	6.25E-01			MTBE = 20 ug/L	NA	NA	NA	NA	
Naphthalene	0	160								Risk of cPAHs = 1E-5	NA	NA	NA	NA	
1-Methyl Naphthalene	0									Toluene =1000 ug/L	NO	6.14E+05	1.26E-03	8.97E+02	
2-Methyl Naphthalene	0									Ethylbenzene = 700 ug/L	NO	4.30E+05	8.80E-04	6.28E+02	
n-Hexane	0]								Total Xylenes = 1000 ug/L	NO	3.07E+05	6.29E-04	4.49E+02	
MTBE	0	20													
Ethylene Dibromide (EDB)	0	0.01								21					
1,2 Dichloroethane (EDC)	0	5								TEST .	ADJUSTEI) CONDIT	TION		
Benzo(a)anthracene	0 .	for			for				for	This tool allows the user to te	st whether a pa	articular TPH	Tost Ad	instad TPH	
Benzo(b)fluoranthene	0	all			all				all	Workbook uses the same cor	nposition ratio	as for the	GW	V Conc	
Benzo(k)fluoranthene	0	cPAHs			cPAHs				cPAHs	measured data.			· · · · · · · · · · · · · · · · · · ·		
Benzo(a)pyrene	0	Risk =								Te	sted TPH GW	Conc, ug/L=	•		
Chrysene	0	1E-05										HI=	=		
Dibenz(a,h)anthracene	0		0		Σ Risk=				Σ Risk=	RISK=					
Indeno(1,2,3-cd)pyrene 0									0.00E+00		I	Pass or Fail?			
Sum	614		8.97E-01	1.26E-06		3.07E+05	4.49E+02	6.29E-04	Fail						

Main Street MTCATPH11.1_1-4-17 - RW2.xls

Appendix C

Project Name: Main Street Bellevue

Project Number: 2012-107L

Client: Alamo Manhattan

Test Probe/Well No.: MW6

Date(s) Dr	16			Lo	ogged By	y: SL	-	Surface Conditions: Concrete			
Drilling Me	thod(s):	Hol	low Ste	em Aug	er	Dr	rill Bit Si	ze/Ty	rpe: 5 "	Total Depth of Borehole: 40 feet bo	js
Drill Rig Ty	^{/pe:} Lim	nitec Ick-l	I Acces Mounte	ss d		Dr	rilling Cc	ontrac	stor: Cascade Drilling	Approximate Surface Elevation (feet amsl): 79	
Groundwa	ter Eleva	tion:	49.95	on 8/29/	/16	Sa	ampling	Metho	od(s): SPT	Hammer Data: 140lb, 30" drop	
Borehole E	3ackfill: 🚺	Mon	itoring	Well		Lo	ocation:	1057	75 Main Street, Bellevue, Washin	ıgton 98004	
200101	(teet) (tieft) (ti	Sample Type	Sample ID	Sampling Resistance, blows/ft	PID Reading, ppm		SP SP		MATERIAL DESC Concrete Light brown, medium SAND, dense, n Light brown, medium SAND, very den	RIPTION	REMARKS AND OTHER TESTS Concrete 0 - 1 Bentonite 1 - 23 Blank 2" PVC 0 - 25
Project Name: Main Street Bellevue

Project Number: 2012-107L

29 —	59— - - - - - - - - - - - - - - - - - - -	Elevation (feet)
J ₅₀ —	20	Depth (feet)
		Sample Type
		Sample ID
I	50/5" 50/6" 78/11" 78/11" 76/12"	Sampling Resistance, blows/ft
<u> </u>	0.7	PID Reading, ppm
<u> </u>		Recovery (%)
<u> </u>	SM SM	USCS Symbol
I	$= 10^{+0} 10$	Graphic Log
L	Light brown, medium SAND, very dense, moist Light brown, silty SAND with gravel, very dense, moist Light brown silty SAND, very dense, moist grading to wet Boring terminated at 40 feet below parking garage floor slab Boring terminated at 40 feet below parking garage floor slab	MATERIAL DESCRIPTION
<u>J</u>		Well Log
	Silica Sand 23 - 40 Prepack Slotted PVC 25 - 40	REMARKS AND OTHER TESTS

Project Name: Main Street Bellevue

Project Number: 2012-107L

Client: Alamo Manhattan

	-											
Elevation (feet)	Depth (feet)	ω Sample Type	A Sample ID	م Sampling Resistance, blows/ft	DID Reading, ppm	A Recovery (%)	∞ USCS Symbol	© Graphic Log	MATERIAL DES	SCRIPTION	Mell Log	REMARKS AND OTHER TESTS 12
1 Elev 2 Dep 3 Sam shou 4 Sam 5 Sam usin 6 PID in pa 7 Recc a rai core 8 USC FIELD A	vation (fe tht (feet): nple Type wn. nple ID: \$ npling Re npler one og the ha Reading arts per r covery (% tio of the ed interva CS Symb	eet): I : Dep e: Ty Samp esista foot millio millio millio (5): Co e) leng al leng ool: U BOR	Elevation of the inference of some pole ident ance, b (or dist or ident m: The n. ore Ren of the for ogth. ISCS some ATOR	on (MSI act belo coil sam ntificatio lows/ft: tance s ified on reading covery l ore san cymbol o Y TEST	L, feet). w the gr ple colle on numb Number hown) b the bori g from a Percenta nple reco of the su	ound su cted at of blow eyond s ng log. photo-id age is de overed o bsurface	rface. the de rs to a eating onizati etermin compa e mate DNS	pth in dvan inte on de red t red t	 9 Graphic Log: Graphic Completion of drill 12 REMARKS AND Graphic Completion of drilling of the driven of the	phic depiction of the subsur CRIPTION: Description of m istency, moisture, color, and cal representation of well ins ing and sampling. OTHER TESTS: Comments or sampling made by driller	face mate aterial end d other de stalled upc s and obse or field pe	rial countered. escriptive on ervations ersonnel.
CHEM: COMP: CONS: LL: Liqu	Chemica Compac One-dim id Limit,	al tes ction nensi perc	ets to a test onal co ent	ssess c onsolida	orrosivity	/			PI: Plasticity Index, p SA: Sieve analysis (p UC: Unconfined com WA: Wash sieve (per	ercent bercent passing No. 200 Sie pressive strength test, Qu, i rcent passing No. 200 Sieve	eve) in ksf e)	
MATER		APH		<u>IBOLS</u>								
	Bentonite Portland	e Cem	ent Co	oncrete					Silty SAND (S	M) SAND (SP)		
TYPICA	AL SAMF	PLER	GRA	PHIC S	YMBOL	<u>S</u>				OTHER GRAPHIC SYMI	BOLS	
Auge Bulk 3-inc brass	er sample Sample ch-OD Ca s rings E Sample	er alifor er	nia w/		Continue Grab Sa 2.5-inch Californi Pitcher S	ous mple -OD Mo a w/ bra Sample	dified Iss line	ers	2-inch-OD unlined split spoon (SPT) Shelby Tube (Thin-walled, fixed head)	 ✓ Water level (at time of ✓ Water level (after waitin Minor change in material V stratum ✓ Inferred/gradational co -?- Queried contact betwe 	drilling, ATI ng) ial propertie ntact betwe en strata	D) es within a en strata

GENERAL NOTES

1: Soil classifications are based on the Unified Soil Classification System. Descriptions and stratum lines are interpretive, and actual lithologic changes may be gradual. Field descriptions may have been modified to reflect results of lab tests. 2: Descriptions on these logs apply only at the specific boring locations and at the time the borings were advanced. They are not warranted to be representative

of subsurface conditions at other locations or times.

Date(s) Drilled: 12/11/14	Logged By: SL	Surface Conditions: Asphalt 6"		
Drilling Method(s): Hollow Stem Auger	Drill Bit Size/Type: 4" Inner Diameter	Total Depth of Borehole: 66.5 feet bgs		
Drill Rig Type: Truck-Mounted	Drilling Contractor: Holocene	Approximate Surface Elevation (feet amsl): 101.44		
Groundwater Level and Date Measured: 51.59' on 12/12/14	Sampling Method(s): SPT	Hammer Data : 140 lb, 30 in drop, auto trip		
Borehole Backfill: Monitoring Well	Location: East side of 105th Avenue Southeas	t		

101.44 	Elevation (feet)
	Depth (feet)
	Sample Type
	Sample ID
	Sampling Resistance, blows/ft
	PID Reading, ppm
	Recovery (%)
Asphalt SP	USCS Symbol
	Graphic Log
Asphalt Light brown, fine to medium SAND, based on observations of soil cuttings	MATERIAL DESCRIPTION
	Well Log
Asphalt 0 - 3.5" Concrete 3.5 - 6" Blank 2" PVC 0 - 50 0.5 - 48' Bentonite	REMARKS AND OTHER TESTS

Boring/Well No.: MW5

Project Name: Main Street Apartments Development

Project Number: 2012-107K

Client: Alamo Manhattan

1: Soil classifications are based on the United Soil Classification System. Descriptions and stratum lines are interpretive, and actual innoiogic changes may be gradual. Field descriptions may have been modified to reflect results of lab tests.

2: Descriptions on these logs apply only at the specific boring locations and at the time the borings were advanced. They are not warranted to be representative of subsurface conditions at other locations or times.

Boring/Well No.: RW1

Cement Grout 16.5 - 18.5

8/12 Sand 18.5 - 35.5

47 47

Client: Alamo Manhattan

66.7

61.7

56.7

51.7

46.7

10

15

20

25

Ŧ

30

						-							
Date(s) Dr	illed: 11	/04/ [·]	13			L	ogged By	: SL	-	Surface Conditions: Soil			
Drilling Me	ODI	EX			D	orill Bit Siz	ze/Ty	pe: 8" Diameter	Total Depth of Borehole: 3	5.5 feet b	gs		
Drill Rig Ty	ype: Tra	ck-l	Mounte	d		D	rilling Co	ntrac	tor: Kulchin Drilling	Approximate Surface Elevation (feet amsl): 76.	7		
Groundwa and Date M	iter Level Measured	49 1:	9.1 feet	amsl o	on 12/23/1	3 S	ampling I	Veth	od(s):	Hammer Data : 140 lb, 3	0 in drop,	auto trip	
Borehole E	3ackfill: 🚺	Mon	itoring	Well		L	ocation:	1050	05 Main Street, Bellevue, Washir	ngton 98004			
St Elevation (feet)	o Depth (feet) □	Sample Type	Sample ID	Sampling Resistance, blows/ft	PID Reading, ppm	Recovery (%)	4 USCS Symbol	Graphic Log	MATERIAL DESC SAND	RIPTION	Well Log	REMARKS AND OTHER TESTS Concrete 0-1	
- - 71.7 - -	- - - - - - - -								was blown out of the borehole during	andard soil logging e given based on soil that - g drilling - - - - -		Blank 2* PVC 0 - 20.5 Bentonite Slurry 1 - 16.5	

						1
i (feet) iet)	D j Resistance	(%) /	-og			
299 Elevation	Sample I Sampling blows/ft PID Reac	Recovery	Graphic L	MATERIAL DESCRIPTION	Well Log	REMARKS AND OTHE TESTS
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				SAND Drilling technology did not allow for standard soil logging procedures. General descriptions are given based on soil that was blown out of the borehole during drilling. SILT Boring terminated at 41.2' amsl.		0.02-inch Slotted PVC 20.5 - 35.5

Boring/Well No.: RW2

20/40 Sand 20.3 - 37.3

Client: Alamo Manhattan

58.6

53.6

48.6

20 -

25 •

30

<u> </u>														
Date(s) Drille	d: 11/()4/1	13				Logged By: SL				Surface Conditions: Soil			
Drilling Metho	DDE	EX				Drill Bit Size/Type: 8" Diameter				Total Depth of Borehole:	37.3 f	eet b	gs	
Drill Rig Type: Track-Mounted								ling Co	ontrac	tor: Kulchin Drilling	Approximate Surface 78 . Elevation (feet amsl):	.6		
Groundwater and Date Mea	Level asured:	47	'.9 feet	amsl o	n 12/23	/13	Sar	npling	Meth	od(s):	Hammer Data : 140 lb, 3	30 in (drop,	auto trip
Borehole Bac	kfill: M	oni	itoring	Well			Loc	ation:	1050	05 Main Street, Bellevue, Washir	ngton 98004			
Carlon (feet)	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sample Type	Sample ID	Sampling Resistance, blows/ft	PID Reading, ppm		RECOVERY (70)	a USCS Symbol		MATERIAL DESC SAND Drilling technology did not allow for s procedures. General descriptions ar was blown out of the borehole during	RIPTION tandard soil logging e given based on soil that g drilling.			REMARKS AND OTHER TESTS Concrete 0-1 Blank 2° PVC 0-22.3 Bentonite Slurry 1-18.3

Elevation (feet)	g Depth (feet)	Sample Iype Sample ID	Sampling Resistance, blows/ft	PID Reading, ppm	Recovery (%)	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	Well Log	REMARKS AND OTHER TESTS
						ML		SAND Drilling technology did not allow for standard soil logging procedures. General descriptions are given based on soil that was blown out of the borehole during drilling. SILT Boring terminated at 41.3' amsl.		0.02-inch Slotted PVC 22.3 - 37.3

Project Name: Main Street Apartments Development

Project Number: 2012-107J

Client: Alamo Manhattan

GENERAL NOTES

1: Soil classifications are based on the Unified Soil Classification System. Descriptions and stratum lines are interpretive, and actual lithologic changes may be gradual. Field descriptions may have been modified to reflect results of lab tests.

2: Descriptions on these logs apply only at the specific boring locations and at the time the borings were advanced. They are not warranted to be representative of subsurface conditions at other locations or times.

Project Name: Proposed Main Street Redevelopment Project Number: 2012-107B Client: Alamo Manhattan

Date(s) Drilled: 05/21/13 Surface Conditions: Asphalt Logged By: RNS Drilling Method(s): Hollow Stem Auger Drill Bit Size/Type: 2" Diameter Total Depth of Borehole: 53 feet bgs Approximate Surface Elevation: 99 Drill Rig Type: Truck Mounted Drilling Contractor: Holocene Drilling Inc. and Date Measured: 43.51 ft bgs on 05/22/13 Sampling Method(s): SPT Hammer Data : 140 lb, 30 in drop, auto trip Location: 10505 to 10525 Main Street, Bellevue, Washington 98004 Borehole Backfill: Monitoring Well Sampling Resistance, blows/ft PID Reading, ppm Elevation (feet) **USCS Symbol** Sample Type Recovery (%) Graphic Log Depth (feet) Sample ID Well Log REMARKS AND OTHER TESTS MATERIAL DESCRIPTION 99 0 spha 2" ASPHALT 0.0 Concrete 0 - 1 GF 3" crushed GRAVEL Brown, fine, poorly-graded SAND with some silt, moist, no Blank 2" PVC sheen 1 - 43 0.0 Bentonite 1 - 41 0.2 0.0 94 5 MW4-6 39 0.0 89 10 SP Gray, fine, poorly-graded SAND with some silt, moist, no sheen MW4-11 59 0.0 84 15 MW4-16 69 0.0 20 79 MW4-21 78 0.0 74 25

Project Name: Proposed Main Street Redevelopment Project Number: 2012-107B Client: Alamo Manhattan

Boring/Well No.: MW4

Sheet 2 of 2

Project Name: Proposed Main Street Redevelopment

Project Number: 2012-107B

2: Descriptions on these logs apply only at the specific boring locations and at the time the borings were advanced. They are not warranted to be representative of subsurface conditions at other locations or times.

Project Name: Aaron Brothers Retail Property Project Number: 2012-107B Client: Alamo Manhattan

Boring/Well No.: MW-3

Sheet 1 of 3

Date(s) Drilled: 05/11/12 Logged By: SL Surface Conditions: Soil Drill Bit Size/Type: 4.25" Inner Diameter Drilling Method(s): Hollow Stem Auger Total Depth of Borehole: 60 feet bgs Approximate Drill Rig Type: Truck Mounted Drilling Contractor: EDI Surface Elevation: n/a and Date Measured: 50.51' Groundwater Level Hammer Data : 140 lb, 36 in drop Sampling Method(s): SPT Location: 10505, 10509, and 10525 Main Street, Bellevue, Washington 98004 Borehole Backfill: Monitoring Well Sampling Resistance, blows/ft PID Reading, ppm Elevation (feet) **USCS Symbol** Sample Type Recovery (%) Graphic Log Depth (feet) Sample ID Well Log REMARKS AND OTHER TESTS MATERIAL DESCRIPTION 0 111 1 /////// SP Light brown, fine SAND with ~1.5" diameter gravel, dense, moist, no sheen W-3 15 0.2 Bentonite 1 - 43 5 SP Light brown, fine SAND, dense, moist, no sheen W-3-8 20 0.1 10 / SP Light brown, fine SAND, dense, moist, no sheen 28 0.0 W-3-1 /// 15 ///// SP Light brown, fine SAND, dense, moist, no sheen 0.0 34 W-3-1 / / 1 20

The Riley Group, Inc.

17522 Bothell Way NE, Bothell, WA 98011

711 St. Helens Avenue, Tacoma, WA 98402 1838 South Washington Street, Kennewick, WA 99337 Project Name: Aaron Brothers Retail Property Project Number: 2012-107B Client: Alamo Manhattan

Sheet 2 of 3

Project Name: Aaron Brothers Retail Property Project Number: 2012-107B

Sheet 3 of 3

	Elevation (feet)
	ନ୍ନ Depth (feet)
	Sample Type
	Sample ID
	Sampling Resistance, blows/ft
	PID Reading, ppm
	Recovery (%)
	USCS Symbol
	Graphic Log
Terminated at 60 feet bgs	MATERIAL DESCRIPTION
	T Well Log
	REMARKS AND OTHER TESTS

Project Name: Aaron Brothers Retail Property Project Number: 2012-107B

Client: Alamo Manhattan

2: Descriptions on these logs apply only at the specific boring locations and at the time the borings were advanced. They are not warranted to be representative of subsurface conditions at other locations or times.

The Riley Group, Inc. 17522 Bothell Way NE, Bothell, WA 98011 711 St. Helens Avenue, Tacoma, WA 98402 1838 South Washington Street, Kennewick, WA 99337

Date(s) Drilled: 7/3/2012	Logged By: EW	Surface Conditions: Asphalt		
Drilling Method(s): HSA	Drill Bit Size/Type: 4" Diameter	Total Depth of Borehole: 36.42 feet bgs		
Drill Rig Type: Rubber Track Drill Rig	Drilling Contractor: Boretec	Approximate Surface Elevation: 93		
Groundwater Level and Date Measured: Not Encountered ATD	Sampling Method(s): SPT	Hammer Data : 140 lb, 30 in drop, rope and cathead		
Borehole Backfill: Bentonite Chips	Location: SEC Main Street and 105th Avenue S	SE, Bellevue, Washington		

30 30 504* \$P\$ 30 30 5.1 58 35 9011* Becomes wet 20.3 63 40 - Becomes wet 20.3 44 45 - - - 43 50 - - - 43 50 - - - 43 50 - - - 43 50 - - - 43 50 - - - - 43 60 - - - - 43 60 - - - - 43 60 - - - - 43 60 - - - - 44 - - - - - 43 60 - - - - 44 - - - - - 43 - - - - - 44 <th>Elevation (feet)</th> <th>g Depth (feet)</th> <th>Sample Type</th> <th>Sample ID</th> <th>Sampling Resistance, blows/ft</th> <th>Recovery (%)</th> <th>USCS Symbol</th> <th>Graphic Log</th> <th>MATERIAL DESCRIPTION</th> <th>Moisture (%)</th>	Elevation (feet)	g Depth (feet)	Sample Type	Sample ID	Sampling Resistance, blows/ft	Recovery (%)	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	Moisture (%)
		- - - - - - - - - - - - - - - - - - -			90/11"				Becomes wet	20.3

Client: Alamo Manhattan

Date(s) Dr	illed: 7/3	3/20	12				Logged By: EW Surface Conditions: Asphalt			
Drilling Me	ethod(s):	Hol	low S	item Au	uger		Dril	l Bit Size/Type: 4" Diameter	Total Depth of Borehole: 36.5 feet b	gs
Drill Rig Ty	ype: Ru l	bbe	r Trac	k Drill	Rig		Dril	ling Contractor: Boretec	Approximate Surface Elevation: 99	
Groundwater Level and Date Measured: Not Encountered ATD								npling Method(s): SPT	Hammer Data : 140 lb, 30 in drop, cathead	rope and
Borehole E	Backfill:	Ben	tonite	e Chips			Loc	ation: SEC Main Street and 105th Avenue S	SE, Bellevue, Washington	
\square				Ő.						
g Blevation (feet)	ວັດອຸຊາກ (feet) ເ	Sample Type	Sample ID	Sampling Resistance blows/ft	Recovery (%)	USCS Symbol	Graphic Log	MATERIAL DESC	RIPTION	Moisture (%)
-	-					Asphalt Fill	m	2" asphalt 6" crushed rock		
- - 94						SM		Tan silty fine SAND, very dense, moist		
-				55				- - -	- - - -	8.2
89 — - - -				92/12"				- Contains 2" bed of sandy silt - -		10.5
84	15 — - -	Z		50/3"					 - - -	7.7
79 — - - -	20 —			50/3"				—18.2% fines - - -	 - - -	7.2
74 — - - - 69 —	25 — - - - - -			55		ML		Tan SILT with trace sand, hard, moist Contains 1" sand bed at 25.5' Trace iron oxide staining, becomes wet Light groundwater seepage at 26.5'		25.4

The Riley Group, Inc. 17522 Bothell Way NE, Bothell, WA 98011 1838 South Washington Street, Kennewick, WA 99337

Client: Alamo Manhattan

Elevation (feet)

Sampling Resistance, blows/ft **USCS Symbol** Recovery (%) Sample Type Graphic Log Moisture (%) Depth (feet) Sample ID MATERIAL DESCRIPTION 69-30 on oxide staining comes moist to we -Contains occasional 1/2" to 1" silty sand interbeds 20.6 56 -Becomes very stiff, trace iron oxide staining -Contains 1/4" sand interbed 64 35 25 25.8 Boring terminated at 36.5' 59 40 54 45 • 49 50 55 44 39 60 • 34 65

Client: Alamo Manhattan

83

78-

73-

68 -

15 -

20

25 •

30

50/4"

50/2"

50/6"

SP-SM

6.7

6.4

7.2

Date(s) Dr	illed: 7/3	s/20 ⁻	12				Log	iged By: EW	Surface Conditions: Asphalt	
Drilling Me	Drilling Method(s): Hollow Stem Auger			Dril	I Bit Size/Type: 4" Diameter	Total Depth of Borehole: 46.5 feet bgs				
Drill Rig Type: Rubber Track Drill Rig			Dril	ling Contractor: Boretec	Approximate Surface Elevation: 98					
Groundwater Level and Date Measured: Not Encountered ATD			Sar	sampling Method(s): SPT Hammer Data : 140 lb, 30 in drop, r cathead						
Borehole E	Backfill: Bentonite Chips Location: SEC Main Street and 105th Avenue SE, Bellevue, Washington									
Elevation (feet)	Depth (feet)	Sample Type	Sample ID	Sampling Resistance, blows/ft	Recovery (%)	USCS Symbol	Graphic Log	MATERIAL DESC	RIPTION	Moisture (%)
93 — 93 — 88 —				78 90/5"		Fill SM		1" asphalt Gray silty fine SAND, medium dense, moist Tan silty fine SAND, very dense, moist		9.9

Tan SAND with some silt, very dense, moist Contains 2" bed of silty sand with trace gravel and iron oxide staining

Elevation (feet)	Depth (feet)	Sample I ype	Sampling Resistance, blows/ft	Recovery (%)	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	Moisture (%)
68 — - - 63 — -			50/2" 95/11"		SP-SM		Tan SAND with some silt, very dense, moist	6.1 19.1
- 58 — - - 53 —	40		71/9"				Iron oxide staining, becomes wet Light groundwater seepage at 41' 85.7% fines	26.6
- - 48 -	- - - - - - - - - - -						Boring terminated at 46.5'.	
- 43 - - -	- - 55 - - -							
38 — - - 33 —	60 — - - - 65 —							

Drilling Method(s): Hollow Stem Auger Drill Bit Size/Type: 4" Diameter To	Total Depth of Borehole: 45.92 feet bgs	
Drill Rig Type: Rubber Track Drill Rig Drilling Contractor: Boretec	Approximate Surface Elevation: 99	
Groundwater Level and Date Measured: Not Encountered ATD Sampling Method(s): SPT Ha	lammer Data : cathead	e and
Borehole Backfill: Bentonite Chips Location: SEC Main Street and 105th Avenue SE,	, Bellevue, Washington	
Elevation (feet) Depth (feet) Sample Type Sample ID Sample ID Sample ID USCS Symbol USCS Symbol Graphic Log Graphic Log	PTION	Moisture (%)
99 0 1 0 1 1 1 2" crushed rock 94 5 74/12" 80 10 80 10 80 10 50/6" 1 10.0% fines 10.0% fines 84 15 50/6" 1 10.0% fines 79 20 50/6" 1 10.0% fines 74 25 50/6" 1 1 74 25 50/6" 1 1		6.5 5.4 5.8 5.7 5.5

Image: second		g Elevation (feet)
order order <th< td=""><td>35</td><td>g Depth (feet)</td></th<>	35	g Depth (feet)
u u <thu< th=""> u u u</thu<>		Sample Type
object object<		Sample ID
No. No. <td>79 52 50/5"</td> <td> Sampling Resistance, blows/ft </td>	79 52 50/5"	 Sampling Resistance, blows/ft
Image: Second		Recovery (%)
00000 MATERIAL DESCRIPTION 21.1		R USCS Symbol
MATERIAL DESCRIPTION 23.1 Tam SULT with trace sand, hard, moist to well: 23.1 Trace iron oxide staining 26.1 Contains 2" sand bed with light groundwater seepage at 36' 26.1 Trace iron oxide staining 24.1 Becomes blueish gray 24.1 Becomes blueish gray 22.8 Dering terminated at 45' 11°. 22.8		Graphic Log
(%) euritsiow 23.1 26.1 24.1 22.8	Trace iron oxide staining Contains 2" sand bed with light groundwater seepage at 36' Trace iron oxide staining Becomes blueish gray Contains 4" sand bed with light groundwater seepage, iron oxide staining at 45.5' Boring terminated at 45' 11".	MATERIAL DESCRIPTION Tan SILT with trace sand, hard, moist to wet Trace iron oxide staining, 86.5% fines Contains occasional 1/4" in terbeds of silty sand
(%) entries 23.1 26.1 24.1 22.8		_
	26.1 24.1 22.8	(%) Moisture (%)

Appendix D

i nis sni	pping wi	Carbon, and retained	by the agent			Shipper No	112	36511
24.HR	EV/A	REENCY CONTR	RACTHE MILS 2 RINE LIBOULIM BI	362 79 Erivice, inc	26	Carrier No	9.42	§ 9-2
age	or	_	(Name of c	arrier)	(SCAC)		6	
Collect on Delivery	shipments, the letters '	"COD" must appear before consignee's name or	as otherwise provided in Item 430, Sec.1.	FROM: Shipper	Ver Gre	OUD	2	
onsignee	VARINE		LINC	Street 105	TOS Main	St-		
reet 151	6 S. GR/	AHAM ST.		City Belle	17110	State 12 A	Zip Code	
ty SEA		State	Zip Code <u>98108</u>	24 br. Emorgopou	Contact Tol No. 60	0.50000000	1255	-3922
oute				24 m. Emergency		Vehicl	e	. 12
No. of Units	HM	B	ASIC DESCRIPTION		TOTAL QUANTITY	WEIGHT	BATE	CHARGES (For Carrier
& Container Typ		UN or NA Number, Proper	Shipping Name, Hazard Class,	Packing Group	Gallons, etc.)	Correction)		Use Only)
6 55g	91	Water +	dirt		6 Signal			
				13 第一部	5. 2			
						(Z)	-	~
		- s	2 		-			
							1.1	
			÷			185		2
And the second sec	— —_		2					
						<u>ц</u>	22	×
ł								
				54 C				
		V	7. 			5 		
		r.						
	0.16			8		8		25
<u>11</u>		8						
DI /			-	DEMIT				
pte — (1) Where eclifically in writing	the rate is depende the agreed or decla	nt on value, shippers are required to state ared value of the property, as follows: "The	I hereby declare that the contents of this consignment are fully and accurately	C.O.D. TO: ADDRESS				
not exceeding) Where the application	alue of the property is ble tariff provisions sp declaration by the	s hereby specifically stated by the shipper to per" ecify a limitation of the carrier's liability absent	described above by the proper shipping name and are classified, packaged, marked and labelled/placarded, and are	COD	Amt: \$	C.O.D. PREPA COLLE	FEE: ID 🗆 CT 🗆 \$	
carrier's liability o ovided by such pro Commodities req	or declare a value, the visions. See NMFC Ite uiring special or addit	o carrier's liability shall be limited to the extent im 172.	in all respects in proper condition for transport according to applicable international and national governmental regulations.	Subject to Section 7 of the consignee without recourse following statement:	e conditions, if this shipment is to be de to on the consignor, the consignor sl	all sign the CHARG	ES \$	050
ust be so marked a m 360, Bills of La e Contract Terms a	and packaged as to er ding, Freight Bills and and Conditions for a lis	sure safe transportation. See Section 2(e) of I Statements of Charges and Section 1(a) of st of such articles.	Signature	freight and all other lawful ch	(Signature of Consignor)	FREIGHT I except whe right is che	PREPAID Che on box at cked	ck box if charges are to be collect
	RECEIVED, subject to the property described tents of packages unk (the word carrier bein possession of the prop nation, if on its route, c ally agreed as to each	the classifications and tariffs in effect on the date t above in apparent good order, except as noted nown), marked, consigned, and destined as inc g understood throughout this contract as meani- erty under the contract) agrees to carry to its usu otherwise to deliver to another carrier on the rou- carrier of all or any of, said property over all or	o the issue of this Bill of Lading, (contents and condition of con- licated above which said carrier ng any person or corporation in al place of delivery at said desti- te to said destination. It is mutu- any portion of said route to des-	tination and as to eau be performed hereund sification on the date Shipper hereby governing classificati accepted for himself	ch party at any time interested in all er shall be subject to all the bill of lading of shipment. r certifies that he is familiar with all on and the said terms and conditions and his assigns.	or any said property, that terms and conditions in the the lading terms and c are hereby agreed to by	every service to governing clas onditions in the the shipper and) 9 1
HIPPER	Dile.	1 Group		CARRIER May	RINE VACUUM	SERVICE	INC.	_ ^
ER	ami	UI Fo	tes-	PER Jo-	e e	× a		2
				DATE G-	21-18			
ermanent post	-office address o	of shipper.		STYLE F375-4 @	2012 LABELMASTER® (80	00) 621-5808 www.l	abelmaster.	com

Appendix E

January 16, 2017

Mr. Jerry Sawetz The Riley Group, Inc. 17522 Bothell Way NE, Suite A Bothell, WA 98011

Dear Mr. Sawetz,

On January 5th, 3 samples were received by our laboratory and assigned our laboratory project number EV17010018. The project was identified as your 2012-107L. The sample identification and requested analyses are outlined on the attached chain of custody record.

No abnormalities or nonconformances were observed during the analyses of the project samples.

Please do not hesitate to call me if you have any questions or if I can be of further assistance.

Sincerely,

ALS Laboratory Group

Bagun

Rick Bagan Laboratory Director

Page 1
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

CERTIFICATE OF ANALYSIS

CLIENT: The Riley Group, Inc. 17522 Bothell Way NE, Suite A Bothell, WA 98011			DATE: 1/16/2017 ALS JOB#: EV17010018 ALS SAMPLE#: EV17010018-01					
CLIENT CONTACT:	Jerry Sawetz		D	ATE RECEIVED:	01/05/20)17		
CLIENT PROJECT:	2012-107L		COL	LECTION DATE:	1/4/2017	′ 10:45:00 A	M	
CLIENT SAMPLE ID	MW 6		WDOE AC	CCREDITATION:	C601			
		SAMPLE	DATA RESULTS					
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS A DATE	NALYSIS BY	
TPH-Volatile Range	NWTPH-GX	U	50	1	UG/L	01/05/2017	PAB	
C5-C6 Aliphatics	NWVPH	U	50	1	UG/L	01/09/2017	PAB	
>C6-C8 Aliphatics	NWVPH	U	50	1	UG/L	01/09/2017	PAB	
>C8-C10 Aliphatics	NWVPH	U	50	1	UG/L	01/09/2017	PAB	
>C8-C10 Aromatics	NWVPH	U	50	1	UG/L	01/09/2017	PAB	
Hexane	NWVPH	U	2.0	1	UG/L	01/09/2017	PAB	
TPH-Diesel Range	NWTPH-DX	U	130	1	UG/L	01/05/2017	EBS	
TPH-Oil Range	NWTPH-DX	U	250	1	UG/L	01/05/2017	EBS	
>C8-C10 Aliphatics	NWEPH	U	50	1	UG/L	01/06/2017	EBS	
>C10-C12 Aliphatics	NWEPH	U	50	1	UG/L	01/06/2017	EBS	
>C12-C16 Aliphatics	NWEPH	U	50	1	UG/L	01/06/2017	EBS	
>C16-C21 Aliphatics	NWEPH	U	50	1	UG/L	01/06/2017	EBS	
>C21-C34 Aliphatics	NWEPH	U	50	1	UG/L	01/06/2017	EBS	
>C8-C10 Aromatics	NWEPH	U	50	1	UG/L	01/06/2017	EBS	
>C10-C12 Aromatics	NWEPH	U	50	1	UG/L	01/06/2017	EBS	
>C12-C16 Aromatics	NWEPH	U	50	1	UG/L	01/06/2017	EBS	
>C16-C21 Aromatics	NWEPH	U	50	1	UG/L	01/06/2017	EBS	
>C21-C34 Aromatics	NWEPH	U	50	1	UG/L	01/06/2017	EBS	
Vinyl Chloride	EPA-8260	U	0.20	1	UG/L	01/06/2017	DLC	
1,1-Dichloroethene	EPA-8260	U	2.0	1	UG/L	01/06/2017	DLC	
Trans-1,2-Dichloroethene	EPA-8260	U	2.0	1	UG/L	01/06/2017	DLC	
Cis-1,2-Dichloroethene	EPA-8260	U	2.0	1	UG/L	01/06/2017	DLC	
Benzene	EPA-8260	U	2.0	1	UG/L	01/06/2017	DLC	
Trichloroethene	EPA-8260	U	2.0	1	UG/L	01/06/2017	DLC	
Toluene	EPA-8260	U	2.0	1	UG/L	01/06/2017	DLC	
Tetrachloroethylene	EPA-8260	U	2.0	1	UG/L	01/06/2017	DLC	
Ethylbenzene	EPA-8260	U	2.0	1	UG/L	01/06/2017	DLC	
m,p-Xylene	EPA-8260	U	4.0	1	UG/L	01/06/2017	DLC	
o-Xylene	EPA-8260	U	2.0	1	UG/L	01/06/2017	DLC	
						ANALYSIS /		
SURROGATE	METHOD	%REC				DATE	Bĭ	
TFT	NWTPH-GX	95.7				01/05/2017	PAB	
TFT - Aliphatic	NWVPH	86.7				01/09/2017	PAB	
TFT - Aromatic	NWVPH	81.1				01/09/2017	PAB	
TFT - Hexane	NWVPH	87.6				01/09/2017	PAB	
C25	NWTPH-DX	94.4				01/05/2017	EBS	
C25	NWEPH	91.0				01/06/2017	EBS	
p-Terphenyl	NWEPH	81.0				01/06/2017	EBS	

Page 2

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

		CERTIFICA	TE OF ANALYSIS		
CLIENT:	The Riley Group, In 17522 Bothell Way Bothell, WA 98011	c. NE, Suite A	DATE: ALS JOB#: ALS SAMPLE#:	1/16/2017 EV17010018 EV17010018-01	
CLIENT CONTACT:	Jerry Sawetz		DATE RECEIVED:	01/05/2017	
CLIENT PROJECT:	2012-107L		COLLECTION DATE:	1/4/2017 10:45:00 A	M
CLIENT SAMPLE ID	MW 6		WDOE ACCREDITATION:	C601	
		SAMPLE D	DATA RESULTS		
SURROGATE	METHOD	%REC		ANALYSIS / DATE	ANALYSIS BY
1,2-Dichloroethane-d4	EPA-8260	103		01/06/2017	DLC
Toluene-d8	EPA-8260	97.5		01/06/2017	DLC

U - Analyte analyzed for but not detected at level above reporting limit.

Page 3
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

		CERTIFIC	CATE OF ANALYSIS				
CLIENT:	The Riley Group, Ir 17522 Bothell Way Bothell, WA 98011 Jerry Sawetz	nc. 7 NE, Suite A	D	DATE: ALS JOB#: ALS SAMPLE#: ATE RECEIVED:	1/16/201 EV17010 EV17010 01/05/20	7 0018 0018-02 017	_
CLIENT PROJECT:	2012-107L		COL	LECTION DATE:	1/4/2017	2:50:00 PN	Λ
CLIENT SAMPLE ID	RW 1		WDOE A	CCREDITATION:	C601		
		SAMPL	E DATA RESULTS				
	METHOD	RESULTS	50	140101	UNITS	01/05/2017	
		U	50	1	UG/L	01/05/2017	
Co-Co Aliphatics		U	50	1	UG/L	01/09/2017	
>C6-C8 Aliphatics	NWVPH	U	50	1	UG/L	01/09/2017	PAB
>C8-C10 Aliphatics		U	50	1	UG/L	01/09/2017	
>Co-CTU ATOMAtics		U	50	1	UG/L	01/09/2017	
		1200 *	2.0	1	UG/L	01/09/2017	FAD
		280	130	1		01/05/2017	EDO
		280	230	1		01/05/2017	EDO
>Co-CTU Aliphatics		U	50	1		01/06/2017	EDO
>CTO-CT2 Aliphatics		74	50	1		01/06/2017	EDO
>C16 C21 Aliphatics		170	50	1		01/06/2017	EBS
>C21 C24 Aliphatics		170	50	1		01/06/2017	EBS
>C2 1-C34 Aliphatics		0	50	1		01/06/2017	EBS
>C10 C12 Aromatics		0	50	1		01/06/2017	EBS
>C10-C12 Aromatics		U	50	1		01/06/2017	EDO
>C12-C10 Aromatics		0	50	1		01/06/2017	EBS
>C10-C21 Aromatics		140	50	1		01/06/2017	EBS
Vinyl Chlorido		140	0.20	1		01/06/2017	
	EPA-8260	0	2.0	1		01/06/2017	
Trans 1.2 Dichloroothono	EPA 8260	0	2.0	1		01/06/2017	
	EPA-8260	U	2.0	1		01/06/2017	
Bonzono	EPA 8260	0	2.0	1		01/06/2017	
Trichloroothopo	EPA 8260	0	2.0	1		01/06/2017	
Toluene	EPA-8260	0	2.0	1		01/06/2017	
Tetrachloroethylene	EPA-8260	U	2.0	1		01/06/2017	
Ethylbenzene	EPA-8260	U	2.0	1		01/06/2017	DLC
m n-Xvlene	EPA-8260	U	4.0	1	UG/L	01/06/2017	DLC
o-Xvlene	EPA-8260	U	2.0	1	UG/L	01/06/2017	DLC
	21770200	U	2.0		00/2	01/00/2011	
SURROGATE	METHOD	%REC				ANALYSIS / DATE	ANALYSIS BY
TFT		96.8				01/05/2017	PAR
TFT - Aliphatic		98.8				01/00/2017	PAR
TFT - Aromatic		97.2				01/09/2017	PAR
TFT - Hexane	NW//PH	98.4				01/09/2017	PAR
C25		118				01/05/2017	FRS
C25	NWEPH	89.0				01/06/2017	FBS
p-Terphenyl	NWEPH	77.0				01/06/2017	FBS
F . Sipiloly						01/00/2017	200

Page 4

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

		CERTIFICA	TE OF ANALYSIS		
CLIENT:	The Riley Group, Ind 17522 Bothell Way I Bothell WA 98011	c. NE, Suite A	DATE: ALS JOB#:	1/16/2017 EV17010018	
CLIENT CONTACT:	Jerry Sawetz		ALS SAMPLE#: DATE RECEIVED:	01/05/2017 1/4/2017 2:50:00 PM	Λ
CLIENT SAMPLE ID	RW 1		WDOE ACCREDITATION:	C601	
		SAMPLE L	DATA RESULTS		
SURROGATE	METHOD	%REC		ANALYSIS / DATE	ANALYSIS BY
1,2-Dichloroethane-d4	EPA-8260	109		01/06/2017	DLC
Toluene-d8	EPA-8260	101		01/06/2017	DLC

U - Analyte analyzed for but not detected at level above reporting limit.

Chromatogram indicates that it is likely that sample contains a diesel range product that is likely biased high due to biogenic interference.

 Page 5

 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208
 PHONE 425-356-2600
 FAX 425-356-2626

 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

		CERTIFIC	CATE OF ANALYSIS				
CLIENT: CLIENT CONTACT: CLIENT PROJECT: CLIENT SAMPLE ID	The Riley Group, Ir 17522 Bothell Way Bothell, WA 98011 Jerry Sawetz 2012-107L RW 2	nc. NE, Suite A	D/ COLI WDOE AC	DATE: ALS JOB#: ALS SAMPLE#: ATE RECEIVED: LECTION DATE: CCREDITATION:	1/16/201 EV17010 EV17010 01/05/20 1/4/2017 C601	7 0018 0018-03 017 7 1:45:00 Pf	И
		SAMPL	E DATA RESULTS				
			PEPOPTING				
ANALYTE TPH-Volatile Range	METHOD NWTPH-GX	RESULTS U	LIMITS 50	FACTOR	UNITS UG/L	DATE 01/05/2017	BY PAB
C5-C6 Aliphatics	NWVPH	U	50	1	UG/L	01/09/2017	PAB
>C6-C8 Aliphatics	NWVPH	U	50	1	UG/L	01/09/2017	PAB
>C8-C10 Aliphatics	NWVPH	U	50	1	UG/L	01/09/2017	PAB
>C8-C10 Aromatics	NWVPH	U	50	1	UG/L	01/09/2017	PAB
Hexane	NWVPH	U	2.0	1	UG/L	01/09/2017	PAB
TPH-Diesel Range	NWTPH-DX	330 *	130	1	UG/L	01/05/2017	EBS
TPH-Oil Range	NWTPH-DX	U	250	1	UG/L	01/05/2017	EBS
>C8-C10 Aliphatics	NWEPH	U	50	1	UG/L	01/06/2017	EBS
>C10-C12 Aliphatics	NWEPH	U	50	1	UG/L	01/06/2017	EBS
>C12-C16 Aliphatics	NWEPH	U	50	1	UG/L	01/06/2017	EBS
>C16-C21 Aliphatics	NWEPH	U	50	1	UG/L	01/06/2017	EBS
>C21-C34 Aliphatics	NWEPH	U	50	1	UG/L	01/06/2017	EBS
>C8-C10 Aromatics	NWEPH	U	50	1	UG/L	01/06/2017	EBS
>C10-C12 Aromatics	NWEPH	U	50	1	UG/L	01/06/2017	EBS
>C12-C16 Aromatics	NWEPH	U	50	1	UG/L	01/06/2017	EBS
>C16-C21 Aromatics	NWEPH	U	50	1	UG/L	01/06/2017	EBS
>C21-C34 Aromatics	NWEPH	U	50	1	UG/L	01/06/2017	EBS
Vinyl Chloride	EPA-8260	U	0.20	1	UG/L	01/06/2017	DLC
1,1-Dichloroethene	EPA-8260	U	2.0	1	UG/L	01/06/2017	DLC
Trans-1,2-Dichloroethene	EPA-8260	U	2.0	1	UG/L	01/06/2017	DLC
Cis-1,2-Dichloroethene	EPA-8260	U	2.0	1	UG/L	01/06/2017	DLC
Benzene	EPA-8260	U	2.0	1	UG/L	01/06/2017	DLC
Trichloroethene	EPA-8260	U	2.0	1	UG/L	01/06/2017	DLC
Toluene	EPA-8260	U	2.0	1	UG/L	01/06/2017	DLC
Tetrachloroethylene	EPA-8260	U	2.0	1	UG/L	01/06/2017	DLC
Ethylbenzene	EPA-8260	U	2.0	1	UG/L	01/06/2017	DLC
m,p-Xylene	EPA-8260	U	4.0	1	UG/L	01/06/2017	DLC
o-Xylene	EPA-8260	U	2.0	1	UG/L	01/06/2017	DLC
SURROGATE	METHOD	%REC				ANALYSIS DATE	ANALYSIS BY
TFT		97 1				01/05/2017	PAR
TFT - Aliphatic		94.6				01/00/2017	PAR
TFT - Aromatic	N/W//PH	96.0				01/09/2017	PAR
TFT - Hexane	NW//PH	96.1				01/09/2017	PAR
C25		98.9				01/05/2017	FBS
C25	NWEPH	99.0				01/06/2017	FBS
p-Terphenyl	NWEPH	84.0				01/06/2017	FBS
P. Sipiony		0-110				01/00/2011	200

Page 6

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

		CERTIFICAT	TE OF ANALYSIS		
CLIENT:	The Riley Group, In 17522 Bothell Way Bothell, WA 98011	c. NE, Suite A	DATE: ALS JOB#: ALS SAMPLE#:	1/16/2017 EV17010018 EV17010018-03	
CLIENT CONTACT:	Jerry Sawetz			01/05/2017 1/4/2017 1:45:00 PM	Λ
CLIENT SAMPLE ID	RW 2		WDOE ACCREDITATION:	C601	1
		SAMPLE D	DATA RESULTS		
SURROGATE	METHOD	%REC		ANALYSIS / DATE	ANALYSIS BY
1,2-Dichloroethane-d4	EPA-8260	104		01/06/2017	DLC
Toluene-d8	EPA-8260	102		01/06/2017	DLC

U - Analyte analyzed for but not detected at level above reporting limit.

Chromatogram indicates that it is likely that sample contains a diesel range product that is likely biased high due to biogenic interference.

Page 7
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

CERTIFICATE OF ANALYSIS

/16/2017
EV17010018
2601
/' :\ :)6

LABORATORY BLANK RESULTS

MBG-122916W - Batch 111196 - Water by NWTPH-GX

				REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	UNITS	LIMITS	DATE	BY
TPH-Volatile Range	NWTPH-GX	U	UG/L	50	12/29/2016	PAB

U - Analyte analyzed for but not detected at level above reporting limit.

MBLK-R287994 - Batch R287994 - Water by NWVPH

ANALYTE	METHOD RE	SULTS	UNITS	EPORTING LIMITS	ANALYSIS DATE	ANALYSIS BY
C5-C6 Aliphatics	NWVPH	U	UG/L	50	01/09/2017	PAB
>C6-C8 Aliphatics	NWVPH	U	UG/L	50	01/09/2017	PAB
>C8-C10 Aliphatics	NWVPH	U	UG/L	50	01/09/2017	PAB
>C8-C10 Aromatics	NWVPH	U	UG/L	50	01/09/2017	PAB
Hexane	NWVPH	U	UG/L	2.0	01/09/2017	PAB

U - Analyte analyzed for but not detected at level above reporting limit.

MB-010417W - Batch 111286 - Water by NWTPH-DX

				REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	UNITS	LIMITS	DATE	BY
TPH-Diesel Range	NWTPH-DX	U	UG/L	130	01/04/2017	EBS
TPH-Oil Range	NWTPH-DX	U	UG/L	250	01/04/2017	EBS

U - Analyte analyzed for but not detected at level above reporting limit.

MBLK-287815 - Batch R287815 - Water by NWEPH

ANALYTE	METHOD R	ESULTS	UNITS	PORTING LIMITS	ANALYSIS DATE	ANALYSIS BY
>C8-C10 Aliphatics	NWEPH	U	UG/L	50	01/06/2017	EBS
>C10-C12 Aliphatics	NWEPH	U	UG/L	50	01/06/2017	EBS
>C12-C16 Aliphatics	NWEPH	U	UG/L	50	01/06/2017	EBS
>C16-C21 Aliphatics	NWEPH	U	UG/L	50	01/06/2017	EBS
>C21-C34 Aliphatics	NWEPH	U	UG/L	50	01/06/2017	EBS
>C8-C10 Aromatics	NWEPH	U	UG/L	50	01/06/2017	EBS
>C10-C12 Aromatics	NWEPH	U	UG/L	50	01/06/2017	EBS
>C12-C16 Aromatics	NWEPH	U	UG/L	50	01/06/2017	EBS
>C16-C21 Aromatics	NWEPH	U	UG/L	50	01/06/2017	EBS
>C21-C34 Aromatics	NWEPH	U	UG/L	50	01/06/2017	EBS

U - Analyte analyzed for but not detected at level above reporting limit.

Page 8
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

RIGHT SOLUTIONS RIGHT PARTNER

CLIENT:	The Riley Group, Inc. 17522 Bothell Way NE, Suite A Bothell, WA 98011
CLIENT CONTACT:	Jerry Sawetz
CLIENT PROJECT:	2012-107L

DATE: 1/16/ ALS SDG#: EV17 WDOE ACCREDITATION: C601

1/16/2017 EV17010018 C601

LABORATORY BLANK RESULTS

MB-010517W - Batch 111254 - Water by EPA-8260

				REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	UNITS	LIMITS	DATE	BY
Vinyl Chloride	EPA-8260	U	UG/L	0.20	01/05/2017	DLC
1,1-Dichloroethene	EPA-8260	U	UG/L	2.0	01/05/2017	DLC
Trans-1,2-Dichloroethene	EPA-8260	U	UG/L	2.0	01/05/2017	DLC
Cis-1,2-Dichloroethene	EPA-8260	U	UG/L	2.0	01/05/2017	DLC
Benzene	EPA-8260	U	UG/L	2.0	01/05/2017	DLC
Trichloroethene	EPA-8260	U	UG/L	2.0	01/05/2017	DLC
Toluene	EPA-8260	U	UG/L	2.0	01/05/2017	DLC
Tetrachloroethylene	EPA-8260	U	UG/L	2.0	01/05/2017	DLC
Ethylbenzene	EPA-8260	U	UG/L	2.0	01/05/2017	DLC
m,p-Xylene	EPA-8260	U	UG/L	4.0	01/05/2017	DLC
o-Xylene	EPA-8260	U	UG/L	2.0	01/05/2017	DLC

U - Analyte analyzed for but not detected at level above reporting limit.

Page 9
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

1/16/2017

C601

EV17010018

CLIENT:	The Riley Group, Inc.	DATE:
	17522 Bothell Way NE, Suite A	ALS SDG#:
	Bothell, WA 98011	WDOE ACCREDITATION:
CLIENT CONTACT:	Jerry Sawetz	
CLIENT PROJECT:	2012-107L	

LABORATORY CONTROL SAMPLE RESULTS

ALS Test Batch ID: 111196 - Water by NWTPH-GX

				LIM	IITS	ANALYSIS	ANALYSIS BY	
SPIKED COMPOUND	METHOD	%REC	RPD (QUAL	MIN	MAX	DATE	
TPH-Volatile Range - BS	NWTPH-GX	95.0			66.5	122.7	12/29/2016	PAB
TPH-Volatile Range - BSD	NWTPH-GX	99.7	5		66.5	122.7	12/29/2016	PAB

ALS Test Batch ID: R287994 - Water by NWVPH

	·····		LIN	NITS	ANALYSIS	ANALYSIS BY		
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	MIN	MAX	DATE	
C5-C6 Aliphatics - BS	NWVPH	83.0			70	130	01/09/2017	PAB
C5-C6 Aliphatics - BSD	NWVPH	86.5	4		70	130	01/09/2017	PAB
>C6-C8 Aliphatics - BS	NWVPH	94.8			70	130	01/09/2017	PAB
>C6-C8 Aliphatics - BSD	NWVPH	100	6		70	130	01/09/2017	PAB
>C8-C10 Aliphatics - BS	NWVPH	93.6			70	130	01/09/2017	PAB
>C8-C10 Aliphatics - BSD	NWVPH	100	7		70	130	01/09/2017	PAB
>C8-C10 Aromatics - BS	NWVPH	90.8			70	130	01/09/2017	PAB
>C8-C10 Aromatics - BSD	NWVPH	96.5	6		70	130	01/09/2017	PAB
Hexane - BS	NWVPH	84.0			70	130	01/09/2017	PAB
Hexane - BSD	NWVPH	87.8	4		70	130	01/09/2017	PAB

ALS Test Batch ID: 111286 - Water by NWTPH-DX

				LIN	IITS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD QUAL	MIN	MAX	DATE	
TPH-Diesel Range - BS	NWTPH-DX	93.2		67	125.2	01/04/2017	EBS
TPH-Diesel Range - BSD	NWTPH-DX	98.8	6	67	125.2	01/04/2017	EBS

ALS Test Batch ID: R287815 - Water by NWEPH

	-				LIMITS		ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	MIN	MAX	DATE	
>C8-C10 Aliphatics - BS	NWEPH	99.0			70	130	01/06/2017	EBS
>C8-C10 Aliphatics - BSD	NWEPH	111	11		70	130	01/06/2017	EBS
>C10-C12 Aliphatics - BS	NWEPH	105			70	130	01/06/2017	EBS
>C10-C12 Aliphatics - BSD	NWEPH	115	9		70	130	01/06/2017	EBS
>C12-C16 Aliphatics - BS	NWEPH	109			70	130	01/06/2017	EBS
>C12-C16 Aliphatics - BSD	NWEPH	116	6		70	130	01/06/2017	EBS
>C16-C21 Aliphatics - BS	NWEPH	112			70	130	01/06/2017	EBS
>C16-C21 Aliphatics - BSD	NWEPH	116	4		70	130	01/06/2017	EBS
>C21-C34 Aliphatics - BS	NWEPH	114			70	130	01/06/2017	EBS
>C21-C34 Aliphatics - BSD	NWEPH	104	9		70	130	01/06/2017	EBS
>C8-C10 Aromatics - BS	NWEPH	83.0			70	130	01/06/2017	EBS
>C8-C10 Aromatics - BSD	NWEPH	91.0	9		70	130	01/06/2017	EBS
>C10-C12 Aromatics - BS	NWEPH	88.0			70	130	01/06/2017	EBS

Page 10

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

CLIENT:

The Riley Group, Inc. 17522 Bothell Way NE, Suite A Bothell, WA 98011 Jerry Sawetz 2012-107L

DATE: ALS SDG#: WDOE ACCREDITATION: 0

1/16/2017 EV17010018 C601

CLIENT CONTACT: CLIENT PROJECT:

|--|

					LIN	ITS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	MIN	MAX	DATE	
>C10-C12 Aromatics - BSD	NWEPH	93.0	6		70	130	01/06/2017	EBS
>C12-C16 Aromatics - BS	NWEPH	92.0			70	130	01/06/2017	EBS
>C12-C16 Aromatics - BSD	NWEPH	96.0	4		70	130	01/06/2017	EBS
>C16-C21 Aromatics - BS	NWEPH	91.0			70	130	01/06/2017	EBS
>C16-C21 Aromatics - BSD	NWEPH	96.0	5		70	130	01/06/2017	EBS
>C21-C34 Aromatics - BS	NWEPH	81.0			70	130	01/06/2017	EBS
>C21-C34 Aromatics - BSD	NWEPH	85.0	5		70	130	01/06/2017	EBS

ALS Test Batch ID: 111254 - Water by EPA-8260

	-				LIN	IITS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	MIN	MAX	DATE	
1,1-Dichloroethene - BS	EPA-8260	109			72.5	136	01/05/2017	DLC
1,1-Dichloroethene - BSD	EPA-8260	111	1		72.5	136	01/05/2017	DLC
Benzene - BS	EPA-8260	112			74.7	143	01/05/2017	DLC
Benzene - BSD	EPA-8260	111	1		74.7	143	01/05/2017	DLC
Trichloroethene - BS	EPA-8260	113			74.4	141	01/05/2017	DLC
Trichloroethene - BSD	EPA-8260	113	0		74.4	141	01/05/2017	DLC
Toluene - BS	EPA-8260	114			71.7	139	01/05/2017	DLC
Toluene - BSD	EPA-8260	114	0		71.7	139	01/05/2017	DLC

APPROVED BY

Dagu

Laboratory Director

Page 11
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 PHONE 42

ALS Group USA, Corp dba ALS Environmental

PHONE 425-356-2600 FAX 425-356-2626

www.alsglobal.com

ALS Environmental 8620 Holly Drive, Suite 100 Everett, WA 98208 Phone (425) 356-2600 Fax (425) 356-2626 http://www.alsglobal.com

Chain Of Custody/ Laboratory Analysis Request

ALS Job# (Laboratory Use Only)

EV11010018

(ALS) http://www.alsglobal.com													Date	, 1	4	17	Page		1	Of	1	
PROJECT ID: 2012-107L	AN	IALY	SIS	REQ	UES	STED)								•	OTł	IER (Spec	ify)			
REPORT TO REAL	1						*				_		_		S							
PROJECT TECHN Sametz	1					'	3	.			70 SIN		L []		Herb							
ADDRESS: 17522 Bathald WAY NE	1			60	260		Sel		1	02	PA 82	A 80			st□							
Rothold WA 986/1	1			PA 82	EPA 8		260			PA 82) by El	by El	ri Pol [Ъ.	R						SNC
DUDNE: 425-415-6551 EAV.	1			X by E	E by I	09	EPA 8	ater)		s by E	(PAH	licides	Ē		i-Vol	T					ပ္စ	DITIC
POUNE / 2 / FAMIL: i SAWETZA TILU-ARGUD.COM	h.			BTE	MTB	PA 82	ls by	IM (wa	[]	punoc	arbons	Pest	A-8 [Sem	5					INER	NON NON
INVOICE TO COMPANY: RGI	1					s by E	unod	260 S	260 (s	Comp	lydroc		RCR	S							NTA	DO
ATTENTION:				3021	8021	olatile	Com	EPA 8	EPA 8	ganic	natic H	082	5 🗌	Specify	N C	X					Ц U U U U U U	0 Z
ADDRESS:	- Hole	Ä	XĐ	EPA 8	/ EPA	ated V	Drgani	oc by	C by	tile O	c Aron	EPA 8	ITCA-	ther (etals [-)ED
	- Helly	VTPH-	VTPH-	EX by	BE by	logen	atile (B/EI	B/E	mivola	lycycli	B by I	tals-N	tals 0	LP-M	4					MBI	CEN
SAMPLE I.D. DATE TIME TYPE LAB#	₹	Ž	NN	BŢ	Ξ	На	<u>></u>			Se	Ъ	8	Me	₩	2	Ψ ί					Ĭ	<u> </u>
1. MW 6 1417 1045 Water 1	<u> </u>	X	X				\times									\times					8	<u>`</u>
2. RWI 14171450 2		X	X				\times									\times					Ø	X
3. RWZ 114171345 - 3		X	X				Х									X					8	>
4.																						·
5.				-																		
6.																					,	
7.																						
8.																						
9.																						
10.																						
special instructions * < a attached list for 8	<u>م</u> لة		mp	no in	J <																	
			Ť																			
SIGNATURES (Name, Company, Date, Time):	; /	Δ	_		ć	Jrmai	nic I	Met	als 8	Ino	TU	RNA	ROU	JND sis	REC	UES	red ir	ı Busi	INESS I	Days* ⊰∙		
1. Relinquished By: (Mullia (Mullia, Kort, 115/17	-1	v ? [/			TR		5	3	د د	2	1	SA N	ME		Spe	ecify:					
Received By: take ME Unix AS / 1.5.17 / /	D!	17				⊭_ ⊘standad FL	∟ Jels	 & H'	لي ydro	L carb	on A	∟ \nal\	≝ ∕sis	<u> </u>								
2. Relínquished By:								5	3		1	SAME						. .				
Received By:							s	Standard					-		*Tur		roquiact	loce the	n otondo	rd may incu	r Ruch (

January 16, 2017

Mr. Jerry Sawetz The Riley Group, Inc. 17522 Bothell Way NE, Suite A Bothell, WA 98011

Dear Mr. Sawetz,

On October 31st, 3 samples were received by our laboratory and assigned our laboratory project number EV16100227. The project was identified as your 2012-107L. The sample identification and requested analyses are outlined on the attached chain of custody record.

No abnormalities or nonconformances were observed during the analyses of the project samples.

Please do not hesitate to call me if you have any questions or if I can be of further assistance.

Sincerely,

ALS Laboratory Group

Bagun

Rick Bagan Laboratory Director

Page 1
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

CLIENT:	The Riley Group, Inc. 17522 Bothell Way NE, Suite A Bothell, WA 98011			DATE: 1/16/2017 ALS JOB#: EV16100227 ALS SAMPLE#: EV16100227-01				
CLIENT CONTACT:	Jerry Sawetz		D	ATE RECEIVED:	10/31/2016			
CLIENT PROJECT:	2012-107L		COL	LECTION DATE:	10/28/20	016 11:15:00) AM	
CLIENT SAMPLE ID	MW-6		WDOE AG	CCREDITATION:	C601			
		SAMPLE	DATA RESULTS					
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS DATE	ANALYSIS BY	
TPH-Volatile Range	NWTPH-GX	U	50	1	UG/L	10/31/2016	PAB	
C5-C6 Aliphatics	NWVPH	U	50	1	UG/L	11/02/2016	PAB	
>C6-C8 Aliphatics	NWVPH	U	50	1	UG/L	11/02/2016	PAB	
>C8-C10 Aliphatics	NWVPH	U	50	1	UG/L	11/02/2016	PAB	
>C8-C10 Aromatics	NWVPH	U	50	1	UG/L	11/02/2016	PAB	
Hexane	NWVPH	U	2.0	1	UG/L	11/02/2016	PAB	
TPH-Diesel Range	NWTPH-DX	U	130	1	UG/L	11/02/2016	EBS	
TPH-Oil Range	NWTPH-DX	U	250	1	UG/L	11/02/2016	EBS	
>C8-C10 Aliphatics	NWEPH	U	50	1	UG/L	11/04/2016	EBS	
>C10-C12 Aliphatics	NWEPH	U	50	1	UG/L	11/04/2016	EBS	
>C12-C16 Aliphatics	NWEPH	U	50	1	UG/L	11/04/2016	EBS	
>C16-C21 Aliphatics	NWEPH	U	50	1	UG/L	11/04/2016	EBS	
>C21-C34 Aliphatics	NWEPH	U	50	1	UG/L	11/04/2016	EBS	
>C8-C10 Aromatics	NWEPH	U	50	1	UG/L	11/03/2016	EBS	
>C10-C12 Aromatics	NWEPH	U	50	1	UG/L	11/03/2016	EBS	
>C12-C16 Aromatics	NWEPH	U	50	1	UG/L	11/03/2016	EBS	
>C16-C21 Aromatics	NWEPH	U	50	1	UG/L	11/03/2016	EBS	
>C21-C34 Aromatics	NWEPH	U	50	1	UG/L	11/03/2016	EBS	
Vinyl Chloride	EPA-8260	U	0.20	1	UG/L	10/31/2016	DLC	
1,1-Dichloroethene	EPA-8260	U	2.0	1	UG/L	10/31/2016	DLC	
Trans-1,2-Dichloroethene	EPA-8260	U	2.0	1	UG/L	10/31/2016	DLC	
Cis-1,2-Dichloroethene	EPA-8260	U	2.0	1	UG/L	10/31/2016	DLC	
Benzene	EPA-8260	U	2.0	1	UG/L	10/31/2016	DLC	
Trichloroethene	EPA-8260	U	2.0	1	UG/L	10/31/2016	DLC	
Toluene	EPA-8260	U	2.0	1	UG/L	10/31/2016	DLC	
Tetrachloroethylene	EPA-8260	U	2.0	1	UG/L	10/31/2016	DLC	
Ethylbenzene	EPA-8260	U	2.0	1	UG/L	10/31/2016	DLC	
m,p-Xylene	EPA-8260	U	4.0	1	UG/L	10/31/2016	DLC	
o-Xylene	EPA-8260	U	2.0	1	UG/L	10/31/2016	DLC	
SURROGATE	METHOD	%RFC				ANALYSIS DATE	ANALYSIS BY	
TFT	NW/TPH_GY	88.0				10/31/2016	PAR	
TFT - Aliphatic	N////PH	95.0				11/02/2016	PAR	
TFT - Aromatic	NWVPH	108				11/02/2010	PAR	
TFT - Hexane	N\/\/\/PH	97.0				11/02/2010	PAR	
C.25		85.9				11/02/2010	FRS	
C25	NW/EPH	91.0				11/04/2016	FRS	
p-Terphenyl	NWEPH	83.0				11/03/2016	FBS	
h i cihiiciili		00.0				11/03/2010	200	

Page 2

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

		CERTIFICA	TE OF ANALYSIS		
CLIENT:	The Riley Group, Ir 17522 Bothell Way Bothell, WA 98011	nc. NE, Suite A	DATE: ALS JOB#: ALS SAMPLE#:	1/16/2017 EV16100227 EV16100227-01	
CLIENT CONTACT:	Jerry Sawetz		DATE RECEIVED:	10/31/2016	
CLIENT PROJECT:	2012-107L		COLLECTION DATE:	10/28/2016 11:15:00) AM
CLIENT SAMPLE ID	MW-6		WDOE ACCREDITATION:	C601	
		SAMPLE D	DATA RESULTS		
SURROGATE	METHOD	%REC		ANALYSIS / DATE	ANALYSIS BY
1,2-Dichloroethane-d4	EPA-8260	111		10/31/2016	DLC
Toluene-d8	EPA-8260	102		10/31/2016	DLC

Page 3
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

		CERTIFI	CATE OF ANALYSIS				
CLIENT: CLIENT CONTACT: CLIENT PROJECT: CLIENT SAMPLE ID	The Riley Group, Inc. 17522 Bothell Way NE, Suite A Bothell, WA 98011 Jerry Sawetz 2012-107L RW-1		D COL WDOE A	DATE: ALS JOB#: ALS SAMPLE#: ATE RECEIVED: LECTION DATE: CCREDITATION:	1/16/2017 EV16100227 EV16100227-02 10/31/2016 10/28/2016 12:30:00 PM C601		
		SAMPL	E DATA RESULTS				
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS DATE	ANALYSIS BY
TPH-Volatile Range	NWTPH-GX	U	50	1	UG/L	10/31/2016	PAB
C5-C6 Aliphatics	NWVPH	U	50	1	UG/L	11/02/2016	PAB
>C6-C8 Aliphatics	NWVPH	U	50	1	UG/L	11/02/2016	PAB
>C8-C10 Aliphatics	NWVPH	U	50	1	UG/L	11/02/2016	PAB
>C8-C10 Aromatics	NWVPH	U	50	1	UG/L	11/02/2016	PAB
Hexane	NWVPH	U	2.0	1	UG/L	11/02/2016	PAB
TPH-Diesel Range	NWTPH-DX	470 *	130	1	UG/L	11/02/2016	EBS
TPH-Oil Range	NWTPH-DX	U	250	1	UG/L	11/02/2016	EBS
>C8-C10 Aliphatics	NWEPH	U	50	1	UG/L	11/04/2016	EBS
>C10-C12 Aliphatics	NWEPH	U	50	1	UG/L	11/04/2016	EBS
>C12-C16 Aliphatics	NWEPH	U	50	1	UG/L	11/04/2016	EBS
>C16-C21 Aliphatics	NWEPH	U	50	1	UG/L	11/04/2016	EBS
>C21-C34 Aliphatics	NWEPH	U	50	1	UG/L	11/04/2016	EBS
>C8-C10 Aromatics	NWEPH	U	50	1	UG/L	11/03/2016	EBS
>C10-C12 Aromatics	NWEPH	U	50	1	UG/L	11/03/2016	EBS
>C12-C16 Aromatics	NWEPH	U	50	1	UG/L	11/03/2016	EBS
>C16-C21 Aromatics	NWEPH	U	50	1	UG/L	11/03/2016	EBS
>C21-C34 Aromatics	NWEPH	U	50	1	UG/L	11/03/2016	EBS
Vinyl Chloride	EPA-8260	U	0.20	1	UG/L	10/31/2016	DLC
1,1-Dichloroethene	EPA-8260	U	2.0	1	UG/L	10/31/2016	DLC
Trans-1,2-Dichloroethene	EPA-8260	U	2.0	1	UG/L	10/31/2016	DLC
Cis-1,2-Dichloroethene	EPA-8260	U	2.0	1	UG/L	10/31/2016	DLC
Benzene	EPA-8260	U	2.0	1	UG/L	10/31/2016	DLC
Trichloroethene	EPA-8260	U	2.0	1	UG/L	10/31/2016	DLC
Toluene	EPA-8260	U	2.0	1	UG/L	10/31/2016	DLC
Tetrachloroethylene	EPA-8260	U	2.0	1	UG/L	10/31/2016	DLC
Ethylbenzene	EPA-8260	U	2.0	1	UG/L	10/31/2016	DLC
m,p-Xylene	EPA-8260	U	4.0	1	UG/L	10/31/2016	DLC
o-Xylene	EPA-8260	U	2.0	1	UG/L	10/31/2016	DLC
SUPPOGATE	METHOD	%REC				ANALYSIS DATE	ANALYSIS BY
TET		70REU				10/24/2040	
TET - Aliphotic		92.1 05.0				11/02/2010	
TET - Aromatic		90.0 107				11/02/2010	
TFT - Hevene		05.0				11/02/2010	
C25		90.0 87 7				11/02/2010	EBG
020		06.0				11/02/2010	EBG
n-Ternhenvl		50.0 75 0				11/02/2010	EBG
P-reihiieiiài		75.0				11/03/2010	LDO

Page 4

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

		CERTIFICAT	TE OF ANALYSIS		
CLIENT:	The Riley Group, Inc	C.	DATE:	1/16/2017	
	17522 Bothell Way I	NE, Suite A	ALS JOB#:	EV16100227	
	Bothell, WA 98011		ALS SAMPLE#:	EV16100227-02	
CLIENT CONTACT:	Jerry Sawetz		DATE RECEIVED:	10/31/2016	
CLIENT PROJECT:	2012-107L		COLLECTION DATE:	10/28/2016 12:30:00) PM
CLIENT SAMPLE ID	RW-1		WDOE ACCREDITATION:	C601	
		SAMPLE D	ATA RESULTS		
				ANALYSIS	ANALYSIS
SURROGATE	METHOD	%REC		DATE	BY
1,2-Dichloroethane-d4	EPA-8260	107		10/31/2016	DLC
Toluene-d8	EPA-8260	91.2		10/31/2016	DLC

Chromatogram indicates that it is likely that sample contains a diesel range product that is likely biased high due to biogenic interference.

Page 5
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

		CERTIF	ICATE OF ANALYSIS	i i			
CLIENT: CLIENT CONTACT: CLIENT PROJECT: CLIENT SAMPLE ID	The Riley Group, Inc. 17522 Bothell Way NE, Suite A Bothell, WA 98011 Jerry Sawetz 2012-107L			DATE: ALS JOB#: ALS SAMPLE#: DATE RECEIVED: COLLECTION DATE:		1/16/2017 EV16100227 EV16100227-03 10/31/2016 10/28/2016 1:25:00 PM	
CLIENT SAMPLE ID	RVV-2	SVMD		CCREDITATION.	001		
		SAIVIE	LE DATA RESULTS				
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS DATE	ANALYSIS
TPH-Volatile Range	NWTPH-GX	U	50	1	UG/L	10/31/2016	PAB
C5-C6 Aliphatics	NWVPH	U	50	1	UG/L	11/02/2016	PAB
>C6-C8 Aliphatics	NWVPH	U	50	1	UG/L	11/02/2016	PAB
>C8-C10 Aliphatics	NWVPH	U	50	1	UG/L	11/02/2016	PAB
>C8-C10 Aromatics	NWVPH	U	50	1	UG/L	11/02/2016	PAB
Hexane	NWVPH	U	2.0	1	UG/L	11/02/2016	PAB
TPH-Diesel Range	NWTPH-DX	400 *	130	1	UG/L	11/02/2016	EBS
TPH-Oil Range	NWTPH-DX	U	250	1	UG/L	11/02/2016	EBS
>C8-C10 Aliphatics	NWEPH	U	50	1	UG/L	11/04/2016	EBS
>C10-C12 Aliphatics	NWEPH	U	50	1	UG/L	11/04/2016	EBS
>C12-C16 Aliphatics	NWEPH	U	50	1	UG/L	11/04/2016	EBS
>C16-C21 Aliphatics	NWEPH	U	50	1	UG/L	11/04/2016	EBS
>C21-C34 Aliphatics	NWEPH	U	50	1	UG/L	11/04/2016	EBS
>C8-C10 Aromatics	NWEPH	U	50	1	UG/L	11/03/2016	EBS
>C10-C12 Aromatics	NWEPH	U	50	1	UG/L	11/03/2016	EBS
>C12-C16 Aromatics	NWEPH	U	50	1	UG/L	11/03/2016	EBS
>C16-C21 Aromatics	NWEPH	U	50	1	UG/L	11/03/2016	EBS
>C21-C34 Aromatics	NWEPH	U	50	1	UG/L	11/03/2016	EBS
Vinyl Chloride	EPA-8260	U	0.20	1	UG/L	10/31/2016	DLC
1,1-Dichloroethene	EPA-8260	U	2.0	1	UG/L	10/31/2016	DLC
Trans-1,2-Dichloroethene	EPA-8260	U	2.0	1	UG/L	10/31/2016	DLC
Cis-1,2-Dichloroethene	EPA-8260	U	2.0	1	UG/L	10/31/2016	DLC
Benzene	EPA-8260	U	2.0	1	UG/L	10/31/2016	DLC
Trichloroethene	EPA-8260	U	2.0	1	UG/L	10/31/2016	DLC
Toluene	EPA-8260	U	2.0	1	UG/L	10/31/2016	DLC
Tetrachloroethylene	EPA-8260	U	2.0	1	UG/L	10/31/2016	DLC
Ethylbenzene	EPA-8260	U	2.0	1	UG/L	10/31/2016	DLC
m,p-Xylene	EPA-8260	U	4.0	1	UG/L	10/31/2016	DLC
o-Xylene	EPA-8260	U	2.0	1	UG/L	10/31/2016	DLC
	METHOD	% BEC				ANALYSIS DATE	ANALYSIS BY
TET		/01 EU				10/21/2010	
		91.2 0F.0				11/02/2016	
TET - Aromatic		93.U 100				11/02/2016	
TFT - Hevene		08 0				11/02/2010	
		30.0				11/02/2010	EPO
025		111				11/02/2010	EDO
020 n Tornhonyl		09.U 72 0				11/04/2010	EDO
p-reipitettyi		73.0				11/03/2016	EDO

Page 6

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

		CERTIFICA	TE OF ANALYSIS		
CLIENT:	The Riley Group, In 17522 Bothell Way Bothell, WA 98011	c. NE, Suite A	DATE: ALS JOB#: ALS SAMPLE#:	1/16/2017 EV16100227 EV16100227-03	
CLIENT CONTACT:	Jerry Sawetz		DATE RECEIVED:	10/31/2016	PM
CLIENT SAMPLE ID	RW-2		WDOE ACCREDITATION:	C601	
		SAMPLE D	DATA RESULTS		
SURROGATE	METHOD	%REC		ANALYSIS / DATE	ANALYSIS By
1,2-Dichloroethane-d4	EPA-8260	120		10/31/2016	DLC
Toluene-d8	EPA-8260	103		10/31/2016	DLC

Chromatogram indicates that it is likely that sample contains a diesel range product that is likely biased high due to biogenic interference.

Page 7
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

CLIENT:	The Riley Group, Inc.	DATE:	1/16/2017
	17522 Bothell Way NE, Suite A	ALS SDG#:	EV16100227
	Bothell, WA 98011	WDOE ACCREDITATION:	C601
CLIENT CONTACT:	Jerry Sawetz		
CLIENT PROJECT:	2012-107L		

LABORATORY BLANK RESULTS

MBG-102516W - Batch 109237 - Water by NWTPH-GX

				REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	UNITS	LIMITS	DATE	BY
TPH-Volatile Range	NWTPH-GX	U	UG/L	50	10/25/2016	PAB

U - Analyte analyzed for but not detected at level above reporting limit.

MBLK-284318 - Batch R284318 - Water by NWVPH

ANALYTE	METHOD R	ESULTS	UNITS	EPORTING LIMITS	ANALYSIS DATE	ANALYSIS BY
C5-C6 Aliphatics	NWVPH	U	UG/L	50	11/02/2016	PAB
>C6-C8 Aliphatics	NWVPH	U	UG/L	50	11/02/2016	PAB
>C8-C10 Aliphatics	NWVPH	U	UG/L	50	11/02/2016	PAB
>C8-C10 Aromatics	NWVPH	U	UG/L	50	11/02/2016	PAB
Hexane	NWVPH	U	UG/L	2.0	11/02/2016	PAB

U - Analyte analyzed for but not detected at level above reporting limit.

MB-103116W - Batch 109438 - Water by NWTPH-DX

· · · · · · · · ·				REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	UNITS	LIMITS	DATE	BY
TPH-Diesel Range	NWTPH-DX	U	UG/L	130	10/31/2016	EBS
TPH-Oil Range	NWTPH-DX	U	UG/L	250	10/31/2016	EBS

U - Analyte analyzed for but not detected at level above reporting limit.

MBLK-284324 - Batch R284324 - Water by NWEPH

ANALYTE	METHOD	RESULTS	UNITS	REPORTING LIMITS	ANALYSIS DATE	ANALYSIS BY
>C8-C10 Aliphatics	NWEPH	U	UG/L	50	11/04/2016	EBS
>C10-C12 Aliphatics	NWEPH	U	UG/L	50	11/04/2016	EBS
>C12-C16 Aliphatics	NWEPH	U	UG/L	50	11/04/2016	EBS
>C16-C21 Aliphatics	NWEPH	U	UG/L	50	11/04/2016	EBS
>C21-C34 Aliphatics	NWEPH	U	UG/L	50	11/04/2016	EBS

U - Analyte analyzed for but not detected at level above reporting limit.

MBLK-284325 - Batch R284325 - Water by NWEPH

				REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	UNITS	LIMITS	DATE	BY
>C8-C10 Aromatics	NWEPH	U	UG/L	50	11/03/2016	EBS
>C10-C12 Aromatics	NWEPH	U	UG/L	50	11/03/2016	EBS
>C12-C16 Aromatics	NWEPH	U	UG/L	50	11/03/2016	EBS
>C16-C21 Aromatics	NWEPH	U	UG/L	50	11/03/2016	EBS
>C21-C34 Aromatics	NWEPH	U	UG/L	50	11/03/2016	EBS

Page 8

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

CLIENT:	The Riley Group, Inc.
	17522 Bothell Way NE, Suite A
	Bothell, WA 98011
CLIENT CONTACT:	Jerry Sawetz
CLIENT PROJECT:	2012-107L

DATE: 1/1 ALS SDG#: EV WDOE ACCREDITATION: C6

1/16/2017 EV16100227 C601

LABORATORY BLANK RESULTS

MBLK-284325 - Batch R284325 - Water by NWEPH

U - Analyte analyzed for but not detected at level above reporting limit.

MB-103116W - Batch 109449 - Water by EPA-8260

			REPORTING	ANALYSIS	ANALYSIS
METHOD	RESULTS	UNITS	LIMITS	DATE	BY
EPA-8260	U	UG/L	0.20	10/31/2016	DLC
EPA-8260	U	UG/L	2.0	10/31/2016	DLC
EPA-8260	U	UG/L	2.0	10/31/2016	DLC
EPA-8260	U	UG/L	2.0	10/31/2016	DLC
EPA-8260	U	UG/L	2.0	10/31/2016	DLC
EPA-8260	U	UG/L	2.0	10/31/2016	DLC
EPA-8260	U	UG/L	2.0	10/31/2016	DLC
EPA-8260	U	UG/L	2.0	10/31/2016	DLC
EPA-8260	U	UG/L	2.0	10/31/2016	DLC
EPA-8260	U	UG/L	4.0	10/31/2016	DLC
EPA-8260	U	UG/L	2.0	10/31/2016	DLC
	METHOD EPA-8260 EPA-8260 EPA-8260 EPA-8260 EPA-8260 EPA-8260 EPA-8260 EPA-8260 EPA-8260 EPA-8260	METHODRESULTSEPA-8260UEPA-8260UEPA-8260UEPA-8260UEPA-8260UEPA-8260UEPA-8260UEPA-8260UEPA-8260UEPA-8260UEPA-8260UEPA-8260UEPA-8260UEPA-8260UEPA-8260UEPA-8260UEPA-8260UEPA-8260U	METHOD RESULTS UNITS EPA-8260 U UG/L EPA-8260 U UG/L	REPORTING METHOD RESULTS UNITS LIMITS EPA-8260 U UG/L 0.20 EPA-8260 U UG/L 2.0 EPA-8260 U UG/L 4.0 EPA-8260 U UG/L 4.0 EPA-8260 U UG/L 2.0	REPORTING ANALYSIS METHOD RESULTS UNITS LIMITS DATE EPA-8260 U UG/L 0.20 10/31/2016 EPA-8260 U UG/L 2.0 10/31/2016 EPA-8260 U UG/L

U - Analyte analyzed for but not detected at level above reporting limit.

Page 9
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

CLIENT:	The Riley Group, Inc.	DATE:
	17522 Bothell Way NE, Suite A	ALS SDG#:
	Bothell, WA 98011	WDOE ACCREDITATION:
CLIENT CONTACT:	Jerry Sawetz	
CLIENT PROJECT:	2012-107L	

LABORATORY CONTROL SAMPLE RESULTS

ALS Test Batch ID: 109237 - Water by NWTPH-GX

					LIN	IITS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	MIN	MAX	DATE	
TPH-Volatile Range - BS	NWTPH-GX	85.0			66.5	122.7	10/25/2016	PAB
TPH-Volatile Range - BSD	NWTPH-GX	84.1	1		66.5	122.7	10/25/2016	PAB

ALS Test Batch ID: R284318 - Water by NWVPH

					LIN	IITS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	MIN	MAX	DATE	
C5-C6 Aliphatics - BS	NWVPH	93.0			70	130	11/02/2016	PAB
C5-C6 Aliphatics - BSD	NWVPH	93.0	0		70	130	11/02/2016	PAB
>C6-C8 Aliphatics - BS	NWVPH	105			70	130	11/02/2016	PAB
>C6-C8 Aliphatics - BSD	NWVPH	102	3		70	130	11/02/2016	PAB
>C8-C10 Aliphatics - BS	NWVPH	109			70	130	11/02/2016	PAB
>C8-C10 Aliphatics - BSD	NWVPH	105	4		70	130	11/02/2016	PAB
>C8-C10 Aromatics - BS	NWVPH	107			70	130	11/02/2016	PAB
>C8-C10 Aromatics - BSD	NWVPH	109	2		70	130	11/02/2016	PAB
Hexane - BS	NWVPH	92.0			70	130	11/02/2016	PAB
Hexane - BSD	NWVPH	94.0	2		70	130	11/02/2016	PAB

ALS Test Batch ID: 109438 - Water by NWTPH-DX

					LIMI	rs	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD (QUAL	MIN	MAX	DATE	
TPH-Diesel Range - BS	NWTPH-DX	93.7			67	125.2	10/31/2016	EBS
TPH-Diesel Range - BSD	NWTPH-DX	93.2	1		67	125.2	10/31/2016	EBS

ALS Test Batch ID: R284324 - Water by NWEPH

			LIN	IITS	ANALYSIS	ANALYSIS BY	
SPIKED COMPOUND	METHOD	%REC	RPD QUAL	MIN	MAX	DATE	
>C8-C10 Aliphatics - BS	NWEPH	83.0		70	130	11/04/2016	EBS
>C8-C10 Aliphatics - BSD	NWEPH	93.0	11	70	130	11/04/2016	EBS
>C10-C12 Aliphatics - BS	NWEPH	91.0		70	130	11/04/2016	EBS
>C10-C12 Aliphatics - BSD	NWEPH	101	10	70	130	11/04/2016	EBS
>C12-C16 Aliphatics - BS	NWEPH	99.0		70	130	11/04/2016	EBS
>C12-C16 Aliphatics - BSD	NWEPH	110	11	70	130	11/04/2016	EBS
>C16-C21 Aliphatics - BS	NWEPH	103		70	130	11/04/2016	EBS
>C16-C21 Aliphatics - BSD	NWEPH	114	10	70	130	11/04/2016	EBS
>C21-C34 Aliphatics - BS	NWEPH	110		70	130	11/04/2016	EBS
>C21-C34 Aliphatics - BSD	NWEPH	123	11	70	130	11/04/2016	EBS

Page 10 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 PHONE 425-356-2600 FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

1/16/2017

C601

EV16100227

CLIENT.	
CLIENT CONTACT:	

CLIENT PROJECT:

The Riley Group, Inc. 17522 Bothell Way NE, Suite A Bothell, WA 98011 Jerry Sawetz 2012-107L DATE: ALS SDG#: WDOE ACCREDITATION:

1/16/2017 EV16100227 C601

LABORATORY CONTROL SAMPLE RESULTS

ALS Test Batch ID: R284325 - Water by NWEPH

					LIN	LIMITS		ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD (QUAL	MIN	MAX	DATE	
>C8-C10 Aromatics - BS	NWEPH	74.0			70	130	11/03/2016	EBS
>C8-C10 Aromatics - BSD	NWEPH	82.0	10		70	130	11/03/2016	EBS
>C10-C12 Aromatics - BS	NWEPH	78.0			70	130	11/03/2016	EBS
>C10-C12 Aromatics - BSD	NWEPH	95.0	20		70	130	11/03/2016	EBS
>C12-C16 Aromatics - BS	NWEPH	82.0			70	130	11/03/2016	EBS
>C12-C16 Aromatics - BSD	NWEPH	104	24		70	130	11/03/2016	EBS
>C16-C21 Aromatics - BS	NWEPH	82.0			70	130	11/03/2016	EBS
>C16-C21 Aromatics - BSD	NWEPH	105	25		70	130	11/03/2016	EBS
>C21-C34 Aromatics - BS	NWEPH	74.0			70	130	11/03/2016	EBS
>C21-C34 Aromatics - BSD	NWEPH	95.0	25		70	130	11/03/2016	EBS

ALS Test Batch ID: 109449 - Water by EPA-8260

	-		LIN	IITS	ANALYSIS	ANALYSIS BY	
SPIKED COMPOUND	METHOD	%REC	RPD QUAL	MIN	MAX	DATE	
1,1-Dichloroethene - BS	EPA-8260	104		72.5	136	10/31/2016	DLC
1,1-Dichloroethene - BSD	EPA-8260	99.3	4	72.5	136	10/31/2016	DLC
Benzene - BS	EPA-8260	109		74.7	143	10/31/2016	DLC
Benzene - BSD	EPA-8260	105	4	74.7	143	10/31/2016	DLC
Trichloroethene - BS	EPA-8260	117		74.4	141	10/31/2016	DLC
Trichloroethene - BSD	EPA-8260	113	4	74.4	141	10/31/2016	DLC
Toluene - BS	EPA-8260	109		71.7	139	10/31/2016	DLC
Toluene - BSD	EPA-8260	106	3	71.7	139	10/31/2016	DLC

APPROVED BY

Laboratory Director

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

Page 11

www.alsglobal.com

ALS Environmental 8620 Holly Drive, Suite 100 Everett, WA 98208 Phone (425) 356-2600 Fax (425) 356-2626 http://www.alsglobal.com

Chain Of Custody/ Laboratory Analysis Request

ALS Job# (Laboratory Use Only)

*

22 EV16100227

(ALS) http://www	v.alsglobal.co	om															Date	10	28	2/16	Page	e	1		Of		
PROJECT ID: 2012-	- 107			·	AN	ALY	SIS	REQ	UES	STEC)		,							OT	HER	(Spe	ecify	/)		 	
REPORT TO THE RILL	A GW	mp								ĺ	Ŧ				Σ				□sq								
MANAGER: JEM	Samet	<u> </u>									ele				270 S	<u>16</u>	IAL		Hel								
ADDRESS: 17522 1304	thell i	Nay N	<u>je</u>					8260	8260	ŀ	Š			8270	EPA 82	EPA 8(Pest	51							ج.
Bothell 1	NA	201	1					y EPA	y EPA		A 8260	(y EPA	AH) by	les by	Pri Pc										TION
PHONE (425) 415-0551	FAX:	425) 41	5-0311					STEX b	ATBE t	8260	by EP/	(water		iq spur) suo	esticio			emi-V	A						ERS	IONO
P.O. #: INVOICE TO	E-MAIL:) S	querze	y wy gr	aystore				w	~	by EP¢	spuno	SO SIM	30 (soil	odmo	drocart		RRA-		S	/						ITAIN	ÖQC
COMPANY:	<u> </u>							10	021	atiles	Comp	PA 82(PA 82(Janic C	atic Hy	22		becify)	VOA	-1						Ő	1 GO(
ADDRESS:					导	×	XE	EPA 8(EPA 8	ted Vo	rganic	C by E	C by E	tile Org	Aroma	PA 80(TCA-5	her (S	tals	No.						П ОН	ED
			r	T	Hat	TPH-	TPH-(X by	BE by	ogena	atile O	3/8	<u>ار</u>	nivolat	/cyclic	3 by E	als-M	als Ot	P-Me	1 D						MBE	CEIV
SAMPLE I.D.	DATE	TIME	TYPE	LAB#	Ž	Ž	ŇN	BTE	Ψ	Haj	No No	ä	Ä	Sen	Pol	Ğ	Met	Met	101	E						Z	Ë
1. MW-6	10/28/16	1115	water	1		X	X				Х									χ						 8	
2. RW-1		1230		2		X	Х				Х									Х						8	
3. RW-Z	\downarrow	1325	\checkmark	3		X	X				X									Х						8	
4.																											
5.																											
6.																											
7.																											
8.																											
9.																											
10.																											

SPECIAL INSTRUCTIONS

SIGNATURES (Name, Company, Date, Time): 1. Relinquished By:	TURNAROUND REQ Organic, Metals & Inorganic Analysis 10 5 3 2 1 SAME Fuels & Hydrocarbon Analysis 5 3 1 SAME	UESTED in Business Days* OTHER: Specify:
Received By:	Stanoard	· · · · · · · · · · · · · · · · · · ·

*Turnaround request less than standard may incur Rush Charges

September 9, 2016

Mr. Jerry Sawetz The Riley Group, Inc. 17522 Bothell Way NE, Suite A Bothell, WA 98011

Dear Mr. Sawetz,

On August 31st, 4 samples were received by our laboratory and assigned our laboratory project number EV16080179. The project was identified as your 2012-107L. The sample identification and requested analyses are outlined on the attached chain of custody record.

No abnormalities or nonconformances were observed during the analyses of the project samples.

Please do not hesitate to call me if you have any questions or if I can be of further assistance.

Sincerely,

ALS Laboratory Group

Bagun

Rick Bagan Laboratory Director

Page 1
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

CLIENT:	The Riley Group, Inc. 17522 Bothell Way NE, Suite A Bothell, WA 98011			DATE: 9/9/2016 ALS JOB#: EV1608017 ALS SAMPLE#: EV1608017			
CLIENT CONTACT:	Jerry Sawetz		D	ATE RECEIVED:	08/31/20)16	
CLIENT PROJECT:	2012-107L		COL	LECTION DATE:	8/29/201	6 1:54:00 P	'M
CLIENT SAMPLE ID	MW-5		WDOE AC	CCREDITATION:	C601		
		SAMPLE	DATA RESULTS				
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS / DATE	ANALYSIS BY
TPH-Volatile Range	NWTPH-GX	U	50	1	UG/L	08/31/2016	PAB
C5-C6 Aliphatics	NWVPH	U	50	1	UG/L	09/01/2016	PAB
>C6-C8 Aliphatics	NWVPH	U	50	1	UG/L	09/01/2016	PAB
>C8-C10 Aliphatics	NWVPH	U	50	1	UG/L	09/01/2016	PAB
>C8-C10 Aromatics	NWVPH	U	50	1	UG/L	09/01/2016	PAB
Hexane	NWVPH	U	2.0	1	UG/L	09/01/2016	PAB
TPH-Diesel Range	NWTPH-DX	U	130	1	UG/L	09/01/2016	DLC
TPH-Oil Range	NWTPH-DX	U	250	1	UG/L	09/01/2016	DLC
>C10-C12 Aliphatics	NWEPH	U	50	1	UG/L	09/08/2016	DLC
>C12-C16 Aliphatics	NWEPH	U	50	1	UG/L	09/08/2016	DLC
>C16-C21 Aliphatics	NWEPH	U	50	1	UG/L	09/08/2016	DLC
>C21-C34 Aliphatics	NWEPH	U	50	1	UG/L	09/08/2016	DLC
>C10-C12 Aromatics	NWEPH	U	50	1	UG/L	09/08/2016	DLC
>C12-C16 Aromatics	NWEPH	U	50	1	UG/L	09/08/2016	DLC
>C16-C21 Aromatics	NWEPH	U	50	1	UG/L	09/08/2016	DLC
>C21-C34 Aromatics	NWEPH	U	50	1	UG/L	09/08/2016	DLC
Vinyl Chloride	EPA-8260	U	0.20	1	UG/L	09/02/2016	DLC
1,1-Dichloroethene	EPA-8260	U	2.0	1	UG/L	09/02/2016	DLC
I rans-1,2-Dichloroethene	EPA-8260	U	2.0	1	UG/L	09/02/2016	DLC
Cis-1,2-Dichloroethene	EPA-8260	U	2.0	1	UG/L	09/02/2016	DLC
Benzene	EPA-8260	U	2.0	1	UG/L	09/02/2016	DLC
	EPA-8260	U	2.0	1	UG/L	09/02/2016	DLC
	EPA-8260	U	2.0	1	UG/L	09/02/2016	DLC
	EPA-8260	U	2.0	1	UG/L	09/02/2016	DLC
	EPA-8260	U	2.0	1	UG/L	09/02/2016	DLC
n,p-xylene	EPA-8260	U	4.0	1	UG/L	09/02/2016	
	LF A-0200	0	2.0	1	00/L	09/02/2010	
SUBBOOME	METHOD	W REC				ANALYSIS / DATE	ANALYSIS BY
		%REC				00/04/0040	DAD
IFI	NW IPH-GX	93.1				08/31/2016	PAB
TFT Anomatic		84.4				09/01/2016	
		04. I 70.0				09/01/2016	
		19.9 Q6.2				09/01/2010	
025		90.2 03.8				09/01/2010	
n Tornhonyl		33.0 73.0				00/08/2016	
1 2-Dichloroethana d4		112				09/02/2010	
	EFA-0200	927				09/02/2010	
	LI A-0200	D oo	e 2			00/02/2010	DLO

Page 2

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

	CERTIFICA	TE OF ANALYSIS	
CLIENT:	The Riley Group, Inc. 17522 Bothell Way NE, Suite A Bothell, WA 98011	DATE: ALS JOB#: ALS SAMPLE#:	9/9/2016 EV16080179 EV16080179-01
CLIENT CONTACT: CLIENT PROJECT: CLIENT SAMPLE ID	Jerry Sawetz 2012-107L MW-5	DATE RECEIVED: COLLECTION DATE: WDOE ACCREDITATION:	08/31/2016 8/29/2016 1:54:00 PM C601
	SAMPLE	DATA RESULTS	
SURROGATE	METHOD %REC		ANALYSIS ANALYSIS DATE BY

Page 3
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

		CERTIFIC	ATE OF ANALYSIS				
CLIENT: CLIENT CONTACT:	The Riley Group, Inc. 17522 Bothell Way NE, Suite A Bothell, WA 98011 Jerry Sawetz		DA	DATE: ALS JOB#: ALS SAMPLE#: ATE RECEIVED:	9/9/2016 EV16080179 EV16080179-02 08/31/2016		
CLIENT PROJECT:	2012-107L		COLI	LECTION DATE:	8/29/201	6 2:46:00 P	М
CLIENT SAMPLE ID	MW-6		WDOE AC	CREDITATION:	C601		
		SAMPLE	E DATA RESULTS				
ANALYTE		RESULTS	50	1	UNITS	09/21/2016	
		U	50	1		00/01/2016	
Co-Co Aliphatics		U	50	1	UG/L	09/01/2016	
>C6-C8 Aliphatics		U	50	1	UG/L	09/01/2016	
>C8-C10 Aliphatics		U	50	1	UG/L	09/01/2016	
>C8-C10 Aromatics	NVV VPH	U	50	1	UG/L	09/01/2016	PAB
Hexane		U	2.0	1	UG/L	09/01/2016	PAB
		U	130	1	UG/L	09/01/2016	DLC
PH-OII Range		U	250	1	UG/L	09/01/2016	DLC
>C10-C12 Aliphatics	NVVEPH	U	50	1	UG/L	09/08/2016	DLC
>C12-C16 Aliphatics	NVVEPH	U	50	1	UG/L	09/08/2016	DLC
>C16-C21 Aliphatics	NVVEPH	U	50	1	UG/L	09/08/2016	DLC
>C21-C34 Aliphatics	NWEPH	U	50	1	UG/L	09/08/2016	DLC
>C10-C12 Aromatics	NVVEPH	U	50	1	UG/L	09/08/2016	DLC
>C12-C16 Aromatics	NWEPH	U	50	1	UG/L	09/08/2016	DLC
>C16-C21 Aromatics	NWEPH	U	50	1	UG/L	09/08/2016	DLC
>C21-C34 Aromatics	NWEPH	U	50	1	UG/L	09/08/2016	DLC
Vinyl Chloride	EPA-8260	U	0.20	1	UG/L	09/02/2016	DLC
1,1-Dichloroethene	EPA-8260	U	2.0	1	UG/L	09/02/2016	DLC
Trans-1,2-Dichloroethene	EPA-8260	U	2.0	1	UG/L	09/02/2016	DLC
Cis-1,2-Dichloroethene	EPA-8260	U	2.0	1	UG/L	09/02/2016	DLC
Benzene	EPA-8260	U	2.0	1	UG/L	09/02/2016	DLC
Trichloroethene	EPA-8260	U	2.0	1	UG/L	09/02/2016	DLC
Toluene	EPA-8260	U	2.0	1	UG/L	09/02/2016	DLC
Tetrachloroethylene	EPA-8260	U	2.0	1	UG/L	09/02/2016	DLC
Ethylbenzene	EPA-8260	U	2.0	1	UG/L	09/02/2016	DLC
m,p-Xylene	EPA-8260	U	4.0	1	UG/L	09/02/2016	DLC
o-Xylene	EPA-8260	U	2.0	1	UG/L	09/02/2016	DLC
SURROGATE	METHOD	%REC				DATE	Bĭ
TFT	NWTPH-GX	97.6				08/31/2016	PAB
TFT - Aliphatic	NWVPH	76.0				09/01/2016	PAB
TFT - Aromatic	NWVPH	83.5				09/01/2016	PAB
TFT - Hexane	NWVPH	79.2				09/01/2016	PAB
C25	NWTPH-DX	97.9				09/01/2016	DLC
C25	NWEPH	96.0				09/08/2016	DLC
p-Terphenyl	NWEPH	78.9				09/08/2016	DLC
1,2-Dichloroethane-d4	EPA-8260	105				09/02/2016	DLC
Toluene-d8	EPA-8260	98.8				09/02/2016	DLC

Page 4

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

	CERTIFIC	ATE OF ANALYSIS	
CLIENT:	The Riley Group, Inc. 17522 Bothell Way NE, Suite A Bothell, WA 98011	DATE: ALS JOB#: ALS SAMPLE#:	9/9/2016 EV16080179 EV16080179-02
CLIENT CONTACT:	Jerry Sawetz	DATE RECEIVED:	08/31/2016
CLIENT PROJECT:	2012-107L	COLLECTION DATE:	8/29/2016 2:46:00 PM
CLIENT SAMPLE ID	MW-6	WDOE ACCREDITATION:	C601
	SAMPLE	DATA RESULTS	

Page 5
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

		CERTIFIC	CATE OF ANALYSIS				
CLIENT: CLIENT CONTACT: CLIENT PROJECT: CLIENT SAMPLE ID	The Riley Group, Inc. 17522 Bothell Way NE, Suite A Bothell, WA 98011 Jerry Sawetz 2012-107L		D. COL WDOE AG	DATE: ALS JOB#: ALS SAMPLE#: DATE RECEIVED: COLLECTION DATE:		9/9/2016 EV16080179 EV16080179-03 08/31/2016 8/30/2016 3:30:00 PM C601	
	<u> </u>	SAMPL	E DATA RESULTS				
			PEPOPTING				
ANALYTE		RESULTS	LIMITS	FACTOR	UNITS	DATE	BY
C5-C6 Aliphatics	NWVPH	U	50	1	UG/I	09/01/2016	PAB
>C6-C8 Aliphatics	NWVPH	U U	50	1	UG/L	09/01/2016	PAR
>C8-C10 Aliphatics	NWVPH	U U	50	1	UG/L	09/01/2016	PAR
>C8-C10 Aromatics	NWVPH	U U	50	1		09/01/2016	PAR
Hexane	NWVPH	U U	2.0	1		09/01/2016	PAR
TPH-Diesel Range		500 *	130	1		09/01/2016	
TPH-Oil Range			250	1		09/01/2016	
>C10-C12 Aliphatics	NWEPH	U U	50	1		09/08/2016	
>C12-C16 Aliphatics	NWEPH	U	50	1		09/08/2016	
>C16-C21 Aliphatics	NWEPH	U	50	1		09/08/2016	
>C21 C24 Aliphatics		U	50	1		09/08/2016	DLC
>C10-C12 Aromatics	NWEPH	U	50	1		09/08/2016	
>C12-C16 Aromatics	NWEPH	U	50	1		09/08/2016	
>C16-C21 Aromatics	NWEPH	U	50	1		09/08/2016	
>C21-C31 Aromatics	NWEPH	U	50	1		09/08/2016	
Vipul Chlorido		U	0.20	1		09/02/2016	DLC
1 1 Dichloroothono	EPA 8260	U	2.0	1		09/02/2016	DLC
Trans 1.2 Disbloresthans	EPA-0200	U	2.0	1		09/02/2016	DLC
	EPA-0200	U	2.0	1		09/02/2016	DLC
CIS-1,2-Dichloroethene	EPA-8260	U	2.0	1	UG/L	09/02/2016	DLC
	EPA-8260	U	2.0	1	UG/L	09/02/2016	DLC
Trichloroethene	EPA-8260	U	2.0	1	UG/L	09/02/2016	DLC
	EPA-8260	U	2.0	1	UG/L	09/02/2016	DLC
	EPA-8260	U	2.0	1	UG/L	09/02/2016	DLC
Ethylbenzene	EPA-8260	U	2.0	1	UG/L	09/02/2016	DLC
m,p-xyiene	EPA-8260	U	4.0	1	UG/L	09/02/2016	DLC
o-Xylene	EPA-8260	U	2.0	1	UG/L	09/02/2016	DLC
						ANALYSIS	ANALYSIS
SURROGATE	METHOD	%REC				DATE	BY
TFT	NWTPH-GX	90.8				08/31/2016	PAB
TFT - Aliphatic	NWVPH	75.6				09/01/2016	PAB
TFT - Aromatic	NWVPH	80.8				09/01/2016	PAB
TFT - Hexane	NWVPH	80.0				09/01/2016	PAB
C25	NWTPH-DX	101				09/01/2016	DLC
C25	NWEPH	93.1				09/08/2016	DLC
p-Terphenyl	NWEPH	80.9				09/08/2016	DLC
1,2-Dichloroethane-d4	EPA-8260	109				09/02/2016	DLC
Toluene-d8	EPA-8260	98.6				09/02/2016	DLC

Page 6

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

	CERTIFICATE OF ANALYSIS								
CLIENT:	The Riley Group, Inc. 17522 Bothell Way NE, Suite A Bothell, WA 98011	DATE: ALS JOB#: ALS SAMPLE#:	9/9/2016 EV16080179 EV16080179-03						
CLIENT CONTACT:	Jerry Sawetz	DATE RECEIVED:	08/31/2016						
CLIENT PROJECT:	2012-107L	COLLECTION DATE:	8/30/2016 3:30:00 PM						
CLIENT SAMPLE ID	RW-2	WDOE ACCREDITATION:	C601						
	SAMPLE D	ATA RESULTS							

Chromatogram indicates that it is likely that sample contains a diesel range product that is likely biased high due to biogenic interference.

Page 7
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

		CERTIFIC	CATE OF ANALYSIS				
CLIENT: CLIENT CONTACT: CLIENT PROJECT: CLIENT SAMPLE ID	The Riley Group, Ir 17522 Bothell Way Bothell, WA 98011 Jerry Sawetz 2012-107L RW-1	nc. 7 NE, Suite A	D COL WDOE AG	DATE: ALS JOB#: ALS SAMPLE#: ATE RECEIVED: LECTION DATE: CCREDITATION:	9/9/2016 EV1608 EV1608 08/31/20 8/30/201 C601	6 0179 0179-04 016 16 4:06:00 P	'M
		SAMPL	E DATA RESULTS				
ANALYTE TPH-Volatile Range	METHOD NWTPH-GX	RESULTS U	LIMITS 50	FACTOR 1	UNITS UG/L	08/31/2016	ANALYSIS BY PAB
C5-C6 Aliphatics	NWVPH NWVPH	UU	50 50	1 1	UG/L UG/L	09/01/2016 09/01/2016	PAB PAB
>C8-C10 Aliphatics	NWVPH	U	50 50	1	UG/L	09/01/2016	PAB
Hexane TPH-Diesel Range	NWVPH NWTPH-DX	U 700 *	2.0 130	1	UG/L UG/L	09/01/2016 09/01/2016	PAB
TPH-Oil Range >C10-C12 Aliphatics	NWTPH-DX NWEPH	U U	250 50	1 1	UG/L UG/L	09/01/2016 09/08/2016	DLC DLC
>C12-C16 Aliphatics >C16-C21 Aliphatics	NWEPH NWEPH	U U	50 50	1 1	UG/L UG/L	09/08/2016 09/08/2016	DLC DLC
>C21-C34 Aliphatics >C10-C12 Aromatics	NWEPH NWEPH	U U	50 50	1 1	UG/L UG/L	09/08/2016 09/08/2016	DLC DLC
>C12-C16 Aromatics >C16-C21 Aromatics	NWEPH NWEPH	UUU	50 50	1	UG/L UG/L	09/08/2016 09/08/2016	DLC
>C21-C34 Aromatics Vinyl Chloride	NWEPH EPA-8260	UU	50 0.20	1	UG/L UG/L	09/08/2016 09/02/2016	
1,1-Dichloroethene Trans-1,2-Dichloroethene	EPA-8260 EPA-8260	U	2.0	1	UG/L UG/L	09/02/2016	DLC
Benzene	EPA-8260 EPA-8260	U	2.0	1	UG/L UG/L	09/02/2016	DLC
Trichloroethene Toluene	EPA-8260 EPA-8260	U	2.0	1	UG/L UG/L	09/02/2016	
Ethylbenzene	EPA-8260 EPA-8260	U	2.0	1	UG/L	09/02/2016	
o-Xylene	EPA-8260	U	2.0	1	UG/L	09/02/2016	DLC
SURROGATE	METHOD	%REC				ANALYSIS / DATE	ANALYSIS By
TFT TFT - Aliphatic	NWTPH-GX NWVPH	92.2 79.3				08/31/2016 09/01/2016	PAB PAB
TFT - Aromatic TFT - Hexane	NWVPH NWVPH	85.8 82.3				09/01/2016 09/01/2016	PAB PAB
C25 C25	NWTPH-DX NWEPH	78.3 74.2				09/01/2016 09/08/2016	DLC DLC
p-Terphenyl 1,2-Dichloroethane-d4	NWEPH EPA-8260	80.7 114				09/08/2016 09/02/2016	DLC DLC
I oluene-d8	EPA-8260	97.7				09/02/2016	DLC

Page 8

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

	CERTIFIC	ATE OF ANALYSIS	
CLIENT:	The Riley Group, Inc. 17522 Bothell Way NE, Suite A Bothell, WA 98011	DATE: ALS JOB#: ALS SAMPLE#:	9/9/2016 EV16080179 EV16080179-04
CLIENT CONTACT:	Jerry Sawetz	DATE RECEIVED:	08/31/2016
CLIENT PROJECT:	2012-107L	COLLECTION DATE:	8/30/2016 4:06:00 PM
CLIENT SAMPLE ID	RW-1	WDOE ACCREDITATION:	C601
	SAMPLE	DATA RESULTS	

Chromatogram indicates that it is likely that sample contains a diesel range product that is likely biased high due to biogenic interference.

Page 9
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

CLIENT:	The Riley Group, Inc.	DATE:	9/9/2016
	17522 Bothell Way NE, Suite A	ALS SDG#:	EV16080179
	Bothell, WA 98011	WDOE ACCREDITATION:	C601
CLIENT CONTACT:	Jerry Sawetz		
CLIENT PROJECT:	2012-107L		

LABORATORY BLANK RESULTS

MBG-082916W2 - Batch 107568 - Water by NWTPH-GX

				REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	UNITS	LIMITS	DATE	BY
TPH-Volatile Range	NWTPH-GX	U	UG/L	50	08/29/2016	PAB

U - Analyte analyzed for but not detected at level above reporting limit.

MBLK-281118 - Batch R281118 - Water by NWVPH

	METHOD			REPORTING		
				LIMITS	00/01/2016	
		0		50	09/01/2010	
> C0 C10 Aliphatics		0	UG/L	50	09/01/2010	
>C8-C10 Aliphatics		U	UG/L	50	09/01/2016	PAD
>C8-C10 Aromatics	NWVPH	0	UG/L	50	09/01/2016	PAB
Hexane	NWVPH	U	UG/L	2.0	09/01/2016	PAB

U - Analyte analyzed for but not detected at level above reporting limit.

MB-083116W - Batch 107629 - Water by NWTPH-DX

				REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	UNITS	LIMITS	DATE	BY
TPH-Diesel Range	NWTPH-DX	U	UG/L	130	08/31/2016	DLC
TPH-Oil Range	NWTPH-DX	U	UG/L	250	08/31/2016	DLC

U - Analyte analyzed for but not detected at level above reporting limit.

MBLK-281119 - Batch R281119 - Water by NWEPH

ANALYTE	METHOD	RESULTS	UNITS	REPORTING LIMITS	ANALYSIS DATE	ANALYSIS BY	
>C10-C12 Aliphatics	NWEPH	U	UG/L	50	09/08/2016	DLC	
>C12-C16 Aliphatics	NWEPH	U	UG/L	50	09/08/2016	DLC	
>C16-C21 Aliphatics	NWEPH	U	UG/L	50	09/08/2016	DLC	
>C21-C34 Aliphatics	NWEPH	U	UG/L	50	09/08/2016	DLC	
>C10-C12 Aromatics	NWEPH	U	UG/L	50	09/08/2016	DLC	
>C12-C16 Aromatics	NWEPH	U	UG/L	50	09/08/2016	DLC	
>C16-C21 Aromatics	NWEPH	U	UG/L	50	09/08/2016	DLC	
>C21-C34 Aromatics	NWEPH	U	UG/L	50	09/08/2016	DLC	

U - Analyte analyzed for but not detected at level above reporting limit.

MB-090216W - Batch 107708 - Water by EPA-8260

				REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	UNITS	LIMITS	DATE	BY
Vinyl Chloride	EPA-8260	U	UG/L	0.20	09/02/2016	DLC
1,1-Dichloroethene	EPA-8260	U	UG/L	2.0	09/02/2016	DLC

Page 10

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

LIENT CONTACT:	17522 Bothell Way NE, Suite A Bothell, WA 98011 Jerry Sawetz 2012-107L	ALS SDG#: WDOE ACCREDITATION:	EV16080179 C601
LIENT:	The Riley Group, Inc.	DATE:	9/9/2016
	LIENT: LIENT CONTACT:	LIENT: The Riley Group, Inc. 17522 Bothell Way NE, Suite A Bothell, WA 98011 LIENT CONTACT: Jerry Sawetz JENT PROJECT: 2012-1071	LIENT: The Riley Group, Inc. DATE: 17522 Bothell Way NE, Suite A ALS SDG#: Bothell, WA 98011 WDOE ACCREDITATION: LIENT CONTACT: Jerry Sawetz JENT PROJECT: 2012-1071

LABORATORY BLANK RESULTS

MB-090216W - Batch 107708 -	- Water by EP	A-8260				
Trans-1,2-Dichloroethene	EPA-8260	U	UG/L	2.0	09/02/2016	DLC
Cis-1,2-Dichloroethene	EPA-8260	U	UG/L	2.0	09/02/2016	DLC
Benzene	EPA-8260	U	UG/L	2.0	09/02/2016	DLC
Trichloroethene	EPA-8260	U	UG/L	2.0	09/02/2016	DLC
Toluene	EPA-8260	U	UG/L	2.0	09/02/2016	DLC
Tetrachloroethylene	EPA-8260	U	UG/L	2.0	09/02/2016	DLC
Ethylbenzene	EPA-8260	U	UG/L	2.0	09/02/2016	DLC
m,p-Xylene	EPA-8260	U	UG/L	4.0	09/02/2016	DLC
o-Xylene	EPA-8260	U	UG/L	2.0	09/02/2016	DLC

U - Analyte analyzed for but not detected at level above reporting limit.

Page 11
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

DATE:

9/9/2016

C601

EV16080179

CLIENT:	The Riley Group, Inc.	DATE:
	17522 Bothell Way NE, Suite A	ALS SDG#:
	Bothell, WA 98011	WDOE ACCREDITATION:
CLIENT CONTACT:	Jerry Sawetz	
CLIENT PROJECT:	2012-107L	

LABORATORY CONTROL SAMPLE RESULTS

ALS Test Batch ID: 107568 - Water by NWTPH-GX

					LIN	NITS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	MIN	MAX	DATE	
TPH-Volatile Range - BS	NWTPH-GX	97.1			66.5	122.7	08/29/2016	PAB
TPH-Volatile Range - BSD	NWTPH-GX	95.5	2		66.5	122.7	08/29/2016	PAB

ALS Test Batch ID: R281118 - Water by NWVPH

				LIMITS		ANALYSIS	ANALYSIS BY	
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	MIN	MAX	DATE	
C5-C6 Aliphatics - BS	NWVPH	93.1			70	130	09/01/2016	PAB
C5-C6 Aliphatics - BSD	NWVPH	92.1	1		70	130	09/01/2016	PAB
>C6-C8 Aliphatics - BS	NWVPH	102			70	130	09/01/2016	PAB
>C6-C8 Aliphatics - BSD	NWVPH	100	1		70	130	09/01/2016	PAB
>C8-C10 Aliphatics - BS	NWVPH	104			70	130	09/01/2016	PAB
>C8-C10 Aliphatics - BSD	NWVPH	104	1		70	130	09/01/2016	PAB
>C8-C10 Aromatics - BS	NWVPH	98.9			70	130	09/01/2016	PAB
>C8-C10 Aromatics - BSD	NWVPH	100	1		70	130	09/01/2016	PAB
Hexane - BS	NWVPH	94.3			70	130	09/01/2016	PAB
Hexane - BSD	NWVPH	94.6	0		70	130	09/01/2016	PAB

ALS Test Batch ID: 107629 - Water by NWTPH-DX

				LIN	IITS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD QUAL	MIN	MAX	DATE	
TPH-Diesel Range - BS	NWTPH-DX	94.2		67	125.2	08/31/2016	DLC
TPH-Diesel Range - BSD	NWTPH-DX	98.2	4	67	125.2	08/31/2016	DLC

ALS Test Batch ID: R281119 - Water by NWEPH

	· · · · · ,	-		LIMITS		ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD QUAL	MIN	MAX	DATE	
>C10-C12 Aliphatics - BS	NWEPH	79.5		70	130	09/08/2016	DLC
>C10-C12 Aliphatics - BSD	NWEPH	87.1	9	70	130	09/08/2016	DLC
>C12-C16 Aliphatics - BS	NWEPH	90.1		70	130	09/08/2016	DLC
>C12-C16 Aliphatics - BSD	NWEPH	95.8	6	70	130	09/08/2016	DLC
>C16-C21 Aliphatics - BS	NWEPH	90.9		70	130	09/08/2016	DLC
>C16-C21 Aliphatics - BSD	NWEPH	96.5	6	70	130	09/08/2016	DLC
>C21-C34 Aliphatics - BS	NWEPH	73.8		70	130	09/08/2016	DLC
>C21-C34 Aliphatics - BSD	NWEPH	82.2	11	70	130	09/08/2016	DLC
>C10-C12 Aromatics - BS	NWEPH	77.0		70	130	09/08/2016	DLC
>C10-C12 Aromatics - BSD	NWEPH	76.7	0	70	130	09/08/2016	DLC
>C12-C16 Aromatics - BS	NWEPH	79.5		70	130	09/08/2016	DLC
>C12-C16 Aromatics - BSD	NWEPH	80.7	2	70	130	09/08/2016	DLC
>C16-C21 Aromatics - BS	NWEPH	80.4		70	130	09/08/2016	DLC

Page 12

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 PHONE 425-356-2600 FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

CLIENT: The Riley Group, Inc. 17522 Bothell Way NE, Suite A Bothell, WA 98011 CLIENT CONTACT: Jerry Sawetz CLIENT PROJECT: 2012-107L

DATE: 9/9/20 ALS SDG#: EV16 WDOE ACCREDITATION: C601

9/9/2016 EV16080179 C601

	LAB	ORATO	RYC	CONTROL SA	MPLE RESULT	S		
					LIM	IITS	ANALYSIS	ANALYSIS B
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	MIN	MAX	DATE	
>C16-C21 Aromatics - BSD	NWEPH	82.0	2		70	130	09/08/2016	DLC
>C21-C34 Aromatics - BS	NWEPH	70.9			70	130	09/08/2016	DLC
>C21-C34 Aromatics - BSD	NWEPH	73.0	3		70	130	09/08/2016	DLC

ALS Test Batch ID: 107708 - Water by EPA-8260

					LIN	IITS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	MIN	MAX	DATE	
1,1-Dichloroethene - BS	EPA-8260	116			72.5	136	09/02/2016	DLC
1,1-Dichloroethene - BSD	EPA-8260	120	3		72.5	136	09/02/2016	DLC
Benzene - BS	EPA-8260	108			74.7	143	09/02/2016	DLC
Benzene - BSD	EPA-8260	115	6		74.7	143	09/02/2016	DLC
Trichloroethene - BS	EPA-8260	106			74.4	141	09/02/2016	DLC
Trichloroethene - BSD	EPA-8260	112	5		74.4	141	09/02/2016	DLC
Toluene - BS	EPA-8260	95.3			71.7	139	09/02/2016	DLC
Toluene - BSD	EPA-8260	101	5		71.7	139	09/02/2016	DLC

APPROVED BY

Laboratory Director

Page 13 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

A	als 862
	Eve Ph
ALS	Fax

Environmental 20 Holly Drive, Suite 100 erett, WA 98208 one (425) 356-2600 (425) 356-2626 http://www.alsglobal.com

Chain Of Custody/ Laboratory Analysis Request

ALS Job# (Laboratory Use Only)

EV16080179

(ALS) Fax (425) 356-2626 http://www.alsglobal.com													Date	8	19	16	Page _		1	Of	1		
2012-1071	AN	JALY	'SIS	REC	QUES	STE	5									ОТ	HER (S	pec	ify)			<u> </u>	
PROJECT ID: 2012 1042 REPORT TO COMPANY: THE Riley Group PROJECT MANAGER: Jerry Sawetz ADDRESS: 17522 Bothell Way NE Bothell, WA 98011 PHONE 425)415-0551 FAX: (425)415-0311 PRO. #: E-MAIL: JSawetz Griley-group.co COMPANY: ATTENTION: ADDRESS:	H-HCID	XQ-Hc	H-GX	by EPA 8021 BTEX by EPA 8260	E by EPA 8021	jenated Volatiles by EPA 8260	le Organic Compounds by EPA 8260 (SEVEC+)	/ EDC by EPA 8260 SIM (water)	/ EDC by EPA 8260 (soil)	volatile Organic Compounds by EPA 8270	yclic Aromatic Hydrocarbons (PAH) by EPA 8270 SIM	by EPA 8082 Besticides by EPA 8081	Is-MTCA-5 CRA-8 Pri Pol TAL	Is Other (Specify)	-Metals VOA Semi-Vol Pest Herbs	PH & VPH B						ABER OF CONTAINERS	SEIVED IN GOOD CONDITION?
SAMPLE I.D. DATE TIME TYPE LAB#	MM	M	NWT	BTEX	MTBI	Halo	Volat	EDB	EDB	Semi	Polyc	PCB	Meta	Meta	TOLF	μ						Ĩ2	REC
1. MW-5 8-29-16 1354 water 1		\times	ĮХ				Х									\times						8	
2. MW-6 8-29-16 1446 2		X	X			_	Х									\times						8	
3. RW-2 8-30-16 1530 3		X	X	<u></u>			\times									\times						8	
4. RW-1 8-30-16 1606 V 4		\times		(X									Х						8	
5.																						$ \rightarrow$	
6.																							
7.																		1					
8.																					_	\square	
9.																							
10.															1								

SPECIAL INSTRUCTIONS

SIGNATURES (Name, Company, Date, Time):	TURNAROUND	REQUESTED in Business Days*
and a crate RGT 8/31/16 400 am	Organic, Metals & Inorganic Analysis	OTHER:
1. Relinquished By: $former = 1, Res, Res = 1, $	5 3 2 1 AME DAY	Specify:
Received By: Charles M. Contant II. S. O. ST. B / 11. S. M. M.	Fuels & Hydrocarbon Analysis	
2. Relinquished By:	5 3 1 SAME DAY	
Received By:	Standard	*Turnaround request less than standard may incur Rush Charges

July 7, 2016

Mr. Jerry Sawetz The Riley Group, Inc. 17522 Bothell Way NE, Suite A Bothell, WA 98011

Dear Mr. Sawetz,

On June 27th, 2 samples were received by our laboratory and assigned our laboratory project number EV16060187. The project was identified as your None Given. The sample identification and requested analyses are outlined on the attached chain of custody record.

No abnormalities or nonconformances were observed during the analyses of the project samples.

Please do not hesitate to call me if you have any questions or if I can be of further assistance.

Sincerely,

ALS Laboratory Group

Bagun

Rick Bagan Laboratory Director

Page 1
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

ALS JOB#: EV16060187 Bothell, WA 98011 ALS SAMPLE#: EV16060187-01 CLIENT CONTACT: Jerry Sawetz DATE RECEIVED: 06/27/2016 CLIENT PROJECT: None Given COLLECTION DATE: 6/24/2016 12:12:00 PI CLIENT SAMPLE ID RW-1 WDOE ACCREDITATION: C601 KEPORTING DILUTION ANALYSIS AN AMALYTE METHOD RESULTS FACTOR UNITS DATE C5-C6 Aliphatics NWVPH U 50 1 UG/L 07/06/2016 >C6-C8 Aliphatics NWVPH U 50 1 UG/L 07/06/2016 >C8-C10 Aliphatics NWVPH U 50 1 UG/L 07/06/2016 >C8-C10 Aromatics NWVPH U 50 1 UG/L 07/06/2016 >C8-C10 Aromatics NWVPH U 50 1 UG/L 07/06/2016 >C8-C10 Aromatics NWVPH U 50 1 UG/L 07/06/2016 >C10-C12 Aliphatics NWEPH U 53 1 UG/L </th <th></th>	
CLIENT CONTACT: Jerry Sawetz DATE RECEIVED: 06/27/2016 CLIENT PROJECT: None Given COLLECTION DATE: 6/24/2016 12:12:00 Pl CLIENT SAMPLE ID RW-1 WDOE ACCREDITATION: C601 KEPORTING DILUTION ANALYSIS AN ANALYTE METHOD RESULTS DILUTION ANALYSIS AN C5-C6 Aliphatics NWVPH U 50 1 UG/L 07/06/2016 >C6-C8 Aliphatics NWVPH U 50 1 UG/L 07/06/2016 >C8-C10 Aliphatics NWVPH U 50 1 UG/L 07/06/2016 >C8-C10 Aromatics NWVPH U 50 1 UG/L 07/06/2016 >C8-C10 Aromatics NWVPH U 50 1 UG/L 07/06/2016 >C8-C10 Aliphatics NWVPH U 50 1 UG/L 07/06/2016 >C8-C10 Aromatics NWVPH U 50 1 UG/L 07/06/2016 >C8-C10 Aliphatics NWVPH U 50 1 UG/L 07/06/2016	
CLIENT CONTACT.Jerry SawetzDATE RECEIVED.06/21/2016CLIENT PROJECT:None GivenCOLLECTION DATE:6/24/2016 12:12:00 PlCLIENT SAMPLE IDRW-1WDOE ACCREDITATION:C601SAMPLE DATA RESULTSREPORTING DILUTION FACTORANALYSIS ANANALYTEMETHODRESULTSLIMITSPACTORC5-C6 AliphaticsNWVPHU501UG/L>C6-C8 AliphaticsNWVPHU501UG/L>C6-C10 AliphaticsNWVPHU501UG/L>C8-C10 AromaticsNWVPHU501UG/L>C8-C10 AromaticsNWVPHU501UG/L>C8-C10 AromaticsNWVPHU501UG/L>C10-C12 AliphaticsNWEPHU531UG/LOBNWEPHU531UG/LOBNWEPHU531UG/LOBNWEPHU531UG/L	
CLIENT FROSECT:None GivenWorld Control of 12.12.00 FTCLIENT SAMPLE IDRW-1WDOE ACCREDITATION:C601COLLECTION DATE:COLLECTION DATE:DATEUNITSDATECOLLECTION DATE:DATECOLLECTIONANALYSIS ANUNITSPACTORUNITSPACTORUNITSCOLLECTION DATE:COLLECTION DATE:COLLECTION DATE:COLLECTION DATE: <th>1</th>	1
CLIENT SAMPLE IDRW-1WDOE ACCREDITATION.COTSAMPLE DATA RESULTSANALYTEMETHODRESULTSLIMITSFACTORUNITSANALYSIS AN DATEC5-C6 AliphaticsNWVPHU501UG/L07/06/2016>C6-C8 AliphaticsNWVPHU501UG/L07/06/2016>C8-C10 AliphaticsNWVPHU501UG/L07/06/2016>C8-C10 AromaticsNWVPHU501UG/L07/06/2016>C8-C10 AromaticsNWVPHU501UG/L07/06/2016+exaneNWVPHU2.01UG/L07/06/2016>C10-C12 AliphaticsNWEPHU531UG/L06/29/2016	VI
SAMPLE DATA RESULTSANALYTEMETHODRESULTSDILUTIONANALYSIS AN DATEC5-C6 AliphaticsNWVPHU501UG/L07/06/2016>C6-C8 AliphaticsNWVPHU501UG/L07/06/2016>C8-C10 AliphaticsNWVPHU501UG/L07/06/2016>C8-C10 AromaticsNWVPHU501UG/L07/06/2016>C8-C10 AromaticsNWVPHU501UG/L07/06/2016+exaneNWVPHU2.01UG/L07/06/2016>C10-C12 AliphaticsNWEPHU531UG/L06/29/2016	
REPORTING LIMITSDILUTION FACTORANALYSIS UNITSAN DATEANALYTEMETHOD VOT6/2016RESULTSLIMITSFACTORUNITSDATEC5-C6 AliphaticsNWVPHU501UG/L07/06/2016>C6-C8 AliphaticsNWVPHU501UG/L07/06/2016>C8-C10 AliphaticsNWVPHU501UG/L07/06/2016>C8-C10 AromaticsNWVPHU501UG/L07/06/2016HexaneNWVPHU2.01UG/L07/06/2016>C10-C12 AliphaticsNWEPHU531UG/L06/29/2016	
ANALYTE METHOD RESULTS LIMITS PACTOR UNITS DATE C5-C6 Aliphatics NWVPH U 50 1 UG/L 07/06/2016 >C6-C8 Aliphatics NWVPH U 50 1 UG/L 07/06/2016 >C8-C10 Aliphatics NWVPH U 50 1 UG/L 07/06/2016 >C8-C10 Aromatics NWVPH U 50 1 UG/L 07/06/2016 +C8-C10 Aromatics NWVPH U 50 1 UG/L 07/06/2016 +Rexane NWVPH U 2.0 1 UG/L 07/06/2016 >C10-C12 Aliphatics NWEPH U 53 1 UG/L 06/29/2016	
C5-C6 Aliphatics NWVPH U 50 1 UG/L 07/06/2016 >C6-C8 Aliphatics NWVPH U 50 1 UG/L 07/06/2016 >C8-C10 Aliphatics NWVPH U 50 1 UG/L 07/06/2016 >C8-C10 Aromatics NWVPH U 50 1 UG/L 07/06/2016 >C8-C10 Aromatics NWVPH U 50 1 UG/L 07/06/2016 Hexane NWVPH U 2.0 1 UG/L 07/06/2016 >C10-C12 Aliphatics NWEPH U 53 1 UG/L 06/29/2016	ВТ
>C6-C8 Aliphatics NWVPH U 50 1 UG/L 07/06/2016 >C8-C10 Aliphatics NWVPH U 50 1 UG/L 07/06/2016 >C8-C10 Aromatics NWVPH U 50 1 UG/L 07/06/2016 +C8-C10 Aromatics NWVPH U 50 1 UG/L 07/06/2016 +Hexane NWVPH U 2.0 1 UG/L 07/06/2016 >C10-C12 Aliphatics NWEPH U 53 1 UG/L 06/29/2016	PAB
>C8-C10 Aliphatics NWVPH U 50 1 UG/L 07/06/2016 >C8-C10 Aromatics NWVPH U 50 1 UG/L 07/06/2016 Hexane NWVPH U 50 1 UG/L 07/06/2016 >C10-C12 Aliphatics NWEPH U 53 1 UG/L 06/2016	PAB
>C8-C10 Aromatics NW VPH U 50 1 UG/L 07/06/2016 Hexane NW VPH U 2.0 1 UG/L 07/06/2016 >C10-C12 Aliphatics NWEPH U 53 1 UG/L 06/29/2016	PAB
Hexane NWVPH U 2.0 1 UG/L 0//06/2016 >C10-C12 Aliphatics NWEPH U 53 1 UG/L 06/29/2016	PAB
>C10-C12 Aliphatics NWEPH U 53 1 UG/L 06/29/2016	PAB
	EBS
>C12-C16 Aliphatics NWEPH 130 53 1 UG/L 06/29/2016	EBS
>C16-C21 Aliphatics NWEPH 230 53 1 UG/L 06/29/2016	EBS
>C21-C34 Aliphatics NWEPH 82 53 1 UG/L 06/29/2016	EBS
>C10-C12 Aromatics NWEPH U 53 1 UG/L 06/29/2016	EBS
>C12-C16 Aromatics NWEPH U 53 1 UG/L 06/29/2016	EBS
>C16-C21 Aromatics NWEPH U 53 1 UG/L 06/29/2016	EBS
>C21-C34 Aromatics NWEPH U 53 1 UG/L 06/29/2016	EBS
Benzene EPA-8260 U 2.0 1 UG/L 07/05/2016	DLC
Toluene EPA-8260 U 2.0 1 UG/L 07/05/2016	DLC
Ethylbenzene EPA-8260 U 2.0 1 UG/L 07/05/2016	DLC
m,p-Xylene EPA-8260 U 4.0 1 UG/L 07/05/2016	DLC
o-Xylene EPA-8260 U 2.0 1 UG/L 07/05/2016	DLC
Naphthalene EPA-8270 SIM U 0.020 1 UG/L 07/05/2016	GAP
2-Methylnaphthalene EPA-8270 SIM U 0.020 1 UG/L 07/05/2016	GAP
1-Methylnaphthalene EPA-8270 SIM U 0.020 1 UG/L 07/05/2016	GAP
Benzo[A]Anthracene EPA-8270 SIM U 0.020 1 UG/L 07/05/2016	GAP
Chrysene EPA-8270 SIM U 0.020 1 UG/L 07/05/2016	GAP
Benzo[B]Fluoranthene EPA-8270 SIM U 0.020 1 UG/L 07/05/2016	GAP
Benzo[K]Fluoranthene EPA-8270 SIM U 0.020 1 UG/L 07/05/2016	GAP
Benzo[A]Pyrene EPA-8270 SIM U 0.020 1 UG/L 07/05/2016	GAP
Indeno[1,2,3-Cd]Pyrene EPA-8270 SIM U 0.020 1 UG/L 07/05/2016	GAP
Dibenz[A,H]Anthracene EPA-8270 SIM U 0.020 1 UG/L 07/05/2016	GAP
ANALYSIS AN	ALYSIS
SURROGATE METHOD %REC DATE	BY
TFT - Aliphatic NWVPH 102 07/06/2016	PAB
TFT - Aromatic NWVPH 113 07/06/2016	PAB
TFT - Hexane NWVPH 105 07/06/2016	PAB
C25 NWEPH 103 06/29/2016	EBS
p-Terphenyl NWEPH 89.2 06/29/2016	EBS
Toluene-d8 EPA-8260 99.3 07/05/2016	DLC
Terphenyl-d14 EPA-8270 SIM 111 07/05/2016	GAP

Page 2

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

CERTIFICATE OF ANALYSIS								
CLIENT:	The Riley Group, Inc. 17522 Bothell Way NE, Suite A Bothell, WA 98011	DATE: ALS JOB#: ALS SAMPLE#:	7/7/2016 EV16060187 EV16060187-01					
CLIENT CONTACT:	Jerry Sawetz	DATE RECEIVED:	06/27/2016					
CLIENT PROJECT:	None Given	COLLECTION DATE:	6/24/2016 12:12:00 PM					
CLIENT SAMPLE ID	RW-1	WDOE ACCREDITATION:	C601					
	SAMPLE	DATA RESULTS						

Page 3
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 PHONE 425-356-2600 FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

		CERTIFIC	ATE OF ANALYSIS					
CLIENT:	The Riley Group, Ir 17522 Bothell Way Bothell, WA 98011	nc. [,] NE, Suite A		DATE: ALS JOB#: ALS SAMPLE#:	7/7/2016 EV16060187 EV16060187-02			
CLIENT CONTACT:	Jerry Sawetz		D	ATE RECEIVED:	06/27/20	016		
CLIENT PROJECT:	None Given		COL	LECTION DATE:	6/24/2016 11:05:00 AM			
CLIENT SAMPLE ID	RW-2	V-2		CCREDITATION:	C601			
		SAMPLE	DATA RESULTS					
			REPORTING					
	METHOD		LIMITS	FACTOR		DATE	BY	
C5-C6 Aliphatics		RESULIS	50	1		07/06/2016	DAR	
>C6-C8 Aliphatics	NW/VPH	0	50	1		07/06/2016		
>C8-C10 Aliphatics	NW/VPH	0	50	1		07/06/2016		
> C9 C10 Aromatica		0	50	1		07/06/2016		
		0	50	1		07/06/2016		
		U	2.0	1	UG/L	07/06/2016	FAD	
>C10-C12 Aliphatics	NWEPH	U	58	1	UG/L	06/29/2016	EBS	
>C12-C16 Aliphatics	NWEPH	U	58	1	UG/L	06/29/2016	EBS	
>C16-C21 Aliphatics	NWEPH	U	58	1	UG/L	06/29/2016	EBS	
>C21-C34 Aliphatics	NWEPH	U	58	1	UG/L	06/29/2016	EBS	
>C10-C12 Aromatics	NWEPH	U	58	1	UG/L	06/29/2016	EBS	
>C12-C16 Aromatics	NWEPH	U	58	1	UG/L	06/29/2016	EBS	
>C16-C21 Aromatics	NWEPH	U	58	1	UG/L	06/29/2016	EBS	
>C21-C34 Aromatics	NWEPH	U	58	1	UG/L	06/29/2016	EBS	
Benzene	EPA-8260	U	2.0	1	UG/L	07/01/2016	DLC	
Toluene	EPA-8260	U	2.0	1	UG/L	07/01/2016	DLC	
Ethylbenzene	EPA-8260	U	2.0	1	UG/L	07/01/2016	DLC	
m,p-Xylene	EPA-8260	U	4.0	1	UG/L	07/01/2016	DLC	
o-Xylene	EPA-8260	U	2.0	1	UG/L	07/01/2016	DLC	
Naphthalene	EPA-8270 SIM	U	0.020	1	UG/L	07/05/2016	GAP	
2-Methylnaphthalene	EPA-8270 SIM	U	0.020	1	UG/L	07/05/2016	GAP	
1-Methylnaphthalene	EPA-8270 SIM	U	0.020	1	UG/L	07/05/2016	GAP	
Benzo[A]Anthracene	EPA-8270 SIM	U	0.020	1	UG/L	07/05/2016	GAP	
Chrysene	EPA-8270 SIM	U	0.020	1	UG/L	07/05/2016	GAP	
Benzo[B]Fluoranthene	EPA-8270 SIM	U	0.020	1	UG/L	07/05/2016	GAP	
Benzo[K]Fluoranthene	EPA-8270 SIM	U	0.020	1	UG/L	07/05/2016	GAP	
Benzo[A]Pyrene	EPA-8270 SIM	U	0.020	1	UG/L	07/05/2016	GAP	
Indeno[1,2,3-Cd]Pyrene	EPA-8270 SIM	U	0.020	1	UG/L	07/05/2016	GAP	
Dibenz[A.H]Anthracene	EPA-8270 SIM	U	0.020	1	UG/L	07/05/2016	GAP	
				·				
							ANALYSIS	
SURROGATE	METHOD	%REC				DAIL		
TFT - Aliphatic	NWVPH	98.2				07/06/2016	PAB	
TFT - Aromatic	NWVPH	108				07/06/2016	PAB	
TFT - Hexane	NWVPH	99.6				07/06/2016	PAB	
C25	NWEPH	104				06/29/2016	EBS	
p-Terphenyl	NWEPH	69.7				06/29/2016	EBS	

EPA-8260

EPA-8270 SIM

Page 4

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

96.3

58.3

Toluene-d8

Terphenyl-d14

RIGHT SOLUTIONS RIGHT PARTNER

07/01/2016

07/05/2016

DLC

GAP

CLIENT:		
	17522 Bothell Way NE, Suite A	
	Bothell, WA 98011	WDOE A
CLIENT CONTACT:	Jerry Sawetz	
CLIENT PROJECT:	None Given	
CLIENT PROJECT.	None Given	

ALS SDG#: CCREDITATION:

DATE:

7/7/2016 EV16060187 C601

LABORATORY BLANK RESULTS

MBLK-277678 - Batch R277678 - Water by NWVPH

ANALYTE	METHOD	RESULTS	UNITS	REPORTING LIMITS	ANALYSIS DATE	ANALYSIS BY
C5-C6 Aliphatics	NWVPH	U	UG/L	50	07/06/2016	PAB
>C6-C8 Aliphatics	NWVPH	U	UG/L	50	07/06/2016	PAB
>C8-C10 Aliphatics	NWVPH	U	UG/L	50	07/06/2016	PAB
>C8-C10 Aromatics	NWVPH	U	UG/L	50	07/06/2016	PAB
Hexane	NWVPH	U	UG/L	2.0	07/06/2016	PAB

U - Analyte analyzed for but not detected at level above reporting limit.

MBLK-277685 - Batch R277685 - Water by NWEPH

ANALYTE	METHOD	RESULTS	UNITS	REPORTING LIMITS	ANALYSIS DATE	ANALYSIS BY
>C10-C12 Aliphatics	NWEPH	U	UG/L	53	06/29/2016	EBS
>C12-C16 Aliphatics	NWEPH	U	UG/L	53	06/29/2016	EBS
>C16-C21 Aliphatics	NWEPH	U	UG/L	53	06/29/2016	EBS
>C21-C34 Aliphatics	NWEPH	U	UG/L	53	06/29/2016	EBS
>C10-C12 Aromatics	NWEPH	U	UG/L	53	06/29/2016	EBS
>C12-C16 Aromatics	NWEPH	U	UG/L	53	06/29/2016	EBS
>C16-C21 Aromatics	NWEPH	U	UG/L	53	06/29/2016	EBS
>C21-C34 Aromatics	NWEPH	U	UG/L	53	06/29/2016	EBS

U - Analyte analyzed for but not detected at level above reporting limit.

MB-062916W - Batch 105821 - Water by EPA-8260

ANALYTE	METHOD	RESULTS	UNITS	REPORTING LIMITS	ANALYSIS DATE	ANALYSIS BY
1,1-Dichloroethene	EPA-8260	U	UG/L	2.0	06/29/2016	DLC
Benzene	EPA-8260	U	UG/L	2.0	06/29/2016	DLC
Toluene	EPA-8260	U	UG/L	2.0	06/29/2016	DLC
Ethylbenzene	EPA-8260	U	UG/L	2.0	06/29/2016	DLC
m,p-Xylene	EPA-8260	U	UG/L	4.0	06/29/2016	DLC
o-Xylene	EPA-8260	U	UG/L	2.0	06/29/2016	DLC

U - Analyte analyzed for but not detected at level above reporting limit.

MB-062816W2 - Batch 105964 - Water by EPA-8270 SIM

				REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	UNITS	LIMITS	DATE	BY
Naphthalene	EPA-8270 SIM	U	UG/L	0.020	07/05/2016	GAP
2-Methylnaphthalene	EPA-8270 SIM	U	UG/L	0.020	07/05/2016	GAP
1-Methylnaphthalene	EPA-8270 SIM	U	UG/L	0.020	07/05/2016	GAP
Benzo[A]Anthracene	EPA-8270 SIM	U	UG/L	0.020	07/05/2016	GAP

Page 5

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 PHONE 425-356-2600 FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

CLIENT:	The Riley Group, Inc.	DATE:	7/7/2016
	17522 Bothell Way NE, Suite A	ALS SDG#:	EV16060187
	Bothell, WA 98011	WDOE ACCREDITATION:	C601
CLIENT CONTACT:	Jerry Sawetz		
CLIENT PROJECT:	None Given		

LABORATORY BLANK RESULTS

MB-062816W2 - Batch 105964	- Water by EPA-8	270 SIM				
Chrysene	EPA-8270 SIM	U	UG/L	0.020	07/05/2016	GAP
Benzo[B]Fluoranthene	EPA-8270 SIM	U	UG/L	0.020	07/05/2016	GAP
Benzo[K]Fluoranthene	EPA-8270 SIM	U	UG/L	0.020	07/05/2016	GAP
Benzo[A]Pyrene	EPA-8270 SIM	U	UG/L	0.020	07/05/2016	GAP
Indeno[1,2,3-Cd]Pyrene	EPA-8270 SIM	U	UG/L	0.020	07/05/2016	GAP
Dibenz[A,H]Anthracene	EPA-8270 SIM	U	UG/L	0.020	07/05/2016	GAP
Benzo[G,H,I]Perylene	EPA-8270 SIM	U	UG/L	0.020	07/05/2016	GAP

U - Analyte analyzed for but not detected at level above reporting limit.

Page 6
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

CERTIFICATE OF ANALYSIS

CLIENT:

CLIENT CONTACT:

CLIENT PROJECT:

The Riley Group, Inc. 17522 Bothell Way NE, Suite A Bothell, WA 98011 Jerry Sawetz None Given

DATE: ALS SDG#: WDOE ACCREDITATION:

7/7/2016 EV16060187 C601

LABORATORY CONTROL SAMPLE RESULTS

ALS Test Batch ID: R277678 - Water by NWVPH

			E11		ANALYSIS	ANALYSIS BY			
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	MIN	MAX	DATE		
C5-C6 Aliphatics - BS	NWVPH	101			70	130	07/06/2016	PAB	
C5-C6 Aliphatics - BSD	NWVPH	99.4	1		70	130	07/06/2016	PAB	
>C6-C8 Aliphatics - BS	NWVPH	101			70	130	07/06/2016	PAB	
>C6-C8 Aliphatics - BSD	NWVPH	101	1		70	130	07/06/2016	PAB	
>C8-C10 Aliphatics - BS	NWVPH	101			70	130	07/06/2016	PAB	
>C8-C10 Aliphatics - BSD	NWVPH	104	3		70	130	07/06/2016	PAB	
>C8-C10 Aromatics - BS	NWVPH	104			70	130	07/06/2016	PAB	
>C8-C10 Aromatics - BSD	NWVPH	108	4		70	130	07/06/2016	PAB	
Hexane - BS	NWVPH	103			70	130	07/06/2016	PAB	
Hexane - BSD	NWVPH	102	1		70	130	07/06/2016	PAB	

ALS Test Batch ID: R277685 - Water by NWEPH

	2				LIMITS		ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	MIN	MAX	DATE	
>C10-C12 Aliphatics - BS	NWEPH	85.3			70	130	06/29/2016	EBS
>C10-C12 Aliphatics - BSD	NWEPH	93.6	9		70	130	06/29/2016	EBS
>C12-C16 Aliphatics - BS	NWEPH	96.8			70	130	06/29/2016	EBS
>C12-C16 Aliphatics - BSD	NWEPH	98.1	1		70	130	06/29/2016	EBS
>C16-C21 Aliphatics - BS	NWEPH	101			70	130	06/29/2016	EBS
>C16-C21 Aliphatics - BSD	NWEPH	102	1		70	130	06/29/2016	EBS
>C21-C34 Aliphatics - BS	NWEPH	108			70	130	06/29/2016	EBS
>C21-C34 Aliphatics - BSD	NWEPH	111	2		70	130	06/29/2016	EBS
>C10-C12 Aromatics - BS	NWEPH	109			70	130	06/29/2016	EBS
>C10-C12 Aromatics - BSD	NWEPH	116	6		70	130	06/29/2016	EBS
>C12-C16 Aromatics - BS	NWEPH	114			70	130	06/29/2016	EBS
>C12-C16 Aromatics - BSD	NWEPH	123	8		70	130	06/29/2016	EBS
>C16-C21 Aromatics - BS	NWEPH	119			70	130	06/29/2016	EBS
>C16-C21 Aromatics - BSD	NWEPH	129	8		70	130	06/29/2016	EBS
>C21-C34 Aromatics - BS	NWEPH	120			70	130	06/29/2016	EBS
>C21-C34 Aromatics - BSD	NWEPH	129	8		70	130	06/29/2016	EBS

ALS Test Batch ID: 105821 - Water by EPA-8260

			LI	MITS	ANALYSIS	ANALYSIS BY
METHOD	%REC	RPD QUAL	MIN	MAX	DATE	
EPA-8260	93.4		72.5	136	06/29/2016	DLC
EPA-8260	92.9	1	72.5	136	06/29/2016	DLC
EPA-8260	99.1		74.7	143	06/29/2016	DLC
EPA-8260	94.0	5	74.7	143	06/29/2016	DLC
EPA-8260	95.3		71.7	139	06/29/2016	DLC
	METHOD EPA-8260 EPA-8260 EPA-8260 EPA-8260 EPA-8260	METHOD %REC EPA-8260 93.4 EPA-8260 92.9 EPA-8260 99.1 EPA-8260 94.0 EPA-8260 95.3	METHOD %REC RPD QUAL EPA-8260 93.4 1 1 EPA-8260 92.9 1 1 EPA-8260 99.1 5 1 EPA-8260 94.0 5 1 EPA-8260 95.3 1 1	METHOD %REC RPD QUAL MIN EPA-8260 93.4 72.5 72.5 EPA-8260 92.9 1 72.5 EPA-8260 99.1 74.7 74.7 EPA-8260 94.0 5 74.7 EPA-8260 95.3 71.7	METHOD %REC RPD QUAL MIN MAX EPA-8260 93.4 72.5 136 EPA-8260 92.9 1 72.5 136 EPA-8260 99.1 72.5 143 EPA-8260 94.0 5 74.7 143 EPA-8260 95.3 71.7 139	METHOD %REC RPD QUAL MIN MAX DATE EPA-8260 93.4 72.5 136 06/29/2016 EPA-8260 92.9 1 72.5 136 06/29/2016 EPA-8260 99.1 74.7 143 06/29/2016 EPA-8260 94.0 5 74.7 143 06/29/2016 EPA-8260 95.3 71.7 139 06/29/2016

Page 7

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 PHONE 425-356-2600 FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

LIMITS

CERTIFICATE OF ANALYSIS

CLIENT:	The Riley Group, Inc.	DATE:	7/7/2016
	17522 Bothell Way NE, Suite A	ALS SDG#:	EV16060187
	Bothell, WA 98011	WDOE ACCREDITATION:	C601
CLIENT CONTACT:	Jerry Sawetz		
CLIENT PROJECT:	None Given		

		LIMITS				ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	MIN MAX	DATE	
Toluene - BSD	EPA-8260	92.4	3		71.7 139	06/29/2016	DLC

ALS Test Batch ID: 105964 - Water by EPA-8270 SIM

			LIN	IITS	ANALYSIS	ANALYSIS BY		
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	MIN	MAX	DATE	
Naphthalene - BS	EPA-8270 SIM	63.6			36	118	07/05/2016	GAP
Naphthalene - BSD	EPA-8270 SIM	76.6	19		36	118	07/05/2016	GAP
Benzo[G,H,I]Perylene - BS	EPA-8270 SIM	56.6			43	140	07/05/2016	GAP
Benzo[G,H,I]Perylene - BSD	EPA-8270 SIM	66.4	16		43	140	07/05/2016	GAP

APPROVED BY

16_ X Dagu

Laboratory Director

 Page 8

 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208
 PHONE 425-356-2600
 FAX 425-356-2626

 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ALS

ALS Environmental 8620 Holly Drive, Suite 100 Everett, WA 98208 Phone (425) 356-2600 Fax (425) 356-2626 http://www.alsglobal.com

Chain Of Custody/ Laboratory Analysis Request

ALS Job# (Laboratory Use Only)

CV1606016/	61	160	60	18	57
------------	----	-----	----	----	----

	http://www.aisgio	Jai.com									K				~ ^		Date)			_ Pag	je			Of			
PROJECT ID:					AN	IALY	SIS	REC	QUE	STE	DĔ				2				:	OT	HEF	≀ (Sp	ecify	y)				
REPORT TO PGI	,										6	K			5		[□ s									
PROJECT MANAGER: DELLY	SAVETZ				1						2	ž			20 SIN	81	TAL		Herb									
ADDRESS: 17522	2 BOTHER	L WAY	NE		1			260	3260		0			270	PA82	EPA 80			est									
		•			1		1	EPA 8	EPA 8		8260			EPA 8		s by E	Pol Pol											ION 3
PHONE: 425-41	5-0551 FA	X:				0 1	_	EX by	BE by	1260	/ EPA	vater)		ds by	ns (PAI	sticide			ni-Vol								RS	TIDN
P.O. #: 2012-1701	E-MAIL	JSAVET	ZQLUE:	1-61019.U	m	400		BT	Ξ	EPA 8	nds br	SIM ((soil)	unodu	carbo	Ре	RA-8] Se							`	AINE	8
COMPANY: PC1						1				les by	nodu	8260	8260	lo Cor	Hydro		8 S	ify)	OA□								INO	1005
ATTENTION:								8021	4 802 ⁻	Volati	lic Co	y EPA	y EPA	Organ	matic	8082 [5 □	(Spec		-	I						О F O	Z
ADDRESS:	IDRESS:						H.GX	oy EPA	by EP	enated	Orgai	EDC b	EDC b	olatile	olic Arc	y EPA	-MTC/	Other	Metals	ā	2						BER	IVED
SAMPLE I.D). DAT	E TIME	TYPE	LAB#	- MTPI	WTPI	WTPI	3TEX	MTBE	laloge	/olatile	EDB /		Semivo		CB b	Metals	Metals	rolp-I	Ш	2						MUM	RECE
1 RW-7	6/2	4 1212	WATEL		-	$\overline{\mathbb{X}}$					X				\mathbf{X}					x	×						-	-
2 RW-Z	1	1105	- 1	2		R)				R				X					x	/ 大							_
	`	11-2		-	+										2					~ _	-							
3.					+																							
4.																												_
5.					<u> </u>				[· ·	\rightarrow			
6.																		_					⊢	\square				
7.								ī																				
8.																												
0																												
10																											-	
10.		1 0 0 0			<u> </u>	 ~	<u>ا</u> ر	<u> </u>	1	1	1												l					1
SPECIAL INSTRUCTION	is (X)	Added L	web you	y St	r e A	Ċc	> 1/2	j,							· · · · · ·													
SIGNATURES (Name,	Company Date,	Time):	. (((_	_									ΤL	JRN/	RO	JND	REG	QUES	STED) in B	usine	əss C)ays*			
1. Relinquished By:	MALAN	, fal,	6/24/1	6, 145	55		<u></u>		1	Srg:	anic,	Met	als 8	& Inc	orgar	nic A	naly	sis 		S 7		~	ОТ	THEP	{:			
Received By	Martock	- ALS, (6/29/14	. 11:2	<u>5 A</u>	m			i	Standar		5	3		2			AY		- Je	Jech	'• <u> </u>						
2. Relinquished By:		,	/		•					ł	-uels	⊢∡: ¶	iyarc [:	ocart	$\frac{1}{1}$	SAME	ysis			_								
Received By:												Standard		1			1		*Tur	maroun	d reau	est les:	s than s	standard	d mav in	cur Ru	ush Ch	arges