

November 11, 2016

Project No. 073-93368-06.09A

Harry Grant Riddell Williams P.S. 1001 Fourth Avenue, Suite 4500 Seattle, WA 98154

RE: PERFORMANCE GROUNDWATER MONITORING REPORT – SPRING 2016 SEMI-ANNUAL SEA-TAC DEVELOPMENT SITE (MASTERPARK LOT C)

Dear Harry:

Golder Associates Inc. (Golder) completed performance groundwater monitoring at the Sea-Tac Development Site (MasterPark Lot C) May 3 and 4. Groundwater sampling was conducted in accordance with the Compliance Monitoring Plan, Sea-Tac Development Site (Golder 2011)¹. Groundwater samples were collected from monitoring wells, MW-06, MW-07, MW-09, MW-12, MW-13, MW-17A, MW-18, MW-19, MW-20, MW-21, MW-22, and PORT-MW-B (Figure 1). Monitoring wells MW-07, MW-09, MW-12, MW-13, MW-17A, MW-18, and MW-22 are completed to monitor the approximate groundwater plume boundary. Monitoring wells MW-06, MW-19, MW-20, MW-21, and PORT-MW-B are completed to monitor background concentrations. Static water elevations were collected at all site wells, which also include MW-01, MW-05, MW-08A, MW-10, MW-11, MW-14, MW-15, MW-16 and MW-23.

1.0 SAMPLING PROTOCOL

Groundwater sampling was conducted in accordance with the Compliance Monitoring Plan, Sea-Tac Development Site (Golder 2011)¹, and included the following activities:

- Measurement of static water elevations at monitoring wells.
- Well purging to ensure sample representativeness with the newly installed dedicated submersible bladder pumping systems.
- Measurement of field parameters including: pH, specific conductance, temperature, dissolved oxygen, and turbidity.
- Collection of all purge water in appropriate containers for on-site storage prior to disposal.
- Collection of representative and quality assurance / quality control (QA/QC) samples in appropriate containers.
- Analyses of groundwater for volatile organic compounds (VOCs, EPA Method 8260C): gasoline range hydrocarbons, benzene, toluene, ethylbenzene, xylene, ethylene dibromide (EDB), naphthalene, and n-hexane; and for diesel and motor oil range Northwest Total Petroleum Hydrocarbons (Method NWTPH-D).

111116ar1_spring semi-annual sampling 2016.docx

¹Golder Associates Inc. (Golder). 2011. Attachment E: Compliance Monitoring Plan Sea-Tac Development Site, SeaTac Washington. November 2.

Appendix A presents the laboratory analytical reports for all analyses. Sampling activities were documented on Sample Integrity Data Sheets (SIDS), which are provided in Appendix B. Appendix C presents the Data Validation Memorandum. Appendix D provides data tables and trend graphs for all sampling events. Table 1 presents water depth measurements and elevations that were collected from wells prior to sampling activities. Table 2 shows a summary of the field parameters and laboratory analytical results for each groundwater sample collected in May 2016.

2.0 SPRING 2016 SEMI-ANNUAL GROUNDWATER SAMPLING RESULTS

Following sample collection, all bottles were sealed, labeled, and placed in an iced cooler until delivery to the laboratory. All groundwater samples from monitoring wells were transported under chain-of-custody procedures to Analytical Resources Incorporated (ARI), of Tukwila, Washington, for analysis. Upon receipt of laboratory data reports, data underwent a data validation review. Results were compared to State of Washington Model Toxics Control Act (MTCA) Method A or B clean-up levels and Secondary Maximum Containment Levels (MCLs), whichever value is lower.

The analytical results indicate that groundwater conditions have improved significantly from those observed during the historical groundwater monitoring during the Remedial Investigation (RI) and since the startup of the In-situ Air Sparging (IAS)-Soil Vapor Extraction (SVE) system. Table 2 presents the field parameter measurements and laboratory analytical results for each groundwater sample collected in May 2016.

Results for NWTPH-Gasoline exceeded the MTCA Method A limit for groundwater when benzene is present (0.8 milligrams per liter [mg/L]) in wells MW-07 and MW-22, and the field duplicate at MW-22 (MW-22-DUP). NWTPH-Gasoline was also detected in MW-18, but was less than the MTCA standard. NWTPH-Gx was not detected in wells MW-06, MW-09, MW-12, MW-13, MW-17A, MW-19, MW-20, MW-21, and PORT-MW-B.

The MTCA Method A limit for benzene (5 μ g/L) was exceeded in wells MW-07 and MW-18. Benzene was also detected in MW-09, MW-17A, MW-22, and the field duplicate at MW-22 (MW-22-DUP), but was less than the MTCA standard. Benzene was not detected in wells MW-06, MW-12, MW-13, MW-19, MW-20, and MW-21. Benzene was detected at a trace level (0.08 μ g/L) at PORT-MW-B, which is below the laboratory Limit of Quantitation (LOQ) of 0.20 μ g/L. Benzene has not been detected above MTCA Method A clean-up levels (5 μ g/L) in MW-18 for several monitoring periods, but was at 8 μ g/L in this spring 2016 sampling period.

There were detections of toluene and/or ethylbenzene in wells MW-07, MW-09 (ethylbenzene only), MW-18, MW-22, MW-22-DUP, and PORT-MW-B (ethylbenzene only), but the values did not exceed the MTCA standard (640 μ g/L for toluene and 700 μ g/L for ethylbenzene) except for ethylbenzene in MW-22 and MW-22-DUP. Toluene and ethylbenzene were not detected in wells MW-06, MW-09 (toluene only), MW-12, MW-13, MW-17A, MW-19, MW-20, MW-21, and PORT-MW-B (toluene only).

Results for total xylenes exceeded the MTCA Method A standard (1,000 μ g/L) in wells MW-22 and MW-22-DUP. Xylenes were detected, but below the standard in MW-07, MW-13, MW-18, and PORT-MW-B and were not detected in wells MW-06, MW-09, MW-12, MW-17A, MW-19, MW-20, and MW-21.

Ethylene dibromide (EDB) results were not detected for all samples. The reporting limits were raised for samples from MW-07, MW-22 and MW-22-DUP due to high levels of BTEX. More information is provided in the Data Validation Memorandum in Appendix C. The method detection limits (MDLs) for EDB for all samples were greater than the MTCA clean-up levels.

N-hexane was detected, and below the MTCA Method B level (480 μ g/L) in wells MW-06, MW-07, MW-17A, MW-18, MW-22, and MW-22-DUP. The N-hexane detections at MW-06 and MW-17A were at trace levels (0.19 and 0.11 μ g/L, respectively) both below the laboratory LOQ of 0.20 μ g/L. N-hexane was not detected in wells MW-09, MW-12, MW-13, MW-19, MW-20, MW-21, and PORT-MW-B.

Naphthalene was detected above the MTCA limit (160 μ g/L) in wells MW-22 and MW-22-DUP. Naphthalene was also detected, but below the MTCA limit, in wells MW-07, MW-17A, MW-18, and PORT-MW-B. Naphthalene was not detected in wells MW-06, MW-09, MW-12, MW-13, MW-19, MW-20, and MW-21.

Results for NWTPH-Diesel were detected above the MTCA Method A limit (0.5 mg/L) in wells MW-07, MW-22, and MW-22-DUP. NWTPH-Diesel was detected, but below the MTCA limit in wells MW-09, MW-12, MW-13, and MW-18. NWTPH-Diesel was not detected in MW-06, MW-17A, MW-19, MW-20, MW-21, and PORT-MW-B. The highest concentrations of diesel were detected in groundwater from monitoring well MW-07 at 6.5 mg/L, while all other diesel concentrations were less than 3 mg/L or not detected. NWTPH-Motor Oil was not detected (<0.20 mg/L) for all samples except for sample MW-07, which was detected below the MTCA limits at 0.30 mg/L.

3.0 DATA QUALITY ASSURANCE / VALIDATION

Data underwent a data validation review and is presented in detail in Appendix C. In general, the data were acceptable, except for the following:

- Samples MW-07, MW-22, and MW-22-DUP had to be diluted due to high levels of analytes.
- Laboratory noted that the May 13, 2016 VOCs continuing calibration verification (CCV) was out of control high for naphthalene. The laboratory flagged all associated samples that had detections with a "Q" qualifier. As per the guidelines, associated samples with detections were qualified as estimated (J). Non-detections do not require qualification.
- The trip blank had a trace detection of Toluene at 0.07 J μg/L below the LOQ. The field blank FB-050416 had detections of Ethylbenzene and m,p-Xylene at 0.09 J and 0.23 J μg/L. Associated samples with detections of Toluene, Ethylbenzene, and m,p-Xylene between the Detection Limit (DL) and the Limit of Quantification were qualified as non-detect (U) at the LOQ. No action was taken for results greater than the LOQ. Refer to Appendix C for details.
- Diesel and Motor Oil results for MW-07, MW-09, MW-13, MW-18, MW-12, MW-22, and MW-22-DUP were qualified as estimated (J) due to unidentifiable hydrocarbons.
- Results for QA/QC samples (field blanks, trip blanks, and field duplicate) were acceptable except as discussed above. No other issues were noted.

4.0 SUMMARY

The analytical results for the spring 2016 semi-annual groundwater sampling indicate that there continues to be significant improvements to the groundwater conditions following the startup of the IAS-SVE system and since the first quarter (February 2014) groundwater sampling event. The first sampling event in February 2014 had 24 results that were greater than the MTCA clean-up levels, while the most recent sampling event in May 2016 had only 9 results, 14 including duplicate results, above MTCA clean-up levels out of 120 results. Overall, concentrations are trending downward as shown in the historical data tables and graphs in Appendix D.

The only on-site wells containing compounds with results above MTCA clean-up levels in May 2016 were MW-07 and MW-18. At MW-07, although there was a decrease in gasoline and benzene with an observed increase in the diesel concentrations compared to December 2015, all three results remained above the MTCA clean-up levels. MW-18, that was in the source leak area, had an increase in benzene levels showing change of a trending stabilization over the previous four sampling events, with the May 2016 benzene level slightly above the MTCA clean-up level with a concentration of 8.0 μ g/L. Even with gasoline and diesel results higher than observed in December 2015, the results of gasoline, benzene, and diesel are all lower than the first sampling event in February 2014. The only off-site well that was sampled and contained compounds with results above the MTCA clean-up levels in May 2016 was MW-22; although,

two off-site monitoring wells (MW-15 and MW-16) that had detected contaminants over MTCA clean-up levels during the RI, are not sampled for performance monitoring.

Wells MW-12 and MW-13 showed the greatest drop in concentrations since the startup of the IAS-SVE system with NWTPH-Gx levels going from 8.6 mg/L to <0.10 mg/L and 14 mg/L to <0.10 mg/L, respectively. Benzene in MW-12 went from 79 μ g/L to <0.20 μ g/L. Toluene, ethylbenzene, total xylenes, and naphthalene in MW-12 and MW-13 also showed significant decreases in concentrations. MW-09 had a significant decrease in concentrations from the December 2015 sampling and had the lowest observed levels of gasoline (non-detect), benzene (0.15 μ g/L), and diesel (220 μ g/L) recorded in recent history dating back to the final RI monitoring event in March 2010. Tolulene, total xylenes, and naphthalene were other analytes measured at MW-09 with non-detect results observed for the first time since monitoring began.

The wells inside of the IAS and SVE system area have significant reductions and are almost meeting performance goals. Refer to Appendix D for data tables and trend graphs for comparisons of the March 2010 final RI monitoring event with the 2014-2016 performance monitoring results.

If you have any questions or require any additional information, please contact Lee Holder at (425) 883-0777.

Sincerely,

GOLDER ASSOCIATES INC.

Jour Ky declo

Aaron M. Rydecki

Project Environmental Scientist

Lee K. Holder, PE

Tu let Holder

Associate Environmental Engineer

cc: Roger McCracken, McCracken Group

Tamarah Knapp-Hancock, Scarsella Bros. Inc.

Doug Rigoni, SeaTac Investments LLC

AMR/LKH/tp

List of Tables

Table 1 Second Quarter 2016 Groundwater Elevation Data Sea-Tac Development Site, Seatac,

Washington

Table 2 Second Quarter 2016 Groundwater Field Parameters and Analytical Data, Sea-Tac

Development Site, Seatac, Washington

List of Figures

Figure 1 Groundwater Monitoring Locations

List of Appendices

Appendix A
Appendix B
Appendix C
Appendix D

Laboratory Analytical Results
Sample Integrity Data Sheets (SIDS)
Data Validation Memorandum
Data Tables and Trend Graphs

November 2016 073-93368-06.09A

Table 1: Second Quarter 2016 Groundwater Elevation Data Sea-Tac Development Site, Seatac, Washington

			Well Data			Water Levels	5
Sample Location ID	Date/Time Sampled	Total Well Depth (feet bgs)	Screened Interval (feet bgs)	Casing Diameter (inches)	TOC Elevation (feet msl)	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)
MW-01	5/4/2016 6:31	51.0	41-51	2	361.38	48.75	312.63
MW-05	5/3/2016 11:30	58.0	48-58	2	364.26	54.96	309.30
MW-06	5/3/2016 8:19	60.0	50-60	2	369.68	61.41	308.27
MW-07	5/4/2016 6:54	53.5	43.5-53.5	2	358.69	49.05	309.64
MW-08A	5/4/2016 6:47	54.0	44-54	2	359.16	49.56	309.60
MW-09 ^b	5/3/2016 11:37	57.0	47.5-57	2	362.13	-	-
MW-10	5/4/2016 7:18	90.0	80-90	2	360.18	50.98	309.20
MW-11	5/4/2016 6:51	57.0	42-57	2	357.53	47.76	309.77
MW-12	5/4/2016 6:57	67.0	52-67	2	364.83	55.53	309.30
MW-13	5/3/2016 15:43	65.0	50-65	2	365.42	56.3	309.12
MW-14	5/4/2016 6:17	65.0	50-65	2	363.76	54.48	309.28
MW-15	5/4/2016 11:22	65.0	50-65	2	364.67	55.08	309.59
MW-16	5/3/2016 11:15	73.7	64-74	2	377.63	68.51	309.12
MW-17A ^a	5/3/2016 10:57	95.0	80-95	2	394.00	85.21	308.79
MW-18	5/4/2016 6:41	62.0	47-62	2	360.45	51.12	309.33
MW-19	5/3/2016 13:21	58.0	43-58	2	356.61	46.81	309.80
MW-20	5/3/2016 10:40	113.1	103-113	2	416.61	107.56	309.05
MW-21	5/3/2016 9:34	109.8	95-110	2	412.85	104.40	308.45
MW-22	5/4/2016 10:12	95.0	80-95	2	393.31	83.85	309.46
MW-23	5/4/2016 11:29	57.5	42.5-57.5	2	354.94	45.22	309.72
PORT-MW-B ^a	5/4/2016 12:07	99.0	79-99	2	400.00	90.55	309.45

Notes:

- Not measured or not available feet bgs Feet below ground surface feet bmp Feet below measuring point feet msl Feet above mean sea level TOC Top of casing inside PVC well

Well not surveyed, elevation estimated.

Top of pump is above water level - not measured.

November 2016 073-93368-06.09A

Table 2: Second Quarter 2016 Groundwater Field Parameters and Analytical Data, Sea-Tac Development Site, Seatac, Washington

					Field Pa	arameter	s							Anal	ytical Data				
Sample Location ID	Date/Time Sampled ^c	TOC Elevation (feet msl)	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)	pH (standard units)	Temperature (°C)	Conductivity (µmhos/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	NWTPH-Gasoline (mg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)	EDB (ethylene dibromide) (µg/L) ^f	N-hexane (µg/L)	Naphthalene (µg/L)	NWTPH-Diesel (mg/L)	NWTPH-Motor Oil (mg/L)
MW-06b, j,k	5/3/2016 8:50	369.7	61.4	308.3	6.36	13.9	396	10.59	-	<0.10	<0.20	<0.20	<0.20	<0.40	<0.20	0.19 J	<0.50	<0.10	<0.20
MW-07 ^b	5/4/2016 14:10	358.7	49.1	309.6	6.68	16.0	640	1.02	4.57	12	30	500	170	970	<0.20	150	68	6.5 J	0.30 J
MW-09 ^{b,j}	5/3/2016 15:18	362.1	-	-	6.51	18.3	221	4.68	1.08	<0.10	0.15 J	<0.20	0.71	<0.40	<0.20	<0.20	<0.50	0.22 J	<0.20
MW-12 ^{b,m}	5/4/2016 9:05	364.8	55.5	309.3	7.68	15.1	226	7.72	3.48	<0.10	<0.20	<0.20	<0.20	<0.40	<0.20	<0.20	<0.50	0.18 J	<0.20
MW-13 ^b	5/3/2016 16:25	365.4	56.3	309.1	7.79	15.8	194	14.18	1.14	<0.10	<0.20	<0.20	<0.20	0.44	<0.20	<0.20	<0.50	0.12 J	<0.20
MW-17A ^{a,b}	5/3/2016 12:30	394.0	85.2	308.8	6.51	13.1	132	4.60	8.41	<0.10	0.33	<0.20	<0.20	<0.40	<0.20	0.11 J	0.71 J	<0.10	<0.20
MW-18 ^b	5/4/2016 8:13	360.5	51.1	309.3	7.27	14.8	513	4.53	4.77	0.22	8.0	5.5	8.2	29	<0.20	1.5	1.5	0.37 J	<0.20
MW-19 ^b	5/3/2016 11:20	356.6	46.8	309.8	6.79	15.2	390	0.87	1.23	<0.10	<0.20	<0.20	<0.20	<0.40	<0.20	<0.20	<0.50	<0.10	<0.20
MW-20 ^b	5/3/2016 14:05	416.6	107.6	309.1	6.58	13.3	138	5.31	3.55	<0.10	<0.20	<0.20	<0.20	<0.40	<0.20	<0.20	<0.50	<0.10	<0.20
MW-21 ^b	5/3/2016 10:20	412.9	104.4	308.5	6.28	13.7	315	9.3	3.86	<0.10	<0.20	<0.20	<0.20	<0.40	<0.20	<0.20	<0.50	<0.10	<0.20
MW-22 ^b	5/4/2016 10:55	393.3	83.9	309.5	6.84	13.3	294	0.39	3.61	15	3.8	5.0	780	1403	<0.20	8.6	470 J	2.8 J	<0.20
MW-22 Duplicate ^t	5/4/2016 11:00	-	-	-	-	-	-	-	-	15	3.8	5.0	830	1503	<0.20	8.4	500 J	3 J	<0.20
PORT-MW-B ^a	5/4/2016 12:50	400.0	90.6	309.5	6.72	13.2	219	2.59	7.38	<0.10	0.08 J	<0.20	0.74	0.50	<0.20	<0.20	0.83 J	<0.10	<0.20
Cl	ean-up Level			MTCA N	lethod A	for Grou	ndwater (un	restricted la	nduse)	0.8 ^d /1.0 ^e	5 ⁹	1000 ^g	700 ^g	1000 ^h	0.01 ^h	NSA	160	0.5	0.5
O.	cail-up Ecvei			MTCA N	lethod B	for Grou	ndwater (un	restricted la	nduse)	NSA	5 ⁱ	640	800	1600	0.022	480	160	NSA	NSA

Notes:			
feet bgs	Feet below ground surface	-	Not measured or not available
feet bmp	Feet below measuring point		Result exceeds Clean-up Level (CUL)
feet msl	Feet above mean sea level	mg/L	Milligrams per liter
a	Well not surveyed, elevation estimated.	μg/L	Micrograms per liter
b	IAS/SVE not in operation.	NTU	Nephelometric Turbidity Unit
С	Water levels collected at various times prior to sampling (see Table 1). Date/time is sampling time.	µmhos/cm	Micromhos per centimeter
d	When benzene is present.	<	Analyte not detected above the reporting limit shown
е	When benzene is not present.	MTCA	Model Toxics Control Act
f	Reported at Method Detection Limit (MDL). The MDL is greater than the MTCA CULs.	MCL	Maximum Containment Level
g	Inclusive of 40 CFR 141.61 Federal Law for drinking water MCLs	NSA	No Standard Available
h	Value is more protective than Federal MCLs.	TOC	Top of casing inside PVC well
i	MTCA 173-340-705(5): Adjustments to cleanup levels based on applicable laws.	°C	Degrees Celsius
j	Top of pump is above water level - not measured.	J	The constituent was positively identified and detected; however, the concentration reported is an estimated value because the result is less than the quantitation limit or quality control criteria were not met.
k	Well not sampled, attempted to sample with bailer	UJ	The constituent was analyzed for, but was not detected above the reported sample quantitation limit; however, the value reported is an estimated value because the result is less than the quantitation limit or quality control criteria were not met.
m	Well sampled with bailer, no field parameters collected	J+	The constituent was positively identified and detected; however, the concentration reported is an estimated value because the result may be biased high.

APPROVED

В

APPENDIX A LABORATORY ANALYTICAL RESULTS

May 19, 2016

Gary Zimmerman Golder Associates Inc. 18300 NE Union Hill Road Suite 200 Redmond, WA 98052

Re: Project: Master Park Lot C ARI Job Nos.: BAE2

Dear Gary:

Please find enclosed chain of custody records (COC) and the final results for the project referenced above. Analytical Resources, Inc. (ARI) accepted fourteen water samples and trip blanks in good condition on May 4, 2016.

The samples were analyzed for NWTPH-Dx VOCs and NWTPH-Gx plus BTEX, as requested on the COC. Quality control analyses are included for your review.

The May 13, 2016 VOCs CCAL is out of control high for Naphthalene. All associated samples that contain this analyte have been flagged with a "Q" qualifier.

The surrogate recovery in MB-051316A is out of control low for d8-Toluene, and Bromofluorobenzene. All other surrogate recoveries are in control, no further action was taken.

There were no other anomalies associated with these analyses.

A copy of these reports and all associated raw data will remain electronically on file at ARI. Please feel free to contact me if you have any questions or require any additional information.

Respectfully,

ANALYTIÇAL RESOURCES, INC.

Amanda Volgardsen

-for-

Kelly Bottem

Client Services Manager

(206) 695-6211

kellyb@arilabs.com

10/42

Chain of Custody Record & Laboratory Analysis Request

Oliaill of Oustony Hecold & Eabolatoly	2 C Lab	July r	بابحانا فاقراهانا	ıcdacər								٠
ARI Assigned Number AE2	Turn-around Requ	Turn-around Requested:			Page:	-	of	7			Analytical Resources, Incorporated Analytical Chemists and Consultants	orated cultants
ARI Client Company:	27	Phone:	+		Date: 5/4 (2016	910	lce Present?	2			4611 30uttl 134ttl Flace, 3uite 100 Tukwila, WA 98168 206-695-6200 206-695-6201 (fax)	(fav)
Client Contact: Lee Holder, J. Lamberts, Aravan Ry dee E.	, Agusar	Sycheck!			No. of Coolers:		Cooler 2 4	2.4			www.arilabs.com	(יומי)
Client Project Name:							1	Analysis Requested	equested		Notes/Comments	
Muslerzant Lot C					ε	7	,					
Client Project #:	Samplers:	7			×9	10h	ðυ	અ	~ Q			
073-43368-06-184A	Rydecki,	i/Lambarts	4.5			63	אַרִיכּה	sh	· -\			
Sample ID	Date	Timė	Matrix	No. Containers	19TWN 3T8	1503by	∂4-N	Naph	HTWN			
Trip Blonks-050316	513/16	ţ	3	3	X	X	X	X				
MPLET C-MW-66-656316		0.650		1+	X	X	×	X	×			
MPLOTC-MW-21-050316		1620		۲	X	X	X	X	X	-		
MPLOTC-MW-20-658316	****	1120		+	X	X	X	メ	义			
- MPLOTC -MW-17A-050316		1234		2.1	X	X	X	X	Ş		MS/MSD Volume	8
HPLOTC- MW-19-050316		1105		+	X	X	X	X	X			
MPLOT(-MW-09-650316		1518		Lt.	×	X	Ź	X	X			
MPLCTC-MW-13-050316	-}	16.25		1+	X	X	X	У	义			
MPLOTC-MW-18-05/0416	5/4/16	6613	3	7	×	Х	X	X	X			
HPLOTZ-MW-12-050416	-	2000	_	7/	ײ	X	У	X	×			
Comments/Special Instructions	Refinquished by (Signature)	Programme of the	0.4	Received by (Signature)	133	why	<u> </u>	Relinquished by: (Signature)	y:		Received by: (Signature)	
Pls. cc. Hambern Cegobenes	rinted Nam	Age Recki		Printed Name:	5	2		Printed Name:			Printed Name:	
Leepholder Conson. Company.	Company:	DER		Company:	ARI	•	0	Company:			Company:	Ī
- Reday cural 26 more of MSA	Date & Time:			Date & Time:	, ,	11 11	١	Date & Time:			Date & Time:	

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for a said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or consigned agreement between ARI and the Client.

1618

5/4/2016

Heuse country work MSA

between Golden and ARI

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Chain of Custody Record & Laboratory Analysis Request

All Comments Special Instructions Comments Special Instructio	ARTICULAR COMPANY. ARXIVELY COMPANY. ARTICULAR COMPANY. ARTICUL	ADI Accismod Nimbou		Downson's					y			•	Analy	Analytical Resources, Incorporated
Alicent Company	All Clerk Comments 4.25 - Bitton 4.25 -	7 JAKE	STANION	nequesteu.			raye.	7		7			Analy	tical Chemists and Consultan
Clean Project Name:	Comments Special Institutions Secret House Counter in the Comments Special Institutions Secret House Counter in the Counter	ARI Client Company:	425-8	Phone: 383 - 077	+		Date: 5/4/2	onle	lce Present	نا ئا			Tukwi	30util 134til Fiace, 3uite 100 ila, WA 98168 95-6200-206-695-6201 (fax)
Chief Project Name	Comments Special instructions Relating Special Special In	ر پو	Ry deck	-			No. of Coolers:		Cooler Temps:	1~1			www.	arilabs.com
Matrix M	Comments Special Institutions Samples: Comments Special Institutions Comments Special Institutions Samples: Comments Comm	Client Project Name:	-						1	Inalysis Re	equested			Notes/Comments
Sample ID Date Time Matrix No Comming 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Sample ID Date Time Matrix No continues \$ 6.0 \$ 2.0 \$	Client Project #:	Samplers.				×	70'	3	7	×C			
Sample ID Date Time Matrix No Containing \$\frac{2}{2} \text{ by } \frac{2}{2}	Sample ID Debte Time Matrix No. Containing \$\frac{F}{F}\$ \$	073-43368-06-09A	Rydeck.	/Lemberts				W 04 178	アロメ	gvor	J- +1.			
MPLOTC - MW-72-050416 5/4/20/6 (1055 W 77 X X X X X X X X X X X X X X X X X	MPLATC - MAY 21-050416 51412016 1055 W 7 X X X X X X X X X X X X X X X X X X	Sample ID	Date	Time		No. Containers		ED8 P	N-46	Maphra	d a mn			
Contract-NAW-3-0-50-416 11000 7 X<	Reat-Num-8-050416 11600 7 X X X X X X X X X X X X X X X X X X	MPLOTC-MW-22-050416	5/4/20016	1055	3	+	Х	X	X	X	X			
PORT-INV-B-050416	React-Now-8-Geotile WRLOTC-FR-6-50416 WRLOTC-FR-6	MPLOTC -MW-22-DUP-0504(6		1160		t	X	×	Х	X	X	-		
MPLOTC-FB-050416 MPLOTC-FB-050416 MPLOTC-FB-050416 MPLOTC-FB-050416 MPLOTC-MN-7-050416 MPLOTC-MN-7-05	MPLOTC-FF-050416 WRLOTC-TWW-7-050416 WRLOTC-TWW-7	PORT-MW-B-050416		1250		+	X	X	×	×	X			
Comments/Special Instructions Comments/Special Instructions Comments/Special Instructions Signature Received by Receive	Comments/Special Instructions Figure 1 of 1 o	MPLOTC- FB-050416		1340		+	×	X	X	X	<u> </u>		-	
Comments/Special Instructions Received by Erry Exp Relinquished by: Recued of Erry Exp Received by Arry Received by: Recued of Signature) Please refer to the company: Company: ARE. ARE. Sometimes Mane: Company: Company: Company: Company: Company: ARE. Sometimes Mane: Company: Company: Company: Company: Company: ARE. Sometimes Mane: Company:	Comments Special Instructions **Eclasy** Error Edge Comments Special Instructions **Received by: **Separate Comments Special Instructions **Received by: **Separate Comments Special Instructions **Received by: **Separate Separate Comments **The Comments Special Instructions **The Instructions **The Comments Special Instructions **The Instructions **The Comments Special Instructions **The I	MPLOTC-MW-7-050496	7	0141	7	t	X	X	X	X	メ			
Comments/Special Instructions *Ecology Erm EDP Please canydeckie Golderan Lee_tholdered out to the content of Company: Company: Act. Comments/Special Instructions Perinted Name: Signature) Printed Name: Company: Company: Company: Company: Company: Act. Stylese & Time: Stylese & Time: Act.	Comments/Special Instructions Filescells of Ether Edge Filescells											-		
Comments/Special Instructions *Ecology Erm EDF Please refer to the current Company: Mark. *Art. *Comments/Special Instructions *Fecilogy Erm EDF Princed Name: Princed Name: Princed	Comments/Special Instructions Relinquished by Ecch of Ecched by Ecch of Ecched by England British Company. Reserved of Lability: ARI will perform all requested services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase or contrary.													
Comments/Special Instructions Relinquished by: Received by the converted service of the company: Received by the converted service of	Comments/Special Instructions Recuired Name: Prince August Extra													
Comments/Special Instructions Relinquished by: Received by Lee of Ether Edge Confidence of Signature) Received by Manager Ether Edge Company: Received by Manager Ether Edge Company: Lee though confidence of Company: Received by Manager Ether Edge Company: Lee though confidence of Company: Company: Date & Time: ARE. Signature) Printed Name: Company: Company: Date & Time: Signature) Frinted Name: Company: ARE. Signature) Frinted Name: Company: ARE. Signature) Frinted Name: Company: ARE. Signature) Frinted Name: Company: Company: ARE.	Comments/Special Instructions Reinquistred W. Signature) Printed Name: Lee_Halder Coulder Company: Company: Date & Time: Aug. Printed Name: Lee_Halder Coulder Company: Printed Name: Lee_Halder Coulder Company: Date & Time: Date & Time: Signature) Printed Name: Lee_Halder Coulder Company: Date & Time: Date & Time: Signature) Printed Name: Company: Date & Time: Date & Time: Signature) Printed Name: Company: Date & Time: Date & Time: Signature) Printed Name: Date & Time: Date & Time: Signature) Printed Name: Date & Time: Date & Time: Signature) Printed Name: Date & Time: Date & Time: Signature) Date & Time: Signature) Date & Time: Date & Time: Signature) Date & Time: Date & Time: Signature) Date & Time: Date & Time: Date & Time: Signature) Date & Time: Date & Time: Signature) Date & Time: Date & Time: Date & Time: Signature) Date & Time: Date & Time: Signature) Date & Time: Signature) Date & Time: Date													
Comments/Special Instructions Relinquished by: Received by the Congrature Signature S	Comments/Special Instructions Palinquisheb Printed Name:						1							
Please refer to the curent Company: ARI. Please to decream Printed Name: Printed Name: Printed Name: Company: Company: Date & Time: ARI. Printed Name: Printed Name: Printed Name: Company: Company: Date & Time: STH 12016 1618 1618 1618 1618	Please rece to the contact is good because the contact is good to the industry. The total liability of ARI, its officers, agents, employees, or successors, airsing out of or in connection with the requested services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or consideration.	Comments/Special Instructions	Relinquished by:	J.	0.1	Received by (Signature)	13	\	ш 🥴	telinquished b Signature)	··		Received	by:
Please refer to the curent Company: MSTA between Collectual Date & Time: ARI. STATZOIG 1618 Date & Time: ARI.	Letter to the company: ARI. Limits of Liability: ARI will perform all requested services by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or collished. Company: Company: Company: Company: Company: Company: Date & Time: ARI. Linits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or collished agreement between ARI and the Client.	P18.CC	•	6 -		Printed Name:	<u> </u>	/" / 3	Δ.	rinted Name:			Printed Na	ame:
ARI. 574/2016 1618 Date & Time: 5-4-14 16 16 16 18	Limits of Liability: ARI will perform all requested services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or colaring and the Client.	-Please		TAGGET A		Company:	1 2	3		ompany:			Company:	
	Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or collising agreement between ARI and the Client.		Date & Time:			Date & Time:	-1 6	16 14	2	late & Time:			Date & Tin	ne:

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Cooler Receipt Form

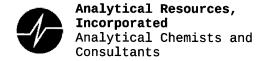
ARICHANT Golder				
ARI Client:		Project Name:		
COC No(s):	NA	Delivered by: Fed-Ex UPS Couri	er Hand Delivered Other:	
Assigned ARI Job No: BAF	=2	Tracking No:		NA
Preliminary Examination Phase:				_ 14/5
Were intact, properly signed and dated	custody seals attached to	the outside of to cooler?	YES	10)
Were custody papers included with the			(VE)	NO
Were custody papers properly filled out			(FE)	
Temperature of Cooler(s) (°C) (recomme			L.	NO
If cooler temperature is out of compliance	e fill out form 00070F		Temp Gun ID#: りゃのこ チ	-l
Cooler Accepted by:		Date:5-4-16 Time:	1614	
	mplete custody forms	and attach all shipping documents		
Log-In Phase:				
Was a known and an ideal of the state of				
Was a temperature blank included in the			YES C	NO
		Wette Gel Packs Baggies Foam B		
Was sufficient ice used (if appropriate)?			NA VES	NO
Were all bottles sealed in individual plas			`	10)
Did all bottles arrive in good condition (u			₹ES ?	NO
Were all bottle labels complete and legib			YES	NO
Did the number of containers listed on C			(YE8	NO
Did all bottle labels and tags agree with a Were all bottles used correct for the requ			YES	NO
Do any of the analyses (bottles) require			Œ8	NO
Were all VQC vials free of air bubbles?.		,	CNA YES	NO
Was sufficient amount of sample sent in				NO2-3
Date VOC Trip Blank was made at ARI		·	ŒS (1/2)	NO 7///
	'ES Date/Time:		NA <u>9/27</u>	710
Trac cample opin syrini.	Date/Time	Equipment:	Split by:	
Samples Logged by:	Date	:	1414	
***	Notify Project Manage	er of discrepancies or concerns **		
Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample ID on COC	
· ·				
	1 .			
Additional Notes, Discrepancies, & Re	solutions:	104 1/		
feabultles in	2043 1	-lip blanks		
By: Date: 5	5-4-16	_		
Small Air Bubbles Peabubbles'	LARGE Air Bubbles	Small → "sm" (<2 mm)		
2лип 2-4 глл	> 4 mm	Peabubbles > "pb" (2 to < 4 mm)		
	8 9 9	Large → "lg" (4 to < 6 mm)		
	l	Headsnace → "hs" (>6 mm)	·····	

0016F 3/2/10 Cooler Receipt Form

Revision 014

BAEZ: 00004

Sample ID Cross Reference Report


ARI Job No: BAE2 Client: Golder

Project Event: 073-93368-06-09A Project Name: Masterpark Lot C

	Sample ID	ARI Lab ID	ARI LIMS ID	Matrix	Sample Date/Time	VTSR
1.	Trip blanks	BAE2A	16-7017	Water	04/27/16	05/04/16 16:18
2.	MPLOTC-MW-06-05-0316	BAE2B	16-7018	Water	05/03/16 08:50	05/04/16 16:18
3.	MPLOTC-MW-21-050316	BAE2C	16-7019	Water	05/03/16 10:20	05/04/16 16:18
4.	MPLOTC-MW-20-050316	BAE2D	16-7020	Water	05/03/16 11:20	05/04/16 16:18
5.	MPLOTC-MW-19-050316	BAE2E	16-7021	Water	05/03/16 14:05	05/04/16 16:18
6.	MPLOTC-MW-09-050316	BAE2F	16-7022	Water	05/03/16 15:18	05/04/16 16:18
7.	MPLOTC-MW-13-050316	BAE2G	16-7023	Water	05/03/16 16:25	05/04/16 16:18
8.	MPLOTC-MW-18-050416	BAE2H	16-7024	Water	05/04/16 08:13	05/04/16 16:18
9.	MPLOTC-MW-12-050416	BAE2I	16-7025	Water	05/04/16 09:05	05/04/16 16:18
10.	MPLOTC-MW-22-050416	BAE2J	16-7026	Water	05/04/16 10:55	05/04/16 16:18
11.	MPLOTC-MW-22-DUP-050416	BAE2K	16-7027	Water	05/04/16 11:00	05/04/16 16:18
12.	PORT-MW-B-050416	BAE2L	16-7028	Water	05/04/16 12:50	05/04/16 16:18
13.		BAE2M	16-7029	Water	05/04/16 13:40	05/04/16 16:18
14.	MPLOTC-MW-7-050416	BAE2N	16-7030	Water	05/04/16 14:10	05/04/16 16:18
15.	MPLOTC-MW-17A-050316	BAE20	16-7031	Water	05/03/16 12:30	05/04/16 16:18

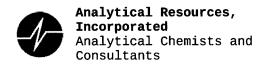
Printed 05/04/16 Page 1 of 1

B452:00005

Data Reporting Qualifiers Effective 12/31/13

Inorganic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Duplicate RPD is not within established control limits
- B Reported value is less than the CRDL but ≥ the Reporting Limit
- N Matrix Spike recovery not within established control limits
- NA Not Applicable, analyte not spiked
- H The natural concentration of the spiked element is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- L Analyte concentration is ≤5 times the Reporting Limit and the replicate control limit defaults to ±1 RL instead of the normal 20% RPD

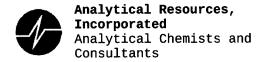

Organic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Flagged value is not within established control limits
- B Analyte detected in an associated Method Blank at a concentration greater than one-half of ARI's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.
- J Estimated concentration when the value is less than ARI's established reporting limits
- D The spiked compound was not detected due to sample extract dilution
- E Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.

Laboratory Quality Assurance Plan

Page 1 of 3

Version 14-003 12/31/13



- Q Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20%Drift or minimum RRF).
- S Indicates an analyte response that has saturated the detector. The calculated concentration is not valid; a dilution is required to obtain valid quantification of the analyte
- NA The flagged analyte was not analyzed for
- NR Spiked compound recovery is not reported due to chromatographic interference
- NS The flagged analyte was not spiked into the sample
- M Estimated value for an analyte detected and confirmed by an analyst but with low spectral match parameters. This flag is used only for GC-MS analyses
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification"
- Y The analyte is not detected at or above the reported concentration.
 The reporting limit is raised due to chromatographic interference.
 The Y flag is equivalent to the U flag with a raised reporting limit.
- EMPC Estimated Maximum Possible Concentration (EMPC) defined in EPA Statement of Work DLM02.2 as a value "calculated for 2,3,7,8-substituted isomers for which the quantitation and /or confirmation ion(s) has signal to noise in excess of 2.5, but does not meet identification criteria" (Dioxin/Furan analysis only)
- C The analyte was positively identified on only one of two chromatographic columns. Chromatographic interference prevented a positive identification on the second column
- P The analyte was detected on both chromatographic columns but the quantified values differ by ≥40% RPD with no obvious chromatographic interference
- X Analyte signal includes interference from polychlorinated diphenyl ethers. (Dioxin/Furan analysis only)
- Z Analyte signal includes interference from the sample matrix or perfluorokerosene ions. (Dioxin/Furan analysis only)

Laboratory Quality Assurance Plan

Page 2 of 3

Version 14-003 12/31/13

Geotechnical Data

Ì

- A The total of all fines fractions. This flag is used to report total fines when only sieve analysis is requested and balances total grain size with sample weight.
- F Samples were frozen prior to particle size determination
- SM Sample matrix was not appropriate for the requested analysis. This normally refers to samples contaminated with an organic product that interferes with the sieving process and/or moisture content, porosity and saturation calculations
- SS Sample did not contain the proportion of "fines" required to perform the pipette portion of the grain size analysis
- W Weight of sample in some pipette aliquots was below the level required for accurate weighting

ORGANICS ANALYSIS DATA SHEET

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Page 1 of 1

Sample ID: Trip blanks

SAMPLE

Lab Sample ID: BAE2A

LIMS ID: 16-7017 Matrix: Water

Data Release Authorized:

Date Analyzed: 05/11/16 14:07

Instrument/Analyst: NT2/LH

Reported: 05/18/16

QC Report No: BAE2-Golder

Project: Masterpark Lot C

073-93368-06-09A

Date Sampled: 04/27/16
Date Received: 05/04/16

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	LOQ	Result	Q	TPHG ID
71-43-2	Benzene	0.20	< 0.20	IJ	
108-88-3	Toluene	0.20		Ĵ	
100-41-4	Ethylbenzene	0.20	< 0.20	U	
179601-23-1	m,p-Xylene	0.40	< 0.40	Ū	
95-47-6	o-Xylene	0.20	< 0.20	U	
106-93-4	1,2-Dibromoethane	0.20	< 0.20	U	
91-20-3	Naphthalene	0.50	< 0.50	U	
110-54-3	Hexane	0.20	< 0.20	U	
	Reported in $\mu g/L$ (ppb)				
86290-81-5	Gasoline Range Hydrocarbons	0.10	< 0.10	U	

Reported in mg/L (ppm)

Volatile Surrogate Recovery

d8-Toluene	98.0%
Bromofluorobenzene	96.0%

RESOURCES INCORPORATED Sample ID: MPLOTC-MW-06-05-0316 SAMPLE

ANALYTICAL

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG Page 1 of 1

Lab Sample ID: BAE2B LIMS ID: 16-7018

Matrix: Water Data Release Authorized:

ORGANICS ANALYSIS DATA SHEET

Reported: 05/18/16

Instrument/Analyst: NT2/LH Date Analyzed: 05/11/16 14:28 QC Report No: BAE2-Golder

Project: Masterpark Lot C

073-93368-06-09A

Date Sampled: 05/03/16 Date Received: 05/04/16

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	LOQ	Result	Q	TPHG ID
71-43-2	Benzene	0.20	< 0.20	U	
108-88-3	Toluene	0.20	0.04	J	
100-41-4	Ethylbenzene	0.20	< 0.20	U	
179601-23-1	m,p-Xylene	0.40	< 0.40	U	
95-47-6	o-Xylene	0.20	< 0.20	U	
106-93-4	1,2-Dibromoethane	0.20	< 0.20	U	
91-20 - 3	Naphthalene	0.50	< 0.50	U	
110-54-3	Hexane	0.20	0.19	J	
	Reported in µg/L (ppb)				
86290-81-5	Gasoline Range Hydrocarbons	0.10	< 0.10	U	

Reported in mg/L (ppm)

Volatile Surrogate Recovery

			-
d8-Toluene		99.4%	
Bromofluoroben	zene	98.0%	

ORGANICS ANALYSIS DATA SHEET

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Page 1 of 1

Sample ID: MPLOTC-MW-21-050316

SAMPLE

Lab Sample ID: BAE2C LIMS ID: 16-7019

Matrix: Water

Data Release Authorized:

Instrument/Analyst: NT2/LH

Date Analyzed: 05/11/16 14:50

Reported: 05/18/16

QC Report No: BAE2-Golder Project: Masterpark Lot C

073-93368-06-09A

Date Sampled: 05/03/16
Date Received: 05/04/16

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	LOQ	Result	Q	TPHG ID
71-43-2	Benzene	0.20	< 0.20	Ū	
108-88-3	Toluene	0.20	< 0.20	Ū	
100-41-4	Ethylbenzene	0.20	< 0.20	IJ	
179601-23-1	m,p-Xylene	0.40	< 0.40	Ū	
95-47-6	o-Xylene	0.20	< 0.20	Ū	
106-93-4	1,2-Dibromoethane	0.20	< 0.20	Ū	
91-20-3	Naphthalene	0.50	< 0.50	Ū	
110-54-3	Hexane	0.20	< 0.20	Ū	
	Reported in µg/L (ppb)				
86290-81-5	Gasoline Range Hydrocarbons	0.10	< 0.10	U	

Reported in mg/L (ppm)

Volatile Surrogate Recovery

d8-Toluene	97.2%
Bromofluorobenzene	95.0%

ORGANICS ANALYSIS DATA SHEET
Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Page 1 of 1

Sample ID: MPLOTC-MW-20-050316

SAMPLE

Lab Sample ID: BAE2D LIMS ID: 16-7020

Matrix: Water

Data Release Authorized: NW

Instrument/Analyst: NT2/LH

Date Analyzed: 05/11/16 15:11

Reported: 05/18/16

QC Report No: BAE2-Golder

Project: Masterpark Lot C

073-93368-06-09A

Date Sampled: 05/03/16
Date Received: 05/04/16

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	LOQ	Result	Q	TPHG ID
71-43-2	Benzene	0.20	< 0.20	IJ	
108-88-3	Toluene	0.20	< 0.20	IJ	
100-41-4	Ethylbenzene	0.20	< 0.20	IJ	
179601-23-1	m,p-Xylene	0.40	< 0.40	Ŭ	
95 - 47-6	o-Xylene	0.20	< 0.20	Ü	
106-93-4	1,2-Dibromoethane	0.20	< 0.20	U	
91-20-3	Naphthalene	0.50	< 0.50	Ü	
110-54-3	Hexane	0.20	< 0.20	U	
	Reported in µg/L (ppb)				
86290-81-5	Gasoline Range Hydrocarbons	0.10	< 0.10	U	

Reported in mg/L (ppm)

Volatile Surrogate Recovery

d8-Toluene	97.8%
Bromofluorobenzene	95.4%

BAEZ: 00012

ORGANICS ANALYSIS DATA SHEET

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Page 1 of 1

Sample ID: MPLOTC-MW-19-050316

SAMPLE

Lab Sample ID: BAE2E LIMS ID: 16-7021

Matrix: Water

Matrix: water Data Release Authorized: $\mathcal{M}\mathcal{W}$

Instrument/Analyst: NT2/LH

Date Analyzed: 05/11/16 15:32

Reported: 05/18/16

QC Report No: BAE2-Golder

Project: Masterpark Lot C

073-93368-06-09A

Date Sampled: 05/03/16 Date Received: 05/04/16

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	LOQ	Result	Q	TPHG ID
71-43-2	Benzene	0.20	< 0.20	U	
108-88-3	Toluene	0.20	< 0.20	U	
100-41-4	Ethylbenzene	0.20	< 0.20	Ū	
179601 - 23-1	m,p-Xylene	0.40	< 0.40	Ū	
95-47-6	o-Xylene	0.20	< 0.20	U	
106-93-4	1,2-Dibromoethane	0.20	< 0.20	U	
91-20-3	Naphthalene	0.50	< 0.50	U	
110-54-3	Hexane	0.20	< 0.20	U	
	Reported in µg/L (ppb)				
86290-81-5	Gasoline Range Hydrocarbons	0.10	< 0.10	U	

Reported in mg/L (ppm)

Volatile Surrogate Recovery

d8-Toluene	95.8%	
Bromofluorobenzene	96.4%	

ORGANICS ANALYSIS DATA SHEET

Instrument/Analyst: NT2/LH

Date Analyzed: 05/11/16 15:54

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Page 1 of 1

Sample ID: MPLOTC-MW-09-050316

SAMPLE

Lab Sample ID: BAE2F LIMS ID: 16-7022

Matrix: Water

Matrix: water
Data Release Authorized: \text{NW}

Reported: 05/18/16

QC Report No: BAE2-Golder Project: Masterpark Lot C

073-93368-06-09A

Date Sampled: 05/03/16 Date Received: 05/04/16

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	LOQ	Result	Q	TPHG ID
71-43-2	Benzene	0.20	0.15	J	
108-88-3	Toluene	0.20	0.14	J	
100-41-4	Ethylbenzene	0.20	0.71		
179601-23-1	m,p-Xylene	0.40	0.28	J	
95-47-6	o-Xylene	0.20	< 0.20	U	
106-93-4	1,2-Dibromoethane	0.20	< 0.20	U	
91-20-3	Naphthalene	0.50	< 0.50	U	
110-54-3	Hexane	0.20	< 0.20	U	
	Reported in µg/L (ppb)				
86290-81-5	Gasoline Range Hydrocarbons	0.10	< 0.10	U	

Reported in mg/L (ppm)

Volatile Surrogate Recovery

d8-Toluene	97.8%
Bromofluorobenzene	95.2%

ORGANICS ANALYSIS DATA SHEET

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Page 1 of 1

Sample ID: MPLOTC-MW-13-050316

SAMPLE

Lab Sample ID: BAE2G LIMS ID: 16-7023

Matrix: Water

Data Release Authorized:

Instrument/Analyst: NT2/LH

Date Analyzed: 05/11/16 16:15

Reported: 05/18/16

QC Report No: BAE2-Golder

Project: Masterpark Lot C

073-93368-06-09A

Date Sampled: 05/03/16
Date Received: 05/04/16

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	LOQ	Result	Q	TPHG ID
71-43-2	Benzene	0.20	< 0.20	U	
108-88-3	Toluene	0.20	< 0.20	Ū	
100-41-4	Ethylbenzene	0.20	< 0.20	Ū	
179601-23-1	m,p-Xylene	0.40	0.44	_	
95-47-6	o-Xylene	0.20	0.04	J	
106-93-4	1,2-Dibromoethane	0.20	< 0.20	Ū	
91-20-3	Naphthalene	0.50	< 0.50	Ū	
110-54-3	Hexane	0.20	< 0.20	Ū	
	Reported in µg/L (ppb)				
86290-81-5	Gasoline Range Hydrocarbons	0.10	< 0.10	U	

Reported in mg/L (ppm)

Volatile Surrogate Recovery

d8-Toluene	96.0%
Bromofluorobenzene	94.2%

DAE2:00015

ORGANICS ANALYSIS DATA SHEET

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Page 1 of 1

Sample ID: MPLOTC-MW-18-050416

SAMPLE

Lab Sample ID: BAE2H LIMS ID: 16-7024

Matrix: Water

Matrix: water
Data Release Authorized:

Instrument/Analyst: NT2/LH

Date Analyzed: 05/11/16 16:36

Reported: 05/18/16

QC Report No: BAE2-Golder

Project: Masterpark Lot C

073-93368-06-09A

Date Sampled: 05/04/16 Date Received: 05/04/16

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	LOQ	Result	Q	TPHG ID
71-43-2	Benzene	0.20	8.0		
108-88-3	Toluene	0.20	5.5		
100-41-4	Ethylbenzene	0.20	8.2		
179601-23-1	m,p-Xylene	0.40	29		
95-47-6	o-Xylene	0.20	0.34		
106-93-4	1,2-Dibromoethane	0.20	< 0.20	U	
91-20-3	Naphthalene	0.50	1.5		
110-54-3	Hexane	0.20	1.5		
	Reported in µg/L (ppb)				
86290-81-5	Gasoline Range Hydrocarbons	0.10	0.22		GAS

Reported in mg/L (ppm)

Volatile Surrogate Recovery

d8-Toluene	98.2%
Bromofluorobenzene	98.4%

FORM I

FAFZ: G0216

ORGANICS ANALYSIS DATA SHEET

Instrument/Analyst: NT2/LH

Date Analyzed: 05/11/16 16:58

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Page 1 of 1

Sample ID: MPLOTC-MW-12-050416

SAMPLE

Lab Sample ID: BAE21 LIMS ID: 16-7025

Matrix: Water

Data Release Authorized:

Reported: 05/18/16

QC Report No: BAE2-Golder

Project: Masterpark Lot C

073-93368-06-09A

Date Sampled: 05/04/16 Date Received: 05/04/16

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	LOQ	Result	Q	TPHG ID
71-43-2	Benzene	0.20	< 0.20	U	
108-88 - 3	Toluene	0.20	< 0.20	U	
100-41-4	Ethylbenzene	0.20	< 0.20	Ū	
179601-23-1	m,p-Xylene	0.40	< 0.40	Ū	
95-47-6	o-Xylene	0.20	< 0.20	U	
106-93-4	1,2-Dibromoethane	0.20	< 0.20	Ū	
91-20-3	Naphthalene	0.50	< 0.50	Ū	
110-54-3	Hexane	0.20	< 0.20	U	
	Reported in µg/L (ppb)				
86290-81-5	Gasoline Range Hydrocarbons	0.10	< 0.10	Ü	

Reported in mg/L (ppm)

Volatile Surrogate Recovery

d8-Toluene	96.6%
Bromofluorobenzene	92.8%

ORGANICS ANALYSIS DATA SHEET

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Page 1 of 1

Sample ID: MPLOTC-MW-22-050416

SAMPLE

Lab Sample ID: BAE2J LIMS ID: 16-7026

Matrix: Water

QC Report No: BAE2-Golder Project: Masterpark Lot C

073-93368-06-09A

Data Release Authorized: Wh Reported: 05/18/16

Date Sampled: 05/04/16

Date Received: 05/04/16

Instrument/Analyst: NT2/LH Date Analyzed: 05/11/16 17:19

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	LOQ	Result	Q	TPHG ID
71-43-2	Benzene	0.20	3.8		
108-88-3	Toluene	0.20	5.0		
100-41-4	Ethylbenzene	0.20	300	E	
179601-23-1	m,p-Xylene	0.40	320	E	
95-47-6	o-Xylene	0.20	3.2		
106-93-4	1,2-Dibromoethane	0.20	< 0.20	U	
91-20-3	Naphthalene	0.50	190	E	
110-54-3	Hexane	0.20	8.6		
	Reported in µg/L (ppb)				
86290-81-5	Gasoline Range Hydrocarbons	0.10	9.9	E	GAS

Reported in mg/L (ppm)

Volatile Surrogate Recovery

d8-Toluene		112%
Bromofluorobe	nzene	108%

FORM I

64F2:00018

ORGANICS ANALYSIS DATA SHEET

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Page 1 of 1

Sample ID: MPLOTC-MW-22-050416

DILUTION

Lab Sample ID: BAE2J LIMS ID: 16-7026

Matrix: Water

Data Release Authorized:

Date Analyzed: 05/13/16 13:13

Instrument/Analyst: NT2/LH

Reported: 05/18/16

QC Report No: BAE2-Golder

Project: Masterpark Lot C

073-93368-06-09A

Date Sampled: 05/04/16 Date Received: 05/04/16

Sample Amount: 0.400 mL Purge Volume: 10.0 mL

CAS Number	Analyte	LOQ	Result	Q	TPHG ID
71-43-2	Benzene	5.0	< 5.0	U	
108-88-3	Toluene	5.0	5.2		
100-41-4	Ethylbenzene	5.0	780		
179601-23-1	m,p-Xylene	10	1,400		
95-47-6	o-Xylene	5.0	2.8	J	
106-93-4	1,2-Dibromoethane	5.0	< 5.0	U	
91-20-3	Naphthalene	12	470	Q	
110-54-3	Hexane	5.0	12	_	
	Reported in µg/L (ppb)				
86290-81-5	Gasoline Range Hydrocarbons	2.5	15		GAS

Reported in mg/L (ppm)

Volatile Surrogate Recovery

d8-Toluene	100%
Bromofluorobenzene	97.0%

FORM I

BAF2:00019

ORGANICS ANALYSIS DATA SHEET

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Page 1 of 1

Sample ID: MPLOTC-MW-22-DUP-050416

SAMPLE

Lab Sample ID: BAE2K LIMS ID: 16-7027

Matrix: Water

Reported: 05/18/16

QC Report No: BAE2-Golder Project: Masterpark Lot C 073-93368-06-09A

Date Sampled: 05/04/16 Date Received: 05/04/16

Instrument/Analyst: NT2/LH Date Analyzed: 05/11/16 17:40

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	LOQ	Result	Q	TPHG ID
71-43-2	Benzene	0.20	3.8		
108-88-3	Toluene	0.20	5.0		
100-41-4	Ethylbenzene	0.20	290	E	
179601-23-1	m,p-Xylene	0.40	320	E	
95-47-6	o-Xylene	0.20	3.2		
106-93-4	1,2-Dibromoethane	0.20	< 0.20	U	
91-20-3	Naphthalene	0.50	200	E	
110-54-3	Hexane	0.20	8.4		
	Reported in µg/L (ppb)				
86290-81-5	Gasoline Range Hydrocarbons	0.10	10	E	GAS

Reported in mg/L (ppm)

Volatile Surrogate Recovery

d8-Toluene	110%
Bromofluorobenzene	106%

ORGANICS ANALYSIS DATA SHEET Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Page 1 of 1

Sample ID: MPLOTC-MW-22-DUP-050416

DILUTION

Lab Sample ID: BAE2K LIMS ID: 16-7027

Matrix: Water

Data Release Authorized: WW

Date Analyzed: 05/13/16 13:37

Instrument/Analyst: NT2/LH

Reported: 05/18/16

QC Report No: BAE2-Golder

Project: Masterpark Lot C

073-93368-06-09A

Date Sampled: 05/04/16 Date Received: 05/04/16

Sample Amount: 0.400 mL Purge Volume: 10.0 mL

CAS Number	Analyte	LOQ	Result	Q	TPHG ID
71-43-2	Benzene	5.0	3.5	т.	
108-88-3	Toluene	5.0	5.2	•	
100-41-4	Ethylbenzene	5.0	830		
179601-23-1	m,p-Xylene	10	1,500		
95-47-6	o-Xylene	5.0	3.2	J	
106-93-4	1,2-Dibromoethane	5.0	< 5.0	U	
91-20-3	Naphthalene	12	500	Q	
110-54-3	Hexane	5.0	12	-	
	Reported in µg/L (ppb)				
86290-81-5	Gasoline Range Hydrocarbons	2.5	15		GAS

Reported in mg/L (ppm)

Volatile Surrogate Recovery

d8-Toluene	98.6%
Bromofluorobenzene	99.6%

ORGANICS ANALYSIS DATA SHEET

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Page 1 of 1

Sample ID: PORT-MW-B-050416

SAMPLE

Lab Sample ID: BAE2L LIMS ID: 16-7028

Matrix: Water

Data Release Authorized: MW

Date Analyzed: 05/13/16 13:59

Instrument/Analyst: NT2/LH

Reported: 05/18/16

QC Report No: BAE2-Golder Project: Masterpark Lot C

073-93368-06-09A

Date Sampled: 05/04/16 Date Received: 05/04/16

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	LOQ	Result	Q	TPHG ID
71-43-2	Benzene	0.20	0.08	J	
108-88-3	Toluene	0.20	< 0.20	U	
100-41-4	Ethylbenzene	0.20	0.74		
179601-23-1	m,p-Xylene	0.40	0.50		
95-47-6	o-Xylene	0.20	< 0.20	U	
106-93-4	1,2-Dibromoethane	0.20	< 0.20	U	
91-20-3	Naphthalene	0.50	0.83	Q	
110-54-3	Hexane	0.20	< 0.20	Ü	
	Reported in µg/L (ppb)				
86290-81-5	Gasoline Range Hydrocarbons	0.10	< 0.10	U	

Reported in mg/L (ppm)

Volatile Surrogate Recovery

d8-Toluene	99.4%
Bromofluorobenzene	98.2%

FORM I

DAT2:00022

ORGANICS ANALYSIS DATA SHEET

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Page 1 of 1

Sample ID: MPLOTC-FB-050416

SAMPLE

Lab Sample ID: BAE2M LIMS ID: 16-7029

Matrix: Water

Data Release Authorized:

Date Analyzed: 05/13/16 14:20

Instrument/Analyst: NT2/LH

Reported: 05/18/16

QC Report No: BAE2-Golder

Project: Masterpark Lot C

073-93368-06-09A

Date Sampled: 05/04/16
Date Received: 05/04/16

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	LOQ	Result	Q	TPHG ID
71-43-2	Benzene	0.20	< 0.20	U	
108-88-3	Toluene	0.20	< 0.20	U	
100-41-4	Ethylbenzene	0.20	0.09	J	
179601-23-1	m,p-Xylene	0.40	0.23	J	
95-47-6	o-Xylene	0.20	< 0.20	U	
106-93-4	1,2-Dibromoethane	0.20	< 0.20	U	
91-20-3	Naphthalene	0.50	< 0.50	U	
110-54-3	Hexane	0.20	< 0.20	U	
	Reported in µg/L (ppb)				
86290-81-5	Gasoline Range Hydrocarbons	0.10	< 0.10	U	

Reported in mg/L (ppm)

Volatile Surrogate Recovery

d8-Toluene	98.6%
Bromofluorobenzene	95.8%

FORM I

EAF2:00023

ANALYTICAL RESOURCES **INCORPORATED** Sample ID: MPLOTC-MW-7-050416

ORGANICS ANALYSIS DATA SHEET

Instrument/Analyst: NT2/LH

Date Analyzed: 05/11/16 18:44

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Page 1 of 1

SAMPLE

Lab Sample ID: BAE2N LIMS ID: 16-7030

Matrix: Water

Data Release Authorized: MW

Reported: 05/18/16

QC Report No: BAE2-Golder Project: Masterpark Lot C

073-93368-06-09A

Date Sampled: 05/04/16 Date Received: 05/04/16

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	LOQ	Result	Q	TPHG ID
71-43-2	Benzene	0.20	30		
108-88-3	Toluene	0.20	210	E	
100-41-4	Ethylbenzene	0.20	150	E	
179601-23-1	m,p-Xylene	0.40	260	E	
95-47-6	o-Xylene	0.20	150	E	
106-93-4	1,2-Dibromoethane	0.20	< 0.20	U	
91-20-3	Naphthalene	0.50	68		
110-54-3	Hexane	0.20	130	E	
	Reported in µg/L (ppb)				
86290-81-5	Gasoline Range Hydrocarbons	0.10	9.2	E	GAS

Reported in mg/L (ppm)

Volatile Surrogate Recovery

d8-Toluene	106%
Bromofluorobenzene	104%

ORGANICS ANALYSIS DATA SHEET

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Page 1 of 1

Sample ID: MPLOTC-MW-7-050416

DILUTION

Lab Sample ID: BAE2N LIMS ID: 16-7030

Matrix: Water

Data Release Authorized:

Reported: 05/18/16

Instrument/Analyst: NT2/LH
Date Analyzed: 05/13/16 14:44

QC Report No: BAE2-Golder

Project: Masterpark Lot C

073-93368-06-09A

Date Sampled: 05/04/16 Date Received: 05/04/16

Sample Amount: 0.400 mL Purge Volume: 10.0 mL

CAS Number	Analyte	LOQ	Result	Q	TPHG ID
71-43-2	Benzene	5.0	30		
108-88-3	Toluene	5.0	500		
100-41-4	Ethylbenzene	5.0	170		
179601-23-1	m,p-Xylene	10	800		
95-47-6	o-Xylene	5.0	170		
106-93-4	1.2-Dibromoethane	5.0	< 5.0	U	
91-20-3	Naphthalene	12	88	Q	
110-54-3	Hexane	5.0	150		
	Reported in µg/L (ppb)				
86290-81-5	Gasoline Range Hydrocarbons	2.5	12		GAS

Reported in mg/L (ppm)

Volatile Surrogate Recovery

d8-Toluene	101%
Bromofluorobenzene	100%

FORM I

ORGANICS ANALYSIS DATA SHEET Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Page 1 of 1

Sample ID: MPLOTC-MW-17A-050316

SAMPLE

Lab Sample ID: BAE20 LIMS ID: 16-7031

Matrix: Water

Data Release Authorized:

Instrument/Analyst: NT2/LH

Date Analyzed: 05/13/16 15:05

Reported: 05/18/16

QC Report No: BAE2-Golder

Project: Masterpark Lot C 073-93368-06-09A

Date Sampled: 05/03/16 Date Received: 05/04/16

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	LOQ	Result	Q	TPHG ID
71-43-2	Benzene	0.20	0.33		
108-88-3	Toluene	0.20	< 0.20	U	
100-41-4	Ethylbenzene	0.20	0.11	J	
179601-23-1	m,p-Xylene	0.40	0.36	J	
95-47-6	o-Xylene	0.20	0.08	J	
106-93-4	1,2-Dibromoethane	0.20	< 0.20	U	
91-20-3	Naphthalene	0.50	0.71	Q	
110-54-3	Hexane	0.20	0.11	J	
	Reported in µg/L (ppb)				
86290-81-5	Gasoline Range Hydrocarbons	0.10	< 0.10	U	

Reported in mg/L (ppm)

Volatile Surrogate Recovery

d8-Toluene	98.2%
Bromofluorobenzene	98.4%

FORM I

VOA SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: BAE2-Golder Project: Masterpark Lot C

073-93368-06-09A

ARI ID	Client ID	PV	DCE	TOL	BFB	DCB	TOT OUT
BAE2A	Trip blanks	10	NA	98.0%	96.0%	NA	0
MB-051116A	Method Blank	10	NA	97.4%	96.8%	NA	Ö
LCS-051116A	Lab Control	10	NA	102%	99.8%	NA	Ö
LCSD-051116A	Lab Control Dup	10	NA	102%	99.2%	NA	Ō
BAE2B	MPLOTC-MW-06-05-0316	10	NA	99.4%	98.0%	NA	0
LCS-051116A	Lab Control	10	NA	103%	100%	NA	Ō
LCSD-051116A	Lab Control Dup	10	NA	103%	101%	NA	0
BAE2C	MPLOTC-MW-21-050316	10	NA	97.2%	95.0%	NA	0
BAE2D	MPLOTC-MW-20-050316	10	NA	97.8%	95.4%	NA	0
BAE2E	MPLOTC-MW-19-050316	10	NA	95.8%	96.4%	NA	0
BAE2F	MPLOTC-MW-09-050316	10	NA	97.8%	95.2%	NA	0
BAE2G	MPLOTC-MW-13-050316	10	NA	96.0%	94.2%	NA	0
BAE2H	MPLOTC-MW-18-050416	10	NA	98.2%	98.4%	NA	0
BAE2I	MPLOTC-MW-12-050416	10	NA	96.6%	92.8%	NA	0
BAE2J	MPLOTC-MW-22-050416	10	NA	112%	108%	NA	0
BAE2JRE	MPLOTC-MW-22-050416	10	NA	100%	97.0%	NA	0
LCS-051316A	Lab Control	10	NA	102%	100%	NA	0
LCSD-051316A	Lab Control Dup	10	NA	101%	101%	NA	0
BAE2K	MPLOTC-MW-22-DUP-050416	10	NA	110%	106%	NA	0
BAE2KRE	MPLOTC-MW-22-DUP-050416	10	NA	98.6%	99.6%	NA	0
BAE2L	PORT-MW-B-050416	10	NA	99.4%	98.2%	NA	0
MB-051316A	Method Blank	10	NA	49.0%*	48.7%*	NA	2
LCS-051316A	Lab Control	10	NA	104%	101%	NA	0
LCSD-051316A	Lab Control Dup	10	NA	101%	99.0%	NA	0
BAE2M	MPLOTC-FB-050416	10	NA	98.6%	95.8%	NA	0
BAE2N	MPLOTC-MW-7-050416	10	NA	106%	104%	NA	0
BAE2NRE	MPLOTC-MW-7-050416	10	NA	101%	100%	NA	0
BAE2O	MPLOTC-MW-17A-050316	10	NA	98.2%	98.4%	NA	0
BAE2OMS	MPLOTC-MW-17A-050316	10	NA	103%	100%	NA	0
BAE2OMSD	MPLOTC-MW-17A-050316	10	NA	101%	101%	NA	0
		LCS	/MB LIM:	ITS		QC LIMIT	s
SW8260C							
	2-Dichloroethane	(80-129)				(80-129	
(TOL) = d8-To			(80-120)			(80-120	
,	fluorobenzene	(80-120)				(80-120	
(DCB) = d4-1,	2-Dichlorobenzene		(80-120))		(80-120)

Prep Method: SW5030B Log Number Range: 16-7017 to 16-7031

BALZ: 00027

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Page 1 of 1 Sample ID: MPLOTC-MW-17A-050316

MATRIX SPIKE

Lab Sample ID: BAE20 LIMS ID: 16-7031

Matrix: Water

Data Release Authorized:

Reported: 05/18/16

Project: Masterpark Lot C 073-93368-06-09A

Date Sampled: 05/03/16 Date Received: 05/04/16

QC Report No: BAE2-Golder

Instrument/Analyst MS: NT2/LH

MSD: NT2/LH Date Analyzed MS: 05/11/16 19:48

MSD: 05/11/16 20:10

Sample Amount MS: 10.0 mL

MSD: 10.0 mL

Purge Volume MS: 10.0 mL

MSD: 10.0 mL

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Benzene	0.33	10.6	10.0	103%	10.4	10.0	101%	1.9%
Toluene	< 0.20 U	9.86	10.0	98.6%	9.77	10.0	97.7%	0.9%
Ethylbenzene	0.11 J	10.2	10.0	101%	10.1	10.0	99.9%	1.0%
m,p-Xylene	0.36 J	20.9	20.0	103%	20.8	20.0	102%	0.5%
o-Xylene	0.08 J	10.4	10.0	103%	10.3	10.0	102%	1.0%
1,2-Dibromoethane	< 0.20 U	10.1	10.0	101%	10.3	10.0	103%	2.0%
Naphthalene	0.71 Q	11.2	10.0	105%	11.4	10.0	107%	1.8%
Hexane	0.11 J	5.01	10.0	49.0%	4.64	10.0	45.3%	7.7%

Reported in $\mu g/L$ (ppb)

RPD calculated using sample concentrations per SW846.

FORM III

BAE2: @0028

ORGANICS ANALYSIS DATA SHEET Volatiles by P&T GC/MS-Method SW8260C/NWTPHG Page 1 of 1

ANALYTICAL RESOURCES INCORPORATED

Sample ID: MPLOTC-MW-17A-050316

MATRIX SPIKE

Lab Sample ID: BAE20 LIMS ID: 16-7031

Matrix: Water

Data Release Authorized: Reported: 05/18/16

Instrument/Analyst: NT2/LH Date Analyzed: 05/11/16 19:48 QC Report No: BAE2-Golder

Project: Masterpark Lot C 073-93368-06-09A

Date Sampled: 05/03/16 Date Received: 05/04/16

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	LOQ	Result Q
71-43-2	Benzene	0.20	
108-88-3	Toluene	0.20	
100-41-4	Ethylbenzene	0.20	
179601-23-1	m,p-Xylene	0.40	
95-47-6	o-Xylene	0.20	
106-93-4	1,2-Dibromoethane	0.20	
91-20-3	Naphthalene	0.50	
110-54-3	Hexane	0.20	

Reported in $\mu g/L$ (ppb)

Volatile Surrogate Recovery

d8-Toluene	103%
Bromofluorobenzene	100%

FAL2: 40025

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Page 1 of 1

Sample ID: MPLOTC-MW-17A-050316

MATRIX SPIKE DUP

Lab Sample ID: BAE20 LIMS ID: 16-7031

Matrix: Water

Data Release Authorized: WW

Instrument/Analyst: NT2/LH

Date Analyzed: 05/11/16 20:10

Reported: 05/18/16

QC Report No: BAE2-Golder

Project: Masterpark Lot C

073-93368-06-09A

Date Sampled: 05/03/16 Date Received: 05/04/16

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	LOQ	Result Q
71-43-2	Benzene	0.20	
108-88-3	Toluene	0.20	
100-41-4	Ethylbenzene	0.20	
179601-23-1	m,p-Xylene	0.40	
95-47-6	o-Xylene	0.20	
106-93-4	1,2-Dibromoethane	0.20	
91-20-3	Naphthalene	0.50	
110-54-3	Hexane	0.20	

Reported in µg/L (ppb)

Volatile Surrogate Recovery

_				
(d8-Toluene		101	용
]	Bromofluorobenze	ene	101	용

BAEZ: 00030

ORGANICS ANALYSIS DATA SHEET

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Sample ID: LCS-051116A Page 1 of 1 LAB CONTROL SAMPLE

Lab Sample ID: LCS-051116A

LIMS ID: 16-7018

Matrix: Water Data Release Authorized: WW

Reported: 05/18/16

Instrument/Analyst LCS: NT2/LH

LCSD: NT2/LH

Date Analyzed LCS: 05/11/16 12:20

LCSD: 05/11/16 13:03

QC Report No: BAE2-Golder

Project: Masterpark Lot C

073-93368-06-09A

Date Sampled: NA Date Received: NA

Sample Amount LCS: 10.0 mL

LCSD: 10.0 mL

Purge Volume LCS: 10.0 mL

LCSD: 10.0 mL

		Spike	LCS		Spike	LCSD	
Analyte	rcs	Added-LCS	Recovery	LCSD	Added-LCSD	Recovery	RPD
Benzene	10.2	10.0	102%	10.7	10.0	107%	4.8%
Toluene	9.86	10.0	98.6%	10.2	10.0	102%	3.4%
Ethylbenzene	9.82	10.0	98.2%	10.4	10.0	104%	5.7%
m,p-Xylene	20.4	20.0	102%	21.4	20.0	107%	4.8%
o-Xylene	10.2	10.0	102%	10.7	10.0	107%	4.8%
1,2-Dibromoethane	10.7	10.0	107%	10.8	10.0	108%	0.9%
Naphthalene	10.6	10.0	106%	10.9	10.0	109%	2.8%
Hexane	4.51	5.00	90.2%	4.29	5.00	85.8%	5.0%

Reported in µg/L (ppb)

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

	LCS	LCSD
d8-Toluene	102%	102%
Bromofluorobenzene	99.8%	99.2%

FORM III

BAE2:00031

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Sample ID: LCS-051116A Page 1 of 1 LAB CONTROL SAMPLE

Lab Sample ID: LCS-051116A

LIMS ID: 16-7019 Matrix: Water

Data Release Authorized:

Reported: 05/18/16

Instrument/Analyst LCS: NT2/LH

LCSD: NT2/LH

Date Analyzed LCS: 05/11/16 11:59

LCSD: 05/11/16 12:42

QC Report No: BAE2-Golder

Project: Masterpark Lot C

073-93368-06-09A

Date Sampled: NA Date Received: NA

Sample Amount LCS: 10.0 mL

LCSD: 10.0 mL

Purge Volume LCS: 10.0 mL

LCSD: 10.0 mL

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Gasoline Range Hydrocarbons	1.07	1.00	107%	0.95	1.00	95.0%	11.9%
	Repor	rted in ma	/L (maga)				

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

	LCS	LCSD
d8-Toluene	103%	103%
Bromofluorobenzene	100%	101%

ANALYTICAL RESOURCES' **INCORPORATED**

ORGANICS ANALYSIS DATA SHEET

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Sample ID: LCS-051316A Page 1 of 1 LAB CONTROL SAMPLE

Lab Sample ID: LCS-051316A

LIMS ID: 16-7027

Matrix: Water Data Release Authorized:

Reported: 05/18/16

Instrument/Analyst LCS: NT2/LH

LCSD: NT2/LH

Date Analyzed LCS: 05/13/16 11:24

LCSD: 05/13/16 11:45

QC Report No: BAE2-Golder

Project: Masterpark Lot C

073-93368-06-09A

Date Sampled: NA Date Received: NA

Sample Amount LCS: 10.0 mL

LCSD: 10.0 mL

Purge Volume LCS: 10.0 mL

LCSD: 10.0 mL

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Gasoline Range Hydrocarbons	0.92	1.00		0.97	1.00	97.0%	5.3%

Reported in mg/L (ppm)

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

	LCS	LCSD
d8-Toluene	102%	101%
Bromofluorobenzene	100%	101%

FORM III

BAEZ:00033

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

LCSD: NT2/LH

LCSD: 05/13/16 12:27

Page 1 of 1

Sample ID: LCS-051316A

LAB CONTROL SAMPLE

Lab Sample ID: LCS-051316A

Instrument/Analyst LCS: NT2/LH

Date Analyzed LCS: 05/13/16 12:06

LIMS ID: 16-7029 Matrix: Water

Data Release Authorized:

Reported: 05/18/16

QC Report No: BAE2-Golder

Project: Masterpark Lot C

073-93368-06-09A

Date Sampled: NA Date Received: NA

Sample Amount LCS: 10.0 mL

LCSD: 10.0 mL

Purge Volume LCS: 10.0 mL

LCSD: 10.0 mL

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Benzene	10.5	10.0	105%	10.4	10.0	104%	1.0%
Toluene	10.1	10.0	101%	9.92	10.0	99.2%	1.8%
Ethylbenzene	10.2	10.0	102%	10.1	10.0	101%	1.0%
m,p-Xylene	21.2	20.0	106%	21.0	20.0	105%	0.9%
o-Xylene	10.6	10.0	106%	10.5	10.0	105%	0.9%
1,2-Dibromoethane	11.7	10.0	117%	11.7	10.0	117%	0.0%
Naphthalene	12.1 Q	10.0	121%	12.2 0	10.0	122%	0.8%
Hexane	5.48	5.00	110%	5.29 ~	5.00	106%	3.5%

Reported in $\mu g/L$ (ppb)

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

	LCS	LCSD
d8-Toluene	104%	101%
Bromofluorobenzene	101%	99.0%

FORM III

PAE2:00034

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Page 1 of 1

Sample ID: MB-051116A

METHOD BLANK

Lab Sample ID: MB-051116A

LIMS ID: 16-7018

Matrix: Water

Data Release Authorized: WW

Instrument/Analyst: NT2/LH
Date Analyzed: 05/11/16 13:46

Reported: 05/18/16

QC Report No: BAE2-Golder

Project: Masterpark Lot C

073-93368-06-09A

Date Sampled: NA Date Received: NA

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	LOQ	Result	Q	TPHG ID
71-43-2	Benzene	0.20	< 0.20	U	
108-88-3	Toluene	0.20	< 0.20	Ū	
100-41-4	Ethylbenzene	0.20	< 0.20	U	
179601-23-1	m,p-Xylene	0.40	< 0.40	U	
95-47-6	o-Xylene	0.20	< 0.20	U	
106-93-4	1,2-Dibromoethane	0.20	< 0.20	U	
91-20-3	Naphthalene	0.50	< 0.50	U	
110-54-3	Hexane	0.20	< 0.20	U	
	Reported in µg/L (ppb)				
86290-81-5	Gasoline Range Hydrocarbons	0.10	< 0.10	U	

Reported in mg/L (ppm)

Volatile Surrogate Recovery

d8-Toluene	97.4%
Bromofluorobenzene	96.8%

FORM I

BARZ: 60035

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Page 1 of 1

Sample ID: MB-051316A

METHOD BLANK

Lab Sample ID: MB-051316A

LIMS ID: 16-7029

Matrix: Water
Data Release Authorized: \(\mathcal{M} \)

Instrument/Analyst: NT2/LH
Date Analyzed: 05/13/16 12:49

Reported: 05/18/16

QC Report No: BAE2-Golder

Project: Masterpark Lot C

073-93368-06-09A

Date Sampled: NA Date Received: NA

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	roō	Result	Q	TPHG ID
71-43-2	Benzene	0.20	< 0.20	U	
108-88-3	Toluene	0.20	< 0.20	U	
100-41-4	Ethylbenzene	0.20	< 0.20	U	
179601-23-1	m,p-Xylene	0.40	< 0.40	U	
95-47-6	o-Xylene	0.20	< 0.20	U	
106-93-4	1,2-Dibromoethane	0.20	< 0.20	Ū	
91-20-3	Naphthalene	0.50	< 0.50	Ū	
110-54-3	Hexane	0.20	< 0.20	U	

Reported in $\mu g/L$ (ppb)

86290-81-5 Gasoline Range Hydrocarbons

Not RequestNot Requested

Reported in mg/L (ppm)

Volatile Surrogate Recovery

d8-Toluene	49.0%
Bromofluorobenzene	48.7%

FORM I BAE2:00036

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID Extraction Method: SW3510C

Page 1 of 2

Matrix: Water

QC Report No: BAE2-Golder

Project: Masterpark Lot C

073-93368-06-09A

Date Received: 05/04/16

Data Release Authorized: MW Reported: 05/16/16

ARI ID	Sample ID	Extraction Date	Analysis Date	EFV DF	Range/Surrogate	RL	Result
BAE2B 16-7018	MPLOTC-MW-06-05-0316 HC ID:	05/09/16	05/10/16 FID4A	1.00	Diesel Range Motor Oil Range o-Terphenyl	0.10 0.20	< 0.10 U < 0.20 U 80.0%
BAE2C 16-7019	MPLOTC-MW-21-050316 HC ID:	05/09/16	05/10/16 FID4A	1.00	Diesel Range Motor Oil Range o-Terphenyl	0.10	< 0.10 U < 0.20 U 92.7%
BAE2D 16-7020	MPLOTC-MW-20-050316 HC ID:	05/09/16	05/10/16 FID4A	1.00	Diesel Range Motor Oil Range o-Terphenyl	0.10	< 0.10 U < 0.20 U 92.6%
BAE2E 16-7021	MPLOTC-MW-19-050316 HC ID:	05/09/16	05/10/16 FID4A	1.00	Diesel Range Motor Oil Range o-Terphenyl	0.10	< 0.10 U < 0.20 U 87.6%
BAE2F 16-7022	MPLOTC-MW-09-050316 HC ID: DRO	05/09/16	05/10/16 FID4A	1.00	Diesel Range Motor Oil Range o-Terphenyl	0.10 0.20	0.22 < 0.20 U 87.3%
BAE2G 16-7023	MPLOTC-MW-13-050316 HC ID: DRO	05/09/16	05/10/16 FID4A	1.00	Diesel Range Motor Oil Range o-Terphenyl	0.10 0.20	0.12 < 0.20 U 88.4%
BAE2H 16-7024	MPLOTC-MW-18-050416 HC ID: DRO	05/09/16	05/10/16 FID4A		Diesel Range Motor Oil Range o-Terphenyl	0.10 0.20	0.37 < 0.20 U 98.2%
BAE2I 16-7025	MPLOTC-MW-12-050416 HC ID: DRO	05/09/16	05/10/16 FID4A		Diesel Range Motor Oil Range o-Terphenyl	0.10 0.20	0.18 < 0.20 U 87.2%
BAE2J 16-7026	MPLOTC-MW-22-050416 HC ID: DRO	05/09/16	05/10/16 FID4A		Diesel Range Motor Oil Range o-Terphenyl	0.10 0.20	2.8 < 0.20 U 100%
BAE2K 16-7027	MPLOTC-MW-22-DUP-050 HC ID: DRO	0405/09/1⁄6	05/10/16 FID4A	1.00	Diesel Range Motor Oil Range o-Terphenyl	0.10 0.20	3.0 < 0.20 U 91.0%
BAE2L 16-7028	PORT-MW-B-050416 HC ID:	05/09/16	05/10/16 FID4A		Diesel Range Motor Oil Range o-Terphenyl	0.10	< 0.10 U < 0.20 U 86.5%
BAE2M 16-7029	MPLOTC-FB-050416 HC ID:	05/09/16	05/10/16 FID4A		Diesel Range Motor Oil Range o-Terphenyl	0.10	< 0.10 U < 0.20 U 99.9%

BAE2:00037

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID

Extraction Method: SW3510C

Page 2 of 2

Matrix: Water

QC Report No: BAE2-Golder

Project: Masterpark Lot C

073-93368-06-09A

Date Received: 05/04/16

Data Release Authorized: Www

Reported: 05/16/16

ARI ID	Sample ID	Extraction Date	Analysis Date	EFV DF	Range/Surrogate	RL	Result
BAE2N 16-7030	MPLOTC-MW-7-050416 HC ID: DRO/RRO	05/09/16	05/10/16 FID4A	1.00	Diesel Range Motor Oil Range o-Terphenyl	0.10 0.20	7.1 E 0.30 83.6%
BAE2N DL 16-7030	MPLOTC-MW-7-050416 HC ID: DRO	05/09/16	05/12/16 FID4A	1.00 5.0	Diesel Range Motor Oil Range o-Terphenyl	0.50 1.0	6.5 < 1.0 U 74.6%
MB-050916 16-7031	Method Blank HC ID:	05/09/16	05/10/16 FID4A	1.00	Diesel Range Motor Oil Range o-Terphenyl	0.10	< 0.10 U < 0.20 U 83.1%
BAE20 16-7031	MPLOTC-MW-17A-05031	6 05/09/16	05/10/16 FID4A	1.00	Diesel Range Motor Oil Range o-Terphenyl	0.10	< 0.10 U < 0.20 U 78.5%

Reported in mg/L (ppm)

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis. RL-Reporting limit.

Diesel range quantitation on total peaks in the range from C12 to C24. Motor Oil range quantitation on total peaks in the range from C24 to C38. HC ID: DRO/RRO indicates results of organics or additional hydrocarbons in ranges are not identifiable.

I BAE2:00038

TPHD SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: BAE2-Golder

Project: Masterpark Lot C 073-93368-06-09A

Client ID	OTER	TOT OUT
MPLOTC-MW-06-05-0316	80.0%	0
MPLOTC-MW-21-050316	92.7%	0
MPLOTC-MW-20-050316	92.6%	0
MPLOTC-MW-19-050316	87.6%	0
MPLOTC-MW-09-050316	87.3%	0
MPLOTC-MW-13-050316	88.4%	0
MPLOTC-MW-18-050416	98.2%	0
MPLOTC-MW-12-050416	87.2%	0
MPLOTC-MW-22-050416	100%	0
MPLOTC-MW-22-DUP-050416	91.0%	0
PORT-MW-B-050416	86.5%	0
MPLOTC-FB-050416	99.9%	0
MPLOTC-MW-7-050416	83.6%	0
MPLOTC-MW-7-050416 DL	74.6%	0
MB-050916	83.1%	0
LCS-050916	94.4%	0
LCSD-050916	82.4%	0
MPLOTC-MW-17A-050316	78.5%	0
MPLOTC-MW-17A-050316 MS	100%	0
MPLOTC-MW-17A-050316 MSD	87.8%	0

LCS/MB	LIMITS	QC LIMITS
--------	--------	-----------

(OTER) = o-Terphenyl

(50-150) (50-150)

Prep Method: SW3510C Log Number Range: 16-7018 to 16-7031

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID

Page 1 of 1

Sample ID: MPLOTC-MW-17A-050316

MS/MSD

Lab Sample ID: BAE20 LIMS ID: 16-7031

Matrix: Water

Data Release Authorized:

Reported: 05/16/16

QC Report No: BAE2-Golder

Project: Masterpark Lot C

073-93368-06-09A

Date Sampled: 05/03/16 Date Received: 05/04/16

Sample Amount MS: 500 mL

MSD: 500 mL

Final Extract Volume MS: 1.0 mL

MSD: 1.0 mL

Dilution Factor MS: 1.00

MSD: 1.00

Date Extracted MS/MSD: 05/09/16

Date Analyzed MS: 05/11/16 00:17

MSD: 05/11/16 00:40 Instrument/Analyst MS: FID4A/JLW

MSD: FID4A/JLW

Range	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Diesel	< 0.10 U	2.97	3.00	99.0%	2.56	3.00	85.3%	14.8%

TPHD Surrogate Recovery

 MS
 MSD

 o-Terphenyl
 100%
 87.8%

Results reported in mg/L RPD calculated using sample concentrations per SW846.

BAEZ: ØØØ4Ø

ORGANICS ANALYSIS DATA SHEET

NWTPHD by GC/FID

Page 1 of 1

Sample ID: LCS-050916

LCS/LCSD

Lab Sample ID: LCS-050916

LIMS ID: 16-7031

Matrix: Water

Data Release Authorized: MW

Reported: 05/16/16

QC Report No: BAE2-Golder

Project: Masterpark Lot C

073-93368-06-09A

Date Sampled: NA Date Received: NA

Date Extracted LCS/LCSD: 05/09/16 Sample Amount LCS: 500 mL

LCSD: 500 mL

Date Analyzed LCS: 05/10/16 17:18 Final Extract Volume LCS: 1.0 mL

LCSD: 1.0 mL

LCSD: 05/10/16 17:40 Instrument/Analyst LCS: FID4A/JLW Dilution Factor LCS: 1.00 LCSD: FID4A/JLW

LCSD: 1.00

Range	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Diesel	2.85	3.00	95.0%	2.68	3.00	89.3%	6.1%

TPHD Surrogate Recovery

LCS LCSD o-Terphenyl 94.4% 82.4%

Results reported in mg/L RPD calculated using sample concentrations per SW846.

BAE2:00041

TOTAL DIESEL RANGE HYDROCARBONS-EXTRACTION REPORT

ARI Job: BAE2

Matrix: Water

Project: Masterpark Lot C

Date Received: 05/04/16 073-93368-06-09A

		Sam	ıp	Final		Prep
ARI ID	Client ID	Amt	:	Vol		Date
16-7018-BAE2B	MPLOTC-MW-06-05-031	6500	mL	1.00	mL	05/09/16
16-7019-BAE2C	MPLOTC-MW-21-050316	500	mL	1.00	\mathtt{mL}	05/09/16
16-7020-BAE2D	MPLOTC-MW-20-050316	500	mL	1.00	mL	05/09/16
16-7021-BAE2E	MPLOTC-MW-19-050316	500	mL	1.00	mL	05/09/16
16-7022-BAE2F	MPLOTC-MW-09-050316	500	mL	1.00	mL	05/09/16
16-7023-BAE2G	MPLOTC-MW-13-050316	500	mL	1.00	mL	05/09/16
16-7024-BAE2H	MPLOTC-MW-18-050416	500	mL	1.00	mL	05/09/16
16-7025-BAE2I	MPLOTC-MW-12-050416	500	mL	1.00	mL	05/09/16
16-7026-BAE2J	MPLOTC-MW-22-050416	500	mL	1.00	mL	05/09/16
16-7027-BAE2K	MPLOTC-MW-22-DUP-05	0500	mL	1.00	mL	05/09/16
16-7028-BAE2L	PORT-MW-B-050416	500	mL	1.00	mL	05/09/16
16-7029-BAE2M	MPLOTC-FB-050416	500	mL	1.00	mL	05/09/16
16-7030-BAE2N	MPLOTC-MW-7-050416	500	mL	1.00	mL	05/09/16
16-7031-050916MB1	Method Blank	500	\mathtt{mL}	1.00	mL	05/09/16
16-7031-050916LCS1	Lab Control	500	mL	1.00	mL	05/09/16
16-7031-050916LCSD1	Lab Control Dup	500	mL	1.00	mL	05/09/16
16-7031-BAE20	MPLOTC-MW-17A-05031	6500	mL	1.00	mL	05/09/16
16-7031-BAE2OMS	MPLOTC-MW-17A-05031	6500	mL	1.00	mL	05/09/16
16-7031-BAE2OMSD	MPLOTC-MW-17A-05031	6500	mL	1.00	mL	05/09/16

BARZ: 00042

APPENDIX B SAMPLE INTEGRITY DATA SHEETS (SIDS)

Plant/Site Master Park	Lot C	Project No. <u>073</u>	-93368-06.09A
Site Location SeaTac, \	WA	Sample ID MPL	OTC-MW-6-050316
Sampling Location At e	end of sample tubing		(4) - 400
Low Flow Sampling			
Technical Procedure Re	eference(s) App E - Comp	liance Monitoring Plant P	lan (Golder, Nov 2011)
Type of Sampler <u>-QED-</u>	Gontroller and Bladder Pu	ımp - Dedicated Tubin	I Bailer (Poly-4ft)
Date 5/3/2016			- 5100
Media Water	Total Control	Station MW-6	441
Sample Type: gr	ab time o	composite	space composite
Sample Acquisition Me	asurements (depth, volur	ne of static well water a	and purged water, etc.)
Static Water Level: 1/2/-	Free Product Thick	ness: Norus	
Date & Time of Measure	ement: 5/3/2016 @ 0	1819	
Measurements are in fe	et below top of well casing	9.	
Sample Intake Point: 60	ft below top of well casin	g	
Field Measurements on See Field Parameters S	Sample (pH, conductivit	y, etc.)	
Aliquot Amount	Analysis	Container	Preservative
(5) 40 mL	NWTPH-gasoline & BTEX	VOA vial	HCI
1	EDB (ethylene dibromide)	-4	, :a
	N-hexane		
	Naphthalene		
(2) 500 mL	NWTPH-Dx	Amber Glass	none
	7 40 1 1		
Sampler (signature) Supervisor (signature) _	10 11 /1	Date 5/3/20	19/16

Well ID <u>Mw</u> Date <u>5/3/20</u> Time Begin Pur	146	0 / 4627						
Time Collect Sa	, <u> </u>		Frampy					
Water Level feet bmp	Time	Volume Purged	рН	Conductivity (uS/cm)	Temp.	DO (mg/L)	Turbidity (NTU)	
61,41 (32)	ø619							
	0040	~1 gal	6.40	346	13.9	8: 7.83	Turke	Emor
	0845		6.41	345	13,9	~9.80	η	
	Ø850	~1715gal	6.36	396	13,9	~10.59	=1/-	
			1023					
-				11				
CPM: Purge Rate:	50 103(10 H	_psi _psi & (*) _fs') \Rightarrow D Z _ gle na _mL/min _ppm @ ~	sted to object to object to object;	Pump pelled Bladder pump 0832 Bading Will punge m	; Biller los	wered to m	eathemph	:#E
Water level fluc	tuation with	numn avalai	NA-					C

Golder Associates

Sampler's Initials Ame

field parameters stssMasterPari

Plant/Site Master Park L	Plant/Site Master Park Lot C Project No. 073-93368-06.09A				
Site Location SeaTac, V	VASample ID MPLOTO	<u>C-M</u> W-7- 050416 _			
Sampling Location At e	nd of sample tubing		MPLOTC-FB- ወ5/6416 🕢 1346		
Low Flow Sampling			by see separate SIDS for	Field Black	
Technical Procedure Re	eference(s) App E – Com	pliance Monitoring Pl	ant Plan (Golder, Nov 2011)		
Type of Sampler QED (Controller and Bladder F	Pump - Dedicated T	ubing		
Date 5/4/2016	<u> </u>	Time 1410	<u></u>		
Media Water	<u> </u>	Station MW-7			
Sample Type: gra	ab time	composite	space composite		
Sample Acquisition Mea	asurements (depth, volu	ime of static well wa	iter and purged water, etc.)		
Static Water Level: 49.	5 Free Product Thio	kness: Þ/A	Ý i		
			8		
Measurements are in fee	et below top of well casi	ng.	2 **		
Sample Intake Point: 52	ft below top of well casi	ng			
Sample Description <u>C\</u>	eanw/TPHodor;		2.7		
			<u> </u>		
	9 :0				
Field Measurements on	Sample (pH, conductiv	ity, etc.)			
See Field Parameters Sh	neet				
	 .				
Aliquot Amount	<u>Analysis</u>	Container	Preservative]	
(5) 40 mL	NWTPH-gasoline & BTEX	VOA vial	HCl		
	EDB (ethylene dibromide)	1.7.4			
	N-hexane			1	
	Naphthalene			-	
(2) 500 mL	NWTPH-Dx	Amber Glass	none	1	
				-	
				1	
		I		7	
Sampler (signature)	2m y Rod. L =	Date 5/4	1/2016		
Supervisor (signature)	a Helle	Date	5/5/16		

Golder Associates Inc.

· F----

Well ID MW-67	
Date 5/4/2016	
	1330
Time Collect Sample	1410

(Trom Card)

		247.4			(nom caro	·	
Water Level feet bmp	Time	Volume Purged	pН	Conductivity (uS/cm)	Temp. (°C)	DO (mg/L)	Turbidity (NTU)
	1340		6,57	619	16.2	1.07	6.63
	1345		6.61	641	16.1	0.43	7.19
	135φ		6.66	643	16.1	1.00	6,44
	1355		6.67	643	16.0	1.03	9.24
252	1400		6.67	642	16.0	1.03	5.10
	1405		6.68	640	16.0	1.02	4,57
				4.4			
		ži.					
		+					
				-			
							<u> </u>

Comments:	
Nitrogen Tank: 416 psi Throttle: 40 psi	
Cycle ID: 50 CPM: 2	
Purge Rate: ~130 mL/min PID: 5.4 ppm @	
J. J. J. Pp. C 16C	
Water level fluctuation with pump cycle:	

Sampler's Initials Am

Plant/Site Master Park Lot C Project No. <u>073-93368-06.09A</u>			93368-06.09A					
Site Location SeaTac, \	WASample ID	MPLOTC-FB- 050416						
Sampling Location At e	end of sample tubing		v. A					
Low Flow Sampling		25 ES						
Technical Procedure Re	eference(s) App E - Comp	liance Monitoring Plant P	lan (Golder, Nov 2011)					
Type of Sampler QED	Controller and Bladder Pu	mp - Dedicated Tubing						
Date 5/4/2016	Date 5/4/2016 Time 1335 1340							
Media Water Station Mw-7								
Sample Type: gr	ab time c	omposite	space composite					
Sample Acquisition Me	asurements (depth, volun	ne of static well water a	and purged water, etc.)					
Static Water Level:	Free Product Thicks	ness:						
Date & Time of Measure	ement:	., 1: 1,1						
Measurements are in fee	et below top of well casing							
Sample Intake Point:		*						
Sample Description _ F	ield Blank		V					
- 10-								
Field Measurements on	Sample (pH, conductivity	y, etc.)						
See Field Parameters S	heet							
	re 4.1 *N							
Aliquot Amount	<u>Analysis</u>	Container	<u>Preservative</u>					
(5) 40 mL	NWTPH-gasoline & BTEX	VOA vial	HCI					
	EDB (ethylene dibromide)							
	N-hexane		_					
	Naphthalene							
(2) 500 mL	NWTPH-Dx	Amber Glass	none					
7 8			200					
Sampler (signature)	Red l	_ Date 514/201	h					
Supervisor (signature)	a Hille	Date $\frac{5/a}{}$	5/16					
her tron (orginature)	- IVal	 	7:6					

Well ID	MPLOTC-F	B - 050416
Date		
	gin Purge	
Time Co	Hect Sample	1340

Water Level feet bmp	Time	Volume Purged	рН	Conductivity (uS/cm)	Temp. (°C)	DO (mg/L)	Turbidity (NTU)
1		+					
		2					
			ja			ā	E 1
			NIA				
			3.W	11/4			
					a s	2 4	
			5a	5			

Comments:	
Nitrogen Tank: psi Throttle: psi Cycle ID:	
Purge Rate: mL/min PID: ppm	
Water level fluctuation with pump cycle:	

Sampler's Initials Awe

Plant/Site Master Park	Lot C	Project No. <u>073</u>	3-93368-06.09A
Site Location SeaTac, 1	WASample ID MPLOTC-	MW-9- 050316	\$1.575.10t
Sampling Location At e	end of sample tubing		
Low Flow Sampling			
Technical Procedure R	eference(s) App E - Compl	iance Monitoring Plant I	Plan (Golder, Nov 2011)
Type of Sampler QED	Controller and Bladder Pu	mp – Dedicated Tubir	ng
Date 5/3/2016	w ear	Time 1516	
Media Water	3 1 2	Station MW-9	
Sample Type: gr	ab time c	omposite	space composite
Sample Acquisition Me	asurements (depth, volum	ne of static well water	and purged water, etc.)
Static Water Level:	Free Product Thickr	ness:	
Date & Time of Measure	ement: - Runp abound	my meter @ ~53?	ETOC,
	et below top of well casing	_	
Sample Intake Point: 54	ft below top of well casing	<u> </u>	
Sample Description _C	ear, no odor.		
<u> </u>			
Field Measurements on	Sample (pH, conductivity	, etc.)	
See Field Parameters S	heet		5
Aliquot Amount	<u>Analysis</u>	Container	<u>Preservative</u>
(5) 40 mL	NWTPH-gasoline & BTEX	VOA vial	HCl
	EDB (ethylene dibromide)	- a . e	X (M)
.53	N-hexane		
	Naphthalene		
(2) 500 mL	NWTPH-Dx	Amber Glass	none
			Teach Will
	0		
Sampler (signature)	own they deel	Date 5/3/201	6
Supervisor (signature)	h tilla	_ Date <u>5/5</u>	116

Well ID	MW-69	
Date	5/3/2016	
	gin Purge	438
	llect Sample_	

20					(Francon)-)	
Water Level feet bmp	Time	Volume Purged	pН	Conductivity (uS/cm)	Temp.	DO (mg/L)	Turbidity (NTU)
	1448		6.32	260.9	18.2	7.02	2.49
	1453		6.10	229,8	17.6	5,16	1.50
	1458		*	222.8	16.1	484	1.60
	1503	IZA.	6.67	2207	16.2	4.64	1.19
	15013		6,50	221.2	16,2	4.79	1.27
	1513		6,51	220.9	16.3	4.68	1.06
		_					
		,/ii,					

Comments:		•		
•	Hucler: Reculib	relad due '	to observed	Sec.
Nitrogen Tank: 400 psi	Hmeler: Recellb nearsisting w/ me	الاضلاط بطل	es and stabilization	m
Throttle: 60 psi	Smd.	Reading	Notes	
Cycle ID: 103 (10/5)	મ-૭ દ		•	
CPM: 4	7.00	6.47		
Purge Rate: <u>~140~120</u> mL/min PID: <u>0.3</u> ppm @ 70C	ላ6-ውገ	NI 62		
ты	12.46	12.46	override	
	12.46 He Europe d calibration	m; notace	epted Excepted not	ر سود)
			^*	
				- 1
Water level fluctuation with pump cycle:				- 1

Sampler's Initials Awv

	Lot C		
Site Location SeaTac, \	WASample ID MPLOTO	<u>-M</u> W-12- ወናወዛሬ	
	end of sample tubing		
Low Flow Sampling			
Technical Procedure Re	eference(s) App E - Comp	liance Monitoring Plant	Plan (Golder, Nov 2011)
Type of Sampler QED	Controller and Bladder Pu	mp – Dedicated Tubir	ng
Date 5/4/2016		Time <u>0405</u>	_33
Media Water		Station MW-12	<u>a_ </u>
Sample Type: gr	<u>ab</u> time o	composite	space composite
Sample Acquisition Me	asurements (depth, volum	ne of static well water	and purged water, etc.)
Static Water Level: 55. 5	Free Product Thick	ness: N/A	8 3
Date & Time of Measure	ement: 5/4/2016 @ 00	57	_
Measurements are in fee	et below top of well casing	1.	
Sample Intake Point: 59	ft below top of well casing	1	
Sample Description <u>Cl</u>	ear, no odor,		= =
Field Measurements on	Sample (pH, conductivity	y, etc.)	
See Field Parameters S	heet		
Aliquot Amount	<u>Analysis</u>	<u>Container</u>	<u>Preservative</u>
(5) 40 mL	NWTPH-gasoline & BTEX	VOA vial	HCl
	EDB (ethylene dibromide)	**),	- 5
	N-hexane		
	Naphthalene		
(2) 500 mL	NWTPH-Dx	Amber Glass	none
Sampler (signature)	Jum Bydate	Date 5/4/20	
Supervisor (signature)		_ Date	5/1/

Well ID_	MW-12
Date_5	14/2016
	in Purge @829
_	ect Sample COGGE

(-from Cond)

Water Level feet bmp	Time	Volume Purged	pН	Conductivity (uS/cm)	Temp. (°C)	DO (mg/L)	Turbidity (NTU)
	Ø64Ø		~7. 6 0	217.4	14.4	9.26	18.3
	0645		7.79	219.4	14.7	8,99	18.9
	Φ 6 50		7.74	221.8	15.0	6.35	12.9
	φ ες 55		7.72	224.7	15.0	8.64	8.98
	@900		7.69	226.0	15.0	7.83	4.44
	@905		7.68	226.0	15,1	7.72	3.4B
				0.25	W.		
	<u> </u>						

Comments:	
New Settings :	
Nitrogen Tank: 100 psi	
Throttle: 150 60 psi Increased Cycle ID: 50 (20/10) 103 (1036/5102)	
Cuola ID: 150 (2 m/m) a co 2 (4 0 m)	
Cycle ID	
СРМ: 4-	
Purge Rate: ~280 mL/min	
PID: 0.0 ppm @ 100	
10 10 10 10 10 10 10 10 10 10 10 10 10 1	
Water level fluctuation with nump cycle:	

Sampler's Initials Aur (-/.)3L

Plant/Site Master Park	Lot C	Project No. <u>07</u>	3-93368-06.09A
Site Location SeaTac, \	NASample ID MPLOTO	<u>C-M</u> W-13- 050316	0 -0 170 =
Sampling Location At e			
Low Flow Sampling			
Technical Procedure Ro	eference(s) <u>App E – Com</u>	pliance Monitoring Plant	Plan (Golder, Nov 2011)
Type of Sampler QED	Controller and Bladder F	ump - Dedicated Tubir	ng 🧠
Date 5/3/2616		Time 1625	0.00
Media Water			40.
Sample Type: gr	ab time	composite	space composite
Sample Acquisition Me	asurements (depth, volu	ime of static well water	and purged water, etc.)
Static Water Level: 56	Free Product Thic	kness: NIA	- 11 ₀
Date & Time of Measure	ment: 5/3/2016@15	543	
Measurements are in fee	et below top of well casir	ng.	
Sample Intake Point: 60	ft below top of well casi	ng	
Sample Description <u>C\</u>	ear, no odor.		
Field Measurements on	Sample (pH, conductive	ity, etc.)	
See Field Parameters S	heet		
<u> </u>	poster con so as E	540	
Aliquot Amount	<u>Analysis</u>	Container	Preservative
(5) 40 mL	NWTPH-gasoline & BTEX	VOA vial	HCI
	EDB (ethylene dibromide)	201	20.2
	N-hexane		
<i>j</i> .	Naphthalene		_
(2) 500 mL	NWTPH-Dx	Amber Glass	none
	*		2
Sampler (signature)	120 10	Data 5/2/2 =	14
	John Marie	Date <u>5/3/20</u>	1/1/6
Supervisor (signature)	CO 12/11	расе	19/10

Well ID	MW-13
Date 5/	3/2016
Time Begir	1546
Time Colle	ct Sample 1625

Time Concer ba					Inon Cond)	
Water Level feet bmp	Time	Volume Purged	pH*	Conductivity (uS/cm)	Temp. (°C)	DO (mg/L)	Turbidity (NTU)
	1555		8.35	168.9	16.2	14.63	3.03
	1660		8.07	191.4	15,9	14.75	3.04
	1605		8.00	193.1	15.8	14,47	2.13
	1610		7.97	194.0	15.8	14.42	1,59
	1615		7.62	193,0	15.8	13.66	1,35
	1620		7-74	193.7	15.6	14.18	1.14
			न न				

Comments:	observed to have continued issues, 0730) - pH values are likely enoneous. Ann
Nitrogen Tank: 11 (2) psi Throttle: 5 (2) psi Cycle ID: 5 (2) (20 (6) CPM: 2 Purge Rate: 20 mL/min PID: (0, (0) ppm (2) To (2)	- pH values are likely enonesus; And
Water level fluctuation with pump cycle:	

Sampler's Initials Awy

time conts (depth, volume Product Thickers) App E - Comp	liance Monitoring Plant mp - Dedicated Tubin Time 123© Station MW-17A omposite ne of static well water ness: NA	Plan (Golder, Nov 2011) ng space composite and purged water, etc.)
time conts (depth, volume Product Thickers) sop of well casing top of well casing a code (TPH)	liance Monitoring Plant mp - Dedicated Tubin Time 123© Station MW-17A omposite ne of static well water ness: NA	Plan (Golder, Nov 2011) ng space composite and purged water, etc.)
time conts (depth, volume Product Thickers (depth) top of well casing top of well casing a codor (TPH)	mp - Dedicated Tubin Time 123© Station MW-17A omposite ne of static well water ness: N/A	space composite and purged water, etc.)
time conts (depth, volume Product Thickers (depth) top of well casing top of well casing a codor (TPH)	mp - Dedicated Tubin Time 123© Station MW-17A omposite ne of static well water ness: N/A	space composite and purged water, etc.)
time conts (depth, volume Product Thicks 5/3/2016 And Andrew Copy of well casing top of well casing and a copy (TPH)	Time 1230 Station MW-17A composite ne of static well water ness: N/A 257	space composite and purged water, etc.)
time conts (depth, volume Product Thicks 5/3/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/	Station MW-17A omposite ne of static well water ness: N/A	space composite and purged water, etc.)
time conts (depth, volume e Product Thicks 5/3(2@\b(\omega) \cop of well casing top of well casing \cop \omega \text{depth}	omposite ne of static well water ness: NA	space composite and purged water, etc.)
nts (depth, volume Product Thicks 5/3(2@\b(\omega) \) top of well casing top of well casing a casing	ne of static well water ness: N/A	
ee Product Thicks 5/3(2@\b(\omega) \omega top of well casing top of well casing e ador(TPH)	ness: N/A	
op of well casing top of well casing top of well casing	057 I.	
op of well casing top of well casing e alor (TPH)	1	
top of well casing		
e odor (TPH)		
<u>nalysis</u>	Container	<u>Preservative</u>
_	VOA vial	, HCl
` "		
-hexane		
phthalene		
/TPH-Dx	Amber Glass	none
	H-gasoline & BTEX B (ethylene bromide) -hexane phthalene /TPH-Dx	H-gasoline & VOA vial BTEX B (ethylene promide) -hexane phthalene /TPH-Dx Amber Glass

Well ID MW-17A	
Date 5/3/2016	
Time Begin Purge 1148	
Time Collect Sample 1230	

Time Collect Sa	mple{236	D			(Temphon)	
Water Level feet bmp	Time	Volume Purged	pН	Conductivity (uS/cm)	Temp. (°C)	DO (mg/L)	Turbidity (NTU)
	1200		6.66	141.1	13.6	8,30	17,0
	1265		6.56	139.6	13.6	7.54	15.3
	1210		6.53	136.8	13.2	6,21	12,2
	1215		6.52	134.Φ	13.0	5.60	11.2
	1220		6.51	132.6	13.1	4.96	9,35
	4225		6.51	131.6	13,1	4.66	6,41
	<u> </u>						
			<u> </u>			<u> </u>	

Comments:	
Nitrogen Tank: 110 psi Throttle: 60 psi Cycle ID: 50 (2010) CPM: 2 Purge Rate: ~280 mL/min PID: 0.0 ppm 700	
Water level fluctuation with pump cycle:	

Sampler's Initials Awa

Plant/Site Master Park I	te Master Park Lot C Project No. 073-93368-06.09A			
Site Location SeaTac, \	WASample ID MPLOTC-	MW-18- 05041 <u>6</u>	1-4-19-2	
Sampling Location At e	end of sample tubing		11.4	
Low Flow Sampling	NT SIE			
Technical Procedure Ro	eference(s) App E - Comp	liance Monitoring Plant P	lan (Golder, Nov 2011)	
Type of Sampler QED (Controller and Bladder Pu	mp - Dedicated Tubin	1	
Date 5/4/2016		Time		
Media Water	. 21 2	Station <u>MW-18</u>	2.0	
Sample Type: gra	ab time c	composite	space composite	
Sample Acquisition Mea	asurements (depth, volun	ne of static well water a	and purged water, etc.)	
Static Water Level: 51.	Free Product Thicks	ness: N/A	2374	
Date & Time of Measure	ment: 5/4/2৪६ <i>© ७६</i>	41		
Measurements are in fee	et below top of well casing]		
Sample Intake Point: 54	ft below top of well casing	9		
Sample Description <u>C</u>	lear, no other			
Field Measurements on	Sample (pH, conductivity	y, etc.)		
See Field Parameters S	heet			
Aliquot Amount	<u>Analysis</u>	Container	<u>Preservative</u>	
√(5) 40 mL	NWTPH-gasoline & BTEX	VOA vial	HCI	
	EDB (ethylene dibromide)	, -	- 1,3	
	N-hexane	·		
	Naphthalene			
√(2) 500 mL	NWTPH-Dx	Amber Glass	none	
			2 - AL	
Sampler (signature)	leva Perlech	_ Date _ 5/4/26	6	
Supervisor (signature)	Lun Polech	Date 5/4/26	://6	

Well ID_	MW-16	
Date 5	14/2016-	
	in Purge <u>0733</u>	1000
	act Cample #Pec	

(from Cond)

					-110426112		
Water Level feet bmp	Time	Volume Purged	pН	Conductivity (uS/cm)	Temp. (°C)	DO (mg/L)	Turbidity (NTU)
	<i>ው</i> 743		7.36	486	14,9	5:77	14.3
	6746		= 4.29	499	14.વ	5.22	8.49
	@ 753		7.27	508	14.8	4,83	5.79
	₩756		7.27	511	14.6	430	5.25
	ବର୍ପଙ୍ଗ		7.27	512	14.8	4,57	6.12
	609		7.27	513	14.8	4.53	4.77
	A 2						
					5a		
						5.0	
						. <u>.</u>	

\overline{C}_{c}	m	me	nte	
\sim $^{\circ}$,,,,,	1110		

Nitrogen Tank: 1/10 psi
Throttle: 40 psi
Cycle ID: 50 (20/10)
CPM: 2
Purge Rate: 120 mL/min
PID: 6.2 ppm 6 TOC

Water level fluctuation with pump cycle:

and the second second

Sampler's Initials Ame/JSL

Plant/Site Master Park I	Lot C	Project No. <u>073</u>	-93368-06.09A
Site Location SeaTac, \	WASample ID MPLOTC-	MW-19- 05031 <u>6</u>	(4) 1 (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)
Sampling Location At e	end of sample tubing		Secreta
Low Flow Sampling) 100 11 1 (21, 25)		
Technical Procedure Re	eference(s) App E - Comp	liance Monitoring Plant F	Plan (Golder, Nov 2011)
Type of Sampler QED	Controller and Bladder Pu	mp - Dedicated Tubin	D.
Date 5/3/2016	2 2 85	Time 1405	
Media Water .	4	Station MW-19	*
Sample Type: gr	ab time c	omposite .	space composite
Sample Acquisition Me	asurements (depth, volun	ne of static well water	and purged water, etc.)
Static Water Level: 46	Free Product Thick	ness: N/A	* * * *
Date & Time of Measure	ment: 5/3/2016@1321		
Measurements are in fee	et below top of well casing	!.	<u> </u>
Sample Intake Point: 50	ft below top of well casing	1	
Sample Description	lear, no odor		
	<u> </u>		***
9 <u>0</u>			
Field Measurements on	Sample (pH, conductivity	/, etc.)	
See Field Parameters S	heet		
Aliquot Amount	<u>Analysis</u>	Container	Preservative
(5) 40 mL	NWTPH-gasoline & BTEX	VOA vial	HCl
	EDB (ethylene dibromide)		1
	N-hexane		
- Z	Naphthalene		
(2) 500 mL	NWTPH-Dx	Amber Glass	none
			1
	5655.1508	w/6:	A STATE OF THE STA
	0.1		
Sampler (signature)	lavil Kyledis	Date 5/3/20	16
Supervisor (signature) _	In Helds	_ Date 5/	9/16

MW-19
1/3/2016
in Purge 1326
ect Sample 1405
֡

					(tron Card.)		
Water Level feet bmp	Time	Volume Purged	pН	Conductivity (uS/cm)	Temp. (°C)	DO (mg/L)	Turbidity (NTU)
	1335	5	~6.38	379	15.7	470	8,44
	1340	3	6.80	366	15,14	3.09	2.46_
	1345		6,84	314	15.3	1.98	2.09
	1350		6.81	376	15.3	1,49	1.15
	1355		6.80	384	15,2	1.06	1.01
	1400		6.79	390	15.2	0.67	1,23
				(Jet) 114	=37701		
		15					
-							

Comments:	
Nitrogen Tank: 110 psi Throttle: 50 psi Cycle ID: 50 (zo/w) CPM: 2 Purge Rate: ~260 mL/min PID: 0.4 ppm (200) vonable blu ~0.4 > 1.1 ppm correcting longer (200) and pem	
Water level fluctuation with pump cycle:	

Sampler's Initials

Plant/Site Master Park L	ot C	Project No. <u>073</u>	3-93368-06.09A
Site Location SeaTac, V	VASample ID MPLOTC-	<u>M</u> W-20- <i>Ф</i> 5Ø316	= 430 (************************************
Sampling Location At e	nd of sample tubing		1.00
Low Flow Sampling	**		
Technical Procedure Re	eference(s) App E - Compl	liance Monitoring Plant	Plan (Golder, Nov 2011)
Type of Sampler QED (Controller and Bladder Pu	mp – Dedicated Tubir	ng
Date 5/3/2016		Time 1120	
Media Water 🔻 🌯	<u> </u>	Station MW-20	U.S.
Sample Type: gra	ab time c	omposite	space composite
Sample Acquisition Mea	asurements (depth, volum	ne of static well water	and purged water, etc.)
Static Water Level: 107	Free Product Thickr	ness: N/A	
Date & Time of Measure	ment: 5/3/2016 @ 1640	3	
Measurements are in fee	et below top of well casing		
Sample Intake Point: 11	1 ft below top of well casin	ng	
Sample Description <u>(1)</u>	lar, vis olor.		14
Field Measurements on	Sample (pH, conductivity	/, etc.)	
See Field Parameters St	neet		
Aliquot Amount	<u>Analysis</u>	Container	<u>Preservative</u>
(5) 40 mL	NWTPH-gasoline & BTEX	VOA vial	HCl
	EDB (ethylene dibromide)	9.41	(100 mg)
	N-hexane		
	Naphthalene		
(2) 500 mL	NWTPH-Dx	Amber Glass	none
			060594s
Sampler (signature)	a 100 d	_ Date _ 5/3/2	.¢16
Supervisor (signature)			9116

FIELD PARAMETERS SHEET

Well ID MW- Date 5/3/2							
Time Begin Pur	ge <u>1040</u>						
Time Collect Sa	mple <u>1120</u>)		F	(From Card	.)	
Water Level feet bmp	Time	Volume Purged	pH	Conductivity (uS/cm)	Temp. (°C)	DO (mg/L)	Turbidity (NTU)
	1050		7.12	158.9	14.5	4,64	0.60
	1055	*	6.76	153.7	13.6	4.09	5.09
	1100		6.65	147.4	13.4	3.69	3.18
	1105		6.61	142.3	13.3	4.38	2.32
	1110		659	139,9	13.3	4.63	2.75
	1115		6:58	138,4	13.3	5.31	3,55
				#1			
Comments:							
Cycle ID: CPM: Purge Rate: PID:	70 50 (20s 2 ~260 0.0	psi (10s) mL/min ppm & To					
Water level fluc	tuation with	pump cycle:					

Sampler's Initials Abox

SAMPLE INTEGRITY DATA SHEET

Plant/Site Master Park I	Lot C	Project No. <u>073-</u>	93368-06.09A
Site Location SeaTac, \	WASample ID MPLOTO	-MW-21-050316	
Sampling Location At e	end of sample tubing		- 10 -
Low Flow Sampling			
Technical Procedure Ro	eference(s) App E - Comp	liance Monitoring Plant Pl	an (Golder, Nov 2011)
Type of Sampler QED	Controller and Bladder Pu	mp - Dedicated Tubing	90. 3. 120.
Date 5/3/2016	in the sure grade	Time 1020	1000
Media Water	A STATE OF THE STA	Station MW-21	
Sample Type: gr	ab time o	composite -	space composite
Sample Acquisition Me	asurements (depth, volun	ne of static well water a	nd purged water, etc.)
Static Water Level: 101	아ీ Free Product Thick	ness:	1 m (1 m
Date & Time of Measure	ment: 5/3/2016 @	14934	
Measurements are in fee	et below top of well casing	j	
Sample Intake Point: 10	7 ft below top of well casi	ng	
Sample Description <u>C\</u>	ear, no odor.		
Field Measurements on	Sample (pH, conductivity	y, etc.)	
See Field Parameters S	heet		
-			
Aliquot Amount	<u>Analysis</u>	<u>Container</u>	Preservative
(5) 40 mL	NWTPH-gasoline & BTEX	VOA vial	HCI
	EDB (ethylene dibromide)	10 mg/h	\$1(g)
	N-hexane		
	Naphthalene		
(2) 500 mL	NWTPH-Dx	Amber Glass	none
		<u>.</u>	
			-
Sampler (signature)	our Rydeshe	Date 5/3/2010	
Supervisor (signature)	To Helde	_ Date5/	5/1/

FIELD PARAMETERS SHEET

Well ID MW-21	
Date 5/3/2016	
Time Begin Purge OCILIO	275.13
Time Collect Sample 1020	

from the

Water Level feet bmp	Time	Volume Purged	рН	Conductivity (uS/cm)	Temp. (°C)	DO (mg/L)	Turbidity (NTU)
1	Φ95Ø		6.34	322	14.2	10.71	35.6
	0955		6.32	316	13.9	9.63	27.9
	1000		6.32	315	13,6	9.80	14,5
	1605		6.29	314	13.8	4,25	9.36
	1010		6.29	315	13.6	9.19	6.36
	1015		6.28	315	13.7	9.34	3,86
				Don de marie	ega E		

ı	
١	
	Comments:
	No. 10 dam d
	Nitrogen Tank: 110 psi
	Throttle: 60 psi
	Cycle ID: 50 (205/105)
	CPM: 2
	Purge Rate: ~180 mL/min
	PID: (f) (b) ppn((e) (c)
i	Water land Controller with more reals.
	Water level fluctuation with pump cycle:

Sampler's Initials Ama-

SAMPLE INTEGRITY DATA SHEET

Plant/Site Master Park I	_ot C	Project No. <u>073-93368-06.09A</u>		
Site Location SeaTac, \	WASample ID MPL	OTC-MW-22- 050416		
Sampling Location At e	end of sample tubing	MPL	OTC-MW-22-DUP- ७५७ ५६८	
Low Flow Sampling	# 0##C"			
Technical Procedure Re	eference(s) App E – (Compliance Monitoring Plant F	Plan (Golder, Nov 2011)	
Type of Sampler QED (Controller and Bladd	er Pump – Dedicated Tubin	g	
Date 5/4/2016	. v. v. v.	Time 1055 /11	00(DUP)	
Media Water		Station MW-22	[9]	
Sample Type: gra	a b t	ime composite	space composite	
Sample Acquisition Mea	asurements (depth,	volume of static well water	and purged water, etc.)	
Static Water Level: ও3	55' Free Product	Thickness: N/A	250 0	
Date & Time of Measure	ment: 5/4/2616	C 1012	4	
Measurements are in fee	et below top of well o	easing.	_	
Sample Intake Point: 89	ft below top of well o	casing		
Sample Description <u>Cl</u>	ear, TPH odor	<u></u>		
Field Messurements on	Sample (nU condu	otivity ota)		
	-	ctivity, etc.)		
See Field Parameters SI	ieei .			
Aliquot Amount	Analysis	Container	Preservative	
(5 x 2) 40 mL				
(3 x 2) 40 mL	NWTPH-gasoline BTEX	& VOA viai	HCl	
	EDB (ethylene dibromide)	er tu	. 1	
	N-hexane			
	Naphthalene			
2× (2) 500 mL	NWTPH-Dx	Amber Glass	none	
+/			=	
			-	
Sampler (signature)	Low Redock	Date 5/4/201	16	
Supervisor (signature)	Tu Hold	Date 5/4/201 Date 9	15/16	

FIELD PARAMETERS SHEET

Well ID MW-22		
Date 5/4/2016		
Time Begin Purge 1	614	
Time Collect Sample 1	055 /1100	DUP)

(From (and)

Water Level feet bmp	Time	Volume Purged	pН	Conductivity (uS/cm)	Temp. (°C)	DO (mg/L)	Turbidity (NTU)
	1025		6.84	174.6	13,4	Ø.41	22.9
	1030	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.82	230.4 22 6 ,	13.3	6.29	10.2
	1035		6.82	253.5	13,3	0.25	8.72
	1ውዛወ		6.83	270.7	13.4	0.27	5.15
	1645		6.85	287.1	13.3	0.39	3,79
	1050		6.84	293.B	13.3	0.39	3.61
						e ^a	

Nitrogen Tank: 11(b psi Throttle: 65 psi Cycle ID: 500 (2(0/1(c))

CPM: 2
Purge Rate: ~300 mL/min
PID: 0.0-0.1 ppm FED@ TOC

guissalus.

Water level fluctuation with pump cycle:

Sampler's Initials AMR / JEL

Golder Associates

field_parameters.xisxMasterPark

SAMPLE INTEGRITY DATA SHEET

Plant/Site Master Park	Lot C	Project No. <u>073-93368-06.09A</u>			
Site Location SeaTac, \	WASample ID PORT-M	<u>N-</u> B- ወ5 ወ416			
Sampling Location At 6	end of sample tubing		7. II.		
Low Flow Sampling	The second	e le l'			
Technical Procedure Ro	eference(s) App E – Comp	liance Monitoring Plant	Plan (Golder, Nov 2011)		
Type of Sampler QED	Controller and Bladder Pu	ımp – Dedicated Tubir	ng managa		
Date 5/4/2016		Time 1250	14-5-65		
	<u> </u>				
Sample Type: gr	ab time o	composite	space composite		
Sample Acquisition Me	asurements (depth, volum	ne of static well water	and purged water, etc.)		
Static Water Level: 90:	Free Product Thick	ness: N/A	A		
Date & Time of Measure	ement: 5/4/2616 @ 12	0 7			
Measurements are in fee	et below top of well casing	g			
Sample Intake Point: 89	ft below top of well casing	g			
Sample Description	whid, no odor; cleaning	gup after first -11	Ominutes of purge.		
Field Measurements on	Sample (pH, conductivity	y, etc.)			
See Field Parameters S					
Aliquot Amount	<u>Analysis</u>	Container	Preservative		
(5) 40 mL	NWTPH-gasoline & BTEX	VOA vial	HCl		
	EDB (ethylene dibromide)	4.41	atv		
	N-hexane				
	Naphthalene				
√(2) 500 mL	NWTPH-Dx	Amber Glass	none		
Sampler (signature)	R. O. O.	_ Date _ 5/4 /2	2.04(a		
Supervisor (signature)	11/1/	Date	5/16		
Paher trant (signature)	101/10/11				

FIELD PARAMETERS SHEET

Well ID	MW-B		
Date	5/4/2016	2	
Time Be	gin Purge	1210	
Time Co	llect Sample	1250	

1	Λ		
(L	C_{-}	∂J
_\	Trove	On	(J- J

Water Level feet bmp	Time	Volume Purged pH		Conductivity (uS/cm)	Temp. (°C)	DO (mg/L)	Turbidity (NTU)
	1220		6.70	215.5	13,2	3.51	123
	1225	1	6.70	215.1	13.2	3.18	57.7
	1236		6.71	216.6	13.1	2.93	22.3
	1235		6.71	217.4	13.2	2.76	13.0
	1240		6,70	218.7	13.1	2.66	8-11
	1245		6.72	219.0	13.2	2.59	7.38
	_ ==						
2 8						17.1763	
							\vdash

Comments:	
Nitrogen Tank: 110 psi Throttle: 70 psi Cycle ID: 5((20/10)) CPM: 2 Purge Rate: 20 mL/min PID: 0.0 ppm 6 TOC	
Water level fluctuation with pump cycle:	

Sampler's Initials KWZ/35L

APPENDIX C
DATA VALIDATION MEMORANDUM

Data Usability Summary Report Masterpark Lot C – Groundwater Monitoring SeaTac, Washington

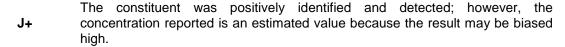
This Data Usability Summary Report (DUSR) presents the findings of the data quality assessment performed on the analyses of groundwater samples collected May 3 and May 4, 2016 at the Masterpark Lot C/SeaTac Development Site located in SeaTac, Washington (Site) as part of the 2016 Spring Semi-Annual Sampling. Samples in the laboratory sample delivery groups (SDGs) as indicated in Table 1 were reviewed in this DUSR to identify quality issues which could affect the use of the sample data for decision making purposes.

The samples were submitted to Analytical Resources, Incorporated of Tukwila, Washington to perform the requested analyses. Information regarding the sample point identifications, analytical parameters, quality control (QC) samples, sampling dates, and laboratory SDG designations are summarized in Table 1. Samples were analyzed utilizing one or more of the following method guidelines:

- Gasoline Hydrocarbons following the <u>Northwest Total Petroleum Hydrocarbon (NWTPH-Gx)</u>. Washington State Department of Ecology ECY 97-602, June 1997.
- Diesel and/or Oil Hydrocarbons following the <u>Northwest Total Petroleum Hydrocarbon</u> (<u>NWTPH-Dx</u>). Washington State Department of Ecology ECY 97-602, June 1997.
- Volatile Organic Compounds by Purge and Trap and Gas Chromatography and Mass Spectrometry. <u>EPA Method SW8260C</u>, August 2006.

In addition to the twelve (12) submitted primary samples, one (1) submitted trip blank, one (1) submitted field blank, and one (1) submitted field duplicate sample was collected and analyzed for Quality Control (QC) purposes.

The data quality assessment of was performed in accordance with the <u>Compliance Monitoring Plan (CMP)I</u>¹ and USEPA Contract Laboratory Program <u>National Functional Guidelines for Organic Superfund Data Review</u>². Where there was a discrepancy between the QC criteria in the Guidelines and the QC criterion established in the analytic methodology, method-specific criteria, the QAPP, or professional judgment was used.


In general, chemical results for the samples collected at the Site were evaluated on the basis of laboratory preservation, hold times, blank contamination, instrument calibration performance, outlying precision or accuracy parameters, or on the basis of professional judgment. The following definitions provide brief explanations of the qualifiers which may have been assigned to data during the data validation process.

² Environmental Protection Agency (EPA). 2014. National Functional Guidelines for Organic Superfund Data Review. OSWER 9355.0-132, EPA-540-R-014-002. August.

v:\projects_2007-projects\073-93368 riddell-w\ext 06_09a gw comp mon\2016-q2 gw sampling\final report\app c - dv\components\06_2016-q2-mplotc-

¹ Golder. 2011. Compliance Monitoring Plan, Sea-Tac Development Site, SeaTac, Washington. November 2.

- The constituent was positively identified and detected; however, the concentration reported is an estimated value because the result may be biased low
- The constituent was positively identified and detected; however, the concentration reported is an estimated value because the result is less than the quantitation limit or quality control criteria were not met.
- The constituent was analyzed for, but was not detected above the reported sample quantitation limit.
- The constituent was not detected; the associated quantitation limit is an estimated value because quality control criteria were not met.
- Data are rejected due to significant exceedance of quality control criteria. The analyte may or may not be present. Additional sampling and analysis may be required to determine the presence or absence of the constituent.
- **UR** The constituent is rejected at the reported quantitation limit.
- Do Not Report. More than one set of results are reported due to re-analyses or re-reporting (below reporting level). This result should not be reported.

The validation level for the data is Tier 2A, and included the following:

- Data Package Completeness
- Verification of required deliverables
- Evaluation of holding times and preservations
- Laboratory narrative evaluation
- Evaluation and qualification of QC elements for: Surrogates, Matrix Spike, Laboratory Control samples, Laboratory Duplicates, Method Blanks, and Field Blank and Field Duplicate evaluation as applicable
- Evaluation of detection limits

Raw data was not provided and calibration elements including gas chromatograph (GC) instrument tuning and performance check, initial and continuing calibration, internal standard performance, and compound identification were not evaluated unless information was provided by the lab in the case narratives. Data review and validation was performed by an experienced quality assurance chemist independent of the analytical laboratory and not directly involved in the project. Data qualifiers that were applied by the laboratory have been removed from the data summary report sheets, when applicable, and superseded by data validation qualifiers (Table 2).

Overall, the data review showed that data are acceptable for use except if indicated by data qualifiers. In general, the data generated as part of the sampling event met the QC criteria established in the respective methods and the Guidelines. The following bulleted items highlight qualifications to specific parameters

Golder Associate

and/or samples. Table 2 summarizes all qualifications applied to the data, with applicable qualifier codes. Refer to Data Evaluation Checklists in Attachment A for details of the data validation.

3

- Laboratory noted that the May 13, 2016 VOCs CCV was out of control high for naphthalene. The laboratory flagged all associated samples that had detections with a "Q" qualifier. As per the guidelines, associated samples with detections must be qualified as estimated (J). Non-detections do not require qualification.
- The trip blank had a detection of Toluene at 0.07 J μg/L. The field blank MPLOTC-FB-050416 had detections of Ethylbenzene and m,p-Xylene at 0.09 J and 0.23 J μg/L. Associated samples with detections of Toluene, Ethylbenzene, and m,p-Xylene between the Detection Limit (DL) and the Limit of Quantification (LOQ) were qualified as non-detect (U) at the LOQ. No action was taken for results greater than the LOQ.
- Diesel and Motor Oil results for MPLOTC-MW-9-050316, MPLOTC-MW-13-050316, MPLOTC-MW-18-050416, MPLOTC-MW-12-050416, MPLOTC-MW-22-050416, MPLOTC-MW-22-DUP-050416, and MPLOTC-MW-7-050416 were qualified as either "DRO" or "DRO/RRO" by the lab, which indicates results of organics or additional hydrocarbons in ranges that are not identifiable. Diesel and Motor Oil results are qualified as estimated (J) for these samples.

Dilutions do not require qualifications based on USEPA guidelines. Detection and reporting limits of non-detect compounds are elevated proportional to the dilution when undiluted sample results are not provided by the laboratory. The data usability of diluted results was evaluated by the data user in the context of site-wide characterization. Diluted results were only reported when the analyte value exceeded the instrument calibration range.

Based on the data validations and data quality assessment, the analytical data for samples collected at the Site were determined to be acceptable (including estimated data) for their intended use. The data completeness (i.e. the ratio of the amount of valid data obtained to the amount expected, including estimated (/J/U/DNR) data) was 100%.

TABLES

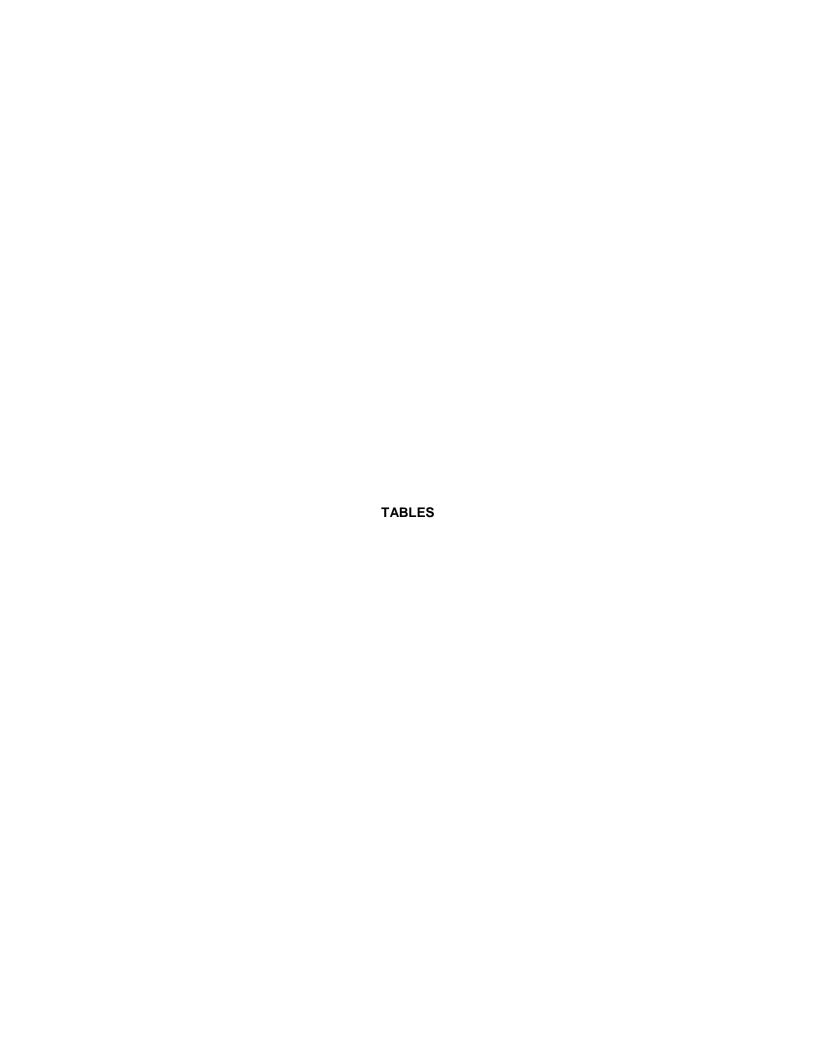

Table 1 Sample Collection and Analysis Summary

Table 2 Qualifier Summary Table

ATTACHMENTS

Attachment A Data Review Checklists - QA Level 2A

November 2016 Table 1 073-93368-06.09A

Sample Collection and Analysis Summary Masterpark Lot C - Groundwater Monitoring - May 2016

								An	es		
SDG	Field Identification	Collection Date	Location	Lab Identification	Matrix	QC Samples	8260C (Project List)	NWTPH-Gx	NWTPH-Dx		
BAE2	Trip Blanks-050316	5/3/2016	Trip Blank	BAE2A	Water	TB	Χ	Χ			
BAE2	MPLOTC-MW-06-050316	5/3/2016	MPLOTC-MW-06	BAE2B	Water		Χ	Χ	Χ		
BAE2	MPLOTC-MW-21-050316	5/3/2016	MPLOTC-MW-21	BAE2C	Water		Χ	Χ	Χ		
BAE2	MPLOTC-MW-20-050316	5/3/2016	MPLOTC-MW-20	BAE2D	Water		Χ	Χ	Χ		
BAE2	MPLOTC-MW-19-050316	5/3/2016	MPLOTC-MW-19	BAE2E	Water		Χ	Χ	Χ		
BAE2	MPLOTC-MW-09-050316	5/3/2016	MPLOTC-MW-09	BAE2F	Water		Χ	Χ	Χ		
BAE2	MPLOTC-MW-13-050316	5/3/2016	MPLOTC-MW-13	BAE2G	Water		Χ	Χ	Х		
BAE2	MPLOTC-MW-18-050416	5/4/2016	MPLOTC-MW-18	BAE2H	Water		Χ	Χ	Χ		
BAE2	MPLOTC-MW-12-050416	5/4/2016	MPLOTC-MW-12	BAE2I	Water		Χ	Χ	Χ		
BAE2	MPLOTC-MW-22-050416	5/4/2016	MPLOTC-MW-22	BAE2J	Water		Χ	Χ	Χ		
BAE2	MPLOTC-MW-22-DUP-050416	5/4/2016	MPLOTC-MW-22-DUP	BAE2K	Water	FD	Χ	Χ	Χ		
BAE2	PORT-MW-B-050416	5/4/2016	PORT-MW-B	BAE2L	Water		Χ	Χ	Χ		
BAE2	MPLOTC-FB-050416	5/4/2016	MPLOTC-FB	BAE2M	Water	FB	Χ	Χ	Χ		
BAE2	MPLOTC-MW-7-050416	5/4/2016	MPLOTC-MW-7	BAE2N	Water		Χ	Χ	Χ		
BAE2	MPLOTC-MW-17A-050316	5/3/2016	MPLOTC-MW-17A	BAE2O	Water	MS/MSD	Χ	Χ	Χ		
					•						

Notes:

All analyses performed by Analytical Resources Laboratories

Abbreviations:

FB - Field Blank

FD - Field Duplicate

MS - Matrix Spike

MSD - Matrix Spike Duplicate

QC - Quality Control

SDG - Sample Delviery Group

TB - Trip Blank

Qualifier Summary Table Masterpark Lot C - Groundwater Monitoring - May 2016

SDG	Sample Name	Constituent	New Result	New LOQ	Qualifier	Reason
BAE2	MPLOTC-MW-06- 050316	Toluene	<0.20	0.20	U	Trip blank contamination
BAE2	MPLOTC-MW-09- 050316	Toluene	<0.20	0.20	U	Trip blank contamination
BAE2	MPLOTC-MW-09- 050316	m,p-Xylene	<0.40	0.40	U	Field blank contamination
BAE2	MPLOTC-MW-09- 050316	Diesel	-	=	J	Results of organics or additional hydrocarbons in ranges are not identifiable
BAE2	MPLOTC-MW-13- 050316	Diesel	-	=	J	Results of organics or additional hydrocarbons in ranges are not identifiable
BAE2	MPLOTC-MW-18- 050416	Diesel	-	-	J	Results of organics or additional hydrocarbons in ranges are not identifiable
BAE2	MPLOTC-MW-12- 050416	Diesel	-	-	J	Results of organics or additional hydrocarbons in ranges are not identifiable
BAE2	MPLOTC-MW-22- 050416	Diesel	-	=	J	Results of organics or additional hydrocarbons in ranges are not identifiable
BAE2	MPLOTC-MW-22- 050416	Naphthalene	-	=	J	Lab CCV was out of control high for this analyte
BAE2	MPLOTC-MW-22- DUP-050416	Diesel	-	=	J	Results of organics or additional hydrocarbons in ranges are not identifiable
BAE2	MPLOTC-MW-22- DUP-050416	Naphthalene	-	-	J	Lab CCV was out of control high for this analyte
BAE2	MPLOTC-MW-B- 050416	Naphthalene	-	=	J	Lab CCV was out of control high for this analyte
BAE2	MPLOTC-MW-7- 050416	Motor Oil	-	=	J	Results of organics or additional hydrocarbons in ranges are not identifiable
BAE2	MPLOTC-MW-7- 050416	Diesel	-	=	J	Results of organics or additional hydrocarbons in ranges are not identifiable
BAE2	MPLOTC-MW- 17A-050316	Ethylbenzene m,p-Xylene	<0.20 <0.40	0.20 0.40	\Box	Field blank contamination
BAE2	MPLOTC-MW- 17A-050316	Naphthalene	-	-	J	Lab CCV was out of control high for this analyte

Abbreviations CCV - Continuing Calibration Verification

LOQ - Limit of Quantification

SDG - Sample Delivery Group

Qualifier Definitions

J - Estimated result

J+ - Estimated result with high bias

U - Non-detect result at RL shown

ATTACHMENT A DATA REVIEW CHECKLISTS – QA LEVEL 2A

DATA REVIEW CHECKLIST - QA LEVEL II

	ing Company: Golder Associates		-	_	er: <u>Lee Holder</u>
-	Name: Masterpark Lot C		•		er: 073-93368-06.09A
	er: <u>Jason Yabandeh</u> ed by: Jill Lamberts				e: <u>June 24, 2016</u> <u>6/29/2016</u>
	ory: Analytical Resources Inc. – Tukwila, WA			6#: BAE2	
	cal Method (type and no.): EPA 8260C (Gasoline, E				•
Matrix:	☐ Air ☐ Soil/Sed. ☐ Water ☐ Waste	☐ Oth	ner		
Work P Noveml	lan or QAPP reference: Golder. 2011. Compliance ber 2.	e Monitori	ng Plan,	Sea-Tac [Development Site, SeaTac, Washington.
	ble Data Validation Guidance: <u>EPA 2014. National</u> 132, EPA-540-R-014-002. August	Functiona	al Guideli	nes for Su	perfund Organic Methods Data Review. OSWER
Sample	e Information: See Table 1 (attached)				
Field/C	OC Information	YES	NO	NA	COMMENTS
a)	Sampling dates noted?	\boxtimes			
b)	Sampling team indicated?	\boxtimes			
c)	Sample location noted?	\boxtimes			
d)	Sample type indicated (grab/composite)?	\boxtimes			
e)	Field QC noted?	\boxtimes			
f)	Field parameters collected (note types)?	\boxtimes			pH, Conductivity, Temp., Turbidity, DO
g)	Was the COC signed by both field and laboratory personnel?	\boxtimes			
h)	Were samples received in good condition?	\boxtimes			
i)	Were the correct preservatives used?	\boxtimes			
j)	Was the sample cooler temperature within QC lim	nits?⊠			2.1, 2.4, and 2.1°C
Labora	tory Case Narrative				
a)	Does the laboratory narrative indicate deficiencies	s? 🛚			See notes 1 and 2
Note D	eficiencies:				
These i	ssues are addressed in the appropriate sections be	elow.			
Genera	l (reference QAPP or Method)	YES	NO	NA	COMMENTS
a)	Was the correct method used?	\boxtimes			
b)	Were hold times met for sample pretreatment?				See attached hold times sheet
c)	Were hold times met for sample analysis?				
d)	Were appropriate reporting limits achieved?				
e)	Were any sample dilutions noted?	\boxtimes			See note 3
f)	Were any matrix problems noted?		\boxtimes		

DATA REVIEW CHECKLIST - QA LEVEL II

Blank	s	YES	NO	NA	COMMENTS
а	Were analytes detected in the method blank(s)?		\boxtimes		See attached blanks summary sheet
b) Were analytes detected in the field blank(s)?	\boxtimes			See note 4
С	Were analytes detected in the equipment blank(s)?			\boxtimes	
d) Were analytes detected in the trip blank(s)?	\boxtimes			See note 4
е	Were analytes detected in the storage blank(s)?			\boxtimes	
Surro	gate (System Monitoring) Compounds	YES	NO	NA	COMMENTS
а) Were surrogate compounds added to all samples?	\boxtimes			
b) Were recoveries within control limits?		\boxtimes		See note 2
С	Were surrogate recoveries not calculated due to dilutions?		\boxtimes		
d) Were recoveries not calculated due to interference?		\boxtimes		
Labo	ratory Control Sample	YES	NO	NA	COMMENTS
а		\boxtimes			
b) Were the proper compounds included in the LCS?	\boxtimes			
С	Was the LCS accuracy criteria met?	\boxtimes			
Matri	s Spike/Matrix Spike Duplicate	YES	NO	NA	COMMENTS
d) Was MS accuracy criteria met?	\boxtimes			
	Recovery could not be calculated since sample contained high concentration of analyte?		\boxtimes		
е) Was MSD accuracy criteria met?	\boxtimes			
	Recovery could not be calculated since sample contained high concentration of analyte?		\boxtimes		
f)	Were MS/MSD precision criteria met?	\boxtimes			
Dupli	cates	YES	NO	NA	COMMENTS
а) Were field duplicates collected (note original and du	plicate	sample n	ames)?	
		\boxtimes			See attached field duplicate sheet
b) Were field dup. precision criteria met (Note RPD)?				
С	Were lab duplicates analyzed (note original and dup	olicate s	amples)?	1	
			\boxtimes		Lab performed LCSD
d) Were lab dup. precision criteria met (Note RPD)?			\boxtimes	
ICP S	erial Dilution (SD)	YES	NO	NA	COMMENTS
а) Was an ICP SD analyzed once per SDG?			\boxtimes	
b) Was the ICP SD criteria met?			\boxtimes	
Overa	ıll Evaluation	YES	NO	NA	COMMENTS
а	Were there any other technical problems not previously addressed?				See note 5

DATA REVIEW CHECKLIST - QA LEVEL II

b)	Checked for transcription errors?	\boxtimes		See note 6
c)	Do target analytes fall within calibration ranges?	\boxtimes		See note 3
d)	Data are acceptable and usable except as noted?	\boxtimes		

Comments/Notes:

- 1. Laboratory noted that the May 13, 2016 VOCs CCV was out of control high for naphthalene. The laboratory flagged all associated samples that had detections with a "Q" qualifier. As per the guidelines, associated samples with detections must be qualified as estimated (J). Non-detections do not require qualification.
- 2. Lab noted that the surrogate recovery in MB-051316A was out of control low for d8-Toluene and Bromofluorobenzene. As all other surrogate recoveries were in control, this is to be considered an isolated incident and no qualification is required.
- 3. The following samples were run both undiluted and diluted due to high analyte concentration: MPLOTC-MW-22-050416, MPLOTC-MW-22-DUP-050416, and MPLOTC-MW-7-050416. Diluted results were reported for analytes that exceeded the instrument calibration range (flagged E by lab) in the undiluted analysis. All other analytes were reported from the undiluted analysis.
- 4. The trip blank had a detection of Toluene at 0.07 J μg/L. The field blank MPLOTC-FB-050416 had detections of Ethylbenzene and m,p-Xylene at 0.09 J and 0.23 J μg/L. Associated samples with detections of Toluene, Ethylbenzene, and m,p-Xylene between the Detection Limit (DL) and the Limit of Quantification (LOQ) were qualified as non-detect (U) at the LOQ. No action was taken for results greater than the LOQ.
- 5. Diesel and Motor Oil results for MPLOTC-MW-9-050316, MPLOTC-MW-13-050316, MPLOTC-MW-18-050416, MPLOTC-MW-12-050416, MPLOTC-MW-22-DUP-050416, and MPLOTC-MW-7-050416 were qualified as either "DRO" or "DRO/RRO" by the lab, which indicates results of organics or additional hydrocarbons in ranges that are not identifiable. Diesel and Motor Oil results are qualified as estimated (J) for these samples.
- 6. Two transcription errors were found: 1) The trip blanks were logged in with an incorrect sample date, and 2) Sample MPLOTC-MW-06-050316 was logged in as MPLOTC-MW-06-05-0316. Both are minor errors that do not impact overall data quality. No further action was taken.

Data Qualification: See Table 2.

Definitions:

SDG: Sample Delivery Group QC: Quality Control

COC: Chain of Custody

QAPP: Quality Assurance Project Plan

VOC: Volatile Organic Compound

SVOC: Semivolatile Organic Compound

TCL: Target Compound List

PCB: Polychlorinated Biphenyl

RPD: Relative Percent Difference

LCS: Laboratory Control Sample

RSD: Relative Standard Deviation

MS/MSD: Matrix Spike/Matrix Spike Duplicate CRDL: Contract Required Quantitation Limit

MDL: Method Detection Limit

RL: Reporting Limit

%R: Percent Recovery PEM: Performance Evaluation Mixture

CC: Continuing Calibration SPCC: System Performance Check Compound

RRF: Relative Response Factor RT: Retention Time
TCLP: Toxicity Characteristic Leaching Procedure LOQ: Limit of Quantitation

APPENDIX D
DATA TABLES AND TREND GRAPHS

Table D-1: Summary of Groundwater Sampling Results - Well MW-06 Sea-Tac Development Site, Seatac WA

	Field Parameters								Analytical Data									
Date Sampled ^c	TOC Elevation (feet msl)	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)	pH (standard units)	Temperature (°C)	Conductivity (µmhos/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	NWTPH-Gasoline (mg/L)	Benzene (μg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)	EDB (ethylene dibromide) (µg/L) ^f	N-hexane (µg/L)	Naphthalene (µg/L)	NWTPH-Diesel (mg/L)	NWTPH-Motor Oil (mg/L)
19-Mar-10	369.68	60.03	309.65	5.96	13.5	409	0.87	3.75	< 0.10	< 1.0	< 1.0	< 1.0	< 1.0	< 0.0096	< 1.0	< 5.0	-	-
11-Feb-14	369.68	59.03	310.65	6.13	12.1	139	0.91	16.4	< 0.10	< 0.25	< 0.25	< 0.25	< 0.50	< 0.08	< 0.20	< 0.50	< 0.10	< 0.20
28-May-14	369.68	-	-	6.14	14.3	454	1.03	3.71	< 0.10	< 0.25	< 0.25	< 0.25	< 0.50	< 0.07	< 0.20 UJ	< 0.50	< 0.10	< 0.20
10-Sep-14	369.68	-	-	6.27	15.9	312.0	1.52	11.8	< 0.10	< 0.25	< 0.25	< 0.25	< 0.50	< 0.07	< 0.20	< 0.50	< 0.10	< 0.20
3-Dec-14	369.68	-	-	6.27	13.6	314.0	2.14	6.8	< 0.10	< 0.25	< 0.25	< 0.25	< 0.50	< 0.07	< 0.20	< 0.50	< 0.10	< 0.20
17-Jun-15	369.68	-	-	6.32	14.9	331.0	3.96	0.8	< 0.25	< 0.20	< 0.20	< 0.20	< 0.40	< 0.07	< 0.20	< 0.50	< 0.10	< 0.20
3-Dec-15	369.68	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3-May-16	369.68	61.41	308.27	6.36	13.9	396	10.59	-	<0.10	<0.20	<0.20	<0.20	<0.40	<0.20	0.19 J	<0.50	<0.10	<0.20
Clean-up	MTCA Method A for Groundwater (unrestricted I								5 ⁹	1000 ^g	700 ^g	1000 ^h	0.01 ^h	NSA	160	0.5	0.5	
Level		MTCA Method B for Groundwater (unrestricted							NSA	5 ⁱ	640	800	1600	0.022	480	160	NSA	NSA

Notes:			
feet bgs	Feet below ground surface	-	Not measured or not available
feet bmp	Feet below measuring point		Result exceeds Clean-up Level (CUL)
feet msl	Feet above mean sea level	mg/L	Milligrams per liter
а	Well not surveyed, elevation estimated.	μg/L	Micrograms per liter
b	IAS/SVE not in operation.	NTU	Nephelometric Turbidity Unit
С	Water levels collected at various times prior to sampling (see Table 1). Date/time is sampling time.	µmhos/cm	Micromhos per centimeter
d	When benzene is present.	<	Analyte not detected above the reporting limit shown
е	When benzene is not present.	MTCA	Model Toxics Control Act
f	Reported at Method Detection Limit (MDL). The MDL is greater than the MTCA CULs.	MCL	Maximum Containment Level
g	Inclusive of 40 CFR 141.61 Federal Law for drinking water MCLs	NSA	No Standard Available
h	Value is more protective than Federal MCLs.	TOC	Top of casing inside PVC well
i	MTCA 173-340-705(5): Adjustments to cleanup levels based on applicable laws.	°C	Degrees Celsius
		J	The constituent was positively identified and detected; however, the concentration reported is an estimated value because the result is less than the quantitation limit or quality control criteria were not met.
		UJ	The constituent was analyzed for, but was not detected above the reported sample quantitation limit; however, the value reported is an estimated value because the result is less than the quantitation limit or quality control criteria were not met.

Table D-2: Summary of Groundwater Sampling Results - Well MW-07 Sea-Tac Development Site, Seatac WA

				Field P	'aramete	rs			Analytical Data									
Date Sampled ^c	TOC Elevation (feet msl)	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)	pH (standard units)	Temperature (°C)	Conductivity (µmhos/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	NWTPH-Gasoline (mg/L)	Benzene (μg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)	EDB (ethylene dibromide) (µg/L) ^f	N-hexane (µg/L)	Naphthalene (µg/L)	NWTPH-Diesel (mg/L)	NWTPH-Motor Oil (mg/L)
18-Mar-10	358.70	48.69	310.01	6.61	13.3	354	1.41	5.18	26	230	1,100	360	4630	0.010	160	210	-	-
13-Feb-14	358.69	47.72	310.97	6.56	14.3	131	0.35	3.87	29	25	110	180	2022	< 3.8	190	220	11 J	< 0.20
29-May-14	358.69	47.65	311.04	6.65	16.4	379	0.13	2.84	27	14	80	190	1811	< 1.5	140	210 B	11 J	< 0.20
11-Sep-14	358.69	47.95	310.74	6.73	16.5	373	0.35	2.28	36	17	81	260	2110	< 0.028	280	300 B J	11	0.41 J
4-Dec-14	358.69	47.95	310.74	6.70	15.7	333	0.20	2.95	26	21	66	200	1507	< 0.07	170	180	11 J	0.32 J
18-Jun-15	358.69	48.01	310.68	6.64	16.1	371	0.25	1.57	15 J	6	28 J	110 J	533 J	< 0.07	93 J	96 J	5.4	0.24 J
3-Dec-15	358.69	49.96	308.73	6.44	15.9	526	0.14	2.91	23	77	1200	270	1550	< 1.5	160	69	4.9 J	< 0.20
4-May-16	358.69	49.05	309.64	6.68	16.0	640	1.02	4.57	12	30	500	170	970	<0.20	150	68	6.5 J	0.30 J
Clean-up		MTCA Method A for Groundwater (unrestricted lar						ted landuse)	0.8 ^d /1.0 ^e	5 ^g	1000 ^g	700 ^g	1000 ^h	0.01 ^h	NSA	160	0.5	0.5
Level	MTCA Method B for Groundwater (unrestricted land						ted landuse)	e) NSA 5 ⁱ 640 800 1600 0.022 480 160 NSA							NSA			

Notes:			
feet bgs	Feet below ground surface	-	Not measured or not available
feet bmp	Feet below measuring point		Result exceeds Clean-up Level (CUL)
feet msl	Feet above mean sea level	mg/L	Milligrams per liter
a	Well not surveyed, elevation estimated.	μg/L	Micrograms per liter
b	IAS/SVE not in operation.	NTU	Nephelometric Turbidity Unit
С	Water levels collected at various times prior to sampling (see Table 1). Date/time is sampling time.	µmhos/cm	Micromhos per centimeter
d	When benzene is present.	<	Analyte not detected above the reporting limit shown
e	When benzene is not present.	MTCA	Model Toxics Control Act
f	Reported at Method Detection Limit (MDL). The MDL is greater than the MTCA CULs.	MCL	Maximum Containment Level
g	Inclusive of 40 CFR 141.61 Federal Law for drinking water MCLs	NSA	No Standard Available
h	Value is more protective than Federal MCLs.	TOC	Top of casing inside PVC well
i	MTCA 173-340-705(5): Adjustments to cleanup levels based on applicable laws.	°C	Degrees Celsius
		J	The constituent was positively identified and detected; however, the concentration reported is an estimated value because the result is less than the quantitation limit or quality control criteria were not met.
		В	Analyte detected in an associated Method Blank at a concentration greater than one-half of laboratory's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.

Table D-3: Summary of Groundwater Sampling Results - Well MW-09 Sea-Tac Development Site, Seatac WA

				Field F	aramete	rs			Analytical Data									
Date Sampled ^c	TOC Elevation (feet msl)	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)	pH (standard units)	Temperature (°C)	Conductivity (µmhos/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	NWTPH-Gasoline (mg/L)	Benzene (μg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)	EDB (ethylene dibromide) (µg/L) ^f	N-hexane (µg/L)	Naphthalene (µg/L)	NWTPH-Diesel (mg/L)	NWTPH-Motor Oil (mg/L)
19-Mar-10	362.14	52.30	309.84	6.19	14.2	294	0.13	7.18	16	170	65	400	1434	0.016	100	160	-	-
12-Feb-14	362.13	51.45	310.68	6.49	12.6	99.5	0.28	3.10	7.5	30	8.1	150	98.0	< 0.08	16	120	1.6 J	< 0.20
29-May-14	362.13	51.41	310.72	6.44	15.0	295	0.14	1.01	7.8	32	9.4	170	111.6	< 0.37	5.60	92 B	2.3 J	< 0.20
10-Sep-14	362.13	-	-	6.49	15.7	310	0.20	3.85	5.6	17	4.6	100	47.2	< 0.010*	< 0.20	74	2.8	< 0.20
3-Dec-14	362.13	51.68	310.45	6.47	13.6	307	0.18	2.37	4.1	14	2.8	76	8.8	< 0.07	< 0.20	44	1.9	< 0.20
17-Jun-15	362.13	51.67	310.46	6.48	15.1	331	0.18	0.75	1.7	7.2	1.3	40	1.6	< 0.07	< 0.20	18	1.5	< 0.20
3-Dec-15	362.13	-	-	6.37	14.1	477	0.96	3.91	2.2 J	8	1.5 J+	73	1.45 J+	< 0.07	< 0.20	6	1.0 J	< 0.20
3-May-16	362.13	-	-	6.51	18.3	221	4.68	1.08	<0.10	0.15 J	<0.20	0.71	<0.40	<0.20	<0.20	<0.50	0.22 J	<0.20
Clean-up	MTCA Method A for Groundwater (unrestricted la									5 ^g	1000 ^g	700 ^g	1000 ^h	0.01 ^h	NSA	160	0.5	0.5
Level	MTCA Method B for Groundwater (unrestricted la								NSA	5 ⁱ	640	800	1600	0.022	480	160	NSA	NSA

Notes:			
feet bgs	Feet below ground surface	-	Not measured or not available
feet bmp	Feet below measuring point		Result exceeds Clean-up Level (CUL)
feet msl	Feet above mean sea level	mg/L	Milligrams per liter
a	Well not surveyed, elevation estimated.	μg/L	Micrograms per liter
b	IAS/SVE not in operation.	NTU	Nephelometric Turbidity Unit
С	Water levels collected at various times prior to sampling (see Table 1). Date/time is sampling time.	µmhos/cm	Micromhos per centimeter
d	When benzene is present.	<	Analyte not detected above the reporting limit shown
е	When benzene is not present.	MTCA	Model Toxics Control Act
f	Reported at Method Detection Limit (MDL). The MDL is greater than the MTCA CULs.	MCL	Maximum Containment Level
g	Inclusive of 40 CFR 141.61 Federal Law for drinking water MCLs	NSA	No Standard Available
h	Value is more protective than Federal MCLs.	TOC	Top of casing inside PVC well
i	MTCA 173-340-705(5): Adjustments to cleanup levels based on applicable laws.	°C	Degrees Celsius
		J	The constituent was positively identified and detected; however, the concentration reported is an estimated value because the result is less than the quantitation limit or quality control criteria were not met.
*	Reported at the Limit of Quantitation (LOQ). The LOQ is less than MTCA CULs.	J+	The constituent was positively identified and detected; however, the concentration reported is an estimated value because the result may be biased high.
		В	Analyte detected in an associated Method Blank at a concentration greater than one-half of laboratory's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.

Table D-4: Summary of Groundwater Sampling Results - Well MW-12 Sea-Tac Development Site, Seatac WA

				Field P	'aramete	rs							Analytic	cal Data				
Date Sampled ^c	TOC Elevation (feet msl)	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)	pH (standard units)	Temperature (°C)	Conductivity (µmhos/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	NWTPH-Gasoline (mg/L)	Benzene (μg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)	EDB (ethylene dibromide) (µg/L) ^f	N-hexane (µg/L)	Naphthalene (µg/L)	NWTPH-Diesel (mg/L)	NWTPH-Motor Oil (mg/L)
15-Mar-10	364.88	54.99	309.89	6.38	14.5	472	0.03	40.8	36	230	2,400	1,300	5140	0.16	210	520	-	-
13-Feb-14	364.83	55.02	309.81	7.76	14.1	125	10.50	3.43	8.6	79	410	79	970	< 3.8	< 10	25	1.1 J	< 0.20
29-May-14	364.83	51.58	313.25	7.87	16.7	252	11.77	5.99	0.12	2.0	4.3	1.6	4.2	< 0.07	< 0.20	< 0.50	0.34 J	< 0.20
11-Sep-14	364.83	54.87	309.96	8.04	18.1	255	11.80	38.8	0.11	2.5	2.6	1.5	5.3	< 0.010*	0.78	0.53 B J+	0.35	< 0.20
4-Dec-14	364.83	54.87	309.96	8.04	15.1	258	11.51	153	< 0.10	< 0.25	< 0.25	0.73	6.0	< 0.07	0.18 J	0.68	0.20	< 0.20
18-Jun-15	364.83	-	-	8.09	16.3	208	9.90	2.4	< 0.25	< 0.20	< 0.20	0.10 J	2.1	< 0.07	0.26	< 0.50	0.45	< 0.20
3-Dec-15	364.83	56.74	308.09	-	-	-	-	-	< 0.25	< 0.20	< 0.20	< 0.20	<0.40	< 0.07	< 0.20	< 0.50	0.29	< 0.20
4-May-16	364.83	55.53	309.30	7.68	15.1	226	7.72	3.48	<0.10	<0.20	<0.20	<0.20	<0.40	<0.20	<0.20	<0.50	0.18 J	<0.20
Clean-up								ted landuse)	0.8 ^d /1.0 ^e NSA	5 ⁹ 5 ⁱ	1000 ^g	700 ^g	1000 ^h	0.01 ^h	NSA		0.5	0.5
Level	•										640	800	1600	0.022	480	160	NSA	NSA

Notes:			
feet bgs	Feet below ground surface	-	Not measured or not available
feet bmp	Feet below measuring point		Result exceeds Clean-up Level (CUL)
feet msl	Feet above mean sea level	mg/L	Milligrams per liter
a	Well not surveyed, elevation estimated.	μg/L	Micrograms per liter
b	IAS/SVE not in operation.	NTU	Nephelometric Turbidity Unit
С	Water levels collected at various times prior to sampling (see Table 1). Date/time is sampling time.	µmhos/cm	Micromhos per centimeter
d	When benzene is present.	<	Analyte not detected above the reporting limit shown
е	When benzene is not present.	MTCA	Model Toxics Control Act
f	Reported at Method Detection Limit (MDL). The MDL is greater than the MTCA CULs.	MCL	Maximum Containment Level
g	Inclusive of 40 CFR 141.61 Federal Law for drinking water MCLs	NSA	No Standard Available
h	Value is more protective than Federal MCLs.	TOC	Top of casing inside PVC well
i	MTCA 173-340-705(5): Adjustments to cleanup levels based on applicable laws.	°C	Degrees Celsius
		J	The constituent was positively identified and detected; however, the concentration reported is an estimated value because the result is less than the quantitation limit or quality control criteria were not met.
*	Reported at the Limit of Quantitation (LOQ). The LOQ is less than MTCA CULs.	J+	The constituent was positively identified and detected; however, the concentration reported is an estimated value because the result may be biased high.
		В	Analyte detected in an associated Method Blank at a concentration greater than one-half of laboratory's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.

Table D-5: Summary of Groundwater Sampling Results - Well MW-13 Sea-Tac Development Site, Seatac WA

				Field P	'aramete	rs							Analytic	al Data				
Date Sampled ^c	TOC Elevation (feet msl)	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)	pH (standard units)	Temperature (°C)	Conductivity (µmhos/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	NWTPH-Gasoline (mg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)	EDB (ethylene dibromide) (µg/L) ^f	N-hexane (µg/L)	Naphthalene (µg/L)	NWTPH-Diesel (mg/L)	NWTPH-Motor Oil (mg/L)
19-Mar-10	365.42	55.66	309.76	6.28	12.8	271	0.16	72.1	33	14	230	890	4500	0.029	130	410	-	-
12-Feb-14	365.42	54.35	311.07	6.57	13.2	73.3	1.41	4.28	14	< 0.25	3.90	240	2070	< 0.08	< 0.20	33	1.4 J	< 0.20
29-May-14	365.42	55.62	309.80	6.84	14.7	182	10.59	4.24	0.14	< 0.25	< 0.25	0.85	18.54	< 0.07	0.11 J	< 0.50	0.32	< 0.20
10-Sep-14	365.42	54.86	310.56	7.06	14.9	137	11.06	2.41	< 0.10	< 0.25	< 0.25	< 0.25	< 0.50	< 0.010*	< 0.20	< 0.50	0.29	< 0.20
4-Dec-14	365.42	54.86	310.56	7.06	13.9	163	10.10	2.32	< 0.10	< 0.25	< 0.25	< 0.25	< 0.50	< 0.07	< 0.20	< 0.50	0.31	< 0.20
18-Jun-15	365.42	54.70	310.72	7.13	14.7	174	10.71	1.32	< 0.25	< 0.20	< 0.20	< 0.20	< 0.40	< 0.07	< 0.20	0.61	0.27	< 0.20
2-Dec-15	365.42	56.43	308.99	7.27	14.2	164	10.20	0.90	< 0.25	< 0.20	< 0.20	0.23	1.10 J+	< 0.07	< 0.20	< 0.50	0.26	< 0.20
3-May-16	365.42	56.30	309.12	7.79	15.8	194	14.18	1.14	<0.10	<0.20	<0.20	<0.20	0.4	<0.20	<0.20	<0.50	0.12 J	<0.20
Clean-up								ted landuse)		5 ⁹	1000 ^g	700 ^g	1000 ^h	0.01 ^h	NSA	160	0.5	0.5
Level Notes:			МТ	CA Metho	d B for Gr	oundwater	(unrestrict	ted landuse)	NSA	5 ⁱ	640	800	1600	0.022	480	160	NSA	NSA

Notes:			
feet bgs	Feet below ground surface	-	Not measured or not available
feet bmp	Feet below measuring point		Result exceeds Clean-up Level (CUL)
feet msl	Feet above mean sea level	mg/L	Milligrams per liter
a	Well not surveyed, elevation estimated.	μg/L	Micrograms per liter
b	IAS/SVE not in operation.	NTU	Nephelometric Turbidity Unit
С	Water levels collected at various times prior to sampling (see Table 1). Date/time is sampling time.	µmhos/cm	Micromhos per centimeter
d	When benzene is present.	<	Analyte not detected above the reporting limit shown
е	When benzene is not present.	MTCA	Model Toxics Control Act
f	Reported at Method Detection Limit (MDL). The MDL is greater than the MTCA CULs.	MCL	Maximum Containment Level
g	Inclusive of 40 CFR 141.61 Federal Law for drinking water MCLs	NSA	No Standard Available
h	Value is more protective than Federal MCLs.	TOC	Top of casing inside PVC well
i	MTCA 173-340-705(5): Adjustments to cleanup levels based on applicable laws.	°C	Degrees Celsius
		J	The constituent was positively identified and detected; however, the concentration reported is an estimated value because the result is less than the quantitation limit or quality control criteria were not met.
*	Reported at the Limit of Quantitation (LOQ). The LOQ is less than MTCA CULs.	J+	The constituent was positively identified and detected; however, the concentration reported is an estimated value because the result may be biased high.

Table D-6: Summary of Groundwater Sampling Results - Well MW-17A Sea-Tac Development Site, Seatac WA

	evation msl) msl) water btoc) ereture crivity srature C) d units) srature C) duits) reture C) didity reture C)												Analytic	cal Data				
Date Sampled ^c	TOC Elevation (feet msl)	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)	pH (standard units)	Temperature (°C)	Conductivity (µmhos/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	NWTPH-Gasoline (mg/L)	Benzene (μg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)	EDB (ethylene dibromide) (µg/L) ^f	N-hexane (µg/L)	Naphthalene (µg/L)	NWTPH-Diesel (mg/L)	NWTPH-Motor Oil (mg/L)
17-Mar-10	385.81	76.29	309.52	6.51	9.3	145	0.52	142.0	1.70	< 1.0	< 1.0	4	27	< 0.0095	< 1.0	63	-	-
11-Feb-14	394.00	83.80	310.20	6.36	11.3	82.5	1.06	137.0	< 0.10	< 0.25	< 0.25	< 0.25	< 0.50	< 0.08	< 0.20	0.74	< 0.10	< 0.20
29-May-14	394.00	84.00	310.00	6.22	12.2	175	2.06	39.7	< 0.10	0.25	< 0.25	< 0.25	< 0.50	< 0.07	< 0.20	0.62 J+	< 0.10	< 0.20
10-Sep-14	394.00	84.18	309.82	6.28	12.4	162	1.42	18.8	< 0.10	< 0.25	< 0.25	< 0.25	< 0.50	< 0.07	< 0.20	0.64 J	< 0.10	< 0.20
5-Dec-14	394.00	84.18	309.82	6.42	11.7	167	1.09	31.8	< 0.10 UJ	0.54 J	< 0.25 UJ	< 0.25 UJ	0.63 J	< 0.07	< 0.20 UJ	2.8	< 0.10	< 0.20
17-Jun-15	394.00	84.16	309.84	6.29	12.9	158	3.13	29.6	< 0.25	< 0.20	< 0.20	< 0.20	< 0.40	< 0.07	< 0.20	< 0.50	< 0.10	< 0.20
18-Dec-15	394.00	85.95	308.05	6.57	11.8	127	0.20	23.7	0.05 J	0.75	< 0.20	0.08 J	< 0.40	< 0.07	< 0.20	0.98 J	< 0.10	< 0.20
3-May-16	394.00	85.21	308.79	6.51	13.1	132	4.60	8.4	<0.10	0.33	<0.20	<0.20	<0.40	<0.20	0.11 J	0.71 J	<0.10	<0.20
Clean-up								ted landuse)	0.8 ^d /1.0 ^e	5 ⁹	1000 ^g		1000 ^h	0.01 ^h	NSA	160	0.5	0.5
Level			МТ	CA Metho	d B for Gr	oundwater	(unrestric	ted landuse)	NSA	5 ⁱ	640	800	1600	0.022	480	160	NSA	NSA

Notes:			
feet bgs	Feet below ground surface	-	Not measured or not available
feet bmp	Feet below measuring point		Result exceeds Clean-up Level (CUL)
feet msl	Feet above mean sea level	mg/L	Milligrams per liter
а	Well not surveyed, elevation estimated.	μg/L	Micrograms per liter
b	IAS/SVE not in operation.	NTU	Nephelometric Turbidity Unit
С	Water levels collected at various times prior to sampling (see Table 1). Date/time is sampling time.	µmhos/cm	Micromhos per centimeter
d	When benzene is present.	<	Analyte not detected above the reporting limit shown
е	When benzene is not present.	MTCA	Model Toxics Control Act
f	Reported at Method Detection Limit (MDL). The MDL is greater than the MTCA CULs.	MCL	Maximum Containment Level
g	Inclusive of 40 CFR 141.61 Federal Law for drinking water MCLs	NSA	No Standard Available
h	Value is more protective than Federal MCLs.	TOC	Top of casing inside PVC well
i	MTCA 173-340-705(5): Adjustments to cleanup levels based on applicable laws.	°C	Degrees Celsius
		J	The constituent was positively identified and detected; however, the concentration reported is an estimated value because the result is less than the quantitation limit or quality control criteria were not met.
		UJ	The constituent was analyzed for, but was not detected above the reported sample quantitation limit; however, the value reported is an estimated value because the result is less than the quantitation limit or quality control criteria were not met.
		J+	The constituent was positively identified and detected; however, the concentration reported is an estimated value because the result may be biased high.

Table D-7: Summary of Groundwater Sampling Results - Well MW-18 Sea-Tac Development Site, Seatac WA

				Field P	'aramete	rs			Analytical Data											
Date Sampled ^c	TOC Elevation (feet msl)	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)	pH (standard units)	Temperature (°C)	Conductivity (µmhos/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	NWTPH-Gasoline (mg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)	EDB (ethylene dibromide) (µg/L) ^f	N-hexane (µg/L)	Naphthalene (µg/L)	NWTPH-Diesel (mg/L)	NWTPH-Motor Oil (mg/L)		
18-Mar-10	360.45	50.58	309.87	6.69	14.2	586	0.11	5.39	52	2,600	6,000	1,700	6690	2.5	350	420	-	-		
12-Feb-14	360.45	49.01	311.44	7.62	13.8	175	8.11	2.89	1.0	27	13	17	91.3	< 0.08	1.1	4.0	0.77 J	<0.20		
29-May-14	360.45	49.75	310.70	7.98	15.2	369	10.60	7.95	0.14	6.6	1.5	4.7	9.2	< 0.07	0.64	0.84 J+	0.33 J	<0.20		
11-Sep-14	360.45	49.83	310.62	8.23	15.2	498	11.23	13.1	< 0.10	0.72	0.27	0.40	0.72	< 0.010*	< 0.20	< 0.50	0.14	< 0.20		
4-Dec-14	360.45	49.83	310.62	7.84	14.4	470	10.78	81.6	< 0.10	0.69	< 0.25	0.63	0.93	< 0.07	0.10 J	< 0.50	0.24	< 0.20		
18-Jun-15	360.45	49.51	310.94	8.05	15.2	515	10.89	49.6	< 0.25	0.67	0.54	0.2	1.10	< 0.07	< 0.20	< 0.50	0.38	< 0.20		
3-Dec-15	360.45	-	-	8.28	14.8	455	10.21	14.6	< 0.25	0.57	4.80	0.3	9.80	< 0.07	0.25	0.67	0.13	< 0.20		
4-May-16	360.45	51.12	309.33	7.27	14.8	513	4.53	4.8	0.22	8.0	5.5	8.2	29.3	<0.20	1.5	1.5	0.37 J	<0.20		
Clean-up Level							-	ted landuse) ted landuse)	0.8 ^d /1.0 ^e NSA	5 ⁹ 5 ⁱ	1000 ^g 640	700 ^g 800	1000 ^h 1600	0.01 ^h 0.022	NSA 480	160 160	0.5 NSA	0.5 NSA		

Notes:			
feet bgs	Feet below ground surface	-	Not measured or not available
feet bmp	Feet below measuring point		Result exceeds Clean-up Level (CUL)
feet msl	Feet above mean sea level	mg/L	Milligrams per liter
a	Well not surveyed, elevation estimated.	μg/L	Micrograms per liter
b	IAS/SVE not in operation.	NTU	Nephelometric Turbidity Unit
С	Water levels collected at various times prior to sampling (see Table 1). Date/time is sampling time.	µmhos/cm	Micromhos per centimeter
d	When benzene is present.	<	Analyte not detected above the reporting limit shown
е	When benzene is not present.	MTCA	Model Toxics Control Act
f	Reported at Method Detection Limit (MDL). The MDL is greater than the MTCA CULs.	MCL	Maximum Containment Level
g	Inclusive of 40 CFR 141.61 Federal Law for drinking water MCLs	NSA	No Standard Available
h	Value is more protective than Federal MCLs.	TOC	Top of casing inside PVC well
i	MTCA 173-340-705(5): Adjustments to cleanup levels based on applicable laws.	°C	Degrees Celsius
		J	The constituent was positively identified and detected; however, the concentration reported is an estimated value because the result is less than the quantitation limit or quality control criteria were not met.
*	Reported at the Limit of Quantitation (LOQ). The LOQ is less than MTCA CULs.	J+	The constituent was positively identified and detected; however, the concentration reported is an estimated value because the result may be biased high.

Table D-8: Summary of Groundwater Sampling Results - Well MW-19 Sea-Tac Development Site, Seatac WA

				Field F	'aramete	rs							Analytic	cal Data				
Date Sampled ^c	TOC Elevation (feet msl)	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)	pH (standard units)	Temperature (°C)	Conductivity (µmhos/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	NWTPH-Gasoline (mg/L)	Benzene (μg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)	EDB (ethylene dibromide) (µg/L) ^f	N-hexane (µg/L)	Naphthalene (µg/L)	NWTPH-Diesel (mg/L)	NWTPH-Motor Oil (mg/L)
18-Mar-10	356.61	46.60	310.01	7.04	12.5	275	0.07	84.0	1.3	8.90	1.8	43	6.0	< 0.0096	2.8	< 5.0	-	-
11-Feb-14	356.61	45.46	311.15	6.98	12.7	105	0.15	3.20	< 0.10	< 0.25	< 0.25	< 0.25	< 0.50	< 0.08	4.3	< 0.50	< 0.10	< 0.20
29-May-14	356.61	45.74	310.87	6.96	13.7	290	0.04	0.42	< 0.10	< 0.25	0.40	< 0.25	0.58	< 0.07	0.3	< 0.50	< 0.10	< 0.20
10-Sep-14	356.61	45.73	310.88	6.93	14.5	379	0.16	0.30	< 0.10	< 0.25	< 0.25	< 0.25	< 0.50	< 0.07	< 0.20	< 0.50	< 0.10	< 0.20
3-Dec-14	356.61	45.73	310.88	6.82	13.3	380	0.20	0.86	< 0.10	< 0.25	< 0.25	< 0.25	< 0.50	< 0.07	< 0.20	< 0.50	< 0.10	< 0.20
17-Jun-15	356.61	45.94	310.67	6.75	14.3	400	0.26	0.86	< 0.25	< 0.20	< 0.20	< 0.20	< 0.40	< 0.07	< 0.20	< 0.50	< 0.10	< 0.20
2-Dec-15	356.61	47.72	308.89	6.87	13.6	530	0.09	2.60	< 0.25	< 0.20	< 0.20	< 0.20	< 0.40	< 0.07	< 0.20	< 0.50	< 0.10	< 0.20
3-May-16	356.61	46.81	309.80	6.79	15.2	390	0.87	1.23	<0.10	<0.20	<0.20	<0.20	<0.40	<0.20	<0.20	<0.50	<0.10	<0.20
Clean-up			МТ	CA Metho	d A for Gr	oundwater	(unrestric	ted landuse)	0.8 ^d /1.0 ^e	5 ⁹	1000 ^g	700 ^g	1000 ^h	0.01 ^h	NSA	160	0.5	0.5
Level	·										640	800	1600	0.022	480	160	NSA	NSA

Notes:			
feet bgs	Feet below ground surface	-	Not measured or not available
feet bmp	Feet below measuring point		Result exceeds Clean-up Level (CUL)
feet msl	Feet above mean sea level	mg/L	Milligrams per liter
a	Well not surveyed, elevation estimated.	μg/L	Micrograms per liter
b	IAS/SVE not in operation.	NTU	Nephelometric Turbidity Unit
С	Water levels collected at various times prior to sampling (see Table 1). Date/time is sampling time.	µmhos/cm	Micromhos per centimeter
d	When benzene is present.	<	Analyte not detected above the reporting limit shown
е	When benzene is not present.	MTCA	Model Toxics Control Act
f	Reported at Method Detection Limit (MDL). The MDL is greater than the MTCA CULs.	MCL	Maximum Containment Level
g	Inclusive of 40 CFR 141.61 Federal Law for drinking water MCLs	NSA	No Standard Available
h	Value is more protective than Federal MCLs.	TOC	Top of casing inside PVC well
i	MTCA 173-340-705(5): Adjustments to cleanup levels based on applicable laws	°C	Degrees Celsius

Table D-9: Summary of Groundwater Sampling Results - Well MW-20 Sea-Tac Development Site, Seatac WA

				Field P	'aramete	rs			Analytical Data											
Date Sampled ^c	TOC Elevation (feet msl)	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)	pH (standard units)	Temperature (°C)	Conductivity (µmhos/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	NWTPH-Gasoline (mg/L)	Benzene (μg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)	EDB (ethylene dibromide) (µg/L) [†]	N-hexane (µg/L)	Naphthalene (µg/L)	NWTPH-Diesel (mg/L)	NWTPH-Motor Oil (mg/L)		
17-Mar-10	430.98	121.79	309.19	6.63	10.8	359	4.82	4.37	< 0.10	< 1.0	< 1.0	< 1.0	< 1.0	< 0.0095	< 1.0	< 5.0	-	-		
20-Mar-14	416.61	106.13	310.48	6.74	11.4	377	7.82	3.32	< 0.10	< 0.25	< 0.25	< 0.25	< 0.50	< 0.07	< 0.20	< 0.50 UJ	< 0.10	< 0.20		
29-May-14	416.61	106.66	309.95	6.73	12.3	257	6.37	0.82	< 0.10	< 0.25	< 0.25	< 0.25	< 0.50	< 0.07	< 0.20	< 0.50	< 0.10	< 0.20		
10-Sep-14	416.61	106.53	310.08	6.83	13.2	355	7.55	0.69	< 0.10	< 0.25	< 0.25	< 0.25	< 0.50	< 0.07	< 0.20	< 0.50	< 0.10	< 0.20		
3-Dec-14	416.61	106.53	310.08	6.79	12.4	355	7.67	1.30	< 0.10	< 0.25	< 0.25	< 0.25	< 0.50	< 0.07	< 0.20	< 0.50	< 0.10	< 0.20		
17-Jun-15	416.61	106.68	309.93	6.77	13.3	350	7.41	1.06	< 0.25	< 0.20	< 0.20	< 0.20	< 0.40	< 0.07	< 0.20	< 0.50	< 0.10	< 0.20		
3-Dec-15	416.61	108.61	308.00	7.66	12.4	290	6.76	4.28	< 0.25	< 0.20	< 0.20	< 0.20	< 0.40	< 0.07	< 0.20	< 0.50	< 0.10	< 0.20		
3-May-16	416.61	107.56	309.05	6.58	13.3	138	5.31	3.55	<0.10	<0.20	<0.20	<0.20	<0.40	<0.20	<0.20	<0.50	<0.10	<0.20		
Clean-up Level							-	ted landuse) ted landuse)	0.8 ^d /1.0 ^e NSA	5 ⁹ 5 ⁱ	1000 ^g 640	700 ^g 800	1000 ^h 1600	0.01 ^h 0.022	NSA 480	160 160	0.5 NSA	0.5 NSA		

NOIES.			
feet bgs	Feet below ground surface	-	Not measured or not available
feet bmp	Feet below measuring point		Result exceeds Clean-up Level (CUL)
feet msl	Feet above mean sea level	mg/L	Milligrams per liter
a	Well not surveyed, elevation estimated.	μg/L	Micrograms per liter
b	IAS/SVE not in operation.	NTU	Nephelometric Turbidity Unit
С	Water levels collected at various times prior to sampling (see Table 1). Date/time is sampling time.	µmhos/cm	Micromhos per centimeter
d	When benzene is present.	<	Analyte not detected above the reporting limit shown
е	When benzene is not present.	MTCA	Model Toxics Control Act
f	Reported at Method Detection Limit (MDL). The MDL is greater than the MTCA CULs.	MCL	Maximum Containment Level
g	Inclusive of 40 CFR 141.61 Federal Law for drinking water MCLs	NSA	No Standard Available
h	Value is more protective than Federal MCLs.	TOC	Top of casing inside PVC well
i	MTCA 173-340-705(5): Adjustments to cleanup levels based on applicable laws.	°C	Degrees Celsius

Table D-10: Summary of Groundwater Sampling Results - Well MW-21 Sea-Tac Development Site, Seatac WA

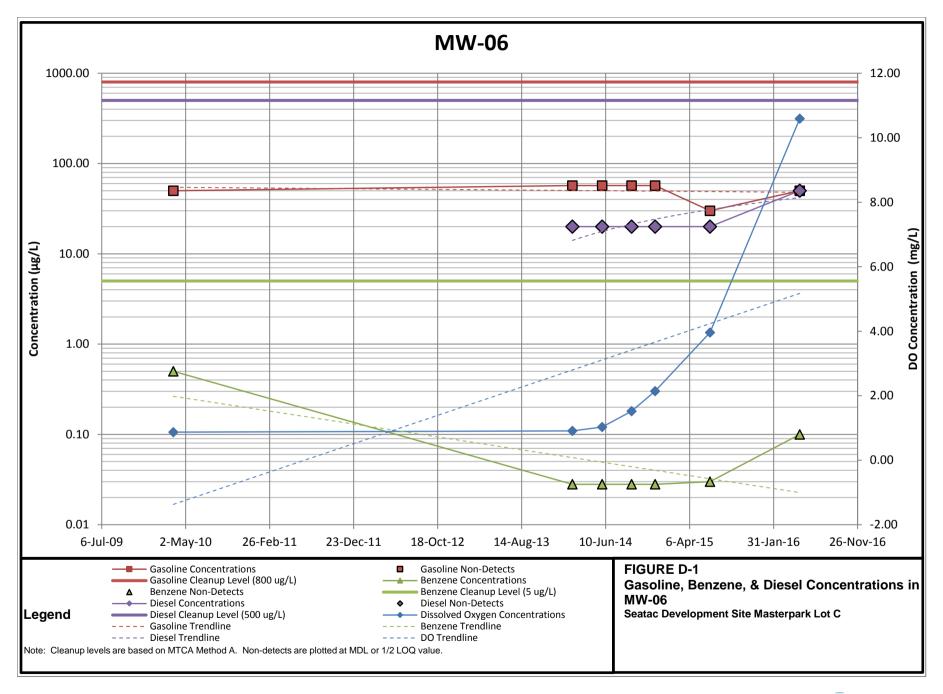
Field Parameters						Analytical Data												
Date Sampled ^c	TOC Elevation (feet msl)	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)	pH (standard units)	Temperature (°C)	Conductivity (µmhos/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	NWTPH-Gasoline (mg/L)	Benzene (μg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)	EDB (ethylene dibromide) (µg/L) ^f	N-hexane (µg/L)	Naphthalene (µg/L)	NWTPH-Diesel (mg/L)	NWTPH-Motor Oil (mg/L)
17-Mar-10	390.79	81.26	309.53	5.97	11.5	257	3.21	5.13	< 0.10	< 1.0	< 1.0	< 1.0	< 1.0	< 0.0096	< 1.0	< 5.0	-	-
11-Feb-14	412.85	102.34	310.51	6.09	11.9	110	6.31	11.2	< 0.10	< 0.25	< 0.25	< 0.25	< 0.50	< 0.08	< 0.20	< 0.50	< 0.10	< 0.20
29-May-14	412.85	102.61	310.24	6.15	12.5	277	6.28	1.71	< 0.10	< 0.25	< 0.25	< 0.25	< 0.50	< 0.07	< 0.20	< 0.50	< 0.10	< 0.20
10-Sep-14	412.85	102.66	310.19	6.15	13.5	283	6.25	1.95	< 0.10	< 0.25	< 0.25	< 0.25	< 0.50	< 0.07	< 0.20	< 0.50	< 0.10	< 0.20
3-Dec-14	412.85	102.66	310.19	6.20	12.3	304	5.54	13.1	< 0.10	< 0.25	< 0.25	< 0.25	< 0.50	< 0.07	< 0.20	< 0.50	< 0.10	< 0.20
17-Jun-15	412.85	102.81	310.04	6.12	13.5	326	6.12	1.98	< 0.25	< 0.20	< 0.20	< 0.20	< 0.40	< 0.07	< 0.20	< 0.50	< 0.10	< 0.20
3-Dec-15	412.85	104.70	308.15	5.17	12.6	341	6.21	1.39	< 0.25	< 0.20	< 0.20	< 0.20	< 0.40	< 0.07	< 0.20	< 0.50	< 0.10	< 0.20
3-May-16	412.85	104.40	308.45	6.28	13.7	315	9.30	3.86	<0.10	<0.20	<0.20	<0.20	<0.40	<0.20	<0.20	<0.50	<0.10	<0.20
Clean-up		•					•	ted landuse)	0.00	5 ⁹	1000 ^g	700 ^g	1000 ^h	0.01 ^h	NSA	160	0.5	0.5
Level			МТ	TCA Metho	od B for Gr	oundwater	(unrestric	ted landuse)	NSA	5 ⁱ	640	800	1600	0.022	480	160	NSA	NSA

Notes:			
feet bgs	Feet below ground surface	-	Not measured or not available
feet bmp	Feet below measuring point		Result exceeds Clean-up Level (CUL)
feet msl	Feet above mean sea level	mg/L	Milligrams per liter
a	Well not surveyed, elevation estimated.	μg/L	Micrograms per liter
b	IAS/SVE not in operation.	NTU	Nephelometric Turbidity Unit
С	Water levels collected at various times prior to sampling (see Table 1). Date/time is sampling time.	µmhos/cm	Micromhos per centimeter
d	When benzene is present.	<	Analyte not detected above the reporting limit shown
е	When benzene is not present.	MTCA	Model Toxics Control Act
f	Reported at Method Detection Limit (MDL). The MDL is greater than the MTCA CULs.	MCL	Maximum Containment Level
g	Inclusive of 40 CFR 141.61 Federal Law for drinking water MCLs	NSA	No Standard Available
h	Value is more protective than Federal MCLs.	TOC	Top of casing inside PVC well
i	MTCA 173-340-705(5): Adjustments to cleanup levels based on applicable laws.	°C	Degrees Celsius

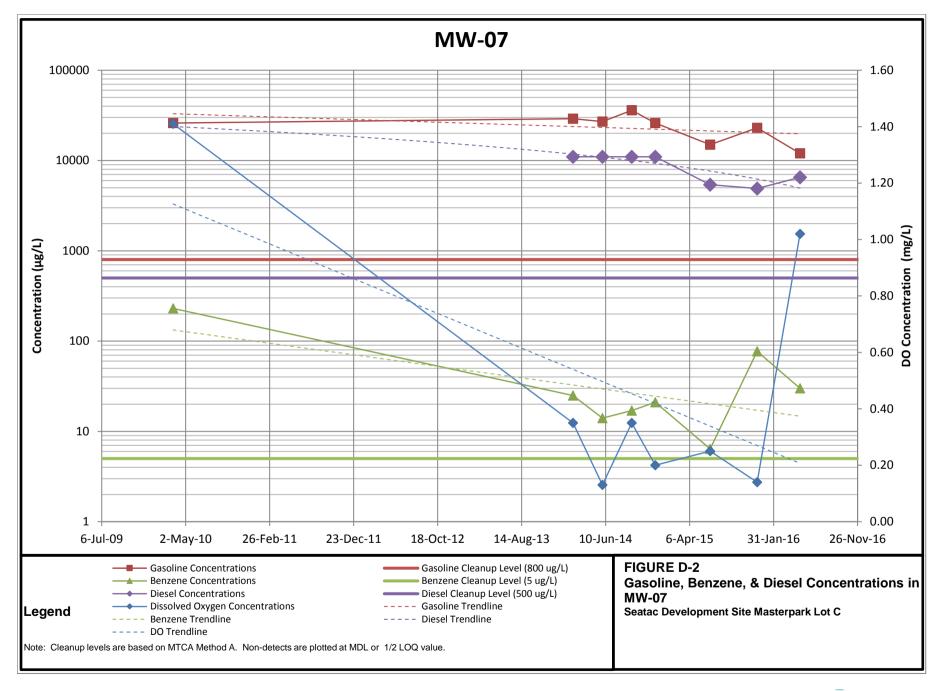
Table D-11: Summary of Groundwater Sampling Results - Well MW-22 Sea-Tac Development Site, Seatac WA

Field Parameters					Analytical Data													
Date Sampled ^c	TOC Elevation (feet msl)	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)	pH (standard units)	Temperature (°C)	Conductivity (µmhos/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	NWTPH-Gasoline (mg/L)	Benzene (μg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)	EDB (ethylene dibromide) (µg/L) ^f	N-hexane (µg/L)	Naphthalene (µg/L)	NWTPH-Diesel (mg/L)	NWTPH-Motor Oil (mg/L)
16-Mar-10	393.31	83.63	309.68	6.65	12.5	586	0.25	82.0	15	23	74	1400	2420	< 0.0095	15	380	-	-
20-Mar-14	393.31	82.93	310.38	6.68	12.2	381	0.87	64.8	17	5.7	12	990	1503	< 0.07	7.8	400 J	1.2 J	< 0.20
28-May-14	393.31	82.72	310.59	6.73	13.2	383	0.30	2.26	18	3.9	9.7	940	1900	< 0.07	8.6	420 B	1.7 J	< 0.20
12-Sep-14	393.31	82.98	310.33	6.81	13.7	423	0.29	1.03	16	4.8	9.3	690	1103	< 1.5	9.8	460 B J	1.1 J	< 0.20
5-Dec-14	393.31	82.98	310.33	6.81	12.8	378	0.26	3.71	16	8.7	11	740	1103	< 1.5	7.2	380	0.86 J	< 0.20
25-Jun-15	393.31	82.95	310.36	6.82	13.6	354	0.52	3.34	19	5.9	7.4	750	1402	< 0.74	4.7	310.00	1.0 J	< 0.20
2-Dec-15	393.31	84.83	308.48	6.87	13.0	325	0.25	3.42	19	4.4	6.2	840	1503	< 1.5	3.0 J	240.00	1.5 J	< 0.20
4-May-16	393.31	83.85	309.46	6.84	13.3	294	0.39	3.61	15	3.8	5.0	780	1403	<0.20	8.6	470 J	2.8 J	<0.20
Clean-up								ted landuse)	0.8 ^d /1.0 ^e	5 ⁹	1000 ^g	700 ^g	1000 ^h	0.01 ^h	NSA	160	0.5	0.5
Level			МТ	CA Metho	d B for Gr	oundwater	(unrestric	ted landuse)	NSA	5 ⁱ	640	800	1600	0.022	480	160	NSA	NSA

Notes:			
feet bgs	Feet below ground surface	-	Not measured or not available
feet bmp	Feet below measuring point		Result exceeds Clean-up Level (CUL)
feet msl	Feet above mean sea level	mg/L	Milligrams per liter
а	Well not surveyed, elevation estimated.	μg/L	Micrograms per liter
b	IAS/SVE not in operation.	NTU	Nephelometric Turbidity Unit
С	Water levels collected at various times prior to sampling (see Table 1). Date/time is sampling time.	µmhos/cm	Micromhos per centimeter
d	When benzene is present.	<	Analyte not detected above the reporting limit shown
е	When benzene is not present.	MTCA	Model Toxics Control Act
f	Reported at Method Detection Limit (MDL). The MDL is greater than the MTCA CULs.	MCL	Maximum Containment Level
g	Inclusive of 40 CFR 141.61 Federal Law for drinking water MCLs	NSA	No Standard Available
h	Value is more protective than Federal MCLs.	TOC	Top of casing inside PVC well
i	MTCA 173-340-705(5): Adjustments to cleanup levels based on applicable laws.	°C	Degrees Celsius
		J	The constituent was positively identified and detected; however, the concentration reported is an estimated value because the result is less than the quantitation limit or quality control criteria were not met.
		В	Analyte detected in an associated Method Blank at a concentration greater than one-half of laboratory's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.


Table D-12: Summary of Groundwater Sampling Results - Well PORT-MW-B Sea-Tac Development Site, Seatac WA

	Field Parameters						Analytical Data											
Date Sampled ^c	TOC Elevation (feet msl)	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)	pH (standard units)	Temperature (°C)	Conductivity (µmhos/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	NWTPH-Gasoline (mg/L)	Benzene (μg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)	EDB (ethylene dibromide) (µg/L) [†]	N-hexane (µg/L)	Naphthalene (µg/L)	NWTPH-Diesel (mg/L)	NWTPH-Motor Oil (mg/L)
3-Aug-11	400.00	-	-	-	-	-	-	-	0.20	1.3	< 1.0	13	3.4	< 0.01	< 1.0	13	0.28	< 0.25
20-Mar-14	400.00	89.70	310.30	6.55	12.3	267	6.16	ن	< 0.10	< 0.25	< 0.25	< 0.25	< 0.50	< 0.07	< 0.20	< 0.50 UJ	< 0.10	< 0.20
28-May-14	400.00	89.50	310.50	6.50	14.2	317	4.63	98.3	< 0.10	< 0.25	< 0.25	< 0.25	< 0.50	< 0.07	< 0.20	< 0.50	< 0.10	< 0.20
12-Sep-14	400.00	89.71	310.29	6.56	14.0	266	3.56	6.18	< 0.10	< 0.25	< 0.25	1.1	1.9	< 0.07	< 0.20	< 0.50	< 0.10	< 0.20
5-Dec-14	400.00	89.71	310.29	6.57	12.6	265	4.07	84.1	0.11	< 0.25	< 0.25	1.1	1.0	< 0.07	< 0.20	< 0.50	< 0.10	< 0.20
25-Jun-15	400.00	89.67	310.33	6.51	14.3	290	3.80	4.2	< 0.25	< 0.20	< 0.20	< 0.20	< 0.40	< 0.07	< 0.20	< 0.50	< 0.10	< 0.20
2-Dec-15	400.00	91.61	308.39	6.56	13.0	267	2.34	1.8	< 0.25	< 0.20	< 0.20	0.3	0.40 J+	< 0.07	< 0.20	2.3 J+	< 0.10	0.49
4-May-16	400.00	90.55	309.45	6.72	13.2	219	2.59	7.38	<0.10	0.08 J	<0.20	0.74	0.50	<0.20	<0.20	0.83 J	<0.10	<0.20
Clean-up Level								ted landuse) ted landuse)	0.8 ^d /1.0 ^e NSA	5 ⁹ 5 ⁱ	1000 ⁹ 640	700 ⁹ 800	1000 ^h 1600	0.01 ^h 0.022	NSA 480	160 160	0.5 NSA	0.5 NSA


Notes:			
feet bgs	Feet below ground surface	-	Not measured or not available
feet bmp	Feet below measuring point		Result exceeds Clean-up Level (CUL)
feet msl	Feet above mean sea level	mg/L	Milligrams per liter
a	Well not surveyed, elevation estimated.	μg/L	Micrograms per liter
b	IAS/SVE not in operation.	NTU	Nephelometric Turbidity Unit
С	Water levels collected at various times prior to sampling (see Table 1). Date/time is sampling time.	µmhos/cm	Micromhos per centimeter
d	When benzene is present.	<	Analyte not detected above the reporting limit shown
е	When benzene is not present.	MTCA	Model Toxics Control Act
f	Reported at Method Detection Limit (MDL). The MDL is greater than the MTCA CULs.	MCL	Maximum Containment Level
g	Inclusive of 40 CFR 141.61 Federal Law for drinking water MCLs	NSA	No Standard Available
h	Value is more protective than Federal MCLs.	TOC	Top of casing inside PVC well
i	MTCA 173-340-705(5): Adjustments to cleanup levels based on applicable laws.	°C	Degrees Celsius
j	Turbidity out of range. Well was purged using a bailer.	J	The constituent was positively identified and detected; however, the concentration reported is an estimated value because the result is less than the quantitation limit or quality control criteria were not met.
		UJ	The constituent was analyzed for, but was not detected above the reported sample quantitation limit; however, the value reported is an estimated value because the result is less than the quantitation limit or quality control criteria were not met.
		J+	The constituent was positively identified and detected; however, the concentration reported is an estimated value because the result may be biased high.

