

Washington Issaquah | Bellingham | Seattle Oregon

Portland | Bend | Baker Čity California Oakland | Sacramento | Irvine

REMEDIAL INVESTIGATION, FOCUSED FEASIBILITY STUDY, AND CLEANUP ACTION PLAN

6050 EAST MARGINAL WAY SOUTH PROPERTY SEATTLE, WASHINGTON

Submitted By: Farallon Consulting, L.L.C. 975 5th Avenue Northwest Issaquah, Washington 98027

Farallon PN: 1071-010

Prepared For: Prologis, Inc.

February 11, 2016

Prepared by:

al Hance

Donald Lance, L.G., L.H.G. Senior Geologist

Reviewed by:

Peter Jewett, L.G., L.E.G. Principal

Scott Allin, R.E.P.A. Principal

TABLE OF CONTENTS

1.0		RODUCTION				
	1.1		CTIVES			
	1.2	ORGA	ANIZATION	1-3		
2.0	PROPERTY BACKGROUND					
	2.1		ERTY DESCRIPTION			
	2.2	GEOL	OGY AND HYDROLOGY	2-1		
		2.2.1	Geology	2-1		
		2.2.2	Hydrology	2-2		
3.0	REMEDIAL INVESTIGATION					
	3.1	INVES	STIGATIONS	3-1		
		3.1.1	1988 Contamination Investigation—Blymyer Engineers, Inc	3-1		
		3.1.2	1988 – 1989 Groundwater Monitoring Results—Blymyer			
			Engineers, Inc.	3-2		
		3.1.3	1997 Site Investigation-Shannon & Wilson, Inc.	3-2		
		3.1.4	1998 Site Investigation and Risk Assessment—Golder			
			Associates Inc.	3-3		
		3.1.5	1998 Permanent UST Decommissioning and Closure—Fluor			
			Daniel GTI	3-4		
		3.1.6	2000 Groundwater Investigation and Groundwater Monitoring			
			Work Plan—Golder Associates Inc.	3-5		
		3.1.7	2001 Results from Additional Groundwater and Soil			
			Investigations—Golder Associates Inc			
		3.1.8	2004 Phase II Investigation—Golder Associates Inc.	3-8		
		3.1.9	2014 Phase II Subsurface Investigation—Farallon			
			Consulting, L.L.C.			
	3.2	SOUR	CE AND EXTENT OF CONSTITUENTS OF CONCERN 3	3-15		
4.0	CON		AL SITE MODEL	4-1		
	4.1		ICABLE OR RELEVANT AND APPROPRIATE			
			JIREMENTS			
	4.2		TITUENTS OF CONCERN			
	4.3		A OF CONCERN			
	4.4		NUP STANDARDS			
		4.4.1	1			
			Groundwater Cleanup Levels			
			Points of Compliance			
	4.5		ESTRIAL ECOLOGICAL EVALUATION			
	4.6	CONT	CAMINANT FATE AND TRANSPORT	4-4		
5.0	FOCU	J SED F	EASIBILITY STUDY	5-1		

I G:\Projects\1071 Prologis\1071010 6050 East Marginal Way South\Reports\RI-FFS-CAP\1071-010 RI-FFS-CAP.docx

	5.1	POTENTIAL CLEANUP ALTERNATIVES		
	5.2	RECOMMENDED CLEANUP ALTERNATIVE		
6.0	CLEANUP ACTION PLAN			
	6.1	OBJECTIVE OF CLEANUP ACTION		
	6.2	ELEMENTS OF CLEANUP ACTION		
	6.3	PROPERTY PREPARATION		
	6.4	EXCAVATION		
	6.5	EXCAVATION DEWATERING		
	6.6	SOIL SEGREGATION AND STOCKPILING		
		6.6.1 Identification of Contaminated Soil		
		6.6.2 Performance and Confirmational Soil Sampling		
		6.6.3 Soil Sample Identification		
		6.6.4 Soil Sample Collection and Handling Procedure		
		6.6.5 Analytical Methods and Turnaround Times		
		6.6.6 Waste Soil Disposal		
		6.6.7 Wastewater Disposal		
		6.6.8 Backfill and Property Restoration		
7.0	DOCUMENTATION REQUIREMENTS			
	7.1	FIELD DOCUMENTATION		
	7.2	HEALTH AND SAFETY		
	7.3	CLOSURE REPORT		
8.0	BIBI	LIOGRAPHY		
9.0	LIMITATIONS			
	9.1	GENERAL LIMITATIONS		
	9.2	LIMITATION ON RELIANCE BY THIRD PARTIES		

FIGURES

- Figure 1 Property Vicinity Map
- Figure 2 Former Property Features
- Figure 3 Sample Location Map, Former Shop Building UST Area
- Figure 4 Soil Analytical Results for Petroleum Hydrocarbons, Former Shop Building UST Area
- Figure 5 Soil Analytical Results, Former Northwest UST Area
- Figure 6 Groundwater Analytical Results for August 17 and 18, 1999
- Figure 7 Groundwater Elevation Contour Map and Groundwater Analytical Results for January 17, 2001
- Figure 8 Groundwater Elevation Contour Map and Groundwater Analytical Results for December 2, 2003
- Figure 9 Groundwater Analytical Results for August 12 and September 23, 2014

TABLES

- Table 1Summary of Groundwater Elevation Data
- Table 2Summary of Soil Analytical Results for TPH and BTEX
- Table 3a Summary of Soil Analytical Results for VOCs
- Table 3b
 Summary of Soil Analytical Results for Other VOCs
- Table 4Summary of Soil Analytical Results for PCBs
- Table 5Summary of Soil Analytical Results for PAHs
- Table 6Summary of Soil Analytical Results for Metals
- Table 7Summary of Soil Analytical Results for Volatile and Extractable Petroleum
Hydrocarbons
- Table 8Summary of Groundwater Analytical Results for TPH and BTEX
- Table 9a Summary of Groundwater Analytical Results for VOCs
- Table 9b Summary of Groundwater Analytical Results for Other VOCs
- Table 10
 Summary of Groundwater Analytical Results for PAHs
- Table 11
 Summary of Groundwater Analytical Results for Metals

APPENDICES

- Appendix A Boring Logs
- Appendix B Laboratory Analytical Reports
- Appendix C Soil Disposal Documentation

G:\Projects\1071 Prologis\1071010 6050 East Marginal Way South\Reports\RI-FFS-CAP\1071-010 RI-FFS-CAP.docx

ABBREVIATIONS AND ACRONYMS

ARARs	applicable or relevant and appropriate requirements
bgs	below ground surface
Blymyer	Blymyer Engineers, Inc.
BTEX	benzene, toluene, ethylbenzene, and xylenes
CAP	cleanup action plan
COCs	constituents of concern
Consolidated Freightways	Consolidated Freightways Inc.
cPAHs	carcinogenic polycyclic aromatic hydrocarbons
CSO	combined sewer outfall
DRO	total petroleum hydrocarbons as diesel-range organics
Ecology	Washington State Department of Ecology
EPA	U.S. Environmental Protection Agency
EPH/VPH	extractible petroleum hydrocarbons/volatile petroleum hydrocarbons
Farallon	Farallon Consulting, L.L.C.
2015 Phase I ESA	<i>Environmental Due Diligence Report, 6050 East Marginal</i> <i>Way South, Seattle, Washington</i> dated May 29, 2015, prepared by Farallon Consulting, L.L.C.
FFS	Focused Feasibility Study
Golder	Golder Associates Inc.
GPR	ground-penetrating radar
GRO	total petroleum hydrocarbons as gasoline-range organics
GTI	Groundwater Technology, Inc.
HASP	Health and Safety Plan
LDW	Lower Duwamish Waterway
mg/kg	milligrams per kilogram
µg/l	micrograms per liter
MTCA	Washington State Model Toxics Control Act Cleanup Regulation
NFA	No Further Action
ORO	total petroleum hydrocarbons as oil-range organics
PAHs	polycyclic aromatic hydrocarbons

IV G:\Projects\1071 Prologis\1071010 6050 East Marginal Way South\Reports\RI-FFS-CAP\1071-010 RI-FFS-CAP.docx

PCBs	polychlorinated biphenyls
2003 Phase I ESA	Phase I Environmental Site Assessment for Consolidated Freightways, 6050 East Marginal Way South, Seattle, Washington 98108 dated January 20, 2003, prepared by Phase One Inc.
PID	photoionization detector
Property	the property at 6050 East Marginal Way South in Seattle, King County, Washington
RCRA	Resource Conservation and Recovery Act
RCW	Revised Code of Washington
RI	Remedial Investigation
RI/FFS/CAP Report	Draft Remedial Investigation, Focused Feasibility Study, and Cleanup Action Plan, 6050 East Marginal Way South Property, Seattle, Washington dated December 16, 2015 prepared by Farallon Consulting, L.L.C. (this report)
TEE	Terrestrial Ecological Evaluation
ТРН	total petroleum hydrocarbons
UST	underground storage tank
VCP	Voluntary Cleanup Program
VOC	volatile organic compound
WAC	Washington Administrative Code

1.0 INTRODUCTION

Farallon Consulting, L.L.C. (Farallon) has prepared this Remedial Investigation, Focused Feasibility Study, and Cleanup Action Plan (RI/FFS/CAP Report) on behalf of Prologis, Inc. for the property at 6050 East Marginal Way South in Seattle, Washington (herein referred to as the Property) (Figure 1). This RI/FFS/CAP Report was prepared in accordance with the Washington State Model Toxics Control Act Cleanup Regulation (MTCA), as set forth in Chapter 173-340 of the Washington Administrative Code (WAC 173-340). The "Site," as defined under MTCA, is confined within the boundaries of the Property where petroleum hydrocarbons have come to be located at concentrations exceeding applicable regulatory cleanup levels. Concentrations of vinyl chloride in groundwater from an up-gradient source off the Property have migrated onto the Site.

This RI/FFS/CAP Report provides sufficient information to support implementation of a cleanup action at the Property that will be conducted in conjunction with Property redevelopment as a truck transport warehouse and logistics facility. The Remedial Investigation (RI) and Focused Feasibility Study (FFS) portions of this RI/FFS/CAP Report summarize the results from the remedial investigation conducted at the Property, and presents the conclusions from the focused feasibility study conducted to evaluate technically feasible cleanup alternatives for the affected media on the Property; the Cleanup Action Plan (CAP) portion of this RI/FFS/CAP Report presents the scope of work planned for implementing the selected cleanup approach described in the FFS portion.

In February 2000, the Property was enrolled in the Washington State Department of Ecology (Ecology) Voluntary Cleanup Program (VCP) as Consolidated Freightways Seattle, and was assigned VCP Project No. NW0410. Enrollment in the VCP was terminated in May 2007. A request for re-enrollment in the VCP will be made with submittal of this RI/FFS/CAP Report to Ecology. Other Ecology identification numbers applicable to the Property include: Facility Site No. 54757868, Cleanup Site No. 6262, and Leaking Underground Storage Tank No. 1274.

Consolidated Freightways Inc. (Consolidated Freightways) was a former tenant that operated a truck transport and motor freight facility on the Property from approximately 1960 to 2003. Eleven known underground storage tanks (USTs) were used by Consolidated Freightways to store various petroleum products on the Property. Releases of petroleum hydrocarbons from several of the UST systems have been evaluated and confirmed by subsurface investigations conducted on the Property between 1988 and 2014.

The remedial investigation conducted by Farallon and others at the Property has delineated the nature and approximate extent of the contamination in soil and groundwater at the Property at concentrations exceeding MTCA Method A cleanup levels. Concentrations of total petroleum hydrocarbons (TPH) as diesel-range organics (DRO), as oil-range organics (ORO), and as gasoline-range organics (GRO); and benzene, toluene, ethylbenzene, and xylenes (BTEX) exceed MTCA cleanup levels in soil on the Property. Concentrations of DRO, ORO, GRO, benzene, naphthalenes, and vinyl chloride (collectively referred to herein as the constituents of concern

1 - 1

[COCs]) exceed MTCA cleanup levels in groundwater. The source of the petroleum hydrocarbons on the Property is historical trucking facility operations. Vinyl chloride in groundwater is from the regional vinyl chloride plume associated with historical releases from the Capital Industries facilities at 5801 Third Avenue South.

A cleanup action will be conducted during construction of two new two-story warehouse and office structures, with driveways, parking, and landscaping that will cover the entire Property. The new construction will require extensive reconfiguration of existing surface features at the Property. Therefore, the cleanup action to remove concentrations of petroleum hydrocarbons in soil exceeding MTCA cleanup levels and to eliminate the risk of vapor intrusion from COCs within the Property boundaries will be implemented concurrently with redevelopment activities.

The cleanup actions presented in the CAP portion of this RI/FFS/CAP Report will be performed in accordance with MTCA with the technical assistance of Ecology under the VCP. The cleanup actions will be substantially equivalent to remedial actions conducted or supervised by Ecology, consistent with WAC 173-340-545(2). The cleanup actions will meet the threshold requirements of WAC 173-340-360, including protection of human health and the environment, compliance with cleanup standards, and compliance with applicable state and federal laws.

1.1 **OBJECTIVES**

The purpose of the RI/FFS/CAP Report is to: summarize the results from subsurface investigations conducted at the Property by Farallon and others; evaluate and select a cleanup action under WAC 173-340-350 through WAC 173-340-390; and identify the steps required to implement the cleanup action. The RI/FFS/CAP Report describes the selected cleanup action to clean up soil and groundwater at the Property with concentrations of COCs exceeding MTCA cleanup levels.

The objective of the cleanup action is to meet Ecology requirements for a written determination issued by Ecology stating that no further remedial action is necessary at the Property (i.e., a Property-specific No Further Action [NFA] determination).

The purpose of the remedial investigation was to collect and evaluate sufficient information to support the development and evaluation of technically feasible cleanup alternatives in accordance with WAC 173-340-360 through 173-340-390. The remedial investigation was based on subsurface investigations completed by Farallon and others that provided sufficient data for evaluation and selection of a technically feasible cleanup action.

The purpose of the focused feasibility study was to develop and evaluate cleanup action alternatives to facilitate selection of a final cleanup action at a Property in accordance with WAC 173-340-350(8). The focused feasibility study focused on a remediation technology appropriate and applicable for implementation during Property redevelopment in accordance with redevelopment plans and applicable MTCA regulations.

The purpose of the CAP portion of the RI/FFS/CAP Report was to present the scope of work for the selected cleanup action described in the RI/FFS portion to protect human health and the environment and to meet MTCA requirements for a Property-specific NFA determination for the Property. The CAP has been prepared in accordance with the requirements of WAC 173-340-380(1).

1.2 **ORGANIZATION**

This RI/FFS/CAP Report includes the following information:

- Section 2—Property Background provides a description of the Property location and local land use, a summary of historical Property uses, and a description of the local geology and hydrology at the Property.
- Section 3—Remedial Investigation presents a summary of the subsurface investigations and interim cleanup actions completed at the Property, and provides a summary of confirmed source areas and the extent of COCs at the Property.
- Section 4—Conceptual Site Model provides a summary of the conceptual site model derived from the results from the remedial investigation conducted at the Property, including identification of applicable or relevant and appropriate requirements (ARARs), COCs, and media of concern; selection of cleanup standards and points of compliance; a discussion concerning the Terrestrial Ecological Evaluation (TEE), and the fate and transport characteristics of the COCs.
- Section 5—Focused Feasibility Study provides a summary of the results from the focused feasibility study, and identifies the cleanup action approach recommended for implementation at the Property and the rationale for its selection.
- Section 6—Cleanup Action Plan presents the CAP for the selected cleanup action, and describes the activities and processes that will be implemented during the cleanup action.
- Section 7—Documentation Requirements describes the requirements for documentation of field activities and health and safety issues during the cleanup action, and discusses the Closure Report, which will be prepared to describe and summarize the cleanup action.
- Section 8—Bibliography provides a listing of the references and source materials used in preparing the RI/FFS/CAP Report.
- Section 9—Limitations provides Farallon's standard limitations.

Information supporting this RI/FFS/CAP Report is provided in accompanying Figures 1 through 9, Tables 1 through 11, and Appendices A through C.

2.0 PROPERTY BACKGROUND

This section provides a description of the Property location, land use, and zoning; a summary of historical uses of the Property; and a description of the local geology and hydrology.

2.1 **PROPERTY DESCRIPTION**

The Property is located at 6050 East Marginal Way South in Seattle, King County, Washington, east of the intersection of East Marginal Way and State Route 509 (Figure 1). The Property consists of 13.58 acres of land at approximate Latitude North 47.547044 and Longitude West 122.33185 on King County Tax Parcel No. 536720-4646. The Property and surrounding vicinity are zoned Industrial General 2 Unlimited 85, which includes heavy and general manufacturing, and commercial, transportation, utility, salvage, and recycling services.

The Property was developed as part of a military barracks-type facility in 1943, which was no longer present by 1956 (Farallon 2015). Two structures referred to as the Transfer Dock Building and the Shop Building were present on the Property by 1958, and were used by Consolidated Freightways as a trucking terminal from at least 1960 until sometime prior to 2003. The buildings were demolished in 2005/2006. Locations of the former buildings and other features are depicted on Figure 2. The Property currently is covered entirely by asphaltic pavement and concrete surfaces. No aboveground structures are present.

2.2 GEOLOGY AND HYDROLOGY

A summary of the geology and hydrology at the Property is provided below.

2.2.1 Geology

The Puget Sound region is underlain by Quaternary sediments deposited by and during a number of glacial advances and retreats that created the existing subsurface conditions. Regional sediments consist primarily of interlayered and/or sequential deposits of alluvial clays, silts, and sands that typically are situated over deposits of glacial till consisting of silty sand to sandy silt with gravel. Outwash sediments consisting of sands, silts, clays, and gravels were deposited by rivers, streams, and post-glacial lakes during the glacial retreats. With the exception of the most-recent recessional deposits, the outwash sediments have been over-consolidated by the overriding ice sheets (Galster and Laprade 1991).

The subsurface stratigraphy encountered in borings advanced on the Property consists generally of silty sand and gravel fill 2 to 3 feet thick overlying loose to compact sand to silty sand, including an intermittent/discontinuous clayey to sandy silt unit 1 to 6 feet thick, to depths of 24 feet below ground surface (bgs), the maximum depth explored. Boring logs are provided in Appendix A.

2.2.2 Hydrology

The depth to groundwater as measured in groundwater monitoring wells on the Property varied between 6.25 and 9.44 feet bgs (Table 1). Daily groundwater level fluctuations up to 0.5 foot due to tidal cycle influences have been observed at the Property (Blymyer 1988b). Inferred groundwater flow direction in the unconfined aquifer is west to southwest based on groundwater monitoring conducted between 1988 and 2003.

The nearest surface water body is the Lower Duwamish Waterway (LDW). Slip 1 of the LDW is approximately 350 feet west of the Property, and the main channel of the LDW is approximately 1,000 feet to the west (Figure 1). Stormwater runoff collects in a network of catch basins and conveyance piping on the Property, and discharges to the combined sewer outfall (CSO) beneath South Michigan Street to the south, where stormwater from the Property combines with stormwater from other properties in the area (Farallon 2015). The CSO discharges to the City of Seattle wastewater treatment plant for treatment prior to discharge to Puget Sound.

3.0 REMEDIAL INVESTIGATION

This section summarizes the results from subsurface investigations and interim cleanup actions conducted between 1988 and 2014.

3.1 **INVESTIGATIONS**

Provided below is a summary of the analytical results for soil and groundwater samples collected during subsurface investigations, UST decommissioning activities, and remedial actions conducted at the Property by Farallon and others.

3.1.1 1988 Contamination Investigation—Blymyer Engineers, Inc.

Five USTs were decommissioned by removal under the direction of Blymyer Engineers, Inc. (Blymyer) (1988b) during two phases of excavation conducted in April and June 1988. An 8,000and a 10,000-gallon diesel fuel UST and a 5,000-gallon motor oil UST were decommissioned in April 1988; and two 3,000-gallon waste oil USTs were decommissioned in June 1988. All five USTs were removed from the same tank hold adjacent to the west side of the Shop Building (Figures 2 and 3). Approximately 185 cubic yards of contaminated soil was removed from the excavation for ex-situ treatment on the Property. DRO and ORO were detected at concentrations exceeding MTCA Method A cleanup levels in confirmational soil samples collected from the western and southern portions of the excavation (Figure 4; Table 2). This soil was left in-place, and the excavation was backfilled with clean imported soil.

Confirmational soil samples collected proximate to the waste oil USTs (located in the southern part of the UST hold) were analyzed additionally for purgeable halocarbons and Resource Conservation and Recovery Act (RCRA) metals (Tables 3b and 6). Halocarbons were not detected at concentrations exceeding laboratory detection limits. The metals either were not detected at concentrations exceeding the laboratory detection limits or were detected at concentrations less than MTCA Method A cleanup levels.

Monitoring wells MW-1 and MW-2A through MW-5 were installed around the tank excavation area in late June 1988 to collect groundwater samples for analysis for DRO and ORO (Figure 3). The inferred groundwater flow directions based on groundwater levels measured in July 1988 were west to southwest, with a distinct tidal influence. The results from groundwater sampling and analyses are discussed in Section 3.1.2, 1988 – 1989 Groundwater Monitoring Results. Well installation logs are provided in Appendix A.

Although not discussed in the Blymyer (1988b) report, Blymyer (1988a) communications with Ecology in April 1988 indicated that a 10,000-gallon gasoline UST northwest of the former Office Building on the Property was decommissioned by removal concurrently with removal of the diesel fuel and motor oil USTs. GRO was detected at a concentration exceeding the MTCA Method A cleanup level in one of the confirmational soil samples collected from the gasoline UST excavation (sample T-9, Figure 8; Table 2). BTEX compounds were not detected in the confirmational soil

samples at concentrations either exceeding the laboratory detection limits or exceeding the MTCA Method A cleanup level. Approximately 60 to 100 cubic yards of GRO-contaminated soil from the gasoline UST hold was combined with DRO- and ORO-contaminated soil removed from the diesel fuel/motor oil/waste oil UST excavation for treatment using aboveground enhanced biodegradation.

Groundwater Technology, Inc. (GTI) (1989a), under contract to Blymyer, constructed soil treatment piles in November 1988, with interior perforated piping and a vacuum blower to provide air flow. Nutrients were applied to the soil, and the soil piles were covered with plastic sheeting. The treatment piles were reconstructed in June 1989 to improve circulation. Periodic performance samples were collected through at least June 1989 (see "Soil Treatment Mound" sample results in Table 2). The final disposition and disposal of this soil is not known.

Laboratory reports for the soil and groundwater sample analyses discussed in this section are provided in Appendix B.

3.1.2 1988 – 1989 Groundwater Monitoring Results—Blymyer Engineers, Inc.

Five groundwater sampling and monitoring events were conducted by GTI on behalf of Blymyer (1989a) from October 1988 to December 1989. The groundwater samples were analyzed for DRO only, with the exception of the groundwater samples collected on October 6, 1988, which were analyzed also for chromium and lead. DRO was not detected at concentrations exceeding the laboratory detection limits in any of the groundwater samples analyzed (Table 8), although the laboratory detected at a concentration exceeding the MTCA Method A cleanup level for all analyses. Lead was detected at a concentration exceeding the MTCA Method A cleanup level in one groundwater sample collected from monitoring well MW-2A. Chromium or lead was not detected at a concentration exceeding laboratory detection limits in the other groundwater samples (Table 11), although the laboratory detection limits were greater than the MTCA Method A cleanup level at a concentration exceeding laboratory detection limits in the other groundwater samples (Table 11), although the laboratory detection limits were greater than the MTCA Method A cleanup levels, as for the DRO results. The laboratory reports for the groundwater sample analyses are provided in Appendix B.

Ecology provided authorization to decommission the monitoring wells. Fluor Daniel GTI (1998) decommissioned the monitoring wells in-place in January 1990.

3.1.3 1997 Site Investigation-Shannon & Wilson, Inc.

During UST product line integrity testing conducted in March 1997, a leak was detected in the pressurized product line that ran from the two 20,000-gallon diesel fuel USTs to the maintenance shop (Figure 3). The piping was exposed and partially replaced with new single-walled steel pipe. A second line test indicated another leak in the pressurized product line. After the second leak was repaired, the piping was re-tested and determined to be tight.

In August 1997, soil borings P-1 through P-10 were advanced using a direct-push rig under the oversight of Shannon & Wilson, Inc. (1997) (Figure 3). Two soil samples and one reconnaissance groundwater sample were collected from each boring for analysis for DRO. The soil and

3-2

groundwater analytical results are provided in Tables 2 and 8, respectively; soil analytical results are shown on Figure 4.

DRO was detected at concentrations exceeding MTCA Method A cleanup levels in soil and reconnaissance groundwater samples collected from boring P-2, located near the product line DRO release adjacent to the northern end of the Shop Building, and from boring P-4, located adjacent to the diesel fuel UST hold northwest of the Shop Building. During sample collection, hydrocarbon odors and sheen were observed in soil samples collected from boring P-2, P-4, P-5, and P-7. A slight sheen was observed on the groundwater sample collected from boring P-2.

During the investigation, groundwater was encountered at a depth of approximately 7.5 feet bgs. Four temporary piezometers were installed to evaluate the direction of groundwater flow, which was inferred to be west to northwest (Shannon & Wilson, Inc. 1997).

3.1.4 1998 Site Investigation and Risk Assessment—Golder Associates Inc.

Petroleum-impacted soil encountered in the area of the diesel product line release proximate to boring P-2 was excavated and stockpiled on the Property in March 1998 during installation of a new 20,000-gallon diesel fuel tank immediately north of the Shop Building (Figure 3). The impacted soil was removed from the Property in November 1998 for treatment by thermal desorption at the facilities of TPS Technologies Inc. in Tacoma, Washington. Soil disposal documentation is provided in Appendix C.

In April 1998, Golder Associates Inc. (Golder) (1998a) conducted a site investigation and risk assessment for the Property. The site investigation included soil sampling along the diesel product line trench, installation of groundwater monitoring wells MW-1 through MW-3 and product recovery wells RW-1 and RW-2 (Figure 3), and analysis of collected soil and groundwater samples for DRO, ORO, GRO, BTEX, and polycyclic aromatic hydrocarbons (PAHs). Selected soil samples were analyzed also for extractable petroleum hydrocarbons/ volatile petroleum hydrocarbons (EPH/VPH).

The highest concentrations of DRO, BTEX, PAHs, and EPH/VPH in soil were detected in the vicinity of wells RW-1 and RW-2 and in trench sample CF-T1 (Figures 3 and 4; Tables 2, 5, and 7). These areas were near the former UST hold northwest of the Shop Building and the diesel fuel release from the product line, respectively. PAH compounds were detected at concentrations less than MTCA cleanup levels in some soil samples collected from wells MW-2, RW-1, and RW-2 (Table 5); naphthalene was detected at concentrations exceeding the MTCA Method A cleanup level in soil samples collected from wells RW-1 and RW-2.

Petroleum hydrocarbons were not detected at concentrations exceeding MTCA Method A cleanup levels in soil samples collected at a depth less than approximately 2 feet bgs in the diesel fuel product line trench, with exception of sample CF-T1, collected in the area with visible petroleum staining and with an elevated EPH/VPH concentration (Table 7). No groundwater samples were collected in the product line trench area.

DRO and ORO were detected at concentrations exceeding MTCA Method A cleanup levels in groundwater samples collected from monitoring wells MW-2, MW-3, and well RW-2. DRO was detected at a concentration exceeding the MTCA Method A cleanup level in the groundwater sample collected from monitoring well RW-1. Benzene was detected at a concentration exceeding the MTCA Method A cleanup level in the groundwater sample collected from well RW-2. The only PAH detected at a concentration exceeding the MTCA Method A or B cleanup level was 2-methylnaphthalene, detected in the groundwater sample collected from well RW-2. Petroleum hydrocarbons were not detected at concentrations exceeding MTCA Method A cleanup levels in groundwater samples collected from up-gradient monitoring well MW-1. The petroleum hydrocarbon and PAH analytical results for groundwater are provided in Tables 8 and 10, respectively.

The well installation logs for monitoring wells MW-1 through MW-5 and wells RW-1 and RW-2 are provided in Appendix A. The laboratory reports for the groundwater sample analyses discussed above are provided in Appendix B.

A risk assessment was conducted by Golder (1998a) to determine whether petroleum hydrocarbons in soil and/or groundwater at the Property posed a risk to human health. The results from the risk assessment were used to develop Property-specific risk-based cleanup levels for petroleum hydrocarbons in soil.

Golder (1998a) concluded that petroleum hydrocarbons in soil at the Property did not exceed the risk-based screening levels calculated in accordance with the Ecology TPH Interim Policy. The highest concentrations of petroleum hydrocarbons in soil and groundwater were detected proximate to the two 20,000-gallon diesel fuel USTs and the diesel product line release discovered in 1997. Free product (liquid hydrocarbons) was not observed in soil or groundwater. Concentrations of DRO and ORO exceeded MTCA Method A cleanup levels in groundwater. Benzene was detected at a concentration exceeding the MTCA Method A cleanup level in the groundwater sample collected from well RW-2; toluene, ethylbenzene, and xylenes were detected at concentrations less than MTCA Method A cleanup levels.

3.1.5 1998 Permanent UST Decommissioning and Closure—Fluor Daniel GTI

In July 1998, the two 20,000-gallon diesel fuel USTs northwest of the Shop Building were decommissioned by removal by Joe Hall Construction. Fluor Daniel GTI was contracted by Joe Hall Construction to provide environmental oversight and site assessment sampling during removal of the two USTs.

Fluor Daniel GTI (1998) observed pitting along the bottoms and western ends of the steel USTs. Concentrations of DRO were detected in soil and groundwater in the UST excavation, and contaminated soil subsequently was removed from the UST excavation. However, DRO was detected at concentrations exceeding the MTCA Method A cleanup level in the confirmational soil samples collected from the edges of the excavation along the northern and eastern sidewalls. Recovery well RW-1 was damaged and removed.

Contaminated soil excavated during removal of the USTs was stockpiled with contaminated soil excavated during preparations for the installation of the new 20,000-gallon diesel fuel UST north of the Shop Building. Approximately 800 tons of stockpiled soil was transported to TPS Technologies Inc. in Tacoma, Washington in November 1998 for thermal desorption (Golder 1998b). Disposal documentation is provided in Appendix C.

Following decommissioning of the two 20,000-gallon diesel fuel USTs, residual contaminated soil remained proximate to the former UST hold. The primary data gap was the down-gradient extent of the petroleum hydrocarbon plume in groundwater.

3.1.6 2000 Groundwater Investigation and Groundwater Monitoring Work Plan—Golder Associates Inc.

On August 17 and 18, 1999, Golder (2000a) conducted a groundwater investigation at the Property that included collection of groundwater samples from the existing on-site monitoring wells and collection of reconnaissance groundwater samples from borings GP-1 through GP-13, located down-gradient of the TPH source areas, using direct-push sampling techniques (Figure 6). The objectives of the groundwater investigation were to:

- Define the approximate extent of the TPH plume identified during previous groundwater sampling events at the Property;
- Evaluate the TPH plume flow path to support installation of additional down-gradient monitoring wells; and
- Determine whether the TPH plume was migrating off the Property.

Groundwater samples collected from the four monitoring well locations were analyzed for DRO, ORO, and BTEX. Reconnaissance groundwater samples collected from the 13 direct-push locations were analyzed for DRO and ORO. The groundwater analytical results are presented in Table 8 and are shown on Figure 6. The laboratory reports for the groundwater sample analyses are provided in Appendix B. Figure 6 shows the estimated extent of the TPH groundwater plume where DRO and/or ORO concentrations exceeded MTCA Method A cleanup levels in August 1999.

The results of the groundwater investigation are summarized as follows:

- Leaking USTs and piping, considered the source of TPH, were removed, and contaminated soil was excavated and disposed of;
- Concentrations of TPH exceeding MTCA Method A cleanup levels remained in soil and groundwater within the Property boundaries;
- DRO was the primary TPH contaminant in groundwater;
- The highest concentration of DRO in groundwater was detected proximate to the former 20,000-gallon diesel fuel USTs;

- Benzene was detected at a concentration exceeding the MTCA Method A cleanup level in groundwater proximate to well RW-2;
- The TPH plume extended from the former UST and product line source areas toward the west and southwest; and
- Concentrations of DRO and ORO exceeding MTCA Method A cleanup levels in groundwater did not appear to extend beyond the western Property boundary.

3.1.7 2001 Results from Additional Groundwater and Soil Investigations—Golder Associates Inc.

Golder (2000b) prepared a strategy to provide additional data requested by Ecology (2000) for consideration of a No Further Action determination for the Property. The strategy included installation of three additional groundwater monitoring wells, soil sampling in selected portions of the Property to further delineate areas of residual soil contamination, assessment of relevant exposure pathways associated with the residual soil contamination, and addition of analyses for volatile organic compounds (VOCs) for samples collected from the groundwater monitoring wells.

Monitoring wells MW-4, MW-5, and MW-6 were installed along the down-gradient Property boundary in January 2001 to assess the westward limit of the TPH plume on the Property (Figure 7). Logs for the monitoring wells are provided in Appendix A. On January 17, 2001, approximately 1 week following installation of the monitoring wells, groundwater samples were collected from monitoring wells MW-1 through MW-6 for analysis for DRO, ORO, VOCs, and PAHs.

The analytical results for the groundwater samples collected from the monitoring wells are summarized in Tables 8 through 10. The laboratory analytical reports are provided in Appendix B. The DRO and ORO analytical results for the groundwater samples are shown on Figure 7 and summarized below:

- DRO and ORO were detected at concentrations exceeding MTCA Method A cleanup levels in monitoring wells MW-2 and MW-3, which was consistent with analytical results from sampling events conducted in 1998 and 1999 (Table 8).
- Analytical results for groundwater samples collected from monitoring wells MW-4 through MW-6 confirmed that DRO and ORO were not migrating off the Property at concentrations exceeding MTCA Method A cleanup levels (Figure 7).
- Several PAH compounds were detected in the groundwater sample collected from monitoring well MW-2, but at concentrations less than MTCA Method A cleanup levels. Carcinogenic PAHs (cPAHs) were not detected at concentrations exceeding laboratory reporting limits in any of the groundwater samples. These results were consistent with those from the groundwater sampling event conducted in 1998 (Golder 1998a) (Table 10).
- Various VOCs were detected in groundwater samples at concentrations less than MTCA cleanup levels (Tables 9a and 9b). Vinyl chloride was detected at concentrations exceeding

3-6

the MTCA Method A cleanup level in groundwater samples collected from monitoring wells MW-4 and MW-6 (Table 9a).

Additional soil data were requested by Ecology (2000) to delineate the nature and extent of contamination in soil and to assess whether the contamination in soil posed a risk via relevant exposure pathways. The soil investigation focused on the three areas where releases occurred in the past and where contamination had been detected. These three investigation areas are shown on Figure 3 and include:

- The UST excavation area west of the Shop Building where five USTs were removed in 1988;
- The product line release area adjoining the northern end of the Shop Building; and
- The UST excavation area northwest of the shop building where two 20,000-gallon diesel fuel USTs were removed in 1998.

Soil samples were collected from borings SP-1 through SP-13 using a direct-push rig. At each boring location, soil samples were collected from depth intervals of 2 to 5, 5 to 8, and 8 to 11 feet bgs. Selected soil samples were analyzed for DRO and ORO, and six additional samples (at least one sample from each of the three investigation areas) were analyzed for BTEX, PAHs, and EPH/VPH to assess exposure pathways. The soil analytical results are presented in Tables 2, 5, and 7; laboratory analytical reports are provided in Appendix B.

Golder (2001) concluded that the nature and extent of TPH in soil on the Property were defined and bound on all sides. The distribution of TPH in soil is consistent with sources of releases at the two UST excavation areas and in the product line release area. DRO and ORO were the only constituents distributed widely in soil at the Property.

Benzene and xylenes were detected at concentrations exceeding MTCA Method A cleanup levels in soil samples collected from borings SP-8 and SP-9 within approximately 10 to 15 feet of the former product line release (Table 2; Figure 4). These results were consistent with those for aromatic hydrocarbons detected in soil and groundwater at nearby well RW-2 (Golder 1998a and 2000a).

PAHs and cPAHs were detected in soil samples at concentrations less than MTCA Method A cleanup levels, with the exception of naphthalene, which was detected at concentrations exceeding the MTCA Method A cleanup level in samples collected from borings SP-6 and SP-8 near the product line release area. These results were consistent with PAH and cPAH analytical data previously reported by Golder (1998a).

The laboratory reports for the groundwater and soil sample analyses discussed above are provided in Appendix B.

3.1.8 2004 Phase II Investigation—Golder Associates Inc.

Golder (2004) conducted a Phase II Investigation to evaluate the environmental concerns presented in the *Phase I Environmental Site Assessment for Consolidated Freightways*, 6050 East Marginal *Way South, Seattle, Washington* dated January 20, 2003 prepared by Phase One Inc. (2003) (2003 Phase I ESA). The environmental concerns identified in the Phase I ESA are discussed in the following sections.

3.1.8.1 **Groundwater Monitoring**

The Phase I ESA identified groundwater contamination as an environmental issue and recommended further groundwater monitoring using the existing monitoring wells until Ecology issues an NFA determination.

Golder (2004) conducted groundwater monitoring and sampling at monitoring wells MW-1 through MW-6 and wellRW-2. Groundwater samples were analyzed for DRO, ORO, GRO, and VOCs.

DRO and ORO were not detected at concentrations exceeding laboratory reporting limits in groundwater samples collected from any of the monitoring wells. GRO was detected at a concentration exceeding the laboratory detection limit in the groundwater sample collected from well RW-2, but at a concentration less than the MTCA Method A cleanup level. GRO was not detected at a concentration exceeding the laboratory reporting limit in groundwater samples collected from any of the other monitoring wells.

Benzene was detected at a concentration exceeding the MTCA Method A cleanup level in the groundwater sample collected from well RW-2. Several petroleum-related VOCs were detected at concentrations exceeding laboratory detection limits in the groundwater sample collected from well RW-2, but at concentrations less than MTCA cleanup levels. No other VOCs were detected at concentrations exceeding laboratory detection limits in the groundwater sample collected from any other monitoring wells on the Property.

Vinyl chloride was detected at concentrations exceeding the MTCA Method A cleanup level in groundwater samples collected from monitoring wells MW-4 and MW-6 during groundwater sampling events conducted in January and June 2001. However, the laboratory detection limits for vinyl chloride were elevated for groundwater samples collected during the December 2003 sampling event, and detections of vinyl chloride may have been masked.

Groundwater flow direction was toward the west-southwest during this groundwater monitoring event. The groundwater flow direction was consistent with that determined during prior groundwater monitoring events. Groundwater elevation data for this sampling period and sampling events in January and June 2001 are presented in Table 1. Groundwater analytical results are presented in Tables 8, 9a, and 9b. TPH results and

groundwater elevation contours are shown on Figure 7. Analytical reports are provided in Appendix B.

3.1.8.2 **Investigation Results**

An oil-water separator (known as the "grease trap") located adjacent to the northern end of the Shop Building, and an oil-water separator (known as the "sand trap") and drainage trench associated with the former wash rack that adjoined the eastern side of the Shop Building were identified as potential sources of releases. The 2003 Phase I ESA recommended investigating subsurface conditions at the oil-water separators and drainage trench.

Because previous subsurface investigations evaluated soil and groundwater conditions in the area surrounding the grease trap, Golder (2004) did not conduct additional investigation in that area. Borings GP-6 through GP-8 were advanced on the eastern side of the Shop Building at the sand trap and drainage trench area. Soil and reconnaissance groundwater samples were collected for analysis for DRO, ORO, GRO, and VOCs.

DRO, GRO, or BTEX were not detected at concentrations exceeding laboratory reporting limits in the soil samples collected from borings GP-6 through GP-8. ORO was detected at a concentration exceeding the MTCA Method A cleanup level in the soil sample collected from boring GP-6. ORO was not detected at concentrations exceeding the laboratory reporting limit in the soil samples collected from borings GP-7 or GP-8. One or more VOCs were detected at concentrations exceeding laboratory detection limits but not exceeding MTCA Method B cleanup levels in the soil samples collected from each boring.

DRO, ORO, GRO, and BTEX were not detected at concentrations exceeding the laboratory reporting limits in the reconnaissance groundwater samples collected from borings GP-6 through GP-8. One or more VOCs were detected at concentrations less than MTCA Method B cleanup levels in the reconnaissance groundwater samples collected from borings GP-7 and GP-8. No other VOCs were detected at concentrations exceeding laboratory detection limits.

Soil analytical results are presented in Tables 2, 3a, and 3b. TPH results are shown on Figure 4. Groundwater analytical results are presented in Tables 8, 9a, and 9b. Analytical reports are provided in Appendix B.

3.1.8.3 **UST Location Assessment**

Two USTs with capacities of 500 and 5,000 gallons identified in historical documents for the Property were not accounted for and were suspected of remaining in-place on the Property. The 2003 Phase I ESA recommended conducting a geophysical survey and/or subsurface investigation to evaluate the potential presence of the USTs.

Golder (2004) identified a 10,000-gallon gasoline and a 5,000-gallon lube oil UST in the area north of the office building from 1958 building plans (Figures 2 and 8). This area had not been previously investigated. Golder (2004) therefore conducted the following activities:

- Performed a geophysical survey over the former UST area using magnetometer and ground-penetrating radar (GPR) methods;
- Advanced borings GP-1 through GP-5 by direct-push methods at the former UST area; and
- Collected soil and reconnaissance groundwater samples from borings GP-1 through GP-5 for analyses for DRO, ORO, GRO, and VOCs.

The geophysical investigation conducted north of the office building did not identify evidence of the presence of USTs in this area.

Borings GP-1 through GP-5 were advanced at the suspected UST locations shown on the 1958 building plans. DRO, GRO, or BTEX were not detected at concentrations exceeding laboratory reporting limits in the soil samples collected from borings GP-1 through GP-5. ORO was detected at a concentration less than the MTCA Method A cleanup level in the soil sample collected from boring GP-4 at a depth of 2 to 4 feet bgs. VOCs were detected at concentrations less than MTCA Method B cleanup levels in one or more of the soil samples collected from each boring.

DRO, ORO, GRO, BTEX, or other VOCs were not detected at concentrations exceeding laboratory reporting limits in the reconnaissance groundwater samples collected from borings GP-1 through GP-5.

Soil analytical results are presented in Tables 2, 3a, and 3b. Groundwater analytical results are presented in Tables 8, 9a, and 9b. Groundwater analytical results for TPH are shown on Figure 8. Analytical reports are provided in Appendix B.

3.1.9 2014 Phase II Subsurface Investigation—Farallon Consulting, L.L.C.

Farallon conducted a Phase II Subsurface Investigation to evaluate the recognized environmental conditions identified in the Phase I ESA report prepared for the Property by Farallon (2015) (2015 Phase I ESA). The results of the Phase II Subsurface Investigation were report in the 2015 Phase I ESA. The recognized environmental conditions identified were:

- The known release of hazardous substances on the Property from historical fuel and wasteoil USTs; and
- The potential migration of hazardous substances to the Property from current and historical operations on properties adjacent and proximate to the Property.

The purposes of the Phase II Subsurface Investigation conducted by Farallon were to assess:

- The status of several USTs identified in the 2015 Phase I ESA as a data gap (UST Survey); and
- The extent of known releases of hazardous substances beneath the Property, and to screen other portions of the Property for potential releases associated with historical on- or off-Property activities (Subsurface Soil and Groundwater Analysis).

The UST Survey and Subsurface Soil and Groundwater Analysis activities are discussed in the following sections.

3.1.9.1 Underground Storage Tank Survey

The scope of work for the UST Survey consisted of using GPR proximate to the suspected UST locations. The UST Survey did not identify evidence of USTs present at the suspected location of the potential 500-gallon diesel fuel UST near the former wash rack on the eastern side of the former Shop Building, or at the suspected location of the former diesel fuel/heating oil UST southeast of the former office building (Figure 2).

The 20,000-gallon diesel fuel UST was identified north of the former Shop Building (Figure 2). Insufficient information was available to justify investigation of the potential in-place abandonment of a 10,000-gallon UST on the Property. No evidence of the 10,000-gallon UST was located during the GPR survey for other USTs or during the Subsurface Soil and Groundwater Analysis field work performed by Farallon.

UST information from historical research and the findings of the UST Survey at the Property is summarized below by area.

USTs formerly west of the former Shop Building (Figure 2) included:

- A 10,000-gallon diesel fuel UST installed in 1958 and removed in 1988;
- An 8,000-gallon fuel oil UST installed in 1958 and removed in 1988;
- A 5,000-gallon lube oil UST installed in 1958 and removed in 1988; and
- Two 3,000-gallon waste oil USTs installed in 1958 and removed in 1988.

USTs formerly northwest of the former Shop Building (Figure 2) included:

- Two 20,000-gallon diesel fuel USTs installed in 1981 and removed in 1998.

USTs in the former northwest UST area (Figure 2) included:

 A 10,000-gallon gasoline UST installed prior to 1958, removal date unknown, but assumed to be 1988 based on a Blymyer (1988a) memorandum; and

 A 5,000-gallon lube oil UST installed prior to 1958, removal date unknown, but assumed to have been concurrent with the removal of the 10,000-gallon gasoline UST.

Other former USTs included:

- A 1,000-gallon heating oil UST southeast of the former office building, installation and removal dates unknown; and
- A 500-gallon diesel fuel UST east of former Shop Building (beneath the former wash rack area), installation and removal date unknown.

Current UST north of former Shop Building:

- A 20,000-gallon diesel fuel UST installed in 1998, remains present on the Property.

3.1.9.2 Subsurface Soil and Groundwater Analysis

Sufficient information was collected to address the data gaps and investigate the areas of suspected contamination that had not been assessed in previous investigations. The analytical results for soil and groundwater samples were compared to MTCA Method A cleanup levels, or to MTCA Method B cleanup levels if there was no Method A cleanup level.

During previous subsurface investigations at the Property, DRO had been detected at concentrations exceeding the MTCA Method A cleanup level in soil and groundwater samples collected at the former UST areas and the former product line release area near the former Shop Building. Based on Farallon's review, additional assessment of soil proximate to the former UST areas was not deemed warranted because of the significant set of existing analytical data from prior assessments in these areas. Soil samples collected from this area were analyzed for polychlorinated biphenyl compounds (PCBs). The former product line release area was further assessed to the south. Contamination in soil or groundwater was not detected in the former northwest UST area (Figure 2) during previous investigations; therefore, further assessment was not warranted.

Farallon collected two soil samples and reconnaissance groundwater samples from borings F-1 through F-8, and groundwater samples from existing wells RW-2, MW-2, MW-3, and MW-4 for laboratory analysis. After review of the analytical results for the prior samples, soil and reconnaissance groundwater samples were collected from borings F-9 through F-18, and groundwater samples were collected from existing monitoring wells MW-5 and MW-6 for laboratory analysis to further characterize areas of known or potential releases.

Soil borings were advanced using a direct-push rig; soil, groundwater, and reconnaissance groundwater samples were collected using industry-standard methodologies. Soil and reconnaissance groundwater samples were selectively analyzed for DRO, GRO, ORO, VOCs, PCBs, and PAHs. Soil sample depths were selected based on field observations for

3 - 12

G:\Projects\1071 Prologis\1071010 6050 East Marginal Way South\Reports\RI-FFS-CAP\1071-010 RI-FFS-CAP.docx

potential contamination. Groundwater was encountered during the investigation at depths of between approximately 7 and 10 feet bgs. Soil boring and monitoring well locations are shown on Figures 3, 4, 6, and 8.

Analytical results are summarized in Tables 2, 3a, 4, 8, 9, and 10, and below by area:

Proximate to the Former Heating Oil UST:

- GRO was detected at a concentration exceeding the MTCA Method A cleanup level in the soil sample collected from boring F-5 at a depth of 6.7 feet bgs (Figure 8; Table 2). GRO was not detected at a concentration exceeding the laboratory reporting limit in the reconnaissance groundwater sample collected from boring F-5 (Table 8).
- DRO was detected at a concentration exceeding the laboratory reporting limit but less than the MTCA Method A cleanup level in both the soil and reconnaissance groundwater samples collected from boring F-5.
- GRO or DRO were not detected in soil or reconnaissance groundwater samples collected from borings F-9 through F-12, which surround boring F-5, indicating that residual GRO impact in the former heating oil UST area is bounded on all sides, and therefore is very limited.

Proximate to the Existing 20,000-Gallon Diesel Fuel UST:

- GRO was detected at a concentration exceeding the MTCA Method A cleanup level in the soil sample collected from boring F-8 at a depth of 5 feet bgs (Figure 4; Table 2) proximate to the western end of the existing 20,000-gallon diesel fuel UST.
- DRO and ORO were detected in the reconnaissance groundwater sample collected from boring F-8 (Table 8) at concentrations exceeding the MTCA Method A cleanup level.
- GRO or ORO were not detected at concentrations exceeding laboratory detection limits in soil samples collected from soil borings F-15 through F-17, advanced proximate to the other three sides of the UST.
- DRO was detected at a concentration less than the MTCA Method A cleanup level in the soil sample collected from boring F-17.
- The cumulative analytical results suggest that petroleum impact in this area is related to the known release from the nearby product line, and not a release from the existing UST.

Proximate to the Former Product Line Release Area:

• DRO was detected at a concentration exceeding the MTCA Method A cleanup level in the soil sample collected from boring F-14 (Figure 4; Table 2), located proximate to the former product line release area.

• DRO was not detected at a concentration exceeding the MTCA Method A cleanup level in the soil sample collected from boring F-13, advanced west of boring F-14.

Proximate to the Former Shop Building UST Areas:

- PCBs were not detected at a concentration exceeding the laboratory reporting limit in the soil sample collected from boring F-18, located within the area of residual impact from the former UST hold that contained five USTs for storage of diesel fuel, motor oil, and waste oil.
- DRO was detected at a concentration exceeding the MTCA Method A cleanup level in the soil sample collected from boring F-18, which is consistent with historical data.
- DRO and ORO were detected at concentrations exceeding MTCA Method A cleanup levels in groundwater samples collected from wells MW-2, MW-3, and RW-2, proximate to the former Shop Building UST areas (Table 8).
- The PAH compound 2-methylnaphthalene was detected at a concentration exceeding the MTCA Method B cleanup level in the groundwater sample collected from well RW-2 (Table 10).
- The groundwater analytical results for wells MW-4 through MW-6 suggest that petroleum constituents at concentrations exceeding MTCA Method A or Method B cleanup levels are not migrating off the Property.

Potential Migration of Chemicals from Off-Property Sources onto the Property:

Vinyl chloride was detected at concentrations of 0.23 and 0.3 micrograms per liter (µg/l) in groundwater samples collected from monitoring wells MW-2 and MW-4 (Table 9a), respectively, which exceeded the MTCA Method A cleanup level and was less than the Ecology screening level of 0.35 µg/l for vapor intrusion.

Potential Presence of PCBs in Soil:

• PCBs were not detected at concentrations exceeding laboratory reporting limits in soil samples screened for PCBs.

The laboratory reports for the soil and groundwater sample analyses discussed above are provided in Appendix B.

Petroleum hydrocarbons were detected at concentrations exceeding MTCA Method A and/or Method B cleanup levels in soil and groundwater proximate to one or more of the following: 1) the former heating oil UST; 2) the former Shop building UST areas; and 3) the former product line release area.

The petroleum hydrocarbons detected in soil west of the current 20,000-gallon diesel fuel UST appear to be related to the former product line release area. The petroleum hydrocarbons detected in soil and groundwater proximate to the former heating oil UST is

3 - 14

bound, and appear very limited in extent. Groundwater sample analytical data suggest that petroleum constituents at concentrations exceeding MTCA Method A and/or Method B cleanup levels are not migrating off the Property.

The regional VOC plume associated with releases at the Capital Industries, Inc. property at 5801 3rd Avenue South is present in the Property vicinity. The presence of vinyl chloride detected in groundwater samples collected from wells MW-4 and MW-6 on the Property is associated with the regional VOC plume.

No other compounds were detected at concentrations exceeding MTCA cleanup levels during the Subsurface Soil and Groundwater Analysis.

3.2 SOURCE AND EXTENT OF CONSTITUENTS OF CONCERN

Based on analytical results from the investigations conducted at the Property, the sources of COCs to soil and groundwater at the Property are releases from:

- USTs that were located in the UST excavation area west of the Shop Building and were removed in 1988;
- The product line in the area adjoining the northern end of the Shop Building; and
- Two 20,000-gallon diesel fuel USTs that were located in the UST excavation area northwest of the Shop Building and were removed in 1998.

The approximate extent of TPH concentrations in soil exceeding MTCA Method A cleanup levels from these sources is shown on Figure 4. The approximate extent of the groundwater plume with TPH concentrations exceeding MTCA Method A cleanup levels down-gradient of these sources is shown on Figure 6.

Other potential sources of COCs to soil include:

- The former gasoline and lube oil UST northwest of the former office building where residual GRO may be present in a very limited area of shallow soil (Figure 8);
- The former heating oil UST southeast of the former office building where residual GRO was detected in a very limited area of soil (Figure 8); and
- Adjacent to the former sand trap oil-water separator north of the former wash rack where elevated concentrations of DRO were detected (Figure 4).

The results from the remedial investigation have sufficiently delineated the nature and extent of COCs in soil and groundwater at the Property for evaluation and selection of a cleanup action under a feasibility study.

4.0 CONCEPTUAL SITE MODEL

This section provides a summary of the conceptual site model derived from the results of the remedial investigation conducted at the Property. Included in this section is a discussion of the ARARs; COCs; media of concern; selected cleanup standards, including cleanup levels and points of compliance; TEE; and contaminant fate and transport. The conceptual site model is used as a basis for developing technically feasible cleanup alternatives and selecting a final cleanup action in accordance with MTCA regulations.

4.1 APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS

Cleanup of contaminated soil and groundwater at the Property will be conducted in accordance with MTCA, with the technical assistance of Ecology under the VCP, and in conjunction with redevelopment construction at the Property. Primary ARARs relating to the cleanup action include:

- MTCA, Chapter 70.105D of the Revised Code of Washington (RCW 70.105);
- MTCA Cleanup Regulations, WAC 173-340;
- Dangerous Waste Regulations, WAC 173-303; and
- *Guidance for Remediation of Petroleum Contaminated Soils* (Ecology 2011) (Ecology Guidance).

These primary ARARs are anticipated to be the most applicable to the cleanup action because they provide the framework for the cleanup action, including applicable and relevant regulatory guidelines, cleanup standards, waste disposal criteria, references for additional ARARs, and standards for documentation of the cleanup action.

Other applicable ARARs and guidance documents for cleanup of the Property may include:

- *Guidance for Site Checks and Site Assessments for Underground Storage Tanks* (Ecology 1991, revised 2003);
- Minimum Standards for Construction and Maintenance of Wells, Standards for Decommissioning a Well, WAC 173-160-381;
- Occupational Safety and Health Act, Part 1910 of Title 29 of the Code of Federal Regulations;
- Safety Standards for Construction Work, WAC 296-155;
- Washington State Solid Waste Management Laws and Regulations, RCW 70.95, and WAC 173-351 and 173-304;
- Draft *Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Interim Remedial Action* (Ecology 2009); and

• Accreditation of Environmental Laboratories, WAC 173-50.

4.2 **CONSTITUENTS OF CONCERN**

The COCs for the Property are defined as the compounds that have been detected in soil and groundwater samples collected at the Property at concentrations that exceed or may exceed applicable MTCA Method A cleanup levels.

The COCs for soil are:

- DRO;
- ORO;
- GRO; and
- BTEX.

The COCs for groundwater are:

- DRO;
- ORO;
- GRO;
- Benzene;
- Naphthalenes; and
- Vinyl chloride.

4.3 MEDIA OF CONCERN

Soil and groundwater were confirmed as the affected media of concern at the Property based on results of the remedial investigation. DRO, ORO, GRO, and BTEX were detected in soil, and DRO, ORO, GRO, benzene, naphthalenes, and vinyl chloride were detected in groundwater at concentrations exceeding MTCA Method A cleanup levels.

Soil vapor was identified as a suspected medium of concern at the Property based on historical concentrations of GRO and BTEX in soil; GRO, benzene, naphthalenes, and vinyl chloride in groundwater; and the potential for vapor intrusion into buildings following Property redevelopment. The potential for vapor intrusion at the Property will be mitigated by the excavation and removal of contaminated soil and by the dewatering and disposal of contaminated groundwater from the Property.

Concentrations of benzene and other VOCs detected in groundwater samples collected from monitoring wells and in reconnaissance groundwater samples collected from borings on the Property in 2014 did not exceed the updated 2015 groundwater screening levels protective of

4-2

indoor air, as originally promulgated in the Draft *Guidance for Evaluating Soil Gas Intrusion in Washington State: Investigation and Remediation* dated October 2009, prepared by Ecology (2009). Vapor intrusion considerations are discussed further in Section 5, Focused Feasibility Study.

4.4 **CLEANUP STANDARDS**

As defined in WAC 173-340-700, cleanup standards consist of cleanup levels and the points of compliance at which the cleanup levels are to be attained. The cleanup standards for the Property have been established in accordance with WAC 173-340-700 through 173-340-760 to be protective of human health and the environment.

4.4.1 Soil Cleanup Levels

The selected cleanup levels for COCs in soil are as follows:

- MTCA Method A Soil Cleanup Levels for Unrestricted Land Uses (Table 740-1 in WAC 173-340-900)
 - GRO: 100 milligrams per kilogram (mg/kg) (due to the general absence of benzene);
 - DRO: 2,000 mg/kg;
 - ORO: 2,000 mg/kg;
 - Benzene: 0.03 mg/kg;
 - Toluene: 7 mg/kg;
 - Ethylbenzene: 6 mg/kg; and
 - Xylenes: 9 mg/kg.

4.4.2 Groundwater Cleanup Levels

The selected cleanup levels for COCs in groundwater are as follows:

- MTCA Method A Cleanup Levels for Ground Water (Table 720-1 in WAC 173-340-900)
 - GRO: 800 μ g/l (due to the general absence of benzene);
 - DRO: 500 μg/l;
 - ORO: 500 μg/l;
 - Benzene: $5 \mu g/l$;
 - Total naphthalenes: $160 \mu g/l$; and

- Vinyl chloride: $0.2 \mu g/l.^1$
- MTCA Method B Cleanup Level
 - 1-methylnaphthalene: $39 \mu g/l$; and
 - 2-methylnaphthalene: $32 \mu g/l$.

4.4.3 Points of Compliance

The points of compliance are the locations at which cleanup levels for the COCs must be attained to meet the requirements of MTCA.

- In accordance with WAC 173-340-740(6), the point of compliance for soil is defined as all soil at the Property where COCs have been detected at concentrations exceeding applicable MTCA soil cleanup levels.
- In accordance with WAC 173-340-720(8), the point of compliance for groundwater is defined as the uppermost level of the saturated zone extending vertically to the lowest depth at the Property that potentially could be impacted by COCs.

4.5 TERRESTRIAL ECOLOGICAL EVALUATION

A TEE is required by WAC 173-340-7490 where there has been a release of hazardous substances to soil. The regulation requires that one of the following actions be taken:

- Documenting a TEE exclusion using the criteria presented in WAC 173-340-7491;
- Conducting a simplified TEE in accordance with WAC 173-340-7492; or
- Conducting a site-specific TEE in accordance with WAC 173-340-7493.

Based on the criteria for TEE exclusion in WAC 173-340-7491(1)(c)(i), the Property qualifies for an exclusion from a TEE because there are fewer than 1.5 acres of contiguous undeveloped land on the Property or within 500 feet of any area of the Property. In addition, following redevelopment construction, the entire Property will be covered with buildings and pavement, with the exception of minor landscaped areas. No further consideration of ecological impacts is required under MTCA.

4.6 **CONTAMINANT FATE AND TRANSPORT**

Releases from USTs have affected subsurface soil and unconfined shallow groundwater at the Property. Subsurface soil proximate to the former UST areas and the product line release area near the former Shop Building contains residual concentrations of DRO, ORO, GRO, and BTEX.

¹ Vinyl chloride detected in groundwater at the Property is part of a large plume from an up-gradient source off the Property identified as Capital Industries, Inc. Active cleanup of vinyl chloride will not be practicable during the cleanup action for the Property.

G:\Projects\1071 Prologis\1071010 6050 East Marginal Way South\Reports\RI-FFS-CAP\1071-010 RI-FFS-CAP.docx

Groundwater in and down-gradient of these sources areas has been affected by the migration of DRO, ORO, GRO, benzene, and naphthalenes. Based on groundwater sampling results, the concentrations of these COCs exceeding MTCA Method A cleanup levels are retained within the Property boundaries. Vinyl chloride is present in groundwater at the Property as part of a large plume originating from a source off the Property.

5.0 FOCUSED FEASIBILITY STUDY

The purpose of a feasibility study is to develop and evaluate cleanup action alternatives to facilitate selection of a final cleanup action for a property in accordance with WAC 173-340-350(8). A feasibility study typically includes an extensive development, screening, and evaluation process for numerous remedial alternatives. However, because of Property-specific conditions and plans for Property redevelopment, the current evaluation focused on one cleanup action capable of achieving the remediation goals based on consideration of applicable MTCA criteria, Property-specific conditions, and Farallon's professional experience. Therefore, the scope of the feasibility study for the Property was narrowed to a focused feasibility study.

This RI and FFS provide sufficient information to enable Ecology and the Property owner to reach agreement on selection of a final cleanup action specific to the Property. Implementation of the final cleanup action will be documented in the Environmental Media Management Plan for the Property, which will be submitted to Ecology for review and approval. The cleanup action will be performed under the VCP and implemented during Property redevelopment with the goal of obtaining a Property-specific NFA determination for the Property.

As part of the focused feasibility study, Farallon evaluated remediation technologies for the Property with respect to the cleanup requirements set forth in MTCA. The focused feasibility study considered the requirements under WAC 173-340-350, Site-specific conditions, and the criteria defined in WAC 173-340-360 for screening potentially feasible remedial alternatives for the Property. A cleanup action must satisfy the following threshold criteria, as specified in WAC 173-340-360(2):

- Protect human health and the environment;
- Comply with cleanup standards;
- Comply with applicable state and federal laws; and
- Provide for compliance monitoring.

These criteria represent the minimum standards for an acceptable cleanup action. In addition to meeting the threshold criteria, cleanup actions under MTCA must:

- Use permanent solutions to the maximum extent practicable; and
- Provide for a reasonable restoration time frame.

Farallon performed a preliminary screening of potential remediation technologies typically applied to sites contaminated with the same or comparable COCs to eliminate technologies that did not meet the minimum requirements for protectiveness, permanence, implementability, and cost as described above. Farallon eliminated a number of remediation technologies during the initial screening process, as set forth in MTCA under WAC 173-340-350(8)(b). These technologies

included but were not limited to: soil flushing and extraction; air sparge and soil vapor extraction; and groundwater pumping and treatment.

5.1 **POTENTIAL CLEANUP ALTERNATIVES**

The preliminary screening of potential remediation technologies identified the following cleanup alternatives as potentially applicable to the Property:

- No remedial action;
- Active in-situ remediation of soil and/or groundwater using a chemical oxidant or bioremediation; and
- Source removal by excavation of soil, and dewatering of groundwater containing concentrations of COCs exceeding MTCA cleanup levels.

Farallon evaluated technologies and alternatives that could be implemented in conjunction with the planned redevelopment of the Property, which includes construction of two large two-story warehouse buildings.

- "No remedial action" is not an applicable remedial alternative because concentrations of COCs are present in soil and groundwater at the Property at concentrations exceeding established MTCA Method A cleanup levels and constitute a potential threat to human health and/or the environment.
- In-situ remediation of soil using chemical or biological treatment was not technically feasible because of the planned redevelopment and the desired expedited time frame for cleanup. In addition, there are no proven in-situ technologies for remediation of DRO and ORO contaminants that would result in compliance with cleanup standards within a reasonable restoration time frame.

Source removal by excavation of soil and dewatering of groundwater satisfies the minimum threshold requirements for a cleanup action under WAC 173-340-360(2), is a permanent solution, and will achieve the cleanup levels at the points of compliance for COCs in the short term. Excavation will protect human health and the environment by permanently reducing the volume of hazardous substances in both soil and shallow groundwater at the Property. The restoration time frame is considered reasonable and the cleanup will be effective long-term. Implemented in combination with the redevelopment of the Property, the excavation alternative is cost-effective and highly implementable. A description of the selected alternative for the cleanup action is provided below.

5.2 **RECOMMENDED CLEANUP ALTERNATIVE**

Source removal by excavation of soil and dewatering of groundwater is considered the most practicable alternative for cleanup of the Property. Therefore, the cleanup action will consist of:

- Excavation and removal of soil with COCs exceeding MTCA Method A cleanup levels to depths up to a maximum of approximately 12 feet bgs.
- Collection of performance soil samples and analysis using a mobile laboratory during the excavations, and collection and analysis of confirmational soil samples to represent soil conditions at the final limits of the excavations.
- Transport of contaminated soil to an Ecology-approved and permitted facility for treatment and/or disposal.
- Capture of contaminated groundwater generated during excavation dewatering activities for treatment and discharge in accordance with local and state standards.
- Application of an oxygen-release compound at the base of the excavations north and west of the former Shop Building to enhance aerobic biodegradation of COCs in the groundwater plume down-gradient of these former source areas, and compliance groundwater monitoring to monitor natural attenuation processes.

This alternative satisfies the minimum threshold requirements for a cleanup action under WAC 173-340-360(2), is a permanent solution, and will achieve the cleanup levels at the points of compliance for the COCs. Excavation will protect human health and the environment by permanently reducing the volume of hazardous substances in both soil and shallow groundwater at the Property. The restoration time frame is considered reasonable and the cleanup will be effective in the long-term. Implemented in combination with the redevelopment of the Property, the excavation alternative is cost-effective and highly implementable.

Following completion of redevelopment activities at the Property, monitoring wells will be installed in and down-gradient of the groundwater plume for compliance groundwater monitoring. Natural attenuation processes, including enhancement using an oxygen-release compound, will degrade the COCs in groundwater once the sources have been removed. However, DRO and/or ORO may persist in groundwater at concentrations exceeding MTCA Method A cleanup levels following completion of the soil cleanup action at the Property.

With the exception of historical concentrations of benzene proximate to well RW-2, concentrations of benzene, naphthalenes, and other volatile COCs detected in groundwater samples at the Property do not exceed the 2015 groundwater screening levels protective of indoor air (Ecology 2009; 2015 update to Table B-1). Benzene was not detected at a concentration exceeding the laboratory reporting limit in any of the groundwater samples, including samples from well RW-2, collected during the most recent groundwater sampling event at the Property in 2014. Farallon expects that the excavation will result in complete removal of contaminated soil and groundwater proximate to

well RW-2. Based on the 2014 groundwater analytical results and pending further source removal actions, vapor intrusion does not represent a concern to future tenants at the Property.

The selected cleanup action is the most-aggressive and -permanent cleanup action possible at the Property and meets MTCA requirements. The selected cleanup action would rapidly remediate COCs at concentrations exceeding applicable MTCA cleanup levels that are present in soil, groundwater, and soil vapor at the Property by excavating and removing the COCs in soil and groundwater.

The following evaluation discusses how the recommended cleanup action meets MTCA threshold and other requirements set forth under WAC 173-340-360(2)(a) and (b):

- **Protection of Human Health and the Environment:** The cleanup action will protect human health and the environment by excavating and disposing of soil with concentrations of COCs exceeding MTCA cleanup levels and by removing the highest concentrations of COCs in groundwater through excavation dewatering. This source removal will allow natural attenuation processes to complete the degradation and reduction of COC concentrations in groundwater to less than MTCA Method A cleanup levels.
- **Compliance with Cleanup Standards:** The cleanup action will comply with cleanup standards by meeting MTCA cleanup levels for COCs in soil and groundwater at the points of compliance. The points of compliance as defined in WAC 173-340-200 will be the locations where cleanup levels established in accordance with WAC 173-340-720 through WAC 173-340-760 will be attained to meet the requirements of MTCA. Once the cleanup levels have been attained at the defined points of compliance, the Property will no longer be considered to be a threat to human health or the environment.

The point of compliance for soil is defined as all soil at the Property where COCs have been detected at concentrations exceeding MTCA Method A cleanup levels in in-situ soil samples.

The point of compliance for groundwater is defined as the uppermost level of the saturated zone extending vertically to the lowest depth that potentially could be impacted by the COCs at the Property. Results from groundwater samples collected from down-gradient monitoring wells MW-4 through MW6 have established that groundwater cleanup levels have not been exceeded for COCs near the down-gradient Property boundary.

- **Compliance with Applicable State and Federal Laws:** The recommended cleanup action alternative will comply with the requirements of MTCA and applicable federal laws. The cleanup action will be conducted as an independent cleanup action under the Ecology VCP in accordance with MTCA.
- **Provision for Compliance Monitoring:** The cleanup action for soil provides for compliance monitoring during excavation by collection of performance and confirmational soil samples at various depths and from the bottom and sidewalls at the limits of the

excavations. The cleanup action for groundwater provides for compliance monitoring after completion of the excavation by groundwater sampling at the points of compliance.

- **Permanence:** The cleanup action for soil and groundwater will result in permanent achievement of cleanup action objectives. It is anticipated that soil with concentrations of COCs exceeding MTCA cleanup levels within the excavation limits will be removed from the Property and disposed of at a licensed disposal facility. Excavation dewatering will remove groundwater with the highest concentrations of COCs, and natural attenuation process are expected to reduce residual COC concentrations to less than MTCA Method A cleanup levels down-gradient of the source areas on the Property.
- **Restoration Time Frame:** The cleanup action will meet threshold requirements and cleanup action objectives in a reasonable restoration time frame. Excavation, removal, and off-Property disposal of soil with concentrations of COCs exceeding MTCA cleanup levels will result in immediate achievement of cleanup action objectives for soil. Excavation dewatering during construction will remove groundwater with the highest concentrations of COCs. Removal of soil containing sources of COCs will allow natural attenuation processes to reduce COC concentrations in groundwater to less than MTCA Method A cleanup levels.
- **Reduction of Toxicity, Mobility, and Volume of Contaminants:** The cleanup action for soil and groundwater will permanently remove concentrations of COCs exceeding MTCA Method A cleanup levels in soil, and will remove and degrade COCs in groundwater at the Property. These results will permanently eliminate or reduce contaminant mass and toxicity.
- Short-Term Risks: The cleanup action involves short-term risks associated with the excavation and handling of soil and/or groundwater with concentrations of COCs exceeding MTCA cleanup levels. Potential short-term risks to human health from potential vapors, dust emissions, excavation equipment, and truck traffic may be increased during cleanup field activities. Health and safety measures and monitoring programs will be implemented to effectively minimize these short-term risks.
- **Implementability:** The cleanup action will be implemented at the Property in conjunction with Property redevelopment construction. Excavation and transportation of soil with concentrations of COCs is a common practice that has proven successful at many other properties. Dewatering of groundwater during excavation and subsurface construction activities also is a common practice. Soil and associated groundwater with concentrations of COCs exceeding MTCA cleanup levels can be accessed, dewatered, and removed using standard dewatering and excavating equipment.

6.0 CLEANUP ACTION PLAN

This section presents the approach for implementation of the cleanup action.

6.1 **OBJECTIVE OF CLEANUP ACTION**

The objective of the cleanup action is to permanently remediate COCs at concentrations exceeding MTCA cleanup levels in soil, groundwater, and soil vapor within the boundaries of the Property. The cleanup action will be protective of human health and the environment, and will result in a permanent cleanup action for the Property. The goal of the cleanup action is to meet the MTCA requirements for a Property-specific NFA determination for the Property from Ecology.

6.2 ELEMENTS OF CLEANUP ACTION

The cleanup action includes excavation of soil to a depth of approximately 12 feet bgs, dewatering activities as part of Property redevelopment, and the following specific tasks:

- Preparation of a Property-specific Health and Safety Plan (HASP);
- Decommissioning by removal of the existing 20,000-gallon diesel fuel UST in accordance with Ecology UST Regulations established in WAC 173-360, and the *Guidance for Site Checks and Site Assessments for Underground Storage Tanks* (Ecology 1991, revised 2003);
- Contingency planning for the decommissioning and removal of unidentified USTs that may be encountered during redevelopment excavation at the Property; and
- Decommissioning of existing monitoring wells MW-1 through MW-6 and well RW-2 in accordance with Chapter 173-160 WAC (Minimum Standards for Construction and Maintenance of Wells).

6.3 **PROPERTY PREPARATION**

Prior to excavation, preparation activities will be conducted, including decommissioning of the 20,000-gallon diesel fuel UST and monitoring wells MW-1 through MW-6 and well RW-2, installation of Property security, temporary erosion-control measures, and traffic-control measures as necessary to meet permit requirements and protect workers within the work zones.

6.4 **EXCAVATION**

Prior to excavation, the known limits of soil with concentrations of one or more COCs exceeding MTCA Method A cleanup levels will be staked in the field. Following the stripping of surface asphalt pavement and concrete, an estimated 1,800 cubic yards of soil containing one or more COCs exceeding MTCA Method A cleanup levels will be removed from the three locations shown on Figure 4 and disposed of as nonhazardous soil at a licensed disposal facility. Additional

excavation may take place in the northwest UST area based on analytical results for soil samples collected prior to excavation.

The excavation subcontractor will excavate contaminated soil and segregate it from uncontaminated soil under the direction of a Farallon field representative. Soil containing concentrations of one or more COCs exceeding MTCA Method A cleanup levels will be loaded directly into haul trucks, as practicable, for transport off the Property.

Uncontaminated soil will be removed and stockpiled on the Property for re-use as backfill, if suitable for use as structural fill. During excavation, a Farallon field representative will examine uncontaminated soil for evidence of contamination such as visual staining or sheen, petroleum-like odors, or concentrations of measurable organic vapors exceeding measured background levels using a photoionization detector (PID).

Soil with field evidence of COCs will be segregated from observed clean soil, stockpiled separately, and sampled for analysis to assess options for disposal or reuse. The stockpiles of contaminated soil will be placed on plastic sheeting and covered to prevent potential contamination of clean soil. Three soil samples will be collected from contaminated soil stockpiles of up to 100 cubic yards, and five samples will be collected from contaminated soil stockpiles of 101 to 500 cubic yards in accordance with the Ecology (1991) guidance for stockpiled excavated soil. The contaminated soil stockpile samples will be analyzed for the COCs listed in Section 6.6.5, Analytical Methods and Turnaround Times.

6.5 **EXCAVATION DEWATERING**

The lower limit of the excavation is anticipated to extend below the current water table. Dewatering will be necessary to reach the depth limits of excavation, estimated to be 10 to 12 feet bgs. Groundwater is anticipated to be present at depths of between approximately 6.5 and 9 feet bgs. The dewatering will consist of pumping groundwater from the excavation into aboveground storage tanks. Groundwater samples will be collected from the aboveground storage tanks to assess the concentrations of COCs in groundwater within the excavation and to determine disposal options for the groundwater.

6.6 SOIL SEGREGATION AND STOCKPILING

The excavation subcontractor will excavate contaminated soil and segregate it from clean soil under the direction of a Farallon field representative to the extent practicable. Soil segregation will be based on soil sample analytical results from the remedial investigation, performance monitoring results, and field-screening results.

Three types of soil are anticipated to be encountered during the excavations:

• Category 1 clean soil, which contains no detectable concentrations of COCs and no other evidence of contamination. Clean soil will be considered for reuse on the Property as

structural fill, as appropriate, or will be disposed of off the Property at a facility or location selected by the Property owner or the excavation subcontractor.

- Category 2 petroleum-contaminated soil, which contains petroleum hydrocarbons at concentrations less than MTCA Method A soil cleanup levels, meets the disposal criteria for the disposal facility for Category 2 petroleum-contaminated soil; and/or exhibits other evidence of contamination such as visual staining, petroleum-like odors, or organic vapors above background levels measurable using a PID. Category 2 petroleum-contaminated soil will be disposed of as nonhazardous waste at a qualifying inert materials landfill and/or a Subtitle D landfill. Alternatively, Category 2 soil may be used on the Property as structural fill at locations above the known seasonal high groundwater level.
- Category 3 petroleum-contaminated soil, which contains one or more of the COCs at concentrations exceeding MTCA Method A cleanup levels; and/or exceeds the disposal criteria for the project disposal facility for Category 2 petroleum-contaminated soil. Category 3 petroleum-contaminated soil will be treated by thermal desorption and disposed of as nonhazardous waste at an inert materials landfill, and/or will be transported directly to a Subtitle D landfill.

Where practicable, Category 2 and Category 3 soil will be loaded directly into haul trucks to facilitate the most-efficient handling and transport.

Personnel for the excavation subcontractor performing the excavation of potentially contaminated soil will be 40-Hour Health and Safety Trained as hazardous waste operators in accordance with Part 1910.120 of Title 29 of the Code of Federal Regulations.

6.6.1 Identification of Contaminated Soil

Determination of the extent of contaminated soil at each excavation area will be based on soil sample analytical results from the remedial investigation. Additional soil samples will be collected from test pits excavated at selected locations in advance of the excavation to provide supplementary analytical data for refining identification of the extent of COCs in the soil.

Field-screening will be performed during the excavation to further identify and classify the extent of COCs. Field-screening will consist of noting visual or olfactory evidence of contamination such as soil staining, discoloration, and petroleum odors, and use of a PID to screen for the presence of ionizable VOCs. A PID reading exceeding ambient or background concentrations will confirm the presence of VOCs in a sample. Field-screening results will be evaluated to determine whether laboratory analysis of soil samples is needed to further assess for the presence of COCs in the soil.

6.6.2 Performance and Confirmational Soil Sampling

A 20- by 20-foot sampling grid will be established over the excavation areas at the Property to guide the excavation process and the collection of performance and confirmational soil samples. As the soil is excavated, performance soil samples will be collected from the bottom and outer

6-3

margins of the sampling grids. At the excavation sidewall limits, grab samples will be collected at a depth corresponding to the historical zone of seasonal groundwater level fluctuation (between approximately 6.5 and 11 feet bgs) where the highest COC concentrations would be expected. Bottom samples will be collected at the approximate centers of the grids. A licensed and certified mobile laboratory will be set up on the Property to provide rapid turnaround times for sample analyses.

If one or more of the COC concentrations in a soil sample exceed MTCA Method A cleanup levels, the sample will be considered a performance monitoring sample, and excavation will continue in that area, with collection and analysis of additional soil samples as necessary until the sample COC concentrations are reported at less than MTCA Method A cleanup levels. When COC concentrations for a soil sample are less than cleanup levels, the sample will be considered a confirmational sample, and the excavation in that grid will be considered complete. Sample locations will be determined using a global positioning system receiver and/or by measurement relative to surveyed reference markers positioned along the outer boundaries of the excavation areas.

Confirmational sampling will be conducted once performance sampling or field-screening results indicate that contaminated soil has been removed at the limits of excavation, and applicable MTCA cleanup levels likely have been attained. Confirmational monitoring will consist of collecting insitu soil samples from the bottoms and sidewalls of the excavated areas to verify that COCs in soil at the margins of the excavation are less than MTCA cleanup levels and that the cleanup objectives have been achieved.

6.6.3 Soil Sample Identification

Each performance and confirmational soil sample will be assigned a unique sample number. The sample number will be based on the associated grid number and will include the location within the grid and the depth or elevation of collection. Sample numbers will be written on the sample label and recorded on the Field Report form, the Sample Summary form, and the laboratory Chain of Custody form.

6.6.4 Soil Sample Collection and Handling Procedures

The performance and confirmational soil samples will be collected and handled according to specific procedures, which include the following:

• Collecting discrete grab soil samples directly from the excavation sidewalls and bottom where the excavation is less than 4 feet deep, or from the center of the excavation track hoe bucket if the excavation is greater than 4 feet deep or under conditions that make sample collection directly from the excavation unsafe or impracticable. Samples will be collected using either stainless steel or plastic sampling tools. Non-disposable sampling tools and equipment will be decontaminated between uses as appropriate, with the exception of the track hoe bucket.

- Logging sampling information in the field notes, including sample depth or elevation, soil description, soil moisture, indications of potential COCs from visual observations, odor indications, and field-screening results using a PID.
- Transferring the collected soil sample into laboratory-supplied sample containers. Soil samples for analysis for VOCs will be collected and prepared in accordance with U.S. Environmental Protection Agency (EPA) Method 5035A sampling protocols. Sample containers will be completely filled to eliminate headspace, and the seals/caps will be firmly secured.
- Labeling the sample container with the date, time sampled, sample identification number, requested analysis, project name, project number, and the sampler's initials.
- Logging the sample on a Chain of Custody form, and placing the soil sample into a chilled cooler for submittal to the mobile laboratory.
- Discarding disposable sampling tools, supplies, and personal protective equipment as solid waste in the appropriate waste container at the Property.

6.6.5 Analytical Methods and Turnaround Times

Soil samples collected for performance and confirmational monitoring and for waste disposal classification will be analyzed by the mobile laboratory for specific COCs. Soil samples will be analyzed using one or more of the following analytical methods:

- DRO and ORO by Northwest Method NWTPH-Dx;
- GRO by Northwest Method NWTPH-Gx; and
- BTEX by EPA Method 8021B.

Following collection, the soil samples will be hand-delivered by Farallon to the mobile analytical laboratory set up adjacent to the excavation areas. Rapid same-day sample analytical turnaround times will increase cleanup efficiencies and prevent potential excavation delays.

Additional analyses that may be conducted for selected confirmational soil samples collected proximate to the former waste oil USTs and the former sand trap oil-water separator include:

- PAHs by EPA Method 8270D;
- VOCs by EPA Method 8260C; and
- MTCA metals by EPA 200/6000/7000 Series Methods.

These analyses will be performed at a fixed-base laboratory selected for the project.

Groundwater removed from the excavations during dewatering will be sampled to assess COC concentrations for treatment and/or disposal. Groundwater samples will be analyzed by the mobile laboratory using one or more of the following analytical methods:

- DRO and ORO by Northwest Method NWTPH-Dx;
- GRO by Northwest Method NWTPH-Gx; and
- BTEX by EPA Method 8021B.

Additional groundwater sample analyses that may be conducted if needed to meet the requirements for discharge to the sanitary sewer include:

- PAHs by EPA Method 8270D;
- VOCs by EPA Method 8260C; and
- MTCA metals by EPA 200/6000/7000 Series Methods.

These analyses will be performed at a fixed-base project laboratory.

Farallon will obtain the laboratory analytical results in electronic format. The data will undergo a quality assurance and quality control review at the time of receipt and will be compiled into the Farallon EQuIS database for data management.

6.6.6 Waste Soil Disposal

Contaminated soil disposal will be tracked using a Waste Inventory form. The analytical results for soil sampling conducted during the remedial investigation, test pit sampling, and performance soil sampling will be used to profile contaminated soil for disposal. Profiling information will be provided to the project disposal facilities to obtain approval for treatment and/or disposal of the Category 2 and Category 3 petroleum-contaminated soil. Documentation of the soil disposal will be maintained in the project file.

6.6.7 Wastewater Disposal

During excavation dewatering at the Property, groundwater will be removed using one or more temporary drainage sumps in each excavation area and will be pumped into large storage tanks to facilitate solids removal and turbidity reduction. Effluent from the storage tanks will be treated by carbon filtration, if necessary, to reduce COC concentrations to meet the requirements of the temporary discharge authorization that will be obtained from the King County Industrial Waste Program.

6.6.8 Backfill and Property Restoration

Following completion of soil removal at each excavation, the excavation will be backfilled and compacted by the excavation subcontractor to meet specifications provided by the geotechnical engineer for the redevelopment project.

7.0 DOCUMENTATION REQUIREMENTS

All elements of the cleanup action will be documented to meet the requirements of MTCA for a Property-specific NFA determination. A document control system will be implemented to manage data during the cleanup action, including the following documents, as appropriate: Field Report forms, maps, field-screening documentation, sampling documentation, Chain of Custody forms, laboratory analytical reports, photographs, and Waste Inventory forms. Transport tickets and disposal manifests for waste soil will be maintained in the Farallon project documentation files. Upon conclusion of the cleanup action, a report will be prepared summarizing the results of the cleanup action.

7.1 **FIELD DOCUMENTATION**

Field personnel will be required to keep a daily field log on a Field Report form. Field notes will be as descriptive and inclusive as possible, with the objective of being sufficiently detailed to allow independent parties to reconstruct the events of the cleanup action. Language will be objective, factual, and free of inappropriate terminology. At a minimum, field documentation will include the date, project number, project identification and location, weather conditions, sample collection procedures, field equipment used, and an explanation of any activities performed in a manner other than as specified in the CAP. In addition, when other forms are completed or used (e.g., Chain of Custody forms, maps) they will be referenced in and attached to the Field Report form.

Supplementary documentation forms will be used to augment the Field Report form, including Soil Sampling forms, Waste Inventory forms, and any other forms or documentation developed to document the cleanup action.

A Chain of Custody form or comparable form required by the mobile laboratory will be completed by the Farallon field representative at the time of sample collection. Chain-of-custody protocols are designed to create an accurate written record that can be used to trace the possession and handling of samples from the moment of field collection through laboratory analysis and reporting, and will be followed whenever samples are collected, transferred, stored, analyzed, or destroyed.

Samples submitted to the laboratory will be accompanied by a Chain of Custody or comparable form. This form will be checked for accuracy and completeness by the Farallon field representative. The form will be signed and dated by the Farallon representative when relinquishing samples to the laboratory, and by the laboratory technician or sample custodian to denote sample acceptance by the laboratory. The laboratory will assign each sample a unique sequential laboratory identification number that will be stamped or written on the form.

The Chain of Custody or comparable form will include the following information: project name, sample identification number (assigned by the sampler in the field), sample date, time of collection, sample media, number of containers, type of analysis required (if any), and any notes or instructions for the laboratory. Whenever the samples are transferred from one party to another,

both parties will sign the form and record the date and time of the transfer. In this manner, sample integrity is ensured from collection through analysis.

Sample labels will be filled out and affixed to appropriate containers during preparations for sample collection. Soil samples collected during the soil cleanup action will be uniquely identified, labeled, and documented in the field at the time of collection. Each sample container will have a label identifying the project number and name, the unique sample identification number, preservatives used (if applicable), required analyses, and the date and time at which the sample was collected.

7.2 HEALTH AND SAFETY

A HASP is required for all field activities (WAC 173-340-810). Farallon will prepare a Propertyspecific HASP for use by Farallon personnel working at the Property. The HASP will comply with the requirements of the Occupational Safety and Health Act of 1970 and the Washington Industrial Safety and Health Act (RCW 49.17). Ecology approval of the HASP is not necessary.

7.3 **CLOSURE REPORT**

Upon completion of the cleanup action, a Closure Report will be prepared and submitted to Ecology, and a request will be made for a Property-specific Partial Sufficiency Opinion as an intermediate step toward obtaining an NFA determination. The request for a Partial Sufficiency Opinion assumes that MTCA cleanup levels will have been achieved for soil only and that groundwater will require long-term monitoring of natural attenuation processes to document reduction of concentrations of DRO and ORO to less than MTCA Method A cleanup levels. The Closure Report will include a summary of the activities and results of the cleanup action at the Property, and will provide the technical basis to support the Partial Sufficiency Opinion. The Closure Report will include the following reporting and work elements:

- A summary of the subsurface investigations and cleanup actions completed at the Property;
- Reconciliation of contaminated soil transported, treated, and/or disposed of off the Property, and contaminated groundwater treated and discharged to the sanitary sewer;
- Preparation of figures and summary tables for soil and groundwater sample analytical results; and
- Conclusions regarding the effectiveness of the cleanup action and a request for a Propertyspecific Partial Sufficiency Opinion from Ecology.

8.0 **BIBLIOGRAPHY**

Blymyer Engineers, Inc. (Blymyer). 1988a. Memorandum Regarding Summary of Sample Analysis Results, Consolidated Freightways, Seattle, Washington. From Mike Lewis. To Lynn Cashion, Washington State Department of Ecology. April 25.

-. 1988b. Phase I Contamination Investigation for Consolidated Freightways, 6050 East Marginal Way South, Seattle, Washington. Prepared for Consolidated Freightways, Seattle, Washington. August 3.

- —. 1988c. Letter Regarding Initial Sampling at Consolidated Freightways, 6050 East Marginal Way South, Seattle, Washington. From Michael Lewis. To Lynn Cashion, Washington State Department of Ecology. October 25.
- —. 1989a. Letter Regarding First Quarterly Groundwater Sampling Results for Consolidated Freightways, 6050 East Marginal Way South, Seattle, Washington. From Michael Lewis. To Lynn Coleman, Washington State Department of Ecology. March 1.
- 1989b. Letter Regarding Second Quarterly Groundwater Sampling Results for Consolidated Freightways, 6050 East Marginal Way South, Seattle, Washington. From Michael Lewis. To Lynn Coleman, Washington State Department of Ecology. May 17.
 - —. 1989c. Letter Regarding Third Quarterly Groundwater Sampling Results for Consolidated Freightways, 6050 East Marginal Way South, Seattle, Washington. From Michael Lewis. To Lynn Coleman, Washington State Department of Ecology. August 23.
- ——. 1989d. Letter Regarding Fourth Quarterly Groundwater Sampling Results for Consolidated Freightways, 6050 East Marginal Way South, Seattle, Washington. From Michael Lewis. To Lynn Coleman, Washington State Department of Ecology. December 15.
- Farallon Consulting, L.L.C. (Farallon). 2015. Environmental Due Diligence Report, 6050 East Marginal Way South, Seattle, Washington. Prepared for Prologis, Inc., San Francisco, California. May 29.
- Fluor Daniel GTI, Inc. 1998. Report of Permanent UST Decommissioning and Closure at Consolidated Freightways Facility, 6050 East Marginal Way, Seattle, Washington. Project 101386. Prepared for Blymyer Engineers, Inc., Alameda, California. September 22.
- Galster, Richard W. and William T. Laprade. 1991. "Geology of Seattle, Washington, United States of America." *Bulletin of the Association of Engineering Geologists*. 28 (no. 3): 35-302.

⁸⁻¹ G:\Projects\1071 Prologis\1071010 6050 East Marginal Way South\Reports\RI-FFS-CAP\1071-010 RI-FFS-CAP.docx

- Golder Associates Inc. (Golder). 1998a. Site Investigation/Risk Assessment for the Consolidated Freightways Site, 6050 East Marginal Way South, Seattle, Washington. Prepared for Blymyer Engineers, Inc., Alameda, California. June.
 - —. 1998b. Letter Regarding Disposal of Petroleum Contaminated Soils and Investigative Derived Waste at the Consolidated Freightways Site, Seattle, Washington. From Gary Zimmerman. To Jeanna Hudson, Consolidated Freightways. December 7.
 - —. 2000a. Groundwater Monitoring Work Plan for Consolidated Freightways, 6050 East Marginal Way South, Seattle, Washington. Prepared for Consolidated Freightways, Menlo Park, California. February 24.
 - —. 2000b. Addendum to Groundwater Monitoring Work Plan for Consolidated Freightways, 6050 East Marginal Way South, Seattle, Washington. Prepared for Consolidated Freightways, Vancouver, Washington. November 10.
 - ——. 2001. Draft Results of Additional Groundwater and Soil Investigations, Consolidated Freightways Site, 6050 East Marginal Way South, Seattle, Washington. Prepared for Blymyer Engineers, Inc., Alameda, California. March 8.
 - ———. 2004. Report on Phase II Investigation, Consolidated Freightways, 6050 East Marginal Way South, Seattle, Washington. Submitted to Consolidated Freightways, Vancouver, Washington. January 27.
- Groundwater Technology, Inc. (GTI). 1989a. Letter Regarding Soil Treatment at Consolidated Freightways, 6050 East Marginal Way South, Seattle, Washington. From Mark Winters. To Mike Lewis, Blymyer Engineers, Inc. January 6.
- ———. 1989b. Letter Regarding Soil Treatment at Consolidated Freightways, 6050 East Marginal Way South, Seattle, Washington. From Mark Winters. To Mike Lewis, Blymyer Engineers, Inc. March 8.
- ——. 1989c. Letter Regarding Soil Treatment at Consolidated Freightways, 6050 East Marginal Way South, Seattle, Washington. From Mark Winters. To Mike Lewis, Blymyer Engineers, Inc. April 24.
 - —. 1989d. Letter Regarding Soil Treatment at Consolidated Freightways, 6050 East Marginal Way South, Seattle, Washington. From Mark Winters and JoAnne Deschenes. To Mike Lewis, Blymyer Engineers, Inc. June 26.
- Phase One Inc. 2003. Phase I Environmental Site Assessment for Consolidated Freightways, 6050 East Marginal Way South, Seattle, Washington 98108. Prepared for Consolidated Freightways, Vancouver, Washington. January 20

- Shannon & Wilson, Inc. 1997. Results of Initial Site Investigation, 6050 East Marginal Way South, Seattle, Washington. Prepared for Blymyer Engineers, Inc., Alameda, California. October.
- U.S. Environmental Protection Agency. 1996. Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures. EPA Groundwater Issue /540/S-95/504. April.
- U.S. Environmental Protection Agency Region II. 1997. U.S. Environmental Protection Agency, Region II, Groundwater Sampling Procedure Low Stress Purging and Sampling. Draft Final. October 1.
- U.S. Geological Survey. 1983. U.S. Geological Survey Topographic Map, Quadrangle Seattle South, Washington, 7.5-Minute Series.
- _____. 2005. The Geologic Map of Seattle a Progress Report. Open File Report 2005-1252.
- Washington State Department of Ecology (Ecology). 1991. *Guidance for Site Checks and Site Assessments for Underground Storage Tanks*. Publication No. 90-52. Revised April 2003. February.
- - —. 2009. Draft Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action. Publication No. 09-09-047. Screening Levels Revised 2015. October.
 - —. 2011. *Guidance for Remediation of Petroleum Contaminated Soils*. (Revised.) Publication No. 10-09-057. September.
- ——. 2013a. Well Logs, Washington State Well Log Viewer, Well Log Imaging Internet Version 1.0. February 12, 2003. <<u>http://apps.ecy.wa.gov/welllog/</u>>. (July 2013.)

8-3

 2013b. Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Cleanup Levels and Risk Calculations (CLARC).
 <<u>https://fortress.wa.gov/ecy/clarc/Reporting/ChemicalQuery.aspx</u>>. (August 2013.)

9.0 LIMITATIONS

9.1 **GENERAL LIMITATIONS**

The conclusions contained in this report/assessment are based on professional opinions with regard to the subject matter. These opinions have been arrived at in accordance with currently accepted hydrogeologic and engineering standards and practices applicable to this location. The conclusions contained herein are subject to the following inherent limitations:

- Accuracy of Information. Certain information used by Farallon in this report/assessment has been obtained, reviewed, and evaluated from various sources believed to be reliable. Farallon's conclusions, opinions, and recommendations are based in part on such information. Farallon's services did not include verification of its accuracy or authenticity. Should the information upon which Farallon relied prove to be inaccurate or unreliable, Farallon reserves the right to amend or revise its conclusions, opinions, and/or recommendations.
- Reconnaissance and/or Characterization. Farallon performed a reconnaissance and/or characterization of the Property that is the subject of this report/assessment to document current conditions. Farallon focused on areas deemed more likely to exhibit hazardous materials conditions. Contamination may exist in other areas of the Property that were not investigated or were inaccessible. Site activities beyond Farallon's control could change at any time after the completion of this report/assessment.

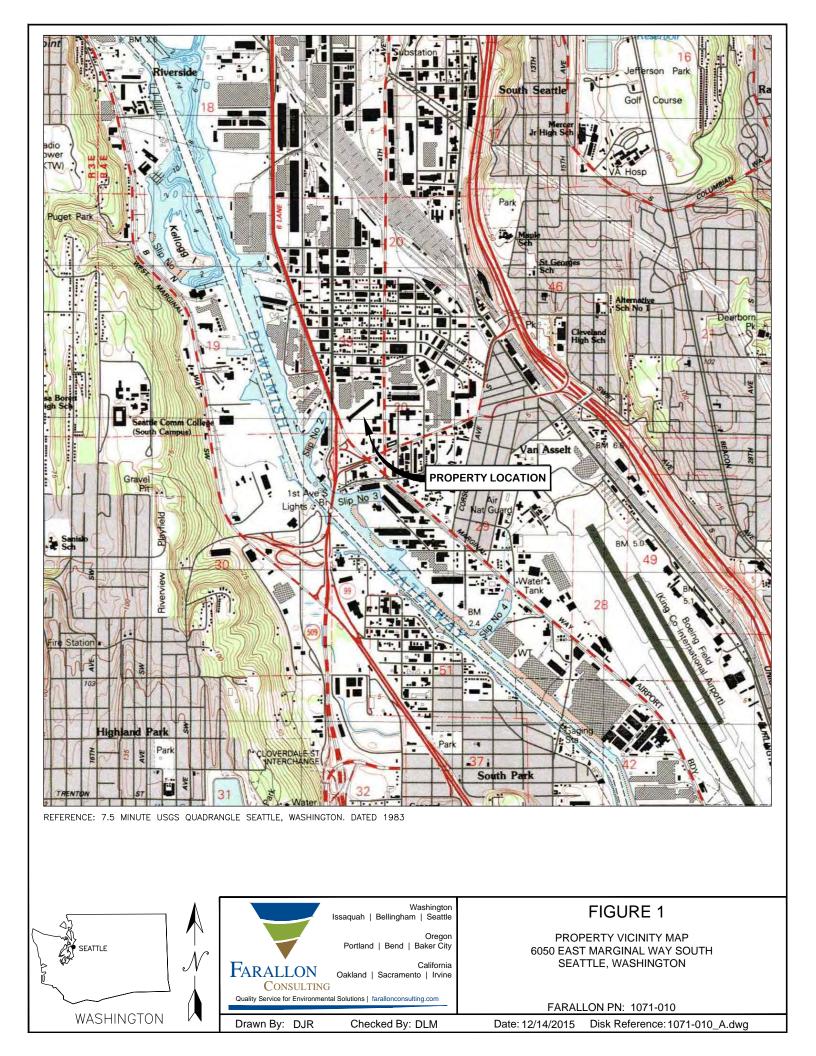
For the foregoing reasons, Farallon cannot and does not warrant or guarantee that the Property is free of hazardous or potentially hazardous substances or conditions, or that latent or undiscovered conditions will not become evident in the future. Farallon's observations, findings, and opinions can be considered valid only as of the date of the report hereof.

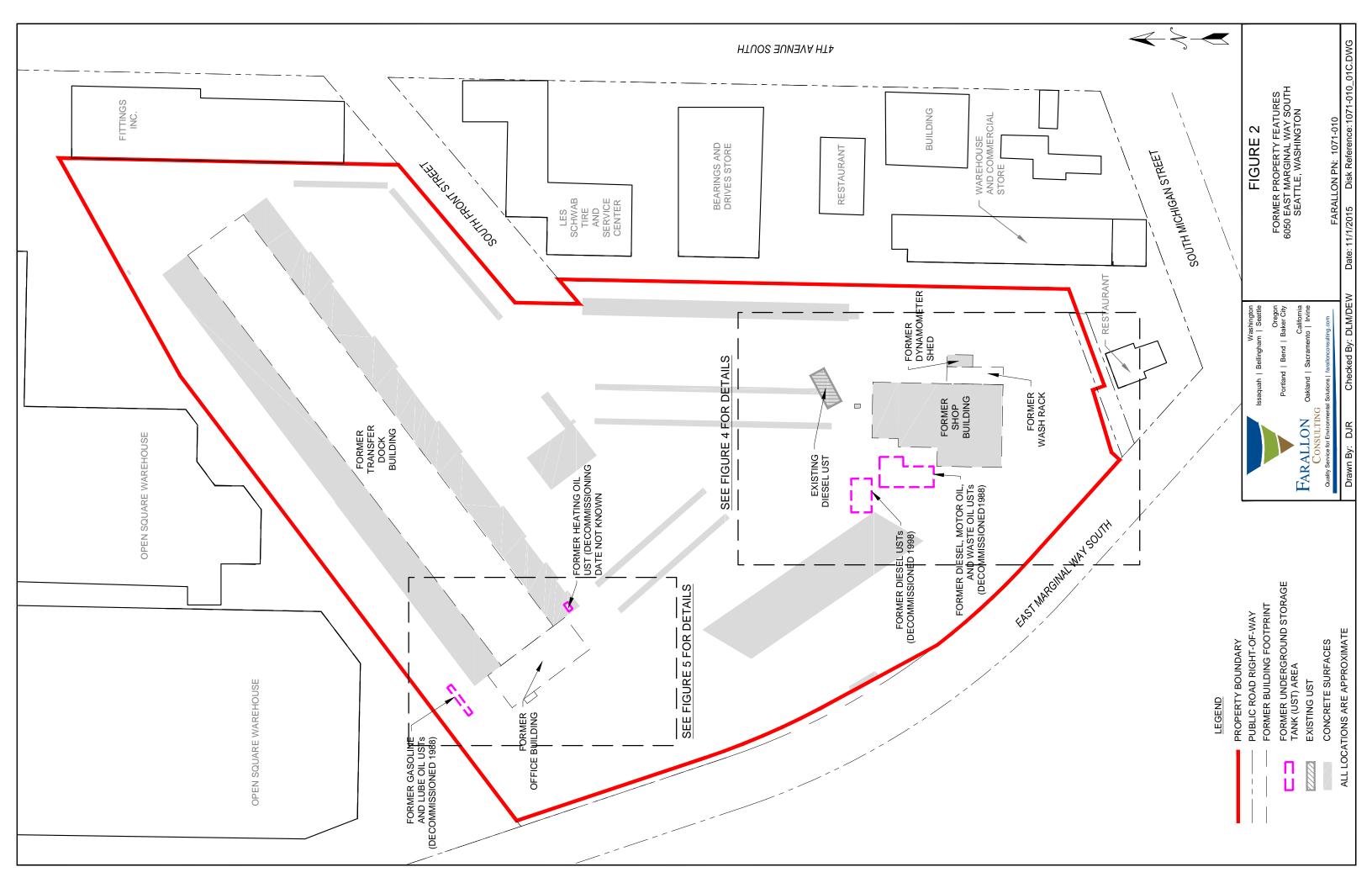
This report/assessment has been prepared in accordance with the contract for services between Farallon and Prologis, Inc., and currently accepted industry standards. No other warranties, representations, or certifications are made.

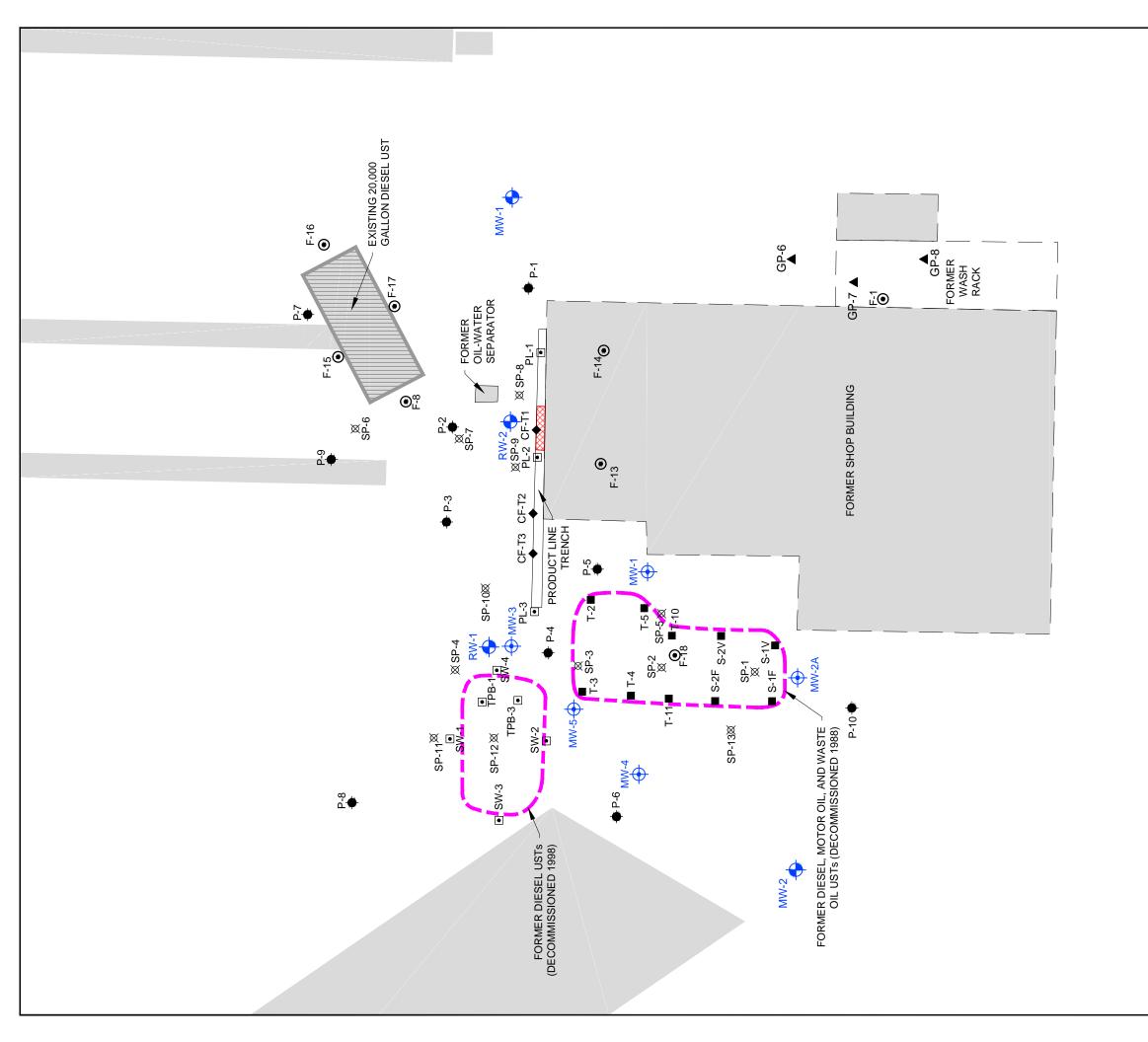
9.2 LIMITATION ON RELIANCE BY THIRD PARTIES

Reliance by third parties is prohibited. This report/assessment has been prepared for the exclusive use of Prologis, Inc. to address the unique needs of Prologis, Inc. at the Property at a specific point in time. Services have been provided to Prologis, Inc. in accordance with a contract for services between Farallon and Prologis, Inc., and generally accepted environmental practices for the subject matter at the time this report was prepared.

No other party may rely on this report unless Farallon agrees in advance to such reliance in writing. Any use, interpretation, or reliance upon this report/assessment by anyone other than Prologis, Inc. is at the sole risk of that party, and Farallon will have no liability for such unauthorized use, interpretation, or reliance.


Do not rely on this report/assessment if:


- It was not prepared for you;
- It was not prepared for your project;
- It was not prepared for your specific site; or
- It was not prepared under an approved scope of work for which you are under contract with Farallon.


FIGURES

REMEDIAL INVESTIGATION, FOCUSED FEASIBILITY STUDY, AND CLEANUP ACTION PLAN 6050 East Marginal Way Seattle, Washington

Farallon PN: 1071-010

- FORMER BUILDING FOOTPRINT
- MONITORING WELL (BLYMER ENGINEERS 1988) \oplus MW-4
- MONITORING WELL (GOLDER ASSOCIATES 1998) Ð - 1-WM
 - **BORING (FARALLON 2014)** ۲ F-13
- BORING (SHANNON & WILSON 1997) ۰ SP2
- TRENCH SAMPLING LOCATION (GOLDER ASSOCIATES 1998) T-3
- CONFIRMATIONAL SOIL SAMPLE ASSOCIATED WITH THE DECOMMISSIONING OF THE DIESEL USTs (FLUOR DANIEL GTI 1998) SW-3 •
 - CONFIRMATIONAL SOIL SAMPLE ASSOCIATED WITH DECOMMISSIONING OF DIESEL, MOTOR OIL, AND WASTE OIL USTs (BLYMER ENGINEERS 1988) CF-T-4
 - BORING (GOLDER ASSOCIATES 2001) P-3 ⊠ GP-6 ►
 - BORING (GOLDER ASSOCIATES 2004)
- CONCRETE SURFACES FORMER FUEL LINE LEAK AREA *
- LIMITS OF UNDERGROUND STORAGE TANK (UST) EXCAVATION Π
 - EXISTING UST

ALL LOCATIONS ARE APPROXIMATE

Disk Reference: 1071-010_01C.DWG

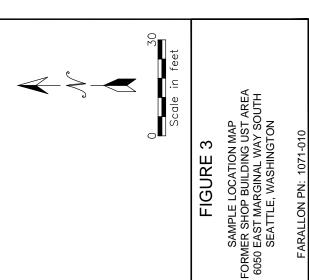
Date: 11/1/2015

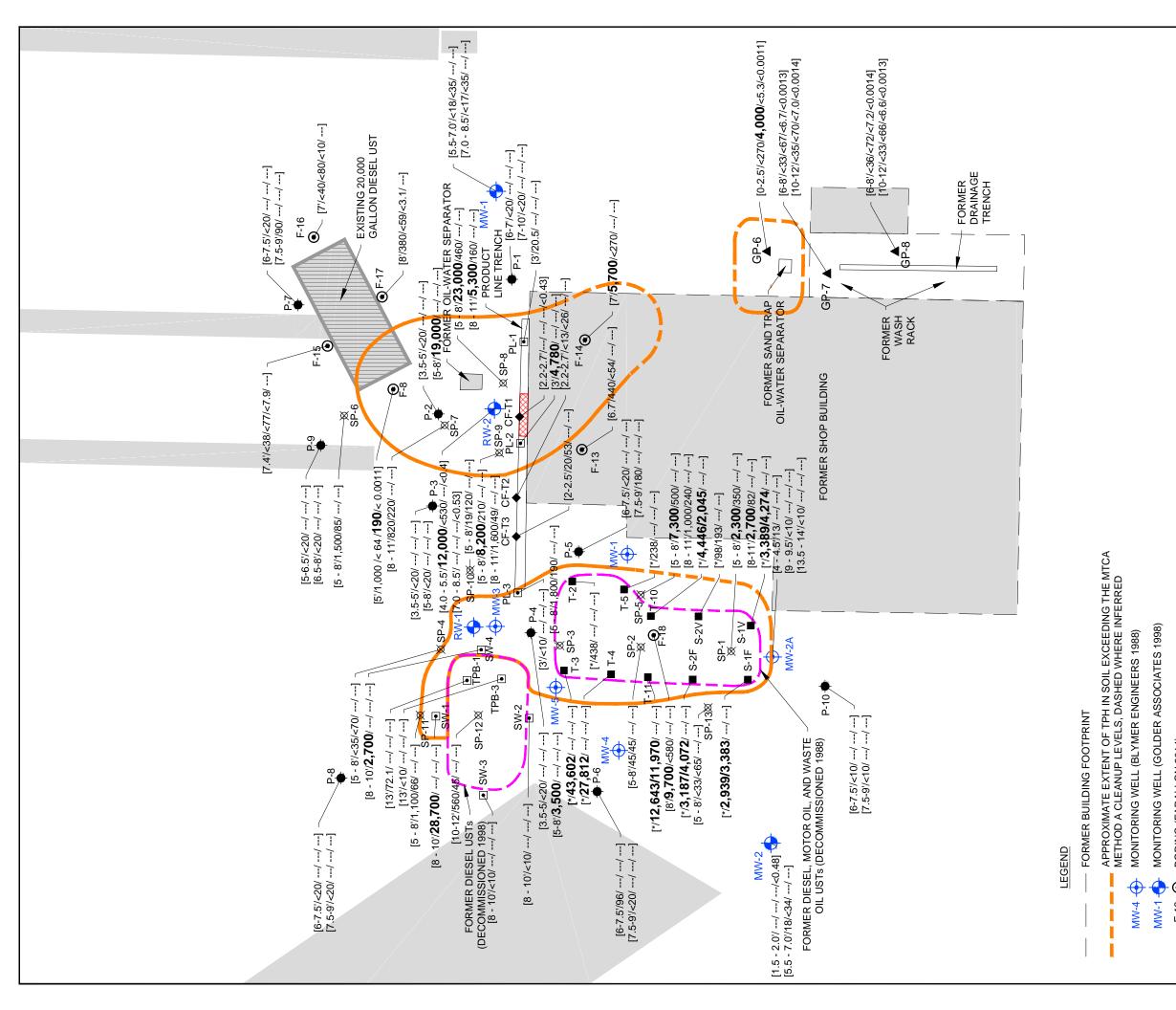
Checked By: DLM/DEW

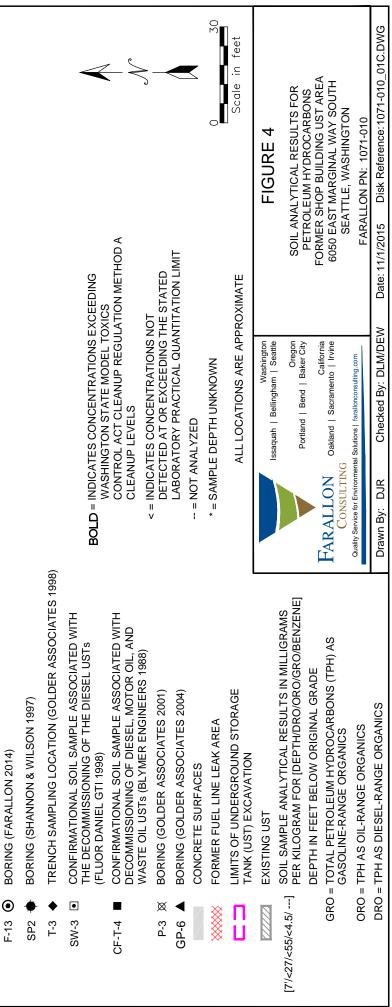
Drawn By: DJR

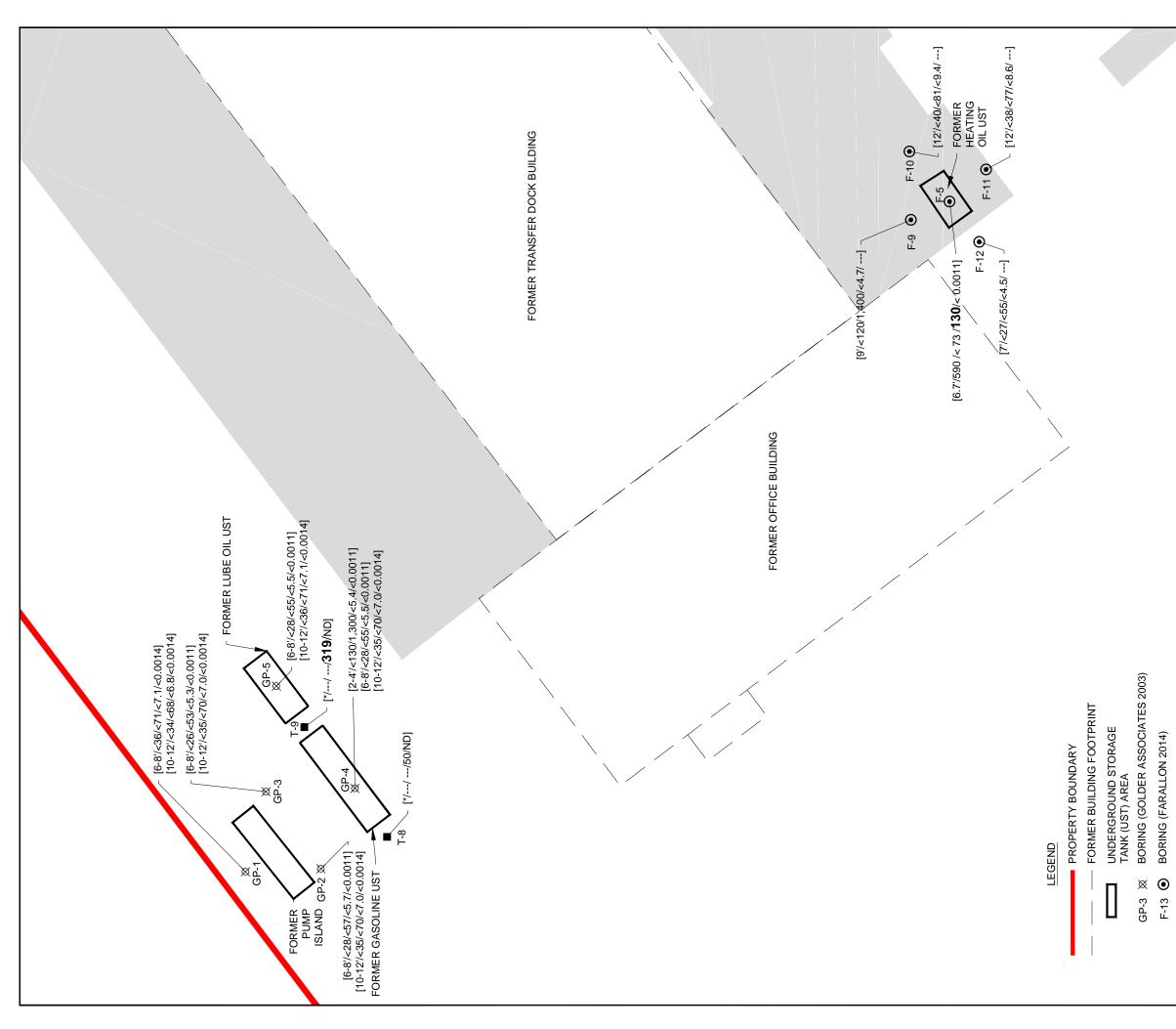
Quality (

Oregon Portland | Bend | Baker City

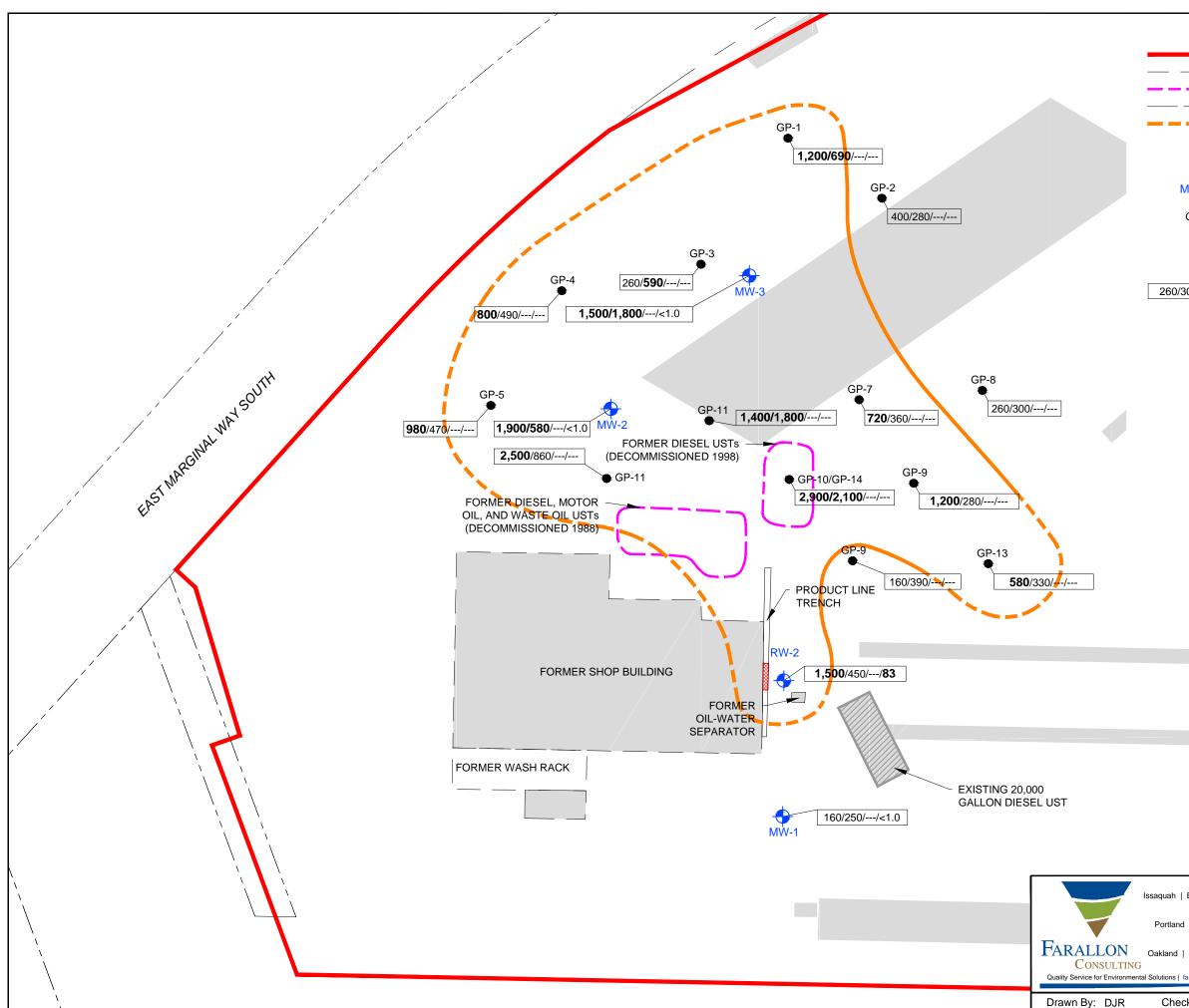

Washingtor Issaquah | Bellingham | Seattle

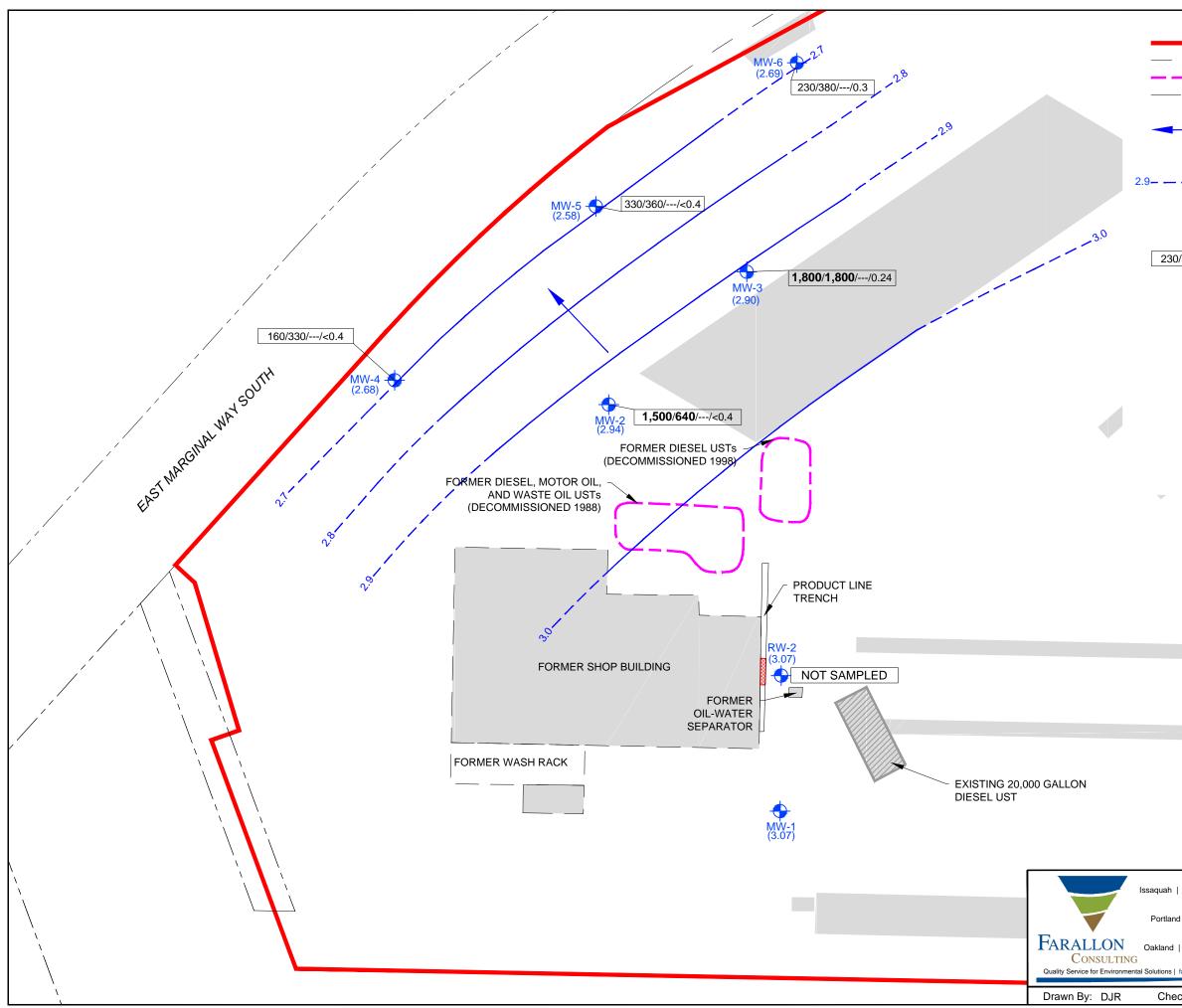

California to | Irvine


nd | Sa

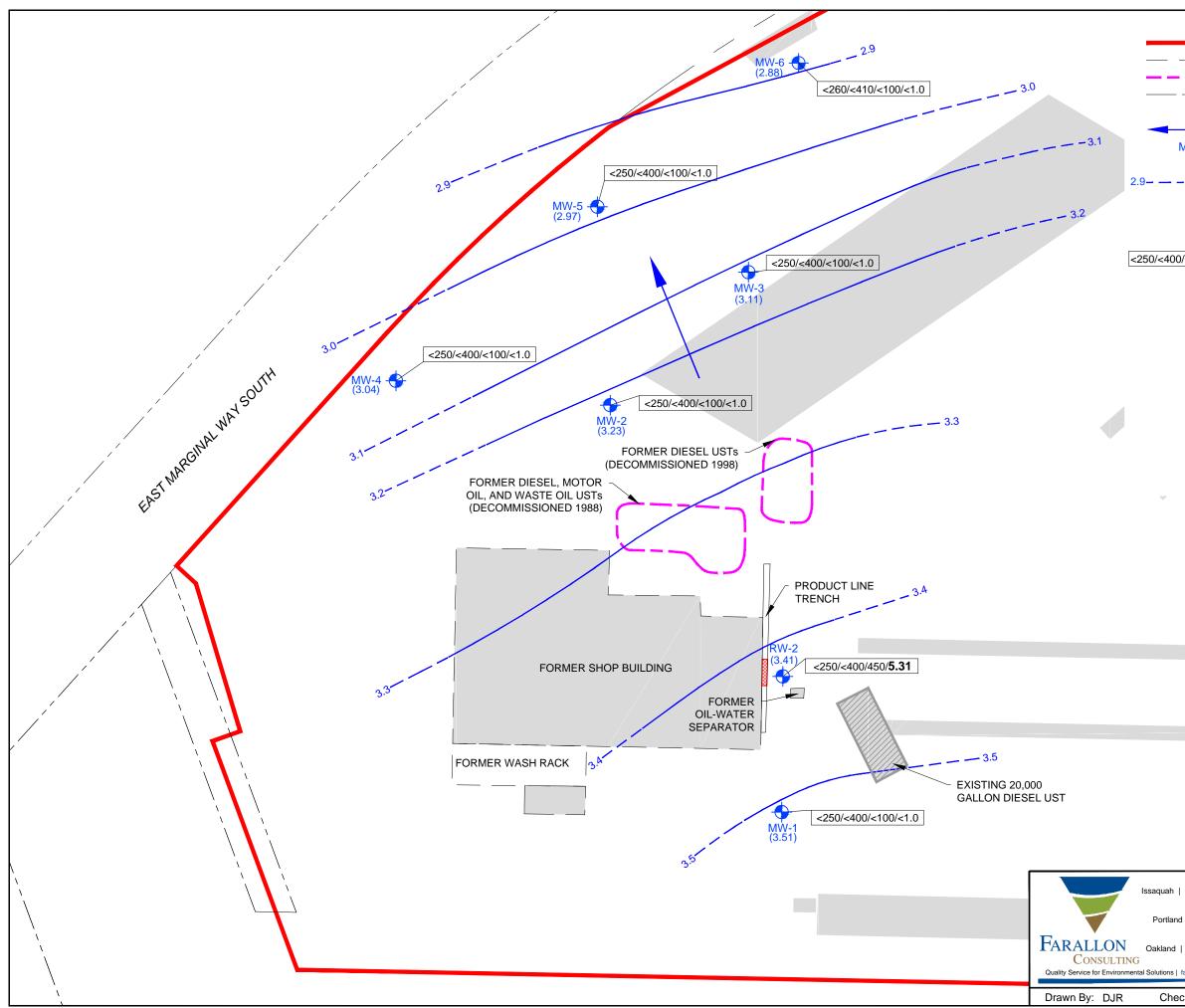

Oakl

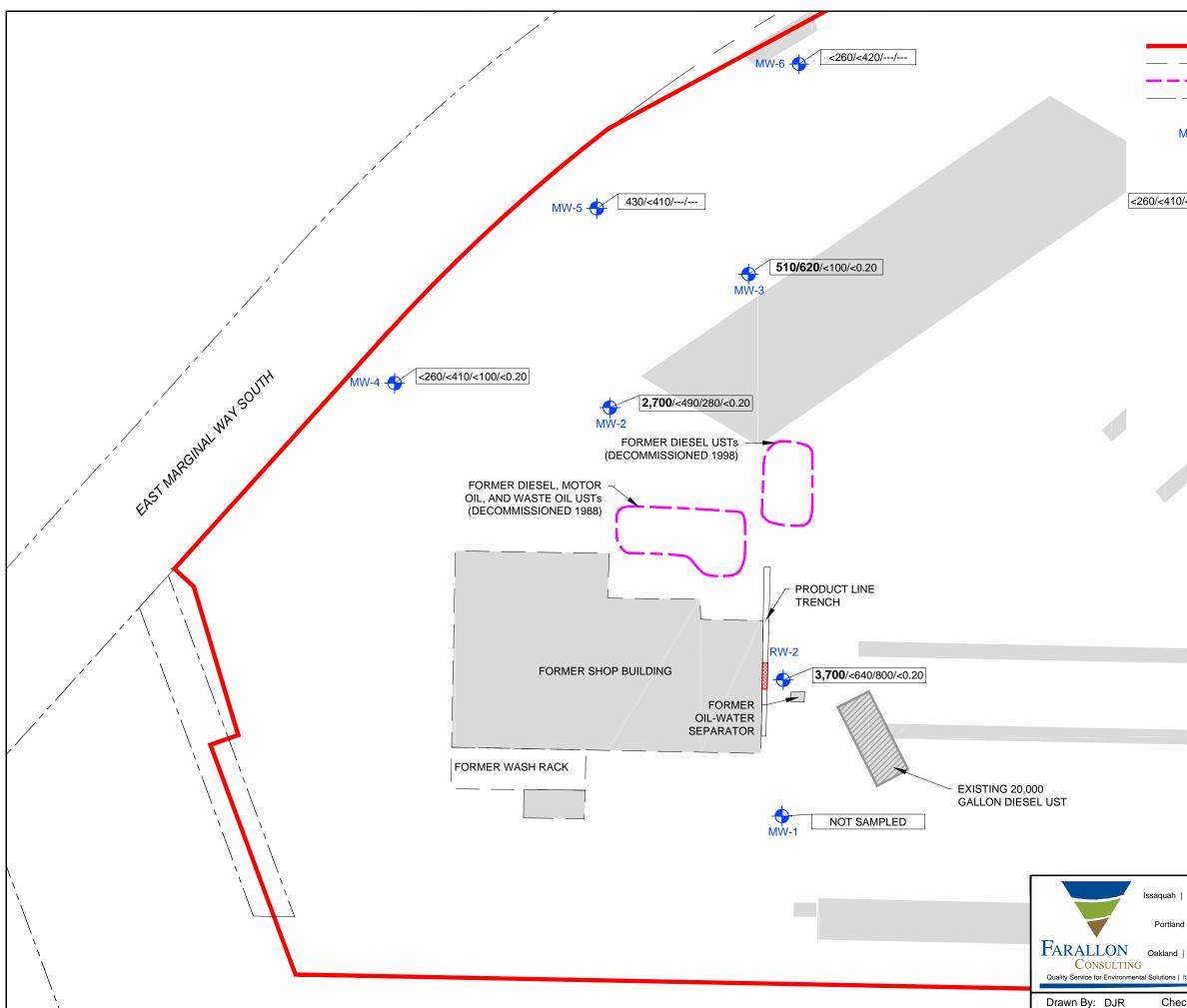
FARALLON





- CONFIRMATIONAL SOIL SAMPLE ASSOCIATED WITH DECOMMISSIONING OF GASOLINE UST (BLYMER ENGINEERS 1988) T-8
- CONCRETE SURFACES
- ALL SOIL ANALYTICAL RESULTS IN MILLIGRAMS PER KILOGRAM [DEPTH/DRO/ORO/GRO/BENZENE] [7'<27/<55/<4.5/ ---]
- DEPTH IN FEET BELOW GROUND SURFACE
- GRO = TOTAL PETROLEUM HYDROCARBONS (TPH) AS GASOLINE-RANGE ORGANICS
- ORO = TPH AS OIL-RANGE ORGANICS
- DRO = TPH AS DIESEL-RANGE ORGANICS
- BOLD = INDICATES CONCENTRATIONS EXCEEDING WASHINGTON STATE MODEL TOXICS CONTROL ACT CLEANUP REGULATION METHOD A CLEANUP LEVELS
 - <= INDICATES CONCENTRATIONS NOT DETECTED AT OR EXCEEDING THE STATED LABORATORY PRACTICAL QUANTITATION LIMIT
 - -- = NOT ANALYZED
- * = SAMPLE DEPTH UNKNOWN
- ND = NOT DETECTED AT OR EXCEEDING THE LABORATORY DETECTION LIMITS; ACTUAL DETECTION LIMITS ARE NOT KNOWN ALL LOCATIONS ARE APPROXIMATE
- Disk Reference: 1071-010_01C.DWG Scale in f SOIL ANALYTICAL RESULTS FORMER NORTHWEST UST AREA 6050 EAST MARGINAL WAY SOUTH SEATTLE, WASHINGTON FARALLON PN: 1071-010 FIGURE 5 Date: 11/1/2015 Checked By: DLM/DEW Oregon Portland | Bend | Baker City California to | Irvine Washingtoi ssaquah | Bellingham | Seattle nd | Sa Oak FARALLON Drawn By: DJR


feet


LEGEND	
	PERTY BOUNDARY
-	
-	IS OF UNDERGROUND STORAGE TANK (UST) EXCAVATION
	LIC ROAD RIGHT-OF-WAY
	MATED EXTENT OF TOTAL PETROLEUM HYDROCARBONS
) IN SOIL EXCEEDING THE MTCA METHOD A CLEANUP
EXIS	ELS, DASHED WHERE INFERRED
	ITORING WELL (GOLDER ASSOCIATES 1998 AND 2001)
· · · · ·	ONNAISSANCE GROUNDWATER SAMPLE
(GP-1 =	DER ASSOCIATES 2000)
CON	CRETE SURFACES
	MER FUEL LINE LEAK AREA
260/300//	UNDWATER SAMPLE ANALYTICAL RESULTS MICROGRAMS LITER FOR [DRO/ORO/GRO/BENZENE]
	AL PETROLEUM HYDROCARBONS (TPH) AS OLINE-RANGE ORGANICS
	AS OIL-RANGE ORGANICS
-	AS DIESEL-RANGE ORGANICS
	CATES CONCENTRATIONS EXCEEDING THINGTON STATE MODEL TOXICS
-	TROL ACT CLEANUP REGULATION
	HOD A CLEANUP LEVELS
	CATES CONCENTRATIONS NOT ECTED AT OR EXCEEDING THE STATED
	DRATORY PRACTICAL QUANTITATION LIMIT
= NOT	ANALYZED
ALL	LOCATIONS ARE APPROXIMATE
	9
	\rightarrow
	0 <u>5</u> 0
	Scale in feet
Washington aquah Bellingham Seattle	FIGURE 6
Oregon	GROUNDWATER ANALYTICAL RESULTS FOR
Portland Bend Baker City	AUGUST 17 AND 18, 1999 6050 EAST MARGINAL WAY SOUTH
California Dakland Sacramento Irvine	SEATTLE, WASHINGTON
olutions farallonconsulting.com	FARALLON PN: 1071-010
Checked By: DLM/DE	
,, DE	

LEGEN	D
PR	OPERTY BOUNDARY
—— — FO	RMER BUILDING FOOTPRINT
— — — — LIN	IITS OF UNDERGROUND STORAGE TANK (UST) EXCAVATION
	BLIC ROAD RIGHT-OF-WAY
	ISTING UST
۰	PROXIMATE DIRECTION OF GROUNDWATER FLOW
т	DNITORING WELL (GOLDER ASSOCIATES 1998 AND 2001)
(/	
-	OUNDWATER SURFACE ELEVATION CONTOUR ASHED WHERE INFERRED)
CC	NCRETE SURFACES
FO	RMER FUEL LINE LEAK AREA
	COUNDWATER SAMPLE ANALYTICAL RESULTS MICROGRAMS R LITER FOR [DRO/ORO/GRO/BENZENE]
	TAL PETROLEUM HYDROCARBONS (TPH) AS SOLINE-RANGE ORGANICS
-	H AS OIL-RANGE ORGANICS
DRO = TP	H AS DIESEL-RANGE ORGANICS
	DICATES CONCENTRATIONS EXCEEDING
	ASHINGTON STATE MODEL TOXICS INTROL ACT CLEANUP REGULATION
	THOD A CLEANUP LEVELS
	DICATES CONCENTRATIONS NOT
	TECTED AT OR EXCEEDING THE STATED BORATORY PRACTICAL QUANTITATION LIMIT
	T ANALYZED
AL	L LOCATIONS ARE APPROXIMATE
	·
	Scale in feet
	Scale in feet
Washington Bellingham Seattle	FIGURE 7
Oregon nd Bend Baker City	GROUNDWATER ELEVATION CONTOUR MAP AND GROUNDWATER ANALYTICAL RESULTS FOR
California Sacramento Irvine	JANUARY 17, 2001 6050 EAST MARGINAL WAY SOUTH SEATTLE, WASHINGTON
farallonconsulting.com	FARALLON PN: 1071-010
ecked By: DLM/DE	
,2	

LEG	END
	PROPERTY BOUNDARY
	FORMER BUILDING FOOTPRINT
	LIMITS OF UNDERGROUND STORAGE TANK (UST) EXCAVATION
· – – – – – – – – – – – – – – – – – – –	PUBLIC ROAD RIGHT-OF-WAY
1//////	EXISTING UST
	APPROXIMATE DIRECTION OF GROUNDWATER FLOW
MW-1 +	MONITORING WELL (GOLDER ASSOCIATES 1998 AND 2001) GROUNDWATER LEVEL ELEVATION
	GROUNDWATER SURFACE ELEVATION CONTOUR (DASHED WHERE INFERRED)
	CONCRETE SURFACES
*****	FORMER FUEL LINE LEAK AREA
0/<100/<1.0	GROUNDWATER SAMPLE ANALYTICAL RESULTS MICROGRAMS PER LITER FOR [DRO/ORO/GRO/BENZENE]
GRO =	TOTAL PETROLEUM HYDROCARBONS (TPH) AS GASOLINE-RANGE ORGANICS
ORO =	TPH AS OIL-RANGE ORGANICS
-	TPH AS DIESEL-RANGE ORGANICS
BOLD =	INDICATES CONCENTRATIONS EXCEEDING WASHINGTON STATE MODEL TOXICS
	CONTROL ACT CLEANUP REGULATION
	METHOD A CLEANUP LEVELS
< =	INDICATES CONCENTRATIONS NOT DETECTED AT OR EXCEEDING THE STATED
	LABORATORY PRACTICAL QUANTITATION LIMIT
=	NOT ANALYZED
	ALL LOCATIONS ARE APPROXIMATE
	Scale in feet
Washi Bellingham S	
O nd Bend Bake	GROUNDWATER ELEVATION CONTOUR MAP AND GROUNDWATER ANALYTICAL RESULTS FOR
Cali Sacramento	
farallonconsulting.co	
ecked By: DLI	FARALLON PN: 1071-010 W/DEW Date: 11/2/2015 Disk Reference: 1071-010_01C.DWG
	W/DEVV Date: 11/2/2010 Disk Reference: 10/1-010_010.DWG

LEG	END
	PROPERTY BOUNDARY FORMER BUILDING FOOTPRINT LIMITS OF UNDERGROUND STORAGE TANK (UST) EXCAVATION
	PUBLIC ROAD RIGHT-OF-WAY EXISTING UST
MW-1 🔶	MONITORING WELL (GOLDER ASSOCIATES 1998 AND 2001)
	CONCRETE SURFACES
J/<100/<2.0	GROUNDWATER SAMPLE ANALYTICAL RESULTS MICROGRAMS PER LITER FOR [DRO/ORO/GRO/BENZENE]
ORO = DRO = BOLD = < =	TOTAL PETROLEUM HYDROCARBONS (TPH) AS GASOLINE-RANGE ORGANICS TPH AS OIL-RANGE ORGANICS TPH AS DIESEL-RANGE ORGANICS INDICATES CONCENTRATIONS EXCEEDING WASHINGTON STATE MODEL TOXICS CONTROL ACT CLEANUP REGULATION METHOD A CLEANUP LEVELS INDICATES CONCENTRATIONS NOT DETECTED AT OR EXCEEDING THE STATED LABORATORY PRACTICAL QUANTITATION LIMIT NOT ANALYZED
	ALL LOCATIONS ARE APPROXIMATE
	0 50 Scale in feet
Wash Bellingham S	FIGURE 9
	GROUNDWATER ANALYTICAL RESULTS FOR
	formia 6050 EAST MARGINAL WAY SOUTH
farallonconsulting.co	om
ecked By: DLI	FARALLON PN: 1071-010 M/DEW Date: 11/2/2015 Disk Reference: 1071-010_01C.DWG

TABLES

REMEDIAL INVESTIGATION, FOCUSED FEASIBILITY STUDY, AND CLEANUP ACTION PLAN 6050 East Marginal Way Seattle, Washington

Farallon PN: 1071-010

Table 1Summary of Groundwater Elevation Data6050 East Marginal Way SouthSeattle, WashingtonFarallon PN: 1071-010

		Top of Casing		Groundwater
Monitoring Well		Elevation	Depth to Water	Elevation
Location	Date Measured	(feet) ¹	(feet) ²	(feet) ³
	7/7/1988		7.78	91.45
	7/12/1988		8.02	91.21
	7/13/1988		7.79	91.44
MW-1_88	7/14/1988		8.39	90.84
(Decommissioned	10/6/1988	99.23	8.41	90.82
1/10/1990)	2/8/1989		7.58	91.65
	5/3/1989		7.23	92.00
	8/3/1989		7.51	91.72
	11/1/1989		7.54	91.69
	7/7/1988		7.64	91.32
	7/12/1988		7.92	91.04
	7/13/1988		7.62	91.34
MW-2A_88	7/14/1988		8.32	90.64
(Decommissioned	10/6/1988	98.96	8.31	90.65
1/10/1990)	2/8/1989		7.44	91.52
	5/3/1989		7.12	91.84
	8/3/1989		7.36	91.60
	11/1/1989		7.35	91.61
	7/7/1988		6.98	91.44
	7/12/1988		7.32	91.10
	7/13/1988		6.95	91.47
MW-3_88	7/14/1988		7.65	90.77
(Decommissioned	10/6/1988	98.42	7.64	90.78
1/10/1990)	2/8/1989		6.79	91.63
	5/3/1989		6.52	91.90
	8/3/1989		6.75	91.67
	11/1/1989		6.73	91.69
	7/7/1988		6.93	91.38
	7/12/1988		7.28	91.03
	7/13/1988		8.67*	89.64
MW-4_88	7/14/1988		7.64	90.67
(Decommissioned	10/6/1988	98.31	7.63	90.68
1/10/1990)	2/8/1989		6.90	91.41
	5/3/1989		6.40	91.91
	8/3/1989		6.71	91.60
	11/1/1989		6.68	91.63
	7/7/1988		7.31	91.42
	7/12/1988		7.66	91.07
	7/13/1988		7.25	91.48
MW-5_88	7/14/1988		8.01	90.72
(Decommissioned	10/6/1988	98.73	7.98	90.75
1/10/1990)	2/8/1989		7.14	91.59
	5/3/1989		6.82	91.91
	8/3/1989		7.10	91.63
	11/1/1989		7.08	91.65

Table 1Summary of Groundwater Elevation Data6050 East Marginal Way SouthSeattle, WashingtonFarallon PN: 1071-010

Monitoring Well		Top of Casing Elevation	Depth to Water	Groundwater Elevation
Location	Date Measured	(feet) ¹	(feet) ²	(feet) ³
	8/17/1999		6.63	3.13
MW-1	1/17/2001	9.76	6.69	3.07
	6/7/2001	2.10	6.39	3.37
	12/3/2003		6.25	3.51
	8/17/1999		7.46	2.82
	1/17/2001		7.34	2.94
MW-2	6/7/2001	10.28	7.01	3.27
	12/3/2003		7.05	3.23
	8/12/2014		6.58	3.7
	8/17/1999		7.60	2.76
	1/17/2001		7.46	2.90
MW-3	6/7/2001	10.36	7.18	3.18
	12/3/2003		7.25	3.11
	8/12/2014		6.65	3.71
	1/17/2001		8.29	2.68
	6/7/2001	10.07	7.84	3.13
MW-4	12/3/2003	10.97	7.93	3.04
	8/12/2014		7.39	3.58
	1/17/2001		9.44	2.68
	6/7/2001		9.02	3.10
MW-5	12/3/2003	12.12	9.15	2.97
	9/23/2014		8.65	3.47
	1/17/2001		8.99	2.69
	6/7/2001	11.00	8.62	3.06
MW-6	12/3/2003	11.68	8.80	2.88
	9/23/2014		8.17	3.51
	8/17/1999		8.11	3.05
	1/17/2001		8.09	3.07
RW-2	6/7/2001	11.16	7.85	3.31
	12/3/2003		7.75	3.41
	8/12/2014		7.49	3.67

NOTES:

* Reported measurement appears to be inaccurate.

¹ Elevation relative to an elevation datum of 100.00 feet for MW-1_88, MW-2A_88, MW-3_88, MW-4_88 and MW-5_88.

Elevations based on National Geodetic Vertical Datum of 1929 for MW-1 through MW-6, and RW-2.

² In feet below top of well casing.

³ Groundwater elevation = top of casing elevation - depth to water.

	Sample				Analytical Results (milligrams per kilogram)											
Location	Identification	Sample Depth (feet) ¹	Sample Date	Sampled By	DRO ³	ORO ³	GRO ²	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Total Xylenes ⁴	m,p-Xylene	o-Xylen			
T-1	T-1	Soil Pile Composite	04/25/1988	Blymyer ⁶	41 ,2 94 a											
T-2	Т-2	Diesel Tank Excavation	04/25/1988	Blymyer ⁶	438 a											
T-3	T-3	Diesel Tank Excavation	04/25/1988	Blymyer ⁶	43,602 a											
T-4	T-4	Diesel Tank Excavation	04/25/1988	Blymyer ⁶	27,812											
T-5	T-5	Diesel Tank Excavation	04/25/1988	Blymyer ⁶	238 a											
T-6	T-6	Soil Pile Composite	04/25/1988	Blymyer ⁶			80 a	N/D b	0.42 b	0.07 b	0.5 b	0.5 b	N/I			
T-7	T-7	Soil Pile Composite	04/25/1988	Blymyer ⁶			731 a	N/D b	0.64 b	1.8 b	12.72 b	8.67 b	4.0			
T-8	T-8	Gas Tank Excavation	04/25/1988	Blymyer ⁶			50 a	N/D b	0.18 b	N/D b	N/D b	N/D b	N/I			
T-9	T-9 Gas Tank Excavation		04/25/1988	Blymyer ⁶			319 a	N/D b	0.08 b	0.09 b	1.02 b	0.5 b	0.5			
T-10	T-10	Diesel Tank Excavation	04/25/1988	Blymyer ⁶	4,446 8	2,045 0										
T-11	T-11	Diesel Tank Excavation	04/25/1988	Blymyer ⁶	12,643 a	11,970 c										
S-1V	-1V S-1V Waste Oil Tank Excavation		06/29/1988	Blymyer ⁶	3,38 9 a	4,274 0										
S-1F S-1F Waste Oil Tank Excavation		06/29/1988	Blymyer ⁶	2,939 a	3,383 0											
S-2F	S-2F	Waste Oil Tank Excavation	06/29/1988	Blymyer ⁶	3,187 a	4,072 0										
S-2V	S-2V	Waste Oil Tank Excavation	06/29/1988	Blymyer ⁶	98 a	. 193 c							-			
	MW-1A	4 - 4.5	06/27/1988	Blymyer ⁶	12 a								-			
MW-1_88	MW-1B	9 - 9.5	06/27/1988	Blymyer ⁶	<10 a								-			
	MW-1C	14 - 14.5	06/27/1988	Blymyer ⁶	11 a								-			
	MW-2A	4 - 4.5	06/27/1988	Blymyer ⁶	13 a								-			
MW-2A_88	MW-2B	9 - 9.5	06/27/1988	Blymyer ⁶	<10 a								_			
	MW-2C	13.5 - 14	06/27/1988	Blymyer ⁶	<10 a								-			
	MW-3A	4 - 4.5	06/27/1988	Blymyer ⁶	<10 a								-			
MW-3_88	MW-3B	9 - 9.5	06/27/1988	Blymyer ⁶	160 a								-			
	MW-3C	14 - 14.5	06/27/1988	Blymyer ⁶	<10 a								-			
	MW-4A	5	06/28/1988	Blymyer ⁶	<10 a								-			
MW-4_88	MW-4B	10	06/28/1988	Blymyer ⁶	<10 a								-			
	MW-4C	15	06/28/1988	Blymyer ⁶	102 a								-			
	MW-5A	5	06/28/1988	Blymyer ⁶	4,797 a								-			
MW-5_88	MW-5B	10	06/28/1988	Blymyer ⁶	15 a								-			
	MW-5C	15	06/28/1988	Blymyer ⁶	<10 a								-			
Soil Treatment Mound	MW-1122-A	Soil Pile	11/22/1988	GTI ⁷	500 a		170 a	<0.025 b	<0.5 b	<0.5 b	<0.5 b		-			
Soil Treatment Mound	MW-1122-B	Soil Pile	11/22/1988	GTI ⁷	350 a		88 a	<0.025 b	<0.5 b	<0.5 b	<0.5 b		-			
Soil Treatment Mound	MW-1122-C	Soil Pile	11/22/1988	GTI ⁷	150 a		46 a	<0.025 b	<0.5 b	<0.5 b	<0.5 b		-			
Soil Treatment Mound	MW-1122-D	Soil Pile	11/22/1988	GTI ⁷	120 a		78 a	<0.025 b	<0.5 b	<0.5 b	<0.5 b		-			
Soil Treatment Mound	MW-1122-E	Soil Pile	11/22/1988	GTI ⁷	<10 a		11 a	<0.025 b	<0.5 b	<0.5 b	<0.5 b		-			
Soil Treatment Mound	MW-1122-F	Soil Pile	11/22/1988	GTI ⁷	82 a		58 a	<0.025 b	<0.5 b	<0.5 b	<0.5 b		-			
Soil Treatment Mound	MW23A	Soil Pile	2/3/1989	GTI ⁷	170 a		52 a	<0.025 b	<1.0 b	<1.0 b	<1.0 b		-			
Soil Treatment Mound	MW23B	Soil Pile	2/3/1989	GTI ⁷	260 a		78 a	<0.025 b	<0.5 b	<0.5 b	<0.5 b		-			
Soil Treatment Mound	MW23C	Soil Pile	2/3/1989	GTI ⁷	79 a		18 a	<0.025 b	<0.5 b	<0.5 b	<0.5 b		-			
Soil Treatment Mound	MW23D	Soil Pile	2/3/1989	GTI ⁷	<10 a		18 a	<0.025 b	<0.5 b	<0.5 b	<0.5 b		-			
Soil Treatment Mound	MW23E	Soil Pile	2/3/1989	GTI ⁷	120 a		110 a	<0.025 b	<0.5 b	<0.5 b	<0.5 b		_			
Soil Treatment Mound	MW23F	Soil Pile	2/3/1989	GTI ⁷	330 a		41 a	<0.025 b	<0.5 b	<0.5 b	<0.5 b					
		•	MTCA Method A		2,000	2,000	100	0.03	7	6	9	NE	N			

	Sample							Analytical Res	sults (milligrams	s per kilogram)			
Location	Identification	Sample Depth (feet) ¹	Sample Date	Sampled By	DRO ³	ORO ³	GRO ²	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Total Xylenes ⁴	m,p-Xylene	o-Xylene
Soil Treatment Mound	MW-36A	Soil Pile	3/6/1989	GTI ⁷	320 a		<1 a	<0.025 b	<0.5 b	<0.5 b	<0.5 b		
Soil Treatment Mound	MW-36B	Soil Pile	3/6/1989	GTI ⁷	280 a		<1 a	<0.025 b	<0.5 b	<0.5 b	<0.5 b		
Soil Treatment Mound	MW-36C	Soil Pile	3/6/1989	GTI ⁷	430 a		<1 a	<0.025 b	<0.5 b	<0.5 b	<0.5 b		
Soil Treatment Mound	MW-36D	Soil Pile	3/6/1989	GTI ⁷	210 a		<1 a	<0.025 b	<0.5 b	<0.5 b	<0.5 b		
Soil Treatment Mound	MW-36E	Soil Pile	3/6/1989	GTI ⁷	190 a		<1 a	<0.025 b	<0.5 b	<0.5 b	<0.5 b		
Soil Treatment Mound	MW-36F	Soil Pile	3/6/1989	GTI ⁷	150 a		<1 a	<0.025 b	<0.5 b	<0.5 b	<0.5 b		
Soil Treatment Mound	DH52A	Soil Pile	5/2/1989	GTI ⁷	170 a								
Soil Treatment Mound	DH52C	Soil Pile	5/2/1989	GTI ⁷	630 a								
Soil Treatment Mound	DH52E	Soil Pile	5/2/1989	GTI ⁷	100 a								
Soil Treatment Mound	JD681/JD2	"Clean" Soil Pile Composite	6/8/1989	GTI ⁷	21 a								
Soil Treatment Mound	Soil Treatment Mound JD683/JD4 "Clean" Soil Pile Con		6/8/1989	GTI ⁷	520 a								
Soil Treatment Mound			6/8/1989	GTI ⁷	<10 a								
D 1	1764-P1-S-4	6 - 7	8/8/1997	S&W ⁸	<20 d								
P-1	1764-P1-S-7	7 - 10	8/8/1997	S&W ⁸	<20 d								
D A	1764-P2-S-2	3.5 - 5	8/8/1997	S&W ⁸	<20 d								
P-2	1764-P2-S-5	5 - 8	8/8/1997	S&W ⁸	19,000 d								
	1764-P3-S-2	3.5 - 5	8/8/1997	S&W ⁸	<20 d								
P-3	1764-P3-S-5	5 - 8	8/8/1997	S&W ⁸	<20 d								
	1764-P4-S-2	3.5 - 5	8/8/1997	S&W ⁸	<20 d								
P-4	1764-P4-S-5	5 - 8	8/8/1997	S&W ⁸	3,500 d								
	1764-P5-S-6	6 - 7.5	8/8/1997	S&W ⁸	<20 d								
P-5	1764-P5-S-7.5	7.5 - 9	8/8/1997	S&W ⁸	180 d								
	1764-P6-S-6	6 - 7.5	8/8/1997	S&W ⁸	96 d								
P-6	1764-P6-S-7.5	7.5 - 9	8/8/1997	S&W ⁸	<20 d								
	1764-P7-S-6	6 - 7.5	8/8/1997	S&W ⁸	<20 d								
P-7	1764-P7-S-7.5	7.5 - 9	8/8/1997	S&W ⁸	90 d								
	1764-P8-S-6	6 - 7.5	8/8/1997	S&W ⁸	<20 d								
P-8	1764-P8-S-7.5	7.5 - 9	8/8/1997	S&W ⁸	<20 d								
	1764-P9-S-5	5 - 6.5	8/8/1997	S&W ⁸	<20 d								
P-9	1764-P9-S-6.5	6.5 - 8	8/8/1997	S&W ⁸	<20 d								
	1764-P10-S-6	6 - 7.5	8/8/1997	S&W ⁸	<10 d								
P-10	1764-P10-S-7.5	7.5 - 9	8/8/1997	S&W ⁸	<10 d								
Product PipingTrench	CF-T1	2.2 - 2.7	4/7/1998	Golder ⁹				<0.43 b	<0.43 b	<0.43 b	<1.29 b	<0.86 b	<0.43 b
			4/7/1998	Golder ⁹	<13 d	 <26 d							
Product PipingTrench	CF-T2	2.2 - 2.7	4/7/1998	Golder ⁹									
Product PipingTrench	CF-T3	2.0 - 2.5		Golder ⁹	20 d	53 d							
MW-1	MW1-5.5	5.5 - 7.0	4/7/1998	Golder ⁹	<18 d	<35 d							
	MW1-7.0	7.0 - 8.5	4/7/1998		<17 d	<35 d							
MW-2	MW2-2.0	1.5 - 2.0	4/7/1998	Golder ⁹				<0.48 b	<0.48 b	<0.48 b		<0.95 b	<0.48 b
	MW2-5.5	5.5 - 7.0	4/7/1998	Golder ⁹	18 d	<34 d							
MW-3	MW3-5.0	5 - 6.5	4/7/1998	Golder ⁹	<17 d	32 d							
	MW3-6.5	6.5 - 8.0	4/7/1998	Golder ⁹	<19 d	48 d							
			MTCA Method A	Cleanup Levels ⁵	2,000	2,000	100	0.03	7	6	9	NE	NE

	Sample				Analytical Results (milligrams per kilogram)											
Location	Identification	Sample Depth (feet) ¹	Sample Date	Sampled By	DRO ³	ORO ³	GRO ²	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Total Xylenes ⁴	m,p-Xylene	o-Xylene			
	RW1-7.0	7.0 - 8.5	4/7/1998	Golder ⁹	13,000 d	520 d		<0.54 b	<0.54 b	<0.54 b	<1.64 b	<1.1 b	<0.54 b			
RW-1	RW1-7.0D	7.0 - 8.5	4/7/1998	Golder ⁹	8,800 d	<400 d										
	RW1-13	13 - 14.5	4/7/1998	Golder ⁹	18 d	<31 d										
RW-2	RW2-4.0	4.0 - 5.5	4/8/1998	Golder ⁹	12,000 d	<530 d		<0.4 b	4.4 b	7.4 b	48 b	30 b	18 b			
KW-2	RW2-7.0	7.0 - 8.5	4/8/1998	Golder ⁹				<0.53 b	<0.53 b	4.4 b	55 b	29 b	26 b			
Diesel Tank Excavation North Sidewall	SW-1	8 - 10	7/27/1998	Fluor Daniel ¹⁰	28,700 d											
Diesel Tank Excavation South Sidewall	SW-2	8 - 10	7/27/1998	Fluor Daniel ¹⁰	<10 d											
Diesel Tank Excavation East Sidewall	SW-3	8 - 10	7/27/1998	Fluor Daniel ¹⁰	<10 d											
Diesel Tank Excavation West Sidewall	SW-4	8 - 10	7/27/1998	Fluor Daniel ¹⁰	2,700 d											
Diesel Tank Excavation Base - NE Corner	TPB-1	13	7/27/1998	Fluor Daniel ¹⁰	72.1 d											
Diesel Tank Excavation Base - SE Corner	TPB-3	13	7/27/1998	Fluor Daniel ¹⁰	<10 d											
East End of Product Lines	PL-1	3	7/29/1998	Fluor Daniel ¹⁰	20.5 d											
Center of Product Lines	PL-2	3	7/29/1998	Fluor Daniel ¹⁰	4,780 d											
West End of Product Lines	PL-3	3	7/29/1998	Fluor Daniel ¹⁰	<10 d											
	SP1-(5-8)	5 - 8	1/11/2001	Golder ⁹	2,300	350										
SP-1	SP1-(8-11)	8-11	1/11/2001	Golder ⁹	2,700	82		< 0.023	0.094	0.22	0.82	0.39	0.43			
SP-2	SP2-(5-8)	5-8	1/11/2001	Golder ⁹	45	45										
SP-3	SP3-(5-8)	5 - 8	1/11/2001	Golder ⁹	1,800	190										
SP-4	SP4-(5-8)	5 - 8	1/11/2001	Golder ⁹	<35	<70										
	SP5-(5-8)	5 - 8	1/11/2001	Golder ⁹	7,300	500		< 0.019	0.25	2.9	6.1	3.8	2.3			
SP-5	SP5-(8-11)	8 - 11	1/11/2001	Golder ⁹	1,000	240										
SP-6	SP6-(5-8)	5 - 8	1/11/2001	Golder ⁹	1,500	85		< 0.027	0.09	0.76	1.98	1.1	0.88			
SP-7	SP7-(8-11)	8 - 11	1/11/2001	Golder ⁹	820	220										
	SP8-(5-8)	5 - 8	1/11/2001	Golder ⁹	23,000	460		0.16	1.5	18	43	24	19			
SP-8	SP8-(8-11)	8 - 11	1/11/2001	Golder ⁹	5,300	160										
	SP9-(5-8)	5 - 8	1/11/2001	Golder ⁹	8,200	210		0.073	0.44	5.8	9.7	8.1	1.6			
SP-9	SP9-(8-11)	8 - 11	1/11/2001	Golder ⁹	1,600	49										
SP-10	SP10-(5-8)	5 - 8	1/11/2001	Golder ⁹	19	120										
SP-11	SP11-(5-8)	5 - 8	1/11/2001	Golder ⁹	1,100	66		< 0.025	< 0.05	< 0.05	0.28	0.17	0.11			
SP-12	SP12-(10-12)	10-12	1/11/2001	Golder ⁹	560	45										
SP-13	SP13-(5-8)	5 - 8	1/11/2001	Golder ⁹	<33	<65										
	GP-1 (6-8)	6 - 8	12/2/2003	Golder ⁹	<36	<71	<7.1	< 0.0014	0.0020	< 0.0014	< 0.0043	< 0.0029	< 0.0014			
GP-1	GP-1 (10-12)	10 - 12	12/2/2003	Golder ⁹	<34	<68	<6.8	< 0.0014	< 0.0014	< 0.0014	< 0.0041	< 0.0027	< 0.0014			
	GP-2 (6-8)	6 - 8	12/2/2003	Golder ⁹	<28	<57	<5.7	< 0.0011	< 0.0011	<0.0011	< 0.0034	<0.0023	< 0.0011			
GP-2	GP-2 (10-12)	10 - 12	12/2/2003	Golder ⁹	<35	<70	<7.0	< 0.0011	< 0.0011	< 0.0011	< 0.0042	<0.0023	< 0.0011			
	GP-3 (6-8)	6 - 8	12/2/2003	Golder ⁹	<26	<53	<5.3	<0.0011	<0.0014	<0.0014	<0.0042	<0.0023	<0.0011			
GP-3	GP-3 (10-12)	10 - 12	12/2/2003	Golder ⁹	<35	<70	<7.0	< 0.0011	< 0.0011	< 0.0011	< 0.0032	<0.0021	<0.0011			
	GP-4 (2-4)	2 - 4	12/2/2003	Golder ⁹	<130	1,300	<5.4	<0.0011	<0.0014	<0.0014	<0.0042	<0.0028	<0.0011			
	GP-44 (2-4')	2 - 4 (duplicate)	12/2/2003	Golder ⁹	<130	800	<5.4	<0.0011	0.0011	<0.0011	< 0.0033	<0.0022	<0.0011			
GP-4	GP-4 (6-8)	6 - 8	12/2/2003	Golder ⁹	<28	<55	<5.5	<0.0011	< 0.0011	<0.0011	<0.0033	<0.0022	<0.0011			
	GP-4 (10-12)	10 - 12	12/2/2003	Golder ⁹	<35	<70	<7.0	<0.0011	<0.0011	< 0.0011	<0.0033	<0.0022	<0.0011			
	$OI \neq (IV I 2)$		MTCA Method A	_	2,000	2,000	100	0.03	-0.0017	6	9	NE	×0.0014 NE			

	Sample							Analytical Re	esults (milligram	s per kilogram)			
Location	Identification	Sample Depth (feet) ¹	Sample Date	Sampled By	DRO ³	ORO ³	GRO ²	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Total Xylenes ⁴	m,p-Xylene	o-Xylene
GP-5	GP-5 (6-8)	6 - 8	12/2/2003	Golder ⁹	<28	<55	<5.5	< 0.0011	< 0.0011	< 0.0011	< 0.0033	< 0.0022	< 0.0011
01-3	GP-5 (10-12)	10 - 12	12/2/2003	Golder ⁹	<36	<71	<7.1	< 0.0014	< 0.0014	< 0.0014	< 0.0042	< 0.0028	< 0.0014
GP-6	GP-6 (0-2.5)	0 - 2.5	12/2/2003	Golder ⁹	<270	4,000	<5.3	< 0.0011	< 0.0011	< 0.0011	< 0.0032	< 0.0021	< 0.0011
CP 7	GP-7 (6-8') 6 - 8		12/2/2003	Golder ⁹	<33	<67	<6.7	< 0.0013	< 0.0013	< 0.0013	< 0.0040	< 0.0027	< 0.0013
GP-7	GP-7 GP-7 (10-12') 10 - 12			Golder ⁹	<35	<70	<7.0	< 0.0014	< 0.0014	< 0.0014	< 0.0043	< 0.0029	< 0.0014
	6 - 8	12/2/2003	Golder ⁹	<36	<72	<7.2	< 0.0014	0.0016	< 0.0014	< 0.0043	< 0.0029	< 0.0014	
GP-8	GP-8 (10-12')	10 - 12	12/2/2003	Golder ⁹	<33	<66	<6.6	< 0.0013	< 0.0013	< 0.0013	< 0.0039	< 0.0026	< 0.0013
F-5	F5-6.7-081314	6.7	08/13/2014	Farallon	590	< 73	130	< 0.0011	< 0.0056	0.010	0.0069		
F-8	F8-5.0-081314	5	08/13/2014	Farallon	1,000	< 64	190	< 0.0011	< 0.0054	0.0039	0.014	0.014	< 0.0011
F-9	F9-9.0-092214	9	09/22/2014	Farallon	<120	1,400	<4.7						
F-10	F10-12.0-092214	12	09/22/2014	Farallon	<40	<81	<9.4						
F-11	F11-12.0-092214	12	09/22/2014	Farallon	<38	<77	<8.6						
F-12	F12-7.0-092214	7	09/22/2014	Farallon	<27	<55	<4.5						
F-13	F13-6.7-092214	6.7	09/22/2014	Farallon	440	<54							
F-14	F14-7.0-092214	7	09/22/2014	Farallon	5,700	<270							
F-15	F15-7.4-092214	7.4	09/22/2014	Farallon	<38	<77	<7.9						
F-16			09/22/2014	Farallon	<40	<80	<10						
F-17	F-17 F17-8.0-092214 8 09/22/2014		09/22/2014	Farallon	380	<59	<3.1						
F-18	F18-8.0-092214	8	09/22/2014	Farallon	9,700	<580							
			MTCA Method A	Cleanup Levels ⁵	2,000	2,000	100	0.03	7	6	9	NE	NE

NOTES:

Results in **bold** denote concentrations exceed applicable Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A cleanup levels. < denotes analyte not detected at or exceeding the reporting limit listed.

--- Denotes sample not analyzed.

¹Depth in feet below ground surface. ²Analyzed by Northwest Method NWTPH-Gx unless otherwise noted.

³Analyzed by Northwest Method NWTPH-Dx unless otherwise noted.

⁴Analyzed by U.S. Environmental Protection Agency (EPA) Method 8260B or 8260C unless otherwise noted.

⁵MTCA Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

⁶Blymyer Engineers, Inc. ⁷Groundwater Technology, Inc.

⁸Shannon & Wilson, Inc.

⁹Golder Associates Inc.

¹⁰Fluor Daniel GTI, Inc.

^aAnalyzed by EPA Method 8015 Modified. ^bAnalyzed by EPA Method 8020.

^cAnalyzed by EPA Method 418.1.

^dAnalyzed by Washington Total Petroleum Hydrocarbons as Diesel (WTPH-D) Method

DRO = Total petroleum hydrocarbons (TPH) as diesel-range organics GRO = TPH as gasoline-range organics N/D = Not detected and historical reporting limit is unknown ORO = TPH as oil-range organics

												Ana	lytical Resul	ts ¹ (milligra	ms per kilogra	am)						
Sample Location	Sample Identification	Sample Depth (feet) ²	Sample Date	Sampled By	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	2-Butanone (Methyl ethyl ketone)	Acetone	Carbon Disulfide	cis-1,2-Dichloroethene	Isopropylbenzene	Methyl tertiary butyl ether	Naphthalene	n-Butylbenzene	n-Propylbenzene	p-Isopropyltoluene	Sec-Butylbenzene	Tert-Butylbenzene	Tetrachloroethene	trans-1,2-Dichloroethene	Trichloroethene	Vinyl Chloride
S-1V	S-1V ^a	Waste Oil Tank Excavation	06/29/1988	Blymyer ⁵															< 1	< 1	< 1	
S-1F	S-1F ^a	Waste Oil Tank Excavation	06/29/1988	Blymyer ⁵															< 1	< 1	< 1	
Product PipingTrench	CF-T1 ^b	2.2 - 2.7	4/7/1998	Golder ⁶								< 0.43										
MW-2	MW2-2.0 ^b	1.5 - 2.0	4/7/1998	Golder ⁶								<0.48										
RW-1	RW1-7.0 ^b	7.0 - 8.5	4/7/1998	Golder ⁶								< 0.54										
RW-2	RW2-4.0 ^b	4.0 - 5.5	4/8/1998	Golder ⁶								<0.4										
IX VV -2	RW2-7.0 ^b	7.0 - 8.5	4/8/1998	Golder ⁶								< 0.53										
SP-1	SP1-(8-11)	8 - 11	1/11/2001	Golder ⁶								< 0.23										
SP-5	SP5-(5-8)	5 - 8	1/11/2001	Golder ⁶								<0.19										
SP-6	SP6-(5-8)	5 - 8	1/11/2001	Golder ⁶								<0.27										
SP-8	SP8-(5-8)	5 - 8	1/11/2001	Golder ⁶								<0.21										
SP-9	SP9-(5-8)	5 - 8	1/11/2001	Golder ⁶								<0.22										
SP-11	SP11-(5-8)	5 - 8	1/11/2001	Golder ⁶								< 0.25										
GP-1	GP-1 (6-8)	6 - 8	12/2/2003	Golder ⁶	< 0.0014	< 0.0014	< 0.0071	< 0.0071	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014
OF-1	GP-1 (10-12)	10 - 12	12/2/2003	Golder ⁶	< 0.0014	< 0.0014	0.0084	0.036	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014
GP-2	GP-2 (6-8)	6 - 8	12/2/2003	Golder ⁶	< 0.0011	< 0.0011	< 0.0057	< 0.0057	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011
01-2	GP-2 (10-12)	10 - 12	12/2/2003	Golder ⁶	< 0.0014	< 0.0014	< 0.0070	0.094	0.0026	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014
GP-3	GP-3 (6-8)	6 - 8	12/2/2003	Golder ⁶	< 0.0011	< 0.0011	< 0.0053	< 0.0053	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011
01-3	GP-3 (10-12)	10 - 12	12/2/2003	Golder ⁶	< 0.0014	< 0.0014	0.034	0.15	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014
	GP-4 (2-4)	2 - 4	12/2/2003	Golder ⁶	< 0.0011	< 0.0011	< 0.0054	< 0.0054	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011
GP-4	GP-44 (2-4')	2 - 4 (duplicate)	12/2/2003	Golder ⁶	< 0.0011	< 0.0011	< 0.0054	< 0.0054	< 0.0011	< 0.0011	< 0.0011	< 0.0011	0.0013	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011
01-4	GP-4 (6-8)	6 - 8	12/2/2003	Golder ⁶	< 0.0011	< 0.0011	< 0.0055	< 0.0055	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011
	GP-4 (10-12)	10 - 12	12/2/2003	Golder ⁶	< 0.0014	< 0.0014	0.017	0.090	0.0027	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014
GP-5	GP-5 (6-8)	6 - 8	12/2/2003	Golder ⁶	< 0.0011	< 0.0011	< 0.0055	< 0.0055	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011
Gr-5	GP-5 (10-12)	10 - 12	12/2/2003	Golder ⁶	< 0.0014	< 0.0014	0.048	0.23	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014
GP-6	GP-6 (0-2.5)	0 - 2.5	12/2/2003	Golder ⁶	0.0012	< 0.0011	< 0.0053	< 0.0053	< 0.0011	< 0.0011	< 0.0011	< 0.0011	0.0015	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	0.0052	< 0.0011	< 0.0011	< 0.0011
CD 7	GP-7 (6-8')	6 - 8	12/2/2003	Golder ⁶	< 0.0013	< 0.0013	< 0.0067	0.012	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013
GP-7	GP-7 (10-12')	10 - 12	12/2/2003	Golder ⁶	< 0.0014	< 0.0014	0.015	0.076	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014
	GP-8 (6-8')	6 - 8	12/2/2003	Golder ⁶	< 0.0014	< 0.0014	< 0.0072	< 0.0072	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	0.0096	< 0.0014	< 0.0014	< 0.0014
GP-8	GP-8 (10-12')	10 - 12	12/2/2003	Golder ⁶	< 0.0013	< 0.0013	0.011	0.040	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013
F-5	F5-6.7-081314	6.7	08/13/2014	Farallon	0.027	< 0.0011	0.026	0.077	0.0021	< 0.0011	0.016	< 0.0011	0.12	0.19	0.049	0.052	0.062	0.0020	< 0.0011	< 0.0011	< 0.0011	< 0.0011
F-8	F8-5.0-081314	5	08/13/2014	Farallon	0.026	0.0082	0.0096	0.029	< 0.0011	< 0.0011	0.011	< 0.0011	0.017	0.032	0.013	0.0066	0.042	0.0017	< 0.0011	< 0.0011	< 0.0011	< 0.0011
			MTCA Method A	· · ·	NE	NE	NE	NE	NE	NE	NE	0.1	5	NE	NE	NE	NE	NE	0.05	NE	0.03	NE
		ethod B Cleanup Levels (Direc	ē		NE NE	800	48,000	72,000	8,000	720	8,000	556	1,600	4,000	8,000	NE	8,000	8,000	476	1,600	12	0.67
NOTES: MTCA	MTCA Method B Cleanup Levels (Protection of Groundwater, Vadose/Saturated					NE	NE	28.9/2.07	NE	NE	NE	0.103/0.00723	5	NE	NE	NE	NE	NE	0.0499/0.00276	0.543/0.0325	0.0252/0.00152	0.00167/0.0000885

NOTES:

Results in **bold** denote concentrations exceed applicable Washington State Model Toxics Control Action Cleanup Regulation (MTCA) Method A or B cleanup levels. < denotes analyte not detected at or exceeding the reporting limit listed.

-- denotes sample not analyzed.

Only select analytes and analytes with detections exceeding the laboratory reporting limit are shown. Analyzed by U.S. Environmental Protection Agency (EPA) Method 8260C unless otherwise noted.

²Depth in feet below ground surface.

³MTCA Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

⁴Washington State Cleanup Levels and Risk Calculations under MTCA, Standard Method B Formula Values for Soil from

CLARC Master spreadsheet downloaded on 9/24/2015 from https://fortress.wa.gov/ecy/clarc/CLARCDataTables.aspx

⁵Blymyer Engineers, Inc.

⁶Golder Associates Inc.

^aAnalyzed by EPA Method 601.

^bAnalyzed by EPA Method 8020.

Farallon = Farallon Consulting, L.L.C. NE = Cleanup level not established VOCs = volatile organic compounds

											Ana	lytical Results ¹ (mi	lligrams per kilogi	ram)						
Sample Location	Sample Identification	Sample Depth (feet) ²	Sample Date	Sampled By	Methylene Chloride	1,1-Dichloroethene	1,2-Dichloroethane	Chloroform	Freon	1,1,1-Trichloroethane	Bromodichloromethane	Carbon Tetrachloride	1,2-Dichloropropane	trans-1,3-dichloropropene	cis-1,3-Dichloropropene	1,1,2-Trichloroethane	Chlorodibromomethane	Bromoform	1,1,2,2-Tetrachloroethane	Chlorobenzene
S-1V	$S-1V^{a}$	Waste Oil Tank Excavation	06/29/1988	Blymyer ⁵	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
S-1F	S-1F ^a	Waste Oil Tank Excavation	06/29/1988	Blymyer ⁵	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
GP-1	GP-1 (6-8)	6 - 8	12/2/2003	Golder ⁶	< 0.0071	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014
	GP-1 (10-12	10 - 12	12/2/2003	Golder ⁶	<0.0068	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014
GP-2	GP-2 (6-8)	6 - 8	12/2/2003	Golder ⁶	< 0.0057	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	<0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	<0.0011	< 0.0011
	GP-2 (10-12)	10 - 12	12/2/2003	Golder ⁶	< 0.0070	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014
GP-3	GP-3 (6-8)	6 - 8	12/2/2003	Golder ⁶	<0.0053	< 0.0011	< 0.0011	<0.0011	< 0.0011	<0.0011	< 0.0011	<0.0011	<0.0011	< 0.0011	< 0.0011	<0.0011	< 0.0011	< 0.0011	< 0.0011	<0.0011
	GP-3 (10-12)	10 - 12	12/2/2003	Golder ⁶	< 0.0070	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	<0.0014	< 0.0014
	GP-4 (2-4)	2 - 4	12/2/2003	Golder ⁶ Golder ⁶	< 0.0054	< 0.0011	<0.0011	< 0.0011	<0.0011	<0.0011	< 0.0011	<0.0011	< 0.0011	<0.0011	< 0.0011	< 0.0011	<0.0011	< 0.0011	< 0.0011	< 0.0011
GP-4	GP-44 (2-4')	2 - 4 (duplicate)	12/2/2003	Golder ⁶	<0.0054 <0.0055	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	< 0.0011	<0.0011	< 0.0011	<0.0011	<0.0011	< 0.0011	<0.0011	<0.0011
	GP-4 (6-8) GP-4 (10-12)	<u>6 - 8</u> 10 - 12	12/2/2003 12/2/2003	Golder ⁶	<0.0055	<0.0011 <0.0014	<0.0011 <0.0014	<0.0011 <0.0014	<0.0011 <0.0014	<0.0011 <0.0014	<0.0011 <0.0014	<0.0011 <0.0014	<0.0011 <0.0014	<0.0011 <0.0014	<0.0011 <0.0014	<0.0011 <0.0014	<0.0011 <0.0014	<0.0011 <0.0014	<0.0011 <0.0014	<0.0011 <0.0014
	GP-5 (6-8)	6 - 8	12/2/2003	Golder ⁶	<0.0070	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014
GP-5	GP-5 (10-12)	10 - 12	12/2/2003	Golder ⁶	<0.0033	<0.0011	<0.0011	<0.0011	< 0.0011	<0.0011	<0.0011	<0.0011	<0.0011	< 0.0011	< 0.0011	< 0.0011	<0.0011	<0.0011	<0.0011	<0.0011
GP-6	GP-6 (0-2.5)	0 - 2.5	12/2/2003	Golder ⁶	<0.0053	<0.0014	<0.0014	<0.0014	<0.0011	<0.0014	<0.0011	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014	<0.0011	<0.0014	<0.0014	<0.0014
GD 7	GP-7 (6-8')	6 - 8	12/2/2003	Golder ⁶	< 0.0067	< 0.0013	< 0.0013	< 0.0011	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013
GP-7	GP-7 (10-12')	10 - 12	12/2/2003	Golder ⁶	< 0.0070	< 0.0014	< 0.0014	< 0.0014	< 0.0012	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0012	< 0.0012	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014
CD 0	GP-8 (6-8')	6 - 8	12/2/2003	Golder ⁶	< 0.0072	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014
GP-8	GP-8 (10-12')	10 - 12	12/2/2003	Golder ⁶	< 0.0066	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013
		M	CA Method A C	leanup Levels ³	0.02	NE	NE	NE	NE	2	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	MTCA Metho	d B Cleanup Levels (Direct C	ontact and Inges	tion Pathway) ⁴	500	4,000	11	32.3	NE	160,000	16.1	14.3	27.8	NE	NE	17.5	11.9	127	5	1,600
МТСА	Method B Cleanup L	evels (Protection of Groundw	ater, Vadose/Sat	urated Zones) ⁴	0.0215/0.00148	0.0457/0.00246	0.0231/0.00156	0.0736/0.00479	NE	1.49/0.0843	0.0392/0.0026	0.0416/0.00219	0.0253/0.00167	NE	NE	0.0277/0.00181	0.0276/0.00182	0.362/0.0229	0.00122/0.00008	0.862/0.0511
NOTES:																				

Results in **bold** denote concentrations exceed applicable Washington State Model Toxics Control Action Cleanup Regulation (MTCA) Method A or B cleanup levels.

< denotes analyte not detected at or exceeding the reporting limit listed.

^aAnalyzed by U.S. Environmental Protection Agency (EPA) Method 601.

¹Analyzed by EPA Method 8260B unless otherwise noted.

²Depth in feet below ground surface, if known.

³Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses,

Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

⁴Washington State Cleanup Levels and Risk Calculations under MTCA, Standard Method B Formula Values for Soil from

CLARC Master spreadsheet downloaded on 9/24/2015 from https://fortress.wa.gov/ecy/clarc/CLARCDataTables.aspx

Blymyer Engineers, Inc.

⁶Golder Associates Inc.

Farallon = Farallon Consulting, L.L.C. NE = Cleanup level not established VOCs = volatile organic compounds

Sample	Sample	Sample Depth			Analytical Results ² (milligrams per kilogram)										
Location	Identification	(feet) ¹	Sample Date	Sampled By	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260				
F-5	F5-6.7-081314	6.7	08/13/2014	Farallon	< 0.069	< 0.069	< 0.069	< 0.069	< 0.069	< 0.069	< 0.069				
F-8	F8-5.0-081314	5.0	08/13/2014	Farallon	< 0.064	< 0.064	< 0.064	< 0.064	< 0.064	< 0.064	< 0.064				
F-13	F13-6.7-092214	6.7	09/22/2014	Farallon	< 0.054	< 0.054	< 0.054	< 0.054	< 0.054	< 0.054	< 0.054				
F-18	F18-8.0-092214	8.0	09/22/2014	Farallon	< 0.056	< 0.056	< 0.056	< 0.056	< 0.056	< 0.056	< 0.056				

NOTES:

< denotes analyte not detected at or exceeding the reporting limit listed.</p>
¹Depth in feet below ground surface.

²Analyzed by U.S. Environmental Protection Agency Method 8082A.

Farallon = Farallon Consulting, L.L.C. PCB = polychlorinated biphenyl compound

						Analytical Results ¹ (milligrams per kilogram)																
						Polycyclic Aromatic Hydrocarbons (PAHs)										Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs)						
Sample Location	Sample Identification	Sample Depth (feet) ²	Sample Date	Sampled By	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i)perylene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene	Benzo(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3- cd)pyrene	Dibenz(a,h)anthracen e	Total cPAHs TTEC
Product Piping Trench	CF-T1 ^b	2.2 - 2.7	4/7/1998	Golder ⁵	< 0.013	0.21	< 0.014	< 0.012	< 0.0092	0.21	0.21	< 0.015	< 0.01	0.68	0.052	0.097	< 0.0077	< 0.012	< 0.0061	< 0.012	< 0.0083	0.01122
MW-2	MW2-2.0 ^b	1.5 - 2.0	4/7/1998	Golder ⁵	0.14	0.071	< 0.015	0.12	0.033	0.18	0.15	0.049	0.22	0.19	0.06	0.17	0.063	0.047	0.049	< 0.012	< 0.0088	0.06874
RW-1	RW1-7.0 ^b	7.0 - 8.5	4/7/1998	Golder ⁵	34	1.8	< 0.017	2.2	< 0.011	< 0.011	2.5	6.2	7	0.62	0.094	< 0.0098	< 0.0094	< 0.015	< 0.0074	< 0.014	< 0.01	0.015569
RW-2	RW2-4.0 ^b	4.0 - 5.5	4/8/1998	Golder ⁵	16	1.1	< 0.014	< 0.012	< 0.011	< 0.0085	1.9	8.1	4.9	0.7	< 0.0065	< 0.0079	< 0.0076	< 0.012	< 0.006	< 0.012	< 0.0082	0.0053545
	RW2-7.0 ^b	7.0 - 8.5	4/8/1998	Golder ⁵	11	0.93	< 0.017	< 0.015	< 0.011	< 0.011	2	6.5	3.6	0.63	< 0.008	< 0.0098	< 0.0094	< 0.015	< 0.0074	< 0.014	< 0.01	0.006569
SP-1	SP1-(8-11)	8 - 11	1/11/2001	Golder ⁵	6.5	0.41	0.51	< 0.022	< 0.022	< 0.022	0.87	0.23	1.3	0.07	< 0.022	0.037	< 0.022	< 0.022	< 0.022	< 0.022	< 0.022	0.00697
SP-5	SP5-(5-8)	5 - 8	1/11/2001	Golder ⁵	3.7	0.69	0.48	< 0.018	< 0.018	< 0.018	1.3	3.7	2.6	0.78	0.11	0.097	< 0.018	< 0.018	< 0.018	< 0.018	< 0.018	0.02457
SP-6	SP6-(5-8)	5 - 8	1/11/2001	Golder ⁵	4.1	0.26	< 0.027	< 0.027	< 0.027	< 0.027	0.55	1.7	0.92	0.16	< 0.027	< 0.027	< 0.027	< 0.027	< 0.027	< 0.027	< 0.027	0.020385
SP-8	SP8-(5-8)	5 - 8	1/11/2001	Golder ⁵	50	5.7	1.3	<0.1	< 0.1	< 0.1	6	19	10	2.3	< 0.1	0.22	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.0772
SP-9	SP9-(5-8)	5 - 8	1/11/2001	Golder ⁵	23	3.8	< 0.1	< 0.1	< 0.1	< 0.1	4.1	7.4	4.7	0.94	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.0755
SP-11	SP11-(5-8)	5 - 8	1/11/2001	Golder ⁵	3	< 0.023	0.29	< 0.023	< 0.023	0.054	0.39	0.97	0.67	0.035	< 0.023	< 0.023	< 0.023	< 0.023	< 0.023	< 0.023	< 0.023	0.017365
MTCA Method A Cleanup Levels ³					NE	NE	NE	NE	NE	NE	NE	5	NE	NE								0.1
MTCA Me	MTCA Method B Cleanup Levels (Direct Contact and Leaching Pathway) ⁴					4,800	NE	24,000	NE	3,200	3,200	1,600	NE	2,400								0.137
ITCA Method B Cleanu	ITCA Method B Cleanup Levels (Protection of Groundwater, Vadose/Saturated Zones) ⁴					97.9/4.98	NE	2,270/114	NE	631/31.6	101/5.12	4.45/0.236	NE	655/32.8								2.33/0.116

NOTES:

Results in **bold** denote concentrations exceed applicable Washington State Model Toxics Control Action Cleanup Regulation (MTCA) Method A or B cleanup levels.

Control with a second approache with a second approache with a second of the second

²Depth in feet below ground surface.

³MTCA Method A Soil Cleanup Levels for Unrestricted Land Uses,

Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013. ⁴Washington State Cleanup Levels and Risk Calculations under MTCA, Standard Method B Formula Values for Soil from

CLARC Master spreadsheet downloaded on 9/24/2015 from https://fortress.wa.gov/ecy/clarc/CLARCDataTables.aspx

Golder Associates Inc.

Farallon = Farallon Consulting, L.L.C. NE = Cleanup level not established TTEC = Total Toxicity Equivalent Concentration VOCs = volatile organic compounds

	Sample		Depth		Analytical Results (milligrams per kilogram) ²											
Sample Location	Identification	Sample Date	- 1	Sampled By	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver				
S-1V	S-1V	06/29/1988	Waste Oil Tank Excavation	Blymyer ⁵	< 0.1	<2	<0.1	9.1	14.2	< 0.05	<0.1	< 0.1				
S-1F	S-1F	06/29/1988	Waste Oil Tank Excavation	Blymyer ⁵	< 0.1	<2	< 0.1	7.2	9.9	< 0.05	< 0.1	< 0.1				
S-2F	S-2F	06/29/1988	Waste Oil Tank Excavation	Blymyer ⁵	< 0.1	<2	< 0.1	9.9	11.0	< 0.05	< 0.1	< 0.1				
S-2V	S-2V	06/29/1988	Waste Oil Tank Excavation	Blymyer ⁵	< 0.1	<2	<0.1	11.3	8.6	< 0.05	< 0.1	<0.1				
	MTCA Method A Soil Cleanup Levels, Unrestricted Land Use ³						2	2,000	250	2	NE	NE				
	MTCA Method B Cleanup Levels (Direct Contact and Leaching Pathway) ⁴						80	120,000	NE	NE	400	400				
MTCA Metho	MTCA Method B Cleanup Levels (Protection of Groundwater, Vadose/Saturated Zones) ⁴						0.69/0.0349	480,000/24,000	3,000/150	2.09/0.105	5.2/0.264	13.6/0.687				

NOTES:

< denotes analyte not detected at or exceeding the reporting limit listed.

Results in **bold** denote concentrations exceed regulatory screening level.

¹Depth in feet below ground surface (bgs) or general location if unknown.

²Analysis method unknown.

³Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses,

 Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

⁴Washington State Cleanup Levels and Risk Calculations under MTCA, Standard Method B Formula Values for Soil from

 $CLARC\ Master\ spreadsheet\ downloaded\ on\ 9/24/2015\ from\ https://fortress.wa.gov/ecy/clarc/CLARCDataTables.aspx\ ^{5}Blymyer\ Engineers,\ Inc.$

NE = Cleanup level not established

Table 7 Summary of Soil Analytical Results for Volatile and Extractable Petroleum Hydrocarbons 6050 East Marginal Way South Seattle, Washington Farallon PN: 1071-010

					Analytical Results (milligrams per kilogram) ¹													
					Vola	tile Petro	leum Hydro	carbons (VPH)	Extractable Petroleum Hydrocarbons (EPH)									
					Alip	ohatic Fra	ctions	Aromatic Fraction		Al	iphatic Fra	ctions		Aromatic Fractions				
Sample Location	Sample Identification	Sample Date	Sample Depth	Sample By	EC 5-6	EC >6-8	EC >8-10	EC >8-10	C8-C10	C10-C12	C12-C16	C16-C21	C21-C34	C10-C12	C12-C16	C16-C21	C21-C34	
Product Piping Trench	CF-T1	4/7/1998	2.2 - 2.7	Golder ²	<1.3	<1.7	3.2	7.4	10	130	1,000	1,100	110	25	270	630	48	
MW-2	MW2-2.0	4/7/1998	1.5 - 2.0	Golder ²	<1.4	<1.9	<2.9	<2.4	6	32	270	310	410	2.7	22	120	120	
RW-1	RW1-7.0	4/7/1998	7.0 - 8.5	Golder ²	<1.6	<2.2	20	16	180	1,200	5,600	4,200	750	110	980	2,200	350	
RW-2	RW2-4.0	4/8/1998	4.0 - 5.5	Golder ²	<1.2	34	<48	630	330	840	2,400	2,100	250	250	920	1,200	100	
K W -2	RW2-7.0	4/8/1998	7.0 - 8.5	Golder ²	<1.6	61	<64	490	280	670	1,900	1,700	240	180	680	1,000	88	
SP-1	SP1-(8-11)	1/11/2001	8 - 11	Golder ²	< 0.7	1.6	17	15	76	380	940	320	37	46	250	200	22	
SP-5	SP5-(5-8)	1/11/2001	5 - 8	Golder ²	< 0.58	5.2	98	98	200	660	2,000	1,700	300	180	710	750	120	
SP-6	SP6-(5-8)	1/11/2001	5 - 8	Golder ²	< 0.82	3.9	18	19	<6.6	30	98	87	27	10	38	48	20	
SP-8	SP8-(5-8)	1/11/2001	5 - 8	Golder ²	0.86	44	310	350	830	2,400	8,700	6,500	730	110	530	870	100	
SP-9	SP9-(5-8)	1/11/2001	5 - 8	Golder ²	0.83	12	190	190	220	670	3,200	2,700	210	260	970	1,100	96	
SP-11	SP11-(5-8)	1/11/2001	5 - 8	Golder ²	< 0.75	< 0.5	3.8	4.4	<5.9	30	170	130	40	<5.9	18	35	10	

NOTES:

< denotes analyte not detected at or exceeding the reporting limit listed.

¹ Samples collected in 1998 analyzed by Washington TPH Interim Policy Method VPH/EPH. Samples collected in 2001 analyzed by Washington State Department of Ecology Method for Determination of VPH/EPH Modified. ²Golder Associates Inc.

							Analytical Res	ults ¹ (microgr	ams per liter)			
Sample Location	Sample Identification	Sample Date	Sampled By	DRO ¹	ORO ¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Total Xylenes ³	m,p-Xylene	o-Xylene
Diesel Tank Excavation	W-1	04/1988	Blymyer ⁵	2,538,000 a								
Gas Tank Excavation	W-2	04/1988	Blymyer ⁵			158,000 a	13 b	9 b	317 b	2,054 b	1,790 b	264 b
Oil Tank Excavation	W-1	6/29/1988	Blymyer ⁵	2,862,000 a	3,812,000 c							
	MW-1	07/12/1988	Blymyer ⁵	< 1,000 a								
	MW-1	10/6/1988	Blymyer ⁵	< 1,000 a								
MW 1 00	MW-1	2/8/1989	Blymyer ⁵	<10,000 a								
MW-1_88	MW-1	5/2/1989	Blymyer ⁵	< 10,000 a								
	MW1	8/3/1989	Blymyer ⁵	<10,000 a								
	MW1	11/1/1989	Blymyer ⁵	< 10,000 a								
	MW-2A	06/29/1988	Blymyer ⁵	< 1,000 a								
	MW-2A	10/6/1988	Blymyer ⁵	< 1,000 a								
	MW-2A	2/8/1989	Blymyer ⁵	< 10,000 a								
MW-2A_88	MW-2A	5/2/1989	Blymyer ⁵	< 10,000 a								
	MW2A	8/3/1989	Blymyer ⁵	< 10,000 a								
	MW2A	11/1/1989	Blymyer ⁵	< 10,000 a								
	MW-3	06/29/1988	Blymyer ⁵	< 1,000 a								
	MW-3	10/6/1988	Blymyer ⁵	< 1,000 a								
	MW-3	2/8/1989	Blymyer ⁵	< 10,000 a								
MW-3_88	MW-3	5/2/1989	Blymyer ⁵	<10,000 a								
	MW3	8/3/1989	Blymyer ⁵	< 10,000 a								
	MW3	11/1/1989	Blymyer ⁵	< 10,000 a								
	MW-4	06/29/1988	Blymyer ⁵	< 1,000 a								
	MW-4	10/6/1988	Blymyer ⁵	< 1,000 a								
	MW-4	2/8/1989	Blymyer ⁵	< 10,000 a								
MW-4_88	MW-4	5/2/1989	Blymyer ⁵	< 10,000 a								
	MW4	8/3/1989	Blymyer ⁵	< 10,000 a								
	MW4	11/1/1989	Blymyer ⁵	< 10,000 a								
	MW-5	06/29/1988	Blymyer ⁵	< 1,000 a								
	MW-5	10/6/1988	Blymyer ⁵	< 1,000 a								
NUL 5 00	MW-5	2/8/1989	Blymyer ⁵	< 10,000 a								
MW-5_88	MW-5	5/2/1989	Blymyer ⁵	< 10,000 a								
	MW5	8/3/1989	Blymyer ⁵	< 10,000 a								
	MW5	11/1/1989	Blymyer ⁵	< 10,000 a								
P-1	1764-P1-W	8/8/1997	S&W ⁶	< 200 d								
P-2	1764-P2-W	8/8/1997	$S\&W^6$	2,200,000 d								
P-3	1764-P3-W	8/8/1997	$S\&W^6$	< 200 d								
P-4	1764-P4-W	8/8/1997	$S\&W^6$	1,700 d								
		MTCA Method A		500	500	1,000	5	1,000	700	1,000	NE	NE

								Analytical Res	sults ¹ (micro	gram	ns per liter)					
Sample Location	Sample Identification	Sample Date	Sampled By	DRO ¹		ORO ¹	GRO ²	Benzene ³	Toluene ³	F	Ethylbenze	ne ³	Total Xyle	enes ³	m,p-Xyle	ene	o-Xylene
P-5	1764-P5-W	8/8/1997	$S\&W^6$	< 200	d												
P-6	1764-P6-W	8/8/1997	$S\&W^6$	< 200	d												
Р-7	1764-P7-W	8/8/1997	$S\&W^6$	400	d												
P-8	1764-P8-W	8/8/1997	$S\&W^6$	< 200	d												
P-9	1764-P9-W	8/8/1997	$S\&W^6$	< 200	d												
P-10	1764-P10-W	8/8/1997	$S\&W^6$	< 100	d												
	MW-1	4/8/1998	Golder ⁷	< 240	d	<470 d		< 1 b	< 1	b	< 1	b			< 2	b	<1 b
	MW-1D	4/8/1998	Golder ⁷					<1 b	< 1	b	< 1	b			< 2	b	<1 b
	MW-1	8/17/1999	Golder ⁷	160		250		< 1 e	< 1	e	< 1	e	< 2	e			
MW-1	MW-1	1/17/2001	Golder ⁷	110		290		<0.4 f	< 0.4	f	< 0.4	f	<1.2	f	< 0.8	f	<0.4 f
	MW-1	6/7/2001	Golder ⁷	120		360		ND									
	MW-1	12/3/2003	Golder ⁷	<250		<400	<100	<1.0	<1.0		<1.0		<1.0				
	MW-2	4/8/1998	Golder ⁷	2,200	d	660 d		< 1 b	< 1	b	< 1	b			< 2	b	<1 b
	MW-2	8/17/1999	Golder ⁷	1,900		580		< 1 e	< 1	e	< 1	e	< 2	e			
MW-2	MW-2	1/17/2001	Golder ⁷	1,500		640		<0.4 f	< 0.4	f	< 0.4	f	0.069	f	< 0.8	f	0.069 f
1V1 W -2	MW-2	6/7/2001	Golder ⁷	1,100		670		ND									
	MW-2	12/3/2003	Golder ⁷	<250		<400	<100	<1.0	<1.0		<1.0		<1.0				
	MW-2-081214	08/12/2014	Farallon	2,700		< 490	280	< 0.20	< 1.0		< 0.20		< 0.60				
	MW-3	4/8/1998	Golder ⁷	1,000	d	1,100 d		< 1 b	< 1	b	< 1	b			< 2	b	<1 b
	MW-3	8/17/1999	Golder ⁷	1,500		1,800		< 1 e	< 1	e	< 1	e	< 2	e			
MW-3	MW-3	1/17/2001	Golder ⁷	1,800		1,800		0.24 f	<0.4	f	<0.4	f	0.048	f	<0.8	f	0.048 f
	MW-3	6/7/2001	Golder ⁷	1,400		1,600		0.2									
	MW-3	12/3/2003	Golder ⁷	<250		<400	<100	<1.0	<1.0		<1.0		<1.0				
	MW-3-081214	08/12/2014	Farallon	510		620	< 100	< 0.20	< 1.0		< 0.20		< 0.60				
RW-1	RW-1	4/8/1998	Golder ⁷	1,400	d	<470 d		< 1 b	< 1	b	< 1	b			< 2	b	<1 b
	RW-2	4/8/1998	Golder ⁷	5,400	d	680 d		210 b	13	b	100	b			220	b	88 b
RW-2	RW-2	8/17/1999	Golder ⁷	1,500		450		83 e	< 1	e	20	e	45	e			
	RW-2	12/3/2003	Golder ⁷	<250		<400	450	5.31	<1.0		<1.0		<1.0				
	RW-2-081214	08/12/2014	Farallon	3,700		< 640	800	< 0.20	< 1.0		< 0.20		< 0.60				
Bottom of Diesel Tank Excavation	TP-1	7/27/1998	GTI, Inc.	138,000	d					_							
GP-1	GP-1	8/18/1999	Golder ⁷	1,200		690											
GP-2	GP-2	8/18/1999	Golder ⁷	400		280											
GP-3	GP-3	8/18/1999	Golder ⁷	260		590											
GP-4	GP-4	8/18/1999	Golder ⁷	800		490											
GP-5	GP-5	8/18/1999	Golder ⁷	980		< 470											
GP-6	GP-6	8/18/1999	Golder ⁷	1,400		1,800											
GP-7	GP-7	8/18/1999	Golder ⁷	720		360											
		MTCA Method A	Cleanup Levels ⁴	500		500	1,000	5	1,000		700		1,000		NE		NE

							Analytical Res	sults ¹ (microgr	ams per liter)			
Sample Location	Sample Identification	Sample Date	Sampled By	DRO ¹	ORO ¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Total Xylenes ³	m,p-Xylene	o-Xylene
GP-8	GP-8	8/18/1999	Golder ⁷	260	300							
GP-9	GP-9	8/18/1999	Golder ⁷	1,200	280							
GP-10	GP-10	8/18/1999	Golder ⁷	29,000	2,100							
GP-10	GP-14 (duplicate of GP-10)	8/18/1999	Golder ⁷	34,000	2,500							
GP-11	GP-11	8/18/1999	Golder ⁷	2,500	860							
GP-12	GP-12	8/18/1999	Golder ⁷	160	390							
GP-13	GP-13	8/18/1999	Golder ⁷	580	330							
	MW-4	1/17/2001	Golder ⁷	160	330		<0.4 f	<0.4 f	<0.4 f	<1.2 f	<0.8 f	<0.4 f
N (137 A	MW-4	6/7/2001	Golder ⁷	140	330		ND					
MW-4	MW-4	12/3/2003	Golder ⁷	<250	<400	<100	<1.0	<1.0	<1.0	<1.0		
	MW-4-081214	08/12/2014	Farallon	<260	<410	<100	<0.20	<1.0	<0.20	<0.60		
	MW-5	1/17/2001	Golder ⁷	330	360		<0.4 f	<0.4 f	<0.4 f	<1.2 f	<0.8 f	<0.4 f
M337 5	MW-5	6/7/2001	Golder ⁷	200	250		ND					
MW-5	MW-5	12/3/2003	Golder ⁷	<250	<400	<100	<1.0	<1.0	<1.0	<1.0		
	MW-5-092314	09/23/2014	Farallon	430	<410							
	MW-6	1/17/2001	Golder ⁷	230	380		0.3 f	<0.4 f	<0.4 f	<1.2 f	<0.8 f	<0.4 f
	MW-6	6/7/2001	Golder ⁷	180	320		0.32					
MW-6	MW-6	12/3/2003	Golder ⁷	<260	<410	<100	<1.0	<1.0	<1.0	<1.0		
	MW-6-092314	09/23/2014	Farallon	<260	<420							
GP-1A	GP-1	12/2/2003	Golder ⁷	<250	<400	<100	<1 f	<1 f	<1 f	<3 f	<2 f	<1 f
GP-2A	GP-2	12/2/2003	Golder ⁷	<260	<410	<100	<1 f	<1 f	<1 f	<3 f	<2 f	<1 f
GP-3A	GP-3	12/2/2003	Golder ⁷	<260	<420	<100	<1 f	<1 f	<1 f	<3 f	<2 f	<1 f
GP-4A	GP-4	12/2/2003	Golder ⁷	<260	<420	<100	<1 f	<1 f	<1 f	<3 f	<2 f	<1 f
GP-5A	GP-5	12/2/2003	Golder ⁷	<260	<410	<100	<1 f	<1 f	<1 f	<3 f	<2 f	<1 f
GP-7A	GP-7	12/2/2003	Golder ⁷	<280	<440	<100	<1 f	<1 f	<1 f	<3 f	<2 f	<1 f
GP-8A	GP-8	12/2/2003	Golder ⁷	<250	<400	<100	<1 f	<1 f	<1 f	<3 f	-2 f	<1 f
F-1	F1-GW-081314	08/13/2014	Farallon	340	< 420	< 100	< 0.20	< 1.0	< 0.20	< 0.60		
F-2	F2-GW-081314	08/13/2014	Farallon	< 290	< 460	< 100	< 0.20	< 1.0	< 0.20	< 0.60		
F-3	F3-GW-081314	08/13/2014	Farallon	< 260	< 420	< 100	< 0.20	3.9	< 0.20	< 0.60		
F-4	F4-GW-081314	08/13/2014	Farallon	< 260	< 410	< 100	< 0.20	< 1.0	< 0.20	< 0.60		
F-5	F5-GW-081314	08/13/2014	Farallon	340	< 460	< 100	< 0.20	< 1.0	< 0.20	< 0.60		
F-6	F6-GW-081314	08/13/2014	Farallon	< 270	< 440	< 100	< 0.20	< 1.0	< 0.20	< 0.60		
F-7	F7-GW-081314	08/13/2014	Farallon	< 260	< 410	< 100	< 0.20	< 1.0	< 0.20	< 0.60		
	I	MTCA Method A	Cleanup Levels ⁴	500	500	1,000	5	1,000	700	1,000		

							Analytical Res	ults ¹ (microgr	ams per liter)			
Sample Location	Sample Identification	Sample Date	Sampled By	DRO ¹	ORO ¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Total Xylenes ³	m,p-Xylene	o-Xylene
F-8	F8-GW-081314	08/13/2014	Farallon	5,700	< 790	790	< 0.20	< 1.0	0.30	< 0.60		
F-10	F10-GW-092214	09/22/14	Farallon	<250	<400	<100						
F-11	F11-GW-092214	09/22/14	Farallon	<260	<420	<100						
		MTCA Method A	Cleanup Levels ⁴	500	500	1,000	5	1,000	700	1,000	NE	NE

NOTES:

Results in **bold** denote concentrations exceed applicable Washington State Model Toxics Control Action Cleanup Regulation (MTCA) Method A cleanup levels. < denotes analyte not detected at or exceeding the reporting limit listed.

denotes analyte not detected at of exceeding the

--- Denotes sample not analyzed.

¹Analyzed by Northwest Method NWTPH-Dx unless otherwise noted. ²Analyzed by Northwest Method NWTPH-Gx unless otherwise noted.

³Analyzed by U.S. Environmental Protection Agency (EPA) Method 8260C unless otherwise noted.

⁴MTCA Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

⁵Blymyer Engineers, Inc.

⁶Shannon & Wilson, Inc.

⁷Golder Associates Inc.

^aAnalyzed by EPA Method 8015.

^bAnalyzed by EPA Method 8020.

^c Analyzed by EPA Method 418.1.

^dAnalyzed by Washington Total Petroleum Hydrocarbons as Diesel (WTPH-D) Method.

^eAnalyzed by EPA Method 8021B/5030B Modified.

^fAnalyzed by EPA Method 8260B.

Farallon = Farallon Consulting, L.L.C. DRO = TPH as diesel-range organics GRO = TPH as gasoline-range organics ORO = TPH as oil-range organics ND = Not detected and reporting limit is unknown NE = Cleanup level not established TPH = Total petroleum hydrocarbons

										Analytical Res	ults ¹ (microgra	ams per liter)						
Sample				2,4-Trimethylbenzene	,3,5-Trimethylbenzene	-1,2-Dichloroethene	sopropylbenzene	ethyl tertiary butyl ether	Naphthalene	Butylbenzene	Propylbenzene	Isopropyltoluene	c-Butylbenzene	rt-Butylbenzene	etrachloroethene	ans-1,2-Dichloroethene	richloroethene	nyl Chloride
Location	Sample Identification	Sample Date	Sample By	1,2	1	cis	Ise	Σ	Ž	<u> </u>	n-	4	Se	Te	Ĕ	tr:	T	Vin
W-1	Waste Oil Tank Excavation ^a	6/29/1988	Blymyer ⁴												<1,000	<1,000		
	MW-1	1/17/2001	Golder ⁵	<0.4	<0.4	<0.4	<0.4		<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
MW-1	MW-1	6/7/2001	Golder ⁵		ND	ND	ND											ND
	MW-1	12/3/2003	Golder ⁵	<1	<1	<1	<1		<2	<1	<1	<1	<1	<1	<1	<1	<1	<1
	MW-2	1/17/2001	Golder ⁵	< 0.4	<0.4	<0.4	<0.4		<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	0.056
	MW-2	6/7/2001	Golder ⁵		ND	0.061	ND											ND
MW-2	MW-2	12/3/2003	Golder ⁵	<1	<1	<1	<1		<2	<1	<1	<1	<1	<1	<1	<1	<1	<1
	MW-2-081214	08/12/2014	Farallon	< 0.20	< 0.20	< 0.20	0.42	< 0.20	< 1.0	< 0.20	< 0.20	< 0.20	0.28	0.30	< 0.20	< 0.20	< 0.20	0.23
	MW-3	1/17/2001	Golder ⁵	< 0.20	0.064	0.085	0.064		<0.4	< 0.20	< 0.20	< 0.20	<0.4	<0.4	< 0.20	< 0.20	< 0.20	0.084
			Golder ⁵				ND											
MW-3	MW-3	6/7/2001			ND	0.11												ND
	MW-3	12/3/2003	Golder ⁵	<1	<1	<1	<1		<2	<1	<1	<1	<1	<1	<1	<1	<1	<1
	MW-3-081214	08/12/2014	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
	MW-4	1/17/2001	Golder ⁵	<0.4	<0.4	0.13	<0.4		<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	0.48
MW-4	MW-4	6/7/2001	Golder ⁵		ND	0.15	ND											0.24
	MW-4	12/3/2003	Golder ⁵	<1	<1	<1	<1		<2	<1	<1	<1	<1	<1	<1	<1	<1	<1
	MW-4-081214	08/12/2014	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.30
	MW-5	1/17/2001	Golder ⁵	<0.4	<0.4	<0.4	<0.4		<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
MW-5	MW-5	6/7/2001	Golder ⁵		ND	ND	ND											ND
	MW-5	12/3/2003	Golder ⁵	<1	<1	<1	<1		<2	<1	<1	<1	<1	<1	<1	<1	<1	<1
	MW-6	1/17/2001	Golder ⁵	<0.4	<0.4	<0.4	<0.4		<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	0.38
MW-6	MW-6	6/7/2001	Golder ⁵		ND	ND	ND											0.4
	MW-6	12/3/2003	Golder ⁵	<1	<1	<1	<1		<2	<1	<1	<1	<1	<1	<1	<1	<1	<1
	RW-2	12/3/2003	Golder ⁵	0.589	<1	<1	5.26		<2	<1	5.5	<1	3.29	<1	<1	<1	<1	<1
RW-2	RW-2-081214	08/12/2014	Farallon	< 0.20	< 0.20	0.21	13	< 0.20	< 1.0	6.6	<u> </u>	< 0.20	7.6	0.26	< 0.20	< 0.20	< 0.20	< 0.20
CD 1A			Golder ⁵															
GP-1A	GP-1	12/2/2003		<1	<1	<1	<1		<2	<1	<1	<1	<1	<1	<1	<1	<1	<1
GP-2A	GP-2	12/2/2003	Golder ⁵	<1	<1	<1	<1		<2	<1	<1	<1	<1	<1	<1	<1	<1	<1
GP-3A	GP-3	12/2/2003	Golder ⁵	<1	<1	<1	<1		<2	<1	<1	<1	<1	<1	<1	<1	<1	<1
GP-4A	GP-4	12/2/2003	Golder ⁵	<1	<1	<1	<1		<2	<1	<1	<1	<1	<1	<1	<1	<1	<1
GP-5A	GP-5	12/2/2003	Golder ⁵	<1	<1	<1	<1		<2	<1	<1	<1	<1	<1	<1	<1	<1	<1
GP-7A	GP-7	12/2/2003	Golder ⁵	<1	<1	10.2	<1		<2	<1	<1	<1	<1	<1	<1	<1	<1	<1
GP-8A	GP-8	12/2/2003	Golder ⁵	<1	<1	1.69	<1		<2	<1	<1	<1	<1	<1	0.554	<1	<1	<1
F1	F1-GW-081314	08/13/2014	Farallon	< 0.20	< 0.20	0.21	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
F2	F2-GW-081314	08/13/2014	Farallon	< 0.20	< 0.20	0.80	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
F3	F3-GW-081314	08/13/2014	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20	0.74	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
F4	F4-GW-081314	08/13/2014	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
F5	F5-GW-081314	08/13/2014	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	0.66	< 1.0	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
F6	F6-GW-081314	08/13/2014	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
			Define the second secon	NE	NE	NE 1(NE	20	160	NE 400	NE	NE	NE	NE	5		5	0.2
		MICA Metho	od B Cleanup Levels ³	NE	80	16	800	24.3	160	400	800	NE	800	800	20.8	160	0.54	24

										Analytical Res	ults ¹ (microgra	ams per liter)		-		_		
Sample Location	Sample Identification	Sample Date	Sample By	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	cis-1,2-Dichloroethene	Isopropylbenzene	Methyl tertiary butyl ether	Naphthalene	n-Butylbenzene	n-Propylbenzene	p-Isopropyltoluene	Sec-Butylbenzene	Tert-Butylbenzene	Tetrachloroethene	trans-1,2-Dichloroethene	Trichloroethene	Vinyl Chloride
F7	F7-GW-081314	08/13/2014	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
F8	F8-GW-081314	08/13/2014	Farallon	0.80	< 0.20	< 0.20	15	< 0.20	2.8	4.6	19	0.23	6.8	0.29	< 0.20	< 0.20	< 0.20	< 0.20
		MTCA Metho	od A Cleanup Levels ²	NE	NE	NE	NE	20	160	NE	NE	NE	NE	NE	5	NE	5	0.2
		MTCA Metho	od B Cleanup Levels ³	NE	80	16	800	24.3	160	400	800	NE	800	800	20.8	160	0.54	24

NOTES:

Results in **bold** denote concentrations exceed applicable Washington State Model Toxics Control Action Cleanup Regulation (MTCA) Method A or B cleanup levels.

< denotes analyte not detected at or exceeding the reporting limit listed.

Only select analytes and analytes with detections exceeding the laboratory reporting limit are shown.

¹Analyzed by U.S. Environmental Protection Agency (EPA) Method 8260 B or 8260C unless otherwise noted.

²MTCA Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013. ³Washington State Cleanup Levels and Risk Calculations under MTCA, Standard Method B Formula Values for Soil from

CLARC Master spreadsheet downloaded on 9/24/2015 from https://fortress.wa.gov/ecy/clarc/CLARCDataTables.aspx

⁴Blymyer Engineers, Inc. ⁵Golder Associates Inc.

^aAnalyzed by EPA Method 601.

Farallon = Farallon Consulting, L.L.C. ND = Not detected and reporting limit is unknown NE = Cleanup level not established VOCs = volatile organic compounds

								I			Analy	tical Results ¹	(micrograms	s per liter)	1			T	I			
Sample Location	Sample Identification	Sample Date	Sampled By	Methylene Chloride	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	trans-1,2-Dichloroethene	Chloroform	Chloromethane	Freon	1,1,1-Trichloroethane	Bromodichloromethane	Carbon Tetrachloride	1,2-Dichloropropane	trans-1,3-dichloropropene	cis-1,3-Dichloropropene	1,1,2-Trichloroethane	Chlorodibromomethane	Bromoform	1,1,2,2-Tetrachloroethane	Chlorobenzene
W-1	Waste Oil Tank Excavation ^a	6/29/1988	Blymyer ⁴	<1,000		<1,000	<1,000	<1,000	<1,000		<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000
	MW-1	1/17/2001	Golder ⁵	0.065	0.062	<0.4	<0.4	<0.4	<0.4	< 0.4	<0.4	<0.4	< 0.4	<0.4	<0.4	<0.4	<0.4	< 0.4	< 0.4	<0.4	<0.4	<0.4
MW-1	MW-1	6/7/2001	Golder ⁵	ND	ND		ND		ND	ND												
	MW-1	12/3/2003	Golder ⁵	<2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-2	MW-2	1/17/2001	Golder ⁵	0.089	0.11	<0.4	<0.4	< 0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	< 0.4	<0.4	<0.4	<0.4
IVI VV -2	MW-2	6/7/2001	Golder ⁵	ND	ND		ND		ND	ND												
	MW-2	12/3/2003	Golder ⁵	<2	<1	<1	<1	<1	<]	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-3	MW-3	1/17/2001	Golder ⁵	0.064	<0.4	<0.4	0.053	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
IVI VV - 3	MW-3	6/7/2001	Golder ⁵	ND	ND		ND		ND	ND												
	MW-3	12/3/2003	Golder ⁵ Golder ⁵	<2 0.087	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-4	MW-4	1/17/2001	Golder ⁵		0.12	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
101 00 -4	MW-4	6/7/2001	Golder ⁵	ND	0.13		ND		ND	ND			 <1									
	MW-4 MW-5	12/3/2003	Golder ⁵	<2	<1	<1	<0.4	<1 <0.4	<1 0.088	<1	<1	<1	-	<1	<1	<1	<1 <0.4	<1 <0.4	<1 <0.4	<1	<1	<1
MW-5	MW-5 MW-5	1/17/2001 6/7/2001	Golder ⁵	0.08 ND	0.23	<0.4				0.096		<0.4	<0.4	<0.4	<0.4	<0.4				<0.4	<0.4	<0.4
101 00 -3	MW-5	12/3/2003	Golder ⁵	<2 ND	0.25 <1	<1	ND <1	<1	ND	ND <1	<1	<1	<1	<1	 <1	<1	<1	<1	<1	<1	 <1	<1
	MW-6	1/17/2001	Golder ⁵	0.1	0.097	<0.4	<0.4	<0.4	<0.4	0.055	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
MW-6	MW-6	6/7/2001	Golder ⁵	ND	0.097	~0.4	<0.4 ND	<0.4	<0.4 ND	0.033 ND	~0.4	~0.4	~0.4	<0.4	~0.4	~0.4	~0.4	<0.4	~0.4	~0.4	<0.4 	~0.4
	MW-6	12/3/2003	Golder ⁵	< <u>1</u> <2	<1	<1	<1	<1	<1 ND	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
RW-2	RW-2	12/3/2003	Golder ⁵	<2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
GP-1A	GP-1	12/2/2003	Golder ⁵	<2	<1	<1	<1	<1	<1 <1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1 <1	<1	<1
GP-2A	GP-2	12/2/2003	Golder ⁵	<2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
GP-3A	GP-3	12/2/2003	Golder ⁵	<2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
GP-4A	GP-4	12/2/2003	Golder ⁵	<2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
GP-5A	GP-5	12/2/2003	Golder ⁵	<2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
GP-7A	GP-7	12/2/2003	Golder ⁵	<2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
GP-8A	GP-8	12/2/2003	Golder ⁵	<2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
			od A Cleanup Levels ²	5	NE	NE	5	NE	NE	NE	NE	200	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
NOTES:		MTCA Meth	od B Cleanup Levels ³	21.9	7.68	400	0.481	160	1.41	NE	NE	16,000	0.706	0.625	1.22	NE	NE	0.768	0.521	5.54	0.219	160

NOTES:

Results in **bold** denote concentrations exceed applicable Washington State Model Toxics Control Action Cleanup Regulation (MTCA) Method A or B cleanup levels.

< denotes analyte not detected at or exceeding the reporting limit listed. Only select analytes and analytes with detections exceeding the laboratory reporting limit are shown.

¹Analyzed by U.S. Environmental Protection Agency (EPA) Method 8260C unless otherwise noted.

²MTCA Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

³Washington State Cleanup Levels and Risk Calculations under MTCA, Standard Method B Formula Values for Soil from

CLARC Master spreadsheet downloaded on 9/24/2015 from https://fortress.wa.gov/ecy/clarc/CLARCDataTables.aspx

⁴Blymyer Engineers, Inc. ⁵Golder Associates Inc.

^aAnalyzed by EPA Method 601.

NE = Cleanup level not established VOCs = volatile organic compounds

ND - Not detected and reporting limit is unknown.

													Analytical	Results ¹ (micro	grams per liter)									
						_		P	olycyclic Arom	atic Hydrocark	oons		-	-					Carcinogenic Pol	lycyclic Aroma	tic Hydrocarbo	ns	_	-
Sample Location	Sample Identification	Sample Date	Sampled By	1-Methylnaphthalene	2-Chloronaphthalene	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i)Perylene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene	Benzo(a)anthracene	Benzo(a)Pyrene	Benzo(b)Fluoranthene	Benzo(j,k)Fluoranthene	Benzo(k)Fluoranthene	Chrysene	Dibenzo(a,h)Anthracene	Indeno(1,2,3-cd)Pyrene	Total cPAI TTEC
MW-1	MW-1 ^a	4/8/1998	Golder ⁴		< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094		< 0.094	< 0.094	< 0.094	< 0.094	0.07
	MW-1	1/17/2001	Golder ⁴		< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08		< 0.08	< 0.08	< 0.08	< 0.08	0.06
	MW-2 ^a	4/8/1998	Golder ⁴		< 0.1	0.18	0.84	< 0.1	< 0.1	< 0.1	< 0.1	0.8	< 0.1	0.72	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1	< 0.1	0.08
MW-2	MW-2	1/17/2001	Golder ⁴		< 0.08	< 0.08	0.32	< 0.08	< 0.08	< 0.08	< 0.08	0.32	0.22	0.47	< 0.08	< 0.08	< 0.08	< 0.08		< 0.08	< 0.08	< 0.08	< 0.08	0.06
	MW-2-081214	08/12/2014	Farallon	0.60		< 0.094	0.33	< 0.094	< 0.094	< 0.0094	< 0.094	0.18	0.17	< 0.094	< 0.094	< 0.0094	< 0.0094	< 0.0094	< 0.0094		< 0.0094	< 0.0094	< 0.0094	0.01
MW-3	MW-3 ^a	4/8/1998	Golder ⁴		< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96		< 0.96	< 0.96	< 0.96	< 0.96	0.72
101 00 -5	MW-3	1/17/2001	Golder ⁴		< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08		< 0.08	< 0.08	< 0.08	< 0.08	0.06
MW-4	MW-4	1/17/2001	Golder ⁴		< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.08	< 0.08	< 0.08	< 0.08		< 0.08	< 0.08	< 0.08	< 0.08	0.06
MW-5	MW-5	1/17/2001	Golder ⁴		< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.08	< 0.08	< 0.08	< 0.08		< 0.08	< 0.08	< 0.08	< 0.08	0.06
101 00 -5	MW-5-092314	09/23/14	Farallon	< 0.095		< 0.095	< 0.095	< 0.095	< 0.095	< 0.0095	< 0.095	< 0.095	< 0.095	< 0.095	< 0.095	< 0.0095	< 0.0095	< 0.0095	< 0.0095		< 0.0095	< 0.0095	< 0.0095	0.01
MW-6	MW-6	1/17/2001	Golder ⁴		< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08		< 0.08	< 0.08	< 0.08	< 0.08	0.06
IVI VV -0	MW-6-092315	09/23/14	Farallon	< 0.096		< 0.096	< 0.096	< 0.096	< 0.096	< 0.0096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.096	0.01	< 0.0096	< 0.0096	< 0.0096		< 0.0096	< 0.0096	< 0.0096	0.01
RW-1	RW-1 ^a	4/8/1998	Golder ⁴		< 0.093	26	1.1	< 0.093	0.15	< 0.093	< 0.093	2.9	11	2.5	< 0.093	< 0.093	< 0.093	< 0.093		<0.093	< 0.093	< 0.093	< 0.093	0.07
RW-2	RW-2 ^a	4/8/1998	Golder ⁴		< 0.098	39	1.3	<0.098	< 0.098	<0.098	< 0.098	2.1	43	2.3	0.27	<0.098	< 0.098	< 0.098		<0.098	< 0.098	< 0.098	<0.098	0.07
K W -2	RW-2-081214	08/12/2014	Farallon	39		38	1.2	0.17	0.14	< 0.0094	< 0.094	3.9	1.3	1.5	< 0.094	< 0.0094	< 0.0094	< 0.0094	< 0.0094		< 0.0094	< 0.0094	< 0.0094	0.01
F-7	F7-GW-081314	08/13/2014	Farallon	< 0.099		< 0.099	< 0.099	< 0.099	< 0.099	< 0.0099	< 0.099	< 0.099	< 0.099	< 0.099	< 0.099	< 0.0099	< 0.0099	< 0.0099	< 0.0099		< 0.0099	< 0.0099	< 0.0099	0.01
		MTCA Method A	· · ·	NE	NE	NE	NE	NE	NE	NE	NE	NE	160	NE	NE									0.1
		MTCA Method B	Cleanup Levels ³	1.51	NE	32	960	NE	4,800	NE	640	640	160	NE	480									0.012

NOTES:

Results in **bold** denote concentrations exceed applicable Washington State Model Toxics Control Action Cleanup Regulation (MTCA) Method A or B cleanup levels.

< denotes analyte not detected at or exceeding the reporting limit listed.

Only select analytes and analytes with detections exceeding the laboratory reporting limit are shown. ¹Analyzed by U.S. Environmental Protection Agency (EPA) Method 8270 or 8270D.

²MTCA Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013. ³Washington State Cleanup Levels and Risk Calculations under MTCA, Standard Method B Formula Values for Soil from

CLARC Master spreadsheet downloaded on 9/24/2015 from https://fortress.wa.gov/ecy/clarc/CLARCDataTables.aspx ⁴Golder Associates Inc.

^aAnalyzed by EPA Method 8270.

Farallon = Farallon Consulting, L.L.C. NE = Cleanup level not established PAHs = polycyclic aromatic hydrocarbons

PAHs
EC
)7
6
8
)6
)1
'2
)6
)6
)6
)1
)6
)1
)7
)7
)1
)1
1
12

							Analytical (microgram				
Sample Location	Sample Identification	Sample Date	Sampled By	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
Oil Tank Excavation	W-1	6/29/1988	Blymyer ⁴	<100	<2,000	<100	800	1,900	<50	<100	<100
MW-1_88	MW-1	10/6/1988	Blymyer ⁴				<100	<100			
MW-2A_88	MW-2A	10/6/1988	Blymyer ⁴				<100	100			
MW-3_88	MW-3	10/6/1988	Blymyer ⁴				<100	<100			
MW-4_88	MW-4	10/6/1988	Blymyer ⁴				<100	<100			
MW-5_88	MW-5	10/6/1988	Blymyer ⁴				<100	<100			
		MTCA Method A	Cleanup Levels ²	5	NE	5	50	15	2	NE	NE
		MTCA Method B	Cleanup Levels ³	0.0583	3,200	8	NE	NE	NE	80	80

NOTES:

-- denotes sample not reported

NE = Cleanup level not established

< denotes analyte not detected at or exceeding the reporting limit listed. Results in **bold** denote concentrations exceed regulatory screening level.

¹Method of analysis unknown.

²Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses,

Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

³Washington State Cleanup Levels and Risk Calculations under MTCA, Standard Method B Formula Values for Soil from

CLARC Master spreadsheet downloaded on 9/24/2015 from https://fortress.wa.gov/ecy/clarc/CLARCDataTables.aspx ⁴Blymyer Engineers, Inc.

APPENDIX A BORING LOGS

REMEDIAL INVESTIGATION, FOCUSED FEASIBILITY STUDY, AND CLEANUP ACTION PLAN 6050 East Marginal Way Seattle, Washington

Farallon PN: 1071-010

6	GROUNDWATER
	TECHNOLOGY Division of Oll Recovery Systems, Inc.
	Division of Oil Recovery Systems, Inc.

		• • • • •	-	1	Drilling Log
ProjectBlymyer/Seatt	M	ONITORIN Owner . <u>C</u> e	IG WELL	ightways	Sketch Map
LocationSeattleWA		Project Nu	mber <u>201–799–501</u>	2	
Date Drilled <u>6/27/88</u>	Total Depth	of Hole	24_ft_Diameter7_	5in	
Surface Elevation	Nater Level	, Initial9	. <u>ft:24-hrs</u>		
Screen: Dia					
Casing: Dia. 4 in.	ength	ft	Туре РТ	<u>/C</u>	
Drilling Company _Soil_Sa	mpling_	Drilling Me	thod Hallow Stem	LAuger -	Notes
Driller Ketvirtis_		Log by	M		
Depth (Feet) Weti Construction Notes	Sample Number	Graphic Log	C		bil Classification re, Structures)
$ \begin{array}{c} $	$\begin{bmatrix} A_{19} \\ 12 \\ 12 \\ 12 \\ \end{bmatrix}$ $\begin{bmatrix} B_1 \\ 1 \\ 1 \\ 1 \\ \end{bmatrix}$ $\begin{bmatrix} C_2 \\ 2 \\ 2 \\ 2 \\ 2 \\ \end{bmatrix}$ $\begin{bmatrix} C_2 \\ 2 \\ 2 \\ 2 \\ \end{bmatrix}$ $\begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}$		Brown fine (medium d (grades, Dark gray-b sand (sof odor) Encountered (grades m Dark gray-b (medium d	to medium lense, moi dark gray prown, cla t, moist l water 6/ more sand, prown fine lense, wet	over base coarse, ±4 inches n sand with some gravel ist, no hydrocarbon odor) /-brown, no gravel) //brown, no gravel) //over, no hydrocarbon //27/88 (0945 hr.) // wet) // to medium sand // no hydrocarbon odor) // installed monitoring well

2 Drilling Log MONITORING WELL Consolidated Freightwys Project Blymyer/Seattle ____ Owner ____ Sketch Map Seattle, WA _____ Project Number 201-799-5012 Location .__ Date Drilled 6/27/88 ____ Total Depth of Hole 14.5ft Diameter 7.5 in. Surface Elevation _____ Water Level, Initial 8.5 ft 24-hrs Screen: Dia. _____ Length _____ Slot Size _____ Casing: Dia _____ Length _____ Type _____ Drilling Company Soil Sampling ___ Drilling Method Hollow Stem Auger Notes Driller _____C. Kervirtis _____Log by M. Winters Well Construction Depth (Feet) 3 Notes Sample Number Graphic **Description/Soil Classification** (Color, Texture, Structures) Asphalt \pm 2 inches over base coarse, \pm 4 inches 0 Brown fine to medium sand with some gravel (medium dense, moist, no hydrocarbon odor) 2 12 10 (grades no gravel) 8 6 R **K** 8 __Encountered water 6/27/88 (1145 hr.) 2 2 3 Dark gray-brown fine sandy silt with some clay 10 (soft, wet, no hydrocarbon odor) 12 С 2 2 Dark gray-brown fine to medium sand 14 28 (medium dense, wet, no hydrocarbon odor) Drilled to 14.5 feet, rig refusal on wood, backfilled boring with bentonite and concrete 16 18 20 22 74

	GROUN TECHN Division of Oil F	IOLO	GY		
				2A	Drilling Log
Project Blymy Location Seatt	er/Seattle le, WA	MC 	Owner Project N	NG WELL Consolidated Freightw 201-799-5012	ays. Sketch Map
	•			24.ft. Diameter .7.5.in.	
				.5 ft. 24.hrs	
				Slot Size020 in	
Casing: Dia	<u>in.</u>	ength	<u>4 ft.</u>	Type PVC	r Noles
Drilling Company Driller <u>C. Ke</u>	Soll Samp. tvirtis	11ng	Drilling N	Method Hollow Stem Auge M. Winters	
Depth (Feet) Well Construction	Notes	Sample Number	Graphic Log		llon/Soil Classification Texture, Structures)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				Brown fine to medium (medium dense, moi (grades no gravel)	r 6/27/88 (1215 hr.) sandy silt with some clay rocarbon odor)

Surface Elevation Water Level, Initial 9 ft. 24-hrs Screen: Dia 2 in. Length 20 ft. Casing: Dia Length Type				м		THO LET I	· 3	Drilling Log
Location Seattle, WA Project Number 201-799-5012 Date Drilled 6/27/88 Total Depth of Hole 24ft. Diameter 7.5in. Surface Elevation Water Level Initial 9 ft: 24 hrs. Screen Dia 2 in. Length 20 ft. Stol Size 020 in. Casing: Dia 2 in. Length 4 ft. TypePUC DrillerC. Ketvirtis Log by M. Winters DrillerC. Ketvirtis Log by M. Winters DrillerC. KetvirtisLog by M. Winters DrillerC. KetvirtisLog by M. Winters TrillerC. KetvirtisLog by M. Winters F T	Project	Blymye	er/Seatt1	e	OWITOK	ING WELL Consolidated	Ereichtways.	Sketch Map
Data Drilled <u>6/27/88</u>	Location	Seatt1	le, WA	~~~~~	Project	Number 201-799-	5012	
Surface Elevation Water Level, Initial 9 ft: 24-hrs Screen: Dia 2 in. Length 20 ft. Casing: Dia 2 in. Length 4 ft Drilling Company Soil Sampling Drilling Method Hollow Stem Auger Drilling Company Soil Sampling Drilling Method Hollow Stem Auger Drilling Company Soil Sampling Drilling Method Hollow Stem Auger Driller C. Ketvirtis Log by M. Winters Description/Soil Classification (Color, Texture, Structures) Noies 0 Image: Structure Structure, Structures) Image: Structure Structure, Structures) 10 Image: Structure Structure, Structu	Date Dri	illed 6/2	7/88	fotal Depth	of Hole	24ft. Diameter	7.5in.	
Screen Dia 2 inLength 20 ftSlot Size 020 in Casing: Dia Length Ft Type								
Diffing Company Soil Sampling Driffing Method Hollow Stem Auger Noise Driffing C. Ketvirtis Log by M. Winters Noise Driffing Gompany Soil Sampling Soil Sampling Soil Sampling Soil Sampling Noise Driffing Company Soil Sampling Soil Sampling Soil Sampling Soil Sampling Noise Diffing Company Soil Sampling Soil Sampling Soil Sampling Soil Sampling Noise Soil Sampling Soil Sampling Soil Sampling Soil Sampling Soil Sampling Soil Sampling Soil Sampling Soil Sampling Soil Sampling Soil Sampling Soil Sampling Soil Sampling Soil Sampling Soil Sampling Soil Sampling Asphalt ± 2 inches over base coarse, ± 4inches Soil Sampling Asphalt ± 2 inches over base coarse, ± 4inches Gray-green fine to medium sand vith some gravel C Soil Soil Sampling Soil Soil Sampling Gray-green fine to medium sand Soil Soil Soil Soil Soil Soil Soil Soil								
Duritier C. Ketvirtis Log by M. Winters 9 10 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 13 12 13 12 13 13 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 15 12 15 12 13 14 12 14 12 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14	Casing: I	Dia2	امن	_engthd	4_ft	Type	PVC	
Sp Sp <th< td=""><td>Drilling (</td><td>Company</td><td>Soil Samp</td><td>ling</td><td>Drilling I</td><td>Method Hollow S</td><td>tem Auger</td><td>Notes</td></th<>	Drilling (Company	Soil Samp	ling	Drilling I	Method Hollow S	tem Auger	Notes
Asphalt ± 2 inches over base coarse, ± 4inches Gray-green fine to medium sand with some gravel (medium dense, moist, no hydrocarbon odor) A A A A A A A A A A A A A	Driller _	C. Ket	virtis		Log by	M. Winters		
Asphalt ± 2 inches over base coarse, ± 4inches Gray-green fine to medium sand with some gravel (medium dense, moist, no hydrocarbon odor) A A A A A A A A A A A A A	8	5		1	8			
-2 -4 <t< td=""><td>Depth (Fe</td><td>Well Constructi</td><td>Notes</td><td>Sample Number</td><td>Graphic Lo</td><td></td><td></td><td></td></t<>	Depth (Fe	Well Constructi	Notes	Sample Number	Graphic Lo			
18 20 22 22 24 Drilled to 24 feet, installed monitoring well	-0 - -2 - -4 - -4 - -6 - -10 - -12 - -12 - -14 - -12 - -14 - -14 - -16 - -18 -			A 12 9 8 8 8 2 1 2 1 2 1 2		Gray-green f (medium des (grades das Brown silty o Encount Dark green-bu (loose, wet Dark green-gra (medium des (grades coa	ine to medium nse, moist, m rker, less gr clay (soft, m tered water (rown clayey f t, moderate h ay fine to me nse, wet, no	m sand with some gravel no hydrocarbon odor) ravel) noist, no hydrocarbon odor) 5/27/88 (1420 hr.) fine sand hydrocarbon odor) edium sand product odor)

OUNE CHNO

	GROUN TECHN Division of OII R	IOLO	GY		Drilling Log
Location Seatt Date Drilled 6/28 Surface Elevation Screen: Dia 2 1 Casing: Dia 2 1 Drilling Company	Le, WA 3/88т w .пц Soil Samp	bial Depth c later Level, angth .20_ angth .4_ ling	Dwner Project N of Hole initial <u>ft .</u> Drilling N	ING WELL Consolidated Freightways 201-799-5012 24ft. Diameter 7.5 in. 9 ft. 24-hre Slot Size .020 in. Type Hollow Stem Auger M. Winters	Skeich Map Notes
Depth (Feet) Well Construction	Notes	Sample Number	Graphic Log		oll Classification are, Structures)
	1414	$\begin{bmatrix} A \\ 7 \\ 4 \\ 4 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} C \\ 3 \\ 3 \\ 3 \end{bmatrix}$		<pre>(slight hydrocarbon o Brown fine to medium san (medium dense, moist, (grades dark gray-bro (slight hydrocarbon o Encountered water 6/2 Dark gray-brown clayey s (soft, wet, no product Gray-brown fine to medi (loose, wet, no product) </pre>	ud with some gravel no product odor) own, finer, no gravel) odor) 28/88 (0840 hr.) silt with sand ct odor) um sand

		•	L.		<u> </u>	Drilling Log
Project _B	<u>Slymye</u> :	r/Seattl	e r	Owner .	ING WELL Consolidated Freightways Skelch Map	
Location	eattle	e, WA		_ Project	Number 201-799-5012	
					.24_ft_ Diameter <u>10_5_in</u>	
					9 ft. 24-hrs	
Screen: Dia.	_4_i	□	.ength	20_ft_	Slot Size	
					ТуреРУС	
					Aethod Hollow Stem Auger Notes	
Driller	. Kety	virtis		Log by	M. Winters	
8	8	······	1	8		
Depth (Feet)	Construction	Noles	Sample Number	Graphic Loo	Description/Soil Classification (Color, Texture, Structures)	
			$\begin{bmatrix} A \\ 4 \\ 4 \\ \end{bmatrix}$ $\begin{bmatrix} B \\ 2 \\ 1 \\ 2 \\ \end{bmatrix}$ $\begin{bmatrix} C \\ 2 \\ 1 \\ 2 \\ \end{bmatrix}$		Asphalt ± 2 inches over base coarse, Gray-green fine to medium sand with (medium dense, moist, moderate hyd (grades darker, no gravel, strong odor, visible free product) Dark gray-brown clayey silt with san (soft, moist to wet, moderate hydr C.Encountered water 6/28/88 (0950 (grades wet, no product odor) (grades more sand) Dark gray-brown fine to medium sand (loose, wet, no product odor) Dark gray-brown fine to medium sand (loose, wet, no product odor)	some gravel rocarbon odor) hydrocarbon d ocarbon odor) hr.)

	ENVIRONMENTAL FIELD DRILLING LOG												
Project Name:	Conso	lidate	d Fr	reight	Nays	Project Number:	T-	1768-01	Well Number: P1				
Logged By:		λ. Τι				Surface Elevation			Well 24 N 4E Location: Twnshp Range	20-729 Section 1/4, 1/4			
	Strat	oprok	pe	Hole Diameter:	2"	Casing Size/Typ	e:		Depth <u>~7</u> to Water: <u>7.46</u>	Encountered Static			
Date Sta	irted:	8/8/	97	Drilling Co	ompany:	TE Todd	4		Methods of Decontamination Pr Alconox, Water	- 1			
Date Co	mpleted:			Driller:		Ioad							
Depth in Feet	Sample Type & No.	Sample Depth Interval	Time	Concentration	Blow Count	Recovery Length / %	nscs		Soil Description				
									Ground Surface	-			
- 1										-			
- 2								-		-			
- 3										-			
- 4								c (1)					
- 5		4'-7'	0835			67	GM	Gray, silt, GRAVEL	x, fine to medium :	aray, the -			
0		•					SP	Black and	tan, fues to me moist to wet.				
		7-10	0843	> 0		83	SP/	Black, fi	ine to medium SA	ND,			
- ng							- AK	grading .	to brown and gray mediumi SAND; W lack, fine to medium	et: stratifies			
- 9								with b	lack, fine to medium	sandi			
-10									DM OF PROBE	ID FEET			
- 11										·····			
- 12													
									• •				
- 3										-			
-						-				4			
I													
SHAN	INO			SON, ental se			me of ation of			Date Job No.			
				E, WASH									

· '

Project Name: Logged		olidat , Ti		Freigh		Project Number Surface Elevatio			WellP2Number:P2Well24 NLocation:TwnshpRange	20-129 Section 1/4	
By: Drilling Method:	Stra	topro	be F		2"	Casing Size/Typ			Depth ~ 7,5 to Water: Methods of Decontamination F	Encountere	
Date Sta Date Co)riller:		То			Alconox, wate	•	
Depth in Feet	Sample Type & No.	Sample Depth Interval	Time	Concentration	Blow Count	Recovery Length / %	nscs		Soil Description		
- 1			0910	0		100		Grav and bo	own, oilty, sardy, fu	ne GRAVEL	
		2'-5'				100	GNY SP-SN SP	I AND SULLAN	eaton -re		
		5'-8'	0915	232		83	ML/ SP	Ing to	hilly clayey SILT o medium SAND; mo hydrocauben odor	15t to Wit	
- 63 - 9 - 10 -								BOTTOM	I OF PROBE	3 TEET	
									• • •		
-						Na	me of	Job		Date	
SHAN	SHANNON & WILSON, INC. ENVIRONMENTAL SERVICES SEATTLE, WASHINGTON (206) 632-8020							C. Location of Job Job			

-	ENVIRONMENTAL FIELD DRILLING LOG												
	Project Name:	Conse	lidat	ed t	Freight	Inays	Project Number:	Τ-	1768-01	Well Number: P3			
•	Logged By:		. Ti	× 10			Surface Elevation			Well 24N 4E Location: Twnshp Range	20-29 Section 1/4, 1/4		
	Drilling Method:			c	Hole Diameter:	Z"	Casing Size/Typ	e:		Depth	Encountered Static		
1	Date Sta			97	Drilling C	ompany:		TEG	ł	Methods of Decontamination P Alconox, Wak	- 1		
1	Date Co	mpleted		L	Driller:		Todd			Alconox, war	.i r (rise		
	Depth in Feet	Sample Type & No.	Sample Depth Interval	Time	Concentration	Blow Count	Recovery Length / %	nscs	Soil Description				
-	- \ - \ - 2								-				
			2'-5'	0947	0		100	GМ	GRAVE	, fine to medium, so L; dry,			
	- 3 - 4							SP	Brown, f to mois	ine to medium SA st.	ND; dry _ -		
	- 5 - 6		5'-8'	0951	0		63	SP		to nuclium SAND;			
	- - 7							ML	moist	·	-		
	- 8							SP		fine to medium SAN 1 OF PROBE S	ID; Wet, TEET		
	- 9										-		
	- 10 -										· •		
	-	-		- 							-		
	-										-		
	-										-		
	-						-				- - 		
	SHANNON & WILSON, INC. Name of Job Date Location of Job Location of Job												
			ENVI	RONME	NTAL SE	RVICES	Loca		Job No. FIG. NO.				

	ENVIRONMENTAL FIELD DRILLING LOG												
Project Name:	Consol	idated	l Fr	reightn	ays 1	Project Number:	T-1	768-01	Well Number: P4				
Logged By:		Ti	VAD			Surface Elevation		20 - 29 Section 1/4, 1/4					
Drilling Method:	Stra-	toprabi	c	Hole Diameter:	2"	Casing Size/Typ	e:		Depth <u>~ 8</u> to Water:	Encountered Static			
Date Sta	arted:	8/8/	97	Drilling Co	mpany:		TEG	rior to Drilling:					
Date Co	mpleted			Driller:		Tode	<u></u>		Aconox, Water	.]			
Depth in Feet	Sample Type & No.	Sample Depth Interval	Time	Concentration	Blow Count	Recovery Length / %	nscs		Soil Description				
										-			
- 2 - 3		2'-5'	1035	30		83	SP	GRAVEL SAND;	1, fune to medium, cau . and tan fine to dry.	medium _			
- 4							SP/ML	dry to	, to micdium SAND o moist.	-			
- 6		5-8	1040) 17.6		50	GM/ ML	SILT, a moist t	- gray, silty, fine fune GRAVEL, sli and fune to muchuum to wet; hydrocarbo sheen on soil.	SAND;]			
- 3 - 9 - 9								EOTTOM (OF PROEE 3 FEE	,π - - -			
- 10 -										·			
- -			-							-			
										-			
SHAN		1 8 1		SON		1	me of			Date			
		ENVI	RONM	ENTAL SE LE, WASHI	RVICES	Loca	ation of	Job No. FIG. NO.					

· · · · ·

ENVIRONMENTAL FIELD DRILLING LOG												
Project	Consol	idated	Fre	eight wa	ys	Project Number	Ť-1	168-01	Well P5			
<u> </u>		Ti				Surface Elevation	n:	Well 24-N 4E Location: Twnshp Range	20729 Section 1/4, 1/4			
Drilling Method:				Hole Diameter:	. Z"	Casing Size/Typ	e:		Depth ~7,5 to Water: <u> の.05</u>	Encountered Static		
Date Sta Date Co	arted:	8/8/9	37	Drilling Co Driller:		Tod	rEG d		Methods of Decontamination P Alconox, Wate			
Depth in Feet	Sample Type & No.	Sample Depth Interval	Time	Concentration	Blow Count	Recovery Length / %	nscs					
		0'-3'	1123	0		100	GM	Gray, pilty, fine to medium sandy,				
- 1							SP- SM	fire GRAVEL; ary. Dark brown, slightly silly, fine to medium SAND; dry to moist.				
- 2							SP	Tab, fine tomedium SAND; try to moist.				
- 3		3'-6'	1129	0		83	SP	SD; dry				
-4								to more		-		
- 6 - 7 - 8		-		7.3			ML	Tan and gray, slightly fine sardy to dean, SILT; moist to wet; slight hydrocarbon sion, sheen.				
- 9								BUTTOM	OF PROBE 9 F	EET ·		
- 10 -										· •		
										-		
_												
- -										-		
-												
SHAN				SON,		Name of Job Location of Job				Date Job No.		
				LE, WASH								

алан сайна. Алан сайна сайн

	ENVIRONMENTAL FIELD DRILLING LOG												
	Project Name:	Conso	lidate	& Fr	reighti	Nays	Project Number	Ť-ľ	768 - 01	Well Number: P6			
	Logged By:		A -				Surface Elevation		20 - 29 Section 1/4, 1/4				
	Drilling Method:	Che	Hopro		Hole Diameter	. 2"	Casing Size/Typ	e:		Location: Twnshp Range Depth <u>~7</u> to Water: 7.89	Encountered Static		
	Date Sta		8/8		Drilling C	ompany:	TE	ĒG	rior to Drilling:				
	Date Co	mpleted			Driller:		Toda	<u>k</u>		Alconox, wate	ur rinse		
	Depth in Feet	Sample Type & No.	Sample Depth Interval	Time	Concentration	Blow Count	Recovery Length / %	nscs		Soil Description			
	Dept	N IX	Sam		SO	B	Г Ъ	_		Ground Surface			
										Giodila Sunace	_		
	- 1												
	- 2										-		
									•				
	- 3 -										4		
	- 4									•••			
	-5												
	- 6												
、 、	- 7		6'9'	1225	10,3		100	SP		n, fine to medium			
	- 8			1230	0.4			ML	Dark gray to wet	, slightly clausy "	SILT; moist -		
	- 9 -			••••				···	fottom o	F PROBE 9 FEE	Т -		
	- 10												
	-												
	-										4		
											-		
	-										-		
ł	-										-		
ł													
							Na	me of .	Job		Date		
	SHANNON & WILSON, INC. ENVIRONMENTAL SERVICES SEATTLE, WASHINGTON						Loca	tion of	Job No.				
		IJ		SEATTL		NGTON 32-8020			FIG. NO.				

. .

	ENVIRONMENTAL FIELD DRILLING LOG												
Project Name:	Consol	idated	Fre	eightu	lays	Project Number:	T-1	1768-01	Well P7				
Logged By:		, Ti				Surface Elevation	r.			26 { 29 Section 1/4, 1/4			
Drilling Method:				lole Diameter:	2"	Casing Size/Typ	e:		Depth ~7.5 to Water: 7.00	Encountered Static			
	arted:			orilling Co			TEE	1	Methods of Decontamination Pri Alconox, Wash				
	mpleted)riller:		To	då		Alconox, Wash				
Depth in Feet	Sample Type & No.	Sample Depth Interval	Time	Concentration	Blow Count	Recovery Length / %	nscs		Soil Description				
										4			
- 1													
- 2								•		. 4			
- 3										-			
- 4										-			
+													
-5									•	-			
- 6		6'9'	1305	0		100	GM	Brown and	gray, silty, sandy daycy SILT, and > SAND; dry to	LRAVEL, -			
							ML	nu duur	a SAND: dry to	wet: -			
- 3			1312	0				slight-	hydrocarbon der	(7.5 feet)			
- 9						and the state			4 OF PELBE				
- 10								BOTION					
F										· •			
-													
-													
È										-			
-													
Ľ													
SHAI	NNO	N & 1	NILS	SON,	INC.		me of ation o			Date Job No.			
		ENV	IRONME	NTAL SE .E, WASH	RVICES			FIG. NO.					

		EN	VIR	ON	ME	NTA	LF	IELD DF	RILLING LOG	
Project Name:	Consi	lidate	ed F	Freigh	tways	Project Number:	T-1	168-01	Well P8	
Logged By:		Tira				Surface Elevation			Well 24N 4E Location: Twnshp Range	20-29 Section 1/4, 1/4
Drilling Method:				lole Diameter:		Casing Size/Typ	e:		Depth <u>~ 7.2</u> to Water:	Encountered Static
Date Sta		8/8/		Drilling Co		T	EG		Methods of Decontamination Pr	
Date Co				Driller:		Todd			Alconox, water	rinse
Depth in Feet	Sample Type & No.	Sample Depth Interval	Time	Concentration	Blow Count	Recovery Length / %	nscs		Soil Description	
										4
										-
- 2								•		
- 3										-
- 4										-
F.										-
-5										_
- 6		6'-9'	1345	0		100	SP/	Tan and	gray, fire to me	dium GAND,-
7							/ML	SILT,	gray, fine to me and fine candy	SILT;
- 3			1352	0				ary to		. · •
F q									• • • •	•
								BEIDM	OF PROBE	
F										· -
-										-
-										
F										-
F										-
SHAN		V & V	WILS	SON,	INC.		me of ation of			Date Job No.
		ENVI	RONME	NTAL SE	RVICES			LOG OF	BORING	FIG. NO.

· · · ·

	6 8 ¢ ted:	rao Pe Dia 17 Drill Drill	le 2" meter: 2" lling Company ller:	Number: Surface Elevation Casing Size/Typ : TE Todd	n: xe: EG	1768-01	Number: H9 Well 24N 4E Location: Twnshp Range Depth ~7 to Water: Methods of Decontamination P Alconox, Wate	Encountered Stati
Depth in Feet Sample	I ype & No. Sample Depth Interval	Time	Concentration Blow Count	Recovery Length / %	nscs		Soil Description	
	5'-6'	1415	0	100			gray, Silly, Savóy clayey SILT, Jr. SAND; dry towe OF PROBE	I GRAVEL S fine to t. FEET.

• '

		EN	VIF	RON	MEI	NTA	LF	FIELD DRILLING LOG	
Project Name:	Conso	lidat	ed F	Freight	tways	Project Number:	Τ-	FI768-01 Well P10	
Logged By:		, Tiv				Surface Elevation		Well 24-N 4E 20-29 Location: Twnshp Range Section 1/4	, 1/4
Drilling Method:				Hole Diameter:		Casing Size/Typ	e:	Depth ~7' Encountere to Water: Sta	
Date Sta				Drilling Co	ompany:	T	EG	Methods of Decontamination Prior to Drilling:	_
Date Co	mpleted			Driller:		Tald		Alconox, rinse water	
Depth in Feet	Sample Type & No.	Sample Depth Interval	Time	Concentration	Blow Count	Recovery Length / %	nscs	Soil Description	
				1				Ground SurfaceGround Surface	-
- 1									-
-2									-
- 3									-
- 4									•
-5 -									-
- 6		6'9'	1509	0		100	SP	Brown, have to medium SAND; moist.	
- 7 - 53			15(5	0			ML	Gravish brown, slightly daying SILT; moist to wet.	 ·
- 9 - 9					ranta di Sar		SP	Dark gray, fine to redium SAND; wet, BOTTOM OF PROBE 9 FEET	
- 10									
-									-
-									-
-									-
F									-
SHAN	INOI						me of ation of		
	IJ			NTAL SE E, WASH (206) 6				LOG OF BORING FIG. N	

۰ · ·

PROJECT: CF/Risk Assessment/WA RECORD OF BOREHOLE MW-1

SHEET 1 OF 1

PROJECT NUMBER: 983 1065

BORING LOCATION:

BORING DATE: 4/7/98

	₽	SOIL PROFILE						SAMPLES			PENET	RATION R	ESISTANCE	мо	NITORIN	IG
FEET	BORING METHOD			Q	ELEV.	~		BLOWS / 6 IN.				BLOWS/F		G 50 G	RAPHIC	:
DEPTH FEET	DNING	DESCRIPTION	uscs	GRAPHIC LOG		NUMBER	түре	140 lb. hammer	N	PID	1		T, PERCENT		NATER LEVEL	
			SN	59	DEPTH	Z	_ ≿	30 inch drop	<u> </u>	ļ	Wp	¥ 	1 WI			
- 0		Moderate brown, sitty fine to coarse SAND and	SP	80.00 000		1				0.6				Locking — Well Cap Flush Monument		-
ŀ		fine GRAVEL, dry (FILL)		300										Monument cemented in place	신신	.
ŀ			L 1	°0°									1	Hedium Bentonite Chips	99	
r		Loose, moderate brown and olive gray, silty fine to coarse SAND, becoming wet below ~6 ft bgs,	SM			<u> </u>								Chips	20	
		trace wood pieces at ~8.0 ft bgs				1	SS	6-10-7	17	0.7					22	
- 5														Monterey #2/12 Sand		
5	ja ja					2	SS	11-20-12	32	0.7						-
	m Au												-	ATD		•
	w Ste													-B-inch		
ŀ	Holk					3	SS	6-9-10	19	2.2						
L	4-inch I.D. Hollow Stem Auger													2-inch I D		
- 10	-4 Li-4	Compact, olive gray, silty fine to medium SAND, wet	SM- SP			4	SS	9-19-20	39	1.8				2-inch I.D Sch. 40 PVC 0.01-inch Slotted Screen		_
					:			5-15-20	- 39	1.0				Slotted Screen		
						5	SS	?	2	2.0						-
-									<u> </u>							•
- 15																-
r		Total depth 15.5 ft bgs														-
-																-
-																
-																
- 20		,														_
-																-
																-
																•
- 25																_
-																
																-
- 30																-
DRIL	L RIG:	CME 75				LOGG	ED: G	. Zimmerman			.	I				-
DRIL	LING (CONTRACTOR: Cascade Drilling			i	CHEC	KED:							Golde Socia	r	
DRIL	LER:	B. Gose				DATE	4/17/	98					As	socia	ites	

PROJECT: CF/Risk Assessment/WA RECORD OF BOREHOLE MW-2

SHEET <u>1</u> OF <u>1</u>

PROJECT NUMBER: 983 1065

BORING LOCATION:

BORING DATE: 4/7/98

-	ò															
t.	НH	SOIL PROFILE	[SAMPLES	1				BLOWS/		ICE	MONITORING WELL 0 GRAPHIC
DEPTH FEET	BORING METHOD	DESCRIPTION	۰ ۵	GRAPHIC LOG	ELEV.	NUMBER	1,4	BLOWS / 6 IN.	N	PID				10 4		0 GRAPHIC WATER
DEP	BOR		nscs	GRAI LOG	DEPTH	NON	TYPE	140 lb. hammer 30 inch drop			Wp				wi	LEVEL
- 0		Moderate brown and gray, silty medium to coarse		300			\square								Locki Well C Flus	
ŀ		SAND and fine GRAVEL, petroleum odor (FILL)								35			1		Hus Monum cernen in pla	entri///
-				0.0											1	
			L	0081 00											Media Bentor Chip	s III
		Loose, olive gray, fine to medium sandy SILT, trace stratified layers clayey SILT, wet below 6.0	SM			1	SS	7-7-10	17	4.6						881
		ft, petroleum odor										-			Monte #2/1 San	rey
- 5	e					2	SS	6-7-8	15	4.3		-				
-	m Aug					-										
-	w Ste				:										-8-in Boreh	
-	. Holic					3	SS	4-7-8	15	2.1					Boren	
-	4-inch I.D. Hollow Stem Auger														2-inch	a TD thumunumut i i i i i i i i i i i i i i i i i i i
- 10	4-in	Compact, dark gray, unstratified, silty fine to medium SAND, wet, no odor	SM- SP			4	SS	10-13-16	29	2.4					2-inch Sch. PVC 0.01-in Slotte	40 hch
-								0-13-10	29	2.4					Slotte	
-																
		Increase in grain size of sand to fine to coarse SAND				5	SS	4-7-8	15	1.3		_				
								<u> </u>		-						
- 15		Total depth 15.5 ft bgs														- 100
-		iotai ocpur 19.9 it bys														-
-																-
-																-
-																-
- 20																-
-																-
.																-
- 25																1
20																-
-													7			1
																4
														-		4
																4
- 30																-
DRIL	L RIG:	CME 75		L	1	LOGG	ED: G	. Zimmerman			I				1	
DRIL	LING C	ONTRACTOR: Cascade Drilling				CHEC									Gol	der ciates
DRIL	LER:	B. Gose				DATE	: 4/17/	98						U)	Asso	ciates

PROJECT: CF/Risk Assessment/WA RECORD OF BOREHOLE MW-3

SHEET <u>1</u> OF <u>1</u>

PROJECT NUMBER: 983 1065

BORING LOCATION:

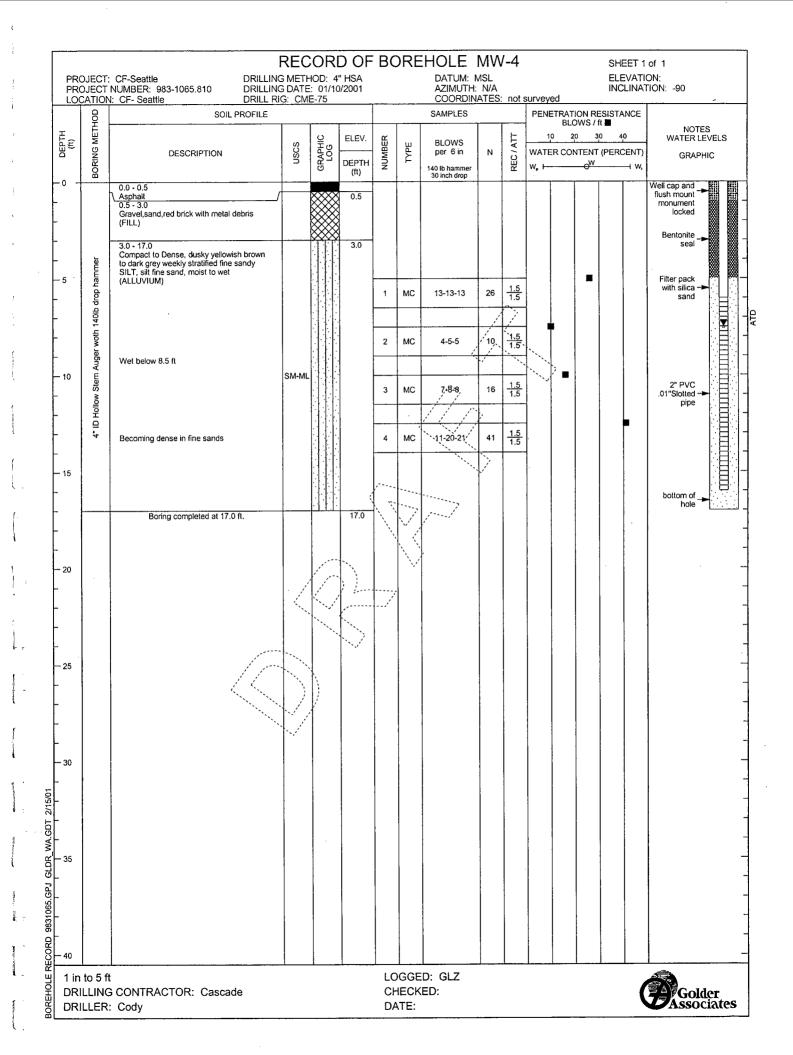
BORING DATE: 4/7/98

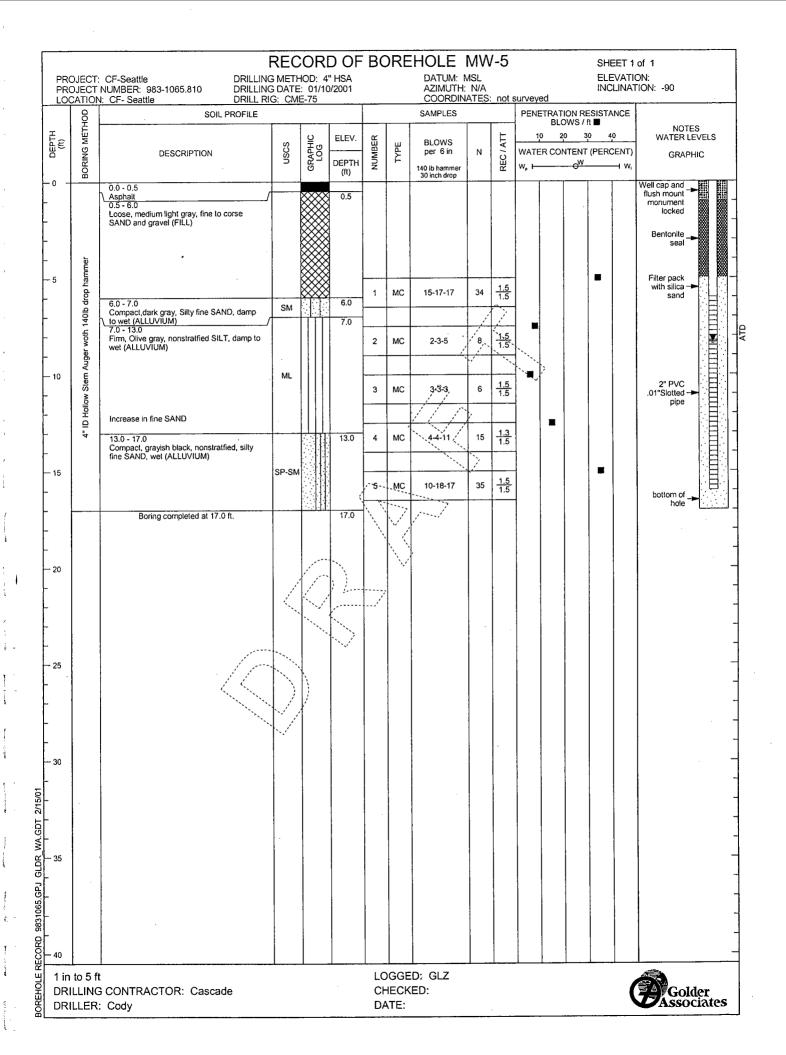
	ЦÖН	SOIL PROFILE						SAMPLES				PENET	RATION		CE	MONITORING
FEET	METI			U	ELEV.			BLOWS / 6 IN.			1 2 1		BLOWS 20	/FT.■ 30 4(05	MONITORING WELL 0 GRAPHIC
DEPTH FEET	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	DEPTH	NUMBER	ТҮРЕ	140 lb. hammer 30 inch drop	N	PID	Wr					WATER
- 0		Gray, silty fine to coarse SAND and fine GRAVEL,		800						3.3					Locki Well C	ap –
-		dry (FILL)		200						3.3					Flus Monun cemen in pla	ted Lilii -
-				000 000 000											Media Bento Chip	
-		Compact, dark gray, silty fine to medium SAND,	SM	00			ļ								Chip	• 88 .
-		stratified layers of clayey silt, trace wood pieces, becoming wet below 6.5 ft	311/1			1	ss	14-13-16	29	1.0						88.
- 5						<u> </u>									Monte #2/1 San	rey –
	uger					2	ss	10-12-12	24	1.1						
-	stem A															ATD
	ollow S					з	SS	8-15-20	35	1.3					~8-in Boreh	
	4-inch I.D. Hollow Stem Auger					\vdash										
- 10	4-incr														1 2-inch Sch. PV(0.01-in	1.D.
		Compact, dark gray, unstratified, silty fine to medium SAND, wet	SM- SP			4	SS	8-14-21	36	1.1					0.01-ii Slotti Scre	ATD three to the second secon
_																
						5	SS	?	?	1.2						
- 15		Total depth 15.5 ft bgs						•		1.2						
-																-
-																-
-																-
-																-
- 20																-
-																
																-
-																-
																-
- 25																_
-													Ź			
																-
																-
- 30																_
DRIL	L RIG:	CME 75]	1	L	000		. Zimmerman								
		ONTRACTOR: Cascade Drilling				CHEC		- - 30805111211					1		Gold	ler
DRIL	ER:	B. Gose					4/17/9	98						P A	SSO	ler Liates

PROJECT: CF/Risk Assessment/WA RECORD OF BOREHOLE RW-1

SHEET <u>1</u> OF <u>1</u>

PROJECT NUMBER: 983 1065


BORING LOCATION:


BORING DATE: 4/7/98

	ЦОН	SOIL PROFILE						SAMPLES			PENETRATION RESISTANCE MONITORING
FEET	3 MET			l ⊇ [′]	ELEV.	L C		BLOWS / 6 IN.		0	PENETRATION RESISTANCE MONITORING BLOWS/FT. MONITORING VELL 0 10 20 30 40 50 GRAPHIC
DEPTH FEET	BORING METHOD	DESCRIPTION	uscs	GRAPHIC LOG	DEPTH	NUMBER	ЗЧΥΓ	140 lb. hammer 30 inch drop	N	PID	
- 0		Moderate yellowish brown, silty fine to medium SAND, some fine gravel, dry (FILL)				<u> </u>				0.6	Locking Well Cap Flush Monument
		SAND, some line gravel, dry (FILL)									Monument cemented in place
											Medium – Bentonite Chips
-		Compact, moderate yellowish brown and medium gray, silty fine to medium SAND, damp	<u>зм</u>							32	
-		gray, any mic to modern or to, damp				1	SS	11-11-10	21	52	Monterey –
- 5	er					2	SS	6-5-7	12	120	Monterey — · · · · · · · · · · · · · · · · · ·
-	6-inch I.D. Hollow Stem Auger							0.0.7	12	120	-10.5-inch
-	low Ste					3	SS	7-5-7	12	125	-10.5-inch-
-	Ю. Ho	Loose, olive gray, clayey SILT, some wood pieces, little fine to medium sand, wet	SM- ML			Ľ				125	
	6-inch	Potential free product observed in sample									4-inch I.D. → H Sch. 40 → H PVC 0.01-inch → H Slotted → H
- 10		Compact, dark gray, silty fine to medium SAND, wet	SM- SP			4	SS	7-9-12	21	28	0.01-inch Slotted Screen
						5	SS	7-15-22	37	17	
- 15											 4-inch I.D 4-inch I
-		Total depth 15.5 ft bgs									
-											
-											
-											
- 20			-								
- 25											-
·											
- 30											
		CME 75						. Zimmerman			Â
DRILLIN		ONTRACTOR: Cascade Drilling B. Gose				CHEC DATE:	KED: 4/17/9	98			Golder

PROJECT NUMBER: 983 108 BORNA LOCATION Image: 100 mining of the total sectors of total sec	PF	SOI	ECT: CF/Risk Assessment/WA	RE	CO	RD O)F I	BO	REHOLI	EF	RW	
1 50L PROPILE SAMPLES PROTINITION REL 11 (1) (1) (1) (1) (1) (1) (1) (1) (1)		_		.			.					DATUM:
0 Moderate reflexition bown, sky fire to coarse SAVA and the GRAVEL, sky, performent dar (PL) -	P	ROJI	ECT NUMBER: 983 1065	BOR	ING I		ON:					BORING DATE: 4/7/98
0 Moderate splanetic brow, silly fire to coarse 5AAD, and the GRAVEL ay, periode modor (PL) 0 404 404 404 404 404 1 504 404 1 504 404 1 504 505		ПНОВ	SOIL PROFILE	r		·			SAMPLES	<u>, </u>		PENETRATION RESISTANCE MONITORING
0 Moderate splanetic brow, silly fire to coarse 5AAD, and the GRAVEL ay, periode modor (PL) 0 404 404 404 404 404 1 504 404 1 504 404 1 504 505	FEET	G ME1			нс	ELEV.	с.		BLOWS / 6 IN.			
0 Moderate selected berow, lately the to coarse SAND, and the GRAVEL, by, performed off (hL) 0	DEPTH	BORIN	DESCRIPTION	uscs	GRAP LOG	DEPTH	NUMBI	TYPE				W/ IFVEI
Compact, the gray, shy fire to coarse SAND, before - 6 th before - 6 th			Mederate vellewith brown, silv fine to coarse									
Compact, the gray, thy fire to cate SAND, we have a state of the product of the gray, thy fire to cate SAND, we have a state of the product of the gray, thy fire to cate SAND, we have a state of the product of the gray, thy fire to cate SAND, we have a state of the product of the gray, thy fire to cate SAND, we have a state of the product of the gray, thy fire to cate SAND, we have a state of the product of the gray, thy fire to cate SAND, we have a state of the product of the gray, thy fire to cate SAND, we have a state of the product of the gray, thy fire to cate SAND, we have a state of the product of the gray, thy fire to cate SAND, we have a state of the product of the gray, thy fire to cate SAND, we have a state of the product of the gray, thy fire to medium SAND, we have a state of the product of the gray, thy fire to medium SAND, we have a state of the product of the gray of the to medium SAND, we have a state of the product of the gray of the to medium SAND, we have a state of the product of the gray of the to medium SAND, we have a state of the product of the gray of the to medium SAND, we have a state of the product of the gray of the to medium SAND, we have a state of the product of the gray of the to medium SAND, we have a state of the product of the gray of the to medium SAND, we have a state of the product of the gray of the to medium SAND, we have a state of the product of the gray of the to medium SAND, we have a state of the product of the gray of the to medium SAND, we have a state of the product of the gray of the to medium SAND, we have a state of the product of the gray of the to medium SAND, we have a state of the product of the gray of the to medium SAND, we have a state of the product of the	-		SAND and fine GRAVEL, dry, petroleum odor		00						404	Monument cemented
Compact, the gray, shy fire to coarse SAND, before - 6 th before - 6 th	-				00 V							Medium-
balow -5 ft balow -5 ft c	-		Compact, olive gray, silty fine to coarse SAND,	Б. SM	00							Chips
- 5	-		unstratified, strong petroleum odor, becoming wet below ~6 ft				1	SS	40-32-50	82	512	
1 1 <td>- E</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td>Monterey – ***********************************</td>	- E									<u> </u>		Monterey – ***********************************
-10 4 SS 10-8-0 10 set -10 5 SS 5-10-15 25 180 -10 -15 -15 -10 -10 -10 -15 -10 -10 -10 -10 -15 -10 -10 -10 -10 -15 -10 -10 -10 -15 -10 -10 -10 -15 -10 -10 -10 -15 -10 -10 -10 -15 -10 -10 -15 -10 -10 -15 -10 -10 -15 -10 -10 -15 -10 -10 -15 -10 -10 -15 -10 -10 -15 -10 -10 -15 -10 -10 -15 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 <		Jger					2	SS	17-15-14	29	450	
-10 4 SS 10-8-0 10 set -10 5 SS 5-10-15 25 180 -10 -15 -15 -10 -10 -10 -15 -10 -10 -10 -10 -15 -10 -10 -10 -10 -15 -10 -10 -10 -15 -10 -10 -10 -15 -10 -10 -10 -15 -10 -10 -10 -15 -10 -10 -15 -10 -10 -15 -10 -10 -15 -10 -10 -15 -10 -10 -15 -10 -10 -15 -10 -10 -15 -10 -10 -15 -10 -10 -15 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 <		tem Au										
-10 4 SS 10-8-0 10 set -10 5 SS 5-10-15 25 180 -10 -15 -15 -10 -10 -10 -15 -10 -10 -10 -10 -15 -10 -10 -10 -10 -15 -10 -10 -10 -15 -10 -10 -10 -15 -10 -10 -10 -15 -10 -10 -10 -15 -10 -10 -15 -10 -10 -15 -10 -10 -15 -10 -10 -15 -10 -10 -15 -10 -10 -15 -10 -10 -15 -10 -10 -15 -10 -10 -15 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 <		oltow S		<u> </u> _			з	SS	6-10-15	25	412	-10.5-inch-
-10 4 SS 10-8-0 10 set -10 5 SS 5-10-15 25 180 -10 -15 -15 -10 -10 -10 -15 -10 -10 -10 -10 -15 -10 -10 -10 -10 -15 -10 -10 -10 -15 -10 -10 -10 -15 -10 -10 -10 -15 -10 -10 -10 -15 -10 -10 -15 -10 -10 -15 -10 -10 -15 -10 -10 -15 -10 -10 -15 -10 -10 -15 -10 -10 -15 -10 -10 -15 -10 -10 -15 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 <		I.D. H	Loose to compact, dark gray, silty fine to medium	SM-			 					
Total depth 15.5 ft bgs Image: Control of the second sec		6-inch	SAND, wet, petroleum odor in sample	SP								4-inch I.D. 4-inch Sch. 40 Sch. 40 PVC
Total depth 15.5 ft bgs Image: Control of the second sec	- 10						4	SS	10-8-8	16	368	Stotted Screen
Total depth 15.5 ft bgs Image: Control of the second sec	-											
Total depth 15.5 ft bgs Image: Control of the second sec	-											
Total depth 15.5 ft bgs Image: Control of the second sec	-						5	66	5-10-15	25	100	
Total depth 15.5 ft bgs Image: Control of the second sec	-								5-10-15	25	109	
	- 15		· · · · · · · · · · · · · · · · · · ·									
	-		Total depth 15.5 ft bgs									
	-											
	-											
	-											
	- 20											
	·											
	-											
	- 25											
	-											
- 30	-											
- 30												
	- 30											
				<u> </u>	<u> </u>							
DRILL RIG: CME 75 LOGGED: G. Zimmerman	1								3. Zimmerman			
DRILLING CONTRACTOR: Cascade Drilling CHECKED: DRILLER: B. Gose DATE: 4/17/98 CHECKED:									/98			Associates

SHEET <u>1</u> OF <u>1</u>

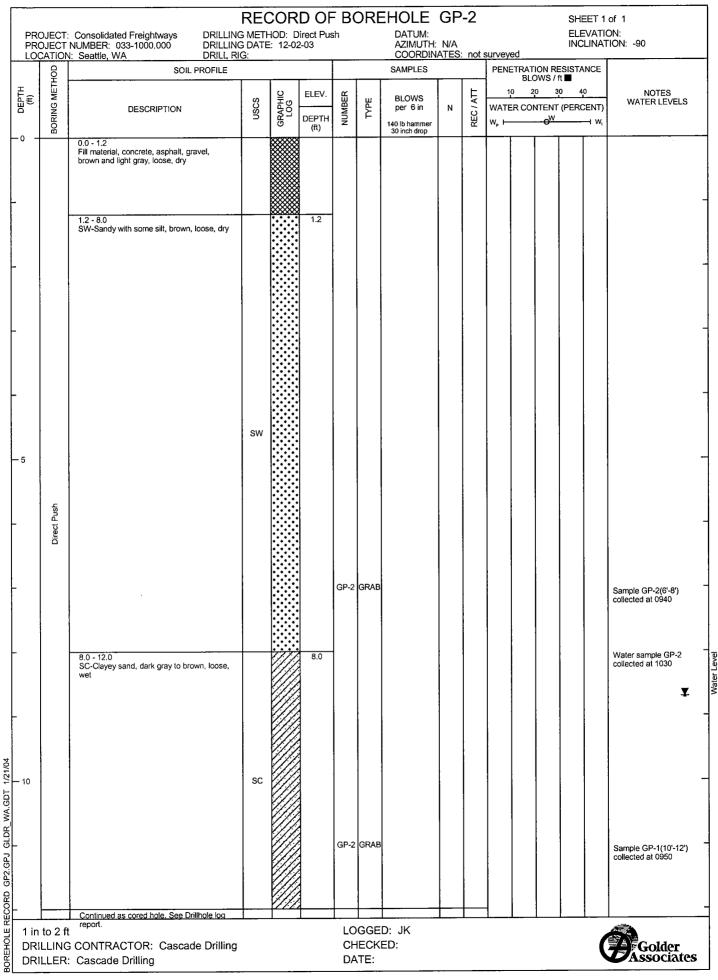
PRO	OJECT	CF-Seattle DRILLING NUMBER: 983-1065.810 DRILLING I: CF- Seattle DRILL RIC	G METH	IOD: 4 : 01/10	" HSA	BC	RE	HOLE DATUM: M AZIMUTH: COORDIN	/ISL N/A		surveved	SHEET ELEVA INCLIN	
		SOIL PROFILE	<u></u>					SAMPLES			PENETRA	ATION RESISTANCE	
DEPTH (ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH (ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC / ATT	10 WATER C	20 30 40 ONTENT (PERCEN 	Vi
- 0 -		0.0 - 3.0 Fine to medium SAND and Gravel (CLEAN FILL)											Well cap and → III III III III III III III III III
	Auger woth 140lb drop hammer	3.0 - 8.5 Compact, dusky yellowish brown, non-stratified silty fine sand, moist to wet (ALLUVIUM)	SM		3.0	1	мс	9-9-9	18	<u>1.5</u> 1.5			Filter pack with silica -
	er woth 140lb	8.5 - 10.0			8.5	2	мс	3-3-3	6	1.5 1.5			
- 10 -	Stem	Loose, olive gray, weakly stralified, fine sandy SILT, wet (ALLUVIUM) 10.0 - 17.0 Loose, dark gray, non-stratified, silty fine SAND, wet (ALLUVIUM)	ML		10.0	3	мс	3-4-4	8	<u>1.5</u> 1.5			2" PVC .01"Slotted
-	4* ID Hollow	Becoming compact	SM		-	4	мс	4-5-17	; 22	<u>1.5</u> 1.5			
- 15 						,							bottom of
- - - 20		Boring completed at 17.0 ft.			17.0								hole <u> </u>
- - - 25 -													
- 30								-					
10001 Z10001 Z10001								I.					
) 9831065.6rJ GLL													
B DR		t S CONTRACTOR: Cascade : Cody				Cł)GGE HECK ATE:	D: GLZ					Golder

100 C 100 C

1

÷

i


and the second

1. 1. 1. 1.

PROJEC	T: Consolidated Freightways DRILLING T NUMBER: 033-1000.000 DRILLING N: Seattle, WA DRILL RI	G METH	IOD: Di	rect Pus		DRE	DATUM: AZIMUTH: COORDIN	N/A		surveye	ed		SHEET 1 ELEVATI INCLINA	ON:
(ft) (ft) BORING METHOD	SOIL PROFILE DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH (ft)	NUMBER	ТҮРЕ	SAMPLES BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC / ATT	10 WATE	BLC 24 R CON	0WS / fl 030 ITENT		NOTES WATER LEVELS
	0.0 - 2.0 Fill material, concrete, asphalt, gravel, brown and light gray, loose, dry 2.0 - 5.0			2.0										
	SW-Sandy with some silt, Brown, Loose, Dry	sw		2.0										
2 Direct Push	5.0 - 9.1 CI-Low Plasticity Clay, Light Brown, Medium Firm, Moist	CL		5.0	GP-1	GRAB								Sample GP-1(6'-8') collected at 0850 Water sample GP-1 collected at 0910
10	9.1 - 12.0 SC-Clayey Sand, Dark Gray to Brown, Loose, Wet	SC		9.1	GP-1	GRAB								Sample GP-1(10'-12') collected at 0900
	Continued as cored hole. See Drillhole loa report. G CONTRACTOR: Cascade Drilling R: Cascade Drilling	<u> </u>			C⊦		D: JK ED:	<u> </u>	<u> </u>	1				Golder

Golder Associates

Golder Associates

						DATUM:		-3		SHEET 1 ELEVATI	ON:		
PR LO	OJECT	NUMBER: 033-1000.000 DRILLING	G DATE G:	: 12-02	2-03			AZIMUTH: COORDIN		not			FION: -90
DEPTH (ft)	BORING METHOD	SOIL PROFILE	nscs	GRAPHIC LOG	ELEV. DEPTH (ft)	NUMBER	ТҮРЕ	SAMPLES BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC / ATT	BLOW 10 20 WATER CONTE	I RESISTANCE S / ft ■ 30 40 ENT (PERCENT)	NOTES WATER LEVELS
-0 -		0.0 - 1.6 Fill material, concrete, asphalt, gravel, brown and light gray, loose, dry											
	Direct Push	1.6 - 8.0 SW-Sandy with some silt, brown, loose, dry 8.0 - 12.0 SC-Clayey sand, dark gray to brown, loose, (wet at 8.4)	sw		8.0		GRAB						Sample GP-3(6'-8') collected at 1050
1 in 1 In		Continued as cored hole. See Drillhole loa report. CONTRACTOR: Cascade Drilling Cascade Drilling	<u>I</u>	<u>, </u>	1	C⊢	I GGE IECK TE:	D: JK ED:	L		· · · · · · · · · · · · · · · · · · ·		Golder

Golder Associates

Pi	ROJECT:	Consolidated Freightways DRILLING	RECORD OF BOREHOLE GP-4 SHEET 1 of 1 LING METHOD: Direct Push DATUM: ELEVATION: LING DATE: 12-02-03 AZIMUTH: N/A INCLINATION: -90													
		NUMBER: 033-1000.000 DRILLING		: 12-02	2-03		-	COORDIN	N/A ATES:	not		_				ION: -90
	DHT	SOIL PROFILE						SAMPLES			PENE		ws/	ft 📕		
DEPTH (ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH (ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC / ATT	<u> </u>	0 20 R CON		(PERC	0 CENT) 	NOTES WATER LEVELS
		0.0 - 1.2 Fill material, concrete, asphalt, loose gravel, light to dark brown, loose, dry														_
-		1.2 - 4.0 SW-Sandy with some silt, brown, Loose, dry	SW		1.2											-
- 5	Direct Push	4.0 - 8.7 CI-Low Plasticity clay, light brown, medium firm, moist	CL		4.0	GP-2	GRAB									
10		8.7 - 12.0 SC-Clayey sand, dark gray to brown, loose, wet			8.7											Water sample GP-4 collected at 1100
		Continued as cored hole. See Drillhole log	SC			GP-2	GRAB									Sample GP-1(10'-12') collected at 1055
	n to 2 ft	report.													/	
		CONTRACTOR: Cascade Drilling Cascade Drilling					IECK	<u> </u>								Golder

Golder Associates

PR	RECORD C PROJECT: Consolidated Freightways DRILLING METHOD: Direct P PROJECT NUMBER: 033-1000,000 DRILLING DATE: 12-02-03 LOCATION: Seattle, WA DRILL RIG:			irect Pus		ORE	DATUM: AZIMUTH: COORDIN	N/A		survey						
DEPTH (ft)	BORING METHOD	SOIL PROFILE	nscs	GRAPHIC LOG	ELEV. DEPTH	NUMBER	түрЕ	SAMPLES BLOWS per 6 in	N	REC / ATT	PEN 1 WATI	ETRATIO BLOV 0 20 ER CONT	N RESIS /S / ft 30 ENT (PEF	40 RCENT)	NOTES WATER LEVELS	
_ 0 _	BC	0.0 - 1.6 Fill material, concrete, asphalt, gravel, brown and light gray, loose, dry			(ft) ·	-		140 lb hammer 30 inch drop								
	Direct Push	1.6 - 8.9 SW-Sandy with some silt, Brown, Loose, Dry 8.9 - 12.0 SC-Clayey Sand, Dark Gray to Brown, Loose, Wet	sw		8.9		GRAB								Sample GP-1(6'-8') collected at 1200	Mater Level
															Sample GP-5(10'-12') collected at 1205	-
		Continued as cored hole. See Drillhole log report. CONTRACTOR: Cascade Drilling Cascade Drilling	<u> </u>	I	1	СН	GGEI ECKI	D: JK ED:	1		1	ł-	I	(Golder	

.

Golder Associates

_

	PRO	OJECT:	Consolidated Freightways DRILLING NUMBER: 033-1000.000 DRILLING	S METH	HOD: Di	irect Pus		ORE	EHOLE DATUM: AZIMUTH:		-6			E	HEET 1 LEVATI	
╞			I: Seattle, WA DRILL RIG						COORDIN SAMPLES	ATES	not		TRATIO	N RESIS		
	DEPTH (ft)	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH (ft)	NUMBER	ТҮРЕ	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC / ATT	10	BLOW 20 R CONT	/S / ft 30 ENT (PE	40 RCENT)	NOTES WATER LEVELS
-	- 0 -	Direct Push	0.0 - 2.5 Fill material, concrete, asphalt, gravel, brown and light gray, loose, dry. Concrete hit at the end of boring (2.5')				GP-2	GRAB								Sample GP-6(0'-2.5") collected at 1310. Refusal at 2.5' below ground surface.
-	-					2.5										-
	- 5															-
	-															-
/04	_															-
BOREHOLE RECORD GP6.GPJ GLDR_WA.GDT 1/21/04	- 10															-
OLE RECORD GP6.GF		to 2 ft	Continued as cored hole. See Drillhole log report. CONTRACTOR: Cascade Drilling					GGE	D: JK							
30REh			Cascade Drilling					TE:								Golder

Golder Associates

	DJECT: DJECT CATION	Consolidated Freightways DRILLING NUMBER: 033-1000.000 DRILLING I: Seattle, WA DRILL RIC	METH DATE	IOD: D	irect Pus		ORE	EHOLE DATUM: AZIMUTH: COORDIN	N/A		surveyed	SHEET 1 ELEVATI INCLINAT	
DEPTH (ft)	BORING METHOD	SOIL PROFILE	nscs	GRAPHIC LOG	ELEV. DEPTH (ft)	NUMBER	ТҮРЕ	SAMPLES BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC / ATT	PENETRATION BLOWS 10 20 WATER CONTER W,	/ ft ■ 30 40 NT (PERCENT)	NOTES WATER LEVELS
- 0 -		0.0 - 0.5 Concrete 0.5 - 4.0 No recovery, rock blocked discrete sampler			0.5								-
- 5	Direct Push	4.0 - 8.1 SW-5ilty Sand , Brown, light to dark brown, loose to medium, Dry	SM		4.0	GP-7	GRAB						Sample GP-1(6'-8') collected at 1435
		8.1 - 12.0 SC- Clayey sand , dark gray, loose to medium, wet	sc		8.1		GRAB						Water sample colle d at 1455 Sample GP-1(10'-12') collected at 1440
1 in DRI		Continued as cored hole. See Drillhole log report. CONTRACTOR: Cascade Drilling Cascade Drilling				CH	GGE IECK	D: JK ED:					Golder

Golder Associates

PRO	DJECT:	Consolidated Freightways DRILLING NUMBER: 033-1000.000 DRILLING I: Seattle, WA DRILL RI	G METH G DATE	HOD: D	irect Pus		ORE	HOLE DATUM: AZIMUTH: COORDIN	N/A		SURVEY	he		SHEET 1 ELEVATIO INCLINAT		
DEPTH	BORING METHOD	DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH	NUMBER	TYPE	SAMPLES BLOWS per 6 in	N	REC / ATT		ETRATIC BLO 0 20 R CON	NS / ft ∎ 30 FENT (P	40 ERCENT)	NOTES WATER LEVELS	
-0 -	BC	0.0 - 0.5 Concrete			(ft)			140 lb hammer 30 inch drop		-	, , , , , , , , , , , , , , , , , , ,					
	Direct Push	0.5 - 7.8 SM-Silty sand, light to dark brown, medium stiff, dry 7.8 - 12.0 SC-Clayey Sand, Dark Gray to Brown, Loose, Wet	SM		7.8	GP-2	GRAB								Sample GP-8(6-8*) collected at 1350 Water sample GP-8 collected at 1410	
DREHOLE RECORD GP8.GPJ GLOR WA.GOT						GP-2	GRAB					-			Sample GP-8(10'-12') collected at 1355	
		Continued as cored hole. See Drillhole log report. CONTRACTOR: Cascade Drilling Cascade Drilling	1		1	CH	GGE IECKI TE:	D: JK ED:	<u>I. </u>		1		I		Golder	

Golder Associates

APPENDIX B LABORATORY ANALYTICAL REPORTS

REMEDIAL INVESTIGATION, FOCUSED FEASIBILITY STUDY, AND CLEANUP ACTION PLAN 6050 East Marginal Way Seattle, Washington

Farallon PN: 1071-010

Laboratory Analytical Reports 1988-1989

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4630 PACIFIC HIGHWAY EAST. SUITE B-14 + TACOMA. WASHINGTON 98424 + TELEPHONE (206) 922-2010

Report	To:	Blymyer	Engineers
			Dirginouro

Date: July 14. 1988

Report On: Analysis of Soil & Water Lab No.: A 3593

IDENTIFICATION:

CF/Puget Sound project no. 8818. Samples submitted on 6-27 & 6-29-88.

ANALYSIS:

Soil Samples:

Lab No.	Client <u>Identi</u>	fication	Total Petroleum Fuel Hydrocarbons (mg/kg)
1	MW-1A	4 - 4.5'	12
2	MW-1B	9 - 9.5'	< 10
3	MW-1C	14 - 14.5'	11
4	MW-2A	4 - 4.5'	13
5	MW-2B	9 - 9.5'	< 10
6	MW-2C	13.5 - 14'	< 10
7	МW-ЭА	4 - 4.5'	< 10
8	MW-3B	9 - 9.5'	160
9	MW-3C	14 - 14.5'	< 10
10	MW-4A	5 '	< 10
11	MW-4B	10'	< 10
12	MW-4C	15'	102
13	MW-5A	5 '	4,797
14	MW-5B	10'	15
15	MW-5C	15'	< 10

Blymyer Engineers Lab No: A 3593 Page 2 July 14. 1988

Water Samples:

Lab No.	Client <u>Identi</u>	fication	Total Petroleum <u>Fuel Hydrocarbons (mg/l)</u>
16	MW-1	1:35	Bottle broken, no sample
17	MW-2A	1:40	< 1
18	MW-Э	1:45	< 1
19	MW-4	1:50	< 1
20	MW-5	1:55	< 1

Lab No.	Clien Ident	t ification	Total Petroleum <u>Fuel Hydrocarbons</u>	(mg/kg)	0il & Grease (mg/kg)
21	S-1V	Soil	3,389		4,274
22	S-1F	Soil	2,939		3.383
23	₩-1	Water	2,862*		3,812*
24	S-2F	Soil	3,187		4,072
25	S-2V	Soil	98		193

* - Units are mg/l for water samples.

Blymyer Engineers Lab No: A 3593 Page 3 July 14, 1988

Purgeable Halocarbons per Method 601, 40 CFR, Part 136

<u>Contaminant</u>

Concentration (mg/kg) (ppm)

Lab Sample No.	21	22	23	19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -
Client ID	S-1V	5-1F	W-1**	
Methylene chloride 1.1-dichloroethylene 1.2-dichloroethane 1.2-transdichloroethylene Chloroform	$\begin{array}{cccc} < & 1 \\ < & 1 \\ < & 1 \\ < & 1 \\ < & 1 \\ < & 1 \end{array}$	$\begin{array}{cccc} < & 1 \\ < & 1 \\ < & 1 \\ < & 1 \\ < & 1 \\ < & 1 \end{array}$	$\begin{array}{cccc} < & 1 \\ < & 1 \\ < & 1 \\ < & 1 \\ < & 1 \\ < & 1 \end{array}$	
1,2-dichloroethane*	< 1	< 1	< 1	
Freon	< 1	< 1	< 1	
1,1,1-trichloroethane	< 1	< 1	< 1	
Bromodichloromethane	< 1	< 1	< 1	
Carbon Tetrachloride	< 1	< 1	< 1	
1,2-dichloropropane	< 1	< 1	< 1	
Trans-1,3-dichloropropene	< 1	< 1	< 1	
Trichlorethylene	< 1	< 1	< 1	
Cis-1,3-dichloropropene*	< 1	< 1	< 1	
1,1.2-trichloroethane	< 1	< 1	< 1	
Chlorodibromomethane Bromoform Tetrachloroethylene 1.1.2.2-tetrachloroethane Chlorobenzene	$ \begin{array}{cccc} < & 1 \\ < & 1 \\ < & 1 \\ < & 1 \\ < & 1 \\ < & 1 \end{array} $	$\begin{array}{cccc} < & 1 \\ < & 1 \\ < & 1 \\ < & 1 \\ < & 1 \\ < & 1 \end{array}$	$\begin{array}{cccc} < & 1 \\ < & 1 \\ < & 1 \\ < & 1 \\ < & 1 \\ < & 1 \end{array}$	

* - These halocarbons coelute

** - Units are mg/l for water samples.

Blymyer Engineers Lab No: A 3593 Page 4 July 14, 1988

Purgeable Halocarbons per Method 601, 40 CFR, Part 136

Contaminant

Concentration (mg/kg) (ppm)

Lab Sample No.	24	25	
Client ID	S-2F	S-2V	
Methylene chloride 1.1-dichloroethylene 1.2-dichloroethane 1.2-transdichloroethylene Chloroform	< 1 < 1 < 1 < 1 < 1 < 1	< 1 < 1 < 1 < 1 < 1 < 1	
1,2-dichloroethane*	< 1	< 1	
Freon	< 1	< 1	
1,1,1-trichloroethane	< 1	< 1	
Bromodichloromethane	< 1	< 1	
Carbon Tetrachloride	< 1	< 1	
1,2-dichloropropane	< 1	< 1	
Trans-1,3-dichloropropene	< 1	< 1	
Trichlorethylene	< 1	< 1	
Cis-1,3-dichloropropene*	< 1	< 1	
1,1,2-trichloroethane	< 1	< 1	
Chlorodibromomethane Bromoform Tetrachloroethylene 1,1,2.2-tetrachloroethane Chlorobenzene	< 1 < 1 < 1 < 1 < 1 < 1	<pre>< 1 < 1</pre>	

* - These halocarbons coelute

Blymyer Engineers Lab No: A 3593 Page 5 July 14, 1988

Total Metals:

Lab Sample No. 21 22 23 24 25 Client ID S-1V S-1F W-1* S-2F S-2V
Arsenic <0.1 <0.1 <0.1 <0.1 <0.1
Barium <2 <2 <2 <2 <2
Cadmium <0.1 <0.1 <0.1 <0.1
Chromium 9.1 7.2 0.8 9.9 11.3
Lead 14.2 9.9 1.9 11.0 8.6
Mercury <0.05 <0.05 <0.05 <0.05 <0.05
Selenium <0.1 <0.1 <0.1 <0.1 <0.1
Silver <0.1 <0.1 <0.1 <0.1 <0.1

* - Units are mg/l for water samples.

SOUND ANALYTICAL SERVICES

Brent A / BRENT HEPNER

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4630 PACIFIC HIGHWAY EAST, SUITE 8-14 • TACOMA, WASHINGTON 98424 • TELEPHONE (206) 922 2010

Lab No:

Report To: Blymyer Engineers

Report On: Analysis of Water

IDENTIFICATION:

Samples submitted on 7-12-88 Project No. 8818 CF/Puget Sound, WA Sample ID: MW-1

ANALYSIS:

Total Petroleum Hydrocarbons, mg/1

< 1.0

Note: Detection limit is 1.0 mg/l.

SOUND ANALYTICAL SERVICES

Date: July 18, 1988

A 3679

ver

BRENT HEPNER

ENVIRONMENTAL PROTECTION AGENCY

.

				-		
11	11.0.	1	50	1 ~	 101	

				•			CHAIN	OF CUST	ODY	RE	COR	0			
N LUAN	0. PI Ü	ROJECT	NAN P	AE	et Sou	nd,	WA	NO.							
								0F		/	Ň	~)	Z	Y	
MPLER	chai	11	· X	is				CON		/ 4	10	\mathcal{L}		Y-\$	REMARKS
STA. NO.	DATE		COMP	GRAB	81	ATION	LOCATION	TAINERS		Y	$\mathbb{Z}_{\mathbb{Z}}$	<u> </u>	Ž	s L	
1	6/24/ 18:	11:40		X	5-1	V	(soil)		\mathbf{X}	\times	×	\times	\mathbf{X}		
.2		11:40		X	5-1	F	(soil)	1	\times	×	X	\times	X		
3		11.45		×	W-1		(water)	3	\times	\times	\times	\times	\mathbf{X}		1 gt., 2-40 ml VOA vil
		12:05		×	5-21		(501)	1_1_	\times	X	\times	×	×		
5	$\overline{\mathbf{v}}$	12:05		X	5-2	V	(juil)		X	X	\times	\times	と		Invoices + reports 11
							•	_		 					
										ļ					Consolidated Freightery
										ļ		ŧ			1829 Clement Ave
								_		ļ	İ	ļ		!	1829 Clement Arc
								_				.		<u> </u>	Alameda, CA 14501
									 	ļ		: *		 	
									ļ	1 	 	!			
								_	 	<u> </u>	• •	 	 	•	
										_	<u> </u>	<u> </u>			
									-		<u>i </u>		<u> </u>	<u> </u>	Date / Time Received by: (S-protory)
Relinquist	ed by: I	Simeture	")		Date /T	ime i	Received by: ISignalue	re)	Rei	ותפטוו	hed t	oy∶/\$;	1 ~1~1~1~1~1~1~1~1~1~1~1~1~1~1~1~1~1~1~	* #]	
Tilu	cha	{J. 1	ŏŠ.	04	129/83-3	FM	Brent (dep	my		فيتسربون بيبرون					
Relinquis				-†	Date / T	1004	Received by: IS-phatus	·•)	Rel	inqvit	hed t	iy: 15,	gn a lui	ei -	Date / Time Received by: (Signature)
									•	-					
Relinqui	hed by:	l Signatur	•1		Date / T	ume	Received for Laborat ISignatures	ory by:		Da	10 / T	ım t		Aemar	rks
) 0	highed Ascerne	ania Bi	upment; Cepy to Coord-	neser Field Fil	et						

3-0605

.

×.

.

.

CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST

PROJ. NO. PROJECT NAME 88/8 BCF/Puget Srund, WH & ANALYSIS TYPE REQUESTED	
	•
SAMPLERS: (Signature) Marti B. Winterne OL	
I.D. DATE TIME ON BEATION & LOCATION	
MW-1A-1/2 1/2 9:35 X Menter Well (9-4.5) N XX	
MB 19:45 × Menter Well 1 (9-95) 1	
MW V 9:55 X 11 11 11 (14-14.51)	
Mike Missi o	
$\frac{M_{W^{-}}}{2A} = \frac{11:46}{11:56} \times \frac{16}{11} = \frac{12}{2} (4-4.5) = 1$ $\frac{M_{W^{-}}}{2B} = \frac{11:56}{11:56} \times \frac{11}{11} = \frac{11}{11} (9-9.5) = 1$	
$\frac{M_{H_{2}}}{23}$ 11:50 X 11 11 (9-9.5)	nent Dries
$M_{\rm AC}^{\rm MUC} = \sqrt{12.00} \times 11 11 11 (13.5 - 14.)$	
Mui- 2:10 × Monita-Well 3 (4-4.5.) 1	
$\frac{335}{2.20} \times 11 11 11 (9-9.51) 1$	
130 X 11 11 (14-14-51) 1 VV bill to	
Consolidated Freight	xy s
s/a Blyinger Engineer	<u>.</u>
1829 Climant Aver	ue
Alomeda, CA 945	21 1080 1080 1080 1415 Dutsi
	de C Pi
	Regi ke Lr -785 A: (8
Relinquished by: Date Time Received by: Relinquished by: Date Time Received by:	22 123-7
Martin Elite 3 55 Michael in Elizon Elizon Brent Neper	γ 143 rd, c,
Relinquished by: Date Time Received by: Relinquished by: Date Time Received by:	Western Region 4080-C Pike Ln., Concord, CA 94520 (415) 685-7852 In CA: (800) 544-3422 Outside CA: (800) 423-7143
	520
Relinguished by: Date Time Received by laboratory: Date Time Remarks (Shipping Related):	
Alterhed of the Ville of the	

GT Envi	ronmental	4 C 4	080- Conc 15-6	C Pi cord	ike I, C/ 7852	Lane 4 94	520		800 800)-544)-423	1-342 1-7 14	22 (I 13 ((in CA) Outside	CA)		С	:H/	AIN	I-C)F-(CL	IST	OD	Y	RE	CC	DR	D /	4N	D			'SI	S F	RE(20	ES	T	
Project Manager:	oratories 🛛						Pho	one	ə #:									A	NA		'SI	S F	EQ	UE	ST		r1					от	HE	R	·				NG
Address:		•• • ••••					FA	X #	t:)15)					=																		MENTS
Project Number:	1318		(Ē	- /	R	Pro	ojec 2	t N:	ame Sc	: N(1	ed.	i, w	A		02/8020/80	70)	(02			ons (418.								etals							E (24 hr)	2-4 days)		REQUIRE
Project Location:	1818 6-00 East Deattle, W	Ma	11%	ute.	V	1	Sa	mp (/)					mte	<u>(</u>		asoline (60	015 or 827	3015 or 82	se (413.1)	se (413.2)	Hydrocarb			CBs Only			s	als	ollutant Me	1/239.2)	۵					E SERVIC	ERVICE (
Sample	Lab #	# CONTAINERS	Volume/Amount	T -	Ma	atri				leth ese	rve	d	Sam	pling	BTEX (602/8020)	BTEX/TPH as Gasoline (602/8020/8015)	TPH as Diesel (8015 or 8270)	TPH as Jettuel (8015 or 8270)	Total Oil & Grease (413.1)	Total Oil & Grease (413.2)	etroleum	EPA 601/8010	EPA 502/3020 EPA 608/8080	EPA 608/8080-PCBs Only	EPA 624/8240	EPA 625/8270	CAM - 17 Metals	EPTOX - 8 Metals	EPA - Priority Pollutant Metals	LEAD(7420/7421/239.2)	ORGANIC LEAD					PRIORITY ONE SERVICE (24 hr)	EXPEDITED SERVICE (2-4 days)	VERBALS/FAX	SPECIAL DETECTION LIMITS (SPECIAT) SPECIAL REPORTING REQUIREMENTS
ID	(Lab use only	# CONT	Voiume/	WATER	SOIL	AIR	SLUDGE			ICE	NONE			TIME		BTEX	1		Total C	Total C	Total F	EPA 6	EPA 5	EPA 6	EPA 6	EPA 6	CAM	EPTO	EPA -	LEAD	ORG/					PRIC	EXPi	VERI	SPE
MW-4A MW-4B MW-4C MW-5A MW-5B) 			×					X			6727/EQ	3.40	'		X X																						
MILL-4C		1			X					X			Y	3.50			X					_						-			-			+	╞				
Mur-5A	1	1			7						1_		. 	9:40		-	X					_					+	-	┢		╞	╂─┼─		+	+				
1411-573 1411-5C		1			X									1:50 10:00	ł		X X																						
																												_											
Relinquished	by: All fatter	, C7		Date	e E	l Tim	e	<u>t</u>		ecei			1 s(.1	.L	F	len	nark 7	3		- 1		I	- 1	_ i		115	+	ζ.:-	i. i				
Rolinquished			Г	ate	· ·	Tim			R		~0.	<u>nt</u>	- 12	epn	1					Consol detail Charling theory and the sources Conferences 1271 Alexandra Conferences 1271 Alexand Avenues Alexandra, 14 A 14561																			
Relinquished			Ľ	Date) 	Tim	e		R	ece	ivec	t by	/ Labor	atory:		ale estimate dat		10. 10 [.] 21.							,< 人 (r * (24 c	3	1 .1 ;	й. Ча		4	~1	14 14	5	<u>(</u> .)				*****

ENVIRON		PROTE Failore			GENCY	0., 98 6	СНАІ	N OF CUS	נטטי	V RE	C08	υŲ		
proj n 891	8	ROJEC		me Pl	ıget	9 500		ł					7,	7///
SAMPLER	IS: (Signa /	Me	214	bi	<u> B. U</u>	Int	and, WA	OF CON-		$\langle \rangle$	ţ)			REMARKS
STA. NO.	DATE	TIME	COMP.	GRAB			N LOCATION	TAINERS	A	Ŷ				
Mart	721/00	1:35		X		Wat	Er	1	X				I	
Mhi-ZA		1:40		X		Wat		1	X					
11113-3		1:45		X		Wat	er		X					
MW 4		1:50		X		Wat	er		X	 				
111.1.5	\checkmark	1:55		X		Wa	ter		X.					
							•	_	Í				 	Invoices & Reports to
											ł		 !-	Consclidated Freightweys. Clo Blymyer Engineers
											ا محمد المحمد ا			Alameda CA 94501
			 	 					ļ					
			_							 				
Aelinguist	B,	s.menore Wiri	L.		Dore 129/39	/Time 2:15 PM	Received by: 15-proto	J. fro		nquish	ed by	1: 15.pm		a
Reinquist	hed by: 1	(J.	"Lo	169	/ Dete	17100 300 PM	Received by: 15. proto	men	Rela			: ISign		
Reinquist	ved by: I	Signature	.)		Date	/Time	Received for Laborati (Semisture)	OLA PA:		Date	/Tim	ne	- Rer	marks
L				~		L	hipmoni; Capy to Coordy	nator Foold Folg			-		7	

 \sim

.

-

Env Lab	EL ironmental oratories 🔍		Cor 415	-685	rd, (5-78	e La CA 9 52	452	20	80 80)0-54 10-42 	14-3 23-7	422	(In CA) (Outside CA	<u>،</u>				IN-		C	<u> </u>		ייש	г н ——			שא 	Ar 	NU 			_ ¥ :	513						
Project Manager:	ke L	- 1	1.1	, «.)		1	Phor	10 #: 5	21	(d)	نر_ پر بر	1 3773					AN	AL	.YS	IS	RE	ວບ	ES	T						0		HE	R		SI HA			
Address: 34 Project Manager: Address: 34 Solution: Project Location: Solution: Sol	myer Er Clenten reda. C	5 4	j 41. - +	e 10. 9 V 1	r 5, e .	Ţı	14	FAX ?	#: :6	(4 5_	- :	5) 2(594			(c]																				-		CIEVI	
Project Number:	817				Ĉ	F	 •	Proje	oct N	ame	9: 	ñ	nd w	14		802080				ls (418.1								s								(4 hr)	lekon	S (SPF	
Project Location:	scho Eo alt/e,	st W	N ₀ A	00%	111	p'al	13	Gam	pler	Sigr	natu	re:	·			5 or 8270	5 or 8270	(413.1)	(413.2)	drocarbon			1400					tant Metal	39.2)							RVICE (2			
Sample	Lab #					latr			, N Pr	leti	100	1	Samplir	ng	2/8020)	l as Gaso	thuel (801	Grease (Grease	oleum Hy	3010	020		3240	3270	Metals	8 Metals	nity Pollul	0/7421/2:	LEAD								DETECTI	
ID	(Lab use only)	# CONTAINERS	Volume/Amount	WATER	SOIL	AIR	SLUDGE	OTHER	HCI	ICE	NONE	OTHER	DATE		BTEX (602/8020)	BIEX/IPH as Gasoline (602/80/20/80/15) TPH as Diesel (8015 or 8270)	TPH as Jettuel (8015 or 8270)	Total Oil & Grease (413.1)	Total Oil 8	Total Petroleum Hydrocarbons (418.1)	EPA 601/8010	EPA 602/8		EPA 624/8240	EPA 625/8270	CAM - 17 Metals	EPTOX - 8 Metals	EPA - Priority Pollutant Metals	LEAD(7420/7421/239.2)	ORGANIC LEAD						PHIORITY ONE SERVICE (24 hr)	VERBAI S/FAY	SPECIAL DETECTION IMITS (SPECIEY)	
A111-1		1		X						X	- -		7/12/00			$\overline{\Sigma}$	¢																						
		+-	-	-			_	_				-							-	$\left \right $	-					-	-		-			-	+		╉			+-	+
																			; ,																				+
		-	-	-					_	-		-							 				+								-	-		_	_		_	+-	╉
			-	-											\uparrow																								╞
				_			_	_							_				-		_	+			-						-		_		_		_		╡
		-					-	-	_						+				-		-+	-										-			+				+
Relinquished b	y. Josef	3	D	Date		Γim / →		,	Re	ceiv	/ed	by:								R	em	ark	s:																
Relinquished b	у		D)ate		[im	e		Re	ceiv	/ed	by:	<u>, , , , , , , , , , , , , , , , , , , </u>																								.t*	>	
Relinquished b	y .		D	ate	 	ſim	Э			of Marijahanago		•	Laboratory	<i>י</i> :		74		12) · ,	,														, Doty					

GT GT	EL ironmental oratories D		408 Cor 415	0-C 1007	Pike d. () Lan CA 94	e 1520		8	00-5 00-4	44- 23-7	3422	(in C (Out		CN		C	: H /	AIP	1-C)F-	CU	ST	ÖD										LY)E	ST		
Project Manager:	e Leu	ji	5				P	hon	• #	:	7 21	41: -	डो उ	77	13				A	NA	ALY	SIS	S R	EQ	UE	ŞT.	ŀ	\$ \$	1 1				6	оті	HE	R	1000 1000 1000 1000 1000	S H	SPE ANI			6
Project Manager: Mik Address: 24/14 1829 C Abmedic Project Number: 381 Project Location:	Bing Engl	4. 44		3, 30,	Z (ne C	F F	AX roje /7	*: a) 24	8 Nam 191	6	41 5- 5-	5) - 2 (10	<u>59</u> 9 u)4 JA		BTEXTPH as Gasoline (602/8020/8015)	(0)	(02		Total Oil & Grease (413.2)	ons (4 13.1)			44 - 5 C													(24 hr)	4 days) 👔		SPECIAL DETECTION LIMITS (SPECIFY)	SPECIAL REPORTING REQUIREMENTS
Project Location:	Seattle	er; L	511 J	1 1	4	9.: 	5.S	am	plēr	Sig	nat	ure:			eraix :		soline (6(15 or 82	015 or 82	9 (413.1)	9 (413.2)	iyorocaru	N. Car		EPA 608/8080-PCBs Only			<u> </u>		EPA - Priority Pollutant Metals	(239.2)				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1. A. A.		PRIORITY ONE SERVICE (24 hr)	EXPEDITED SERVICE (2-4 days)		I NOIL	RTING R
Sample	Lab #	INERS	mount		M	atri	X			vie t res			S	amp	oling	02/8020)	H as Ga	iesel (80	ettuel (8	& Greas	& Greas		8020	/8080	//8080-P(/8240	/8270	7 Metals	EPTOX - 8 Metals	iority Pol	LEAD(7420/7421/239.2)	ORGANIC LEAD				a		MONE		SIFAX	L DETEC	L REPO
ID	(Lab use only)	# CONTAINERS	Volume/Amount	WATER	SOIL	AIR	SLUDGE		HCI	E SUN		OTHER	DATE		TIME	BTEX (602/8020)	BTEX/TP	TPH as Diesel (8015 or 8270)	TPH as Jettuel (8015 or 8270)	Total Oil & Grease (413.1)	Total Oil	EPA 601/8010	EPA 602/8020	EPA 608/8080	EPA 608	EPA 624/8240	EPA 625/8270	CAM - 17 Metals	EPTOX	EPA - Pr	LEAD(74	ORGAN						PRIORI	EXPED	VERBALS/FAX	SPECIA	SPECIA
MW-1	and a first of the first of the second s	1	11	X				+		╞							Ţ,	X												17-14-14			<i>n</i>									
MW-2A		1	1	X							$\langle $		1	Ν				X						<u> </u>				_			_	_									_	
MW-3		1		X						7								Д						4_															$\left - \right $		_	
11111-4		1		<u>X</u>				_	_	ľ	<u> </u>							Â		_								-	-+	-+	_	_		$\left - \right $					\vdash	-+	-	
MW-5		1	<u> </u>	X				_	_	<u>}</u>	4			V				Å		-	+		+-					_		-+	-								\vdash	\square		
							_	_			_		10/	6				_					+				_			+		-							┝─┥			
		+						-			_	+							_		-		+							-+	-			┝╌┨								
		+						+	+			+									-		+-	+	 							Ŧ										-
anaaniiya / . abo. 1 taataita ya ee eda di dharro 5 faar - 1997 - 219 (1995 - 1								╉															T																			
	n yan an un un andalan " da an da an an da ar an																																									
Relinquished b	y:		C	Date		Time	9		Ŗ	ece	ive	d by	':									Re	ma	arks	57																	
Relinquished b	у		C)ate	 - 	Time	; ;		R	ece	ive	d by																														
Relinquished b	уу УУ	1.		ate		Time		*, :	,	ece		-	17		tory:	P																										

S	SOUND ANALYTICAL	SERVICES, INC.
	SPECIALIZING IN INDUSTRIAL & TOXI	C WASTE ANALYSIS
4630 PACIF	FIC HIGHWAY EAST. SUITE B-14 . TACOMA. WASH	and a server
Report To:	Blymyer Engineers	Date: October 9 1988 C
Report On:	Analysis of Liquids	Lab No: A 4221

IDENTIFICATION:

Project Name: CF/Puget Sound, WA Project Number: 8818

Samples submitted on 10-12-88

.

ANALYSIS:

MALIDID.		Total		
Laboratory <u>Sample No.</u>	Client <u>Identification</u>	Petroleum Hydrocarbons, mg/l	Chromium, ppm	Lead, ppm
1	MW-1	< 1	< 0.1	< 0.1
2	MW-2A	< 1	< 0.1	0.1
З	MW-3	< 1	< 0.1	< 0.1
4	MW-4	< 1	< 0.1	< 0.1
5	MW-5	< 1	< 0.1	< 0.1

SOUND ANALYTICAL SERVICES

Brent Kipnon

BRENT HEPNER

.

Western Region 4080-C Pike Lane, Conco (415) 685-7852 (800) 544-3422 from inside (800) 423-7143 from outside	e California de California	WORK ORD#: CLIENT: N G PROJECT#: 2 LOCATION: 5 SAMPLED: 1 RECEIVED: 1 ANALYZED: 1 MATRIX: 5	lark Winter Froundwater 213 S.W. 41 Renton, WA 201-710-800 Seattle, WA 1/22/88 1/23/88	s Technolog st Street 98055 0-2 BY: M BY: E BY: R	y, Inc. . Winters . Larsen . Condit	
I Compounds I	MDL ILAB # II.D.#	I 01A I IMW-1122-AIN	02A 1W-1122-B M	03A W-1122-CIM	04A W-1122-DIM	05A W-1122-E
Benzene	0.025	<0.025	(0.025	<0.025	(0.025	< 0. 025
Toluene	0.5	(0.5	(0.5	(0.5	(0.5	(0.5
Ethylbenzene	0.5	(0.5	(0.5	(0. 5	(0.5	(0.5
Xylenes	0.5	(0.5	(0.5	(0.5	(0.5	(0.5
Total BTEX	0.5	(0.5	(0.5	(0.5	(0.5	(0.5
Misc. Hydrocarbons (C4-C12)	1	170	88	46	78	11
Total Petroleum Hydrocarbons as Gasoline	1	170*	88*	46 *	78 *	11*

MDL = Method Detection Limit; compound below this level would not be detected.

Results rounded to two significant figures.

.

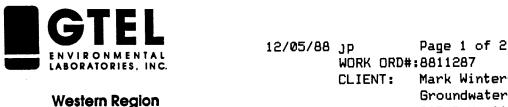
METHOD:

Modified EPA Method 5030/8020/8015 *Hydrocarbon pattern indicates the presence of diesel fuel.

Page 2 of 2

Western Region

4080-C Pike Lane, Concord, CA 94520	WORK ORD#:	8811286
(415) 685-7852 (800) 544-3422 from inside California		Mark Winters 201-710-8000-2
(800) 423-7143 from outside California		Seattle, WA


TEST RESU	LTS	MATRIX: Soil UNITS: mg/kg (ppm)
COMPOUNDS	I MDL ILAB # I II.D.#	I 06A I IMW-1122-FI
Benzene	0.025	(0.025
Toluene	0.5	(0.5
Ethylbenzene	0.5	(0.5
Xylenes	0.5	(0.5
Total BTEX	0.5	(0.5
Misc. Hydrocarbons (C4-C12)	1	58
Total Petroleum Hydrocarbons as Gasoline	1	58 *

MDL = Method Detection Limit; compound below this level would not be detected. Results rounded to two significant figures.

METHOD: Modified EPA Method 5030/8020/8015 *Hydrocarbon pattern indicates the presence of diesel fuel.

nina P. Poper

EMMA P. POPEK, Director

ENVIRONMENTAL LABORATORIES, INC.	12/03/88	JP WORK ORD#	:8811287				
		CLIENT:	Mark Winters				
Western Region 4080-C Pike Lane, Concord, CA (415) 685-7852	94520		Groundwater 213 S.W. 41s Renton, WA	t Street	, Inc.		
(800) 544-3422 from inside Californ	ia	PROJECT#:	201-710-8000	-3			
(800) 423-7143 from outside Califor		LOCATION:	Seattle, WA				
		SAMPLED:	11/22/88	BY: M.	Winters		
		RECEIVED:	11/23/88	BY: E.	Larsen		
		ANALYZED:	11/30/88	BY: R.	Condit		
		MATRIX:	Soil				
TEST RESULTS		UNITS:	mg/kg (ppm)				
I MDL	ILAB #	I 01A	I 02A I	03A I	04A I	0 5A	1
COMPOUNDS I	iI.D.#	IMW-1122-A	IMW-1122-BIMW	1-1122-CIMW	I-1122-DIM	√-1122-E	ΞI

Total Petroleum					100	/10
Hydrocarbons	10	500	350	150	120	(10
as Diesel						

MDL = Method Detection Limit; compound below this level would not be detected. Results rounded to two significant figures.

METHOD: Modified EPA Method 8015

.

Page 2 of 2

Western Region

4080-C Pike Lane, Concord, CA 94520	WORK ORD#:8811287
(415) 685-7852	CLIENT: Mark Winters
(800) 544-3422 from inside California	PROJECT#: 201-710-8000-3
(800) 423-7143 from outside California	LOCATION: Seattle, WA

	TEST	RESUL	TS			TRIX: ITS:	Soil mg/kg	(ppm)
CONDOLINING			MDL	ILAB #	•	06A -1122-	 .E	
COMPOUNDS		ا ~		· · · · · · · · · · · · · · · · · · ·	······			

Total Petroleum		
Hydrocarbons	10	
as Diesel		

82

MDL = Method Detection Limit; compound below this level would not be detected. Results rounded to two significant figures.

METHOD: Modified EPA Method 8015

Comma P. Popen

EMMA P. POPEK, Director

			an Frank Lichter			ana a succe	ugiteranacia (ali en c'hanad		eta antes ta dar	a () (1 (1 (1))	18 10 1910 1910	- 100000000	10 1-01 1-01462	ersiosatiikk	(46/m/2018	ar ann an the stand data		1449036 18+14	Maintai Col	kan sana	-10000000000000000000000000000000000000	- CANARAS A	HH:17-9420	HOMA (COL)	water the	meniari	1 -2494972897	~4.4240.94467*	الدامان ک قرم ا	tstyntingillet, cifette	azanganga ing	anayan - Lit	aniya kalender	90% (Kr. 1)	Reac Miller Will	th national sector	
Env	EL ironmental oratories 🖗	404	080 Con-	I-C P cord 685-1	ike l 1, CA 7852	ane \ 94	520				3422 7143			e CA))		С	;H,	411	1-0)F-	CU	IST	00	Y i	RE	cc	RI	۾ ر	VV i) A (۱N)	ALY		S R	ЕС 	eunikanna)			
Project Manager:	1. 1						Ph				419			~ ~					A	NA	٩L١	/SI	s A	EQ	UE	ST							от	HE	R			PEC		
MI	Ke Le	n	1	5					5,	칏	-	3	7	73									Т	—	ΓT	T	T			T	Т	+-	T	П	T	+	T	T		Ť
Address: Byw 1929 Alame	yer Engin	nee F	A	r, Ve	1.V	VC.	FA	X #:	<u>c</u>	(4 / 4	わこ	ノっ	_	e i l													Î												F	4TS
Alame	da, CA		9	4	50	<u> </u>	Dro	iort	D Na	<u>0</u> _)-	-	<u>.</u>	17			8015					. 8																	SPEC	EME
Project Number:	2212					\boldsymbol{c}	F	/.	P	1 <i>6.</i>	A	S	YII	Di	24		8020					s (41						Ì		2							19 19		TS (S	E S
Project Location:	5060 E.1	Mar	51	ind	U	4	Sa	<u>، ا</u> مار	er S	igna	lure:	~	/				(602/	8270)	828	÷.	5)	arton			Ąa					Meta									Ē	В Н
Project Number: Project Location:	attle v	4	4 4			/		M	an	k	- l	17	tru	le	\bigcirc		oline	Š	15 or	(413	(413	Vqroc			9s ()						N. Ro								NOL	RTING REQUIREMENTS
Sample	Lab #	# CONTAINERS	Volume/Amount		Ма		•				od ved		San	nplin	ng	BTEX (602/8020)	BTEX/TPH as Gasoline (602/8020/8015)	TPH as Diese (801 Por 8270)	TPH as Jettuei (8015 or 8270)	Total Oil & Grease (413.1)	Total Oil & Grease (413.2)	Total Petroleum Hydrocarbons (418.1)	EPA 601/8010	EPA 608/8080	EPA 608/8090-PCBs Chly	EPA 624/8240	EPA 625/8270	CAM - 17 Metals	EPTOX - 8 Metals	EPA - Priority Pollutant Metals	LEAU(/420//421/239.2)	C LEAU					PHIOHITY ONE SERVICE (24 m)	VERBALS/FAX	L DETEC	SPECIAL R. 'ATING REQUIREMENTS
ID	(Lab use)	NTA	me/A	ER		SLUDGE	Ë		5		OTHER		ш	l u	ı	X (60	XTP	as D	L as	ē	ō	Pet		0.00	A 608	4 624	A 625	- N	ŏľ	4		CHGANC					T	RBA	ECIA	ECIA
	(only)	0 *	Volu	WATER	solf.		OTHER	Ξ	HNO3	₩ 2	OTHFI OTHFI	5	DATE	TIME	W	BTE	BTE	TPH	H	Tot	Tot				Εb	EP	Ē	S	<u>ل</u> ا		318	5				1	Ξl	<u>د</u> اړ	р В	g
MW-1		2		X	1	+	+			X	1	2	16/2	7				X																\square					-	
MW-2A		2		X				Í		X								X						_							_					_				
MW-3		2		X						X								X											_											
MW-4		2		X						X,								X										-	_	_				$\left - \right $			_			
MW-5		2		X						X			Y					Х				_						-	-	_	_						+	_	+	
							ļ						0.000 (100 (100 (100 (100 (100 (100 (100									_						-	-	_	_		_			-	+			$\left - \right $
							_																					-+	-	\rightarrow	+	-				+			-	
							_																		-		_	-	-+	-+				+		+		+-	+	
				1			_						ingentaris et dan be	_								-+	_					-+	_	-	-			$\left - \right $				+	+	
								-			_								-			-+	+	+						+	+					Ì			\uparrow	
		_						+		Ļ		1_		1		I						_L Re	 am:	 arks	<u>ا</u>	LI		I	I		I	L_			Ł					-1
Relinquished b	W) TUPOT)7	/P 9]	ate H		ime 3:0	00		Hec	eive	d by	y :											,,,,,	M	od	2:	fi	e	d		A	O	5 - i							
Relinquished b	<u>у у у у у у у</u>	1	Da	ate		me		+	Rec	eive	d by	y :												\sim	r		/	Ve	54	h	rl	<u></u>	- ,	1		1.1	<u>.</u>	. 1.	÷	?
·	ें भूत 1																							ن _	_) م 			/ C	, .		- /		L	×1*	<u>.</u>	11) (*)	1 16		-
Relinquished b	by C	2	D 19	ale F4	-		25	1	1	⁄ν_			11	ratory UM)								a Berlinger														******		

in the second
•••••

SOUND ANALYTICAL SERVICES,	Ð	Ì
----------------------------	---	---

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSI

4630 PACIFIC HIGHWAY EAST, SUITE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-110 - FAX (206)922-5047-

Report	To:	Blymer	Engineers
--------	-----	--------	-----------

Lab No.: A 5204

Date: Februar

1989

Report On: Analysis of Water

<u>IDENTIFICATION:</u> Samples Received on 2-9-89 Project Name: CF/Puget Sound, WA Project Number: 8818

- 10 ⁽¹⁾

ANALYSIS:

Contaminant

Concentration, mg/1

Lab Sample No.	1	2	3	4	5
Client ID	MW-1 #4	MW-2A #2	MW-3 #2	MW−4 #2	M₩-5 #2
Total Petroleum Hydrocarbons	< 10	< 10	< 10	< 10	< 10

Analysis Procedures: TPH by SW-846 Method 8015.

SOUND ANALYTICAL SERVICES STAN P. PALMQUIST

(0.5

18

18

(0.5

18

18

.

(0.5

78

78

(0.5

110

110

Western Region 4080-C Pike Lane, C (415) 685-7852 (800) 544-3422 <i>trom</i> (800) 423-7143 <i>trom</i>	inside California	3	WORK ORD# CLIENT: PROJECT#: LOCATION:	MARK WIN TER GROUNDWATER 19226–66TH KENT, WA 9 201–710–800 SEATTLE, WA	TECH NOLOG \ AVE.S. SUIT 8032 0-4	(, INC. TE L-109 . WINTERS	
			SAMPLED: RECEIVED: ANALYZED: MATRIX: UNITS:		BY: P	. HANNERS	
PARAMETER	I MDL	ISAMPLE #	I 01 I MW23A	02 MW23B	03 MW23C	04 I MW23D I	05 MW23E
Benzene	0.025	5	<0.03	25 (0.0 25	(0.025	(0.025	(Ø . 02 :
Toluene	0.5		<1.0	(0.5	(0.5	(0.5	(0.5
Ethylbenzene	0.5		(1.0	(0.5	(0.5	(0.5	(0. 5
Xylenes	0.5		<1.0	(0.5	(0.5	(0.5	(0.5

(0.5

52

52

Misc. Hydrocarbons 1 (C4-C12)

0.5

1

Total Petroleum Hydrocarbons as Gasoline

.

Total BTEX

MDL = Method Detection Limit; compound below this level would not be detected. Results rounded to two significant figures.

METHOD: Modified EPA 5030/8020/8015

:

Page 2 of 2

Western Region 4080-C Pike Lane, Concord, CA 94520 (415) 685-7852

2

(800) 544-3422 from inside California (800) 423-7143 from outside California

WORK ORD#: 8902112

CLIENT:	MARK WINTERS
PROJECT#:	2 01-710-8000 -4
LOCATION:	SEATTL E, WA
MATRIX:	Soil
UNITS:	mg/Kg (ppm)

PARAMETER	I MDL	ISAMPLE #	# 1	06 MW23F			 	 	
Benzene	0.025	ی ہے جو سے میں میں میں میں میں م		<0.0)25				
Toluene	0.5			(0.5	5				
Ethylbenzene	0.5			(0.	5				
Xylenes	0.5			(0.)	5				
Total BTEX	0.5			(0.	5				
Misc. Hydrocarbons (C4-C12)	; 1			4	1				
Total Petroleum Hydrocarbons as Gasoline	1			4	+1				

MDL = Method Detection Limit; compound below this level would not be detected. Results rounded to two significant figures.

METHOD: Modified EPA 5030/8020/8015

1

EMMA P. POPEK, Laboratory Director

PARAMETER	 	MDL	ISAMPLE	#	1	01 MW23A	1	02 MW23	3 B	 	03 MW23C	1	04 MW23D	 	05 MW23E
						TRIX:	So mg	il /Kg	(ppi	mi)					
					RE	MPLED: CEIVED: IALYZED:	02	/03/ /06/ /06/	89		BY:		WINTE		
Western Regi 4080-C Pike L (415) 685-785 (800) 544-342 (800) 423-714	nia		PR	IENT: OJECT#: CATION:	GR 197 KE 20	RK W DUND 226- NT, 1-71 ATTL	WATE 66th WA 0-80	ER A 98 900	TECHNOL VE.S. S 032	UIT	E L-10				
ENVIRONMEN LABORATORIES,			02/08/8	9M'	WD	RK ORD#	:89		3			31	6 RECI	l	

Total Petroleum	:	10	170	260	79	(10	120
Hydrocarbons as Diesel							

MDL = Method Detection Limit; compound below this level would not be detected. Results rounded to two significant figures.

METHOD: Modified EPA 8015

t

•

Western Region 4080-C Pike Lane, Concord, CA (415) 685-7852	94520	e 2 of 2				
(800) 544-3422 from inside Californ (800) 423-7143 from outside Califor		ORD#: 8902	2113			
		ECT#: 201	< WINTERS -710-8000-5 TTLE, WA			
	-	RIX: Soi TS: mg/	l Kg (ppm)			
• • • • • • • • • • • • • • • • • • • •	ISAMPLE # I.D.	06 1W23F		 		

Total Petroleum 10 Hydrocarbons as Diesel 330

MDL = Method Detection Limit; compound below this level would not be detected. Results rounded to two significant figures.

METHOD: Modified EPA 8015

:

Conna P. Popen

EMMA P. POPEK, Laboratory Director

Western Region 4080-C Pike Lane, 0 (415) 685-7852 (800) 544-3422 from (800) 423-7143 from	i inside C i outside	Califor	rnia	NORK ORD#: CLIENT: PROJECT#:	MARK WI GROUNDW 19226-6 KENT, W 201-710 6050 E. 03/06/8 03/07/8	NTEF ATEF 6TH IA 9 	R TECHNOLO AVE.S. SU 8032 90-6 RGINAL WAY BY: BY:	GY, INC. ITE L-109 , SEATTLE M. WINTERS P.HANNERS	
PARAMETER	I M	DL	ISAMPLE	 	1 02 1 MW-36	1	03 MW-36C	04 I MW-36D I	05 I MW-36E I
.Benzene	0.	5	، طبرہ سین خین شہی سے سے بیے ہیے ہی	 (0.25	(0.0	25	(0.025	<0.025	(0.025
Toluene	0.	5		(0.5	(0	.5	<0.5	(0.5	(0.5
Ethylbenzene	0.	5		(0.5	(0	.5	(0.5	(0.5	(0.5
Xylenes	0.	5		(0.5	(@	.5	(0.5	(0. 5	(0.5
Total BTEX		5		(0.5	<0	.5	(0.5	(0.5	(0.5
Misc. Hydrocarbon (C4-C12)	s :	1		<1		(1	<1	<1	<1
Total Petroleum	:	1		<1		(1	<1	<1	<1

Total Petroleum 1 Hydrocarbons as Gasoline

MDL = Method Detection Limit; compound below this level would not be detected. Results rounded to two significant figures.

METHOD: Modified EPA 5030/8020/8015

:

Western Region 4080-C Pike Lane, C (415) 685-7852	Concord, C	A 94520	Page 2 of	2							
(800) 544-3422 from (800) 423-7143 from	inside Califo outside Calif	rnia ornia	WORK ORD#:	C903113							
	1		CLIENT: PROJECT#: LOCATION:	MARK WINTERS 201–710–8000. 6050 E. Marginal Way, Seattle							
			MATRIX: UNITS:	Soil mg/Kg	(ppm)						
PARAMETER	I MDL	ISAMPLE	# 06 MW-36F	 	 	1	 	 			
Benzene	0.025		(0.025								
Toluene	0.5		(0.5								
Ethylbenzene	0.5		(0.5								
Xylenes	0.5		(0.5								
Total BTEX	0.5		(0.5								
Misc. Hydrocarbon (C4-C12)	s 1		(1								
Total Petroleum Hydrocarbons as Gasoline	1		(1								

MDL = Method Detection Limit; compound below this level would not be detected. Results rounded to two significant figures.

.*

METHOD: Modified EPA 5030/8020/8015

5

EMMA P. POPEK, Laboratory Director

GTEL		Ø3/16/89M		Page 1 of 2	ł	MAR 2 2 RE	D
Western Region 4080-C Pike Lane	, Concord, C	A 94520	WORK ORD# CLIENT:	:C903114 MARK WINTERS GROUNDWATER 19226-66TH f KENT, WA 90	TECHNOLO AVE.S. SU	GY, INC. ITE L-109	
(415) 685-7852 (800) 544-3422 fro (800) 423-7143 fro	m inside Califo	rnia	PROJECT#: LOCATION:	201-710-800 6050 E. MAR	0-7 GINAL WAY		
	ł			03/06/89 03/07/89 03/14/89		M. WINTERS C. MANUEL	
			MATRIX: UNITS:	Soil mg/Kg (ppm)			
PARAMETER	I MDL	ISAMPLE #	01 MW-36A	02 MW-36B	03 MW-36C	04 MW-36D	05 MW-36E
					÷		
Total Petroleum Hydrocarbons as Diesel	10		320	280	430	210	190

MDL = Method Detection Limit; compound below this level would not be detected. Results rounded to two significant figures.

METHOD: Modified EPA 8015

ī

.

Western Regio 4080-C Pike La (415) 685-7852	ne, Cond	cord, C	A 94520	Pé	age 2 of	2				
(800) 544-3422 (800) 423-7143	from insid	de Califo ide Calil	rnia Iornia	WOI	RK ORD#:	C90311	4			
		ł		PR	IENT: DJECT#: CATION:	201-71	IINTERS 0-8000-7 . MARGINAL	. WAY,	SEATTLE	
					ATRIX: NITS:	Soil mg/Kg	(ppm)			
PARAMETER		MDL	ISAMPLE		06 MW-36F			1	 	
										س هو چين هو من هو پي زي هو هن ر

Total Petroleum 10 Hydrocarbons as Diesel

,

150

MDL = Method Detection Limit; compound below this level would not be detected. Results rounded to two significant figures.

.'

METHOD: Modified EPA 8015

ţ

EMMA P. PUPEK, Laboratory Director

Western Region

(415) 685-7852

Page 1 of 1 12/06/88mt CLIENT: Mark Winters Groundwater Technology, Inc. 213 SW 41st Street Renton, WA 98055 PROJECT#: 201-710-8000-1 LOCATION: Seattle, WA SAMPLED: 11/08/88 BY:J. Deschenes RECEIVED: 11/09/88 BY:K. Fillinger

ANALYZED: 11/22,28,29/88 BY:T. Alusi

TEST RESULTS

4080-C Pike Lane, Concord, CA 94520

(800) 544-3422 from inside California (800) 423-7143 from outside California

PARAMETER	IUNITS	I MDL	LAB # I.D.#	34786 SPB-2	 	34787 SPB-3		1
Ammonium	mg/Kg	0.02		6.3		1.4		
Nitrate	mg/Kg	1		4		1		
Nitrite	mg/Kg	1		<1		(1)		
Phosphate	mg/Kg	1		(1		<1		
рН				7.5	i	4.8		

MATRIX: Soil

MDL = Method Detection Limit; compound below this level would not be detected. Results rounded to two significant figures.

.*

METHOD: Ammonia by SM417E Nitrate by SM429 Nitrite by SM429 Phosphate by SM429 pH by EPA 9045

a P. Roper

EMMA P. POPEK, Director

ENVIRONMENTAL LABORATORIES, INC Western Region 4080-C Pike Lane (415) 685-7852 (800) 544-3422 fr (800) 423-7143 fr	a, Concord, Ca om inside Califor	nia	U C L PI L S R R	DRK ORD# IENT: ROJECT#: DCATION: AMPLED: ECEIVED: NALYZED: ATRIX:	:C903 MARK GROU 1922 KENT 201- 6050 SEAT 03/0 03/0	WINT NDWAT 6-66T , WA 710-8 MARC TLE, 6/89 7/89 16/89	ERS ER 98 9000 SINA WA	TEC 1VE. 9032 9-8 9L W	5. S	ТЕ. м. Е.	L-1' WI	09 NTEF RSEN			
TEST		ISAMPLE #	1	01A)2A 1 36B	1	03 MW	3A 36C		04 MW	A 36D	1	Ø5 MW	5A 36E
PARAMETER	 	I.D.	 	MW 36A	; i'iv		•								
															
рН				7.1		7.4			6.6			6.1			7.5
: : *															
	ł														

* "R 1 2 RECU

METHOD: EPA 9045

* This additional test was requested by the client on 03/27/89.

PAGE 2 OF 2

	•			CATION:	6050 M SOIL	IARGINAL WA	14 5.	
TES	RESULTS			114171	SUIC			
ARAMETER		ISAMPLE	# 1 1	06A MW 36F			 	
، سے بھی جب سے جب سے جب نی ہے ہی	, 							
ын				7.2				
-								
- - -								
METHOD: EPA	 9045	، کی چینا ہی کے لیے ایک سے خدا سے لیم ہیں						
* This addit	ional test	was reques	ted b	У				
the clier	it on 03/27	/89.						

•

En En	TEL vironmental boratories 🕑	(Cor	ncor	Pike d, C -785	CA (ine 945:	20	8 8	00-5 00-4	544-1 23-7	3422 7143	2 (In C 3 (Outs	:A) side	e CA)			Cŀ	IAI	N-(OF	-C	US	тс	יסמ	r R	EC	:01	RD	A	NC) A	NA	LY	'SI	SF	?E(QU	E	ST		
Project Manager	r: 							Pho	ne #	:4	15	+	~							AN.	AL	YS	IS	RE	QU	ES	T	-					Γ	ΟΤΙ	HE	R			PE			
Address: B/y	(PLOU MYTA EN 9 Element Guicdia, 818 Societto,		<u>S</u> 1911 19	102	C C	<u>, , , , , , , , , , , , , , , , , , , </u>	5 1	5 FAX	<u>71</u> #:	41	<u>3</u> 5	<u> </u>	73 (14												T	T						Τ				T		H		Τ		1
Project Number:	amedia, RIS	<u>C 1</u>	4		\overline{c}	F	ک۔ ا	$\frac{1}{\rho}$		Nam	ie:	<u>.</u>	ad	(00		3020/8015					; (418.1)																Ê	ays)			HEMEN
Project Location:	SCEO EAS	:τ, , ω	nr. Iu	ary.	ڻ بر آ	 لام لا	01	Sam		Sig	nati	ую: а(lone	_ _E	ng .		line (602/8	5 or 8270)	5 or 8270)	413.1)	413.2)	drocarbons			40					ant Metals	9.2)							RVICE (24	CE (2-4 d			ううして うさ
Sample	Lab #	VINERS	moun		Má	atr	İX			let ese	110	u	I Sa	m	pling	2/8020)	BTEX/TPH as Gasoline (602/8020/8015)	TPH as Diesel (8015 or 8270)	TPH as Jettuel (8015 or 8270)	Total Oil & Grease (413.1)	Total Oil & Grease (413.2)	Total Petroleum Hydrocarbons (418.1)	8010	8020	EPA 608/8080 EDA 608/8080 DCD- O-4:	8240	8270	Metais	8 Metals	EPA - Priority Pollutant Metals	20/7421/23	ORGANIC LEAD						PRIORITY ONE SERVICE (24 hr)	EXPEDITED SERVICE (2-4 days)	VEAX	SPECIAL DETECTION LIMITS (SPECIFY)	
ĪD	(Lab use only	# CONTAINERS	Volume/Amount	WATER	SOIL	AIR	SLUDGE	OTHER	HCI		NONF	OTHER	DATE		TIME	BTEX (602/8020)	BTEX/TPI	TPH as D	TPH as Je	Total Oil {	Total Oil &	Total Petr	EPA 601/8010	EPA 602/8020	EPA 608/8080	EPA 624/8240	EPA 625/8270	CAM - 17 Metals	EPTOX - 8 Metals	EPA - Pric	LEAD(742	ORGANIC						LINOIHA	EXPEDIT	VEHBALS/FAX	SPECIAL	UTICIAL
MWI		!		X X						Ż	¥		5/2		1115		 	X X			-							1														
MWZA MW3		<u>,</u>	\neg	슀	+		╉	+			\ -	+-	5/2		/1 <u>25</u> /135			X			-	+	+	╉	+-	╉	+	+						$ \rightarrow $	-	+	+	-	$\frac{1}{1}$	-		and the second
MW4		1/1		Ŕ		1			-	Ťx		\top	5/2		1145		 	X						+		1	\uparrow	\mathbf{T}						\top	-	-	\uparrow	+		+		
MW3 MW4 MW5		1		X						Ź			5/2	T	1,55			X																								
																																		+-	_							
																																			+	+					+	
Relinquished b	1 1	5/	」 Da ン	te	 Tii	me	;		Re	ceiv	l /ed	by:	I		1]			1	I		 Re	 ema	ark	 s:	1	I									1				1	1	
Relinquished b			Da	te	Tir	me			Re	ceiv	ed	by:																														
Relinquished b	у		Da	te	Tir	me	•			ceived by Laboratory: Boen 5/3						 f	9)	0:	30		fn	$\overline{\ }$																			

ŷ.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4630 PACIFIC HIGHWAY EAST, SUITE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922- 5047

 Report To: Blymer Engineers, Inc.	Date: May 8, 1989
Report On: Analysis of Water	Lab No.: A 6109
<u>IDENTIFICATION:</u> Samples Received on 5-3-89 Project: 8818 CF/Puget Sound, WA	

ANALYSIS:

Laboratory Sample No.	1	2	
	L	Z	
Client Identification	MW 1	MW 2A	MW 3
Total Petroleum Hydrocarbons, mg/l	< 10	< 10	< 10

Laboratory Sample No.	4	5	
Client Identification	MW 4	MW 5	
Total Petroleum Hydrocarbons, mg/l	< 10	< 10	

Analysis Procedures: TPH by EPA Modified Method 8015

SOUND ANALYTICAL SERVICES PALMOUIST STAN Ρ.

This report is issued solely for the use of the person or company to whom it is addressed. This laboratory accepts responsibility only for the due performance of analysis in accordance with

2

Parame	TER	I MDL	AMPLE .D.	# ! 	Ø1 DH52A	 	02 DH52C	1	03 DH52E			······································
					ATRIX:		OIL g∕Kg (µ	(mqc				
					NALYZED				BY:	D.	VLAHOGIANI	
	Outside CA: (800)	423-7143			AMPLED:		5/02/89	-	BY:	D.	HRABORSKY	
	4080-C Pike Ln., Co (415) 685-7852 In CA: (800) 544-3	oncord, CA 9 422	45 20		ROJECT# OCATION	: 2		-800		Y. S	EATTLE	
	ENVIRON LABORATOR Western Regior	RIES, IN		C	LIENT:	G 1	9226-66	ATER STH	TECHNO			
	G		35/10/8	۰ ۲	IORK ORD) #: C						

Total Petroleum	10	170	630	100
Hydroc arbons				
as Diesel				

MDL = Method Detection Limit: compound below this level would not be detected. Results rounded to two signiticant figures.

. .

METHOD: Modified EPA 8015

mna P. Popen

EMMA P. POPEK, Laboratory Director

Northwest Reg 4080 Pike Land Concord, CA 9- (415) 685-7852 (800) 544-3422 (800) 423-7143	e 4520 from insid		LOCATION SAMPLED: RECEIVED	: 06/09/89 : 06/14/89	8032 0-10	J.	E L-109 DESCHENES VLAHOGIANI	
			MATRIX:	Soil				

Total Petroleum	10	21	520	<10
Hydrocarbons				
as Diesel				

MDL = Method Detection Limit; compound below this leve) buld not be detected. Results rounded to two significant figures.

.

METHOD: Modified EPA 8015

.

• '

Comma P. Pope

EMMA P. POPEK, Lat matory Director

GT Env Lab	FEL vironmental poratories 🔊		408 Cor 415	0-C nco -685	Pike rd, (5-78	e Lai CA 9 52	тө 9452	20		800 800	-54 -42	4-34 3-71	122 (43 ((In CA) (Outside	e CA)		(СН		N-(OF	-C	US	то	D١	ſR	EC	OF	RD	A	٩D	A	IAL	.Y:	SIS	SR	EC	עב	ES	T	
Project Manager:	lanie						ا ح	Pho	one	#: 	41 37	'5" '7	2						4	AN	AL	YS	IS	RE	ວບ	ES	т						0)Tł	١EI	R	T				
Project Manager: <u>Mike</u> Address: <u>Blyn</u> 1820 <u>Ala</u> Project Number: Project Location: <u>S</u>	A clement	er. + 19		y	.t.	vc	<u></u> F			4 35 Na	, / / . 	, , , ;	59	44			/8015)					8.1)												T							Т
B	R/ 8					\sim	F	1	٥	Ċ.	+	Soi	MC	1,w	G		8020					IS (41								s								4 hr)	lsha	10.0	UIRE
Project Location:	5060 1 All	:"S' 1]0	j' pu	er f	la	lac		San	nple	er S	ign	atur 2	'е:	haze	De		ine (602	or 8270	5 or 8270	413.1)	413.2)	rocarbor			1400					ant Metal	9.2)						1000	AVICE (2	1 (2-4 (TIMITING	NG REQ
Sample	Lab #	LERS	tount		M	latr	ix			Me Pres				Sam	pling	8020)	as Gasol	sel (8015	uel (8015	Grease (Grease (eum Hyd	9	202				letals	Metals	ty Polluts	/7421/23	EAD						ONE SEF			EPORTIN
ID	Lab use (Lab use only	# CONTAINERS	Volume/Amount	WATER	SolL	AIR	SLUDGE	OTHER				· · · · ·	OTHER 1	DATE	TIME	BTEX (602/8020)	BTEX/TPH as Gasoline (602/8020/8015)	TPH as Diesel (8015 or 8270)	TPH as Jetfuel (8015 or 8270)	Total Oil & Grease (413.1)	Total Oil & Grease (413.2)	Total Petroleum Hydrocarbons (418.1)	EPA 601/8010	EPA 602/8020			EPA 625/8270	CAM - 17 Metals	EPTOX - 8 Metals	EPA - Priority Pollutant Metals	LEAD(7420/7421/239.2)	ORGANIC LEAD						PRIORITY ONE SERVICE (24 hr)	LEAPEULLEU SERVIGE (2-4 UAYS) VEDBAL SZEAV	VEHBALS/FAX SPECIAL DETECTION I MITS (SPECIEY)	SPECIAL REPORTING REQUIREMENTS
4W 1	• • • • • • • • • • • • • • • • • • •	1		X							χ			8/3	12:40	1		X							╞	1		-						+	╈	+	-†-		\uparrow	-	+
MU 213		1		Ϊγ			1				X			9/2	12:25			X												ſ				+			┢			+	
1.1W3		1		Ŷ							Ý			8/3	12:55	·											T											\top		1	
M/hr y		1		Ίx							γ			8/3	12:45			X X X																			T			T	
14. 1 14. 219 14. 3 14. 4 14. 4 14. 5		1		X							X				12:0			ÍХ -																							
															ļ																										
													-		ļ							_			_	_		ļ												\bot	
								_								l	<u> </u>																								\Box
Relinquished b	nebersly	E		1	ר 	⁻ime)		R	lece	eive	ed t	су:									R	em	ark	s:																
Relinquished b	у		Da	ate	т 	ime	2		R	ece	eive	ed t	oy:																												
Relinquished b	у		Da	ate	T	ïme			R	ece	eive	ed b	by L	_abora	itory:																										

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4630 PACIFIC HIGHWAY EAST, SUITE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922- 5047

Report To: Consolidated Freightways Date: August 8, 1989 % Blymer Engineers Report On: Analysis of Liquid Lab No.: A 7127

<u>IDENTIFICATION:</u> Samples Received on 8-4-89 Project: 8818, CF/Puget Sound, WA 5060 E. Marginal Way Seattle, WA

ANALYSIS:

Lab <u>Sample No.</u>	<u>Client ID</u>	Total Petroleum <u>Hydrocarbons, mg/l</u>	As Gasoline <u>or Diesel</u>
1	MW1	< 10	
2	MW2A	< 10	
3	MW3	< 10	
4	MW4	< 10	
5	MW5	< 10	

SOUND ANALYTICAL SERVICES C. LARRY ZURAW

This report is issued solely for the use of the person or company to whom it is addressed. This laboratory accepts responsibility only for the due performance of analysis in accordance with industry acceptable practice. In no event shall Sound Analytical Services, Inc. or its employees be responsible for consequential or special damages in any kind or in any amount.

4080-C Pike Lane Concord, CA 94520 415-685-7852 800-544-3422 (In CA) 800-423-7143 (Outside CA)			CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST																																				
Project Manager	•						Ph	one) #:	41	5	-							<u>.</u>	ΔΙ	vs	19	REC		ST							 тн	FR		[;	SPI	ECI	AL	
Mike L	ew.s						52	11		377	<u>77</u>	Ø	3			-	.			~~					-01							 	<u> </u>		Н	AN	DL	INC	ì
Mike L Address: &ly, 1839 Al Project Number: 88, Project Location:	yor Engl Clemen	A e F	AR IU		5		FAX	X #	: 4	15	-																											<u></u>	s
Project Number:	Ameda, Cr	7					$\frac{O}{Prc}$	<u>کخ</u> موند	+ N:	<u></u>	<u>7</u>	2		N	$\frac{1}{2}$	8015				i.	Ē																		4 F F
8R	18					ĉ	F	, joc	2	272	+	ti	10			3020/					\$ (416														Ê	ays)		<u>ז</u> ארי גערי	E E
Project Location:	SOLO E, MA	IRG	ر. رو ز	11	w,	<u> </u>	Sar	/- mpl	er S	igna jigna	<u> </u>	 e:	<u> </u>			602/6	(270)	3270)	<u>_</u>	নি	pons			<u></u> ≥					letals						E (24	2-4 d		Ĩ	ING REQUIREMENTS
	Souttle U) A	L		C	-	(Ċ)a	r un		2	That	out	1	line (5 or 8	5 or {	413.	413.2	lroca			ő					ant N	9.2)	i I				NIC NIC	с Ш		N N	5 Z
		IERS	ount		Ма	ıtrix			1414	etho ser	u		San	npling	8020)	as Gaso	sel (801!	uel (801	Grease (Grease (eum Hyc	얻	80 20	80-PCB	40	20	etals	Metals	ty Pollut	7421/23	EAD				ONE SE) SERVI	AX		
Sample ID	Lab # (Lab use only	# CONTAINERS	Volume/Amount	WATER	SOIL	SLUDGE	OTHER				NONE	_	DATE	TIME	BTEX (602/8020)	BTEX/TPH as Gasoline (602/8020/8015)	TPH as Diesel (8015 or 8270)	FPH as Jetf	Total Oil & Grease (413.1)	Total Oil & Grease (413.2)	Fotal Petrol	EPA 601/8010	EPA 602/8020 EPA 608/8080	EPA 608/80	EPA 624/8240	EPA 625/8270	CAM - 17 Metals	EPTOX - 8 Metals	EPA - Priority Pollutant Metals	LEAD(7420/7421/239.2)	ORGANIC LEAD				PRIORITY ONE SERVICE (24 hr)	EXPEDITED SERVICE (2-4 days)	VERBALS/FAX	SPECIAL DETECTION LIMITS (SPECIFY)	SPECIAL REP
MWI		\overline{f}		X		+	Ĕ	F		<u>-</u> Х	-	Ť			H		$\overline{\mathbf{v}}$				-			-		ш —	Ĭ	-	-	_	\dashv	 +	+	+		H	1	+	-
MW 2A		17		Ń	-	+		┢		ŷ	+		$\frac{1}{1}$				χ					+		$\left \right $								+-	+	+	┨──┤			+	-
MW 3		$\left \right $		X	-	+	\vdash	┢		ý	1		/// ///				γ															 +	+	-				+	-
MW 4		$\overline{1}$		X		\uparrow		1		X	1		11/1				χ															1	+	+				+	-
MW2A MW3 MW4 MW5		1		X		+		 	\square	X	+		<u> </u>				Ń	,														 +	+	-				+	_
								}																										<u> </u>					
		$\left \right $	$\left - \right $		_		 	┞	\square	┟──┼	\dashv	-			$\left - \right $						_	_	_							-+		 		4_				_	{
······································			┝╼╾┨	┟──╂─		_		<u> </u>		┝─┼	+				\square						_	+								_		 	_					_	
			$\left \right $		_				 	┝──╋	-+				$\left - \right $					-	\rightarrow	+							_	-	\vdash	 +-	+				-+	+	
Relinquished t	by:		 D	ate	 Tir	 me	L	F	Rec	eive	⊥ id∤	þy:		<u> </u>				I			 Re	em.	ark	5:					l	I	I	 	<u> </u>						
Carilo	haborely	/	1	ろ /	19	\mathcal{H}) [11]		\geq	ik	E	ว่า	a.	A																									
Relinquished b			Da	ate	Tir	ne		F	Rec	eive	d t	су:	(\mathcal{T}	,																								
Relinquished b	у		Da	ate	Tir	ne		F	Rec	eive	d t	 эу L	∟abora	atory:																									

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4630 PACIFIC HIGHWAY EAST, SUITE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922- 5047

Report To: Consolidated Freightways Date: November 6, 1989 % Blymer Engineers

مر میشد.

Report On: Analysis of Water

Lab No.: 8359

<u>IDENTIFICATION:</u> Samples Received on 11-02-89 Project: 8818 CF/Seattle, 5060 E. Marginal Way, Seattle, WA

ANALYSIS:

Lab <u>Sample No.</u>	<u>Client ID</u>	Total Petroleum Fuel <u>Hydrocarbons, mg/kg</u>
1	MWl	< 10
2	MW2A	< 10
3	MW3	< 10
4	MW4	< 10
5	MW5	< 10

(TPH by EPA SW-846 Modified Method 8015)

SOUND ANALYTICAL SERVICES

BRENT HEPNER

This report is issued solely for the use of the person or company to whom it is addressed. This laboratory accepts responsibility only for the due performance of analysis in accordance with industry acceptable practice. In no event shall Sound Analytical Services, Inc. or its employees be responsible for consequential or special damages in any kind or in any amount.

Laboratory Analytical Reports 1998-2003

Sound Analytical Services, Inc.

ANALYTICAL & ENVIRONMENTAL CHEMISTS 4813 Pacific Hwy East • Tacoma, WA 98424 (253) 922-2310 • FAX (253) 922-5047 e-mail: SoundL@aol.com

TRANSMITTAL MEMORANDUM

DATE: April 23, 1998

TO: Rob Long Golder Associates 4104 - 148th Avenue N.E. Redmond, WA 98052

PROJECT: CF/Risk Assessment

REPORT NUMBER: 71921

Enclosed are the test results for twenty-one samples received at Sound Analytical Services on April 9, 1998.

The report consists of this transmittal memo, analytical results, quality control reports, a copy of the chain-of-custody, a list of data qualifiers and analytical narrative when applicable, and a copy of any requested raw data.

Analytical Narrative: The percent recovery for aromatics (C8-C10) in the VPH blank spike analysis associated with this sample batch exceeded advisory limits. No action was taken based on this outlier. The percent recovery for aliphatics (nC21 - nC34) in the EPH blank spike and matrix spike analyses associated with this sample batch were outside QC limits. The relative percent difference value for aromatics (nC21 - nC34) in the duplicate analysis for sample 71784-1 (batch QC) exceeded QC limits. These outliers may have caused by a baseline anomaly which is inherent to the method. The percent recovery for diesel range organics in the WTPH-D Ext. blank spike analysis was slightly above QC limits. No action was taken based on the acceptable matrix spike and matrix spike duplicate recoveries for this sample set.

Should there be any questions regarding this report, please contact me at (253) 922-2310.

Sincerely,

Tom Watson Project Manager

SOUND ANALYTICAL EPH/VPH

VOLATILE PETROLEUM HYDROCARBONS

ALIPHATIC AND AROMATIC FRACTIONS TARGET INDICATOR COMPOUNDS

Client Name	Golder Associates
Client ID:	CF-T1
Lab ID:	71921-01
Date Received:	4/9/98
Date Prepared:	4/20/98
Date Analyzed:	4/20/98
% Solids	89.02

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

			Recove	ry Limits
Surrogate	% Recovery	Flags	Low	High
a.a.aTrifluorotoluene	95		60	140

	Result		
Analyte	(mg/kg)	PQL	Flags
EC 5-6 Aliphatics	ND	1.3	•
EC >6-8 Aliphatics	ND	1.7	
EC >8-10 Aliphatics	3.2	2.6	
EC >8-10 Aromatics	7.4	2.1	
MTBE	ND	0.43	
Benzene	ND	0.43	
Toluene	ND	0.43	
Ethylbenzene	ND	0.43	
m- & p-Xylene	ND	0.86	
o-Xylene	ND	0.43	

Client Name	Golder Associates
Client ID:	MW2-2.0
Lab ID:	71921-06
Date Received:	4/9/98
Date Prepared:	4/20/98
Date Analyzed:	4/21/98
% Solids	81.3

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

			Recove	ry Limits
Surrogate	% Recovery	Flags	Low	High
a.a.aTrifluorotoluene	68		60	140

	Result		
Analyte	(mg/kg)	PQL	Flags
EC 5-6 Aliphatics	ND	1.4	-
EC >6-8 Aliphatics	ND	1.9	
EC >8-10 Aliphatics	ND	2.9	
EC >8-10 Aromatics	ND	2.4	
MTBE	ND	0.48	
Benzene	ND	0.48	
Toluene	ND	0.48	
Ethylbenzene	ND	0.48	
m- & p-Xylene	ND	0.95	
o-Xylene	ND	0.48	

Client Name	Golder Associates
Client ID:	RW1-7.0
Lab ID:	71921-08
Date Received:	4/9/98
Date Prepared:	4/20/98
Date Analyzed:	4/21/98
% Solids	73.03

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

			Recove	ry Limits
Surrogate	% Recovery	Flags	Low	High
a.a.aTrifluorotoluene	68		60	140

	Result		
Analyte	(mg/kg)	PQL	Flags
EC 5-6 Aliphatics	ND	1.6	-
EC >6-8 Aliphatics	ND	2.2	
EC >8-10 Aliphatics	20	3.2	
EC >8-10 Aromatics	16	2.7	
МТВЕ	ND	0.54	
Benzene	ND	0.54	
Toluene	ND	0.54	
Ethylbenzene	ND	0.54	
m- & p-Xylene	ND	1.1	
o-Xylene	ND	0.54	

Client Name	Golder Associates
Client ID:	RW2-4.0
Lab ID:	71921-13
Date Received:	4/9/98
Date Prepared:	4/20/98
Date Analyzed:	4/21/98
% Solids	93.5

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
a.a.aTrifluorotoluene	118		60	140

	Result		
Analyte	(mg/kg)	PQL	Flags
EC 5-6 Aliphatics	ND	1.2	-
EC >6-8 Aliphatics	34	1.6	
EC >8-10 Aliphatics	ND	48	D
EC >8-10 Aromatics	630	40	D
МТВЕ	ND	0.4	
Benzene	ND	0.4	
Toluene	4.4	0.4	
Ethylbenzene	7.4	0.4	
m- & p-Xylene	30	16	D
o-Xylene	18	8	D

Client Name	Golder Associates
Client ID:	RW2-7.0
Lab ID:	71921-14
Date Received:	4/9/98
Date Prepared:	4/20/98
Date Analyzed:	4/21/98
% Solids	72.43

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

			Recove	ry Limits
Surrogate	% Recovery	Flags	Low	High
a.a.aTrifluorotoluene	126		60	140

	Result		
Analyte	(mg/kg)	PQL	Flags
EC 5-6 Aliphatics	ND	1.6	•
EC >6-8 Aliphatics	61	2.1	
EC >8-10 Aliphatics	ND	64	D
EC >8-10 Aromatics	490	53	D
MTBE	ND	0.53	
Benzene	ND	0.53	
Toluene	ND	0.53	
Ethylbenzene	4.4	0.53	
m- & p-Xylene	29	21	D
o-Xylene	26	11	D

Lab ID:	Method Blank - GB1412
Date Received:	-
Date Prepared:	4/20/98
Date Analyzed:	4/20/98
% Solids	

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

			Recove	ry Limits
Surrogate	% Recovery	Flags	Low	High
a.a.aTrifluorotoluene	78		60	140

Sample results are on an as received basis.

	Result		
Analyte	(mg/kg)	PQL	Flags
EC 5-6 Aliphatics	ND	1.2	•
EC >6-8 Aliphatics	ND	1.6	
EC >8-10 Aliphatics	ND	2.4	
EC >8-10 Aromatics	ND	2	
MTBE	ND	0.4	
Benzene	ND	0.4	
Toluene	ND	0.4	
Ethylbenzene	ND	0.4	
m- & p-Xylene	ND	0.8	
o-Xylene	ND	0.4	

Duplicate Report

Client Sample ID: Lab ID: Date Prepared: Date Analyzed: QC Batch ID: MW2-2.0 71921-06 4/20/98 4/21/98 GB1412

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

Parameter Name	Sample Result	Duplicate Result	RPD	
	(mg/kg)	(mg/kg)	%	Flag
EC 5-6 Aliphatics	0	0	NC	
EC >6-8 Aliphatics	0	0	NC	
EC >8-10 Aliphatics	0	0	NC	
EC >8-10 Aromatics	0	0	NC	
MTBE	0	0	NC	
Benzene	0	0	NC	
Toluene	0	0	NC	
Ethylbenzene	0	0	NC	
m- & p-Xylene	0	0	NC	
o-Xylene	0	0	NC	

Matrix Spike Report

Client Sample ID: Lab ID: Date Prepared: Date Analyzed: QC Batch ID: MW2-2.0 71921-06 4/20/98 4/20/98 GB1412

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

	Sample Result	Spike Amount	MS Result	MS	
Parameter Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	Flag
EC 5-6 Aliphatics	0	9.4	7.5	79	-
EC >6-8 Aliphatics	0	4.7	3.9	84	
EC >8-10 Aromatics	0	4.7	6	128	
MTBE	0	4.7	4.7	100	
Benzene	0	4.7	4.7	100	
Toluene	0	4.7	5.2	111	
Ethylbenzene	0	4.7	5.2	110	
m- & p-Xylene	0	9.4	10	109	
o-Xylene	0	4.7	4.6	97	

Blank Spike Report

Lab ID:	GB1412
Date Prepared:	4/20/98
Date Analyzed:	4/20/98
QC Batch ID:	GB1412

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

Parameter Name	Blank Result (mg/kg)	Spike Amount (mg/kg)	BS Result (mg/kg)	BS % Rec.	Flag
EC 5-6 Aliphatics	0	8	8.1	102	-
EC >6-8 Aliphatics	0	4	5.2	130	
EC >8-10 Aromatics	0	4	5.5	137	Ν
MTBE	0	4	3.9	97	
Benzene	0	4	4.3	107	
Toluene	0	4	4.4	109	
Ethylbenzene	0	4	4.5	113	
m- & p-Xylene	0	8	8.9	111	
o-Xylene	0	4	3.9	98	

27

SOUND ANALYTICAL EPH / VPH EXTRACTABLE PETROLEUM HYDROCARBONS ALIPHATIC AND AROMATIC FRACTIONS

Client Name	Golder Associates
Client ID:	CF-T1
Lab ID:	71921-01
Date Received:	4/9/98
Date Prepared:	4/14/98
Date Analyzed:	4/20/98
% Solids	89.02

Extractable Petroleum Hydrocarbons (EPH)

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Chloro-octadecane	66		60	140
Ortho-terphenyl	77		60	140

	Result		
Analyte	(mg/kg)	PQL	Flags
C8-C10 Aliphatics	10	1.9	-
C10-C12 Aliphatics	130	1.9	
C12-C16 Aliphatics	1000	1.9	
C16-C21 Aliphatics	1100	1.9	
C21-C34 Aliphatics	110	3.7	
C10-C12 Aromatics	25	1.9	
C12-C16 Aromatics	270	1.9	
C16-C21 Aromatics	630	3.7	
C21-C34 Aromatics	48	3.7	

Client Name	Golder Associates
Client ID:	MW2-2.0
Lab ID:	71921-06
Date Received:	4/9/98
Date Prepared:	4/14/98
Date Analyzed:	4/20/98
% Solids	81.3

Extractable Petroleum Hydrocarbons (EPH)

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Chloro-octadecane	67		60	140
Ortho-terphenyl	83		60	140

	Result		
Analyte	(mg/kg)	PQL	Flags
C8-C10 Aliphatics	6.3	2	_
C10-C12 Aliphatics	32	2	
C12-C16 Aliphatics	270	2	
C16-C21 Aliphatics	310	2	
C21-C34 Aliphatics	410	3.9	
C10-C12 Aromatics	2.7	2	
C12-C16 Aromatics	22	2	
C16-C21 Aromatics	120	3.9	
C21-C34 Aromatics	120	3.9	

Client Name	Golder Associates		
Client ID:	RW1-7.0		
Lab ID:	71921-08		
Date Received:	4/9/98		
Date Prepared:	4/14/98		
Date Analyzed:	4/20/98		
% Solids	73.03		

Extractable Petroleum Hydrocarbons (EPH)

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Chloro-octadecane	65		60	140
Ortho-terphenyl	75		60	140

Result		
(mg/kg)	PQL	Flags
180	2.3	-
1200	2.3	
5600	2.3	
4200	2.3	
750	4.5	
110	2.3	
980	2.3	
2200	4.5	
350	4.5	
	(mg/kg) 180 1200 5600 4200 750 110 980 2200	(mg/kg)PQL1802.312002.356002.342002.37504.51102.39802.322004.5

Client Name	Golder Associates		
Client ID:	RW2-4.0		
Lab ID:	71921-13		
Date Received:	4/9/98		
Date Prepared:	4/14/98		
Date Analyzed:	4/20/98		
% Solids	93.5		

Extractable Petroleum Hydrocarbons (EPH)

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Chloro-octadecane	61		60	140
Ortho-terphenyl	62		60	140

Sample results are on a dry weight basis.

	Result		
Analyte	(mg/kg)	PQL	Flags
C8-C10 Aliphatics	330	1.8	•
C10-C12 Aliphatics	840	1.8	
C12-C16 Aliphatics	2400	1.8	
C16-C21 Aliphatics	2100	1.8	
C21-C34 Aliphatics	250	3.7	
C10-C12 Aromatics	250	1.8	
C12-C16 Aromatics	920	1.8	
C16-C21 Aromatics	1200	3.7	
C21-C34 Aromatics	100	3.7	

r -

Client Name	Golder Associates
Client ID:	RW2-7.0
Lab ID:	71921-14
Date Received:	4/9/98
Date Prepared:	4/14/98
Date Analyzed:	4/20/98
% Solids	72.43

Extractable Petroleum Hydrocarbons (EPH)

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Chloro-octadecane	67		60	140
Ortho-terphenyl	69		60	140

Result		
(mg/kg)	PQL	Flags
280	2.3	_
670	2.3	
1900	2.3	
1700	2.3	
240	4.5	
180	2.3	
680	2.3	
1000	4.5	
88	4.5	
	280 670 1900 1700 240 180 680 1000	(mg/kg)PQL2802.36702.319002.317002.32404.51802.36802.310004.5

Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Method Blank - EP044

4/14/98 4/21/98

Extractable Petroleum Hydrocarbons (EPH)

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Chloro-octadecane	79		60	140
Ortho-terphenyl	101		60	140

Sample results are on an as received basis.

	Result		
Analyte	(mg/kg)	PQL	Flags
C8-C10 Aliphatics	ND	2.5	_
C10-C12 Aliphatics	ND	2.5	
C12-C16 Aliphatics	ND	2.5	
C16-C21 Aliphatics	ND	2.5	
C21-C34 Aliphatics	ND	5	
C10-C12 Aromatics	ND	2.5	
C12-C16 Aromatics	ND	2.5	
C16-C21 Aromatics	ND	5	
C21-C34 Aromatics	ND	5	

Blank Spike Report

Lab ID:	EP044
Date Prepared:	4/14/98
Date Analyzed:	4/21/98
QC Batch ID:	EP044

Extractable Petroleum Hydrocarbons (EPH)

Parameter Name	Blank Result (mg/kg)	Spike Amount (mg/kg)	BS Result (mg/kg)	BS % Rec.	Flag
C8-C10 Aliphatics	0	20	22	111	
C10-C12 Aliphatics	0	20	21	105	
C12-C16 Aliphatics	0	20	22	112	
C16-C21 Aliphatics	0	20	26	130	
C21-C34 Aliphatics	0	20	42	209	Ν
C10-C12 Aromatics	0	20	21	104	
C12-C16 Aromatics	0	20	21	106	
C16-C21 Aromatics	0	20	21	105	
C21-C34 Aromatics	0	20	17	87	

Duplicate Report

Client Sample ID: Lab ID: Date Prepared: Date Analyzed: QC Batch ID: C7-1 71784-01 4/14/98 4/20/98 EP044

Extractable Petroleum Hydrocarbons (EPH)

	Sample Result	Duplicate Result	RPD	
Parameter Name	(mg/kg)	(mg/kg)	%	Flag
C8-C10 Aliphatics	16	15	6.5	_
C10-C12 Aliphatics	41	50	20.0	
C12-C16 Aliphatics	170	210	21.0	
C16-C21 Aliphatics	190	240	23.0	
C21-C34 Aliphatics	42	54	25.0	
C10-C12 Aromatics	7	7.5	6.9	
C12-C16 Aromatics	51	56	9.3	
C16-C21 Aromatics	150	190	24.0	
C21-C34 Aromatics	17	32	61.0	Ν

Matrix Spike Report

Client Sample ID:	C7-1
Lab ID:	71784-01
Date Prepared:	4/14/98
Date Analyzed:	4/20/98
QC Batch ID:	EP044M

Extractable Petroleum Hydrocarbons (EPH)

	Sample Result	Spike Amount	MS Result	MS	
Parameter Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	Flag
C8-C10 Aliphatics	16	20	32	79	
C10-C12 Aliphatics	41	20	58	83	
C12-C16 Aliphatics	170	20	190	90	
C16-C21 Aliphatics	190	20	220	142	X7a
C21-C34 Aliphatics	42	20	85	212	Ν
C10-C12 Aromatics	7	20	24	85	
C12-C16 Aromatics	51	20	67	76	
C16-C21 Aromatics	150	20	180	150	X7a
C21-C34 Aromatics	17	20	68	251	X7

SOUND ANALYTICAL EPA 8270 MOD. EXTRACTABLE PETROLEUM HYDROCARBONS TARGET PAH COMPOUNDS

Client Name	Golder Associates
Client ID:	CF-T1
Lab ID:	71921-01
Date Received:	4/9/98
Date Prepared:	4/14/98
Date Analyzed:	4/15/98
% Solids	89.02
Dilution Factor	20

Targeted PAH Analytes by Method 8270 Modified.

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	118		50	150

		Result			
Analyte		(mg/kg)	PQL	MDL	Flags
Naphthalene	ND		0.021	0.015	
2-Methyinaphthalene	ND		0.02	0.013	
Acenaphthylene	ND		0.018	0.014	
Acenaphthene		0.21	0.015	0.013	
Fluorene		0.21	0.012	0.011	
Phenanthrene	ND		0.011	0.01	
Anthracene	ND		0.013	0.012	
Fluoranthene		0.21	0.01	0.0086	
Pyrene		0.68	0.0095	0.0082	
Benzo(a)anthracene		0.052	0.0073	0.0065	
Chrysene		0.097	0.0095	0.008	
Benzo(b)fluoranthene	ND		0.0092	0.0077	
Benzo(k)fluoranthene	ND		0.013	0.012	
Benzo(a)pyrene	ND		0.007	0.0061	
Indeno(1,2,3-cd)pyrene	ND		0.012	0.012	
Dibenz(a,h)anthracene	ND		0.0098	0.0083	
Benzo(g,h,i)perylene	ND		0.011	0.0092	

Client Name	Golder Associates
Client ID:	MW2-2.0
Lab ID:	71921-06
Date Received:	4/9/98
Date Prepared:	4/14/98
Date Analyzed:	4/15/98
% Solids	81.3
Dilution Factor	20
Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids	71921-06 4/9/98 4/14/98 4/15/98 81.3

Targeted PAH Analytes by Method 8270 Modified.

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	71		50	150

		Result			
Analyte	(mg/kg)	PQL	MDL	Flags
Naphthalene		0.049	0.022	0.016	
2-Methylnaphthalene		0.14	0.021	0.014	
Acenaphthylene	ND		0.019	0.015	
Acenaphthene		0.071	0.016	· 0.014	
Fluorene		0.15	0.013	0.012	
Phenanthrene		0.22	0.012	0.011	
Anthracene		0.12	0.014	0.013	
Fluoranthene		0.18	0.011	0.0092	
Pyrene		0.19	0.01	0.0087	
Benzo(a)anthracene		0.06	0.0077	0.0069	
Chrysene		0.17	0.01	0.0085	
Benzo(b)fluoranthene		0.063	0.0098	0.0082	
Benzo(k)fluoranthene		0.047	0.014	0.013	
Benzo(a)pyrene		0.049	0.0074	0.0065	
Indeno(1,2,3-cd)pyrene	ND		0.013	0.012	
Dibenz(a,h)anthracene	ND		0.01	0.0088	
Benzo(g,h,i)perylene		0.033	0.011	0.0098	

Client Name	Golder Associates
Client ID:	RW1-7.0
Lab ID:	71921-08
Date Received:	4/9/98
Date Prepared:	4/14/98
Date Analyzed:	4/15/98
% Solids	73.03
Dilution Factor	20

Targeted PAH Analytes by Method 8270 Modified.

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	113		50	150

	R	lesult			
Analyte	(n	ng/kg)	PQL	MDL	Flags
Naphthalene		6.2	0.025	0.018	-
2-Methylnaphthalene		34	0.12	0.016	D
Acenaphthylene	ND		0.022	0.017	
Acenaphthene		1.8	0.019	0.016	
Fluorene		2.5	0.015	0.013	
Phenanthrene		7	0.013	0.012	
Anthracene		2.2	0.016	0.015	
Fluoranthene	ND		0.012	0.011	
Pyrene		0.62	0.012	0.01	
Benzo(a)anthracene		0.094	0.0089	0.008	
Chrysene	ND		0.012	0.0098	
Benzo(b)fluoranthene	ND		0.011	0.0094	
Benzo(k)fluoranthene	ND		0.016	0.015	
Benzo(a)pyrene	ND		0.0085	0.0074	
Indeno(1,2,3-cd)pyrene	ND		0.015	0.014	
Dibenz(a,h)anthracene	ND		0.012	0.01	
Benzo(g,h,i)perylene	ND		0.013	0.011	

Client Name	Golder Associates
Client ID:	RW2-4.0
Lab ID:	71921-13
Date Received:	4/9/98
Date Prepared:	4/14/98
Date Analyzed:	4/15/98
% Solids	93.5
Dilution Factor	20

Targeted PAH Analytes by Method 8270 Modified.

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	102		50	150

		Result			
Analyte		(mg/kg)	PQL	MDL	Flags
Naphthalene		8.1	0.021	0.015	-
2-Methylnaphthalene		16	0.098	0.013	
Acenaphthylene	ND		0.018	0.014	
Acenaphthene		1.1	0.015	0.013	
Fluorene		1.9	0.012	0.011	
Phenanthrene		4.9	0.011	0.01	
Anthracene	ND		0.013	0.012	
Fluoranthene	ND		0.0098	0.0085	
Pyrene		0.7	0.0094	0.0081	
Benzo(a)anthracene	ND		0.0072	0.0065	
Chrysene	ND		0.0094	0.0079	
Benzo(b)fluoranthene	ND		0.0091	0.0076	
Benzo(k)fluoranthene	ND		0.013	0.012	
Benzo(a)pyrene	ND		0.0069	0.006	
Indeno(1,2,3-cd)pyrene	ND		0.012	0.012	
Dibenz(a,h)anthracene	ND		0.0097	0.0082	
Benzo(g,h,i)perylene	ND		0.011	0.0091	

Client Name	Golder Associates
Client ID:	RW2-7.0
Lab ID:	71921-14
Date Received:	4/9/98
Date Prepared:	4/14/98
Date Analyzed:	4/15/98
% Solids	72.43
Dilution Factor	20

Targeted PAH Analytes by Method 8270 Modified.

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	89		50	150

		Result			
Analyte		(mg/kg)	PQL	MDL.	Flags
Naphthalene		6.5	0.025	0.018	
2-Methylnaphthalene		11	0.12	0.016	
Acenaphthylene	ND		0.022	0.017	
Acenaphthene		0.93	0.019	0.016	
Fluorene		2	0.015	0.013	
Phenanthrene		3.6	0.013	0.012	
Anthracene	ND		0.016	0.015	
Fluoranthene	ND		0.012	0.011	
Pyrene		0.63	0.012	0.01	
Benzo(a)anthracene	ND		0.0089	0.008	
Chrysene	ND		0.012	0.0098	
Benzo(b)fluoranthene	ND		0.011	0.0094	
Benzo(k)fluoranthene	ND		0.016	0.015	
Benzo(a)pyrene	ND		0.0085	0.0074	
Indeno(1,2,3-cd)pyrene	ND		0.015	0.014	
Dibenz(a,h)anthracene	ND		0.012	0.01	
Benzo(g,h,i)perylene	ND		0.013	0.011	

Lab ID:	Method Blank - EP044
Date Received:	-
Date Prepared:	4/14/98
Date Analyzed:	4/15/98
% Solids	
Dilution Factor	20

Targeted PAH Analytes by Method 8270 Modified.

			Recov	ery Limits
Surrogate o-Terphenyl	% Recovery	Flags	Low	High
o-reiphenyi	68		50	150

Sample results are on an as received basis.

	Result			
Analyte	(mg/kg)	PQL	MDL	Flags
Naphthalene	ND	0.028	0.02	-
2-Methylnaphthalene	ND	0.027	0.018	
Acenaphthylene	ND	0.024	0.019	
Acenaphthene	ND	0.021	0.017	
Fluorene	ND	0.016	0.015	
Phenanthrene	ND	0.015	0.014	
Anthracene	ND	0.018	0.016	
Fluoranthene	ND	0.013	0.012	
Pyrene	ND	0.013	0.011	
Benzo(a)anthracene	ND	0.0098	0.0088	
Chrysene	ND	0.013	0.011	
Benzo(b)fluoranthene	ND	0.012	0.01	
Benzo(k)fluoranthene	ND	0.018	0.016	
Benzo(a)pyrene	ND	0.0094	0.0082	
Indeno(1,2,3-cd)pyrene	ND	0.016	0.016	
Dibenz(a,h)anthracene	ND	0.013	0.011	
Benzo(g,h,i)perylene	ND	0.014	0.012	

Blank Spike Report

Lab ID: Date Prepared: Date Analyzed: QC Batch ID: EP044 4/14/98 4/15/98 EP044

Targeted PAH Analytes by Method 8270 Modified.

	Blank Result	Spike Amount	BS Result	BS	
Parameter Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	Flag
Naphthalene	0	20	15	76	
Acenaphthene	0	20	21	103	
Pyrene	0	20	19	97	
Benzo(g,h,i)perylene	0	20	21	103	

Duplicate Report

Client Sample ID: Lab ID: Date Prepared: Date Analyzed: QC Batch ID: BATCH QC 71784-01 4/14/98 4/15/98 EP044

Targeted PAH Analytes by Method 8270 Modified.

	Sample Result	Duplicate Result	RPD	
Parameter Name	(mg/kg)	(mg/kg)	%	Flag
Naphthalene	0	0	NC	
2-Methylnaphthalene	1	1.3	26.0	
Acenaphthylene	0	0	NC	
Acenaphthene	0	0	NC	
Fluorene	0.3	0.35	15.0	
Phenanthrene	0.67	1	40.0	
Anthracene	0	0	NC	
Fluoranthene	0	0	NC	
Pyrene	0.053	0.074	33.0	
Benzo(a)anthracene	0	0	NC	
Chrysene	0	. 0	NC	
Benzo(b)fluoranthene	0	0	NC	
Benzo(k)fluoranthene	0	0	NC	
Benzo(a)pyrene	0	0	NC	
Indeno(1,2,3-cd)pyrene	0	0	NC	
Dibenz(a,h)anthracene	0	0	NC	
Benzo(g,h,i)perylene	0	0	NC	

Matrix Spike Report

Client Sample ID: Lab ID: Date Prepared: Date Analyzed: QC Batch ID: BATCH QC 71784-01 4/14/98 4/15/98 EP044

Targeted PAH Analytes by Method 8270 Modified.

Parameter Name	Sample Result (mg/kg)	Spike Amount (mg/kg)	MS Result (mg/kg)	MS % Rec.	Flag
Naphthalene	0	20	14	69	
Acenaphthene	0	20	17	85	
Pyrene	0.053	20	19	92	
Benzo(g,h,i)perylene	0	20	20	97	

Client Name	Golder Associates
Client ID:	CF-T2
Lab ID:	71921-02
Date Received:	4/9/98
Date Prepared:	4/16/98
Date Analyzed:	4/19/98
% Solids	94.17

Extended Diesel Range by WTPH-D Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	122		50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
Diesel (>nC12-nC24)	ND	13	
Heavy Oil (>nC24-nC32)	ND	26	

Client Name	Golde
Client ID:	
Lab ID:	7
Date Received:	
Date Prepared:	
Date Analyzed:	•
% Solids	

Solder Associates CF-T3 71921-03 4/9/98 4/16/98 4/19/98 90.39

Extended Diesel Range by WTPH-D Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	127		50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
Diesel (>nC12-nC24)	20	13	
Heavy Oil (>nC24-nC32)	53	27	

Client Name	Golder Associates
Client ID:	MW3-5.0
Lab ID:	71921-04
Date Received:	4/9/98
Date Prepared:	4/16/98
Date Analyzed:	4/19/98
% Solids	72.51

Extended Diesel Range by WTPH-D Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	99		50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
Diesel (>nC12-nC24)	ND	17	•
Heavy Oil (>nC24-nC32)	32	34	J

Client Name Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids

Golder Associates MW3-6.5 71921-05 4/9/98 4/16/98 4/19/98 64.55

Extended Diesel Range by WTPH-D Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	78		50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
Diesel (>nC12-nC24)	ND	19	
Heavy Oil (>nC24-nC32)	48	37	

Client Name	Golder Associates
Client ID:	MW2-5.5
Lab ID:	71921-07
Date Received:	4/9/98
Date Prepared:	4/16/98
Date Analyzed:	4/19/98
% Solids	71.88

Extended Diesel Range by WTPH-D Modified

			Recove	ery Limits
Surrogate o-Terphenyl	% Recovery 93	Flags	Low	High
o-reiphenyi	95		50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
Diesel (>nC12-nC24)	18	17	
Heavy Oil (>nC24-nC32)	ND	34	

Client Name	Golder Associates
Client ID:	RW1-7.0
Lab ID:	71921-08
Date Received:	4/9/98
Date Prepared:	4/16/98
Date Analyzed:	4/20/98
% Solids	73.03

Extended Diesel Range by WTPH-D Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	-	X8	50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
Diesel (>nC12-nC24)	13000	170	
Heavy Oil (>nC24-nC32)	520	340	

Associates

Client Name	Golder Associa
Client ID:	RW1-7.0D
Lab ID:	71921-09
Date Received:	4/9/98
Date Prepared:	4/16/98
Date Analyzed:	4/20/98
% Solids	59.86

Extended Diesel Range by WTPH-D Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl		X8	50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
Diesel (>nC12-nC24)	8800	200	-
Heavy Oil (>nC24-nC32)	ND	400	

Client Name	Golder Associates
Client ID:	RW1-13
Lab ID:	71921-10
Date Received:	4/9/98
Date Prepared:	4/16/98
Date Analyzed:	4/20/98
% Solids	77.5

Extended Diesel Range by WTPH-D Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	105		50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
Diesel (>nC12-nC24)	18	15	-
Heavy Oil (>nC24-nC32)	ND	31	

Client Name	Golder Associates
Client ID:	MW1-5.5
Lab ID:	71921-11
Date Received:	4/9/98
Date Prepared:	4/16/98
Date Analyzed:	4/20/98
% Solids	70.11

Extended Diesel Range by WTPH-D Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	92		50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
Diesel (>nC12-nC24)	ND	18	-
Heavy Oil (>nC24-nC32)	ND	35	

Client Name	Golder Associates
Client ID:	MW1-7.0
Lab ID:	71921-12
Date Received:	4/9/98
Date Prepared:	4/16/98
Date Analyzed:	4/20/98
% Solids	71.17

Extended Diesel Range by WTPH-D Modified

			Recove	ery Limits
Surrogate o-Terphenyl	% Recovery 88	Flags	Low 50	High 150

Analyte	Result (mg/kg)	PQL	Flags
Diesel (>nC12-nC24)	ND	17	-
Heavy Oil (>nC24-nC32)	ND	35	

Client Name	Golder Associates
Client ID:	RW2-4.0
Lab ID:	71921-13
Date Received:	4/9/98
Date Prepared:	4/16/98
Date Analyzed:	4/21/98
% Solids	93.5

Extended Diesel Range by WTPH-D Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	-	X8	50	150

Result			
Analyte	(mg/kg)	PQL	Flags
Diesel (>nC12-nC24)	12000	270	_
Heavy Oil (>nC24-nC32)	ND	530	

Client Name	Golder Associates
Client ID:	MW-3
Lab ID:	71921-15
Date Received:	4/9/98
Date Prepared:	4/14/98
Date Analyzed:	4/20/98
% Solids	-

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	96		50	150

	Result		
Analyte	(mg/L)	PQL	Flags
Diesel (>nC12-nC24)	1	0.25	X2
Heavy Oil (>nC24-nC32)	1.1	0.5	X2

Client Name	Golder Associates
Client ID:	MW-2
Lab ID:	71921-16
Date Received:	4/9/98
Date Prepared:	4/14/98
Date Analyzed:	4/20/98
% Solids	-

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	90		50	150

	Result		
Analyte	(mg/L)	PQL	Flags
Diesel (>nC12-nC24)	2.2	0.26	X2
Heavy Oil (>nC24-nC32)	0.66	0.52	X2

Client Name	Golder Associates
Client ID:	MW-1
Lab ID:	71921-17
Date Received:	4/9/98
Date Prepared:	4/14/98
Date Analyzed:	4/20/98
% Solids	-

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	85		50	150

	Result		
Analyte	(mg/L)	PQL	Flags
Diesel (>nC12-nC24)	ND	0.24	-
Heavy Oil (>nC24-nC32)	ND	0.47	

Client Name	Golder Associates
Client ID:	RW-1
Lab ID:	71921-18
Date Received:	4/9/98
Date Prepared:	4/14/98
Date Analyzed:	4/20/98
% Solids	-

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	99		50	150

	Result		
Analyte	(mg/L)	PQL	Flags
Diesel (>nC12-nC24)	1.4	0.23	X2
Heavy Oil (>nC24-nC32)	ND	0.47	

Client Name Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Golder Associates RW-2 71921-19 4/9/98 4/14/98 4/20/98

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	91		50	150

	Result		
Analyte	(mg/L)	PQL	Flags
Diesel (>nC12-nC24)	5.4	0.25	X2
Heavy Oil (>nC24-nC32)	0.68	0.5	

Client Name	Golder Associates
Client ID:	MW-3
Lab ID:	71921-15
Date Received:	4/9/98
Date Prepared:	4/15/98
Date Analyzed:	4/15/98
% Solids	-

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	101		57	153

	Result		
Analyte	(mg/L)	PQL	Flags
Benzene	ND	0.001	•
Toluene	ND	0.001	
Ethylbenzene	ND	0.001	
m,p-Xylenes	ND	0.002	
o-Xylene	ND	0.001	

Client Name	Golder Associates
Client ID:	MW-2
Lab ID:	71921-16
Date Received:	4/9/98
Date Prepared:	4/15/98
Date Analyzed:	4/15/98
% Solids	-

		Recove	ry Limits
6 Recovery 90	Flags	Low 57	High 153
	6 Recovery 90		& Recovery Flags Low

Result		
(mg/L)	PQL	Flags
ND	0.001	
ND	0.001	
ND	0.001	
ND	0.002	
ND	0.001	
	ND ND ND ND	(mg/L)PQLND0.001ND0.001ND0.001ND0.002

Client Name	Golder Associates
Client ID:	MW-1
Lab ID:	71921-17
Date Received:	4/9/98
Date Prepared:	4/15/98
Date Analyzed:	4/15/98
% Solids	

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	103		57	153

	Result		
Analyte	(mg/L)	PQL	Flags
Benzene	ND	0.001	U
Toluene	ND	0.001	
Ethylbenzene	ND	0.001	
m,p-Xylenes	ND	0.002	
o-Xylene	ND	0.001	

Client Name	Golder Associates
Client ID:	RW-1
Lab ID:	71921-18
Date Received:	4/9/98
Date Prepared:	4/15/98
Date Analyzed:	4/15/98
% Solids	-

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	106		57	153

Result		
(mg/L)	PQL	Flags
ND	0.001	•
ND	0.001	
ND	0.001	
ND	0.002	
ND	0.001	
	ND ND ND ND	(mg/L)PQLND0.001ND0.001ND0.001ND0.002

Client Name	Golder Associates		
Client ID:	RW-2		
Lab ID:	71921-19		
Date Received:	4/9/98		
Date Prepared:	4/15/98		
Date Analyzed:	4/15/98		
% Solids	-		

Volatile Aromatic Hydrocarbons by USEPA Method 8021 Modified

			Recove	ry Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	109		57	153

	Result		
Analyte	(mg/L)	PQL	Flags
Benzene	0.21	0.01	D
Toluene	0.013	0.001	
Ethylbenzene	0.1	0.001	
m,p-Xylenes	0.22	0.02	D
o-Xylene	0.088	0.01	D

430-

Client Name	Golder Associates
Client ID:	MW-1D
Lab ID:	71921-20
Date Received:	4/9/98
Date Prepared:	4/15/98
Date Analyzed:	4/15/98
% Solids	-

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	104		57	153

	Result		
Analyte	(mg/L)	PQL	Flags
Benzene	ND	0.001	-
Toluene	ND	0.001	
Ethylbenzene	ND	0.001	
m,p-Xylenes	ND	0.002	
o-Xylene	ND	0.001	

Golder Associates
TRIP BLANK
71921-21
4/9/98
4/15/98
4/15/98
-

Surrogate Trifluorotoluene	% Recovery 88	Flags	Recovery Limits Low High 57 153
			Ĕ
	Result		
Analyte	(mg/L)	PQL	Flags
Benzene	ND	0.001	
Toluene	ND	0.001	
Ethylbenzene	ND	0.001	
m,p-Xylenes	ND	0.002	
o-Xylene	ND	0.001	

Client Name	Golder Associates
Client ID:	MW-3
Lab ID:	71921-15
Date Received:	4/9/98
Date Prepared:	4/14/98
Date Analyzed:	4/14/98
% Solids	-

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Nitrobenzene - d5	82		35	114
2 - Fluorobiphenyl	88		43	116
p - Terphenyl - d14	115		33	141

	Result		
Analyte	(ug/L)	PQL	Flags
Naphthaiene	ND	0.096	-
2-Methylnaphthalene	ND	0.096	
2-Chloronaphthalene	ND	0.096	
Acenaphthylene	ND	0.096	
Acenaphthene	ND	0.096	
Fluorene	ND	0.096	
Phenanthrene	ND	0.096	
Anthracene	ND	0.096	
Fluoranthene	ND	0.096	
Pyrene	ND	0.096	
Benzo(a)anthracene	ND	0.096	
Chrysene	ND	0.096	
Benzo(b)fluoranthene	ND	0.096	
Benzo(k)fluoranthene	ND	0.096	
Benzo(a)pyrene	ND	0.096	
Indeno(1,2,3-cd)pyrene	ND	0.096	
Dibenz(a,h)anthracene	ND	0.096	
Benzo(g,h,i)perylene	ND	0.096	

Client Name	Golder Associates
Client ID:	MW-2
Lab ID:	71921-16
Date Received:	4/9/98
Date Prepared:	4/14/98
Date Analyzed:	4/14/98
% Solids	-

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Nitrobenzene - d5	110		35	114
2 - Fluorobiphenyl	97		43	116
p - Terphenyl - d14	115		33	141

	Result		
Analyte	(ug/L)	PQL	Flags
Naphthalene	ND	0.1	_
2-Methylnaphthalene	0.18	0.1	
2-Chloronaphthalene	ND	0.1	
Acenaphthylene	ND	0.1	
Acenaphthene	0.84	0.1	
Fluorene	0.8	0.1	
Phenanthrene	0.72	0.1	
Anthracene	ND	0.1	
Fluoranthene	ND	0.1	
Pyrene	ND	0.1	
Benzo(a)anthracene	ND	0.1	
Chrysene	ND	0.1	
Benzo(b)fluoranthene	ND	0.1	
Benzo(k)fluoranthene	ND	0.1	
Benzo(a)pyrene	ND	0.1	
Indeno(1,2,3-cd)pyrene	ND	0.1	
Dibenz(a,h)anthracene	ND	0.1	
Benzo(g,h,i)perylene	ND	0.1	

Client Name	Golder Associates
Client ID:	MW-1
Lab ID:	71921-17
Date Received:	4/9/98
Date Prepared:	4/14/98
Date Analyzed:	4/14/98
% Solids	-

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Nitrobenzene - d5	100	-	35	114
2 - Fluorobiphenyl	94		43	116
p - Terphenyi - d14	102		33	141

	Result		
Analyte	(ug/L)	PQL	Flags
Naphthalene	ND	0.094	-
2-Methylnaphthalene	ND	0.094	
2-Chloronaphthalene	ND	0.094	
Acenaphthylene	ND	0.094	
Acenaphthene	ND	0.094	
Fluorene	ND	0.094	
Phenanthrene	ND	0.094	
Anthracene	ND	0.094	
Fluoranthene	ND	0.094	
Pyrene	ND	0.094	
Benzo(a)anthracene	ND	0.094	
Chrysene	ND	0.094	
Benzo(b)fluoranthene	ND	0.094	
Benzo(k)fluoranthene	ND	0.094	
Benzo(a)pyrene	ND	0.094	
Indeno(1,2,3-cd)pyrene	ND	0.094	
Dibenz(a,h)anthracene	ND	0.094	
Benzo(g,h,i)perylene	ND	0.094	

Client Name	Golder Associates
Client ID:	RW-1
Lab ID:	71921-18
Date Received:	4/9/98
Date Prepared:	4/14/98
Date Analyzed:	4/14/98
% Solids	· · · ·

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Nitrobenzene - d5	129	X9	35	114
2 - Fluorobiphenyl	115		43	116
p - Terphenyl - d14	120		33	141

	Result		
Analyte	(ug/L)	PQL	Flags
Naphthalene	11	0.093	
2-Methylnaphthalene	26	0.47	D
2-Chloronaphthalene	ND	0.093	
Acenaphthylene	ND	0.093	
Acenaphthene	1.1	0.093	
Fluorene	2.9	0.093	
Phenanthrene	2.5	0.093	
Anthracene	0.15	0.093	
Fluoranthene	ND	0.093	
Pyrene	ND	0.093	
Benzo(a)anthracene	ND	0.093	
Chrysene	ND	0.093	
Benzo(b)fluoranthene	ND	0.093	
Benzo(k)fluoranthene	ND	0.093	
Benzo(a)pyrene	ND	0.093	
Indeno(1,2,3-cd)pyrene	ND	0.093	
Dibenz(a,h)anthracene	ND	0.093	
Benzo(g,h,i)perylene	ND	0.093	

Client Name	Golder Associates
Client ID:	RW-2
Lab ID:	71921-19
Date Received:	4/9/98
Date Prepared:	4/14/98
Date Analyzed:	4/14/98
% Solids	-

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Nitrobenzene - d5	96		35	114
2 - Fluorobiphenyl	39	X9	43	116
p - Terphenyl - d14	110		33	141

	Result		
Analyte	(ug/L)	PQL	Flags
Naphthalene	43	0.49	D
2-Methylnaphthalene	39	0.49	D
2-Chloronaphthalene	ND	0.098	
Acenaphthylene	ND	0.098	
Acenaphthene	1.3	0.098	
Fluorene	2.1	0.098	
Phenanthrene	2.3	0.098	
Anthracene	ND	0.098	
Fluoranthene	ND	0.098	
Pyrene	0.27	0.098	
Benzo(a)anthracene	ND	0.098	
Chrysene	ND	0.098	
Benzo(b)fluoranthene	ND	0.098	
Benzo(k)fluoranthene	ND	0.098	
Benzo(a)pyrene	ND	0.098	
Indeno(1,2,3-cd)pyrene	ND	0.098	
Dibenz(a,h)anthracene	ND	0.098	
Benzo(g,h,i)perylene	ND	0.098	

Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids

Method Blank - DI1521

4/16/98 4/19/98

Extended Diesel Range by WTPH-D Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	110		50	150

Sample results are on an as received basis.

	Result		
Analyte	(mg/kg)	PQL	Flags
Diesel (>nC12-nC24)	ND	13	-
Heavy Oil (>nC24-nC32)	ND	25	

Lab ID:	Method Blank - DI1518
Date Received:	-
Date Prepared:	4/14/98
Date Analyzed:	4/15/98
% Solids	-

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	84		50	150

	Result		
Analyte	(mg/L)	PQL	Flags
Diesel (>nC12-nC24)	ND	0.25	-
Heavy Oil (>nC24-nC32)	ND	0.5	

Blank Spike Report

DI1521
4/16/98
4/19/98
DI1521

	Blank	Spike	BS		
	Result	Amount	Result	BS	
Parameter Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	Flag
Diesel (>nC12-nC24)	0	250	320	129	Ν
Heavy Oil (>nC24-nC32)	0	250	280	111	

Blank Spike/Blank Spike Duplicate Report

Lab ID:	DI1518
Date Prepared:	4/14/98
Date Analyzed:	4/15/98
QC Batch ID:	DI1518

	Blank	Spike	BS		BSD			
	Result	Amount	Result	BS	Result	BSD		
Compound Name	(mg/L)	(mg/L)	(mg/L)	% Rec.	(mg/L)	% Rec.	RPD	Flag
Diesel (>nC12-nC24)	0	5.01	4.97	99.3	4.43	88.5	12	•
Heavy Oil (>nC24-nC32)	0	5.01	4.7	93.9	4.21	84.1	11	

Duplicate Report

Client Sample ID: Lab ID: Date Prepared: Date Analyzed: QC Batch ID:

RW1-13 71921-10 4/16/98 4/20/98 DI1521

	Sample Result	Duplicate Result	RPD	
Parameter Name	(mg/kg)	(mg/kg)	%	Flag
Diesel (>nC12-nC24)	18	13	32.0	
Heavy Oil (>nC24-nC32)	0	0	NC	

Matrix Spike/Matrix Spike Duplicate Report

Client Sample ID:	RW1-13
Lab ID:	71921-10
Date Prepared:	4/16/98
Date Analyzed:	4/20/98
QC Batch ID:	DI1521

	Sample	Spike	MS		MSD			
	Result	Amount	Result	MS	Result	MSD		
Compound Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	(mg/kg)	% Rec.	RPD	Flag
Diesel (>nC12-nC24)	18	319	292	85.8	367	109	24	
Heavy Oil (>nC24-nC32)	0	319	256	80.3	301	94.3	16	

Lab ID:	Method Blank - GB1408
Date Received:	-
Date Prepared:	4/15/98
Date Analyzed:	4/15/98
% Solids	-

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	92		57	153

	Result		
Analyte	(mg/L)	PQL	Flags
Benzene	ND	0.001	
Toluene	ND	0.001	
Ethylbenzene	ND	0.001	
m,p-Xylenes	ND	0.002	
o-Xylene	ND	0.001	

Lab ID:	Method Blank - GB1413
Date Received:	-
Date Prepared:	4/20/98
Date Analyzed:	4/20/98
% Solids	-

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	104		57	153

	Result		
Analyte	(mg/L)	PQL	Flags
Benzene	ND	0.001	•
Toluene	ND	0.001	
Ethylbenzene	ND	0.001	
m,p-Xylenes	ND	0.002	
o-Xylene	ND	0.001	

Blank Spike/Blank Spike Duplicate Report

Lab ID:	GB1408
Date Prepared:	4/15/98
Date Analyzed:	4/15/98
QC Batch ID:	GB1408

Compound Name	Blank Result (mg/L)	Spike Amount (mg/L)	BS Result (mg/L)	BS % Rec.	BSD Result (mg/L)	BSD % Rec.	RPD	Flag
Benzene	Ō	0.025	0.0202	80.9	0.0206	82.3	1.7	i iug
Toluene	0	0.025	0.0234	93.4	0.0271	109	15	
Ethylbenzene	0	0.025	0.026	104	0.0258	103	0.97	
m,p-Xylenes	0	0.05	0.0542	108	0.059	118	8.8	
o-Xylene	0	0.025	0.026	104	0.0274	110	5.6	

Blank Spike/Blank Spike Duplicate Report

Lab ID:	GB1413
Date Prepared:	4/20/98
Date Analyzed:	4/20/98
QC Batch ID:	GB1413

Compound Name	Blank Result (mg/L)	Spike Amount (mg/L)	BS Result (mg/L)	BS % Rec.	BSD Result (mg/L)	BSD % Rec.	RPD	Flag
Benzene	Ō	0.025	0.0229	91.6	0.0224	89.6	2.2	5
Toluene	0	0.025	0.0228	91.2	0.0222	88.8	2.7	
Ethylbenzene	0	0.025	0.0228	91.2	0.0222	88.8	2.7	
m,p-Xylenes	0	0.05	0.0432	86.4	0.0422	84.4	2.3	
o-Xylene	0	0.025	0.0224	89.6	0.0218	87.2	2.7	

Lab ID:	Method Blank - SV1905
Date Received:	-
Date Prepared:	4/14/98
Date Analyzed:	4/14/98
% Solids	-

Semivolatile Organics by USEPA Method 8270

Surrogate Nitrobenzene - d5 2 - Fluorobiphenyl p - Terohenyl - d14			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Nitrobenzene - d5	94		35	114
2 - Fluorobiphenyl	89		43	116
p - Terphenyl - d14	97		33	141

	Result		
Analyte	(ug/L)	PQL	Flags
Naphthalene	ND	0.1	•
2-Methylnaphthalene	ND	0.1	
2-Chloronaphthalene	ND	0.1	
Acenaphthylene	ND	0.1	
Acenaphthene	ND	0.1	
Fluorene	ND	0.1	
Phenanthrene	ND	0.1	
Anthracene	ND	0.1	
Fluoranthene	ND	0.1	
Pyrene	ND	0.1	
Benzo(a)anthracene	ND	0.1	
Chrysene	ND	0.1	
Benzo(b)fluoranthene	ND	0.1	
Benzo(k)fluoranthene	ND	0.1	
Benzo(a)pyrene	ND	0.1	
Indeno(1,2,3-cd)pyrene	ND	0.1	
Dibenz(a,h)anthracene	ND	0.1	
Benzo(g,h,i)perylene	ND	0.1	

J,

Pade

B,

88

ANALYTICAL & ENVIRONMENTAL CHEMISTS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE: (253) 922-2310 - FAX: (253) 922-5047

DATA QUALIFIERS AND ABBREVIATIONS

This analyte was detected in the associated method blank. The analyte concentration was determined not to be significantly higher than the associated method blank (less than ten times the concentration reported in the blank).

This analyte was detected in the associated method blank. The analyte concentration in the sample was determined to be significantly higher than the method blank (greater than ten times the concentration reported in the blank).

Second column confirmation was performed. The relative percent difference value (RPD) between the results on the two columns was evaluated and determined to be $\leq 40\%$.

Second column confirmation was performed. The RPD between the results on the two columns was evaluated and determined to be > 40%. The higher result was reported unless anomalies were noted.

GC/MS confirmation was performed. The result derived from the original analysis was reported.

The reported result for this analyte was calculated based on a secondary dilution factor.

The concentration of this analyte exceeded the instrument calibration range and should be considered an estimated quantity.

The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity.

- : Maximum Contaminant Level
- .: Method Detection Limit

See analytical narrative.

Not Detected

.: Practical Quantitation Limit

Contaminant does not appear to be "typical" product. Elution pattern suggests it may be ______.

Contaminant does not appear to be "typical" product.

Identification and quantitation of the analyte or surrogate was complicated by matrix interference.

RPD for duplicates was outside advisory QC limits. The sample was re-analyzed with similar results. The sample matrix may be nonhomogeneous.

: RPD for duplicates outside advisory QC limits due to analyte concentration near the method practical quantitation limit/detection limit.

Matrix spike recovery was not determined due to the required dilution.

Recovery and/or RPD values for matrix spike(/matrix spike duplicate) outside advisory QC limits. Sample was reanalyzed with similar results.

- Recovery and/or RPD values for matrix spike(/matrix spike duplicate) outside advisory QC limits. Matrix interference may be indicated based on acceptable blank spike recovery and/or RPD.
- a: Recovery and/or RPD values for this spiked analyte outside advisory QC limits due to high concentration of the analyte in the original sample.
- Surrogate recovery was not determined due to the required dilution.
- Surrogate recovery outside advisory QC limits due to matrix interference.

ANALYTICAL & ENVIRONMENTAL CHEMISTS	E616 9	7 /	Tacor (253)	na, Was 922-231	Tacoma, Washington 98424 (253) 922-2310 • FAX (253) 922-5047
CHAIN OF CUSTOD	FOR LABORATORY		ANALYSIS	/SIS	
CLIENT: Goldor ADSOCTATOS ANALYSIS REQUESTED:					
SWICK MULTICALS	(51	TCLP Extraction			
Here Contraction (CCV)			ר.		
Contair Contai	418.1 L Grease I Metals Cify beld	etals files cides & cides &		Нg	
MPLE I.D. DATE TIME MATRIX * THE FEE CEE F 70E	HqT 8 IiO IstoT IstoT	ieloV im92 itz99	TW	A F	
1 11 12 201 1 H-1-98 (7) 18 Soil 1		-		11	
		p.	>		
-73			7		
0.2-EMW			5		
3-6.5			2		
2-2.0				XX	
1			>	 	
1			<u>~</u>	1	
1 00.1 -1			2		
			5		
1-5.5-1			7		
1520			7		
2-4.0 4.6.96			>	1 1	
2 A 09L1 34-3-4 1-1-1 MA 2/				11	
A Signature Printed Name Firm	Time / Date	SPECIAL INSTRUCTIONS/COMMENTS	rions/co	MMËNTS:	
Relinquished By MIN / Cany Zimalinnan Golden	1200 4. 4. 9. 9 R	These samples will be disposed of 45 days Check this box to have samples returned \square	will be to have	disposed o samples ri	These samples will be disposed of 45 days after receipt Check this box to have samples returned .
1 575	200 4/9/98		•		
Relinquished By Lan Zanan Jan, HJU Son SHS 1	100 4/9/90	.			
Received By NSJAMA CIANA STR	100 4AA	4			
Relinquished By		·			
Received By					

na f

file s

- - - - - -

÷

Расе

5

•'

1061L q

ANALYTICAL & ENVIRONMENTAL CHEMISTS

فت ز

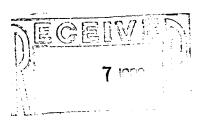
11/0/ 50

Tacoma, Washington 98424 (253) 922-2310 • FAX (253) 922-5047

253) 922-23 (253) ابار CHAIN OF CUSTODY / REQUEST FOR LABORATORY ANALYSIS

CLIEN	TIC	A roblo	1 1 1 1 1 1 1	. 41	£	<u> </u>	ANA		REQL												~	151	-				- 1	
		alway A		W. M.	<u> </u>	1			s	TH			Τ	<u> </u>		1	CLP E	xtract	ion	ŕ	r <u>i d</u>	124	T	T	<u> </u>	<u> </u>	r	1
		NAME: CF	Kisk	Aut	un lux		atiles	s	, PCB	/	C/MS)	(SMS)																
CONT	ACT:	Rob	Long	<u>à</u>		ainers	ted Vol 8010	Volatile 9020	d Pest		rganics 3240 (G	tiles 270 (G		ise	tis elow)			iles	~	10.	<u>_</u>							
PHON		123 1	683-	-07	רַ	# of Containers	Halogenated Volatiles EPA 601/8010	Aromatic Volatiles EPA 602/8020	Chlorinated Pest., PCB's EPA 608/8080	PAH's	Volatile Organics EPA 624/8240 (GC/MS)	Semi-volatiles EPA625/8270 (GC/MS)	TPH 418.1	Oil & Grease	Total Metals (Specify below)	8 Metals	Volatiles	Semi-volatiles	Pesticides & Herbicides	WTPH-	BET	1		,				
LAB #		MPLE I.D.	DATE		MATRIX		<u>з</u> п	Ϋ́Ш	5 5 1 1		ያሞ	Ϋ́́	₽ ₽	ö	5 d	8	<u> </u>	Sei	а д	Z	0							
15	\overline{w}		4-8.9	in the second second second second second second second second second second second second second second second	Noter					1						ļ			ļ	~	V		1		<u> </u>			
16	<u>M</u>			1355		5				V			 		<u> </u>		ļ				1	ļ	ļ		<u> </u>	ļ		
17		$\frac{1}{1}$ - 1		1440		5				1						ļ	 		 	4	V		ļ	ļ			-	
18 19	R			1535		5				V							 		ļ	×			<u> </u>			<u> </u>		ļ
		¥ .		1625		5				100	DAG						<u> </u>		ļ	-	-			ļ				ļ
20 21	-111	N-10	V	1440		3				No	4K	2			ļ		 		ļ		¥	ļ	 	ļ				
61	101	BLACK	*		· · ·							 					 				V		ļ	 	ļ			·
																	 	ļ	 			ļ	ļ	 	ļ			
																	 		 			ļ	ļ	ļ		· · ·		ļ
																						ļ	<u> </u>	 				<u> </u>
												 											 	 	<u> </u>			ļ
		•																					ļ	<u> </u>				<u> </u>
1.5																			 		°u	[7	
				· · · · ·					¥	<i>h</i> .								<u> </u>							 			
}J		· • •		T	L											Isi	PECIAI		RUCTI	ONS/C	ОММІ			1	I			
		Signat	ture		Printed	Nai	me		F	irm		ר	Time	/ D	ate													
Relinquish	ed By	Yuull	\sim	-6	i Synn	: WU	080	w/c	(jøle	126	12	-00	F	1-9.1					will b∈ o hav∘					s after].	recei	pt .	
Received	Ву	Jan Ha	usin	Sa.	in H.] U	Sec		5	4 <u>5</u>		120	<i>,</i> 0	4	1/9/	18												
Relinquish	ed By	Sam He	msin	-5	7 11	1	Sei		SH	5		1:0		4	1919	, 70	•				•							
Received	Ву	SGIC	na		Siar	20			51	1 <u>15</u>	-	1	2	Í.	-9-	5	8									3		
Relinquish	ed By		\Box			ノ 	•	\ `						<i>.</i>			7											
Received	Ву	<u>.</u>					<u>.</u>				-																	

6


nf

or Daniel - GTI, Inc Renton	Project:	Consolidated Freightways	Sampled:	7/27/98 to 7/29/98
5 South Renton Village Place, Ste 700	Project Number:	101386	Received:	7/29/98
nton, WA 98055	Project Manager:	Stan Haskins	Reported:	8/5/98 15:01

ANALYTICAL REPORT FOR SAMPLES:

mple Description	Laboratory Sample Number	Sample Matrix	Date Sampled
-1	B807557-01	Soil	7/27/98
-2	B807557-02	Soil	7/27/98
-3	B807557-03	Soil	7/27/98
'B-1	B807557-04	Soil	7/27/98
'B-3	B807557-06	Soil	7/27/98
V-1	B807557-08	Soil	7/27/98
V-2	B807557-09	Soil	7/27/98
₩-3	B807557-10	Soil	7/27/98
∀-4	B807557-11	Soil	7/27/98
·-1	B807557-12	Water	7/27/98
<i>.</i> -1	B807557-13	Soil	7/29/98
2	B807557-14	Soil	7/29/98
3	B807557-15	Soil	7/29/98

orth Creek Analytical, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

or Daniel - GTI, Inc Renton	Project:	Consolidated Freightways	Sampled:	7/27/98 to 7/29/98
South Renton Village Place, Ste 700	Project Number:	101386	Received:	7/29/98
iton, WA 98055	Project Manager:	Stan Haskins	Reported:	8/5/98 15:01

Diesel Hydrocarbons (C12-C24) by WTPH-D North Creek Analytical - Bothell

	Batch	Date	Date	Surrogate	Reporting			
alyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
			D9075	57 01			<u>Soil</u>	
<u>·1</u> sel Range Hydrocarbons	0780938	7/30/98	<u>B8075</u> 7/31/98	5/-01	410	7970	mg/kg dry	
rogate: Octacosane	"	"	"	50.0-150		89.8	%	1
<u>-2</u>			<u>B8075</u>	<u>57-02</u>			<u>Soil</u>	
sel Range Hydrocarbons	0780938	7/30/98	7/31/98		210	3890	mg/kg dry	
rogate: Octacosane	"	"	n	50.0-150		79 .1	%	1
<u>.3</u>			B8075	<u>57-03</u>			<u>Soil</u>	
sel Range Hydrocarbons	0780938	7/30/98	7/31/98		110	2000	mg/kg dry	
rogate: 2-FBP	"	"	14	50.0-150		139	%	
<u>B-1</u>			B8075	<u>57-04</u>			<u>Soil</u>	
sel Range Hydrocarbons	0780938	7/30/98	7/30/98		10.0	72.1	mg/kg dry	
rogate: 2-FBP	"	,,	"	50.0-150		72.3	%	
<u>B-3</u>			<u>B8075</u>	<u>57-06</u>			<u>Soil</u>	
sel Range Hydrocarbons	0780938	7/30/98	7/30/98		10.0	ND	mg/kg dry	
rogate: 2-FBP	"	"	**	50.0-150		90.3	%	
<u>/-1</u>			<u>B8075</u>	<u>57-08</u>			<u>Soil</u>	
sel Range Hydrocarbons	0780938	7/30/98	7/31/98		1010	28700	mg/kg dry	
rogate: Octacosane	"	"	"	50.0-150		77.6	%	1
<u>/-2</u>			B8075	<u>57-09</u>			<u>Soil</u>	
sel Range Hydrocarbons	0780938	7/30/98	8/4/98		10.0	ND	mg/kg dry	
rogate: 2-FBP	"	**	"	50.0-150		86.9	%	
<u>/-3</u>			<u>B8075</u>	57-10			<u>Soil</u>	
sel Range Hydrocarbons	0780938	7/30/98	7/30/98		10.0	ND	mg/kg dry	
rogate: 2-FBP	"	"	"	50.0-150		67.8	%	
/-4			<u>B8075</u>	57-11			<u>Soil</u>	
 sel Range Hydrocarbons	0780938	7/30/98	7/31/98		110	2700	mg/kg dry	
rogate: 2-FBP	"	"	"	50.0-150		143	%	
-1			<u>B8075</u>	<u>57-12</u>			<u>Water</u>	
sel Range Hydrocarbons	0780990	7/31/98	8/4/98		10.3	138	mg/l	
rogate: Octacosane	"	"	"	50.0-150		75.5	%	1
							·	

rth Creek Analytical, Inc.

t Manage B Chang bieň

*Refer to end of report for text of notes and definitions.

r Daniel - GTI, Inc Renton	Project:	Consolidated Freightways	Sampled:	7/27/98 to 7/29/98
	Project Number:		Received:	7/29/98
Soudi Renton - mage - mart, en en	•		Reported:	8/5/98 15:01
on, WA 98055	Project Manager:	Stan Haskins	Reported	

Diesel Hydrocarbons (C12-C24) by WTPH-D North Creek Analytical - Bothell

lyte	Batch Number	Date Prepared	Date Analyzed	Surrogate Limits	Reporting Limit	Result	Units	Notes*
1 el Range Hydrocarbons	0780938	7/30/98	<u>B8075</u> 7/30/98	57-13	10.0	20.5	<u>Soil</u> mg/kg dry	
ogate: 2-FBP		"	m	50.0-150		73.9	%	
2 ;el Range Hydrocarbons	0780938	7/30/98	<u>B8075</u> 7/31/98	<u>57-14</u>	210	4780	Soil mg/kg dry	
ogate: Octacosane	"	<i>n</i>	"	50.0-150		81.3	%	1
3 sel Range Hydrocarbons	0780938	7/30/98	<u>B8075</u> 7/30/98		10.0	ND	Soil mg/kg dry	
rogate: 2-FBP	"	"	"	50.0-150		81.3	%	

orth Creek Analytical, Inc.

Manage y B Chang, Project

18939 120th Avenue N.E., Suite 101, Bothell, WA 98011-9508 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

*Refer to end of report for text of notes and definitions.

lor Daniel - GTI, Inc Renton	Project:	Consolidated Freightways	Sampled:	7/27/98 to 7/29/98
5 South Renton Village Place, Ste 700	Project Number:	101386	Received:	7/29/98
nton, WA 98055	Project Manager:	Stan Haskins	Reported:	8/5/98 15:01

Diesel Hydrocarbons (C12-C24) by WTPH-D/Quality Control

	Date	Spike	Sample	QC	F	Reporting Limit	Recov.	RPD	RPD				
alyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*			
tch: 0780938	Date Prepa	red: 7/30/	<u>98</u>		Extraction Method: EPA 3550B								
ank	<u>0780938-B</u>	LK1											
esel Range Hydrocarbons	7/30/98			ND	mg/kg di	ry 10.0							
rrogate: 2-FBP	"	11.0		9.93	"	50.0-150	90.3						
<u></u>	0780938-BS	51											
esel Range Hydrocarbons	7/30/98	66.7		62.2	mg/kg di	ry 60.0-140	93.3						
rrogate: 2-FBP	"	11.0		8.43	"	50.0-150	76.6						
plicate	0780938-D	UP1 B	807563-04										
esel Range Hydrocarbons	7/30/98		ND	ND	mg/kg di	гу		50.0					
rrogate: 2-FBP	7/1/98	12.2		10.4	"	50.0-150	85.2						
plicate	0780938-D	<u>UP2 B</u>	<u>807563-01</u>										
esel Range Hydrocarbons	7/30/98		ND	ND	mg/kg di	гу		50.0					
rrogate: 2-FBP	17	11.7		8.69	**	50.0-150	7 4.3						
<u>tch: 0780990</u>	Date Prepa		<u>98</u>		Extracti	on Method: EP	A 3520C	/600 Seri	es				
nnk	<u>0780990-B</u>	LK1											
esel Range Hydrocarbons	8/3/98			ND	mg/l	0.250							
rrogate: 2-FBP	"	0.330		0.233	"	50.0-150	70. 6						
<u>25</u>	<u>0780990-B</u>	51											
esel Range Hydrocarbons	8/3/98	2.00		1.88	mg/l	60.0-140	94.0						
rrogate: 2-FBP	**	0.330		0.229	"	50.0-150	69.4						
plicate	0780990-DI	UP1 B	<u>807583-07</u>										
esel Range Hydrocarbons	8/3/98		ND	ND	mg/l			44.0					
rrogate: 2-FBP	"	0.628		0.370	"	50.0-150	58.9						

rth Creek Analytical, Inc.

*Refer to end of report for text of notes and definitions.

or Daniel - GTI, Inc Renton	Project:	Consolidated Freightways	Sampled:	7/27/98 to 7/29/98
South Renton Village Place, Ste 700	Project Number:	101386	Received:	7/29/98
ton, WA 98055	Project Manager:	Stan Haskins	Reported:	8/5/98 15:01

Notes and Definitions

	Note
	Due to interference from coeluting organic compounds with the primary surrogate, results of the secondary surrogate have been used to control the analysis.
Г	Analyte DETECTED
	Analyte NOT DETECTED at or above the reporting limit
	Not Reported
	Sample results reported on a dry weight basis
ov.	Recovery

) Relative Percent Difference

th Creek Analytical, Inc.

B Chang, Project Manager

18939 120th Avenue N.E., Suite 101, Bothell, WA 98011-9508 (205) 481-9200 FAX 485-2992
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4779 (509) 924-9200 FAX 924-9290
 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132 (503) 643-9200 FAX 644-2202

CHAIN OF CUSTODY REPORT

1557 Work Order #

REPORT TO: Fluor Daniel	GTI		INVOI	CE TO	: Co	nni (e)70.	ffm	91				TURN	AROUN	D REQU	UEST in Business Di	iys *
ATTENTION: 5 TAN HASKIN	15	** *** ****	ATTEN	TION:					1						Orga	nic & In	organic Analyses	
ADDRESS: 555 5 Renta	on 11/19	e Place	ADDRE	<u>\$\$:</u>	1.				`	`				10 7	5	4	3 2	Nume Day
Renton WA	9 B.	055	ļ												$\mathbf{x}^{\mathbf{F}}$		ydrocarbon Analyses	_
MIONE: 425 - 228-9645	FAX:		P.O. NU	P.O. NUMBER: NCA QUOTE #:										3-4 2 1 Same				
PROJECT NAME: Consolidared	Freightic	12 x 5	Analysis Request:			۸/												
PROJECT NUMBER: 101386	· · · · · · · · · · · · · · · · · · ·	•	- Acquest		/ 🔨	,Y			/ .				`	OTHER	Specify:			
SAMPLED BY: CNS			1		X		' /								· ·		standard may incur Rus	h Charges.
	SAMPLING DATE/TIME	NCA SAMPLE ID (Laboratory Use Only)	1	/	\mathbf{V}			/		/	/	/		MATRIX (W. S. A. O)			Сомме	NTS
IDENTIFICATION		B&07557-01		X							(Su ;/				
. 51-2	12:05	- 02												1				
<u>, sp-3</u>	3:5Ø	-03																
· T(p-1	12:57	- 04	1 1															
5 TPA-2	1:ØØ	- 05															Hold	
T(D-3	3:12	-04																
, TPP-4	4 د; و	-07															Hold	
x 3W-1	12:56	-08	>															
<u>* 3W-1</u> , 7W-2	3:21	-09)															
11. JW-3	,3:27	_10								L,								
	Alman	-		DATE	129	Î <i>Fib</i>	RECEN	ED BY	Signature 1	Ko		Was	Ŷ) 			DA.	TE 7/23/5
PRINT NAME: CARIS / Sio	rex	FIRM: FDGTI	-	TIME	. [:]	ÍØ	PRINT	NAME:	Ke	<u>1</u>		War	P		FIRM:	Ċ	DEL TH	11/3:30
RELINQUISHED BY (Sename the UN	alf			DATE	7/29	2/9]	RECEI	ED BY	Signature I.	S.	Wia	deer	$\underline{}$				DAT	12998
	voct	FIRM; COE	C	TIME	150	כי	PRINT	NAME:	4	<u>>. ر</u>	<u>.))</u>	deer	\sim	-	FIRM:	ver	<u>Ч, тм</u>	1: 3. OD
ADDITIONAL REMARKS:																	w/0/	Ť
																	10.2 PAGE	e of
																	1	

East 11115 Montgomery, Suite B. Spokane, WA 99206-4779 (509) 924-9200 FAX 924-9290 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132 (503) 643-9200 FAX 644-2202

CHAIN OF CUSTODY REPORT

Work Order #	B	80	155
Work Order #	15	20	5

.

REPORT TO: Flugs Princel OTI	INVOICE TO:	Con	/ነ/ ዮ	Hat	mar	-			TURN	AROUND REQI	UEST in Business Days *
ATTENTION: STAN Parting	ATTENTION:								_1	Organic & In	organic Analyses
ADDRESS: 555 5. Rentor Village Place	ADDRESS:								Standary 7	5 4	3 2 1 Same Day
RENTER, WA 48015									/ Staniard	Fuels & H	ydrocarbon Analyses
	P.O. NUMBER:		,	1		TE #:		,,		X 3-4	2 I Same Day
	Analysis Request:	15/							· · · · · · · · · · · · · · · · · · ·		
PROJECT NUMBER: 101396	vequesi.	/.২.٧		/ /	/ /	· /			OTHER	Specify:	
SAMPLED BY: CN 5		N /	· /					/		· · · · · · · · · · · · · · · · · · ·	standard may incur Rush Charges.
CLIENT SAMPLE SAMPLING NCA SAMPLE ID IDENTIFICATION DATE/TIME (Luiburniury Use Only)				/ /		/ /	/ /		MATRIX (W. S, A, O)	# OF CONTAINERS	COMMENTS
JW-4 7/148 -11	X						Í		50;1	(nan kanan manan falam manaka da da ku dan sa kang pertaka kang pertaka kang pertaka kang pertakan pertakan pert
TP-1 3:40 -12									Water	3	
	<i>i</i>										
PL-1 7/25/98 -13										1	
	$-\langle \rangle$										
F:2 14:42 -14	$-\langle \rangle$		┨						·····	l	
FL-3 12.PL - 15	$ \lambda $										
	/										
RELINQUISHED BY GRAMMER THE AND A STREAM	DATE:	7/29/98	RECEIVE	DBYIM		2	Wo	R			DATE: 7-799
PRINT NAME Chris 1. Stores FIRM: FAGTI	тіме:	7/29/98 1:1¢ 7/25/98	PRINT N	AME:	KE	n	, Wé			FIRM: CC) E C TIME: 1330
RELINQUISHED BY (Lenger) Kon Wage	DATE;	7/25/98	RECEIVE	D BY (Su	/ [nature 1:	5.	Wi	dee	n		DATE 7/29 8
PRINT NAME: KEN WOLF FIRM: C.DEL		1500	PRINTN				Nic			FIRM:	TIME: 2'00
ADDITIONAL REMARKS:											w/o
										_	D. PAGE OF

Client Name	Golder Associates
Client ID:	MW-1
Lab ID:	83533-01
Date Received:	8/19/99
Date Prepared:	8/20/99
Date Analyzed:	8/21/99
% Solids	-
Dilution Factor	1

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	101		63	138
Bromofluorobenzene	105		41	157

	Result		
Analyte	(mg/L)	PQL	MDL Flags
Benzene	ND	0.001	0.00064
Toluene	ND	0.001	0.00051
Ethylbenzene	ND	0.001	0.00037
m&p-Xylene	ND	0.002	0.00063
o-Xylene	ND	0.001	0.00063

Client Name	Golder Associates
Client ID:	MW-2
Lab ID:	83533-02
Date Received:	8/19/99
Date Prepared:	8/20/99
Date Analyzed:	8/21/99
% Solids	-
Dilution Factor	1

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	101		63	138
Bromofluorobenzene	103		41	157

	Result		
Analyte	(mg/L)	PQL	MDL Flags
Benzene	ND	0.001	0.00064
Toluene	ND	0.001	0.00051
Ethylbenzene	ND	0.001	0.00037
m&p-Xylene	ND	0.002	0.00063
o-Xylene	ND	0.001	0.00063

Client Name	Golder Associates
Client ID:	MW-3
Lab ID:	83533-03
Date Received:	8/19/99
Date Prepared:	8/20/99
Date Analyzed:	8/21/99
% Solids	-
Dilution Factor	1

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	101		63	138
Bromofluorobenzene	104		41	157

	Result		
Analyte	(mg/L)	PQL	MDL Flags
Benzene	0.00086	0.001	0.00064 J
Toluene	ND	0.001	0.00051
Ethylbenzene	ND	0.001	0.00037
m&p-Xylene	ND	0.002	0.00063
o-Xylene	ND	0.001	0.00063

Client Name	Golder Associates
Client ID:	RW-2
Lab ID:	83533-04
Date Received:	8/19/99
Date Prepared:	8/20/99
Date Analyzed:	8/21/99
% Solids	-
Dilution Factor	1

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	112		63	138
Bromofluorobenzene	106		41	157

	Result		
Analyte	(mg/L)	PQL	MDL Flags
Benzene	0.083	0.001	0.00064
Toluene	I D	0.001	0.00051
Ethylbenzene	0.02	0.001	0.00037
m&p-Xylene	0.043	0.002	0.00063
o-Xylene	0.0024	0.001	0.00063

Client Name	Golder Associates
Client ID:	TRIP BLANK
Lab ID:	83533-05
Date Received:	8/19/99
Date Prepared:	8/20/99
Date Analyzed:	8/21/99
% Solids	-
Dilution Factor	1

Volatile Aromatic Hydrocarbons by USEPA Method 8021B/5030B Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	101		63	138
Bromofluorobenzene	104		41	157

	Result		
Analyte	(mg/L)	PQL	MDL Flags
Benzene	ND	0.001	0.00064
Toluene	ND	0.001	0.00051
Ethylbenzene	ND	0.001	0.00037
m&p-Xylene	ND	0.002	0.00063
o-Xylene	ND	0.001	0.00063

6

Client Name	Golder Associates
Client ID:	MW-1
Lab ID:	83533-01
Date Received:	8/19/99
Date Prepared:	8/23/99
Date Analyzed:	8/25/99
% Solids	-
Dilution Factor	5

Diesel and Motor Oil by NWTPH-Dx Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	92		50	150

	Result			
Analyte	(mg/L)	PQL	MDL	Flags
#2 Diesel	0.16	0.24	0.12	J
Motor Oil	0.25	0.48	0.24	J

7

Client Name	Golder Associates
Client ID:	MW-2
Lab ID:	83533-02
Date Received:	8/19/99
Date Prepared:	8/23/99
Date Analyzed:	8/25/99
% Solids	-
Dilution Factor	5

Diesel and Motor Oil by NWTPH-Dx Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	94.8		50	150

	Result			
Analyte	(mg/L)	PQL	MDL	Flags
#2 Diesel	1.9	0.24	0.12	X1
Motor Oil	0.58	0.48	0.24	

X1 - Chromatogram suggests this might be aged or degraded diesel

Client Name	Golder Associates
Client ID:	MW-3
Lab ID:	83533-03
Date Received:	8/19/99
Date Prepared:	8/23/99
Date Analyzed:	8/25/99
% Solids	-
Dilution Factor	5

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	ery Limits
Surrogate o-terphenyl	% Recovery 96.8	Flags	Low 50	High 150
· · · · · · · · · · · · · · · · · · ·				

	Result			
Analyte	(mg/L)	PQL	MDL	Flags
#2 Diesel	1.5	0.24	0.12	X2
Motor Oil	1.8	0.48	0.24	X2

Client Name	Golder Associates
Client ID:	RW-2
Lab ID:	83533-04
Date Received:	8/19/99
Date Prepared:	8/23/99
Date Analyzed:	8/25/99
% Solids	-
Dilution Factor	5

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	94.1		50	150

Analyte	Result (mg/L)	PQL	MDL Flags
#2 Diesel	1.5	0.24	0.12 X2
Motor Oil	0.45	0.48	0.24 J

Lab ID:	Method Blank - GB1924
Date Received:	-
Date Prepared:	8/20/99
Date Analyzed:	8/21/99
% Solids	-
Dilution Factor	1

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
Trifluorotoluene	98.3		63	138	
Bromofluorobenzene	102		41	157	

	Result		
Analyte	(mg/L)	PQL	MDL Flags
Benzene	ND	0.001	0.00064
Toluene	ND	0.001	0.00051
Ethylbenzene	ND	0.001	0.00037
m&p-Xylene	ND	0.002	0.00063
o-Xylene	ND	0.001	0.00063

Blank Spike/Blank Spike Duplicate Report

Lab ID:	GB1924
Date Prepared:	8/20/99
Date Analyzed:	8/21/99
QC Batch ID:	GB1924

Volatile Aromatic Hydrocarbons by USEPA Method 8021B/5030B Modified

	Blank Result	Spike Amount	BS Result	BS	BSD Result	BSD		
Compound Name	(mg/L)	(mg/L)	(mg/L)	% Rec.	(mg/L)	% Rec.	RPD	Flag
Benzene	0	0.025	0.0247	98.7	0.0242	96.9	-1.8	5
Toluene	0	0.025	0.0247	98.6	0.0236	94.5	-4.2	
Ethylbenzene	0	0.025	0.0275	110	0.0264	105	-4.7	
m&p-Xylene	0	0.05	0.0533	107	0.0509	102	-4.8	
o-Xylene	0	0.025	0.0224	89.7	0.0212	84.9	-5.5	

12

Duplicate Report

Client Sample ID: Lab ID: Date Prepared: Date Analyzed: QC Batch ID: MW-1 83533-01 8/20/99 8/21/99 GB1924

	Sample Result	Duplicate Result	RPD	
Parameter Name	(mg/L)	(mg/L)	%	Flag
Benzene	0	0	NC	
Toluene	0	0	NC	
Ethylbenzene	0	0	NC	
m&p-Xylene	0	0	NC	
o-Xylene	0	0	NC	

Matrix Spike/Matrix Spike Duplicate Report

Client Sample ID:	RW-2
Lab ID:	83533-04
Date Prepared:	8/20/99
Date Analyzed:	8/21/99
QC Batch ID:	GB1924

	Sample	Spike	MS		MSD			
Compound Name	Result (mg/L)	Amount (mg/L)	Result	MS % Rec.	Result (mg/L)	MSD % Rec.	RPD	Floo
-			(mg/L)					Flag
Benzene	0.083	0.025	0.114	126	0.114	122	-3.2	
Toluene	0.00049	0.025	0.0247	96.9	0.0246	96.5	-0.41	
Ethylbenzene	0.02	0.025	0.0502	120	0.0542	136	13	
m&p-Xylene	0.043	0.05	0.102	119	0.103	121	1.7	
o-Xylene	0.0024	0.025	0.0243	87.7	0.0246	88.7	1.1	

Lab ID:	Method Blank - DI2252
Date Received:	-
Date Prepared:	8/23/99
Date Analyzed:	8/25/99
% Solids	-
Dilution Factor	5

Diesel and Motor Oil by NWTPH-Dx Modified

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
o-terphenyl	94		50	150	

	Result		
Analyte	(mg/L)	PQL	MDL Flags
#2 Diesel	ND	0.25	0.13
Motor Oil	ND	0.5	0.25

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared: Date Analyzed: QC Batch ID: DI2252 8/23/99 8/25/99 DI2252

Diesel and Motor Oil by NWTPH-Dx Modified

	Blank	Spike	BS		BSD			
	Result	Amount	Result	BS	Result	BSD		
Compound Name	(mg/L)	(mg/L)	(mg/L)	% Rec.	(mg/L)	% Rec.	RPD	Flag
#2 Diesel	0	5.01	5.12	102	5.37	107	4.8	
Motor Oil	0	4.93	4.61	93.5	4.96	100	6.7	

ANALYTICAL & ENVIRONMENTAL CHEMISTS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE: (253) 922-2310 - FAX: (253) 922-5047

DATA QUALIFIERS AND ABBREVIATIONS

- B1: This analyte was detected in the associated method blank. The analyte concentration was determined not to be significantly higher than the associated method blank (less than ten times the concentration reported in the blank).
- B2: This analyte was detected in the associated method blank. The analyte concentration in the sample was determined to be significantly higher than the method blank (greater than ten times the concentration reported in the blank).
- C1: Second column confirmation was performed. The relative percent difference value (RPD) between the results on the two columns was evaluated and determined to be $\leq 40\%$.
- C2: Second column confirmation was performed. The RPD between the results on the two columns was evaluated and determined to be > 40%. The higher result was reported unless anomalies were noted.
- M: GC/MS confirmation was performed. The result derived from the original analysis was reported.
- D: The reported result for this analyte was calculated based on a secondary dilution factor.
- E: The concentration of this analyte exceeded the instrument calibration range and should be considered an estimated quantity.
- J: The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity.
- MCL: Maximum Contaminant Level
- MDL: Method Detection Limit
- N: See analytical narrative.
- ND: Not Detected
- PQL: Practical Quantitation Limit
- X1: Contaminant does not appear to be "typical" product. Elution pattern suggests it may be ______.
- X2: Contaminant does not appear to be "typical" product.
- X3: Identification and quantitation of the analyte or surrogate was complicated by matrix interference.
- X4: RPD for duplicates was outside advisory QC limits. The sample was re-analyzed with similar results. The sample matrix may be nonhomogeneous.
- X4a: RPD for duplicates outside advisory QC limits due to analyte concentration near the method practical quantitation limit/detection limit.
- X5: Matrix spike recovery was not determined due to the required dilution.
- X6: Recovery and/or RPD values for matrix spike(/matrix spike duplicate) outside advisory QC limits. Sample was reanalyzed with similar results.
- X7: Recovery and/or RPD values for matrix spike(/matrix spike duplicate) outside advisory QC limits. Matrix interference may be indicated based on acceptable blank spike recovery and/or RPD.
- X7a: Recovery and/or RPD values for this spiked analyte outside advisory QC limits due to high concentration of the analyte in the original sample.
- X8: Surrogate recovery was not determined due to the required dilution.
- X9: Surrogate recovery outside advisory QC limits due to matrix interference.

Sound Analytical Services, Inc.

SAS Lab No. <u>83533</u>

20 ANALYTICAL & ENVIRONMENTAL CHEMISTS 4813 Pacific Hwy East • Tacoma, WA 98424 (253) 922-2310 • FAX (253) 922-5047 e-mail: saincl@uswest.net

TURNAROUND REQUEST (business days) Standard (10 days) ______ RUSH: 24 hrs ____ 48 hrs ____ 5 day ____

CHAIN OF CUSTODY/REQUEST FOR LABORATORY ANALYSIS Analyses Requested

Client: Golder Associates	Analyses Requested											
Project Name: CF/INVESTIGATION WA 983-1065.650 Contact: Gany Zimmerman			0x									
Phone No.: 425 883-0177	- Si	\sim										
Fax No .: 425 882-5498	tain.		1		2							
Email:	of Containers	F	à									
Lab Use Only Sample ID Mt Date Time Matrix	# of (8	-H97WN									
W 0101 PP-17-9 1-1010 W	4	V	V									
1 MW-2 MW-1 6-17-99 1010 W 2 494-3-MW-2 1100 W	4	V	V									
3 mw-+ MU-3 1224 W	4	V	1									
4 X RW-2 V 1242 13161	T	V,	1						•			
5 TRIP BLANK LUB 43	2	V.						,				
		1										
	1					×					 	
	1	1	[
	1											
	1										 	
							-					

	Signature	Printed Name	Firm	Time/Date	Special Instructions
Relinquished By:	Hanny ha	Gany Z: MANNA	n Golder	1050/8-19.99	* Exter VOA's collected
Received By		JOP PALMQUS		10:508-19	
Relinquished By:	Dr. Palnyt	Joe PALMQUESI	- SAS	11:45 8-1	
Received By	Thepase	FJespelsen	SAS	8/19/99	
Relinquished By:	'/ '	~			
Received By					

COC No: 101 6-1

APPENDIX B

LABORATORY ANALYTICAL RESULTS

Client Name	Golder Associates
Client ID:	GP-1
Lab ID:	83534-01
Date Received:	8/19/99
Date Prepared:	8/25/99
Date Analyzed:	8/27/99
% Solids	-
Dilution Factor	5

Diesel and Motor Oil by NWTPH-Dx Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	84.6		50	150

	Result			
Analyte	(mg/L)	PQL	MDL	Flags
#2 Diesel	1.2	0.24	0.12	X1
Motor Oil	0.69	0.48	0.24	

X1 - Chromatogram suggests this might be single component contamination

Client Name	Golder Associates
Client ID:	GP-2
Lab ID:	83534-02
Date Received:	8/19/99
Date Prepared:	8/25/99
Date Analyzed:	8/27/99
% Solids	-
Dilution Factor	5

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	81.9		50	150

Analyta	Result	PQL	MDL	Flags
Analyte	(mg/L)	PQL	WIDL	riags
#2 Diesel	0.4	0.24	0.12	X1
Motor Oil	0.28	0.48	0.24	J

X1 - Chromatogram suggests this might be single component contamination

Client Name	Golder Associates
Client ID:	GP-3
Lab ID:	83534-03
Date Received:	8/19/99
Date Prepared:	8/25/99
Date Analyzed:	8/27/99
% Solids	-
Dilution Factor	5

Diesel and Motor Oil by NWTPH-Dx Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	75.6		50	150

	Result			
Analyte	(mg/L)	PQL	MDL	Flags
#2 Diesel	0.26	0.24	0.12	X1
Motor Oil	0.59	0.48	0.24	

X1 - Chromatogram suggests this might be single component contamination

Client Name	Golder Associates
Client ID:	GP-4
Lab ID:	83534-04
Date Received:	8/19/99
Date Prepared:	8/25/99
Date Analyzed:	8/27/99
% Solids	-
Dilution Factor	5

Diesel and Motor Oil by NWTPH-Dx Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	78.5		50	150

	Result			
Analyte	(mg/L)	PQL	MDL	Flags
#2 Diesel	0.8	0.25	0.13	X1
Motor Oil	0.49	0.51	0.25	J

X1 - Chromatogram suggests this might be single component contamination

Client Name	Golder Associates
Client ID:	GP-5
Lab ID:	83534-05
Date Received:	8/19/99
Date Prepared:	8/25/99
Date Analyzed:	8/27/99
% Solids	-
Dilution Factor	5

Diesel and Motor Oil by NWTPH-Dx Modified

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
o-terphenyl	82.7		50	150	

	Result			
Analyte	(mg/L)	PQL	MDL	Flags
#2 Diesel	0.98	0.24	0.12	X1
Motor Oil	ND	0.47	0.24	

X1 - Chromatogram suggests this might be single component contamination

• •

Client Name	Golder Associates
Client ID:	GP-6
Lab ID:	83534-06
Date Received:	8/19/99
Date Prepared:	8/25/99
Date Analyzed:	8/27/99
% Solids	-
Dilution Factor	5

Diesel and Motor Oil by NWTPH-Dx Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	84.3		50	150

Amelada	Result	BOI		
Analyte	(mg/L)	PQL	MDL	Flags
#2 Diesel	1.4	0.24	0.12	X1
Motor Oil	1.8	0.49	0.24	

Client Name	Golder Associates
Client ID:	GP-7
Lab ID:	83534-07
Date Received:	8/19/99
Date Prepared:	8/25/99
Date Analyzed:	8/27/99
% Solids	-
Dilution Factor	5

Diesel and Motor Oil by NWTPH-Dx Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	82.1		50	150

	Result			
Analyte	(mg/L)	PQL	MDL	Flags
#2 Diesel	0.72	0.24	0.12	X1
Motor Oil	0.36	0.48	0.24	J

X1 - Chromatogram suggests this might be single component contamination

. .

Client Name	Golder Associates
Client ID:	GP-8
Lab ID:	83534-08
Date Received:	8/19/99
Date Prepared:	8/25/99
Date Analyzed:	8/27/99
% Solids	-
Dilution Factor	5

Diesel and Motor Oil by NWTPH-Dx Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	92.9		50	150

	Result			
Analyte	(mg/L)	PQL	MDL	Flags
#2 Diesel	0.26	0.24	0.12	X1
Motor Oil	0.3	0.48	0.24	J

X1 - Chromatogram suggests this might be single component contamination

Client Name	Golder Associates
Client ID:	GP-9
Lab ID:	83534-09
Date Received:	8/19/99
Date Prepared:	8/25/99
Date Analyzed:	8/27/99
% Solids	-
Dilution Factor	5

Diesel and Motor Oil by NWTPH-Dx Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	81		50	150

	Result		
Analyte	(mg/L)	PQL	MDL Flags
#2 Diesel	1.2	0.24	0.12 X1
Motor Oil	0.28	0.48	0.24 J

X1 - Chromatogram suggests this might be single component contamination

Client Name	Golder Associates
Client ID:	GP-10
Lab ID:	83534-10
Date Received:	8/19/99
Date Prepared:	8/25/99
Date Analyzed:	8/28/99
% Solids	-
Dilution Factor	25
	25

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	ery Limits
Surrogate o-terphenyl	% Recovery 84.9	Flags	Low 50	High 150

Analyte	Result (mg/L)	PQL	MDL	Flags
#2 Diesel	29	1.2	0.6	X1
Motor Oil	2.1	2.4	1.2	J

Client Name	Golder Associates
Client ID:	GP-11
Lab ID:	83534-11
Date Received:	8/19/99
Date Prepared:	8/25/99
Date Analyzed:	8/27/99
% Solids	-
Dilution Factor	5

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	81		50	150

	Result			
Analyte	(mg/L)	PQL	MDL	Flags
#2 Diesel	2.5	0.24	0.12	X1
Motor Oil	0.86	0.48	0.24	

Client Name	Golder Associates
Client ID:	GP-11EB
Lab ID:	83534-12
Date Received:	8/19/99
Date Prepared:	8/25/99
Date Analyzed:	8/27/99
% Solids	-
Dilution Factor	5

Diesel and Motor Oil by NWTPH-Dx Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	89.4		50	1 50

	Result			
Analyte	(mg/L)	PQL	MDL	Flags
#2 Diesel	3.3	0.24	0.12	X1
Motor Oil	0.76	0.48	0.24	

Client Name	Golder Associates
Client ID:	GP-12
Lab ID:	83534-13
Date Received:	8/19/99
Date Prepared:	8/25/99
Date Analyzed:	8/27/99
% Solids	-
Dilution Factor	5

Diesel and Motor Oil by NWTPH-Dx Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	87		50	150

	Result			
Analyte	(mg/L)	PQL	MDL	Flags
#2 Diesel	0.16	0.24	0.12	J
Motor Oil	0.39	0.48	0.24	J

Client Name	Golder Associates
Client ID:	GP-13
Lab ID:	83534-14
Date Received:	8/19/99
Date Prepared:	8/25/99
Date Analyzed:	8/27/99
% Solids	-
Dilution Factor	5

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	83.3		50	150

	Result			
Analyte	(mg/L)	PQL	MDL	Flags
#2 Diesel	0.58	0.24	0.12	X1
Motor Oil	0.33	0.48	0.24	J

X1 - Chromatogram suggests this might be single component contamination

Client Name	Golder Associates
Client ID:	GP-14
Lab ID:	83534-15
Date Received:	8/19/99
Date Prepared:	8/25/99
Date Analyzed:	8/28/99
% Solids	-
Dilution Factor	25
	- 25

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	88.2		50	150

	Result		
Analyte	(mg/L)	PQL	MDL Flags
#2 Diesel	34	1.2	0.6
Motor Oil	2.5	2.4	1.2

Lab ID:	Method Blank - DI2257
Date Received:	-
Date Prepared:	8/25/99
Date Analyzed:	8/27/99
% Solids	-
Dilution Factor	5

Diesel and Motor Oil by NWTPH-Dx Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	84.1		50	150

	Result		
Analyte	(mg/L)	PQL	MDL Flags
#2 Diesel	ND	0.25	0.13
Motor Oil	ND	0.5	0.25

Blank Spike/Blank Spike Duplicate Report

Lab ID:	DI2257
Date Prepared:	8/25/99
Date Analyzed:	8/27/99
QC Batch ID:	DI2257

Diesel and Motor Oil by NWTPH-Dx Modified

Compound Name	Blank Result (mg/L)	Spike Amount	BS Result	BS % Rec.	BSD Result	BSD	RPD	Flore
#2 Diesel	(mg/r_) 0	(mg/L) 5.01	(mg/L) 4.34	% Rec. 86.8	(mg/L) 4.57	% Rec. 91.3	5.1	Flag
Motor Oil	0	4.93	4.09	83	4.11	83.3	0.36	

·** 18

ANALYTICAL & ENVIRONMENTAL CHEMISTS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE: (253) 922-2310 - FAX: (253) 922-5047

DATA QUALIFIERS AND ABBREVIATIONS

- B1: This analyte was detected in the associated method blank. The analyte concentration was determined not to be significantly higher than the associated method blank (less than ten times the concentration reported in the blank).
- B2: This analyte was detected in the associated method blank. The analyte concentration in the sample was determined to be significantly higher than the method blank (greater than ten times the concentration reported in the blank).
- C1: Second column confirmation was performed. The relative percent difference value (RPD) between the results on the two columns was evaluated and determined to be $\leq 40\%$.
- C2: Second column confirmation was performed. The RPD between the results on the two columns was evaluated and determined to be > 40%. The higher result was reported unless anomalies were noted.
- M: GC/MS confirmation was performed. The result derived from the original analysis was reported.
- D: The reported result for this analyte was calculated based on a secondary dilution factor.
- E: The concentration of this analyte exceeded the instrument calibration range and should be considered an estimated quantity.
- J: The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity.
- MCL: Maximum Contaminant Level
- MDL: Method Detection Limit
- N: See analytical narrative.
- ND: Not Detected
- PQL: Practical Quantitation Limit
- X1: Contaminant does not appear to be "typical" product. Elution pattern suggests it may be ______.
- X2: Contaminant does not appear to be "typical" product.
- X3: Identification and quantitation of the analyte or surrogate was complicated by matrix interference.
- X4: RPD for duplicates was outside advisory QC limits. The sample was re-analyzed with similar results. The sample matrix may be nonhomogeneous.
- X4a: RPD for duplicates outside advisory QC limits due to analyte concentration near the method practical quantitation limit/detection limit.
- X5: Matrix spike recovery was not determined due to the required dilution.
- X6: Recovery and/or RPD values for matrix spike(/matrix spike duplicate) outside advisory QC limits. Sample was reanalyzed with similar results.
- X7: Recovery and/or RPD values for matrix spike(/matrix spike duplicate) outside advisory QC limits. Matrix interference may be indicated based on acceptable blank spike recovery and/or RPD.
- X7a: Recovery and/or RPD values for this spiked analyte outside advisory QC limits due to high concentration of the analyte in the original sample.
- X8: Surrogate recovery was not determined due to the required dilution.
- X9: Surrogate recovery outside advisory QC limits due to matrix interference.

Relinquished

Relinquished By: **Received By**

COC No. 6-2, 6-3

By: Received By Sound Analytical Services, Inc. ANALYTICAL & ENVIRONMENTAL CHEMISTS 4813 Pacific Hwy East • Tacoma, WA 98424 (253) 922-2310 • FAX (253) 922-5047 e-mail: sainc1@uswest.net

SAS Lab No.

TURNAROUND REQUEST (business days) Standard (10 days) _____ RUSH: 24 hrs ____ 48 hrs ____ 5 day ____

CHAIN OF CUSTODY/REQUEST FOR LABORATORY ANALYSIS

10

Client Golder Associ	2140	1			Analyse	s Requ	esteo								
Project Name: CF Invos 983	tigat	iw I nor	A												
983	-106	5. 600)												
Contact: Gam Zim	Meri	Man			~										
Phone No.: 475 88	3-0	ררל		lers											
Fax No.:				Itair	T										
Email:				of Containers											
Lab Use Only Sample ID	Date	Time	Matrix	# of	NWTPH- Ny										
<u> GP-1</u>	8-18.99	0615	¥	١	~										
2 GP-Z		0900		1	V					1					
3 GP-3		0890		1	V					<u> </u> .					
4 GP-4		1020		1	1					1					
5 GP-5		1047		I	1.										
6 GP-6 ~		1115			U										
7 GP-7		1148		1	V.										
0 GP-8		1222		1	1					<u> </u>					
9 GP-9		1305		T											
10 GP-10		1335		$\left \right $	1					1				 	
11 GP-11		1425	,		V					1				 	
12 GP-ITEB		1430		1	1						<u> </u>			 	
13 GP-12		1458		1	V	•					<u> </u>				
14 GP-13	A	1527	V	T	V					1				 -	
5 GP-14				-							<u> </u>				
									-					 	
		<u> </u>									<u> </u>			 	
	1		1	<u> </u>	<u> </u>				1-	 	-			 	-
First		. A		1	1		L1	l	<u>L</u> ,	1	L	L	1		
Signature Relinquished		Printed N			Firm		/Pate	Spe	cial Ins	tructi	ons			 	
By: KINHUMA		WS MAC	monnar	~ 6	iolder	1050	18-19	M9					·		
Received By		- 11		-		1	1	-1 `							

SAS

Ar 2

0:52

ANALYTICAL & ENVIRONMENTAL CHEMISTS 4813 Pacific Hwy East o Tacoma, WA 98424 (253) 922-2310 o FAX (253) 922-5047 e-mail: info@saslab.com

TRANSMITTAL MEMORANDUM

DATE: February 1, 2001

TO: Gary Zimmerman Golder Associates 18300 NE Union Hill Road, Suite 200 Redmond, WA 98052-3333

PROJECT: CF/GW Inv. 1WA 983-1065

REPORT NUMBER: 95495

Enclosed are the test results for seven samples received at Sound Analytical Services on January 18, 2001.

The report consists of this transmittal memo, analytical results, quality control reports, a copy of the chainof-custody, a list of data qualifiers and analytical narrative when applicable, and a copy of any requested raw data.

Should there be any questions regarding this report, please contact me at (253) 922-2310.

Sincerely,

Nex

Tom Watson Project Manager

Client Name	Golder Associates
Client ID:	MW-1
Lab ID:	95495-01
Date Received:	1/18/01
Date Prepared:	1/30/01
Date Analyzed:	1/30/01
% Solids	-
Dilution Factor	· 1

Volatile Organics by USEPA Method 5030\8260B Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	101		82.5	114
Fluorobenzene	101		83.7	114
Toluene-D8	94.8		91.1	107
Ethylbenzene-d10	90.2		86.6	108
Bromofluorobenzene	99		86.1	110

	Result			
Analyte	(ug/L)	PQL	MDL	Flags
Dichlorodifluoromethane	ND	0.4	0.023	
Chloromethane	ND	0.4	0.031	
Vinyl chloride	ND	0.4	0.019	
Bromomethane	ND	0.4	0.05	
Chloroethane	ND	0.4	0.12	
Trichlorofluoromethane	ND	0.4	0.022	
1,1-Dichloroethene	ND	0.4	0.082	
Methylene chloride	0.065	0.4	0.049	J
trans-1,2-Dichloroethene	ND	0.4	0.052	
1,1-Dichloroethane	0.062	0.4	0.036	J
2,2-Dichloropropane	ND	0.4	0.075	
cis-1,2-Dichloroethene	ND	0.4	0.055	
Bromochloromethane	ND	0.4	0.044	
Chloroform	ND	0.4	0.052	
1,1,1-Trichloroethane	ND	0.4	0.076	
Carbon Tetrachloride	ND	0.4	0.053	
1,1-Dichloropropene	· ND	0.4	0.05	
Benzene	ND	0.4	0.032	
1,2-Dichloroethane	ND	0.4	0.032	
Trichloroethene	ND	0.4	0.06	
1,2-Dichloropropane	ND	0.4	0.05	
Dibromomethane	ND	0.4	0.024	
Bromodichloromethane	ND	0.4	0.032	
cis-1,3-Dichloropropene	ND	0.4	0.037	
Toluene	ND	0.4	0.036	
trans-1,3-Dichloropropene	ND	0.4	0.031	

L

Volatile Organics by USEPA Method 5030\8260B Modified data for 95495-01 continued...

	Result		
Analyte	(ug/L)	PQL	MDL
1,1,2-Trichloroethane	ND	0.4	0.048
Tetrachloroethene	ND	0.4	0.055
1,3-Dichloropropane	ND	0.4	0.028
Dibromochloromethane	ND	0.4	0.048
1,2-Dibromoethane	ND	0.4	0.074
Chlorobenzene	ND	0.4	0.047
Ethylbenzene	ND	0.4	0.032
1,1,1,2-Tetrachloroethane	ND	0.4	0.04
m,p-Xylene	ND	0.8	0.087
o-Xylene	ND	0.4	0.043
Styrene	ND	0.4	0.037
Bromoform	ND	0.4	0.046
Isopropylbenzene	ND	0.4	0.047
Bromobenzene	ND	0.4	0.045
n-Propylbenzene	ND	0.4	0.067
1,1,2,2-Tetrachloroethane	ND	0.4	. 0.07
1,2,3-Trichloropropane	ND	0.4	0.079
2-Chlorotoluene	ND	0.4	0.054
1,3,5-Trimethylbenzene	ND	0.4	0.047
4-Chlorotoluene	ND	0.4	0.064
t-Butylbenzene	ND	0.4	0.077
1,2,4-Trimethylbenzene	ND	0.4	0.052
sec-Butylbenzene	ND	0.4	0.063
1,3-Dichlorobenze ne	ND	0.4	0.057
4-Isopropyitoluene	ND	0.4	0.048
1,4-Dichlorobenzene	ND	0.4	0.055
n-Butylbenzene	ND	0.4	0.053
1,2-Dichlorobenzene	ND	0.4	0.044
1,2-Dibromo-3-chloropropane	ND	0.4	0.13
1,2,4-Trichlorobenzene	ND	0.4	0.085
Hexachlorobutadiene	ND	0.4	0.11
Naphthalene	ND	0.4	0.091
1,2,3-Trichlorobenzene	ND	0.4	0.096

З

Client Name	Golder Associates
Client ID:	MW-6
Lab ID:	95495-02
Date Received:	1/18/01
Date Prepared:	1/30/01
Date Analyzed:	1/30/01
% Solids	-
Dilution Factor	1

Volatile Organics by USEPA Method 5030\8260B Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	. 101		82.5	114
Fluorobenzene	101		83.7	114
Toluene-D8	96.8		91.1	107
Ethylbenzene-d10	90.7		86.6	108
Bromofluorobenzene	99.2		86.1	110

	Result			
Analyte	(ug/L)	PQL	MDL	Flags
Dichlorodifluoromethane	ND	0.4	0.023	
Chloromethane	0.055	0.4	0.031	J
Vinyl chloride	0.38	0.4	0.019	J
Bromomethane	ND	0.4	0.05	
Chloroethane	ND	0.4	0.12	
Trichlorofluoromethane	ND	0.4	0.022	
1,1-Dichloroethene	ND	0.4	0.082	
Methylene chloride	0.1	0.4	0.049	J
trans-1,2-Dichloroethene	ND	0.4	0.052	
1,1-Dichloroethane	0.097	0.4	0.036	J
2,2-Dichloropropane	ND	0.4	0.075	
cis-1,2-Dichloroethene	ND	0.4	0.055	
Bromochloromethane	ND	0.4	0.044	
Chloroform	ND	0.4	0.052	
1,1,1-Trichloroethane	ND	0.4	0.076	
Carbon Tetrachloride	ND	0.4	0.053	
1,1-Dichloropropene	ND	0.4	0.05	
Benzene	0.3	0.4	0.032	J
1,2-Dichloroethane	ND	0.4	0.032	
Trichloroethene	ND	0.4	0.06	
1,2-Dichloropropane	ND	0.4	0.05	
Dibromomethane	ND	0.4	0.024	
Bromodichloromethane	ND	0.4	0.032	
cis-1,3-Dichloropropene	ND	0.4	0.037	
Toluene	ND	0.4	0.036	
trans-1,3-Dichloropropene	ND	0.4	0.031	

.m. u. 4

Volatile Organics by USEPA Method 5030\8260B Modified data for 95495-02 continued...

Result					
Analyte	(ug/L)	PQL	MDL		
1,1,2-Trichloroethane	ND	0.4	0.048		
Tetrachloroethene	ND	0.4	0.055		
1,3-Dichloropropane	ND	0.4	0.028		
Dibromochloromethane	ND	0.4	0.048		
1,2-Dibromoethane	ND	0.4	0.074		
Chlorobenzene	ND	0.4	0.047		
Ethylbenzene	ND	0.4	0.032		
1,1,1,2-Tetrachloroethane	ND	0.4	0.04		
m,p-Xylene	ND	0.8	0.087		
o-Xylene	ND	0.4	0.043		
Styrene	ND	0.4	0.037		
Bromoform	ND	0.4	0.046		
Isopropylbenzene	ND	0.4	0.047		
Bromobenzene	ND	0.4	0.045		
n-Propylbenzene	ND	0.4	0.067		
1,1,2,2-Tetrachloroethane	ND	0.4	0.07		
1,2,3-Trichloropropane	ND	0.4	0.079		
2-Chlorotoluene	ND	0.4	0.054		
1,3,5-Trimethylbenzene	ND	0.4	0.047		
4-Chlorotoluene	ND	0.4	0.064		
t-Butylbenzene	ND	0.4	0.077		
1,2,4-Trimethylbenzene	ND	0.4	0.052		
sec-Butylbenzene	ND	0.4	0.063		
1,3-Dichlorobenzene	ND	0.4	0.057		
4-Isopropyltoluene	ND	0.4	0.048		
1,4-Dichlorobenzene	ND	0.4	0.055		
n-Butylbenzene	ND	0.4	0.053		
1,2-Dichlorobenzene	ND	0.4	0.044		
1,2-Dibromo-3-chloropropane	ND	0.4	0.13		
1,2,4-Trichlorobenzene	ND	0.4	0.085		
Hexachlorobutadiene	ND	0.4	0.11		
Naphthalene	ND	0.4	0.091		
1,2,3-Trichlorobenzene	ND	0.4	0.096		

5

- # L .

Client Name		Golder Associates
Client ID:		MW-5
Lab ID:		95495-0 3
Date Received:		1/18/01
Date Prepared:		1/30/01
Date Analyzed:		1/30/01
% Solids		-
Dilution Factor	•	1

Volatile Organics by USEPA Method 5030\8260B Modified

		·	Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	99.2		82.5	114
Fluorobenzene	99.9		83.7	114
Toluene-D8	96.8		91.1	107
Ethylbenzene-d10	91.9		86.6	108
Bromofluorobenzene	99.6		86.1	110

	Result			
Analyte	(ug/L)	PQL	MDL	Flags
Dichlorodifluoromethane	ND	0.4	0.023	
Chloromethane	0.096	0.4	0.031	J
Vinyl chloride	ND	0.4	0.019	
Bromomethane	ND	0.4	0.05	
Chloroethane	ND	0.4	0.12	
Trichlorofluoromethane	ND	0.4	0.022	
1,1-Dichloroethene	ND	0.4	0.082	
Methylene chloride	0.08	0.4	0.049	J
trans-1,2-Dichloroethene	ND	0.4	0.052	
1,1-Dichloroethane	0.23	0.4	0.036	J
2,2-Dichloropropane	ND	0.4	0.075	
cis-1,2-Dichloroethene	ND	0.4	0.055	
Bromochloromethane	ND	0.4	0.044	
Chloroform	0.088	0.4	0.052	J
1,1,1-Trichloroethane	ND	0.4	0.076	
Carbon Tetrachloride	ND	0.4	0.053	
1,1-Dichloropropene	ND	0.4	0.05	
Benzene	ND	0.4	0.032	
1,2-Dichloroethane	ND	0.4	0.032	
Trichloroethene	ND	0.4	0.06	
1,2-Dichloropropane	ND	0.4	0.05	
Dibromomethane	ND	0.4	0.024	
Bromodichloromethane	ND	0.4	0.032	
cis-1,3-Dichloropropene	ND	0.4	0.037	
Toluene	ND	0.4	0.036	
trans-1,3-Dichloropropene	ND	0.4	0.031	

6

.*_ i

Volatile Organics by USEPA Method 5030\8260B Modified data for 95495-03 continued...

		Result		
Analyte		(ug/L)	PQL	MDL
1,1,2-Trichloroethane	ND		0.4	0.048
Tetrachloroethene	ND		0.4	0.055
1,3-Dichloropropane	ND		0.4	0.028
Dibromochloromethane	ND		0.4	0.048
1,2-Dibromoethane	ND		0.4	0.074
Chlorobenzene	ND		0.4	0.04 7
Ethylbenzene	ND		0.4	0.032
1,1,1,2-Tetrachloroethane	ND		0.4	0.04
m,p-Xylene	ND		0.8	0.087
o-Xylene	ND		0.4	0.043
Styrene	ND		0.4	0.037
Bromoform	ND		0.4	0.046
Isopropylbenzene	ND		0.4	0.047
Bromobenzene	ND		0.4	0.045
n-Propylbenzene	ND		0.4	0.067
1,1,2,2-Tetrachloroethane	ND		0.4	0.07
1,2,3-Trichloropropane	ND		0.4	0.079
2-Chlorotoluene	ND		0.4	0.054
1,3,5-Trimethylbenzene	ND		0.4	0.047
4-Chiorotoluene	ND		0.4	0.064
t-Butylbenzene	ND		0.4	0.077
1,2,4-Trimethylbenzene	ND		0.4	0.052
sec-Butylbenzene	ND		0.4	0.063
1,3-Dichlorobenzene	ND		0.4	0.057
4-Isopropyltoluene	ND		0.4	0.048
1,4-Dichlorobenzene	ND		0.4	0.055
n-Butylbenzene	ND		0.4	0.053
1,2-Dichlorobenzene	ND		0.4	0.044
1,2-Dibromo-3-chloropropane	ND		0.4	0.13
1,2,4-Trichlorobenzene	ND		0.4	0.085
Hexachlorobutadiene	ND		0.4	0.11
Naphthalene	ND		0.4	0.091
1,2,3-Trichlorobenzene	ND		0.4	0.096

Client Name	Golder Associates
Client ID:	MW-4
Lab ID:	95495-04
Date Received:	1/18/01
Date Prepared:	1/30/01
Date Analyzed:	1/30/01
% Solids	-
Dilution Factor	1

Volatile Organics by USEPA Method 5030\8260B Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	100		82.5	114
Fluorobenzene	101		83.7	114
Toluene-D8	95.2		91.1	107
Ethylbenzene-d10	91.6		86.6	108
Bromofluorobenzene	102		86.1	110

	Result	•		
Analyte	(ug/L)	PQL	MDL	Flags
Dichlorodifluoromethane	ND	0.4	0.023	
Chloromethane	ND	0.4	0.031	
Vinyl chloride	0.48	0.4	0.019	
Bromomethane	ND	0.4	0.05	
Chloroethane	ND	0.4	0.12	
Trichlorofluoromethane	ND	0.4	0.022	
1,1-Dichloroethene	ND	0.4	0.082	
Methylene chloride	0.087	0.4	0.049	J
trans-1,2-Dichloroethene	ND	0.4	0.052	
1,1-Dichloroethane	0.12	0.4	0.036	J
2,2-Dichloropropane	ND	0.4	0.075	
cis-1,2-Dichloroethene	0.13	0.4	0.055	J
Bromochloromethane	ND	0.4	0.044	
Chloroform	ND	0.4	0.052	
1,1,1-Trichloroethane	ND	0.4	0.076	
Carbon Tetrachloride	ND	0.4	0.053	
1,1-Dichloropropene	ND .	0.4	0.05	
Benzene	ND	0.4	0.032	
1,2-Dichloroethane	ND	0.4	0.032	
Trichloroethene	ND	0.4	0.06	
1,2-Dichloropropane	ND	0.4	0.05	
Dibromomethane	ND	0.4	0.024	
Bromodichloromethane	ND	0.4	0.032	
cis-1,3-Dichloropropene	ND	0.4	0.037	
Toluene	ND	0.4	0.036	
trans-1,3-Dichloropropene	ND	0.4	0.031	

8

_P*__ -:

Volatile Organics by USEPA Method 5030\8260B Modified data for 95495-04 continued...

Result				
Analyte	(ug/L)	PQL	MDL	
1,1,2-Trichloroethane	ND	0.4	0.048	
Tetrachloroethene	ND	0.4	0.055	
1,3-Dichloropropane	ND	0.4	0.028	
Dibromochloromethane	ND	0.4	0.048	
1,2-Dibromoethane '	ND	0.4	0.074	
Chlorobenzene	ND	0.4	0.047	
Ethylbenzene	ND	0.4	0.032	
1,1,1,2-Tetrachloroethane	ND	0.4	0.04	
m,p-Xylene	ND	0.8	0.087	
o-Xylene	ND	0.4	0.043	
Styrene	ND	0.4	0.03 7	
Bromoform	ND	0.4	0.046	
Isopropylbenzene	ND	0.4	0.047	
Bromobenzene	ND	0.4	0.045	
n-Propylbenzene	ND	0.4	0.067	
1,1,2,2-Tetrachloroethane	ND	0.4	0.07	
1,2,3-Trichloropropane	ND	0.4	0.0 79	
2-Chlorotoluene	ND	0.4	0.054	
1,3,5-Trimethylbenzene	ND	0.4	0.047	
4-Chlorotoluene	ND	0.4	0.064	
t-Butylbenzene	ND	0.4	0.077	
1,2,4-Trimethylbenzene	ND	0.4	0.052	
sec-Butylbenzene	ND	0.4	0.063	
1,3-Dichlorobenzene	ND	0.4	0.057	
4-Isopropyltoluene	ND	0.4	0.048	
1,4-Dichlorobenzene	ND	0.4	0.055	
n-Butylbenzene	ND	0.4	0.053	
1,2-Dichlorobenzene	ND	0.4	0.044	
1,2-Dibromo-3-chloropropane	ND	0.4	0.13	
1,2,4-Trichlorobenzene	ND	0.4	0.085	
Hexachlorobutadiene	ND	0.4	0.11	
Naphthalene	ND	0.4	0.091	
1,2,3-Trichlorobenzene	ND	0.4	0.096	

.

Client Name	Golder Associates
Client ID:	MW-13
Lab ID:	95495-05
Date Received:	1/18/01
Date Prepared:	1/30/01
Date Analyzed:	1/30/01
% Solids	-
Dilution Factor	1

Volatile Organics by USEPA Method 5030\8260B Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	101		82.5	114
Fluorobenzene	100		83.7	114
Toluene-D8	97.3		91.1	107
Ethylbenzene-d10	93.2		86.6	108
Bromofluorobenzene	99.7		86.1	110

	Result			
Analyte	(ug/L)	PQL	MDL.	Flags
Dichlorodifluoromethane	ND	0.4	0.023	
Chloromethane	ND	0.4	0.031	
Vinyl chloride	0.069	0.4	0.019	J
Bromomethane	ND	0.4	0.05	
Chloroethane	ND	0.4	0.12	
Trichlorofluoromethane	ND	0.4	0.022	
1,1-Dichloroethene	ND	0.4	0.082	
Methylene chloride	ND	0.4	0.049	
trans-1,2-Dichloroethene	ND	0.4	0.052	
1,1-Dichloroethane	ND	0.4	0.036	
2,2-Dichloropropane	ND	0.4	0.075	
cis-1,2-Dichloroethene	0.084	0.4	0.055	J
Bromochloromethane	ND	0.4	0.044	
Chloroform	ND	0.4	0.052	
1,1,1-Trichloroethane	ND	0.4	0.076	
Carbon Tetrachloride	ND	0.4	0.053	
1,1-Dichloropropene	ND	0.4	0.05	
Benzene	0.23	0.4	0.032	J
1,2-Dichloroethane	ND	0.4	0.032	
Trichloroethene	ND	0.4	0.06	
1,2-Dichloropropane	ND	0.4	0.05	
Dibromomethane	ND	0.4	0.024	
Bromodichloromethane	ND	0.4	0.032	•
cis-1,3-Dichloropropene	ND	0.4	0.037	
Toluene	ND	0.4	0.036	
trans-1,3-Dichloropropene	ND	0.4	0.031	

10

Volatile Organics by USEPA Method 5030\8260B Modified data for 95495-05 continued...

	Result		
Analyte	(ug/L)	PQL	MDL
1,1,2-Trichloroethane	ND	0.4	0.048
Tetrachloroethene	ND	0.4	0.055
1,3-Dichloropropane	ND	0.4	0.028
Dibromochloromethane	ND	0.4	0.048
1,2-Dibromoethane	ND	0.4	0.074
Chlorobenzene	ND	0.4	0.047
Ethylbenzene	ND	0.4	0.032
1,1,1,2-Tetrachloroethane	ND	0.4	0.04
m,p-Xylene	ND	0.8	0.087
o-Xylene	0.053	0.4	0.043 J
Styrene	ND	0.4	0.037
Bromoform	ND	0.4	0.046
Isopropylbenzene	0.058	0.4	0.047 J
Bromobenzene	ND	0.4	0.045
n-Propylbenzene	ND	0.4	0.067
1,1,2,2-Tetrachloroethane	ND	0.4	0.07
1,2,3-Trichloropropane	ND	0.4	0.079
2-Chlorotoluene	ND	0.4	0.054
1,3,5-Trimethylbenzene	0.058	0.4	0.04 7 J
4-Chlorotoluene	ND	0.4	0.064
t-Butylbenzene	ND	0.4	0.077
1,2,4-Trimethylbenzene	ND	0.4	0.052
sec-Butylbenzene	ND	0.4	0.063
1,3-Dichlorobenzene	ND	0.4	0.057
4-Isopropyltoluene	ND	0.4	0.048
1,4-Dichlorobenzene	ND	0.4	0.055
n-Butylbenzene	ND	0.4	0.053
1,2-Dichlorobenzene	ND	0.4	0.044
1,2-Dibromo-3-chloropropane	ND	0.4	0.13
1,2,4-Trichlorobenzene	ND	0.4	0.085
Hexachlorobutadiene	ND	0.4	0.11
Naphthalene	ND	0.4	0.091
1,2,3-Trichlorobenzene	ND	0.4	0.096

Golder Associates
MW-3
95495-06
1/18/01
1/30/01
1/30/01
• · · ·
1

Volatile Organics by USEPA Method 5030\8260B Modified

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	98.9		82.5	114
Fluorobenzene	99.2		83.7	114
Toluene-D8	97.2		91.1	107
Ethylbenzene-d10	94.8		86.6	108
Bromofluorobenzene	101		86.1	110

	Result			
Analyte	(ug/L)	PQL	MDL	Flags
Dichlorodifluoromethane	ND	0.4	0.023	
Chloromethane	ND	0.4	0.031	
Vinyl chloride	0.084	0.4	0.019	J
Bromomethane	ND	0.4	0.05	
Chloroethane	ND	0.4	0.12	
Trichlorofluoromethane	ND	0.4	0.022	
1,1-Dichloroethene	ND	0.4	0.082	
Methylene chloride	0.064	0.4	0.049	J
trans-1,2-Dichloroethene	ND	0.4	0.052	
1,1-Dichloroethane	ND	0.4	0.036	
2,2-Dichloropropane	ND	0.4	0.075	
cis-1,2-Dichloroethene	0.085	0.4	0.055	J
Bromochloromethane	ND	0.4	0.044	
Chloroform	ND	0.4	0.052	
1,1,1-Trichloroethane	ND	0.4	0.076	
Carbon Tetrachloride	ND	0.4	0.053	
1,1-Dichloropropene	• ND	0.4	0.05	
Benzene	0.24	0.4	0.032	J
1,2-Dichloroethane	0.053	0.4	0.032	J
Trichloroethene	ND	0.4	0.06	
1,2-Dichloropropane	ND	0.4	0.05	
Dibromomethane	ND	0.4	0.024	
Bromodichloromethane	ND	0.4	0.032	
cis-1,3-Dichloropropene	ND	0.4	0.037	
Toluene	ND	0.4	0.036	
trans-1,3-Dichloropropene	ND	0.4	0.031	

Volatile Organics by USEPA Method 5030\8260B Modified data for 95495-06 continued...

Result				
Analyte	(ug/L)	PQL	MDL	
1,1,2-Trichloroethane	ND	0.4	0.048	
Tetrachloroethene	ND	0.4	0.055	
1,3-Dichloropropane	ND	0.4	0.028	
Dibromochloromethane	ND	0.4	0.048	
1,2-Dibromoethane	ND	0.4	0.074	
Chlorobenzene	ND	0.4	0.047	
Ethylbenzene	ND	0.4	0.032	
1,1,1,2-Tetrachloroethane	ND	0.4	0.04	
m,p-Xylene	ND	0.8	0.087	
o-Xylene	0.048	0.4	0.043	
Styrene	ND	0.4	0.037	
Bromoform	ND	0.4	0.046	
Isopropylbenzene	0.064	0.4	0.047	
Bromobenzene	ND	0.4	0.045	
n-Propylbenzene	ND	0.4	0.067	
1,1,2,2-Tetrachloroethane	ND	0.4	0.07	
1,2,3-Trichloropropane	ND	0.4	0.079	
2-Chlorotoluene	ND	0.4	0.054	
1,3,5-Trimethylbenzene	0.064	0.4	0.047	
4-Chlorotoluene	ND	0.4	0.064	
t-Butylbenzene	ND	0.4	0.077	
1,2,4-Trimethylbenzene	ND	0.4	0.052	
sec-Butylbenzene	ND	0.4	0.063	
1,3-Dichlorobenzene	ND	0.4	0.057	
4-Isopropyltoluene	ND	0.4	0.048	
1,4-Dichlorobenzene	ND	0.4	0.055	
n-Butylbenzene	ND	0.4	0.053	
1,2-Dichlorobenzene	ND	0.4	0.044	
1,2-Dibromo-3-chloropropane	ND	0.4	0.13	
1,2,4-Trichlorobenzene	ND	0.4	0.085	
Hexachlorobutadiene	ND	0.4	0.11	
Naphthalene	ND	0.4	0.091	
1,2,3-Trichlorobenzene	ND	0.4	0.096	

13

»____

J

J

J

Client Name	Golder Associates
Client ID:	MW-2
Lab ID:	95495-07
Date Received:	1/18/01
Date Prepared:	1/30/01
Date Analyzed:	1/30/01
% Solids	-
Dilution Factor	1

Volatile Organics by USEPA Method 5030\8260B Modified

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	102		82.5	114
Fluorobenzene	101		83.7	114
Toluene-D8	96.3	•	91.1	107
Ethylbenzene-d10	92.2		86.6	108
Bromofluorobenzene	102		86.1	110

	Result			
Analyte	(ug/L)	PQL	MDL	Flags
Dichlorodifluoromethane	ND	0.4	0.023	
Chloromethane	ND	0.4	0.031	
Vinyl chloride	0.056	0.4	0.019	J
Bromomethane	ND	0.4	0.05	
Chloroethane	ND	0.4	0.12	
Trichlorofluoromethane	ND	0.4	0.022	
1,1-Dichloroethene	ND	0.4	0.082	
Methylene chloride	0.089	0.4	0.049	J
trans-1,2-Dichloroethene	ND	0.4	0.052	
1,1-Dichloroethane	0.11	0.4	0.036	J
2,2-Dichloropropane	ND	0.4	0.075	
cis-1,2-Dichloroethene	ND	0.4	0.055	
Bromochloromethane	ND	0.4	0.044	
Chloroform	ND	0.4	0.052	
1,1,1-Trichloroethane	ND	0.4	0.076	
Carbon Tetrachloride	ND	0.4	0.053	
1,1-Dichloropropene	- ND	0.4	0.05	
Benzene	ND	0.4	0.032	
1,2-Dichloroethane	ND	0.4	0.032	
Trichloroethene	ND	0.4	0.06	
1,2-Dichloropropane	ND	0.4	0.05	
Dibromomethane	ND	0.4	0.024	
Bromodichloromethane	ND	0.4	0.032	
cis-1,3-Dichloropropene	ND	0.4	0.037	
Toluene	ND	0.4	0.036	
trans-1,3-Dichloropropene	ND	0.4	0.031	

14

_#* .

Volatile Organics by USEPA Method 5030\8260B Modified data for 95495-07 continued...

Result					
Analyte	(ug/L)	PQL	MDL		
1,1,2-Trichloroethane	ND	0.4	0.048		
Tetrachloroethene	ND	0.4	0.055		
1,3-Dichloropropane	ND	0.4	0.028		
Dibromochloromethane	ND	0.4	0.048		
1,2-Dibromoethane '	ND	0.4	0.074		
Chlorobenzene	ND	0.4	0.047		
Ethylbenzene	ND	0.4	0.032		
1,1,1,2-Tetrachloroethane	ND	0.4	0.04		
m,p-Xylene	ND	0.8	0.087		
o-Xylene	0.069	0.4	0.043		
Styrene	ND	0.4	0.037		
Bromoform	ND	0.4	0.046		
Isopropylbenzene	ND	0.4	0.047		
Bromobenzene	ND	0.4	0.045		
n-Propylbenzene	ND	0.4	0.067		
1,1,2,2-Tetrachloroethane	ND	0.4	0.07		
1,2,3-Trichloropropane	ND	0.4	0.079		
2-Chlorotoluene	ND	0.4	0.054		
1,3,5-Trimethylbenzene	ND	0.4	0.047		
4-Chlorotoluene	ND	0.4	0.064		
t-Butylbenzene	ND	0.4	0.077		
1,2,4-Trimethylbenzene	ND	0.4	0.052		
sec-Butylbenzene	ND	0.4	0.063		
1,3-Dichlorobenzene	ND	0.4	0.057		
4-Isopropyltoluene	ND	0.4	0.048		
1,4-Dichlorobenzene	ND	0.4	0.055		
n-Butylbenzene	ND	0.4	0.053		
1,2-Dichlorobenzene	ND	0.4	0.044		
1,2-Dibromo-3-chloropropane	ND	0.4	0.13		
1,2,4-Trichlorobenzene	ND	0.4	0.085		
Hexachlorobutadiene	ND	0.4	0.11		
Naphthalene	ND	0.4	0.091		
1,2,3-Trichlorobenzene	ND	0.4	0.096		

J

Client Name	Golder Associates		
Client ID:	MW-1		
Lab ID:	95495-01		
Date Received:	1/18/01		
Date Prepared:	1/24/01		
Date Analyzed:	1/24/01		
% Solids	-		
Dilution Factor	1		

Semivolatile Organics by USEPA Method 8270

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
Nitrobenzene - d5	93.5		52	149
2 - Fluorobiphenyl	10 7		56	127
p - Terphenyl - d14	88		43	145

	Resu	lit			
Analyte	(ug/l	_) PQL		MDL	Flags
Naphthalene	ND		0.08	0.062	
2-Methylnaphthalene	ND		0.08	0.039	
2-Chloronaphthalene	ND		0.08	0.012	
Acenaphthylene	ND		0.08	0.018	
Acenaphthene	ND		0.08	0.018	
Fluorene	ND		0.08	0.03	
Phenanthrene	ND		0.08	0.037	
Anthracene	ND		0.08	0.011	
Fluoranthene	ND		0.08	0.026	
Pyrene	ND		0.08	0.028	
Benzo(a)anthracene	ND		0.08	0.061	
Chrysene	ND		0.08	0.037	
Benzo(b)fluoranthene	ND		0.08	0.023	
Benzo(k)fluoranthene	ND		0.08	0.033	
Benzo(a)pyrene	ND		0.08	0.026	
Indeno(1,2,3-cd)pyrene	ND		0.08	0.013	
Dibenz(a,h)anthracene	ND		0.08	0.03	
Benzo(g,h,i)perylene	ND		0.08	0.013	

Client Name	Golder Associates
Client ID:	MVV-6
Lab ID:	95495-0 2
Date Received:	1/18/01
Date Prepared:	1/24/01
Date Analyzed:	1/24/01
% Solids	-
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Nitrobenzene - d5	100		52	149
2 - Fluorobiphenyl	96.2		56	127
p - Terphenyl - d14	108		43	145

	Result		
Analyte	(ug/L)	PQL	MDL Flags
Naphthalene	ND	0.08	0.062
2-Methylnaphthalene	ND	0.08	0.039
2-Chloronaphthalene	ND	0.08	0.012
Acenaphthylene	ND	0.08	0.018
Acenaphthene	ND	0.08	0.018
Fluorene	ND	0.08	0.03
Phenanthrene	ND	0.08	0.037
Anthracene	ND	0.08	0.011
Fluoranthene	ND	0.08	0.026
Pyrene	ND	0.08	0.028
Benzo(a)anthracene	ND	0.08	0.061
Chrysene	ND	0.08	0.037
Benzo(b)fluoranthene	ND	0.08	0.023
Benzo(k)fluoranthene	ND	0.08	0.033
Benzo(a)pyrene	ND	0.08	0.026
Indeno(1,2,3-cd)pyrene	ND	0.08	0.013
Dibenz(a,h)anthracene	ND	0.08	0.03
Benzo(g,h,i)perylene	ND	0.08	0.013

Client Name	Golder Associates
Client ID:	MW-5
Lab ID:	95495-03
Date Received:	1/18/01
Date Prepared:	1/24/01
Date Analyzed:	1/24/01
% Solids	-
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

	. · · ·		Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Nitrobenzene - d5	107		52	149
2 - Fluorobiphenyl	102		56	127
p - Terphenyl - d14	118		43	145

	Resul	t		
Analyte	(ug/L) PQL	MDL	Flags
Naphthalene	ND	0.08	3 0.062	
2-Methylnaphthalene	ND	0.08	3 0.039	
2-Chloronaphthalene	ND	0.08	3 0.012	
Acenaphthylene	ND	0.08	3 0.018	
Acenaphthene	ND	0.08	3 0.018	
Fluorene	ND	0.08	3 0.03	
Phenanthrene	ND	0.08	3 0.037	
Anthracene	ND	0.08	3 0.011	
Fluoranthene	ND	0.08	3 0.026	
Pyrene	ND	0.08	3 0.028	
Benzo(a)anthracene	ND	0.08	3 0.061	
Chrysene	ND	0.08	3 0.037	
Benzo(b)fluoranthene	ND	0.08	3 0.023	
Benzo(k)fluoranthene	ND	0.08	3 0.033	
Benzo(a)pyrene	ND	0.0	3 0.026	
Indeno(1,2,3-cd)pyrene	ND	0.0	3 0.013	
Dibenz(a,h)anthracene	ND	0.0	3 0.03	
Benzo(g,h,i)perylene	ND	0.0	8 0.013	

Client Name	Golder Associates
Client ID:	MW-4
Lab ID:	95495-04
Date Received:	1/18/01
Date Prepared:	1/24/01
Date Analyzed:	1/24/01
% Solids	. –
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Nitrobenzene - d5	102		52	149
2 - Fluorobiphenyl	110		56	127
p - Terphenyl - d14	66.1		43	145

	Result			
Analyte	(ug/L)	PQL	MDL	Flags
Naphthalene	ND	0.08	0.062	
2-Methylnaphthalene	ND	0.08	0.039	
2-Chloronaphthalene	ND	0.08	0.012	
Acenaphthylene	ND	0.08	0.018	
Acenaphthene	ND	0.08	0.018	
Fluorene	ND	0.08	0.03	
Phenanthrene	ND	0.08	0.037	
Anthracene	ND	0.08	0.011	
Fluoranthene	ND	0.08	0.026	
Pyrene	ND	0.08	0.028	
Benzo(a)anthracene	ND	0.08	0.061	
Chrysene	ND	0.08	0.037	
Benzo(b)fluoranthene	ND	0.08	0.023	
Benzo(k)fluoranthene	ND	0.08	0.033	
Benzo(a)pyrene	ND	0.08	0.026	
Indeno(1,2,3-cd)pyrene	ND	0.08	0.013	
Dibenz(a,h)anthracene	ND	0.08	0.03	
Benzo(g,h,i)perylene	ND	0.08	0.013	

Client Name Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor

,

Golder Associates MW-13 95495-05 1/18/01 1/24/01 -1/24/01 -

Semivolatile Organics by USEPA Method 8270

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	Hìgh
Nitrobenzene - d5	106		52	149
2 - Fluorobiphenyl	96.4		56	127
p - Terphenyl - d14	83.1		43	145

	Result		
Analyte	(ug/L)	PQL	MDL Flags
Naphthalene	ND	0.08	0.062
2-Methyinaphthalene	ND	0.08	0.039
2-Chloronaphthalene	ND	0.08	0.012
Acenaphthylene	ND	0.08	0.018
Acenaphthene	ND	0.08	0.018
Fluorene	ND	0.08	0.03
Phenanthrene	ND	0.08	0.037
Anthracene	ND	0.08	0.011
Fluoranthene	ND	0.08	0.026
Pyrene	ND	0.08	0.028
Benzo(a)anthracene	ND	0.08	0.061
Chrysene	ND	0.08	0.037
Benzo(b)fluoranthene	ND	0.08	0.023
Benzo(k)fluoranthene	ND	0.08	0.033
Benzo(a)pyrene	ND	0.08	0.026
Indeno(1,2,3-cd)pyrene	ND	0.08	0.013
Dibenz(a,h)anthracene	ND	0.08	0.03
Benzo(g,h,i)perylene	ND	0.08	0.013

Client Name	Golder Associates
Client ID:	MW-3
Lab ID:	95495-06
Date Received:	1/18/01
Date Prepared:	1/24/01
Date Analyzed:	1/24/01
% Solids	-
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
Nitrobenzene - d5	91.8		52	149
2 - Fluorobiphenyl	84.5		56	127
p - Terphenyl - d14	68.9		43	145

	Result		
Analyte	(ug/L)	PQL	MDL Flags
Naphthalene	ND	0.08	0.062
2-Methylnaphthalene	ND	0.08	0.039
2-Chloronaphthalene	ND	0.08	0.012
Acenaphthylene	ND	0.08	0.018
Acenaphthene	ND	0.08	0.018
Fluorene	ND	0.08	0.03
Phenanthrene	ND	0.08	0.037
Anthracene	ND	0.08	0.011
Fluoranthene	ND	0.08	0.026
Pyrene	ND	0.08	0.028
Benzo(a)anthrace ne	ND	0.08	0.061
Chrysene	ND	0.08	0.037
Benzo(b)fluoranthene	ND	0.08	0.023
Benzo(k)fluoranthene	ND	0.08	0.033
Benzo(a)pyrene	ND	0.08	0.026
Indeno(1,2,3-cd)pyrene	ND	0.08	0.013
Dibenz(a,h)anthracene	ND	0.08	0.03
Benzo(g,h,i)perylene	ND	0.08	0.013

2î

Client Name	Golder Associates
Client ID:	MW-2
Lab ID:	95495-07
Date Received:	1/18/01
Date Prepared:	1/24/01
Date Analyzed:	1/24/01
% Solids	-
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
Nitrobenzene - d5	88.5		52	149
2 - Fluorobiphenyl	89.5		56	127
p - Terphenyl - d14	90		43	145

		Result			
Analyte		(ug/L)	PQL	MDL	Flags
Naphthalene		0.22	0.08	0.062	
2-Methylnaphthalene	ND		0.08	0.039	
2-Chloronaphthalene	ND		0.08	0.012	
Acenaphthylene	ND		0.08	0.018	
Acenaphthene		0.32	0.08	0.018	
Fluorene		0.32	0.08	0.03	
Phenanthrene		0.47	0.08	0.037	
Anthracene	ND		0.08	0.011	
Fluoranthene	ND		0.08	0.026	
Pyrene	ND		0.08	0.028	
Benzo(a)anthracene	ND		0.08	0.061	
Chrysene	ND	· .	0.08	0.037	
Benzo(b)fluoranthene	ND		0.08	0.023	
Benzo(k)fluoranthene	ND		0.08	0.033	
Benzo(a)pyrene	ND		0.08	0.026	
Indeno(1,2,3-cd)pyrene	ND		0.08	0.013	
Dibenz(a,h)anthracene	ND		0.08	0.03	
Benzo(g,h,i)peryiene	ND		0.08	0.013	

ito

Client Name	Golder Associates
Client ID:	MW-6
Lab ID:	95495-02
Date Received:	1/18/01
Date Prepared:	1/24/01
Date Analyzed:	1/25/01
% Solids	-
Dilution Factor	. 0.5

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
o-terphenyl	98.8		50	150	

	Result			
Analyte	(mg/L)	PQL	MDL	Flags
#2 Dieset	0.23	0.2	0.1	
Motor Oil	0.38	0.4	0.2	J

24

Client Name	Golder Associates		
Client ID:	MW-5		
Lab ID:	95495-03		
Date Received:	1/18/01		
Date Prepared:	1/24/01		
Date Analyzed:	1/25/01		
% Solids	-		
Dilution Factor	0.5		

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	90.1		50	150

	Result			5 1
Analyte	(mg/L)	PQL	MDL	Flags
#2 Diesel	0.33	0.2	0.1	
Motor Oil	0.36	0.4	0.2	J

25 '... . .

Client Name	Golder Associates
Client ID:	MW-4
Lab ID:	95495-04
Date Received:	1/18/01
Date Prepared:	1/24/01
Date Analyzed:	1/25/01
% Solids	-
Dilution Factor	0.5

			Recove	ery Limits
Surrogate	% Recovery 97	Flags	Low 50	High 150
o-terphenyl	91		50	150

Analyte	Result (mg/L)	PQL	MDL	Flags
#2 Diesel	0.16	0.2	0.1	J
Motor Oil	0.33	0.4	0.2	J

26

Client Name	Golder Associates
Client ID:	MW-13
Lab ID:	95495-05
Date Received:	1/18/01
Date Prepared:	1/24/01
Date Analyzed:	1/25/01
% Solids	-
Dilution Factor	0.5

Diesel and Motor Oil by NWTPH-Dx Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	105		50	150

Analyte	Result (mg/L)	PQL	MDL	Flags
#2 Diesel	1.6	0.2	0.1	X2
Motor Oil	1.6	0.4	0.2	X2

27

¥___〔

Client Name	Golder Associates
Client ID:	MW-3
Lab ID:	95495-06
Date Received:	1/18/01
Date Prepared:	1/24/01
Date Analyzed:	1/25/01
% Solids	-
Dilution Factor	0.5

			Recov	ery Limits
Surrogate o-terphenyl	% Recovery 122	Flags	Low 50	High 150
o torpriorigi	12.4			

Analyte	Result (mg/L)	PQL	MDL	Flags
#2 Diesel	1.8	0.2	0.1	X2
Motor Oil	1.8	0.4	0.2	X2

Client Name	Golder Associates		
Client ID:	MW-2		
Lab ID:	95495-07		
Date Received:	1/18/01		
Date Prepared:	1/24/01		
Date Analyzed:	1/25/01		
% Solids	-		
Dilution Factor	0.5		

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	91. 1		50	150

	Resuit		
Analyte	(mg/L)	PQL	MDL Flags
#2 Diesel	1.5	0.2	0.1 X1
Motor Oil	0.64	0.4	0.2

X1 - Chromatogram suggests this might be aged or degraded diesel

Method Blank - HP0050		
-		
1/30/01		
1/30/01		
-		
1		

Volatile Organics by USEPA Method 5030\8260B Modified

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
Dibromofluoromethane	100		82.5	114	
Fluorobenzene	101		83.7	114	
Toluene-D8	98.3		91.1	107	
Ethylbenzene-d10	96.4		86.6	108	
Bromofluorobenzene	102		86.1	110	

	Result		
Analyte	(ug/L)	PQL	MDL Flags
Dichlorodifluoromethane	ND	0.4	0.023
Chloromethane	ND	0.4	0.031
Vinyl chloride	ND	0.4	0.019
Bromomethane	ND	0.4	0.05
Chloroethane	ND	0.4	0.12
Trichlorofluoromethane	ND	0.4	0.022
1,1-Dichloroethene	ND	0.4	0.082
Methylene chloride	ND	0.4	0.049
trans-1,2-Dichloroethene	ND	0.4	0.052
1,1-Dichloroethane	ND	0.4	0.036
2,2-Dichloropropane	ND	0.4	0.075
cis-1,2-Dichloroethene	ND	0.4	0.055
Bromochloromethane	ND	0.4	0.044
Chloroform	ND	0.4	0.052
1,1,1-Trichloroethane	ND	0.4	0.076
Carbon Tetrachloride	ND	0.4	0.053
1,1-Dichloropropene	ND ND	0.4	0.05
Benzene	ND	0.4	0.032
1,2-Dichloroethane	ND	0.4	0.032
Trichloroethene	ND	0.4	0.06
1,2-Dichloropropane	ND	0.4	0.05
Dibromomethane	ND	0.4	0.024
Bromodichloromethane	ND	0.4	0.032
cis-1,3-Dichloropropene	ND	0.4	0.037
Toluene	ND	0.4	0.036
trans-1,3-Dichloropropene	ND	0.4	0.031

30

Volatile Organics by USEPA Method 5030\8260B Modified data for HP0050 continued...

Result					
Analyte	(ug/L)	PQL	MDL		
1,1,2-Trichloroethane	ND	0.4	0.048		
Tetrachloroethene	ND	0.4	0.055		
1,3-Dichloropropane	ND	0.4	0.028		
Dibromochloromethane	ND	0.4	0.048		
1,2-Dibromoethane	ND	0.4	0.074		
Chlorobenzene	ND	0.4	0.047		
Ethylbenzene	ND	0.4	0.032		
1,1,1,2-Tetrachloroethane	ND	0.4	0.04		
m,p-Xylene	ND	0.8	0.087		
o-Xylene	ND	0.4	0.043		
Styrene	ND	0.4	0.037		
Bromoform	ND	0.4	0.046		
Isopropylbenzene	ND	0.4	0.047		
Bromobenzene	ND	0.4	0.045		
n-Propylbenzene	ND	0.4	0.067		
1,1,2,2-Tetrachloroethane	ND	0.4	0.07		
1,2,3-Trichloropropane	ND	0.4	0.079		
2-Chlorotoluene	ND	0.4	0.054		
1,3,5-Trimethylbenzene	ND	0.4	0.047		
4-Chlorotoluene	ND	0.4	0.064		
t-Butylbenzene	ND	0.4	0.077		
1,2,4-Trimethylbenzene	ND	0.4	0.052		
sec-Butylbenzene	ND	0.4	0.063		
1,3-Dichlorobenzene	ND	0.4	0.057		
4-Isopropyltoluene	ND	0.4	0.048		
1,4-Dichlorobenzene	ND	0.4	0.055		
n-Butylbenzene	ND	0.4	0.053		
1,2-Dichlorobenzene	ND	0.4	0.044		
1,2-Dibromo-3-chloropropane	ND	0.4	0.13		
1,2,4-Trichlorobenzene	ND	0.4	0.085		
Hexachlorobutadiene	ND	0.4	0.11		
Naphthalene	ND	0.4	0.091		
1,2,3-Trichlorobenzene	ND	0.4	0.096		

3î

Blank Spike/Blank Spike Duplicate Report

Lab ID:	HP0050
Date Prepared:	1/30/01
Date Analyzed:	1/30/01
QC Batch ID:	HP0050

Volatile Organics by USEPA Method 5030\8260B Modified

Compound Name	Blank Result (ug/L)	Spike Amount (ug/L)	BS Result (ug/L)	BS % Rec.	BSD Result (ug/L)	BSD % Rec.	RPD	Flag
1,1-Dichloroethene	0	2	1.71	85.6	1.62	80.9	-5.6	
Benzene	0	2	1.94	97.2	1.9	95.1	-2.2	
Trichloroethene	0	2	1.94	97.1	1.92	96.1	-1	
Toluene	0	2	1.91	95.4	1.92	96.2	0.84	
Chlorobenzene	0	2	1.94	97.2	1.94	97.1	-0.1	

ethod Blank - SV3296
-
1/24/01
1/24/01
-
1

Semivolatile Organics by USEPA Method 8270

			Recovery Limits			
Surrogate	% Recovery	Flags	Low	High		
Nitrobenzene - d5	96.7		52	149		
2 - Fluorobiphenyl	89.2		56	127		
p - Terphenyl - d14	73.6		43	145		

	Result			
Analyte	(ug/L)	PQL	MDL	Flags
Naphthalene	ND	0.08	0.062	
2-Methylnaphthalene	ND	0.08	0.039	
2-Chloronaphthalene	ND	0.08	0.012	
Acenaphthylene	ND	0.08	0.018	
Acenaphthene	ND	0.08	0.018	
Fluorene	ND	0.08	0.03	
Phenanthrene	ND	0.08	0.037	
Anthracene	ND	0.08	0.011	
Fluoranthene	ND	0.08	0.026	
Pyrene	ND	0.08	0.028	
Benzo(a)anthracene	ND	0.08	0.061	
Chrysene	ND	0.08	0.037	
Benzo(b)fluoranthene	ND	0.08	0.023	
Benzo(k)fluoranthene	ND	0.08	0.033	
Benzo(a)pyrene	ND	0.08	0.026	
Indeno(1,2,3-cd)pyrene	ND	0.08	0.013	
Dibenz(a,h)anthracene	ND	0.08	0.03	
Benzo(g,h,i)perylene	ND	0.08	0.013	

32

. 1

Blank Spike/Blank Spike Duplicate Report

96
01
01
96

ž

12

Semivolatile Organics by USEPA Method 8270

	Blank Result	Spike Amount	BS Result	BS	BSD Result	BSD		
Compound Name	(ug/L)	(ug/L)	(ug/L)	% Rec.	(ug/L)	% Rec.	RPD	Flag
Acenaphthene	0	8	6.83	85.4	8.15	102	18	
Pyrene	0	8	5.93	74.1	7.2	90	19	

⊪[∟ 33

Lab ID:	Method Blank - DI2818
Date Received:	-
Date Prepared:	1/24/01
Date Analyzed:	1/24/01
% Solids	· -
Dilution Factor	0.5

Diesel and Motor Oil by NWTPH-Dx Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	97.9		50	150

	Result		
Analyte	(mg/L)	PQL	MDL Flags
#2 Diesel	ND	0.2	0.1
Motor Oil	ND	0.4	0.2

Blank Spike/Blank Spike Duplicate Report

Lab ID:	DI2818
Date Prepared:	1/24/01
Date Analyzed:	1/24/01
QC Batch ID:	DI2818

Diesel and Motor Oil by NWTPH-Dx Modified

	Compound Name	Blank Result (mg/L)	Spike Amount (mg/L)		BS % Rec.	BSD Result (mg/L)	BSD % Rec.	RPD	Flag
-	#2 Diesel	0	4	3.98	99.5	4.48	112	12	
	Motor Oil	0	4.01	3.41	85.2	3.56	88.9	4.3	

ANALYTICAL & ENVIRONMENTAL CHEMISTS 4813 Pacific Hwy East • Tacoma, WA 98424 (253) 922-2310 • FAX (253) 922-5047 e-mail: info@saslab.com

DATA QUALIFIERS AND ABBREVIATIONS

- B1: This analyte was detected in the associated method blank. The analyte concentration was determined not to be significantly higher than the associated method blank (less than ten times the concentration reported in the blank).
- B2: This analyte was detected in the associated method blank. The analyte concentration in the sample was determined to be significantly higher than the method blank (greater than ten times the concentration reported in the blank).
- C1: Second column confirmation was performed. The relative percent difference value (RPD) between the results on the two columns was evaluated and determined to be $\leq 40\%$.
- C2: Second column confirmation was performed. The RPD between the results on the two columns was evaluated and determined to be > 40%. The higher result was reported unless anomalies were noted.
- M: GC/MS confirmation was performed. The result derived from the original analysis was reported.
- D: The reported result for this analyte was calculated based on a secondary dilution factor.
- E: The concentration of this analyte exceeded the instrument calibration range and should be considered an estimated quantity.
- J: The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity.
- MCL: Maximum Contaminant Level
- MDL: Method Detection Limit
- N: See analytical narrative.
- ND: Not Detected
- PQL: Practical Quantitation Limit
- X1: Contaminant does not appear to be "typical" product. Elution pattern suggests it may be ____
- X2: Contaminant does not appear to be "typical" product.
- X3: Identification and quantitation of the analyte or surrogate was complicated by matrix interference.
- X4: RPD for duplicates was outside advisory QC limits. The sample was re-analyzed with similar results. The sample matrix may be nonhomogeneous.
- X4a: RPD for duplicates outside advisory QC limits due to analyte concentration near the method practical quantitation limit/detection limit.
- ³ X5: Matrix spike recovery was not determined due to the required dilution.
- X6: Recovery and/or RPD values for matrix spike(/matrix spike duplicate) outside advisory QC limits. Sample was reanalyzed with similar results.
- X7: Recovery and/or RPD values for matrix spike(/matrix spike duplicate) outside advisory QC limits. Matrix interference may be indicated based on acceptable blank spike recovery and/or RPD.
- X7a: Recovery and/or RPD values for this spiked analyte outside advisory QC limits due to high concentration of the analyte in the original sample.
- X8: Surrogate recovery was not determined due to the required dilution.
- X9: Surrogate recovery outside advisory QC limits due to matrix interference.

m .

	Sound A	•			-				3		SAS	Lab	No.	95	5491	5			
	ANALYTICA 4813 Pacific Hwy (253) 922-2310 • email: info@sasla	East • Ta FAX (253	icoma, WA	98424	L CH	,	s fvo	1	Service 1.1	:	Stand	ard (10 dag	ys) 🤰	UEST				
	CHA	IN OF	CUSTO	DDY/R	EQI	JEST	FOR I	ABC	ORA		RY /	٩NA	LYS	SIS	w				
Client: G	02271 186101	01010	s Inte	 J		Analyse],
Project Na	me: CF GW	Inv.	AWI								i]
Contooti		- 106			·		0	$ \tilde{r} $											
Contact: (Phone No.	Jany Zimr 425 883-	<u>1911</u>	101		S	5	8260	128										ĺ	
Fax No.:	425 882-	549	8	·	aine	士	0	0											
Email:	1-0 00-				of Containers	HUTPH C	Ł	7								3			
Lati Use Sa Onty	mple ID	'0\ Date	Time	Matrix	# of (NN	10	PF		:									
<u> </u>	<u>nw-1</u>	1-17	1008	W	1	V	V	1											- 4
2 <u>(</u>	nw-6		1215			V	V	4						ļ		, r			^
3 <u>1</u>	<u>11W-5</u>		1310		1	r	Y	0											4
4 1	11W-7		1407			6	4	V								[4
ς γ	$\frac{1101-13}{1100-13}$		15UL		4						÷.					: . 		┣──	4
· (<u>110-5</u>		1510	√			V												-
	11W-2	<u> </u>	1610				V	·		•		<u>}</u>			•	<u> </u>) Index of		
	·	· · · · ·		<u> </u>															-[~~
	······································																· · ·		-
																			-
											<u> </u>							· ·	1
	· .			1	1					• •			<u> </u>						1
	· ·.										· ·	· · ·						· ·	
	· · · · · · · · · · · · · · · · · · ·].
			- 			¹ A] .
		· · · ·		1,05							· ·							:	
		<u> </u>			<u> </u>	l				·	<u> </u>		.	<u> </u>					`
	Şignature	1	Printed N	lame	F	-irm	Time	e/Date	S	pecia	al Insi	tructi	ons		. ·				٦
Relinquished By:			my Zimm			1962	1030		4	•			-			1	. مى	. ·	
Received By	1 And		Mut	ply	51	15	11:0	<u> </u>	, slol		à		· · · · ·	•			• .		

	Received By	AN .	T. Murphy	SAS	11:05 1/18	bi
	Relinquished By:	300	V	V	12:30 1/1	101
L	Received By	Astrom	A Strom	SKS	1/18/01 125	>
-	Relinquished By:					
	Received By					

Page 1 of 1

5

COC No.

SOUND ANALYTICAL EPH/VPH

VOLATILE PETROLEUM HYDROCARBONS

ALIPHATIC AND AROMATIC FRACTIONS TARGET INDICATOR COMPOUNDS

Client Name	Golder Associates
Client ID:	SP1-(8-11)
Lab ID:	95381-02
Date Received:	1/12/01
Date Prepared:	1/17/01
Date Analyzed:	1/25/01
% Solids	80.7
Dilution Factor	1

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	105		60	140
Bromofluorobenzene	127		60	140

Sample results are on a dry weight basis.

	Res	sult		
Analyte	(mg	/kg)	PQL	Flags
MTBE	ND		0.23	
Benzene	ND		0.023	
Toluene		0.094	0.047	
Ethylbenzene		0.22	0.047	
m- & p-Xylene		0.39	0.094	
o-Xylene		0.43	0.047	
Total EC >8-10 Aromatics		15	1.2	
Total EC 5-6 Aliphatics	ND		0.7	
Total EC >6-8 Aliphatics		1.6	0.47	
Total EC >8-10 Aliphatics		17	1.4	

Client Name	Golder Associates
Client ID:	SP5- <u>(</u> 5-8)
Lab ID:	95381-06
Date Received:	1/12/01
Date Prepared:	1/17/01
Date Analyzed:	1/19/01
% Solids	94.88
Dilution Factor	1

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	112		60	140
Bromofluorobenzene	119		60	140

Sample results are on a dry weight basis.

	Re	esult		
Analyte	(m)	g/kg)	PQL	Flags
MTBE	ND		0.19	
Benzene	ND		0.019	
Toluene		0.25	0.039	
Ethylbenzene		2.9	0.039	
m- & p-Xylene		3.8	0.07 8	
o-Xylene		2.3	0.039	
Total EC >8-10 Aromatics		98	0.97	D10
Total EC 5-6 Aliphatics	ND		0.58	
Total EC >6-8 Aliphatics		5.2	0.39	
Total EC >8-10 Aliphatics		98	1.2	D10

23

Client Name	Golder Associates
Client ID:	SP6-(5-8)
Lab ID:	95381-08
Date Received:	1/12/01
Date Prepared:	1/22/01
Date Analyzed:	1/24/01
% Solids	67.48
Dilution Factor	1

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	83.6		60	140
Bromofluorobenzene	87.9		60	140

Sample results are on a dry weight basis.

	Res	ult		
Analyte	(mg/	kg)	PQL	Flags
MTBE	ND		0.27	
Benzen e	ND		0.027	
Toluene		0.09	0.055	
Ethylbenzene /		0.76	0.055	
m- & p-Xylene		1.1	0.11	
o-Xylene		0.88	0.055	
Total EC >8-10 Aromatics		19	1.4	
Total EC 5-6 Aliphatics	ND		0.82	
Total EC >6-8 Aliphatics		3.9	0.55	
Total EC >8-10 Aliphatics		18	1.6	

Client Name	Golder Associates		
Client ID:	SP8-(5-8)		
Lab ID:	95381-10		
Date Received:	1/12/01		
Date Prepared:	1/17/01		
Date Analyzed:	1/19/01		
% Solids	89.11		
Dilution Factor	. 1		

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	240	X9	60	140
Bromofluorobenzene	105		60	140

Sample results are on a dry weight basis.

	Result		
Analyte	(mg/kg)	PQL	Flags
MTBE	ND	0.21	
Benzene	0.16	0.021	
Toluene	1.5	0.042	
Ethylbenzene	18	0.042	D10
m- & p-Xylene	24	0.083	D10
o-Xylene	19	0.042	D10
Total EC >8-10 Aromatics	350	1	D10
Total EC 5-6 Aliphatics	0.86	0.62	
Total EC >6-8 Aliphatics	44	0.42	D10
Total EC >8-10 Aliphatics	310	1.2	D10

25

Client Name	Golder Associates		
Client ID:	SP9-(5-8)		
Lab ID:	95381-12		
Date Received:	1/12/01		
Date Prepared:	1/17/01		
Date Analyzed:	1/19/01		
% Solids	83.55		
Dilution Factor	1		

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	143	X9	60	140
Bromofluorobenzene	114		60	140

Sample results are on a dry weight basis.

	Result		
Analyte	(mg/kg)	PQL	Flags
MTBE	ND	0.22	
Benzene	0.073	0.022	
Toluene	0.44	0.044	
Ethylbenzene	5.8	0.044	
m- & p-Xylene	8.1	0.087	
o-Xylene	1.6	0.044	
Total EC >8-10 Aromatics	190	1.1	D10
Total EC 5-6 Aliphatics	0.83	0.65	
Total EC >6-8 Aliphatics	12	0.44	
Total EC >8-10 Aliphatics	190	1.3	D10

Client Name	Golder Associates
Client ID:	SP11-(5-8)
Lab ID:	95381-15
Date Received:	1/12/01
Date Prepared:	1/22/01
Date Analyzed:	1/24/01
% Solids	71.4
Dilution Factor	1

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	81.3		60	140
Bromofluorobenzene	89.9		60	140

Sample results are on a dry weight basis.

	Re	sult		
Analyte	(mg	j/kg)	PQL	Flags
MTBE	ND		0.25	
Benzene	ND		0.025	
Toluene	ND		0.05	
Ethylbenzene	ND		0.05	
m- & p-Xylene		0.17	0.1	
o-Xylene		0.11	0.05	
Total EC >8-10 Aromatics		4.4	1.3	
Total EC 5-6 Aliphatics	ND		0.75	
Total EC >6-8 Aliphatics	ND		0.5	
Total EC >8-10 Aliphatics		3.8	1.5	

27

14.

Lab ID:	Method Blank - GB2569
Date Received:	
Date Prepared:	1/17/01
Date Analyzed:	1/18/01
% Solids	
Dilution Factor	. 1

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	120		60	140
Bromofluorobenzene	112		60	140

Sample results are on an as received basis.

	Result		
Analyte	(mg/kg)	PQL	Flags
MTBE	ND	0.2	
Benzene	ND	0.02	
Toluene	ND	0.04	
Ethylbenzene	ND	0.04	
m- & p-Xylene	ND	0.08	
o-Xylene	ND	0.04	
Total EC >8-10 Aromatics	ND	1	
Total EC 5-6 Aliphatics	ND	0.6	
Total EC >6-8 Aliphatics	ND	0.4	
Total EC >8-10 Aliphatics	ND	1.2	

Lab ID:	Method Blank - GB2572
Date Received:	· -
Date Prepared:	1/22/01
Date Analyzed:	1/24/01
% Solids	
Dilution Factor	1

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	90.7		60	140
Bromofluorobenzene	93.9		60	140

Sample results are on an as received basis.

	Result		
Analyte	(mg/kg)	PQL	Flags
MTBE	ND	0.2	
Benzene	ND	0.02	
Toluene	ND	0.04	
Ethylbenzene	ND	0.04	
m- & p-Xylene	ND	0.08	
o-Xylene	ND	0.04	
Total EC >8-10 Aromatics	ND	1	
Total EC 5-6 Aliphatics	ND	0.6	
Total EC >6-8 Aliphatics	ND	0.4	
Total EC >8-10 Aliphatics	ND	1.2	

29

Blank Spike/Blank Spike Duplicate Report

Lab ID:	GB2569
Date Prepared:	1/18/01
Date Analyzed:	1/18/01
QC Batch ID:	GB2569

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

Compound Name	Blank Result (mg/kg)	Spike Amount (mg/kg)	BS Result (mg/kg)	BS % Rec.	BSD Result (mg/kg)	BSD % Rec.	RPD	Flag
MTBE	0	2	2.66	133	2.51	126	-5.4	_
Benzene	0	2	2.11	106	2.1	105	-0.95	
Toluene	0	2	2.1	105	2.08	104	-0.96	
Ethylbenzene	0	2	2.07	103	2.03	102	-0.98	
m- & p-Xylene	0	4	4.31	108	4.4	110	1.8	
o-Xylene	0	2	2.03	101	2.04	102	0.99	
Total EC >8-10 Aromatics	0	10	10.4	104	10.5	105	0.96	
Total EC 5-6 Aliphatics	0	6	6.69	112	6.74	112	0	
Total EC >6-8 Aliphatics	0	4	4.46	111	4.49	112	0.9	
Total EC >8-10 Aliphatics	0	12	13	108	12.7	106	-1.9	

. ۲.

Blank Spike/Blank Spike Duplicate Report

Lab ID:	GB2572	
Date Prepared:	1/22/01	
Date Analyzed:	1/24/01	
QC Batch ID:	GB2572	

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

	Blank Result	Spike Amount	BS Result	BS	BSD Result	BSD		
Compound Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	(mg/kg)	% Rec.	RPD	Flag
MTBE	0	1	1.07	107	0.992	99.2	-7.6	
Benzene	0	1	0.944	94.4	0.905	90.5	-4.2	
Toluene	0	1	0.915	91.5	0.883	88.3	-3.6	
Ethylbenzene	0	[`] 1	0.846	84.6	0.82	82	-3.1	
m- & p-Xylene	0	2	1.82	90.8	1.76	88.2	-2.9	
o-Xylene	0	1	0.962	96.2	0.934	93.4	-3	
Total EC >8-10 Aromatics	0	5	4.19	83.7	4.14	82.8	-1.1	
Total EC 5-6 Aliphatics	0	3	3.03	101	2.91	97	-4	
Total EC >6-8 Aliphatics	0	2	2.11	106	2.11	106	0	
Total EC >8-10 Aliphatics	0	6	5.3	88.3	5.21	86.8	-1.7	

31

Matrix Spike Report

Client Sample ID:	MW-8 (3.5')
Lab ID:	95216-09
Date Prepared:	1/18/01
Date Analyzed:	1/18/01
QC Batch ID:	GB2569

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

	Sample Result	Spike Amount	MS Result	MS	
Parameter Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	Flag
MTBE	0	2.2	2.74	124	
Benzene	0	2.2	1.95	· 88	
Toluene	0	2.2	2.1	95	
Ethylbenzene	0.233	2.2	2.11	85	
m- & p-Xylene	0	4.4	4.23	96	
o-Xylene	0.285	2.21	2.58	104	
Total EC >8-10 Aromatics	9.77	11	17.9	74	
Total EC 5-6 Aliphatics	0	6.6	4.91	74	
Total EC >6-8 Aliphatics	D.913	4.4	4.03	71	
Total EC >8-10 Aliphatics	9.12	13	18.5	71	

Matrix Spike Report

Client Sample ID:	SP11-(5-8)
Lab ID:	95381-15
Date Prepared:	1/22/01
Date Analyzed:	1/24/01
QC Batch ID: /	GB2572

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

Parameter Name MTBE Benzene Toluene Ethylbenzene m- & p-Xylene o-Xylene	Sample Result (mg/kg) 0 0 0 0 0.166 0.108	Spike Amount (mg/kg) 2.5 2.5 2.5 2.5 5 2.51	MS Result (mg/kg) 2.33 1.77 1.87 1.94 3.74 2.5	MS % Rec. 93 71 75 77 71 96	Flag
Total EC >8-10 Aromatics Total EC 5-6 Aliphatics	4.38 0	13 7.5	13.1 3.65	70 49	N
Total EC >6-8 Aliphatics Total EC >6-8 Aliphatics Total EC >8-10 Aliphatics	0 3.75	5 15	3.6 13.7	72 66	N

Duplicate Report

Client Sample ID: Lab ID: Date Prepared: Date Analyzed: QC Batch ID: MW-8 (3.5') 95216-09 1/18/01 1/18/01 GB2569

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

	Sample Result	Duplicate Result	RPD	
Parameter Name	(mg/kg)	(mg/kg)	%	Flag
MTBE	0	0	NC	
Benzene	0	0	NC	
Toluene	0	0	NC	
Ethylbenzene	0.233	0.245	-5.0	
m- & p-Xylene	0	0	NC	
o-Xylene	0.285	0.283	0.7	
Total EC >8-10 Aromatics	9.77	11.4	-15.0	
Total EC 5-6 Aliphatics	0	0.741	-200.0	X4a
Total EC >6-8 Aliphatics	0.913	0.839	8.4	
Total EC >8-10 Aliphatics	9.12	10.3	-12.0	

_.14.

Duplicate Report

Client Sample ID: Lab ID: Date Prepared: Date Analyzed: QC Batch ID: SP6-(5-8) 95381-08 1/22/01 1/24/01 GB2572

35

· , ,

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

	Sample Result	Duplicate Result	RPD	Flog
Parameter Name	(mg/kg)	(mg/kg)	%	Flag
MTBE	0	0	NC	
Benzene	0	0	NC	
Toluene	0.0897	0.137	-42.0	N
Ethylbenzene	0.759	1.18	-43.0	N
m- & p-Xylene	1.09	1.94	-56.0	N
o-Xylene	0.884	1.42	-47.0	Ν
Total EC >8-10 Aromatics	18.8	26.8	-35.0	N
Total EC 5-6 Aliphatics	0	0	NC	
Total EC >6-8 Aliphatics	3.91	5.26	-29.0	N
Total EC >8-10 Aliphatics	17.6	21.7	-21.0	•

SOUND ANALYTICAL EPH / VPH EXTRACTABLE PETROLEUM HYDROCARBONS ALIPHATIC AND AROMATIC FRACTIONS

Client Name	Golder Associates
Client ID:	SP1-(8-11)
Lab ID:	95381-02
Date Received:	1/12/01
Date Prepared:	1/22/01
Date Analyzed:	1/22/01
% Solids	80.7
Dilution Factor	10

Extractable Petroleum Hydrocarbons (EPH) Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
1-chlorooctadecane	100		50	150
o-terphenyl	85.1		50	150

Sample results are on a dry weight basis.

	Result		
Analyte	(mg/kg)	PQL	Flags
>nC8-nC10 Aliphatic	76	5.4	
>nC10-nC12 Aliphatic	380	5.4	
>nC12-nC16 Aliphatic	940	5.4	
>nC16-nC21 Aliphatic	320	5.4	
>nC21-nC34 Aliphatic	37	5.4	
>nC10-nC12 Aromatic	46	5.4	
>nC12-nC16 Aromatic	250	5.4	
>nC16-nC21 Aromatic	200	5.4	
>nC21-nC34 Aromatic	22	5.4	

37

i-e

Sound Analytical Services, Inc.

Client Name	Golder Associates
Client ID:	SP5-(5-8)
Lab ID:	95381-06
Date Received:	1/12/01
Date Prepared:	1/22/01
Date Analyzed:	1/22/01
% Solids	94.88
Dilution Factor	10

Extractable Petroleum Hydrocarbons (EPH) Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
1-chlorooctadecane	95.7	•	50	150
o-terphenyl	67.2		50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
>nC8-nC10 Aliphatic	200	4.5	
>nC10-nC12 Aliphatic	660	4.5	
>nC12-nC16 Aliphatic	2000	4.5	
>nC16-nC21 Aliphatic	1700	4.5	
>nC21-nC34 Aliphatic	300	4.5	
>nC10-nC12 Aromatic	180	4.5	
>nC12-nC16 Aromatic	710	4.5	
>nC16-nC21 Aromatic	750	4.5	
>nC21-nC34 Aromatic	120	4.5	

Client Name	Golder Associates
Client ID:	SP6-(5-8)
Lab ID:	95381-08
Date Received:	1/12/01
Date Prepared:	1/22/01
Date Analyzed:	1/22/01
% Solids	67.48
Dilution Factor	10

'Extractable Petroleum Hydrocarbons (EPH) Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
1-chlorooctadecane	97.2		50	150
o-terphenyl	88.2		50	150

	Result			
Analyte	(mg/kg)		PQL	Flags
>nC8-nC10 Aliphatic	ND		6.6	
>nC10-nC12 Aliphatic		30	6.6	
>nC12-nC16 Aliphatic		98	6.6	
>nC16-nC21 Aliphatic		87	6.6	
>nC21-nC34 Aliphatic	,	27	6.6	
>nC10-nC12 Aromatic		10	6.6	
>nC12-nC16 Aromatic		38	6.6	
>nC16-nC21 Aromatic		48	6.6	
>nC21-nC34 Aromatic		20	6.6	

Sound Analytical Services, Inc.

Client Name	Golder Associates
Client ID:	SP8-(5-8)
Lab ID:	95381-10
Date Received:	1/12/01
Date Prepared:	1/22/01
Date Analyzed:	1/22/01
% Solids	89.11
Dilution Factor	10

'Extractable Petroleum Hydrocarbons (EPH) Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
1-chlorooctadecane	93.2		50	150
o-terphenyl	69.3		50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
>nC8-nC10 Aliphatic	830	5	
>nC10-nC12 Aliphatic	2400	5	
>nC12-nC16 Aliphatic	8700	50	D 10
>nC16-nC21 Aliphatic	6500	50	D 10
>nC21-nC34 Aliphatic	730	5	
>nC10-nC12 Aromatic	110	5	
>nC12-nC16 Aromatic	530	5	
>nC16-nC21 Aromatic	870	5	
>nC21-nC34 Aromatic	100	5	

Client Name	Golder Associates
Client ID:	SP9-(5-8)
Lab ID:	95381-12
Date Received:	1/12/01
Date Prepared:	1/22/01
Date Analyzed:	1/22/01
% Solids	83.55
Dilution Factor	10

Extractable Petroleum Hydrocarbons (EPH) Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
1-chiorooctadecane	71.2		50	150
o-terphenyt	66.8		50	150

Sample results are on a dry weight basis.

	Result		
Analyte	(mg/kg)	PQL	Flags
>nC8-nC10 Aliphatic	220	5	
>nC10-nC12 Aliphatic	670	5	
>nC12-nC16 Aliphatic	3200	50	D 10
>nC16-nC21 Aliphatic	2700	50	D 10
>nC21-nC34 Aliphatic	210	5	
>nC10-nC12 Aromatic	260	5	
>nC12-nC16 Aromatic	970	5	
>nC16-nC21 Aromatic	1100	5	
>nC21-nC34 Aromatic	96	5	

ام.

Client Name	Golder Associates
Client ID:	SP11-(5-8)
Lab ID:	95381-15
Date Received:	1/12/01
Date Prepared:	1/22/01
Date Analyzed:	1/22/01
% Solids	71.4
Dilution Factor	10

Extractable Petroleum Hydrocarbons (EPH) Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
1-chlorooctadecane	91.2		50	150
o-terphenyl	86.7		50	150

	Re	sult		
Analyte	(mg	ı/kg)	PQL	Flags
>nC8-nC10 Aliphatic	ND		5.9	
>nC10-nC12 Aliphatic		30	5.9	
>nC12-nC16 Aliphatic		170	5.9	
>nC16-nC21 Aliphatic		130	5.9	
>nC21-nC34 Aliphatic		40	5.9	
>nC10-nC12 Aromatic	ND		5.9	
>nC12-nC16 Aromatic		18	5.9	
>nC16-nC21 Aromatic		35	5.9	
>nC21-nC34 Aromatic		10	5.9	

Lab ID:	Method Blank - EP229
Date Received:	-
Date Prepared:	1/22/01
Date Analyzed:	1/22/01
% Solids	
Dilution Factor	10

'Extractable Petroleum Hydrocarbons (EPH) Modified

	<u>_</u>		Recov	ery Limits	
Surrogate	% Recovery	Flags	Low	High	
1-chlorooctadecane	81		60	140	
o-terphenyl	72.7		60	140	

Sample results are on an as received basis.

	Result		
Analyte	(mg/kg)	PQL	Flags
>nC8-nC10 Aliphatic	ND	4.5	
>nC10-nC12 Aliphatic	ND	4.5	
>nC12-nC16 Aliphatic	ND	4.5	
>nC16-nC21 Aliphatic	ND	4.5	
>nC21-nC34 Aliphatic	ND	4.5	
>nC10-nC12 Aromatic	ND	4.5	
>nC12-nC16 Aromatic	ND	4.5	
>nC16-nC21 Aromatic	ND	4.5	
>nC21-nC34 Aromatic	ND	4.5	

Blank Spike Report

EP229

EP229

44

. ÷.

Lab ID: Date Prepared: 1/22/01 Date Analyzed: 1/22/01 QC Batch ID:

Extractable Petroleum Hydrocarbons (EPH) Modified

Parameter Name	Blank Result (mg/kg)	Spike Amount (mg/kg)	BS Result (mg/kg)	BS % Rec.	Flag
>nC8-nC10 Aliphatic	Û Û	18	15.3	84	_
>nC10-nC12 Aliphatic	0	18	16.3	90	
>nC12-nC16 Aliphatic	0	18	16.3	90	
>nC16-nC21 Aliphatic	0	18	16.7	92	
>nC21-nC34 Aliphatic	0	18	17.8	98	
>nC10-nC12 Aromatic	0	18.2	15.9	88	
>nC12-nC16 Aromatic	0	18	16.7	92	
>nC16-nC21 Aromatic	0	18	15.3	84	
>nC21-nC34 Aromatic	0	18	17.9	98	

Matrix Spike Report

SP1-(8-11)
95381-02
1/22/01
1/22/01
EP229

Extractable Petroleum Hydrocarbons (EPH) Modified

Parameter Name >nC8-nC10 Aliphatic	Sample Result (mg/kg) 76.3	Spike Amount (mg/kg) 21	MS Result (mg/kg) 95.6	MS % Rec. 92	Flag
>nC10-nC12 Aliphatic	380	21	381	4	X7
>nC12-nC16 Aliphatic	939	21	809	-618	X7
>nC16-nC21 Aliphatic	324	21	278	-222	X7
>nC21-nC34 Aliphatic	37.3	21	47.5	49	X7
>nC10-nC12 Aromatic	45.6	21	54.5	42	X7
>nC12-nC16 Aromatic	251	21	218	-157	X7
>nC16-nC21 Aromatic	201	21	169	-152	X7
>nC21-nC34 Aromatic	21.8	21	34. 3	59	X7

45

Duplicate Report

Client Sample ID: Lab ID: Date Prepared: Date Analyzed: QC Batch ID: SP1-(8-11) 95381-02 1/22/01 1/22/01 EP229

46

...^{µ4}.

Extractable Petroleum Hydrocarbons (EPH) Modified

	Sample Result	Duplicate Result	RPD	
Parameter Name	(mg/kg)	(mg/k g)	%	Flag
>nC8-nC10 Aliphatic	76.3	96	-23.0	
>nC10-nC12 Aliphatic	380	440	-15.0	
>nC12-nC16 Aliphatic	939	951	-1.3	
>nC16-nC21 Aliphatic	324	309	4.7	
>nC21-nC34 Aliphatic	37.3	37.5	-0.5	
>nC10-nC12 Aromatic	45.6	48.3	-5.8	
>nC12-nC16 Aromatic	251	259	-3.1	
>nC16-nC21 Aromatic	201	205	-2.0	
>nC21-nC34 Aromatic	21.8	22.1	-1.4	

SOUND ANALYTICAL EPA 8270 MOD. EXTRACTABLE PETROLEUM HYDROCARBONS TARGET PAH COMPOUNDS

47

Client Name	Golder Associates			
Client ID:	SP1-(8-11)			
Lab ID:	95381-02			
Date Received:	1/12/01			
Date Prepared:	1/22/01			
Date Analyzed:	1/23/01			
% Solids	80.7			
Dilution Factor	20			

Targeted PAH Analytes by Method 8270 Modified.

·			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
o-Terphenyl	78.9		50	150	

	Result				
Analyte	(mg/kg)		PQL	MDL	Flags
Naphthalene		0.23	0.022	0.022	
2-Methylnaphthalene		6.5	0.022	0.019	
Acenaphthylene		0.51	0.022	0.021	
Acenaphthene		0.41	0.022	0.019	
Fluorene		0.87	0.022	0.016	
Phenanthrene		1.3	0.022	0.015	
Anthracene	ND		0.022	0.018	
Fluoranthene	ND		0.022	0.013	
Pyrene		0.07	0.022	0.012	
Benzo(a)anthracene	ND		0.022	0.0095	
Chrysene		0.037	0.022	0.012	
Benzo(b)fluoranthene	ND		0.022	0.011	
Benzo(k)fluoranthene	ND		0.022	0.017	
Benzo(a)pyrene	ND		0.022	0.0088	
Indeno(1,2,3-cd)pyrene	ND		0.022	0.017	
Dibenz(a,h)anthracene	ND		0.022	0.012	
Benzo(g,h,i)perylene	ND		0.022	0.013	

Client Name	Golder Associates
Client ID:	SP5-(5-8)
Lab ID:	95381-06
Date Received:	1/12/01
Date Prepared:	1/22/01
Date Analyzed:	1/23/01
% Solids	94.88
Dilution Factor	20

Targeted PAH Analytes by Method 8270 Modified.

			Recovery Limits		
Surrogate o-Terphenyl	% Recovery 69.5	Flags	Low 50	High 150	
0-Terphenyi	05.5		00	100	

<i>,</i>	Re	sult			
Analyte	(mg	j/kg)	PQL.	MDL	Flags
Naphthalene		3.7	0.09	0.09	
2-Methylnaphthalene		12	0.09	0.081	
Acenaphthylene		0.48	0.018	0.017	
Acenaphthene		0.69	0.018	0.015	
Fluorene		1.3	0.018	0.013	
Phenanthrene		2.6	0.018	0.012	
Anthracene	ND		0.018	0.015	
Fluoranthene	ND		0.018	0.01	
Pyrene		0.78	0.018	0.0099	
Benzo(a)anthracene		0.11	0.018	0.0079	
Chrysene		0.097	0.018	0.0097	
Benzo(b)fluoranthene	ND		0.018	0.0094	
Benzo(k)fluoranthene	ND		0.018	0.015	
Benzo(a)pyrene	ND		0.018	0.0074	
Indeno(1,2,3-cd)pyrene	ND	•	0.018	0.014	
Dibenz(a,h)anthracene	ND		0.018	0.01	
Benzo(g,h,i)perylene	ND		0.018	0.011	

Golder Associates
SP6-(5-8)
95381-08
1/12/01
1/22/01
1/23/01
67.48
20

Targeted PAH Analytes by Method 8270 Modified.

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
o-Terphenyl	88.9		50	150	

	Re	sult			
Analyte	(m)	g/kg)	PQL	MDL	Flags
Naphthalene		1.7	0.027	0.027	
2-Methylnaphthalene		4.1	0.027	0.024	
Acenaphthylene	ND		0.027	0.026	
Acenaphthene		0.26	0.027	0.023	
Fluorene		0.55	0.027	0.019	
Phenanthrene	,	0.92	0.027	0.018	
Anthracene	ND		0.027	0.022	
Fluoranthene	ND		0.027	0.015	
Pyrene		0.16	0.027	0.015	
Benzo(a)anthracene	ND		0.027	0.012	
Chrysene	ND		0.027	0.014	
Benzo(b)fluoranthene	ND		0.027	0.014	
Benzo(k)fluoranthene	ND		0.027	0.022	
Benzo(a)pyrene	ND		0.027	0.011	
Indeno(1,2,3-cd)pyrene	ND		0.027	0.021	
Dibenz(a,h)anthracene	ND		0.027	0.015	
Benzo(g,h,i)pe rylene	ND		0.027	0.016	

Sound Analytical Services, Inc.

Client Name	Golder Associates				
Client ID:	SP8-(5-8)				
Lab ID:	95381-10				
Date Received:	1/12/01				
Date Prepared:	1/22/01				
Date Analyzed:	1/23/01				
% Solids	89.11				
Dilution Factor	100				

Targeted PAH Analytes by Method 8270 Modified.

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
o-Terphenyl	96.3		50	150	

Sample results are on a dry weight basis.

	R	esult			
Analyte	(m	ng/kg)	PQL	MDL	Flags
Naphthalene		19	0.1	0.1	
2-Methylnaphthalene		50	0.1	0.09	
Acenaphthylene		1.3	0.1	0.096	
Acenaphthene		5.7	0.1	0.086	
Fluorene		6	0.1	0.073	
Phenanthrene		10	0.1	0.068	
Anthracene	ND		0.1	0.082	
Fluoranthene	ND	÷	0.1	0.058	
Pyrene		2.3	0.1	0.055	
Benzo(a)anthracene	ND		0.1	0.044	
Chrysene		0.22	0.1	0.054	
Benzo(b)fluoranthene	ND		0.1	0.052	
Benzo(k)fluoranthene	ND		0.1	0.081	
Benzo(a)pyrene	ND		0.1	0.041	
Indeno(1,2,3-cd)pyrene	ND		0.1	0.079	
Dibenz(a,h)anthracene	ND		0.1	0.056	
Benzo(g,h,i)perylene	ND		0.1	0.062	

. inte

Client Name	Golder Associates				
Client ID:	SP9-(5-8)				
Lab ID:	95381-12				
Date Received:	1/12/01				
Date Prepared:	1/22/01				
Date Analyzed:	1/23/01				
% Solids	83.55				
Dilution Factor	100				

Targeted PAH Analytes by Method 8270 Modified.

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
o-Terphenyl	83.2		50	150	

	Re	sult			
Analyte	(៣ը	g/kg)	PQL	MDL	Flags
Naphthalene		7.4	0.1	0.1	
2-Methylnaphthalene		23	0.1	0.09	
Acenaphthylene	ND		0.1	0.096	
Acenaphthene		3.8	0.1	0.086	
Fluorene		4.1	0.1	0.073	
Phenanthrene		4.7	0.1	0.068	
Anthracene	ND		0.1	0.082	
Fluoranthene	ND		0.1	0.058	
Pyrene		0.94	0.1	0.055	
Benzo(a)anthracene	ND		0.1	0.044	
Chrysene	ND		0.1	0.054	
Benzo(b)fluoranthene	ND		0.1	0.052	
Benzo(k)fluora nthene	ND		0.1	0.081	
Benzo(a)pyrene	ND		0.1	0.041	
Indeno(1,2,3-cd)pyrene	ND		0.1	0.079	
Dibenz(a,h)anthracene	ND		0.1	0.056	
Benzo(g,h,i)perylene	ND		0.1	0.062	

Client Name	Golder Associates
Client ID:	SP11-(5-8)
Lab ID:	95381-15
Date Received:	1/12/01
Date Prepared:	1/22/01
Date Analyzed:	1/23/01
% Solids	71.4
Dilution Factor	20

Targeted PAH Analytes by Method 8270 Modified.

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
o-Terphenyl	89.1		50	150	

	Result			,
Analyte	(mg/kg)	PQL	MDL Fla	ags
Naphthalene	0.97	0.023	0.023	
2-Methylnaphthalene	3	0.023	0.021	
Acenaphthylene	0.29	0.023	0.023	
Acenaphthene	ND	0.023	0.02	
Fluorene	0.39	0.023	0.017	
Phenanthrene	0.67	0.023	0.016	
Anthracene	ND	0.023	0.019	
Fluoranthene	0.054	0.023	0.014	
Pyrene	0.035	0.023	0.013	
Benzo(a)anthracene	ND	0.023	0.01	
Chrysene	ND	0.023	0.013	
Benzo(b)fluoranthene	ND	0.023	0.012	
Benzo(k)fluoranthene	ND	0.023	0.019	
Benzo(a)pyrene	ND	0.023	0.0096	
Indeno(1,2,3-cd)pyrene	ND	0.023	0.019	
Dibenz(a,h)anthracene	ND	0.023	0.013	
Benzo(g,h,i)perylene	ND	0.023	0.015	

Lab ID:	Method Blank - EP229
Date Received:	-
Date Prepared:	1/22/01
Date Analyzed:	1/23/01
% Solids	
Dilution Factor	20

Targeted PAH Analytes by Method 8270 Modified.

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
o-Terphenyl	90.8		50	150	

Sample results are on an as received basis.

٠

	Result			
Analyte	(mg/kg)	PQL	MDL	Flags
Naphthalene	ND	0.018	0.018	
2-Methylnaphthalene	ND	0.018	0.016	
Acenaphthylene	ND	0.018	0.017	
Acenaphthene	ND	0.018	0.016	
Fluorene	ND	0.018	0.013	
Phenanthrene	ND	0.018	0.012	
Anthracene	ND	0.018	0.015	
Fluoranthene	ND	0.018	0.011	
Pyrene	ND	0.018	0.01	
Benzo(a)anthracene	ND	0.018	0.008	
Chrysene	ND	0.018	0.0098	
Benzo(b)fluoranthene	ND	0.018	0.0095	
Benzo(k)fluoranthene	ND	0.018	0.015	
Benzo(a)pyrene	ND	0.018	0.0075	
Indeno(1,2,3-cd)pyrene	ND	0.018	0.014	
Dibenz(a,h)anthracene	ND	0.018	0.01	
Benzo(g,h,i)perylene	ND	0.018	0.011	

Blank Spike Report

Lab ID:	EP229
Date Prepared:	1/22/01
Date Analyzed:	1/23/01
QC Batch ID:	EP229

Targeted PAH Analytes by Method 8270 Modified.

	Blank Result	Spik e Amount	BS Result	BS	
Parameter Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	Flag
Naphthalene	0	18	18	99	
Acenaphthene	0	18	18.2	100	
Pyrene	0	18	15.6	86	
Benzo(g,h,i)perylene	0	18	19.7	108	

Matrix Spike Report

Client Sample ID: Lab ID: Date Prepared: Date Analyzed: QC Batch ID: SP1-(8-11) 95381-02 1/22/01 1/23/01 EP229

Targeted PAH Analytes by Method 8270 Modified.

Parameter Name Naphthalene	Sample Result (mg/kg) 0.23	Spike Amount (mg/kg) 21	MS Result (mg/kg) 17.5	MS % Rec. 82	Flag
Acenaphthene	0.415	21	17.5	81	
Pyrene ⁻ Benzo(g,h,i)perylene	0.0698 D	21 21	19.9 20.6	94 98	

Duplicate Report

Client Sample ID:	SP1-(8-11)
Lab ID:	95381-02
Date Prepared:	1/22/01
Date Analyzed:	1/23/01
QC Batch ID:	EP229

Targeted PAH Analytes by Method 8270 Modified.

	Sample	Duplicate Result	RPD	
Parameter Name	Result (mg/kg)	(mg/kg)	КР Д %	Flag
				i iug
Naphthalene	0.23	0.251	-8.7	
2-Methylnaphthalene	6.48	7.06	-8.6	
Acenaphthylene	0.514	0.411	22.0	
Acenaphthene	0.415	0.303	31.0	N
Fluorene	0.873	0.628	33.0	Ν
Phenanthrene	1.3	1.39	-6.7	
Anthracene	0	0	NC	
Fluoranthene	0	0	NC	
Pyrene	0.06 98	0.078 3	-11.0	
Benzo(a)anthracene	0	0	NC	
Chrysene	0.0371	0.041	-10.0	
Benzo(b)fluoranthene	0	0	NC	
Benzo(k)fluoranthene	0	0	NC	
Benzo(a)pyrene	0	0	NC	
Indeno(1,2,3-cd)pyrene	0	0	NC	
Dibenz(a,h)anthracene	0	0	NC	
Benzo(g,h,i)perylene	0	0	NC	

Client Name	Golder Associates
Client ID:	SP1-(5-8)
Lab ID:	95381-01
Date Received:	1/12/01
Date Prepared:	1/16/01
Date Analyzed:	1/17/01
% Solids	79.89
Dilution Factor	50

Diesel and Motor Oil by NWTPH-Dx Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	114		50	150

Sample results are on a dry weight basis.

	Result		
Analyte	(mg/kg)	PQL	MDL Flags
#2 Diesel	2300	160	75
Motor Oil	350	310	160

58

. r.t

Golder Associates
SP1-(8-11)
95381-02
1/12/01
1/16/01
1/18/01
80.7
10

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	ery Limits
Surrogate o-terphenyl	% Recovery 101	Flags	Low 50	High 150

	Result		
Analyte	(mg/kg)	PQL	MDL Flags
#2 Diesel	2700	30	14
Motor Oil	82	60	30

Client Name	Golder Associates
Client ID:	SP2-(5-8)
Lab ID:	95381-03
Date Received:	1/12/01
Date Prepared:	1/16/01
Date Analyzed:	1/18/01
% Solids	90.08
Dilution Factor	10

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	ery Limits	
Surrogate o-terphenyl	% Recovery 98.9	Flags	Low 50	High 150	

	Result		
Analyte	(mg/kg)	PQL	MDL Flags
#2 Diesel	45	26	12
Motor Oil	45	52	26 J

Client Name	Golder Associates
Client ID:	SP3-(5-8)
Lab ID:	95381-04
Date Received:	1/12/01
Date Prepared:	1/16/01
Date Analyzed:	1/18/01
% Solids	90.83
Dilution Factor	10

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	115		50	150

	Result		
Analyte	(mg/kg)	PQL	MDL Flags
#2 Diesel	1800	25	12
Motor Oil	190	51	25

Client Name	Golder Associates		
Client ID:	SP4-(5-8)		
Lab ID:	95381-05		
Date Received:	1/12/01		
Date Prepared:	1/16/01		
Date Analyzed:	1/17/01		
% Solids	70.47		
Dilution Factor	10		

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	98.7		50	150

Analyte	Result (mg/kg)	PQL	MDL Flags
#2 Diesel	ND	35	17
Motor Oil	ND	70	35

Client Name	Golder Associates
Client ID:	SP5-(5-8)
Lab ID:	95381-06
Date Received:	1/12/01
Date Prepared:	1/16/01
Date Analyzed:	1/17/01
% Solids	94.88
Dilution Factor	50

Diesel and Motor Oil by NWTPH-Dx Modified

				Recove	ery Limits
Surrogate		% Recovery	Flags	Low	High
o-terphenyl	,	84.7		50	150

	Result		
Analyte	(mg/kg)	PQL	MDL Flags
#2 Diesel	7300	130	62
Motor Oil	500	260	130

Client Name	Golder Associates		
Client ID:	SP5-(8-11)		
Lab ID:	95381-07		
Date Received:	1/12/01		
Date Prepared:	1/16/01		
Date Analyzed:	1/18/01		
% Solids	68.21		
Dilution Factor	10		

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	101		50	150

Sample results are on a dry weight basis.

	Result			
Analyte	(mg/kg)	PQL	MDL Flags	
#2 Diesel	1000	35	17 X1	
Motor Oil	240	69	35 X2	,

X1 - Chromatogram suggests this might be aged or degraded diesel

64

Client Name	Golder Associates
Client ID:	SP6-(5-8)
Lab ID:	95381-08
Date Received:	1/12/01
Date Prepared:	1/16/01
Date Analyzed:	1/18/01
% Solids	67.48
Dilution Factor	10

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	126		50	150

	Result		
Analyte	(mg/kg)	PQL	MDL Flags
#2 Diesel	1500	34	16
Motor Oil	85	68	34

Client Name	Golder Associates
Client ID:	SP7-(8-11)
Lab ID:	95381-09
Date Received:	1/12/01
Date Prepared:	1/16/01
Date Analyzed:	1/18/01
% Solids	73.58
Dilution Factor	10

Diesel and Motor Oil by NWTPH-Dx Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	103		50	150

Sample results are on a dry weight basis.

• • •	Result	501	
Analyte	(mg/kg)	PQL	MDL Flags
#2 Diesel	820	32	15
Motor Oil	220	63	32

....⁶⁴.

Client Name	Golder Associates
Client ID:	SP8-(5-8)
Lab ID:	95381-10
Date Received:	1/12/01
Date Prepared:	1/16/01
Date Analyzed:	1/17/01
% Solids	89.11
Dilution Factor	50

Diesel and Motor Oil by NWTPH-Dx Modified

		Recovery Limits		
Surrogate o-terphenyl	<u>% Recovery</u> 98.1	Flags	Low 50	High 150

	Result		
Analyte	(mg/kg)	PQL	MDL Flags
#2 Diesel	23000	130	62
Motor Oil	460	260	130

Client Name	Golder Associates
Client ID:	SP8-(8-11)
Lab ID:	95381-1 1
Date Received:	1/12/01
Date Prepared:	1/16/01
Date Analyzed:	1/18/01
% Solids	78.24
Dilution Factor	10

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	89.8		50	150

	Result		
Analyte	(mg/kg)	PQL	MDL Flags
#2 Diesel	5300	30	14
Motor Oil	160	60	30

68

Client Name	Golder Associates
Client ID:	SP9-(5-8)
Lab ID:	95381-12
Date Received:	1/12/01
Date Prepared:	1/16/01
Date Analyzed:	1/18/01
% Solids	83.55
Dilution Factor	20

Diesel and Motor Oil by NWTPH-Dx Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	92.6		50	150

Sample results are on a dry weight basis.

	Result		
Analyte	(mg/kg)	PQL	MDL Flags
#2 Diesel	8200	59	28
Motor Oil	210	120	59

. ۲.

Client Name	Golder Associates
Client ID:	SP9-(8-11)
Lab ID:	95381-13
Date Received:	1/12/01
Date Prepared:	1/16/01
Date Analyzed:	1/18/01
% Solids	77.99
Dilution Factor	10

Diesel and Motor Oil by NWTPH-Dx Modified

,			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	101		50	150

	Result		
Analyte	(mg/kg)	PQL	MDL Flags
#2 Diesel	1600	30	14
Motor Oil	49	59	30 J

Client Name	Golder Associates
Client ID:	SP10-(5-8)
Lab ID:	95381-14
Date Received:	1/12/01
Date Prepared:	1/16/01
Date Analyzed:	1/18/01
% Solids	68.04
Dilution Factor	10

Diesel and Motor Oil by NWTPH-Dx Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	97.2		50	150

Analyte	Result (mg/kg)	PQL	MDL Flags
#2 Diesel	19	34	16 J
Motor Oil	120	68	34

Client Name	Golder Associates
Client ID:	SP11-(5-8)
Lab ID:	95381 -15
Date Received:	1/12/01
Date Prepared:	1/16/01
Date Analyzed:	1/18/0 1
% Solids	71.4
Dilution Factor	10

Diesel and Motor Oil by NWTPH-Dx Modified

·			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	110		50	150

Sample results are on a dry weight basis.

Analyte	Result (mg/kg)	PQL	MDL Flags
#2 Diesel	1100	32	15
Motor Oil	66	64	32

72

_H. .

Golder Associates
SP12-(10-12)
95381-16
1/12/01
1/16/01
1/18/01
81.38
10

Diesel and Motor Oil by NWTPH-Dx Modified

			Recove	ery Limits	
Surrogate	% Recovery	Flags	Low	High	
o-terphenyl	98.8		50	150	

Sample results are on a dry weight basis.

	Result		
Analyte	(mg/kg)	PQL	MDL Flags
#2 Diesel	560	30	14
Motor Oil	45	59	30 J

Client Name	Golder Associates
Client ID:	SP13-(5-8)
Lab ID:	95381-17
Date Received:	1/12/01
Date Prepared:	1/16/01
Date Analyzed:	1/18/01
% Solids	73.58
Dilution Factor	10

Diesel and Motor Oil by NWTPH-Dx Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	93.8		50	150

Sample results are on a dry weight basis.

Analyte	Result (mg/kg)	PQL	MDL Flags
#2 Diesel	ND	33	16
Motor Oil	ND	65	33

Sound Analytical Services, Inc.

Lab ID:	Method Blank - DS0187
Date Received:	-
Date Prepared:	1/16/01
Date Analyzed:	1/17/01
% Solids	
Dilution Factor	10

Diesel and Motor Oil by NWTPH-Dx Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	100		50	150

Sample results are on an as received basis.

	Result		
Analyte	(mg/kg)	PQL	MDL Flags
#2 Diesel	ND	25	12
Motor Oil	ND	50	25

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared: Date Analyzed: QC Batch ID: DS0187 1/16/01 1/17/01 DS0187 [•]

Diesel and Motor Oil by NWTPH-Dx Modified

	Blank Result	Spike Amount	BS Result	BS	BSD Result	BSD .		
Compound Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	(mg/kg)	% Rec.	RPD	Flag
#2 Diesel	0	500	583	117	599	120	2.5	
Motor Oil	0	501	456	91.1	463	92.5	1.5	•

Duplicate Report

Client Sample ID: Lab ID: Date Prepared: Date Analyzed: QC Batch ID: 1-B 95410-03 1/16/01 1/17/01 DS0187

Diesel and Motor Oil by NWTPH-Dx Modified

Parameter Name #2 Diesel Motor Oil	Sample Result (mg/kg) 0 0	Duplicate Result (mg/kg) 0 0	RPD % NC NC	Flag
---	---------------------------------------	--	----------------------	------

Duplicate Report

Client Sample ID: Lab ID: Date Prepared: Date Analyzed: QC Batch ID: SP9-(8-11) 95381-13 1/16/01 1/18/01 DS0187

Diesel and Motor Oil by NWTPH-Dx Modified

	Sample Result	Duplicate Result	RPD	
Parameter Name	(mg/kg)	(mg/kg)	%	Flag
#2 Diesel	1560	1620	-3.8	
Motor Oil	48.9	49.4	-1.0	

Sound Analytical Services, Inc.

ANALYTICAL & ENVIRONMENTAL CHEMISTS 4813 Pacific Hwy East • Tacoma, WA 98424 (253) 922-2310 • FAX (253) 922-5047 e-mail: info@saslab.com

DATA QUALIFIERS AND ABBREVIATIONS

- B1: This analyte was detected in the associated method blank. The analyte concentration was determined not to be significantly higher than the associated method blank (less than ten times the concentration reported in the blank).
- B2: This analyte was detected in the associated method blank. The analyte concentration in the sample was determined to be significantly higher than the method blank (greater than ten times the concentration reported in the blank).
- C1: Second column confirmation was performed. The relative percent difference value (RPD) between the results on the two columns was evaluated and determined to be $\leq 40\%$.
- C2: Second column confirmation was performed. The RPD between the results on the two columns was evaluated and determined to be > 40%. The higher result was reported unless anomalies were noted.

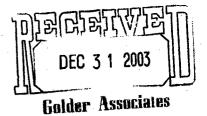
M: GC/MS confirmation was performed. The result derived from the original analysis was reported.

D: The reported result for this analyte was calculated based on a secondary dilution factor.

E: The concentration of this analyte exceeded the instrument calibration range and should be considered an estimated quantity.

J: The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity.

- MCL: Maximum Contaminant Level
- MDL: Method Detection Limit
- N: See analytical narrative.
- ND: Not Detected
- PQL: Practical Quantitation Limit
- X1: Contaminant does not appear to be "typical" product. Elution pattern suggests it may be _____
- X2: Contaminant does not appear to be "typical" product.
- X3: Identification and quantitation of the analyte or surrogate was complicated by matrix interference.
- X4: RPD for duplicates was outside advisory QC limits. The sample was re-analyzed with similar results. The sample matrix may be nonhomogeneous.
- X4a: RPD for duplicates outside advisory QC limits due to analyte concentration near the method practical quantitation limit/detection limit.
- X5: Matrix spike recovery was not determined due to the required dilution.
- X6: Recovery and/or RPD values for matrix spike(/matrix spike duplicate) outside advisory QC limits. Sample was reanalyzed with similar results.
- X7: Recovery and/or RPD values for matrix spike(/matrix spike duplicate) outside advisory QC limits. Matrix interference may be indicated based on acceptable blank spike recovery and/or RPD.
- X7a: Recovery and/or RPD values for this spiked analyte outside advisory QC limits due to high concentration of the analyte in the original sample.
- X8: Surrogate recovery was not determined due to the required dilution.
- X9: Surrogate recovery outside advisory QC limits due to matrix interference.


SAS	Lab	No.	
		T	

Sound Analytical Services, Inc. ANALYTICAL & ENVIRONMENTAL CHEMISTS 4813 Pacific Hwy East • Tacoma, WA 98424 (253) 922-2310 • FAX (253) 922-5047 日月3号101 e-mail: sainc1@uswest.net

TURNA	ROUND I	REQUEST (bu	siness days)
Standard	l (10 day	s)	
RUSH:	24 hrs _	48 hrs	_ 5 day

CHAIN OF CUSTODY/REQUEST FOR LABORATORY ANALYSIS

Client: Golder Assocratis		Analyse	es Requ	lested								
Project Name: Consolvanted Freightweis												
983-10(15.820		. ,	. Jo									
Contact: Gary Zima Lomba		X	1									
Phone No.: 425 883-0777	ers		1									
Fax No.: 425 882-5498	tain	1	-									
Email:	of Containers	NWTPA-DX	EPH UPH									
Use Sample ID Date Time Matrix		3	0				1					
	#	Z	II.									
SP1- (5-8) 1-11-01 0850 Soil	1	V										
2 SPI-(8-11) 0900	2	V	V									
3 SPZ-(5-8) 0955		U										
4 SP3-(5-8) 1040	i	1							1			
5 SP4- (5-8) 1125	1	V							ą			
SP5-(5-8) 1157	2	V	V						+			
SP 5- (8-11) 1205	1	V			+				+	├		
SP6-(5-8) 1247									+			
	1		[<u> </u>					+-			{
SP7- (8-11) 1330	2									 	┝──-┣	
SP8- (5-8) 1355	2									ļ]		
11 SEB- (8-11) 1400		Ú	ANGU .								 	
<u> </u>	2		V									
SP9- (8-11) # 1437	2	V	4				* .					
14 5910- (5-8) 1515	1	V		5 37								
SP11- (5-8) 4547		V										
SP12-(10-12) 1632	Ĩ	1					•					
SP13- (5-8) V 1706 V	i	1								i		
					+				+			
	<u> </u>	N.					<u> </u>	· .	<u> </u>	<u> </u>	I	
Signature Printed Name	F	irm			Specia			is v	\ <u>\</u>	Li	EGH	H9VI
Relinquished By: GOAY CIMAYAN	Gal	1901	HU	- 30 A M -	In c	rggi	tion	to	400	, <u> </u>	Carl	Hell'
Received By Calampt R. 6 M. QUIST			1.	9-01 0	"vo/"	1212	60	QURE	119	, 01	02.	
Relinquished X A		<i>a</i>	1.4	304	JO E	:6#/	V94	100	11	in al	Hor	
By: JHI WAY ALMQUIST	SK	Ŋ :		36P (100	2010	-70	th T	-49	0 >	>1m	20.0
Received By AStrom A Strom	Sł	48	1/12/0	DI 1220			• ••• • •••	. طال	$\overline{)}$	1 . 3	17-11	U V HA
Relinquished By:				X'	700	u0 ,	11	TUR	N	100	/ 7 10/1	NIN
Received By		··· _·			אי <i>ט</i>	15 th	64	thie vega	OTLI	9 <i>0</i> 4	100	、
					<u> </u>	9711	171	11 MYR	7001	8 Hr	<u></u>	100
COC No			× ×	FOD DW	614(1	111 0	NV Z	Y7- (8	ניאן } Page	١	of	L
			-	14 C	1.1	• •			. aye			1

December 29, 2003

Neil Gilham Golder Associates Inc. 18300 NE Union Hill Road Suite 200 Redmond, WA 98052-3333

Re: Analytical Data for Project 033-1000.000 Laboratory Reference No. 0312-046

Dear Neil:

Enclosed are the analytical results and associated quality control data for samples submitted on December 3, 2003.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on December 3, 2003, and received by the laboratory on December 3, 2003. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH-Gx/BTEX

Date Extracted:	12-9-03
Date Analyzed:	12-9-03

Matrix: Water Units: ug/L (ppb)

Client ID:	MW-4	MW-44
Lab ID:	12-046-01	12-046-02

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		1.0	ND		1.0
Toluene	ND		1.0	ND		1.0
Ethyl Benzene	ND		1.0	ND		1.0
m,p-Xylene	ND		1.0	ND		1.0
o-Xylene	ND		1.0	ND		1.0
TPH-Gas	ND		100	ND		100
Surrogate Recovery: Fluorobenzene	89%		•	92%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx/BTEX

Date Extracted:	12-9-03
Date Analyzed:	12-9-03

Matrix: Water Units: ug/L (ppb)

12-046-04

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		1.0	ND		1.0
Toluene	ND		1.0	ND		1.0
Ethyl Benzene	ND		1.0	ND		1.0
m,p-Xylene	ND		1.0	ND		1.0
o-Xylene	ND		1.0	ND		1.0
TPH-Gas	ND		100	ND		100
Surrogate Recovery: Fluorobenzene	92%			93%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

4

NWTPH-Gx/BTEX

Date Extracted:	12-9-03
Date Analyzed:	12-9-03

Matrix: Water Units: ug/L (ppb)

Client ID:	RW-2	MW-1
Lab ID:	12-046-05	12-046-06

	Result Flags	PQL	Result	Flags	PQL
Benzene	5.4	1.0	ND		1.0
Toluene	ND	1.0	ND		1.0
Ethyl Benzene	ND	1.0	ND		1.0
m,p-Xylene	ND	1.0	ND		1.0
o-Xylene	ND	1.0	ND		1.0
TPH-Gas	450	100	ND		100
Surrogate Recovery: Fluorobenzene	93%		91%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx/BTEX

Date Extracted:	12-9-03
Date Analyzed:	12-9-03

Matrix: Water Units: ug/L (ppb)

Client ID:	MW-5	MW-6
Lab ID:	12-046-07	12-046-08

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		1.0	ND		1.0
Toluene	ND		1.0	ND		1.0
Ethyl Benzene	ND		1.0	ND		1.0
m,p-Xylene	ND		1.0	ND		1.0
o-Xylene	ND		1.0	ND		1.0
TPH-Gas	ND		100	ND	· .	100
Surrogate Recovery: Fluorobenzene	91%			89%		

NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

Date Extracted:	12-9-03
Date Analyzed:	12-9-03
	~

Matrix: Water Units: ug/L (ppb)

Lab ID:

Result Flags PQL 1.0 Benzene ND 1.0 Toluene ŇD 1.0 Ethyl Benzene ND 1.0 m,p-Xylene ND 1.0 o-Xylene ND **TPH-Gas** ND 100

MB1209W1

Surrogate Recovery: Fluorobenzene

93%

7

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

Date Extracted:	12-9-03
Date Analyzed:	12-9-03

Matrix: Water Units: ug/L (ppb)

Lab ID: MB1209W2

	Result	Flags	PQL
Benzene	ND		1.0
Toluene	ND		1.0
Ethyl Benzene	ND		1.0
m,p-Xylene	ND		1.0
o-Xylene	ND		1.0
TPH-Gas	ND		100
Surrogate Recovery: Fluorobenzene	92%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

8

NWTPH-Gx/BTEX DUPLICATE QUALITY CONTROL

Date Extracted:	12-9-03
Date Analyzed:	12-9-03

Matrix: Water Units: ug/L (ppb)

Lab ID:	12-046-06 Original	12-046-06 Duplicate	RPD	Flags
Benzene	ND	ND	NA	
Toluene	ND	ND	NA	
Ethyl Benzene	ND	ND	NA	
m,p-Xylene	ND	ND	NA	
o-Xylene	ND	ND	NA	
TPH-Gas	ND	ND	NA	
Surrogate Recovery:				
Fluorobenzene	91%	91%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx/BTEX MS/MSD QUALITY CONTROL

Date Extracted:	12-9-03
Date Analyzed:	12-9-03

Matrix: Water Units: ug/L (ppb)

Spike Level: 50.0 ppb

Lab ID:	12-046-06 MS	Percent Recovery	12-046-06 MSD	Percent Recovery	RPD	Flags
Benzene	52.2	104	52.2	104	0	·
Toluene	49.0	98	49.0	98	0	
Ethyl Benzene	50.1	100	50.1	100	0	·
m,p-Xylene	49.5	99	49.5	99	0	
o-Xylene	49.8	100	49.6	99	0	

Surrogate	Recovery:
-----------	-----------

Fluorobenzene

97%

97%

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Date Extracted:	12-12-03
Date Analyzed:	12-14-03

Matrix:	Water
Units:	mg/L (ppm)

Client ID:	MW-4	MW-44	MW-2
Lab ID:	12-046-01	12-046-02	12-046-03
		· · · · ·	
Diesel Range:	ND	ND	ND
PQL:	0.25	0.25	0.25
Identification:			
			· .
Lube Oil Range:	ND	ND	ND
PQL:	0.40	0.40	0.40
Identification:		 	
Surrogate Recovery			
o-Terphenyl:	105%	110%	114%
Flags:	Y	Y	Y
riaya.	1	1	•

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Date Extracted:	12-12-03
Date Analyzed:	12-14-03

Water mg/L (ppm)

Matrix:	
Units:	

Client ID:	MW-3	RW-2	MW-1
Lab ID:	12-046-04	12-046-05	12-046-06
			· · ·
Diesel Range:	ND	ND	ND
PQL:	0.25	0.25	0.25
Identification:			
Lube Oil Range:	ND	ND	ND
PQL:	0.40	0.40	0.40
Identification:			
Surrogate Recovery	•		
o-Terphenyl:	106%	104%	109%
Flags:	Y	Y	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Date Extracted:	12-12-03
Date Analyzed:	12-14&15-03

Matrix:	Water
Units:	mg/L (ppm)

Client ID: Lab ID:	MW-5 12-046-07	MW-6 12-046-08
Diesel Range: PQL: Identification:	ND 0.25 	ND 0.26
Lube Oil Range: PQL: Identification:	ND 0.41	ND 0.41
Surrogate Recovery o-Terphenyl:	115%	94%
Flags:	Y	Y

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:	12-12-03
Date Analyzed:	12-14-03

Matrix:	Water		
Units:		mg/L (ppm)	

Lab ID:	MB1212W1
Diesel Range: PQL:	ND 0.25
Identification:	
Lube Oil Range:	ND
PQL:	0.40
Identification:	

Surrogate Recove	ery	
o-Terphenyl:		115%

Y

Flags:

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx DUPLICATE QUALITY CONTROL

12-046-01 DUP

ND 0.26

Date Extracted:	12-12-03	
Date Analyzed:	12-14-03	
· · · · · · · · · · · · · · · · · · ·		
Matrix:	Water	
Units:	mg/L (ppm)	
Lab ID:	12-046-01	
Diesel Range:	ND	
PQL:	0.25	
חחח	N/A	
RPD:	N/A	

Surrogate Recovery		
o-Terphenyl:	105%	95%
		· · ·
Flags:	Y	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

G - Insufficient sample quantity for duplicate analysis.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

O - Hydrocarbons outside the defined gasoline range are present in the sample.

P - The RPD of the detected concentrations between the two columns is greater than 40.

Q - Surrogate recovery is outside of the control limits.

S - Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

V - Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.

W - Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.

X - Sample extract treated with a silica gel cleanup procedure.

Y - Sample extract treated with an acid cleanup procedure.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

STL Seattle 5755 8th Street East Tacoma, WA 98424

Tel: 253 922 2310 Fax: 253 922 5047 www.stl-inc.com

TRANSMITTAL MEMORANDUM

DATE: December 19, 2003

TO: David Baumeister OnSite Environmental, Inc. 14648 N. E. 95th St. Redmond, WA 98052

PROJECT: 12-046

REPORT NUMBER: 118328

TOTAL NUMBER OF PAGES: \mathcal{M}^{1}

Enclosed are the test results for eight samples received at STL Seattle on December 12, 2003.

The report consists of this transmittal memo, analytical results, quality control reports, a copy of the chain-of-custody, a list of data qualifiers and analytical narrative when applicable, and a copy of any requested raw data.

Should there be any questions regarding this report, please contact me at (253) 922-2310.

Sincerely,

Stan Palmquist Project Manager

STL Seattle is a part of Severn Trent Laboratories, Inc.

This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized. If you have received this report in error, please notify the sender immediately at 253-922-2310 and destroy this report immediately.

Sample Identification:

<u>Lab. No.</u>	<u>Client ID</u>	Date/Time Sampled	<u>Matrix</u>
118328-1 118328-2 118328-3 118328-4 118328-5 118328-6 118328-7	MW-4 MW-44 MW-2 MW-3 RW-2 MW-1 MW-5	12-03-03 * 12-03-03 * 12-03-03 * 12-03-03 * 12-03-03 * 12-03-03 * 12-03-03 *	Liquid Liquid Liquid Liquid Liquid Liquid Liquid
118328-8	MW-6	12-03-03 *	Liquid

* - Sampling time not specified for this sample

STL Seattle is a part of Severn Trent Laboratories, Inc.

This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized. If you have received this report in error, please notify the sender immediately at 253-922-2310 and destroy this report immediately.

13

Client Name	OnSite Environmental, Inc.
Client ID:	MW-4
Lab ID:	118328-01
Date Received:	12/12/2003
Date Prepared:	12/15/2003
Date Analyzed:	12/15/2003
% Solids	-
Dilution Factor	1

Volatile Organics by USEPA Method 5030/8260B

SMC /			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	91.2		80	120
Fluorobenzene	102		80	120
Toluene-D8	105		80	120
Ethylbenzene-d10	112		80	120
Bromofluorobenzene	108		80	120
Trifluorotoluene	106		80	120

	Result		
Analyte	(ug/L)	PQL	MRL Flags
Dichlorodifluoromethane	ND	1	0.5
Chloromethane	ND	2	1
Vinyl chloride	ND	1	0.5
Bromomethane	ND	2.5	1.25
Chloroethane	ND	1	0.5
Trichlorofluoromethane	ND	1	0.5
1,1-Dichloroethene	ND	1	0.5
Methylene chloride	ND	2	1
trans-1,2-Dichloroethene	ND	1	0.5
1,1-Dichloroethane	ND	1	0.5
2,2-Dichloropropane	ND	1	0.5
cis-1,2-Dichloroethene	ND	1	0.5
Bromochloromethane	ND	1	. 0.5
Chloroform	ND	1	0.5
1,1,1-Trichloroethane	ND	1	0.5
Carbon Tetrachloride	ND	1	0.5
1,1-Dichloropropene	ND	1	0.5
Benzene	ND	1	0.5
1,2-Dichloroethane	ND	1	0.5
Trichloroethene	ND	1	0.5
1,2-Dichloropropane	ND	1	0.5
Dibromomethane	ND	1	0.5
Bromodichloromethane	ND	1	0.5
cis-1,3-Dichloropropene	ND	1	0.5
Toluene	ND	1	0.5
trans-1,3-Dichloropropene	ND	1	0.5

~

Volatile Organics by USEPA Method 5030/8260B data for 118328-01 continued...

	Result		
Analyte	(ug/L)	PQL	MRL
1,1,2-Trichloroethane	ND	1	0.5
Tetrachloroethene	ND	1	0.5
1,3-Dichloropropane	ND	1	0.5
Dibromochloromethane	ND	1	0.5
1,2-Dibromoethane	ND	1	0.5
Chlorobenzene	ND	1	0.5
Ethylbenzene	ND	1	0.5
1,1,1,2-Tetrachloroethane	ND	1	0.5
m,p-Xylene	ND	2	1
o-Xylene	ND	1	0.5
Styrene	ND	1	0.5
Bromoform	ND	1	0.5
Isopropylbenzene	ND	1	0.5
Bromobenzene	ND	1	0.5
n-Propylbenzene	ND	1	0.5
1,1,2,2-Tetrachloroethane	ND	1	0.5
1,2,3-Trichloropropane	ND	1	0.5
2-Chlorotoluene	ND	1	0.5
1,3,5-Trimethylbenzene	ND	1	0.5
4-Chlorotoluene	ND	1	0.5
t-Butylbenzene	ND	1	0.5
1,2,4-Trimethylbenzene	ND	1	0.5
sec-Butylbenzene	ND	1	0.5
1,3-Dichlorobenzene	ND	1	0.5
4-Isopropyltoluene	ND	1	0.5
1,4-Dichlorobenzene	ND	1	0.5
n-Butylbenzene	• ND	1	0.5
1,2-Dichlorobenzene	ND	1	0.5
1,2-Dibromo-3-chloropropane	ND	1	0.5
1,2,4-Trichlorobenzene	ND	1	0.5
Hexachlorobutadiene	ND	1	0.5
Naphthalene	ND	2	1
1,2,3-Trichlorobenzene	ND	1	0.5

4

OnSite Environmental, Inc.
MW-44
118328-02
12/12/2003
12/15/2003
12/15/2003
-
1

Volatile Organics by USEPA Method 5030/8260B

SMC /			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	94.5		80	120
Fluorobenzene	102		80	120
Toluene-D8	105		80	120
Ethylbenzene-d10	109		80	120
Bromofluorobenzene	105		80	120
Trifluorotoluene	104		80	120

	Resul		
Analyte	(ug/L)) PQL	MRL Flags
Dichlorodifluoromethane	ND	1	0.5
Chloromethane	ND	2	1
Vinyl chloride	ND	1	0.5
Bromomethane	ND	2.5	1.25
Chloroethane	ND	1	0.5
Trichlorofluoromethane	ND	1	0.5
1,1-Dichloroethene	ND	1	0.5
Methylene chloride	ND	2	1
trans-1,2-Dichloroethene	ND	1	0.5
1,1-Dichloroethane	ND	1	0.5
2,2-Dichloropropane	ND	1	0.5
cis-1,2-Dichloroethene	ND	1	0.5
Bromochloromethane	ND	1	0,5
Chloroform	ND	1	0.5
1,1,1-Trichloroethane	ND	1	0.5
Carbon Tetrachloride	ND	1	0.5
1,1-Dichloropropene	ND	1	0.5
Benzene	ND	1	0.5
1,2-Dichloroethane	ND	1	0.5
Trichloroethene	ND	1	0.5
1,2-Dichloropropane	ND	1	0.5
Dibromomethane	ND	1	0.5
Bromodichloromethane	ND	1	0.5
cis-1,3-Dichloropropene	ND	1	0.5
Toluene	ND	1	0.5
trans-1,3-Dichloropropene	ND	1	0.5

Volatile Organics by USEPA Method 5030/8260B data for 118328-02 continued...

	Result		
Analyte	(ug/L)	PQL	MRL
1,1,2-Trichloroethane	ND	1	0.5
Tetrachloroethene	ND	1	0.5
1,3-Dichloropropane	ND	1	0.5
Dibromochloromethane	ND	1	0.5
1,2-Dibromoethane	ND	1	0.5
Chlorobenzene	ND	1	0.5
Ethylbenzene	ND	1	0.5
1,1,1,2-Tetrachloroethane	ND	1	0.5
m,p-Xylene	ND	2	1
o-Xylene	ND	1	0.5
Styrene	ND	1	0.5
Bromoform	ND	1	0.5
Isopropylbenzene	ND	1	0.5
Bromobenzene	ND.	1	0.5
n-Propylbenzene	ND	1	0.5
1,1,2,2-Tetrachloroethane	ND	1	0.5
1,2,3-Trichloropropane	ND	1	0.5
2-Chlorotoluene	ND	1	0.5
1,3,5-Trimethylbenzene	ND	1	0.5
4-Chlorotoluene	ND	1	0.5
t-Butylbenzene	ND	1	0.5
1,2,4-Trimethylbenzene	ND	1	0.5
sec-Butylbenzene	ND	1	0.5
1,3-Dichlorobenzene	ND	1	0.5
4-Isopropyltoluene	ND	1	0.5
1,4-Dichlorobenzene	ND	1	0.5
n-Butylbenzene	ND	1	0.5
1,2-Dichlorobenzene	ND	1	0.5
1,2-Dibromo-3-chloropropane	ND	1	0.5
1,2,4-Trichlorobenzene	ND	1	0.5
Hexachlorobutadiene	ND	1	0.5
Naphthalene	ND	2	1
1,2,3-Trichlorobenzene	ND	1	0.5

.

6

Client Name	OnSite Environmental, Inc.
Client ID:	MW-2
Lab ID:	118328-03
Date Received:	12/12/2003
Date Prepared:	12/15/2003
Date Analyzed:	12/15/2003
% Solids	-
Dilution Factor	1

Volatile Organics by USEPA Method 5030/8260B

SMC /			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	91.6		80	120
Fluorobenzene	102		80	120
Toluene-D8	106		80	120
Ethylbenzene-d10	112		80	120
Bromofluorobenzene	105		80	120
Trifluorotoluene	106		80	120

	Result		
Analyte	(ug/L)	PQL	MRL Flags
Dichlorodifluoromethane	ND	1	0.5
Chloromethane	ND	2	1
Vinyl chloride	ND	1	0.5
Bromomethane	ND	2.5	1.25
Chloroethane	ND	1	0.5
Trichlorofluoromethane	ND	1	0.5
1,1-Dichloroethene	ND	1	0.5
Methylene chloride	ND	2	1
trans-1,2-Dichloroethene	ND	1	0.5
1,1-Dichloroethane	ND	1	0.5
2,2-Dichloropropane	ND	1	0.5
cis-1,2-Dichloroethene	ND	1	0.5
Bromochloromethane	ND	1	0.5
Chloroform	ND	1	0.5
1,1,1-Trichloroethane	ND	1	0.5
Carbon Tetrachloride	ND	1	0.5
1,1-Dichloropropene	ND	1	0.5
Benzene	ND	1	0.5
1,2-Dichloroethane	ND	1	0.5
Trichloroethene	ND	1	0.5
1,2-Dichloropropane	ND	1	0.5
Dibromomethane	ND	1	0.5
Bromodichloromethane	ND	1	0.5
cis-1,3-Dichloropropene	ND	1	0.5
Toluene	ND	1	0.5
trans-1,3-Dichloropropene	ND	1	0.5

7

. . : : -

Volatile Organics by USEPA Method 5030/8260B data for 118328-03 continued...

	Result		
Analyte	(ug/L)	PQL	MRL
1,1,2-Trichloroethane	ND	1	0.5
Tetrachloroethene	ND	1	0.5
1,3-Dichloropropane	ND	1	0.5
Dibromochloromethane	ND	1	0.5
1,2-Dibromoethane	ND	1	0.5
Chlorobenzene	ND	1	0.5
Ethylbenzene	ND	1	0.5
1,1,1,2-Tetrachloroethane	ND	1	0.5
m,p-Xylene	ND	2	1
o-Xylene	ND	1	0.5
Styrene	ND	1	0.5
Bromoform	ND	1	0.5
Isopropylbenzene	ND	1	0.5
Bromobenzene	ND	1	0.5
n-Propylbenzene	ND	1	0.5
1,1,2,2-Tetrachloroethane	ND	· 1	0.5
1,2,3-Trichloropropane	ND	1	0.5
2-Chlorotoluene	ND	1	0.5
1,3,5-Trimethylbenzene	ND	1	0.5
4-Chlorotoluene	ND	1	0.5
t-Butylbenzene	ND	1	0.5
1,2,4-Trimethylbenzene	ND	1	0.5
sec-Butylbenzene	ND	. 1	0.5
1,3-Dichlorobenzene	ND	1	0.5
4-Isopropyltoluene	ND	1	0.5
1,4-Dichlorobenzene	ND	1	0.5
n-Butylbenzene	ND	1	0.5
1,2-Dichlorobenzene	ND	1	0.5
1,2-Dibromo-3-chloropropane	ND	1	0.5
1,2,4-Trichlorobenzene	ND	1	0.5
Hexachlorobutadiene	ND	1	0.5
Naphthalene	ND	2	1
1,2,3-Trichlorobenzene	ND	1	0.5
, ,			

8

OnSite Environmental, Inc.
MW-3
118328-04
12/12/2003
12/15/2003
12/15/2003
-
1

Volatile Organics by USEPA Method 5030/8260B

SMC /			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	92.7		80	120
Fluorobenzene	102		80	120
Toluene-D8	106		80	120
Ethylbenzene-d10	111		80	120
Bromofiuorobenzene	106		80	120
Trifluorotoluene	105		80	120

		Result		
Analyte		(ug/L)	PQL	MRL Flags
Dichlorodifluoromethane	ND		1	0.5
Chloromethane	ND		2	1
Vinyl chloride	ND		1	0.5
Bromomethane	ND		2.5	1.25
Chloroethane	ND		1	0.5
Trichlorofluoromethane	ND		1	0.5
1,1-Dichloroethene	ND		1	0.5
Methylene chloride	ND		2	1
trans-1,2-Dichloroethene	ND		1	0.5
1,1-Dichloroethane	ND		1	0.5
2,2-Dichloropropane	ND		1	0.5
cis-1,2-Dichloroethene	ND		1	0.5
Bromochloromethane	ND		1	0.5
Chloroform	ND		1	0.5
1,1,1-Trichloroethane	ND		1	0.5
Carbon Tetrachloride	ND		1	0.5
1,1-Dichloropropene	ND		1	0.5
Benzene	ND		1	0.5
1,2-Dichloroethane	ND		1	0.5
Trichloroethene	ND		1	0.5
1,2-Dichloropropane	ND		1	0.5
Dibromomethane	ND		1	0.5
Bromodichloromethane	ND		1	0.5
cis-1,3-Dichloropropene	ND		1	0.5
Toluene	ND		1	0.5
trans-1,3-Dichloropropene	ND		1	0.5

9

 $\mathcal{L}_{\mathcal{A}}$

Volatile Organics by USEPA Method 5030/8260B data for 118328-04 continued...

Result			
Analyte	(ug/L)	PQL	MRL
1,1,2-Trichloroethane	ND	1	0.5
Tetrachloroethene	ND	1	0.5
1,3-Dichloropropane	ND	1	0.5
Dibromochloromethane	ND	1	0.5
1,2-Dibromoethane	ND	1	0.5
Chlorobenzene	ND	1	0.5
Ethylbenzene	ND	1	0.5
1,1,1,2-Tetrachloroethane	ND	1	0.5
m,p-Xylene	ND	2	1
o-Xylene	ND	1	0.5
Styrene	ND	1	0.5
Bromoform	ND	1	0.5
Isopropylbenzene	ND	1	0.5
Bromobenzene	ND	1	0.5
n-Propylbenzene	ND	1	0.5
1,1,2,2-Tetrachloroethane	ND	1	0.5
1,2,3-Trichloropropane	ND	1	0.5
2-Chlorotoluene	ND	.1	0.5
1,3,5-Trimethylbenzene	ND	1	0.5
4-Chlorotoluene	ND	1	0.5
t-Butylbenzene	ND	1	0.5
1,2,4-Trimethylbenzene	ND	1	0.5
sec-Butylbenzene	ND	1	0.5
1,3-Dichlorobenzene	ND	1	0.5
4-Isopropyltoluene	ND	1	0.5
1,4-Dichlorobenzene	ND	1	0.5
n-Butylbenzene	ND	1	0.5
1,2-Dichlorobenzene	ND	1	0.5
1,2-Dibromo-3-chloropropane	ND	1	0.5
1,2,4-Trichlorobenzene	ND	1	0.5
Hexachlorobutadiene	ND	1	0.5
Naphthalene	ND	2	1
1,2,3-Trichlorobenzene	ND	1	0.5

10

Client Name	OnSite Environmental, Inc.
Client ID:	RW-2
Lab ID:	118328-05
Date Received:	12/12/2003
Date Prepared:	12/15/2003
Date Analyzed:	12/15/2003
% Solids	-
Dilution Factor	1

Volatile Organics by USEPA Method 5030/8260B

SMC /			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	91.3		80	120
Fluorobenzene	101		80	120
Toluene-D8	106		80	120
Ethylbenzene-d10	109		80	120
Bromofluorobenzene	104		80	120
Trifluorotoluene	107		80	120

		Result		·
Analyte		(ug/L)	PQL	MRL Flags
Dichlorodifluoromethane	ND		1	0.5
Chloromethane	ND		2	1
Vinyl chloride	ND		1	0.5
Bromomethane	ND		2.5	1.25
Chloroethane	ND		1	0.5
Trichlorofluoromethane	ND		1	0.5
1,1-Dichloroethene	ND		1	0.5
Methylene chloride	ND		2	1
trans-1,2-Dichloroethene	ND		1	0.5
1,1-Dichloroethane	ND		1	0.5
2,2-Dichloropropane	ND		1	0.5
cis-1,2-Dichloroethene	ND		1	0.5
Bromochloromethane	ND		1	0.5
Chloroform	ND		1	0.5
1,1,1-Trichloroethane	ND		1	0.5
Carbon Tetrachloride	ND		1	0.5
1,1-Dichloropropene	ND		1	0.5
Benzene	5.31		1	0.5
1,2-Dichloroethane	ND		1	0.5
Trichloroethene	ND		1	0.5
1,2-Dichloropropane	ND		1	0.5
Dibromomethane	ND		1	0.5
Bromodichloromethane	ND		1	0.5
cis-1,3-Dichloropropene	ND		1	0.5
Toluene	ND		1	0.5
trans-1,3-Dichloropropene	ND		1	0.5

Volatile Organics by USEPA Method 5030/8260B data for 118328-05 continued...

Result				
Analyte	(ug/L)	PQL	MRL	
1,1,2-Trichloroethane	ND	1	0.5	
Tetrachloroethene	ND	1	0.5	
1,3-Dichloropropane	ND	1	0.5	
Dibromochloromethane	ND	1	0.5	
1,2-Dibromoethane	ND	1	0.5	
Chlorobenzene	ND	1	0.5	
Ethylbenzene	ND	1	0.5	
1,1,1,2-Tetrachloroethane	ND	1	0.5	
m,p-Xylene	ŅD	2	1	
o-Xylene	ND	1	0.5	
Styrene	ND	1	0.5	
Bromoform	ND	1	0.5	
Isopropylbenzene	5.26	1	0.5	
Bromobenzene	ND	1	0.5	
n-Propylbenzene	5.5	1	0.5	
1,1,2,2-Tetrachloroethane	ND	1	0.5	
1,2,3-Trichloropropane	ND	1	0.5	
2-Chlorotoluene	ND	1	0.5	
1,3,5-Trimethylbenzene	ND	1	0.5	
4-Chlorotoluene	ND	1	0.5	
t-Butylbenzene	ND	1	0.5	
1,2,4-Trimethylbenzene	0.589	1	0.5	
sec-Butylbenzene	3.29	1	0.5	
1,3-Dichlorobenzene	ND	1	0.5	
4-Isopropyltoluene	ND	1	0.5	
1,4-Dichlorobenzene	ND	1	0.5	
n-Butylbenzene	ND	1	0.5	
1,2-Dichlorobenzene	ND	1	0.5	
1,2-Dibromo-3-chloropropane	ND	1	0.5	
1,2,4-Trichlorobenzene	ND	1	0.5	
Hexachlorobutadiene	ND	1	0.5	
Naphthalene	ND	2	1	
1,2,3-Trichlorobenzene	ND	1	0.5	

J

Client Name	OnSite Environmental, Inc.
Client ID:	MW-1
Lab ID:	118328-06
Date Received:	12/12/2003
Date Prepared:	12/15/2003
Date Analyzed:	12/15/2003
% Solids	-
Dilution Factor	1 .

Volatile Organics by USEPA Method 5030/8260B

SMC /			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	90.1		80	120
Fluorobenzene	101		80	120
Toluene-D8	107		80	120
Ethylbenzene-d10	111		80	120
Bromofluorobenzene	107		80	120
Trifluorotoluene	104		80	120

	Result			
Analyte	(ug/L)	PQL	MRL Flags	3
Dichlorodifluoromethane	ND	1	0.5	
Chloromethane	ND	2	1	
Vinyl chloride	ND	1	0.5	
Bromomethane	ND	2.5	1.25	
Chloroethane	ND	. 1	0.5	
Trichlorofluoromethane	ND	1	0.5	
1,1-Dichloroethene	ND	1	0.5	
Methylene chloride	ND	2	1	
trans-1,2-Dichloroethene	ND	1	0.5	
1,1-Dichloroethane	ND	1	0.5	
2,2-Dichloropropane	ND	1	0.5	
cis-1,2-Dichloroethene	ND	1	0.5	
Bromochloromethane	ND	1	0.5	
Chloroform	ND	1	0.5	
1,1,1-Trichloroethane	ND	1	0.5	
Carbon Tetrachloride	ND	1	0.5	
1,1-Dichloropropene	ND	1	0.5	
Benzene	ND	1	0.5	
1,2-Dichloroethane	ND	1	0.5	
Trichloroethene	ND	1	0.5	
1,2-Dichloropropane	ND	1	0.5	
Dibromomethane	ND	· 1	0.5	
Bromodichloromethane	ND	1	0.5	
cis-1,3-Dichloropropene	ND	1	0.5	
Toluene	ND	1	0.5	
trans-1,3-Dichloropropene	ND	1	0.5	

Volatile Organics by USEPA Method 5030/8260B data for 118328-06 continued...

Result				
Analyte	(ug/L)	PQL	MRL	
1,1,2-Trichloroethane	ND	1	0.5	
Tetrachloroethene	ND	1	0.5	
1,3-Dichloropropane	ND	1	0.5	
Dibromochloromethane	ND	1	0.5	
1,2-Dibromoethane	ND	1	0.5	
Chlorobenzene	ND	1	0.5	
Ethylbenzene	ND	1	0.5	
1,1,1,2-Tetrachloroethane	ND	1	0.5	
m,p-Xylene	ND	2	1	
o-Xylene	ND	1	0.5	
Styrene	ND	1	0.5	
Bromoform	ND	1	0.5	
Isopropylbenzene	ND	1	0.5	
Bromobenzene	ND	1	0.5	
n-Propylbenzene	ND	1	0.5	
1,1,2,2-Tetrachloroethane	ND	1	0.5	
1,2,3-Trichloropropane	ND	1	0.5	
2-Chlorotoluene	ND	1	0.5	
1,3,5-Trimethylbenzene	ND	1	0.5	
4-Chlorotoluene	ND	1	0.5	
t-Butylbenzene	ND	1	0.5	
1,2,4-Trimethylbenzene	ND	1	0.5	
sec-Butylbenzene	ND	1	0.5	
1,3-Dichlorobenzene	ND	1	0.5	
4-Isopropyltoluene	ND	1	0.5	
1,4-Dichlorobenzene	ND	1	0.5	
n-Butylbenzene	ND	1	0.5	
1,2-Dichlorobenzene	ND	1	0.5	
1,2-Dibromo-3-chloropropane	ND	1	0.5	
1,2,4-Trichlorobenzene	ND	1	0.5	
Hexachlorobutadiene	ND	1	0.5	
Naphthalene	ND	2	1	
1,2,3-Trichlorobenzene	ND	1	0.5	

Client ID: MW-5 Lab ID: 118328-07 Date Received: 12/12/2003 Date Prepared: 12/15/2003 Date Analyzed: 12/15/2003 % Solids - Dilution Factor 1	Client Name	OnSite Environmental, Inc.
Date Received:12/12/2003Date Prepared:12/15/2003Date Analyzed:12/15/2003% Solids-	Client ID:	MW-5
Date Prepared:12/15/2003Date Analyzed:12/15/2003% Solids-	Lab ID:	118328-07
Date Analyzed: 12/15/2003 % Solids -	Date Received:	12/12/2003
% Solids -	Date Prepared:	12/15/2003
	Date Analyzed:	12/15/2003
Dilution Factor 1	% Solids	-
	Dilution Factor	1

.

Volatile Organics by USEPA Method 5030/8260B

SMC /			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	91.2		80	120
Fluorobenzene	100		80	120
Toluene-D8	105		80	120
Ethylbenzene-d10	109		80	120
Bromofluorobenzene	103		80	120
Trifluorotoluene	105		80	120

	Resul	t	
Analyte	(ug/L) PQL	MRL Flags
Dichlorodifluoromethane	ND	1	0.5
Chloromethane	ND	2	1
Vinyl chloride	ND	1	0.5
Bromomethane	ND	2.5	1.25
Chloroethane	ND	1	0.5
Trichlorofluoromethane	ND	1	0.5
1,1-Dichloroethene	ND	1	0.5
Methylene chloride	ND	2	1
trans-1,2-Dichloroethene	ND	1	0.5
1,1-Dichloroethane	ND	1	0.5
2,2-Dichloropropane	ND	1	0.5
cis-1,2-Dichloroethene	ND	1	0.5
Bromochloromethane	ND	1	0.5
Chloroform	ND	1	0.5
1,1,1-Trichloroethane	ND	1	0.5
Carbon Tetrachloride	ND	1	0.5
1,1-Dichloropropene	ND	1	0.5
Benzene	ND	1	0.5
1,2-Dichloroethane	ND	1	0.5
Trichloroethene	ND	1	0.5
1,2-Dichloropropane	ND	1	0.5
Dibromomethane	ND	1	0.5
Bromodichloromethane	ND	1	0.5
cis-1,3-Dichloropropene	ND	1	0.5
Toluene	ND	1	0.5
trans-1,3-Dichloropropene	ND	1	0.5

Volatile Organics by USEPA Method 5030/8260B data for 118328-07 continued...

	Result		
Analyte	(ug/L)	PQL	MRL
1,1,2-Trichloroethane	ND	1	0.5
Tetrachloroethene	ND	1	0.5
1,3-Dichloropropane	ND	1	0.5
Dibromochloromethane	ND	1	0.5
1,2-Dibromoethane	ND	1	0.5
Chlorobenzene	ND	1	0.5
Ethylbenzene	ND	1	0.5
1,1,1,2-Tetrachloroethane	ND	1	0.5
m,p-Xylene	ND	2	1
o-Xylene	ND	1	0.5
Styrene	ND	1	0.5
Bromoform	ND	1	0.5
Isopropylbenzene	ND	1	0.5
Bromobenzene	ND	1	0.5
n-Propylbenzene	ND	1	0.5
1,1,2,2-Tetrachloroethane	ND	1	0.5
1,2,3-Trichloropropane	ND	1	0.5
2-Chlorotoluene	ND	1	0.5
1,3,5-Trimethylbenzene	ND	1	0.5
4-Chlorotoluene	ND	1	0.5
t-Butylbenzene	ND	1	0.5
1,2,4-Trimethylbenzene	ND	1	0.5
sec-Butylbenzene	ND	1	0.5
1,3-Dichlorobenzene	ND	1	0.5
4-Isopropyltoluene	ND	1	0.5
1,4-Dichlorobenzene	ND	1	0.5
n-Butylbenzene	ND	1	0.5
1,2-Dichlorobenzene	ND	1	0.5
1,2-Dibromo-3-chloropropane	ND	1	0.5
1,2,4-Trichlorobenzene	ND	1	0.5
Hexachlorobutadiene	ND	1	0.5
Naphthalene	ND	2	1
1,2,3-Trichlorobenzene	ND	1	0.5

,

Client Name	OnSite Environmental, Inc.
Client ID:	MW-6
Lab ID:	118328-08
Date Received:	12/12/2003
Date Prepared:	12/15/2003
Date Analyzed:	12/15/2003
% Solids	-
Dilution Factor	1

Volatile Organics by USEPA Method 5030/8260B

SMC /			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	92.3		80	120
Fluorobenzene	102		80	120
Toluene-D8	104		80	120
Ethylbenzene-d10	107		80	120
Bromofluorobenzene	103		80	120
Trifluorotoluene	104		80	120

	Result		
Analyte	(ug/L)	PQL	MRL Flags
Dichlorodifluoromethane	ND	1	0.5
Chloromethane	ND	2	1
Vinyl chloride	ND	1	0.5
Bromomethane	ND	2.5	1.25
Chloroethane	ND	1	0.5
Trichlorofluoromethane	ND	1	0.5
1,1-Dichloroethene	ND	1	0.5
Methylene chloride	ND	2	1 .
trans-1,2-Dichloroethene	ND	1	0.5
1,1-Dichloroethane	ND	1	0.5
2,2-Dichloropropane	ND	、 1	0.5
cis-1,2-Dichloroethene	ND	1	0.5
Bromochloromethane	ND	1	0.5
Chloroform	ND	1	0.5
1,1,1-Trichloroethane	ND	1	0.5
Carbon Tetrachloride	ND	1	0.5
1,1-Dichloropropene	ND	1	0.5
Benzene	ND	1	0.5
1,2-Dichloroethane	ND	1	0.5
Trichloroethene	ND	1	0.5
1,2-Dichloropropane	ND	1	0.5
Dibromomethane	ND	1	0.5
Bromodichloromethane	ND	1	0.5
cis-1,3-Dichloropropene	ND	. 1	0.5
Toluene	ND	1	0.5
trans-1,3-Dichloropropene	ND	1	0.5
			16

Volatile Organics by USEPA Method 5030/8260B data for 118328-08 continued...

		Result		
Analyte		(ug/L)	PQL	MRL
1,1,2-Trichloroethane	ND		1	0.5
Tetrachloroethene	ND		1	0.5
1,3-Dichloropropane	ND		1	0.5
Dibromochloromethane	ND		1	0.5
1,2-Dibromoethane	ND		1	0.5
Chlorobenzene	ND		1	0.5
Ethylbenzene	ND		1	0.5
1,1,1,2-Tetrachloroethane	ND		1	0.5
m,p-Xylene	ND		2	1
o-Xylene	ND		1	0.5
Styrene	ND		1	0.5
Bromoform	ND		1	0.5
Isopropylbenzene	ND		1	0.5
Bromobenzene	ND		1	0.5
n-Propylbenzene	ND		1	0.5
1,1,2,2-Tetrachloroethane	ND		1	0.5
1,2,3-Trichloropropane	ND		1	0.5
2-Chlorotoluene	ND		1 .	0.5
1,3,5-Trimethylbenzene	ND		1	0.5
4-Chlorotoluene	ND		1	0.5
t-Butylbenzene	ND		1	0.5
1,2,4-Trimethylbenzene	ND		1	0.5
sec-Butylbenzene	ND		1	0.5
1,3-Dichlorobenzene	ND		1	0.5
4-Isopropyltoluene	ND		1	0.5
1,4-Dichlorobenzene	ND		1	0.5
n-Butylbenzene	ND		1	0.5
1,2-Dichlorobenzene	ND ·		1	0.5
1,2-Dibromo-3-chloropropane	ND		1	0.5
1,2,4-Trichlorobenzene	ND		1	0.5
Hexachlorobutadiene	ND		1	0.5
Naphthalene	ND		2	1
1,2,3-Trichlorobenzene	ND		1	0.5

17

C ...

Lab ID:Method Blank - VOA595Date Received:-Date Prepared:12/15/2003Date Analyzed:12/15/2003% Solids-Dilution Factor1

Volatile Organics by USEPA Method 5030/8260B

SMC /			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	90.8		80	120
Fluorobenzene	101		80	120
Toluene-D8	106		80	120
Ethylbenzene-d10	114		80	120
Bromofluorobenzene	1.10		80	120
Trifluorotoluene	110		80	120

		Result			
Analyte		(ug/L)	PQL	MRL	Flags
Dichlorodifluoromethane	ND		1	0.5	
Chloromethane	ND		2	1	
Vinyl chloride	ND		1	0.5	
Bromomethane	ND		2.5	1.25	
Chloroethane	ND		1	0.5	
Trichlorofluoromethane	ND		· 1	0.5	
1,1-Dichloroethene	ND		1	0.5	
Methylene chloride	ND	,	2	1	
trans-1,2-Dichloroethene	ND		1	0.5	
1,1-Dichloroethane	ND		1	0.5	
2,2-Dichloropropane	ND		1	0.5	
cis-1,2-Dichloroethene	ND		1	0.5	
Bromochloromethane	ND		1	0.5	
Chloroform	ND		1	0.5	
1,1,1-Trichloroethane	ND		1	0.5	
Carbon Tetrachloride	ND		1	0.5	
1,1-Dichloropropene	ND		1	0.5	
Benzene	ND		1	0.5	
1,2-Dichloroethane	ND		1	0.5	
Trichloroethene	ND		1	0.5	
1,2-Dichloropropane	ND		1	0.5	
Dibromomethane	ND		1	0.5	
Bromodichloromethane	ND		1	0.5	
cis-1,3-Dichloropropene	ND		1	0.5	
Toluene	ND		1	0.5	
trans-1,3-Dichloropropene	ND		1	<u>`</u> 0.5	

Volatile Organics by USEPA Method 5030/8260B data for VOA595 continued...

	Result		
Analyte	(ug/L)	PQL	MRL
1,1,2-Trichloroethane	ND	1	0.5
Tetrachloroethene	ND	1	0.5
1,3-Dichloropropane	ND	1.	0.5
Dibromochloromethane	ND	1	0.5
1,2-Dibromoethane	ND	1	0.5
Chlorobenzene	ND	1	0.5
Ethylbenzene	ND	1	0.5
1,1,1,2-Tetrachloroethane	ND	1	0.5
m,p-Xylene	ND	2	1
o-Xylene	ND	1	0.5
Styrene	ND	1	0.5
Bromoform	ND	1	0.5
Isopropylbenzene	ND	1	0.5
Bromobenzene	ND	1	0.5
n-Propylbenzene	ND	1	0.5
1,1,2,2-Tetrachloroethane	ND	1	0.5
1,2,3-Trichloropropane	ND	1	0.5
2-Chlorotoluene	ND	1	0.5
1,3,5-Trimethylbenzene	ND	1	0.5
4-Chlorotoluene	ND	1	0.5
t-Butylbenzene	ND	1	0.5
1,2,4-Trimethylbenzene	ND	1	0.5
sec-Butylbenzene	ND	1	0.5
1,3-Dichlorobenzene	ND	1	0.5
4-Isopropyltoluene	ND	1	0.5
1,4-Dichlorobenzene	ND	1	0.5
n-Butylbenzene	ND	1	0.5
1,2-Dichlorobenzene	ND	1	0.5
1,2-Dibromo-3-chloropropane	ND	1	0.5
1,2,4-Trichlorobenzene	ND	1	0.5
Hexachlorobutadiene	ND	1	0.5
Naphthalene	ND	2	1
1,2,3-Trichlorobenzene	ND	1	0.5

19

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared: Date Analyzed: QC Batch ID: VOA595 12/15/2003 12/15/2003 VOA595

20

Volatile Organics by USEPA Method 5030/8260B

Compound Name 1,1-Dichloroethene	Blank Result (ug/L) 0	Spike Amount (ug/L) 5	BS Result (ug/L) 4.59	BS % Rec. 91.8	BSD Result (ug/L) 4.51	BSD % Rec. 90.1	RPD -1.9	Flag
Benzene	0	5	4.87	97.5	4.73	94.5	-3.1	
Trichloroethene	0	5	4.86	97.3	5	100	2.7	
Toluene	0	5	4.8	96	4.74	94.9	-1.2	
Chlorobenzene	0	5	5	100	5.03	101	1	

CHAIN OF CUSTODY RECORD

(FOR SUBCONTRACT LABORATORY)

Lab Reference Number: 12-046

12

183200

14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project Manager: David Baumeister

Project Number: 033-1000.000

Project Name: Consolidated Freightway

Comments				- / - C	/./-				 		2-12-03		12/12/-	300
											1			
											date:	time:	date:	time:
Analysis Requested	Volatiles EPA 8260B	Volatiles EPA 8260B	Volatiles EPA 8260B	Volatiles EPA 8260B	Volatiles EPA 8260B	Volatiles EPA 8260B	Volatiles EPA 8260B	Volatiles EPA 8260B			Ziach		(cf	ST
# Jars	ო	m	<i>т</i>	т	ന	ю	ю	ю			с К	Ń	:fo	
Matrix	×	8	3	3	≥	≥	>	>			Received I	Firm:	Received I	Firm:
Date Sampled	12/03/2003	12/03/2003	12/03/2003	12/03/2003	12/03/2003	12/03/2003	12/03/2003	12/03/2003		1	date (12/03 Received by:	time: (105)	date:\Z~{2~0Beceived by:	time: 13 00 Firm:
Sample Number/Name	N N	MW-44	MW-2	MW-3	RW-2	MW-1	MW-5	MW-6			A A	J. Lee	CLAR. U	The second
dash											Submitted:		Submitted:	Firm:

CAL OnSite	Chain of C	Custody			Page of	_
Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052 Phome: (125) 883-3881 • Fax: (125) 885-3603	Turnaround Request (in working days)	Laboratory Number:	1: 12-04	× 9 t		
Company:	(Check One)		Requested Analysis	inalysis		
Project Number:	Same Day 1 Day	808				
1	□ 2 Day □ 3 Day					
_	X Standard (7 working days)	0B latiles 82700				
2		ix/BTE	280 by 80 18			
J. Konzoly	(other) # of	ivolatii	s by 8 sebio sebioi	by 16 by 16		Disture
Lab ID Sample Identification	ed Sampled Matrix Cont.	rwn rwn siov olsH m92	PCB Pesti Herb		ЕРН	W %
1 MW-4	12303 935 WALE 7	* * *				
2 mw-44	L 1 Shb 1	X X X				
5 MW-2	1035 7	$\begin{array}{c} \mathbf{\lambda} \\ \mathbf{\lambda} \\ \mathbf{\lambda} \\ \mathbf{x} \end{array}$				
4 : MW-3	1/20 7	+++				
5 RW-2	1205 7	+ + +			· · · · · · · · · · · · · · · · · · ·	
6 MW-1	1255 7	x y *				• .
2-MM- L	1405 7	+ + 				
8 MW-6	12-3-13 1450 we to 7	+ + *				
Relinquished by	company GoldU	Date Time 12-7-25 ゲ. 3-2	Comments/Special Instructions:	nstructions:		
Received by UT A	Omerto	5				
Relinquished by		-				
Received by						
Relinquished by			1			
Received by			1			
Reviewed by/Date	Reviewed by/Date		Chromatograms with final report	with final repo	10 .	
	DISTRIBUTION LEGEND: White - OnSite Copy	Yellow - Report Copy Pink - Client Copy	t Copy			

-

s S

.

Golder Associates

December 29, 2003

Neil Gilham Golder Associates Inc. 18300 NE Union Hill Road Suite 200 Redmond, WA 98052-3333

Re: Analytical Data for Project 033-1000.000 Laboratory Reference No. 0312-045

Dear Neil:

Enclosed are the analytical results and associated quality control data for samples submitted on December 3, 2003.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on December 2, 2003, and received by the laboratory on December 3, 2003. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Dx Analysis

No surrogate data is available for sample GP-6 0-2.5 due to the necessary dilution of the sample.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Volatiles EPA 8260B Analysis

The 12-065-18 Matrix Spike/Matrix Spike Duplicate RPD for Benzene is slightly outside control limits. The percent recoveries are within control limits and the associated Spike Blank data is within control limits. Please refer to the Spike Blank data associated with this MS/MSD (SB1212S2).

The 12-074-01 Matrix Spike/Matrix Spike Duplicate RPD for Trichloroethene is slightly outside control limits. The percent recoveries are within control limits and the associated Spike Blank data is within control limits. Please refer to the Spike Blank data associated with this MS/MSD (SB1213S1).

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Gx

Date Extracted:	12-11-03
Date Analyzed:	12-11-03

Matrix: Soil Units: mg/kg (ppm)

Client ID:	GP-1 (6-8)	GP-1 (10-12)
Lab ID:	12-045-02	12-045-03

	Result	Flags	PQL	Result	Flags	PQL
TPH-Gas	ND		7.1	ND		6.8
Surrogate Recovery: Fluorobenzene	.89%		· .	93%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx

Date Extracted:	12-11-03
Date Analyzed:	12-11-03

Matrix: Soil Units: mg/kg (ppm)

Client ID: Lab ID:	GP-2 (6-8) 12-045-05			GP-2 (10-12) 12-045-06		
			· · · .	· · · ·		
	Result	Flags	PQL	Result	Flags	PQL
TPH-Gas	ND		5.7	ND		7.0
Surrogate Recovery: Fluorobenzene	109%			92%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx

Date Extracted:	12-11-03
Date Analyzed:	12-11-03

Matrix: Soil Units: mg/kg (ppm)

Client ID:	GP-3 (6-8)	GP-3 (10-12)
Lab ID:	12-045-12	12-045-13

	Result	Flags	PQL	Result	Flags	PQL
TPH-Gas	ND		5.3	ND		7.0
Surrogate Recovery Fluorobenzene	112%			90%		

5

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

$(1, \dots, n) \in [p]$	NWTPH-Gx	
Date Extracted: Date Analyzed:	12-11-03 12-11-03	
Matrix: Soil Units: mg/kg (ppm)		
Client ID: Lab ID:	GP-4 (2-4) 12-045-14	GP-4 (6-8) 12-045-15

	Result	Flags	PQL	Result	Flags	PQL
TPH-Gas	ND		5.4	ND		5.5
Surrogate Recovery: Fluorobenzene	107%	5. 	1	103%	х • — — — •	×

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

6

NWTPH-Gx

Date Extracted:	12-11-03
Date Analyzed:	12-11-03

Matrix: Soil Units: mg/kg (ppm)

Client ID:	GP-4 (10-12)	GP-5	(6-8)	
Lab ID:	12-045-16	12-04	5-18	

	Result	Flags	PQL	Result	Flags	PQL
··· · · · · · · · · · · · · · · · · ·			<u>.</u>			
TPH-Gas	ND		7.0	ND		5.5
Surrogate Recovery: Fluorobenzene	88%	· .		107%		

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

7

NWTPH-Gx

Date Extracted:		12-11-03
Date Analyzed:		12-11-03

Matrix: Soil Units: mg/kg (ppm)

Client ID:	GP-5 (10-12)	GP-6 0-2.5
Lab ID:	12-045-19	12-045-21
,	•	

· · · ·	Result	Flags	PQL	Result	Flags	PQL
TPH-Gas	ND		7.1	ND		5.3
Surrogate Recovery: Fluorobenzene	89%			111%	н н н	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx

Date Extracted:	12-11-03
Date Analyzed:	12-11-03

Matrix: Soil Units: mg/kg (ppm)

Client ID:	GP-8 (6-8')	GP-8 (10-12')
Lab ID:	12-045-24	12-045-25

	Result	Flags	PQL	Result	Flags	PQL
TPH-Gas	ND		7.2	ND		6.6
Surrogate Recovery: Fluorobenzene	88%			92%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx

Date Extracted:	12-11-03
Date Analyzed:	12-11-03

Matrix: Soil Units: mg/kg (ppm)

Client ID:	GP-7 (6-8')	•	GP-7 (10-12')	
Lab ID:	12-045-26	· .·	12-045-27	

	Result	Flags	PQL	Result	Flags	PQL
TPH-Gas	ND		6.7	ND		7.0
Surrogate Recovery: Fluorobenzene	93%		3 	92%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

· · ·	· · ·	NWTPH-	-Gx	•
Date Extracted: Date Analyzed:	12-11-03 12-11-03			
Matrix: Soil Units: mg/kg (ppm)				
Client ID: Lab ID:	GP-44 (2-4 12-045-29	')		
	Result	Flags	PQL	
TPH-Gas	ND		5.4	
Surrogate Recovery: Fluorobenzene	108%			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

11

NWTPH-Gx METHOD BLANK QUALITY CONTROL

Date Extracted:	12-11-03
Date Analyzed:	12-11-03
Matrix: Soil Units: mg/kg (ppm)	
Lab ID:	MB1211S1
	· · · · ·

	Result	Flags	PQL	
			· · · ·	
TPH-Gas	ND		5.0	
Surrogate Recovery:				

Surrogate Recovery: Fluorobenzene 118%

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx METHOD BLANK QUALITY CONTROL

PQL

Date Extracted:	12-11-03	
Date Analyzed:	12-11-03	
Matrix: Soil Units: mg/kg (ppm)		
Lab ID:	MB1211S2	
	· .	
	Result	Flags
	Nesun	i iaga

TPH-GasND5.0Surrogate Recovery:

120%

Fluorobenzene

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx DUPLICATE QUALITY CONTROL

Date Extracted:	12-11-03
Date Analyzed:	12-11-03

Matrix: Soil Units: mg/kg (ppm)

Lab ID:	12-045-02 Original	12-045-02 Duplicate	RPD	Flags
		•		· · ·
TPH-Gas	ND	ND	NA	
Surrogate Recovery: Fluorobenzene	89%	87%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx DUPLICATE QUALITY CONTROL

Date Extracted:	12-11-03
Date Analyzed:	12-11-03

Matrix: Soil Units: mg/kg (ppm)

Lab ID:	12-045-12 Original	12-045-12 Duplicate	RPD	Flags
TPH-Gas	ND	ND	NA	
Surrogate Recovery: Fluorobenzene	112%	110%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

·		NWTF	PH-Gx			
Date Extracted: Date Analyzed:	12-10-03 12-10-03					
Matrix: Water Units: ug/L (ppb)		1				-
Client ID: Lab ID:	GP-1 12-045-07			GP-2 12-045-08		
	· · · ·					
	Result	Flags	PQL	Result	Flags	PQL
TPH-Gas	ND		100	ND		100
Surrogate Recovery:						

93%

Surrogate Recovery: Fluorobenzene

92%

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

16

NWTPH-Gx

Date Extracted:	12-10-03
Date Analyzed:	12-10-03

Matrix: Water Units: ug/L (ppb)

Client ID: Lab ID:	GP-3 12-045-09			GP-4 12-045-10		
en en en en en en en en en en en en en e		· ·				
	Result	Flags	PQL	Result	Flags	PQL
TPH-Gas	ND		100	ND		100

93%

Surrogate Recovery: Fluorobenzene

91%

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx 12-10-03 Date Extracted: 12-10-03 Date Analyzed: Matrix: Water Units: ug/L (ppb) GP-8 Client ID: GP-5 Lab ID: 12-045-20 12-045-22 Result Flags PQL Result Flags PQL **TPH-Gas** ND 100 100 ND Surrogate Recovery: Fluorobenzene 94% 93%

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

18

NWTPH-Gx

Date Extracted:	12-10-03	
Date Analyzed:	12-10-03	

Matrix: Water Units: ug/L (ppb)

Client ID:	GP-7
Lab ID:	12-045-28

·	Result	Flags	PQL	
TPH-Gas	ND		100	
Surrogate Recovery: Fluorobenzene	95%			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx METHOD BLANK QUALITY CONTROL

Date Extracted:	12-10-03
Date Analyzed:	12-10-03

Matrix: Water Units: ug/L (ppb)

Lab ID:

MB1210W2

	Result	Flags	PQL
TPH-Gas	ND		100

Surrogate Recovery: Fluorobenzene 91%

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx DUPLICATE QUALITY CONTROL

Date Extracted:	12-10-03
Date Analyzed:	12-10-03

Matrix: Water Units: ug/L (ppb)

Lab ID:	12-045-08 Original	12-045-08 Duplicate	RPD
TPH-Gas	ND	ND	NA
Surrogate Recovery:		•	
Fluorobenzene	93%	89%	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Flags

NWTPH-Dx

Date Extracted:	12-12-03
Date Analyzed:	12-14-03

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	GP-1 (6-8)	GP-1 (10-12)	GP-2 (6-8)
Lab ID:	12-045-02	12-045-03	12-045-05
Diesel Range:	ND	ND	ND
PQL:	36	34	28
Identification:			Not had from
•			•
Lube Oil Range:	ND	ND	ND
PQL:	71	68	57
Identification:	- 	·	
			4 ×
Surrogate Recovery			
o-Terphenyl:	108%	121%	121%
Flores	V	Y	V
Flags:	Y	Ŷ	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Date Extracted:	12-12-03
Date Analyzed:	12-14-03

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	GP-2 (10-12)	GP-3 (6-8)	GP-3 (10-12)
Lab ID:	12-045-06	12-045-12	12-045-13
· •		•	
· ·	· ·		
Diesel Range:	ND	ND	ND
PQL:	35	26	35
Identification:		· · · ·	
,			
Lube Oil Range:	ND	ND	ND
PQL:	70	53	70
Identification:		·	
Surragata Basayany			
Surrogate Recovery	1050/	4000/	44504
o-Terphenyl:	105%	123%	115%
Flags:	Y	Y .	Y

NWTPH-Dx

Date Extracted:	 12-12-03
Date Analyzed:	12-14-03

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	GP-4 (2-4)	GP-4 (6-8)	GP-4 (10-12)
Lab ID:	12-045-14	12-045-15	12-045-16
			х. Т
Diesel Range:	ND	ND	ND
PQL:	130	28	35
Identification:			
`			
Lube Oil Range:	1300	ND	90
PQL:	270	55	70
Identification:	Lube Oil		Lube Oil
Surrogate Recovery			
+ · · · · · · · · · · · · · · · · · · ·	140%	131%	101%
Flags:	Y	Y	Y
Surrogate Recovery o-Terphenyl: Flags:	140% Y	131% Y	101% Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Date Extracted:	12-12-03
Date Analyzed:	12-14-03

Matrix:	Soil	
Units:	mg/kg (ppm)	

Client ID:	GP-5 (6-8)	GP-5 (10-12)	GP-6 0-2.5
Lab ID:	12-045-18	12-045-19	12-045-21
		· · · · · · · · · · · · · · · · · · ·	
Diesel Range:	ND	ND	ND
PQL:	28	36	270
Identification:			
,			
Luba Oil Danaa	ND	ND	4000
Lube Oil Range:	ND	ND	4000
PQL:	55	71	530
Identification:	·		Lube Oil
Surrogate Recovery			
	4 4 0 0 /	1000/	
o-Terphenyl:	146%	138%	· ·····
<u> </u>	Y	V	N O
Flags:	Ŷ	Y	Y,S

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Date Extracted:	12-12-03
Date Analyzed:	12-14-03

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	GP-8 (6-8')	GP-8 (10-12')	GP-7 (6-8')
Lab ID:	12-045-24	12-045-25	12-045-26
Diesel Range:	ND	ND	ND
PQL:	36	33	33
Identification:			·
Lube Oil Range:	ND	ND	ND
PQL:	72	66	67
Identification:			
Surrogate Recovery			
o-Terphenyl:	130%	130%	114%
Flags:	Y	Y	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Date Extracted:	12-12-03
Date Analyzed:	12-14-03

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID: Lab ID:	GP-7 (10-12') 12-045-27	GP-44 (2-4') 12-045-29
Diesel Range:	ND	ND
PQL:	35	130
Identification:		
	· · ·	
Lube Oil Range:	ND	800
PQL:	70	270
Identification:		Lube Oil
	• •	
Surrogate Recovery	,	
o-Terphenyl:	128%	139%

Y

Flags:

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

8 NE 95 Street, Reamona, WA 98052 (425) 883-3

Y

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:	12-12-03
Date Analyzed:	12-14-03

Matrix:	Soil	
Units:	mg/kg (ppm)	

Lab ID:	MB1212S2	
· · ·		
Diesel Range:	ND	
PQL:	25	
Identification:		

Lube Oil Range:		ND
PQL:	•	50
Identification:		

Surrogate Recovery		
o-Terphenyl:	13	3%

Flags:

Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted:	12-12-03
Date Analyzed:	12-14-03

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	12-045-05	12-045-05 DUP
Diesel Range: PQL:	ND 25	ND 25
RPD:	N/A	

Surrogate Recovery		
o-Terphenyl:	121%	116%
	V	
Flags:	· T	r

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted:	12-12-03
Date Analyzed:	12-14-03

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:

12-045-29

12-045-29 DUP

ND

130

Diesel Range:NDPQL:130

RPD:

N/A

Surrogate Recovery o-Terphenyl:

Flags:

Y

139%

117%

Υ

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

	and the second second second second second second second second second second second second second second second	the second second second second second second second second second second second second second second second se	
Date Extracted:	12-12-03		
Date Analyzed:	12-14&15-03		
		· · · · ·	
Matrix:	Water	· · · ·	
Units:	mg/L (ppm)		
		• • • • • • • • • • • • • • • • • • •	
		· · · ·	
Client ID:	GP-1	GP-2	GP-3
Lab ID:	12-045-07	12-045-08	12-045-09
	· · · ·		
Diesel Range:	ND	ND	ND
PQL:	0.25	0.26	0.26
Identification:			
Lube Oil Range:	ND	ND	ND
PQL:	0.40	0.41	0.42
Identification:			
		· · · · · · · · · · · · · · · · · · ·	
Surrogate Recovery			
o-Terphenyl:	79%	105%	88%
Flags:	Y	Y	Ý
~			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Date Extracted:	12-12-03
Date Analyzed:	12-14-03

Matrix:	Water
Units:	mg/L (ppm)

Client ID:	GP-4	GP-5	GP-8
Lab ID:	12-045-10	12-045-20	12-045-22
			• • • • •
Diesel Range:	ND	ND	ND
PQL:	0.26	0.26	0.25
Identification:			
Lube Oil Range:	ND	ND	ND
PQL:	0.42	0.41	0.40
Identification:		·	
Surrogate Recovery			
o-Terphenyl:	116%	117%	117%
Flags:	Y	Y	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Date Extracted:	12-12-03
Date Analyzed:	12-14-03
Matrix:	Water
Units:	mg/L (ppm)
Client ID:	GP-7
Lab ID:	12-045-28
Diesel Range:	ND
PQL:	0.28
Identification:	
Lube Oil Range:	ND

Lase en ridinger	
PQL:	0.44
Identification:	

Surrogate Recovery	
o-Terphenyl:	102%

Y

Flags:

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:	12-12-03
Date Analyzed:	12-14-03

Matrix:	Water
Units:	mg/L (ppm)

Lab ID:

MB1212W1

Diesel Range:	× .		ND ·
PQL:		·	0.25
Identification:			

Lube Oil Range:		ND
PQL:	×	0.40
Identification:		

Surrogate Recovery	
o-Terphenyl:	115%

Flags:

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted:	12-12-03
Date Analyzed:	12-14-03

Water
mg/L (ppm)

Lab ID:

12-046-01

12-046-01 DUP

Diesel Range:	ND	ND
PQL:	0.25	0.26
RPD:	N/A	

Surrogate Recovery		
o-Terphenyl:	105%	95%
Flags:	Y	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed. 35

VOLATILES by EPA 8260B Page 1 of 2

Date Extracted: Date Analyzed:	12-12-03 12-13-03
Matrix: Units:	Soil mg/kg (ppm)
	 12 045 02

Lad ID:	•	12-045-02
Client ID:		GP-1 (6-8)

Compound	Results	Flags	PQL
Compound Dichlorodifluoromethane	ND	Flays	0.0014
Chloromethane	ND		0.0014
Vinyl Chloride	ND		0.0014
Bromomethane	ND		0.0014
Chloroethane	ND		0.0014
Trichlorofluoromethane	ND		0.0014
1,1-Dichloroethene	ND		0.0014
Acetone	ND		0.0071
lodomethane	ND		0.0071
Carbon Disulfide	ND		0.0014
Methylene Chloride	ND		0.0071
(trans) 1,2-Dichloroethene	ND	. ÷	0.0014
Methyl t-Butyl Ether	ND		0.0014
1,1-Dichloroethane	ND		0.0014
Vinyl Acetate	ND		0.0071
2,2-Dichloropropane	ND	· .	0.0014
(cis) 1,2-Dichloroethene	ND		0.0014
2-Butanone	ND		0.0071
Bromochloromethane	ND		0.0014
Chloroform	. ND		0.0014
1,1,1-Trichloroethane	ND	-	0.0014
Carbon Tetrachloride	ND		0.0014
1,1-Dichloropropene	ND		0.0014
Benzene	ND		0.0014
1,2-Dichloroethane	ND		0.0014
Trichloroethene	ND		0.0014
1,2-Dichloropropane	ND		0.0014
Dibromomethane	ND		0.0014
Bromodichloromethane	ND		0.0014
2-Chloroethyl Vinyl Ether	ND		0.0071
(cis) 1,3-Dichloropropene	ND		0.0014
Methyl Isobutyl Ketone	ND		0.0071
	0.0020		0.0014
(trans) 1,3-Dichloropropene	ND		0.0014

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 2 of 2

Lab ID: Client ID:	12-045-02 GP-1 (6-8)			
Compound		Results	Flags	PQL
1,1,2-Trichloroethane		ND		0.0014
Tetrachloroethene		ND		0.0014
1,3-Dichloropropane		ND		0.0014
2-Hexanone		ND	·	0.0071
Dibromochloromethane	·	ND	-	0.0014
1,2-Dibromoethane		NĎ		0.0014
Chlorobenzene		ND		0.0014
1,1,1,2-Tetrachloroethane		ND		0.0014
Ethylbenzene		ND		0.0014
m,p-Xylene		ND		0.0029
o-Xylene		ND		0.0014
Styrene		ND		0.0014
Bromoform		ND		0.0014
Isopropylbenzene		ND		0.0014
Bromobenzene		ND		0.0014
1,1,2,2-Tetrachloroethane		ND	•	0.0014
1,2,3-Trichloropropane		ND		0.0014
n-Propylbenzene		ND		0.0014
2-Chlorotoluene	• · ·	ND		0.0014
4-Chlorotoluene		ND		0.0014
1,3,5-Trimethylbenzene		ND		0.0014
tert-Butylbenzene		ND		0.0014
1,2,4-Trimethylbenzene		ND		0.0014
sec-Butylbenzene		ND		0.0014
1,3-Dichlorobenzene		ND		0.0014
p-Isopropyltoluene		ND		0.0014
1,4-Dichlorobenzene		ND		0.0014
1,2-Dichlorobenzene		ND		0.0014
n-Butyibenzene		ND		0.0014
1,2-Dibromo-3-chloropropa	ine	ND		0.0071
1,2,4-Trichlorobenzene		ND		0.0014
Hexachlorobutadiene		ND .		0.0071
Naphthalene	н. С	ND		0.0014
1,2,3-Trichlorobenzene		ND		0.0014

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	87	60-137
Toluene, d8	89	71-129
4-Bromofluorobenzene	83	60-149

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 1 of 2

Date Extracted:	12-12-03
Date Analyzed:	12-13-03
Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	12-045-03
Client ID:	GP-1 (10-12)

	· _ ·		
Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.0014
Chloromethane	ND		0.0014
Vinyl Chloride	ND		0.0014
Bromomethane	ND		0.0014
Chloroethane	ND		0.0014
Trichlorofluoromethane	ND		0.0014
1,1-Dichloroethene	ND		0.0014
Acetone	0.036		0.0068
lodomethane	ND		0.0068
Carbon Disulfide	ND		0.0014
Methylene Chloride	ND		0.0068
(trans) 1,2-Dichloroethene	ND		0.0014
Methyl t-Butyl Ether	ND		0.0014
1,1-Dichloroethane	ND		0.0014
Vinyl Acetate	ND		0.0068
2,2-Dichloropropane	ND		0.0014
(cis) 1,2-Dichloroethene	ND		0.0014
2-Butanone	0.0084	•	0.0068
Bromochloromethane	ND		0.0014
Chloroform	ND		0.0014
1,1,1-Trichloroethane	ND		0.0014
Carbon Tetrachloride	ND		0.0014
1,1-Dichloropropene	ND		0.0014
Benzene	ND		0.0014
1,2-Dichloroethane	ND		0.0014
Trichloroethene	ND		0.0014
1,2-Dichloropropane	ND		0.0014
Dibromomethane	ND		0.0014
Bromodichloromethane	ND		0.0014
2-Chloroethyl Vinyl Ether	ND		0.0068
(cis) 1,3-Dichloropropene	ND		0.0014
Methyl Isobutyl Ketone	ND		0.0068
Toluene	ND		0.0014
(trans) 1,3-Dichloropropene	ND		0.0014

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 2 of 2

Lab ID: Client ID:	12-045-03 GP-1 (10-12)		、	•
Compound		Results	Flags	PQL
1,1,2-Trichloroethane		ND		0.0014
Tetrachloroethene		ND		0.0014
1,3-Dichloropropane		ND		0.0014
2-Hexanone	н. - С	ND		0.0068
Dibromochloromethane		ND		0.0014
1,2-Dibromoethane		ND		0.0014
Chlorobenzene	· .	ND		0.0014
1,1,1,2-Tetrachloroethane		ND		0.0014
Ethylbenzene		ND		0.0014
m,p-Xylene		ND		0.0027
o-Xylene		ND		0.0014
Styrene		ND		0.0014
Bromoform		ND		0.0014
Isopropylbenzene	1	ND		0.0014
Bromobenzene	· · · ·	ND	· · ·	0.0014
1,1,2,2-Tetrachloroethane		ND		0.0014
1,2,3-Trichloropropane		ND		0.0014
n-Propylbenzene		ND		0.0014
2-Chlorotoluene		ND		0.0014
4-Chlorotoluene		ND		0.0014
1,3,5-Trimethylbenzene	× .	ND		0.0014
tert-Butylbenzene		ND		0.0014
1,2,4-Trimethylbenzene		ND		0.0014
sec-Butylbenzene		ND		0.0014
1,3-Dichlorobenzene		ND		0,0014
p-Isopropyltoluene		ND		0.0014
1,4-Dichlorobenzene		ND		0.0014
1,2-Dichlorobenzene		ND		0.0014
n-Butylbenzene		ND		0.0014
1,2-Dibromo-3-chloropropane		ND		0.0068
1,2,4-Trichlorobenzene		ND		0.0014
Hexachlorobutadiene		ND		0.0068
Naphthalene		ND		0.0014
1,2,3-Trichlorobenzene		ND		0.0014

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	90	60-137
Toluene, d8	88	71-129
4-Bromofluorobenzene	92	60-149

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 1 of 2

Date Extracted: Date Analyzed:	12-12-03 12-13-03			
Matrix: Units:	Soil mg/kg (ppm)			
Lab ID: Client ID:	12-045-05 GP-2 (6-8)			
Compound Dichlorodifluoromethane Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Acetone Iodomethane Carbon Disulfide Methylene Chloride (trans) 1,2-Dichloroethene Methyl t-Butyl Ether 1,1-Dichloroethane Vinyl Acetate 2,2-Dichloropropane (cis) 1,2-Dichloroethene 2-Butanone Bromochloromethane Chloroform 1,1,1-Trichloroethane Carbon Tetrachloride 1,1-Dichloropropene Benzene 1,2-Dichloropropane Dibromomethane Bromodichloromethane 2-Chloroethyl Vinyl Ether (cis) 1,3-Dichloropropene Methyl Isobutyl Ketone Toluene (trans) 1,3-Dichloropropene		Results ND ND ND ND ND ND ND ND ND ND ND ND ND	Flags	PQL 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0057 0.0057 0.0011 0.0057 0.0011 0.0057 0.0011 0.0057 0.0011 0.0057 0.0011 0.0011 0.0011 0.0057 0.0011 0.0011 0.0011 0.0011 0.0057 0.0011 0.0057 0.0011 0.0057 0.0011 0.0057 0.0011 0.0057 0.0011 0.0057 0.0011 0.0057 0.0011 0.0057 0.0011 0.0057 0.0011 0.0057 0.0011 0.0057 0.0011 0.0057 0.0011 0.0057 0.0011 0.0057 0.0011 0.0057 0.0011 0.0057 0.0011 0.0057 0.0011 0.0057 0.0011 0.0057 0.0011 0.0011 0.0057 0.0011 0.0011 0.0057 0.0011 0.0057 0.0011 0.0057 0.0011 0

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 2 of 2

Lab ID:		12-045-05
Client ID:	•	GP-2 (6-8)

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.0011
Tetrachloroethene	ND		0.0011
1,3-Dichloropropane	ND		0.0011
2-Hexanone	ND		0.0057
Dibromochloromethane	ND		0.0011
1,2-Dibromoethane	ND		0.0011
Chlorobenzene	ND		0.0011
1,1,1,2-Tetrachloroethane	ND	· ·	0.0011
Ethylbenzene	ND		0.0011
m,p-Xylene	ND		0.0023
o-Xylene	ND .		0.0011
Styrene	ND		0.0011
Bromoform	ND		0.0011
Isopropylbenzene	ND		0.0011
Bromobenzene	ND		0.0011
1,1,2,2-Tetrachloroethane	ND		0.0011
1,2,3-Trichloropropane	ND		0.0011
n-Propylbenzene	ND		0.0011
2-Chlorotoluene	ND		0.0011
4-Chlorotoluene	ND		0.0011
1,3,5-Trimethylbenzene	ND		0.0011
tert-Butylbenzene	ND		0.0011
1,2,4-Trimethylbenzene	ND		0.0011
sec-Butylbenzene	ND		0.0011
1,3-Dichlorobenzene	ND		0.0011
p-Isopropyltoluene	ND		0.0011
1,4-Dichlorobenzene	ND		0.0011
1,2-Dichlorobenzene	ND		0.0011
n-Butylbenzene	. ND		0.0011
1,2-Dibromo-3-chloropropane	ND		0.0057
1,2,4-Trichlorobenzene	ND		0.0011
Hexachlorobutadiene	ND		0.0057
Naphthalene	ND		0.0011
1,2,3-Trichlorobenzene	ND		0.0011

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	88	60-137
Toluene, d8	94	71-129
4-Bromofluorobenzene	89	60-149

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 1 of 2

12-12-03
Soil mg/kg (ppm)

10.00

Lab ID:	12-045-06
Client ID:	GP-2 (10-12)

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.0014
Chloromethane	ND		0.0014
Vinyl Chloride	ND		0.0014
Bromomethane	ND		0.0014
Chloroethane	ND		0.0014
Trichlorofluoromethane	ND		0.0014
1,1-Dichloroethene	ND		0.0014
Acetone	0.094		0.0070
lodomethane	ND		0.0070
Carbon Disulfide	0.0026		0.0014
Methylene Chloride	ND	,	0.0070
(trans) 1,2-Dichloroethene	ND		0.0014
Methyl t-Butyl Ether	ND		0.0014
1,1-Dichloroethane	ND		0.0014
Vinyl Acetate	ND		0.0070
2,2-Dichloropropane	ND		0.0014
(cis) 1,2-Dichloroethene	ND		0.0014
2-Butanone	ND		0.0070
Bromochloromethane	ND		0.0014
Chloroform	ND		0.0014
1,1,1-Trichloroethane	ND		0.0014
Carbon Tetrachloride	ND		0.0014
1,1-Dichloropropene	ND		0.0014
Benzene	ND		0.0014
1,2-Dichloroethane	ND ND		0.0014
Trichloroethene	ND		0.0014
1,2-Dichloropropane	ND		0.0014
Dibromomethane	ND		0.0014
Bromodichloromethane	ND		0.0014
2-Chloroethyl Vinyl Ether	ND		0.0070
(cis) 1,3-Dichloropropene	ND		0.0014
Methyl Isobutyl Ketone	ND		0.0070
Toluene	ND		0.0014
(trans) 1,3-Dichloropropene	ND		0.0014

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 2 of 2

~ ~

Lab ID:	12-045-06			4
Client ID:	GP-2 (10-12)			×
Compound		Results	Flags	PQL
1,1,2-Trichloroethane		ND		0.0014
Tetrachloroethene		ND		0.0014
1,3-Dichloropropane		ND		0.0014
2-Hexanone		ND		0.0070
Dibromochloromethane		ND		0.0014
1,2-Dibromoethane		ND		0.0014
Chlorobenzene		ND		0:0014
1,1,1,2-Tetrachloroethane		ND		0.0014
Ethylbenzene	•	ND		0.0014
m,p-Xylene		ND		0.0028
o-Xylene		ND		0.0014
Styrene		ND		0.0014
Bromoform		ND		0.0014
Isopropylbenzene		ND		0.0014
Bromobenzene		ND	· .	0.0014
1,1,2,2-Tetrachloroethane	. •	ND		0.0014
1,2,3-Trichloropropane		ND		0.0014
n-Propylbenzene		ND		0.0014
2-Chlorotoluene		ND		0.0014
4-Chlorotoluene		ND		0.0014
1,3,5-Trimethylbenzene		ND	·	0.0014
tert-Butylbenzene		ND		0.0014
1,2,4-Trimethylbenzene		ND		0.0014
sec-Butylbenzene		ND		0.0014
1,3-Dichlorobenzene		ND		0.0014
p-Isopropyltoluene		ND	·	0.0014
1,4-Dichlorobenzene		ND		0.0014
1,2-Dichlorobenzene		ND		0.0014
n-Butylbenzene		ND		0.0014
1,2-Dibromo-3-chloropropane		ND		0.0070
1,2,4-Trichlorobenzene		ND		0.0014
Hexachlorobutadiene		ND		0.0070
Naphthalene		ND		0.0014
1,2,3-Trichlorobenzene		ND		0.0014

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	93	60-137
Toluene, d8	95	71-129
4-Bromofluorobenzene	82	60-149

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 1 of 2

Date Extracted: Date Analyzed:	12-12-03 12-13-03
Matrix:	Soil
Units:	mg/kg (ppm)

	GP-3 (6-8)
Lab ID:	12-045-12

Commence	Results	Flore	PQL
Compound Dichlorodifluoromethane	ND	Flags	0.0011
Chloromethane	ND		0.0011
Vinyl Chloride	ND		0.0011
Bromomethane	ND		0.0011
Chloroethane	ND	· · ·	0.0011
Trichlorofluoromethane	ND		0.0011
1,1-Dichloroethene	ND		0.0011
Acetone	ND		0.0053
Iodomethane	ND		0.0053
Carbon Disulfide	ND		0.0011
Methylene Chloride	ND		0.0053
(trans) 1,2-Dichloroethene	ND		0.0011
Methyl t-Butyl Ether	ND		0.0011
1,1-Dichloroethane	ND		0.0011
Vinyl Acetate	ND		0.0053
2,2-Dichloropropane	ND		0.0011
(cis) 1,2-Dichloroethene	ND		0.0011
2-Butanone	ND		0.0053
Bromochloromethane	ND		0.0011
Chloroform	ND		0.0011
1,1,1-Trichloroethane	ND		0.0011
Carbon Tetrachloride	ND		0.0011
1,1-Dichloropropene	ND		0.0011
Benzene	ND		0.0011
1,2-Dichloroethane	ND		0.0011
Trichloroethene	ND		0.0011
1,2-Dichloropropane	ND		0.0011
Dibromomethane	ND		0.0011
Bromodichloromethane	ND		0.0011
2-Chloroethyl Vinyl Ether	ND		0.0053
(cis) 1,3-Dichloropropene	• ND		0.0011
Methyl Isobutyl Ketone	ND		0.0053
Toluene	ND		0.0011
(trans) 1,3-Dichloropropene	ND		0.0011

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 2 of 2

Lab ID: Client ID:	12-045-12 GP-3 (6-8)			
Compound		Results	Flags	PQL
1,1,2-Trichloroethane		ŅD		0.0011
Tetrachloroethene		ND		0.0011
1,3-Dichloropropane		ND		0.0011
2-Hexanone		ND		0.0053
Dibromochloromethane		ND		0.0011
1,2-Dibromoethane		ND		0.0011
Chlorobenzene		ND		0.0011
1,1,1,2-Tetrachloroethane		ND		0.0011
Ethylbenzene		ND		0.0011
m,p-Xylene		ND ·		0.0021
o-Xylene		ND		0.0011
Styrene		ND ND		0.0011 0.0011
Bromoform				0.0011
Isopropylbenzene		ND ND		0.0011
Bromobenzene		ND		0.0011
1,1,2,2-Tetrachloroethane	· ·	ND		0.0011
1,2,3-Trichloropropane n-Propylbenzene		ND		0.0011
2-Chlorotoluene		ND		0.0011
4-Chlorotoluene		ND 1		0.0011
1,3,5-Trimethylbenzene		ND ND		0.0011
tert-Butylbenzene		ND		0.0011
1,2,4-Trimethylbenzene		ND		0.0011
sec-Butylbenzene		ND		0.0011
1,3-Dichlorobenzene		ND		0.0011
p-lsopropyltoluene		ND		0.0011
1,4-Dichlorobenzene		ND		0.0011
1,2-Dichlorobenzene		ND		0.0011
n-Butylbenzene		ND		0.0011
1,2-Dibromo-3-chloropropane		ND		0.0053
1,2,4-Trichlorobenzene		ND		0.0011
Hexachlorobutadiene		ND		0.0053
Naphthalene		ND		0.0011
1,2,3-Trichlorobenzene		ND		0.0011
· ·				

	Percent	Control	
Surrogate	Recovery	Limits	
Dibromofluoromethane	88	60-137	
Toluene, d8	87	71-129	
4-Bromofluorobenzene	93	60-149	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 1 of 2

Date Extracted:	12-12-03
Date Analyzed:	12-13-03
Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 12-045-13 Client ID: GP-3 (10-12)

Compound Dichlorodifluoromethane Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Acetone Iodomethane Carbon Disulfide Methylene Chloride (trans) 1,2-Dichloroethene Methyl t-Butyl Ether 1,1-Dichloroethane Vinyl Acetate 2,2-Dichloropropane (cis) 1,2-Dichloroethene 2-Butanone	Results ND ND ND ND ND ND 0.15 ND ND ND ND ND ND ND ND ND ND ND ND ND	Flags	PQL 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0070 0.0070 0.0014 0.0070 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014
Chloroform 1,1,1-Trichloroethane Carbon Tetrachloride	ND ND		0.0014 0.0014
1,1-Dichloropropene	ND		0.0014
Benzene 1,2-Dichloroethane	ND ND		0.0014 0.0014
Trichloroethene	ND		0.0014
1,2-Dichloropropane	ND		0.0014
Dibromomethane	ND		0.0014
Bromodichloromethane 2-Chloroethyl Vinyl Ether	ND ND		0.0014 0.0070
(cis) 1,3-Dichloropropene	ND		0.0010
Methyl Isobutyl Ketone	ND		0.0070
Toluene	ND		0.0014
(trans) 1,3-Dichloropropene	ND		0.0014

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 2 of 2

Lab ID:		12-045-13
Client ID:	,	GP-3 (10-12)

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.0014
Tetrachloroethene	ND		0.0014
1,3-Dichloropropane	ND		0.0014
2-Hexanone	ND	· .	0.0070
Dibromochloromethane	ND		0.0014
1,2-Dibromoethane	ND		0.0014
Chlorobenzene	ND		0.0014
1,1,1,2-Tetrachloroethane	ND		0.0014
Ethylbenzene	ND		0.0014
m,p-Xylene	ND [°]		0.0028
o-Xylene	ND		0.0014
Styrene	ND		0.0014
Bromoform	ND		0.0014
Isopropylbenzene	ND		0.0014
Bromobenzene	ND.		0.0014
1,1,2,2-Tetrachloroethane	ND		0.0014
1,2,3-Trichloropropane	ND		0.0014
n-Propylbenzene	ND		0.0014
2-Chlorotoluene	ND		0.0014
4-Chlorotoluene	ND		0.0014
1,3,5-Trimethylbenzene	ND		0.0014
tert-Butylbenzene	ND		0.0014
1,2,4-Trimethylbenzene	ND		0.0014
sec-Butylbenzene	ND	·	0.0014
1,3-Dichlorobenzene	ND		0.0014
p-IsopropyItoluene	ND		0.0014
1,4-Dichlorobenzene	NĎ		0.0014
1,2-Dichlorobenzene	ND		0.0014
n-Butylbenzene	ND		0.0014
1,2-Dibromo-3-chloropropane	ND		0.0070
1,2,4-Trichlorobenzene	ND		0.0014
Hexachlorobutadiene	ND		0.0070
Naphthalene	ND		0.0014
1,2,3-Trichlorobenzene	ND		0.0014
· ·			

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	91	60-137
Toluene, d8	86	71-129
4-Bromofluorobenzene	85	60-149

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

	VULAT	Page 1 of 2	5200B	
Date Extracted: Date Analyzed:	12-12-03 12-13-03			
Matrix: Units:	Soil mg/kg (ppm)			• •
Lab ID: Client ID:	12-045-14 GP-4 (2-4)			
Compound Dichlorodifluoromethane Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Acetone Iodomethane Carbon Disulfide Methylene Chloride (trans) 1,2-Dichloroethene Methyl t-Butyl Ether 1,1-Dichloroethane Vinyl Acetate 2,2-Dichloropropane (cis) 1,2-Dichloroethene 2-Butanone Bromochloromethane Chloroform 1,1,1-Trichloroethane Carbon Tetrachloride 1,1-Dichloropropene Benzene 1,2-Dichloroethane Trichloroethene		Results ND ND ND ND ND ND ND ND ND ND ND ND ND	Flags	PQL 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0054 0.0054 0.0054 0.0011 0.0054 0.0011 0.0054 0.0011 0.0054 0.0011 0.0054 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011
Dibromomethane Bromodichloromethane 2-Chloroethyl Vinyl Ether (cis) 1,3-Dichloropropene Methyl Isobutyl Ketone Toluene (trans) 1,3-Dichloropropene		ND ND ND ND ND ND		0.0011 0.0054 0.0011 0.0054 0.0011 0.0011

VOLATILES by EPA 8260B

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 2 of 2

Lab ID: Client ID:	12-045-14 GP-4 (2-4)	•		
Compound		Results	Flags	PQL
1,1,2-Trichloroethane		ND		0.0011
Tetrachloroethene		ND		0.0011
1,3-Dichloropropane		ND		0.0011
2-Hexanone		ND		0.0054
Dibromochloromethane		ND		0.0011
1,2-Dibromoethane		ND		0.0011
Chlorobenzene		ND		0.0011
1,1,1,2-Tetrachloroethane		ND		0.0011
Ethylbenzene		ND		0.0011
m,p-Xylene		ND		0.0022
o-X <u>y</u> lene		ND		0.0011
Styrene		ND		0.0011
Bromoform		ND		0.0011
Isopropylbenzene		ND		0.0011
Bromobenzene		ND		0.0011
1,1,2,2-Tetrachloroethane		ND		0.0011
1,2,3-Trichloropropane		ND		0.0011
n-Propylbenzene		ND	•	0.0011
2-Chlorotoluene		ND		0.0011
4-Chlorotoluene		ND		0.0011
1,3,5-Trimethylbenzene		ND		0.0011
tert-Butylbenzene		ND		0.0011
1,2,4-Trimethylbenzene	• *	ND		0.0011
sec-Butylbenzene		ND		0.0011
1,3-Dichlorobenzene		ND		0.0011
p-Isopropyltoluene		ND		0.0011
1,4-Dichlorobenzene		ND		0.0011
1,2-Dichlorobenzene		ND		0.0011
n-Butylbenzene		ND		0.0011
1,2-Dibromo-3-chloropropane	,	ND		0.0054
1,2,4-Trichlorobenzene		ND		0.0011
Hexachlorobutadiene		ND		0.0054
Naphthalene		ND		0.0011
1,2,3-Trichlorobenzene		ND		0.0011

	Percent	Control	
Surrogate	Recovery	Limits	
Dibromofluoromethane	88	60-137	
Toluene, d8	86	71-129	
4-Bromofluorobenzene	82	60-149	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

ChloromethaneND0.001Vinyl ChlorideND0.001BromomethaneND0.001ChloroethaneND0.001TrichlorofluoromethaneND0.0011,1-DichloroetheneND0.005IodomethaneND0.005IodomethaneND0.005IodomethaneND0.005IodomethaneND0.005IodomethaneND0.005IodomethaneND0.005Carbon DisulfideND0.005(trans) 1,2-DichloroetheneND0.001Methyl t-Butyl EtherND0.001(trans) 1,2-DichloroetheneND0.001(cis) 1,2-DichloroetheneND0.001(cis) 1,2-DichloroetheneND0.001(cis) 1,2-DichloroetheneND0.0012-ButanoneND0.001BromochloromethaneND0.001(cis) 1,2-DichloroethaneND0.0011,1-TrichloroethaneND0.0011,1-DichloroethaneND0.0011,1-DichloropropeneND0.0011,1-DichloroptopeneND0.0011,2-DichloroethaneND0.0011,2-DichloroethaneND0.0011,2-DichloroptopeneND0.0011,2-DichloroptopeneND0.0011,2-DichloroptopeneND0.0011,2-DichloroptopeneND0.0011,2-DichloroptopeneND0.0011,2-DichloroptopeneND<			Page 1 of 2				
Units: mg/kg (ppm) Lab ID: 12-045-15 Client ID: GP-4 (6-8) Dichlorodifluoromethane ND 0.001 Dichlorodifluoromethane ND 0.001 Choromethane ND 0.001 Vinyl Chloride ND 0.001 Bromomethane ND 0.001 Chioroethane ND 0.001 Trichlorofluoromethane ND 0.001 Acetone ND 0.001 Acetone ND 0.005 Carbon Disulfide ND 0.005 Carbon Disulfide ND 0.005 (trans) 1,2-Dichloroethene ND 0.001 Methylene Chloride ND 0.001 Vinyl Acetate ND 0.001 Vinyl Acetate ND 0.001 Choromethane ND 0.001 Choroff ND 0.001 Vinyl Acetate ND 0.001 Carbon Tetrachloroethane ND 0.001 Chloroform ND 0.001 Chloroforpopane <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>·.</th></t<>							·.
Client ID:GP-4 (6-8)CompoundResultsFlagsPQLDichlorodifluoromethaneND0.001ChloromethaneND0.001Vinyl ChlorideND0.001BromomethaneND0.001ChloroethaneND0.001TrichlorofluoromethaneND0.0011,1-DichloroetheneND0.001AcetoneND0.005IodomethaneND0.005IodomethaneND0.005Carbon DisulfideND0.005(trans) 1,2-DichloroetheneND0.0011,1-DichloroetheneND0.001(trans) 1,2-DichloroetheneND0.001(trans) 1,2-DichloroetheneND0.001(cis) 1,2-DichloroetheneND0.001(cis) 1,2-DichloroetheneND0.001(cis) 1,2-DichloroetheneND0.001ChloroformND0.0011,1-DichloroethaneND0.0011,1-DichloroethaneND0.0011,1-DichloroethaneND0.0011,1-DichloroethaneND0.0011,1-DichloroethaneND0.0011,2-DichloroethaneND0.0011,2-DichloroethaneND0.0011,2-DichloroethaneND0.0011,2-DichloroethaneND0.0011,2-DichloroethaneND0.0011,2-DichloroethaneND0.0011,2-DichloroethaneND0.0011,2-DichloroethaneND							
DichlorodiffuoromethaneND0.001ChloromethaneND0.001Vinyl ChlorideND0.001BromomethaneND0.001ChloroethaneND0.001TrichlorofluoromethaneND0.0011,1-DichloroetheneND0.001AcetoneND0.005IodomethaneND0.005IodomethaneND0.005IodomethaneND0.005Carbon DisulfideND0.005(trans) 1,2-DichloroetheneND0.001Methyl t-Butyl EtherND0.0011,1-DichloroetheneND0.001(cis) 1,2-DichloroetheneND0.001(cis) 1,2-DichloroetheneND0.001(cis) 1,2-DichloroetheneND0.001(cis) 1,2-DichloroetheneND0.001(cis) 1,2-DichloroetheneND0.001(cis) 1,2-DichloroetheneND0.001(cis) 1,2-DichloroetheneND0.0012-ButanoneND0.001Carbon TetrachlorideND0.0011,1-TrichloroethaneND0.0011,2-DichloroethaneND0.0011,2-DichloroethaneND0.0011,2-DichloroppaneND0.0011,2-DichloroethaneND0.0011,2-DichloroppaneND0.0011,2-DichloroppaneND0.0011,2-DichloroppaneND0.0011,2-DichloroppaneND0.001Dibromomethane <t< td=""><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td></t<>						•	
ChloromethaneND0.001Vinyl ChlorideND0.001BromomethaneND0.001ChloroethaneND0.001TrichlorofluoromethaneND0.0011,1-DichloroetheneND0.005IdodmethaneND0.005IdodmethaneND0.005IdodmethaneND0.005IdodmethaneND0.005Carbon DisulfideND0.005IdomethaneND0.005(trans) 1,2-DichloroetheneND0.001Methyl t-Butyl EtherND0.001(trans) 1,2-DichloroetheneND0.001(ris) 1,2-DichloroetheneND0.001(cis) 1,2-DichloroetheneND0.001(cis) 1,2-DichloroetheneND0.001ChloroformND0.0012-ButanoneND0.001BromochloromethaneND0.0011,1-TrichloroethaneND0.0011,1-DichloroethaneND0.0011,1-DichloroethaneND0.0011,1-DichloroptopaneND0.0011,1-DichloroptopaneND0.0011,2-DichloroptopaneND0.0011,2-DichloroptopaneND0.0011,2-DichloroptopaneND0.0011,2-DichloroptopaneND0.0011,2-DichloroptopaneND0.001DibromomethaneND0.001DibromomethaneND0.0012-Chloroethyl Vinyl EtherND0.001 </td <td></td> <td>Compound</td> <td>•</td> <td>Results</td> <td>Flags</td> <td></td> <td></td>		Compound	•	Results	Flags		
Vinyl ChlorideND0.001BromomethaneND0.001ChloroethaneND0.001TrichlorofluoromethaneND0.0011,1-DichloroetheneND0.005lodomethaneND0.005lodomethaneND0.005lodomethaneND0.005carbon DisulfideND0.005(trans) 1,2-DichloroetheneND0.001Methylene ChlorideND0.001Methyl Ebutyl EtherND0.0011,1-DichloroethaneND0.001Vinyl AcetateND0.001(cis) 1,2-DichloroetheneND0.001(cis) 1,2-DichloroetheneND0.001Unyl AcetateND0.001ChloropropaneND0.001ChloroformND0.0011,1-DichloroethaneND0.0011,1,1-TrichloroethaneND0.0011,1,1-TrichloroethaneND0.0011,1,1-TrichloroethaneND0.0011,2-DichloropropeneND0.0011,2-DichloropropeneND0.0011,2-DichloropropeneND0.0011,2-DichloropropeneND0.0011,2-DichloropropeneND0.0011,2-DichloropropeneND0.0011,2-DichloropropeneND0.0011,2-DichloropropeneND0.0011,2-DichloropropeneND0.0011,2-DichloropropeneND0.0011,2-DichloropropeneND<		Dichlorodifluoromethane		ND		0.0011	
BromomethaneND0.001ChloroethaneND0.001TrichlorofluoromethaneND0.0011,1-DichloroetheneND0.001AcetoneND0.005lodomethaneND0.005Carbon DisulfideND0.005Carbon DisulfideND0.001Methylene ChlorideND0.001Methylene ChlorideND0.001Methylet -Butyl EtherND0.0011,1-DichloroethaneND0.001Vinyl AcetateND0.001(cis) 1,2-DichloroetheneND0.001(cis) 1,2-DichloroetheneND0.001(cis) 1,2-DichloroetheneND0.001ChloroethaneND0.001Uringl AcetateND0.001Carbon TetrachlorideND0.0011,1,1-TrichloroethaneND0.0011,1,1-TrichloroethaneND0.0011,2-DichloropropaneND0.0011,2-DichloropthaneND0.0011,2-DichloropthaneND0.0011,2-DichloropthaneND0.0011,2-DichloroethaneND0.0011,2-DichloropthaneND0.0011,2-DichloropthaneND0.0011,2-DichloropthaneND0.0011,2-DichloropthaneND0.0011,2-DichloropthaneND0.0011,2-DichloropthaneND0.0011,2-DichloropthaneND0.0011,3-DichloropthaneND <td></td> <td>Chloromethane</td> <td></td> <td>ND</td> <td></td> <td>0.0011</td> <td></td>		Chloromethane		ND		0.0011	
ChloroethaneND0.001TrichlorofluoromethaneND0.0011,1-DichloroetheneND0.001AcetoneND0.005lodormethaneND0.005Carbon DisulfideND0.005Carbon DisulfideND0.001Methylene ChlorideND0.001(trans) 1,2-DichloroetheneND0.001Methyl t-Butyl EtherND0.0011,1-DichloroethaneND0.001Vinyl AcetateND0.001(cis) 1,2-DichloroetheneND0.001(cis) 1,2-DichloroetheneND0.001ChloropropaneND0.001ChloroformND0.001ChloroformND0.0011,1,1-TrichloroethaneND0.0011,1,2-DichloroethaneND0.0011,1,1-TrichloroethaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropthaneND0.0011,2-DichloropthaneND0.0011,2-DichloropthaneND0.0011,2-DichloropthaneND0.0011,2-DichloropthaneND0.0011,2-DichloropthaneND0.0011,2-DichloropthaneND0.0011,2-DichloropthaneND0.0011,2-DichloropthaneND0.0011,2-DichloropthaneND0.0011,2-DichloropthaneND0.0011,3-DichloropthaneND		Vinyl Chloride		ND		0.0011	
TrichlorofluoromethaneND0.0011,1-DichloroetheneND0.001AcetoneND0.005lodomethaneND0.005Carbon DisulfideND0.001Methylene ChlorideND0.003(trans) 1,2-DichloroetheneND0.001Methyl t-Butyl EtherND0.0011,1-DichloroethaneND0.001Vinyl AcetateND0.001(cis) 1,2-DichloroetheneND0.001(cis) 1,2-DichloroetheneND0.001(cis) 1,2-DichloroetheneND0.0012,2-DichloropropaneND0.001(cis) 1,2-DichloroetheneND0.0012-ButanoneND0.001BromochloromethaneND0.0011,1-TrichloroethaneND0.0011,1-DichloropropaneND0.0011,1-DichloropropaneND0.0011,1-DichloropropaneND0.0011,1-DichloropropaneND0.0011,1-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.001 <tr< td=""><td></td><td>Bromomethane</td><td></td><td></td><td></td><td>0.0011</td><td></td></tr<>		Bromomethane				0.0011	
1,1-DichloroetheneND0.001AcetoneND0.005lodomethaneND0.005Carbon DisulfideND0.005Carbon DisulfideND0.001Methylene ChlorideND0.001(trans) 1,2-DichloroetheneND0.001Methyl F.Butyl EtherND0.0011,1-DichloroethaneND0.001Vinyl AcetateND0.001(cis) 1,2-DichloroetheneND0.0012,2-DichloropropaneND0.001(cis) 1,2-DichloroetheneND0.0012-ButanoneND0.001BromochloromethaneND0.001ChloroformND0.0011,1-TrichloroethaneND0.0011,1-DichloropropaneND0.0011,1-DichloroptopaneND0.0011,1-DichloroptopeneND0.0011,1-DichloroptopeneND0.0011,2-DichloroptopeneND0.0011,2-DichloroptopeneND0.0011,2-DichloroptopeneND0.0011,2-DichloroptopeneND0.0011,2-DichloroptopeneND0.0011,2-DichloroptopeneND0.0011,2-DichloroptopeneND0.0011,2-DichloroptopeneND0.0011,2-DichloroptopeneND0.0011,2-DichloroptopeneND0.0011,3-DichloroptopeneND0.0011,3-DichloroptopeneND0.0011,3-Dichloroptopene<		Chloroethane				0.0011	
AcetoneND0.0055lodomethaneND0.0055Carbon DisulfideND0.001Methylene ChlorideND0.001(trans) 1,2-DichloroetheneND0.001Methyl t-Butyl EtherND0.0011,1-DichloroethaneND0.001Vinyl AcetateND0.0052,2-DichloropropaneND0.001(cis) 1,2-DichloroetheneND0.0012-ButanoneND0.001BromochloromethaneND0.0011,1,1-TrichloroethaneND0.0011,1,1-TrichloroethaneND0.0011,1,1-TrichloroethaneND0.0011,1,2-DichloropropaneND0.0011,1,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,3-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,3-DichloropropaneND0.0011,3-DichloropropaneND0.0011,1-DichloropropaneND0.0011,2-DichloropropaneND0.001		Trichlorofluoromethane				0.0011	
IodomethaneND0.0053Carbon DisulfideND0.0011Methylene ChlorideND0.0053(trans) 1,2-DichloroetheneND0.001Methyl t-Butyl EtherND0.0011,1-DichloroethaneND0.001Vinyl AcetateND0.001(cis) 1,2-DichloroetheneND0.001(cis) 1,2-DichloroetheneND0.001(cis) 1,2-DichloroetheneND0.0012-ButanoneND0.001BromochloromethaneND0.001ChloroformND0.0011,1,1-TrichloroethaneND0.0011,1,1-TrichloroethaneND0.0011,1-DichloropropaneND0.0011,2-DichloroethaneND0.0011,2-DichloroethaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloroethaneND0.0011,2-DichloroethaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,3-DichloropropaneND0.0011,3-DichloropropaneND0.0011,3-DichloropropaneND0.0011,3-DichloropropaneND0.0011,3-DichloropropaneND0.0011,3-DichloropropaneND0.0011,3-DichloropropaneND0.0011,3-DichloropropaneND0.001		1,1-Dichloroethene				0.0011	
Carbon DisulfideND0.001Methylene ChlorideND0.005(trans) 1,2-DichloroetheneND0.001Methyl t-Butyl EtherND0.0011,1-DichloroethaneND0.001Vinyl AcetateND0.0052,2-DichloropropaneND0.001(cis) 1,2-DichloroetheneND0.0012-ButanoneND0.001BromochloromethaneND0.001ChloroformND0.0011,1,1-TrichloroethaneND0.0011,1,1-TrichloroethaneND0.0011,1,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,3-DichloropropaneND0.0011,3-DichloropropaneND0.0012-Chloroethyl Vinyl EtherND0.005(cis) 1,3-DichloropropeneND0.005TolueneND0.005 <td></td> <td>Acetone</td> <td></td> <td></td> <td></td> <td>0.0055</td> <td></td>		Acetone				0.0055	
Methylene ChlorideND0.0055(trans) 1,2-DichloroetheneND0.001Methyl t-Butyl EtherND0.0011,1-DichloroethaneND0.001Vinyl AcetateND0.0052,2-DichloropropaneND0.001(cis) 1,2-DichloroetheneND0.0012-ButanoneND0.001BromochloromethaneND0.001ChloroformND0.0011,1,1-TrichloroethaneND0.0011,1,1-TrichloroethaneND0.0011,1,1-TrichloroethaneND0.0011,1-DichloropropeneND0.0011,2-DichloropropeneND0.0011,2-DichloroethaneND0.0011,2-DichloroethaneND0.0011,2-DichloroethaneND0.0011,2-DichloroethaneND0.0011,2-DichloropropaneND0.0011,2-DichloroethaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,3-DichloropropaneND0.0011,3-DichloropropeneND0.0012-Chloroethyl Vinyl EtherND0.005(cis) 1,3-DichloropropeneND0.005TolueneND0.005TolueneND0.001		lodomethane				0.0055	
(trans) 1,2-DichloroetheneND0.001Methyl t-Butyl EtherND0.0011,1-DichloroethaneND0.001Vinyl AcetateND0.0052,2-DichloropropaneND0.001(cis) 1,2-DichloroetheneND0.0012-ButanoneND0.001BromochloromethaneND0.0011,1,1-TrichloroetheneND0.0011,1,1-TrichloroethaneND0.0011,1,1-TrichloroethaneND0.0011,1,1-TrichloroethaneND0.0011,1-DichloropropeneND0.0011,2-DichloropropeneND0.0011,2-DichloroethaneND0.0011,2-DichloroethaneND0.0011,2-DichloroptopeneND0.0011,2-DichloroethaneND0.0011,2-DichloroptopeneND0.0011,2-DichloroptopeneND0.0011,2-DichloroptopeneND0.0011,2-DichloroptopeneND0.0011,2-DichloroptopeneND0.0011,2-DichloroptopeneND0.0011,2-DichloroptopeneND0.0011,3-DichloroptopeneND0.0011,3-DichloroptopeneND0.0011,3-DichloroptopeneND0.005(cis) 1,3-DichloroptopeneND0.005TolueneND0.005TolueneND0.001						0.0011	
Methyl t-Butyl EtherND0.0011,1-DichloroethaneND0.001Vinyl AcetateND0.0052,2-DichloropropaneND0.001(cis) 1,2-DichloroetheneND0.0012-ButanoneND0.001BromochloromethaneND0.001ChloroformND0.0011,1,1-TrichloroethaneND0.0011,1,1-TrichloroethaneND0.0011,1-DichloropropeneND0.0011,1-DichloropropeneND0.0011,2-DichloroethaneND0.0011,2-DichloroethaneND0.0011,2-DichloroethaneND0.0011,2-DichloroethaneND0.0011,2-DichloroethaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,3-DichloropropaneND0.001DibromomethaneND0.001BromodichloromethaneND0.001BromodichloromethaneND0.005(cis) 1,3-DichloropropeneND0.005(cis) 1,3-DichloropropeneND0.005TolueneND0.005TolueneND0.001		· · · · ·				0.0055	
1,1-DichloroethaneND0.001Vinyl AcetateND0.0052,2-DichloropropaneND0.001(cis) 1,2-DichloroetheneND0.0012-ButanoneND0.005BromochloromethaneND0.001ChloroformND0.0011,1,1-TrichloroethaneND0.0011,1,1-TrichloroethaneND0.001Carbon TetrachlorideND0.0011,1-DichloropropeneND0.0011,2-DichloroethaneND0.0011,2-DichloroethaneND0.0011,2-DichloroethaneND0.0011,2-DichloroethaneND0.0011,2-DichloroethaneND0.0011,2-DichloropropaneND0.001DibromomethaneND0.0012-Chloroethyl Vinyl EtherND0.005(cis) 1,3-DichloropropeneND0.005TolueneND0.005TolueneND0.001							
Vinyl AcetateND0.0052,2-DichloropropaneND0.001(cis) 1,2-DichloroetheneND0.0012-ButanoneND0.005BromochloromethaneND0.001ChloroformND0.0011,1,1-TrichloroethaneND0.0011,1,1-TrichloroethaneND0.0011,1,1-DichloropropeneND0.0011,2-DichloroethaneND0.0011,2-DichloroethaneND0.0011,2-DichloroethaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.0011,3-DichloropropeneND0.005(cis) 1,3-DichloropropeneND0.005TolueneND0.005TolueneND0.001							
2,2-DichloropropaneND0.001(cis) 1,2-DichloroetheneND0.0052-ButanoneND0.005BromochloromethaneND0.001ChloroformND0.0011,1,1-TrichloroethaneND0.0011,1,1-TrichloroethaneND0.001Carbon TetrachlorideND0.0011,1-DichloropropeneND0.0011,2-DichloroethaneND0.0011,2-DichloroethaneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.001BromodichloromethaneND0.0012-ChloroethaneND0.0012-Chloroethyl Vinyl EtherND0.005(cis) 1,3-DichloropropeneND0.005TolueneND0.005TolueneND0.005TolueneND0.005		-					
Initial ScienceND0.0012-ButanoneND0.005BromochloromethaneND0.001ChloroformND0.0011,1,1-TrichloroethaneND0.001Carbon TetrachlorideND0.0011,1-DichloropropeneND0.001BenzeneND0.0011,2-DichloroethaneND0.0011,2-DichloroethaneND0.0011,2-DichloroethaneND0.0011,2-DichloropropaneND0.001DibromomethaneND0.001SromodichloromethaneND0.0012-Chloroethyl Vinyl EtherND0.001Methyl Isobutyl KetoneND0.005TolueneND0.005TolueneND0.001		•					
2-ButanoneND0.005BromochloromethaneND0.001ChloroformND0.0011,1,1-TrichloroethaneND0.001Carbon TetrachlorideND0.0011,1-DichloropropeneND0.001BenzeneND0.0011,2-DichloroethaneND0.001TrichloroethaneND0.0011,2-DichloropropaneND0.001DibromomethaneND0.001DibromomethaneND0.001Cis) 1,3-DichloropropaneND0.005(cis) 1,3-DichloropropaneND0.005Methyl Isobutyl KetoneND0.005TolueneND0.005							
BromochloromethaneND0.001ChloroformND0.0011,1,1-TrichloroethaneND0.001Carbon TetrachlorideND0.0011,1-DichloropropeneND0.001BenzeneND0.0011,2-DichloroethaneND0.001TrichloroethaneND0.0011,2-DichloropropaneND0.001DibromomethaneND0.001DibromomethaneND0.001BromodichloromethaneND0.0012-Chloroethyl Vinyl EtherND0.005(cis) 1,3-DichloropropeneND0.001Methyl Isobutyl KetoneND0.005TolueneND0.001							
ChloroformND0.0011,1,1-TrichloroethaneND0.001Carbon TetrachlorideND0.0011,1-DichloropropeneND0.001BenzeneND0.0011,2-DichloroethaneND0.001TrichloroetheneND0.0011,2-DichloropropaneND0.001DibromomethaneND0.001BromodichloromethaneND0.001Chloroethyl Vinyl EtherND0.001Methyl Isobutyl KetoneND0.005TolueneND0.005							
1,1,1-TrichloroethaneND0.001Carbon TetrachlorideND0.0011,1-DichloropropeneND0.001BenzeneND0.0011,2-DichloroethaneND0.001TrichloroetheneND0.0011,2-DichloropropaneND0.001DibromomethaneND0.001BromodichloromethaneND0.001BromodichloromethaneND0.0012-Chloroethyl Vinyl EtherND0.005(cis) 1,3-DichloropropeneND0.001Methyl Isobutyl KetoneND0.005TolueneND0.001							
Carbon TetrachlorideND0.0011,1-DichloropropeneND0.001BenzeneND0.0011,2-DichloroethaneND0.001TrichloroetheneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.001DibromomethaneND0.001BromodichloromethaneND0.0012-Chloroethyl Vinyl EtherND0.005(cis) 1,3-DichloropropeneND0.005Methyl Isobutyl KetoneND0.005TolueneND0.001		-					
1,1-DichloropropeneND0.001BenzeneND0.0011,2-DichloroethaneND0.001TrichloroetheneND0.0011,2-DichloropropaneND0.001DibromomethaneND0.001BromodichloromethaneND0.0012-Chloroethyl Vinyl EtherND0.005(cis) 1,3-DichloropropeneND0.001Methyl Isobutyl KetoneND0.005TolueneND0.001							
BenzeneND0.0011,2-DichloroethaneND0.001TrichloroetheneND0.0011,2-DichloropropaneND0.001DibromomethaneND0.001BromodichloromethaneND0.0012-Chloroethyl Vinyl EtherND0.005(cis) 1,3-DichloropropeneND0.001Methyl Isobutyl KetoneND0.005TolueneND0.001							
1,2-DichloroethaneND0.001TrichloroetheneND0.0011,2-DichloropropaneND0.0011,2-DichloropropaneND0.001DibromomethaneND0.001BromodichloromethaneND0.0012-Chloroethyl Vinyl EtherND0.005(cis) 1,3-DichloropropeneND0.001Methyl Isobutyl KetoneND0.005TolueneND0.001							
TrichloroetheneND0.0011,2-DichloropropaneND0.001DibromomethaneND0.001BromodichloromethaneND0.0012-Chloroethyl Vinyl EtherND0.005(cis) 1,3-DichloropropeneND0.001Methyl Isobutyl KetoneND0.005TolueneND0.001							
1,2-DichloropropaneND0.001DibromomethaneND0.001BromodichloromethaneND0.0012-Chloroethyl Vinyl EtherND0.005(cis) 1,3-DichloropropeneND0.001Methyl Isobutyl KetoneND0.005TolueneND0.001			•	•••			
DibromomethaneND0.001BromodichloromethaneND0.0012-Chloroethyl Vinyl EtherND0.005(cis) 1,3-DichloropropeneND0.001Methyl Isobutyl KetoneND0.005TolueneND0.001							
BromodichloromethaneND0.0012-Chloroethyl Vinyl EtherND0.005(cis) 1,3-DichloropropeneND0.001Methyl Isobutyl KetoneND0.005TolueneND0.001		· ·					
2-Chloroethyl Vinyl EtherND0.005(cis) 1,3-DichloropropeneND0.001Methyl Isobutyl KetoneND0.005TolueneND0.001						0.0011	
(cis) 1,3-DichloropropeneND0.001Methyl Isobutyl KetoneND0.005TolueneND0.001						0.0011	
Methyl Isobutyl KetoneND0.005TolueneND0.001						0.0055	
Toluene ND 0.001						0.0011	
						0.0055	
(trans) 1,3-Dichloropropene ND 0.001						0.0011	
		(trans) 1,3-Dichloropropene		ND		0.0011	

VOLATILES by EPA 8260B

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 2 of 2

Lab ID: Client ID:	12-045-15 GP-4 (6-8)			
Compound	X.	Results	Flags	PQL
1,1,2-Trichloroethane		ND		0.0011
Tetrachloroethene		ND		0.0011
1,3-Dichloropropane		ND		0.0011
2-Hexanone		ND		0.0055
Dibromochloromethane	•	ND		0.0011
1,2-Dibromoethane		ND		0.0011
Chlorobenzene		ND		0.0011
1,1,1,2-Tetrachloroethane		ND		0.0011
Ethylbenzene		ND		0.0011
m,p-Xylene		ND		0.0022
o-Xylene		ND		0.0011
Styrene	•	ND		0.0011
Bromoform		ND		0.0011
Isopropylbenzene		ND		0.0011
Bromobenzene		ND		0.0011
1,1,2,2-Tetrachloroethane		ND		0.0011
1,2,3-Trichloropropane		ŃD		0.0011
n-Propylbenzene		ND .		0.0011
2-Chlorotoluene		ND		0.0011
4-Chlorotoluene		ND		0.0011
1,3,5-Trimethylbenzene	•	ND		0.0011
tert-Butylbenzene	* •	ND		0.0011
1,2,4-Trimethylbenzene		ND		0.0011
sec-Butylbenzene		ND		0.0011
1,3-Dichlorobenzene		ND		0.0011
p-Isopropyltoluene		ND	,	0.0011
1,4-Dichlorobenzene		ND		0.0011
1,2-Dichlorobenzene		ND		0.0011
n-Butylbenzene		ND		0.0011
1,2-Dibromo-3-chloropropane		ND		0.0055
1,2,4-Trichlorobenzene		ND		0.0011
Hexachlorobutadiene		ND		0.0055
Naphthalene		ND		0.0011
1,2,3-Trichlorobenzene		ND		0.0011
				`

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	91	60-137
Toluene, d8	· 86	71-129
4-Bromofluorobenzene	86	60-149

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 1 of 2

12-12-03 12-13-03

Date Extracted:		
Date Analyzed:		
Matrix:		

Matrix: Soil Units: mg/kg (ppm)

Lab ID:		12-045-16
Client ID:		GP-4 (10-12)

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND	_	0.0014
Chloromethane	ND		0.0014
Vinyl Chloride	ND	•	0.0014
Bromomethane	ND		0.0014
Chloroethane	ND		0.0014
Trichlorofluoromethane	ND		0.0014
1,1-Dichloroethene	ND	· · · ·	0.0014
Acetone	0.090		0.0070
lodomethane	ND		0.0070
Carbon Disulfide	0.0027		0.0014
Methylene Chloride	ND		0.0070
(trans) 1,2-Dichloroethene	ND		0.0014
Methyl t-Butyl Ether	ND	•	0.0014
1,1-Dichloroethane	ND		0.0014
Vinyl Acetate	ND		0.0070
2,2-Dichloropropane	ND		0.0014
(cis) 1,2-Dichloroethene	ND		0.0014
2-Butanone	0.017		0.0070
Bromochloromethane	ND		0.0014
Chloroform	ND		0.0014
1,1,1-Trichloroethane	ND		0.0014
Carbon Tetrachloride	ND		0.0014
1,1-Dichloropropene	ND		0.0014
Benzene	ND		0.0014
1,2-Dichloroethane	ND		0.0014
Trichloroethene	ND		0.0014
1,2-Dichloropropane	ND		0.0014
Dibromomethane	ND		0.0014
Bromodichloromethane	ND		0.0014
2-Chloroethyl Vinyl Ether	ND		0.0070
(cis) 1,3-Dichloropropene	ND		0.0014
Methyl Isobutyl Ketone	ND		0.0070
Toluene	ND	x	0.0014
(trans) 1,3-Dichloropropene	ND		0.0014

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 2 of 2

Lab ID:	12-045-16			
Client ID:	GP-4 (10-12)			
Compound		Results	Flags	PQL
1,1,2-Trichloroethane		ND	<u>e</u>	0.0014
Tetrachloroethene		ND		0.0014
1,3-Dichloropropane		ND		0.0014
2-Hexanone		ND .		0.0070
Dibromochloromethane		ND		0.0014
1,2-Dibromoethane		ND		0.0014
Chlorobenzene		ND		0.0014
1,1,1,2-Tetrachloroethane		ND		0.0014
Ethylbenzene		ND		0.0014
m,p-Xylene		ND		0.0028
o-Xylene		ND		0.0014
Styrene		ND		0.0014
Bromoform		ND		0.0014
Isopropylbenzene		ND		0.0014
Bromobenzene		ND ·		0.0014
1,1,2,2-Tetrachloroethane		ND		0.0014
1,2,3-Trichloropropane		ND		0.0014
n-Propylbenzene		ND		0.0014
2-Chlorotoluene		ND		0.0014
4-Chlorotoluene		ND		0.0014
1,3,5-Trimethylbenzene		ND		0.0014
tert-Butylbenzene		ND		0.0014
1,2,4-Trimethylbenzene		ND		0.0014
sec-Butylbenzene		ND	· .	0.0014
1,3-Dichlorobenzene		ND		0.0014
p-Isopropyltoluene		ND		0.0014
1,4-Dichlorobenzene	· .	ND		0.0014
1,2-Dichlorobenzene		ND		0.0014
n-Butylbenzene		ND		0.0014
1,2-Dibromo-3-chloropropane	9	ND		0.0070
1,2,4-Trichlorobenzene		ND		0.0014
Hexachlorobutadiene		ND		0.0070
Naphthalene		ND		0.0014
1,2,3-Trichlorobenzene		ND		0.0014

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	89	60-137
Toluene, d8	85	71-129
4-Bromofluorobenzene	84	60-149

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

			Page 1 of 2	1 0200D	
	Date Extracted: Date Analyzed:	12-12-03 12-13-03			• •
	Matrix: Units:	Soil mg/kg (ppm)			
	Lab ID: Client ID:	12-045-18 GP-5 (6-8)			
	Compound		Results	Flags	PQL
	Dichlorodifluoromethane		ND		0.0011
	Chloromethane		ND		0.0011
	Vinyl Chloride		ND		0.0011
	Bromomethane		ND		0.0011
	Chloroethane		ND		0.0011
	Trichlorofluoromethane		ND		0.0011
	1,1-Dichloroethene		ND		0.0011
	Acetone		ND		0.0055
	Iodomethane		ND		0.0055
	Carbon Disulfide		ND ND		0.0011
	Methylene Chloride		ND		0.0055
	(trans) 1,2-Dichloroethene		ND		0.0011
	Methyl t-Butyl Ether 1,1-Dichloroethane		ND		0.0011
	Vinyl Acetate		ND		0.0055
	2,2-Dichloropropane		ND		0.0011
	(cis) 1,2-Dichloroethene		ND		0.0011
	2-Butanone		ND		0.0055
-	Bromochloromethane		ND		0.0011
	Chloroform		ND		0.0011
	1,1,1-Trichloroethane		ND		0.0011
	Carbon Tetrachloride		ND		0.0011
	1,1-Dichloropropene		ND		0.0011
	Benzene		ND		0.0011
	1,2-Dichloroethane		ND		0.0011
	Trichloroethene		ND		0.0011
	1,2-Dichloropropane		ND		0.0011
	Dibromomethane		ND		0.0011
	Bromodichloromethane		ND		0.0011
	2-Chloroethyl Vinyl Ether		ND		0.0055
	(cis) 1,3-Dichloropropene		ND		0.0011
	Methyl Isobutyl Ketone		ND		0.0055
	Toluene		ND		0.0011
	(trans) 1,3-Dichloropropene		ND		0.0011

VOLATILES by EPA 8260B

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 2 of 2

Lab ID:	12-045-18
Client ID:	GP-5 (6-8)

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.0011
Tetrachloroethene	ND		0.0011
1,3-Dichloropropane	ND		0.0011
2-Hexanone	ND		0.0055
Dibromochloromethane	ND		0.0011
1,2-Dibromoethane	ND		0.0011
Chiorobenzene	ND	-	0.0011
1,1,1,2-Tetrachloroethane	ND		0.0011
Ethylbenzene	/ ND		0.0011
m,p-Xylene	ND		0.0022
o-Xylene	ND		0.0011
Styrene	ND		0.0011
Bromoform	ND		0.0011
Isopropyibenzene	ND		0.0011
Bromobenzene	ND		0.0011
1,1,2,2-Tetrachloroethane	ND	×	0.0011
1,2,3-Trichloropropane	ND		0.0011
n-Propylbenzene	ND		0.0011
2-Chlorotoluene	ND		0.0011
4-Chlorotoluene	ND		0.0011
1,3,5-Trimethylbenzene	ND		0.0011
tert-Butylbenzene	ND		0.0011
1,2,4-Trimethylbenzene	ND		0.0011
sec-Butylbenzene	ND		0.0011
1,3-Dichlorobenzene	ND		0.0011
p-Isopropyltoluene	ND		0.0011
1,4-Dichlorobenzene	ND		0.0011
1,2-Dichlorobenzene	ND		0.0011
n-Butylbenzene	ND		0.0011
1,2-Dibromo-3-chloropropane	ND		0.0055
1,2,4-Trichlorobenzene	ND		0.0011
Hexachlorobutadiene	ND		0.0055
Naphthalene	ND		0.0011
1,2,3-Trichlorobenzene	ND		0.0011

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	91	60-137
Toluene, d8	89	71-129
4-Bromofluorobenzene	90	60-149

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 1 of 2

Date Extracted:	12-12-03
Date Analyzed:	12-13-03
Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	12-045-19
Client ID:	GP-5 (10-12)

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND	i lays	0.0014
Chloromethane	ND		0.0014
Vinyl Chloride	ND		0.0014
Bromomethane	ND		0.0014
Chloroethane	ND		0.0014
Trichlorofluoromethane	ND		0.0014
1,1-Dichloroethene	ND		0.0014
Acetone	0.23		0.0071
lodomethane	ND		0.0071
Carbon Disulfide	ND		0.0014
Methylene Chloride	ND		0.0071
(trans) 1,2-Dichloroethene	ND	•	0.0014
Methyl t-Butyl Ether	ND		0.0014
1,1-Dichloroethane	: ND		0.0014
Vinyl Acetate	ND		0.0071
2,2-Dichloropropane	ND		0.0014
(cis) 1,2-Dichloroethene	ND		0.0014
2-Butanone	0.048		0.0071
Bromochloromethane	ND		0.0014
Chloroform	ND		0.0014
1,1,1-Trichloroethane	ND	6 a.	0.0014
Carbon Tetrachloride	ND		0.0014
1,1-Dichloropropene	ND		0.0014
Benzene	ND		0.0014
1,2-Dichloroethane	ND		0.0014
Trichloroethene	ND	•	0.0014
1,2-Dichloropropane	ND		0.0014
Dibromomethane	ND		0.0014
Bromodichloromethane	ND		0.0014
2-Chloroethyl Vinyl Ether	ND		0.0071
(cis) 1,3-Dichloropropene	ND		0.0014
Methyl Isobutyl Ketone	ND		0.0071
Toluene	ND		0.0014
(trans) 1,3-Dichloropropene	. ND		0.0014

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 2 of 2

Lab ID: Client ID:	12-045-19 GP-5 (10-12)			
	· · · · · · · · · · · · · · · · · · ·	- 		DOI
Compound		Results	Flags	PQL 0.0014
1,1,2-Trichloroethane		ND ND		0.0014
Tetrachloroethene		ND		0.0014
1,3-Dichloropropane 2-Hexanone		ND		0.0014
Dibromochloromethane		ND ·		0.0014
1,2-Dibromoethane		ND		0.0014
Chlorobenzene		ND		0.0014
1,1,1,2-Tetrachloroethane		ND		0.0014
Ethylbenzene		ND		0.0014
m,p-Xylene		ND		0.0029
o-Xylene		ND		0.0014
Styrene		ND		0.0014
Bromoform		ND		0.0014
Isopropylbenzene		ND		0.0014
Bromobenzene		ND		0.0014
1,1,2,2-Tetrachloroethane		ND		0.0014
1,2,3-Trichloropropane		ND		0.0014
n-Propylbenzene		ND		0.0014
2-Chlorotoluene		ND		0.0014
4-Chlorotoluene		ND		0.0014
1,3,5-Trimethylbenzene		ND		0.0014
tert-Butylbenzene		ND		0.0014
1,2,4-Trimethylbenzene		ND		0.0014
sec-Butylbenzene		ND		0.0014
1,3-Dichlorobenzene		ND		0.0014
p-Isopropyltoluene		ND		0.0014
1,4-Dichlorobenzene		ND		0.0014
1,2-Dichlorobenzene		ND		0.0014
n-Butylbenzene		ND		0.0014
1,2-Dibromo-3-chloropropane	•	ND		0.0071
1,2,4-Trichlorobenzene		ND		0.0014
Hexachlorobutadiene		ND		0.0071
Naphthalene		ND		0.0014
1,2,3-Trichlorobenzene		ND		0.0014

. -

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	89	60-137
Toluene, d8	84	71-129
4-Bromofluorobenzene	83	60-149

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 1 of 2

Date Extracted:	12-12-03		
Date Analyzed:	12-13-03		
Matrix:	Soil		
Units:	mg/kg (ppm)		
	40.045.04		

Lab ID:	12-045-21
Client ID:	GP-6 0-2.5

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.0011
Chloromethane	ND		0.0011
Vinyl Chloride	ND		0.0011
Bromomethane	ND		0.0011
Chloroethane	ND		0.0011
Trichlorofluoromethane	ND		0.0011
1,1-Dichloroethene	ND		0.0011
Acetone	ND		0.0053
lodomethane	ND		0.0053
Carbon Disulfide	ND		0.0011
Methylene Chloride	ND		0.0053
(trans) 1,2-Dichloroethene	ND		0.0011
Methyl t-Butyl Ether	ND		0.0011
1,1-Dichloroethane	ND		0.0011
Vinyl Acetate	ND		0.0053
2,2-Dichloropropane	. ND	· · · · ·	0.0011
(cis) 1,2-Dichloroethene	ND		0.0011
2-Butanone	ND		0.0053
Bromochloromethane	ND		0.0011
Chloroform	ND		0.0011
1,1,1-Trichloroethane	ND		0.0011
Carbon Tetrachloride	ND		0.0011
1,1-Dichloropropene	ND		0.0011
Benzene	ND		0.0011
1,2-Dichloroethane	ND		0.0011
Trichloroethene	ND		0.0011
1,2-Dichloropropane	ND		0.0011
Dibromomethane	ND		0.0011
Bromodichloromethane	ND		0.0011
2-Chloroethyl Vinyl Ether	ND		0.0053
(cis) 1,3-Dichloropropene	ND		0.0011
Methyl Isobutyl Ketone	· ND		0.0053
Toluene	ND		0.0011
(trans) 1,3-Dichloropropene	ND		0.0011

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

58

VOLATILES by EPA 8260B Page 2 of 2

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ŃD	Ū	0.0011
Tetrachloroethene	0.0052		0.0011
1,3-Dichloropropane	ND		0.0011
2-Hexanone	ND		0.0053
Dibromochloromethane	ND		0.0011
1,2-Dibromoethane	ND		0.0011
Chlorobenzene	ND		0.0011
1,1,1,2-Tetrachloroethane	ND		0.0011
Ethylbenzene	ND		0.0011
m,p-Xylene	ND		0.0021
o-Xylene	ND		0.0011
Styrene	ND		0.0011
Bromoform	ND		0.0011
Isopropylbenzene	ND		0.0011
Bromobenzene	ND		0.0011
1,1,2,2-Tetrachloroethane	· ND		0.0011
1,2,3-Trichloropropane	ND		0.0011
n-Propylbenzene	ND		0.0011
2-Chlorotoluene	ND		0.0011
4-Chlorotoiuene	ND		0.0011
1,3,5-Trimethylbenzene	ND		0.0011
tert-Butylbenzene	ND		0.0011
1,2,4-Trimethylbenzene	0.0012		0.0011
sec-Butylbenzene	ND		0.0011
1,3-Dichlorobenzene	ND		0.0011
p-lsopropyltoluene	ND		0.0011
1,4-Dichlorobenzene	ND		0.0011
1,2-Dichlorobenzene	ND		0.0011
n-Butylbenzene	ND		0.0011
1,2-Dibromo-3-chloropropane	ND		0.0053
1,2,4-Trichlorobenzene	ND		0.0011
Hexachlorobutadiene	ND		0.0053
Naphthalene	0.0015		0.0011
1,2,3-Trichlorobenzene	ND		0.0011

· ·	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	97	60-137
Toluene, d8	83	71-129
4-Bromofluorobenzene	78	60-149

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 1 of 2

Date Extracted:	12-12-03
Date Analyzed:	12-13-03
Matrix:	Soil
Units:	mg/kg (ppm)
	12-045-24

Lab ID:		12-045-24
Client ID:	•	GP-8 (6-8')

Compound	Results	Flags PQL
Dichlorodifluoromethane	ND	0.0014
Chloromethane	ND	0.0014
Vinyl Chloride	ND	0.0014
Bromomethane	ND	0.0014
Chloroethane	ND	0.0014
Trichlorofluoromethane	ND	0.0014
1,1-Dichloroethene	ND	0.0014
Acetone	ND	0.0072
lodomethane	ND	0.0072
Carbon Disulfide	ND	0.0014
Methylene Chloride	ND	0.0072
(trans) 1,2-Dichloroethene	ND	0.0014
Methyi t-Butyl Ether	ND	0.0014
1,1-Dichloroethane	ND	0.0014
Vinyl Acetate	ND	0.0072
2,2-Dichloropropane	ND	0.0014
(cis) 1,2-Dichloroethene	ND	0.0014
2-Butanone	ND	0.0072
Bromochloromethane	ND	0.0014
Chloroform	ND	0.0014
1,1,1-Trichloroethane	ND	0.0014
Carbon Tetrachloride	ND	0.0014
1,1-Dichloropropene	ND	0.0014
Benzene	ND	0.0014
1,2-Dichloroethane	ND	0.0014
Trichloroethene	ND	0.0014
1,2-Dichloropropane	ND	0.0014
Dibromomethane	ND	0.0014
Bromodichloromethane	ND	0.0014
2-Chloroethyl Vinyl Ether	ND	0.0072
(cis) 1,3-Dichloropropene	ND ND	0.0014
Methyl Isobutyl Ketone	ND	0.0072
Toluene	0.0016	0.0014
(trans) 1,3-Dichloropropene	ND	0.0014

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 2 of 2

Lab ID: Client ID:	12-045-24 GP-8 (6-8')		· .	
Compound		Results	Flags	PQL
1,1,2-Trichloroethane		ND		0.0014
Tetrachloroethene		0.0096		0.0014
1,3-Dichloropropane		ND		0.0014
2-Hexanone		ND		0.0072
Dibromochloromethane		ND		0.0014
1,2-Dibromoethane		ND		0.0014
Chlorobenzene		ND		0.0014
1,1,1,2-Tetrachloroethane		ND		0.0014
Ethylbenzene		ND		0.0014
m,p-Xylene		ND		0.0029
o-Xylene		ND		0.0014
Styrene		ND		0.0014
Bromoform		ND		0.0014
lsopropylbenzene		ND		0.0014
Bromobenzene		ND		0.0014
1,1,2,2-Tetrachloroethane		ND		0.0014
1,2,3-Trichloropropane		ND		0.0014
n-Propylbenzene		ND		0.0014
2-Chlorotoluene		ND		0.0014
4-Chiorotoluene		ND		0.0014
1,3,5-Trimethylbenzene		ND		0.0014
tert-Butylbenzene		ND		0.0014
1,2,4-Trimethylbenzene		ND		0.0014
sec-Butylbenzene		ND		0.0014
1,3-Dichlorobenzene		ND		0.0014
p-Isopropyltoluene		ND		0.0014
1,4-Dichlorobenzene		ND		0.0014
1,2-Dichlorobenzene	,	ND		0.0014
n-Butylbenzene		ND		0.0014
1,2-Dibromo-3-chloropropane		ND		0.0072
1,2,4-Trichlorobenzene		ND		0.0014
Hexachlorobutadiene		ND		0.0072
Naphthalene		ND		0.0014
1,2,3-Trichlorobenzene		ND		0.0014

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	90	60-137
Toluene, d8	88	71-129
4-Bromofluorobenzene	82	60-149

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 1 of 2

- -

Date Extracted:	12-12-03
Date Analyzed:	12-13-03
Matrix:	Soil
Units:	mg/kg (ppm)
	5 0 (T)

Lab ID:	12-045-25	
Client ID:	GP-8 (10-12')

Compound	Results	Flags	PQL
Compound Dichlorodifluoromethane	ND	riays	0.0013
Chloromethane	ND		0.0013
Vinyl Chloride	ND		0.0013
Bromomethane	ND		0.0013
Chloroethane	ND		0.0013
Trichlorofluoromethane	ND		0.0013
1,1-Dichloroethene	ND		0.0013
Acetone	0.040		0.0015
lodomethane	ND		0.0066
Carbon Disulfide	ND		0.0000
Methylene Chloride	ND		0.0015
(trans) 1,2-Dichloroethene	ND		0.0000
Methyl t-Butyl Ether			0.0013
1,1-Dichloroethane	ND		0.0013
Vinyl Acetate	ND		0.0013
2,2-Dichloropropane	ND		0.0000
(cis) 1,2-Dichloroethene	ND		0.0013
2-Butanone	0.011		0.0015
Bromochloromethane	ND		0.0000
Chloroform	ND		0.0013
1,1,1-Trichloroethane	ND		0.0013
Carbon Tetrachloride	ND		0.0013
1,1-Dichloropropene	ND		0.0013
Benzene	ND		0.0013
1,2-Dichloroethane	ND		0.0013
Trichloroethene	ND		0.0013
	ND		0.0013
1,2-Dichloropropane Dibromomethane	ND		0.0013
Bromodichloromethane	ND		0.0013
	ND		0.0013
2-Chloroethyl Vinyl Ether	ND		0.0000
(cis) 1,3-Dichloropropene	ND		0.0013
Methyl Isobutyl Ketone	ND ND		0.0066
Toluene			0.0013
(trans) 1,3-Dichloropropene	ND		0.0013

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 2 of 2

Compound Results Flags PQL 1,1,2-Trichloroethane ND 0.0013 Tetrachloroethane ND 0.0013 1,3-Dichloropropane ND 0.0013 2-Hexanone ND 0.0013 2-Hexanone ND 0.0013 1,2-Dibromoethane ND 0.0013 1,2-Dibromoethane ND 0.0013 Chirobenzene ND 0.0013 1,1,1,2-Tetrachloroethane ND 0.0013 Ethylbenzene ND 0.0013 m,p-Xylene ND 0.0013 Styrene ND 0.0013 Isopropylbenzene ND 0.0013 Isopropylbenzene ND 0.0013 1,1,2,2-Tetrachloroethane ND 0.0013 1,1,2,2-Tetrachloroethane ND 0.0013 1,2,3-Trichloropropane ND 0.0013 1,2,2-Tetrachloroethane ND 0.0013 1,2,2-Tetrachloroethane ND 0.0013 1,2,2-Tetrachloroethane ND	Lab ID: Client ID:	12-045-25 GP-8 (10-12')	·	· ·	
n-ButylbenzeneND0.00131,2-Dibromo-3-chloropropaneND0.00661,2,4-TrichlorobenzeneND0.0013HexachlorobutadieneND0.0066	Client ID: Compound 1,1,2-Trichloroethane Tetrachloroethene 1,3-Dichloropropane 2-Hexanone Dibromochloromethane 1,2-Dibromoethane Chlorobenzene 1,1,1,2-Tetrachloroethane Ethylbenzene m,p-Xylene o-Xylene Styrene Bromoform Isopropylbenzene Bromobenzene 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane n-Propylbenzene 2-Chlorotoluene 4-Chlorotoluene 1,3,5-Trimethylbenzene tert-Butylbenzene 1,2,4-Trimethylbenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene p-Isopropyltoluene		ND ND ND ND ND ND ND ND ND ND ND ND ND N	Flags	0.0013 0.0013 0.0013 0.0066 0.0013
Hexachlorobutadiene ND 0.0066	1,4-Dichlorobenzene 1,2-Dichlorobenzene n-Butylbenzene 1,2-Dibromo-3-chloropropane		ND ND ND ND		0.0013 0.0013 0.0013 0.0066
1,3-DichlorobenzeneND0.0013p-IsopropyltolueneND0.00131,4-DichlorobenzeneND0.00131,2-DichlorobenzeneND0.0013n-ButylbenzeneND0.00131,2-Dibromo-3-chloropropaneND0.00661,2,4-TrichlorobenzeneND0.0013HexachlorobutadieneND0.0066	4-Chlorotoluene 1,3,5-Trimethylbenzene tert-Butylbenzene 1,2,4-Trimethylbenzene		ND ND ND ND		0.0013 0.0013 0.0013 0.0013
1,2-Dibromo-3-chloropropaneND0.00661,2,4-TrichlorobenzeneND0.0013HexachlorobutadieneND0.0066	2-Chlorotoluene 4-Chlorotoluene 1,3,5-Trimethylbenzene tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene 1,3-Dichlorobenzene p-Isopropyltoluene 1,4-Dichlorobenzene 1,2-Dichlorobenzene		ND ND ND ND ND ND ND ND		0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013
1,2,3-Trichlorobenzene ND 0.0013	n-Butylbenzene 1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene Hexachlorobutadiene Naphthalene		ND ND ND ND ND		0.0013 0.0066 0.0013 0.0066 0.0013

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	86	60-137
Toluene, d8	91	71-129
4-Bromofluorobenzene	84	60-149

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 1 of 2

Date Extracted:	12-13-03
Date Analyzed:	12-13-03
Matrix:	Soil
Units:	mg/kg (ppm)
Lab ID:	12-045-26

Lab ID:	12-040-20	
Client ID:	GP-7 (6-8')	

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.0013
Chloromethane	ND		0.0013
Vinyl Chloride	ND		0.0013
Bromomethane	ND		0.0013
Chloroethane	ND		0.0013
Trichlorofluoromethane	ND		0.0013
1,1-Dichloroethene	ND		0.0013
Acetone	0.012		0.0067
lodomethane	ND		0.0067
Carbon Disulfide	ND .		0.0013
Methylene Chloride	ND		0.0067
(trans) 1,2-Dichloroethene	ND		0.0013
Methyl t-Butyl Ether	ND		0.0013
1,1-Dichloroethane	ND		0.0013
Vinyl Acetate	ND	- -	0.0067
2,2-Dichloropropane	ND		0.0013
(cis) 1,2-Dichloroethene	ND		0.0013
2-Butanone	ND		0.0067
Bromochloromethane	ND		0.0013
Chloroform	ND		0.0013
1,1,1-Trichloroethane	ND .		0.0013
Carbon Tetrachloride	ND		0.0013
1,1-Dichloropropene	ND		0.0013
Benzene	ND		0.0013
1,2-Dichloroethane	ND		0.0013
Trichloroethene	ND		0.0013
1,2-Dichloropropane	ND		0.0013
Dibromomethane	ND		0.0013
Bromodichloromethane	ND		0.0013
2-Chloroethyl Vinyl Ether	ND		0.0067
(cis) 1,3-Dichloropropene	ND		0.0013
Methyl Isobutyl Ketone	ND		0.0067
Toluene	ND		0.0013
(trans) 1,3-Dichloropropene	ND		0.0013
-			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 2 of 2

Lab ID: Client ID:		12-045-26 GP-7 (6-8')		• .	
Compound			Results	Flags	PQL
1,1,2-Trichloroetha			ND		0.0013
Tetrachloroethene			ND		0.0013
1,3-Dichloropropa	ne		ND		0.0013
2-Hexanone			ND		0.0067
Dibromochloromet			ND	· .	0.0013
1,2-Dibromoethan	e		ND		0.0013
Chlorobenzene			ND		0.0013
1,1,1,2-Tetrachlor	oethane		ND		0.0013
Ethylbenzene			ND		0.0013
m,p-Xylene			NĎ		0.0027
o-Xylene			ND		0.0013
Styrene			ND		0.0013
Bromoform			ND	· ·	0.0013
Isopropylbenzene			ND		0.0013
Bromobenzene			ND	•	0.0013
1,1,2,2-Tetrachlor	oethane		ND		0.0013
1,2,3-Trichloropro	pane		ND		0.0013
n-Propylbenzene			ND		0.0013
2-Chlorotoluene			ND		0.0013
4-Chlorotoluene			ND		0.0013
1,3,5-Trimethylber	nzene		ND		0.0013
tert-Butylbenzene			ND		0.0013
1,2,4-Trimethylber	nzene		ND		0.0013
sec-Butylbenzene			ND		0.0013
1,3-Dichlorobenze	ne		ND		0.0013
p-Isopropyltoluene)		ND		0.0013
1,4-Dichlorobenze	ne		ND		0.0013
1,2-Dichlorobenze	ne		ND		0.0013
n-Butylbenzene			ND		0.0013
1,2-Dibromo-3-chl	oropropane		ND		0.0067
1,2,4-Trichloroben	zene		ND		0.0013
Hexachlorobutadie	ene		ND		0.0067
Naphthalene			ND		0.0013
1,2,3-Trichloroben	zene		ND		0.0013

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	90	60-137
Toluene, d8	93	71-129
4-Bromofluorobenzene	85	60-149

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

. . .

VOLATILES by EPA 8260B Page 1 of 2

Date Extracted: Date Analyzed:	12-13-03 12-13-03		·	
Matrix: Units:	Soil mg/kg (ppm)			
Lab ID: Client ID:	12-045-27 GP-7 (10-12')			
Compound Dichlorodifluoromethane Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Acetone Iodomethane Carbon Disulfide Methylene Chloride (trans) 1,2-Dichloroethene Methyl t-Butyl Ether 1,1-Dichloroethane Vinyl Acetate 2,2-Dichloropropane (cis) 1,2-Dichloroethene 2-Butanone Bromochloromethane Chloroform 1,1,1-Trichloroethane Carbon Tetrachloride 1,1-Dichloropropene Benzene 1,2-Dichloropropane Dibromomethane Bromodichloromethane 2-Chloroethyl Vinyl Ether (cis) 1,3-Dichloropropene Methyl Isobutyl Ketone Toluene (trans) 1,3-Dichloropropene		Results ND ND ND ND ND ND ND ND ND ND ND ND ND	Flags	PQL 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0070 0.0070 0.0014 0.0070 0.0014 0

40.00

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

VOLATILES by EPA 8260B Page 2 of 2

Lab ID: Client ID:	12-045-27 GP-7 (10-12')	•	· · ·	•
onent ib.				
Compound		Results	Flags	PQL
1,1,2-Trichloroethane		ND		0.0014
Tetrachloroethene		ND		0.0014
1,3-Dichloropropane		ND		0.0014
2-Hexanone		ND		0.0070
Dibromochloromethane		ND		0.0014
1,2-Dibromoethane		ND		0.0014
Chlorobenzene		ND		0.0014
1,1,1,2-Tetrachloroethane		ND	·	0.0014
Ethylbenzene		ND		0.0014
m,p-Xylene		ND		0.0028
o-Xylene		ND		0.0014
Styrene		ND		0.0014
Bromoform		ND		0.0014
Isopropylbenzene		ND		0.0014
Bromobenzene		ND		0.0014
1,1,2,2-Tetrachloroethane		ND		0.0014
1,2,3-Trichloropropane		ND	· · ·	0.0014
n-Propylbenzene		ND		0.0014
2-Chlorotoluene		ND		0.0014
4-Chlorotoluene		ND		0.0014
1,3,5-Trimethylbenzene		ND		0.0014
tert-Butylbenzene		ND		0.0014
1,2,4-Trimethylbenzene		ND		0.0014
sec-Butylbenzene		ND		0.0014
1,3-Dichlorobenzene		NĎ		0.0014
p-lsopropyltoluene		ND		0.0014
1,4-Dichlorobenzene		ND		0.0014
1,2-Dichlorobenzene		ND		0.0014
n-Butylbenzene		ND		0.0014
1,2-Dibromo-3-chloropropane	9	ND		0.0070
1,2,4-Trichlorobenzene		ND		0.0014
Hexachlorobutadiene		ND		0.0070
Naphthalene		ND		0.0014
1,2,3-Trichlorobenzene		ND		0.0014
	х.			

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	85	60-137
Toluene, d8	88	71-129
4-Bromofluorobenzene	83	60-149

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

_

VOLATILES by EPA 8260B Page 1 of 2

Date Extracted:	12-13-03
Date Analyzed:	12-13-03
Matrix:	Soil
Units:	mg/kg (ppm)

10 10 00

Lab ID:	12-045-29
Client ID:	GP-44 (2-4')

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND	i lugo	0.0011
Chloromethane	ND		0.0011
Vinyl Chloride	ND		0.0011
Bromomethane	ND		0.0011
Chloroethane	ND		0.0011
Trichlorofluoromethane	ND		0.0011
1,1-Dichloroethene	ND		0.0011
Acetone	ND		0.0054
lodomethane	ND		0.0054
Carbon Disulfide	ND		0.0011
Methylene Chloride	ND	и	0.0054
(trans) 1,2-Dichloroethene	ND		0.0011
Methyl t-Butyl Ether	ND		0.0011
1,1-Dichloroethane	ND		0.0011
Vinyl Acetate	ND		0.0054
2,2-Dichloropropane	ND	1. A.	0.0011
(cis) 1,2-Dichloroethene	ND		0.0011
2-Butanone	ND		0.0054
Bromochloromethane	ND		0.0011
Chloroform	ND		0.0011
1,1,1-Trichloroethane	ND		0.0011
Carbon Tetrachloride	ND		0.0011
1,1-Dichloropropene	ND		0.0011
Benzene	ND		0.0011
1,2-Dichloroethane	ND		0.0011
Trichloroethene	ND		0.0011
1,2-Dichloropropane	ND		0.0011
Dibromomethane	ND		0.0011
Bromodichloromethane	ND		0.0011
2-Chloroethyl Vinyl Ether	ND		0.0054
(cis) 1,3-Dichloropropene	ND		0.0011
Methyl Isobutyl Ketone	ND		0.0054
Toluene	0.0011		0.0011
(trans) 1,3-Dichloropropene	ND		0.0011

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 2 of 2

		0		
Lab ID:	12-045-29			
Client ID:	GP-44 (2-4')		5	
Compound		Results	Flags	PQL
1,1,2-Trichloroethane		ND		0.0011
Tetrachloroethene		ND		0.0011
1,3-Dichloropropane		ND		0.0011
2-Hexanone		ND		0.0054
Dibromochloromethane		ND		0.0011
1,2-Dibromoethane		ND		0.0011
Chlorobenzene		ND		0.0011
1,1,1,2-Tetrachloroethane	,	ND		0.0011
Ethylbenzene		ND		0.0011
m,p-Xylene	•	ND		0.0022
o-Xylene		ND		0.0011
Styrene		ND		0.0011
Bromoform		ND		0.0011
Isopropylbenzene		ND		0.0011
Bromobenzene		ND	, .	0.0011
1,1,2,2-Tetrachloroethane		ND		0.0011
1,2,3-Trichloropropane		ND		0.0011
n-Propylbenzene		ND		0.0011
2-Chlorotoluene		ND		0.0011
4-Chlorotoluene		ND		0.0011
1,3,5-Trimethylbenzene		ND		0.0011
tert-Butylbenzene		ND		0.0011
1,2,4-Trimethylbenzene		ND		0.0011
sec-Butylbenzene		ND		0.0011
1,3-Dichlorobenzene		ND		0.0011
p-lsopropyltoluene		ND		0.0011
1,4-Dichlorobenzene		ND		0.0011
1,2-Dichlorobenzene		ND		0.0011
n-Butylbenzene		ND		0.0011
1,2-Dibromo-3-chloropropane		ND		0.0054
1,2,4-Trichlorobenzene		ND		0.0011
Hexachlorobutadiene		ND		0.0054
Naphthalene		0.0013		0.0011
1,2,3-Trichlorobenzene		ND		0.0011

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	89	60-137
Toluene, d8	91	71-129
4-Bromofluorobenzene	81	60-149

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL Page 1 of 2

Date Extracted:	12-12-03
Date Analyzed:	12-12-03
Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:

MB1212S2

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.0010
Chloromethane	ND		0.0010
Vinyl Chloride	ND		0.0010
Bromomethane	ND		0.0010
Chloroethane	ND		0.0010
Trichlorofluoromethane	ND		0.0010
1,1-Dichloroethene	ND		0.0010
Acetone	ND		0.0050
lodomethane	ND		0.0050
Carbon Disulfide	ND		0.0010
Methylene Chloride	ND		0.0050
(trans) 1,2-Dichloroethene	ND		0.0010
Methyl t-Butyl Ether	ND		0.0010
1,1-Dichloroethane	ND		0.0010
Vinyl Acetate	ND		0.0050
2,2-Dichloropropane	ND		0.0010
(cis) 1,2-Dichloroethene	ND		0.0010
2-Butanone	ND		0.0050
Bromochloromethane	ND		0.0010
Chloroform	ND		0.0010
1,1,1-Trichloroethane	ND	1	0.0010
Carbon Tetrachloride	ND		0.0010
1,1-Dichloropropene	ND		0.0010
Benzene	ND		0.0010
1,2-Dichloroethane	ND		0.0010
Trichloroethene	ND		0.0010
1,2-Dichloropropane	ND		0.0010
Dibromomethane	ND		0.0010
Bromodichloromethane	ND		0.0010
2-Chloroethyl Vinyl Ether	ND		0.0050
(cis) 1,3-Dichloropropene	ND		0.0010
Methyl Isobutyl Ketone	ND		0.0050
Toluene	ND		0.0010
(trans) 1,3-Dichloropropene	ND		0.0010

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL Page 2 of 2

Lab ID:

MB1212S2

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.0010
Tetrachloroethene	ND		0.0010
1,3-Dichloropropane	ND		0.0010
2-Hexanone	ND		0.0050
Dibromochloromethane	ND		0.0010
1,2-Dibromoethane	ND	÷ .	0.0010
Chlorobenzene	NĎ		0.0010
1,1,1,2-Tetrachloroethane	ND		0.0010
Ethylbenzene	ND		0.0010
m,p-Xylene	ND		0.0020
o-Xylene	ND		0.0010
Styrene	ND		0.0010
Bromoform	ND		0.0010
Isopropylbenzene	ND		0.0010
Bromobenzene	ND		0.0010
1,1,2,2-Tetrachloroethane	ND		0.0010
1,2,3-Trichloropropane	ND		0.0010
n-Propylbenzene	ND		0.0010
2-Chlorotoluene	ND		0.0010
4-Chlorotoluene	ND		0.0010
1,3,5-Trimethylbenzene	ND		0.0010
tert-Butylbenzene	ND		0.0010
1,2,4-Trimethylbenzene	ND		0.0010
sec-Butylbenzene	ND		0.0010
1,3-Dichlorobenzene	ND		0.0010
p-IsopropyItoluene	ND		0.0010
1,4-Dichlorobenzene	ND		0.0010
1,2-Dichlorobenzene	ND		0.0010
n-Butylbenzene	ND		0.0010
1,2-Dibromo-3-chloropropane	ND		0.0050
1,2,4-Trichlorobenzene	ND		0.0010
Hexachlorobutadiene	ND		0.0050
Naphthalene	ND		0.0010
1,2,3-Trichlorobenzene	ND		0.0010

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	87	60-137
Toluene, d8	89	71-129
4-Bromofluorobenzene	83	60-149

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL Page 1 of 2

Date Extracted:	12-13-03
Date Analyzed:	12-13-03
Matrix:	Soil

mg/kg (ppm)

Lab ID:

Units:

MB1213S1

			_*
Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.0010
Chloromethane	ND		0.0010
Vinyl Chloride	ND	-	0.0010
Bromomethane	ND		0.0010
Chloroethane	ND		0.0010
Trichlorofluoromethane	ND		0.0010
1,1-Dichloroethene	ND		0.0010
Acetone	ND		0.0050
lodomethane	ND		0.0050
Carbon Disulfide	ND	*	0.0010
Methylene Chloride	ND		0.0050
(trans) 1,2-Dichloroethene	ND		0.0010
Methyl t-Butyl Ether	ND		0.0010
1,1-Dichloroethane	ND		0.0010
Vinyl Acetate	ND		0.0050
2,2-Dichloropropane	ND		0.0010
(cis) 1,2-Dichloroethene	ND		0.0010
2-Butanone	ND		0.0050
Bromochloromethane	ND		0.0010
Chloroform	ND		0.0010
1,1,1-Trichloroethane	ND		0.0010
Carbon Tetrachloride	ND		0.0010
1,1-Dichloropropene	ND		0.0010
Benzene	ND		0.0010
1,2-Dichloroethane	ND		0.0010
Trichloroethene	ND		0.0010
1,2-Dichloropropane	ND		0.0010
Dibromomethane	ND		0.0010
Bromodichloromethane	ND		0.0010
2-Chloroethyl Vinyl Ether	ND		0.0050
(cis) 1,3-Dichloropropene	ND		0.0010
Methyl Isobutyl Ketone	ND		0.0050
Toluene	ND		0.0010
(trans) 1,3-Dichloropropene	ND		0.0010

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

72

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL Page 2 of 2

Lab ID:

MB1213S1

Compound	Desults	Flore	
Compound	Results ND	Flags	PQL 0.0010
1,1,2-Trichloroethane Tetrachloroethene	ND		0.0010
	ND		0.0010
1,3-Dichloropropane 2-Hexanone	ND		0.0050
Dibromochloromethane	ND		0.0050
1,2-Dibromoethane	ND		0.0010
Chlorobenzene	ND		0.0010
1,1,1,2-Tetrachloroethane	ND	-	0.0010
Ethylbenzene	ND		0.0010
m,p-Xylene	ND		0.0020
o-Xylene	ND		0.0020
Styrene	ND		0.0010
Bromoform	ND		0.0010
Isopropylbenzene	ND		0.0010
Bromobenzene	ND.		0.0010
1,1,2,2-Tetrachloroethane	ND		0.0010
1,2,3-Trichloropropane	ND		0.0010
n-Propylbenzene	ND		0.0010
2-Chlorotoluene	ND		0.0010
4-Chlorotoluene	ND		0.0010
1,3,5-Trimethylbenzene	ND		0.0010
tert-Butylbenzene	ND		0.0010
1,2,4-Trimethylbenzene	ND		0.0010
sec-Butylbenzene	ND		0.0010
1,3-Dichlorobenzene	ND		0.0010
p-lsopropyltoluene	ND		0.0010
1,4-Dichlorobenzene	ND		0.0010
1,2-Dichlorobenzene	ND		0.0010
n-Butylbenzene	ND		0.0010
1,2-Dibromo-3-chloropropane	ND		0.0050
1,2,4-Trichlorobenzene	ND		0.0010
Hexachlorobutadiene	ND		0.0050
Naphthalene	ND		0.0010
1,2,3-Trichlorobenzene	ND		0.0010

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	83	60-137
Toluene, d8	87	71-129
4-Bromofluorobenzene	88	60-149

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B MS/MSD QUALITY CONTROL

Date Extracted:	12-12-03
Date Analyzed:	12-12-03

Matrix: Units:

Lab ID:

12-065-18

mg/kg (ppm)

Soil

	Sample	Spike		Percent	WOD	Percent	Recovery	-
Compound	Amount	Amount	MS	Recovery	MSD	Recovery	Limits	Flags
1,1-Dichloroethene	ND	0.0500	0.056	113	0.054	108	30-153	
Benzene	ND	0.0500	0.055	111	0.0553	99	58-140	
Trichloroethene	ND	0.0500	0.052	105	0.053	106	38-130	
Toluene	ND	0.0500	0.053	105	0.053	106	28-147	
Chlorobenzene	ND	0.0500	0.057	114	0.056	111	47-131	

	RPD	· Limit	Flags
1,1-Dichloroethene	5	11	
Benzene	12	11	. L
Trichloroethene	1	11	
Toluene	1	10	
Chlorobenzene	3	11	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B MS/MSD QUALITY CONTROL

Date Extracted:	12-13-03
Date Analyzed:	12-13-03

Matrix: Units:

mg/kg (ppm)

Soil

Lab ID:

12-074-01

	Sample	Spike		Percent		Percent	Recovery	
Compound	Amount	Amount	MS	Recovery	MSD	Recovery	Limits	Flags
1,1-Dichloroethene	ND	0.0500	0.0520	104	0.0551	110	30-153	
Benzene	ND	0.0500	0.0505	101	0.0536	107	58-140	
Trichloroethene	ND	0.0500	0.0435	87	0.0494	99	38-130	
Toluene	ND	0.0500	0.0488	98	0.0505	101	28-147	
Chlorobenzene	ND	0.0500	0.0514	103	0.0508	102	47-131	

	RPD		
	RPD	Limit	Flags
1,1-Dichloroethene	6	11	
Benzene	6	11	
Trichloroethene	13	11	L
Toluene	3	10	
Chlorobenzene	1	11	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B SPIKE BLANK QUALITY CONTROL

Date Extracted:	12-12-03
Date Analyzed:	12-12-03

Matrix: Units:

Lab ID:

SB1212S2

mg/kg (ppm)

Soil

Compound	Spike Amount	Spike Recovery	Percent Recovery	Recovery Limits	Flags
1,1-Dichloroethene	0.0500	0.0580	116	45-145	
Benzene	0.0500	0.0531	106	67-138	
Trichloroethene	0.0500	0.0521	104	49-136	
Toluene	0.0500	0.0522	104	72-121	
Chlorobenzene	0.0500	0.0568	114	66-137	

VOLATILES by EPA 8260B SPIKE BLANK QUALITY CONTROL

Date Extracted:	12-13-03
Date Analyzed:	12-13-03

Matrix:SoilUnits:mg/kg (ppm)

Lab ID:

SB1213S1

Compound	Spike Amount	Spike Recovery	Percent Recovery	Recovery Limits	Flags
1,1-Dichloroethene	0.0500	0.0534	107	45-145	
Benzene	0.0500	0.0519	104	67-138	
Trichloroethene	0.0500	0.0529	106	49-136	
Toluene	0.0500	0.0541	108	72-121	
Chlorobenzene	0.0500	0.0556	111	66-137	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

% MOISTURE

Date Analyzed:	12-11-03		
Client ID		Lab ID	% Moisture
GP-1 (6-8)		12-045-02	30
GP-1 (10-12)		12-045-03	27
GP-2 (6-8)		12-045-05	12
GP-2 (10-12)		12-045-06	29
GP-3 (6-8)		12-045-12	5
GP-3 (10-12)		12-045-13	29
GP-4 (2-4)		12-045-14	7
GP-4 (6-8)		12-045-15	9
GP-4 (10-12)		12-045-16	29
GP-5 (6-8)		12-045-18	9
GP-5 (10-12)		12-045-19	30
GP-6 0-2.5		12-045-21	6
GP-8 (6-8)		12-045-24	31
GP-8 (10-12)		12-045-25	24
GP-7 (6-8)		12-045-26	25
GP-7 (10-12)		12-045-27	29
GP-44 (2-4)		12-045-29	7

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

G - Insufficient sample quantity for duplicate analysis.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

O - Hydrocarbons outside the defined gasoline range are present in the sample.

P - The RPD of the detected concentrations between the two columns is greater than 40.

Q - Surrogate recovery is outside of the control limits.

S - Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

V - Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.

W - Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.

X - Sample extract treated with a silica gel cleanup procedure.

Y - Sample extract treated with an acid cleanup procedure.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

STL Seattle 5755 8th Street East Tacoma, WA 98424

Tel: 253 922 2310 Fax: 253 922 5047 www.stl-inc.com

TRANSMITTAL MEMORANDUM

DATE: December 19, 2003

TO: David Baumeister OnSite Environmental, Inc. 14648 N. E. 95th St. Redmond, WA 98052

PROJECT: 12-045

REPORT NUMBER: 118327

TOTAL NUMBER OF PAGES:

Enclosed are the test results for seven samples received at STL Seattle on December 12, 2003.

The report consists of this transmittal memo, analytical results, quality control reports, a copy of the chain-of-custody, a list of data qualifiers and analytical narrative when applicable, and a copy of any requested raw data.

Should there be any questions regarding this report, please contact me at (253) 922-2310.

Sincerely,

Stan Palmquist Project Manager

STL Seattle is a part of Severn Trent Laboratories, Inc.

This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized. If you have received this report in error, please notify the sender immediately at 253-922-2310 and destroy this report immediately.

Sample Identification:

Lab. No.	<u>Client ID</u>	Date/Time Sampled	<u>Matrix</u>
118327-1	GP-1	12-02-03 *	Liquid
118327-2	GP-2	12-02-03 *	Liquid
118327-3	GP-3	12-02-03 *	Liquid
118327-4	GP-4	12-02-03 *	Liquid
118327-5	GP-5	12-02-03 *	Liquid
118327-6	GP-8	12-02-03 *	Liquid
118327-7	GP-7	12-02-03 *	Liquid
* Oamuliant	the short on a stitle of fair this as made		

* - Sampling time not specified for this sample

STL Seattle is a part of Severn Trent Laboratories, Inc.

This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized. If you have received this report in error, please notify the sender immediately at 253-922-2310 and destroy this report immediately.

Client Name	OnSite Environmental, Inc.
Client ID:	GP-1
Lab ID:	118327-01
Date Received:	12/12/2003
Date Prepared:	12/15/2003
Date Analyzed:	12/15/2003
% Solids	-
Dilution Factor	1

Volatile Organics by USEPA Method 5030/8260B

SMC/			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	92.4		80	120
Fluorobenzene	102		80	120
Toluene-D8	105		80	120
Ethylbenzene-d10	113		80	120
Bromofluorobenzene	110		80	120
Trifluorotoluene	103		80	120

	Result		
Analyte	(ug/L)	PQL	MRL Flags
Dichlorodifluoromethane	ND	, 1	0.5
Chloromethane	ND	2	1
Vinyl chloride	ND	1	0.5
Bromomethane	ND	2.5	1.25
Chloroethane	ND	1	0.5
Trichlorofluoromethane	ND	1	0.5
1,1-Dichloroethene	ND	1	0.5
Methylene chloride	ND	2	1
trans-1,2-Dichloroethene	ND	1	0.5
1,1-Dichloroethane	ND	1	0.5
2,2-Dichloropropane	ND	1	0.5
cis-1,2-Dichloroethene	ND	1	0.5
Bromochloromethane	ND	1	0.5
Chloroform	ND	1	0.5
1,1,1-Trichloroethane	ND	1	0.5
Carbon Tetrachloride	ND	1	0.5
1,1-Dichloropropene	ND	1	0.5
Benzene	ND	1	0.5
1,2-Dichloroethane	ND	1	0.5
Trichloroethene	ND	1	0.5
1,2-Dichloropropane	ND	1	0.5
Dibromomethane	ND	1	0.5
Bromodichloromethane	ND	1	0.5
cis-1,3-Dichloropropene	ND	1	0.5
Toluene	ND	1	0.5
trans-1,3-Dichloropropene	ND	1	0.5

9**1** 3 1

Volatile Organics by USEPA Method 5030/8260B data for 118327-01 continued...

	Result		
Analyte	(ug/L)	PQL	MRL
1,1,2-Trichloroethane	ND	1	0.5
Tetrachloroethene	ND	1	0.5
1,3-Dichloropropane	ND	1	0.5
Dibromochloromethane	ND	1	0.5
1,2-Dibromoethane	ND	1	0.5
Chlorobenzene	ND	1	0.5
Ethylbenzene	ND	1	0.5
1,1,1,2-Tetrachloroethane	ND	1	0.5
m,p-Xylene	ND	2	. 1
o-Xylene	ND	1	0.5
Styrene	ND	1	0.5
Bromoform	ND	1	0.5
Isopropylbenzene	ND	1	0.5
Bromobenzene	ND	1	0.5
n-Propylbenzene	ND	1	0.5
1,1,2,2-Tetrachloroethane	ND	1	0.5
1,2,3-Trichloropropane	ND	1	0.5
2-Chlorotoluene	ND	1	0.5
1,3,5-Trimethylbenzene	ND	1	0.5
4-Chlorotoluene	ND	1	0.5
t-Butylbenzene	ND	1	0.5
1,2,4-Trimethylbenzene	ND	1	0.5
sec-Butylbenzene	ND	1	0.5
1,3-Dichlorobenzene	ND	1	0.5
4-Isopropyltoluene	ND	1	0.5
1,4-Dichlorobenzene	ND	1	0.5
n-Butylbenzene	ND	1	0.5
1,2-Dichlorobenzene	ND	1	0.5
1,2-Dibromo-3-chloropropane	ND	1	0.5
1,2,4-Trichlorobenzene	ND	1	0.5
Hexachlorobutadiene	ND	1	0.5
Naphthalene	ND	2	1
1,2,3-Trichlorobenzene	ND	1,	0.5

Client Name	OnSite Environmental, Inc.
Client ID:	GP-2
Lab ID:	118327-02
Date Received:	12/12/2003
Date Prepared:	12/15/2003
Date Analyzed:	12/15/2003
% Solids	-
Dilution Factor	1

Volatile Organics by USEPA Method 5030/8260B

SMC/			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	90.8		80	120
Fluorobenzene	101		80	120
Toluene-D8	106		80	120
Ethylbenzene-d10	110		80	120
Bromofluorobenzene	106		80	120
Trifluorotoluene	107		80	120

	Resul		
Analyte	(ug/L)	PQL	MRL Flags
Dichlorodifluoromethane	ND	1	0.5
Chloromethane	ND	2	1
Vinyl chloride	ND	1	0.5
Bromomethane	ND	2.5	1.25
Chloroethane	ND	1	0.5
Trichlorofluoromethane	ND	1	0.5
1,1-Dichloroethene	ND	1	0.5
Methylene chloride	ND	2	1
trans-1,2-Dichloroethene	ND	1	0.5
1,1-Dichloroethane	ND	1	0.5
2,2-Dichloropropane	ND	1	0.5
cis-1,2-Dichloroethene	ND	1	0.5
Bromochloromethane	ND	1	0.5
Chloroform	ND	1	0.5
1,1,1-Trichloroethane	ND	1	0.5
Carbon Tetrachloride	ND	1	0.5
1,1-Dichloropropene	ND	· 1	0.5
Benzene	ND	1	0.5
1,2-Dichloroethane	ND	1	0.5
Trichloroethene	ND	1	0.5
1,2-Dichloropropane	ND	1	0.5
Dibromomethane	ND	1	0.5
Bromodichloromethane	ND	· 1	0.5
cis-1,3-Dichloropropene	ND	1	0.5
Toluene	ND	1	0.5
trans-1,3-Dichloropropene	ND	1	0.5

Volatile Organics by USEPA Method 5030/8260B data for 118327-02 continued...

	Result		
Analyte	(ug/L)	PQL	MRL
1,1,2-Trichloroethane	ND	1	0.5
Tetrachloroethene	ND	1	0.5
1,3-Dichloropropane	ND	1	0.5
Dibromochloromethane	ND	1	0.5
1,2-Dibromoethane	ND	1	0.5
Chlorobenzene	ND	1	0.5
Ethylbenzene	ND	1	0.5
1,1,1,2-Tetrachloroethane	ND	1	0.5
m,p-Xylene	ND	2	1
o-Xylene	ND	1	0.5
Styrene	ND	1	0.5
Bromoform	ND	1	0.5
Isopropylbenzene	ND	1	0.5
Bromobenzene	ND	1	0.5
n-Propylbenzene	ND	1	0.5
1,1,2,2-Tetrachloroethane	ND	1	0.5
1,2,3-Trichloropropane	ND	1	0.5
2-Chlorotoluene	ND	1	0.5
1,3,5-Trimethylbenzene	ND	1	0.5
4-Chlorotoluene	ND	1	0.5
t-Butylbenzene	ND	1	0.5
1,2,4-Trimethylbenzene	ND	1	0.5
sec-Butylbenzene	ND	1	0.5
1,3-Dichlorobenzene	ND	1	0.5
4-Isopropyltoluene	ND	1	0.5
1,4-Dichlorobenzene	ND	1	0.5
n-Butylbenzene	ND	1	0.5
1,2-Dichlorobenzene	ND	1	0.5
1,2-Dibromo-3-chloropropane	ND	1	0.5
1,2,4-Trichlorobenzene	ND	1	0.5
Hexachlorobutadiene	ND	1	0.5
Naphthalene	ND	2	1
1,2,3-Trichlorobenzene	ND	_ 1	0.5

Client Name	OnSite Environmental, Inc.
Client ID:	GP-3
Lab ID:	118327-03
Date Received:	12/12/2003
Date Prepared:	12/15/2003
Date Analyzed:	12/15/2003
% Solids	-
Dilution Factor	1

Volatile Organics by USEPA Method 5030/8260B

		Recove	ery Limits
% Recovery	Flags	Low	High
91.4		80	120
101		80	120
105		80	120
111		80	120
106		80	120
102		80	120
	91.4 101 105 111 106	91.4 101 105 111 106	% Recovery Flags Low 91.4 80 101 80 105 80 111 80 106 80

	Re	esult	
Analyte	(u	g/L) PQL	MRL Flags
Dichlorodifluoromethane	ND	1	0.5
Chloromethane	ND	2	1
Vinyl chloride	ND	1	0.5
Bromomethane	ND	2.5	1.25
Chloroethane	ND	1	0.5
Trichlorofluoromethane	ND	1	0.5
1,1-Dichloroethene	ND	1	0.5
Methylene chloride	ND	2	1
trans-1,2-Dichloroethene	ND	1	0.5
1,1-Dichloroethane	ND	1	0.5
2,2-Dichloropropane	ND	1	0.5
cis-1,2-Dichloroethene	ND	1	0.5
Bromochloromethane	ND	1	0.5
Chloroform	ND	1	0.5
1,1,1-Trichloroethane	ND	1	0.5
Carbon Tetrachloride	ND	1	0.5
1,1-Dichloropropene	ND	1	0.5
Benzene	ND	1	0.5
1,2-Dichloroethane	ND	1	0.5
Trichloroethene	ND	1	0.5
1,2-Dichloropropane	ND	1	0.5
Dibromomethane	ND	1	0.5
Bromodichloromethane	ND	1	0.5
cis-1,3-Dichloropropene	ND	· 1	0.5
Toluene	ND	1	0.5
trans-1,3-Dichloropropene	ND	1	0.5

7

.

Volatile Organics by USEPA Method 5030/8260B data for 118327-03 continued...

	Result		
Analyte	(ug/L)	PQL	MRL
1,1,2-Trichloroethane	ND	1	0.5
Tetrachloroethene	ND	1	0.5
1,3-Dichloropropane	ND	1	0.5
Dibromochloromethane	ND	1	0.5
1,2-Dibromoethane	ND	1	0.5
Chlorobenzene	ND	1	0.5
Ethylbenzene	ND	1	0.5
1,1,1,2-Tetrachloroethane	ND	1	0.5
m,p-Xylene	ND	2	1
o-Xylene	ND	1	0.5
Styrene	ND	1	0.5
Bromoform	ND	1	0.5
Isopropylbenzene	ND	1	0.5
Bromobenzene	ND	1	0.5
n-Propylbenzene	ND	1	0.5
1,1,2,2-Tetrachioroethane	ND	1	0.5
1,2,3-Trichloropropane	ND	1	0.5
2-Chlorotoluene	ND	1	0.5
1,3,5-Trimethylbenzene	ND	1	0.5
4-Chlorotoluene	ND	1	0.5
t-Butylbenzene	ND	1	0.5
1,2,4-Trimethylbenzene	ND	1	0.5
sec-Butylbenzene	ND	1	0.5
1,3-Dichlorobenzene	ND	1	0.5
4-Isopropyltoluene	ND	1	0.5
1,4-Dichlorobenzene	ND	1	0.5
n-Butylbenzene	ND	1	0.5
1,2-Dichlorobenzene	ND	1	0.5
1,2-Dibromo-3-chloropropane	ND	1	0.5
1,2,4-Trichlorobenzene	ND	1	0.5
Hexachlorobutadiene	ND	1	0.5
Naphthalene	ND	2	1
1,2,3-Trichlorobenzene	ND	. 1	0.5

Client Name	OnSite Environmental, Inc.
Client ID:	GP-4
Lab ID:	118327-04
Date Received:	12/12/2003
Date Prepared:	12/15/2003
Date Analyzed:	12/15/2003
% Solids	-
Dilution Factor	1

Volatile Organics by USEPA Method 5030/8260B

SMC /			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	92.5		80	120
Fluorobenzene	102		80	120
Toluene-D8	107		80	120
Ethylbenzene-d10	111		80	120
Bromofluorobenzene	109		80	120
Trifluorotoluene	106		80	120

		Result		
Analyte		(ug/L)	PQL	MRL Flags
Dichlorodifluoromethane	ND		1	0.5
Chloromethane	ND		2	1
Vinyl chloride	ND		1	0.5
Bromomethane	ND		2.5	1.25
Chloroethane	ND		1	0.5
Trichlorofluoromethane	ND		1	0.5
1,1-Dichloroethene	ND		1	0.5
Methylene chloride	ND		2	1
trans-1,2-Dichloroethene	ND		1	0.5
1,1-Dichloroethane	ND		1	0.5
2,2-Dichloropropane	ND		1	0.5
cis-1,2-Dichloroethene	ND		1	0.5
Bromochloromethane	ND		1	0.5
Chloroform	ND		1	0.5
1,1,1-Trichloroethane	ND		1	0.5
Carbon Tetrachloride	ND		1	0.5
1,1-Dichloropropene	ND		1	0.5
Benzene	ND		1	0.5
1,2-Dichloroethane	ND		1	0.5
Trichloroethene	ND		1	0.5
1,2-Dichloropropane	ND		1	0.5
Dibromomethane	ND		1	0.5
Bromodichloromethane	ND		1	0.5
cis-1,3-Dichloropropene	ND		1	0.5
Toluene	ND		1	0.5
trans-1,3-Dichloropropene	ND		1	0.5

Volatile Organics by USEPA Method 5030/8260B data for 118327-04 continued...

	Result		
Analyte	(ug/L)	PQL	MRL
1,1,2-Trichloroethane	ND	1	0.5
Tetrachloroethene	ND	1	0.5
1,3-Dichloropropane	ND	1	0.5
Dibromochloromethane	ND	1	0.5
1,2-Dibromoethane	ND	1	0.5
Chlorobenzene	ND	1	0.5
Ethylbenzene	ND	1	0.5
1,1,1,2-Tetrachloroethane	ND	1	0.5
m,p-Xyiene	ND	2	1
o-Xylene	ND	1	0.5
Styrene	ND	1	0.5
Bromoform	ND	1	0.5
Isopropylbenzene	ND	1	0.5
Bromobenzene	ND	1	0.5
n-Propylbenzene	ND	1	0.5
1,1,2,2-Tetrachloroethane	ND	1	0.5
1,2,3-Trichloropropane	ND	1	0.5
2-Chlorotoluene	ND	1	0.5
1,3,5-Trimethylbenzene	ND	1	0.5
4-Chlorotoluene	ND	1	0.5
t-Butylbenzene	ND	1	0.5
1,2,4-Trimethylbenzene	ND	1	0.5
sec-Butylbenzene	ND	1	0.5
1,3-Dichlorobenzene	ND	1	0.5
4-Isopropyltoluene	ND	1	0.5
1,4-Dichlorobenzene	ND	1	0.5
n-Butylbenzene	ND	1	0.5
1,2-Dichlorobenzene	ND	1	0.5
1,2-Dibromo-3-chloropropane	ND	1	0.5
1,2,4-Trichlorobenzene	ND	1	0.5
Hexachlorobutadiene	ND	1	0.5
Naphthalene	ND	2	1
1,2,3-Trichlorobenzene	ND	. 1	0.5

Client Name	OnSite Environmental, Inc.
Client ID:	GP-5
Lab ID:	118327-05
Date Received:	12/12/2003
Date Prepared:	12/15/2003
Date Analyzed:	12/15/2003
% Solids	-
Dilution Factor	1

Volatile Organics by USEPA Method 5030/8260B

SMC /			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	91.3		80	120
Fluorobenzene	100		80	120
Toluene-D8	107		80	120
Ethylbenzene-d10	109		80	120
Bromofluorobenzene	107		80	120
Trifluorotoluene	102		80	120

	Re	sult	
Analyte	(นรู	g/L) PQL	MRL Flags
Dichlorodifluoromethane	ND	1	0.5
Chloromethane	ND	2	1
Vinyl chloride	ND	1	0.5
Bromomethane	ŇD	2.5	1.25
Chloroethane	ND	1	0.5
Trichlorofluoromethane	ND	1	0.5
1,1-Dichloroethene	ND	1	0.5
Methylene chloride	ND	2	1
trans-1,2-Dichloroethene	ND	1	0.5
1,1-Dichloroethane	ND	1	0.5
2,2-Dichloropropane	ND	1	0.5
cis-1,2-Dichloroethene	ND	1	0.5
Bromochloromethane	ND	1	0.5
Chloroform	ND	1	0.5
1,1,1-Trichloroethane	ND	1	0.5
Carbon Tetrachloride	ND	1	0.5
1,1-Dichloropropene	ND	1	0.5
Benzene	ND	1	0.5
1,2-Dichloroethane	ND	1	0.5
Trichloroethene	ND	1	0.5
1,2-Dichloropropane	ND	1	0.5
Dibromomethane	ND	1	0.5
Bromodichloromethane	ND	1	0.5
cis-1,3-Dichloropropene	ND	1	0.5
Toluene	ND	1	0.5
trans-1,3-Dichloropropene	ND	1	0.5

Volatile Organics by USEPA Method 5030/8260B data for 118327-05 continued...

	Result		
Analyte	(ug/L)	PQL	MRL
1,1,2-Trichloroethane	ND	1	0.5
Tetrachloroethene	ND	1	0.5
1,3-Dichloropropane	ND	1	0.5
Dibromochloromethane	ND	1	0.5
1,2-Dibromoethane	ND	1	0.5
Chlorobenzene	ND	1	0.5
Ethylbenzene	ND	1	0.5
1,1,1,2-Tetrachloroethane	ND	1	0.5
m,p-Xylene	ND	2	1
o-Xylene	ND	1	0.5
Styrene	ND	1	0.5
Bromoform	ND	1	0.5
Isopropylbenzene	ND	1	0.5
Bromobenzene	ND	1	0.5
n-Propylbenzene	ND	1	0.5
1,1,2,2-Tetrachloroethane	ND	1	0.5
1,2,3-Trichloropropane	ND	1	0.5
2-Chlorotoluene	ND	1	0.5
1,3,5-Trimethylbenzene	ND	1	0.5
4-Chlorotoluene	ND	1	0.5
t-Butylbenzene	ND	1	0.5
1,2,4-Trimethylbenzene	ND	1	0.5
sec-Butylbenzene	ND	1	0.5
1,3-Dichlorobenzene	ND	_ 1	0.5
4-Isopropyltoluene	ND	1	0.5
1,4-Dichlorobenzene	ND	1	0.5
n-Butylbenzene	ND	1	0.5
1,2-Dichlorobenzene	ND	1	0.5
1,2-Dibromo-3-chloropropane	ND	1	0.5
1,2,4-Trichlorobenzene	ND	1	0.5
Hexachlorobutadiene	ND	1	0.5
Naphthalene	ND	2	1
1,2,3-Trichlorobenzene	ND	1	0.5

Client Name	OnSite Environmental, Inc.
Client ID:	GP-8
Lab ID:	118327-06
Date Received:	12/12/2003
Date Prepared:	12/15/2003
Date Analyzed:	12/15/2003
% Solids	-
Dilution Factor	1

Volatile Organics by USEPA Method 5030/8260B

SMC/			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	91.5		80	120
Fluorobenzene	102		80	120
Toluene-D8	104		80	120
Ethylbenzene-d10	108		80	120
Bromofluorobenzene	107		80	120
Trifluorotoluene	101		80	120

	Re	esult	
Analyte	(u	g/L) PQL	MRL Flags
Dichlorodifluoromethane	ND	1	0.5
Chloromethane	ND	2	1
Vinyl chloride	ND	1	0.5
Bromomethane	ND	2.5	1.25
Chioroethane	ND	1	0.5
Trichlorofluoromethane	ND	1	0.5
1,1-Dichloroethene	ND	1	0.5
Methylene chloride	ND	2	1
trans-1,2-Dichloroethene	ND	1	0.5
1,1-Dichloroethane	ND	1	0.5
2,2-Dichloropropane	ND	1	0.5
cis-1,2-Dichloroethene	1.69	1	0.5
Bromochloromethane	ND	1	0.5
Chloroform	ND	1	0.5
1,1,1-Trichloroethane	ND	1	0.5
Carbon Tetrachloride	ND	1	0.5
1,1-Dichloropropene	ND	1	0.5
Benzene	ND	1	0.5
1,2-Dichloroethane	ND	1	0.5
Trichloroethene	ND	1	0.5
1,2-Dichloropropane	ND	1	0.5
Dibromomethane	ND	1	0.5
Bromodichloromethane	ND	1	0.5
cis-1,3-Dichloropropene	ND	1	0.5
Toluene	ND	1	0.5
trans-1,3-Dichloropropene	ND	1	0.5

_

Volatile Organics by USEPA Method 5030/8260B data for 118327-06 continued...

Result					
Analyte	(ug/L)	PQL	MRL		
1,1,2-Trichloroethane	ND	1	0.5		
Tetrachloroethene	0.554	1	0.5		
1,3-Dichloropropane	ND	1	0.5		
Dibromochloromethane	ND	1	0.5		
1,2-Dibromoethane	ND	1	0.5		
Chlorobenzene	ND	1	0.5		
Ethylbenzene	ND	1	0.5		
1,1,1,2-Tetrachloroethane	ND	1	0.5		
m,p-Xylene	ND	2	1		
o-Xylene	ND	1	0.5		
Styrene	ND	1	0.5		
Bromoform	ND	1	0.5		
Isopropylbenzene	ND	1	0.5		
Bromobenzene	ND	1	0.5		
n-Propylbenzene	ND	1	0.5		
1,1,2,2-Tetrachloroethane	ND	1	0.5		
1,2,3-Trichloropropane	ND	1	0.5		
2-Chlorotoluene	ND	1	0.5		
1,3,5-Trimethylbenzene	ND	1	0.5		
4-Chlorotoluene	ND	1	0.5		
t-Butylbenzene	ND	1	0.5		
1,2,4-Trimethylbenzene	ND	1	0.5		
sec-Butylbenzene	ND	1	0.5		
1,3-Dichlorobenzene	ND	1	0.5		
4-Isopropyltoluene	ND	1	0.5		
1,4-Dichlorobenzene	ND	1	0.5		
n-Butylbenzene	ND	1	0.5		
1,2-Dichlorobenzene	ND	1	0.5		
1,2-Dibromo-3-chloropropane	ND	1	0.5		
1,2,4-Trichlorobenzene	ND	1	0.5		
Hexachlorobutadiene	ND	1	0.5		
Naphthalene	ND	2	1		
1,2,3-Trichlorobenzene	ND	1	0.5		

14

J

Client Name	OnSite Environmental, Inc.
Client ID:	GP-7
Lab ID:	118327-07
Date Received:	12/12/2003
Date Prepared:	12/15/2003
Date Analyzed:	12/15/2003
% Solids	-
Dilution Factor	1

Volatile Organics by USEPA Method 5030/8260B

SMC /			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	92.1		80	120
Fluorobenzene	101		80	120
Toluene-D8	105		80	120
Ethylbenzene-d10	112		80	120
Bromofluorobenzene	109		80	120
Trifluorotoluene	108		80	120

	F	Result		
Analyte	(ug/L)	PQL	MRL Flags
Dichlorodifluoromethane	ND		1	0.5
Chloromethane	ND		2	1
Vinyl chloride	ND		1	0.5
Bromomethane	ND		2.5	1.25
Chloroethane	ND		1	0.5
Trichlorofluoromethane	ND		1	0.5
1,1-Dichloroethene	ND		1	0.5
Methylene chloride	ND		2	1
trans-1,2-Dichloroethene	ND		1	0.5
1,1-Dichloroethane	ND		1	0.5
2,2-Dichloropropane	ND		1	0.5
cis-1,2-Dichloroethene	10.2		1	0.5
Bromochloromethane	ND		1	0.5
Chloroform	ND		1	0.5
1,1,1-Trichloroethane	ND		1	0.5
Carbon Tetrachloride	ND		1	0.5
1,1-Dichloropropene	ND		1	0.5
Benzene	ND		1	0.5
1,2-Dichloroethane	ND		1	0.5
Trichloroethene	ND		1	0.5
1,2-Dichloropropane	ND		1	0.5
Dibromomethane	ND		1	0.5
Bromodichloromethane	ND		1	0.5
cis-1,3-Dichloropropene	ND		1	0.5
Toluene	ND		1	0.5
trans-1,3-Dichloropropene	ND		1	0.5

Volatile Organics by USEPA Method 5030/8260B data for 118327-07 continued...

	Result		
Analyte	(ug/L)	PQL	MRL
1,1,2-Trichloroethane	ND	1	0.5
Tetrachloroethene	ND	1	0.5
1,3-Dichloropropane	ND	1	0.5
Dibromochloromethane	ND	1	0.5
1,2-Dibromoethane	ND	1	0.5
Chlorobenzene	ND	1	0.5
Ethylbenzene	ND	1	0.5
1,1,1,2-Tetrachloroethane	ND	1	0.5
m,p-Xylene	ND	2	1
o-Xylene	ND	1	0.5
Styrene	ND	1	0.5
Bromoform	ND	1	0.5
Isopropylbenzene	ND	1	0.5
Bromobenzene	ND	1	0.5
n-Propylbenzene	ND	1	0.5
1,1,2,2-Tetrachloroethane	ND	1	0.5
1,2,3-Trichloropropane	ND	1	0.5
2-Chlorotoluene	ND	1	0.5
1,3,5-Trimethylbenzene	ND	1	0.5
4-Chlorotoluene	ND	<u> </u>	0.5
t-Butylbenzene	ND	1	0.5
1,2,4-Trimethylbenzene	ND	1	0.5
sec-Butylbenzene	ND	1	0.5
1,3-Dichlorobenzene	ND	1	0.5
4-Isopropyltoluene	ND	1	0.5
1,4-Dichlorobenzene	ND	1	0.5
n-Butylbenzene	ND	1	0.5
1,2-Dichlorobenzene	ND	1	0.5
1,2-Dibromo-3-chloropropane	ND	1	0.5
1,2,4-Trichlorobenzene	ND	1	0.5
Hexachlorobutadiene	ND	1	0.5
Naphthalene	ND	2	1
1,2,3-Trichlorobenzene	ND	1	0.5

Lab ID:Method Blank - VOA595Date Received:-Date Prepared:12/15/2003Date Analyzed:12/15/2003% Solids-Dilution Factor1

Volatile Organics by USEPA Method 5030/8260B

SMC /			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	90.8		80	120
Fluorobenzene	101		80	120
Toluene-D8	106		80	120
Ethylbenzene-d10	114		80	120
Bromofluorobenzene	110		80	120
Trifluorotoluene	110		80	120

		Result		
Analyte		(ug/L)	PQL	MRL Flags
Dichlorodifluoromethane	ND		1	0.5
Chloromethane	ND		2	1
Vinyl chloride	ND		1	0.5
Bromomethane	ND		2.5	1.25
Chloroethane	ND		1	0.5
Trichlorofluoromethane	ND		1	0.5
1,1-Dichloroethene	ND		1	0.5
Methylene chloride	ND		2	1
trans-1,2-Dichloroethene	ND		1	0.5
1,1-Dichloroethane	ND		1	0.5
2,2-Dichloropropane	ND		1	0.5
cis-1,2-Dichloroethene	ND		1	0.5
Bromochloromethane	ND		. 1	0.5
Chloroform	ND		1	0.5
1,1,1-Trichloroethane	ND		1	0.5
Carbon Tetrachloride	ND		1	0.5
1,1-Dichloropropene	ND		1	0.5
Benzene	ND		. 1	0.5
1,2-Dichloroethane	ND		1	0.5
Trichloroethene	ND		1	0.5
1,2-Dichloropropane	ND		1	0.5
Dibromomethane	ND		1	0.5
Bromodichloromethane	ND		1	0.5
cis-1,3-Dichloropropene	ND		1	0.5
Toluene	ND		1	0.5
trans-1,3-Dichloropropene	ND		1	· 0.5

STL Seattle

Volatile Organics by USEPA Method 5030/8260B data for VOA595 continued...

	Result		
Analyte	(ug/L)	PQL	MRL
1,1,2-Trichloroethane	ND	1	0.5
Tetrachloroethene	ND	1	0.5
1,3-Dichloropropane	ND	1	0.5
Dibromochloromethane	ND	1	0.5
1,2-Dibromoethane	ND	1	0.5
Chiorobenzene	ND	1	0.5
Ethylbenzene	ND	1	0.5
1,1,1,2-Tetrachloroethane	ND	1	0.5
m,p-Xylene	ND	2	1
o-Xylene	ND	1	0.5
Styrene	ND	1	0.5
Bromoform	ND	1	0.5
Isopropylbenzene	ND	1	0.5
Bromobenzene	ND	1	0.5
n-Propylbenzene	ND	1	0.5
1,1,2,2-Tetrachloroethane	ND	· 1	0.5
1,2,3-Trichloropropane	ND	1	0.5
2-Chlorotoluene	ND	1	0.5
1,3,5-Trimethylbenzene	ND	1	0.5
4-Chlorotoluene	ND	1	0.5
t-Butylbenzene	ND	1	0.5
1,2,4-Trimethylbenzene	ND	1	0.5
sec-Butylbenzene	ND	1	0.5
1,3-Dichlorobenzene	ND	1	0.5
4-Isopropyltoluene	ND	1	0.5
1,4-Dichlorobenzene	ND	1	0.5
n-Butylbenzene	ND	1	0.5
1,2-Dichlorobenzene	ND	1	0.5
1,2-Dibromo-3-chloropropane	ND	1	0.5
1,2,4-Trichlorobenzene	ND	1	0.5
Hexachlorobutadiene	ND	1	0.5
Naphthalene	ND	2	1
1,2,3-Trichlorobenzene	ND	1	0.5

STL Seattle

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared: Date Analyzed: QC Batch ID: VOA595 12/15/2003 12/15/2003 VOA595

 $\Delta t_{\rm c}$

19

Volatile Organics by USEPA Method 5030/8260B

	Blank	Spike	BS	•	BSD			
	Result	Amount	Result	BS	Result	BSD		
Compound Name	(ug/L)	(ug/L)	(ug/L)	% Rec.	(ug/L)	% Rec.	RPD	Flag
1,1-Dichloroethene	0	5	4.59	91.8	4.51	90.1	-1.9	
Benzene	0	5	4.87	97.5	4.73	94.5	-3.1	
Trichloroethene	0	5	4.86	97.3	5	100	2.7	
Toluene	0	5	4.8	96	4.74	94.9	-1.2	
Chlorobenzene	0	5	5	100	5.03	101	1	

CHAIN OF CUSTODY RECORD

HXXB

(FOR SUBCONTRACT LABORATORY)

Lab Reference Number: 12-045

 $\mathbf{50}$

14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project Manager: David Baumeister

Project Number: 033-1000.000

Project Name: Consolidated Freightway

Comments				12/10	*/•			 	 	12-12-03	////	ichut-	14 800
										date:	time:	date:	time:
Analysis Requested	Volatiles EPA 8260B	Volatiles EPA 8260B	Volatiles EPA 8260B	Volatiles EPA 8260B	Volatiles EPA 8260B	Volatiles EPA 8260B	Volatiles EPA 8260B			Lach			N
#Jars	6		e	ю	ю	3	З			oy:	てて	by: [<i>Ú</i>]	
Matrix	M	. 3	3	3	3	3	M			Received by:	Firm:	Received	Firm:
Date Sampled	10/00/3	12/02/2003	12/02/2003	12/02/2003	12/02/2003	12/02/2003	12/02/2003			$\int_{date:} 12/03\rangle$	time.	5	time: 13 CM Firm:
Sample Number/Name	5	1-10 CP-0	GP-3	GP-4	GP-5	GP-8	GP-7			litted 22 M	A to the	Clack	STL
										Submitted	EI EI	Subm	Firm:

CONSILE	ite		S	ain of custody		ISI											Page		M	I
EDV 14648 NE	Environmental Inc.		Turnaround (in workin	d Request ng days)		-aboi	Laboratory Number:	/ Nu	mbe	÷				2-	0	45				
	CODCOD LATY. (452) 000000		(Check	One)				_			Requ	leste	d An	Requested Analysis	S			_		
Project Number:		Sar	Same Day		1 Day			809					•							
Project Name:		2 Day	ay		3 Day			S8 yd 8		V			(8							
Project Manager:	C. Ilos	X Sta	X Standard (7 working days)	rking day									3) etals (8							
Sampled by:	Virgenda -		(othe	er)											+001		Û	6	nıe	
Lab ID	IJ	Date Sampled	Time Sampled	Matrix	ant of # of # Of # Of # Of # Of # Of # Of #	IATWN	NMTP⊦ Volatile:	Hsloger	ovimeS	PCBs b	Pesticid	Herbicio)A IstoT	HEM PM	льн нем р ^у	EPH	JOH		sioM %	
1 62-1	(リート)	12-2-03	340	كاناع			× ×										\times		: ,	1
2 62-1	-1 (6-8)	Ŧ	850	1:05	2	×	××												\times	
3 62-1	-1 (10-12)	11	900).'×	3	×	× ×										- <u></u>		\times	······
4 60-2	8 12-4)	11	930); oz	2	×	× ×						·				\times		. (<u> </u>
5 60-2	$\mathcal{A} \stackrel{(b-\delta)}{(b-\delta)}$	11	dr10	Suil	N	×	× ×												\times	
6 60-2	2 (10-12)	1	950	انامك	2	×	× ×												\times	
7 66-		1	9/0	wher	7	×	XX													
S 6P-	** L-(11	1030	when	μ	×	× ×													r
9 66-	- 3	-	ااده	+1	μ	×	× ×					. 		-						T
$I\mathcal{V}$ of		2-2-03	1130	:	٢	<u>×</u>	×													
Relinquished by	Signature		Company Geler	È		Date 72-	ate 12-3-3	Time	ime 4:32		mmer	its/Spe	cial Ins	Comments/Special Instructions:	:su					
Received by	I Le le l		On set			: : :	3-03		4:32											
Relinquished by	-									/										1
Received by																				
Relinquished by										T									;	
Received by	*		-																, 1	
Reviewed by/Date			Reviewed by/Date	//Date					-	0	hrom	atogra	w sm	Chromatograms with final report	al rep	ort				
	DIS	STRIBUTIO	DISTRIBUTION LEGEND:	White - OnSite Copy Yellow - Report Copy Pink - Client Copy	ite Copy	(ellow - F	leport Co	py Pin	lk - Clier	nt Copy										-

Consite		5	Chain (Custody		-							Page	e B	đ	\mathcal{M}	
1448 NE SEIN STREET FREMMENTAL MC. 1448 NE SEIN STREET FREMMENTAL WA 8052 Phone: (425) 883-3891 + Fax: (425) 885-4603		Turnaround Request (in working days)	l Request g days)		aboi	Laboratory Number, 2	Nur	nben)	4 2								
Company: Company:		(Check One)	One)						œँ	Requested Analysis	sted	Anal	/sis		•				
1.	□ Sa	Same Day		1 Day			809	,					_						
0	Day	lay		3 Day		· · · · ·	928 YO												
Consolication Freight	Ste	Standard (7 w	7 working davs)	(9	د	6						(-)							•
Simple his Neil (Silhan	;] 												4			(
ampre by. Vernocu]	(other)	er)	<u>эн-н</u>									991 A				//~	sture	ລາກາດ
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	# of Cont.	d⊤WN	NWTP Volatile	Haloge	ovime2 I eHA9	PCBs	Pestici	Herbici Total R		нем р	ΗЧΛ	ЕЬН	OH		ioM %	
11 68-3 (2.7)	12-2-03	Ιους	11.25	Ν	×	$\frac{\lambda}{\lambda}$										\times			
12 60-3 (6-3)	11	0101	11	2	\succ	× ×												×.	
13 68-3 (10-12)	11	Slal	5	5	×	XX							·					~	\mathbf{x}
(h-2) h-09 /1		ומתצ	11	5	×	$\frac{\lambda}{\lambda}$										×	20 NOLDON	Des	
15 6.9-4 (6-3)	11	1050	11	2	×	$\frac{\lambda}{\chi}$												· •	X
16 6P-4 (10-12)	1	اودح	,	2	×	X		: 											×
17 60-5 (2-4)	11	ااحر	=	ή	×	××	•									\times		<u></u>	
R 6P-5 (6-8)	"	1200	11	p.	×	<u>×</u> ×								~				$\overline{}$	×
191 GP-5 (10-12)	(2-2-03	1205	11	2	×	XX													ر الح
20 6P-5	11	1230	wells \$	JLC	×	× ×													, k.
Signature	5	Company	``		Date		Time		Comn	ents,	Special Instructions:	linstru	Ictions						
		Coll	ž		ć	12-3-3		22.	. 1		÷								
Heceived by		Oris	t t		-7	.~ G	<u>نز</u>	34						•					
Relinquished by		1																	
Received by																			
Relinquished by			r																
Received by																			
Reviewed by/Date		Reviewed by/Date	y/Date					-	Chr	omato	gram	s with	final	Chromatograms with final report					
		ALLECTAD.	0-0		L			0						ŕ					1

Heport Copy Pink - Client Copy Yellow -OnSite Copy

a subsection of

\$1474.3 - \$6 2024.5

0

Laboratory Analytical Reports 2014

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

August 20, 2014

Emerald Erickson-Mulanax Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-007 Laboratory Reference No. 1408-079

Dear Emerald:

Enclosed are the analytical results and associated quality control data for samples submitted on August 12, 2014.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on August 11, 2014 and received by the laboratory on August 12, 2014. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

PAHs EPA 8270D/SIM Analysis

Sample CB-IN-081114, OWS-1-INF-081114 and spike blank had one surrogate recovery out of control limits. This is within allowance of our standard operating procedure as long as the recovery is above 10%.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

5. 5				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CB-IN-081114					
Laboratory ID:	08-079-01					
Naphthalene	0.077	0.021	EPA 8270D/SIM	8-15-14	8-20-14	
2-Methylnaphthalene	0.20	0.021	EPA 8270D/SIM	8-15-14	8-20-14	
1-Methylnaphthalene	0.13	0.021	EPA 8270D/SIM	8-15-14	8-20-14	
Acenaphthylene	0.030	0.021	EPA 8270D/SIM	8-15-14	8-20-14	
Acenaphthene	0.025	0.021	EPA 8270D/SIM	8-15-14	8-20-14	
Fluorene	0.066	0.021	EPA 8270D/SIM	8-15-14	8-20-14	
Phenanthrene	0.35	0.021	EPA 8270D/SIM	8-15-14	8-20-14	
Anthracene	0.090	0.021	EPA 8270D/SIM	8-15-14	8-20-14	
Fluoranthene	0.44	0.021	EPA 8270D/SIM	8-15-14	8-20-14	
Pyrene	0.44	0.021	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[a]anthracene	0.11	0.021	EPA 8270D/SIM	8-15-14	8-20-14	
Chrysene	0.22	0.021	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[b]fluoranthene	0.15	0.021	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo(j,k)fluoranthene	0.046	0.021	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[a]pyrene	0.075	0.021	EPA 8270D/SIM	8-15-14	8-20-14	
Indeno(1,2,3-c,d)pyrene	0.053	0.021	EPA 8270D/SIM	8-15-14	8-20-14	
Dibenz[a,h]anthracene	ND	0.021	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[g,h,i]perylene	0.12	0.021	EPA 8270D/SIM	8-15-14	8-20-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	41	43 - 116				Q
Pyrene-d10	42	33 - 124				
Terphenyl-d14	42	38 - 125				

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	OWS-2-INF-081114					
Laboratory ID:	08-079-02					
Naphthalene	0.14	0.029	EPA 8270D/SIM	8-15-14	8-20-14	
2-Methylnaphthalene	0.32	0.029	EPA 8270D/SIM	8-15-14	8-20-14	
1-Methylnaphthalene	0.22	0.029	EPA 8270D/SIM	8-15-14	8-20-14	
Acenaphthylene	0.075	0.029	EPA 8270D/SIM	8-15-14	8-20-14	
Acenaphthene	0.12	0.029	EPA 8270D/SIM	8-15-14	8-20-14	
Fluorene	0.22	0.029	EPA 8270D/SIM	8-15-14	8-20-14	
Phenanthrene	1.0	0.029	EPA 8270D/SIM	8-15-14	8-20-14	
Anthracene	0.26	0.029	EPA 8270D/SIM	8-15-14	8-20-14	
Fluoranthene	1.1	0.029	EPA 8270D/SIM	8-15-14	8-20-14	
Pyrene	1.3	0.029	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[a]anthracene	0.29	0.029	EPA 8270D/SIM	8-15-14	8-20-14	
Chrysene	0.56	0.029	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[b]fluoranthene	0.45	0.029	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo(j,k)fluoranthene	0.15	0.029	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[a]pyrene	0.24	0.029	EPA 8270D/SIM	8-15-14	8-20-14	
Indeno(1,2,3-c,d)pyrene	0.21	0.029	EPA 8270D/SIM	8-15-14	8-20-14	
Dibenz[a,h]anthracene	0.063	0.029	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[g,h,i]perylene	0.38	0.029	EPA 8270D/SIM	8-15-14	8-20-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	49	43 - 116				
Pyrene-d10	55	33 - 124				
Terphenyl-d14	56	38 - 125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	OWS-1-INF-081114					
Laboratory ID:	08-079-03					
Naphthalene	0.098	0.037	EPA 8270D/SIM	8-15-14	8-20-14	
2-Methylnaphthalene	0.29	0.037	EPA 8270D/SIM	8-15-14	8-20-14	
1-Methylnaphthalene	0.19	0.037	EPA 8270D/SIM	8-15-14	8-20-14	
Acenaphthylene	ND	0.037	EPA 8270D/SIM	8-15-14	8-20-14	
Acenaphthene	0.066	0.037	EPA 8270D/SIM	8-15-14	8-20-14	
Fluorene	0.10	0.037	EPA 8270D/SIM	8-15-14	8-20-14	
Phenanthrene	0.59	0.037	EPA 8270D/SIM	8-15-14	8-20-14	
Anthracene	0.13	0.037	EPA 8270D/SIM	8-15-14	8-20-14	
Fluoranthene	0.68	0.037	EPA 8270D/SIM	8-15-14	8-20-14	
Pyrene	0.71	0.037	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[a]anthracene	0.21	0.037	EPA 8270D/SIM	8-15-14	8-20-14	
Chrysene	0.41	0.037	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[b]fluoranthene	0.32	0.037	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo(j,k)fluoranthene	0.091	0.037	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[a]pyrene	0.18	0.037	EPA 8270D/SIM	8-15-14	8-20-14	
Indeno(1,2,3-c,d)pyrene	0.15	0.037	EPA 8270D/SIM	8-15-14	8-20-14	
Dibenz[a,h]anthracene	0.042	0.037	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[g,h,i]perylene	0.23	0.037	EPA 8270D/SIM	8-15-14	8-20-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	32	43 - 116				Q
Pyrene-d10	41	33 - 124				
Terphenyl-d14	40	38 - 125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CB-5N-081114					
Laboratory ID:	08-079-04					
Naphthalene	0.16	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
2-Methylnaphthalene	0.16	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
1-Methylnaphthalene	0.10	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Acenaphthylene	0.064	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Acenaphthene	0.29	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Fluorene	0.47	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Phenanthrene	1.5	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Anthracene	0.36	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Fluoranthene	1.7	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Pyrene	1.3	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[a]anthracene	0.37	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Chrysene	0.67	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[b]fluoranthene	0.44	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo(j,k)fluoranthene	0.13	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[a]pyrene	0.21	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Indeno(1,2,3-c,d)pyrene	0.15	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Dibenz[a,h]anthracene	0.058	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[g,h,i]perylene	0.23	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	61	43 - 116				
Pyrene-d10	65	33 - 124				
Terphenyl-d14	66	38 - 125				

5. 5				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CB-7N-081114					
Laboratory ID:	08-079-05					
Naphthalene	0.040	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
2-Methylnaphthalene	0.033	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
1-Methylnaphthalene	ND	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Acenaphthylene	0.030	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Acenaphthene	ND	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Fluorene	0.048	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Phenanthrene	0.32	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Anthracene	0.082	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Fluoranthene	0.38	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Pyrene	0.42	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[a]anthracene	0.12	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Chrysene	0.40	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[b]fluoranthene	0.18	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo(j,k)fluoranthene	0.049	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[a]pyrene	0.097	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Indeno(1,2,3-c,d)pyrene	0.073	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Dibenz[a,h]anthracene	0.027	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[g,h,i]perylene	0.15	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	60	43 - 116				
Pyrene-d10	65	33 - 124				
Terphenyl-d14	66	38 - 125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CB-10N-081114					
Laboratory ID:	08-079-06					
Naphthalene	0.068	0.025	EPA 8270D/SIM	8-15-14	8-20-14	
2-Methylnaphthalene	0.062	0.025	EPA 8270D/SIM	8-15-14	8-20-14	
1-Methylnaphthalene	0.028	0.025	EPA 8270D/SIM	8-15-14	8-20-14	
Acenaphthylene	0.047	0.025	EPA 8270D/SIM	8-15-14	8-20-14	
Acenaphthene	0.027	0.025	EPA 8270D/SIM	8-15-14	8-20-14	
Fluorene	0.045	0.025	EPA 8270D/SIM	8-15-14	8-20-14	
Phenanthrene	0.34	0.025	EPA 8270D/SIM	8-15-14	8-20-14	
Anthracene	0.088	0.025	EPA 8270D/SIM	8-15-14	8-20-14	
Fluoranthene	0.51	0.025	EPA 8270D/SIM	8-15-14	8-20-14	
Pyrene	0.53	0.025	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[a]anthracene	0.15	0.025	EPA 8270D/SIM	8-15-14	8-20-14	
Chrysene	0.38	0.025	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[b]fluoranthene	0.29	0.025	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo(j,k)fluoranthene	0.092	0.025	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[a]pyrene	0.15	0.025	EPA 8270D/SIM	8-15-14	8-20-14	
Indeno(1,2,3-c,d)pyrene	0.14	0.025	EPA 8270D/SIM	8-15-14	8-20-14	
Dibenz[a,h]anthracene	0.044	0.025	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[g,h,i]perylene	0.24	0.025	EPA 8270D/SIM	8-15-14	8-20-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	52	43 - 116				
Pyrene-d10	65	33 - 124				
Terphenyl-d14	67	38 - 125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CB-1S-081114					
Laboratory ID:	08-079-07					
Naphthalene	0.20	0.017	EPA 8270D/SIM	8-15-14	8-20-14	
2-Methylnaphthalene	0.19	0.017	EPA 8270D/SIM	8-15-14	8-20-14	
1-Methylnaphthalene	0.13	0.017	EPA 8270D/SIM	8-15-14	8-20-14	
Acenaphthylene	0.10	0.017	EPA 8270D/SIM	8-15-14	8-20-14	
Acenaphthene	0.47	0.017	EPA 8270D/SIM	8-15-14	8-20-14	
Fluorene	0.81	0.017	EPA 8270D/SIM	8-15-14	8-20-14	
Phenanthrene	4.4	0.17	EPA 8270D/SIM	8-15-14	8-20-14	
Anthracene	0.95	0.017	EPA 8270D/SIM	8-15-14	8-20-14	
Fluoranthene	4.7	0.17	EPA 8270D/SIM	8-15-14	8-20-14	
Pyrene	3.7	0.17	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[a]anthracene	1.0	0.017	EPA 8270D/SIM	8-15-14	8-20-14	
Chrysene	1.4	0.017	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[b]fluoranthene	1.0	0.017	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo(j,k)fluoranthene	0.31	0.017	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[a]pyrene	0.77	0.017	EPA 8270D/SIM	8-15-14	8-20-14	
Indeno(1,2,3-c,d)pyrene	0.46	0.017	EPA 8270D/SIM	8-15-14	8-20-14	
Dibenz[a,h]anthracene	0.12	0.017	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[g,h,i]perylene	0.58	0.017	EPA 8270D/SIM	8-15-14	8-20-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	62	43 - 116				
Pyrene-d10	72	33 - 124				
Terphenyl-d14	71	38 - 125				

PAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0815S1					
Naphthalene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
2-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
1-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Acenaphthylene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Acenaphthene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Fluorene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Phenanthrene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Anthracene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Fluoranthene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Pyrene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Chrysene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	112	43 - 116				
Pyrene-d10	98	33 - 124				
Terphenyl-d14	94	38 - 125				

PAHs EPA 8270D/SIM SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Р	ercent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Re	covery	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB08	315S1								
	SB	SBD	SB	SBD	SE	SBD				
Naphthalene	0.0682	0.0650	0.0833	0.0833	82	78	45 - 109	5	29	
Acenaphthylene	0.0749	0.0707	0.0833	0.0833	90	85	54 - 118	6	18	
Acenaphthene	0.0704	0.0685	0.0833	0.0833	85	82	60 - 108	3	14	
Fluorene	0.0704	0.0715	0.0833	0.0833	85	86	61 - 113	2	13	
Phenanthrene	0.0650	0.0656	0.0833	0.0833	78	79	63 - 106	1	13	
Anthracene	0.102	0.103	0.0833	0.0833	12	2 124	55 - 135	1	13	
Fluoranthene	0.0727	0.0730	0.0833	0.0833	87	88	66 - 118	0	13	
Pyrene	0.0734	0.0725	0.0833	0.0833	88	87	69 - 112	1	12	
Benzo[a]anthracene	0.0767	0.0776	0.0833	0.0833	92	93	58 - 118	1	13	
Chrysene	0.0737	0.0719	0.0833	0.0833	88	86	64 - 114	2	11	
Benzo[b]fluoranthene	0.0733	0.0725	0.0833	0.0833	88	87	52 - 125	1	19	
Benzo(j,k)fluoranthene	0.0758	0.0753	0.0833	0.0833	91	90	50 - 126	1	22	
Benzo[a]pyrene	0.0863	0.0857	0.0833	0.0833	10	4 103	43 - 123	1	16	
Indeno(1,2,3-c,d)pyrene	0.0718	0.0696	0.0833	0.0833	86	84	55 - 118	3	16	
Dibenz[a,h]anthracene	0.0707	0.0696	0.0833	0.0833	85	84	57 - 120	2	15	
Benzo[g,h,i]perylene	0.0697	0.0689	0.0833	0.0833	84	83	58 - 113	1	18	
Surrogate:										
2-Fluorobiphenyl					11	9 116	43 - 116			Q
Pyrene-d10					89	90	33 - 124			
Terphenyl-d14					85	5 85	38 - 125			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

PCBs EPA 8082A

Client ID: CB-IN-081114 Laboratory ID: 08-079-01 Aroclor 1016 ND 0.16 EPA 8082A 8-13-14 8-13-14 Aroclor 1221 ND 0.16 EPA 8082A 8-13-14 8-13-14 Aroclor 1221 ND 0.16 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.16 EPA 8082A 8-13-14 8-13-14 Aroclor 1248 ND 0.16 EPA 8082A 8-13-14 8-13-14 Aroclor 1254 ND 0.16 EPA 8082A 8-13-14 8-13-14 Aroclor 1260 ND 0.16 EPA 8082A 8-13-14 8-13-14 Surrogate: Percent Recovery Control Limits DCB 112 51-138 Client ID: OWS-2-INF-081114 Laboratory ID: 08-079-02 Aroclor 1221 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1221 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.22 </th <th>0 0 41 /</th> <th></th> <th></th> <th></th> <th>Date</th> <th>Date</th> <th></th>	0 0 41 /				Date	Date	
Laboratory ID: 08-079-01 Aroclor 1016 ND 0.16 EPA 8082A 8-13-14 8-13-14 Aroclor 1221 ND 0.16 EPA 8082A 8-13-14 8-13-14 Aroclor 1232 ND 0.16 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.16 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.16 EPA 8082A 8-13-14 8-13-14 Aroclor 1264 ND 0.16 EPA 8082A 8-13-14 8-13-14 Aroclor 1260 ND 0.16 EPA 8082A 8-13-14 8-13-14 Surrogate: Percent Recovery Control Limits 51-138 8-13-14 8-13-14 Client ID: OWS-2-INF-081114 Laboratory ID: 0.8-079-02 8-13-14 8-13-14 8-13-14 Aroclor 1221 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1248 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1244	Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Aroclor 1016 ND 0.16 EPA 8082A 8-13-14 8-13-14 Aroclor 1221 ND 0.16 EPA 8082A 8-13-14 8-13-14 Aroclor 1232 ND 0.16 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.16 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.16 EPA 8082A 8-13-14 8-13-14 Aroclor 1254 ND 0.16 EPA 8082A 8-13-14 8-13-14 Aroclor 1260 ND 0.16 EPA 8082A 8-13-14 8-13-14 Surrogate: Percent Recovery Control Limits 51-138 8-13-14 8-13-14 Client ID: OWS-2-INF-081114 Laboratory ID: 08-079-02 Aroclor 1221 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1221 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1248 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1254 ND <td>Client ID:</td> <td>CB-IN-081114</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Client ID:	CB-IN-081114					
Aroclor 1221 ND 0.16 EPA 8082A 8-13-14 8-13-14 Aroclor 1232 ND 0.16 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.16 EPA 8082A 8-13-14 8-13-14 Aroclor 1248 ND 0.16 EPA 8082A 8-13-14 8-13-14 Aroclor 1254 ND 0.16 EPA 8082A 8-13-14 8-13-14 Aroclor 1260 ND 0.16 EPA 8082A 8-13-14 8-13-14 Surrogate: Percent Recovery Control Limits 51-138 8-13-14 8-13-14 Client ID: OWS-2-INF-081114 Laboratory ID: 08-079-02 74 8-13-14 8-13-14 Aroclor 1221 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.22 EPA 8082A 8-13-14	Laboratory ID:	08-079-01					
Aroclor 1232 ND 0.16 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.16 EPA 8082A 8-13-14 8-13-14 Aroclor 1248 ND 0.16 EPA 8082A 8-13-14 8-13-14 Aroclor 1254 ND 0.16 EPA 8082A 8-13-14 8-13-14 Aroclor 1260 ND 0.16 EPA 8082A 8-13-14 8-13-14 Surrogate: Percent Recovery Control Limits 51-138 8-13-14 8-13-14 Client ID: OWS-2-INF-081114 Laboratory ID: 08-079-02 8-13-14 8-13-14 8-13-14 Aroclor 1212 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1232 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1248 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1260 ND 0.22 EPA 8082A 8-13-14 8-13-14 Surrogate: Percent Recovery Control Limits 51-138 8-13-14 8-13-14 Surrogate: Percent Recovery Co	Aroclor 1016	ND	0.16	EPA 8082A	8-13-14	8-13-14	
Aroclor 1242 ND 0.16 EPA 8082A 8-13-14 8-13-14 Aroclor 1248 ND 0.16 EPA 8082A 8-13-14 8-13-14 Aroclor 1254 ND 0.16 EPA 8082A 8-13-14 8-13-14 Aroclor 1260 ND 0.16 EPA 8082A 8-13-14 8-13-14 Surrogate: Percent Recovery Control Limits 8-13-14 8-13-14 8-13-14 DCB 112 51-138 51 8-13-14 8-13-14 8-13-14 Client ID: OWS-2-INF-081114 2 51 9 8-13-14 8-13-14 8-13-14 Aroclor 1201 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1232 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1248 ND 0.22 EPA 8082A 8-13-14 8-13-14 Surrogate: Percent Recovery Control Limits 8-13-14 8-13-14 Surrogate: Percent Recovery Control Limits 8-13-14<	Aroclor 1221	ND	0.16	EPA 8082A	8-13-14	8-13-14	
Aroclor 1248 ND 0.16 EPA 8082A 8-13-14 8-13-14 Aroclor 1250 ND 0.16 EPA 8082A 8-13-14 8-13-14 Aroclor 1260 ND 0.16 EPA 8082A 8-13-14 8-13-14 Surrogate: Percent Recovery Control Limits DCB 112 51-138 Client ID: OWS-2-INF-081114 Laboratory ID: 08-079-02 Aroclor 1016 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1016 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1221 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1232 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1248 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1254 ND 0.22 EPA 8082A 8-13-14 8-13-14 Surrogate: Percent Recovery Control Limits 51-138 51-138 8-13-14 8-13-14 Client ID: OWS-1-INF-081114 Laboratory ID: 08-079-03 8-13-14 <t< td=""><td>Aroclor 1232</td><td>ND</td><td>0.16</td><td>EPA 8082A</td><td>8-13-14</td><td>8-13-14</td><td></td></t<>	Aroclor 1232	ND	0.16	EPA 8082A	8-13-14	8-13-14	
Aroclor 1254 ND 0.16 EPA 8082A 8-13-14 8-13-14 Aroclor 1260 ND 0.16 EPA 8082A 8-13-14 8-13-14 Surrogate: Percent Recovery Control Limits 51-138 51-138 51-138 Client ID: OWS-2-INF-081114 Laboratory ID: 08-079-02 51-138 8-13-14 8-13-14 Aroclor 1016 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1221 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1248 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1260 ND 0.22 EPA 8082A 8-13-14 8-13-14 Surrogate: Percent Recovery Control Limits 51-138 51 8-13-14 Client ID: OWS-1-INF-081114 Laboratory ID: 0.27	Aroclor 1242	ND	0.16	EPA 8082A	8-13-14	8-13-14	
Aroclor 1260 ND 0.16 EPA 8082A 8-13-14 8-13-14 Surrogate: Percent Recovery Control Limits 51-138 51-138 51-138 51-138 51-138 51-138 51-138 51-138 51-138 51-138 51-138 51-138 51-138 51-138 51-138 51-138 51-14 8-13	Aroclor 1248	ND	0.16	EPA 8082A	8-13-14	8-13-14	
Surrogate: Percent Recovery Control Limits DCB 112 51-138 Client ID: OWS-2-INF-081114 Laboratory ID: 08-079-02 Aroclor 1016 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1221 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1221 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1232 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1248 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1260 ND 0.22 EPA 8082A 8-13-14 8-13-14 Surrogate: Percent Recovery Control Limits Control Limits 122 51-138 Client ID: OWS-1-INF-081114 Laboratory ID: 08-079-03 122 51-138 Client ID: OWS-1-INF-081114 Laboratory ID: 0.27 <td< td=""><td>Aroclor 1254</td><td>ND</td><td>0.16</td><td>EPA 8082A</td><td>8-13-14</td><td>8-13-14</td><td></td></td<>	Aroclor 1254	ND	0.16	EPA 8082A	8-13-14	8-13-14	
DCB 112 51-138 Client ID: OWS-2-INF-081114 Laboratory ID: 08-079-02 Aroclor 1016 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1221 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1232 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1248 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1254 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1260 ND 0.22 EPA 8082A 8-13-14 8-13-14 Surrogate: Percent Recovery Control Limits 8-13-14 8-13-14 DCB 122 51-138 51-138 8-13-14 8-13-14 Aroclor 1221 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1221 ND 0.27 EPA 8082A 8-13-14 8-13-14	Aroclor 1260	ND	0.16	EPA 8082A	8-13-14	8-13-14	
Client ID: OWS-2-INF-081114 Laboratory ID: 08-079-02 Aroclor 1016 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1221 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1232 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1248 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1254 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1260 ND 0.22 EPA 8082A 8-13-14 8-13-14 Surrogate: Percent Recovery Control Limits DCB 122 51-138 Client ID: OWS-1-INF-081114 Laboratory ID: 08-079-03 8-13-14 8-13-14 8-13-14 Aroclor 1221 ND 0.27 EPA 8082A 8-13-14 8-	Surrogate:	Percent Recovery	Control Limits				
Laboratory ID: 08-079-02 Aroclor 1016 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1221 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1232 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1248 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1254 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1260 ND 0.22 EPA 8082A 8-13-14 8-13-14 Surrogate: Percent Recovery Control Limits DCB 122 51-138 Client ID: OWS-1-INF-081114 Laboratory ID: 08-079-03 - - Aroclor 1221 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1221 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1232 ND 0.27 EPA	DCB	112	51-138				
Aroclor 1016 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1221 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1232 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1232 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1248 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1254 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1260 ND 0.22 EPA 8082A 8-13-14 8-13-14 Surrogate: Percent Recovery Control Limits DCB 122 51-138 Client ID: OWS-1-INF-081114 Laboratory ID: 08-079-03 8-13-14 8-13-14 8-13-14 Aroclor 1221 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1232 ND 0.27 EPA 8082A 8-13-14	Client ID:	OWS-2-INF-081114					
Aroclor 1221 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1232 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1248 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1254 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1260 ND 0.22 EPA 8082A 8-13-14 8-13-14 Surrogate: Percent Recovery Control Limits DCB 122 51-138 Client ID: OWS-1-INF-081114 Laboratory ID: 08-079-03 - - 8-13-14 8-13-14 Aroclor 1221 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1221 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND <td< td=""><td>Laboratory ID:</td><td>08-079-02</td><td></td><td></td><td></td><td></td><td></td></td<>	Laboratory ID:	08-079-02					
Aroclor 1232 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1248 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1254 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1260 ND 0.22 EPA 8082A 8-13-14 8-13-14 Surrogate: Percent Recovery Control Limits 0CB 122 51-138 Client ID: 0WS-1-INF-081114 Laboratory ID: 08-079-03 - - Aroclor 1221 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1232 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1244 ND 0.27 EPA 8082A 8-13-14 8-13-14<	Aroclor 1016	ND	0.22	EPA 8082A	8-13-14	8-13-14	
Aroclor 1242 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1248 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1254 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1260 ND 0.22 EPA 8082A 8-13-14 8-13-14 Surrogate: Percent Recovery Control Limits 8-13-14 8-13-14 DCB 122 51-138 51-138 8 Client ID: OWS-1-INF-081114 8 8 8 8 Laboratory ID: 08-079-03 8 8 8 8 8 Aroclor 1016 ND 0.27 EPA 8082A 8 8 13-14 8 Aroclor 1221 ND 0.27 EPA 8082A 8 8 13-14 8 Aroclor 1232 ND 0.27 EPA 8082A 8 8 13-14 8 Aroclor 1242 ND 0.27 EPA 8082A 8 8 13-14 8 Aroclor 1248 ND 0.27 EPA 8082A <	Aroclor 1221	ND	0.22	EPA 8082A	8-13-14	8-13-14	
Aroclor 1248 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1254 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1260 ND 0.22 EPA 8082A 8-13-14 8-13-14 Surrogate: Percent Recovery Control Limits 0.22 EPA 8082A 8-13-14 8-13-14 DCB 122 51-138 51-138 51-138 51-138 51-138 51-138 Client ID: OWS-1-INF-081114 Eaboratory ID: 08-079-03 51-138 51-138 51-134 8-13-14 8-13-14 Aroclor 1016 ND 0.27 EPA 8082A 8-13-14 8-13-14 8-13-14 Aroclor 1221 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1232 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1248 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1254 ND 0.27 EPA 8082A 8-13-14 <td< td=""><td>Aroclor 1232</td><td>ND</td><td>0.22</td><td>EPA 8082A</td><td>8-13-14</td><td>8-13-14</td><td></td></td<>	Aroclor 1232	ND	0.22	EPA 8082A	8-13-14	8-13-14	
Aroclor 1254 ND 0.22 EPA 8082A 8-13-14 8-13-14 Aroclor 1260 ND 0.22 EPA 8082A 8-13-14 8-13-14 Surrogate: Percent Recovery Control Limits DCB 122 51-138 Client ID: OWS-1-INF-081114 Laboratory ID: 08-079-03	Aroclor 1242	ND	0.22	EPA 8082A	8-13-14	8-13-14	
Aroclor 1260 ND 0.22 EPA 8082A 8-13-14 8-13-14 Surrogate: Percent Recovery Control Limits DCB 122 51-138 51-134 513-14 513-14 513-14 513-14 513-14 513-14 513-14 513-14 513-14	Aroclor 1248	ND	0.22	EPA 8082A	8-13-14	8-13-14	
Surrogate: Percent Recovery Control Limits DCB 122 51-138 Client ID: OWS-1-INF-081114 Laboratory ID: 08-079-03 Aroclor 1016 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1221 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1232 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1248 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1254 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1260 ND 0.27 EPA 8082A 8-13-14 8-13-14 Surrogate: Percent Recovery Control Limits 8-13-14 8-13-14	Aroclor 1254	ND	0.22	EPA 8082A	8-13-14	8-13-14	
DCB 122 51-138 Client ID: OWS-1-INF-081114 Laboratory ID: 08-079-03 Aroclor 1016 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1221 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1232 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1248 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1254 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1260 ND 0.27 EPA 8082A 8-13-14 8-13-14 Surrogate: Percent Recovery Control Limits 8-13-14 8-13-14	Aroclor 1260	ND	0.22	EPA 8082A	8-13-14	8-13-14	
Client ID: OWS-1-INF-081114 Laboratory ID: 08-079-03 Aroclor 1016 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1221 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1232 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1248 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1254 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1260 ND 0.27 EPA 8082A 8-13-14 8-13-14 Surrogate: Percent Recovery Control Limits 8-13-14 8-13-14	Surrogate:	Percent Recovery	Control Limits				
Laboratory ID: 08-079-03 Aroclor 1016 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1221 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1232 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1232 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1248 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1254 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1260 ND 0.27 EPA 8082A 8-13-14 8-13-14 Surrogate: Percent Recovery Control Limits 8-13-14 8-13-14	DCB	122	51-138				
Aroclor 1016 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1221 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1232 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1232 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1248 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1254 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1260 ND 0.27 EPA 8082A 8-13-14 8-13-14 Surrogate: Percent Recovery Control Limits 8-13-14 8-13-14	Client ID:	OWS-1-INF-081114					
ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1232 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1232 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1248 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1254 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1260 ND 0.27 EPA 8082A 8-13-14 8-13-14 Surrogate: Percent Recovery Control Limits Surrogate Surrogate Surrogate	Laboratory ID:	08-079-03					
ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1242 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1248 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1254 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1254 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1260 ND 0.27 EPA 8082A 8-13-14 8-13-14 Surrogate: Percent Recovery Control Limits Surrogate: Volume Volume	Aroclor 1016	ND	0.27	EPA 8082A	8-13-14	8-13-14	
Aroclor 1242 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1248 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1254 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1250 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1260 ND 0.27 EPA 8082A 8-13-14 8-13-14 Surrogate: Percent Recovery Control Limits Surrogate: Percent Recovery Control Limits	Aroclor 1221	ND	0.27	EPA 8082A	8-13-14	8-13-14	
Aroclor 1248 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1254 ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1260 ND 0.27 EPA 8082A 8-13-14 8-13-14 Surrogate: Percent Recovery Control Limits Surrogate: Control Limits	Aroclor 1232	ND	0.27		8-13-14	8-13-14	
ND 0.27 EPA 8082A 8-13-14 8-13-14 Aroclor 1260 ND 0.27 EPA 8082A 8-13-14 8-13-14 Surrogate: Percent Recovery Control Limits 8-13-14 8-13-14	Aroclor 1242	ND	0.27	EPA 8082A	8-13-14	8-13-14	
Aroclor 1260ND0.27EPA 8082A8-13-148-13-14Surrogate:Percent RecoveryControl Limits	Aroclor 1248	ND	0.27	EPA 8082A	8-13-14	8-13-14	
Surrogate: Percent Recovery Control Limits	Aroclor 1254	ND	0.27	EPA 8082A	8-13-14	8-13-14	
Surrogate: Percent Recovery Control Limits	Aroclor 1260	ND	0.27	EPA 8082A	8-13-14	8-13-14	
•	Surrogate:	Percent Recovery	Control Limits				
	DCB	114	51-138				

PCBs EPA 8082A

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CB-5N-081114					
Laboratory ID:	08-079-04					
Aroclor 1016	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Aroclor 1221	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Aroclor 1232	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Aroclor 1242	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Aroclor 1248	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Aroclor 1254	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Aroclor 1260	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	122	51-138				
Client ID:	CB-7N-081114					
Laboratory ID:	08-079-05					
Aroclor 1016	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Aroclor 1221	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Aroclor 1232	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Aroclor 1242	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Aroclor 1248	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Aroclor 1254	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Aroclor 1260	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	108	51-138				
Client ID:	CB-10N-081114					
Laboratory ID:	08-079-06					
Aroclor 1016	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Aroclor 1221	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Aroclor 1232	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Aroclor 1242	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Aroclor 1248	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Aroclor 1254	0.23	0.19	EPA 8082A	8-13-14	8-13-14	
Aroclor 1260	0.47	0.19	EPA 8082A	8-13-14	8-13-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	112	51-138				
-	=					

PCBs EPA 8082A

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CB-1S-081114					
Laboratory ID:	08-079-07					
Aroclor 1016	ND	0.13	EPA 8082A	8-13-14	8-13-14	
Aroclor 1221	ND	0.13	EPA 8082A	8-13-14	8-13-14	
Aroclor 1232	ND	0.13	EPA 8082A	8-13-14	8-13-14	
Aroclor 1242	ND	0.13	EPA 8082A	8-13-14	8-13-14	
Aroclor 1248	ND	0.13	EPA 8082A	8-13-14	8-13-14	
Aroclor 1254	ND	0.13	EPA 8082A	8-13-14	8-13-14	
Aroclor 1260	ND	0.13	EPA 8082A	8-13-14	8-13-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	107	51-138				

PCBs EPA 8082A QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0813S1					
Aroclor 1016	ND	0.050	EPA 8082A	8-13-14	8-13-14	
Aroclor 1221	ND	0.050	EPA 8082A	8-13-14	8-13-14	
Aroclor 1232	ND	0.050	EPA 8082A	8-13-14	8-13-14	
Aroclor 1242	ND	0.050	EPA 8082A	8-13-14	8-13-14	
Aroclor 1248	ND	0.050	EPA 8082A	8-13-14	8-13-14	
Aroclor 1254	ND	0.050	EPA 8082A	8-13-14	8-13-14	
Aroclor 1260	ND	0.050	EPA 8082A	8-13-14	8-13-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	108	51-138				

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	08-0	77-05									
	MS	MSD	MS	MSD		MS	MSD				
Aroclor 1260	0.444	0.411	0.500	0.500	ND	89	82	49-136	8	14	
Surrogate:											
DCB						99	98	51-138			

TOTAL METALS EPA 6010C

Matrix:	Soil
Units:	mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lah ID:	00.070.04					
Lab ID:	08-079-01					
Client ID:	CB-IN-081114					
Arsenic	ND	16	6010C	8-20-14	8-20-14	
Chromium	58	0.80	6010C	8-20-14	8-20-14	
Copper	150	1.6	6010C	8-20-14	8-20-14	
Lead	81	8.0	6010C	8-20-14	8-20-14	
Zinc	640	4.0	6010C	8-20-14	8-20-14	

Lab ID: Client ID:	08-079-02 OWS-2-INF-081114					
Arsenic	14	11	6010C	8-20-14	8-20-14	
Chromium	91	1.1	6010C	8-20-14	8-20-14	
Copper	290	2.2	6010C	8-20-14	8-20-14	
Lead	170	11	6010C	8-20-14	8-20-14	
Zinc	1200	5.5	6010C	8-20-14	8-20-14	

Lab ID: Client ID:	08-079-03 OWS-1-INF-081114				
Arsenic	ND	14	6010C	8-20-14	8-20-14
Chromium	78	1.4	6010C	8-20-14	8-20-14
Copper	250	2.7	6010C	8-20-14	8-20-14
Lead	150	14	6010C	8-20-14	8-20-14
Zinc	960	6.9	6010C	8-20-14	8-20-14

TOTAL METALS EPA 6010C

Matrix:	Soil
Units:	mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	08-079-04 CB-5N-081114					
Arsenic	ND	19	6010C	8-20-14	8-20-14	
Chromium	86	0.96	6010C	8-20-14	8-20-14	
Copper	260	1.9	6010C	8-20-14	8-20-14	
ead	150	9.6	6010C	8-20-14	8-20-14	
Zinc	790	4.8	6010C	8-20-14	8-20-14	

Lab ID: Client ID:	08-079-05 CB-7N-081114					
Arsenic	ND	19	6010C	8-20-14	8-20-14	
Chromium	54	0.97	6010C	8-20-14	8-20-14	
Copper	130	1.9	6010C	8-20-14	8-20-14	
Lead	79	9.7	6010C	8-20-14	8-20-14	
Zinc	480	4.9	6010C	8-20-14	8-20-14	

Lab ID: Client ID:	08-079-06 CB-10N-081114					
Arsenic	ND	19	6010C	8-20-14	8-20-14	
Chromium	89	0.95	6010C	8-20-14	8-20-14	
Copper	210	1.9	6010C	8-20-14	8-20-14	
Lead	150	9.5	6010C	8-20-14	8-20-14	
Zinc	1100	4.8	6010C	8-20-14	8-20-14	

TOTAL METALS EPA 6010C

Matrix:	Soil
Units:	mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	08-079-07 CB-1S-081114					
Arsenic	ND	13	6010C	8-20-14	8-20-14	
Chromium	39	0.63	6010C	8-20-14	8-20-14	
Copper	63	1.3	6010C	8-20-14	8-20-14	
Lead	130	6.3	6010C	8-20-14	8-20-14	
Zinc	280	3.1	6010C	8-20-14	8-20-14	

TOTAL METALS EPA 6010C METHOD BLANK QUALITY CONTROL

Date Extracted:	8-20-14
Date Analyzed:	8-20-14
Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: MB0820SM1

Analyte	Method	Result	PQL
Arsenic	6010C	ND	5.0
Chromium	6010C	ND	0.50
Copper	6010C	ND	1.0
Lead	6010C	ND	5.0
Zinc	6010C	ND	2.5

TOTAL METALS EPA 6010C DUPLICATE QUALITY CONTROL

Date Extracted:	8-20-14
Date Analyzed:	8-20-14

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 08-085-01

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	9.75	8.95	9	5.0	
Chromium	32.9	27.9	17	0.50	
Copper	14.1	13.9	1	1.0	
Lead	7.50	6.35	17	5.0	
Zinc	41.1	40.4	2	2.5	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010C MS/MSD QUALITY CONTROL

- Date Extracted: 8-20-14 Date Analyzed: 8-20-14
- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 08-085-01

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
			,		·		. lage
Arsenic	100	102	92	99.9	90	2	
Chromium	100	123	90	123	90	0	
Copper	50.0	64.4	101	63.4	99	2	
Lead	250	270	105	243	94	10	
Zinc	100	137	96	133	92	2	

% MOISTURE

Date Analyzed: 8-13-14

Client ID	Lab ID	% Moisture
CB-IN-081114	08-079-01	37
OWS-2-INF-081114	08-079-02	54
OWS-1-INF-081114	08-079-03	64
CB-5N-081114	08-079-04	48
CB-7N-081114	08-079-05	49
CB-10N-081114	08-079-06	47
CB-1S-081114	08-079-07	20

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Reviewed/Date	Booking	Received O	Relinquished	Received	Relinquished	Signature		- OK	/	7 68-15-08114	6 CB-10N-081114	5 CB-7N-081114	4 CB-5N-081114	3 OWS-1-INF-081114	0W5-2-	1 CB-7= 08114	Lab ID Sample Identification	DINCER K.	EMERALD ERICKSON	SA DAWSON	Project Name:	Project Number:	Company:	Analytical Laboratory Test 14648 NE 95th Street	INA OnSite
		0	I' VI	Van	What I	The second second second second second second second second second second second second second second second se	/			4				A	114	8/11/14	ntification Sampled		D Z				Phone: (420) 863-3661 * www.onsite-env.com	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	oul letu
Reviewed/Date		Con	1 14	Sogn	ferallon	Company				7 1648 \$ \$	1550	1455	1410	1350	1105	14 0905 S 2	Time Sampled Matrix	(other)	Contai	(TPH analysis 5 Days)	2 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	Chain of Custody
		201 21/2/14 190	N. 120	1/ 1/	8/12/14 092	Date Time											NWTF NWTF NWTF NWTF Volatil	PH-HCl PH-Gx/ PH-Gx PH-Dx les 820	ID 'BTEX	iles 826	OC			Laboratory Number:	Custody
		8	Contan 0	- Chanceled	6 CONFIRM	Comments/Special Instructions				(F)(F)	C A	No.		No.	NC NC	8	(with I PAHs PCBs Organ	ow-lev 8270E 8082A nochlor	vel PAH D/SIM A rine Pe	(low-lev	80811 es 827	0D/SIM		er:	
				ILd 8/12/14. DB	FOR MALTSUS.					S	Æ	×	8	8	8		Total TCLF	MTCA 9 Metal (oil and	Metal s	ASI			Zn	08-079	Page 1 of
				B (STA)	EMERALD					6	A.	X	X	X	X	B	>% M	oisture	2						1

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

August 18, 2014

Beth Padgett Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-007 Laboratory Reference No. 1408-083

Dear Beth:

Enclosed are the analytical results and associated quality control data for samples submitted on August 12, 2014.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on August 12, 2014 and received by the laboratory on August 12, 2014. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

onno. ug/2 (ppb)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	RW-2-081214					
Laboratory ID:	08-083-01					
Gasoline	800	100	NWTPH-Gx	8-14-14	8-14-14	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	78	71-112				
Client ID:	MW-4-081214					
Laboratory ID:	08-083-02					
Gasoline	ND	100	NWTPH-Gx	8-14-14	8-14-14	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	80	71-112				
Client ID:	MW-2-081214					
Laboratory ID:	08-083-03					
Gasoline	280	100	NWTPH-Gx	8-14-14	8-14-14	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	76	71-112				
Client ID:	MW-3-081214					
Laboratory ID:	08-083-04					
Gasoline	ND	100	NWTPH-Gx	8-14-14	8-14-14	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	77	71-112				

NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB0814W2					
ND	100	NWTPH-Gx	8-14-14	8-14-14	
Percent Recovery	Control Limits				
77	71-112				
	MB0814W2 ND Percent Recovery	MB0814W2 ND 100 Percent Recovery Control Limits	MB0814W2 ND 100 NWTPH-Gx Percent Recovery Control Limits	ResultPQLMethodPreparedMB0814W2ND100NVTPH-Gx8-14-14Percent RecoveryControl Limits	ResultPQLMethodPreparedAnalyzedMB0814W2ND100NVTPH-Gx8-14-14Percent RecoveryControl Limits

					Source	Perc	ent	Recovery		RPD	
Analyte	Result		Spike Level		Result	Recovery		Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	08-08	33-04									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		NA		NA	NA	30	
Surrogate:											
Fluorobenzene						77	77	71-112			

4

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	RW-2-081214					
Laboratory ID:	08-083-01					
Diesel Range Organics	3.7	0.26	NWTPH-Dx	8-14-14	8-14-14	
Lube Oil Range Organics	ND	0.64	NWTPH-Dx	8-14-14	8-14-14	U1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	88	50-150				
Client ID:	MW-4-081214					
Laboratory ID:	08-083-02					
Diesel Range Organics	ND	0.26	NWTPH-Dx	8-14-14	8-14-14	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	8-14-14	8-14-14	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	75	50-150				
Client ID:	MW-2-081214					
Laboratory ID:	08-083-03					
Diesel Range Organics	2.7	0.26	NWTPH-Dx	8-14-14	8-14-14	
Lube Oil Range Organics	ND	0.49	NWTPH-Dx	8-14-14	8-14-14	U1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	81	50-150				
Client ID:	MW-3-081214					
Laboratory ID:	08-083-04					
Diesel Range Organics	0.51	0.26	NWTPH-Dx	8-14-14	8-14-14	
Lube Oil Range Organics	0.62	0.41	NWTPH-Dx	8-14-14	8-14-14	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	75	50-150				

NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0814W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	8-14-14	8-14-14	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	8-14-14	8-14-14	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	85	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	08-08	33-01								
	ORIG	DUP								
Diesel Range Organics	3.68	3.38	NA	NA		NA	NA	8	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	U1
Surrogate:										
o-Terphenyl						88 84	50-150			

VOLATILES EPA 8260C Page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	RW-2-081214					
Laboratory ID:	08-083-01					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Chloromethane	ND	1.3	EPA 8260C	8-14-14	8-14-14	
Vinyl Chloride	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Bromomethane	ND	0.56	EPA 8260C	8-14-14	8-14-14	
Chloroethane	ND	1.0	EPA 8260C	8-14-14	8-14-14	
Trichlorofluoromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1-Dichloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Acetone	ND	5.0	EPA 8260C	8-14-14	8-14-14	
Iodomethane	ND	2.9	EPA 8260C	8-14-14	8-14-14	
Carbon Disulfide	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Methylene Chloride	ND	1.0	EPA 8260C	8-14-14	8-14-14	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1-Dichloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Vinyl Acetate	ND	1.0	EPA 8260C	8-14-14	8-14-14	
2,2-Dichloropropane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
(cis) 1,2-Dichloroethene	0.21	0.20	EPA 8260C	8-14-14	8-14-14	
2-Butanone	ND	5.0	EPA 8260C	8-14-14	8-14-14	
Bromochloromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Chloroform	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Carbon Tetrachloride	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1-Dichloropropene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Benzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2-Dichloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Trichloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2-Dichloropropane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Dibromomethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Bromodichloromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	8-14-14	8-14-14	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	8-14-14	8-14-14	
Toluene	ND	1.0	EPA 8260C	8-14-14	8-14-14	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	8-14-14	8-14-14	

VOLATILES EPA 8260C
Page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	RW-2-081214					
Laboratory ID:	08-083-01					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Tetrachloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,3-Dichloropropane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
2-Hexanone	ND	2.0	EPA 8260C	8-14-14	8-14-14	
Dibromochloromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2-Dibromoethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Chlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Ethylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
n,p-Xylene	ND	0.40	EPA 8260C	8-14-14	8-14-14	
p-Xylene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Styrene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Bromoform	ND	1.0	EPA 8260C	8-14-14	8-14-14	
sopropylbenzene	13	0.20	EPA 8260C	8-14-14	8-14-14	
Bromobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
n-Propylbenzene	19	0.20	EPA 8260C	8-14-14	8-14-14	
2-Chlorotoluene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
4-Chlorotoluene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
ert-Butylbenzene	0.26	0.20	EPA 8260C	8-14-14	8-14-14	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
sec-Butylbenzene	7.6	0.20	EPA 8260C	8-14-14	8-14-14	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
p-Isopropyltoluene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
n-Butylbenzene	6.6	0.20	EPA 8260C	8-14-14	8-14-14	
1,2-Dibromo-3-chloropropane		1.0	EPA 8260C	8-14-14	8-14-14	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Hexachlorobutadiene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Naphthalene	ND	1.0	EPA 8260C	8-14-14 8-14-14	8-14-14	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	8-14-14 8-14-14	8-14-14 8-14-14	
	Percent Recovery	Control Limits		0-14-14	0-14-14	
Surrogate: Dibromofluoromothano	-					
Dibromofluoromethane	106 104	62-122 70,120				
Toluene-d8 4 Bromofluorobonzono	104	70-120				
4-Bromofluorobenzene	96	71-120				

VOLATILES EPA 8260C Page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4-081214					
Laboratory ID:	08-083-02					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Chloromethane	ND	1.3	EPA 8260C	8-14-14	8-14-14	
Vinyl Chloride	0.30	0.20	EPA 8260C	8-14-14	8-14-14	
Bromomethane	ND	0.56	EPA 8260C	8-14-14	8-14-14	
Chloroethane	ND	1.0	EPA 8260C	8-14-14	8-14-14	
Trichlorofluoromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1-Dichloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Acetone	ND	5.0	EPA 8260C	8-14-14	8-14-14	
Iodomethane	ND	2.9	EPA 8260C	8-14-14	8-14-14	
Carbon Disulfide	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Methylene Chloride	ND	1.0	EPA 8260C	8-14-14	8-14-14	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1-Dichloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Vinyl Acetate	ND	1.0	EPA 8260C	8-14-14	8-14-14	
2,2-Dichloropropane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
2-Butanone	ND	5.0	EPA 8260C	8-14-14	8-14-14	
Bromochloromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Chloroform	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Carbon Tetrachloride	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1-Dichloropropene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Benzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2-Dichloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Trichloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2-Dichloropropane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Dibromomethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Bromodichloromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	8-14-14	8-14-14	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	8-14-14	8-14-14	
Toluene	ND	1.0	EPA 8260C	8-14-14	8-14-14	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	8-14-14	8-14-14	

VOLATILES EPA 8260C	
Page 2 of 2	

Ameliate	Descrit	DOL		Date	Date	-
Analyte	Result MW-4-081214	PQL	Method	Prepared	Analyzed	Flags
Client ID:						
Laboratory ID:	08-083-02		FRA 00000			
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Tetrachloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,3-Dichloropropane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
2-Hexanone	ND	2.0	EPA 8260C	8-14-14	8-14-14	
Dibromochloromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2-Dibromoethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Chlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Ethylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
m,p-Xylene	ND	0.40	EPA 8260C	8-14-14	8-14-14	
o-Xylene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Styrene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Bromoform	ND	1.0	EPA 8260C	8-14-14	8-14-14	
lsopropylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Bromobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
n-Propylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
2-Chlorotoluene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
4-Chlorotoluene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
tert-Butylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
sec-Butylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
p-Isopropyltoluene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1.2-Dichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
n-Butylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	8-14-14	8-14-14	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Hexachlorobutadiene	ND	0.20	EPA 8260C	8-14-14	8-14-14 8-14-14	
Naphthalene	ND	1.0	EPA 8260C	8-14-14 8-14-14	8-14-14 8-14-14	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C EPA 8260C	8-14-14 8-14-14	8-14-14 8-14-14	
				0-14-14	0-14-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	116	62-122				
Toluene-d8	104	70-120				
4-Bromofluorobenzene	97	71-120				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES EPA 8260C Page 1 of 2

Matrix: Water Units: ug/L

-				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2-081214					
Laboratory ID:	08-083-03					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Chloromethane	ND	1.3	EPA 8260C	8-14-14	8-14-14	
Vinyl Chloride	0.23	0.20	EPA 8260C	8-14-14	8-14-14	
Bromomethane	ND	0.56	EPA 8260C	8-14-14	8-14-14	
Chloroethane	ND	1.0	EPA 8260C	8-14-14	8-14-14	
Trichlorofluoromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1-Dichloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Acetone	ND	5.0	EPA 8260C	8-14-14	8-14-14	
Iodomethane	ND	2.9	EPA 8260C	8-14-14	8-14-14	
Carbon Disulfide	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Methylene Chloride	ND	1.0	EPA 8260C	8-14-14	8-14-14	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1-Dichloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Vinyl Acetate	ND	1.0	EPA 8260C	8-14-14	8-14-14	
2,2-Dichloropropane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
2-Butanone	ND	5.0	EPA 8260C	8-14-14	8-14-14	
Bromochloromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Chloroform	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Carbon Tetrachloride	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1-Dichloropropene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Benzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2-Dichloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Trichloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2-Dichloropropane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Dibromomethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Bromodichloromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	8-14-14	8-14-14	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	8-14-14	8-14-14	
Toluene	ND	1.0	EPA 8260C	8-14-14	8-14-14	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	8-14-14	8-14-14	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES EPA 8260C	
Page 2 of 2	

• • • •	_			Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2-081214					
Laboratory ID:	08-083-03					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Tetrachloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,3-Dichloropropane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
2-Hexanone	ND	2.0	EPA 8260C	8-14-14	8-14-14	
Dibromochloromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2-Dibromoethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Chlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Ethylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
m,p-Xylene	ND	0.40	EPA 8260C	8-14-14	8-14-14	
o-Xylene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Styrene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Bromoform	ND	1.0	EPA 8260C	8-14-14	8-14-14	
Isopropylbenzene	0.42	0.20	EPA 8260C	8-14-14	8-14-14	
Bromobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
n-Propylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
2-Chlorotoluene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
4-Chlorotoluene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
tert-Butylbenzene	0.30	0.20	EPA 8260C	8-14-14	8-14-14	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
sec-Butylbenzene	0.28	0.20	EPA 8260C	8-14-14	8-14-14	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
p-Isopropyltoluene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
n-Butylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	8-14-14	8-14-14	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Hexachlorobutadiene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Naphthalene	ND	1.0	EPA 8260C	8-14-14	8-14-14	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Surrogate:	Percent Recovery	Control Limits	2.7.02000	0 11 11	0 1 1 1 1	
Dibromofluoromethane	109	62-122				
Toluene-d8	104	70-120				
4-Bromofluorobenzene	98	71-120				
	30	11-120				

VOLATILES EPA 8260C Page 1 of 2

Matrix: Water Units: ug/L

				Date	Date			
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags		
Client ID:	MW-3-081214							
Laboratory ID:	08-083-04							
Dichlorodifluoromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14			
Chloromethane	ND	1.3	EPA 8260C	8-14-14	8-14-14			
Vinyl Chloride	ND	0.20	EPA 8260C	8-14-14	8-14-14			
Bromomethane	ND	0.56	EPA 8260C	8-14-14	8-14-14			
Chloroethane	ND	1.0	EPA 8260C	8-14-14	8-14-14			
Trichlorofluoromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14			
1,1-Dichloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14			
Acetone	ND	5.0	EPA 8260C	8-14-14	8-14-14			
lodomethane	ND	2.9	EPA 8260C	8-14-14	8-14-14			
Carbon Disulfide	ND	0.20	EPA 8260C	8-14-14	8-14-14			
Methylene Chloride	ND	1.0	EPA 8260C	8-14-14	8-14-14			
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14			
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	8-14-14	8-14-14			
1,1-Dichloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14			
Vinyl Acetate	ND	1.0	EPA 8260C	8-14-14	8-14-14			
2,2-Dichloropropane	ND	0.20	EPA 8260C	8-14-14	8-14-14			
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14			
2-Butanone	ND	5.0	EPA 8260C	8-14-14	8-14-14			
Bromochloromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14			
Chloroform	ND	0.20	EPA 8260C	8-14-14	8-14-14			
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14			
Carbon Tetrachloride	ND	0.20	EPA 8260C	8-14-14	8-14-14			
1,1-Dichloropropene	ND	0.20	EPA 8260C	8-14-14	8-14-14			
Benzene	ND	0.20	EPA 8260C	8-14-14	8-14-14			
1,2-Dichloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14			
Trichloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14			
1,2-Dichloropropane	ND	0.20	EPA 8260C	8-14-14	8-14-14			
Dibromomethane	ND	0.20	EPA 8260C	8-14-14	8-14-14			
Bromodichloromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14			
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	8-14-14	8-14-14			
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	8-14-14	8-14-14			
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	8-14-14	8-14-14			
Toluene	ND	1.0	EPA 8260C	8-14-14	8-14-14			
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	8-14-14	8-14-14			

13

VOLATILES EPA 8260C	
Page 2 of 2	

Analyta	Decult	DCI	Math	Date Dramana d	Date	F 1
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-3-081214					
Laboratory ID:	08-083-04					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Tetrachloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,3-Dichloropropane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
2-Hexanone	ND	2.0	EPA 8260C	8-14-14	8-14-14	
Dibromochloromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2-Dibromoethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Chlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Ethylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
m,p-Xylene	ND	0.40	EPA 8260C	8-14-14	8-14-14	
o-Xylene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Styrene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Bromoform	ND	1.0	EPA 8260C	8-14-14	8-14-14	
lsopropylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Bromobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
n-Propylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
2-Chlorotoluene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
4-Chlorotoluene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
tert-Butylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
sec-Butylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
p-Isopropyltoluene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
n-Butylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	8-14-14	8-14-14	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
	ND	0.20			8-14-14 8-14-14	
Hexachlorobutadiene	ND	1.0	EPA 8260C	8-14-14 8-14-14		
Naphthalene			EPA 8260C		8-14-14	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	113	62-122				
Toluene-d8	103	70-120				
4-Bromofluorobenzene	96	71-120				

Date of Report: August 18, 2014 Samples Submitted: August 12, 2014 Laboratory Reference: 1408-083 Project: 1071-007

VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL Page 1 of 2

Analyta	Desult	DOI	Mathad	Date	Date	Flore
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0814W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Chloromethane	ND	1.3	EPA 8260C	8-14-14	8-14-14	
Vinyl Chloride	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Bromomethane	ND	0.56	EPA 8260C	8-14-14	8-14-14	
Chloroethane	ND	1.0	EPA 8260C	8-14-14	8-14-14	
Trichlorofluoromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1-Dichloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Acetone	ND	5.0	EPA 8260C	8-14-14	8-14-14	
Iodomethane	ND	2.9	EPA 8260C	8-14-14	8-14-14	
Carbon Disulfide	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Methylene Chloride	ND	1.0	EPA 8260C	8-14-14	8-14-14	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1-Dichloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Vinyl Acetate	ND	1.0	EPA 8260C	8-14-14	8-14-14	
2,2-Dichloropropane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
2-Butanone	ND	5.0	EPA 8260C	8-14-14	8-14-14	
Bromochloromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Chloroform	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Carbon Tetrachloride	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1-Dichloropropene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Benzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2-Dichloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Trichloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2-Dichloropropane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Dibromomethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Bromodichloromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	8-14-14	8-14-14	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	8-14-14	8-14-14	
Toluene	ND	1.0	EPA 8260C	8-14-14	8-14-14	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	8-14-14	8-14-14	

Date of Report: August 18, 2014 Samples Submitted: August 12, 2014 Laboratory Reference: 1408-083 Project: 1071-007

VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL Page 2 of 2

Analyte		DC:		- ·	A	
	Result	PQL	Method	Prepared	Analyzed	Flags
_aboratory ID:	MB0814W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Tetrachloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,3-Dichloropropane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
2-Hexanone	ND	2.0	EPA 8260C	8-14-14	8-14-14	
Dibromochloromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2-Dibromoethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Chlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Ethylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
n,p-Xylene	ND	0.40	EPA 8260C	8-14-14	8-14-14	
o-Xylene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Styrene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Bromoform	ND	1.0	EPA 8260C	8-14-14	8-14-14	
sopropylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Bromobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
n-Propylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
2-Chlorotoluene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
4-Chlorotoluene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
ert-Butylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
sec-Butylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
p-lsopropyltoluene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
n-Butylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	8-14-14	8-14-14	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Hexachlorobutadiene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Naphthalene	ND	1.0	EPA 8260C	8-14-14	8-14-14	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
	Percent Recovery	Control Limits	21702000			
Dibromofluoromethane	107	62-122				
Toluene-d8	105	70-120				
4-Bromofluorobenzene	98	70-120 71-120				

VOLATILES EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB08 ⁻	14W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	9.71	9.49	10.0	10.0	97	95	63-142	2	17	
Benzene	10.0	9.50	10.0	10.0	100	95	78-125	5	15	
Trichloroethene	8.47	8.31	10.0	10.0	85	83	75-125	2	15	
Toluene	9.90	9.70	10.0	10.0	99	97	80-125	2	15	
Chlorobenzene	10.0	9.79	10.0	10.0	100	98	80-140	2	15	
Surrogate:										
Dibromofluoromethane					114	106	62-122			
Toluene-d8					104	105	70-120			
4-Bromofluorobenzene					98	97	71-120			

17

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	RW-2-081214					
Laboratory ID:	08-083-01					
Naphthalene	1.3	0.094	EPA 8270D/SIM	8-14-14	8-14-14	
2-Methylnaphthalene	38	1.9	EPA 8270D/SIM	8-14-14	8-15-14	
1-Methylnaphthalene	39	1.9	EPA 8270D/SIM	8-14-14	8-15-14	
Acenaphthylene	0.17	0.094	EPA 8270D/SIM	8-14-14	8-14-14	
Acenaphthene	1.2	0.094	EPA 8270D/SIM	8-14-14	8-14-14	
Fluorene	3.9	0.094	EPA 8270D/SIM	8-14-14	8-14-14	
Phenanthrene	1.5	0.094	EPA 8270D/SIM	8-14-14	8-14-14	
Anthracene	0.14	0.094	EPA 8270D/SIM	8-14-14	8-14-14	
Fluoranthene	ND	0.094	EPA 8270D/SIM	8-14-14	8-14-14	
Pyrene	ND	0.094	EPA 8270D/SIM	8-14-14	8-14-14	
Benzo[a]anthracene	ND	0.0094	EPA 8270D/SIM	8-14-14	8-14-14	
Chrysene	ND	0.0094	EPA 8270D/SIM	8-14-14	8-14-14	
Benzo[b]fluoranthene	ND	0.0094	EPA 8270D/SIM	8-14-14	8-14-14	
Benzo(j,k)fluoranthene	ND	0.0094	EPA 8270D/SIM	8-14-14	8-14-14	
Benzo[a]pyrene	ND	0.0094	EPA 8270D/SIM	8-14-14	8-14-14	
Indeno(1,2,3-c,d)pyrene	ND	0.0094	EPA 8270D/SIM	8-14-14	8-14-14	
Dibenz[a,h]anthracene	ND	0.0094	EPA 8270D/SIM	8-14-14	8-14-14	
Benzo[g,h,i]perylene	ND	0.0094	EPA 8270D/SIM	8-14-14	8-14-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	62	40 - 107				
Pyrene-d10	90	41 - 106				
Terphenyl-d14	87	44 - 124				

Ū				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2-081214					
Laboratory ID:	08-083-03					
Naphthalene	0.17	0.094	EPA 8270D/SIM	8-14-14	8-14-14	
2-Methylnaphthalene	ND	0.094	EPA 8270D/SIM	8-14-14	8-14-14	
1-Methylnaphthalene	0.60	0.094	EPA 8270D/SIM	8-14-14	8-14-14	
Acenaphthylene	ND	0.094	EPA 8270D/SIM	8-14-14	8-14-14	
Acenaphthene	0.33	0.094	EPA 8270D/SIM	8-14-14	8-14-14	
Fluorene	0.18	0.094	EPA 8270D/SIM	8-14-14	8-14-14	
Phenanthrene	ND	0.094	EPA 8270D/SIM	8-14-14	8-14-14	
Anthracene	ND	0.094	EPA 8270D/SIM	8-14-14	8-14-14	
Fluoranthene	ND	0.094	EPA 8270D/SIM	8-14-14	8-14-14	
Pyrene	ND	0.094	EPA 8270D/SIM	8-14-14	8-14-14	
Benzo[a]anthracene	ND	0.0094	EPA 8270D/SIM	8-14-14	8-14-14	
Chrysene	ND	0.0094	EPA 8270D/SIM	8-14-14	8-14-14	
Benzo[b]fluoranthene	ND	0.0094	EPA 8270D/SIM	8-14-14	8-14-14	
Benzo(j,k)fluoranthene	ND	0.0094	EPA 8270D/SIM	8-14-14	8-14-14	
Benzo[a]pyrene	ND	0.0094	EPA 8270D/SIM	8-14-14	8-14-14	
Indeno(1,2,3-c,d)pyrene	ND	0.0094	EPA 8270D/SIM	8-14-14	8-14-14	
Dibenz[a,h]anthracene	ND	0.0094	EPA 8270D/SIM	8-14-14	8-14-14	
Benzo[g,h,i]perylene	ND	0.0094	EPA 8270D/SIM	8-14-14	8-14-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	45	40 - 107				
Pyrene-d10	52	41 - 106				
Terphenyl-d14	69	44 - 124				

Date of Report: August 18, 2014 Samples Submitted: August 12, 2014 Laboratory Reference: 1408-083 Project: 1071-007

PAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

-				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0814W1					
Naphthalene	ND	0.10	EPA 8270D/SIM	8-14-14	8-14-14	
2-Methylnaphthalene	ND	0.10	EPA 8270D/SIM	8-14-14	8-14-14	
1-Methylnaphthalene	ND	0.10	EPA 8270D/SIM	8-14-14	8-14-14	
Acenaphthylene	ND	0.10	EPA 8270D/SIM	8-14-14	8-14-14	
Acenaphthene	ND	0.10	EPA 8270D/SIM	8-14-14	8-14-14	
Fluorene	ND	0.10	EPA 8270D/SIM	8-14-14	8-14-14	
Phenanthrene	ND	0.10	EPA 8270D/SIM	8-14-14	8-14-14	
Anthracene	ND	0.10	EPA 8270D/SIM	8-14-14	8-14-14	
Fluoranthene	ND	0.10	EPA 8270D/SIM	8-14-14	8-14-14	
Pyrene	ND	0.10	EPA 8270D/SIM	8-14-14	8-14-14	
Benzo[a]anthracene	ND	0.010	EPA 8270D/SIM	8-14-14	8-14-14	
Chrysene	ND	0.010	EPA 8270D/SIM	8-14-14	8-14-14	
Benzo[b]fluoranthene	ND	0.010	EPA 8270D/SIM	8-14-14	8-14-14	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270D/SIM	8-14-14	8-14-14	
Benzo[a]pyrene	ND	0.010	EPA 8270D/SIM	8-14-14	8-14-14	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270D/SIM	8-14-14	8-14-14	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270D/SIM	8-14-14	8-14-14	
Benzo[g,h,i]perylene	ND	0.010	EPA 8270D/SIM	8-14-14	8-14-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	74	40 - 107				
Pyrene-d10	82	41 - 106				
Terphenyl-d14	100	44 - 124				

Date of Report: August 18, 2014 Samples Submitted: August 12, 2014 Laboratory Reference: 1408-083 Project: 1071-007

PAHs EPA 8270D/SIM SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Re	0.421 0.500 0.500 78 84 0.417 0.500 0.500 78 83 0.451 0.500 0.500 78 83 0.451 0.500 0.500 88 90 0.418 0.500 0.500 81 84 0.605 0.500 0.500 114 121 0.533 0.500 0.500 100 107 0.543 0.500 0.500 101 105 0.525 0.500 0.500 101 105 0.560 0.500 0.500 105 112 0.496 0.500 0.500 82 87 0.461 0.500 0.500 88 92 0.443 0.500 0.500 86 89 0.439 0.500 0.500 84 88	Limits	RPD	Limit	Flags				
SPIKE BLANKS										
Laboratory ID:	SB08	14W1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.376	0.392	0.500	0.500	75	78	31 - 110	4	46	
Acenaphthylene	0.391	0.421	0.500	0.500	78	84	40 - 118	7	43	
Acenaphthene	0.390	0.417	0.500	0.500	78	83	38 - 112	7	40	
Fluorene	0.438	0.451	0.500	0.500	88	90	45 - 114	3	41	
Phenanthrene	0.403	0.418	0.500	0.500	81	84	47 - 112	4	36	
Anthracene	0.570	0.605	0.500	0.500	114	121	46 - 135	6	37	
Fluoranthene	0.502	0.533	0.500	0.500	100	107	51 - 127	6	35	
Pyrene	0.512	0.543	0.500	0.500	102	109	50 - 125	6	37	
Benzo[a]anthracene	0.504	0.525	0.500	0.500	101	105	46 - 123	4	34	
Chrysene	0.526	0.560	0.500	0.500	105	112	49 - 120	6	34	
Benzo[b]fluoranthene	0.480	0.496	0.500	0.500	96	99	46 - 126	3	37	
Benzo(j,k)fluoranthene	0.411	0.435	0.500	0.500	82	87	43 - 125	6	39	
Benzo[a]pyrene	0.439	0.461	0.500	0.500	88	92	44 - 129	5	37	
Indeno(1,2,3-c,d)pyrene	0.431	0.443	0.500	0.500	86	89	40 - 124	3	42	
Dibenz[a,h]anthracene	0.422	0.439	0.500	0.500	84	88	35 - 122	4	44	
Benzo[g,h,i]perylene	0.486	0.492	0.500	0.500	97	98	37 - 122	1	45	
Surrogate:										
2-Fluorobiphenyl					76	79	40 - 107			
Pyrene-d10					88	93	41 - 106			
Terphenyl-d14					104	106	44 - 124			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received Aller	Relinquished Kypon Octour	Signature			/	/	A MW-3-081214	3 MW-2-081214	HI 7180-H-MW 2	1 Rw-2-081214	Ostra	Company: Farallon Project Number: 1071-007 Project Name: 6050 Marginal Way Project Manager: Beth Pardolet	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.
Reviewed/Date					OSE	Farallon	Company		1	Ro		V 1345 V	8221	1139	8/12/14 1042 W	Date Time Sampled Sampled Matrix	Same Day 1 Day 2 Days 3 Days CTPH analysis 5 Days	(in working days)	Chain o
Chromatograms with final report					8.12.14 15:1S	8112/H 1513	Date Time Comments/Spe					7 XXX	9 XXX X	7 XXX	A XXX X	1.	C C Colatiles 8260C 3270D/SIM PAHs) SIM (low-level) e Pesticides 8081B	Laboratory Number:	Chain of Custody
s with final report							Comments/Special Instructions										etals	680-80	Page of

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature		ET	1000	/	16 F7-G-W. 081314	15 =7-5:0-081314	14 FG-GW-08131f	13 F6-513 -081314	12 F5 - GW-081314	11 FS-6,7-081314	Lab ID Sample Identification	Project Name: Project Manager: BETH PIADC-ETT Sampled by: DINCER KAYHAN	logi - 007	2	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	OnSite Environmental Inc.
Reviewed/Date					Y	THE	Company	/				\$ 1350	1335	1317	1310	1250	8/13/14 1243	Date Time Sampled Sampled	(TPH analysis 5 Days)	Days	(Check One)	Turnaround Request (in working days)	Ch
Date					ANC.	202						3	5 5	w 7	2	3	S	Matrix Numb	er of Containers	3 Days	e)		Chain of Custody
					8/12/12/18	8/13/1K 16	Date Time					メメナ		オメメ		XXX	XXX	NWTP				Laboratory Number:	ustody
Chromate					S	600						×						Semive (with lo	enated Volatiles 8260C olatiles 8270D/SIM ow-level PAHs) 8270D/SIM (low-level) 8082A			mber:	
Chromatograms with final report							Comments/Special Instructions											Organo Chlorir Total F	ochlorine Pesticides 80 ophosphorus Pesticides nated Acid Herbicides RCRA Metals	8270D/S	IM		
ort 🗌																		TCLP	MTCA Metals Metals (oil and grease) 1664A			08-102	Page 2 of
																	8	% Mo	isture				2

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 18, 2014

Beth Padgett Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-007 Laboratory Reference No. 1408-102B

Dear Beth:

Enclosed are the analytical results and associated quality control data for samples submitted on August 13, 2014.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Date of Report: September 18, 2014 Samples Submitted: August 13, 2014 Laboratory Reference: 1408-102B Project: 1071-007

Case Narrative

Samples were collected on August 13, 2014 and received by the laboratory on August 13, 2014. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

PCBs EPA 8082A

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F8-5.0-081314					
Laboratory ID:	08-102-03					
Aroclor 1016	ND	0.064	EPA 8082A	9-18-14	9-18-14	
Aroclor 1221	ND	0.064	EPA 8082A	9-18-14	9-18-14	
Aroclor 1232	ND	0.064	EPA 8082A	9-18-14	9-18-14	
Aroclor 1242	ND	0.064	EPA 8082A	9-18-14	9-18-14	
Aroclor 1248	ND	0.064	EPA 8082A	9-18-14	9-18-14	
Aroclor 1254	ND	0.064	EPA 8082A	9-18-14	9-18-14	
Aroclor 1260	ND	0.064	EPA 8082A	9-18-14	9-18-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	92	51-138				
Client ID:	F5-6.7-081314					
Laboratory ID:	08-102-11					
Aroclor 1016	ND	0.069	EPA 8082A	9-18-14	9-18-14	
Aroclor 1221	ND	0.069	EPA 8082A	9-18-14	9-18-14	
Aroclor 1232	ND	0.069	EPA 8082A	9-18-14	9-18-14	
Aroclor 1242	ND	0.069	EPA 8082A	9-18-14	9-18-14	
Aroclor 1248	ND	0.069	EPA 8082A	9-18-14	9-18-14	
Aroclor 1254	ND	0.069	EPA 8082A	9-18-14	9-18-14	
Aroclor 1260	ND	0.069	EPA 8082A	9-18-14	9-18-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	86	51-138				

PCBs EPA 8082A QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0918S1					
Aroclor 1016	ND	0.050	EPA 8082A	9-18-14	9-18-14	
Aroclor 1221	ND	0.050	EPA 8082A	9-18-14	9-18-14	
Aroclor 1232	ND	0.050	EPA 8082A	9-18-14	9-18-14	
Aroclor 1242	ND	0.050	EPA 8082A	9-18-14	9-18-14	
Aroclor 1248	ND	0.050	EPA 8082A	9-18-14	9-18-14	
Aroclor 1254	ND	0.050	EPA 8082A	9-18-14	9-18-14	
Aroclor 1260	ND	0.050	EPA 8082A	9-18-14	9-18-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	109	51-138				

					Source	Per	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB09	918S1									
	SB	SBD	SB	SBD		SB	SBD				
Aroclor 1260	0.529	0.461	0.500	0.500	N/A	106	92	66-120	14	14	
Surrogate:											
DCB						116	101	51-138			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Z -

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Interface Inter	OnSite Environmental Inc.		Cha	ain o	f (Cu	ISt	00	ły											P	age _	1	of_	2	
Contractive Contractive Contractive Contractive Contractive Proper Number Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contractive Contrentinstructure Contractive	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052					Lá	abo	rato	ory	Nur	nb	er:						08	-	1 (02				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Company: FARALON Project Number: 1071-007 Project Name: 6050 MARGINAL WAY Project Manager: BETH PHDG-FIT Sampled by:	Same	e Day [ys [d ard (7 Days) analysis 5 Da	3 Days	of Containers	HCID	.Gx/BTEX	GX	-Dx	8260C	ated Volatiles 8260C	atiles 8270D/SIM r-level PAHs)	(10D/SIM (low-level)	182A	hlorine Pesticides 8081B	hosphorus Pesticides 8270D/SIM	ted Acid Herbicides 8151A	SRA Metals	CA Metals	etals	and grease)				
IntermeterIntermeterIntermeter2. Fi - \mathcal{L} - \mathcal				Matrix	Number	NWTPH	NWTPH	NWTPH	NWTPH	Volatiles	Halogen	Semivols (with low	PAHs 82	PCBS 80	Organoc	Organop	Chlorina	Total RC	Total MT	TCLP M	HEM (oi				% Moisture
Z $P1$ CW $OTSC$ S K K K 3 $F8 - S.o - oB1314$ $IO2S$ S K K K 4 $F8 - CW - 0B131A$ $IO3S$ W 7 X X K 5 $F2 - G.o - oB1314$ $IO3S$ S S K K 6 $F2 - CW - 0B1314$ $IIOSS$ S S 7 $F3 - S72 - 0B1314$ $IIOS$ S S K 7 $F3 - S72 - 0B1314$ $II2S$ S S IIO 8 $F3 - CW - 0B1314$ $II2S$ S K X 9 $F4 - GP - 0B1314$ $II2S$ S IIO 10 $F4 - GP - 0B1314$ $I2SO$ V X 10 $F4 - GP - 0B1314$ $I2SO$ V X $Reclived$ $IZOS$ V V K $Reclived$ $IZOS$ V $IIS/I4$ $I6'OO$ $Reclived$ $IZOS$ $IIS/I4$ $I6'OO$ $Reclived$ $IZOS$ $IIS/I4$ $I6'OO$ $Reclived$ $IZOS$ $IZOS$ $IIS/I4$	FI-2.4-081314	8/13/14	0923	S	5	-		12	Œ) -	-		-	He	DL	> -		-				_	-	-	-
$4''$ FB'' $CW''OBI3IA$ $1035''$ $W'''7''$ $X \times X$ $5''$ $F2 - 6.0 - 081314$ $1055''$ $5'''$ $100'''''''''''''''''''''''''''''''''''$	0	1	0935	w	7			×	×	X															
Y F8- CW-08131A 1035 W 7 X	3 F8-5.0-081314		1025	S	5			×	x	X			(Ø											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3		1035	w	7			×	x	×															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5 F2-6.0-091314		1055	S	5																				
7 F3-5.72-081314 1125 5 5 7 NO OP Houd 1 </td <td>6 FZ-GW-081314</td> <td></td> <td>1100</td> <td>w</td> <td>7</td> <td></td> <td></td> <td>x</td> <td>×</td> <td>×</td> <td></td>	6 FZ-GW-081314		1100	w	7			x	×	×															
9 FA - 60-081314 1200 5 5 1	0		1125	5	5	-	-	R	N		P		-	-	H	02	D.	-	-			-	-	-	
9 FA - 60-081314 1200 5 5 1	8 F3 - 6-W-081314		1138	w	7			×	×	X															
Signature Company Date Time Comments/Special Instructions Relinquished FAPALLON 8/13/14 16:00 Houb Soill ShimPLES Received OBEL 1/13/14 1600 Houb Soill ShimPLES Relinquished OBEL 1/13/14 1600 Mull CALL For Anial Ysis Received Image: Signature Image: Signature Image: Signature Received Image: Signature Image: Signature Image: Signature Received Image: Signature Image: Signature Image: Signature Relinquished Image: Signature Image: Signature Image: Signature Received Image: Signature Image: Signature Image: Signature Relinquished Image: Signature Image: Signature Image: Signature Received Image: Signature Image: Si			1200	5	5	-														_					
Signature Company Date Time Comments/Special Instructions Relinquished FAPALLON 8/13/14 16:00 Houb Soill Shimplies Received OBEL 1/13/14 1600 Houb Soill Shimplies Relinquished OBEL 1/13/14 1600 Will CALL For Anialysis Received Image: Signature Image: Signature Image: Signature Relinquished Image: Signature Image: Signature Image: Signature Received Image: Signature	10 FA -GW-081314		1205	w	7			x	×	×															
Relinquished ANIALYZE F8-5.0-08/3/4 Received Image: Strate of the strate	Relinquished			LION			and the second second	13/1		14	6 .		Ha	2	D		So	IL	5	in in	mp	LE:	S	VCK	
Relinquished Image: Constraint of the second of the seco	Relinquished		3 (YSC	2		811	1	,	16	00	0						-	F	8-	5.0	0.0	813	14	Ĩ
Received												_	/	T)01	h) <	7/1	1/1		020	ST	4)	1	
Paviawed/Date	Received				-						-	_	C		np	Ja		110	114	- /	B		9		
Reviewed/Date Chromatograms with final report	Reviewed/Date		Reviewed/Da	ite		-	1						Chro	mato	ograr	ns w	ith fin	nal re	port [

Data Package: Standard 🗌 Level III 🗌 Level IV 🗌 🛛 Electronic Data Deliverables (EDDs) 🗌 _____

OnSite Environmental Inc.			Cha	nin o	f	Cı	IS	t o (dy															2		
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052			naround Requ working day			L	abo	orat	ory	Nu	mb	er:							()8	-	10	2			
Phone: (425) 883-3881 • www.onsite-env.com Company: FARALON Project Number: 1071-007 Project Name: 6050 MARL-INAL WAY Project Manager: BETH PRADG-ETT Sampled by: DINCER KAYHAN	X	Same 2 Day Stanc		1 Day 3 Days ys) 30	Number of Containers	HCID	NWTPH-Gx/BTEX	-Gx	-Dx	Volatiles 8260C	Halogenated Volatiles 8260C	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs 8270D/SIM (low-level)	082A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	letals	I and grease) 1664A				duine.	
Lab ID Sample Identification	Da Sam		Time Sampled	Matrix	Numbe	NWTPH-HCID	NWTPH	NWTPH-GX	NWTPH-Dx	Volatiles	Haloger	Sernivo (with lov	PAHs 8	PCBs 8082A	Organo	Organop	Chlorine	Total R(Total M	TCLP Metals	HEM (oil and				% Moisture	
11 F5 - 6.7-081314	8	3/14	1243	S	5	-		×	×	×			(X										-	X	0
12 F5 - GW-081314		1	1250	w	T	-		×	×	×																
13 F6-5.3 -081314			1310	5	5	•																				
14 F6-GW-081314			1317	w	7			×	×	X																
15 =7-50-081314			1335	5	5	-																				
6 F7-GW-081314	4	7	1350	w	9			×	×	×			X													
- ANN																										
DE																			_							
,																										
Signature			ompany		1		Date	+	1.	Time			Co	mmei	nts/Sp	ecial	Instr	uctio	ns							
Relinquished		-	ERRA	thor			8	113	11	16	201	2														
Received Relinquished	-5	-	0	36	-		81	13	19	16	30	0														
Received		-		_			-		-	-	-	_														
Relinquished		-			_		-			-																
Received		-					-		-																	
Reviewed/Date			Reviewed/Da	te									Chr	omat	ogran	ms w	ith fin	al re	port []						i

Data Package: Standard 🗌 Level III 🗌 Level IV 🗌 Electronic Data Deliverables (EDDs) 🗌 ____

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

August 18, 2014

Beth Padgett Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-007 Laboratory Reference No. 1408-126

Dear Beth:

Enclosed are the analytical results and associated quality control data for samples submitted on August 15, 2014.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Date of Report: August 18, 2014 Samples Submitted: August 15, 2014 Laboratory Reference: 1408-126 Project: 1071-007

Case Narrative

Samples were collected on August 15, 2014 and received by the laboratory on August 15, 2014. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Lift Station-081514					
Laboratory ID:	08-126-01					
Naphthalene	ND	0.22	EPA 8270D/SIM	8-15-14	8-15-14	
2-Methylnaphthalene	2.1	0.22	EPA 8270D/SIM	8-15-14	8-15-14	
1-Methylnaphthalene	1.1	0.22	EPA 8270D/SIM	8-15-14	8-15-14	
Acenaphthylene	ND	0.22	EPA 8270D/SIM	8-15-14	8-15-14	
Acenaphthene	0.39	0.22	EPA 8270D/SIM	8-15-14	8-15-14	
Fluorene	0.65	0.22	EPA 8270D/SIM	8-15-14	8-15-14	
Phenanthrene	1.2	0.22	EPA 8270D/SIM	8-15-14	8-15-14	
Anthracene	0.87	0.22	EPA 8270D/SIM	8-15-14	8-15-14	
Fluoranthene	0.90	0.22	EPA 8270D/SIM	8-15-14	8-15-14	
Pyrene	0.93	0.22	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo[a]anthracene	0.46	0.22	EPA 8270D/SIM	8-15-14	8-15-14	
Chrysene	0.71	0.22	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo[b]fluoranthene	0.56	0.22	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo(j,k)fluoranthene	0.25	0.22	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo[a]pyrene	0.42	0.22	EPA 8270D/SIM	8-15-14	8-15-14	
Indeno(1,2,3-c,d)pyrene	0.28	0.22	EPA 8270D/SIM	8-15-14	8-15-14	
Dibenz[a,h]anthracene	ND	0.22	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo[g,h,i]perylene	0.53	0.22	EPA 8270D/SIM	8-15-14	8-15-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	85	43 - 116				
Pyrene-d10	55	33 - 124				
Terphenyl-d14	63	38 - 125				

J. J. J.				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CB-2-081514					
Laboratory ID:	08-126-02					
Naphthalene	0.046	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
2-Methylnaphthalene	0.025	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
1-Methylnaphthalene	ND	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Acenaphthylene	0.029	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Acenaphthene	ND	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Fluorene	0.033	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Phenanthrene	0.22	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Anthracene	0.065	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Fluoranthene	0.36	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Pyrene	0.34	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo[a]anthracene	0.23	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Chrysene	0.35	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo[b]fluoranthene	0.29	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo(j,k)fluoranthene	0.13	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo[a]pyrene	0.21	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Indeno(1,2,3-c,d)pyrene	0.12	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Dibenz[a,h]anthracene	0.058	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo[g,h,i]perylene	0.25	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	64	43 - 116				
Pyrene-d10	66	33 - 124				
Terphenyl-d14	76	38 - 125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CB-1-081514					
Laboratory ID:	08-126-03					
Naphthalene	0.040	0.022	EPA 8270D/SIM	8-15-14	8-18-14	
2-Methylnaphthalene	0.031	0.022	EPA 8270D/SIM	8-15-14	8-18-14	
1-Methylnaphthalene	ND	0.022	EPA 8270D/SIM	8-15-14	8-18-14	
Acenaphthylene	ND	0.022	EPA 8270D/SIM	8-15-14	8-18-14	
Acenaphthene	ND	0.022	EPA 8270D/SIM	8-15-14	8-18-14	
Fluorene	0.032	0.022	EPA 8270D/SIM	8-15-14	8-18-14	
Phenanthrene	0.22	0.022	EPA 8270D/SIM	8-15-14	8-18-14	
Anthracene	0.036	0.022	EPA 8270D/SIM	8-15-14	8-18-14	
Fluoranthene	0.23	0.022	EPA 8270D/SIM	8-15-14	8-18-14	
Pyrene	0.23	0.022	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo[a]anthracene	0.11	0.022	EPA 8270D/SIM	8-15-14	8-18-14	
Chrysene	0.21	0.022	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo[b]fluoranthene	0.16	0.022	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo(j,k)fluoranthene	0.070	0.022	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo[a]pyrene	0.13	0.022	EPA 8270D/SIM	8-15-14	8-18-14	
Indeno(1,2,3-c,d)pyrene	0.072	0.022	EPA 8270D/SIM	8-15-14	8-18-14	
Dibenz[a,h]anthracene	0.032	0.022	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo[g,h,i]perylene	0.17	0.022	EPA 8270D/SIM	8-15-14	8-18-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	65	43 - 116				
Pyrene-d10	72	33 - 124				
Terphenyl-d14	76	38 - 125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CB-3-081514					
Laboratory ID:	08-126-04					
Naphthalene	0.033	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
2-Methylnaphthalene	0.028	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
1-Methylnaphthalene	ND	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Acenaphthylene	0.028	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Acenaphthene	ND	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Fluorene	0.037	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Phenanthrene	0.19	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Anthracene	0.066	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Fluoranthene	0.31	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Pyrene	0.40	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo[a]anthracene	0.20	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Chrysene	0.40	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo[b]fluoranthene	0.19	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo(j,k)fluoranthene	0.15	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo[a]pyrene	0.24	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Indeno(1,2,3-c,d)pyrene	0.11	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Dibenz[a,h]anthracene	0.067	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo[g,h,i]perylene	0.26	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	65	43 - 116				
Pyrene-d10	65	33 - 124				
Terphenyl-d14	67	38 - 125				

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CB-4-081514					
Laboratory ID:	08-126-05					
Naphthalene	ND	0.34	EPA 8270D/SIM	8-15-14	8-15-14	
2-Methylnaphthalene	ND	0.34	EPA 8270D/SIM	8-15-14	8-15-14	
1-Methylnaphthalene	ND	0.34	EPA 8270D/SIM	8-15-14	8-15-14	
Acenaphthylene	0.48	0.34	EPA 8270D/SIM	8-15-14	8-15-14	
Acenaphthene	ND	0.34	EPA 8270D/SIM	8-15-14	8-15-14	
Fluorene	ND	0.34	EPA 8270D/SIM	8-15-14	8-15-14	
Phenanthrene	1.3	0.34	EPA 8270D/SIM	8-15-14	8-15-14	
Anthracene	0.62	0.34	EPA 8270D/SIM	8-15-14	8-15-14	
Fluoranthene	1.0	0.34	EPA 8270D/SIM	8-15-14	8-15-14	
Pyrene	1.6	0.34	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo[a]anthracene	1.0	0.34	EPA 8270D/SIM	8-15-14	8-15-14	
Chrysene	1.1	0.34	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo[b]fluoranthene	0.54	0.34	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo(j,k)fluoranthene	0.45	0.34	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo[a]pyrene	0.77	0.34	EPA 8270D/SIM	8-15-14	8-15-14	
Indeno(1,2,3-c,d)pyrene	ND	0.34	EPA 8270D/SIM	8-15-14	8-15-14	
Dibenz[a,h]anthracene	ND	0.34	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo[g,h,i]perylene	0.44	0.34	EPA 8270D/SIM	8-15-14	8-15-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	84	43 - 116				
Pyrene-d10	70	33 - 124				
Terphenyl-d14	75	38 - 125				

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CB-5-081514					
Laboratory ID:	08-126-06					
Naphthalene	0.058	0.019	EPA 8270D/SIM	8-15-14	8-18-14	
2-Methylnaphthalene	0.032	0.019	EPA 8270D/SIM	8-15-14	8-18-14	
1-Methylnaphthalene	ND	0.019	EPA 8270D/SIM	8-15-14	8-18-14	
Acenaphthylene	0.044	0.019	EPA 8270D/SIM	8-15-14	8-18-14	
Acenaphthene	ND	0.019	EPA 8270D/SIM	8-15-14	8-18-14	
Fluorene	0.046	0.019	EPA 8270D/SIM	8-15-14	8-18-14	
Phenanthrene	0.29	0.019	EPA 8270D/SIM	8-15-14	8-18-14	
Anthracene	0.095	0.019	EPA 8270D/SIM	8-15-14	8-18-14	
Fluoranthene	0.42	0.019	EPA 8270D/SIM	8-15-14	8-18-14	
Pyrene	0.43	0.019	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo[a]anthracene	0.25	0.019	EPA 8270D/SIM	8-15-14	8-18-14	
Chrysene	0.45	0.019	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo[b]fluoranthene	0.30	0.019	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo(j,k)fluoranthene	0.17	0.019	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo[a]pyrene	0.26	0.019	EPA 8270D/SIM	8-15-14	8-18-14	
Indeno(1,2,3-c,d)pyrene	0.16	0.019	EPA 8270D/SIM	8-15-14	8-18-14	
Dibenz[a,h]anthracene	0.081	0.019	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo[g,h,i]perylene	0.28	0.019	EPA 8270D/SIM	8-15-14	8-18-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	57	43 - 116				
Pyrene-d10	67	33 - 124				
Terphenyl-d14	53	38 - 125				

PAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laborator / ID:	MD004F04					
Laboratory ID:	MB0815S1 ND	0.0007		0 45 44	0 45 44	
Naphthalene		0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
2-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
1-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Acenaphthylene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Acenaphthene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Fluorene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Phenanthrene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Anthracene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Fluoranthene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Pyrene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Chrysene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	112	43 - 116				
Pyrene-d10	98	33 - 124				
Terphenyl-d14	98 94	38 - 125				

PAHs EPA 8270D/SIM SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Pe	ercent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Re	covery	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB08	315S1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.0682	0.0650	0.0833	0.0833	82	78	45 - 109	5	29	
Acenaphthylene	0.0749	0.0707	0.0833	0.0833	90	85	54 - 118	6	18	
Acenaphthene	0.0704	0.0685	0.0833	0.0833	85	82	60 - 108	3	14	
Fluorene	0.0704	0.0715	0.0833	0.0833	85	86	61 - 113	2	13	
Phenanthrene	0.0650	0.0656	0.0833	0.0833	78	79	63 - 106	1	13	
Anthracene	0.102	0.103	0.0833	0.0833	122	124	55 - 135	1	13	
Fluoranthene	0.0727	0.0730	0.0833	0.0833	87	88	66 - 118	0	13	
Pyrene	0.0734	0.0725	0.0833	0.0833	88	87	69 - 112	1	12	
Benzo[a]anthracene	0.0767	0.0776	0.0833	0.0833	92	93	58 - 118	1	13	
Chrysene	0.0737	0.0719	0.0833	0.0833	88	86	64 - 114	2	11	
Benzo[b]fluoranthene	0.0733	0.0725	0.0833	0.0833	88	87	52 - 125	1	19	
Benzo(j,k)fluoranthene	0.0758	0.0753	0.0833	0.0833	91	90	50 - 126	1	22	
Benzo[a]pyrene	0.0863	0.0857	0.0833	0.0833	104	103	43 - 123	1	16	
Indeno(1,2,3-c,d)pyrene	0.0718	0.0696	0.0833	0.0833	86	84	55 - 118	3	16	
Dibenz[a,h]anthracene	0.0707	0.0696	0.0833	0.0833	85	84	57 - 120	2	15	
Benzo[g,h,i]perylene	0.0697	0.0689	0.0833	0.0833	84	83	58 - 113	1	18	
Surrogate:										
2-Fluorobiphenyl					119	116	43 - 116			Q
Pyrene-d10					89	90	33 - 124			
Terphenyl-d14					85	85	38 - 125			

PCBs EPA 8082A

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Lift Station-081514					
Laboratory ID:	08-126-01					
Aroclor 1016	ND	0.17	EPA 8082A	8-18-14	8-18-14	
Aroclor 1221	ND	0.17	EPA 8082A	8-18-14	8-18-14	
Aroclor 1232	ND	0.17	EPA 8082A	8-18-14	8-18-14	
Aroclor 1242	ND	0.17	EPA 8082A	8-18-14	8-18-14	
Aroclor 1248	ND	0.17	EPA 8082A	8-18-14	8-18-14	
Aroclor 1254	ND	0.17	EPA 8082A	8-18-14	8-18-14	
Aroclor 1260	2.6	0.17	EPA 8082A	8-18-14	8-18-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	128	51-138				
Client ID:	CB-2-081514					
Laboratory ID:	08-126-02					
Aroclor 1016	ND	0.13	EPA 8082A	8-18-14	8-18-14	
Aroclor 1221	ND	0.13	EPA 8082A	8-18-14	8-18-14	
Aroclor 1232	ND	0.13	EPA 8082A	8-18-14	8-18-14	
Aroclor 1242	ND	0.13	EPA 8082A	8-18-14	8-18-14	
Aroclor 1248	ND	0.13	EPA 8082A	8-18-14	8-18-14	
Aroclor 1254	ND	0.13	EPA 8082A	8-18-14	8-18-14	
Aroclor 1260	ND	0.13	EPA 8082A	8-18-14	8-18-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	122	51-138				
Client ID:	CB-1-081514					
Laboratory ID:	08-126-03					
Aroclor 1016	ND	0.17	EPA 8082A	8-18-14	8-18-14	
Aroclor 1221	ND	0.17	EPA 8082A	8-18-14	8-18-14	
Aroclor 1232	ND	0.17	EPA 8082A	8-18-14	8-18-14	
Aroclor 1242	ND	0.17	EPA 8082A	8-18-14	8-18-14	
Aroclor 1248	ND	0.17	EPA 8082A	8-18-14	8-18-14	
Aroclor 1254	ND	0.17	EPA 8082A	8-18-14	8-18-14	
Aroclor 1260	ND	0.17	EPA 8082A	8-18-14	8-18-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	115	51-138				

PCBs EPA 8082A

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CB-3-081514					
Laboratory ID:	08-126-04					
Aroclor 1016	ND	0.13	EPA 8082A	8-18-14	8-18-14	
Aroclor 1221	ND	0.13	EPA 8082A	8-18-14	8-18-14	
Aroclor 1232	ND	0.13	EPA 8082A	8-18-14	8-18-14	
Aroclor 1242	ND	0.13	EPA 8082A	8-18-14	8-18-14	
Aroclor 1248	ND	0.13	EPA 8082A	8-18-14	8-18-14	
Aroclor 1254	ND	0.13	EPA 8082A	8-18-14	8-18-14	
Aroclor 1260	ND	0.13	EPA 8082A	8-18-14	8-18-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	122	51-138				
Client ID:	CB-4-081514					
Laboratory ID:	08-126-05					
Aroclor 1016	ND	0.25	EPA 8082A	8-18-14	8-18-14	
Aroclor 1221	ND	0.25	EPA 8082A	8-18-14	8-18-14	
Aroclor 1232	ND	0.25	EPA 8082A	8-18-14	8-18-14	
Aroclor 1242	ND	0.25	EPA 8082A	8-18-14	8-18-14	
Aroclor 1248	ND	0.25	EPA 8082A	8-18-14	8-18-14	
Aroclor 1254	ND	0.25	EPA 8082A	8-18-14	8-18-14	
Aroclor 1260	ND	0.25	EPA 8082A	8-18-14	8-18-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	112	51-138				
Client ID:	CB-5-081514					
Laboratory ID:	08-126-06					
Aroclor 1016	ND	0.14	EPA 8082A	8-18-14	8-18-14	
Aroclor 1221	ND	0.14	EPA 8082A	8-18-14	8-18-14	
Aroclor 1232	ND	0.14	EPA 8082A	8-18-14	8-18-14	
Aroclor 1242	ND	0.14	EPA 8082A	8-18-14	8-18-14	
Aroclor 1248	ND	0.14	EPA 8082A	8-18-14	8-18-14	
Aroclor 1254	ND	0.14	EPA 8082A	8-18-14	8-18-14	
Aroclor 1260	ND	0.14	EPA 8082A	8-18-14	8-18-14	
Surrogate:	Percent Recovery	Control Limits		-	·	
DCB	126	51-138				

PCBs EPA 8082A QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0818S1					
Aroclor 1016	ND	0.050	EPA 8082A	8-18-14	8-18-14	
Aroclor 1221	ND	0.050	EPA 8082A	8-18-14	8-18-14	
Aroclor 1232	ND	0.050	EPA 8082A	8-18-14	8-18-14	
Aroclor 1242	ND	0.050	EPA 8082A	8-18-14	8-18-14	
Aroclor 1248	ND	0.050	EPA 8082A	8-18-14	8-18-14	
Aroclor 1254	ND	0.050	EPA 8082A	8-18-14	8-18-14	
Aroclor 1260	ND	0.050	EPA 8082A	8-18-14	8-18-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	105	51-138				

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB08	318S1									
	SB	SBD	SB	SBD		SB	SBD				
Aroclor 1260	0.461	0.434	0.500	0.500	N/A	92	87	66-120	6	14	
Surrogate:											
DCB						110	105	51-138			

TOTAL METALS EPA 6010C

Matrix:	Soil
Units:	mg/kg (ppm)

Copper

Lead

Zinc

75

62

630

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	08-126-01 Lift Station-081514					
Arsenic	ND	17	6010C	8-18-14	8-18-14	
Chromium	75	0.83	6010C	8-18-14	8-18-14	
Copper	140	1.7	6010C	8-18-14	8-18-14	
Lead	170	8.3	6010C	8-18-14	8-18-14	
Zinc	1300	4.2	6010C	8-18-14	8-18-14	
Lab ID: Client ID:	08-126-02 CB-2-081514					
Arsenic	ND	13	6010C	8-18-14	8-18-14	
Chromium	49	0.64	6010C	8-18-14	8-18-14	
Copper	56	1.3	6010C	8-18-14	8-18-14	
Lead	65	6.4	6010C	8-18-14	8-18-14	
Zinc	710	3.2	6010C	8-18-14	8-18-14	
Lab ID: Client ID:	08-126-03 CB-1-081514					
Arsenic	ND	17	6010C	8-18-14	8-18-14	
Chromium	55	0.83	6010C	8-18-14	8-18-14	

6010C

6010C

6010C

8-18-14

8-18-14

8-18-14

8-18-14

8-18-14

8-18-14

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

1.7

8.3

4.2

TOTAL METALS EPA 6010C

Matrix:	Soil
Units:	mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
.ab ID: Client ID:	08-126-04 CB-3-081514					
rsenic	ND	13	6010C	8-18-14	8-18-14	
hromium	34	0.65	6010C	8-18-14	8-18-14	
opper	65	1.3	6010C	8-18-14	8-18-14	
ead	85	6.5	6010C	8-18-14	8-18-14	
Zinc	740	3.3	6010C	8-18-14	8-18-14	

Lab ID: Client ID:	08-126-05 CB-4-081514					
Arsenic	68	25	6010C	8-18-14	8-18-14	
Chromium	140	1.3	6010C	8-18-14	8-18-14	
Copper	1300	2.5	6010C	8-18-14	8-18-14	
Lead	370	13	6010C	8-18-14	8-18-14	
Zinc	1900	6.3	6010C	8-18-14	8-18-14	

Lab ID: Client ID:	08-126-06 CB-5-081514				
Arsenic	ND	14	6010C	8-18-14	8-18-14
Chromium	48	0.71	6010C	8-18-14	8-18-14
Copper	75	1.4	6010C	8-18-14	8-18-14
Lead	110	7.1	6010C	8-18-14	8-18-14
Zinc	1100	3.5	6010C	8-18-14	8-18-14

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

TOTAL METALS EPA 6010C METHOD BLANK QUALITY CONTROL

Date Extracted:	8-18-14
Date Analyzed:	8-18-14
Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: MB0818SM1&MB0818SM2

Analyte	Method	Result	PQL
Arsenic	6010C	ND	10
Chromium	6010C	ND	0.50
Copper	6010C	ND	1.0
Lead	6010C	ND	5.0
Zinc	6010C	ND	2.5

TOTAL METALS EPA 6010C DUPLICATE QUALITY CONTROL

Date Extracted:	8-18-14
Date Analyzed:	8-18-14

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 08-126-02

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	10	
Chromium	38.1	44.3	15	0.50	
Copper	43.9	43.4	1	1.0	
Lead	51.1	50.4	1	5.0	
Zinc	557	562	1	2.5	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010C MS/MSD QUALITY CONTROL

Date Extracted:	8-18-14
Date Analyzed:	8-18-14

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 08-126-02

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Arsenic	100	93.5	94	93.3	93	0	
Chromium	100	134	96	135	97	1	
Copper	50.0	90.5	93	91.1	94	1	
Lead	250	307	102	301	100	2	
Zinc	100	669	112	656	99	2	

% MOISTURE

Date Analyzed: 8-15-14

Client ID	Lab ID	% Moisture
Lift Station-081514	08-126-01	40
CB-2-081514	08-126-02	22
CB-1-081514	08-126-03	40
CB-3-081514	08-126-04	23
CB-4-081514	08-126-05	61
CB-5-081514	08-126-06	29

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental Inc.		Cha	ain o	f	Cu	IS	too	dy											P	age _	1	_ of _	1	
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com		naround Requ working day (Check One)		-	La	abo	orate	ory	Nur	mb	er:	0	8	- '	12	26								
Company: Farallon			A 1 Day												4									
Project Number:			1 Day 3 Days											81B	3270D/SIN	3151A								
Project Name: 6050 Marginal Way	Stand (TPH	dard (7 Days) analysis 5 Da	ys)	ers						ss 8260C	//SIM	w-level)		ticides 80	esticides 8	rbicides 8	*			() 1664A				
Project Name: 6050 Marginal Way Project Manager: Beth Padget Sampled by: Dincer Kayhan, Ryan Östran		(other)		Number of Containers	CID	NWTPH-Gx/BTEX	X	X	260C	Halogenated Volatiles 8260C	Semivolatiles 8270D/SIM (with low-level PAHs)	0D/SIM (Ic	2A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	tals	and grease)				Ð
Uncer Kayhan, Kyan Ustron	Date	Time		mber o	NWTPH-HCID	J-H4T	NWTPH-GX	NWTPH-Dx	Volatiles 8260C	logenat	mivolat th low-l	Hs 827	PCBs 8082A	Janoch	ganopho	lorinate	al RCF	tal MTC	TCLP Metals	HEM (oil a				% Moisture
Lab ID Sample Identification	Sampled	Sampled	Matrix	NN 7	-	MN	NN	MN	Vol	Hai	Ser (wit	< PA	PC	Oio	Ő	-9-		Tot	10	뽀		-	-	×
1 LiFt-Station-081514	8/15/14		S	C	-	-	-	-			-	\bigcirc	$\langle \rangle$	-		-	X		-	-		-	+	
2 (B-Z-081514		1302		\square	-	-	-			_			\bigcirc			-	X		-	-		-	-	
3 CB-1-081514		1313										X	Δ				X	-	_	-		_	_	X
4 CB-3-081514		1325										X	X	-			X							
5 CB-4-081514		1335										X	\times				X							X
5 CB-4-081514 6 CB-5-081514	V	1355	V	V	/							X	X				X							X
													(
RQ							-																	
	/																							
			/																					
Signature		ompany				Date			Time								uction							
Relinquished lyan Ostrow		Favalle	m			8/	151	14	14	150	0	*A	nal	YZE	2 -	for	- /	Ins	eni	C,	lead,	CI	nomi	un,
Relinquished <i>Ugan Ostrow</i> Received Alex Armantro	ut	OSE				8	115	1/4	14	5	0	Co	PP	per	1 2	2:0	nc		6	1	EPA	N	lethe	ds
Relinquished												6	010	oc	.1.	74	70	A.						
Received															'	1	10	-11						
Relinquished																								
Received											1													
Reviewed/Date		Reviewed/Da	te									Chro	omate	ograr	ns wi	th fin	al rep	oort 🗌						

Data Package: Standard 🗌 Level III 🗌 Level IV 🗌 👘 Electronic Data Deliverables (EDDs) 🗌 ____

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 30, 2014

Scott Allan Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-007 Laboratory Reference No. 1409-205

Dear Scott:

Enclosed are the analytical results and associated quality control data for samples submitted on September 23, 2014.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: September 30, 2014 Samples Submitted: September 23, 2014 Laboratory Reference: 1409-205 Project: 1071-007

Case Narrative

Samples were collected on September 22, 2014 and received by the laboratory on September 23, 2014. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

2

NWTPH-Gx

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	F9-9.0-092214		Wethod	Tiepaleu	Analyzeu	i lags
Laboratory ID:	09-205-01					
Gasoline	ND	4.7	NWTPH-Gx	9-25-14	9-25-14	
Surrogate:	Percent Recovery	Control Limits		0 20 11	0 20 11	
Fluorobenzene	94	71-121				
Client ID:	F10-12.0-092214					
Laboratory ID:	09-205-02					
Gasoline	ND	9.4	NWTPH-Gx	9-25-14	9-25-14	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	108	71-121				
Client ID:	F11-12.0-092214					
Laboratory ID:	09-205-03					
Gasoline	ND	8.6	NWTPH-Gx	9-25-14	9-26-14	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	108	71-121				
Client ID:	F12-7.0-092214					
Laboratory ID:	09-205-04					
Gasoline	ND	4.5	NWTPH-Gx	9-25-14	9-25-14	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	99	71-121				
Client ID:	F15-7.4-092214					
Laboratory ID:	09-205-07					
Gasoline	ND	7.9	NWTPH-Gx	9-25-14	9-29-14	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	106	71-121				
Client ID:	F16-7.0-092214					
Laboratory ID:	09-205-08					
Gasoline	ND	10	NWTPH-Gx	9-25-14	9-29-14	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	99	71-121				

NWTPH-Gx

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	F17-8.0-092214					
Laboratory ID:	09-205-09					
Gasoline	ND	3.1	NWTPH-Gx	9-25-14	9-29-14	
Surrogate: Fluorobenzene	Percent Recovery 102	Control Limits 71-121				

NWTPH-Gx QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB0925S1					
ND	5.0	NWTPH-Gx	9-25-14	9-25-14	
Percent Recovery	Control Limits				
94	71-121				
	MB0925S1 ND Percent Recovery	MB0925S1 ND 5.0 Percent Recovery Control Limits	MB0925S1 ND 5.0 NWTPH-Gx Percent Recovery Control Limits	ResultPQLMethodPreparedMB0925S1	ResultPQLMethodPreparedAnalyzedMB0925S1ND5.0NWTPH-Gx9-25-149-25-14Percent RecoveryControl LimitsFreedom of the second seco

					Source	Perc	ent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recov	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-22	28-01									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		NA	4	NA	NA	30	
Surrogate:											
Fluorobenzene						101	103	71-121			

5

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

Analyta	Result	PQL	Method	Date	Date	Flore
Analyte Client ID:	F10-GW-092214	PQL	wethod	Prepared	Analyzed	Flags
Client ID:	F10-GW-092214					
Laboratory ID:	09-205-11					
Gasoline	ND	100	NWTPH-Gx	9-24-14	9-24-14	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	71-112				
Client ID:	F11-GW-092214					
Laboratory ID:	09-205-12					
Gasoline	ND	100	NWTPH-Gx	9-24-14	9-24-14	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	71-112				

NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

onno: ug/2 (ppo)								Date	Date		
Analyte		Result	PQ	<u>L</u>	Me	thod		Prepared	Analyz	ed	Flags
METHOD BLANK											
Laboratory ID:		MB0924W1									
Gasoline		ND	10	0	NWT	PH-G>	(9-24-14	9-24-1	4	
Surrogate:	Pe	rcent Recov	ery Control	Limits							
Fluorobenzene		91	71-1	12							
				So	urce	Perc	cent	Recovery		RPD	
Analyte	Res	sult	Spike Le	vel Re	esult	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-2 ²	14-01									
	ORIG	DUP									
Gasoline	ND	ND	NA N	١A		Ν	A	NA	NA	30	
Surrogate:											
Fluorobenzene						88	88	71-112			

7

NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	F9-9.0-092214				-	
Laboratory ID:	09-205-01					
Diesel Range Organics	ND	120	NWTPH-Dx	9-24-14	9-24-14	U1
_ube Oil	1400	55	NWTPH-Dx	9-24-14	9-24-14	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	84	50-150				
Client ID:	F10-12.0-092214					
_aboratory ID:	09-205-02					
Diesel Range Organics	ND	40	NWTPH-Dx	9-25-14	9-25-14	
ube Oil Range Organics	ND	81	NWTPH-Dx	9-25-14	9-25-14	
Surrogate:	Percent Recovery	Control Limits				
p-Terphenyl	92	50-150				
	52					
Client ID:	F11-12.0-092214					
_aboratory ID:	09-205-03					
Diesel Range Organics	ND	38	NWTPH-Dx	9-25-14	9-25-14	
ube Oil Range Organics	ND	77	NWTPH-Dx	9-25-14	9-25-14	
Surrogate:	Percent Recovery	Control Limits	HIT I DA	0 20 11	0 20 11	
o-Terphenyl	87	50-150				
Client ID:	F12-7.0-092214					
_aboratory ID:	09-205-04					
Diesel Range Organics	ND	27	NWTPH-Dx	9-24-14	9-24-14	
ube Oil Range Organics	ND	55	NWTPH-Dx	9-24-14	9-24-14	
Surrogate:	Percent Recovery	Control Limits				
p-Terphenyl	61	50-150				
Client ID:	F13-6.7-092214					
aboratory ID:	09-205-05					
Diesel Range Organics						
	440	27	NWTPH-Dx	9-24-14	9-24-14	
ube Oil Range Organics	440 ND	27 54	NWTPH-Dx NWTPH-Dx	9-24-14 9-24-14	9-24-14 9-24-14	
				-		
Surrogate:	ND	54		-		
Surrogate: p-Terphenyl	ND Percent Recovery 80	54 Control Limits		-		
Surrogate: D-Terphenyl	ND Percent Recovery 80 F14-7.0-092214	54 Control Limits		-		
Surrogate: p-Terphenyl Client ID: .aboratory ID:	ND Percent Recovery 80 F14-7.0-092214 09-205-06	54 Control Limits 50-150	NWTPH-Dx	9-24-14	9-24-14	
Surrogate: b-Terphenyl Client ID: Laboratory ID: Diesel Range Organics	ND Percent Recovery 80 F14-7.0-092214 09-205-06 5700	54 Control Limits 50-150 29	NWTPH-Dx	9-24-14 9-24-14	<u>9-24-14</u> 9-24-14	
Surrogate: -Terphenyl Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics	ND Percent Recovery 80 F14-7.0-092214 09-205-06 5700 ND	54 Control Limits 50-150 29 270	NWTPH-Dx	9-24-14	9-24-14	U1
Lube Oil Range Organics Surrogate: p-Terphenyl Client ID: Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: p-Terphenyl	ND Percent Recovery 80 F14-7.0-092214 09-205-06 5700	54 Control Limits 50-150 29	NWTPH-Dx	9-24-14 9-24-14	<u>9-24-14</u> 9-24-14	U1

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

NWTPH-Dx

Units. mg/kg (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F15-7.4-092214					
Laboratory ID:	09-205-07					
Diesel Range Organics	ND	38	NWTPH-Dx	9-24-14	9-24-14	
Lube Oil Range Organics	ND	77	NWTPH-Dx	9-24-14	9-24-14	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	58	50-150				
Client ID:	F16-7.0-092214					
Laboratory ID:	09-205-08					
Diesel Range Organics	ND	40	NWTPH-Dx	9-25-14	9-25-14	
Lube Oil Range Organics	ND	80	NWTPH-Dx	9-25-14	9-25-14	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	90	50-150				
Client ID:	F17-8.0-092214					
Laboratory ID:	09-205-09					
Diesel Fuel #2	380	28	NWTPH-Dx	9-24-14	9-24-14	
Lube Oil Range Organics	ND	59	NWTPH-Dx	9-24-14	9-24-14	U1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	68	50-150				
Client ID:	F18-8.0-092214					
Laboratory ID:	09-205-10					
Diesel Range Organics	9700	140	NWTPH-Dx	9-24-14	9-25-14	
Lube Oil Range Organics	ND	580	NWTPH-Dx	9-24-14	9-25-14	U1
Surrogate:	Percent Recovery	Control Limits		-		
o-Terphenyl	83	50-150				

NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK					,	1.1.1.3.
Laboratory ID:	MB0924S1					
Diesel Range Organics	ND	25	NWTPH-Dx	9-24-14	9-24-14	
Lube Oil Range Organics	ND	50	NWTPH-Dx	9-24-14	9-24-14	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	99	50-150				
Laboratory ID:	MB0925S2					
Diesel Range Organics	ND	25	NWTPH-Dx	9-25-14	9-25-14	
Lube Oil Range Organics	ND	50	NWTPH-Dx	9-25-14	9-25-14	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	95	50-150				
		S	ource Percen	t Recovery	RPI)

					Source	Percer	nτ	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recove	ery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-18	36-03									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		NA		NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA		NA	NA	NA	
Surrogate:											
o-Terphenyl						90	96	50-150			
Laboratory ID:	09-20	05-01									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		NA		NA	NA	NA	U1
Lube Oil	1280	1170	NA	NA		NA		NA	9	NA	
Surrogate:											
o-Terphenyl						84	77	50-150			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

Surrogate:

o-Terphenyl

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	F10-GW-092214			-	-	
Laboratory ID:	09-205-11					
Diesel Range Organics	ND	0.25	NWTPH-Dx	9-25-14	9-25-14	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	9-25-14	9-25-14	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	79	50-150				
Client ID:	F11-GW-092214					
Laboratory ID:	09-205-12					
Diesel Range Organics	ND	0.26	NWTPH-Dx	9-25-14	9-25-14	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	9-25-14	9-25-14	

Control Limits

50-150

Percent Recovery

80

NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0925W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	9-25-14	9-25-14	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	9-25-14	9-25-14	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				
1 5						

					Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	09-2 ⁻	15-01								
	ORIG	DUP								
Diesel Range Organics	0.552	0.377	NA	NA		NA	NA	38	NA	
Lube Oil Range Organics	0.697	0.506	NA	NA		NA	NA	32	NA	
Surrogate:										
o-Terphenyl						77 77	50-150			

PCBs EPA 8082A

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F13-6.7-092214					
Laboratory ID:	09-205-05					
Aroclor 1016	ND	0.054	EPA 8082A	9-24-14	9-24-14	
Aroclor 1221	ND	0.054	EPA 8082A	9-24-14	9-24-14	
Aroclor 1232	ND	0.054	EPA 8082A	9-24-14	9-24-14	
Aroclor 1242	ND	0.054	EPA 8082A	9-24-14	9-24-14	
Aroclor 1248	ND	0.054	EPA 8082A	9-24-14	9-24-14	
Aroclor 1254	ND	0.054	EPA 8082A	9-24-14	9-24-14	
Aroclor 1260	ND	0.054	EPA 8082A	9-24-14	9-24-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	58	51-138				
Client ID:	F18-8.0-092214					
Laboratory ID:	09-205-10					
Aroclor 1016	ND	0.056	EPA 8082A	9-24-14	9-24-14	
Aroclor 1221	ND	0.056	EPA 8082A	9-24-14	9-24-14	
Aroclor 1232	ND	0.056	EPA 8082A	9-24-14	9-24-14	
Aroclor 1242	ND	0.056	EPA 8082A	9-24-14	9-24-14	
Aroclor 1248	ND	0.056	EPA 8082A	9-24-14	9-24-14	
Aroclor 1254	ND	0.056	EPA 8082A	9-24-14	9-24-14	
Aroclor 1260	ND	0.056	EPA 8082A	9-24-14	9-24-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	62	51-138				

PCBs EPA 8082A QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0924S1					
Aroclor 1016	ND	0.050	EPA 8082A	9-24-14	9-24-14	
Aroclor 1221	ND	0.050	EPA 8082A	9-24-14	9-24-14	
Aroclor 1232	ND	0.050	EPA 8082A	9-24-14	9-24-14	
Aroclor 1242	ND	0.050	EPA 8082A	9-24-14	9-24-14	
Aroclor 1248	ND	0.050	EPA 8082A	9-24-14	9-24-14	
Aroclor 1254	ND	0.050	EPA 8082A	9-24-14	9-24-14	
Aroclor 1260	ND	0.050	EPA 8082A	9-24-14	9-24-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	83	51-138				

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	09-20	05-05									
	MS	MSD	MS	MSD		MS	MSD				
Aroclor 1260	0.322	0.334	0.500	0.500	ND	64	67	49-136	4	14	
Surrogate:											
DCB						56	59	51-138			

Date of Report: September 30, 2014 Samples Submitted: September 23, 2014 Laboratory Reference: 1409-205 Project: 1071-007

% MOISTURE

Date Analyzed: 9-24-14

Client ID	Lab ID	% Moisture
F9-9.0-092214	09-205-01	8
F10-12.0-092214	09-205-02	38
F11-12.0-092214	09-205-03	35
F12-7.0-092214	09-205-04	9
F13-6.7-092214	09-205-05	7
F14-7.0-092214	09-205-06	13
F15-7.4-092214	09-205-07	35
F16-7.0-092214	09-205-08	37
F17-8.0-092214	09-205-09	10
F18-8.0-092214	09-205-10	10

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

and a such and is accordance with the sheir of events he

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received O YW	Relinquished	Signature	10 F18-8.0-097214	9 FIT- 8.0-09224	8 FIG- 7.0-092214	7 FIS-7.4-092214	6 F14-7.0-092214	5 F13-6.7-092214	4 F12-7.0-092214	3 FI1-12.0 - 092214	2 财下10-12.0-092214	1 F9-9.0-092214		Sampled by: Dircer Kathan	na	1071-007 Project Name:	Project Number:		Analytical Laboratory Testing Services
Reviewed/Date			300	Speno-1	Spec) 1	TARALOZ	Company	♦ 1243 ♦	1233	1220	1209	1155	1135	8011	1045	1005	9/22 0941 S	Date Time Sampled Sampled Matrix	(other)	(TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(in working days) (Check One)	Turnaround Request
-			glasliy ion	hina) hifeello	226 4 52 h 634	9/22 930	Date Time	3 ×	3 / X	* *	× ×	*	×	* *	XX	XX	2 × ×	NWTP NWTP NWTP NWTP Volatile Haloge	H-Dx es 8260C enated Vola	tiles 8260	DC		Laboratory Number:	of Custody
Chromatograms with final report			1	4			Comments/Special Instructions	*					*					(with lo PAHs & PCBs & Organo Organo Chlorin Total F	ochlorine P ophosphorus nated Acid RCRA Meta	Hs) I (low-leve esticides s Pesticide Herbicide Is	8081B es 8270	D/SIM		
rt 🗆																		TCLP	MTCA Meta Metals bil and grea		A		CDZ-60	1 of

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature /	\sim	tT			12 FII - GW-0922134	F10- GW-092213	Lab ID Sample Identification	DINCER 14	SCOTT ALLIN	Project Name:	1071-007	FARA LOZ	Phone: (425) 883-3881 • www.onsite-env.com Company:	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Environmental Inc.
Standard Level III Level IV			1	LO2019	4P~~D~1	TAPALON	Company					1 1100 W	-	Date Time Sampled Sampled Matrix	(other)		(TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	Chain
			9/23/14	41/2d/b	M2210 6211	9	Date					9 7 ×	۲ ۲ ۲	NUMD NWTP NWTP NWTP	H-HCII H-Gx/E H-Gx	D	ners	ays	Ύε		Laboratory Number:	Chain of Custody
Electronic Data Deliverables (EDDs)			1044	loved	01:10	930								Semive (with lo PAHs PCBs	enated platiles pw-leve 8270D/ 8082A	Volatil 8270I el PAH /SIM (I	s) ow-level)				Number:	
Chromatograms with final report							Comments/Special Instructions							Organo Chlorin Total F Total N TCLP	pphosph nated A RCRA M MTCA M Metals	horus F Acid He Metals Metals	e) 1664A	82701			c-60	Page
														% Mo	isture						205	2 of 2

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 2, 2014

Scott Allin Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-007 Laboratory Reference No. 1409-217

Dear Scott:

Enclosed are the analytical results and associated quality control data for samples submitted on September 23, 2014.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: October 2, 2014 Samples Submitted: September 23, 2014 Laboratory Reference: 1409-217 Project: 1071-007

Case Narrative

Samples were collected on September 23, 2014 and received by the laboratory on September 23, 2014. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

Surrogate:

o-Terphenyl

e				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6-092314					
Laboratory ID:	09-217-01					
Diesel Range Organics	ND	0.26	NWTPH-Dx	9-25-14	9-25-14	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	9-25-14	9-25-14	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	74	50-150				
Client ID:	MW-5-092314					
Laboratory ID:	09-217-02					
Diesel Range Organics	0.43	0.26	NWTPH-Dx	9-25-14	9-25-14	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	9-25-14	9-25-14	

Control Limits

50-150

Percent Recovery

84

NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

Result	PQL	Method	Date Prepared	Date Analyzed	Flags
MB0925W1					
ND	0.25	NWTPH-Dx	9-25-14	9-25-14	
ND	0.40	NWTPH-Dx	9-25-14	9-25-14	
Percent Recovery	Control Limits				
94	50-150				
	MB0925W1 ND ND Percent Recovery	MB0925W1 ND 0.25 ND 0.40 Percent Recovery Control Limits	MB0925W1 ND 0.25 NWTPH-Dx ND 0.40 NWTPH-Dx Percent Recovery Control Limits	Result PQL Method Prepared MB0925W1 -<	Result PQL Method Prepared Analyzed MB0925W1

					Source	Perc	ent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-2 ⁻	14-01									
	ORIG	DUP									
Diesel Range Organics	1.63	0.755	NA	NA		N	4	NA	73	NA	
Lube Oil Range Organics	3.05	1.76	NA	NA		N	۹	NA	54	NA	
Surrogate:											
o-Terphenyl						60	76	50-150			

PAHs EPA 8270D/SIM

Matrix: Water Units: ug/L

0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6-092314					
Laboratory ID:	09-217-01					
Naphthalene	ND	0.096	EPA 8270D/SIM	9-28-14	9-29-14	
2-Methylnaphthalene	ND	0.096	EPA 8270D/SIM	9-28-14	9-29-14	
1-Methylnaphthalene	ND	0.096	EPA 8270D/SIM	9-28-14	9-29-14	
Acenaphthylene	ND	0.096	EPA 8270D/SIM	9-28-14	9-29-14	
Acenaphthene	ND	0.096	EPA 8270D/SIM	9-28-14	9-29-14	
Fluorene	ND	0.096	EPA 8270D/SIM	9-28-14	9-29-14	
Phenanthrene	ND	0.096	EPA 8270D/SIM	9-28-14	9-29-14	
Anthracene	ND	0.096	EPA 8270D/SIM	9-28-14	9-29-14	
Fluoranthene	ND	0.096	EPA 8270D/SIM	9-28-14	9-29-14	
Pyrene	ND	0.096	EPA 8270D/SIM	9-28-14	9-29-14	
Benzo[a]anthracene	0.010	0.0096	EPA 8270D/SIM	9-28-14	9-29-14	
Chrysene	ND	0.0096	EPA 8270D/SIM	9-28-14	9-29-14	
Benzo[b]fluoranthene	ND	0.0096	EPA 8270D/SIM	9-28-14	9-29-14	
Benzo(j,k)fluoranthene	ND	0.0096	EPA 8270D/SIM	9-28-14	9-29-14	
Benzo[a]pyrene	ND	0.0096	EPA 8270D/SIM	9-28-14	9-29-14	
Indeno(1,2,3-c,d)pyrene	ND	0.0096	EPA 8270D/SIM	9-28-14	9-29-14	
Dibenz[a,h]anthracene	ND	0.0096	EPA 8270D/SIM	9-28-14	9-29-14	
Benzo[g,h,i]perylene	ND	0.0096	EPA 8270D/SIM	9-28-14	9-29-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	66	40 - 107				
Pyrene-d10	65	41 - 106				
Terphenyl-d14	70	44 - 124				

PAHs EPA 8270D/SIM

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5-092314					
Laboratory ID:	09-217-02					
Naphthalene	ND	0.095	EPA 8270D/SIM	9-28-14	9-30-14	
2-Methylnaphthalene	ND	0.095	EPA 8270D/SIM	9-28-14	9-30-14	
1-Methylnaphthalene	ND	0.095	EPA 8270D/SIM	9-28-14	9-30-14	
Acenaphthylene	ND	0.095	EPA 8270D/SIM	9-28-14	9-30-14	
Acenaphthene	ND	0.095	EPA 8270D/SIM	9-28-14	9-30-14	
Fluorene	ND	0.095	EPA 8270D/SIM	9-28-14	9-30-14	
Phenanthrene	ND	0.095	EPA 8270D/SIM	9-28-14	9-30-14	
Anthracene	ND	0.095	EPA 8270D/SIM	9-28-14	9-30-14	
Fluoranthene	ND	0.095	EPA 8270D/SIM	9-28-14	9-30-14	
Pyrene	ND	0.095	EPA 8270D/SIM	9-28-14	9-30-14	
Benzo[a]anthracene	ND	0.0095	EPA 8270D/SIM	9-28-14	9-30-14	
Chrysene	ND	0.0095	EPA 8270D/SIM	9-28-14	9-30-14	
Benzo[b]fluoranthene	ND	0.0095	EPA 8270D/SIM	9-28-14	9-30-14	
Benzo(j,k)fluoranthene	ND	0.0095	EPA 8270D/SIM	9-28-14	9-30-14	
Benzo[a]pyrene	ND	0.0095	EPA 8270D/SIM	9-28-14	9-30-14	
Indeno(1,2,3-c,d)pyrene	ND	0.0095	EPA 8270D/SIM	9-28-14	9-30-14	
Dibenz[a,h]anthracene	ND	0.0095	EPA 8270D/SIM	9-28-14	9-30-14	
Benzo[g,h,i]perylene	ND	0.0095	EPA 8270D/SIM	9-28-14	9-30-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	102	40 - 107				
Pyrene-d10	83	41 - 106				
Terphenyl-d14	101	44 - 124				

Date of Report: October 2, 2014 Samples Submitted: September 23, 2014 Laboratory Reference: 1409-217 Project: 1071-007

PAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Matrix: Water Units: ug/L

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
ND	0.10	EPA 8270D/SIM	9-28-14	9-29-14	
ND	0.10	EPA 8270D/SIM	9-28-14	9-29-14	
ND	0.10	EPA 8270D/SIM	9-28-14	9-29-14	
ND	0.10	EPA 8270D/SIM	9-28-14	9-29-14	
ND	0.10	EPA 8270D/SIM	9-28-14	9-29-14	
ND	0.10	EPA 8270D/SIM	9-28-14	9-29-14	
ND	0.10	EPA 8270D/SIM	9-28-14	9-29-14	
ND	0.10	EPA 8270D/SIM	9-28-14	9-29-14	
ND	0.010	EPA 8270D/SIM	9-28-14	9-29-14	
ND	0.010	EPA 8270D/SIM	9-28-14	9-29-14	
ND	0.010	EPA 8270D/SIM	9-28-14	9-29-14	
ND	0.010	EPA 8270D/SIM	9-28-14	9-29-14	
ND	0.010	EPA 8270D/SIM	9-28-14	9-29-14	
ND	0.010	EPA 8270D/SIM	9-28-14	9-29-14	
ND	0.010	EPA 8270D/SIM	9-28-14	9-29-14	
ND	0.010	EPA 8270D/SIM	9-28-14	9-29-14	
	Control Limits			·	
64	40 - 107				
-					
77	44 - 124				
	MB0928W1 ND ND ND ND ND ND ND ND ND ND ND ND ND	MB0928W1 ND 0.10 ND 0.010 ND	MB0928W1 ND 0.10 EPA 8270D/SIM ND 0.010 EPA 8270D/SIM ND 0.010	ResultPQLMethodPreparedMB0928W1ND0.10EPA 8270D/SIM9-28-14ND0.10EPA 8270D/SIM9-28-14ND0.010EPA 8270D/SIM9-28-14ND </td <td>Result PQL Method Prepared Analyzed MB0928W1 </td>	Result PQL Method Prepared Analyzed MB0928W1

PAHs EPA 8270D/SIM SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

					Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB09	28W1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.386	0.359	0.500	0.500	77	72	31 - 110	7	46	
Acenaphthylene	0.338	0.352	0.500	0.500	68	70	40 - 118	4	43	
Acenaphthene	0.397	0.393	0.500	0.500	79	79	38 - 112	1	40	
Fluorene	0.400	0.428	0.500	0.500	80	86	45 - 114	7	41	
Phenanthrene	0.386	0.418	0.500	0.500	77	84	47 - 112	8	36	
Anthracene	0.399	0.422	0.500	0.500	80	84	46 - 135	6	37	
Fluoranthene	0.409	0.440	0.500	0.500	82	88	51 - 127	7	35	
Pyrene	0.408	0.429	0.500	0.500	82	86	50 - 125	5	37	
Benzo[a]anthracene	0.472	0.484	0.500	0.500	94	97	46 - 123	3	34	
Chrysene	0.427	0.432	0.500	0.500	85	86	49 - 120	1	34	
Benzo[b]fluoranthene	0.438	0.431	0.500	0.500	88	86	46 - 126	2	37	
Benzo(j,k)fluoranthene	0.445	0.472	0.500	0.500	89	94	43 - 125	6	39	
Benzo[a]pyrene	0.390	0.410	0.500	0.500	78	82	44 - 129	5	37	
Indeno(1,2,3-c,d)pyrene	0.435	0.450	0.500	0.500	87	90	40 - 124	3	42	
Dibenz[a,h]anthracene	0.448	0.457	0.500	0.500	90	91	35 - 122	2	44	
Benzo[g,h,i]perylene	0.435	0.448	0.500	0.500	87	90	37 - 122	3	45	
Surrogate:										
2-Fluorobiphenyl					84	71	40 - 107			
Pyrene-d10					87	90	41 - 106			
Terphenyl-d14					85	89	44 - 124			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Reviewed/Date	Received Paceived Paceived	Relinquished	Received	Relinquished	Signature				2 MW-5-0923 H	1 WM-6-092314	Lab ID Sample Identification	Samples by Anna Sigel	Project Manager: Scott Allin	Project Name: PROLOGIS	1071-007	1	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.
Reviewed/Date	ORE	N 4	Speedy Menory	FARCALLON	Company			THX A	01:6	1/23/14 810 W 4	Date Time Sampled Sampled Matrix	(other)	ontaine	(TPH analysis 5 Days)	2 Days 3 Days	(Check One)	(in working days)	Chain of Custody
	9/25/14 1312	* * 1318	- 9-28-14 N:53	0910/ h1/22/h	Date Time		/		×	X	NWTP NWTP NWTP NWTP Volatik	H-HCII H-Gx/F H-Gx H-Dx es 8260 enated	D BTEX	8260C		9/24	Laboratory Number:	Gustody
Chromatograms with final report			-(Comments/Special Instructions				×		(with lo PAHs i PCBs Organo Organo Chlorir Total F	ow-leve 8270D/ 8082A ochlorin ophospi nated A RCRA N	el PAHs) SIM (lov ne Pesti norus Pe cid Herl fietals	v-level) cides 80 sticides	8270D/	SIM		
				. 9								oil and	grease)	1664A	6		09-217	Page of

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 1, 2014

Scott Allin Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-007 Laboratory Reference No. 1409-252

Dear Scott:

Enclosed are the analytical results and associated quality control data for samples submitted on September 25, 2014.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Date of Report: October 1, 2014 Samples Submitted: September 25, 2014 Laboratory Reference: 1409-252 Project: 1071-007

Case Narrative

Samples were collected on September 24, 2014 and received by the laboratory on September 25, 2014. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

PCBs EPA 8082A

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CB-6-092414					
Laboratory ID:	09-252-04					
Aroclor 1016	ND	0.065	EPA 8082A	9-30-14	9-30-14	
Aroclor 1221	ND	0.065	EPA 8082A	9-30-14	9-30-14	
Aroclor 1232	ND	0.065	EPA 8082A	9-30-14	9-30-14	
Aroclor 1242	ND	0.065	EPA 8082A	9-30-14	9-30-14	
Aroclor 1248	ND	0.065	EPA 8082A	9-30-14	9-30-14	
Aroclor 1254	ND	0.065	EPA 8082A	9-30-14	9-30-14	
Aroclor 1260	ND	0.065	EPA 8082A	9-30-14	9-30-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	94	51-138				
Client ID:	CB-8-092414					
Laboratory ID:	09-252-05					
Aroclor 1016	ND	0.062	EPA 8082A	9-30-14	9-30-14	
Aroclor 1221	ND	0.062	EPA 8082A	9-30-14	9-30-14	
Aroclor 1232	ND	0.062	EPA 8082A	9-30-14	9-30-14	
Aroclor 1242	ND	0.062	EPA 8082A	9-30-14	9-30-14	
Aroclor 1248	ND	0.062	EPA 8082A	9-30-14	9-30-14	
Aroclor 1254	ND	0.062	EPA 8082A	9-30-14	9-30-14	
Aroclor 1260	ND	0.062	EPA 8082A	9-30-14	9-30-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	110	51-138				
Client ID:	CB-10-092414					
Laboratory ID:	09-252-06					
Aroclor 1016	ND	0.068	EPA 8082A	9-30-14	9-30-14	
Aroclor 1221	ND	0.068	EPA 8082A	9-30-14	9-30-14	
Aroclor 1232	ND	0.068	EPA 8082A	9-30-14	9-30-14	
Aroclor 1242	ND	0.068	EPA 8082A	9-30-14	9-30-14	
Aroclor 1248	ND	0.068	EPA 8082A	9-30-14	9-30-14	
Aroclor 1254	ND	0.068	EPA 8082A	9-30-14	9-30-14	
Aroclor 1260	ND	0.068	EPA 8082A	9-30-14	9-30-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	95	51-138				

PCBs EPA 8082A

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CB-12-092414					
Laboratory ID:	09-252-07					
Aroclor 1016	ND	0.074	EPA 8082A	9-30-14	9-30-14	
Aroclor 1221	ND	0.074	EPA 8082A	9-30-14	9-30-14	
Aroclor 1232	ND	0.074	EPA 8082A	9-30-14	9-30-14	
Aroclor 1242	0.31	0.074	EPA 8082A	9-30-14	9-30-14	
Aroclor 1248	ND	0.074	EPA 8082A	9-30-14	9-30-14	
Aroclor 1254	ND	0.074	EPA 8082A	9-30-14	9-30-14	
Aroclor 1260	ND	0.074	EPA 8082A	9-30-14	9-30-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	93	51-138				
Client ID:	CB-13-092414					
Laboratory ID:	09-252-08					
Aroclor 1016	ND	0.063	EPA 8082A	9-30-14	9-30-14	
Aroclor 1221	ND	0.063	EPA 8082A	9-30-14	9-30-14	
Aroclor 1232	ND	0.063	EPA 8082A	9-30-14	9-30-14	
Aroclor 1242	ND	0.063	EPA 8082A	9-30-14	9-30-14	
Aroclor 1248	ND	0.063	EPA 8082A	9-30-14	9-30-14	
Aroclor 1254	ND	0.063	EPA 8082A	9-30-14	9-30-14	
Aroclor 1260	ND	0.063	EPA 8082A	9-30-14	9-30-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	95	51-138				

PCBs EPA 8082A QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0930S1					
Aroclor 1016	ND	0.050	EPA 8082A	9-30-14	9-30-14	
Aroclor 1221	ND	0.050	EPA 8082A	9-30-14	9-30-14	
Aroclor 1232	ND	0.050	EPA 8082A	9-30-14	9-30-14	
Aroclor 1242	ND	0.050	EPA 8082A	9-30-14	9-30-14	
Aroclor 1248	ND	0.050	EPA 8082A	9-30-14	9-30-14	
Aroclor 1254	ND	0.050	EPA 8082A	9-30-14	9-30-14	
Aroclor 1260	ND	0.050	EPA 8082A	9-30-14	9-30-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	91	51-138				

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	covery	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	09-2	72-08									
	MS	MSD	MS	MSD		MS	MSD				
Aroclor 1260	0.441	0.462	0.500	0.500	ND	88	92	49-136	5	14	
Surrogate:											
DCB						94	112	51-138			

Date of Report: October 1, 2014 Samples Submitted: September 25, 2014 Laboratory Reference: 1409-252 Project: 1071-007

% MOISTURE

Date Analyzed: 9-30-14

Client ID	Lab ID	% Moisture
CB-6-092414	09-252-04	23
CB-8-092414	09-252-05	19
CB-10-092414	09-252-06	27
CB-12-092414	09-252-07	33
CB-13-092414	09-252-08	21

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received Mould.	Relinquished	Signature	Project Number: 1071 - 007 Project Name: 6050 E Marginal Vuay S Sampled by: Sample Vor Bailey Amber Bailey Lab ID Sample Identification 1 CB - 7 - 09 24114 2 CB - 9 - 09 24114 3 CB - 11 - 09 24114 3 CB - 11 - 09 24114	Company:	Analytical Laboratory Testing Services 14648 NE 95th Street - Redmond, WA 98052	Environmental Inc.
Reviewed/Date		(0,000	Spech	Speaker,	Ferenlion	Company	□ Same Day □ 1 Day □ 2 Days □ 3 Days □ Standard (7 Days) (TPH analysis 5 Days) □ ☑ ✓ ✓ ☑ ✓ <td>(Check One)</td> <td>Turnaround Request (in working days)</td> <td>Chain o</td>	(Check One)	Turnaround Request (in working days)	Chain o
1			201 h1/80/6 5	4-25 1030	9-25 1000	9-251000	Date Time	Image: Second system Image: Second system Image: Second system Number of Containers Image: Second system Image: Second system NWTPH-HCID NWTPH-Gx/BTEX Image: Second system Image: Second system NWTPH-Gx Image: Second system Image: Second system NWTPH-Dx Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image:		Laboratory Number:	Chain of Custody
Chromatograms with final report				1 tor analysis		Diease Hold White	Comments/Special Instructions	Image: Second system Image: Second system Image: Second		- 60	Page
				AC		t Call		XXX HOLD 60% Moisture		252	er P

Received Received Received Reviewed/Date	Relinquished	Received	Relinquished	Cinochina	8 (3-13-092414)	7 65-12-092414	6 CB-10 -092414	5 (13-8-092414)	4 03-6-092414	Project Number: 1071-007 Project Name: 6050 E Mar Gival Way S Project Manager: SCOH Allin Sampled by: HMber Balky Lab 10 Sample Identification	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.
Reviewed/Date	mark	104	Favrallin		1 1230 1	1215	1141	1 1122	9/24/14/030 5	□ Same Day □ 1 Day □ 2 Days □ 3 Days □ Standard (7 Days) (TPH analysis 5 Days) (TPH analysis 5 Days) (Other) Date Time Matrix	(in working days) (Check One)	Chain oi
Chromatograms with final report	1030 9-15	975 1000	-25 1000							Number of Containers NWTPH-HCID NWTPH-Gx/BTEX NWTPH-Gx NWTPH-Dx Volatiles 8260C Halogenated Volatiles 8260C Semivolatiles 8270D/SIM (with low-level PAHs) PAHs 8270D/SIM (low-level) PCBs 8082A Organochlorine Pesticides 8081B Organophosphorus Pesticides 8151A	Laboratory Number:	
inal report					×	×	×	×	<u>у</u>	Total RCRA Metals Total MTCA Metals TCLP Metals HEM (oil and grease) 1664A PC135 8092	09-252	Pof

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 9, 2014

Scott Allin Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-007 Laboratory Reference No. 1410-031

Dear Scott:

Enclosed are the analytical results and associated quality control data for samples submitted on October 2, 2014.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: October 9, 2014 Samples Submitted: October 2, 2014 Laboratory Reference: 1410-031 Project: 1071-007

Case Narrative

Samples were collected on October 2, 2014 and received by the laboratory on October 2, 2014. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

PCBs EPA 8082A

Matrix: Sediment Units: mg/Kg (ppm)

Client ID: CB-14-100214 Laboratory ID: 10-031-01 Aroclor 1016 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1221 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1232 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1242 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1248 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1240 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1240 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1221 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1242	ee				Date	Date	
Laboratory ID: 10-031-01 Aroclor 1016 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1221 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1232 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1242 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1248 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1260 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1260 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1260 ND 0.34 EPA 8082A 10-4-14 10-6-14 Aroclor 1260 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1221 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1248 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1248 ND 0.068 EPA 8082A	Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Aroclor 1016 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1221 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1232 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1242 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1248 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1254 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1254 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1260 ND 0.34 EPA 8082A 10-7-14 10-7-14 Surrogate: Percent Recovery Control Limits E 10-6-14 10-6-14 Aroclor 1221 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1242 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1242 ND 0.068 EPA 8082A 10-4-14 10-6-14	Client ID:	CB-14-100214					
Aroclor 1221 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1232 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1242 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1248 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1254 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1260 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1260 ND 0.34 EPA 8082A 10-7-14 10-7-14 Surrogate: Percent Recovery Control Limits DCB 122 51-138 Client ID: CB-15-100214 ID-6-14 10-6-14 Aroclor 1221 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1242 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1242 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1244 ND 0.068 EPA 8082A 10-4-14 10-6-14 <	Laboratory ID:	10-031-01					
Aroclor 1232 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1242 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1248 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1254 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1260 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1260 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1260 ND 0.34 EPA 8082A 10-7-14 10-7-14 Surrogate: Percent Recovery Control Limits 51-138 10-7-14 10-7-14 Client ID: CB-15-100214 Laboratory ID: 10-031-02 10-4-14 10-6-14 Aroclor 1212 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1222 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1248 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1260 1.8 0.068 EPA 8082A 10-4-14 <td>Aroclor 1016</td> <td>ND</td> <td>0.34</td> <td>EPA 8082A</td> <td>10-7-14</td> <td>10-7-14</td> <td></td>	Aroclor 1016	ND	0.34	EPA 8082A	10-7-14	10-7-14	
Aroclor 1242 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1248 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1250 ND 0.34 EPA 8082A 10-7-14 10-7-14 Surrogate: Percent Recovery Control Limits 10-7-14 10-7-14 Aroclor 1260 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1221 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1242 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1260 1.8 0.068 EPA 8082A 10-4-14 10-6-14 Surrogate: <td< td=""><td>Aroclor 1221</td><td>ND</td><td>0.34</td><td>EPA 8082A</td><td>10-7-14</td><td>10-7-14</td><td></td></td<>	Aroclor 1221	ND	0.34	EPA 8082A	10-7-14	10-7-14	
Aroclor 1248 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1254 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1260 ND 0.34 EPA 8082A 10-7-14 10-7-14 Surrogate: Percent Recovery Control Limits DCB 122 51-138 Client ID: CB-15-100214 Laboratory ID: 10-031-02	Aroclor 1232	ND	0.34	EPA 8082A	10-7-14	10-7-14	
Aroclor 1254 ND 0.34 EPA 8082A 10-7-14 10-7-14 Aroclor 1260 ND 0.34 EPA 8082A 10-7-14 10-7-14 Surrogate: Percent Recovery Control Limits 5 122 51-138 Client ID: CB-15-100214 Laboratory ID: 10-031-02 10-04-14 10-6-14 Aroclor 1016 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1221 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1232 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1242 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1243 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1254 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1260 1.8 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1260 1.8 0.068 EPA 8082A 10-4-14 10-6-14 BCB 53 51-138 51-138 53 51-138	Aroclor 1242	ND	0.34	EPA 8082A	10-7-14	10-7-14	
Aroclor 1260 ND 0.34 EPA 8082A 10-7-14 10-7-14 Surrogate: Percent Recovery Control Limits 51-138 51-138 Client ID: CB-15-100214 Laboratory ID: 10-031-02 Aroclor 1016 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1221 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1232 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1242 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1242 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1254 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1260 1.8 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1254 ND 0.068 EPA 8082A 10-4-14 10-6-14 Surrogate: Percent Recovery Control Limits Control Limits Control Limits DCB 53	Aroclor 1248	ND	0.34	EPA 8082A	10-7-14	10-7-14	
Surrogate: Percent Recovery Control Limits DCB 122 51-138 Client ID: CB-15-100214 Laboratory ID: 10-031-02 Aroclor 1016 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1221 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1221 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1232 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1248 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1254 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1260 1.8 0.068 EPA 8082A 10-4-14 10-6-14 Surrogate: Percent Recovery Control Limits 0-4-14 10-6-14 Surrogate: Dercont Recovery Control Limits 0-4-14 10-6-14 Aroclor 12121 ND 0.11 EPA 8082A 10-4-14 10-6-14	Aroclor 1254	ND	0.34	EPA 8082A	10-7-14	10-7-14	
DCB 122 51-138 Client ID: CB-15-100214 Laboratory ID: 10-031-02 Aroctor 1016 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroctor 1221 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroctor 1232 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroctor 1242 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroctor 1242 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroctor 1242 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroctor 1254 ND 0.068 EPA 8082A 10-4-14 10-6-14 Surrogate: Percent Recovery Control Limits DCB 53 51-138 Client ID: CB-16-100214 Laboratory ID: 10-031-03 In-4-14 10-6-14 Aroctor 1221 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroctor 1221 ND 0.11	Aroclor 1260	ND	0.34	EPA 8082A	10-7-14	10-7-14	
Client ID: CB-15-100214 Laboratory ID: 10-031-02 Aroclor 1016 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1221 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1232 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1242 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1242 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1242 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1254 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1260 1.8 0.068 EPA 8082A 10-4-14 10-6-14 Surrogate: Percent Recovery Control Limits DCB 53 51-138 Client ID: CB-16-100214 Laboratory ID: 10-031-03 10-4-14 10-6-14 Aroclor 1221 ND 0.11 EPA 8082A 10-4-14 10-6-14	Surrogate:	Percent Recovery	Control Limits				
Laboratory ID: 10-031-02 Aroclor 1016 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1221 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1232 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1242 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1248 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1254 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1260 1.8 0.068 EPA 8082A 10-4-14 10-6-14 Surrogate: Percent Recovery Control Limits DCB 53 51-138 Client ID: CB-16-100214 Laboratory ID: 10-031-03 10-6-14 Aroclor 1221 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1232 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1232 ND	DCB	122	51-138				
Aroclor 1016 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1221 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1232 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1232 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1242 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1248 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1254 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1260 1.8 0.068 EPA 8082A 10-4-14 10-6-14 Surrogate: Percent Recovery Control Limits DCB 53 51-138 Client ID: CB-16-100214 Laboratory ID: 10-031-03 10-4-14 10-6-14 Aroclor 1221 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1232 ND 0.11 EPA 8082A 10-4-14 10-6-14	Client ID:	CB-15-100214					
Aroclor 1221 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1232 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1242 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1242 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1248 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1254 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1260 1.8 0.068 EPA 8082A 10-4-14 10-6-14 Surrogate: Percent Recovery Control Limits DCB 53 51-138 Client ID: CB-16-100214 Laboratory ID: 10-031-03	Laboratory ID:	10-031-02					
Aroclor 1232 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1242 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1248 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1254 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1260 1.8 0.068 EPA 8082A 10-4-14 10-6-14 Surrogate: Percent Recovery Control Limits DCB 53 51-138 Client ID: CB-16-100214 10-031-03 10-6-14 Aroclor 1221 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1221 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1232 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1248 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1248 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1248 ND 0.11 EPA 8082A 10-4-14	Aroclor 1016	ND	0.068	EPA 8082A	10-4-14	10-6-14	
Aroclor 1242 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1248 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1254 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1260 1.8 0.068 EPA 8082A 10-4-14 10-6-14 Surrogate: Percent Recovery Control Limits 53 51-138 51-138 Client ID: CB-16-100214 Laboratory ID: 10-031-03 In-4-14 10-6-14 Aroclor 1221 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1232 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1242 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1242 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1248 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1254 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1260 ND 0.11 EPA 8082A 10-4-14	Aroclor 1221	ND	0.068	EPA 8082A	10-4-14	10-6-14	
Aroclor 1248 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1254 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1260 1.8 0.068 EPA 8082A 10-4-14 10-6-14 Surrogate: Percent Recovery Control Limits DCB 53 51-138 Client ID: CB-16-100214 Laboratory ID: 10-031-03 V V V Aroclor 1210 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1016 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1221 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1232 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1242 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1248 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1254 ND 0.11 EPA 8082A 10-4-14 10-6-14	Aroclor 1232	ND	0.068	EPA 8082A	10-4-14	10-6-14	
Aroclor 1254 ND 0.068 EPA 8082A 10-4-14 10-6-14 Aroclor 1260 1.8 0.068 EPA 8082A 10-4-14 10-6-14 Surrogate: Percent Recovery Control Limits DCB 53 51-138 Client ID: CB-16-100214 Laboratory ID: 10-031-03 - <	Aroclor 1242	ND	0.068	EPA 8082A	10-4-14	10-6-14	
Aroclor 1260 1.8 0.068 EPA 8082A 10-4-14 10-6-14 Surrogate: Percent Recovery Control Limits 53 51-138 51-138 Client ID: CB-16-100214 CB-16-100214 CB-16-100214 10-6-14 10-6-14 Laboratory ID: 10-031-03 V V V V V V Aroclor 1016 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1221 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1232 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1242 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1248 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1254 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1260 ND 0.11 EPA 8082A 10-4-14 10-6-14 Surrogate: Percent Recovery Control Limits 10-6-14 <t< td=""><td>Aroclor 1248</td><td>ND</td><td>0.068</td><td>EPA 8082A</td><td>10-4-14</td><td>10-6-14</td><td></td></t<>	Aroclor 1248	ND	0.068	EPA 8082A	10-4-14	10-6-14	
Surrogate: Percent Recovery Control Limits DCB 53 51-138 Client ID: CB-16-100214 Laboratory ID: 10-031-03 Aroclor 1016 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1221 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1232 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1242 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1242 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1248 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1254 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1260 ND 0.11 EPA 8082A 10-4-14 10-6-14 Surrogate: Percent Recovery Control Limits 10-4-14 10-6-14	Aroclor 1254	ND	0.068	EPA 8082A	10-4-14	10-6-14	
DCB 53 51-138 Client ID: CB-16-100214 Laboratory ID: 10-031-03 Aroclor 1016 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1221 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1232 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1242 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1242 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1248 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1254 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1260 ND 0.11 EPA 8082A 10-4-14 10-6-14 Surrogate: Percent Recovery Control Limits Percent Recovery Control Limits	Aroclor 1260	1.8	0.068	EPA 8082A	10-4-14	10-6-14	
DCB 53 51-138 Client ID: CB-16-100214 Laboratory ID: 10-031-03 Aroclor 1016 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1221 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1232 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1242 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1242 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1248 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1254 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1260 ND 0.11 EPA 8082A 10-4-14 10-6-14 Surrogate: Percent Recovery Control Limits Control Limits	Surrogate:	Percent Recovery	Control Limits				
Laboratory ID: 10-031-03 Aroclor 1016 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1221 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1232 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1242 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1248 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1254 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1260 ND 0.11 EPA 8082A 10-4-14 10-6-14 Surrogate: Percent Recovery Control Limits EPA 8082A 10-4-14 10-6-14	DCB	53	51-138				
ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1221 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1232 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1232 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1242 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1248 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1254 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1260 ND 0.11 EPA 8082A 10-4-14 10-6-14 Surrogate: Percent Recovery Control Limits EPA 8082A 10-4-14 10-6-14	Client ID:	CB-16-100214					
ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1221 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1232 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1232 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1242 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1248 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1254 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1260 ND 0.11 EPA 8082A 10-4-14 10-6-14 Surrogate: Percent Recovery Control Limits EPA 8082A 10-4-14 10-6-14	Laboratory ID:	10-031-03					
ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1232 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1242 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1242 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1248 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1254 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1260 ND 0.11 EPA 8082A 10-4-14 10-6-14 Surrogate: Percent Recovery Control Limits EVA 8082A 10-4-14 10-6-14	Aroclor 1016		0.11	EPA 8082A	10-4-14	10-6-14	
ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1242 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1248 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1254 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1250 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1260 ND 0.11 EPA 8082A 10-4-14 10-6-14 Surrogate: Percent Recovery Control Limits EVA 8082A 10-4-14 10-6-14	Aroclor 1221	ND	0.11	EPA 8082A	10-4-14	10-6-14	
ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1248 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1254 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1260 ND 0.11 EPA 8082A 10-4-14 10-6-14 Surrogate: Percent Recovery Control Limits Control Limits Control Limits Control Limits	Aroclor 1232	ND		EPA 8082A			
ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1254 ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1260 ND 0.11 EPA 8082A 10-4-14 10-6-14 Surrogate: Percent Recovery Control Limits Control Limits Control Limits	Aroclor 1242	ND					
ND 0.11 EPA 8082A 10-4-14 10-6-14 Aroclor 1260 ND 0.11 EPA 8082A 10-4-14 10-6-14 Surrogate: Percent Recovery Control Limits Control Limits Control Limits	Aroclor 1248	ND					
Aroclor 1260ND0.11EPA 8082A10-4-1410-6-14Surrogate:Percent RecoveryControl Limits	Aroclor 1254	ND					
Surrogate: Percent Recovery Control Limits	Aroclor 1260	ND	0.11				
DCB 76 51-138	Surrogate:	Percent Recovery	Control Limits				
	DCB	76	51-138				

PCBs EPA 8082A

Matrix: Sediment Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CB-20-100214					
Laboratory ID:	10-031-04					
Aroclor 1016	ND	0.066	EPA 8082A	10-4-14	10-6-14	
Aroclor 1221	ND	0.066	EPA 8082A	10-4-14	10-6-14	
Aroclor 1232	ND	0.066	EPA 8082A	10-4-14	10-6-14	
Aroclor 1242	ND	0.066	EPA 8082A	10-4-14	10-6-14	
Aroclor 1248	ND	0.066	EPA 8082A	10-4-14	10-6-14	
Aroclor 1254	ND	0.066	EPA 8082A	10-4-14	10-6-14	
Aroclor 1260	ND	0.066	EPA 8082A	10-4-14	10-6-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	69	51-138				

PCBs EPA 8082A QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK	Result		Method	Trepared	Analyzeu	i lago
Laboratory ID:	MB1004S1					
Aroclor 1016	ND	0.050	EPA 8082A	10-4-14	10-6-14	
Aroclor 1221	ND	0.050	EPA 8082A	10-4-14	10-6-14	
Aroclor 1232	ND	0.050	EPA 8082A	10-4-14	10-6-14	
Aroclor 1242	ND	0.050	EPA 8082A	10-4-14	10-6-14	
Aroclor 1248	ND	0.050	EPA 8082A	10-4-14	10-6-14	
Aroclor 1254	ND	0.050	EPA 8082A	10-4-14	10-6-14	
Aroclor 1260	ND	0.050	EPA 8082A	10-4-14	10-6-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	102	51-138				
Laboratory ID:	MB1007S1					
Aroclor 1016	ND	0.050	EPA 8082A	10-7-14	10-7-14	
Aroclor 1221	ND	0.050	EPA 8082A	10-7-14	10-7-14	
Aroclor 1232	ND	0.050	EPA 8082A	10-7-14	10-7-14	
Aroclor 1242	ND	0.050	EPA 8082A	10-7-14	10-7-14	
Aroclor 1248	ND	0.050	EPA 8082A	10-7-14	10-7-14	
Aroclor 1254	ND	0.050	EPA 8082A	10-7-14	10-7-14	
Aroclor 1260	ND	0.050	EPA 8082A	10-7-14	10-7-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	99	51-138				

					Source	Per	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	09-3	15-02									
	MS	MSD	MS	MSD		MS	MSD				
Aroclor 1260	0.392	0.387	0.500	0.500	ND	78	77	49-136	1	14	
Surrogate:											
DCB						78	81	51-138			
Laboratory ID:	09-2	78-04									
	MS	MSD	MS	MSD		MS	MSD				
Aroclor 1260	0.492	0.526	0.500	0.500	ND	98	105	49-136	7	14	
Surrogate:											
DCB						100	99	51-138			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Date of Report: October 9, 2014 Samples Submitted: October 2, 2014 Laboratory Reference: 1410-031 Project: 1071-007

% MOISTURE

Date Analyzed: 10-3-14

Client ID	Lab ID	% Moisture
CB-14-100214	10-031-01	41
CB-15-100214	10-031-02	27
CB-16-100214	10-031-03	52
CB-20-100214	10-031-04	24

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received TH CLASS	Relinquished	Signature			1	4 CB-20 -100214	A12001 - 91-93 6	2 (B-15-100214	1 (8-14-100214	Lab ID Sample Identification	Sampled by HUNA SIGEL	SCOT ALLIN	Project Mancor	Total	Project Number:		Analytical Laboratory Testing Services 14648 NE 95th Street - Bedmond WA 98052	Invironmental Inc.
Reviewed/Date					210 012	FARALLON	Company				1 13:05	02:21	01121 1	19/2/14 11:55 SEDIMATI	Date Time Sampled Sampled Matrix	(other)		(TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	Chain o
					10.2.14 2:25	52:14 Alfe/al (Date Time		K	2				5-	NWTP NWTP NWTP NWTP Volatile Haloge	H-HCIE H-Gx/E H-Gx H-Dx es 8260	ITEX	s 8260C				Laboratory Number:	Chain of Custody
Chromatograms with final report					9		Comments/Special Instructions								(with lo PAHs I PCBs Organo Organo Chlorir Total F	ow-leve 3270D/ 3082A ochlorin ophosph ated A RCRA M	ie Pesti iorus Pe cid Her letals		081B 8270D/			-01	
л —														~	TCLP HEM (oil and	grease)	1664A	2			03110-027	Page of
											×	X	X	×	% Moi	sture						00	

APPENDIX C SOIL DISPOSAL DOCUMENTATION

REMEDIAL INVESTIGATION, FOCUSED FEASIBILITY STUDY, AND CLEANUP ACTION PLAN 6050 East Marginal Way Seattle, Washington

Farallon PN: 1071-010

י זי ק	PS TECHNO	OLOGIES INC	301 0300 N	•	• •			
Tacoma,WA Soil Recycling Facility		Certification Sheet						
GENERATOR: <u>Consolidated Fr</u> Mailing Address: <u>175 Linfield Dr</u> Menlo Park, CA	eightways	CONSULTANT: <u>Golder Associates</u> , Inc. Address: <u>4104-148th Ave. N.E.</u> Redmond, WA 98052						
Contact: Ms. Lynne Carlson		Contact: Rob Long						
Phone: (650326-)1700 Fax: (650)_617-6716		Phone: (425) 883-0777 Fax: (425) 882-5498 eTRANSPORTER: TPS_Technologies						
STENAME: Consolidated Fr Street Address:		Address:						
Contact:		Contact: Phone: ()	·					
Fax: ()	Dia	History	Retimated	mantity in tons:	1,350			
Type of contamination (gas, diesel, used How did soil contamination occur? Ris Source of Contamination: IN UST Source of Contamination: IN UST Name of Testing Lab: Sound And How and where at site were samples take <u>Piles</u> Plus <u>Jamelas</u> Collected discrete grab samples should be collected iess, seven samples for 1500 tons or less I certify that the soil referenced herein is contaminated solely by virgin petroleum products from leaking under-	AST \Box SPILL \Box EM a(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(IERGENCY RESPONSE Contact: TOM WO Amples Collected De Alaria Okcavast cical reports, including test st unacy Three samples for the	$\Box \text{ OTHER}$ $\frac{1}{15} OTHER$ $\frac{1}{15$	Phone: 1-253 Phone: 1-253 Ph	-922-2310 +0.19 of +1. (TREK) erwise noted, r 750 tons or al tons. il or some other			
ground storage tank(s). Attach analysis for the following: 1. Tatal petroleum hydrocarbons (WTPH-G, WTPH-D, 418-1) 2. Benzene/ toluene/ ethylbenzene/ xylene (Method 8020 BTEX for gasoline soils only) 3. Total tead (Method 6010, 7420, or 7421 for gasoline soils only) Total tead (Method 6010, 7420, or 7421 for gasoline soils only) Total tead (Method 6010, 7420, or 7421 for gasoline soils only) Total tead (Method 6010, 7420, or 7421 for gasoline soils only) Total tead (Method 6010, 7420, or 7421 for gasoline soils only)	 2. Benzene/ toluanc/ eth 3. Halogenated Volatile (4. Pesticides and PCB's (5. Total metals concentration in the second seco	carbons (WIPH-G, WIPH-D hylbenzene/ xylene (Method Organics (Method 8010, 8021 (Method 8080) ation for (a) through (h): * d total metal concentrations	1 8020 BIEX for I, or 8240) (a) arsenic (b) barium (c) cadmium are detected, addi	(d) chitomiuu (e) lead (f) mercury itional analyses f	(g) selenium (h) silver for TCLP benzens			
No soils referenced herein may be assigns a delivery date. If any soils of waste" pursuant to state regulations, acting as Client's agent, may arrange This is a complete and accurate of known or suspected hazards have be defined by U.S. Environmental Pro- concerning other TCLP constituents required analysis reports are attached	e delivered until this certi felivered to TPST are fou Client shall be solely res for such removal at Clie lescription of the soil refe cen disclosed herein. I fu tection Agency (EPA), S have been withheld. I fu	ficate is received and appro- ind to be "hazardous waste" sponsible for their removal. ent's expense. erenced herein; no deliberate orther hereby certify that the tate of Washington, or local	or willful omis soil is not "haz	sions have been ardous" or "dan d that no other l	h soils, TPST. n made and all gerons ⁴ as knowledge e liquids. All			

Generator/Owner Authorized Signapare Date: am. Titlo: Print Name:

:

Soil Master (c)

¥

Customer Job Report Gross & Tare Weight Codes: M=Manual; S=Scale; T=Trk File

TPS Technologies, Inc.

P 1

lob Numb	er Name		SiteAddress		SiteCity	State	ZipCode	
.03 020	91 CONSOLIDAT	ED FREIGHT	6050 EAST MARGINAL WA	Y SOUTH	SEATTLE	WA	00000	
Load #	Date & Time Out	Transporter #	Truck & Trailer Number	Gross	Tare	Net	Nci Wt	
1	11/16/00 00-60	1000000		(lb)	(lb)	(lb)	(lons)	
1	11/16/9808:58	1003608	MERLIN	114,920M		74,480	37.24	
2	11/16/9808:59	1003608	SCOTT	113,920M		75,760	37.8	
3	11/16/9808:59	1003608	SHANE	108,340M		69,780	34.8	
4	11/16/9809:00	1003608	JOHN	103,740M	46,700M	57,040	28.5	
5	11/16/9809:00	1003608	MERLIN	110,120 M	40,440M	69,680	34.8	
6	11/16/9809.01	1003608	SCOTT	109,480M	38,160M	71,320	35.6	
7	11/16/9809:01	1003608	SHANE	110,040M	38,560M	71,480	35.7	
8	11/16/9809:01	1003608	JOHN	109,420M		62,720	31.3	
9	11/16/9809:02	1003608	MERLIN	106,160 M		65,720	32.8	
. 10	11/16/9809:02	1003608	SCOTT	110,480M		72,320	36.1	
11	11/16/9809:03	1003608	SHANE	110,180M		71,620	35.8	
12	11/16/9809:03	1003608	JOHN	110,260M	,	63,560	31.7	
13	11/16/9809:03	1003608	MERLIN	114,320M		73,880	36.9	
14	11/16/9809:03	1003608	SCOTT	111,360M		73,200	36.6	
15	11/16/9809:04	1003608	ALLEN	90,740M		53,060	26.5	
16	11/16/9809:04	1003608	SCOTT	100,360M	• • • •	58,460	20.3	
17	11/16/9809:04	1003608	JAY	104,580M		61,340	30.6	
18	11/16/9809:05	1003608	JR	102,060M		64,780	32.3	
19	11/16/9809:05	1003608	DUSTIN	107,320M		65,860	32.3	
20	11/16/9809:06	1003608	SHANE	102,920M		64,360		
21	11/16/9809:07	1003608	JOHN	93,040M	,	46,340	32.1	
22	11/16/9809:07	1003608	LAMARR	102,080M			23.1	
23	11/16/9809:09	1003608	PEGGY	82,900M	,	64,080	32,04	
24	11/16/9809:10	1003608	DAN	104,420M		49,220	24.6	
25	11/16/9809:12	1003608	AL	104,420M 115,500M		63,020 72,940	31,5) 36,43	
Complete	d Loads Ma	nifests Received	Completed Weight	10 - 41				

33.30%	Manifests Received	Completed Weight 60.60%	Estimated Weight 1,350.00(tons)	TOTAL Net Wt: 818.01 (tons)
	. <u></u>	· ····	Carlo	
Post-It* Fax Note		pague 3/	Corrected	
To GARY Limm	ERALAN FRONTENEE	thelino	/1	
Co. Depilor			Lepy	
Phone #	Phone # 253/5	84-8430		
Fax # 1251882	-51/58 Fax #			
- je gange	State and the second se			

[SM-RPT9]

1

11/17/98

Marine Vacuum Service, Inc.

 γ_{f}

A WASHINGTON ENVIRONMENTAL COMPANY MARINE AND INDUSTRIAL CLEANING TANK REMOVAL P.O. Box 24263 Seattle, Washington 98124 Telephone (206) 762 0240 FAX (206) 763-8084 1-800-540-7491

CERTIFICATE OF DISPOSAL

DATE: November 16, 1998

GENERAL CONTRACTOR:

DISPOSAL FACILITY:

Consolidated Freightways 175 Lindfield Drive Menlo Park, CA 94025

Marine Vacuum Service, Inc. 1516 South Graham St. Seattle, Wa. 98108

IDENTIFICATION:

JOB NO:	98-11-055
LOCATION;	Consolidated Freightways 6050 E. Marginal Way Scattle, Wa.
DESCRIPTION:	450 Gallons Waste Water

Marine Vacuum Service, Inc. certifies that the above described products have been disposed of in accordance with all applicable Local, State and Federal regulations.

Molly Campberg

Representative Marine Vacuum Service

DBE # D4M1302341

EPA # WAD980974521

A MINORITY BUSINESS ENTERPRISE ID # D4M1302341