SCS ENGINEERS

2016 Annual Report

Closed Leichner Landfill Vancouver, Washington Consent Decree 96-2-03081-7 Facility ID No. 1017

Prepared for:

Clark County Public Health 1601 E. Fourth Plains Blvd., Bldg. 17 P.O. Box 9825 Vancouver, WA 98666-8825 (360) 397-2323

Prepared by:

SCS ENGINEERS

15940 SW 72nd Avenue Portland, OR 97224 (503) 639-9201

February 27, 2017 File No. 04217030.14

Offices Nationwide www.scsengineers.com

SCS ENGINEERS

2016 Annual Report

Closed Leichner Landfill Vancouver, Washington Consent Decree 96-2-03081-7 Facility ID No. 1017

Prepared for:

Clark County Public Health 1601 E. Fourth Plains Blvd., Bldg. 17 P.O. Box 9825 Vancouver, WA 98666-8825 (360) 397-2323

Prepared by:

15940 SW 72nd Avenue Portland, OR 97224 (503) 639-9201

February 27, 2017 File No. 04217030.14

562 Jes Sed Geologie

David Lamadrid

David Lamadrid, L.G., 562 Senior Project Geologist SCS ENGINEERS Louis Caruso, L.G., L.H.G., 1329 Project Director

SCS ENGINEERS

Table of Contents

Secti	on		Page
List o	f Tables, Fig	gures and Appendices	iii
1.0	INTRODUC	TION	1
	1.1	Site Description	1
	1.2	Site Hydrogeology	1
2.0	GROUNDV	VATER MONITORING	2
	2.1	Groundwater Monitoring Network and Schedule	2
	2.2	Groundwater Elevations and Flow Direction	2
	2.3	Data Quality Review	3
	2.4	Groundwater Quality Results	3
	2.4.1	Volatile Organic Compounds	
	2.4.2	Inorganic Parameters and Dissolved Metals	
3.0	STORMWA	ATER MONITORING	
	3.1	Stormwater Monitoring Network and Schedule	
	3.1.1 3.1.2	Quarterly Stormwater Monitoring Station Monthly Visual Inspection	
	3.1.2	Stormwater Monitoring Results	
	3.3	Stormwater Control and Collection System Modifications	
4.0		SAS MONITORING	
4.0	4.1		
	4.1	Compliance LFG Monitoring Probe Network and Schedule	
		Compliance LFG Monitoring Results	
	4.3	LFG Extraction Wells	
	4.4	LFG Flare Monitoring	
	4.5	Greenhouse Gas Monitoring	
_	4.6	Evaluation of GCCS Performance and Conceptual Redesign of GCCS	
5.0	-	al Systems MAINTENANCE AND REPAIR	
	5.1	Routine Activities	
	5.2	Non-Routine Activities	
	5.2.1 5.2.2	First Quarter 2016	
	5.2.3	Third Quarter 2016	
	5.2.4	Fourth Quarter 2016	
6.0	References		15

List of Tables

Table 2-1 Statistical Summary of Groundwater Quality Data from 2012 to 2016

List of Figures

igure I-I	Site Location Map
igure 2-1	Groundwater Monitoring Locations
igure 2-2	Groundwater Potentiometric Surface Contours, Alluvial WBZ, February 15, 2016
igure 2-3	Groundwater Potentiometric Surface Contours, Troutdale Formation Aquifer,
	February 1 <i>5</i> , 2016
igure 2-4	Groundwater Potentiometric Surface Contours, Alluvial WBZ, August 22, 2016
igure 2-5	Groundwater Potentiometric Surface Contours, Troutdale Formation Aquifer,
	August 22, 2016
igure 3-1	Site Map and Stormwater System
igure 4-1	Landfill Gas Probe and Extraction Well Locations

Appendices

Appendix A	2016 Field Sampling Data Sheets
Appendix B	Summary Tables of Historical Groundwater Field Parameter Measurements and Analytical Data
Appendix C	2016 Laboratory Analytical Data Reports (provided on the attached CD only)
Appendix D	2016 Groundwater Elevation Data and Groundwater Elevation Hydrographs
Appendix E	Quality Assurance/Quality Control Reviews of 2016 Laboratory Analytical Data
Appendix F:	Groundwater Time-Concentration Graphs
Appendix G:	Summary of 2016 Groundwater Statistical Calculations
Appendix H:	2016 Landfill Gas Probe Monitoring Data

iii

A complete copy of this report is provided on the attached CD

1.0 INTRODUCTION

This report presents and evaluates the results of groundwater, stormwater, and landfill gas (LFG) compliance monitoring performed during 2016 at the closed Leichner Landfill located in Vancouver, Washington (Figure 1-1). The report also summarizes landfill maintenance, repair, and construction activities performed during 2016. SCS Engineers (SCS) performed the monitoring, maintenance, and repair activities and prepared this report on behalf of Clark County Public Health (County) and the Leichner Landfill Oversight Committee (LLOC), whose members include the County and City of Vancouver.

Compliance monitoring of groundwater, stormwater (i.e., surface water), and LFG is performed at Leichner Landfill to fulfill certain requirements of the 1996 Consent Decree and associated Cleanup Action Plan (CAP), as well as to concurrently fulfill the requirements of Leichner Landfill's post-closure monitoring under Minimum Functional Standards (MFS), Chapter 173-304 of the Washington Administrative Code (WAC).

Compliance monitoring is performed in accordance with the methods and procedures described in the site's Compliance Monitoring Plan (CMP) submitted to the Washington Department of Ecology (Ecology) and Clark County Public Health (CCPH) in July 2013 (SCS, 2013). The July 2013 CMP includes modifications to Leichner Landfill's monitoring programs approved by Ecology, as described in the 2013 annual report (SCS, 2014).

1.1 SITE DESCRIPTION

The Leichner Landfill is a closed, 70-acre municipal solid waste landfill located in Clark County, Washington, about 5 miles northeast of downtown Vancouver (see Figure 1-1). The landfill operated from the late 1930s until 1991. Landfill closure occurred in phases during the summer seasons of 1989, 1990, 1991, and 1992, and included an engineered composite cap, a landfill gas collection and control system (GCCS), and a stormwater collection and control system.

1.2 SITE HYDROGEOLOGY

The geology beneath the landfill site includes about 70 to 100 feet of alluvium, underlain by the upper member of the Troutdale Formation. The site hydrogeology consists of an approximately 10- to 40-foot thick unsaturated (vadose) zone, and an unconfined alluvial water-bearing zone (WBZ) which ranges in thickness from 35 to 45 feet. The alluvium generally consists of sand, and gravelly to silty sand. Underlying the alluvial WBZ is the upper member of the Troutdale Formation aquifer. The Troutdale Formation aquifer generally consists of sandy to cobbly gravel with minor amounts of silt and clay. The alluvial WBZ and Troutdale Formation aquifer are separated by a silt aquitard (sandy silt and clayey silt) east and south of the landfill. Southwest of the landfill, the silt aquitard is absent and the two aquifers are locally in hydraulic communication.

2.0 GROUNDWATER MONITORING

2.1 GROUNDWATER MONITORING NETWORK AND SCHEDULE

The groundwater monitoring network at the Leichner Landfill is comprised of monitoring wells screened in different depth-discrete zones in the alluvial WBZ and in the Troutdale Formation aquifer. The monitoring well locations are shown in Figure 2-1. The following describes the nomenclature used for monitoring well network components:

- Wells that monitor groundwater elevation and quality in the upper portion of the alluvial WBZ are denoted with an "S" in the well number (e.g., well LB-1S).
- Wells that monitor groundwater elevation and quality in the middle (or intermediate) portion of the alluvial WBZ are denoted with an "I" in the well number (e.g., LB-27I).
- Wells that monitor groundwater elevations and quality in the deeper Troutdale Formation aquifer are denoted with a "D" in the well number (e.g., well LB-1D).

The site groundwater monitoring wells were sampled annually or semiannually in 2016. Groundwater samples were collected from the following 18 wells during the annual monitoring event conducted in February 2016: LB-1S, LB-1D, LB-3S, LB-3D, LB-5S, LB-5D, LB-6S, LB-10SR, LB-10DR, LB-13I, LB-13D, LB-17I, LB-17D, LB-20S, LB-26I, LB-26D, LB-27I, and LB-27D. Groundwater samples were collected from the following seven wells during the semiannual monitoring event conducted in August 2016: LB-1S, LB-5S, LB-6S, LB-10SR, LB-13I, LB-26I, and LB-27I.

Field water-quality parameters (temperature, pH, specific conductance, dissolved oxygen) were monitored during sampling and recorded on field sampling data sheets (FSDSs) provided in Appendix A. Historical field parameter monitoring results are provided in Appendix B (see Table B-1).

Groundwater samples collected from the site monitoring wells were analyzed by TestAmerica Laboratories, Inc., (TAL) in Tacoma, Washington, for nitrate as nitrogen (nitrate), total dissolved solids (TDS), chloride (Cl), dissolved iron (Fe), dissolved manganese (Mn), and volatile organic compounds (VOCs), consistent with methods specified in the CMP (SCS, 2013). Laboratory analytical data reports are provided in Appendix C (included on the attached compact disk [CD]).

2.2 GROUNDWATER ELEVATIONS AND FLOW DIRECTION

Static depth-to-groundwater levels were measured on February 17 and August 10, 2016, and converted to groundwater elevations for interpreting groundwater potentiometric surface contours and groundwater flow in the alluvial WBZ and the Troutdale Formation water-bearing zones (see Figures 2-2 through 2-5). Groundwater elevation data are summarized in Appendix D, along with historical elevations. Groundwater flow in the alluvial WBZ was generally towards the west to southwest (see Figures 2-2 and 2-4). Groundwater flow in the Troutdale Formation aquifer was generally towards the

south to southeast (see Figures 2-3 and 2-5). The 2016 groundwater flow directions are consistent with historical interpretations of groundwater flow at Leichner Landfill.

Groundwater elevation hydrographs are provided in Appendix D. The 2016 groundwater elevation data are generally within the range of elevations measured historically and continued to show minor seasonal variations in some site wells. Differences in groundwater elevations in adjacent well pairs screened in the alluvial WBZ and Troutdale Formation aquifer (see groundwater elevation data in Appendix D) appear to be influenced by the presence of the silt aquitard (sandy silt and clayey silt). Where the silt aquitard is present east and south of the landfill (e.g., at existing well pair LB-5S/LB-5D south of the landfill, and former well pair LB-4S/LB-4D east of the landfill), groundwater elevations are about 20 to 30 feet higher in the alluvial WBZ indicating hydraulic separation exists between the two groundwater zones. Monitoring well pairs located southwest of the landfill (i.e., at wells LB-1S/LB-1D, LB-13I/LB-13D, and LB-26I/LB-26D), where the silt aquitard is thin or absent, exhibited much smaller differences in groundwater elevations indicating that the two groundwater zones exhibit some degree of hydraulic connection.

2.3 DATA QUALITY REVIEW

Groundwater monitoring field quality control/quality assurance (QA/QC) procedures included collecting field duplicate samples, field blanks, equipment blanks, and carrying trip blanks into the field. Laboratory QA/QC procedures included analyzing surrogate spikes, method blanks, matrix spikes, and matrix spike duplicates. The laboratory QA/QC results are included with the laboratory reports. TAL incorporated its laboratory data quality review comments in the QA/QC narrative of each laboratory report (see Appendix C).

SCS reviewed field and laboratory data and QA/QC procedures to evaluate whether the data met U.S. Environmental Protection Agency (EPA) quality control requirements (see Appendix E). The QA/QC reviews indicated that the groundwater analytical data were acceptable for their intended use.

2.4 GROUNDWATER QUALITY RESULTS

Laboratory analytical results of groundwater samples collected from site monitoring wells in 2016 continue to indicate that there are little or no adverse effects on groundwater quality from the closed Leichner Landfill. Groundwater monitoring results supporting this conclusion are discussed in this section of the report and include the following:

- Laboratory results did not detect VOCs at concentrations above method reporting limits (or above compliance levels).
- The concentrations of most inorganic indicator parameters in groundwater samples collected from monitoring wells located downgradient of the former waste cells are below regulatory compliance levels, with only a few exceptions, and have either remained generally stable or showed decreasing trends.

2.4.1 Volatile Organic Compounds

No VOCs were detected above the laboratory method reporting limits (MRLs) in the groundwater samples collected in the first and third quarter 2016, including VOCs for which compliance levels were established in the 1996 Consent Decree and that are currently tested for (i.e., 1,4-dichlorobenzene, tetrachloroethene, and trichloroethene) (see Appendix B, Table B-2).

The 2016 VOC analytical results continued to demonstrate that the post-closure measures implemented at the closed Leichner Landfill (i.e., maintenance of the engineered landfill cap, operation of the GCCS, and stormwater controls) are effective at decreasing VOC concentrations to levels below the MRLs.

2.4.2 Inorganic Parameters and Dissolved Metals

The 2016 and historical analytical data for the inorganic parameters (nitrate, Cl, and TDS) and dissolved metals (Mn and Fe) are summarized in Appendix B (see Table B-3), and time-concentration diagrams for these parameters are provided in Appendix F. In general, the 2016 groundwater analytical results for inorganic parameters and dissolved metals were consistent with historical data.

The 2016 laboratory analytical results indicated that Fe and/or Mn concentrations were above their respective compliance levels in groundwater collected from a few wells located downgradient and in close proximity to the landfill (i.e., LB-17I, LB-17D, and LB-20S), and also Fe at well LB-27I. However, the Fe and/or Mn concentrations detected in may be attributed, in part, to localized variations in natural groundwater chemistry, as previously reported to Ecology, based on the following:

- Fe and Mn have occasionally been detected at concentrations above the compliance levels in groundwater samples collected from cross-gradient wells LB-3S, LB-5S, and LB-10SR (see Figures 2-2 and 2-4) screened in the shallow alluvium WBZ (see time-concentration diagrams in Appendix F).
- Fe concentrations in groundwater samples collected from well LB-20S since 2006 have shown significant variability and have typically been below the compliance level, with occasional concentrations above the compliance level.
- Concentrations of Fe and/or Mn in monitoring wells located hydraulically downgradient of LB-17I/17D (i.e., LB-6S, LB-13I/13D, and LB-26I/26) and well LB-20S (i.e., LB-1S/1D) are either below laboratory MRLs or significantly lower than concentrations detected in groundwater samples collected from LB-17I/17D and LB-20S. Additionally, Fe and Mn concentrations in these downgradient compliance wells have remained stable throughout most of their extensive monitoring history.

_

¹ Laboratory analysis of two additional VOCs with established compliance levels, vinyl chloride and 1,1-dichloroethene, was discontinued in 2013 as approved by Ecology (Ecology, 2013) because after two years of testing for these two VOCs using a low-level EPA Method 8260B, these compounds were not detected above their respective compliance levels.

It should be noted that Fe concentrations in samples collected from well LB-27I have been historically above the compliance level but very stable since monitoring began at this well in 1996, ranging from approximately 0.1 to 0.5 milligrams per liter (mg/L).

2.4.2.1 Statistical Analysis of Groundwater Analytical Data

Leichner Landfill groundwater quality data from 2012 to 2016 for inorganic parameters (nitrate, Cl, and TDS) and dissolved metals (Mn and Fe) were statistically evaluated using the MTCA Stat 97 program.² The program identifies if the data show a normal, lognormal, or non-parametric distribution. For normally and lognormally distributed data, the 95th percent upper confidence limit (UCL-95) of the mean was calculated. For distributions that were non-parametric (i.e., data not distributed normally or lognormally), data values were ranked and an estimate of the UCL-95 was determined using the Van der Parren method, as described in Statistical Guidance for Ecology Site Managers (Ecology, 1992). For non-parametric data, the Van der Parren method defaults to the highest reported value.

The MTCA Stat97 program utilizes the Land Method for calculating the UCL-95 of the mean for lognormally distributed data. The Land Method is sensitive to data distributions that deviate from lognormal. If variance or skewness is large (U.S. Environmental Protection Agency [EPA], 2002), the method may commonly yield estimated UCL-95 values that are greater than predicted for data distributions are not truly lognormal,. When sample sizes are small and the variance is large, the method can be impractical. This resulted in UCL-95 values that exceeded the range of concentrations for the following inorganic parameters and monitoring wells: (1) Cl data for well LB-20S, (2) nitrate data for well LB-10DR, and (3) TDS data for wells LB-1D and LB-3D. In these cases, the highest reported values from the last 5 monitoring years (2012 to 2016) were selected (see Table 2-1).

Table 2-1 provides a summary of calculated UCL-95 of the mean values, along with groundwater compliance levels established in the Consent Decree and CAP. The following summarizes the results of the statistical evaluation:

- The calculated UCL-95 values for nitrate, Cl, and TDS were below their respective compliance levels.
- The calculated UCL-95 values for dissolved Fe were below the compliance of 0.3 mg/L, except the values for groundwater from well LB-17I (9.9 mg/L).
- The calculated UCL-95 values for dissolved Mn were below the compliance level of 0.05 mg/L, except the values for groundwater from wells LB-17I (1.5 mg/L), LB-27D (4.3 mg/L), LB-20S (3.5 mg/L), LB-27I (0.5 mg/L), and LB-27D (0.1 mg/L).

2.4.2.2 Trend Analysis of Groundwater Data

In addition to the statistical evaluation described in Section 2.4.2.1, time-series concentration plots were generated for each of the inorganic parameters tested (see Appendix F). The time-concentration plots were evaluated visually to assess whether groundwater parameter concentrations have increased,

² MTCA Stat97 was obtained from Ecology's website: http://www.ecy.wa.gov/programs/tcp/tools/Mtca.exe.

decreased or remained stable. Inorganic parameter concentrations in groundwater samples collected from alluvial WBZ wells and Troutdale Formation wells show either generally stable or decreasing trends, except for nitrate concentrations in samples collected from wells LB-10DR, LB-13I, LB-26I, and LB-27D. Changes in nitrate concentrations detected in these wells are believed to be reflective of natural (i.e., non-landfill-impacted) groundwater conditions.

It is also noteworthy that Cl, TDS, Fe, and Mn in groundwater collected from wells LB-17I, LB-17D, and LB-20S located downgradient and in close proximity to the former landfilling areas exhibit pronounced decreasing concentration trends generally from about 1991 and 2001 (see time-concentration plots in Appendix F). These decreasing concentration trends were likely in response to the construction, operation, and maintenance of Leichner Landfill's post-closure systems, including the landfill cover system and the stormwater control and collection system, which significantly reduced the potential for leachate to be generated. The concentrations of these inorganic parameters in groundwater samples collected from these wells have remained relatively constant since about 2001 (except for Cl in well LB-20S as noted above). Additionally, as was previously discussed, the concentrations of these inorganic parameters in groundwater collected from monitoring wells downgradient of LB-17I/17D and LB-20S are substantially lower, and have remained stable throughout their extensive monitoring history (see time-concentration diagrams in Appendix F)

3.0 STORMWATER MONITORING

Ecology issued a renewed General Permit (No. WAR005572B) for industrial facilities, which became effective January 1, 2010, and allowed Leichner Landfill to continue to discharge stormwater from the facility to nearby Curtin Creek. Ecology issued a modified Industrial Stormwater General Permit (ISGP) that became effective date of January 2, 2015. In accordance with the ISGP and on behalf of the County, SCS prepared an updated Storm Water Pollution and Prevention Plan (SWPPP) in January 2015 (SCS, 2015). Stormwater monitoring activities at the facility are performed consistent with the methods and schedule described in the ISGP and SWPPP.

3.1 STORMWATER MONITORING NETWORK AND SCHEDULE

3.1.1 Quarterly Stormwater Monitoring Station

One stormwater discharge location (designated Outfall 1) has been established for the Leichner Landfill. Outfall 1 is located at the pump station at the northern end of the North Detention Pond (see Figure 3-1) and receives stormwater runoff from the closed landfill surfaces. Stormwater discharge at the North Detention Pond pumps (i.e., Outfall 1) are water-level float activated or can be manually activated at the pump control box. If the Outfall 1 pumps are not activated by the water-level in the North Detention Pond during quarterly monitoring, then SCS manually turns on the pumps to collect a stormwater discharge sample.

Quarterly stormwater samples were collected for laboratory analyses at Outfall 1 in January, April, and October 2016. A stormwater sample was not collected in the third quarter monitoring period (July1 to September 30) because no discharge was observed at the facility during this period. The stormwater samples were analyzed by TAL for permit-required parameters including turbidity, pH, total copper and zinc.

3.1.2 Monthly Visual Inspection

SCS performed monthly visual inspections in 2016 during storm events, if any occurred in a given month that could result in stormwater being potentially discharged at Outfall 1. The inspections included examining stormwater discharge at Outfall 1 (if observed) and inspecting the stormwater conveyance system (drainage ditches and culverts) and areas where equipment and materials are stored (primarily the blower-flare station [BFS]). Observations were documented on a SWPPP monthly inspection form.

3.2 STORMWATER MONITORING RESULTS

Stormwater discharge monitoring reports (DMRs) presenting the analytical results of quarterly stormwater samples collected in 2016 were submitted to Ecology on a quarterly basis using the Ecology WebDMR submittal system. The quarterly DMRs were submitted via WebDMR on February 18, May 4, October 6, and October 27, 2016. The analytical results of stormwater samples collected in 2016 showed that stormwater quality benchmark concentrations specified in the ISGP were not

7

exceeded. The DMR submitted on October 6, 2016, indicated that no discharge occurred during the third quarter monitoring period.

3.3 STORMWATER CONTROL AND COLLECTION SYSTEM MODIFICATIONS

An eroded section of drainage ditch that conveys stormwater into the South Detention Pond was repaired by SCS Field Services from August 29 through September 9, 2016. The erosion occurred following a series of high precipitation storm events in December 2015 that caused severe erosion of the stormwater ditch. The eroded area consisted of an approximately 30-foot wide by 50-foot long section of the drainage ditch adjacent to the South Detention Pond (referred to as the "lower repair area" for the purposes of this report). The erosion extended to the underlying geotextile, and washed a section of the ditch lining and surrounding cover material into the South Detention Pond creating an approximately 18-inch-deep gully. Additionally, an approximately 110-foot-long section of the drainage ditch that extended from the eroded section upstream to the outlet of a road-crossing culvert (referred to as the "upper repair area" for the purposes of this report) was heavily in-filled with soil; short grass and small brush was also growing between the larger stones.

The drainage ditch repair area is located on top of the final landfill closure area and directly over the waste footprint. As such, repair of the affected area required maintaining the cover thickness specifications in accordance with the approved closure design specifications and requirements in the 1996 Consent Decree and Minimum Functional Standards (MFS) covered under WAC 173-304. To meet these requirements, SCS proposed reconstructing the eroded area to the 1992 as-constructed conditions.

A construction quality assurance (CQA) report was submitted to the County (SCS, 2016b) that described the repair methods and activities and CQA observations. As described in the CQA report, the following summarizes key aspects of the drainage ditch repair based on the CQA monitoring and observations:

- The existing geotextile fabric in the upper repair area was not removed before placement of overlying layers. The remaining repair of this segment was performed in general conformance with the Construction Drawings.
- It was discovered during the excavation of the lower repair area along the lower segment of the drainage ditch that the existing conditions did not conform to the original construction drawings, principally because the drainage layer did not meet the required gradation size and thickness. A repair strategy was implemented for this segment of the drainage ditch, after it was approved by the County, which avoided the potential to excavate waste material below the geomembrane but still met the intent of the original ditch design. Additionally, the western side slope adjacent to the drainage ditch was covered with gravel to minimize or prevent potential impacts if stormwater overflowed the drainage ditch.

4.0 LANDFILL GAS MONITORING

A GCCS was initially installed at the Leichner Landfill in 1978 in response to offsite migration of LFG. The system has been modified several times over the years, including installation of a single, smaller enclosed flare station in 2007 in response to decreasing methane production. The current GCCS includes a LFG extraction well field with 102 gas extraction wells, a condensate collection system, a LFG blower and flare station (BFS), and an integrated remote monitoring and control (RMC) system that monitors the operation and performance of the BFS and other components of the GCCS and stormwater collection system. The GCCS components are shown in Figure 4-1.

Compliance LFG monitoring at Leichner Landfill is performed to (1) fulfill compliance monitoring requirements in LFG monitoring probes along the perimeter of the landfill, (2) evaluate and adjust (i.e., balance) the LFG extraction well network, and (3) assess the performance and efficiency of the GCCS, including the LFG flare and blower.

4.1 COMPLIANCE LFG MONITORING PROBE NETWORK AND SCHEDULE

The LFG compliance monitoring network is comprised of 50 probes located along the perimeter of the landfill property boundary to monitor subsurface LFG migration, and in areas within the property, to more closely monitor the performance of the GCCS (see Figure 4-1). Compliance LFG monitoring probes constructed as dual-completion probes (i.e., a shallow and deep probe constructed within the same borehole) are designated with an "A" for the shallow probe and "B" for the deep probe. Compliance LFG monitoring probes with the same probe number but constructed in different boreholes are designated with an "S" for the shallow probe and "D" for the deep probe.

Compliance LFG monitoring was performed quarterly in 2016 (March, June, September, and December), as approved by Ecology (Ecology, 2011).

4.2 COMPLIANCE LFG MONITORING RESULTS

The compliance LFG monitoring probe data for 2016 are provided in Appendix H (Table H-1). The data indicated that methane concentrations were below the MFS (Chapter 173-304 WAC) regulatory limit of 5 percent methane (by volume) in the site perimeter compliance probes, except for initial measurements in LFG probe GP-7 during each quarterly monitoring event, and initial measurements in LFG probe GP-9 in March and December. In response to these exceedances, adjustments to the GCCS LFG extractions wells in the vicinity of these probes were performed and the probes were remonitored. The re-monitoring data showed that methane concentrations were below the regulatory limit in both probes typically within a few days of the initial measurements (see Table H-1).

4.3 LFG EXTRACTION WELLS

The LFG extraction wells (see Figure 4-1) were monitored and adjusted (balanced) semi-monthly (twice a month) during 2016 to maintain balanced and efficient LFG extraction rates. There were no significant problems or concerns noted during monitoring and adjustment of the LFG extraction wells.

4.4 LFG FLARE MONITORING

The LFG flare system is operated pursuant to Air Discharge Permit (ADP) 07-2714 issued by the Southwest Clean Air Agency (SWCAA) on February 15, 2007. The LFG flare system was monitored regularly (typically on a weekly basis) in 2016 and continuous through the facility's RMC. The monitored parameters include LFG composition, static pressure, flow rate, and temperature measured at the flare inlet. In addition, the flare operating temperature was also measured and recorded. The flare system is equipped with a continuous monitoring system, which measures and records the flare operating temperature, inlet LFG flow rate, and inlet LFG oxygen concentration. The data are stored and periodically downloaded for permanent recordkeeping.

In accordance with the ADP, a separate 2016 annual flare emissions estimate report will be submitted to the SWCAA by March 15, 2017. The report will present flare monitoring data and evaluate flare performance in 2016.

In accordance with the ADP, an initial emissions source test was conducted on May 15, 2007, and is required to be re-tested every 5 years. Accordingly, the flare was source tested again on April 24, 2012. A next source test is schedule to be performed by April 24, 2017.

4.5 GREENHOUSE GAS MONITORING

In November 2013, SCS completed an evaluation to determine if the Leichner Landfill is required to report greenhouse gas (GHG) monitoring results (and perform future weekly GHG monitoring) pursuant to the state of Washington GHG rule based on emissions data collected in 2013. The evaluation showed that the Leichner Landfill is exempt from GHG reporting (and from future weekly monitoring) per the Washington State's GHG Rule. Consequently, weekly GHG monitoring was suspended beginning in January 2014.

4.6 EVALUATION OF GCCS PERFORMANCE AND CONCEPTUAL REDESIGN OF GCCS

The GCCS at the Leichner Landfill will require future upgrades to operate efficiently. To that end, a project was initiated in 2015 (conducted by SCS) focused on collecting performance data of the LFG extraction wells and BFS to support developing options for redesigning and upgrading the GCCS. The scope of work included reviewing and understanding the existing GCCS well field system and BFS and assessing whether additional monitoring and performance data needed to be collected to facilitate a redesign of the system. In general, whenever an existing system is upgraded, retrofitted, and/or replaced, the level of effort for the design is much greater than if a system is designed from scratch because of the coordination/tie-ins to the existing infrastructure.

The 2015 Annual Report (SCS, 2016a) described significant activities performed in 2015 to evaluate the existing GCCS well field system and BGS. The scope of this effort involved collecting LFG flow data from 50 of the site's 102 LFG extraction wells. Deeper gas wells located in the interior of the landfill were targeted for flow monitoring because they are expected to collect more gas and have higher flow rates. The perimeter gas wells, in generally, are shallower, and will not collect as much landfill gas (i.e., lower flow rates) due to their proximity to native soil and potential to facilitate air intrusion. This work was ongoing in 2016.

Additional activities performed by SCS in 2016 related to assessing the performance of the GCCS included the following:

- Continued to collect and evaluate LFG monitoring data obtained from January through April 2016.
- Performed site-specific modeling to estimate LFG generation and recovery projections. The purpose of the LFG generation and recovery modeling was to identify whether the GCCS is recovering as much LFG as practical. The modeling results were compared with the LFG monitoring data collected in 2015 and 2016, and with the total amount of gas measured at the BFS to evaluate the effectiveness of the existing GCCS. The comparison of LFG generation with individual well performance data identified areas of underperforming LFG extraction wells and/or areas absent of effective coverage within the well field.
- Prepared and submitted to the County a preliminary engineering design report dated December 5, 2016 (SCS, 2016c) presenting design options for upgrading the GCCS, including preliminary engineering design drawings and construction cost estimates. Based on discussion with the County, SCS also prepared revised engineering design drawings and cost estimates for an additional GCCS design upgrade scenario that involved modifications to the LFG collection well network and replacing the above ground PVC piping and well heads. The County is in the process of reviewing the preliminary redesign upgrades for the GCCS.

5.0 OPERATIONAL SYSTEMS MAINTENANCE AND REPAIR

5.1 ROUTINE ACTIVITIES

Routine operations, maintenance, and repair of the GCCS and stormwater collection and control system performed in 2016 included the following:

- Performing checks and making adjustments to the operational settings of the LFG flare system as necessary.
- Performing maintenance and repairs (as needed) of the LFG flare system, condensate collection system, including the condensate sumps, airlines, discharge lines, and compressors.
- Performing minor maintenance and repairs (as needed) of the LFG extraction wells and conveyance piping (e.g., repair of hoses, fittings, and valves).
- Conducting semi-monthly adjustments (i.e., balancing) to the north and south LFG extraction wells field
- Performing general maintenance of the (1) North and South Detention Pond pumps, (2) air compressor for the condensate collection and Module 2 stormwater pumping systems, and (3) Module 2 stormwater recovery system.
- Coordinating periodic pumping and disposal of condensate from the site condensate tank.
- Reviewing and uploading the LFG extraction well monitoring data and compliance probe monitoring data into SCS's site-specific eTools database for the Leichner Landfill project.

Other noteworthy non-routine maintenance, repair, and replacement activities related to the Leichner Landfill's post-closure systems and equipment performed in 2016 are described below.

5.2 NON-ROUTINE ACTIVITIES

5.2.1 First Quarter 2016

- Installed a capsuhelic (differential pressure) gauge on the flare inlet line.
- Coordinated analytical testing of LFG condensate for disposal characterization.
- Evaluated possible source(s) causing flare vibrations in response to a compliant. Discussed approach with the County for additional flare monitoring and identifying and resolving the source of the vibration.
- Installed a pulse pump controller in condensate trap S-3.

- Installed an AP-4 pneumatic pump in condensate trap N-7.
- Further evaluated the flare to address noise/vibration issues.
- Identified that there was no power to the site on March 18, 2016. The power was restored with the assistance of an electrical contractor on March 19, 2016.
- Performed troubleshooting of problems with flare station RMC system (likely due to power outage). The following work was performed as a follow-up to the troubleshooting activities in late March 2016: (1) installed a new modem, (2) performed cell modem setup, and (3) repaired and reconfigured the RMC system/flare controls.
- Installed a new flare stack louver motor.

5.2.2 Second Quarter 2016

- Remove QED well heads from eight LFG extraction wells (SW-2, SW-6, SW-9, SW-14, SW-15, SW-18, SW-19, and SE-6) from the south well field. Plumbed each well head with 2-inch gate valves and connected to the lateral line.
- Installed eight QED well heads in the north well field at LFG extraction wells NE-4, NE-6, NE-19, NE-20, NW-14, NW-17, NW-24, and NW-26.
- Installed system sample ports in 39 LFG extraction wells.
- Performed certification of the three on-site compressor tanks. Certification was performed by Washington State Department of Labor and Industries Boiler Pressure Vessel Inspector, with oversight by SCS.
- Installed pressure ports in the LFG well extraction system.
- Installed a motorized (middle) louver system in the LFG flare.
- Installed a flare purge blower.

5.2.3 Third Quarter 2016

- Wired and programmed the recently installed motorized (middle) LFG flare louver to operate using the RMC system.
- Installed a new Quantum automation/programmable logic control (PLC) analog card, and programmed upgrades for the RMC system.
- Installed a 6-inch shut-off valve on the inlet pipe to the Module 2 stormwater collection vault.
- Continued evaluating whether a vibration sensor should be installed on the LFG flare, and programmed into the RMC system.

- Coordinated disposal of soil generated during the South Detention Pond drainage ditch repair project.
- Performed prefield planning and coordination for upgrading the RMC system and installing a new weather station and water-level transducer in the Module 2 stormwater collection vault that will be linked to the RMC.

5.2.4 Fourth Quarter 2016

- Evaluated and repaired the diaphragm pump in the Phase 2 stormwater collection vault.
- Installed upgrades to the RMC system, and linked to the RMC a newly installed weather station and water-level transducer in the Module 2 stormwater collection vault.
- Seeded areas around the South Detention Pond for erosion control.
- Replaced the diaphragm pump in the Module 2 stormwater collection vault with a new diaphragm pump. The old pump was shipped to the manufacturer to assess damage and obtain a cost estimate to replace or repair.

6.0 REFERENCES

- SCS Engineers (SCS), 2013, Compliance Monitoring Plan, Leichner Landfill, Clark County, Washington, prepared by SCS, Inc., Portland, Oregon, for Clark County Department of Environmental Services, July 30.
- SCS Engineers, 2014a, 2013 Fourth Quarter and Annual Monitoring Report, Closed Leichner Landfill, Vancouver, Washington, Consent Decree 96-2-03081-7, Facility ID No. 1017, prepared by SCS, Inc., Portland, Oregon, for Clark County Department of Environmental Services, February 27.
- SCS Engineers, 2015, Stormwater Pollution Prevention Plan, Plan Date: January 2015, State of Washington, Industrial Stormwater General Permit, Permit Number: WAR005572B, Leichner Landfill, prepared by SCS, Portland, Oregon, for Clark County, Vancouver, WA, January.
- SCS Engineers, 2016a, 2015 Annual Report, Closed Leichner Landfill, Vancouver, Washington, Consent Decree 96-2-03081-7, Facility ID No. 1017, prepared by SCS, Inc., Portland, Oregon, for Clark County Department of Environmental Services, February 19.
- SCS Engineers, 2016b, Construction Quality Assurance Report for the South Pond Stormwater Ditch Repair, Leichner Landfill, Vancouver Washington, prepared by SCS, Portland, Oregon, for Clark County, Vancouver, WA, November 23.
- SCS Engineers, 2016cd, Summary of Preliminary Design for the Gas Collection and Control System Upgrades at the Leichner Landfill, Vancouver, Washington, prepared by SCS, Portland, Oregon, for Clark County, Vancouver, WA, December 5.
- Washington State Department of Ecology (Ecology), 1992, Statistical Guidance for Ecology Site Managers, Publication No. 19-54, August.
- Washington State Department of Ecology, 2011, Periodic Review under Model Toxics Control Act (MTCA), Leichner Brothers Landfill, prepared by Ecology, Southwest Region Office, Toxics Cleanup Program, April 27.
- Washington State Department of Ecology, 2013, Email (re: Letter to WDOE requesting to Discontinue GW Sampling for VC and DCE) to M. Davis, Clark County Environmental Services, and L. Caruso, SCS Engineers, from M. Kourehdar, Ecology, Toxics Cleanup Program, February 12.
- U.S. Environmental Protection Agency (EPA), 2002, Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites, EPA, office of Emergency and Remedial Response, December.

TABLE

Table 2-1 Statistical Summary of Groundwater QualityData From 2012 to 2016 95 Percent Upper Confidence Limit of the Mean^a Leichner Landfill

	Compliance																			
Parameter	Level	Units	LB-1S	LB-1D	LB-3S	LB-3D	LB-5S	LB-5D	LB-6S	LB-10SR	LB-10DR	LB-13I	LB-13D	LB-17I	LB-17D	LB-20S	LB-26I	LB-26D	LB-27I	LB-27D
Inorganic Parameters																				
Chloride	250	mg/L	14.4	7.7	4.1	M(5.32)	4.4	M(11.0)	6.6	30.2	21.8	10.0	M(5.03)	12.1 ^b	M(19.0)	151 ^b	8.3	M(5.88)	41.6	M(13.0)
Nitrate	10	mg/L	6.8	M(7.09)	4.2	4.8	M(6.6)	M(1.2)	M(2.65)	3.2	2.5	M(4.50)	5.3	All ND	All ND	M(0.40)	4.9	M(5.90)	M(0.91)	4.2
Total Dissolved Solids	500	mg/L	M(260.0)	209.9	189.2	197.5	M(179.0)	237.8	169.7	292.2	M(290.0)	M(220.0)	190.1 ^b	M(250.0)	M(230.0)	M(340.0)	M(210.0)	189.9	393.2	M(265.0)
Metals																				
Iron (dissolved)	0.3	mg/L	All ND	M(0.036)	All ND	All ND	All ND	All ND	M(0.028)	All ND	All ND	All ND	All ND	9.9 ^b	0.1	0.9^{b}	M(0.064)	All ND	M(0.032)	0.7
Manganese (dissolved)	0.05	mg/L	M(0.002)	M(0.0058)	All ND	All ND	All ND	M(0.0026)	M(0.0022)	M(0.0059)	M(0.002)	M(0.005)	All ND	1.5	4.3	M(3.50)	M(0.004)	M(0.0034)	0.5	0.1 ^b
Volatile Organic Compounds																				
1,4-Dichlorobenzene	1.8	μg/L	All ND	All ND	All ND	All ND	All ND	All ND	All ND	All ND	All ND	All ND	All ND	All ND	All ND	M(0.23)	All ND	All ND	All ND	All ND
Tetrachloroethene	5	μg/L	All ND	All ND	All ND	All ND	All ND	All ND	All ND	All ND	All ND	All ND	All ND	All ND	All ND	All ND	All ND	All ND	All ND	All ND
Trichloroethene	5	μg/L	All ND	All ND	All ND	All ND	All ND	All ND	All ND	All ND	All ND	All ND	All ND	All ND	All ND	All ND	All ND	All ND	All ND	All ND

NOTE

mg/L = milligrams per liter; $\mu g/L = micrograms$ per liter; ND = indicates not detected at any sampling event; M = maximum value detected in last five years shown in parenthesis. Values shown in **bold** are greater than the specified compliance level.

^a Values shown are the 95 percent upper confidence limit on the mean (UCL-95) calculated using MTCA Stat 97 program and Statistical Guidance for Ecology Site Managers.

^b Calculated UCL-95 value of lognormally distributed data exceeded the range of concentrations from 2012 to 2016 using Land's method; value shown represents the maximum value detected in the last five years.

FIGURES

SOURCE: GOOGLE MAPS

S C S E N G I N E E R S
Environmental Consultants and Contractors

15940 S.W. 72nd Avenue Portland, Oregon 97224 (503) 639-9201 FAX: (503) 684-6948

PROJECT NO.	DES BY
04217030.14	B.M.
SCALE	CHK BY
AS SHOWN	D.L.
CAD FILE	APP BY
FIGURE 1-1	L.C.

SITE LOCATION MAP

LEICHNER LANDFILL CLARK COUNTY, WASHINGTON

DATE
FEBRUARY 2017
FIGURE

1-1

APPENDIX A

2016 Field Sampling Data Sheets (FSDSs)

Leichner Landfill Groundwater Elevation Survey

Project #: 04216030 13

Sampler: B McMilly

Date: 2/

Quarter: 0 2 3 4

A	Reference				
Monitoring Point	Elevation	DTB	DTW		
Designation	(ft. msl)	(ft. btoc)	(ft. btoc)	Time	Comments
Monitoring Wells			745		
MW-1 N	216.58	15.00	NA	1233	Dry @ 15.00'
MW-1 S	216.13	44.50	37.10	1324	
MW-1 E	216.45	29.05	WA	1333	Dry @ 29.051
MW-NE	219.83	50.34	13.07	1145	*
LB-R2	222.27	77.36	44.61	1243	
LB-1S	210.12	45.00	32.65	1311	
LB-ID	209.74	137.45	35,20	1314	
LB-3S	218.25	52.50	38,06	1344	
LB-3D	219.29	117.28	39.10	1350	
LB-5S	206.89	30.32	15.10	1216	
LB-5C	206.70	74.71	31.91	81Cl	
LB-5D	207.56	122.40	36.63	1914	
LB-6S	202.80	39.07	26.39	1238	
LB-9SR	217.94	49.60	34.63	1354	
LB-10SR	204.04	42.35	2990	1405	
LB-10CR	203.05	71.95	98.83	1400	
LB-10DR	203.36	121.10	41.91	1402	
LB-13I	202.36	55.03	27.03	1333	
LB-13C	202.68	66.00	27.42	1531	
LB-13D	202.96	88.88	27.72	1530	
LB-17S	208.18	34.38	30.42	1320	
LB-17I	213.14	51.95	35.54	1348	
LB-17C	206.55	72.35	29.21	1252	
LB-17D	213.17	100.91	36.41	1246	
LB-20S	221.22	61.50	3955	1339	
LB-21S	223.35	54.24	3680	1134	*:
LB-21C	223.32	79.10	37.25	1132	
LB-21D	223.63	110.73	40.05	1138	
LB-22S	208.42	36.97	5.55	1291	
LB-23S	229.19	45.40	30.18	1205	
LB-24S	235.13	54.16	37.90	1508	
LB-26I	200.22	58.30	24,40	1303	
LB-26D	200.75	101.78	24.16	1259	
LB-27I	205.35	57.15	30.99	1394	
LB-27D	204.65	115.10	36.83	1936	

10001 2 1	-			
obc deconed	between	each 1	ocation	
	obc deconed	obc deconed between	obs deconed between each 1	obe deconed between each location

FIELD SAMPLING DATA SHEET

SCS ENGINEERS

14945 SW Sequoia Parkway, Suite 180, Portland, OR 97224

	Office: 503.639.9201 Fax: 503.684.6984 PROJECT NAME: Leichner Landfill WELL ID: / 2 - 1																	
PROJE	ECT N	AME:		Leichn	er Lanc	fill				V	/ELL ID:	LR-	15					
SITE A	DDRE	SS:		9411 N	IE 94th	Avenue	, Vanco	uver, W	/A 986	62 B	LIND ID:	LB-9	131116	2-14				
		6									DUP ID:					NA		
WII	ND FR	:OM:	N	NE	Ę	SE	S	SW	W	(NW)	MGH	孙	MED	NUM	Н	EAVY		
٧	VEATH	ŧΕR:[SUI	NY	erc	UDY	RA	IN		?	TEN	IPERA	TURE:	(F) 6	,).	° C		
HYDR	OLOG	Y/LE	VELM	IEASUE	REMEN	ITS (Nea	rest 0.01 f	t)		[Product Thickness] [Water Column]						ate units1 column x Gal/ft]		
Da			me		ottom		roduct	DT-V	Vater		P-DTW	DTB-DTW				me (gal)		
7/10	1 110	14	:()	45		_	_	32	51			12.49		X 1	7	.03		
1	1 10		:	- 13			e)	J. W.						X 3				
Gal/ft = (dia./2) ² x	0.163	1" =	0.041	(2")=	0.163	3" =	0.367	4" =	0.653	6" =	1.469	10" =	4.080	12" =	5.875		
	-		le Pump (B) Peristaltic	0	isposable Ba	iler (D) PVC/1	Teflon Baile	(E) Dedica	ited Bailer (F) Dedicated Pu	mp (G) Othe	er =					
GROUNDWATER SAMPLING DATA (if product is detected, do NOT sample) Sample Depth: [Vif u														[√ if used]				
Bottle	Туре	D	ate	Tir	ne	Method §	Amount	Amount & Volui		Pre	servative [circle]	Ice	Filter	pН	1		
VOA Glass 2/17/16		14:30		A	3	40	ψı		HC		(YES)	NO						
Amber	Glass	1	1	:		1.		250, 5	00, 1L	(None) (HCI) (H	₂ SO ₄)	YES	NO				
White Poly ユハケル			14	: 30	Α	3	250 , 5	00,(1)		None		(YES)	NO	NA	1/			
Yellow	Poly	1	1	:		1		250, 5	00, 1L		H ₂ SO ₄		YES	NO				
Green Poly / /		:				250, 500, 1L		NaOH			YES	NO						
Red Total Poly		1	1					125, 2	50, 500	HNO ₃			YES	NO				
Red Diss. Poly		311	7/16	14:30		A	(250) 5		00, 1L		(HNO ₃)		(EŞ)	YES				
		/	1					250, 5	00, 1L				YES					
	White n	o acid.	Yellow H	12SO4, F	Red HNO	3	7	Total Bo	ttles (inc	lude dupli	icate count)	:						
		TTLE T			CAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis below) OR [/1 WA [X]													
	VOA - G	VOA - Glass			(8011)									OR	[/1	WA [X]		
Analysis Allowed per Bottle Type	AMBER			(8080)	(8150)	(TOX)									[]	WA[]		
Allo le T	WHITE -	<u> </u>		(pH) (Conductivity) (TSS) (Alkalinity) (HCO ₃ /CO ₃) (CI) (SO ₄) (Silica, T.) (NO3)														
/sis Bott	YELLOW			<u> </u>	TOC) (N	H ₃) (NO ₃ /No	O ₂) (Tannir	n/Lignin)										
rnal) per	RED TO		lv	(Cyanide) (As) (Sb) (Ba) (Be) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mn) (Ni) (Aq) (Se) (Tl) (V) (Zn) (Hardness)														
	RED DIS				As) (Sb) (Ba) (Be) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mn) (Ni) (Ag) (Se) (TI) (V) (Zn) (Hardness) (Fe) (Mg) (Mn) (K) (Na)													
WATE	R QUA	ALITY	DATA		Purge	Start Tir	me:)l	1:12		2		Pump/	Bailer In	let Dept	:h:			
Meas.	Meth	od §	Purge	d (gal)	рН	ORP	E Con	d (μS)	°F Te	mp (C)	DTW	Diss O	₂ (mg/l)	٧	Vater Q	uality		
0	A(14	15)	0.	00	7.06	730.1	371		13	13	3251	6	.43	Clear	· /colon	rless		
1	A(14	(8)	0	.35	6.83	538.9	371	-{	13	.97	32.51	5	.89	Clean	v/Col	ovless		
2	A (147	21)	0	.75	6.75	2436	26	4	17	62.	32.51	5	.45	Clear	1. Colo	irless		
3	A(14)	24)		O D.	6.72	289,0	26	3	12	.54	32.51	5	.39	clear	/Colon	rless		
4	A/14:		1	. 35	6.71	269.2	26	2	13	.50	32.51	5	.34	clear	- /co	lovess		
5										•	ŝ		•					
6										0)	3	*)						
[Casing]	[Select	-	•	ive Totals]					- 5	e units]					[Clarity, C	olor]		
LOW	flav	, bri	ge m	rethou	J~ 0	1/6/30	Psi 1	00m	/puls	ie /	7							

SAMPLER: B MCM U NOM
(PRINTED NAME)

FIELD SAMPLING DATA SHEET

ENGIN

Leichner Landfill

PROJECT NAME:

SITE ADDRESS:

14945 SW Sequoia Parkway, Suite 180,

Portland, OR 97224 Office: 503.639.9201 Fax: 503.684.6984 WELL ID: 02-RM LR-1D 9411 NE 94th Avenue, Vancouver, WA 98662 BLIND ID: NA DUP ID:

W (MM) LIGHT **MEDIUM** HEAVY WIND FROM: NE SE SW SUNNY TEMPERATURE: WEATHER: (CFOND) RAIN 50. (Circle appropriate units)

HYDROLOGY/LEVEL MEASUREMENTS (Nearest 0.01 ft) [Water Column x Gal/ft] [Product Thickness] [Water Column] Volume (gal) DT-Bottom DT-Product DT-Water DTP-DTW DTB-DTW Time 34.89 09 X 1 16 71 2/17/16 7.45 102.56 :04 X 3 4.080 10" = 12" = $Gal/ft = (dia./2)^2 \times 0.163$ 0.041 (2)= 0.163 0.367 0.653 1.469 5.875

§ METHODS: (A) Submersible Pump (B) Peristaltic Pump (C) Disposable Bailer (D) PVC/Teflon Bailer (E) Dedicated Bailer (F) Dedicated Pump (G) Other =

GROUNDW	ATER SAMP	LING DATA (if	f product is	s detected	t, do NOT sample)		Sampl	e Depth:			[v if used]
Bottle Type	Date	Time	Method §	lethod [§] Amount & Volume mL F			Preservative [circle]			рΗ	√
VOA Glass	2/17/16	09:35	A	3	(40 m)	(HC)	(HCI)		NO		
Amber Glass	1 1	8			250, 500, 1L	(None) (HCI) (H	l ₂ SO ₄)	YES	NO		
White Poly	2/17/16	09:35	A	3	(250) 500, (L)	(None)	None		NO	NA	V
Yellow Poly	1 .1				250, 500, 1L	H₂SO₄	H ₂ SO ₄		NO		
Green Poly	1 1				250, 500, 1L	NaOH		YES	NO		
Red Total Poly	y / / : 125, 250, 500		HNO ₃		YES	NO					
Red Diss. Poly	2117/16	og :35	A		(250), 500, 1L	(HNO)		(YES)	YES)		V
	1 1				250, 500, 1L			YES			

Total Bottles (include duplicate count): White no acid, Yellow H2SO4, Red HNO3

	BOTTLE TYPE	TYPICAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis below)			
	VOA - Glass	(8260) (8011)	OR []	WA[X]
ype	AMBER - Glass	(8080) (8150) (TOX)	OR [J	WA[]
1 2 ⊢ 1	WHITE - Poly	(pH) (Conductivity) (TDS) (TSS) (Alkalinity) (HCO ₃ /CO ₃) (CI) (SO ₄) (Silica, T.) (NO3)			
Analysis Al per Bottle	YELLOW - Poly	(COD) (TOC) (NH ₃) (NO ₃ /NO ₂) (Tannin/Lignin)			
\$\frac{8}{8}\tilde{9}	GREEN - Poly	(Cyanide)			
Pe Ag	RED TOTAL - Poly	(As) (Sb) (Ba) (Be) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mn) (Ni) (Ag) (Se) (Tl) (V) (Zn) (Hardness)			
	RED DISSOLVED - Poly	(Ca) (Fe) (Mg) (Mn) (K) (Na)			

0:00 Pump/Bailer Inlet Depth: **WATER QUALITY DATA** Purge Start Time: ORP °F Temp (°C Diss O₂ (mg/l) рH E Cond (μS) DTW Water Quality Meas. Method § Purged (gal) 919 /Colorless -283.4 Colorless 1 J86. 240 233 2 .47 . 35 7.05 307.8 3 OO305.2 . 00 4 .40 23 5 90

[Casing] [Select A-G] [Cumulative Totals]

Low flow purge method ~ 8/7/90 psi 100 ml/pulse

0920- Rechabited ORP to check if it was reading correctly

SAMPLER: 1

FIELD SAMPLING DATA SHEET

SCS ENGINEERS

14945 SW Sequoia Parkway, Suite 180,

Portland, OR 97224

Office: 503.639.9201

Fax: 503.684.6984

PROJE	PROJECT NAME: Leichner Landfill WELL ID: FB1 SITE ADDRESS: 9411 NE 94th Avenue, Vancouver, WA 98662 BLIND ID: LB-921711-07																
SITE A	DDRE	ESS:		9411 N	IE 94th	Avenue	, Vanco	uver, W	/A 986	62 B	LIND ID:	FB-C	21716	-07			
											DUP ID:	\				NA	
WII	ND FR	OM:	N	NE	<u> </u>	~SE	S	sw	W	(WW)	LIGH	117	MED	IUM	H	EAVY	
V	VEAT	HER:	SUN	YNY	(ETC	UDY	RA	IN		? TEMPERATUR					Ç .	° C	
			VEL N	IE A CLU	DEMEN	ITC //			[Product Thickness] [Water				Column]	Circ	le appropria	ate units1 olumn x Gal/ft]	
			me		ottom		rest 0.01 f	DT-V	Vator		P-DTW	DTB-		Ì		me (gal)	
Da ⁻	te i		me	ם-וט	Ottom	טו-רי	louuct	D1-V	Valer	- Di	-0111			V 4		(34.7	
/			:		•			-				3*!!		X 1		•	
			:				•			L	•			X 3			
Gal/ft = (1" =	0.041	2" =	0.163	3" =	0.367	4" =	0.653	6" =	1.469	10" =	4.080	12" =	5.875	
§ METHODS: (A) Submersible Pump (B) Peristaltic Pump (C) Disposable Bailer (D) PVC/Teffon Bailer (E) Dedicated Bailer (F) Dedicated Pump (G) Other = Transfer GROUNDWATER SAMPLING DATA (if product is detected, do NOT sample) Sample Depth:													[√if used]				
GROU	NDW	ATER	SAMP	LING	DATA (if							Sample Depth:					
Bottle	Туре	D	ate	Tir	me	Method [§]	Amount	t & Volume mL		Preservative [circle]		Ice	Filter	рН	V		
VOA Glass 2/17/16			08	:40	6	3	(40 m)			(HCI)		(YES)	NO		V		
Amber	Glass	/	1				3 3m	23 m 250, 50		(None) (HCI) (I		₂ \$O ₄)	YES	NO			
White	Poly	2/1	7/16	08	:40	6	.3	(250), 5	00(1L)	None			(YES)	NO	NA		
Yellow	Poly	1	1	3	:			250, 5	00, 1L	i,	H ₂ SO ₄		YES	NO			
Green	_	1	1					250, 5	00, 1L		NaOH		YES	NO			
				•:-				125, 250, 500		HNO ₃		YES	NO				
Red Total Poly / / Red Diss. Poly 2 / / / /			00	.110		1		00, 1L		(HNO)		(YES)	(YES)				
Red Dis	S. Poly	d 1	7/16	08	.70	0		1		-	(110)		3	7			
/ / : 250, 500, 1L YES White no acid Yellow H2SQ4 Red HNQ3 Total Bottles (include duplicate count):											163						
				12SO4, F									analysis ha	lavel			
		BOTTLE TYPE TYPICAL AN OA - Glass (\$250) (8				IS ALLOW	ED PER BO	JIILE IY	PE (Circle	applicable	e or write non-	-standard a	analysis be		[]	WAIXI	
20	AMBER			(8080)	(8011)	(TOX)									[]	WA[]	
Typ ov	WHITE	_			pH) (Conductivity) (TDS) (Alkalinity) (HCO ₃ /CO ₃) (C) (SO ₄) (Silica, T.) (NO3)												
s Al	YELLOV	V - Poly		(COD) (
Analysis Allowed per Bottle Type	GREEN	- Poly		(Cyanide)													
₽ A	RED TO	TAL - Po	ly	(As) (Sb) (Ba) (Be) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mn) (Ni) (Ag) (Se) (TI) (V) (Zn) (Hardness)													
	RED DIS	SSOLVE	O - Poly	(Ca) (Fe)	(Fe) (Mg) (Mg) (K) (Na)												
			(D A T A		In	01- 4 T	- 3					Dump	Bailer Ir	olot Don	thi		
WATE		$\overline{}$				Start Ti			Log T.	***	DTM	-	$O_2 (mg/I)$		Vater Q	uality	
Meas.	Meth	od a		d (gal)	рН	ORP	E Con	d (μS)	F 16	emp °C	DTW	Diss	7 ₂ (Hig/I)	<u> </u>	valei Q	uanty	
0			0.	00	r.e.					•	7,5%	i i	•				
1				•	120					•	*		•				
2					nen					<u> </u>	(#)		•				
3					3.00					•	(0)		•				
4					1.99					·	3.		•				
5				ŧ.	(*)					<u>*</u>							
6					1.00					3	18						
[Casing]	[Selec			ive Totals]			_		[Circ	le units]					[Clarity, C	Color]	
4	__	(lla fo	1	0.0.	LR	-1 D	١									
SWN	pre	Co	110016	WC III	000	-0	+1	,									
	*	0 .		١			-1D			/	Wa	7/					
SAMP	LER:	15 K	now	7 U/12	\sim				-1:	_							
		(PRINT	ED NAME	()						(SIGNAT	URE)						

SCS ENGINEE

14945 SW Seguoia Parkway, Suite 180,

Portland, OR 97224

Fax: 503.684.6984

Office: 503.639.9201 WELL ID: PROJECT NAME: Leichner Landfill BLIND ID: LB -021716-12 9411 NE 94th Avenue, Vancouver, WA 98662 SITE ADDRESS: DUP ID: NA **HEAVY** NW (LIGHT) **MEDIUM** SW W WIND FROM: NE SE S TEMPERATURE: 6 F SUNNY CLOUDY RAIN **WEATHER:** [Circle appropriate units] HYDROLOGY/LEVEL MEASUREMENTS (Nearest 0.01 ft) [Water Column] [Water Column x Gal/ft] [Product Thickness] Volume (gal) DTP-DTW DTB-DTW DT-Bottom DT-Product DT-Water Date Time 4.55 52.50 37.95 X 1 2/17/16 :14 X 3 10" = 4.080 4" = 0.653 6" = 1.469 5.875 $Gal/ft = (dia./2)^2 \times 0.163$ 1" = 0.041 (0.163 3" = 0.367 § METHODS: (A) Submersible Pump (B) Peristaltic Pump (C) Disposable Bailer (D) PVC/Teflon Bailer (E) Dedicated Bailer (F) Dedicated Pump (G) Other = [v if used] Sample Depth: GROUNDWATER SAMPLING DATA (if product is detected, do NOT sample) Filter V pΗ Preservative [circle] lce Amount & Volume mL **Bottle Type** Date Time Method § _ (HCI) YES. NO (40 m) **VOA Glass** 117/11 :40 (None) (HCI) (H2SO4) YES NO 250, 500, 1L **Amber Glass** : NA YES) NO (250) 500, (1) None 11711 :40 White Poly NO YES 250, 500, 1L H2SO4 Yellow Poly : NO YES 250, 500, 1L NaOH Green Poly : YES NO 125, 250, 500 HNO₃ : Red Total Poly **YES** (250), 500, 1L (HNO3 YES :40 Red Diss. Poly YES 250, 500, 1L Total Bottles (include duplicate count): White no acid, Yellow H2SO4, Red HNO3 TYPICAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis below) **BOTTLE TYPE** OR [WA [V] VOA - Glass (8260) (8011) WA [] OR[] Analysis Allowed per Bottle Type AMBER - Glass (8080) (8150) (TOX) (HCO₃/CO₃) (CI) (SO₄) (Conductivity) (TDS) (TSS) (Alkalinity) WHITE - Poly (NH₂) (NO₂/NO₂) (Tannin/Lignin) (COD) (TOC) YELLOW - Poly GREEN - Poly (Cvanide) (As) (Sb) (Ba) (Be) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mn) (Ni) (Ag) (Se) (TI) (V) (Zn) (Hardness) RED TOTAL - Poly (Ca) (Fe) (Mg) (Mn) (K) (Na) RED DISSOLVED - Poly Pump/Bailer Inlet Depth: Purge Start Time: WATER QUALITY DATA : 14 °F Temp (°C) DTW Diss O₂ (mg/l) Water Quality pН ORP Meas. E Cond (µS) Purged (gal) Method § 809 37.95 0.00 .24 216 2.41 -275.9 308 .OO 1 .20 6.93 598.3 207 .86 - 50 2 0.83 .70 308.7 -09 3 .00 315.6 206 .95 · Q5 318.7 300 .03 -318,4 37.95 .60 5 33 306 00 .79 37.95 Colorless 90 36 -319.6 6 200 [Clarity, Color] Low flow purge method ~ 8/7/30psi 100ml/pulse.

NATURE)

SCS ENGINEERS

14945 SW Sequoia Parkway, Suite 180, Portland, OR 97224

Office: 503.639.9201

Fax: 503.684.6984

WELL ID: PROJECT NAME: Leichner Landfill BLIND ID: LR-021616-6 9411 NE 94th Avenue, Vancouver, WA 98662 SITE ADDRESS: NA DUP ID: (IGHT) **MEDIUM HEAVY** (WN WIND FROM: NE E SE S SW W Ν TEMPERATURE: (° F) 49 ° C RAIN SUNNY **CRONDY WEATHER:** HYDROLOGY/LEVEL MEASUREMENTS (Nearest 0.01 ft) [Water Column] fWater Column x Gal/ft [Product Thickness] DTP-DTW DTB-DTW Volume (gal) DT-Water DT-Bottom DT-Product Date Time 39.05 78 .) 3 X 1 2/16/11 3:39 . 98 X 3 10" = 4.080 12" = 5.875 1.469 (2")= 4" = 0.653 $Gal/ft = (dia_1/2)^2 \times 0.163$ 1" = 0.041 0.163 3" = 0.367 § METHODS: (A) Submersible Pump (B) Peristaltic Pump (C) Disposable Bailer (D) PVC/Teflon Bailer (E) Dedicated Bailer (F) Dedicated Pump (G) Other = [v if used] Sample Depth: GROUNDWATER SAMPLING DATA (if product is detected, do NOT sample) Amount & Volume mL Preservative [circle] Ice Filter Hq Time Method § Date **Bottle Type** 40 ml (HC) YES NO 6 2/16/16 00: 4 VOA Glass (None) (HCI) (H₂SO₄) NO YES 250, 500, 1L Amber Glass 1 : (YES) NO NA (250), 500,(1L) White Poly None 116/16 :00 NO YES H₂SO₄ 250, 500, 1L Yellow Poly YES NO NaOH Green Poly 250, 500, 1L : HNO₃ YES NO 125, 250, 500 • Red Total Poly (YES) YES MNO 116/11 14:00 (250, 500, 1L Red Diss. Poly 250, 500, 1L YES Total Bottles (include duplicate count): White no acid, Yellow H2SO4, Red HNO3 TYPICAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis below) **BOTTLE TYPE** OR [WAIXI (8260) VOA - Glass Analysis Allowed per Bottle Type WA[] OR[(TOX) AMBER - Glass (8080) (8150) (HCO₃/CO₃) (CI) (SO₄) (Silica, T.) WHITE - Poly (pH) (Conductivity) (FDS) (TSS) (Alkalinity) (NO_3/NO_2) (Tannin/Lignin) YELLOW - Poly GREEN - Poly (Cyanide) (As) (Sb) (Ba) (Be) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mn) (Ni) (Ag) (Se) (TI) (V) (Zn) (Hardness) RED TOTAL - Poly RED DISSOLVED - Poly (Ca) (Fe) (Mg) (Mn) (K) (Na) Pump/Bailer Inlet Depth: **WATER QUALITY DATA** Purge Start Time: 13 :40 Temp (°C) DTW Diss O₂ (mg/l) Water Quality °F pΗ ORP E Cond (µS) Purged (gal) Meas Method § 6.99 94.6 .76 39.11 .97 0.00 213 Clear /Col 0.25 6.80 83.3 217 1 60 219 7 clear 2 00). 80.8 70 ろ づ0 3 -85 230 .69 39.11 4 . 20 39.11 ろろの 6.65 5 ĥ [Clarity, Color] [Circle units] Low flow purge methoda 8/7/75ps; 100ml/pulse

SAMPLER: Bywallen

(PRINTED NAME)

SCS ENGINEERS

14945 SW Sequoia Parkway, Suite 180, Portland, OR 97224

503 630 0201

503 694 6094

									Office:	503.63	9.9201		rax:	503.084	4.0984	
PROJE	CT N	AME:		Leichn	er Land	fill				W	/ELL ID:	LR-	55			
SITE A	DDRE	SS:		9411 N	IE 94th	Avenue	, Vanco	uver, W	A 986	62 B l	LIND ID:	LB-c	1816	6-17		
											DUP ID:	_				NA
WIN	ND FR	ом:Г	N	NE	Е	SE	S	SW	W	(NW)	(JGH	1	MED	NUI	HE	AVY
	/EATH	- 1	SUN			UDY	RA			?	<u></u>	PERA		(F)4	8.	°C
					-									lCirc	le appropria	
						TS (Near			lotor		Thickness]	[Water (ſ		ne (gal)
Dat			me	DT-B		DT-Pr	oduct	DT-V		DIP	P-DTW	DTB-	אוח		volur	ne (gal)
2/18	5/16	10	:00	50.	32	-		15	05	-		19.	٧/	X 1	ત્રે	.48
1	/		:							L				X 3		
Gal/ft = (1" =	0.041	(2)=	0.163	3" =	0.367	4" =	0.653	6" =	1.469	10" =	4.080	12" =	5.875
	13) Dedicated Pu					full it was at
GROU	NDWA	TER	SAMP	LING D	ATA (if	product is	detected	l, do NOT	sample)		Sample	e Depth:			[√ if used]
Bottle	Bottle Type Date Time Method Amount & Volume mL Preservative [circle] Ice Filter pH VOA Glass 2/18/16 10:20 A 3 40ml HC) (ES) NO															
VOA Glass 2 / 18/16 10 : 20 A 3 40 m HC YES NO L Amber Glass / / : 250, 500, 1L (None) (HCI) (H ₂ SO ₄) YES NO																
Amber Glass / / : 250, 500, 1L (None) (HCI) (H ₂ SO ₄) YES NO																
Amber Glass / / : 250, 500, 1L (None) (HCI) (H ₂ SO ₄) YES NO White Poly 2 / \g / \lambda / \lambda \rangle \lambda \rangle														./		
White Poly 2 / 18 / 16 10 : 20 A 3 259, 500 (1) 1000 YES Yellow Poly 1 / 1 : 250, 500, 1L H ₂ SO ₄ YES														NO		6/
		1	1	3	•									NO		
Yellow Poly / : 250, 500, 1L H₂SO₄ YES NO Green Poly / : 250, 500, 1L NaOH YES NO Red Total Poly / : 125, 250, 500 HNO₃ YES NO Red Diss. Poly \(\) \(
		\(\frac{1}{1}\)	<u>,</u> &///	10	·)0	A		-					\sim			
ried Dist	3. 1 Oly	4/1	1	10	· ~ ~						(()		YES			
			1							ludo desel	icata actuati		123			
· · · · · · · · · · · · · · · · · · ·				12SO4, F							or write non-		inalizaia ha	low)		
ļ	VOA - GI	TTLE T	176	(826))	(8011)	IS ALLUW	בט רבת מנ	OTTLE IT	r E (Clicle	аррисавіе	or write non-	statiuatu a	inalysis De		[]	KIAW
B @	AMBER -			(8080)	((8150)	(TOX)					11				[]	WA[]
Analysis Allowed per Bottle Type	WHITE -			<u> </u>	nductivity)	75	SS) (Alkalir	nity) (HCC	O ₃ /CO ₃) (((SO ₄)	(Silica, T.)	NO3)				
is A	YELLOW	/ - Poly		(COD) (TOC) (N	H₃) (NO₃/NO	O ₂) (Tannir	n/Lignin)								
alys er Bo	GREEN -			(Cyanide)												
A g	RED TO						(Cr) (Cu)	(Fe) (Pb)	(Mn) (Ni)	(Ag) (Se)	(TI) (V) (Zn) (Hardne	ss)			
	RED DIS	SOLVED) - Poly	(Ca) (Fe)	(Mg) (Mn)	(K) (Na)										
MATE	D OLLA	VI ITY	DATA		Durge	Start Tir	mo:	0:00	`			Pump/	Railer In	ılet Dept	h:	
WATE Meas.	Metho			d (gal)	pH	ORP	E Con	<u> </u>		mp(°Ò	DTW		2 (mg/l)		/ater Qu	uality
0	A (10	_		00	705	120,1	300			.56	15.05		.46		Calgula	
1		05)		.40	655	133.)	20			. 00	15.05			clear		
2	A	08)		:70		252	20			. 17	15.05		.60		/Cala	
3	A(19	-	<u> </u>	.70	6.43		20		100	.29	15.05		.43		/Cula	1
4		143	1	·50	6.42	78.1		57	13	. 22	15.05		.81			rless
5	Α .	17)	1	.75	6.42	78.9		97	13	.93	15.05	le d			7 .	orless
6	11/10	- 17				, , , , , ,		VII.	1							
[Casing]	[Select	A-G]	[Cumulat	ive Totals]					[Circl	e units]					[Clarity, Co	olor]
	_					,		, 5		. 1	1					
1	. 6	1				1	~ 1-	100	10	A. 1/.	- 1/					

Low flow purge method ~ 8/7/20 100ml/pulse

R McMulun (PRINTED NAME)

SCS ENGINEERS

14945 SW Sequoia Parkway, Suite 180, Portland, OR 97224

Office: 503.639.9201 Fax: 503.684.6984 **PROJECT NAME:** Leichner Landfill WELL ID: LR-SD SITE ADDRESS: 9411 NE 94th Avenue, Vancouver, WA 98662 **BLIND ID:** 0 DUP ID: NA MW WIND FROM: SW LIGHT **MEDIUM HEAVY** NE Ε SE S (D48 ° C ? TEMPERATURE: **WEATHER:** SUNNY CLOUDY RAIN [Circle appropriate units] HYDROLOGY/LEVEL MEASUREMENTS (Nearest 0.01 ft) [Water Column] [Water Column x Gal/ft] [Product Thickness] DT-Product DT-Water DTP-DTW DTB-DTW Volume (gal) Date Time DT-Bottom 14.04 2/18/16 20:05 2.40 36. .31 86.1 X 1 X 3 10" = (2")= 4.080 5.875 3" = 0.367 4" = 0.653 12" = $Gal/ft = (dia./2)^2 \times 0.163$ 1" = 0.041 0.163 6" = 1.469 § METHODS: (A) Submersible Pump (B) Peristaltic Pump (C) Disposable Bailer (D) PVC/Teflon Bailer (E) Dedicated Bailer (F) Dedicated Pump (G) Other = [√if used] GROUNDWATER SAMPLING DATA (if product is detected, do NOT sample) Sample Depth: V Time Amount & Volume mL Preservative [circle] Filter pΗ **Bottle Type** Date Method § YES) MOI **VOA Glass** 40 m NO :30 118/16 (None) (HCI) (H₂SO₄) YES NO 250, 500, 1L Amber Glass 250, 500, (L) KEĠ NO NA 09 (Vone White Poly 11/ 21/ YES NO 250, 500, 1L H₂SO₄ Yellow Poly NaOH YES NO Green Poly 1 250, 500, 1L YES Red Total Poly 125, 250, 500 HNO₃ NO (HMO) (ES) KES 05:90 250 500, 1L Red Diss. Poly 118/16 YES 250, 500, 1L Total Bottles (include duplicate count): White no acid, Yellow H2SO4, Red HNO3 **BOTTLE TYPE** TYPICAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis below) OR [WA[X VOA - Glass (8260) (8011) Analysis Allowed per Bottle Type OR [WA [] AMBER - Glass (8080) (8150) (TOX) (TDS) (SO₄) (Silica, T.) (NO3) WHITE - Poly (pH) (Conductivity) (TSS) (Alkalinity) (HCO₃/CO₃) YELLOW - Poly (COD) (TOC) (NH_3) (NO₂/NO₂) (Tannin/Lignin) (Cyanide) GREEN - Poly RED TOTAL - Poly (As) (Sb) (Ba) (Be) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mn) (Ni) (Ag) (Se) (TI) (V) (Zn) (Hardness) RED DISSOLVED - Poly (Ca) (Fe) (Mg) (Mn) (K) (Na) Pump/Bailer Inlet Depth: **WATER QUALITY DATA** Purge Start Time: 09:07 Meas. Purged (gal) Нα **ORP** E Cond (µS) Temp(°C DTW Diss O₂ (mg/l) Water Quality Method § 0 0.00 298 11-18 36.75 3 10 7.14 34.1 0910 299 .68 7.00 46.6 1 4(0913 .25 0.70 298 0.40 93 .04 4(0916 36.25 297 3 .90 0.70 56.0 -01 26. .5-6 297 4 90 .00 0925 298 09.0 5 .30 12.11 36.25 0.23 6 [Select A-G] [Cumulative Totals] [Circle units] [Clarity, Color] [Casing]

(SIGNATURE)

Low flow purge method ~8/7/60 psi 75ml/pulse

SAMPLER: B Mcmullim

(PRINTED NAME)

SCS ENGINEERS

14945 SW Sequoia Parkway, Suite 180,

Portland, OR 97224

Office: 503.639.9201

Fax: 503.684.6984

PROJECT NAME: WELL ID: Leichner Landfill LB. 931816-21 9411 NE 94th Avenue, Vancouver, WA 98662 **BLIND ID:** SITE ADDRESS: DUP ID: NA WIND FROM: (MM) L(GHT) **MEDIUM HEAVY** Ν NE Ε SE S SW W TEMPERATURE: (E) SO . ° C **WEATHER:** SUNNY **CLOUDY** RAIN (Circle appropriate units) HYDROLOGY/LEVEL MEASUREMENTS (Nearest 0.01 ft) (Water Column) (Water Column x Gal/ft) [Product Thickness] Volume (gal) Time DT-Bottom DT-Product DT-Water DTP-DTW DTB-DTW 3/18/16 13:56 90.99 2.85 X 1 $\cdot 07$ X 3 (2)= 4" = 10" = 4.080 12" = $Gal/ft = (dia_1/2)^2 \times 0.163$ 0.041 0.163 3" = 0.367 0.653 6" = 1.469 5.875 § METHODS (A) Submersible Pump (B) Peristaltic Pump (C) Disposable Bailer (D) PVC/Teflon Bailer (E) Dedicated Bailer (F) Dedicated Pump (G) Other: [√ if used] GROUNDWATER SAMPLING DATA (if product is detected, do NOT sample) Sample Depth: Preservative [circle] Bottle Type Date Time Method § Amount & Volume mL ice Filter рΗ (HC) (YES) **VOA Glass** 7 118116 :20 (40 ml) NO 1/ (None) (HCI) (H₂SO₄) Amber Glass 250, 500, 1L YES NO White Poly 118/16 : 50 250, 500, 1L None YES) NO NA H2SO4 YES NO Yellow Poly 250, 500, 1L : NaOH YES NO 250, 500, 1L Green Poly : 125, 250, 500 HNO₃ YES Red Total Poly : ΜO 2/18/16 (HNO3 YES YE3 (250)500, 1L 4:2 Red Diss. Poly 250, 500, 1L YES Total Bottles (include duplicate count): White no acid, Yellow H2SO4, Red HNO3 **BOTTLE TYPE** TYPICAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis below) WALT VOA - Glass (8260) (8011) OR[] Analysis Allowed per Bottle Type AMBER - Glass (8080) (8150) (TOX) OR [WA [] (TSS), (TSS) (Alkalinity) (HCO₃/CO₃) ((C) (Silica, T.) WHITE - Poly (Conductivity) YELLOW - Poly (COD) (TOC) (NH₂) (NO₂/NO₂) (Tannin/Lignin) GREEN - Poly (Cyanide) RED TOTAL - Poly (As) (Sb) (Ba) (Be) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mn) (Ni) (Ag) (Se) (TI) (V) (Zn) (Hardness) RED DISSOLVED - Poly (Ca) (Fe) (Mg) (Mn) (K) (Na) 3:5 **WATER QUALITY DATA** Purge Start Time: Pump/Bailer Inlet Depth: Temp (°C) Diss O₂ (mg/l) ORP E Cond (μS) DTW Water Quality Meas. Purged (gal) pН Method § 0.00 ام) . 36.32 -J3 clean/Colorlesc 124.6 89 1 0.40 10 .71 26.22 .88 Coloriess 2 48.4 + O3 26.22 .83 Clear/Colorless 0.74 207 3 996 215 -85 36.97 lear/Colorlesc 1408 -10 26.22 .80 .48 4 .45 214 .86 5 214 26.27 colorless 6 [Casing] [Cumulative Totals] [Clarity, Color] Low flow purge method ~ 8/7/25psi 100 ml/pulse

SCS ENGINEERS

SAMPLER: RMWuluh (PRINTED NAME)

14945 SW Sequoia Parkway, Suite 180,

Portland, OR 97224

									Office:	503.639			rax:	503.68	4.0984	
PROJE	CT N	AME:		Leichn	er Land	fill				W	ELL ID:	LB-	105	5		
SITE A	DDRE	SS:		9411 N	IE 94th	Avenue	, Vancoi	uver, W	A 9866	32 B L	IND ID:	LB-	7160	16-1	1	31
											DUP ID:					NA
WII	ND FR	OM:	N	NE	Е	SE	S	sw	W	(NM)	(LIGH	n)	MED	IUM	HE	AVY
	VEATH		SUN	INY	CLO	VQU	RA	IN		?	TEM	PERA	rure:	(F)50	· ·	°C
			·/=: ./		1	$\overline{}$				owerses		(18/	Natural.	fCirc	le appropria	ite unitsl olumn x Gal/ft]
	-				ottom	DT-Pr	rest 0.01 f	t) DT-W	lator	5.M	Thickness] -DTW	[Water 0		ı		ne (gal)
Dat		11	me	_		DI-FI	oduct			D11		- 15	59	V 1		
QD11	7/16		: 12	42.	.32			29.	14			/λ.	21	X 1	d	.95
/	_/		:	8		<u> </u>		i			•	1 400]		X 3	4011 -	
Gal/ft = (1" =	0.041	(2")=	0.163	3" =	0.367	4" =	0.653	6" =	1.469	10" =	4.080	12" =	5.875
) Dedicated Pur					[v if used]
		ATER	SAMP			product is	detected						Depth:			
Bottle			ate			Method [§]	Amount			Pres	servative [c	circle]	Ice	Filter	рН	1
VOA C	Slass	2/1	7/16	[]	:35	<u></u>	3	(40	_		(HC)		(YES)	NO		
Amber	Glass	1	1	3)	1			250, 5		(None) (HCI) (H	₂ SO ₄)	YES	NO		
White	Poly	211	7/16	1)	: 35	A	3	(250), 5	00,1		(None)		(ES)	NO	NA	
Yellow	Poly	1	1	- 8	:			250, 5	00, 1L		H ₂ SO ₄		YES	NO		
Green	Poly	1	1	88	1			250, 5	00, 1L		NaOH		YES	NO		
Red Total	al Poly	1	1	1)	:			125, 25	50, 500		HNO ₃		YES	NO		
		2 //	5/11-			A	1	250, 5	00, 1L		(HNO)		(YES)	YES		
			1										YES			
		TTLE T					ED PER BO				or write non-		nalysis be	low)		
	VOA - GI			(8260)	(8011)				·						[]	WA [X]
be de	AMBER	- Glass		(8080)	(8150)	(TOX)								OR	[]	WA[]
N T e	WHITE -	Poly		(pH) (Co	nductivity)	(TDS) (T	SS) (Alkalir		0 ₃ /CO ₃) (((SO ₄)	(Silica, T.)	NO3				
Analysis Allowed per Bottle Type	YELLOW			<u> </u>	TOC) (N	H ₃) (NO ₃ /NO	O ₂) (Tannir	n/Lignin)								
er B	GREEN	<u> </u>		(Cyanide)	(E.) (E.)	(0.0) (0.1)	(0) (0)	(E.) (DL)	(B.4-) (B.E)	(4-) (8-)	/TI) /\/\ /7~) (Hardne	20)			
₹ ₾		SOLVED			(Mg) (Mn)		(Cr) (Cu)	(Fe) (Pb)	(MIN) (NI)	(Ag) (Se)	(TI) (V) (Zn) (Hardne	55)			
	KED DIS	SOLVEL	7 - Foly	(Ca) (ray	(Mg/(Mil)	(142)										
WATE	R QUA	ALITY	DATA		Purae	Start Tir	me:	1:14				Pump/	Bailer In	let Dep	th:	
Meas.	Meth			d (gal)	pН	ORP	E Con		°F Te	mp(°C)	DTW	Diss O	₂ (mg/l)	V	Vater Qu	uality
0	A(11	15		00	7.11	-3757	471		13	.23	29.76	5	.43	Clear	/Color	ess
1	ACIII	8)	0	.35	6.97	-340.6	54		13	. 23	29.76		.97	Clear	1 Colar	
2	4/11/2	215		50	6.96	-395.0	54			. 22	29.76		.49	clear	1-1	1
3	100	245		.80	6.86	-398.7	481		13	.26	29.76	 	.06	Clear	7 ,	vless
4	2	- 1		-10	6.76	-371.8	44	7		.38	29.76	-	.92	dear	7 1	orless
5	A(113		1	. 25	6.75	-381.2	44		-	-30	29.76		.90	120/	1	1855
_	7	30)	- 1	- 47	4					·30	29.76		.92	Clear	1	
6 [Casing]	Select	33) [A-G]	[Cumulat	ve Totals]	6.73	-392.1	44	0		e units]	01.16		19	Clear	[Clarity, C	
				-	had r	- 9/4	·/27f	osi	•	nl/puls	Se 7					

SCS ENGINEERS

14945 SW Sequoia Parkway, Suite 180, Portland, OR 97224

Office: 503 639 9201

Fax: 503.684.6984

									JIIICE.	303.038	9.9201	- Court	I ax.	000.00	1.0001	-
PROJE	CT N	AME:		Leichne	er Land	fill				W	ELL ID:	B-10 C	DR			
SITE A	DDRE	SS:		9411 N	E 94th	Avenue	, Vancoi	uver, W	A 9866	32 BL	IND ID:	IR-C	17/16	0-09		
											DUP ID:					NA
WIN	ND FR	ом:Г	N	NE	E	SE	S	sw	W	(NW)	(JGH)	MED	IUM	HE	AVY
	/EATH	-	SUN	INY	GLO	UDY	RA	IN		?	TEM	PERA	TURE:			° C
		_		= 40115	SEMEN	TC (t)				[Deceloration	*********	[Water (Column1	(Circ	le appropria	ite units1 olumn x Gal/ft]
				DT-B			rest 0.01 f	DT-W	later		-DTW		DTW	Ī		ne (gal)
Dat	-		me			D1-F1	oduct						.73	X 1		.99
211) 116	10	:12	121.	.10			41.	37		•	_/_	. 12	i i	[**	
	/]		:	-						0.050		4 400	10" =	X 3 4.080	12" =	5.875
Gal/ft = (1" =	0.041	(2")=	0.163	3" =	0.367	4" =	0.653	6" =	1.469		4.080	12 -	5.675
	1) Dedicated Pu					[√ if used]
GROU	NDWA	TER	SAMP	LING D			s detected						e Depth:		-11	-1
Bottle	Туре		ate	Tir		Method §		t & Volur		Pres	servative [circle]	Ice	Filter	pН	1
VOA G	Slass	211	7/14	10:	:40	A	3	(40			(HC)		Æ8	NO		V
Amber	Glass	- 1	1						00, 1L	(None	e) (HCI) (H	₂ SO ₄)	YES	NO		
White	Poly	2/1	7/16	(0:	: 40	A	3	(250), 5	00(11)		None		YES.	NO	NA	V
Yellow	Poly	1	1		:			250, 5	00, 1L		H ₂ SO ₄		YES	NO		
Green	Poly	1	1		:			250, 5	00, 1L		NaOH		YES	NO		
Red Total	al Poly	1	1		:			125, 25	50, 500		HNO_3		YES	NO		
Red Dis	s. Poly	2/1	7/16	10	:40	A	1	(250),5	00, 1L		(HNO) ₃		(ES)	(F)		
		1	1	1.7	:			250, 5	00, 1L				YES			
White no acid, Yellow H2SO4, Red HNO3 7 Total Bottles (include duplicate count):																
	White no acid, Yellow H2SO4, Red HNO3 Total Bottles (include duplicate count): BOTTLE TYPE TYPICAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis below)															
	BOTTLE TYPE TYPICAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis below) VOA - Glass (8260) (8011) OR (7) WA (1)															
wed 'pe	AMBER -	- Glass		(8080)	(8150)	(TOX)				X		\bigcirc		OR	[]	WA []
Allo,	WHITE -				nductivity)		SS) (Alkalii		O ₃ /CO ₃) (((SO ₄)	(Silica, T.)	(NO3/				
sis , Bottl	YELLOW			(COD) ((Cyanide)	TOC) (N	H ₃) (NO ₃ /N	O ₂) (Tannii	n/Lignin)								
Analysis Allowed per Bottle Type	GREEN TO	TAL - Pol	lv		(Ba) (Be) (Cd) (Co) (Cr) (Cu)	(Fe) (Pb)	(Mn) (Ni) (Ag) (Se)	(TI) (V) (Zr	n) (Hardne	ess)			
		SSOLVED			(Mg) (Mn)											
					9											
WATE	R QUA	ALITY	DATA		Purge	Start Ti	me: \(P1: C					/Bailer Ir			
Meas.	Meth	od [§]	Purge	d (gal)	pН	ORP	E Con	id (μS)	°F Te	emp 😗	DTW	Diss (O ₂ (mg/l)		Nater Q	
0	A (10	157	0.	.00	702	-334.1	310	1	19	.61	38 45	4	.85	dear	colorles	5
1	A(10	19)	0	-40	6.93	-3875	39	3		.69	37.90		90	clear	/ Celor	1255
2	I A Ze	22)	0	.55	6.95	-398.7		Q	19	PD.	37.90		.49	clear	Color	less
3		25)	Ĭ	.00	6.98	8 OCP-	41		13	.70	37.90	1	-0\	clear	Color	less
4	A(10		1	.25	7.00		111			.69	37.90	0	.93	dear	/Color	less
5	ACIO		Ý	.60	7.00	-453,1	41			. 70	37.90		1.86		/Color	1
6	TILLO	SI.		W Y	7.500)	,30,1	1-1-1	7	1				•0			
[Casing]	[Selec	t A-G]	[Cumula	tive Totals]	2.74				[Circ	le units]				-	[Clarity, C	Color]
	. 13			1-0: U	, \ ,	010	1000-	. 10	0.11	- Jea						
しのい	T106	· pu	rge	MICH	100 M	0//	/80ps	1 10	wm(/	DVISC						
		•	7								7					

SAMPLER: B MCM UNUM
(PRINTED NAME)

SCS ENGINEERS

14945 SW Sequoia Parkway, Suite 180, Portland, OR 97224

Office: 503.639.9201

Fax: 503.684.6984

									Onice.	303.038	9.9201		ı ax.	303.00	7.0007	
PROJE	CT N	AME:		Leichne	er Land	fill				W	ELL ID:	DUD	\mathcal{I}			
SITE A	DDRE	SS:		9411 N	E 94th	Avenue	, Vanco	uver, W	/A 9866	62 B l	IND ID:	LR-6	21716	-10		
											DUP ID:					NA
WI	ND FR	ом:	N	NE	Е	SE	S	SW	W	(NW)	LIGH	1)	MED	IUM	HE	AVY
	VEATH	- 1	SUN	YNY	Cro	UDY	RA	IN		?	TEN	IPERA	TURE:			° C
		•	VEL N	EVELLE	PEMEN	ITS /Non	rest 0.01 f	9)		(Product	Thickness]	[Water (Column	Circ	le appropria	ate units1 olumn x Gal/ft]
Dat	$\overline{}$		me	DT-B			oduct	DT-V	Vater		-DTW	DTB-		[M II CI YOO AMIII	ne (gal)
	,	* 1		3,00			2.301							X 1		
	',										āt.			X 3		
Gal/# - /-	/ dia./2) ² x	0.163	1" =	0.041	(2")=	0.163	3" =	0.367	4" =	0.653	6" =	1.469	10" =	4.080	12" =	5.875
									r (E) Dedica) Dedicated Po	ımp (G) Othe				
1/2/2/2017							s detected						Depth:			[√ if used]
Bottle			ate	Tir		Method §		t & Volu			servative	circle]	Ice	Filter	рН	V
VOA G		_	7/16	_	35	A	3		ற		HCD		(E)	NO		V
Amber	-	1	1	197	33				00, 1L	(None	e) (HCI) (H	I ₂ SO ₄)	YES	NO		
White	-	2 /1	7/16	10	35	A.	3		(17),000		None		(F)	NO	NA	V
Yellow	-	1	1		<u> </u>				00, 1L		H ₂ SO ₄		YES	NO		
Green		1	1	18	<u> </u>			250, 5	00, 1L		NaOH		YES	NO		
Red Total	-	1	1	9				125, 2	50, 500		HNO ₃		YES	NO		
Red Dis	s. Poly	2/1	7/16	10:	35	A		(250) , 5	00, 1L		MNO3)		(ES)	(FS)		-
		1	1	- 8				250, 5	00, 1L		3		YES			
	White no	o acid,	Yellow H	- 12SO4, R			7				icate count					
	во	TTLE T	YPE	\sim	ANALYS	IS ALLOW	ED PER BO	OTTLE TY	PE (Circle	applicable	or write non	standard a	nalysis be			5/-
_	VOA - GI			(8260)	(8011)										[]	WALL
ype	AMBER -			(8080) (pH) (Co	(8150)	(TOX)	'SS) (Alkalii	nity) /HC/	O ₃ /CO ₃) ((CD (SO ₄)	(Silica, T.)	(NO3)		UR	[]	WA []
Analysis Allowed per Bottle Type	WHITE -				TOC) (NI			n/Lignin)	3,003/	(004)	(553) (9)					
alysis Bot	GREEN			(Cyanide)												
Ana	RED TO	TAL - Po	ly				(Cr) (Cu)	(Fe) (Pb)	(Mn) (Ni) (Ag) (Se)	(TI) (V) (Z	n) (Hardne	ess)			
	RED DIS	SOLVE	O - Poly	(Ca) Fe	(Mg) (Mn)	(K) (Na)										
	B OUA	NI ITY	DATA		Durgo	Start Ti	mo.				ĺ	Pump	Bailer Ir	nlet Dep	th:	
WATE Meas.	Meth			d (gal)	pH	ORP		d (μS)	°F Te	emp °C	DTW	<u> </u>	$\rho_2 (\text{mg/I})$		Vater Q	uality
0	weth	ou -	_	.00		J. "		Δ (μΟ)					. 5.7			
1					•						•		•			
2				• ·							•);					
3				•							¥8		. 6			
4			5	*							<u>+9</u>		.			
5				80						×	•2		*1			
6	1)									×						
[Casing]	[Select	A-G]	(Cumulat	ive Totals]					[Circ	le units]					[Clarity, C	Color]
C-11	cote	0	4	LB-	آما ۔)R										
Call	icol e	1	WI	C 12	(0)	P11					1					

- 10 T

SAMPLER: RM Wolfen
(PRINTED NAME)

SCS ENGINEERS

14945 SW Sequoia Parkway, Suite 180,

Fax: 503.684.6984

Portland, OR 97224

PROJECT NAME: R-12T Leichner Landfill WELL ID: 1

9411 NE 94th Avenue, Vancouver, WA 98662 SITE ADDRESS: BLIND ID: -R-031816-20

DUP ID: NA WIND FROM: (MM) NF Ε SE S SW W LIGHT **MEDIUM HEAVY** RAIN **WEATHER:** SUNNY CLOUDY TEMPERATURE: (P) ° C 0

Office: 503.639.9201

[Circle appropriate units] HYDROLOGY/LEVEL MEASUREMENTS (Nearest 0.01 ft) [Product Thickness] [Water Column] [Water Column x Gal/ft] DTP-DTW Volume (gal) Date Time DT-Bottom DT-Product DT-Water DTB-DTW 2/18/16 13:01 26.82 18-21 55.03 X 1 X 3 $Gal/ft = (dia./2)^2 \times 0.163$ 1" = 0.041 2"\= 0.163 3" = 0.367 0.653 6" = 1.469 10" = 4.080 12" = 5.875 § METHODS (A) Submersible Pump (B) Peristaltic Pump (C) Disposable Bailer (D) PVC/Teflon Bailer (E) Dedicated Bailer (F) Dedicated Pump (G) Other

[√ if used] GROUNDWATER SAMPLING DATA (if product is detected, do NOT sample) Sample Depth: Bottle Type Date Time Method Amount & Volume mL Preservative [circle] Ice Filter Hg V 40 m **VOA Glass** 118/16 3:25 (HG YES NO 1 **Amber Glass** 250, 500, 1L (None) (HCI) (H₂SO₄) YES NO : White Poly 18/16 13:30 (250, 500,(1L) KES NO None NA H₂SO₄ Yellow Poly 250, 500, 1L YES NO : Green Poly 250, 500, 1L NaOH YES NO : 125, 250, 500 HNO₃ YES Red Total Poly : NO

(250) 500, 1L

250, 500, 1L

Total Bottles (include duplicate count): White no acid, Yellow H2SO4, Red HNO3

3:25

Red Diss. Poly

1/8/1 6

BOTTLE TYPE TYPICAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis below) VOA - Glass (8260 ORL WAD Analysis Allowed per Bottle Type AMBER - Glass (8080) (8150) (TOX) OR [WA[] WHITE - Poly KOS (TSS) (HCO₃/CO₃) (C) (Conductivity) (Alkalinity) (COD) (NO₃/NO₂) YELLOW - Poly (TOC) (NH₃) (Tannin/Lignin) GREEN - Poly (Cvanide) RED TOTAL - Poly (As) (Sb) (Ba) (Be) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mn) (Ni) (Ag) (Se) (TI) (V) (Zn) (Hardness) RED DISSOLVED - Poly (Ca) (Fe) (Mg) (Mh) (K) (Na)

WATER QUALITY DATA Purge Start Time: 13:04 Pump/Bailer Inlet Depth: ORP Diss O₂ (mg/l) Meas pН °F Temp 🔇 DTW Method § Purged (gal) E Cond (μS) Water Quality 16.85 690 0 0.00 1306 .07 /Colorless 25.0 1 98.6 .6. 2 0.50 96.7 .47 3686 3 0.80 97.0 9182 .41 .83 97.4 26.85 . 24 4 .10 6.83 .48 5 6.81 36.89 40 97 6 [Select A-G] [Cumulative Totals] [Circle units] [Clarity, Color]

Low flow purge methoda 8/7/35psi 100ml/pulse

(ON)

WES

YES

⟨ES

SCS ENGINEERS

SAMPLER: RMWWW. (PRINTED NAME)

14945 SW Sequoia Parkway, Suite 180, Portland, OR 97224

Office: 503.639.9201

Fax: 503 684 6984

									Omoo.	000.00	0.0201		· ax.	505.00	4.0004	
PROJE	CT N	AME:		Leichn	er Land	lfill				W	/ELL ID:	LB.	-13	D		
SITE A	DDRE	SS:		9411 N	IE 94th	Avenue	, Vanco	uver, W	/A 9866	32 B I	LIND ID:	LR-	2216	16-0	2	
										_	DUP ID:				*	NA
Wil	ND FR	OM:	N	NE	E	SE	S	SW	W	(nin)	(IGI	乜	MED	NUI	HE	AVY
٧	VEATH	HER:	SU	YNY	CLC	UDY	RA	IN		?	TEN	IPERA	TURE:	(F)49	7 .	° C
HVDB	01.00	2V/I F	VELV	IFASIII	REMEN	ITS (Nea	roet 0.01 f	31		[Product	Thickness]	[Water I	Column	(Circ	le appropri	ate units1 olumn x Gal/ft]
Da		_	me		ottom	DT-Pr		DT-V	Vater	r	-DTW	DTB-	1		***************************************	me (gal)
2/16		10	:39	88			-	_	71		-	61	.17	X 1	9	.97
<i>d</i> , ((1	10	.01	00	.00			OL I	1.603		3		1.7	X 3		
Gal/ft = (dia /2)2 y	0.163	1" =	0.041	(2"}	0.163	3" =	0.367	4" =	0.653	6" =	1.469	10" =	4.080	12" =	5.875
							-) Dedicated Pu					
		_				product is					,		e Depth:	:		[√ if used]
Bottle	T		ate			Method §	Amount				servative [Ice	Filter	pН	V
VOA		_	6116		:05	A	3		m)		(HCI)		(YE)	NO		
Amber		2/1	1		:	\sim	-3		00, 1L	(None) (HCI) (H	2SO4)	YES	NO		
White		5/1	LIM	1.1		Λ.	3	(250, 5		(110110	None	24/	YE\$	NO	NA	
		1	6/16	<u> </u>	: 05	A			00, 1L		H ₂ SO ₄		YES	NO	1,11	
Yellow									00, 1L		NaOH		YES	NO		
Green	_	,	-								HNO ₃		YES	NO		
Red Tot		7	1//11	11	:	Λ.			50, 500 00, 1L		(HNO ₃)		YES	YES		
Red Dis	s. Poly	۷ /	16/16	11	:05		1		00, 1L		11103		YES	9		
			1	10004 5			7			lude duali	icate count	١-	1.0			
		o acid, TTLE T			Red HNO		FD PER BO				or write non-		analysis be	low)		
	VOA - GI		-	(8260)	(8011)	IO ALLOW	ED I EK De	71122 11	(00.0	аррисаеле	0		,		[]	WA [V]
be de	AMBER -	- Glass		(8080)	(8150)	(TOX)								OR	[]	WA[]
Allow Tyl	WHITE -	Poly		(pH) (Co	nductivity)	(TDS) (T	SS) (Alkalir	nity) (HCC	03/CO3)	(SO ₄)	(Silica, T.)	(403)				
sis /	YELLOW			<u> </u>	TOC) (NE	13) (NO ₃ /NO	D ₂) (Tannir	n/Lignin)								
Analysis Allowed per Bottle Type	GREEN	- Poly TAL - Po	h .	(Cyanide)	(Ba) (Ba)	(Cd) (Co)	(Cc) (Cu)	(Ea) (Oh)	(Mn) (Ni)	(Aa) (Se)	(Ti) (V) (Zr	n) (Hardne	988)			
۱ ۲		SOLVE			(Mg) (Mn)		(61) (64)	(16) (10)	(1411) (141)	(//9) (00)	(17) (*) (4-1	i) (ridiano				
				- 5							,					
WATE	R QUA	ALITY	DATA		Purge	Start Tir	ne: (0:41	9			Pump/	Bailer Ir	nlet Dep	th:	
Meas.	Meth	od §	Purge	d (gal)	рН	ORP	E Con	d (μS)	°F Te	mp(°C)	DTW	Diss C) ₂ (mg/l)	V	Vater Q	uality
0	A(101	12)	0.	00	7.21	65.0	93	3		.86	27.71	4	.02	Clear	/Color	ess
1	Alla	15)	0	50	6.84	58.3	31.	7	M	84.	27.71	4	.72	clear	/ Color	less
2		(84	0	90	6.74	59.8	90	Ч	1[18.	27.71	5	.49	Clear	1 Colo	less
3	/ 1	51)		.40	6.71	61.0)(.81	27.71	5	.71	Clean	Malas	19
4	ACIO	-		.60	6.69	62.7	30		()	.78	27.71	5	.76		/ Color	
5	A(io			.85	6.68		2/1		١١	.78	27.71	5	.78	1	/Colar	AC. 177-2-
6		-		16.54							tá					
[Casing]	[Select			ive Totals]		, ,	7EG		-	e units]					[Clarity, C	Color]
012	flow	, Du	rae 110	rethod	J~ 8	3/7/1	12400	100	aml/	side						
10 -		1	7	,		. ,			(//	JV13 C	·					

SCS ENGINEERS

14945 SW Sequoia Parkway, Suite 180, Portland, OR 97224

Office: 503.639.9201 Fax: 503.684.6984 WELL ID: PROJECT NAME: Leichner Landfill 9411 NE 94th Avenue, Vancouver, WA 98662 BLIND ID: IR-SITE ADDRESS: 0) NA DUP ID: NW **HEAVY** SW W LIGHT' MEDIUM WIND FROM: NE Ε SE S TEMPERATURE: (° F) 49 ° C RAIN **WEATHER:** SUNNY CLOUDY [Circle appropriate units] [Water Column x Gal/ft] HYDROLOGY/LEVEL MEASUREMENTS (Nearest 0.01 ft) (Water Column) [Product Thickness] Volume (gal) DT-Product DT-Water DTP-DTW DTB-DTW DT-Bottom Date Time X 1 X 3 4" = 6" = 1.469 10" = 4.080 12" = 5.875 1" = 0.041 (2")= 0.163 3" = 0.367 0.653 $Gal/ft = (dia./2)^2 \times 0.163$ § METHODS: (A) Submersible Pump (B) Peristaltic Pump (C) Disposable Bailer (D) PVC/Teflon Bailer (E) Dedicated Bailer (F) Dedicated Pump (G) Other = [v if used] Sample Depth: GROUNDWATER SAMPLING DATA (if product is detected, do NOT sample) V Filter Amount & Volume mL pΗ Preservative [circle] lce **Bottle Type** Date Time Method § HCI) (YES) NO 40 ml **VOA Glass** 116/16 :00 (None) (HCI) (H2SO4) YES NO 250, 500, 1L **Amber Glass** : YES NO NA :00 (250, 500, 1L) None White Poly 2/110/16 NO 250, 500, 1L H2SO4 YES Yellow Poly : YES NO 250, 500, 1L NaOH Green Poly : 125, 250, 500 HNO₃ YES NO Red Total Poly (HNQ3 (250, 500, 1L (YES) (YES) 116/16 Red Diss. Poly : 00 250, 500, 1L YES Total Bottles (include duplicate count): White no acid, Yellow H2SO4, Red HNO3 TYPICAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis below) **BOTTLE TYPE** [X] AW OR[] (8260) VOA - Glass (8011) Analysis Allowed per Bottle Type AMBER - Glass (8080) (8150) (TOX) OR [WA[] (HCO₃/CO₃) (CI) (SO₄) (Silica, T.) (Conductivity) (TDS) (TSS) (Alkalinity) WHITE - Poly (NH₃) (NO_3/NO_2) (Tannin/Lignin) (COD) (TOC) YELLOW - Poly GREEN - Poly (Cvanide) (As) (Sb) (Ba) (Be) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mn) (Ni) (Ag) (Se) (TI) (V) (Zn) (Hardness) RED TOTAL - Poly (Ca) (Fe) (Mg) (Mi) (K) (Na) RED DISSOLVED - Poly Pump/Bailer Inlet Depth: WATER QUALITY DATA Purge Start Time: Diss O₂ (mg/l) Water Quality ORP °C DTW На E Cond (µS) °F Temp Meas Method § Purged (gal) 0.00 0 1 2 3 4 5 6 [Clarity, Color] [Circle units] [Select A-G] [Cumulative Totals]

Collected at LB-130

SAMPLER: B Munulum

SCS ENGINEERS

14945 SW Sequoia Parkway, Suite 180, Portland, OR 97224

Office: 503.639.9201 Fax: 503.684.6984 **PROJECT NAME:** Leichner Landfill WELL ID: 1-R-17T SITE ADDRESS: 9411 NE 94th Avenue, Vancouver, WA 98662 BLIND ID: LB-021816-DUP ID: NA (NW) **HEAVY** WIND FROM: SW W (LIGHT) **MEDIUM** NE E SE S ° C SUNNY CLOUDY RAIN ? TEMPERATURE: WEATHER: (Circle appropriate units) HYDROLOGY/LEVEL MEASUREMENTS (Nearest 0.01 ft) [Product Thickness] [Water Column] [Water Column x Gal/ft] Volume (gal) DT-Bottom DT-Product DT-Water DTP-DTW DTB-DTW Date Time 51.99 40 X 1 2/18/16 08:10 . 22 X 3 (2"F 4" = 10" = 4.080 12" = 5.875 1" = 0.041 0.163 3" = 0.653 6" = 1 469 $Gal/ft = (dia./2)^2 \times 0.163$ 0.367 § METHODS: (A) pubmersible Pump (B) Peristaltic Pump (C) Disposable Bailer (D) PVC/Teflon Bailer (E) Dedicated Bailer (F) Dedicated Pump (G) Other = [√ if used] GROUNDWATER SAMPLING DATA (if product is detected, do NOT sample) Sample Depth: Filter pΗ Time Method § Amount & Volume mL Preservative [circle] Ice **Bottle Type** Date KES) 40 m NO **VOA Glass** 2/18/16 OF: 40 250, 500, 1L (None) (HCI) (H2SO4) YES NO Amber Glass (ES) NO NA 40 250,500(11) None 1(8/16 · 80 White Poly YES H2SO4 NO 250, 500, 1L Yellow Poly NO 250, 500, 1L NaOH YES Green Poly HNO₃ YES NO Red Total Poly 125, 250, 500 YES) MND YES Red Diss. Poly 2/18/16 08: 40 250, 500, 1L YES 250, 500, 1L Total Bottles (include duplicate count): White no acid, Yellow H2SO4, Red HNO3 TYPICAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis below) BOTTLE TYPE (826p) OR [WAIXI VOA - Glass (8011) Analysis Allowed per Bottle Type OR I WA[] AMBER - Glass (8080) (8150) (TOX) (IDS) (HCO₃/CO₃) ((CI) (SO₄) (Silica, T.) WHITE - Poly (Hq) (Conductivity) (TSS) (Alkalinity) (COD) (NH₃) (NO_3/NO_2) (Tannin/Lignin) YELLOW - Poly (TOC) GREEN - Poly (Cyanide) (As) (Sb) (Ba) (Be) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mn) (Ni) (Ag) (Se) (TI) (V) (Zn) (Hardness) RED TOTAL - Poly RED DISSOLVED - Poly (Ca) (Fe) (Mg) (Mn) (K) (Na) Pump/Bailer Inlet Depth: **WATER QUALITY DATA** Purge Start Time: 08:31 °F Temp(°C Diss O₂ (mg/l) DTW Water Quality Meas. Method § Purged (gal) Hα ORP E Cond (µS) 1 89 35,40 0873 0.00 421 0.56 040 98 35-40 8 40 -31 2 0.05-00 -85.4 90 35.40 0.37 clear/coloricss 3 . 20 424 7-00 105.8 31 4 50 7.00 107.3 1733 97 35.40 0. Clear/Calorless .96 423 clear/(glavless 5 08 38 \DD -99. 0. [Clarity, Color] [Select A-G] [Cumulative Totals] [Circle units] [Casing] purge method ~ 8/7/40psi 100ml/pulse

SAMPLER: Gram McMullen

SCS ENGINEERS

14945 SW Sequoia Parkway, Suite 180, Portland, OR 97224

office: 503 639 9201 Fax: 503 68

Office: 503.639.9201 Fax: 503.684.6984 Leichner Landfill WELL ID: **PROJECT NAME: BLIND ID:** 02/6/6 9411 NE 94th Avenue, Vancouver, WA 98662 SITE ADDRESS: NA DUP ID: ЩGHT MEDIUM **HEAVY** (WW) SW W WIND FROM: NE SE S (°) ° C **TEMPERATURE:** SUNNY CLOUDY RAIN **WEATHER:** (Circle appropriate units) [Water Column x Gal/ft] [Product Thickness] [Water Column] HYDROLOGY/LEVEL MEASUREMENTS (Nearest 0.01 ft) Volume (gal) DTB-DTW DT-Water DTP-DTW Time DT-Bottom DT-Product 10.5 09:49 X 1 .40 2/16 116 X 3 5.875 10" = 4.080 1.469 0.041 (2")= 0.163 0.653 6" = 1" = $Gal/ft = (dia./2)^2 \times 0.163$ § METHODS: (A) Submersible Pump (B) Peristaltic Pump (C) Disposable Bailer (D) PVC/Teflon Bailer (E) Dedicated Bailer (F) Dedicated Pump (G) Other = [v if used] Sample Depth: GROUNDWATER SAMPLING DATA (if product is detected, do NOT sample) Filter pΗ V Amount & Volume mL Preservative [circle] lce Time Method § **Bottle Type** Date (HCI) (YES NO 40 m) **VOA Glass** 16/16 10 :05 YES (None) (HCI) (H₂SO₄) 250, 500, 1L Amber Glass NA YES NO None (250, 500, (TL) White Poly :00 YES NO H₂SO₄ 250, 500, 1L Yellow Poly YES NO NaOH 1 1 250, 500, 1L Green Poly NO HNO₃ YES 125, 250, 500 Red Total Poly YES (ES (HNO) (250, 500, 1L 116/16 Red Diss. Poly :00 YES 250, 500, 1L Total Bottles (include duplicate count): White no acid, Yellow H2SO4, Red HNO3 TYPICAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis below) **BOTTLE TYPE** WALXI OR[] (8260) (8011) VOA - Glass OR [WA[] (TOX) AMBER - Glass (8080) (8150) Analysis Allowed per Bottle Type (HCO₃/CO₃) (SO_4) (IDS) WHITE - Poly (Conductivity) (TSS) (Alkalinity) (NO₃/NO₂) (Tannin/Lignin) YELLOW - Poly (COD) (TOC) (NH₃) (Cyanide) GREEN - Poly (Sb) (Ba) (Be) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mn) (Ni) (Ag) (Se) (TI) (V) (Zn) (Hardness) RED TOTAL - Poly (As) RED DISSOLVED - Poly (Ca) (Fe) (Mg) (Mn) (K) (Na) Pump/Bailer Inlet Depth: Purge Start Time: () WATER QUALITY DATA Diss O₂ (mg/l) Water Quality °F Temp (°C) DTW ORP Meas. Method § Purged (gal) E Cond (µS) 36.40 90 .72 0.00 20.0 .80 0 36.40 .02 .49 3 10 0. Coloriess 0 10. 5 1003 [Clarity, Color] [Casing] [Select A-G] Low flow purge method~ 8/7/65ps: 100m/pulse

SAMPLER: B MMULLIN

SCS ENGIN

14945 SW Seguoja Parkway, Suite 180

14343	O V V	06	quoia i	airway,	Juice	100
Portlar	nd. C)R	97224			

Office: 503.639.9201 Fax: 503.684.6984 **PROJECT NAME:** Leichner Landfill WELL ID: 1-R-205 SITE ADDRESS: 9411 NE 94th Avenue, Vancouver, WA 98662 BLIND ID: DUP ID: NA NW) WIND FROM: NE LIGHT **MEDIUM HEAVY** TEMPERATURE: (F) WEATHER: SUNNY CKOMBA (RAIN) ? ° C (Circle appropriate units) HYDROLOGY/LEVEL MEASUREMENTS (Nearest 0.01 ft) [Product Thickness] [Water Column] [Water Column x Gal/ft] Volume (gal) DT-Bottom DT-Product DT-Water DTB-DTW Time DTP-DTW 39.34 2/17/16 2 :14 .50 X 1 22.16 X 3 1" = (21)= 10" = 4.080 5.875 $Gal/ft = (dia./2)^2 \times 0.163$ 0.041 0.163 3" = 0.367 0.653 1.469 § METHODS (A) Submersible Pump (B) Peristaltic Pump (C) Disposable Bailer (D) PVC/Teflon Bailer (E) Dedicated Bailer (F) Dedicated Pump (G) Other = [√if used] GROUNDWATER SAMPLING DATA (if product is detected, do NOT sample) Sample Depth: **Bottle Type** Date Time Method § Amount & Volume mL Preservative [circle] Ice Filter pΗ (40 m) (HC/ (YES NO **VOA Glass** 2/17/16 250, 500, 1L (None) (HCI) (H₂SO₄) Amber Glass YES (250) 500(1L) None (YES) NO NA White Poly 2117116 H₂SO₄ YES NO Yellow Poly 250, 500, 1L : YES NO Green Poly 250, 500, 1L NaOH 125, 250, 500 HNO₃ YES NO Red Total Poly : Red Diss. Poly 250) 500, 1L HNO3 (YES) (YES) 250, 500, 1L YES White no acid, Yellow H2SO4, Red HNO3 Total Bottles (include duplicate count): TYPICAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis below) **BOTTLE TYPE** VOA - Glass 18260 OR [] WA [X] Analysis Allowed per Bottle Type AMBER - Glass (8080) (8150) OR I WA[] (TOX) WHITE - Poly (Conductivity) (TDS) (TSS) (Alkalinity) (HCO₃/CO₃) YELLOW - Poly (COD) (TOC) (NH₃) (NO_3/NO_2) (Tannin/Lignin) GREEN - Poly (Cyanide) RED TOTAL - Poly (As) (Sb) (Ba) (Be) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mn) (Ni) (Ag) (Se) (TI) (V) (Zn) (Hardness) RED DISSOLVED - Poly (Ca) (Fe) (Mg) (Mn) (K) (Na) **WATER QUALITY DATA** Pump/Bailer Inlet Depth: Purge Start Time: Meas. ORP Diss O₂ (mg/l) Method § °F Temp(°C Purged (gal) pН E Cond (µS) DTW Water Quality 0.00 30 J 347.8 .03 - [] Orange 1 05.0 -4015 214 .88 .((, 2 -441.5 0.51 321 3 0.85 .48 7.05 105.3 107,8 7.05 390 00 5 39.36 7.04 1113.0 6 [Clarity, Color] Low flow purge method ~ 8/7/30ps: 100ml/pulse

SCS ENGINEERS

14945 SW Sequoia Parkway, Suite 180, Portland, OR 97224

Fax: 503.684.6984 Office: 503.639.9201 WELL ID: LR -JUI Leichner Landfill PROJECT NAME: 9411 NE 94th Avenue, Vancouver, WA 98662 BLIND ID: LB-021616-05 SITE ADDRESS: DUP ID: NA **MEDIUM HEAVY** (M) (MGHT) WIND FROM: N NF Е SE S SW W TEMPERATURE: P 49 SUNNY CLOUDY RAIN WEATHER: [Circle appropriate units] HYDROLOGY/LEVEL MEASUREMENTS (Nearest 0.01 ft) [Product Thickness] [Water Column] [Water Column x Gal/ft] Volume (gal) DTB-DTW DT-Water DTP-DTW Time DT-Bottom DT-Product 33.95 53 8.30 24.35 X 1 2/16/16 :47 X 3 10" = 4.080 12" = 5.875 (2")= 3" = 0.367 4" = 0.653 1.469 $Gal/ft = (dia./2)^2 \times 0.163$ 1" = 0.041 0.163 § METHODS: ((A) Submersible Pump (B) Peristaltic Pump (C) Disposable Bailer (D) PVC/Teflon Bailer (E) Dedicated Bailer (F) Dedicated Pump (G) Other = [√if used] Sample Depth: GROUNDWATER SAMPLING DATA (if product is detected, do NOT sample) Filter pΗ Ice Preservative [circle] Time Amount & Volume mL **Bottle Type** Date Method § HC VE 5 NO 40 m **VOA Glass** 2 16/16 :05 (None) (HCI) (H₂SO₄) 250, 500, 1L YES NO **Amber Glass** (None (YES NO NA (250, 500(11) White Poly 110/16 :05 H₂SÕ₄ YES NO 250, 500, 1L Yellow Poly : YES NO NaOH Green Poly 250, 500, 1L NO HNO₃ YES 125, 250, 500 Red Total Poly (ES KES (250, 500, 1L HNO :00 Red Diss. Poly 116/16 YES 250, 500, 1L Total Bottles (include duplicate count): White no acid, Yellow H2SO4, Red HNO3 TYPICAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis below) **BOTTLE TYPE** WALX OR [(8260) (8011) VOA - Glass OR [WA[] Analysis Allowed per Bottle Type AMBER - Glass (8080) (8150) (TOX) (SO₄) (pH) (Conductivity) (TDS) (TSS) (Alkalinity) (HCO₃/CO₃) WHITE - Poly (COD) (NO₂/NO₂) YELLOW - Poly GREEN - Poly (Cvanide) (As) (Sb) (Ba) (Be) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mn) (Ni) (Ag) (Se) (TI) (V) (Zn) (Hardness) RED TOTAL - Poly RED DISSOLVED - Poly (Ca) (Fe) (Mg) (Mn) (K) (Na) :47 Purge Start Time: Pump/Bailer Inlet Depth: WATER QUALITY DATA °F Temp(°C Diss O₂ (mg/l) Water Quality **ORP** DTW Hg E Cond (uS) Meas. Method § Purged (gal) 90 24.35 64.0 141 223 .10 58. 1 0.40 46 alarless 3 .80 3 .90 247 247 .81 clear .50 4 .80 Clear 5 [Circle units] [Clarity, Color] [Cumulative Totals] Law flow purge method ~ 8/7/40ps: 100m//pulse

SAMPLER:

B Manulen

SCS ENGINEERS

14945 SW Sequoia Parkway, Suite 180, Portland, OR 97224

Office: 503.639.9201

Fax: 503.684.6984

									Office:	503.63	9.9201		гах:	503.68	4.0984	
PROJE	CT N	AME:		Leichn	er Lanc	lfill				W	ELL ID:	LB-	26D			
SITE A	DDRE	SS:		9411 N	IE 94th	Avenue	, Vanco	uver, W	/A 9866	32 B l	LIND ID:	LR-(23/6/	6-04		
			A								DUP ID:	<u> </u>				NA
WI	ND FR	:MO	N	NE	Е	SE	S	SW	W	(NV)	(LIGI		MED		H	EAVY
W	/EATH	HER:	SUI	YNY	ÇLC	YQUO	RA	IN		?	TEN	IPERA	TURE:	(P)49		° C
HVDD	01.00		VEL M	EASH	DEMEN	ITS /Non	rest 0.01 f	41		[Prodict	Thickness]	(Water	Column	fCirc	le appropri	ate units1 olumn x Gal/ft]
Dat			me	DT-B			oduct	DT-V	Vater		-DTW	DTB-		- 1		me (gal)
					.78		-	34			-		66	X 1	12	1.65
2/14	116	17	:31	101.	. / 0			ष्य	. 1 4		20	11		X 3	, ,	(-65
0.45. /	1 10)2	0.400	1" =	0.041	2")=	0.163	3" =	0.367	4" =	0.653	6" =	1.469	10" =	4.080	12" =	5.875
Gal/ft = () Dedicated Pu			4.000		0.070
	_						detected				, Boaloutou . u		e Depth:			[√ if used]
						i d			30		servative [Ice	Filter	рН	1
Bottle			ate	Tir		Method [§]	Amount		ml)	1 -16	(HCI)	on orej	YES	NO	۱ .م	V
VOA G		9 11	6/16	19 :	:55		3	_		/None	e) (HCI) (H	-80.1	·YES	NO		
Amber	-	7	1	1-		16	- >		00, 1L	(None		2304)		_	NIA	
White	_	2/1	6/16	15 :	55	A	3.	9	000,(1L)		None		(E)	NO	NA	
Yellow	Poly	/	1		:	900			00, 1L		H ₂ SO ₄		YES	NO		
Green Poly / : 250, 500, 1L NaOH YES Red Total Poly / : 125, 250, 500 HNO ₃ YES														NO		
Red Total Poly / / : 125, 250, 500 HNO ₃ YES NO														-,-		
Red Diss. Poly 3 /16/16 2:55 A 250, 500, 1L HNO TES TES															1	
Red Diss. Poly 2 116/16 2:55 A (25), 500; 1L (HNO) YES (FS) YES																
,	White n	o acid,	Yellow H	12SO4, R			7	[17/584061810]			icate count					
	ВО	TTLE T	YPE	TYPICAL	ANALYS	IS ALLOW	ED PER BO	OTTLE TY	PE (Circle	applicable	or write non-	standard a	analysis be			
_	VOA - G			(8260)	(8011)						_	_			[]	WA DO
ype	AMBER		-	(8080)	(8150)	(TDS) (T	SS) (Alkalir	nity) (HCC	O ₃ /CO ₃) ((SO ₄)	(Silica, T.)	(NO3)		OR	[]	WA[]
Allc te T	WHITE -				nductivity) TOC) (NF			n/Lignin)	03/003/	(304)	(Ollica, 1.)	(log)				
lysis Bot	GREEN			(Cyanide)	700) ((**-3***	27 (1-1-1-1		5				1/1	U 15		
Analysis Allowed per Bottle Type		TAL - Po	ly	(As) (Sb)			(Cr) (Cu)	(Fe) (Pb)	(Mn) (Ni)	(Ag) (Se)	(TI) (V) (Zr	n) (Hardne	ess)			
	RED DIS	SSOLVE	- Poly	(Ca) (Fe)	(Mg) (Mn)	(K) (Na)										
							1923	2 2	1		- 0-	15	(D - 1)	1-4-0	ALE:	
WATE						Start Tir		J:3			· ·	<u> </u>	/Bailer Ir			- 1'4
Meas.	Meth	nod §	_	d (gal)	рН	ORP	E Con		1.	mp 🔘	DTW	1	O ₂ (mg/l)	+	Vater Q	_
0	A(1)	37)	0.	00		140.7	330			-03	54.15	4	.13		/color	
1	A(ia	40)	0	.40	6.79	100.5	330		11	.94	24.13		.98	clear	/Color	1255
2	A(12	43)	0	.75	6.71	88.7	33,		11	-88	24.19	× 3		Clear	/ Color	less
3	A(1)	46)		-10	667	873	53		11	.84	94.19	_	.57	Clear	-/Color	less
4	4.7	49)	j	·\$0	6.66	79.1	73		- 11	.87	24.15		.68	clear	Color	ess
5	A /	53)		.80	6.66	77.9	23	.1		.81	24.12	7	.71	clear	/ Color	less
6							-			-11			•			
[Casing]	[Selec	A-G]	[Cumulat	ive Totals]	.64		. 17		[Circl	e unils]					[Clarity, (Color]
For t	low n	was	mell	m / ~	8/-	7/10	5; 10	المراد	hule	ć.						
	., [,	1	77 U ()	WW.	0/	11000	,71 10	nun 1/	POIZ	-						

SAMPLER: Brian Memullen
PRINTED NAME)

SCS ENGINEERS

14945 SW Sequoia Parkway, Suite 180, Portland, OR 97224

[Clarity, Color]

Fax: 503.684.6984 Office: 503.639.9201 WELL ID: Leichner Landfill PROJECT NAME: LR-021816-18 **BLIND ID:** 9411 NE 94th Avenue, Vancouver, WA 98662 SITE ADDRESS: NA DUP ID: HEAVY **MEDIUM** W MM LIGH'T SW WIND FROM: NE SE ° C (F) 50. TEMPERATURE: RAIN SUNNY CLOUDY WEATHER: cle appropriate units [Water Column x Gal/ft] HYDROLOGY/LEVEL MEASUREMENTS (Nearest 0.01 ft) [Water Column] [Product Thickness] Volume (gal) DTP-DTW DTB-DTW DT-Water DT-Product DT-Bottom Date Time 3.00 . 8 X 1 35.29 2/18/16 10 :44 X34.080 12" = 5.875 10" = 1.469 0.367 0.163 (2")= $Gal/ft = (dia./2)^2 \times 0.163$ 0.041 § METHODS: (A) Submersible Pump (B) Peristaltic Pump (C) Disposable Bailer (D) PVC/Teflon Bailer (E) Dedicated Bailer (F) Dedicated Pump (G) Other = [v if used] Sample Depth: GROUNDWATER SAMPLING DATA (if product is detected, do NOT sample) Filter pH Amount & Volume mL Preservative [circle] lce Method § Time Date **Bottle Type** (ES NO 40 m (HC) :05 **VOA Glass** 2/18/16 NO (None) (HCI) (H₂SO₄) YES 250, 500, 1L : Amber Glass NO NA (YES) 3 None A 250, 500, (1D :05 White Poly 2/18/16 YES NO H₂SO₄ 250, 500, 1L Yellow Poly : NO YES NaOH 250, 500, 1L Green Poly HNO₃ NO YES 125, 250, 500 Red Total Polv : (ES HNO YES! 250) 500, 1L Red Diss. Poly 118/16 :05 YES 250, 500, 1L Total Bottles (include duplicate count): White no acid, Yellow H2SO4, Red HNO3 TYPICAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis below) **BOTTLE TYPE** WA [X] ORI (8260) (8011) VOA - Glass WA[] OR [(8150) (TOX) (8080) AMBER - Glass (SO₄) (Silica, T.) (HCO₃/CO₃) TOS (Alkalinity) (TSS) (pH) (Conductivity) WHITE - Poly (Tannin/Lignin) (NO_3/NO_2) YELLOW - Poly (Cyanide) GREEN - Poly (As) (Sb) (Ba) (Be) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mn) (Ni) (Ag) (Se) (TI) (V) (Zn) (Hardness) RED TOTAL - Poly (Ca) (Fe) (Mg) (Mn) (K) (Na) RED DISSOI VED - Poly Pump/Bailer Inlet Depth: Purge Start Time: WATER QUALITY DATA Water Quality Diss O₂ (mg/l) °F Temp (°C) DTW **ORP** E Cond (µS) Method § Purged (gal) Meas. 36.63 6.36 dear/Colorless 78 0.00 ALIOHR, 708 95.3 0 4.17 clear/Colorless 84 7.45 .94 90.4 0.30 A(1051 1 3.91 00.0 A(1054 0.50 2 38.63 loudy 66 19 111 3 38.63 65 Cloudy / Colorles S 105.8 692 4 Cloudy Colorless .65 38.63 692 106.3 87 5

Law flow purge method ~ 8/7/60psi

SAMPLER:

[Casing]

[Select A-G]

[Cumulative Totals]

[Circle units]

SCS ENGINEERS

SAMPLER: Brian McMulun (PRINTED NAME)

14945 SW Sequoia Parkway, Suite 180,

Portland, OR 97224

Office: 503 639 9201

Fax: 503 684 6984

									Office:	503.63	9.9201		Fax:	503.68	4.6984	
PROJ	ECT N	AME	:	Leichn	er Land	fill .				٧	VELL ID:	LR	27I			
SITE A	ADDRE	SS:		9411 N	NE 94th	Avenue	e, Vanco	uver, V	/A 986	62 B	LIND ID:	LB-	18160	0-19		
											DUP JD:		- 0, 1, 31			NA
WI	ND FR	OM:	N	NE	E	SE	s	_sw	W	(W)	JIGI	<u>-17</u>	MED	NUIC	Н	EAVY
\	NEATH	HER:	SUI	VNY	QLQ	YOU	RA			?	TEN	/IPERA	TURE:	(F) 5	· O	° C
HVDE	201.00	.v// E		IEACII	DEMEN	ITC (N		m		-	t Line of the second		20 5	fCirc	le appropri	
Da			ime		ottom		rest 0.01	r	Vater		t Thickness] P-DTW		-DTW	1 1		me (gal)
		17		-		D1-F	Toduct			DIF						
2/1	8 116		:38	31	.15		•	30	. 14	_	•	d.	201	X 1		1.40
	1	-											1	X 3		
	(dia./2) ² x		1" =	0.041	(S)=	0.163	3" =	0.367	4" =	0.653	6" =	1.469	10" =	4.080	12" =	5.875
		_									P) Dedicated Po			-		[√if used]
						_	s detected						e Depth			(, , , , ,
Bottle			ate			Method §		_	-	Pre	servative	circle]	Ice	Filter	pН	V
VOA	Glass	3 11	8/16	13	:0 O	LA_	3		.m)		B		(E)	NO		
Amber	Glass	/	1		ž.				00, 1L	(None	e) (HCI) (H	l ₂ SO ₄)	YES	NO		
White Poly 1/8/10 12:00 A 3 250, 500, €0 €00 €5 NO NA Yellow Poly 1 / 1 : 250, 500, 1L H₂SO₄ YES NO																
Green Poly / / : 250, 500, 1L NaOH YES NO																
Red Total Poly / / : 125, 250, 500 HNO ₃ YES NO															,	
Red Total Poly / / : 125, 250, 500 HNO3 YES NO Red Diss. Poly \(\lambda / \lambda / \lambda / \lambda \rangle \lambda \rangle \lambda \rangle \lambda \rangle \lambda \rangle \rangle \lambda \rangle \ra																
/ / : 250, 500, 1L YES																
	VOA - GI	lass		(8260)	(8011)									OR	[]	WAX]
wed/	AMBER -	- Glass		(8080)	(8150)	(TOX)								OR	[]	WA[]
Analysis Allowed per Bottle Type	WHITE -			-	onductivity)	\sim	SS) (Alkalir)3/CO3) (((SO ₄)	(Silica, T.)	NO3D				
/sis/ 3ottl	YELLOW			(COD) ((TOC) (NE	la) (NO ₃ /No	O ₂) (Tannir	n/Lignin)								
nal)	GREEN -	<u> </u>	lv	(Cyanide)	(Ba) (Be)	(Cd) (Co)	(Cr) (Cu)	(Fe) (Ph)	(Mn) (Ni)	(An) (Se)	(Ti) (V) (Zr	n) (Hardne	ice)			
	RED DIS				(Mg) (Mn)		(61) (64)	(10)	(1111) (111)	(r.g) (00)	(, (., (i) (Harana				
WATE	R QUA	LITY	DATA		Purge	Start Tir	ne:	[1:3]	3			Pump/	Bailer In	ılet Dept	h:	
Meas.	Methe	od §	Purge	d (gal)	рН	ORP	E Con	d (μS)	°F Te	mp(°C-	DTW	Diss C) ₂ (mg/l)	V	/ater Qı	uality
0	A(114	17	0.	00	7.05	1108	40	Sla	01	.84	30.14	6	.05	clear	r/Colou	1000
1	7 7	14)	Ω	.35	6.99	108.2	5			.46	30.14		.90	170.40	r/Calo	A11
2	A .F	(7)		.55	6.93		51			.55	30.14	- ·	.36		- /Colo	
3	ACILO	3		75	6.93		51			.55	30.14	1	1000	12 DO 11	- /colo	
4	X /	-			6.94	165.4	5					-	-10		1	
5		53)		10		V V V V V				56	30.14		11.	1	1 . 1	<u>2281vol</u>
	AUS	0	1	·40	6.95	116.3	51	٨	11	.57	30.14		.10	Clear	1 (010	N (57)
6 [Casing]	[Select	A-G1	[Cumulati	ve Totals]	•				[Circle	• units]			•	ļ	[Clarity, Co	olor]
,	130000		Localida						[0010						,, O	
•	Cla.			100.1	. 1.	01-	120-	,	100	ml/p	0.76					
ran	, 7101	r b	sigo	VIVIOT	WO ()	0 01	7/35	D21	I UIU	1211			3			

Third Quarter 2016	(August) FSDSs	

Leichner Landfill Groundwater Elevation Survey

Project #: 64216030.13

Quarter: 1 2 (3) 4

Sampler: Alallo

					Dutc. 01001
Monitoring Point Designation	Reference Elevation (ft. msl)	DTB (ft. btoc)	DTW (ft. btoc)	Time	Comments
Monitoring Wells	` /				
MW-1 N	216.58	15.00	NR	1415	N
MW-1 S	216.13	44.50	NR	1418	Well Monument 1:d
MW-1 E	216.45	29.05	NR	1490	Stuck. No Readings
MW-NE	219.83	50.34	14.20	1910	S. 100 N. PARO I AG.S
LB-R2	222.27	77.36	45.65	1250	
LB-1S	210.12	45.00	33.70	1430	Tubiac in wall
LB-1D	209.74	137.45	37.12	1435	10 100
LB-3S	218.25	\$3.50	39.07	1400	Tubias in Wall
LB-3D	219.29	117.28	40.08	1371	10000
LB-5S	206.89	30.32	15.95	1610	
LB-5C	206.70	74.71	33.29	1615	
LB-5D	207.56	122.40	38,13	1620	
LB-6S	202.80	39.07	27.47	1515	
LB-9SR	217.94	49.60	35.88	1320	
LB-10SR	204.04	42.35	31.39	1450	
LB-10CR	203.05	71.95	30.31	1455	
LB-10DR	203.36	121.10	43.35	1500	
LB-13I	202.36	55.03	28.15	1540	
LB-13C	202.68	66.00	28.55	1545	
LB-13D	202.96	88.88	28.90	1550	
LB-17S	208.18	34.38	31.45	1300	
LB-17I	213.14	51.95	36.60	1303	Tubias in well
LB-17C	206.55	72.35	30.27	1255	. 3
LB-17D	213.17	100.91	37.51	1305	Tubog in well
LB-20S	221.22	61.50	40.21	1440	
LB-21S	223.35	54.24	37.79	1152	
LB-21C	223.32	79.10	38.19	1150	
LB-21D	223.63	110.73	41.37	1155	
LB-22S	208.42	36.97	6.64	1215	
LB-23S	229.19	45.40	31.01	1990	
LB-24S	235.13	54.16	3881	1992	
LB-26I	200.22	58.30	25.48	1525	
LB-26D	200.75	101.78	25.24	1530	
LB-27I	205.35	57.15	34.51	1558	31.51
LB-27D	204.65	115.10	3839	1600	

Notes: Sunny ~850 F

Performed Standard decon between

SCS ENGINEERS

15940 SW 72nd Avenue, Portland, OR 97224

	0 A(951) 0.00 5.87 187.4 342 14.95 33.70 7.00 clear colorless 1 A(954) 0.40 6.00 2550 296 13.28 35.70 5.14 clear 1 colorless 2 A(957) 0.75 6.02 253.1 295 13.28 33.70 5.10 clear 1 colorless 3 A(1000) 1.05 6.34 251.2 295 13.31 33.70 5.11 clear 1 colorless 4 A(1003) 1.40 6.35 249.2 294 13.33 33.70 5.06 clear 1 colorless 5 A(1066) 1.75 6.37 247.0 294 13.34 33.70 5.04 clear 1 colorless 6															
PROJ	IECT N	AME	:	Leichr	ner Lan	dfill				V	WELL ID:	L. 6	-1	5		
SITE	ADDRE	SS:		9411	NE 94th	Avenue	e, Vanco	uver, V	VA 986	62 B	LIND ID:	/ R	- 08	2416-	-05	
											DUP ID:			7,10		NA
W	IND FR	ом:	N	(NE) E	SE	s	sw	w	NW	LIG	HT	MED	DIUM	Н	EAVY
,	WEATH	IER:	su	NNY	CLC	DUDY	RA	JN		?	_			_	7).	
									1	u	j	15.000			cle appropr	
												T		î î		
_	\rightarrow					DI-P	roduct	D1-\	/Vater	ווט	2-DIW	DIB-	-DIW		Volu	ıme (gai)
8/0	14 /16	9	:45	45	.00			33	- 70		(*)	1.1	30	X 1		1.84
/	/		:				•		•		240			X 3		
Gal/ft =	(dia./2) ² x	0.163	1" =	0.041	2"=	0.163	3" =	0.367	4" =	0.653	6" =	1.469	10" =	4.080	12" =	5.875
§ METH	DDS(A)Su	bmersit	ole Pump (E	3) Peristaltic	Pump (C) D	Disposable Ba	iler (D) PVC/	Teflon Baile	r (E) Dedica	ited Bailer (F) Dedicated Po	ump (G) Oth	er =			
GROU	JNDWA	TER	SAMF	LING I	DATA (i	f product i	s detected	i, do NO	T sample)		Sampl	e Depth	:		[√ if used]
Bottle	Туре	D	ate	Ti	me	Method §	Amoun	t & Volu	me mL	Pre	servative	[circle]	Ice	Filter	рН	1
VOA	Glass	8/2	4/16	10	:10	ĪΑ	3	(40	m		(HCI)		YES	NO		
Amber	Glass	1	/				9	250. 5	500. 1L	(Non-	e) (HCI) (H	l ₂ SO ₄)		NO		
White	Poly	11/5	11/1/	 			\sim			<u> </u>		2 1/		_	NΔ	
		8 6	19/16	10	·10						14/3					
			'	1		-		_								
					3											
					:											
				10	:10	A								YES		1
$\omega_{h,1}$	c Poly	8/3	14/16	10	: 10	LA_)	250, 5	500(1)		None)	(YES)	No		L
	White no	acid,	Yellow I	12SO4, F	Red HNO	3	7	Total Bo	ttles (inc	luđe dupl	licate count):				
		_	YPE			SIS ALLOW	ED PER BO	OTTLE TY	PE (Circle	applicable	e or write non-	-standard a	nalysis be			
م ۾	_					(TOY)										
owe		_		_		<u> </u>	SS) (Alkalir	nily) (HCC	2/00/	(SO.)	(Silica T.)	(NO3)		OR	<u> </u>	WA []
s All		<u> </u>							33,003/	Sily (00 ₄)	(Ollica, Tr)	(1100)				
llysi: Bo		_			(, , , , , , , , , , , , , , , , , , ,	, (- 27 (
Ana	RED TOT	AL - Po	ly	(As) (Sb)	(Ba) (Be) (Cd) (Co)	(Cr) (Cu)	(Fe) (Pb)	(Mn) (Ni)	(Ag) (Se)) (TI) (V) (Zr	n) (Hardne	ss)			
	RED DISS	SOLVED) - Poly	(Cal (Fe)	(Mg) (Mn)	(K) (Na)		1								
WATE	R QUA	LITY	DATA	\	Purge	Start Tir	ne: o	9:49				Pump/	Bailer In	let Dept	h:	
Meas.	Metho	od [§]	Purge	d (gal)	pН	ORP	E Con	d (μS)	°F Te	mp(°C)	DTW	Diss O	₂ (mg/l)	V	/ater Q	uality
0	A (95	21)	0.	00	5.87	187.4	342		14	.95	33.70	7	00	clea	-10	placless
1	A (95	541	0	.40	6.00	2550		6	13	.98		5	14	10,0		1 .
2		_ \	0	·7+										Clare	- 1	1 1
3															1	1 1
4	. /	\neg)							1	1	1 1
5		$\overline{}$,		
-	18 (16	1061		. 12	6.77	A 717.0		1 1	-13	.2.1	77 .\0	3	07	C160	CICOI	or IRU
[Casing]	[Select A	\-G]	[Cumulati	ve Totals]					[Circle				8		[Clarity, Ç	olor
-ow	Flou	, P	urge	Me	thoc)~	460 1	LI	ア・レ	(10	00mL/	/pu/se)	(9161	30)
		_	<u> </u>	Λ) ·						J)/(J			
SAMP	_	PRINTE	ED NAME	3101	010	ω				(SIGNATI	JRE)			3		
	ζ.		ST 5	<i>5</i> .							1000					

SCS ENGINEERS

15940 SW 72nd Avenue. Portland, OR 97224

Office: 503.639.9201 Fax: 503.684.6984 **PROJECT NAME:** Leichner Landfill WELL ID: 9411 NE 94th Avenue, Vancouver, WA 98662 SITE ADDRESS: **BLIND ID:** 082316-01 DUP ID: NA FICHT WIND FROM: NE Ε SE S SW W NW) **MEDIUM HEAVY** SUNNY **WEATHER:** CLOUDY RAIN TEMPERATURE: (*)F ? ° C [Circle appropriate units] HYDROLOGY/LEVEL MEASUREMENTS (Nearest 0.01 ft) [Product Thickness] (Water Column) (Water Column x Gal/ft) Volume (gal) Time DT-Bottom DT-Product DT-Water DTP-DTW DTB-DTW 8/23/16 30 33 15.95 X 1 72 14 X 3 $Gal/ft = (dia_1/2)^2 \times 0.163$ 1" = 0.041 2" = 0.163 3" = 4" = 6" = 10" = 4.080 12" = 0.367 0.653 1.469 5.875 § METHODS (A) Submersible Pump (B) Peristaltic Pump (C) Disposable Bailer (D) PVC/Teflon Bailer (E) Dedicated Bailer (F) Dedicated Pump (G) Other = [√ if used] GROUNDWATER SAMPLING DATA (if product is detected, do NOT sample) Sample Depth: **Bottle Type** Date Time Method § Amount & Volume mL Preservative [circle] Filter lce Hq V (YES) HCI) VOA Glass 4 /23/16 40 ml NO :00 (None) (HCI) (H₂SO₄) Amber Glass 250, 500, 1L YES NO (YES) White Poly 4/22/16 A 250 500, 1L None NO NA 12:00 Yellow Poly 250, 500, 1L H₂SO₄ YES NO : Green Poly 250, 500, 1L NaOH YES NO 125, 250, 500 YES Red Total Poly : HNO₃ NO 250) 500, 1L HNO YES (YES Red Diss. Poly 17:00 250, 500(11) YES 8 23/16 12:00 NO e Total Bottles (include duplicate count): White no acid, Yellow H2SO4, Red HNO3 **BOTTLE TYPE** TYPICAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis below) VOA - Glass (8260 D (8011) OR[] WALY Analysis Allowed per Bottle Type AMBER - Glass (8080) (8150) (TOX) OR [] WA[] WHITE - Poly (pH) (Conductivity) (TDS) (TSS) (HCO₃/CO₃) ((CI)) (SO₄) (Silica, T.) (Alkalinity) YELLOW - Poly (COD) (NO_3/NO_2) (Tannin/Lignin) GREEN - Poly (Cyanide) RED TOTAL - Poly (As) (Sb) (Ba) (Be) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mn) (Ni) (Ag) (Se) (TI) (V) (Zn) (Hardness) RED DISSOLVED - Poly (Ca) (Fa) (Mg) (Mn) (K) (Na) **WATER QUALITY DATA** Purge Start Time: Pump/Bailer Inlet Depth: 11:40 рH ORP °F Temp(°Q) DTW Diss O₂ (mg/l) Meas Method § Purged (gal) E Cond (µS) Water Quality 1689 1 204 5.42 15.95 フ・レン 2 196 204 14.42 15.95 .00 3 204 14.40 .70 15.95 4 14.47 15.95 .01 5 203 15.95 6

LOW Flow Purge Method ~ 8/7/20 7400 mL/min 400 mL/min
100 mL/pulse
Andrews JOW SAMPLER:

(SIGNATURE)

(PRINTED NAME)

SCS ENGINEERS

15940 SW 72nd Avenue, Portland, OR 97224

									Office:	503.63	39.9201		Fax:	503.68	4.6984	•
PROJ	ECT N	AME		Leichn	er Land	dfill				V	VELL ID:	1 8	-6	7		
SITE A	ADDRE	ESS:		9411 N	NE 94th	Avenue	, Vanco	uver. W	/A 9866	32 B	LIND ID:	1 8	-08	2416	-04	
			a	NE							DUP ID:	10	000	3 110	~0	NA
WI	ND FR	юм:		NE	E	SE	s	SW	W	NW	LIGH	T (TI	MED	DIUM 1	Н	EAVY
	VEATH			VNY)		OUDY	RA			?		IPERA		-	7	°C
										•	1 121	11/7	· OILL		le appropri	2.90.1
	-					ITS (Near				-	t Thickness]	[Water 6	\rightarrow			olumn x Gal/ft]
Da	te	Ti	me		ottom	DT-Pr	oduct	DT-V	Vater	DTF	P-DTW	DTB-	DTW		Volu	me (gal)
8/2	1/16	11	:55	39	.67			27	47			11	60	X 1	1	.89
1	1		į.		•1				93					X 3		3.00
Gal/ft = ((dia./2) ² x	0.163	1" =	0.041	2"=	0.163	3" =	0.367	4" =	0.653	6" =	1.469	10" =	4.080	12" =	5.875
§ METHO	DS:(A)S	ubmersib	le Pump (B) Peristaltic	Pump (C) D	isposable Bai	ler (D) PVC/T	eflon Baile	(E) Dedica	ted Bailer (F	F) Dedicated Pu	mp (G) Olhe	er =			
GROU	NDWA	ATER	SAMP	LING [DATA (i	product is	detected	, do NOT	sample))		Sample	e Depth:			[√ if used]
Bottle	Туре	D	ate	Tii	me	Method §	Amount	& Volu	me mL	Pre	servative [circle]	Ice	Filter	Hq	V
VOA (ah	4/16	-	:15	A	3		m)		(HCP)		YES	NO		~
Amber		7	1	I M		17		250, 5		(None	e) (HCI) (H	2SO4)	YES	NO		
White	_	41	14/1/	1	:15	A	$\overline{}$	(250) 5		(None	∠4/	(YES)	NO	NA	1
Yellow		8 0	14/16	10	.17	-17	9	250, 5			H ₂ SO ₄		YES	NO	r N/A	
Green		1	<i>'</i>		•				00, 1L 00, 1L		NaOH		YES	NO		
Red Tot		(1)	1			_		-	50, 500		HNO ₃		YES	NO		
Red Dis			4/16		:15	A		250, 5			(HNO ₃)		YES	(YES)		
WY.	e Poly	4/2	4/16	19	: 15	H		250, 5	00,@		(Pone	2	YES	No		
	White no	o acid,	Yellow H	12SO4, F						icate count)						
		TTLE T	YPE			IS ALLOWE	D PER BO	TTLE TY	PE (Circle	applicable	or write non-	standard a	nalysis be			
- G	VOA - GI			(8260)	(8011)	(TOY)									[]	WA [X]
Analysis Allowed per Bottle Type	WHITE -			(8080) (pH) (Co	(8150)	(TOX)	SS) (Alkalini	ilv) (HCC	0 ₃ /CO ₃) ((0	(SO ₄)	(Silica, T.)	NO3)		OR	l J	WA[]
s All	YELLOW				TOC) (NI				3,003,	(004)	(000, 1.)					
llysi Bo	GREEN -			(Cyanide)			27									
Ana	RED TO	TAL - Pol	у	(As) (Sb)	(Ba) (Be)	(Cd) (Co)	(Cr) (Cu)	(Fe) (Pb)	(Mn) (Ni)	(Ag) (Se)	(TI) (V) (Zn) (Hardnes	ss)			
	RED DIS	SOLVED	- Poly	(Ca)(Fe)	(Mg) (Mg)	(K) (Na)			- 1							
			DATA	\		Start Tin		:56		-				let Dept	h:	
Meas.	Meth	od [§]	Purge	d (gal)	рН	ORP	E Cond	l (μS)	°F Ter	mp (°C)	DTW	Diss O	₂ (mg/l)	W	ater Qu	uality
0	A (II	58)	0.	00	6.69	169.5	16	7	14.	92	27:47	9.	01	Clea	clado	cless
1	ALI	106	0	35	6.62	170.8	174	4	14.	33	27.47	8.	73	Clari	-lcale	cless
2	Alla		0	75	6.63	1692	18		14.	44	27.47		65	cler	-Icola	less
3	A(12			10	664	168.4	18			38	37.47		61	Clens	1	ncless
4	10.5	719)		40	6.65	1680	18			36	27.47		66	clear	1 5	nelese
5	A (i)	`		70	6.65	1687	183			39	27.47		60	1	1 1	cless
6	11 719	3171		, 0	0 65	1W0 A	100	_	1 '	9/	0.7.17		60	L.Kar	10010	1 100
[Casing]	[Select	A-G]	[Cumulativ	ve Totals]					[Circle	units]		<u> </u>	i		[Clarity, Co	olor]
Lou	, F	70	ω	Purga	2 N	leth	od ~	- 4C	OnL	Inic	n ((100 r	12/p	ulse)	(1	8/1/25)
S A MIDI	ED.				1) (e: :				(1) 11 1	\ /			
SAMPI	_	PRINT	ED NAME	+	How	10	35			(SIGNATI	IDE	110				

15940 SW 72nd Avenue, SCS ENGINEERS Portland, OR 97224 Office: 503,639,9201 Fax: 503.684.6984 **PROJECT NAME:** Leichner Landfill WELL ID: SITE ADDRESS: 9411 NE 94th Avenue, Vancouver, WA 98662 **BLIND ID:** 082416-09 DUP ID: NA WIND FROM: (C) NE SE S SW NW (LIGHY **MEDIUM** Ε W **HEAVY** TEMPERATURE: (E) 80. **WEATHER:** (SUNNY) CLOUDY RAIN [Circle appropriate units] HYDROLOGY/LEVEL MEASUREMENTS (Nearest 0.01 ft) [Product Thickness] [Water Column] [Water Column x Gal/ft] DT-Product DT-Water Volume (gal) Date Time DT-Bottom DTP-DTW DTB-DTW 8/24/10 X 1 X 3 (2" = 0.163 1" = 0.041 0.367 0.653 10" = 4.080 5.875 $Gal/ft = (dia./2)^2 \times 0.163$ § METHODS (A) Submersible Pump (B) Peristaltic Pump (C) Disposable Bailer (D) PVC/Teflon Bailer (E) Dedicated Bailer (F) Dedicated Pump (G) Other = [√ if used] GROUNDWATER SAMPLING DATA (if product is detected, do NOT sample) Sample Depth: Time Amount & Volume mL Preservative [circle] $\sqrt{}$ Bottle Type Date Method § Filter Ice pН (YES) **VOA Glass** (40 ml) HCI NO :20 8/24/16 Amber Glass 250, 500, 1L (None) (HCI) (H₂SO₄) YES NO : YES (250, 500, 1L White Poly None NO NA 8/24/16 19:90 Yellow Poly H₂SO₄ YES : 250, 500, 1L NO YES Green Poly 250, 500, 1L NaOH NO : 125, 250, 500 HNO₃ YES NO Red Total Poly YES **∕250,** 500, 1L Red Diss. Poly 19:90 HNO₃ YES 1) Drile Pol 17:90 250, 500, 10 YES Done Total Bottles (include duplicate count): White no acid, Yellow H2SO4, Red HNO3 **BOTTLE TYPE** TYPICAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis below) VOA - Glass (8260) (8011) OR [] HIAM lysis Allowed Bottle Type AMBER - Glass (8080) (8150) (TOX) OR [WA [(TDS) (TSS) WHITE - Poly (HCO₃/CO₃) (CI) (SO₄) (pH) (Conductivity) (Alkalinity) YELLOW - Poly (COD) (NO_3/NO_2) (Tannin/Lignin) GREEN - Poly (Cyanide) Analy per l RED TOTAL - Poly (As) (Sb) (Ba) (Be) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mn) (Ni) (Ag) (Se) (TI) (V) (Zn) (Hardness) RED DISSOLVED - Poly (Ca) (Fe) (Mg) (Mn) (K) (Na) WATER QUALITY DATA Purge Start Time: Pump/Bailer Inlet Depth: **ORP** Meas. Method § Purged (gal) pН °F Temp °C DTW Diss O₂ (mg/l) E Cond (uS) Water Quality 0 0.00 1 2 3 4 5 6 [Casing] [Circle units] [Clarity, Color]

Collected at LB.65 LER: TAND COUS

SAMPLER:

SCS ENGINEERS

15940 SW 72nd Avenue, Portland, OR 97224

Office: 503.639.9201

Fax: 503.684.6984

			_						Office.	000.00	00.0201		ı ax.	303.00	74.0804	
PRO	JECT N	IAME	į	Leichr	ner Lan	dfill					WELL ID:	LR	-105	SR		
SITE	ADDRI	ESS:		9411	NE 94th	Avenue	e, Vanco	uver, V	VA 986	62 E	BLIND ID:	LR-	680	416-	07	
											DUP ID:					NA
W	IND FF	ROM:	N	NE	E	SE	S	SW	W	NW	(LIG	HT)	ME	DIUM	HEAVY	
	WEAT	HER:	SU	NNY)	CLC	DUDY	R/	IN.		?	TE	MPERA	TURE:	OP 70		° C
HYD	ROLO	GY/LI	EVEL N	MEASU	REMEN	NTS (Nea	arest 0.01	ft)		(Produc	ct Thickness]	[Water	Column]	ſĊir	cle appropr	iate units1 Column x Gal/ft]
	ate	7	ime		Bottom		roduct		Vater		P-DTW	T	-DTW	1		me (gal)
8/2	4/16	Li.	:00	47	.35	1 _	- 3		39			+	.96	X 1		1.79
1	/	-11	:	10	3.1			21	0/			10	.76	X 3		1 · /7
Gal/ft =	Gal/ft = (dia /2) ² x 0.163 1" =				2"=	0.163	3" =	0.367	4" =	0.653	6" =	1.469	10" =	4.080	12" =	5.875
	Gal/ft = (dia /2) ² x 0.163															
							s detected				,		e Depth			[√ if used]
	Э Туре		Date		ime	Method §		t & Volu			eservative		Ice	Filter	рН	√
	Glass		24/16	_	:90	A	7		m		(HCI)	[011010]	(YES)	NO	PIT	
Ambe	r Glass		d-1 10		• 0()	H-			500, 1L	(Non-	e) (HCI) (H	l _o SQ ₄)	YES	NO		
White	e Poly	4 1	14/16		:90	A	1		00, 1L	(None	.2004)	TES	NO	NA	
_	w Poly	<u>\(\frac{1}{2} \)</u>	17,16		. 9()	H	2		00, 1L		H ₂ SO ₄		YES	NO	INA	
	n Poly	,							00, 1L		NaOH		YES	NO	_	
	tal Poly								50, 500		HNO ₃		YES			
		1-1:	1111	15			,				HNO ₃			NO YES		
Red Diss. Poly 4/34/16		100		:90	A	,	250, 5	00, TL				(ES)	_		V	
TOP:	le Polyl		4/16		:90	I A				4 - 200,000	None		(YES)	6Q		
	m —	o acid, TTLE T			Red HNO		ED PER BO				licate count) or write non-			IaA		
	VOA - GI		-	(8260)	(8011)	NO ALLOW	LD I LIN DO	71166 11	FE (CIICLE	арріісавіє	e or write non-	Stanuaru a	maiysis be		[]	WALT
be we	AMBER -	- Glass		(8080)	(8150)	(TOX)									[]	WA[]
Allov e Ty	WHITE -	Poly		(pH) (Co	onductivity)	(TDS) (T	SS) (Alkalir	nity) (HCC) ₃ /CO ₃) ((0	(SO₄)	(Silica, T.)	(NO3)				
sis ,	YELLOW				(TOC) (NE	H ₃) (NO ₃ /NO	O ₂) (Tannir	/Lignin)								
Analysis Allowed per Bottle Type	GREEN -		alv.	(Cyanide)	(Ba) (Ba)	(Cd) (Co)	(Cr) (Cu)	(Eo) (Ph)	(Ma) (Ali)	(Aa) (Ca)) (TI) (V) (Zn) /IId	>			
• -	RED DIS				(Mg) (Mg)		(CI) (Cu)	(FE) (FO)	(IVIII) (IVII)	(Ag) (Se)) (II) (V) (Zn	i) (Hardne:	ss)			
WATE	R QUA	LITY	DATA	1	Purge	Start Tir	ne:	11: 0	0			Pump/l	Bailer In	let Dept	h:	
Meas.	Metho	od §	Purge	d (gal)	рН	ORP	E Cond			mp(°C)	DTW	Diss O	₂ (mg/l)	V	ater Qu	ıality
0	A Cit	160	0.0	00	1.66	176.5	51	3	15	79	31.39	1.	54	C.Ca	de	locless
1		05)	Ó.	35	6.46	1763	49	4		99	31.39		06	Cler	11	ches
2	A (n	(80	0.	75	6.62	1803	49		14.	95	31.39		03	clear	1 1	cless
3	A CII	1	١.	05			40			97	31.29		04	3	Icala	1
4	A (1)			45	1000		49			93	31.39		03		1 1	orless
5	A (ii				6.64		49			94	31.39		0)	1	-/cole	, ~
6				1,50				_			31.37			C. NO.	7 000	~ K.V.)
[Casing]	[Select	A-G]	[Cumulativ	re Totals]					[Circle	units]			, ,		[Clarity, Co	1 -
Lou	u F	-10	w f	orgo	e M	etho	0 - L	100 m	nLl m); V	(100	mL/	pulsa)	(9)	6/25)
SAMPI	LER.		1		12)) Co					DX VC	(şii.			7
>- •••• I		PRINTE	ED NAME)		100	16002	-		1	SIGNATU	JRE)				_	

SCS ENGINEERS

15940 SW 72nd Avenue. Portland, OR 97224

Office: 503.639.9201 Fax: 503.684.6984 PROJECT NAME: Leichner Landfill WELL ID: SITE ADDRESS: 9411 NE 94th Avenue, Vancouver, WA 98662 **BLIND ID:** 082416 DUP ID: NA (ME) WIND FROM: **MEDIUM** Ε SE S SW W NW LIGHT **HEAVY** SUNNY) TEMPERATURE: (F) (O). **WEATHER:** CLOUDY RAIN ? [Circle appropriate units] HYDROLOGY/LEVEL MEASUREMENTS (Nearest 0.01 ft) [Product Thickness] [Water Column] [Water Column x Gal/ft] Volume (gal) DT-Product Time DT-Bottom DT-Water DTP-DTW DTB-DTW 8/24/16 X 1 X 3 $Gal/ft = (dia_1/2)^2 \times 0.163$ 1" = 0.041 2" = 0.163 3" = 0.367 4" = 0.653 6" = 1.469 10" = 4.080 12" = 5.875 § METHODS: (A) Submersible Pump (B) Peristaltic Pump (C) Disposable Bailer (D) PVC/Teflon Bailer (E) Dedicated Bailer (F) Dedicated Pump (D) Pump (E) Dedicated Pump [√if used] GROUNDWATER SAMPLING DATA (if product is detected, do NOT sample) Sample Depth: Amount & Volume mL V Bottle Type Date Time Preservative (circle) Filter ΡH Method § Ice (YES) (40 mD **VOA Glass** (HCI) NO 4/24/10 0:50 Amber Glass 250, 500, 1L (None) (HCI) (H2SO4) YES NO : (YES (250) 500, 1L NO White Poly 0:50 None NA Yellow Poly 250, 500, 1L H2SO4 YES NO : Green Poly 250, 500, 1L NaOH YES NO YES Red Total Poly 125, 250, 500 HNO₃ NO 8/24/16 10:50 250, 500, 1L (HNO YES YES Red Diss. Poly 10:50 250, 500, 112 YES 8/24/16 Dong Total Bottles (include duplicate count): White no acid, Yellow H2SO4, Red HNO3 TYPICAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis below) **BOTTLE TYPE** VOA - Glass (8260) (8011) OR [] WALX Analysis Allowed per Bottle Type AMBER - Glass (8080) (8150)(TOX) OR [] WA[] WHITE - Poly (pH) (Conductivity) (TDS) (TSS) (Alkalinity) (HCO₃/CO₃) (CI) (SO₄) (Silica, T.) YELLOW - Poly (NO₃/NO₂)(Tannin/Lignin) GREEN - Poly (Cyanide) RED TOTAL - Poly (As) (Sb) (Ba) (Be) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mn) (Ni) (Ag) (Se) (Tl) (V) (Zn) (Hardness) RED DISSOLVED - Poly (Ca) (Fe) (Mg) (Mp) (K) (Na) WATER QUALITY DATA Purge Start Time: Pump/Bailer Inlet Depth: ORP Diss O₂ (mg/l) Meas Method § Purged (gal) Hq E Cond (uS) °F Temp °C DTW Water Quality 0 0.00 1 2 3 4 5 6 [Cumulative Totals] [Circle units] [Clarity, Color]

Collected near LB-10SR

SAMPLER:

SCS ENGINEERS

15940 SW 72nd Avenue, Portland, OR 97224

Office: 503.639.9201

Fax: 503.684.6984

PROJE	CT N	ΔME-		Leichne	er Land	fill				V	ELL ID:	1 0	-17-	_		
							Vanas	1) (OF \A)	Λ 0966		LIND ID:	1-D		271/	67	
SITE A	DUKE	აა:		9411 N	⊏ 94(f)	Avenue	, Vanco	uver, vv	A 9000		DUP ID:	LK	-08	9716	-05	NA NA
						<u> </u>		0,	10,	-		îT.	MED	ILINA I	(JF	
	ND FR	-	N	NE	E	SE	S	SW	W	WW.	⊄IG F			MEDIUM HEAVY		
W	/EATH	IER:	(SUN	N/V	CLO	UDY	RA	IN		?	TEN	IPERA	TURE:		16.	° C
HYDR	OI OG	Y/I F	VFI M	FASUE	REMEN	TS (Nea	rest 0.01 f	t)		[Product	Thickness]	[Water	Column]	TGITC	le appropria [Water Co	olumn x Gal/ft]
Dat			me	DT-B		DT-Product		DT-W	/ater		-DTW	DTB-	-DTW		Volu	ne (gal)
	\rightarrow								_			26	44	X 1	LI	.74
4/2	5/16	_15_	:40	55.	05		•	98.	17			dle	·D D	1		-22
					<u> </u>		1			T 40"	X 3	400	5.075			
Gal/ft = (1" =	0.041	@ "=	0.163	<i>></i> 3" =	0.367	4" =	0.653	6" =	1.469	10" =	4.080	12" =	5.875
) Dedicated Pu					[√ if used]
GROU	NDWA	TER	SAMP	LING D	ATA (if	product is	s detected	, do NOT	sample			Sampl	e Depth:			
Bottle	Туре	Da	ate	Tir	ne	Method §	Amount	& Volur	me mL	Pre	servative (circle]	Ice	Filter	pН	√
VOA G	Slass	8/2	3/16	14	05	A	3	40	m		(HCI)		YES)	NO		
Amber	Glass	1	_مدالت		00		7	250, 5	00, 1L	(None	e) (HCI) (H	₂ SO ₄)	YES	NO		
White	-	(.15	2/1/	14	100	A	9	(250) 5	00. 1L	(None		(YES)	NO	NA	
		1,7	3/16	-17	05		- QL	250, 5			H ₂ SO ₄		YES	NO		
Yellow											NaOH		YES	NO		
Green		/	1	1/4	i.			250, 5					_		_	
Red Tot	al Poly	/						125, 25			HNO ₃		YES	NO		
Red Diss. Poly 8/23/16 14:05		:05	A	1	250) 5			(HNO3)		YES	(YES)					
1.224	e Poly	8/2	3/16	14	:05	A	i .	250, 5	00		Done		YES)	NO		~
		o acid,	Yellow I	12SO4, F	Red HNO	3	J	Total Bo	ttles (inc	lude dupl	icate count)					
		TTLE T					ED PER BO	TTLE TY	PE (Circle	applicable	or write non-	standard	analysis be	low)		
1 1	VOA - G	lass		(826d)	(8011)									OR	[]	WALT
Analysis Allowed per Bottle Type	AMBER	- Glass		(8080)	(8150)	(TOX)						7		OR	[]	WA []
§F°	WHITE -	Poly		(pH) (Co	nductivity)	(TDSP (T	SS) (Alkalir	nity) (HCC) ³ /CO ³ ((SO ₄)	(Silica, T.)	(NO3)				
sis /	YELLOW	V - Poly		(COD) (TOC) (NI	l₃) (NO₃/N	O ₂) (Tannir	n/Lignin)								
alys er B	GREEN			(Cyanide)							(71) (14) (7) (I)- d-	>			
ا≱ة		TAL - Pol			-) (Cr) (Cu)	(Fe) (Pb)	(Mn) (Ni)	(Ag) (Se)	(TI) (V) (Zr	n) (Hardn	ess)			
	RED DIS	SSOLVED) - Poly	(Ca) (Fe)	(Mg) (Mn)	(K) (Na)										
		NI ITY	DATA		Duran	Ctort Ti	ma: 1	7				Pump	/Bailer In	let Dent	th:	
WATE						Start Ti		3:45		mp(°C)	DTW		$D_2 (mg/l)$		Vater Q	uality
Meas.	Meth			d (gal)	pH		E Con			/				- V	7 1	7
0	1134	41	0.	.00	699		26		16	<u>65</u>	78.12		.65		clook	1
1	A (13	51)		<u>.40</u>	6.83	183.6	96	0_	14	<u>.06 </u>	28.12		.45	1	clcolo	
2	ALL	354)	0	.75	6.78	182.6	26	0	13	.86	98.12	3	18	clear	-100	lorless
3	A (1.	357		15	6.76	181.9	26	6	13	.89	28.15		.95	clea	1/40	locless
4	A (14	100)	1	.40	6.75	181.4	26	0	13	.83	28.15	9	.92	cle	ar/c	locless
5	A .	703)		.80		180.5		, O	13	-80	28.15	2	.94	Clea	clos	loclass
6		1031				, , , , , ,					- 6					
[Casing]	[Selec	t A-G}	[Cumulat	tive Totals]			\		[Circl	e units]					[Clarity, C	olor]
1			1	P.	1660	Mod	thod	- 4	00 m	Llm	(100	UF / DI	ulse)	(8	17/35)
L	00	+	100	<i>,</i> 10	"ye	1 6		·		7 (**)	- 1					,
				\sim	١.						- I					
SAMP	LER:		$\overline{}$	1 // /	W.	~				_	1	100	(pw.			
		(DDIN'T	ED MAM	X V					•	(SIGNAT	URE)	1	-			

SCS ENGINE

(PRINTED NAME)

15940 SW 72nd Avenue. Portland, OR 97224

Office: 503.639.9201 Fax: 503.684.6984 PROJECT NAME: Leichner Landfill WELL ID: 9411 NE 94th Avenue, Vancouver, WA 98662 SITE ADDRESS: **BLIND ID:** -082316-04 DUP ID: NA WIND FROM: NE Ε SE SW W WN (LIGHT **MEDIUM HEAVY** TEMPERATURE: (F) WEATHER: **SUNNY** CLOUDY RAIN ° C [Circle appropriate units] HYDROLOGY/LEVEL MEASUREMENTS (Nearest 0.01 ft) [Product Thickness] [Water Column] [Water Column x Gal/ft] DT-Bottom DT-Product DT-Water DTP-DTW Volume (gal) Time DTB-DTW 8/23/11 25.48 14:50 58.30 X 1 X 3 1" = 0.041 0.163 4.080 $Gal/ft = (dia./2)^2 \times 0.163$ 3" = 0.367 0.653 1.469 10" = 5.875 § METHODS (A) S)bmersible Pump (B) Peristaltic Pump (C) Disposable Bailer (D) PVC/Teflon Bailer (E) Dedicated Bailer (F) Dedicated Pump (G) Other = [√ if used] GROUNDWATER SAMPLING DATA (if product is detected, do NOT sample) Sample Depth: Bottle Type Date Time Method § Amount & Volume mL Preservative [circle] Filter pН V lce **VOA Glass** (40 ml) HCI YES NO 8 23/16 5:10 (None) (HCI) (H2SO4) YES Amber Glass 250, 500, 1L NO (YES White Poly 250, 500, 1L None NO A NA 8 /23/16 C:10 Yellow Poly 250, 500, 1L H₂SO₄ YES NO Green Poly YES NO 250, 500, 1L NaOH HNO₃ Red Total Poly 125, 250, 500 YES NO YES) HNO3 YES) Red Diss. Poly 250,500, 1L 5:10 250, 500 (1L 15:10 YES White no acid, Yellow H2SO4, Red HNO3 Total Bottles (include duplicate count): **BOTTLE TYPE** TYPICAL ANALYSIS ALLOWED PER BOTTLE TYPE (Circle applicable or write non-standard analysis below) VOA - Glass (8260) OR[] WAIT alysis Allowed Bottle Type AMBER - Glass (8080) (8150) (TOX) OR [WA [] (Conductivity) (TDS) WHITE - Poly (TSS) (Alkalinity) (HCO₃/CO₃) ((CI)) (SO₄) (Silica, T.) (NO3) YELLOW - Poly (COD) (NO_3/NO_2) (Tannin/Lignin) GREEN - Poly (Cyanide) Anal per RED TOTAL - Poly (As) (Sb) (Ba) (Be) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mn) (Ni) (Ag) (Se) (TI) (V) (Zn) (Hardness) RED DISSOLVED - Poly (Ca) (Fe) (Mg) (Mn) (K) (Na) WATER QUALITY DATA Purge Start Time: Pump/Bailer Inlet Depth: 14:53 °F Temp(°C Method § Meas. Purged (gal) pΗ ORP E Cond (µS) DTW Diss O₂ (mg/l) Water Quality 0.00 25 48 1 .04 2 3 .91 4 .40 265 .90 5 13.91 25.48 6 [Cumulative Totals] [Circle units] [Casing] Flow Purge Method ~ 400 mL/min (100 mL/pulse) (8/7/40) SAMPLER:

SCS ENGINEERS

15940 SW 72nd Avenue,

Portland, OR 97224

									Office:	503.63	9.9201		Fax:	503.68	4.6984	
PROJE	CT NA	ME:		Leichn	er Land	fill				V	VELL ID:	L	R - 2	7T		
SITE AI	DDRE	SS:		9411 N	IE 94th	Avenue	, Vanco	uver, W	/A 986	32 B	LIND ID:) R	~O.K.	13/6-	07	
											DUP ID:		ح ن ت	27.47	<u> </u>	NA
WIN	ID FRO	і:мо	N	NE	Е	SE	s	SW	w	NW	LIGI	作)	MEC	DIUM	Н	EAVY
	EATH	- 1	SU	NNY)		UDY	RA			?			TURE:			°C
			_										Mark W		ole appropri	ate unils1
						ITS (Nea					t Thickness]		Column]	i i		olumn x Gal/ft]
Date	\rightarrow	_	me	DI-B	ottom	DI-Pr	roduct		Vater	DIF	P-DTW	DIB-	DTW		Volu	me (gal)
8/23	16	12	:45	\$7	.15		-	3)	.51	~	· · ·	72	64	X 1	4	.18
1	1		:	5	•						×			X 3		4 0
Gal/ft = (d	lia./2) ² x (0.163	1" =	0.041	2"=	0.163	3" =	0.367	4" =	0.653	6" =	1.469	10" =	4.080	12" =	5.875
METHOD	S (A) Sul	bmersibl	e Pump (B) Peristaltic	Pump (C) D	isposable Bai	iler (D) PVC/1	Teflon Baile	r (E) Dedica	ted Bailer (F	F) Dedicated Pu	mp (G) Othe	er =			
GROUN	AWDI	TER	SAMP	LING E	DATA (if	f product is	s detected	, do NO	r sample)		Sample	e Depth	8		[√ if used]
Bottle T	Гуре	D	ate	Tir	me	Method §	Amount	t & Volu	me mL	Pre	servative [circle]	Ice	Filter	pН	1
VOA G	lass	4/5	3/16	13	:05	A	7	(40	M		CHCD		(YES)	NO		
Amber C		/	1/6	103	:			250, 5	00, 1L	(None	e) (HCl) (H	₂ SO ₄)	YES	NO		
White F	Poly	· /2	3/16	1.7	:05	Α	~		00, 1L		None		(YES)	NO	NA	, _
Yellow I		8 3	576	13	.02	Λ	- 23		00, 1L		H₂SO₄		YES	NO		
			1	0.00	•				00, 1L		NaOH		YES	NO		
Green F		'		9	•0											
Red Tota		⊘ /	1		5				50, 500		HNO ₃		YES	NO		
Red Diss	. Poly	83	3/16		:05	I A)		00, 1L		HNO ₃		YES	YES		V
While	Poly	8/2	3/16	13	:05	L _A	1	250, 5	00,①		(None)	(YES)	No		-
٧	Vhite no	acid,	Yellow H	12SO4, F	Red HNO	3	\neg	Total Bo	ttles (inc	lude dupl	icate count)	:				
	вот	TLE T	YPE	TYPICAL		IS ALLOW	ED PER BO	TTLE TY	PE (Circle	applicable	or write non-	standard a	nalysis be	low)		
	VOA - Gla			(8260)	(8011)										[]	WALY
ype	AMBER -			(8080) (8150) (TOX) OR[] WA[] (pH) (Conductivity) (TDS) (TSS) (Alkalinity) (HCO ₃ /CO ₃) ((Cl) (SO ₄) (Silica, T.) (NO3)												
# F M	WHITE - F	<u> </u>		· / ·	TOC) (NE			n/Lignin)	D3/CO3) (((504)	(Silica, I.)	(NO3)				
ysis Bot	GREEN -			(Cyanide)	100) (141	13) (1103/110	J ₂₎ (a	, Lighni)								
ᄪᆔᆑᇎ	RED TOTA		y		(Ba) (Be)) (Cd) (Co)	(Cr) (Cu)	(Fe) (Pb)	(Mn) (Ni)	(Ag) (Se)	(TI) (V) (Zn) (Hardne	ss)			
· II-	RED DISS	SOLVED	- Poly	(Car (Fe)	As) (Sb) (Ba) (Be) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mn) (Ni) (Ag) (Se) (TI) (V) (Zn) (Hardness)											
VATER	R QUA	LITY	DATA		Purge	Start Tir	ne: [2	3:45				Pump/l	Bailer In	let Dept	h:	
Meas.	Metho	d §	Purge	d (gal)	рН	ORP	E Cond	d (μS)	°F Te	mp(°C)	DTW	Diss O	₂ (mg/l)	٧	Vater Qu	uality
0	A (13	48	0.	00	6.83	192.6	58	1	14	.93	31.51	2	60	clea	alcal	coloss
1	. 1	21)	0	.40	6.52		593	_	iζ	.66	31 51		.70	. 10.	- I col	· · lace
2		54		.85		184.7	59		13	.60	31:51		.28	Clar	1.	1 1
3	A 4	1	- 0.0				590				-			CIPA	7	001677
4	A Clas			-15		183.4			==:::n v:::=	61	31.51		.91	Clas	- 1 Col	arless
	A (is	17		1000	-	182.5	<u> </u>	10-11-1		.59	31.51	100000	16	Clea	1 .	lor 1P55
	A (13	03)	1	.70	669	181.4		90	_13	.60	3151		-18	C)Ca	ClColi	s clos's
6 [Casing]	[Select A	\ Cl	Cumulati	ve Totals]					Circle	units]		- 6			[Clarity, Co	alor)
Low	FI	oω	Por	ge	net	hod~	- 410	70 m			(100	m L /	pu lse	8	17/35
SAMPL	FR·	5	1	1	(,)	r -				(-	1n L	V~				
	_	PRINTE	D NAME)	1110	1 PWS			5 2	(SIGNATE	ORE)	Ei .				

APPENDIX B

Summary Tables of Historical Groundwater Field Parameter Measurements and Analytical Data

Table B-1 Groundwater Chemistry, Field Parameters 1987 through 2016 Leichner Landfill

			<u> </u>	Field	1	Dissolved
			Eigld all		Temperature	
T		Dete	Field pH	Conductivity	-	Oxygen
Location	Sample Number	Date	(S.U.)	(umhos/cm)	(°C)	(mg/L)
LB-1D	LB-289-W04	2/28/89	6.18	225	10.0	NT
LB-1D	LB-589-W03	5/23/89	7.01	220	11.5	NT
LB-1D	LB-1089-W01	10/17/89	6.60	213	10.5	NT
LB-1D	LB-1189-W04	11/14/89	7.25	191	10.5	NT
LB-1D	LB-1289-W22	12/19/89	7.01	190	9.0	NT
LB-1D	LB-390-W09	3/14/90	6.92	188	11.0	NT
LB-1D	LB-690-W11	6/20/90	7.11	188	13.0	NT
LB-1D	LB-990-W08	9/14/90	6.79	223	12.5	NT
LB-1D	LB-1290-W06	12/11/90	6.90	199	10.7	NT
LB-1D	LB-391-W11	3/20/91	6.95	171	13.2	NT
LB-1D	LB-691-W06	6/25/91	7.05	226	11.7	NT
LB-1D	LB-991-06	9/24/91	7.05	184	10.7	NT
LB-1D	LB-1291-14	12/23/91	7.26	202	10.3	NT
LB-1D	LB-392-14	3/23/92	7.17	200	13.0	NT
LB-1D	LB-63092-2	6/30/92	6.73	217	13.0	NT
LB-1D	LB-92292-3	9/22/92	7.09	202	12.0	NT
LB-1D	LB-121192-16	12/11/92	7.03	205	12.0	NT
LB-1D	LB-031093-4	3/10/93	7.06	202	12.0	NT
LB-1D	LB-060293-6	6/2/93	7.00	196	13.5	NT
LB-1D	LB-092393-8	9/23/93	7.21	195	13.0	8.00
LB-1D	LB-121593-2	12/15/93	7.21	206	10.0	7.40
LB-1D	LB-032494-2	3/24/94	7.11	203	14.0	7.60
LB-1D	LB-062194-1	6/21/94	7.02	206	16.0	7.70
LB-1D LB-1D	LB-092194-1 LB-090694-2	9/6/94	7.02	200	14.5	NT
LB-1D LB-1D	LB-090094-2 LB-121494-12	12/14/94	7.01	259	11.0	9.90
LB-1D LB-1D	LB-030995-2	3/9/95	7.29	219	13.5	7.70
LB-1D LB-1D	LB-030993-2 LB-062095-13	6/20/95	7.01	219	13.0	7.70
LB-1D LB-1D	LB-002095-13 LB-092295-14	9/22/95	6.97	211	12.6	7.20 NT
LB-1D LB-1D	LB-12995-6	12/19/95	7.21	196	8.4	NT NT
LB-1D LB-1D	LB-032096-18	3/20/96	6.98	233	14.5	NT NT
LB-1D	LB-061896-10	6/18/96	7.25	188	14.0	NT
LB-1D	LB-091796-6	9/17/96	7.13	181	13.4	NT
LB-1D	LB121796-2	12/17/96	7.48	207	10.6	NT
LB-1D	LB-031997-4	3/19/97	6.90	228	12.0	NT
LB-1D	LB-061797-4	6/17/97	7.21	211	13.7	NT
LB-1D	LB-091697-1	9/16/97	6.80	118	12.3	NT
LB-1D	LB-121697-4	12/16/97	7.03	223	11.9	8.30
LB-1D	LB-031998-4	3/19/98	6.71	220	12.2	NT
LB-1D	LB-061698-6	6/16/98	7.10	198	12.5	NT
LB-1D	LB-091798-3	9/17/98	8.12	134.6	12.6	NT
LB-1D	LB-121898-10	12/18/98	7.18	231	11.3	NT
LB-1D	LB-031799-04	3/17/99	7.18	184	13.2	NT
LB-1D	LB-062399-15	6/23/99	7.08	157	13.3	NT
LB-1D	LB-091799-11	9/17/99	6.91	222	12.2	NT
LB-1D	LB-121699-12	12/16/99	7.02	170	12.2	NT
LB-1D	LB-091100-2	9/11/00	7.02	221	13.0	NT
LB-1D	LB-121500-10	12/15/00	7.06	188	11.8	NT

Table B-1
Groundwater Chemistry, Field Parameters
1987 through 2016
Leichner Landfill

	ı		<u> </u>	Field	I	Dissolved
			Field pH	Conductivity	Temperature	Oxygen
Location	G 1 N 1	Date	(S.U.)	(umhos/cm)	(°C)	
	Sample Number			` ′		(mg/L)
LB-1D	LB-031501-15	3/15/01	6.92	220	11.5	NT
LB-1D	LB-031902-2	3/19/02	7.17	216	11.8	NT
LB-1D	LB-031303-12	3/13/03	6.77	200	12.0	NT
LB-1D	LB-022404-1	2/24/04	7.54	158	52.5	NT
LB-1D	LB-030905-13	3/9/05	6.69	215	12.0	8.39
LB-1D	LB-031406-1	3/14/06	6.90	162	11.5	8.55
LB-1D	LB-030507-2	3/5/07	6.24	170	12.6	8.90
LB-1D	LB-032408-15	3/24/08	6.97	300	10.8	NT
LB-1D	LB-1D	3/17/09	6.89	221	11.4	10.18
LB-1D	LB-1D032310	3/23/10	7.15	266	11.6	NT
LB-1D	LB-1D	3/28/11	7.45	355	11.9	6.54
LB-1D	LB-031312-13	3/13/12	6.67	249	11.5	7.55
LB-1D	LB-020513-07	2/5/13	6.70	240	11.8	8.25
LB-1D	LB-021914-17	2/19/14	6.73	218	11.6	6.94
LB-1D	LB-021915-17	2/19/15	6.76	220	11.9	6.43
LB-1D	LB-021716-08	2/17/16	7.14	231	11.8	3.53
LB-1S	LB-589-W04	5/23/89	6.61	572	12.5	NT
LB-1S	LB-1289-W12	12/15/89	6.56	352	9.5	NT
LB-1S	LB-390-W10	3/14/90	6.26	367	11.5	NT
LB-1S	LB-690-W10	6/20/90	6.58	446	12.0	NT
LB-1S	LB-990-W06	9/14/90	6.40	416	13.0	NT
LB-1S	LB-1290-W05	12/11/90	6.38	554	11.2	NT
LB-1S	LB-391-W10	3/20/91	6.30	565	13.1	NT
LB-1S	LB-691-W05	6/25/91	6.63	546	12.5	NT
LB-1S	LB-991-05	9/24/91	6.67	316	11.7	NT
LB-1S	LB-1291-13	12/23/91	6.94	377	11.1	NT
LB-1S	LB-392-15	3/23/92	6.64	416	14.0	NT
LB-1S	LB-63092-1	6/30/92	6.71	414	14.0	NT
LB-1S	LB-92292-2	9/22/92	6.47	358	12.5	NT
LB-1S	LB-121192-15	12/11/92	6.51	353	12.0	NT
LB-1S	LB-031093-3	3/10/93	6.46	630	12.0	NT
LB-1S	LB-060293-5	6/2/93	6.20	565	14.5	NT
LB-1S	LB-092393-09	9/23/93	6.62	475	15.0	4.90
LB-1S	LB-121593-1	12/15/93	6.41	456	12.5	3.80
LB-1S	LB-032494-1	3/24/94	6.29	567	15.0	NT
LB-1S	LB-062194-4	6/21/94	6.30	554	16.5	4.70
LB-1S	LB-090694-1	9/6/94	6.36	516	14.5	NT
LB-1S	LB-121494-11	12/14/94	7.49	589	10.0	6.20
LB-1S	LB-030995-1	3/9/95	6.61	455	13.5	NT
LB-1S	LB-062095-12	6/20/95	6.74	553	13.5	7.30
LB-1S	LB-092295-13	9/22/95	6.98	448	13.1	NT
LB-1S	LB-121995-5	12/19/95	6.74	390	10.2	NT
LB-1S	LB-032096-17	3/20/96	6.71	496	18.0	NT
LB-1S	LB-061896-9	6/18/96	6.82	361	14.0	NT
LB-1S	LB-091796-5	9/17/96	6.73	401	12.6	NT
LB-1S	LB121796-1	12/17/96	7.40	398	11.5	NT

Table B-1
Groundwater Chemistry, Field Parameters
1987 through 2016
Leichner Landfill

	<u> </u>			Field	<u> </u>	Dissolved
			Field pH	Conductivity	Temperature	Oxygen
Location	Committe Normalism	Date	(S.U.)	(umhos/cm)	(°C)	(mg/L)
	Sample Number			` '		
LB-1S	LB-031997-3	3/19/97	6.61	517	12.8	NT
LB-1S	LB-061797-3	6/17/97	6.55	350	14.7	NT
LB-1S	LB-091697-2	9/16/97	6.50	323	13.1	NT
LB-1S	LB-121697-5	12/16/97	6.52	465	13.1	6.30
LB-1S	LB-031998-3	3/19/98	6.78	538	13.0	NT
LB-1S	LB-061698-5	6/16/98	6.49	329	13.5	NT
LB-1S	LB-091798-4	9/17/98	6.76	281	13.8	NT
LB-1S	LB-121898-9	12/18/98	6.69	344	12.4	NT
LB-1S	LB-031799-3	3/17/99	6.85	327	14.6	NT
LB-1S	LB-062399-14	6/23/99	6.72	266	14.4	NT
LB-1S	LB-091799-9	9/17/99	6.57	442	13.3	NT
LB-1S	LB-121699-13	12/16/99	6.64	310	13.6	NT
LB-1S	LB-091100-1	9/11/00	6.59	371	13.9	NT
LB-1S	LB-121500-9	12/15/00	6.69	305	13.0	NT
LB-1S	LB-031401-14	3/14/01	6.58	276	13.3	NT
LB-1S	LB-092001-6	9/20/01	6.63	305	13.2	NT
LB-1S	LB-031902-1	3/19/02	7.45	288	12.7	6.89
LB-1S LB-1S	LB-091802-1	9/18/02	7.43	240	14.0	5.50
LB-1S LB-1S	LB-031303-10	3/13/03	6.97	230	12.0	NT
LB-1S LB-1S	LB-091303-10 LB-092203-6	9/22/03	6.50	170	14.0	6.17
LB-1S	LB-022404-2	2/24/04	6.68	173	53.9	NT
LB-1S	LB-090104-1	9/1/04	6.50	225	13.2	NT
LB-1S	LB-030905-14	3/9/05	6.59	227	13.0	6.52
LB-1S	LB-091405-1	9/14/05	6.86	190	13.5	5.12
LB-1S	LB-031406-3	3/14/06	6.68	239	12.1	8.03
LB-1S	LB-091306-5	9/13/06	6.58	242	12.7	4.90
LB-1S	LB-030507-1	3/5/07	6.18	187	12.4	8.24
LB-1S	LB-091907-1	9/19/07	6.66	246	12.6	6.36
LB-1S	LB-032408-14	3/24/08	6.60	381	10.1	NT
LB-1S	LB-091608-1	9/16/08	6.79	267	12.4	NT
LB-1S	LB-1S	3/17/09	6.75	265	12.0	8.45
LB-1S	LBLF1S091109	9/11/09	7.10	261	13.1	5.86
LB-1S	LB-1S032310	3/23/10	6.89	345	12.1	NT
LB-1S	LB1S092310	9/23/10	7.20	170	11.7	NT 5.66
LB-1S	LB-1S	3/24/11	6.75	271	12.3	5.66
LB-1S	LB-090811-07	9/8/11	6.61	296	14.2	5.35
LB-1S	LB-031312-14	3/13/12	6.50	335	12.5	4.44
LB-1S LB-1S	LB-091212-08 LB-020513-09	9/12/12 2/5/13	6.70 6.50	177 279	13.0 12.1	2.91 6.00
LB-1S LB-1S	LB-020513-09 LB-082213-08	2/5/15 8/22/13	5.84	312	13.0	4.12
LB-1S LB-1S	LB-082213-08 LB-021914-18	8/22/13 2/19/14	5.84 6.48	357	13.0	4.12
LB-1S LB-1S	LB-021914-18 LB-081414-09	2/19/14 8/14/14	6.36	258	13.4	4.13 4.93
LB-1S LB-1S	LB-081414-09 LB-021915-16	2/19/15	6.26	331	13.4	4.93 4.16
LB-1S LB-1S	LB-021915-16 LB-081115-02	2/19/15 8/11/15	6.26 6.65	239	13.2	4.16 5.76
LB-1S LB-1S	LB-081113-02 LB-021716-14	2/17/16	6.63 6.71	239 262	13.2 12.5	5.76 5.34
LB-1S LB-1S	LB-021710-14 LB-082416-05	8/24/16	6.37	202 294	13.3	5.04 5.04
TD-19	LD-097410-02	0/44/10	0.5/	29 4	13.3	5.04

Table B-1
Groundwater Chemistry, Field Parameters
1987 through 2016
Leichner Landfill

				Field		Dissolved
			Field pH	Conductivity	Temperature	Oxygen
Location	Sample Number	Date	(S.U.)	(umhos/cm)	(°C)	(mg/L)
LB-3D	LB-1189-W01	11/13/89	6.77	240	10.0	NT
LB-3D	LB-1289-W20	12/18/89	6.71	225	9.5	NT
LB-3D	LB-032097-14	3/20/97	6.79	271	12.1	NT
LB-3D	LB-032098-21	3/20/98	6.70	242	12.1	NT
LB-3D	LB-031899-15	3/18/99	6.75	198	13.5	NT
LB-3D	LB-031501-17	3/15/01	6.68	220	11.3	NT
LB-3D	LB-032002-18	3/20/02	6.78	216	11.5	7.82
LB-3D	LB-031303-14	3/13/03	6.43	170	12.0	NT
LB-3D	LB-022404-5	2/24/04	6.74	129	51.9	NT
LB-3D	LB-030905-15	3/9/05	6.56	176	11.9	7.20
LB-3D	LB031606-21	3/16/06	6.73	158	11.0	8.84
LB-3D	LB-030507-4	3/5/07	5.94	138	12.0	7.43
LB-3D	LB-032408-17	3/24/08	6.74	292	12.1	NT
LB-3D	LB-3D	3/18/09	6.68	204	12.9	8.52
LB-3D	LB-3D032410	3/24/10	6.66	233	14.3	NT
LB-3D	LB-3D	3/28/11	7.37	336	11.8	5.46
LB-3D	LB-031312-09	3/13/12	6.48	231	10.3	5.38
LB-3D	LB-020713-18	2/7/13	6.49	221	11.2	5.14
LB-3D	LB-021914-22	2/19/14	6.38	209	11.2	5.18
LB-3D	LB-021715-07	2/17/15	6.55	208	12.7	5.77
LB-3D	LB-021616-06	2/16/16	6.65	220	11.7	5.49
LB-3S	LB-1089-W02	10/17/89	7.36	241	11.0	NT
LB-3S	LB-1189-W02	11/13/89	6.63	224	10.5	NT
LB-3S	LB-1289-W11	12/15/89	6.14	220	10.0	NT
LB-3S	LB-390-W11	3/14/90	6.57	216	11.0	NT
LB-3S	LB-690-W06	6/19/90	NT	208	13.0	NT
LB-3S	LB-990-W10	9/14/90	6.93	211	11.5	NT
LB-3S	LB-1290-W08	12/12/90	6.72	209	11.1	NT
LB-3S	LB-391-W07	3/20/91	6.36	214	11.3	NT
LB-3S	LB-691-W10	6/26/91	6.04	222	11.9	NT
LB-3S	LB-991-16	9/24/91	6.38	222	11.1	NT
LB-3S	LB-1291-06	12/20/91	6.65	239	10.7	NT
LB-3S	LB-392-10	3/20/92	6.74	227	13.5	NT
LB-3S	LB-62692-8	6/26/92	7.22	243	13.0	NT
LB-3S	LB-91792-3	9/17/92	7.90	262	12.0	NT
LB-3S	LB-121092-14	12/10/92	6.41	274	12.0	NT
LB-3S	LB-031593-25	3/15/93	6.61	303	11.5	NT
LB-3S	LB-060393-14	6/3/93	6.87	281	13.5	NT
LB-3S	LB-092393-01	9/23/93	6.18	266	14.0	1.50
LB-3S	LB-121593-5	12/15/93	9.51	277	10.5	3.00
LB-3S	LB-032594-11	3/25/94	6.83	284	13.0	5.80
LB-3S	LB-062394-13	6/23/94	6.64	290	14.5	5.40
LB-3S	LB-090794-8	9/7/94	6.95	286	14.0	NT
LB-3S	LB-121494-13	12/14/94	6.62	356	11.5	3.30
LB-3S	LB-031395-20	3/13/95	6.48	348	13.0	6.10
LB-3S	LB-052095-14	6/20/95	6.58	352	13.0	4.80

Table B-1 Groundwater Chemistry, Field Parameters 1987 through 2016 Leichner Landfill

			Field pH	Field Conductivity	Temperature	Dissolved Oxygen
Location	Sample Number	Date	(S.U.)	(umhos/cm)	(°C)	(mg/L)
LB-3S	LB-092195-11	9/21/95	6.77	280	12.2	NT
LB-3S	LB-121995-4	12/19/95	6.89	170	10.0	NT
LB-3S	LB-032096-21	3/20/96	6.70	312	11.4	NT
LB-3S	LB-061996-11	6/19/96	6.54	261	13.5	NT
LB-3S	LB-032097-13	3/20/97	6.73	274	11.6	NT
LB-3S	LB-032098-20	3/20/98	6.70	242	12.8	NT
LB-3S	LB-031899-14	3/18/99	6.72	173	13.3	NT
LB-3S	LB-031501-18	3/15/01	6.67	173	11.2	NT
LB-3S	LB-032002-17	3/20/02	6.89	182	11.4	7.48
LB-3S	LB-031303-13	3/13/03	6.53	150	11.7	NT
LB-3S LB-3S	LB-022404-6	2/24/04	6.62	121	52.2	NT
LB-3S LB-3S	LB-022404-0 LB-030905-16	3/9/05	6.50	164	11.9	6.12
LB-3S LB-3S	LB-031606-22	3/3/03	6.71	142	11.9	8.30
LB-3S LB-3S	LB-031606-22 LB-030507-3	3/5/07	5.93	134	12.0	8.30 7.44
LB-3S LB-3S	LB-030307-3 LB-032408-18	3/3/07 3/24/08	5.93 6.62	302	12.0	7. 44 NT
LB-3S LB-3S	LB-032408-18 LB-3S	3/24/08	6.62	223	12.2	7.39
LB-3S LB-3S	LB-3S032410	3/16/09	6.76	239	13.9	NT
LB-3S LB-3S	LB-3S LB-3S	3/24/10	7.29	352	11.6	5.73
LB-3S LB-3S	LB-031312-10	3/13/12	6.44	239	11.0	4.57
LB-3S	LB-020713-17	2/7/13	6.46	236	11.5	5.36
LB-3S	LB-021914-22	2/19/14	6.22	215	11.6	6.39
LB-3S	LB-021915-19	2/19/15	6.53	200	11.8	4.81
LB-3S	LB-021716-12	2/17/16	6.64	206	11.8	5.00
LB-5D	LB-289-W13	3/1/89	6.36	635	10.0	NT
LB-5D	LB-589-W13	5/24/89	6.71	534	13.0	NT
LB-5D	LB-1289-W24	12/19/89	6.62	559	10.5	NT
LB-5D	LB-690-W14	6/20/90	6.69	531	13.0	NT
LB-5D	LB-990-W15	9/18/90	6.43	554	13.0	NT
LB-5D	LB-1290-W24	12/14/90	6.75	550	10.2	NT
LB-5D	LB-391-W18	3/21/91	6.50	546	12.0	NT
LB-5D	LB-691-W17	6/26/91	6.73	513	13.2	NT
LB-5D	LB-991-06	9/25/91	6.44	547	12.1	NT
LB-5D	LB-1291-11	12/20/91	6.83	569	10.7	NT
LB-5D	LB-392-03	3/19/92	6.73	526	13.0	NT
LB-5D	LB-63092-4	6/30/92	6.77	576	13.5	NT
LB-5D	LB-91892-2	9/18/92	6.99	566	11.0	NT
LB-5D	LB-121092-11	12/10/92	6.76	550	13.0	NT
LB-5D	LB-031193-12	3/11/93	6.71	547	13.0	NT
LB-5D	LB-060293-8	6/2/93	6.42	515	14.0	NT
LB-5D LB-5D	LB-000293-8 LB-092793-19	9/27/93	6.72	544	14.0	7.00
LB-5D LB-5D	LB-121593-4	12/15/93	6.73	523	12.5	1.20
LB-5D LB-5D	LB-121393-4 LB-032894-13	3/28/94	6.73	610	14.0	2.40
				538		
LB-5D	LB-062194-3	6/21/94	6.76		15.0	3.00
LB-5D	LB-090694-4	9/6/94	6.83	537	16.0	NT
LB-5D	LB-121394-8	12/13/94	6.84	577	13.5	2.20
LB-5D	LB-030995-4	3/9/95	6.98	563	14.0	2.90
LB-5D	LB-061995-7	6/19/95	6.87	600	13.0	4.70

			E' 11 II	Field	Temperature	Dissolved
.		.	Field pH	Conductivity	-	Oxygen
Location	Sample Number	Date	(S.U.)	(umhos/cm)	(°C)	(mg/L)
LB-5D	LB-092195-9	9/21/95	6.50	582	13.3	NT
LB-5D	LB-121895-2	12/18/95	6.72	591	12.3	NT
LB-5D	LB-031996-9	3/19/96	6.65	519	13.0	NT
LB-5D	LB-061896-8	6/18/96	7.01	511	13.5	NT
LB-5D	LB-031997-9	3/19/97	6.81	509	12.3	NT
LB-5D	LB-031998-6	3/19/98	6.71	539	14.4	NT
LB-5D	LB-031899-11	3/18/99	6.76	343	15.2	NT
LB-5D	LB-031401-11	3/14/01	6.73	409	13.5	NT
LB-5D	LB-031902-13	3/19/02	6.85	430	12.7	4.29
LB-5D	LB-031303-9	3/13/03	6.53	410	12.0	NT
LB-5D	LB-022504-7	2/25/04	6.80	307	52.7	NT
LB-5D	LB-030805-1	3/8/05	6.82	400	15.2	3.91
LB-5D	LB-031606-14	3/16/06	6.75	339	12.3	7.38
LB-5D	LB-030507-7	3/5/07	6.34	275	13.4	4.40
LB-5D	LB-031908-2	3/19/08	6.88	0.566	11.8	NT
LB-5D	LB-5D	3/17/09	6.88	351	13.1	4.22
LB-5D	LB-5D032410	3/24/10	7.00	365	15.0	NT
LB-5D	LB-5D	3/23/11	7.69	338	12.8	2.43
LB-5D	LB-031212-03	3/12/12	6.63	363	11.4	0.33
LB-5D	LB-020513-03	2/5/13	6.69	333	11.3	0.39
LB-5D	LB-021714-01	2/17/14	6.42	256	11.1	0.68
LB-5D	LB-021715-01	2/17/15	6.27	309	13.8	0.79
LB-5D	LB-021816-16	2/18/16	6.90	298	12.1	0.52
LB-5S	LB-390-W17	3/15/90	6.41	135	10.0	NT
LB-5S	LB-690-W13	6/20/90	6.84	161	12.0	NT
LB-5S	LB-990-W14	9/18/90	6.59	186	11.5	NT
LB-5S	LB-1290-W25	12/14/90	6.61	187	10.6	NT
LB-5S	LB-391-W17	3/21/91	6.31	162	11.1	NT
LB-5S	LB-691-W16	6/26/91	7.16	162.3	12.0	NT
LB-5S	LB-991-09	9/25/91	6.61	206	10.8	NT
LB-5S	LB-1291-10	12/20/91	6.86	124	10.8	NT
LB-5S	LB-392-04	3/19/92	6.66	168	12.0	NT
LB-5S	LB-63092-3	6/30/92	6.19	206	13.0	NT
LB-5S	LB-91892-1	9/18/92	6.57	208	11.5	NT
LB-5S	LB-121092-10	12/10/92	6.70	182	12.5	NT
LB-5S LB-5S	LB-031193-11	3/11/93	6.63	179	12.0	NT
LB-5S LB-5S	LB-060293-7	6/2/93	6.33	198	13.0	NT
LB-5S	LB-092793-18	9/27/93	6.72	180	14.5	9.60
LB-5S	LB-121593-3	12/15/93	6.78	161	12.0	11.00
LB-5S	LB-032894-12	3/28/94	6.28	200	13.0	11.00
LB-5S	LB-062194-2	6/21/94	6.59	219	15.0	10.50
LB-5S	LB-090694-3	9/6/94	6.50	178	15.5	NT
LB-5S	LB-121394-9	12/13/94	6.61	142	13.5	11.00
LB-5S	LB-030995-3	3/9/95	6.94	158	13.5	10.40
LB-5S	LB-051995-6	6/19/95	6.54	275	12.0	7.70
LB-5S	LB-092195-8	9/20/95	6.50	229	12.3	NT
LB-5S	LB-121895-1	12/18/95	7.49	89	11.7	NT

Table B-1
Groundwater Chemistry, Field Parameters
1987 through 2016
Leichner Landfill

	1			Field	ı	Dissolved
			Field pH	Conductivity	Temperature	
T = ==4: ==		Data		•	(°C)	Oxygen
Location	Sample Number	Date	(S.U.)	(umhos/cm)	` '	(mg/L)
LB-5S	LB-031996-7	3/19/96	6.45	217	12.5	NT
LB-5S	LB-061896-7	6/18/96	6.65	238	12.5	NT
LB-5S	LB-031997-8	3/19/97	6.93	226	11.3	NT
LB-5S	LB-031998-5	3/19/98	6.39	226	12.1	NT
LB-5S	LB-031899-10	3/18/99	6.89	180	13.6	NT
LB-5S	LB-031401-12	3/14/01	6.53	177	11.9	NT
LB-5S	LB-092001-1	9/20/01	6.38	218	12.7	NT
LB-5S	LB-031902-12	3/19/02	6.76	185	11.6	8.89
LB-5S	LB-091802-6	9/18/02	6.90	220	14.0	NT
LB-5S	LB-031303-8	3/13/03	6.67	167	12.0	NT
LB-5S	LB-092203-1	9/22/03	6.08	190	13.5	7.00
LB-5S	LB-022504-9	2/25/04	6.45	146	54.3	NT
LB-5S	LB-090104-5	9/1/04	6.36	200	14.5	NT
LB-5S LB-5S	LB-030805-2	3/8/05	6.19	200	12.8	9.26
LB-5S LB-5S	LB-030803-2 LB-091405-4	9/14/05	6.37	180	13.3	9.20 8.16
LB-5S	LB-031606-16	3/16/06	6.60	203	11.4	11.18
LB-5S	LB-091206-1	9/12/06	6.27	264	13.6	7.18
LB-5S	LB-030507-6	3/5/07	5.82	175	12.4	9.72
LB-5S	LB-091907-3	9/19/07	6.27	223	13.0	9.42
LB-5S	LB-031908-1	3/19/08	6.45	0.457	10.7	NT
LB-5S	LB-091608-2	9/16/08	6.42	204	12.9	NT
LB-5S	LB-5S	3/17/09	6.55	213	11.9	9.21
LB-5S	LBLF5S091109	9/11/09	6.70	197	13.3	9.74
LB-5S	LB-5S032410	3/24/10	6.54	190	13.4	NT
LB-5S	LB-5S092310	9/23/10	6.70	174	12.4	NT
LB-5S	LB-5S	3/23/11	6.89	228	11.8	7.82
LB-5S	LB-090811-06	9/8/11	5.92	273	13.3	8.10
LB-5S	LB-032212-17	3/22/12	6.16	204	10.9	9.22
LB-5S	LB-091112-01	9/11/12	6.11	188	13.4	8.13
LB-5S	LB-020513-04	2/5/13	6.20	183	11.7	8.34
LB-5S	LB-082113-01	8/21/13	6.10	127	13.7	6.01
LB-5S	LB-021714-02	2/17/14	6.14	166	12.2	5.11
LB-5S	LB-081314-01	8/13/14	6.19	173	13.5	7.98
LB-5S	LB-021815-09	2/18/15	6.43	177	12.4	6.69
LB-5S	LB-081215-08 LB-021816-17	8/12/15	5.79	208	13.9	7.66
LB-5S LB-5S	LB-021816-17 LB-082316-01	2/18/16 8/23/16	6.42 6.64	207 203	12.2 14.4	6.91 6.99
LB-6S	LB-289-W17	3/1/89	6.43	801	10.0	NT
LB-6S	LB-589-W17	5/24/89	6.80	630	13.5	NT
LB-6S	LB-1289-W13	12/15/89	6.89	835	10.5	NT
LB-6S	LB-390-W24	3/15/90	6.54	667	13.5	NT
LB-6S	LB-690-W22	6/21/90	6.99	567	13.0	NT
LB-6S	LB-990-W11	9/14/90	6.49	741	13.0	NT
LB-6S	LB-1290-W13	12/12/90	6.83	765	10.4	NT
LB-6S	LB-391-W16	3/21/91	6.44	522	12.4	NT
LB-6S	LB-691-W19	6/27/91	6.10	640	13.3	NT

Table B-1
Groundwater Chemistry, Field Parameters
1987 through 2016
Leichner Landfill

				Field		Dissolved
			Field pH	Conductivity	Temperature	Oxygen
Location	Sample Number	Date	(S.U.)	(umhos/cm)	(°C)	(mg/L)
LB-6S	LB-991-14	9/25/91	6.84	665	12.9	NT
LB-6S	LB-1291-08	12/20/91	6.69	694	11.9	NT
LB-6S	LB-392-07	3/20/92	6.69	520	14.0	NT
LB-6S	LB-62692-5	6/26/92	7.02	649	13.5	NT
LB-6S	LB-92192-4	9/21/92	6.76	676	12.0	NT
LB-6S	LB-12992-4	12/9/92	6.77	727	13.0	NT
LB-6S	LB-031093-7	3/10/93	6.90	614	12.5	NT
LB-6S	LB-060393-11	6/3/93	6.64	410	14.0	NT
LB-6S	LB-092493-13	9/24/93	6.64	470	14.0	5.20
LB-6S	LB-121593-6	12/15/93	6.68	579	13.0	3.40
LB-6S	LB-032994-18	3/29/94	6.37	390	14.5	7.40
LB-6S	LB-062394-11	6/23/94	6.62	505	13.5	5.90
LB-6S	LB-090694-5	9/6/94	6.69	531	18.0	NT
LB-6S	LB-121394-6	12/13/94	6.61	524	13.0	3.00
LB-6S	LB-031095-10	3/10/95	6.81	320	12.0	8.90
LB-6S	LB-062095-9	6/20/95	6.50	487	12.0	5.60
LB-6S	LB-092095-6	9/20/95	6.74	495	15.0	NT
LB-6S	LB-122095-12	12/20/95	6.21	386	12.1	NT
LB-6S	LB-031996-5	3/19/96	6.29	336	13.5	NT
LB-6S	LB-061996-12	6/19/96	6.54	367	13.0	NT
LB-6S	LB-091896-12	9/18/96	6.31	362	12.8	NT
LB-6S	LB121796-3	12/17/96	7.01	431	12.2	NT
LB-6S	LB-031997-7	3/19/97	6.89	430	12.5	NT
LB-6S	LB-061797-6	6/17/97	6.45	456	13.4	NT
LB-6S	LB-091697-3	9/16/97	6.50	351	12.1	NT
LB-6S	LB-121797-14	12/17/97	6.43	584	12.5	0.60
LB-6S	LB-031998-7	3/19/98	6.46	633	13.4	NT
LB-6S	LB-061698-7	6/16/98	6.54	384	13.1	NT
LB-6S	LB-091798-5	9/17/98	6.54	292	13.5	NT
LB-6S	LB-121798-01	12/17/98	6.74	398	12.5	NT
LB-6S	LB-031799-2	3/17/99	6.75	352	14.5	NT
LB-6S	LB-062399-11	6/23/99	6.77	298	13.7	NT
LB-6S	LB-002599-11 LB-091699-5	9/16/99	6.56	554	13.7	NT
LB-6S	LB-121599-10	12/14/99	6.66	440	12.5	NT
LB-6S	LB-091200-3	9/12/00	6.42	413	13.2	NT
LB-6S	LB-031200-3 LB-121200-1	12/12/00	6.61	467	13.2	NT
LB-6S	LB-031301-7	3/13/01	6.58	531	13.0	NT
LB-6S	LB-031301-7 LB-092001-5	9/20/01	6.69	405	13.2	NT NT
LB-6S LB-6S	LB-092001-5 LB-032002-15	3/20/01	6.82	468	13.6	N1 4.54
LB-6S	LB-032002-13 LB-091802-2	9/18/02	7.00	430	13.2	4.34 NT
LB-6S LB-6S	LB-091802-2 LB-031303-21	3/13/03	6.70	430 497	13.0	NT NT
LB-6S LB-6S	LB-031303-21 LB-092203-5	3/13/03 9/22/03	6.70 6.50	310	13.0	5.70
LB-6S	LB-022604-18	2/26/04	6.79	279	54.4	NT
LB-6S	LB-090104-6	9/1/04	6.69	335	13.3	NT
LB-6S	LB-030805-9	3/8/05	6.84	432	14.5	3.13
LB-6S	LB-091405-6	9/14/05	6.67	302	13.4	2.34

Table B-1
Groundwater Chemistry, Field Parameters
1987 through 2016
Leichner Landfill

ir	 		T	F: 11	ı	D: 1 1
			F: 11 II	Field	Temperature	Dissolved
Ŧ .*		ъ.	Field pH	Conductivity	_	Oxygen
Location	Sample Number	Date	(S.U.)	(umhos/cm)	(°C)	(mg/L)
LB-6S	LB-0301506-13	3/15/06	6.67	287	12.1	8.38
LB-6S	LB-091206-4	9/12/06	6.66	344	13.1	5.80
LB-6S	LB-030507-12	3/5/07	6.20	249	13.0	9.40
LB-6S	LB-091907-6	9/19/07	6.72	349	12.6	3.59
LB-6S	LB-031908-9	3/19/08	6.69	418	13.0	NT
LB-6S	LB-091608-3	9/16/08	6.47	334	14.5	NT
LB-6S	LB-6S	3/18/09	6.63	304	12.4	4.61
LB-6S	LBLF6S091109	9/11/09	7.16	292	12.4	2.28
LB-6S	LB-6S032310	3/23/10	6.79	322	6.2	NT
LB-6S	LB6S092310	9/23/10	7.00	192	11.6	NT
LB-6S	LB-6S	3/22/11	7.58	241	12.2	7.52
LB-6S	LB-090711-05	9/7/11	6.76	219	15.0	7.01
LB-6S	LB-032212-23	3/22/12	6.54	240	11.7	6.65
LB-6S	LB-091212-06	9/12/12	6.40	214	12.7	4.02
LB-6S	LB-020613-15	2/6/13	6.66	200	11.7	3.23
LB-6S	LB-082113-07	8/21/13	6.03	181	13.6	4.61
LB-6S	LB-021914-23	2/19/14	6.39	179	11.5	3.44
LB-6S	LB-081314-06	8/13/14	6.33	152	12.6	6.43
LB-6S	LB-021815-14	2/18/15	6.86	211	12.0	3.79
LB-6S	LB-081115-03	8/11/15	6.83	179	13.0	6.60
LB-6S	LB-021816-21	2/18/16	6.72	214	11.9	6.43
LB-6S	LB-082416-08	8/24/16	6.65	182	14.4	8.60
LB-10DR	LB-031005-19	3/10/05	7.15	523	13.6	1.61
LB10-DR	LB-031406-5	3/14/06	6.83	389	12.3	2.98
LB10-DR	LB-030607-20	3/6/07	6.39	375	13.3	6.33
LB10-DR	LB-032408-22	3/24/08	6.92	535	12.6	NT
LB10-DR	LB-10DR	3/17/09	6.86	495	12.4	5.12
LB-10DR	LB-10DR032310	3/23/10	6.95	525	12.2	NT
LB-10DR	LB-10DR	3/29/11	6.33	491	11.8	2.81
LB-10DR	LB-0313012-07	3/13/12	6.70	463	11.7	1.42
LB-10DR	LB-020713-19	2/7/13	6.68	458	12.5	0.89
LB-10DR	LB-021914-15	2/19/14	6.94	357	12.5	1.50
LB-10DR	LB-021915-20	2/19/15	6.85	339	13.1	1.47
LB-10DR	LB-021716-09	2/19/16	7.00	415	12.7	0.86
LB-10SR	LB-031005-21	3/10/05	6.86	319	13.4	2.64
LB-10SR	LB-091505-7	9/14/05	6.89	150	13.1	3.40
LB10-SR	LB-031406-6	3/14/06	6.79	160	12.6	9.40
LB10-SR	LB-091306-9	9/13/06	6.57	431	13.4	6.94
LB10-SR	LB-030607-19	3/6/07	5.97	119	13.1	10.60
LB10-SR	LB-091907-7	9/19/07	6.57	435	13.3	4.99
LB10-SR	LB-032408-21	3/24/08	6.40	291	12.3	NT
LB10-SR	LB-091608-4	9/16/08	6.54	278	14.1	NT
LB10-SR	LB-10SR	3/17/09	6.84	358	12.1	7.87
LB10-SR	LBLF10S091109	9/11/09	7.11	252	13.4	2.32
LB10-SR	LB-10S032310	3/23/10	6.87	286	12.9	NT
LB10-SR LB10-SR	LB10R092310	9/23/10	6.60	123	12.3	NT

	T			Field		Dissolved
			Field pH	Conductivity	Temperature	Oxygen
Location	G 1 N 1	Date	(S.U.)	(umhos/cm)	(°C)	
	Sample Number					(mg/L)
LB-10SR	LB-10SR	3/29/11	6.01	360	12.5	2.05
LB-10SR	LB-090811-08	9/8/11	6.52	410	14.8	0.80
LB-10SR	LB-031312-08	3/13/12	6.62	550	11.8	0.26
LB-10SR	LB-091212-09	9/12/12	6.78	480	14.5	0.59
LB-10SR	LB-020713-20	2/7/13	6.66	473	12.7	0.26
LB-10SR	LB-082213-09	8/22/13	6.70	319	14.0	0.26
LB-10SR	LB-021914-16	2/19/14	6.77	353	12.8	0.60
LB-10SR	LB-081414-08	8/14/14	6.52	401	14.4	0.48
LB-10SR	LB-021915-21	2/19/15	6.64	221	13.3	1.08
LB-10SR	LB-081015-01	8/10/15	6.65	412	15.1	0.50
LB-10SR	LB-021716-11	2/17/16	6.73	445	13.3	0.92
LB-10SR	LB-082416-07	8/24/16	6.64	498	14.9	1.02
LB-13D	LB-1089-W15	10/19/89	6.90	237	11.0	NT
LB-13D	LB-1189-W20	11/16/89	6.56	249	11.0	NT
LB-13D	LB-1289-W18	12/18/89	6.62	229	9.5	NT
LB-13D	LB-390-W18	3/15/90	6.79	232	12.0	NT
LB-13D	LB-690-W20	6/21/90	7.27	277	12.0	NT
LB-13D	LB-990-W17	9/18/90	6.64	236	13.0	NT
LB-13D	LB-1290-W20	12/13/90	6.64	234	10.7	NT
LB-13D	LB-391-W15	3/20/91	6.76	232	11.8	NT
LB-13D	LB-691-W22	6/27/91	6.91	235	13.1	NT
LB-13D	LB-991-13	9/25/91	7.15	240	12.0	NT
LB-13D	LB-1291-19	12/23/91	6.97	249	10.7	NT
LB-13D	LB-392-19	3/24/92	6.88	247	13.0	NT
LB-13D	LB-7292-2	7/2/92	7.40	250	13.0	NT
LB-13D	LB-91792-2	9/17/92	7.40	246	12.0	NT
LB-13D	LB-121092-9	12/9/92	6.82	251	12.0	NT
LB-13D	LB-031293-20	3/12/93	6.92	264	11.0	NT
LB-13D	LB-060493-21	6/4/93	6.99	231	13.5	NT
LB-13D LB-13D	LB-092393-07	9/23/93	6.75	251	13.0	6.10
LB-13D LB-13D	LB-121693-12	12/16/93	6.78	252	11.0	6.90
LB-13D LB-13D	LB-032894-17	3/28/94	6.73	290	15.0	8.20
LB-13D LB-13D	LB-032894-17 LB-062894-20	6/28/94	6.77	274	14.0	6.80
LB-13D	LB-090794-10	9/7/94	6.94	265	13.0	NT 6.00
LB-13D	LB-121594-21	12/15/94	6.68	304	11.0	6.90
LB-13D	LB-031395-18	3/13/95	6.80	296	12.5	7.10
LB-13D	LB-062195-19	6/21/95	6.73	353	12.0	7.10
LB-13D	LB-092295-16	9/22/95	6.99	256	12.6	NT
LB-13D	LB-121995-8	12/19/95	7.02	234	10.2	NT
LB-13D	LB-132096-15	3/20/96	6.58	271	13.2	NT
LB-13D	LB-061996-16	6/19/96	6.78	258	13.0	NT
LB-13D	LB-091796-4	9/17/96	6.81	257	13.9	NT
LB-13D	LB121796-9	12/17/96	7.25	300	11.0	NT
LB-13D	LB-032097-18	3/20/97	6.96	323	11.8	NT
LB-13D	LB-061897-15	6/18/97	6.88	291	12.9	NT
LB-13D	LB-091897-11	9/18/97	6.46	310	12.0	NT
LB-13D	LB-121797-9	12/17/97	6.60	301	11.8	11.00

Table B-1
Groundwater Chemistry, Field Parameters
1987 through 2016
Leichner Landfill

				Field		Dissolved
			Field pH	Conductivity	Temperature	Oxygen
Location	Sample Number	Date	(S.U.)	(umhos/cm)	(°C)	(mg/L)
LB-13D	LB-032098-19	3/20/98	7.11	296	12.9	NT
LB-13D	LB-061798-14	6/17/98	6.69	238	13.2	NT
LB-13D	LB-091898-15	9/18/98	7.42	218	12.9	NT
LB-13D	LB-121898-12	12/18/98	6.76	270	11.7	NT
LB-13D	LB-031999-23	3/19/99	6.78	222	14.2	NT
LB-13D	LB-062399-12	6/23/99	6.81	195	12.7	NT
LB-13D	LB-091799-13	9/17/99	6.69	256	12.6	NT
LB-13D	LB-121499-3	12/14/99	6.75	252	12.1	NT
LB-13D	LB-091300-11	9/13/00	6.95	225	13.0	NT
LB-13D	LB-121500-12	12/15/00	6.80	198	12.1	NT
LB-13D	LB-031501-19	3/15/01	6.67	229	12.2	NT
LB-13D	LB-032002-20	3/20/02	6.87	223	12.3	6.53
LB-13D	LB-031303-16	3/13/03	6.93	197	13.0	NT
LB-13D	LB-022404-3	2/24/04	6.73	150	54.4	NT
LB-13D	LB-031005-17	3/10/05	6.62	194	12.3	7.65
LB-13D	LB-031506-9	3/15/06	6.75	175	11.8	8.09
LB-13D	LB-030607-18	3/6/07	6.26	143	12.2	11.33
LB-13D	LB-032008-13	3/20/08	6.76	263	11.7	NT
LB-13D	LB-13D	3/17/09	6.71	271	11.6	7.86
LB-13D	LB-13D032410	3/24/10	6.78	227	12.0	NT
LB-13D	LB-13D	3/25/11	6.99	216	11.6	6.18
LB-13D	LB-031212-01	3/12/12	6.27	235	11.5	5.32
LB-13D	LB-020713-22	2/7/13	6.46	228	11.7	5.88
LB-13D	LB-021814-08	2/18/14	6.70	220	11.6	5.84
LB-13D	LB-021715-03	2/17/15	6.53	211	12.0	5.98
LB-13D	LB-021616-02	2/16/16	6.68	210	11.8	5.78
LB-13I	LB-1089-W17	10/18/89	6.91	693	13.0	NT
LB-13I	LB-1189-W17	11/16/89	6.78	721	11.0	NT
LB-13I	LB-1289-W16	12/18/89	6.72	692	10.5	NT
LB-13I	LB-390-W19	3/15/90	6.61	676	12.5	NT
LB-13I	LB-690-W19	6/21/90	6.82	654	13.0	NT
LB-13I	LB-990-W16	9/18/90	6.83	706	13.0	NT
LB-13I	LB-1290-W21	12/13/90	6.82	744	11.5	NT
LB-13I	LB-391-W14	3/20/91	6.80	742	12.4	NT
LB-13I	LB-691-W21	6/27/91	6.74	619	13.2	NT
LB-13I	LB-991-12	9/25/91	7.05	757	11.8	NT
LB-13I	LB-1291-18	12/23/91	7.02	707	11.2	NT
LB-13I	LB-392-20	3/24/92	6.60	663	12.0	NT
LB-13I	LB-7292-1	7/2/92	6.88	679	13.0	NT
LB-13I	LB-91792-1	9/17/92	6.84	631	13.0	NT
LB-13I	LB-12992-8	12/9/92	6.92	671	12.0	NT
LB-13I	LB-031293-19	3/12/93	6.93	689	12.0	NT
LB-13I	LB-060493-20	6/4/93	6.80	640	15.0	NT
LB-13I	LB-092393-06	9/23/93	6.88	570	14.0	3.10
LB-13I	LB-121693-14	12/16/93	6.82	537	11.0	0.50

Table B-1
Groundwater Chemistry, Field Parameters
1987 through 2016
Leichner Landfill

				Field		Dissolved
			Field pH	Conductivity	Temperature	Oxygen
Location	Sample Number	Date	(S.U.)	(umhos/cm)	(°C)	(mg/L)
LB-13I	LB-032894-16	3/28/94	6.82	680	15.0	3.00
LB-13I	LB-062894-19	6/28/94	7.00	495	15.0	1.90
LB-13I	LB-090794-9	9/7/94	7.09	503	14.0	NT
LB-13I	LB-121994-20	12/15/94	6.84	543	12.5	4.40
LB-13I	LB-031395-17	3/13/95	6.93	486	13.5	4.50
LB-13I	LB-052195-18	6/21/95	6.80	509	12.5	3.50
LB-13I	LB-092295-15	9/22/95	6.87	408	14.5	NT
LB-13I	LB-121995-7	12/19/95	6.78	357	10.9	NT
LB-13I	LB-032096-14	3/20/96	6.84	504	13.2	NT
LB-13I	LB-061996-15	6/19/96	6.91	547	14.0	NT
LB-13I	LB-091796-3	9/17/96	6.63	501	14.0	NT
LB-13I	LB121796-10	12/17/96	7.24	630	12.2	NT
LB-13I	LB-032097-19	3/20/97	6.76	706	13.1	NT
LB-13I	LB-061897-14	6/18/97	6.87	540	13.8	NT
LB-13I	LB-091897-12	9/18/97	6.88	890	14.0	NT
LB-13I	LB-121797-8	12/17/97	6.88	624	12.4	NT
LB-13I	LB-032098-18	3/20/98	6.90	752	14.4	NT
LB-13I	LB-061798-15	6/17/98	6.88	447	14.7	NT
LB-13I	LB-091898-14	9/18/98	7.11	294	13.7	NT
LB-13I	LB-121898-11	12/18/98	6.82	425	12.6	NT
LB-13I	LB-031999-22	3/19/99	6.93	422	15.0	NT
LB-13I	LB-062399-13	6/23/99	7.05	348	14.3	NT
LB-13I	LB-091799-12	9/17/99	6.91	648	13.9	NT
LB-13I	LB-121499-4	12/14/99	7.03	657	13.3	NT
LB-13I	LB-091300-12	9/13/00	6.97	634	13.7	NT
LB-13I	LB-121500-11	12/15/00	6.89	496	13.0	NT
LB-13I	LB-031501-20	3/15/01	6.75	509	13.1	NT
LB-13I	LB-092001-8	9/20/01	6.73	360	13.4	NT
LB-13I	LB-032002-19	3/20/02	6.81	325	13.0	4.14
LB-13I	LB-091802-7	9/18/02	7.00	460	14.0	NT
LB-13I	LB-031303-15	3/13/03	6.80	306	12.0	NT
LB-13I	LB-092203-7	9/22/03	6.52	330	14.0	4.37
LB-13I	LB-022404-4	2/24/04	6.70	240	54.7	NT
LB-13I	LB-090104-13	9/1/04	6.60	315	14.0	NT
LB-13I	LB-031005-18	3/10/05	6.68	286	12.8	2.04
LB-13I LB-13I	LB-031003-18 LB-091505-9	9/15/05	6.80	202	12.8	3.65
LB-13I LB-13I	LB-031506-10	3/15/06	6.75	202	12.9	3.90
LB-13I LB-13I	LB-091306-8	9/13/06	6.74	263	12.8	3.80
LB-13I LB-13I	LB-030607-17	3/6/07	6.42	203	12.5	9.15
LB-13I	LB-030007-17 LB-091907-8	9/19/07	6.70	352	12.5	6.65
LB-13I LB-13I	LB-032008-12	3/20/08	7.15	329	11.4	NT
LB-13I LB-13I	LB-032008-12 LB-091608/5	9/16/08	6.91	290	14.6	NT NT
LB-13I LB-13I	LB-13I	3/17/09	6.88	285	11.7	5.64
LB-13I LB-13I	LBLF13i091109	9/11/09	7.70	301	12.8	3.0 4 4.76
LB-13I LB-13I	LB-13I032410	3/24/10	7.70	297	12.8	4.76 NT
LB-13I LB-13I	LB-13I032410 LB-13I092310			204		NT NT
LD-131	LD-131092310	9/23/10	7.10	L 204	11.6	IN I

				Field		Dissolved
			Field pH	Conductivity	Temperature	Oxygen
Location	Sample Number	Date	(S.U.)	(umhos/cm)	(°C)	(mg/L)
LB-13I	LB-13I	3/23/11	7.91	276	12.1	2.96
LB-13I	LB-090711-02	9/7/11	6.85	252	13.9	1.38
LB-13I	LB-032212-19	3/22/12	6.58	255	11.7	2.40
LB-13I	LB-091112-03	9/11/12	6.47	266	14.1	2.40
LB-13I	LB-020613-13	2/6/13	6.74	290	11.7	1.75
LB-13I	LB-082113-05	8/21/13	6.01	280	14.5	2.31
LB-13I	LB-021814-10	2/18/14	6.61	305	11.6	0.81
LB-13I	LB-081314-04	8/13/14	6.63	281	13.4	1.82
LB-13I	LB-021815-11	2/18/15	6.96	274	11.8	1.25
LB-13I	LB-081115-05	8/11/15	7.02	247	13.7	2.18
LB-13I	LB-021816-20	2/18/16	6.81	252	11.5	3.19
LB-13I	LB-082316-03	8/23/16	6.75	260	13.8	2.94
LB-17D	LB-1089-W10	10/18/89	6.95	830	13.0	NT
LB-17D	LB-1189-W12	11/15/89	6.82	890	13.0	NT
LB-17D	LB-1289-W28	12/20/89	6.76	930	13.0	NT
LB-17D	LB-390-W21	3/15/90	6.83	905	13.5	NT
LB-17D	LB-690-W18	6/21/90	6.91	882	15.5	NT
LB-17D	LB-990-W19	9/19/90	6.92	864	14.5	NT
LB-17D	LB-1290-W23	12/13/90	6.82	867	13.5	NT
LB-17D	LB-391-W19	3/21/91	6.74	829	14.2	NT
LB-17D	LB-691-W14	6/26/91	6.85	744	15.4	NT
LB-17D	LB-991-10	9/25/91	6.95	818	14.3	NT
LB-17D	LB-1291-16	12/23/91	7.09	1030	13.1	NT
LB-17D	LB-392-11	3/23/92	6.86	906	16.0	NT
LB-17D	LB-63092-5	6/30/92	6.72	919	16.5	NT
LB-17D	LB-031093-6	3/10/93	6.92	715	15.0	NT
LB-17D	LB-060493-22	6/4/93	6.65	637	15.5	NT
LB-17D	LB-092793-21	9/27/93	6.92	723	16.0	3.20
LB-17D	LB-121593-7	12/15/93	6.71	768	14.0	1.30
LB-17D	LB-032994-20	3/29/94	7.13	780	17.5	2.00
LB-17D	LB-052394-14	6/23/94	7.09	669	16.0	5.20
LB-17D	LB-090794-7	9/7/94	7.06	657	17.0	NT
LB-17D	LB-121494-10	12/14/94	6.98	657	13.0	NT
LB-17D	LB-030995-5	3/9/95	7.01	593	14.0	1.00
LB-17D	LB-062095-11	6/20/95	6.90	681	14.5	6.00
LB-17D	LB-092195-10	9/21/95	6.50	732	16.3	NT
LB-17D	LB-121895-3	12/18/95	7.21	542	12.0	NT
LB-17D	LB-031996-10	3/19/96	5.84	586	14.1	NT
LB-17D	LB-061996-14	6/19/96	6.98	587	12.0	NT
LB-17D	LB-032097-16	3/20/97	7.08	571	15.1	NT
LB-17D	LB-031998-14	3/19/98	6.97	573	15.5	NT
LB-17D	LB-031899-13	3/18/99	6.98	352	16.6	NT
LB-17D	LB-031401-9	3/14/01	6.98	333	15.1	NT
LB-17D	LB-031902-7	3/19/02	7.17	335	15.0	2.22
LB-17D	LB-031203-7	3/12/03	7.33	337	14.7	3.60
LB-17D	LB-022504-10	2/25/04	6.97	257	57.6	NT

Table B-1
Groundwater Chemistry, Field Parameters
1987 through 2016
Leichner Landfill

	<u> </u>		<u> </u>	Field	1	Dissolved
			Field pH	Conductivity	Temperature	Oxygen
Location	Comple Number	Date	(S.U.)	(umhos/cm)	(°C)	(mg/L)
	Sample Number		, ,	` '		
LB-17D	LB-030905-10	3/9/05	7.06	313	15.4	0.74
LB-17D	LB-031506-7	3/15/06	7.06	301	13.7	3.45
LB-17D	LB-030607-14	3/6/07	6.39	258	15.1	9.31
LB-17D	LB-032008-11	3/20/08	7.07	353	12.9	NT
LB-17D	LB-17D	3/18/09	7.14	295	14.2	3.53
LB-17D	LB-17D032410	3/24/10	7.00	299	15.2	NT
LB-17D	LB-17D	3/22/11	7.45	278	13.8	2.42
LB-17D	LB-031212-04	3/12/12	6.68	388	13.1	0.20
LB-17D	LB-020513-05	2/5/13	6.73	344	13.5	0.14
LB-17D	LB-021714-03	2/17/14	6.48	330	13.3	0.40
LB-17D	LB-021715-05	2/17/15	6.82	296	14.4	0.96
LB-17D	LB-021616-01	2/16/16	6.83	292	13.0	0.37
LB-17I	LB-1089-W14	10/19/89	6.83	1231	14.0	NT
LB-17I	LB-1189-W14	11/15/89	6.65	1192	14.0	NT
LB-17I	LB-1289-W29	12/20/89	6.57	1167	13.5	NT
LB-17I	LB-390-W20	3/15/90	6.59	807	13.0	NT
LB-17I	LB-690-W17	6/21/90	6.48	1202	16.0	NT
LB-17I	LB-990-W18	9/19/90	6.47	1200	15.0	NT
LB-17I	LB-1290-W22	12/13/90	6.62	1125	13.4	NT
LB-17I	LB-391-W20	3/21/91	6.40	1069	14.2	NT
LB-17I	LB-392-13	3/23/92	6.71	1036	16.0	NT
LB-17I	LB-63092-6	6/30/92	6.57	1337	16.0	NT
LB-17I	LB-91892-3	9/18/92	6.72	1300	14.0	NT
LB-17I	LB-121192-18	12/11/92	6.85	992	15.0	NT
LB-17I	LB-031093-5	3/10/93	6.79	930	15.0	NT
LB-17I	LB-032994-21	3/29/94	6.85	960	18.0	2.80
LB-17I	LB-030995-6	3/9/95	6.93	695	14.0	2.60
LB-17I	LB-031996-11	3/19/96	6.87	782	13.2	NT
LB-17I	LB-032097-17	3/20/97	6.99	674	15.9	NT
LB-17I	LB-031998-13	3/19/98	6.87	567	17.2	NT
LB-17I	LB-031899-12	3/18/99	6.86	410	17.5	NT
LB-17I	LB-031401-10	3/14/01	6.80	359	16.4	NT
LB-17I	LB-031902-6	3/19/02	7.03	478	15.9	2.23
LB-17I	LB-031203-6	3/12/03	6.93	510	16.0	1.00
LB-17I LB-17I	LB-031203-0 LB-022504-11	2/25/04	6.90	362	59.9	NT
LB-17I LB-17I	LB-030905-11	3/9/05	7.08	507	15.8	1.68
LB-17I LB-17I	LB-030505-11 LB-031506-8	3/3/03	6.80	538	14.5	2.03
LB-17I LB-17I	LB-031300-8 LB-030607-13	3/6/07	6.36	458	15.4	12.80
LB-17I LB-17I	LB-030007-13 LB-032008-10	3/6/07	7.04	438	13.4	12.80 NT
LB-17I LB-17I						
	LB-17I	3/18/09	6.95	343	14.8	3.85
LB-17I	LB-171032410	3/24/10	7.13	476	4.1	NT
LB-17I	LB-17I	3/22/11	7.74	528	14.0	2.35
LB-17I	LB-031312-16	3/13/12	6.85	414	12.9	0.15
LB-17I	LB-020513-06	2/5/13	6.89	362	14.1	0.10
LB-17I	LB-021714-04	2/17/14	6.77	376	13.8	0.40

				Field		Dissolved
			Field pH	Conductivity	Temperature	Oxygen
Location	Sample Number	Date	(S.U.)	(umhos/cm)	(°C)	(mg/L)
LB-17I	LB-021815-15	2/18/15	7.11	408	13.7	0.48
LB-17I	LB-021816-15	2/18/16	7.00	423	13.0	0.29
LB-20S	LB-1289-W36	12/21/89	6.69	817	11.5	NT
LB-20S	LB-390-W12	3/14/90	6.32	1255	13.0	NT
LB-20S	LB-690-W08	6/19/90	NT	1312	13.5	NT
LB-20S	LB-990-W09	9/14/90	6.68	881	14.0	NT
LB-20S	LB-1290-W10	12/12/90	6.62	1164	13.2	NT
LB-20S	LB-391-W08	3/20/91	6.62	716	13.1	NT
LB-20S	LB-691-W11	6/26/91	6.44	869	13.8	NT
LB-20S	LB-991-19	9/26/91	6.68	942	13.2	NT
LB-20S	LB-1291-05	12/19/91	6.08	1130	12.7	NT
LB-20S	LB-392-18	3/24/92	6.62	770	15.0	NT
LB-20S	LB-031593-26	3/15/93	6.75	686	14.0	NT
LB-20S	LB-032994-23	3/29/94	6.77	890	17.0	4.90
LB-20S	LB-031395-19	3/13/95	6.86	1020	16.0	8.30
LB-20S	LB-032096-20	3/20/96	6.91	796	15.0	NT
LB-20S	LB-032097-15	3/20/97	6.94	798	13.7	NT
LB-20S	LB-032098-23	3/20/98	6.93	542	14.6	NT
LB-20S	LB-031899-16	3/18/99	6.89	287	15.4	NT
LB-20S	LB-031401-13	3/14/01	6.65	424	13.6	NT
LB-20S	LB-032002-14	3/20/02	6.63	481	12.8	2.21
LB-20S	LB-031203-20	3/12/03	6.47	377	13.0	NT
LB-20S	LB-022604-19	2/26/04	6.87	281	53.7	NT
LB-20S	LB-030905-12	3/9/05	6.85	517	12.6	12.06
LB-20S	LB-031406-4	3/14/06	6.41	246	12.5	3.94
LB-20S	LB-030607-16	3/6/07	6.17	300	13.0	9.53
LB-20S	LB-032408-16	3/24/08	6.83	504	12.1	NT
LB-20S	LB-20S	3/18/09	7.02	457	13.3	4.93
LB-20S	LB-20S032410	3/24/10	6.83	405	12.9	NT
LB-20S	LB-20S	3/24/11	6.81	586	12.1	2.09
LB-20S	LB-031312-15	3/13/12	6.78	385	11.6	0.17
LB-20S	LB-020513-10	2/5/13	6.76	574	12.2	0.15
LB-20S	LB-021914-20	2/19/14	6.80	400	12.0	0.51
LB-20S	LB-021915-18	2/19/15	6.99	281	12.6	0.79
LB-20S	LB-021716-13	2/17/16	7.04	320	12.7	0.48
LB-26D	LB-0892-2	8/27/92	6.51	364	13.5	NT
LB-26D	LB-92192-7	9/21/92	6.60	370	13.0	NT
LB-26D	LB-121092-13	12/10/92	6.72	326	11.5	NT
LB-26D	LB-031193-14	3/11/93	7.16	302	11.5	NT
LB-26D	LB-060193-3	6/1/93	6.36	280	13.0	NT
LB-26D	LB-092493-12	9/24/93	6.55	295	13.5	6.60
LB-26D	LB-121693-16	12/16/93	6.76	295	13.0	6.50
LB-26D	LB-032494-7	3/24/94	6.70	307	14.0	6.90
LB-26D	LB-062294-6	6/22/94	6.66	325	15.0	6.50
LB-26D	LB-090894-15	9/8/94	6.70	309	14.0	NT
LB-26D	LB-121394-5	12/13/94	6.59	343	13.0	5.90

Table B-1
Groundwater Chemistry, Field Parameters
1987 through 2016
Leichner Landfill

				Field		Dissolved
			Field pH	Conductivity	Temperature	Oxygen
Location	Sample Number	Date	(S.U.)	(umhos/cm)	(°C)	(mg/L)
LB-26D	LB-031095-14	3/10/95	6.66	302	13.0	8.00
LB-26D LB-26D	LB-031093-14 LB-061995-2	6/19/95	6.72	343	13.0	4.30
LB-26D LB-26D	LB-092095-4	9/20/95	6.68	324	15.0	4.30 NT
LB-26D LB-26D	LB-122095-15		6.76	324 291	10.2	
LB-26D LB-26D	LB-031996-2	12/20/95 3/19/96	6.06	330		NT
LB-26D LB-26D	LB-031996-2 LB-061896-2	3/19/96 6/18/96	6.60	335	12.5 12.0	NT NT
LB-26D	LB-091896-11	9/18/96	6.71	320	12.1	NT
LB-26D	LB-121796-4	12/17/96	7.09	352	11.5	NT
LB-26D	LB-031997-6	3/19/97	6.67	366	11.8	NT
LB-26D	LB-061797-8	6/17/97	6.58	329	12.7	NT
LB-26D	LB-091697-4	9/16/97	6.84	285	11.7	NT
LB-26D	LB-121697-6	12/16/97	6.61	350	12.0	5.00
LB-26D	LB-031998-9	3/19/98	6.93	355	13.2	NT
LB-26D	LB-061698-9	6/16/98	6.62	281	12.9	NT
LB-26D	LB-091798-6	9/17/98	6.81	230	13.0	NT
LB-26D	LB-121798-3	12/17/98	6.98	279	11.9	NT
LB-26D	LB-031899-6	3/18/99	6.60	287	14.5	NT
LB-26D	LB-062399-9	6/23/99	6.79	214	13.0	NT
LB-26D	LB-091699-3	9/16/99	6.54	290	12.2	NT
LB-26D	LB-121599-9	12/15/99	6.90	285	12.0	NT
LB-26D	LB-091200-4	9/12/00	6.69	252	12.3	NT
LB-26D	LB-121500-7	12/15/00	6.72	222	11.7	NT
LB-26D	LB-031301-5	3/13/01	6.72	247	11.9	NT
LB-26D	LB-031902-8	3/19/02	6.87	226	11.9	5.92
LB-26D	LB-031203-5	3/12/03	7.43	210	12.0	NT
LB-26D	LB-022504-12	2/25/04	6.56	149	52.4	NT
LB-26D	LB-030805-7	3/8/05	6.62	199	12.3	7.22
LB-26D	LB-031606-19	3/16/06	6.81	183	11.4	8.60
LB-26D	LB-030507-11	3/5/07	6.38	156	12.1	8.93
LB-26D	LB-031908-8	3/19/08	6.79	319	12.5	NT
LB-26D	LB-26D	3/17/09	6.83	230	11.5	8.02
LB-26D	LB-26D032410	3/24/10	6.86	237	11.7	NT
LB-26D	LB-26D	3/23/11	7.60	230	12.3	6.13
LB-26D	LB-031212-05	3/12/12	6.39	234	11.6	4.92
LB-26D	LB-020713-23	2/7/13	6.45	236	11.8	4.43
LB-26D	LB-021714-05	2/17/14	6.43	226	11.9	2.09
LB-26D	LB-021715-04	2/17/15	6.57	221	12.2	3.00
LB-26D	LB-021616-04	2/16/16	6.66	231	11.8	2.71
LB-26I	LB-0892-1	8/27/92	6.64	571	14.0	NT
LB-26I	LB-92192-6	9/21/92	6.88	576	13.0	NT
LB-26I	LB-121092-12	12/10/92	6.89	616	12.0	NT
LB-26I	LB-031193-13	3/11/93	6.89	626	13.0	NT
LB-26I	LB-060193-1	6/1/93	6.78	544	13.5	NT
LB-26I	LB-092493-11	9/24/93	6.76	525	14.0	4.20
LB-26I	LB-121693-15	12/16/93	6.96	547	13.0	1.90

Table B-1
Groundwater Chemistry, Field Parameters
1987 through 2016
Leichner Landfill

				Field		Dissolved
			Field pH	Conductivity	Temperature	Oxygen
Location	Sample Number	Date	(S.U.)	(umhos/cm)	(°C)	(mg/L)
LB-26I	LB-032494-6	3/24/94	6.90	508	14.0	2.90
LB-26I	LB-062294-5	6/22/94	6.89	550	16.0	1.90
LB-26I	LB-09894-16	9/8/94	6.96	492	15.0	NT
LB-26I	LB-121394-4	12/13/94	6.78	536	13.5	4.40
LB-26I	LB-031095-12	3/10/95	6.98	499	13.0	0.80
LB-26I	LB-061995-1	6/19/95	6.81	503	13.5	3.20
LB-26I	LB-092095-5	9/20/95	6.91	437	15.0	NT
LB-26I	LB-122095-14	12/20/95	7.05	395	10.4	NT
LB-26I	LB-031996-1	3/19/96	6.25	428	12.0	NT
LB-26I	LB-061896-1	6/18/96	6.93	412	12.0	NT
LB-26I	LB-091896-10	9/18/96	6.96	426	12.6	NT
LB-26I	LB121796-5	12/17/96	7.18	437	12.1	NT
LB-26I	LB-031997-5	3/19/97	6.75	468	12.2	NT
LB-26I	LB-061797-7	6/17/97	6.75	415	14.0	NT
LB-26I	LB-091697-5	9/16/97	6.82	359	12.0	NT
LB-26I	LB-121697-7	12/16/97	6.86	607	12.9	0.80
LB-26I	LB-031998-8	3/19/98	6.81	590	13.3	NT
LB-26I	LB-061698-8	6/16/98	6.88	391	13.1	NT
LB-26I	LB-091798-7	9/17/98	6.67	287	13.4	NT
LB-26I	LB-121798-2	12/17/98	7.13	369	12.6	NT
LB-26I	LB-031799-1	3/17/99	7.29	328	14.8	NT
LB-26I	LB-062399-10	6/23/99	6.96	281	13.6	NT
LB-26I	LB-091699-4	9/16/99	6.78	541	13.0	NT
LB-26I	LB-121599-8	12/15/99	7.01	510	12.6	NT
LB-26I	LB-091200-5	9/12/00	6.93	448	13.1	NT
LB-26I	LB-121500-8	12/15/00	7.01	385	12.5	NT
LB-26I	LB-031301-6	3/13/01	6.94	407	12.5	NT
LB-26I	LB-092001-3	9/20/01	6.87	384	13.6	NT
LB-26I	LB-031902-9	3/19/02	6.96	353	12.4	4.11
LB-26I	LB-091802-4	9/18/02	7.10	350	13.0	NT
LB-26I	LB-031203-4	3/12/03	6.68	293	13.0	NT
LB-26I	LB-092203-4	9/22/03	7.30	250	15.0	5.37
LB-26I	LB-022504-13	2/25/04	6.80	200	53.5	NT
LB-26I	LB-090104-26	9/1/04	6.77	288	13.5	NT
LB-26I	LB-030805-8	3/8/05	6.80	306	12.7	3.23
LB-26I	LB-091405-5	9/14/05	6.76	239	13.7	3.69
LB-26I	LB-031606-20	3/16/06	6.90	267	11.7	7.18
LB-26I	LB-091206-3	9/12/06	7.00	297	13.3	3.02
LB-26I	LB-030507-10	3/5/07	6.37	223	12.6	5.78
LB-26I	LB-091907-5	9/19/07	6.94	315	12.3	4.67
LB-26I	LB-031908-7	3/19/08	7.00	385	13.2	NT
LB-26I	LB-091608-6	9/16/08	6.40	220	17.8	NT
LB-26I LB-26I	LB-26I	3/17/09	6.92	328	11.6	7.05
LB-26I LB-26I	LBLF26I091109	9/11/09	7.39	234	12.9	7.05 7.06
LB-26I LB-26I	LB-23I032410	3/24/10	7.07	331	12.9	7.00 NT
LB-26I LB-26I	LB-231032410 LB26I092310	9/23/10	7.07	229	11.6	NT NT

	<u> </u>			Field		Dissolved
			Field pH	Conductivity	Temperature	Oxygen
Location	Sample Number	Date	(S.U.)	(umhos/cm)	(°C)	(mg/L)
LB-26I	LB-26I	3/23/11	7.75	300	12.1	4.41
LB-26I	LB-090711-03	9/7/11	6.77	230	15.1	4.41
LB-26I	LB-032212-21	3/22/12	6.57	274	11.5	4.96
LB-26I	LB-091112-04	9/11/12	6.31	253	13.1	5.07
LB-26I	LB-020613-14	2/6/13	6.61	250	11.8	4.65
LB-26I	LB-082113-06	8/21/13	6.00	244	13.7	4.25
LB-26I	LB-021714-06	2/17/14	6.30	255	11.7	2.88
LB-26I	LB-081314-05	8/13/14	6.50	234	13.9	4.92
LB-26I	LB-021815-12	2/18/15	6.87	270	11.9	3.54
LB-26I	LB-081115-06	8/11/15	6.71	215	13.7	4.48
LB-26I	LB-001115-00 LB-021616-05	2/16/16	6.73	252	11.8	4.63
LB-26I	LB-021010-03 LB-082316-04	8/23/16	6.70	266	13.9	4.30
LB-27D	LB-0892-4	8/27/92	6.85	289	14.0	NT
LB-27D	LB-92292-5	9/22/92	7.34	258	13.0	NT
LB-27D	LB-121192-21	12/11/92	7.12	321	13.0	NT
LB-27D	LB-031193-16	3/11/93	6.50	311	11.5	NT
LB-27D	LB-060193-4	6/1/93	7.28	305	13.5	NT
LB-27D	LB-092493-16	9/24/93	7.24	273	14.0	4.60
LB-27D	LB-121693-17	12/16/93	7.24	315	13.0	5.00
LB-27D	LB-032494-4	3/24/94	7.25	306	13.0	5.10
LB-27D	LB-062294-9	6/22/94	7.19	321	15.5	5.30
LB-27D	LB-090894-12	9/8/94	7.09	319	13.5	NT
LB-27D	LB-121394-2	12/12/94	7.48	337	11.5	6.60
LB-27D	LB-031095-8	3/10/95	7.18	339	13.5	7.60
LB-27D	LB-051995.4	6/19/95	7.20	343	14.0	5.60
LB-27D	LB-092095-1	9/20/95	7.16	301	16.0	NT
LB-27D	LB-122095-17	12/20/95	7.05	270	11.2	NT
LB-27D	LB-031996-3	3/19/96	7.26	295	13.0	NT
LB-27D	LB-061896-4	6/18/96	7.16	280	14.0	NT
LB-27D	LB-091796-9	9/17/96	7.02	290	14.2	NT
LB-27D	LB121796-8	12/17/96	7.61	290	13.1	NT
LB-27D	LB-031997-12	3/19/97	7.01	302	12.3	NT
LB-27D	LB-061797-11	6/17/97	7.00	260	15.3	NT
LB-27D	LB-091697-8	9/16/97	7.24	258	12.5	NT
LB-27D	LB-121797-13	12/17/97	6.97	300	12.0	4.20
LB-27D	LB-031998-12	3/19/98	6.97	292	13.6	NT
LB-27D	LB-061798-10	6/17/98	6.92	254	13.0	NT
LB-27D	LB-091798-8	9/17/98	7.07	224	14.9	NT
LB-27D	LB-121798-6	12/17/98	7.19	276	12.8	NT
LB-27D	LB-031899-9	3/18/99	7.04	238	14.5	NT
LB-27D	LB-062399-7	6/23/99	6.99	199	13.7	NT
LB-27D	LB-091599-1	9/15/99	6.85	270	12.9	NT
LB-27D	LB-121599-7	12/15/99	7.13	282	12.6	NT
LB-27D	LB-091300-8	9/13/00	6.95	268	13.2	NT
LB-27D	LB-091300-9	9/13/00	6.95	268	13.2	NT
LB-27D	LB-121500-5	12/15/00	7.03	254	12.5	NT

Table B-1
Groundwater Chemistry, Field Parameters
1987 through 2016
Leichner Landfill

	1			Field		Dissolved
			Field pH	Conductivity	Temperature	Oxygen
Location	Sample Number	Date	(S.U.)	(umhos/cm)	(°C)	(mg/L)
LB-27D	LB-031301-3	3/13/01	6.97	288	12.9	NT
LB-27D	LB-031902-11	3/19/02	6.99	308	12.9	5.02
LB-27D	LB-031203-3	3/12/03	6.96	293	13.0	NT
LB-27D	LB-022604-15	2/26/04	6.88	237	54.7	NT
LB-27D	LB-030805	3/8/05	6.82	322	13.0	4.20
LB-27D	LB-031606-17	3/16/06	6.90	298	12.4	6.81
LB-27D	LB-030507-9	3/5/07	6.20	270	13.5	9.54
LB-27D	LB-031908-5	3/19/08	7.00	0.489	12.4	NT
LB-27D	LB-27D	3/18/09	6.98	315	13.3	7.65
LB-27D	LB-27D032410	3/24/10	7.01	331	13.0	NT
LB-27D	LB-27D	3/25/11	7.43	317	11.3	4.47
LB-27D	LB-031212-02	3/12/12	6.60	338	12.1	3.32
LB-27D	LB-020713-21	2/7/13	6.77	330	11.0	3.64
LB-27D	LB-021814-13	2/18/14	6.66	313	11.3	3.32
LB-27D	LB-021715-02	2/17/15	6.50	299	12.4	3.82
LB-27D	LB-021816-18	2/18/16	6.92	287	11.7	3.61
LB-27I	LB-0892-3	8/27/92	6.60	811	14.0	NT
LB-27I	LB-92292-4	9/22/92	7.36	836	14.0	NT
LB-27I	LB-121192-20	12/11/92	6.62	783	13.5	NT
LB-27I	LB-031293-21	3/12/93	7.24	756	13.0	NT
LB-27I	LB-060193-2	6/1/93	6.77	664	14.0	NT
LB-27I	LB-092493-14	9/24/93	6.97	769	14.0	7.20
LB-27I	LB-121693-14	12/16/93	6.81	707	13.0	2.30
LB-27I	LB-032494-3	3/24/94	6.67	718	15.5	6.00
LB-27I	LB-062294-8	6/22/94	6.73	649	17.0	2.40
LB-27I	LB-090894-11	9/8/94	6.84	568	14.0	NT
LB-27I	LB-121394-1	12/13/94	8.12	671	12.0	11.00
LB-27I	LB-031095-7	3/10/95	6.77	661	13.5	4.20
LB-27I	LB-061995-3	6/19/95	6.83	673	14.0	3.20
LB-27I	LB-092095-3	9/20/95	6.85	585	14.5	NT
LB-27I	LB-122095-16	12/20/95	6.89	482	11.6	NT
LB-27I	LB-031996-4	3/19/96	7.05	640	14.7	NT
LB-27I	LB-061896-3	6/18/96	6.94	609	14.0	NT
LB-27I	LB-091796-7	9/17/96	6.99	752	14.3	NT
LB-27I	LB121796-6	12/17/96	7.31	947	12.9	NT
LB-27I	LB-031997-10	3/19/97	6.87	771	12.8	NT
LB-27I	LB-061797-9	6/17/97	6.98	548	14.1	NT
LB-27I	LB-091697-6	9/16/97	6.93	544	12.6	NT
LB-27I	LB-121797-11	12/17/97	6.86	750	12.8	0.80
LB-27I	LB-031998-10	3/19/98	6.80	917	15.7	NT
LB-27I	LB-061798-11	6/17/98	6.85	494	14.1	NT
LB-27I	LB-091798-9	9/17/98	6.82	327	15.6	NT
LB-27I	LB-121798-4	12/17/98	6.96	446	13.8	NT
LB-27I	LB-031899-7	3/18/99	6.83	476	15.5	NT
LB-27I	LB-062399-8	6/23/99	7.00	396	14.5	NT

				Field		Dissolved
			Field pH	Conductivity	Temperature	Oxygen
Location	Sample Number	Date	(S.U.)	(umhos/cm)	(°C)	(mg/L)
LB-27I	LB-091599-2	9/15/99	6.76	914	14.3	NT
LB-27I	LB-121599-6	12/15/99	7.02	940	12.8	NT
LB-27I	LB-091300-10	9/13/00	6.86	741	14.4	NT
LB-27I	LB-121500-6	12/15/00	6.85	778	13.3	NT
LB-27I	LB-031301-4	3/13/01	6.81	665	13.8	NT
LB-27I	LB-092001-2	9/20/01	6.68	612	14.1	NT
LB-27I	LB-031902-10	3/19/02	6.82	685	13.5	2.62
LB-27I	LB-091802-5	9/18/02	7.30	590	15.0	NT
LB-27I	LB-031203-1	3/12/03	6.88	563	14.0	NT
LB-27I	LB-092203-2	9/22/03	6.10	540	14.5	2.40
LB-27I	LB-022604-17	2/26/04	6.82	382	55.7	NT
LB-27I	LB-090104-27	9/1/04	6.76	554	14.2	NT
LB-27I	LB-030805-5	3/8/05	6.85	525	13.7	2.81
LB-27I	LB-091405-3	9/14/05	6.91	353	14.0	2.80
LB-27I	LB-031606-18	3/16/06	6.98	376	12.6	6.90
LB-27I	LB-091206-2	9/12/06	6.78	564	13.8	1.50
LB-27I	LB-030507-8	3/5/07	6.05	445	13.7	3.88
LB-27I	LB-091907-4	9/19/07	6.78	486	13.2	2.30
LB-27I	LB-031908-4	3/19/08	6.91	0.786	12.9	NT
LB-27I	LB-091608-7	9/16/08	7.00	531	14.3	NT
LB-27I	LB-27I	3/18/09	6.94	557	13.4	4.44
LB-27I	LBLF27i091109	9/11/09	7.01	538	14.5	3.07
LB-27I	LB-27I032410	3/24/10	6.97	419	12.7	NT
LB-27I	LB27I092310	9/23/10	7.00	401	12.3	NT
LB-27I	LB-27I	3/25/11	7.39	523	11.6	3.20
LB-27I	LB-090711-01	9/7/11	6.46	707	14.2	1.11
LB-27I	LB-032212-18	3/22/12	6.82	643	11.7	0.32
LB-27I	LB-091112-02	9/11/12	6.72	706	14.0	1.02
LB-27I	LB-020613-11	2/6/13	6.81	670	12.1	0.29
LB-27I	LB-082113-03	8/21/13	6.00	720	14.5	0.38
LB-27I	LB-021814-14	2/18/14	6.85	574	11.9	0.81
LB-27I	LB-081314-03	8/13/14	6.79	576	13.6	0.66
LB-27I	LB-021815-10	2/18/15	6.94	613	12.2	1.96
LB-27I	LB-081215-09	8/12/15	6.75	575	14.0	0.54
LB-27I	LB-021816-19	2/18/16	6.95	512	11.6	1.10
LB-27I	LB-082316-02	8/23/16	6.62	590	13.6	2.18
FIELDQC	LB-021715-08	2/17/15	N/A	N/A	N/A	N/A
FIELDQC	LB-081215-07	8/12/15	N/A	N/A	N/A	N/A
FIELDQC	LB-021716-07	2/17/2016	N/A	N/A	N/A	N/A
FIELDQC	LB-082416-06	8/24/2016	N/A	N/A	N/A	N/A
Notes: NT = not tested:	N/A = Not Applicabl	e				

Table B-2
Groundwater Chemistry, Volatile Organic Compounds^a (µg/L)
1987 through 2016
Leichner Landfill

Location	Sample Number	Date	PCE	TCE	1,4-DCB	1,1-DCA	1,1,1-TCA	Chloroethane	cis-1,2-DCE	Chlorobenzene
LB-1D	LB-01D	6/2/87	2.0 L	2.0 L	NT	2.0 L	2.0 L	5.0 L	NT	2.0 L
LB-1D	LB-01D	7/21/87	2.0 L	2.0 L	NT	2.0 L	2.0 L	5.0 L	NT	2.0 L
LB-1D	LB-01D	9/4/87	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	NT	1.0 L
LB-1D	LB-01D	11/6/87	0.6	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	NT	1.0 L
LB-1D	LB-01D	6/22/88	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	NT	1.0 L
LB-1D	LB-01D	8/30/88	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	2.0 L	1.0 L	1.0 L
LB-1D	LB-01D	9/1/88	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	2.0 L	1.0 L	1.0 L
LB-1D	LB-01D	12/5/88	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	NT	1.0 L
LB-1D	LB-289-W04	2/28/89	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-1D	LB-589-W03	5/23/89	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-1D	LB-989-W16	9/12/89	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-1D	LB-1089-W01	10/17/89	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-1D	LB-1189-W04	11/14/89	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-1D	LB-1289-W22	12/19/89	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-1D	LB-390-W09	3/14/90	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-1D	LB-690-W11	6/20/90	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-1D	LB-990-W08	9/14/90	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-1D	LB-1290-W06	12/11/90	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-1D	LB-391-W11	3/21/91	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-1D	LB-691-W06	6/26/91	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-1D	LB-991-06	9/24/91	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-1D	LB-1291-14	12/23/91	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-1D	LB-392-14	3/23/92	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-1D	LB-63092-2	6/30/92	0.2 L	0.2 L	0.2 L	0.2 L	1.0 L	0.3 L	0.2 L	0.2 L
LB-1D	LB-92292-3	9/22/92	0.2 L	0.2 L	0.2 L	0.2 L	1.0 L	0.3 L	0.2 L	0.2 L
LB-1D	LB-121192-16	12/11/92	0.2 L	0.2 L	0.2 L	0.2 L	1.0 L	0.3 L	0.2 L	0.2 L
LB-1D	LB-031093-4	3/10/93	0.2 L	0.2 L	0.2 L	0.2 L	1.0 L	0.3 L	0.2 L	0.2 L
LB-1D	LB-060293-6	6/2/93	0.2 L	0.2 L	0.2 L	0.2 L	1.0 L	0.3 L	0.2 L	0.2 L
LB-1D	LB-092393-8	9/23/93	0.2 L	0.2 L	0.2 L	0.2 L	1.0 L	0.3 L	0.2 L	0.2 L
LB-1D	LB-092393-8	9/23/93	0.2 L	0.2 L	0.2 L	0.2 L	NT	0.3 L	0.2 L	NT
LB-1D	LB-121593-2	12/15/93	0.2 L	0.2 L	0.2 L	0.2 L	0.5 L	0.3 L	0.2 L	0.2 L
LB-1D	LB-032494-2	3/24/94	0.2 L	0.2 L	0.2 L	0.5 L	0.5 L	0.3 L	0.2 L	0.2 L
LB-1D	LB-062194-1	6/21/94	0.2 L	0.3 L	0.4 L	0.2 L	0.3 L	0.3 L	0.3 L	0.3 L
LB-1D	LB-090694-2	9/6/94	0.2 L	0.3 L	0.4 L	0.2 L	0.3 L	0.3 L	0.3 L	0.3 L

Table B-2
Groundwater Chemistry, Volatile Organic Compounds^a (µg/L)
1987 through 2016
Leichner Landfill

T (G 1 N 1	D.	DCE	TOE	1.4 DCD	1.1 DCA	1 1 1 TCA	Cl. 1	.: 12 DCE	Chi la mala manana
Location	Sample Number	Date	PCE	TCE	1,4-DCB	1,1-DCA	1,1,1-TCA		cis-1,2-DCE	
LB-1D	LB-121494-12	12/14/94	0.2 L	0.3 L	0.4 L	0.2 L	0.3 L	0.3 L	0.3 L	0.3 L
LB-1D	LB-030995-2	3/9/95	0.3 L	0.2	0.1 L	0.1 L	0.1 L	0.1 L	0.1 L	0.1 L
LB-1D	LB-062095-13	6/20/95	0.3 L	0.2 L	0.1 L	0.1 L	0.3 B	0.1 L	0.1 L	0.1 L
LB-1D	LB-092295-14	9/22/95	0.3 L	0.3 L	0.1 L	0.1 L	0.1 L	0.1 L	0.1 L	0.1 L
LB-1D	LB-121995-6	12/19/95	0.2	0.2 L	0.1 L	0.1 L	0.2	0.1 L	0.1 L	0.1 L
LB-1D	LB-032096-18	3/20/96	0.3 L	0.2 L	0.1 L	0.1 L	0.2	0.1 L	0.1 L	0.1 L
LB-1D	LB-061896-10	6/18/96	0.2	0.1 L	0.0 L	0.1 L	0.2	0.1 L	0.2 L	0.1 L
LB-1D	LB-091796-6	9/17/96	0.1 L	0.1 L	0.0 L	0.1 L	0.2	0.1 L	0.2 L	0.1 L
LB-1D	LB121796-2	12/17/96	0.2	0.1 L	0.0 L	0.1 L	0.2	0.1 L	0.2 L	0.1 L
LB-1D	LB-031997-4	3/19/97	0.1	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1D	LB-061797-4	6/17/97	0.2	0.1	0.5 L	0.5 L	0.3	0.5 L	0.5 L	0.5 L
LB-1D	LB-091697-1	9/16/97	0.2	0.5 L	0.5 L	0.5 L	0.3	0.5 L	0.5 L	0.5 L
LB-1D	LB-121697-4	12/16/97	0.1	0.5 L	0.5 L	0.5 L	0.3	0.5 L	0.5 L	0.5 L
LB-1D	LB-031998-4	3/19/98	0.2	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1D	LB-061698-6	6/16/98	0.1	0.1 L	0.0 L	0.1 L	0.4	0.1 L	0.2 L	0.1 L
LB-1D	LB-091798-3	9/17/98	0.2 L	0.3 L	0.2 B	0.2 L	0.5	0.2 L	0.3 L	0.2 L
LB-1D	LB-121898-10	12/18/98	0.2 L	0.3 L	0.2 L	0.2 L	0.4	0.2 L	0.3 L	0.2 L
LB-1D	LB-031799-4	3/17/99	0.2 L	0.3 L	0.2 L	0.2 L	0.5	0.2 L	0.3 L	0.2 L
LB-1D	LB-062399-15	6/23/99	0.2 L	0.3 L	0.2 L	0.2 L	0.6	0.2 L	0.3 L	0.2 L
LB-1D	LB-091799-11	9/17/99	0.2 L	0.3 L	0.3 J	NT	0.5	0.2 L	NT	NT
LB-1D	LB-121699-12	12/15/99	0.2 L	0.3 L	0.2 L	NT	NT	NT	NT	NT
LB-1D	LB-031700-16	3/17/00	0.5 L	0.5 L	0.5 L	0.5 L	0.6	0.5 L	0.5 L	0.5 L
LB-1D	LB-061300-8	6/13/00	0.5 L	0.5 L	0.5 L	0.5 L	0.8	0.5 L	0.5 L	0.5 L
LB-1D	LB-091100-2	9/11/00	0.5 L	0.5 L	0.5 L	0.5 L	0.7	0.5 L	0.5 L	0.5 L
LB-1D	LB-121500-10	12/15/00	0.2 J	0.5 L	0.5 L	0.5 L	0.6	0.5 L	0.5 L	0.5 L
LB-1D	LB-031501-15	3/15/01	0.5 L	0.5 L	0.5 L	0.5 L	0.7	0.5 L	0.5 L	0.5 L
LB-1D	LB-031501-16	3/15/01	0.5 L	0.5 L	0.5 L	0.5 L	0.7	0.5 L	0.5 L	0.5 L
LB-1D	LB-031902-2	3/19/02	0.5 L	0.5 L	0.5 L	0.5 L	0.7	0.5 L	0.5 L	0.5 L
LB-1D	LB-031303-12	3/13/03	0.5 L	0.5 L	0.5 L	0.5 L	0.7	0.5 L	0.5 L	0.5 L
LB-1D	LB-022404-1	2/24/04	0.5 L	0.5 L	0.5 L	0.5 L	0.6	0.5 L	0.5 L	0.5 L
LB-1D	LB030905-13	3/9/05	0.5 L	0.5 L	0.5 L	0.5 L	0.6	0.5 L	0.5 L	0.5 L
LB-1D	LB-031406-1	3/14/06	0.5 L	0.5 L	0.5 L	0.5 L	0.6	0.5 L	0.5 L	0.5 L
LB-1D (Dup)	LB-031406-2	3/14/06	0.5 L	0.5 L	0.5 L	0.5 L	0.6	0.5 L	0.5 L	0.5 L
LB-1D	LB-030507-2	3/5/07	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L

Table B-2
Groundwater Chemistry, Volatile Organic Compounds^a (µg/L)
1987 through 2016
Leichner Landfill

Location	Sample Number	Date	PCE	TCE	1,4-DCB	1,1-DCA	1,1,1-TCA	Chloroethane	cis-1,2-DCE	Chlorobenzene
LB-1D	LB-032408-15	3/24/08	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1D	LB-1D	3/17/09	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1D	LB-1D032310	3/23/10	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1D	LB-1D	3/24/11	0.1 L	0.1 L	0.2 L	0.1 L	0.28	0.25 L	0.1 L	0.1 L
LB-1D	LB-031312-13	3/13/12	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-1D	LB-020513-07	2/5/2013	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L
LB-1D	LB-021914-17	2/19/14	0.15 L	0.13 L	0.16 L	0.14 L	0.14 L	0.17 L	0.16 L	0.11 L
LB-1D	LB-021915-17	2/19/15	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-1D	LB-021716-08	2/17/16	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-1S	LB-01S	5/11/87	2.0 L	2.0 L	NT	2.0 L	2.0 L	5.0 L	NT	2.0 L
LB-1S	LB-01S	7/21/87	2.0 L	2.0 L	NT	1.0 L	2.0 L	5.0 L	NT	2.0 L
LB-1S	LB-01S	9/4/87	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	NT	1.0 L
LB-1S	LB-01S	11/6/87	0.9	1.1	1.0 L	1.8	1.0 L	1.0 L	NT	1.0 L
LB-1S	LB-01S	2/11/88	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	NT	1.0 L
LB-1S	LB-01S	6/22/88	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	NT	1.0 L
LB-1S	LB-01S	8/30/88	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	2.0 L	5.0	1.0 L
LB-1S	LB-01S	12/5/88	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	NT	1.0 L
LB-1S	LB-289-W05	2/28/89	1.0 L	1.0 L	1.0 L	1.0	1.0 L	1.0 L	4.5	1.0 L
LB-1S	LB-589-W04	5/23/89	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	8.3	1.0 L
LB-1S	LB-989-W15	9/12/89	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	8.0	1.0 L
LB-1S	LB-1289-W12	12/15/89	1.0 L	1.0 L	1.0 L	1.0	1.0 L	1.0 L	8.5	1.0 L
LB-1S	LB-390-W10	3/14/90	1.0 L	1.0 L	1.0 L	1.1	1.0 L	1.0 L	9.1	1.0 L
LB-1S	LB-690-W10	6/20/90	1.0 L	1.0 L	1.0 L	1.3	1.0 L	1.0 L	5.5	1.0 L
LB-1S	LB-990-W06	9/14/90	1.0 L	1.0 L	1.0 L	1.5	1.0 L	1.8	3.1	1.0 L
LB-1S	LB-1290-W05	12/11/90	1.0 L	1.0 L	1.0 L	3.7	1.0 L	1.0 L	2.6	1.0 L
LB-1S	LB-391-W10	3/20/91	1.0 L	1.0 L	1.0 L	2.2	1.0 L	1.0 L	3.7	1.0 L
LB-1S	LB-691-W05	6/26/91	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	2.4	1.0 L
LB-1S	LB-991-05	9/24/91	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0	1.0 L
LB-1S	LB-1291-13	12/23/91	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	2.0	1.0 L
LB-1S	LB-392-15	3/23/92	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-1S	LB-63092-1	6/30/92	0.2 L	0.2 L	0.2 L	0.5	0.5 L	0.3 L	0.8 B	0.2 L
LB-1S	LB-92292-2	9/22/92	0.2 L	0.2 L	0.2 L	0.2 L	0.5 L	0.3 L	0.2 L	0.2 L
LB-1S	LB-121192-15	12/11/92	0.2 L	0.2 L	0.2 L	0.3	0.5 L	0.3 L	0.3	0.2 L

Table B-2
Groundwater Chemistry, Volatile Organic Compounds^a (µg/L)
1987 through 2016
Leichner Landfill

Location	Sample Number	Date	PCE	TCE	1,4-DCB	1,1-DCA	1,1,1-TCA	Chloroethane	cis-1,2-DCE	Chlorobenzene
LB-1S	LB-031093-3	3/10/93	0.2 L	0.2 L	0.2 L	1.8	0.5 L	0.3 L	0.9	0.2 L
LB-1S	LB-060293-5	6/2/93	0.2 L	0.2	0.2 L	0.7	0.5 L	0.3 L	0.6	0.2 L
LB-1S	LB-092393-9	9/23/93	0.2 L	0.2 L	0.2 L	0.3	0.5 L	0.3 L	0.2	0.2 L
LB-1S	LB-092393-9	9/23/93	0.2 L	0.2 L	0.2 L	NT	NT	0.3 L	NT	NT
LB-1S	LB-121593-1	12/15/93	0.2 L	0.2 L	0.2 L	0.2 L	0.5 L	0.3 L	0.2 L	0.2 L
LB-1S	LB-032494-1	3/24/94	0.2 L	0.2 L	0.2 L	0.5	0.5 L	0.3 L	0.2	0.2 L
LB-1S	LB-062194-4	6/21/94	0.2 L	0.3 L	0.4 L	0.2 L	0.3 L	0.3 L	0.3 L	0.3 L
LB-1S	LB-090694-1	9/6/94	0.2 L	0.3 L	0.4 L	0.3	0.3 L	0.3 L	0.3 L	0.3 L
LB-1S	LB-121494-11	12/14/94	0.2 L	0.3 L	0.4 L	0.2 L	0.3 L	0.3 L	0.3 L	0.3 L
LB-1S	LB-121995-5	2/19/95	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1S	LB-030995-1	3/9/95	0.3 L	0.2 L	0.1 L	0.1 B	0.1 L	0.1 L	0.1 L	0.1 L
LB-1S	LB-062095-12	6/20/95	0.3 L	0.2 L	0.1 L	0.1 B	0.1 L	0.1 L	0.1 L	0.1 L
LB-1S	LB-092295-13	9/22/95	0.3 L	0.3 L	0.1 L	0.1 L	0.1 L	0.1 L	0.1 L	0.1 L
LB-1S	LB-121995-5	12/19/95	0.3 L	0.2 L	0.1 L	0.1 L	0.1 L	0.1 L	0.1 L	0.1 L
LB-1S	LB-032096-17	3/20/96	0.3 L	0.2 L	0.1 L	0.2	0.1 L	0.1 L	0.1 L	0.1 L
LB-1S	LB-061896-9	6/18/96	0.1 L	0.1 L	0.0 L	0.1 L	0.1 L	0.1 L	0.2 L	0.1 L
LB-1S	LB-091796-5	9/17/96	0.1 L	0.1 L	0.0 L	0.1 L	0.1 L	0.1 L	0.2 L	0.1 L
LB-1S	LB121796-1	12/17/96	0.1 L	0.1 L	0.0 L	0.1 L	0.1 L	0.1 L	0.2 L	0.1 L
LB-1S	LB-031997-3	3/19/97	0.1	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1S	LB-061797-3	6/17/97	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1S	LB-091697-2	9/16/97	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1S	LB-121697-5	12/16/97	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1S	LB-031998-3	3/19/98	0.5 L	0.5 L	0.5 L	0.1 B	0.5 L	0.5 L	0.5 L	0.5 L
LB-1S	LB-061698-5	6/16/98	0.1 L	0.1 L	0.1	0.1 L	0.1 L	0.1 L	0.2 L	0.1 L
LB-1S	LB-091798-4	9/17/98	0.2 L	0.3 L	0.3 B	0.2 L	0.3 L	0.2 L	0.3 L	0.2 L
LB-1S	LB-121898-9	12/18/98	0.2 L	0.3 L	0.2 L	0.2 L	0.3 L	0.2 L	0.3 L	0.2 L
LB-1S	LB-031799-3	3/17/99	0.2 L	0.3 L	0.2 L	0.2 L	0.3 L	0.2 L	0.3 L	0.2 L
LB-1S	LB-062399-14	6/23/99	0.2 L	0.3 L	0.2 L	0.2 L	0.3 L	0.2 L	0.3 L	0.2 L
LB-1S	LB-091799-10	9/17/99	0.2 L	0.3 L	0.3 J	NT	NT	0.2 L	NT	0.2 L
LB-1S	LB-091799-9	9/17/99	0.2 L	0.3 L	0.3 J	NT	NT	0.2 L	NT	0.2 L
LB-1S	LB-121699-13	12/15/99	0.2 L	0.3 L	0.2 L	NT	NT	0.2 L	NT	0.2 L
LB-1S	LB-031700-15	3/17/00	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1S	LB-061300-7	6/13/00	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L

Table B-2
Groundwater Chemistry, Volatile Organic Compounds^a (µg/L)
1987 through 2016
Leichner Landfill

Location	Sample Number	Date	PCE	TCE	1,4-DCB	1,1-DCA	1,1,1-TCA	Chloroethane	cis-1,2-DCE	Chlorobenzene
LB-1S	LB-091100-1	9/11/00	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1S	LB-121500-9	12/15/00	0.5 L	0.5 L	0.1 J	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1S	LB-031401-14	3/14/01	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1S	LB-031902-1	3/19/02	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1S	LB-091802-1	9/18/02	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1S	LB-031303-10	3/13/03	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1S	LB-031303-11	3/13/03	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1S	LB-092203-6	9/22/03	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1S	LB-022404-2	2/24/04	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1S	LB-090104-1	9/1/04	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1S (Dup)	LB-090104-30	9/1/04	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1S	LB-030905-14	3/9/05	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1S	LB-091405-1	9/14/05	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1S (Dup)	LB-091405-2	9/14/05	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1S	LB-031406-3	3/14/06	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1S	LB-091306-5	9/13/06	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1S (Dup)	LB-091306-6	9/13/06	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1S	LB-030507-1	3/5/07	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1S	LB-091907-1	9/19/07	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1S (Dup)	LB-091907-2	9/19/07	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1S	LB-032408-14	3/24/08	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1S	LB-091608-1	9/16/08	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1S	LB-1S	3/17/09	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1S	LBLF1S091109	9/11/09	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1S	LB-1S032310	3/23/10	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1S	LB1S092310	9/23/10	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-1S	LB-1S	3/24/11	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-1S	LB-090811-07	9/8/11	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-1S	LB-031312-14	3/13/12	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-1S	LB-091212-08	9/12/12	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-1S	LB-020513-09	2/5/2013	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-1S	LB-082213-08	8/22/2013	0.15 L	0.13 L	0.16 L	0.14 L	0.14 L	0.17 L	0.16 L	0.11 L
LB-1S	LB-021914-18	2/19/14	0.15 L	0.13 L	0.16 L	0.14 L	0.14 L	0.17 L	0.16 L	0.11 L
LB-1S (Dup)	LB-021914-19	2/19/14	0.15 L	0.13 L	0.16 L	0.14 L	0.14 L	0.17 L	0.16 L	0.11 L

Table B-2
Groundwater Chemistry, Volatile Organic Compounds^a (µg/L)
1987 through 2016
Leichner Landfill

Location	Sample Number	Date	PCE	TCE	1,4-DCB	1,1-DCA	1,1,1-TCA	Chloroethane	cis-1,2-DCE	Chlorobenzene
LB-1S	LB-081414-09	8/14/14	0.15 L	0.13 L	0.16 L	0.14 L	0.14 L	0.17 L	0.16 L	0.11 L
LB-1S	LB-021915-16	2/19/15	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-1S	LB-081115-02	8/11/15	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-1S	LB-021716-14	2/17/16	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-1S	LB-082416-05	8/24/16	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-3D	LB-03D	5/28/87	2.0 L	2.0 L	NT	2.0 L	2.0 L	5.0 L	NT	2.0 L
LB-3D	LB-1189-W01	11/13/89	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-3D	LB-1289-W20	12/18/89	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-3D	LB-032097-14	3/20/97	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-3D	LB-032098-21	3/20/98	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-3D	LB-031899-15	3/18/99	0.2 L	0.3 L	0.2 L	0.2 L	0.3 L	0.2 L	0.3 L	0.2 L
LB-3D	LB-031600-9	3/16/00	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-3D	LB-031501-17	3/15/01	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-3D	LB-032002-18	3/20/02	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-3D	LB-031303-14	3/13/03	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-3D	LB-022404-5	2/24/04	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-3D	LB-030905-15	3/9/05	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-3D	LB-031606-21	3/16/06	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-3D	LB-030507-4	3/5/07	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-3D	LB-030507-5	3/5/07	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-3D	LB-032408-17	3/24/08	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-3D	LB-3D	3/18/09	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-3D	LB-3D032410	3/24/10	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-3D	LB-3D	3/28/11	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-3D	LB-031312-09	3/13/12	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-3D	LB-020713-18	2/7/2013	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L
LB-3D	LB-021914-22	2/19/14	0.15 L	0.13 L	0.16 L	0.14 L	0.14 L	0.17 L	0.16 L	0.11 L
LB-3D	LB-021715-07	2/17/15	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-3D	LB-021616-06	2/16/16	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-3S	LB-03S	5/12/87	2.0 L	2.0 L	NT	2.0 L	2.0 L	5.0 L	NT	2.0 L
LB-3S	LB-03S	7/16/87	2.0 L	2.0 L	NT	2.0 L	2.0 L	5.0 L	NT	2.0 L
LB-3S	LB-1089-W02	10/17/89	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L

Table B-2
Groundwater Chemistry, Volatile Organic Compounds^a (µg/L)
1987 through 2016
Leichner Landfill

Location	Sample Number	Date	PCE	TCE	1,4-DCB	1,1-DCA	1,1,1-TCA	Chloroethane	cis-1,2-DCE	Chlorobenzene
LB-3S	LB-1189-W02	11/13/89	1.0 L	1.0 L	1.0 L					
LB-3S	LB-1189-W02 LB-1289-W11	12/15/89	1.0 L 1.0 L	1.0 L 1.0 L	1.0 L 1.0 L					
LB-3S LB-3S	LB-032594-11	3/25/94	0.2 L	0.2 L	0.2 L	0.5 L	0.5 L	0.3 L	0.2 L	0.2 L
LB-3S	LB-032394-11 LB-032097-13	3/23/94	0.2 L 0.6	0.2 L 0.5 L	0.2 L 0.5 L	0.5 L 0.5 L	0.5 L 0.5 L	0.5 L 0.5 L	0.2 L 0.5 L	0.2 L 0.5 L
LB-3S	LB-032097-13 LB-032098-20	3/20/97	0.6	0.5 L 0.5 L	0.5 L 0.5 L	0.5 L 0.5 L				
LB-3S	LB-032098-20 LB-031899-14	3/20/98	0.3	0.3 L 0.3 L	0.3 L 0.2 L	0.3 L 0.2 L	0.3 L 0.3 L	0.3 L 0.2 L	0.3 L 0.3 L	0.3 L 0.2 L
LB-3S	LB-031600-8	3/16/99	0.4 0.2 J	0.5 L 0.5 L	0.2 L 0.5 L	0.2 L 0.5 L	0.5 L 0.5 L	0.2 L 0.5 L	0.5 L 0.5 L	0.2 L 0.5 L
LB-3S	LB-031501-18	3/15/00	0.2 J 0.5 L	0.5 L 0.5 L	0.5 L 0.5 L	0.5 L 0.5 L				
LB-3S LB-3S	LB-031301-18 LB-032002-17	3/13/01	0.5 L 0.5 L	0.5 L 0.5 L	0.5 L 0.5 L					
LB-3S	LB-032002-17 LB-031303-13	3/20/02	0.5 L 0.5 L	0.5 L 0.5 L	0.5 L 0.5 L					
LB-3S	LB-031303-13 LB-022404-6	2/24/04	0.5 L 0.5 L	0.5 L 0.5 L	0.5 L 0.5 L					
LB-3S	LB030905-16	3/9/05	0.5 L 0.5 L	0.5 L 0.5 L	0.5 L 0.5 L					
LB-3S	LB-031606-22	3/3/03	0.5 L 0.5 L	0.5 L 0.5 L	0.5 L 0.5 L					
LB-3S	LB-031000-22 LB-030507-3	3/5/07	0.5 L 0.5 L	0.5 L 0.5 L	0.5 L 0.5 L					
LB-3S	LB-032408-18	3/24/08	0.5 L 0.5 L	0.5 L	0.5 L 0.5 L	0.5 L 0.5 L				
LB-3S	LB-3S	3/18/09	0.5 L 0.5 L	0.5 L 0.5 L	0.5 L 0.5 L	0.5 L	0.5 L 0.5 L	0.5 L	0.5 L 0.5 L	0.5 L 0.5 L
LB-3S	LB-3S032410	3/24/10	0.5 L	0.5 L	0.5 L 0.5 L					
LB-3S	LB-3S	3/24/10	0.3 L 0.1 L	0.3 L 0.1 L	0.3 L 0.2 L	0.3 L 0.1 L	0.3 L 0.1 L	0.25 L	0.3 L 0.1 L	0.1 L
LB-3S	LB-031312-10	3/13/12	0.1 L 0.1 L	0.1 L 0.1 L	0.2 L 0.2 L	0.1 L 0.1 L	0.1 L 0.1 L	0.25 L 0.25 L	0.1 L 0.1 L	0.1 L 0.1 L
LB-3S	LB-020713-17	2/7/2013	1.00 L	1.00 L	1.00 L					
LB-3S	LB-021914-22	2/19/14	0.15 L	0.13 L	0.16 L	0.14 L	0.14 L	0.17 L	0.16 L	0.11 L
LB-3S	LB-021915-19	2/19/15	0.50 L	0.50 L	0.50 L					
LB-3S	LB-021716-12	2/17/16	0.50 L	0.50 L	0.50 L					
LB-5D	LB-05D	5/27/87	2.0 L	2.0 L	NT	2.0 L	2.0 L	5.0 L	NT	2.0 L
LB-5D	LB-05D	7/20/87	1.0 L	1.0 L	NT	1.0 L	2.0 L	4.0 L	NT	1.0 L
LB-5D	LB-05D	2/11/88	1.0 L	NT	1.0 L					
LB-5D	LB-05D	8/30/88	1.0 L	2.0 L	1.0 L	1.0 L				
LB-5D	LB-1289-W24	12/19/89	1.0 L	1.0 L	1.0 L					
LB-5D	LB-032894-13	3/28/94	0.2 L	0.2 L	0.2 L	0.5	0.5 L	0.3 L	0.2 L	0.2 L
LB-5D	LB-031997-9	3/19/97	0.5 L	0.5 L	0.5 L	0.2	0.5 L	0.5 L	0.5 L	0.5 L
LB-5D	LB-031998-6	3/19/98	0.5 L	0.5 L	0.5 L	0.2	0.5 L	0.2	0.5 L	0.5 L
LB-5D	LB-031899-11	3/18/99	0.2 L	0.3 L	0.2 L	0.2 L	0.3 L	0.2 L	0.3 L	0.2 L
LB-5D	LB-031600-5	3/16/00	0.5 L	0.5 L	0.5 L					
LB-5D	LB-031401-11	3/14/01	0.5 L	0.5 L	0.5 L	0.1 J	0.5 L	0.5 L	0.5 L	0.5 L

Table B-2
Groundwater Chemistry, Volatile Organic Compounds^a (µg/L)
1987 through 2016
Leichner Landfill

Location	Sample Number	Date	PCE	TCE	1,4-DCB	1,1-DCA	1,1,1-TCA	Chloroethane	cis-1,2-DCE	Chlorobenzene
LB-5D	LB-031902-13	3/19/02	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5D	LB-031303-9	3/13/03	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5D	LB-022504-7	2/25/04	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5D (Dup)	LB-022504-8	2/25/04	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5D	LB-030805-1	3/8/05	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5D	LB-031606-14	3/16/06	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5D (Dup)	LB-031606-15	3/16/06	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5D	LB-030507-7	3/5/07	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5D	LB-031908-2	3/19/08	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5D (Dup)	LB-031908-3	3/19/08	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5D	LB-5D	3/17/09	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5D	LB-5D032410	3/24/10	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5D	LB-5D	3/23/11	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-5D	LB-031212-03	3/12/12	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-5D	LB-020513-03	2/5/2013	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L
LB-5D	LB-021714-01	2/17/14	0.15 L	0.13 L	0.16 L	0.14 L	0.14 L	0.17 L	0.16 L	0.11 L
LB-5D	LB-021715-01	2/17/15	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-5D	LB-021816-16	2/18/16	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-5S	LB-05S	5/29/87	2.0 L	2.0 L	NT	2.0 L	2.0 L	5.0 L	NT	2.0 L
LB-5S	LB-05S	7/19/87	1.0 L	1.0 L	NT	2.0 L	2.0 L	4.0 L	NT	1.0 L
LB-5S	LB-05S	9/10/87	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	\overline{NT}	1.0 L
LB-5S	LB-05S	11/11/87	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	\overline{NT}	1.0 L
LB-5S	LB-05S	2/10/88	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	NT	1.0 L
LB-5S	LB-032894-12	3/28/94	0.2 L	0.2 L	0.2 L	0.5 L	0.5 L	0.3 L	0.2 L	0.2 L
LB-5S	LB-031997-8	3/19/97	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5S	LB-031998-5	3/19/98	2.4	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5S	LB-031899-10	3/18/99	2.6	0.3 L	0.2 L	0.2 L	0.3 L	0.2 L	0.3 L	0.2 L
LB-5S	LB-031600-4	3/16/00	1.1	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5S	LB-031401-12	3/14/01	0.4 J	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5S	LB-031902-12	3/19/02	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5S	LB-091802-6	9/18/02	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5S	LB-031303-8	3/13/03	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5S	LB-092203-1	9/22/03	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L

Table B-2
Groundwater Chemistry, Volatile Organic Compounds^a (µg/L)
1987 through 2016
Leichner Landfill

Location	Sample Number	Date	PCE	TCE	1,4-DCB	1,1-DCA	1,1,1-TCA	Chloroethane	cis-1,2-DCE	Chlorobenzene
	-				· ·					
LB-5S	LB-022504-9	2/25/04	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5S	LB-090104-5	9/1/04	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5S	LB030805-2	3/8/05	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5S (Dup)	LB030805-3	3/8/05	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5S	LB-091405-4	9/14/05	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5S	LB-031606-16	3/16/06	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5S	LB-091206-1	9/12/06	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5S	LB-030507-6	3/5/07	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5S	LB-091907-3	9/19/07	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5S	LB-031908-1	3/19/08	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5S	LB-091608-2	9/16/08	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5S (Dup)	LB-091608-8	9/16/08	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5S	LB-5S	3/17/09	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5S	LBLF5S091109	9/11/09	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5S	LB-5S032410	3/24/10	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5S (Dup)	LB-DUP2032410	3/24/10	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5S	LB5S092310	9/23/10	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5S (Dup)	LB51S092310	9/23/10	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-5S	LB-5S	3/23/11	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-5S	LB-090811-06	9/8/11	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-5S	LB-032212-17	3/22/12	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-5S	LB-091112-01	9/11/12	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-5S	LB-020513-04	2/5/2013	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L
LB-5S	LB-082113-01	8/21/2013	0.15 L	0.13 L	0.16 L	0.14 L	0.14 L	0.17 L	0.16 L	0.11 L
LB-5S	LB-021714-02	2/17/14	0.15 L	0.13 L	0.16 L	0.14 L	0.14 L	0.17 L	0.16 L	0.11 L
LB-5S	LB-081314-01	8/13/14	0.15 L	0.13 L	0.16 L	0.14 L	0.14 L	0.17 L	0.16 L	0.11 L
LB-5S	LB-021815-09	2/18/15	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-5S	LB-081215-08	8/12/15	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-5S	LB-021816-17	2/18/16	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-5S	LB-082316-01	8/23/16	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-6S	LB-06S	7/17/87	1.0 L	1.0 L	NT	3.0	2.0	4.0 L	NT	1.0 L
LB-6S	LB-06S	9/10/87	1.0 L	1.1	1.0 L	1.0 L	8.0	1.0 L	NT	1.0 L
LB-6S	LB-06S	11/11/87	1.0 L	2.6	1.0 L	4.2	7.1	1.0 L	NT	1.0 L

Table B-2
Groundwater Chemistry, Volatile Organic Compounds^a (µg/L)
1987 through 2016
Leichner Landfill

Location	Sample Number	Date	PCE	TCE	1,4-DCB	1,1-DCA	1,1,1-TCA	Chloroethane	cis-1,2-DCE	Chlorobenzene
LB-6S	LB-06S	2/11/88	1.0 L	1.5	1.0 L	1.4	1.0 L	1.0 L	NT	1.0 L
LB-6S	LB-06S	6/22/88	1.0 L	4.0	1.0 L	6.0	1.0 L	1.0 L	NT	1.0 L
LB-6S	LB-06S	8/31/88	1.0 L	1.0	1.0 L	3.0	1.0 L	2.0 L	40.0	1.0 L
LB-6S	LB-06S	12/6/88	1.0 L	1.0 L	1.0 L	6.0	1.0 L	2.0	NT	1.0 L
LB-6S	LB-289-W17	3/1/89	1.0 L	1.0 L	1.0 L	6.9	1.0 L	2.6	24.1	1.0 L
LB-6S	LB-589-W17	5/24/89	1.0 L	1.0 L	1.0 L	5.2	1.0	1.0 L	21.0	1.0 L
LB-6S	LB-989-W07	9/7/89	1.0 L	1.0 L	1.0 L	5.6	1.0 L	1.5	20.0	1.0 L
LB-6S	LB-1289-W13	12/15/89	1.0	2.0	1.0 L	13.0	1.0 L	1.7	51.0	1.0 L
LB-6S	LB-390-W24	3/15/90	1.0 L	1.5	1.0 L	11.0	1.0 L	1.0 L	37.0	1.0 L
LB-6S	LB-690-W22	6/21/90	1.0 L	1.0 L	1.0 L	9.7	1.0 L	1.0 L	31.0	1.0 L
LB-6S	LB-990-W11	9/14/90	1.1	1.7	1.0 L	12.0	1.0 L	6.2	37.0	1.0 L
LB-6S	LB-1290-W13	12/12/90	1.0 L	1.0 L	1.0 L	10.0	1.0 L	4.5	34.0	1.0 L
LB-6S	LB-391-W16	3/21/91	1.0 L	1.0 L	1.0 L	4.3	1.0 L	1.0 L	14.0	1.0 L
LB-6S	LB-691-W19	6/26/91	1.0 L	1.0 L	1.0 L	3.7	1.0 L	1.0 L	13.0	1.0 L
LB-6S	LB-691-W20	6/26/91	1.0 L	1.0 L	1.0 L	4.1	1.0 L	1.0 L	15.0	1.0 L
LB-6S	LB-991-14	9/25/91	1.0 L	1.0 L	1.0 L	5.0	1.0 L	1.0 L	18.0	1.0 L
LB-6S	LB-991-15	9/25/91	1.0 L	1.0 L	1.0 L	4.0	1.0 L	1.0	15.0	1.0 L
LB-6S	LB-1291-08	12/20/91	1.0 L	1.0 L	1.0 L	5.0	1.0 L	1.0 L	29.0	1.0 L
LB-6S	LB-1291-09	12/20/91	1.0 L	1.0 L	1.0 L	4.0	1.0 L	1.0 L	28.0	1.0 L
LB-6S	LB-392-07	3/20/92	1.0 L	1.0 L	1.0 L	2.0	1.0 L	1.0 L	4.0	1.0 L
LB-6S	LB-392-08	3/20/92	1.0 L	1.0 L	1.0 L	2.0	1.0 L	1.0 L	4.0	1.0 L
LB-6S	LB-62692-5	6/26/92	0.4	NT	0.2 L	NT	0.5 L	NT	NT	0.2 L
LB-6S	LB-62692-5	6/26/92	NT	0.4 B	0.2 L	2.6	NT	0.9	6.1 B	NT
LB-6S	LB-62692-6	6/26/92	NT	NT	0.2 L	NT	0.5 L	0.8	5.2 B	0.2 L
LB-6S	LB-62692-6	6/26/92	0.4	0.4 B	0.2 L	2.6	NT	NT	NT	NT
LB-6S	LB-92192-4	9/21/92	0.5	0.4	0.2 L	NT	0.5 L	2.1	5.9	0.2 L
LB-6S	LB-92192-4	9/21/92	NT	NT	0.2 L	3.0	NT	NT	NT	NT
LB-6S	LB-92192-5	9/21/92	NT	NT	0.2 L	NT	0.5 L	NT	NT	0.2 L
LB-6S	LB-92192-5	9/21/92	0.5	0.4	0.2 L	3.0	NT	1.9	5.6	NT
LB-6S	LB-12992-4	12/9/92	0.6 B	NT	0.2	NT	7.8 B	0.3 L	NT	0.2 L
LB-6S	LB-12992-4	12/9/92	NT	0.2	NT	3.6	NT	0.3 L	5.8	NT
LB-6S	LB-12992-5	12/9/92	NT	0.2 L	NT	3.9	3.1 B	0.3 L	6.6	0.2
LB-6S	LB-12992-5	12/9/92	0.4 B	0.2 L	0.2	NT	NT	0.3 L	NT	NT

Table B-2
Groundwater Chemistry, Volatile Organic Compounds^a (µg/L)
1987 through 2016
Leichner Landfill

Location	Sample Number	Date	PCE	TCE	1,4-DCB	1,1-DCA	1,1,1-TCA	Chloroethane	cis-1,2-DCE	Chlorobenzene
LB-6S	LB-031093-7	3/10/93	0.2 L	0.2 L	0.2 L	NT	0.5 L	0.9	2.3	0.2 L
LB-6S	LB-031093-7	3/10/93	0.2 L	0.2 L	0.2 L	2.6	NT	NT	NT	NT
LB-6S	LB-031093-8	3/10/93	0.2 L	0.2 L	0.2 L	NT	0.5 L	0.3 L	2.1	0.2 L
LB-6S	LB-031093-8	3/10/93	0.2 L	0.2 L	0.2 L	2.4	NT	0.3 L	NT	NT
LB-6S	LB-060393-11	6/3/93	0.4	NT	0.2 L	1.3	0.5 L	NT	1.2	0.2 L
LB-6S	LB-060393-11	6/3/93	NT	0.3	0.2 L	NT	NT	0.6	NT	NT
LB-6S	LB-060393-12	6/3/93	0.4	NT	0.2 L	NT	0.5 L	NT	NT	0.2 L
LB-6S	LB-060393-12	6/3/93	NT	0.3	0.2 L	1.1	NT	0.4	1.0	NT
LB-6S	LB-092493-13	9/24/93	0.2 L	0.2 L	0.2 L	1.8	0.5 L	2.9	1.4	0.2 L
LB-6S	LB-092493-13	9/24/93	0.2 L	0.2 L	0.2 L	NT	NT	NT	NT	NT
LB-6S	LB-121593-6	12/15/93	0.2 L	0.2 L	0.2 L	1.6	0.5 L	1.3	1.8	0.2 L
LB-6S	LB-032994-18	3/29/94	0.2 L	0.2 L	0.2 L	0.9	0.5 L	0.6	0.5	0.2 L
LB-6S	LB-032994-19	3/29/94	0.2 L	0.2 L	0.2 L	0.9	0.5 L	0.5	0.5	0.2 L
LB-6S	LB-062394-11	6/23/94	0.2 L	0.3 L	0.4 L	0.5	0.3 L	0.3 L	0.3 L	0.3 L
LB-6S	LB-062394-12	6/23/94	0.2 L	0.3 L	0.4 L	0.6	0.3 L	0.3 L	0.3 L	0.3 L
LB-6S	LB-090694-5	9/6/94	0.2 L	0.3 L	0.4 L	0.8	0.3 L	0.8	0.4	0.3 L
LB-6S	LB-090694-6	9/6/94	0.2 L	0.3 L	0.4 L	0.8	0.3 L	0.8	0.4	0.3 L
LB-6S	LB-121394-6	12/13/94	0.2 L	0.3 L	0.4 L	0.4	0.3 L	0.3 L	0.3 L	0.3 L
LB-6S	LB-121394-7	12/13/94	0.2 L	0.3 L	0.4 L	0.4	0.3 L	0.3 L	0.3 L	0.3 L
LB-6S	LB-031095-10	3/10/95	0.3 L	0.2 L	0.1 L	0.2 B	0.1 L	0.1 L	0.2	0.1 L
LB-6S	LB-031095-11	3/10/95	0.3 L	0.2 L	0.1	0.2 B	0.1 L	0.1 L	0.2	0.1 L
LB-6S	LB-062095-10	6/20/95	0.3 L	0.2 L	0.1 L	0.3 B	0.1 L	0.1 L	0.2	0.1 L
LB-6S	LB-062095-9	6/20/95	0.3 L	0.2 L	0.1 L	0.3 B	0.1 L	0.1 L	0.2	0.1 L
LB-6S	LB-092095-6	9/20/95	0.3 L	0.3 L	0.1 L	0.3	0.1 L	0.1	0.2	0.1 L
LB-6S	LB-092095-7	9/20/95	0.3 L	0.3 L	0.1 L	0.3	0.1 L	0.1	0.2	0.1 L
LB-6S	LB-122095-12	12/20/95	0.3 L	0.2 L	0.1 L	0.2	0.1 L	0.1 L	0.1 L	0.1 L
LB-6S	LB-122095-13	12/20/95	0.3 L	0.2 L	0.1 L	0.1 L	0.1 L	0.1 L	0.1	0.1 L
LB-6S	LB-031996-5	3/19/96	0.3 L	0.2 L	0.1 L	0.2	0.1 L	0.1 L	0.1	0.1 L
LB-6S	LB-031996-6	3/19/96	0.3 L	0.2 L	0.1 L	0.2	0.1 L	0.1 L	0.1 L	0.1 L
LB-6S	LB-061996-12	6/19/96	0.1 L	0.1 L	0.0 L	0.3	0.1 L	0.1 L	0.2	0.1 L
LB-6S	LB-061996-13	6/19/96	0.1	0.1 L	0.0 L	0.3	0.1 L	0.1 L	0.3	0.1 L
LB-6S	LB-091896-12	9/18/96	0.1 L	0.1 L	0.0 L	0.4	0.1 L	0.1 L	0.3	0.1 L
LB-6S	LB121796-3	12/17/96	0.1 L	0.1 L	0.0 L	0.4	0.1 L	0.1	0.2	0.1 L

Table B-2
Groundwater Chemistry, Volatile Organic Compounds^a (µg/L)
1987 through 2016
Leichner Landfill

Location	Sample Number	Date	PCE	TCE	1,4-DCB	1,1-DCA	1,1,1-TCA	Chloroethane	cis-1,2-DCE	Chlorobenzene
LB-6S	LB-031997-7	3/19/97	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-6S	LB-061797-6	6/17/97	0.2	0.1	0.0	0.5	0.5 L	0.5 L	0.9	0.5 L
LB-6S	LB-091697-3	9/16/97	0.5 L	0.5 L	0.5 L	0.3	0.5 L	0.5 L	0.6	0.5 L
LB-6S	LB-121797-14	12/17/97	0.4	0.2	0.5 L	1.0	0.5 L	0.5 L	1.7	0.5 L
LB-6S	LB-031998-7	3/19/98	0.3	0.2	0.1	0.5	0.5 L	0.2	0.5 L	0.5 L
LB-6S	LB-061698-7	6/16/98	0.1	0.1	0.1	0.2	0.1 L	0.1 L	0.3	0.1 L
LB-6S	LB-091798-5	9/17/98	0.2	0.3 L	0.2 B	0.5	0.3 L	0.2 L	0.6	0.2 L
LB-6S	LB-121798-1	12/17/98	0.2 L	0.3 L	0.2 L	0.2	0.3 L	0.2 L	0.3 L	0.2 L
LB-6S	LB-031799-2	3/17/99	0.2 L	0.3 L	0.2 L	0.4	0.3 L	0.2 L	0.4	0.2 L
LB-6S	LB-062399-11	6/23/99	0.2 L	0.3 L	0.2 L	0.2 L	0.3 L	0.2 L	0.3 L	0.2 L
LB-6S	LB-121599-10	12/15/99	0.2 L	0.3 L	0.2 L	NT	NT	NT	NT	NT
LB-6S	LB-031700-10	3/17/00	0.2 J	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-6S	LB-031700-11	3/17/00	0.2 J	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-6S	LB-061300-6	6/13/00	0.5 L	0.5 L	0.5 L	0.1 J	0.5 L	0.5 L	0.5 L	0.5 L
LB-6S	LB-091200-3	9/12/00	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-6S	LB-121200-1	12/12/00	0.2 J	0.5 L	0.5 L	0.1 J	0.5 L	0.5 L	0.3 J	0.5 L
LB-6S	LB-121200-2	12/12/00	0.5 L	0.5 L	0.5 L	0.1 J	0.5 L	0.5 L	0.2 J	0.5 L
LB-6S	LB-031301-7	3/13/01	0.2 J	0.5 L	0.5 L	0.1 J	0.5 L	0.5 L	0.5 L	0.5 L
LB-6S	LB-031301-8	3/13/01	0.5 L	0.5 L	0.5 L	0.1 J	0.5 L	0.5 L	0.5 L	0.5 L
LB-6S	LB-032002-15	3/20/02	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-6S	LB-032002-16	3/20/02	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-6S	LB-091802-2	9/18/02	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-6S	LB-091802-3	9/18/02	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-6S	LB-031303-21	3/13/03	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-6S	LB-092203-5	9/22/03	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-6S	LB-022604-18	2/26/04	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-6S	LB-090104-6	9/1/04	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-6S	LB-030805-9	3/8/05	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-6S	LB-091405-6	9/14/05	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-6S	LB-031506-13	3/15/06	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-6S	LB-091206-4	9/12/06	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-6S	LB-030507-12	3/5/07	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-6S	LB-091907-6	9/19/07	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L

Table B-2
Groundwater Chemistry, Volatile Organic Compounds^a (µg/L)
1987 through 2016
Leichner Landfill

				I	I	<u> </u>				
Location	Sample Number	Date	PCE	TCE	1,4-DCB	1,1-DCA	1,1,1-TCA	Chloroethane	cis-1,2-DCE	Chlorobenzene
LB-6S	LB-031908-9	3/19/08	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-6S	LB-091608-3	9/16/08	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-6S	LB-6S	3/18/09	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-6S	LBLF6S091109	9/11/09	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-6S (Dup)	LBLFDUP1091109	9/11/09	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-6S	LB-6S032310	3/23/10	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-6S	LB6S092310	9/23/10	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-6S	LB-6S	3/22/11	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-6S (Dup)	DUP1	3/22/11	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-6S	LB-090711-05	9/7/11	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-6S (Dup)	LB-090711-04	9/7/11	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-6S	LB-032212-23	3/22/12	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-6S (Dup)	LB-032212-22	3/22/12	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-6S	LB-091212-06	9/12/12	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-6S (Dup)	LB-091212-07	9/12/12	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-6S	LB-020613-15	2/6/2013	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L
LB-6S (Dup)	LB-020613-16	2/6/2013	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L
LB-6S	LB-082113-07	8/21/2013	0.15 L	0.13 L	0.16 L	0.14 L	0.14 L	0.17 L	0.16 L	0.11 L
LB-6S	LB-021914-23	2/19/14	0.15 L	0.13 L	0.16 L	0.14 L	0.14 L	0.17 L	0.16 L	0.11 L
LB-6S	LB-081314-06	8/13/14	0.15 L	0.13 L	0.16 L	0.14 L	0.14 L	0.17 L	0.16 L	0.11 L
LB-6S (Dup)	LB-081314-07	8/13/14	0.15 L	0.13 L	0.16 L	0.14 L	0.14 L	0.17 L	0.16 L	0.11 L
LB-6S	LB-021815-14	2/18/15	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-6S (Dup)	LB-021815-13	2/18/15	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-6S	LB-081115-03	8/11/15	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-6S (Dup)	LB-081115-04	8/11/15	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-6S	LB-021816-21	2/18/16	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-6S	LB-082416-08	8/24/16	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-6S (Dup)	LB-082416-09	8/24/16	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB10-DR	LB-031005-19	3/10/05	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB10-DR (Dup)	LB-031005-20	3/10/05	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB10-DR	LB-031406-5	3/14/06	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB10-DR	LB-030607-20	3/6/07	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB10-DR	LB-032408-22	3/24/08	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB10-DR	LB-10D	3/17/09	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L

Table B-2
Groundwater Chemistry, Volatile Organic Compounds^a (µg/L)
1987 through 2016
Leichner Landfill

Location	Sample Number	Date	PCE	TCE	1,4-DCB	1,1-DCA	1,1,1-TCA	Chloroethane	cis-1,2-DCE	Chlorobenzene
LB10-DR	LB-10D032310	3/23/10	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-10DR	LB-10DR	3/29/11	0.1 L	0.1 L	0.2 L	0.18	0.1 L	0.25 L	0.1 L	0.1 L
LB-10DR	LB-0313012-07	3/13/12	0.1 L	0.1 L	0.2 L	0.12	0.1 L	0.25 L	0.1 L	0.1 L
LB-10DR	LB-020713-19	2/7/2013	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L
LB-10DR	LB-021914-15	2/19/14	0.15 L	0.13 L	0.16 L	0.14 L	0.14 L	0.17 L	0.16 L	0.11 L
LB-10DR	LB-021915-20	2/19/15	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-10DR	LB-021716-09	2/17/16	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-10DR (Dup)	LB-021716-10	2/17/16	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-10SR	LB-031005-21	3/10/05	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-10SR	LB-091505-7	9/15/05	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-10SR	LB-031406-6	3/14/06	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-10SR	LB-091306-9	9/13/06	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-10SR	LB-030607-19	3/6/07	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-10SR	LB-091907-7	9/19/07	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-10SR	LB-032408-21	3/24/08	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-10SR (Re)	MW10SR-043008	4/30/08	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-10SR	LB-091608-4	9/16/08	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-10SR	LB-10S	3/17/09	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-10SR (Dup)	Dup-1	3/17/09	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-10SR	LBLF10S091109	9/11/09	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-10SR	LB-10SR032310	3/23/10	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-10SR	LB10S092310	9/23/10	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-10SR	LB-10SR	3/29/11	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-10SR (Dup)	DUP2	3/29/11	0.1 L	0.15	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-10SR	LB-090811-08	9/8/11	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-10SR	LB-031312-08	3/13/12	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-10SR	LB-091212-09	9/12/12	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-10SR	LB-020713-20	2/7/2013	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L
LB-10SR	LB-082213-09	8/22/2013	0.15 L	0.13 L	0.16 L	0.14 L	0.14 L	0.17 L	0.16 L	0.11 L
LB-10SR	LB-021914-16	2/19/14	0.15 L	0.13 L	0.16 L	0.14 L	0.14 L	0.17 L	0.16 L	0.11 L
LB-10SR	LB-081414-08	8/14/14	0.15 L	0.13 L	0.16 L	0.14 L	0.14 L	0.17 L	0.16 L	0.11 L
LB-10SR	LB-021915-21	2/19/15	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-10SR	LB-081015-01	8/10/15	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L

Table B-2
Groundwater Chemistry, Volatile Organic Compounds^a (µg/L)
1987 through 2016
Leichner Landfill

Location	Sample Number	Date	PCE	TCE	1,4-DCB	1,1-DCA	1,1,1-TCA	Chloroethane	cis-1,2-DCE	Chlorobenzene
LB-10SR	LB-021716-11	2/17/16	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-10SR	LB-082416-07	8/23/16	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-13D	LB-989-W20	9/13/89	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-13D	LB-1089-W15	10/19/89	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-13D	LB-1189-W20	11/16/89	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-13D	LB-1289-W18	12/18/89	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-13D	LB-390-W18	3/15/90	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-13D	LB-690-W20	6/21/90	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-13D	LB-990-W17	9/18/90	1.0 L	1.0 L	1.0 L	1.0 L	1.0	1.0 L	1.0 L	1.0 L
LB-13D	LB-1290-W20	12/13/90	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-13D	LB-391-W15	3/20/91	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-13D	LB-691-W22	6/26/91	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-13D	LB-991-13	9/25/91	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-13D	LB-1291-19	12/23/91	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-13D	LB-392-19	3/24/92	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-13D	LB-7292-2	7/2/92	0.2 L	0.2 L	0.2 L	0.2 L	0.5 L	0.3 L	0.2 L	0.2 L
LB-13D	LB-91792-2	9/17/92	0.2 L	0.2 L	0.2 L	0.2 L	0.5 L	0.3 L	0.2 L	0.2 L
LB-13D	LB-121092-9	12/10/92	0.2 L	0.2 L	0.2 L	0.2 L	0.5 L	0.3 L	0.2 L	0.2 L
LB-13D	LB-031293-20	3/12/93	0.2 L	0.2 L	0.2 L	0.2 L	0.5 L	0.3 L	0.2 L	0.2 L
LB-13D	LB-060493-21	6/4/93	0.2 L	0.2 L	0.2 L	0.2 L	0.5 L	0.3 L	0.2 L	0.2 L
LB-13D	LB-092393-7	9/23/93	0.2 L	0.2 L	0.2 L	0.2 L	0.5 L	0.3 L	0.2 L	0.2 L
LB-13D	LB-092393-7	9/23/93	0.2 L	0.2 L	0.2 L	0.2 L	NT	0.3 L	0.2 L	NT
LB-13D	LB-121693-12	12/16/93	0.2 L	0.2 L	0.2 L	0.2 L	0.5 L	0.3 L	0.2 L	0.2 L
LB-13D	LB-032894-17	3/28/94	0.2 L	0.2 L	0.2 L	0.5 L	0.5 L	0.3 L	0.2 L	0.2 L
LB-13D	LB-062394-20	6/28/94	0.2 L	0.3 L	0.4 L	0.2 L	0.3 L	0.3 L	0.3 L	0.3 L
LB-13D	LB-090794-10	9/7/94	0.2 L	0.3 L	0.4 L	0.2 L	0.3 L	0.3 L	0.3 L	0.3 L
LB-13D	LB-121594-21	12/15/94	0.2 L	0.3 L	0.4 L	0.2 L	0.3 L	0.3 L	0.3 L	0.3 L
LB-13D	LB-031395-18	3/13/95	0.3 L	0.2 L	0.1 L	0.1 L	0.1 L	0.1 L	0.1 L	0.1 L
LB-13D	LB-062195-19	6/21/95	0.3 L	0.2 L	0.1 L	0.1 L	0.1 L	0.1 L	0.1 L	0.1 L
LB-13D	LB-092295-16	9/22/95	0.3 L	0.3 L	0.1 L	0.1 L	0.1 L	0.1 L	0.1 L	0.1 L
LB-13D	LB-121995-8	12/19/95	0.3 L	0.2 L	0.1 L	0.1 L	0.1 L	0.1 L	0.1 L	0.1 L
LB-13D	LB-032096-15	3/20/96	0.3 L	0.2 L	0.1 L	0.1 L	0.1 L	0.1 L	0.1 L	0.1 L
LB-13D	LB-032096-16	3/20/96	0.3 L	0.2 L	0.1 L	0.1 L	0.1 L	0.1 L	0.1 L	0.1 L

Table B-2
Groundwater Chemistry, Volatile Organic Compounds^a (µg/L)
1987 through 2016
Leichner Landfill

T (G 1 N 1	D /	DCE	TOE	1.4 DCD	1.1 DCA	1 1 1 TCA	Cl. 1	.: 12 DCE	Chi la mala manana
Location	Sample Number	Date	PCE	TCE	1,4-DCB	1,1-DCA	1,1,1-TCA		cis-1,2-DCE	
LB-13D	LB-061996-16	6/19/96	0.1 L	0.1 L	0.0 L	0.1 L	0.1 L	0.1 L	0.2 L	0.1 L
LB-13D	LB-091796-4	9/17/96	0.1 L	0.1 L	0.0 L	0.1 L	0.1 L	0.1 L	0.2 L	0.1 L
LB-13D	LB121796-9	12/17/96	0.1 L	0.1 L	0.0 L	0.1 L	0.1 L	0.1 L	0.2 L	0.1 L
LB-13D	LB-032097-18	3/20/97	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13D	LB-061897-15	6/18/97	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13D	LB-091897-11	9/18/97	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13D	LB-121797-9	12/17/97	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.8 L	0.5 L	0.5 L
LB-13D	LB-032098-19	3/20/98	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13D	LB-061798-14	6/17/98	0.1 L	0.1 L	0.0 L	0.1 L	0.1 L	0.1 L	0.2 L	0.1 L
LB-13D	LB-091898-15	9/18/98	0.2 L	0.3 L	0.3 B	0.2 L	0.3 L	0.2 L	0.3 L	0.2 L
LB-13D	LB-121898-12	12/18/98	0.2 L	0.3 L	0.2 L	0.2 L	0.3 L	0.2 L	0.3 L	0.2 L
LB-13D	LB-031999-23	3/19/99	0.2 L	0.3 L	0.2 L	0.2 L	0.3 L	0.2 L	0.3 L	0.2 L
LB-13D	LB-062399-12	6/23/99	0.2 L	0.3 L	0.2 L	0.2 L	0.3 L	0.2 L	0.3 L	0.2 L
LB-13D	LB-091799-13	9/17/99	0.2 L	0.3 L	0.3 J	NT	NT	NT	NT	NT
LB-13D	LB-121699-3	12/14/99	0.2 L	0.3 L	0.2 L	NT	NT	NT	NT	NT
LB-13D	LB-031700-18	3/17/00	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13D	LB-061400-10	6/14/00	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13D	LB-091300-11	9/13/00	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13D	LB-121500-12	12/15/00	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13D	LB-031501-19	3/15/01	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13D	LB-032002-20	3/20/02	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13D	LB-031303-16	3/13/03	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13D	LB-022404-3	2/24/04	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13D	LB-031005-17	3/10/05	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13D	LB-031506-9	3/15/06	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13D	LB-030607-18	3/6/07	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13D	LB-032008-13	3/20/08	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13D	LB-13D	3/17/09	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13D	LB-13D032410	3/24/10	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13D	LB-13D	3/25/11	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-13D	LB-031212-01	3/12/12	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-13D	LB-020713-22	2/7/2013	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L
LB-13D	LB-021814-08	2/18/14	0.15 L	0.13 L	0.16 L	0.14 L	0.14 L	0.17 L	0.16 L	0.11 L
LB-13D	LB-021715-03	2/17/15	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L

Table B-2
Groundwater Chemistry, Volatile Organic Compounds^a (µg/L)
1987 through 2016
Leichner Landfill

Location	Sample Number	Date	PCE	TCE	1,4-DCB	1,1-DCA	1,1,1-TCA	Chloroethane	cis-1,2-DCE	Chlorobenzene
LB-13D	LB-021616-02				·		0.50 L	0.50 L		0.50 L
		2/16/16	0.50 L	0.50 L	0.50 L	0.50 L			0.50 L	
LB-13D (Dup)	LB-021616-03	2/16/16	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-13I	LB-989-W22	9/13/89	1.0 L	1.0 L	1.0 L	6.5	1.0 L	1.8	13.0	1.0 L
LB-13I	LB-989-W23	9/13/89	1.0 L	1.0 L	1.0 L	5.6	1.0 L	1.3	11.0	1.0 L
LB-13I	LB-1089-W17	10/19/89	1.0 L	1.0 L	1.0 L	6.0	1.0 L	2.3	10.0	1.0 L
LB-13I	LB-1189-W17	11/16/89	1.0 L	1.0 L	1.0 L	4.9	1.0 L	2.3	1.0 L	1.0 L
LB-13I	LB-1289-W16	12/18/89	1.0 L	1.0 L	1.0 L	5.7	1.0 L	1.9	10.0	1.0 L
LB-13I	LB-390-W19	3/15/90	1.0 L	1.0 L	1.0 L	2.0	1.0 L	3.7	2.2	1.0 L
LB-13I	LB-690-W19	6/21/90	1.0 L	1.0 L	1.0 L	3.6	1.0 L	1.4	8.1	1.0 L
LB-13I	LB-990-W16	9/18/90	1.0 L	1.0 L	1.0 L	5.1	1.0 L	2.4	8.3	1.0 L
LB-13I	LB-1290-W21	12/13/90	1.0 L	1.0 L	1.0 L	4.6	1.0 L	2.9	7.9	1.0 L
LB-13I	LB-391-W14	3/20/91	1.0 L	1.0 L	1.0 L	3.1	1.0 L	1.0 L	7.1	1.0 L
LB-13I	LB-691-W21	6/26/91	1.0 L	2.1	1.0 L	2.4	1.0 L	1.2	4.1	1.0 L
LB-13I	LB-991-12	9/25/91	1.0 L	1.0 L	1.0 L	3.0	1.0 L	1.0	9.0	1.0 L
LB-13I	LB-1291-18	12/23/91	1.0 L	1.0 L	1.0 L	1.0	1.0 L	1.0 L	9.0	1.0 L
LB-13I	LB-392-20	3/24/92	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0	1.0 L
LB-13I	LB-7292-1	7/2/92	0.2 L	0.2 L	0.2 L	0.4	0.5 L	1.4	0.2 L	0.2 L
LB-13I	LB-91792-1	9/17/92	0.2 L	0.2 L	0.2 L	1.6	0.5 L	6.6	2.5	0.2 L
LB-13I	LB-121092-8	12/10/92	0.2 L	0.2 L	0.2 L	1.6	0.5 L	0.3 L	1.9	0.2 L
LB-13I	LB-031293-19	3/12/93	0.2 L	0.2 L	0.2 L	1.3	0.5 L	1.2	1.7	0.2 L
LB-13I	LB-060493-20	6/4/93	0.2 L	0.2	0.2 L	0.8	0.5 L	0.5	0.9	0.2 L
LB-13I	LB-092393-6	9/23/93	0.2 L	0.2 L	0.2 L	0.8	0.5 L	1.6	0.6	0.2 L
LB-13I	LB-092393-6	9/23/93	0.2 L	0.2 L	0.2 L	NT	NT	NT	NT	NT
LB-13I	LB-121693-14	12/16/93	0.2 L	0.2 L	0.2 L	0.2 L	0.5 L	0.3 L	0.2 L	0.2 L
LB-13I	LB-032894-16	3/28/94	0.2 L	0.2 L	0.2 L	0.9	0.5 L	0.3 L	0.5	0.2 L
LB-13I	LB-0624894-19	6/28/94	0.2 L	0.3 L	0.4 L	0.2 L	0.3 L	0.6	0.3 L	0.3 L
LB-13I	LB-090794-9	9/7/94	0.2 L	0.3 L	0.4 L	0.2	0.3 L	0.6	0.3 L	0.3 L
LB-13I	LB-121594-20	12/15/94	0.2 L	0.3 L	0.4 L	0.3	0.3 L	0.3 L	0.3 L	0.3 L
LB-13I	LB-031395-17	3/13/95	0.3 L	0.2 L	0.1 L	0.2 B	0.1 L	0.2	0.1 L	0.1 L
LB-13I	LB-062195-18	6/21/95	0.3 L	0.2 L	0.1 L	0.2 B	0.1 L	0.1 L	0.1	0.1 L
LB-13I	LB-092295-15	9/22/95	0.3 L	0.3 L	0.1 L	0.1 L	0.1 L	0.2	0.1 L	0.1 L
LB-13I	LB-121995-7	12/19/95	0.3 L	0.1	0.1 L	0.1 L	0.1 L	0.1 L	0.1 L	0.1 L
LB-13I	LB-032096-14	3/20/96	0.3 L	0.2 L	0.1 L	0.4	0.1 L	0.1 L	0.2 B	0.1 L
LB-13I	LB-061996-15	6/19/96	0.1 L	0.1 L	0.0	0.6	0.1 L	1.1	0.2	0.1 L

Table B-2
Groundwater Chemistry, Volatile Organic Compounds^a (µg/L)
1987 through 2016
Leichner Landfill

	1			T						
Location	Sample Number	Date	PCE	TCE	1,4-DCB	1,1-DCA	1,1,1-TCA	Chloroethane	cis-1,2-DCE	Chlorobenzene
LB-13I	LB-091796-3	9/17/96	0.1 L	0.1 L	0.0 L	0.2	0.1 L	0.8	0.2 L	0.1 L
LB-13I	LB121796-10	12/17/96	0.1 L	0.1 L	0.0	0.1 L	0.1 L	1.1	0.2 L	0.1 L
LB-13I	LB-032097-19	3/20/97	0.5 L	0.5 L	0.1	0.5 L	0.5 L	0.5	0.5 L	0.5 L
LB-13I	LB-061897-14	6/18/97	0.5 L	0.5 L	0.1	0.1	0.5 L	0.9	0.5 L	0.5 L
LB-13I	LB-091897-12	9/18/97	0.5 L	0.5 L	0.2	0.2	0.5 L	0.9	0.5 L	0.5 L
LB-13I	LB-121797-8	12/17/97	0.5 L	0.5 L	0.1	0.1	0.5 L	0.8	0.5 L	0.5 L
LB-13I	LB-032098-18	3/20/98	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.7	0.5 L	0.5 L
LB-13I	LB-061798-15	6/17/98	0.1 L	0.1 L	0.1	0.1 L	0.1 L	0.6	0.2 L	0.1 L
LB-13I	LB-091898-14	9/18/98	0.2 L	0.3 L	0.3 B	0.2 L	0.3 L	0.7	0.3 L	0.2 L
LB-13I	LB-121898-11	12/18/98	0.2 L	0.3 L	0.2 L	0.3	0.3 L	0.2 L	0.3 L	0.2 L
LB-13I	LB-031999-22	3/19/99	0.2 L	0.3 L	0.2 L	0.2 L	0.3 L	0.4	0.3 L	0.2 L
LB-13I	LB-062399-13	6/23/99	0.2 L	0.3 L	0.2 L	0.2 L	0.3 L	0.2 L	0.3 L	0.2 L
LB-13I	LB-091799-12	9/17/99	0.2 L	0.3 L	0.3 J	NT	NT	0.4 J	NT	NT
LB-13I	LB-121699-4	12/14/99	0.2 L	0.3 L	0.2 L	NT	NT	NT	NT	NT
LB-13I	LB-031700-17	3/17/00	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13I	LB-061400-9	6/14/00	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13I	LB-091300-12	9/13/00	0.3 J	0.5 L	0.5 L	0.1 J	0.5 L	0.5 L	0.5 L	0.5 L
LB-13I	LB-121500-11	12/15/00	0.3 J	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13I	LB-031501-20	3/15/01	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13I	LB-032002-19	3/20/02	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13I	LB-091802-7	9/18/02	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13I	LB-031303-15	3/13/03	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13I	LB-092203-7	9/22/03	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13I	LB-022404-4	2/24/04	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13I	LB-090104-13	9/1/04	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13I	LB-031005-18	3/10/05	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13I	LB-091505-9	9/15/05	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13I	LB-031506-10	3/15/06	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13I	LB-091306-8	9/13/06	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13I	LB-030607-17	3/6/07	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13I	LB-091907-8	9/19/07	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13I	LB-032008-12	3/20/08	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13I	LB-091608-5	9/16/08	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L

Table B-2
Groundwater Chemistry, Volatile Organic Compounds^a (µg/L)
1987 through 2016
Leichner Landfill

Location	Sample Number	Date	PCE	TCE	1,4-DCB	1,1-DCA	1,1,1-TCA	Chloroethane	cis-1,2-DCE	Chlorobenzene
	-					·				
LB-13I	LB-13I	3/17/09	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13I	LBLF13i091109	9/11/09	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13I	LB-13I032410	3/24/10	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13I	LB-13I092310	9/23/10	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-13I	LB-13I	3/23/11	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-13I	LB-090711-02	9/7/11	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-13I	LB-032212-19	3/22/12	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-13I (Dup)	LB-032212-20	3/22/12	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-13I	LB-091112-03	9/11/12	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-13I	LB-020613-13	2/6/2013	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L
LB-13I	LB-082113-05	8/21/2013	0.15 L	0.13 L	0.16 L	0.14 L	0.14 L	0.17 L	0.16 L	0.11 L
LB-13I	LB-021814-10	2/18/14	0.15 L	0.13 L	0.16 L	0.14 L	0.14 L	0.17 L	0.16 L	0.11 L
LB-13I	LB-081314-04	8/13/14	0.15 L	0.13 L	0.16 L	0.14 L	0.14 L	0.17 L	0.16 L	0.11 L
LB-13I	LB-021815-11	2/18/15	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-13I	LB-081115-05	8/11/15	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-13I	LB-021816-20	2/18/16	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-13I	LB-082316-03	8/23/16	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-17D	LB-989-W08	9/7/89	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-17D	LB-1089-W10	10/18/89	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-17D	LB-1089-W11	10/18/89	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-17D	LB-1189-W12	11/15/89	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-17D	LB-1189-W13	11/15/89	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-17D	LB-1289-W28	12/20/89	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-17D	LB-390-W21	3/15/90	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-17D	LB-390-W22	3/15/90	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-17D	LB-690-W18	6/21/90	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-17D	LB-990-W19	9/19/90	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-17D	LB-990-W20	9/19/90	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-17D	LB-1290-W23	12/13/90	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-17D	LB-391-W19	3/21/91	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-17D	LB-391-W21	3/21/91	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-17D	LB-691-W14	6/11/91	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-17D	LB-691-W15	6/11/91	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L

Table B-2
Groundwater Chemistry, Volatile Organic Compounds^a (µg/L)
1987 through 2016
Leichner Landfill

Location	Sample Number	Date	PCE	TCE	1,4-DCB	1,1-DCA	1,1,1-TCA	Chloroethane	cis-1,2-DCE	Chlorobenzene
LB-17D	LB-991-10	9/25/91	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-17D	LB-991-11	9/25/91	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-17D	LB-1291-16	12/23/91	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-17D	LB-1291-17	12/23/91	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-17D	LB-392-11	3/23/92	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-17D	LB-392-12	3/23/92	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-17D	LB-63092-5	6/30/92	0.2 L	0.2 L	0.5	0.2 L	0.5 L	0.9	0.2 L	0.2 L
LB-17D	LB-031093-6	3/10/93	0.2 L	0.2 L	0.3	0.2 L	0.5 L	0.3 L	0.2 L	0.2 L
LB-17D	LB-060493-22	6/4/93	0.2 L	0.2 L	0.3	0.2 L	0.5 L	0.4	0.2 L	0.2 L
LB-17D	LB-092793-21	9/27/93	0.2 L	0.2 L	0.3	0.2 L	0.5 L	2.3	0.2 L	0.2 L
LB-17D	LB-092793-21	9/27/93	0.2 L	0.2 L	NT	0.2 L	NT	NT	0.2 L	NT
LB-17D	LB-121593-7	12/15/93	0.2 L	0.2 L	0.3	0.2 L	0.5 L	0.7	0.2 L	0.2 L
LB-17D	LB-032994-20	3/29/94	0.2 L	0.2 L	0.3	0.5 L	0.5 L	0.8	0.2 L	0.2 L
LB-17D	LB-062394-14	6/23/94	0.2 L	0.3 L	0.4 L	0.2 L	0.3 L	0.3 L	0.3 L	0.3 L
LB-17D	LB-090794-7	9/7/94	0.2 L	0.3 L	0.4 L	0.2 L	0.3 L	0.7	0.3 L	0.3 L
LB-17D	LB-121494-10	12/14/94	0.2 L	0.3 L	0.4 L	0.2 L	0.3 L	0.4	0.3 L	0.3 L
LB-17D	LB-030995-5	3/9/95	0.3 L	0.4	0.2	0.1 L	0.1 L	0.4	0.2	0.1 L
LB-17D	LB-062095-11	6/20/95	0.3 L	0.2 L	0.3	0.1 L	0.1 L	0.3	0.1 L	0.1 L
LB-17D	LB-092095-10	9/20/95	0.3 L	0.3 L	0.4	0.1 L	0.1 L	0.1 L	0.1	0.1 L
LB-17D	LB-121895-3	12/18/95	0.5 L	0.5 L	0.3	0.5 L	0.5 L	0.4	0.5 L	0.5 L
LB-17D	LB-121895-3	12/18/95	0.3 L	0.2 L	NT	0.1 L	0.1 L	NT	0.1 L	0.1 L
LB-17D	LB-031996-11	3/19/96	0.3 L	0.2 L	0.3 B	0.1 L	0.1 L	0.4	0.1 L	0.1 L
LB-17D	LB-061996-14	6/19/96	0.1 L	0.1 L	0.3	0.1 L	0.1 L	0.6	0.2 L	0.1
LB-17D	LB-032097-16	3/20/97	0.5 L	0.5 L	0.3	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-17D	LB-031998-14	3/19/98	0.5 L	0.5 L	0.3	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-17D	LB-031899-13	3/18/99	0.2 L	0.3 L	0.2 L	0.2 L	0.3 L	0.2 L	0.3 L	0.2 L
LB-17D	LB-031600-7	3/16/00	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-17D	LB-031401-9	3/14/01	0.5 L	0.5 L	0.1 J	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-17D	LB-031902-7	3/19/02	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-17D	LB-031203-7	3/12/03	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-17D	LB-022504-10	2/25/04	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-17D	LB-030905-10	3/9/05	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-17D	LB-031506-7	3/15/06	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L

Table B-2
Groundwater Chemistry, Volatile Organic Compounds^a (µg/L)
1987 through 2016
Leichner Landfill

			<u> </u>	1	<u> </u>	I	Ι		<u> </u>	
Location	Sample Number	Date	PCE	TCE	1,4-DCB	1,1-DCA	1,1,1-TCA	Chloroethane	cis-1,2-DCE	Chlorobenzene
LB-17D	LB-030607-14	3/6/07	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-17D (Dup)	LB-030607-15	3/6/07	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-17D	LB-032008-11	3/20/08	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-17D	LB-17D	3/18/09	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-17D	LB-17D032410	3/24/10	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-17D	LB-17D	3/22/11	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LN-17D	LB-031212-04	3/12/12	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-17D	LB-020513-05	2/5/2013	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L
LB-17D	LB-021714-03	2/17/14	0.15 L	0.13 L	0.16 L	0.14 L	0.14 L	0.17 L	0.16 L	0.11 L
LB-17D	LB-021715-05	2/17/15	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-17D (Dup)	LB-021715-06	2/17/15	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-17D	LB-021616-01	2/16/16	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-17I	LB-989-W04	9/6/89	1.0 L	1.0 L	1.4	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-17I	LB-1089-W14	10/19/89	1.0 L	1.0 L	1.6	1.0 L	1.0 L	1.0 L	1.0 L	1.4
LB-17I	LB-1189-W14	11/15/89	1.0 L	1.0 L	1.3	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-17I	LB-1289-W29	12/20/89	1.0 L	1.0 L	1.4	1.0 L	1.0 L	1.0 L	1.0 L	1.1
LB-17I	LB-1289-W30	12/20/89	1.0 L	1.0 L	1.4	1.0 L	1.0 L	1.0 L	1.0 L	1.1
LB-17I	LB-390-W20	3/15/90	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-17I	LB-690-W17	6/21/90	1.0 L	1.0 L	1.0	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-17I	LB-990-W18	9/19/90	1.0 L	1.0 L	1.2	1.0 L	1.0 L	1.0 L	1.0 L	1.1
LB-17I	LB-1290-W22	12/13/90	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-17I	LB-391-W20	3/21/91	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-17I	LB-392-13	3/23/92	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L
LB-17I	LB-63092-6	6/30/92	0.2 L	0.2 L	0.7		0.5 L	NT	0.2 L	0.8
LB-17I	LB-63092-6	6/30/92	0.2 L	0.2 L	NT	0.2	NT	1.0	0.2 L	NT
LB-17I	LB-63092-7	6/30/92	0.2 L	0.2 L	0.7	0.3	0.5 L	1.0		0.9
LB-17I	LB-63092-7	6/30/92	0.2 L	0.2 L	NT		NT	NT	0.3 B	NT
LB-17I	LB-91892-3	9/18/92	0.2 L	0.2 L	1.0	0.2	0.5 L	4.1	0.2 L	1.3
LB-17I	LB-91892-3	9/18/92	0.2 L	0.2 L	NT		NT	NT	0.2 L	NT
LB-17I	LB-91892-4	9/18/92	0.2 L	0.2 L	0.9		0.5 L	NT	0.2 L	1.2
LB-17I	LB-91892-4	9/18/92	0.2 L	0.2 L	NT	0.2	NT	4.1	0.2 L	NT

Table B-2
Groundwater Chemistry, Volatile Organic Compounds^a (µg/L)
1987 through 2016
Leichner Landfill

Location	Sample Number	Date	PCE	TCE	1,4-DCB	1,1-DCA	1,1,1-TCA	Chloroethane	cis-1,2-DCE	Chlorobenzene
LB-17I	LB-121192-18	12/11/92	0.2 L	0.2 L	NT	0.2 L	0.5 L	1.0	0.2 L	1.5
LB-17I	LB-121192-18	12/11/92	0.2 L	0.2 L	1.3	0.2 L	NT	NT	0.2 L	NT
LB-17I	LB-121192-19	12/11/92	0.2 L	0.2 L	1.3	0.2 L	0.5 L	NT	0.2 L	1.6
LB-17I	LB-121192-19	12/11/92	0.2 L	0.2 L	NT	0.2 L	NT	1.1	0.2 L	NT
LB-17I	LB-031093-5	3/10/93	0.2 L	0.2 L	1.5	0.2 L	0.5 L	0.8	0.2 L	1.9
LB-17I	LB-032994-21	3/29/94	0.2 L	0.2 L	0.9	0.5 L	0.5 L	0.4	0.2 L	0.8
LB-17I	LB-030995-6	3/9/95	0.3 L	0.2 L	0.8	0.1 L	0.1 L	0.2	0.1 L	1.0
LB-17I	LB-031996-10	3/19/96	0.3 L	0.2 L	0.7	0.1 L	0.1 L	0.4	0.1 L	0.9
LB-17I	LB-032097-17	3/20/97	0.5 L	0.5 L	1.3	0.5 L	0.5 L	0.5 L	0.5 L	1.5
LB-17I	LB-031998-13	3/19/98	0.5 L	0.5 L	0.8 J	0.5 L	0.5 L	0.1 J	0.5 L	1.1 J
LB-17I	LB-031899-12	3/18/99	0.2 L	0.3 L	0.6	0.2 L	0.3 L	0.2 L	0.3 L	0.8
LB-17I	LB-031600-6	3/16/00	0.5 L	0.5 L	0.4 J	0.5 L	0.5 L	0.5 L	0.5 L	0.2 J
LB-17I	LB-031401-10	3/14/01	0.5 L	0.5 L	0.4 J	0.5 L	0.5 L	0.5 L	0.5 L	0.3 J
LB-17I	LB-031902-6	3/19/02	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-17I	LB-031203-6	3/12/03	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-17I	LB-022504-11	2/25/04	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-17I	LB030905-11	3/9/05	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-17I	LB-031506-8	3/15/06	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-17I	LB-030607-13	3/6/07	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-17I	LB-032008-10	3/20/08	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-17I	LB-17I	3/18/09	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-17I	LB-17I032310	3/23/10	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-17I (Dup)	LB-DUP1032410	3/23/10	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-17I	LB-17I	3/22/11	0.1 L	0.81	0.26	0.1 L	0.1 L	0.25 L	0.27	0.1 L
LB-17I	LB-031312-16	3/13/12	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-17I	LB-020513-06	2/5/2013	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L
LB-17I	LB-021714-04	2/17/14	0.15 L	0.13 L	0.16 L	0.14 L	0.14 L	0.17 L	0.16 L	0.11 L
LB-17I	LB-021815-15	2/18/15	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-17I	LB-021816-15	2/18/16	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-20S	LB-1289-W36	12/21/89	1.0 L	1.0 L	1.0 L	1.0	22.0	2.6	1.3	1.0 L
LB-20S	LB-390-W12	3/14/90	1.0 L	1.0 L	1.0 L	2.5	1.0 L	10.0	2.0	1.1
LB-20S	LB-690-W08	6/19/90	1.0 L	1.0 L	1.0 L	1.8	1.0 L	12.0	1.1	2.2
LB-20S	LB-690-W09	6/19/90	1.0 L	1.0 L	1.0 L	2.2	1.0 L	14.0	1.8	2.4
LB-20S	LB-990-W09	9/14/90	1.0 L	1.0 L	1.0 L	1.0 L	1.0 L	4.9	1.0 L	1.3

Table B-2
Groundwater Chemistry, Volatile Organic Compounds^a (µg/L)
1987 through 2016
Leichner Landfill

Location	Sample Number	Date	PCE	TCE	1,4-DCB	1,1-DCA	1,1,1-TCA	Chloroethane	cis-1,2-DCE	Chlorobenzene
LB-20S	LB-1290-W10	12/12/90	1.0 L	5.8	1.0 L	1.7				
LB-20S	LB-1290-W11	12/12/90	1.0 L	1.0 L	1.0 L	1.5				
LB-20S	LB-391-W08	3/20/91	1.0 L	1.0 L	1.0 L	1.0 L				
LB-20S	LB-392-18	3/24/92	1.0 L	1.0 L	1.0 L	1.0 L				
LB-20S	LB-031593-26	3/15/93	0.2 L	0.2 L	NT	NT	0.5 L	1.3	0.2 L	1.3
LB-20S	LB-031593-26	3/15/93	0.2 L	0.2 L	0.4	0.2	NT	NT	0.2 L	NT
LB-20S	LB-031593-27	3/15/93	0.2 L	0.2 L	0.4	NT	0.5 L	NT	0.2 L	1.5
LB-20S	LB-031593-27	3/15/93	0.2 L	0.2 L	NT	0.2	NT	1.6	0.2 L	NT
LB-20S	LB-032994-23	3/29/94	0.2 L	0.2 L	0.5	0.3	0.5 L	1.6	0.2 L	1.1
LB-20S	LB-031395-19	3/13/95	0.3 L	0.2 L	0.3	0.2 B	0.1 L	1.2	0.2	1.4
LB-20S	LB-032096-20	3/20/96	0.3 L	0.3	1.0	0.2	0.1 L	1.9	0.1 B	1.9
LB-20S	LB-032097-15	3/20/97	0.5 L	0.5 L	1.6	0.5 L	0.5 L	2.0	0.5 L	2.3
LB-20S	LB-032098-23	3/20/98	0.5 L	0.5 L	0.8	0.5 L	0.5 L	0.5	0.5 L	1.0
LB-20S	LB-031899-16	3/18/99	0.2 L	0.3 L	0.5	0.2 L	0.3 L	0.9	0.3 L	0.6
LB-20S	LB-031700-14	3/17/00	0.5 L	0.5 L	0.5	0.5 L	0.5 L	0.8	0.5 L	0.8
LB-20S	LB-031401-13	3/14/01	0.5 L	0.5 L	0.4 J	0.5 L	0.5 L	0.5 L	0.5 L	0.6
LB-20S	LB-032002-14	3/20/02	0.5 L	0.5 L	0.5 L	0.5 L				
LB-20S	LB-031303-20	3/13/03	0.5 L	0.5 L	0.5 L	0.5 L				
LB-20S	LB-022604-19	2/26/04	0.5 L	0.5 L	0.5 L	0.5 L				
LB-20S	LB030905-12	3/9/05	0.5 L	0.5 L	0.5 L	0.5 L				
LB-20S	LB-031406-4	3/14/06	0.5 L	0.5 L	0.5 L	0.5 L				
LB-20S	LB-030607-16	3/6/07	0.5 L	0.5 L	0.5 L	0.5				
LB-20S	LB-032408-16	3/24/08	0.5 L	0.5 L	0.5 L	0.5				
LB-20S	LB-20S	3/18/09	0.5 L	0.5 L	0.5 L	0.5 L				
LB-20S	LB-20S032410	3/24/10	0.5 L	0.5 L	0.5 L	0.5 L				
LB-20S	LB-20S	3/24/11	0.1 L	0.1 L	0.25	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-20S	LB-031312-15	3/13/12	0.1 L	0.1 L	0.2	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-20S	LB-020613-10	2/6/2013	1.00 L	1.00 L	1.00 L	1.00 L				
LB-20S	LB-021914-20	2/19/14	0.15 L	0.13 L	0.23 J	0.14 L	0.14 L	0.17 L	0.16 L	0.11 L
LB-20S	LB-021915-18	2/19/15	0.50 L	0.50 L	0.50 L	0.50 L				
LB-20S	LB-021716-13	2/17/16	0.50 L	0.50 L	0.50 L	0.50 L				
LB-26D	LB-0892-2	8/27/92	0.2 L J	0.2 L J	0.2 L J	0.2 L J	0.5 L J	0.3 L J	0.3 J	0.2 L J
LB-26D	LB-92192-7	9/21/92	0.2 L	0.2 L	0.2 L	0.2 L	0.5 L	0.3 L	0.2 L	0.2 L
LB-26D	LB-121092-13	12/10/92	0.2 L	0.2 L	0.2 L	0.2 L	0.5 L	0.3 L	0.2 L	0.2 L

Table B-2
Groundwater Chemistry, Volatile Organic Compounds^a (µg/L)
1987 through 2016
Leichner Landfill

Location	Sample Number	Date	PCE	TCE	1,4-DCB	1,1-DCA	1,1,1-TCA	Chloroethane	cis-1,2-DCE	Chlorobenzene
LB-26D	LB-031193-14	3/11/93	0.2 L	0.2 L	0.2 L	0.2 L	0.5 L	0.3 L	0.2 L	0.2 L
LB-26D	LB-060193-3	6/1/93	0.2 L	0.2 L	0.2 L	0.2 L	0.5 L	0.3 L	0.2 L	0.2 L
LB-26D	LB-092493-12	9/24/93	0.2 L	0.2 L	0.2 L	0.2 L	0.5 L	0.3 L	0.2 L	0.2 L
LB-26D	LB-092493-12	9/24/93	0.2 L	0.2 L	0.2 L	0.2 L	NT	0.3 L	0.2 L	NT
LB-26D	LB-121693-16	12/16/93	0.2 L	0.2 L	0.2 L	0.2 L	0.5 L	0.3 L	0.2 L	0.2 L
LB-26D	LB-032594-7	3/25/94	0.2 L	0.2 L	0.2 L	0.5 L	0.5 L	0.3 L	0.2 L	0.2 L
LB-26D	LB-062294-6	6/22/94	0.2 L	0.3 L	0.4 L	0.2 L	0.3 L	0.3 L	0.3 L	0.3 L
LB-26D	LB-090894-15	9/8/94	0.2 L	0.3 L	0.4 L	0.2 L	0.3 L	0.3 L	0.3 L	0.3 L
LB-26D	LB-121394-5	12/13/94	0.2 L	0.3 L	0.4 L	0.2 L	0.3 L	0.3 L	0.3 L	0.3 L
LB-26D	LB-031095-14	3/10/95	0.3 L	0.2 L	0.1 L	0.1 L	0.1 L	0.1 L	0.1 L	0.1 L
LB-26D	LB-061995-2	6/19/95	0.3 L	0.2 L	0.1 L	0.1 L	0.1 L	0.1 L	0.1 L	0.1 L
LB-26D	LB-092095-4	9/20/95	0.3 L	0.3 L	0.1 L	0.1 L	0.1 L	0.1 L	0.1 L	0.1 L
LB-26D	LB-122095-15	12/20/95	0.3 L	0.2 L	0.1 L	0.1 L	0.1 L	0.1 L	0.1 L	0.1 L
LB-26D	LB-031996-2	3/19/96	0.3 L	0.2 L	0.1 L	0.1 L	0.1 L	0.1 L	0.1 L	0.1 L
LB-26D	LB-061896-2	6/18/96	0.1 L	0.1 L	0.0 L	0.2	0.1 L	0.1 L	0.2 L	0.1 L
LB-26D	LB-091896-10	9/18/96	0.1 L	0.1 L	0.0 L	4.0 B	0.1 L	0.1 L	0.2 L	0.1 L
LB-26D	LB121796-4	12/17/96	0.1 L	0.1 L	0.0 L	0.1 L	0.1 L	0.1 L	0.2 L	0.1 L
LB-26D	LB-031997-6	3/19/97	0.5 L	0.5 L	0.1	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-26D	LB-061797-8	6/17/97	0.5 L	0.5 L	0.1	0.1	0.5 L	0.5 L	0.5 L	0.5 L
LB-26D	LB-091697-4	9/16/97	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-26D	LB-121697-5	12/16/97	0.5 L	0.5 L	0.1	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-26D	LB-031998-9	3/19/98	0.5 L	0.5 L	0.1	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-26D	LB-061698-9	6/16/98	0.1 L	0.1 L	0.1	0.1 L	0.1 L	0.1 L	0.2 L	0.1 L
LB-26D	LB-091798-6	9/17/98	0.2 L	0.3 L	0.2 B	0.2 L	0.3 L	0.2 L	0.3 L	0.2 L
LB-26D	LB-121798-3	12/17/98	0.2 L	0.3 L	0.2 L	0.2 L	0.3 L	0.2 L	0.3 L	0.2 L
LB-26D	LB-031899-6	3/18/99	0.2 L	0.3 L	0.2 L	0.2 L	0.3 L	0.2 L	0.3 L	0.2 L
LB-26D	LB-062399-9	6/23/99	0.2 L	0.3 L	0.2 L	0.2 L	0.3 L	0.2 L	0.3 L	0.2 L
LB-26D	LB-121599-9	12/15/99	0.2 L	0.3 L	0.2 L	NT	NT	NT	NT	NT
LB-26D	LB-031700-13	3/17/00	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-26D	LB-061300-5	6/13/00	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-26D	LB-091200-4	9/12/00	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-26D	LB-121500-7	12/15/00	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-26D	LB-031301-5	3/13/01	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-26D	LB-031902-8	3/19/02	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L

Table B-2
Groundwater Chemistry, Volatile Organic Compounds^a (µg/L)
1987 through 2016
Leichner Landfill

Location	Sample Number	Date	PCE	TCE	1,4-DCB	1,1-DCA	1,1,1-TCA	Chloroethane	cis-1,2-DCE	Chlorobenzene
LB-26D	LB-031203-5	3/12/03	0.5 L	0.5 L	0.5 L	0.5 L				
LB-26D	LB-022504-12	2/25/04	0.5 L	0.5 L	0.5 L	0.5 L				
LB-26D	LB-030805-7	3/8/05	0.5 L	0.5 L	0.5 L	0.5 L				
LB-26D	LB-031606-19	3/16/06	0.5 L	0.5 L	0.5 L	0.5 L				
LB-26D	LB-030507-11	3/5/07	0.5 L	0.5 L	0.5 L	0.5 L				
LB-26D	LB-031908-8	3/19/08	0.5 L	0.5 L	0.5 L	0.5 L				
LB-26D	LB-26D	3/17/09	0.5 L	0.5 L	0.5 L	0.5 L				
LB-26D	LB-26D032410	3/24/10	0.5 L	0.5 L	0.5 L	0.5 L				
LB-26D	LB-26D	3/23/11	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-26D	LB-031212-05	3/12/12	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-26D	LB-020713-23	2/7/2013	1.00 L	1.00 L	1.00 L	1.00 L				
LB-26D	LB-021714-05	2/17/14	0.15 L	0.13 L	0.16 L	0.14 L	0.14 L	0.17 L	0.16 L	0.11 L
LB-26D	LB-021715-04	2/17/15	0.50 L	0.50 L	0.50 L	0.50 L				
LB-26D	LB-021616-04	2/16/16	0.50 L	0.50 L	0.50 L	0.50 L				
LB-26I	LB-0892-1	8/27/92	0.2 L J	0.2 L J	0.2 L J	0.5 J	0.5 L J	1.3 J	0.2 L J	0.2 L J
LB-26I	LB-92192-6	9/21/92	0.2 L	0.2 L	0.2 L	0.6	0.5 L	2.1	0.2 L	0.2 L
LB-26I	LB-121092-12	12/10/92	0.2 L	0.2 L	0.2 L	0.5	0.5 L	0.3 L	0.2 L	0.2 L
LB-26I	LB-031193-13	3/11/93	0.2 L	0.2 L	0.2 L	0.6	0.5 L	1.1	0.2 L	0.2 L
LB-26I	LB-060193-1	6/1/93	0.2 L	0.2 L	0.2 L	0.3	0.5 L	1.6	0.2 L	0.2 L
LB-26I	LB-092493-11	9/24/93	0.2 L	0.2 L	0.2 L	0.3	0.5 L	3.0	0.2 L	0.2 L
LB-26I	LB-092493-11	9/24/93	0.2 L	0.2 L	0.2 L	NT	NT	NT	0.2 L	NT
LB-26I	LB-121693-15	12/16/93	0.2 L	0.2 L	0.2 L	0.2 L	0.5 L	0.8	0.2 L	0.2 L
LB-26I	LB-032594-6	3/25/94	0.2 L	0.2 L	0.2 L	0.5 L	0.5 L	0.8	0.2 L	0.2 L
LB-26I	LB-062294-5	6/22/94	0.2 L	0.3 L	0.4 L	0.2 L	0.3 L	0.3 L	0.3 L	0.3 L
LB-26I	LB-090894-16	9/8/94	0.2 L	0.3 L	0.4 L	0.2 L	0.3 L	1.0	0.3 L	0.3 L
LB-26I	LB-121394-4	12/13/94	0.2 L	0.3 L	0.4 L	0.2 L	0.3 L	0.6	0.3 L	0.3 L
LB-26I	LB-031095-13	3/10/95	0.3 L	0.2 L	0.1 L	0.1 B	0.1 L	0.5	0.1 L	0.1 L
LB-26I	LB-061995-1	6/19/95	0.3 L	0.2 L	0.1 L	0.1 B	0.1 L	0.5	0.1 L	0.1 L
LB-26I	LB-092095-5	9/20/95	0.3 L	0.3 L	0.1 L	0.1 L	0.1 L	0.3	0.1 L	0.1 L
LB-26I	LB-122095-14	12/20/95	0.3 L	0.2 L	0.1 L	0.1 L	0.1 L	0.1 L	0.1 L	0.1 L
LB-26I	LB-031996-1	3/19/96	0.3 L	0.2 L	0.1 L	0.1 L	0.1 L	0.7	0.1 L	0.1 L
LB-26I	LB-061896-1	6/18/96	0.1 L	0.1 L	0.0 L	0.2	0.1 L	0.5	0.2 L	0.1 L
LB-26I	LB-091896-10	9/18/96	0.1 L	0.1 L	0.0 L	0.2	0.1 L	0.8	0.2 L	0.1 L
LB-26I	LB-121796-5	12/17/96	0.1 L	0.1 L	0.0 L	0.2	0.1 L	0.1 L	0.2 L	0.1 L

Table B-2
Groundwater Chemistry, Volatile Organic Compounds^a (µg/L)
1987 through 2016
Leichner Landfill

Location	Canada Namban	Date	PCE	TCE	1,4-DCB	1,1-DCA	1,1,1-TCA	Chloroethane	cis-1,2-DCE	Chlorobenzene
	Sample Number									
LB-26I	LB-031997-4	3/19/97	0.5 L	0.5 L	0.1	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-26I	LB-061797-7	6/17/97	0.5 L	0.5 L	0.1	0.1	0.5 L	0.4	0.5 L	0.5 L
LB-26I	LB-091697-5	9/16/97	0.5 L	0.5 L	0.1	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-26I	LB-121697-7	12/16/97	0.1	0.1	0.1	0.5	0.5 L	0.5 L	0.6	0.5 L
LB-26I	LB-031998-8	3/19/98	0.5 L	0.5 L	0.1	0.1	0.5 L	0.4	0.5 L	0.5 L
LB-26I	LB-061698-8	6/16/98	0.1 L	0.1 L	0.1	0.1 L	0.1 L	0.1 L	0.2 L	0.1 L
LB-26I	LB-091798-7	9/17/98	0.2 L	0.3 L	0.3 B	0.2 L	0.3 L	0.3	0.3 L	0.2 L
LB-26I	LB-121798-2	12/17/98	0.2 L	0.3 L	0.2 L	0.2 L	0.3 L	0.2 L	0.3 L	0.2 L
LB-26I	LB-031799-1	3/17/99	0.2 L	0.3 L	0.2 L	0.2 L	0.3 L	0.4	0.3 L	0.2 L
LB-26I	LB-062399-10	6/23/99	0.2 L	0.3 L	0.2 L	0.2 L	0.3 L	0.2 L	0.3 L	0.2 L
LB-26I	LB-121599-8	12/15/99	0.2 L	0.3 L	0.2 L	NT	NT	NT	NT	NT
LB-26I	LB-031700-12	3/17/00	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-26I	LB-061300-4	6/13/00	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.2 J	0.5 L	0.5 L
LB-26I	LB-091200-5	9/12/00	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-26I	LB-121500-8	12/15/00	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-26I	LB-031301-6	3/13/01	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-26I	LB-031902-9	3/19/02	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-26I	LB-091802-4	9/18/02	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-26I	LB-031203-4	3/12/03	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-26I	LB-092203-4	9/22/03	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-26I	LB-022504-13	2/25/04	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-26I	LB-090104-26	9/1/04	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-26I	LB-030805-8	3/8/05	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-26I	LB-091405-5	9/14/05	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-26I	LB-031606-20	3/16/06	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-26I	LB-091206	9/12/06	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-26I	LB-030507-10	3/5/07	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-26I	LB-091907-5	9/19/07	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-26I	LB-031908-7	3/19/08	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-26I	LB-091608-6	9/16/08	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-26I	LB-26I	3/17/09	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-26I	LBLF26i091109	9/11/09	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-26I	LB-26I032410	3/24/10	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-26I	LB26I092310	9/23/10	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L

Table B-2
Groundwater Chemistry, Volatile Organic Compounds^a (µg/L)
1987 through 2016
Leichner Landfill

Location	Sample Number	Date	PCE	TCE	1,4-DCB	1,1-DCA	1,1,1-TCA	Chloroethane	cis-1,2-DCE	Chlorobenzene
LB-26I	LB-26I	3/23/11	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-26I	LB-090711-03	9/7/11	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-26I	LB-032212-21	3/22/12	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-26I	LB-091112-04	9/11/12	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-26I	LB-020613-14	2/6/2013	1.00 L	1.00 L	1.00 L	1.00 L				
LB-26I	LB-082113-06	8/21/2013	0.15 L	0.13 L	0.16 L	0.14 L	0.14 L	0.17 L	0.16 L	0.11 L
LB-26I	LB-021714-06	2/17/14	0.15 L	0.13 L	0.16 L	0.14 L	0.14 L	0.17 L	0.16 L	0.11 L
LB-26I (Dup)	LB-021714-07	2/17/14	0.15 L	0.13 L	0.16 L	0.14 L	0.14 L	0.17 L	0.16 L	0.11 L
LB-26I	LB-081314-05	8/13/14	0.15 L	0.13 L	0.16 L	0.14 L	0.14 L	0.17 L	0.16 L	0.11 L
LB-26I	LB-021815-12	2/18/15	0.50 L	0.50 L	0.50 L	0.50 L				
LB-26I	LB-081115-06	8/11/15	0.50 L	0.50 L	0.50 L	0.50 L				
LB-26I	LB-021616-05	2/16/16	0.50 L	0.50 L	0.50 L	0.50 L				
LB-26I	LB-082316-04	8/23/16	0.50 L	0.50 L	0.50 L	0.50 L				
LB-27D	LB-0892-4	8/27/92	0.2 L J	0.2 L J	0.2 L J	0.4 J	0.5 L J	0.3 L J	0.2 L J	0.2 L J
LB-27D	LB-92202-5	9/22/92	0.2 L	0.2 L	0.2 L	0.2 L	0.5 L	1.6 J	0.2 L	0.2 L
LB-27D	LB-121192-21	12/11/92	0.2 L	0.2	0.2 L	0.7	0.5 L	0.3 L	0.2 L	0.2 L
LB-27D	LB-031193-16	3/11/93	0.2 L	0.2 L	0.2 L	0.2 L	0.5 L	0.3 L	0.2 L	0.2 L
LB-27D	LB-060193-4	6/1/93	0.2 L	0.2 L	0.2 L	0.4	0.5 L	0.3 L	0.2 L	0.2 L
LB-27D	LB-092493-16	9/24/93	0.2 L	0.2 L	0.2 L	NT	0.5 L	0.3 L	0.2 L	0.2 L
LB-27D	LB-092493-16	9/24/93	0.2 L	0.2 L	0.2 L	0.4	NT	0.3 L	0.2 L	NT
LB-27D	LB-092493-17	9/24/93	0.2 L	0.2 L	0.2 L	NT	0.5 L	0.3 L	0.2 L	0.2 L
LB-27D	LB-092493-17	9/24/93	0.2 L	0.2 L	0.2 L	0.4	NT	0.3 L	0.2 L	NT
LB-27D	LB-121693-17	12/16/93	0.2 L	0.2 L	0.2 L	0.2 L	0.5 L	0.3 L	0.2 L	0.2 L
LB-27D	LB-121693-18	12/16/93	0.2 L	0.2 L	0.2 L	0.2 L	0.5 L	0.3 L	0.2 L	0.2 L
LB-27D	LB-032494-4	3/24/94	0.2 L	0.2 L	0.2 L	0.4	0.5 L	0.3 L	0.2 L	0.2 L
LB-27D	LB-032494-5	3/24/94	0.2 L	0.2 L	0.2 L	0.5	0.5 L	0.3 L	0.2 L	0.2 L
LB-27D	LB-062294-10	6/22/94	0.2 L	0.3 L	0.4 L	0.4	0.3 L	0.3 L	0.3 L	0.3 L
LB-27D	LB-062294-9	6/22/94	0.2 L	0.3 L	0.4 L	0.4	0.3 L	0.3 L	0.3 L	0.3 L
LB-27D	LB-090894-12	9/8/94	0.2 L	0.3 L	0.4 L	0.4	0.3 L	0.3 L	0.3 L	0.3 L
LB-27D	LB-090894-13	9/8/94	0.2 L	0.3 L	0.4 L	0.4	0.3 L	0.3 L	0.3 L	0.3 L
LB-27D	LB-121394-2	12/13/94	0.2 L	0.3 L	0.4 L	0.4	0.3 L	0.3 L	0.3 L	0.3 L
LB-27D	LB-121394-3	12/13/94	0.2 L	0.3 L	0.4 L	0.4	0.3 L	0.3 L	0.3 L	0.3 L
LB-27D	LB-031095-8	3/10/95	0.3 L	0.2 L	0.1 L	0.4 B	0.1 L	0.1 L	0.1 L	0.1 L
LB-27D	LB-031095-9	3/10/95	0.3	0.2 L	0.1 L	0.4 B	0.1 L	0.1 L	0.1 L	0.1 L

Table B-2
Groundwater Chemistry, Volatile Organic Compounds^a (µg/L)
1987 through 2016
Leichner Landfill

T	G 1 N 1	D.	DCE	TOE	1.4 DCD	1.1 DCA	1 1 1 TCA	Cl. 1	.: 12 DCE	Chlorel
Location	Sample Number	Date	PCE	TCE	1,4-DCB	1,1-DCA	1,1,1-TCA		cis-1,2-DCE	
LB-27D	LB-061995-4	6/19/95	0.3 L	0.2 L	0.1 L	0.4 B	0.1 L	0.1 L	0.1 L	0.1 L
LB-27D	LB-061995-5	6/19/95	0.3 L	0.2 L	0.1 L	3.6 B	0.1 L	0.1 L	0.1 L	0.1 L
LB-27D	LB-092095-1	9/20/95	0.3 L	0.3 L	0.1 L	0.4	0.1 L	0.1 L	0.1 L	0.1 L
LB-27D	LB-092095-2	9/20/95	0.3 L	0.3 L	0.1 L	0.4	0.1 L	0.1 L	0.1 L	0.1 L
LB-27D	LB-122095-17	12/20/95	0.3 L	0.2 L	0.1 L	0.4	0.1 L	0.1 L	0.1 L	0.1 L
LB-27D	LB-122095-18	12/20/95	0.3 L	0.2 L	0.1 L	0.4	0.1 L	0.1 L	0.1 L	0.1 L
LB-27D	LB-031996-3	3/19/96	0.3 L	0.2 L	0.1 L	0.4	0.1 L	0.1 L	0.1 L	0.1 L
LB-27D	LB-061896-4	6/18/96	0.1 L	0.1 L	0.0 L	0.5	0.1 L	0.1 L	0.2 L	0.1 L
LB-27D	LB-061896-5	6/18/96	0.1 L	0.1	0.0 L	0.5	0.1 L	0.1 L	0.2 L	0.1 L
LB-27D	LB-091796-9	9/17/96	0.1 L	0.1 L	0.0 L	0.5	0.1 L	0.1 L	0.2 L	0.1 L
LB-27D	LB121796-8	12/17/96	0.1 L	0.1	0.0 L	0.6	0.1 L	0.1 L	0.2 L	0.1 L
LB-27D	LB-031997-12	3/19/97	0.5 L	0.5 L	0.5 L	0.4	0.5 L	0.5 L	0.5 L	0.5 L
LB-27D	LB-061797-11	6/17/97	0.5 L	0.1	0.5 L	0.4	0.5 L	0.5 L	0.5 L	0.5 L
LB-27D	LB-091697-8	9/16/97	0.5 L	0.5 L	0.5 L	0.4	0.5 L	0.5 L	0.5 L	0.5 L
LB-27D	LB-121797-13	12/17/97	0.5 L	0.5 L	0.5 L	0.3	0.5 L	0.5 L	0.5 L	0.5 L
LB-27D	LB-031998-12	3/19/98	0.5 L	0.1	0.5 L	0.3	0.5 L	0.5 L	0.5 L	0.5 L
LB-27D	LB-061798-10	6/17/98	0.1 L	0.1 L	0.0 L	0.3	0.1 L	0.1 L	0.2 L	0.1 L
LB-27D	LB-091798-8	9/17/98	0.2 L	0.3 L	0.2 L	0.3	0.3 L	0.2 L	0.3 L	0.2 L
LB-27D	LB-121798-6	12/17/98	0.2 L	0.3 L	0.2 L	0.2	0.3 L	0.2 L	0.3 L	0.2 L
LB-27D	LB-031899-9	3/18/99	0.2 L	0.3 L	0.2 L	0.3	0.3 L	0.2 L	0.3 L	0.2 L
LB-27D	LB-062399-7	6/23/99	0.2 L	0.3 L	0.2 L	0.2 L	0.3 L	0.2 L	0.3 L	0.2 L
LB-27D	LB-091599-1	9/15/99	0.2 L	0.3 L	0.2 L	NT	NT	NT	NT	NT
LB-27D	LB-121599-7	12/15/99	0.2 L	0.3 L	0.2 L	NT	NT	NT	NT	NT
LB-27D	LB-031600-3	3/16/00	0.5 L	0.5 L	0.5 L	0.2 J	0.5 L	0.5 L	0.5 L	0.5 L
LB-27D	LB-061300-3	6/13/00	0.5 L	0.5 L	0.5 L	0.3 J	0.5 L	0.5 L	0.5 L	0.5 L
LB-27D	LB-091300-8	9/13/00	0.5 L	0.5 L	0.5 L	0.3 J	0.5 L	0.5 L	0.5 L	0.5 L
LB-27D	LB-091300-9	9/13/00	0.5 L	0.5 L	0.5 L	0.2 J	0.5 L	0.5 L	0.5 L	0.5 L
LB-27D	LB-121500-5	12/15/00	0.5 L	0.5 L	0.5 L	0.2 J	0.5 L	0.5 L	0.5 L	0.5 L
LB-27D	LB-031301-3	3/13/01	0.5 L	0.5 L	0.5 L	0.3 J	0.5 L	0.5 L	0.5 L	0.5 L
LB-27D	LB-031902-11	3/19/02	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-27D	LB-031203-3	3/12/03	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-27D	LB-022604-15	2/26/04	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-27D (Dup)	LB-022604-16	2/26/04	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-27D	LB-030805-6	3/8/05	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L

Table B-2
Groundwater Chemistry, Volatile Organic Compounds^a (µg/L)
1987 through 2016
Leichner Landfill

Location	Sample Number	Date	PCE	TCE	1,4-DCB	1,1-DCA	1,1,1-TCA	Chloroethane	cis-1,2-DCE	Chlorobenzene
LB-27D	LB-031606-17	3/16/06	0.5 L							
LB-27D LB-27D	LB-030507-9	3/5/07	0.5 L 0.5 L							
LB-27D LB-27D	LB-030307-9 LB-031908-5	3/3/07	0.5 L 0.5 L							
LB-27D (Dup)	LB-031908-6	3/19/08	0.5 L 0.5 L							
LB-27D (Dup)	LB-031908-0 LB-27D	3/19/08	0.5 L 0.5 L							
LB-27D LB-27D	LB-27D032410	3/16/09	0.5 L 0.5 L							
LB-27D LB-27D	LB-27D032410 LB-27D	3/24/10	0.5 L 0.1 L	0.5 L 0.1 L	0.3 L 0.2 L	0.3 L 0.1 L	0.5 L 0.1 L	0.5 L 0.25 L	0.5 L 0.1 L	0.5 L 0.1 L
LB-27D LB-27D	LB-031212-02	3/23/11	0.1 L 0.1 L	0.1 L 0.1 L	0.2 L 0.2 L	0.1 L 0.1 L	0.1 L 0.1 L	0.25 L 0.25 L	0.1 L 0.1 L	0.1 L 0.1 L
LB-27D LB-27D	LB-031212-02 LB-020713-21	2/7/2013	1.00 L							
LB-27D LB-27D	LB-020713-21 LB-021814-13	2/1/2013	0.15 L	0.13 L	0.16 L	0.14 L	0.14 L	0.17 L	0.16 L	0.11 L
LB-27D LB-27D	LB-021715-02	2/16/14 2/17/15	0.13 L 0.50 L	0.13 L 0.50 L	0.10 L 0.50 L	0.14 L 0.50 L	0.14 L 0.50 L	0.17 L 0.50 L	0.10 L 0.50 L	0.11 L 0.50 L
LB-27D LB-27D	LB-021713-02 LB-021816-18	2/17/13 2/18/16	0.50 L 0.50 L							
LB-27I	LB-0892-3	8/27/92	0.8 J	0.5 J	0.2 L J	2.1 J	0.5 L J	1.6 J	0.9 J	0.2 J
LB-27I LB-27I	LB-92292-4	8/21/92 9/22/92	0.8 J 1.1	0.5 J	0.2 L J 0.2 L	1.9	0.5 L J 0.5 L	1.6 J	0.9 J 1.2	0.2 J 0.2 L
LB-27I LB-27I	LB-92292-4 LB-121192-20	12/11/92	0.9	0.6	0.2 L 0.2 L	2.4	0.5 L 0.5 L	0.3 L	1.6	0.2 L 0.2
LB-27I LB-27I	LB-031293-21	3/12/93	0.9	0.5	0.2 L 0.2 L		0.5 L 0.5 L		1.6	0.2 0.2 L
LB-27I LB-27I	LB-060193-2	5/12/93 6/1/93	0.9	0.3	0.2 L 0.2 L	1.3 1.0	0.5 L 0.5 L	0.8 1.3	1.7	0.2 L 0.2 L
LB-27I LB-27I	LB-000193-2 LB-092493-14	9/24/93	0.7 NT	0.4 NT	0.2 L 0.2 L	0.7	0.5 L 0.5 L	1.5 NT	0.4	
LB-27I LB-27I	LB-092493-14 LB-092493-14	9/24/93	0.5	0.2	0.2 L 0.2 L	0.7 NT	0.5 L NT	1.2	0.4 NT	0.2 L NT
LB-27I LB-27I	LB-092493-14 LB-092493-15	9/24/93	0.5 NT	0.2	0.2 L 0.2 L	0.7	0.5 L	1.2	0.4	0.2 L
LB-27I LB-27I	LB-092493-15 LB-092493-15	9/24/93	0.6	0.2 NT	0.2 L 0.2 L	0.7 NT	0.5 L NT	NT	V.4 NT	0.2 L NT
LB-27I LB-27I	LB-121693-19	12/16/93	0.6	0.2 L	0.2 L 0.2 L	0.2 L	0.5 L	0.6	0.5	0.2 L
LB-27I LB-27I	LB-121693-19 LB-121693-20	12/16/93	0.5	0.2 L	0.2 L 0.2 L	0.2 L 0.2 L	0.5 L 0.5 L	0.6	0.5	0.2 L 0.2 L
LB-27I LB-27I	LB-032494-3	3/24/94	0.5	0.2	0.2 L 0.2 L	1.0	0.5 L 0.5 L	0.0 0.3 L	1.2	0.2 L 0.2 L
LB-27I LB-27I	LB-032494-3 LB-062294-8	6/22/94	0.6	0.3 0.3 L	0.2 L 0.4 L	0.9	0.3 L 0.3 L	0.3 L 0.3 L	1.2	0.2 L 0.3 L
LB-27I LB-27I	LB-002294-8 LB-090894-11	9/8/94	0.5	0.3 L 0.3 L	0.4 L 0.4 L	1.0	0.3 L 0.3 L	0.5 L 0.5	1.0	0.3 L 0.3 L
LB-27I LB-27I	LB-121394-1	12/13/94	0.5	0.3 L 0.3 L	0.4 L 0.4 L	0.6	0.3 L 0.3 L	0.3 0.3 L	0.6	0.3 L 0.3 L
LB-27I LB-27I	LB-121394-1 LB-031095-7	3/10/95	0.6	0.3 L 0.3	0.4 L 0.1	0.6 0.6 B	0.3 L 0.1 B	0.3 L 0.3	0.6	0.5 L 0.1 L
LB-27I LB-27I	LB-031095-7 LB-061995-3	5/10/95 6/19/95	0.7	0.3	0.1	0.6 B	0.1 B 0.1 L	0.5	0.5	0.1 L 0.1 L
LB-27I LB-27I	LB-092095-3	6/19/95 9/20/95	0.7	0.2 0.3 L	0.1	0.6 B 0.3	0.1 L 0.1 L	0.5	0.2	0.1 L 0.1 L
		9/20/95			0.1 0.1 L				0.2 0.1 L	0.1 L 0.1 L
LB-27I LB-27I	LB-122095-16 LB-031996-4	12/20/95 3/19/96	0.3 0.4	0.2 L 0.2 L	0.1 L 0.1 B	0.1 L 0.3	0.1 L 0.1 L	0.8 1.4	0.1 L 0.1 L	0.1 L 0.1 L
LB-27I	LB-061896-3	6/18/96	0.2	0.1 L	0.2	0.1 L	0.1 L	2.0	0.3	0.1 L

Table B-2
Groundwater Chemistry, Volatile Organic Compounds^a (µg/L)
1987 through 2016
Leichner Landfill

Location	Sample Number	Date	PCE	TCE	1,4-DCB	1,1-DCA	1,1,1-TCA	Chloroethane	cis-1,2-DCE	Chlorobenzene
LB-27I	LB-091796-7	9/17/96	0.4	0.2	0.1	1.1	0.1 L	2.6	0.3	0.2
LB-27I	LB-091796-8	9/17/96	0.1 L	0.1	0.1	1.2	0.1 L	2.9	0.3	0.4
LB-27I	LB121796-6	12/17/96	0.2	0.1	0.2	0.7	0.1 L	1.7	0.2 L	0.1
LB-27I	LB121796-7	12/17/96	0.2	0.1	0.2	0.6	0.1 L	1.6	0.2 L	0.1
LB-27I	LB-031997-10	3/19/97	0.5 L	0.5 L	0.2	0.2	0.5 L	0.8	0.5 L	0.5 L
LB-27I	LB-031997-11	3/19/97	0.5 L	0.5 L	0.2	0.2	0.5 L	0.8	0.5 L	0.5 L
LB-27I	LB-061797-9	6/17/97	0.5 L	0.5 L	0.1	0.2	0.5 L	1.0	0.5 L	0.5 L
LB-27I	LB-061797-9	6/17/97	0.5 L	0.5 L	NT	NT	0.5 L	1.1	0.5 L	0.5 L
LB-27I	LB-091697-6	9/16/97	0.5 L	0.5 L	0.1	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-27I	LB-091697-7	9/16/97	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-27I	LB-121797-11	12/17/97	0.5 L	0.5 L	0.1	0.5 L	0.5 L	0.2	0.5 L	0.5 L
LB-27I	LB-121797-12	12/17/97	0.5 L	0.5 L	0.1	0.5 L	0.5 L	0.4	0.5 L	0.5 L
LB-27I	LB-031998-10	3/19/98	0.5 L	0.5 L	0.1	0.5 L	0.5 L	0.3	0.5 L	0.5 L
LB-27I	LB-031998-11	3/19/98	0.5 L	0.5 L	0.1	0.5 L	0.5 L	0.3	0.5 L	0.5 L
LB-27I	LB-061798-11	6/17/98	0.1 L	0.1 L	0.1	0.1 L	0.1 L	0.1 L	0.2 L	0.1 L
LB-27I	LB-061798-12	6/17/98	0.1 L	0.1 L	0.1	0.1 L	0.1 L	0.1 L	0.2 L	0.1 L
LB-27I	LB-091798-10	9/17/98	0.2 L	0.3 L	0.2 L	0.2 L	0.3 L	0.2 L	0.3 L	0.2 L
LB-27I	LB-091798-9	9/17/98	0.2 L	0.3 L	0.2 B	0.2 L	0.3 L	0.2 L	0.3 L	0.2 L
LB-27I	LB-121798-4	12/17/98	0.2 L	0.3 L	0.2 L	0.2 L	0.3 L	0.2 L	0.3 L	0.2 L
LB-27I	LB-121798-5	12/17/98	0.2 L	0.3 L	0.2 L	0.2 L	0.3 L	0.2 L	0.3 L	0.2 L
LB-27I	LB-031899-7	3/18/99	0.2 L	0.3 L	0.2 L	0.2 L	0.3 L	0.2 L	0.3 L	0.2 L
LB-27I	LB-031899-8	3/18/99	0.2 L	0.3 L	0.2 L	0.2 L	0.3 L	0.2 L	0.3 L	0.2 L
LB-27I	LB-062399-8	6/23/99	0.2 L	0.3 L	0.2 L	0.2 L	0.3 L	0.2 L	0.3 L	0.2 L
LB-27I	LB-091599-2	9/15/99	0.2 L	0.3 L	0.2 L	NT	NT	NT	NT	NT
LB-27I	LB-121599-6	12/15/99	0.2 L	0.3 L	0.2 L	NT	NT	NT	NT	NT
LB-27I	LB-031600-1	3/16/00	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-27I	LB-031600-2	3/16/00	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-27I	LB-061300-1	6/13/00	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.2 J	0.5 L	0.5 L
LB-27I	LB-061300-2	6/13/00	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-27I	LB-091300-10	9/13/00	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.2 J	0.5 L	0.5 L
LB-27I	LB-121500-6	12/15/00	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.2 J	0.5 L	0.5 L
LB-27I	LB-031301-4	3/13/01	0.3 J	0.5 L	0.5 L	0.3 J	0.5 L	0.5 L	0.5 L	0.5 L
LB-27I	LB-031902-10	3/19/02	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-27I	LB-091802-5	9/18/02	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L

Table B-2
Groundwater Chemistry, Volatile Organic Compounds^a (µg/L)
1987 through 2016
Leichner Landfill

T	C 1 . N 1	Dete	PCE	TCE	1,4-DCB	1,1-DCA	1,1,1-TCA	Chloroethane	cis-1,2-DCE	Chlorobenzene
Location	Sample Number	Date							•	
LB-27I	LB-031203-1	3/12/03	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-27I	LB-031203-2	3/12/03	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-27I	LB-092203-2	9/22/03	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-27I	LB-092203-3	9/22/03	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-27I	LB-022604-17	2/26/04	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-27I	LB-090104-27	9/1/04	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-27I	LB030805-5	3/8/05	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-27I	LB-091405-3	9/14/05	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-27I	LB-031606-18	3/16/06	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-27I	LB-091206-2	9/12/06	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-27I	LB-030507-8	3/5/07	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-27I	LB-0919-07-4	9/19/07	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-27I	LB-031908-4	3/19/08	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-27I	LB-091608-7	9/16/08	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-27I	LB-27I	3/18/09	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-27I	LBLF27i091109	9/11/09	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-27I	LB-27I032410	3/24/10	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-27I	LB-27I092310	9/23/10	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L	0.5 L
LB-27I	LB-27I	3/25/11	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-27I	LB-090711-01	9/7/11	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-27I	LB-032212-18	3/22/12	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-27I	LB-091112-02	9/11/12	0.1 L	0.1 L	0.2 L	0.1 L	0.1 L	0.25 L	0.1 L	0.1 L
LB-27I	LB-020613-11	2/6/2013	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L
LB-27I (Dup)	LB-020613-12	2/6/2013	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L	1.00 L
LB-27I	LB-082113-03	8/21/2013	0.15 L	0.13 L	0.16 L	0.14 L	0.14 L	0.17 L	0.16 L	0.11 L
LB-27I (Dup)	LB-082113-04	8/21/2013	0.15 L	0.13 L	0.16 L	0.14 L	0.14 L	0.18 J	0.16 L	0.11 L
LB-27I	LB-021814-14	2/18/14	0.15 L	0.13 L	0.16 L	0.14 L	0.14 L	0.17 L	0.16 L	0.11 L
LB-27I	LB-081314-03	8/13/14	0.15 L	0.13 L	0.16 L	0.14 L	0.14 L	0.17 L	0.16 L	0.11 L
LB-27I	LB-021815-10	2/18/15	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-27I	LB-081215-09	8/12/15	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-27I	LB-021816-19	2/18/16	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
LB-27I	LB-082316-02	8/23/16	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
FIELDQC	LB-021715-08	2/17/15	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
FIELDQC	LB-081215-07	8/12/15	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L

Table B-2
Groundwater Chemistry, Volatile Organic Compounds^a (μg/L)
1987 through 2016
Leichner Landfill

Location	Sample Number	Date	PCE	TCE	1,4-DCB	1,1-DCA	1,1,1-TCA	Chloroethane	cis-1,2-DCE	Chlorobenzene
FIELDQC	LB-021716-07	2/17/16	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
FIELDQC	LB-082416-06	8/24/16	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
FIELDQC	Trip Blank	2/18/15	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
FIELDQC	Trip Blank	2/19/15	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
FIELDQC	Trip Blank	8/10/15	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
FIELDQC	Trip Blank	8/11/15	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
FIELDQC	Trip Blank	8/12/15	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
FIELDQC	Trip Blank	2/16/16	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
FIELDQC	Trip Blank	2/17/16	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
FIELDQC	Trip Blank	2/18/16	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
FIELDQC	Trip Blank	8/23/16	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L
FIELDQC	Trip Blank	8/24/16	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L	0.50 L

Notes:

PCE = tetrachloroethene; TCE = trichloroethene; ; 1,4-DCB = 1,4-dichlorobenzene; 1,1-DCA = 1,1-dichloroethane; 1,1,1-TCA = 1,1,1-trichloroethane; cis-1,2-DCE = cis-1,2-dichloroethene

B = analyte detected above the laboratory method detection limit (MDL) but below the method reporting limit (MRL)

Dup = field duplicate sample; J = estimated concentration; L = not detected at or above MRL; Re = resample.; NT = not tested

^a Only VOCs historically detected in groundwater samples are listed, except for vinyl chloride and 1,1-dichloroethene that have not been analyzed for since 2013 as approved by the Washington State Department of Ecology (Ecology, 2013).

Inorganic Parameters (Nitrate, CI, and TDS)
And Dissolved Metals (Fe and Mn)

						Total		
					Nitrate as	Dissolved	Dissolved	Dissolved
Location	Sample Number	Date	Conductivity	Chloride	Nitrogen	Solids	Iron	Manganese
LB-1D	LB-01D	6/2/87	234	4.0	4.7	NT	0.05 L	0.01 L
LB-1D	LB-01D LB-01D	7/21/87	NT	5.0	4.5	NT	0.05 L	0.005 L
LB-1D LB-1D	LB-01D LB-01D	9/4/87	NT	5.0	2.6	NT	0.05 L	0.003 L 0.01 L
LB-1D	LB-01D LB-01D	11/6/87	NT	5.9	4.7	NT	0.05 L	0.01 L 0.01 L
LB-1D	LB-01D LB-01D	2/9/88	224	5.0	4.7	NT	0.05 L	0.01 L 0.01 L
LB-1D	LB-01D LB-01D	6/22/88	214	5.0	3.8	NT	0.05 L 0.05 L	0.01 L 0.05 L
LB-1D LB-1D	LB-01D LB-01D	8/30/88	250	5.0	3.8 4.6	NT	0.05 L 0.05 L	0.03 L 0.01 L
LB-1D LB-1D	LB-01D LB-01D	9/1/88	206	5.0	4.5	NT	0.05 L 0.05 L	0.01 L 0.01 L
LB-1D LB-1D	LB-01D LB-01D	12/5/88	193	5.4	4.3	NT NT	0.03 L 0.01 L	0.01 L 0.01 L
LB-1D LB-1D	LB-289-W04	2/28/89	210	5.0	4.5	NT	0.01 L 0.01 L	0.01 L 0.01 L
LB-1D LB-1D	LB-289-W04 LB-589-W03		210	6.3	4.3 4.9	NT NT	0.01 L 0.05 L	0.01 L 0.01 L
LB-1D LB-1D	LB-989-W16	5/23/89 9/12/89	168	4.0	5.0	NT NT	0.03 L 0.02 L	0.01 L 0.005 L
LB-1D LB-1D	LB-989-W16 LB-1089-W01				3.0 4.5		0.02 L 0.05 L	0.005 L 0.005 L
LB-1D LB-1D	LB-1089-W01 LB-1189-W04	10/17/89 11/14/89	188	4.2	4.5 4.9	161 150	0.03 L 0.02 L	0.005 L 0.005 L
LB-1D LB-1D			141	5.5				
	LB-1289-W22	12/19/89 3/14/90	174	5.0	4.6	NT	NT	NT
LB-1D LB-1D	LB-390-W09	6/20/90	204	5.3	4.7	143	NT	NT
	LB-690-W11		195	4.9	4.8	180	NT	NT
LB-1D	LB-990-W08	9/14/90	187	5.3	4.8	196	NT	NT
LB-1D	LB-1290-W06	12/11/90	203	5.5	4.7	125	NT	NT
LB-1D	LB-391-W11	3/20/91	202	5.2	4.6	187	NT	NT
LB-1D	LB-691-W06	6/26/91	200	5.0	4.5	157	NT	NT
LB-1D	LB-991-06	9/24/91	176	5.1	4.4	172	NT	NT
LB-1D	LB-1291-14	12/23/91	201	4.3	4.6	162	NT	NT
LB-1D	LB-392-14	3/23/92	197	5.5	4.6	163	NT	NT
LB-1D	LB-63092-2	6/30/92	196	4.7	5.7	167	NT	NT
LB-1D	LB-92292-3	9/22/92	201	5.1	4.7	160	NT	NT
LB-1D	LB-121192-16	12/11/92	204	5.9	4.7	176	NT	NT
LB-1D	LB-031093-3	3/10/93	199	5.7	4.2	169	NT	NT
LB-1D	LB-060293-6	6/2/93	199	5.5	4.3	156	NT	NT
LB-1D	LB-092393-8	9/23/93	187	5.5	4.3	163	NT	NT
LB-1D	LB-121593-2	12/15/93	170	6.1	4.6	163	NT	NT
LB-1D	LB-032494-2	3/24/94	208	5.8	4.6	159	NT	NT
LB-1D	LB-062194-1	6/21/94	171	5.6	4.4	167	NT	NT
LB-1D	LB-090694-2	9/6/94	186	5.1	5.1	172	NT	NT
LB-1D	LB-121494-12	12/14/94	168	5.1	4.9	147	NT	NT
LB-1D	LB-030995-02	3/9/95	160	5.8	4.6	171	NT	NT
LB-1D	LB-062095-13	6/20/95	184	5.8	5.4	145	NT	NT
LB-1D	LB-092295-14	9/22/95	239	6.1	4.6	128	NT	NT
LB-1D	LB-121995-6	12/19/95	196	6.1	5.3	162	NT	NT
LB-1D	LB-032096-18	3/20/96	193	6.0	5.2	177	NT	NT
LB-1D	LB-061896-10	6/18/96	174	6.1	5.2	169	NT	NT
LB-1D	LB-091796-6	9/17/96	190	6.6	5.1	160	0.02 L	0.005 L
LB-1D	LB121796-2	12/17/96	214	6.4	5.3	183	0.02 L	0.005 L
LB-1D	LB-031997-4	3/19/97	174	7.0	5.8	183	0.02 L	0.005 L
LB-1D	LB-061797-4	6/17/97	214	6.2	5.2	183	0.02 L	0.005 L
LB-1D	LB-091697-1	9/16/97	208	6.5	5.3	185	0.02 L	0.005 L
LB-1D	LB-121697-4	12/16/97	206	6.7	5.7	173	0.02 L	0.005 L

						Total		
					Nitrate as	Dissolved	Dissolved	Dissolved
Logotion	Sample Number	Doto	Conductivity	Chlorido				
Location	-	Date	Conductivity	Chloride	Nitrogen	Solids	Iron	Manganese
LB-1D	LB-031998-4	3/19/98	227	7.1	6.2	184	0.02 L	0.005 L
LB-1D	LB-061698-6	6/16/98	158	6.7	6.1	184	0.02 L	0.005 L
LB-1D	LB-091798-3	9/17/98	224	6.7	5.7	196	0.02 L	0.005 L
LB-1D	LB-121898-10	12/18/98	178	7.4	6.3	201	0.02	0.005 L
LB-1D	LB-031799-4	3/17/99	182	7.4	6.1	161	0.02 L	0.005 L
LB-1D	LB-062399-15	6/23/99	187	7.2	6.2	187	0.02 L	0.005 L
LB-1D	LB-091799-11	9/17/99	204	7.6	6.0	157	0.02 L	0.005 L
LB-1D	LB-121699-12	12/16/99	190	6.9	5.6	178	0.02 L	0.005 L
LB-1D	LB-031700-16	3/17/00	180	7.0	5.8	170	0.02 L	0.005 L
LB-1D	LB-061300-8	6/13/00	190	7.3	6.0	184	0.01 B	0.005 L
LB-1D	LB-091100-2	9/11/00	215	7.6	6.4	192	0.02 L	0.005 L
LB-1D	LB-121500-10	12/15/00	219	7.0	5.7	146	0.02 L	0.005 L
LB-1D	LB-031501-15	3/15/01	NT	7.2	5.9	180	0.02 L	0.005 L
LB-1D	LB-031501-16	3/15/01	NT	7.0	5.9	166	0.02 L	0.005 L
LB-1D	LB-031902-02	3/19/02	NT	6.9	5.9	159	0.02 L	0.005 L
LB-1D	LB-031303-12	3/13/03	NT	6.6	5.7	198	0.02 L	0.005 L
LB-1D	LB-022404-1	2/24/04	NT	6.7	5.6	188	0.07	0.006
LB-1D	LB030905-13	3/9/05	NT	6.7	5.5	224	0.02 L	0.005 L
LB-1D	LB-031406-1	3/14/06	NT	6.0	5.3	168	0.02 L	0.005 L
LB-1D (Dup)	LB-031406-2	3/14/06	NT	6.1	5.3	144	0.02 L	0.005 L
LB-1D	LB-030507-2	3/5/07	NT	6.1	5.6	194	0.02 L	0.005 L
LB-1D	LB-032408-15	3/24/08	NT	6.6	5.7	154	0.02 L	0.005 L
LB-1D	LB-1D	3/17/09	NT	7.0	5.9	147	0.02 L	0.005 L
LB-1D	LB-1D032310	3/23/10	NT	6.39	6.14	162	0.02 L	0.005 L
LB-1D	LB-1D	3/28/11	220	7.49	5.87	195	0.025 L	0.002 L
LB-1D	LB-031312-13	3/13/12	NT	7.4	6.0	190	0.025 L	0.002 L
LB-1D	LB-020513-07	2/5/13	NT	7.6	6.0	160	0.036	0.0058
LB-1D	LB-021914-17	2/19/14	NT	7.7	6.0	200	0.025 L	0.0020 L
LB-1D	LB-021915-17	2/19/15	NT	7.23	7.09	210	0.025 L	0.0020 L
LB-1D	LB-021716-08	2/17/16	NT	7.13	6.15	183	0.040 L	0.0020 L
LB-1S	LB-01S	5/11/87	602	16.0	1.1	NT	0.05 L	0.031
LB-1S	LB-01S	7/21/87	NT	20.0	2.7	NT	0.05 L	0.006
LB-1S	LB-01S	9/4/87	NT	15.0	1.8	NT	0.05 L	0.01 L
LB-1S	LB-01S	11/6/87	NT	14.0	3.3	NT	0.05 L	0.01 L
LB-1S	LB-01S	2/11/88	410	15.0	2.3	NT	0.05 L	0.01 L
LB-1S	LB-01S	6/22/88	496	20.0	2.0	NT	0.05 L	0.01 L
LB-1S	LB-01S	8/30/88	478	18.0	3.3	NT	0.05 L	0.03 L 0.01 L
LB-1S LB-1S	LB-01S	12/5/88	348	17.0	3.5	NT	0.03 L 0.01 L	0.01 L 0.01 L
LB-1S	LB-289-W05	2/28/89	408	14.0	3.7	NT	0.01 L	0.01 L 0.01 L
LB-1S LB-1S	LB-589-W03	5/23/89	510	22.0	3.8	NT	0.25 0.05 L	0.01 L 0.01 L
LB-1S LB-1S								
II	LB-989-W15	9/12/89	334	13.0	4.0	NT	0.20 L	0.005 L
LB-1S	LB-1289-W12	12/15/89	300	12.0	4.7	NT	NT	NT
LB-1S	LB-390-W10	3/14/90	388	13.6	4.7	152	NT	NT
LB-1S	LB-690-W10	6/20/90	526	17.8	4.0	302	NT	NT
LB-1S	LB-990-W06	9/14/90	531	20.2	3.8	325	NT	NT
LB-1S	LB-1290-W05	12/11/90	456	23.6	2.5	328	NT	NT
LB-1S	LB-391-W10	3/20/91	602	17.7	3.1	320	NT	NT

						Total		
					Nitrate as	Dissolved	Dissolved	Dissolved
Location	Sample Number	Date	Conductivity	Chloride	Nitrogen	Solids	Iron	Manganese
LB-1S	LB-691-W05	6/26/91	472	14.8	4.4	294	NT	NT
LB-1S	LB-991-05	9/24/91	350	10.2	5.4	253	NT	NT
LB-1S LB-1S	LB-1291-13	12/23/91	382	10.2	4.0	290	NT	NT
LB-1S LB-1S	LB-1291-13 LB-392-15	3/23/92	421	13.0	4.0	290	NT NT	NT NT
LB-1S LB-1S	LB-63092-1	6/30/92	367	10.0	5.7	259	NT NT	NT NT
LB-1S LB-1S	LB-03092-1 LB-92292-2	9/22/92	367	11.0	5.0	252	NT NT	NT NT
LB-1S LB-1S								
LB-1S LB-1S	LB-121192-15	12/11/92	378	12.0	5.0	246	NT	NT
II	LB-031093-4	3/10/93	675	17.0	1.8	388	NT	NT
LB-1S	LB-060293-5	6/2/93	616	12.0	3.5	388	NT	NT
LB-1S	LB-092393-9	9/23/93	487	15.0	3.9	309	NT	NT
LB-1S	LB-121593-1	12/15/93	382	17.0	4.2	291	NT	NT
LB-1S	LB-032494-1	3/24/94	591	20.0	3.3	373	NT	NT
LB-1S	LB-052194-4	6/21/94	463	14.0	5.1	305	NT	NT
LB-1S	LB-090694-1	9/6/94	481	15.0	5.4	369	NT	NT
LB-1S	LB-121494-11	12/14/94	499	16.0	5.2	357	NT	NT
LB-1S	LB-030995-01	3/9/95	330	14.0	7.1	296	NT	NT
LB-1S	LB-062095-12	6/20/95	410	12.0	8.8	307	NT	NT
LB-1S	LB-092295-13	9/22/95	494	19.0	7.0	248	NT	NT
LB-1S	LB-121995-5	12/19/95	422	17.0	8.0	291	NT	NT
LB-1S	LB-032096-17	3/20/96	488	21.0	6.8	312	NT	NT
LB-1S	LB-061896-9	6/18/96	325	15.0	9.1	275	NT	NT
LB-1S	LB-091796-5	9/17/96	377	15.0	8.7	303	0.02 L	0.005 L
LB-1S	LB121796-1	12/17/96	455	17.0	7.9	298	0.02 L	0.005 L
LB-1S	LB-031997-3	3/19/97	444	35.0	7.2	370	0.03	0.005 L
LB-1S	LB-061797-3	6/17/97	348	12.0	7.5	279	0.02 L	0.005 L
LB-1S	LB-091697-2	9/16/97	382	21.6	7.4	291	0.02 L	0.005 L
LB-1S	LB-121697-5	12/16/97	456	22.0	8.9	310	0.03	0.005 L
LB-1S	LB-031998-3	3/19/98	526	35.1	8.7	306	0.02 L	0.005 L
LB-1S	LB-061698-5	6/16/98	303	19.6	10.2	307	0.02 L	0.005 L
LB-1S	LB-091798-4	9/17/98	448	21.6	9.0	298	0.02	0.005 L
LB-1S	LB-121898-9	12/18/98	363	18.1	9.0	332	0.34	0.008
LB-1S	LB-031799-3	3/17/99	465	29.7	9.1	355	0.02	0.005 L
LB-1S	LB-062399-14	6/23/99	363	21.0	8.1	277	0.02 L	0.005 L
LB-1S	LB-091799-10	9/17/99	447	19.6	8.3	279	0.10	0.005 L
LB-1S	LB-091799-9	9/17/99	457	21.1	7.4	285	0.03	0.005 L
LB-1S	LB-121699-13	12/16/99	358	12.1	8.1	255	0.02 L	0.005 L
LB-1S	LB-031700-15	3/17/00	383	18.5	7.3	249	0.02 L	0.005 L
LB-1S	LB-061300-7	6/13/00	297	9.8	9.8	222	0.02 L	0.005 L
LB-1S	LB-091100-1	9/11/00	365	14.2	8.9	264	0.02 L	0.005 L
LB-1S	LB-121500-9	12/15/00	362	10.2	7.4	213	0.02 L	0.005 L
LB-1S	LB-031401-14	3/14/01	NT	8.6	9.8	227	0.02 L	0.005 L
LB-1S	LB-092001-6	9/20/01	NT	8.3	7.3	212	0.02 L	0.005 L
LB-1S	LB-031902-01	3/19/02	NT	7.5	4.3	206	0.02 L	0.005 L
LB-1S	LB-091802-01	9/17/02	NT	6.0	7.0	206	0.02 L	0.005 L
LB-1S	LB-031303-10	3/13/03	NT	5.2	4.7	216	0.02 L	0.005 L
LB-1S	LB-031303-11	3/13/03	NT	5.1	4.7	198	0.03	0.005 L
LB-1S	LB-092203-6	9/22/03	NT	4.5	5.2	208	2.32	0.069

						Total		
					Nitrate as	Dissolved	Dissolved	Dissolved
Location	Sample Number	Date	Conductivity	Chloride	Nitrogen	Solids	Iron	Manganese
	•							
LB-1S	LB-022404-2	2/24/04	NT	4.4	4.0	184	0.12	0.005 L
LB-1S	LB-090104-1	9/1/04	NT	4.0	3.6	179	0.02 L	0.005 L
LB-1S (Dup)	LB-090104-30	9/1/04	NT	4.0	3.6	186	0.02 L	0.005 L
LB-1S	LB030905-14	3/9/05	NT	4.7	3.7	220	0.24	0.203
LB-1S	LB-091405-1	9/14/05	NT	5.0	4.4	148	0.02 L	0.005 L
LB-1S (Dup)	LB-091405-2	9/14/05	NT	5.0	4.5	188	0.02 L	0.005 L
LB-1S	LB-031406-3	3/14/06	NT	6.6	2.5	234	1.62	0.045
LB-1S	LB-091306-5	9/13/06	NT	4.6	5.0	174	0.02 L	0.005 L
LB-1S (Dup)	LB-091306-6	9/13/06	NT	4.6	5.0	176	0.104	0.005 L
LB-1S	LB-030507-1	3/5/07	NT	4.6	4.9	196	1.62	0.045
LB-1S	LB-091907-1	9/19/07	NT	4.6	4.6	168	0.02 L	0.005 L
LB-1S (Dup)	LB-091907-2	9/19/07	NT	4.6	4.7	187	0.104	0.005 L
LB-1S	LB-032408-14	3/24/08	NT	8.9	4.3	196	0.020 L	0.005 L
LB-1S	LB-091608-1	9/16/08	NT	5.2	5.6	209	0.024	0.005 L
LB-1S	LB-1S	3/17/09	NT	6.0	4.8	159	0.020 L	0.005 L
LB-1S	LBLF1S091109	9/11/09	NT	4.99	4.94	202	0.051	0.005 L
LB-1S	LB-1S032310	3/23/10	NT	6.53	4.08	201	0.020 L	0.005 L
LB-1S	LB-1092310	9/23/10	NT	6.96	6.21	185	0.020 L	0.005 L
LB-1S	LB-1S	3/24/11	248	5.92	5.70	220	0.025 L	0.002 L
LB-1S	LB-090811-07	9/8/11	NT	5.71	6.87	205	0.025 L	0.002 L
LB-1S	LB-031312-14	3/13/12	NT	5.2	6.0	210	0.025 L	0.002 L
LB-1S	LB-091212-08	9/12/12	NT	14	5.9	210	0.025 L	0.002
LB-1S	LB-020513-09	2/5/13	NT	7.9	6.3	200	0.025 L	0.0020 L
LB-1S	LB-082213-08	8/22/13	NT	13.0	8.7	250	0.025 L	0.0020 L
LB-1S	LB-021914-18	2/19/14	NT	19.0	3.9	240	0.025 L	0.0020 L
LB-1S (Dup)	LB-021914-19	2/19/14	NT	19.0	3.9	260	0.025 L	0.0020 L
LB-1S	LB-081414-09	8/14/14	NT	7.1	6.7	200	0.025 L	0.0020 L
LB-1S	LB-021915-16	2/19/15	NT	7.23	7.09	210	0.025 L	0.0020 L
LB-1S	LB-081115-02	8/11/15	NT	6.79	5.66	204	0.040 L	0.0020 L
LB-1S	LB-021716-14	2/17/16	NT	7.19	4.86	194	0.040 L	0.0020 L
LB-1S	LB-082416-05	8/24/16	NT	11	5.4	190	0.040 L	0.0020 L
LB-3D	LB-03D	5/28/87	270	8.0	4.3	NT	0.05 L	0.01 L
LB-3D	LB-03D	7/17/87	NT	8.0	4.1	NT	0.05 L	0.005 L
LB-3D	LB-03D	9/8/87	NT	8.0	2.2	NT	0.05 L	0.05 L
LB-3D	LB-03D	11/6/87	NT	8.2	4.9	NT	0.05 L	0.01 L
LB-3D	LB-1189-W01	11/13/89	176	5.5	5.0	179	0.02 L	0.005 L
LB-3D	LB-1289-W20	12/18/89	206	6.2	4.8	173	0.02 L	0.005 L
LB-3D	LB-032097-14	3/20/97	204	5.3	6.2	196	0.02 L	0.005 L
LB-3D	LB-032098-21	3/20/98	236	5.2	7.3	175	0.02 L	0.005 L
LB-3D	LB-031899-15	3/18/99	193	5.2	7.7	182	0.03	0.005 L
LB-3D	LB-031600-9	3/16/00	199	4.7	8.0	222	0.02 L	0.005 L
LB-3D	LB-031501-17	3/15/01	NT	5.2	7.6	171	0.02 L	0.005 L
LB-3D	LB-032002-18	3/20/02	NT	5.6	6.7	157	0.02 L	0.005 L
LB-3D	LB-031303-14	3/13/03	NT	4.1	5.5	181	0.02 L	0.005 L
LB-3D	LB-022404-5	2/24/04	NT	3.3	4.4	164	0.02 L	0.005 L
LB-3D	LB-030905-15	3/9/05	NT	3.2	4.1	169	0.02 L	0.005 L
LB-3D	LB-031606-21	3/16/06	NT	3.0	4.2	122	0.02 L	0.005 L
<u>u</u>	- .		' -		·=	-		

						Total		
					Nitrate as	Dissolved	Dissolved	Dissolved
Location	Sample Number	Date	Conductivity	Chloride	Nitrogen	Solids	Iron	Manganese
	_				<u> </u>			
LB-3D	LB-030507-4	3/5/07	NT	3.2	4.4	156	0.02 L	0.005 L
LB-3D (Dup)	LB-030507-5	3/5/07	NT	3.2	4.4	161	0.02 L	0.005 L
LB-3D	LB-032408-17	3/24/08	NT	3.3	4.2	145	0.02 L	0.005 L
LB-3D	LB-3D	3/18/09	NT	3.5	4.5	147	0.02 L	0.005 L
LB-3D	LB-3D032410	3/24/10	NT	3.60	5.76	152	0.02 L	0.005 L
LB-3D	LB-3D	3/28/11	210	4.23	5.05	201	0.025 L	0.002 L
LB-3D	LB-031312-09	3/13/12	NT	4.1	4.6	180	0.025 L	0.002 L
LB-3D	LB-020713-18	2/7/13	NT	4.4	4.5	170	0.025 L	0.0020 L
LB-3D	LB-021914-22	2/19/14	NT	4.6	4.7	200	0.025 L	0.0020 L
LB-3D	LB-021715-07	2/17/15	NT	4.41	4.81	194	0.025 L	0.0020 L
LB-3D	LB-021616-06	2/16/16	NT	5.32	4.81	166	0.040 L	0.0020 L
LB-3S	LB-03S	5/11/87	308	9.0	1.9	NT	0.05 L	0.01
LB-3S	LB-03S	7/16/87	NT	7.0	2.1	NT	0.05 L	0.005 L
LB-3S	LB-03S	9/4/87	NT	7.0	1.5	NT	0.05 L	0.01 L
LB-3S	LB-03S	11/5/87	NT	6.4	3.4	NT	0.05 L	0.01 L
LB-3S	LB-1089-W02	10/17/89	192	4.0	4.0	193	0.05 L	0.005 L
LB-3S	LB-1189-W02	11/13/89	160	4.5	4.1	144	0.02	0.005 L
LB-3S	LB-1289-W11	12/15/89	190	5.0	4.0	176	0.03	0.064
LB-3S	LB-390-W11	3/14/90	218	5.3	3.8	164	NT	NT
LB-3S	LB-690-W06	6/19/90	212	4.7	3.7	148	NT	NT
LB-3S	LB-990-W10	9/14/90	213	4.9	3.6	219	NT	NT
LB-3S	LB-1290-W08	12/12/90	377	4.6	3.5	194	NT	NT
LB-3S	LB-391-W07	3/20/91	217	4.5	3.4	150	NT	NT
LB-3S	LB-691-W10	6/11/91	226	4.9	3.3	188	NT	NT
LB-3S	LB-991-16	9/26/91	250	4.6	2.4	193	NT	NT
LB-3S	LB-1291-06	12/20/91	333	4.5	3.3	186	NT	NT
LB-3S	LB-392-10	3/20/92	230	4.4	3.3	195	NT	NT
LB-3S	LB-62692-8	6/26/92	253	4.9	2.6	204	NT	NT
LB-3S	LB-91792-3	9/17/92	266	4.4	2.9	205	NT	NT
LB-3S	LB-121092-14	12/10/92	273	4.3	3.2	202	NT	NT
LB-3S	LB-031593-25	3/15/93	309	4.7	2.7	218	NT	NT
LB-3S	LB-060393-14	6/3/93	296	4.5	2.6	214	NT	NT
LB-3S	LB-092393-1	9/23/93	278	4.2	3.0	212	NT	NT
LB-3S	LB-121593-5	12/15/93	255	4.1	3.1	212	NT	NT
LB-3S	LB-032594-11	3/25/94	281	3.8	3.0	204	NT	NT
LB-3S	LB-032394-11 LB-062394-13	6/23/94	276	4.1	2.9	204	NT	NT
LB-3S	LB-092394-13 LB-090794-8	9/7/94	235	3.3	3.3	213	NT	NT
LB-3S LB-3S	LB-121494-13	12/14/94	274	3.6	2.5	215	NT	NT
LB-3S LB-3S	LB-031395-20	3/13/95	267	3.9	3.4	213	NT	NT
LB-3S LB-3S	LB-031393-20 LB-062095-14	6/20/95	259	3.7	3.4	214	NT	NT
LB-3S LB-3S	LB-002093-14 LB-092095-11	9/20/95	328	3.7	3.7	202	NT NT	NT NT
LB-3S LB-3S	LB-121995-4	12/19/95	272	5.0	4.2	202	NT NT	NT NT
LB-3S LB-3S	LB-121995-4 LB-032096-21	3/20/96	272 254	5.0	4.2	206 199	NT NT	NT NT
LB-3S LB-3S	LB-052096-21 LB-061996-11	6/19/96	254 257	3.1 4.5	4.3 4.4	213	NT NT	NT NT
LB-3S LB-3S	LB-061996-11 LB-032097-13							
		3/20/97	211	3.6	5.0	207	0.30	0.008
LB-3S	LB-032098-20	3/20/98	228	3.1	4.4	185 154	0.02 L	0.005 L
LB-3S	LB-031899-14	3/18/99	159	3.1	4.0	154	0.02 L	0.005 L

	I					Total		
					Nitrate as	Dissolved	Dissolved	Dissolved
Location	Sample Number	Data	Conductivity	Chlorida	Nitrogen	Solids	Iron	
		Date	Conductivity	Chloride	_			Manganese
LB-3S	LB-031600-8	3/16/00	148	2.4	4.4	169	0.02	0.007
LB-3S	LB-031501-18	3/15/01	NT	3.2	4.6	148	0.02 L	0.005 L
LB-3S	LB-032002-17	3/20/02	NT	3.7	4.8	155	0.02 L	0.005 L
LB-3S	LB-031303-13	3/13/03	NT	3.1	4.1	220	0.02 L	0.005 L
LB-3S	LB-022404-6	2/24/04	NT	2.7	3.3	159	4.59	0.07
LB-3S	LB-030905-16	3/9/05	NT	2.7	2.7	163	0.10	0.005 L
LB-3S	LB-031606-22	3/16/06	NT	2.4	2.5	134	0.02 L	0.005 L
LB-3S	LB-030507-3	3/5/07	NT	2.7	2.9	160	0.02 L	0.005 L
LB-3S	LB-032408-18	3/24/08	NT	2.8	3.2	145	0.02 L	0.005 L
LB-3S	LB-3S	3/18/09	NT	3.3	3.3	162	0.02 L	0.005 L
LB-3S	LB-3S032310	3/23/10	NT	2.83	3.56	144	0.02 L	0.005 L
LB-3S	LB-3S	3/28/11	214	3.40	3.63	188	0.025 L	0.002 L
LB-3S	LB-031312-10	3/13/12	NT	3.7	3.8	170	0.025 L	0.002 L
LB-3S	LB-020713-17	2/7/13	NT	4.1	4.3	180	0.025 L	0.0020 L
LB-3S	LB-021914-22	2/19/14	NT	3.7	4.0	180	0.025 L	0.0020 L
LB-3S	LB-021915-19	2/19/15	NT	3.38	3.90	190	0.025 L	0.0020 L
LB-3S	LB-021716-12	2/17/16	NT	4.14	3.44	155	0.025 L	0.0020 L
LB-5D	LB-05D	5/27/87	606	38.0	2.6	NT	0.05 L	1.5
LB-5D	LB-05D	7/20/87	NT	45.0	0.1	NT	0.05 L	0.016
LB-5D	LB-05D	9/10/87	NT	44.0	0.1	NT	0.05 L	0.01 L
LB-5D	LB-05D	11/11/87	NT	43.0	0.1	NT	0.05 L	0.01 L
LB-5D	LB-05D	2/10/88	624	41.0	0.1	NT	0.05 L	0.01 L
LB-5D	LB-05D	6/23/88	593	42.0	0.1	NT	0.05 L	0.05 L
LB-5D	LB-05D	8/31/88	616	43.0	0.1 L	NT	0.07	0.01 L
LB-5D	LB-05D	12/6/88	494	40.0	0.6	NT	0.01 L	0.01 L
LB-5D	LB-289-W03	3/1/89	548	40.0	0.2 L	NT	0.01 L	0.025
LB-5D	LB-589-W13	5/24/89	576	51.0	0.2 L	NT	0.05 L	0.01 L
LB-5D	LB-989-W11	9/8/89	460	38.0	0.2 L	NT	0.02 L	0.006
LB-5D	LB-1289-W24	12/19/89	470	40.0	0.2	325	NT	NT
LB-5D	LB-390-W16	3/15/90	562	39.8	0.2	368	NT	NT
LB-5D	LB-690-W14	6/20/90	550	39.4	0.2 L	367	NT	NT
LB-5D	LB-990-W15	9/18/90	545	37.8	0.2	394	NT	NT
LB-5D	LB-1290-W24	12/14/90	472	40.8	0.2	346	NT	NT
LB-5D	LB-391-W14	3/21/91	615	45.9	0.3	521	NT	NT
LB-5D	LB-691-W17	6/26/91	551	39.6	0.3	372	NT	NT
LB-5D	LB-991-08	9/25/91	580	42.1	0.2	336	NT	NT
LB-5D	LB-1291-11	12/20/91	527	37.7	0.3	336	NT	NT
LB-5D	LB-392-03	3/19/92	582	44.0	0.2 L	348	NT	NT
LB-5D LB-5D	LB-63092-4	6/30/92	548	42.0	0.2 L	356	NT	NT
LB-5D LB-5D	LB-03092-4 LB-91892-2	9/18/92	549	44.0	0.2 0.2 L	351	NT NT	NT NT
LB-5D LB-5D	LB-91892-2 LB-121092-11	12/10/92	562	44.0 45.0	0.2 L 0.2 L	NT	NT NT	NT NT
LB-5D LB-5D			552	45.0	0.2 L 0.2			
	LB-031193-12	3/11/93				340	NT	NT NT
LB-5D	LB-060293-8	6/2/93	548 511	45.0	0.3	332	NT NT	NT NT
LB-5D	LB-092793-19	9/27/93	511	41.0	0.3	339	NT	NT NT
LB-5D	LB-121593-4	12/15/93	522	48.0	0.3	360	NT	NT
LB-5D	LB-032894-13	3/28/94	553	47.0	0.4	349	NT	NT
LB-5D	LB-062194-3	6/21/94	447	44.0	0.4	359	NT	NT

					<u> </u>	Total		
					Nitrate as	Dissolved	Dissolved	Dissolved
Location	Sample Number	Doto	Conductivity	Chloride	Nitrate as Nitrogen		Iron	
	•	Date	Conductivity			Solids		Manganese
LB-5D	LB-090694-4	9/6/94	529	45.0	0.4	364	NT	NT
LB-5D	LB-121394-8	12/13/94	509	46.0	0.4	364	NT	NT
LB-5D	LB-030995-04	3/9/95	486	46.0	0.3	364	NT	NT
LB-5D	LB-61995-7	6/19/95	511	46.0	0.4	345	NT	NT
LB-5D	LB-092195-9	9/21/95	571	43.0	0.2 L	350	NT	NT
LB-5D	LB-121895-2	12/18/95	541	44.0	0.4	354	NT	NT
LB-5D	LB-031996-9	3/19/96	570	41.0	0.3	321	NT	NT
LB-5D	LB-061896-8	6/18/96	473	42.0	0.3	369	NT	NT
LB-5D	LB-031997-9	3/19/97	419	38.0	0.3	355	0.03	0.005 L
LB-5D	LB-031998-6	3/19/98	541	33.8	0.2 L	319	0.02	0.005 L
LB-5D	LB-031899-11	3/18/99	419	32.6	0.4	332	0.02	0.005 L
LB-5D	LB-031600-5	3/16/00	411	26.4	0.3	292	0.02 L	0.005 L
LB-5D	LB-031401-11	3/14/01	NT	25.1	0.3	278	0.02 L	0.005 L
LB-5D	LB-031902-13	3/19/02	NT	23.0	0.5	269	0.02 L	0.005 L
LB-5D	LB-031303-9	3/13/03	NT	20.0	0.8	256	0.02 L	0.005 L
LB-5D	LB-022504-7	2/25/04	NT	18.0	0.6	276	0.02 L	0.005 L
LB-5D (Dup)	LB-022504-8	2/25/04	NT	18.0	0.6	296	0.08	0.005 L
LB-5D	LB030805-1	3/8/05	NT	16.7	1.1	282	0.02 L	0.005 L
LB-5D	LB-031606-14	3/16/06	NT	17.0	0.6	324	0.03	0.005 L
LB-5D (Dup)	LB-031606-15	3/16/06	NT	16.9	0.6	344	0.02 L	0.005 L
LB-5D	LB-030507-7	3/5/07	NT	13.7	0.7	249	0.02 L	0.005 L
LB-5D	LB-031908-2	3/19/08	NT	13.3	1.0	242	0.02 L	0.005 L
LB-5D (Dup)	LB-031908-3	3/19/08	NT	13.3	1.0	225	0.02 L	0.005 L
LB-5D	LB-5D	3/17/09	NT	13.0	1.2	209	0.02 L	0.005 L
LB-5D	LB-5D032410	3/24/10	NT	11.3	1.7	228	0.02 L	0.005 L
LB-5D	LB-5D	3/23/11	328	10.8	0.78	238	0.025 L	0.002 L
LB-5D	LB-031212-03	3/12/12	NT	11	1.2	240	0.025 L	0.002 L
LB-5D	LB-020513-03	2/5/13	NT	9.3	0.68	210	0.025 L	0.0022
LB-5D	LB-021714-01	2/17/14	NT	9.3	0.74	230	0.025 L	0.0026
LB-5D	LB-021715-01	2/17/15	NT	10.0	0.78	231	0.025 L	0.00256
LB-5D	LB-021816-16	2/18/16	NT	9.1	0.834	214	0.040 L	0.00200 L
LB-5S	LB-05S	5/26/87	152	6.0	2.4	NT	0.07	0.007
LB-5S	LB-05S	7/19/87	NT	4.0	2.7	NT	0.05 L	0.005 L
LB-5S	LB-05S	9/10/87	NT	4.0	1.7	NT	0.05 L	0.01 L
LB-5S	LB-05S	11/11/87	NT	6.3	1.9	NT	0.05 L	0.01 L
LB-5S	LB-05S	2/10/88	149	5.0	2.7	NT	0.05 L	0.01 L
LB-5S	LB-390-W17	3/15/90	156	4.8	4.9	184	NT	NT
LB-5S	LB-690-W13	6/20/90	161	5.0	4.8	153	NT	NT
LB-5S	LB-990-W14	9/18/90	192	6.1	6.1	202	NT	NT
LB-5S	LB-1290-W25	12/14/90	207	7.4	5.8	148	NT	NT
LB-5S	LB-391-W17	3/21/91	1410	4.4	4.0	704	NT	NT
LB-5S	LB-691-W16	6/26/91	168	4.4	3.4	175	NT	NT
LB-5S	LB-991-09	9/25/91	211	6.8	7.7	161	NT	NT
LB-5S	LB-1291-10	12/20/91	126	2.7	2.9	122	NT	NT
LB-5S	LB-392-04	3/19/92	160	4.3	4.1	142	NT	NT
LB-5S	LB-63092-3	6/30/92	179	5.1	5.7	183	NT	NT
LB-5S	LB-03072-3 LB-91892-1	9/18/92	182	5.5	6.1	181	NT	NT
പ്പാര	LD-71074-1	2/10/24	104	5.5	0.1	101	1 1 1	111

						Total		
					Nitrate as	Dissolved	Dissolved	Dissolved
Location	Sample Number	Date	Conductivity	Chloride	Nitrogen	Solids	Iron	Manganese
LB-5S	LB-121092-10	12/10/92	170	6.3	6.5	Donus	NT	NT
LB-5S LB-5S	LB-031193-11	3/11/93	181	7.0	5.4	175	NT NT	NT NT
LB-5S LB-5S			195	7.0 7.6	5.0	173	NT NT	
	LB-060293-7	6/2/93						NT
LB-5S	LB-092793-18	9/27/93	170	4.8	4.5 3.9	147	NT	NT
LB-5S	LB-121593-3	12/15/93	162	4.9		152	NT	NT
LB-5S	LB-032894-12	3/28/94	154	4.9	4.6	148	NT	NT
LB-5S	LB-062194-2	6/21/94 9/6/94	163	5.6 4.7	5.0	176 159	NT NT	NT
LB-5S	LB-090694-3		167		4.1			NT
LB-5S	LB-121394-9	12/13/94	95	2.6	1.7	114	NT	NT
LB-5S	LB-030995-03	3/9/95	141	6.6	3.5	147	NT	NT
LB-5S	LB-061995-6	6/19/95	201	5.7	3.8	168	NT	NT
LB-5S	LB-092195-8	9/21/95	596	7.1	5.0	184	NT	NT
LB-5S	LB-121895-1	12/18/95	111	1.8	1.3	114	NT	NT
LB-5S	LB-031996-7	3/19/96	223	6.0	4.4	170	NT	NT
LB-5S	LB-061896-7	6/18/96	174	8.5	3.1	175	NT	NT
LB-5S	LB-031997-8	3/19/97	177	7.5	5.3	184	0.02	0.005 L
LB-5S	LB-031998-5	3/19/98	229	9.1	7.1	183	0.04	0.005 L
LB-5S	LB-031899-10	3/18/99	162	4.9	5.5	164	0.02 L	0.005 L
LB-5S	LB-031600-4	3/16/00	237	4.0	6.2	194	0.02 L	0.005 L
LB-5S	LB-031401-12	3/14/01	NT	4.3	4.7	159	0.02 L	0.005 L
LB-5S	LB-092001-1	9/20/01	NT	4.3	3.8	176	0.02 L	0.005 L
LB-5S	LB-031902-12	3/19/02	NT	3.1	2.7	137	0.02 L	0.005 L
LB-5S	LB-091802-06	9/17/02	NT	6.0	6.0	185	1.26	0.03
LB-5S	LB-031303-8	3/13/03	NT	4.1	3.7	138	0.02 L	0.005 L
LB-5S	LB-092203-1	9/22/03	NT	4.6	4.4	180	9.52	0.22
LB-5S	LB-022504-9	2/25/04	NT	4.0	2.7	159	14.80	0.407
LB-5S	LB-090104-5	9/1/04	NT	4.1	3.3	168	0.02 L	0.005 L
LB-5S	LB030805-2	3/8/05	NT	4.2	3.8	182	0.21	0.005 L
LB-5S (Dup)	LB030805-3	3/8/05	NT	4.0	3.6	186	0.05	0.005 L
LB-5S	LB-091405-4	9/14/05	NT	4.5	4.5	204	0.75	0.005 L
LB-5S	LB-031606-16	3/16/06	NT	3.5	3.6	192	0.02 L	0.005 L
LB-5S	LB-091206-1	9/12/06	NT	4.1	4.5	203	0.02 L	0.005 L
LB-5S	LB-030507-6	3/5/07	NT	3.6	4.5	169	0.02 L	0.005 L
LB-5S	LB-091907-3	9/19/07	NT	4.4	5.5	191	0.02 L	0.005 L
LB-5S	LB-031908-1	3/19/08	NT	4.9	5.2	186	0.14	0.005 L
LB-5S	LB-091608-2	9/16/08	NT	5.1	4.7	147	0.076	0.005 L
LB-5S (Dup)	LB-091608-8	9/16/08	NT	5.0	4.5	168	0.02 L	0.005 L
LB-5S	LB-5S	3/17/09	NT	6.1	5.3	159	0.092	0.005 L
LB-5S	LBLF5S091109	9/11/09	NT	4.42	3.91	164	0.707	0.0157
LB-5S	LB-5S032410	3/24/10	NT	7.30	4.09	163	0.020 L	0.005 L
LB-5S (Dup)	LBDUP2032410	3/24/10	NT	5.61	3.31	151	0.020 L	0.005 L
LB-5S	LB5S092310	9/23/10	NT	3.86	4.58	158	0.020 L	0.005 L
LB-5S (Dup)	LB5S1092310	9/23/10	NT	3.91	4.61	151	0.020 L	0.005 L
LB-5S	LB-5S	3/23/11	222	5.07	5.15	184	0.025 L	0.002 L
LB-5S	LB-090811-06	9/8/11	NT	7.08	6.19	210	0.025 L	0.002 L
LB-5S	LB-032212-17	3/22/12	NT	4.1	3.7	160	0.025 L	0.002 L
LB-5S	LB-091112-01	9/11/12	NT	4.2	4.7	160	0.025 L	0.002 L

								i
					Nitrate as	Total Dissolved	Dissolved	Dissolved
Location	Sample Number	Date	Conductivity	Chloride	Nitrogen	Solids	Iron	Manganese
	1		· ·					
LB-5S	LB-020513-04 LB-082113-01	2/5/13	NT	4.0	3.5	150	0.025 L	0.0020 L
LB-5S		8/21/13	NT	3.9	4.8	150	0.025 L	0.0020 L
LB-5S	LB-021714-02	2/17/14	NT	4.1	3.6	150	0.025 L	0.0020 L
LB-5S	LB-081314-01	8/13/14	NT	3.9	3.7	160	0.025 L	0.0020 L
LB-5S	LB-021815-09	2/18/15	NT	3.81	4.27	150	0.025 L	0.0020 L
LB-5S	LB-081215-08	8/12/15	NT	3.35	4.38	179	0.040 L	0.0020 L
LB-5S	LB-021816-17	2/18/16	NT	4.67	6.36	168	0.040 L	0.0020 L
LB-5S	LB-082316-01	8/23/16	NT	5.1	6.6	170	0.040 L	0.0020 L
LB-6S	LB-06S	7/17/87	NT	18.0	2.5	NT	0.05 L	0.012
LB-6S	LB-06S	9/10/87	NT	NT	1.0	NT	0.05 L	0.01 L
LB-6S	LB-06S	11/11/87	NT	28.0	0.7	NT	0.05 L	0.01 L
LB-6S	LB-06S	2/12/88	692	35.0	1.1	NT	0.05 L	0.06
LB-6S	LB-06S	6/22/88	502	18.0	2.1	NT	0.05 L	0.05 L
LB-6S	LB-06S	8/31/88	586	27.0	2.0	NT	0.05 L	0.01 L
LB-6S	LB-06S	12/6/88	594	21.0	0.7	NT	0.02	0.073
LB-6S	LB-289-W13	3/1/89	655	28.0	2.5	NT	NT	NT
LB-6S	LB-289-W17	3/1/89	NT	NT	NT	NT	0.01	0.01 L
LB-6S	LB-589-W17	5/24/89	560	20.0	6.1	NT	0.05 L	0.01 L
LB-6S	LB-989-W07	9/7/89	500	32.0	1.0	NT	0.02 L	0.026
LB-6S	LB-1289-W13	12/15/89	680	34.0	0.6	462	0.02	0.078
LB-6S	LB-390-W24	3/15/90	616	17.0	2.3	376	0.03	0.923
LB-6S	LB-690-W22	6/21/90	597	24.0	1.1	401	0.02 L	0.039
LB-6S	LB-990-W11	11/21/90	713	31.1	0.8	604	0.02	0.35
LB-6S	LB-1290-W13	12/12/90	678	33.5	0.4	494	0.02 L	0.14
LB-6S	LB-391-W16	3/20/91	711	21.4	2.2	440	0.03 L	1.39
LB-6S	LB-691-W19	6/26/91	696	24.2	1.9	386	0.04 L	0.009
LB-6S	LB-691-W20	6/26/91	706	23.1	1.8	375	0.04 L	0.011
LB-6S	LB-991-14	9/25/91	676	28.2	0.8	392	0.02 L	0.017
LB-6S	LB-991-15	9/25/91	629	13.5	1.1	397	NT	NT
LB-6S	LB-1291-08	12/20/91	621	21.4	0.9	403	0.04 B	0.005 L
LB-6S	LB-1291-09	12/20/91	634	22.2	0.9	400	0.03 B	0.005 L
LB-6S	LB-392-07	3/20/92	497	16.0	2.8	333	0.02 L	0.537
LB-6S	LB-392-08	3/20/92	539	19.0	2.3	348	0.02 L	0.546
LB-6S	LB-62692-5	6/26/92	631	26.0	2.5	404	0.03	0.026
LB-6S	LB-62692-6	6/26/92	620	26.0	2.3	400	0.03	0.029
LB-6S	LB-92192-4	9/21/92	735	29.0	0.7	444	0.02	0.077
LB-6S	LB-92192-5	9/21/92	731	28.0	0.7	453	0.02	0.066
LB-6S	LB-12992-4	12/9/92	760	33.0	0.7	439	0.02 L	0.144
LB-6S	LB-12992-5	12/9/92	736	30.0	0.7	435	0.02 L	0.142
LB-6S	LB-030193-7	3/10/93	592	20.0	2.6	369	0.02 L	0.114
LB-6S	LB-030193-8	3/10/93	625	22.0	2.2	386	0.02 L	0.106
LB-6S	LB-060393-11	6/3/93	517	17.0	2.5	328	0.03	0.018
LB-6S	LB-060393-12	6/3/93	467	13.0	2.9	302	0.02 L	0.019
LB-6S	LB-092493-13	9/24/93	529	19.0	3.7	328	0.02 L	0.025
LB-6S	LB-121593-6	12/15/93	580	27.0	2.1	393	0.02	0.077
LB-6S	LB-032994-18	3/29/94	391	12.0	3.7	256	0.02 L	0.052
LB-6S	LB-032994-19	3/29/94	450	15.0	3.4	306	0.02 L	0.038

						Total		
					Nitrate as	Dissolved	Dissolved	Dissolved
Location	Sample Number	Date	Conductivity	Chloride	Nitrogen	Solids	Iron	Manganese
LB-6S	LB-062394-11	6/23/94	509	21.0	3.1	347	0.02 L	0.013
LB-6S	LB-062394-12	6/23/94	477	20.0	3.2	358	0.02 L	0.013
LB-6S	LB-090694-5	9/6/94	563	19.0	3.6	366	0.02 L	0.054
LB-6S	LB-090694-6	9/6/94	496	19.0	3.5	360	0.04	0.054
LB-6S	LB-121394-6	12/13/94	475	19.0	3.4	316	0.52	0.124
LB-6S	LB-121394-7	12/13/94	485	19.0	3.4	335	0.20	0.093
LB-6S	LB-031095-10	3/10/95	307	5.3	2.3	217	0.04	0.005 L
LB-6S	LB-031095-11	3/10/95	282	8.2	2.3	196	0.06	0.006
LB-6S	LB-062095-10	6/20/95	397	16.0	4.3	290	0.02 L	0.005 L
LB-6S	LB-062095-9	6/20/95	386	14.0	4.4	234	0.02 L	0.005 L
LB-6S	LB-092095-6	9/20/95	530	20.0	4.3	313	0.02 L	0.005 L
LB-6S	LB-092095-7	9/20/95	518	21.0	4.3	308	0.02	0.005 L
LB-6S	LB-122095-12	12/20/95	407	10.0	3.2	289	0.02	0.005 L 0.005 L
LB-6S	LB-122095-12 LB-122095-13	12/20/95	448	12.0	3.3	286	0.03 0.02 L	0.005 L 0.005 L
LB-6S	LB-031996-5	3/19/96	316	6.2	3.3	222	0.02 L 0.02 L	0.005 L 0.005 L
LB-6S	LB-031996-6	3/19/96	326	5.4	3.6	226	0.02 L 0.02 L	0.005 L 0.005 L
LB-6S	LB-061996-12	6/19/96	NT	21.0	4.0	NT	NT	NT
LB-6S	LB-061996-12 LB-061996-13	6/19/96	451	23.0	3.8	320	0.03	0.005 L
LB-6S	LB-001990-13 LB-091896-12	9/18/96	426	22.0	2.4	280	0.03 0.02 L	0.005 L 0.005 L
LB-6S	LB-121796-3	12/17/96	460	20.0	1.5	312	0.02 L 0.02 L	0.005 L 0.005 L
LB-6S	LB-031997-7	3/19/97	360	26.0	3.8	312	0.02 L 0.03	0.005 L 0.005 L
LB-6S	LB-031997-7 LB-061797-6	6/17/97	578	30.0	1.3	349	0.03	0.005 L 0.005 L
LB-6S	LB-001797-0 LB-091697-3	9/16/97	436	28.6	1.3	3 4 9 364	0.02 0.02 L	0.005 L 0.005 L
LB-6S	LB-091097-3 LB-121797-14	12/17/97	516	22.5	3.2	340	0.02 L 0.16	0.005 L 0.005 L
LB-6S LB-6S	LB-031998-7	3/19/98	628	22.5	4.9	388	0.10	0.005 L 0.005 L
LB-6S	LB-061698-7	6/16/98	422	30.8	2.6	375	0.03 0.02 L	0.005 L 0.005 L
LB-6S	LB-001098-7 LB-091798-5	9/17/98	625	22.0	3.5	373	0.02 L	0.005 L 0.005 L
LB-6S	LB-091798-3 LB-121798-1	12/17/98	519	28.0	5.1	407	0.03	0.005 L 0.005 L
LB-6S	LB-031799-2	3/17/99	521	25.1	3.7	389	0.03	0.005 L 0.005 L
LB-6S	LB-062399-11	6/23/99	443	20.6	2.1	323	0.03	0.005 L 0.005 L
LB-6S	LB-002399-11 LB-091699-5	9/16/99	557	26.1	3.0	350	0.03	0.005 L 0.005 L
LB-6S	LB-091099-3 LB-121599-11	12/15/99	518	23.8	4.9	324	0.03 0.02 L	0.005 L 0.005 L
LB-6S	LB-031700-10	3/17/00	397	23.0	4.9	295	0.02 L 0.02 L	0.003 L 0.008
LB-6S	LB-031700-11	3/17/00	407	25.4	5.2	328	0.02 L	0.005 L
LB-6S	LB-061300-6	6/13/00	445	28.4	4.6	318	0.02 E	0.005 L 0.005 L
LB-6S	LB-091200-3	9/12/00	441	29.8	4.0	313	0.01 B 0.02 L	0.005 L 0.005 L
LB-6S	LB-121200-1	12/12/00	578	31.7	3.3	352	0.02 L 0.02 L	0.005 L 0.005 L
LB-6S	LB-121200-1 LB-121200-2	12/12/00	585	35.5	2.9	338	0.02 L 0.02 L	0.003 L 0.0073
LB-6S	LB-031301-7	3/13/01	NT	36.8	3.0	326	0.02 L 0.02 L	0.0073
LB-6S	LB-031301-7 LB-031301-8	3/13/01	NT	35.9	3.2	352	0.02 L 0.02 L	0.005
LB-6S	LB-092001-5	9/20/01	NT NT	19.0	3.3	246	0.02 L 0.02 L	0.0035
LB-6S	LB-032001-5 LB-032002-15	3/20/01	NT NT	17.7	4.3	291	0.02 L 0.02 L	0.035 0.005 L
LB-6S	LB-032002-15 LB-032002-16	3/20/02	NT NT	21.1	4.3	305	0.02 L 0.02 L	0.005 L 0.005 L
LB-6S	LB-032002-10 LB-091802-02	9/17/02	NT NT	16.0	5.0	303	0.02 L 0.02 L	0.005 L 0.005 L
LB-6S	LB-091802-02 LB-091802-03	9/17/02	NT NT	16.0	5.0	302	0.02 L 0.02 L	0.005 L 0.005 L
LB-6S	LB-031303-21	3/17/02	NT NT	26.0	2.9	348	0.02 L 0.02 L	0.005 L 0.005 L
LB-6S LB-6S	LB-031303-21 LB-092203-5	9/22/03	NT NT	11.9	2.7	274	0.02 L	0.003 L 0.014
ഥ-ഗാ	LD-072203-3	7/44/03	11/1	11.9	4.1	2/4	0.13	0.014

	1		I			Total		
					NT:44.	Total	D:11	D:11
T4:	Sample Number	D-4-	C	C1-1: 1-	Nitrate as	Dissolved	Dissolved	Dissolved
Location	-	Date	Conductivity	Chloride	Nitrogen	Solids	Iron	Manganese
LB-6S	LB-022604-18	2/26/04	NT	13.4	2.7	284	0.02 L	0.005 L
LB-6S	LB-090104-6	9/1/04	NT	9.6	2.1	268	0.02 L	0.005 L
LB-6S	LB030805-9	3/8/05	NT	13.0	1.6	328	0.02 L	0.017
LB-6S	LB-091405-6	9/14/05	NT	9.3	2.1	254	0.02 L	0.005 L
LB-6S	LB-031506-13	3/15/06	NT	5.1	2.4	132	0.02 L	0.005 L
LB-6S	LB-091206-4	9/12/06	NT	6.9	2.9	228	0.02 L	0.005 L
LB-6S	LB-030507-12	3/5/07	NT	5.6	2.7	238	0.02 L	0.005 L
LB-6S	LB-091907-6	9/19/07	NT	7.1	1.7	245	0.297	0.0369
LB-6S	LB-031908-9	3/19/08	NT	6.1	2.9	240	0.029	0.005 L
LB-6S	LB-091608-3	9/16/08	NT	5.7	1.4	222	0.02 L	0.005 L
LB-6S	LB-6S	3/18/09	NT	5.2	2.2	194	0.02 L	0.005 L
LB-6S	LBLF6S091109	9/11/09	NT	6.72	2.82	244	0.061	0.0059
LB-6S (Dup)	LBLFDUP1091109	9/11/09	NT	6.89	2.83	220	0.035	0.005 L
LB-6S	LB-6S032310	3/23/10	NT	6.64	3.53	194	0.024	0.005 L
LB-6S	LB6S092310	9/23/10	NT	5.67	2.60	192	0.379	0.031
LB-6S	LB-6S	3/22/11	248	6.29	2.79	218 H	0.025 L	0.00218
LB-6S (Dup)	DUP1	3/22/11	266	7.05	2.90	229 H	0.025 L	0.002 L
LB-6S	LB-090711-05	9/7/11	NT	9.09	0.73	178	0.025 L	0.002 L
LB-6S (Dup)	LB-090711-04	9/7/11	NT	8.97	0.73	177	0.025 L	0.002 L
LB-6S	LB-032212-23	3/22/12	NT	5.5	1.7	180	0.025 L	0.002 L
LB-6S (Dup)	LB-032212-22	3/22/12	NT	5.6	1.7	180	0.025 L	0.002 L
LB-6S	LB-091212-06	9/12/12	NT	5.5	0.78	160	0.025 L	0.002 L
LB-6S (Dup)	LB-091212-07	9/12/12	NT	9.8	0.75	160	0.025 L	0.002 L
LB-6S	LB-020613-15	2/6/13	NT	4.9	1.1	130	0.025 L	0.0020 L
LB-6S (Dup)	LB-020613-16	2/6/13	NT	8.0	1.0	150	0.028	0.0021
LB-6S	LB-082113-07	8/21/13	NT	3.7	1.5	150	0.025 L	0.0020 L
LB-6S	LB-021914-23	2/19/14	NT	4.9	1.1	170	0.025 L	0.0020 L
LB-6S	LB-081314-06	8/13/14	NT	2.4	0.89	140	0.025 L	0.0020 L
LB-6S (Dup)	LB-081314-07	8/13/14	NT	2.3	0.88	130	0.025 L	0.0020 L
LB-6S	LB-021815-14	2/18/15	NT	6.98	2.23	190	0.025 L	0.0020 L
LB-6S (Dup)	LB-021815-13	2/18/15	NT	6.98	2.18	190	0.025 L	0.0020 L
LB-6S	LB-081115-03	8/11/15	NT	4.52	2.65	164	0.040 L	0.0020 L
LB-6S (Dup)	LB-081115-04	8/11/15	NT	4.51	2.65	158	0.040 L	0.0020 L
LB-6S	LB-021816-21	2/18/16	NT	6.15	0.100 L	162	0.040 L	0.0020 L
LB-6S	LB-082416-08	8/24/16	NT	4.8	1.7	160	0.040 L	0.0020 L
LB-6S (Dup)	LB-082416-09	8/24/16	NT	4.9	1.6	150	0.040 L	0.0020 L
LB10-DR	LB-031005-19	3/10/05	NT	26.8	0.7	428	1.03	0.879
LB10-DR (Dup)	LB-031005-20	3/8/05	NT	27.0	0.7	432	0.93	0.771
LB10-DR	LB-031406-5	3/14/06	NT	31.3	0.6	492	0.763	0.417
LB10-DR	LB-030607-20	3/6/07	NT	24.9	0.9	332	0.022	0.197
LB10-DR	LB-032408-22	3/24/08	NT	28.3	0.8	320	0.02 L	0.155
LB10-DR	LB-10D	3/17/09	NT	26.8	1.0	286	0.032	0.0677
LB10-DR	LB10-DR032310	3/23/10	NT	23.9	1.1	295	0.047	0.0320
LB-10DR	LB-10DR	3/29/11	479	26.0	1.27	329	0.025 L	0.00696
LB-10DR	LB-0313012-07	3/13/12	NT	20	1.8	280	0.025 L	0.002 L
LB-10DR	LB-020713-19	2/6/13	NT	22	1.7	290	0.025 L	0.002 L
LB-10DR LB-10DR	LB-021914-15	2/19/14	NT	15	2.3	260	0.025 L	0.0020 L 0.0020 L
אסט-זיסטן	LD-021714-13	4/17/14	111	1.5	۷.5	200	0.023 L	0.0020 L

					1	Total		
					Nitrate as	Dissolved	Dissolved	Dissolved
Location	Sample Number	Doto	Conductivity	Chlorida	Nitrate as Nitrogen	Solids	Iron	
	-	Date	Conductivity	Chloride	<u> </u>			Manganese
LB-10DR	LB-021915-20	2/19/15	NT	14	2.63	290	0.025 L	0.0020 L
LB-10DR	LB-021716-09	2/17/16	NT	17.2	2.02	258	0.040 L	0.00217
LB-10DR (Dup)	LB-021716-10	2/17/16	NT	17.1	2.05	264	0.040 L	0.0020 L
LB10-SR	LB031005-21	3/10/05	NT	3.8	9.8	272	0.13	2.050
LB10-SR	LB-091505-7	9/15/05	NT	4.6	6.5	506	1.04	0.0187
LB10-SR	LB-031406-6	3/14/06	NT	4.8	2.6	116	0.02 L	0.006
LB10-SR	LB-091306-9	9/13/06	NT	13.5	0.7	298	0.02 L	0.005 L
LB10-SR	LB-030607-19	3/6/07	NT	3.6	1.2	105	0.02 L	0.006
LB10-SR	LB-091907-7	9/19/07	NT	14.3	1.1	297	0.02 L	0.005 L
LB10-SR	LB-032408-21	3/24/08	NT	6.3	0.9	202	0.02 L	0.005 L
LB10-SR	LB-091608-4	9/16/08	NT	6.1	2.5	225	0.02 L	0.005 L
LB10-SR	LB-10S	3/17/09	NT	10.0	2.3	216	0.02 L	0.005 L
LB10-SR (Dup)	Dup-1	3/17/09	NT	10.6	2.3	207	0.02 L	0.005 L
LB10-SR	LBLF10S091190	9/11/09	NT	5.55	5.13	233	1.15	0.0138
LB10-SR	LB10-SR032310	3/23/10	NT	8.53	5.97	196	0.02 L	0.005 L
LB10-SR	LB10S092310	9/23/10	NT	3.90	2.80	176	0.02 L	0.005 L
LB-10SR	LB-10SR	3/29/11	341	15.30	1.53	270	0.025 L	0.002 L
LB-10SR (Dup)	DUP2	3/29/11	341	15.30	1.57	270	0.025 L	0.002 L
LB-10SR	LB-090811-08	9/8/11	NT	17.70	1.15	251	0.025 L	0.00205
LB-10SR	LB-031312-08	3/13/12	NT	26	1.8	330	0.025 L	0.0023
LB-10SR	LB-091212-09	9/12/12	NT	30	0.91	310	0.025 L	0.0033
LB-10SR	LB-020713-20	2/7/13	NT	32	1.1	290	0.025 L	0.0058
LB-10SR	LB-082213-09	8/22/13	NT	18	0.8	270	0.025 L	0.0025
LB-10SR	LB-021914-16	2/19/14	NT	8.1	2.5	240	0.025 L	0.0026
LB-10SR	LB-081414-08	8/14/14	NT	24	1.2	250	0.025 L	0.0023
LB-10SR	LB-021915-21	2/19/15	NT	10	4.15	220	0.025 L	0.0059
LB-10SR	LB-081015-01	8/10/15	NT	12.4	4.12	265	0.040 L	0.00207
LB-10SR	LB-021716-11	2/17/16	NT	21.4	2.19	260	0.040 L	0.00200 L
LB-10SR	LB-082416-07	8/24/16	NT	26	1.1	280	0.040 L	0.0020 L
LB-13D	LB-989-W20	9/13/89	199	6.0	4.0	244	0.02 L	0.05
LB-13D	LB-1089-W15	10/19/89	200	6.5	4.5	197	0.05 L	0.028
LB-13D	LB-1189-W20	11/16/89	176	6.0	4.7	91	0.02	0.014
LB-13D	LB-1289-W18	12/18/89	210	5.0	4.7	134	0.02 L	0.007
LB-13D	LB-390-W18	3/15/90	244	8.2	4.9	206	0.02 L	0.005 L
LB-13D	LB-690-W20	6/21/90	235	6.8	4.9	242	0.02 L	0.005 L
LB-13D	LB-990-W17	9/18/90	230	6.9	4.9	225	0.02	0.005 L
LB-13D	LB-1290-W20	12/13/90	238	6.8	4.8	160	0.02 L	0.005 L
LB-13D	LB-391-W15	3/20/91	241	6.4	4.8	179	0.03 L	0.005 L
LB-13D	LB-691-W22	6/26/91	314	6.3	4.4	258	NT	NT
LB-13D	LB-991-13	9/25/91	248	6.1	5.0	183	NT	NT
LB-13D	LB-1291-19	12/23/91	243	5.1	4.9	186	NT	NT
LB-13D	LB-392-19	3/24/92	246	5.9	4.9	190	NT	NT
LB-13D	LB-7292-2	7/2/92	239	5.7	4.8	194	NT	NT
LB-13D	LB-91792-2	9/17/92	240	5.3	4.5	190	NT	NT
LB-13D	LB-121092-9	12/10/92	240	6.2	5.1	179	NT	NT
LB-13D	LB-031293-20	3/12/93	245	6.0	4.6	180	NT	NT

						Total		
					Nitrate as	Dissolved	Dissolved	Dissolved
Location	Sample Number	Date	Conductivity	Chloride	Nitrogen	Solids	Iron	Manganese
LB-13D	LB-060493-21	6/4/93	238	6.1	4.4	182	NT	NT
LB-13D	LB-000493-21 LB-092393-7	9/23/93	240	5.8	4.4	178	NT	NT
LB-13D LB-13D	LB-092393-7 LB-121693-12	12/16/93	220	6.1	4.9	193	NT	NT
LB-13D LB-13D	LB-032894-17	3/28/94	242	6.2	4.9	188	NT	NT
LB-13D LB-13D	LB-052894-17 LB-052894-20	6/28/94	242	6.0	4.8	186	NT NT	NT
		9/7/94	220		5.5	191	NT NT	
LB-13D	LB-090794-10			5.8				NT
LB-13D	LB-121594-21	12/15/94	216	6.3	5.3	176	NT	NT
LB-13D	LB-031395-18	3/13/95	222	6.0	5.2	170	NT	NT
LB-13D	LB-062195-19	6/21/95	239	6.5	5.7	205	NT	NT
LB-13D	LB-092295-16	9/22/95	299	6.5	5.8	165	NT	NT
LB-13D	LB-121995-8	12/19/95	249	6.9	6.4	185	NT	NT
LB-13D	LB-032096-15	3/20/96	262	6.6	6.8	200	NT	NT
LB-13D	LB-032096-16	3/20/96	253	6.6	6.7	178	NT	NT
LB-13D	LB-061996-16	6/19/96	267	7.0	7.1	224	NT	NT
LB-13D	LB-091796-4	9/17/96	261	7.8	7.2	201	0.02 L	0.005 L
LB-13D	LB121796-9	12/17/96	312	9.9	7.4	223	0.02 L	0.005 L
LB-13D	LB-032097-18	3/20/97	241	9.8	0.2 L	217	0.02 L	0.005 L
LB-13D	LB-061897-15	6/18/97	305	8.8	7.1	223	0.02 L	0.005 L
LB-13D	LB-091897-11	9/18/97	310	8.8	8.1	246	0.02 L	0.005 L
LB-13D	LB-121797-9	12/17/97	239	8.3	8.0	133	0.02	0.005 L
LB-13D	LB-032098-19	3/20/98	296	7.8	7.9	207	0.05 B	0.005 L
LB-13D	LB-061798-14	6/17/98	242	7.6	8.4	210	0.02 L	0.005 L
LB-13D	LB-091898-15	9/18/98	277	7.0	7.8	172	0.02 L	0.005 L
LB-13D	LB-121898-12	12/18/98	223	7.1	8.1	245	0.02	0.005 L
LB-13D	LB-031999-23	3/19/99	219	6.5	7.6	207	0.02	0.005 L
LB-13D	LB-062399-12	6/23/99	222	6.7	7.6	198	0.02	0.005 L
LB-13D	LB-091799-13	9/17/99	246	7.2	7.5	176	0.02 L	0.005 L
LB-13D	LB-121499-3	12/14/99	243	6.3	7.4	161	0.02 L	0.005 L
LB-13D	LB-031700-18	3/17/00	210	6.0	6.8	200	0.02 L	0.005 L
LB-13D	LB-061400-10	6/14/00	215	5.9	7.8	222	0.02 L	0.005 L
LB-13D	LB-091300-11	9/13/00	231	6.0	7.5	204	0.02 L	0.005 L
LB-13D	LB-121500-12	12/15/00	233	5.2	7.5	165	2.06	0.0053
LB-13D	LB-031501-19	3/15/01	NT	5.2	7.1	170	0.02 L	0.005 L
LB-13D	LB-032002-20	3/20/02	NT	5.0	6.3	174	0.02 L	0.005 L
LB-13D	LB-031303-16	3/13/03	NT	4.3	5.8	224	0.02 L	0.005 L
LB-13D	LB-022404-3	2/24/04	NT	4.0	5.2	179	0.02 L	0.005 L
LB-13D	LB-031005-17	3/10/05	NT	3.8	4.9	190	0.02	0.005
LB-13D	LB-031506-9	3/15/06	NT	3.4	4.6	115	0.02 L	0.005 L
LB-13D	LB-030607-18	3/6/07	NT	3.6	5.0	118	0.02 L	0.005 L
LB-13D	LB-032008-13	3/20/08	NT	3.6	4.8	190	0.02 L	0.005 L
LB-13D	LB-13-D	3/17/09	NT	4.0	5.1	148	0.02 L	0.005 L
LB-13D	LB-13D032410	3/24/10	NT	3.59	5.4	167	0.02 L	0.005 L
LB-13D	LB-13D	3/25/11	214	4.36	5.3	193	0.025 L	0.002 L
LB-13D	LB-031212-01	3/12/12	NT	4.4	5.3	190	0.025 L	0.002 L
LB-13D	LB-020713-22	2/5/13	NT	5.0	5.1	170	0.025 L	0.0020 L
LB-13D	LB-021814-08	2/18/14	NT	4.6	4.9	150	0.025 L	0.0020 L
LB-13D	LB-021715-03	2/17/15	NT	4.49	4.99	185	0.025 L	0.0020 L

						Total		
					Nitrate as	Dissolved	Dissolved	Dissolved
Location	Sample Number	Date	Conductivity	Chloride	Nitrogen	Solids	Iron	Manganese
LB-13D	LB-021616-02	2/16/16	NT	5.03	5.23	170	0.040 L	0.0020 L
LB-13D (Dup)	LB-021616-03	2/16/16	NT	5.03	5.06	176	0.040 L	0.0020 L
LB-13I	LB-989-W22	9/13/89	600	28.0	1.4	402	0.02 L	0.017
LB-13I	LB-989-W23	9/13/89	576	28.0	1.3	478	0.02 L	0.017
LB-13I	LB-1089-W17	10/17/89	600	33.0	1.3	460	0.02 L	0.013
LB-13I	LB-1189-W17	11/16/89	530	31.0	1.2	404	0.04	0.012
LB-13I	LB-1189-W17	12/18/89	596	34.0	0.8	377	0.04	0.009
LB-13I	LB-390-W19	3/15/90	704	40.0	0.0 0.2 L	462	0.02	0.009
LB-13I	LB-690-W19	6/21/90	695	38.4	0.2 L	481	0.02 0.02 L	0.003
LB-13I	LB-990-W19	9/18/90	703	40.5	0.6	491	0.02 L	0.013
LB-13I	LB-1290-W10 LB-1290-W21	12/13/90	629	36.9	0.6	433	0.02 0.02 L	0.012
LB-13I	LB-391-W14	3/20/91	740	43.4	0.4	486	0.02 L 0.03 L	0.012
LB-13I	LB-691-W21	6/26/91	738	26.6	0.4	454	0.03 L 0.04 L	0.012
LB-13I LB-13I	LB-991-12	9/25/91	765	35.3	0.9	444	0.04 L	0.018
LB-13I LB-13I	LB-1291-18	12/23/91	707	32.9	0.0 0.2 L	347	0.02	0.010
LB-13I	LB-392-20	3/24/92	661	33.0	0.2 L	422	0.10 0.02 L	0.047
LB-13I	LB-7292-1	7/2/92	659	37.0	0.2 L 0.2 L	402	1.16	0.017
LB-13I	LB-91792-1	9/17/92	680	31.0	0.2 L	429	0.48	0.039
LB-13I	LB-91792-1 LB-121092-8	12/10/92	687	33.0	0.8	393	0.48 0.02 L	0.023
LB-13I LB-13I	LB-031293-19	3/12/93	681	27.0	0.8	410	0.02 L 0.02 L	0.014
LB-13I LB-13I	LB-060493-20	6/4/93	620	23.0	1.5	376	0.02 L 0.02 L	0.014
LB-13I	LB-000493-20 LB-092393-6	9/23/93	568	20.0	1.5	339	0.02 L 0.05	0.010
LB-13I LB-13I	LB-121693-14	12/16/93	511	21.0	1.8	352	0.03	0.017
LB-13I LB-13I	LB-032894-16	3/28/94	590	22.0	2.2	364	0.03 0.02 L	0.12
LB-13I LB-13I	LB-052894-10 LB-052894-19	6/28/94	430	22.0	0.6	304	0.02 L 0.02 L	0.017
LB-13I LB-13I	LB-092794-19	9/7/94	418	22.0	0.8	329	0.02 L	0.013
LB-13I LB-13I	LB-121594-20	12/15/94	453	21.0	2.6	339	0.21	0.14
LB-13I	LB-031395-17	3/13/95	468	17.0	3.1	287	0.04	0.017
LB-13I LB-13I	LB-031393-17 LB-061996-15	6/19/95	NT	NT	NT	NT	0.02	0.014 0.005 L
LB-13I LB-13I	LB-052195-18	6/21/95	424	18.0	2.5	289	0.03 0.02 L	0.003 L 0.014
LB-13I	LB-092295-15	9/22/95	469	18.0	0.9	248	0.02	0.012
LB-13I	LB-121995-7	12/19/95	463	18.0	3.6	193	0.02 L	0.005 L
LB-13I	LB-032096-14	3/20/96	477	20.0	0.9	349	0.02	0.01
LB-13I	LB-061996-15	6/19/96	549	29.0	1.3	371	0.03 L	0.005 L
LB-13I	LB-091796-3	9/17/96	548	37.0	0.2 L	348	0.02 L	0.01
LB-13I	LB121796-10	12/17/96	708	52.0	0.2 L 0.2 L	418	0.02 L	0.013
LB-13I	LB-032097-19	3/20/97	579	70.0	0.2 L	458	0.02 E	0.013
LB-13I	LB-061897-14	6/18/97	729	63.0	0.2 L	462	0.02	0.014
LB-13I	LB-091897-12	9/18/97	814	68.1	0.2 L	514	0.03	0.021
LB-13I	LB-121797-8	12/17/97	578	63.0	0.2 L	444	0.03	0.021
LB-13I	LB-032098-18	3/20/98	695	58.8	0.3	428	0.02 L	0.02
LB-13I	LB-061798-15	6/17/98	624	66.4	0.2 L	444	0.02 E	0.02
LB-13I	LB-091898-14	9/18/98	763	62.4	0.3	394	0.03	0.022
LB-13I	LB-121898-11	12/18/98	616	32.4	3.2	464	0.04	0.022
LB-13I	LB-031999-22	3/19/99	582	51.1	0.5	457	0.03	0.022
LB-13I	LB-062399-13	6/23/99	576	44.7	0.3	389	0.02	0.02
LB-13I	LB-091799-12	9/17/99	626	44.6	0.2	383	0.03	0.021

						Total		
					Nitrate as	Dissolved	Dissolved	Dissolved
Location	Sample Number	Date	Conductivity	Chloride	Nitrogen	Solids	Iron	Manganese
LB-13I	LB-121499-4	12/14/99	637	29.2	2.6	357	0.02 L	0.022
LB-13I LB-13I	LB-121499-4 LB-121499-5	12/14/99	634	30.0	2.6	378	0.02 L 0.02 L	0.022 0.022 L
LB-13I LB-13I	LB-031700-17	3/17/00	552	28.1	0.8	378	0.02 L 0.02 L	0.022 L
LB-13I LB-13I	LB-031700-17 LB-061400-9	6/14/00	525	29.3	0.8	372	0.02 L 0.02 L	0.02
LB-13I LB-13I	LB-091300-12	9/13/00	680	42.7	2.7	417	0.02 L 0.02 L	0.02
LB-13I LB-13I	LB-091300-12 LB-121500-11	12/15/00	577	30.0	3.5	306	0.02 L 0.02 L	0.0240
LB-13I LB-13I	LB-031501-20	3/15/01	NT	26.1	3.4	318	0.02 L 0.02 L	0.0284
LB-13I LB-13I	LB-031301-20 LB-092001-8	9/20/01	NT NT	12.9	3.4	241	0.02 L 0.02 L	0.0232
LB-13I LB-13I		3/20/01	NT NT		3.3 4.7	241		
LB-13I LB-13I	LB-032002-19			10.2	6.0		0.02 L	0.016
LB-13I LB-13I	LB-091802-07	9/17/02	NT NT	22.0 13.2	3.4	292 168	0.31	0.042 0.039
	LB-031303-15	3/13/03		13.2	2.9		0.22	
LB-13I	LB-092203-7	9/22/03	NT		2.9	272	0.15	0.052
LB-13I LB-13I	LB-022404-4	2/24/04 9/1/04	NT	9.8		232	0.09	0.028 0.024
LB-131 LB-13I	LB-090104-13 LB031005-18	9/1/04 3/10/05	NT	7.0	1.8 2.7	232 232	0.03	0.024 0.006
			NT	7.2 5.8	3.8		0.02 L	
LB-13I LB-13I	LB-091505-9	9/15/05	NT			202	0.03 0.02 L	0.014
	LB-031506-10	3/15/06	NT	4.9	4.2	152		0.007 0.006
LB-13I	LB-091306-8	9/13/06	NT	5.4	4.0	182	0.02 L	
LB-13I	LB-030607-17	3/5/07	NT	5.5	3.2	170	0.02 L	0.006
LB-13I	LB-091907-8	9/19/07	NT	5.6	2.9	260	0.02 L	0.005 L
LB-13I	LB-032008-12	3/20/08	NT	6.6	3.4	207	0.02 L	0.0054
LB-13I	LB-091608-5	9/16/08	NT	7.0	3.9	193	0.02 L	0.005 L
LB-13I	LB-13I	3/17/09	NT	6.9	4.3	186	0.02 L	0.005 L
LB-13I	LBLF13i091109	9/11/09	NT	6.06	4.82	192	0.02 L	0.005 L
LB-13I	LB-13I032410	3/24/10	NT	5.53	5.21	193	0.02 L	0.005 L
LB-13I	LB13I092310	9/23/10	NT	5.24	5.31	196	0.02 L	0.005 L
LB-13I	LB-13I	3/23/11	270	5.56	4.58	202	0.025 L	0.00296
LB-13I	LB-090711-02	9/7/11	NT	5.99	4.53	204	0.025 L	0.002 L
LB-13I	LB-032212-19	3/22/12	NT	6.1	4.1	200	0.025 L	0.002 L
LB-13I (Dup)	LB-032212-20	3/22/12	NT	6.1	4.0	190	0.025 L	0.002 L
LB-13I	LB-091112-03	9/11/12	NT	12	4.4	220	0.025 L	0.002 L
LB-13I	LB-020613-13	2/7/13	NT	8.8	3.6	190	0.025 L	0.0031
LB-13I	LB-082113-05	8/21/13	NT	11.0	4.3	210	0.025 L	0.0020 L
LB-13I	LB-021814-10	2/18/14	NT	10.0	2.8	190	0.025 L	0.0034
LB-13I	LB-081314-04	8/13/14	NT	8.3	4.0	220	0.025 L	0.0041
LB-13I	LB-021815-11	2/18/15	NT	11.0	3.82	210	0.025 L	0.0045
LB-13I	LB-081115-05	8/11/15	NT	7.64	4.09	198	0.040 L	0.00499
LB-13I	LB-021816-20 LB-082316-03	2/18/16	NT NT	7.39	3.65 4.5	193	0.040 L	0.00448 0.0020 L
LB-13I		8/23/16	NT	6.6		190	0.040 L	
LB-17D	LB-989-W08	9/7/89	640	46.0	0.2 L	518	0.33	9.73
LB-17D	LB-1089-W10	10/18/89	780	58.0	0.2 L	492	0.24	10.6
LB-17D	LB-1089-W11	10/18/89	780	60.0	0.2 L	508	0.25	10.7
LB-17D	LB-1189-W12	11/15/89	644	70.0	0.2 L	479	0.02 L	10.9
LB-17D	LB-1189-W13	11/15/89	682	70.0	0.2 L	465	0.32	10.8
LB-17D	LB-1289-W28	12/20/89	740	68.0	0.2 L	532	0.33	10.8
LB-17D	LB-390-W21	3/15/90	918	70.8	0.2 L	566	0.36	11.4
LB-17D	LB-390-W22	3/15/90	922	71.0	0.2 L	594	0.35	11.5

						Total		
					Nitrate as	Dissolved	Dissolved	Dissolved
Location	Sample Number	Date	Conductivity	Chloride	Nitrogen	Solids	Iron	Manganese
LB-17D	LB-690-W18	6/21/90	843	59.6	0.2 L	540	0.30	11
LB-17D LB-17D	LB-990-W18 LB-990-W19	9/19/90	839	65.2	0.2 L 0.2 L	577	0.30	11.4
LB-17D LB-17D	LB-990-W19 LB-990-W20	9/19/90	895	66.2	0.2 L 0.2 L	575	0.33	
								11.4
LB-17D	LB-1290-W23	12/14/90	945	65.6	0.2 L	538	0.19	11.3
LB-17D	LB-391-W19	3/21/91	870	56.2	0.2 L	653	0.21	10.9
LB-17D	LB-391-W21	3/21/91	1060	58.7	0.2 L	530	0.20	10.3
LB-17D	LB-691-W14	6/11/91	786	47.3	0.2 L	423	0.19	10.1
LB-17D	LB-691-W15	6/11/91	812	47.3	0.2 L	441	0.18	10.1
LB-17D	LB-991-10	9/25/91	895	58.5	0.2 L	489	0.26	10.4
LB-17D	LB-991-11	9/25/91	895	58.7	0.2 L	503	0.26	10.5
LB-17D	LB-1291-16	12/23/91	1020	19.6	0.2 L	593	0.44	13.3
LB-17D	LB-1291-17	12/23/91	1010	18.6	0.2 L	586	0.36	13.4
LB-17D	LB-392-11	3/23/92	934	68.0	0.2 L	570	0.34	12.6
LB-17D	LB-392-12	3/23/92	927	69.0	0.2 L	542	0.33	12.5
LB-17D	LB-63092-5	6/30/92	842	58.0	0.2 L	522	0.20	11.6
LB-17D	LB-031093-6	3/10/93	712	52.0	0.2 L	432	0.18	9.57
LB-17D	LB-060493-22	6/4/93	682	44.0	0.2 L	422	0.28	9.41
LB-17D	LB-092793-21	9/27/93	719	48.0	0.2 L	424	0.25	9.54
LB-17D	LB-121593-7	12/15/93	769	59.0	0.2 L	461	0.25	9.86
LB-17D	LB-032994-20	3/29/94	695	51.0	0.2 L	425	0.25	9.75
LB-17D	LB-062394-14	6/23/94	646	43.0	0.1	401	0.20	8.21
LB-17D	LB-090794-7	9/7/94	659	39.0	0.3	390	0.17	8.57
LB-17D	LB-121494-10	12/14/94	534	41.0	0.2 L	367	0.24	8.45
LB-17D	LB-030995-05	3/9/95	511	36.0	0.2 L	366	0.21	7.62
LB-17D	LB-062095-11	6/20/95	595	44.0	1.8	377	0.20	8.37
LB-17D	LB-092095-10	9/20/95	854	55.0	0.2 L	416	0.25	9.96
LB-17D	LB-121895-3	12/18/95	611	52.0	0.2 L	394	0.25	8.75
LB-17D	LB-031996-11	3/19/96	662	43.0	0.2 L	342	0.27	8.63
LB-17D	LB-061996-14	6/19/96	593	47.0	0.2 L	387	0.22	8.59
LB-17D	LB-032097-16	3/20/97	512	50.0	0.2 L	345	0.20	7.63
LB-17D	LB-031998-14	3/19/98	540	37.2	0.2 L	340	0.25	7.09
LB-17D	LB-031899-13	3/18/99	390	19.2	0.3	304	0.17	5.62
LB-17D	LB-031600-7	3/16/00	363	16.0	0.2 L	246	0.13	4.98
LB-17D	LB-031401-9	3/14/01	NT	12.5	0.2 L	243	0.07	4.47
LB-17D	LB-031902-07	3/19/02	NT	9.4	0.2 L	192	0.02 L	3.89
LB-17D	LB-031203-7	3/12/03	NT	10.3	0.2 L	226	0.07	4.05
LB-17D	LB-022504-10	2/25/04	NT	10.9	0.2 L	208	0.06	3.76
LB-17D	LB-030905-10	3/9/05	NT	10.3	0.2 L	264	0.06	3.70
LB-17D	LB-031506-7	3/15/06	NT	8.8	0.2 L	184	0.07	3.71
LB-17D	LB-030607-14	3/6/07	NT	11.0	0.1 L	155	0.08	3.93
LB-17D (Dup)	LB-030607-15	3/6/07	NT	11.0	0.1 L	141	0.10	3.98
LB-17D	LB-032008-11	3/20/08	NT	10.1	0.1 L	205	0.078	4.04
LB-17D	LB-17D	3/18/09	NT	7.8	0.1 L	190	0.082	3.57
LB-17D	LB-17D032410	3/24/10	NT	5.8	0.1 L	185	0.090	3.66
LB-17D	LB-17D	3/22/11	277	7.97	0.1 L	209 H	0.0623	3.38
LB-17D	LB-031212-04	3/12/12	NT	19	0.1 L	230	0.12	4.6
LB-17D	LB-020513-05	2/5/13	NT	13	0.1 L	220	0.11	4.2

						Total		
					Nitrate as	Dissolved	Dissolved	Dissolved
Location	Sample Number	Date	Conductivity	Chloride	Nitrogen	Solids	Iron	Manganese
LB-17D	LB-021714-03	2/17/14	NT	10	0.1 L	230	0.11	4.1
LB-17D	LB-021715-05	2/17/15	NT	6.51	0.005 L	212	0.0965	3.82
LB-17D (DUP)	LB-021715-06	2/17/15	NT	6.51	0.005 L	207	0.0965	3.71
LB-17D	LB-021616-01	2/16/16	NT	5.99	0.100 L	179	0.115	3.59
LB-17I	LB-989-W04	9/6/89	1020	85.0	0.2 L	770	45.70	13.3
LB-17I LB-17I	LB-1089-W14 LB-1189-W14	10/19/89 11/15/89	1080 872	125.0 115.0	0.2 L 0.2 L	692 613	46.00	10.1 8.07
LB-17I LB-17I	LB-1189-W14 LB-1289-W29	12/20/89	920	90.0	0.2 L 0.2	585	41.50	
LB-17I LB-17I	LB-1289-W29 LB-1289-W30	12/20/89	920 910	90.0	0.2	585 591	36.50 34.70	7.67 8
LB-17I LB-17I	LB-390-W20	3/15/90	724	90.0 26.9	0.2 0.2 L	391 484	29.30	4.01
LB-17I LB-17I	LB-690-W17	6/21/90		26.9 96.0	0.2 L 0.2 L	484 766		4.01 6.74
			1140				48.50	
LB-17I LB-17I	LB-990-W18 LB-1290-W22	9/19/90 12/13/90	1090 967	92.0 38.4	0.2 L 0.2 L	710 666	37.30 41.50	8.09 7.17
LB-17I LB-17I	LB-1290-W22 LB-391-W20	3/21/91	967 1240	38.4 36.6	0.2 L 0.2 L		41.50 46.40	7.17 6.14
LB-17I LB-17I	LB-391-W20 LB-392-13	3/21/91 3/23/92	1240 1010	36.6 40.0	0.2 L 0.2 L	663 545	46.40 45.90	6.14 3.86
LB-17I LB-17I	LB-63092-6	6/30/92	1210	71.0	0.2 L 0.2 L	708	56.20	5.80 6.5
LB-17I LB-17I	LB-63092-7	6/30/92	1210	71.0	0.2 L 0.2 L	697	56.50	6.49
LB-17I LB-17I	LB-03092-7 LB-91892-3	9/18/92	1230	71.0	0.2 L 0.2 L	746	58.60	7.88
LB-17I LB-17I	LB-91892-3 LB-91892-4	9/18/92	1380	74.0	0.2 L 0.2 L	781	59.90	7.73
LB-17I LB-17I	LB-121192-18	12/11/92	1030	61.0	0.2 L 0.2 L	562	31.20	8.34
LB-17I LB-17I	LB-121192-18 LB-121192-19	12/11/92	1040	62.0	0.2 L 0.2 L	544	31.20	8.51
LB-17I LB-17I	LB-031093-5	3/10/93	896	51.0	0.2 L 0.2 L	501	32.30	7.34
LB-17I LB-17I	LB-031093-3 LB-032994-21	3/10/93	719	35.0	0.2 L 0.2 L	450	25.90	4.89
LB-17I LB-17I	LB-032994-21 LB-030995-06	3/9/95	562	27.0	0.2 L 0.2 L	361	21.00	3.58
LB-17I	LB-031996-10	3/19/96	869	48.0	0.2 L	484	27.00	1.82
LB-17I LB-17I	LB-031990-10 LB-032097-17	3/20/97	557	56.0	0.2 L 0.2 L	366	16.60	1.08
LB-17I LB-17I	LB-032097-17 LB-031998-13	3/19/98	464	30.8	0.2 L 0.2 L	284	14.00	0.913
LB-17I	LB-031998-13 LB-031899-12	3/13/99	418	18.4	0.2 L	297	14.40	0.987
LB-17I	LB-031600-6	3/16/00	304	12.8	0.2 L	220	8.90	0.776
LB-17I	LB-031401-10	3/14/01	NT	13.6	0.2 L 0.2 L	241	8.86	0.778
LB-17I	LB-031902-06	3/19/02	NT	15.8	0.2	252	8.96	1.1
LB-17I	LB-031203-6	3/12/03	NT	18.0	0.2	278	9.99	1.37
LB-17I	LB-031203-0 LB-022504-11	2/25/04	NT	18.0	0.2 0.2 L	242	8.73	1.12
LB-17I LB-17I	LB-030905-11	3/9/05	NT	21.0	0.2 L	288	10.80	1.79
LB-17I LB-17I	LB-030503-11 LB-031506-8	3/3/03	NT	22.8	0.2 0.2 L	344	12.00	1.79
LB-17I LB-17I	LB-031300-8 LB-030607-13	3/6/07	NT	24.2	0.2 L 0.1 L	291	11.30	1.51
LB-17I	LB-030007-13 LB-032008-10	3/20/08	NT	19.2	0.1 L 0.1 L	221	8.5	1.3
LB-17I	LB-17I	3/18/09	NT	10.0	0.1 L	193	6.77	1.12
LB-17I	LB-17I032310	3/23/10	NT	11.8	0.1 L	217	8.44	1.52
LB-171 LB-17I (Dup)	LBDUP1032310	3/23/10	NT	11.7	0.1 L 0.1 L	231	8.41	1.51
LB-17I (Dup)	LB-17I	3/22/11	498	27.4	0.1 L	306 H	8.95	1.55
LB-17I	LB-031312-16	3/13/12	NT	12	0.1 L	240	6.8	0.98
LB-17I	LB-020513-06	2/5/13	NT	10	0.1 L	190	6.0	0.92
LB-17I LB-17I	LB-020313-00 LB-021714-04	2/3/13	NT	12	0.1 L 0.1 L	230	7.2	1.10
LB-17I LB-17I	LB-021714-04 LB-021815-15	2/17/14	NT	9.71	0.005 L	250	9.2	1.10
LB-171 LB-17I	LB-021816-15	2/18/15 2/18/16	NT	10.8	0.003 L 0.100 L	230 229	9.2 9.8	1.55
LD-1/1	TD-021010-13	<i>⊒</i> / 10/ 10	111	10.0	0.100 L	44 <i>)</i>	7.0	1.55

Table B-3
Groundwater Chemistry, Inorganic Parameters and Dissolved Metals Concentrations (mg/L)
1987 through 2016
Leichner Landfill

						Total		
					Nitrate as	Dissolved	Dissolved	Dissolved
Location	Sample Number	Date	Conductivity	Chloride	Nitrogen	Solids	Iron	Manganese
LB-20S	LB-991-19	9/26/81	NT	NT	NT	NT	2.81	7.64
LB-20S	LB-1289-W36	12/21/89	600	27.0	0.2 L	470	0.09	2.14
LB-20S	LB-390-W12	3/14/90	1340	45.7	0.2 L	892	2.72	13.4
LB-20S	LB-690-W08	6/19/90	1250	42.6	0.2 L	880	21.70	13.2
LB-20S	LB-690-W09	6/19/90	1220	41.8	0.2 L	832	21.00	13.3
LB-20S	LB-990-W09	9/14/90	844	22.8	0.2 L	574	0.78	6.88
LB-20S	LB-1290-W10	12/12/90	983	4.1	0.2 L	682	0.17	9
LB-20S	LB-1290-W11	12/12/90	988	21.3	0.2 L	708	0.16	9.32
LB-20S	LB-391-W08	3/20/91	667	9.9	0.2 L	374	0.09	5.07
LB-20S	LB-691-W11	6/11/91	960	NT	NT	583	4.16	9.44
LB-20S	LB-991-19	9/26/91	NT	NT	NT	620	2.81	7.64
LB-20S	LB-1291-5	12/19/91	1160	NT	NT	667	0.63	9.69
LB-20S	LB-392-18	3/24/92	778	20.0	0.2 L	485	0.10	7.34
LB-20S	LB-031593-26	3/15/93	713	10.0	0.2 L	411	1.36	5.34
LB-20S	LB-031593-27	3/15/93	720	11.0	0.2 L	415	1.30	5.28
LB-20S	LB-032994-23	3/29/94	753	20.0	0.2 L	464	2.08	6.4
LB-20S	LB-031395-19	3/13/95	933	45.0	0.2	636	0.37	5.45
LB-20S	LB-032096-20	3/20/96	1020	42.0	0.2 L	620	6.06	7.49
LB-20S	LB-032097-15	3/20/97	625	46.0	0.2 L	459	25.60	3.98
LB-20S	LB-032098-23	3/20/98	467	39.0	0.2 L	297	15.90	1.83
LB-20S	LB-031899-16	3/18/99	279	13.8	0.3	210	11.80	1.28
LB-20S	LB-031700-14	3/17/00	279	14.6	0.2	228	10.60	1.53
LB-20S	LB-031401-13	3/14/01	NT	8.8	0.2 L	278	17.30	2.21
LB-20S	LB-032002-14	3/20/02	NT	3.3	0.2	283	2.07	2.09
LB-20S	LB-031303-20	3/13/03	NT	2.4	0.2 L	194	2.99	1.3
LB-20S	LB-022604-19	2/26/04	NT	2.9	0.2 L	236	0.41	1.01
LB-20S	LB-030905-12	3/9/05	NT	3.3	0.2	388	6.79	2.290
LB-20S	LB-031406-4	3/14/06	NT	2.1	0.2 L	148	0.16	0.026
LB-20S	LB-030607-16	3/6/07	NT	7.3	0.1 L	219	0.031	0.967
LB-20S	LB-032408-16	3/24/08	NT	7.9	0.1 L	186	0.08	1.22
LB-20S	LB-20S	3/18/09	NT	9.2	0.1 L	271	0.281	1.48
LB-20S	LB-20S032410	3/24/10	NT	3.0	0.1	237	0.027	0.34
LB-20S	LB-20S	3/24/11	544	22.1	0.1 L	361	0.368	2.20
LB-20S	LB-031312-15	3/13/12	NT	6.2	0.1 L	210	0.076	2.4
LB-20S	LB-020513-10	2/5/13	NT	17	0.1 L	340	0.18	3.5
LB-20S	LB-021914-20	2/19/14	NT	13	0.1 L	250	0.075	2.4
LB-20S	LB-021915-18	2/19/15	NT	35	0.42	220	0.43	2.0
LB-20S	LB-021716-13	2/17/16	NT	3.02	0.10 L	195	0.226	2.1
LB-26D	LB-031193-14	3/11/93	307	NT	4.7	226	0.02 L	0.024
LB-26D	LB-060193-3	6/1/93	290	NT	4.7	226	0.02 L	0.017
LB-26D	LB-092493-12	9/24/93	293	NT	5.3	216	0.02 L	0.009
LB-26D	LB-121693-16	12/16/93	285	NT	5.2	240	0.14	0.007
LB-26D	LB-032594-7	3/25/94	297	8.3	5.7	223	0.02 L	0.007
LB-26D	LB-062294-6	6/22/94	277	NT	5.4	226	0.03	0.007 0.005 L
LB-26D LB-26D	LB-090894-15 LB-121394-5	9/8/94 12/13/94	296 274	NT 8.5	7.0 6.5	228 233	0.02 L 0.15	0.005 I 0.006

	1		<u> </u>			Total		
					Nitroto os		Dissolved	Dissolved
T	Sample Number	Б.	G 1 4: 14	C1.1 . 1	Nitrate as	Dissolved	Dissolved	Dissolved
Location		Date	Conductivity	Chloride	Nitrogen	Solids	Iron	Manganese
LB-26D	LB-031095-14	3/10/95	252	NT	6.2	199	0.02 L	0.005 L
LB-26D	LB-061995-2	6/19/95	270	NT	7.4	230	0.02 L	0.005 L
LB-26D	LB-092095-4	9/20/95	338	NT	7.5	218	0.00 L	0.005 L
LB-26D	LB-122095-15	12/20/95	325	NT	8.1	233	0.02 L	0.002 J
LB-26D	LB-031996-2	3/19/96	336	NT	8.7	241	0.02 L	0.005 L
LB-26D	LB-061896-2	6/18/96	281	NT	7.7 J	251	0.02	0.005 L
LB-26D	LB-091896-11	9/18/96	347	10.0	8.1	246	0.02 L	0.005 L
LB-26D	LB121796-4	12/17/96	391	12.0	7.9	272	0.02 L	0.005 L
LB-26D	LB-031997-6	3/19/97	306	14.0	8.4	284	0.03	0.005 L
LB-26D	LB-061797-8	6/17/97	379	12.0	7.6	256	0.02 L	0.005 L
LB-26D	LB-091697-4	9/16/97	307	12.8	8.2	251	0.02 L	0.005 L
LB-26D	LB-121697-6	12/16/97	331	12.0	9.3	244	0.02	0.005 L
LB-26D	LB-031998-9	3/19/98	358	11.8	10.0	251	0.02 L	0.005 L
LB-26D	LB-061698-9	6/16/98	247	11.5	9.2	260	0.02	0.005 L
LB-26D	LB-091798-6	9/17/98	324	10.2	8.8	230	0.02 L	0.005 L
LB-26D	LB-121798-3	12/17/98	264	10.3	9.7	272	0.02 L	0.005 L
LB-26D	LB-031899-6	3/18/99	252	10.7	8.9	241	0.02 L	0.005 L
LB-26D	LB-062399-9	6/23/99	251	9.8	9.3	235	0.02 L	0.005 L
LB-26D	LB-091699-3	9/16/99	282	9.3	9.1	234	0.02 L	0.005 L
LB-26D	LB-121599-9	12/15/99	278	8.0	9.0	191	0.04	0.005 L
LB-26D	LB-031700-13	3/17/00	236	7.5	8.4	209	0.02 L	0.005 L
LB-26D	LB-061300-5	6/13/00	240	7.6	9.5	206	0.02 L	0.005 L
LB-26D	LB-091200-4	9/12/00	258	8.1	9.3	203	0.02 L	0.005 L
LB-26D	LB-121500-7	12/15/00	262	6.7	8.2	168	0.02 L	0.005 L
LB-26D	LB-031301-5	3/13/01	NT	6.6	8.1	198	0.02 L	0.005 L
LB-26D	LB-031902-8	3/19/02	NT	5.5	7.2	165	0.02 L	0.005 L
LB-26D	LB-031203-5	3/12/03	NT	4.7	6.0	216	0.02 L	0.005 L
LB-26D	LB-022504-12	2/25/04	NT	4.3	5.1	173	0.02 L	0.005 L
LB-26D	LB-030805-7	3/8/05	NT	4.0	4.8	170	0.02 L	0.005 L
LB-26D	LB-031606-19	3/16/06	NT	3.6	4.9	190	0.02 L	0.005 L
LB-26D	LB-030507-11	3/5/07	NT	4.1	5.3	145	0.02 L	0.005 L
LB-26D	LB-031908-8	3/19/08	NT	4.0	5.2	177	0.02 L	0.005 L
LB-26D	LB-26D	3/17/09	NT	4.3	5.9	144	0.02 L	0.005 L
LB-26D	LB-26D032410	3/24/10	NT	3.9	6.5	194	0.02 L	0.005 L
LB-26D	LB-26D	3/23/11	224	4.97	6.3	196	0.02 L 0.025 L	0.003 L 0.002 L
LB-26D	LB-031212-05	3/12/12	NT	4.8	5.9	190	0.025 L 0.025 L	0.002 L
LB-26D LB-26D	LB-031212-03 LB-020713-23	2/6/13	NT	5.1	5.5	180	0.025 L 0.025 L	0.0034 0.0020 L
LB-26D LB-26D	LB-020713-23 LB-021714-05	2/0/13	NT	5.2	5.5	190	0.025 L 0.025 L	0.0020 L 0.0020 L
LB-26D LB-26D	LB-021715-04	2/17/14	NT NT	4.88	5.58	183	0.025 L 0.025 L	0.0020 L 0.0020 L
LB-26D LB-26D	LB-021713-04 LB-021616-04	2/1//13 2/16/16	NT NT	4.88 5.88	5.76	183 176	0.025 L 0.025 L	0.0020 L 0.0020 L
LB-26I	LB-121092-12	12/10/92	NT	NT	0.7	NT	0.03	0.075
LB-26I	LB-031193-13	3/11/93	638	NT	0.7	380	0.02 L	0.053
LB-26I	LB-060193-1	6/1/93	577	NT	1.0	352	0.02 L	0.027
LB-26I	LB-092493-11	9/24/93	587	NT	1.0	363	0.03	0.039
LB-26I	LB-121693-15	12/16/93	531	NT	0.8	377	0.03	0.031
LB-26I	LB-032594-6	3/25/94	528	NT	1.2	326	0.02 L	0.024
LB-26I	LB-062294-5	6/22/94	488	NT	1.2	329	0.03	0.028

						Total		
					Nitrate as	Dissolved	Dissolved	Dissolved
Location	Sample Number	Date	Conductivity	Chloride	Nitrogen	Solids	Iron	Manganese
LB-26I	LB-090894-16	9/8/94	519	NT	1.3	327	0.03	0.031
LB-26I	LB-121394-4	12/13/94	465	25.0	1.3	307	0.02 L	0.022
LB-26I	LB-031095-13	3/10/95	499	NT	1.1	311	0.02	0.023
LB-26I	LB-061995-1	6/19/95	434	NT	1.6	296	0.02	0.025
LB-26I	LB-092095-5	9/20/95	493	NT	1.8	274	0.03	0.026
LB-26I	LB-122095-14	12/20/95	458	NT	1.9	289	0.02 L	0.013
LB-26I	LB-031996-1	3/19/96	479	NT	1.7	302	0.02 L	0.02
LB-26I	LB-061896-1	6/18/96	387	NT	2.0 J	301	0.02 E	0.02
LB-26I	LB-091896-10	9/18/96	469	25.0	2.0	298	0.02 L	0.016
LB-26I	LB121796-5	12/17/96	498	24.0	2.2	323	0.02 L	0.014
LB-26I	LB-031997-5	3/19/97	424	30.0	3.0	329	0.04	0.014
LB-26I	LB-061797-7	6/17/97	525	30.0	2.3	323	0.04 0.02 L	0.014
LB-26I	LB-091697-5	9/16/97	436	33.4	2.1	312	0.02 L	0.019
LB-26I	LB-121697-7	12/16/97	647	26.8	3.0	444	0.02 L	0.013
LB-26I LB-26I	LB-031998-8	3/19/98	605	34.3	3.6	379	0.03 0.02 L	0.032
LB-26I LB-26I	LB-061698-8	6/16/98	406	35.7	2.7	356	0.02 L 0.02 L	0.015
LB-26I LB-26I	LB-091798-7	9/17/98	557	34.2	2.7	304	0.02 L	0.013
LB-26I LB-26I	LB-091798-7 LB-121798-2	12/17/98	456	35.1	2.4	368	0.03	0.014
LB-26I LB-26I	LB-121798-2 LB-031799-1	3/17/99	456 456	33.7	2.8	368 347	0.04	0.013
LB-26I LB-26I	LB-031799-1 LB-062399-10	6/23/99		22.6	5.1	280	0.02 0.02 L	0.014
			361					
LB-26I	LB-091699-4	9/16/99	535	32.9	2.2	340	0.03	0.013
LB-26I	LB-121599-8	12/15/99	499	30.7	2.9	293	0.02 L	0.01
LB-26I	LB-031700-12	3/17/00	445	28.9	2.4	298	0.02 L	0.011
LB-26I	LB-061300-4	6/13/00	440	30.0	2.6	342	0.02 L	0.01
LB-26I	LB-091200-5	9/12/00	470	26.8	2.7	304	0.02 L	0.0131
LB-26I	LB-121500-8	12/15/00	376	15.2	5.0	217	0.02 L	0.005 L
LB-26I	LB-031301-6	3/13/01	NT	18.3	2.8	284	0.02 L	0.0069
LB-26I	LB-092001-3	9/20/01	NT	15.3	3.4	251	0.02 L	0.011
LB-26I	LB-092001-4	9/20/01	NT	15.5	3.5	266	0.02 L	0.011
LB-26I	LB-031902-09	3/19/02	NT	13.0	3.2	230	0.02 L	0.006
LB-26I	LB-091802-04	9/17/02	NT	11.0	4.0	237	0.02 L	0.014
LB-26I	LB-031203-4	3/12/03	NT	10.0	2.6	238	0.02 L	0.008
LB-26I	LB-092203-4	9/22/03	NT	9.5	2.0	248	0.03	0.015
LB-26I	LB-022504-13	2/25/04	NT	8.3	2.5	192	0.02 L	0.005
LB-26I	LB-090104-26	9/1/04	NT	6.7	2.2	190	0.02 L	0.009
LB-26I	LB-030805-8	3/8/05	NT	8.5	2.3	206	0.02 L	0.006
LB-26I	LB-091405-5	9/14/05	NT	7.4	2.7	190	0.02 L	0.005 L
LB-26I	LB-031606-20	3/16/06	NT	7.1	2.7	230	0.02 L	0.009
LB-26I	LB-091206	9/12/06	NT	6.6	3.2	199	0.02 L	0.010
LB-26I	LB-030507-10	3/5/07	NT	6.7	2.6	193	0.02 L	0.009
LB-26I	LB-091907-5	9/19/07	NT	7.7	2.3	207	0.02 L	0.011
LB-26I	LB-031908-7	3/19/08	NT	10.1	2.1	213	0.02 L	0.011
LB-26I	LB-091608-6	9/16/08	NT	4.1	5.6	168	0.02 L	0.005 L
LB-26I	LB-26I	3/17/09	NT	11.6	2.5	202	0.02 L	0.0057
LB-26I	LB-26I	9/11/09	NT	4.05	5.85	173	0.02 L	0.005 L
LB-26I	LB-26I032410	3/24/10	NT	8.52	3.41	211	0.02 L	0.010
LB-26I	LB26092310	9/23/10	NT	7.71	3.76	229	0.02 L	0.010

						Total		
					Nitrate as	Dissolved	Dissolved	Dissolved
Location	Sample Number	Date	Conductivity	Chloride	Nitrogen	Solids	Iron	Manganese
LB-26I	LB-26I	3/23/11	226	7.97	3.71	226	0.025 L	0.00743
LB-26I	LB-0907113	9/7/11	NT	6.22	5.02	200	0.023 L	0.00743
LB-26I	LB-032212-21	3/22/12	NT	8.4	4.8	200	0.0372	0.00336
LB-26I	LB-032212-21 LB-091112-04	9/11/12	NT	5.8	5.2	200	0.037 0.025 L	0.0020
LB-26I	LB-020613-14	2/6/13	NT	6.0	4.9	200	0.023 L 0.064	0.0020 0.0020 L
LB-26I	LB-020013-14 LB-082113-06	8/21/13	NT	7.5	5.0	200	0.004 0.025 L	0.0020 L 0.0020 L
LB-26I	LB-082113-00 LB-021714-06	2/17/14	NT	6.8	4.6	200	0.025 L 0.036	0.0020 L 0.0020 L
LB-26I (Dup)	LB-021714-00 LB-021714-07	2/17/14	NT	6.9	4.6	200	0.036 0.025 L	0.0020 L 0.0020 L
LB-26I (Dup)	LB-021714-07 LB-081314-05	8/13/14	NT	6.5	5.1	190	0.025 L	0.0020 L 0.0040
LB-26I	LB-081314-03 LB-021815-12	2/18/15	NT	11.0	3.87	210	0.025 L 0.025 L	0.0040
LB-26I	LB-021813-12 LB-081115-06	8/11/15	NT	8.12	4.10	204	0.023 L 0.040 L	0.0024 0.0020 L
LB-26I	LB-031113-00 LB-021616-05	2/16/16	NT	7.53	4. 10 4.27	190	0.040 L	0.0020 L 0.0020 L
LB-26I	LB-021010-05 LB-082316-04	8/23/16	NT NT	7.55 7.5	4.27	180	0.040 L 0.040 L	0.0020 L 0.0026
LB-27D	LB-031193-16	3/11/93	309	NT	1.6	217	0.02 L	0.034
LB-27D	LB-060193-4	6/1/93	302	NT	1.7	196	0.02 L	0.005 L
LB-27D	LB-092493-16	9/24/93	297	NT	1.9	205	0.02 L	0.005 L
LB-27D	LB-092493-17	9/24/93	296	NT	1.8	202	0.02 L	0.005 L
LB-27D	LB-121693-17	12/16/93	270	NT	2.0	235	0.04	0.005 L
LB-27D	LB-121693-18	12/16/93	282	NT	1.9	225	0.02	0.005 L
LB-27D	LB-032494-4	3/24/94	290	NT	0.2 L	210	0.02 L	0.005 L
LB-27D	LB-032494-5	3/24/94	293	NT	0.2 L	209	0.02 L	0.005 L
LB-27D	LB-062294-10	6/22/94	291	NT	1.9	219	0.02 L	0.005 L
LB-27D	LB-062294-9	6/22/94	284	NT	1.9	214	0.02 L	0.005 L
LB-27D	LB-090894-12	9/8/94	303	NT	2.3	214	0.02 L	0.005 L
LB-27D	LB-090894-13	9/8/94	299	NT	2.1	214	0.02 L	0.005 L
LB-27D	LB-121394-2	12/13/94	264	12.0	1.9	215	0.02 L	0.005 L
LB-27D	LB-121394-3	12/13/94	259	12.0	1.9	222	0.02 L	0.005 L
LB-27D	LB-031095-7	3/10/95	274	NT	0.7	193	0.02 L	0.005 L
LB-27D	LB-031095-9	3/10/95	265	NT	1.9	190	0.02	0.005 L
LB-27D	LB-061995-4	6/19/95	272	NT	2.3	217	0.02 L	0.005 L
LB-27D	LB-061995-5	6/19/95	277	NT	2.2	208	0.02 L	0.005 L
LB-27D	LB-092095-1	9/20/95	334	NT	2.1	195	0.00 L	0.005 L
LB-27D	LB-092095-2	9/20/95	326	NT	2.0	205	0.00 L	0.005 L
LB-27D	LB-122095-17	12/20/95	306	NT	2.1	209	0.02 L	0.005 L
LB-27D	LB-122095-18	12/20/95	302	NT	2.1	210	0.06	0.001 J
LB-27D	LB-031996-3	3/19/96	302	NT	2.1	208	0.02 L	0.005 L
LB-27D	LB-061896-4	6/18/96	260	NT	2.2	220	0.10	0.005 L
LB-27D	LB-061896-5	6/18/96	251	NT	NT	217	0.09	0.005 L
LB-27D	LB-091796-9	9/17/96	286	11.0	2.1	214	0.02 L	0.005 L
LB-27D	LB121796-8	12/17/96	303	11.0	2.1	204	0.02 L	0.005 L
LB-27D	LB-031997-12	3/19/97	235	13.0	2.2	221	0.02	0.005 L
LB-27D	LB-061797-11	6/17/97	283	10.0	1.8	210	0.03	0.005 L
LB-27D	LB-091697-8	9/16/97	235	8.4	2.3	216	0.02 L	0.005 L
LB-27D	LB-121797-14	12/17/97	231	11.0	2.2	160	0.02 L	0.005 L
LB-27D	LB-031998-12	3/19/98	301	11.2	2.2	214	0.02 L	0.005 L
LB-27D	LB-061798-10	6/17/98	286	11.1	2.1	218	0.02 L	0.005 L

						Total		
					Nitrate as	Dissolved	Dissolved	Dissolved
Location	Sample Number	Date	Conductivity	Chloride	Nitrogen	Solids	Iron	Manganese
LB-27D	LB-091798-8	9/17/98	286	10.8	2.2	172	0.02 L	0.005 L
LB-27D LB-27D	LB-091798-8 LB-121798-6	12/17/98	286 251	10.8	2.6	240	0.02 L 0.21	0.003 L 0.008
LB-27D LB-27D	LB-031899-9	3/18/99	226	11.4	2.0	213	0.21 0.02 L	0.008 0.005 L
					2.1		0.02 L 0.02	0.005 L 0.005 L
LB-27D LB-27D	LB-062399-7 LB-091599-1	6/23/99	231	10.4	2.3	193		0.005 L 0.005 L
		9/15/99	206	11.1		216	0.16	
LB-27D	LB-121599-7	12/15/99	270	10.7	2.5	195	0.02 L	0.005 L
LB-27D	LB-031600-3	3/16/00	248	10.2	2.4	221	0.02 L	0.005 L
LB-27D	LB-061300-3	6/13/00	249	11.4	2.5	225	0.02 L	0.005 L
LB-27D	LB-091300-8	9/13/00	283	11.9	2.8	198	0.02 L	0.005 L
LB-27D	LB-091300-9	9/13/00	272	11.2	2.6	209	0.02 L	0.005 L
LB-27D	LB-121500-5	12/15/00	294	11.4	2.5	207	0.02 L	0.005 L
LB-27D	LB-031301-3	3/13/01	NT	12.2	2.7	226	0.02 L	0.005 L
LB-27D	LB-031902-11	3/19/02	NT	13.5	2.8	187	0.02 L	0.005 L
LB-27D	LB-031203-3	3/12/03	NT	12.7	3.0	218	0.02 L	0.005 L
LB-27D	LB-022604-15	2/26/04	NT	12.7	2.9	236	0.02 L	0.005 L
LB-27D (Dup)	LB-022604-16	2/26/04	NT	12.5	2.9	238	0.02 L	0.005 L
LB-27D	LB-030805-6	3/8/05	NT	13.6	3.0	248	0.02 L	0.017
LB-27D	LB-031606-17	3/16/06	NT	12.4	3.2	242	0.02 L	0.005 L
LB-27D	LB-030507-9	3/5/07	NT	11.5	3.3	209	0.02 L	0.005 L
LB-27D	LB-031908-5	3/19/08	NT	11.1	3.4	241	0.02 L	0.005 L
LB-27D	LB-031908-6	3/19/08	NT	11.9	1.4	364	0.02 L	0.285
LB-27D	LB-27D	3/18/09	NT	10.7	3.5	217	0.02 L	0.005 L
LB-27D	LB-27D032410	3/24/10	NT	9.8	3.9	238	0.02 L	0.005 L
LB-27D	LB-27D	3/25/11	307	10.4	3.77	245	0.025 L	0.002 L
LB-27D	LB-031212-02	3/12/12	NT	10	4.0	220	0.033	0.0054
LB-27D	LB-020713-21	2/7/13	NT	10	4.2	230	0.083	0.018
LB-27D	LB-021814-13	2/18/14	NT	13	4.1	230	0.057	0.0075
LB-27D	LB-021715-02	2/17/15	NT	8.88	4.09	265	0.228	0.0127
LB-27D	LB-021816-18	2/18/16	NT	8.86	4.11	216	0.040 L	0.0020 L
LB-27I	LB-121192-20	12/11/92	NT	NT	6.2	NT	0.04	0.471
LB-27I	LB-031293-21	3/12/93	729	NT	4.5	459	0.02 L	0.343
LB-27I	LB-060193-2	6/1/93	706	NT	3.8	436	0.02 L	0.283
LB-27I	LB-092493-14	9/24/93	785	NT	21.0	526	0.07	0.413
LB-27I	LB-092493-15	9/24/93	771	NT	20.0	504	0.08	0.381
LB-27I	LB-121693-19	12/16/93	676	NT	22.0	499	0.03	0.284
LB-27I	LB-121693-20	12/16/93	711	NT	22.0	506	0.04	0.28
LB-27I	LB-032494-3	3/24/94	685	NT	NT	469	0.02 L	0.276
LB-27I	LB-062294-8	6/22/94	582	NT	5.3	397	0.02	0.213
LB-27I	LB-090894-11	9/8/94	573	NT	6.2	402	0.03	0.238
LB-27I	LB-121394-1	12/13/94	519	13.0	16.0	410	0.02	0.267
LB-27I	LB-031095-7	3/10/95	573	NT	9.0	346	0.02	0.198
LB-27I	LB-061995-3	6/19/95	566	NT	7.5	394	0.02	0.188
LB-27I	LB-092095-3	9/20/95	651	NT	1.2	377	0.03	0.247
LB-27I	LB-122095-16	12/20/95	584	NT	0.8	353	0.02 L	0.236
LB-27I	LB-031996-4	3/19/96	653	NT	0.2 L	392	0.10	0.273
LB-27I	LB-061896-3	6/18/96	532	NT	0.0 J	414	0.03	0.282

						Total		
					Nitrate as	Dissolved	Dissolved	Dissolved
Location	Sample Number	Date	Conductivity	Chloride	Nitrogen	Solids	Iron	Manganese
LB-27I	LB-091796-7	9/17/96	859	38.0	0.2 L	555	0.08	0.352
LB-27I LB-27I	LB-091796-8	9/17/96	874	39.0	0.2 L 0.2 L	552	0.03	0.356
LB-27I LB-27I	LB121796-6	12/17/96	1150	30.0	30.0	650	0.03	0.373
LB-27I LB-27I	LB121796-0 LB121796-7	12/17/96	1140	29.0	60.0	650	0.04 0.02 L	0.373
LB-27I LB-27I	LB-031997-10	3/19/97	681	49.0	1.1	530	0.02 L 0.04	0.304
LB-27I LB-27I	LB-031997-10 LB-031997-11	3/19/97	747	49.0	1.1	523	0.04	0.312
LB-27I LB-27I		6/17/97	747 762			323 459		
II	LB-061797-10			44.0	0.1 0.1		0.03	0.277
LB-27I	LB-061797-9	6/17/97	764	43.0		459	0.03	0.273
LB-27I	LB-091697-6	9/16/97	844	48.9	0.2 L	690	0.03	0.396
LB-27I	LB-091697-7	9/16/97	860	49.3	0.2 L	671	0.03	0.396
LB-27I	LB-121797-11	12/17/97	720	30.7	0.2 L	609	0.03	0.406
LB-27I	LB-121797-12	12/17/97	738	30.5	0.2 L	589	0.03	0.397
LB-27I	LB-031998-10	3/19/98	877	25.9	0.2 L	576	0.04	0.381
LB-27I	LB-031998-11	3/19/98	896	26.6	0.2 L	573	0.03	0.373
LB-27I	LB-061798-11	6/17/98	869	37.0	0.4	602	0.04	0.342
LB-27I	LB-061798-12	6/17/98	729	36.7	0.4	599	0.04	0.342
LB-27I	LB-091798-10	9/17/98	1030	47.0	0.2	620	0.04	0.375
LB-27I	LB-091798-9	9/17/98	1030	46.5	0.2 L	586	0.04	0.388
LB-27I	LB-121798-4	12/17/98	714	36.0	0.2 L	545	0.04	0.354
LB-27I	LB-121798-5	12/17/98	710	36.3	0.2 L	522	0.04	0.36
LB-27I	LB-031899-7	3/18/99	712	39.3	0.7	565	0.04	0.335
LB-27I	LB-031899-8	3/18/99	707	39.5	0.7	565	0.04	0.29
LB-27I	LB-062399-8	6/23/99	693	46.4	1.0	502	0.03	0.305
LB-27I	LB-091599-2	9/15/99	691	56.7	0.3	602	0.03	0.336
LB-27I	LB-121599-6	12/15/99	910	81.4	0.2	553	0.04	3.72
LB-27I	LB-031600-1	3/16/00	803	69.4	0.2 L	675	0.02 L	0.356
LB-27I	LB-031600-2	3/16/00	810	69.1	0.2 L	598	0.21	0.349
LB-27I	LB-061300-1	6/13/00	743	70.9	0.1 L	532	0.03	0.305
LB-27I	LB-061300-2	6/13/00	738	70.5	0.1 L	662	0.02	0.322
LB-27I	LB-091300-10	9/13/00	819	47.5	0.7	368	0.02	0.289
LB-27I	LB-121500-6	12/15/00	885	66.0	1.2	504	0.02 L	0.0851
LB-27I	LB-031301-4	3/13/01	NT	42.8	0.1 L	226	0.02 L	0.268
LB-27I	LB-092001-2	9/20/01	NT	39.7	0.1 L	378	0.02 L	0.186
LB-27I	LB-031902-10	3/19/02	NT	42.1	0.6	403	0.02 L	0.277
LB-27I	LB-091802-05	9/17/02	NT	25.0	8.0	382	0.02 L	0.243
LB-27I	LB-031203-1	3/12/03	NT	23.0	1.4	384	0.02 L	0.187
LB-27I	LB-031203-2	3/12/03	NT	23.0	1.4	312	0.02 L	0.206
LB-27I	LB-092203-2	9/22/03	NT	26.0	1.2	424	0.02 L	0.516
LB-27I	LB-092203-3	9/22/03	NT	25.0	1.2	388	0.02 L	0.545
LB-27I	LB-022604-17	2/26/04	NT	18.5	0.2 L	288	0.02 L	0.193
LB-27I	LB-090104-27	9/1/04	NT	20.4	1.1	268	0.02 L	0.217
LB-27I	LB-030805-5	3/8/05	NT	10.9	2.8	312	0.02 L	0.195
LB-27I	LB-091405-3	9/14/05	NT	12.4	2.4	316	0.02 L	0.131
LB-27I	LB-031606-18	3/16/06	NT	9.7	4.2	346	0.02 L	0.121
LB-27I	LB-091206-2	9/12/06	NT	14.8	1.9	346	0.02 L	0.185
LB-27I	LB-030507-8	3/5/07	NT	14.2	2.2	363	0.02 L	0.238
LB-27I	LB-091907-4	9/19/07	NT	16.7	0.1 L	295	0.04	0.530

Table B-3 **Groundwater Chemistry, Inorganic Parameters and Dissolved Metals Concentrations (mg/L)** 1987 through 2016 **Leichner Landfill**

						Total		
					Nitrate as	Dissolved	Dissolved	Dissolved
Location	Sample Number	Date	Conductivity	Chloride	Nitrogen	Solids	Iron	Manganese
LB-27I	LB-031908-4	3/19/08	NT	11.9	1.4	340	0.02 L	0.282
LB-27I	LB-091608-7	9/16/08	NT	17.0	1.0	311	0.02 L	0.196
LB-27I	LB-27I	3/18/09	NT	14.3	2.1	322	0.02 L	0.186
LB-27I	LBLF27i091109	9/11/09	NT	19.3	0.86	309	0.02 L	0.173
LB-27I	LB-27I032410	3/24/10	NT	7.7	1.82	266	0.02 L	0.121
LB-27I	LB27I092310	9/23/10	NT	19.4	0.62	311	0.02 L	0.196
LB-27I	LB-27I	3/25/11	512	20.1	0.14	335	0.025 L	0.191
LB-27I	LB-090711-01	9/7/11	NT	41.2	0.10 L	464	0.050 L	0.456
LB-27I	LB-032212-18	3/22/12	NT	23	0.2	370	0.025 L	0.38
LB-27I	LB-091112-02	9/11/12	NT	32	0.2 L, H	420	0.032	0.54
LB-27I	LB-020613-11	2/6/13	NT	41	0.22	380	0.025 L	0.52
LB-27I (Dup)	LB-020613-12	2/6/13	NT	42	0.21	380	0.025 L	0.52
LB-27I	LB-082113-03	8/21/13	NT	51	0.10 L	420	0.025 L	0.41
LB-27I (Dup)	LB-082113-05	8/21/13	NT	51	0.10 L	420	0.025 L	0.42
LB-27I	LB-021814-14	2/18/14	NT	30	0.40	340	0.025 L	0.43
LB-27I	LB-081314-03	8/13/14	NT	34	0.10 L	360	0.025 L	0.33
LB-27I	LB-021815-10	2/18/15	NT	36	0.30	390	0.025 L	0.46
LB-27I	LB-081215-09	8/12/15	NT	35.1	0.20 L	352	0.040 L	0.328
LB-27I	LB-021816-19	2/18/16	NT	21.7	0.91	329	0.040 L	0.253
LB-27I	LB-082316-02	8/23/16	NT	29.0	0.20 L	350	0.040 L	0.310
FIELDQC	LB-021716-07	2/17/16	NT	0.20 L	0.100 L	10	0.040 L	0.0020 L
FIELDQC	LB-082416-06	8/24/16	NT	0.20 L	0.100 L	10	0.040 L	0.0020 L
Notes:			-					

Conductivity = umhos/cm; B = analyte detected above the MDL but below the MRL; L = not detected at or above method reporting limit; J = estimated concentration; H = due to laboratory error, sample was extracted and analyzed past the recommended 7-day hold time; NT = not tested.

APPENDIX C

2016 Laboratory Analytical Data (Provided on attached CD only)

First Quarter (February) 2016 Laboratory Reports

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-57302-1

Client Project/Site: Leichner Landfill - Wash.

For:

SCS Engineers 14945 SW Sequoia Parkway Suite 180 Portland, Oregon 97224

Attn: Mr. Jason Davendonis

Saral Murphy

Authorized for release by: 3/9/2016 4:11:56 PM

Sarah Murphy, Project Manager I (253)922-2310

sarah.murphy@testamericainc.com

.....LINKS

Review your project results through Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: SCS Engineers Project/Site: Leichner Landfill - Wash. TestAmerica Job ID: 580-57302-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	4
Client Sample Results	5
QC Sample Results	19
Chronicle	26
Certification Summary	28
Sample Summary	29
Subcontract Data	30
Chain of Custody	34
Receint Checklists	36

4

5

Q

9

Case Narrative

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57302-1

Job ID: 580-57302-1

Laboratory: TestAmerica Seattle

Narrative

Receipt

The samples were received on 2/16/2016 3:30 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 8.7° C.

Receipt Exceptions

The following samples was received at the laboratory outside the required temperature criteria: LB-021616-01 (580-57302-1), LB-021616-02 (580-57302-2), LB-021616-03 (580-57302-3), LB-021616-04 (580-57302-4), LB-021616-05 (580-57302-5), LB-021616-06 (580-57302-6) and Trip Blanks (580-57302-7). The sample(s) are considered acceptable since they were collected and submitted to the laboratory on the same day and there is evidence that the chilling process has begun.

CoC indicates that there are field filtered samples. However, none of the containers received are specifically labeled as field filtered. It was assumed at login and confirmed with the client that all HNO3 containers were field filtered, and containers were logged in as such. LB-021616-01 (580-57302-1), LB-021616-02 (580-57302-2), LB-021616-03 (580-57302-3), LB-021616-04 (580-57302-4), LB-021616-05 (580-57302-5), LB-021616-06 (580-57302-6) and Trip Blanks (580-57302-7)

GC/MS VOA

Method(s) 8260B: The continuing calibration verification (CCV) associated with batch 580-211711 recovered above the upper control limit for multi analytes. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: LB-021616-01 (580-57302-1), LB-021616-02 (580-57302-2), LB-021616-03 (580-57302-3), LB-021616-04 (580-57302-4), LB-021616-05 (580-57302-5), LB-021616-06 (580-57302-6), Trip Blanks (580-57302-7) and (CCVIS 580-211711/2).

Method(s) 8260B: The laboratory control sample (LCS) for batch analytical batch 580-211711 recovered outside control limits for the following analytes: 1,2,3-Trichloropropane and Chlorodibromomethane. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

The laboratory control sample duplicate (LCSD) for batch analytical batch 580-211711 recovered outside control limits for the following analytes: 1,2,3-Trichloropropane, cis-1,3-Dichloropropene and Chlorodibromomethane. These analytes were biased high in the LCSD and were not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Method(s) 300.0: The following samples in Anion batch 160-239571 were diluted to bring the concentrations of target analytes within the calibration range: LB-021616-01 (580-57302-1), LB-021616-02 (580-57302-2), LB-021616-03 (580-57302-3), LB-021616-04 (580-57302-4), LB-021616-05 (580-57302-5) and LB-021616-06 (580-57302-6). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Subcontract Work

Method 300.0 Nitrogen, Nitrate: This method was subcontracted to Pixis Laboratories, LLC. The subcontract laboratory certification is different from that of the facility issuing the final report.

8

3

40

11

Definitions/Glossary

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57302-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
-----------	-----------------------

* LCS or LCSD is outside acceptance limits.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration

MDL ML Method Detection Limit Minimum Level (Dioxin)

NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57302-1

Lab Sample ID: 580-57302-1

Matrix: Water

Client Sample ID: LB-021616-01

Date Collected: 02/16/16 10:05 Date Received: 02/16/16 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
I,1,1,2-Tetrachloroethane	ND		0.500		ug/L			02/22/16 14:13	
I,1,1-Trichloroethane	ND		0.500		ug/L			02/22/16 14:13	
1,1,2,2-Tetrachloroethane	ND		0.500		ug/L			02/22/16 14:13	
1,1,2-Trichloroethane	ND		0.500		ug/L			02/22/16 14:13	
1,1-Dichloroethane	ND		0.500		ug/L			02/22/16 14:13	
1,1-Dichloropropene	ND		0.500		ug/L			02/22/16 14:13	•
1,2,3-Trichlorobenzene	ND		2.00		ug/L			02/22/16 14:13	
1,2,3-Trichloropropane	ND	*	0.500		ug/L			02/22/16 14:13	
1,2,4-Trichlorobenzene	ND		2.00		ug/L			02/22/16 14:13	
I,2,4-Trimethylbenzene	ND		2.00		ug/L			02/22/16 14:13	
1,2-Dibromo-3-Chloropropane	ND		2.00		ug/L			02/22/16 14:13	
I,2-Dibromoethane	ND		2.00		ug/L			02/22/16 14:13	
1,2-Dichlorobenzene	ND		0.500		ug/L			02/22/16 14:13	
I,2-Dichloroethane	ND		0.500		ug/L			02/22/16 14:13	
I,2-Dichloropropane	ND		0.500		ug/L			02/22/16 14:13	
I,3,5-Trimethylbenzene	ND		2.00		ug/L			02/22/16 14:13	
I,3-Dichlorobenzene	ND		0.500		ug/L			02/22/16 14:13	
I,3-Dichloropropane	ND		0.500		ug/L			02/22/16 14:13	
1,4-Dichlorobenzene	ND		0.500		ug/L			02/22/16 14:13	
2,2-Dichloropropane	ND		0.500		ug/L			02/22/16 14:13	
2-Butanone	ND		20.0		ug/L			02/22/16 14:13	
2-Chlorotoluene	ND		2.00		ug/L			02/22/16 14:13	
2-Hexanone	ND		20.0		ug/L			02/22/16 14:13	
I-Chlorotoluene	ND		2.00		ug/L			02/22/16 14:13	
I-Methyl-2-pentanone	ND		20.0		ug/L			02/22/16 14:13	
Acetone	ND		20.0		ug/L			02/22/16 14:13	
Benzene	ND		0.500		ug/L			02/22/16 14:13	
Bromobenzene	ND		2.00		ug/L			02/22/16 14:13	
Bromochloromethane	ND		0.500		ug/L			02/22/16 14:13	
Bromodichloromethane	ND		0.500		ug/L			02/22/16 14:13	
Bromoform	ND		0.500		ug/L			02/22/16 14:13	
Bromomethane	ND		1.00		ug/L			02/22/16 14:13	
Carbon disulfide	ND		0.500		ug/L			02/22/16 14:13	
Carbon tetrachloride	ND		0.500		ug/L			02/22/16 14:13	
Chlorobenzene	ND		0.500		ug/L			02/22/16 14:13	
Chloroethane	ND		0.500		ug/L			02/22/16 14:13	
Chloroform	ND		0.500		ug/L			02/22/16 14:13	
Chloromethane	ND		0.500		ug/L			02/22/16 14:13	
cis-1,2-Dichloroethene	ND		0.500		ug/L			02/22/16 14:13	
cis-1,3-Dichloropropene	ND	*	0.500					02/22/16 14:13	
Dibromochloromethane	ND ND		0.500		ug/L			02/22/16 14:13	
Dibromomethane	ND ND		0.500		ug/L			02/22/16 14:13	
Dichlorodifluoromethane					ug/L				
	ND ND		0.500		ug/L			02/22/16 14:13	
Ethylbenzene			0.500		ug/L			02/22/16 14:13	
Hexachlorobutadiene	ND		2.00		ug/L			02/22/16 14:13	
	ND		2.00		ug/L			02/22/16 14:13	•
sopropylbenzene			4.00		/1			00/00/40 44:40	
sopropyibenzene Methyl tert-butyl ether Methylene Chloride	ND ND		1.00 2.00		ug/L ug/L			02/22/16 14:13 02/22/16 14:13	

TestAmerica Seattle

Page 5 of 37

3/9/2016

3

5

7

9

11

RL

2.00

2.00

2.00

2.00

2.00

0.500

0.500

0.500

0.500

0.500

0.500

ug/L

ug/L

ug/L

2.00

0.500

Client: SCS Engineers

Analyte

o-Xylene

Styrene

Toluene

Naphthalene

n-Butylbenzene

N-Propylbenzene

p-Isopropyltoluene

sec-Butylbenzene

tert-Butylbenzene

Tetrachloroethene

Trichloroethene

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Project/Site: Leichner Landfill - Wash.

Date Collected: 02/16/16 10:05

Date Received: 02/16/16 15:30

Client Sample ID: LB-021616-01

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

ND

TestAmerica Job ID: 580-57302-1

Lab Sample ID: 580-57302-1

ab Sample ID. 500-57 502-1

02/22/16 14:13

02/22/16 14:13

02/22/16 14:13

Matrix: Water

Į

Trichlorofluoromethane	ND	0.500	ug/L		02/22/16 14:13	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108	70 - 128			02/22/16 14:13	1
4-Bromofluorobenzene (Surr)	94	75 - 120			02/22/16 14:13	1
Dibromofluoromethane (Surr)	93	85 - 115			02/22/16 14:13	1
Toluene-d8 (Surr)	105	75 - 125			02/22/16 14:13	1
Trifluorotoluene (Surr)	97	80 - 127			02/22/16 14:13	1

Method: 300.0 - Anions, Ion C	hromatography - D	L					
Analyte	Result Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5.99	1.00	mg/L			03/08/16 15:38	5

Method: 6020 - Metals (ICP/M	S) - Dissolved						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Iron	0.115	0.0400	mg/L		02/19/16 14:39	02/22/16 16:18	1
Manganese	3.59	0.00200	mg/L		02/19/16 14:39	02/22/16 16:18	1

Analyte	Result	Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	179		10.0	mg/L			02/18/16 18:48	1

4

6

8

10

11

17

3/9/2016

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57302-1

Lab Sample ID: 580-57302-2

Matrix: Water

Client Sample ID: LB-021616-02 Date Collected: 02/16/16 11:05

Date Received: 02/16/16 15:30

Method: 8260B - Volatile Org			MDI III	_	B	A 1	D.: -
Analyte	Result Qu		MDL Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND	0.500	ug/L			02/22/16 14:40	
1,1,1-Trichloroethane	ND	0.500	ug/L			02/22/16 14:40	
1,1,2,2-Tetrachloroethane	ND	0.500	ug/L			02/22/16 14:40	
1,1,2-Trichloroethane	ND	0.500	ug/L			02/22/16 14:40	
1,1-Dichloroethane	ND	0.500	ug/L			02/22/16 14:40	
1,1-Dichloropropene	ND	0.500	ug/L			02/22/16 14:40	
1,2,3-Trichlorobenzene	ND	2.00	ug/L			02/22/16 14:40	
1,2,3-Trichloropropane	ND *	0.500	ug/L			02/22/16 14:40	
1,2,4-Trichlorobenzene	ND	2.00	ug/L			02/22/16 14:40	
1,2,4-Trimethylbenzene	ND	2.00	ug/L			02/22/16 14:40	
1,2-Dibromo-3-Chloropropane	ND	2.00	ug/L			02/22/16 14:40	
I,2-Dibromoethane	ND	2.00	ug/L			02/22/16 14:40	
1,2-Dichlorobenzene	ND	0.500	ug/L			02/22/16 14:40	
1,2-Dichloroethane	ND	0.500	ug/L			02/22/16 14:40	
1,2-Dichloropropane	ND	0.500	ug/L			02/22/16 14:40	
1,3,5-Trimethylbenzene	ND	2.00	ug/L			02/22/16 14:40	
1,3-Dichlorobenzene	ND	0.500	ug/L			02/22/16 14:40	
1,3-Dichloropropane	ND	0.500	ug/L			02/22/16 14:40	
1,4-Dichlorobenzene	ND	0.500	ug/L			02/22/16 14:40	
2,2-Dichloropropane	ND	0.500	ug/L			02/22/16 14:40	
2-Butanone	ND	20.0	ug/L			02/22/16 14:40	
2-Chlorotoluene	ND	2.00	ug/L			02/22/16 14:40	
2-Hexanone	ND	20.0	ug/L			02/22/16 14:40	
I-Chlorotoluene	ND	2.00	ug/L			02/22/16 14:40	
I-Methyl-2-pentanone	ND	20.0	ug/L			02/22/16 14:40	
Acetone	ND	20.0	ug/L			02/22/16 14:40	
Benzene	ND	0.500	ug/L			02/22/16 14:40	
Bromobenzene	ND	2.00	ug/L			02/22/16 14:40	
Bromochloromethane	ND	0.500	ug/L			02/22/16 14:40	
Bromodichloromethane	ND	0.500	ug/L			02/22/16 14:40	
Bromoform	ND	0.500	ug/L			02/22/16 14:40	
Bromomethane	ND	1.00	ug/L			02/22/16 14:40	
Carbon disulfide	ND	0.500	ug/L			02/22/16 14:40	
Carbon tetrachloride	ND	0.500	ug/L			02/22/16 14:40	
Chlorobenzene	ND	0.500	ug/L			02/22/16 14:40	
Chloroethane	ND	0.500	ug/L			02/22/16 14:40	
Chloroform	ND	0.500	ug/L			02/22/16 14:40	
Chloromethane	ND	0.500	ug/L			02/22/16 14:40	
cis-1,2-Dichloroethene	ND	0.500	ug/L			02/22/16 14:40	
cis-1,3-Dichloropropene	ND *	0.500	ug/L			02/22/16 14:40	
Dibromochloromethane	ND *	0.500	ug/L			02/22/16 14:40	
Dibromomethane	ND	0.500	ug/L			02/22/16 14:40	
Dichlorodifluoromethane	ND	0.500				02/22/16 14:40	
	ND ND	0.500	ug/L			02/22/16 14:40	
Ethylbenzene Hexachlorobutadiene	ND ND	2.00	ug/L			02/22/16 14:40	
			ug/L				
sopropylbenzene	ND	2.00	ug/L			02/22/16 14:40	
Methyl tert-butyl ether	ND	1.00	ug/L			02/22/16 14:40	
Methylene Chloride m-Xylene & p-Xylene	ND ND	2.00 0.500	ug/L ug/L			02/22/16 14:40 02/22/16 14:40	

TestAmerica Seattle

Page 7 of 37

3/9/2016

3

5

7

9

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57302-1

Client Sample ID: LB-021616-02

Lab Sample ID: 580-57302-2 Date Collected: 02/16/16 11:05

Matrix: Water

Date Received: 02/16/16 15:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		2.00		ug/L			02/22/16 14:40	1
n-Butylbenzene	ND		2.00		ug/L			02/22/16 14:40	1
N-Propylbenzene	ND		2.00		ug/L			02/22/16 14:40	1
o-Xylene	ND		0.500		ug/L			02/22/16 14:40	1
p-Isopropyltoluene	ND		2.00		ug/L			02/22/16 14:40	1
sec-Butylbenzene	ND		2.00		ug/L			02/22/16 14:40	1
Styrene	ND		0.500		ug/L			02/22/16 14:40	1
tert-Butylbenzene	ND		2.00		ug/L			02/22/16 14:40	1
Tetrachloroethene	ND		0.500		ug/L			02/22/16 14:40	1
Toluene	ND		0.500		ug/L			02/22/16 14:40	1
trans-1,2-Dichloroethene	ND		0.500		ug/L			02/22/16 14:40	1
trans-1,3-Dichloropropene	ND		0.500		ug/L			02/22/16 14:40	1
Trichloroethene	ND		0.500		ug/L			02/22/16 14:40	1
Trichlorofluoromethane	ND		0.500		ug/L			02/22/16 14:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110		70 - 128					02/22/16 14:40	1
4-Bromofluorobenzene (Surr)	92		75 - 120					02/22/16 14:40	1
Dibromofluoromethane (Surr)	93		85 - 115					02/22/16 14:40	1
Toluene-d8 (Surr)	106		75 - 125					02/22/16 14:40	1
Trifluorotoluene (Surr)	99		80 - 127					02/22/16 14:40	1
Method: 300.0 - Anions, lo	n Chromatogra	phy - DL							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5.03		1.00		mg/L			03/08/16 16:26	5
Method: 6020 - Metals (ICP	/MS) - Dissolv	ed							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND		0.0400		mg/L		02/19/16 14:39	02/22/16 16:23	1
Manganese	ND		0.00200		mg/L		02/19/16 14:39	02/22/16 16:23	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	170		10.0		mg/L			02/18/16 18:48	

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57302-1

Lab Sample ID: 580-57302-3

Matrix: Water

Client Sample ID: LB-021616-03

Date Collected: 02/16/16 11:00
Date Received: 02/16/16 15:30

Method: 8260B - Volatile Org			MDI 11-14	_	D	A	D:: -
Analyte	Result		MDL Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND	0.500	ug/L			02/22/16 15:07	
1,1,1-Trichloroethane	ND	0.500	ug/L			02/22/16 15:07	
1,1,2,2-Tetrachloroethane	ND	0.500	ug/L			02/22/16 15:07	
1,1,2-Trichloroethane	ND	0.500	ug/L			02/22/16 15:07	
1,1-Dichloroethane	ND	0.500	ug/L			02/22/16 15:07	
1,1-Dichloropropene	ND	0.500	ug/L			02/22/16 15:07	
1,2,3-Trichlorobenzene	ND	2.00	ug/L			02/22/16 15:07	
1,2,3-Trichloropropane	ND ¹		ug/L			02/22/16 15:07	
1,2,4-Trichlorobenzene	ND	2.00	ug/L			02/22/16 15:07	
1,2,4-Trimethylbenzene	ND	2.00	ug/L			02/22/16 15:07	
1,2-Dibromo-3-Chloropropane	ND	2.00	ug/L			02/22/16 15:07	
1,2-Dibromoethane	ND	2.00	ug/L			02/22/16 15:07	
1,2-Dichlorobenzene	ND	0.500	ug/L			02/22/16 15:07	
1,2-Dichloroethane	ND	0.500	ug/L			02/22/16 15:07	
1,2-Dichloropropane	ND	0.500	ug/L			02/22/16 15:07	
1,3,5-Trimethylbenzene	ND	2.00	ug/L			02/22/16 15:07	
1,3-Dichlorobenzene	ND	0.500	ug/L			02/22/16 15:07	
1,3-Dichloropropane	ND	0.500	ug/L			02/22/16 15:07	
1,4-Dichlorobenzene	ND	0.500	ug/L			02/22/16 15:07	
2,2-Dichloropropane	ND	0.500	ug/L			02/22/16 15:07	
2-Butanone	ND	20.0	ug/L			02/22/16 15:07	
2-Chlorotoluene	ND	2.00	ug/L			02/22/16 15:07	
2-Hexanone	ND	20.0	ug/L			02/22/16 15:07	
I-Chlorotoluene	ND	2.00	ug/L			02/22/16 15:07	
1-Methyl-2-pentanone	ND	20.0	ug/L			02/22/16 15:07	
Acetone	ND	20.0	ug/L			02/22/16 15:07	
Benzene	ND	0.500	ug/L			02/22/16 15:07	
Bromobenzene	ND	2.00	ug/L			02/22/16 15:07	
Bromochloromethane	ND	0.500	ug/L			02/22/16 15:07	
Bromodichloromethane	ND	0.500	ug/L			02/22/16 15:07	
Bromoform	ND	0.500	ug/L			02/22/16 15:07	
Bromomethane	ND	1.00	ug/L			02/22/16 15:07	
Carbon disulfide	ND	0.500	ug/L			02/22/16 15:07	
Carbon tetrachloride	ND	0.500	ug/L			02/22/16 15:07	
Chlorobenzene	ND	0.500	ug/L			02/22/16 15:07	
Chloroethane	ND	0.500	ug/L			02/22/16 15:07	
Chloroform	ND	0.500	ug/L			02/22/16 15:07	
Chloromethane	ND	0.500	ug/L			02/22/16 15:07	
cis-1,2-Dichloroethene	ND	0.500	ug/L			02/22/16 15:07	
cis-1,3-Dichloropropene	ND 1	* 0.500	ug/L			02/22/16 15:07	
Dibromochloromethane	ND 1		ug/L			02/22/16 15:07	
Dibromomethane	ND ND	0.500	ug/L			02/22/16 15:07	
Dichlorodifluoromethane	ND	0.500	.			02/22/16 15:07	
	ND ND	0.500	ug/L			02/22/16 15:07	
Ethylbenzene Hexachlorobutadiene	ND ND	2.00	ug/L			02/22/16 15:07	
Hexachlorobutadiene			ug/L				
sopropylbenzene	ND	2.00	ug/L			02/22/16 15:07	
Methyl tert-butyl ether	ND	1.00	ug/L			02/22/16 15:07	
Methylene Chloride m-Xylene & p-Xylene	ND ND	2.00 0.500	ug/L ug/L			02/22/16 15:07 02/22/16 15:07	

TestAmerica Seattle

3/9/2016

Page 9 of 37

2

<u>ر</u>

8

9

11

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

Date Received: 02/16/16 15:30

TestAmerica Job ID: 580-57302-1

Client Sample ID: LB-021616-03

Lab Sample ID: 580-57302-3 Date Collected: 02/16/16 11:00

Matrix: Water

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued) Analyte Result Qualifier **MDL** Unit D Dil Fac RL Prepared **Analyzed** Naphthalene ND 2.00 ug/L 02/22/16 15:07 n-Butylbenzene ND 2.00 ug/L 02/22/16 15:07 N-Propylbenzene ND 2.00 ug/L 02/22/16 15:07 o-Xylene ND 0.500 ug/L 02/22/16 15:07 p-Isopropyltoluene ND 2.00 ug/L 02/22/16 15:07 sec-Butylbenzene ND 2.00 ug/L 02/22/16 15:07 Styrene ND 0.500 ug/L 02/22/16 15:07 ND tert-Butylbenzene 2.00 ug/L 02/22/16 15:07 Tetrachloroethene ND 0.500 ug/L 02/22/16 15:07 Toluene ND 0.500 ug/L 02/22/16 15:07 0.500 trans-1,2-Dichloroethene ND ug/L 02/22/16 15:07 trans-1,3-Dichloropropene ND 0.500 ug/L 02/22/16 15:07 Trichloroethene ND ug/L 0.500 02/22/16 15:07 Trichlorofluoromethane ND 0.500 ug/L 02/22/16 15:07 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 111 70 - 128 02/22/16 15:07 4-Bromofluorobenzene (Surr) 96 75 - 120 02/22/16 15:07 Dibromofluoromethane (Surr) 96 85 - 115 02/22/16 15:07 105 75 - 125 Toluene-d8 (Surr) 02/22/16 15:07 Trifluorotoluene (Surr) 97 80 - 127 02/22/16 15:07

Method: 300.0 - Anions, Ion Ch	nromatogra	phy - DL							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5.03		1.00		mg/L			03/08/16 16:42	5

Method: 6020 - Metals (ICP/MS	S) - Dissolved						
Analyte	Result Qua	alifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND	0.0400	mg/L		02/19/16 14:39	02/22/16 16:28	1
Manganese	ND	0.00200	mg/L		02/19/16 14:39	02/22/16 16:28	1

General Chemistry Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	176		10.0		mg/L			02/18/16 18:48	1

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57302-1

Lab Sample ID: 580-57302-4

Matrix: Water

Client Sample ID: LB-021616-04

Date Collected: 02/16/16 12:55 Date Received: 02/16/16 15:30

Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
ND	0.500	ug/L		•	02/22/16 15:34	-
ND	0.500	ug/L			02/22/16 15:34	
ND	0.500	ug/L			02/22/16 15:34	
ND	0.500	.			02/22/16 15:34	
ND	0.500	~			02/22/16 15:34	
ND	0.500	_			02/22/16 15:34	
		.				
ND *					02/22/16 15:34	
ND					02/22/16 15:34	
		.				
		-				
		_				
		_				
		•				
		•				
		.				
		•				
		_				
		_				
		ug/L			02/22/16 15:34	
		ug/L			02/22/16 15:34	
					02/22/16 15:34	
ND	0.500	ug/L			02/22/16 15:34	
ND	0.500	ug/L			02/22/16 15:34	
ND	0.500	ug/L			02/22/16 15:34	
ND	0.500	ug/L			02/22/16 15:34	
ND	0.500	ug/L			02/22/16 15:34	
ND *	0.500	ug/L			02/22/16 15:34	
ND *	0.500	ug/L			02/22/16 15:34	
ND	0.500	ug/L			02/22/16 15:34	
ND	0.500	ug/L			02/22/16 15:34	
ND	0.500	ug/L			02/22/16 15:34	
ND	2.00	ug/L			02/22/16 15:34	
ND	2.00	ug/L			02/22/16 15:34	
ND	1.00	ug/L			02/22/16 15:34	
		-				
	ND N	ND 0.500 ND 0.500 ND 0.500 ND 0.500 ND 0.500 ND 0.500 ND 2.00 ND 2.00 ND 2.00 ND 2.00 ND 2.00 ND 0.500	ND 0.500 ug/L ND 2.00 ug/L ND 0.500 ug/L ND	ND 0.500 ug/L ND 2.00 ug/L ND 0.500 ug/L ND 2.00 ug/L ND 2.00 ug/L ND	ND	ND 0.500 ug/L 02/22/16 15:34 ND 0.500 ug/L 02

TestAmerica Seattle

3

6

8

4.0

11

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

Date Collected: 02/16/16 12:55 Date Received: 02/16/16 15:30

Client Sample ID: LB-021616-04

TestAmerica Job ID: 580-57302-1

Lab Sample ID: 580-57302-4

•	Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Naphthalene	ND		2.00		ug/L			02/22/16 15:34	
n-Butylbenzene	ND		2.00		ug/L			02/22/16 15:34	
N-Propylbenzene	ND		2.00		ug/L			02/22/16 15:34	
o-Xylene	ND		0.500		ug/L			02/22/16 15:34	
p-Isopropyltoluene	ND		2.00		ug/L			02/22/16 15:34	
sec-Butylbenzene	ND		2.00		ug/L			02/22/16 15:34	
Styrene	ND		0.500		ug/L			02/22/16 15:34	
tert-Butylbenzene	ND		2.00		ug/L			02/22/16 15:34	
Tetrachloroethene	ND		0.500		ug/L			02/22/16 15:34	
Toluene	ND		0.500		ug/L			02/22/16 15:34	
trans-1,2-Dichloroethene	ND		0.500		ug/L			02/22/16 15:34	
trans-1,3-Dichloropropene	ND		0.500		ug/L			02/22/16 15:34	
Trichloroethene	ND		0.500		ug/L			02/22/16 15:34	
Trichlorofluoromethane	ND		0.500		ug/L			02/22/16 15:34	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)			70 - 128					02/22/16 15:34	
4-Bromofluorobenzene (Surr)	94		75 - 120					02/22/16 15:34	
Dibromofluoromethane (Surr)	95		85 ₋ 115					02/22/16 15:34	
Toluene-d8 (Surr)	105		75 - 125					02/22/16 15:34	
Trifluorotoluene (Surr)	97		80 - 127					02/22/16 15:34	
Method: 300.0 - Anions, Ior	Chromatogra	phy - DL							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	5.88		1.00		mg/L			03/08/16 16:58	
Method: 6020 - Metals (ICP	MS) - Dissolvo	ed							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Iron	ND		0.0400		mg/L		02/19/16 14:39	02/22/16 16:32	-
Manganese	ND		0.00200		mg/L		02/19/16 14:39	02/22/16 16:32	
General Chemistry									
Analyte		Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total Dissolved Solids	176		10.0		mg/L			02/18/16 18:48	

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

Date Received: 02/16/16 15:30

TestAmerica Job ID: 580-57302-1

Lab Sample ID: 580-57302-5

Matrix: Water

Client Sample ID: LB-021616-05 Date Collected: 02/16/16 12:05

_		
Method: 8260B - Volatile	Organic Compounds	(GC/MS)

Method: 8260B - Volatile Org Analyte		Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	0.500	ug/L			02/22/16 16:01	-
1,1,1-Trichloroethane	ND	0.500	ug/L			02/22/16 16:01	
1,1,2,2-Tetrachloroethane	ND	0.500	ug/L			02/22/16 16:01	1
1,1,2-Trichloroethane	ND	0.500	ug/L			02/22/16 16:01	
1,1-Dichloroethane	ND	0.500	ug/L			02/22/16 16:01	•
1,1-Dichloropropene	ND	0.500	ug/L			02/22/16 16:01	
1,2,3-Trichlorobenzene	ND	2.00	ug/L			02/22/16 16:01	
1,2,3-Trichloropropane	ND	* 0.500	ug/L			02/22/16 16:01	
1,2,4-Trichlorobenzene	ND	2.00	ug/L			02/22/16 16:01	
1,2,4-Trimethylbenzene	ND	2.00	ug/L			02/22/16 16:01	
1,2-Dibromo-3-Chloropropane	ND	2.00	ug/L			02/22/16 16:01	
1,2-Dibromoethane	ND	2.00	ug/L			02/22/16 16:01	•
1,2-Dichlorobenzene	ND	0.500	ug/L			02/22/16 16:01	•
1,2-Dichloroethane	ND	0.500	ug/L			02/22/16 16:01	•
1,2-Dichloropropane	ND	0.500	ug/L			02/22/16 16:01	•
1,3,5-Trimethylbenzene	ND	2.00	ug/L			02/22/16 16:01	
1,3-Dichlorobenzene	ND	0.500	ug/L			02/22/16 16:01	
1,3-Dichloropropane	ND	0.500	ug/L			02/22/16 16:01	
1,4-Dichlorobenzene	ND	0.500	ug/L			02/22/16 16:01	
2,2-Dichloropropane	ND	0.500	ug/L			02/22/16 16:01	
2-Butanone	ND	20.0	ug/L			02/22/16 16:01	
2-Chlorotoluene	ND	2.00	ug/L			02/22/16 16:01	•
2-Hexanone	ND	20.0	ug/L			02/22/16 16:01	
4-Chlorotoluene	ND	2.00	ug/L			02/22/16 16:01	
4-Methyl-2-pentanone	ND	20.0	ug/L			02/22/16 16:01	•
Acetone	ND	20.0	ug/L			02/22/16 16:01	
Benzene	ND	0.500	ug/L			02/22/16 16:01	
Bromobenzene	ND	2.00	ug/L			02/22/16 16:01	•
Bromochloromethane	ND	0.500	ug/L			02/22/16 16:01	
Bromodichloromethane	ND	0.500	ug/L			02/22/16 16:01	
Bromoform	ND	0.500	ug/L			02/22/16 16:01	• • • • • • • • • • • • • • • • • • • •
Bromomethane	ND	1.00	ug/L			02/22/16 16:01	
Carbon disulfide	ND	0.500	ug/L			02/22/16 16:01	
Carbon tetrachloride	ND	0.500	ug/L			02/22/16 16:01	• • • • • • • • • • • • • • • • • • • •
Chlorobenzene	ND	0.500	ug/L			02/22/16 16:01	
Chloroethane	ND	0.500	ug/L			02/22/16 16:01	
Chloroform	ND	0.500	ug/L			02/22/16 16:01	
Chloromethane	ND	0.500	ug/L			02/22/16 16:01	
cis-1,2-Dichloroethene	ND	0.500	ug/L			02/22/16 16:01	
cis-1,3-Dichloropropene	ND	* 0.500	ug/L			02/22/16 16:01	,
Dibromochloromethane	ND	* 0.500	ug/L			02/22/16 16:01	
Dibromomethane	ND	0.500	ug/L			02/22/16 16:01	
Dichlorodifluoromethane	ND	0.500	ug/L			02/22/16 16:01	
Ethylbenzene	ND	0.500	ug/L			02/22/16 16:01	
Hexachlorobutadiene	ND	2.00	ug/L			02/22/16 16:01	
Isopropylbenzene	ND	2.00	ug/L			02/22/16 16:01	· · · · · · .
Methyl tert-butyl ether	ND	1.00	ug/L			02/22/16 16:01	
Methylene Chloride	ND	2.00	ug/L			02/22/16 16:01	
m-Xylene & p-Xylene	ND	0.500	ug/L			02/22/16 16:01	

TestAmerica Seattle

2

5

7

9

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

Date Collected: 02/16/16 12:05

Date Received: 02/16/16 15:30

Client Sample ID: LB-021616-05

TestAmerica Job ID: 580-57302-1

Lab Sample ID: 580-57302-5

Matrix: Water

)	Prepared	Analyzed	Dil Fac	
		02/22/16 16:01	1	
		02/22/16 16:01	1	
		02/22/16 16:01	1	
		02/22/16 16:01	1	
		02/22/16 16:01	1	
		02/22/16 16:01	1	
		00/00/46 46:04	4	

1	
1 1	8
!	
1	a
1	
1	
1	
1	

I	
ī	

Method: 8260B - Volatile O Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		2.00		ug/L			02/22/16 16:01	
n-Butylbenzene	ND		2.00		ug/L			02/22/16 16:01	•
N-Propylbenzene	ND		2.00		ug/L			02/22/16 16:01	
o-Xylene	ND		0.500		ug/L			02/22/16 16:01	
p-Isopropyltoluene	ND		2.00		ug/L			02/22/16 16:01	
sec-Butylbenzene	ND		2.00		ug/L			02/22/16 16:01	
Styrene	ND		0.500		ug/L			02/22/16 16:01	
tert-Butylbenzene	ND		2.00		ug/L			02/22/16 16:01	
Tetrachloroethene	ND		0.500		ug/L			02/22/16 16:01	
Toluene	ND		0.500		ug/L			02/22/16 16:01	
trans-1,2-Dichloroethene	ND		0.500		ug/L			02/22/16 16:01	
trans-1,3-Dichloropropene	ND		0.500		ug/L			02/22/16 16:01	
Trichloroethene	ND		0.500		ug/L			02/22/16 16:01	
Trichlorofluoromethane	ND		0.500		ug/L			02/22/16 16:01	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	110		70 - 128					02/22/16 16:01	
4-Bromofluorobenzene (Surr)	95		75 - 120					02/22/16 16:01	
Dibromofluoromethane (Surr)	96		85 - 115					02/22/16 16:01	
Toluene-d8 (Surr)	107		75 - 125					02/22/16 16:01	
Trifluorotoluene (Surr)	99		80 - 127					02/22/16 16:01	
Method: 300.0 - Anions, Io	n Chromatogra	phy - DL							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	7.53		1.00		mg/L			03/08/16 17:14	
Method: 6020 - Metals (ICP	P/MS) - Dissolve	ed							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Iron	ND		0.0400		mg/L		02/19/16 14:39	02/22/16 16:37	
Manganese	ND		0.00200		mg/L		02/19/16 14:39	02/22/16 16:37	
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total Dissolved Solids	190		10.0		mg/L			02/18/16 18:48	

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57302-1

Lab Sample ID: 580-57302-6

Matrix: Water

Client Sample ID: LB-021616-06 Date Collected: 02/16/16 14:00

Date Received: 02/16/16 15:30

Method: 8260B - Volatile Organic 0

Analyte	janic Compou Result	Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND ND	0.500	ug/L		•	02/22/16 16:27	
1,1,1-Trichloroethane	ND	0.500	ug/L			02/22/16 16:27	
1,1,2,2-Tetrachloroethane	ND	0.500	ug/L			02/22/16 16:27	
1,1,2-Trichloroethane	ND	0.500	ug/L			02/22/16 16:27	
1,1-Dichloroethane	ND	0.500	ug/L			02/22/16 16:27	
1,1-Dichloropropene	ND	0.500	ug/L			02/22/16 16:27	
1,2,3-Trichlorobenzene	ND	2.00	ug/L			02/22/16 16:27	
1,2,3-Trichloropropane	ND 1		ug/L			02/22/16 16:27	
1,2,4-Trichlorobenzene	ND	2.00	ug/L			02/22/16 16:27	
1,2,4-Trimethylbenzene	ND	2.00	ug/L			02/22/16 16:27	
1,2-Dibromo-3-Chloropropane	ND	2.00	ug/L			02/22/16 16:27	
1,2-Dibromoethane	ND	2.00	ug/L			02/22/16 16:27	
1,2-Dichlorobenzene	ND	0.500	ug/L			02/22/16 16:27	
1,2-Dichloroethane	ND	0.500	ug/L			02/22/16 16:27	
1,2-Dichloropropane	ND	0.500	ug/L			02/22/16 16:27	
1,3,5-Trimethylbenzene	ND	2.00	ug/L			02/22/16 16:27	
1,3-Dichlorobenzene	ND ND	0.500	ug/L			02/22/16 16:27	
1,3-Dichloropropane	ND ND	0.500	_			02/22/16 16:27	
	ND	0.500	ug/L			02/22/16 16:27	
1,4-Dichlorobenzene 2,2-Dichloropropane	ND ND	0.500	ug/L			02/22/16 16:27	
• •	ND ND	20.0	ug/L				
2-Butanone			ug/L			02/22/16 16:27	
2-Chlorotoluene	ND	2.00	ug/L			02/22/16 16:27	
2-Hexanone	ND	20.0	ug/L			02/22/16 16:27	
4-Chlorotoluene	ND	2.00	ug/L			02/22/16 16:27	
4-Methyl-2-pentanone	ND	20.0	ug/L			02/22/16 16:27	
Acetone	ND	20.0	ug/L			02/22/16 16:27	
Benzene	ND	0.500	ug/L			02/22/16 16:27	
Bromobenzene	ND	2.00	ug/L			02/22/16 16:27	
Bromochloromethane	ND	0.500	ug/L			02/22/16 16:27	
Bromodichloromethane	ND	0.500	ug/L			02/22/16 16:27	
Bromoform	ND	0.500	ug/L			02/22/16 16:27	
Bromomethane	ND	1.00	ug/L			02/22/16 16:27	
Carbon disulfide	ND	0.500	ug/L			02/22/16 16:27	
Carbon tetrachloride	ND	0.500	ug/L			02/22/16 16:27	
Chlorobenzene	ND	0.500	ug/L			02/22/16 16:27	
Chloroethane	ND	0.500	ug/L			02/22/16 16:27	
Chloroform	ND	0.500	ug/L			02/22/16 16:27	
Chloromethane	ND	0.500	ug/L			02/22/16 16:27	
cis-1,2-Dichloroethene	ND	0.500	ug/L			02/22/16 16:27	
cis-1,3-Dichloropropene	ND	* 0.500	ug/L			02/22/16 16:27	
Dibromochloromethane	ND ¹	* 0.500	ug/L			02/22/16 16:27	
Dibromomethane	ND	0.500	ug/L			02/22/16 16:27	
Dichlorodifluoromethane	ND	0.500	ug/L			02/22/16 16:27	
Ethylbenzene	ND	0.500	ug/L			02/22/16 16:27	
Hexachlorobutadiene	ND	2.00	ug/L			02/22/16 16:27	
Isopropylbenzene	ND	2.00	ug/L			02/22/16 16:27	
Methyl tert-butyl ether	ND	1.00	ug/L			02/22/16 16:27	
Methylene Chloride	ND	2.00	ug/L			02/22/16 16:27	
m-Xylene & p-Xylene	ND	0.500	ug/L			02/22/16 16:27	

TestAmerica Seattle

3

E

7

a

10

11

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

Date Collected: 02/16/16 14:00 Date Received: 02/16/16 15:30

Client Sample ID: LB-021616-06

TestAmerica Job ID: 580-57302-1

Lab Sample ID: 580-57302-6

IJ	Sampi	שו ט	300-37302-0	
			Matrix: Water	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		2.00		ug/L			02/22/16 16:27	1
n-Butylbenzene	ND		2.00		ug/L			02/22/16 16:27	1
N-Propylbenzene	ND		2.00		ug/L			02/22/16 16:27	1
o-Xylene	ND		0.500		ug/L			02/22/16 16:27	1
p-Isopropyltoluene	ND		2.00		ug/L			02/22/16 16:27	1
sec-Butylbenzene	ND		2.00		ug/L			02/22/16 16:27	1
Styrene	ND		0.500		ug/L			02/22/16 16:27	1
tert-Butylbenzene	ND		2.00		ug/L			02/22/16 16:27	1
Tetrachloroethene	ND		0.500		ug/L			02/22/16 16:27	1
Toluene	ND		0.500		ug/L			02/22/16 16:27	1
trans-1,2-Dichloroethene	ND		0.500		ug/L			02/22/16 16:27	1
trans-1,3-Dichloropropene	ND		0.500		ug/L			02/22/16 16:27	1
Trichloroethene	ND		0.500		ug/L			02/22/16 16:27	1
Trichlorofluoromethane	ND		0.500		ug/L			02/22/16 16:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	113		70 - 128					02/22/16 16:27	
4-Bromofluorobenzene (Surr)	95		75 - 120					02/22/16 16:27	1
Dibromofluoromethane (Surr)	100		85 ₋ 115					02/22/16 16:27	1
Toluene-d8 (Surr)	105		75 - 125					02/22/16 16:27	
Trifluorotoluene (Surr)	96		80 - 127					02/22/16 16:27	1
Method: 300.0 - Anions, lor	n Chromatogra	phy - DL							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5.32		1.00		mg/L			03/08/16 17:29	
Method: 6020 - Metals (ICP	/MS) - Dissolv	ed							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND		0.0400		mg/L		02/19/16 14:39	02/22/16 16:41	1
Manganese	ND		0.00200		mg/L		02/19/16 14:39	02/22/16 16:41	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	166		10.0		mg/L			02/18/16 18:48	

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57302-1

Lab Sample ID: 580-57302-7

Matrix: Water

Client Sample ID: Trip Blanks Date Collected: 02/16/16 10:05

Date Received: 02/16/16 15:30

Analyte	Result	Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND	0.500	ug/L			02/22/16 12:52	
1,1,1-Trichloroethane	ND	0.500	ug/L			02/22/16 12:52	
1,1,2,2-Tetrachloroethane	ND	0.500	ug/L			02/22/16 12:52	
1,1,2-Trichloroethane	ND	0.500	ug/L			02/22/16 12:52	
1,1-Dichloroethane	ND	0.500	ug/L			02/22/16 12:52	
1,1-Dichloropropene	ND	0.500	ug/L			02/22/16 12:52	
1,2,3-Trichlorobenzene	ND	2.00	ug/L			02/22/16 12:52	
1,2,3-Trichloropropane	ND ³	* 0.500	ug/L			02/22/16 12:52	
1,2,4-Trichlorobenzene	ND	2.00	ug/L			02/22/16 12:52	
1,2,4-Trimethylbenzene	ND	2.00	ug/L			02/22/16 12:52	
1,2-Dibromo-3-Chloropropane	ND	2.00	ug/L			02/22/16 12:52	
1,2-Dibromoethane	ND	2.00	ug/L			02/22/16 12:52	
1,2-Dichlorobenzene	ND	0.500	ug/L			02/22/16 12:52	
1,2-Dichloroethane	ND	0.500	ug/L			02/22/16 12:52	
1,2-Dichloropropane	ND	0.500	ug/L			02/22/16 12:52	
1,3,5-Trimethylbenzene	ND	2.00	ug/L			02/22/16 12:52	
1,3-Dichlorobenzene	ND	0.500	ug/L			02/22/16 12:52	
1,3-Dichloropropane	ND	0.500	ug/L			02/22/16 12:52	
1,4-Dichlorobenzene	ND	0.500	ug/L			02/22/16 12:52	
2,2-Dichloropropane	ND	0.500	ug/L			02/22/16 12:52	
2-Butanone	ND	20.0	ug/L			02/22/16 12:52	
2-Chlorotoluene	ND	2.00	ug/L			02/22/16 12:52	
2-Hexanone	ND	20.0	ug/L			02/22/16 12:52	
4-Chlorotoluene	ND	2.00	ug/L			02/22/16 12:52	
1-Methyl-2-pentanone	ND	20.0	ug/L			02/22/16 12:52	
Acetone	ND	20.0				02/22/16 12:52	
Benzene	ND ND	0.500	ug/L ug/L			02/22/16 12:52	
	ND	2.00	.			02/22/16 12:52	
Bromobenzene Bromochloromethane	ND ND	0.500	ug/L			02/22/16 12:52	
			ug/L				
Bromodichloromethane	ND	0.500	ug/L			02/22/16 12:52	
Bromoform	ND	0.500	ug/L			02/22/16 12:52	
Bromomethane	ND	1.00	ug/L			02/22/16 12:52	
Carbon disulfide	ND	0.500	ug/L			02/22/16 12:52	
Carbon tetrachloride	ND	0.500	ug/L			02/22/16 12:52	
Chlorobenzene	ND	0.500	ug/L			02/22/16 12:52	
Chloroethane	ND	0.500	ug/L			02/22/16 12:52	
Chloroform	ND	0.500	ug/L			02/22/16 12:52	
Chloromethane	ND	0.500	ug/L			02/22/16 12:52	
cis-1,2-Dichloroethene	ND	0.500	ug/L			02/22/16 12:52	
cis-1,3-Dichloropropene	ND '		ug/L			02/22/16 12:52	
Dibromochloromethane	ND '		ug/L			02/22/16 12:52	
Dibromomethane	ND	0.500	ug/L			02/22/16 12:52	
Dichlorodifluoromethane	ND	0.500	ug/L			02/22/16 12:52	
Ethylbenzene	ND	0.500	ug/L			02/22/16 12:52	
Hexachlorobutadiene	ND	2.00	ug/L			02/22/16 12:52	
sopropylbenzene	ND	2.00	ug/L			02/22/16 12:52	
Methyl tert-butyl ether	ND	1.00	ug/L			02/22/16 12:52	
Methylene Chloride	ND	2.00	ug/L			02/22/16 12:52	
n-Xylene & p-Xylene	ND	0.500	ug/L			02/22/16 12:52	

TestAmerica Seattle

3

5

7

Q

10

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

Date Collected: 02/16/16 10:05

Date Received: 02/16/16 15:30

TestAmerica Job ID: 580-57302-1

Client Sample ID: Trip Blanks Lab Sample ID: 580-57302-7

Matrix: Water

Method: 8260B - Volatile O Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		2.00		ug/L			02/22/16 12:52	1
n-Butylbenzene	ND		2.00		ug/L			02/22/16 12:52	1
N-Propylbenzene	ND		2.00		ug/L			02/22/16 12:52	1
o-Xylene	ND		0.500		ug/L			02/22/16 12:52	1
p-Isopropyltoluene	ND		2.00		ug/L			02/22/16 12:52	1
sec-Butylbenzene	ND		2.00		ug/L			02/22/16 12:52	1
Styrene	ND		0.500		ug/L			02/22/16 12:52	1
tert-Butylbenzene	ND		2.00		ug/L			02/22/16 12:52	1
Tetrachloroethene	ND		0.500		ug/L			02/22/16 12:52	1
Toluene	ND		0.500		ug/L			02/22/16 12:52	1
trans-1,2-Dichloroethene	ND		0.500		ug/L			02/22/16 12:52	1
trans-1,3-Dichloropropene	ND		0.500		ug/L			02/22/16 12:52	1
Trichloroethene	ND		0.500		ug/L			02/22/16 12:52	1
Trichlorofluoromethane	ND		0.500		ug/L			02/22/16 12:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107	-	70 - 128					02/22/16 12:52	1
4-Bromofluorobenzene (Surr)	94		75 - 120					02/22/16 12:52	1
Dibromofluoromethane (Surr)	93		85 - 115					02/22/16 12:52	1
Toluene-d8 (Surr)	106		75 - 125					02/22/16 12:52	1
Trifluorotoluene (Surr)	99		80 - 127					02/22/16 12:52	1

QC Sample Results

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57302-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 580-211711/4

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Batch: 211711	МВ	MB						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		0.500	ug/L			02/22/16 09:42	1
1,1,1-Trichloroethane	ND		0.500	ug/L			02/22/16 09:42	1
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L			02/22/16 09:42	1
1,1,2-Trichloroethane	ND		0.500	ug/L			02/22/16 09:42	1
1,1-Dichloroethane	ND		0.500	ug/L			02/22/16 09:42	1
1,1-Dichloropropene	ND		0.500	ug/L			02/22/16 09:42	1
1,2,3-Trichlorobenzene	ND		2.00	ug/L			02/22/16 09:42	1
1,2,3-Trichloropropane	ND		0.500	ug/L			02/22/16 09:42	1
1,2,4-Trichlorobenzene	ND		2.00	ug/L			02/22/16 09:42	1
1,2,4-Trimethylbenzene	ND		2.00	ug/L			02/22/16 09:42	1
1,2-Dibromo-3-Chloropropane	ND		2.00	ug/L			02/22/16 09:42	1
1,2-Dibromoethane	ND		2.00	ug/L			02/22/16 09:42	1
1,2-Dichlorobenzene	ND		0.500	ug/L			02/22/16 09:42	1
1,2-Dichloroethane	ND		0.500	ug/L			02/22/16 09:42	1
1,2-Dichloropropane	ND		0.500	ug/L			02/22/16 09:42	1
1,3,5-Trimethylbenzene	ND		2.00	ug/L			02/22/16 09:42	1
1,3-Dichlorobenzene	ND		0.500	ug/L			02/22/16 09:42	1
1,3-Dichloropropane	ND		0.500	ug/L			02/22/16 09:42	1
1,4-Dichlorobenzene	ND		0.500	ug/L			02/22/16 09:42	
2,2-Dichloropropane	ND		0.500	ug/L			02/22/16 09:42	1
2-Butanone	ND		20.0	ug/L			02/22/16 09:42	1
2-Chlorotoluene	ND		2.00	ug/L			02/22/16 09:42	1
2-Hexanone	ND		20.0	ug/L			02/22/16 09:42	1
4-Chlorotoluene	ND		2.00	ug/L			02/22/16 09:42	1
4-Methyl-2-pentanone	ND		20.0	ug/L			02/22/16 09:42	1
Acetone	ND		20.0	ug/L			02/22/16 09:42	1
Benzene	ND		0.500	ug/L			02/22/16 09:42	1
Bromobenzene	ND		2.00	ug/L			02/22/16 09:42	
Bromochloromethane	ND		0.500	ug/L			02/22/16 09:42	1
Bromodichloromethane	ND		0.500	ug/L			02/22/16 09:42	1
Bromoform	ND		0.500	ug/L			02/22/16 09:42	
Bromomethane	ND		1.00	ug/L			02/22/16 09:42	1
Carbon disulfide	ND		0.500	ug/L			02/22/16 09:42	1
Carbon tetrachloride	ND		0.500	ug/L			02/22/16 09:42	
Chlorobenzene	ND		0.500	ug/L			02/22/16 09:42	1
Chloroethane	ND		0.500	ŭ			02/22/16 09:42	1
Chloroform				ug/L			02/22/16 09:42	
Chloromethane	ND ND		0.500 0.500	ug/L ug/L			02/22/16 09:42	1
	ND ND		0.500	_			02/22/16 09:42	1
cis-1,2-Dichloroethene				ug/L				ا
cis-1,3-Dichloropropene Dibromochloromethane	ND ND		0.500 0.500	ug/L			02/22/16 09:42 02/22/16 09:42	1
				ug/L				
Dibromomethane Diablaradifluoromethana	ND		0.500	ug/L			02/22/16 09:42	1
Dichlorodifluoromethane	ND		0.500	ug/L			02/22/16 09:42	1
Ethylbenzene	ND		0.500	ug/L			02/22/16 09:42	1
Hexachlorobutadiene	ND		2.00	ug/L			02/22/16 09:42	1
Isopropylbenzene	ND		2.00	ug/L			02/22/16 09:42	1
Methyl tert-butyl ether	ND		1.00	ug/L			02/22/16 09:42	1
Methylene Chloride	ND		2.00	ug/L			02/22/16 09:42	1

TestAmerica Seattle

Page 19 of 37

2

3

5

7

9

1 4

10

3/9/2016

TestAmerica Job ID: 580-57302-1

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 580-211711/4

Matrix: Water

Analysis Batch: 211711

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier RL **MDL** Unit Analyte **Prepared** Analyzed Dil Fac m-Xylene & p-Xylene $\overline{\mathsf{ND}}$ 0.500 ug/L 02/22/16 09:42 Naphthalene ND 2.00 ug/L 02/22/16 09:42 n-Butylbenzene ND 2.00 ug/L 02/22/16 09:42 N-Propylbenzene ND 2.00 ug/L 02/22/16 09:42 o-Xylene ND 0.500 ug/L 02/22/16 09:42 p-Isopropyltoluene ND 2.00 ug/L 02/22/16 09:42 sec-Butylbenzene ND 2.00 ug/L 02/22/16 09:42 Styrene ND ug/L 0.500 02/22/16 09:42 tert-Butylbenzene ND 2.00 ug/L 02/22/16 09:42 Tetrachloroethene ND 0.500 ug/L 02/22/16 09:42 Toluene ND 0.500 ug/L 02/22/16 09:42 trans-1,2-Dichloroethene ND 0.500 ug/L 02/22/16 09:42 trans-1,3-Dichloropropene ND 0.500 ug/L 02/22/16 09:42 Trichloroethene ND 0.500 ug/L 02/22/16 09:42 Trichlorofluoromethane ND 0.500 ug/L 02/22/16 09:42

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		70 - 128		2/22/16 09:42	1
4-Bromofluorobenzene (Surr)	94		75 - 120	02	2/22/16 09:42	1
Dibromofluoromethane (Surr)	93		85 - 115	02	2/22/16 09:42	1
Toluene-d8 (Surr)	106		75 - 125	02	2/22/16 09:42	1
Trifluorotoluene (Surr)	97		80 - 127	02	2/22/16 09:42	1

Lab Sample ID: LCS 580-211711/5

Matrix: Water

Analysis Batch: 211711

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 211711								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	5.02	5.402		ug/L		108	75 - 125	_
1,1,1-Trichloroethane	5.02	5.960		ug/L		119	80 - 140	
1,1,2,2-Tetrachloroethane	5.01	5.162		ug/L		103	75 - 125	
1,1,2-Trichloroethane	5.02	5.374		ug/L		107	80 - 130	
1,1-Dichloroethane	5.00	5.085		ug/L		102	75 - 135	
1,1-Dichloropropene	5.00	5.855		ug/L		117	80 - 130	
1,2,3-Trichlorobenzene	5.01	5.223		ug/L		104	60 - 125	
1,2,3-Trichloropropane	5.01	6.185	*	ug/L		124	75 - 120	
1,2,4-Trichlorobenzene	5.00	5.224		ug/L		104	60 - 125	
1,2,4-Trimethylbenzene	5.00	5.556		ug/L		111	80 - 125	
1,2-Dibromo-3-Chloropropane	5.01	5.649		ug/L		113	55 - 120	
1,2-Dibromoethane	5.01	5.538		ug/L		111	70 - 130	
1,2-Dichlorobenzene	5.00	4.808		ug/L		96	80 - 130	
1,2-Dichloroethane	5.00	6.229		ug/L		124	80 - 140	
1,2-Dichloropropane	5.00	4.705		ug/L		94	80 - 120	
1,3,5-Trimethylbenzene	5.01	5.592		ug/L		112	80 - 125	
1,3-Dichlorobenzene	5.01	4.731		ug/L		94	80 - 120	
1,3-Dichloropropane	5.01	5.330		ug/L		106	80 - 130	
1,4-Dichlorobenzene	5.01	4.656		ug/L		93	80 - 120	
2,2-Dichloropropane	5.00	5.729		ug/L		115	60 - 150	

TestAmerica Seattle

Page 20 of 37

TestAmerica Job ID: 580-57302-1

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 580-211711/5

Matrix: Water

Analysis Batch: 211711

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 211711	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
2-Butanone	20.0	19.45	J	ug/L		97	20 - 200
2-Chlorotoluene	5.00	5.221		ug/L		104	75 - 130
2-Hexanone	20.0	26.16		ug/L		131	52 - 160
4-Chlorotoluene	5.01	5.196		ug/L		104	75 - 130
4-Methyl-2-pentanone	20.0	24.58		ug/L		123	55 - 135
Acetone	20.0	14.34	J	ug/L		72	30 - 200
Benzene	5.02	4.621		ug/L		92	80 - 120
Bromobenzene	5.00	5.047		ug/L		101	80 - 130
Bromochloromethane	5.01	5.137		ug/L		103	80 - 125
Bromodichloromethane	5.02	5.754		ug/L		115	80 - 125
Bromoform	5.02	5.108		ug/L		102	65 - 130
Bromomethane	5.01	4.567		ug/L		91	70 - 135
Carbon disulfide	5.02	4.812		ug/L		96	65 - 160
Carbon tetrachloride	5.01	6.028		ug/L		120	75 - 140
Chlorobenzene	5.02	4.656		ug/L		93	80 - 120
Chloroethane	5.02	4.282		ug/L		85	75 - 140
Chloroform	5.00	5.192		ug/L		104	80 - 130
Chloromethane	5.02	6.249		ug/L		124	50 - 140
cis-1,2-Dichloroethene	5.01	4.715		ug/L		94	80 - 130
cis-1,3-Dichloropropene	5.01	5.986		ug/L		119	70 - 120
Dibromochloromethane	5.01	6.320	*	ug/L		126	70 - 120
Dibromomethane	5.02	5.279		ug/L		105	80 - 130
Dichlorodifluoromethane	5.01	4.191		ug/L		84	30 - 180
Ethylbenzene	5.02	5.239		ug/L		104	80 - 125
Hexachlorobutadiene	5.00	5.972		ug/L		119	75 ₋ 135
Isopropylbenzene	5.01	5.365		ug/L		107	75 - 120
Methyl tert-butyl ether	5.01	5.653		ug/L		113	75 - 120
Methylene Chloride	5.02	4.459		ug/L		89	60 - 145
m-Xylene & p-Xylene	5.01	5.450		ug/L		109	80 - 130
Naphthalene	5.01	5.826		ug/L		116	45 - 130
n-Butylbenzene	5.01	4.883		ug/L		98	75 - 125
N-Propylbenzene	5.00	5.569		ug/L		111	80 - 120
o-Xylene	5.01	5.561		ug/L		111	80 - 120
p-Isopropyltoluene	5.00	5.162		ug/L		103	80 - 120
sec-Butylbenzene	5.01	5.402		ug/L		108	80 - 125
Styrene	5.01	5.326		ug/L		106	75 - 130
tert-Butylbenzene	5.00	5.787		ug/L		116	80 - 130
Tetrachloroethene	5.01	4.859		ug/L		97	40 - 180
Toluene	5.00	4.994		ug/L		100	80 - 120
trans-1,2-Dichloroethene	5.01	4.848		ug/L		97	80 - 140
trans-1,3-Dichloropropene	5.00	6.103		ug/L		122	60 - 140
Trichloroethene	5.01	4.724		ug/L		94	80 - 130
Trichlorofluoromethane	5.00	5.039		ug/L		101	30 - 180
10	S ICS						

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	106		70 - 128
4-Bromofluorobenzene (Surr)	92		75 - 120
Dibromofluoromethane (Surr)	96		85 - 115

TestAmerica Seattle

Page 21 of 37

QC Sample Results

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57302-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 580-211711/5

Lab Sample ID: LCSD 580-211711/6

Matrix: Water

Analysis Batch: 211711

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	103		75 - 125
Trifluorotoluene (Surr)	96		80 - 127

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 211711

	Spike	LCSD	LCSD				%Rec.		RPE
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
1,1,1,2-Tetrachloroethane	5.02	5.555		ug/L		111	75 - 125	3	20
1,1,1-Trichloroethane	5.02	5.830		ug/L		116	80 - 140	2	20
1,1,2,2-Tetrachloroethane	5.01	5.026		ug/L		100	75 - 125	3	20
1,1,2-Trichloroethane	5.02	5.399		ug/L		108	80 - 130	0	20
1,1-Dichloroethane	5.00	5.107		ug/L		102	75 - 135	0	20
1,1-Dichloropropene	5.00	5.600		ug/L		112	80 - 130	4	20
1,2,3-Trichlorobenzene	5.01	5.343		ug/L		107	60 - 125	2	20
1,2,3-Trichloropropane	5.01	6.049	*	ug/L		121	75 - 120	2	20
1,2,4-Trichlorobenzene	5.00	5.277		ug/L		105	60 - 125	1	20
1,2,4-Trimethylbenzene	5.00	5.604		ug/L		112	80 - 125	1	20
1,2-Dibromo-3-Chloropropane	5.01	5.713		ug/L		114	55 - 120	1	20
1,2-Dibromoethane	5.01	5.628		ug/L		112	70 - 130	2	20
1,2-Dichlorobenzene	5.00	4.848		ug/L		97	80 - 130	1	20
1,2-Dichloroethane	5.00	5.915		ug/L		118	80 - 140	5	20
1,2-Dichloropropane	5.00	4.684		ug/L		94	80 - 120	0	20
1,3,5-Trimethylbenzene	5.01	5.657		ug/L		113	80 - 125	1	20
1,3-Dichlorobenzene	5.01	4.844		ug/L		97	80 - 120	2	20
1,3-Dichloropropane	5.01	5.307		ug/L		106	80 - 130	0	20
1,4-Dichlorobenzene	5.01	4.689		ug/L		94	80 - 120	1	20
2,2-Dichloropropane	5.00	5.546		ug/L		111	60 - 150	3	20
2-Butanone	20.0	19.88	J	ug/L		99	20 - 200	2	20
2-Chlorotoluene	5.00	5.134		ug/L		103	75 - 130	2	20
2-Hexanone	20.0	27.81		ug/L		139	52 - 160	6	20
4-Chlorotoluene	5.01	5.313		ug/L		106	75 - 130	2	20
4-Methyl-2-pentanone	20.0	25.94		ug/L		130	55 - 135	5	20
Acetone	20.0	13.51	J	ug/L		68	30 - 200	6	20
Benzene	5.02	4.610		ug/L		92	80 - 120	0	20
Bromobenzene	5.00	5.036		ug/L		101	80 - 130	0	20
Bromochloromethane	5.01	5.023		ug/L		100	80 - 125	2	20
Bromodichloromethane	5.02	5.650		ug/L		113	80 - 125	2	20
Bromoform	5.02	5.213		ug/L		104	65 - 130	2	20
Bromomethane	5.01	5.055		ug/L		101	70 - 135	10	20
Carbon disulfide	5.02	4.712		ug/L		94	65 - 160	2	20
Carbon tetrachloride	5.01	5.773		ug/L		115	75 - 140	4	20
Chlorobenzene	5.02	4.790		ug/L		95	80 - 120	3	20
Chloroethane	5.02	4.477		ug/L		89	75 ₋ 140	4	20
Chloroform	5.00	5.078		ug/L		102	80 - 130	2	20
Chloromethane	5.02	6.729		ug/L		134	50 - 140	7	20
cis-1,2-Dichloroethene	5.01	4.760		ug/L		95	80 - 130	1	20
cis-1,3-Dichloropropene	5.01	6.245	*	ug/L		125	70 - 120	4	20

TestAmerica Seattle

3/9/2016

Page 22 of 37

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 580-211711/6

Matrix: Water

Analysis Batch: 211711

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dibromochloromethane	5.01	6.342	*	ug/L		127	70 - 120	0	20
Dibromomethane	5.02	5.222		ug/L		104	80 - 130	1	20
Dichlorodifluoromethane	5.01	4.554		ug/L		91	30 - 180	8	20
Ethylbenzene	5.02	5.248		ug/L		105	80 - 125	0	20
Hexachlorobutadiene	5.00	5.824		ug/L		116	75 - 135	3	20
Isopropylbenzene	5.01	5.366		ug/L		107	75 - 120	0	20
Methyl tert-butyl ether	5.01	5.637		ug/L		113	75 - 120	0	20
Methylene Chloride	5.02	4.802		ug/L		96	60 - 145	7	20
m-Xylene & p-Xylene	5.01	5.577		ug/L		111	80 - 130	2	20
Naphthalene	5.01	5.981		ug/L		119	45 - 130	3	20
n-Butylbenzene	5.01	5.043		ug/L		101	75 - 125	3	20
N-Propylbenzene	5.00	5.464		ug/L		109	80 - 120	2	20
o-Xylene	5.01	5.565		ug/L		111	80 - 120	0	20
p-Isopropyltoluene	5.00	4.982		ug/L		100	80 - 120	4	20
sec-Butylbenzene	5.01	5.425		ug/L		108	80 - 125	0	20
Styrene	5.01	5.517		ug/L		110	75 - 130	4	20
tert-Butylbenzene	5.00	5.714		ug/L		114	80 - 130	1	20
Tetrachloroethene	5.01	4.926		ug/L		98	40 - 180	1	20
Toluene	5.00	5.122		ug/L		102	80 - 120	3	20
trans-1,2-Dichloroethene	5.01	4.786		ug/L		96	80 - 140	1	20
trans-1,3-Dichloropropene	5.00	6.260		ug/L		125	60 - 140	3	20
Trichloroethene	5.01	4.853		ug/L		97	80 - 130	3	20
Trichlorofluoromethane	5.00	5.467		ug/L		109	30 - 180	8	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		70 - 128
4-Bromofluorobenzene (Surr)	92		75 - 120
Dibromofluoromethane (Surr)	92		85 - 115
Toluene-d8 (Surr)	105		75 - 125
Trifluorotoluene (Surr)	94		80 - 127

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 160-239571/9

Matrix: Water

Analysis Batch: 239571

MB MB

Analyte Result Qualifier **RL** Unit Analyzed Dil Fac **Prepared** Chloride ND 0.200 mg/L 03/08/16 15:06

Lab Sample ID: LCS 160-239571/10

Matrix: Water

Analysis Batch: 239571

LCS LCS %Rec. Spike Analyte Added Result Qualifier D %Rec Limits Unit Chloride 2.00 90 - 110 1.916 96 mg/L

TestAmerica Seattle

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57302-1

Method: 300.0 - Anions, Ion Chromatography - DL

Lab Sample ID: 580-57302-1 MS Client Sample ID: LB-021616-01 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 239571

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits 10.0 Chloride - DL 5.99 16.14 mg/L 102 90 - 110

Lab Sample ID: 580-57302-1 DU Client Sample ID: LB-021616-01 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 239571

Sample Sample DU DU **RPD** Result Qualifier **RPD** Analyte Result Qualifier Limit Unit D Chloride - DL 5.99 6.051 mg/L 20

Method: 6020 - Metals (ICP/MS)

Lab Sample ID: MB 580-211657/21-A Client Sample ID: Method Blank **Matrix: Water Prep Type: Total Recoverable** Prep Batch: 211657

Analysis Batch: 211778

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 0.0400 02/19/16 14:39 02/22/16 15:23 Iron $\overline{\mathsf{ND}}$ mg/L ND 0.00200 02/19/16 14:39 02/22/16 15:23 Manganese mg/L

Lab Sample ID: LCS 580-211657/22-A Client Sample ID: Lab Control Sample **Matrix: Water Prep Type: Total Recoverable Analysis Batch: 211778 Prep Batch: 211657** Spike LCS LCS %Rec.

Added **Analyte** Result Qualifier Unit %Rec Limits D Iron 22.0 23.29 mg/L 106 80 - 120 Manganese 1.00 1.028 mg/L 103 80 - 120

Lab Sample ID: LCSD 580-211657/23-A Client Sample ID: Lab Control Sample Dup **Matrix: Water Prep Type: Total Recoverable**

Matrix: Water

Analysis Batch: 211778 Prep Batch: 211657 LCSD LCSD Spike %Rec. **RPD** Added Result Qualifier Unit D %Rec Limits RPD Limit Analyte 22.0 107 20 23.49 mg/L 80 - 120 Iron

Manganese 1.00 1.038 mg/L 104 80 - 120 20 Lab Sample ID: 580-57236-A-1-C MS Client Sample ID: Matrix Spike

Analysis Batch: 211778

Prep Batch: 211657 Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Iron 0.346 22.0 23.91 mg/L 107 80 - 120 0.0228 1.00 1.086 mg/L 106 80 - 120 Manganese

Lab Sample ID: 580-57236-A-1-D MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Water Prep Type: Dissolved Analysis Batch: 211778 Prep Batch: 211657** Spike MSD MSD %Rec. **RPD** Sample Sample Added RPD Limit Analyte Result Qualifier Result Qualifier Unit %Rec Limits Iron 0.346 22.0 24.58 mg/L 110 80 - 120 20

TestAmerica Seattle

Prep Type: Dissolved

TestAmerica Job ID: 580-57302-1

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: 580-57236-A-1-D MSD **Client Sample ID: Matrix Spike Duplicate Matrix: Water Prep Type: Dissolved Analysis Batch: 211778 Prep Batch: 211657**

Spike MSD MSD Sample Sample **RPD** %Rec. Result Qualifier Added Result Qualifier Limits RPD Analyte Unit %Rec Limit Manganese 0.0228 1.00 1.104 mg/L 108 80 - 120 2 20

Lab Sample ID: 580-57236-A-1-B DU **Client Sample ID: Duplicate Matrix: Water Prep Type: Dissolved**

Analysis Batch: 211778 Prep Batch: 211657

Sample Sample DU DU **RPD** RPD Analyte Result Qualifier Result Qualifier Unit D Limit 20 0.346 0.3424 Iron mg/L 0.0228 0.02191 mg/L 20 Manganese

Method: 160.1 - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 580-211600/1 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 211600

MB MB

Analyte Result Qualifier Unit Analyzed Dil Fac Prepared Total Dissolved Solids $\overline{\mathsf{ND}}$ 10.0 mg/L 02/18/16 18:48

Lab Sample ID: LCS 580-211600/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 211600

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit %Rec Limits Total Dissolved Solids 1000 964.0 mg/L 96 80 - 120

Lab Sample ID: 580-57302-1 DU Client Sample ID: LB-021616-01 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 211600

Sample Sample DU DU **RPD** Result Qualifier Result Qualifier RPD Analyte Unit D Limit **Total Dissolved Solids** 179 189.0 mg/L 20

3/9/2016

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

Client Sample ID: LB-021616-01 Lab Sample ID: 580-57302-1 Date Collected: 02/16/16 10:05

Matrix: Water

Date Received: 02/16/16 15:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	211711	02/22/16 14:13	TL1	TAL SEA
Total/NA	Analysis	300.0	DL	5	239571	03/08/16 15:38	JCB	TAL SL
Dissolved	Prep	3005A			211657	02/19/16 14:39	MKN	TAL SEA
Dissolved	Analysis	6020		1	211778	02/22/16 16:18	FCW	TAL SEA
Total/NA	Analysis	160.1		1	211600	02/18/16 18:48	JSM	TAL SEA

Client Sample ID: LB-021616-02 Lab Sample ID: 580-57302-2

Matrix: Water

Date Collected: 02/16/16 11:05 Date Received: 02/16/16 15:30

Batch **Batch** Dilution Batch Prepared **Prep Type** Туре Method Factor Number or Analyzed Run Analyst Lab Total/NA Analysis 8260B 211711 02/22/16 14:40 TL1 TAL SEA Total/NA Analysis 300.0 DL 5 239571 03/08/16 16:26 JCB TAL SL Dissolved Prep 3005A TAL SEA 211657 02/19/16 14:39 MKN Dissolved Analysis 6020 211778 02/22/16 16:23 FCW TAL SEA 1 TAL SEA Total/NA Analysis 160.1 211600 02/18/16 18:48 JSM

Client Sample ID: LB-021616-03 Lab Sample ID: 580-57302-3

Date Collected: 02/16/16 11:00 **Matrix: Water**

Date Received: 02/16/16 15:30

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			211711	02/22/16 15:07	TL1	TAL SEA
Total/NA	Analysis	300.0	DL	5	239571	03/08/16 16:42	JCB	TAL SL
Dissolved	Prep	3005A			211657	02/19/16 14:39	MKN	TAL SEA
Dissolved	Analysis	6020		1	211778	02/22/16 16:28	FCW	TAL SEA
Total/NA	Analysis	160.1		1	211600	02/18/16 18:48	JSM	TAL SEA

Client Sample ID: LB-021616-04 Lab Sample ID: 580-57302-4

Date Collected: 02/16/16 12:55 Date Received: 02/16/16 15:30

=	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			211711	02/22/16 15:34	TL1	TAL SEA
Total/NA	Analysis	300.0	DL	5	239571	03/08/16 16:58	JCB	TAL SL
Dissolved	Prep	3005A			211657	02/19/16 14:39	MKN	TAL SEA
Dissolved	Analysis	6020		1	211778	02/22/16 16:32	FCW	TAL SEA
Total/NA	Analysis	160.1		1	211600	02/18/16 18:48	JSM	TAL SEA

TestAmerica Seattle

Matrix: Water

Lab Chronicle

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57302-1

Date Collected: 02/16/16 12:05 Matrix: Water

Date Collected: 02/16/16 12:05 Matrix: Water Date Received: 02/16/16 15:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			211711	02/22/16 16:01	TL1	TAL SEA
Total/NA	Analysis	300.0	DL	5	239571	03/08/16 17:14	JCB	TAL SL
Dissolved	Prep	3005A			211657	02/19/16 14:39	MKN	TAL SEA
Dissolved	Analysis	6020		1	211778	02/22/16 16:37	FCW	TAL SEA
Total/NA	Analysis	160.1		1	211600	02/18/16 18:48	JSM	TAL SEA

into Callested: 00/4C/4C 44:00

Date Collected: 02/16/16 14:00 Matrix: Water Date Received: 02/16/16 15:30

Batch Batch Dilution Batch Prepared **Prep Type** Method Factor or Analyzed Type Run Number Analyst Lab Total/NA 8260B TAL SEA Analysis 211711 02/22/16 16:27 TL1 Total/NA Analysis 300.0 DL 5 239571 03/08/16 17:29 JCB TAL SL Dissolved Prep 3005A 211657 02/19/16 14:39 MKN TAL SEA Dissolved Analysis 6020 1 211778 02/22/16 16:41 FCW TAL SEA Total/NA Analysis 160.1 1 211600 02/18/16 18:48 JSM TAL SEA

Client Sample ID: Trip Blanks Lab Sample ID: 580-57302-7

Date Collected: 02/16/16 10:05 Matrix: Water

Date Received: 02/16/16 15:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	211711	02/22/16 12:52	TL1	TAL SEA

Laboratory References:

Pixis Labo = Pixis Laboratories, LLC, 12423 NE Whitaker Way, Portland, OR 97230, TEL (503)254-1794 TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

TAL SL = TestAmerica St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

6

9

10

Certification Summary

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57302-1

Laboratory: TestAmerica Seattle

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-022	03-02-17
California	State Program	9	2901	01-31-18
L-A-B	DoD ELAP		L2236	01-19-19
L-A-B	ISO/IEC 17025		L2236	01-19-19
Montana (UST)	State Program	8	N/A	04-30-20
Oregon	NELAP	10	WA100007	11-06-16
US Fish & Wildlife	Federal		LE058448-0	10-31-16
USDA	Federal		P330-14-00126	04-08-17
Washington	State Program	10	C553	02-17-17

Laboratory: TestAmerica St. Louis

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	MO00054	06-30-16
California	ELAP	9	2886	03-31-16 *
Connecticut	State Program	1	PH-0241	03-31-17
Florida	NELAP	4	E87689	06-30-16
Illinois	NELAP	5	003757	11-30-16
Iowa	State Program	7	373	12-01-16
Kansas	NELAP	7	E-10236	05-31-16
Kentucky (DW)	State Program	4	90125	12-31-16
L-A-B	DoD ELAP		L2305	04-10-16 *
Louisiana	NELAP	6	04080	06-30-16
Louisiana (DW)	NELAP	6	LA160008	12-31-16
Maryland	State Program	3	310	09-30-16
Missouri	State Program	7	780	06-30-16
Nevada	State Program	9	MO000542016-1	07-31-16
New Jersey	NELAP	2	MO002	06-30-16
New York	NELAP	2	11616	03-31-16 *
North Dakota	State Program	8	R207	06-30-16
NRC	NRC		24-24817-01	12-31-22
Oklahoma	State Program	6	9997	08-31-16
Pennsylvania	NELAP	3	68-00540	02-28-17 *
South Carolina	State Program	4	85002001	06-30-16
Texas	NELAP	6	T104704193-15-9	07-31-16
USDA	Federal		P330-07-00122	01-09-17
Utah	NELAP	8	MO000542015-7	07-31-16
Virginia	NELAP	3	460230	06-14-16
Washington	State Program	10	C592	08-30-16
West Virginia DEP	State Program	3	381	08-31-16

2

4

J

a

10

11

^{*} Certification renewal pending - certification considered valid.

TestAmerica Seattle

Sample Summary

Client: SCS Engineers Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57302-1

Lab Sample ID	Client Sample ID	Matrix	Collected Received
580-57302-1	LB-021616-01	Water	02/16/16 10:05 02/16/16 15:30
580-57302-2	LB-021616-02	Water	02/16/16 11:05 02/16/16 15:30
580-57302-3	LB-021616-03	Water	02/16/16 11:00 02/16/16 15:30
580-57302-4	LB-021616-04	Water	02/16/16 12:55 02/16/16 15:30
580-57302-5	LB-021616-05	Water	02/16/16 12:05 02/16/16 15:30
580-57302-6	LB-021616-06	Water	02/16/16 14:00 02/16/16 15:30
580-57302-7	Trip Blanks	Water	02/16/16 10:05 02/16/16 15:30

12423 NE Whitaker Way Portland, OR 97230 503-254-1794

 Job Number:
 6021710

 Report Date:
 02/19/2016

 ORELAP #:
 OR100028

 Project Name:
 580-57302

Project No: Leichner Landfill

Cover Letter

Kelsey DeVries Test America Portland 9405 SW Nimbus Ave. BEAVERTON, OR 97008

Dear Kelsey DeVries,

Enclosed please find Pixis Labs analytical report for samples received as order number 6021710 on 02/17/2016. Should you have any questions about this report or any other matter, please do not hesitate to contact us. We are here to help you.

Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Pixis quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be kept a maximum of 15 days from the report date unless prior arrangements have been made.

Thank you for allowing Pixis to be of service to you, we appreciate your business.

Sincerely,

Signed Richard Reid Project Manager

Order 6021710 Page 30 of 37 P399/20166br>

12423 NE Whitaker Way Portland, OR 97230 503-254-1794
 Job Number:
 6021710

 Report Date:
 02/19/2016

 ORELAP #:
 OR100028

 Project Name:
 580-57302

 Project No:
 Leichner Landfill

Sample Results

			Saii	ipie ne	Suits			
Sample: LB-021616-01 (580-573	302-1)	Collect	ed: 02/16/	16 10:0	5	Temp: 4 C		Matrix: General Water
Lab ID: 101248		Receiv	ed: 02/17/	16 11:3	0	Evidence of Cooling:	:Y	
Analyte	Result	Units	MRL	Dil.	Batch	Start/Extract	Analyzed	Notes
Method: EPA 300.0								
Nitrate	ND	mg/L	0.100	2	27335-5		02/17/16 16:03	
Sample: LB-021616-02 (580-573	302-2)	Collect	ed: 02/16/	16 11:0	5	Temp: 4 C		Matrix: General Water
Lab ID: 101249		Receiv	ed: 02/17/	16 11:3	0	Evidence of Cooling:	:Y	
Analyte	Result	Units	MRL	Dil.	Batch	Start/Extract	Analyzed	Notes
Method: EPA 300.0								
Nitrate	5.23	mg/L	0.100	2	27335-6		02/17/16 16:35	
Sample: LB-021616-03 (580-573	302-3)	Collect	ed: 02/16/	16 11:0	0	Temp: 4 C		Matrix: General Water
Lab ID: 101250		Receiv	ed: 02/17/	16 11:3	0	Evidence of Cooling:	:Y	
Analyte	Result	Units	MRL	Dil.	Batch	Start/Extract	Analyzed	Notes
Method: EPA 300.0								
Nitrate	5.06	mg/L	0.100	2	27335-7		02/17/16 17:08	
Sample: LB-021616-04 (580-573	802-4)	Collect	ed: 02/17/	16		Temp: 4 C		Matrix: General Water
Lab ID: 101251		Receiv	ed: 02/17/	16 11:3	0	Evidence of Cooling:		
Analyte	Result	Units	MRL	Dil.	Batch	Start/Extract	Analyzed	Notes
Method: EPA 300.0								
Nitrate	5.76	mg/L	0.100	2	27335-8		02/17/16 17:41	
Sample: LB-021616-05 (580-573	302-5)		ed: 02/16/			Temp: 4 C		Matrix: General Water
Lab ID: 101252 Analyte	Result	Units	ed: 02/17/ MRL	16 11:3 Dil.	0 Batch	Evidence of Cooling: Start/Extract	:Y Analyzed	Notes
	Hesuit	Units	WITH	DII.	Datoll	Start/Extract	Allalyzeu	NOTES
Method: EPA 300.0								
Nitrate	4.27	mg/L	0.100	2	27335-9		02/17/16 18:13	
Sample: LB-021616-06 (580-573	302-6)		ed: 02/16/			Temp: 4 C		Matrix: General Water
Lab ID: 101253	D It		ed: 02/17/			Evidence of Cooling:		NI-1-
Analyte	Result	Units	MRL	Dil.	Batch	Start/Extract	Analyzed	Notes
Method: EPA 300.0								
Nitrate	4.81	mg/L	0.100	2	27335-10		02/17/16 18:46	

Laboratory Quality Control Results

EPA 300.0										
QC - Initial Calibration Verif						Batch ID: 27335-1				
Analyte	Result		Spike	Units	Recovery	Limits	RPD	Limit	Notes	
Nitrate	0.513		0.500	mg/L	103 %	90-110				
QC - Continuing Calibration Verif A						Batch ID: 27335-14				
Analyte	Result		Spike	Units	Recovery	Limits	RPD	Limit	Notes	
Nitrate	0.237		0.226	mg/L	105 %	90-110				
QC - Initial Calibration Blank - Batch ID: 27335-2								2		
Analyte	Result		Spike	Units	Recovery	Limits	RPD	Limit	Notes	
Nitrate	ND			mg/L						
QC - Matrix Spike Duplicate - of Sample 27335 - 11 Batch ID: 27335-13								3		
Analyte	Result	Org.Result	Spike	Units	Recovery	Limits	RPD	Limit	Notes	
Nitrate	7.55	7.06	0.500	mg/L	98 %	80-120	0	20		

Abbreviations

Method Reporting Limit MRL

ND None Detected at or above the MRL

RPD Relative Percent Difference

Units of Measure:

Milligrams Per Liter mg/L

STAMERIC 6021710

TestAmerica Seattle

5755 8th Street East

Chain of Custody Record

Tacoma, WA 98424 Phone (253) 922-2310 Fax (253) 922-5047

Client Information (Sub Contract Lab)	Sampler:			Lab PM:	M:			Carrier Tracking No(s)	No(s):	COC No.	
Client Contact	Phone.			Wiurpr	Wiurphy, Sarah A	4				580-36420.1	
Shipping/Receiving	10010			Sara	: murphy@	E-Mair. sarah murphy@testamericainc.com	ic.com			Page: Page 1 of 1	
Company: TestAmerica Laboratories, Inc.							Analysis Requested	uested		Job #.	,
Address: 13715 Rider Trail North, ,	Due Date Requested: 2/26/2016	ij								Preservation Codes:	;odes:
City:	TAT Requested (days)	ıys):								A-HCL B-NaOH	M - Hexane N - None
State, Zip: MO, 6304,5					e-, 44/					C - Zn Acetate D - Nitric Acid E - NaHSO4	O - AsNaO2 P - Na2O4S Q - Na2SO3
Phone: 314-296 ₇ 8566(Tel) 314-298-8757(Fax)	PO#						5			F - MeOH G - Amchlor	R - Na2S2SO3 S - H2SO4
	WO#.										
Project Name: Leichner, Landfill - Wash.	Project #: 58008309		į		4 17. 5 0		-			tainer: K - EDTA L - EDA	W - ph 4-5 Z - other (specify)
	SSOW#:				w) cs	-				other:	
			Sample	Matrix	tered MSM: MS/M						
Samila Idantification Plant ID 4 at 10	-	Sample		(W=water, S=solid, O=waste/oil,	HIOLE					uN let	
rection and the leading of the last of the	Sample Date		G=grab) Preserva	J=grab) BT=Tissue, A=Air.) Preservation Code:	а×						Special Instructions/Note:
LB-021616-01 (580-57302-1)	2/16/16	10:05 Pacific		Water	×					+	
LB-021616-02 (580-57302-2)	2/16/16	11:05 Pacific		Water	×					+-	
LB-021616-03 (580-57302-3)	2/16/16	11:00 Pacific		Water	×					4	
LB-021616-04 (580-57302-4)	2/16/16	12:55 Pacific		Water	×					+	
LB-021616-05 (580-57302-5)	2/16/16	12:05 Pacific		Water	×					***	
LB-021616-06 (580-57302-6)	2/16/16	14:00 Pacific		Water	×		1			+	
								,			
Possible Hazard Identification					Sample	Disposal (/	fee may be as	sessed if sar	nples are retain	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	f month)
Deliverable Requested: I, II, IV, Other (specify)				į	Special	Return To Client al Instructions/QC	Requirem	Disposal By Lab ents:		Archive For	Months
Empty Kit Relinquished by:		Date:			Time:			Method of Shipment	Shipment.		
Bedinguished by. Ash Branchon A. Grall	Date/Time: // (13	/5	Surgary 1	N Z	O ST	Die		Date/Time;	000	Company S.R.
	Date/Time:			Company	Reg	Received by:			Date/Time:		Company

Page 35 of 37

Relinquished by: Relinquished by: 3/9/2016

Custody Seal No.:

Sooler Temperature(s) °C and Other Remarks.

Received by:

Company

Client: SCS Engineers

Job Number: 580-57302-1

Login Number: 57302 List Source: TestAmerica Seattle

List Number: 1

Creator: Svabik-Seror, Philip M

oreator. Svabik-Seroi, Fillip W		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	False	Received same day of collection; chilling process has begun.
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

Client: SCS Engineers Job Number: 580-57302-1

Login Number: 57302 List Source: TestAmerica St. Louis
List Number: 2 List Creation: 03/03/16 03:51 PM

Creator: Clarke, Jill C

Creator: Clarke, Jill C		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.7
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Seattle

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-57335-1

Client Project/Site: Leichner Landfill - Wash.

For:

SCS Engineers 14945 SW Sequoia Parkway Suite 180 Portland, Oregon 97224

Attn: Mr. Jason Davendonis

Same Surphy

Authorized for release by: 3/9/2016 4:30:45 PM

Sarah Murphy, Project Manager I (253)922-2310

sarah.murphy@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: SCS Engineers Project/Site: Leichner Landfill - Wash. TestAmerica Job ID: 580-57335-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	
Client Sample Results	5
QC Sample Results	23
Chronicle	30
Certification Summary	33
Sample Summary	34
Subcontract Data	35
Chain of Custody	39
Receipt Checklists	41

6

8

9

Case Narrative

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57335-1

Job ID: 580-57335-1

Laboratory: TestAmerica Seattle

Narrative

Receipt

The samples were received on 2/17/2016 4:00 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 2.0° C and 3.5° C.

GC/MS VOA

Method(s) 8260B: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 580-211854 recovered outside control limits for the following analytes: 1,2,3-Trichloropropane, cis-1,3-Dichloropropene and 4-Methyl-2-pentanone. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method(s) 8260B: The following analyte(s) recovered outside control limits for the LCSD associated with analytical batch 580-211854: Bromomethane. This is not indicative of a systematic control problem as this qualifies as a random marginal exceedances. Qualified results have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Method(s) 300.0: The following samples in Anion batch 160-239571 were diluted to bring the concentrations of target analytes within the calibration range: LB-021716-08 (580-57335-2), LB-021716-09 (580-57335-3), LB-021716-10 (580-57335-4), LB-021716-11 (580-57335-5) and LB-021716-14 (580-57335-8). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Subcontract Work

Method 300.0 Nitrogen, Nitrate: This method was subcontracted to Pixis Laboratories, LLC. The subcontract laboratory certification is different from that of the facility issuing the final report.

2

3

Λ

5

6

7

8

9

10

Definitions/Glossary

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57335-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
*	LCS or LCSD is outside acceptance limits.
*	RPD of the LCS and LCSD exceeds the control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration

MDL	Method Detection Limit
ML	Minimum Level (Dioxin)

NC Not Calculated

Not detected at the reporting limit (or MDL or EDL if shown) ND

PQL Practical Quantitation Limit

QC **Quality Control RER** Relative error ratio

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TestAmerica Seattle

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57335-1

Lab Sample ID: 580-57335-1

Matrix: Water

Client Sample ID: LB-021716-07

Date Collected: 02/17/16 08:40 Date Received: 02/17/16 16:00

Analyte	Result	Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	0.500	ug/L			02/24/16 16:11	1
1,1,1-Trichloroethane	ND	0.500	ug/L			02/24/16 16:11	1
1,1,2,2-Tetrachloroethane	ND	0.500	ug/L			02/24/16 16:11	1
1,1,2-Trichloroethane	ND	0.500	ug/L			02/24/16 16:11	1
1,1-Dichloroethane	ND	0.500	ug/L			02/24/16 16:11	1
1,1-Dichloropropene	ND	0.500	ug/L			02/24/16 16:11	1
1,2,3-Trichlorobenzene	ND	2.00	ug/L			02/24/16 16:11	1
1,2,3-Trichloropropane	ND	* 0.500	ug/L			02/24/16 16:11	•
1,2,4-Trichlorobenzene	ND	2.00	ug/L			02/24/16 16:11	
1,2,4-Trimethylbenzene	ND	2.00	ug/L			02/24/16 16:11	• • • • • • • •
1,2-Dibromo-3-Chloropropane	ND	2.00	ug/L			02/24/16 16:11	
1,2-Dibromoethane	ND	2.00	ug/L			02/24/16 16:11	
1,2-Dichlorobenzene	ND	0.500	ug/L			02/24/16 16:11	,
1,2-Dichloroethane	ND	0.500	ug/L			02/24/16 16:11	
1,2-Dichloropropane	ND	0.500	ug/L			02/24/16 16:11	
1,3,5-Trimethylbenzene	ND	2.00	ug/L			02/24/16 16:11	
1,3-Dichlorobenzene	ND	0.500	ug/L			02/24/16 16:11	
1,3-Dichloropropane	ND	0.500	ug/L			02/24/16 16:11	
1,4-Dichlorobenzene	ND	0.500	ug/L			02/24/16 16:11	
2,2-Dichloropropane	ND	0.500	ug/L			02/24/16 16:11	
2-Butanone	ND	20.0	ug/L			02/24/16 16:11	
2-Chlorotoluene	ND	2.00	ug/L			02/24/16 16:11	
2-Hexanone	ND	20.0	ug/L			02/24/16 16:11	
1-Chlorotoluene	ND ND	2.00	-			02/24/16 16:11	
1-Methyl-2-pentanone	ND ND	* 20.0	ug/L			02/24/16 16:11	
Acetone	ND ND	20.0	ug/L			02/24/16 16:11	
	ND ND	0.500	ug/L				
Benzene			ug/L			02/24/16 16:11	
Bromobenzene	ND	2.00	ug/L			02/24/16 16:11	
Bromochloromethane	ND	0.500	ug/L			02/24/16 16:11	
Bromodichloromethane	ND	0.500	ug/L			02/24/16 16:11	
Bromoform	ND	0.500	ug/L			02/24/16 16:11	
3romomethane	ND		ug/L			02/24/16 16:11	
Carbon disulfide	ND	0.500	ug/L			02/24/16 16:11	
Carbon tetrachloride	ND	0.500	ug/L			02/24/16 16:11	
Chlorobenzene	ND	0.500	ug/L			02/24/16 16:11	
Chloroethane	ND	0.500	ug/L			02/24/16 16:11	
Chloroform	ND	0.500	ug/L			02/24/16 16:11	
Chloromethane	ND	0.500	ug/L			02/24/16 16:11	
cis-1,2-Dichloroethene	ND	0.500	ug/L			02/24/16 16:11	
cis-1,3-Dichloropropene	ND	* 0.500	ug/L			02/24/16 16:11	
Dibromochloromethane	ND	0.500	ug/L			02/24/16 16:11	
Dibromomethane	ND	0.500	ug/L			02/24/16 16:11	
Dichlorodifluoromethane	ND	0.500	ug/L			02/24/16 16:11	
Ethylbenzene	ND	0.500	ug/L			02/24/16 16:11	
Hexachlorobutadiene	ND	2.00	ug/L			02/24/16 16:11	
sopropylbenzene	ND	2.00	ug/L			02/24/16 16:11	
Methyl tert-butyl ether	ND	1.00	ug/L			02/24/16 16:11	
Methylene Chloride	ND	2.00	ug/L			02/24/16 16:11	
m-Xylene & p-Xylene	ND	0.500	ug/L			02/24/16 16:11	· · · · · · .

TestAmerica Seattle

Page 5 of 42

L

7

q

10

11

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

Client Sample ID: LB-021716-07

TestAmerica Job ID: 580-57335-1

Lab Sample ID: 580-57335-1

Matrix: Water

Date Collected: 02/17/16 08:40 Date Received: 02/17/16 16:00

Analyte	Result Qualifier	r RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND	2.00		ug/L			02/24/16 16:11	1
n-Butylbenzene	ND	2.00		ug/L			02/24/16 16:11	1
N-Propylbenzene	ND	2.00		ug/L			02/24/16 16:11	1
o-Xylene	ND	0.500		ug/L			02/24/16 16:11	1
p-Isopropyltoluene	ND	2.00		ug/L			02/24/16 16:11	1
sec-Butylbenzene	ND	2.00		ug/L			02/24/16 16:11	1
Styrene	ND	0.500		ug/L			02/24/16 16:11	1
tert-Butylbenzene	ND	2.00		ug/L			02/24/16 16:11	1
Tetrachloroethene	ND	0.500		ug/L			02/24/16 16:11	1
Toluene	ND	0.500		ug/L			02/24/16 16:11	1
trans-1,2-Dichloroethene	ND	0.500		ug/L			02/24/16 16:11	1
trans-1,3-Dichloropropene	ND	0.500		ug/L			02/24/16 16:11	1
Trichloroethene	ND	0.500		ug/L			02/24/16 16:11	1
Trichlorofluoromethane	ND	0.500		ug/L			02/24/16 16:11	1
Surragata	% Pagayany Oyalifia	r Limita				Propared	Anglyzad	Dil Es

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106	70 - 128		02/24/16 16:11	1
4-Bromofluorobenzene (Surr)	91	75 - 120		02/24/16 16:11	1
Dibromofluoromethane (Surr)	95	85 - 115		02/24/16 16:11	1
Toluene-d8 (Surr)	104	75 - 125		02/24/16 16:11	1
Trifluorotoluene (Surr)	100	80 - 127		02/24/16 16:11	1

Method: 300.0 - Anions, Ion C	hromatography						
Analyte	Result Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND	0.200	mg/L			03/08/16 18:17	1

Method: 6020 - Metals (ICP/MS	6) - Dissolved						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND	0.0400	mg/L		02/19/16 17:31	02/22/16 11:22	1
Manganese	ND	0.00200	mg/L		02/19/16 17:31	02/22/16 11:22	1

General Chemistry Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	10.0		10.0		mg/L			02/18/16 18:48	1

3/9/2016

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

Date Collected: 02/17/16 09:35

TestAmerica Job ID: 580-57335-1

Lab Sample ID: 580-57335-2

Matrix: Water

Client Sample ID: LB-021716-08

Method: 8260B - Volatile Or	ganic Compounds (GC	/MS)	
Analyte	Result Qualifier	RL	
1,1,1,2-Tetrachloroethane	ND ND	0.500	
1,1,1-Trichloroethane	ND	0.500	
1,1,2,2-Tetrachloroethane	ND	0.500	
1,1,2-Trichloroethane	ND	0.500	
1,1-Dichloroethane	ND	0.500	
1,1-Dichloropropene	ND	0.500	
1,2,3-Trichlorobenzene	ND	2.00	
1,2,3-Trichloropropane	ND *	0.500	

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND ND	0.500	ug/L		02/24/16 16:38	1
1,1,1-Trichloroethane	ND	0.500	ug/L		02/24/16 16:38	1
1,1,2,2-Tetrachloroethane	ND	0.500	ug/L		02/24/16 16:38	1
1,1,2-Trichloroethane	ND	0.500	ug/L		02/24/16 16:38	1
1,1-Dichloroethane	ND	0.500	ug/L		02/24/16 16:38	1
1,1-Dichloropropene	ND	0.500	ug/L		02/24/16 16:38	1
1,2,3-Trichlorobenzene	ND	2.00	ug/L		02/24/16 16:38	1
1,2,3-Trichloropropane	ND *	0.500	ug/L		02/24/16 16:38	1
1,2,4-Trichlorobenzene	ND	2.00	ug/L		02/24/16 16:38	1
1,2,4-Trimethylbenzene	ND	2.00	ug/L		02/24/16 16:38	1
1,2-Dibromo-3-Chloropropane	ND	2.00	ug/L		02/24/16 16:38	1
1,2-Dibromoethane	ND	2.00	ug/L		02/24/16 16:38	1
1,2-Dichlorobenzene	ND	0.500	ug/L		02/24/16 16:38	1
1,2-Dichloroethane	ND	0.500	ug/L		02/24/16 16:38	1
1,2-Dichloropropane	ND	0.500	ug/L		02/24/16 16:38	1
1,3,5-Trimethylbenzene	ND	2.00	ug/L		02/24/16 16:38	1
1,3-Dichlorobenzene	ND	0.500	ug/L		02/24/16 16:38	1
1,3-Dichloropropane	ND	0.500	ug/L		02/24/16 16:38	1
1,4-Dichlorobenzene	ND	0.500	ug/L		02/24/16 16:38	1
2,2-Dichloropropane	ND	0.500	ug/L		02/24/16 16:38	1
2-Butanone	ND	20.0	ug/L		02/24/16 16:38	1
2-Chlorotoluene	ND	2.00	ug/L		02/24/16 16:38	1
2-Hexanone	ND	20.0	ug/L		02/24/16 16:38	1
4-Chlorotoluene	ND	2.00	ug/L		02/24/16 16:38	1
4-Methyl-2-pentanone	ND *	20.0	ug/L		02/24/16 16:38	1
Acetone	ND	20.0	ug/L		02/24/16 16:38	1
Benzene	ND	0.500	ug/L		02/24/16 16:38	1
Bromobenzene	ND	2.00	ug/L		02/24/16 16:38	1
Bromochloromethane	ND	0.500	ug/L		02/24/16 16:38	1
Bromodichloromethane	ND	0.500	ug/L		02/24/16 16:38	1
Bromoform	ND	0.500	ug/L		02/24/16 16:38	1
Bromomethane	ND *	1.00	ug/L		02/24/16 16:38	1
Carbon disulfide	ND	0.500	ug/L		02/24/16 16:38	1
Carbon tetrachloride	ND	0.500	ug/L		02/24/16 16:38	1
Chlorobenzene	ND	0.500	ug/L		02/24/16 16:38	1
Chloroethane	ND	0.500	ug/L		02/24/16 16:38	1
Chloroform	ND	0.500	ug/L		02/24/16 16:38	1
Chloromethane	ND	0.500	ug/L		02/24/16 16:38	1
cis-1,2-Dichloroethene	ND	0.500	ug/L		02/24/16 16:38	1
cis-1,3-Dichloropropene	ND *	0.500	ug/L		02/24/16 16:38	1
Dibromochloromethane	ND	0.500	ug/L		02/24/16 16:38	1
Dibromomethane	ND	0.500	ug/L		02/24/16 16:38	1
Dichlorodifluoromethane	ND	0.500	ug/L		02/24/16 16:38	1
Ethylbenzene	ND	0.500	ug/L		02/24/16 16:38	1
Hexachlorobutadiene	ND	2.00	ug/L		02/24/16 16:38	1
Isopropylbenzene	ND	2.00	ug/L		02/24/16 16:38	1
Methyl tert-butyl ether	ND	1.00	ug/L		02/24/16 16:38	1
Methylene Chloride	ND	2.00	ug/L		02/24/16 16:38	1
m-Xylene & p-Xylene	ND	0.500	ug/L		02/24/16 16:38	1

TestAmerica Seattle

Page 7 of 42

3/9/2016

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57335-1

Lab Sample ID: 580-57335-2

Matrix: Water

Client Sample ID: LB-021716-08

Date Collected: 02/17/16 09:35 Date Received: 02/17/16 16:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		2.00		ug/L			02/24/16 16:38	1
n-Butylbenzene	ND		2.00		ug/L			02/24/16 16:38	1
N-Propylbenzene	ND		2.00		ug/L			02/24/16 16:38	1
o-Xylene	ND		0.500		ug/L			02/24/16 16:38	1
p-Isopropyltoluene	ND		2.00		ug/L			02/24/16 16:38	1
sec-Butylbenzene	ND		2.00		ug/L			02/24/16 16:38	1
Styrene	ND		0.500		ug/L			02/24/16 16:38	1
tert-Butylbenzene	ND		2.00		ug/L			02/24/16 16:38	1
Tetrachloroethene	ND		0.500		ug/L			02/24/16 16:38	1
Toluene	ND		0.500		ug/L			02/24/16 16:38	1
trans-1,2-Dichloroethene	ND		0.500		ug/L			02/24/16 16:38	1
trans-1,3-Dichloropropene	ND		0.500		ug/L			02/24/16 16:38	1
Trichloroethene	ND		0.500		ug/L			02/24/16 16:38	1
Trichlorofluoromethane	ND		0.500		ug/L			02/24/16 16:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		70 - 128					02/24/16 16:38	1
4-Bromofluorobenzene (Surr)	92		75 - 120					02/24/16 16:38	1
Dibromofluoromethane (Surr)	95		85 ₋ 115					02/24/16 16:38	1
Toluene-d8 (Surr)	104		75 - 125					02/24/16 16:38	1
Trifluorotoluene (Surr)	99		80 - 127					02/24/16 16:38	1
Method: 300.0 - Anions, lor	n Chromatogra	phy - DL							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	7.13		1.00		mg/L			03/08/16 18:33	5
Method: 6020 - Metals (ICP	/MS) - Dissolv	ed							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND	·	0.0400		mg/L		02/19/16 17:31	02/22/16 11:58	1
Manganese	ND		0.00200		mg/L		02/19/16 17:31	02/22/16 11:58	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	183		10.0		mg/L			02/18/16 18:48	1

2

И

5

8

9

11

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57335-1

Lab Sample ID: 580-57335-3

Matrix: Water

Client Sample ID: LB-021716-09

Date Collected: 02/17/16 10:40 Date Received: 02/17/16 16:00

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	0.500	ug/L			02/24/16 17:06	
1,1,1-Trichloroethane	ND	0.500	ug/L			02/24/16 17:06	
1,1,2,2-Tetrachloroethane	ND	0.500	ug/L			02/24/16 17:06	
1,1,2-Trichloroethane	ND	0.500	ug/L			02/24/16 17:06	
1,1-Dichloroethane	ND	0.500	ug/L			02/24/16 17:06	
1,1-Dichloropropene	ND	0.500	ug/L			02/24/16 17:06	
1,2,3-Trichlorobenzene	ND	2.00	ug/L			02/24/16 17:06	
1,2,3-Trichloropropane	ND *	0.500	ug/L			02/24/16 17:06	
1,2,4-Trichlorobenzene	ND	2.00	ug/L			02/24/16 17:06	
1,2,4-Trimethylbenzene	ND	2.00	ug/L			02/24/16 17:06	
1,2-Dibromo-3-Chloropropane	ND	2.00	ug/L			02/24/16 17:06	
1,2-Dibromoethane	ND	2.00	ug/L			02/24/16 17:06	
1,2-Dichlorobenzene	ND	0.500	ug/L			02/24/16 17:06	
1,2-Dichloroethane	ND	0.500	ug/L			02/24/16 17:06	
1,2-Dichloropropane	ND	0.500	ug/L			02/24/16 17:06	
1,3,5-Trimethylbenzene	ND	2.00	ug/L			02/24/16 17:06	
1,3-Dichlorobenzene	ND	0.500	ug/L			02/24/16 17:06	
1,3-Dichloropropane	ND	0.500	ug/L			02/24/16 17:06	
1,4-Dichlorobenzene	ND	0.500	ug/L			02/24/16 17:06	
2,2-Dichloropropane	ND	0.500	ug/L			02/24/16 17:06	
2-Butanone	ND	20.0	ug/L			02/24/16 17:06	
2-Chlorotoluene	ND	2.00	ug/L			02/24/16 17:06	
2-Hexanone	ND	20.0	ug/L			02/24/16 17:06	
1-Chlorotoluene	ND	2.00	ug/L			02/24/16 17:06	
I-Methyl-2-pentanone	ND *	20.0	ug/L			02/24/16 17:06	
Acetone	ND	20.0	ug/L			02/24/16 17:06	
Benzene	ND	0.500	ug/L			02/24/16 17:06	
Bromobenzene	ND	2.00	ug/L			02/24/16 17:06	
Bromochloromethane	ND	0.500	ug/L			02/24/16 17:06	
Bromodichloromethane	ND	0.500	ug/L			02/24/16 17:06	
Bromoform	ND	0.500	ug/L			02/24/16 17:06	
Bromomethane	ND *	1.00	ug/L			02/24/16 17:06	
Carbon disulfide	ND	0.500	ug/L			02/24/16 17:06	
Carbon tetrachloride	ND	0.500	ug/L			02/24/16 17:06	
Chlorobenzene	ND	0.500	ug/L			02/24/16 17:06	
Chloroethane	ND	0.500	ug/L			02/24/16 17:06	
Chloroform	ND	0.500	ug/L			02/24/16 17:06	
Chloromethane	ND	0.500	ug/L			02/24/16 17:06	
sis-1,2-Dichloroethene	ND	0.500	ug/L			02/24/16 17:06	
cis-1,3-Dichloropropene	ND *	0.500	ug/L			02/24/16 17:06	
Dibromochloromethane	ND	0.500	ug/L			02/24/16 17:06	
Dibromomethane	ND	0.500	ug/L			02/24/16 17:06	
Dichlorodifluoromethane	ND	0.500	ug/L			02/24/16 17:06	
Ethylbenzene	ND	0.500	ug/L			02/24/16 17:06	
Hexachlorobutadiene	ND ND	2.00	ug/L			02/24/16 17:06	
sopropylbenzene	ND	2.00				02/24/16 17:06	
Methyl tert-butyl ether	ND ND	1.00	ug/L ug/L			02/24/16 17:06	
	ND ND		=				
Methylene Chloride m-Xylene & p-Xylene	ND	2.00 0.500	ug/L ug/L			02/24/16 17:06 02/24/16 17:06	

TestAmerica Seattle

Page 9 of 42 3/9/2016

3

5

7

9

11

Client: SCS Engineers

General Chemistry

Total Dissolved Solids

Analyte

Project/Site: Leichner Landfill - Wash.

Date Collected: 02/17/16 10:40

Date Received: 02/17/16 16:00

Client Sample ID: LB-021716-09

TestAmerica Job ID: 580-57335-1

Lab Sample ID: 580-57335-3

Matrix: Water

Analyte	Result Quali	fier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND ND	2.00		ug/L			02/24/16 17:06	1
n-Butylbenzene	ND	2.00		ug/L			02/24/16 17:06	1
N-Propylbenzene	ND	2.00		ug/L			02/24/16 17:06	1
o-Xylene	ND	0.500		ug/L			02/24/16 17:06	1
p-Isopropyltoluene	ND	2.00		ug/L			02/24/16 17:06	1
sec-Butylbenzene	ND	2.00		ug/L			02/24/16 17:06	1
Styrene	ND	0.500		ug/L			02/24/16 17:06	1
tert-Butylbenzene	ND	2.00		ug/L			02/24/16 17:06	1
Tetrachloroethene	ND	0.500		ug/L			02/24/16 17:06	1
Toluene	ND	0.500		ug/L			02/24/16 17:06	1
trans-1,2-Dichloroethene	ND	0.500		ug/L			02/24/16 17:06	1
trans-1,3-Dichloropropene	ND	0.500		ug/L			02/24/16 17:06	1
Trichloroethene	ND	0.500		ug/L			02/24/16 17:06	1
Trichlorofluoromethane	ND	0.500		ug/L			02/24/16 17:06	1
Surrogate	%Recovery Quali	fier Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108	70 - 128					02/24/16 17:06	1
4-Bromofluorobenzene (Surr)	94	75 - 120					02/24/16 17:06	1
Dibromofluoromethane (Surr)	96	85 - 115					02/24/16 17:06	1
Toluene-d8 (Surr)	102	75 - 125					02/24/16 17:06	1
Trifluorotoluene (Surr)	97	80 - 127					02/24/16 17:06	1
Method: 300.0 - Anions, Ior	Chromatography -	·DL						
Analyte	Result Quali		RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	17.2	2.00		mg/L			03/08/16 18:49	10
Method: 6020 - Metals (ICP)	MS) - Dissolved							
Analyte	Result Quali	fier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND ND	0.0400		mg/L		02/19/16 17:31	02/22/16 12:03	1
Manganese	0.00217	0.00200		mg/L		02/19/16 17:31	02/22/16 12:03	1

RL

10.0

RL Unit

mg/L

Prepared

Analyzed

02/18/16 18:48

Dil Fac

Result Qualifier

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57335-1

Lab Sample ID: 580-57335-4

Matrix: Water

Client Sample ID: LB-021716-10

Date Collected: 02/17/16 10:35 Date Received: 02/17/16 16:00

Method: 8260B - Volatile Orga Analyte	Result		_ MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND ND	0.50		ug/L	<u> </u>	Tropulou	02/24/16 17:33	
1,1,1-Trichloroethane	ND	0.50		ug/L			02/24/16 17:33	
I,1,2,2-Tetrachloroethane	ND	0.50		ug/L			02/24/16 17:33	
1,1,2-Trichloroethane	ND	0.50		ug/L			02/24/16 17:33	
I,1-Dichloroethane	ND	0.50		ug/L			02/24/16 17:33	
I,1-Dichloropropene	ND	0.50		ug/L ug/L			02/24/16 17:33	
1,2,3-Trichlorobenzene	ND	2.0		ug/L ug/L			02/24/16 17:33	
1,2,3-Trichloropenzene	ND 1	* 0.50		ug/L ug/L			02/24/16 17:33	
• •	ND ND	2.0		_				
1,2,4-Trichlorobenzene	ND ND	2.0		ug/L			02/24/16 17:33	
I,2,4-Trimethylbenzene				ug/L			02/24/16 17:33	
I,2-Dibromo-3-Chloropropane	ND	2.0		ug/L			02/24/16 17:33	
I,2-Dibromoethane	ND	2.0		ug/L			02/24/16 17:33	
1,2-Dichlorobenzene	ND	0.50		ug/L			02/24/16 17:33	
I,2-Dichloroethane	ND	0.50		ug/L			02/24/16 17:33	
1,2-Dichloropropane	ND	0.50		ug/L			02/24/16 17:33	
1,3,5-Trimethylbenzene	ND	2.0		ug/L			02/24/16 17:33	
1,3-Dichlorobenzene	ND	0.50)	ug/L			02/24/16 17:33	
I,3-Dichloropropane	ND	0.50)	ug/L			02/24/16 17:33	
1,4-Dichlorobenzene	ND	0.50)	ug/L			02/24/16 17:33	
2,2-Dichloropropane	ND	0.50)	ug/L			02/24/16 17:33	
2-Butanone	ND	20.)	ug/L			02/24/16 17:33	
2-Chlorotoluene	ND	2.0)	ug/L			02/24/16 17:33	
2-Hexanone	ND	20.)	ug/L			02/24/16 17:33	
I-Chlorotoluene	ND	2.0)	ug/L			02/24/16 17:33	
I-Methyl-2-pentanone	ND	* 20.)	ug/L			02/24/16 17:33	
Acetone	ND	20.)	ug/L			02/24/16 17:33	
Benzene	ND	0.50)	ug/L			02/24/16 17:33	
Bromobenzene	ND	2.0		ug/L			02/24/16 17:33	
Bromochloromethane	ND	0.50		ug/L			02/24/16 17:33	
Bromodichloromethane	ND	0.50)	ug/L			02/24/16 17:33	
Bromoform	ND	0.50		ug/L			02/24/16 17:33	
Bromomethane	ND 1			ug/L			02/24/16 17:33	
Carbon disulfide	ND	0.50		ug/L			02/24/16 17:33	
Carbon tetrachloride	ND	0.50		ug/L			02/24/16 17:33	
Chlorobenzene	ND	0.50		ug/L			02/24/16 17:33	
Chloroethane	ND	0.50		ug/L			02/24/16 17:33	
Chloroform	ND	0.50		ug/L			02/24/16 17:33	
Chloromethane	ND	0.50					02/24/16 17:33	
cis-1,2-Dichloroethene	ND ND	0.50		ug/L			02/24/16 17:33	
				ug/L				
cis-1,3-Dichloropropene	ND	* 0.50		ug/L			02/24/16 17:33	
Dibromochloromethane	ND	0.50		ug/L			02/24/16 17:33	
Dibromomethane	ND	0.50		ug/L			02/24/16 17:33	
Dichlorodifluoromethane	ND	0.50		ug/L			02/24/16 17:33	
Ethylbenzene	ND	0.50		ug/L			02/24/16 17:33	
Hexachlorobutadiene	ND	2.0		ug/L			02/24/16 17:33	
sopropylbenzene	ND	2.0		ug/L			02/24/16 17:33	
Methyl tert-butyl ether	ND	1.0		ug/L			02/24/16 17:33	
Methylene Chloride	ND	2.0)	ug/L			02/24/16 17:33	

TestAmerica Seattle

3/9/2016

3

J

8

9

11

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57335-1

Lab Sample ID: 580-57335-4

Matrix: Water

Client Sample ID: LB-021716-10 Date Collected: 02/17/16 10:35

Date Received: 02/17/16 16:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		2.00		ug/L			02/24/16 17:33	1
n-Butylbenzene	ND		2.00		ug/L			02/24/16 17:33	1
N-Propylbenzene	ND		2.00		ug/L			02/24/16 17:33	1
o-Xylene	ND		0.500		ug/L			02/24/16 17:33	1
p-Isopropyltoluene	ND		2.00		ug/L			02/24/16 17:33	1
sec-Butylbenzene	ND		2.00		ug/L			02/24/16 17:33	1
Styrene	ND		0.500		ug/L			02/24/16 17:33	1
tert-Butylbenzene	ND		2.00		ug/L			02/24/16 17:33	1
Tetrachloroethene	ND		0.500		ug/L			02/24/16 17:33	1
Toluene	ND		0.500		ug/L			02/24/16 17:33	1
trans-1,2-Dichloroethene	ND		0.500		ug/L			02/24/16 17:33	1
trans-1,3-Dichloropropene	ND		0.500		ug/L			02/24/16 17:33	1
Trichloroethene	ND		0.500		ug/L			02/24/16 17:33	1
Trichlorofluoromethane	ND		0.500		ug/L			02/24/16 17:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		70 - 128					02/24/16 17:33	1
4-Bromofluorobenzene (Surr)	92		75 - 120					02/24/16 17:33	1
Dibromofluoromethane (Surr)	95		85 - 115					02/24/16 17:33	1
Toluene-d8 (Surr)	103		75 - 125					02/24/16 17:33	1
Trifluorotoluene (Surr)	98		80 - 127					02/24/16 17:33	1
Method: 300.0 - Anions, lor	n Chromatogra	phy - DL							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	17.1		2.00		mg/L			03/08/16 19:05	10
Method: 6020 - Metals (ICP	/MS) - Dissolv	ed							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND		0.0400		mg/L		02/19/16 17:31	02/22/16 12:07	1
Manganese	ND		0.00200		mg/L		02/19/16 17:31	02/22/16 12:07	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	264		10.0		mg/L			02/18/16 18:48	

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57335-1

Lab Sample ID: 580-57335-5

Matrix: Water

Client Sample ID: LB-021716-11 Date Collected: 02/17/16 11:35

Date Received: 02/17/16 16:0			
Method: 8260B - Volatile Or Analyte	ganic Compounds (Result Qualifi	•	MDL
1,1,1,2-Tetrachloroethane	ND	0.500	
1,1,1-Trichloroethane	ND	0.500	
1,1,2,2-Tetrachloroethane	ND	0.500	
1,1,2-Trichloroethane	ND	0.500	
1,1-Dichloroethane	ND	0.500	
1,1-Dichloropropene	ND	0.500	
1,2,3-Trichlorobenzene	ND	2.00	

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	0.500	ug/L		02/24/16 18:00	1
1,1,1-Trichloroethane	ND	0.500	ug/L		02/24/16 18:00	1
1,1,2,2-Tetrachloroethane	ND	0.500	ug/L		02/24/16 18:00	1
1,1,2-Trichloroethane	ND	0.500	ug/L		02/24/16 18:00	1
1,1-Dichloroethane	ND	0.500	ug/L		02/24/16 18:00	1
1,1-Dichloropropene	ND	0.500	ug/L		02/24/16 18:00	1
1,2,3-Trichlorobenzene	ND	2.00	ug/L		02/24/16 18:00	1
1,2,3-Trichloropropane	ND *	0.500	ug/L		02/24/16 18:00	1
1,2,4-Trichlorobenzene	ND	2.00	ug/L		02/24/16 18:00	1
1,2,4-Trimethylbenzene	ND	2.00	ug/L		02/24/16 18:00	1
1,2-Dibromo-3-Chloropropane	ND	2.00	ug/L		02/24/16 18:00	1
1,2-Dibromoethane	ND	2.00	ug/L		02/24/16 18:00	1
1,2-Dichlorobenzene	ND	0.500	ug/L		02/24/16 18:00	1
1,2-Dichloroethane	ND	0.500	ug/L		02/24/16 18:00	1
1,2-Dichloropropane	ND	0.500	ug/L		02/24/16 18:00	1
1,3,5-Trimethylbenzene	ND	2.00	ug/L		02/24/16 18:00	1
1,3-Dichlorobenzene	ND	0.500	ug/L		02/24/16 18:00	1
1,3-Dichloropropane	ND	0.500	ug/L		02/24/16 18:00	1
1,4-Dichlorobenzene	ND	0.500	ug/L		02/24/16 18:00	1
2,2-Dichloropropane	ND	0.500	ug/L		02/24/16 18:00	1
2-Butanone	ND	20.0	ug/L		02/24/16 18:00	1
2-Chlorotoluene	ND	2.00	ug/L		02/24/16 18:00	1
2-Hexanone	ND	20.0	ug/L		02/24/16 18:00	1
4-Chlorotoluene	ND	2.00	ug/L		02/24/16 18:00	1
4-Methyl-2-pentanone	ND *	20.0	ug/L		02/24/16 18:00	1
Acetone	ND	20.0	ug/L		02/24/16 18:00	1
Benzene	ND	0.500	ug/L		02/24/16 18:00	1
Bromobenzene	ND	2.00	ug/L		02/24/16 18:00	1
Bromochloromethane	ND	0.500	ug/L		02/24/16 18:00	1
Bromodichloromethane	ND	0.500	ug/L		02/24/16 18:00	1
Bromoform	ND	0.500	ug/L		02/24/16 18:00	1
Bromomethane	ND *	1.00	ug/L		02/24/16 18:00	1
Carbon disulfide	ND	0.500	ug/L		02/24/16 18:00	1
Carbon tetrachloride	ND	0.500	ug/L		02/24/16 18:00	1
Chlorobenzene	ND	0.500	ug/L		02/24/16 18:00	1
Chloroethane	ND	0.500	ug/L		02/24/16 18:00	1
Chloroform	ND	0.500	ug/L		02/24/16 18:00	1
Chloromethane	ND	0.500	ug/L		02/24/16 18:00	1
cis-1,2-Dichloroethene	ND	0.500	ug/L		02/24/16 18:00	1
cis-1,3-Dichloropropene	ND *	0.500	ug/L		02/24/16 18:00	1
Dibromochloromethane	ND	0.500	ug/L		02/24/16 18:00	1
Dibromomethane	ND	0.500	ug/L		02/24/16 18:00	1
Dichlorodifluoromethane	ND	0.500	ug/L		02/24/16 18:00	1
Ethylbenzene	ND	0.500	ug/L		02/24/16 18:00	1
Hexachlorobutadiene	ND	2.00	ug/L		02/24/16 18:00	1
Isopropylbenzene	ND	2.00	ug/L		02/24/16 18:00	1
Methyl tert-butyl ether	ND	1.00	ug/L		02/24/16 18:00	1
Methylene Chloride	ND	2.00	ug/L		02/24/16 18:00	1
m-Xylene & p-Xylene	ND	0.500	ug/L		02/24/16 18:00	1

TestAmerica Seattle

Page 13 of 42

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57335-1

Client Sample ID: LB-021716-11

Lab Sample ID: 580-57335-5

Date Collected: 02/17/16 11:35 **Matrix: Water** Date Received: 02/17/16 16:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		2.00		ug/L			02/24/16 18:00	1
n-Butylbenzene	ND		2.00		ug/L			02/24/16 18:00	1
N-Propylbenzene	ND		2.00		ug/L			02/24/16 18:00	1
o-Xylene	ND		0.500		ug/L			02/24/16 18:00	1
p-Isopropyltoluene	ND		2.00		ug/L			02/24/16 18:00	1
sec-Butylbenzene	ND		2.00		ug/L			02/24/16 18:00	1
Styrene	ND		0.500		ug/L			02/24/16 18:00	1
tert-Butylbenzene	ND		2.00		ug/L			02/24/16 18:00	1
Tetrachloroethene	ND		0.500		ug/L			02/24/16 18:00	1
Toluene	ND		0.500		ug/L			02/24/16 18:00	1
trans-1,2-Dichloroethene	ND		0.500		ug/L			02/24/16 18:00	1
trans-1,3-Dichloropropene	ND		0.500		ug/L			02/24/16 18:00	1
Trichloroethene	ND		0.500		ug/L			02/24/16 18:00	1
Trichlorofluoromethane	ND		0.500		ug/L			02/24/16 18:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		70 - 128					02/24/16 18:00	1
4-Bromofluorobenzene (Surr)	92		75 - 120					02/24/16 18:00	1
Dibromofluoromethane (Surr)	94		85 - 115					02/24/16 18:00	1
Toluene-d8 (Surr)	103		75 - 125					02/24/16 18:00	1
Trifluorotoluene (Surr)	97		80 - 127					02/24/16 18:00	1
Method: 300.0 - Anions, Ion Ch	romatogra	phy - DL							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	21.4		2.00		mg/L			03/08/16 19:21	10
Method: 6020 - Metals (ICP/MS) - Dissolve	ed							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND		0.0400		mg/L		02/19/16 17:31	02/22/16 12:12	1
Manganese	ND		0.00200		mg/L		02/19/16 17:31	02/22/16 12:12	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	260		10.0		mg/L			02/18/16 18:48	1

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57335-1

Lab Sample ID: 580-57335-6

Matrix: Water

Client Sample ID: LB-021716-12

Date Collected: 02/17/16 12:40 Date Received: 02/17/16 16:00

Method: 8260B - Volatile Org			MBI II II	_	B	A 1	D.: -
Analyte	Result Q		MDL Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND	0.500	ug/L			02/24/16 18:27	
1,1,1-Trichloroethane	ND	0.500	ug/L			02/24/16 18:27	
1,1,2,2-Tetrachloroethane	ND	0.500	ug/L			02/24/16 18:27	
1,1,2-Trichloroethane	ND	0.500	ug/L			02/24/16 18:27	
I,1-Dichloroethane	ND	0.500	ug/L			02/24/16 18:27	
1,1-Dichloropropene	ND	0.500	ug/L			02/24/16 18:27	
1,2,3-Trichlorobenzene	ND	2.00	ug/L			02/24/16 18:27	
1,2,3-Trichloropropane	ND *	0.500	ug/L			02/24/16 18:27	
1,2,4-Trichlorobenzene	ND	2.00	ug/L			02/24/16 18:27	
1,2,4-Trimethylbenzene	ND	2.00	ug/L			02/24/16 18:27	
1,2-Dibromo-3-Chloropropane	ND	2.00	ug/L			02/24/16 18:27	
I,2-Dibromoethane	ND	2.00	ug/L			02/24/16 18:27	
1,2-Dichlorobenzene	ND	0.500	ug/L			02/24/16 18:27	
1,2-Dichloroethane	ND	0.500	ug/L			02/24/16 18:27	
1,2-Dichloropropane	ND	0.500	ug/L			02/24/16 18:27	
1,3,5-Trimethylbenzene	ND	2.00	ug/L			02/24/16 18:27	
1,3-Dichlorobenzene	ND	0.500	ug/L			02/24/16 18:27	
1,3-Dichloropropane	ND	0.500	ug/L			02/24/16 18:27	
I,4-Dichlorobenzene	ND	0.500	ug/L			02/24/16 18:27	
2,2-Dichloropropane	ND	0.500	ug/L			02/24/16 18:27	
2-Butanone	ND	20.0	ug/L			02/24/16 18:27	
2-Chlorotoluene	ND	2.00	ug/L			02/24/16 18:27	
2-Hexanone	ND	20.0	ug/L			02/24/16 18:27	
l-Chlorotoluene	ND	2.00	ug/L			02/24/16 18:27	
l-Methyl-2-pentanone	ND *	20.0	ug/L			02/24/16 18:27	
Acetone	ND	20.0	ug/L			02/24/16 18:27	
Benzene	ND	0.500	ug/L			02/24/16 18:27	
Bromobenzene	ND	2.00	ug/L			02/24/16 18:27	
Bromochloromethane	ND	0.500	ug/L			02/24/16 18:27	
Bromodichloromethane	ND	0.500	ug/L			02/24/16 18:27	
Bromoform	ND	0.500	ug/L			02/24/16 18:27	
Bromomethane	ND *	1.00	ug/L			02/24/16 18:27	
Carbon disulfide	ND	0.500	ug/L			02/24/16 18:27	
Carbon tetrachloride	ND	0.500	ug/L			02/24/16 18:27	
Chlorobenzene	ND	0.500	ug/L			02/24/16 18:27	
Chloroethane	ND	0.500	ug/L			02/24/16 18:27	
Chloroform	ND	0.500	ug/L			02/24/16 18:27	
Chloromethane	ND	0.500	ug/L			02/24/16 18:27	
cis-1,2-Dichloroethene	ND	0.500	ug/L			02/24/16 18:27	
cis-1,3-Dichloropropene	ND *	0.500	ug/L			02/24/16 18:27	
Dibromochloromethane	ND	0.500	ug/L			02/24/16 18:27	
Dibromomethane	ND ND	0.500	ug/L ug/L			02/24/16 18:27	
Dichlorodifluoromethane	ND	0.500	ug/L			02/24/16 18:27	
Ethylbenzene	ND ND	0.500	ug/L ug/L			02/24/16 18:27	
•	ND ND	2.00	_			02/24/16 18:27	
Hexachlorobutadiene			ug/L				
sopropylbenzene	ND	2.00	ug/L			02/24/16 18:27	
Methyl tert-butyl ether	ND	1.00	ug/L			02/24/16 18:27	
Methylene Chloride m-Xylene & p-Xylene	ND ND	2.00 0.500	ug/L ug/L			02/24/16 18:27 02/24/16 18:27	

TestAmerica Seattle

2

5

7

9

11

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

Date Collected: 02/17/16 12:40

Date Received: 02/17/16 16:00

Client Sample ID: LB-021716-12

TestAmerica Job ID: 580-57335-1

Lab Sample ID: 580-57335-6

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		2.00		ug/L			02/24/16 18:27	1
n-Butylbenzene	ND		2.00		ug/L			02/24/16 18:27	1
N-Propylbenzene	ND		2.00		ug/L			02/24/16 18:27	1
o-Xylene	ND		0.500		ug/L			02/24/16 18:27	1
p-Isopropyltoluene	ND		2.00		ug/L			02/24/16 18:27	1
sec-Butylbenzene	ND		2.00		ug/L			02/24/16 18:27	1
Styrene	ND		0.500		ug/L			02/24/16 18:27	1
tert-Butylbenzene	ND		2.00		ug/L			02/24/16 18:27	1
Tetrachloroethene	ND		0.500		ug/L			02/24/16 18:27	1
Toluene	ND		0.500		ug/L			02/24/16 18:27	1
trans-1,2-Dichloroethene	ND		0.500		ug/L			02/24/16 18:27	1
trans-1,3-Dichloropropene	ND		0.500		ug/L			02/24/16 18:27	1
Trichloroethene	ND		0.500		ug/L			02/24/16 18:27	1
Trichlorofluoromethane	ND		0.500		ug/L			02/24/16 18:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110		70 - 128					02/24/16 18:27	1
4-Bromofluorobenzene (Surr)	95		75 - 120					02/24/16 18:27	1
Dibromofluoromethane (Surr)	97		85 ₋ 115					02/24/16 18:27	1
Toluene-d8 (Surr)	104		75 - 125					02/24/16 18:27	1
Trifluorotoluene (Surr)	94		80 - 127					02/24/16 18:27	1
Method: 300.0 - Anions, Ioi	n Chromatogra	phy							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	4.14		0.200		mg/L			03/08/16 19:37	1
Method: 6020 - Metals (ICP	/MS) - Dissolv	ed							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND		0.0400		mg/L		02/19/16 17:31	02/22/16 12:17	1
Manganese	ND		0.00200		mg/L		02/19/16 17:31	02/22/16 12:17	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	155		10.0		mg/L			02/18/16 18:48	1

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57335-1

Lab Sample ID: 580-57335-7

Matrix: Water

Client Sample ID: LB-021716-13

Date Collected: 02/17/16 13:35 Date Received: 02/17/16 16:00

Method: 8260B - Volatile Orga ^{Analyte}		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		0.500		ug/L			02/24/16 18:54	1
1,1,1-Trichloroethane	ND		0.500		ug/L			02/24/16 18:54	1
1,1,2,2-Tetrachloroethane	ND		0.500		ug/L			02/24/16 18:54	1
1,1,2-Trichloroethane	ND		0.500		ug/L			02/24/16 18:54	1
1,1-Dichloroethane	ND		0.500		ug/L			02/24/16 18:54	1
1,1-Dichloropropene	ND		0.500		ug/L			02/24/16 18:54	1
1,2,3-Trichlorobenzene	ND		2.00		ug/L			02/24/16 18:54	1
1,2,3-Trichloropropane	ND	*	0.500		ug/L			02/24/16 18:54	1
1,2,4-Trichlorobenzene	ND		2.00		ug/L			02/24/16 18:54	1
1,2,4-Trimethylbenzene	ND		2.00		ug/L			02/24/16 18:54	1
1,2-Dibromo-3-Chloropropane	ND		2.00		ug/L			02/24/16 18:54	1
1,2-Dibromoethane	ND		2.00		ug/L			02/24/16 18:54	1
1,2-Dichlorobenzene	ND		0.500		ug/L			02/24/16 18:54	1
1,2-Dichloroethane	ND		0.500		ug/L			02/24/16 18:54	1
1,2-Dichloropropane	ND		0.500		ug/L			02/24/16 18:54	1
1,3,5-Trimethylbenzene	ND		2.00		ug/L			02/24/16 18:54	1
1,3-Dichlorobenzene	ND		0.500		ug/L			02/24/16 18:54	1
1,3-Dichloropropane	ND		0.500		ug/L			02/24/16 18:54	1
1,4-Dichlorobenzene	ND		0.500		ug/L			02/24/16 18:54	
2,2-Dichloropropane	ND		0.500		ug/L			02/24/16 18:54	1
2-Butanone	ND		20.0		ug/L			02/24/16 18:54	1
2-Chlorotoluene	ND		2.00		ug/L			02/24/16 18:54	
2-Hexanone	ND		20.0		ug/L			02/24/16 18:54	1
4-Chlorotoluene	ND		2.00		ug/L			02/24/16 18:54	1
4-Methyl-2-pentanone	ND	*	20.0		ug/L			02/24/16 18:54	
Acetone	ND		20.0		ug/L			02/24/16 18:54	1
Benzene	ND		0.500		ug/L			02/24/16 18:54	1
Bromobenzene	ND		2.00		ug/L			02/24/16 18:54	1
Bromochloromethane	ND		0.500		ug/L			02/24/16 18:54	1
Bromodichloromethane	ND		0.500		ug/L			02/24/16 18:54	1
Bromoform	ND		0.500		ug/L			02/24/16 18:54	1
Bromomethane		*	1.00		ug/L			02/24/16 18:54	1
Carbon disulfide	ND		0.500		ug/L			02/24/16 18:54	1
Carbon tetrachloride	ND		0.500		ug/L			02/24/16 18:54	
Chlorobenzene	ND		0.500		ug/L			02/24/16 18:54	1
Chloroethane	ND		0.500		ug/L			02/24/16 18:54	1
Chloroform	ND		0.500		ug/L			02/24/16 18:54	1
Chloromethane	ND		0.500		ug/L			02/24/16 18:54	1
cis-1,2-Dichloroethene	ND		0.500		ug/L			02/24/16 18:54	1
cis-1,3-Dichloropropene	ND	*	0.500		ug/L			02/24/16 18:54	1
Dibromochloromethane	ND		0.500		ug/L			02/24/16 18:54	1
Dibromomethane	ND		0.500		ug/L			02/24/16 18:54	1
Dichlorodifluoromethane	ND		0.500		ug/L ug/L			02/24/16 18:54	
Ethylbenzene	ND ND		0.500		ug/L ug/L			02/24/16 18:54	1
Hexachlorobutadiene	ND ND		2.00					02/24/16 18:54	1
sopropylbenzene			2.00		ug/L			02/24/16 18:54	
' ''	ND				ug/L				
Methyl tert-butyl ether	ND		1.00		ug/L ug/L			02/24/16 18:54 02/24/16 18:54	1
Methylene Chloride	ND		2.00						

TestAmerica Seattle

4

6

8

9

11

Client: SCS Engineers

Total Dissolved Solids

Project/Site: Leichner Landfill - Wash.

Date Collected: 02/17/16 13:35

Date Received: 02/17/16 16:00

Client Sample ID: LB-021716-13

TestAmerica Job ID: 580-57335-1

Lab Sample ID: 580-57335-7

Matrix: Water

Method: 8260B - Volatile On Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		2.00		ug/L	=		02/24/16 18:54	1
n-Butylbenzene	ND		2.00		ug/L			02/24/16 18:54	1
N-Propylbenzene	ND		2.00		ug/L			02/24/16 18:54	1
o-Xylene	ND		0.500		ug/L			02/24/16 18:54	1
p-Isopropyltoluene	ND		2.00		ug/L			02/24/16 18:54	1
sec-Butylbenzene	ND		2.00		ug/L			02/24/16 18:54	1
Styrene	ND		0.500		ug/L			02/24/16 18:54	1
tert-Butylbenzene	ND		2.00		ug/L			02/24/16 18:54	1
Tetrachloroethene	ND		0.500		ug/L			02/24/16 18:54	1
Toluene	ND		0.500		ug/L			02/24/16 18:54	1
trans-1,2-Dichloroethene	ND		0.500		ug/L			02/24/16 18:54	1
trans-1,3-Dichloropropene	ND		0.500		ug/L			02/24/16 18:54	1
Trichloroethene	ND		0.500		ug/L			02/24/16 18:54	1
Trichlorofluoromethane	ND		0.500		ug/L			02/24/16 18:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		70 - 128					02/24/16 18:54	1
4-Bromofluorobenzene (Surr)	92		75 - 120					02/24/16 18:54	1
Dibromofluoromethane (Surr)	95		85 - 115					02/24/16 18:54	1
Toluene-d8 (Surr)	103		75 - 125					02/24/16 18:54	1
Trifluorotoluene (Surr)	97		80 - 127					02/24/16 18:54	1
Method: 300.0 - Anions, Ior	n Chromatogra	aphy							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3.02		0.200		mg/L			03/08/16 19:53	1
Method: 6020 - Metals (ICP	/MS) - Dissolv	ed							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	0.226		0.0400		mg/L		02/19/16 17:31	02/22/16 12:21	1
Manganese	2.10		0.00200		mg/L		02/19/16 17:31	02/22/16 12:21	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac

10.0

mg/L

195

02/18/16 18:48

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57335-1

Client Sample ID: LB-021716-14 Lab Sample ID: 580-57335-8

Date Collected: 02/17/16 14:30 Matrix: Water Date Received: 02/17/16 16:00

Method: 8260B - Volatile Org Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND —	0.500	ug/L		02/24/16 19:21	
1,1,1-Trichloroethane	ND	0.500	ug/L		02/24/16 19:21	
1,1,2,2-Tetrachloroethane	ND	0.500	ug/L		02/24/16 19:21	
1,1,2-Trichloroethane	ND	0.500	ug/L		02/24/16 19:21	
1,1-Dichloroethane	ND	0.500	ug/L		02/24/16 19:21	
1,1-Dichloropropene	ND	0.500	ug/L		02/24/16 19:21	
1,2,3-Trichlorobenzene	ND	2.00	ug/L		02/24/16 19:21	
1,2,3-Trichloropropane	ND *	0.500	ug/L		02/24/16 19:21	
,2,4-Trichlorobenzene	ND	2.00	ug/L		02/24/16 19:21	
,2,4-Trimethylbenzene	ND	2.00	ug/L		02/24/16 19:21	
,2-Dibromo-3-Chloropropane	ND	2.00	ug/L		02/24/16 19:21	
,2-Dibromoethane	ND	2.00	ug/L		02/24/16 19:21	
,2-Dichlorobenzene	ND	0.500	ug/L		02/24/16 19:21	
,2-Dichloroethane	ND	0.500	ug/L		02/24/16 19:21	
,2-Dichloropropane	ND	0.500	ug/L		02/24/16 19:21	
,3,5-Trimethylbenzene	ND	2.00	ug/L		02/24/16 19:21	
,3-Dichlorobenzene	ND	0.500	ug/L		02/24/16 19:21	
,3-Dichloropropane	ND	0.500	ug/L		02/24/16 19:21	
,4-Dichlorobenzene	ND	0.500	ug/L		02/24/16 19:21	
, 2-Dichloropropane	ND	0.500	ug/L		02/24/16 19:21	
-Butanone	ND	20.0	ug/L		02/24/16 19:21	
-Chlorotoluene	ND	2.00	ug/L		02/24/16 19:21	
-Hexanone	ND	20.0	ug/L		02/24/16 19:21	
-Chlorotoluene	ND	2.00	ug/L		02/24/16 19:21	
-Methyl-2-pentanone	ND *	20.0	ug/L		02/24/16 19:21	
cetone	ND	20.0	ug/L		02/24/16 19:21	
Benzene	ND	0.500	ug/L		02/24/16 19:21	
romobenzene	ND	2.00			02/24/16 19:21	
Bromochloromethane	ND	0.500	ug/L ug/L		02/24/16 19:21	
Bromodichloromethane	ND	0.500	ug/L		02/24/16 19:21	
Bromoform	ND	0.500	.		02/24/16 19:21	
Bromomethane	ND *	1.00	ug/L		02/24/16 19:21	
			ug/L			
Carbon disulfide	ND ND	0.500	ug/L		02/24/16 19:21	
Carbon tetrachloride	ND ND		ug/L		02/24/16 19:21 02/24/16 19:21	
Chlorobenzene		0.500	ug/L			
Chloroethane	ND	0.500	ug/L		02/24/16 19:21	
Chloroform	ND	0.500	ug/L		02/24/16 19:21	
Chloromethane	ND	0.500	ug/L		02/24/16 19:21	
is-1,2-Dichloroethene	ND	0.500	ug/L		02/24/16 19:21	
is-1,3-Dichloropropene	ND *	0.500	ug/L		02/24/16 19:21	
Dibromochloromethane	ND	0.500	ug/L		02/24/16 19:21	
Dibromomethane	ND	0.500	ug/L		02/24/16 19:21	
Dichlorodifluoromethane	ND	0.500	ug/L		02/24/16 19:21	
thylbenzene	ND	0.500	ug/L		02/24/16 19:21	
lexachlorobutadiene	ND	2.00	ug/L		02/24/16 19:21	
sopropylbenzene	ND	2.00	ug/L		02/24/16 19:21	
lethyl tert-butyl ether	ND	1.00	ug/L		02/24/16 19:21	
Methylene Chloride	ND	2.00	ug/L		02/24/16 19:21	
n-Xylene & p-Xylene	ND	0.500	ug/L		02/24/16 19:21	

TestAmerica Seattle

1

6

8

10

11

Client: SCS Engineers

Analyte

Analyte

Manganese

General Chemistry

Total Dissolved Solids

Iron

Project/Site: Leichner Landfill - Wash.

Date Collected: 02/17/16 14:30

Date Received: 02/17/16 16:00

Client Sample ID: LB-021716-14

TestAmerica Job ID: 580-57335-1

Lab Sample ID: 580-57335-8

Matrix: Water

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		2.00		ug/L			02/24/16 19:21	
n-Butylbenzene	ND		2.00		ug/L			02/24/16 19:21	•
N-Propylbenzene	ND		2.00		ug/L			02/24/16 19:21	•
o-Xylene	ND		0.500		ug/L			02/24/16 19:21	•
p-Isopropyltoluene	ND		2.00		ug/L			02/24/16 19:21	
sec-Butylbenzene	ND		2.00		ug/L			02/24/16 19:21	•
Styrene	ND		0.500		ug/L			02/24/16 19:21	•
tert-Butylbenzene	ND		2.00		ug/L			02/24/16 19:21	•
Tetrachloroethene	ND		0.500		ug/L			02/24/16 19:21	•
Toluene	ND		0.500		ug/L			02/24/16 19:21	•
trans-1,2-Dichloroethene	ND		0.500		ug/L			02/24/16 19:21	•
trans-1,3-Dichloropropene	ND		0.500		ug/L			02/24/16 19:21	
Trichloroethene	ND		0.500		ug/L			02/24/16 19:21	•
Trichlorofluoromethane	ND		0.500		ug/L			02/24/16 19:21	,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	109		70 - 128			-		02/24/16 19:21	
4-Bromofluorobenzene (Surr)	95		75 - 120					02/24/16 19:21	1
Dibromofluoromethane (Surr)	97		85 ₋ 115					02/24/16 19:21	
Toluene-d8 (Surr)	104		75 - 125					02/24/16 19:21	
Trifluorotoluene (Surr)	94		80 - 127					02/24/16 19:21	•
Method: 300.0 - Anions, Ior	n Chromatograp	hv - DL							
Analyte	Result (•	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	7.19		1.00		mg/L			03/08/16 20:09	

RL

RL

10.0

0.0400

0.00200

MDL Unit

RL Unit

mg/L

mg/L

mg/L

Result Qualifier

Result Qualifier

ND

ND

194

Dil Fac

Analyzed Dil Fac 02/18/16 18:48

Analyzed

02/19/16 17:31 02/22/16 12:26

02/19/16 17:31 02/22/16 12:26

Prepared

Prepared

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57335-1

Lab Sample ID: 580-57335-9

Matrix: Water

Client Sample ID: Trip Blanks

Date Collected: 02/17/16 00:00 Date Received: 02/17/16 16:00

Method: 8260B - Volatile Orga Analyte	Result Q	ualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND ND	0.500	ug/L	<u> </u>		02/24/16 12:05	
1,1,1-Trichloroethane	ND	0.500	ug/L			02/24/16 12:05	
1,1,2,2-Tetrachloroethane	ND	0.500	ug/L			02/24/16 12:05	
1,1,2-Trichloroethane	ND	0.500	ug/L			02/24/16 12:05	
1,1-Dichloroethane	ND	0.500	ug/L			02/24/16 12:05	
1,1-Dichloropropene	ND	0.500	ug/L			02/24/16 12:05	
1,2,3-Trichlorobenzene	ND	2.00	ug/L			02/24/16 12:05	
1,2,3-Trichloropropane	ND *	0.500	ug/L			02/24/16 12:05	
1,2,4-Trichlorobenzene	ND ND	2.00	ug/L			02/24/16 12:05	
	ND ND	2.00				02/24/16 12:05	
1,2,4-Trimethylbenzene			ug/L				
1,2-Dibromo-3-Chloropropane	ND	2.00	ug/L			02/24/16 12:05	
1,2-Dibromoethane	ND	2.00	ug/L			02/24/16 12:05	
1,2-Dichlorobenzene	ND	0.500	ug/L			02/24/16 12:05	
1,2-Dichloroethane	ND	0.500	ug/L			02/24/16 12:05	
1,2-Dichloropropane	ND	0.500	ug/L			02/24/16 12:05	
1,3,5-Trimethylbenzene	ND	2.00	ug/L			02/24/16 12:05	
1,3-Dichlorobenzene	ND	0.500	ug/L			02/24/16 12:05	
1,3-Dichloropropane	ND	0.500	ug/L			02/24/16 12:05	
1,4-Dichlorobenzene	ND	0.500	ug/L			02/24/16 12:05	
2,2-Dichloropropane	ND	0.500	ug/L			02/24/16 12:05	
2-Butanone	ND	20.0	ug/L			02/24/16 12:05	
2-Chlorotoluene	ND	2.00	ug/L			02/24/16 12:05	
2-Hexanone	ND	20.0	ug/L			02/24/16 12:05	
I-Chlorotoluene	ND	2.00	ug/L			02/24/16 12:05	
I-Methyl-2-pentanone	ND *	20.0	ug/L			02/24/16 12:05	
Acetone	ND	20.0	ug/L			02/24/16 12:05	
Benzene	ND	0.500	ug/L			02/24/16 12:05	
Bromobenzene	ND	2.00	ug/L			02/24/16 12:05	
Bromochloromethane	ND	0.500	ug/L			02/24/16 12:05	
Bromodichloromethane	ND	0.500	ug/L			02/24/16 12:05	
Bromoform	ND	0.500	ug/L			02/24/16 12:05	
Bromomethane	ND *	1.00	ug/L			02/24/16 12:05	
Carbon disulfide	ND	0.500	ug/L			02/24/16 12:05	
Carbon tetrachloride	ND	0.500	ug/L			02/24/16 12:05	
Chlorobenzene	ND	0.500	ug/L			02/24/16 12:05	
Chloroethane	ND	0.500	ug/L			02/24/16 12:05	
Chloroform	ND	0.500	ug/L			02/24/16 12:05	
Chloromethane	ND	0.500	ug/L			02/24/16 12:05	
cis-1,2-Dichloroethene	ND	0.500	ug/L			02/24/16 12:05	
cis-1,3-Dichloropropene	ND *	0.500	ug/L			02/24/16 12:05	
Dibromochloromethane	ND	0.500	ug/L			02/24/16 12:05	
Dibromomethane	ND	0.500	ug/L			02/24/16 12:05	
Dichlorodifluoromethane	ND	0.500	ug/L			02/24/16 12:05	
Ethylbenzene	ND ND	0.500				02/24/16 12:05	
•	ND ND	2.00	ug/L			02/24/16 12:05	
Hexachlorobutadiene			ug/L				
sopropylbenzene	ND	2.00	ug/L			02/24/16 12:05	
Methyl tert-butyl ether	ND	1.00	ug/L			02/24/16 12:05	
Methylene Chloride m-Xylene & p-Xylene	ND ND	2.00 0.500	ug/L ug/L			02/24/16 12:05 02/24/16 12:05	

TestAmerica Seattle

3

5

6

9

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

Date Received: 02/17/16 16:00

TestAmerica Job ID: 580-57335-1

Client Sample ID: Trip Blanks Lab Sample ID: 580-57335-9

Date Collected: 02/17/16 00:00 Matrix: Water

Method: 8260B - Volatile Organic Compounds (GC/MS) (C	Continued)

Analyte	Result Q	Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND ND	2.00	ug/L			02/24/16 12:05	1
n-Butylbenzene	ND	2.00	ug/L			02/24/16 12:05	1
N-Propylbenzene	ND	2.00	ug/L			02/24/16 12:05	1
o-Xylene	ND	0.500	ug/L			02/24/16 12:05	1
p-Isopropyltoluene	ND	2.00	ug/L			02/24/16 12:05	1
sec-Butylbenzene	ND	2.00	ug/L			02/24/16 12:05	1
Styrene	ND	0.500	ug/L			02/24/16 12:05	1
tert-Butylbenzene	ND	2.00	ug/L			02/24/16 12:05	1
Tetrachloroethene	ND	0.500	ug/L			02/24/16 12:05	1
Toluene	ND	0.500	ug/L			02/24/16 12:05	1
trans-1,2-Dichloroethene	ND	0.500	ug/L			02/24/16 12:05	1
trans-1,3-Dichloropropene	ND	0.500	ug/L			02/24/16 12:05	1
Trichloroethene	ND	0.500	ug/L			02/24/16 12:05	1
Trichlorofluoromethane	ND	0.500	ug/L			02/24/16 12:05	1

Surrogate	%Recovery Q	Qualifier Li	mits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95	70	- 128		02/24/16 12:05	1
4-Bromofluorobenzene (Surr)	92	75	- 120		02/24/16 12:05	1
Dibromofluoromethane (Surr)	89	85	- 115		02/24/16 12:05	1
Toluene-d8 (Surr)	106	75	- 125		02/24/16 12:05	1
Trifluorotoluene (Surr)	99	80	- 127		02/24/16 12:05	1

3

6

8

46

11

QC Sample Results

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57335-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 580-211854/4

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Batch: 211854	МВ	МВ						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		0.500	ug/L			02/24/16 09:49	1
1,1,1-Trichloroethane	ND		0.500	ug/L			02/24/16 09:49	1
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L			02/24/16 09:49	1
1,1,2-Trichloroethane	ND		0.500	ug/L			02/24/16 09:49	1
1,1-Dichloroethane	ND		0.500	ug/L			02/24/16 09:49	1
1,1-Dichloropropene	ND		0.500	ug/L			02/24/16 09:49	1
1,2,3-Trichlorobenzene	ND		2.00	ug/L			02/24/16 09:49	1
1,2,3-Trichloropropane	ND		0.500	ug/L			02/24/16 09:49	1
1,2,4-Trichlorobenzene	ND		2.00	ug/L			02/24/16 09:49	1
1,2,4-Trimethylbenzene	ND		2.00	ug/L			02/24/16 09:49	1
1,2-Dibromo-3-Chloropropane	ND		2.00	ug/L			02/24/16 09:49	1
1,2-Dibromoethane	ND		2.00	ug/L			02/24/16 09:49	1
1,2-Dichlorobenzene	ND		0.500	ug/L			02/24/16 09:49	1
1,2-Dichloroethane	ND		0.500	ug/L			02/24/16 09:49	1
1,2-Dichloropropane	ND		0.500	ug/L			02/24/16 09:49	1
1,3,5-Trimethylbenzene	ND		2.00	ug/L			02/24/16 09:49	1
1,3-Dichlorobenzene	ND		0.500	ug/L			02/24/16 09:49	1
1,3-Dichloropropane	ND		0.500	ug/L			02/24/16 09:49	1
1,4-Dichlorobenzene	ND		0.500	ug/L			02/24/16 09:49	1
2,2-Dichloropropane	ND		0.500	ug/L			02/24/16 09:49	1
2-Butanone	ND		20.0	ug/L			02/24/16 09:49	1
2-Chlorotoluene	ND		2.00	ug/L			02/24/16 09:49	
2-Hexanone	ND		20.0	ug/L			02/24/16 09:49	1
4-Chlorotoluene	ND		2.00	ug/L			02/24/16 09:49	1
4-Methyl-2-pentanone	ND		20.0	ug/L			02/24/16 09:49	············ 1
Acetone	ND		20.0	ug/L			02/24/16 09:49	1
Benzene	ND		0.500	ug/L			02/24/16 09:49	1
Bromobenzene	ND		2.00	ug/L			02/24/16 09:49	
Bromochloromethane	ND		0.500	ug/L			02/24/16 09:49	1
Bromodichloromethane	ND		0.500	ug/L			02/24/16 09:49	1
Bromoform	ND		0.500	ug/L			02/24/16 09:49	
Bromomethane	ND		1.00				02/24/16 09:49	1
Carbon disulfide	ND ND		0.500	ug/L ug/L			02/24/16 09:49	1
Carbon tetrachloride	ND		0.500				02/24/16 09:49	
Chlorobenzene	ND ND		0.500	ug/L ug/L			02/24/16 09:49	1
	ND ND		0.500	ŭ			02/24/16 09:49	1
Chloroethane				ug/L				ا
Chloroform	ND		0.500	ug/L			02/24/16 09:49	1
Chloromethane	ND		0.500	ug/L			02/24/16 09:49	1
cis-1,2-Dichloroethene	ND		0.500	ug/L			02/24/16 09:49	1
cis-1,3-Dichloropropene	ND		0.500	ug/L			02/24/16 09:49	1
Dibromochloromethane	ND		0.500	ug/L			02/24/16 09:49	1
Dibromomethane	ND		0.500	ug/L			02/24/16 09:49	1
Dichlorodifluoromethane	ND		0.500	ug/L			02/24/16 09:49	1
Ethylbenzene	ND		0.500	ug/L			02/24/16 09:49	1
Hexachlorobutadiene	ND		2.00	ug/L			02/24/16 09:49	1
Isopropylbenzene	ND		2.00	ug/L			02/24/16 09:49	1
Methyl tert-butyl ether	ND		1.00	ug/L			02/24/16 09:49	1
Methylene Chloride	ND		2.00	ug/L			02/24/16 09:49	1

TestAmerica Seattle

3/9/2016

Page 23 of 42

2

3

6

8

10

TestAmerica Job ID: 580-57335-1

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 580-211854/4

Matrix: Water

Analysis Batch: 211854

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier RL **MDL** Unit Analyte D **Prepared** Analyzed Dil Fac m-Xylene & p-Xylene $\overline{\mathsf{ND}}$ 0.500 ug/L 02/24/16 09:49 Naphthalene ND 2.00 ug/L 02/24/16 09:49 n-Butylbenzene ND 2.00 ug/L 02/24/16 09:49 N-Propylbenzene ND 2.00 ug/L 02/24/16 09:49 o-Xylene ND 0.500 ug/L 02/24/16 09:49 p-Isopropyltoluene ND 2.00 ug/L 02/24/16 09:49 sec-Butylbenzene ND 2.00 ug/L 02/24/16 09:49 Styrene ND ug/L 0.500 02/24/16 09:49 tert-Butylbenzene ND 2.00 ug/L 02/24/16 09:49 Tetrachloroethene ND 0.500 ug/L 02/24/16 09:49 Toluene ND 0.500 ug/L 02/24/16 09:49 trans-1,2-Dichloroethene ND 0.500 ug/L 02/24/16 09:49 trans-1,3-Dichloropropene ND 0.500 ug/L 02/24/16 09:49 Trichloroethene ND 0.500 ug/L 02/24/16 09:49

MB MB

ND

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		70 - 128	-		02/24/16 09:49	1
4-Bromofluorobenzene (Surr)	93		75 - 120			02/24/16 09:49	1
Dibromofluoromethane (Surr)	91		85 - 115			02/24/16 09:49	1
Toluene-d8 (Surr)	104		75 - 125			02/24/16 09:49	1
Trifluorotoluene (Surr)	97		80 - 127			02/24/16 09:49	1

0.500

ug/L

Lab Sample ID: LCS 580-211854/5

Matrix: Water

Trichlorofluoromethane

Analysis Batch: 211854

Client Sample ID:	Lab	Co	ntro	I Sampl	е
	Prep	T	vpe:	Total/N	Α

02/24/16 09:49

Allalysis Batch. 211034	Spike	LCS	LCS				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	5.02	5.194		ug/L		103	75 - 125
1,1,1-Trichloroethane	5.02	5.033		ug/L		100	80 - 140
1,1,2,2-Tetrachloroethane	5.01	5.253		ug/L		105	75 - 125
1,1,2-Trichloroethane	5.02	5.417		ug/L		108	80 - 130
1,1-Dichloroethane	5.00	4.875		ug/L		98	75 - 135
1,1-Dichloropropene	5.00	5.115		ug/L		102	80 - 130
1,2,3-Trichlorobenzene	5.01	5.299		ug/L		106	60 - 125
1,2,3-Trichloropropane	5.01	6.176	*	ug/L		123	75 - 120
1,2,4-Trichlorobenzene	5.00	5.367		ug/L		107	60 - 125
1,2,4-Trimethylbenzene	5.00	5.259		ug/L		105	80 - 125
1,2-Dibromo-3-Chloropropane	5.01	5.827		ug/L		116	55 - 120
1,2-Dibromoethane	5.01	5.453		ug/L		109	70 - 130
1,2-Dichlorobenzene	5.00	4.735		ug/L		95	80 - 130
1,2-Dichloroethane	5.00	5.474		ug/L		109	80 - 140
1,2-Dichloropropane	5.00	4.772		ug/L		95	80 - 120
1,3,5-Trimethylbenzene	5.01	5.403		ug/L		108	80 - 125
1,3-Dichlorobenzene	5.01	4.616		ug/L		92	80 - 120
1,3-Dichloropropane	5.01	5.259		ug/L		105	80 - 130
1,4-Dichlorobenzene	5.01	4.598		ug/L		92	80 - 120
2,2-Dichloropropane	5.00	4.949		ug/L		99	60 - 150

Page 24 of 42

TestAmerica Job ID: 580-57335-1

Client: SCS Engineers Project/Site: Leichner Landfill - Wash.

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 580-211854/5

Matrix: Water

Analysis Batch: 211854

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analyte	Spike Added		LCS Qualifier	Unit	D %Rec	%Rec. Limits	
2-Butanone	20.0	22.19		ug/L		20 - 200	
2-Chlorotoluene	5.00	5.113		ug/L	102	75 - 130	
2-Hexanone	20.0	28.90		ug/L	144	52 ₋ 160	
4-Chlorotoluene	5.01	5.075		ug/L	101	75 - 130	
4-Methyl-2-pentanone	20.0	27.21	*	ug/L	136	55 ₋ 135	
Acetone	20.0	14.90	J	ug/L	75	30 - 200	
Benzene	5.02	4.561		ug/L	91	80 - 120	
Bromobenzene	5.00	4.903		ug/L	98	80 - 130	
Bromochloromethane	5.01	4.970		ug/L	99	80 - 125	
Bromodichloromethane	5.02	5.378		ug/L	107	80 - 125	
Bromoform	5.02	4.989		ug/L	99	65 - 130	
Bromomethane	5.01	4.318		ug/L	86	70 - 135	
Carbon disulfide	5.02	4.662		ug/L	93	65 ₋ 160	
Carbon tetrachloride	5.01	5.054		ug/L	101	75 - 140	
Chlorobenzene	5.02	4.607		ug/L	92	80 - 120	
Chloroethane	5.02	4.547		ug/L	91	75 - 140	
Chloroform	5.00	4.741		ug/L	95	80 - 130	
Chloromethane	5.02	6.193		ug/L	123	50 - 140	
cis-1,2-Dichloroethene	5.01	4.675		ug/L	93	80 - 130	
cis-1,3-Dichloropropene	5.01	5.944		ug/L	119	70 - 120	
Dibromochloromethane	5.01	5.910		ug/L	118	70 - 120	
Dibromomethane	5.02	5.208		ug/L	104	80 - 130	
Dichlorodifluoromethane	5.01	3.474		ug/L	69	30 - 180	
Ethylbenzene	5.02	4.871		ug/L	97	80 - 125	
Hexachlorobutadiene	5.00	5.420		ug/L	108	75 ₋ 135	
Isopropylbenzene	5.01	5.078		ug/L	101	75 - 120	
Methyl tert-butyl ether	5.01	5.868		ug/L	117	75 ₋ 120	
Methylene Chloride	5.02	4.825		ug/L	96	60 ₋ 145	
m-Xylene & p-Xylene	5.01	5.160		ug/L	103	80 - 130	
Naphthalene	5.01	5.963		ug/L	119	45 - 130	
n-Butylbenzene	5.01	4.915		ug/L	98	75 ₋ 125	
N-Propylbenzene	5.00	5.217		ug/L	104	80 - 120	
o-Xylene	5.01	5.305		ug/L	106	80 - 120	
p-Isopropyltoluene	5.00	4.873		ug/L	97	80 - 120	
sec-Butylbenzene	5.01	5.135		ug/L	103	80 - 125	
Styrene	5.01	5.101		ug/L	102	75 ₋ 130	
tert-Butylbenzene	5.00	5.529		ug/L	111	80 ₋ 130	
Tetrachloroethene	5.01	4.637		ug/L	92	40 - 180	
Toluene	5.00	4.935		ug/L	99	80 - 120	
trans-1,2-Dichloroethene	5.01	4.672		ug/L	93	80 - 140	
trans-1,3-Dichloropropene	5.00	6.040		ug/L	121	60 - 140	
Trichloroethene	5.01	4.652		ug/L	93	80 - 130	
Trichlorofluoromethane	5.00	4.645		ug/L	93	30 - 180	

Surrogate	%Recovery Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97	70 - 128
4-Bromofluorobenzene (Surr)	90	75 - 120
Dibromofluoromethane (Surr)	92	85 - 115

TestAmerica Seattle

3/9/2016

Page 25 of 42

QC Sample Results

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57335-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 580-211854/5

Lab Sample ID: LCSD 580-211854/6

Matrix: Water

Analysis Batch: 211854

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	102		75 - 125
Trifluorotoluene (Surr)	94		80 - 127

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 211854									
	Spike	_	LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	5.02	5.165		ug/L		103	75 - 125	1	20
1,1,1-Trichloroethane	5.02	5.049		ug/L		101	80 - 140	0	20
1,1,2,2-Tetrachloroethane	5.01	5.254		ug/L		105	75 - 125	0	20
1,1,2-Trichloroethane	5.02	5.616		ug/L		112	80 - 130	4	20
1,1-Dichloroethane	5.00	5.035		ug/L		101	75 - 135	3	20
1,1-Dichloropropene	5.00	5.312		ug/L		106	80 - 130	4	20
1,2,3-Trichlorobenzene	5.01	5.548		ug/L		111	60 - 125	5	20
1,2,3-Trichloropropane	5.01	6.056	*	ug/L		121	75 - 120	2	20
1,2,4-Trichlorobenzene	5.00	5.401		ug/L		108	60 - 125	1	20
1,2,4-Trimethylbenzene	5.00	5.455		ug/L		109	80 - 125	4	20
1,2-Dibromo-3-Chloropropane	5.01	5.658		ug/L		113	55 - 120	3	20
1,2-Dibromoethane	5.01	5.835		ug/L		117	70 - 130	7	20
1,2-Dichlorobenzene	5.00	4.789		ug/L		96	80 - 130	1	20
1,2-Dichloroethane	5.00	5.522		ug/L		110	80 - 140	1	20
1,2-Dichloropropane	5.00	4.879		ug/L		97	80 - 120	2	20
1,3,5-Trimethylbenzene	5.01	5.380		ug/L		107	80 - 125	0	20
1,3-Dichlorobenzene	5.01	4.638		ug/L		93	80 - 120	0	20
1,3-Dichloropropane	5.01	5.274		ug/L		105	80 - 130	0	20
1,4-Dichlorobenzene	5.01	4.695		ug/L		94	80 - 120	2	20
2,2-Dichloropropane	5.00	4.632		ug/L		93	60 ₋ 150	7	20
2-Butanone	20.0	25.45		ug/L		127	20 - 200	14	20
2-Chlorotoluene	5.00	5.099		ug/L		102	75 - 130	0	20
2-Hexanone	20.0	30.22		ug/L		151	52 - 160	4	20
4-Chlorotoluene	5.01	5.059		ug/L		101	75 ₋ 130	0	20
4-Methyl-2-pentanone	20.0	28.41	*	ug/L		142	55 - 135	4	20
Acetone	20.0	16.27	J	ug/L		81	30 - 200	9	20
Benzene	5.02	4.578		ug/L		91	80 - 120	0	20
Bromobenzene	5.00	4.989		ug/L		100	80 - 130	2	20
Bromochloromethane	5.01	5.224		ug/L		104	80 - 125	5	20
Bromodichloromethane	5.02	5.417		ug/L		108	80 - 125	1	20
Bromoform	5.02	5.118		ug/L		102	65 - 130	3	20
Bromomethane	5.01	3.245	*	ug/L		65	70 - 135	28	20
Carbon disulfide	5.02	4.626		ug/L		92	65 - 160	1	20
Carbon tetrachloride	5.01	4.976		ug/L		99	75 - 140	2	20
Chlorobenzene	5.02	4.725		ug/L		94	80 - 120	3	20
Chloroethane	5.02	3.775		ug/L		75	75 ₋ 140	19	20
Chloroform	5.00	4.797		ug/L		96	80 - 130	13	20
Chloromethane	5.02	6.377		ug/L ug/L		127	50 - 130 50 - 140	3	20
cis-1,2-Dichloroethene	5.01	4.718		ug/L ug/L		94	80 - 130	1	20
cis-1,3-Dichloropropene	5.01	6.282	*	ug/L ug/L		125	70 - 120	6	20

TestAmerica Seattle

3/9/2016

Page 26 of 42

1 00D 1 00D

TestAmerica Job ID: 580-57335-1

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 580-211854/6

Matrix: Water

Analysis Batch: 211854

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dibromochloromethane	5.01	6.021		ug/L		120	70 - 120	2	20
Dibromomethane	5.02	5.310		ug/L		106	80 - 130	2	20
Dichlorodifluoromethane	5.01	3.515		ug/L		70	30 - 180	1	20
Ethylbenzene	5.02	4.971		ug/L		99	80 - 125	2	20
Hexachlorobutadiene	5.00	5.433		ug/L		109	75 - 135	0	20
Isopropylbenzene	5.01	5.049		ug/L		101	75 - 120	1	20
Methyl tert-butyl ether	5.01	5.857		ug/L		117	75 - 120	0	20
Methylene Chloride	5.02	4.706		ug/L		94	60 - 145	2	20
m-Xylene & p-Xylene	5.01	5.249		ug/L		105	80 - 130	2	20
Naphthalene	5.01	6.324		ug/L		126	45 - 130	6	20
n-Butylbenzene	5.01	4.920		ug/L		98	75 - 125	0	20
N-Propylbenzene	5.00	5.256		ug/L		105	80 - 120	1	20
o-Xylene	5.01	5.255		ug/L		105	80 - 120	1	20
p-Isopropyltoluene	5.00	4.855		ug/L		97	80 - 120	0	20
sec-Butylbenzene	5.01	5.172		ug/L		103	80 - 125	1	20
Styrene	5.01	5.342		ug/L		107	75 - 130	5	20
tert-Butylbenzene	5.00	5.398		ug/L		108	80 - 130	2	20
Tetrachloroethene	5.01	4.820		ug/L		96	40 - 180	4	20
Toluene	5.00	5.004		ug/L		100	80 - 120	1	20
trans-1,2-Dichloroethene	5.01	4.760		ug/L		95	80 - 140	2	20
trans-1,3-Dichloropropene	5.00	6.269		ug/L		125	60 - 140	4	20
Trichloroethene	5.01	4.701		ug/L		94	80 - 130	1	20
Trichlorofluoromethane	5.00	4.554		ug/L		91	30 - 180	2	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		70 - 128
4-Bromofluorobenzene (Surr)	92		75 - 120
Dibromofluoromethane (Surr)	92		85 - 115
Toluene-d8 (Surr)	104		75 - 125
Trifluorotoluene (Surr)	98		80 - 127

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 160-239571/9

Matrix: Water

Analysis Batch: 239571

MB MB

Analyte Result Qualifier **RL** Unit Analyzed Dil Fac **Prepared** Chloride ND 0.200 mg/L 03/08/16 15:06

Lab Sample ID: LCS 160-239571/10

Matrix: Water

Chloride

Prep Type: Total/NA **Analysis Batch: 239571** LCS LCS %Rec. Spike Analyte Added Result Qualifier D %Rec Limits Unit

1.916

mg/L

2.00

TestAmerica Seattle

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

90 - 110

96

Prep Type: Total/NA

Client Sample ID: Duplicate

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Type: Total/NA

Prep Batch: 211676

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

Method: 300.0 - Anions, Ion Chromatography - DL

Lab Sample ID: 580-57335-8 MS Client Sample ID: LB-021716-14 **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 239571

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride - DL	7.19		10.0	17.12		mg/L		99	90 - 110	

Lab Sample ID: 580-57302-C-1 DU

Matrix: Water

Analysis Batch: 239571

Alialysis Dalcii. 20001 i								
-	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Chloride - DL	5.99		6.051		mg/L		 1	20

Method: 6020 - Metals (ICP/MS)

Lab Sample ID: MB 580-211676/13-A

Matrix: Water

Analysis Batch: 211732

7, 6.16	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND		0.0400		mg/L		02/19/16 17:31	02/22/16 11:04	1
Manganese	ND		0.00200		mg/L		02/19/16 17:31	02/22/16 11:04	1

Lab Sample ID: LCS 580-211676/14-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Recoverable Analysis Batch: 211732** Prep Batch: 211676 Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit D %Rec Limits

22.0 Iron 23.27 mg/L 106 80 - 120 Manganese 1.00 1.024 mg/L 102 80 - 120

Lab Sample ID: LCSD 580-211676/15-A Client Sample ID: Lab Control Sample Dup **Matrix: Water Prep Type: Total Recoverable**

Analysis Batch: 211/32							Prep Batch: 211676			
	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Iron	22.0	23.43		mg/L		107	80 - 120	1	20	
Manganese	1.00	1.018		mg/L		102	80 - 120	1	20	

Lab Sample ID: 580-57335-1 MS Client Sample ID: LB-021716-07 **Matrix: Water Prep Type: Dissolved Analysis Batch: 211732** Prep Batch: 211676

-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Iron	ND		22.0	23.69	-	mg/L		108	80 - 120	
Manganese	ND		1.00	1.053		mg/L		105	80 - 120	

Lab Sample ID: 580-57335-1 MSD Client Sample ID: LB-021716-07 **Matrix: Water Prep Type: Dissolved Analysis Batch: 211732 Prep Batch: 211676** Sample Sample Spike MSD MSD %Rec. **RPD Result Qualifier** Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec ND 22.0 Iron 24.24 mg/L 110 80 - 120 20

TestAmerica Seattle

TestAmerica Job ID: 580-57335-1

Client: SCS Engineers Project/Site: Leichner Landfill - Wash.

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: 580-57335-1 MSD	Client Sample ID: LB-021716-07
Matrix: Water	Prep Type: Dissolved

Analysis Batch: 211732

Prep Batch: 211676 Spike MSD MSD Sample Sample %Rec. **RPD** Result Qualifier Added Result Qualifier Limits Analyte Unit %Rec **RPD** Limit Manganese ND 1.00 1.060 mg/L 106 80 - 120 20

Lab Sample ID: 580-57335-1 DU Client Sample ID: LB-021716-07 **Matrix: Water Prep Type: Dissolved**

Analysis Batch: 211732

Prep Batch: 211676 Sample Sample DU DU **RPD** RPD Analyte Result Qualifier Result Qualifier Unit D Limit ND ND 20 NC Iron mg/L ND ND mg/L NC 20 Manganese

Method: 160.1 - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 580-211600/1 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 211600 MB MB

Analyte Result Qualifier **RL Unit** Prepared Analyzed Dil Fac Total Dissolved Solids ND 10.0 mg/L 02/18/16 18:48

Lab Sample ID: LCS 580-211600/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 211600

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit D %Rec Limits Total Dissolved Solids 1000 964.0 mg/L 96 80 - 120

Lab Sample ID: 580-57335-8 DU Client Sample ID: LB-021716-14

Matrix: Water

Analysis Batch: 211600

Sample Sample DU DU **RPD** Result Qualifier Result Qualifier RPD Analyte Unit D Limit **Total Dissolved Solids** 194 NC 197.0 mg/L 20

3/9/2016

Client: SCS Engineers

Total/NA

Total/NA

Project/Site: Leichner Landfill - Wash.

Client Sample ID: LB-021716-07

Analysis

Analysis

160.1

160.1

Lab Sample ID: 580-57335-1 Date Collected: 02/17/16 08:40 Matrix: Water

Date Received: 02/17/16 16:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	211854	02/24/16 16:11	CJ	TAL SEA
Total/NA	Analysis	300.0		1	239571	03/08/16 18:17	JCB	TAL SL
Dissolved	Prep	3005A			211676	02/19/16 17:31	PAB	TAL SEA
Dissolved	Analysis	6020		1	211732	02/22/16 11:22	FCW	TAL SEA
Total/NA	Analysis	160.1		1	211600	02/18/16 18:48	JSM	TAL SEA

Client Sample ID: LB-021716-08 Lab Sample ID: 580-57335-2

Date Collected: 02/17/16 09:35 **Matrix: Water** Date Received: 02/17/16 16:00

Batch **Batch** Dilution Batch Prepared Туре Method Number or Analyzed **Prep Type** Run **Factor** Analyst Lab Total/NA 8260B 211854 02/24/16 16:38 TAL SEA Analysis Total/NA Analysis 300.0 DL 5 239571 03/08/16 18:33 JCB TAL SL Dissolved TAL SEA Prep 3005A 211676 02/19/16 17:31 PAB Dissolved Analysis 6020 211732 02/22/16 11:58 FCW TAL SEA 1

Lab Sample ID: 580-57335-3 Client Sample ID: LB-021716-09

211600 02/18/16 18:48 JSM

211600 02/18/16 18:48 JSM

TAL SEA

TAL SEA

Date Collected: 02/17/16 10:40 **Matrix: Water** Date Received: 02/17/16 16:00

Batch Batch Dilution **Batch Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis 8260B 1 211854 02/24/16 17:06 CJ TAL SEA Total/NA Analysis 300.0 DL 10 239571 03/08/16 18:49 JCB TAL SL Dissolved Prep 3005A 211676 02/19/16 17:31 PAB TAL SEA Dissolved Analysis 6020 1 211732 02/22/16 12:03 FCW TAL SEA

Client Sample ID: LB-021716-10 Lab Sample ID: 580-57335-4

Date Collected: 02/17/16 10:35 **Matrix: Water** Date Received: 02/17/16 16:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			211854	02/24/16 17:33	CJ	TAL SEA
Total/NA	Analysis	300.0	DL	10	239571	03/08/16 19:05	JCB	TAL SL
Dissolved	Prep	3005A			211676	02/19/16 17:31	PAB	TAL SEA
Dissolved	Analysis	6020		1	211732	02/22/16 12:07	FCW	TAL SEA
Total/NA	Analysis	160.1		1	211600	02/18/16 18:48	JSM	TAL SEA

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

Client Sample ID: LB-021716-11

Lab Sample ID: 580-57335-5 Date Collected: 02/17/16 11:35

Matrix: Water

Matrix: Water

Date Received: 02/17/16 16:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	211854	02/24/16 18:00	CJ	TAL SEA
Total/NA	Analysis	300.0	DL	10	239571	03/08/16 19:21	JCB	TAL SL
Dissolved	Prep	3005A			211676	02/19/16 17:31	PAB	TAL SEA
Dissolved	Analysis	6020		1	211732	02/22/16 12:12	FCW	TAL SEA
Total/NA	Analysis	160.1		1	211600	02/18/16 18:48	JSM	TAL SEA

Client Sample ID: LB-021716-12 Lab Sample ID: 580-57335-6

Date Collected: 02/17/16 12:40 **Matrix: Water**

Date Received: 02/17/16 16:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			211854	02/24/16 18:27	CJ	TAL SEA
Total/NA	Analysis	300.0		1	239571	03/08/16 19:37	JCB	TAL SL
Dissolved	Prep	3005A			211676	02/19/16 17:31	PAB	TAL SEA
Dissolved	Analysis	6020		1	211732	02/22/16 12:17	FCW	TAL SEA
Total/NA	Analysis	160.1		1	211600	02/18/16 18:48	JSM	TAL SEA

Client Sample ID: LB-021716-13 Lab Sample ID: 580-57335-7

Date Collected: 02/17/16 13:35 Date Received: 02/17/16 16:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			211854	02/24/16 18:54	CJ	TAL SEA
Total/NA	Analysis	300.0		1	239571	03/08/16 19:53	JCB	TAL SL
Dissolved	Prep	3005A			211676	02/19/16 17:31	PAB	TAL SEA
Dissolved	Analysis	6020		1	211732	02/22/16 12:21	FCW	TAL SEA

Client Sample ID: LB-021716-14 Lab Sample ID: 580-57335-8

211600 02/18/16 18:48 JSM

TAL SEA

Date Collected: 02/17/16 14:30 **Matrix: Water**

Date Received: 02/17/16 16:00

Analysis 160.1

Total/NA

-	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B			211854	02/24/16 19:21	CJ	TAL SEA	
Total/NA	Analysis	300.0	DL	5	239571	03/08/16 20:09	JCB	TAL SL	
Dissolved	Prep	3005A			211676	02/19/16 17:31	PAB	TAL SEA	
Dissolved	Analysis	6020		1	211732	02/22/16 12:26	FCW	TAL SEA	
Total/NA	Analysis	160.1		1	211600	02/18/16 18:48	JSM	TAL SEA	

TestAmerica Seattle

Lab Chronicle

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57335-1

Client Sample ID: Trip Blanks

Lab Sample ID: 580-57335-9 Date Collected: 02/17/16 00:00

Matrix: Water

Date Received: 02/17/16 16:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	211854	02/24/16 12:05	CJ	TAL SEA

Laboratory References:

Pixis Labo = Pixis Laboratories, LLC, 12423 NE Whitaker Way, Portland, OR 97230, TEL (503)254-1794 TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310 TAL SL = TestAmerica St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Certification Summary

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57335-1

Laboratory: TestAmerica Seattle

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-022	03-02-17
California	State Program	9	2901	01-31-18
L-A-B	DoD ELAP		L2236	01-19-19
L-A-B	ISO/IEC 17025		L2236	01-19-19
Montana (UST)	State Program	8	N/A	04-30-20
Oregon	NELAP	10	WA100007	11-06-16
US Fish & Wildlife	Federal		LE058448-0	10-31-16
USDA	Federal		P330-14-00126	04-08-17
Washington	State Program	10	C553	02-17-17

Laboratory: TestAmerica St. Louis

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	MO00054	06-30-16
California	ELAP	9	2886	03-31-16 *
Connecticut	State Program	1	PH-0241	03-31-17
Florida	NELAP	4	E87689	06-30-16
Illinois	NELAP	5	003757	11-30-16
lowa	State Program	7	373	12-01-16
Kansas	NELAP	7	E-10236	05-31-16
Kentucky (DW)	State Program	4	90125	12-31-16
L-A-B	DoD ELAP		L2305	04-10-16 *
Louisiana	NELAP	6	04080	06-30-16
Louisiana (DW)	NELAP	6	LA160008	12-31-16
Maryland	State Program	3	310	09-30-16
Missouri	State Program	7	780	06-30-16
Nevada	State Program	9	MO000542016-1	07-31-16
New Jersey	NELAP	2	MO002	06-30-16
New York	NELAP	2	11616	03-31-16 *
North Dakota	State Program	8	R207	06-30-16
NRC	NRC		24-24817-01	12-31-22
Oklahoma	State Program	6	9997	08-31-16
Pennsylvania	NELAP	3	68-00540	02-28-17 *
South Carolina	State Program	4	85002001	06-30-16
Texas	NELAP	6	T104704193-15-9	07-31-16
USDA	Federal		P330-07-00122	01-09-17
Utah	NELAP	8	MO000542015-7	07-31-16
Virginia	NELAP	3	460230	06-14-16
Washington	State Program	10	C592	08-30-16
West Virginia DEP	State Program	3	381	08-31-16

-

4

0

9

10

11

^{*} Certification renewal pending - certification considered valid.

Sample Summary

Client: SCS Engineers Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57335-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-57335-1	LB-021716-07	Water	02/17/16 08:40	02/17/16 16:00
580-57335-2	LB-021716-08	Water	02/17/16 09:35	02/17/16 16:00
580-57335-3	LB-021716-09	Water	02/17/16 10:40	02/17/16 16:00
580-57335-4	LB-021716-10	Water	02/17/16 10:35	02/17/16 16:00
580-57335-5	LB-021716-11	Water	02/17/16 11:35	02/17/16 16:00
580-57335-6	LB-021716-12	Water	02/17/16 12:40	02/17/16 16:00
580-57335-7	LB-021716-13	Water	02/17/16 13:35	02/17/16 16:00
580-57335-8	LB-021716-14	Water	02/17/16 14:30	02/17/16 16:00
580-57335-9	Trip Blanks	Water	02/17/16 00:00	02/17/16 16:00

12423 NE Whitaker Way Portland, OR 97230 503-254-1794

 Job Number:
 6021831

 Report Date:
 02/23/2016

 ORELAP #:
 OR100028

Project Name:

58008309

Project No:

Leichner Landfill -

Wash.

Cover Letter

Kelsey DeVries Test America Portland 9405 SW Nimbus Ave. BEAVERTON, OR 97008

Dear Kelsey DeVries,

Enclosed please find Pixis Labs analytical report for samples received as order number 6021831 on 02/18/2016. Should you have any questions about this report or any other matter, please do not hesitate to contact us. We are here to help you.

Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Pixis quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be kept a maximum of 15 days from the report date unless prior arrangements have been made.

Thank you for allowing Pixis to be of service to you, we appreciate your business.

Sincerely,

Signed Richard Reid Project Manager

Order 6021831 Page 35 of 42 P3/9/2016 br>

12423 NE Whitaker Way Portland, OR 97230 503-254-1794

 Job Number:
 6021831

 Report Date:
 02/23/2016

 ORELAP #:
 OR100028

 Project Name:
 58008309

Project No: Leichner Landfill - Wash.

Sample Results

			Sai	mpie Re	esuits			
Sample: LB-021716-07 (580-	-57335-1)	Collect	ed: 02/17	7/16 08:4	0	Temp: 5 C		Matrix: General Water
Lab ID: 101334		Receiv	ed: 02/18	3/16 11:1	0	Evidence of Cooling	g:Y	
Analyte	Result	Units	MRL	Dil.	Batch	Start/Extract	Analyzed	Notes
Method: EPA 300.0								
Nitrate	ND	mg/L	0.100	2	27350-7		02/18/16 19:10	
Sample: LB-021716-08 (580-	-57335-2)	Collect	ed: 02/17	7/16 09:3	5	Temp: 5 C		Matrix: General Water
Lab ID: 101335		Receiv	ed: 02/18	3/16 11:1	0	Evidence of Cooling	g:Y	
Analyte	Result	Units	MRL	Dil.	Batch	Start/Extract	Analyzed	Notes
Method: EPA 300.0								
Nitrate	6.15	mg/L	0.100	2	27350-8		02/18/16 19:42	
Sample: LB-021716-09 (580-	-57335-3)	Collect	ed: 02/17	7/16 10:4	0	Temp: 5 C		Matrix: General Water
Lab ID: 101336			ed: 02/18			Evidence of Cooling		
Analyte	Result	Units	MRL	Dil.	Batch	Start/Extract	Analyzed	Notes
Method: EPA 300.0								
Nitrate	2.02	mg/L	0.100	2	27350-9		02/18/16 20:15	
Sample: LB-021716-10 (580-	-57335-4)	Collect	ed: 02/17	7/16 10:3	5	Temp: 5 C		Matrix: General Water
Lab ID: 101337			ed: 02/18			Evidence of Cooling	-	
Analyte	Result	Units	MRL	Dil.	Batch	Start/Extract	Analyzed	Notes
Method: EPA 300.0								
Nitrate	2.05	mg/L	0.100	2	27350-10		02/18/16 20:48	
Sample: LB-021716-11 (580-	-57335-5)	Collect	ed: 02/17	7/16 11:3	5	Temp: 5 C		Matrix: General Water
Lab ID: 101338		Receiv	ed: 02/18	3/16 11:1	0	Evidence of Cooling	g:Y	
Analyte	Result	Units	MRL	Dil.	Batch	Start/Extract	Analyzed	Notes
Method: EPA 300.0								
Nitrate	2.19	mg/L	0.100	2	27350-11		02/18/16 21:21	
Sample: LB-021716-12 (580-	-57335-6)	Collect	ed: 02/17	7/16 12:4	0	Temp: 5 C		Matrix: General Water
Lab ID: 101339		Receiv	ed: 02/18	3/16 11:1	0	Evidence of Cooling		
Analyte	Result	Units	MRL	Dil.	Batch	Start/Extract	Analyzed	Notes
Method: EPA 300.0								
Nitrate	3.44	mg/L	0.100	2	27350-12		02/18/16 21:53	
								Matrix:

Sample: LB-021716-13 (580-573	35-7)	Collect	ed: 02/17/	16 13:3	5	Temp: 5 C		General Water
Lab ID: 101340		Receiv	ed: 02/18/	16 11:1	0	Evidence of Cooling:	Υ	
Analyte	Result	Units	MRL	Dil.	Batch	Start/Extract	Analyzed	Notes
Method: EPA 300.0								
Nitrate	ND	mg/L	0.100	2	27350-17		02/19/16 00:37	
Sample: LB-021716-14 (580-573	35-8)	Collect	ed: 02/17/	16 14:3	0	Temp: 5 C		Matrix: General Water
Lab ID: 101341		Receiv	ed: 02/18/	16 11:1	0	Evidence of Cooling:	Υ	
Analyte	Result	Units	MRL	Dil.	Batch	Start/Extract	Analyzed	Notes
Method: EPA 300.0								
Nitrate	4.86	mg/L	0.100	2	27350-18		02/19/16 01:10	

Laboratory Quality Control Results

EPA 300.0									
QC - Initial Calibration Verif						Bate	ch ID: 2	27350-3	}
Analyte	Result		Spike	Units	Recovery	Limits	RPD	Limit	Notes
Nitrate	0.521		0.500	mg/L	104 %	90-110			
QC - Continuing Calibration Verif.	- B					Bate	ch ID: 2	27350-1	6
Analyte	Result		Spike	Units	Recovery	Limits	RPD	Limit	Notes
Nitrate	0.234		0.226	mg/L	104 %	90-110			
QC - Continuing Calibration Verif.	- A					Bate	ch ID: 2	27350-2	24
Analyte	Result		Spike	Units	Recovery	Limits	RPD	Limit	Notes
Nitrate	0.239		0.226	mg/L	106 %	90-110			
QC - Initial Calibration Blank -						Bate	ch ID: 2	27350-2	2
Analyte	Result		Spike	Units	Recovery	Limits	RPD	Limit	Notes
Nitrate	ND			mg/L					
QC - Matrix Spike - of Sample 273	50 - 13					Bate	ch ID: 2	27350-1	4
Analyte	Result	Org.Result	Spike	Units	Recovery	Limits	RPD	Limit	Notes
Nitrate	1.10	0.550	0.500	mg/L	109 %	80-120			
QC - Matrix Spike Duplicate - of Sa	ample 27350 -	13				Bate	ch ID: 2	27350-1	5
Analyte	Result	Org.Result	Spike	Units	Recovery	Limits	RPD	Limit	Notes
Nitrate	1.06	0.550	0.500	mg/L	102 %	80-120	3	20	

Abbreviations

MRL Method Reporting Limit

ND None Detected at or above the MRL

RPD Relative Percent Difference

Units of Measure:

mg/L Milligrams Per Liter

Chain of Custody Record

TestAmerica THE LEADER IN ENVIRGINMENTAL TESTING

Client Information (Sub Contract Lab)	Sampler:			Lab PM: Murphy, Sarah	Sarah A	İ	Carrier Tracking No(s)	No(s):	COC No: 580-36004.1 (18812021	
1	Phone:			E-Mall: sarah.mu	E-Matt: sarah,murphy@testamericainc.com	inc.com			Page: Page 1 of 1		
Company. Pixis Laboratories. 11.C				-		<u>sis</u>	Reguested		Job #: 580-57335-1		
	Due Date Requested								Preservation Codes:	des:	
E Williaher Way,	TAT Requested (days):	3):		. P40:	0.008				A-HCL B-NaOH	M - Hexane N - None	
Potuand State, 2720: OR 97230:					исъгу				C - 2n Acetate D - Nitric Acid E - NaHSO4	0 - Na2045 Q - Na2SO3	
Prone: 503-254-1794(Tel)	PO#:			10	YJANA				F - MeOH G - Amchlor H - Ascorbic Acid	R - Na2S2SO3 S - H2SO4 T - TSP Dodecahydrate	
	#0M			XEEP.	PIXIS			he 30		U - Acetone V - MCAA	
Project Name: Leichner Landfill - Wash.	Project #: 58008309			9.01:0	-etertil			oue)	r-EDA	w - pn 4-5 Z - other (specify)	
	SSOW#:			dules	d ,nago				Other:		
				Matrix (Waynelor, Co. Banoild, Co.	מוני) אלא (מוני) 300.0 אוניה 18טן אוניצו			វិទ្ធិបុក្ខាប្រៀ			
Sample Identification - Cilent ID (Lab ID)	Sample Date	Time O	(C=comp, orwestefell, G=grab) B1=Tesse, A-Ar) (Preservation(Code::3	10E 💢	aus moutil in					Special Instructions/Note:	. Daire
	2/17/16	08:40 Pacific		Water							i
LB-021716-08 (580-57335-2)	2/17/16	09:35 Pacific		Water	×				•		
LB-021716-09 (580-57335-3)	2/17/16	10:40 Pacific		Water	×						
LB-021716-10 (580-57335-4)	2/17/16	10:35 Pacific		Water	×						
LB-021716-11 (580-57335-5)	2/17/16	11:35 Pacific		Water	×						
LB-021716-12 (580-57335-6)	2/17/16	12:40 Pacific		Water	×					,	
LB-021716-13 (580-57335-7)	2/17/16	13:35 Pacific		Water	×				-		
LB-021716-14 (580-57335-8)	2/17/16	14:30 Pacific		Water	×						
						.					
Possible Hazard identification Unconfirmed	•			.,	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Moni	(A fee may be a	issessed if sai Disposal By Lal	mples are retain	ed longer than 1 ive For	month) Months	
Deliverable Requested: I, II, III, IV, Other (specify)	-			0,	Special Instructions/QC Requirements:	s/QC Requireme	nts:				
Empty Kit Relinquished by:		Date:		Time	I (Method of Shipment:	Shipment:			<u> </u>
Relinquished by:	Date/Times 16	QQql		Company	Received by:	1 (M))	2 8 6	1000	Company, E.	ر
Relinquisher of the Committee of the Com	7 8 6	<u> </u>		Company E.	Received by:	, e		Date/Time:		Company	
	Date/Time:		<u>ర</u>	Company	Received by:	Method		Date/Time: /c	01:41	Company	25
Custody Seals Intact: Custody Seal No.: A Yes A No					Coole Temperatur	Coole Temperaturg(s) °C and Other Remarks:	emarks:				
						11 12	9	7 8	5	3	1

TestAmerica Seattle

5755 8th Street East Tacoma, WA 98424 Phone (253) 922-2310 Fax (253) 922-5047

lestAmerico	

Chain of Custody Record

	Sampler:			Lab PM:		Carrier	Carrier Tracking No(s):	COC No:	ö	
Client information (Sub Contract Lab)	ē			Murphy, Sarah A	sarah A			580-3	580-36420.1	
Shipping/Receiving	Phone:			E-Mail: sarah.mu	E-Mail: sarah.murphy@testamericainc.com	c.com		Page: Page	Page: Page 1 of 1	
Company: TestAmerica Laboratories, Inc.					٨	Analysis Reguested	٦	Job#:	Job#:	
Address: 13715 Rider Trail North	Due Date Requested:							Prese	Preservation Codes	
City.	TAT Requested (days):							A - HCL B - NaOH		M - Hexane N - None
State in Congression (Congression Congression Congress				***	rat.			C-Z-	0	0 - AsNaO2 P - Na2O4S
Phone: 314-298-8566(Tel) 314-298-8757(Fax)	PO#:							F - MeOH G - Amchlor	:	R - Na2S2SO3 S - H2SO4
Email:	#OM				distributions			Annia mana	Acid	T - TSP Dodecahydrate U - Acetone V - MCAA
Project Name: Leichner Landfill - Wash.	Project #: 58008309	;			anis dei estad			tainer L-EDA		W - ph 4-5 Z - other (specify)
Site:	SSOW#.				at discovered to the			oo to		
Sample identification - Client ID (Lab ID)	Sample Date	Sample (C	Sample We Type S== (C=Comp, O=w G=grab) BT=Tass	Matrix 00 (W=water, S=solid, O=wastefoll, 00 (BT=TISSUe, A=AIF) IL.	M\2M <u>\</u> 280_000 Perorm_28			NedmuN IstoT	Special list	Special Instructions/Note:
Pag		\ /	100							
DE-021716-07 (580-57335-1)	2/17/16	08:40 Pacific	×	Water	×			•••		
DB-021716-08 (580-57335-2)	2/17/16	09:35 Pacific	×	Water	×					
LB-021716-09 (580-57335-3)	2/17/16	10:40 Pacific	M	Water	×			ξ-		
LB-021716-10 (580-57335-4)	2/17/16	10:35 Pacific	W	Water	×					
LB-021716-11 (580-57335-5)	2/17/16	11:35 Pacific	W	Water	×					
LB-021716-12 (580-57335-6)	2/17/16	12:40 Pacific	×	Water	×			-		
LB-021716-13 (580-57335-7)	2/17/16	13:35 Pacific	×	Water	×			170		
LB-021716-14 (580-57335-8)	2/17/16	14:30 Pacific	W	Water	×			1		
		-								
Possible Hazard Identification				S	ample Disposal (A	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	d if samples ar	e retained long	er than 1 mc	onth)
Deliverable Requested: I, II, III, IV, Other (specify)				S	Special Instructions/QC Requirements:	rt – Disposal By Lab IC Requirements:	Бу Lab	Archive For		Months
Empty Kit Relinquished by:	Ci O ID	Date:		Time:		Г	Method of Shipment			
Reinquished by: 1940 Brand		1315		76	Becalived by:	00	Date/Time	2		Company
Relinquished by:	Date/Tine:	\ \ ~	Company	, ku	Réceived by:	all	Date/Time:	2/10	2	Company
Reinquished by:	Date/Time:		Company	δυ	Received by:	:	Date/Time:			Company
Custody Seals Intact: Custody Seal No.: A Yes A No					Cooler Temperature(s	Cooler Temperature(s) "C and Other Remarks:	_			

Client: SCS Engineers

Job Number: 580-57335-1

Login Number: 57335 List Source: TestAmerica Seattle

List Number: 1

Creator: Svabik-Seror, Philip M

Creator: Svabik-Seror, Philip W		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

Job Number: 580-57335-1

List Number: 2 Creator: Clarke, Jill C

Login Number: 57335

Client: SCS Engineers

List Source: TestAmerica St. Louis List Creation: 03/03/16 03:51 PM

Creator: Clarke, Jili C			
Question		Answer	Comment
Radioactivity wasn't checked or is = background as memeter.</td <td>easured by a survey</td> <td>True</td> <td></td>	easured by a survey	True	
The cooler's custody seal, if present, is intact.		True	
Sample custody seals, if present, are intact.		N/A	
The cooler or samples do not appear to have been comptampered with.	promised or	True	
Samples were received on ice.		True	
Cooler Temperature is acceptable.		True	
Cooler Temperature is recorded.		True	3.7
COC is present.		True	
COC is filled out in ink and legible.		True	
COC is filled out with all pertinent information.		True	
Is the Field Sampler's name present on COC?		False	
There are no discrepancies between the containers rece	ived and the COC.	True	
Samples are received within Holding Time (excluding tes HTs)	sts with immediate	True	
Sample containers have legible labels.		True	
Containers are not broken or leaking.		True	
Sample collection date/times are provided.		True	
Appropriate sample containers are used.		True	
Sample bottles are completely filled.		True	
Sample Preservation Verified.		True	
There is sufficient vol. for all requested analyses, incl. an MS/MSDs	ny requested	True	
Containers requiring zero headspace have no headspace <6mm (1/4").	e or bubble is	N/A	
Multiphasic samples are not present.		True	
Samples do not require splitting or compositing.		True	
Residual Chlorine Checked.		N/A	

TestAmerica Seattle

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-57367-1

Client Project/Site: Leichner Landfill - Wash.

For:

SCS Engineers 14945 SW Sequoia Parkway Suite 180 Portland, Oregon 97224

Attn: Mr. Jason Davendonis

Sand Murphy

Authorized for release by: 3/14/2016 2:22:15 PM

Sarah Murphy, Project Manager I (253)922-2310

sarah.murphy@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: SCS Engineers Project/Site: Leichner Landfill - Wash. TestAmerica Job ID: 580-57367-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	
Client Sample Results	5
QC Sample Results	21
Chronicle	29
Certification Summary	31
Sample Summary	32
Subcontract Data	33
Chain of Custody	37
Receipt Checklists	39

5

4

5

8

9

10

Case Narrative

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57367-1

Job ID: 580-57367-1

Laboratory: TestAmerica Seattle

Narrative

Receipt

The samples were received on 2/18/2016 3:50 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 1.3° C and 1.5° C.

GC/MS VOA

Method(s) 8260B: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 580-211994 recovered outside control limits for the following analytes: 1,2,3-Trichloropropane and Chlorodibromomethane. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Method(s) 300.0: The following samples in Anion batches 160-239571 and 160-239768 were diluted to bring the concentrations of target analytes within the calibration range: LB-021816-15 (580-57367-1), LB-021816-16 (580-57367-2), LB-021816-17 (580-57367-3), LB-021816-18 (580-57367-4), LB-021816-19 (580-57367-5), LB-021816-20 (580-57367-6) and LB-021816-21 (580-57367-7). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Subcontract Work

Method 300.0 Nitrogen, Nitrate: This method was subcontracted to Pixis Laboratories, LLC. The subcontract laboratory certification is different from that of the facility issuing the final report.

2

3

4

5

6

7

ŏ

4.0

1 1

Definitions/Glossary

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57367-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
-----------	-----------------------

* LCS or LCSD is outside acceptance limits.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

HPLC/IC

E Result exceeded calibration range.

Glossary

Abbreviation	These commonly	/ used abbreviations ma	y or may not be	present in this report

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration
MDA Minimum detectable activity
EDL Estimated Detection Limit

MDC Minimum detectable concentration

MDL Method Detection Limit
ML Minimum Level (Dioxin)
NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Seattle

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57367-1

Lab Sample ID: 580-57367-1

Matrix: Water

Client Sample ID: LB-021816-15

Date Collected: 02/18/16 08:40 Date Received: 02/18/16 15:50

Method: 8260B - Volatile Orç Analyte		Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	0.500	ug/L			02/26/16 12:19	1
1,1,1-Trichloroethane	ND	0.500	ug/L			02/26/16 12:19	1
1,1,2,2-Tetrachloroethane	ND	0.500	ug/L			02/26/16 12:19	1
1,1,2-Trichloroethane	ND	0.500	ug/L			02/26/16 12:19	1
1,1-Dichloroethane	ND	0.500	ug/L			02/26/16 12:19	1
1,1-Dichloropropene	ND	0.500	ug/L			02/26/16 12:19	1
1,2,3-Trichlorobenzene	ND	2.00	ug/L			02/26/16 12:19	1
1,2,3-Trichloropropane	ND	* 0.500	ug/L			02/26/16 12:19	1
1,2,4-Trichlorobenzene	ND	2.00	ug/L			02/26/16 12:19	1
1,2,4-Trimethylbenzene	ND	2.00	ug/L			02/26/16 12:19	1
1,2-Dibromo-3-Chloropropane	ND	2.00	ug/L			02/26/16 12:19	1
1,2-Dibromoethane	ND	2.00	ug/L			02/26/16 12:19	1
1,2-Dichlorobenzene	ND	0.500	ug/L			02/26/16 12:19	1
1,2-Dichloroethane	ND	0.500	ug/L			02/26/16 12:19	1
1,2-Dichloropropane	ND	0.500	ug/L			02/26/16 12:19	1
1,3,5-Trimethylbenzene	ND	2.00	ug/L			02/26/16 12:19	
1,3-Dichlorobenzene	ND	0.500	ug/L			02/26/16 12:19	1
1,3-Dichloropropane	ND	0.500	ug/L			02/26/16 12:19	1
1,4-Dichlorobenzene	ND	0.500	ug/L			02/26/16 12:19	
2,2-Dichloropropane	ND	0.500	ug/L			02/26/16 12:19	1
2-Butanone	ND	20.0	ug/L			02/26/16 12:19	
2-Chlorotoluene	ND	2.00	ug/L			02/26/16 12:19	
2-Hexanone	ND	20.0	ug/L			02/26/16 12:19	,
4-Chlorotoluene	ND	2.00	ug/L			02/26/16 12:19	-
4-Methyl-2-pentanone	ND	20.0	.			02/26/16 12:19	
• •	ND ND	20.0	ug/L			02/26/16 12:19	
Acetone	ND ND	0.500	ug/L				1
Benzene			ug/L			02/26/16 12:19	1
Bromobenzene	ND	2.00	ug/L			02/26/16 12:19	1
Bromochloromethane	ND	0.500	ug/L			02/26/16 12:19	1
Bromodichloromethane	ND	0.500	ug/L			02/26/16 12:19	1
Bromoform	ND	0.500	ug/L			02/26/16 12:19	1
Bromomethane	ND	1.00	ug/L			02/26/16 12:19	1
Carbon disulfide	ND	0.500	ug/L			02/26/16 12:19	1
Carbon tetrachloride	ND	0.500	ug/L			02/26/16 12:19	1
Chlorobenzene	ND	0.500	ug/L			02/26/16 12:19	1
Chloroethane	ND	0.500	ug/L			02/26/16 12:19	1
Chloroform	ND	0.500	ug/L			02/26/16 12:19	1
Chloromethane	ND	0.500	ug/L			02/26/16 12:19	1
cis-1,2-Dichloroethene	ND	0.500	ug/L			02/26/16 12:19	1
cis-1,3-Dichloropropene	ND	0.500	ug/L			02/26/16 12:19	1
Dibromochloromethane	ND	* 0.500	ug/L			02/26/16 12:19	1
Dibromomethane	ND	0.500	ug/L			02/26/16 12:19	1
Dichlorodifluoromethane	ND	0.500	ug/L			02/26/16 12:19	1
Ethylbenzene	ND	0.500	ug/L			02/26/16 12:19	1
Hexachlorobutadiene	ND	2.00	ug/L			02/26/16 12:19	1
Isopropylbenzene	ND	2.00	ug/L			02/26/16 12:19	1
Methyl tert-butyl ether	ND	1.00	ug/L			02/26/16 12:19	1
Methylene Chloride	ND	2.00	ug/L			02/26/16 12:19	1
m-Xylene & p-Xylene	ND	0.500	ug/L			02/26/16 12:19	1

TestAmerica Seattle

Page 5 of 40

3/14/2016

3

5

9

1 4

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

Date Collected: 02/18/16 08:40

Date Received: 02/18/16 15:50

Client Sample ID: LB-021816-15

TestAmerica Job ID: 580-57367-1

Lab Sample ID: 580-57367-1

Matrix: Water

Method: 8260B	- Volatile	Organic	Compounds	(GC/MS)	(Continued)

Analyte	Result Qualifie	r RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND ND	2.00	ug/L			02/26/16 12:19	1
n-Butylbenzene	ND	2.00	ug/L			02/26/16 12:19	1
N-Propylbenzene	ND	2.00	ug/L			02/26/16 12:19	1
o-Xylene	ND	0.500	ug/L			02/26/16 12:19	1
p-Isopropyltoluene	ND	2.00	ug/L			02/26/16 12:19	1
sec-Butylbenzene	ND	2.00	ug/L			02/26/16 12:19	1
Styrene	ND	0.500	ug/L			02/26/16 12:19	1
tert-Butylbenzene	ND	2.00	ug/L			02/26/16 12:19	1
Tetrachloroethene	ND	0.500	ug/L			02/26/16 12:19	1
Toluene	ND	0.500	ug/L			02/26/16 12:19	1
trans-1,2-Dichloroethene	ND	0.500	ug/L			02/26/16 12:19	1
trans-1,3-Dichloropropene	ND	0.500	ug/L			02/26/16 12:19	1
Trichloroethene	ND	0.500	ug/L			02/26/16 12:19	1
Trichlorofluoromethane	ND	0.500	ug/L			02/26/16 12:19	1
Surrogate	%Recovery Qualifie	r Limits			Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	d Analvzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		70 - 128		02/26/16 12:19	
,						,
4-Bromofluorobenzene (Surr)	93		75 - 120		02/26/16 12:19	1
Dibromofluoromethane (Surr)	92		85 ₋ 115		02/26/16 12:19	1
Toluene-d8 (Surr)	103		75 - 125		02/26/16 12:19	1
Trifluorotoluene (Surr)	100		80 - 127		02/26/16 12:19	1

Method: 300.0 - Anions, Ion C	hromatography - DL						
Analyte	Result Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	10.8	1.00	mg/L			03/08/16 21:44	5

Method: 6020 - Metals (ICP/M	S) - Dissolved						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Iron	9.80	0.0400	mg/L		02/26/16 13:28	02/29/16 18:02	1
Manganese	1.55	0.00200	mg/L		02/26/16 13:28	02/29/16 18:02	1

General Chemistry Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	229		10.0		mg/L			02/22/16 19:17	1

3/14/2016

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57367-1

Lab Sample ID: 580-57367-2

Matrix: Water

Client Sample ID: LB-021816-16

Date Collected: 02/18/16 09:30 Date Received: 02/18/16 15:50

Method: 8260B - Volatile Org Analyte		Qualifier RL	MDL Un	it D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	0.500	ug/	/L		02/26/16 13:12	1
1,1,1-Trichloroethane	ND	0.500	ug/	/L		02/26/16 13:12	1
1,1,2,2-Tetrachloroethane	ND	0.500	ug/	/L		02/26/16 13:12	1
1,1,2-Trichloroethane	ND	0.500	ug/	/L		02/26/16 13:12	1
1,1-Dichloroethane	ND	0.500	ug/	/L		02/26/16 13:12	1
1,1-Dichloropropene	ND	0.500	ug/	/L		02/26/16 13:12	1
1,2,3-Trichlorobenzene	ND	2.00	ug/	/L		02/26/16 13:12	1
1,2,3-Trichloropropane	ND	* 0.500	ug/			02/26/16 13:12	1
1,2,4-Trichlorobenzene	ND	2.00	ug/	/L		02/26/16 13:12	1
1,2,4-Trimethylbenzene	ND	2.00	ug/			02/26/16 13:12	1
1,2-Dibromo-3-Chloropropane	ND	2.00	ug/	/L		02/26/16 13:12	1
1,2-Dibromoethane	ND	2.00	ug/			02/26/16 13:12	1
1,2-Dichlorobenzene	ND	0.500	ug/			02/26/16 13:12	1
1,2-Dichloroethane	ND	0.500	ug/			02/26/16 13:12	1
1,2-Dichloropropane	ND	0.500	ug/			02/26/16 13:12	1
1,3,5-Trimethylbenzene	ND	2.00	ug/			02/26/16 13:12	1
1,3-Dichlorobenzene	ND	0.500	ug/			02/26/16 13:12	1
1,3-Dichloropropane	ND	0.500	ug/			02/26/16 13:12	1
1,4-Dichlorobenzene	ND	0.500	ug/			02/26/16 13:12	· · · · · · · · · · · · · · · · · · ·
2,2-Dichloropropane	ND	0.500	ug/			02/26/16 13:12	1
2-Butanone	ND	20.0	ug/			02/26/16 13:12	. 1
2-Chlorotoluene	ND	2.00	ug/ ug/			02/26/16 13:12	· · · · · · · · · · · · · · · · · · ·
2-Hexanone	ND.	20.0	ug/			02/26/16 13:12	1
4-Chlorotoluene	ND ND	2.00	ug/			02/26/16 13:12	1
4-Methyl-2-pentanone	ND	20.0	ug/ ug/			02/26/16 13:12	· · · · · · · · · · · · · · · · · · ·
Acetone	ND ND	20.0				02/26/16 13:12	
	ND ND	0.500	ug/				1
Benzene			ug/			02/26/16 13:12	
Bromobenzene	ND	2.00	ug/			02/26/16 13:12	1
Bromochloromethane	ND	0.500	ug/			02/26/16 13:12	1
Bromodichloromethane	ND	0.500	ug/			02/26/16 13:12	1
Bromoform	ND	0.500	ug/			02/26/16 13:12	1
Bromomethane	ND	1.00	ug/			02/26/16 13:12	1
Carbon disulfide	ND	0.500	ug/			02/26/16 13:12	1
Carbon tetrachloride	ND	0.500	ug/			02/26/16 13:12	1
Chlorobenzene	ND	0.500	ug/			02/26/16 13:12	1
Chloroethane	ND	0.500	ug/			02/26/16 13:12	
Chloroform	ND	0.500	ug/			02/26/16 13:12	1
Chloromethane	ND	0.500	ug/			02/26/16 13:12	1
cis-1,2-Dichloroethene	ND	0.500	ug/			02/26/16 13:12	1
cis-1,3-Dichloropropene	ND	0.500	ug/	/L		02/26/16 13:12	1
Dibromochloromethane	ND	* 0.500	ug/	/L		02/26/16 13:12	1
Dibromomethane	ND	0.500	ug/	/L		02/26/16 13:12	1
Dichlorodifluoromethane	ND	0.500	ug/	/L		02/26/16 13:12	1
Ethylbenzene	ND	0.500	ug/	/L		02/26/16 13:12	1
Hexachlorobutadiene	ND	2.00	ug/	/L		02/26/16 13:12	1
Isopropylbenzene	ND	2.00	ug/	/L		02/26/16 13:12	1
Methyl tert-butyl ether	ND	1.00	ug/			02/26/16 13:12	1
Methylene Chloride	ND	2.00	ug/	/L		02/26/16 13:12	1
m-Xylene & p-Xylene	ND	0.500	ug/			02/26/16 13:12	1

TestAmerica Seattle

Page 7 of 40

3/14/2016

2

5

7

9

1 4

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57367-1

Client Sample ID: LB-021816-16 Lab Sample ID: 580-57367-2

Date Collected: 02/18/16 09:30 Date Received: 02/18/16 15:50 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		2.00		ug/L			02/26/16 13:12	1
n-Butylbenzene	ND		2.00		ug/L			02/26/16 13:12	1
N-Propylbenzene	ND		2.00		ug/L			02/26/16 13:12	1
o-Xylene	ND		0.500		ug/L			02/26/16 13:12	1
p-Isopropyltoluene	ND		2.00		ug/L			02/26/16 13:12	1
sec-Butylbenzene	ND		2.00		ug/L			02/26/16 13:12	1
Styrene	ND		0.500		ug/L			02/26/16 13:12	1
tert-Butylbenzene	ND		2.00		ug/L			02/26/16 13:12	1
Tetrachloroethene	ND		0.500		ug/L			02/26/16 13:12	1
Toluene	ND		0.500		ug/L			02/26/16 13:12	1
trans-1,2-Dichloroethene	ND		0.500		ug/L			02/26/16 13:12	1
trans-1,3-Dichloropropene	ND		0.500		ug/L			02/26/16 13:12	1
Trichloroethene	ND		0.500		ug/L			02/26/16 13:12	1
Trichlorofluoromethane	ND		0.500		ug/L			02/26/16 13:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		70 - 128					02/26/16 13:12	1
4-Bromofluorobenzene (Surr)	93		75 - 120					02/26/16 13:12	1
Dibromofluoromethane (Surr)	99		85 - 115					02/26/16 13:12	1
Toluene-d8 (Surr)	103		75 - 125					02/26/16 13:12	1
Trifluorotoluene (Surr)	99		80 - 127					02/26/16 13:12	1
Method: 300.0 - Anions, Io	n Chromatogra	phy - DL							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	9.10		1.00		mg/L			03/08/16 22:32	5
Method: 6020 - Metals (ICP									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND		0.0400		mg/L	<u> </u>	02/26/16 13:28	02/29/16 18:06	1
Manganese	ND		0.00200		mg/L		02/26/16 13:28	02/29/16 18:06	1
General Chemistry									
Analyte		Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	214		10.0		mg/L			02/22/16 19:17	1

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57367-1

Lab Sample ID: 580-57367-3

Matrix: Water

Client Sample ID: LB-021816-17

Date Collected: 02/18/16 10:20 Date Received: 02/18/16 15:50

Method: 8260B - Volatile Orga Analyte	Result Qua		MDL Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND ND	0.500	ug/L			02/26/16 13:40	
1,1,1-Trichloroethane	ND	0.500	ug/L			02/26/16 13:40	
1,1,2,2-Tetrachloroethane	ND	0.500	ug/L			02/26/16 13:40	
1,1,2-Trichloroethane	ND	0.500	ug/L			02/26/16 13:40	
1,1-Dichloroethane	ND	0.500	ug/L			02/26/16 13:40	
1,1-Dichloropropene	ND	0.500	ug/L			02/26/16 13:40	
1,2,3-Trichlorobenzene	ND	2.00	ug/L			02/26/16 13:40	
1,2,3-Trichloropropane	ND *	0.500	ug/L			02/26/16 13:40	
1,2,4-Trichlorobenzene	ND	2.00	ug/L ug/L			02/26/16 13:40	
1,2,4-Trimethylbenzene	ND	2.00				02/26/16 13:40	
			ug/L				
1,2-Dibromo-3-Chloropropane	ND	2.00	ug/L			02/26/16 13:40	
1,2-Dibromoethane	ND	2.00	ug/L			02/26/16 13:40	
1,2-Dichlorobenzene	ND	0.500	ug/L			02/26/16 13:40	
1,2-Dichloroethane	ND	0.500	ug/L			02/26/16 13:40	
1,2-Dichloropropane	ND	0.500	ug/L			02/26/16 13:40	
1,3,5-Trimethylbenzene	ND	2.00	ug/L			02/26/16 13:40	
1,3-Dichlorobenzene	ND	0.500	ug/L			02/26/16 13:40	
1,3-Dichloropropane	ND	0.500	ug/L			02/26/16 13:40	
1,4-Dichlorobenzene	ND	0.500	ug/L			02/26/16 13:40	
2,2-Dichloropropane	ND	0.500	ug/L			02/26/16 13:40	
2-Butanone	ND	20.0	ug/L			02/26/16 13:40	
2-Chlorotoluene	ND	2.00	ug/L			02/26/16 13:40	
2-Hexanone	ND	20.0	ug/L			02/26/16 13:40	
1-Chlorotoluene	ND	2.00	ug/L			02/26/16 13:40	
I-Methyl-2-pentanone	ND	20.0	ug/L			02/26/16 13:40	
Acetone	ND	20.0	ug/L			02/26/16 13:40	
Benzene	ND	0.500	ug/L			02/26/16 13:40	
Bromobenzene	ND	2.00	ug/L			02/26/16 13:40	
Bromochloromethane	ND	0.500	ug/L			02/26/16 13:40	
Bromodichloromethane	ND	0.500	ug/L			02/26/16 13:40	
Bromoform	ND	0.500	ug/L			02/26/16 13:40	
Bromomethane	ND	1.00	ug/L			02/26/16 13:40	
Carbon disulfide	ND	0.500	ug/L			02/26/16 13:40	
Carbon tetrachloride	ND	0.500	ug/L			02/26/16 13:40	
Chlorobenzene	ND	0.500	ug/L			02/26/16 13:40	
Chloroethane	ND	0.500	ug/L			02/26/16 13:40	
Chloroform	ND	0.500	ug/L			02/26/16 13:40	
Chloromethane	ND	0.500	ug/L			02/26/16 13:40	
cis-1,2-Dichloroethene	ND	0.500	ug/L			02/26/16 13:40	
cis-1,3-Dichloropropene	ND	0.500	ug/L			02/26/16 13:40	
Dibromochloromethane	ND *	0.500	ug/L			02/26/16 13:40	
Dibromomethane	ND	0.500	ug/L			02/26/16 13:40	
Dichlorodifluoromethane	ND	0.500	.			02/26/16 13:40	
	ND ND	0.500	ug/L			02/26/16 13:40	
Ethylbenzene Hovachlorobutadiono			ug/L				
dexachlorobutadiene	ND	2.00	ug/L			02/26/16 13:40	
sopropylbenzene	ND	2.00	ug/L			02/26/16 13:40	
Methyl tert-butyl ether	ND	1.00	ug/L			02/26/16 13:40	
Methylene Chloride	ND	2.00	ug/L			02/26/16 13:40	

TestAmerica Seattle

Page 9 of 40

3/14/2016

2

5

8

9

11

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

Client Sample ID: LB-021816-17

TestAmerica Job ID: 580-57367-1

Lab Sample ID: 580-57367-3

Matrix: Water

Date Collected: 02/18/16 10:20

Date Received: 02/18/16 15:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		2.00		ug/L			02/26/16 13:40	1
n-Butylbenzene	ND		2.00		ug/L			02/26/16 13:40	1
N-Propylbenzene	ND		2.00		ug/L			02/26/16 13:40	1
o-Xylene	ND		0.500		ug/L			02/26/16 13:40	1
p-Isopropyltoluene	ND		2.00		ug/L			02/26/16 13:40	1
sec-Butylbenzene	ND		2.00		ug/L			02/26/16 13:40	1
Styrene	ND		0.500		ug/L			02/26/16 13:40	1
tert-Butylbenzene	ND		2.00		ug/L			02/26/16 13:40	1
Tetrachloroethene	ND		0.500		ug/L			02/26/16 13:40	1
Toluene	ND		0.500		ug/L			02/26/16 13:40	1
trans-1,2-Dichloroethene	ND		0.500		ug/L			02/26/16 13:40	1
trans-1,3-Dichloropropene	ND		0.500		ug/L			02/26/16 13:40	1
Trichloroethene	ND		0.500		ug/L			02/26/16 13:40	1
Trichlorofluoromethane	ND		0.500		ug/L			02/26/16 13:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		70 - 128					02/26/16 13:40	1
4-Bromofluorobenzene (Surr)	90		75 - 120					02/26/16 13:40	1
Dibromofluoromethane (Surr)	94		85 ₋ 115					02/26/16 13:40	1
Toluene-d8 (Surr)	108		75 - 125					02/26/16 13:40	1
Trifluorotoluene (Surr)	105		80 - 127					02/26/16 13:40	1
Method: 300.0 - Anions, Ioi	n Chromatogra	phy - DL							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	4.67		0.400		mg/L			03/08/16 22:48	2
Method: 6020 - Metals (ICP	/MS) - Dissolv	ed							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND		0.0400		mg/L		02/26/16 13:28	02/29/16 18:11	1
Manganese	ND		0.00200		mg/L		02/26/16 13:28	02/29/16 18:11	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	168		10.0		mg/L			02/22/16 19:17	1

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57367-1

Lab Sample ID: 580-57367-4

Matrix: Water

Client Sample ID: LB-021816-18 Date Collected: 02/18/16 11:05

Date Received: 02/18/16 15:50
Mothod: 8260B - Volatilo Organic Compounds (GC/MS

Method: 8260B - Volatile Organiste Analyte	Result Qu		MDL Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND TOOLIN	0.500	ug/L		Порагоа	02/26/16 15:00	
1,1,1-Trichloroethane	ND	0.500	ug/L			02/26/16 15:00	
1,1,2,2-Tetrachloroethane	ND	0.500	ug/L			02/26/16 15:00	
1,1,2-Trichloroethane	ND	0.500	ug/L			02/26/16 15:00	
1,1-Dichloroethane	ND	0.500	ug/L			02/26/16 15:00	
1,1-Dichloropropene	ND	0.500	ug/L			02/26/16 15:00	
1,2,3-Trichlorobenzene	ND	2.00	ug/L			02/26/16 15:00	
1,2,3-Trichloropropane	ND *	0.500				02/26/16 15:00	
• •	ND ND	2.00	ug/L				
1,2,4-Trichlorobenzene	ND ND	2.00	ug/L			02/26/16 15:00	
1,2,4-Trimethylbenzene			ug/L			02/26/16 15:00	
1,2-Dibromo-3-Chloropropane	ND	2.00	ug/L			02/26/16 15:00	
1,2-Dibromoethane	ND	2.00	ug/L			02/26/16 15:00	
1,2-Dichlorobenzene	ND	0.500	ug/L			02/26/16 15:00	
1,2-Dichloroethane	ND	0.500	ug/L			02/26/16 15:00	
1,2-Dichloropropane	ND	0.500	ug/L			02/26/16 15:00	
1,3,5-Trimethylbenzene	ND	2.00	ug/L			02/26/16 15:00	
1,3-Dichlorobenzene	ND	0.500	ug/L			02/26/16 15:00	
1,3-Dichloropropane	ND	0.500	ug/L			02/26/16 15:00	
1,4-Dichlorobenzene	ND	0.500	ug/L			02/26/16 15:00	
2,2-Dichloropropane	ND	0.500	ug/L			02/26/16 15:00	
2-Butanone	ND	20.0	ug/L			02/26/16 15:00	
2-Chlorotoluene	ND	2.00	ug/L			02/26/16 15:00	
2-Hexanone	ND	20.0	ug/L			02/26/16 15:00	
4-Chlorotoluene	ND	2.00	ug/L			02/26/16 15:00	
4-Methyl-2-pentanone	ND	20.0	ug/L			02/26/16 15:00	
Acetone	ND	20.0	ug/L			02/26/16 15:00	
Benzene	ND	0.500	ug/L			02/26/16 15:00	
Bromobenzene	ND	2.00	ug/L			02/26/16 15:00	
Bromochloromethane	ND	0.500	ug/L			02/26/16 15:00	
Bromodichloromethane	ND	0.500	ug/L			02/26/16 15:00	
Bromoform	ND	0.500	ug/L			02/26/16 15:00	
Bromomethane	ND	1.00	ug/L			02/26/16 15:00	
Carbon disulfide	ND	0.500	ug/L			02/26/16 15:00	
Carbon tetrachloride	ND	0.500	ug/L			02/26/16 15:00	
Chlorobenzene	ND	0.500	ug/L			02/26/16 15:00	
Chloroethane	ND	0.500	ug/L			02/26/16 15:00	
Chloroform	ND	0.500	ug/L			02/26/16 15:00	
Chloromethane	ND	0.500	ug/L			02/26/16 15:00	
cis-1,2-Dichloroethene	ND	0.500	ug/L			02/26/16 15:00	
cis-1,3-Dichloropropene	ND	0.500	ug/L			02/26/16 15:00	
Dibromochloromethane	ND *	0.500	ug/L			02/26/16 15:00	
Dibromomethane	ND	0.500	ug/L			02/26/16 15:00	
Dichlorodifluoromethane	ND	0.500	ug/L			02/26/16 15:00	
Ethylbenzene	ND	0.500	ug/L			02/26/16 15:00	
Hexachlorobutadiene	ND	2.00				02/26/16 15:00	
			ug/L				
sopropylbenzene	ND ND	2.00	ug/L			02/26/16 15:00	
Methyl tert-butyl ether	ND	1.00	ug/L			02/26/16 15:00	
Methylene Chloride m-Xylene & p-Xylene	ND ND	2.00 0.500	ug/L ug/L			02/26/16 15:00 02/26/16 15:00	

TestAmerica Seattle

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

Date Collected: 02/18/16 11:05 Date Received: 02/18/16 15:50

Client Sample ID: LB-021816-18

TestAmerica Job ID: 580-57367-1

Lab Sample ID: 580-57367-4

,	Sample	יטו.	300-37307-4
			Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		2.00		ug/L			02/26/16 15:00	1
n-Butylbenzene	ND		2.00		ug/L			02/26/16 15:00	1
N-Propylbenzene	ND		2.00		ug/L			02/26/16 15:00	1
o-Xylene	ND		0.500		ug/L			02/26/16 15:00	1
p-Isopropyltoluene	ND		2.00		ug/L			02/26/16 15:00	1
sec-Butylbenzene	ND		2.00		ug/L			02/26/16 15:00	1
Styrene	ND		0.500		ug/L			02/26/16 15:00	1
tert-Butylbenzene	ND		2.00		ug/L			02/26/16 15:00	1
Tetrachloroethene	ND		0.500		ug/L			02/26/16 15:00	1
Toluene	ND		0.500		ug/L			02/26/16 15:00	1
trans-1,2-Dichloroethene	ND		0.500		ug/L			02/26/16 15:00	1
trans-1,3-Dichloropropene	ND		0.500		ug/L			02/26/16 15:00	1
Trichloroethene	ND		0.500		ug/L			02/26/16 15:00	1
Trichlorofluoromethane	ND		0.500		ug/L			02/26/16 15:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	110		70 - 128					02/26/16 15:00	- 1
4-Bromofluorobenzene (Surr)	92		75 - 120					02/26/16 15:00	1
Dibromofluoromethane (Surr)	97		85 - 115					02/26/16 15:00	1
Toluene-d8 (Surr)	105		75 - 125					02/26/16 15:00	1
Trifluorotoluene (Surr)	100		80 - 127					02/26/16 15:00	1
Method: 300.0 - Anions, lor	n Chromatogra	phy - DL							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8.86		1.00		mg/L			03/08/16 23:04	
Method: 6020 - Metals (ICP	/MS) - Dissolv	ed							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND		0.0400		mg/L		02/26/16 13:28	02/29/16 18:15	1
Manganese	ND		0.00200		mg/L		02/26/16 13:28	02/29/16 18:15	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	216		10.0		mg/L			02/24/16 19:08	

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57367-1

Lab Sample ID: 580-57367-5

Matrix: Water

Client Sample ID: LB-021816-19

Date Collected: 02/18/16 12:00 Date Received: 02/18/16 15:50

Method: 8260B - Volatile Org Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND	0.500	ug/L			02/26/16 14:33	
1,1,1-Trichloroethane	ND	0.500	ug/L			02/26/16 14:33	
1,1,2,2-Tetrachloroethane	ND	0.500	ug/L			02/26/16 14:33	
1,1,2-Trichloroethane	ND	0.500	ug/L			02/26/16 14:33	
1,1-Dichloroethane	ND	0.500	ug/L			02/26/16 14:33	
1,1-Dichloropropene	ND	0.500	ug/L			02/26/16 14:33	
1,2,3-Trichlorobenzene	ND	2.00	ug/L			02/26/16 14:33	
1,2,3-Trichloropropane	ND *	0.500	ug/L			02/26/16 14:33	
1,2,4-Trichlorobenzene	ND	2.00	ug/L			02/26/16 14:33	
1,2,4-Trimethylbenzene	ND	2.00	ug/L			02/26/16 14:33	
1,2-Dibromo-3-Chloropropane	ND	2.00	ug/L			02/26/16 14:33	
1,2-Dibromoethane	ND	2.00	ug/L			02/26/16 14:33	
1,2-Dichlorobenzene	ND	0.500	ug/L			02/26/16 14:33	
1,2-Dichloroethane	ND	0.500	ug/L			02/26/16 14:33	
1,2-Dichloropropane	ND	0.500	ug/L			02/26/16 14:33	
1,3,5-Trimethylbenzene	ND	2.00	ug/L			02/26/16 14:33	
1,3-Dichlorobenzene	ND	0.500	ug/L			02/26/16 14:33	
1,3-Dichloropropane	ND	0.500	ug/L			02/26/16 14:33	
1,4-Dichlorobenzene	ND	0.500	ug/L			02/26/16 14:33	
2,2-Dichloropropane	ND	0.500	ug/L			02/26/16 14:33	
2-Butanone	ND	20.0	ug/L			02/26/16 14:33	
2-Chlorotoluene	ND	2.00	ug/L			02/26/16 14:33	
2-Hexanone	ND	20.0	ug/L			02/26/16 14:33	
4-Chlorotoluene	ND	2.00	ug/L			02/26/16 14:33	
1-Methyl-2-pentanone	ND	20.0				02/26/16 14:33	
	ND ND	20.0	ug/L				
Acetone	ND ND	0.500	ug/L			02/26/16 14:33	
Benzene			ug/L			02/26/16 14:33	
Bromobenzene	ND	2.00	ug/L			02/26/16 14:33	
Bromochloromethane	ND	0.500	ug/L			02/26/16 14:33	
Bromodichloromethane	ND	0.500	ug/L			02/26/16 14:33	
Bromoform	ND	0.500	ug/L			02/26/16 14:33	
Bromomethane	ND	1.00	ug/L			02/26/16 14:33	
Carbon disulfide	ND	0.500	ug/L			02/26/16 14:33	
Carbon tetrachloride	ND	0.500	ug/L			02/26/16 14:33	
Chlorobenzene	ND	0.500	ug/L			02/26/16 14:33	
Chloroethane	ND	0.500	ug/L			02/26/16 14:33	
Chloroform	ND	0.500	ug/L			02/26/16 14:33	
Chloromethane	ND	0.500	ug/L			02/26/16 14:33	
cis-1,2-Dichloroethene	ND	0.500	ug/L			02/26/16 14:33	
sis-1,3-Dichloropropene	ND	0.500	ug/L			02/26/16 14:33	
Dibromochloromethane	ND *	0.500	ug/L			02/26/16 14:33	
Dibromomethane	ND	0.500	ug/L			02/26/16 14:33	
Dichlorodifluoromethane	ND	0.500	ug/L			02/26/16 14:33	
Ethylbenzene	ND	0.500	ug/L			02/26/16 14:33	
Hexachlorobutadiene	ND	2.00	ug/L			02/26/16 14:33	
sopropylbenzene	ND	2.00	ug/L			02/26/16 14:33	
Methyl tert-butyl ether	ND	1.00	ug/L			02/26/16 14:33	
Methylene Chloride	ND	2.00	ug/L			02/26/16 14:33	
m-Xylene & p-Xylene	ND	0.500	ug/L			02/26/16 14:33	

TestAmerica Seattle

2

5

9

11

Client: SCS Engineers

Trifluorotoluene (Surr)

Project/Site: Leichner Landfill - Wash.

Date Collected: 02/18/16 12:00

Date Received: 02/18/16 15:50

Client Sample ID: LB-021816-19

TestAmerica Job ID: 580-57367-1

Lab Sample ID: 580-57367-5

02/26/16 14:33

Matrix: Water

Method: 8260B - Volatile O Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		2.00		ug/L			02/26/16 14:33	1
n-Butylbenzene	ND		2.00		ug/L			02/26/16 14:33	1
N-Propylbenzene	ND		2.00		ug/L			02/26/16 14:33	1
o-Xylene	ND		0.500		ug/L			02/26/16 14:33	1
p-Isopropyltoluene	ND		2.00		ug/L			02/26/16 14:33	1
sec-Butylbenzene	ND		2.00		ug/L			02/26/16 14:33	1
Styrene	ND		0.500		ug/L			02/26/16 14:33	1
tert-Butylbenzene	ND		2.00		ug/L			02/26/16 14:33	1
Tetrachloroethene	ND		0.500		ug/L			02/26/16 14:33	1
Toluene	ND		0.500		ug/L			02/26/16 14:33	1
trans-1,2-Dichloroethene	ND		0.500		ug/L			02/26/16 14:33	1
trans-1,3-Dichloropropene	ND		0.500		ug/L			02/26/16 14:33	1
Trichloroethene	ND		0.500		ug/L			02/26/16 14:33	1
Trichlorofluoromethane	ND		0.500		ug/L			02/26/16 14:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	114		70 - 128					02/26/16 14:33	1
4-Bromofluorobenzene (Surr)	91		75 - 120					02/26/16 14:33	1
Dibromofluoromethane (Surr)	97		85 ₋ 115					02/26/16 14:33	1
Toluene-d8 (Surr)	102		75 - 125					02/26/16 14:33	1

Method: 300.0 - Anions, Ion Cl	nromatogra	phy - DL							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	21.7		2.00		mg/L			03/08/16 23:20	10

80 - 127

Method: 6020 - Metals (ICP/MS	6) - Dissolved						
Analyte	Result Qu	ualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND	0.0400	mg/L		02/26/16 13:28	02/29/16 18:20	1
Manganese	0.253	0.00200	mg/L	-	02/26/16 13:28	02/29/16 18:20	1

General Chemistry Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	329		10.0		mg/L			02/24/16 19:08	1

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57367-1

Lab Sample ID: 580-57367-6

Matrix: Water

Client Sample ID: LB-021816-20

Date Collected: 02/18/16 13:25 Date Received: 02/18/16 15:50

Method: 8260B - Volatile Org Analyte		Qualifier RL	MDL (Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	0.500		ug/L			02/26/16 14:07	1
1,1,1-Trichloroethane	ND	0.500	ι	ug/L			02/26/16 14:07	1
1,1,2,2-Tetrachloroethane	ND	0.500	ι	ug/L			02/26/16 14:07	1
1,1,2-Trichloroethane	ND	0.500		ug/L			02/26/16 14:07	1
1,1-Dichloroethane	ND	0.500	ι	ug/L			02/26/16 14:07	1
1,1-Dichloropropene	ND	0.500	ι	ug/L			02/26/16 14:07	1
1,2,3-Trichlorobenzene	ND	2.00		ug/L			02/26/16 14:07	1
1,2,3-Trichloropropane	ND	* 0.500	ι	ug/L			02/26/16 14:07	1
1,2,4-Trichlorobenzene	ND	2.00	ı	ug/L			02/26/16 14:07	1
1,2,4-Trimethylbenzene	ND	2.00		ug/L			02/26/16 14:07	1
1,2-Dibromo-3-Chloropropane	ND	2.00	ı	ug/L			02/26/16 14:07	1
1,2-Dibromoethane	ND	2.00		ug/L			02/26/16 14:07	1
1,2-Dichlorobenzene	ND	0.500		ug/L			02/26/16 14:07	1
1,2-Dichloroethane	ND	0.500		ug/L			02/26/16 14:07	1
1,2-Dichloropropane	ND	0.500		ug/L			02/26/16 14:07	1
1,3,5-Trimethylbenzene	ND	2.00		ug/L			02/26/16 14:07	1
1,3-Dichlorobenzene	ND	0.500		ug/L			02/26/16 14:07	1
1,3-Dichloropropane	ND	0.500		ug/L			02/26/16 14:07	1
1,4-Dichlorobenzene	ND	0.500		ug/L			02/26/16 14:07	· · · · · · · · · · · · · · · · · · ·
2,2-Dichloropropane	ND	0.500		ug/L			02/26/16 14:07	1
2-Butanone	ND	20.0		ug/L			02/26/16 14:07	. 1
2-Chlorotoluene	ND	2.00		ug/L ug/L			02/26/16 14:07	· · · · · · · · · · · · · · · · · · ·
2-Hexanone	ND.	20.0		ug/L ug/L			02/26/16 14:07	1
4-Chlorotoluene	ND ND	2.00		ug/L ug/L			02/26/16 14:07	1
4-Methyl-2-pentanone	ND	20.0					02/26/16 14:07	· · · · · · · · · · · · · · · · · · ·
Acetone	ND ND	20.0		ug/L			02/26/16 14:07	
	ND ND	0.500		ug/L				1
Benzene				ug/L			02/26/16 14:07	
Bromobenzene	ND ND	2.00		ug/L			02/26/16 14:07	1
Bromochloromethane	ND ND	0.500 0.500		ug/L			02/26/16 14:07	1
Bromodichloromethane				ug/L			02/26/16 14:07	1
Bromoform	ND	0.500		ug/L			02/26/16 14:07	1
Bromomethane	ND	1.00		ug/L			02/26/16 14:07	1
Carbon disulfide	ND	0.500		ug/L			02/26/16 14:07	1
Carbon tetrachloride	ND	0.500		ug/L			02/26/16 14:07	1
Chlorobenzene	ND	0.500		ug/L			02/26/16 14:07	1
Chloroethane	ND	0.500		ug/L			02/26/16 14:07	
Chloroform	ND	0.500		ug/L			02/26/16 14:07	1
Chloromethane	ND	0.500		ug/L			02/26/16 14:07	1
cis-1,2-Dichloroethene	ND	0.500		ug/L			02/26/16 14:07	1
cis-1,3-Dichloropropene	ND	0.500	ι	ug/L			02/26/16 14:07	1
Dibromochloromethane	ND	* 0.500	ι	ug/L			02/26/16 14:07	1
Dibromomethane	ND	0.500	ι	ug/L			02/26/16 14:07	1
Dichlorodifluoromethane	ND	0.500	(ug/L			02/26/16 14:07	1
Ethylbenzene	ND	0.500	ı	ug/L			02/26/16 14:07	1
Hexachlorobutadiene	ND	2.00	ı	ug/L			02/26/16 14:07	1
Isopropylbenzene	ND	2.00		ug/L			02/26/16 14:07	1
Methyl tert-butyl ether	ND	1.00		ug/L			02/26/16 14:07	1
Methylene Chloride	ND	2.00	ţ	ug/L			02/26/16 14:07	1
m-Xylene & p-Xylene	ND	0.500		ug/L			02/26/16 14:07	1

TestAmerica Seattle

2

6

8

10

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

Date Received: 02/18/16 15:50

TestAmerica Job ID: 580-57367-1

Client Sample ID: LB-021816-20

Lab Sample ID: 580-57367-6 Date Collected: 02/18/16 13:25

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		2.00		ug/L			02/26/16 14:07	1
n-Butylbenzene	ND		2.00		ug/L			02/26/16 14:07	1
N-Propylbenzene	ND		2.00		ug/L			02/26/16 14:07	1
o-Xylene	ND		0.500		ug/L			02/26/16 14:07	1
p-Isopropyltoluene	ND		2.00		ug/L			02/26/16 14:07	1
sec-Butylbenzene	ND		2.00		ug/L			02/26/16 14:07	1
Styrene	ND		0.500		ug/L			02/26/16 14:07	1
tert-Butylbenzene	ND		2.00		ug/L			02/26/16 14:07	1
Tetrachloroethene	ND		0.500		ug/L			02/26/16 14:07	1
Toluene	ND		0.500		ug/L			02/26/16 14:07	1
trans-1,2-Dichloroethene	ND		0.500		ug/L			02/26/16 14:07	1
trans-1,3-Dichloropropene	ND		0.500		ug/L			02/26/16 14:07	1
Trichloroethene	ND		0.500		ug/L			02/26/16 14:07	1
Trichlorofluoromethane	ND		0.500		ug/L			02/26/16 14:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			70 - 128					02/26/16 14:07	1
4-Bromofluorobenzene (Surr)	94		75 - 120					02/26/16 14:07	1
Dibromofluoromethane (Surr)	95		85 - 115					02/26/16 14:07	1
Toluene-d8 (Surr)	103		75 - 125					02/26/16 14:07	1
Trifluorotoluene (Surr)	97		80 - 127					02/26/16 14:07	1
Method: 300.0 - Anions, Ion	Chromatogra	phy - DL							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	7.39		0.400		mg/L			03/09/16 12:25	2
Method: 6020 - Metals (ICP/	MS) - Dissolve	ed							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND	·	0.0400		mg/L		02/26/16 13:28	02/29/16 18:24	1
Manganese	0.00448		0.00200		mg/L		02/26/16 13:28	02/29/16 18:24	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	193		10.0					02/24/16 19:08	

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57367-1

Lab Sample ID: 580-57367-7

Matrix: Water

Client Sample ID: LB-021816-21

Date Collected: 02/18/16 14:20 Date Received: 02/18/16 15:50

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND ND	0.500	ug/L			02/26/16 12:46	
1,1,1-Trichloroethane	ND	0.500	ug/L			02/26/16 12:46	
1,1,2,2-Tetrachloroethane	ND	0.500	ug/L			02/26/16 12:46	
1,1,2-Trichloroethane	ND	0.500	ug/L			02/26/16 12:46	
1,1-Dichloroethane	ND	0.500	ug/L			02/26/16 12:46	
1,1-Dichloropropene	ND	0.500	ug/L			02/26/16 12:46	
1,2,3-Trichlorobenzene	ND	2.00	ug/L			02/26/16 12:46	
1,2,3-Trichloropropane	ND *	0.500	ug/L			02/26/16 12:46	
1,2,4-Trichlorobenzene	ND	2.00	ug/L			02/26/16 12:46	
1,2,4-Trimethylbenzene	ND	2.00	ug/L			02/26/16 12:46	
1,2-Dibromo-3-Chloropropane	ND	2.00	ug/L			02/26/16 12:46	
1,2-Dibromoethane	ND	2.00	ug/L			02/26/16 12:46	
1,2-Dichlorobenzene	ND	0.500	ug/L			02/26/16 12:46	
1,2-Dichloroethane	ND	0.500	ug/L			02/26/16 12:46	
1,2-Dichloropropane	ND	0.500	ug/L			02/26/16 12:46	
1,3,5-Trimethylbenzene	ND	2.00	ug/L			02/26/16 12:46	
1,3-Dichlorobenzene	ND	0.500	ug/L			02/26/16 12:46	
1,3-Dichloropropane	ND	0.500	ug/L			02/26/16 12:46	
1,4-Dichlorobenzene	ND	0.500	ug/L			02/26/16 12:46	
2,2-Dichloropropane	ND	0.500	ug/L			02/26/16 12:46	
2-Butanone	ND	20.0	ug/L			02/26/16 12:46	
2-Chlorotoluene	ND	2.00	ug/L			02/26/16 12:46	
2-Hexanone	ND	20.0	ug/L			02/26/16 12:46	
4-Chlorotoluene	ND	2.00	ug/L			02/26/16 12:46	
4-Methyl-2-pentanone	ND	20.0	ug/L			02/26/16 12:46	
Acetone	ND	20.0	ug/L			02/26/16 12:46	
Benzene	ND	0.500	ug/L			02/26/16 12:46	
Bromobenzene	ND	2.00	ug/L			02/26/16 12:46	
Bromochloromethane	ND	0.500	ug/L			02/26/16 12:46	
Bromodichloromethane	ND	0.500	ug/L			02/26/16 12:46	
Bromoform	ND	0.500	ug/L			02/26/16 12:46	
Bromomethane	ND	1.00	ug/L			02/26/16 12:46	
Carbon disulfide	ND	0.500	ug/L			02/26/16 12:46	
Carbon tetrachloride	ND	0.500	ug/L			02/26/16 12:46	
Chlorobenzene	ND	0.500	ug/L			02/26/16 12:46	
Chloroethane	ND	0.500				02/26/16 12:46	
Chloroform	ND	0.500	ug/L ug/L			02/26/16 12:46	
Chloromethane	ND	0.500	ug/L			02/26/16 12:46	
cis-1,2-Dichloroethene	ND	0.500	ug/L			02/26/16 12:46	
cis-1,3-Dichloropropene	ND	0.500				02/26/16 12:46	
Dibromochloromethane	ND *	0.500	ug/L			02/26/16 12:46	
	ND ND		ug/L			02/26/16 12:46	
Dibromomethane Dishlorodifluoromethane		0.500	ug/L				
Dichlorodifluoromethane	ND ND	0.500	ug/L			02/26/16 12:46	
Ethylbenzene	ND ND	0.500	ug/L			02/26/16 12:46	
Hexachlorobutadiene	ND	2.00	ug/L			02/26/16 12:46	
sopropylbenzene	ND	2.00	ug/L			02/26/16 12:46	
Methyl tert-butyl ether	ND	1.00	ug/L			02/26/16 12:46	
Methylene Chloride	ND	2.00	ug/L			02/26/16 12:46	
m-Xylene & p-Xylene	ND	0.500	ug/L			02/26/16 12:46	

TestAmerica Seattle

3

5

7

9

10

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57367-1

Client Sample ID: LB-021816-21 Lab Sample ID: 580-57367-7

Date Collected: 02/18/16 14:20 Date Received: 02/18/16 15:50

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		2.00		ug/L			02/26/16 12:46	1
n-Butylbenzene	ND		2.00		ug/L			02/26/16 12:46	1
N-Propylbenzene	ND		2.00		ug/L			02/26/16 12:46	1
o-Xylene	ND		0.500		ug/L			02/26/16 12:46	1
p-Isopropyltoluene	ND		2.00		ug/L			02/26/16 12:46	1
sec-Butylbenzene	ND		2.00		ug/L			02/26/16 12:46	1
Styrene	ND		0.500		ug/L			02/26/16 12:46	1
tert-Butylbenzene	ND		2.00		ug/L			02/26/16 12:46	1
Tetrachloroethene	ND		0.500		ug/L			02/26/16 12:46	1
Toluene	ND		0.500		ug/L			02/26/16 12:46	1
trans-1,2-Dichloroethene	ND		0.500		ug/L			02/26/16 12:46	1
trans-1,3-Dichloropropene	ND		0.500		ug/L			02/26/16 12:46	1
Trichloroethene	ND		0.500		ug/L			02/26/16 12:46	1
Trichlorofluoromethane	ND		0.500		ug/L			02/26/16 12:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110		70 - 128					02/26/16 12:46	1
4-Bromofluorobenzene (Surr)	92		75 - 120					02/26/16 12:46	1
Dibromofluoromethane (Surr)	97		85 - 115					02/26/16 12:46	1
Toluene-d8 (Surr)	104		75 - 125					02/26/16 12:46	1
Trifluorotoluene (Surr)	97		80 - 127					02/26/16 12:46	1
Method: 300.0 - Anions, lo	n Chromatogra	phy - DL							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6.15		0.400		mg/L			03/09/16 13:13	2
Method: 6020 - Metals (ICP	/MS) - Dissolve	ed							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND	·	0.0400		mg/L		02/26/16 13:28	02/29/16 18:29	1
Manganese	ND		0.00200		mg/L		02/26/16 13:28	02/29/16 18:29	1
General Chemistry									
Analyte		Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	162		10.0		mg/L			02/24/16 19:08	1

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57367-1

Lab Sample ID: 580-57367-8

Matrix: Water

Client Sample ID: Trip Blank Date Collected: 02/18/16 00:00

Date Received: 02/18/16 15:50

Analyte	janic Compou Result	Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND ND	0.500	ug/L		•	02/26/16 11:51	
1,1,1-Trichloroethane	ND	0.500	ug/L			02/26/16 11:51	
1,1,2,2-Tetrachloroethane	ND	0.500	ug/L			02/26/16 11:51	
1,1,2-Trichloroethane	ND	0.500	ug/L			02/26/16 11:51	
1,1-Dichloroethane	ND	0.500	ug/L			02/26/16 11:51	
1,1-Dichloropropene	ND	0.500	ug/L			02/26/16 11:51	
1,2,3-Trichlorobenzene	ND	2.00	ug/L			02/26/16 11:51	
1,2,3-Trichloropropane	ND		ug/L			02/26/16 11:51	
1,2,4-Trichlorobenzene	ND	2.00	ug/L			02/26/16 11:51	
1,2,4-Trimethylbenzene	ND	2.00	ug/L			02/26/16 11:51	
1,2-Dibromo-3-Chloropropane	ND	2.00	ug/L			02/26/16 11:51	
1,2-Dibromoethane	ND	2.00	ug/L			02/26/16 11:51	
1,2-Dichlorobenzene	ND	0.500	ug/L			02/26/16 11:51	
1,2-Dichloroethane	ND	0.500	ug/L			02/26/16 11:51	
1,2-Dichloropropane	ND	0.500	ug/L			02/26/16 11:51	
1,3,5-Trimethylbenzene	ND	2.00	ug/L			02/26/16 11:51	
1,3-Dichlorobenzene	ND ND	0.500	ug/L			02/26/16 11:51	
1,3-Dichloropropane	ND	0.500	ug/L			02/26/16 11:51	
	ND	0.500				02/26/16 11:51	
1,4-Dichlorobenzene 2,2-Dichloropropane	ND ND	0.500	ug/L			02/26/16 11:51	
• •	ND ND	20.0	ug/L				
2-Butanone 2-Chlorotoluene			ug/L			02/26/16 11:51	
	ND	2.00	ug/L			02/26/16 11:51	
2-Hexanone	ND	20.0	ug/L			02/26/16 11:51	
4-Chlorotoluene	ND	2.00	ug/L			02/26/16 11:51	
4-Methyl-2-pentanone	ND	20.0	ug/L			02/26/16 11:51	
Acetone	ND	20.0	ug/L			02/26/16 11:51	
Benzene	ND	0.500	ug/L			02/26/16 11:51	
Bromobenzene	ND	2.00	ug/L			02/26/16 11:51	
Bromochloromethane	ND	0.500	ug/L			02/26/16 11:51	
Bromodichloromethane	ND	0.500	ug/L			02/26/16 11:51	
Bromoform	ND	0.500	ug/L			02/26/16 11:51	
Bromomethane	ND	1.00	ug/L			02/26/16 11:51	
Carbon disulfide	ND	0.500	ug/L			02/26/16 11:51	
Carbon tetrachloride	ND	0.500	ug/L			02/26/16 11:51	
Chlorobenzene	ND	0.500	ug/L			02/26/16 11:51	
Chloroethane	ND	0.500	ug/L			02/26/16 11:51	
Chloroform	ND	0.500	ug/L			02/26/16 11:51	
Chloromethane	ND	0.500	ug/L			02/26/16 11:51	
cis-1,2-Dichloroethene	ND	0.500	ug/L			02/26/16 11:51	
cis-1,3-Dichloropropene	ND	0.500	ug/L			02/26/16 11:51	
Dibromochloromethane	ND	* 0.500	ug/L			02/26/16 11:51	
Dibromomethane	ND	0.500	ug/L			02/26/16 11:51	
Dichlorodifluoromethane	ND	0.500	ug/L			02/26/16 11:51	
Ethylbenzene	ND	0.500	ug/L			02/26/16 11:51	
Hexachlorobutadiene	ND	2.00	ug/L			02/26/16 11:51	
Isopropylbenzene	ND	2.00	ug/L			02/26/16 11:51	
Methyl tert-butyl ether	ND	1.00	ug/L			02/26/16 11:51	
Methylene Chloride	ND	2.00	ug/L			02/26/16 11:51	
m-Xylene & p-Xylene	ND	0.500	ug/L			02/26/16 11:51	

TestAmerica Seattle

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57367-1

Client Sample ID: Trip Blank Lab Sample ID: 580-57367-8 Date Collected: 02/18/16 00:00

Matrix: Water

Date Received: 02/18/16 15:50

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		2.00	ug/L			02/26/16 11:51	1
n-Butylbenzene	ND		2.00	ug/L			02/26/16 11:51	1
N-Propylbenzene	ND		2.00	ug/L			02/26/16 11:51	1
o-Xylene	ND		0.500	ug/L			02/26/16 11:51	1
p-Isopropyltoluene	ND		2.00	ug/L			02/26/16 11:51	1
sec-Butylbenzene	ND		2.00	ug/L			02/26/16 11:51	1
Styrene	ND		0.500	ug/L			02/26/16 11:51	1
tert-Butylbenzene	ND		2.00	ug/L			02/26/16 11:51	1
Tetrachloroethene	ND		0.500	ug/L			02/26/16 11:51	1
Toluene	ND		0.500	ug/L			02/26/16 11:51	1
trans-1,2-Dichloroethene	ND		0.500	ug/L			02/26/16 11:51	1
trans-1,3-Dichloropropene	ND		0.500	ug/L			02/26/16 11:51	1
Trichloroethene	ND		0.500	ug/L			02/26/16 11:51	1
Trichlorofluoromethane	ND		0.500	ug/L			02/26/16 11:51	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		70 - 128				02/26/16 11:51	1
4-Bromofluorobenzene (Surr)	91		75 - 120				02/26/16 11:51	1
Dibromofluoromethane (Surr)	95		85 - 115				02/26/16 11:51	1
Toluene-d8 (Surr)	105		75 - 125				02/26/16 11:51	1
Trifluorotoluene (Surr)	103		80 - 127				02/26/16 11:51	1

QC Sample Results

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57367-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 580-211994/4

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Batch: 211994	MB	MB						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		0.500	ug/L			02/26/16 09:36	1
1,1,1-Trichloroethane	ND		0.500	ug/L			02/26/16 09:36	1
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L			02/26/16 09:36	1
1,1,2-Trichloroethane	ND		0.500	ug/L			02/26/16 09:36	1
1,1-Dichloroethane	ND		0.500	ug/L			02/26/16 09:36	1
1,1-Dichloropropene	ND		0.500	ug/L			02/26/16 09:36	1
1,2,3-Trichlorobenzene	ND		2.00	ug/L			02/26/16 09:36	1
1,2,3-Trichloropropane	ND		0.500	ug/L			02/26/16 09:36	1
1,2,4-Trichlorobenzene	ND		2.00	ug/L			02/26/16 09:36	1
1,2,4-Trimethylbenzene	ND		2.00	ug/L			02/26/16 09:36	1
1,2-Dibromo-3-Chloropropane	ND		2.00	ug/L			02/26/16 09:36	1
1,2-Dibromoethane	ND		2.00	ug/L			02/26/16 09:36	1
1,2-Dichlorobenzene	ND		0.500	ug/L			02/26/16 09:36	1
1,2-Dichloroethane	ND		0.500	ug/L			02/26/16 09:36	1
1,2-Dichloropropane	ND		0.500	ug/L			02/26/16 09:36	1
1,3,5-Trimethylbenzene	ND		2.00	ug/L			02/26/16 09:36	1
1,3-Dichlorobenzene	ND		0.500	ug/L			02/26/16 09:36	1
1,3-Dichloropropane	ND		0.500	ug/L			02/26/16 09:36	1
1,4-Dichlorobenzene	ND		0.500	ug/L			02/26/16 09:36	1
2,2-Dichloropropane	ND		0.500	ug/L			02/26/16 09:36	1
2-Butanone	ND		20.0	ug/L			02/26/16 09:36	1
2-Chlorotoluene	ND		2.00	ug/L			02/26/16 09:36	1
2-Hexanone	ND		20.0	ug/L			02/26/16 09:36	1
4-Chlorotoluene	ND		2.00	ug/L			02/26/16 09:36	1
4-Methyl-2-pentanone	ND		20.0	ug/L			02/26/16 09:36	1
Acetone	ND		20.0	ug/L			02/26/16 09:36	1
Benzene	ND		0.500	ug/L			02/26/16 09:36	1
Bromobenzene	ND		2.00	ug/L			02/26/16 09:36	· · · · · · · · · · · · · · · · · · ·
Bromochloromethane	ND		0.500	ug/L			02/26/16 09:36	1
Bromodichloromethane	ND		0.500	ug/L			02/26/16 09:36	1
Bromoform	ND		0.500	ug/L			02/26/16 09:36	
Bromomethane	ND		1.00	ug/L			02/26/16 09:36	1
Carbon disulfide	ND		0.500	ug/L			02/26/16 09:36	1
Carbon tetrachloride	ND		0.500	ug/L			02/26/16 09:36	· · · · · · · · · · · · · · · · · · ·
Chlorobenzene	ND		0.500	ug/L			02/26/16 09:36	1
Chloroethane	ND		0.500	ug/L			02/26/16 09:36	1
Chloroform	ND		0.500	ug/L			02/26/16 09:36	
Chloromethane	ND		0.500	ug/L			02/26/16 09:36	1
cis-1,2-Dichloroethene	ND		0.500	ug/L			02/26/16 09:36	1
cis-1,3-Dichloropropene	ND		0.500	ug/L			02/26/16 09:36	
Dibromochloromethane	ND		0.500	ug/L			02/26/16 09:36	1
Dibromomethane	ND		0.500	_			02/26/16 09:36	1
Dichlorodifluoromethane	ND		0.500	ug/L ug/L			02/26/16 09:36	ا 1
Ethylbenzene	ND ND		0.500	ug/L ug/L			02/26/16 09:36	1
Hexachlorobutadiene	ND		2.00				02/26/16 09:36	1
			2.00	ug/L			02/26/16 09:36	ا 1
Isopropylbenzene Methyl tert butyl ether	ND ND		1.00	ug/L			02/26/16 09:36	-
Methyl tert-butyl ether Methylene Chloride	ND ND		2.00	ug/L ug/L			02/26/16 09:36	1

TestAmerica Seattle

3/14/2016

Page 21 of 40

2

3

6

9

10

TestAmerica Job ID: 580-57367-1

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 580-211994/4

Matrix: Water

Analysis Batch: 211994

Client Sample ID: Method Blank Prep Type: Total/NA

_	MB I	MB					
Analyte	Result (Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
m-Xylene & p-Xylene	ND	0.500	ug/L			02/26/16 09:36	1
Naphthalene	ND	2.00	ug/L			02/26/16 09:36	1
n-Butylbenzene	ND	2.00	ug/L			02/26/16 09:36	1
N-Propylbenzene	ND	2.00	ug/L			02/26/16 09:36	1
o-Xylene	ND	0.500	ug/L			02/26/16 09:36	1
p-Isopropyltoluene	ND	2.00	ug/L			02/26/16 09:36	1
sec-Butylbenzene	ND	2.00	ug/L			02/26/16 09:36	1
Styrene	ND	0.500	ug/L			02/26/16 09:36	1
tert-Butylbenzene	ND	2.00	ug/L			02/26/16 09:36	1
Tetrachloroethene	ND	0.500	ug/L			02/26/16 09:36	1
Toluene	ND	0.500	ug/L			02/26/16 09:36	1
trans-1,2-Dichloroethene	ND	0.500	ug/L			02/26/16 09:36	1
trans-1,3-Dichloropropene	ND	0.500	ug/L			02/26/16 09:36	1
Trichloroethene	ND	0.500	ug/L			02/26/16 09:36	1
Trichlorofluoromethane	ND	0.500	ug/L			02/26/16 09:36	1

MB MB

Surrogate	%Recovery 0	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106	70 - 12	8	02/26/16 09:36	1
4-Bromofluorobenzene (Surr)	91	75 - 12	0	02/26/16 09:36	1
Dibromofluoromethane (Surr)	96	85 - 11	5	02/26/16 09:36	1
Toluene-d8 (Surr)	106	75 - 12	5	02/26/16 09:36	1
Trifluorotoluene (Surr)	99	80 - 12	7	02/26/16 09:36	1

Lab Sample ID: LCS 580-211994/5

Matrix: Water

Analysis Batch: 211994

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 211994							
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	5.02	5.406		ug/L		108	75 - 125
1,1,1-Trichloroethane	5.02	6.025		ug/L		120	80 - 140
1,1,2,2-Tetrachloroethane	5.01	5.041		ug/L		101	75 - 125
1,1,2-Trichloroethane	5.02	5.440		ug/L		108	80 - 130
1,1-Dichloroethane	5.00	4.952		ug/L		99	75 - 135
1,1-Dichloropropene	5.00	5.575		ug/L		111	80 - 130
1,2,3-Trichlorobenzene	5.01	5.105		ug/L		102	60 - 125
1,2,3-Trichloropropane	5.01	6.110	*	ug/L		122	75 ₋ 120
1,2,4-Trichlorobenzene	5.00	5.330		ug/L		107	60 - 125
1,2,4-Trimethylbenzene	5.00	5.496		ug/L		110	80 - 125
1,2-Dibromo-3-Chloropropane	5.01	5.600		ug/L		112	55 - 120
1,2-Dibromoethane	5.01	5.858		ug/L		117	70 - 130
1,2-Dichlorobenzene	5.00	4.765		ug/L		95	80 - 130
1,2-Dichloroethane	5.00	6.149		ug/L		123	80 - 140
1,2-Dichloropropane	5.00	4.546		ug/L		91	80 - 120
1,3,5-Trimethylbenzene	5.01	5.625		ug/L		112	80 - 125
1,3-Dichlorobenzene	5.01	4.774		ug/L		95	80 - 120
1,3-Dichloropropane	5.01	5.246		ug/L		105	80 - 130
1,4-Dichlorobenzene	5.01	4.681		ug/L		93	80 - 120
2,2-Dichloropropane	5.00	5.709		ug/L		114	60 - 150

TestAmerica Seattle

Page 22 of 40

TestAmerica Job ID: 580-57367-1

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 580-211994/5

Matrix: Water

Analysis Batch: 211994

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analyte	Spike Added		LCS Qualifier	Unit	D %I	Rec	%Rec. Limits	
2-Butanone	20.0	20.05		ug/L		100	20 - 200	
2-Chlorotoluene	5.00	5.009		ug/L		100	75 - 130	
2-Hexanone	20.0	27.49		ug/L		137	52 - 160	
4-Chlorotoluene	5.01	5.247		ug/L		105	75 - 130	
4-Methyl-2-pentanone	20.0	25.70		ug/L		129	55 - 135	
Acetone	20.0	16.21	J	ug/L		81	30 - 200	
Benzene	5.02	4.608		ug/L		92	80 - 120	
Bromobenzene	5.00	4.919		ug/L		98	80 - 130	
Bromochloromethane	5.01	5.013		ug/L		100	80 - 125	
Bromodichloromethane	5.02	5.866		ug/L		117	80 - 125	
Bromoform	5.02	5.114		ug/L		102	65 - 130	
Bromomethane	5.01	3.887		ug/L		78	70 - 135	
Carbon disulfide	5.02	4.515		ug/L		90	65 - 160	
Carbon tetrachloride	5.01	5.778		ug/L		115	75 - 140	
Chlorobenzene	5.02	4.646		ug/L		93	80 - 120	
Chloroethane	5.02	3.931		ug/L		78	75 - 140	
Chloroform	5.00	5.157		ug/L		103	80 - 130	
Chloromethane	5.02	5.760		ug/L		115	50 - 140	
cis-1,2-Dichloroethene	5.01	4.480		ug/L		89	80 - 130	
cis-1,3-Dichloropropene	5.01	5.928		ug/L		118	70 - 120	
Dibromochloromethane	5.01	6.084	*	ug/L		122	70 - 120	
Dibromomethane	5.02	5.388		ug/L		107	80 - 130	
Dichlorodifluoromethane	5.01	3.556		ug/L		71	30 - 180	
Ethylbenzene	5.02	5.069		ug/L		101	80 - 125	
Hexachlorobutadiene	5.00	5.913		ug/L		118	75 ₋ 135	
Isopropylbenzene	5.01	5.283		ug/L		106	75 - 120	
Methyl tert-butyl ether	5.01	5.858		ug/L		117	75 ₋ 120	
Methylene Chloride	5.02	4.323		ug/L		86	60 - 145	
m-Xylene & p-Xylene	5.01	5.374		ug/L		107	80 - 130	
Naphthalene	5.01	5.750		ug/L		115	45 - 130	
n-Butylbenzene	5.01	4.922		ug/L		98	75 - 125	
N-Propylbenzene	5.00	5.404		ug/L		108	80 - 120	
o-Xylene	5.01	5.453		ug/L		109	80 - 120	
p-Isopropyltoluene	5.00	5.077		ug/L		101	80 - 120	
sec-Butylbenzene	5.01	5.262		ug/L		105	80 - 125	
Styrene	5.01	5.274		ug/L		105	75 - 130	
tert-Butylbenzene	5.00	5.676		ug/L		114	80 - 130	
Tetrachloroethene	5.01	4.864		ug/L		97	40 - 180	
Toluene	5.00	4.971		ug/L		99	80 - 120	
trans-1,2-Dichloroethene	5.01	4.641		ug/L		93	80 - 140	
trans-1,3-Dichloropropene	5.00	6.255		ug/L		125	60 - 140	
Trichloroethene	5.01	4.750		ug/L		95	80 - 130	
Trichlorofluoromethane	5.00	4.782		ug/L		96	30 - 180	

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	104		70 - 128
4-Bromofluorobenzene (Surr)	91		75 - 120
Dibromofluoromethane (Surr)	95		85 ₋ 115

TestAmerica Seattle

Page 23 of 40

3/14/2016

QC Sample Results

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57367-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 580-211994/5

Lab Sample ID: LCSD 580-211994/6

Matrix: Water

Analysis Batch: 211994

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	103		75 - 125
Trifluorotoluene (Surr)	95		80 - 127

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Water

Chlorobenzene

Chloromethane

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Chloroethane

Chloroform

Analysis Batch: 211994									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	5.02	5.451		ug/L		109	75 - 125	1	20
1,1,1-Trichloroethane	5.02	5.674		ug/L		113	80 - 140	6	20
1,1,2,2-Tetrachloroethane	5.01	5.071		ug/L		101	75 - 125	1	20
1,1,2-Trichloroethane	5.02	5.336		ug/L		106	80 - 130	2	20
1,1-Dichloroethane	5.00	4.971		ug/L		99	75 - 135	0	20
1,1-Dichloropropene	5.00	5.381		ug/L		108	80 - 130	4	20
1,2,3-Trichlorobenzene	5.01	5.527		ug/L		110	60 - 125	8	20
1,2,3-Trichloropropane	5.01	6.542	*	ug/L		131	75 - 120	7	20
1,2,4-Trichlorobenzene	5.00	5.538		ug/L		111	60 - 125	4	20
1,2,4-Trimethylbenzene	5.00	5.550		ug/L		111	80 - 125	1	20
1,2-Dibromo-3-Chloropropane	5.01	5.830		ug/L		116	55 - 120	4	20
1,2-Dibromoethane	5.01	5.859		ug/L		117	70 - 130	0	20

1,2-Dichlorobenzene 5.00 4.872 97 80 - 130 20 ug/L 1,2-Dichloroethane 5.00 6.096 122 80 - 140 20 ug/L 1,2-Dichloropropane 5.00 4.470 ug/L 89 80 - 120 2 20 ug/L 5.01 5.754 115 80 - 125 20 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene 5.01 4.896 ug/L 98 80 - 12020 1,3-Dichloropropane 5.01 5.299 ug/L 106 80 - 13020 1,4-Dichlorobenzene 5.01 4.683 ug/L 93 80 - 120 0 20 2,2-Dichloropropane 5.00 5.439 ug/L 109 60 - 150 5 20 ug/L 2-Butanone 20.0 22.63 113 20 - 200 12 20 20 2-Chlorotoluene 5.00 5.210 ug/L 104 75 - 130 2-Hexanone 20.0 28.55 ug/L 143 52 - 16020 4-Chlorotoluene 5.01 5.216 ug/L 104 75 - 130 20 4-Methyl-2-pentanone 20.0 27.04 ug/L 135 55 - 135 20 Acetone 20.0 16.25 J ug/L 81 30 - 200 20 5.02 4.569 91 80 - 120 20 Benzene ug/L Bromobenzene 5.00 5.022 ug/L 100 80 - 130 20 Bromochloromethane 5.01 4.987 100 80 - 125 20 ug/L Bromodichloromethane 5.02 5.669 ug/L 113 80 - 1253 20 **Bromoform** 5.02 5.148 ug/L 103 65 - 13020 Bromomethane 5.01 3.985 ug/L 80 70 - 135 2 20 Carbon disulfide 5.02 4.580 ug/L 91 65 - 160 20 5.01 75 - 140 Carbon tetrachloride 5.724 ug/L 114 20

TestAmerica Seattle

5.02

5.02

5.00

5.02

5.01

5.01

4.619

3.918

5.058

5.888

4.617

5.857

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

92

78

101

117

117

92

80 - 120

75 - 140

80 - 130

50 - 140

80 - 130

70 - 120

0

2

20

20

20

20

20

1 00D 1 00D

TestAmerica Job ID: 580-57367-1

Client: SCS Engineers Project/Site: Leichner Landfill - Wash.

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 580-211994/6

Matrix: Water

Analysis Batch: 211994

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dibromochloromethane	5.01	6.378	*	ug/L		127	70 - 120	5	20
Dibromomethane	5.02	5.269		ug/L		105	80 - 130	2	20
Dichlorodifluoromethane	5.01	3.564		ug/L		71	30 - 180	0	20
Ethylbenzene	5.02	5.053		ug/L		101	80 - 125	0	20
Hexachlorobutadiene	5.00	6.078		ug/L		121	75 - 135	3	20
Isopropylbenzene	5.01	5.281		ug/L		106	75 - 120	0	20
Methyl tert-butyl ether	5.01	5.806		ug/L		116	75 - 120	1	20
Methylene Chloride	5.02	4.587		ug/L		91	60 - 145	6	20
m-Xylene & p-Xylene	5.01	5.320		ug/L		106	80 - 130	1	20
Naphthalene	5.01	6.381		ug/L		127	45 - 130	10	20
n-Butylbenzene	5.01	5.110		ug/L		102	75 - 125	4	20
N-Propylbenzene	5.00	5.500		ug/L		110	80 - 120	2	20
o-Xylene	5.01	5.331		ug/L		106	80 - 120	2	20
p-Isopropyltoluene	5.00	5.224		ug/L		104	80 - 120	3	20
sec-Butylbenzene	5.01	5.418		ug/L		108	80 - 125	3	20
Styrene	5.01	5.359		ug/L		107	75 - 130	2	20
tert-Butylbenzene	5.00	5.769		ug/L		115	80 - 130	2	20
Tetrachloroethene	5.01	4.882		ug/L		97	40 - 180	0	20
Toluene	5.00	5.067		ug/L		101	80 - 120	2	20
trans-1,2-Dichloroethene	5.01	4.807		ug/L		96	80 - 140	4	20
trans-1,3-Dichloropropene	5.00	6.184		ug/L		124	60 - 140	1	20
Trichloroethene	5.01	4.739		ug/L		95	80 - 130	0	20
Trichlorofluoromethane	5.00	4.954		ug/L		99	30 - 180	4	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		70 - 128
4-Bromofluorobenzene (Surr)	90		75 - 120
Dibromofluoromethane (Surr)	95		85 - 115
Toluene-d8 (Surr)	104		75 - 125
Trifluorotoluene (Surr)	101		80 - 127

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 160-239571/32

Matrix: Water

Analysis Batch: 239571

MB MB

Analyzed Analyte Result Qualifier **RL** Unit **Prepared** Dil Fac Chloride ND 0.200 mg/L 03/08/16 21:12

Lab Sample ID: LCS 160-239571/33

Matrix: Water

Analysis Batch: 239571

LCS LCS %Rec. Spike Analyte Added Result Qualifier D %Rec Limits Unit Chloride 2.00 90 - 110 1.913 96 mg/L

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57367-1

Prep Type: Total/NA

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: MB 160-239768/3 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 239768

MB MB

Analyte Result Qualifier RL **RL** Unit Analyzed Dil Fac D Prepared 0.200 03/09/16 11:54 Chloride ND mg/L

LCS LCS

1.880

Result Qualifier

Unit

mg/L

Lab Sample ID: LCS 160-239768/4

Matrix: Water

Analyte

Analysis Batch: 239768

Chloride 2.00 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

94

%Rec. D %Rec Limits

90 - 110

Client Sample ID: LB-021816-15

Client Sample ID: LB-021816-15

Client Sample ID: LB-021816-20

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Method: 300.0 - Anions, Ion Chromatography - DL

Matrix: Water

Analysis Batch: 239571

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Chloride - DL 10.0 104 90 - 110 10.8 21.14 mg/L

Spike

Added

Lab Sample ID: 580-57367-1 DU

Lab Sample ID: 580-57367-1 MS

Matrix: Water

Analysis Batch: 239571

DU DU Sample Sample **RPD** Analyte Result Qualifier Result Qualifier RPD Limit Unit Chloride - DL 10.8 10.91 mg/L

Lab Sample ID: 580-57367-6 MS

Matrix: Water

Analysis Batch: 239768

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Chloride - DL 7.39 4.00 11.46 E 102 90 - 110 mg/L

Analysis Batch: 239768

Lab Sample ID: 580-57367-6 DU Client Sample ID: LB-021816-20 **Matrix: Water** Prep Type: Total/NA

Sample Sample DU DU **RPD** Result Qualifier D RPD Analyte Result Qualifier Unit Limit Chloride - DL 7.39 7.323 mg/L 0.8 20

Method: 6020 - Metals (ICP/MS)

Matrix: Water

Analysis Batch: 212125

Lab Sample ID: MB 580-212024/20-A **Client Sample ID: Method Blank Prep Type: Total Recoverable** Prep Batch: 212024

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Iron ND 0.0400 mg/L 02/26/16 13:28 02/29/16 14:18 ND 0.00200 mg/L 02/26/16 13:28 02/29/16 14:18 Manganese

TestAmerica Seattle

80 - 120

80 - 120

80 - 120

99

102

Client: SCS Engineers

Manganese

Manganese

Manganese

Project/Site: Leichner Landfill - Wash.

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 580-212024/21-A				Clie	ent Sai	mple ID	: Lab Co	ntrol Sample
Matrix: Water					P	rep Ty	pe: Total	Recoverable
Analysis Batch: 212125							Prep B	atch: 212024
•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Iron	22 0	23.36		ma/L		106	80 - 120	

1.019

2.261

2.208

mg/L

mg/L

mg/L

Lab Sample ID: LCSD 580-212024/22-A Matrix: Water Analysis Batch: 212125			C	Client S	•		Control Spe: Total F Prep Ba	Recove	rable
•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Iron	22.0	22.42		mg/L		102	80 - 120	4	20
Manganese	1.00	0.9674		mg/L		97	80 - 120	5	20

1.00

Lab Sample ID: 580-57337- Matrix: Water	-I-1-D MS						CI		•	Matrix Spike e: Dissolved
Analysis Batch: 212125									Prep Ba	atch: 212024
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Iron	28.5		22.0	50.69		mg/L		101	80 - 120	

1.00

1.00

Lab Sample ID: 580-57337- Matrix: Water	I-1-E MSD					Client	Samp		Matrix Spil		
Analysis Batch: 212125									Prep Ba	atch: 2	12024
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Iron	28.5		22.0	49.48		mg/L		95	80 - 120	2	20

Lab Sample ID: 580-57337-I	I-1-C DU						Client Sample ID	: Dup	licate
Matrix: Water							Prep Type:	Diss	olved
Analysis Batch: 212125							Prep Bat	ch: 2	2024
	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Iron	28.5		27.82		mg/L			2	20
Manganese	1.27		1.240		mg/L			3	20

Method: 160.1 - Solids, Total Dissolved (TDS)

1.27

1.27

Lab Sample ID: MB 580-211773/1 Matrix: Water Analysis Batch: 211773	Client Sample ID: Method Blank Prep Type: Total/NA
MB MB	

Analyte Result Qualifier RL **RL** Unit Prepared **Total Dissolved Solids** ND 10.0 mg/L 02/22/16 19:17

TestAmerica Seattle

Page 27 of 40

20

2

Dil Fac

Analyzed

TestAmerica Job ID: 580-57367-1

Project/Site: Leichner Landfill - Wash.

Method: 160.1 - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: LCS 580-211773/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 211773

Client: SCS Engineers

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Total Dissolved Solids 1000 978.0 mg/L 98 80 - 120

Lab Sample ID: 580-57410-F-11 DU **Client Sample ID: Duplicate Matrix: Water** Prep Type: Total/NA

Analysis Batch: 211773

Sample Sample DU DU **RPD** Result Qualifier Result Qualifier **RPD** Analyte Unit Limit D **Total Dissolved Solids** 265 275.0 mg/L 20

Lab Sample ID: MB 580-211916/1 **Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA**

Analysis Batch: 211916

MB MB

Analyte Result Qualifier RL **RL** Unit Dil Fac Prepared Analyzed Total Dissolved Solids ND 10.0 mg/L 02/24/16 19:08

Lab Sample ID: LCS 580-211916/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 211916

LCS LCS Spike %Rec. Added Result Qualifier Unit %Rec Limits Total Dissolved Solids 1000 986.0 mg/L 99 80 - 120

Lab Sample ID: 580-57420-C-1 DU **Client Sample ID: Duplicate Matrix: Water** Prep Type: Total/NA

Analysis Batch: 211916

Sample Sample DU DU RPD Analyte Result Qualifier Result Qualifier Unit D RPD Limit **Total Dissolved Solids** 1200 1204 20 mg/L

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

Client Sample ID: LB-021816-15

Lab Sample ID: 580-57367-1 Date Collected: 02/18/16 08:40 **Matrix: Water**

Date Received: 02/18/16 15:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	211994	02/26/16 12:19	D1R	TAL SEA
Total/NA	Analysis	300.0	DL	5	239571	03/08/16 21:44	JCB	TAL SL
Dissolved	Prep	3005A			212024	02/26/16 13:28	PAB	TAL SEA
Dissolved	Analysis	6020		1	212149	02/29/16 18:02	FCW	TAL SEA
Total/NA	Analysis	160.1		1	211773	02/22/16 19:17	JSM	TAL SEA

Client Sample ID: LB-021816-16

Lab Sample ID: 580-57367-2 Date Collected: 02/18/16 09:30

Matrix: Water

Date Received: 02/18/16 15:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	211994	02/26/16 13:12	D1R	TAL SEA
Total/NA	Analysis	300.0	DL	5	239571	03/08/16 22:32	JCB	TAL SL
Dissolved	Prep	3005A			212024	02/26/16 13:28	PAB	TAL SEA
Dissolved	Analysis	6020		1	212149	02/29/16 18:06	FCW	TAL SEA
Total/NA	Analysis	160.1		1	211773	02/22/16 19:17	JSM	TAL SEA

Lab Sample ID: 580-57367-3 Client Sample ID: LB-021816-17

Date Collected: 02/18/16 10:20 **Matrix: Water**

Date Received: 02/18/16 15:50

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			211994	02/26/16 13:40	D1R	TAL SEA
Total/NA	Analysis	300.0	DL	2	239571	03/08/16 22:48	JCB	TAL SL
Dissolved	Prep	3005A			212024	02/26/16 13:28	PAB	TAL SEA
Dissolved	Analysis	6020		1	212149	02/29/16 18:11	FCW	TAL SEA
Total/NA	Analysis	160.1		1	211773	02/22/16 19:17	JSM	TAL SEA

Client Sample ID: LB-021816-18

Lab Sample ID: 580-57367-4 Date Collected: 02/18/16 11:05 **Matrix: Water**

Date Received: 02/18/16 15:50

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			211994	02/26/16 15:00	D1R	TAL SEA
Total/NA	Analysis	300.0	DL	5	239571	03/08/16 23:04	JCB	TAL SL
Dissolved	Prep	3005A			212024	02/26/16 13:28	PAB	TAL SEA
Dissolved	Analysis	6020		1	212149	02/29/16 18:15	FCW	TAL SEA
Total/NA	Analysis	160.1		1	211916	02/24/16 19:08	JSM	TAL SEA

TestAmerica Seattle

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

Client Sample ID: LB-021816-19

Lab Sample ID: 580-57367-5 Date Collected: 02/18/16 12:00

Matrix: Water Date Received: 02/18/16 15:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			211994	02/26/16 14:33	D1R	TAL SEA
Total/NA	Analysis	300.0	DL	10	239571	03/08/16 23:20	JCB	TAL SL
Dissolved	Prep	3005A			212024	02/26/16 13:28	PAB	TAL SEA
Dissolved	Analysis	6020		1	212149	02/29/16 18:20	FCW	TAL SEA
Total/NA	Analysis	160.1		1	211916	02/24/16 19:08	JSM	TAL SEA

Client Sample ID: LB-021816-20 Lab Sample ID: 580-57367-6

Date Collected: 02/18/16 13:25 **Matrix: Water**

Date Received: 02/18/16 15:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1 -	211994	02/26/16 14:07	D1R	TAL SEA
Total/NA	Analysis	300.0	DL	2	239768	03/09/16 12:25	JCB	TAL SL
Dissolved	Prep	3005A			212024	02/26/16 13:28	PAB	TAL SEA
Dissolved	Analysis	6020		1	212149	02/29/16 18:24	FCW	TAL SEA
Total/NA	Analysis	160.1		1	211916	02/24/16 19:08	JSM	TAL SEA

Lab Sample ID: 580-57367-7 Client Sample ID: LB-021816-21

Date Collected: 02/18/16 14:20 **Matrix: Water**

Date Received: 02/18/16 15:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	211994	02/26/16 12:46	D1R	TAL SEA
Total/NA	Analysis	300.0	DL	2	239768	03/09/16 13:13	JCB	TAL SL
Dissolved	Prep	3005A			212024	02/26/16 13:28	PAB	TAL SEA
Dissolved	Analysis	6020		1	212149	02/29/16 18:29	FCW	TAL SEA
Total/NA	Analysis	160.1		1	211916	02/24/16 19:08	JSM	TAL SEA

Client Sample ID: Trip Blank Lab Sample ID: 580-57367-8

Date Collected: 02/18/16 00:00 Date Received: 02/18/16 15:50

_	_								
		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Total/NA	Analysis	8260B			211994	02/26/16 11:51	D1R	TAL SEA

Laboratory References:

Pixis Labo = Pixis Laboratories, LLC, 12423 NE Whitaker Way, Portland, OR 97230, TEL (503)254-1794 TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310 TAL SL = TestAmerica St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

TestAmerica Seattle

Matrix: Water

Certification Summary

Client: SCS Engineers

Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57367-1

Laboratory: TestAmerica Seattle

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-022	03-02-17
California	State Program	9	2901	01-31-18
L-A-B	DoD ELAP		L2236	01-19-19
L-A-B	ISO/IEC 17025		L2236	01-19-19
Montana (UST)	State Program	8	N/A	04-30-20
Oregon	NELAP	10	WA100007	11-06-16
US Fish & Wildlife	Federal		LE058448-0	10-31-16
USDA	Federal		P330-14-00126	04-08-17
Washington	State Program	10	C553	02-17-17

Laboratory: TestAmerica St. Louis

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date		
Alaska	State Program	10	MO00054	06-30-16		
California	ELAP	9	2886	03-31-16 *		
Connecticut	State Program	1	PH-0241	03-31-17		
Florida	NELAP	4	E87689	06-30-16		
Illinois	NELAP	5	003757	11-30-16		
lowa	State Program	7	373	12-01-16		
Kansas	NELAP	7	E-10236	05-31-16		
Kentucky (DW)	State Program	4	90125	12-31-16		
L-A-B	DoD ELAP		L2305	04-10-16 *		
Louisiana	NELAP	6	04080	06-30-16		
Louisiana (DW)	NELAP	6	LA160008	12-31-16		
Maryland	State Program	3	310	09-30-16		
Missouri	State Program	7	780	06-30-16		
Nevada	State Program	9	MO000542016-1	07-31-16		
New Jersey	NELAP	2	MO002	06-30-16		
New York	NELAP	2	11616	03-31-16 *		
North Dakota	State Program	8	R207	06-30-16		
NRC	NRC		24-24817-01	12-31-22		
Oklahoma	State Program	6	9997	08-31-16		
Pennsylvania	NELAP	3	68-00540	02-28-17 *		
South Carolina	State Program	4	85002001	06-30-16		
Texas	NELAP	6	T104704193-15-9	07-31-16		
USDA	Federal		P330-07-00122	01-09-17		
Utah	NELAP	8	MO000542015-7	07-31-16		
Virginia	NELAP	3	460230	06-14-16		
Washington	State Program	10	C592	08-30-16		
West Virginia DEP	State Program	3	381	08-31-16		

(

8

9

4 4

^{*} Certification renewal pending - certification considered valid.

TestAmerica Seattle

Sample Summary

Client: SCS Engineers Project/Site: Leichner Landfill - Wash.

TestAmerica Job ID: 580-57367-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-57367-1	LB-021816-15	Water	02/18/16 08:40 02	2/18/16 15:50
580-57367-2	LB-021816-16	Water	02/18/16 09:30 02	2/18/16 15:50
580-57367-3	LB-021816-17	Water	02/18/16 10:20 02	2/18/16 15:50
580-57367-4	LB-021816-18	Water	02/18/16 11:05 02	2/18/16 15:50
580-57367-5	LB-021816-19	Water	02/18/16 12:00 02	2/18/16 15:50
580-57367-6	LB-021816-20	Water	02/18/16 13:25 02	2/18/16 15:50
580-57367-7	LB-021816-21	Water	02/18/16 14:20 02	2/18/16 15:50
580-57367-8	Trip Blank	Water	02/18/16 00:00 02	2/18/16 15:50

12423 NE Whitaker Way Portland, OR 97230 503-254-1794

 Job Number:
 6021918

 Report Date:
 02/23/2016

 ORELAP #:
 OR100028

 Project Name:
 58008309

Project No: Leichner Landfill

Cover Letter

Kelsey DeVries Test America Portland 9405 SW Nimbus Ave. BEAVERTON, OR 97008

Dear Kelsey DeVries,

Enclosed please find Pixis Labs analytical report for samples received as order number 6021918 on 02/19/2016. Should you have any questions about this report or any other matter, please do not hesitate to contact us. We are here to help you.

Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Pixis quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be kept a maximum of 15 days from the report date unless prior arrangements have been made.

Thank you for allowing Pixis to be of service to you, we appreciate your business.

Sincerely,

Signed Richard Reid Project Manager

Order 6021918 Page 33 of 40 P3/P4/2016P>

12423 NE Whitaker Way Portland, OR 97230 503-254-1794
 Job Number:
 6021918

 Report Date:
 02/23/2016

 ORELAP #:
 OR100028

 Project Name:
 58008309

 Project No:
 Leichner Landfill

Sample Results

				•				
Sample: LB-021816-15 (580	-57367-1)	Collect	ted: 02/18	/16 08:4	0	Temp: 5 C		Matrix: General Water
Lab ID: 101409		Receiv	red: 02/19	/16 11:4	1	Evidence of Coolin	g:Y	
Analyte	Result	Units	MRL	Dil.	Batch	Start/Extract	Analyzed	Notes
Method: EPA 300.0								
Nitrate	ND	mg/L	0.100	2	27359-7		02/19/16 15:48	
Sample: LB-021816-16 (580	-57367-2)	Collect	ted: 02/18	/16 09:3	0	Temp: 5 C		Matrix: General Water
Lab ID: 101411		Receiv	red: 02/19	/16 11:4	1	Evidence of Coolin	g:Y	
Analyte	Result	Units	MRL	Dil.	Batch	Start/Extract	Analyzed	Notes
Method: EPA 300.0								
Nitrate	0.834	mg/L	0.100	2	27359-8		02/19/16 16:21	
Sample: LB-021816-17 (580	-57367-3)	Collect	ted: 02/18	3/16 10:2	0	Temp: 5 C		Matrix: General Water
Lab ID: 101412		Receiv	red: 02/19	/16 11:4	1	Evidence of Coolin	g:Y	
Analyte	Result	Units	MRL	Dil.	Batch	Start/Extract	Analyzed	Notes
Method: EPA 300.0								
Nitrate	6.36	mg/L	0.100	2	27359-9		02/19/16 16:53	
Sample: LB-021816-18 (580	-57367-4)	Collect	ted: 02/18	/16 11:0	5	Temp: 5 C		Matrix: General Water
Lab ID: 101413			red: 02/19			Evidence of Coolin		
Analyte	Result	Units	MRL	Dil.	Batch	Start/Extract	Analyzed	Notes
Method: EPA 300.0								
Nitrate	4.11	mg/L	0.100	2	27359-10		02/19/16 17:26	
Sample: LB-021816-19 (580	-57367-5)		ted: 02/18			Temp: 5 C		Matrix: General Water
Lab ID: 101414	Decult		red: 02/19			Evidence of Coolin	•	Mataa
Analyte	Result	Units	MRL	Dil.	Batch	Start/Extract	Analyzed	Notes
Method: EPA 300.0								
Nitrate	0.910	mg/L	0.100	2	27359-11		02/19/16 17:59	
Sample: LB-021816-20 (580 Lab ID: 101415	-57367-6)		ted: 02/18			Temp: 5 C Evidence of Coolin	a·V	Matrix: General Water
Analyte	Result	Units	MRL	Dil.	Batch	Start/Extract	g. r Analyzed	Notes
		511113			-4.511	July Extinut	7.11.01.y.=04	
Method: EPA 300.0	0.05	n	0.400	^	07050 40		00/40/40 40:04	
Nitrate	3.65	mg/L	0.100	2	27359-12		02/19/16 18:31	
								Matrix:

2

_

3

5

6

8

10

44

Sample: LB-021816-21 (580-573	67-7)	Collect	ed: 02/18/	16 14:2	0	Temp: 5 C		General Water
Lab ID: 101416		Receiv	ed: 02/19/	16 11:4	1	Evidence of Cooling:	Υ	
Analyte	Result	Units	MRL	Dil.	Batch	Start/Extract	Analyzed	Notes
Method: EPA 300.0								
Nitrate	ND	mg/L	0.100	2	27359-13		02/19/16 19:04	

Laboratory Quality Control Results

EPA 300.0									
QC - Initial Calibration Verif						Bat	ch ID:	27359-	5
Analyte	Result		Spike	Units	Recovery	Limits	RPD	Limit	Notes
Nitrate	0.514		0.500	mg/L	103 %	90-110			
QC - Continuing Calibration Verif.	A					Bat	ch ID:	27359-	20
Analyte	Result		Spike	Units	Recovery	Limits	RPD	Limit	Notes
Nitrate	0.220		0.226	mg/L	97 %	90-110			
QC - Initial Calibration Blank -						Bat	ch ID: 2	27359-	4
Analyte	Result		Spike	Units	Recovery	Limits	RPD	Limit	Notes
Nitrate	ND			mg/L					
QC - Matrix Spike - of Sample 273	59 - 2					Bat	ch ID:	27359-	15
Analyte	Result	Org.Result	Spike	Units	Recovery	Limits	RPD	Limit	Notes
Nitrate	0.522	0.0200	0.500	mg/L	100 %	80-120			Н
QC - Matrix Spike Duplicate - of S	ample 27359	- 2				Bat	ch ID: 2	27359-	16
Analyte	Result	Org.Result	Spike	Units	Recovery	Limits	RPD	Limit	Notes
Nitrate	0.499	0.0200	0.500	mg/L	96 %	80-120	5	20	Н

Abbreviations

MRL Method Reporting Limit

ND None Detected at or above the MRL

RPD Relative Percent Difference

Data Qualifiers

H Holding time exceeded

Units of Measure:

mg/L Milligrams Per Liter

TESTAMERIC 6021918

TestAmerica Seattle

5755 8th Street East

Tacoma, WA 98424 Phone (253) 922-2310 Fax (253) 922-5047

Chain of Custody Record

	Tacoma, WA 98424 Phone (253) 922-2310 Fax (253) 922-5047		actory is			THE LEADER IN EN	THE LEADER IN ENVIRONMENTAL TESTING
	Client Information (Sub Contract Lab)	Sampler:	Lab PM Murph	y, Sarah A	Carrier Tracking No(s):	COC No: 580-36420 1	
	Client Contact Shipping/Receiving	Phone:	E-Mail: sarah	E-Mail: sarah.murphy@testamericainc.com		Page:	
	erica Laboratories, Inc.			Sis	Requested	Job #. 580-57367-1	
		Due Date Requested: 3/1/2016				8	;;
		TAT Requested (days):				A - HCL B - NaOH C - Zn Acetate	M - Hexane N - None O - AsNaO2
	State, Zipe MO, 63045						P - Na204S Q - Na2SO3
	Phone: (3.14-298-8757(Fax)	PO#				τ	R - Na2S2SO3 S - H2SO4 T TSD Dodgeshudsda
	Email:	WO#.		(al/		1 - Ice J - DI Water	U - Acetone V - MCAA
	Project Name: Leichner Landfill - Wash.	Project #: 58008309		ea OL		K - EDTA L - EDA	W - ph 4-5 Z - other (specify)
	Site:	SSOW#:		N as	100 10	Other:	
	Sample Identification - Client ID (Lab ID)	Φ	Sample Matrix Type (Wewater, S=solid, C=comp, O=waste()!	M/&M-(mobise 82_M∃ĐЯО_00	redmuN-lato		
Pa		X	Preservation Code:	X	ı		Special Instructions/Note:
ge 3	LB-021816-15 (580-57367-1)	1	Water	×			
38 o	LB-021816-16 (580-57367-2)	2/18/16 09:30 Pacific	Water	×			
f 40	LB-021816-17 (580-57367-3)	2/18/16 10:20 Pacific	Water	×			
1	LB-021816-18 (580-57367-4)	2/18/16 11:05 Pacific	Water	×			
	LB-021816-19 (580-57367-5)	2/18/16 12:00 Pacific	Water	×	, 1		
	LB-021816-20 (580-57367-6)	2/18/16 13:25 Pacific	Water	×	An		
	LB-021816-21 (580-57367-7)	2/18/16 14:20 Pacific	Water	×			
		•					
	Possible Hazard Identification			Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	sessed if samples are retaine	ed longer than 1 m	onth)
	Unconfirmed			Return To Client bis	Disposal By Lab	Archive For	Months
	Deliverable Requested: I, II, III, IV, Other (specify)			Special Instructions/QC Requirements:	20		
	nquished by:	Date:		Time:	Method of Shipment:		
3,	Brown & Hill Brown A Col	2/1/6 1/3/5	AL ALEX	V	Date/Time:	S26/	MST.
/14/2	Reinquished by:	Date/Time:	Company	Réceived by:	Date/Time:		Company
201	Relinquished by:	Date/Time:	Company	Received by:	Date/Time:		Company
ô	Custody Seals Intact: Custody Seal No.:			Cooler Temperature(s) % 2nd Other Doy	-		

Custody Seal No.:

Custody Seals Intact:

A Yes A No

Cooler Temperature(s) °C and Other Remarks:

Client: SCS Engineers

Job Number: 580-57367-1

Login Number: 57367 List Source: TestAmerica Seattle

List Number: 1

Creator: Svabik-Seror, Philip M

Question Answer Comment
Radioactivity wasn't checked or is = background as measured by a survey N/A meter.</td
The cooler's custody seal, if present, is intact. N/A
Sample custody seals, if present, are intact. N/A
The cooler or samples do not appear to have been compromised or tampered with.
Samples were received on ice.
Cooler Temperature is acceptable.
Cooler Temperature is recorded.
COC is present. True
COC is filled out in ink and legible.
COC is filled out with all pertinent information.
Is the Field Sampler's name present on COC?
There are no discrepancies between the containers received and the COC. True
Samples are received within Holding Time (excluding tests with immediate True HTs)
Sample containers have legible labels. True
Containers are not broken or leaking.
Sample collection date/times are provided. True
Appropriate sample containers are used. True
Sample bottles are completely filled. True
Sample Preservation Verified. N/A
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs True
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").
Multiphasic samples are not present. N/A
Samples do not require splitting or compositing. N/A
Residual Chlorine Checked. N/A

TestAmerica Seattle

Client: SCS Engineers

Job Number: 580-57367-1

Login Number: 57367 List Number: 2 Creator: Clarke, Jill C List Source: TestAmerica St. Louis List Creation: 03/03/16 03:51 PM

Creator: Clarke, Jili C		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.7
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Seattle

Third Quarter (August) 2016 Laboratory Data Reports

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-61940-1

Client Project/Site: Leichner Landfill - Semi-Annual

Revision: 1

For:

SCS Engineers 15940 SW 72nd Avenue Portland, Oregon 97224

Attn: Mr. Jason Davendonis

Authorized for role

Authorized for release by: 9/29/2016 7:07:13 AM

Robert Greer, Project Manager II (253)922-2310

robert.greer@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

TestAmerica Job ID: 580-61940-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	
Definitions	4
Client Sample Results	5
QC Sample Results	15
Chronicle	23
Certification Summary	25
Sample Summary	26
Chain of Custody	27
Receint Checklists	28

3

4

7

9

Case Narrative

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

TestAmerica Job ID: 580-61940-1

Job ID: 580-61940-1

Laboratory: TestAmerica Seattle

Narrative

Job Narrative 580-61940-1

Comments

No additional comments.

Receipt

The samples were received on 8/23/2016 4:25 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.5° C.

GC/MS VOA

Method(s) 8260B: The method blank for analytical batch 580-226481 contained N-Propylbenzene, Bromoform and Methylene Chloride above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method(s) 8260B: The surrogate recovery of 4-Bromofluorobenzene and Triflourobenzene for the method blank associated with analytical batch 580-226481 was outside control limits. All other samples and QC were either in control or biased high and non-detect/result was below reporting limit; therefore, the data has been reported.

Method(s) 8260B: The laboratory control sample duplicate (LCSD) for analytical batch 580-226481 recovered outside control limits for the following analytes: 1,2-Dichlorobenzene. These analytes were biased high in the LCSD and were not detected in the associated samples: therefore, the data have been reported.

Method(s) 8260B: The %RPD of the laboratory control sample (LCS) and laboratory control standard duplicate (LCSD) for preparation batch 580-226481 recovered outside control limits for the following analytes: 2-Butanone, Chlorobromomethane, cis-1,2-Dichloroethene, Chloroform and Hexachlorobutadiene. Spike recovery for the LCS and LCSD for these analytes were within control limits. These analytes were either non-detect or had results below the reporting limit.

Method(s) 8260B: The continuing calibration verification (CCV) associated with batch 580-226481 recovered above the upper control limit for 1,2-Dichloropropane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: LB-082316-01 (580-61940-1), LB-082316-03 (580-61940-2), LB-082316-04 (580-61940-3), LB-082316-02 (580-61940-4), Trip Blank (580-61940-5) and (CCVIS 580-226481/3).

Method(s) 8260B: Surrogate recovery for the following samples was outside the upper control limit: LB-082316-04 (580-61940-3) and Trip Blank (580-61940-5). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 6020: The method blank for analytical batch 580-226062 contained Iron above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

2

4

6

q

10

Definitions/Glossary

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

TestAmerica Job ID: 580-61940-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
*	LCS or LCSD is outside acceptance limits.
*	RPD of the LCS and LCSD exceeds the control limits
X	Surrogate is outside control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualitier	Qualifier Description
F1	MS and/or MSD Recovery is outside acceptance limits.

Reporting Limit or Requested Limit (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Relative Percent Difference, a measure of the relative difference between two points

Glossary

RL

RPD

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio

TestAmerica Seattle

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

TestAmerica Job ID: 580-61940-1

Lab Sample ID: 580-61940-1

Matrix: Water

Client Sample ID: LB-082316-01

Date Collected: 08/23/16 12:00 Date Received: 08/23/16 16:25

Method: 8260B - Volatile Orga Analyte	Result Q		MDL Unit	. D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND ND	0.50	ug/L			09/01/16 22:25	
1,1,1-Trichloroethane	ND	0.50	ug/L			09/01/16 22:25	
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L			09/01/16 22:25	
1,1,2-Trichloroethane	ND	0.50	ug/L			09/01/16 22:25	
1,1-Dichloroethane	ND	0.50	ug/L			09/01/16 22:25	
1,1-Dichloropropene	ND	0.50	ug/L			09/01/16 22:25	
1,2,3-Trichlorobenzene	ND	2.0	ug/L			09/01/16 22:25	,
1,2,3-Trichloropenzene	ND ND	0.50	ug/L ug/L			09/01/16 22:25	
1,2,4-Trichlorobenzene	ND	2.0	ug/L ug/L			09/01/16 22:25	
1,2,4-Trimethylbenzene	ND	2.0	 .			09/01/16 22:25	
•	ND ND	2.0	ug/L			09/01/16 22:25	
1,2-Dibromo-3-Chloropropane			ug/L				
1,2-Dibromoethane	ND	2.0	ug/L			09/01/16 22:25	
1,2-Dichlorobenzene	ND *	0.50	ug/L			09/01/16 22:25	
1,2-Dichloroethane	ND	0.50	ug/L			09/01/16 22:25	
1,2-Dichloropropane	ND	0.50	ug/L			09/01/16 22:25	
1,3,5-Trimethylbenzene	ND	2.0	ug/L			09/01/16 22:25	
1,3-Dichlorobenzene	ND	0.50	ug/L			09/01/16 22:25	
1,3-Dichloropropane	ND	0.50	ug/L			09/01/16 22:25	
1,4-Dichlorobenzene	ND	0.50	ug/L			09/01/16 22:25	
2,2-Dichloropropane	ND	0.50	ug/L			09/01/16 22:25	
2-Butanone	ND *	20	ug/L			09/01/16 22:25	
2-Chlorotoluene	ND	2.0	ug/L			09/01/16 22:25	
2-Hexanone	ND	20	ug/L			09/01/16 22:25	
4-Chlorotoluene	ND	2.0	ug/L			09/01/16 22:25	
1-Methyl-2-pentanone	ND	20	ug/L			09/01/16 22:25	
Acetone	ND	20	ug/L			09/01/16 22:25	
Benzene	ND	0.50	ug/L			09/01/16 22:25	
Bromobenzene	ND	2.0	ug/L			09/01/16 22:25	
Bromochloromethane	ND *	0.50	ug/L			09/01/16 22:25	
Bromodichloromethane	ND	0.50	ug/L			09/01/16 22:25	
Bromoform	ND	0.50	ug/L			09/01/16 22:25	
Bromomethane	ND	1.0	ug/L			09/01/16 22:25	
Carbon disulfide	ND	0.50	ug/L			09/01/16 22:25	
Carbon tetrachloride	ND	0.50	ug/L			09/01/16 22:25	
Chlorobenzene	ND	0.50	ug/L			09/01/16 22:25	
Chloroethane	ND	0.50	ug/L			09/01/16 22:25	
Chloroform	ND *	0.50	ug/L			09/01/16 22:25	
Chloromethane	ND	0.50	ug/L			09/01/16 22:25	
cis-1,2-Dichloroethene	ND *	0.50	ug/L			09/01/16 22:25	
cis-1,3-Dichloropropene	ND	0.50	ug/L			09/01/16 22:25	
Dibromochloromethane	ND	0.50	ug/L			09/01/16 22:25	
Dibromomethane	ND	0.50	ug/L			09/01/16 22:25	
Dichlorodifluoromethane	ND	0.50	ug/L			09/01/16 22:25	
Ethylbenzene	ND ND	0.50	ug/L ug/L			09/01/16 22:25	
Hexachlorobutadiene	ND *	2.0				09/01/16 22:25	
			ug/L				
sopropylbenzene	ND	2.0	ug/L			09/01/16 22:25	
Methyl tert-butyl ether	ND	1.0	ug/L			09/01/16 22:25	
Methylene Chloride m-Xylene & p-Xylene	ND ND	2.0 0.50	ug/L ug/L			09/01/16 22:25 09/01/16 22:25	

TestAmerica Seattle

Page 5 of 28

2

3

5

1

9

1(

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

TestAmerica Job ID: 580-61940-1

Lab Sample ID: 580-61940-1

Matrix: Water

Client Sample ID: LB-082316-01

Date Collected: 08/23/16 12:00 Date Received: 08/23/16 16:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Naphthalene	ND		2.0		ug/L			09/01/16 22:25	
n-Butylbenzene	ND		2.0		ug/L			09/01/16 22:25	
N-Propylbenzene	ND		2.0		ug/L			09/01/16 22:25	•
o-Xylene	ND		0.50		ug/L			09/01/16 22:25	
p-Isopropyltoluene	ND		2.0		ug/L			09/01/16 22:25	
sec-Butylbenzene	ND		2.0		ug/L			09/01/16 22:25	
Styrene	ND		0.50		ug/L			09/01/16 22:25	
tert-Butylbenzene	ND		2.0		ug/L			09/01/16 22:25	•
Tetrachloroethene	ND		0.50		ug/L			09/01/16 22:25	
Toluene	ND		0.50		ug/L			09/01/16 22:25	•
trans-1,2-Dichloroethene	ND		0.50		ug/L			09/01/16 22:25	
trans-1,3-Dichloropropene	ND		0.50		ug/L			09/01/16 22:25	· · · · · · · · ·
Trichloroethene	ND		0.50		ug/L			09/01/16 22:25	
Trichlorofluoromethane	ND		0.50		ug/L			09/01/16 22:25	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	100		46 - 150					09/01/16 22:25	
4-Bromofluorobenzene (Surr)	99		81 - 120					09/01/16 22:25	
Dibromofluoromethane (Surr)	95		42 - 132					09/01/16 22:25	
Toluene-d8 (Surr)	98		75 - 125					09/01/16 22:25	
Trifluorotoluene (Surr)	100		74 - 118					09/01/16 22:25	
Method: 6020 - Metals (ICP	/MS) - Dissolv	ed							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Iron	ND		0.040		mg/L		08/24/16 11:32	08/27/16 00:17	
Manganese	ND		0.0020		mg/L		08/24/16 11:32	08/27/16 00:17	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	5.1	F1	0.90		mg/L			08/24/16 13:00	
Nitrogen, Nitrate	6.6	F1	0.20		mg/L			08/24/16 13:00	
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total Dissolved Solids	170				mg/L			08/26/16 14:36	

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

TestAmerica Job ID: 580-61940-1

Lab Sample ID: 580-61940-2

Matrix: Water

Client Sample ID: LB-082316-03 Date Collected: 08/23/16 14:05

Date Received: 08/23/16 16:25
Method: 8260B - Volatile Org Analyte
1,1,1,2-Tetrachloroethane

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil F
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L			09/01/16 22:51	
1,1,1-Trichloroethane	ND	0.50	ug/L			09/01/16 22:51	
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L			09/01/16 22:51	
1,1,2-Trichloroethane	ND	0.50	ug/L			09/01/16 22:51	
1,1-Dichloroethane	ND	0.50	ug/L			09/01/16 22:51	
1,1-Dichloropropene	ND	0.50	ug/L			09/01/16 22:51	
1,2,3-Trichlorobenzene	ND	2.0	ug/L			09/01/16 22:51	
1,2,3-Trichloropropane	ND	0.50	ug/L			09/01/16 22:51	
1,2,4-Trichlorobenzene	ND	2.0	ug/L			09/01/16 22:51	
1,2,4-Trimethylbenzene	ND	2.0	ug/L			09/01/16 22:51	
1,2-Dibromo-3-Chloropropane	ND	2.0	ug/L			09/01/16 22:51	
1,2-Dibromoethane	ND	2.0	ug/L			09/01/16 22:51	
1,2-Dichlorobenzene	ND *	0.50	ug/L			09/01/16 22:51	
1,2-Dichloroethane	ND	0.50	ug/L			09/01/16 22:51	
I,2-Dichloropropane	ND	0.50	ug/L			09/01/16 22:51	
1,3,5-Trimethylbenzene	ND	2.0	ug/L			09/01/16 22:51	
I,3-Dichlorobenzene	ND	0.50	ug/L			09/01/16 22:51	
,3-Dichloropropane	ND	0.50	ug/L			09/01/16 22:51	
,4-Dichlorobenzene	ND	0.50	ug/L			09/01/16 22:51	
2,2-Dichloropropane	ND	0.50	ug/L			09/01/16 22:51	
2-Butanone	ND *	20	ug/L			09/01/16 22:51	
2-Chlorotoluene	ND	2.0	ug/L			09/01/16 22:51	
-Hexanone	ND	20	ug/L			09/01/16 22:51	
-Chlorotoluene	ND	2.0	ug/L			09/01/16 22:51	
l-Methyl-2-pentanone	ND	20	ug/L			09/01/16 22:51	
Acetone	ND	20	ug/L			09/01/16 22:51	
Benzene	ND	0.50	ug/L			09/01/16 22:51	
Bromobenzene	ND	2.0	ug/L			09/01/16 22:51	
Bromochloromethane	ND *	0.50	ug/L			09/01/16 22:51	
Bromodichloromethane	ND	0.50	ug/L			09/01/16 22:51	
Bromoform	ND	0.50	ug/L			09/01/16 22:51	
Bromomethane	ND	1.0	ug/L			09/01/16 22:51	
Carbon disulfide	ND	0.50	ug/L			09/01/16 22:51	
Carbon tetrachloride	ND	0.50	ug/L			09/01/16 22:51	
Chlorobenzene	ND	0.50	ug/L			09/01/16 22:51	
Chloroethane	ND	0.50	ug/L			09/01/16 22:51	
Chloroform	ND *	0.50	ug/L			09/01/16 22:51	
Chloromethane	ND	0.50	ug/L			09/01/16 22:51	
sis-1,2-Dichloroethene	ND *	0.50	ug/L			09/01/16 22:51	
sis-1,3-Dichloropropene	ND	0.50	ug/L			09/01/16 22:51	
Dibromochloromethane	ND	0.50	ug/L			09/01/16 22:51	
Dibromomethane	ND	0.50	ug/L			09/01/16 22:51	
Dichlorodifluoromethane	ND	0.50	ug/L			09/01/16 22:51	
Ethylbenzene	ND	0.50	ug/L			09/01/16 22:51	
Hexachlorobutadiene	ND *	2.0	ug/L			09/01/16 22:51	
sopropylbenzene	ND	2.0	ug/L			09/01/16 22:51	
Methyl tert-butyl ether	ND ND	1.0	ug/L ug/L			09/01/16 22:51	
	ND ND	2.0				09/01/16 22:51	
Methylene Chloride m-Xylene & p-Xylene	ND	0.50	ug/L ug/L			09/01/16 22:51	

TestAmerica Seattle

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

TestAmerica Job ID: 580-61940-1

Lab Sample ID: 580-61940-2

Matrix: Water

Clie	ent	Sai	mple	ID:	LB-0823	16-03

Date Collected: 08/23/16 14:05 Date Received: 08/23/16 16:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		2.0		ug/L			09/01/16 22:51	1
n-Butylbenzene	ND		2.0		ug/L			09/01/16 22:51	1
N-Propylbenzene	ND		2.0		ug/L			09/01/16 22:51	1
o-Xylene	ND		0.50		ug/L			09/01/16 22:51	1
p-Isopropyltoluene	ND		2.0		ug/L			09/01/16 22:51	1
sec-Butylbenzene	ND		2.0		ug/L			09/01/16 22:51	1
Styrene	ND		0.50		ug/L			09/01/16 22:51	1
tert-Butylbenzene	ND		2.0		ug/L			09/01/16 22:51	1
Tetrachloroethene	ND		0.50		ug/L			09/01/16 22:51	1
Toluene	ND		0.50		ug/L			09/01/16 22:51	1
trans-1,2-Dichloroethene	ND		0.50		ug/L			09/01/16 22:51	1
trans-1,3-Dichloropropene	ND		0.50		ug/L			09/01/16 22:51	1
Trichloroethene	ND		0.50		ug/L			09/01/16 22:51	1
Trichlorofluoromethane	ND		0.50		ug/L			09/01/16 22:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	129		46 - 150					09/01/16 22:51	1
4-Bromofluorobenzene (Surr)	98		81 - 120					09/01/16 22:51	1
Dibromofluoromethane (Surr)	128		42 - 132					09/01/16 22:51	1
Toluene-d8 (Surr)	98		75 - 125					09/01/16 22:51	1
Trifluorotoluene (Surr)	99		74 - 118					09/01/16 22:51	1
Method: 6020 - Metals (ICP	/MS) - Dissolve	ed							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND		0.040		mg/L		08/24/16 11:32	08/27/16 00:22	1
Manganese	ND		0.0020		mg/L		08/24/16 11:32	08/27/16 00:22	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6.6		0.90		mg/L			08/24/16 13:56	1
Nitrogen, Nitrate	4.5		0.20		mg/L			08/24/16 13:56	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	190				mg/L			08/26/16 14:36	

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

TestAmerica Job ID: 580-61940-1

Lab Sample ID: 580-61940-3

Matrix: Water

Client Sample ID: LB-082316-04

Date Collected: 08/23/16 15:10 Date Received: 08/23/16 16:25

Method: 8260B - Volatile Orga Analyte	Result Qua		MDL Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L	<u></u>		09/01/16 23:17	
1,1,1-Trichloroethane	ND	0.50	ug/L			09/01/16 23:17	
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L			09/01/16 23:17	
1,1,2-Trichloroethane	ND	0.50	ug/L			09/01/16 23:17	
1,1-Dichloroethane	ND	0.50	ug/L			09/01/16 23:17	
1,1-Dichloropropene	ND	0.50	ug/L			09/01/16 23:17	
1,2,3-Trichlorobenzene	ND	2.0	ug/L			09/01/16 23:17	
1,2,3-Trichloropropane	ND	0.50	ug/L			09/01/16 23:17	
1,2,4-Trichlorobenzene	ND	2.0	ug/L			09/01/16 23:17	
	ND	2.0				09/01/16 23:17	
1,2,4-Trimethylbenzene			ug/L				
1,2-Dibromo-3-Chloropropane	ND	2.0	ug/L			09/01/16 23:17	
1,2-Dibromoethane	ND	2.0	ug/L			09/01/16 23:17	
1,2-Dichlorobenzene	ND *	0.50	ug/L			09/01/16 23:17	
1,2-Dichloroethane	ND	0.50	ug/L			09/01/16 23:17	
1,2-Dichloropropane	ND	0.50	ug/L			09/01/16 23:17	
1,3,5-Trimethylbenzene	ND	2.0	ug/L			09/01/16 23:17	
1,3-Dichlorobenzene	ND	0.50	ug/L			09/01/16 23:17	
1,3-Dichloropropane	ND	0.50	ug/L			09/01/16 23:17	
1,4-Dichlorobenzene	ND	0.50	ug/L			09/01/16 23:17	
2,2-Dichloropropane	ND	0.50	ug/L			09/01/16 23:17	
2-Butanone	ND *	20	ug/L			09/01/16 23:17	
2-Chlorotoluene	ND	2.0	ug/L			09/01/16 23:17	
2-Hexanone	ND	20	ug/L			09/01/16 23:17	
4-Chlorotoluene	ND	2.0	ug/L			09/01/16 23:17	
1-Methyl-2-pentanone	ND	20	ug/L			09/01/16 23:17	
Acetone	ND	20	ug/L			09/01/16 23:17	
Benzene	ND	0.50	ug/L			09/01/16 23:17	
Bromobenzene	ND	2.0	ug/L			09/01/16 23:17	
Bromochloromethane	ND *	0.50	ug/L			09/01/16 23:17	
Bromodichloromethane	ND	0.50	ug/L			09/01/16 23:17	
Bromoform	ND	0.50	ug/L			09/01/16 23:17	
Bromomethane	ND	1.0	ug/L			09/01/16 23:17	
Carbon disulfide	ND	0.50	ug/L			09/01/16 23:17	
Carbon tetrachloride	ND	0.50	ug/L			09/01/16 23:17	
Chlorobenzene	ND	0.50	ug/L			09/01/16 23:17	
Chloroethane	ND	0.50	ug/L			09/01/16 23:17	
Chloroform	ND *	0.50	ug/L			09/01/16 23:17	
Chloromethane	ND	0.50	ug/L			09/01/16 23:17	
cis-1,2-Dichloroethene	ND *	0.50	ug/L			09/01/16 23:17	
cis-1,3-Dichloropropene	ND	0.50	ug/L			09/01/16 23:17	
Dibromochloromethane	ND	0.50	ug/L			09/01/16 23:17	
Dibromomethane	ND	0.50	ug/L			09/01/16 23:17	
Dichlorodifluoromethane	ND	0.50	.			09/01/16 23:17	
Ethylbenzene	ND ND	0.50	ug/L			09/01/16 23:17	
Ethylbenzene Hexachlorobutadiene	ND *	2.0	ug/L			09/01/16 23:17	
			ug/L				
sopropylbenzene	ND	2.0	ug/L			09/01/16 23:17	
Methyl tert-butyl ether	ND	1.0	ug/L			09/01/16 23:17	
Methylene Chloride	ND	2.0	ug/L			09/01/16 23:17	•

TestAmerica Seattle

Page 9 of 28

_

6

8

10

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

TestAmerica Job ID: 580-61940-1

Lab Sample ID: 580-61940-3

Matrix: Water

Client Sample ID: LB-082316-04

Date Collected: 08/23/16 15:10 Date Received: 08/23/16 16:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Naphthalene	ND		2.0		ug/L			09/01/16 23:17	
n-Butylbenzene	ND		2.0		ug/L			09/01/16 23:17	
N-Propylbenzene	ND		2.0		ug/L			09/01/16 23:17	
o-Xylene	ND		0.50		ug/L			09/01/16 23:17	
p-Isopropyltoluene	ND		2.0		ug/L			09/01/16 23:17	
sec-Butylbenzene	ND		2.0		ug/L			09/01/16 23:17	
Styrene	ND		0.50		ug/L			09/01/16 23:17	
tert-Butylbenzene	ND		2.0		ug/L			09/01/16 23:17	
Tetrachloroethene	ND		0.50		ug/L			09/01/16 23:17	
Toluene	ND		0.50		ug/L			09/01/16 23:17	
trans-1,2-Dichloroethene	ND		0.50		ug/L			09/01/16 23:17	
rans-1,3-Dichloropropene	ND		0.50		ug/L			09/01/16 23:17	
Trichloroethene	ND		0.50		ug/L			09/01/16 23:17	
Trichlorofluoromethane	ND		0.50		ug/L			09/01/16 23:17	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	102		46 - 150					09/01/16 23:17	
4-Bromofluorobenzene (Surr)	129	X	81 - 120					09/01/16 23:17	
Dibromofluoromethane (Surr)	94		42 - 132					09/01/16 23:17	
Toluene-d8 (Surr)	99		75 - 125					09/01/16 23:17	
Trifluorotoluene (Surr)	79		74 - 118					09/01/16 23:17	
Method: 6020 - Metals (ICP	/MS) - Dissolv	ed							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
ron	ND		0.040		mg/L		08/24/16 11:32	08/27/16 00:26	
Manganese	0.0026		0.0020		mg/L		08/24/16 11:32	08/27/16 00:26	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	7.5		0.90		mg/L			08/24/16 14:14	
Nitrogen, Nitrate	4.2		0.20		mg/L			08/24/16 14:14	
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil F
Total Dissolved Solids	180		10		mg/L			08/26/16 14:36	

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

TestAmerica Job ID: 580-61940-1

Lab Sample ID: 580-61940-4

Matrix: Water

Client Sample ID: LB-082316-02

Date Collected: 08/23/16 13:05 Date Received: 08/23/16 16:25

Analyte	Result (Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane		0.50	ug/L		•	09/01/16 23:44	
1,1,1-Trichloroethane	ND	0.50	ug/L			09/01/16 23:44	
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L			09/01/16 23:44	
1,1,2-Trichloroethane	ND	0.50	ug/L			09/01/16 23:44	· · · · · · .
1,1-Dichloroethane	ND	0.50	ug/L			09/01/16 23:44	
1,1-Dichloropropene	ND	0.50	ug/L			09/01/16 23:44	
1,2,3-Trichlorobenzene	ND	2.0	ug/L			09/01/16 23:44	
1,2,3-Trichloropropane	ND	0.50	ug/L			09/01/16 23:44	
1,2,4-Trichlorobenzene	ND	2.0	ug/L			09/01/16 23:44	
1,2,4-Trimethylbenzene	ND	2.0	ug/L			09/01/16 23:44	
1,2-Dibromo-3-Chloropropane	ND	2.0	ug/L			09/01/16 23:44	
1,2-Dibromoethane	ND	2.0	ug/L			09/01/16 23:44	
1,2-Dichlorobenzene	ND *	0.50	ug/L			09/01/16 23:44	
1,2-Dichloroethane	ND	0.50	ug/L			09/01/16 23:44	
1,2-Dichloropropane	ND	0.50	ug/L			09/01/16 23:44	
1,3,5-Trimethylbenzene	ND	2.0	ug/L			09/01/16 23:44	· · · · · .
1,3-Dichlorobenzene	ND ND	0.50	ug/L			09/01/16 23:44	
1,3-Dichloropropane	ND	0.50	ug/L			09/01/16 23:44	
1,4-Dichlorobenzene	ND	0.50				09/01/16 23:44	· · · · · .
·	ND ND	0.50	ug/L			09/01/16 23:44	
2,2-Dichloropropane	ND *		ug/L				
2-Butanone			ug/L			09/01/16 23:44 09/01/16 23:44	
2-Chlorotoluene	ND	2.0	ug/L				•
2-Hexanone	ND	20	ug/L			09/01/16 23:44	•
4-Chlorotoluene	ND	2.0	ug/L			09/01/16 23:44	
4-Methyl-2-pentanone	ND	20	ug/L			09/01/16 23:44	•
Acetone	ND	20	ug/L			09/01/16 23:44	•
Benzene	ND	0.50	ug/L			09/01/16 23:44	
Bromobenzene	ND	2.0	ug/L			09/01/16 23:44	•
Bromochloromethane	ND *	0.00	ug/L			09/01/16 23:44	•
Bromodichloromethane	ND	0.50	ug/L			09/01/16 23:44	
Bromoform	ND	0.50	ug/L			09/01/16 23:44	•
Bromomethane	ND	1.0	ug/L			09/01/16 23:44	•
Carbon disulfide	ND	0.50	ug/L			09/01/16 23:44	
Carbon tetrachloride	ND	0.50	ug/L			09/01/16 23:44	•
Chlorobenzene	ND	0.50	ug/L			09/01/16 23:44	•
Chloroethane	ND	0.50	ug/L			09/01/16 23:44	
Chloroform	ND *	0.50	ug/L			09/01/16 23:44	
Chloromethane	ND	0.50	ug/L			09/01/16 23:44	•
cis-1,2-Dichloroethene	ND *	0.50	ug/L			09/01/16 23:44	•
cis-1,3-Dichloropropene	ND	0.50	ug/L			09/01/16 23:44	
Dibromochloromethane	ND	0.50	ug/L			09/01/16 23:44	
Dibromomethane	ND	0.50	ug/L			09/01/16 23:44	
Dichlorodifluoromethane	ND	0.50	ug/L			09/01/16 23:44	•
Ethylbenzene	ND	0.50	ug/L			09/01/16 23:44	•
Hexachlorobutadiene	ND *	2.0	ug/L			09/01/16 23:44	
Isopropylbenzene	ND	2.0	ug/L			09/01/16 23:44	
Methyl tert-butyl ether	ND	1.0	ug/L			09/01/16 23:44	
Methylene Chloride	ND	2.0	ug/L			09/01/16 23:44	
m-Xylene & p-Xylene	ND	0.50	ug/L			09/01/16 23:44	· · · · · · .

TestAmerica Seattle

3

5

0

10

Client: SCS Engineers

Manganese

Project/Site: Leichner Landfill - Semi-Annual

Client Sample ID: LB-082316-02

Date Collected: 08/23/16 13:05

Date Received: 08/23/16 16:25

TestAmerica Job ID: 580-61940-1

Lab Sample ID: 580-61940-4

08/24/16 11:32 08/27/16 00:31

Matrix: Water

Mothod: 0260D	Valatila Organia Compounda (CC/MS) (Continued)

0.31

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND ND		2.0		ug/L			09/01/16 23:44	1
n-Butylbenzene	ND		2.0		ug/L			09/01/16 23:44	1
N-Propylbenzene	ND		2.0		ug/L			09/01/16 23:44	1
o-Xylene	ND		0.50		ug/L			09/01/16 23:44	1
p-Isopropyltoluene	ND		2.0		ug/L			09/01/16 23:44	1
sec-Butylbenzene	ND		2.0		ug/L			09/01/16 23:44	1
Styrene	ND		0.50		ug/L			09/01/16 23:44	1
tert-Butylbenzene	ND		2.0		ug/L			09/01/16 23:44	1
Tetrachloroethene	ND		0.50		ug/L			09/01/16 23:44	1
Toluene	ND		0.50		ug/L			09/01/16 23:44	1
trans-1,2-Dichloroethene	ND		0.50		ug/L			09/01/16 23:44	1
trans-1,3-Dichloropropene	ND		0.50		ug/L			09/01/16 23:44	1
Trichloroethene	ND		0.50		ug/L			09/01/16 23:44	1
Trichlorofluoromethane	ND		0.50		ug/L			09/01/16 23:44	1

Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103	46 - 150		09/01/16 23:44	1
4-Bromofluorobenzene (Surr)	98	81 - 120		09/01/16 23:44	1
Dibromofluoromethane (Surr)	94	42 - 132		09/01/16 23:44	1
Toluene-d8 (Surr)	97	75 - 125		09/01/16 23:44	1
Trifluorotoluene (Surr)	99	74 - 118		09/01/16 23:44	1

Method: 6020 - Metals (ICP/MS	S) - Dissolve	∍d							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND		0.040		mg/L		08/24/16 11:32	08/27/16 00:31	1

0.0020

mg/L

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	29		0.90		mg/L			08/24/16 14:33	1
Nitrogen, Nitrate	ND		0.20		mg/L			08/24/16 14:33	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	350		10		mg/L			08/26/16 14:36	1

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

TestAmerica Job ID: 580-61940-1

Lab Sample ID: 580-61940-5

Matrix: Water

Client Sample ID: Trip Blank

Date Collected: 08/23/16 00:00 Date Received: 08/23/16 16:25

Method: 8260B - Volatile Org Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L		-	09/01/16 16:41	1
1,1,1-Trichloroethane	ND		0.50		ug/L			09/01/16 16:41	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			09/01/16 16:41	1
1,1,2-Trichloroethane	ND		0.50		ug/L			09/01/16 16:41	1
1,1-Dichloroethane	ND		0.50		ug/L			09/01/16 16:41	1
1,1-Dichloropropene	ND		0.50		ug/L			09/01/16 16:41	1
1,2,3-Trichlorobenzene	ND		2.0		ug/L			09/01/16 16:41	1
1,2,3-Trichloropropane	ND		0.50		ug/L			09/01/16 16:41	1
1,2,4-Trichlorobenzene	ND		2.0		ug/L			09/01/16 16:41	1
1,2,4-Trimethylbenzene	ND		2.0		ug/L			09/01/16 16:41	1
1,2-Dibromo-3-Chloropropane	ND		2.0		ug/L			09/01/16 16:41	1
1,2-Dibromoethane	ND		2.0		ug/L			09/01/16 16:41	1
1,2-Dichlorobenzene	ND	*	0.50		ug/L			09/01/16 16:41	1
1,2-Dichloroethane	ND		0.50		ug/L			09/01/16 16:41	1
1,2-Dichloropropane	ND		0.50		ug/L			09/01/16 16:41	1
1,3,5-Trimethylbenzene	ND		2.0		ug/L			09/01/16 16:41	1
1,3-Dichlorobenzene	ND		0.50		ug/L			09/01/16 16:41	1
1,3-Dichloropropane	ND		0.50		ug/L			09/01/16 16:41	1
1,4-Dichlorobenzene	ND		0.50		ug/L			09/01/16 16:41	1
2,2-Dichloropropane	ND		0.50		ug/L			09/01/16 16:41	1
2-Butanone	ND	*	20		ug/L			09/01/16 16:41	1
2-Chlorotoluene	ND		2.0		ug/L			09/01/16 16:41	· · · · · · · · · · · · · · · · · · ·
2-Hexanone	ND		20		ug/L			09/01/16 16:41	1
4-Chlorotoluene	ND		2.0		ug/L			09/01/16 16:41	1
4-Methyl-2-pentanone	ND		20		ug/L			09/01/16 16:41	· · · · · · · · · · · · · · · · · · ·
Acetone	ND		20		ug/L ug/L			09/01/16 16:41	1
Benzene	ND ND		0.50		ug/L ug/L			09/01/16 16:41	1
Bromobenzene	ND		2.0					09/01/16 16:41	· · · · · · · · · · · · · · · · · · ·
Bromochloromethane	ND ND	*	0.50		ug/L ug/L			09/01/16 16:41	1
Bromodichloromethane	ND ND		0.50		ug/L ug/L			09/01/16 16:41	1
Bromoform	ND		0.50					09/01/16 16:41	
Bromomethane	ND ND		1.0		ug/L			09/01/16 16:41	1
	ND ND				ug/L			09/01/16 16:41	
Carbon disulfide			0.50		ug/L				
Carbon tetrachloride	ND ND		0.50 0.50		ug/L			09/01/16 16:41 09/01/16 16:41	1
Chlorobenzene					ug/L				1
Chloroethane	ND	·	0.50		ug/L			09/01/16 16:41	1
Chloroform	ND	•	0.50		ug/L			09/01/16 16:41	1
Chloromethane	ND		0.50		ug/L			09/01/16 16:41	1
cis-1,2-Dichloroethene	ND		0.50		ug/L			09/01/16 16:41	1
cis-1,3-Dichloropropene	ND		0.50		ug/L			09/01/16 16:41	1
Dibromochloromethane	ND		0.50		ug/L			09/01/16 16:41	1
Dibromomethane	ND		0.50		ug/L			09/01/16 16:41	1
Dichlorodifluoromethane	ND		0.50		ug/L			09/01/16 16:41	1
Ethylbenzene	ND		0.50		ug/L			09/01/16 16:41	1
Hexachlorobutadiene	ND	*	2.0		ug/L			09/01/16 16:41	1
Isopropylbenzene	ND		2.0		ug/L			09/01/16 16:41	1
Methyl tert-butyl ether	ND		1.0		ug/L			09/01/16 16:41	1
Methylene Chloride	2.3		2.0		ug/L			09/01/16 16:41	1
m-Xylene & p-Xylene	ND		0.50		ug/L			09/01/16 16:41	1

TestAmerica Seattle

2

7

10

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

TestAmerica Job ID: 580-61940-1

Lab Sample ID: 580-61940-5

Matrix: Water

09/01/16 16:41

09/01/16 16:41

09/01/16 16:41

Client Sample ID: Trip Blank Date Collected: 08/23/16 00:00

Date Received: 08/23/16 16:25

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Trifluorotoluene (Surr)

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		2.0	ug/L			09/01/16 16:41	1
n-Butylbenzene	ND		2.0	ug/L			09/01/16 16:41	1
N-Propylbenzene	ND		2.0	ug/L			09/01/16 16:41	1
o-Xylene	ND		0.50	ug/L			09/01/16 16:41	1
p-Isopropyltoluene	ND		2.0	ug/L			09/01/16 16:41	1
sec-Butylbenzene	ND		2.0	ug/L			09/01/16 16:41	1
Styrene	ND		0.50	ug/L			09/01/16 16:41	1
tert-Butylbenzene	ND		2.0	ug/L			09/01/16 16:41	1
Tetrachloroethene	ND		0.50	ug/L			09/01/16 16:41	1
Toluene	ND		0.50	ug/L			09/01/16 16:41	1
trans-1,2-Dichloroethene	ND		0.50	ug/L			09/01/16 16:41	1
trans-1,3-Dichloropropene	ND		0.50	ug/L			09/01/16 16:41	1
Trichloroethene	ND		0.50	ug/L			09/01/16 16:41	1
Trichlorofluoromethane	ND		0.50	ug/L			09/01/16 16:41	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	71		46 - 150				09/01/16 16:41	1
4-Bromofluorobenzene (Surr)	99		81 - 120				09/01/16 16:41	1

42 - 132

75 - 125

74 - 118

72

109

124 X

QC Sample Results

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

Method: 8260B - Volatile Organic Compounds (GC/MS)

TestAmerica Job ID: 580-61940-1

Client Sample ID: Method Blank

Prep Type: Total/NA

Matrix: Water Analysis Batch: 226481

Lab Sample ID: MB 580-226481/5

Analysis Batch: 226481	MB	МВ							
Analyte		Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		0.50		ıg/L			09/01/16 14:30	1
1,1,1-Trichloroethane	ND		0.50	U	ıg/L			09/01/16 14:30	1
1,1,2,2-Tetrachloroethane	ND		0.50	U	ıg/L			09/01/16 14:30	1
1,1,2-Trichloroethane	ND		0.50	U	ıg/L			09/01/16 14:30	1
1,1-Dichloroethane	ND		0.50	U	ıg/L			09/01/16 14:30	1
1,1-Dichloropropene	ND		0.50	U	ıg/L			09/01/16 14:30	1
1,2,3-Trichlorobenzene	ND		2.0	U	ıg/L			09/01/16 14:30	1
1,2,3-Trichloropropane	ND		0.50	U	ıg/L			09/01/16 14:30	1
1,2,4-Trichlorobenzene	ND		2.0	U	ıg/L			09/01/16 14:30	1
1,2,4-Trimethylbenzene	ND		2.0	U	ıg/L			09/01/16 14:30	1
1,2-Dibromo-3-Chloropropane	ND		2.0	U	ıg/L			09/01/16 14:30	1
1,2-Dibromoethane	ND		2.0	U	ıg/L			09/01/16 14:30	1
1,2-Dichlorobenzene	ND		0.50	U	ıg/L			09/01/16 14:30	1
1,2-Dichloroethane	ND		0.50	U	ıg/L			09/01/16 14:30	1
1,2-Dichloropropane	ND		0.50	U	ıg/L			09/01/16 14:30	1
1,3,5-Trimethylbenzene	ND		2.0	U	ıg/L			09/01/16 14:30	1
1,3-Dichlorobenzene	ND		0.50	U	ıg/L			09/01/16 14:30	1
1,3-Dichloropropane	ND		0.50	U	ıg/L			09/01/16 14:30	1
1,4-Dichlorobenzene	ND		0.50	U	ıg/L			09/01/16 14:30	1
2,2-Dichloropropane	ND		0.50	U	ıg/L			09/01/16 14:30	1
2-Butanone	ND		20	U	ıg/L			09/01/16 14:30	1
2-Chlorotoluene	ND		2.0	U	ıg/L			09/01/16 14:30	1
2-Hexanone	ND		20	U	ıg/L			09/01/16 14:30	1
4-Chlorotoluene	ND		2.0	U	ıg/L			09/01/16 14:30	1
4-Methyl-2-pentanone	ND		20	U	ıg/L			09/01/16 14:30	1
Acetone	ND		20	U	ıg/L			09/01/16 14:30	1
Benzene	ND		0.50	U	ıg/L			09/01/16 14:30	1
Bromobenzene	ND		2.0	U	ıg/L			09/01/16 14:30	1
Bromochloromethane	ND		0.50	U	ıg/L			09/01/16 14:30	1
Bromodichloromethane	ND		0.50	U	ıg/L			09/01/16 14:30	1
Bromoform	ND		0.50	U	ıg/L			09/01/16 14:30	1
Bromomethane	ND		1.0	U	ıg/L			09/01/16 14:30	1
Carbon disulfide	ND		0.50	U	ıg/L			09/01/16 14:30	1
Carbon tetrachloride	ND		0.50	U	ıg/L			09/01/16 14:30	1
Chlorobenzene	ND		0.50	U	ıg/L			09/01/16 14:30	1
Chloroethane	ND		0.50	U	ıg/L			09/01/16 14:30	1
Chloroform	ND		0.50	U	ıg/L			09/01/16 14:30	1
Chloromethane	ND		0.50	U	ıg/L			09/01/16 14:30	1
cis-1,2-Dichloroethene	ND		0.50	U	ıg/L			09/01/16 14:30	1
cis-1,3-Dichloropropene	ND		0.50	U	ıg/L			09/01/16 14:30	1
Dibromochloromethane	ND		0.50	U	ıg/L			09/01/16 14:30	1
Dibromomethane	ND		0.50	U	ıg/L			09/01/16 14:30	1
Dichlorodifluoromethane	ND		0.50	U	ıg/L			09/01/16 14:30	1
Ethylbenzene	ND		0.50	U	ıg/L			09/01/16 14:30	1
Hexachlorobutadiene	ND		2.0	U	ıg/L			09/01/16 14:30	1
Isopropylbenzene	ND		2.0	U	ıg/L			09/01/16 14:30	1
Methyl tert-butyl ether	ND		1.0	U	ıg/L			09/01/16 14:30	1
Methylene Chloride	ND		2.0	U	ıg/L			09/01/16 14:30	1

TestAmerica Seattle

9/29/2016

Page 15 of 28

TestAmerica Job ID: 580-61940-1

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 580-226481/5

Matrix: Water

Analysis Batch: 226481

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier RL **MDL** Unit Analyte D **Prepared** Analyzed Dil Fac m-Xylene & p-Xylene $\overline{\mathsf{ND}}$ 0.50 ug/L 09/01/16 14:30 Naphthalene ND 2.0 ug/L 09/01/16 14:30 n-Butylbenzene ND 2.0 ug/L 09/01/16 14:30 N-Propylbenzene ND 2.0 ug/L 09/01/16 14:30 o-Xylene ND 0.50 ug/L 09/01/16 14:30 p-Isopropyltoluene ND 2.0 ug/L 09/01/16 14:30 sec-Butylbenzene ND 2.0 ug/L 09/01/16 14:30 Styrene ND 0.50 ug/L 09/01/16 14:30 tert-Butylbenzene ND 2.0 ug/L 09/01/16 14:30 Tetrachloroethene ND 0.50 ug/L 09/01/16 14:30 Toluene ND 0.50 ug/L 09/01/16 14:30 trans-1,2-Dichloroethene ND 0.50 ug/L 09/01/16 14:30 trans-1,3-Dichloropropene ND 0.50 ug/L 09/01/16 14:30 Trichloroethene ND 0.50 ug/L 09/01/16 14:30 Trichlorofluoromethane ND 0.50 ug/L 09/01/16 14:30

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	77		46 - 150		09/01/16 14:30	1
4-Bromofluorobenzene (Surr)	79	X	81 - 120		09/01/16 14:30	1
Dibromofluoromethane (Surr)	79		42 - 132		09/01/16 14:30	1
Toluene-d8 (Surr)	96		75 - 125		09/01/16 14:30	1
Trifluorotoluene (Surr)	119	X	74 - 118		09/01/16 14:30	1

Lab Sample ID: LCS 580-226481/6

Matrix: Water

Analysis Batch: 226481

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 226481							
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	5.02	5.08		ug/L		101	68 - 139
1,1,1-Trichloroethane	5.02	5.26		ug/L		105	56 - 150
1,1,2,2-Tetrachloroethane	5.01	4.50		ug/L		90	60 - 134
1,1,2-Trichloroethane	5.02	4.87		ug/L		97	62 - 137
1,1-Dichloroethane	5.00	3.87		ug/L		77	68 - 135
1,1-Dichloropropene	5.00	4.65		ug/L		93	64 ₋ 146
1,2,3-Trichlorobenzene	5.01	4.99		ug/L		100	60 - 137
1,2,3-Trichloropropane	5.01	4.72		ug/L		94	45 ₋ 150
1,2,4-Trichlorobenzene	5.00	5.06		ug/L		101	60 ₋ 138
1,2,4-Trimethylbenzene	5.00	4.76		ug/L		95	70 - 142
1,2-Dibromo-3-Chloropropane	5.01	4.43		ug/L		88	34 - 150
1,2-Dibromoethane	5.01	4.88		ug/L		98	56 ₋ 146
1,2-Dichlorobenzene	5.00	5.10		ug/L		102	73 - 120
1,2-Dichloroethane	5.00	4.77		ug/L		95	63 ₋ 150
1,2-Dichloropropane	5.00	4.72		ug/L		94	72 - 120
1,3,5-Trimethylbenzene	5.01	4.71		ug/L		94	70 ₋ 145
1,3-Dichlorobenzene	5.01	4.75		ug/L		95	76 ₋ 120
1,3-Dichloropropane	5.01	4.53		ug/L		90	61 ₋ 130
1,4-Dichlorobenzene	5.01	4.99		ug/L		100	77 - 120
2,2-Dichloropropane	5.00	4.77		ug/L		95	60 - 150

TestAmerica Seattle

TestAmerica Job ID: 580-61940-1

Client: SCS Engineers Project/Site: Leichner Landfill - Semi-Annual

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 580-226481/6

Matrix: Water

Analysis Batch: 226481

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Datoil. 220401	Spike		LCS	1114	D 0/1	.	%Rec.	
Analyte 2-Butanone	Added	26.3	Qualifier	Unit		Rec 105	Limits	
				ug/L			30 - 150	
2-Chlorotoluene	5.00	4.80		ug/L		96	68 ₋ 130	
2-Hexanone	25.0	23.1		ug/L		93	25 ₋ 150	
4-Chlorotoluene	5.01	4.86		ug/L		97	75 - 130	
4-Methyl-2-pentanone	25.0	24.0		ug/L		96	36 - 150	
Acetone	25.0	19.0	J	ug/L		76	20 - 138	
Benzene	5.02	4.56		ug/L		91	73 - 120	
Bromobenzene	5.00	4.83		ug/L		97	68 ₋ 130	
Bromochloromethane	5.01	5.02		ug/L		100	71 - 131	
Bromodichloromethane	5.02	4.38		ug/L		87	62 - 150	
Bromoform	5.02	4.25		ug/L		85	51 - 137	
Bromomethane	5.00	3.81		ug/L		76	61 - 135	
Carbon disulfide	5.02	3.39		ug/L		68	65 - 128	
Carbon tetrachloride	5.01	4.66		ug/L		93	54 - 150	
Chlorobenzene	5.02	4.69		ug/L		93	74 - 114	
Chloroethane	5.00	3.60		ug/L		72	58 - 130	
Chloroform	5.00	5.02		ug/L		100	71 - 130	
Chloromethane	5.00	4.05		ug/L		81	40 - 150	
cis-1,2-Dichloroethene	5.01	4.99		ug/L		100	73 - 130	
cis-1,3-Dichloropropene	5.01	4.37		ug/L		87	54 ₋ 150	
Dibromochloromethane	5.01	4.56		ug/L		91	46 - 150	
Dibromomethane	5.02	4.34		ug/L		86	65 - 137	
Dichlorodifluoromethane	5.00	4.06		ug/L		81	45 - 150	
Ethylbenzene	5.02	4.81		ug/L		96	74 - 125	
Hexachlorobutadiene	5.00	4.97		ug/L		99	38 - 150	
Isopropylbenzene	5.01	5.17		ug/L		103	75 - 137	
Methyl tert-butyl ether	5.01	3.80		ug/L		76	56 ₋ 150	
Methylene Chloride	5.02	5.73		ug/L		114	58 ₋ 134	
m-Xylene & p-Xylene	5.01	4.82		ug/L		96	73 - 130	
Naphthalene	5.01	5.14		ug/L		103	26 - 150	
n-Butylbenzene	5.01	5.02		ug/L		100	66 - 125	
N-Propylbenzene	5.00	4.79		ug/L		96	61 - 142	
o-Xylene	5.01	4.64		ug/L		93	80 - 139	
p-Isopropyltoluene	5.00	4.77		ug/L		95	72 - 127	
sec-Butylbenzene	5.01	4.70		ug/L		94	62 - 140	
Styrene	5.01	4.52		ug/L		90	68 - 136	
tert-Butylbenzene	5.00	4.62		ug/L		92	55 ₋ 150	
Tetrachloroethene	5.01	4.85		ug/L		97	67 - 123	
Toluene	5.00	4.52		ug/L		90	70 - 126	
trans-1,2-Dichloroethene	5.01	3.69		ug/L		74	69 - 124	
trans-1,3-Dichloropropene	5.00	4.31		ug/L		86	40 - 150	
Trichloroethene	5.01	4.60		ug/L		92	72 - 123	
Trichlorofluoromethane	5.00	4.07		ug/L		81	60 - 150	
	0.00			5				
100 100								

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	95		46 - 150
4-Bromofluorobenzene (Surr)	100		81 - 120
Dibromofluoromethane (Surr)	96		42 - 132

TestAmerica Seattle

Page 17 of 28

QC Sample Results

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

TestAmerica Job ID: 580-61940-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 580-226481/6

Lab Sample ID: LCSD 580-226481/7

Matrix: Water

Analysis Batch: 226481

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	99		75 - 125
Trifluorotoluene (Surr)	116		74 - 118

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 226481

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
1,1,1,2-Tetrachloroethane	5.02	5.23		ug/L		104	68 - 139	3	20
1,1,1-Trichloroethane	5.02	4.13		ug/L		82	56 - 150	24	29
1,1,2,2-Tetrachloroethane	5.01	4.24		ug/L		85	60 - 134	6	25
1,1,2-Trichloroethane	5.02	4.81		ug/L		96	62 - 137	1	30
1,1-Dichloroethane	5.00	3.84		ug/L		77	68 - 135	1	27
1,1-Dichloropropene	5.00	4.96		ug/L		99	64 - 146	6	20
1,2,3-Trichlorobenzene	5.01	5.96		ug/L		119	60 - 137	18	20
1,2,3-Trichloropropane	5.01	4.35		ug/L		87	45 - 150	8	20
1,2,4-Trichlorobenzene	5.00	6.03		ug/L		120	60 - 138	18	20
1,2,4-Trimethylbenzene	5.00	4.73		ug/L		95	70 - 142	1	20
1,2-Dibromo-3-Chloropropane	5.01	4.78		ug/L		95	34 - 150	7	20
1,2-Dibromoethane	5.01	4.60		ug/L		92	56 - 146	6	20
1,2-Dichlorobenzene	5.00	6.24	*	ug/L		125	73 - 120	20	14
1,2-Dichloroethane	5.00	3.74		ug/L		75	63 - 150	24	29
1,2-Dichloropropane	5.00	4.67		ug/L		93	72 - 120	1	20
1,3,5-Trimethylbenzene	5.01	4.76		ug/L		95	70 - 145	1	20
1,3-Dichlorobenzene	5.01	4.68		ug/L		93	76 - 120	1	12
1,3-Dichloropropane	5.01	4.48		ug/L		89	61 - 130	1	29
1,4-Dichlorobenzene	5.01	5.28		ug/L		105	77 - 120	6	11
2,2-Dichloropropane	5.00	3.79		ug/L		76	60 - 150	23	29
2-Butanone	25.0	16.1	J *	ug/L		65	30 - 150	48	35
2-Chlorotoluene	5.00	4.83		ug/L		97	68 - 130	0	20
2-Hexanone	25.0	21.7		ug/L		87	25 - 150	6	28
4-Chlorotoluene	5.01	4.73		ug/L		94	75 - 130	3	20
4-Methyl-2-pentanone	25.0	23.3		ug/L		93	36 - 150	3	34
Acetone	25.0	16.9	J	ug/L		68	20 - 138	11	35
Benzene	5.02	4.93		ug/L		98	73 - 120	8	20
Bromobenzene	5.00	4.62		ug/L		92	68 - 130	4	20
Bromochloromethane	5.01	3.83	*	ug/L		77	71 - 131	27	20
Bromodichloromethane	5.02	4.26		ug/L		85	62 - 150	3	20
Bromoform	5.02	4.08		ug/L		81	51 - 137	4	20
Bromomethane	5.00	3.74		ug/L		75	61 - 135	2	31
Carbon disulfide	5.02	3.36		ug/L		67	65 - 128	1	32
Carbon tetrachloride	5.01	4.74		ug/L		95	54 - 150	2	30
Chlorobenzene	5.02	4.80		ug/L		96	74 - 114	2	12
Chloroethane	5.00	3.65		ug/L		73	58 ₋ 130	1	35
Chloroform	5.00	4.02	*	ug/L		80	71 - 130	22	20
Chloromethane	5.00	4.61		ug/L		92	40 - 150	13	31
cis-1,2-Dichloroethene	5.01	3.75	*	ug/L		75	73 - 130	28	20
cis-1,3-Dichloropropene	5.01	4.45		ug/L		89	54 - 150	2	28

TestAmerica Seattle

Page 18 of 28

3

4

6

Q

9

11

9/29/2016

TestAmerica Job ID: 580-61940-1

Project/Site: Leichner Landfill - Semi-Annual

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 580-226481/7

Matrix: Water

Client: SCS Engineers

Analysis Batch: 226481

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

LCSD LCSD **RPD** Spike %Rec. Added RPD Analyte Result Qualifier Unit %Rec Limits Limit Dibromochloromethane 5.01 4.41 88 46 - 150 3 20 ug/L Dibromomethane 5.02 4.26 ug/L 85 65 - 137 2 20 ug/L Dichlorodifluoromethane 5.00 3.94 79 45 - 150 29 3 Ethylbenzene 5.02 4.78 ug/L 95 74 - 125 20 Hexachlorobutadiene 5.00 6.13 ug/L 123 38 - 150 21 20 Isopropylbenzene 5.01 5.23 ug/L 105 75 - 137 20 Methyl tert-butyl ether ug/L 5.01 73 56 - 150 26 3.66 29 Methylene Chloride 5.02 5.66 ug/L 113 58 - 134 m-Xylene & p-Xylene 5.01 4.77 ug/L 95 73 - 130 20 26 - 150 Naphthalene 5.01 6.31 ug/L 126 20 20 123 66 - 125 20 n-Butylbenzene 5.01 6.14 ug/L 20 N-Propylbenzene 5.00 4.73 ug/L 95 61 - 142 1 20 5.01 93 80 - 139 20 o-Xylene 4.65 ug/L 105 p-Isopropyltoluene 5.00 5.25 72 - 127 10 ug/L 14 sec-Butylbenzene 5.01 4.68 ug/L 93 62 - 1400 20 92 20 Styrene 5.01 4.60 ug/L 68 _ 136 2 tert-Butylbenzene 5.00 4.66 ug/L 93 55 - 150 20 Tetrachloroethene 5.01 4.92 ug/L 98 67 - 123 20 Toluene 5.00 4.70 ug/L 94 70 - 126 20 5.01 3.71 ug/L 74 69 - 124 27 trans-1,2-Dichloroethene trans-1,3-Dichloropropene 5.00 4.38 ug/L 87 40 - 150 2 30 Trichloroethene 5.01 4.62 ug/L 92 72 - 1230 20 Trichlorofluoromethane 5.00 4.15 ug/L 83 60 - 15031

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	73		46 - 150
4-Bromofluorobenzene (Surr)	98		81 - 120
Dibromofluoromethane (Surr)	77		42 - 132
Toluene-d8 (Surr)	101		75 - 125
Trifluorotoluene (Surr)	113		74 - 118

Method: 6020 - Metals (ICP/MS)

Lab Sample ID: MB 580-225777/16-A

Matrix: Water

Analysis Batch: 226062

Client Sample ID: Method Blank **Prep Type: Total Recoverable** Prep Batch: 225777

Client Sample ID: Lab Control Sample

80 - 120

106

	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND		0.040		mg/L		08/24/16 11:32	08/26/16 22:39	1
Manganese	ND		0.0020		mg/L		08/24/16 11:32	08/26/16 22:39	1

Lab Sample ID: LCS 580-225777/17-A

Matrix: Water

Analyte

Manganese

Iron

Analysis Batch: 226062

Prep Type: Total Recoverable Prep Batch: 225777 LCS LCS Spike %Rec. Added Result Qualifier Unit D %Rec Limits 22.0 24.4 mg/L 111 80 - 120

mg/L

TestAmerica Seattle

Page 19 of 28

1.06

1.00

9/29/2016

TestAmerica Job ID: 580-61940-1

6

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

Lab Sample ID: LCSD 580-225777/18-A

Matrix: Water

Analysis Batch: 226062

Client Sample ID: Lab Control Sample Dup
Prep Type: Total Recoverable
Prep Batch: 225777
0/ Do-

Client Sample ID: Matrix Spike Duplicate

105

Spike LCSD LCSD %Rec. Analyte Added Result Qualifier Unit %Rec Limits RPD Limit 22.0 80 - 120 20 Iron 24.4 mg/L 111 0 mg/L 1.00 1.07 107 80 - 120 20 Manganese

Lab Sample ID: 580-61867-B-3-C MS

Matrix: Water

Analysis Batch: 226062

Client Sample ID: Matrix Spike **Prep Type: Dissolved** Prep Batch: 225777

MS MS Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits 22.0 80 - 120 Iron ND 24.3 mg/L 110 0.075 1.00 1.13 106 80 - 120 Manganese mg/L

Lab Sample ID: 580-61867-B-3-D MSD

Matrix: Water

Prep Type: Dissolved Analysis Batch: 226062 Prep Batch: 225777 Sample Sample Spike MSD MSD %Rec. **RPD** Added Analyte Result Qualifier Result Qualifier Unit D %Rec Limits RPD Limit Iron ND 22.0 24.3 mg/L 110 80 - 120 0 20

1 13

1.00

Lab Sample ID: 580-61867-B-3-B DU

Matrix: Water

Manganese

Analysis Batch: 226062

Client Sample ID: Duplicate Prep Type: Dissolved

80 - 120

Prep Batch: 225777

20

DU DU **RPD** Sample Sample RPD Analyte Result Qualifier Result Qualifier Unit D Limit ND NC 20 Iron ND mg/L 0.075 0.0714 20 Manganese mg/L

Method: 160.1 - Solids, Total Dissolved (TDS)

0.075

Lab Sample ID: MB 580-226028/1

Matrix: Water

Analysis Batch: 226028

Client Sample ID: Method Blank Prep Type: Total/NA

mg/L

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

MR MR Result Qualifier RL **RL** Unit Prepared Analyzed Dil Fac 10 **Total Dissolved Solids** $\overline{\mathsf{ND}}$ mg/L 08/26/16 14:36

Lab Sample ID: LCS 580-226028/2

Matrix: Water

Analysis Batch: 226028

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Total Dissolved Solids 1000 1030 mg/L 103 80 - 120

Analysis Batch: 226028

Lab Sample ID: 580-61908-B-1 DU **Client Sample ID: Duplicate Matrix: Water** Prep Type: Total/NA

Sample Sample DU DU **RPD** Result Qualifier Result Qualifier **RPD** Analyte Unit D Limit 2000 2000 **Total Dissolved Solids** mg/L 20

TestAmerica Job ID: 580-61940-1

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 580-225890/3 Client Sample ID: Method Blank Prep Type: Total/NA **Matrix: Water**

Analysis Batch: 225890

MB MB Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac D Prepared 0.20 Nitrogen, Nitrate ND mg/L 08/24/16 09:47

Lab Sample ID: LCS 580-225890/4 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 225890**

Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier Unit %Rec Nitrogen, Nitrate 5.00 5.17 mg/L 103 90 - 110

Lab Sample ID: LCSD 580-225890/5 Client Sample ID: Lab Control Sample Dup **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 225890

Spike LCSD LCSD %Rec. **RPD** Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec Nitrogen, Nitrate 5.00 5.23 mg/L 105

Lab Sample ID: 580-61940-1 MS Client Sample ID: LB-082316-01 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 225890

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Unit %Rec Limits Nitrogen, Nitrate 6.6 F1 5.00 13.1 F1 130 90 - 110 mg/L

Lab Sample ID: 580-61940-1 MSD Client Sample ID: LB-082316-01 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 225890

Spike MSD MSD %Rec. RPD Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Nitrogen, Nitrate 6.6 F1 5.00 14.2 F1 152 mg/L 90 - 110

Lab Sample ID: MB 580-225893/3 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 225893

MB MB Analyte Result Qualifier RL MDL Unit Prepared D Analyzed Dil Fac Chloride 0.90 mg/L 08/24/16 09:47 ND

Lab Sample ID: LCS 580-225893/4 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 225893

Spike LCS LCS %Rec. Added Result Qualifier Analyte Unit %Rec Limits Chloride 50.0 50.2 mg/L 100 90 - 110

Lab Sample ID: LCSD 580-225893/5 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 225893

LCSD LCSD RPD Spike %Rec. Added Limits Analyte Result Qualifier Unit D %Rec RPD Limit Chloride 50.0 50.6 mg/L 101

QC Sample Results

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

TestAmerica Job ID: 580-61940-1

Client Sample ID: LB-082316-01

Lab Sample ID: 580-61940-1 MS

Matrix: Water

Analysis Batch: 225893

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Chloride 5.1 F1 50.0 65.4 F1 mg/L 121 90 - 110

Lab Sample ID: 580-61940-1 MSD Client Sample ID: LB-082316-01

Matrix: Water

Prep Type: Total/NA

Prep Type: Total/NA

Analysis Batch: 225893 Sample Sample MSD MSD %Rec. **RPD** Spike Result Qualifier Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec Chloride 75.7 F1 5.1 F1 50.0 mg/L 141 90 - 110 15

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

Client Sample ID: LB-082316-01 Lab Sample ID: 580-61940-1 Date Collected: 08/23/16 12:00 Matrix: Water

Date Received: 08/23/16 16:25

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	226481	09/01/16 22:25	TL1	TAL SEA
Dissolved	Prep	3005A			225777	08/24/16 11:32		TAL SEA
Dissolved	Analysis	6020		1	226062	08/27/16 00:17	HJM	TAL SEA
Total/NA	Analysis	160.1		1	226028	08/26/16 14:36	EMM	TAL SEA
Total/NA	Analysis	300.0		1	225890	08/24/16 13:00	RSB	TAL SEA
Total/NA	Analysis	300.0		1	225893	08/24/16 13:00	RSB	TAL SEA

Client Sample ID: LB-082316-03

Lab Sample ID: 580-61940-2 Date Collected: 08/23/16 14:05

Matrix: Water Date Received: 08/23/16 16:25

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis 8260B 226481 09/01/16 22:51 TL1 TAL SEA Dissolved 3005A Prep 225777 08/24/16 11:32 TAL SEA Dissolved Analysis 6020 226062 08/27/16 00:22 HJM TAL SEA 1 Total/NA Analysis 160.1 226028 08/26/16 14:36 EMM TAL SEA Total/NA Analysis 300.0 1 225890 08/24/16 13:56 RSB TAL SEA Total/NA Analysis 300.0 225893 08/24/16 13:56 RSB TAL SEA

Client Sample ID: LB-082316-04 Lab Sample ID: 580-61940-3 **Matrix: Water**

Date Collected: 08/23/16 15:10 Date Received: 08/23/16 16:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	226481	09/01/16 23:17	TL1	TAL SEA
Dissolved	Prep	3005A			225777	08/24/16 11:32		TAL SEA
Dissolved	Analysis	6020		1	226062	08/27/16 00:26	HJM	TAL SEA
Total/NA	Analysis	160.1		1	226028	08/26/16 14:36	EMM	TAL SEA
Total/NA	Analysis	300.0		1	225890	08/24/16 14:14	RSB	TAL SEA
Total/NA	Analysis	300.0		1	225893	08/24/16 14:14	RSB	TAL SEA

Client Sample ID: LB-082316-02 Lab Sample ID: 580-61940-4

Date Collected: 08/23/16 13:05 Date Received: 08/23/16 16:25

Batch	Batch		Dilution	Batch	Prepared		
Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Analysis	8260B			226481	09/01/16 23:44	TL1	TAL SEA
Prep	3005A			225777	08/24/16 11:32		TAL SEA
Analysis	6020		1	226062	08/27/16 00:31	HJM	TAL SEA
Analysis	160.1		1	226028	08/26/16 14:36	EMM	TAL SEA
Analysis	300.0		1	225890	08/24/16 14:33	RSB	TAL SEA
	Type Analysis Prep Analysis Analysis	Type Method Analysis 8260B Prep 3005A Analysis 6020 Analysis 160.1	Type Method Run Analysis 8260B Prep 3005A Analysis 6020 Analysis 160.1	Type Method Run Factor Analysis 8260B 1 Prep 3005A 3005A Analysis 6020 1 Analysis 160.1 1	Type Method Run Factor Number Analysis 8260B 1 226481 Prep 3005A 225777 Analysis 6020 1 226062 Analysis 160.1 1 226028	Type Method Run Factor Number or Analyzed Analysis 8260B 1 226481 09/01/16 23:44 Prep 3005A 225777 08/24/16 11:32 Analysis 6020 1 226062 08/27/16 00:31 Analysis 160.1 1 226028 08/26/16 14:36	Type Method Run Factor Number or Analyzed Analyst Analysis 8260B 1 226481 09/01/16 23:44 TL1 Prep 3005A 225777 08/24/16 11:32 08/24/16 00:31 HJM Analysis 6020 1 226062 08/27/16 00:31 HJM Analysis 160.1 1 226028 08/26/16 14:36 EMM

TestAmerica Seattle

Page 23 of 28

9/29/2016

Matrix: Water

Lab Chronicle

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

Client Sample ID: LB-082316-02

TestAmerica Job ID: 580-61940-1

Lab Sample ID: 580-61940-4

Matrix: Water

Date Collected: 08/23/16 13:05 Date Received: 08/23/16 16:25

Batch Batch Dilution Batch Prepared Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab TAL SEA Total/NA Analysis 300.0 225893 08/24/16 14:33 RSB

Client Sample ID: Trip Blank Lab Sample ID: 580-61940-5

Date Collected: 08/23/16 00:00 **Matrix: Water**

Date Received: 08/23/16 16:25

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			226481	09/01/16 16:41	TL1	TAL SEA

Laboratory References:

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Certification Summary

Client: SCS Engineers TestAmerica Job ID: 580-61940-1

Project/Site: Leichner Landfill - Semi-Annual

Laboratory: TestAmerica Seattle

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-022	03-02-17
California	State Program	9	2901	01-31-18
L-A-B	DoD ELAP		L2236	01-19-19
L-A-B	ISO/IEC 17025		L2236	01-19-19
Montana (UST)	State Program	8	N/A	04-30-20
Oregon	NELAP	10	WA100007	11-06-16
US Fish & Wildlife	Federal		LE058448-0	10-31-16
USDA	Federal		P330-14-00126	04-08-17
Washington	State Program	10	C553	02-17-17

2

Ć

4

_

10

Sample Summary

Client: SCS Engineers Project/Site: Leichner Landfill - Semi-Annual

TestAmerica Job ID: 580-61940-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-61940-1	LB-082316-01	Water	08/23/16 12:00	08/23/16 16:25
580-61940-2	LB-082316-03	Water	08/23/16 14:05	08/23/16 16:25
580-61940-3	LB-082316-04	Water	08/23/16 15:10	08/23/16 16:25
580-61940-4	LB-082316-02	Water	08/23/16 13:05	08/23/16 16:25
580-61940-5	Trip Blank	Water	08/23/16 00:00	08/23/16 16:25

TestAmeric	O				Rush	Chain of
THE LEADER IN ENVIRONMENTAL TESTING		580-61940 Chain of Custody	ustody		Short Hold	Custody Record
Client		Onom Contact			Date S	Chain of Custody Number 397
Address Address Address Address	Sand Avo	Telephone Numb	per (Area Code	VFax Number Coll	Lab Number	Baue of
	5 0	Sampler	7	Lab Contact	Analysis (Attach list if more space is needed)	
JC.11		Billing Contact	Billing Contact Andrews	Jarah Murphy	(1 00 (0 0) (0 0)	Special Instructions/
Contract/Purchase Order/Quote No.			Matrix	Containers & Preservatives	(1) S (2) S (3) S (4) S	Conditions of Receipt
Sample I.D. and Location/Description (Containers for each sample may be combined on one line)	ion on one line)	Time	Sed.	Unpres.	368 4.13 4.13 52.0	
10-912880-87	8/23/16	1300	λ	3 1 3	х х х	978
LB -082316-03	8/23/16		X	3 13	X X X X	F.019 E. 1 1010)
1	8/23/16	1516	X	3 13	X X X	
18-08216-03	8/23/16	1305	X	3 1 3	X X X X X	
Tr.o Black			X		×	
Cooler	Possible Hazard Identification Non-Hazard Elan	mable	Skin Irritant	Sa Sa	Sample Disposal Disposal By Lab	(A fee may be assessed if samples Months are retained longer than 1 month)
ours [Other		C Requirements (Spe		
ed & Sign/Print		Date	Time	1. Received By Sign/Print	- Miles	Pate 12 11 11me
2. Relinquished By Sign/Print			1 -	2. Reseived By Stgn/Print) 11	
3. Relinquished By Sign/Print		Date	Time	3. Received By Sign/Print	TI .	Date Time
Comments					6	, , , , , , , , , , , , , , , , , , ,
DISTRIBUTION: WHITE - Stays with the Samples; CANARY - Returned to Client with Report; PINK - Field Copy	es; CANARY – Returned to Cliv	ent with Report; PIN	VK – Field Copy		3	TAI -8274-580 (0210)
					1	(0120) 000-1-720-1-1-1

Client: SCS Engineers Job Number: 580-61940-1

List Source: TestAmerica Seattle

Login Number: 61940 List Number: 1

Creator: Gonzales, Steve

Creator. Gorizales, Steve		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-61962-1

Client Project/Site: Leichner Landfill - Semi-Annual

Revision: 1

For:

SCS Engineers 15940 SW 72nd Avenue Portland, Oregon 97224

Attn: Mr. Jason Davendonis

Authorized for release by:

9/29/2016 7:14:47 AM

Robert Greer, Project Manager II (253)922-2310

robert.greer@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

TestAmerica Job ID: 580-61962-1

Table of Contents

Cover Page	1
Table of Contents	
Case Narrative	
Definitions	5
Client Sample Results	6
QC Sample Results	18
Chronicle	26
Certification Summary	28
Sample Summary	29
Chain of Custody	
Receint Chacklists	31

3

4

5

_

9

Case Narrative

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

TestAmerica Job ID: 580-61962-1

Job ID: 580-61962-1

Laboratory: TestAmerica Seattle

Narrative

Job Narrative 580-61962-1

Comments

No additional comments.

Receipt

The samples were received on 8/24/2016 1:58 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.0° C.

Receipt Exceptions

The Field Sampler was not listed on the Chain of Custody.

GC/MS VOA

Method(s) 8260B: The method blank for analytical batch 580-226522 contained Acetone above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method(s) 8260B: The method blank for analytical batch 580-226522 contained Methylene Chloride above the reporting limit (RL). The associated laboratory samples with this method blank did not contain the target compound; therefore, re-extraction and/or re-analysis of samples were not performed.

Method(s) 8260B: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 580-226522 recovered outside control limits for the following analytes: Methylene Chloride, 1,1-Dichloroethane, Carbon disulfide, cis-1,2-Dichloroethene and 2-Butanone. These analytes were biased high in the LCS and were not detected above the reporting in the associated samples; therefore, the data have been reported.

Method(s) 8260B: The %RPD of the laboratory control sample (LCS) and laboratory control standard duplicate (LCSD) for preparation batch 580-226522 recovered outside control limits for the following analytes: Bromochloromethane, Naphthalene, Chloroform, 2-Butanone, and cis-1,2-Dichloroethene.

Method(s) 8260B: The continuing calibration verification (CCV) associated with batch 580-226522 recovered outside acceptance criteria, low biased, for Toluene. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte or had results between the reporting limit and method detection limit, the data have been reported.

Method(s) 8260B: The continuing calibration verification (CCV) associated with batch 580-226522 recovered above the upper control limit for 2-Chlorotoluene, 1,2,3-Trichloropropane, Acetone, N-Propylbenzene, 1,1,2,2-Tetrachloroethane, 1,3,5-Trimethylbenzene, 4-Chlorotoluene, Methylene Chloride and Bromobenzene. The samples associated with this CCV were non-detects or had results between the reporting limit and method detection limit for the affected analytes; therefore, the data have been reported. The following samples are impacted: LB-082416-05 (580-61962-1), LB-082416-08 (580-61962-2), LB-082416-09 (580-61962-3), LB-082416-07 (580-61962-4), LB-082416-06 (580-61962-5), Trip Blanks (580-61962-6) and (CCVIS 580-226522/3).

Method(s) 8260B: Surrogate recovery for the following samples was outside the upper control limit: LB-082416-08 (580-61962-2), LB-082416-09 (580-61962-3), LB-082416-07 (580-61962-4) and LB-082416-06 (580-61962-5). This sample did not contain any target analytes or had results between the reporting limit and method detection limit; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 8260B: Methylene Chloride is biased high in all QC and it was detected in the Trip Blank (580-61962-6). This is likely due to common lab contamination since all associated laboratory samples were non-detect for the analyte.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 6020: The method blank for preparation batch 580-225970 and analytical batch 580-226117 contained above the method

3

Α

5

6

9

10

10

Case Narrative

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

TestAmerica Job ID: 580-61962-1

Job ID: 580-61962-1 (Continued)

Laboratory: TestAmerica Seattle (Continued)

detection limit. These target analytes concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

6

10

Definitions/Glossary

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

TestAmerica Job ID: 580-61962-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
*	LCS or LCSD is outside acceptance limits.
*	RPD of the LCS and LCSD exceeds the control limits

X Surrogate is outside control limits

B Compound was found in the blank and sample.

Metals

Qualifier Qualifier Description

MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

applicable.

General Chemistry

Qualifier Qualifier Description

F1 MS and/or MSD Recovery is outside acceptance limits.

Glossary

Abbreviation	These commonly	y used abbreviations may	or may not be	present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration
MDA Minimum detectable activity
EDL Estimated Detection Limit

MDC Minimum detectable concentration

MDL Method Detection Limit
ML Minimum Level (Dioxin)

NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

40

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

TestAmerica Job ID: 580-61962-1

Lab Sample ID: 580-61962-1

Matrix: Water

Client Sample ID: LB-082416-05

Date Collected: 08/24/16 10:10 Date Received: 08/24/16 13:58

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	<u> </u>	0.50		ug/L		•	09/02/16 08:32	
1,1,1-Trichloroethane	ND		0.50		ug/L			09/02/16 08:32	
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			09/02/16 08:32	
1,1,2-Trichloroethane	ND		0.50		ug/L			09/02/16 08:32	,
1,1-Dichloroethane	ND	*	0.50		ug/L			09/02/16 08:32	
1,1-Dichloropropene	ND		0.50		ug/L			09/02/16 08:32	
1,2,3-Trichlorobenzene	ND		2.0		ug/L			09/02/16 08:32	
1,2,3-Trichloropropane	ND		0.50		ug/L			09/02/16 08:32	
1,2,4-Trichlorobenzene	ND		2.0		ug/L			09/02/16 08:32	
1,2,4-Trimethylbenzene	ND		2.0		ug/L			09/02/16 08:32	· · · · · .
1,2-Dibromo-3-Chloropropane	ND		2.0		ug/L			09/02/16 08:32	
1,2-Dibromoethane	ND		2.0		ug/L			09/02/16 08:32	
1,2-Dichlorobenzene	ND		0.50		ug/L			09/02/16 08:32	· · · · · ,
1,2-Dichloroethane	ND		0.50		ug/L			09/02/16 08:32	
1,2-Dichloropropane	ND		0.50		ug/L ug/L			09/02/16 08:32	
1,3,5-Trimethylbenzene	ND		2.0		ug/L ug/L			09/02/16 08:32	· · · · · .
1,3-Dichlorobenzene	ND ND		0.50		ug/L ug/L			09/02/16 08:32	
1,3-Dichloropropane	ND		0.50		ug/L			09/02/16 08:32	
1,4-Dichlorobenzene	ND		0.50					09/02/16 08:32	
·	ND ND		0.50		ug/L			09/02/16 08:32	
2,2-Dichloropropane	ND ND		20		ug/L				
2-Butanone					ug/L			09/02/16 08:32	
2-Chlorotoluene	ND		2.0		ug/L			09/02/16 08:32	•
2-Hexanone	ND		20		ug/L			09/02/16 08:32	•
4-Chlorotoluene	ND		2.0		ug/L			09/02/16 08:32	
4-Methyl-2-pentanone	ND		20		ug/L			09/02/16 08:32	•
Acetone	ND		20		ug/L			09/02/16 08:32	•
Benzene	ND		0.50		ug/L			09/02/16 08:32	
Bromobenzene	ND		2.0		ug/L			09/02/16 08:32	•
Bromochloromethane	110		0.50		ug/L			09/02/16 08:32	•
Bromodichloromethane	ND		0.50		ug/L			09/02/16 08:32	
Bromoform	ND		0.50		ug/L			09/02/16 08:32	,
Bromomethane	ND		1.0		ug/L			09/02/16 08:32	,
Carbon disulfide	ND		0.50		ug/L			09/02/16 08:32	
Carbon tetrachloride	ND		0.50		ug/L			09/02/16 08:32	•
Chlorobenzene	ND		0.50		ug/L			09/02/16 08:32	•
Chloroethane	ND		0.50		ug/L			09/02/16 08:32	
Chloroform	ND	*	0.50		ug/L			09/02/16 08:32	•
Chloromethane	ND		0.50		ug/L			09/02/16 08:32	•
cis-1,2-Dichloroethene	ND	*	0.50		ug/L			09/02/16 08:32	•
cis-1,3-Dichloropropene	ND		0.50		ug/L			09/02/16 08:32	
Dibromochloromethane	ND		0.50		ug/L			09/02/16 08:32	•
Dibromomethane	ND		0.50		ug/L			09/02/16 08:32	•
Dichlorodifluoromethane	ND		0.50		ug/L			09/02/16 08:32	•
Ethylbenzene	ND		0.50		ug/L			09/02/16 08:32	•
Hexachlorobutadiene	ND		2.0		ug/L			09/02/16 08:32	
Isopropylbenzene	ND		2.0		ug/L			09/02/16 08:32	• • • • • • •
Methyl tert-butyl ether	ND		1.0		ug/L			09/02/16 08:32	
Methylene Chloride	ND	*	2.0		ug/L			09/02/16 08:32	
m-Xylene & p-Xylene	ND		0.50		ug/L			09/02/16 08:32	,

TestAmerica Seattle

Page 6 of 31

9/29/2016

3

5

7

9

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

Client Sample ID: LB-082416-05

TestAmerica Job ID: 580-61962-1

Lab Sample ID: 580-61962-1

Matrix: Water

Date Collected: 08/24/16 10:10	
Date Received: 08/24/16 13:58	

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND *	2.0		ug/L			09/02/16 08:32	1
n-Butylbenzene	ND	2.0		ug/L			09/02/16 08:32	1
N-Propylbenzene	ND	2.0		ug/L			09/02/16 08:32	1
o-Xylene	ND	0.50		ug/L			09/02/16 08:32	1
p-Isopropyltoluene	ND	2.0		ug/L			09/02/16 08:32	1
sec-Butylbenzene	ND	2.0		ug/L			09/02/16 08:32	1
Styrene	ND	0.50		ug/L			09/02/16 08:32	1
tert-Butylbenzene	ND	2.0		ug/L			09/02/16 08:32	1
Tetrachloroethene	ND	0.50		ug/L			09/02/16 08:32	1
Toluene	ND	0.50		ug/L			09/02/16 08:32	1
trans-1,2-Dichloroethene	ND	0.50		ug/L			09/02/16 08:32	1
trans-1,3-Dichloropropene	ND	0.50		ug/L			09/02/16 08:32	1
Trichloroethene	ND	0.50		ug/L			09/02/16 08:32	1
Trichlorofluoromethane	ND	0.50		ug/L			09/02/16 08:32	1

Surrogate	%Recovery Qualifier	Limits	Prepared	d Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100	46 - 150		09/02/16 08:32	1
4-Bromofluorobenzene (Surr)	98	81 - 120		09/02/16 08:32	1
Dibromofluoromethane (Surr)	93	42 - 132		09/02/16 08:32	1
Toluene-d8 (Surr)	98	75 - 125		09/02/16 08:32	1
Trifluorotoluene (Surr)	77	74 - 118		09/02/16 08:32	1

Method: 6020 - Metals (ICP/M	S) - Dissolved						
Analyte	Result Qualifi	ier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND	0.040	mg/L		08/26/16 10:42	08/27/16 14:51	1
Manganese	ND	0.0020	mg/L		08/26/16 10:42	08/27/16 14:51	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	190		10		mg/L			08/26/16 14:36	1
Chloride	11	F1	0.90		mg/L			08/25/16 14:45	1
Nitrogen, Nitrate	5.4	F1	0.20		mg/L			08/25/16 14:45	1

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

TestAmerica Job ID: 580-61962-1

Lab Sample ID: 580-61962-2

Matrix: Water

Client Sample ID: LB-082416-08

Date Collected: 08/24/16 12:15 Date Received: 08/24/16 13:58

Method: 8260B - Volatile Orga Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L	— <u> </u>		09/02/16 08:59	
1,1,1-Trichloroethane	ND		0.50		ug/L			09/02/16 08:59	
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			09/02/16 08:59	
1,1,2-Trichloroethane	ND		0.50		ug/L			09/02/16 08:59	
1,1-Dichloroethane		*	0.50		ug/L			09/02/16 08:59	
1,1-Dichloropropene	ND		0.50		ug/L			09/02/16 08:59	
1,2,3-Trichlorobenzene	ND		2.0		ug/L			09/02/16 08:59	
1,2,3-Trichloropropane	ND		0.50		ug/L			09/02/16 08:59	
1,2,4-Trichlorobenzene	ND		2.0		ug/L			09/02/16 08:59	
1,2,4-Trimethylbenzene	ND		2.0					09/02/16 08:59	
					ug/L				
1,2-Dibromo-3-Chloropropane	ND		2.0		ug/L			09/02/16 08:59	
1,2-Dibromoethane	ND		2.0		ug/L			09/02/16 08:59	
1,2-Dichlorobenzene	ND		0.50		ug/L			09/02/16 08:59	
1,2-Dichloroethane	ND		0.50		ug/L			09/02/16 08:59	
1,2-Dichloropropane	ND		0.50		ug/L			09/02/16 08:59	
1,3,5-Trimethylbenzene	ND		2.0		ug/L			09/02/16 08:59	
1,3-Dichlorobenzene	ND		0.50		ug/L			09/02/16 08:59	
1,3-Dichloropropane	ND		0.50		ug/L			09/02/16 08:59	
1,4-Dichlorobenzene	ND		0.50		ug/L			09/02/16 08:59	
2,2-Dichloropropane	ND		0.50		ug/L			09/02/16 08:59	
2-Butanone	ND	*	20		ug/L			09/02/16 08:59	
2-Chlorotoluene	ND		2.0		ug/L			09/02/16 08:59	
2-Hexanone	ND		20		ug/L			09/02/16 08:59	
1-Chlorotoluene	ND		2.0		ug/L			09/02/16 08:59	
1-Methyl-2-pentanone	ND		20		ug/L			09/02/16 08:59	
Acetone	ND		20		ug/L			09/02/16 08:59	
Benzene	ND		0.50		ug/L			09/02/16 08:59	
Bromobenzene	ND		2.0		ug/L			09/02/16 08:59	
Bromochloromethane	ND	*	0.50		ug/L			09/02/16 08:59	
Bromodichloromethane	ND		0.50		ug/L			09/02/16 08:59	
Bromoform	ND		0.50		ug/L			09/02/16 08:59	
Bromomethane	ND		1.0		ug/L			09/02/16 08:59	
Carbon disulfide	ND	*	0.50		ug/L			09/02/16 08:59	
Carbon tetrachloride	ND		0.50		ug/L			09/02/16 08:59	
Chlorobenzene	ND		0.50		ug/L			09/02/16 08:59	
Chloroethane	ND		0.50		ug/L			09/02/16 08:59	
Chloroform	ND	*	0.50		ug/L			09/02/16 08:59	
Chloromethane	ND		0.50		ug/L			09/02/16 08:59	
cis-1,2-Dichloroethene	ND	*	0.50		ug/L			09/02/16 08:59	
cis-1,3-Dichloropropene	ND		0.50		ug/L			09/02/16 08:59	
Dibromochloromethane	ND		0.50					09/02/16 08:59	
					ug/L			09/02/16 08:59	
Dibromomethane	ND		0.50		ug/L				
Dichlorodifluoromethane	ND		0.50		ug/L			09/02/16 08:59	
Ethylbenzene	ND		0.50		ug/L			09/02/16 08:59	
Hexachlorobutadiene	ND		2.0		ug/L			09/02/16 08:59	
sopropylbenzene	ND		2.0		ug/L			09/02/16 08:59	
Methyl tert-butyl ether	ND		1.0		ug/L			09/02/16 08:59	
Methylene Chloride	ND	*	2.0		ug/L			09/02/16 08:59	

TestAmerica Seattle

Page 8 of 31

9

4

6

8

10

Client: SCS Engineers

Nitrogen, Nitrate

Project/Site: Leichner Landfill - Semi-Annual

TestAmerica Job ID: 580-61962-1

Client Sample ID: LB-082416-08

Date Collected: 08/24/16 12:15 Date Received: 08/24/16 13:58 Lab Sample ID: 580-61962-2

Matrix: Water

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND	*	2.0		ug/L			09/02/16 08:59	1
n-Butylbenzene	ND		2.0		ug/L			09/02/16 08:59	1
N-Propylbenzene	ND		2.0		ug/L			09/02/16 08:59	1
o-Xylene	ND		0.50		ug/L			09/02/16 08:59	1
p-Isopropyltoluene	ND		2.0		ug/L			09/02/16 08:59	1
sec-Butylbenzene	ND		2.0		ug/L			09/02/16 08:59	1
Styrene	ND		0.50		ug/L			09/02/16 08:59	1
tert-Butylbenzene	ND		2.0		ug/L			09/02/16 08:59	1
Tetrachloroethene	ND		0.50		ug/L			09/02/16 08:59	1
Toluene	ND		0.50		ug/L			09/02/16 08:59	1
trans-1,2-Dichloroethene	ND		0.50		ug/L			09/02/16 08:59	1
trans-1,3-Dichloropropene	ND		0.50		ug/L			09/02/16 08:59	1
Trichloroethene	ND		0.50		ug/L			09/02/16 08:59	1
Trichlorofluoromethane	ND		0.50		ug/L			09/02/16 08:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		46 - 150					09/02/16 08:59	1
4-Bromofluorobenzene (Surr)	97		81 - 120					09/02/16 08:59	1
Dibromofluoromethane (Surr)	75		42 - 132					09/02/16 08:59	1
Toluene-d8 (Surr)	98		75 - 125					09/02/16 08:59	1
Trifluorotoluene (Surr)	120	X	74 - 118					09/02/16 08:59	1
Method: 6020 - Metals (ICP/	MS) - Dissolvo	ed							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND		0.040		mg/L		08/26/16 10:42	08/27/16 14:55	1
Manganese	ND		0.0020		mg/L		08/26/16 10:42	08/27/16 14:55	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	160		10		mg/L			08/26/16 14:36	1
Chloride	4.8		0.90		mg/L			08/25/16 15:41	1
					-				

0.20

1.7

mg/L

08/25/16 15:41

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

TestAmerica Job ID: 580-61962-1

Lab Sample ID: 580-61962-3

Matrix: Water

Client Sample ID: LB-082416-09

Date Collected: 08/24/16 12:20 Date Received: 08/24/16 13:58

Method: 8260B - Volatile Orgar ^{Analyte}		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND .	<u> </u>	0.50		ug/L	— = -		09/02/16 09:25	
1,1,1-Trichloroethane	ND		0.50		ug/L			09/02/16 09:25	
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			09/02/16 09:25	
1,1,2-Trichloroethane	ND		0.50		ug/L			09/02/16 09:25	
1,1-Dichloroethane		*	0.50		ug/L			09/02/16 09:25	
1,1-Dichloropropene	ND		0.50		ug/L			09/02/16 09:25	
1,2,3-Trichlorobenzene	ND		2.0		ug/L			09/02/16 09:25	
1,2,3-Trichloropropane	ND		0.50		ug/L			09/02/16 09:25	
1,2,4-Trichlorobenzene	ND		2.0		ug/L			09/02/16 09:25	
1,2,4-Trimethylbenzene	ND		2.0					09/02/16 09:25	
	ND ND		2.0		ug/L				
1,2-Dibromo-3-Chloropropane					ug/L			09/02/16 09:25	
1,2-Dibromoethane	ND		2.0		ug/L			09/02/16 09:25	
1,2-Dichlorobenzene	ND		0.50		ug/L			09/02/16 09:25	
1,2-Dichloroethane	ND		0.50		ug/L			09/02/16 09:25	
1,2-Dichloropropane	ND		0.50		ug/L			09/02/16 09:25	
1,3,5-Trimethylbenzene	ND		2.0		ug/L			09/02/16 09:25	
1,3-Dichlorobenzene	ND		0.50		ug/L			09/02/16 09:25	
1,3-Dichloropropane	ND		0.50		ug/L			09/02/16 09:25	
1,4-Dichlorobenzene	ND		0.50		ug/L			09/02/16 09:25	
2,2-Dichloropropane	ND		0.50		ug/L			09/02/16 09:25	
2-Butanone	ND 1	*	20		ug/L			09/02/16 09:25	
2-Chlorotoluene	ND		2.0		ug/L			09/02/16 09:25	
2-Hexanone	ND		20		ug/L			09/02/16 09:25	
4-Chlorotoluene	ND		2.0		ug/L			09/02/16 09:25	
1-Methyl-2-pentanone	ND		20		ug/L			09/02/16 09:25	
Acetone	ND		20		ug/L			09/02/16 09:25	
Benzene	ND		0.50		ug/L			09/02/16 09:25	
Bromobenzene	ND		2.0		ug/L			09/02/16 09:25	
Bromochloromethane	ND ¹	*	0.50		ug/L			09/02/16 09:25	
Bromodichloromethane	ND		0.50		ug/L			09/02/16 09:25	
Bromoform	ND		0.50		ug/L			09/02/16 09:25	
Bromomethane	ND		1.0		ug/L			09/02/16 09:25	
Carbon disulfide	ND ¹	*	0.50		ug/L			09/02/16 09:25	
Carbon tetrachloride	ND		0.50		ug/L			09/02/16 09:25	
Chlorobenzene	ND		0.50		ug/L			09/02/16 09:25	
Chloroethane	ND		0.50		ug/L			09/02/16 09:25	
Chloroform	ND		0.50		ug/L			09/02/16 09:25	
Chloromethane	ND		0.50		ug/L			09/02/16 09:25	
cis-1,2-Dichloroethene	ND 1		0.50		ug/L			09/02/16 09:25	
cis-1,3-Dichloropropene	ND		0.50		ug/L			09/02/16 09:25	
Dibromochloromethane	ND ND		0.50					09/02/16 09:25	
Dibromomethane	ND ND		0.50		ug/L			09/02/16 09:25	
					ug/L				
Dichlorodifluoromethane	ND		0.50		ug/L			09/02/16 09:25	
Ethylbenzene	ND		0.50		ug/L			09/02/16 09:25	
Hexachlorobutadiene 	ND		2.0		ug/L			09/02/16 09:25	
sopropylbenzene	ND		2.0		ug/L			09/02/16 09:25	
Methyl tert-butyl ether	ND		1.0		ug/L			09/02/16 09:25	
Methylene Chloride	ND ¹	*	2.0		ug/L			09/02/16 09:25	

TestAmerica Seattle

3

5

7

9

IU

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

TestAmerica Job ID: 580-61962-1

Lab Sample ID: 580-61962-3

Matrix: Water

Client Sample ID: LB-082416-09

Date Collected: 08/24/16 12:20 Date Received: 08/24/16 13:58

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Naphthalene	ND	*	2.0		ug/L			09/02/16 09:25	
n-Butylbenzene	ND		2.0		ug/L			09/02/16 09:25	
N-Propylbenzene	ND		2.0		ug/L			09/02/16 09:25	
o-Xylene	ND		0.50		ug/L			09/02/16 09:25	
p-Isopropyltoluene	ND		2.0		ug/L			09/02/16 09:25	
sec-Butylbenzene	ND		2.0		ug/L			09/02/16 09:25	
Styrene	ND		0.50		ug/L			09/02/16 09:25	
tert-Butylbenzene	ND		2.0		ug/L			09/02/16 09:25	
Tetrachloroethene	ND		0.50		ug/L			09/02/16 09:25	
Toluene	ND		0.50		ug/L			09/02/16 09:25	
trans-1,2-Dichloroethene	ND		0.50		ug/L			09/02/16 09:25	
trans-1,3-Dichloropropene	ND		0.50		ug/L			09/02/16 09:25	
Trichloroethene	ND		0.50		ug/L			09/02/16 09:25	
Trichlorofluoromethane	ND		0.50		ug/L			09/02/16 09:25	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	102		46 - 150					09/02/16 09:25	
4-Bromofluorobenzene (Surr)	99		81 - 120					09/02/16 09:25	
Dibromofluoromethane (Surr)	93		42 - 132					09/02/16 09:25	
Toluene-d8 (Surr)	129	X	75 - 125					09/02/16 09:25	
Trifluorotoluene (Surr)	99		74 - 118					09/02/16 09:25	
Method: 6020 - Metals (ICP	/MS) - Dissolv	ed							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Iron	ND		0.040		mg/L		08/26/16 10:42	08/27/16 15:00	-
Manganese	ND		0.0020		mg/L		08/26/16 10:42	08/27/16 15:00	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total Dissolved Solids	150		10		mg/L			08/26/16 14:36	
Chloride	4.9		0.90		mg/L			08/25/16 15:59	
Nitrogen, Nitrate	1.6		0.20		mg/L			08/25/16 15:59	

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

TestAmerica Job ID: 580-61962-1

Lab Sample ID: 580-61962-4

Matrix: Water

Client Sample ID: LB-082416-07

Date Collected: 08/24/16 11:20 Date Received: 08/24/16 13:58

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L			09/02/16 09:51	
1,1,1-Trichloroethane	ND		0.50		ug/L			09/02/16 09:51	
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			09/02/16 09:51	
1,1,2-Trichloroethane	ND		0.50		ug/L			09/02/16 09:51	
1,1-Dichloroethane	ND ¹	*	0.50		ug/L			09/02/16 09:51	
1,1-Dichloropropene	ND		0.50		ug/L			09/02/16 09:51	
1,2,3-Trichlorobenzene	ND		2.0		ug/L			09/02/16 09:51	
1,2,3-Trichloropropane	ND		0.50		ug/L			09/02/16 09:51	
1,2,4-Trichlorobenzene	ND		2.0		ug/L			09/02/16 09:51	
1,2,4-Trimethylbenzene	ND		2.0		ug/L			09/02/16 09:51	
1,2-Dibromo-3-Chloropropane	ND		2.0		ug/L			09/02/16 09:51	
1,2-Dibromoethane	ND		2.0		ug/L			09/02/16 09:51	
1,2-Dichlorobenzene	ND		0.50		ug/L			09/02/16 09:51	
1,2-Dichloroethane	ND		0.50		ug/L			09/02/16 09:51	
1,2-Dichloropropane	ND		0.50		ug/L			09/02/16 09:51	
1,3,5-Trimethylbenzene	ND		2.0		ug/L			09/02/16 09:51	
1,3-Dichlorobenzene	ND		0.50		ug/L			09/02/16 09:51	
1,3-Dichloropropane	ND		0.50		ug/L			09/02/16 09:51	
1,4-Dichlorobenzene	ND		0.50		ug/L			09/02/16 09:51	
2,2-Dichloropropane	ND		0.50		ug/L			09/02/16 09:51	
2-Butanone	ND 1		20		ug/L			09/02/16 09:51	
2-Chlorotoluene	ND		2.0		ug/L			09/02/16 09:51	
2-Hexanone	ND		20		ug/L			09/02/16 09:51	
4-Chlorotoluene	ND		2.0		ug/L			09/02/16 09:51	
1-Methyl-2-pentanone	ND		20		ug/L			09/02/16 09:51	
Acetone	ND		20					09/02/16 09:51	
Benzene	ND ND		0.50		ug/L ug/L			09/02/16 09:51	
	ND		2.0					09/02/16 09:51	
Bromobenzene Bromochloromethane	ND ¹	*	0.50		ug/L			09/02/16 09:51	
					ug/L				
Bromodichloromethane	ND		0.50		ug/L			09/02/16 09:51	
Bromoform	ND		0.50		ug/L			09/02/16 09:51	
Bromomethane	ND	.	1.0		ug/L			09/02/16 09:51	
Carbon disulfide	ND		0.50		ug/L			09/02/16 09:51	
Carbon tetrachloride	ND		0.50		ug/L			09/02/16 09:51	
Chlorobenzene	ND		0.50		ug/L			09/02/16 09:51	
Chloroethane	ND		0.50		ug/L			09/02/16 09:51	
Chloroform	ND 1		0.50		ug/L			09/02/16 09:51	
Chloromethane	ND		0.50		ug/L			09/02/16 09:51	
cis-1,2-Dichloroethene	ND ¹		0.50		ug/L			09/02/16 09:51	
cis-1,3-Dichloropropene	ND		0.50		ug/L			09/02/16 09:51	
Dibromochloromethane	ND		0.50		ug/L			09/02/16 09:51	
Dibromomethane	ND		0.50		ug/L			09/02/16 09:51	
Dichlorodifluoromethane	ND		0.50		ug/L			09/02/16 09:51	
Ethylbenzene	ND		0.50		ug/L			09/02/16 09:51	
Hexachlorobutadiene	ND		2.0		ug/L			09/02/16 09:51	
sopropylbenzene	ND		2.0		ug/L			09/02/16 09:51	
Methyl tert-butyl ether	ND		1.0		ug/L			09/02/16 09:51	
Methylene Chloride	ND ³	*	2.0		ug/L			09/02/16 09:51	
n-Xylene & p-Xylene	ND		0.50		ug/L			09/02/16 09:51	

TestAmerica Seattle

3

5

7

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

TestAmerica Job ID: 580-61962-1

Lab Sample ID: 580-61962-4

Moterial Moter

Matrix: Water

Client Sample ID: LB-082416-07

Date Collected: 08/24/16 11:20 Date Received: 08/24/16 13:58

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND	*	2.0		ug/L			09/02/16 09:51	1
n-Butylbenzene	ND		2.0		ug/L			09/02/16 09:51	1
N-Propylbenzene	ND		2.0		ug/L			09/02/16 09:51	1
o-Xylene	ND		0.50		ug/L			09/02/16 09:51	1
p-Isopropyltoluene	ND		2.0		ug/L			09/02/16 09:51	1
sec-Butylbenzene	ND		2.0		ug/L			09/02/16 09:51	1
Styrene	ND		0.50		ug/L			09/02/16 09:51	1
tert-Butylbenzene	ND		2.0		ug/L			09/02/16 09:51	1
Tetrachloroethene	ND		0.50		ug/L			09/02/16 09:51	1
Toluene	ND		0.50		ug/L			09/02/16 09:51	1
trans-1,2-Dichloroethene	ND		0.50		ug/L			09/02/16 09:51	1
trans-1,3-Dichloropropene	ND		0.50		ug/L			09/02/16 09:51	1
Trichloroethene	ND		0.50		ug/L			09/02/16 09:51	1
Trichlorofluoromethane	ND		0.50		ug/L			09/02/16 09:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		46 - 150					09/02/16 09:51	1
4-Bromofluorobenzene (Surr)	128	X	81 - 120					09/02/16 09:51	1
Dibromofluoromethane (Surr)	94		42 - 132					09/02/16 09:51	1
Toluene-d8 (Surr)	98		75 - 125					09/02/16 09:51	1
Trifluorotoluene (Surr)	79		74 - 118					09/02/16 09:51	1
Method: 6020 - Metals (ICP	P/MS) - Dissolve	ed							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND		0.040		mg/L		08/26/16 10:42	08/27/16 15:04	1
Manganese	ND		0.0020		mg/L		08/26/16 10:42	08/27/16 15:04	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	280		10		mg/L			08/26/16 14:36	1
Total Dissulved Solids									
Chloride	26		0.90		mg/L			08/25/16 16:17	1

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

TestAmerica Job ID: 580-61962-1

Lab Sample ID: 580-61962-5

Matrix: Water

Client Sample ID: LB-082416-06

Date Collected: 08/24/16 10:50 Date Received: 08/24/16 13:58

Method: 8260B - Volatile Org Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L		•	09/02/16 10:17	
1,1,1-Trichloroethane	ND		0.50		ug/L			09/02/16 10:17	
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			09/02/16 10:17	
1,1,2-Trichloroethane	ND		0.50		ug/L			09/02/16 10:17	· · · · · · .
1,1-Dichloroethane	ND	*	0.50		ug/L			09/02/16 10:17	
1,1-Dichloropropene	ND		0.50		ug/L			09/02/16 10:17	
1,2,3-Trichlorobenzene	ND		2.0		ug/L			09/02/16 10:17	
1,2,3-Trichloropropane	ND		0.50		ug/L			09/02/16 10:17	
1,2,4-Trichlorobenzene	ND		2.0		ug/L			09/02/16 10:17	
1,2,4-Trimethylbenzene	ND		2.0		ug/L			09/02/16 10:17	
1,2-Dibromo-3-Chloropropane	ND		2.0		ug/L			09/02/16 10:17	
1,2-Dibromoethane	ND		2.0		ug/L			09/02/16 10:17	
1,2-Dichlorobenzene	ND		0.50		ug/L			09/02/16 10:17	· · · · · .
1,2-Dichloroethane	ND		0.50		ug/L			09/02/16 10:17	
1,2-Dichloropropane	ND		0.50		ug/L ug/L			09/02/16 10:17	
1,3,5-Trimethylbenzene	ND		2.0		ug/L			09/02/16 10:17	· · · · · .
1,3-Dichlorobenzene	ND ND		0.50		ug/L ug/L			09/02/16 10:17	
1,3-Dichloropropane	ND		0.50		ug/L			09/02/16 10:17	
1,4-Dichlorobenzene	ND		0.50		ug/L			09/02/16 10:17	
2,2-Dichloropropane	ND		0.50		ug/L ug/L			09/02/16 10:17	
2-Butanone	ND ND	*	20		ug/L ug/L			09/02/16 10:17	
2-Chlorotoluene	ND		2.0					09/02/16 10:17	· · · · · .
	ND ND		2.0		ug/L				
2-Hexanone 4-Chlorotoluene	ND ND				ug/L			09/02/16 10:17	
	ND ND		2.0		ug/L			09/02/16 10:17	
4-Methyl-2-pentanone			20		ug/L			09/02/16 10:17	
Acetone	ND		20		ug/L			09/02/16 10:17	
Benzene	ND		0.50		ug/L			09/02/16 10:17	
Bromobenzene	ND ND	*	2.0		ug/L			09/02/16 10:17	•
Bromochloromethane		-	0.50		ug/L			09/02/16 10:17	
Bromodichloromethane	ND		0.50		ug/L			09/02/16 10:17	
Bromoform	ND		0.50		ug/L			09/02/16 10:17	
Bromomethane	ND		1.0		ug/L			09/02/16 10:17	
Carbon disulfide	ND	* 	0.50		ug/L			09/02/16 10:17	
Carbon tetrachloride	ND		0.50		ug/L			09/02/16 10:17	
Chlorobenzene	ND		0.50		ug/L			09/02/16 10:17	
Chloroethane	ND		0.50		ug/L			09/02/16 10:17	
Chloroform	ND	*	0.50		ug/L			09/02/16 10:17	
Chloromethane	ND		0.50		ug/L			09/02/16 10:17	•
cis-1,2-Dichloroethene	ND	*	0.50		ug/L			09/02/16 10:17	
cis-1,3-Dichloropropene	ND		0.50		ug/L			09/02/16 10:17	•
Dibromochloromethane	ND		0.50		ug/L			09/02/16 10:17	•
Dibromomethane	ND		0.50		ug/L			09/02/16 10:17	
Dichlorodifluoromethane	ND		0.50		ug/L			09/02/16 10:17	•
Ethylbenzene	ND		0.50		ug/L			09/02/16 10:17	
Hexachlorobutadiene	ND		2.0		ug/L			09/02/16 10:17	
Isopropylbenzene	ND		2.0		ug/L			09/02/16 10:17	
Methyl tert-butyl ether	ND		1.0		ug/L			09/02/16 10:17	•
Methylene Chloride	ND	*	2.0		ug/L			09/02/16 10:17	•
m-Xylene & p-Xylene	ND		0.50		ug/L			09/02/16 10:17	

TestAmerica Seattle

3

5

7

9

10

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

Client Sample ID: LB-082416-06

Date Collected: 08/24/16 10:50

TestAmerica Job ID: 580-61962-1

Lab Sample ID: 580-61962-5

Matrix: Water

Date Received: 08/24/16 13:58
Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND	*	2.0		ug/L			09/02/16 10:17	1
n-Butylbenzene	ND		2.0		ug/L			09/02/16 10:17	1
N-Propylbenzene	ND		2.0		ug/L			09/02/16 10:17	1
o-Xylene	ND		0.50		ug/L			09/02/16 10:17	1
p-Isopropyltoluene	ND		2.0		ug/L			09/02/16 10:17	1
sec-Butylbenzene	ND		2.0		ug/L			09/02/16 10:17	1
Styrene	ND		0.50		ug/L			09/02/16 10:17	1
tert-Butylbenzene	ND		2.0		ug/L			09/02/16 10:17	1
Tetrachloroethene	ND		0.50		ug/L			09/02/16 10:17	1
Toluene	ND		0.50		ug/L			09/02/16 10:17	1
trans-1,2-Dichloroethene	ND		0.50		ug/L			09/02/16 10:17	1
trans-1,3-Dichloropropene	ND		0.50		ug/L			09/02/16 10:17	1
Trichloroethene	ND		0.50		ug/L			09/02/16 10:17	1
Trichlorofluoromethane	ND		0.50		ug/L			09/02/16 10:17	1

Surrogate	%Recovery	Qualifier	Limits	Prepai	red Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		46 - 150		09/02/16 10:17	1
4-Bromofluorobenzene (Surr)	98		81 - 120		09/02/16 10:17	1
Dibromofluoromethane (Surr)	101		42 - 132		09/02/16 10:17	1
Toluene-d8 (Surr)	99		75 - 125		09/02/16 10:17	1
Trifluorotoluene (Surr)	122	X	74 - 118		09/02/16 10:17	1

Method. 0020 - Metals (101 /MS) - Dissolve	u						
Analyte	Result (Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND		0.040	mg/L		08/26/16 10:42	08/27/16 15:09	1
Manganese	ND		0.0020	ma/L		08/26/16 10:42	08/27/16 15:09	1

General Chemistry

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	ND		10		mg/L			08/26/16 14:36	1
Chloride	ND		0.90		mg/L			08/25/16 16:36	1
Nitrogen, Nitrate	ND		0.20		mg/L			08/25/16 16:36	1

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

TestAmerica Job ID: 580-61962-1

Lab Sample ID: 580-61962-6

Matrix: Water

Client Sample ID: Trip Blanks

Date Collected: 08/24/16 00:00 Date Received: 08/24/16 13:58

Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	0.50		ug/L		•	09/02/16 04:35	
1,1,1-Trichloroethane	ND	0.50		ug/L			09/02/16 04:35	
1,1,2,2-Tetrachloroethane	ND	0.50		ug/L			09/02/16 04:35	
1,1,2-Trichloroethane	ND	0.50		ug/L			09/02/16 04:35	· · · · · · .
1,1-Dichloroethane	ND			ug/L			09/02/16 04:35	
1,1-Dichloropropene	ND	0.50		ug/L			09/02/16 04:35	
1,2,3-Trichlorobenzene	ND	2.0		ug/L			09/02/16 04:35	
1,2,3-Trichloropropane	ND	0.50		ug/L			09/02/16 04:35	
1,2,4-Trichlorobenzene	ND	2.0		ug/L			09/02/16 04:35	
1,2,4-Trimethylbenzene	ND	2.0		ug/L			09/02/16 04:35	
1,2-Dibromo-3-Chloropropane	ND	2.0		ug/L			09/02/16 04:35	
1,2-Dibromoethane	ND	2.0		ug/L			09/02/16 04:35	
1,2-Dichlorobenzene	ND	0.50		ug/L			09/02/16 04:35	,
1,2-Dichloroethane	ND	0.50		ug/L			09/02/16 04:35	
1,2-Dichloropropane	ND ND	0.50		ug/L ug/L			09/02/16 04:35	
		2.0						
1,3,5-Trimethylbenzene	ND ND	0.50		ug/L			09/02/16 04:35	•
1,3-Dichlorobenzene				ug/L			09/02/16 04:35	•
1,3-Dichloropropane	ND	0.50		ug/L			09/02/16 04:35	
1,4-Dichlorobenzene	ND	0.50		ug/L			09/02/16 04:35	
2,2-Dichloropropane	ND	0.50		ug/L			09/02/16 04:35	•
2-Butanone	ND			ug/L			09/02/16 04:35	
2-Chlorotoluene	ND	2.0		ug/L			09/02/16 04:35	•
2-Hexanone	ND	20		ug/L			09/02/16 04:35	•
4-Chlorotoluene	ND	2.0		ug/L			09/02/16 04:35	
4-Methyl-2-pentanone	ND	20		ug/L			09/02/16 04:35	•
Acetone	ND	20		ug/L			09/02/16 04:35	•
Benzene	ND	0.50		ug/L			09/02/16 04:35	•
Bromobenzene	ND	2.0		ug/L			09/02/16 04:35	
Bromochloromethane	ND	* 0.50		ug/L			09/02/16 04:35	•
Bromodichloromethane	ND	0.50		ug/L			09/02/16 04:35	•
Bromoform	ND	0.50		ug/L			09/02/16 04:35	
Bromomethane	ND	1.0		ug/L			09/02/16 04:35	•
Carbon disulfide	ND	* 0.50		ug/L			09/02/16 04:35	•
Carbon tetrachloride	ND	0.50		ug/L			09/02/16 04:35	,
Chlorobenzene	ND	0.50		ug/L			09/02/16 04:35	
Chloroethane	ND	0.50		ug/L			09/02/16 04:35	
Chloroform	ND	* 0.50		ug/L			09/02/16 04:35	,
Chloromethane	ND	0.50		ug/L			09/02/16 04:35	
cis-1,2-Dichloroethene	ND			ug/L			09/02/16 04:35	
cis-1,3-Dichloropropene	ND	0.50		ug/L			09/02/16 04:35	
Dibromochloromethane	ND	0.50		ug/L			09/02/16 04:35	
Dibromomethane	ND	0.50		ug/L			09/02/16 04:35	
Dichlorodifluoromethane	ND	0.50		ug/L			09/02/16 04:35	
Ethylbenzene	ND	0.50		ug/L			09/02/16 04:35	
Hexachlorobutadiene	ND	2.0		_			09/02/16 04:35	
				ug/L			09/02/16 04:35	· · · · · .
Isopropylbenzene	ND ND	2.0		ug/L				
Methyl tert-butyl ether		1.0		ug/L			09/02/16 04:35	
Methylene Chloride m-Xylene & p-Xylene	5.3 ND	B * 2.0 0.50		ug/L ug/L			09/02/16 04:35 09/02/16 04:35	

TestAmerica Seattle

3

5

7

9

Client: SCS Engineers

Toluene-d8 (Surr)

Trifluorotoluene (Surr)

Project/Site: Leichner Landfill - Semi-Annual

TestAmerica Job ID: 580-61962-1

09/02/16 04:35

09/02/16 04:35

Lab Sample ID: 580-61962-6

Matrix: Water

Client Sample ID: Trip Blanks

Date Collected: 08/24/16 00:00 Date Received: 08/24/16 13:58

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND	*	2.0		ug/L			09/02/16 04:35	1
n-Butylbenzene	ND		2.0		ug/L			09/02/16 04:35	1
N-Propylbenzene	ND		2.0		ug/L			09/02/16 04:35	1
o-Xylene	ND		0.50		ug/L			09/02/16 04:35	1
p-Isopropyltoluene	ND		2.0		ug/L			09/02/16 04:35	1
sec-Butylbenzene	ND		2.0		ug/L			09/02/16 04:35	1
Styrene	ND		0.50		ug/L			09/02/16 04:35	1
tert-Butylbenzene	ND		2.0		ug/L			09/02/16 04:35	1
Tetrachloroethene	ND		0.50		ug/L			09/02/16 04:35	1
Toluene	ND		0.50		ug/L			09/02/16 04:35	1
trans-1,2-Dichloroethene	ND		0.50		ug/L			09/02/16 04:35	1
trans-1,3-Dichloropropene	ND		0.50		ug/L			09/02/16 04:35	1
Trichloroethene	ND		0.50		ug/L			09/02/16 04:35	1
Trichlorofluoromethane	ND		0.50		ug/L			09/02/16 04:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		46 - 150					09/02/16 04:35	1
4-Bromofluorobenzene (Surr)	98		81 - 120					09/02/16 04:35	1
Dibromofluoromethane (Surr)	98		42 - 132					09/02/16 04:35	1

75 - 125

74 - 118

99

97

6

8

9

QC Sample Results

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

TestAmerica Job ID: 580-61962-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 580-226522/5

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

•	MB	MB						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L			09/02/16 02:22	
1,1,1-Trichloroethane	ND		0.50	ug/L			09/02/16 02:22	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L			09/02/16 02:22	1
1,1,2-Trichloroethane	ND		0.50	ug/L			09/02/16 02:22	1
1,1-Dichloroethane	ND		0.50	ug/L			09/02/16 02:22	1
1,1-Dichloropropene	ND		0.50	ug/L			09/02/16 02:22	1
1,2,3-Trichlorobenzene	ND		2.0	ug/L			09/02/16 02:22	1
1,2,3-Trichloropropane	ND		0.50	ug/L			09/02/16 02:22	1
1,2,4-Trichlorobenzene	ND		2.0	ug/L			09/02/16 02:22	1
1,2,4-Trimethylbenzene	ND		2.0	ug/L			09/02/16 02:22	1
1,2-Dibromo-3-Chloropropane	ND		2.0	ug/L			09/02/16 02:22	1
1,2-Dibromoethane	ND		2.0	ug/L			09/02/16 02:22	1
1,2-Dichlorobenzene	ND		0.50	ug/L			09/02/16 02:22	1
1,2-Dichloroethane	ND		0.50	ug/L			09/02/16 02:22	1
1,2-Dichloropropane	ND		0.50	ug/L			09/02/16 02:22	1
1,3,5-Trimethylbenzene	ND		2.0	ug/L			09/02/16 02:22	1
1,3-Dichlorobenzene	ND		0.50	ug/L			09/02/16 02:22	1
1,3-Dichloropropane	ND		0.50	ug/L			09/02/16 02:22	1
1,4-Dichlorobenzene	ND		0.50	ug/L			09/02/16 02:22	1
2,2-Dichloropropane	ND		0.50	ug/L			09/02/16 02:22	1
2-Butanone	ND		20	ug/L			09/02/16 02:22	1
2-Chlorotoluene	ND		2.0	ug/L			09/02/16 02:22	
2-Hexanone	ND		20	ug/L			09/02/16 02:22	
4-Chlorotoluene	ND		2.0	ug/L			09/02/16 02:22	1
4-Methyl-2-pentanone	ND		20	ug/L			09/02/16 02:22	
Acetone	ND		20	ug/L			09/02/16 02:22	1
Benzene	ND		0.50	ug/L			09/02/16 02:22	1
Bromobenzene	ND		2.0	ug/L			09/02/16 02:22	
Bromochloromethane	ND		0.50	ug/L			09/02/16 02:22	1
Bromodichloromethane	ND		0.50	ug/L			09/02/16 02:22	1
Bromoform	ND		0.50	ug/L			09/02/16 02:22	
Bromomethane	ND		1.0	ug/L			09/02/16 02:22	1
Carbon disulfide	ND		0.50	ug/L			09/02/16 02:22	1
Carbon tetrachloride	ND		0.50	ug/L			09/02/16 02:22	
Chlorobenzene	ND		0.50	ug/L			09/02/16 02:22	1
Chloroethane	ND		0.50	ŭ			09/02/16 02:22	1
Chloroform				ug/L			09/02/16 02:22	
Chloromethane	ND ND		0.50 0.50	ug/L			09/02/16 02:22	1
	ND ND		0.50	ug/L ug/L			09/02/16 02:22	1
cis-1,2-Dichloroethene								1 1
cis-1,3-Dichloropropene	ND		0.50	ug/L			09/02/16 02:22	
Dibromochloromethane	ND ND		0.50	ug/L			09/02/16 02:22	1
Dibromomethane Dichlorodifluoromethane			0.50	ug/L			09/02/16 02:22	1
	ND		0.50	ug/L			09/02/16 02:22	1
Ethylbenzene	ND		0.50	ug/L			09/02/16 02:22	1
Hexachlorobutadiene	ND		2.0	ug/L			09/02/16 02:22	1
Isopropylbenzene	ND		2.0	ug/L			09/02/16 02:22	1
Methyl tert-butyl ether	ND		1.0	ug/L			09/02/16 02:22	1
Methylene Chloride	8.45		2.0	ug/L			09/02/16 02:22	1

TestAmerica Seattle

Page 18 of 31

9

3

5

6

Q

TestAmerica Job ID: 580-61962-1

Client: SCS Engineers Project/Site: Leichner Landfill - Semi-Annual

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 580-226522/5

Matrix: Water

Analysis Batch: 226522

Client Sample ID: Method Blank

Prep Type: Total/NA

/ many one Datem 220022									
-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
m-Xylene & p-Xylene	ND		0.50		ug/L			09/02/16 02:22	1
Naphthalene	ND		2.0		ug/L			09/02/16 02:22	1
n-Butylbenzene	ND		2.0		ug/L			09/02/16 02:22	1
N-Propylbenzene	ND		2.0		ug/L			09/02/16 02:22	1
o-Xylene	ND		0.50		ug/L			09/02/16 02:22	1
p-Isopropyltoluene	ND		2.0		ug/L			09/02/16 02:22	1
sec-Butylbenzene	ND		2.0		ug/L			09/02/16 02:22	1
Styrene	ND		0.50		ug/L			09/02/16 02:22	1
tert-Butylbenzene	ND		2.0		ug/L			09/02/16 02:22	1
Tetrachloroethene	ND		0.50		ug/L			09/02/16 02:22	1
Toluene	ND		0.50		ug/L			09/02/16 02:22	1
trans-1,2-Dichloroethene	ND		0.50		ug/L			09/02/16 02:22	1
trans-1,3-Dichloropropene	ND		0.50		ug/L			09/02/16 02:22	1
Trichloroethene	ND		0.50		ug/L			09/02/16 02:22	1
Trichlorofluoromethane	ND		0.50		ug/L			09/02/16 02:22	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 103 46 - 150 09/02/16 02:22 4-Bromofluorobenzene (Surr) 99 81 - 120 09/02/16 02:22 Dibromofluoromethane (Surr) 101 42 - 132 09/02/16 02:22 Toluene-d8 (Surr) 100 75 - 125 09/02/16 02:22 Trifluorotoluene (Surr) 79 74 - 118 09/02/16 02:22

Lab Sample ID: LCS 580-226522/6

Matrix: Water

Client Sample ID:	Lab C	ontrol Sample
	Prep 7	Type: Total/NA

Analysis Batch: 226522								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	5.02	4.78		ug/L		95	68 - 139	
1,1,1-Trichloroethane	5.02	4.91		ug/L		98	56 - 150	
1,1,2,2-Tetrachloroethane	5.01	4.63		ug/L		92	60 - 134	
1,1,2-Trichloroethane	5.02	5.38		ug/L		107	62 - 137	
1,1-Dichloroethane	5.00	6.99	*	ug/L		140	68 - 135	
1,1-Dichloropropene	5.00	4.37		ug/L		87	64 - 146	
1,2,3-Trichlorobenzene	5.01	6.58		ug/L		131	60 - 137	
1,2,3-Trichloropropane	5.01	5.37		ug/L		107	45 - 150	
1,2,4-Trichlorobenzene	5.00	5.07		ug/L		101	60 - 138	
1,2,4-Trimethylbenzene	5.00	4.65		ug/L		93	70 - 142	
1,2-Dibromo-3-Chloropropane	5.01	4.94		ug/L		99	34 - 150	
1,2-Dibromoethane	5.01	5.26		ug/L		105	56 - 146	
1,2-Dichlorobenzene	5.00	5.33		ug/L		106	73 - 120	
1,2-Dichloroethane	5.00	5.42		ug/L		108	63 - 150	
1,2-Dichloropropane	5.00	4.77		ug/L		95	72 - 120	
1,3,5-Trimethylbenzene	5.01	4.64		ug/L		93	70 - 145	
1,3-Dichlorobenzene	5.01	4.83		ug/L		96	76 - 120	
1,3-Dichloropropane	5.01	5.28		ug/L		105	61 - 130	
1,4-Dichlorobenzene	5.01	5.00		ug/L		100	77 - 120	
2,2-Dichloropropane	5.00	3.19		ug/L		64	60 - 150	

TestAmerica Seattle

Page 19 of 31

TestAmerica Job ID: 580-61962-1

Client: SCS Engineers Project/Site: Leichner Landfill - Semi-Annual

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 580-226522/6

Matrix: Water

Analysis Batch: 226522

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike				%Rec.
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits
2-Butanone	25.0	25.8	ug/L	103	30 - 150
2-Chlorotoluene	5.00	4.91	ug/L	98	68 - 130
2-Hexanone	25.0	28.9	ug/L	116	25 - 150
4-Chlorotoluene	5.01	4.90	ug/L	98	75 - 130
4-Methyl-2-pentanone	25.0	26.5	ug/L	106	36 - 150
Acetone	25.0	25.7	ug/L	103	20 - 138
Benzene	5.02	4.49	ug/L	89	73 - 120
Bromobenzene	5.00	5.18	ug/L	104	68 - 130
Bromochloromethane	5.01	4.69	ug/L	94	71 - 131
Bromodichloromethane	5.02	5.17	ug/L	103	62 - 150
Bromoform	5.02	4.41	ug/L	88	51 - 137
Bromomethane	5.00	3.78	ug/L	76	61 ₋ 135
Carbon disulfide	5.02	5.44	ug/L	108	65 - 128
Carbon tetrachloride	5.01	4.80	ug/L	96	54 - 150
Chlorobenzene	5.02	4.67	ug/L	93	74 - 114
Chloroethane	5.00	3.69	ug/L	74	58 - 130
Chloroform	5.00	4.84	ug/L	97	71 - 130
Chloromethane	5.00	4.48	ug/L	90	40 - 150
cis-1,2-Dichloroethene	5.01	4.49	ug/L	90	73 - 130
cis-1,3-Dichloropropene	5.01	4.65	ug/L	93	54 - 150
Dibromochloromethane	5.01	4.88	ug/L	97	46 - 150
Dibromomethane	5.02	4.97	ug/L	99	65 - 137
Dichlorodifluoromethane	5.00	4.34	ug/L	87	45 - 150
Ethylbenzene	5.02	4.53	ug/L	90	74 - 125
Hexachlorobutadiene	5.00	5.52	ug/L	110	38 - 150
Isopropylbenzene	5.01	4.64	ug/L	93	75 - 137
Methyl tert-butyl ether	5.01	5.99	ug/L	120	56 - 150
Methylene Chloride	5.02	16.1	* ug/L	321	58 - 134
m-Xylene & p-Xylene	5.01	4.54	ug/L	91	73 - 130
Naphthalene	5.01	7.40	ug/L	148	26 - 150
n-Butylbenzene	5.01	4.53	ug/L	90	66 - 125
N-Propylbenzene	5.00	4.67	ug/L	93	61 - 142
o-Xylene	5.01	4.20	ug/L	84	80 - 139
p-Isopropyltoluene	5.00	4.56	ug/L	91	72 - 127
sec-Butylbenzene	5.01	4.52	ug/L	90	62 - 140
Styrene	5.01	4.52	ug/L	90	68 - 136
tert-Butylbenzene	5.00	4.60	ug/L	92	55 - 150
Tetrachloroethene	5.01	4.65	ug/L	93	67 - 123
Toluene	5.00	4.58	ug/L	92	70 - 126
trans-1,2-Dichloroethene	5.01	5.75	ug/L	115	69 - 124
trans-1,3-Dichloropropene	5.00	4.88	ug/L	98	40 - 150
Trichloroethene	5.01	5.37	ug/L	107	72 - 123
Trichlorofluoromethane	5.00	4.34	ug/L	87	60 - 150

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	103		46 - 150
4-Bromofluorobenzene (Surr)	98		81 - 120
Dibromofluoromethane (Surr)	97		42 - 132

TestAmerica Seattle

Page 20 of 31

QC Sample Results

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

TestAmerica Job ID: 580-61962-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 580-226522/6

Matrix: Water

Analysis Batch: 226522

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	97		75 - 125
Trifluorotoluene (Surr)	99		74 - 118

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 226522

Lab Sample ID: LCSD 580-226522/7

Analysis Batch: 226522	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	5.02	5.12		ug/L		102	68 - 139	7	20
1,1,1-Trichloroethane	5.02	5.16		ug/L		103	56 - 150	5	29
1,1,2,2-Tetrachloroethane	5.01	4.62		ug/L		92	60 - 134	0	25
1,1,2-Trichloroethane	5.02	5.31		ug/L		106	62 - 137	1	30
1,1-Dichloroethane	5.00	6.62		ug/L		132	68 - 135	5	27
1,1-Dichloropropene	5.00	4.67		ug/L		93	64 - 146	7	20
1,2,3-Trichlorobenzene	5.01	5.52		ug/L		110	60 - 137	17	20
1,2,3-Trichloropropane	5.01	5.27		ug/L		105	45 - 150	2	20
1,2,4-Trichlorobenzene	5.00	5.39		ug/L		108	60 - 138	6	20
1,2,4-Trimethylbenzene	5.00	4.67		ug/L		93	70 - 142	0	20
1,2-Dibromo-3-Chloropropane	5.01	4.90		ug/L		98	34 - 150	1	20
1,2-Dibromoethane	5.01	5.08		ug/L		101	56 - 146	4	20
1,2-Dichlorobenzene	5.00	5.30		ug/L		106	73 - 120	1	14
1,2-Dichloroethane	5.00	5.48		ug/L		110	63 - 150	1	29
1,2-Dichloropropane	5.00	4.67		ug/L		93	72 - 120	2	20
1,3,5-Trimethylbenzene	5.01	4.63		ug/L		93	70 - 145	0	20
1,3-Dichlorobenzene	5.01	4.80		ug/L		96	76 - 120	1	12
1,3-Dichloropropane	5.01	4.94		ug/L		99	61 - 130	7	29
1,4-Dichlorobenzene	5.01	5.07		ug/L		101	77 - 120	1	11
2,2-Dichloropropane	5.00	3.45		ug/L		69	60 - 150	8	29
2-Butanone	25.0	40.5	*	ug/L		162	30 - 150	44	35
2-Chlorotoluene	5.00	4.81		ug/L		96	68 - 130	2	20
2-Hexanone	25.0	28.7		ug/L		115	25 - 150	1	28
4-Chlorotoluene	5.01	4.91		ug/L		98	75 - 130	0	20
4-Methyl-2-pentanone	25.0	26.9		ug/L		108	36 - 150	2	34
Acetone	25.0	26.2		ug/L		105	20 - 138	2	35
Benzene	5.02	4.59		ug/L		91	73 - 120	2	20
Bromobenzene	5.00	4.98		ug/L		100	68 - 130	4	20
Bromochloromethane	5.01	6.18	*	ug/L		123	71 - 131	28	20
Bromodichloromethane	5.02	5.04		ug/L		101	62 - 150	3	20
Bromoform	5.02	4.32		ug/L		86	51 - 137	2	20
Bromomethane	5.00	4.30		ug/L		86	61 - 135	13	31
Carbon disulfide	5.02	6.65	*	ug/L		132	65 - 128	20	32
Carbon tetrachloride	5.01	5.05		ug/L		101	54 - 150	5	30
Chlorobenzene	5.02	4.79		ug/L		95	74 - 114	3	12
Chloroethane	5.00	4.25		ug/L		85	58 ₋ 130	14	35
Chloroform	5.00	6.23	*	ug/L		125	71 - 130	25	20
Chloromethane	5.00	4.71		ug/L		94	40 - 150	5	31
cis-1,2-Dichloroethene	5.01	6.70	*	ug/L		134	73 - 130	39	20
cis-1,3-Dichloropropene	5.01	4.63		ug/L		92	54 - 150	1	28

TestAmerica Seattle

Page 21 of 31

TestAmerica Job ID: 580-61962-1

Client: SCS Engineers Project/Site: Leichner Landfill - Semi-Annual

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 580-226522/7

Matrix: Water

Analysis Batch: 226522

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dibromochloromethane	5.01	4.88		ug/L		97	46 - 150	0	20
Dibromomethane	5.02	5.16		ug/L		103	65 - 137	4	20
Dichlorodifluoromethane	5.00	4.93		ug/L		99	45 - 150	13	29
Ethylbenzene	5.02	4.65		ug/L		93	74 - 125	2	20
Hexachlorobutadiene	5.00	4.80		ug/L		96	38 - 150	14	20
Isopropylbenzene	5.01	4.83		ug/L		96	75 - 137	4	20
Methyl tert-butyl ether	5.01	7.30		ug/L		146	56 - 150	20	26
Methylene Chloride	5.02	16.7	*	ug/L		332	58 - 134	3	29
m-Xylene & p-Xylene	5.01	4.61		ug/L		92	73 - 130	2	20
Naphthalene	5.01	5.99	*	ug/L		120	26 - 150	21	20
n-Butylbenzene	5.01	4.67		ug/L		93	66 - 125	3	20
N-Propylbenzene	5.00	4.64		ug/L		93	61 - 142	1	20
o-Xylene	5.01	4.49		ug/L		90	80 - 139	7	20
p-Isopropyltoluene	5.00	4.68		ug/L		94	72 - 127	3	14
sec-Butylbenzene	5.01	4.60		ug/L		92	62 - 140	2	20
Styrene	5.01	4.50		ug/L		90	68 - 136	0	20
tert-Butylbenzene	5.00	4.66		ug/L		93	55 - 150	1	20
Tetrachloroethene	5.01	4.89		ug/L		98	67 - 123	5	20
Toluene	5.00	4.63		ug/L		93	70 - 126	1	20
trans-1,2-Dichloroethene	5.01	6.09		ug/L		122	69 - 124	6	27
trans-1,3-Dichloropropene	5.00	4.79		ug/L		96	40 - 150	2	30
Trichloroethene	5.01	5.55		ug/L		111	72 - 123	3	20
Trichlorofluoromethane	5.00	4.76		ug/L		95	60 - 150	9	31

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	104		46 - 150
4-Bromofluorobenzene (Surr)	97		81 - 120
Dibromofluoromethane (Surr)	101		42 - 132
Toluene-d8 (Surr)	98		75 - 125
Trifluorotoluene (Surr)	97		74 - 118

Method: 6020 - Metals (ICP/MS)

Lab Sample ID: MB 580-225970/15-A

Matrix: Water

Analysis Batch: 226117

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 225970

	INID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Īron	ND		0.040		mg/L		08/26/16 10:42	08/27/16 14:02	1
Manganese	ND		0.0020		mg/L		08/26/16 10:42	08/27/16 14:02	1

Lab Sample ID: LCS 580-225970/16-A		Client Sample ID: Lab Control Sample						
Matrix: Water	Prep Type: Total Recoverable							ecoverable
Analysis Batch: 226117							Prep Bat	tch: 225970
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Iron	22.0	24.6		mg/L		112	80 - 120	
Manganese	1.00	1.07		mg/L		107	80 - 120	

TestAmerica Seattle

Page 22 of 31

9/29/2016

6

Client: SCS Engineers

Analysis Batch: 226117

Matrix: Water

Project/Site: Leichner Landfill - Semi-Annual

Lab Sample ID: LCSD 580-225970/17-A

Client Sample ID: Lab Control Sample Dup

Prep Type: Total Recoverable

Prep Batch: 225970 %Rec. **RPD** Limit

Analyte Added Result Qualifier Unit %Rec Limits RPD 22.0 mg/L 80 - 120 5 20 Iron 25.8 117 1.00 1.09 109 80 - 120 20 Manganese mg/L

LCSD LCSD

QC Sample Results

Lab Sample ID: 580-61939-B-10-C MS Client Sample ID: Matrix Spike **Matrix: Water**

Spike

Prep Type: Total Recoverable Analysis Batch: 226117 Prep Batch: 225970

MS MS Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits 80 - 120 Iron 31 22.0 54.4 mg/L 106 19 1.00 19.8 4 80 - 120 Manganese mg/L 94

Lab Sample ID: 580-61939-B-10-D MSD **Client Sample ID: Matrix Spike Duplicate Matrix: Water Prep Type: Total Recoverable**

Analysis Batch: 226117 Prep Batch: 225970 Sample Sample Spike MSD MSD %Rec. **RPD** Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit

Iron 31 22.0 54.3 mg/L 106 80 - 120 0 20 19 1.00 19.7 4 90 80 - 12020 Manganese mg/L

Lab Sample ID: 580-61939-B-10-B DU **Client Sample ID: Duplicate Matrix: Water Prep Type: Total Recoverable**

Analysis Batch: 226117 Prep Batch: 225970

DU DU **RPD** Sample Sample RPD Analyte Result Qualifier Result Qualifier Unit D Limit 31 20 Iron 29.7 mg/L 5 19 18.0 20 Manganese mg/L

Method: 160.1 - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 580-226028/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 226028

MR MR Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Total Dissolved Solids $\overline{\mathsf{ND}}$ 10 mg/L 08/26/16 14:36

Lab Sample ID: LCS 580-226028/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 226028

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Total Dissolved Solids 1000 1030 mg/L 103 80 - 120

Lab Sample ID: 580-61908-B-1 DU **Client Sample ID: Duplicate** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 226028

Sample Sample DU DU **RPD** Result Qualifier Result Qualifier Analyte Unit D **RPD** Limit 2000 2000 **Total Dissolved Solids** mg/L 20

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 580-225948/3 Client Sample ID: Method Blank Prep Type: Total/NA **Matrix: Water**

Analysis Batch: 225948

MB MB Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac D Prepared 0.20 Nitrogen, Nitrate ND mg/L 08/25/16 13:50

Lab Sample ID: LCS 580-225948/4 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 225948**

Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier Unit %Rec Nitrogen, Nitrate 5.00 5.39 mg/L 108 90 - 110

Lab Sample ID: LCSD 580-225948/5 Client Sample ID: Lab Control Sample Dup **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 225948

Spike LCSD LCSD %Rec. **RPD** Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec Nitrogen, Nitrate 5.00 5.37 mg/L 107

Lab Sample ID: 580-61962-1 MS Client Sample ID: LB-082416-05 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 225948

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Unit %Rec Limits Nitrogen, Nitrate 5.4 F1 5.00 11.7 F1 127 90 - 110 mg/L

Lab Sample ID: 580-61962-1 MSD Client Sample ID: LB-082416-05 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 225948

Spike MSD MSD %Rec. RPD Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Nitrogen, Nitrate 5.4 F1 5.00 11.5 F1 123 90 - 110 mg/L

Lab Sample ID: MB 580-225949/3 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 225949

Analyte Result Qualifier RL MDL Unit Prepared D Analyzed Dil Fac Chloride 0.90 ND mg/L 08/25/16 13:50

MB MB

Lab Sample ID: LCS 580-225949/4 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 225949

Spike LCS LCS %Rec. Added Result Qualifier Analyte Unit %Rec Limits Chloride 50.0 52.3 mg/L 105 90 - 110

Lab Sample ID: LCSD 580-225949/5 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 225949

LCSD LCSD RPD Spike %Rec. Added Result Qualifier Limits Analyte Unit D %Rec RPD Limit Chloride 50.0 mg/L 104 0 52.1

QC Sample Results

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

TestAmerica Job ID: 580-61962-1

Prep Type: Total/NA

Lab Sample ID: 580-61962-1 MS Client Sample ID: LB-082416-05

Matrix: Water

Analysis Batch: 225949

Sample Sample Spike MS MS %Rec. Result Qualifier Unit Analyte Result Qualifier Added D %Rec Limits Chloride 11 F1 50.0 72.2 F1 mg/L 122 90 - 110

Lab Sample ID: 580-61962-1 MSD Client Sample ID: LB-082416-05 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 225949

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	11	F1	50.0	70.2	F1	mg/L		118	90 - 110	3	15

Client: SCS Engineers

Total/NA

Project/Site: Leichner Landfill - Semi-Annual

Lab Sample ID: 580-61962-1 Client Sample ID: LB-082416-05 Date Collected: 08/24/16 10:10 **Matrix: Water**

225949 08/25/16 14:45 RSB

Date Received: 08/24/16 13:58

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			226522	09/02/16 08:32	TL1	TAL SEA
Dissolved	Prep	3005A			225970	08/26/16 10:42		TAL SEA
Dissolved	Analysis	6020		1	226117	08/27/16 14:51	HJM	TAL SEA
Total/NA	Analysis	160.1		1	226028	08/26/16 14:36	EMM	TAL SEA
Total/NA	Analysis	300.0		1	225948	08/25/16 14:45	RSB	TAL SEA

Client Sample ID: LB-082416-08

Analysis

300.0

Date Collected: 08/24/16 12:15 Date Received: 08/24/16 13:58

Lab Sample ID: 580-61962-2 **Matrix: Water**

TAL SEA

Prep Type Total/NA	Batch Type Analysis	Batch Method 8260B	Run	Dilution Factor 1	Batch Number 226522	Prepared or Analyzed 09/02/16 08:59	Analyst TL1	Lab TAL SEA
Dissolved	Prep	3005A			225970	08/26/16 10:42		TAL SEA
Dissolved	Analysis	6020		1	226117	08/27/16 14:55	HJM	TAL SEA
Total/NA	Analysis	160.1		1	226028	08/26/16 14:36	EMM	TAL SEA
Total/NA	Analysis	300.0		1	225948	08/25/16 15:41	RSB	TAL SEA
Total/NA	Analysis	300.0		1	225949	08/25/16 15:41	RSB	TAL SEA

Client Sample ID: LB-	082416-09				Lab Sample ID: 580-61962-3
Date Collected: 08/24/16 1	2:20				Matrix: Water
Date Received: 08/24/16 1	3:58				
Batch	Batch	Dilution E	Batch	Prepared	

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	226522	09/02/16 09:25	TL1	TAL SEA
Dissolved	Prep	3005A			225970	08/26/16 10:42		TAL SEA
Dissolved	Analysis	6020		1	226117	08/27/16 15:00	HJM	TAL SEA
Total/NA	Analysis	160.1		1	226028	08/26/16 14:36	EMM	TAL SEA
Total/NA	Analysis	300.0		1	225948	08/25/16 15:59	RSB	TAL SEA
Total/NA	Analysis	300.0		1	225949	08/25/16 15:59	RSB	TAL SEA

Client Sample ID: I R-082416-07

Client Sample ID: LB-082416-07	Lab Sample ID: 580-61962-4
Date Collected: 08/24/16 11:20	Matrix: Water
Date Received: 08/24/16 13:58	

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	226522	09/02/16 09:51	TL1	TAL SEA
Dissolved	Prep	3005A			225970	08/26/16 10:42		TAL SEA
Dissolved	Analysis	6020		1	226117	08/27/16 15:04	HJM	TAL SEA
Total/NA	Analysis	160.1		1	226028	08/26/16 14:36	EMM	TAL SEA
Total/NA	Analysis	300.0		1	225948	08/25/16 16:17	RSB	TAL SEA

TestAmerica Seattle

Page 26 of 31

9/29/2016

Lab Chronicle

Client: SCS Engineers

Project/Site: Leichner Landfill - Semi-Annual

TestAmerica Job ID: 580-61962-1

Client Sample ID: LB-082416-07

Lab Sample ID: 580-61962-4 Date Collected: 08/24/16 11:20

Matrix: Water

Date Received: 08/24/16 13:58

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	225949	08/25/16 16:17	RSB	TAL SEA

Client Sample ID: LB-082416-06 Lab Sample ID: 580-61962-5

Date Collected: 08/24/16 10:50 Matrix: Water

Date Received: 08/24/16 13:58

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	226522	09/02/16 10:17	TL1	TAL SEA
Dissolved	Prep	3005A			225970	08/26/16 10:42		TAL SEA
Dissolved	Analysis	6020		1	226117	08/27/16 15:09	HJM	TAL SEA
Total/NA	Analysis	160.1		1	226028	08/26/16 14:36	EMM	TAL SEA
Total/NA	Analysis	300.0		1	225948	08/25/16 16:36	RSB	TAL SEA
Total/NA	Analysis	300.0		1	225949	08/25/16 16:36	RSB	TAL SEA

Client Sample ID: Trip Blanks Lab Sample ID: 580-61962-6

Date Collected: 08/24/16 00:00 **Matrix: Water**

Date Received: 08/24/16 13:58

_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B			226522	09/02/16 04:35	TL1	TAL SEA	

Laboratory References:

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Certification Summary

Client: SCS Engineers TestAmerica Job ID: 580-61962-1

Project/Site: Leichner Landfill - Semi-Annual

Laboratory: TestAmerica Seattle

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-022	03-02-17
California	State Program	9	2901	01-31-18
L-A-B	DoD ELAP		L2236	01-19-19
L-A-B	ISO/IEC 17025		L2236	01-19-19
Montana (UST)	State Program	8	N/A	04-30-20
Oregon	NELAP	10	WA100007	11-06-16
US Fish & Wildlife	Federal		LE058448-0	10-31-16
USDA	Federal		P330-14-00126	04-08-17
Washington	State Program	10	C553	02-17-17

2

- 0

9

10

10

Sample Summary

Client: SCS Engineers Project/Site: Leichner Landfill - Semi-Annual

TestAmerica Job ID: 580-61962-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-61962-1	LB-082416-05	Water	08/24/16 10:10	08/24/16 13:58
580-61962-2	LB-082416-08	Water	08/24/16 12:15	08/24/16 13:58
580-61962-3	LB-082416-09	Water	08/24/16 12:20	08/24/16 13:58
580-61962-4	LB-082416-07	Water	08/24/16 11:20	08/24/16 13:58
580-61962-5	LB-082416-06	Water	08/24/16 10:50	08/24/16 13:58
580-61962-6	Trip Blanks	Water	08/24/16 00:00	08/24/16 13:58

9405 SW Wimbus Avenue		Chain	Chain of Custody Record	115100	TestAmerica
Beaverton, OR 97008 Phone: 503.906.9200 Fax:	Regulatory Program:	DW NPDES	RCRA Other:	001011	THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Laboratories, Inc. TAL-8210.07133
Client Contact	Nanager: T	5	T And Gass	Date: 8/34/16	COC No:
Name: SCS Eng	Tel/Fax: <03 639- 0			Carrier:	of COCs
5940 SW 079	Turnar	d Time			Sampler:
ite/Zip: Fortland OR	CALENDAR DAYS WC	WORKING DAYS	(For Lab Use Only:
Frome: SOS 654 960/	I.A.I. if different from Below		0.00		
ct Name:	1 week	N IC	0/		
30.13	2 days) 014			
‡ D.L.	1 day			580 61962 Chair of Custody	
	<i>a</i>	# of	100m 100m 100m 100m		foot
Sample Identification	Date Time G=Grab)	Matrix Cont.	ье		Sample Specific Notes:
LR-082416-05	8/24/16 1010 G	17	Х X X X X X X X X X X X X X X X X X X X		Samples ale
80-214680-87	S/34/16 1315 G	X N C	KXKV KK		CHOC
18.08.416.09		1	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
00000	7/16 1000	3:	7		0-
4	5 0011 9/1/1018	/ M	C C		metals
0 10 083416.06	Slayle 1050 G	W 7 X	メメイイベ		
of Co Blacks	1	(C)	X		
-					
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3;	; 5=NaOH; 6= Other	_			
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the	ise List any EPA Waste Codes for	the sample in the	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	ssessed if samples are retaine	ed longer than 1 month)
Comments Section if the lab is to dispose of the sample.					
○ Non-Hazard ○ Flammable ○ Skin Irritant	Poison B	nwo	Return to Client	Disposal by Lab	Months
Special Instructions/QC Requirements & Comments:				-	
Custody Seals Intact:	Custody Seal No.:		Cooler Temp. (°C): Obs'd:		Therm ID No.:
Relinquished by:	Company:	Date/Time:	Received by:	Company	Septime 125X
Relinquished by:	Company:	Date/Time:	Received by:	Company:	Date/Time:
Relinquished by:	Company:	Date/Time:	Received in Laboratory by:	Company:	Date/Time:
				4	

Login Sample Receipt Checklist

Client: SCS Engineers Job Number: 580-61962-1

Login Number: 61962 List Source: TestAmerica Seattle

List Number: 1

Creator: Svabik-Seror, Philip M

Creator: Svadik-Seror, Philip W		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	No name.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

2

Λ

5

7

9

10

1.

APPENDIX D

2016 Groundwater Elevation Data
And Groundwater Elevation Hydrographs

Table D-1 2016 Groundwater Elevation Data Leichner Landfill

Monitoring		Reference Elevation	Depth to Groundwater	Groundwater Elevation
Well	Date	(feet, AMSL)	(feet, BTOC)	(feet, AMSL)
LB-R2	2/15/2016	222.27	44.61	177.66
LB-R2	8/22/2016	222.27	45.65	176.62
LB-1S	2/15/2016	210.12	32.65	177.47
LB-1S	8/22/2016	210.12	33.70	176.42
LB-1D	2/15/2016	209.74	35.20	174.54
LB-1D	8/22/2016	209.74	37.12	172.62
LB-3S	2/15/2016	218.25	38.06	180.19
LB-3S	8/22/2016	218.25	39.07	179.18
LB-3D	2/15/2016	219.29	39.10	180.19
LB-3D	8/22/2016	219.29	40.08	179.21
LB-5S	2/15/2016	206.89	15.10	191.79
LB-5S	8/22/2016	206.89	15.95	190.94
LB-5C	2/15/2016	206.70	31.91	174.79
LB-5C	8/22/2016	206.70	33.29	173.41
LB-5D	2/15/2016	207.56	36.63	170.93
LB-5D	8/22/2016	207.56	38.13	169.43
LB-6S	2/15/2016	202.80	26.39	176.41
LB-6S	8/22/2016	202.80	27.47	175.33
LB-9S(R)	2/15/2016	217.94	34.63	183.31
LB-9S(R)	8/22/2016	217.94	35.88	182.06
LB-10SR	2/15/2016	204.04	29.90	174.14
LB-10SR	8/22/2016	204.04	31.39	172.65
LB-10CR	2/15/2016	203.05	28.82	174.23
LB-10CR	8/22/2016	203.05	30.31	172.74
LB-10DR	2/15/2016	203.36	41.91	161.45
LB-10DR	8/22/2016	203.36	43.35	160.01
LB-13I	2/15/2016	202.36	27.03	175.33
LB-13I	8/22/2016	202.36	28.15	174.21
LB-13C	2/15/2016	202.68	27.42	175.26
LB-13C	8/22/2016	202.68	28.55	174.13
LB-13D	2/15/2016	202.96	27.72	175.24
LB-13D	8/22/2016	202.96	28.90	174.06

Table D-1 2016 Groundwater Elevation Data Leichner Landfill

Monitoring		Reference Elevation	Depth to Groundwater	Groundwater Elevation
Well	Date	(feet, AMSL)	(feet, BTOC)	(feet, AMSL)
LB-17S	2/15/2016	208.18	30.42	177.76
LB-17S	8/22/2016	208.18	31.45	176.73
LB-17I	2/15/2016	213.14	35.54	177.60
LB-17I	8/22/2016	212.96	36.60	176.36
LB-17C	2/15/2016	206.55	29.21	177.34
LB-17C	8/22/2016	207.97	30.27	177.70
LB-17D	2/15/2016	213.17	36.41	176.76
LB-17D	8/22/2016	213.17	37.51	175.66
LB-20S	2/15/2016	221.22	39.55	181.67
LB-20S	8/22/2016	221.22	40.21	181.01
LB-21S	2/15/2016	223.35	38.60	184.75
LB-21S	8/22/2016	223.35	37.79	185.56
LB-21C	2/15/2016	223.32	37.25	186.07
LB-21C	8/22/2016	223.32	38.19	185.13
LB-21D	2/15/2016	223.63	40.05	183.58
LB-21D	8/22/2016	223.63	41.37	182.26
LB-22S	2/15/2016	208.42	5.55	202.87
LB-22S	8/22/2016	208.42	6.64	201.78
LB-23S	2/15/2016	229.19	30.18	199.01
LB-23S	8/22/2016	229.19	31.01	198.18
LB-24S	2/15/2016	235.13	37.90	197.23
LB-24S	8/22/2016	235.13	38.81	196.32
LB-26I	2/15/2016	200.22	24.40	175.82
LB-26I	8/22/2016	200.22	25.48	174.74
LB-26D	2/15/2016	200.75	24.16	176.59
LB-26D	8/22/2016	200.75	25.24	175.51
LB-27I	2/15/2016	205.35	30.29	175.06
LB-27I	8/22/2016	205.35	31.51	173.84
LB-27D	2/15/2016	204.63	36.82	167.81
LB-27D	8/22/2016	204.63	38.39	166.24
MW-1 N	2/15/2016	216.58	Dry	NA
MW-1 N	8/22/2016	216.58	NR	NA

Table D-1 2016 Groundwater Elevation Data Leichner Landfill

Monitoring		Reference Elevation	Depth to Groundwater	Groundwater Elevation
Well	Date	(feet, AMSL)	(feet, BTOC)	(feet, AMSL)
MW-1 S	2/15/2016	216.13	37.10	179.03
MW-1 S	8/22/2016	216.13	NR	NA
MW-1 E	2/15/2016	216.45	Dry	NA
MW-1 E	8/22/2016	216.45	NR	NA
MW-NE	2/15/2016	220.06	13.02	207.04
MW-NE	8/22/2016	220.06	14.20	205.86

Notes:

AMSL = above mean sea level; BTOC = below top of casing; NA = not applicable; NR = no reading.

LB-1S and LB-1D Hydrographs Leichner Landfill

LB-3S and LB-3D Hydrographs Leichner Landfill

LB 5S, LB-5C, and LB-5D Hydrographs Leichner Landfill

LB-6S Hydrograph Leichner Landfill

LB-10SR, LB-10CR, and LB-10DR Hydrographs Leichner Landfill

LB-13I, LB-13C, and LB-13D Hydrographs Leichner Landfill

LB-17I and LB-17D Hydrographs Leichner Landfill

LB-20S Hydrograph Leichner Landfill

LB-21S, LB-21C, and LB-21D Hydrographs Leichner Landfill

LB-26I and LB-26D Hydrographs Leichner Landfill

LB-27I and LB-27D Hydrographs Leichner Landfill

APPENDIX E

Quality Assurance/Quality Control Reviews of 2016 Laboratory Analytical Data

First Quarter (February) 2016 QA/QC Reviews

SCS Engineers QA/QC Review Groundwater - 1Q 2016 Groundwater Monitoring Event Leichner Brothers Landfill Test America-Beaverton Report No. 250-57302-1

Samples: LB-021616-01 (LB-17D), LB-021616-02 (LB-13D), LB-021616-03 (LB-13D/DUP1),

LB-021616-04 (LB-26D), LB-021616-05 (LB-26I), and LB-021616-06 (LB-3D).

Sample Date: 02/16/2016

Laboratory Sample Received Date: 02/16/2016

Sample Receipt Temperature: 8.7°C

Laboratory Data Received Date: 03/09/2016 QA/QC Review Date: 03/21/2016 (TMA)

VOCs

Method Blanks All analytes were reported as non-detect.
Surrogates All sample surrogates were within QC limits.

LCS All % recoveries and surrogates were within QC limits except for

1,2,3-trichloropropane and chlorodibromoethane in batch 580-211711 (* Flags).

These are noted and qualified in the case narrative.

LCSD All relative percent differences (RPDs) were within QC limits except for

1,2,3-trichloropropane, chlorodibromoethane, and cis-1,2-dichloropropene in batch 580-211711 (* Flags). These are noted and qualified in the case narrative.

Dissolved Metals

Method Blanks All analytes were reported as non-detect.

LCS All % recoveries were within control limits.

Matrix Spikes All % recoveries were within QC limits.

MSD All RPDs were within QC limits.

General Chemistry

Method Blanks All analytes were reported as non-detect.

LCS All % recoveries within control limits.

Matrix Spikes All % recoveries were within QC limits.

MSD All RPDs were within QC limits.

Duplicates All RPDs were within OC limits.

Hold Times

All analytical hold times were met.

Reporting Limit Exceedances

All project-specific reporting limits were met except for chloride which was diluted to bring concentrations within calibration range.

Field QA/QC

Field Duplicate

A field duplicate sample LB-021616-03 (DUP1) was collected at monitoring well LB-13D (LB-021616-02) on 02/16/2016. All calculated RPDs were within 20%.

Trip Blank

A laboratory supplied trip blank was carried into the field on 02/16/2016 with all samples collected on the same date and returned to the lab for volatile organic compound (VOC) analysis. All trip blank analytes were reported as non-detect, and all surrogate recoveries were within control limits.

Notes

The continuing calibration verification (CCV) associated with batch 580-211711 recovered above the upper control limit multiple analytes. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

The Nitrate Method 300.0 analysis was subcontracted to Pixis Laboratories, LLC.

Data Validation

Upon final review of lab report 250-57302-1 for Leichner Landfill, SCS Engineers finds the data are valid for their intended use (03/21/2016; TMA).

SCS Engineers QA/QC Review Groundwater - 1Q 2016 Groundwater Monitoring Event Leichner Brothers Landfill Test America-Beaverton Report No. 250-57335-1

Samples: LB-021716-07 (FB1), LB-021716-08 (LB-1D), LB-021716-09 (LB-10DR), LB-021716-10 (LB-10DR/DUP2), LB-021716-11 (LB-10SR), LB-021716-12 (LB-3S), LB-021716-13 (LB-20S), and LB-021716-14 (LB-1S).

Sample Date: 02/17/2016

Laboratory Sample Received Date: 02/17/2016 Sample Receipt Temperature: 2.0 and 3.5°C Laboratory Data Received Date: 03/09/2016 QA/QC Review Date: 03/21/2016 (TMA)

VOCs

Method Blanks All analytes were reported as non-detect.
Surrogates All sample surrogates were within QC limits.

LCS All % recoveries and surrogates were within QC limits except for

1,2,3-trichloropropane and 4-methyl-2-pentanone in batch 580-211854

(* Flags). These are noted and qualified in the case narrative.

LCSD All relative percent differences (RPDs) were within QC limits except for

1,2,3-trichloropropane, 4-methyl-2-pentanone, cis-1,2-dichloropropene,

bromomethane in batch 580-211854 (* Flags). These are noted and qualified in

the case narrative.

Dissolved Metals

Method Blanks
LCS
All analytes were reported as non-detect.
All % recoveries were within control limits.
Matrix Spikes
MSD
All RPDs were within QC limits.
All RPDs were within QC limits.

General Chemistry

Method Blanks All analytes were reported as non-detect.

LCS All % recoveries within control limits.

Matrix Spikes All % recoveries were within QC limits.

MSD All RPDs were within QC limits.

Duplicates All RPDs were within QC limits.

Hold Times

All analytical hold times were met.

Reporting Limit Exceedances

All project-specific reporting limits were met except for chloride which was diluted to bring concentrations within calibration range.

Field QA/QC

Field/Equipment Blank

An equipment blank sample (LB-021716-07) was collected near monitoring well LB-1D on 02/17/2016 using lab supplied deionized water. All analytes were reported as non-detect except for total dissolved solids at 10.0 mg/L (RP = 10 mg/L).

Field Duplicate

A field duplicate sample LB-021716-10 (DUP2) was collected at monitoring well LB-10DR (LB-021716-09) on 02/16/2016. All calculated RPDs were within 20%.

Trip Blank

A laboratory supplied trip blank was carried into the field on 02/17/2016 with all samples collected on the same date and returned to the lab for volatile organic compound (VOC) analysis. All trip blank analytes were reported as non-detect, and all surrogate recoveries were within control limits.

<u>Notes</u>

The Nitrate Method 300.0 analysis was subcontracted to Pixis Laboratories, LLC.

Data Validation

Upon final review of lab report 250-57335-1 for Leichner Landfill, SCS Engineers finds the data are valid for their intended use (03/21/2016; TMA).

SCS Engineers QA/QC Review Groundwater - 1Q 2016 Groundwater Monitoring Event Leichner Brothers Landfill Test America-Beaverton Report No. 250-57367-1

Samples: LB-021816-15 (LB-17I), LB-021816-16 (LB-5D), LB-021816-17 (LB-5S), LB-021816-18 (LB-27D), LB-021816-19 (LB-27I), LB-021816-20 (LB-13I), and LB-021816-21 (LB-6S).

Sample Date: 02/18/2016

Laboratory Sample Received Date: 02/18/2016 Sample Receipt Temperature: 1.3 and 1.5°C Laboratory Data Received Date: 03/14/2016 QA/QC Review Date: 03/21/2016 (TMA)

VOCs

Method Blanks All analytes were reported as non-detect.
Surrogates All sample surrogates were within QC limits.

LCS All % recoveries and surrogates were within QC limits except for

1,2,3-trichloropropane and dibromochloromethane in batch 580-211994

(* Flags). These are noted and qualified in the case narrative.

LCSD All relative percent differences (RPDs) were within QC limits except for

1,2,3-trichloropropane and dibromochloromethane in batch 580-211994 in batch 580-211854 (* Flags). These are noted and qualified in the case

narrative.

Dissolved Metals

Method Blanks
LCS
All % recoveries were within control limits.
Matrix Spikes
MSD
All % recoveries were within QC limits.
All RPDs were within QC limits.

General Chemistry

Method Blanks All analytes were reported as non-detect.

LCS All % recoveries within control limits.

Matrix Spikes All % recoveries were within QC limits.

MSD All RPDs were within QC limits.

Duplicates All RPDs were within QC limits.

Hold Times

All analytical hold times were met.

Reporting Limit Exceedances

All project-specific reporting limits were met except for chloride which was diluted to bring concentrations within calibration range.

Field QA/QC

Trip Blank

A laboratory supplied trip blank was carried into the field on 02/18/2016 with all samples collected on the same date and returned to the lab for volatile organic compound (VOC) analysis. All trip blank analytes were reported as non-detect, and all surrogate recoveries were within control limits.

Notes Notes

The Nitrate Method 300.0 analysis was subcontracted to Pixis Laboratories, LLC.

Data Validation

Upon final review of lab report 250-57367-1 for Leichner Landfill, SCS Engineers finds the data are valid for their intended use (03/21/2016; TMA).

Page 1 of 1

Third Quarter (August) 2016 QA/QC Reviews

SCS Engineers QA/QC Review Groundwater - 3Q 2016 Groundwater Monitoring Event Leichner Brothers Landfill Test America-Beaverton Report No. 580-61940-1

Samples: LB-082316-01 (LB-5S), LB-082316-03 (LB-13I), LB-082316-04 (LB-26I), LB-082316-02

(LB-27I), and trip blank.

Sample Date: 08/23/2016

Laboratory Sample Received Date: 08/23/2016

Sample Receipt Temperature: 3.5°C

Laboratory Data Received Date: 09/06/2016 QA/QC Review Date: 09/20/2016 (TMA)

VOCs

Method Blanks All non-detect, surrogate recoveries within control limits except 4-

bromofluorobenzene and trifluorotoluene (X Flags). These are noted and

qualified in the case narrative.

Surrogates All sample surrogates were within QC limits.

LCS All % recoveries and surrogates were within QC limits except for

1,2-dichlorobenzene in batch 580-226481 (* Flag). This is noted and qualified

in the case narrative.

Matrix Spikes All % recoveries were within QC limits and all surrogates within limits.

MSD All relative percent differences (RPDs) were within QC limits except for

2-butanone, bromochloromethane, chloroform, cis-1,2-dichloroethene, and hexachlorobutadiene in batch 580-226481 (* Flags). These are noted and

qualified in the case narrative.

Dissolved Metals

Method Blanks
LCS
All analytes were reported as non-detect.
All % recoveries were within control limits.
Matrix Spikes
All % recoveries were within QC limits.
All RPDs were within OC limits.

General Chemistry

Method Blanks All analytes were reported as non-detect. LCS All % recoveries within control limits.

Matrix Spikes All % recoveries were within QC limits except for nitrate and chloride in batch

580-225893 (F1 Flags). These are noted and qualified in the case narrative.

MSD All RPDs were within QC limits.

Duplicates All RPDs were within QC limits.

Hold Times

All analytical hold times were met.

Reporting Limit Exceedances

All project-specific reporting limits were met except for chloride which was diluted to bring concentrations within calibration range.

Field QA/QC

Trip Blank

A laboratory supplied trip blank was carried into the field on 08/23/2016 with all samples collected on the same date and returned to the lab for volatile organic compound (VOC) analysis. All trip blank analytes were reported as non-detect except for methylene chloride at 2.3 ug/L (RL = 2.0 ug/L). All surrogate recoveries were within control limits except for trifluorotoluene (X Flag). These are noted and qualified in the case narrative.

<u>Notes</u>

Several of the Continuing Calibrations Verification Samples were outside of the control criteria. These are noted and qualified in the case narrative.

Data Validation

Upon final review of lab report 580-61940-1 for Leichner Landfill, SCS Engineers finds the data are valid for their intended use (09/30/2016; TMA).

SCS Engineers QA/QC Review Groundwater -3Q 2016 Groundwater Monitoring Event Leichner Brothers Landfill Test America-Beaverton Report No. 580-61692-1

Samples: LB-082416-05 (LB-1S), LB-082416-08 (LB-6S), LB-082416-09 (LB-6S/DUP1), LB-082416-07 (LB-10SR), LB-082416-06 (FB1), and trip blank.

Sample Date: 08/24/2016

Laboratory Sample Received Date: 08/24/2016

Sample Receipt Temperature: 1.0°C

Laboratory Data Received Date: 09/08/2016 QA/QC Review Date: 08/20/2016 (TMA)

VOCs

Method Blanks All analytes were reported as non-detect except for acetone and methylene

chloride. This is noted and qualified in the case narrative.

Surrogates All sample surrogates were within QC limits except for trifluorotoluene for

samples LB-082416-08 and LB-082416-06, toluene-d8 for sample LB-082416-

09, 4-bromofluorobenzene for sample LB-082416-07 (X Flags).

LCS All % recoveries and surrogates were within QC limits except for

1,1-dichloroethane, methylene chloride, carbon disulfide,

cis-1-2-dichloroethene, and 2-butanone in batch 580-226522 (* Flags). This is

noted and qualified in the case narrative.

LCSD All RPDs within QC limits except for cis-1-2-dichloroethene, 2-butanone,

bromochloromethane, naphthalene, and chlorform in batch 580-226522 (*

Flags). These are noted and qualified in the case narrative.

Dissolved Metals

Method Blanks
LCS
All % recoveries were within control limits.
Matrix Spikes
MSD
All % recoveries were within QC limits.
All RPDs were within QC limits.

General Chemistry

Method Blanks All analytes were reported as non-detect. LCS All % recoveries within control limits.

Matrix Spikes All % recoveries were within QC limits except for nitrate in batch 580-225948

and chloride in batch 580-225949 (F1 Flags). These are noted and qualified in

the case narrative.

MSD All RPDs were within QC limits.

Duplicates All RPDs were within QC limits.

Hold Times

All analytical hold times were met.

Reporting Limit Exceedances

All project-specific reporting limits were met.

Field QA/QC

Field/Equipment Blank

An equipment blank sample (LB-082416-06) was collected near monitoring well LB-10SR on 08/24/2016 using lab supplied deionized water. All analytes were reported as non-detect.

Field Duplicate

A field duplicate sample LB-082416-09 (DUP1) was collected at monitoring well LB-6S (LB-082416-08) on 028/24/2016. All calculated RPDs were within 20%.

Trip Blank

A laboratory supplied trip blank was carried into the field on 08/24/2016 with all samples collected on the same date and returned to the lab for volatile organic compound (VOC) analysis. All trip blank analytes were reported as non-detect except for methylene chloride at 5.3 ug/L. It should be noted that methylene chloride is a known laboratory contaminate and was detected in the method blank (B Flag). All surrogate recoveries were within control limits.

Notes

The continuing calibration verification (CCV) associated with batch 580-211711 recovered above the upper control limit multiple analytes. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

The Nitrate Method 300.0 analysis was subcontracted to Pixis Laboratories, LLC.

Data Validation

Upon final review of lab report 580-61692-1 for Leichner Landfill, SCS Engineers finds the data are valid for their intended use (09/30/2016; TMA).

APPENDIX F

Groundwater Time-Concentration Graphs

Leichner Landfill Nitrate, LB-01S 1987 - 2016

TimeTrendData_Nitrate, LB-01S

Leichner Landfill Nitrate, LB-01D 1987 - 2016

TimeTrendData_Nitrate, LB-01D

TimeTrendData_Nitrate, LB-03S

TimeTrendData_Nitrate, LB-03D

Leichner Landfill Nitrate, LB-05S 1987 - 2016

TimeTrendData_Nitrate, LB-05S

Leichner Landfill Nitrate, LB-05D 1987 - 2016

TimeTrendData_Nitrate, LB-05D

Leichner Landfill Nitrate, LB-06S 1987 - 2016

TimeTrendData_Nitrate, LB-06S

Leichner Landfill Nitrate, LB-10S and LB-10SR 1987 - 2016

TimeTrendData_Nitrate, LB-10S and LB-10SR SCS Engineers

Leichner Landfill Nitrate, LB-10D and LB-10DR 1987 - 2016

Leichner Landfill Nitrate, LB-13I 1987 - 2016

TimeTrendData_Nitrate, LB-13I

Leichner Landfill Nitrate, LB-13D 1987 - 2016

TimeTrendData_Nitrate, LB-13D

TimeTrendData_Nitrate, LB-17I

Leichner Landfill Nitrate, LB-17D 1987 - 2016

TimeTrendData_Nitrate, LB-17D

Leichner Landfill Nitrate, LB-20S 1987 - 2016

TimeTrendData_Nitrate, LB-20S

Leichner Landfill Nitrate, LB-26l 1987 - 2016

TimeTrendData_Nitrate, LB-26I

Leichner Landfill Nitrate, LB-26D 1987 - 2016

TimeTrendData_Nitrate, LB-26D

Leichner Landfill Nitrate, LB-27I 1987 - 2016

TimeTrendData_Nitrate, LB-27I

Leichner Landfill Nitrate, LB-27D 1987 - 2016

TimeTrendData_Nitrate, LB-27D

Leichner Landfill Chloride, LB-01S 1987 - 2016

TimeTrendData_Chloride, LB-01S

TimeTrendData_Chloride, LB-01D

TimeTrendData_Chloride, LB-03S

TimeTrendData_Chloride, LB-03D

Leichner Landfill Chloride, LB-05S 1987 - 2016

TimeTrendData_Chloride, LB-05S

Leichner Landfill Chloride, LB-05D 1987 - 2016

TimeTrendData_Chloride, LB-05D

Leichner Landfill Chloride, LB-06S 1987 - 2016

TimeTrendData_Chloride, LB-06S

Leichner Landfill Chloride, LB-10S and LB-10SR 1987 - 2016

Leichner Landfill Chloride, LB-10D and LB-10DR 1987 - 2016

Leichner Landfill Chloride, LB-13I 1987 - 2016

TimeTrendData_Chloride, LB-13I

Leichner Landfill Chloride, LB-13D 1987 - 2016

TimeTrendData_Chloride, LB-13D SCS Engineers

TimeTrendData_Chloride, LB-17I

Leichner Landfill Chloride, LB-17D 1987 - 2016

TimeTrendData_Chloride, LB-17D

Leichner Landfill Chloride, LB-20S 1987 - 2016

TimeTrendData_Chloride, LB-20S

Leichner Landfill Chloride, LB-26l 1987 - 2016

TimeTrendData_Chloride, LB-26I

Leichner Landfill Chloride, LB-26D 1987 - 2016

TimeTrendData_Chloride, LB-26D SCS Engineers

Leichner Landfill Chloride, LB-27I 1994 - 2016

TimeTrendData_Chloride, LB-27I

Leichner Landfill Chloride, LB-27D 1994 - 2016

TimeTrendData_Chloride, LB-27D

Leichner Landfill Total Dissolved Solids, LB-01S 1987 - 2016

TimeTrendData_TDS (final), LB-01S

Leichner Landfill Total Dissolved Solids, LB-01D 1987 - 2016

Leichner Landfill Total Dissolved Solids, LB-03S 1987 - 2016

TimeTrendData_TDS (final), LB-03S

Leichner Landfill Total Dissolved Solids, LB-03D 1987 - 2016

TimeTrendData_TDS (final), LB-03D

Leichner Landfill Total Dissolved Solids, LB-05S 1987 - 2016

TimeTrendData_TDS (final), LB-05S

Leichner Landfill Total Dissolved Solids, LB-05D 1987 - 2016

TimeTrendData_TDS (final), LB-05D

Leichner Landfill Total Dissolved Solids, LB-06S 1987 - 2016

Leichner Landfill Total Dissolved Solids, LB-10S and LB-10SR 1987 - 2016

Leichner Landfill
Total Dissolved Solids, LB-10D and LB-10DR
1987 - 2016

Leichner Landfill Total Dissolved Solids, LB-13I 1987 - 2016

Leichner Landfill Total Dissolved Solids, LB-13D 1987 - 2016

TimeTrendData_TDS (final), LB-13D

Leichner Landfill Total Dissolved Solids, LB-17I 1987 - 2016

TimeTrendData_TDS (final), LB-17I

Leichner Landfill Total Dissolved Solids, LB-17D 1987 - 2016

TimeTrendData_TDS (final), LB-17D

Leichner Landfill Total Dissolved Solids, LB-20S 1987 - 2016

TimeTrendData_TDS (final), LB-20S

Leichner Landfill Total Dissolved Solids, LB-26l 1987 - 2016

Leichner Landfill Total Dissolved Solids, LB-26D 1987 - 2016

TimeTrendData_TDS (final), LB-26D

Leichner Landfill Total Dissolved Solids, LB-27I 1987 - 2016

TimeTrendData_TDS (final), LB-27I

Leichner Landfill Total Dissolved Solids, LB-27D 1987 - 2016

Leichner Landfill Dissolved Iron, LB-01S 1987 - 2016

Leichner Landfill Dissolved Iron, LB-01D 1987 - 2016

TimeTrendData_DissIron (final), LB-01D

Leichner Landfill Dissolved Iron, LB-03S 1987 - 2016

TimeTrendData_DissIron (final), LB-03S

Leichner Landfill Dissolved Iron, LB-03D 1987 - 2016

TimeTrendData_DissIron (final), LB-03D

Leichner Landfill Dissolved Iron, LB-05S 1987 - 2016

TimeTrendData_DissIron (final), LB-05S

Leichner Landfill Dissolved Iron, LB-05D 1987 - 2016

TimeTrendData_DissIron (final), LB-05D

Leichner Landfill Dissolved Iron, LB-06S 1987 - 2016

TimeTrendData_DissIron (final), LB-06S

Leichner Landfill Dissolved Iron, LB-10S and LB-10SR 1987 - 2016

Leichner Landfill Dissolved Iron, LB-10D and LB-10DR 1987 - 2016

Leichner Landfill Dissolved Iron, LB-13I 1987 - 2016

TimeTrendData_DissIron (final), LB-13I

Leichner Landfill Dissolved Iron, LB-13D 1987 - 2016

Leichner Landfill Dissolved Iron, LB-17I 1987 - 2016

Leichner Landfill Dissolved Iron, LB-17D 1987 - 2016

TimeTrendData_DissIron (final), LB-17D

Leichner Landfill Dissolved Iron, LB-20S 1987 - 2016

TimeTrendData_DissIron (final), LB-20S

Leichner Landfill Dissolved Iron, LB-26I 1987 - 2016

TimeTrendData_DissIron (final), LB-26I

Leichner Landfill Dissolved Iron, LB-26D 1987 - 2016

TimeTrendData_DissIron (final), LB-26D

Leichner Landfill Dissolved Iron, LB-27I 1987 - 2016

TimeTrendData_DissIron (final), LB-27I

Leichner Landfill Dissolved Iron, LB-27D 1987 - 2016

TimeTrendData_DissIron (final), LB-27D

Leichner Landfill Dissolved Manganese, LB-01S 1987 - 2016

Leichner Landfill Dissolved Manganese, LB-01D 1987 - 2016

TimeTrendData_DissManganese, LB-01D SCS Engineers

Leichner Landfill Dissolved Manganese, LB-03S 1987 - 2016

TimeTrendData_DissManganese, LB-03S SCS Engineers

Leichner Landfill Dissolved Manganese, LB-03D 1987 - 2016

TimeTrendData_DissManganese, LB-03D

Leichner Landfill Dissolved Manganese, LB-05S 1987 - 2016

Leichner Landfill Dissolved Manganese, LB-05D 1987 - 2016

TimeTrendData_DissManganese, LB-05D SCS Engineers

Leichner Landfill Dissolved Manganese, LB-06S 1987 - 2016

Leichner Landfill
Dissolved Manganese, LB-10S and LB-10SR
1987 - 2016

Leichner Landfill Dissolved Manganese, LB-10D and LB-10DR 1987 - 2016

Leichner Landfill Dissolved Manganese, LB-13I 1987 - 2016

TimeTrendData_DissManganese, LB-13I

Leichner Landfill Dissolved Manganese, LB-13D 1987 - 2016

TimeTrendData_DissManganese, LB-13D SCS Engineers

Leichner Landfill Dissolved Manganese, LB-17I 1987 - 2016

TimeTrendData_DissManganese, LB-17I

Leichner Landfill Dissolved Manganese, LB-17D 1987 - 2016

TimeTrendData_DissManganese, LB-17D SCS Engineers

Leichner Landfill Dissolved Manganese, LB-20S 1987 - 2016

TimeTrendData_DissManganese, LB-20S

Leichner Landfill Dissolved Manganese, LB-26l 1987 - 2016

Leichner Landfill Dissolved Manganese, LB-26D 1987 - 2016

TimeTrendData_DissManganese, LB-26D SCS Engineers

Leichner Landfill Dissolved Manganese, LB-27I 1987 - 2016

TimeTrendData_DissManganese, LB-27I

Leichner Landfill Dissolved Manganese, LB-27D 1987 - 2016

APPENDIX G

Summary of 2016 Groundwater Statistical Calculations

Leichner Landfill Groundwater Statistics - 2012 through 2016 Data 95 Percent Upper Confidence Limits on the Mean

			LB-1S					LB-1D		
Parameter	No. Analyses	No. Detected	Distribution ^a	Mean	UCL 95 ^b	No. Analyses	No. Detected	Distribution ^a	Mean	UCL 95 ^b
Inorganics										
Chloride (mg/L)	11	11	Lognormal	10.67	14.44	5	5	Lognormal	7.41	7.65
Nitrate (mg/L)	11	11	Lognormal	5.86	6.79	5	5	Non	6.25	M(7.09)
TDS (mg/L)	11	11	Non	215.27	M(260.0)	5	5	Lognormal	189	209.87
Metals (mg/L)										
Iron (dissolved)	11	0	NC	NC	All ND	5	1	NC	0.036	M(0.036)
Manganese (dissolved)	11	1	NC	NC	M(0.002)	5	1	NC	0.0060	M(0.0058)
VOCs (µg/L)										
1,4-Dichlorobenzene	11	0	NC	NC	All ND	5	0	NC	NC	All ND
Tetrachloroethene	11	0	NC	NC	All ND	5	0	NC	NC	All ND
Trichloroethene	11	0	NC	NC	All ND	5	0	NC	NC	All ND

			LB-3S			LB-3D				
Parameter	No. Analyses	No. Detected	Distribution ^a	Mean	UCL 95 ^b	No. Analyses	No. Detected	Distribution ^a	Mean	UCL 95 ^b
Inorganics										
Chloride (mg/L)	5	5	Lognormal	3.80	4.14	5	5	Non	4.57	M(5.32)
Nitrate (mg/L)	5	5	Lognormal	3.89	4.22	5	5	Lognormal	4.68	4.82
TDS (mg/L)	5	5	Lognormal	175.0	189.17	5	5	Lognormal	182.00	197.49
Metals (mg/L)										
Iron (dissolved)	5	0	NC	NC	All ND	5	0	NC	NC	All ND
Manganese (dissolved)	5	0	NC	NC	All ND	5	0	NC	NC	All ND
VOCs (µg/L)										
1,4-Dichlorobenzene	5	0	NC	NC	All ND	5	0	NC	NC	All ND
Tetrachloroethene	5	0	NC	NC	All ND	5	0	NC	NC	All ND
Trichloroethene	5	0	NC	NC	All ND	5	0	NC	NC	All ND

			LB-5S					LB-5D		
Parameter	No. Analyses	No. Detected	Distribution ^a	Mean	UCL 95 ^b	No. Analyses	No. Detected	Distribution ^a	Mean	UCL 95 ^b
Inorganics										
Chloride (mg/L)	10	10	Lognormal	4.11	4.41	5	5	Non	9.74	M(11.0)
Nitrate (mg/L)	10	10	Non	4.56	M(6.6)	5	5	Non	0.70	M(1.2)
TDS (mg/L)	10	10	Non	159.0	M(179.0)	5	5	Lognormal	225.0	237.82
Metals (mg/L)										
Iron (dissolved)	10	0	NC	NC	All ND	5	0	NC	NC	All ND
Manganese (dissolved)	10	0	NC	NC	All ND	5	3	Lognormal	0.0020	M(0.0026)
VOCs (µg/L)										
1,4-Dichlorobenzene	10	0	NC	NC	All ND	5	0	NC	NC	All ND
Tetrachloroethene	10	0	NC	NC	All ND	5	0	NC	NC	All ND
Trichloroethene	10	0	NC	NC	All ND	5	0	NC	NC	All ND

			LB-6S					LB-20S		
Parameter	No. Analyses	No. Detected	Distribution ^a	Mean	UCL 95 ^b	No. Analyses	No. Detected	Distribution ^a	Mean	UCL 95 ^b
Inorganics										
Chloride (mg/L)	16	16	Lognormal	5.41	6.62	5	5	Lognormal	14.84	151.03
Nitrate (mg/L)	16	15	NC	1.51	M(2.65)	5	1	NC	0.40	M(0.40)
TDS (mg/L)	16	16	Lognormal	160.86	169.67	5	5	Non	243.0	M(340.0)
Metals (mg/L)										
Iron (dissolved)	16	1	NC	0.028	M(0.028)	5	5	Lognormal	0.20	0.88
Manganese (dissolved)	16	2	NC	0.002	M(0.0022)	5	5	Non	2.50	M(3.50)
VOCs (µg/L)										
1,4-Dichlorobenzene	16	0	NC	NC	All ND	5	3	Non	0.210	M(0.50)
Tetrachloroethene	16	0	NC	NC	All ND	5	0	NC	NC	All ND
Trichloroethene	16	0	NC	NC	All ND	5	0	NC	NC	All ND

^{*} MTCAStat 97 indicated lognormal distribution; however, the UCL 95 cannot be determined because more than 50 percent of the data are censored (i.e., non-detect).

		L	B-10SR			LB-10DR				
Parameter	No. Analyses	No. Detected	Distribution ^a	Mean	UCL 95 ^b	No. Analyses	No. Detected	Distribution ^a	Mean	UCL 95 ^b
Inorganics										
Chloride (mg/L)	10	10	Lognormal	20.80	30.21	5	5	Lognormal	17.64	21.77
Nitrate (mg/L)	10	10	Lognormal	1.99	3.23	5	5	Lognormal	2.09	2.54
TDS (mg/L)	10	10	Lognormal	271.5	292.16	5	5	Non	275.6	M(290.0)
Metals (mg/L)										
Iron (dissolved)	10	0	NC	NC	All ND	5	0	NC	NC	All ND
Manganese (dissolved)	10	9	Non	0.003	M(0.0059)	5	1	Non	0.002	M(0.002)
VOCs (µg/L)										
1,4-Dichlorobenzene	10	0	NC	NC	All ND	5	0	NC	NC	All ND
Tetrachloroethene	10	0	NC	NC	All ND	5	0	NC	NC	All ND
Trichloroethene	10	0	NC	NC	All ND	5	0	NC	NC	All ND

			LB-13I					LB-13D		
Parameter	No. Analyses	No. Detected	Distribution ^a	Mean	UCL 95 ^b	No. Analyses	No. Detected	Distribution ^a	Mean	UCL 95 ^b
Inorganics										
Chloride (mg/L)	11	11	Lognormal	8.63	10.02	5	5	Non	4.70	M(5.03)
Nitrate (mg/L)	11	11	Non	3.93	M(4.50)	5	5	Lognormal	5.10	5.26
TDS (mg/L)	11	11	Non	201.0	M(220.0)	5	5	Lognormal	173.0	190.13
Metals (mg/L)										
Iron (dissolved)	11	0	NC	NC	All ND	5	0	NC	NC	All ND
Manganese (dissolved)	11	6	Non	0.004	M(0.005)	5	0	NC	NC	All ND
VOCs (µg/L)										
1,4-Dichlorobenzene	11	0	NC	NC	All ND	5	0	NC	NC	All ND
Tetrachloroethene	11	0	NC	NC	All ND	5	0	NC	NC	All ND
Trichloroethene	11	0	NC	NC	All ND	5	0	NC	NC	All ND

			LB-17I					LB-17D		
Parameter	No. Analyses	No. Detected	Distribution ^a	Mean	UCL 95 ^b	No. Analyses	No. Detected	Distribution ^a	Mean	UCL 95 ^b
Inorganics										
Chloride (mg/L)	5	5	Lognormal	10.90	12.07	6	6	Non	10.17	M(19.0)
Nitrate (mg/L)	5	0	NC	NC	All ND	6	0	NC	NC	All ND
TDS (mg/L)	5	5	Non	227.80	M(250.0)	6	6	Non	213.0	M(230.0)
Metals (mg/L)										
Iron (dissolved)	5	5	Lognormal	7.80	9.85	6	6	Normal	0.108	0.116
Manganese (dissolved)	5	5	Lognormal	1.19	1.54	6	6	Lognormal	4.0	4.33
VOCs (μg/L)										
1,4-Dichlorobenzene	5	0	NC	NC	All ND	6	0	NC	NC	All ND
Tetrachloroethene	5	0	NC	NC	All ND	6	0	NC	NC	All ND
Trichloroethene	5	0	NC	NC	All ND	6	0	NC	NC	All ND

			LB-26I			LB-26D					
Parameter	No. Analyses	No. Detected	Distribution ^a	Mean	UCL 95 ^b	No. Analyses	No. Detected	Distribution ^a	Mean	UCL 95 ^b	
Inorganics	•										
Chloride (mg/L)	11	11	Lognormal	7.46	8.28	5	5	Non	5.17	M(5.88)	
Nitrate (mg/L)	11	11	Lognormal	4.60	4.87	5	5	Non	5.65	M(5.90)	
TDS (mg/L)	11	11	Non	197.64	M(210.0)	5	5	Lognormal	183.80	189.88	
Metals (mg/L)											
Iron (dissolved)	11	3	NC	0.046	M(0.064)	5	0	NC	NC	All ND	
Manganese (dissolved)	11	5	NC	0.003	M(0.004)	5	1	NC	0.003	M(0.0034)	
VOCs (µg/L)											
1,4-Dichlorobenzene	11	0	NC	NC	All ND	5	0	NC	NC	All ND	
Tetrachloroethene	11	0	NC	NC	All ND	5	0	NC	NC	All ND	
Trichloroethene	11	0	NC	NC	All ND	5	0	NC	NC	All ND	

			LB-27I]	LB-27D		
Parameter	No. Analyses	No. Detected	Distribution ^a	Mean	UCL 95 ^b	No. Analyses	No. Detected	Distribution ^a	Mean	UCL 95 ^b
Inorganics										
Chloride (mg/L)	12	12	Lognormal	35.48	41.61	5	5	Non	10.15	M(13.0)
Nitrate (mg/L)	12	6	Lognormal	0.37	M(0.91)	5	5	Lognormal	4.10	4.17
TDS (mg/L)	12	12	Lognormal	375.92	393.22	5	5	Non	232.2	M(265.0)
Metals (mg/L)										
Iron (dissolved)	12	1	NC	0.032	M(0.032)	5	4	Lognormal	0.1	0.71
Manganese (dissolved)	12	12	Lognormal	0.408	0.47	5	4	Lognormal	0.011	0.11
VOCs (µg/L)										
1,4-Dichlorobenzene	12	0	NC	NC	All ND	5	0	NC	NC	All ND
Tetrachloroethene	12	0	NC	NC	All ND	5	0	NC	NC	All ND
Trichloroethene	12	0	NC	NC	All ND	5	0	NC	NC	All ND

Notes:

 $mg/L = milligrams per liter; \mu g/L = micrograms per liter; NC = not calculated, more than 50% samples were non-detect; Non = neither normal nor lognormal distribution;$

M = default to maximum value per Statistical Guidance for Ecology Site Managers

for the following scenarios: (a) more than 50% non-detect values, (b) both normal and lognormal distributions were rejected by MTCAStat,

and (c) UCL calculated using MTCAStat was higher than the maximum value of the data set.

a Distribution was determined using MTCAStat 97 program and Statistical Guidance for Ecology Site Managers.

UCL 95 was calculated using MTCAStat 97 program and Statistical Guidance for Ecology Site Managers.

APPENDIX H

2016 Landfill Gas Probe Monitoring Data

Table H-1
2016 Compliance Landfill Gas Monitoring Probe Data
Leichner Landfill

			<u> </u>		<u> </u>
	5 15	Methane	Carbon Dioxide	Oxygen	Balance Gases
Probe	Date and Time	0.0	Percent by		70.2
GP-1A	3/11/2016 12:28	0.0	3.3	18.5	78.2
GP-1A	6/1/2016 9:07	0.0	3.1	18.4	78.5
GP-1A	9/12/2016 11:26	0.0	2.8	19.5	77.7
GP-1A	12/19/2016 11:35	0.2	2.6	18.3	78.9
GP-1B	3/11/2016 12:28	0.0	2.8	18.7	78.5
GP-1B	6/1/2016 9:07	0.0	2.4	18.6	79.0
GP-1B	9/12/2016 11:27	0.0	2.1	19.6	78.3
GP-1B	12/19/2016 11:36	0.1	2.5	18.4	79.0
GP-02	3/11/2016 12:32	0.0	2.7	17.8	79.5
GP-02	6/1/2016 9:32	0.0	0.9	16.9	82.2
GP-02	9/12/2016 11:31	0.0	2.3	18.5	79.2
GP-02	12/19/2016 11:39	0.1	4.1	16.7	79.1
GP-03	3/11/2016 11:38	0.0	3.0	16.5	80.5
GP-03	6/1/2016 8:40	0.0	3.2	16.3	80.5
GP-03	9/12/2016 10:21	0.0	3.1	17.6	79.3
GP-03	12/19/2016 10:32	0.0	2.8	17.2	80.0
GP-4A	3/11/2016 11:59	0.0	4.2	15.3	80.5
GP-4A	6/1/2016 8:38	0.0	3.7	15.1	81.2
GP-4A	9/12/2016 10:46	0.0	3.2	17.5	79.3
GP-4A	12/19/2016 10:29	0.0	3.9	15.6	80.5
GP-4B	3/11/2016 12:00	0.0	4.4	10.2	85.4
GP-4B	6/1/2016 8:38	0.0	3.7	14.4	81.9
GP-4B	9/12/2016 10:47	0.0	3.1	17.0	79.9
GP-4B	12/19/2016 10:30	0.0	5.1	13.0	81.9
GP-05	3/11/2016 11:56	0.0	5.2	14.0	80.8
GP-05	6/1/2016 8:33	0.0	4.7	14.5	80.8
GP-05	9/12/2016 10:44	0.0	3.8	16.5	79.7
GP-05	12/19/2016 10:27	0.0	4.8	15.1	80.1
GP-06	3/11/2016 11:53	0.0	4.8	11.6	83.6
GP-06	6/1/2016 8:48	0.0	6.8	12.8	80.4
GP-06	9/12/2016 10:31	0.0	8.5	12.9	78.6
GP-06	12/19/2016 11:08	0.1	5.5	13.0	81.4
GP-07	3/11/2016 11:47	12.8	4.5	0.0	82.7
GP-07	3/25/2016 12:25	13.7	7.7	0.0	78.6
GP-07	3/28/2016 9:22	0.2	0.5	20.6	78.7
GP-07	6/1/2016 8:46	9.6	13.9	0.0	76.7

Table H-1
2016 Compliance Landfill Gas Monitoring Probe Data
Leichner Landfill

			<u> </u>		<u> </u>
				_	
		Methane	Carbon Dioxide	Oxygen	Balance Gases
Probe	Date and Time		Percent by		1
GP-07	6/6/2016 10:25	10.6	14.3	0.0	75.1
GP-07	6/7/2016 7:52	0.1	2.1	16.9	80.9
GP-07	9/12/2016 10:28	5.6	16.7	0.2	77.5
GP-07	9/13/2016 9:14	0.0	1.6	17.9	80.5
GP-07	12/19/2016 11:05	7.6	8.9	0.0	83.5
GP-07	12/21/2016 9:56	7.1	6.2	0.0	86.7
GP-07	12/21/2016 9:56	1.0	6.3	13.6	79.1
GP-8R	3/11/2016 11:43	0.0	2.0	19.3	78.7
GP-8R	6/1/2016 8:43	0.0	2.1	18.5	79.4
GP-8R	9/12/2016 10:24	0.0	2.2	19.9	77.9
GP-8R	12/19/2016 10:38	0.0	0.8	20.1	79.1
GP-9A	3/11/2016 12:11	17.3	18.2	0.0	64.5
GP-9A	3/25/2016 12:29	22.7	20.8	0.0	56.5
GP-9A	3/28/2016 9:28	0.0	0.2	20.9	78.9
GP-9A	6/1/2016 8:52	1.0	15.5	0.0	83.5
GP-9A	9/12/2016 11:16	0.0	6.3	10.9	82.8
GP-9A	12/19/2016 10:49	8.1	17.2	0.0	74.7
GP-9A	12/21/2016 11:50	4.0	17.2	0.0	74.7
GP-9B	3/11/2016 12:12	3.1	15.5	0.5	80.9
GP-9B	6/1/2016 8:54	1.0	15.7	0.0	83.3
GP-9B	9/12/2016 11:17	0.2	17.3	0.4	82.1
GP-9B	12/19/2016 10:50	1.4	17.4	0.0	81.2
GP-10A	3/11/2016 12:17	0.1	8.5	8.2	83.2
GP-10A	6/1/2016 8:56	0.0	9.3	8.8	81.9
GP-10A	9/12/2016 11:19	0.0	10.9	12.8	76.3
GP-10A	12/19/2016 10:51	0.0	8.1	11.1	80.8
GP-10B	3/11/2016 12:19	0.0	5.8	9.9	84.3
GP-10B	6/1/2016 8:56	0.0	5.2	16.1	78.7
GP-10B	9/12/2016 11:20	0.0	5.0	18.2	76.8
GP-10B	12/19/2016 10:52	0.0	2.8	17.7	79.5
GP-11	3/11/2016 13:00	4.7	5.7	2.4	87.2
GP-11	6/1/2016 9:46	0.0	2.3	14.6	83.1
GP-11	9/12/2016 11:40	0.0	1.9	19.0	79.1
GP-11	12/19/2016 11:50	0.0	2.2	16.9	80.9

Table H-1
2016 Compliance Landfill Gas Monitoring Probe Data
Leichner Landfill

			1		T
		Methane	Carbon Dioxide	Oxygen	Balance Gases
Probe	Date and Time		Percent by		Т
GP-12	3/11/2016 12:57	0.0	3.4	19.4	77.2
GP-12	6/1/2016 9:44	0.0	0.8	19.7	79.5
GP-12	9/12/2016 11:37	0.0	1.6	20.5	77.9
GP-12	12/19/2016 11:47	0.0	0.9	19.6	79.5
GP-13	3/11/2016 13:04	0.0	2.9	15.0	82.1
GP-13	6/1/2016 9:54	0.0	2.5	17.1	80.4
GP-13	9/12/2016 11:44	0.0	1.5	20.0	78.5
GP-13	12/19/2016 11:55	0.0	2.0	17.6	80.4
GP-14	3/11/2016 13:09	0.0	2.4	17.1	80.5
GP-14	6/1/2016 9:56	0.0	1.5	19.9	78.6
GP-14	9/12/2016 11:46	0.0	1.2	20.9	77.9
GP-14	12/19/2016 11:57	0.0	0.8	19.8	79.4
GP-15	3/11/2016 13:12	0.0	1.7	19.7	78.6
GP-15	6/1/2016 9:59	0.0	1.4	19.1	79.5
GP-15	9/12/2016 11:49	0.0	1.2	19.8	79.0
GP-15	12/19/2016 12:00	0.0	2.1	19.4	78.5
GP-16D	3/11/2016 13:20	0.0	1.9	18.9	79.2
GP-16D	6/1/2016 10:09	0.0	1.6	17.5	80.9
GP-16D	9/12/2016 11:55	0.0	2.1	18.4	79.5
GP-16D	12/19/2016 12:10	0.0	3.6	18.1	78.3
GP-16S	3/11/2016 13:21	0.0	1.9	20.2	77.9
GP-16S	6/1/2016 10:11	0.0	2.1	18.6	79.3
GP-16S	9/12/2016 11:57	0.0	2.4	19.6	78.0
GP-16S	12/19/2016 12:12	0.0	1.5	19.5	79.0
GP-17D	3/11/2016 13:25	0.0	2.2	18.9	78.9
GP-17D	6/1/2016 10:16	0.0	1.9	18.5	79.6
GP-17D	9/12/2016 12:01	0.0	2.6	17.9	79.5
GP-17D	12/19/2016 12:17	0.0	4.8	16.7	78.5
GP-17S	3/11/2016 13:26	0.0	2.5	17.7	79.8
GP-17S	6/1/2016 10:17	0.0	2.8	17.8	79.4
GP-17S	9/12/2016 12:02	0.0	2.4	19.2	78.4
GP-17S	12/19/2016 12:18	0.0	4.2	17.3	78.5
GP-18D	3/11/2016 13:33	0.0	2.5	18.7	78.8
GP-18D	6/1/2016 10:33	0.0	2.1	19.1	78.8
GP-18D	9/12/2016 12:08	0.0	2.1	19.5	78.4
GP-18D	12/19/2016 12:36	0.0	2.2	18.3	79.5

Table H-1
2016 Compliance Landfill Gas Monitoring Probe Data
Leichner Landfill

			T		<u> </u>		
				_			
		Methane	Carbon Dioxide	Oxygen	Balance Gases		
Probe	Date and Time	Percent by Volume					
GP-18S	3/11/2016 13:34	0.0	2.1	19.8	78.1		
GP-18S	6/1/2016 10:34	0.0	1.8	19.7	78.5		
GP-18S	9/12/2016 12:09	0.0	1.9	20.2	77.9		
GP-18S	12/19/2016 12:38	0.0	1.2	19.1	79.7		
GP-19D	3/11/2016 13:39	0.0	2.2	18.2	79.6		
GP-19D	6/1/2016 10:37	0.0	1.8	18.8	79.4		
GP-19D	9/12/2016 12:12	0.0	2.0	18.4	79.6		
GP-19D	12/19/2016 12:43	0.0	3.7	16.6	79.7		
GP-19S	3/11/2016 13:39	0.0	2.3	19.3	78.4		
GP-19S	6/1/2016 10:38	0.0	1.6	19.7	78.7		
GP-19S	9/12/2016 12:13	0.0	1.6	19.6	78.8		
GP-19S	12/19/2016 12:44	0.0	2.0	16.4	81.6		
GP-20	3/11/2016 13:46	0.0	7.4	2.7	89.9		
GP-20	6/1/2016 10:47	0.0	7.9	8.3	83.8		
GP-20	9/12/2016 12:19	0.0	5.5	10.8	83.7		
GP-20	12/19/2016 12:50	0.0	12.0	2.3	85.7		
GP-21A	3/11/2016 13:51	0.0	3.0	19.6	77.4		
GP-21A	6/1/2016 10:53	0.0	1.8	19.8	78.4		
GP-21A	9/12/2016 12:26	0.0	2.4	20.1	77.5		
GP-21A	12/19/2016 12:55	0.0	1.3	19.3	79.4		
GP-21B	3/11/2016 13:52	0.0	2.2	18.0	79.8		
GP-21B	6/1/2016 10:54	0.0	1.5	19.7	78.8		
GP-21B	9/12/2016 12:26	0.0	1.9	19.9	78.2		
GP-21B	12/19/2016 12:56	0.0	2.0	18.4	79.6		
GP-22	3/11/2016 13:54	0.0	1.8	19.8	78.4		
GP-22	6/1/2016 10:56	0.0	1.2	19.9	78.9		
GP-22	9/12/2016 12:28	0.0	1.2	20.5	78.3		
GP-22	12/19/2016 12:57	0.0	1.7	19.5	78.8		
GP-23	3/11/2016 13:55	0.0	1.8	19.3	78.9		
GP-23	6/1/2016 10:57	0.0	1.1	19.6	79.3		
GP-23	9/12/2016 12:30	0.0	1.0	20.4	78.6		
GP-23	12/19/2016 12:59	0.0	2.1	19.5	78.4		
GP-24A	3/11/2016 13:57	0.0	1.6	19.8	78.6		
GP-24A	6/1/2016 10:59	0.0	0.9	20.2	78.9		
GP-24A	9/12/2016 12:31	0.0	0.7	20.7	78.6		
GP-24A	12/19/2016 13:00	0.0	1.0	20.0	79.0		

Table H-1
2016 Compliance Landfill Gas Monitoring Probe Data
Leichner Landfill

			ī		Τ		
		Methane	Carbon Dioxide	Oxygen	Balance Gases		
Probe	Date and Time	Percent by Volume					
GP-24B	3/11/2016 13:58	0.0	1.5	19.9	78.6		
GP-24B	6/1/2016 11:00	0.0	0.8	20.2	79.0		
GP-24B	9/12/2016 12:32	0.0	0.5	21.0	78.5		
GP-24B	12/19/2016 13:01	0.0	1.3	20.4	78.3		
GP-25A	3/11/2016 14:03	0.0	2.0	18.7	79.3		
GP-25A	6/1/2016 11:05	0.0	1.9	18.4	79.7		
GP-25A	9/12/2016 12:37	0.0	0.9	20.5	78.6		
GP-25A	12/19/2016 13:07	0.0	2.2	19.0	78.8		
GP-25B	3/11/2016 14:03	0.0	2.6	18.2	79.2		
GP-25B	6/1/2016 11:05	0.0	2.6	17.2	80.2		
GP-25B	9/12/2016 12:38	0.0	1.7	17.5	80.8		
GP-25B	12/19/2016 13:07	0.0	3.5	19.1	77.4		
GP-26	3/11/2016 14:08	0.0	1.4	20.5	78.1		
GP-26	6/1/2016 11:14	0.0	1.6	20.0	78.4		
GP-26	9/12/2016 12:43	0.0	1.3	20.9	77.8		
GP-26	12/19/2016 13:12	0.0	0.6	20.5	78.9		
GP-27	3/11/2016 14:09	0.0	1.2	20.2	78.6		
GP-27	6/1/2016 11:16	0.0	1.0	19.9	79.1		
GP-27	9/12/2016 12:45	0.0	0.9	20.5	78.6		
GP-27	12/19/2016 13:14	0.0	0.6	20.3	79.1		
GP-28	3/11/2016 11:34	0.0	3.2	10.7	86.1		
GP-28	6/1/2016 8:13	0.0	5.4	12.1	82.5		
GP-28	9/12/2016 10:14	0.0	3.3	17.5	79.2		
GP-28	12/19/2016 10:18	0.0	4.8	14.6	80.6		
GP-29	3/11/2016 12:49	0.0	6.0	6.9	87.1		
GP-29	6/1/2016 8:29	0.0	7.6	4.7	87.7		
GP-29	9/12/2016 10:36	0.0	6.9	8.7	84.4		
GP-29	12/19/2016 10:24	0.0	0.3	20.6	79.1		
GP-30A	3/11/2016 12:44	0.0	3.7	15.0	81.3		
GP-30A	6/1/2016 8:22	0.0	5.4	14.8	79.8		
GP-30A	9/12/2016 10:41	0.0	5.9	15.9	78.2		
GP-30A	12/19/2016 10:12	0.0	4.3	16.1	79.6		
GP-30B	3/11/2016 12:45	0.0	4.1	14.8	81.1		
GP-30B	6/1/2016 8:24	0.0	5.2	15.0	79.8		
GP-30B	9/12/2016 10:42	0.0	4.7	16.8	78.5		
GP-30B	12/19/2016 10:13	0.1	4.2	16.1	79.6		

Table H-1
2016 Compliance Landfill Gas Monitoring Probe Data
Leichner Landfill

			<u> </u>		1		
		Mathana	Carlor Diamida	0	Dalamas Casas		
Probe	Date and Time	Methane	Carbon Dioxide	Oxygen	Balance Gases		
GP-31	3/11/2016 13:36	Percent by Volume 0.0 1.8 20.0 78.2					
GP-31	6/1/2016 10:35	0.0	1.5	20.1	78.4		
GP-31	9/12/2016 12:10	0.0	1.3	20.3	78.4		
GP-31	12/19/2016 12:40	0.0	1.4	19.6	79.0		
GP-32	3/11/2016 13:41	0.0	2.0	18.6	79.4		
GP-32	6/1/2016 10:41	0.0	1.6	19.4	79.0		
GP-32	9/12/2016 12:15	0.0	1.5	19.6	78.9		
GP-32	12/19/2016 12:46	0.0	2.8	17.1	80.1		
GP-33	3/11/2016 13:42	0.0	2.4	17.1	80.5		
GP-33	6/1/2016 10:44	0.0	1.9	19.0	79.1		
GP-33	9/12/2016 12:17	0.0	2.0	17.4	80.6		
GP-33	12/19/2016 12:48	0.0	3.9	12.3	83.8		
GP-34	3/11/2016 13:48	0.0	6.6	10.7	82.7		
GP-34	6/1/2016 10:49	0.0	5.2	15.3	79.5		
GP-34	9/12/2016 12:20	0.0	5.0	14.2	80.8		
GP-34	12/19/2016 12:52	0.0	6.4	11.0	82.6		
GP-35	3/11/2016 13:50	0.0	4.9	12.9	82.2		
GP-35	6/1/2016 10:52	0.0	3.1	17.3	79.6		
GP-35	9/12/2016 12:24	0.0	3.9	17.4	78.7		
GP-35	12/19/2016 12:53	0.0	2.7	15.3	82.0		
GP-36	3/11/2016 13:59	0.0	1.5	18.9	79.6		
GP-36	6/1/2016 11:01	0.0	1.0	18.5	80.5		
GP-36	9/12/2016 12:34	0.0	0.8	19.2	80.0		
GP-36	12/19/2016 13:03	0.0	2.5	18.2	79.3		
GP-37	3/11/2016 14:01	0.0	1.8	18.2	80.0		
GP-37	6/1/2016 11:03	0.0	1.2	18.6	80.2		
GP-37	9/12/2016 12:35	0.0	1.1	18.9	80.0		
GP-37	12/19/2016 13:05	0.0	3.8	17.3	78.9		
GP-38	3/11/2016 14:05	0.0	1.7	19.7	78.6		
GP-38	6/1/2016 11:09	0.0	1.9	19.4	78.7		
GP-38	9/12/2016 12:40	0.0	1.2	20.0	78.8		
GP-38	12/19/2016 13:09	0.0	1.6	18.0	80.4		