SECTION 3

GROUNDWATER MONITORING REPORT FIRST QUARTER

NOVEMBER 16, 2016

GROUNDWATER MONITORING REPORT:

First Quarterly Sampling - November 2016

Fife RV Center 3410 Pacific Highway East Fife, Washington 98424

AEROTECH

Environmental Consulting Inc.

November 18, 2016

Anchorage Seattle Portland

Cost-effective environmental solutions for the western United States and Alaska

VEROTECH

Environmental Consulting Inc.

1999-525 (206) Anchorage, Alaska 99518 512 W. International Airport Road, Suite 201

6685-017 (035) Seattle, Washington 98168 13925 Internrban Avenue South, Suite 210

December 9, 2016

Fife, Washington 98424 3410 Pacific Highway East Fife RV Center Mr. Chris LaVerdiere

Groundwater Monitoring Report - Fourth Quarter 2016 RE

James G. McDermott

COUNTRY

3410 Pacific Highway East, Fife, Washington Fife RV Center

Fife, Washington 98424

Dear Mr. LaVerdiere,

Licensed Geologist No. 3063

State of Washington

James G. McDennott

analytical report, and standard operating procedure document. monitoring wells. Enclosed, please find the associated tabulated analytical results, site drawings, laboratory using a Product Interface Probe. Mo free product was detected in any of the six onsite groundwater well MW3, Acrotech mobilized to the Site on November 30, 2016 to check for the presence of free product sampling activities on November 18, 2016. Due to gasoline concentration levels in groundwater monitoring RV Center in Fife, Washington. Aerotech conducted the initial round of groundwater monitoring and collect quarterly groundwater samples from six groundwater monitoring wells previously installed at life As you are aware, Aerotech Environmental Consulting, Inc. ("Aerotech") has been retained to

regarding work completed at this Site. the Aerotech Field Sampling Coordinator, Mr. Vicholas Gerkin at (206) 482-2287 if you have any questions Please feel free to contact the Aerotech Geologist, Mr. James McDermott, at (425) 686-0032, or

Sincerely.

Environmental Professional Nick Gerkin

ICC UST Decommissioning Supervisor Washington State UST Site Assessor

GROUNDWATER ANALYTICAL RESULTS TABLE AND FIGURES

GROUNDWATER ANALYTICAL RESULTS

Fife RV Center 3410 Pacific Highway East Fife, Washington

Well Depth	Sampling Date	Ground Water Level	Elevation (TOC north)	Water Level Elevation	ТРН	TPHd	ТРНо	Benzene	Toluene	Ethyl- benzene	Xylenes	EDB	EDC	МТВЕ	Dissolved Lead	Total Lead
Feet	Date	Feet Below TOC	Feet Above MSL	Feet Above MSL	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	HE/L	µg/L	µg/L
14.4	11/18/16	1.37	8.37	7.00	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0	<2.0	<2.0
		MTCA	Method A Cleanup	Levels	800	500	500	5	1,000	700	1,000	0.01	5	20	15	15
VIW-2																
Well Depth	Sampling Date	Ground Water Level	Elevation (TOC north)	Water Level Elevation	TPHg	TPHd	ТРНо	Benzene	Toluene	Ethyl- benzene	Xylenes	EDB	EDC	МТВЕ	Dissolved Lead	Tota
Feet		Feet Below TOC	Feet Above MSL	Feet Above MSL	µg/L	μg/L	µg/L	μg/L	μg/L	µg/L	µg/L	μg/L	µg/L	μg/L	µg/L	μg/I
14.2	11/18/16	2.53	9.40	6.87	18,000	<200	<500	470	18	210	200	<0.01	<1.0	<5.0	<2.0	<2.
		MTCA	Method A Cleanup	Levels	800	500	500	5	1,000	700	1,000	0.01	5	20	15	15
NW-3																
Well Depth	Sampling Date	Ground Water Level	Elevation (TOC north)	Water Level Elevation	ТРН	TPHd	ТРНо	Benzene	Toluene	Ethyl- benzene	Xylenes	EDB	EDC	MTBE	Dissolved Lead	Tota Lea
Feet		Feet Below TOC	Feet Above MSL	Feet Above MSL	μg/L	μg/L	µg/L	μg/L	μg/L	µg/L	μg/L	μg/L	µg/L	µg/L	µg/L	H8/
14.6	11/18/16	2.19	9.43	7.24	42,000	<200	<500	130	16	2,800	120	<0.01	<1.0	<5.0	<2.0	<2.
		MTCA	Method A Cleanup	Levels	800	500	500	5	1,000	700	1,000	0.01	5	20	15	15
VIW-4																
Well Depth	Sampling Date	Ground Water Level	(TOC north)	Water Level Elevation	TPHg	TPHd	TPHo	Benzene	Toluene	Ethyl- benzene	Xylenes	EDB	EDC	МТВЕ	Dissolved Lead	Tota Lea
Feet	I Distant	Feet Below TOC	Feet Above MSL	Feet Above MSL	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	HE/
14.5	11/18/16	3.31	10.12	6.81	1,900	<200	<500	140	<1.0	13	7.70	<0.01	<1.0	<5.0	<2.0	<2.
		MTCA	Method A Cleanup	Levels	800	500	500	5	1,000	700	1,000	0.01	5	20	15	15
MW-5																
Well Depth	Sampling Date	Ground Water Level	Elevation (TOC north)	Water Level Elevation	TPHg	TPHd	ТРНо	Benzene	Toluene	Ethyl- benzene	Xylenes	EDB	EDC	МТВЕ	Dissolved Lead	Tot Lea
Feet	HERITAGE STATE	Feet Below TOC	Feet Above MSL	Feet Above MSL	ME/F	µg/L	HE/L	μg/L	HE/L	µg/L	μg/L	µg/L	µg/L	µg/L	μg/L	ив/
17.5	11/18/16	5.17	11.27	6.10	2,100	<200	<500	250	1.6	5.6	2.1	<0.01	<1.0	<5.0	<2.0	<2.
		MTCA	Method A Cleanup	Levels	800	500	500	5	1,000	700	1,000	0.01	5	20	15	15
ЛW-6																
Well Depth	Sampling Date	Ground Water Level	Elevation (TOC north)	Water Level Elevation	трнд	TPHd	ТРНо	Benzene	Toluene	Ethyl- benzene	Xylenes	EDB	EDC	МТВЕ	Dissolved Lead	Tot Lea
Feet	14000 1000	Feet Below TOC	Feet Above MSL	Feet Above MSL	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	μg/L	µg/L	µg/L	µв.
The state of the s	11/18/16	4.72	11.40	6.68	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	< 0.01	<1.0	<5.0	<2.0	<2.
17.5	11/10/10	10000	100 to 10													

MTCA = Model Toxic Control Act Cleanup Level (WAC173-340-900)

< = not detected at indicated Laboratory Detection Limits -- not analyzed NM = Not Measured TOC = Top of Casing MSL = Mean Sea Level

TPHg - Total Petroleum Hydrocarbons - Gasoline by Method NWTPH-Gx

TPHd - Total Petroleum Hydrocarbons - Diesel by Method NWTPH-Dx TPHo - Total Petroleum Hydrocarbons - Motor Oil by Method NWTPH-Dx extended

Benzene, Toluene, Ethylbenzene and Xylenes by EPA Method 8021B

Total and Dissolved Lead by EPA Method 7010

Bolded numbers and red-shaded cells denote concentrations above the MTCA Method A Cleanup Levels for groundwater

AEROTECH

REGIONAL MAP

Fife RV Center 3410 Pacific Highway East Fife, Washington

By: Nick Gerkin

Figure:

NEIGHBORHOOD STREET MAP

ENVIRONMENTAL CONSULTING

I

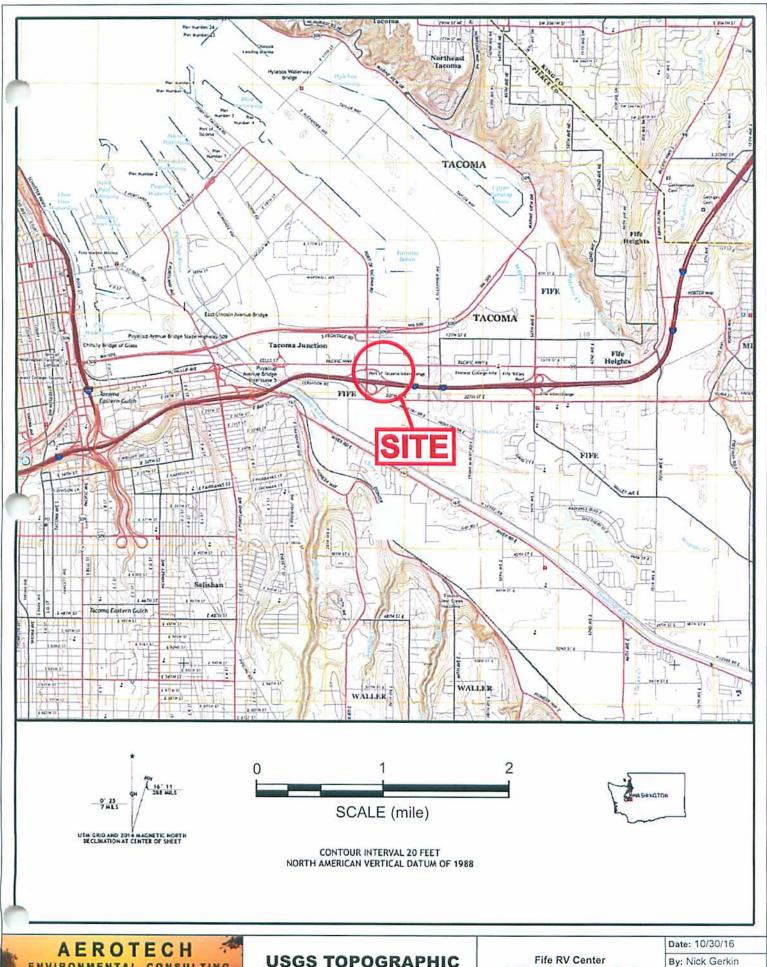
0

œ

ш

×

3410 Pacific Highway East


Fife, Washington

Fife RV Center

By: Nick Gerkin Figure:

Date: 12/08/16

2

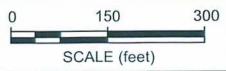
ENVIRONMENTAL CONSULTING

USGS TOPOGRAPHIC MAP

Fife RV Center 3410 Pacific Highway East Fife, Washington

Figure:

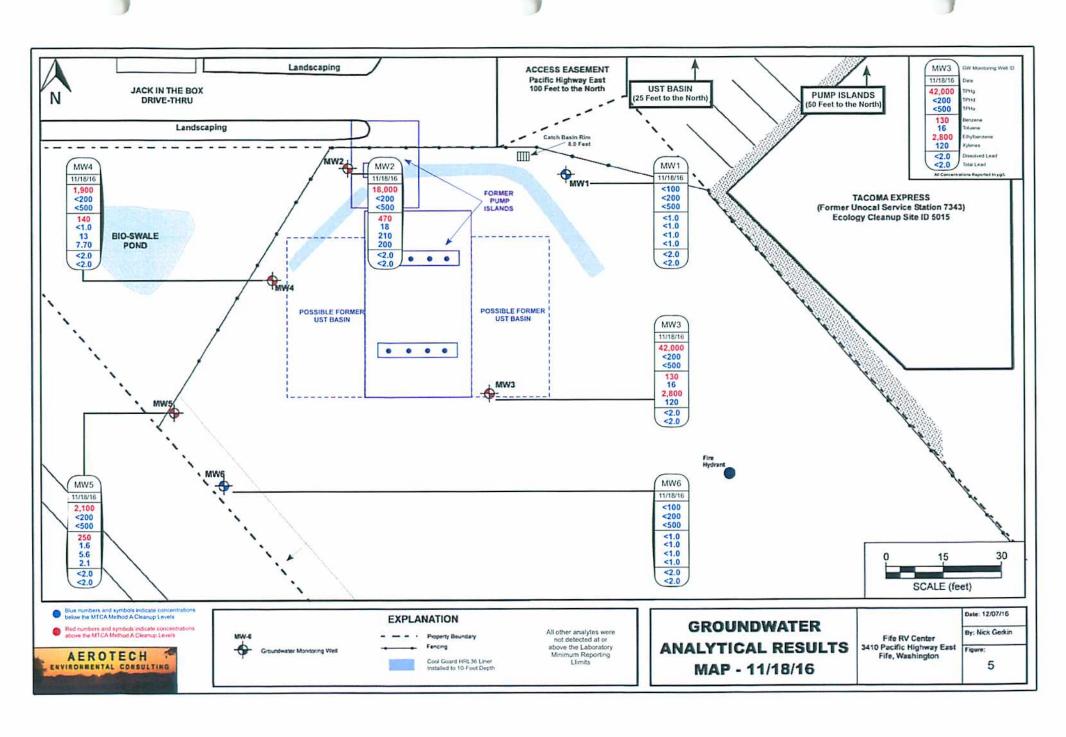
3

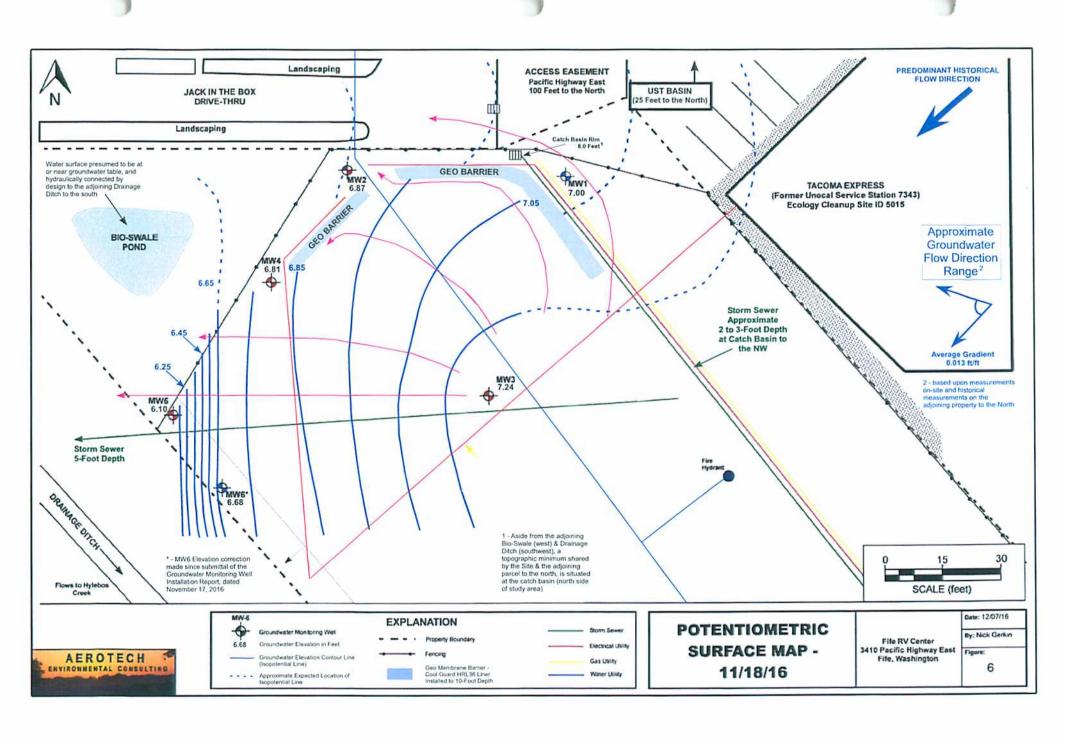

EXPLANATION

AEROTECH ENVIRONMENTAL CONSULTING

SITE VICINITY MAP

Fife RV Center 3410 Pacific Highway East Fife, Washington




Date: 10/30/16

By: Nick Gerkin

Figure:

4

November 28, 2016

Nick Gerkin Aerotech Environmental, Inc. 13925 Interurban Avenue South, Suite 210 Seattle, WA 98168

Dear Mr. Gerkin:

Please find enclosed the analytical data report for the Fife RV (C61118-2) Project.

Samples were received on *November 18, 2016*. The results of the analyses are presented in the attached tables. Applicable reporting limits, QA/QC data and data qualifiers are included. A copy of the chain-of-custody and an invoice for the work is also enclosed.

ADVANCED ANALYTICAL LABORATORY appreciates the opportunity to provide analytical services for this project. Should there be any questions regarding this report, please contact me at (425) 702-8571.

It was a pleasure working with you, and we are looking forward to the next opportunity to work together.

Sincerely,

Val G. Ivanov, Ph.D. Laboratory Manager

V. Franov

4078 148 Ave NE Redmond, WA 98052 425.702-8571

E-mail: aachemlab@yahoo.com

Advanced Analytical Laboratory (425) 702-8571

AAL Job Number:

Client:

Project Manager:
Client Project Name:
Client Project Number:
Date received:

C61118-2

Aerotech Environmental

Nick Gerkin Fife RV na

11/18/16

C61118-2

Client:

Aerotech Environmental

Project Manager: Client Project Name: Client Project Number: Date received:

Nick Gerkin Fife RV na

11/18/16

Analytical Results

8260B, μg/L	-	MTH BLK	LCS	W-MW1	W-MW2	W-MW3	W-MW4
Matrix	Water	Water	Water	Water	Water	Water	Water
Date analyzed	Reporting Limits	11/18/16		11/18/16	11/18/16	11/18/16	11/18/16
Date dilalyzed	Troporting Emilio	11110110		11110710	11110110		1 10
MTBE	5.0	nd		nd	nd	nd	nd
Chloromethane	1.0	nd		nd	nd	nd	nd
Vinyl chloride(*)	0.2	nd		nd	nd	nd	nd
Bromomethane	1.0	nd		nd	nd	nd	nd
Chloroethane	1.0	nd		nd	nd	nd	nd
Trichlorofluoromethane	1.0	nd		nd	nd	nd	nd
1.1-Dichloroethene	1.0	nd		nd	nd	nd	nd
Methylene chloride	1.0	nd		nd	nd	nd	nd
trans-1,2-Dichloroethene	1.0	nd		nd	nd	nd	nd
1,1-Dichloroethane	1.0	nd		nd	nd	nd	nd
2,2-Dichloropropane	1.0	nd		nd	nd	nd	nd
cis-1,2-Dichloroethene	1.0	nd		nd	nd	nd	nd
Chloroform	1.0	nd		nd	nd	nd	nd
1,1,1-Trichloroethane	1.0	nd		nd	nd	nd	nd
Carbontetrachloride	1.0	nd		nd	nd	nd	nd
1,1-Dichloropropene	1.0	nd		nd	nd	nd	nd
1,2-Dichloroethane(EDC)	1.0	nd		nd	nd	nd	nd
Trichloroethene	1.0	nd	76%	nd	nd	nd	nd
1,2-Dichloropropane	1.0	nd	, 0, 0	nd	nd	nd	nd
Dibromomethane	1.0	nd		nd	nd	nd	nd
Bromodichloromethane	1.0	nd		nd	nd	nd	nd
cis-1,3-Dichloropropene	1.0	nd		nd	nd	nd	nd
trans-1,3-Dichloropropene	1.0	nd		nd	nd	nd	nd
1,1,2-Trichloroethane	1.0	nd		nd	nd	nd	nd
Tetrachloroethene	1.0	nd		nd	nd	nd	nd
1,3-Dichloropropane	1.0	nd		nd	nd	nd	nd
Dibromochloromethane	1.0	nd		nd	nd	nd	nd
1,2-Dibromoethane (EDB)*	0.01	nd		nd	nd	nd	nd
Chlorobenzene	1.0	nd	89%	nd	nd	nd	nd
	1.0	nd	09 /0	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	1.0				nd	_	
Styrene		nd		nd		nd	nd nd
Bromoform	1.0 1.0	nd nd		nd	nd 36	nd	nd
Isopropylbenzene 1,2,3-Trichloropropane	1.0	nd		nd	nd	nd nd	nd
Bromobenzene	1.0	nd		nd nd	nd	nd	nd nd
1,1,2,2-Tetrachloroethane	1.0	nd		nd	nd	nd	nd nd
	1.0	nd		nd	110	500	nd 2.7
n-Propylbenzene 2-Chlorotoluene	1.0				nd	nd	
4-Chlorotoluene		nd		nd nd			nd nd
	1.0	nd		nd	nd	nd	nd
1,3,5-Trimethylbenzene	1.0	na		na	250	190	3.7
tert-Butylbenzene	1.0	nd		nd	1.1	1.6	nd
1,2,4-Trimethylbenzene	1.0	nd		nd	700	850	10
sec-Butylbenzene	1.0	nd		nd	15	60	1.4
1,3-Dichlorobenzene	1.0	nd		nd	nd	nd	nd 1.3
Isopropyltoluene	1.0	nd		nd	23	6.0	1.3
1,4-Dichlorobenzene	1.0	nd		nd	nd	nd	nd
1,2-Dichlorobenzene	1.0	nd		nd	nd	nd	nd
n-Butylbenzene	1.0	nd		nd	34	110	3.7

C61118-2

Client:

Aerotech Environmental

Project Manager: Client Project Name: Client Project Number:

Nick Gerkin Fife RV

na

Date received:

11/18/16

Analytical Results

Analytical Results							
8260B, µg/L		MTH BLK	LCS	W-MW1	W-MW2	W-MW3	W-MW4
Matrix	Water	Water	Water	Water	Water	Water	Water
Date analyzed	Reporting Limits	11/18/16	11/18/16	11/18/16	11/18/16	11/18/16	11/18/16
1,2-Dibromo-3-Chloropropane	1.0	nd		nd	nd	nd	nd
1,2,4-Trichlorobenzene	1.0	nd		nd	18	nd	nd
Hexachloro-1,3-butadiene	1.0	nd		nd	nd	nd	nd
Naphthalene	1.0	nd		nd	nd	nd	nd
1,2,3-Trichlorobenzene	1.0	nd		nd	41	2.2	nd
*-instrument detection limits		· · · · · · · · · · · · · · · · · · ·					
Surrogate recoveries					-		
Dibromofluoromethane	<u> </u>	110%	99%	103%	97%	101%	106%
Toluene-d8		107%	99%	98%	89%	96%	94%
1,2-Dichloroethane-d4		102%	105%	99%	97%	95%	102%
4-Bromofluorobenzene		105%	119%	102%	103%	112%	109%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits
Acceptable Recovery limits: 70% TO 130%
Acceptable RPD limit: 30%

C61118-2

Client:

Aerotech Environmental

Project Manager: Client Project Name: Client Project Number:

Nick Gerkin Fife RV

na 11/18/16

Analytical Results

Date received:

8260B, µg/L		W-MW5	W-MW6	MS	MSD	RPD
Matrix	Water	Water	Water	Water	Water	Water
Date analyzed	Reporting Limits	11/18/16		11/18/16		
Date unoryzou	rioporting Ennito	11710710	11710710	11710710	1 17 107 10	11110110
MTBE	5.0	nd	nd			
Chloromethane	1.0	nd	nd			
Vinyl chloride(*)	0.2	nd	nd			
Bromomethane	1.0	nd	nd			
Chloroethane	1.0	nd	nd			
Trichlorofluoromethane	1.0	nd	nd			
1.1-Dichloroethene	1.0	nd	nd			
Methylene chloride	1.0	nd	nd			
trans-1,2-Dichloroethene	1.0	nd	nd			
1,1-Dichloroethane	1.0	nd	nd			
2,2-Dichloropropane	1.0	nd	nd			
cis-1,2-Dichloroethene	1.0	nd	nd			
Chloroform	1.0	nd	nd			
1,1,1-Trichloroethane	1.0	nd	nd			
Carbontetrachloride	1.0	nd	nd			
1,1-Dichloropropene	1.0	nd	nd			
1,2-Dichloroethane(EDC)	1.0	nd	nd			
Trichloroethene	1.0	nd	nd	83%	81%	3%
	1.0	nd	nd	00.70	0170	3 /6
1,2-Dichloropropane Dibromomethane	1.0	nd	nd			
	1.0	nd	nd			
Bromodichloromethane	1.0		nd			
cis-1,3-Dichloropropene	1.0	nd				
trans-1,3-Dichloropropene		nd	nd			
1,1,2-Trichloroethane	1.0	nd	nd			
Tetrachloroethene	1.0	nd	nd			
1,3-Dichloropropane	1.0	nd	nd			
Dibromochloromethane	1.0	nd	nd			
1,2-Dibromoethane (EDB)*	0.01	nd	nd	1000/	1000/	40/
Chlorobenzene	1.0	nd	nd	100%	102%	1%
1,1,1,2-Tetrachloroethane	1.0	nd	nd			
Styrene	1.0	nd	nd			
Bromoform	1.0	nd	nd			
Isopropylbenzene	1.0	30	nd			
1,2,3-Trichloropropane	1.0	nd	nd			
Bromobenzene	1.0	nd	nd			
1,1,2,2-Tetrachloroethane	1.0	nd	nd			
n-Propylbenzene	1.0	nd	nd			
2-Chlorotoluene	1.0	nd	nd			
4-Chlorotoluene	1.0	nd	nd			
1,3,5-Trimethylbenzene	1.0	2.7	nd			
tert-Butylbenzene	1.0	4.0	nd			
1,2,4-Trimethylbenzene	1.0	3.4	nd			
sec-Butylbenzene	1.0	2.0	nd			
1,3-Dichlorobenzene	1.0	nd	nd			
Isopropyltoluene	1.0	5.0	nd			
1,4-Dichlorobenzene	1.0	nd	nd			
1,2-Dichlorobenzene	1.0	nd	nd			
n-Butylbenzene	1.0	17	n <u>d</u>			

C61118-2

Client:

Aerotech Environmental

Project Manager: Client Project Name: Client Project Number:

Nick Gerkin Fife RV

Date received:

11/18/16

Analytical Results

8260B, μg/L		W-MW5	W-MW6	MS	MSD	RPD
Matrix	Water	Water	Water	Water	Water	Water
Date analyzed	Reporting Limits	11/18/16	11/18/16	11/18/16	11/18/16	
1,2-Dibromo-3-Chloropropane	1.0	nd	nd			
1,2,4-Trichlorobenzene	1.0	nd	nd			
Hexachloro-1,3-butadiene	1.0	nd	nd			
Naphthalene	1.0	nd	nd			
1,2,3-Trichlorobenzene	1.0	nd	nd			
*-instrument detection limits					<u>.</u>	
Surrogate recoveries						
Dibromofluoromethane		99%	98%	110%	102%	
Toluene-d8		90%	99%	104%	99%	
1,2-Dichloroethane-d4		96%	99%	101%	99%	
4-Bromofluorobenzene		109%	121%	130%	107%	

<u>Data Qualifiers and Analytical Comments</u> nd - not detected at listed reporting limits Acceptable Recovery limits: 70% TO 130% Acceptable RPD limit: 30%

C61118-2

Client:

Aerotech Environmental

Project Manager: Nic Client Project Name: Fife Client Project Number: na

Nick Gerkin Fife RV

Date received:

11/18/16

Analytical Results

NWTPH-Gx/BTEX		MTH BLK	LCS	W-MW1	W-MW2	W-MW3	W-MW4
Matrix	Water	Water	Water	Water	Water	Water	Water
Date analyzed	Reporting Limits	11/18/16	11/18/16	11/18/16	11/18/16	11/18/16	11/18/16
NWTPH-Gx, ug/L							
Mineral spirits/Stoddard	100	nd		nd	nd	nd	nd
Gasoline	100	nd		nd	18,000	42,000	1,900
BTEX 8021B, μg/L							
Benzene	1.0	nd	73%	nd	470	130	140
Toluene	1.0	nd	79%	nd	18	16	nd
Ethylbenzene	1.0	nd		nd	210	2,800	13
Xylenes	1.0	nd		nd	200	120	7.7
Surrogate recoveries:							
Trifluorotoluene		89%	112%	95%	Ċ	103%	Ċ
Bromofluorobenzene		82%	91%	87%	101%	102%	94%

<u>Data Qualifiers and Analytical Comments</u> nd - not detected at listed reporting limits

na - not analyzed
C - coelution with sample peaks
Acceptable Recovery limits: 70% TO 130%
Acceptable RPD limit: 30%

C61118-2

Client:

Aerotech Environmental

Project Manager: Nic Client Project Name: Fife Client Project Number: na Date received: 11/

Nick Gerkin Fife RV

11/18/16

Analytical Results

NWTPH-Gx/BTEX		W-MW5	W-MW6	MS	MSD	RPD
Matrix	Water	Water	Water	Water	Water	Water
Date analyzed	Reporting Limits	11/18/16	11/18/16	11/18/16	11/18/16	11/18/16
NWTPH-Gx, ug/L						
Mineral spirits/Stoddard	100	nd	nd			
Gasoline	100	2,100	nd			
BTEX 8021B, μg/L						
	1.0	250		000/	700/	10/
Benzene	1.0	250	nd	80%	79%	1%
Toluene	1.0	1.6	nd	83%	87%	4%
Ethylbenzene	1.0	5.6	nd			
Xylenes	1.0	2.1	nd			
Surrogate recoveries:						
Trifluorotoluene	•••	C	100%	130%	127%	
Bromofluorobenzene		114%	99%	111%	119%	

<u>Data Qualifiers and Analytical Comments</u> nd - not detected at listed reporting limits

na - not analyzed
C - coelution with sample peaks
Acceptable Recovery limits: 70% TO 130%
Acceptable RPD limit: 30%

C61118-2

Client:

Aerotech Environmental

Project Manager: Client Project Name: Client Project Number:

Nick Gerkin Fife RV

na

Date received:

11/18/16

Analytical Results

NWTPH-Dx, mg/L		MTH BLK	W-MW1	W-MW2	W-MW3	W-MW4	W-MW5	W-MW6
Matrix	Water	Water	Water	Water	Water	Water	Water	Water
Date extracted	Reporting	11/18/16	11/18/16	11/18/16	11/18/16	11/18/16	11/18/16	11/18/16
Date analyzed	Limits	11/18/16	11/18/16	11/18/16	11/18/16	11/18/16	11/18/16	11/18/16
Kerosene/Jet fuel	0.20	nd						
Diesel/Fuel oil	0.20	nd						
Heavy oil	0.50	nd						
Surrogate recoveries:								
Fluorobiphenyl		103%	101%	99%	98%	99%	101%	102%
o-Terphenyl		118%	111%	111%	109%	112%	114%	115%

<u>Data Qualifiers and Analytical Comments</u> nd - not detected at listed reporting limits na - not analyzed

C - coelution with sample peaks

Acceptable Recovery limits: 70% TO 130%

Acceptable RPD limit: 30%

C61118-2

Client:

Aerotech Environmental

Project Manager: Client Project Name: Client Project Number:

Nick Gerkin Fife RV

Date received:

11/18/16

Analytical Results

Metals Total (7010), mg/L		MTH BLK	LCS	W-MW1	W-MW2	W-MW3	W-MW4
Matrix	Water	Water	Water	Water	Water	Water	Water
Date extracted	Reporting	11/28/16 1	1/28/16	11/28/16	11/28/16	11/28/16	11/28/16
Date analyzed	Limits	11/28/16	1/28/16	11/28/16	11/28/16	11/28/16	11/28/16
Lead Total (Pb)	0.002	nd	107%	nd	nd	nd	nd

<u>Data Qualifiers and Analytical Comments</u> nd - not detected at listed reporting limits

na - not analyzed

C61118-2

Client:

Aerotech Environmental

Project Manager: Client Project Name: Client Project Number:

Nick Gerkin Fife RV

Date received:

na 11/18/16

Analytical Results

Metals Total (7010), mg/L		W-MW5	W-MW6	MS	MSD	RPD
Matrix	Water	Water	Water	Water	Water	Water
Date extracted	Reporting	11/28/16	11/28/16	11/28/16	11/28/16	11/28/16
Date analyzed	Limits	11/28/16	11/28/16	11/28/16	11/28/16	11/28/16
Lead Total (Pb)	0.002	nd	nd	106%	116%	9%

<u>Data Qualifiers and Analytical Comments</u> nd - not detected at listed reporting limits

na - not analyzed

C61118-2

Client:

Aerotech Environmental

Project Manager:

Nick Gerkin Fife RV

Client Project Number:

na

Date received:

11/18/16

Analytical Results

Metals Dissolved (7010), m	g/L	MTH BLK	LCS	W-MW1	W-MW2	W-MW3	W-MW4
Matrix	Water	Water	Water	Water	Water	Water	Water
Date extracted	Reporting	11/28/16	11/28/16	11/28/16	11/28/16	11/28/16	11/28/16
Date analyzed	Limits	11/28/16	11/28/16	11/28/16	11/28/16	11/28/16	11/28/16
Lead Dissolved (Pb)	0.002	nd	107%	nd	nd	nd	nd

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C61118-2

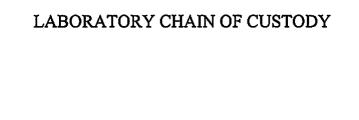
Client:

Aerotech Environmental

Project Manager: Client Project Name: Client Project Number:

Nick Gerkin Fife RV

Date received:


na 11/18/16

Analytical Results

Metals Dissolved (7010), mg/L		W-MW5	W-MW6	MS	MSD	RPD
Matrix	Water	Water	Water	Water	Water	Water
Date extracted	Reporting	11/28/16	11/28/16	11/28/16	11/28/16	11/28/16
Date analyzed	Limits	11/28/16	11/28/16	11/28/16	11/28/16	11/28/16
Lead Dissolved (Pb)	0.002	nd	nd	106%	116%	9%

<u>Data Qualifiers and Analytical Comments</u> nd - not detected at listed reporting limits

na - not analyzed

7	
ADVANCED	FANALYTICAL

Chain of Cusiody Record

Laboratory Job # C6///8-2

2821 152 Avenue NF.

Redmond, WA 98052

(425) 497-0110 fax: (425) 497-8089

	1										aachem					
Clie	in: Aerotech								Pro	ject Name	: F7	Æ.	R	V		_
Pro	ject Manager: Nick Gerk	لار							Pro	ject Numb	ег					_
Add	Iress: 13925 Interview	fre	SI	سان	<i>- ار</i> ن	WA			Col	llector:	Vic	k	G°	vk.	Δ	_
Pho	jed Manager: Nick Gerle Iress: 13925 Interview one: 206 482 2287	Fax:							Dat	llector:	lion:	<u>i.[/i</u>	8/11	<u> </u>		_
	Sample ID	Time	Matrix	ontainer type				Surger St				//			Notes, comments	of containers
1		CASS	Wall				Žĺ	X				ĬŽ	区		Notes, comments	0
2	W-MKIZ	1105		1	X			X				X	X			
3	W-MW3	11.35			X	نا ا	$\langle \downarrow$					X	X			
4	W-MW5 W-MW6	1:35	1		X		\subseteq					X	X			
5	W-MLS	1000	\coprod	Ш	X	_ >	\leq	X				<u>IX</u>	X			
6	W-MW6	21.72	V	1	M		4					X	X			
7																
8				<u> </u>			\perp									
9							_									
10																
11		<u> </u>														
12			<u> </u>													
											Sample r	eceipt l	nto:		Turnaround time:	-

Belinguished by:	Date/Time	Received by:	Date/Time	
7/61/	11/18/16 1325	1 hickor 1/18/	16 13:	
Relinguished by:	Date/Time	Received by:	Date/Time	

Total # of containers:

りょく Condition (temp. °C)

Seals (intact?, Y/N)

Comments:

Turnaround time:

Same day O

24 hr **O**

48 hr **O**

Standard X

LOW-FLOW GROUNDWATER SAMPLING STANDARD OPERATING PROCEDURE

AEROTECH

Environmental Consulting Inc.

13925 Interurban Avenue South, Suite No.210 Seattle, Washington 98168 (360)710-5899

512 W. International Airport Road, Suite 201 Anchorage, Alaska 99518 (907) 575-6661 2916 NW Bucklin Hill Road, Suite No.126 Silverdale, Washington 98383 (866) 800-4030

> 5319 SW Westgate Dr., Suite No.24 Portland, Oregon 97221 (503) 360-4701

LOW-FLOW GROUNDWATER SAMPLING STANDARD OPERATING PROCEDURE

The following protocol and sampling procedures were designed to meet or exceed standards for groundwater monitoring well sampling, as specified by the State of Washington Department of Ecology "Standard Operating Procedures for Purging and Sampling Monitoring Wells, Version 1.0," dated and approved on October 4, 2011. These procedures are strictly adhered to by Acrotech field staff:

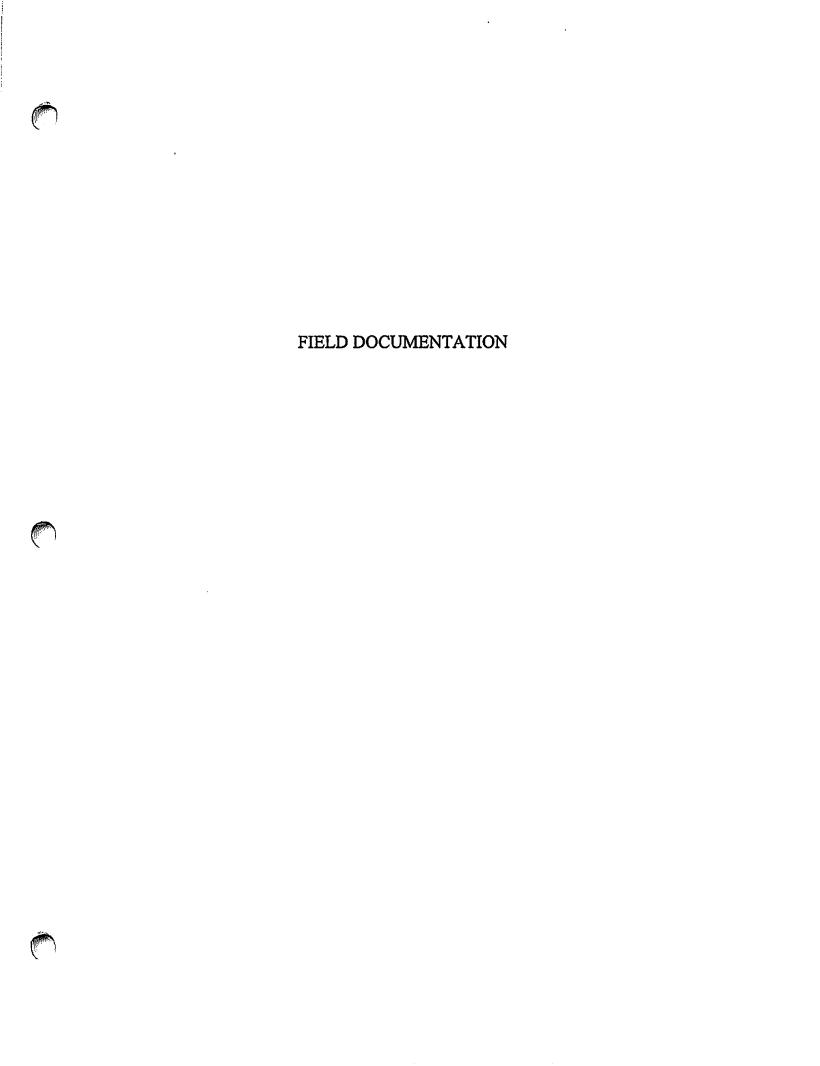
Cross-Contamination Mitigation Protocol

A sampling table is set up adjacent to the well head in order to protect field equipment from contact with the ground, to prevent or minimize the possible introduction of foreign materials into the wells, and in general in order to mitigate the possibility of cross-contamination. Where previous laboratory data is available, or where visual of olfactory indicators provide initial evidence, well sampling order is arranged to proceed with the least contaminated well, often the upgradient groundwater monitoring wells, and sampling order proceeds by sampling wells associated with successively higher contamination levels. Thus, the wells exhibiting the highest contamination levels are sampled last, in order to minimize the possibility of cross contamination.

A fresh pair of disposable Nitrile gloves is worn at each well. Equipment neither disposable nor dedicated to wells, is washed in a dedicated container prepared with non-phosphate Alconox detergent and triple rinsed in a second container prepared with distilled and/or deionized water. Surfaces that cannot be readily submerged for the purpose of decontamination, are sprayed with wash water followed by rinse water, and wiped with a fresh disposable paper towel. For shallow wells that require a peristaltic pump, dedicated tubing is left in each well after sampling, however, for deeper wells that require a submersible pump, dedicated tubing is recovered from wells after each use, and deployed to a designated dedicated clean plastic bag, bearing a label indicating well identification information.

Water Level Measurement

Prior to the well purge process and the collection of groundwater samples, groundwater levels are measured at the north side of the ("TOC") with a piezometer/water level indicator, by slowly lowering the sensor into wells prior to purging, in order to minimize disturbances. The water levels are measured twice, with tape a marked in 0.01 foot increments, in order to reduce possible reading error. Where appropriate, free product thickness is measured with gas level indicator paste or an interface indicator. Upon arrival, each well is visual inspected and the condition of the well and well head are noted.


Groundwater Monitoring Well Purge and Sampling Methodologies

Prior to groundwater sample collection, A dedicated length of high density polyethylene tubing is lowered into each well to a level near the middle of the screened interval. A dedicated length of clean silicone tubing is utilized within the pump mechanism. The wells are purged by means of low flow techniques, during which time groundwater is monitored for physical parameters, including temperature, pH, specific conductivity, dissolved oxygen (DO), and oxidation-reduction potential (ORP), by means of a multi-parameter device mounted upon a flow cell, until such time as values recorded have stabilized and equilibrium conditions are verified according to State guidelines. This protocol ensures that collected groundwater samples are representative of in-situ groundwater conditions. Readings are recorded once every 2 to 5 minutes, including water level measurement. The pumping rate shall remain below 1 L/min during monitoring and sampling procedures. This is verified by periodically filling a one-Liter graduated cylinder and recording the rate, adjusting the pump as necessary. The water column within the well should remain within 5% of the static height during the purge and sample process, if this cannot be achieved, the pump rate will be reduced until the water level stabilizes. The following conditions must be met in three consecutive readings prior to sampling:

•	рН	+/- 0.1 standard units
•	Specific Conductivity	+/- 10.0 mS/cm for values < 1,000 mS/cm +/- 20.0 mS/cm for values > 1,000 mS/cm
•	DO	+/- 0.05 mg/L for values < 1 mg/L +/- 0.2 mg/L for values > 1 mg/L
•	Temperature	+/- 0.1 degrees Celcius
•	ORP	+/- 10 mV

Groundwater samples are collected in containers specified by the laboratory for the analyses established at the Site, and in accordance with State of Washington regulations or guidelines. Sample containers are labeled with site name, well identification, and date of collection information. Each sample is documented on a *Chain of Custody* (""COC") form, and immediately placed in an iced cooler (maintained at 4 degrees Celcius or less) for transport to a certified laboratory for analysis. Please note that any purge water suspected or confirmed to contain concentrations above the MTCA Cleanup Levels is drummed and left on Site

Please feel free to contact the Aerotech Geologist/Hydrogeologist, Mr. James McDermott, at (425) 686-0032, or the Aerotech Environmental Scientist/Field Sampling Coordinator, Mr. Nicholas Gerkin, at (206) 482-2287, if you have questions regarding work completed at this Site.

ELEVATION SURVEY DATA

FIELD CREW: NAG & RW

PROJECT NAME: Fife RV Center

DATE: 11/11/16

PROJECT ADDRESS:

3410 Pacific Highway East, Fife, WA

www. AerotechEnvironmental.com RIM ELEVATION SURVEY RECORD

Eleva	ition Survey Using Catch Basin	(CB) Elevation as the known v	alue (8 Feet	Above MSL)	
MW1 Station 1 Rim Elevation Survey	MW1 Measurement (H1) Feet 4.679	CB Measurement (H2) Feet 5.452	ΔH Feet 0.773	ΔH + CB Elevation (H2) Feet 8.773	MW1 Rim Elevation: 8.77
MW2 Station 1 Rim Elevation Survey	MW2 Measurement (H1) Feet 3.633	CB Measurement (H2) Feet 5.452	ΔH Feet 1.819	ΔH + CB Elevation (H2) Feet 9.819	MW2 Rim Elevation: 9.82
MW3 Station 1 Rim Elevation Survey	MW3 Measurement (H1) Feet 3.660	CB Measurement (H2) Feet 5.452	ΔH Feet 1.792	ΔH + CB Elevation (H2) Feet 9.792	MW3 Rim Elevation: 9.79
MW4 Station 1 Rim Elevation Survey	MW4 Measurement (H1) Feet 2.920	CB Measurement (H2) Feet 5.452	ΔH Feet 2.532	ΔH + CB Elevation (H2) Feet 10.532	MW4 Rim Elevation: 10.53

WELLHEAD ELEVATION SURVEY RECORD

Eleva	tion Survey Using Catch Basin	(CB) Elevation as the known v	alue (8 Feet /	Above MSLJ	Ļ
MW1 Station 1 Rim Elevation Survey MW1 Station 2 Rim Elevation Survey MW1 Station 3	MW1 Measurement (H1) Feet 5.080 MW1 Measurement (H1) Feet 4.891 MW1 Measurement (H1)	CB Measurement (H2) Feet 5.452 CB Measurement (H2) Feet 5.261 CB Measurement (H2)	ΔH Feet 0.372 ΔH Feet 0.370 ΔH	ΔH + CB Elevation (H2) Feet 8.372 ΔH + CB Elevation (H2) Feet 8.370 ΔH + CB Elevation (H2)	MW1 Calculated Wellhead Elevation:
Rim Elevation Survey	Feet 5.060	Feet 5.432	Feet 0.372	Feet 8.372	5.01
MW2 Station 1 Rim Elevation Survey	MW2 Measurement (H1) Feet 4.040	CB Measurement (H2) Feet 5.452	ΔH Feet 1.412	ΔH + CB Elevation (H2) Feet 9.412	MW2 Calculated
MW2 Station 2 Rim Elevation Survey	MW2 Measurement (H1) Feet 3.860	CB Measurement (H2) Feet 5.261	ΔH Feet 1.401	ΔH + CB Elevation (H2) Feet 9.401	Wellhead Elevation:
MW2 Station 3 Rim Elevation Survey	MW2 Measurement (H1) Feet 4.032	CB Measurement (H2) Feet 5.432	ΔH Feet 1.400	ΔH + CB Elevation (H2) Feet 9.400	9.40
					
MW3 Station 1 Rim Elevation Survey	MW3 Measurement (H1) Feet 4.020	CB Measurement (H2) Feet 5.452	ΔH Feet 1.432	ΔH + CB Elevation (H2) Feet 9.432	MW3 Calculated
MW3 Station 2 Rim Elevation Survey	MW3 Measurement (H1) Feet 3.834	CB Measurement (H2) Feet 5.261	ΔH Feet 1.427	ΔH + CB Elevation (H2) Feet 9.427	Wellhead Elevation:
MW3 Station 3 Rim Elevation Survey	MW3 Measurement (H1) Feet 3.994	CB Measurement (H2) Feet 5.432	ΔH Feet 1.438	ΔH + CB Elevation (H2) Feet 9.438	9.43

ELEVATION SURVEY DATA

PROJECT NAME: Fife RV Center FIELD CREW: NAG & RW

DATE: 11/11/16

PROJECT ADDRESS: 3410 Pacific Highway East, Fife, WA

www. AerotechEnvironmental.com

MW4 Station 1	MW4 Measurement (H1)	CB Measurement (H2)	ΔΗ	ΔH + CB Elevation (H2)	1
Rim Elevation Survey	Feet	Feet	Feet	Feet	
Killi Elevation Survey	3.315	5.452	2.137	10.137	MW4
MW4 Station 2	MW4 Measurement (H1)	CB Measurement (H2)	ΔΗ	ΔH + CB Elevation (H2)	Calculated
Rim Elevation Survey	Feet	Feet	Feet	Feet	Wellhead
Milli Elevation Survey	3.144	5.261	2.117	10.117	Elevation:
MW4 Station 3	MW4 Measurement (H1)	CB Measurement (H2)	ΔΗ	ΔH + CB Elevation (H2)	1
Rim Elevation Survey	Feet	Feet	Feet	Feet	10.12
	3.311	5.432	2.121	10.121	
					<u> </u>
Anus Ourier 4	MW5 Measurement (H1)	CB Measurement (H2)	ΔΗ	ΔH + CB Elevation (H2)	1
MW5 Station 1 Rim Elevation Survey	Feet `´	Feet	Feet	Feet	
	2.161	5.452	3.291	11,291	MW5
MW5 Station 2	MW5 Measurement (H1)	CB Measurement (H2)	ΔΗ	ΔH + CB Elevation (H2)	Calculated
	Feet `´	Feet	Feet	Feet `´	Wellhead
Rim Elevation Survey	1.994	5.261	3.267	11.267	Elevation:
MW5 Station 3	MW5 Measurement (H1)	CB Measurement (H2)	ΔΗ	ΔH + CB Elevation (H2)	11,27
Rim Elevation Survey	Feet	Feet	Feet	Feet	11.27
Rim Elevation Survey	2.160	5.432	3.272	11.272	
		 			
MW6 Station 1	MW6 Measurement (H1)	CB Measurement (H2)	ΔН	ΔH + CB Elevation (H2)	
Rim Elevation Survey	Feet	Feet	Feet	Feet	MW6
Tan Lievadon Survey	2.053	5.452	3.399	11.399	Calculated
MW6 Station 2	MW6 Measurement (H1)	CB Measurement (H2)	ΔН	ΔH + CB Elevation (H2)	Wellhead
Rim Elevation Survey	Feet	Feet	Feet	Feet	Elevation:
Killi Cievation Survey	1.891	5.261	3.370	11.370	Elevation.
MW6 Station 3	MW6 Measurement (H1)	CB Measurement (H2)	ΔΗ	ΔH + CB Elevation (H2)	11.40
Rim Elevation Survey	Feet	Feet	Feet	Feet	''"
Min Elevation Survey	2.038	5.432	3.394	11.394	1

Wellhead Elevations were calculated by averaging the 2 nearest measurements within 0.005 feet of one another.

GROUNDWATER MONITORING WELL GAUGING RECORD

FIELD CREW: NAG PROJECT NAME: Fife RV Center

DATE: 11/18/16 PROJECT ADDRESS: 3410 Pacific Highway East, Fife, WA

Well ID	Time	Wellhead Elevation	Depth to Water	Groundwater Elevation	Depth of Well	Well Diameter	Comments
	hh:mm	Feet Above MSL	Feet Below TOC	Feet Above MSL	Feet Below TOC	Inches	-
MW1	8:08	8.37	1.37	7.00	14.4	2	Well vaults, seals, bolts and plugs are in brand new condition.
MW2	8:13	9.40	2.53	6.87	14.2	2	Well vaults, seals, bolts and plugs are in brand new condition.
MW3	8:15	9.43	2.19	7.24	14.6	2	Well vaults, seals, bolts and plugs are in brand new condition.
MW4	8:17	10.12	3.31	6.81	14.5	2	Well vaults, seals, bolts and plugs are in brand new condition.
MW5	8:12	11.27	5.17	6.10	17.5	2	Well vaults, seals, bolts and plugs are in brand new condition.
MW6	8:11	11.40	4.72	6.68	17.5	2	Well vaults, seals, bolts and plugs are in brand new condition.

EXPLANATION

MSL = Mean Sea Level

TOC - Top of Casing

GROUNDWATER MONITORING WELL LOW FLOW SAMPLING FIELD LOG

FIELD CREW: NAG

PROJECT NAME: Fife RV Center

DATE: 11/18/16

PROJECT ADDRESS:

3410 Pacific Highway East, Fife, WA

MV	V-1]					
Time	DTW.	Purge Rate	Temperature	Specific Conductivity	DO	рН	ORP
hr:min	feet	mL/min	°C	mS/cm	mg/L	unit	mV
08:08	1.37	••					
08:40	1.92	225	14.6	0.70	0.72	6.79	266.7
08:42	1.93	225	14.7	0.73	0.58	6.78	275.0
08:44	1.94	225	14.3	0.73	0.51	6.77	274.5
08:46	1.94	225	14.6	0.73	0.48	6.75	273.0
08:48	1.94	225	14.5	0.74	0.46	6.74	273.0
08:50	1.94	225	14.6	0.74	0.45	6.74	274.1
Ecology Paramet	ter Limits (3 Conse	cutive Readings)	+/- 0.1	+/- 0.1	+/- 0.05	+/- 0.1	+/- 10
08:55	SAMPLE		••				

Comments:

Interface Probe was utilized on 11/30/16. No free product was detected.

M۱	N-2	BIS684					
Time	DTW	Purge Rate	Temperature	Specific Conductivity	DO	рН	ORP
hr:min	feet	mL/min	°C	mS/cm	mg/L	unit	mV
08:13	2.53		-			••	
10:49	3.00	200	14.1	0.65	0.48	6.74	-195.1
10:51	3.07	200	14.1	0.66	0.39	6.74	-223.8
10:53	3.13	200	14.1	0.66	0.34	6.73	-235.6
10:55	3.18	200	14.0	0.66	0.35	6.73	-242.3
10:57	3.21	200	14.0	0.67	0.33	6.73	-246.1
10:59	3.22	200	14.1	0.67	0.31	6.73	-249.3
Ecclogy Param	eter Limits (3 Conse	cutive Readings)	+/- 0.1	+/- 0.1	+/- 0.05	+/- 0.1	+/- 10
11:05	SAMPLE				••		

Comments:

Interface Probe was utilized on 11/30/16. No free product was detected.

GROUNDWATER MONITORING WELL LOW FLOW SAMPLING FIELD LOG

FIELD CREW: NAG

PROJECT NAME: Fife RV Center

DATE: 11/18/16

PROJECT ADDRESS:

3410 Pacific Highway East, Fife, WA

MW-3]					
Time	DTW	Purge Rate	Temperature	Specific Conductivity	DO	рН	ORP
hr:min	feet	mL/min	°C	mS/cm	mg/L	unit	mV
08:15	2.19	••			••		••
11:14	2.45	200	13.6	0.80	0.54	6.77	-154.8
11:16	2.48	200	14.0	0.80	0.32	6.78	-175.7
11:18	2.52	200	14.1	0.81	0.25	6.77	-200.7
11:20	2.55	200	14.2	0.81	0.26	6.77	-224.8
11:22	2.57	200	14.3	0.81	0.26	6.77	-237.4
11:24	2.59	200	14.3	0.81	0.25	6.77	-247.0
11:26	2.61	200	14.4	0.81	0.25	6.76	-252.8
11:28	2.63	200	14.4	0.81	0.24	6.76	-257.5
11:30	2.64	200	14.5	0.81	0.26	6.77	-260.5
cology Paramet	er Limits (3 Conse	ecutive Readings)	+/- 0.1	+/- 0.1	+/- 0.05	+/- 0.1	+/- 10
11:35	SAMPLE				••		

Co	m	m	e	n	ts	:

Interface Probe was utilized on 11/30/16. No free product was detected.

MW-4 Time DTW			Temperature			рН	ORP
		Purge Rate		Specific Conductivity	DO		
hr:min	feet	mL/min	°C	°C mS/cm		unit	mV
08:17	3.31					••	
10:19	3.69	200	13.7	0.634	0.38	6.68	-195.2
10:21	3.80	200	13.9	0.635	0.36	6.68	-213.1
10:23	3.86	200	13.7	0.635	0.35	6.66	-327.7
10:25	3.92	200	13.7	0.635	0.35	6.66	-243.9
10:27	3.98	200	13.7	0.636	0.34	6.67	-248.6
10:29	4.02	200	13.8	0.640	0.38	6.67	-250.9
Ecology Parameter Limits (3 Consecutive Readings)		+/- 0.1	+/- 0.1	+/- 0.05	+/- 0.1	+/- 10	
10:35	SAMPLE		••		-		

Comments:

Interface Probe was utilized on 11/30/16. No free product was detected.

GROUNDWATER MONITORING WELL LOW FLOW SAMPLING FIELD LOG

FIELD CREW: NAG

PROJECT NAME: Fife RV Center

DATE: 11/18/16

PROJECT ADDRESS:

3410 Pacific Highway East, Fife, WA

MW-5							
Time	WTD	Purge Rate	Temperature	Specific Conductivity	DO	рН	ORP
hr:min	min feet mL/min °C		mS/cm mg/L		unit	mV	
08:12	5.17				••		••
09:48	5.68	225	13.5	0.540	0.28	6.82	-248.4
09:50	5.70	225	13.4	0.561	0.27	6.79	-255.8
09:52	5.72	225	13.5	0.569	0.26	6.79	-260.1
09:54	5.74	225	13.5	0.594	0.25	6.77	-263.0
09:56	5.75	225	13.5	0.592	0.27	6.77	-265.6
Ecology Parame	ster Limits (3 Cons	ecutive Readings)	+/- 0.1	+/- 0.1	+/- 0.05	+/- 0.1	+/- 10
10:00	SAMPLE			••	••		

Comments:

Interface Probe was utilized on 11/30/16. No free product was detected.

MW-6							
Time	DTW	Purge Rate	Temperature	Specific Conductivity	DO	рН	ORP
hr:min	feet	mL/min	°C	mS/cm	mg/L	unit	m∨
08:11	4.72				**	••	
09:12	5.11	275	13.3	0.461	0.29	6.94	-224.4
09:14	5.24	275	13.3	0.453	0.25	6.92	-237.9
09:16	5.31	275	13.2	0.449	0.22	6.91	-242.5
09:18	5.34	275	13.0	0.448	0.22	6.91	-245.2
09:20	5.35	275	13.4	0.446	0.18	6.92	-245.1
09:22	5.35	275	13.3	0.446	0.17	6.91	-244.9
09:24	5.35	275	13.3	0.446	0.18	6.91	-244.6
Ecology Parameter Limits (3 Consecutive Readings)		+/- 0.1	+/- 0.1	+/- 0.05	+/- 0.1	+/- 10	
09:25	SAMPLE	••				••	

Comments:

Interface Probe was utilized on 11/30/16. No free product was detected.

FREE PRODUCT GAUGING RECORD

FIELD CREW: NAG PROJECT NAME: Fife RV Center

DATE: 11/30/16 PROJECT ADDRESS: 3410 Pacific Highway East, Fife, WA

Well ID	Time	Depth to NAPL	Depth to Water	NAPL Thickness	Depth of Well	Well Diameter	Comments
-	hh:mm	Feet Below TOC	Feet Below TOC	Feet Above MSL	Feet Below TOC	Inches	-
MW1	15:55	ND	1.46	0.00	14.40	2	Well vaults, seals, bolts and plugs are in brand new condition.
MW2	16:04	ND	2.70	0.00	14.20	2	Well vaults, seals, bolts and plugs are in brand new condition.
MW3	16:06	ND	2.33	0.00	14.60	2	Well vaults, seals, bolts and plugs are in brand new condition.
MW4	16:03	ND	3.48	0.00	14.50	2	Well vaults, seals, bolts and plugs are in brand new condition.
MW5	16:00	ND	5.30	0.00	17.50	2	Well vaults, seals, bolts and plugs are in brand new condition.
MW6	15:57	ND	4.89	0.00	17.50	2	Well vaults, seals, bolts and plugs are in brand new condition.

EXPLANATION

NAPL - Non-Aqueous Phase Liquid

TOC - Top of Casing ND - Not Detected