T: 360-943.7525 F: 360.943.7513

February 23, 2015

Response to Comment Letter dated February 12, 2014

Steve Teel, LHG Site Manager, Toxics Cleanup Program Ecology, Southwest Regional Office PO Box 47775 Olympia, WA 98504

Dear Mr. Teel,

At your request, Brown and Caldwell has revised the Parcel 4/Parcel 5 Interim Action Report (IA Report) based on your comment letter dated February 12, 2014. We have compiled responses to your comments, provided below, and have included the revised report. Thank you for your review and comments on the Draft IA Report.

Response to Comments

- 1 C: The attached compact disk (CD) only contained an electronic copy of the appendices. Please include electronic copies of both the text and appendices with the next revision. Please also include two hard copies.
 - R: Both hard copies and electronic copies of the report have been generated. Please allow one to two weeks for delivery of the hard copies.
- C: Appendix A is still incomplete. Both the original well report and the decommissioning well report need to be included for all of the wells. Appendix A contained both of these logs for MW-1 (well tag ID AKA425) and MW-3 (AKA427) but neither of these logs were present for MW-4 (AKA424) and the original well report needs to be added for MW-16 (APF874) and MW-23S (BAF400). Why was the decommissioning well report for BCN886 included? This well was apparently part of a separate project (LOTT VCP SW0933). Also, please label the well logs with the well designation (for example MW-1).
 - R: Upon final review of Appendix A and supporting documentation, the Appendix has been revised. The original completion log and decommissioning logs are provided for each well in Appendix A, with the exception of MW-4 (AKA424). Based on our review of the logs submitted by the site contractors, and Ecology's well log data base, we believe AKA424 is a non-unique well tag number. The site contractor that completed the abandonment work has included the abandonment log for BCN886 with the decommissioning logs provided for the site. Correspondence documented the delivery of the

BCN886 log, as well as the Ecology Well Log Database screenshot showing two AKA424 wells is provided in Appendix A.

- C: Figure 4-1: The sample locations shown on this figure are at the incorrect scale. Please remove the sample location dots and instead show the excavation extent at the correct scale fore each hotspot (such as how they are shown on Figure 2-1). Please show both the "CNF-" hotspot designation and the original designation for the hotspots DP-21, DP-11, DP-18, DP-17, and TP-02). Please also add nearby monitoring well locations to this figure as previously requested in our comment letter. The size of the symbol for the monitoring well location should be reduced in size so that it is more proportionate to the scale of the figure and so they do not dwarf the extent of the hotspot excavations. For instance, Figure 2-3 shows the monitoring well location symbols at a scale of 21 feet in diameter, which seems a little larger than necessary for readability.
 - R: Figure 4-1 has been revised based on this comment.
- 4 C: Section 3.1. MW-17: This section states that MW-17 was not located but may be discovered during future work on Parcel 8. The Parcel 8 work has been completed now. Please update this section to indicate if MW-17 was discovered and/or decommissioned.
 - R: MW-17 was not located during the recent Parcel 8 work. The report text in Section 3.1 has been updated to reflect this information.
- C: Parcel 4, Section 4.2.2 Soil Management, Last paragraph and Table 4-25: The text states that 5,600 tons were hauled off-site. However, Table 4-25 states that 8,686 tons were hauled off site for disposal. Please correct the text or table so that the amounts are consistent and accurate. What is the meaning of the Table 4-25 footnote that states that the Parcel 4 "Dig and Haul" amount of 8,060 tons is an "estimated" quantity by the LOTT construction manager? Why is this total estimated? Where are the weight tickets for this material? Please clarify in the report and make sure that all weight tickets are included in Appendix F. The text of Section 4.2.2 needs to include a discussion of the 291 tons of soil shown in Table 4-25 that were reused under the cap. Please also describe where on Parcel 4 this soil was placed.
 - R: We have reviewed the previously reported soils data and supporting documentation and have reorganized the data for this draft of the IA Report. The previously reported footnote for tables 4-25 indicating estimated quantities were based on tabulated data by LOTT construction manager has been revised based on our review of the supporting documentation for materials disposal. The value originally reported for Stockpile 4 removal (hot spot areas) was 626 tons. A review of the weight slips shows a value of 632 tons.

Rows have been added to this table to show disposal volumes per month. Table entries and footnotes have been revised accordingly.

- 6 C: Table 4-27, Parcel 5 Soil Quantity Summary: Please explain the relationship between the value in the second line of the table ("Parcel 5 Reuse Under Cap", 6,002 tons) and the third line in the table ("Parcel 5 Total Available Reuse" 4,581 tons. Shouldn't the third line in the table be equal to the first line (Parcel 5 Unrestricted Reuse" 412 tons) plus the second line?
 - R: As stated in our response to Comment 5 above, the soil quantity results have been reorganized and revised in the IA Report. Table 4-27 was revised to remove rows that contained no data. Previously we reported a total of 248 tons removed during November and December 2010, based on estimate quantities from the construction project manager. However, review of the final quantities and weight slips does not support these values. The value for disposal in January 2011 was originally reported as 275 tons, and has been updated to reflect the weight slip receipts totaling 279 tons. The March 2011 disposal was originally reported as 993 tons and has been revised to 988 tons based on final weight slip documentation.
- 7 C: Parcel 5, Section 4.3.2. Soil Management: Please include a summary of the amount of soil that was disposed and reused in the text instead of just referring the reader to Table 4-27.
 - R: Additional text has been added to 4.3.2 in response to this comment.
- 8 C: Figure 4-5: The dioxin/furan toxicity equivalent concentrations shown in the figure are incorrect and do not match Table 4-5. Please correct the concentrations on the figure.
 - R: Figure 4-5 has been revised accordingly.
- 9 C: Table 4-11: At the bottom of the table, please change "Interim Action Reporting Level" to "Interim Action Remediation Level."
 - R: The revised IA report has been revised based on this comment.
- C: Appendix F, Material Weight Slips and Landfill Records: The load summaries for Parcels 4 and 5 are incomplete. Parcel 4 only has two load summaries for a combined total of 382.9 net tons for the time period March 7-16, 2012. According to Table 4-25, a total of 8,060 tons were disposed off site. For Parcel 5, only four load summaries are shown for a combined total of 1,049.3 net tons for the time period January 17, 2011 to March 11, 2011. According to Table 4-27, disposal events started in October 2010 and ended

March 2012 and a total of 2,127.9 tons were disposed off-site for Parcels 4 and 5.

R: See response to Comments 5, 6, and 7. Appendix F has been revised based on these comments.

11 C: Appendix G: As requested in our previous comment letter, please define what "SDG" means.

R: Laboratories batch process samples based on the batches they receive from clients and other batch-loads. SDG refers to the "Sample Delivery Group" and associates a set of samples with the laboratory QA/QC procedures for a given batch of samples analyzed. The introductory text in Appendix G will be updated to include a description of this acronym.

- 12 C: Appendix I, Site Photos: Captions for the photos need to be added.
 - R: Captions have been added to the site photos in Appendix I.

Brown and Caldwell appreciates Ecology's services in reviewing this site documentation. Should you have any questions, please do not hesitate to call me at 360-943-7525. Very truly yours,

Brown and Caldwell

Jonathan Turk, LHG Olympia

cc: Rick Dougherty, City of Olympia
Eric Hielema, LOTT Clean Water Alliance
Chris Cleveland, Brown and Caldwell

Technical Memorandum

724 Columbia Street NW, Suite 420 Olympia, Washington 98501 Tel: 360.943.7525

Fax: 360.943.7513

Prepared for:	City of	Olympia
---------------	---------	---------

LOTT Clean Water Alliance

Project Title: East Bay Redevelopment

Project No: 135894/138130

Technical Memorandum

Subject: Parcel 4/Parcel 5 Interim Action Report

Date: February 23, 2015

To: Jay Burney, Assistant City Manager, City of Olympia

Eric Hielema, Senior Engineer, LOTT Alliance

From: Jon Turk, Principal Hydrogeologist, Brown and Caldwell

Copy to: Steve Teel, Site Manager, Washington State Department of Ecology

Prepared by:	
	Jon Turk, Principal Hydrogeologist
Reviewed by:	
	Chris Cleveland, Vice President

Limitations:

This document was prepared solely for the City of Olympia and the LOTT Alliance in accordance with professional standards at the time the services were performed and in accordance with the contract between the City of Olympia and Brown and Caldwell dated September 4, 2009, and the contract between the LOTT Alliance and Brown and Caldwell dated June 18, 2008. This document is governed by the specific scope of work authorized by the City of Olympia and the LOTT Alliance; it is not intended to be relied upon by any other party except for regulatory authorities contemplated by the scope of work. We have relied on information or instructions provided by the City of Olympia and the LOTT Alliance and other parties and, unless otherwise expressly indicated, have made no independent investigation as to the validity, completeness, or accuracy of such information.

Table of Contents

List of F	igures		ii
List of T	ables		ii
List of A	Abbreviat	ions	٠ ١
1. Intro	duction		1
1.1	Regulat	tory Basis	1
	1.1.1	Interim Action Purpose	1
	1.1.2	Interim Action General Requirements	1
	1.1.3	Relationship to the Cleanup Action	1
1.2	Studies	and Plans to Date	2
1.3	East Ba	ay Properties History	2
	1.3.1	Historical Areas of Concern	3
1.4	IA Repo	ort	3
2. Site (Condition	ns	
2.1	Land U	se	Δ
2.2	Constit	uents of Potential Concern	4
2.3	Concep	tual Site Contaminant Transport Model	5
2.4	Concep	tual Site Exposure Model	5
2.5	Site Su	bsurface Conditions	6
	2.5.1	Hydrogeologic Conditions	6
	2.5.2	Soil and Groundwater COPC Concentrations	6
	2.5.3	Potential Transport of COPCs from Soil to Surface Water	7
3. Interi	im Action	Work Plan Alternatives Evaluation and Selection	7
3.1	Interim	Action Activities	7
4. Interi	im Action	Implementation	8
4.1	Implem	entation Summary	8
4.2	Parcel 4	4	8
	4.2.1	Hot Spot Remediation	g
	4.2.2	Soil Management	10
	4.2.3	Monitoring Well Decommissioning	10
	4.2.4	Capping	10
4.3	Parcel !	5	10
	4.3.1	Hot Spot Remediation	11
	4.3.2	Soil Management	11
	4.3.3	Monitoring Well Decommissioning	12
	4.3.4	Capping	13
4.4	Deviation	ons from Interim Action Work Plan	13

5. Data	Quality Review	.13
	Field Methods	
	Laboratory Data Assessment	
	ssion and Conclusions	
Referen		15

Appendix A: Monitoring Well Decomissioning Logs

Appendix B: Sampling and Analysis Plan

Appendix C: Quality Assurance Project Plan

Appendix D: Health and Safety Plan

Appendix E: Laboratory Reports

Appendix F: Material Weight Slips and Landfill Records

Appendix G: Data Validation Report

Appendix H: Excavation Logs

Appendix I: Site Photos

List of Figures

Figure 1-1. Site Map, East Bay Redevelopment	F-1
Figure 1-2. Historical Operations/AOCs	F-2
Figure 2-1. Land Use	F-3
Figure 2-2. Conceptual Site Containment Transport Model	F-4
Figure 2-3. Monitoring Well Locations	F-5
Figure 4-1. Confirmation Sample Locations	F-6
Figure 4-2. CNF-4 Concentrations	F-7
Figure 4-3. CNF-5 Concentrations	F-8
Figure 4-4. CNF-3 Concentrations	F-9
Figure 4-5. CNF-3A Concentrations	F-10
Figure 4-6. CNF-1 Concentrations	F-11
Figure 4-7. CNF-2 Concentrations	F-12
Figure 4-8. CNF-2A Concentrations	F-13
List of Tables	
List of Tables Table 3.1. Samuel Locations and Appletical Constituents	Т 4
Table 3-1. Sample Locations and Analytical Constituents	
Table 3-1. Sample Locations and Analytical Constituents	s)T-2
Table 3-1. Sample Locations and Analytical Constituents	s)T-2
Table 3-1. Sample Locations and Analytical Constituents	S)T-2 T-3 T-6
Table 3-1. Sample Locations and Analytical Constituents Table 3-2. Interim Action Cleanup Levels (IACLs) and Interim Action Remediation Levels (IARLs) Table 4-1. Confirmation Sample Locations Table 4-2. CNF-4 (DP-18) Concentrations in Soil Table 4-3. CNF-5 (DP-17) Concentrations in Soil	T-2T-3T-6T-7
Table 3-1. Sample Locations and Analytical Constituents Table 3-2. Interim Action Cleanup Levels (IACLs) and Interim Action Remediation Levels (IARLs) Table 4-1. Confirmation Sample Locations Table 4-2. CNF-4 (DP-18) Concentrations in Soil Table 4-3. CNF-5 (DP-17) Concentrations in Soil Table 4-4. CNF-3 (TP-02) Concentrations in Soil	T-2T-3T-6T-7T-8
Table 3-1. Sample Locations and Analytical Constituents Table 3-2. Interim Action Cleanup Levels (IACLs) and Interim Action Remediation Levels (IARLs Table 4-1. Confirmation Sample Locations Table 4-2. CNF-4 (DP-18) Concentrations in Soil Table 4-3. CNF-5 (DP-17) Concentrations in Soil Table 4-4. CNF-3 (TP-02) Concentrations in Soil Table 4-5. CNF-3A (TP-02) Concentrations in Soil	T-2T-3T-6T-7T-8T-9
Table 3-1. Sample Locations and Analytical Constituents Table 3-2. Interim Action Cleanup Levels (IACLs) and Interim Action Remediation Levels (IARLs Table 4-1. Confirmation Sample Locations Table 4-2. CNF-4 (DP-18) Concentrations in Soil Table 4-3. CNF-5 (DP-17) Concentrations in Soil Table 4-4. CNF-3 (TP-02) Concentrations in Soil Table 4-5. CNF-3A (TP-02) Concentrations in Soil Table 4-6. CNF-1 (DP-11) Concentrations in Soil	T-2T-3T-6T-7T-8T-9
Table 3-1. Sample Locations and Analytical Constituents	T-2T-3T-6T-7T-8T-9T-10
Table 3-1. Sample Locations and Analytical Constituents Table 3-2. Interim Action Cleanup Levels (IACLs) and Interim Action Remediation Levels (IARLs Table 4-1. Confirmation Sample Locations	T-2T-3T-6T-7T-8T-9T-10T-11
Table 3-1. Sample Locations and Analytical Constituents Table 3-2. Interim Action Cleanup Levels (IACLs) and Interim Action Remediation Levels (IARLs Table 4-1. Confirmation Sample Locations Table 4-2. CNF-4 (DP-18) Concentrations in Soil Table 4-3. CNF-5 (DP-17) Concentrations in Soil Table 4-4. CNF-3 (TP-02) Concentrations in Soil Table 4-5. CNF-3A (TP-02) Concentrations in Soil Table 4-6. CNF-1 (DP-11) Concentrations in Soil Table 4-7. CNF-2 (DP-21) Concentrations in Soil Table 4-8. CNF-2A (DP-21) Concentrations in Soil	T-2T-3T-6T-7T-8T-10T-11T-12
Table 3-1. Sample Locations and Analytical Constituents	T-2T-3T-6T-7T-8T-10T-11T-12T-13
Table 3-1. Sample Locations and Analytical Constituents Table 3-2. Interim Action Cleanup Levels (IACLs) and Interim Action Remediation Levels (IARLs Table 4-1. Confirmation Sample Locations Table 4-2. CNF-4 (DP-18) Concentrations in Soil Table 4-3. CNF-5 (DP-17) Concentrations in Soil Table 4-4. CNF-3 (TP-02) Concentrations in Soil Table 4-5. CNF-3A (TP-02) Concentrations in Soil Table 4-6. CNF-1 (DP-11) Concentrations in Soil Table 4-7. CNF-2 (DP-21) Concentrations in Soil Table 4-8. CNF-2A (DP-21) Concentrations in Soil	T-2T-3T-6T-7T-8T-10T-11T-12T-13T-17

Table 4-13. Nickel Concentrations in Soil	T-31
Table 4-14. TPH-G Concentrations in Soil	T-36
Table 4-15. Benzene Concentrations in Soil	T-41
Table 4-16. Ethylbenzene Concentrations in Soil	T-46
Table 4-17. Toluene Concentrations in Soil	T-51
Table 4-18. Total Xylenes Concentrations in Soil	T-56
Table 4-19. TPH-D Concentrations in Soil	T-61
Table 4-20. TPH-HO Concentrations in Soil	T-66
Table 4-21. Total Naphthalenes Concentrations in Soil	T-71
Table 4-22. Summary of Carcinogenic Polyaromatic Hydrocarbons (cPAH) Toxicity Equivalent Concentrations in Soil	T-76
Table 4-23. Summary of Dioxin/Furan TEC Concentrations in Soil	T-81
Table 4-24. Parcel 4 Stockpile Summary	T-86
Table 4-25. Soil Quantity Summary - Parcel 4	T-87
Table 4-26. Parcel 5 Stockpile Summary	T-88
Table 4-27. Soil Quantity Summary - Parcel 5	T-90

List of Abbreviations

AO Agreed Order

bgs below ground surface

City City of Olympia
CL Cleanup Level
CNF Confirmation

COPC constituent of potential concern

cPAH carcinogenic polynuclear aromatic hydrocarbon

CSEM conceptual Site exposure model

CY cubic yard

Ecology Washington State Department of Ecology

FS Feasability Study

ft foot/feet

HASP Health and Safety Plan

HOCM Hands-On Children's Museum

IA Interim Action

IACL Interim Action Cleanup Level
IARL Interim Action Remediation Level

IAWP Interim Action Work Plan

kg kilogram

LOTT Lacey, Olympia, Tumwater, and Thurston County Clean Water Alliance

mg milligram

PAH polycyclic aromatic compounds

PCB polychlorinated biphenyl POC point of compliance Port Port of Olympia

QA/QC quality assurance/quality control QAPP Quality Assurance Project Plan

RI Remedial Investigation
SAP Sampling and Analysis Plan
SOP standard operating procedure
Site East Bay Redevelopment

SPL stockpile

TPH-D diesel-range total petroleum hydrocarbons
TPH-G gasoline-range total petroleum hydrocarbons
TPH-HO heavy oil-range total petroleum hydrocarbons

UTM Universal Transverse Mercator VCP Voluntary Cleanup Program VOC volatile organic compound

WAC Washington Administrative Code

1. Introduction

This technical memorandum presents the results of the Interim Action (IA) for Parcel 4 and Parcel 5 of the East Bay Redevelopment (the Site). The Interim Action Work Plan (IAWP) (Brown and Caldwell, 2010) proposed a remedy for cleanup of a portion of the Site, specifically Parcels 4 and 5, and developed the alternative selected into a program of specific activities to implement the alternative. The IA facilitated construction of the Hands-On Children's Museum (HOCM) on Parcel 5 by the City of Olympia (the City) and the Plaza on Parcel 4 by the LOTT Clean Water Alliance (LOTT). The IA for each parcel was implemented concurrently with development of each parcel.

The Site consists of eight public and commercial mixed-used development properties located on the Port of Olympia (Port) peninsula in Olympia, Washington. Parcels 4 and 5 are part of the Site. A map of the Site and the surrounding area is shown on Figure 1-1. Prior to short platting into eight parcels, the Site was a single, 13.3-acre property. Remedial activities at the Site are carried out under Agreed Order (AO) No. DE7830 between the Port, the City, LOTT, and the Washington State Department of Ecology (Ecology). The AO provides for completion of a Remedial Investigation/Feasibility Study (RI/FS) of the Site and the Parcel 4 and 5 IA. An RI work plan and an IA for Site infrastructure were completed under a previous AO between the Port and Ecology.

1.1 Regulatory Basis

The following section provides the regulatory basis for the IA, including its purpose, requirements, and relationship to the Cleanup Action.

1.1.1 Interim Action Purpose

According to Washington Administrative Code (WAC) 173-340-430(1), an IA is distinguished from a Cleanup Action in that an IA only partially addresses the cleanup of a site. An IA is one or more of the following:

- a remedial action that is technically necessary to reduce a threat to human health or the environment by eliminating or substantially reducing one or more pathways for exposure to a hazardous substance at a facility
- a remedial action that corrects a problem that may become substantially worse or cost substantially more to address if the remedial action is delayed
- a remedial action needed to provide for completion of a site hazard assessment, RI/FS, or design of a Cleanup Action

The IA proposed herein provides for the cleanup of a portion of the Site and reduces a threat to human health and the environment by addressing impacts to Parcel 4 and Parcel 5.

1.1.2 Interim Action General Requirements

General requirements of IAs are described in WAC 173-340-430(2). The IA implemented provided cleanup of a portion of the Site by eliminating or substantially reducing one or more pathways for exposure to a hazardous substance at or originating from Parcel 4 and Parcel 5.

1.1.3 Relationship to the Cleanup Action

The relationship of an IA to the final Cleanup Action is described in WAC 173-340-430(3). If the final Cleanup Action for a site is known, the IA must be consistent with the final Cleanup Action. If it is not known, the IA must not foreclose any reasonable cleanup alternatives.

The final Cleanup Action for the Site is not known. The IA described in this technical memorandum will not foreclose any reasonable alternatives for the final Cleanup Action.

1.2 Studies and Plans to Date

A number of studies and planning documents have been completed for the Site. These include:

- Phase I ESA, Port of Olympia East Bay Redevelopment. Prepared by GeoEngineers, Inc. for the Port of Olympia. March 14, 2007.
- RI/FS and Conceptual CAP (now known as the RI/FS IA), Port of Olympia East Bay Redevelopment, City Hall lot. Prepared by GeoEngineers, Inc. for The Rants Group. April 24, 2007.
- Supplemental Site Use History and Soil and Groundwater Sampling Clarifications, Port of Olympia East Bay Redevelopment. Prepared by GeoEngineers, Inc. for the Port of Olympia. August 3, 2007.
- Voluntary Cleanup Program (VCP) Draft Remedial Investigation and Feasibility Study and Conceptual Cleanup Action Plan, East Bay Redevelopment, Port of Olympia. Prepared by GeoEngineers Inc. for the Port of Olympia. December 20, 2007.
- Remedial Investigation Work Plan, East Bay Redevelopment, Port of Olympia. Prepared by GeoEngineers, Inc, and Pioneer Technologies Corporation for the Port of Olympia. October 22, 2008, amended January 30, 2009.
- East Bay Remedial Investigation Phase 1 Summary. Prepared by Pioneer Technologies Corporation for the Port of Olympia. December 2008.
- Final Interim Action Work Plan, East Bay Redevelopment, Port of Olympia. Prepared by Pioneer Technologies Corporation for the Port of Olympia. May 2009.
- Draft Empirical Evaluation of the Potential for Soil Constituents to Migrate to Surface Water via Groundwater at the Port of Olympia's East Bay Redevelopment Site. Prepared by Pioneer Technologies Corporation for the Port of Olympia. February 2010. Ecology Comments issued by letter on April 16, 2010.
- Infrastructure Interim Action Report for East Bay Redevelopment Site. Prepared by Pioneer Technologies Corporation for the Port of Olympia. June 2010.
- Parcel 4/Parcel 5 Interim Action Work Plan. Prepared by Brown and Caldwell for the LOTT Clean Water Alliance and the City of Olympia. September 2010.
- Site Boundary Technical Memorandum for the East Bay Redevelopment Site. Prepared by Pioneer Technologies Corporation for the Port of Olympia. November 2010.
- Final Empirical Evaluation of the Potential for Soil Constituents to Migrate to Surface Water via Groundwater at the East Bay Redevelopment Site. Prepared by Pioneer Technologies Corporation for the Port of Olympia. May 2011.
- Data Gap Investigation Work Plan and Schedule, East Bay Redevelopment Site, Olympia, Washington. Prepared by Pioneer Technologies Corporation for the Port of Olympia. October 2011.
- Site Boundary, East Bay Redevelopment Site, Ecology Facility/Site No. 5785176, Agreed Order DE7830. Prepared by Pioneer Technologies Corporation for the Port of Olympia. December 2011.

1.3 East Bay Properties History

Parcels 4 and 5 lie within the original tideflat of Budd Inlet, and soils above the tideflat elevation are fill material. Fill operations on the Site began as early as the late 1800s and continued until as late as the 1970s. Much of the fill on the Site appears to be marine dredge spoils from dredging operations in the East and West Bays of Budd Inlet. In addition, fill has been found to contain wood debris, construction debris, and roadway fill.

Lumber milling operations were located on the Site as early as 1888 and operated until 1968. Various support facilities and services accompanied the lumber milling operations. Log booming operations also took place in the adjacent East Bay of Budd Inlet. Following cessation of lumber milling activities in 1968, the area was used for commercial and light industrial activities and warehousing. Warehousing and light industry ceased in 2008 as the Site was cleared of tenants and operators in preparation for redevelopment.

Historical shorelines, interpreted from aerial photography, were developed in the Remedial Investigation Work Plan, East Bay Redevelopment, Port of Olympia (GeoEngineers/PIONEER, 2008, 2009) and included in the IAWP. Fill lithologies were classified, as follows, from oldest to youngest:

- Pre-1891: Dark-colored sand with pockets of wood debris and pockets of silt.
- 1891 to 1908: Dark brown to black coarse to fine sand. Based on historical records, this fill may have been sourced from a dredging operation to widen the Budd Inlet shipping channel.
- 1908 to 1948: Light colored sand with pockets of wood debris and pockets of gravel.
- 1948 to 1975: Light colored sand with pockets of gravel.

Underlying the fill layers are native silt and clay sediments.

A detailed historical review of fill horizons and the associated fill operation dates, as well as fill cross-sections developed based on boring and drilling observations, is presented in "Section 2.0 Site History" of the Remedial Investigation Work Plan, East Bay Redevelopment, Port of Olympia (GeoEngineers/PIONEER, 2008, 2009). This review was revised with additional subsurface observations and aerial photographs and presented in the Site Boundary Technical Memorandum for the East Bay Redevelopment Site (Pioneer, 2010).

1.3.1 Historical Areas of Concern

Historical areas of concern were identified in the IAWP. The St. Paul and Tacoma Lumber Mill, in operation between 1942 and 1968, was the primary industrial operator on Parcels 4 and 5. Historical areas of concern associated with this mill include an oil house and engine room, tar dipping tanks, a boiler house, transformers, and a spray-painting shop. These areas of concern are identified on Figure 1-2. Chemicals typically associated with these types of operations include petroleum hydrocarbons for the oil house; petroleum hydrocarbons and carcinogenic polynuclear aromatic hydrocarbons (cPAHs) for the tar dipping tanks; petroleum hydrocarbons, PAHs, and dioxins/furans for the boiler house; petroleum hydrocarbons and polychlorinated biphenyls (PCBs) for the transformers; and metals and volatile organic compounds (VOCs) for the spray-painting shop.

1.4 IA Report

This IA Report includes the following:

- A review of the understanding of Site conditions under which the IAWP was developed.
- A review of the evaluation of IA alternatives and selection of the IA.
- A description of soil management activities, including a timeline and volumes of soil excavated, segregated, stockpiled, reused, and disposed of offsite. The narrative will include descriptions of locations onsite where excavated soils were reused.
- A description of engineering control implementation.
- A description of compliance monitoring sampling and results.
- A discussion of the quantitative sampling results from soil stockpile sampling and confirmation sampling.
- A discussion of quality assurance/quality control (QA/QC) review results per the procedures described in the Quality Assurance Project Plan (QAPP).
- · A discussion of deviations from the IA Work Plan.

- Figures summarizing compliance monitoring sampling locations and results.
- Tables summarizing volumes of soil excavated, stockpiled, reused, and disposed of offsite.
- Tables summarizing stockpile sampling results and compliance monitoring results.
- Copies of daily reports and field notes (including field screening logs and sample data sheets).
- Copies of waste disposal documentation, including manifests, weight slips, and receipts.
- Copies of laboratory analytical results and chains-of-custody.

2. Site Conditions

The following section describes Site conditions, including land use, constituents of potential concern (COPCs), the conceptual Site contaminant transport model, the conceptual Site exposure model (CSEM), and Site subsurface conditions

2.1 Land Use

Parcels 4 and 5 were developed concurrently with implementation of the IA. A public-use plaza was constructed on Parcel 4. The original design of the Parcel 4 plaza discussed in the IAWP included a water feature running approximately east-west through the center of the parcel. This feature was eliminated from the design after the IAWP was issued, and the plaza as constructed does not include a water feature. The HOCM and landscape improvements were constructed on the southern portion of Parcel 5. The northern portion of Parcel 5 consists of a parking lot for the HOCM.

The landscaping on both parcels consists of a mix of hardscaped areas (areas surfaced with an impervious material such as concrete or brick paving) and planted areas. In addition to landscaping, portions of Parcel 5 are covered by the HOCM building and parking lot. Figure 2-1 includes the current planned configuration of softscape and hardscape areas at the Site.

2.2 Constituents of Potential Concern

The following COPCs for Parcel 4 and 5 were identified in the IAWP:

- arsenic
- cadmium
- lead
- copper
- nickel
- total cPAHs
- total dioxins/furans
- total naphthalenes
- diesel-range total petroleum hydrocarbons (TPH-D)
- heavy oil-range total petroleum hydrocarbons (TPH-HO)
- gasoline-range total petroleum hydrocarbons (TPH-G)
- benzene
- toluene
- ethylbenzene
- total xylenes

2.3 Conceptual Site Contaminant Transport Model

The Conceptual Site Contaminant Transport Model for the Site, which was developed in the *Remedial Investigation Work Plan, East Bay Redevelopment, Port of Olympia* (GeoEngineers/PIONEER, 2008, 2009), shows potential historical sources of releases of COPCs, as well as potential routes of migration. This model was used as the basis for the IAWP. The Conceptual Site Contaminant Transport Model is shown on Figure 2-2. Potential sources and migration paths are discussed below.

Subsequent to the completion of the IAWP, the Port completed the *Final Empirical Evaluation of the Potential for Soil Constituents to Migrate to Surface Water via Groundwater at the East Bay Redevelopment Site* (Pioneer, 2011a). This report concluded that, with the possible exception of arsenic and TPH-D/TPH-HO, COPCs in soils at the Site are not being transported to groundwater. The transport of other COPCs, including metals in addition to arsenic, TPH-G, and VOCs were considered potential transport pathways at the time the IAWP was developed. They are therefore included on Figure 2-2 and in the discussion below. The transport of COPCs from soil to surface water via groundwater, with the exception of arsenic and TPH-D/TPH-HO, will not be included in future evaluations of contaminant transport at the Site.

- 1. **Direct discharge to ground surface:** Spills, leaks, or operational discharges from former industries onsite may have resulted in contaminants on the historical working surface. This contamination may have been covered by fill or seeped further into the ground. Potential sources include tanks, hog fuel or refuse piles, or transformers.
- 2. **Contaminated fill:** Dredge spoils or other material used as fill may be a source of contaminants.
- 3. Buried debris: Debris from former industrial operations at the Site may be buried at the Site.
- 4. **Leaching to groundwater:** Some contaminants may have leached to groundwater, and may be transported as dissolved chemicals in groundwater.
- Air deposition: Contaminant containing airborne particulates from onsite or offsite smokestacks or burn
 piles may be deposited on the historical working surface. The contaminated surface would be buried
 under subsequent layers of fill.
- 6. **Groundwater flow:** Constituents may be transported through the movement of groundwater.
- 7. **Vertical groundwater gradients:** Artesian pressure in the area of the Site may result in upward gradients in the shallow groundwater unit.
- 8. Historical artesian flow/leakage: Artesian wells may have been historically located on the Site.

2.4 Conceptual Site Exposure Model

A conceptual Site exposure model (CSEM) was developed in "Section 6: Conceptual Site Exposure Model" in the Remedial Investigation Work Plan, East Bay Redevelopment, Port of Olympia (GeoEngineers/PIONEER, 2008, 2009), and revised based on an Ecology comment in the Final Interim Action Work Plan, East Bay Redevelopment, Port of Olympia (PIONEER, 2009) prepared by Pioneer Technologies Corporation on behalf of the Port for the infrastructure IA. The CSEM is presented on Figure C-1 of the Final Interim Action Work Plan, East Bay Redevelopment, Port of Olympia (PIONEER, 2009) report. This CSEM was used as the basis for the IAWP.

Subsequent to the completion of the IAWP, the Port completed the *Final Empirical Evaluation of the Potential for Soil Constituents to Migrate to Surface Water via Groundwater at the East Bay Redevelopment Site* (Pioneer, 2011a). This report concluded that, with the possible exceptions of arsenic and TPH-D/TPH-HO, COPCs in soils at the Site are not being transported to groundwater. The report recommends that, with the exception of arsenic, TPH-D, and TPH-HO, exposure pathways with a soil-to-groundwater or groundwater-to-surface water transport component be considered incomplete.

2.5 Site Subsurface Conditions

The following conditions are summarized based on a series of studies evaluating subsurface conditions at the Site, including conditions at Parcel 4 and Parcel 5, as well as data collected during the IA.

2.5.1 Hydrogeologic Conditions

Subsurface hydrogeologic conditions at the Site are the result of decades of fill operations that elevated the ground surface and extended usable land seaward into Budd Inlet. The thick heterogeneous sequence of fill deposits beneath the Site extends from ground surface to elevations as deep as -10 feet. A detailed historical review of fill horizons and the associated fill operation dates, as well as fill cross-sections developed based on boring and drilling observations, is presented in "Section 2.0 Site History" of the Remedial Investigation Work Plan, East Bay Redevelopment, Port of Olympia (GeoEngineers/PIONEER, 2008, 2009).

A network of groundwater monitoring wells was installed on the Site (including on Parcels 4 and 5) and on the adjacent Parcel 8 for the study of groundwater conditions. On Parcels 4 and 5 and the adjacent parcels, MW-01, MW-02, MW-03, MW-04, MW-16, MW-17 (Parcel 8), MW-18 (in the adjacent infrastructure corridor), and MW-19 (Parcel 7) were installed in 2007. MW-02R, MW-23S, and MW-21S (Parcel 7) were installed in 2009. Monitoring well locations are shown on Figure 2-3. Monitoring wells MW-01, MW-03, MW-23S, and MW-16 were abandoned during the IA. These are discussed in Section 4 below. Driller logs from well decommissioning are included as Appendix A.

The occurrence and flow of groundwater beneath the Site is predicated upon the various fill horizons and respective hydraulic properties. Localized groundwater gradients occur across the Site where zones of more permeable fill are bounded by less permeable materials. Additionally, water levels fluctuate throughout the course of the year as a result of seasonal fluctuations in atmospheric conditions. Groundwater levels at the Site are historically variable; the difference between the minimum and maximum elevations in a single well was as high as 5.9 feet. The average difference between the minimum and maximum elevations was 2.17 feet. While groundwater flow generally appears to be from the southwest to northeast across Parcels 4 and 5, there may be an artesian influence on the Site with upward gradients from deeper confined groundwater units.

Tidal influence at the Site was assessed by GeoEngineers in 2007 and Greylock Consulting, LLC, in 2008. The 2007 study concluded that groundwater monitoring well elevations in the Parcel 3 area were not strongly influenced by tidal fluctuations (GeoEngineers, 2007b), while the Greylock study concluded that tidal influence was limited to areas near the shoreline (GeoEngineers/PIONEER, 2008, 2009). Observations by Pioneer Technologies Corporation during groundwater monitoring events at the Site have indicated high salinity in MW-04, MW-12, MW-16, and MW-18, wells that are located near the Budd Inlet shoreline. Salinity measurements and anecdotal observations in construction trenches also suggest tidal influence in the area near the shoreline (PIONEER, 2010a).

2.5.2 Soil and Groundwater COPC Concentrations

Soil and groundwater COPC data from reports including the *Voluntary Cleanup Program (VCP) Draft* Remedial Investigation and Feasibility Study and Conceptual Cleanup Action Plan, East Bay Redevelopment, Port of Olympia (GeoEngineers, 2007), the Remedial Investigation Work Plan, East Bay Redevelopment, Port of Olympia (GeoEngineers/PIONEER, 2008, 2009), the East Bay Remedial Investigation Phase 1 Summary (PIONEER, 2008), and the *Draft Empirical Evaluation of the Potential for Soil Constituents to Migrate to Surface Water via Groundwater at the Port of Olympia's East Bay Redevelopment Site (PIONEER, 2010)* were reviewed in the IAWP. Additionally, data from the second phase of the RI completed by the Port and data from a series of supplemental soil samples from Parcels 4 and 5 completed by LOTT and the City were reviewed. These data were discussed in detail in the IAWP.

Following completion of the IAWP, additional Site data were presented in the Final *Empirical Evaluation* of the Potential for Soil Constituents to Migrate to Surface Water via Groundwater at the East Bay Redevelopment Site (Pioneer, 2011a). A complete review of Site-wide data is outside the scope of this report.

2.5.3 Potential Transport of COPCs from Soil to Surface Water

The IAWP reviewed empirical data and evidence presented in the *Draft Empirical Evaluation of the Potential* for Soil Constituents to Migrate to Surface Water via Groundwater at the Port of Olympia's East Bay Redevelopment Site (PIONEER, 2010a). Data reviewed in this report suggested that an empirical demonstration in accordance with WAC 173-340-747(9) is complete for cadmium, cPAHs, dioxins/furans, and total naphthalenes.

Subsequent to the completion of the IAWP, the Port completed the *Final Empirical Evaluation of the Potential for Soil Constituents to Migrate to Surface Water via Groundwater at the East Bay Redevelopment Site* (Pioneer, 2011a). This report concluded that, with the possible exception of arsenic and TPH-D/TPH-HO, COPCs in soils at the Site are not being transported to groundwater.

3. Interim Action Work Plan Alternatives Evaluation and Selection

IA alternatives were screened in the IAWP to identify potential means to control the complete or potentially complete exposure pathways identified in Section 2.4 above. These alternatives were screened using the procedure described for final Cleanup Actions in WAC 173-340-360. Threshold criteria for Cleanup Actions (WAC 173-340-360(2)(a)) are as follows: the selected action must protect human health and the environment, must comply with cleanup standards, must comply with applicable state and federal laws, and must provide for compliance monitoring.

Alternatives meeting these threshold criteria were further evaluated based on the additional minimum criteria for Cleanup Actions (WAC 173-340-360(2)(b)): the use of permanent solutions to the maximum extent practicable, provision of a reasonable restoration time frame, and consideration of public concerns.

"Permanent" solutions are those that do not require future action to meet cleanup standards. By "maximum extent practicable," it is meant that the incremental benefits of a particular alternative are not outweighed by the incremental costs. A basis for proposed alternatives, an evaluation of those alternatives, including a disproportionate cost analysis, are documented in the IAWP, and provided the foundation for implementing Capping with Partial Excavation and Controls. An generalized figure of the components of this alternative are provided as Figure 3-1.

3.1 Interim Action Activities

Specific activities necessary for completion of the IA for Parcels 4 and 5 were identified in the IAWP. These included the following:

- Control of Site access, including installation of a fence with a locking gate, implementation of traffic
 control measures, and Site control to ensure that only authorized personnel enter the Site during working
 hours.
- Well decommissioning, including decommissioning of MW-17 and decommissioning of wells where
 remediation activities present a risk of direct discharge or damage to wells. Alternatively, wells may be
 raised to the new Site grade. All work will be performed by a licensed driller. Monitoring wells MW-01,
 MW-03, MW-4, MW-23S, and MW-16 were abandoned during the IA. These are discussed in Section 4.
 Driller logs from well decommissioning are included as Appendix A. MW-17 was not located by the

contractors. The well was presumed to be buried or previously abandoned. Subsequent work on Parcel 8, for part of the LOTT Budd Inlet Treatment Plant expansion, included mass excavation in the area of MW-17. However, the MW-17 was not found during the excavation work and assumed previously decommissioned.

- Excavation, stockpiling, and screening of soils for COPCs. Screening included sampling for COPCs as
 described in the Sampling and Analysis Plan (SAP) included with the IAWP, as well as evaluation of the
 geotechnical properties of soil to ensure its suitability for use as fill. The SAP is included as Appendix B to
 this report. Excavation of known hot spots was completed as described in the SAP and summarized in
 Table 3-1. As noted below, additional analytical testing was performed on samples collected from the DP11 hot spot at the request of Ecology. Interim Action Cleanup Levels (IACLs) and Interim Action
 Remediation Levels (IARLs) are provided in Table 3-2.
- Offsite disposal of soils that have COPC concentrations in excess of IARLs or are geotechnically unsuitable.
- Reuse of soils onsite. Soils with COPC concentrations below IACLs may be used as fill anywhere onsite, while soils with COPC concentrations in excess of IACLs but below IARLs may be reused only in capped areas.
- Capping of portions of the Site with impervious materials such as pavement or hardscape.
- · Particulate (dust) control.
- Dewatering and stormwater control, including treatment in Baker tanks and filtration as necessary and discharge of treated stormwater/excavation groundwater to the LOTT Budd Inlet Treatment Plant.

The IAWP developed a number of supplementary documents for implementation of the IA, including the SAP, a QAPP, a Heath and Safety Plan (HASP), and standard operating procedures (SOPs) for sample collection and handling. The SAP, QAPP, and HASP are included as Appendices B, C, and D to this report.

4. Interim Action Implementation

The following section describes implementation of the IA.

4.1 Implementation Summary

The IA was implemented in two stages. The first stage consisted of hot spot excavation on both Parcel 4 and Parcel 5, and partial excavation and capping on Parcel 5. This stage began in October 2010. Work was performed as part of the construction for the HOCM building and property improvements. The second stage consisted of partial excavation and capping on Parcel 4. This stage began in September 2011. Work was performed as part of the construction for the public plaza property improvements.

Locations for confirmation (CNF) samples taken from hot spot excavations are shown on Figure 4-1, with Universal Transverse Mercator (UTM) coordinates for samples shown in Table 4-1. Confirmation sample results are summarized in Tables 4-2 through 4-8. Results from stockpile (SPL) samples are shown in Tables 4-9 through 4-23.

Complete laboratory reports are included as Appendix E.

4.2 Parcel 4

This section describes IA activities on Parcel 4.

4.2.1 Hot Spot Remediation

Parcel 4 hot spot remediation included the excavation and disposal of soil at hot spots DP-17, DP-18, and TP-02.

4.2.1.1 DP-18 (CNF-4)

DP-18 was initially completed on August 3, 2007. Soil sampling identified elevated levels of TPH-HO, cPAHs, and VOCs at depths between 10 and 12 feet bgs. DP-18 was excavated on November 8, 2010. Samples collected from this hot spot are designated as CNF-4.

The hot spot was excavated to dimensions of 20 x 20 x 15 feet (L x W x H). A total of 16 samples were collected from the excavation. Due to a later identified discrepancy in the IAWP/SAP, samples were analyzed for metals per the SAP, rather than the historically identified COCs (TPH, cPAH, VOCs). Sample locations are shown on Figure 4-3. Stockpile samples were later analyzed for the complete list of Site COCs.

Sample results were below IACLs for all COPCs. Sample results are shown on Table 4-2. The excavation was backfilled with clean material sourced from offsite. Logs of the hot spot excavation are provided in Appendix H.

4.2.1.2 DP-17 (CNF-5)

DP-17 was initially completed on August 3, 2007. Soil sampling identified elevated levels of arsenic at depths between 10 and 12 feet bgs. Pursuant to the IAWP, the DP-17 hot spot was excavated on November 8, 2010. Samples collected from this hot spot are designated as CNF-5.

The hot spot was excavated to dimensions of $20 \times 20 \times 15$ feet (L x W x H). A total of 13 samples were collected from the excavation. Due to a later identified discrepancy in the IAWP/SAP, samples were analyzed for TPH, and VOCs per the SAP, rather than the historically identified COCs (metals). Sample locations are shown on Figure 4-3.

Sample results were below IACLs for all COPCs. Sample results are shown on Table 4-3. The excavation was backfilled with clean material sourced from offsite. Logs of the hot spot excavation are provided in Appendix H.

4.2.1.3 TP-02 (CNF-3, CNF-3A)

TP-02 was initially completed on October 4, 2007. Soil sampling identified elevated levels of dioxin at depths between 2 and 3 feet bgs. The hot spot excavation began on November 9, 2010. However, the hot spot was located adjacent to the eastern edge of Parcel 4, next to a sidewalk, irrigation lines, and the tree-lined Marine View Drive, with a portion of the hot spot falling outside of the ownership of the City. To minimize impacts to the sidewalk and other features, and avoid extending off the City's property onto Port land, Ecology approved a minor adjustment to the excavation dimensions. The excavation dimensions were reduced to $20 \times 13 \times 10$ feet (L x W x H). At the direction of Ecology, additional sidewall samples were collected from the east face of the excavation, the direction in which the excavation was shortened. A total of 25 samples were collected. Sample locations are shown on Figure 4-4. Samples collected from this hot spot are designated as CNF-3.

Analysis of the samples resulted in one sample on the east face in excess of the IARL for dioxins/furans. Additionally, several samples exceeded the IACL for dioxins/furans. In accordance with the IAWP, the excavation was expanded to remove additional material.

On January 5, 2011, the excavation was expanded to the east by 7 feet, so that the overall surface dimensions of the excavation were 20 x 20 feet. With Ecology approval, the depth of the extension of the excavation was limited to 6.5 feet rather than the 10-foot depth of the original excavation. This depth was based on the sample results from the first round of excavation and sampling; concentrations in samples

below a depth of 6 feet in the first round of sampling were below the IACL with one exception, and all samples below 6 feet were below the IARL. A total of 11 additional samples were collected. Locations for additional samples are shown on Figure 4-5 and were designated as CNF-3A.

All samples from the second round of excavation and sampling showed dioxin/furan concentrations below the IARL. Based on these results, the excavation was backfilled on with clean material sourced from offsite. Sample results for the original hot spot excavation and expanded area are shown on Tables 4-4 and 4-5. Logs of the hot spot excavation are provided in Appendix H.

4.2.2 Soil Management

Soil management activities on Parcel 4 deviated from the work plan. Bulk excavation of softscaped areas on Parcel 5 preceded work on Parcel 4, with the exception of hot spot excavation and disposal. During the Parcel 5 work, it was observed that the majority of soils had COPC concentrations between IACLs and IARLs, making them suitable for reuse only in capped areas. While the development plans for Parcel 5 presented opportunities for the reuse of soil in capped areas, these opportunities were limited on Parcel 4. Additionally, a significant fraction of Parcel 5 soils were not geotechnically suitable for reuse.

The project management team determined that the cost savings resulting from reuse of soil were likely to be outweighed by the costs of stockpiling. Stockpile sampling would result in significant costs due to the full suite of analyses required. Additionally, stockpiling soils from Parcel 4 would have required a dedicated stockpiling area located across the street to the south of Parcel 4. This would have added temporary rental costs for the stockpiling area to the project cost, and would have generated frequent truck or equipment traffic transporting soils across the public right-of-way. The transportation of soils across the public right-of-way raised Site control issues for the potentially contaminated material.

With Ecology approval, the management team elected to load excavated soils directly into trucks for offsite disposal. Historical Site data were provided to the disposal facility for approved acceptance of the material. The 6-foot excavation depth in softscaped areas was not altered. Only material excavated from the Parcel 4 hot spots was stockpiled on site. A summary of stockpiles, including source, estimated volume, COPC concentrations, and geotechnical suitability is shown in Table 4-24.

A summary of Parcel 4 soils hauled for disposal is shown in Table 4-25. A total of 8,692 tons of soil were hauled offsite from Parcel 4 for disposal. Soils were hauled to the Weyerhaeuser Regional Landfill in Castle Rock, Washington, for disposal. Weight slips for disposed material are included in Appendix F. A total of 291 tons of soil from the Parcel 4 soils excavations was available for reuse under cap. A portion of this material was used to backfill utility trenching and footings under Parcel 4 hardscaped areas, while the remainder was emplaced under the Parcel 5 parking lot area.

4.2.3 Monitoring Well Decommissioning

Monitoring wells MW-23S and MW-16 were decommissioned during the construction phase of the Plaza. Driller decommissioning logs are provided in Appendix A.

4.2.4 Capping

Containment caps consisting of hardscape materials, pavement, or the HOCM building were constructed per the IAWP. Site land use/cover is shown in Figure 2-1. Soil available for reuse under cap was only placed under the parking lot area.

4.3 Parcel 5

This section describes IA activities on Parcel 5.

4.3.1 Hot Spot Remediation

Parcel 5 hot spot remediation included the excavation and disposal of soil at hot spots DP-11 and DP-21.

4.3.1.1 DP-11 (CNF-1)

DP-11 was initially completed on January 2, 2007. Soil sampling identified elevated levels of cPAHs at depths between 0 and 2 feet bgs and lead and cPAHs at depths between 8 and 10 feet bgs. The DP-11 excavation began on November 2, 2010. Excavation work was halted after the excavation became inundated with groundwater. Work resumed on November 3, 2010, after improvements to the dewatering system, and the excavation was completed the same day.

The hot spot was excavated to dimensions of 20 x 20 x 10 feet (L x W x H). A total of 12 samples were collected from the excavation. Samples were analyzed for metals per the SAP. At the direction of Ecology staff onsite during the excavation, TPH samples were also collected based on visual and olfactory observations. Sample locations are shown on Figure 4-6. Samples collected from this hot spot are designated as CNF-1.

Sample results were below IACLs for all COPCs. Sample results are shown on Table 4-6. The excavation was backfilled with clean material sourced from offsite. Logs of the hot spot excavation are provided in Appendix H.

4.3.1.2 DP-21 (CNF-2, CNF2A)

DP-21 was initially completed on August 3, 2007. Soil sampling identified elevated levels of arsenic at depths between 6 and 8 feet bgs. DP-21 was excavated on January 10, 2011.

The hot spot was excavated to dimensions of 20 x 20 x 10 feet (L x W x H). A total of 15 samples were collected from the excavation. Samples were analyzed for metals per the SAP. Sample locations are shown on Figure 4-6. Samples collected from this hot spot are designated as CNF-2.

One confirmation sample exceeded IACLs; the arsenic concentration in CNF-2-5-1.75 was 159 milligrams per kilogram (mg/kg), exceeding the IACL of 20 mg/kg. This sample was located on the north wall of the excavation at a depth of 1.75 feet. No other sample concentrations exceeded IACLs or IARLs.

On January 21, 2011, the excavation was expanded to the north by 20 feet per the IAWP, bringing the total dimensions of the excavation to $40 \times 20 \times 10$ feet (L x W x H). Ten addition samples were collected from the east, west, and north sidewalls and floor of the expanded excavation. Samples were analyzed for metals per the SAP. Additional sample locations are shown on Figure 4-6. Samples from the additional excavation are designated as CNF-2A.

Sample results were below IACLs for all COPCs. Sample results are shown on Table 4-7 and 4-8. The excavation was backfilled with clean material sourced from offsite. Logs of the hot spot excavation are provided in Appendix H.

4.3.2 Soil Management

Soil management for the handling of hot spot excavation soils and soils from the bulk excavation of softscaped areas followed the procedures in the IAWP. Excavated soils were stockpiled in designated areas of the Site. Visqueen was placed below and on top of stockpiles, with sheeting on top of the stockpiles secured with ropes and sandbags. Stockpiles were covered at all times unless material was actively being added to or removed from the stockpile. Visqueen-covered straw bales were set up around stockpile areas to prevent the run-on of water into the stockpile areas and the runoff of rainwater coming into contact with active piles. A placard system, described in the IAWP, was initially used to track the status of stockpiles. Information recorded on the placards included stockpile number, sampling status, date sampled, date of analytical results, and the suitability of soils for reuse (i.e., suitable for reuse in any location, suitable for

reuse in capped areas, not suitable for reuse). After wind storms repeatedly blew placards away, stockpile information was written directly on the visqueen covering the stockpiles using a grease pen or marking paint in lieu of the placard system to track stockpile information.

During excavation, materials were separated into stockpiles based on both soil type and location of the source excavation. Material from hot spot excavations was sorted into separate stockpiles from material from bulk excavation of softscaped areas. Additionally, material that appeared to be geotechnically suitable for reuse, such as sand and gravel, was stockpiled separately from silt or organic material.

Stockpiles were sampled according to the schedule included in the IAWP. Samples were collected from locations spatially distributed around the stockpile and at the approximate midpoint of the stockpile height. Sample locations were selected such that soil type sampled was representative of the material comprising the majority of the stockpile. Where stockpiles comprised large fractions of two or more soil types, at least one sample of each type was collected.

A summary of stockpiles, including source, estimated volume, COPC concentrations, and geotechnical suitability is shown in Table 4-26. Analytical results from stockpile samples are provided in Tables 4-9 through 4-23. The majority of soils excavated had COPC concentrations in excess of IACLs for one or more COPCs. However, the majority of soils excavated did not contain COPCs at concentrations exceeding IARLs. Lead concentrations exceeding 250 mg/kg were encountered in stockpile material sourced from two different hot spot excavations, and TPH-HO concentrations exceeding 2,000 mg/kg were encountered in two stockpiles, one sourced from a hot spot excavation and one sourced from a softscaped area excavation. Excavated soils were generally geotechnically suitable for reuse. Soils not suitable for reuse typically consisted of silt or of wood fragments and were encountered in deeper portions of hot spot excavations.

A summary of the total quantities from Parcel 5 is shown in Table 4-27. Note that the quantities shown in Table 4-27 are measured totals for the project. Reused soils were placed in the parking lot and building areas of the HOCM site. No soils were reused in softscaped areas. Soils removed from the Site for disposal were hauled to the Weyerhaeuser Regional Landfill in Castle Rock, Washington. Weight slips for material disposed of offsite is are included in Appendix F.

The total quantity of soils removed from the Site for disposal includes some surplus soils that were reusable in capped locations. This surplus volume was due in part to the prevalence of IACL exceedances, resulting in a low volume of soils that were usable in uncapped areas. The surplus soil was also due in part to the delay imposed by stockpile sample turnaround times. In several instances, material was imported to backfill before stockpile sample results were available in order to avoid unacceptable project delays. A total of 6,002 tons were available for reuse under cap, most of which was emplaced beneath the parking lot on Parcel 5, with lesser quantities used to backfill footings and utility trenches beneath hardscaped areas. However, with limited under cap areas for reuse potential, 342 tons that fell within the reuse under cap disposition were ultimately sent off site with materials not suitable for reuse. A total of 1,879 tons were disposed of off site, including 342 tons that was available for reuse under cap.

4.3.3 Monitoring Well Decommissioning

Monitoring wells MW-01 and MW-03 were in the HOCM footprint and were decommissioned. MW-04 was protected temporarily during construction. However, when damage to the riser as a result of construction activities became apparent, the well was decommissioned. Well decommissioning logs are included in Appendix A. The contractor that provided decommissioning work for the project provided a decommissioning log for BCN886 rather than AKA424 (MW-4). Documentation of this, as well as dual entries in Ecology's well log database for AKA424 is included in Appendix A..

4.3.4 Capping

Containment caps consisting of hardscape materials, pavement, or the HOCM building were constructed per the IAWP. Site land use/cover is shown in Figure 2-1. Soil available for reuse under cap was only placed under the parking lot area.

4.4 Deviations from Interim Action Work Plan

Deviations from the IAWP include the following:

- reduced excavation volume of the TP-02 hot spot
- marked stockpile coverings rather than using a placard system for Parcel 5 soil management
- revised soil management plan for Parcel 4

These deviations are described in their respective sections above.

5. Data Quality Review

The following sections provide summaries of the data quality review for both field and analytical data collected during the IA.

5.1 Field Methods

Field methods and sample collection were completed in accordance with the project SAP and QAPP. Field-collected quality control samples consisted of field duplicates and trip blanks. Field duplicates were collected to assess the precision of all steps of the sample acquisition and analysis process. A total of 249 samples were collected during the IA work, with a total of 14 duplicate samples, resulting in a duplicate rate of 5.6 percent.

Trip blanks were used to determine potential cross-contamination issues during sample transportation, delivery, and storage. Trip blanks were included in each shipment of samples from the Site to the laboratory. A total of 17 trip blanks were collected during the IA.

5.2 Laboratory Data Assessment

A qualitative data usability review was performed on all analytical data collected from Parcels 4 and 5 during the IA. The review was performed in accordance with the general guidance provided by the National Functional Guideline for Data Review and with the project SAP and QAPP.

Overall, the data quality review found the data to be generally acceptable for the intended purposes. No data were rejected as a result of the review, and most data met the quality criteria for the parameters reviewed. Minor data quality issues with respect to field and laboratory duplicate precisions, matrix interferences, and laboratory control sample recovery were identified. Some of these issues resulted the following qualification of data:

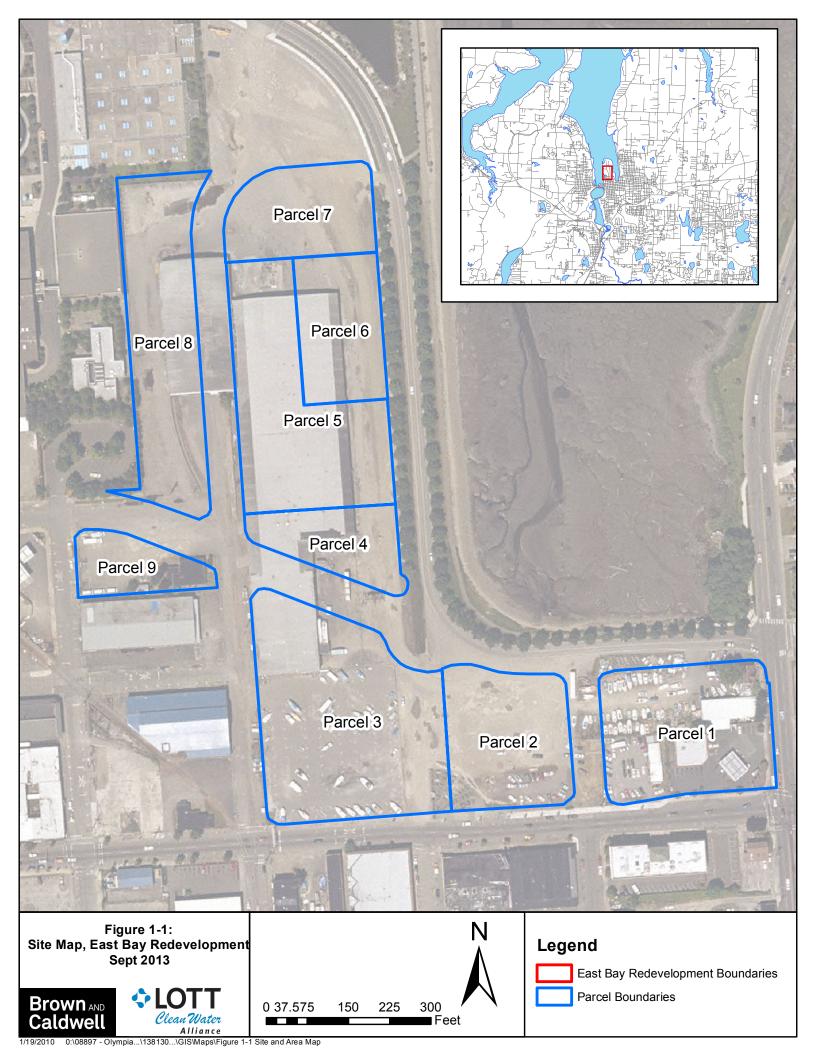
- B: The analyte was detected in the method blank.
- J: The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ: The analyte was not detected above the sample reporting limit. The reporting limit is approximate.
- U: The analyte was tested, but was not detected above the sample reporting limit.

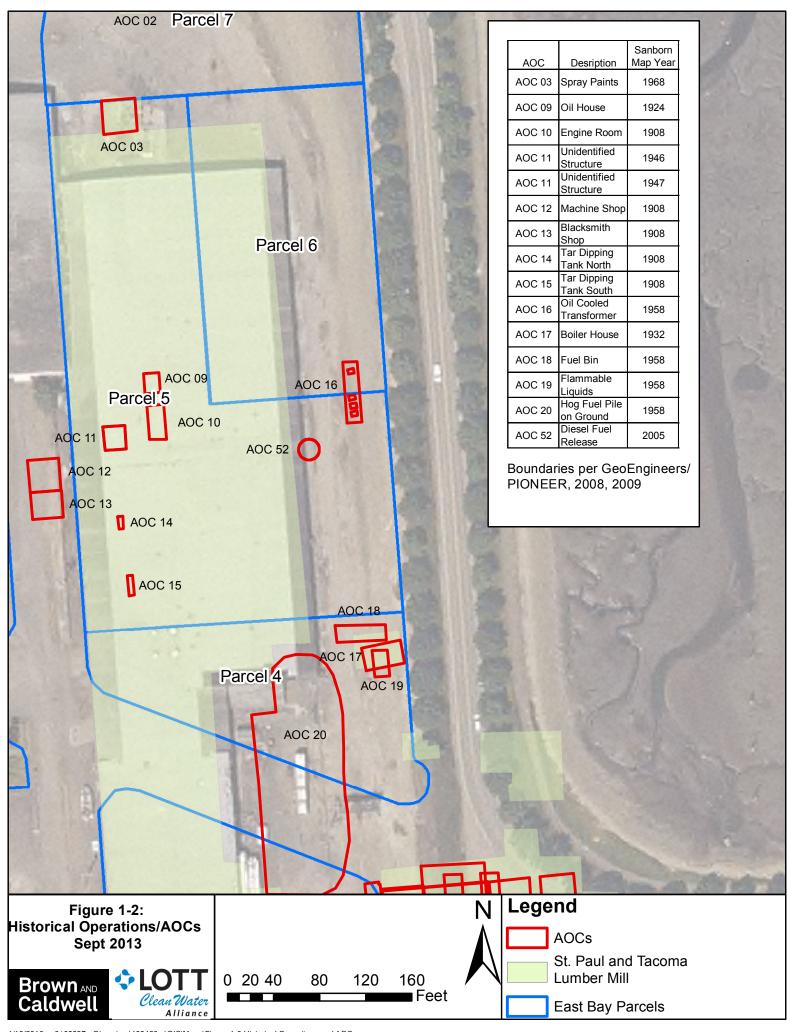
A complete data validation report is included as Appendix G.

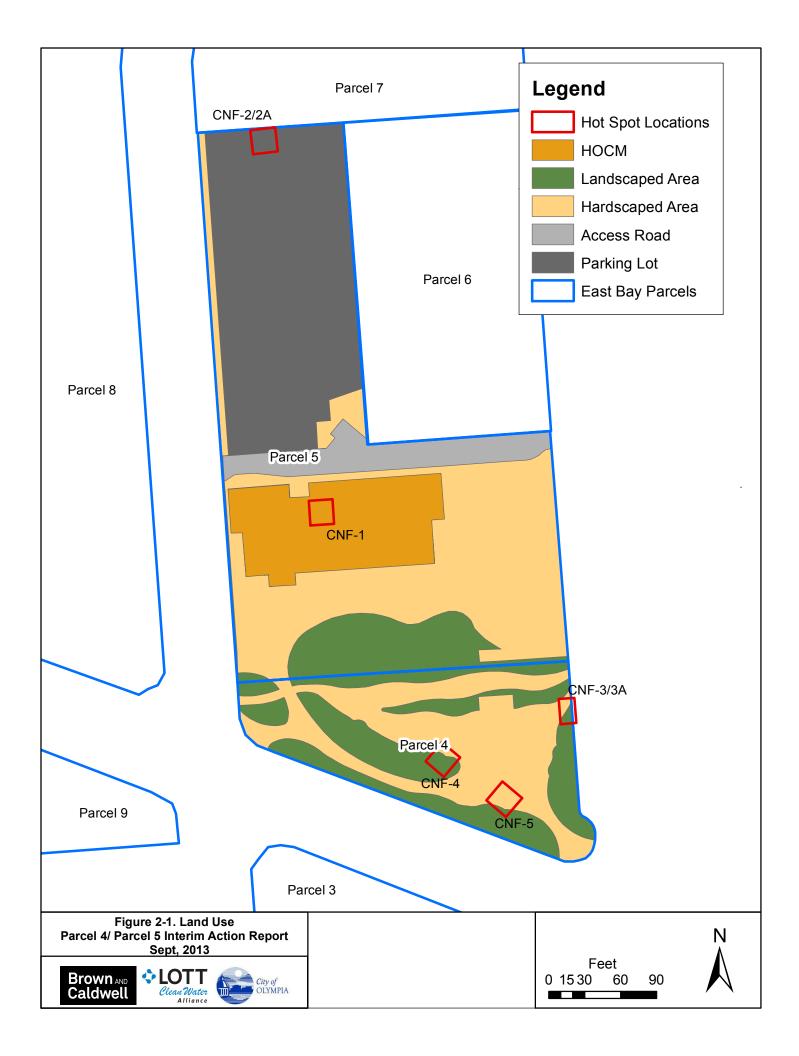
6. Discussion and Conclusions

The following section provides a general summary of the IA work.

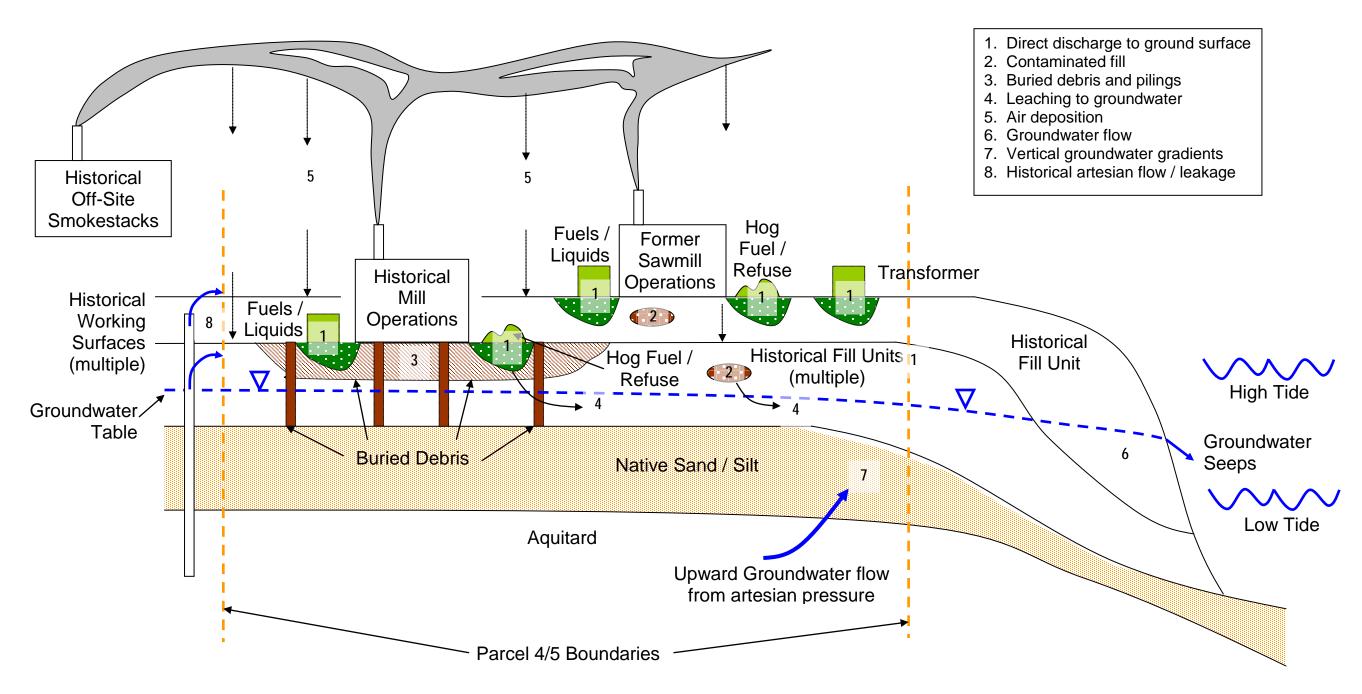
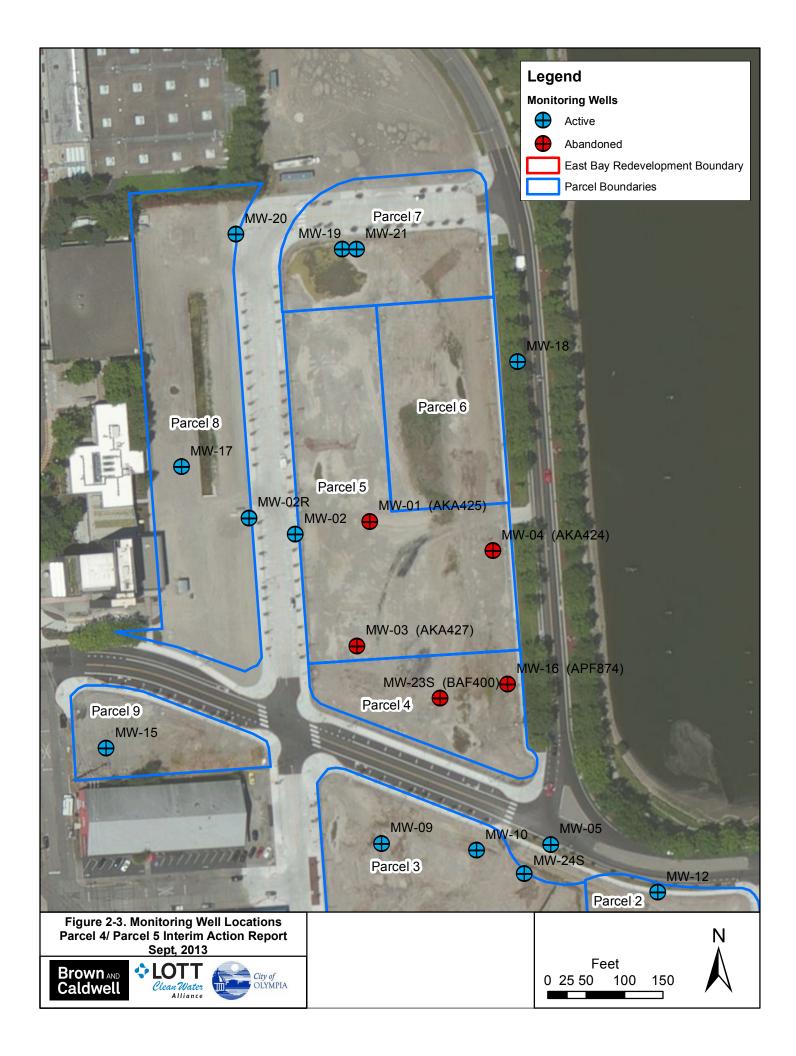
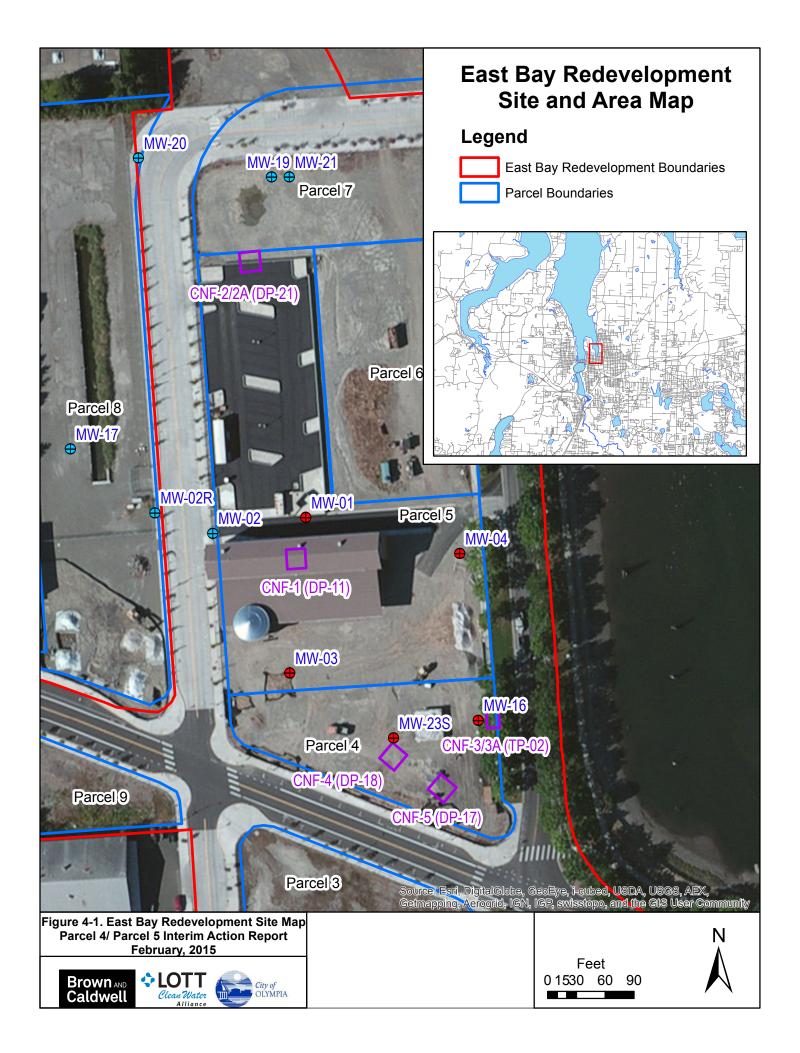
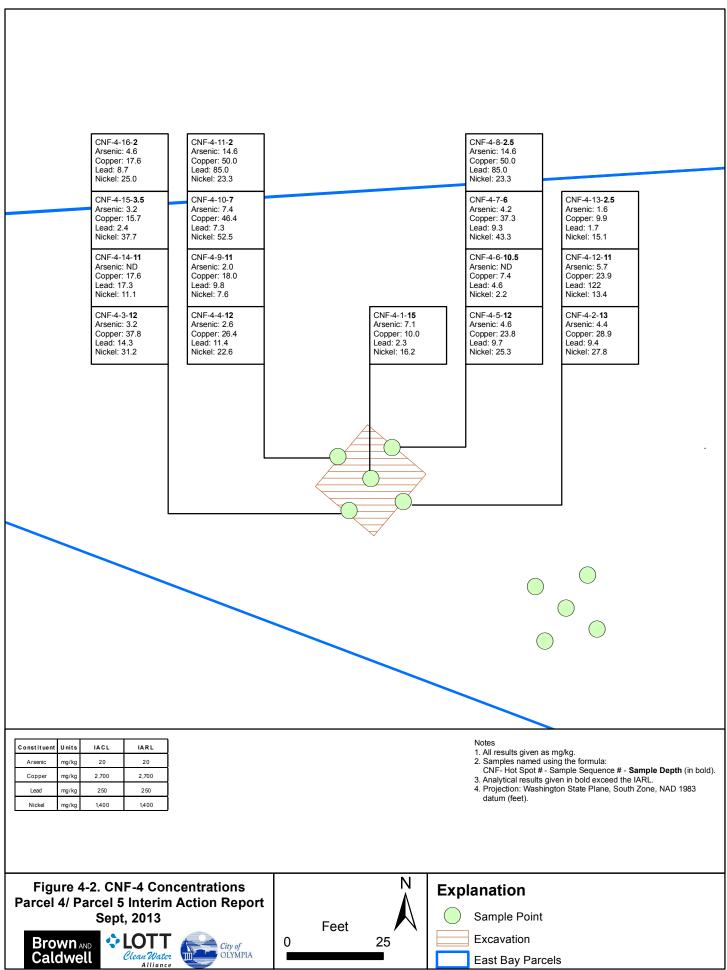
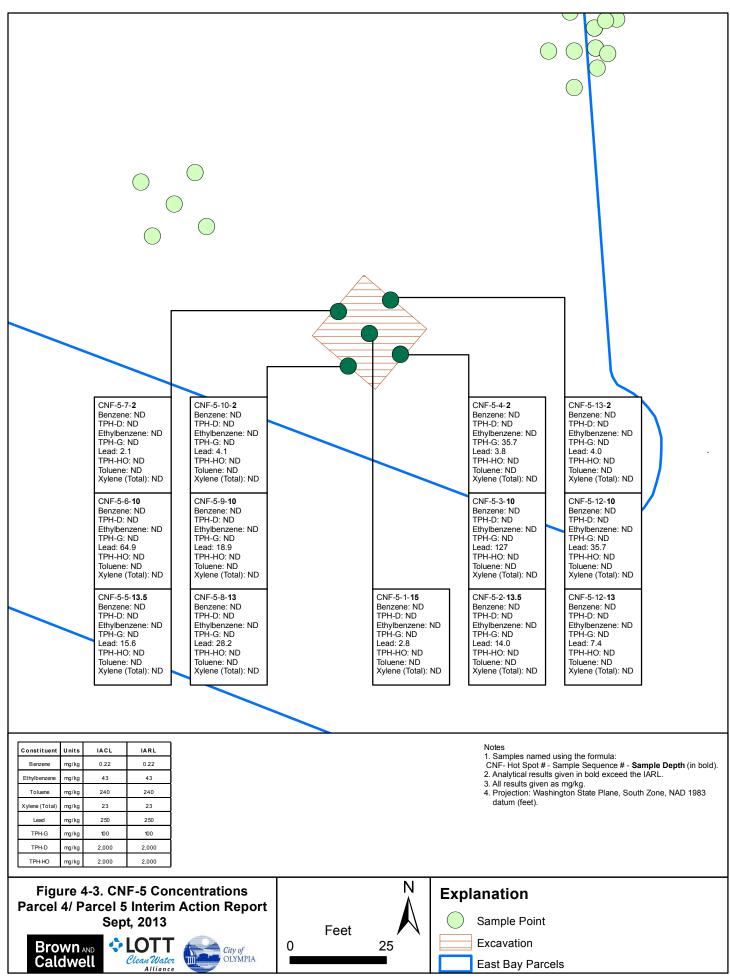
Hot spots identified as known areas of contamination were excavated with sidewall and bottom samples confirming that the volume of contaminated soils were removed. Each hot spot excavation was proposed to have an area of 20×20 feet, and a target depth identified by historically observed contamination depths. However, two hot spot excavations were slightly modified. To protect the integrity of infrastructure off the City of Olympia property, the TP-02 hot spot was initially excavated to dimensions of $20 \times 13 \times 10$ feet (L x W x H) and sampled, with one sample from the eastern sidewall exceeding the IARL for dioxins/furans and other samples exceeding the IACL. After authorization from Ecology, the excavation was later expanded by 7 feet to the east, to a depth of 6.5 feet and additional sidewall sampling confirmed that the sidewall concentrations were below the IARLs. Hot spot DP-21 was initially excavated to dimensions of $20 \times 20 \times 10$ feet; however, one sample from the northern sidewall exceeded the IACL for arsenic. As prescribed by the IAWP, the excavation was expanded an additional 20 feet to the north for final excavation dimensions of $40 \times 20 \times 10$ feet. Sidewall sampling of the expanded excavation confirmed the removal of soil to sidewall concentrations below the IACLs for COPCs.

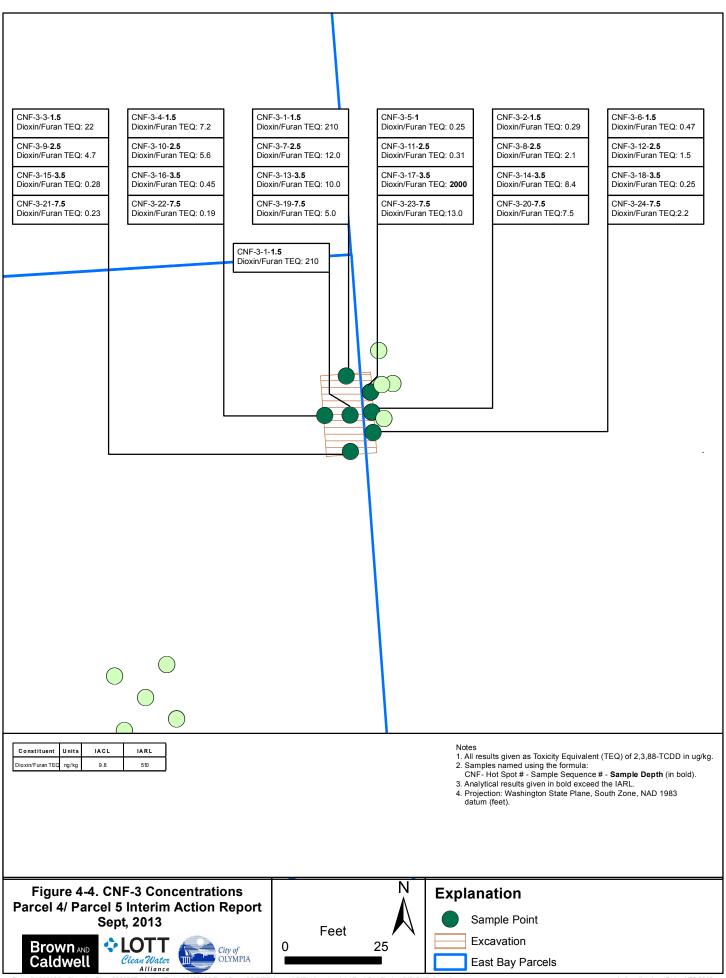

Areas of the Site proposed to have ground surface completed with landscaping or otherwise softscaped materials were excavated to a depth of 6 feet below finished Site grade, or the first contact with groundwater. As discussed above, to the greatest extent practicable, soil was tested and reused, according to its suitability. Based on analytical results, geotechnical suitability, and construction sequencing, this action resulted in the removal of approximately 5,600 tons of soil from Parcel 4 and 2,130 tons of soil from Parcel 5 for off-site disposal. In accordance with the IAWP, a geotextile fabric was used to line the softscape area excavations prior to backfilling. All other areas of the site were completed, or will be completed with a hardscape cap over the soil.

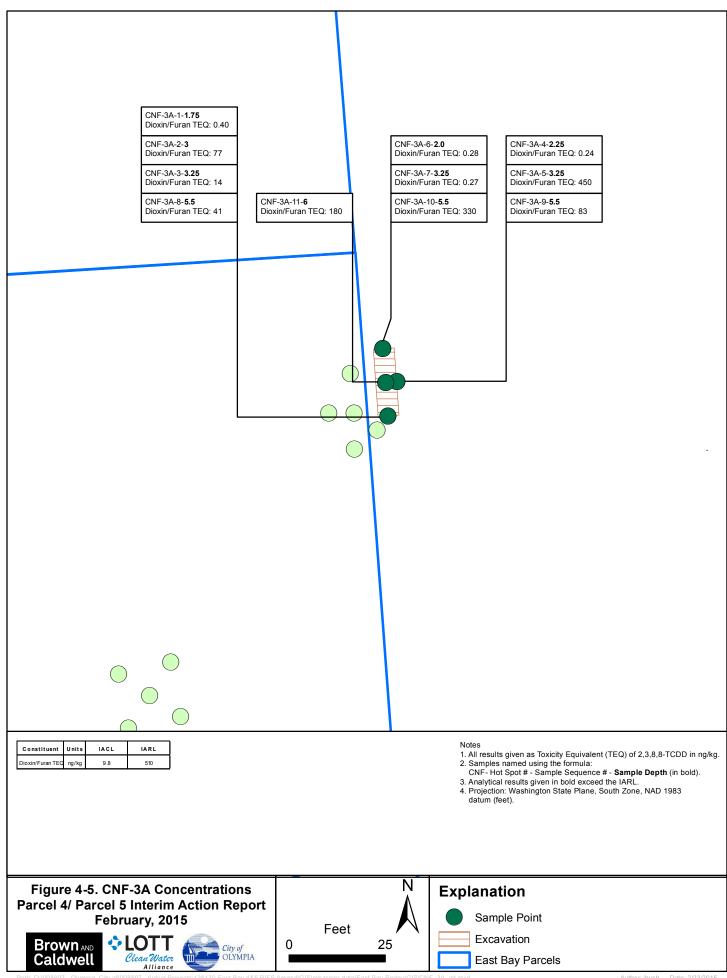



References

- Brown and Caldwell, 2010. Parcel 4 / Parcel 5 Interim Action Work Plan. Prepared by Brown and Caldwell for the LOTT Clean Water Alliance and the City of Olympia. September 2010.
- GeoEngineers, 2007a. Phase I ESA, Port of Olympia East Bay Redevelopment. Prepared by GeoEngineers, Inc. for the Port of Olympia. March 14, 2007
- GeoEngineers, 2007b. RI/FS and Conceptual CAP (now known as the RI/FS IA), Port of Olympia East Bay Redevelopment, City Hall lot. Prepared by GeoEngineers, Inc. for The Rants Group. April 24, 2007.
- GeoEngineers, 2007c. Supplemental Site Use History and Soil and Groundwater Sampling Clarifications, Port of Olympia East Bay Redevelopment. Prepared by GeoEngineers, Inc. for the Port of Olympia. August 3, 2007.
- GeoEngineers, 2007d. Voluntary Cleanup Program (VCP) Draft Remedial Investigation and Feasibility Study and Conceptual Cleanup Action Plan, East Bay Redevelopment, Port of Olympia. Prepared by GeoEngineers Inc. for the Port of Olympia. December 20, 2007.
- GeoEngineers/PIONEER, 2008, 2009. Remedial Investigation Work Plan, East Bay Redevelopment, Port of Olympia. Prepared by GeoEngineers, Inc, and Pioneer Technologies Corporation for the Port of Olympia. October 22, 2008, amended January 30, 2009.
- PIONEER, 2008. East Bay Remedial Investigation Phase 1 Summary. Prepared by Pioneer Technologies Corporation for the Port of Olympia. December 2008.
- PIONEER, 2009. Final Interim Action Work Plan, East Bay Redevelopment, Port of Olympia. Prepared by Pioneer Technologies Corporation for the Port of Olympia. May 2009.
- PIONEER, 2010a. Draft Empirical Evaluation of the Potential for Soil Constituents to Migrate to Surface Water via Groundwater at the Port of Olympia's East Bay Redevelopment Site. Prepared by Pioneer Technologies Corporation for the Port of Olympia. February 2010.
- PIONEER, 2010b. Infrastructure Interim Action Report for East Bay Redevelopment Site. Prepared by Pioneer Technologies Corporation for the Port of Olympia. June 2010.
- PIONEER, 2010c. Site Boundary Technical Memorandum for the East Bay Redevelopment Site. Prepared by Pioneer Technologies Corporation for the Port of Olympia. November 2010.
- PIONEER, 2011a. Final Empirical Evaluation of the Potential for Soil Constituents to Migrate to Surface Water via Groundwater at the East Bay Redevelopment Site. Prepared by Pioneer Technologies Corporation for the Port of Olympia. May 2011.
- PIONEER, 2011b. Data Gap Investigation Work Plan and Schedule, East Bay Redevelopment Site, Olympia, Washington. Prepared by Pioneer Technologies Corporation for the Port of Olympia. October 2011.
- PIONEER, 2011c. Site Boundary, East Bay Redevelopment Site, Ecology Facility/Site No. 5785176, Agreed Order DE7830. Prepared by Pioneer Technologies Corporation for the Port of Olympia. December 2011.


Figure 2-2: Conceptual Site Contaminant Transport Model Fate and Transport Pathways GeoEngineers/Pioneer, 2008, 2009



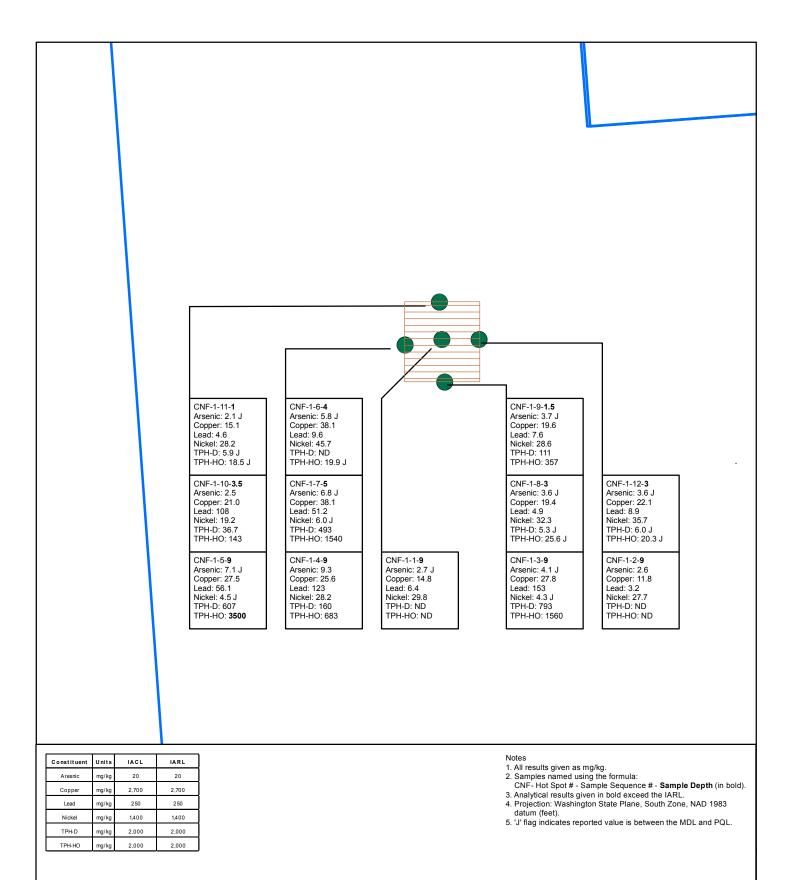
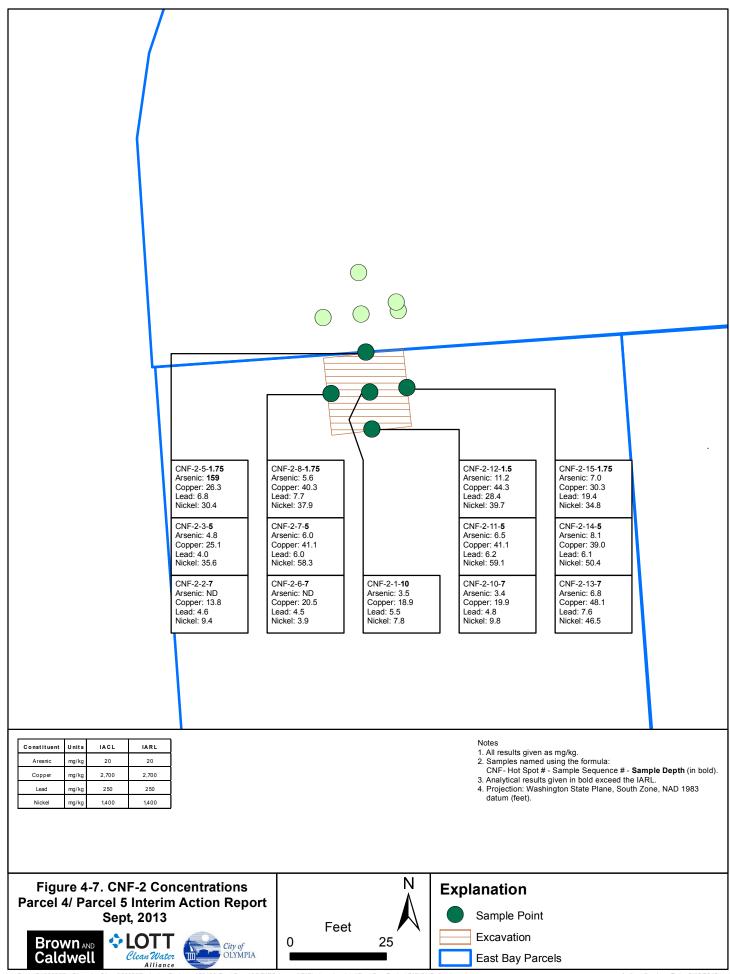
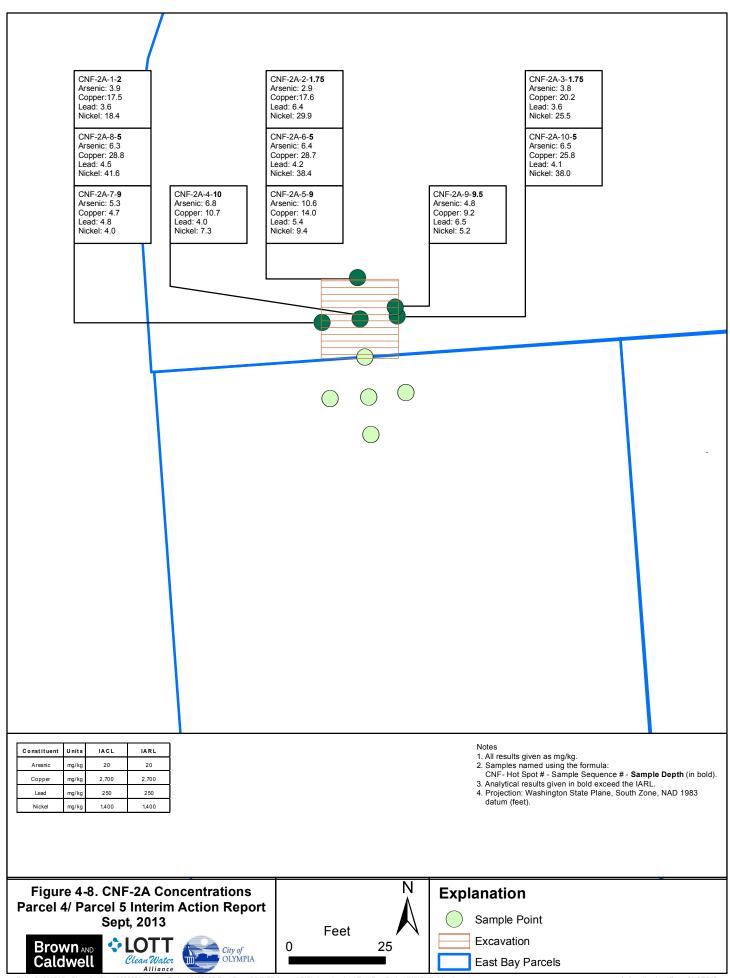


Figure 4-6. CNF-1 Concentrations Parcel 4/ Parcel 5 Interim Action Report Sept. 2013

Feet 25

Explanation


Sample Point



Excavation

East Bay Parcels

East Bay Redevelopment:	Parcel	4/Parcel 5	Interim	Action F	Report

Tables

	Table 3-1. Sample Locations and Analytical Constituents								
Location	Sample type	Sample type Depth of contamination (feet) Hotspot		Initial excavation depth (feet)	Initial sidewall sample depths (feet)	Analytical constituents			
TP-02 (CNF-3, CNF-3A)	Sidewall and Bottom Confirmation Samples	2	Dioxins/Furans	10	0-2, 2-3, 3-4, 7-8*	Dioxins/Furans			
DP-11 (CNF-1)	Sidewall and Bottom Confirmation Samples	8-10	Lead	12	8-10*	Arsenic, Lead, Copper, Nickel, TPH-D, TPH-HO, TPH-G			
DP-17 (CNF-5)a	Sidewall and Bottom Confirmation Samples	10-12	Arsenic	15	10-12*	Arsenic, Lead, Copper, and Nickel			
DP-18 (CNF-4) a	Sidewall and Bottom Confirmation Samples	10-12	трн-но	15	10-12*	TPH-D, TPH-HO, BTEX, and lead			
DP-21 (CNF-2, CNF-2A)	Sidewall and Bottom Confirmation Samples	6-8	Arsenic	10	6-8*	Arsenic, Lead, Copper, and Nickel			
Stockpiles	Stockpile samples	NA	NA	NA	NA	All constituents of concern (See Table 3-2).			

Notes:

See Sampling and Analysis Plan Table 2-1 for quantity of stockpile samples.

Soil from the excavations of locations TP-02, DP-11, DP-17, and DP-21 will be field screened for the presence of TPH. Analyses for TPH (all ranges) and BTEX will be added if field screening indicates potential TPH presence.

(a) CNF-4/CNF-5 locations have been updated, please not that the IAWP and SAP incorrectly referenced the spatial locations of DP-17 and DP-18, originally assigned samples of the CNF-4 and CNF-5 series, respectively. Therefore, these locations were sampled for incorrect COCs. Subsequent explanation is provided.

^{*} Samples will be collected from the depth interval shown and including each lithologic unit.

NA - Not Applicable

Table 3-2. Interim Action Cleanup Levels (IACLs) and Interim Action Remediation Levels (IARLs)						
COPC	IACL (mg/Kg)	IARL (mg/Kg)				
Arsenic	20(1)	20(1)				
Cadmium	2(1)	2(1)				
Lead	250 ⁽¹⁾	250 ⁽¹⁾				
TPH-G	100(1)	100(1)				
Benzene	0.22(2)	0.22(2)				
Toluene	240(2)	240(2)				
Ethylbenzene	43(2)	43(2)				
Total Xylenes	23(2)	23(2)				
TPH-D	2,000(1)	2,000(1)				
ТРН-НО	2,000(1)	2,000(1)				
Total Naphthalenes	160(2)	160(2)				
Total cPAH TEQ	0.10(1)	1.4(3)				
Total Dioxin/Furan TEQ	9.8E-6 ⁽⁴⁾	5.1E-4 ⁽⁵⁾				

⁽¹⁾ Per MTCA Method A, WAC 173-340-900 Table 740-1.

⁽²⁾ Level based on vapor intrusion. The vapor intrusion pathway was determined to be incomplete based on the soil sampling coverage for the property. However, levels based on vapor intrusion will be applied to ensure that the reuse of soil does not bring volatile constituents into proximity to buildable areas or off property structures. Calculations included in IAWP.

⁽³⁾ Level based on marine surface water ARAR of 0.018 ug/L (human health, Clean Water Act §304) as calculated per MTCA Method B. Calculations included in IAWP.

⁽⁴⁾ Level based on direct contact with soil for residents, recreators, and commercial workers as calculated per MTCA Method B. Calculations included in IAWP.

⁽⁵⁾ Level based on direct contact with soil for utility workers as calculated per MTCA Method B. Calculations included in IAWP.

Table 4-1. Confirmation Sample Locations						
Sample ID	Northing	Easting				
CNF-1-10-3.5	634424.52	1043029.6				
CNF-1-11-1	634424.52	1043029.6				
CNF-1-12-3	634414.83	1043040				
CNF-1-1-9	634414.85	1043030.3				
CNF-1-2-9	634414.83	1043040				
CNF-1-3-9	634403.72	1043031.1				
CNF-1-4-9	634413.42	1043020.7				
CNF-1-5-9	634424.52	1043029.6				
CNF-1-6-4	634413.42	1043020.7				
CNF-1-7-5	634413.42	1043020.7				
CNF-1-8-3	634403.72	1043031.1				
CNF-1-9-1.5	634403.72	1043031.1				
CNF-2-10-7	634713.67	1042983.3				
CNF-2-10A-5	634744.53	1042990.1				
CNF-2-1-10	634723.36	1042982.8				
CNF-2-11-5	634713.67	1042983.3				
CNF-2-12-1.5	634713.67	1042983.3				
CNF-2-13-7	634724.5	1042992.4				
CNF-2-14-5	634724.5	1042992.4				
CNF-2-15-1.75	634724.5	1042992.4				
CNF-2-1A-2	634742.77	1042970.5				
CNF-2-2-7	634733.8	1042981.7				
CNF-2-2A-1.75	634754.43	1042979.8				
CNF-2-3-5	634733.8	1042981.7				
CNF-2-4-5	634733.8	1042981.7				
CNF-2-3A-1.75	634744.53	1042990.1				
CNF-2-4A-10	634743.65	1042980.4				
CNF-2-5-1.75	634733.8	1042981.7				
CNF-2-5A-9	634754.43	1042979.8				
CNF-2-6-7	634722.98	1042972.6				
CNF-2-6A-5	634754.43	1042979.8				
CNF-2-7-5	634722.98	1042972.6				
CNF-2-7A-9	634742.77	1042970.5				
CNF-2-8-1.75	634722.98	1042972.6				
CNF-2-9-1.75	634722.98	1042972.6				
CNF-2-8A-5	634742.77	1042970.5				

Table 4-1. Confirmation Sample Locations						
Sample ID	Northing	Easting				
CNF-2-9A-9.5	634746.73	1042989.7				
CNF-3-10-2.5	634247.97	1043228.8				
CNF-3-1-1.5	634258.21	1043234.4				
CNF-3-11-2.5a	634254.03	1043240.7				
CNF-3-12-2.5a	634243.57	1043241.4				
CNF-3-13-3.5	634258.21	1043234.4				
CNF-3-14-3.5a	634248.79	1043241.1				
CNF-3-15-3.5	634238.55	1043235.5				
CNF-3-16-3.5	634247.97	1043228.8				
CNF-3-17-3.5a	634254.03	1043240.7				
CNF-3-17-3.5	634254.03	1043240.7				
CNF-3-18-3.5a	634243.57	1043241.4				
CNF-3-19-7.5	634258.21	1043234.4				
CNF-3-20-7.5a	634248.79	1043241.1				
CNF-3-2-1.5a	634248.79	1043241.1				
CNF-3-21-7.5	634238.55	1043235.5				
CNF-3-22-7.5	634247.97	1043228.8				
CNF-3-23-7.5a	634254.03	1043240.7				
CNF-3-24-7.5a	634243.57	1043241.4				
CNF-3-25-10	634248.03	1043235.4				
CNF-3-3-1.5	634238.55	1043235.5				
CNF-3-4-1.5	634247.97	1043228.8				
CNF-3-5-1a	634254.03	1043240.7				
CNF-3-6-1a	634243.57	1043241.4				
CNF-3-7-2.5	634258.21	1043234.4				
CNF-3-8-2.5a	634248.79	1043241.1				
CNF-3-9-2.5	634238.55	1043235.5				
CNF-3A-10-5.5	634264.81	1043242.9				
CNF-3A-1-1.75	634247.24	1043244.2				
DUP	634247.24	1043244.2				
CNF-3A-11-6	634255.98	1043243.6				
CNF-3A-2-3.0	634247.24	1043244.2				
CNF-3A-3-3.25	634247.24	1043244.2				
CNF-3A-4-2.25	634256.24	1043246.5				
CNF-3A-5-3.25	634256.24	1043246.5				
CNF-3A-6-2.0	634264.81	1043242.9				

Table 4-1. Confirmation Sample Locations						
Sample ID	Northing	Easting				
CNF-3A-7-3.25	634264.81	1043242.9				
CNF-3A-8-5.5	634247.24	1043244.2				
CNF-3A-9-5.5	634256.24	1043246.5				
CNF-4-10-7	634180.08	1043174.1				
CNF-4-11-2	634180.08	1043174.1				
CNF-4-1-15	634174.47	1043182.1				
CNF-4-12-11	634169	1043190.2				
CNF-4-13-2.5	634169	1043190.2				
CNF-4-14-11	634165.95	1043176.6				
CNF-4-15-3.5	634165.95	1043176.6				
CNF-4-16-2	634165.95	1043176.6				
CNF-4-2-13	634169	1043190.2				
CNF-4-3-12	634165.95	1043176.6				
CNF-4-4-12	634180.08	1043174.1				
CNF-4-5-12	634183.13	1043187.7				
CNF-4-6-10.5	634183.13	1043187.7				
CNF-4-7-6	634183.13	1043187.7				
CNF-4-8-2.5	634183.13	1043187.7				
CNF-4-9-11	634180.08	1043174.1				
CNF-5-10-2	634199.84	1043125.6				
CNF-5-11-13	634216.29	1043136.7				
CNF-5-1-15	634208.17	1043131.3				
CNF-5-12-10	634216.29	1043136.7				
CNF-5-13-2	634216.29	1043136.7				
CNF-5-2-13.5	634202.24	1043139.7				
CNF-5-3-10	634202.24	1043139.7				
CNF-5-4-2	634202.24	1043139.7				
CNF-5-5-13.5	634213.9	1043122.7				
CNF-5-6-10	634213.9	1043122.7				
CNF-5-7-2	634213.9	1043122.7				
CNF-5-8-13	634199.84	1043125.6				
CNF-5-9-10	634199.84	1043125.6				

Note: Last numeric of the sample ID represents sample depth (CNF-#-#-Z, where Z is depth in feet) Duplicate samples are shown in shaded rows.

(a) Material removed during subsequent excavation

Table 4-2. CNF-4 (DP-18) ^a Concentrations in Soil						
			Concentration (mg/kg)			()
Sample ID	Date	Depth (feet bgs)	Arsenic	Copper	Lead	Nickel
CNF-4-1-15	11/8/2010	15	7.1	10.0	2.3	16.2
CNF-4-2-13	11/8/2010	13	4.4	28.9	9.4	27.8
CNF-4-3-12	11/8/2010	12	3.2	37.8	14.3	31.2
CNF-4-4-12	11/8/2010	12	2.6	26.4	11.4	22.6
CNF-4-5-12	11/8/2010	12	4.6	23.8	9.7	25.3
CNF-4-6-10.5	11/8/2010	10.5	ND	7.4	6.4	2.2
CNF-4-7-6	11/8/2010	6	4.2	37.3	9.3	43.3
CNF-4-8-2.5	11/8/2010	2.5	5.1	36.7	8.7	47.1
CNF-4-9-11	11/8/2010	11	2.0	18.0	9.8	7.6
CNF-4-10-7	11/8/2010	7	7.4	46.4	7.3	52.5
CNF-4-11-2	11/8/2010	2	14.6 J	50.0 J	85.0 J	26.3
CNF-4-12-11	11/8/2010	11	5.7	23.9	122	13.4
CNF-4-13-2.5	11/8/2010	2.5	1.6	9.9	1.7	15.1
CNF-4-14-11	11/8/2010	11	ND	17.6	17.3	11.1
CNF-4-15-3.5	11/8/2010	3.5	3.2	15.7	2.4	37.7
CNF-4-16-2	11/8/2010	2	4.6	17.6	8.7	25.0
Interim Action Cleanup Level			20	NA	250	NA
Interim Action Remediation Level			20	NA	250	NA

J – Estimated concentration based on data validation.

ND - Not detected

a Locations of DP-17 and DP-18 locations were transposed in the IAWP and SAP, this report has been includes reference to the historically correct locations.

Table 4-3. CNF-5 (DP-17) ^a Concentrations in Soil										
			Concentration (mg/kg)							
Sample ID	Date	Depth (feet bgs)	Lead	TPH-D	ТРН-НО	трн-6	Benzene	Ethylbenzene	Toluene	Total Xylenes
CNF-5-1-15	11/8/2010	15	2.8 J	ND	ND	ND	ND	ND	ND	ND
CNF-5-2-13.5	11/8/2010	13.5	14.0	ND	ND	ND	ND	ND	ND	ND
CNF-5-3-10	11/8/2010	10	127	135	ND	ND	ND	ND	ND	ND
CNF-5-4-2	11/8/2010	2	3.8	ND	ND	35.7	ND	ND	ND	ND
CNF-5-5-13.5	11/8/2010	13.5	15.6	ND	ND	ND	ND	ND	ND	ND
CNF-5-6-10	11/8/2010	10	64.9	ND	ND	ND	ND	ND	ND	ND
CNF-5-7-2	11/8/2010	2	2.1	ND	ND	ND	ND	ND	ND	ND
CNF-5-8-13	11/8/2010	13	28.2	ND	ND	ND	ND	ND	ND	ND
CNF-5-9-10	11/8/2010	10	18.9	137	ND	ND	ND	ND	ND	ND
CNF-5-10-2	11/8/2010	2	4.1	ND	ND	ND	ND	ND	ND	ND
CNF-5-11-13	11/8/2010	13	7.4	ND	ND	ND	ND	ND	ND	ND
CNF-5-12-10	11/8/2010	10	35.7	ND	ND	ND	ND	ND	ND	ND
CNF-5-13-2	11/8/2010	2	4.0	ND	ND	ND	ND	ND	ND	ND
Interim Action Cle	eanup Level		250	2000	2000	100	0.22	240	43	23
Interim Action Re	Interim Action Remediation Level				2000	100	0.22	240	43	23

J – Estimated concentration based on data validation.

ND - Not detected

a Locations of DP-17 and DP-18 locations were transposed in the IAWP and SAP, this report has been includes reference to the historically correct locations.

Table 4-4. CNF-3 (TP-02) Concentrations in Soil						
Sample ID	Date	Depth (feet bgs)	Dioxin/Furan TEQ ^(a) (ng/kg)			
CNF-3-1-1.5	11/9/2010	5	210 J, P			
CNF-3-2-1.5a	11/9/2010	5	0.29 J, B, P			
CNF-3-3-1.5	11/9/2010	5	22 J, P			
CNF-3-4-1.5	11/9/2010	5	7.2 J, B, I, D			
CNF-3-5-1b	11/9/2010	1	0.25 J, B			
CNF-3-6-1b	11/9/2010	1	0.47 J, B, P			
CNF-3-7-2.5	11/9/2010	2.5	12 J			
CNF-3-8-2.5b	11/9/2010	2.5	2.1 J, P			
CNF-3-9-2.5	11/9/2010	2.5	4.7 J			
CNF-3-10-2.5	11/9/2010	2.5	5.6 J, P			
CNF-3-11-2.5b	11/9/2010	2.5	0.31 J, B, P, I			
CNF-3-12-2.5b	11/9/2010	2.5	1.5 J, P			
CNF-3-13-3.5	11/9/2010	3.5	10 J			
CNF-3-14-3.5b	11/9/2010	3.5	8.4 J, I			
CNF-3-15-3.5	11/9/2010	3.5	0.28 J, B, R, P, I			
CNF-3-16-3.5	11/9/2010	3.5	0.45 J, B, P, I			
CNF-3-17-3.5b	11/9/2010	3.5	2200 P, E			
CNF-3-18-3.5b	11/9/2010	3.5	0.25 J, B, P, I			
CNF-3-19-7.5	11/9/2010	7.5	5.0 J, R, P, I			
CNF-3-20-7.5b	11/9/2010	7.5	0.47 J, B, R, I			
CNF-3-21-7.5	11/9/2010	7.5	0.23 J, B, I			
CNF-3-22-7.5	11/9/2010	7.5	0.19 J,B , I			
CNF-3-23-7.5b	11/9/2010	7.5	13 J, R, P, I			
CNF-3-24-7.5a	11/9/2010	7.5	2.2 J, B, P			
CNF-3-25-10	11/9/2010	10	0.21 J, B, R, I			
Interim Action Cleanup Lev	el		9.81			
Interim Action Remediation Level			510			

B = Less than 10x higher than method blank level

D= Results obtained from analysis of diluted sample

E = Exceeds calibration range

I = Interference present

J = Estimated value

P = PCDE Interference

R = Recovery outside target range

Y = Calculated using average of daily RFs

- (a) TEQ per WAC 173-340-708(8). Calculated per Teel, 2010. For constituents detected on site, concentration = ½ reporting limit for results below reporting limit.
- $(b) \quad \hbox{Denotes sampled area that was removed during subsequent excavation efforts.}$

Table 4-5. CNF-3A (TP-02) Concentrations in Soil						
Sample ID	Date	Depth (feet bgs)	Dioxin/Furan TEQ ^(a) (ng/kg)			
CNF-3A-1-1.75	1/5/2011	1.75	0.40 J, I			
CNF-3A-2-3.0	1/5/2011	3	77 P, E, Y			
CNF-3A-3-3.25	1/5/2011	3.25	14 J, P, I			
CNF-3A-4-2.25	1/5/2011	2.25	0.24 J, B, P			
CNF-3A-5-3.25	1/5/2011	3.25	450 P, E, D, Nn, Y			
CNF-3A-6-2.0	1/5/2011	2	0.28 J, B			
CNF-3A-7-3.25	1/5/2011	3.25	0.27 J, P, I			
CNF-3A-8-5.5	1/5/2011	5.5	41 J, P, Y			
CNF-3A-9-5.5	1/5/2011	5.5	83 P, E, Y			
CNF-3A-10-5.5	1/5/2011	5.5	330 J, P, E			
CNF-3A-11-6	1/5/2011	6	180 J, P, E, D, Nn, Y			
Interim Action Cleanup Level			9.81			
Interim Action Remediation Level			510			

B = Less than 10x higher than method blank level

D= Results obtained from analysis of diluted sample

E = Exceeds calibration range

I = Interference present

J = Estimated value

Nn = Value obtained from additional analysis

P = PCDE Interference

R = Recovery outside target range

Y = Calculated using average of daily RFs

⁽a) TEQ per WAC 173-340-708(8). Calculated per Teel, 2010. For constituents detected on site, concentration = ½ reporting limit for results below reporting limit.

Table 4-6. CNF-1 (DP-11) Concentrations in Soil									
			Concentration (mg/kg)						
Sample ID	Date	Depth (feet bgs)	Arsenic	Copper	Lead	Nickel	ТРН-0	ТРН-НО	
CNF-1-1-9	11/3/2010	9	2.7 J	14.8	6.4	29.8	4.7 U	16.4 U	
CNF-1-2-9	11/3/2010	9	2.6	11.8	3.2	27.7	5.1 U	17.8 U	
CNF-1-3-9	11/3/2010	9	4.1 J	27.8	153	4.3 J	793	1560	
CNF-1-4-9	11/3/2010	9	9.3	25.6	123	28.2	160	683	
CNF-1-5-9	11/3/2010	9	7.1 J	27.5	56.1	4.5 J	607	3500	
CNF-1-5-9 ^(a)	11/3/2010	9					263	1250	
CNF-1-6-4	11/3/2010	4	5.8 J	38.1	9.6	45.7	4.7 U	19.9 J	
CNF-1-7-5	11/3/2010	5	6.8 J	38.1	51.2	6.0 J	493	1540	
CNF-1-8-3	11/3/2010	3	3.6 J	19.4	4.9	32.3	5.3 J	25.6 J	
CNF-1-9-1.5	11/3/2010	1.5	3.7 J	19.6	7.6	28.6	111	357	
CNF-1-10-3.5	11/3/2010	3.5	2.5	21.0	108	19.2	36.7	143	
CNF-1-11-1	11/3/2010	1	2.1 J	15.1	4.6	28.2	5.9 J	18.5 J	
CNF-1-12-3	11/3/2010	3	3.6 J	22.1	8.9	35.7	6.0 J	20.3 J	
Interim Action Clean	Interim Action Cleanup Level			NA	250	NA	2000	2000	
Interim Action Reme	20	NA	250	NA	2000	2000			

NM - Not measured

J - Estimated concentration. Concentration between Method Detection Limit (MDL) and Practical Quantitation Limit (PQL).

U – MDL shown. The COPC was not detected at this concentration.

⁽a) TPH results with silica gel cleanup.

Table 4-7. CNF-2 (DP-21) Concentrations in Soil						
			Concentration (mg/kg)			()
Sample ID	Date	Depth (feet bgs)	Arsenic	Copper	Lead	Nickel
CNF-2-1-10	1/10/2011	10	3.5	18.9	5.5	7.8
CNF-2-2-7a	1/10/2011	7	ND	13.8	4.6	9.4
CNF-2-3-5a	1/10/2011	5	4.8	25.1	4.0	35.6
CNF-2-4-5a	1/10/2011	5	4.6	29.1	4.6	38.0
CNF-2-5-1.75a	1/10/2011	1.75	159	26.3	6.8	30.4
CNF-2-6-7	1/10/2011	7	ND	20.5	4.5	3.9
CNF-2-7-5	1/10/2011	5	6.0	41.1	6.0	58.3
CNF-2-8-1.75	1/10/2011	1.75	5.6 J	40.3	7.7 J	37.9
CNF-2-9-1.75	1/10/2011	1.75	9.1J	47.8	10.8J	35.7
CNF-2-10-7	1/10/2011	7	3.4	19.9	4.8	9.8
CNF-2-11-5	1/10/2011	5	6.5	41.1 J	6.2	59.1 J
CNF-2-12-1.5	1/10/2011	1.5	11.2	44.3	28.4	39.7
CNF-2-13-7	1/10/2011	7	6.8	48.1	7.6	46.5
CNF-2-14-5	1/10/2011	5	8.1	39.0	6.1	50.4
CNF-2-15-1.75	1/10/2011	1.75	7.0	30.3	19.4	34.8
Interim Action Clean	Interim Action Cleanup Level			NA	250	NA
Interim Action Remediation Level			20	NA	250	NA

J - Estimated concentration based on data validation.

NM - Not measured

ND - Not detected

⁽a) Material removed during subsequent excavation.

Table 4-8. CNF-2A (DP-21) Concentrations in Soil						
			Concentration (mg/kg)		()	
Sample ID	Date	Depth (feet bgs)	Arsenic	Copper	Lead	Nickel
CNF 2-1A-2	1/21/2011	2	3.9	17.5	3.6	18.4
CNF 2-2A-1.75	1/21/2011	1.75	2.9	17.6	6.4	29.9
CNF 2-3A-1.75	1/21/2011	1.75	3.8	20.2	3.6	25.5
DUP	1/21/2011	1.75	3.3	21.5	4.1	25.7
CNF 2-4A-10	1/21/2011	10	6.8	10.7	4.0	7.3
CNF-2-5A-9	1/21/2011	9	10.6	14.0	5.4	9.4
CNF 2-6A-5	1/21/2011	5	6.4	28.7	4.2	38.4
CNF 2-7A-9	1/21/2011	9	5.3	4.7	4.8	4.0
CNF 2-8A-5	1/21/2011	5	6.3	28.8	4.5	41.6
CNF 2-9A-9.5	1/21/2011	9.5	4.8	9.2	6.5	5.2
CNF 2-10A-5	1/21/2011	5	6.5	25.8	4.1	38.0
Interim Action Cleanup Level		20	NA	250	NA	
Interim Action Remediation Level		20	NA	250	NA	

Table 4-9.	Arsenic Concentrations in Soil	Stockpile Samples
Sample ID	Date	Arsenic Concentration (mg/Kg)
SPL-1-1	11/02/2010	2.1
SPL-1-2	11/02/2010	6.5
SPL-1-3	11/02/2010	2.2
SPL-2-1	11/02/2010	2.6
SPL-2-2	11/02/2010	3.4
SPL-2-3	11/02/2010	3.9
SPL-3-1	11/03/2010	7.1
SPL-3-2	11/03/2010	7.4
SPL-3-3	11/03/2010	4.8
SPL-4-1	11/03/2010	2.8
SPL-4-2	11/03/2010	2.6
SPL-4-3	11/03/2010	3.5
SPL-5-1	11/03/2010	2.9
SPL-5-2	11/03/2010	4.6
SPL-5-3	11/03/2010	2.6
SPL-6-1	11/22/2010	7.0
SPL-6-2	11/22/2010	5.5
SPL-6-3	11/22/2010	6.8
SPL-6-4	11/22/2010	5.5
SPL-6-5	11/22/2010	5.6
SPL-7-1	11/22/2010	5.4
SPL-7-2	11/22/2010	2.7
SPL-7-3	11/22/2010	10.2
SPL-7-4	11/22/2010	7.7
SPL-7-5	11/22/2010	4.6
SPL-8-1	11/22/2010	3.2
SPL-8-2	11/22/2010	6.0
SPL-8-3	11/22/2010	4.3
SPL-9-1	11/22/2010	5.4
SPL-9-2	11/22/2010	4.0
SPL-9-3	11/22/2010	3.0
SPL-10-1	11/16/2010	3.3
SPL-10-2	11/16/2010	5.2
SPL-10-3	11/16/2010	7.7
SPL-11-1		4.5
	11/16/2010	
SPL-11-2	11/16/2010	4.4
SPL-11-3	11/16/2010	3.6

Table 4-9. Arsenic Concentrations in Soil Stockpile Samples		
Sample ID	Date	Arsenic Concentration (mg/Kg)
SPL-12-1	11/10/2010	3.9 J
SPL-12-2	11/10/2010	7.0
SPL-12-3	11/10/2010	4.6
SPL-12-4	11/10/2010	6.8
SPL-12-5	11/11/2010	5.6
SPL-12-6	11/11/2010	3.2
SPL-12-7	11/11/2010	3.4
SPL-13-1	12/03/2010	5.5
SPL-13-2	12/03/2010	4.4
SPL-13-3	12/03/2010	3.3
SPL-13-4	12/03/2010	4.4
SPL-13-5	12/03/2010	4.1
SPL-13-6	12/03/2010	9.6
SPL-13-7	12/03/2010	4.0
SPL-14-1	12/03/2010	4.1
SPL-14-2	12/03/2010	4.6
SPL-14-3	12/03/2010	4.2
SPL-14-4	12/03/2010	4.0
SPL-14-5	12/03/2010	7.0
SPL-15-1	12/10/2010	5.0
SPL-15-2	12/10/2010	5.7
SPL-15-3	12/10/2010	4.7
SPL-16-1	12/20/2010	4.1
SPL-16-2	12/20/2010	5.0
SPL-16-3	12/20/2010	4.7
SPL-16-4	12/20/2010	1.9
SPL-16-5	12/20/2010	6.6
SPL-16-6	12/20/2010	3.9
SPL-16-7	12/20/2010	3.8
SPL-17-1	1/5/2011	7.7
SPL-17-2	1/5/2011	4.9
SPL-17-3	1/5/2011	7.1
SPL-18-1	1/4/2011	3.5
SPL-18-2	1/4/2011	6.3
SPL-18-3	1/4/2011	5.4
SPL-18-4	1/4/2011	4.6
SPL-18-5	1/4/2011	4.8

Table 4-	9. Arsenic Concentrations in	Soil Stockpile Samples
Sample ID	Date	Arsenic Concentration (mg/Kg)
SPL-18-6	1/4/2011	10.7
SPL-19-1	1/13/2011	2.3
SPL-19-2	1/13/2011	4.7
SPL-19-3	1/13/2011	5.9
SPL-19-4	1/13/2011	5.5
SPL-19-5	1/13/2011	10.3
SPL-19-6	1/13/2011	4.4
SPL-20-1	1/19/2011	5.3
SPL-20-2	1/19/2011	5.5
SPL-20-3	1/19/2011	4.8
SPL-20-4	1/19/2011	4.5
SPL-20-5	1/19/2011	10.1
SPL-20-6	1/19/2011	9.5
SPL-21-1	1/19/2011	9.9 J
SPL-21-2	1/19/2011	7.0
SPL-21-3	1/19/2011	5.9
SPL-21-4	1/19/2011	6.3
SPL-21-5	1/19/2011	7.8
SPL-21-6	1/19/2011	7.1
SPL-22-1	2/7/2011	3.1
SPL-22-2	2/7/2011	4.6
SPL-22-3	2/7/2011	4.2
SPL-23-1	2/7/2011	6.4
SPL-23-2	2/7/2011	3.6
SPL-23-3	2/7/2011	5.8
SPL-24-1	2/7/2011	4.5
SPL-24-2	2/7/2011	9.3 J
SPL-24-3	2/7/2011	6.2
SPL-24-4	2/7/2011	5.6
SPL-25-1	2/9/2011	4.0
SPL-25-2	2/9/2011	4.7
SPL-25-3	2/9/2011	4.0
SPL-25-4	2/9/2011	2.9
SPL-25-5	2/9/2011	5.3
SPL-26-1	2/9/2011	5.8
SPL-26-2	2/9/2011	5.6
SPL-26-3	2/9/2011	7.4

Table 4-9. Arsenic Concentrations in Soil Stockpile Samples		
Sample ID	Date	Arsenic Concentration (mg/Kg)
SPL-26-4	2/9/2011	7.3
SPL-27-1	2/9/2011	3.3
SPL-27-2	2/9/2011	2.9
SPL-27-3	2/9/2011	4.6
SPL-27-4	2/9/2011	3.9
SPL-27-5	2/9/2011	4.2
SPL-28-1	2/9/2011	4.7 J
SPL-28-2	2/9/2011	3.6
SPL-28-3	2/9/2011	3.4
SPL-28-4	2/9/2011	3.3
SPL-29-1	2/4/2011	4.0
SPL-29-2	2/4/2011	4.8
SPL-29-3	2/4/2011	4.9
SPL-29-4	2/4/2011	3.8
SPL-29-5	2/4/2011	3.7
SPL-29-6	2/4/2011	14.2
SPL-29-7	2/4/2011	5.0
SPL-29-8	2/4/2011	3.7
SPL-30-1	2/3/2011	4.2
SPL-30-2	2/3/2011	4.2
SPL-30-3	2/3/2011	4.3
SPL-30-4	2/3/2011	5.1
SPL-30-5	2/3/2011	9.0
SPL-30-6	2/3/2011	5.3
SPL-30-7	2/3/2011	4.1
SPL-31-1	2/18/2011	10.4 J
SPL-31-2	2/18/2011	4.1 J
SPL-31-3	2/18/2011	2.4
SPL-31-4	2/18/2011	5.7
SPL-31-5	2/18/2011	1.6
SPL-31-6	2/18/2011	4.5
SPL-32-1	2/18/2011	4.9
SPL-32-2	2/18/2011	4.8
SPL-32-3	2/18/2011	3.3
Interim Action Cleanup Level		20
Interim Action Remediation Lev	el	20

 ${\sf J}$ – Estimated concentration based on data validation.

Table 4-10. Ca	dmium Concentrations in	Soil Stockpile Samples
Sample ID	Date	Cadmium Concentration (mg/Kg)
SPL-1-1	11/2/2010	ND
SPL-1-2	11/2/2010	ND
SPL-1-3	11/2/2010	ND
SPL-2-1	11/2/2010	ND
SPL-2-2	11/2/2010	ND
SPL-2-3	11/2/2010	ND
SPL-3-1	11/3/2010	ND
SPL-3-2	11/3/2010	ND
SPL-3-3	11/3/2010	ND
SPL-4-1	11/3/2010	ND
SPL-4-2	11/3/2010	ND
SPL-4-3	11/3/2010	ND
SPL-5-1	11/3/2010	ND
SPL-5-2	11/3/2010	ND
SPL-5-3	11/3/2010	ND
SPL-6-1	11/22/2010	0.80
SPL-6-2	11/22/2010	ND
SPL-6-3	11/22/2010	1.8
SPL-6-4	11/22/2010	1.3
SPL-6-5	11/22/2010	ND
SPL-7-1	11/22/2010	0.47
SPL-7-2	11/22/2010	ND
SPL-7-3	11/22/2010	1.2
SPL-7-4	11/22/2010	0.85
SPL-7-5	11/22/2010	2.0
SPL-8-1	11/22/2010	0.080
SPL-8-2	11/22/2010	ND
SPL-8-3	11/22/2010	ND
SPL-9-1	11/22/2010	0.12
SPL-9-2	11/22/2010	0.079
SPL-9-3	11/22/2010	ND
SPL-10-1	11/16/2010	0.12
SPL-10-2	11/16/2010	0.14
SPL-10-3	11/16/2010	0.15
SPL-11-1	11/16/2010	0.084
SPL-11-2	11/16/2010	0.10

Table 4-10. Ca	dmium Concentrations in	Soil Stockpile Samples
Sample ID	Date	Cadmium Concentration (mg/Kg)
SPL-11-3	11/16/2010	ND
SPL-12-1	11/10/2010	ND
SPL-12-2	11/10/2010	ND
SPL-12-3	11/10/2010	ND
SPL-12-4	11/10/2010	0.48
SPL-12-5	11/11/2010	ND
SPL-12-6	11/11/2010	ND
SPL-12-7	11/11/2010	ND
SPL-13-1	12/3/2010	0.092
SPL-13-2	12/3/2010	0.065
SPL-13-3	12/3/2010	0.11
SPL-13-4	12/3/2010	0.29
SPL-13-5	12/3/2010	0.084
SPL-13-6	12/3/2010	0.18
SPL-13-7	12/3/2010	0.23
SPL-14-1	12/3/2010	ND
SPL-14-2	12/3/2010	0.083
SPL-14-3	12/3/2010	0.084
SPL-14-4	12/3/2010	ND
SPL-14-5	12/3/2010	ND
SPL-15-1	12/10/2010	0.10
SPL-15-2	12/10/2010	0.087
SPL-15-3	12/10/2010	0.082
SPL-16-1	12/20/2010	0.10
SPL-16-2	12/20/2010	0.13
SPL-16-3	12/20/2010	0.23
SPL-16-4	12/20/2010	0.15
SPL-16-5	12/20/2010	ND
SPL-16-6	12/20/2010	0.10
SPL-16-7	12/20/2010	0.12
SPL-17-1	1/5/2011	0.38
SPL-17-2	1/5/2011	0.28
SPL-17-3	1/5/2011	0.32
SPL-18-1	1/4/2011	ND
SPL-18-2	1/4/2011	ND
SPL-18-3	1/4/2011	0.14
SPL-18-4	1/4/2011	0.19

SPL-18-5 1/4/2011 0.089 SPL-18-6 1/4/2011 0.80 SPL-19-1 1/13/2011 ND SPL-19-2 1/13/2011 0.17 SPL-19-3 1/13/2011 0.24	um Concentration (mg/Kg)
SPL-18-6 1/4/2011 0.80 SPL-19-1 1/13/2011 ND SPL-19-2 1/13/2011 0.17 SPL-19-3 1/13/2011 0.24	
SPL-19-1 1/13/2011 ND SPL-19-2 1/13/2011 0.17 SPL-19-3 1/13/2011 0.24	
SPL-19-2 1/13/2011 0.17 SPL-19-3 1/13/2011 0.24	
SPL-19-3 1/13/2011 0.24	
SPL-19-3 1/13/2011 0.24	
SPL-19-4 1/13/2011 0.19	
SPL-19-5 1/13/2011 ND	
SPL-19-6 1/13/2011 0.18	
SPL-20-1 1/19/2011 0.16	
SPL-20-2 1/19/2011 0.12	
SPL-20-3 1/19/2011 0.20	
SPL-20-4 1/19/2011 0.17	
SPL-20-5 1/19/2011 0.15	
SPL-20-6 1/19/2011 0.20	
SPL-21-1 1/19/2011 0.11	
SPL-21-2 1/19/2011 0.55	
SPL-21-3 1/19/2011 0.11	
SPL-21-4 1/19/2011 0.14	
SPL-21-5 1/19/2011 0.098	
SPL-21-6 1/19/2011 0.10	
SPL-22-1 2/7/2011 0.074	
SPL-22-2 2/7/2011 0.092	
SPL-22-3 2/7/2011 0.10	
SPL-23-1 2/7/2011 0.11	
SPL-23-2 2/7/2011 ND	
SPL-23-3 2/7/2011 0.19	
SPL-24-1 2/7/2011 0.17	
SPL-24-2 2/7/2011 0.13	
SPL-24-3 2/7/2011 0.10	
SPL-24-4 2/7/2011 0.12	
SPL-25-1 2/9/2011 0.14	
SPL-25-2 2/9/2011 0.53	
SPL-25-3 2/9/2011 0.12	
SPL-25-4 2/9/2011 0.14	
SPL-25-5 2/9/2011 0.43	
SPL-26-1 2/9/2011 1.6	
SPL-26-2 2/9/2011 1.4	
SPL-26-3 2/9/2011 1.9	

Table 4-10. Cadmium Concentrations in Soil Stockpile Samples			
Sample ID	Date	Cadmium Concentration (mg/Kg)	
SPL-26-4	2/9/2011	1.7	
SPL-27-1	2/9/2011	0.11	
SPL-27-2	2/9/2011	0.11	
SPL-27-3	2/9/2011	0.10	
SPL-27-4	2/9/2011	0.11	
SPL-27-5	2/9/2011	0.11	
SPL-28-1	2/9/2011	0.11	
SPL-28-2	2/9/2011	0.088	
SPL-28-3	2/9/2011	ND	
SPL-28-4	2/9/2011	0.087	
SPL-29-1	2/4/2011	0.10	
SPL-29-2	2/4/2011	0.14	
SPL-29-3	2/4/2011	0.14	
SPL-29-4	2/4/2011	0.085	
SPL-29-5	2/4/2011	0.088	
SPL-29-6	2/4/2011	0.098	
SPL-29-7	2/4/2011	0.17	
SPL-29-8	2/4/2011	0.095	
SPL-30-1	2/3/2011	0.086	
SPL-30-2	2/3/2011	0.10	
SPL-30-3	2/3/2011	0.12	
SPL-30-4	2/3/2011	0.11	
SPL-30-5	2/3/2011	0.12	
SPL-30-6	2/3/2011	0.12	
SPL-30-7	2/3/2011	0.11	
SPL-31-1	2/18/2011	ND	
SPL-31-2	2/18/2011	0.11 J	
SPL-31-3	2/18/2011	ND	
SPL-31-4	2/18/2011	0.16	
SPL-31-5	2/18/2011	ND	
SPL-31-6	2/18/2011	ND	
SPL-32-1	2/18/2011	0.48	
SPL-32-2	2/18/2011	0.17	
SPL-32-3	2/18/2011	0.22	
Interim Action Cleanup Level		2	
Interim Action Remediation Level			

 ${\it IACL/IARL}\ exceedances\ in\ bold.$

 ${\it J}$ – Estimated concentration based on data validation.

ND - Not detected

Table 4-11. Lead Concentrations in Soil Stockpile Samples			
Sample ID	Date	Lead Concentration (mg/Kg)	
SPL-1-1	11/2/2010	3.3	
SPL-1-2	11/2/2010	7.5	
SPL-1-3	11/2/2010	3.4	
SPL-2-1	11/2/2010	4.5	
SPL-2-2	11/2/2010	7.9	
SPL-2-3	11/2/2010	11.6	
SPL-3-1	11/3/2010	553	
SPL-3-2	11/3/2010	56.3	
SPL-3-3	11/3/2010	45.2	
SPL-4-1	11/3/2010	5.1	
SPL-4-2	11/3/2010	3.8	
SPL-4-3	11/3/2010	6.4	
SPL-5-1	11/3/2010	4.4	
SPL-5-2	11/3/2010	6.9	
SPL-5-3	11/3/2010	1.8	
SPL-6-1	11/22/2010	26.1	
SPL-6-2	11/22/2010	11.3	
SPL-6-3	11/22/2010	14.2	
SPL-6-4	11/22/2010	13.8	
SPL-6-5	11/22/2010	22.9	
SPL-7-1	11/22/2010	10.0 J	
SPL-7-2	11/22/2010	18.8	
SPL-7-3	11/22/2010	514	
SPL-7-4	11/22/2010	1210	
SPL-7-5	11/22/2010	18.8	
SPL-8-1	11/22/2010	9.3 J	
SPL-8-2	11/22/2010	5.7	
SPL-8-3	11/22/2010	3.8	
SPL-9-1	11/22/2010	6.7	
SPL-9-2	11/22/2010	6.7	
SPL-9-3	11/22/2010	4.7	
SPL-10-1	11/16/2010	6.0	
SPL-10-2	11/16/2010	16.3	
SPL-10-3	11/16/2010	20.9	
SPL-11-1	11/16/2010	8.1	
SPL-11-2	11/16/2010	13.0	

Table 4-11. Lead Concentrations in Soil Stockpile Samples			
Sample ID	Date	Lead Concentration (mg/Kg)	
SPL-11-3	11/16/2010	4.5	
SPL-12-1	11/10/2010	2.6 J	
SPL-12-2	11/10/2010	3.8	
SPL-12-3	11/10/2010	5.9	
SPL-12-4	11/10/2010	17.3	
SPL-12-5	11/11/2010	5.3	
SPL-12-6	11/11/2010	3.3	
SPL-12-7	11/11/2010	2.4	
SPL-13-1	12/3/2010	7.4	
SPL-13-2	12/3/2010	8.2	
SPL-13-3	12/3/2010	4.3	
SPL-13-4	12/3/2010	9.6	
SPL-13-5	12/3/2010	8.1	
SPL-13-6	12/3/2010	7.0	
SPL-13-7	12/3/2010	10.4	
SPL-14-1	12/3/2010	5.4	
SPL-14-2	12/3/2010	8.6	
SPL-14-3	12/3/2010	6.3	
SPL-14-4	12/3/2010	7.4	
SPL-14-5	12/3/2010	7.7	
SPL-15-1	12/10/2010	10.9	
SPL-15-2	12/10/2010	10.4	
SPL-15-3	12/10/2010	9.2	
SPL-16-1	12/20/2010	10.4	
SPL-16-2	12/20/2010	9.5	
SPL-16-3	12/20/2010	33.4 J	
SPL-16-4	12/20/2010	4.9	
SPL-16-5	12/20/2010	4.8	
SPL-16-6	12/20/2010	9.7	
SPL-16-7	12/20/2010	10.0	
SPL-17-1	1/5/2011	15.6	
SPL-17-2	1/5/2011	18.6 J	
SPL-17-3	1/5/2011	18.9	
SPL-18-1	1/4/2011	3.1	
SPL-18-2	1/4/2011	3.2	
SPL-18-3	1/4/2011	143	

Table 4-11. Lead Concentrations in Soil Stockpile Samples		
Sample ID	Date	Lead Concentration (mg/Kg)
SPL-18-4	1/4/2011	14.6
SPL-18-5	1/4/2011	2.9
SPL-18-6	1/4/2011	54.4
SPL-19-1	1/13/2011	3.5
SPL-19-2	1/13/2011	4.0
SPL-19-3	1/13/2011	4.9
SPL-19-4	1/13/2011	4.8
SPL-19-5	1/13/2011	10.1
SPL-19-6	1/13/2011	4.9
SPL-20-1	1/19/2011	24.5 J
SPL-20-2	1/19/2011	9.1
SPL-20-3	1/19/2011	35.2
SPL-20-4	1/19/2011	24.7 J
SPL-20-5	1/19/2011	27.1
SPL-20-6	1/19/2011	35.0
SPL-21-1	1/19/2011	10.6
SPL-21-2	1/19/2011	16.2
SPL-21-3	1/19/2011	8.8
SPL-21-4	1/19/2011	74.6
SPL-21-5	1/19/2011	8.8 J
SPL-21-6	1/19/2011	8.1
SPL-22-1	2/7/2011	4.5
SPL-22-2	2/7/2011	7.9
SPL-22-3	2/7/2011	7.3
SPL-23-1	2/7/2011	12.3
SPL-23-2	2/7/2011	6.0
SPL-23-3	2/7/2011	32.3
SPL-24-1	2/7/2011	11.1
SPL-24-2	2/7/2011	11.9
SPL-24-3	2/7/2011	11.0
SPL-24-4	2/7/2011	13.0
SPL-25-1	2/9/2011	4.9
SPL-25-2	2/9/2011	21.2
SPL-25-3	2/9/2011	7.4
SPL-25-4	2/9/2011	7.8
SPL-25-5	2/9/2011	17.2

Table 4-11. Lead Concentrations in Soil Stockpile Samples		
Sample ID	Date	Lead Concentration (mg/Kg)
SPL-26-1	2/9/2011	40.3
SPL-26-2	2/9/2011	21.7
SPL-26-3	2/9/2011	49.6 J
SPL-26-4	2/9/2011	34.5
SPL-27-1	2/9/2011	7.7
SPL-27-2	2/9/2011	8.0
SPL-27-3	2/9/2011	16.1
SPL-27-4	2/9/2011	8.7
SPL-27-5	2/9/2011	8.4
SPL-28-1	2/9/2011	8.7
SPL-28-2	2/9/2011	7.3
SPL-28-3	2/9/2011	7.5
SPL-28-4	2/9/2011	7.0
SPL-29-1	2/4/2011	8.7
SPL-29-2	2/4/2011	9.0
SPL-29-3	2/4/2011	7.1
SPL-29-4	2/4/2011	4.3
SPL-29-5	2/4/2011	3.5
SPL-29-6	2/4/2011	9.3
SPL-29-7	2/4/2011	5.3
SPL-29-8	2/4/2011	4.0
SPL-30-1	2/3/2011	5.2 J
SPL-30-2	2/3/2011	8.0
SPL-30-3	2/3/2011	9.3
SPL-30-4	2/3/2011	9.5
SPL-30-5	2/3/2011	6.1
SPL-30-6	2/3/2011	44.9
SPL-30-7	2/3/2011	6.4
SPL-31-1	2/18/2011	9.2
SPL-31-2	2/18/2011	3.9 J
SPL-31-3	2/18/2011	4.8
SPL-31-4	2/18/2011	9.4
SPL-31-5	2/18/2011	2.1
SPL-31-6	2/18/2011	4.9
SPL-32-1	2/18/2011	165
SPL-32-2	2/18/2011	63.2

Table 4-11. Lead Concentrations in Soil Stockpile Samples		
Sample ID	Date	Lead Concentration (mg/Kg)
SPL-32-3	2/18/2011	66.1
Interim Action Cleanup Level		250
Interim Action Reporting Level		250

J – Estimated concentration based on data validation.

Table 4-12. Copper Concentrations in Soil Stockpile Samples		
Sample ID	Date	Copper Concentration (mg/Kg)
SPL-1-1	11/2/2010	11.8
SPL-1-2	11/2/2010	19.9
SPL-1-3	11/2/2010	11.6
SPL-2-1	11/2/2010	17.0
SPL-2-2	11/2/2010	22.9
SPL-2-3	11/2/2010	21.8
SPL-3-1	11/3/2010	139
SPL-3-2	11/3/2010	46.8
SPL-3-3	11/3/2010	31.5
SPL-4-1	11/3/2010	16.1
SPL-4-2	11/3/2010	12.9
SPL-4-3	11/3/2010	23.6
SPL-5-1	11/3/2010	13.0
SPL-5-2	11/3/2010	29.0
SPL-5-3	11/3/2010	10.7
SPL-6-1	11/22/2010	43.3
SPL-6-2	11/22/2010	43.4
SPL-6-3	11/22/2010	36.9
SPL-6-4	11/22/2010	31.3
SPL-6-5	11/22/2010	28.6
SPL-7-1	11/22/2010	12.2 J
SPL-7-2	11/22/2010	12.5
SPL-7-3	11/22/2010	53.6
SPL-7-4	11/22/2010	37.9
SPL-7-5	11/22/2010	40.4
SPL-8-1	11/22/2010	15.4
SPL-8-2	11/22/2010	29.4
SPL-8-3	11/22/2010	15.3
SPL-9-1	11/22/2010	26.0
SPL-9-2	11/22/2010	22.1
SPL-9-3	11/22/2010	15.8
SPL-10-1	11/16/2010	20.3
SPL-10-2	11/16/2010	34.3
SPL-10-3	11/16/2010	36.0
SPL-11-1	11/16/2010	35.2
SPL-11-2	11/16/2010	27.2

Table 4-12. Copper Concentrations in Soil Stockpile Samples		
Sample ID	Date	Copper Concentration (mg/Kg)
SPL-11-3	11/16/2010	17.2
SPL-12-1	11/10/2010	12.3 J
SPL-12-2	11/10/2010	14.2
SPL-12-3	11/10/2010	19.4
SPL-12-4	11/10/2010	33.1
SPL-12-5	11/11/2010	21.1
SPL-12-6	11/11/2010	11.6
SPL-12-7	11/11/2010	12.2
SPL-13-1	12/3/2010	18.5
SPL-13-2	12/3/2010	30.5
SPL-13-3	12/3/2010	16.4
SPL-13-4	12/3/2010	28.1
SPL-13-5	12/3/2010	24.4
SPL-13-6	12/3/2010	24.9
SPL-13-7	12/3/2010	23.4 J
SPL-14-1	12/3/2010	15.3 J
SPL-14-2	12/3/2010	21.4
SPL-14-3	12/3/2010	17.3
SPL-14-4	12/3/2010	17.3
SPL-14-5	12/3/2010	27.4
SPL-15-1	12/10/2010	22.9
SPL-15-2	12/10/2010	20.6
SPL-15-3	12/10/2010	24.2
SPL-16-1	12/20/2010	35.4 J
SPL-16-2	12/20/2010	24.7
SPL-16-3	12/20/2010	30.2
SPL-16-4	12/20/2010	12.5
SPL-16-5	12/20/2010	13.9
SPL-16-6	12/20/2010	25.4
SPL-16-7	12/20/2010	21.7
SPL-17-1	1/5/2011	47.3
SPL-17-2	1/5/2011	52.5 J
SPL-17-3	1/5/2011	39.8
SPL-18-1	1/4/2011	15.6
SPL-18-2	1/4/2011	12.8
SPL-18-3	1/4/2011	23.7

Table 4-12. Copper Concentrations in Soil Stockpile Samples		
Sample ID	Date	Copper Concentration (mg/Kg)
SPL-18-4	1/4/2011	24.4
SPL-18-5	1/4/2011	15.3
SPL-18-6	1/4/2011	82.1
SPL-19-1	1/13/2011	13.7
SPL-19-2	1/13/2011	26.4
SPL-19-3	1/13/2011	32.0
SPL-19-4	1/13/2011	27.8
SPL-19-5	1/13/2011	65.9
SPL-19-6	1/13/2011	30.6 J
SPL-20-1	1/19/2011	23.6 J
SPL-20-2	1/19/2011	22.4
SPL-20-3	1/19/2011	27.0
SPL-20-4	1/19/2011	29.3
SPL-20-5	1/19/2011	24.8
SPL-20-6	1/19/2011	35.8
SPL-21-1	1/19/2011	23.6
SPL-21-2	1/19/2011	42.2
SPL-21-3	1/19/2011	23.7
SPL-21-4	1/19/2011	28.5
SPL-21-5	1/19/2011	24.6 J
SPL-21-6	1/19/2011	21.4
SPL-22-1	2/7/2011	15.3 J
SPL-22-2	2/7/2011	21.0
SPL-22-3	2/7/2011	20.0
SPL-23-1	2/7/2011	27.2
SPL-23-2	2/7/2011	15.4
SPL-23-3	2/7/2011	28.1
SPL-24-1	2/7/2011	23.0
SPL-24-2	2/7/2011	23.7
SPL-24-3	2/7/2011	25.1
SPL-24-4	2/7/2011	26.0
SPL-25-1	2/9/2011	24.2
SPL-25-2	2/9/2011	69.4 J
SPL-25-3	2/9/2011	21.6
SPL-25-4	2/9/2011	17.5
SPL-25-5	2/9/2011	67.3

Table 4-12. Copper Concentrations in Soil Stockpile Samples		
Sample ID	Date	Copper Concentration (mg/Kg)
SPL-26-1	2/9/2011	58.0
SPL-26-2	2/9/2011	37.8
SPL-26-3	2/9/2011	85.7 J
SPL-26-4	2/9/2011	59.1
SPL-27-1	2/9/2011	19.8 J
SPL-27-2	2/9/2011	17.2
SPL-27-3	2/9/2011	21.7
SPL-27-4	2/9/2011	17.7
SPL-27-5	2/9/2011	19.4
SPL-28-1	2/9/2011	24.1
SPL-28-2	2/9/2011	25.3
SPL-28-3	2/9/2011	23.1
SPL-28-4	2/9/2011	20.1
SPL-29-1	2/4/2011	23.3
SPL-29-2	2/4/2011	22.8
SPL-29-3	2/4/2011	22.6
SPL-29-4	2/4/2011	12.8
SPL-29-5	2/4/2011	13.6
SPL-29-6	2/4/2011	58.7
SPL-29-7	2/4/2011	37.9
SPL-29-8	2/4/2011	18.3
SPL-30-1	2/3/2011	21.0 J
SPL-30-2	2/3/2011	24.6
SPL-30-3	2/3/2011	26.1
SPL-30-4	2/3/2011	27.6
SPL-30-5	2/3/2011	33.5
SPL-30-6	2/3/2011	31.2
SPL-30-7	2/3/2011	22.7
SPL-31-1	2/18/2011	29.1 J
SPL-31-2	2/18/2011	23.8
SPL-31-3	2/18/2011	10.6
SPL-31-4	2/18/2011	23.3
SPL-31-5	2/18/2011	5.5
SPL-31-6	2/18/2011	12.6
SPL-32-1	2/18/2011	59.9
SPL-32-2	2/18/2011	35.8

Table 4-12. Copper Concentrations in Soil Stockpile Samples		
Sample ID	Sample ID Date Copper Concentration (mg/Kg)	
SPL-32-3	2/18/2011	36.1
Interim Action Cleanup Level		NA
Interim Action Remediation Level		NA

J – Estimated concentration based on data validation.

Table 4-13. Nickel Concentrations in Soil Stockpile Samples		
Sample ID	Date	Nickel Concentration (mg/Kg)
SPL-1-1	11/2/2010	24.0
SPL-1-2	11/2/2010	35.8
SPL-1-3	11/2/2010	27.2
SPL-2-1	11/2/2010	26.6
SPL-2-2	11/2/2010	32.5
SPL-2-3	11/2/2010	23.5
SPL-3-1	11/3/2010	23.5
SPL-3-2	11/3/2010	43.1
SPL-3-3	11/3/2010	41.5
SPL-4-1	11/3/2010	30.7
SPL-4-2	11/3/2010	20.1
SPL-4-3	11/3/2010	31.4
SPL-5-1	11/3/2010	29.6
SPL-5-2	11/3/2010	28.8
SPL-5-3	11/3/2010	34.4
SPL-6-1	11/22/2010	26.5
SPL-6-2	11/22/2010	47.6
SPL-6-3	11/22/2010	35.1
SPL-6-4	11/22/2010	28.0
SPL-6-5	11/22/2010	12.1
SPL-7-1	11/22/2010	16.0 J
SPL-7-2	11/22/2010	5.7
SPL-7-3	11/22/2010	19.7
SPL-7-4	11/22/2010	20.5
SPL-7-5	11/22/2010	32.7
SPL-8-1	11/22/2010	28.2 J
SPL-8-2	11/22/2010	39.8
SPL-8-3	11/22/2010	31.6
SPL-9-1	11/22/2010	26.7
SPL-9-2	11/22/2010	22.9
SPL-9-3	11/22/2010	18.5
SPL-10-1	11/16/2010	28.8
SPL-10-2	11/16/2010	38.5
SPL-10-3	11/16/2010	38.5
SPL-11-1	11/16/2010	36.0
SPL-11-2	11/16/2010	26.6

Table 4-13. Nickel Concentrations in Soil Stockpile Samples		
Sample ID	Date	Nickel Concentration (mg/Kg)
SPL-11-3	11/16/2010	29.6
SPL-12-1	11/10/2010	23.6 J
SPL-12-2	11/10/2010	24.7
SPL-12-3	11/10/2010	27.5
SPL-12-4	11/10/2010	38.7
SPL-12-5	11/11/2010	44.0
SPL-12-6	11/11/2010	26.3
SPL-12-7	11/11/2010	30.4
SPL-13-1	12/3/2010	29.9
SPL-13-2	12/3/2010	27.7
SPL-13-3	12/3/2010	29.2
SPL-13-4	12/3/2010	35.1
SPL-13-5	12/3/2010	33.5
SPL-13-6	12/3/2010	41.2
SPL-13-7	12/3/2010	31.8 J
SPL-14-1	12/3/2010	15.6 J
SPL-14-2	12/3/2010	22.2
SPL-14-3	12/3/2010	25.1
SPL-14-4	12/3/2010	21.6
SPL-14-5	12/3/2010	26.2
SPL-15-1	12/10/2010	28.2
SPL-15-2	12/10/2010	20.9
SPL-15-3	12/10/2010	25.1
SPL-16-1	12/20/2010	49.9 J
SPL-16-2	12/20/2010	30.7
SPL-16-3	12/20/2010	25.0 J
SPL-16-4	12/20/2010	19.6
SPL-16-5	12/20/2010	29.8
SPL-16-6	12/20/2010	29.6
SPL-16-7	12/20/2010	24.5
SPL-17-1	1/5/2011	34.6
SPL-17-2	1/5/2011	26.9
SPL-17-3	1/5/2011	32.2
SPL-18-1	1/4/2011	28.1
SPL-18-2	1/4/2011	29.1
SPL-18-3	1/4/2011	33.2

Table 4-13. Nickel Concentrations in Soil Stockpile Samples		
Sample ID	Date	Nickel Concentration (mg/Kg)
SPL-18-4	1/4/2011	29.8
SPL-18-5	1/4/2011	33.6
SPL-18-6	1/4/2011	57.2
SPL-19-1	1/13/2011	8.3
SPL-19-2	1/13/2011	42.7
SPL-19-3	1/13/2011	43.4
SPL-19-4	1/13/2011	41.9
SPL-19-5	1/13/2011	67.2
SPL-19-6	1/13/2011	40.4 J
SPL-20-1	1/19/2011	32.0 J
SPL-20-2	1/19/2011	21.3
SPL-20-3	1/19/2011	31.8
SPL-20-4	1/19/2011	36.6
SPL-20-5	1/19/2011	23.2
SPL-20-6	1/19/2011	34.8
SPL-21-1	1/19/2011	27.1
SPL-21-2	1/19/2011	26.1
SPL-21-3	1/19/2011	34.5
SPL-21-4	1/19/2011	30.6
SPL-21-5	1/19/2011	29.9 J
SPL-21-6	1/19/2011	28.2
SPL-22-1	2/7/2011	23.0
SPL-22-2	2/7/2011	25.5
SPL-22-3	2/7/2011	24.7
SPL-23-1	2/7/2011	34.7
SPL-23-2	2/7/2011	24.3
SPL-23-3	2/7/2011	33.1
SPL-24-1	2/7/2011	27.0
SPL-24-2	2/7/2011	27.6
SPL-24-3	2/7/2011	27.4
SPL-24-4	2/7/2011	39.1
SPL-25-1	2/9/2011	33.8
SPL-25-2	2/9/2011	26.9
SPL-25-3	2/9/2011	23.0
SPL-25-4	2/9/2011	26.2
SPL-25-5	2/9/2011	32.4

Table 4-13	. Nickel Concentrations in So	il Stockpile Samples
Sample ID	Date	Nickel Concentration (mg/Kg)
SPL-26-1	2/9/2011	25.3
SPL-26-2	2/9/2011	23.9
SPL-26-3	2/9/2011	26.8
SPL-26-4	2/9/2011	24.1
SPL-27-1	2/9/2011	21.8 J
SPL-27-2	2/9/2011	20.3
SPL-27-3	2/9/2011	30.4
SPL-27-4	2/9/2011	24.1
SPL-27-5	2/9/2011	28.9
SPL-28-1	2/9/2011	24.2
SPL-28-2	2/9/2011	25.1
SPL-28-3	2/9/2011	21.7
SPL-28-4	2/9/2011	23.1
SPL-29-1	2/4/2011	36.1 J
SPL-29-2	2/4/2011	31.2
SPL-29-3	2/4/2011	32.0
SPL-29-4	2/4/2011	32.4
SPL-29-5	2/4/2011	26.3
SPL-29-6	2/4/2011	68.7
SPL-29-7	2/4/2011	61.0
SPL-29-8	2/4/2011	29.8
SPL-30-1	2/3/2011	22.5 J
SPL-30-2	2/3/2011	31.1
SPL-30-3	2/3/2011	31.5
SPL-30-4	2/3/2011	31.1
SPL-30-5	2/3/2011	32.7
SPL-30-6	2/3/2011	34.3
SPL-30-7	2/3/2011	27.0
SPL-31-1	2/18/2011	29.5
SPL-31-2	2/18/2011	26.5 J
SPL-31-3	2/18/2011	16.3
SPL-31-4	2/18/2011	36.4
SPL-31-5	2/18/2011	3.6
SPL-31-6	2/18/2011	9.1
SPL-32-1	2/18/2011	23.9
SPL-32-2	2/18/2011	34.3

Table 4-13. Nickel Concentrations in Soil Stockpile Samples		
Sample ID Date Nickel Concentration (mg/Kg		Nickel Concentration (mg/Kg)
SPL-32-3	2/18/2011	19.5
Interim Action Cleanup Level		NA
Interim Action Remediation Level		NA

J - Estimated concentration based on data validation.

Table 4-14. TPH-G Concentrations in Soil Stockpile Samples		
Sample Location	Date	TPH-G Concentration (mg/Kg)
SPL-1-1	11/2/2010	ND
SPL-1-2	11/2/2010	ND
SPL-1-3	11/2/2010	ND
SPL-2-1	11/2/2010	ND
SPL-2-2	11/2/2010	ND
SPL-2-3	11/2/2010	ND
SPL-3-1	11/3/2010	ND
SPL-3-2	11/3/2010	ND
SPL-3-3	11/3/2010	ND
SPL-4-1	11/3/2010	ND
SPL-4-2	11/3/2010	ND
SPL-4-3	11/3/2010	ND
SPL-5-1	11/3/2010	ND
SPL-5-2	11/3/2010	ND
SPL-5-3	11/3/2010	ND
SPL-6-1	11/22/2010	ND
SPL-6-1	12/10/2010	ND
SPL-6-2	11/22/2010	ND
SPL-6-2	12/10/2010	ND
SPL-6-3	11/22/2010	ND
SPL-6-3	12/10/2010	ND
SPL-6-4	11/22/2010	ND
SPL-6-4	12/10/2010	ND
SPL-6-5	11/22/2010	ND
SPL-6-5	12/10/2010	ND
SPL-7-1	11/22/2010	ND
SPL-7-2	11/22/2010	ND
SPL-7-3	11/22/2010	ND
SPL-7-4	11/22/2010	ND
SPL-7-5	11/22/2010	ND
SPL-8-1	11/22/2010	9.8
SPL-8-1	12/10/2010	25.1
SPL-8-2	11/22/2010	9.2
SPL-8-2	12/10/2010	ND
SPL-8-3	11/22/2010	17.0
SPL-9-1	11/22/2010	ND

Table 4-14. TPH-G Concentrations in Soil Stockpile Samples		
Sample Location	Date	TPH-G Concentration (mg/Kg)
SPL-9-1	12/10/2010	ND
SPL-9-2	11/22/2010	ND
SPL-9-2	12/10/2010	ND
SPL-9-3	11/22/2010	ND
SPL-9-3	12/10/2010	ND
SPL-10-1	11/16/2010	ND
SPL-10-2	11/16/2010	ND
SPL-10-3	11/16/2010	ND
SPL-11-1	11/16/2010	ND
SPL-11-2	11/16/2010	ND
SPL-11-3	11/16/2010	ND
SPL-12-1	11/10/2010	ND
SPL-12-2	11/10/2010	ND
SPL-12-3	11/10/2010	ND
SPL-12-4	11/10/2010	ND
SPL-12-5	11/11/2010	ND
SPL-12-6	11/11/2010	ND
SPL-12-7	11/11/2010	ND
SPL-13-1	12/3/2010	ND
SPL-13-2	12/3/2010	ND
SPL-13-3	12/3/2010	ND
SPL-13-4	12/3/2010	ND
SPL-13-5	12/3/2010	ND
SPL-13-6	12/3/2010	ND
SPL-13-7	12/3/2010	ND
SPL-14-1	12/3/2010	ND
SPL-14-2	12/3/2010	ND
SPL-14-3	12/3/2010	ND
SPL-14-4	12/3/2010	ND
SPL-14-5	12/3/2010	ND
SPL-15-1	12/10/2010	ND
SPL-15-2	12/10/2010	ND
SPL-15-3	12/10/2010	ND
SPL-16-1	12/20/2010	4.6
SPL-16-2	12/20/2010	ND
SPL-16-3	12/20/2010	ND

Table 4-1	4. TPH-G Concentrations in Soi	l Stockpile Samples
Sample Location	Date	TPH-G Concentration (mg/Kg)
SPL-16-4	12/20/2010	ND
SPL-16-5	12/20/2010	24.2
SPL-16-6	12/20/2010	ND
SPL-16-7	12/20/2010	ND
SPL-17-1	1/5/2011	ND
SPL-17-2	1/5/2011	ND
SPL-17-3	1/5/2011	ND
SPL-18-1	1/4/2011	ND
SPL-18-2	1/4/2011	ND
SPL-18-3	1/4/2011	ND
SPL-18-4	1/4/2011	ND
SPL-18-5	1/4/2011	ND
SPL-18-6	1/4/2011	ND
SPL-19-1	1/13/2011	ND
SPL-19-2	1/13/2011	ND
SPL-19-3	1/13/2011	ND
SPL-19-4	1/13/2011	ND
SPL-19-5	1/13/2011	ND
SPL-19-6	1/13/2011	ND
SPL-20-1	1/19/2011	ND
SPL-20-2	1/19/2011	ND
SPL-20-3	1/19/2011	ND
SPL-20-4	1/19/2011	ND
SPL-20-5	1/19/2011	ND
SPL-20-6	1/19/2011	ND
SPL-21-1	1/19/2011	ND
SPL-21-2	1/19/2011	ND
SPL-21-3	1/19/2011	ND
SPL-21-4	1/19/2011	ND
SPL-21-5	1/19/2011	ND
SPL-21-6	1/19/2011	ND
SPL-22-1	2/7/2011	ND
SPL-22-2	2/7/2011	ND
SPL-22-3	2/7/2011	ND
SPL-23-1	2/7/2011	19.5
SPL-23-2	2/7/2011	ND

Table 4-1	4. TPH-G Concentrations in S	oil Stockpile Samples
Sample Location	Date	TPH-G Concentration (mg/Kg)
SPL-23-3	2/7/2011	ND
SPL-24-1	2/7/2011	ND
SPL-24-2	2/7/2011	ND
SPL-24-3	2/7/2011	6.6
SPL-24-4	2/7/2011	76.5
SPL-25-1	2/9/2011	ND
SPL-25-2	2/9/2011	ND
SPL-25-3	2/9/2011	ND
SPL-25-4	2/9/2011	ND
SPL-25-5	2/9/2011	ND
SPL-26-1	2/9/2011	ND
SPL-26-2	2/9/2011	ND
SPL-26-3	2/9/2011	ND
SPL-26-4	2/9/2011	ND
SPL-27-1	2/9/2011	ND
SPL-27-2	2/9/2011	ND
SPL-27-3	2/9/2011	ND
SPL-27-4	2/9/2011	ND
SPL-27-5	2/9/2011	ND
SPL-28-1	2/9/2011	ND
SPL-28-2	2/9/2011	ND
SPL-28-3	2/9/2011	ND
SPL-28-4	2/9/2011	ND
SPL-29-1	2/4/2011	ND
SPL-29-2	2/4/2011	ND
SPL-29-3	2/4/2011	ND
SPL-29-4	2/4/2011	ND
SPL-29-5	2/4/2011	ND
SPL-29-6	2/4/2011	ND
SPL-29-7	2/4/2011	ND
SPL-29-8	2/4/2011	ND
SPL-30-1	2/3/2011	ND
SPL-30-2	2/3/2011	ND
SPL-30-3	2/3/2011	ND
SPL-30-4	2/3/2011	ND
SPL-30-5	2/3/2011	ND

Table 4-14. TPH-G Concentrations in Soil Stockpile Samples		
Sample Location	Date	TPH-G Concentration (mg/Kg)
SPL-30-6	2/3/2011	ND
SPL-30-7	2/3/2011	ND
SPL-31-1	2/18/2011	ND
SPL-31-2	2/18/2011	ND
SPL-31-3	2/18/2011	ND
SPL-31-4	2/18/2011	ND
SPL-31-5	2/18/2011	ND
SPL-31-6	2/18/2011	ND
SPL-32-1	2/18/2011	ND
SPL-32-2	2/18/2011	ND
SPL-32-3	2/18/2011	ND
Interim Action Cleanup Level		100
Interim Action Remediation Level		100

ND - Not detected

Table 4-15. Benzene Concentrations in Soil Stockpile Samples		
Sample ID	Date	Benzene Conc. (µg/Kg)
SPL-1-1	11/2/2010	ND
SPL-1-2	11/2/2010	ND
SPL-1-3	11/2/2010	ND
SPL-2-1	11/2/2010	ND
SPL-2-2	11/2/2010	ND
SPL-2-3	11/2/2010	ND
SPL-3-1	11/3/2010	ND
SPL-3-2	11/3/2010	ND
SPL-3-3	11/3/2010	ND
SPL-4-1	11/3/2010	ND
SPL-4-2	11/3/2010	ND
SPL-4-3	11/3/2010	ND
SPL-5-1	11/3/2010	ND
SPL-5-2	11/3/2010	ND
SPL-5-3	11/3/2010	ND
SPL-6-1	12/10/2010	ND
SPL-6-2	12/10/2010	ND
SPL-6-3	12/10/2010	ND
SPL-6-4	12/10/2010	ND
SPL-6-5	12/10/2010	ND
SPL-7-1	11/22/2010	ND
SPL-7-2	11/22/2010	ND
SPL-7-3	11/22/2010	ND
SPL-7-4	11/22/2010	ND
SPL-7-5	11/22/2010	ND
SPL-8-1	12/10/2010	ND
SPL-8-2	12/10/2010	ND
SPL-8-3	11/22/2010	ND
SPL-9-1	12/10/2010	ND
SPL-9-2	12/10/2010	ND
SPL-9-3	12/10/2010	ND
SPL-10-1	11/16/2010	ND
SPL-10-2	11/16/2010	ND
SPL-10-3	11/16/2010	ND
SPL-11-1	11/16/2010	ND
SPL-11-2	11/16/2010	ND

Table 4-15. Benzene Concentrations in Soil Stockpile Samples		
Sample ID	Date	Benzene Conc. (µg/Kg)
SPL-11-3	11/16/2010	ND
SPL-12-1	11/10/2010	ND
SPL-12-2	11/10/2010	ND
SPL-12-3	11/10/2010	ND
SPL-12-4	11/10/2010	ND
SPL-12-5	11/11/2010	ND
SPL-12-6	11/11/2010	ND
SPL-12-7	11/11/2010	ND
SPL-13-1	12/3/2010	ND
SPL-13-2	12/3/2010	ND
SPL-13-3	12/3/2010	ND
SPL-13-4	12/3/2010	ND
SPL-13-5	12/3/2010	ND
SPL-13-6	12/3/2010	ND
SPL-13-7	12/3/2010	ND
SPL-14-1	12/3/2010	ND
SPL-14-2	12/3/2010	ND
SPL-14-3	12/3/2010	ND
SPL-14-4	12/3/2010	ND
SPL-14-5	12/3/2010	ND
SPL-15-1	12/10/2010	ND
SPL-15-2	12/10/2010	ND
SPL-15-3	12/10/2010	ND
SPL-16-1	12/20/2010	ND
SPL-16-2	12/20/2010	ND
SPL-16-3	12/20/2010	ND
SPL-16-4	12/20/2010	ND
SPL-16-5	12/20/2010	ND
SPL-16-6	12/20/2010	ND
SPL-16-7	12/20/2010	ND
SPL-17-1	1/5/2011	ND
SPL-17-2	1/5/2011	ND
SPL-17-3	1/5/2011	ND
SPL-18-1	1/4/2011	ND
SPL-18-2	1/4/2011	ND
SPL-18-3	1/4/2011	ND

Table 4-15. Benzene Concentrations in Soil Stockpile Samples		
Sample ID	Date	Benzene Conc. (µg/Kg)
SPL-18-4	1/4/2011	ND
SPL-18-5	1/4/2011	ND
SPL-18-6	1/4/2011	ND
SPL-19-1	1/13/2011	ND
SPL-19-2	1/13/2011	ND
SPL-19-3	1/13/2011	ND
SPL-19-4	1/13/2011	ND
SPL-19-5	1/13/2011	ND
SPL-19-6	1/13/2011	ND
SPL-20-1	1/19/2011	ND
SPL-20-2	1/19/2011	ND
SPL-20-3	1/19/2011	ND
SPL-20-4	1/19/2011	ND
SPL-20-5	1/19/2011	ND
SPL-20-6	1/19/2011	ND
SPL-21-1	1/19/2011	ND
SPL-21-2	1/19/2011	ND
SPL-21-3	1/19/2011	ND
SPL-21-4	1/19/2011	ND
SPL-21-5	1/19/2011	ND
SPL-21-6	1/19/2011	ND
SPL-22-1	2/7/2011	ND
SPL-22-2	2/7/2011	ND
SPL-22-3	2/7/2011	ND
SPL-23-1	2/7/2011	ND
SPL-23-2	2/7/2011	ND
SPL-23-3	2/7/2011	ND
SPL-24-1	2/7/2011	ND
SPL-24-2	2/7/2011	ND
SPL-24-3	2/7/2011	ND
SPL-24-4	2/7/2011	ND
SPL-25-1	2/9/2011	ND
SPL-25-2	2/9/2011	ND
SPL-25-3	2/9/2011	ND
SPL-25-4	2/9/2011	ND
SPL-25-5	2/9/2011	ND

Table 4-15. Benzene Concentrations in Soil Stockpile Samples		
Sample ID	Date	Benzene Conc. (µg/Kg)
SPL-26-1	2/9/2011	ND
SPL-26-2	2/9/2011	ND
SPL-26-3	2/9/2011	ND
SPL-26-4	2/9/2011	ND
SPL-27-1	2/9/2011	ND
SPL-27-2	2/9/2011	ND
SPL-27-3	2/9/2011	ND
SPL-27-4	2/9/2011	ND
SPL-27-5	2/9/2011	ND
SPL-28-1	2/9/2011	ND
SPL-28-2	2/9/2011	ND
SPL-28-3	2/9/2011	ND
SPL-28-4	2/9/2011	ND
SPL-29-1	2/4/2011	ND
SPL-29-2	2/4/2011	ND
SPL-29-3	2/4/2011	ND
SPL-29-4	2/4/2011	ND
SPL-29-5	2/4/2011	ND
SPL-29-6	2/4/2011	ND
SPL-29-7	2/4/2011	ND
SPL-29-8	2/4/2011	ND
SPL-30-1	2/3/2011	ND
SPL-30-2	2/3/2011	ND
SPL-30-3	2/3/2011	ND
SPL-30-4	2/3/2011	ND
SPL-30-5	2/3/2011	ND
SPL-30-6	2/3/2011	ND
SPL-30-7	2/3/2011	ND
SPL-31-1	2/18/2011	ND
SPL-31-2	2/18/2011	ND
SPL-31-3	2/18/2011	ND
SPL-31-4	2/18/2011	ND
SPL-31-5	2/18/2011	ND
SPL-31-6	2/18/2011	ND
SPL-32-1	2/18/2011	ND
SPL-32-2	2/18/2011	ND

Table 4-15. Benzene Concentrations in Soil Stockpile Samples		
Sample ID Date Benzene Conc. (µg/Kg)		Benzene Conc. (µg/Kg)
SPL-32-3	2/18/2011	ND
Interim Action Cleanup Level		220
Interim Action Remediation Level		220

ND - Not detected

U – Laboratory detection limit shown. The COPC was not detected at this concentration.

Table 4-16. Ethylbenzene Concentrations in Soil Stockpile Samples		
Sample ID	Date	Ethylbenzene Conc. (µg/Kg)
SPL-1-1	11/2/2010	ND
SPL-1-2	11/2/2010	ND
SPL-1-3	11/2/2010	ND
SPL-2-1	11/2/2010	ND
SPL-2-2	11/2/2010	ND
SPL-2-3	11/2/2010	ND
SPL-3-1	11/3/2010	ND
SPL-3-2	11/3/2010	ND
SPL-3-3	11/3/2010	ND
SPL-4-1	11/3/2010	ND
SPL-4-2	11/3/2010	ND
SPL-4-3	11/3/2010	ND
SPL-5-1	11/3/2010	ND
SPL-5-2	11/3/2010	ND
SPL-5-3	11/3/2010	ND
SPL-6-1	12/10/2010	ND
SPL-6-2	12/10/2010	ND
SPL-6-3	12/10/2010	ND
SPL-6-4	12/10/2010	ND
SPL-6-5	12/10/2010	ND
SPL-7-1	11/22/2010	ND
SPL-7-2	11/22/2010	ND
SPL-7-3	11/22/2010	ND
SPL-7-4	11/22/2010	ND
SPL-7-5	11/22/2010	ND
SPL-8-1	12/10/2010	ND
SPL-8-2	12/10/2010	ND
SPL-8-3	11/22/2010	ND
SPL-9-1	12/10/2010	ND
SPL-9-2	12/10/2010	ND
SPL-9-3	12/10/2010	ND
SPL-10-1	11/16/2010	ND
SPL-10-2	11/16/2010	ND
SPL-10-3	11/16/2010	ND
SPL-11-1	11/16/2010	ND
SPL-11-2	11/16/2010	ND

Table 4-16. Ethylbenzene Concentrations in Soil Stockpile Samples		
Sample ID	Date	Ethylbenzene Conc. (µg/Kg)
SPL-11-3	11/16/2010	ND
SPL-12-1	11/10/2010	ND
SPL-12-2	11/10/2010	ND
SPL-12-3	11/10/2010	ND
SPL-12-4	11/10/2010	ND
SPL-12-5	11/11/2010	ND
SPL-12-6	11/11/2010	ND
SPL-12-7	11/11/2010	ND
SPL-13-1	12/3/2010	ND
SPL-13-2	12/3/2010	ND
SPL-13-3	12/3/2010	ND
SPL-13-4	12/3/2010	ND
SPL-13-5	12/3/2010	ND
SPL-13-6	12/3/2010	ND
SPL-13-7	12/3/2010	ND
SPL-14-1	12/3/2010	ND
SPL-14-2	12/3/2010	ND
SPL-14-3	12/3/2010	ND
SPL-14-4	12/3/2010	ND
SPL-14-5	12/3/2010	ND
SPL-15-1	12/10/2010	ND
SPL-15-2	12/10/2010	ND
SPL-15-3	12/10/2010	ND
SPL-16-1	12/20/2010	ND
SPL-16-2	12/20/2010	ND
SPL-16-3	12/20/2010	ND
SPL-16-4	12/20/2010	ND
SPL-16-5	12/20/2010	ND
SPL-16-6	12/20/2010	ND
SPL-16-7	12/20/2010	ND
SPL-17-1	1/5/2011	ND
SPL-17-2	1/5/2011	ND
SPL-17-3	1/5/2011	ND
SPL-18-1	1/4/2011	ND
SPL-18-2	1/4/2011	ND
SPL-18-3	1/4/2011	ND

Table 4-16. Ethylbenzene Concentrations in Soil Stockpile Samples		
Sample ID	Date	Ethylbenzene Conc. (µg/Kg)
SPL-18-4	1/4/2011	ND
SPL-18-5	1/4/2011	ND
SPL-18-6	1/4/2011	ND
SPL-19-1	1/13/2011	ND
SPL-19-2	1/13/2011	ND
SPL-19-3	1/13/2011	ND
SPL-19-4	1/13/2011	ND
SPL-19-5	1/13/2011	ND
SPL-19-6	1/13/2011	ND
SPL-20-1	1/19/2011	ND
SPL-20-2	1/19/2011	ND
SPL-20-3	1/19/2011	ND
SPL-20-4	1/19/2011	ND
SPL-20-5	1/19/2011	ND
SPL-20-6	1/19/2011	ND
SPL-21-1	1/19/2011	ND
SPL-21-2	1/19/2011	ND
SPL-21-3	1/19/2011	ND
SPL-21-4	1/19/2011	ND
SPL-21-5	1/19/2011	ND
SPL-21-6	1/19/2011	ND
SPL-22-1	2/7/2011	ND
SPL-22-2	2/7/2011	ND
SPL-22-3	2/7/2011	ND
SPL-23-1	2/7/2011	ND
SPL-23-2	2/7/2011	ND
SPL-23-3	2/7/2011	ND
SPL-24-1	2/7/2011	ND
SPL-24-2	2/7/2011	ND
SPL-24-3	2/7/2011	ND
SPL-24-4	2/7/2011	ND
SPL-25-1	2/9/2011	ND
SPL-25-2	2/9/2011	ND
SPL-25-3	2/9/2011	ND
SPL-25-4	2/9/2011	ND
SPL-25-5	2/9/2011	ND

Table 4-16. Ethylbenzene Concentrations in Soil Stockpile Samples		
Sample ID	Date	Ethylbenzene Conc. (µg/Kg)
SPL-26-1	2/9/2011	ND
SPL-26-2	2/9/2011	ND
SPL-26-3	2/9/2011	ND
SPL-26-4	2/9/2011	ND
SPL-27-1	2/9/2011	ND
SPL-27-2	2/9/2011	ND
SPL-27-3	2/9/2011	ND
SPL-27-4	2/9/2011	ND
SPL-27-5	2/9/2011	ND
SPL-28-1	2/9/2011	ND
SPL-28-2	2/9/2011	ND
SPL-28-3	2/9/2011	ND
SPL-28-4	2/9/2011	ND
SPL-29-1	2/4/2011	ND
SPL-29-2	2/4/2011	ND
SPL-29-3	2/4/2011	ND
SPL-29-4	2/4/2011	ND
SPL-29-5	2/4/2011	ND
SPL-29-6	2/4/2011	ND
SPL-29-7	2/4/2011	ND
SPL-29-8	2/4/2011	ND
SPL-30-1	2/3/2011	ND
SPL-30-2	2/3/2011	ND
SPL-30-3	2/3/2011	ND
SPL-30-4	2/3/2011	ND
SPL-30-5	2/3/2011	ND
SPL-30-6	2/3/2011	ND
SPL-30-7	2/3/2011	ND
SPL-31-1	2/18/2011	ND
SPL-31-2	2/18/2011	ND
SPL-31-3	2/18/2011	ND
SPL-31-4	2/18/2011	ND
SPL-31-5	2/18/2011	ND
SPL-31-6	2/18/2011	ND
SPL-32-1	2/18/2011	ND
SPL-32-2	2/18/2011	ND

Table 4-16. Ethylbenzene Concentrations in Soil Stockpile Samples		
Sample ID Date Ethylbenzene Conc. (µg/Kg)		
SPL-32-3	2/18/2011	ND
Interim Action Cleanup Level		43,000
Interim Action Remediation Level		43,000

ND - Not detected

Table 4-17. Toluene Concentrations in Soil Stockpile Samples		
Sample ID	Date	Toluene Concentration (µg/Kg)
SPL-1-1	11/2/2010	ND
SPL-1-2	11/2/2010	ND
SPL-1-3	11/2/2010	ND
SPL-2-1	11/2/2010	ND
SPL-2-2	11/2/2010	ND
SPL-2-3	11/2/2010	ND
SPL-3-1	11/3/2010	ND
SPL-3-2	11/3/2010	ND
SPL-3-3	11/3/2010	ND
SPL-4-1	11/3/2010	ND
SPL-4-2	11/3/2010	ND
SPL-4-3	11/3/2010	ND
SPL-5-1	11/3/2010	ND
SPL-5-2	11/3/2010	ND
SPL-5-3	11/3/2010	ND
SPL-6-1	12/10/2010	ND
SPL-6-2	12/10/2010	ND
SPL-6-3	12/10/2010	ND
SPL-6-4	12/10/2010	ND
SPL-6-5	12/10/2010	ND
SPL-7-1	11/22/2010	ND
SPL-7-2	11/22/2010	ND
SPL-7-3	11/22/2010	ND
SPL-7-4	11/22/2010	ND
SPL-7-5	11/22/2010	ND
SPL-8-1	12/10/2010	ND
SPL-8-2	12/10/2010	ND
SPL-8-3	11/22/2010	ND
SPL-9-1	12/10/2010	ND
SPL-9-2	12/10/2010	ND
SPL-9-3	12/10/2010	ND
SPL-10-1	11/16/2010	ND
SPL-10-2	11/16/2010	ND
SPL-10-3	11/16/2010	ND
SPL-11-1	11/16/2010	ND
SPL-11-2	11/16/2010	ND

0 1 15		
Sample ID	Date	Toluene Concentration (µg/Kg)
SPL-11-3	11/16/2010	ND
SPL-12-1	11/10/2010	ND
SPL-12-2	11/10/2010	ND
SPL-12-3	11/10/2010	ND
SPL-12-4	11/10/2010	ND
SPL-12-5	11/11/2010	ND
SPL-12-6	11/11/2010	ND
SPL-12-7	11/11/2010	ND
SPL-13-1	12/3/2010	ND
SPL-13-2	12/3/2010	ND
SPL-13-3	12/3/2010	ND
SPL-13-4	12/3/2010	ND
SPL-13-5	12/3/2010	ND
SPL-13-6	12/3/2010	ND
SPL-13-7	12/3/2010	ND
SPL-14-1	12/3/2010	ND
SPL-14-2	12/3/2010	ND
SPL-14-3	12/3/2010	ND
SPL-14-4	12/3/2010	ND
SPL-14-5	12/3/2010	ND
SPL-15-1	12/10/2010	ND
SPL-15-2	12/10/2010	ND
SPL-15-3	12/10/2010	ND
SPL-16-1	12/20/2010	ND
SPL-16-2	12/20/2010	ND
SPL-16-3	12/20/2010	ND
SPL-16-4	12/20/2010	ND
SPL-16-5	12/20/2010	ND
SPL-16-6	12/20/2010	ND
SPL-16-7	12/20/2010	ND
SPL-17-1	1/5/2011	ND
SPL-17-2	1/5/2011	ND
SPL-17-3	1/5/2011	ND
SPL-18-1	1/4/2011	ND
SPL-18-2	1/4/2011	ND
SPL-18-3	1/4/2011	ND

Table 4-17	. Toluene Concentrations in Sc	oil Stockpile Samples
Sample ID	Date	Toluene Concentration (µg/Kg)
SPL-18-4	1/4/2011	ND
SPL-18-5	1/4/2011	ND
SPL-18-6	1/4/2011	ND
SPL-19-1	1/13/2011	ND
SPL-19-2	1/13/2011	ND
SPL-19-3	1/13/2011	ND
SPL-19-4	1/13/2011	ND
SPL-19-5	1/13/2011	ND
SPL-19-6	1/13/2011	ND
SPL-20-1	1/19/2011	ND
SPL-20-2	1/19/2011	ND
SPL-20-3	1/19/2011	ND
SPL-20-4	1/19/2011	ND
SPL-20-5	1/19/2011	ND
SPL-20-6	1/19/2011	ND
SPL-21-1	1/19/2011	ND
SPL-21-2	1/19/2011	ND
SPL-21-3	1/19/2011	ND
SPL-21-4	1/19/2011	ND
SPL-21-5	1/19/2011	ND
SPL-21-6	1/19/2011	ND
SPL-22-1	2/7/2011	ND
SPL-22-2	2/7/2011	ND
SPL-22-3	2/7/2011	ND
SPL-23-1	2/7/2011	ND
SPL-23-2	2/7/2011	ND
SPL-23-3	2/7/2011	ND
SPL-24-1	2/7/2011	ND
SPL-24-2	2/7/2011	ND
SPL-24-3	2/7/2011	ND
SPL-24-4	2/7/2011	ND
SPL-25-1	2/9/2011	ND
SPL-25-2	2/9/2011	ND
SPL-25-3	2/9/2011	ND
SPL-25-4	2/9/2011	ND
SPL-25-5	2/9/2011	ND

Table 4-17. Toluene Concentrations in Soil Stockpile Samples		
Sample ID	Date	Toluene Concentration (µg/Kg)
SPL-26-1	2/9/2011	ND
SPL-26-2	2/9/2011	ND
SPL-26-3	2/9/2011	ND
SPL-26-4	2/9/2011	ND
SPL-27-1	2/9/2011	ND
SPL-27-2	2/9/2011	ND
SPL-27-3	2/9/2011	ND
SPL-27-4	2/9/2011	ND
SPL-27-5	2/9/2011	ND
SPL-28-1	2/9/2011	ND
SPL-28-2	2/9/2011	ND
SPL-28-3	2/9/2011	ND
SPL-28-4	2/9/2011	ND
SPL-29-1	2/4/2011	ND
SPL-29-2	2/4/2011	ND
SPL-29-3	2/4/2011	ND
SPL-29-4	2/4/2011	ND
SPL-29-5	2/4/2011	ND
SPL-29-6	2/4/2011	ND
SPL-29-7	2/4/2011	ND
SPL-29-8	2/4/2011	ND
SPL-30-1	2/3/2011	ND
SPL-30-2	2/3/2011	ND
SPL-30-3	2/3/2011	ND
SPL-30-4	2/3/2011	ND
SPL-30-5	2/3/2011	ND
SPL-30-6	2/3/2011	ND
SPL-30-7	2/3/2011	ND
SPL-31-1	2/18/2011	ND
SPL-31-2	2/18/2011	ND
SPL-31-3	2/18/2011	ND
SPL-31-4	2/18/2011	ND
SPL-31-5	2/18/2011	ND
SPL-31-6	2/18/2011	ND
SPL-32-1	2/18/2011	ND
SPL-32-2	2/18/2011	ND

Table 4-17. Toluene Concentrations in Soil Stockpile Samples		
Sample ID Date Toluene Concentration (µg/Kg)		
SPL-32-3	2/18/2011	ND
Interim Action Cleanup Level		240,000
Interim Action Remediation Level		240,000

ND - Not detected

Table 4-18. T	otal Xylenes Concentrations in	Soil Stockpile Samples
Sample ID	Date	Total Xylenes Conc. (µg/Kg)
SPL-1-1	11/2/2010	ND
SPL-1-2	11/2/2010	ND
SPL-1-3	11/2/2010	ND
SPL-2-1	11/2/2010	ND
SPL-2-2	11/2/2010	ND
SPL-2-3	11/2/2010	ND
SPL-3-1	11/3/2010	ND
SPL-3-2	11/3/2010	ND
SPL-3-3	11/3/2010	ND
SPL-4-1	11/3/2010	ND
SPL-4-2	11/3/2010	ND
SPL-4-3	11/3/2010	ND
SPL-5-1	11/3/2010	ND
SPL-5-2	11/3/2010	ND
SPL-5-3	11/3/2010	ND
SPL-6-1	12/10/2010	ND
SPL-6-2	12/10/2010	ND
SPL-6-3	12/10/2010	ND
SPL-6-4	12/10/2010	ND
SPL-6-5	12/10/2010	ND
SPL-7-1	11/22/2010	ND
SPL-7-2	11/22/2010	ND
SPL-7-3	11/22/2010	ND
SPL-7-4	11/22/2010	ND
SPL-7-5	11/22/2010	ND
SPL-8-1	12/10/2010	ND
SPL-8-2	12/10/2010	ND
SPL-8-3	11/22/2010	ND
SPL-9-1	12/10/2010	ND
SPL-9-2	12/10/2010	ND
SPL-9-3	12/10/2010	ND
SPL-10-1	11/16/2010	ND
SPL-10-2	11/16/2010	ND
SPL-10-3	11/16/2010	ND
SPL-11-1	11/16/2010	ND
SPL-11-2	11/16/2010	ND

Table 4-18. To	otal Xylenes Concentrations in	Soil Stockpile Samples
Sample ID	Date	Total Xylenes Conc. (µg/Kg)
SPL-11-3	11/16/2010	ND
SPL-12-1	11/10/2010	ND
SPL-12-2	11/10/2010	ND
SPL-12-3	11/10/2010	ND
SPL-12-4	11/10/2010	ND
SPL-12-5	11/11/2010	ND
SPL-12-6	11/11/2010	ND
SPL-12-7	11/11/2010	ND
SPL-13-1	12/3/2010	ND
SPL-13-2	12/3/2010	ND
SPL-13-3	12/3/2010	ND
SPL-13-4	12/3/2010	ND
SPL-13-5	12/3/2010	ND
SPL-13-6	12/3/2010	ND
SPL-13-7	12/3/2010	ND
SPL-14-1	12/3/2010	ND
SPL-14-2	12/3/2010	ND
SPL-14-3	12/3/2010	ND
SPL-14-4	12/3/2010	ND
SPL-14-5	12/3/2010	ND
SPL-15-1	12/10/2010	ND
SPL-15-2	12/10/2010	ND
SPL-15-3	12/10/2010	ND
SPL-16-1	12/20/2010	ND
SPL-16-2	12/20/2010	ND
SPL-16-3	12/20/2010	ND
SPL-16-4	12/20/2010	ND
SPL-16-5	12/20/2010	ND
SPL-16-6	12/20/2010	ND
SPL-16-7	12/20/2010	ND
SPL-17-1	1/5/2011	ND
SPL-17-2	1/5/2011	ND
SPL-17-3	1/5/2011	ND
SPL-18-1	1/4/2011	ND
SPL-18-2	1/4/2011	ND
SPL-18-3	1/4/2011	ND

Table 4-18. T	otal Xylenes Concentrations in	Soil Stockpile Samples
Sample ID	Date	Total Xylenes Conc. (µg/Kg)
SPL-18-4	1/4/2011	ND
SPL-18-5	1/4/2011	ND
SPL-18-6	1/4/2011	ND
SPL-19-1	1/13/2011	ND
SPL-19-2	1/13/2011	ND
SPL-19-3	1/13/2011	ND
SPL-19-4	1/13/2011	ND
SPL-19-5	1/13/2011	ND
SPL-19-6	1/13/2011	ND
SPL-20-1	1/19/2011	ND
SPL-20-2	1/19/2011	ND
SPL-20-3	1/19/2011	ND
SPL-20-4	1/19/2011	ND
SPL-20-5	1/19/2011	ND
SPL-20-6	1/19/2011	ND
SPL-21-1	1/19/2011	ND
SPL-21-2	1/19/2011	ND
SPL-21-3	1/19/2011	ND
SPL-21-4	1/19/2011	ND
SPL-21-5	1/19/2011	ND
SPL-21-6	1/19/2011	ND
SPL-22-1	2/7/2011	ND
SPL-22-2	2/7/2011	ND
SPL-22-3	2/7/2011	ND
SPL-23-1	2/7/2011	ND
SPL-23-2	2/7/2011	ND
SPL-23-3	2/7/2011	ND
SPL-24-1	2/7/2011	ND
SPL-24-2	2/7/2011	ND
SPL-24-3	2/7/2011	ND
SPL-24-4	2/7/2011	ND
SPL-25-1	2/9/2011	ND
SPL-25-2	2/9/2011	ND
SPL-25-3	2/9/2011	ND
SPL-25-4	2/9/2011	ND
SPL-25-5	2/9/2011	ND

Table 4-18. T	otal Xylenes Concentrations in	Soil Stockpile Samples
Sample ID	Date	Total Xylenes Conc. (µg/Kg)
SPL-26-1	2/9/2011	ND
SPL-26-2	2/9/2011	ND
SPL-26-3	2/9/2011	ND
SPL-26-4	2/9/2011	ND
SPL-27-1	2/9/2011	ND
SPL-27-2	2/9/2011	ND
SPL-27-3	2/9/2011	ND
SPL-27-4	2/9/2011	ND
SPL-27-5	2/9/2011	ND
SPL-28-1	2/9/2011	ND
SPL-28-2	2/9/2011	ND
SPL-28-3	2/9/2011	ND
SPL-28-4	2/9/2011	ND
SPL-29-1	2/4/2011	ND
SPL-29-2	2/4/2011	ND
SPL-29-3	2/4/2011	ND
SPL-29-4	2/4/2011	ND
SPL-29-5	2/4/2011	ND
SPL-29-6	2/4/2011	ND
SPL-29-7	2/4/2011	ND
SPL-29-8	2/4/2011	ND
SPL-30-1	2/3/2011	ND
SPL-30-2	2/3/2011	ND
SPL-30-3	2/3/2011	ND
SPL-30-4	2/3/2011	ND
SPL-30-5	2/3/2011	ND
SPL-30-6	2/3/2011	ND
SPL-30-7	2/3/2011	ND
SPL-31-1	2/18/2011	ND
SPL-31-2	2/18/2011	ND
SPL-31-3	2/18/2011	ND
SPL-31-4	2/18/2011	ND
SPL-31-5	2/18/2011	ND
SPL-31-6	2/18/2011	ND
SPL-32-1	2/18/2011	ND
SPL-32-2	2/18/2011	ND

Table 4-18. Total Xylenes Concentrations in Soil Stockpile Samples		
Sample ID Date Total Xylenes Conc. (µg/Kg)		
SPL-32-3	2/18/2011	ND
Interim Action Cleanup Level		23,000
Interim Action Remediation Level		23,000

ND - Not detected

Table 4-19. TPH-D Concentrations in Soil Stockpile Samples		
Sample Location	Date	TPH-D Concentration (mg/Kg)
SPL-1-1	11/2/2010	ND
SPL-1-2	11/2/2010	ND
SPL-1-3	11/2/2010	ND
SPL-2-1	11/2/2010	ND
SPL-2-2	11/2/2010	ND
SPL-2-3	11/2/2010	63.5
SPL-3-1	11/3/2010	132
SPL-3-2	11/3/2010	ND
SPL-3-3	11/3/2010	36.4
SPL-4-1	11/3/2010	ND
SPL-4-2	11/3/2010	33.6
SPL-4-3	11/3/2010	ND
SPL-5-1	11/3/2010	ND
SPL-5-2	11/3/2010	ND
SPL-5-3	11/3/2010	ND
SPL-6-1	11/22/2010	ND
SPL-6-2	11/22/2010	ND
SPL-6-3	11/22/2010	ND
SPL-6-4	11/22/2010	ND
SPL-6-5	11/22/2010	68.8
SPL-7-1	11/22/2010	ND
SPL-7-2	11/22/2010	86.1
SPL-7-3	11/22/2010	66.4
SPL-7-4	11/22/2010	ND
SPL-7-5	11/22/2010	ND
SPL-8-1	11/22/2010	132
SPL-8-2	11/22/2010	ND
SPL-8-3	11/22/2010	538
SPL-9-1	11/22/2010	ND
SPL-9-2	11/22/2010	ND
SPL-9-3	11/22/2010	89.0
SPL-10-1	11/16/2010	63.6
SPL-10-2	11/16/2010	98.0
SPL-10-3	11/16/2010	42.3
SPL-11-1	11/16/2010	ND
SPL-11-2	11/16/2010	31.2

Table 4-19. TPH-D Concentrations in Soil Stockpile Samples		
Sample Location	Date	TPH-D Concentration (mg/Kg)
SPL-11-3	11/16/2010	ND
SPL-12-1	11/10/2010	ND
SPL-12-2	11/10/2010	ND
SPL-12-3	11/10/2010	ND
SPL-12-4	11/10/2010	ND
SPL-12-5	11/11/2010	ND
SPL-12-6	11/11/2010	ND
SPL-12-7	11/11/2010	ND
SPL-13-1	12/3/2010	ND
SPL-13-2	12/3/2010	ND
SPL-13-3	12/3/2010	ND
SPL-13-4	12/3/2010	ND
SPL-13-5	12/3/2010	ND
SPL-13-6	12/3/2010	ND
SPL-13-7	12/3/2010	ND
SPL-14-1	12/3/2010	ND
SPL-14-2	12/3/2010	ND
SPL-14-3	12/3/2010	ND
SPL-14-4	12/3/2010	52.2
SPL-14-5	12/3/2010	37.4
SPL-15-1	12/10/2010	26.0
SPL-15-2	12/10/2010	ND
SPL-15-3	12/10/2010	29.5
SPL-16-1	12/20/2010	41.5 J
SPL-16-2	12/20/2010	19.8
SPL-16-3	12/20/2010	24.4
SPL-16-4	12/20/2010	ND
SPL-16-5	12/20/2010	48.4
SPL-16-6	12/20/2010	20.7
SPL-16-7	12/20/2010	20.1
SPL-17-1	1/5/2011	20.1
SPL-17-2	1/5/2011	25.7
SPL-17-3	1/5/2011	ND
SPL-18-1	1/4/2011	ND
SPL-18-2	1/4/2011	ND
SPL-18-3	1/4/2011	ND

Table 4-1 9). TPH-D Concentrations in S	oil Stockpile Samples
Sample Location	Date	TPH-D Concentration (mg/Kg)
SPL-18-4	1/4/2011	28.1
SPL-18-5	1/4/2011	56.6
SPL-18-6	1/4/2011	ND
SPL-19-1	1/13/2011	126
SPL-19-2	1/13/2011	ND
SPL-19-3	1/13/2011	31.2
SPL-19-4	1/13/2011	34.3
SPL-19-5	1/13/2011	ND
SPL-19-6	1/13/2011	ND
SPL-20-1	1/19/2011	24.2
SPL-20-2	1/19/2011	43.6
SPL-20-3	1/19/2011	ND
SPL-20-4	1/19/2011	ND
SPL-20-5	1/19/2011	24.4
SPL-20-6	1/19/2011	ND
SPL-21-1	1/19/2011	ND
SPL-21-2	1/19/2011	ND
SPL-21-3	1/19/2011	ND
SPL-21-4	1/19/2011	ND
SPL-21-5	1/19/2011	ND
SPL-21-6	1/19/2011	ND
SPL-22-1	2/7/2011	ND
SPL-22-2	2/7/2011	ND
SPL-22-3	2/7/2011	ND
SPL-23-1	2/7/2011	36.7
SPL-23-2	2/7/2011	ND
SPL-23-3	2/7/2011	32.1
SPL-24-1	2/7/2011	29.3
SPL-24-2	2/7/2011	40.5 J
SPL-24-3	2/7/2011	26.6
SPL-24-4	2/7/2011	25.3
SPL-25-1	2/9/2011	ND
SPL-25-2	2/9/2011	32.7
SPL-25-3	2/9/2011	ND
SPL-25-4	2/9/2011	ND
SPL-25-5	2/9/2011	40.1

Table 4-19. TPH-D Concentrations in Soil Stockpile Samples		
Sample Location	Date	TPH-D Concentration (mg/Kg)
SPL-26-1	2/9/2011	254
SPL-26-2	2/9/2011	189
SPL-26-3	2/9/2011	218
SPL-26-4	2/9/2011	250
SPL-27-1	2/9/2011	ND
SPL-27-2	2/9/2011	35.0
SPL-27-3	2/9/2011	23.9
SPL-27-4	2/9/2011	24.0
SPL-27-5	2/9/2011	ND
SPL-28-1	2/9/2011	ND
SPL-28-2	2/9/2011	ND
SPL-28-3	2/9/2011	27.1
SPL-28-4	2/9/2011	ND
SPL-29-1	2/4/2011	24.6
SPL-29-2	2/4/2011	28.7
SPL-29-3	2/4/2011	ND
SPL-29-4	2/4/2011	ND
SPL-29-5	2/4/2011	ND
SPL-29-6	2/4/2011	ND
SPL-29-7	2/4/2011	ND
SPL-29-8	2/4/2011	ND
SPL-30-1	2/3/2011	25.6
SPL-30-2	2/3/2011	51.2
SPL-30-3	2/3/2011	51.1
SPL-30-4	2/3/2011	35.9
SPL-30-5	2/3/2011	47.5
SPL-30-6	2/3/2011	21.6
SPL-30-7	2/3/2011	ND
SPL-31-1	2/18/2011	ND
SPL-31-2	2/18/2011	ND
SPL-31-3	2/18/2011	61.7
SPL-31-4	2/18/2011	89.9
SPL-31-5	2/18/2011	ND
SPL-31-6	2/18/2011	ND
SPL-32-1	2/18/2011	30.0
SPL-32-2	2/18/2011	526

Table 4-19. TPH-D Concentrations in Soil Stockpile Samples		
Sample Location Date TPH-D Concentration (mg/Kg)		
SPL-32-3	2/18/2011	35.6
Interim Action Cleanup Level		2,000
Interim Action Remediation Level		2,000

J – Estimated concentration based on data validation.

ND - Not detected

Table 4-20. TPH-HO Concentrations in Soil Stockpile Samples						
Sample Location	Date	TPH-HO Concentration (mg/Kg)				
SPL-1-1	11/2/2010	ND				
SPL-1-2	11/2/2010	96.2				
SPL-1-3	11/2/2010	ND				
SPL-2-1	11/2/2010	ND				
SPL-2-2	11/2/2010	ND				
SPL-2-3	11/2/2010	151				
SPL-3-1	11/3/2010	358				
SPL-3-2	11/3/2010	ND				
SPL-3-3	11/3/2010	ND				
SPL-4-1	11/3/2010	ND				
SPL-4-2	11/3/2010	253 J				
SPL-4-3	11/3/2010	150				
SPL-5-1	11/3/2010	ND				
SPL-5-2	11/3/2010	ND				
SPL-5-3	11/3/2010	ND				
SPL-6-1	11/22/2010	ND				
SPL-6-2	11/22/2010	ND				
SPL-6-3	11/22/2010	ND				
SPL-6-4	11/22/2010	ND				
SPL-6-5	11/22/2010	ND				
SPL-7-1	11/22/2010	ND				
SPL-7-2	11/22/2010	ND				
SPL-7-3	11/22/2010	ND				
SPL-7-4	11/22/2010	ND				
SPL-7-5	11/22/2010	ND				
SPL-8-1	11/22/2010	ND				
SPL-8-2	11/22/2010	ND				
SPL-8-3	11/22/2010	ND				
SPL-9-1	11/22/2010	ND				
SPL-9-2	11/22/2010	ND				
SPL-9-3	11/22/2010	611				
SPL-10-1	11/16/2010	478				
SPL-10-2	11/16/2010	444				
SPL-10-3	11/16/2010	289				
SPL-11-1	11/16/2010	ND				
SPL-11-2	11/16/2010	428				

Table 4-20.	FPH-HO Concentrations in S	Soil Stockpile Samples
Sample Location	Date	TPH-HO Concentration (mg/Kg)
SPL-11-3	11/16/2010	ND
SPL-12-1	11/10/2010	ND
SPL-12-2	11/10/2010	ND
SPL-12-3	11/10/2010	ND
SPL-12-4	11/10/2010	205
SPL-12-5	11/11/2010	ND
SPL-12-6	11/11/2010	ND
SPL-12-7	11/11/2010	ND
SPL-13-1	12/3/2010	ND
SPL-13-2	12/3/2010	ND
SPL-13-3	12/3/2010	ND
SPL-13-4	12/3/2010	ND
SPL-13-5	12/3/2010	ND
SPL-13-6	12/3/2010	125
SPL-13-7	12/3/2010	128
SPL-14-1	12/3/2010	ND
SPL-14-2	12/3/2010	ND
SPL-14-3	12/3/2010	103
SPL-14-4	12/3/2010	165
SPL-14-5	12/3/2010	138
SPL-15-1	12/10/2010	97.3
SPL-15-2	12/10/2010	ND
SPL-15-3	12/10/2010	ND
SPL-16-1	12/20/2010	ND
SPL-16-2	12/20/2010	ND
SPL-16-3	12/20/2010	98.6
SPL-16-4	12/20/2010	ND
SPL-16-5	12/20/2010	92.0
SPL-16-6	12/20/2010	ND
SPL-16-7	12/20/2010	ND
SPL-17-1	1/5/2011	193
SPL-17-2	1/5/2011	221
SPL-17-3	1/5/2011	139
SPL-18-1	1/4/2011	ND
SPL-18-2	1/4/2011	ND
SPL-18-3	1/4/2011	ND

Table 4-20. TPH-HO Concentrations in Soil Stockpile Samples						
Sample Location	Date	TPH-HO Concentration (mg/Kg)				
SPL-18-4	1/4/2011	237				
SPL-18-5	1/4/2011	520				
SPL-18-6	1/4/2011	ND				
SPL-19-1	1/13/2011	ND				
SPL-19-2	1/13/2011	ND				
SPL-19-3	1/13/2011	ND				
SPL-19-4	1/13/2011	ND				
SPL-19-5	1/13/2011	ND				
SPL-19-6	1/13/2011	ND				
SPL-20-1	1/19/2011	90.0				
SPL-20-2	1/19/2011	191				
SPL-20-3	1/19/2011	ND				
SPL-20-4	1/19/2011	ND				
SPL-20-5	1/19/2011	ND				
SPL-20-6	1/19/2011	ND				
SPL-21-1	1/19/2011	ND				
SPL-21-2	1/19/2011	97.1				
SPL-21-3	1/19/2011	ND				
SPL-21-4	1/19/2011	232				
SPL-21-5	1/19/2011	ND				
SPL-21-6	1/19/2011	ND				
SPL-22-1	2/7/2011	ND				
SPL-22-2	2/7/2011	ND				
SPL-22-3	2/7/2011	ND				
SPL-23-1	2/7/2011	ND				
SPL-23-2	2/7/2011	ND				
SPL-23-3	2/7/2011	135				
SPL-24-1	2/7/2011	116				
SPL-24-2	2/7/2011	198 J				
SPL-24-3	2/7/2011	133				
SPL-24-4	2/7/2011	115				
SPL-25-1	2/9/2011	ND				
SPL-25-2	2/9/2011	369				
SPL-25-3	2/9/2011	111				
SPL-25-4	2/9/2011	ND				
SPL-25-5	2/9/2011	430				

Table 4-20. TPH-HO Concentrations in Soil Stockpile Samples						
Sample Location	Date	TPH-HO Concentration (mg/Kg)				
SPL-26-1	2/9/2011	2860				
SPL-26-2	2/9/2011	2170				
SPL-26-3	2/9/2011	2270				
SPL-26-4	2/9/2011	3050				
SPL-27-1	2/9/2011	ND				
SPL-27-2	2/9/2011	212				
SPL-27-3	2/9/2011	161				
SPL-27-4	2/9/2011	91.7				
SPL-27-5	2/9/2011	ND				
SPL-28-1	2/9/2011	136				
SPL-28-2	2/9/2011	119				
SPL-28-3	2/9/2011	149				
SPL-28-4	2/9/2011	ND				
SPL-29-1	2/4/2011	119				
SPL-29-2	2/4/2011	131				
SPL-29-3	2/4/2011	ND				
SPL-29-4	2/4/2011	ND				
SPL-29-5	2/4/2011	ND				
SPL-29-6	2/4/2011	ND				
SPL-29-7	2/4/2011	ND				
SPL-29-8	2/4/2011	ND				
SPL-30-1	2/3/2011	92.0				
SPL-30-2	2/3/2011	415				
SPL-30-3	2/3/2011	213				
SPL-30-4	2/3/2011	293				
SPL-30-5	2/3/2011	470				
SPL-30-6	2/3/2011	174				
SPL-30-7	2/3/2011	ND				
SPL-31-1	2/18/2011	ND				
SPL-31-2	2/18/2011	ND				
SPL-31-3	2/18/2011	270				
SPL-31-4	2/18/2011	122				
SPL-31-5	2/18/2011	ND				
SPL-31-6	2/18/2011	418				
SPL-32-1	2/18/2011	196				
SPL-32-2	2/18/2011	2910				

Table 4-20. TPH-HO Concentrations in Soil Stockpile Samples					
Sample Location	TPH-HO Concentration (mg/Kg)				
SPL-32-3	3 2/18/2011 250				
Interim Action Cleanup Level	2,000				
Interim Action Remediation Level		2,000			

Screening level exceedances in bold.

J – Estimated concentration based on data validation.

ND - Not detected

	Table 4-21. To	tal Naphthalenes	Concentrations i	n Soil Stockpile S	Samples			
			Concentration (µg/Kg)					
Sample ID	Date	1-Methyl naphthalene	2-Methyl naphthalene	Naphthalene	Total Naphthalene ^(a)			
SPL-1-1	11/2/2010	7.5	14.8	20.5	42.8			
SPL-1-2	11/2/2010	10.3	13.5	22.9	46.7			
SPL-1-3	11/2/2010	8.2	15.5	21.1	44.8			
SPL-2-1	11/2/2010	91.7	133	240	464.7			
SPL-2-2	11/2/2010	44.5	49.0	104	197.5			
SPL-2-3	11/2/2010	138	179	311	628			
SPL-3-1	11/3/2010	80.4	168	512	760			
SPL-3-2	11/3/2010	17.1	23.7	69.0	110			
SPL-3-3	11/3/2010	12.6	18.1	51.9	82.6			
SPL-4-1	11/3/2010	ND	ND	14.3	14.3			
SPL-4-2	11/3/2010	ND	ND	ND	ND			
SPL-4-3	11/3/2010	ND	ND	ND	ND			
SPL-5-1	11/3/2010	ND	ND	ND	ND			
SPL-5-2	11/3/2010	ND	ND ND		ND			
SPL-5-3	11/3/2010	ND	ND	ND	ND			
SPL-6-1	11/22/2010	51.0	73.8	328	453			
SPL-6-2	11/22/2010	ND	13.0	80.4	93.4			
SPL-6-3	11/22/2010	18.6	43.4	50.7	113			
SPL-6-4	11/22/2010	18.0	32.2	95.0	145			
SPL-6-5	11/22/2010	55.2	115	520	690			
SPL-7-1	11/22/2010	ND	ND	ND	ND			
SPL-7-2	11/22/2010	63.9	129	271	464			
SPL-7-3	11/22/2010	71.0	138	361	570			
SPL-7-4	11/22/2010	93.1	182	764	1039			
SPL-7-5	11/22/2010	23.0	39.0	159	221			
SPL-8-1	11/22/2010	21.0	37.3	41.4	99.7			
SPL-8-2	11/22/2010	ND	10.4	10.9	21.3			
SPL-8-3	11/22/2010	13.9	16.9	14.6	45.4			
SPL-9-1	11/22/2010	7.2	9.2	13.5	29.9			
SPL-9-2	11/22/2010	ND	9.3	14.4	23.7			
SPL-9-3	11/22/2010	ND	ND	11.0	11			

Table 4-21. Total Naphthalenes Concentrations in Soil Stockpile Samples								
			Conc	entration (µg/Kg)				
Sample ID	Date	1-Methyl naphthalene	2-Methyl naphthalene	Naphthalene	Total Naphthalene ^(a)			
SPL-10-1	11/16/2010	8.5	18.8	21.9	49.2			
SPL-10-2	11/16/2010	24.9	60.4	36.0	121			
SPL-10-3	11/16/2010	15.2	39.6	20.7	75.5			
SPL-11-1	11/16/2010	ND	ND	ND	ND			
SPL-11-2	11/16/2010	ND	13.7	9.6	23.3			
SPL-11-3	11/16/2010	ND	10.8	ND	10.8			
SPL-12-1	11/10/2010	76.1	222	80.2	378			
SPL-12-2	11/10/2010	ND	9.1	8.5	17.6			
SPL-12-3	11/10/2010	102	184	310	596			
SPL-12-4	11/10/2010	ND	ND	7.7	7.7			
SPL-12-5	11/11/2010	ND	ND	ND	ND			
SPL-12-6	11/11/2010	ND	ND	ND	ND			
SPL-12-7	11/11/2010	ND	ND	ND	ND			
SPL-13-1	12/3/2010	14.2	27.1	10.8	52.1			
SPL-13-2	12/3/2010	15.6	25.9	11.8	53.3			
SPL-13-3	12/3/2010	ND	ND	ND	ND			
SPL-13-4	12/3/2010	23.6	39.7	16.5	79.8			
SPL-13-5	12/3/2010	ND	ND	10.4	10.4			
SPL-13-6	12/3/2010	ND	8.0	ND	8			
SPL-13-7	12/3/2010	ND	ND	ND	ND			
SPL-14-1	12/3/2010	13.8	22.7	29.0	65.5			
SPL-14-2	12/3/2010	18.2	24.8	48.0	91			
SPL-14-3	12/3/2010	8.6	11.8	14.1	34.5			
SPL-14-4	12/3/2010	13.7	23.9	24.5	62.1			
SPL-14-5	12/3/2010	29.7	48.8	45.8	124			
SPL-15-1	12/10/2010	20.5	30.6	36.5	87.6			
SPL-15-2	12/10/2010	12.4	16.3	32.0	60.7			
SPL-15-3	12/10/2010	15.5	18.8	31.0	65.3			
SPL-16-1	12/20/2010	23.1	35.4	52.1	111			
SPL-16-2	12/20/2010	47.5	60.2	96.2 J	204 J			
SPL-16-3	12/20/2010	95.6	82.8	151	329			

Table 4-21. Total Naphthalenes Concentrations in Soil Stockpile Samples								
			Conc	entration (µg/Kg)				
Sample ID	Date	1-Methyl naphthalene	2-Methyl naphthalene	Naphthalene	Total Naphthalene ^(a)			
SPL-16-4	12/20/2010	21.9	29.7	40.5	92.1			
SPL-16-5	12/20/2010	147	211	118	476			
SPL-16-6	12/20/2010	38.6	44.6	65.1	148			
SPL-16-7	12/20/2010	22.7	34.9	40.1	97.7			
SPL-17-1	1/5/2011	15.9	27.8	40.9	84.6			
SPL-17-2	1/5/2011	27.0	33.9	62.4	123			
SPL-17-3	1/5/2011	8.5	15.4	24.5	48.4			
SPL-18-1	1/4/2011	24.8	68.4	26.5	120			
SPL-18-2	1/4/2011	ND	ND	ND	ND			
SPL-18-3	1/4/2011	10.2	12.6	14.5	37.3			
SPL-18-4	1/4/2011	11.0	19.5	25.6	56.1			
SPL-18-5	1/4/2011	ND	9.1	14.1	23.2			
SPL-18-6	1/4/2011	ND	ND	ND	ND			
SPL-19-1	1/13/2011	ND	36.4	314	350			
SPL-19-2	1/13/2011	ND	ND	ND	ND			
SPL-19-3	1/13/2011	ND	ND	ND	ND			
SPL-19-4	1/13/2011	ND	ND	19.4	19.4			
SPL-19-5	1/13/2011	ND	ND	192	192			
SPL-19-6	1/13/2011	ND	ND	29.3	29.3			
SPL-20-1	1/19/2011	7.6	13.1	24.2	44.9			
SPL-20-2	1/19/2011	ND	ND	9.5	9.5			
SPL-20-3	1/19/2011	13.4	22.6	43.6	79.6			
SPL-20-4	1/19/2011	11.6	19.3	37.4	68.3			
SPL-20-5	1/19/2011	ND	10.8	13.9	24.7			
SPL-20-6	1/19/2011	ND	ND	11.5	11.5			
SPL-21-1	1/19/2011	ND	9.1	9.7	18.8			
SPL-21-2	1/19/2011	ND	9.4	12.2	21.6			
SPL-21-3	1/19/2011	ND	ND	ND	ND			
SPL-21-4	1/19/2011	ND	ND	ND	ND			
SPL-21-5	1/19/2011	ND	ND	ND	ND			
SPL-21-6	1/19/2011	ND	8.5	11.5	20			

Table 4-21. Total Naphthalenes Concentrations in Soil Stockpile Samples							
			Conc	entration (µg/Kg)			
Sample ID	Date	1-Methyl naphthalene	2-Methyl naphthalene	Naphthalene	Total Naphthalene ^(a)		
SPL-22-1	2/7/2011	ND	ND	ND	ND		
SPL-22-2	2/7/2011	ND	7.6	12.7	20.3		
SPL-22-3	2/7/2011	ND	ND	9.4	9.4		
SPL-23-1	2/7/2011	ND	9.2	11.4	20.6		
SPL-23-2	2/7/2011	ND	ND	11.4	11.4		
SPL-23-3	2/7/2011	17.3	22.9	26.9	67.1		
SPL-24-1	2/7/2011	36.6	36.0	52.8	125		
SPL-24-2	2/7/2011	20.5 J	26.9 J	37.3	84.7 J		
SPL-24-3	2/7/2011	10.9	17.9	28.1	56.9		
SPL-24-4	2/7/2011	25.8	27.5	44.3	97.6		
SPL-25-1	2/9/2011	ND	ND	ND	ND		
SPL-25-2	2/9/2011	ND	8.3	11.9	20.2		
SPL-25-3	2/9/2011	ND	ND	7.1	7.1		
SPL-25-4	2/9/2011	ND	ND	ND	ND		
SPL-25-5	2/9/2011	ND	ND	ND	ND		
SPL-26-1	2/9/2011	ND	11.8	19.8	31.6		
SPL-26-2	2/9/2011	ND	9.2	15.6	24.8		
SPL-26-3	2/9/2011	ND	8.0	15.7	23.7		
SPL-26-4	2/9/2011	ND	9.5	17.2	26.7		
SPL-27-1	2/9/2011	ND	9.7	16.5	26.2		
SPL-27-2	2/9/2011	49.2	64.2	87.0	200		
SPL-27-3	2/9/2011	8.0	10.8	13.0	31.8		
SPL-27-4	2/9/2011	39.8	50.7	61.2	152		
SPL-27-5	2/9/2011	7.9	11.1	15.9	34.9		
SPL-28-1	2/9/2011	ND	7.6	13.0	20.6		
SPL-28-2	2/9/2011	ND	ND	9.1	9.1		
SPL-28-3	2/9/2011	7.3	8.5	15.6	31.4		
SPL-28-4	2/9/2011	7.3	8.0	15.6	30.9		
SPL-29-1	2/4/2011	ND	10.6	10.1	20.7		
SPL-29-2	2/4/2011	11.9	16.5	8.8	37.2		
SPL-29-3	2/4/2011	ND	ND	9.7	9.7		

Table 4-21. Total Naphthalenes Concentrations in Soil Stockpile Samples							
			Conc	entration (µg/Kg)			
Sample ID	Date	1-Methyl naphthalene	2-Methyl naphthalene	Naphthalene	Total Naphthalene ^(a)		
SPL-29-4	2/4/2011	ND	ND	ND	ND		
SPL-29-5	2/4/2011	ND	ND	ND	ND		
SPL-29-6	2/4/2011	ND	ND	ND	ND		
SPL-29-7	2/4/2011	ND	ND	ND	ND		
SPL-29-8	2/4/2011	ND	ND	ND	ND		
SPL-30-1	2/3/2011	10.6	18.0	16.4	45		
SPL-30-2	2/3/2011	ND	14.1	ND	14.1		
SPL-30-3	2/3/2011	ND	10.3	ND	10.3		
SPL-30-4	2/3/2011	ND	11.1	8.2	19.3		
SPL-30-5	2/3/2011	ND	11.5	10.0	21.5		
SPL-30-6	2/3/2011	ND	ND	ND	ND		
SPL-30-7	2/3/2011	ND	ND	ND	ND		
SPL-31-1	2/18/2011	54.6	104	169	328		
SPL-31-2	2/18/2011	15.6	24.0	128 J	168 J		
SPL-31-3	2/18/2011	70.9	119	132	322		
SPL-31-4	2/18/2011	12.4	24.6	37.9	74.9		
SPL-31-5	2/18/2011	ND	39.9	305	345		
SPL-31-6	2/18/2011	ND	37.4	342	379		
SPL-32-1	2/18/2011	13.3	19.6	56.2	89.1		
SPL-32-2	2/18/2011	18.0	29.5	72.0	120		
SPL-32-3	2/18/2011	10.2	14.2	39.4	63.8		
Interim Action Clea	nup Level				160,000		
Interim Action Rem	ediation Level				160,000		

IACL/IARL exceedances in bold.

J - Estimated concentration based on data validation.

ND - None detected

⁽a) Total naphthalene equals the sum of 1-methylnaphthalene, 2-methylnaphthalene, and naphthalene per WAC 173-340-900, Table 740-1, footnote o. Calculated per Teel, 2010.

Table 4-22. Summary of Carcinogenic Polyaromatic Hydrocarbons (cPAH) Toxicity Equivalent Concentrations in Soil Stockpile Samples

	Concentration (ug /Kg)								
			Concentration (μg/Kg)						
Sample Location	Date	Benzo(a) pyrene	Benzo(a) anthracene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Indeno(1,2,3- cd)pyrene	сРАН ТЕQ ^(а)
SPL-1-1	11/2/2010	40.7 J	34.7 J	24.2 J	26.2 J	40.4 J	8.6 J	18.6 J	52.3
SPL-1-2	11/2/2010	87.2	69.8	58.9	45.3	79.1	17.6	38.9	111
SPL-1-3	11/2/2010	34.4	29.5	21.6	22.1	34.3	ND	16.6	43.7
SPL-2-1	11/2/2010	312	237	153	194	255	72.5	148	395
SPL-2-2	11/2/2010	40.6	30.7	23.5	23.9	35.7	9.0	19.8	51.6
SPL-2-3	11/2/2010	601	517	319	365	560	131	273	767
SPL-3-1	11/3/2010	571	528	258	448	561	126	268	739
SPL-3-2	11/3/2010	240	188	156	135	202	53.1	118	307
SPL-3-3	11/3/2010	34.3	29.6	22.6	19.1	32.2	ND	16.2	43.4
SPL-4-1	11/3/2010	28.9	26.1	15.5	24.2	31.8	ND	16.2	37.4
SPL-4-2	11/3/2010	20.7	18.4	15.9	13.8	20.0	ND	11.5	26.9
SPL-4-3	11/3/2010	8.2	ND	ND	ND	9.9	ND	ND	8.30
SPL-5-1	11/3/2010	ND	ND	ND	ND	8.0	ND	ND	0.08
SPL-5-2	11/3/2010	19.3	16.9	13.8	12.5	19.5	ND	9.9	24.8
SPL-5-3	11/3/2010	ND	ND	ND	ND	ND	ND	ND	ND
SPL-6-1	11/22/2010	120	90.5	55.9	94.2	99.5	32.3	72.9	156
SPL-6-2	11/22/2010	ND	ND	ND	ND	ND	ND	ND	ND
SPL-6-3	11/22/2010	50.9	60.5	26.2	46.8	65.0	ND	22.4	67.1
SPL-6-4	11/22/2010	138	108	71.5	102	124	31.0	78.5	178
SPL-6-5	11/22/2010	74.0	69.2	57.4	71.1	113	ND	49.6	99.9
SPL-7-1	11/22/2010	ND	ND	ND	ND	ND	9.9	10.6	2.05
SPL-7-2	11/22/2010	42.1	54.0	32.5	37.9	70.3	ND	22.5	57.5
SPL-7-3	11/22/2010	115	101	66.0	75.1	108	30.2	59.2	149
SPL-7-4	11/22/2010	227	208	134	148	231	39.1	107	293
SPL-7-5	11/22/2010	52.9	55.1	28.0	46.7	54.9	ND	24.2	68.8
SPL-8-1	11/22/2010	ND	ND	ND	ND	ND	ND	ND	ND
SPL-8-2	11/22/2010	ND	ND	ND	ND	ND	ND	ND	ND
SPL-8-3	11/22/2010	ND	9.0	ND	ND	13.6	ND	ND	1.04
SPL-9-1	11/22/2010	179	148	84.3	123	164	28.7	91.6	228
SPL-9-2	11/22/2010	181	161	91.0	120	178	44.3	87.3	233
SPL-9-3	11/22/2010	164	101	67.3	84.3	124	30.5	72.3	201
SPL-10-1	11/16/2010	15.6	15.9	16.2	11.5	30.9	ND	9.3	21.2
	•		•	•	•	•		•	•

Table 4-22. Summary of Carcinogenic Polyaromatic Hydrocarbons (cPAH) Toxicity Equivalent Concentrations in Soil Stockpile Samples

		Concentration (μg/Kg)							
Sample Location	Date	Benzo(a) pyrene	Benzo(a) anthracene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Indeno(1,2,3- cd)pyrene	сРАН ТЕQ ^(a)
SPL-10-2	11/16/2010	70.0	52.4	61.6	50.6	96.5	15.9	33.9	92.4
SPL-10-3	11/16/2010	17.0	14.8	12.6	15.8	22.5	ND	10.0	22.5
SPL-11-1	11/16/2010	11.5	10.0	13.1	8.7	24.9	ND	ND	14.9
SPL-11-2	11/16/2010	27.9	22.8	41.3	26.6	51.0	8.1	21.0	40.4
SPL-11-3	11/16/2010	ND	ND	ND	ND	10.9	ND	ND	0.11
SPL-12-1	11/10/2010	ND	ND	ND	ND	ND	ND	ND	ND
SPL-12-2	11/10/2010	18.5	16.1	13.7	11.5	18.3	ND	9.0	23.7
SPL-12-3	11/10/2010	35.4	42.2	24.6	25.4	52.8	7.8	16.5	47.6
SPL-12-4	11/10/2010	26.3	15.4	22.8	18.0	36.8	9.1	13.5	34.5
SPL-12-5	11/11/2010	8.2	7.4	ND	ND	8.9	ND	ND	9.03
SPL-12-6	11/11/2010	ND	ND	ND	ND	ND	ND	ND	ND
SPL-12-7	11/11/2010	36.6	28.7	17.1	25.9	32.1	ND	15.7	45.7
SPL-13-1	12/3/2010	23.4	19.4	13.9	16.7	23.8	ND	11.0	29.7
SPL-13-2	12/3/2010	12.8	8.9	11.3	7.8	12.6	ND	ND	15.7
SPL-13-3	12/3/2010	12.5	9.3	8.2	10.0	11.7	ND	ND	15.4
SPL-13-4	12/3/2010	10.0	8.9	10.3	ND	18.6	ND	ND	12.1
SPL-13-5	12/3/2010	11.2	9.1	9.3	7.5	11.4	ND	ND	13.9
SPL-13-6	12/3/2010	11.6	ND	8.6	7.3	10.6	ND	ND	13.3
SPL-13-7	12/3/2010	23.6	19.0	14.9	16.9	23.7	ND	13.2	30.2
SPL-14-1	12/3/2010	102 J	83.6 J	53.1 J	61.3 J	97.4 J	18.5 J	46.4 J	129
SPL-14-2	12/3/2010	498	502	261	336	562	86.9	234	646
SPL-14-3	12/3/2010	71.9	56.8	46.1	40.6	69.3	13.3	33.9	91.7
SPL-14-4	12/3/2010	109	93.1	57.0	65.6	109	19.5	49.9	139
SPL-14-5	12/3/2010	182	145	81.9	125	168	40.3	85.5	231
SPL-15-1	12/10/2010	153	120	79.5	104	153	27.5	73.4	195
SPL-15-2	12/10/2010	168	133	82.4	118	159	32.0	85.5	215
SPL-15-3	12/10/2010	274	246	147	183	282	45.8	128	352
SPL-16-1	12/20/2010	93.4 J	79.4 J	56.8 J	59.3 J	83.5 J	13.9 J	38.7 J	119
SPL-16-2	12/20/2010	338	295	152	255 J	303	50.7	133	430
SPL-16-3	12/20/2010	897	811	419	665	822	141	354	1144
SPL-16-4	12/20/2010	106	85.9	57.3	65.7	88.0	15.4	46.6	134
SPL-16-5	12/20/2010	142	129	67.2	97.9	157	29.7	59.3	182

Table 4-22. Summary of Carcinogenic Polyaromatic Hydrocarbons (cPAH) Toxicity Equivalent Concentrations in Soil Stockpile Samples

	Samples Concentration (us (Ms))										
			Concentration (µg/Kg)								
Sample Location	Date	Benzo(a) pyrene	Benzo(a) anthracene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Indeno(1,2,3- cd)pyrene	сРАН ТЕQ ^(а)		
SPL-16-6	12/20/2010	269	238	131	186	246	44.9	113	343		
SPL-16-7	12/20/2010	52.5	45.6	26.1	42.4	48.5	9.5	22.8	67.6		
SPL-17-1	1/5/2011	446	441	278	273	440	83.4	184	576		
SPL-17-2	1/5/2011	659	571	447	357	548	152	278	845		
SPL-17-3	1/5/2011	135	97.0	107	77.6	101	25.5	69.2	174		
SPL-18-1	1/4/2011	ND	ND	ND	ND	ND	ND	ND	ND		
SPL-18-2	1/4/2011	ND	ND	ND	ND	ND	ND	ND	ND		
SPL-18-3	1/4/2011	67.8	62.6	36.2	42.8	61.2	ND	27.9	85.4		
SPL-18-4	1/4/2011	353	263	201	210	264	71.7	164	447		
SPL-18-5	1/4/2011	90.3	80.3	106	78.9	83.8	28.0	61.8	127		
SPL-18-6	1/4/2011	ND	ND	ND	ND	ND	ND	ND	ND		
SPL-19-1	1/13/2011	41.8	37.4	ND	ND	39.7	ND	ND	45.9		
SPL-19-2	1/13/2011	ND	ND	ND	ND	ND	ND	ND	ND		
SPL-19-3	1/13/2011	ND	ND	ND	ND	ND	ND	ND	ND		
SPL-19-4	1/13/2011	250	257	142	137	249	49.8	88.1	320		
SPL-19-5	1/13/2011	ND	ND	ND	ND	ND	ND	ND	ND		
SPL-19-6	1/13/2011	ND	ND	ND	ND	ND	ND	ND	ND		
SPL-20-1	1/19/2011	56.4 J	44.8 J	43.3 J	16.1 J	45.8 J	ND	21.3 J	69.4		
SPL-20-2	1/19/2011	44.1	30.6	37.9	13.8	42.9	16.3	32.8	57.7		
SPL-20-3	1/19/2011	16.8	11.6	14.4	ND	15.1	ND	10.6	20.6		
SPL-20-4	1/19/2011	15.3	10.1	13.8	ND	14.5	ND	7.9	18.6		
SPL-20-5	1/19/2011	46.3	36.0	38.0	15.7	43.0	ND	19.0	57.6		
SPL-20-6	1/19/2011	43.4	37.1	37.5	13.4	41.1	ND	19.0	54.5		
SPL-21-1	1/19/2011	24.7 J	17.6 J	22.2 J	9.6 J	22.3 J	ND	14.6 J	31.3		
SPL-21-2	1/19/2011	48.9	39.7	42.3	21.2	43.1	ND	22.3	61.9		
SPL-21-3	1/19/2011	22.3	18.3	19.4	9.6	19.0	ND	12.9	28.5		
SPL-21-4	1/19/2011	15.9	10.2	15.5	ND	18.9	ND	8.9	19.5		
SPL-21-5	1/19/2011	42.0	39.6	39.1	19.2	40.9	ND	18.6	54.1		
SPL-21-6	1/19/2011	80.6	71.4	61.7	31.4	65.2	7.7	31.5	102		
SPL-22-1	2/7/2011	21.7	22.2	19.2	12.1	19.7	ND	8.8	28.1		
SPL-22-2	2/7/2011	68.6	68.3	58.6	27.4	65.4	8.9	28.0	88.4		
SPL-22-3	2/7/2011	61.0	61.8	54.2	26.6	58.8	8.9	26.2	79.4		

Table 4-22. Summary of Carcinogenic Polyaromatic Hydrocarbons (cPAH) Toxicity Equivalent Concentrations in Soil Stockpile Samples

		Samples Concentration (ug /Kg)									
			Concentration (μg/Kg)								
Sample Location	Date	Benzo(a) pyrene	Benzo(a) anthracene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Indeno(1,2,3- cd)pyrene	сРАН ТЕQ ^(а)		
SPL-23-1	2/7/2011	77.3	68.0	71.9	41.9	70.1	10.2	31.9	100		
SPL-23-2	2/7/2011	39.1	32.3	29.8	21.3	34.2	ND	18.3	49.6		
SPL-23-3	2/7/2011	337	330	271	149	295	45.3	141	434		
SPL-24-1	2/7/2011	484	447	365	214	402	60.9	196	616		
SPL-24-2	2/7/2011	78.8 J	65.0 J	62.5 J	41.5 J	67.5 J	11.9 J	36.1 J	101		
SPL-24-3	2/7/2011	135	98.2	103	65.1	103	19.8	60.2	171		
SPL-24-4	2/7/2011	255	228	187	133	214	34.0	108	326		
SPL-25-1	2/9/2011	22.9	23.2	21.2	9.2	22.4	ND	14.1	29.9		
SPL-25-2	2/9/2011	63.1	56.1	61.3	26.8	69.1	13.3	37.3	83.3		
SPL-25-3	2/9/2011	73.2	64.9	57.2	38.8	68.6	13.7	43.5	95.7		
SPL-25-4	2/9/2011	72.0	70.2	69.5	43.9	76.9	17.0	45.8	97.4		
SPL-25-5	2/9/2011	44.5	41.9	44.5	20.4	42.7	9.6	27.6	59.3		
SPL-26-1	2/9/2011	358	202	531	492	272	120	346	530		
SPL-26-2	2/9/2011	285	162	279	267	149	66.7	180	382		
SPL-26-3	2/9/2011	206	124	237	228	130	51.6	152	287		
SPL-26-4	2/9/2011	184	102	226	233	113	53.8	155	262		
SPL-27-1	2/9/2011	112 J	101 J	104 J	63.3 J	123 J	19.2	54.3 J	147		
SPL-27-2	2/9/2011	468	509	405	139	445	74.5	218	607		
SPL-27-3	2/9/2011	202	252	178	126	269	41.7	104	275		
SPL-27-4	2/9/2011	197	194	144	93.1	194	31.5	101	255		
SPL-27-5	2/9/2011	64.2	64.2	57.3	25.5	62.1	13.4	40.1	84.9		
SPL-28-1	2/9/2011	57.7	53.8	49.5	25.1 J	54.7	10.5	32.4	75.4		
SPL-28-2	2/9/2011	32.7	38.7	29.9	18.2	45.1	ND	17.4	43.6		
SPL-28-3	2/9/2011	107	95.8	75.5	49.0	91.1	18.6	56.1	137		
SPL-28-4	2/9/2011	71.3	68.3	55.1	35.0	67.9	12.8	38.9	93.0		
SPL-29-1	2/4/2011	ND	ND	10.7	ND	10.5	ND	ND	1.18		
SPL-29-2	2/4/2011	13.4	14.4	17.1	ND	14.6	ND	7.3	17.4		
SPL-29-3	2/4/2011	22.5	21.6	23.6	12.0	29.5	ND	14.8	30.0		
SPL-29-4	2/4/2011	ND	ND	ND	ND	ND	ND	ND	ND		
SPL-29-5	2/4/2011	ND	ND	ND	ND	ND	ND	ND	ND		
SPL-29-6	2/4/2011	ND	ND	ND	ND	ND	ND	ND	ND		
SPL-29-7	2/4/2011	ND	ND	ND	ND	ND	ND	ND	ND		

Table 4-22. Summary of Carcinogenic Polyaromatic Hydrocarbons (cPAH) Toxicity Equivalent Concentrations in Soil Stockpile
Samples

				Salli	hies				
					Concentrat	tion (µg/Kg)			
Sample Location	Date	Benzo(a) pyrene	Benzo(a) anthracene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Indeno(1,2,3- cd)pyrene	сРАН ТЕQ(а)
SPL-29-8	2/4/2011	18.4	16.9	18.0	7.7	15.3	ND	8.6	23.7
SPL-30-1	2/3/2011	31.4	32.9	29.6	12.5	38.4	ND	10.6	40.3
SPL-30-2	2/3/2011	14.6	12.3	16.5	ND	23.1	ND	ND	17.7
SPL-30-3	2/3/2011	19.2	19.0	20.9	8.2	24.5	ND	8.2	25.1
SPL-30-4	2/3/2011	45.0	37.5	38.3	25.9	53.6	ND	18.4	57.5
SPL-30-5	2/3/2011	20.1	18.8	20.3	12.7	28.4	ND	8.6	26.4
SPL-30-6	2/3/2011	23.2	22.6	24.0	11.7	27.7	ND	8.1	30.1
SPL-30-7	2/3/2011	107	99.9	93.8	45.7	96.0	14.5	45.6	138
SPL-31-1	2/18/2011	48.4	39.5	31.5	29.5	44.0	ND	21.3	61.0
SPL-31-2	2/18/2011	23.9 J	22.2 J	15.0 J	15.0 J	25.9 J	ND	10.6 J	30.4
SPL-31-3	2/18/2011	580	514	341	337	518	79.0	257	738
SPL-31-4	2/18/2011	40.4	29.4	23.2	26.5	37.3	8.0	22.6	51.7
SPL-31-5	2/18/2011	45.5	48.3	ND	ND	51.2	ND	ND	50.8
SPL-31-6	2/18/2011	ND	ND	ND	ND	ND	ND	ND	ND
SPL-32-1	2/18/2011	83.1	70.6	107	94.1	124	12.3	50.6	118
SPL-32-2	2/18/2011	68.9	59.1	42.7	55.6	67.6	15.2	35.1	90.3
SPL-32-3	2/18/2011	10.6	ND	ND	ND	11.0	ND	ND	10.7
Interim Action Cleanup Level								100	
Interim Action Remediation Level									1,400

IACL/IARL exceedances in bold.

J – Estimated concentration based on data validation.

ND - None detected

⁽a) TEQ per WAC 173-340-708(8). Calculated per Teel, 2010. For constituents detected on site, concentration = ½ reporting limit for results below reporting limit.

Table 4-23. Summary o	of Dioxin/Furan TEC Concent	rations in Soil Stockpile Samples
Sample Location	Date	Dioxin/Furan TEC Conc ^(a) (ng/Kg)
SPL-1-1	11/2/2010	0.26 J, P, B, I
SPL-1-2	11/2/2010	0.62 J, P, B, I
SPL-1-3	11/2/2010	0.37 J, B, I
SPL-2-1	11/2/2010	0.65 J, P, B, I
SPL-2-2	11/2/2010	0.28 J, B, I
SPL-2-3	11/2/2010	24 J, B, P
SPL-3-1	11/3/2010	1.1 J, B, I
SPL-3-2	11/3/2010	0.29 J, P, B, I
SPL-3-3	11/3/2010	0.33 J, B, P
SPL-4-1	11/3/2010	1.8 J, B, P, I
SPL-4-2	11/3/2010	1.5 J, B, I
SPL-4-3	11/3/2010	1.5 J, P, B, I
SPL-5-1	11/3/2010	0.57 J, P, B, I
SPL-5-2	11/3/2010	0.35 J, P, B, I
SPL-5-3	11/3/2010	0.22 J, B, I
SPL-6-1	11/22/2010	5.0 J, I
SPL-6-2	11/22/2010	0.36 J, B, I, Y
SPL-6-3	11/22/2010	1.5 J, B
SPL-6-4	11/22/2010	8.7 J
SPL-6-5	11/22/2010	47
SPL-7-1	11/22/2010	0.28 J, B
SPL-7-2	11/22/2010	27 J
SPL-7-3	11/22/2010	6.4 J
SPL-7-4	11/22/2010	11 J, I
SPL-7-5	11/22/2010	3.5 J
SPL-8-1	11/22/2010	3.0 J, B, I, Y
SPL-8-2	11/22/2010	14 J, B, I, Y
SPL-8-3	11/22/2010	5.3 J, B, I, Y
SPL-9-1	11/22/2010	0.79 J, B, I, Y
SPL-9-2	11/22/2010	0.70 J, B, I, Y
SPL-9-3	11/22/2010	0.95 J, B, I, Y
SPL-10-1	11/16/2010	22 J, P
SPL-10-2	11/16/2010	7.3 J, P
SPL-10-3	11/16/2010	20 J
SPL-11-1	11/16/2010	34 P
SPL-11-2	11/16/2010	110 P, E

Table 4-23. Summary o	of Dioxin/Furan TEC Concent	rations in Soil Stockpile Samples
Sample Location	Date	Dioxin/Furan TEC Conc ^(a) (ng/Kg)
SPL-11-3	11/16/2010	29 P
SPL-12-1	11/10/2010	1.1 J, B, I
SPL-12-2	11/10/2010	32 J, P, E
SPL-12-3	11/10/2010	28 J, P, E
SPL-12-4	11/10/2010	35 J, P, E
SPL-12-5	11/11/2010	1.2 J, B, P, I
SPL-12-6	11/11/2010	1.8 J, B, I
SPL-12-7	11/11/2010	0.84 J, B, I
SPL-13-1	12/3/2010	31 J, E, Y
SPL-13-2	12/3/2010	29 J, E, Y
SPL-13-3	12/3/2010	9.4 J
SPL-13-4	12/3/2010	16 J, I, Y
SPL-13-5	12/3/2010	10 J, I, Y
SPL-13-6	12/3/2010	5.9 J, I, Y
SPL-13-7	12/3/2010	61 E, I, Y
SPL-14-1	12/3/2010	6.3 J, R, I
SPL-14-2	12/3/2010	4.1 J, I
SPL-14-3	12/3/2010	8.1, J, I
SPL-14-4	12/3/2010	5.9, J, R, I
SPL-14-5	12/3/2010	8.9 J, I
SPL-15-1	12/10/2010	11 J, Y
SPL-15-2	12/10/2010	4.7 J, P, I, Y
SPL-15-3	12/10/2010	4.7 J, I, Y
SPL-16-1	12/20/2010	2.3 J, P, I
SPL-16-2	12/20/2010	1.9 J, P
SPL-16-3	12/20/2010	3.3 J
SPL-16-4	12/20/2010	0.81 J, B, I
SPL-16-5	12/20/2010	1.1 J, I
SPL-16-6	12/20/2010	0.63 J, P, I
SPL-16-7	12/20/2010	1.6 J, B, I
SPL-17-1	1/5/2011	44 R, P
SPL-17-2	1/5/2011	35 R
SPL-17-3	1/5/2011	25 J, Y
SPL-18-1	1/4/2011	0.50 J, P, I
SPL-18-2	1/4/2011	2.0 J, Y
SPL-18-3	1/4/2011	3.0 J, B

Table 4-23. Summary	of Dioxin/Furan TEC Concent	rations in Soil Stockpile Samples
Sample Location	Date	Dioxin/Furan TEC Conc ^(a) (ng/Kg)
SPL-18-4	1/4/2011	68 P
SPL-18-5	1/4/2011	58 R, P
SPL-18-6	1/4/2011	0.29 J, B, I, Y
SPL-19-1	1/13/2011	4.8 J, P, I, R
SPL-19-2	1/13/2011	0.30 J, B, I
SPL-19-3	1/13/2011	1.1 J, B, I
SPL-19-4	1/13/2011	0.40 J, B
SPL-19-5	1/13/2011	3.0 J, I
SPL-19-6	1/13/2011	0.35 J, B, I
SPL-20-1	1/19/2011	4.7 J, B, I
SPL-20-2	1/19/2011	2.5 J, B, I
SPL-20-3	1/19/2011	1.5 J, B, I
SPL-20-4	1/19/2011	2.0 J, B, I
SPL-20-5	1/19/2011	1.7 J, B, I
SPL-20-6	1/19/2011	24 J, B, P
SPL-21-1	1/19/2011	1.9 J, B, P, I
SPL-21-2	1/19/2011	3.3 J, B, I
SPL-21-3	1/19/2011	0.49 J, B, I
SPL-21-4	1/19/2011	1.4 J, B, I
SPL-21-5	1/19/2011	0.31 J, B, I
SPL-21-6	1/19/2011	0.39 J, B, I
SPL-22-1	2/7/2011	15 J, E, I, Y
SPL-22-2	2/7/2011	9.6 J, R, P
SPL-22-3	2/7/2011	25 J, P, E
SPL-23-1	2/7/2011	7.4 J, P
SPL-23-2	2/7/2011	7.5 J, P, I
SPL-23-3	2/7/2011	13 J, I
SPL-24-1	2/7/2011	7.6 J, P
SPL-24-2	2/7/2011	2.8 J, P, I
SPL-24-3	2/7/2011	2.8 J, P, I
SPL-24-4	2/7/2011	8.2 J, I
SPL-25-1	2/9/2011	43 P
SPL-25-2	2/9/2011	170 P, E
SPL-25-3	2/9/2011	13 J, P
SPL-25-4	2/9/2011	15 J, P
SPL-25-5	2/9/2011	120 P

Table 4-23. Summary o	of Dioxin/Furan TEC Concent	rations in Soil Stockpile Samples
Sample Location	Date	Dioxin/Furan TEC Conc ^(a) (ng/Kg)
SPL-26-1	2/9/2011	110 P
SPL-26-2	2/9/2011	240 P, E
SPL-26-3	2/9/2011	230 P, E
SPL-26-4	2/9/2011	280 P
SPL-27-1	2/9/2011	11 J, P, I
SPL-27-2	2/9/2011	15 J, P, I
SPL-27-3	2/9/2011	31 J, P, E
SPL-27-4	2/9/2011	13 J
SPL-27-5	2/9/2011	15 J, I
SPL-28-1	2/9/2011	9.3 J
SPL-28-2	2/9/2011	12 J, P
SPL-28-3	2/9/2011	9.5 J
SPL-28-4	2/9/2011	9.3 J
SPL-29-1	2/4/2011	2.7 J, I
SPL-29-2	2/4/2011	11 J
SPL-29-3	2/4/2011	12 J, P
SPL-29-4	2/4/2011	9.8 J, P, I
SPL-29-5	2/4/2011	4.0 J, P, I
SPL-29-6	2/4/2011	0.63 J, I
SPL-29-7	2/4/2011	0.62 J, P, I
SPL-29-8	2/4/2011	1.3 J, I
SPL-30-1	2/3/2011	1.4 J, P, I
SPL-30-2	2/3/2011	7.8 J, R, P, I
SPL-30-3	2/3/2011	1.7 J, I
SPL-30-4	2/3/2011	3.1 J, I
SPL-30-5	2/3/2011	6.0 J, R, P, I
SPL-30-6	2/3/2011	2.1 J, l
SPL-30-7	2/3/2011	2.9 J, I
SPL-31-1	2/18/2011	12 J, P, I
SPL-31-2	2/18/2011	8.0 J, P
SPL-31-3	2/18/2011	7.3 J, I
SPL-31-4	2/18/2011	21 J, E
SPL-31-5	2/18/2011	4.1 J, P, I
SPL-31-6	2/18/2011	23 J, E
SPL-32-1	2/18/2011	20 J, P
SPL-32-2	2/18/2011	37 P, E

Table 4-23. Summary of Dioxin/Furan TEC Concentrations in Soil Stockpile Samples							
Sample Location Date Dioxin/Furan TEC Conc ^(a) (ng/Kg							
SPL-32-3	2/18/2011	26 J, P, E					
Interim Action Cleanup Level		9.81					
Interim Action Remediation Leve	el	510					

IACL/IARL exceedances in bold.

B = Less than 10x higher than method blank level

D= Results obtained from analysis of diluted sample

E = Exceeds calibration range

I = *Interference present*

J = Estimated value

P = PCDE Interference

R = Recovery outside target range

(a) Y = Calculated using average of daily RFsTEQ per WAC 173-340-708(8). Calculated per Teel, 2010. For constituents detected on site, concentration = ½ reporting limit for results below reporting limit.

	Table 4-24. Parcel 4 Stockpile Summary											
Stockpile Number	Est. Size (CY)	Source area	Samples (including duplicates)	Sample Date	COPC Conc	entrations Exceeding IARLs	Geotechnical Suitability	Designation				
SPL-6	256	DP-17a	5	11/22/2010	cPAHs, dioxins/furans	None	Not geotechnically suitable	Disposal only				
SPL-7	191	DP-18a	5	11/22/2010	cPAHs, lead, dioxins/furans	Lead	Not geotechnically suitable	Disposal only				
SPL-8	50	TP-02	3	11/22/2010	Dioxins/furans	None	Suitable	Reuse - capped areas only				
SPL-10	75	DP-17 / DP-18a	3	11/16/2010	Dioxins/furans	None	Suitable	Reuse - capped areas only				
SPL-11	82	TP-02	3	11/16/2010	Dioxins/furans	None	Suitable	Reuse - capped areas only				
SPL-23	84	TP-02	3	2/7/2011	cPAHs, dioxins/furans	None	Suitable	Reuse - capped areas only				

a Locations of DP-17 and DP-18 locations were transposed in the IAWP and SAP, this report has been includes reference to the historically correct locations.

Table 4-25. Soil Quantity Summary – Parcel 4 ¹								
Disposition / Month	Removal and d	disposal of soils						
Disposition/Month	Ton	CY						
Disposal January 2011 (hot spot areas)	632	451						
Disposal August 2011	2,718	1,941						
Disposal September 2011	3,596	2,569						
Disposal October 2011	1,294	925						
Disposal November 2011	215	153						
Disposal December 2011	233	159						
Disposal January 2012	14	10						
Dig and haul total	8,060	5,757						
Total for offsite disposal	8,692	6,209						
Parcel 4 Unrestricted Reuse	0	0						
Parcel 4 Reuse Under Cap	291	208						
Parcel 4 Total Reuse	291	208						

Assumes 1.4 tons/CY

				Table 4	1-26. Parcel 5 Stockpil	e Summary		
Stockpile	Est. Size		Samples (including		COPC Conc		-	
Number	(CY)	Source area	duplicates)	Sample Date	Exceeding IACLs	Exceeding IARLs	Geotechnical Suitability	Designation
SPL-1	59	DP-11	3	11/2/2010	cPAHs	None	Suitable	Reuse - capped areas only
SPL-2	59	DP-11	3	11/2/2010	cPAHs, dioxins/furans	None	Suitable	Reuse - capped areas only
SPL-3	59	DP-11	3	11/3/2010	cPAHs, lead	Lead	Not geotechnically suitable	Disposal only
SPL-4	147	Softscaped area	3	11/3/2010	None	None	Suitable	Reuse - all areas
SPL-5	147	Softscaped area	3	11/3/2010	None	None	Suitable	Reuse - all areas
SPL-9	43	Utilities	3	11/22/2010	cPAHs	None	Suitable	Reuse - capped areas only
SPL-12	800	Softscaped area	7	11/11/2010	Dioxins/furans	None	Suitable	Reuse - capped areas only
SPL-13	267	Softscaped area	7	12/3/2010	Dioxins/furans	None	Suitable	Reuse - capped areas only
SPL-14	200	Softscaped area	5	12/3/2010	cPAHs	None	Suitable	Reuse - capped areas only
SPL-15	50	Softscaped area	3	12/10/2010	cPAHs, dioxins/furans	None	Suitable	Reuse - capped areas only
SPL-16	500	Softscaped area	7	12/20/2010	cPAHs	None	Suitable	Reuse - capped areas only
SPL-17	50	Softscaped area	3	1/5/2011	cPAHs, dioxins/furans	None	Suitable	Reuse - capped areas only
SPL-18	175	DP-21	6	1/4/2011	cPAHs, dioxins/furans	None	Not geotechnically suitable	Disposal only
SPL-19	148	DP-21	6	1/13/2011	cPAHs	None	Not geotechnically suitable	Disposal only
SPL-20	138	Retaining wall	6	1/19/2011	Dioxins/furans	None	Suitable	Reuse - capped areas only
SPL-21	172	NW sidewalk areas	6	1/19/2011	None	None	Suitable	Reuse - capped areas only
SPL-22	64	Utilities	3	2/7/2011	Dioxins/furans	None	Suitable	Reuse - capped areas only
SPL-24	50	Softscaped area	4	2/7/2011	сРАНѕ	None	Suitable	Reuse - capped areas only
SPL-25	200	Softscaped area	5	2/9/2011	Dioxins/furans	None	Suitable	Reuse - capped areas only
SPL-26	148	DP-21 expansion	4	2/9/2011	TPH-HO, cPAHs, dioxins/furans	ТРН-НО	Suitable	Disposal only
SPL-27	112	Utilities	5	2/9/2011	cPAHs, dioxins/furans	None	Suitable	Reuse - capped areas only
SPL-28	87	Retaining wall	4	2/9/2011	cPAHs, dioxins/furans	None	Suitable	Reuse - capped areas only
SPL-29	718	Softscaped area	8	2/4/2011	Dioxins/furans	None	Suitable	Reuse - capped areas only

Brown AND Caldwell

	Table 4-26. Parcel 5 Stockpile Summary											
Stockpile	Est. Samples COPC Concentrations (including						-					
Number	(CY)	Source area	duplicates)	Sample Date	Exceeding IACLs	Exceeding IARLs	Geotechnical Suitability	Designation				
SPL-30	718	Softscaped area	7	2/3/2011	cPAHs	None	Suitable	Reuse - capped areas only				
SPL-31	248	Softscaped area	6	2/18/2011	cPAHs, dioxins/furans	None	Not geotechnically suitable	Disposal only				
SPL-32	133	Softscaped area	3	2/18/2011	TPH-HO, dioxins/furans	трн-но	Not geotechnically suitable	Disposal only				

Table 4-27. Soil Quantity Summary – Parcel 5							
	Removal a	Removal and disposal of contaminated soils					
Disposition/Month	Ton	сү					
Disposal January 2011	279	199					
Disposal March 2011	988	706					
Disposal June 2011	229	164					
Disposal March 2012	383	274					
Total for Offsite Disposal	1,879	1,342					
Unrestricted Reuse	412	294					
Reuse Under Cap ^a	6,002 (5,660)	4,287 (4,043)					
Total Parcel 5 Reuse	6,414 (6,072)	4,581 (4,337)					

a. Not all soil was reused under cap, and was disposed of with other disposal-only soil. Approximately 244 CY (342 tons) of available reuse under cap soil was sent off site for disposal. The total for offsite disposal includes this quantity. Total reuse under cap quantities are shown, with the total amount adjusted for off-site disposal quantity shown in parenthases.
 Assumes 1.4 tons/CY

Appendix A: Monitoring Well Decommissioning Logs

RESOURCE PROTECTIO	Print, sign and return		
(SUBMIT ONE WELL REPORT PER	WELL INSTALLED	I CURREN	NT Notice of Intent No. RE03445
Construction 34779	<u>x)</u>		Type of Well ("x in box) Resource Protection Geotech Soil Boring
ORIGINAL INSTALLATION Notice of In	tent Number:	Property Owner 1	
Consulting F' P'		Site Address Jeff	
Consulting Firm <u>Pioneer Technologies Co</u> Unique Ecology Well IDTag No. 3			County Thurston
-			-1/4 <u>SE</u> 1/4 Sec <u>14</u> Twn <u>18</u> R <u>02</u>
WELL CONSTRUCTION CERTIFICAT accept responsibility for construction of this well, ar	ION: I constructed and/or	EWM 🔲 or WW	
Washington well construction standards. Materials reported above are true to my best knowledge and be	used and the information	Lat/Long (s, t, r still REQUIRED)	·
☑ Driller ☐ Engineer ☐ Trainee Name (Print Last, First Name) <u>Knopf, Noel</u>	22//	Tax Parcel No.66	Long DegMinSec
Driller/Engineer /Trainee Signature	211-11	Cased or Uncased	Diameter 9" Static Level 2"
Driller or Trainee License No. 2872			ion Start Date
If trainee, licensed driller's Signature ar	d License Number:		ion Completed Date 6-12-09
		W CITE D COMMINGS	ion completed Date 6 12 01
Construction Design	Well D	Data	Formation Description
	MONUMENT TYPE		
	8" flush mou		
	CONCRETE SURFA	ACE SEAL:	
	0'-1'	· · · · · · · · · · · · · · · · · · ·	
	ANNULAR SPACE:		0-9' dark coarse sand
	BACKEIII '-	3 [']	
	BACKFILL: 1'-	te chips	
	PVC BLANK: 0'-	ч (
	SCREEN: 4-9 SLOT SIZE: 6.0 (4 TYPE: 2 - sch 40		
	SAND PACK: 3'- MATERIAL: 10/20 DRILLING METHOD	silica	
	WELL DEPTH: 9	·	
	BORING DIAMETER	:	

SCALE: 1"=____PAGE _2_OF _5

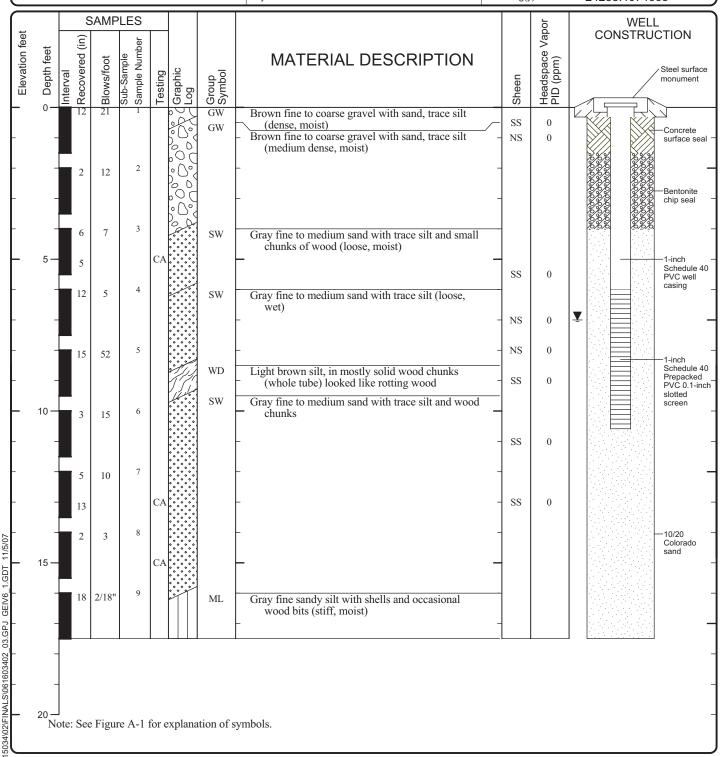
نب
ក
ğ
æ
<u>~</u>
ᇹ
Ž
<u></u>
Ë
Ŧ
Ĕ
~
ō
Ψ
a
formation on t
ق
<u>=</u>
a)
the
Ξ
ō
ਰੂ
and/
ਲ
ĭ
ŏ
ص ص
ڲ
Ξ
₹
ä
E
a
S
O
<u>Q</u>
_
es
0
ਰ
g
<u> </u>
ö
ш
ð
Ţ
nen
artr
=

Please print, sign and return to the Department of Ecology

RESOURCE PROTECTION \		CURRENT	Notice of Intent No. AE 14028			
SUBMIT ONE WELL REPORT PER WI	ELL INSTALLED)		Type of Well ("r in her)			
Construction/Decommission ("x" in box)			Type of Well ("x in box) ☐ Resource Protection			
Construction 420505			Geotech Soil Boring			
ORIGINAL INSTALLATION Notice of Intent	Number:	Property Owner Por	t of Olympia			
RE03445		Site Address Jeffers				
Consulting Firm		City Olympia				
Unique Ecology Well IDTag No. BAF400		Location NW1/4-1/4 SE1/4 Sec 14 Twn 18N R 2W				
WELL CONSTRUCTION CERTIFICATION		EWM or WWM				
accept responsibility for construction of this well, and it		_	_			
Washington well construction standards. Materials used reported above are true to my best knowledge and belief	d and the information	Lat/Long (s, t, r still REQUIRED)	Lat Deg Min Sec Long Deg Min Sec			
☑ Driller ☐ Engineer ☐ Trainee		Tax Parcel No.66130000100				
Name (Print Last, First Name) Phythian, Rogeray	Asta-		Diameter 2" Static Level 5.8			
Driller/Engineer /Trainee Signature Driller or Trainee License No. 2053						
Diffici of Traffice Diceirse No. 2005		Work/Decommissio	n Start Date <u>07/19/2011</u>			
If trainee, licensed driller's Signature and	License Number:	Work/Decommission	n Completed Date 07/19/2011			
		j				
Construction Design	Well	Data	Formation Description			
Construction Design	Decommissioned in		1 officeron Description			
	with WAC 173-160					
	110 100	(2)(4)				
		:				
			·			
			-=0511/ED			
			RECEIVED			
			AUG 0 5 2011			
			l aleta Denariment			
			of Ecology (SWRO)			
			0, 200.00,			
	<u>. L </u>					

Please print, sign and return to the Department of Ecology RESOURCE PROTECTION WELL REPORT **CURRENT Notice of Intent No. R65228** (SUBMITSONE WELL REPORT PER WELL INSTALLED) Type of Well ("x in box) Construction/Decommission ("x" in box) Resource Protection Geotech Soil Boring ☐ Decommission ORIGINAL INSTALLATION Notice of Intent Number: Property Owner Port Of Olympia Site Address State & Jefferson Consulting Firm GeoEngineers City Olympia County Thurston APF-874 Unique Ecology Well IDTag No. Location NE1/4-1/4 SW1/4 Sec 14 Twn 18N R 2W EWM ☐ or WWM ☒ WELL CONSTRUCTION CERTIFICATION: I constructed and/or accept responsibility for construction of this well, and its compliance with all Lat Deg ____ Min ___ Sec _ Washington well construction standards. Materials used and the information Lat/Long (s, t, r reported above are true to my best knowledge and belief. still REQUIRED) Long Deg Min Sec _____ Tax Parcel No. ☐ Driller ☐ Engineer ☒ Trainee Cased or Uncased Diameter 9" Static Level 7' Name (Print Last, First Name) Knopf, Noel Driller/Engineer /Trainee Signature Driller or Trainee License No. T2872 Work/Decommission Start Date 07/31/07 Work/Decommission Completed Date 07/31/07 If trainee, licensed driller's Signature and License Number: Formation Description Well Data Construction Design MONUMENT TYPE: 8" flush CONCRETE SURFACE SEAL: 0'-2' 0'-2' gravels 2'-11' sand w/gravel 11'-14' organics/wood ANNULAR SPACE: BACKFILL: 2'-4' TYPE: med. bentonite chips PVC BLANK: 0'-6' / 11'-16 SAND PACK: 4'-16' MATERIAL: 10/20 silica RECEIVED SEP 12 2007 DRILLING METHOD: H.S.A. DEPARTMENT OF ECOLOGY WELL DRILLING UNIT

WELL DEPTH: 16


BORING DIAMETER: 9"

SCALE: 1"= ____ PAGE 1 OF 4

Ecology is an Equal Opportunity Employer

Please print, sign and return RESOURCE PROTECTION WELL REPORT (SUBMIT ONE WELL REPORT PER WELL INSTALLED) Construction/Decommission ("x" in box) Construction Decommission ORIGINAL INSTALLATION Notice of Intent Number: R65228 Consulting Firm Unique Ecology Well IDTag No. APF 874 WELL CONSTRUCTION CERTIFICATION: I constructed and/or accept responsibility for construction of this well, and its compliance with all Washington well construction standards. Materials used and the information reported above are true to my best knowledge and belief.		Property Owner Posite Address State a City Olympia Location NE1/4-1/4 EWM or WWM Lat/Long (s, t, r still REQUIRED)	Type of Well Resource Geotech rt of Olympia md Jefferson str Count SW1/4 Sec 14 Lat Deg Long Deg	ent No. A ("x in box) Protection Soil Boring eet y Thurston Twn 18N R Min Min	2WSec
Name (Print Last, First Name) Phythian, Rogeray Driller/Engineer /Trainee Signature		Tax Parcel No Cased or Uncased I			
Driller or Trainee License No. 2053		Work/Decommission	•		
If trainee, licensed driller's Signature and l	License Number:	Work/Decommission			
Construction Design	Well	Data	For	mation Des	scription
	with WAC 173-160	- 			
			WA :	ECEN AUG 0 5 2 State Dep Ecology (S	2011 Partment

Date(s) Drilled	07/31/07	Logged By	PSD	Checked By	KMB/EWH
Drilling Contractor	ESN	Drilling Method	Hollow Stem Auger	Sampling Methods	Split Spoon
Auger Data	4 inch	Hammer Data	140 lb hammer/140 in drop	Drilling Equipment	Powerprobe 9630 Pro-PTD
Total Well Depth (ft)	17.5	Ground Surfa Elevation (ft)		Groundwater Elevation (ft)	5
Vertical Datum	NGVD 29	Datum/ System		Easting(x): Northing(y):	1126199.16148 24288.4074665

LOG OF MONITORING WELL MW-16

Project: Port of Olympia East Bay Redevelopment

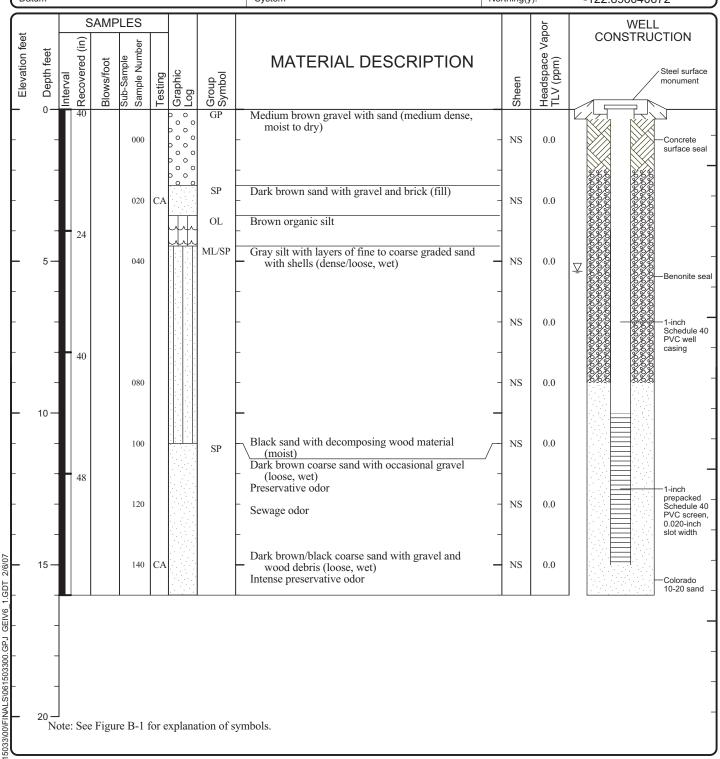

Project Location: Olympia, Washington
Project Number: 0615-034-02/03

Figure A-16 Sheet 1 of 1

Please print, sign and return to the Department of Ecology RESOURCE PROTECTION WELL REPORT (SUBMIT ONE WELL REPORT PER WELL INSTALLED) Type of Well ("x in box) Construction/Decommission ("x" in box) 215447 Resource Protection ○ Construction Geotech Soil Boring ☐ Decommission Property Owner Port of Olympia ORIGINAL INSTALLATION Notice of Intent Number: Site Address State & Jefferson Consulting Firm GeoEngineers City Olympia County Thurston Unique Ecology Well IDTag No. AKA 424 Location NE 1/4-1/4 SW 1/4 Sec 14 Twn 18N R 2W EWM 🔲 or WWM 🔀 WELL CONSTRUCTION CERTIFICATION: I constructed and/or accept responsibility for construction of this well, and its compliance with all Lat Deg ____ Min ___ Sec ____ Lat/Long (s, t, r Washington well construction standards. Materials used and the information reported above are true to my best knowledge and belief. still REQUIRED) Long Deg ____Min___Sec ____ ☐ Driller ☐ Engineer ☒ Trainee Tax Parcel No. Cased or Uncased Diameter 2' Static Level 5' Name (Print Last, First Name) Haun, Marty Driller/Engineer /Trainee Signature Driller or Trainee License No. T2827 Work/Decommission Start Date 1/2/07 Work/Decommission Completed Date 1/02/07 If trainee, licensed driller's Signature and License Number: Musia Harndy 2508 Well Data Formation Description Construction Design MONUMENT TYPE: 8" FLUSH MOUNT CONCRETE SURFACE SEAL: SANO W/ GRAVEL ANNULAR SPACE: 4 BACKFILL: 1'-9'
TYPE: BOUTONITS #8 PVC BLANK: $\phi - i\phi'$ SCREEN: 10 -15 SLOT SIZE: , 010 TYPE: 3/4" PUC SCH 40 XE-PICK SAND PACK: 9-15 MATERIAL: 10/20 SILCA SANO DRILLING METHOD: DIRECT AUSH WELL DEPTH: 15' BORING DIAMETER:

SCALE: 1"= ____ PAGE 2 OF 4

Date(s) Drilled	01/02/07	Logged By	TSG	Checked By	КМВ
Drilling Contractor	ESN-NW	Drilling Method	Direct Push	Sampling Methods	Grab; 5035A for VOCs
Auger Data	NA	Hammer Data	Pneumatic	Drilling Equipment	Stratoprobe
Total Exploration Depth (ft)	16	Ground Surface Elevation (ft)	101.85	Groundwater Elevation (ft)	96.52
Vertical Datum	Assumed (100')	Datum/ System GC	CS - North American - 1983	Easting(x): Northing(y):	47.048155726 -122.896040672

LOG OF MONITORING WELL MW04 (AKA 424)

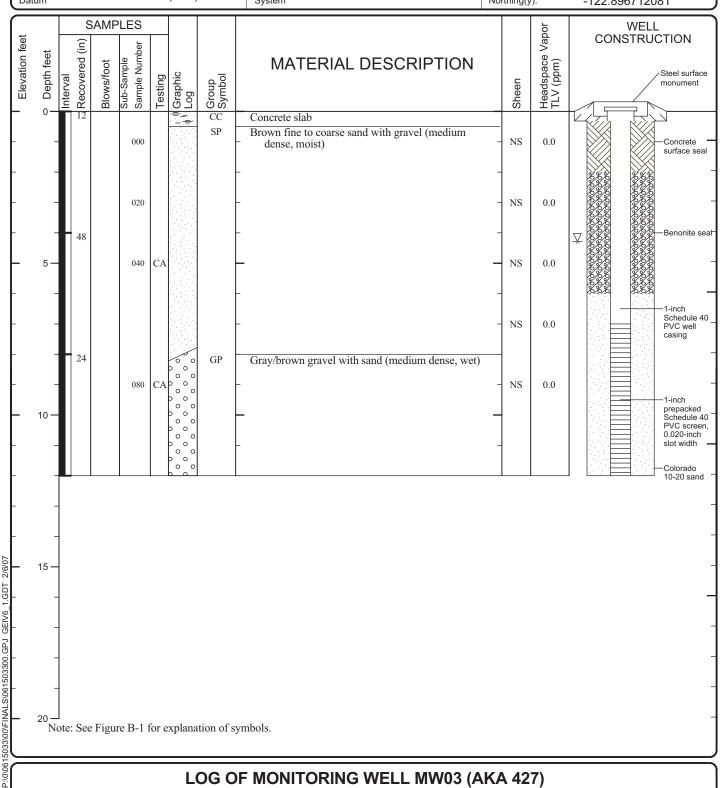
Project Number:

Project: Phase II ESA/Hands on Children's Museum

Project Location: Olympia, Washington

0615-033-00

Figure B-7 Sheet 1 of 1


Please RESOURCE PROTECTIO	e print, sign and return		
(SUBMIT ONE WELL REPORT PER Construction/Decommission ("x" in bo	WELL INSTALLED)		Notice of Intent No. <u>R65628</u> Type of Well ("x in box) ☐ Resource Protection ☐ Geotech Soil Boring
ORIGINAL INSTALLATION Notice of In	tent Number:	Property Owner	Port of Olympia
		Site Address State &	
Consulting Firm GeoEngineers	N. 1/2 7.	City Olympia	County <u>Thurston</u> 1/4 <u>SW</u> 1/4 Sec <u>14</u> Twn <u>18N</u> R <u>2W</u>
Unique Ecology Well IDTag No. AK	727		•
WELL CONSTRUCTION CERTIFICAT accept responsibility for construction of this well, a Washington well construction standards. Materials reported above are true to my best knowledge and b	and its compliance with all sused and the information	EWM ☐ or WWM Lat/Long (s, t, r still REQUIRED)	Lat Deg Min Sec
☐ Driller ☐ Engineer ☒ Trainee		Tax Parcel No	Long DegNiiisec
Name (Print Last First Name) Haun Marty		Caralantia II	Diameter 2" Static Level 5
Driller or Trainee License No. T2827	u e -		
Driller of Trainee License No. 12827		Work/Decommissio	on Start Date 1/2/07
If trainee, licensed driller's Signature a	and License Number:	Work/Decommission	on Completed Date 1/02/07
Construction Design	Well	Data	Formation Description
	MONUMENT TY	PE:	
	B" FLUSH M	OUNT	
	CONCRETE SURI	FACE SEAL:	
	Ø-1'		d-12.
	ANNULAR SPAC	E: 4	SAMO W/GRAVEL
	BACKFILL: / - TYPE: BENTONII	- 6' TE#B	RECEIVED
	PVC BLANK: 4	· - 7 '	JAN 16 2007 DEPARTMENT OF LOODOGY WELL DRILLING UNIT
	SCREEN: 7 - 1 SLOT SIZE:	2 OCH 410 PREPNEK	.07 DEP1 FISC
	SAND PACK: 6 MATERIAL: 14/2		JAN 16 16:56
	DRILLING METH		· 6
	WELL DEPTH:	<u> </u>	
	BORING DIAMET		
	SCALE: 1"=1	PAGE	•

ECY 050-12 (Rev. 7/06)

Please print, sign and return to the Department of Ecology

RESOURCE PROTECTION (SUBMIT ONE WELL REPORT PER		•	Notice of Intent No. <u>AE11197</u>			
Construction/Decommission ("r" in hor			Type of Well ("x in box)			
Construction 394359 Decommission 394359	,	Resource Protection Geotech Soil Boring Property Owner Port of Olympia				
ORIGINAL INSTALLATION Notice of Int	ent Number:					
R656280		Site Address State and Jefferson				
Consulting Firm		City Olympia County Thurston				
Unique Ecology Well IDTag No. AKA 42	27	Location NE1/4-1/4 SW1/4 Sec 14 Twn 18 R 2				
• • •		EWM \square or WWM \boxtimes				
WELL CONSTRUCTION CERTIFICATION: I constructed and/or accept responsibility for construction of this well, and its compliance with all Washington well construction standards. Materials used and the information		Lat/Long (s, t, r	Lat Deg Min Sec			
reported above are true to my best knowledge and be	ener.	still REQUIRED)	Long DegMinSec			
☑ Driller ☐ Engineer ☐ Trainee		Tax Parcel No				
Name (Print Last, First Name) Wiese, Mark Driller/Engineer / Trainee Signature	les in	Cased or Uncased I	Diameter Static Level			
Driller or Trainee License No. 2432		Work/Decommissio	n Start Date 11/05/2010			
			-			
If trainee, licensed driller's Signature a	nd License Number:	Work/Decommissio	n Completed Date 11/05/2010			
Construction Design	Well I		Formation Description			
	Decommissioned a 173.160.460 1B Original well log att	·				
			RECEIVED NOV 192010 WA State Department of Ecology (SWRO)	nt		
	SCALE: 1"- E	PAGE OF				

Date(s) Drilled	01/02/07	Logged By	TSG	Checked By	КМВ
Drilling Contractor	ESN-NW	Drilling Method	Direct Push	Sampling Methods	Grab; 5035A for VOCs
Auger Data	NA	Hammer Data	Pneumatic	Drilling Equipment	Stratoprobe
Total Exploration Depth (ft)	12	Ground Surface Elevation (ft)	100.95	Groundwater Elevation (ft)	96.67
Vertical Datum	Assumed (100')	Datum/ System GC	CS - North American - 1983	Easting(x): Northing(y):	47.04784838 -122.896712081

LOG OF MONITORING WELL MW03 (AKA 427)

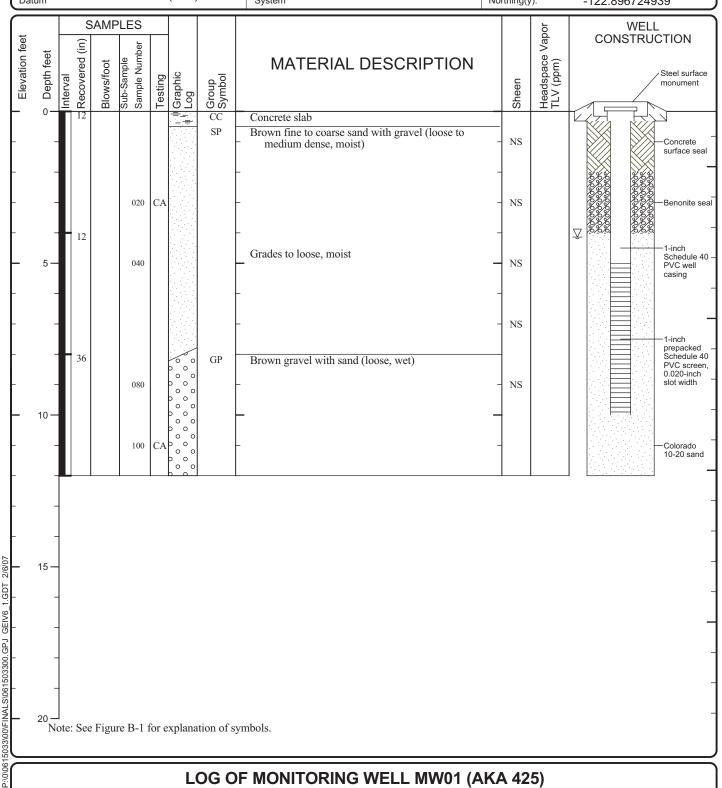
Phase II ESA/Hands on Children's Museum

Project Location: Olympia, Washington Project Number: 0615-033-00

Figure B-6 Sheet 1 of 1

Please print, sign and return to the Department of Ecology CURRENT Notice of Intent No. R65628 RESOURCE PROTECTION WELL REPORT (SUBMIT ONE WELL REPORT PER WELL INSTALLED) Type of Well ("x in box) Construction/Decommission ("x" in box) Resource Protection Construction Geotech Soil Boring ☐ Decommission Property Owner Port of Olympia ORIGINAL INSTALLATION Notice of Intent Number: Site Address State & Jefferson Consulting Firm GeoEngineers City Olympia County Thurston Unique Ecology Well IDTag No. AKA 425 Location NE 1/4-1/4 SW 1/4 Sec /4 Twn /8 NR 2W EWM □ or WWM 🗹 WELL CONSTRUCTION CERTIFICATION: I constructed and/or accept responsibility for construction of this well, and its compliance with all Lat Deg Min Sec Lat/Long (s, t, r Washington well construction standards. Materials used and the information reported above are true to my best knowledge and belief. still REQUIRED) Long Deg _____ Min__ Sec ____ Tax Parcel No. ☐ Driller ☐ Engineer ☒ Trainee Cased or Uncased Diameter 2" Static Level 5' Name (Print Last, First Name) Haun, Marty Driller/Engineer /Trainee Signature Driller or Trainee License No. T2827 Work/Decommission Start Date 1/2/07 Work/Decommission Completed Date 1/02/07 If trainee, licensed driller's Signature and License Number: Unia Harnden 2508 Well Data Formation Description Construction Design MONUMENT TYPE: 8" FLUSH MOUNT CONCRETE SURFACE SEAL: \$-12' SAND W/GRAVEC ANNULAR SPACE: 4 BACKFILL: 1'-4'
TYPE: BENTONING #B PVC BLANK: ϕ - 5' SCREEN: 5'-16' SLOT SIZE: . Ø16 TYPE: 4", NC SCH 40 PRE-PIEK SAND PACK: 4'-10'
MATERIAL: 10/20 SAUCA SANO DRILLING METHOD: DREET JUST WELL DEPTH: $/ \phi'$

SCALE: 1"= ____ PAGE \3_ OF \4


BORING DIAMETER:

- P

Please print, sign and return to the Department of Ecology

RESOURCE PROTECTION V	VELL REPORT	CURRENT	•	ent No. <u>AE11</u>	197
(SUBMIT ONE WELL REPORT PER WE Construction/Decommission ("x" in box)	LL INSTALLED)		Type of Well	("x in hox)	
Construction 394357 Decommission		Type of Well ("x in box) ☐ Resource Protection ☐ Geotech Soil Boring			
ORIGINAL INSTALLATION Notice of Intent?	Numher:	Property Owner Por		Ü	
R656280	Site Address State a	• •			
Consulting Firm				. Th	
Unique Ecology Well IDTag No. AKA 425		City Olympia	-		
		Location <u>NE</u> 1/4-1/4		Twn <u>18</u> R <u>2</u>	
WELL CONSTRUCTION CERTIFICATION accept responsibility for construction of this well, and its		EWM or WWM			
Washington well construction standards. Materials used reported above are true to my best knowledge and belief.	and the information	Lat/Long (s, t, r still REQUIRED)	_	Min Se	
☑ Driller ☐ Engineer ☐ Trainee		Tax Parcel No		MinSe	c
Name (Print Last, First Name) Wiese, Mark Driller/Engineer /Trainee Signature	eyen	Cased or Uncased D	iameter	Static Level	
Driller or Trainee License No. 2432		Work/Decommissio	n Start Date 11/	05/2010	
If trainee, licensed driller's Signature and I	License Number:	Work/Decommissio	n Completed Da	ate <u>11/05/2010</u>	
Construction Design	Well I	Data	For	mation Descript	ion
	Decommissioned a 173.160.460 1B Original well log atta				
·				RECEIN	010
	SCALE: 1"= P	AGE OF	V	VA State Dep. of Ecology (S	artment SWRO)

Date(s) Drilled	01/02/07	Logged By	TSG	Checked By	КМВ
Drilling Contractor	ESN-NW	Drilling Method	Direct Push	Sampling Methods	Grab; 5035A for VOCs
Auger Data	NA	Hammer Data	Pneumatic	Drilling Equipment	Stratoprobe
Total Exploration Depth (ft)	12	Ground Surface Elevation (ft)	101.82	Groundwater Elevation (ft)	97.68
Vertical Datum	Assumed (100')	Datum/ System G0	CS - North American - 1983	Easting(x): Northing(y):	47.0483000631 -122.896724939

LOG OF MONITORING WELL MW01 (AKA 425)

Phase II ESA/Hands on Children's Museum

Project Location: Olympia, Washington

Project Number: 0615-033-00

Figure B-4 Sheet 1 of 1

Turk, Jon

From: Rick Craddock <rickc@bp-construction.com>
Sent: Wednesday, June 20, 2012 12:32 PM

To: Turk, Jon Clint McDaniels

Subject: FW: Arcadia Decommission Well Reports

Attachments: 2842447181.pdf

As requested

Rick Craddock | Berschauer Phillips | 360.507.1100

From: John Newby [mailto:johnn@dlbgeneral.com]

Sent: Wednesday, June 20, 2012 12:13 PM

To: Rick Craddock

Subject: FW: Arcadia Decommission Well Reports

Rick,

Here is the decommission reports for the wells at East Bay.

Thanks,

John Newby, Office Manager DLB Earthwork Company P.O. Box 12599 Olympia, WA 98508 Ph: 360-943-6278

Fax: 360-943-8659

email: johnn@dlbgeneral.com

www.dlbgeneral.com

From: Jason Zack [mailto:jasonzack@comcast.net]

Sent: Wednesday, June 20, 2012 12:05 PM

To: johnn@dlbgeneral.com

Subject: Arcadia Decommission Well Reports

This should be easier.

Thanks,

Jason Zack General Manager Arcadia Drilling Inc. 360-426-3395 360-490-6711 jasonzack@comcast.net

Z howeriv

Pds#Vhdufk Wh{w#Vhdufk Irup v Vlwh#Lqir Frqwdfv#Kv Zdwhu#Sruwdo WH[W VHDUFK#UHVXOWV Back New Search ¿ Search Criteria Used:枢 ho蝌dj框G=dnd757 ¿ Wkhuh#duh#2#zhodkrjv#wkdw#pdwfk#|rxu#vhdufk#fulwhuld1# ¿ Wkh#uhvxow#duh#vruwhg#e| Z hod#wdj#G 🔯 <u>Grz gordg#do#5#p djhv###;</u># Grz gordg#do#5#pdwd#.hfrugv###;# 🖨 <u>Sulgw#wk.lv#sdjh</u>###;# <mark>€</mark> Khos #G lvsad|lqj 4#0#5#ri#2##z hadorj#uhvxow######Vruw#uhvxow#e|# Well Tag ID 料 CITATION MGMT 0 ₩ N ln z #SG I A # $Sxedf\#0dqg\#xuyh \mid = \#Z/QZ/\#1036/\#10530Q/\#10370H/\#1d\{\#SdufhdQxpehu=\#eolqn, defined for the first of the firs$ Frxqw = #S hufh/#Z hospgguhvv=#MR Y LWD #EOYG #DQG #P HULG LDQ /#P LOWR Q Z hostOrj#G=#6<<37; /#Z hostWdj#G=DND757/#Qrwlfh#ri#qwhqwtQxp ehu=#J3984; 7 Z hoo#G ldp hwhu=#31:8#lq1#/#Z hoo#G hswk=#4;#iw1# Z hostw | sh=#Uhvrxufh#Surwhfwlrq Z hodfrp sdnwlrqfG dwh=#4324625337/#Z hodf0rj#UhfhlyhgfG dwh=3424<25338 $\verb|Frxqw| = \# kxuvwrq/\#Z \ hodpgguhvv = \# WDWH\#DQG \# HIIHUVRQ/\#RO\P SID$ Z hoz#Orj#G=#79:46</#Z hoz#Wdj#G=DND757/#Qrwlfh#ci#qwhqw#Qxp ehu=#J39895; Z hoo#G ldp hwhu=#5#lq1 /#Z hoo#G hswk=#48#lwl# Z hos#W | sh= Uhvrxufh#Surwhfwlrq Z hod#rp sdnwlrq#Gdwh= 342352533: /#Z hod#Orj#Uhfhlyhg#Gdwh=#342492533: Total Result Pages: 1

Hfrorj | #Krp h#;#Uhsruw#d#Surednp #;#Gdwd#Glvfodlp hu#;#Sullydf | #Srdf | Frs | uljkw E K dvk kgj wcq # wdwh # Ghsduwp hqw # i # Hfrorj | # 5348 i # Dow # Uljkw # Uhvhuyhg1

nstruction/Decommission ("x			Type of Well ("x" in circle) =
Construction Decompission ORIGINAL IN	ISTALLATION Notice		O Geotech Soil Boring
of Intent Nu	umber	Property Own	er <u>Citation Management</u>
Decommission ORIGINAL IN of Intent No nsulting Firm /nSigh,	+ Gentagic	Site Address	Sovita Blud + Meridian
nsulting Firm	CC 10-912	Gine Mi	1ton County: Pierce
ique Ecology Well ID g No:	KA 424		
. CONSTRUCTION CERTIFICATI	ON I constructed and/or accept	Location <u>Sw</u>	1/4 NW1/4 Sec 3 Two 20N R 4 EWY OF OR WWW.
	and its compliance with all Washington fand the information reported above are		r Lat Deg Lat Min/Sec
to my best knowledge and belief.	A	still REQUIRE	Long Deg Long Min/Sec
Tmines Name (Print) Anisa Newmar	Tax Parcel No)
lar/Engineer/Trainee Signature	ovinin / world	 Cased or Unca 	ased Diameter Static Level
ller or Trainee License No.	<i>4508</i>	- W!/D	nission Start Date
rainee, licensed driller's		Work/Decoming	nission Completed Date
nature and License no.		J Work/Decomn	
Construction/Design	Well D	ata	Formation Description
	Flush mount CONCRETE SURFAR 0-2 BACKFILL: 2-7 TYPE: wythen # PVC SCREEN: 8 SLOT SIZE: 01 TYPE: 3/4" prepa	CE SEAL: 3 bentonike 6-8 -18 0 ck screen	RECEIVED JAN 1 9 2005 DEPARTMENT OF ECOLOGY WELL DRILLING UNIT
	WELL DEPTH	<u>/8´</u>	

Please print, sign and return to the Department of Ecology RESOURCE PROTECTION WELL REPORT (SUBMIT ONE WELL REPORT PER WELL INSTALLED) Type of Well ("x in box) Construction/Decommission ("x" in box) 215447 Resource Protection ○ Construction Geotech Soil Boring ☐ Decommission Property Owner Port of Olympia ORIGINAL INSTALLATION Notice of Intent Number: Site Address State & Jefferson Consulting Firm GeoEngineers City Olympia County Thurston Unique Ecology Well IDTag No. AKA 424 Location NE 1/4-1/4 SW 1/4 Sec 14 Twn 18N R 2W EWM 🔲 or WWM 🔀 WELL CONSTRUCTION CERTIFICATION: I constructed and/or accept responsibility for construction of this well, and its compliance with all Lat Deg ____ Min ___ Sec ____ Lat/Long (s, t, r Washington well construction standards. Materials used and the information reported above are true to my best knowledge and belief. still REQUIRED) Long Deg ____Min___Sec ____ ☐ Driller ☐ Engineer ☒ Trainee Tax Parcel No. Cased or Uncased Diameter 2' Static Level 5' Name (Print Last, First Name) Haun, Marty Driller/Engineer /Trainee Signature Driller or Trainee License No. T2827 Work/Decommission Start Date 1/2/07 Work/Decommission Completed Date 1/02/07 If trainee, licensed driller's Signature and License Number: Musia Harndy 2508 Well Data Formation Description Construction Design MONUMENT TYPE: 8" FLUSH MOUNT CONCRETE SURFACE SEAL: SANO W/ GRAVEL ANNULAR SPACE: 4 BACKFILL: 1'-9'
TYPE: BOUTONITS #8 PVC BLANK: $\phi - i\phi'$ SCREEN: 10 -15 SLOT SIZE: , 010 TYPE: 3/4" PUC SCH 40 XE-PICK SAND PACK: 9-15 MATERIAL: 10/20 SILCA SANO DRILLING METHOD: DIRECT AUSH WELL DEPTH: 15' BORING DIAMETER:

SCALE: 1"= ____ PAGE 2 OF 4

Appendix B: Sampling and Analysis Plan

PARCEL 4 AND 5 IA

SAMPLING AND ANALYSIS PLAN

Prepared for
The City of Olympia and the LOTT Alliance
Olympia, WA
6/23/2010

THE CITY OF OLYMPIA / THE LOTT ALLIANCE PARCEL 4 AND 5 INTERIM ACTION SAMPLING AND ANALYSIS

Prepared for
The City of Olympia and the LOTT Alliance
Olympia, WA
6/23/2010

Brown and Caldwell 724 Columbia Street NW, Suite 420 Olympia, WA 98501

TABLE OF CONTENTS

LIST OF	F TABLES	III
LIST OF	- ACRONYMS	IV
1. PRO.	JECT MANAGEMENT	1-1
1.1	Monitoring Program Task Organization	1-1
	1.1.1 Involved Parties and Roles.	1-1
	1.1.2 Project Manager Role	1-2
	1.1.3 Persons Responsible for SAP Update and Maintenance	1-2
1.2	Problem Definition	1-3
1.3	Regulatory Agencies and Applicable Regulatory Limits	1-3
1.4	Project Description	1-3
1.5	Project Schedule	1-3
1.6	Sampling Constraints	1-3
1.7	Sampling Objectives	
1.8	Quality Control Limits	
1.9	Training and Certification	
1.10	Documents and Records	
	1.10.1 Project Documents, Records, and Electronic Files	
	1.10.2 Retention of Project Documentation	
	1.10.3 Distribution of SAP Revisions	1-6
2. DATA	A GENERATION AND ACQUISITION	
2.1	Sampling Process Design	2-1
2.2	Sampling Methods	
2.3	Confirmation Sampling	2-1
2.4	Stockpile Sampling	
2.5	Sample Designation and Labeling	2-5
3. SAMI	PLE HANDLING AND CUSTODY	3-1
3.1	Sample Handling	
3.2	Sample Collection Documentation	3-1
3.3	Custody	3-1
3.4	Laboratory Chain-of-Custody Procedures	3-4
3.5	Analytical Methods	3-4
3.6	Sample Archival	3-5
4. DOCI	UMENTATION, RECORDS, AND DATA PACKAGES	4-1
4.1	Project Documentation and Records	
4.2	•	
	4.2.1 Paper Copy Data Package	
	4.2.2 Electronic Data Deliverable (EDD)	

4.3 Data Tracking, Storage, and Control	4-3
5. LIMITATIONS	E
Report Limitations	
REFERENCES	
REFERENCES	

LIST OF TABLES

Table 1-1 Staff	1-2
Table 1-2. Program Timeline	
Table 1-3. Parcel 4 and 5 COPCs	
Table 2-1. Sample Locations and Analytical Constituents	2-3
Table 2-2. Stockpile Sample Quantity Guide	2-5
Table 3-1. Sample Handling and Custody	3-3

LIST OF ACRONYMS

BC Brown and Caldwell °C degrees Celsius

CCL contaminant candidate list
COPC constituent of potential concern
CRM certified reference materials

DI Deionized water
DO dissolved oxygen
DOC dissolved organic carbon

DRL detection limits for purposes of reporting (Title 22)

DQO data quality objective EC electrical conductivity

Ecology Washington State Department of Ecology

EDD electronic database deliverable

EDMS environmental database management system
EPA United States Environmental Protection Agency
GC/MS gas chromatography/mass spectrometry
HPLC high performance liquid chromatography
ICP/MS inductively coupled plasma mass spectrometry

IS internal standard

LCM laboratory control material LCS laboratory control spike

LCSD laboratory control spike duplicate
MCL maximum contaminant levels
MDL method detection limit

µg/L micrograms per liter

μS/cm microsiemens per centimeter

mg/L milligrams per liter
MP Monitoring Plan
MPN most probable number

MS matrix spike

MSD matrix spike duplicate

N nitrogen

NIST National Institute of Standards and Technology

P phosphorus QA quality assurance

QAPP Quality Assurance Project Plan

QC quality control

RPD relative percent difference

SM Standard Methods for the Examination of Water and Wastewaterr

SOP standard operating procedure

SWAMP Surface Water Ambient Monitoring Program

TOC total organic cargon TRL target reporting limit

USEPA United States Environmental Protection Agency

USGS United States Geological Survey

WQ water quality

PARCEL 4 AND 5 INTERIM ACTION SAMPLING AND ANALYSIS PLAN

1. PROJECT MANAGEMENT

1.1 Monitoring Program Task Organization

Organization of the Project team for the Parcel 4 and 5 Interim Action and associated tasks are described in the following sections.

1.1.1 Involved Parties and Roles.

This Sampling and Analysis Plan (SAP) has been prepared for the Parcel 4 and 5 Interim Action. Within this SAP are descriptions of methods and functional activities employed to collect monitoring data collected for Parcel 4 and 5 Interim Action. Specific details regarding the quality assurance for data collected are not included herein, but are discussed separately in the Quality Assurance Project Plan. Together, these two documents serve to completely describe the data collection and quality assurance / quality control (QA/QC) program that will be implemented as part of the Interim Action.

Table 1-1 Staff					
Name	Affiliation	Title	Contact Information		
Steve Teel	Washington State Department of Ecology	Site Manager	ph:(360) 407-6247 <u>stee461@ecy.wa.gov</u>		
Rick Dougherty	City of Olympia	Project Manager	ph:(360) 753-8485 <u>rdougher@ci.olympia.wa.us</u>		
Eric Hielema	LOTT Alliance	Project Manager	ph:(360) 528-5705 <u>erichielema@lottonline.org</u>		
TBD	Brown and Caldwell	Project Manager	ph:(360) 943-7525		
TBD	Brown and Caldwell	QA Officer	ph:(360) 943-7525		
TBD	Brown and Caldwell	Data Management Coordinator	TBD		
TBD	Contact Analytical Lab (TBD)	Laboratory Director	TBD		
Kate Green	Brown and Caldwell	Sampling Support	ph:(360) 943-7525 kgreen@brwncald.com		
John Turk	Brown and Caldwell	Technical Advisor	ph:(360) 943-7525 jturk@brwncald.com		

Notes:

QA = Quality Assurance

BC = Brown and Caldwell

1.1.2 Project Manager Role

The project manager is assigned primary oversight for data collection.

The QA Officer is responsible for performing samplle collection activities, coordinaing sample analysis and data validation, performing sample data verification / validation, perparing draft, final draft, and final reports, ensuring that project work performed meets the requirements of the SAP, responding to requested deviations from the SAP, reporting on QA matters to the Client Project Manger and Ecology, obtaining approvals, as needed, for all phases of work, and communicating with the Client Project Manager on matters relating to the project. Key personnel assigned to the project will have reviewed the QAPP and SAP, and will be instructed by the Project Manager regarding the requirements of the data collection program. The Project Manager will work with the Client Project Manager and Department of Ecology to ensure that SAP objectives are being met and the team will continually assess the effectiveness of the data collection program and recommend modifications, as needed.

1.1.3 Persons Responsible for SAP Update and Maintenance

If necessary, the Project Manager, with concurrence from the Client Project Manager, may revise and update the SAP after presenting the evidence for such changes and obtaining the approval from

Department of Ecology. Revisions that occur after the original SAP is approved will be indicated on the SAP title page and will be distributed to all parties listed in Table 1-1.

1.2 Problem Definition

Samples will be collected to confirm the extent of contaminated areas and to classify stockpiled soils as suitable for general reuse, suitable for reuse in capped areas, or to designate soil from disposal. Sample results for soils designated for disposal will be communicated to the disposal facility.

1.3 Regulatory Agencies and Applicable Regulatory Limits

The project is under the oversight of the Washington State Department of Ecology. Cleanup Levels and Remediation Levels for the project are established under the Model Toxics Cleanup Act (MTCA) and defined in the Interim Action Work Plan.

1.4 Project Description

The project was designed to remove contaminated soil from the site and to classify soils remaining on the site as suitable for general reuse or suitable for reuse in capped areas. A detailed description of the constituents to be monitored and the information used to develop the list of constituents is discussed in the Interim Action Work Plan and the SAP.

1.5 Project Schedule

The anticipated schedule for tasks associated with Parcel 4 and 5 Interim Action is shown in Table 1-2 below. Specific project schedules will be described in the SAPs.

Table 1-2. Program Timeline						
Task	Anticipated Date of Initiation	Anticipated Date of Completion	Deliverable			
Draft IA Work Plan, SAP, and QAPP		6/9/2010	Draft SAP and QAPP			
Final IA Work Plan, SAP and QAPP	7/6/2010	8/6/2010	Final SAP and QAPP			
Implement Parcels 4 and 5 Interim Action	September 9, 2010	November 30, 2010				
Draft Parcels 4 and 5 Interim Action Report	September 9, 2010	Within 60 days after field work is completed	Draft Parcels 4 and 5 Interim Action Report			
Incorporate Ecology's written comments on the Draft IA Report	Upon receipt of Ecology's written comments.	Within 30 days after receipt of Ecology's written comments on the draft report	Final IA Report			

1.6 Sampling Constraints

Sampling constraints typically encountered during sampling include safety of sampling personnel and cost considerations.

Sampling results must be complete before major earth-moving activities (stockpile disposal, excavation backfill, etc.). Timing constraints or missed events are therefore not anticipated.

1.7 Sampling Objectives

Sampling activities at the site will consist of confirmation soil sampling and stockpile soil sampling. The objective of confirmation soil sampling will be to deliniate the extent of contamination in areas suspected to exceed Interim Action Remediation Levels (IARLs). The objective of stockpile soil sampling will be to classify stockpiled material as suitable for general reuse, suitable for reuse in capped areas, or designated for disposal. Descriptions of sampling procedures are provided in Section 2. Constituents of Potential Concern (COPCs) and proposed sampling methods are summarized in Table 1-3.

Table 1-3. Parcel 4 and 5 COPCs					
Group	COPC	Proposed Methods	Reporting Limits		
Metals	Arsenic	EPA 6020A	0.2 mg/Kg		
	Cadmium	EPA 6020A	0.2 mg/Kg		
	Lead	EPA 6020A	1 mg/Kg		
	Copper	EPA 6020A	0.2 mg/Kg		
	Nickel	EPA 6020A	0.5 mg/Kg		
PAHs	cPAHs	EPA 8270C / EPA 8270C-SIM	0.01 mg/Kg		
Dioxins / Furans	Dioxins / Furans	EPA 1613 / EPA 8290	3 pg/g		
Petroleum	TPH-D	NWTPH-Dx	25 mg/Kg		
Hydrocarbons	TPH-HO	NWTPH-Dx	25 mg/Kg		
	TPH-G	NWTPH-Gx	10 mg/Kg		
VOCs	Benzene	EPA 8260B	0.01 mg/Kg		
	Toluene	EPA 8260B	0.01 mg/Kg		
	Ethylbenzene	EPA 8260B	0.01 mg/Kg		
	Total Xylenes	EPA 8260B	0.03 mg/Kg		
SVOCs	Total Naphthalenes	EPA 8270C / EPA 8270C-SIM	0.3 mg/Kg		

1.8 Quality Control Limits

Data Quality Objectives, project quality, objectives, and the measurement performance criteria for sampling are provided in the QAPP.

1.9 Training and Certification

Field personnel that participate in sampling will have reviewed the QAPP and SAP for the specific Site project, and will be instructed by the Project Manger. Training will occur prior to the beginning of the program and semi-annually thereafter through QC sessions, where field procedures will be reviewed; new personnel will be trained prior to performing any work in the program. Field personnel will have been trained prior to the first sampling event in sample collection procedures (including QA/QC, grab sampling techniques, completing laboratory chain-of-custody forms, and proper handling of water samples), and field analysis (including instrument calibration, data recording procedures, and interpretation of collected data).

All laboratories utilized to perform analytical services will be certified by the NELAC. Laboratory personnel will be certified and trained as required by the laboratory's quality assurance manuals. The laboratory director of the primary analytical lab will be provided a copy of the QAPP.

Documentation of training for field staff will be maintained by Brown and Caldwell. Documentation will include a record of the training topic, training date, name and title of instructor, whether the class was an initial training or a refresher course, and whether the course was completed satisfactorily.

1.10 Documents and Records

1.10.1 Project Documents, Records, and Electronic Files

The documents and records that will be generated during this project include the following:

Quality Assurance Project Plan: The QAPP (this document) contains details on the QA and QC procedures that will be implemented throughout the project.

Sampling and Analysis Plans: The SAPs contain information regarding sampling locations, frequencies, and sample collection methods.

Field Records. The Brown and Caldwell Project Manager or other designee will maintain all field records, including field data sheets documenting results of field analyses and QC samples, a logbook documenting equipment maintenance and calibration, and sample collection and handling documentation (copies of chain-of-custody forms, shipping receipts, etc.).

Laboratory Records. Analytical labs will maintain sample receipt and storage documentation, instrument calibration logs, raw data and QC sample records.

Data validation records. Field data sheets, field QC results, chain-of-custody forms, and lab reports from each sampling event will be reviewed by the QA Officer and a data validation record will be generated which summarizes the quality of the collected data.

Project database: The Brown and Caldwell Olympia, WA office will be used to store all laboratory and field data gathered during this project. The database will be continually updated and managed as described in Section 2.9. At the completion of the project, data may be electronically submitted to the City of Olympia and the LOTT Alliance upon request.

1.10.2 Retention of Project Documentation

The original data sheets, equipment maintenance/calibration logs, chain-of-custody forms, lab reports, field records, training documents and data validation records will be stored by Brown and Caldwell until the end of the project. All records will be maintained by Brown and Caldwell and analytical labs for five years after project completion.

1.10.3 Distribution of SAP Revisions

Revisions that occur after the original SAP is approved will be indicated on the SAP title page and will be distributed by the Project Manager to all parties listed in Table 1-1.

PARCEL 4 AND 5 INTERIM ACTION SAMPLING AND ANALYSIS PLAN

2. DATA GENERATION AND ACQUISITION

2.1 Sampling Process Design

The individual Site SAPs will provide a detailed description of the sampling approach and rationale that was used to select sampling locations, sampling frequencies, and constituents that will be analyzed.

2.2 Sampling Methods

Proper sample collection procedures are essential to ensure that representative and reliable data are being collected. Sample collection will be performed according to the SOP for Sample Collection, Documentation, and Delivery, included as Appendix I to the IA Work Plan. In general, the QA procedures that will be followed during sample collection include the following:

- Samples from depths less than 4 feet will be collected by hand directly from the sidewall
 of the excavation. Samples from depths greater than 4 feet will be collected by using the
 excavator bucket.
- Sample collection will be performed in such a manner as to minimize disturbance of surrounding soils.
- Soil grab samples will be transferred to sample jars carefully to minimize exposure to external influences such as wind, dust, or rain.
- Sample jars will be labeled (e.g., date, time, location, method) immediately after collection.
- Sampling date and time and sampler's initials will be added to the chain of custody form immediately after sampling.
- If problems occur during sampling, the QA Officer will be notified. The source of the
 problem will be identified and the appropriate corrective action taken. These incidents
 will be documented in the project folder and filed with the appropriate data package. If
 the problem compromised the quality of collected data, the data will be flagged within the
 database.

2.3 Confirmation Sampling

Samples will be collected during excavation both to delineate excavated areas and to characterize excavated material stockpiled on-site. A total of five locations exceed IARLs and will be excavated: TP-02, DP-11, -17, -18, and -21. Table 2-1 shows planned sample depths and analytical constituents. Hotspots will be initially excavated in 20-foot by 20-foot excavation cells. The excavation cells may be made smaller with permission from Ecology, but not larger. The first

excavation cells will be centered at the coordinates of the samples with concentrations exceeding IARLS (DP-17 and DP-21 for arsenic, DP-11 for lead, DP-18 for TPH-HO, and TP-02 for dioxins/furans. After the first cell is excavated, adjacent 20-foot by 20-foot cells may be excavated based on field screening results. These excavations will constitute the first excavation round.

Confirmation samples will be collected during the first excavation round. Vertical sets of confirmation samples will be collected in each sidewall of each excavation cell at the depths shown in Table 2-1. A vertical set will include one sample from each lithologic layer. Samples from depths less than 4 feet will be collected by hand directly from the sidewall of the excavation. Samples from depths greater than 4 feet will be collected by using the excavator bucket. A floor sample in the center of each cell will also be collected by using the excavator bucket. Sample collection is shown schematically in Figure 2-1.

Table 2-1. Sample Locations and Analytical Constituents						
Location	Sample Type	Depth of Contamination (feet)	Hotspot Constituent	Initial Excavation Depth (feet)	Initial Sidewall Sample Depths (feet)	Analytical Constituents
TP-02	Sidewall and Bottom Confirmation Samples	2	Dioxins/Furans	10	0-2, 2-3, 3-4, 7-8*	Dioxins/Furans
DP-11	Sidewall and Bottom Confirmation Samples	8-10	Lead	12	8-10*	Arsenic, Lead, Copper, and Nickel
DP-17	Sidewall and Bottom Confirmation Samples	10-12	Arsenic	15	10-12*	Arsenic, Lead, Copper, and Nickel
DP-18	Sidewall and Bottom Confirmation Samples	10-12	TPH-HO	15	10-12*	TPH-D, TPH-HO, BTEX, and lead
DP-21	Sidewall and Bottom Confirmation Samples	6-8	Arsenic	10	6-8*	Arsenic, Lead, Copper, and Nickel
Stockpiles	Stockpile samples	NA	NA	NA	NA	All Constituents of Concern (See Table 3-2).

Notes:

NA - Not Applicable

See Sampling and Analysis Plan Table 2-1 for quantity of stockpile samples.

Soil from the excavations of locations TP-02, DP-11, DP-17, and DP-21 will be field screened for the presence of TPH. Analyses for TPH (all ranges) and BTEX will be added if field screening indicates potential TPH presence.

Adjacent cells may be excavated in a second excavation round following the first set of sample collection. An adjacent cell will be excavated of any sample from the adjoining wall exceeds IARLs.

If necessary, the City and LOTT will continue the excavation of areas known to exceed IARLS (as identified in Figures 3-4 and 3-7) beyond the property boundaries of Parcel 4 and 5. These areas will be excavated until COPC concentrations in confirmation samples collected per Table 2-1 are below the IARLs.

^{*} Samples will be collected from the depth interval shown and including each lithologic unit.

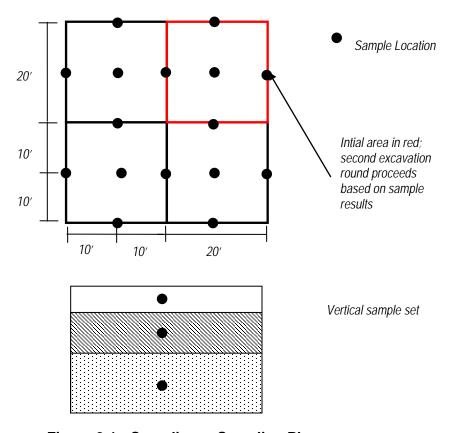


Figure 2-1: Compliance Sampling Plan

2.4 Stockpile Sampling

Separation of material into stockpiles will be directed by the BC PM or their designee. Stockpiles comprised of material from Parcel 4 will be kept distinct from stockpiles comprised of material from Parcel 5. The BC PM or their designee will segregate material into stockpiles based on field screening analysis methods, including PID headspace analysis, sheen testing, visual and olofactory observations, or other appropriate criteria. In addition, the BC PM or their designee will attempt, to the extent practicable, to segrate material so that distict lithologic units are kept separate. Time constraints or site constraints may not always allow for separation by lithology.

Samples will be colleted from stockpiles based on stockpile size. Stockpile dimensions will be measured and stockpile size estimated to facilitate both sample collection and measurement and payment during project implementation. The estimator will be a BC or contracted professional and will estimate stockpile size using current local, state, or national standard methods. The estimator will also conduct Proctor testing to estimate the dry density, optimum moisture, and maximum acheivable compaction. The stockpile sampling schedule is summarized in Table 2-2. Stockpile samples will be analyzed for all of the constituents of concern (see Interim Action Work Plan Table 3-2).

Table 2-2. Stockpile Sample Quantity Guide					
Stockpile Size (Cubic Yards)	Sample Quantity				
0 – 100	3				
101 – 500	5				
501 – 1000	7				
1001 – 2000	10				
> 2000	10 + 1 for each additional 500 CY soil				

Samples will be collected such that they are spatially distributed around the stockpile. Samples will be collected from the dominant lithology in the stockpile. The BC PM or their designee may collect additional stockpile samples if, in the opinion of the BC PM or the Client, additional samples are warranted based on field conditions.

Stockpiles will be marked with a placard system to designate their usage. A separate placard color will denote unsampled stockpiles, stockpiles sampled and awaiting analytical results, stockpiles with no sample results exceeding IACLs (soils suitable for general reuse), stockpiles with sample results exceeding IARLs (soils suitable for reuse in capped areas), and stockpiles with sample results exceeding IARLs (soils for off-site disposal). Newly excavated material may only be added to stockpiles that have not been sampled. Stockpile information will be recorded on the placards, including the stockpile number, the date(s) of excavation, stockpile size, the stockpile sample number(s), the date of sampling, the concentrations of any COPCs exceeding IARLs, the stockpile status, and the date that the stockpile is authorized for reuse or disposal.

2.5 Sample Designation and Labeling

Each sample collected will be identified by confirmation excavation or stockpile number, location number, and by depth in feet if appropriate. Confirmation sample numbers will begin with the "CNF" designation, while stockpile samples will begin with the "SPL" designation. Location numbers for each sample will be clearly recorded on sketches in the logbooks and sample data sheets.

For instance, a soil sample collected from Confirmation Excavation 1, location 1 at a depth of 7 feet would be identified as "CNF-1-1-7". The fifth sample from stockpile one would be identified as "SPL-1-5".

Each sample container will be individually labeled with the label affixed directly to the sample container. Information that will be included on the label in the field includes preservation, analysis

required, date and time of collection, location, and the sampler's initials. All of these data will be written with indelible waterproof ink. Any additional information regarding the sample collection will be noted in the field logbook; this additional information can include notations if the samples are composite samples or if preservatives were added in the field, for example.

PARCEL 4 AND 5 INTERIM ACTION SAMPLING AND ANALYSIS PLAN

3. SAMPLE HANDLING AND CUSTODY

3.1 Sample Handling

Once sample containers have been filled they will be labeled, placed in re-sealable plastic bags (e.g. *Ziploc* ®), and stored in a cooler on ice to maintain a temperature of approximately 4° C. Identification information for each sample will be recorded in the field logbook when the sample is collected.

3.2 Sample Collection Documentation

The field logbooks used during sampling procedures will include the following information:

- initials of person making entry
- date and time of sample collection
- sampling location
- analyses to be performed
- preservation method
- field meter or screening information, if applicable
- general remarks (weather conditions, etc.)

All entries will be made in indelible ink with a ballpoint pen and will be written legibly. Entry errors will be crossed out with a single line, dated, and initialed by the person making the correction. Field logbooks will be reviewed periodically by the BC Project QA Officer, as appropriate. Additionally, a field sampling data sheet will be completed for each sample.

3.3 Custody

A chain-of-custody form will be completed at the time of sample collection and prior to sample shipment or release. The samples will be transported or shipped to the analytical lab in insulated containers within the appropriate holding time and will be accompanied by a chain-of-custody form that identifies the sample bottles, date and time of sample collection, and analyses requested. If shipment is needed, the samples will be packaged and shipped in accordance with U.S. Department of Transportation standards. The original chain-of-custody will be given to the lab with the samples and Brown and Caldwell will retain a copy for their records. Once received by the laboratory, a sample receipt and storage record will be generated. The recommended sample container type and volume, initial preservative and holding time for analytes that may be tested is shown in Table 3-1.

The turn around time for the analytical laboratory will typically be within ten days from the sampling date. After analyses, all samples will be disposed of in accordance with federal, state, and local requirements.

Table 3-1. Sample Handling and Custody							
Group	Parameter	Container ^a	Initial Preservative ^a	Max Allowable Holding Time			
				Extractionb	Analysisc		
Metals	Arsenic	4-oz glass jar w/ Teflon lined lid	Ice to 4° C		6 months		
	Lead	4-oz glass jar w/ Teflon lined lid	Ice to 4° C		6 months		
	Cadmium	4-oz glass jar w/ Teflon lined lid	Ice to 4° C		6 months		
	Copper	4-oz glass jar w/ Teflon lined lid	Ice to 4° C		6 months		
	Nickel	4-oz glass jar w/ Teflon lined lid	Ice to 4° C		6 months		
Semi- Volatiles	cPAHs	4-oz glass jar w/ Teflon lined lid	Ice to 4° C	14 days	40 days		
	Total Naphthalenes	4-oz glass jar w/ Teflon lined lid	Ice to 4° C	14 days	40 days		
Dioxins / Furans	Dioxins / Furans	4-oz glass jar w/ Teflon lined lid	Ice to 4° C	28 days	40 days		
ТРН	TPH-G	EnCore Sampler	Ice to 4° C, preserve w/ methanol w/ in 48 hours		14 days		
	TPH-D	4-oz glass jar w/ Teflon lined lid	Ice to 4° C		28 days		
	TPH-HO	4-oz glass jar w/ Teflon lined lid	Ice to 4° C		28 days		
Volatiles	Benzene	EnCore Sampler x 3, o-ring cap	Ice to 4° C, preserve w/ methanol or sodium bisulfate w/ in 48 hours		14 days		
	Toluene	EnCore Sampler x 3, o-ring cap	Ice to 4° C, preserve w/ methanol or sodium bisulfate w/ in 48 hours		14 days		
	Ethylbenzene	EnCore Sampler x 3, o-ring cap	Ice to 4° C, preserve w/ methanol or sodium bisulfate w/ in 48 hours		14 days		
	Total Xylenes	EnCore Sampler x 3, o-ring cap	Ice to 4° C, preserve w/ methanol or sodium bisulfate w/ in 48 hours		14 days		

^a Sample containers, volumes, and preservatives will be reevaluated once contract laboratories are chosen and may be changed based on

recommendations from the lab(s).

^b Starting from the date of collection

^c Starting from the date of extraction; if no extraction, starting from the date of collection

3.4 Laboratory Chain-of-Custody Procedures

Laboratory COC procedures for sample receiving and log-in, sample storage, tracking during sample preparation and analysis, and storage of data will be described in the laboratory SOPs and laboratory Quality Manuals of the selected laboratory. Minimum requirements are described below.

On arrival at the laboratory, all samples will be inspected thoroughly to confirm that the integrity of the samples and containers has not been compromised. The cooler custody seals will be inspected to verify that they are still intact and were properly signed and dated by the field sampling team. The temperature of the cooler temperature blank will be determined and recorded. If the temperature of the cooler blank does not fall into the range of 4 ± 2 °C the Project Manager will be notified immediately. The exception to this will be if samples are delivered from the Site same-day to the laboratory. In this circumstance, the cooler temperature blank and samples may not have cooled during transport and elevated temperatures will be considered acceptable as long as ice is present in the cooler. The individual sample containers will be inspected to verify that each has a sample label. The condition of the samples will be noted on the COC form.

The sample containers will be checked against the accompanying COC to verify that the cooler contents are identical to the samples described on the COC documents. If discrepancies exist, they will be reported to the Laboratory QA Officer, who will immediately notify the BC PM. The problem will be resolved, in writing, before analytical work begins. After the Laboratory Sample Custodian has determined that the samples are in satisfactory condition and the documents are in order, a sample log-in sheet will be initiated and will serve as documentation of the condition of the samples upon receipt and their assigned laboratory numbers.

The sample log-in sheet will include information from field notes from the COC forms that reflect any special care or concerns that should be taken with the sample (e.g., the sampler suspects high concentration of an analyte due to field observations or historical concentration).

After the samples have been entered into the laboratory tracking system, copies of the log-in forms and COC records will be sent to the BC Project QA Officer, who will verify that the specified samples and parameters correspond to the samples and parameters identified in the SAP. The samples will be placed in a secured storage area, under the conditions called for by the analytical method, until removed for analysis.

Samples delivered on Saturday will be received by the Laboratory Sample Custodian and placed in a secure location until they can be logged in on the next business day.

3.5 Analytical Methods

Field measurements will be conducted by Brown and Caldwell staff using portable meters and field test kits that employ EPA-approved methods. Field measurements will be taken using the procedures recommended by the manufacturer of the meter or test kit and procedures discussed in the SOP for Field Data Collection, where applicable. Results of all field measurements will be recorded in field logbooks and on field data sheets.

Laboratory analyses will be conducted by NELAC-certified analytical laboratories using methods approved by the EPA and Washington State. Proposed analytical methods are provided in Table 1-

3. Alternative methods may be requested by the laboratories performing analyses. These alternative methods may be used only upon written approval from the QA Officer. Major laboratory equipment or instruments that will be utilized include a gas chromatography/mass spectrometer (GC/MS), inductively coupled plasma mass spectrometer (ICP-MS), high performance liquid chromatography (HPLC), automated colorimeter, ion chromatograph, and a carbon detector. If any instrument failures occur, the laboratory will take immediate corrective action and notify the QA Officer if the quality of sample results was compromised.

3.6 Sample Archival

Samples and sample extracts for all analyses will be held under custody at 4 ± 2 °C by the laboratory for a minimum of 60 days after the laboratory's final report is issued.

PARCEL 4 AND 5 INTERIM ACTION SAMPLING AND ANALYSIS PLAN

4. DOCUMENTATION, RECORDS, AND DATA PACKAGES

This section presents the procedures for documentation, records, and data management for the IA sampling.

4.1 Project Documentation and Records

Project documents will be controlled through an organized project filing system. Project and task numbers will be printed on each document. Analytical/technical files will include work products generated during the project. Field books, field observations, photographs, and other field related documents will be prepared and will also be placed in the project files. Laboratory sample results will be controlled, reviewed, and validated as required by the SAP. Original incoming documents will be date-stamped upon arrival and will be placed in the files.

The project manager will contact the analytical laboratories, subcontractor, or private sources prior to receiving the data report to review the report status. This will provide an opportunity to identify potential QA issues or potential delivery delays. This will also provide an opportunity to implement corrective actions when most appropriate.

Data received from the field, analytical laboratories, subcontractors, or private sources will be tabulated on a spreadsheet or database and will be subjected to QC procedures, including comparing raw data to the original source, verifying calculations, and confirming data summaries. Data distribution will not occur until data review has been completed.

Work products will be checked before final use. This includes checking calculations, reports, plans, etc. with various levels of review. The BC PM will be responsible for the review of work as an element of his project responsibilities and for the overall quality of the work. One or more discipline-specific Technical Director(s) may be assigned by the PM. Further, assignments may be made outside the project team, as needed, for QC purposes.

4.2 Laboratory Data Package Deliverables

The laboratory will provide one paper-copy original and one electronic copy (pdf format) of each laboratory data report to the BC PM. EDDs will also be required for the project database. Laboratory deliverables are required within 15 calendar days of receiving samples.

4.2.1 Paper Copy Data Package

The data package shall consist of the following, at a minimum:

Detailed Case Narrative:

Date of issuance.

 $B\ R\ O\ W\ N\quad \texttt{and}\quad C\ A\ L\ D\ W\ E\ L\ L$

- Laboratory analyses performed, modifications to the methods, and impact on the data.
- Any deviations from intended analytical strategy.
- Laboratory batch number.
- Numbers of samples and respective matrices.
- QC procedures utilized and also references to the acceptance criteria.
- Laboratory report contents.
- Project name and number.
- Condition of samples 'as-received'.
- Discussion of whether or not sample holding times were met, and if holding times were not met, a demonstration of the validity of the data.
- Discussion of technical problems or other observations which may have created analytical difficulties.
- Discussion of any laboratory QC checks which failed to meet project criteria and the effect on the data.
- Signature of the Laboratory QA Officer and/or Laboratory Director or designee.
- Description of laboratory data qualifiers used.
- Definitions of acronyms and qualifiers.

Chemistry Data Package:

- Report of analysis with units clearly labeled with supporting raw data and expressed to the appropriate number of significant figures.
- Results of method blanks with supporting raw data.
- Summary table showing relationship of field samples to QC samples.
- Surrogate recovery summaries.
- Laboratory control sample summary with supporting raw data.
- Matrix spike summary with supporting raw data.
- Laboratory duplicate summary with supporting raw data (where applicable).
- Matrix spike duplicate summary with supporting raw data (where applicable).
- Tune summary for gas chromatography/mass spectrometry.
- Initial calibration summary and supporting raw data.
- Continuing calibration summary and supporting raw data.
- Internal standard summary.
- Instrument sensitivity check (CRI or equivalent).
- Interference check sample summary.
- Run logs.
- Sample preparation logs.
- Laboratory method detection limits.
- ICP linear ranges.
- Laboratory acceptance limits for QC samples.
- Internal and external chains of custody.
- Sample raw data.

4.2.2 Electronic Data Deliverable (EDD)

The laboratory shall furnish an EDD for all analyses. The electronic deliverable shall be provided in a flat-file database table populated, but not limited to the following fields:

- FACILITY ID
- LABNAME
- LAB_SAMP
- FIELD_SAMP
- MEDIUM
- SAMP_DATE
- SAMP_TIME
- PARAM
- CAS_NO
- DL_FLAG
- CONC
- UNITS
- QUAL
- DILUTION
- METH ID
- MDL
- PQL
- PROJ_QL
- REC DATE
- EXTR_DATE
- ANALY_DATE

The EDD should include both the results of samples collected in the field and the results of those performed as part of laboratory QA/QC including internal duplicates, check standards, internal spikes, and MS/MSD samples. Results in the EDD shall include surrogate recoveries for each sample expressed as percent (%) recovered. In accordance with WAC 173-340-840(5) and Ecology Toxics Cleanup Program Policy 840 (Data Submittal Requirements), data generated shall be submitted to Ecology in both a written and electronic format. All data collected for the Interim Action will be entered into Ecology's Environmental Information Management (EIM) database.

4.3 Data Tracking, Storage, and Control

The final project files will be maintained by the BC PM. The content of the project file will include, at a minimum, all relevant records, reports, correspondence, logs, field logbooks, laboratory sample preparation and analysis raw data, original laboratory data packages, pictures, subcontractor's reports including data validation reports, assessment reports, progress reports, and chain-of-custody (COC) records/forms. Specific data storage and control requirements are described in the QAPP.

PARCEL 4 AND 5 INTERIM ACTION SAMPLING AND ANALYSIS PLAN

5. LIMITATIONS

Report Limitations

This document was prepared solely for the City of Olympia and the LOTT Alliance in accordance with professional standards at the time the services were performed and in accordance with the contract between Brown and Caldwell and the City of Olympia dated September 4, 2009, and the contract between Brown and Caldwell and the LOTT Alliance dated June 18, 2008. This document is governed by the specific scope of work authorized by the City of Olympia and the LOTT Alliance; it is not intended to be relied upon by any other party except for regulatory authorities contemplated by the scope of work. We have relied on information or instructions provided by the City of Olympia, the LOTT Alliance and other parties and, unless otherwise expressly indicated, have made no independent investigation as to the validity, completeness, or accuracy of such information.

Parcel 4	and 5 IA -	 Sampling 	and Ana	Ivsis Pl	a

REFERENCES

REFERENCES

- EPA 1999. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review. EPA 540/R-99/008. United States Environmental Protection Agency Office of Emergency and Remedial Response. October.
- EPA 2000. U.S. Environmental Protection Agency.
- EPA 2002. United States Environmental Protection Agency. 2002. Guidance on Environmental Data Verification and Data Validation (EPA QA/G-8), November.
- EPA 2004. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. EPA 540-R-04-004. Office of Superfund Remediation and Technology Innovation (OSRTI), United States Environmental Protection Agency. October.
- SM 1998. Standard Methods for the Examination of Water and Wastewater, 20th Edition, 1998. American Public Health Association, American Water Works Association, and Water Environment Federation.

Attachment C: Quality Assurance Project Plan

PARCEL 4 AND 5 IA

QUALITY ASSURANCE PROJECT PLAN

Prepared for
The City of Olympia and the LOTT Alliance
Olympia, WA
6/23/2010

THE CITY OF OLYMPIA / THE LOTT ALLIANCE PARCEL 4 AND 5 INTERIM ACTION QUALITY ASSURANCE PROJECT PLAN

Prepared for
The City of Olympia and the LOTT Alliance
Olympia, WA
6/23/2010

Brown and Caldwell 724 Columbia Street NW, Suite 420 Olympia, WA 98501

TABLE OF CONTENTS

IST OF	F TABLES	III
IST OF	ACRONYMS	IV
. PRO.	JECT MANAGEMENT	1-1
1.1	Monitoring Program Task Organization	1-1
	1.1.1 Involved Parties and Roles.	
	1.1.2 Quality Assurance Officer Role	1-2
	1.1.3 Persons Responsible for QAPP Update and Maintenance	1-2
1.2	Problem Definition	1-3
1.3	Regulatory Agencies and Applicable Regulatory Limits	1-3
1.4	Project Description	1-3
1.5	Project Schedule	1-3
1.6	Sampling Constraints	1-3
1.7	Data Quality Objectives	1-4
	1.7.1 Accuracy	1-5
	1.7.2 Precision	1-5
	1.7.3 Representativeness	1-6
	1.7.4 Completeness	
	1.7.5 Comparability	
1.8	Quality Control Limits	
	Training and Certification	
1.10	Documents and Records	
	1.10.1 Project Documents, Records, and Electronic Files	
	1.10.2 Retention of Project Documentation	
	1.10.3 Distribution of QAPP Revisions	1-7
. DATA	A GENERATION AND ACQUISITION	2-1
2.1	Sampling Process Design	2-1
2.2	Sampling Methods	
2.3	Sample Handling and Custody	2-1
2.4	Analytical Methods	2-3
2.5	Quality Control	2-3
	2.5.1 Quality Control for Field Measurements	2-3
	2.5.2 Quality Control for Laboratory Analyses	2-4
	2.5.3 Additional Laboratory Quality Control Requirements	2-6
	2.5.4 Assessing Data Quality Objectives using QC Samples	2-6
2.6	Instrument and Equipment Testing, Inspection, and Maintenance	2-7
	2.6.1 Field Equipment	2-8
	2.6.2 Laboratory Equipment	
2.7	Instrument/Equipment Calibration and Frequency	2-8

2-8
2-9
2-9
2-9
2-9
2-9
2-9
2-9
2-9
3-1
3-1
3-1
4-1
4-1
4-1
4-2
B
B
C
1

LIST OF TABLES

Table 1-1.	Brown and Caldwell and Client Staff	1-2
Table 1-2.	Monitoring Program Timeline	1-3
	Quality Control Limits	
	Sample Handling and Custody	
	Field Instrument Calibration and Frequency	
	QA Management Reports	

LIST OF ACRONYMS

BC Brown and Caldwell °C degrees Celsius

CCL contaminant candidate list
COPC constituent of potential concern
CRM certified reference materials

DI Deionized water
DO dissolved oxygen
DOC dissolved organic carbon

DRL detection limits for purposes of reporting (Title 22)

DQO data quality objective EC electrical conductivity

Ecology Washington State Department of Ecology

EDD electronic database deliverable

EDMS environmental database management system
EPA United States Environmental Protection Agency
GC/MS gas chromatography/mass spectrometry
HPLC high performance liquid chromatography
ICP/MS inductively coupled plasma mass spectrometry

IS internal standard

LCS laboratory control material laboratory control spike

LCSD laboratory control spike duplicate MCL maximum contaminant levels MDL method detection limit micrograms per liter

μS/cm microsiemens per centimeter

mg/L milligrams per liter
MP Monitoring Plan
MPN most probable number

MS matrix spike

MSD matrix spike duplicate

N nitrogen

NIST National Institute of Standards and Technology

P phosphorus QA quality assurance

QAPP Quality Assurance Project Plan

QC quality control

RPD relative percent difference

SM Standard Methods for the Examination of Water and Wastewaterr

SOP standard operating procedure

SWAMP Surface Water Ambient Monitoring Program

TOC total organic cargon TRL target reporting limit

USEPA United States Environmental Protection Agency

USGS United States Geological Survey

WQ water quality

PARCEL 4 AND 5 INTERIM ACTION OUALITY ASSURANCE PROJECT PLAN

1. PROJECT MANAGEMENT

1.1 Monitoring Program Task Organization

Organization of the Project team for the Parcel 4 and 5 Interim Action and associated tasks are described in the following sections.

1.1.1 Involved Parties and Roles.

This Quality Assurance Project Plan (QAPP) has been prepared for the Parcel 4 and 5 Interim Action. Within this QAPP are descriptions of methods that will be used to assure and control the quality of monitoring data collected for Parcel 4 and 5 Interim Action. Specific details regarding the sampling and analyses for specific Sites are not included in the QAPP, but are discussed separately in the Site specific Sampling and Analysis Plan (SAP). Together, these two documents serve to completely describe the quality assurance / quality control (QA/QC) program that will be implemented as part of the Interim Action.

Table 1-1 Staff					
Name	Affiliation	Title	Contact Information		
Steve Teel	Washington State Department of Ecology	Site Manager	ph:(360) 407-6247 <u>stee461@ecy.wa.gov</u>		
Rick Dougherty	City of Olympia	Project Manager	ph:(360) 753-8485 <u>rdougher@ci.olympia.wa.us</u>		
Eric Hielema	LOTT Alliance	Project Manager	ph:(360) 528-5705 <u>erichielema@lottonline.org</u>		
TBD	Brown and Caldwell	Project Manager	ph:(360) 943-7525		
TBD	Brown and Caldwell	QA Officer	ph:(360) 943-7525		
TBD	Brown and Caldwell	Data Management Coordinator	TBD		
TBD	Contact Analytical Lab (TBD)	Laboratory Director	TBD		
Kate Green	Brown and Caldwell	Sampling Support	ph:(360) 943-7525 kgreen@brwncald.com		
John Turk	Brown and Caldwell	Technical Advisor	ph:(360) 943-7525 jturk@brwncald.com		

Notes:

QA = Quality Assurance

BC = Brown and Caldwell

1.1.2 Quality Assurance Officer Role

The QA Officer is responsible for monitoring and verifying implementation of the quality assurance and quality control (QA/QC) procedures found in this QAPP and its referenced Standard Operating Procedures (SOPs). The QA Officer is independent of the personnel that will generate data for this project. Key personnel assigned to the project will have reviewed the QAPP and SAP, and will be instructed by the QA Officer regarding the requirements of the QA/QC program. The QA Officer will work with the Client Project Manager and Department of Ecology to ensure that QAPP objectives are being met and the team will continually assess the effectiveness of the QA/QC program and recommend modifications, as needed.

1.1.3 Persons Responsible for QAPP Update and Maintenance

If necessary, the QA Officer, with concurrence from the Client Project Manager, may revise and update the QAPP after presenting the evidence for such changes and obtaining the approval from Department of Ecology. Revisions that occur after the original QAPP is approved will be indicated on the QAPP title page and will be distributed to all parties listed in Table 1-1.

1.2 Problem Definition

Samples will be collected to confirm the extent of contaminated areas and to classify stockpiled soils as suitable for general reuse, suitable for reuse in capped areas, or to designate soil from disposal. Sample results for soils designated for disposal will be communicated to the disposal facility.

1.3 Regulatory Agencies and Applicable Regulatory Limits

The project is under the oversight of the Washington State Department of Ecology. Cleanup Levels and Remediation Levels for the project are established under the Model Toxics Cleanup Act (MTCA) and defined in the Interim Action Work Plan.

1.4 Project Description

The project was designed to remove contaminated soil from the site and to classify soils remaining on the site as suitable for general reuse or suitable for reuse in capped areas. A detailed description of the constituents to be monitored and the information used to develop the list of constituents is discussed in the Interim Action Work Plan and the SAP.

1.5 Project Schedule

The anticipated schedule for tasks associated with Parcel 4 and 5 Interim Action is shown in Table 1-2 below. Specific project schedules will be described in the SAPs.

Table 1-2. Program Timeline						
Task	Anticipated Date of Initiation	Anticipated Date of Completion	Deliverable			
Draft IA Work Plan, SAP, and QAPP		6/9/2010	Draft SAP and QAPP			
Final IA Work Plan, SAP and QAPP	7/6/2010	8/6/2010	Final SAP and QAPP			
Iterim IA Soil Sampling Report	TBD	TBD	Summary report, chain-of-custody forms, lab reports			
Interim IA Soil Sampling Report	TBD	TBD	Summary report, chain-of-custody forms, lab reports			
IA Report	TBD	TBD, within 60 days of completion of field work	Chapter in the report			

1.6 Sampling Constraints

Sampling constraints typically encountered during sampling include safety of sampling personnel and cost considerations.

Sampling results must be complete before major earth-moving activities (stockpile disposal, excavation backfill, etc.). Timing constraints or missed events are therefore not anticipated.

1.7 Data Quality Objectives

DQOs have been selected for this project based on the expected data usage and are designed to ensure that accurate, precise, representative, and complete data are collected throughout the monitoring program. The DQOs are summarized in Table 1-3. Descriptions of how the DQOs will be assessed are provided in Section 1.7.

Table 1-3. Parcel 4 and 5 IA Quality Control Limits					
Constituents	Proposed Methods Reporting Limits Accuracy Limits		Accuracy Limits	Precision Limits (RPD)	
Soil COPCs					
Arsenic	EPA 6020A	0.2 mg/Kg	<u>+</u> 30%	30%	
Cadmium	EPA 6020A	0.2 mg/Kg	<u>+</u> 30%	30%	
Lead	EPA 6020A	1 mg/Kg	<u>+</u> 30%	30%	
Copper	EPA 6020A	0.2 mg/Kg	<u>+</u> 30%	30%	
Nickel	EPA 6020A	0.5 mg/Kg	<u>+</u> 30%	30%	
cPAHs	EPA 8270C / EPA 8270C-SIM	0.01 mg/Kg	<u>+</u> 30%	30%	
Dioxins / Furans	EPA 1613 / EPA 8290	3 pg/g	<u>+</u> 30%	30%	
TPH-D	NWTPH-Dx	25 mg/Kg	<u>+</u> 30%	30%	
TPH-HO	NWTPH-Dx	25 mg/Kg	<u>+</u> 30%	30%	
TPH-G	NWTPH-Gx	10 mg/Kg	<u>+</u> 30%	30%	
Benzene	EPA 8260B	0.01 mg/Kg	<u>+</u> 30%	30%	
Toluene	EPA 8260B	0.01 mg/Kg	<u>+</u> 30%	30%	
Ethylbenzene	EPA 8260B	0.01 mg/Kg	<u>+</u> 30%	30%	
Total Xylenes	EPA 8260B	0.03 mg/Kg	<u>+</u> 30%	30%	
Total Naphthalenes	EPA 8270C / EPA 8270C-SIM	0.3 mg/Kg	<u>+</u> 30%	30%	

1.7.1 Accuracy

Accuracy describes how close an analytical measurement is to its true value. Accuracy is typically measured by analyzing a sample of known concentration (prepared using analytical-grade standards) and comparing the analytical result with the known concentration. Accuracy objectives for all constituents are summarized in Table 1-3.

1.7.2 Precision

Precision describes how well repeated measurements agree. Precision is typically evaluated by comparing analytical results from duplicate (also called replicate) samples and calculating the relative percent difference (RPD), where RPD is defined as:

$$RPD = \left(\frac{\left|C_1 - C_2\right|}{\left(\frac{C_1 + C_2}{2}\right)}\right) \times 100 \text{, where } C_1 \text{ and } C_2 \text{ are the analytical results for both duplicates}$$

Precision will be measured using both field and laboratory duplicates in addition to duplicate laboratory control spikes.

1.7.3 Representativeness

The representativeness of the data is mainly dependent on the sampling locations (spatial), sampling frequency (temporal), sample collection procedures, and analytical constituents and methods. The sampling approach (described in detail within the individual Site SAPs) has been developed to ensure that all data collected during this project are representative to the extent possible.

1.7.4 Completeness

Completeness, which is expressed as a percentage, is calculated by subtracting the number of rejected and unreported results from the total planned results and dividing by the total number of planned results. Estimated results do not count against completeness because they are considered usable as long as any limitations are identified. Results rejected because of out-of-control analytical conditions, severe matrix effects, broken or spilled samples, or samples that could not be analyzed for any other reason are subtracted from the total planned number of results to calculate completeness. Though regulations currently do not require a specific percentage of data completeness, it is expected that the measurement techniques selected for use in this project are capable of generating data that is of 90 percent completeness for field and laboratory analyses.

1.7.5 Comparability

Comparability evaluates whether the reported data are comparable with similar data reported by other organizations. The use of approved analytical methods and certified laboratories will provide some level of comparability. Evaluation of performance evaluation samples is another measure of comparability. Certified laboratories are required to analyze performance evaluation samples on a regular basis to evaluate the comparability of their reported results.

1.8 Quality Control Limits

The quality control (QC) limits for precision and accuracy are provided in Table 1-3. These limits will be used to qualify data and alert the data users of any identified bias or uncertainty in results. Laboratories will follow method criteria and the laboratory's QA/QC manual and procedures for corrective action during sample analysis. Laboratories shall report detection limits based on current statistical detection limit studies and reporting limits based on the low standards in their calibration curves. Laboratory reporting limits should not exceed the maximum allowable reporting limits provided in Table 1-3. Proposed analytical methods shall be used unless written approval for alternative methods is given.

1.9 Training and Certification

Field personnel that participate in sampling will have reviewed the QAPP and SAP for the specific Site project, and will be instructed by the QA Officer. Training will occur prior to the beginning of the program and semi-annually thereafter through QC sessions, where QC procedures will be reviewed. Field personnel will have been trained prior to the first sampling event in sample collection procedures (including QA/QC, grab sampling techniques, completing laboratory chain-of-custody forms, and proper handling of water samples), and field analysis (including instrument calibration, data recording procedures, and interpretation of collected data).

All laboratories utilized to perform analytical services will be certified by NELAC. Laboratory personnel will be certified and trained as required by the laboratory's quality assurance manuals. The laboratory director of the primary analytical lab will be provided a copy of this QAPP.

Documentation of training for field staff will be maintained by Brown and Caldwell. Documentation will include a record of the training topic, training date, name and title of instructor, whether the class was an initial training or a refresher course, and whether the course was completed satisfactorily.

1.10 Documents and Records

1.10.1 Project Documents, Records, and Electronic Files

The documents and records that will be generated during this project include the following:

Quality Assurance Project Plan: The QAPP (this document) contains details on the QA and QC procedures that will be implemented throughout the project.

Sampling and Analysis Plans: The SAPs contain information regarding sampling locations, frequencies, and sample collection methods.

Field Records. The Brown and Caldwell Project Manager or other designee will maintain all field records, including field data sheets documenting results of field analyses and QC samples, a logbook documenting equipment maintenance and calibration, and sample collection and handling documentation (copies of chain-of-custody forms, shipping receipts, etc.).

Laboratory Records. Analytical labs will maintain sample receipt and storage documentation, instrument calibration logs, raw data and QC sample records.

Data validation records. Field data sheets, field QC results, chain-of-custody forms, and lab reports from each sampling event will be reviewed by the QA Officer and a data validation record will be generated which summarizes the quality of the collected data.

Project database: The Brown and Caldwell Olympia, WA office will be used to store all laboratory and field data gathered during this project. The database will be continually updated and managed as described in Section 2.9. At the completion of the project, data may be electronically submitted to the City of Olympia and the LOTT Alliance upon request.

1.10.2 Retention of Project Documentation

The original data sheets, equipment maintenance/calibration logs, chain-of-custody forms, lab reports, field records, training documents and data validation records will be stored by Brown and Caldwell until the end of the project. All records will be maintained by Brown and Caldwell and analytical labs for five years after project completion.

1.10.3 Distribution of QAPP Revisions

Revisions that occur after the original QAPP is approved will be indicated on the QAPP title page and will be distributed by the QA Officer to all parties listed in Table 1-1.

Parcel 4	and 5 IA .	- Ouality	Assurance	Project	Plan

1: Project Management

PARCEL 4 AND 5 INTERIM ACTION QUALITY ASSURANCE PROJECT PLAN

2. DATA GENERATION AND ACQUISITION

2.1 Sampling Process Design

The individual Site SAPs will provide a detailed description of the sampling approach and rationale that was used to select sampling locations, sampling frequencies, and constituents that will be analyzed.

2.2 Sampling Methods

Proper sample collection procedures are essential to ensure that representative and reliable data are being collected. Sample collection will be performed according to the SOP for Sample Collection, Documentation, and Delivery, included as Appendix I to the IA Work Plan. In general, the QA procedures that will be followed during sample collection include the following:

- Soil grab samples will be collected by hand or from the excavator bucket.
- Sample collection will be performed in such a manner as to minimize disturbance of surrounding soils.
- Soil grab samples will be transferred to sample jars carefully to minimize exposure to external influences such as wind, dust, or rain.
- Sample jars will be labeled (e.g., date, time, location, method) immediately after collection.
- Sampling date and time and sampler's initials will be added to the chain of custody form immediately after sampling.
- If problems occur during sampling, the QA Officer will be notified. The source of the problem will be identified and the appropriate corrective action taken. These incidents will be documented in the project folder and filed with the appropriate data package. If the problem compromised the quality of collected data, the data will be flagged within the database.

2.3 Sample Handling and Custody

Once sample containers have been filled they will be labeled, placed in re-sealable plastic bags (e.g. *Ziploc* ®), and stored in a cooler on ice to maintain a temperature of approximately 4° C. Identification information for each sample will be recorded in the field logbook when the sample is collected. A chain-of-custody form will be completed at the time of sample collection and prior to sample shipment or release. The samples will be transported or shipped to the analytical lab in insulated containers within the appropriate holding time and will be accompanied by a chain-of-custody form that identifies the sample bottles, date and time of sample collection, and analyses requested. If shipment is needed, the samples will be packaged and shipped in accordance with U.S. Department of Transportation standards. The original chain-of-custody will be given to the lab with

the samples and Brown and Caldwell will retain a copy for their records. Once received by the laboratory, a sample receipt and storage record will be generated. The recommended sample container type and volume, initial preservative and holding time for analytes that may be tested is shown in Table 2-1. The turn around time for the analytical laboratory will typically be within ten days from the sampling date. After analyses, all samples will be disposed of in accordance with federal, state, and local requirements.

Table 2-1. Sample Handling and Custody							
Group	Parameter	Containera	Initial Preservative ^a	Max Allowable Holding Time			
огоцр	T drameter	Container	minut reservative	Extractionb	Analysis ^c		
	Arsenic	4-oz glass jar w/ Teflon lined lid	Ice to 4° C		6 months		
	Lead	4-oz glass jar w/ Teflon lined lid	Ice to 4° C		6 months		
Metals	Cadmium	4-oz glass jar w/ Teflon lined lid	Ice to 4° C		6 months		
	Copper	4-oz glass jar w/ Teflon lined lid	Ice to 4° C		6 months		
	Nickel	4-oz glass jar w/ Teflon lined lid	Ice to 4° C		6 months		
Semi- Volatiles	cPAHs	4-oz glass jar w/ Teflon lined lid	Ice to 4° C	14 days	40 days		
	Total Naphthalenes	4-oz glass jar w/ Teflon lined lid	Ice to 4° C	14 days	40 days		
Dioxins / Furans	Dioxins / Furans	4-oz glass jar w/ Teflon lined lid	Ice to 4° C	28 days	40 days		
	TPH-G	EnCore Sampler	Ice to 4° C, preserve w/ methanol w/ in 48 hours		14 days		
TPH	TPH-D	4-oz glass jar w/ Teflon lined lid	Ice to 4° C		28 days		
	ТРН-НО	4-oz glass jar w/ Teflon lined lid	Ice to 4° C		28 days		
Volatiles	Benzene	EnCore Sampler x 3, o-ring cap	Ice to 4° C, preserve w/ methanol or sodium bisulfate w/ in 48 hours		14 days		
	Toluene	EnCore Sampler x 3, o-ring cap	Ice to 4° C, preserve w/ methanol or sodium bisulfate w/ in 48 hours		14 days		
	Ethylbenzene	EnCore Sampler x 3, o-ring cap	Ice to 4° C, preserve w/ methanol or sodium bisulfate w/ in 48 hours		14 days		

Table 2-1. Sample Handling and Custody						
Group	Parameter	Container ^a Initial Preservative ^a Max Allowable Ho		•		
Огоир	1 didinotoi	Comamo		Extractionb	Analysis ^c	
	Total Xylenes	EnCore Sampler x 3, o-ring cap	Ice to 4° C, preserve w/ methanol or sodium bisulfate w/ in 48 hours		14 days	

^a Sample containers, volumes, and preservatives will be reevaluated once contract laboratories are chosen and may be changed based on

2.4 Analytical Methods

Field measurements will be conducted by Brown and Caldwell staff using portable meters and field test kits that employ EPA-approved methods. Field measurements will be taken using the procedures recommended by the manufacturer of the meter or test kit and procedures discussed in the SOP for Field Data Collection, where applicable. Results of all field measurements will be recorded in field logbooks and on field data sheets.

Laboratory analyses will be conducted by NELAC-certified analytical laboratories using methods approved by the EPA and Washington State. Proposed analytical methods are provided in Table 1-3. Alternative methods may be requested by the laboratories performing analyses. These alternative methods may be used only upon written approval from the QA Officer. Major laboratory equipment or instruments that will be utilized include a gas chromatography/mass spectrometer (GC/MS), inductively coupled plasma mass spectrometer (ICP-MS), high performance liquid chromatography (HPLC), automated colorimeter, ion chromatograph, and a carbon detector. If any instrument failures occur, the laboratory will take immediate corrective action and notify the QA Officer if the quality of sample results was compromised.

2.5 Quality Control

QC samples will be collected and analyzed to ensure the accuracy and precision of both field and laboratory data. The following sections summarize the QC samples that will be collected for field and laboratory analysis.

2.5.1 Quality Control for Field Measurements

QC for field measurements will be assessed using the following methods:

- All field instruments will be inspected, maintained, and calibrated prior to each sampling event.
- Calibration-checks will be performed to verify accuracy within 24 hours before and 24 hours after each sampling day by analyzing a calibration standard.

recommendations from the lab(s).

^b Starting from the date of collection

^c Starting from the date of extraction; if no extraction, starting from the date of collection

• Triplicate measurements will be conducted on one sample per sampling event to evaluate precision.

Results of the QC tests will be recorded on a field data sheet.

In addition, QC sessions (a.k.a. inter-calibration exercises) will be held twice a year to verify the proper working order of equipment, refresh personnel in monitoring techniques and determine whether the data DQOs are being met. QC sessions will consist of a meeting with the QA Officer (or other qualified designee) and sampling personnel to review appropriate sample collection and field analysis SOPs, equipment maintenance/calibrations manuals, and the QAPP and SAP and discuss any questions or problems that may be occurring.

2.5.2 Quality Control for Laboratory Analyses

QC for laboratory analyses will be assessed using the results of both field-collected QC samples and laboratory-prepared QC samples, each of which is discussed below.

2.5.2.1 Field-collected QC samples

Field-collected QC samples will primarily consist of field duplicates and equipment blanks, which are described below.

Field Duplicates. Field duplicates will be collected at the same time and in the same manner as the primary soil samples and will be used to assess the precision of all steps after sample acquisition. Field duplicates will be collected and analyzed at a rate of at least five percent (5%).

Trip Blanks. Trip blanks will be used to determine whether sample cross-contamination has occurred during sample transportation, delivery, and storage when collecting samples that contain volatile organic compounds. Trip blanks consist of pre-filled bottles of laboratory certified water that are transported along with the collected samples in each cooler containing samples for volatiles analysis.

Equipment Blanks. Equipment blanks will be collected in the field once per sampling day to assess contamination from reusable sampling equipment and other external influences. A sample bottle will be filled with certified clean water from the laboratory, and passed through the pre-cleaned (triple-rinsed with distilled water) sample collection equipment, mimicking actual sampling, and captured again for laboratory analysis. If equipment blanks consistently indicate that contamination is not a concern for particular constituents and equipment cleaning procedures are adequate, the frequency of collection for these analytes may be reduced.

Other field-collected QC samples may be utilized as-needed throughout the program if analytical results indicate presence of QC error, such as unexplained contamination of equipment blanks, high RPDs between field duplicates, or low precision of analytical results. These additional QC samples that may be used include the following:

Field Split. Field splits may be used occasionally to assess the precision of the selected laboratory's analytical procedures and/or methods. A field split consists of a sample that is

collected and split into two different samples, one of which is shipped to the normal lab for analysis, while the other is shipped to a different lab for similar analysis using either the same or different methods, depending on what information is desired. If split samples are analyzed using the same method, then results from both labs can be compared to assess the precision of the method, whereas if they are analyzed using different methods, results can be compared to assess the accuracy of the methods.

Ambient Blank. Ambient blanks may be used to assess the potential sample contamination that could occur during field sampling and sample processing. Ambient blanks consist of a pre-filled bottle deionized (DI) or distilled water that is taken to the field, opened and exposed to the atmosphere and environment, preserved (if appropriate), and analyzed the same as the corresponding samples.

2.5.2.2 Laboratory-prepared QC Samples

Several additional samples will be prepared and analyzed in the laboratories to evaluate precision, accuracy, and the potential for laboratory contamination. Each laboratory will set its own warning limit criteria for QC samples based on the method requirements and the laboratories QA Manual. The QA Manuals for selected laboratories will be included in the project file once lab(s) are selected, and will be reviewed by the project QA Officer for compliance with the project requirements. Descriptions of some of the laboratory-prepared QC samples that will be analyzed are included below. At a minimum, the frequency for analysis of matrix spikes (MS), duplicates, and blanks will meet method requirements.

Method Blanks. Method blanks (also called extraction blanks, procedural blanks, or preparation blanks) are used to assess laboratory contamination during all stages of sample preparation and analysis. Method blanks are prepared by the laboratory from reagent grade water and are processed through the entire analytical procedure in a manner identical to that of the samples. At a minimum, the laboratory should report method blanks at a frequency of one method blank for each batch of up to 20 samples. If the laboratory method blank indicates presence of contamination, all impacted samples in the analytical batch should be flagged. Subtracting method blank results from sample results is not permitted.

Matrix Spike (MS). MS and will be used to evaluate the effect of the sample matrix on the recovery of the compound(s) of interest. To prepare a MS, a field sample is first homogenized and then split into two subsamples. One of the subsamples is fortified with the MS solution and one subsample is analyzed to provide a background concentration for each analyte of interest. Recovery is the accuracy of an analytical test measured against a known analyte addition to a sample, and is calculated as follows:

Recovery =
$$\left(\frac{C_{matrix+spike} - C_{matrix}}{C_{spike(Exptected)}}\right) * 100$$
 Where C is the measured concentration

Recovery data for the fortified compound ultimately will provide a basis for determining the accuracy of the measurement and the prevalence of matrix effects in the samples analyzed during the project. Analysis of MS duplicates (MSD) is also useful for assessing laboratory precision.

Laboratory Control Spike (LCS). Laboratory control spikes are prepared by adding a known amount of target analyte(s) to reagent-grade water. When compared to the method blank, LCSs can be used to evaluate the accuracy (recovery) of the target analytes excluding any matrix effects.

Replicate Samples. Replicate (also called duplicates) samples are prepared by splitting a sample into two or more aliquots after delivery to the lab, but prior to sample preparation. Analysis of replicates is used to assess precision of an analytical method. Replicates that are typically utilized include:

- <u>Laboratory replicates</u>: These are replicates of the raw material that is extracted and analyzed in the same manner as the original sample to measure laboratory precision.
- MSD: These are used to assess both laboratory precision and accuracy within the sample matrix.
- <u>Laboratory Control Spike Duplicate (LCSD)</u>: These are useful for assessing the accuracy and precision of the method, excluding matrix effects.

Internal Standards. Internal standards (IS) are used for organic analyses by GC/MS, some GC analyses, and some metals analyses using ICP/MS. An IS is an analyte included in each standard and added to each sample or extracted just before analysis. ISs should mimic the analytes of interest but not interfere with the analysis. ISs are used to monitor retention time, calculate relative response, and quantify the analytes of interest in each sample or extract.

Surrogates. Surrogates are compounds chosen to simulate the analytes of interest in organic analyses. Surrogates are used to estimate analyte losses during the extraction and cleanup process and must be added to each sample, including QA/QC samples, before extraction. The surrogate recovery data will be carefully monitored; each laboratory must report the percent recovery of the surrogate(s) along with the target analyte data for each sample. If possible, isotopically-labeled analogs of the analytes will be used as surrogates.

2.5.3 Additional Laboratory Quality Control Requirements

All laboratories providing analytical support for this project will have the appropriate facilities to store, prepare, and process samples and appropriate instrumentation and staff to provide data of the required quality within the time period dictated by the project. Laboratories shall be able to provide information documenting their ability to conduct the analyses with the required level of data quality. Such information may include results from inter-laboratory performance evaluation studies, control charts, and summary data from internal QA/QC checks, and results from analyses of Certified Reference Materials (CRM).

2.5.4 Assessing Data Quality Objectives using QC Samples

The QC samples described above will be used to evaluate the DQOs specified in Section 1.6. The following sections describe how the DQOs may be evaluated.

2.5.4.1 Accuracy

The accuracy of field chemical measurements will be checked daily by using standard solutions purchased from chemical or scientific supply companies. Accuracy measurements will be recorded on a field data sheet.

Accuracy of laboratory measurements will be determined by recoveries of spiked samples (matrix and LCS and/or through analysis of CRM, continuing calibration checks, or analysis of other similar standard solutions, the results of which will be summarized as part of each data package.

2.5.4.2 Precision

Precision will be evaluated in the field by conducting triplicate field measurements of all instrument parameters at least once during each sampling event. Precision measurements will be recorded on a field data sheet. If the measurements do not fall within the precision ranges described in Tables 3-1, the instrument will be recalibrated in the field if possible. After the sampling event, the instrument will again be recalibrated, tested, and examined to determine whether replacement is necessary.

Precision of laboratory measurements will be evaluated by comparing results from various duplicate samples listed below, where available:

- Field sample and field duplicate
- Field sample and laboratory replicate
- LCS and LCSD
- MS and MSD

2.5.4.3 Representativeness

Representativeness will be reviewed throughout the program by the Project Manager and QA Officer. If the team determines that representativeness should and can be improved, additional samples, or constituents may be considered, or sampling and analytical methods may be altered.

2.5.4.4 Completeness

Percent completeness will be checked by comparing the number of collected samples with the number of samples from which useable data were generated, as described in Section 1.6.4.

2.5.4.5 Comparability

Comparability will be addressed by the use of approved drinking water methods and certified laboratories. If the comparability of laboratory results is questioned, split samples and/or performance evaluation samples may be analyzed.

2.6 Instrument and Equipment Testing, Inspection, and Maintenance

2.6.1 Field Equipment

Inspection and preventive maintenance will be performed for all field equipment in accordance with the manufacturer's specifications prior to each sampling event. This includes battery checks, routine replacement of membranes, and cleaning of conductivity electrodes, among other tasks. Equipment will be re-inspected between each sampling site and after each sampling event. If problems occur and/or repair is needed during the sampling event, the field data sheet will be used to document the corrective action taken. If significant damage or equipment malfunctions are noted, the instrument(s) will be sent to the manufacturer for immediate repair. A maintenance/calibration log will be kept by the Monitoring Coordinator or other designee, which details the dates of instrument and sampling gear inspection, calibrations performed in the lab or field, battery replacement, dates reagents and standards are replaced, and any problems noted with instruments, samplers, or reagents. The logbook will also be used to document corrective action that was taken if equipment deficiencies were noted during an inspection. A small inventory of critical spare parts for field equipment will be kept at the Brown and Caldwell main office and also brought in the field if needed; however, perishable supplies or expensive parts may not be kept on hand, and will need to be ordered when needed. All spare parts and supplies will be obtained through the equipment manufacturer or other reputable sources.

2.6.2 Laboratory Equipment

All laboratories providing support for this project will maintain analytical equipment in accordance with relevant SOPs, which include those specified by the manufacturer and those specified by the method. The laboratories will maintain a log book documenting equipment inspections, and preventive and corrective maintenance.

2.7 Instrument/Equipment Calibration and Frequency

2.7.1 Field Instruments

Field instruments will be calibrated according to the schedule presented in Table 2-2. Standards will be purchased from a chemical supply company or prepared by (or with the assistance of) a professional laboratory. Calibration records will be kept in the maintenance/calibration log at the Brown and Caldwell main office where it can be easily accessed before and after equipment use. Calibrations that are performed by personnel in the field may also be recorded on the field data sheets to indicate which samples were analyzed pre- and post-calibration for the specific sampling event. If calibration is not successful or other issues pertaining to calibration arise, the equipment manufacturer will be contacted to determine the appropriate corrective action; the problem and corrective action will be documented in the maintenance/calibration logbook.

Table 2-2. Field Instrument Calibration and Frequency					
Instrument	Parameter	Calibration Frequency	Standard or Calibration Instrument Used		
PID	Gas concentration	Every sampling day	100 ppm isobutylene calibration gas		

2.7.2 Laboratory Instruments

The contract laboratory maintains calibration practices and calibration-checks as part of the method SOPs. The QA Officer will review these practices and confirm that they are in compliance with project requirements.

2.8 Inspection/Acceptance of Supplies and Consumables

The Project Manager will ensure that the inspection/testing specifications and acceptance criteria are met. Upon receipt supplies will be inspected by the Project Manger or other designee for broken, leaking, or missing parts glasswear, seals, labels, preseravatives, or other supplies. Sealed supplies, such as EnCore samplers, will be visually inspected to ensure seals are intact.

2.9 Non-Direct Measurements (Existing Data)

A review of existing data for each individual Site will be included as part of the Site specific SAPs.

2.10 Data Management

The Data Management Coordinator will be primarily responsible for maintaining a project database.

2.10.1 Field Data

Field data will be documented in logbooks or on field data sheets. One sheet will be used at each monitoring site, and field staff will complete all necessary sections of the data sheet during the sampling event. Field data will be collected and entered into the project database.

2.10.2 Analytical Data

Analytical laboratories will provide reports in both hard copy and electronic formats. Requirements for electronic database deliverables (EDD) will be provided to selected analytical laboratories.

2.10.3 Database Maintenance

The Data Management Coordinator will be responsible for overseeing management of the project database. Additional responsibilities of the Data Management Coordinator include QA of data collected prior to input to the project database.

2.10.4 Data Submittal

Lab reports summarizing analytical results and QC results will be provided to the Brown and Caldwell Data Management Coordinator as a hard copy and electronically in the agreed upon format. The information contained within and the format of the hard-copy data report package will be determined during the initial

negotiations with the lab and will include at a minimum the sample ID, sampling date/time, test method, extraction date/time, analysis date/time, analytical results, QA sample results, instrument and equipment calibration summary information, and a description of any corrective action taken to resolve data quality issues.

In accordance with WAC 173-340-840(5) and Ecology Toxics Cleanup Program Policy 840 (Data Submittal Requirements), data generated shall be submitted to Ecology in both a written and electronic format. All data collected for the Interim Action will be entered into Ecology's Environmental Information Management (EIM) database.

PARCEL 4 AND 5 INTERIM ACTION QUALITY ASSURANCE PROJECT PLAN

3. ASSESSMENT AND OVERSIGHT

3.1 Assessments and Response Actions

Periodic assessments will be conducted to ensure that data collection is conducted according to requirements presented in this QAPP. The QA Officer, whose responsibilities are described in Section 1.1, will have the primary responsibility for assessing compliance with the QAPP and SAP requirements pertaining to sample collection and handling procedures, field analytical procedures, and laboratory analytical procedures (DQOs), as detailed in the SAP. In addition, the QA Officer is also responsible for assessing compliance with Standard Operations Procedures outlined in IA Work Plan Appendix I. The QA Officer will review field sampling and analysis procedures at the beginning of the project. Laboratory analyses will be continually assessed through evaluating results of QC samples and compliance with DQOs.

If an audit discovers any discrepancy, the QA Officer will discuss the observed discrepancy with the appropriate person responsible for the activity to determine whether the information collected can still be considered accurate, what the cause(s) were leading to the deviation, how the deviation might impact data quality, and what corrective actions might be considered. The QA Officer will then follow up to ensure that corrective actions have been implemented.

The QA Officer has the power to halt all sampling and analytical work by both sampling personnel and contract laboratories if the discrepancies noted are considered detrimental to data quality.

3.2 Deliverables and Reporting

Interim and final reports will be issued by Brown and Caldwell to the City of Olympia, the LOTT Alliance, and the Department of Ecology according to Table 3-1.

Table 3-1. QA Management Reports						
Type of Report	Frequency	Projected Delivery Dates(s)	Report Recipients			
Draft QAPP and SAP	One time	June 2010	City, LOTT, Ecology			
Final QAPP and SAP	One time	August 2010	City, LOTT, Ecology			
Interim Soil Sampling Report, Parcel 5	One time	TBD	City, LOTT, Ecology			
Interim Soil Sampling Report, Parcel 4	One Time	TBD	City, LOTT, Ecology			
Interim Action Report	One time	TBD	City, LOTT, Ecology			

PARCEL 4 AND 5 INTERIM ACTION QUALITY ASSURANCE PROJECT PLAN

4. DATA VALIDATION AND USABILITY

4.1 Data Review, Verification, and Validation Requirements

Data verification and validation are integral steps in the transition between data collection (via sampling and analysis) and data use and interpretation. The EPA has developed a comprehensive guidance document entitled Guidance on Environmental Data Verification and Data Validation (EPA QA/G-8) (USEPA 2002). The purpose of this guidance is to explain how to implement data verification and data validation, to offer practical advice, and to provide references.

Although data verification and data validation are commonly used terms, they are defined and applied differently in various organizations and quality systems. For the purposes of this project, the terms will be generally defined as follows:

- **Data Verification** is confirmation by examination and provision of objective evidence that specified requirements have been fulfilled. Data verification is the process of evaluating the completeness, correctness, and conformance/compliance of a specific data set against the method, procedural, or contractual requirements. This is done to determine if everything that was agreed upon was actually done.
- **Data Validation** is confirmation by examination and provision of objective evidence that the particular requirements for a specific intended use are fulfilled. Data validation is an analyteand sample-specific process that extends the evaluation of data beyond method, procedural, or contractual compliance (i.e., data verification) to determine the analytical quality of a specific data set. In other words, what is the quality of this specific data set?

Data generated by project activities will be reviewed against the DQOs cited in Section 1.6 and flagged if the objectives are unmet. Data will also be assessed to determine whether the QC practices were in place during data collection. If data were collected without the stated QC practices in place, the data will be set aside until the impact of the QC failure on data quality can be determined. If the impact of the QC failure on data quality is minimal, the data will be flagged and included within the database. Data that does not meet the DQOs listed in Section 1.6 will be evaluated to determine the cause of the problem, and whether corrective actions can be implemented so that DQOs are met in the future.

4.2 Verification and Validation Methods

Laboratory data will be validated in accordance with the EPA's National Functional Guidelines for Organic and Inorganic Data Review (EPA 1999, 2004). These documents will serve as the equivalent of an SOP for data review and validation.

Data verification/validation will be performed by the QA Officer and designated reviewers/validators. Data reviewers will be responsible for reviewing field data sheets, chain-of-

custody forms, and analytical lab reports from each sampling event to determine whether collected data meets the contractual requirements. The data validators will add to the data review, by also checking field equipment calibration records, QC results, assessing whether DQOs have been achieved, and flagging data that did not meet specific requirements. Data qualifiers will be added to the database to alert data users of data limitations and uncertainties. A Data Quality Assessment will be completed to summarize the results of the review and validation.

If corrective action is necessary based on the data verification/validation process, the QA Officer will be responsible for communicating the nonconformance and the corresponding corrective actions to the laboratory, the Project Manager, or other designee. A Data Quality Assessment section summarizing all qualified results and including any corrective actions will be reported in the final report.

4.3 Reconciliation with User Requirements

To fulfill the identified data needs, it is important that the data collected during this project meet the data quality objectives. If data do not meet the project's specifications, the results will be flagged in the database to alert the data user of the data limitations and the following actions will be taken. First, the QA Officer and Project Manager or other designee will review the errors and determine if the problem is equipment failure, calibration/maintenance techniques, or monitoring/sampling techniques. They will suggest corrective action. If the problem cannot be corrected by training, revision of techniques, or replacement of supplies/equipment, then the technical advisor will review the DQOs and determine if the DQOs are feasible. If the specific DQOs are not achievable, they will determine whether the specific DQO can be relaxed, or if the parameter should be eliminated from the monitoring program. Any revisions to DQOs will be reviewed by the project team prior to approval and QAPP revision.

At the completion of the sampling program, Brown and Caldwell will continue to maintain the database.

PARCEL 4 AND 5 INTERIM ACTION QUALITY ASSURANCE PROJECT PLAN

5. LIMITATIONS

Report Limitations

This document was prepared solely for the City of Olympia and the LOTT Alliance in accordance with professional standards at the time the services were performed and in accordance with the contract between Brown and Caldwell and the City of Olympia dated September 4, 2009, and the contract between Brown and Caldwell and the LOTT Alliance dated June 18, 2008. This document is governed by the specific scope of work authorized by the City of Olympia and the LOTT Alliance; it is not intended to be relied upon by any other party except for regulatory authorities contemplated by the scope of work. We have relied on information or instructions provided by the City of Olympia, the LOTT Alliance and other parties and, unless otherwise expressly indicated, have made no independent investigation as to the validity, completeness, or accuracy of such information.

REFERENCES

REFERENCES

- EPA 1999. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review. EPA 540/R-99/008. United States Environmental Protection Agency Office of Emergency and Remedial Response. October.
- EPA 2000. U.S. Environmental Protection Agency.
- EPA 2002. United States Environmental Protection Agency. 2002. Guidance on Environmental Data Verification and Data Validation (EPA QA/G-8), November.
- EPA 2004. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. EPA 540-R-04-004. Office of Superfund Remediation and Technology Innovation (OSRTI), United States Environmental Protection Agency. October.
- SM 1998. Standard Methods for the Examination of Water and Wastewater, 20th Edition, 1998. American Public Health Association, American Water Works Association, and Water Environment Federation.

Appendix D: Health and Safety Plan

Health and Safety Plan for Soil Remediation

305 Jefferson Street NW Olympia, WA

5/22/2010

BC Project Number: 135894 / 138130

Prepared by:

BROWN AND CALDWELL

724 Columbia Street NW, Suite 420

Olympia, WA 98501

Prepared for:

The City of Olympia

PO Box 1967

Olympia, WA 98507-1967

The LOTT Alliance

111 Market Street NE, Suite 250

Olympia, WA 98501

Approval Page

This Health and Safety Plan (HASP) has been prepared and reviewed by the following Brown and Caldwell (BC) personnel for use at: Parcel 4 and 5 (135894 / 138130).

	Name	Signature	Title	Date
Prepared By:	Joshua Johnson		Engineer III	
Reviewed By:	Jon Turk		Site Safety Officer	
Reviewed By:	Joshua Johnson		Project Manager	
Reviewed By:	Jim Bucha		Regional Safety Unit Manager	
Effective Dates:	9/28/2010	through	9/28/2011	

TABLE OF CONTENTS

1. INTRODUCTION	1-1
1.1 Site History	1-2
1.2 Site Description	1-2
1.3 Scope of Work	1-2
2. KEY BC PROJECT PERSONNEL AND RESPONSIBILITES	2-1
2.1 Project Manager	2-1
2.2 Site Safety Officer	2-1
2.3 Regional Safety Unit Manager	2-2
2.4 BC Team Members	2-2
2.5 Subcontractors	2-3
3. HAZARD ANALYSIS	
3.1 Chemical Hazards	
3.2 Hazard Communication	
3.3 Physical Hazards	
3.3.1 Slip, Trips and Falls	3-10
3.3.2 Housekeeping	3-10
3.3.3 Heavy Equipment	3-10
3.3.4 Excavations	3-11
3.3.5 Noise	3-11
3.3.6 Underground Utilities	3-12
3.3.7 Driving	3-12
3.3.8 Personal Safety - Urban Setting	
3.4 Natural Phenomena	3-14
3.4.1 Sunburn	3-14
3.4.2 Heat Stress	3-14
3.4.3 Cold Stress	3-15
3.4.4 Earthquakes	3-15
3.5 Biological Hazards	3-16
4. PERSONAL PROTECTIVE EQUIPMENT	4-1
4.1 Conditions Requiring Level D Protection	4-1
4.2 Conditions Requiring Level C Protection	4-2
4.3 Stop Work Conditions	4-3
5. AIR MONITORING PLAN	5-1
5.1 Monitoring Instruments	5-1
5.2 Site Specific Action Levels	5-1
6. SITE CONTROL MEASURES	6-1

7. DECONT.	AMINATION PROCEDURES	7-1
8. TRAINING	G REQUIREMENTS	8-1
9. MEDICAL	L SURVEILLANCE REQUIREMENTS	9-1
10. CONTIN	GENCY PROCEDURES	10-1
10.1 Injury	or Illness	10-2
	le Collision or Property Damage	
	rground Utilities	
	vacuation	
	of Hazardous Materials	
11. DOCUM	ENTATION	11-1
APPENDIX	A	A
Air Monito	oring Form	A
LIST OF API	PENDICES	
Appendix A	Air Monitoring Form	
Appendix B	Site Safety Checklist	
Appendix C	H&S Plan Acknowledgement Form	
Appendix D	Daily Tailgate Meeting Form	
Appendix E	Incident Investigation Form	
Appendix F	Miscellaneous Health and Safety Information	

CRITICAL PROJECT INFORMATION

Primary Known Compound of Concern: Arsenic, Lead, Cadmium, Copper, Nickel, cPAHs, PCBs, Dioxins / Furans, TPH-D, TPH-G, TPH-HO, Benzene, Toluene, Ethylbenzene, Xylenes, Naphthalenes

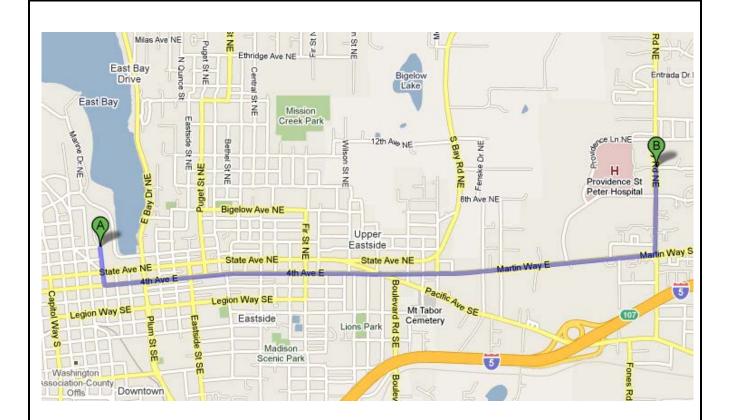
Minimum Level of Respiratory Protection:

☐ Level D ☐ Level C

PPE: steel-toed work boots, hard had, eye protection, hearing protection, traffic safety vest, long-sleeved shirt and pants, nitrile gloves

SEE SECTION 10 FOR SITE EMERGENCY CONTINGENCY PROCEDURES

Do not endanger your own life. Survey the situation before taking any action.


BC Office Telephone	360-943-7525
Site Location Address	305 Jefferson Street NW, Olympia, WA

EMERGENCY PHONE NUMBERS: In the event of emergency, contact the Project Manager and/or Regional Safety Unit Manager.

	1
Emergency Services (Ambulance, Fire, Police)	911
Poison Control	(800) 876-4766 or (800) 222-1222
Hospital Name	Providence St. Peter Hospital
Hospital Phone Number	360-491-9480
BC Project Manager (PM; Josh Johnson)	Office: 360-943-7525
	Cell: 805-637-8258
BC Site Safety Officer (SSO; Jon Turk)	Office: 360-943-7525
	Cell: 813-957-2350
BC Regional Safety Unit Manager (Jim Bucha)	Office: 916-853-5308
	Cell: 916-216-6374
Corporate Risk Management	Property Loss Blythe Buetzow: (925) 210-2470 Injury Angela Hernandez: (925) 210-2218
Contractor Contact ()	Office:
	Cell:
Client Contact (Eric Hielema, LOTT Alliance)	Office: 360-528-5705
	Cell:
Client Contact (Rick Dougherty, City of Olympia)	Office: 360-753-8485
	Cell:
OTHER CONTACT(s) (OTHER CONTACT NAME)	OTHER tel#

Health and	Safety	Plan
i icaitii anu	Jaicty	ı ıaıı

HOSPITAL LOCATION MAP

HOSPITAL DIRECTIONS:

Thurston Ave NE & Jefferson St NEOlympia, WA 98501

- 1. Head south on Jefferson St NE toward Olympia Ave NE 0.2 mi
- 2. Turn left at 4th Ave E 1.5 mi
- 3. Continue onto Martin Way E 1.0 mi
- 4. Turn left at Lilly Rd NE
- 5. Destination will be on the left 0.4 mi

413 Lilly Rd NEOlympia, WA 9850

HOSPITAL INFORMATION:

Providence St. Peter Hospital 413 Lilly Road Northeast Olympia, WA 98506

Phone: 360-491-9480

EMERGENCY FIRST AID PROCEDURES

THE RESPONDER SHOULD HAVE APPROPRIATE TRAINING TO ADMINISTER FIRST AID OR CPR

- 1. Survey the situation. Do not endanger your own life. DO NOT ENTER A CONFINED SPACE TO RESCUE SOMEONE WHO HAS BEEN OVERCOME. ENSURE ALL PROTOCOLS ARE FOLLOWED INCLUDING THAT A STANDBY PERSON IS PRESENT. IF APPLICABLE, REVIEW MSDSs TO EVALUATE RESPONSE ACTIONS FOR CHEMICAL EXPOSURES.
- 2. Call 911 (if available) or the fire department **IMMEDIATELY**. Explain the physical injury, chemical exposure, fire, or release.
- 3. Decontaminate the victim if it can be done without delaying life-saving procedures or causing further injury to the victim.
- 4. If the victim's condition appears to be non-critical, but seems to be more severe than minor cuts, he/she should be transported to the nearest hospital by the SSO or designated personnel: let the doctor assume the responsibility for determining the severity and extent of the injury. If the condition is obviously serious, contact emergency medical services (EMS) for transport or appropriate actions.

Notify the PM and Regional Safety Unit Manager immediately and complete the appropriate incident investigation reports as soon as possible.

STOP BLEEDING AND CPR GUIDELINES			
To Stop Bleeding	CPR		
Give medical statement by indicating you are trained in 1 st Aid.	Give medical statement by indicating you are trained in CPR.		
Assure: airway, breathing and circulation.	2. Arousal: Check for consciousness.		
3. Use DIRECT PRESSURE over the wound with clean dressing or your hand (use non-permeable gloves). Direct pressure will control most bleeding.	 Call out for help, either call 911 yourself or instruct someone else to do so. It is very important to call for emergency assistance prior to initiating CPR. 		
 4. Bleeding from an artery or several injury sites may require DIRECT PRESSURE on a PRESSURE POINT. Use pressure points for 30 -60 seconds to help control severe bleeding. 5. Continue primary care and seek medical aid as needed. 	4. Open airway with chin-lift.		
	5. Look, listen and feel for breathing.		
	If breathing is absent, give 2 slow, full rescue breaths.		
	7. Look, listen and feel for breathing.		
	 If breathing is absent, initiate CPR; compressions for each two breaths. 		
	9. If an automated external defibrillator (AED) is available, use it in accordance with the AED instructions.		

1. INTRODUCTION

Brown and Caldwell (BC) has prepared this Health and Safety Plan (HASP) for use during the soil remediation activities to be conducted at Parcel 4 and 5 located at 305 Jefferson Street NE, Olympia, WA ("the Site"). Activities conducted under BC's direction at the Site will be in compliance with applicable Occupational Safety and Health Administration (OSHA) regulations, particularly those in Title 29 of the Code of Federal Regulations, Part 1910.120 (29 CFR 1910.120), and other applicable federal, state, and local laws, regulations, and statutes. A copy of this HASP will be kept on site during scheduled field activities.

This HASP addresses the identified hazards associated with planned field activities at the Site. It presents the minimum health and safety requirements for establishing and maintaining a safe working environment during the course of work. In the event of conflicting requirements, the procedures or practices that provide the highest degree of personnel protection will be implemented. If scheduled activities change or if site conditions encountered during the course of the work are found to differ substantially from those anticipated, the Regional Safety Unit Manager and Project Manager will be informed immediately upon discovery, and appropriate changes will be made to this HASP.

BC's health and safety programs and procedures, including medical monitoring, respiratory protection, injury and illness prevention, hazard communication, and personal protective equipment (PPE), are documented in the BC Health & Safety Manual. The Health & Safety Manual is readily accessible to BC employees via the BC Pipeline. These health and safety procedures are incorporated herein by reference, and BC employees will adhere to the procedures specified in the manual.

BC's HASP has been prepared specifically for this project and is intended to address health and safety issues solely with respect to the activities of BC's own employees at the site. A copy of BC's HASP may be provided to subcontractors in an effort to help them identify expected conditions at the site and general site hazards. The subcontractor shall remain responsible for identifying and evaluating hazards at the site as they pertain to their activities and for taking appropriate precautions. For example, BC's HASP does not address specific hazards associated with tasks and equipment that are particular to the subcontractor's scope of work and site activities (e.g., operation of a drill rig, excavator, crane or other equipment). Subcontractors are not to rely on BC's HASP to identify all hazards that may be present at the Site.

Subcontractors are responsible for developing, maintaining, and implementing their own health and safety programs, policies, procedures and equipment as necessary to protect their workers, and others, from their activities. Subcontractors shall operate equipment in accordance with their standard operating procedures as well as manufacturer's specifications. Any project monitoring activities conducted by BC at the Site shall not in any way relieve subcontractors of their critical obligation to monitor their operations and employees for the determination of exposure to hazards that may be present at the Site and to provide required guidance and protection. If requested,

1: Introduction Health and Safety Plan

subcontractors will provide BC with a copy of their own HASP for this project or other health and safety program documents for review.

1.1 Site History

The areas within the Parcel 4 and 5 boundaries lie within the original tideflat of Budd Inlet, and are situated on fill material. Fill operations on the Site began as early as the late 1800s and continued until as late as the 1970s. Much of the fill on the site appears to be marine dredge spoils from dredging operations in the East and West Bays of Budd Inlet. In addition, fill has been found to contain wood debris, construction debris, and roadway fill.

Lumber milling operations were located on the Site as early as 1888 and operated until 1968. Various support facilities and services accompanied the lumber milling operations. Log booming operations also took place in the adjacent East Bay of Budd Inlet. Following cessation of lumber milling activities in 1968, the area was used for commercial and light industrial activities and warehousing. Warehousing and light industry ceased in 2008 as the Site was cleared of tenants and operators in preparation for redevelopment.

1.2 Site Description

The site is presently undeveloped.

1.3 Scope of Work

Work includes the excavation, stockpiling, testing, and disposal of potentially contaminated soil. Work will also include confirmational sampling of soil excavations.

2. KEY BC PROJECT PERSONNEL AND RESPONSIBILITES

Josh Johnson is the Project Manager (PM). Jim Bucha is the Regional Safety Unit Manager (RSUM). Jon Turk has been designated as the BC Site Safety Officer (SSO) for this project. The BC project field staff have completed 40 hours of comprehensive health and safety training, which meets the requirements of 29 CFR 1910.120.

The responsibilities of key BC project personnel are presented below.

2.1 Project Manager

The PM is responsible for evaluating hazards anticipated at the Site and working with designated field staff and the RSUM to prepare this HASP to address the identified hazards. The PM is also responsible for the following.

- Informing project participants of safety and health hazards identified at the Site.
- Providing a copy of this HASP to BC project participants and a copy to each BC subcontractor prior to the start of field activities.
- Ensuring that the BC project team is adequately trained and perform safety briefings in accordance with this HASP.
- Providing the resources necessary for maintaining a safe and healthy work environment for BC personnel.
- Communicating project safety concerns to the RSUM for determining corrective actions.

2.2 Site Safety Officer

The SSO has on-Site responsibility for verifying that BC team members, including subcontractors, comply with the provisions of this HASP. The SSO has the authority to monitor and correct health and safety issues as noted on-Site. The SSO is responsible for the following.

- Reporting unforeseen or unsafe conditions or work practices at the Site to the PM or RSUM.
- Stopping operations that threaten the health and safety of BC field team or members of the surrounding community.
- Monitoring the safety performance of Site personnel to evaluate the effectiveness of health and safety procedures.
- Performing air monitoring, as necessary, as prescribed in this HASP.
- Documenting field team compliance with this HASP by completing the appropriate BC forms contained in the Appendices of this document.
- Conducting daily tailgate safety meetings and assuring that project personnel understand the requirements of this HASP (as documented by each BC field team member's signature on the Signature Page).

- Limiting access to BC work areas on the Site to BC field team members and authorized personnel.
- Enforcing the "buddy system" as appropriate for Site activities.
- Performing periodic inspections to evaluate safety practices at the Site.
- Identifying the location and route to nearby medical facility and emergency contact information and coordinating appropriate responses in the event of emergency.

2.3 Regional Safety Unit Manager

The RSUM is responsible for final review and modification of this HASP. Modifications to this HASP that result in less protective measures than those specified may not be employed by the PM or SSO without the approval of the RSUM. In addition, the RSUM has the following responsibilities.

- Developing and coordinating the overall BC health and safety program.
- Advising the PM and SSO on matters relating to health and safety on this project.
- Recommending appropriate safeguards and procedures.
- Modifying this HASP, if necessary, and approving changes in health and safety procedures at the Site.

2.4 BC Team Members

BC employees and subcontractors are responsible for familiarizing themselves with health and safety aspects of the project and for conducting their activities in a safe manner. This includes attending site briefings, communicating health and safety observations and concerns to the SSO, maintaining current medical and training status and maintaining and using proper tools, equipment and PPE. Proper work practices are part of ensuring a safe and healthful working environment. Safe work practices are essential and it is the responsibility of BC employees and team members to follow safe work practices when conducting scheduled activities. Safe work practices to be employed during the entire duration of fieldwork include, but are not limited to, the following.

- Following the provisions of this HASP, company health and safety procedures and regulatory requirements.
- Reviewing safety-related information from other parties (i.e., client or contractors) as it relates to BC's activities.
- Inspecting personal protective equipment (PPE) before on-site use, using only intact protective clothing and related gear, and changing suits, gloves, etc. if they are damaged or beyond their useful service life.
- Set up, assemble, and check out all equipment and tools for integrity and proper function before starting work activities.
- Assisting in and evaluating the effectiveness of Site procedures (including decontamination)
 for personnel, protective equipment, sampling equipment and containers, and heavy
 equipment and vehicles.
- Practice the "buddy system" as appropriate for site activities.

- Do not use faulty or suspect equipment.
- Do not use hands to wipe sweat away from face. Use a clean towel or paper towels.
- Practice contamination avoidance whenever possible.
- Do not smoke, eat, drink, or apply cosmetics while in chemically-affected areas of the site or before proper decontamination.
- Wash hands, face and arms before taking rest and lunch breaks and before leaving the site and the end of the workday.
- Check in and out with the SSO upon arrival and departure from the site.
- Perform decontamination procedures as specified in this HASP.
- Notify the SSO immediately if there is an incident that causes an injury, illness or property loss. Incidents that could have resulted in injury, illness or property loss (close call) will also be reported to the SSO.
- Do no approach or enter an area where a hazardous environment (i.e., oxygen deficiency, toxic or explosive) may exist without employing necessary engineering controls, proper PPE and appropriate support personnel.
- Use respirators correctly and as required for the Site; check the fit of the respirator with a negative or positive pressure test; do not wear respirator with facial hair or other conditions that prevent a face-to-facepiece seal.
- Confined spaces will not be entered without appropriate evaluation, equipment, training and support personnel.

2.5 Subcontractors

Subcontractor personnel are expected to comply fully with subcontractor's HASP and to observe the minimum safety guidelines applicable to their activities which may be identified in the BC HASP. Failure to do so may result in the removal of the subcontractor or any of the subcontractor's workers from the job site.

3. HAZARD ANALYSIS

Hazards at the Site may include physical hazards, chemical hazards or biological hazards. Each type of identified hazard is addressed in the following sections. Hazards that are the specialty of a subcontractor (i.e., operation of a drill rig or excavator) are not addressed in this HASP. Subcontractors are responsible for identifying potential hazards associated with their activities and implementing proper controls.

3.1 Chemical Hazards

Exposure pathways of concern for chemical compounds that may be present at the Site are inhalation of airborne contaminants, direct skin contact with contaminated materials, and incidental ingestion of affected media. Wearing protective equipment and following decontamination procedures listed in Section 7 can minimize dermal contact and incidental ingestion. To minimize inhalation hazards, dust or vapor control measures will be implemented, where necessary, and action levels will be observed during scheduled activities. Site-specific action levels and air monitoring requirements are presented in Section 5.

Known or Suspected			
Compounds	(soil/water/sludge, etc.)	Lowest	Highest
Arsenic	Soil / Groundwater	ND	84 mg/Kg (soil), 10.3 ug/L (groundwater)
Lead	Soil / Groundwater	ND	2.4 mg/Kg (soil), 9.3 ug/L (groundater)
Cadmium	Soil / Groundwater	ND	2500 mg/Kg (soil), 2 ug/L (groundwater)
Copper	Soil / Groundwater	ND	NA (soil), 8.4 ug/L (groundwater)
Nickel	Soil / Groundwater	ND	NA (soil), 5.6 ug/L (groundwater)
cPAHs	Soil / Groundwater	ND	624 ug/Kg (soil), 0.36 ug/L (groundwater)
Dioxins / Furans	Soil / Groundwater	ND	646 pg/g (soil), NA (groundwater)
PCBs	Soil / Groundwater	ND	3.29 mg/Kg (soil), 3.6 ug/L (groundwater)
TPH-G	Soil / Groundwater	ND	100 mg/Kg (soil), 500 ug/L (groundwater)
TPH-HO	Soil / Groundwater	ND	4600 mg/Kg (soil), 500 ug/L (groundwater)
TPH-D	Soil / Groundwater	ND	1160 mg/Kg (soil), 250 ug/L (groundwater)
Benzene	Soil / Groundwater	ND	140 ug/Kg (soil), 1 ug/L (groundwater)
Toluene	Soil / Groundwater	ND	720 ug/Kg (soil), 1 ug/L (groundwater)
Ethylbenzene	Soil / Groundwater	ND	720 ug/Kg (soil), 1 ug/L (groundwater)
Xylenes	Soil / Groundwater	ND	1440 ug/Kg (soil), 3 ug/L (groundwater)
Naphthalenes	Soil / Groundwater	ND	1600 ug/Kg (soil), 1.1 ug/L (groundwater)

Chemical descriptions of chemicals of concern, including health effects and exposure limits, are presented in the following paragraphs. Each chemical description includes physical and odor recognition characteristics, the health effects associated with exposure, and exposure limits expressed as an 8-hour time-weighted average (TWA). Provided are federal OSHA (OSHA)

permissible exposure limits (PELs; located in 29 CFR 1910.1000); California OSHA (Cal/OSHA) PELs (located in 8 CCR 5155); and the American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit values (TLVs). For sites outside California, Cal/OSHA PELs are included as an additional reference.

ARSENIC

Metallic arsenic is most commonly a gray, brittle, crystalline solid. It can also be in a black or yellow amorphous form. Arsenic is also commonly found in its volatile white trioxide form. Arsenic is used in several insecticides, herbicides, defoliants, desiccants, and rodenticides and appears in a variety of forms. It is also used in tanning, pigment production, glass manufacturing, wood preservation, and anti-fouling coatings. Arsenic is classified as a known carcinogen.

Short-term exposure to arsenic can cause marked irritation of the stomach and intestines with nausea, vomiting, and diarrhea. In severe cases the vomiting and stools are bloody and the exposed individual goes into collapse and shock with weak, rapid pulse, cold sweats, coma, and death. Inorganic arsenicals are more toxic than organic arsenicals, and the trivalent form is more toxic than the pentavalent form. Acute arsenic poisoning usually results from ingestion exposures. Blood cell changes, blood vessel damage, and impaired nerve function can also result from chronic arsenic ingestion. Other effects include skin changes, irritation of the throat, increased risk of cancer of the liver, bladder, kidney, and lung.

- The OSHA PEL is listed as 0.01 mg/m3 for inorganic forms of arsenic and 0.5 mg/m3 for organic forms.
- The Cal/OSHA PEL is listed as 0.01 mg/m3 for inorganic forms of arsenic and 0.2 mg/m3 for organic forms.
- The TLV is listed as 0.01 mg/m3 for arsenic and inorganic arsenic compounds.

WARNING: This chemical is known to the State of California to cause cancer.

WARNING: This chemical is known to the State of California to cause birth defects or other reproductive harm.

LEAD

Lead (inorganic) is a bluish-white, silver or gray odorless solid. Short-term exposure to lead can cause decreased appetite, insomnia, headache, muscle and joint pain, colic, and constipation. Considerable data exist on the effects of lead exposure in humans. It is a poison by ingestion and a suspected human carcinogen of the lungs and kidneys. There are data to suggest that lead is a mutagen and can cause reproductive effects. Human systemic effects by ingestion and inhalation (the two routes of absorption) include loss of appetite, anemia, malaise, insomnia, headache, irritability, muscle and joint pains, tremors, flaccid

paralysis without anesthesia, hallucinations and distorted perceptions, muscle weakness, gastritis, and liver changes. Recent experimental evidence suggests that blood levels of lead below $10 \,\mu\text{g}/\text{dl}$ (micrograms per deciliter) can have the effect of diminishing the IQ scores of children.

- The OSHA PEL is listed as 0.05 mg/m3 and the OSHA PEL for tetraethyl lead and tetramethyl lead is listed as 0.075 mg/m3.
- The Cal/OSHA PEL for elemental lead is listed as 0.05 mg/m3 and the Cal/OSHA PEL for tetraethyl lead and tetramethyl lead is listed as 0.075 mg/m3.
- The TLV for elemental lead is listed as 0.05 mg/m3, the TLV for tetraethyl lead is 0.1 mg/m3 and the TLV for tetramethyl lead is 0.15 mg/m3.

Note: Published exposure limits designate a skin notation indicating that dermal contact (to organic forms) can contribute to the overall exposure.

WARNING: This chemical is known to the State of California to cause cancer.

WARNING: This chemical is known to the State of California to cause birth defects or other reproductive harm.

CADMIUM

Cadmium dust is an odorless gray powder. Short-term exposure to cadmium dust can cause irritation of the nose and throat, cough, chest pain, sweating, chills, shortness of breath, and weakness. Inhalation of cadmium compounds has been shown to cause lung cancer in humans. Fatal concentrations may be breathed without sufficient discomfort to warn a worker to leave the area. Ingestion of cadmium dust may cause nausea, vomiting, diarrhea, and abdominal cramps.

- The OSHA PEL is listed as 0.005 mg/m3.
- The Cal/OSHA PEL is listed as 0.005 mg/m3.
- The TLV is listed as 0.01 mg/m3 for dust (total) and 0.002 mg/m3 for the respirable dust fraction.

WARNING: This chemical is known to the State of California to cause cancer.

WARNING: This chemical is known to the State of California to cause birth defects or other reproductive harm.

COPPER

In its elemental form, copper is a common metal with a distinct reddish color. Human systemic effects by ingestion include nausea and vomiting. In animals, inhalation of copper dust has caused hemolysis of the red blood cells, deposition of hemofuscin in the liver and pancreas, and injury to the lung cells. Short-term exposure to copper dust can cause a feeling

of illness similar to the common cold with sensations of chills and stuffiness of the head. Small copper particles may enter the eye and cause irritation, discoloration, and damage.

- The OSHA PEL is listed as 0.1 mg/m3 for copper as a fume, and 1.0 mg/m3 for dust.
- The Cal/OSHA PEL is listed as 0.1 mg/m3 for copper as a fume, and 1.0 mg/m3 for dust.
- The TLV is listed as 0.2 mg/m3 for copper as a fume, and 1.0 mg/m3 for dust (a value of 0.1 mg/m3 for elemental metal/and copper oxides, and 0.05 mg/m3 for soluble compounds is proposed).

NICKEL

Nickel is a silvery gray, metallic, odorless metal. It is a confirmed carcinogen with experimental carcinogenic, neoplastigenic, tumorigenic, and teratogenic data. Nickel is a poison by ingestion, subcutaneous, and intravenous routes. Hypersensitivity to nickel is common and can cause allergic contact dermatitis, pulmonary asthma, and conjunctivitis. Exposure to nickel can cause pneumonitis. Nickel and its compounds have also been reported to cause cancer of the lungs and sinuses. Nickel itself is not very toxic if swallowed.

- The OSHA PEL is listed as 1.0 mg/m3 for elemental, insoluble and soluble compounds, as Ni.
- The Cal/OSHA PEL is listed as 1.0 mg/m3 for metal and insoluble compounds (as Ni), and 0.1 mg/m3 for soluble compounds.
- The TLV is listed as 1.5 mg/m3 for elemental compounds, 0.2 mg/m3 for insoluble compounds, and 0.1 mg/m3 for soluble inorganic compounds and nickel subsulfide, as Ni.

WARNING: This chemical is known to the State of California to cause cancer.

POLYNUCLEAR AROMATIC HYDROCARBONS (PAHS)

PAHs constitute a class of materials of which benzo[a]pyrene (BaP) is one of the most common and also the most hazardous. In general, PAHs can be formed in any hydrocarbon combustion process. The less efficient the combustion process, the higher the PAH emission factor is likely to be. The major sources are stationary sources, such as heat and power generation, refuse burning, industrial activity, such as coke ovens, and coal refuse heaps. PAHs may also be released from oil spills. Because of the large number of sources, people are exposed to very low levels of PAHs every day.

Certain PAHs, such as the more common BaP, have been demonstrated to be carcinogenic at relatively high exposure levels in laboratory animals. BaP is a yellowish crystalline solid that consists of five benzene rings joined together. It is highly soluble in fat tissue and has been shown to produce tumors in the stomachs of laboratory mice. In addition, skin cancers

have been induced in a variety of animals at very low levels and unspecified lengths of application.

It is important to recognize the PAHs' ability to adhere to soil and other particulates. Therefore, good particulate emission controls and the use of air purifying respirators with particulate filters are required for protection against airborne PAH hazards.

- The OSHA PEL is listed as 0.2 mg/m3 (as coal tar pitch volatiles).
- The Cal/OSHA PEL is listed as 0.2 mg/m3 (as coal tar pitch volatiles).
- The TLV is listed as 0.2 mg/m3 (coal tar pitch volatiles, as benzene soluble aerosol).

POLYCHLORINATED BIPHENYLS (PCBs)

PCBs are a series of technical mixtures consisting of many isomers and compounds that vary from mobile oil liquids to white crystalline solids and hard non-crystalline resins. Technical products vary in composition, in the degree of chlorination, and possibly according to batch. Generally, they are moderately toxic by ingestion, and some are poisons by other routes. Most are suspect human carcinogens and experimental tumorigens, and exhibit experimental reproductive effects. They have two distinct actions on the body: a skin effect (chloracne) and a toxic action on the liver. The higher the chlorine content, the more toxic the PCBs tend to be.

- The OSHA PEL is listed as 0.5 mg/m3 for 54% chlorine content (as a PCB) and 1.0 mg/m3 for 42% chlorine content (as a PCB).
- The Cal/OSHA PEL is listed as 0.5 mg/m3 for 54% chlorine content (as a PCB) and 1.0 mg/m3 for 42% chlorine content (as a PCB).
- The TLV is listed as 0.5 mg/m3 for 54% chlorine content (as a PCB) and 1.0 mg/m3 for 42% chlorine content (as a PCB).

Note: Published exposure limits designate a skin notation indicating that dermal contact can contribute to the overall exposure.

WARNING: This chemical is known to the State of California to cause cancer.

WARNING: This chemical is known to the State of California to cause birth defects or other reproductive harm.

DIOXINS

"Dioxin" is a general term that describes a group of hundreds of chemicals that are highly persistent in the environment. The most toxic compound is 2,3,7,8-tetrachlorodibenzo-p-dioxin or TCDD. The toxicity of other dioxins and chemicals like PCBs that act like dioxins are measured in relation to TCDD. Dioxins are formed as unintentional by-products of

many industrial processes involving chlorine such as waste incineration, chemical and pesticide manufacturing, and pulp and paper bleaching.

Dioxins are formed by burning chlorine-based chemical compounds with hydrocarbons. The major source of dioxins in the environment (95%) comes from incinerators burning chlorinated wastes. Dioxins are confirmed human carcinogens and can also cause severe reproductive and developmental problems (at levels 100 times lower than those associated with their cancer-causing effects). Dioxins can also cause immune system damage and interfere with regulatory hormones.

WARNING: These chemicals are known to the State of California to cause cancer.

GASOLINE

Gasoline is produced from the light distillates during petroleum fractionation. Its major components include paraffins, olefins, naphthenes, aromatics, and recently ethanol. Gasoline also contains various functional additives as required for different uses, such as antiknock fluids, antioxidants, metal deactivators, corrosion inhibitors, anti-icing agents, preignition preventers, upper-cylinder lubricants, dyes, and decolorizers. Lead additives in particular were widely used in gasoline until the introduction of vehicle catalytic converters.

Mild cases of gasoline ingestion can cause inebriation, vomiting, vertigo, drowsiness, confusion, and fever. Aspiration into the lungs and secondary pneumonia may occur unless prevented. Gasoline can cause hyperemia of the conjunctiva and other eye disturbances. Gasoline is a skin irritant and a possible allergen. Repeated or chronic dermal contact can result in drying of the skin, lesions, and other dermatologic conditions.

- No OSHA PEL is listed for gasoline.
- The Cal/OSHA PEL is listed as 300 ppm.
- The TLV is listed as 300 ppm.

WARNING: The exhaust from this chemical is known to the State of California to cause cancer.

DIESEL FUEL

Diesel fuel is a gas oil fraction available in various grades as required by different engines. Composition of diesel varies in ratios of predominantly aliphatic, olefinic, cycloparaffinic, aromatic hydrocarbons, and additives.

It is a severe skin irritant and ingestion of diesel can lead to systemic effects such as gastrointestinal irritation, vomiting, diarrhea, and, in severe cases, drowsiness and central nervous system depression, progressing to coma and death. Absorption of diesel fuel can cause hemorrhaging and pulmonary edema, progressing to pneumonitis and renal

involvement. It is combustible when exposed to heat or flame, and can react with strong oxidizing materials.

- No OSHA PEL or Cal/OSHA PEL is listed for diesel.
- The TLV is listed as 100 mg/m3 as total hydrocarbons (vapor and aerosol).

Note: Published exposure limits designate a skin notation indicating that dermal contact can contribute to the overall exposure.

WARNING: The exhaust from this chemical is known to the State of California to cause cancer.

MOTOR OIL

Motor oil is a dark viscous liquid. It is composed of aliphatic, olefinic, naphthenic (cycloparaffinic), and aromatic hydrocarbons, as well as additives depending on specific uses. Motor oil has a burning lubricating oil odor. Short-term exposure via dermal contact with motor oil can cause irritation to the skin and dermatitis. Inhalation of motor oil can cause aspiration. Target organs are the upper respiratory system and the skin.

No OSHA PEL, Cal/OSHA PEL, or ACGIH TLV is listed for motor oil.

BENZENE

Benzene is a clear, volatile liquid. It is colorless, highly flammable, and toxic, with a characteristic odor. It is a severe eye and moderate skin irritant. Human effects by inhalation and ingestion include euphoria, changes in sleep and motor activity, nausea and vomiting, other blood effects, dermatitis, and fever. In industry, inhalation is the primary route of chronic benzene poisoning. If the liquid is aspirated into the lung it may cause pulmonary edema. Poisoning by skin contact has also been reported. Exposure to high concentrations (3,000 ppm) may result in acute poisoning, which is characterized by the narcotic action of benzene on the central nervous system. Chronic poisoning occurs most commonly through inhalation and dermal absorption. Benzene is a known human carcinogen that can cause leukemia.

- The OSHA PEL is listed as 1 ppm.
- The Cal/OSHA PEL is listed as 1 ppm.
- The TLV is listed as 0.5 ppm.

Note: Published exposure limits designate a skin notation indicating that dermal contact can contribute to the overall exposure.

WARNING: This chemical is known to the State of California to cause cancer.

WARNING: This chemical is known to the State of California to cause birth defects or other reproductive harm.

TOLUENE

Toluene is a colorless liquid with a benzol-like odor. Human systemic effects of exposure to toluene include central nervous system changes, hallucinations or distorted perceptions, motor activity changes, psychophysiological changes, and bone marrow changes. It is a severe eye irritant and an experimental teratogen. Inhalation of high vapor concentrations may cause impairment of coordination and reaction time, headaches, nausea, eye irritation, loss of appetite, a bad taste in the mouth, and lassitude.

- The OSHA PEL is listed as 200 ppm.
- The Cal/OSHA PEL is listed as 50 ppm.
- The TLV is listed as 50 ppm (a value of 20 ppm is proposed).

Note: Published exposure limits designate a skin notation indicating that dermal contact can contribute to the overall exposure.

WARNING: This chemical is known to the State of California to cause birth defects or other reproductive harm.

ETHYLBENZENE

Ethylbenzene is a clear, colorless liquid. It is mildly toxic by inhalation and skin contact. Inhalation can cause eye, sleep, and pulmonary changes. It is an eye and skin irritant at levels as low as 0.1% (1,000 ppm) of the vapor in air. At higher concentrations, it is extremely irritating at first, then can cause dizziness, irritation of the nose and throat, and a sense of constriction in the chest. Exposure to high concentrations of ethylbenzene vapor may result in irritation of the skin and mucous membranes, dizziness, irritation of the nose and throat, and a sense of constriction of the chest.

- The OSHA PEL is listed as 100 ppm.
- The Cal/OSHA PEL is listed as 100 ppm.
- The TLV is listed as 100 ppm.

XYLENE

Xylene is a clear, colorless liquid. It exhibits the general chlorinated hydrocarbon central nervous system effects, olfactory (smell) changes, eye irritation and pulmonary changes. It is a severe skin irritant. There are three isomers: ortho, meta, and para. Exposure to high concentrations of xylene vapor may result in eye and skin irritation. Eye irritation may occur at concentrations of about 200 ppm.

- The OSHA PEL is listed as 100 ppm.
- The Cal/OSHA PEL is listed as 100 ppm.
- The TLV is listed as 100 ppm.

NAPHTHALENE

Naphthalene is a colorless to brown solid with an odor of mothballs. Poisoning may occur by inhalation, ingestion, or skin absorption. Naphthalene can cause nausea, headache, fever, anemia, liver damage, vomiting, convulsions, and coma. It is an experimental teratogen and a questionable carcinogen.

Naphthalene is flammable when exposed to heat or flame and reacts with oxidizing materials. It is explosive in the form of vapor or dust when exposed to heat or flame. When heated to decomposition, it emits acrid smoke and irritating fumes.

- The OSHA PEL is listed as 10 ppm.
- The Cal/OSHA PEL is listed as 10 ppm.
- The TLV is listed as 10 ppm.

Note: Published exposure limits designate a skin notation indicating that dermal contact can contribute to the overall exposure.

3.2 Hazard Communication

In accordance with the Hazard Communication standard, material safety data sheets (MSDSs) will be maintained on site for chemical products used by BC personnel at the Site (i.e., spray paint, PVC cement, etc.). Subcontractors will be responsible for maintaining MSDSs for chemical products they bring on Site. In addition, containers will be clearly labeled in English to indicate their contents and appropriate hazard warnings. Please note that labeling containers includes, but is not limited to, any waste, used PPE, and/or decontamination materials collected.

3.3 Physical Hazards

The following physical hazards, as marked below, have been identified and may be encountered during scheduled field activities.

⊠ Slips, Trips and Falls	Mousekeeping
⊠ Heavy Equipment	Materials and Equipment Handling - Lifting
Excavations	☐ Drilling
⊠ Noise	☐ Underground Utilities
Overhead Utilities	Equipment Refueling
Electrical Equipment	Lockout/Tagout

3: Hazard Analysis	Health and Safety Plan

Confined Spaces	Fire
Sharp Objects/Cutting	Cutting Acetate Sleeves
☐ Elevated Platforms	Ladder Use
☐ Traffic	□ Driving
Arc Flash Protection	☐ Boating Safety
☐ Building Collapse	Personal Safety – Urban Setting

Actions to be taken to protect against the hazards identified are provided in the sections below.

3.3.1 Slip, Trips and Falls

Slipping hazards may exist due to uneven terrain, wet or slick surfaces, leaks or spills. Tripping hazards may be present from elevation changes, debris, poor housekeeping or tools and equipment. Some specific hazards may include: climbing/descending ladders, scaffolding, berms or curbing. Collectively, these types of injuries account for nearly 50 percent of all occupational injuries and accepted disabling claims. Prevention requires attention and alertness on the part of each worker, following and enforcing proper procedures, including good housekeeping practices, and wearing appropriate protective equipment.

3.3.2 Housekeeping

Personnel shall maintain a clean and orderly work environment. Make sure that all materials stored in tiers are stacked, racked, blocked, interlocked, or secured to prevent sliding, falling, collapse, or overturning. Keep aisles and passageways clear and in good repair to provide for free and safe movement of employees and material-handling equipment. Do not allow materials to accumulate to a degree that it creates a safety or fire hazard.

During construction activities, scrap and form lumber with protruding nails and other items shall be kept clear from work areas, passageways, and stairs. Combustible scrap and debris shall be removed at regular intervals. Safe means must be provided to facilitate removal of debris.

Containers must be provided for collecting and separating waste, used rags and other debris. Containers used for garbage and other oily flammable or hazardous waste such as caustics, acids, harmless dusts, etc., must be separated and equipped with covers. Garbage and other waste shall be disposed of at frequent and regular intervals.

3.3.3 Heavy Equipment

Equipment, including earth-moving equipment, drill rigs, or other heavy machinery, will be operated in compliance with the manufacturer's instructions, specifications, and limitations, as well as any applicable regulations. The operator is responsible for inspecting the equipment prior to use each work shift to verify that it is functioning properly and safely.

The following precautions should be observed whenever heavy equipment is in use.

• PPE, including steel-toed boots, safety glasses, high visibility vests, and hard hats must be worn.

Personnel must be aware of the location and operation of heavy equipment and take
precautions to avoid getting in the way of its operation. Workers must never assume that the
equipment operator sees them; eye contact and hand signals should be used to inform the
operator of the worker's intent.

- Personnel should not walk directly in back of, or to the side of, heavy equipment without the
 operator's knowledge. Workers should avoid entering the swing radius of equipment and be
 aware of potential pinch points.
- Nonessential personnel will be kept out of the work area.

3.3.4 Excavations

A competent person who is capable of identifying existing and predictable hazards in the surroundings, or working conditions that are unsanitary, hazardous, or dangerous to employees, and who has authorization to take prompt corrective measures to eliminate them, will be present during excavation activities.

The atmosphere will be tested in excavations, before employees are permitted to enter and begin work, greater than 4 feet in depth or where oxygen deficiency or toxic or flammable gases are likely to be present. The atmosphere shall be ventilated and re-tested until flammable gas concentrations less than 5 percent of the lower explosive limit (LEL) and site-specific action levels are obtained. Worker entry will not be allowed if the oxygen concentration is less than 20 percent. In addition, a safe means of access and egress (i.e., a ladder, stairs or ramp) must be provided so that no more than 25 feet of lateral travel is required by employees.

Workers will not enter unstable excavations or excavations greater than 5 feet in depth without appropriate protective systems such as benching, sloping, or shoring. If shoring or shielding systems are not used, side slopes will not be steeper than 1½:1 without written confirmation from the competent person that slope is safe for the soil conditions. Excavations will be constructed in accordance with the OSHA Excavation Safety Standard (29CFR1926 Subpart P).

The competent person will inspect excavations daily. If there is evidence that a cave-in or slide is possible, work will cease until the necessary safeguards have been taken. Excavated material will be placed far enough from the edge of the excavation (a minimum of 2 feet) so that it does not fall back into the opening or affect the integrity of the sidewall. At the end of each day's activities, open excavations will be clearly marked and secured to prevent nearby workers or unauthorized personnel from entering them. Remote sampling techniques will be the preferred method of sample collection in excavations.

3.3.5 **Noise**

Noise may result primarily from the operation of heavy equipment, process machinery or other mechanical equipment. Hearing protection with the appropriate noise reduction rating (NRR) shall be worn in areas with high noise levels. A good rule of thumb to determine if hearing protection is needed is the inability to have a conversation at arms length without raising voice levels. If loud noise is present or normal conversation becomes difficult, hearing protection in the form of ear plugs, or equivalent, will be required.

3.3.6 Underground Utilities

Reasonable efforts will be made to identify the location(s) of underground utilities (e.g., pipes, electrical conductors, fuel lines, and water and sewer lines) before intrusive soil work is performed. The state underground utility notification authority (e.g., USA, Dig Alert, Blue Stake, etc.) will be contacted prior to the start of intrusive field activities in accordance with local notification requirements. In areas not evaluated or serviced by the underground utility notification authority, and a reasonable potential for underground utilities exists, one or more of the following techniques will be employed to determine the location of subsurface structures.

- Contracting the services of a qualified private utility locator.
- Having a survey of the subject area conducted by staff trained in the use of subsurface utility locating equipment.
- Subsurface testing (i.e., hand digging or potholing) to the expected depth of probable utilities (not less than 5 feet).

If utilities cannot be located or if unlocated utilities are suspected to be present, subsurface activities (i.e., borings, excavation) should not be conducted before the location(s) or absence of underground utilities is confirmed.

Typical subsurface location marks are as follows:

- Red electrical,
- Yellow gas/oil/steam,
- Blue water,
- Green sanitary/storm drains/culverts,
- Orange communications, and
- White proposed excavation or boring.

Intrusive work should be limited to the area 3.3 feet (1 meter) on either side of the location marks. In some special cases such as fiber optics and high-pressure pipelines this area should be expanded to 16.5 feet (5 meters) on either side of the utility.

3.3.7 Driving

A lot of driving is required to get to, from, and between project Sites. Safe vehicle maintenance and operation must be a priority. It requires knowledge of directions to (and conditions of) the Site in advance, careful exiting and merging into traffic, anticipating the unexpected, remaining alert to one's physical and mental condition, resisting distractions such as cell phone use, other car activities and contacting assistance when needed. Report all vehicle accidents/incidents to BC's Risk Manager.

3.3.8 Personal Safety - Urban Setting

Working in a distressed neighborhood may present hazards associated with street violence or other crime. In these situations, mental preparation before going to the Site and awareness while on Site are of key importance. If in doubt, always ask Site or client personnel about the safety of a

neighborhood. Forethought should be given to arranging to work during daylight hours if possible. Take advantage of any Site security measures (monitoring cameras, security guards) and investigate such measures prior to the field work. Once in the field, work in parties of two or more and stay within view of the general public. Keep a charged cell phone nearby or on your person at all times. Become familiar with your location so you can effectively communicate it over the phone.

In addition to these basic principals, the following is a list of common personal safety rules that apply not only to work at the Site, but to general safety practices while in the field and also between work shifts.

- If at all possible, work/travel in groups. Do not venture out alone.
- Be alert. Notice who passes you and who's behind you. Maintain distance between yourself and strangers. Know where you are, and note potential exit paths.
- If work has paused do not appear slack or distracted. Do not sit in a vehicle with the doors unlocked.
- Walk in well-lighted areas. Don't walk close to bushes, alleys, and so on. In dark or deserted neighborhoods, walk down the middle of the street (be alert to vehicle traffic).
- If a car pulls up slowly, or the occupants of the vehicle bother you, cross the street and walk or run in the other direction. If you are pursued, dial 911.
- If you feel someone is following you, turn around and check. Proceed to the nearest lighted house or place of business.
- Don't overburden yourself with bags or packages, which might impede running or taking care of yourself.
- Be aware of loose clothing, packs/purses and hair. These give an assailant an easier method of grabbing and controlling you. Wear unrestrictive clothing for ease of movement (but not overly loose).
- Carry a non-weapon personal safety device (such as a whistle, panic button, or key light) anything that could visually or audibly draw attention to your location.
- What you carry in your hand(s) is important. Valuables make you a potential target. Items such as a hand auger or tool may help you be perceived as a less-than-inviting victim.
- Carry as little cash as possible.
- Hold your purse tightly, close to your body. Keep your wallet in a front or in a buttoned, hip pocket. When at a fixed location, lock your valuable items away and out of site (i.e., in a trunk).
- Be careful when people stop you for directions or information. Always reply from a distance; never get too close to a stranger' car.
- If you feel that you are in danger, don't be afraid to scream and run.
 - o Toss wallet/keys away from direction of escape.
 - O Don't attach car keys to house keys.
 - o Leave large valuables (purse, laptop) locked and hidden in the vehicle.

3.4 Natural Phenomena

Natural phenomena such as weather-related emergencies and acts of nature can affect employees' safety. Natural phenomena can occur with little or no warning. If an emergency situation arises as a result of natural phenomena, adhere to the contingency procedures outlined in Section 10. The following natural phenomena have been identified and may be encountered during scheduled field activities.

⊠ Sunburn	Heat Stress
Cold Stress	Lightening/Electrical Storms
Hurricanes	Tornados and Strong/Straight Line Winds
⊠ Earthquakes	

3.4.1 Sunburn

Working outdoors with the skin unprotected for extended periods of time can cause sunburn to the skin. Excessive exposure to sunlight is associated with the development of skin cancer. Field staff should take precautions to prevent sunburn by using sunscreen lotion and/or wearing hats and long-sleeved garments.

3.4.2 Heat Stress

Adverse climate conditions, primarily heat, are important considerations in planning and conducting site operations. Heat-related illnesses range from heat fatigue to heat stroke, with heat stroke being the most serious condition. The effects of ambient temperature can cause physical discomfort, loss of efficiency, and personal injury, and can increase the probability of accidents. In particular, protective clothing that decreases the body's ventilation can be an important factor leading to heat-related illnesses.

To reduce the possibility of heat-related illness, workers should drink plenty of fluids and establish a work schedule that will provide sufficient rest periods for cooling down. Personnel shall maintain an adequate supply of non-caffeinated drinking fluids on site for personal hydration. Workers should be aware of signs and symptoms of heat-related illnesses, as well as first aid for these conditions. These are summarized in the table below.

Condition	Signs	Symptoms	Response
Heat Rash or Prickly Heat	Red rash on skin.	Intense itching and inflammation.	Increase fluid intake and observe affected worker.
Heat Cramps	Heavy sweating, lack of muscle coordination.	Muscle spasms, and pain in hands, feet, or abdomen.	Increase fluid uptake and rest periods. Closely observe affected worker for more serious symptoms.

Condition	Signs	Symptoms	Response
Heat Exhaustion	Heavy sweating; pale, cool, moist skin; lack of coordination; fainting.	Weakness, headache, dizziness, nausea.	Remove worker to a cool, shady area. Administer fluids and allow worker to rest until fully recovered. Increase rest periods and closely observe worker for additional signs of heat exhaustion. If symptoms of heat exhaustion recur, treat as above and release worker from the day's activities after he/she has fully recovered.
Heat Stroke	Red, hot, dry skin; disorientation; unconsciousness	Lack of or reduced perspiration; nausea; dizziness and confusion; strong, rapid pulse.	Immediately contact emergency medical services by dialing emergency medical services. Remove the victim to a cool, shady location and observe for signs of shock. Attempt to comfort and cool the victim by administering small amounts of cool water (if conscious), loosening clothing, and placing cool compresses at locations where major arteries occur close to the body's surface (neck, underarms, and groin areas). Carefully follow instructions given by emergency medical services until help arrives.

3.4.3 Cold Stress

Workers performing activities during winter and spring months may encounter extremely cold temperatures, as well as conditions of snow and ice, making activities in the field difficult. Adequate cold weather gear, especially head and foot wear, is required under these conditions. Workers should be aware of signs and symptoms of hypothermia and frostbite, as well as first aid for these conditions. These are summarized in the table below.

Condition	Signs	Symptoms	Response
Hypothermia	Confusion, slurred speech, slow movement.	Sleepiness, confusion, warm feeling.	Remove subject to a non-exposed, warm area, such as truck cab; give warm fluids; warm body core; remove outer and wet clothing and wrap torso in blankets with hot water bottle
			or other heat source. Get medical attention immediately.
Frostbite	Reddish area on skin, frozen skin.	Numbness or lack of feeling on exposed skin.	Place affected extremity in warm, not hot, water, or wrap in warm towels. Get medical attention.
Trench Foot	Swelling and/or blisters of the feet	Tingling/itching sensation; burning; pain in the feet	Remove wet/constrictive clothing and shoes. Gently dry and warm feet with slight elevation. Seek medical attention.

3.4.4 Earthquakes

Earthquakes strike suddenly, violently, and without warning. If your project is located near a fault line, earthquakes are an unpredictable possibility. For long term projects with temporary or permanent office area, keep an emergency preparedness kit consisting of, but not limited to:

- Current project/office contacts list how to reach folks in an emergency,
- Blankets,
- Flashlights,
- Radio (operated by batteries),
- Batteries for flashlight and radio (<u>note</u>: batteries should be replaced as needed to assure freshness),

• Water (unless there is a water bubbler that can be used with no electricity), and

• Snack crackers, dried fruit, etc. - a source of food that won't go bad.

This kit is meant to serve as overnight survival in the event that it becomes unsafe to leave the project site. The kit's contents should be suited to meet the size and needs of your project.

If you feel the earth shaking, consider the following tips:

- Drop down; take cover under a desk or table and hold on.
- Stay indoors until the shaking stops and you are sure it is safe to exit.
- Stay away from bookcases, shelves, or anything that could fall on you.
- Stay away from windows.
- If inside a building, expect fire alarms and sprinklers to go off during the quake.
- If you are outdoors, find a clear spot away from buildings, trees, and power lines. Drop to the ground and cover your head.

If you are in a car, slow down and drive to a clear place, preferably away from power lines. Stay in the car until the shaking stops.

3.5 Biological Hazards

The following biological hazards have been identified and may be encountered during s	scheduled
field activities.	
Bloodborne Pathogens/Sanitary Waste	
Rodents and Mammals	

Rodents and Mammals
☐ Reptiles/Snakes
☐ Venomous Insects
Mosquitoes
Fire Ants
☐ Spiders/Scorpions
Ticks
Doigonous Plants

If any biological hazards are identified at the Site, workers in the area will immediately notify the SSO and nearby personnel.

4. PERSONAL PROTECTIVE EQUIPMENT

The purpose of PPE is to protect employees from hazards and potential hazards they are likely to encounter during site activities. The amount and type of PPE used will be based on the nature of the hazard encountered of anticipated. Respiratory protection will be utilized when an airborne hazard has been identified using real-time air monitoring devices, or as a precautionary measure in areas designated by the RSUM or SSO.

Dermal protection, primarily in the form of chemical-resistant gloves and coveralls, will be worn whenever contact with chemically affected materials (e.g., soil, groundwater, sludge) is anticipated, without regard to the level of respiratory protection required.

On the basis of the hazards identified for this project, the following levels of personal protective equipment (PPE) will be required and used. Changes to the specified levels of PPE will not be made without the approval of the SSO after consultation with the RSUM.

4.1 Conditions Requiring Level D Protection

In general, site activities will commence in Level D PPE unless otherwise specified, or if the SSO determines on site that a higher level of PPE is required. Air monitoring of employee breathing zones will be routinely conducted using real-time air monitoring devices to determine if upgrading to Level C PPE is necessary. Level D PPE will be permitted as long as air monitoring data indicate that airborne concentrations of chemicals of concern are maintained below the site-specific action levels defined in Section 5.2. Level A or B PPE is not anticipated and is therefore not addressed in this plan. If Level A or B PPE is necessary, this HASP will be revised to reflect changes as appropriate.

It is important to note that dermal protection is required whenever contact with chemically-affected materials is anticipated. The following equipment is specified as the minimum PPE required to conduct activities at the Site:

- Work shirt and long pants,
- ANSI- or ASTM-approved steel-toed boots or safety shoes,
- ANSI-approved safety glasses, and
- ANSI-approved hard hat.

Other personal protection readily available for use, if necessary, includes the following items.

- Outer nitrile gloves (11 mil or thicker) and inner nitrile surgical gloves when direct contact with chemically affected soils or groundwater is anticipated (nitrile surgical gloves may be used for collecting or classifying samples as long as they are removed and disposed of immediately after each sampling event).
- Chemical-resistant clothing (e.g., Tyvek or polycoated Tyvek coveralls) when contact with chemically affected soils or groundwater is anticipated.

- Safety shoes/boots with protective overboots or knee-high PVC polyblend boots when direct contact with chemically affected soils is anticipated.
- · Hearing protection.
- Sturdy work gloves.
- High-visibility traffic safety vest.

Work will cease and PPE upgraded if action levels specified in Section 5.2 are exceeded. The RSUM will be notified whenever PPE is upgraded or downgraded.

4.2 Conditions Requiring Level C Protection

If air monitoring indicates that the site-specific action levels defined in Section 5.2 are exceeded, workers in the affected area(s) will upgrade PPE to Level C. In addition to the protective equipment specified for Level D, Level C also includes the following items.

- NIOSH-approved half- or full-face air-purifying respirator (APR) equipped with appropriate cartridges (reference Section 5.2). Note: safety glasses are not required when wearing a fullface APR.
- Outer nitrile gloves (11 mil or thicker) and inner nitrile surgical gloves when direct contact with chemically affected soils or groundwater is anticipated (nitrile surgical gloves may be used for collecting or classifying samples as long as they are removed and disposed of immediately after each sampling event).
- Chemical-resistant clothing (e.g., Tyvek or polycoated Tyvek coveralls) when contact with chemically affected soils or groundwater is anticipated.
- Safety shoes/boots with protective overboots or knee-high PVC polyblend boots when direct contact with chemically affected soils is anticipated.
- Hearing protection.
- Sturdy work gloves.

Respirators will be stored in clean containers (i.e., self-sealing bag) when not in use. Respirator cartridges will be replaced in accordance with the following change-out schedule.

Type of Cartridge	Cartridge Change-out Schedule	
Particulate (i.e., HEPA)	At least weekly or sooner the employee detects an increase in breathing resistance. This will occur as the filter becomes loaded with particulate matter.	
Sorbent (i.e., organic vapor)	At the end of each day's use or sooner if the employee detects an abnormal odor or other indicator.	

Personnel who wear air-purifying respirators must be trained in their use and must have successfully passed either a qualitative or quantitative respirator fit test, and medical evaluation within the last 12 months in accordance with and 29 CFR 1910.134.

4.3 Stop Work Conditions

If air monitoring indicates that the site-specific action levels defined in Section 5.2 are exceeded, activities will cease, and personnel must evacuate the designated Exclusion Zone. The PM and RSUM will be contacted immediately.

Work will also cease if unanticipated conditions or materials are encountered or if an imminent danger is identified. The SSO will immediately contact the RSUM for consultation.

5. AIR MONITORING PLAN

Real-time air monitoring devices will be used to analyze airborne contaminant concentrations approximately every 15 minutes in the workers' breathing zones while workers are in the designated Exclusion Zone, or when task or exposure conditions change (whichever frequency is less). If elevated concentrations are indicated, the monitoring frequency will be increased, as appropriate.

Background concentrations will be determined at the beginning of each work shift by collecting several instrument readings upwind of the scheduled activities. Alternatively, background levels can be determined by collecting readings from a nearby (upwind) area that can reasonably be considered unaffected by Site activities.

Real-time measurements will be made as near as feasible to the breathing zone of the worker with the greatest exposure potential in each active work area. If authorized by the RSUM, real time measurements may cease being taken when enough historical data is generated to warrant its cessation. Air monitoring will be reinstated if potential exposure conditions change.

The equipment will be calibrated daily, and the results will be recorded on BC's Air Monitoring Form. The results of air monitoring will also be recorded on the Air Monitoring Form and will be retained in the project files following completion of field activities. A copy of the Air Monitoring Form is located in Appendix A.

5.1 Monitoring Instruments

On-site worker exposure to airborne contaminants will be monitored during intrusive site activities. A calibrated photoionization detector (PID) with a lamp strength of 10.6 eV or flame ionization detector (FID) will be used to monitor changes in personnel exposure to volatile organic compounds (VOCs). The SSO, or designee, will perform routine monitoring during site operations to evaluate concentrations of VOCs in employee breathing zones. If VOCs are detected above predetermined action levels specified in Section 5.2, the procedures found in Section 4 of this HASP will be followed.

5.2 Site Specific Action Levels

The following action levels were developed for exposure monitoring with real-time air monitoring instruments. Air monitoring data will determine the required respiratory protection levels at the Site during scheduled intrusive activities. The action levels are based on sustained readings indicated by the instrument(s). Air monitoring will be performed and recorded at up to 15-minute intervals.

If elevated concentrations are indicated, the monitoring frequency will be increased, as appropriate. If during this time, sustained measurements are observed, the following actions will be instituted, and the PM and RSUM will be notified. For purposes of this HASP, sustained readings are defined as the average airborne concentration maintained for a period of one (1) minute above established background levels.

5: Air Monitoring Plan Health and Safety Plan

Activity	Action Level	Level of Respiratory Protection
Soil Remediation	< 5 ppm above background	Level D: No respiratory protection required.
Soil Remediation	5 to 25 ppm	Level C: Half- or full-face air-purifying respirator fitted with organic vapor filter cartridges.
Soil Remediation	> 25 ppm	Cease operations and evacuate work area. Contact RSUM and PM immediately.

6. SITE CONTROL MEASURES

The SSO will conduct a safety inspection of the work site before each day's activities begin to verify compliance with the requirements of the HASP. Results of the first day's inspection will be documented on the Site Safety Checklist. A copy of the checklist is included in Appendix B. Thereafter, the SSO should document unsafe conditions or acts, along with corrective action, in the project field log book.

Procedures must be followed to maintain site control so that persons who may be unaware of site conditions are not exposed to hazards. The work area will be barricaded by tape, warning signs, or other appropriate means. Site equipment or machinery will be secured and stored safely.

Access to the specified work area will be limited to authorized personnel. Only BC employees and designated BC subcontracted personnel, as well as designated employees of the client, will be admitted to the work site. Personnel entering the work area are required to sign the signature page of this HASP, indicating they have read and accepted the health and safety practices outlined in this plan.

In some instances it may be necessary to define established work zones: an Exclusion Zone, a Contamination Reduction Zone, and a Support Zone. Work zones may be established based on the extent of anticipated contamination, projected work activities, and the presence or absence of non-project personnel. The physical dimensions and applicability of work zones will be determined for each area based on the nature of job activity and hazards present. Within these zones, prescribed operations will commence using appropriate PPE. Movement between zones will be controlled at checkpoints.

Considerable judgment is needed to maintain a safe working area for each zone, balanced against practical work considerations. Physical and topographical barriers may constrain ideal locations. Field measurements combined with climatic conditions may, in part, determine the control zone distances. Even when work is performed in an area that does not require the use of chemical-resistant clothing, work zone procedures may still be necessary to limit the movement of personnel and retain adequate site control.

Personnel entering the designated Exclusion Zone should exit at the same location. There must be an alternate exit established for emergency situations. In all instances, worker safety will take precedence over decontamination procedures. If decontamination of personnel is necessary, exiting the Site will include the decontamination procedures described in the following section.

7. DECONTAMINATION PROCEDURES

Decontamination will take place in the decontamination area identified on-Site. Workers, PPE, sampling equipment, and heavy equipment leaving the exclusion area will be inspected to determine the level of decontamination necessary to prevent the spread of potentially hazardous materials. Unnecessary equipment and support vehicles are to be left outside the designated Exclusion Zone so that decontamination will not be necessary.

Despite protective procedures, personnel may come in contact with potentially hazardous compounds while performing work tasks. If so, decontamination needs to take place using an Alconox or TSP wash, followed by a rinse with clean water. Standard decontamination procedures for levels C and D are as follows.

- · equipment drop,
- boot cover and outer glove wash and rinse,
- boot cover and outer glove removal,
- suit removal,
- safety boot wash and rinse,
- inner glove wash and rinse,
- respirator removal,
- inner glove removal, and
- field wash of hands and face.

Site workers should employ only applicable steps in accordance with level of PPE worn and extent of contamination present. The SSO shall maintain adequate quantities of clean water to be used for personal decontamination (i.e., field wash of hands and face) whenever a suitable washing facility is not located in the immediate vicinity of the work area.

Disposable items will be disposed of in an appropriate container. Wash and rinse water generated from decontamination activities will be handled and disposed of properly. Non-disposable items (i.e., respirators) may need to be cleaned or sanitized before reuse. Each site worker is responsible for the maintenance, decontamination, and sanitizing of their own PPE.

Used equipment may be decontaminated as follows.

- Remove adhered materials (i.e., dirt or mud) to increase the effectiveness of the decontamination process.
- An Alconox or TSP and water solution may be used to wash the equipment.
- The equipment will then be rinsed with clean water until it is determined clean.

Each person must follow these procedures to reduce the potential for transferring chemically affected materials off site.

8. TRAINING REQUIREMENTS

BC Site personnel, including subcontractors and visitors conducting work in controlled areas of the Site, must have completed the appropriate training as required by 29 CFR 1910.120. In addition, the SSO will have completed the 8-hour Site Supervisor course, have current training in first aid and CPR, and any additional training appropriate to the level of site hazards. Further site-specific training will be conducted by the SSO prior to the initiation of project activities. This training will include, but will not necessarily be limited to, emergency procedures, site control, personnel responsibilities, and the provisions of this HASP. Each employee will document that they have been briefed on the hazards identified at the site and that they have read and understand the requirements of this HASP by signing the H&S Plan Acknowledgement Form attached as Appendix C.

A daily morning briefing to cover safety procedures and contingency plans in the event of an emergency is to be included with a discussion of the day's activities. These daily meetings will be recorded on the Daily Tailgate Safety Meeting Form. A copy of the Daily Tailgate Safety Meeting Form is included in Appendix D.

HEALTH AND SAFETY PLAN

9. MEDICAL SURVEILLANCE REQUIREMENTS

BC Site personnel, including subcontractors and site visitors, who will or may work in an area designated as an exclusion zone must have fulfilled the appropriate medical monitoring requirements in accordance with 29 CFR 1910.120(f). Each individual entering an exclusion zone must have successfully completed an annual surveillance examination and/or an initial baseline examination within the last 12 months.

Medical surveillance is conducted as a routine program for BC field staff in accordance with the requirements of 29 CFR 1910.120(f). There will not be any special medical tests or examinations required for staff involved in this project.

A Hepatitis B vaccination will be offered to BC personnel before the person participates in a task where direct exposure to potentially infectious materials is a possibility (i.e., first aid or CPR). For personnel who have potential exposure to sanitary wastes, a current tetanus/diphtheria inoculation or booster is recommended.

10. CONTINGENCY PROCEDURES

Minimum emergency equipment maintained on site will include a fully charged ABC dry chemical fire extinguisher, an adequately stocked first aid kit, and an emergency eyewash station (when corrosive chemicals are present). In addition, employees will consider maintaining the personal emergency supply items listed in Section 3: Natural Phenomena, as appropriate.

In the event of an emergency, site personnel will signal distress with three blasts of a horn (a vehicle horn will be sufficient), or other predetermined signal. Communication signals, such as hand signals, must be established where communication equipment is not feasible or in areas of loud noise.

It is the SSO's duty to evaluate the seriousness of the situation and to notify appropriate authorities. The first part of this plan contains emergency telephone numbers as well as directions to the hospital. Nearby telephone access must be identified and available to communicate with local authorities. If a nearby telephone is not available, a cellular telephone will be maintained on site during work activities. The operation of the cellular phone will be verified to ensure that a signal can be achieved at the work location.

The SSO, or designee, should contact local emergency services in the event of an emergency. After emergency services are notified, the PM and RSUM will be notified of the situation as soon as possible. If personal injury, property damage or equipment damage occurs, the PM and BC Risk Manager will be contacted as soon as practicable. An Accident/Incident Investigation Report will be completed within 24 hours by the SSO, or other designated person. A copy of the Accident/Incident Investigation Report is included in Appendix E.

MSHA Immediate Notification Rule:

At projects conducted at mining facilities, incident reporting requirements differ from OSHA standards. Site-specific MSHA reporting requirements must be addressed in conjunction with the RSUM and PM.

In order to comply with the MSHA Immediate Notification rule (50.10), Brown and Caldwell has developed the 'MSHA Immediately Reportable Accident/Injury Notification Procedure'. Note that incidents meeting the definition of "immediately reportable" must be reported to MSHA within 15 minutes of occurrence.

http://search.bc.com/health_safety/documents/BC_MSHANotificationProcedure.doc

This new procedure can be accessed by clicking the link above and includes a decision flowchart and accompanying instructions to help guide field personnel in the event of a reportable accident/injury at a mining site.

10.1 Injury or Illness

If an exposure or injury occurs, work will be temporarily halted until an assessment can be made to determine it is safe to continue work. The SSO, in consultation with the RSUM, will make the decision regarding the safety of continuing work. The SSO will conduct an investigation to determine the cause of the incident and steps to be taken to prevent recurrence.

In the event of an injury, the extent and nature of the victim's injuries will be assessed and first aid/CPR will be rendered as appropriate. If necessary, emergency services will be contacted or the individual may be transported to the nearby medical center. The mode of transportation and the eventual destination will be based on the nature and extent of the injury. A hospital route map is presented at the front of this HASP.

In the event of a life-threatening emergency, the injured person will be given immediate first aid and emergency medical services will be contacted by dialing the number listed in the Critical Project Information section at the beginning of this plan. The individual rendering first aid will follow directions given by emergency medical personnel via telephone.

10.2 Vehicle Collision or Property Damage

If a vehicle collision or property damage event occurs, the SSO, or designee, will contact the BC Risk Manager for appropriate action.

10.3 Fire

In the event of fire, the alarm will be sounded and Site personnel will evacuate to a safe location (preferably upwind). The SSO, or designee, should contact the local fire department immediately by dialing 911. When the fire department arrives, the SSO, or designated representative, will advise the commanding officer of the location and nature of the fire nature, and identification of hazardous materials on site. Only trained, experienced fire fighters should attempt to extinguish substantial fires at the Site. Site personnel should not attempt to fight fires, unless properly trained and equipped to do so. Site personnel should not attempt to fight a fire if it poses a risk to their personal safety.

Note that smoking is not permitted in controlled areas (i.e., exclusion or contamination reduction zones), near flammable or combustible materials, or in areas designated by the facility as non-smoking areas.

10.4 Underground Utilities

In the event that an underground conduit is damaged during subsurface work, mechanized equipment will immediately be shut off and personnel will evacuate the area until the nature of the piping can be determined. Depending on the nature of the broken conduit (e.g., natural gas, water, or electricity), the appropriate local utility will be contacted.

10.5 Site Evacuation

The SSO will designate evacuation routes and refuge areas to be used in the event of a Site emergency. Site personnel will stay upwind from vapors or smoke and upgradient from spills. If workers are in an Exclusion or Contamination Reduction Zone at the start of an emergency, they should exit through the established decontamination corridors, if possible. If evacuation cannot be done through an established decontamination area, site personnel will go to the nearest safe location and remove chemically-affected clothing there or, if possible, leave it near the Exclusion Zone. Personnel will assemble at the predetermined refuge following evacuation and decontamination. The SSO, or designated representative, will count and identify site personnel to verify that all have been evacuated safely.

10.6 Spill of Hazardous Materials

If a hazardous material spill occurs, site personnel should locate the source of the spill and determine the hazard to the health and safety of site workers and the public. Attempts to stop or reduce the flow should only be performed if it can be done without risk to personnel.

Isolate the spill area and do not allow entry by unauthorized personnel. De-energize sources of ignition within 100 feet of the spill, including vehicle engines. Should a spill be of the nature or extent that it cannot be safely contained, or poses an imminent threat to human health or the environment, an emergency cleanup contractor will be called out as soon as possible. Spill containment measures listed below are examples of responses to spills.

- Right or rotate containers to stop the flow of liquids. This step may be accomplished as soon
 as the spill or leak occurs, providing it is safe to do so.
- Sorbent pads, booms, or adjacent soil may be used to dike or berm materials, subject to flow, and to solidify liquids.
- Sorbent pads, soil, or booms, if used, must be placed in appropriate containers after use, pending disposal.
- Contaminated tools and equipment shall be collected for subsequent cleaning or disposal.

11. DOCUMENTATION

The implementation of the HASP must be documented on the appropriate forms (see appendices) to verify employee participation and protection. In addition, the regulatory requirements must be met for recordkeeping on training, medical surveillance, injuries and illnesses, exposure monitoring, health risk information, and respirator fit-tests. Documentation of each BC employee's health and safety records is maintained by the Health and Safety Data Manager in Walnut Creek, California.

Health and safety documentation and forms completed, as specified by this plan, are to be retained in the project file.

Other relevant project-specific health and safety documents, such as MSDSs or client-specified procedures, will be attached to this HASP in Appendix F.

Air Monitoring Form

Air Monitoring Form

Page ____ of ____

						Instructions: Complete	this form immediate	ely prior to p	roject start.
Name of P	roject/Site:						Project No:		
Project/Sit	e Location:								
Employee (Print and S	Performing Air I Sign):	Monitoring:					Date:		
		Ph	oto Ionizati	ion/Flame	Ionization [Detectors (PIDs/FIDs)			
□ _{PID}	□ _{FID}	Manufacturer:			Model:		Serial #:		
Initial Calil	oration Reading	:			End-of-Use Ca	llibration Reading:			
Calibration	Standard/Cond	entration:		1					
				Mini-R	AM Dust Mo	nitor			
Manufactu	rer:				Model:		Serial #:		
Zeroed in	Z-Bag? 🗆 Yes	s □ No							
				Mo	nitoring Dat	a			
Time	Lo	cation and Activity	PID/FID (ppm)	Mini-RAN (mg/m³)	1 Time	Location and A	Activity	PID/FID (ppm)	Mini-RAM (mg/m³)
					+				

Site Safety Checklist

Site Safety Checklist

Page ____ of ____

	Instructions: Complete	this form immediately prior to project start.
Name of Project/Site:		Project No:
Project/Site Location:		
Employee Completing Checklist: (Print and Sign):		Date:
Yes No N/A Written Health and Safety (H&S) Plan is on site? Addenda to the H&S Plan are documented on site? H&S Plan information matches conditions/activities at the site? H&S Plan read/signed by all site personnel, including visitors? Daily tallgate H&S meetings have been held/documented? Site personnel have required training and medical? Air monitoring is performed/documented per the H&S Plan? Air monitoring equipment has been calibrated daily? Site zones are set up and observed where appropriate? Access to the work area limited to authorized personnel? Decontamination procedures followed/match the H&S Plan? Decontamination stations (incl. hand/face wash) are set up and used? PPE used matches H&S Plan requirements? Hearing protection used where appropriate? Access to the work area limited to authorized personnel? Rearing protection used where appropriate? Access to the work area limited to authorized personnel? Rearing protection used where appropriate?	Yes No N/A	ant a hazard to equipt./personnel? been implemented? safe for entry? som the edge of the excavation? te as described in the H&S Plan? ble? emergency use? ect locations? dling techniques are used? bleled appropriately? cted from water/vehicle traffic? od working order? ical tools and equipment?

H&S Plan Acknowledgement Form

H&S Plan Acknowledgement Form

Instructions: Complete this form immediately prior to project start or as new personnel join the project. Name of Project/Site: Project No: Project/Site Location: **Employee Performing Briefing:** Date: (Print and Sign): **Employee Acknowledgement:** The following signatures indicate that these personnel have read and/or been briefed on this Health and Safety (H&S) Plan and understand the potential hazards/controls for the work to be performed. Important Notice to Subcontractor(s): Subcontractors are responsible for developing, maintaining, and implementing their own health and safety programs, policies, procedures and equipment as necessary to protect their workers, and others, from their activities. Subcontractors shall operate equipment in accordance with their standard operating procedures as well as manufacturer's specifications. Any project monitoring activities conducted by BC at the Site shall not in any way relieve subcontractors of their critical obligation to monitor their operations and employees for the determination of exposure to hazards that may be present at the Site and to provide required guidance and protection. If requested, subcontractors will provide BC with a copy of their own H&S Plan for this project or other health and safety program documents for review. BC's Health and Safety Plan has been prepared specifically for this project and is intended to address health and safety issues solely with respect to the activities of BC's own employees at the site. A copy of BC's H&S Plan may be provided to subcontractors in an effort to help them identify expected conditions at the site and general site hazards. The subcontractor shall remain responsible for identifying and evaluating hazards at the site as they pertain to their activities and for taking appropriate precautions. For example, BC's H&S Plan does not address specific hazards associated with tasks and equipment that are particular to the subcontractor's scope of work and site activities. (e.g., operation of a drill rig, excavator, crane or other equipment). Subcontractors are not to rely on BC's H&S Plan to identify all hazards that may be present at the Site. Subcontractor personnel are expected to comply fully with subcontractor's Health and Safety Plan and to observe the minimum safety guidelines applicable to their activities which may be identified in the BC H&S Plan. Failure to do so may result in the removal of the subcontractor or any of the subcontractor's workers from the job site. Print Sign Date Print Sign Date

Daily Tailgate Meeting Form

Daily Tailgate Meeting Form

Page ____ of ____

Name of Project/Site:		Project No:
Project/Site Location:		
Employee Completing Form: (Print and Sign):		Date:
The following signatures indicate that these personnel have	nowledgement: ead and/or been briefed on this Health and S /controls for the work to be performed.	Safety (H&S) Plan
Subcontractors are responsible for developing, maintaining, and implementing their own howorkers, and others, from their activities. Subcontractors shall operate equipment in accord project monitoring activities conducted by BC at the Site shall not in any way relieve subcontractors exposure to hazards that may be present at the Site and to provide required guidance and this project or other health and safety program documents for review.	ance with their standard operating proceductors of their critical obligation to monitor the	ures as well as manufacturer's specifications. Any eir operations and employees for the determination
BC's Health and Safety Plan has been prepared specifically for this project and is intended to the site. A copy of BC's H&S Plan may be provided to subcontractors in an effort to help shall remain responsible for identifying and evaluating hazards at the site as they pertain to address specific hazards associated with tasks and equipment that are particular to the subcother equipment). Subcontractors are not to rely on BC's H&S Plan to identify all hazards subcontractor's Health and Safety Plan and to observe the minimum safety guidelines applical the removal of the subcontractor or any of the subcontractor's workers from the job site.	them identify expected conditions at the s heir activities and for taking appropriate pre ontractor's scope of work and site activities that may be present at the Site. Subcontr	site and general site hazards. The subcontractor ecautions. For example, BC's H&S Plan does not so (e.g., operation of a drill rig, excavator, crane or actor personnel are expected to comply fully with
Print Sign Date	Print	Sign Date
		· ·
	the Day	
(Describe the activities that are	planned to be performed today)	
Potential Hazards a	nd Topics Discussed	
(Describe the potential hazards and controls	hat may be associated with planned activitie	rs)
☐ Electrical ☐ Chemical ☐ Biological ☐ Physical ☐ Other (specify):		

Incident Investigation Report

Incident Investigation Report

Page 1 of 2

Instructions:

If an accident or incident occurs, complete all applicable information in this form, make a copy for your records, and immediately forward the original to the office Health and Safety Coordinator (HSC). If fields are not applicable, indicate with "N/A". Use separate sheet(s) if necessary and attach sketches, photographs, or other information that may be helpful in understanding how the accident/incident occurred.

HSC – Review and enter report into the BC Online Safety Observation and Incident Reporting System within 3 workdays of receipt. File original in appropriate office health and safety file.

NOTE:

This report is important – please take the time necessary to properly complete it. Incomplete reports will be forwarded to appropriate management for review and action.

General Information Date of Accident/Incident To Whom: Time of Accident/Incident: Date Accident/Incident Reported: Exact Location of Accident/Incident (Street, City, State): BC Office: Name Project: Project Number: Employee Completing the Investigation (Print and Sign): Date: Injured/III Employee/Property Damage Information **Employee Name:** Employee No. Department: Phone Number: Job Title: Manager's Name and Phone Number: Nature of Injury/Illness (laceration, contusion, strain, etc.): Body Part Affected (arm, leg, head, hand, etc.): Describe Property Damage and Estimate Loss: **Description of Accident/Incident** Describe the accident sequentially, beginning with the initiating event, and followed by secondary and tertiary events. End with the nature and extent of injury/damage. Name any object or substance and tell how they were included. Examples: 1) Employee was pulling utility cart that was loaded with wastepaper from office area to hallway. Wheel of utility cart caught against door casing. Bags of heavy wastepaper that were in cart fell to end of cart. Cart tipped over onto foot of employee. Right foot was crushed between utility cart and door casing, resulting in severe contusion to right foot of employee. 2) Employee was driving rental car from office to project site. Car struck icy section of road. Employee lost control of vehicle, which skidded across road into concrete abutment on side of road. Accident resulted in damage to right fender, tire, headlight, and grill.

Incident Investigation Report

Page 2 of 2

Analysis of Accident Causes

Immediate Causes - Substandard What substandard actions caused or could have c accident/incident. Examples: 1) Employee overloa	aused the accident/incident? State the actions		
Codes (check all that apply) 1. Operating equipment without authority 2. Failure to warn 3. Failure to secure 4. Operating at improper speed 17. Other (specify)	☐ 5. Making safety devices inoperable ☐ 6. Removing safety devices ☐ 7. Using defective equipment ☐ 8. Using equipment improperly	9. Failure to use PPE properly 10. Improper loading 11. Improper placement 12. Improper lifting	☐ 13. Improper position for task ☐ 14. Servicing equipment in operation ☐ 15. Horseplay ☐ 16. Alcohol or drug influence
Immediate Causes - Substandard What substandard conditions caused or could hav may have been the direct or immediate cause or c wastepaper. 2) Road was covered with icy spots	e caused the accident/incident? State the cond auses of the accident). Examples: 1) Wheel of		
Codes (check all that apply) 1. Inadequate guards or barriers 2. Inadequate or improper PPE 3. Defective tools, equipment, or materials	5. Inadequate earning system	8. Noise exposures 11. Inadeo 9. Radiation exposures 12. Inadeo	or low temperature exposures quate or excess illumination quate ventilation dous environ. conditions (vapors, dusts, etc.)
14. Other (specify)			
Basic Causes - Personal and Job What personal and/or job factors caused or could contributed to the accident/incident. Examples: 1 company has no driver training program.	have caused the accident/incident? State the ir		
Codes (check all that apply) Personal Factors 1. Inadequate capability 2. Lack of know 5. Other (specify):	ledge 🔲 3. Lack of skill 🔲 4. Improper mot	ivation	
Job Factors 1. Inadequate leadership/supervision 2. In 6. Inadequate work standards/procedures 9. Other (specify):	nadequate engineering	hasing 4. Inadequate maintenance maintenance	☐ 5. Inadequate tools/equipment
Examples: 1) Wheels of utility cart were rep	Remedial Activent recurrence of accident/incident - provide the laced with larger size wheels; all carts were inspared to training meeting on driving under hazardom.	ne implementation date and person respon pected for safe operation; employees were	instructed in overloading hazards. 2)
Codes (check all that apply) Job Factors 1. Reinstruction of personnel involved 2. 5. Equipment repair or replacement 11. Order use of safer materials 12. Regi	prove design 7. Improve construction		

Miscellaneous Health and Safety Information

Appendix E: Laboratory Reports

Confirmation Samples

November 22, 2010

Joshua Johnson Brown & Caldwell 724 Columbia St. NW#420 Olympia, WA 98501

RE: Project: Olympia Soils

Pace Project No.: 255662

Dear Joshua Johnson:

Enclosed are the analytical results for sample(s) received by the laboratory on November 09, 2010. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jennifer Gross

jennifer.gross@pacelabs.com Project Manager

ENNI (TROSS

Enclosures

(206)767-5060

CERTIFICATIONS

Project: Olympia Soils
Pace Project No.: 255662

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

Alaska Certification #: UST-078
Alaska Certification #MN00064
Arizona Certification #: AZ-0014
Arkansas Certification #: 88-0680
California Certification #: 01155CA
EPA Region 8 Certification #: Pace
Florida/NELAP Certification #: E87605
Georgia Certification #: 959
Idaho Certification #: MN00064

Idaho Certification #: MN00064
Illinois Certification #: 200011
Iowa Certification #: 368
Kansas Certification #: E-10167
Louisiana Certification #: 03086
Louisiana Certification #: LA080009
Maine Certification #: 2007029
Maryland Certification #: 322

Maryland Certification #: 322 Michigan DEQ Certification #: 9909 Minnesota Certification #: 027-053-137 Mississippi Certification #: Pace

Washington Certification IDs

940 South Harney Street, Seattle, WA 98108
Alaska CS Certification #: UST-025
Alaska Drinking Water VOC Certification #: WA01230
Alaska Drinking Water Micro Certification #: WA01230

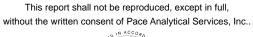
Montana Certification #: MT CERT0092
Nebraska Certification #: Pace
Nevada Certification #: MN_00064
New Jersey Certification #: MN-002
New Mexico Certification #: Pace
New York Certification #: 11647
North Carolina Certification #: 530
North Dakota Certification #: R-036
North Dakota Certification #: R-036
North Dakota Certification #: CL101
Oklahoma Certification #: D9921
Oklahoma Certification #: M9507
Oregon Certification #: MN200001

Pennsylvania Certification #: 68-00563
Puerto Rico Certification #: 02818
Texas Certification #: T104704192
Washington Certification #: C754
Wisconsin Certification #: 999407970

California Certification #: 01153CA Florida/NELAP Certification #: E87617 Oregon Certification #: WA200007 Washington Certification #: C1229

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..


SAMPLE ANALYTE COUNT

Project: Olympia Soils
Pace Project No.: 255662

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
255662001	CNF-4-1-15	 EPA 6020	CJS	4	PASI-M
		% Moisture	JDL	1	PASI-M
255662002	CNF-4-2-13	EPA 6020	CJS	4	PASI-M
		% Moisture	JDL	1	PASI-M
255662003	CNF-4-3-12	EPA 6020	CJS	4	PASI-M
		% Moisture	JDL	1	PASI-M
255662004	CNF-4-4-12	EPA 6020	CJS	4	PASI-M
		% Moisture	JDL	1	PASI-M
255662005	CNF-4-5-12	EPA 6020	CJS	4	PASI-M
		% Moisture	JDL	1	PASI-M
255662006	CNF-4-6-10.5	EPA 6020	CJS	4	PASI-M
		% Moisture	JDL	1	PASI-M
255662007	CNF-4-7-6	EPA 6020	CJS	4	PASI-M
		% Moisture	JDL	1	PASI-M
255662008	CNF-4-8-2.5	EPA 6020	CJS	4	PASI-M
		% Moisture	JDL	1	PASI-M
255662009	CNF-4-9-11	EPA 6020	CJS	4	PASI-M
		% Moisture	JDL	1	PASI-M
255662010	CNF-4-10-7	EPA 6020	CJS	4	PASI-M
		% Moisture	JDL	1	PASI-M
255662011	CNF-4-11-2	EPA 6020	CJS	4	PASI-M
		% Moisture	JDL	1	PASI-M
255662012	CNF-4-12-11	EPA 6020	CJS	4	PASI-M
		% Moisture	JDL	1	PASI-M
255662013	CNF-4-13-2.5	EPA 6020	CJS	4	PASI-M
		% Moisture	JDL	1	PASI-M
255662014	CNF-4-14-11	EPA 6020	CJS	4	PASI-M
		% Moisture	JDL	1	PASI-M
255662015	CNF-4-15-3.5	EPA 6020	CJS	4	PASI-M
		% Moisture	JDL	1	PASI-M
255662016	CNF-4-16-2	EPA 6020	CJS	4	PASI-M
		% Moisture	JDL	1	PASI-M
255662017	CNF-5-1-15	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	ATH	3	PASI-S
		EPA 6020	CJS	1	PASI-M
		EPA 8260	LPM	8	PASI-S
255662018	CNF-5-2-13.5	NWTPH-Dx	ERB	4	PASI-S

REPORT OF LABORATORY ANALYSIS

Page 3 of 34

SAMPLE ANALYTE COUNT

Project: Olympia Soils
Pace Project No.: 255662

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		NWTPH-Gx	 ATH	3	PASI-S
		EPA 6020	CJS	1	PASI-M
		EPA 8260	LPM	8	PASI-S
255662019	CNF-5-3-10	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	ATH	3	PASI-S
		EPA 6020	CJS	1	PASI-M
		EPA 8260	LPM	8	PASI-S
255662020	CNF-5-4-2	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	ATH	3	PASI-S
		EPA 6020	CJS	1	PASI-M
		EPA 8260	LPM	8	PASI-S
255662021	CNF-5-5-13.5	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	ATH	3	PASI-S
		EPA 6020	CJS	1	PASI-M
		EPA 8260	LPM	8	PASI-S
55662022	CNF-5-6-10	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	ATH	3	PASI-S
		EPA 6020	CJS	1	PASI-M
		EPA 8260	LPM	8	PASI-S
55662023	CNF-5-7-2	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	ATH	3	PASI-S
		EPA 6020	CJS	1	PASI-M
		EPA 8260	LPM	8	PASI-S
255662024	CNF-5-8-13	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	ATH	3	PASI-S
		EPA 6020	CJS	1	PASI-M
		EPA 8260	LPM	8	PASI-S
255662025	CNF-5-9-10	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	CJS	1	PASI-M
		EPA 8260	LPM	8	PASI-S
55662026	CNF-5-10-2	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	CJS	1	PASI-M
		EPA 8260	LPM	8	PASI-S
255662027	CNF-5-11-13	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S

REPORT OF LABORATORY ANALYSIS

Page 4 of 34

SAMPLE ANALYTE COUNT

Project: Olympia Soils
Pace Project No.: 255662

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 6020	CJS	1	PASI-M
		EPA 8260	LPM	8	PASI-S
255662028	CNF-5-12-10	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	CJS	1	PASI-M
		EPA 8260	LPM	8	PASI-S
255662029	CNF-5-13-2	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	CJS	1	PASI-M
		EPA 8260	LPM	8	PASI-S
255662030	Trip Blank Soil	NWTPH-Gx	AY1	3	PASI-S
		EPA 8260	LPM	8	PASI-S

Project: Olympia Soils
Pace Project No.: 255662

Analytical Method: EPA 6020 Arsenic 7.1 mg/kg 0.53 20 11/10/10 13:54 11/12/10 16:41 7440-50-8 Lead 2.3 mg/kg 0.53 20 11/10/10 13:54 11/12/10 16:41 7440-50-8 Lead 2.3 mg/kg 0.53 20 11/10/10 13:54 11/12/10 16:41 7440-50-8 Lead 2.3 mg/kg 0.53 20 11/10/10 13:54 11/12/10 16:41 7440-50-8 Lead 2.3 mg/kg 0.53 20 11/10/10 13:54 11/12/10 16:41 7440-50-8 Lead Analytical Method: % Moisture Percent Moisture 26.9 % 0.10 1 11/12/10 00:00 Sample: CNF-4-2-13 Lab ID: 255662002 Collected: 11/08/10 10:18 Received: 11/09/10 15:20 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Que 3020 MET ICPMS Analytical Method: EPA 6020 Arsenic 4.4 mg/kg 0.67 20 11/10/10 13:54 11/12/10 17:03 7440-50-8 Lead 9.4 mg/kg 0.67 20 11/10/10 13:54 11/12/10 17:03 7440-50-8 Lead 9.4 mg/kg 0.67 20 11/10/10 13:54 11/12/10 17:03 7440-50-8 Lead 9.4 mg/kg 0.67 20 11/10/10 13:54 11/12/10 17:03 7440-50-8 Lead 9.4 mg/kg 0.67 20 11/10/10 13:54 11/12/10 17:03 7440-02-0 Dry Weight Analytical Method: % Moisture Percent Moisture 46.3 % 0.10 1 11/12/10 00:00 Sample: CNF-4-3-12 Lab ID: 255662003 Collected: 11/08/10 10:22 Received: 11/09/10 15:20 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Que 3020 MET ICPMS Analytical Method: EPA 6020 Arsenic 3.2 mg/kg 1.3 20 11/10/10 13:54 11/11/10 20:55 7440-38-2 Copper 3.8 mg/kg 1.3 20 11/10/10 13:54 11/11/10 20:55 7440-38-2 Copper 3.8 mg/kg 1.3 20 11/10/10 13:54 11/11/10 20:55 7440-38-2 Copper 3.8 mg/kg 1.3 20 11/10/10 13:54 11/11/10 20:55 7440-38-2 Copper 3.8 mg/kg 1.3 20 11/10/10 13:54 11/11/10 20:55 7440-38-2 Copper 3.8 mg/kg 1.3 20 11/10/10 13:54 11/11/10 20:55 7440-38-2 Copper 3.8 mg/kg 1.3 20 11/10/10 13:54 11/11/10 20:55 7440-38-2 Copper 3.8 mg/kg 1.3 20 11/10/10 13:54 11/11/10 20:55 7440-38-2 Copper 3.8 mg/kg 3.9 11/10/10 13:54 11/11/10 20:55 7440-38-2 Copper 3.1 1/10/10 13:54 11/11/10 20:55 7440-38-2 Copper 3.1 1/1	Sample: CNF-4-1-15	Lab ID: 2	55662001	Collected:	11/08/1	0 10:10	Received: 11	/09/10 15:20 N	Matrix: Solid	
Analytical Method: EPA 6020 Arsenic 7.1 mg/kg 0.53 20 11/10/10 13:54 11/12/10 16:41 7440-80-8 Lead 2.3 mg/kg 0.53 20 11/10/10 13:54 11/12/10 16:41 7440-80-8 Lead 2.3 mg/kg 0.53 20 11/10/10 13:54 11/12/10 16:41 7440-80-8 Lead 2.3 mg/kg 0.53 20 11/10/10 13:54 11/12/10 16:41 7440-80-8 Lead 2.3 mg/kg 0.53 20 11/10/10 13:54 11/12/10 16:41 7440-80-8 Lead Analytical Method: % Moisture Percent Moisture 26.9 % 0.10 1 11/12/10 00:00 Sample: CNF-4-2-13 Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Que 3020 MET ICPMS Analytical Method: EPA 6020 Arsenic 4.4 mg/kg 0.67 20 11/10/10 13:54 11/12/10 17:03 7440-80-8 Lead 9.4 mg/kg 0.67 20 11/10/10 13:54 11/12/10 17:03 7440-50-8 Lead 9.4 mg/kg 0.67 20 11/10/10 13:54 11/12/10 17:03 7440-92-0 Dry Weight Analytical Method: Moisture Percent Moisture 46.3 % 0.10 1 11/12/10 00:00 Analytical Method: Moisture Analytical Method: Moisture Analytical Method: Moisture Analytical Method: EPA 6020 Arsenic 3.2 mg/kg 1.3 20 11/10/10 13:54 11/11/10 20:55 7440-38-2 Copper 3.8 mg/kg 1.3 20 11/10/10 13:54 11/11/10 00:55 7440-38-2 Copper 3.8 mg/kg 1.3 20 11/10/10 13:54 11/11/10 20:55 7440-38-2 Copper 3.8 mg/kg 1.3 20 11/10/10 13:54 11/11/10 20:55 7440-38-2 Copper 3.8 mg/kg 1.3 20 11/10/10 13:54 11/11/10 20:55 7440-38-2 Copper 3.8 mg/kg 1.3 20 11/10/10 13:54 11/11/10 20:55 7440-38-2 Copper 3.8 mg/kg 1.3 20 11/10/10 13:54 11/11/10 20:55 7440-38-2 Copper 3.8 mg/kg 1.3 20 11/10/10 13:54 11/11/10 20:55 7440-38-2 Copper 3.8 mg/kg 1.3 20 11/10/10 13:54 11/11/10 20:55 7440-38-2 Copper 3.8 mg/kg 1.3 20 11/10/10 13:54 11/11/10 20:55 7440-38-2 Copper 3.8 mg/kg 1.3 20 11/10/10 13:54 11/11/10 20:55 7440-38-2 Copper 3.8 mg/kg 1.3 20 11/10/10 13:54 11/11/10 20:55 7440-38-2 Copper 3.8 mg/kg 1.3 20 11/10/10 13:54 11/11/10 20:55 7440-38-2 Copper 3.8 mg/kg 3.1 20 11/10/10 13:54 11/11/10 20:55 7440-38-2 Copper 3.8 mg/kg 3.1 20 11/10/10 13:54 11/11/10 20:55 7440-38-2 Copper 3.8 mg/kg 3	Results reported on a "dry-wei	ght" basis								
Arsenic 7.1 mg/kg 0.53 20 11/10/10 13:54 11/11/10 20:33 7440-38-2 Copper 10.0 mg/kg 0.53 20 11/10/10 13:54 11/11/10 20:33 7440-50-8 Lead 12.3 mg/kg 0.53 20 11/10/10 13:54 11/11/10 20:33 7439-92-1 Nickel 16.2 mg/kg 0.53 20 11/10/10 13:54 11/11/10 20:33 7439-92-1 Nickel 16.2 mg/kg 0.53 20 11/10/10 13:54 11/11/10 20:33 7439-92-1 Nickel 16.2 mg/kg 0.53 20 11/10/10 13:54 11/11/10 20:33 7439-92-1 Nickel 16.2 mg/kg 0.53 20 11/10/10 13:54 11/12/10 16:41 7440-02-0 Nry Weight Analytical Method: % Moisture Percent Moisture 26.9 % 0.10 1 11/12/10 00:00 Sample: CNF-4-2-13 Lab ID: 255662002 Collected: 11/08/10 10:18 Received: 11/09/10 15:20 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Que CAS No. Qu	Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qua
Copper	6020 MET ICPMS	Analytical M	ethod: EPA 60	020						
Lead	Arsenic	7.1	mg/kg		0.53	20	11/10/10 13:54	11/11/10 20:33	7440-38-2	
Nickel 16.2 mg/kg 0.53 20 11/10/10 13:54 11/12/10 16:41 7440-02-0	Copper	10.0	mg/kg		0.53	20	11/10/10 13:54	11/12/10 16:41	7440-50-8	
Percent Moisture 26.9 % 0.10 1 11/12/10 00:00	Lead				0.53	20	11/10/10 13:54	11/11/10 20:33	7439-92-1	
Percent Moisture 26.9 % 0.10 1 11/12/10 00:00	Nickel	16.2	mg/kg		0.53	20	11/10/10 13:54	11/12/10 16:41	7440-02-0	
Sample: CNF-4-2-13	Dry Weight	Analytical M	ethod: % Mois	sture						
Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Question Que	Percent Moisture	26.9	%		0.10	1		11/12/10 00:00		
Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Quadratic Quadr	Sample: CNF-4-2-13	Lab ID: 2	55662002	Collected:	11/08/1	0 10:18	Received: 11	/09/10 15:20 N	Matrix: Solid	
Analytical Method: EPA 6020 Arsenic 4.4 mg/kg 0.67 20 11/10/10 13:54 11/11/10 20:50 7440-38-2 Copper 28.9 mg/kg 0.67 20 11/10/10 13:54 11/12/10 17:03 7440-50-8 Lead 9.4 mg/kg 0.67 20 11/10/10 13:54 11/12/10 17:03 7440-50-8 Lead 9.4 mg/kg 0.67 20 11/10/10 13:54 11/12/10 17:03 7440-50-8 Lead 9.4 mg/kg 0.67 20 11/10/10 13:54 11/12/10 17:03 7440-50-8 Nickel 27.8 mg/kg 0.67 20 11/10/10 13:54 11/12/10 17:03 7440-02-0 Dry Weight Analytical Method: % Moisture Percent Moisture 46.3 % 0.10 1 11/12/10 00:00 Analytical Method: & Collected: 11/08/10 10:22 Received: 11/09/10 15:20 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qua Analytical Method: EPA 6020 Analytical Method: EPA 6020 Arsenic 3.2 mg/kg 1.3 20 11/10/10 13:54 11/12/10 17:08 7440-50-8 Lead 14.3 mg/kg 1.3 20 11/10/10 13:54 11/12/10 17:08 7440-50-8 Lead 14.3 mg/kg 1.3 20 11/10/10 13:54 11/12/10 17:08 7440-50-8 14.3 mg/kg 1.3 20 11/10/10 13:54 11/12/10 17:08 7440-50-8 14.3 mg/kg 1.3 20 11/10/10 13:54 11/12/10 17:08 7440-02-0 Dry Weight Analytical Method: % Moisture	Results reported on a "dry-wei	ght" basis								
Arsenic	Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qua
28.9 mg/kg	6020 MET ICPMS	Analytical M	ethod: EPA 60	020						
Sample: CNF-4-3-12	Arsenic	4.4	mg/kg		0.67	20	11/10/10 13:54	11/11/10 20:50	7440-38-2	
Nickel 27.8 mg/kg 0.67 20 11/10/10 13:54 11/12/10 17:03 7440-02-0 Dry Weight Analytical Method: % Moisture Percent Moisture 46.3 % 0.10 1 11/12/10 00:00 Sample: CNF-4-3-12 Lab ID: 255662003 Collected: 11/08/10 10:22 Received: 11/09/10 15:20 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Quantum CAS No. 20 11/10/10 13:54 11/11/10 20:55 7440-38-2 11/10/10 13:54 11/11/10 17:08 7440-50-8 11/10/10 13:54 11/11/10 17:08 7440-50-8 11/10/10 13:54 11/11/10 20:55 7439-92-1 11/10/10 13:54 11/11/10 20:55 7439-92-1 11/10/10 13:54 11/11/10 17:08 7440-02-0 Dry Weight Analytical Method: % Moisture	Copper	28.9	mg/kg		0.67	20	11/10/10 13:54	11/12/10 17:03	7440-50-8	
Percent Moisture	Lead	9.4	mg/kg		0.67	20	11/10/10 13:54	11/11/10 20:50	7439-92-1	
Percent Moisture	Nickel	27.8	mg/kg		0.67	20	11/10/10 13:54	11/12/10 17:03	7440-02-0	
Collected: 11/08/10 10:22 Received: 11/09/10 15:20 Matrix: Solid	Dry Weight	Analytical M	ethod: % Mois	sture						
Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Quadratic	Percent Moisture	46.3	%		0.10	1		11/12/10 00:00		
Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Quality 6020 MET ICPMS Analytical Method: EPA 6020 Arsenic 3.2 mg/kg 1.3 20 11/10/10 13:54 11/11/10 20:55 7440-38-2 7440-38-2 7440-50-8 7440-50-8 7440-50-8 7440-50-8 7440-50-8 7440-50-8 7440-50-8 7440-50-8 7440-50-8 7440-02-0 <t< td=""><td>Sample: CNF-4-3-12</td><td>Lab ID: 2</td><td>55662003</td><td>Collected:</td><td>11/08/1</td><td>0 10:22</td><td>Received: 11</td><td>/09/10 15:20 N</td><td>Matrix: Solid</td><td></td></t<>	Sample: CNF-4-3-12	Lab ID: 2	55662003	Collected:	11/08/1	0 10:22	Received: 11	/09/10 15:20 N	Matrix: Solid	
Analytical Method: EPA 6020 Arsenic 3.2 mg/kg 1.3 20 11/10/10 13:54 11/11/10 20:55 7440-38-2 Copper 37.8 mg/kg 1.3 20 11/10/10 13:54 11/12/10 17:08 7440-50-8 Lead 14.3 mg/kg 1.3 20 11/10/10 13:54 11/11/10 20:55 7439-92-1 Nickel 31.2 mg/kg 1.3 20 11/10/10 13:54 11/11/10 20:55 7439-92-1 Nickel Analytical Method: % Moisture	Results reported on a "dry-wei	ght" basis								
Arsenic 3.2 mg/kg 1.3 20 11/10/10 13:54 11/11/10 20:55 7440-38-2 Copper 37.8 mg/kg 1.3 20 11/10/10 13:54 11/12/10 17:08 7440-50-8 Lead 14.3 mg/kg 1.3 20 11/10/10 13:54 11/11/10 20:55 7439-92-1 Nickel 31.2 mg/kg 1.3 20 11/10/10 13:54 11/12/10 17:08 7440-02-0 Dry Weight Analytical Method: % Moisture	Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qua
Copper 37.8 mg/kg 1.3 20 11/10/10 13:54 11/12/10 17:08 7440-50-8 Lead 14.3 mg/kg 1.3 20 11/10/10 13:54 11/11/10 20:55 7439-92-1 Nickel 31.2 mg/kg 1.3 20 11/10/10 13:54 11/12/10 17:08 7440-02-0 Dry Weight Analytical Method: % Moisture	6020 MET ICPMS	Analytical M	ethod: EPA 60	020						
Lead 14.3 mg/kg 1.3 20 11/10/10 13:54 11/11/10 20:55 7439-92-1 Nickel 31.2 mg/kg 1.3 20 11/10/10 13:54 11/12/10 17:08 7440-02-0 Dry Weight Analytical Method: % Moisture	Arsenic	3.2	mg/kg		1.3	20	11/10/10 13:54	11/11/10 20:55	7440-38-2	
Nickel 31.2 mg/kg 1.3 20 11/10/10 13:54 11/12/10 17:08 7440-02-0 Dry Weight Analytical Method: % Moisture	Copper	37.8	mg/kg		1.3	20	11/10/10 13:54	11/12/10 17:08	7440-50-8	
Dry Weight Analytical Method: % Moisture	Lead		0 0		1.3	20	11/10/10 13:54	11/11/10 20:55	7439-92-1	
	Nickel	31.2	mg/kg		1.3	20	11/10/10 13:54	11/12/10 17:08	7440-02-0	
Percent Moisture 65.5 % 0.10 1 11/12/10 00:00	Dry Weight	Analytical M	ethod: % Mois	sture						
	Percent Moisture	65.5	%		0.10	1		11/12/10 00:00		

Date: 11/22/2010 08:16 AM

REPORT OF LABORATORY ANALYSIS

Page 6 of 34

Project: Olympia Soils Pace Project No.: 255662

Sample: CNF-4-4-12	Lab ID: 255	5662004	Collected:	11/08/1	0 10:28	Received: 11	/09/10 15:20 N	Matrix: Solid	
Results reported on a "dry-wei	ight" basis								
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qua
6020 MET ICPMS	Analytical Met	thod: EPA 6	020						
Arsenic	2.6 m	ng/kg		1.1	20	11/10/10 13:54	11/11/10 20:59	7440-38-2	
Copper	26.4 m	ng/kg		1.1	20	11/10/10 13:54	11/12/10 17:12	7440-50-8	
Lead	11.4 m	ng/kg		1.1	20	11/10/10 13:54	11/11/10 20:59	7439-92-1	
Nickel	22.6 m	ng/kg		1.1	20	11/10/10 13:54	11/12/10 17:12	7440-02-0	
Dry Weight	Analytical Met	thod: % Moi	sture						
Percent Moisture	56.8 %	, D		0.10	1		11/12/10 00:00		
Sample: CNF-4-5-12	Lab ID: 255	5662005	Collected:	11/08/1	0 10:35	Received: 11	/09/10 15:20 N	Matrix: Solid	
Results reported on a "dry-wei									
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qua
6020 MET ICPMS	Analytical Met	thod: EPA 6	020						
Arsenic	4.6 m	ng/kg		0.54	20	11/10/10 13:54	11/11/10 21:04	7440-38-2	
Copper	23.8 m	ng/kg		0.54	20	11/10/10 13:54	11/12/10 17:16	7440-50-8	
Lead	9.7 m	ng/kg		0.54	20	11/10/10 13:54	11/11/10 21:04	7439-92-1	
Nickel	25.3 m	ng/kg		0.54	20	11/10/10 13:54	11/12/10 17:16	7440-02-0	
Dry Weight	Analytical Met	thod: % Moi	sture						
Percent Moisture	34.4 %	,)		0.10	1		11/12/10 00:00		
Sample: CNF-4-6-10.5	Lab ID: 255	5662006	Collected:	11/08/1	0 10:38	Received: 11	/09/10 15:20 N	Matrix: Solid	
Results reported on a "dry-wei	ight" basis								
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qua
6020 MET ICPMS	Analytical Met	thod: EPA 6	020						
Arsenic	ND m	ng/kg		2.2	20	11/10/10 13:54	11/11/10 21:08	7440-38-2	
Copper	7.4 m	ng/kg		2.2	20	11/10/10 13:54	11/12/10 17:21	7440-50-8	
_ead	6.4 m			2.2	20	11/10/10 13:54	11/11/10 21:08	7439-92-1	
Nickel	2.2 m	ng/kg		2.2	20	11/10/10 13:54	11/12/10 17:21	7440-02-0	
Ory Weight	Analytical Met	thod: % Moi	sture						
Percent Moisture	79.5 %			0.10	1		11/12/10 00:00		

Date: 11/22/2010 08:16 AM

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

Page 7 of 34

Project: Olympia Soils
Pace Project No.: 255662

Analytical Method: EPA 6020 Arsenic 4.2 mg/kg 0.55 20 11/10/10 13:54 11/11/10 21:13 7440-38-2 Copper 37.3 mg/kg 0.55 20 11/10/10 13:54 11/12/10 17:25 7440-50-8 Lead 9.3 mg/kg 0.55 20 11/10/10 13:54 11/12/10 17:25 7440-50-8 Lead 43.3 mg/kg 0.55 20 11/10/10 13:54 11/12/10 17:25 7440-02-0 Dry Weight Analytical Method: % Moisture Percent Moisture 22.9 % 0.10 1 11/12/10 00:00 Sample: CNF-4-8-2.5 Lab ID: 255662008 Collected: 11/08/10 10:45 Received: 11/09/10 15:20 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qua COPPER Analytical Method: EPA 6020 Arsenic 5.1 mg/kg 0.51 20 11/10/10 13:54 11/11/10 21:30 7440-38-2 Copper 36.7 mg/kg 0.51 20 11/10/10 13:54 11/11/10 21:30 7440-38-2 Copper 36.7 mg/kg 0.51 20 11/10/10 13:54 11/11/10 21:30 7440-50-8 Lead 8.7 mg/kg 0.51 20 11/10/10 13:54 11/11/10 21:30 7440-50-8 Lead 8.7 mg/kg 0.51 20 11/10/10 13:54 11/11/10 21:30 7440-50-8 Lead 8.7 mg/kg 0.51 20 11/10/10 13:54 11/11/10 21:30 7440-02-0 Dry Weight Analytical Method: % Moisture Percent Moisture 18.6 % 0.10 1 11/12/10 00:00 Arrenic Copper 18.6 % 0.10 1 11/12/10 10:52 Received: 11/09/10 15:20 Matrix: Solid Results reported on a "dry-weight" basis	Sample: CNF-4-7-6	Lab ID: 2556	662007	Collected:	11/08/1	0 10:42	Received: 11	/09/10 15:20 N	/latrix: Solid	
Analytical Method: EPA 6020 Arsenic	Results reported on a "dry-wei	ght" basis								
Arsenic 4.2 mg/kg 0.55 20 11/10/10 13:54 11/11/10 21:13 7440-38-2 Copper 37.3 mg/kg 0.55 20 11/10/10 13:54 11/11/10 21:13 7440-50-8 Lead 9.3 mg/kg 0.55 20 11/10/10 13:54 11/11/10 21:13 7439-92-1 Nickel 43.3 mg/kg 0.55 20 11/10/10 13:54 11/11/10 21:13 7439-92-1 Nickel 43.3 mg/kg 0.55 20 11/10/10 13:54 11/11/10 21:13 7439-92-1 Nickel 43.3 mg/kg 0.55 20 11/10/10 13:54 11/11/10 21:13 7439-92-1 Nickel 43.3 mg/kg 0.55 20 11/10/10 13:54 11/11/10 21:13 7439-92-1 Nickel 43.3 mg/kg 0.55 20 11/10/10 13:54 11/11/10 21:30 7440-02-0 Norweight Description of a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Quitable Copper 36.7 mg/kg 0.51 20 11/10/10 13:54 11/12/10 17:30 7440-50-8 Lead 8.7 mg/kg 0.51 20 11/10/10 13:54 11/12/10 17:30 7440-50-8 Lead 8.7 mg/kg 0.51 20 11/10/10 13:54 11/12/10 17:30 7440-02-0 Norweight Analytical Method: Moisture Percent Moisture 18.6 % 0.10 1 11/10/10 13:54 11/12/10 17:30 7440-02-0 Norweight Description Analytical Method: Moisture Percent Moisture 18.6 % 0.10 1 11/10/10 13:54 11/12/10 17:30 7440-02-0 Norweight Description Analytical Method: EPA 6020 Arsenic 2.0 mg/kg 1.9 20 11/10/10 13:54 11/10/10 13:55 7440-38-2 Copper 18.0 mg/kg 1.9 20 11/10/10 13:54 11/12/10 17:35 7440-38-2 Norweight Norweight Description Analytical Method: EPA 6020 Arsenic 2.0 mg/kg 1.9 20 11/10/10 13:54 11/12/10 17:36 7440-50-8 Norweight Norweig	Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qua
Copper	6020 MET ICPMS	Analytical Meth	od: EPA 6	020						
Lead 9.3 mg/kg	Arsenic	4.2 mg	ı/kg		0.55	20	11/10/10 13:54	11/11/10 21:13	7440-38-2	
Nickel 43.3 mg/kg	Copper	37.3 mg	ı/kg		0.55	20	11/10/10 13:54	11/12/10 17:25	7440-50-8	
Percent Moisture 22.9 % 0.10 1 11/12/10 00:00	Lead	9.3 mg	ı/kg		0.55	20	11/10/10 13:54	11/11/10 21:13	7439-92-1	
Percent Moisture 22.9 % 0.10 1 11/12/10 00:00	Nickel	43.3 mg	ı/kg		0.55	20	11/10/10 13:54	11/12/10 17:25	7440-02-0	
Sample: CNF-4-8-2.5	Dry Weight	Analytical Meth	od: % Moi	sture						
Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Question Que	Percent Moisture	22.9 %			0.10	1		11/12/10 00:00		
Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Quadrate Qua	Sample: CNF-4-8-2.5	Lab ID: 2556	662008	Collected:	11/08/1	0 10:45	Received: 11	/09/10 15:20 N	Matrix: Solid	
Analytical Method: EPA 6020 Arsenic 5.1 mg/kg 0.51 20 11/10/10 13:54 11/11/10 21:30 7440-38-2 Copper 36.7 mg/kg 0.51 20 11/10/10 13:54 11/12/10 17:30 7440-50-8 Lead 8.7 mg/kg 0.51 20 11/10/10 13:54 11/12/10 17:30 7440-50-8 Lead 8.7 mg/kg 0.51 20 11/10/10 13:54 11/12/10 17:30 7440-50-8 Lead 47.1 mg/kg 0.51 20 11/10/10 13:54 11/12/10 17:30 7440-02-0 Dry Weight Analytical Method: % Moisture Percent Moisture 18.6 % 0.10 1 11/12/10 00:00 Sample: CNF-4-9-11 Lab ID: 255662009 Collected: 11/08/10 10:52 Received: 11/09/10 15:20 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qua COSO MET ICPMS Analytical Method: EPA 6020 Arsenic 2.0 mg/kg 1.9 20 11/10/10 13:54 11/11/10 21:35 7440-38-2 Copper 18.0 mg/kg 1.9 20 11/10/10 13:54 11/12/10 17:34 7440-50-8 Lead 9.8 mg/kg 1.9 20 11/10/10 13:54 11/12/10 17:34 7440-50-8 Lead 9.8 mg/kg 1.9 20 11/10/10 13:54 11/12/10 17:34 7440-02-0 Dry Weight Analytical Method: % Moisture	Results reported on a "dry-wei	ght" basis								
Arsenic 5.1 mg/kg 0.51 20 11/10/10 13:54 11/11/10 21:30 7440-38-2 Copper 36.7 mg/kg 0.51 20 11/10/10 13:54 11/11/10 21:30 7440-50-8 Lead 8.7 mg/kg 0.51 20 11/10/10 13:54 11/11/10 21:30 7440-50-8 Lead 8.7 mg/kg 0.51 20 11/10/10 13:54 11/11/10 21:30 7439-92-1 Nickel 47.1 mg/kg 0.51 20 11/10/10 13:54 11/12/10 17:30 7440-02-0 Dry Weight Analytical Method: % Moisture Percent Moisture 18.6 % 0.10 1 11/12/10 00:00 Sample: CNF-4-9-11 Lab ID: 255662009 Collected: 11/08/10 10:52 Received: 11/09/10 15:20 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Quad So20 MET ICPMS Analytical Method: EPA 6020 Arsenic 2.0 mg/kg 1.9 20 11/10/10 13:54 11/11/10 21:35 7440-38-2 Copper 18.0 mg/kg 1.9 20 11/10/10 13:54 11/11/10 21:35 7439-92-1 Nickel 7.6 mg/kg 1.9 20 11/10/10 13:54 11/11/10 21:35 7439-92-1 Nickel 7.6 mg/kg 1.9 20 11/10/10 13:54 11/11/10 21:35 7440-02-0 Dry Weight Analytical Method: % Moisture	Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qua
Copper	6020 MET ICPMS	Analytical Meth	od: EPA 6	020						
Sample: CNF-4-9-11	Arsenic	5.1 mg	/kg		0.51	20	11/10/10 13:54	11/11/10 21:30	7440-38-2	
Nickel 47.1 mg/kg 0.51 20 11/10/10 13:54 11/12/10 17:30 7440-02-0 Dry Weight Analytical Method: % Moisture Percent Moisture 18.6 % 0.10 1 11/12/10 00:00 Sample: CNF-4-9-11 Lab ID: 255662009 Collected: 11/08/10 10:52 Received: 11/09/10 15:20 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Quantum Copper 18.0 mg/kg 1.9 20 11/10/10 13:54 11/11/10 21:35 7440-38-2 Copper 18.0 mg/kg 1.9 20 11/10/10 13:54 11/11/10 21:35 7440-50-8 Lead 9.8 mg/kg 1.9 20 11/10/10 13:54 11/11/10 21:35 7439-92-1 Nickel 7.6 mg/kg 1.9 20 11/10/10 13:54 11/11/10 21:35 7439-92-1 Dry Weight Analytical Method: % Moisture	Copper	36.7 mg	ı/kg		0.51	20	11/10/10 13:54	11/12/10 17:30	7440-50-8	
Analytical Method: % Moisture 18.6 % 0.10 1 11/12/10 00:00	Lead	8.7 mg	ı/kg		0.51	20	11/10/10 13:54	11/11/10 21:30	7439-92-1	
Percent Moisture 18.6 % 0.10 1 11/12/10 00:00	Nickel	47.1 mg	ı/kg		0.51	20	11/10/10 13:54	11/12/10 17:30	7440-02-0	
Collected: 11/08/10 10:52 Received: 11/09/10 15:20 Matrix: Solid	Dry Weight	Analytical Meth	od: % Moi	sture						
Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Quadrate Qua	Percent Moisture	18.6 %			0.10	1		11/12/10 00:00		
Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Quality 6020 MET ICPMS Analytical Method: EPA 6020 Arsenic 2.0 mg/kg 1.9 20 11/10/10 13:54 11/11/10 21:35 7440-38-2 7440-38-2 Copper 18.0 mg/kg 1.9 20 11/10/10 13:54 11/12/10 17:34 7440-50-8 11/10/10 13:54 11/11/10 21:35 7439-92-1 Lead 9.8 mg/kg 1.9 20 11/10/10 13:54 11/11/10 17:34 7440-02-0 7440-02-0 Dry Weight Analytical Method: % Moisture	Sample: CNF-4-9-11	Lab ID: 2556	662009	Collected:	11/08/1	0 10:52	Received: 11	/09/10 15:20 N	Matrix: Solid	
Analytical Method: EPA 6020 Arsenic 2.0 mg/kg 1.9 20 11/10/10 13:54 11/11/10 21:35 7440-38-2 Copper 18.0 mg/kg 1.9 20 11/10/10 13:54 11/12/10 17:34 7440-50-8 Lead 9.8 mg/kg 1.9 20 11/10/10 13:54 11/11/10 21:35 7439-92-1 Nickel 7.6 mg/kg 1.9 20 11/10/10 13:54 11/11/10 17:34 7440-02-0 Dry Weight Analytical Method: % Moisture	Results reported on a "dry-wei	ght" basis								
Arsenic 2.0 mg/kg 1.9 20 11/10/10 13:54 11/11/10 21:35 7440-38-2 Copper 18.0 mg/kg 1.9 20 11/10/10 13:54 11/12/10 17:34 7440-50-8 Lead 9.8 mg/kg 1.9 20 11/10/10 13:54 11/11/10 21:35 7439-92-1 Nickel 7.6 mg/kg 1.9 20 11/10/10 13:54 11/12/10 17:34 7440-02-0 Ory Weight Analytical Method: % Moisture	Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qua
Copper 18.0 mg/kg 1.9 20 11/10/10 13:54 11/12/10 17:34 7440-50-8 Lead 9.8 mg/kg 1.9 20 11/10/10 13:54 11/11/10 21:35 7439-92-1 Nickel 7.6 mg/kg 1.9 20 11/10/10 13:54 11/12/10 17:34 7440-02-0 Dry Weight Analytical Method: % Moisture	6020 MET ICPMS	Analytical Meth	od: EPA 6	020						
Lead 9.8 mg/kg 1.9 20 11/10/10 13:54 11/11/10 21:35 7439-92-1 Nickel 7.6 mg/kg 1.9 20 11/10/10 13:54 11/12/10 17:34 7440-02-0 Dry Weight Analytical Method: % Moisture	Arsenic	2.0 mg	ı/kg		1.9	20	11/10/10 13:54	11/11/10 21:35	7440-38-2	
Nickel 7.6 mg/kg 1.9 20 11/10/10 13:54 11/12/10 17:34 7440-02-0 Dry Weight Analytical Method: % Moisture	Copper	18.0 mg	ı/kg		1.9	20	11/10/10 13:54	11/12/10 17:34	7440-50-8	
Dry Weight Analytical Method: % Moisture		•								
	Nickel	7.6 mg	ı/kg		1.9	20	11/10/10 13:54	11/12/10 17:34	7440-02-0	
Percent Moisture 79.2 % 0.10 1 11/12/10 00:00	Dry Weight	Analytical Meth	od: % Moi	sture						
	Percent Moisture	79.2 %			0.10	1		11/12/10 00:00		

Date: 11/22/2010 08:16 AM

REPORT OF LABORATORY ANALYSIS

Project: Olympia Soils
Pace Project No.: 255662

Results reported on a "dry-weight" b Parameters 6020 MET ICPMS Arsenic Copper Lead Nickel Dry Weight Percent Moisture Sample: CNF-4-11-2 Results reported on a "dry-weight" b Parameters	Analytical I 7.4 46.4 7.3 52.5 Analytical I 26.2	Units Method: EPA 60 mg/kg mg/kg mg/kg mg/kg mg/kg Method: % Mois %		0.47 0.47 0.47 0.47	DF 20 20 20 20 1	11/10/10 13:54 11/10/10 13:54	Analyzed 11/11/10 21:39 11/12/10 17:47 11/11/10 21:39 11/12/10 17:47 11/12/10 00:00	7440-50-8 7439-92-1	Qua
6020 MET ICPMS Arsenic Copper Lead Nickel Dry Weight Percent Moisture Sample: CNF-4-11-2 Results reported on a "dry-weight" b	Analytical I 7.4 46.4 7.3 52.5 Analytical I 26.2 Lab ID:	Method: EPA 60 I mg/kg I mg/kg I mg/kg I mg/kg I mg/kg Method: % Mois	20 ture	0.47 0.47 0.47 0.47	20 20 20 20 20	11/10/10 13:54 11/10/10 13:54 11/10/10 13:54 11/10/10 13:54	11/11/10 21:39 11/12/10 17:47 11/11/10 21:39 11/12/10 17:47 11/12/10 00:00	7440-38-2 7440-50-8 7439-92-1 7440-02-0	Qua
Arsenic Copper Lead Nickel Dry Weight Percent Moisture Sample: CNF-4-11-2 Results reported on a "dry-weight" b	7.4 46.4 7.3 52.5 Analytical I 26.2 Lab ID:	I mg/kg I mg/kg I mg/kg I mg/kg Method: % Mois	ture	0.47 0.47 0.47 0.10	20 20 20 1	11/10/10 13:54 11/10/10 13:54 11/10/10 13:54	11/12/10 17:47 11/11/10 21:39 11/12/10 17:47 11/12/10 00:00	7440-50-8 7439-92-1 7440-02-0	
Copper Lead Nickel Dry Weight Percent Moisture Sample: CNF-4-11-2 Results reported on a "dry-weight" b	46.4 7.3 52.5 Analytical I 26.2 Lab ID:	umg/kg mg/kg mg/kg mg/kg Method: % Mois		0.47 0.47 0.47 0.10	20 20 20 1	11/10/10 13:54 11/10/10 13:54 11/10/10 13:54	11/12/10 17:47 11/11/10 21:39 11/12/10 17:47 11/12/10 00:00	7440-50-8 7439-92-1 7440-02-0	
Lead Nickel Dry Weight Percent Moisture Sample: CNF-4-11-2 Results reported on a "dry-weight" b	7.3 52.5 Analytical I 26.2 Lab ID:	3 mg/kg 5 mg/kg Method: % Mois 2 %		0.47 0.47 0.10	20 20 1	11/10/10 13:54 11/10/10 13:54	11/11/10 21:39 11/12/10 17:47 11/12/10 00:00	7439-92-1 7440-02-0	
Nickel Dry Weight Percent Moisture Sample: CNF-4-11-2 Results reported on a "dry-weight" b	52.5 Analytical I 26.2 Lab ID:	5 mg/kg Method: % Mois 2 %		0.47	20	11/10/10 13:54	11/12/10 17:47 11/12/10 00:00	7440-02-0	
Dry Weight Percent Moisture Sample: CNF-4-11-2 Results reported on a "dry-weight" b	Analytical I 26.2 Lab ID: pasis	Method: % Mois 2 %		0.10	1		11/12/10 00:00		
Percent Moisture Sample: CNF-4-11-2 Results reported on a "dry-weight" b	26.2 Lab ID: pasis	2 %				Received: 11		Matrix: Solid	
Sample: CNF-4-11-2 Results reported on a "dry-weight" b	Lab ID:		Collected:			Received: 11		Matrix: Solid	
Results reported on a "dry-weight" b	asis	255662011	Collected:	11/08/1	0 11:00	Received: 11	/09/10 15:20 N	Matrix: Solid	
		Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qua
020 MET ICPMS	Analytical I	Method: EPA 60	20						
Arsenic	14.6	mg/kg		0.47	20	11/10/10 13:54	11/11/10 21:43	7440-38-2	M6
Copper	50.0	mg/kg		0.47	20	11/10/10 13:54	11/12/10 17:52	7440-50-8	M6
₋ead	85.0	mg/kg		0.47	20	11/10/10 13:54	11/11/10 21:43	7439-92-1	M6
Nickel	26.3	3 mg/kg		0.47	20	11/10/10 13:54	11/12/10 17:52	7440-02-0	
Ory Weight	Analytical I	Method: % Mois	ture						
Percent Moisture	19.2	2 %		0.10	1		11/12/10 00:00		
Sample: CNF-4-12-11	Lab ID:	255662012	Collected:	11/08/1	0 11:03	Received: 11	/09/10 15:20 N	Matrix: Solid	
Results reported on a "dry-weight" b	asis								
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qua
6020 MET ICPMS	Analytical I	Method: EPA 60	20						
Arsenic	5.7	7 mg/kg		2.9	20	11/10/10 13:54	11/11/10 21:52	7440-38-2	
Copper	23.9	mg/kg		2.9	20	11/10/10 13:54	11/12/10 18:01	7440-50-8	
_ead		2 mg/kg		2.9	20	11/10/10 13:54	11/11/10 21:52	7439-92-1	
Nickel	13.4	1 mg/kg		2.9	20	11/10/10 13:54	11/12/10 18:01	7440-02-0	
Dry Weight	Analytical I	Method: % Mois	ture						
Percent Moisture	83.8	3 %		0.10	1		11/12/10 00:00		

Date: 11/22/2010 08:16 AM

REPORT OF LABORATORY ANALYSIS

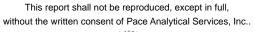
Page 9 of 34

Project: Olympia Soils
Pace Project No.: 255662

Analytical Method: EPA 6020 Analytical Method: BPA 6020 Analytical Method: Moisture Analytical Method: Moisture Barmle: CNF-4-14-11 Cab ID: 255662014 Analytical Method: EPA 6020 Analytical Method: Moisture Analytical Method: EPA 6020 Analytical Method: EPA 6020 Analytical Method: Moisture Barmle: CNF-4-15-3.5 Analytical Method: Moisture Analytical Method: CNF-4-15-3.5 Analytical Method: Moisture Analytical Method: CNF-4-15-3.5 Analytical Method: CNF-4-15-3.5 Analytical Method: Moisture Analytical Method: EPA 6020 Analytical Method: CNF-4-15-3.5 Analytical Method: CNF-4-15-3.5 Analytical Method: CNF-4-15-3.5 Analytical Method: CNF-4-15-3.5 Analytical Method: Moisture Analytical Method: CNF-4-15-3.5 Analytical Method: Moisture	Sample: CNF-4-13-2.5	Lab ID: 255	662013	Collected:	11/08/1	0 11:07	Received: 11	/09/10 15:20 N	/latrix: Solid	
Analytical Method: EPA 6020 Analytical Method: Moisture Barmle: CNF-4-14-11 Casults reported on a "dry-weight" basis Parameters Analytical Method: EPA 6020 Analytical Method: EPA 6020 Analytical Method: Moisture Analytical Method: EPA 6020 Analytical Method: EPA 6020 Analytical Method: Moisture Analytical Method: EPA 6020 Analytical Method: Moisture Analytical Method: EPA 6020 Analytical Method: EPA 6020 Analytical Method: Moisture Barmle: CNF-4-15-3.5 Lab ID: 255662015 Collected: 11/08/10 11:15 Received: 11/10/10 13:54 11/11/10 22:01 7440-38-2 11/10/10 13:54 11/11/10 22:01 7440-38-2 11/10/10 13:54 11/11/10 22:01 7440-38-2 11/10/10 13:54 11/11/10 22:01 7440-38-2 11/10/10 13:54 11/11/10 22:01 7440-38-2 11/10/10 13:54 11/11/10 22:01 7440-38-2 11/10/10 13:54 11/11/10 13:54 11/11/10 22:01 7440-38-2 11/10/10 13:54 11/11/10 13:54 11/10/10 13:54 11/10/10 13:54 11/10/10 1	Results reported on a "dry-wei	ght" basis								
Analytical Method: EPA 6020 Analytical Method: EPA 6020 ND mg/kg Analytical Method: EPA 6020 Analytical Method: Moisture ND mg/kg Analytical Method: EPA 6020 Analytical Method: Moisture ND mg/kg Analytical Method: EPA 6020 Analytical Method: Moisture ND mg/kg Analytical Method: EPA 6020 Analytical Method: Moisture 11.1 mg/kg Analytical Method: Moisture ND mg/kg Analytical Method: EPA 6020 Analytical Method: EPA 6020 Analytical Method: Moisture 11.1 mg/kg Analytical Method: Moisture ND mg/kg Analytical Method: EPA 6020 Analytical Method: Moisture ND mg/kg Analytical Method: Moisture 11.1 mg/kg Analytical Method: Moisture 11.1 mg/kg Analytical Method: Moisture 11.1 mg/kg Analytical Method: Moisture Analytical Method: EPA 6020 Analytical Method: EPA 6020 Analytical Method: EPA 6020 Analytical Method: Moisture Analytical Method: Moisture Analytical Method: EPA 6020 Analytical Method: EPA 6020 Analytical Method: EPA 6020 Analytical Method: EPA 6020 Analytical Method: Moisture Analytical Method: Moisture Analytical Method: Analytical Method: EPA 6020 Analytical Method: Moisture Analytical Method: EPA 6020 Analytical Method: Moisture Analytical Method: Moisture	Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qua
Page	6020 MET ICPMS	Analytical Metl	hod: EPA 60	020						
1.7 mg/kg	Arsenic	1.6 m	g/kg		0.49	20	11/10/10 13:54	11/11/10 21:57	7440-38-2	
15.1 mg/kg	Copper	9.9 mg	g/kg		0.49	20	11/10/10 13:54	11/12/10 18:05	7440-50-8	
Percent Moisture 6.8 % 0.10 1 11/12/10 00:00 Sample: CNF-4-14-11	Lead	1.7 mg		0.49	0.49 20	11/10/10 13:54	11/11/10 21:57	7439-92-1		
Percent Moisture	Nickel	15.1 mg	g/kg		0.49	20	11/10/10 13:54	11/12/10 18:05	7440-02-0	
Collected: 11/08/10 11:12 Received: 11/09/10 15:20 Matrix: Solid	Dry Weight	Analytical Metl	Analytical Method: % Mois							
Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Quadro	Percent Moisture	6.8 %			0.10	1		11/12/10 00:00		
Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Quadro	Sample: CNF-4-14-11	Lab ID: 255	662014	Collected:	11/08/1	0 11:12	Received: 11	/09/10 15:20 N	Matrix: Solid	
Analytical Method: EPA 6020 Arsenic ND mg/kg 3.0 20 11/10/10 13:54 11/11/10 22:01 7440-38-2 Copper 17.6 mg/kg 3.0 20 11/10/10 13:54 11/12/10 18:09 7440-50-8 Lead 17.3 mg/kg 3.0 20 11/10/10 13:54 11/12/10 18:09 7440-50-8 Lead 17.3 mg/kg 3.0 20 11/10/10 13:54 11/12/10 18:09 7440-02-0 Dry Weight Analytical Method: % Moisture Percent Moisture 85.1 % 0.10 1 11/12/10 00:00 Analytical Method: & Collected: 11/08/10 11:15 Received: 11/09/10 15:20 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qualifold Analytical Method: EPA 6020 Arsenic 3.2 mg/kg 0.59 20 11/10/10 13:54 11/11/10 22:06 7440-38-2 Copper 15.7 mg/kg 0.59 20 11/10/10 13:54 11/12/10 18:14 7440-50-8 Lead 2.4 mg/kg 0.59 20 11/10/10 13:54 11/11/10 22:06 7439-92-1 North Weight Analytical Method: % Moisture Analytical Method: % Moisture	Results reported on a "dry-wei	ght" basis								
Arsenic ND mg/kg 3.0 20 11/10/10 13:54 11/11/10 22:01 7440-38-2 Copper 17.6 mg/kg 3.0 20 11/10/10 13:54 11/11/10 22:01 7440-50-8 2.ead 17.3 mg/kg 3.0 20 11/10/10 13:54 11/11/10 22:01 7439-92-1 Nickel 11.1 mg/kg 3.0 20 11/10/10 13:54 11/11/10 18:09 7440-02-0 Dry Weight Analytical Method: % Moisture Percent Moisture 85.1 % 0.10 1 11/12/10 00:00 Sample: CNF-4-15-3.5 Lab ID: 255662015 Collected: 11/08/10 11:15 Received: 11/09/10 15:20 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Quadroscoper 15.7 mg/kg 0.59 20 11/10/10 13:54 11/11/10 22:06 7440-38-2 2.4 mg/kg 0.59 20 11/10/10 13:54 11/11/10 18:14 7440-50-8 2.ead 2.4 mg/kg 0.59 20 11/10/10 13:54 11/11/10 22:06 7439-92-1 37.7 mg/kg 0.59 20 11/10/10 13:54 11/11/10 22:06 7439-92-1 37.7 mg/kg 0.59 20 11/10/10 13:54 11/11/10 22:06 7439-92-1 37.7 mg/kg 0.59 20 11/10/10 13:54 11/11/10 18:14 7440-02-0 Dry Weight Analytical Method: % Moisture	Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qua
17.6 mg/kg 3.0 20 11/10/10 13:54 11/12/10 18:09 7440-50-8 17.3 mg/kg 3.0 20 11/10/10 13:54 11/11/10 12:01 7439-92-1 10.6 kel 11.1 mg/kg 3.0 20 11/10/10 13:54 11/12/10 18:09 7440-02-0 11.1 mg/kg 3.0 20 11/10/10 13:54 11/12/10 18:09 7440-02-0 11.1 mg/kg 3.0 20 11/10/10 13:54 11/12/10 18:09 7440-02-0 11.1 mg/kg 3.0 20 11/10/10 13:54 11/12/10 18:09 7440-02-0 11.1 mg/kg 3.0 20 11/10/10 13:54 11/12/10 18:09 7440-02-0 11.1 mg/kg 3.0 20 11/10/10 13:54 11/12/10 18:09 7440-02-0 11.1 mg/kg 3.0 20 11/10/10 13:54 11/12/10 18:09 7440-02-0 11.1 mg/kg 3.0 20 11/10/10 13:54 11/12/10 18:14 7440-38-2 11.1 mg/kg 3.0 20 11/10/10 13:54 11/12/10 18:14 7440-50-8 11.1 mg/kg 3.0 20 11/10/10 13:54 11/12/10 18:14 7440-50-8 11.1 mg/kg 3.0 20 11/10/10 13:54 11/11/10 22:06 7439-92-1 11.1 mg/kg 3.0 20 11/10/10 13:54 11/11/10 22:06 7439-92-1 11.1 mg/kg 3.0 20 11/10/10 13:54 11/11/10 22:06 7439-92-1 11.1 mg/kg 3.0 20 11/10/10 13:54 11/11/10 22:06 7439-92-1 11.1 mg/kg 3.0 20 11/10/10 13:54 11/11/10 22:06 7439-92-1 11.1 mg/kg 3.0 20 11/10/10 13:54 11/11/10 22:06 7439-92-1 11.1 mg/kg 3.0 20 11/10/10 13:54 11/11/10 22:06 7439-92-1 11.1 mg/kg 3.0 20 11/10/10 13:54 11/11/10 22:06 7439-92-1 11.1 mg/kg 3.0 20 11/10/10 13:54 11/11/10 22:06 7439-92-1 11.1 mg/kg 3.0 20 11/10/10 13:54 11/11/10 22:06 7439-92-1 11.1 mg/kg 3.0 20 11/10/10 13:54 11/11/10 22:06 7439-92-1 11.1 mg/kg 3.0 20 11/10/10 13:54 11/11/10 22:06 7439-92-1 11.1 mg/kg 3.0 20 11/10/10 13:54 11/11/10 22:06 7439-92-1 11.1 mg/kg 3.0 20 11/10/10 13:54 11/11/10 22:06 7440-38-2 11.1 mg/kg 3.0 20 11/10/10 13:54 11/11/10 22:06 7440-38-2 11.1 mg/kg 3.0 20 11/10/10 13:54 11/11/10 22:06 7440-38-2 11.1 mg/kg 3.0	6020 MET ICPMS	Analytical Metl	hod: EPA 60	020						
17.3 mg/kg 3.0 20 11/10/10 13:54 11/11/10 22:01 7439-92-1 Nickel 11.1 mg/kg 3.0 20 11/10/10 13:54 11/11/10 22:01 7439-92-1 Nickel 11.1 mg/kg 3.0 20 11/10/10 13:54 11/12/10 18:09 7440-02-0 Dry Weight Analytical Method: % Moisture Percent Moisture 85.1 % 0.10 1 11/12/10 00:00 Sample: CNF-4-15-3.5 Lab ID: 255662015 Collected: 11/08/10 11:15 Received: 11/09/10 15:20 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Quality Collected: 11/08/10 13:54 11/11/10 22:06 7440-38-2 Copper 15.7 mg/kg 0.59 20 11/10/10 13:54 11/12/10 18:14 7440-50-8 Lead 2.4 mg/kg 0.59 20 11/10/10 13:54 11/11/10 22:06 7439-92-1 Nickel 37.7 mg/kg 0.59 20 11/10/10 13:54 11/11/10 22:06 7439-92-1 Nickel Analytical Method: % Moisture	Arsenic	ND m	g/kg		3.0	20	11/10/10 13:54	11/11/10 22:01	7440-38-2	
Notice 11.1 mg/kg 3.0 20 11/10/10 13:54 11/12/10 18:09 7440-02-0	Copper	17.6 mg	g/kg		3.0	20	11/10/10 13:54	11/12/10 18:09	7440-50-8	
Analytical Method: % Moisture Percent Moisture 85.1 % 0.10 1 11/12/10 00:00 Cample: CNF-4-15-3.5 Lab ID: 255662015 Collected: 11/08/10 11:15 Received: 11/09/10 15:20 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Quality CAS N	Lead	17.3 mg	g/kg		3.0	20	11/10/10 13:54	11/11/10 22:01	7439-92-1	
Percent Moisture 85.1 % 0.10 1 11/12/10 00:00 Sample: CNF-4-15-3.5 Lab ID: 255662015 Collected: 11/08/10 11:15 Received: 11/09/10 15:20 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Quantum Color Method: EPA 6020 Arsenic 3.2 mg/kg 0.59 20 11/10/10 13:54 11/11/10 22:06 7440-38-2 Copper 15.7 mg/kg 0.59 20 11/10/10 13:54 11/12/10 18:14 7440-50-8 Lead 2.4 mg/kg 0.59 20 11/10/10 13:54 11/11/10 22:06 7439-92-1 Nickel 37.7 mg/kg 0.59 20 11/10/10 13:54 11/11/10 18:14 7440-02-0 Ory Weight Analytical Method: % Moisture	Nickel	11.1 mg	g/kg		3.0	20	11/10/10 13:54	11/12/10 18:09	7440-02-0	
Collected: 11/08/10 11:15 Received: 11/09/10 15:20 Matrix: Solid Results reported on a "dry-weight" basis	Ory Weight	Analytical Met	hod: % Moi	sture						
Results reported on a "dry-weight" basis Results Units Report Limit DF Prepared Analyzed CAS No. Quarter Q	Percent Moisture	85.1 %			0.10	1		11/12/10 00:00		
Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qualifold Method: EPA 6020 Ansenic 3.2 mg/kg 0.59 20 11/10/10 13:54 11/11/10 22:06 7440-38-2 Copper 15.7 mg/kg 0.59 20 11/10/10 13:54 11/12/10 18:14 7440-50-8 Lead 2.4 mg/kg 0.59 20 11/10/10 13:54 11/11/10 22:06 7439-92-1 Nickel 37.7 mg/kg 0.59 20 11/10/10 13:54 11/12/10 18:14 7440-02-0 Copper Analytical Method: % Moisture	Sample: CNF-4-15-3.5	Lab ID: 255	662015	Collected:	11/08/1	0 11:15	Received: 11	/09/10 15:20 N	Matrix: Solid	
Analytical Method: EPA 6020 Arsenic 3.2 mg/kg 0.59 20 11/10/10 13:54 11/11/10 22:06 7440-38-2 Copper 15.7 mg/kg 0.59 20 11/10/10 13:54 11/12/10 18:14 7440-50-8 Lead 2.4 mg/kg 0.59 20 11/10/10 13:54 11/11/10 22:06 7439-92-1 Nickel 37.7 mg/kg 0.59 20 11/10/10 13:54 11/11/10 22:06 7439-92-1 Nickel Analytical Method: % Moisture	Results reported on a "dry-wei	ght" basis								
Arsenic 3.2 mg/kg 0.59 20 11/10/10 13:54 11/11/10 22:06 7440-38-2 Copper 15.7 mg/kg 0.59 20 11/10/10 13:54 11/12/10 18:14 7440-50-8 Lead 2.4 mg/kg 0.59 20 11/10/10 13:54 11/11/10 22:06 7439-92-1 Nickel 37.7 mg/kg 0.59 20 11/10/10 13:54 11/12/10 18:14 7440-02-0 Ory Weight Analytical Method: % Moisture	Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qua
Copper 15.7 mg/kg 0.59 20 11/10/10 13:54 11/12/10 18:14 7440-50-8 Lead 2.4 mg/kg 0.59 20 11/10/10 13:54 11/11/10 22:06 7439-92-1 Nickel 37.7 mg/kg 0.59 20 11/10/10 13:54 11/12/10 18:14 7440-02-0 Dry Weight Analytical Method: % Moisture	6020 MET ICPMS	Analytical Met	nod: EPA 60	020						
Lead 2.4 mg/kg 0.59 20 11/10/10 13:54 11/11/10 22:06 7439-92-1 Nickel 37.7 mg/kg 0.59 20 11/10/10 13:54 11/12/10 18:14 7440-02-0 Dry Weight Analytical Method: % Moisture	Arsenic	3.2 mg	g/kg		0.59	20	11/10/10 13:54	11/11/10 22:06	7440-38-2	
Nickel 37.7 mg/kg 0.59 20 11/10/10 13:54 11/12/10 18:14 7440-02-0 Dry Weight Analytical Method: % Moisture	Copper	15.7 mg	g/kg		0.59	20	11/10/10 13:54	11/12/10 18:14	7440-50-8	
Dry Weight Analytical Method: % Moisture	_ead				0.59	20	11/10/10 13:54	11/11/10 22:06	7439-92-1	
	Nickel	37.7 mg	g/kg		0.59	20	11/10/10 13:54	11/12/10 18:14	7440-02-0	
Percent Moisture 23.7 % 0.10 1 11/12/10 00:00	Ory Weight	Analytical Met	nod: % Moi	sture						
	Percent Moisture	23.7 %			0.10	1		11/12/10 00:00		

Date: 11/22/2010 08:16 AM

REPORT OF LABORATORY ANALYSIS


Project: Olympia Soils
Pace Project No.: 255662

Sample: CNF-4-16-2	Lab ID: 255662016 Col		Collected: 1	lected: 11/08/10 11:18			11/09/10 15:20	Matrix: Solid	
Results reported on a "dry-weigh	t" basis								
Parameters	Results	Units	Report Li	imit _	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical Metho	d: EPA 6020)						
Arsenic	4.6 mg/	kg		0.47	20	11/10/10 13:5	54 11/11/10 22:1	0 7440-38-2	
Copper	17.6 mg/	kg		0.47	20	11/10/10 13:5	54 11/12/10 18:1	8 7440-50-8	
Lead	8.7 mg/	kg		0.47	20	11/10/10 13:5	54 11/11/10 22:1	0 7439-92-1	
Nickel	25.0 mg/	kg		0.47	20	11/10/10 13:5	54 11/12/10 18:1	8 7440-02-0	
Dry Weight	Analytical Metho	d: % Moistu	re						
Percent Moisture	11.7 %			0.10	1		11/12/10 00:0	0	
Sample: CNF-5-1-15	Lab ID: 25566	6 2017 (Collected: 1	1/08/10	13:05	Received:	11/09/10 15:20	Matrix: Solid	
Results reported on a "dry-weigh	t" basis								
Parameters	Results	Units	Report L	imit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS SG	Analytical Metho	d: NWTPH-I	Dx Preparati	ion Met	thod: Ef	PA 3546	•	•	
Diesel Range SG	ND mg/	kg		23.9	1	11/16/10 15:2	25 11/17/10 13:1	9	
Motor Oil Range SG	ND mg/	kg		95.6	1	11/16/10 15:2	25 11/17/10 13:1	9 64742-65-0	
n-Octacosane (S) SG	117 %		50-	-150	1	11/16/10 15:2	25 11/17/10 13:1	9 630-02-4	
o-Terphenyl (S) SG	104 %		50-	-150	1	11/16/10 15:2	25 11/17/10 13:1	9 84-15-1	
NWTPH-Gx GCV	Analytical Metho	d: NWTPH-0	Gx Preparati	ion Met	thod: N	WTPH-Gx			
Gasoline Range Organics	ND mg/	kg		6.9	1	11/12/10 17:0	00 11/14/10 14:3	6	
a,a,a-Trifluorotoluene (S)	108 %		50-	-150	1	11/12/10 17:0	00 11/14/10 14:3	6 98-08-8	
4-Bromofluorobenzene (S)	104 %		50-	-150	1	11/12/10 17:0	00 11/14/10 14:3	6 460-00-4	
6020 MET ICPMS	Analytical Metho	d: EPA 6020)						
Lead	2.8 mg/	kg		0.57	20	11/10/10 14:2	28 11/12/10 18:4	0 7439-92-1	M6
8260/5035A Volatile Organics	Analytical Metho	d: EPA 8260)						
Benzene	ND ug/k	g		3.4	1		11/11/10 22:3	5 71-43-2	
Ethylbenzene	ND ug/k	g		3.4	1		11/11/10 22:3	5 100-41-4	
Toluene	ND ug/k	g		3.4	1		11/11/10 22:3	5 108-88-3	
Xylene (Total)	ND ug/k	g		10.3	1		11/11/10 22:3	5 1330-20-7	
Dibromofluoromethane (S)	86 %			-136	1			5 1868-53-7	
Toluene-d8 (S)	109 %			-120	1			5 2037-26-5	_
4-Bromofluorobenzene (S)	130 %			-122	1		11/11/10 22:3		S3
1,2-Dichloroethane-d4 (S)	94 %		80-	-143	1		11/11/10 22:3	5 17060-07-0	
	Analytical Metho	d: ASTM D2	2974-87						
Percent Moisture	23.0 %			0.10	1		11/14/10 18:1	6	

Date: 11/22/2010 08:16 AM

REPORT OF LABORATORY ANALYSIS

Project: Olympia Soils
Pace Project No.: 255662

Date: 11/22/2010 08:16 AM

Sample: CNF-5-2-13.5	Lab ID: 2	255662018	Collected: 11/08/1	0 13:20	Received: 11	/09/10 15:20 N	Matrix: Solid	
Results reported on a "dry-weight	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS SG	Analytical N	Method: NWTP	H-Dx Preparation M	ethod: E	EPA 3546			
Diesel Range SG	ND	mg/kg	37.4	1	11/16/10 15:25	11/17/10 13:36		
Motor Oil Range SG	ND	mg/kg	149	1	11/16/10 15:25	11/17/10 13:36	64742-65-0	
n-Octacosane (S) SG	110	%	50-150	1	11/16/10 15:25	11/17/10 13:36	630-02-4	
o-Terphenyl (S) SG	101	%	50-150	1	11/16/10 15:25	11/17/10 13:36	84-15-1	
NWTPH-Gx GCV	Analytical N	flethod: NWTP	H-Gx Preparation M	ethod: N	IWTPH-Gx			
Gasoline Range Organics	ND	mg/kg	16.9	1	11/12/10 17:00	11/14/10 14:59		
a,a,a-Trifluorotoluene (S)	91	%	50-150	1	11/12/10 17:00	11/14/10 14:59	98-08-8	
4-Bromofluorobenzene (S)	85	%	50-150	1	11/12/10 17:00	11/14/10 14:59	460-00-4	
6020 MET ICPMS	Analytical N	Method: EPA 60	020					
Lead	14.0	mg/kg	0.75	20	11/10/10 14:28	11/12/10 18:58	7439-92-1	
8260/5035A Volatile Organics	Analytical N	Method: EPA 82	260					
Benzene	ND	ug/kg	6.3	1		11/11/10 22:54	71-43-2	
Ethylbenzene	ND	ug/kg	6.3	1		11/11/10 22:54	100-41-4	
Toluene	ND	ug/kg	6.3	1		11/11/10 22:54	108-88-3	
Xylene (Total)	ND	ug/kg	18.9	1		11/11/10 22:54	1330-20-7	
Dibromofluoromethane (S)	84	%	80-136	1		11/11/10 22:54	1868-53-7	
Toluene-d8 (S)	124	%	80-120	1		11/11/10 22:54	2037-26-5	S3
4-Bromofluorobenzene (S)	153		72-122	1		11/11/10 22:54	460-00-4	S3
1,2-Dichloroethane-d4 (S)	88	%	80-143	1		11/11/10 22:54	17060-07-0	
	Analytical N	Method: ASTM	D2974-87					
Percent Moisture	48.0	%	0.10	1		11/14/10 18:17		
Sample: CNF-5-3-10	Lab ID: 2	255662019	Collected: 11/08/1	0 13:30	Received: 11	/09/10 15:20 N	Matrix: Solid	
Results reported on a "dry-weight	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS SG	Analytical N	Method: NWTP	H-Dx Preparation M	ethod: E	PA 3546			
Diesel Range SG	135	mg/kg	84.3	1	11/16/10 15:25	11/17/10 13:53		
Motor Oil Range SG		mg/kg	337	1		11/17/10 13:53	64742-65-0	
n-Octacosane (S) SG		%	50-150	1		11/17/10 13:53		
o-Terphenyl (S) SG		%	50-150	1	11/16/10 15:25	11/17/10 13:53	84-15-1	
NWTPH-Gx GCV	Analytical N	/lethod: NWTP	H-Gx Preparation M	ethod: N	IWTPH-Gx			
Gasoline Range Organics	ND	mg/kg	45.2	1	11/12/10 17:00	11/14/10 15:23		
a,a,a-Trifluorotoluene (S)		%	50-150	1		11/14/10 15:23	98-08-8	
4-Bromofluorobenzene (S)		%	50-150	1		11/14/10 15:23		
6020 MET ICPMS		/lethod: EPA 60						
	•			20	11/10/10 14:00	11/10/10 10:00	7420 00 4	
Lead	127	mg/kg	2.1	20	11/10/10 14:28	11/12/10 19:02	7439-92-1	

REPORT OF LABORATORY ANALYSIS

Page 12 of 34

Project: Olympia Soils
Pace Project No.: 255662

Lab ID: 255662019 Sample: CNF-5-3-10 Collected: 11/08/10 13:30 Received: 11/09/10 15:20 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 17.2 1 11/11/10 23:13 71-43-2 Ethylbenzene ND ug/kg 17.2 1 11/11/10 23:13 100-41-4 Toluene ND ug/kg 17.2 11/11/10 23:13 108-88-3 1 Xylene (Total) ND ug/kg 51.6 11/11/10 23:13 1330-20-7 1 Dibromofluoromethane (S) 80-136 98 % 1 11/11/10 23:13 1868-53-7 Toluene-d8 (S) 148 % 80-120 11/11/10 23:13 2037-26-5 S3 1 4-Bromofluorobenzene (S) 144 % 72-122 11/11/10 23:13 460-00-4 S3 1 1,2-Dichloroethane-d4 (S) 100 % 80-143 11/11/10 23:13 17060-07-0 1 Analytical Method: ASTM D2974-87 Percent Moisture 0.10 11/14/10 18:17 76.9 % 1 Sample: CNF-5-4-2 Lab ID: 255662020 Collected: 11/08/10 13:40 Received: 11/09/10 15:20 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 11/16/10 15:25 11/17/10 14:10 Diesel Range SG 21.6 ND mg/kg 1 86.3 Motor Oil Range SG ND mg/kg 11/16/10 15:25 11/17/10 14:10 64742-65-0 1 50-150 n-Octacosane (S) SG 117 % 11/16/10 15:25 11/17/10 14:10 630-02-4 1 107 % 50-150 11/16/10 15:25 11/17/10 14:10 84-15-1 o-Terphenyl (S) SG 1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics 5.3 11/12/10 17:00 11/14/10 15:46 35.7 mg/kg 1 50-150 11/12/10 17:00 11/14/10 15:46 98-08-8 a,a,a-Trifluorotoluene (S) 81 % 1 79 % 50-150 11/12/10 17:00 11/14/10 15:46 460-00-4 4-Bromofluorobenzene (S) 1 **6020 MET ICPMS** Analytical Method: EPA 6020 3.8 mg/kg 0.44 20 11/10/10 14:28 11/12/10 19:07 7439-92-1 Lead Analytical Method: EPA 8260 8260/5035A Volatile Organics 11/11/10 23:31 71-43-2 Benzene ND ug/kg 2.6 1 Ethylbenzene 100-41-4 ND ug/kg 2.6 1 11/11/10 23:31 Toluene ND ug/kg 2.6 1 11/11/10 23:31 108-88-3 Xylene (Total) ND ug/kg 7.9 11/11/10 23:31 1330-20-7 Dibromofluoromethane (S) 90 % 80-136 1 11/11/10 23:31 1868-53-7 Toluene-d8 (S) 80-120 106 % 1 11/11/10 23:31 2037-26-5 4-Bromofluorobenzene (S) 123 % 72-122 1 11/11/10 23:31 460-00-4 S3 1,2-Dichloroethane-d4 (S) 94 % 80-143 11/11/10 23:31 17060-07-0 1 Analytical Method: ASTM D2974-87 12.7 % Percent Moisture 0.10 1 11/14/10 18:18

Date: 11/22/2010 08:16 AM

REPORT OF LABORATORY ANALYSIS

Page 13 of 34

Project: Olympia Soils
Pace Project No.: 255662

Date: 11/22/2010 08:16 AM

Lab ID: 255662021 Sample: CNF-5-5-13.5 Collected: 11/08/10 13:55 Received: 11/09/10 15:20 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG ND mg/kg 35.1 11/16/10 15:25 11/17/10 14:26 Motor Oil Range SG ND mg/kg 141 11/16/10 15:25 11/17/10 14:26 64742-65-0 n-Octacosane (S) SG 121 % 50-150 11/16/10 15:25 11/17/10 14:26 630-02-4 1 o-Terphenyl (S) SG 107 % 50-150 11/16/10 15:25 11/17/10 14:26 84-15-1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics 14.9 11/12/10 17:00 11/14/10 16:09 ND mg/kg a.a.a-Trifluorotoluene (S) 97 % 50-150 1 11/12/10 17:00 11/14/10 16:09 98-08-8 4-Bromofluorobenzene (S) 90 % 50-150 1 11/12/10 17:00 11/14/10 16:09 460-00-4 **6020 MET ICPMS** Analytical Method: EPA 6020 Lead 15.6 mg/kg 0.93 20 11/10/10 14:28 11/12/10 19:11 7439-92-1 Analytical Method: EPA 8260 8260/5035A Volatile Organics Benzene ND ug/kg 6.0 1 11/11/10 23:50 71-43-2 Ethylbenzene ND ug/kg 6.0 1 11/11/10 23:50 100-41-4 Toluene ND ug/kg 6.0 1 11/11/10 23:50 108-88-3 Xylene (Total) ND ug/kg 18.0 1 11/11/10 23:50 1330-20-7 11/11/10 23:50 1868-53-7 Dibromofluoromethane (S) 89 % 80-136 1 Toluene-d8 (S) 119 % 80-120 1 11/11/10 23:50 2037-26-5 4-Bromofluorobenzene (S) 144 % 72-122 1 11/11/10 23:50 460-00-4 S3 1,2-Dichloroethane-d4 (S) 92 % 80-143 11/11/10 23:50 17060-07-0 Analytical Method: ASTM D2974-87 47.5 % Percent Moisture 0.10 1 11/14/10 18:19 Sample: CNF-5-6-10 Lab ID: 255662022 Collected: 11/08/10 14:05 Received: 11/09/10 15:20 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG ND mg/kg 103 11/16/10 15:25 11/17/10 15:17 Motor Oil Range SG ND mg/kg 410 1 11/16/10 15:25 11/17/10 15:17 64742-65-0 n-Octacosane (S) SG 115 % 50-150 1 11/16/10 15:25 11/17/10 15:17 630-02-4 o-Terphenyl (S) SG 92 % 50-150 11/16/10 15:25 11/17/10 15:17 84-15-1 1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 61.4 1 11/12/10 17:00 11/14/10 16:33 a,a,a-Trifluorotoluene (S) 96 % 50-150 11/12/10 17:00 11/14/10 16:33 98-08-8 1 4-Bromofluorobenzene (S) 76 % 50-150 1 11/12/10 17:00 11/14/10 16:33 460-00-4 **6020 MET ICPMS** Analytical Method: EPA 6020 Lead 64.9 mg/kg 2.7 20 11/10/10 14:28 11/12/10 19:24 7439-92-1

REPORT OF LABORATORY ANALYSIS

Page 14 of 34

Project: Olympia Soils
Pace Project No.: 255662

Lab ID: 255662022 Sample: CNF-5-6-10 Collected: 11/08/10 14:05 Received: 11/09/10 15:20 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 22.0 1 11/12/10 00:09 71-43-2 Ethylbenzene ND ug/kg 22.0 1 11/12/10 00:09 100-41-4 Toluene ND ug/kg 22.0 11/12/10 00:09 108-88-3 1 Xylene (Total) ND ug/kg 66.0 11/12/10 00:09 1330-20-7 1 Dibromofluoromethane (S) 80-136 91 % 1 11/12/10 00:09 1868-53-7 Toluene-d8 (S) 147 % 80-120 11/12/10 00:09 2037-26-5 S3 1 4-Bromofluorobenzene (S) 149 % 72-122 11/12/10 00:09 460-00-4 S3 1 1,2-Dichloroethane-d4 (S) 96 % 80-143 11/12/10 00:09 17060-07-0 1 Analytical Method: ASTM D2974-87 Percent Moisture 0.10 11/14/10 18:19 81.8 % 1 Sample: CNF-5-7-2 Lab ID: 255662023 Collected: 11/08/10 14:20 Received: 11/09/10 15:20 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 ND mg/kg 11/16/10 15:25 11/17/10 15:34 Diesel Range SG 21.1 1 84.3 Motor Oil Range SG ND mg/kg 11/16/10 15:25 11/17/10 15:34 64742-65-0 1 50-150 n-Octacosane (S) SG 118 % 11/16/10 15:25 11/17/10 15:34 630-02-4 1 107 % 50-150 11/16/10 15:25 11/17/10 15:34 84-15-1 o-Terphenyl (S) SG 1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics 4.3 11/12/10 17:00 11/14/10 16:57 ND mg/kg 1 105 % 50-150 11/12/10 17:00 11/14/10 16:57 98-08-8 a,a,a-Trifluorotoluene (S) 1 97 % 50-150 11/12/10 17:00 11/14/10 16:57 460-00-4 4-Bromofluorobenzene (S) 1 **6020 MET ICPMS** Analytical Method: EPA 6020 20 2.1 mg/kg 0.50 11/10/10 14:28 11/12/10 19:29 7439-92-1 Lead Analytical Method: EPA 8260 8260/5035A Volatile Organics 11/12/10 00:28 71-43-2 3.1 Benzene ND ug/kg 1 11/12/10 00:28 100-41-4 Ethylbenzene ND ug/kg 3.1 1 Toluene ND ug/kg 3.1 1 11/12/10 00:28 108-88-3 Xylene (Total) ND ug/kg 9.3 11/12/10 00:28 1330-20-7 Dibromofluoromethane (S) 87 % 80-136 1 11/12/10 00:28 1868-53-7 Toluene-d8 (S) 80-120 107 % 1 11/12/10 00:28 2037-26-5 4-Bromofluorobenzene (S) 126 % 72-122 1 11/12/10 00:28 460-00-4 S3 1,2-Dichloroethane-d4 (S) 94 % 80-143 11/12/10 00:28 17060-07-0 1 Analytical Method: ASTM D2974-87 9.1 % Percent Moisture 0.10 1 11/14/10 18:20

Date: 11/22/2010 08:16 AM

REPORT OF LABORATORY ANALYSIS

Page 15 of 34

Project: Olympia Soils
Pace Project No.: 255662

Lead

Date: 11/22/2010 08:16 AM

Lab ID: 255662024 Sample: CNF-5-8-13 Collected: 11/08/10 14:35 Received: 11/09/10 15:20 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG ND mg/kg 102 11/16/10 15:25 11/17/10 12:27 Motor Oil Range SG ND mg/kg 407 11/16/10 15:25 11/17/10 12:27 64742-65-0 n-Octacosane (S) SG 105 % 50-150 11/16/10 15:25 11/17/10 12:27 630-02-4 1 o-Terphenyl (S) SG 81 % 50-150 11/16/10 15:25 11/17/10 12:27 84-15-1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics 59.4 11/12/10 17:00 11/14/10 17:43 ND mg/kg a.a.a-Trifluorotoluene (S) 106 % 50-150 1 11/12/10 17:00 11/14/10 17:43 98-08-8 4-Bromofluorobenzene (S) 96 % 50-150 1 11/12/10 17:00 11/14/10 17:43 460-00-4 **6020 MET ICPMS** Analytical Method: EPA 6020 Lead 28.2 mg/kg 2.4 20 11/10/10 14:28 11/12/10 19:33 7439-92-1 Analytical Method: EPA 8260 8260/5035A Volatile Organics Benzene ND ug/kg 21.9 1 11/12/10 00:47 71-43-2 Ethylbenzene ND ug/kg 21.9 1 11/12/10 00:47 100-41-4 Toluene ND ug/kg 21.9 1 11/12/10 00:47 108-88-3 65.8 Xylene (Total) ND ug/kg 1 11/12/10 00:47 1330-20-7 Dibromofluoromethane (S) 86 % 80-136 11/12/10 00:47 1868-53-7 1 Toluene-d8 (S) 132 % 80-120 1 11/12/10 00:47 2037-26-5 S3 4-Bromofluorobenzene (S) 148 % 72-122 1 11/12/10 00:47 460-00-4 S3 91 % 11/12/10 00:47 17060-07-0 1,2-Dichloroethane-d4 (S) 80-143 Analytical Method: ASTM D2974-87 81.0 % Percent Moisture 0.10 1 11/14/10 18:21 Sample: CNF-5-9-10 Lab ID: 255662025 Collected: 11/08/10 14:50 Received: 11/09/10 15:20 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 98.6 Diesel Range SG 137 mg/kg 11/16/10 15:25 11/17/10 12:51 Motor Oil Range SG 394 ND mg/kg 1 11/16/10 15:25 11/17/10 12:51 64742-65-0 n-Octacosane (S) SG 113 % 50-150 1 11/16/10 15:25 11/17/10 12:51 630-02-4 o-Terphenyl (S) SG 99 % 50-150 11/16/10 15:25 11/17/10 12:51 84-15-1 1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 61.3 1 11/16/10 17:00 11/17/10 04:13 a,a,a-Trifluorotoluene (S) 98 % 50-150 11/16/10 17:00 11/17/10 04:13 98-08-8 1 4-Bromofluorobenzene (S) 88 % 50-150 1 11/16/10 17:00 11/17/10 04:13 460-00-4 **6020 MET ICPMS** Analytical Method: EPA 6020

REPORT OF LABORATORY ANALYSIS

2.2

20

11/10/10 14:28 11/12/10 19:38 7439-92-1

18.9 mg/kg

Page 16 of 34

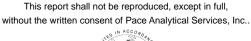
Project: Olympia Soils
Pace Project No.: 255662

Lab ID: 255662025 Sample: CNF-5-9-10 Collected: 11/08/10 14:50 Received: 11/09/10 15:20 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 23.8 1 11/13/10 12:54 71-43-2 Ethylbenzene ND ug/kg 23.8 1 11/13/10 12:54 100-41-4 Toluene ND ug/kg 23.8 11/13/10 12:54 108-88-3 1 Xylene (Total) ND ug/kg 71.4 11/13/10 12:54 1330-20-7 1 Dibromofluoromethane (S) 80-136 92 % 1 11/13/10 12:54 1868-53-7 Toluene-d8 (S) 119 % 80-120 11/13/10 12:54 2037-26-5 1 4-Bromofluorobenzene (S) 120 % 72-122 11/13/10 12:54 460-00-4 1 1,2-Dichloroethane-d4 (S) 100 % 80-143 11/13/10 12:54 17060-07-0 1 Analytical Method: ASTM D2974-87 Percent Moisture 0.10 11/14/10 18:29 79.9 % 1 Sample: CNF-5-10-2 Lab ID: 255662026 Collected: 11/08/10 15:10 Received: 11/09/10 15:20 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 11/16/10 15:25 11/17/10 13:14 Diesel Range SG 24.2 ND mg/kg 1 96.8 Motor Oil Range SG ND mg/kg 11/16/10 15:25 11/17/10 13:14 64742-65-0 1 117 % 50-150 n-Octacosane (S) SG 11/16/10 15:25 11/17/10 13:14 630-02-4 1 106 % 50-150 11/16/10 15:25 11/17/10 13:14 84-15-1 o-Terphenyl (S) SG 1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics 6.9 11/16/10 17:00 11/17/10 04:37 ND mg/kg 1 102 % 50-150 11/16/10 17:00 11/17/10 04:37 98-08-8 a,a,a-Trifluorotoluene (S) 1 91 % 50-150 11/16/10 17:00 11/17/10 04:37 460-00-4 4-Bromofluorobenzene (S) 1 **6020 MET ICPMS** Analytical Method: EPA 6020 20 4.1 mg/kg 0.45 11/10/10 14:28 11/12/10 19:42 7439-92-1 Lead Analytical Method: EPA 8260 8260/5035A Volatile Organics 3.1 Benzene ND ug/kg 11/16/10 13:07 71-43-2 1 Ethylbenzene ND ug/kg 3.1 1 11/16/10 13:07 100-41-4 Toluene ND ug/kg 3.1 1 11/16/10 13:07 108-88-3 Xylene (Total) ND ug/kg 9.2 11/16/10 13:07 1330-20-7 Dibromofluoromethane (S) 95 % 80-136 1 11/16/10 13:07 1868-53-7 Toluene-d8 (S) 80-120 112 % 1 11/16/10 13:07 2037-26-5 4-Bromofluorobenzene (S) 113 % 72-122 1 11/16/10 13:07 460-00-4 1,2-Dichloroethane-d4 (S) 90 % 80-143 11/16/10 13:07 17060-07-0 1 Analytical Method: ASTM D2974-87 20.4 % Percent Moisture 0.10 1 11/14/10 18:30

Date: 11/22/2010 08:16 AM

REPORT OF LABORATORY ANALYSIS

Page 17 of 34


Project: Olympia Soils
Pace Project No.: 255662

Date: 11/22/2010 08:16 AM

Lab ID: 255662027 Sample: CNF-5-11-13 Collected: 11/08/10 15:20 Received: 11/09/10 15:20 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG ND mg/kg 33.2 11/16/10 15:25 11/17/10 13:37 Motor Oil Range SG ND mg/kg 133 11/16/10 15:25 11/17/10 13:37 64742-65-0 1 n-Octacosane (S) SG 111 % 50-150 11/16/10 15:25 11/17/10 13:37 630-02-4 1 o-Terphenyl (S) SG 97 % 50-150 11/16/10 15:25 11/17/10 13:37 84-15-1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics 11/16/10 17:00 11/17/10 05:00 ND mg/kg 12.5 a.a.a-Trifluorotoluene (S) 106 % 50-150 1 11/16/10 17:00 11/17/10 05:00 98-08-8 4-Bromofluorobenzene (S) 93 % 50-150 1 11/16/10 17:00 11/17/10 05:00 460-00-4 **6020 MET ICPMS** Analytical Method: EPA 6020 Lead 7.4 mg/kg 0.60 20 11/10/10 14:28 11/12/10 19:46 7439-92-1 Analytical Method: EPA 8260 8260/5035A Volatile Organics Benzene ND ug/kg 5.1 1 11/13/10 13:32 71-43-2 Ethylbenzene ND ug/kg 5.1 1 11/13/10 13:32 100-41-4 Toluene ND ug/kg 5.1 1 11/13/10 13:32 108-88-3 Xylene (Total) ND ug/kg 15.4 1 11/13/10 13:32 1330-20-7 11/13/10 13:32 1868-53-7 Dibromofluoromethane (S) 95 % 80-136 1 11/13/10 13:32 2037-26-5 Toluene-d8 (S) 114 % 80-120 1 4-Bromofluorobenzene (S) 122 % 72-122 1 11/13/10 13:32 460-00-4 94 % 1,2-Dichloroethane-d4 (S) 80-143 11/13/10 13:32 17060-07-0 Analytical Method: ASTM D2974-87 Percent Moisture 44.1 % 0.10 1 11/14/10 18:30 Sample: CNF-5-12-10 Lab ID: 255662028 Collected: 11/08/10 15:30 Received: 11/09/10 15:20 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG ND mg/kg 109 11/16/10 15:25 11/17/10 14:01 Motor Oil Range SG ND mg/kg 435 1 11/16/10 15:25 11/17/10 14:01 64742-65-0 n-Octacosane (S) SG 86 % 50-150 1 11/16/10 15:25 11/17/10 14:01 630-02-4 o-Terphenyl (S) SG 74 % 50-150 11/16/10 15:25 11/17/10 14:01 84-15-1 1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 66.4 1 11/16/10 17:00 11/17/10 05:24 a,a,a-Trifluorotoluene (S) 94 % 50-150 11/16/10 17:00 11/17/10 05:24 98-08-8 1 4-Bromofluorobenzene (S) 81 % 50-150 1 11/16/10 17:00 11/17/10 05:24 460-00-4 **6020 MET ICPMS** Analytical Method: EPA 6020 Lead 35.7 mg/kg 2.3 20 11/10/10 14:28 11/12/10 19:55 7439-92-1

REPORT OF LABORATORY ANALYSIS

Page 18 of 34

Project: Olympia Soils Pace Project No.: 255662

Lab ID: 255662028 Sample: CNF-5-12-10 Collected: 11/08/10 15:30 Received: 11/09/10 15:20 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 23.3 1 11/13/10 13:51 71-43-2 Ethylbenzene ND ug/kg 23.3 11/13/10 13:51 100-41-4 1 Toluene ND ug/kg 23.3 11/13/10 13:51 108-88-3 1 Xylene (Total) ND ug/kg 70.0 11/13/10 13:51 1330-20-7 1 Dibromofluoromethane (S) 80-136 95 % 1 11/13/10 13:51 1868-53-7 Toluene-d8 (S) 127 % 80-120 11/13/10 13:51 2037-26-5 S3 1 4-Bromofluorobenzene (S) 135 % 72-122 11/13/10 13:51 460-00-4 S3 1 1,2-Dichloroethane-d4 (S) 94 % 80-143 11/13/10 13:51 17060-07-0 1 Analytical Method: ASTM D2974-87 Percent Moisture 0.10 11/14/10 18:31 81.9 % 1 Sample: CNF-5-13-2 Lab ID: 255662029 Collected: 11/08/10 15:40 Received: 11/09/10 15:20 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 ND mg/kg 11/16/10 15:25 11/17/10 14:24 Diesel Range SG 22.5 1 89.9 Motor Oil Range SG ND mg/kg 11/16/10 15:25 11/17/10 14:24 64742-65-0 1 50-150 n-Octacosane (S) SG 113 % 11/16/10 15:25 11/17/10 14:24 630-02-4 1 102 % 50-150 11/16/10 15:25 11/17/10 14:24 84-15-1 o-Terphenyl (S) SG 1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics 6.3 11/16/10 17:00 11/17/10 05:47 ND mg/kg 1 99 % 50-150 11/16/10 17:00 11/17/10 05:47 98-08-8 a,a,a-Trifluorotoluene (S) 1 50-150 11/16/10 17:00 11/17/10 05:47 460-00-4 4-Bromofluorobenzene (S) 80 % 1 **6020 MET ICPMS** Analytical Method: EPA 6020 20 4.0 mg/kg 0.49 11/10/10 14:28 11/12/10 20:00 7439-92-1 Lead Analytical Method: EPA 8260 8260/5035A Volatile Organics Benzene ND ug/kg 3.0 11/13/10 14:10 71-43-2 1 Ethylbenzene 11/13/10 14:10 100-41-4 ND ug/kg 3.0 1 Toluene ND ug/kg 3.0 1 11/13/10 14:10 108-88-3 Xylene (Total) ND ug/kg 9.0 11/13/10 14:10 1330-20-7 80-136 Dibromofluoromethane (S) 96 % 1 11/13/10 14:10 1868-53-7 Toluene-d8 (S) 112 % 80-120 1 11/13/10 14:10 2037-26-5 4-Bromofluorobenzene (S) 114 % 72-122 1 11/13/10 14:10 460-00-4 1,2-Dichloroethane-d4 (S) 99 % 80-143 11/13/10 14:10 17060-07-0 1 Analytical Method: ASTM D2974-87 14.2 % 11/14/10 18:32 Percent Moisture 0.10 1

Date: 11/22/2010 08:16 AM

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

Page 19 of 34

Project: Olympia Soils Pace Project No.: 255662

Sample: Trip Blank Soil Lab ID: 255662030 Collected: 11/08/10 00:00 Received: 11/09/10 15:20 Matrix: Solid

Results reported on a "wet-weight	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Gx GCV	Analytical Met	hod: NWTPH-	Gx Preparation M	ethod: I	NWTPH-Gx			
Gasoline Range Organics	ND m	g/kg	5.0	1	11/16/10 17:00	11/17/10 02:39		
a,a,a-Trifluorotoluene (S)	99 %	•	50-150	1	11/16/10 17:00	11/17/10 02:39	98-08-8	
4-Bromofluorobenzene (S)	92 %		50-150	1	11/16/10 17:00	11/17/10 02:39	460-00-4	
8260/5035A Volatile Organics	Analytical Met	hod: EPA 826	0					
Benzene	ND ug	g/kg	3.0	1		11/13/10 11:01	71-43-2	
Ethylbenzene	ND ug	g/kg	3.0	1		11/13/10 11:01	100-41-4	
Toluene	ND ug	g/kg	3.0	1		11/13/10 11:01	108-88-3	
Xylene (Total)	ND ug	g/kg	9.0	1		11/13/10 11:01	1330-20-7	
Dibromofluoromethane (S)	95 %	•	80-136	1		11/13/10 11:01	1868-53-7	
Toluene-d8 (S)	110 %	•	80-120	1		11/13/10 11:01	2037-26-5	
4-Bromofluorobenzene (S)	109 %	•	72-122	1		11/13/10 11:01	460-00-4	
1,2-Dichloroethane-d4 (S)	103 %		80-143	1		11/13/10 11:01	17060-07-0	

Date: 11/22/2010 08:16 AM

without the written consent of Pace Analytical Services, Inc..

Project: Olympia Soils
Pace Project No.: 255662

QC Batch: OEXT/2991 Analysis Method: NWTPH-Dx
QC Batch Method: EPA 3546 Analysis Description: NWTPH-Dx GCS

Associated Lab Samples: 255662017, 255662018, 255662019, 255662020, 255662021, 255662022, 255662023, 255662024, 255662025,

255662026, 255662027, 255662028, 255662029

METHOD BLANK: 49692 Matrix: Solid

Associated Lab Samples: 255662017, 255662018, 255662019, 255662020, 255662021, 255662022, 255662023, 255662024, 255662025,

255662026, 255662027, 255662028, 255662029

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Diesel Range SG	mg/kg	ND ND	20.0	11/17/10 11:55	
Motor Oil Range SG	mg/kg	ND	80.0	11/17/10 11:55	
n-Octacosane (S) SG	%	119	50-150	11/17/10 11:55	
o-Terphenyl (S) SG	%	108	50-150	11/17/10 11:55	

LABORATORY CONTROL SAMPLE: 49693

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Diesel Range SG	mg/kg	500	455	91	56-124	
Motor Oil Range SG	mg/kg	500	544	109	50-150	
n-Octacosane (S) SG	%			122	50-150	
o-Terphenyl (S) SG	%			122	50-150	

SAMPLE DUPLICATE: 49694

		255621001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Diesel Range SG	mg/kg	ND			
Motor Oil Range SG	mg/kg	ND	ND		
n-Octacosane (S) SG	%	120	116	1	
o-Terphenyl (S) SG	%	109	105	.7	

Date: 11/22/2010 08:16 AM

Project: Olympia Soils
Pace Project No.: 255662

QC Batch: GCV/2018 Analysis Method: NWTPH-Gx

QC Batch Method: NWTPH-Gx Analysis Description: NWTPH-Gx Solid GCV

Associated Lab Samples: 255662017, 255662018, 255662019, 255662020, 255662021, 255662022, 255662023, 255662024

METHOD BLANK: 49445 Matrix: Solid

%

Associated Lab Samples: 255662017, 255662018, 255662019, 255662020, 255662021, 255662022, 255662023, 255662024

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Gasoline Range Organics	mg/kg	ND	5.0	11/14/10 07:56	
4-Bromofluorobenzene (S)	%	113	50-150	11/14/10 07:56	
a,a,a-Trifluorotoluene (S)	%	117	50-150	11/14/10 07:56	

LABORATORY CONTROL SAMPLE: 49446 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Gasoline Range Organics mg/kg 12.5 11.7 93 54-156 4-Bromofluorobenzene (S) 103 50-150 %

101

50-150

SAMPLE DUPLICATE: 49607

a,a,a-Trifluorotoluene (S)

Parameter	Units	255632007 Result	Dup Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND ND	6.3J		
4-Bromofluorobenzene (S)	%	81	96	17	
a,a,a-Trifluorotoluene (S)	%	86	96	11	

SAMPLE DUPLICATE: 49608

Date: 11/22/2010 08:16 AM

		255662017	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND ND	1.5J		
4-Bromofluorobenzene (S)	%	104	94	10	
a,a,a-Trifluorotoluene (S)	%	108	97	11	

REPORT OF LABORATORY ANALYSIS

Page 22 of 34

Project: Olympia Soils
Pace Project No.: 255662

QC Batch: GCV/2028 Analysis Method: NWTPH-Gx

QC Batch Method: NWTPH-Gx Analysis Description: NWTPH-Gx Solid GCV

Associated Lab Samples: 255662025, 255662026, 255662027, 255662028, 255662029, 255662030

METHOD BLANK: 49707 Matrix: Solid

Associated Lab Samples: 255662025, 255662026, 255662027, 255662028, 255662029, 255662030

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Gasoline Range Organics	mg/kg	ND	5.0	11/17/10 02:16	
4-Bromofluorobenzene (S)	%	96	50-150	11/17/10 02:16	
a,a,a-Trifluorotoluene (S)	%	104	50-150	11/17/10 02:16	

LABORATORY CONTROL SAMPLE: 49708

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Gasoline Range Organics	mg/kg	12.5	13.7	110	54-156	
4-Bromofluorobenzene (S)	%			95	50-150	
a,a,a-Trifluorotoluene (S)	%			99	50-150	

SAMPLE DUPLICATE: 49856

Parameter	Units	255708003 Result	Dup Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND ND	.92J		
4-Bromofluorobenzene (S)	%	75	86	13	
a,a,a-Trifluorotoluene (S)	%	96	105	9	

SAMPLE DUPLICATE: 49857

		255708007	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND	.84J		
4-Bromofluorobenzene (S)	%	98	97	1	
a,a,a-Trifluorotoluene (S)	%	110	107	3	

Date: 11/22/2010 08:16 AM REPORT OF LABORATORY ANALYSIS

Page 23 of 34

Project: Olympia Soils
Pace Project No.: 255662

QC Batch: ICPM/23432 Analysis Method: EPA 6020
QC Batch Method: EPA 6020 Analysis Description: 6020 MET

Associated Lab Samples: 255662001, 255662002, 255662003, 255662004, 255662005, 255662006, 255662007, 255662008, 255662009,

255662010, 255662011, 255662012

METHOD BLANK: 889176 Matrix: Solid

Associated Lab Samples: 255662001, 255662002, 255662003, 255662004, 255662005, 255662006, 255662007, 255662008, 255662009,

255662010, 255662011, 255662012, 255662013, 255662014, 255662015, 255662016

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	mg/kg	ND ND	0.49	11/11/10 19:35	
Copper	mg/kg	ND	0.49	11/11/10 19:35	
Lead	mg/kg	ND	0.49	11/11/10 19:35	
Nickel	mg/kg	ND	0.49	11/15/10 12:28	

LABORATORY CONTROL SAMPLE: 889177 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Arsenic mg/kg 19.2 16.8 87 75-125 Copper mg/kg 19.2 19.6 102 75-125 Lead mg/kg 19.2 18.4 96 75-125 Nickel 19.2 24.1 125 75-125 mg/kg

MATRIX SPIKE & MATRIX S	PIKE DUPLICA	TE: 88917	8		889179						
		255662001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Arsenic	mg/kg	7.1	21.8	21.5	29.6	28.8	104	101	75-125	3	
Copper	mg/kg	10.0	21.8	21.5	33.8	32.8	109	106	75-125	3	
Lead	mg/kg	2.3	21.8	21.5	24.9	24.2	104	101	75-125	3	
Nickel	mg/kg	16.2	21.8	21.5	41.7	41.9	117	119	75-125	.5	

MATRIX SPIKE SAMPLE:	889180						
Parameter	Units	255662011 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/kg	14.6	23.5	26.8	52	75-125	5 M6
Copper	mg/kg	50.0	23.5	54.4	19	75-125	5 M6
Lead	mg/kg	85.0	23.5	33.1	-220	75-125	5 M6
Nickel	mg/kg	26.3	23.5	50.1	101	75-125	5

Date: 11/22/2010 08:16 AM REPORT OF LABORATORY ANALYSIS

Page 24 of 34

Project: Olympia Soils
Pace Project No.: 255662

LABORATORY CONTROL SAMPLE:

Date: 11/22/2010 08:16 AM

QC Batch: ICPM/23433 Analysis Method: EPA 6020
QC Batch Method: EPA 6020 Analysis Description: 6020 MET

Associated Lab Samples: 255662017, 255662018, 255662019, 255662020, 255662021, 255662022, 255662023, 255662024, 255662025,

255662026, 255662027, 255662028, 255662029

METHOD BLANK: 889182 Matrix: Solid

889183

Associated Lab Samples: 255662017, 255662018, 255662019, 255662020, 255662021, 255662022, 255662023, 255662024, 255662025,

255662026, 255662027, 255662028, 255662029

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	mg/kg	ND	0.48	11/12/10 18:31	
Copper	mg/kg	ND	0.48	11/12/10 18:31	
Lead	mg/kg	ND	0.48	11/12/10 18:31	
Nickel	mg/kg	ND	0.48	11/12/10 18:31	

Spike LCS LCS % Rec Parameter Units Result Limits Qualifiers Conc. % Rec Arsenic mg/kg 19.6 20.5 105 75-125 Copper 22.8 116 75-125 mg/kg 19.6

 Copper
 mg/kg
 19.6
 22.8
 116
 75-125

 Lead
 mg/kg
 19.6
 22.5
 115
 75-125

 Nickel
 mg/kg
 19.6
 23.8
 121
 75-125

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 889184 889185 MS MSD 255662017 Spike Spike MS MSD MS MSD % Rec Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual 5.3 Arsenic mg/kg 23.8 22.7 29.6 37.0 102 139 75-125 22 D6,M6 Copper 10.6 23.8 22.7 38.6 48.9 168 75-125 24 D6,M6 mg/kg 117 Lead mg/kg 2.8 23.8 22.7 27.6 43.3 104 177 75-125 44 D6,M6 Nickel mg/kg 17.2 23.8 22.7 48.1 61.3 130 193 75-125 24 D6,M6

MATRIX SPIKE SAMPLE: 889186 255662027 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 5.9 Arsenic mg/kg 32.6 35.7 92 75-125 20.9 Copper mg/kg 32.6 54.7 104 75-125 7.4 Lead mg/kg 32.6 38.4 95 75-125 Nickel mg/kg 26.2 32.6 63.2 114 75-125

REPORT OF LABORATORY ANALYSIS

Page 25 of 34

Project: Olympia Soils

Pace Project No.: 255662

QC Batch: MPRP/23496 Analysis Method: % Moisture

QC Batch Method: % Moisture Analysis Description: Dry Weight/Percent Moisture

255662001, 255662002, 255662003, 255662004, 255662005, 255662006, 255662007, 255662008, 255662009, Associated Lab Samples:

255662010, 255662011, 255662012, 255662013, 255662014, 255662015, 255662016

SAMPLE DUPLICATE: 891209

255662001 Dup Parameter Units Result Result **RPD** Qualifiers 26.9 3 Percent Moisture % 27.7

SAMPLE DUPLICATE: 891210

10143022003 Dup **RPD** Parameter Units Result Result Qualifiers % 20.9 7 Percent Moisture 19.5

Date: 11/22/2010 08:16 AM REPORT OF LABORATORY ANALYSIS Page 26 of 34

Project: Olympia Soils
Pace Project No.: 255662

QC Batch: MSV/3429 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5035A Volatile Organics
Associated Lab Samples: 255662017, 255662018, 255662019, 255662020, 255662021, 255662022, 255662023, 255662024

METHOD BLANK: 49263 Matrix: Solid

Associated Lab Samples: 255662017, 255662018, 255662019, 255662020, 255662021, 255662022, 255662023, 255662024

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND	3.0	11/11/10 18:30	
Ethylbenzene	ug/kg	ND	3.0	11/11/10 18:30	
Toluene	ug/kg	ND	3.0	11/11/10 18:30	
Xylene (Total)	ug/kg	ND	9.0	11/11/10 18:30	
1,2-Dichloroethane-d4 (S)	%	101	80-143	11/11/10 18:30	
4-Bromofluorobenzene (S)	%	106	72-122	11/11/10 18:30	
Dibromofluoromethane (S)	%	105	80-136	11/11/10 18:30	
Toluene-d8 (S)	%	106	80-120	11/11/10 18:30	

LABORATORY CONTROL SAME	PLE & LCSD: 49264		49	9265						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene	ug/kg	50	43.5	42.5	87	85	75-133	2	30	
Ethylbenzene	ug/kg	50	38.5	37.6	77	75	68-131	2	30	
Toluene	ug/kg	50	41.6	40.7	83	81	73-124	2	30	
Xylene (Total)	ug/kg	150	124	120	82	80	68-130	3	30	
1,2-Dichloroethane-d4 (S)	%				104	102	80-143			
4-Bromofluorobenzene (S)	%				104	106	72-122			
Dibromofluoromethane (S)	%				112	111	80-136			
Toluene-d8 (S)	%				109	108	80-120			

Date: 11/22/2010 08:16 AM

Project: Olympia Soils Pace Project No.: 255662

QC Batch: MSV/3436 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5035A Volatile Organics

Associated Lab Samples: 255662025, 255662027, 255662028, 255662029, 255662030

METHOD BLANK: 49424 Matrix: Solid

Associated Lab Samples: 255662025, 255662027, 255662028, 255662029, 255662030

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND ND	3.0	11/13/10 10:42	
Ethylbenzene	ug/kg	ND	3.0	11/13/10 10:42	
Toluene	ug/kg	ND	3.0	11/13/10 10:42	
Xylene (Total)	ug/kg	ND	9.0	11/13/10 10:42	
1,2-Dichloroethane-d4 (S)	%	104	80-143	11/13/10 10:42	
4-Bromofluorobenzene (S)	%	107	72-122	11/13/10 10:42	
Dibromofluoromethane (S)	%	106	80-136	11/13/10 10:42	
Toluene-d8 (S)	%	108	80-120	11/13/10 10:42	

LABORATORY CONTROL SAME	PLE & LCSD: 49425		49	9426						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene	ug/kg	50	51.6	52.2	103	104	75-133	1	30	
Ethylbenzene	ug/kg	50	52.8	54.5	106	109	68-131	3	30	
Toluene	ug/kg	50	54.3	53.3	109	107	73-124	2	30	
Xylene (Total)	ug/kg	150	153	155	102	103	68-130	2	30	
1,2-Dichloroethane-d4 (S)	%				106	106	80-143			
4-Bromofluorobenzene (S)	%				110	107	72-122			
Dibromofluoromethane (S)	%				104	106	80-136			
Toluene-d8 (S)	%				107	109	80-120			

Date: 11/22/2010 08:16 AM **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full,

Project: Olympia Soils
Pace Project No.: 255662

QC Batch: MSV/3460 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5035A Volatile Organics

Associated Lab Samples: 255662026

METHOD BLANK: 49675 Matrix: Solid

Associated Lab Samples: 255662026

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	ug/kg		3.0	11/16/10 12:08	
Ethylbenzene	ug/kg	ND	3.0	11/16/10 12:08	
Toluene	ug/kg	ND	3.0	11/16/10 12:08	
Xylene (Total)	ug/kg	ND	9.0	11/16/10 12:08	
1,2-Dichloroethane-d4 (S)	%	98	80-143	11/16/10 12:08	
4-Bromofluorobenzene (S)	%	104	72-122	11/16/10 12:08	
Dibromofluoromethane (S)	%	92	80-136	11/16/10 12:08	
Toluene-d8 (S)	%	109	80-120	11/16/10 12:08	

LABORATORY CONTROL SAME	PLE & LCSD: 49676		49	9677						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene	ug/kg	50	49.7	50.0	99	100	75-133	.6	30	
Ethylbenzene	ug/kg	50	50.1	50.5	100	101	68-131	.7	30	
Toluene	ug/kg	50	46.2	47.6	92	95	73-124	3	30	
Xylene (Total)	ug/kg	150	146	147	98	98	68-130	.3	30	
1,2-Dichloroethane-d4 (S)	%				105	99	80-143			
4-Bromofluorobenzene (S)	%				103	104	72-122			
Dibromofluoromethane (S)	%				112	110	80-136			
Toluene-d8 (S)	%				95	97	80-120			

Date: 11/22/2010 08:16 AM

Project: Olympia Soils

Pace Project No.: 255662

QC Batch: PMST/1426 Analysis Method: ASTM D2974-87

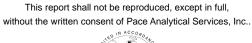
QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 255662017, 255662018, 255662019, 255662020, 255662021, 255662022, 255662023, 255662024

SAMPLE DUPLICATE: 49524

255605001 Dup Parameter Units Result Result **RPD** Qualifiers

% 17.1 2 Percent Moisture 16.8


SAMPLE DUPLICATE: 49525

Date: 11/22/2010 08:16 AM

255662024 Dup RPD Parameter Units Result Result Qualifiers Percent Moisture % 81.0 79.5 2

REPORT OF LABORATORY ANALYSIS

Page 30 of 34

Project: Olympia Soils
Pace Project No.: 255662

QC Batch: PMST/1427 Analysis Method: ASTM D2974-87

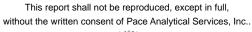
QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 255662025, 255662026, 255662027, 255662028, 255662029

SAMPLE DUPLICATE: 49526

255650001 Dup
Parameter Units Result Result RPD Qualifiers

Percent Moisture % 18.0 17.4 3


SAMPLE DUPLICATE: 49527

 Percent Moisture
 Units
 Z55698001 Result Result Result RPD
 Qualifiers

 7.0
 7.5
 7

Date: 11/22/2010 08:16 AM REPORT OF LABORATORY ANALYSIS

Page 31 of 34

QUALIFIERS

Project: Olympia Soils
Pace Project No.: 255662

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

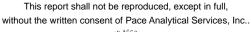
LABORATORIES

PASI-M	Pace Analytical Services - Minneapolis
PASI-S	Pace Analytical Services - Seattle

ANALYTE QUALIFIERS

Date: 11/22/2010 08:16 AM

D6	The relative percent difference (RPD) between the sample and sample duplicate exceeded laboratory control limits.
----	---


M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

S3 Surrogate recovery exceeded laboratory control limits. Analyte presence below reporting limits in associated samples.

Results unaffected by high bias.

REPORT OF LABORATORY ANALYSIS

Page 32 of 34

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Olympia Soils Pace Project No.: 255662

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
255662017	CNF-5-1-15	EPA 3546	OEXT/2991	NWTPH-Dx	GCSV/2086
255662018	CNF-5-2-13.5	EPA 3546	OEXT/2991	NWTPH-Dx	GCSV/2086
255662019	CNF-5-3-10	EPA 3546	OEXT/2991	NWTPH-Dx	GCSV/2086
255662020	CNF-5-4-2	EPA 3546	OEXT/2991	NWTPH-Dx	GCSV/2086
255662021	CNF-5-5-13.5	EPA 3546	OEXT/2991	NWTPH-Dx	GCSV/2086
255662022	CNF-5-6-10	EPA 3546	OEXT/2991	NWTPH-Dx	GCSV/2086
255662023	CNF-5-7-2	EPA 3546	OEXT/2991	NWTPH-Dx	GCSV/2086
255662024	CNF-5-8-13	EPA 3546	OEXT/2991	NWTPH-Dx	GCSV/2086
255662025	CNF-5-9-10	EPA 3546	OEXT/2991	NWTPH-Dx	GCSV/2086
55662026	CNF-5-10-2	EPA 3546	OEXT/2991	NWTPH-Dx	GCSV/2086
55662027	CNF-5-11-13	EPA 3546	OEXT/2991	NWTPH-Dx	GCSV/2086
55662028	CNF-5-12-10	EPA 3546	OEXT/2991	NWTPH-Dx	GCSV/2086
255662029	CNF-5-13-2	EPA 3546	OEXT/2991	NWTPH-Dx	GCSV/2086
55662017	CNF-5-1-15	NWTPH-Gx	GCV/2018	NWTPH-Gx	GCV/2022
55662018	CNF-5-2-13.5	NWTPH-Gx	GCV/2018	NWTPH-Gx	GCV/2022
55662019	CNF-5-3-10	NWTPH-Gx	GCV/2018	NWTPH-Gx	GCV/2022
255662020	CNF-5-4-2	NWTPH-Gx	GCV/2018	NWTPH-Gx	GCV/2022
55662021	CNF-5-5-13.5	NWTPH-Gx	GCV/2018	NWTPH-Gx	GCV/2022
55662022	CNF-5-6-10	NWTPH-Gx	GCV/2018	NWTPH-Gx	GCV/2022
55662023	CNF-5-7-2	NWTPH-Gx	GCV/2018	NWTPH-Gx	GCV/2022
55662024	CNF-5-8-13	NWTPH-Gx	GCV/2018	NWTPH-Gx	GCV/2022
55662025	CNF-5-9-10	NWTPH-Gx	GCV/2028	NWTPH-Gx	GCV/2032
55662026	CNF-5-10-2	NWTPH-Gx	GCV/2028	NWTPH-Gx	GCV/2032
55662027	CNF-5-11-13	NWTPH-Gx	GCV/2028	NWTPH-Gx	GCV/2032
55662028	CNF-5-12-10	NWTPH-Gx	GCV/2028	NWTPH-Gx	GCV/2032
55662029	CNF-5-13-2	NWTPH-Gx	GCV/2028	NWTPH-Gx	GCV/2032
55662030	Trip Blank Soil	NWTPH-Gx	GCV/2028	NWTPH-Gx	GCV/2032
55662001	CNF-4-1-15	EPA 6020	ICPM/23432	EPA 6020	ICPM/9524
55662002	CNF-4-2-13	EPA 6020	ICPM/23432	EPA 6020	ICPM/9524
55662003	CNF-4-3-12	EPA 6020	ICPM/23432	EPA 6020	ICPM/9524
55662004	CNF-4-4-12	EPA 6020	ICPM/23432	EPA 6020	ICPM/9524
255662005	CNF-4-5-12	EPA 6020	ICPM/23432	EPA 6020	ICPM/9524
55662006	CNF-4-6-10.5	EPA 6020	ICPM/23432	EPA 6020	ICPM/9524
55662007	CNF-4-7-6	EPA 6020	ICPM/23432	EPA 6020	ICPM/9524
55662008	CNF-4-8-2.5	EPA 6020	ICPM/23432	EPA 6020	ICPM/9524
255662009	CNF-4-9-11	EPA 6020	ICPM/23432	EPA 6020	ICPM/9524
55662010	CNF-4-10-7	EPA 6020	ICPM/23432		ICPM/9524
55662011	CNF-4-10-7	EPA 6020	ICPM/23432	EPA 6020	ICPM/9524
55662012	CNF-4-11-2 CNF-4-12-11		ICPM/23432		ICPM/9524
		EPA 6020		EPA 6020	
55662013 55662014	CNF-4-13-2.5	EPA 6020	ICPM/23432	EPA 6020	ICPM/9524
	CNF-4-14-11	EPA 6020	ICPM/23432	EPA 6020	ICPM/9524
255662015 255662016	CNF-4-15-3.5 CNF-4-16-2	EPA 6020 EPA 6020	ICPM/23432 ICPM/23432	EPA 6020 EPA 6020	ICPM/9524 ICPM/9524
255662017	CNF-5-1-15	EPA 6020	ICPM/23433	EPA 6020	ICPM/9536
55662018	CNF-5-2-13.5	EPA 6020	ICPM/23433	EPA 6020	ICPM/9536
255662019	CNF-5-3-10	EPA 6020	ICPM/23433	EPA 6020	ICPM/9536
255662020	CNF-5-4-2	EPA 6020	ICPM/23433	EPA 6020	ICPM/9536

Date: 11/22/2010 08:16 AM

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

Page 33 of 34

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Olympia Soils
Pace Project No.: 255662

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
255662021	CNF-5-5-13.5	EPA 6020	ICPM/23433	EPA 6020	ICPM/9536
255662022	CNF-5-6-10	EPA 6020	ICPM/23433	EPA 6020	ICPM/9536
255662023	CNF-5-7-2	EPA 6020	ICPM/23433	EPA 6020	ICPM/9536
255662024	CNF-5-8-13	EPA 6020	ICPM/23433	EPA 6020	ICPM/9536
255662025	CNF-5-9-10	EPA 6020	ICPM/23433	EPA 6020	ICPM/9536
255662026	CNF-5-10-2	EPA 6020	ICPM/23433	EPA 6020	ICPM/9536
255662027	CNF-5-11-13	EPA 6020	ICPM/23433	EPA 6020	ICPM/9536
255662028	CNF-5-12-10	EPA 6020	ICPM/23433	EPA 6020	ICPM/9536
255662029	CNF-5-13-2	EPA 6020	ICPM/23433	EPA 6020	ICPM/9536
255662001	CNF-4-1-15	% Moisture	MPRP/23496		
255662002	CNF-4-2-13	% Moisture	MPRP/23496		
255662003	CNF-4-3-12	% Moisture	MPRP/23496		
255662004	CNF-4-4-12	% Moisture	MPRP/23496		
255662005	CNF-4-5-12	% Moisture	MPRP/23496		
255662006	CNF-4-6-10.5	% Moisture	MPRP/23496		
255662007	CNF-4-7-6	% Moisture	MPRP/23496		
255662008	CNF-4-8-2.5	% Moisture	MPRP/23496		
255662009	CNF-4-9-11	% Moisture	MPRP/23496		
255662010	CNF-4-10-7	% Moisture	MPRP/23496		
255662011	CNF-4-11-2	% Moisture	MPRP/23496		
255662012	CNF-4-12-11	% Moisture	MPRP/23496		
255662013	CNF-4-13-2.5	% Moisture	MPRP/23496		
255662014	CNF-4-14-11	% Moisture	MPRP/23496		
255662015	CNF-4-15-3.5	% Moisture	MPRP/23496		
255662016	CNF-4-16-2	% Moisture	MPRP/23496		
255662017	CNF-5-1-15	EPA 8260	MSV/3429		
255662018	CNF-5-2-13.5	EPA 8260	MSV/3429		
255662019	CNF-5-3-10	EPA 8260	MSV/3429		
255662020	CNF-5-4-2	EPA 8260	MSV/3429		
255662021	CNF-5-5-13.5	EPA 8260	MSV/3429		
255662022	CNF-5-6-10	EPA 8260	MSV/3429		
255662023	CNF-5-7-2	EPA 8260	MSV/3429		
255662024	CNF-5-8-13	EPA 8260	MSV/3429		
255662025	CNF-5-9-10	EPA 8260	MSV/3436		
255662026	CNF-5-10-2	EPA 8260	MSV/3460		
255662027	CNF-5-11-13	EPA 8260	MSV/3436		
255662028	CNF-5-12-10	EPA 8260	MSV/3436		
255662029	CNF-5-13-2	EPA 8260	MSV/3436		
255662030	Trip Blank Soil	EPA 8260	MSV/3436		

Date: 11/22/2010 08:16 AM

REPORT OF LABORATORY ANALYSIS

Page 34 of 34

	Sample C	ondi	tion Upon Receipt
Pace Analytical Client Name:	hat	C	Project # 2 5 5 6 6 2
Face Analytical Client Name:			Project #
	П-		Do all Para PCC
Courier: Fed Ex UPS USPS Client	Comme	rcial	Pace Other Programme Vision Inc.
Tracking #: Custody Seal on Cooler/Box Present: Yes	□ No	Seals	intact: Yes No
	%		
Packing Material: Bubble Wrap Bubble E			J Olitor
Thermometer Used 132013 (101731962 2 26099			is Frozen: Yes No Date and Initials of person examiling
Cooler Temperature 1.4°C	Biological	issue	Comments:
Temp should be above freezing ≤ 6 °C	□Yes □No	□N/A	
Chain of Custody Present:		□N/A	
Chain of Custody Filled Out:	ØYes □No		
Chain of Custody Relinquished:			
Sampler Name & Signature on COC:	Yes DNo	□N/A	
Samples Arrived within Hold Time:	ZYes □No	□N/A	1-0/000 NO VITT.
Short Hold Time Analysis (<72hr):	DYes □No		11/11/12
Rush Turn Around Time Requested:	er.		
Sufficient Volume:	DYes □No	LJN/A	8.
Correct Containers Used:	ØYes □No	□n/a	9.
-Pace Containers Used:	Pres DNo	□n/a	
Containers Intact:	Yes DNo	□N/A	10.
Filtered volume received for Dissolved tests	□Yes □No	[⊉N/A	11.
Sample Labels match COC:	Des DNo	□N/A	12.
-Includes date/time/ID/Analysis Matrix:	Soll		
All containers needing preservation have been checked.	□Yes □No	□N/A	13.
All containers needing preservation are found to be in	□Yes □No	N/A	
compliance with EPA recommendation.			Initial when Lot # of added
Exceptions: VOA, coliform, TOC, O&G			completed preservative
Samples checked for dechlorination:	□Yes □No	□N/A	
Headspace in VOA Vials (>6mm):	☐Yes ☐No	₽ Ñ/A	
Trip Blanks Present:	⊠Yes □No	□N/A	16. Trip blank for soil of water
Trip Blank Custody Seals Present	DYes □No	E A	received. Not on COC.
Pace Trip Blank Lot # (if purchased):		11/01	
Client Notification/ Resolution:		,	Field Data Required? Y / N
Person Contacted: bsh Johnson		Date/	Time: 11910 4,55
Comments/ Resolution:			
Do you need Dx w/ Silica	-Gel ?1	Vot	written on coc. Per Josh add 86,00
All results are needed A	SAP. O	le_	
		 	
			1-1.
Project Manager Review: ENNI	(gras	7	Date: 9 10
→ *'			till to the will be post to the North Carolina DEUND

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e out of hold, incorrect preservative, out of temp, incorrect containers)

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

ITEM# 6 Address: 724 Columbia Required Client Information: Email To: 🔹 340 534 1206 Company: equested Due Date/TAT: Required Client Information CNF-4-ムスプ JND ate CS12, CNE-4. CNF-4-Sample IDs MUST BE UNIQUE 218 turk@bruncald.com Brown + SAMPLE ID (A-Z, 0-9 / ,-) ADDITIONAL COMMENTS 14-8-420, Olympian -4-1 14-12-11 7 1 7. 4-10-Ĺ 4-11-360943 7513 1010 2-13 6 4-12 ۵ 41 121 STNU ò duce 6 N Waste Water Product Soil/Solid Oil Wipe Air Tissue Other Drinking Water Matrix Codes MATRIX / CODE ORIGINAL Copy To: Report To: Required Project Information Project Number Project Name: Purchase Order No.: Section B 978#P878#P 3 MATRIX CODE RELINQUISHED BY / AFFILIATION (see valid codes to left) را 20 2 Josh 0 L SAMPLE TYPE (G=GRAB C=COMP) ととめら DATE COMPOSITE START 7(70) ٤ Johnson SAMPLER NAME AND SIGNATURE TIME COLLECTED PRINT Name of SAMPLER: 11/8/16 せつい DATE K. COMPOSITE END/GRAB ĹΛ 0.10 0115 11:03 10:28 11:00 10:55 10:22 10:52 10:42 10:35 10:38 <u>2</u> ≥ 10:45 10:18 TIME DATE SAMPLE TEMP AT COLLECTION 15 Company Name: Section C Reference: Pace Project Attention: Address: ace Profile #: ace Quote # OF CONTAINERS 20.2 TIME 5 6 Unpreserved 105K H₂SO, カマセ Preservatives HNO₃ COLOR OSE HCI NaOH Johnson Na₂S₂O₃ ACCEPTED BY / AFFILIATION Methanol Other Y/ N Analysis Test DATE Signed (MM/DD/YY): (1) Requested Analysis Filtered (Y/N) eac 4 グ oppes REGULATORY AGENCY Site Location TSU 2 **NPDES** DATE STATE: ۵ 140C 1520 IME WA A RCRA **GROUND WATER** Page: 1.4 Temp in °C Residual Chlorine (Y/N) 391150 Received on SAMPLE CONDITIONS Pace Project No./ Lab I.D. Ice (Y/N) 잌 Custody OTHER DRINKING WATER 2 Sealed Cooler (\mathcal{N}) (Y/N) Samples Intact (Y/N)

*Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month fo(any jovoices not paid within 30 days.

SIGNATURE of SAMPLER:

F-ALL-Q-020rev.07, 15-May-2007

a

 \bar{g}

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

rio Cr ෆ **6** 2

											J
Sec		Section B		- (0	Section C			Page:	14	g G	
င္ပ	Company: Brown + Caldwell F	Report To:	we	<i>A</i> :		Johnson			139	1391155	ഗ
, Id	+ NW	Copy To:			ame: 15 news		REGULATORY AGENCY	AGENCY			
	W I		1 1	D	Address: 724 Columba!	MW +S	NPDES	GROUND WATER	WATER ["		DRINKING WATER
Ema	jturke bruncald.com	Purchase Order No.:		ס ת	Pace Quote Reference:		UST	RCRA	78	OTHER	5
Pho 30	Phone: 362 -534-1206 360 943 7513	Project Name: O lymp	12 So. 15	2 0	Pace Project Manager:		Site Location	>			
Rec	11/11/10	Project Number:		ם	Pace Profile #:	Table 1	STATE:	7	l		
					(C. C. C	Requested /	Requested Analysis Filtered (Y/N)	(N/X)		-	
	Section D Matrix Codes Required Client Information MATRIX / CODE	o left)	COLLECTED		Preservatives >						
		SEE VAIID COMPOSITE GRAB C=CC START START	COMPOSITE END/GRAB	COLLECTION					∍ (Y/N)		
#	SAMPLE ID Wipe (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE Tissue Other	LIX CODE (s		LE TEMP AT C	ł 2O ₃ anol	senic ad oper ckul	H-D H-HO		ual Chlorine		
ITEM	÷	-	TIME DATE TI	TIME SAMP	Unpre H ₂ SO HNO ₃ HCI NaOH Na ₂ S ₂ Metha Other	Lea	TP TF B7			Pace Project No./ Lab I.D.	o./ Lab I.D.
	CNF-4-13-2.5	54.6	to:11 01/8/11	40	*	アメメメ					
2	CNF-4-14-11		1	11:12							
ω	CNF-4-15-3,5			5							
4	CNF-4-16-2	<u> </u>	*	1.18	<	マンジ が	,				
ري ن	-5-1-1		13		× ×	- 🗡	· * * * * * * * * * * * * * * * * * * *				
1 0	(30, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1		į ū								
∞	5-4-2		13	3,40							
9	CNIZ-5-5-13.5		13	3:55							
10	CN12-5-6-10		2	7:02							
= 1	CNF-5-7-6		- Land	₹:₽							
12	CNF-5-6-13	<u> </u>	4	14:35	V V	<	*				1
	ADDITIONAL COMMENTS	RELINQUISHED BY / AFFILIATION	*	DATE	TIME ACCEPTED BY / AFFILIATION	/ AFFILIATION	DATE	TIME	SAI	SAMPLE CONDITIONS	ONS
		X-1-1-	M (250) M	a/b/ll	14:05 K. Cotteg	7	11191101	14 05 ·	r		
		天. College	のカーでい	0	1520 Syohi	Sion	11/9/10	- 02Z	,4 9	ح	٤
				•		\	//				
	ORIO	ORIGINAL	SAMPLER NAME AND SIGNATURE	IGNATURE					d on	ooler	
			PRINT Name of SAMPLER:	SAMPLER:	Jon luste				ceive	Custo led C (Y/N	nples (Y/N
			SIGNATURE of SAMPLER:	SAMPLER:	5	DATE Signed (MM/DD/YY):	01/09/11		Red	Seal	
						(Verening - 1 - 1)			_		

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

								12	=	5	9	00	7	6	ري ري	4	ω	2	_	ITEM#		1	Req	동	Em	\sqrt{\sqrt{\cdot\}}	ψ <u>ğ</u> .	C 8	် နှ
							ADDITIONAL COMMENTS							<i>y</i>	CNF-5-13-2	CNF-5-12-10	CNF-5-11-13	CNF-5-10-2	CNF-5-9-10	SAMPLE ID (A-Z, 0-9 /) Sample IDs MUST BE UNIQUE Cher Chick Water Waste Water Waste Water Product Soil/Soild Soil/Soild Si Wipe Air Tissue Other	Section D Matrix Codes Required Client Information MATRIX / CODE	a construction	N/n/n	Fax: 0943 3 525	jturk@ bruncald.com	420, Olympi	MN 45 R	nt Information:	
	2 8			C	X. Control	X	RELINQUISHED BY / AFFILIATION			7					¥ \ \				20	MATRIX CODE (see valid codes to SAMPLE TYPE (G=GRAB C=COMPOSITE DATE)	to left)		Project Number:	Project Name:	Purchase Order No.:		Copy To:	Report To:	Section B
SIGNATURE of SAMPLER:	PRINT Name of SAMPLER:	SAMPLER NAME AND SIGNATURE			nt to line	1/20) W/V/0	AFFILIATION DATE								V 15:45	15.30	157:20	15:10	W8/10 14:50	TIME DATE TIME	COLLECTED			0/2 50/15			Tohnson	7	
51	7,51	ATURE			02.01	· 14:05 ×	E TIME								\(\frac{1}{4}\)				\ \ \ \ \ \ \ \ \ \	SAMPLE TEMP AT COLLECTION # OF CONTAINERS Unpreserved H ₂ SO ₄ HNO ₃ HCI	Prese		Pace Profile #:	Pace Project Manager:	- 1	Address: C	Company Name:	Invoice Information: Attention:	Section C
DA (M	_		***		12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Cottug	ACCEPTED BY / AFFILIATION								<				 	NaOH Na ₂ S ₂ O ₃ Methanol Other Analysis Test Leac	Preservatives	R			,	2	7	osh Tohnsa	
DATE Signed \\\&\\O				/	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	01/p/11/	ILIATION DATE								< <				× ×	TPH-D TPH-HO FH- BTEX		Requested Analysis Filtered	STATE:	Site Location	TSU TST		REGULATORY AGENCY	3	
	np in '	°C			1020 1.4) IH 0S	TIME													Residual Chlorine (Y/N)		red (Y/N)	E F		RCRA	GROUND WATER			Page:
lce Cu Seale	eived (Y/N ustody ed Co Y/N)	l) y			2		SAMPLE CONDITIONS													Pace Project No./ Lab I.D.					OTHER _	TER DRINKING WATER		1391151	\(\text{\text{\$\frac{1}{2}}} \\ \te
Samp (les Ir Y/N)	ntact			<u>u</u>		SNC	($\left \left \right $,/ Lab l.D.					ECY	WATER		[

*Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any physices not paid within 30 days.

F-ALL-Q-020rev.07, 15-May-2007

Sample Container Count

COC ID#_ COC PAGE_ CLIENT:

Sample Line G BP1U 1 liter unpreserved plastic BP1N 1 liter HNO3 plastic BG1U 1 liter unpreserved glass BG1H 1 liter HCL clear glass BP20 500mL NaOH plastic BP2N 500mL HNO3 plastic BP1S 1 liter H2SO4 plastic AG3S 250mL H2SO4 amber glass AG2U 500mL unpreserved amber glass AG2S 500mL H2SO4 amber glass AG1U 1liter unpreserved amber glass AG1H 1 liter HCL amber glass BP1Z 1 liter NaOH, Zn, Ac VG9H AG1H AG1U BG1H BP1U BP2U BP3U BP3N DG9M 40mL MeOH clear vial DG9B 40mL Na Bisulfate amber vial BP3S BP2U 500mL unpreserved plastic DG9U 40mL unpreserved amber vial DG9T 40mL Na Thio amber vial DG9H 40mL HCL amber voa vial BP3U 250mL unpreserved plastic BP3C 250mL NaOH plastic BP2Z 500mL NaOH, Zn Ac BP2S 500mL H2SO4 plastic BP2N Wipe/Swab 250mL HNO3 plastic 250mL H2SO4 plastic BP2S WGFU WGKU WGFU 4oz clear soil jar WGFX 4oz wide jar w/hexane wipe VG9W 40mL glass vial preweighted (EPA 5035) VG9U 40mL unpreserved clear vial VG9T 40mL Na Thio. clear vial VG9H 40mL HCL clear vial JGFU 4oz unpreserved amber wide ZPLC Ziploc Bag VSG Headspace septa vial & HCL U Summa Can R terra core kit Trip Blank?

Sample Container Count

VG9T 40mL Na Thio. clear vial	VG9T			olastic	BP3N 250mL HNO3 plastic	N 250r	BP3			lass	4 amber o	AG3S 250mL H2SO4 amber glass	G3S 25	P
VG9H 40mL HCL clear vial	VG9H			lastic	BP3C 250mL NaOH plastic	C 250n	BP3			ber glass	served an	500mL unpreserved amber glass	AGZU 50	P
U Summa Can	c			Zn Ac	500mL NaOH, Zn Ac	Z 500n	BP2Z			lass	4 amber o	AG2S 500mL H2SO4 amber glass	G2S 50	Þ
R terra core kit	Д			BP2U 500mL unpreserved plastic	ո <mark>ւ unprese</mark>	U 500n	BP2			er glass	ved amb	AG1U 1liter unpreserved amber glass	G1U 1li	A
4oz unpreserved amber wide	JGFU			plastic	BP2S 500mL H2SO4 plastic	S 500n	BP2				nber glass	AG1H 1 liter HCL amber glass	G1H 1	A
11/17/10														
Trip Blank? Trip U es	<	<		E										12
														11
								-						10
		-												9
														8
							,							7
	,													6
) 	1 2		þ									,>	C)1
				<u></u>										4
														ω
				_										2
Comments	NGAW)	DOWN NGAW	WGFU WGKU		N BP2S	BP2N	BP3U	BP2U	H BP1U	AG1U BG1H	-	VG9H A	Line	Sample Line Item
255662				"						٠				COC PAGE of 3
Pace Analytical "												Batc	. . .	CLIEN

BG1U 1 liter unpreserved glass
BP1N 1 liter HNO3 plastic
BP1S 1 liter H2SO4 plastic

BG1H 1 liter HCL clear glass

BP1Z 1 liter NaOH, Zn, Ac BP2N 500mL HNO3 plastic

BP20 500mL NaOH plastic

BP1U 1 liter unpreserved plastic

DG9M 40mL MeOH clear vial

DG9T 40mL Na Thio amber vial

BP3U 250mL unpreserved plastic
DG9B 40mL Na Bisulfate amber vial
DG9H 40mL HCL amber voa vial

WGFU 4oz clear soil jar

WGFX 4oz wide jar w/hexane wipe

ZPLC Ziploc Bag

VG9W 40mL glass vial preweighted (EPA 5035)

VSG | Headspace septa vial & HCL

VG9U 40mL unpreserved clear vial

BP3S 250mL H2SO4 plastic

DG9U 40mL unpreserved amber vial

Wipe/Swab

1

BP20 500mL NaOH plastic BP2N 500mL HNO3 plastic

BP1Z 1 liter NaOH, Zn, Ac

DG9T 40mL Na Thio amber vial

ZPLC

Ziploc Bag

40mL unpreserved amber vial

1

Sample Container Count

CLIENT: Box C

COC PAGE 3 of 3

COC ID# 1 30(115) Sample Line Item ഗ BG1U 1 liter unpreserved glass BG1H 1 liter HCL clear glass BP1U 1 liter unpreserved plastic BP1S 1 liter H2SO4 plastic BP1N 1 liter HNO3 plastic AG2U 500mL unpreserved amber glass AG2S 500mL H2SO4 amber glass AG3S 250mL H2SO4 amber glass AG1U 1liter unpreserved amber glass AG1H 1 liter HCL amber glass VG9H AG1H AG1U BG1H BP1U BP2U BP3U BP2N DG9M 40mL MeOH clear vial BP3U BP3N DG9H DG9B 40mL Na Bisulfate amber vial BP3S BP2U 500mL unpreserved plastic BP3C 250mL NaOH plastic BP2Z 500mL NaOH, Zn Ac BP2S 500mL H2SO4 plastic 40mL HCL amber voa vial 250mL H2SO4 plastic 250mL HNO3 plastic 250mL unpreserved plastic BP2S WGFU WGKU p p WGFU 4oz clear soil jar WGFX 4oz wide jar w/hexane wipe VG9W 40mL glass vial preweighted (EPA 5035) VG9U 40mL unpreserved clear vial VG9T 40mL Na Thio. clear vial VG9H 40mL HCL clear vial VSG JGFU 4oz unpreserved amber wide Headspace septa vial & HCL Summa Can terra core kit Trip Blank? Comments G ರಾ

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Jennifer Gross PASI Seattle 940 S. Harney Street Seattle WA 98108

> REPORT OF LABORATORY ANALYSIS FOR PCDD/PCDF

Report Information:

Pace Project #: 10146792

Sample Receipt Date: 01/07/2011

Client Project #: 256181 Client Sub PO #: N/A State Cert #: C755

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Nate Habte, your Pace Project Manager.

This report has been reviewed by:

January 19, 2011

Nate Habte, Project Manager

(612) 607-6407

(612) 607-6444 (fax)

natnael.habte@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

January 18, 2011

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on one sample submitted by a representative of Pace Analytical Services, Inc. The sample was analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290. Reporting limits were based on signal-to-noise measurements.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extract ranged from 48-87%. With the exception of one low value, which was flagged "R" on the results table, the labeled standard recoveries obtained for this project were within the 40-135% target range specified in Method 8290. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, interfering substances impacted the determinations of PCDD or PCDF congeners. The affected values were flagged "I" where incorrect isotope ratios were obtained or "P" where polychlorinated diphenyl ethers were present.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to contain trace levels of selected congeners. These were below the calibration range of the method. The levels reported for the affected congeners in the field sample were higher than the corresponding blank levels by one or more orders of magnitude. These results indicate that the sample processing steps did not contribute significantly to the levels reported for the field sample.

Laboratory and matrix spike samples were also prepared with the sample batch using clean sand or sample matrix that had been fortified with native standard materials. The results show that the spiked native compounds were recovered at 91-129%, with relative percent differences of 0.2-9.7%. These results indicate high degrees of accuracy and precision for these determinations.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Tel: 612-607-1700 Fax: 612- 607-6444

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	
Arizona	AZ0014	Nevada	MN000642010A
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New Mexico	MN00064
Colorado	MN00064	New York (NEL	11647
Connecticut	PH-0256	North Carolina	27700
EPA Region 5	WD-15J	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Ohio VAP	CL101
Georgia (DNR)	959	Oklahoma	D9922
Guam	09-019r	Oregon (ELAP)	MN200001-005
Hawaii	SLD	Oregon (OREL	MN200001-005
Idaho	MN00064	Pennsylvania	68-00563
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennesee	2818
lowa	368	Tennessee	02818
Kansas	E-10167	Texas	T104704192-08
Kentucky	90062	Utah (NELAP)	PAM
Louisiana	LA0900016	Virginia	00251
Maine	2007029	Washington	C755
Maryland	322	West Virginia	9952C
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q
Mississippi	MN00064		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

Pace Analytical www.pacelabs.com

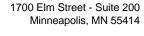
Results Requested By: 1/20/2011

1/6/2011

Х Owner Received Date: 10146792 Preserved Containers Matrix Solid Pace Analytical Minnesota 1700 Elm Street Suite 200 Minneapolis, MN 55414 Phone (612)607-1700 256181001 Lab ID Subcontract To Workorder Name: Port Soils 1/5/2011 10:30 Date/Time Sample Type PS Chain of Custody Pace Analytical Services, Inc. CNF-3-17-3.5_010511 940 South Harney Seattle VVA 98108 Phone (206)767-5060 Fax (206)767-5063 Workorder: 256181 Sample ID Jennifer Gross Report To

LAB USE ONLY

24. (1.1) Works (1.6/6.5 at 1.6/2.2)			And the second s	Salarana Language		Comments
Transfers	Released By	Date/Time	Received By	Date/Time		
1	Rete Ware	30/1/11/2010	No.	01/4/11 CMSR	~	
2						TAT LONG CO
3					5 7 7 2 5	
Cooler Te	ooler Temperature on Receipt ವಿ.5 °C	Custody	Custody Seal Ø or N Rece	Received on Ice (Y) or N	Por N	Samples Intact Ø or N
))	


Item

Pace Analytical Client Name	: <u>Pr</u>	7CE		WA Project # 10146192
Courier: Fed Ex UPS USPS Clie Tracking #: 7942 9690 3646 Custody Seal on Cooler/Box Present: yes				Pro Die Date
Packing Material: Bubble Wrap Bubble	Bags		None	Other Temp Blank: Yes No
Thermometer Used 80344042 of 179425	Туре	of Ice	: (We	
Cooler Temperature 2-5	Biolo	gical	Tissu	Date and initials of person examining contents:
Temp should be above freezing to 6°C				Comments:
Chain of Custody Present:	⊿ Yes	□No	□N⁄A	1.
Chain of Custody Filled Out:	Z Yes	□No	□N⁄A	2.
Chain of Custody Relinquished:	∠ Yes	□No	□N⁄A	3.
Sampler Name & Signature on COC:	□Yes	ØNo	□N⁄A	4.
Samples Arrived within Hold Time:	Elves	□No	□N⁄A	5
Short Hold Time Analysis (<72hr):	□Yes	/2No	□N⁄A	6.
Rush Turn Around Time Requested:	ZIYes	□No	□N⁄A	7. 10 DAY DIOXIN
Sufficient Volume:	/E]Yes	□No	□N⁄A	8.
Correct Containers Used:	.∐Yes	□No	□N⁄A	9.
-Pace Containers Used:	ØŸes	□No	□N⁄A	
Containers Intact:	.⊠Ýes	ÜNo	□n⁄a	10.
Filtered volume received for Dissolved tests	□Yes	□No	ZĪĪVA	11.
Sample Labels match COC:	JZIYes	□No	□N⁄A	12.
-Includes date/time/ID/Analysis Matrix:	81			
All containers needing acid/base preservation have been checked. Noncompliance are noted in 13.	□Yes	□No	E N/A	
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes	□No	ØNA	Samp #
Exceptions: VOA,Coliform, TOC, Oil and Grease, WI-DRO (water				Initial when Lot # of added completed preservative
Samples checked for dechlorination:	□Yes	□No	Ø N/A	14.
Headspace in VOA Vials (>6mm):	□Yes	□No	DINA	15.
Trip Blank Present:	□Yes	PINO	□N⁄A	16.
Trip Blank Custody Seals Present	□Yes	□No	ĐNA	_
Pace Trip Blank Lot # (if purchased):	·			
Client Notification/ Resolution:			·· ···········	Field Data Required? Y / N
Person Contacted:			Date/1	ime:
Comments/ Resolution:		···········	······································	
				
				
	, , , , , , , , , , , , , , , , , , , 			c

Sample Condition Upon Receipt

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the Reach Coahdinat SEMMES, Inc. F-L213Rev.00, 05Aug2009 1700 Elm Street SE, Suite 200, Minneapolis, MN 55414

Project Manager Review:

Tel: 612-607-1700 Fax: 612-607-6444

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- See Discussion

REPORT OF LABORATORY ANALYSIS

Appendix B

Sample Analysis Summary

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID CNF-3-17-3.5_010511

Lab Sample ID 256181001 Filename P110114B_11 Injected By BAL

Total Amount Extracted 10.3 g Matrix Solid % Moisture 5.6 Dilution NA

Dry Weight Extracted Collected 01/05/2011 10:30 9.72 g **ICAL ID** P101202 Received 01/07/2011 09:52 CCal Filename(s) P110114A_07 & P110114A_17 Extracted 01/12/2011 13:00 Method Blank ID BLANK-27549 Analyzed 01/15/2011 02:21

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	ND		0.130	2,3,7,8-TCDF-13C	2.00	48
Total TCDF	0.36		0.130 J	2,3,7,8-TCDD-13C	2.00	63
				1,2,3,7,8-PeCDF-13C	2.00	55
2,3,7,8-TCDD	ND		0.110	2,3,4,7,8-PeCDF-13C	2.00	58
Total TCDD	0.54		0.110 J	1,2,3,7,8-PeCDD-13C	2.00	72
				1,2,3,4,7,8-HxCDF-13C	2.00	65
1,2,3,7,8-PeCDF	ND		0.240	1,2,3,6,7,8-HxCDF-13C	2.00	64
2,3,4,7,8-PeCDF	ND		0.120	2,3,4,6,7,8-HxCDF-13C	2.00	66
Total PeCDF	0.77		0.180 J	1,2,3,7,8,9-HxCDF-13C	2.00	67
400700000	ND		0.400	1,2,3,4,7,8-HxCDD-13C	2.00	72
1,2,3,7,8-PeCDD	ND		0.180	1,2,3,6,7,8-HxCDD-13C	2.00	74
Total PeCDD	0.63		0.180 J	1,2,3,4,6,7,8-HpCDF-13C	2.00	80
40047011.005	0.00		0.400	1,2,3,4,7,8,9-HpCDF-13C	2.00	79
1,2,3,4,7,8-HxCDF	0.36	0.70	0.180 J	1,2,3,4,6,7,8-HpCDD-13C	2.00	87
1,2,3,6,7,8-HxCDF		0.79	0.140 P	OCDD-13C	4.00	64
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND		0.120 0.180	1,2,3,4-TCDD-13C	2.00	NA
Total HxCDF	3.60		0.160 0.160 J	1,2,3,7,8,9-HxCDD-13C	2.00	NA NA
TOTALLIXCOL	3.00		0.100 3	1,2,3,7,6,9-118CDD-13C	2.00	INA
1,2,3,4,7,8-HxCDD	0.12		0.086 J	2,3,7,8-TCDD-37Cl4	0.20	60
1,2,3,6,7,8-HxCDD	0.30		0.094 J	2,0,1,0 1000 01011	0.20	00
1,2,3,7,8,9-HxCDD	0.27		0.098 J			
Total HxCDD	2.90		0.093 J			
			0.000			
1,2,3,4,6,7,8-HpCDF	2.40		0.170 J	Total 2,3,7,8-TCDD		
1,2,3,4,7,8,9-HpCDF	ND		0.290	Equivalence: 0.42 ng/Kg		
Total HpCDF	9.50		0.230	(Using 2005 WHO Factors -	Using PRL/	2 where ND)
4 0 0 4 C 7 0 Um CDD	7.00		0.200			
1,2,3,4,6,7,8-HpCDD	7.00		0.290			
Total HpCDD	12.00		0.290			
OCDF	9.90		0.270 J			
OCDD	71.00		0.290			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value P = PCDE Interference

Solid

NA

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Blank Analysis Results

Lab Sample ID BLANK-27549 Matrix Filename P110113A_05 Dilution

Total Amount Extracted 10.2 g Extracted 01/12/2011 13:00 ICAL ID P101202 Analyzed 01/13/2011 22:28

CCal Filename(s) P110113A_02 & P110113A_18 Injected By BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.120 0.120	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	38 R 50 45
2,3,7,8-TCDD Total TCDD	ND ND		0.150 0.150	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	43 52 46
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.150 0.110 0.130	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	48 49 48
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.140 0.140	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	54 54 58 57
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.067 0.086 0.093	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	65 50
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		0.090 0.084	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	0.120 0.130 0.120 0.120	2,3,7,8-TCDD-37Cl4	0.20	48
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		0.084 0.098 0.091	Total 2,3,7,8-TCDD Equivalence: 0.21 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.17 0.41		0.130 J 0.130 J			
OCDF OCDD	 0.57	0.19	0.092 I 0.170 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

I = Interference present

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted

Total Amount Extracted ICAL ID CCal Filename(s)

Method Blank ID

LCS-27550 P110113A_03 10.3 g P101202

P101202 P110113A_02 & P110113A_18 BLANK-27549 Matrix Dilution Extracted Analyzed

Solid NA

01/12/2011 13:00 01/13/2011 21:04

Injected By BAL

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.22	112	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.0 2.0 2.0	44 59 46
2,3,7,8-TCDD Total TCDD	0.20	0.18	91	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.0 2.0	48 58 46
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.1 1.0	106 100	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.0 2.0 2.0 2.0 2.0	46 47 52 50 53
1,2,3,7,8-PeCDD Total PeCDD	1.0	0.93	93	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.0 2.0 2.0 2.0	58 60 63
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	1.0 1.0 1.0 1.0	1.0 1.1 1.0 1.1	101 108 105 106	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.0 4.0 2.0 2.0	69 56 NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	1.0 0.99 1.3	104 99 129	2,3,7,8-TCDD-37Cl4	0.20	57
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.1 1.0	106 104			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	0.97	97			
OCDF OCDD	2.0 2.0	2.2 2.2	112 110			

Qs = Quantity Spiked Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)
R = Recovery outside of target range

Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable

* = See Discussion

Method 8290 Spiked Sample Report

Client - PASI Seattle

Client's Sample ID

Lab Sample İD Filename

Total Amount Extracted ICAL ID

CCal Filename(s)
Method Blank ID

CNF-3-17-3.5_010511-MS

256181001-MS P110114B_12

10.2 g P101202

P110114A_07 & P110114A_17 BLANK-27549 Matrix Solid Dilution NA

Extracted 01/12/2011 13:00 Analyzed 01/15/2011 03:04

Injected By BAL

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20	0.22	111	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00	44 59
2,3,7,8-TCDD	0.20	0.19	94	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00	49 49 62
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	1.00 1.00	1.05 1.02	105 102	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	56 54 56 55
1,2,3,7,8-PeCDD	1.00	0.92	92	1,2,3,4,7,8-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	62 63 64
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	1.00 1.00	1.04 1.14 1.13	104 114 113	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	65 72 56
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	1.00 1.00	1.05	105	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	1.00 1.00 1.00	1.00 1.02 1.13	100 102 113	2,3,7,8-TCDD-37Cl4	0.20	59
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	1.00 1.00	1.11 1.05	111 105			
1,2,3,4,6,7,8-HpCDD	1.00	1.05	105			
OCDF OCDD	2.00 2.00	2.25 2.79	112 140			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

Method 8290 Spiked Sample Report

Client - PASI Seattle

Client's Sample ID

Lab Sample ID Filename Total Amount Extracted

ICAL ID

CCal Filename(s)
Method Blank ID

CNF-3-17-3.5_010511-MSD

256181001-MSD P110114B_13

10.2 g P101202

P110114A_07 & P110114A_17 BLANK-27549 Matrix Solid

Dilution NA Extracted 01/12/2011 13:00 Analyzed 01/15/2011 03:47

Injected By BAL

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20	0.23	117	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	51 68 55
2,3,7,8-TCDD	0.20	0.20	98	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00	57 70
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	1.00 1.00	1.11 1.07	111 107	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	58 56 60 61
1,2,3,7,8-PeCDD	1.00	0.97	97	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	66 67 71
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	1.06 1.14 1.12	106 114 112	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	71 81 61
1,2,3,7,8,9-HxCDF	1.00	1.12	112	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	1.00 1.00 1.00	1.05 1.08 1.25	105 108 125	2,3,7,8-TCDD-37Cl4	0.20	67
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	1.00 1.00	1.16 1.12	116 112			
1,2,3,4,6,7,8-HpCDD	1.00	1.07	107			
OCDF OCDD	2.00 2.00	2.35 2.80	118 140			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

Minneapolis, MN

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Spike Sample Results

Client - PASI Seattle

Client Sample ID Lab Sample ID

MS ID

MSD ID

CNF-3-17-3.5_010511

256181001 256181001-MS 256181001-MSD

Pace Analytical"

Sample Filename MS Filename MSD Filename P110114B_11 P110114B_12 P110114B_13 Dry Weights

Sample Amount 9.72 g MS Amount 9.6 g MSD Amount 9.6 g

	Sample Conc.	MS/MSD Qs	MS Qm	MSD Qm		Backgrou	und Subtracted	
Analyte	ng/Kg	(ng)	(ng)	(ng)	RPD	MS % Rec.	MSD % Rec.	RPD
2,3,7,8-TCDF	0.000	0.20	0.22	0.23	4.8	111	117	4.8
2,3,7,8-TCDD	0.000	0.20	0.19	0.20	4.4	94	98	4.4
1,2,3,7,8-PeCDF	0.000	1.00	1.05	1.11	5.6	105	111	5.6
2,3,4,7,8-PeCDF	0.000	1.00	1.02	1.07	4.4	102	107	4.4
1,2,3,7,8-PeCDD	0.000	1.00	0.92	0.97	5.7	92	97	5.7
1,2,3,4,7,8-HxCDF	0.356	1.00	1.04	1.06	1.4	104	105	1.5
1,2,3,6,7,8-HxCDF	0.000	1.00	1.14	1.14	0.2	113	114	0.2
2,3,4,6,7,8-HxCDF	0.000	1.00	1.13	1.12	1.4	113	112	1.4
1,2,3,7,8,9-HxCDF	0.000	1.00	1.05	1.12	6.7	105	112	6.7
1,2,3,4,7,8-HxCDD	0.118	1.00	1.00	1.05	5.0	100	105	5.0
1,2,3,6,7,8-HxCDD	0.295	1.00	1.02	1.08	6.2	101	108	6.2
1,2,3,7,8,9-HxCDD	0.266	1.00	1.13	1.25	9.7	113	125	9.8
1,2,3,4,6,7,8-HpCDF	2.432	1.00	1.11	1.16	4.9	108	114	5.0
1,2,3,4,7,8,9-HpCDF	0.000	1.00	1.05	1.12	6.2	105	112	6.2
1,2,3,4,6,7,8-HpCDD	6.982	1.00	1.05	1.07	1.8	99	101	1.9
OCDF	9.943	2.00	2.25	2.35	4.5	108	113	4.7
OCDD	70.854	2.00	2.79	2.80	0.2	106	106	0.2

Definitions

MS = Matrix Spike

MSD = Matrix Spike Duplicate

Qm = Quantity Measured Qs = Quantity Spiked

% Rec. = Percent Recovery

RPD = Relative Percent Difference

NA = Not Applicable NC = Not Calculated CDD = Chlorinated dibenzo-p-dioxin CDF = Chlorinated dibenzo-p-furan

T = Tetra Pe = Penta

Hx = HexaHp = Hepta

O = Octa

Sample Condition Upon Receipt

Pace Analytical	Client Name:	Prov	101 1661	on+	Caldwell	F	Project #	2 5 6 1 8	1
Courier: Fed Ex UPS Tracking #: 8738 8211	539L		omme		Pace Other				
Custody Seal on Cooler/Box	Bac	LI N	lo /	Seals	intact: Yes		No		
Packing Material: Bubble	Wrap Bubble I	Bags	☑ No	one	Other		Temp. Blank Yes	No	
Thermometer Used 13201	3 or 101731962 or 226099	Туре	of Ice:	Wet) Blue None		Samples on ice, coolin	* '. 	
Cooler Temperature Temp should be above freezing ≤ 6	2.72	Biolog	jical T	ïssue	is Frozen: Yes No Comments:		Date and Initials contents: □10	of person examining	ng -
Chain of Custody Present:		⊠Yes	□No	□n/a	1.				
Chain of Custody Filled Out:		∐Yes	□No	□n/a	2.				
Chain of Custody Relinquished	:	Ƴes	□No	□N/A	3.				
Sampler Name & Signature on	COC:	⊠Yes	□No	□n/a	4.				
Samples Arrived within Hold Ti	me:	☑Yes	□No	□n/a	5.			·····	
Short Hold Time Analysis (<7	′2hr):	□Yes	™No,	□n/a	6.				
Rush Turn Around Time Req	uested:	□Yes		□n/a	7.10-Day 7	<u> </u>	H Dioxins		
Sufficient Volume:		□Yes		.ℓ □n/a	8 802 Jan 15 0	nly	42 full.	444-4-4-4	
Correct Containers Used:		⊠Yes	□No	□n/a	9. Jan 15 no	+ PA	tCE provided	n	
-Pace Containers Used:		□Yes	Мν₀	□n/a					
Containers Intact:		MYes	□No	□n/a	10.				
Filtered volume received for Di	ssolved tests	□Yes	□No	ØN/A	11.				
Sample Labels match COC:		⊠Yes	□No	□n/a	12.				
-Includes date/time/ID/Analy All containers needing preservation i		V □Yes	ПМо	EZN/A	13				
All containers needing preservation compliance with EPA recommenda		□Yes	□No	ŮN/A					
Exceptions: VOA, coliform, TOC, O&G					Initial when completed		Lot # of added preservative		
Samples checked for dechloring	ation:	□Yes	□No	ØN/A	14.		<u> </u>		
Headspace in VOA Vials (>6m	ım):	□Yes	□No	☑N/A	15.				
Trip Blanks Present:		□Yes	□No	ĽN/A	16.				
Trip Blank Custody Seals Pres	ent	□Yes	□No	ŮN/A					
Pace Trip Blank Lot # (if purcha	ased):								
Client Notification/ Resolution Person Contacted: Comments/ Resolution:	n: 			_Date/	Time:		Field Data Required?	Y / N	
Project Manager Review:	JENNI/	- Ce	229				Date:	0 11	
	\sqrt{I}	7						1	

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

							Π		12	11	10	9	ω	7.	6	ڻ.	4	ω	2		ITEM#] [Reg	Phone:	Em;	اہم	Adc	Con	Sec
*Important Note: By signing this form you are acce		(ADDITIONAL COMMENTS												15010-3-17-35-01051	SAMPLE ID (A-Z, 0-9 / , -) Sample IDs MUST BE UNIQUE Spiring wipe Air Cother Other	Section D Matrix Codes Required Client Information MATRIX / CODE		Requested Due Date/TAT:	1	bussent ou us some	6 MM 9	Address: 5365 COKE CTIL CT	COMPANY: PIONEER	Section A Required Client Information:
pting Pace's NET 30 day payment terms and agreeing to late of	SIGNA		OBICINAI SAMPLER NAM		The state of the s	Jos lune (BC)	Melody Fedun / PTC	RELINQUISHED BY / AFFILIATION												SL & 01/05/11 10:36	MATRIX CODE (see valid codes) SAMPLE TYPE (G=GRAB C=COMPOSITE START) DATE DATE TIME	to left)		(«	Project Name: Pt Suls	Purchase Order No.:	de la companya de la	(Report To: Troy BUSSELL	Section B Required Project Information:
Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.	SIGNATURE OF SAMPLER: THE CONTY	PRINT Name of SAMPLER: My 10dy F	SAMPLER NAME AND SIGNATURE		Chita III	1/5/11 13:15 Cash	1/5/11/11:45 Jon	DATE TIME ACCE													SAMPLE TEMP AT COLLECTION # OF CONTAINERS Unpreserved H ₂ SO ₄ HNO ₃ HCI NaOH Na ₂ S ₂ O ₃ Methanol	D Preservatives		Pace Profile #:	Pace Project Manager:		Address: 7246	Company Name: 3 20 M	Attention: Josk	Section C Invoice Information:
	DATE Signed / /	e de		-	Janes PRAIS	dy See!	Tinde (RC)	ACCEPTED BY / AFFILIATION												X	Other Analysis Test	Y/ N ‡	Requested Analy		Site	7	Sumbia Struct	n + Caldwell	Johnson	
F-AI	Ter	mp in	°C		Older 10920 2.Te		1/5/111:45	DATE TIME													Residual Chlorine (Y/N)		Requested Analysis Filtered (Y/N)	STATE: VV F	Site Location	UST F RCRA	NPDES GROUND WATER	REGULATORY AGENCY	-	Page:
F-ALL-Q-020rev.07, 15-May-2007	C Seal	ceived te (Y/N custod led Co (Y/N) ples li (Y/N)	y poler		4	The state of the s	the state of the s	SAMPLE CONDITIONS													Pace Project No./ Lab I.D.					TO OTHER ECC	DRINKING V		1391154	of a

CLIENT: PHONES OF 1614 Brown + Coldwell

Face Analytical war paraless som

COC PAGE of (

12	 10	9	&	7	o	СЛ	4	ω	2		Item
											VG9H AG1H AG1U BG1H BP1U BP2U BP3U BP2N
											AG1H
											AG1U
									ľ		BG1H
											BP1U
											BP2U
											BP3U
											BP2N
											BP2S
											WGFU
							,			SOUTH PARTY.	BP2S WGFU WGKU
Trip Blank? No											
₹ 											S
									***************************************		Comments

BP20 500mL NaOH plastic	BP2N 500mL HNO3 plastic DG9U 40mL unpreserved amber vial	BP1Z 1 liter NaOH, Zn, Ac DG9T 40mL Na Thio amber vial ZPLC	BP1U 1 liter unpreserved plastic DG9M 40mL MeOH clear vial WGFX	BP1S 1 liter H2SO4 plastic DG9H 40mL HCL amber voa vial WGFU	BP1N 1 liter HNO3 plastic DG9B 40mL Na Bisulfate amber vial VSG	BG1U 1 liter unpreserved glass BP3U 250mL unpreserved plastic VG9W	BG1H 1 liter HCL clear glass BP3S 250mL H2SO4 plastic VG9U	AG3S 250mL H2SO4 amber glass BP3N 250mL HNO3 plastic VG9T	AG2U 500mL unpreserved amber glass BP3C 250mL NaOH plastic VG9H	AG2S 500mL H2SO4 amber glass BP2Z 500mL NaOH, Zn Ac U	AG1U 1liter unpreserved amber glass BP2U 500mL unpreserved plastic R	
		ZPLC	WGF	WGFU	VSC	VG9W	VG9L	VG9	VG9F			
	The state of the s	ZPLC Ziploc Bag	WGFX 4oz wide jar w/hexane wipe	WGFU 4oz clear soil jar	VSG Headspace septa vial & HCL	VG9W 40mL glass vial preweighted (EPA 5035)	VG9U 40mL unpreserved clear vial	VG9T 40mL Na Thio. clear vial	VG9H 40mL HCL clear vial	U Summa Can	R terra core kit	

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Jennifer Gross PASI Seattle 940 S. Harney Street Seattle WA 98108

> REPORT OF LABORATORY ANALYSIS FOR PCDD/PCDF

Report Information:

Pace Project #: 10146795

Sample Receipt Date: 01/07/2011

Client Project #: 256177 Client Sub PO #: N/A State Cert #: C755

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Nate Habte, your Pace Project Manager.

This report has been reviewed by:

January 20, 2011

Nate Habte, Project Manager

(612) 607-6407

(612) 607-6444 (fax)

natnael.habte@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

January 18, 2011

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on eleven samples submitted by a representative of Pace Analytical Services, Inc. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290. Reporting limits were based on signal-to-noise measurements.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 45-104%. With the exception of one low value, which was flagged "R" on the results table, the labeled standard recoveries obtained for this project were within the 40-135% target range specified in Method 8290. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, interfering substances impacted the determinations of PCDD or PCDF congeners; the affected values were flagged "I" where incorrect isotope ratios were obtained or "P" where polychlorinated diphenyl ethers were present. Concentrations above the calibration range were flagged "E" and should be regarded as estimates. Selected values reported for the field samples were obtained from analyses of dilutions of the sample extracts; the affected values were flagged "N2" on the results tables.

A laboratory method blank was prepared and analyzed with each sample batch as part of our routine quality control procedures. The results show the blanks to contain trace levels of selected congeners. These were below the calibration range of the method. Sample levels similar to the corresponding blank levels were flagged "B" on the results tables and may be, at least partially, attributed to the background. It should be noted that levels less than ten times the background are not generally considered to be statistically different from the background.

Laboratory spike samples were also prepared with the sample batches using clean sand that had been fortified with native standard materials. The results show that the spiked native compounds were recovered at 91-129%, indicating a high degree of accuracy for these determinations. Matrix spikes were prepared with the sample batches using sample materials from separate projects; results from these analyses will be provided upon request.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

642010A
64
001-005
001-005
63
3
001
)4192-08
970
Q

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

	1
1	
0	
	1 2
	F
	-
	920 920

Chain of Custody -

Wor	Workorder: 256177	Workorder	Workorder Name:East Bay Redevelopment	Redevelopm	ent	0	Owner Received Date:	d Date:	1/6/2011	Results Requested By:	d By: 1/20/2011
May 1			Subcontract To	at To					Requeste	Requested Analysis	
Pace 940 Seat Phor	Jennifer Gross Pace Analytical Services, Inc. 940 South Harney Seattle WA 98108 Phone (206)767-5060	.:	Pace Ana 1700 Elm Suite 200 Minneapc Phone (6	Pace Analytical Minnesota 1700 Elm Street Suite 200 Minneapolis, MN 55414 Phone (612)607-1700	esota 14			\ \tau^\columbia			
π α	Fax (206)767-5063				•			ional	(Bray		
fem	Sample/ID	Sample Type	Collect Date/Time	tab ID	Matrix	Deviese incl.	Containers	אסומ	v 6 c		LABUSEONLY
-	CNF-3A-1-1.75	PS	1/5/2011 10:55	256177001	Solid	-	×	X			
2	CNF-3A-2-3.0	PS	1/5/2011 11:05	256177002	Solid	-	×	X			
3	CNF-3A-3-3.25	PS	1/5/2011 11:10	256177003	Solid	-	×	<u> </u>	~		
4	CNF-3A-4-2.25	PS	1/5/2011 11:20	256177004	Solid	-	×		26		
5	CNF-3A-5-3.25	PS	1/5/2011 11:25	256177005	Solid	-	×	X			
9	CNF-3A-6-2.0	PS	1/5/2011 11:35	256177006	Solid	-	×	\ <u>\</u>	~		
_	CNF-3A-7-3.25	PS	1/5/2011 11:40	256177007	Solid	-	×	X			
8	CNF-3A-8-5.5	PS	1/5/2011 12:10	256177008	Solid	_		×	-		
6	CNF-3A-9-5.5	. PS	1/5/2011 12:15	256177009	Solid	-		×	-		
5	CNF-3A-10-5.5	PS	1/5/2011 12:20	256177010	Solid	-	×		~		
77	CNF-3A-11-6	PS	1/5/2011 12:25	256177011	Solid	-	×	X			
										Comments	-
Tran	Transfers Released By		Date/Time	Received By	ķ		Date/Time				
-	Colette We	WRR	91/11/JUIO	1600			1/4/11 0	S	(-	
2			-						7-(AV04,55(1-0	
₆₀				_				-	()		
ပ္ပိ	Cooler Temperature on Receipt 💫 🗲		ာင် Cus	Custody Seal (Or N	-	Received on Ice	e Ø or	Z	Samples Intact 🟈	ct Øor N

San	nple (Con	ditio	n Upon Receipt
Pace Analytical Client Name:	. Pa	· ^<		WA Project # 101416795
Chefft Name.	, <u></u>	ru:	<u> </u>	MF Floject# 1014-0145
Courier: Fed Ex UPS USPS Clien	I	· Comr	narcial	Pace Other Optional
Tracking #: 7942 9698 3646	الساد ۱۱	<i>-</i> 01111	iiei Ciai	Proj. Due Date:
Custody Seal on Cooler/Box Present: yes		no	Seals	s intact: ☑ yes ☐ no Proj Name
Packing Material: Bubble Wrap Bubble				
Thermometer Used 80344042 of 179425	Type o			_
				Date and initials of person examining
Temp should be above freezing to 6°C	Didio	jioui	1,000	Comments:
Chain of Custody Present:	⊠ Yes	□No	□N⁄A	
Chain of Custody Filled Out:	Yes	□No	□N⁄A	2.
Chain of Custody Relinquished:	Ø Yes		□N⁄A	3.
Sampler Name & Signature on COC:	□Yes		□N/A	
Samples Arrived within Hold Time:	ElYes :	□No	□N⁄A	5.
Short Hold Time Analysis (<72hr):	☐Yes /	2110	-	
Rush Turn Around Time Requested:	ZIYes I		□N⁄A	7. 10 DAY DIOXIN
Sufficient Volume:	EYes	□No	□n⁄a	
Correct Containers Used:	.ÆYes ∣	□No	□n⁄a	9.
-Pace Containers Used:	∐Yes I	□No	□N⁄A	
Containers Intact:	ÆYes [∫No	□N⁄A	10.
Filtered volume received for Dissolved tests	□Yes I	□No	PINA	11.
Sample Labels match COC:	√ZYes I	ΠNο	□N⁄A	12.
-Includes date/time/ID/Analysis Matrix:	<u>8L</u>			
All containers needing acid/base preservation have been checked. Noncompliance are noted in 13.	□Yes [⊒No	D NA	13. HNO3 H2SO4 NaOH HCI
All containers needing preservation are found to be in	□Yes [∃No	EINA	Samp #
compliance with EPA recommendation.				Initial when Lot # of added
Exceptions: VOA,Coliform, TOC, Oil and Grease, WI-DRO (water	□Yes ₽	ZNo		completed preservative
Samples checked for dechlorination:	□Yes [JNo	DINA	14.
Headepace in VOA Vials (>6mm):	□Yes [ZNo	DÍVA	15.
Trip Blank Present:	□Yes Ł	INO	□N/A	16.
Trìp Blank Custody Seals Present	□Yes [JNo	EINA	
Pace Trip Blank Lot # (if purchased):	·			
Client Notification/ Resolution:			**********	Field Data Required? Y / N
Person Contacted:			Date/1	· · · · · · · · · · · · · · · · · · ·
Comments/ Resolution:				

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the Rhorth Carly Sein Street SE, Suite 200, Minneapolis, MN 55414

Project Manager Review:

Date:

Fax: 612-607-6444

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

Appendix B

Sample Analysis Summary

Solid

NA

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - PASI Seattle

Matrix

Dilution

Client's Sample ID CNF-3A-1-1.75
Lab Sample ID 256177001
Filename P110113A_06
Injected By RAI

Injected By BAL
Total Amount Extracted 10.6 g
% Moisture 5.6

Dry Weight Extracted Collected 01/05/2011 10:55 10.0 g **ICAL ID** P101202 Received 01/07/2011 09:52 CCal Filename(s) P110113A 02 & P110113A 18 Extracted 01/12/2011 13:00 Method Blank ID BLANK-27549 Analyzed 01/13/2011 23:10

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 0.52		0.140 0.140 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00 2.00	51 66
2,3,7,8-TCDD Total TCDD	ND 0.27		0.190 0.190 J	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	49 49 60 50
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND 1.20		0.240 0.120 0.180 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	49 52 50
1,2,3,7,8-PeCDD Total PeCDD	ND 0.33		0.150 0.150 J	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	56 58 59
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.31 ND	0.40	0.100 J 0.110 I 0.088	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	60 67 52
1,2,3,7,8,9-HxCDF Total HxCDF	ND 3.20		0.100 0.100 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 0.25 3.70	0.20	0.095 0.087 J 0.110 I 0.097 J	2,3,7,8-TCDD-37Cl4	0.20	64
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	2.00 ND 7.60		0.094 J 0.140 0.120	Total 2,3,7,8-TCDD Equivalence: 0.40 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	8.10 24.00		0.220 0.220			
OCDF OCDD	6.70 54.00		0.140 J 0.330			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. $J = Estimated \ value$

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

CNF-3A-2-3.0 Client's Sample ID Lab Sample ID 256177002 P110114B_02 Filename Injected By BAL

Total Amount Extracted 15.4 g Solid Matrix % Moisture Dilution NA 34.2

Dry Weight Extracted 10.1 g Collected 01/05/2011 11:05 **ICAL ID** P101202 Received 01/07/2011 09:52 CCal Filename(s) P110113A_18 & P110114B_17 Extracted 01/12/2011 15:15 Method Blank ID BLANK-27547 Analyzed 01/14/2011 19:57

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	 250.0	16.0 	0.25 P 0.25	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	71 92 89 Y
2,3,7,8-TCDD Total TCDD	4.7 630.0		0.17 0.17	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	89 Y 83 81
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	14.0 25.0 230.0		0.35 0.29 0.32	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	79 78 77 91
1,2,3,7,8-PeCDD Total PeCDD	25.0 630.0		0.25 0.25	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	85 81 77
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	34.0 28.0	57.0	0.37 0.33 P 0.33	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	77 Y 72
1,2,3,7,8,9-HxCDF Total HxCDF	420.0	8.7	0.32 P 0.34	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	24.0 59.0 44.0 920.0	 	0.37 0.38 0.33 0.36	2,3,7,8-TCDD-37Cl4	0.20	84
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	300.0 26.0 1000.0	 	0.41 0.57 0.49	Total 2,3,7,8-TCDD Equivalence: 77 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	1300.0 2500.0		0.81 0.81			
OCDF OCDD	1100.0 12000.0		0.26 Y 0.18 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

P = PCDE Interference

E = Exceeds calibration range

Y = Calculated using average of daily RFs

01/13/2011 23:53

Method Blank ID

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - PASI Seattle

Analyzed

Client's Sample ID CNF-3A-3-3.25 Lab Sample ID 256177003 Filename P110113A_07 Injected By BAL **Total Amount Extracted** 11.3 g Solid Matrix % Moisture 10.9 Dilution NA 10.1 g 01/05/2011 11:10 Dry Weight Extracted Collected **ICAL ID** P101202 Received 01/07/2011 09:52 CCal Filename(s) P110113A 02 & P110113A 18 Extracted 01/12/2011 13:00

BLANK-27549

EMPC EDL Percent **Native** Conc Internal ng's **Standards** Isomers ng/Kg ng/Kg ng/Kg Added Recovery 2,3,7,8-TCDF 3.4 0.19 2,3,7,8-TCDF-13C 2.00 52 Total TCDF 2,3,7,8-TCDD-13C 68 0.19 2.00 49.0 48 1,2,3,7,8-PeCDF-13C 2.00 2,3,7,8-TCDD 0.51 0.12 I 2,3,4,7,8-PeCDF-13C 2.00 48 58 Total TCDD 70.0 0.12 1,2,3,7,8-PeCDD-13C 2.00 45 2.00 1,2,3,4,7,8-HxCDF-13C 1,2,3,7,8-PeCDF 3.3 0.35 J 2.00 46 1,2,3,6,7,8-HxCDF-13C 2,3,4,7,8-PeCDF 0.30 2,3,4,6,7,8-HxCDF-13C 48 9.1 2.00 Total PeCDF 0.33 47 70.0 1,2,3,7,8,9-HxCDF-13C 2.00 1,2,3,4,7,8-HxCDD-13C 2.00 49 54 1,2,3,7,8-PeCDD 4.3 0.24 J 1,2,3,6,7,8-HxCDD-13C 2.00 52 Total PeCDD 85.0 0.24 2.00 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C 56 2.00 1,2,3,4,7,8-HxCDF 15.0 0.36 1,2,3,4,6,7,8-HpCDD-13C 2.00 62 13.00 Ρ 1,2,3,6,7,8-HxCDF 0.27 OCDD-13C 4.00 48 2,3,4,6,7,8-HxCDF 6.8 0.31 1,2,3,7,8,9-HxCDF 3.2 0.37 J 1,2,3,4-TCDD-13C 2.00 NA 0.33 Total HxCDF 1,2,3,7,8,9-HxCDD-13C 2.00 NA 110.0 1,2,3,4,7,8-HxCDD 3.6 0.24 J 2,3,7,8-TCDD-37CI4 0.20 71 8.9 0.21 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 7.9 0.19 Total HxCDD 130.0 0.21 46.0 0.32 Total 2,3,7,8-TCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0.31 J Equivalence: 14 ng/Kg 4.1 Total HpCDF 150.0 0.31 (Using 2005 WHO Factors - Using PRL/2 where ND) 1,2,3,4,6,7,8-HpCDD 0.63 150.0 Total HpCDD 250.0 0.63 **OCDF** 110.0 0.46

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value P = PCDE Interference

OCDD

I = Interference present

REPORT OF LABORATORY ANALYSIS

1.70

1000.0

Solid

NA

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID CNF-3A-4-2.25
Lab Sample ID 256177004
Filename P110113A_08
Injected By RAI

Injected By
Total Amount Extracted
% Moisture

BAL
10.9 g
Matrix
5.2
Dilution

Dry Weight Extracted Collected 01/05/2011 11:20 10.3 g **ICAL ID** P101202 Received 01/07/2011 09:52 CCal Filename(s) P110113A_02 & P110113A_18 Extracted 01/12/2011 13:00 Method Blank ID BLANK-27549 Analyzed 01/14/2011 00:36

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.170 0.170	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	45 63 49
2,3,7,8-TCDD Total TCDD	ND ND		0.150 0.150	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	49 61 48
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.250 0.160 0.200	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	51 54 52
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.150 0.150	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	58 58 61 62
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND	0.18	0.150 0.110 P 0.088	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	70 57
1,2,3,7,8,9-HxCDF Total HxCDF	ND 0.19		0.088 0.110 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND 0.39	 	0.120 0.095 0.100 0.100 J	2,3,7,8-TCDD-37Cl4	0.20	59
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.41 ND 1.40	 	0.079 J 0.110 0.093 J	Total 2,3,7,8-TCDD Equivalence: 0.24 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.10 2.20		0.110 BJ 0.110 BJ			
OCDF OCDD	1.30 12.00		0.120 J 0.160			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

P = PCDE Interference

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID CNF-3A-5-3.25 Lab Sample ID 256177005 Filename P110114B_03 Injected By BAL

Total Amount Extracted 13.4 g Matrix Solid % Moisture 24.6 Dilution NA

Dry Weight Extracted Collected 01/05/2011 11:25 10.1 g **ICAL ID** P101202 Received 01/07/2011 09:52 CCal Filename(s) P110113A_18 & P110114B_17 Extracted 01/12/2011 15:15 Method Blank ID BLANK-27547 Analyzed 01/14/2011 20:40

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1600	88	0.28 P 0.28	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	78 97 104 Y
2,3,7,8-TCDD Total TCDD	27 2600		0.34 0.34 E	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	101 Y 91 87
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	91 1500	170 	1.20 1.30 P 1.30	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	79 77 74 90
1,2,3,7,8-PeCDD Total PeCDD	150 3200		0.75 0.75	1,2,3,4,7,6-1 KCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	80 84 83
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	200 180 130	 	0.67 0.62 0.61	1,2,3,4,7,6,9-1 pCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	88 Y 73
1,2,3,7,8,9-HxCDF Total HxCDF	4300	66 	0.83 P 0.68	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	150 380 280 5200	 	1.10 0.88 0.17 0.72 E	2,3,7,8-TCDD-37Cl4	0.20	90
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	3100 240 11000		0.92 E 1.10 1.00 E	Total 2,3,7,8-TCDD Equivalence: 450 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	7900 13000		0.19 E 0.19 E			
OCDF OCDD	79000	13000	0.64 PEY 2.10 DN2			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

P = PCDE Interference

E = Exceeds calibration range

D = Result obtained from analysis of diluted sample

Nn = Value obtained from additional analysis

Y = Calculated using average of daily RFs

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID CNF-3A-6-2.0 Lab Sample ID 256177006 Filename P110113A_09 Injected By BAL

Total Amount Extracted 10.7 g Matrix Solid % Moisture 4.5 Dilution NA

Dry Weight Extracted 10.2 g Collected 01/05/2011 11:35 **ICAL ID** P101202 Received 01/07/2011 09:52 CCal Filename(s) P110113A_02 & P110113A_18 Extracted 01/12/2011 13:00 Method Blank ID BLANK-27549 Analyzed 01/14/2011 01:18

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 0.30		0.092 0.092 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	49 64 50
2,3,7,8-TCDD Total TCDD	ND ND		0.150 0.150	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00	51 62 53
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.160 0.110 0.130	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	51 55 54
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.150 0.150	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	57 59 62 64
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.18 0.27 ND		0.093 J 0.086 J 0.094	1,2,3,4,7,6,9-проде-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	72 56
1,2,3,7,8,9-HxCDF Total HxCDF	ND 1.00		0.110 0.096 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND 0.19	 	0.110 0.093 0.084 0.095 J	2,3,7,8-TCDD-37Cl4	0.20	61
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.63 ND 2.20		0.160 J 0.150 0.150 J	Total 2,3,7,8-TCDD Equivalence: 0.28 ng/Kg (Using 2005 WHO Factors -	Using PRL/:	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.80 4.00		0.089 J 0.089 BJ			
OCDF OCDD	2.00 15.00		0.150 J 0.250			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

Solid

NA

Tel: 612-607-1700 Fax: 612-607-6444

Method 8290 Sample Analysis Results

Client - PASI Seattle

Matrix

Dilution

Client's Sample ID CNF-3A-7-3.25 Lab Sample ID 256177007 P110113A_10 Filename

Injected By BAL **Total Amount Extracted** 10.6 g % Moisture 5.3

Dry Weight Extracted Collected 01/05/2011 11:40 10.0 g **ICAL ID** P101202 Received 01/07/2011 09:52 CCal Filename(s) P110113A_02 & P110113A_18 Extracted 01/12/2011 13:00 Method Blank ID BLANK-27549 Analyzed 01/14/2011 02:01

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 0.15		0.110 0.110 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	58 77 55
2,3,7,8-TCDD Total TCDD	ND ND		0.140 0.140	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	55 66 54
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND 0.35		0.140 0.091 0.120 J	1,2,3,4,7,6-FIXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	54 54 57 56 58
1,2,3,7,8-PeCDD Total PeCDD	ND 0.20		0.160 0.160 J	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	60 65 67
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	 ND	0.17 0.49 	0.087 I 0.110 P 0.077	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	76 61
1,2,3,7,8,9-HxCDF Total HxCDF	ND 1.30		0.087 0.090 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND 1.20	 	0.150 0.110 0.110 0.120 J	2,3,7,8-TCDD-37Cl4	0.20	72
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.10 ND 4.10	 	0.099 J 0.110 0.110 J	Total 2,3,7,8-TCDD Equivalence: 0.27 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	3.90 8.60		0.170 J 0.170			
OCDF OCDD	3.80 32.00		0.095 J 0.260			

ND = Not Detected Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value P = PCDE Interference

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID CNF-3A-8-5.5 Lab Sample ID 256177008 Filename P110114B_04 Injected By BAL

Total Amount Extracted 12.7 g Matrix Solid % Moisture 20.0 Dilution NA

Dry Weight Extracted Collected 01/05/2011 12:10 10.2 g **ICAL ID** P101202 Received 01/07/2011 09:52 CCal Filename(s) P110113A_18 & P110114B_17 Extracted 01/12/2011 15:15 Method Blank ID BLANK-27547 Analyzed 01/14/2011 21:23

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	8.2 110.0		0.21 0.21	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	77 96 104 Y
2,3,7,8-TCDD Total TCDD	2.2 150.0		0.32 0.32	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	93 Y 82 79
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	8.6 43.0 200.0		0.43 0.31 0.37	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	78 77 71
1,2,3,7,8-PeCDD Total PeCDD	8.7 160.0		0.44 0.44	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	85 87 73 58
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	18.0 10.0	66 	0.43 P 0.29 0.23	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	71 Y 47
1,2,3,7,8,9-HxCDF Total HxCDF	13.0 200.0		0.48 0.36	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	4.5 21.0 9.9 220.0		0.41 J 0.51 0.41 0.44	2,3,7,8-TCDD-37Cl4	0.20	93
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	120.0 14.0 460.0	 	1.20 1.10 1.10	Total 2,3,7,8-TCDD Equivalence: 41 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	450.0 870.0		1.10 1.10			
OCDF OCDD	340.0 7900.0		0.49 Y 0.56			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

Y = Calculated using average of daily RFs

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID CNF-3A-9-5.5 Lab Sample ID 256177009 Filename P110114B_05 Injected By BAL

Total Amount Extracted 13.1 g Matrix Solid % Moisture 23.2 Dilution NA

Dry Weight Extracted 10.1 g Collected 01/05/2011 12:15 **ICAL ID** P101202 Received 01/07/2011 09:52 CCal Filename(s) P110113A_18 & P110114B_17 Extracted 01/12/2011 15:15 Method Blank ID BLANK-27547 Analyzed 01/14/2011 22:05

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	310.0	20 	0.42 P 0.42	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	71 90 93 Y
2,3,7,8-TCDD Total TCDD	5.1 580.0		0.27 0.27 E	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	94 Y 86 84
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	19.0 36.0 310.0		0.62 0.48 0.55	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	81 76 75
1,2,3,7,8-PeCDD Total PeCDD	31.0 670.0		0.31 0.31	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	87 84 79 78
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	44.0 29.0 23.0	 	0.56 0.35 0.45	1,2,3,4,6,7,8-HpCDD-13C 0CDD-13C	2.00 4.00	80 Y 70
1,2,3,7,8,9-HxCDF Total HxCDF	11.0 440.0		0.36 0.43	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	26.0 57.0 43.0 1000.0		0.38 0.35 0.53 0.42	2,3,7,8-TCDD-37Cl4	0.20	83
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	230.0 19.0 700.0		0.44 0.51 0.48	Total 2,3,7,8-TCDD Equivalence: 83 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	800.0 1400.0		1.40 1.40			
OCDF OCDD	6000.0	720 	0.43 PY 0.32 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

P = PCDE Interference

E = Exceeds calibration range

Y = Calculated using average of daily RFs

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID CNF-3A-10-5.5
Lab Sample ID 256177010
Filename P110113A_11
Injected By BAL

Total Amount Extracted 1.30 g Matrix Solid % Moisture 37.4 Dilution NA

Dry Weight Extracted Collected 01/05/2011 12:20 0.814 g **ICAL ID** P101202 Received 01/07/2011 09:52 CCal Filename(s) P110113A_02 & P110113A_18 Extracted 01/12/2011 13:00 Method Blank ID BLANK-27549 Analyzed 01/14/2011 02:44

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	27.0 400.0		2.4 2.4	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	64 83 57
2,3,7,8-TCDD Total TCDD	6.2 650.0		1.6 J 1.6	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	60 72 58
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	46.0 180.0 1100.0	 	6.2 J 3.6 4.9	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00 2.00	61 63 61 67
1,2,3,7,8-PeCDD Total PeCDD	26.0 840.0		2.8 J 2.8	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	69 70 75
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	460.0 58.0	730	3.7 4.0 P 3.1 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	87 74
1,2,3,7,8,9-HxCDF Total HxCDF	100.0 4100.0		2.5 3.3	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	36.0 240.0 100.0 1800.0		1.6 J 1.6 1.6 1.6	2,3,7,8-TCDD-37Cl4	0.20	78
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	2800.0 230.0 13000.0	 	5.5 7.9 6.7	Total 2,3,7,8-TCDD Equivalence: 330 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	7400.0 12000.0		1.7 1.7			
OCDF OCDD	14000.0 110000.0		2.9 1.2 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration
NA = Not Applicable
EDL = Estimated Detection Limit
NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

E = Exceeds calibration range

Method 8290 Sample Analysis Results

Client - PASI Seattle

CNF-3A-11-6 Client's Sample ID Lab Sample ID 256177011 P110114B_06 Filename Injected By BAL

Total Amount Extracted 26.1 g Solid Matrix % Moisture Dilution NA 61.0

Dry Weight Extracted Collected 01/05/2011 12:25 10.2 g **ICAL ID** P101202 Received 01/07/2011 09:52 CCal Filename(s) P110113A_18 & P110114B_17 Extracted 01/12/2011 15:15 Method Blank ID BLANK-27547 Analyzed 01/14/2011 22:48

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	12.00 77.00		0.39 0.39	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	67 89 86 Y
2,3,7,8-TCDD Total TCDD	0.95 280.00		0.27 J 0.27	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	87 Y 81 79
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	28.00 130.00 690.00		1.00 0.68 0.84	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	76 76 75
1,2,3,7,8-PeCDD Total PeCDD	2.40 85.00		0.36 J 0.36	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	83 84 80 77
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	250.00 94.00	260 	0.70 0.60 P 0.75	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	77 Y 74
1,2,3,7,8,9-HxCDF Total HxCDF	68.00 3300.00		0.67 0.68	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	13.00 140.00 18.00 440.00	 	0.62 0.46 0.39 0.49	2,3,7,8-TCDD-37Cl4	0.20	83
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1800.00 170.00 8700.00	 	1.10 0.99 1.10 E	Total 2,3,7,8-TCDD Equivalence: 180 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	4100.00 6400.00		2.30 E 2.30 E			
OCDF OCDD	9200.00 48000.00		2.00 EY 1.80 EDN	2		

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

E = Exceeds calibration range

D = Result obtained from analysis of diluted sample

Nn = Value obtained from additional analysis

Y = Calculated using average of daily RFs

Method 8290 Blank Analysis Results

Lab Sample ID BLANK-27549 Matrix Solid Filename P110113A_05 Dilution NA

Total Amount Extracted 10.2 g Extracted 01/12/2011 13:00 ICAL ID P101202 Analyzed 01/13/2011 22:28

CCal Filename(s) P110113A_02 & P110113A_18 Injected By BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.120 0.120	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	38 R 50 45
2,3,7,8-TCDD Total TCDD	ND ND		0.150 0.150	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	43 52 46
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.150 0.110 0.130	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	48 49 48
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.140 0.140	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	54 54 58 57
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND ND	 	0.067 0.086 0.093 0.090	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	65 50 NA
Total HxCDF 1,2,3,4,7,8-HxCDD	ND ND		0.084	1,2,3,7,8,9-HxCDD-13C 2,3,7,8-TCDD-37Cl4	2.00	NA 48
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND		0.130 0.120 0.120	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		0.084 0.098 0.091	Total 2,3,7,8-TCDD Equivalence: 0.21 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.17 0.41		0.130 J 0.130 J			
OCDF OCDD	 0.57	0.19	0.092 I 0.170 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

I = Interference present

Method 8290 Blank Analysis Results

Matrix

Dilution

Solid

NA

Lab Sample ID BLANK-27547
Filename F110114A_03

Total Amount Extracted 20.1 g Extracted 01/12/2011 15:15 ICAL ID F101206 Analyzed 01/14/2011 15:54

CCal Filename(s) F110113B_15 & F110114A_05 Injected By BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.068 0.068	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	65 79 77
2,3,7,8-TCDD Total TCDD	ND ND		0.079 0.079	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	76 90 82
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.12 0.12		0.066 0.070 J 0.068 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	81 78 75 89
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.069 0.069	1,2,3,4,7,6-FXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	86 67 63
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND 0.18 0.14	0.080	0.071 0.070 I 0.075 J 0.088 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 2.00 4.00	75 58 NA
Total HxCDF	0.32		0.076 J	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		0.077 0.087 0.071 0.078	2,3,7,8-TCDD-37Cl4	0.20	73
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND	0.110	0.099 I 0.130 0.110	Total 2,3,7,8-TCDD Equivalence: 0.17 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.36 0.74		0.140 J 0.140 J			
OCDF OCDD	1.10	0.380	0.190 I 0.270 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename **Total Amount Extracted**

ICAL ID

CCal Filename(s) Method Blank ID

LCS-27550 P110113A_03 10.3 g

P101202 P110113A_02 & P110113A_18 BLANK-27549

Matrix Dilution Extracted Analyzed

Solid NA

01/12/2011 13:00 01/13/2011 21:04

Injected	Ву	BAL
----------	----	-----

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.22	112	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.0 2.0 2.0	44 59 46
2,3,7,8-TCDD Total TCDD	0.20	0.18	91	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.0 2.0 2.0 2.0	48 58 46
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.1 1.0	106 100	1,2,3,6,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.0 2.0 2.0 2.0 2.0	47 52 50 53
1,2,3,7,8-PeCDD Total PeCDD	1.0	0.93	93	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.0 2.0 2.0 2.0	58 60 63
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	1.0 1.0 1.0 1.0	1.0 1.1 1.0 1.1	101 108 105 106	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.0 4.0 2.0 2.0 2.0	69 56 NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	1.0 0.99 1.3	104 99 129	2,3,7,8-TCDD-37Cl4	0.20	57
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.1 1.0	106 104			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	0.97	97			
OCDF OCDD	2.0 2.0	2.2 2.2	112 110			

Qs = Quantity Spiked Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent) R = Recovery outside of target range

Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable * = See Discussion

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted

I otal Amount Extracted ICAL ID CCal Filename(s) Method Blank ID

LCS-27548 F110114A_01 20.2 g

F101206 F110113B_15 & F110114A_05 BLANK-27547 Matrix Solid
Dilution NA
Extracted 01/13

Extracted 01/12/2011 15:15 Analyzed 01/14/2011 14:04 Injected By BAL

injected by	DAL
1	na'

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.24	120	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.0 2.0 2.0	67 81 79
2,3,7,8-TCDD Total TCDD	0.20	0.19	95	1,2,3,7,6-FeGDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.0 2.0 2.0 2.0	79 78 92 79
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.1 1.1	113 109	1,2,3,6,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.0 2.0 2.0 2.0 2.0	79 78 77 89
1,2,3,7,8-PeCDD Total PeCDD	1.0	1.00	100	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.0 2.0 2.0 2.0	84 68 66
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	1.0 1.0 1.0 1.0	1.1 1.1 1.1 1.1	109 111 109 112	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.0 4.0 2.0	77 64 NA
Total HxCDF				1,2,3,7,8,9-HxCDD-13C	2.0	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	1.0 1.1 1.0	103 107 103	2,3,7,8-TCDD-37Cl4	0.20	77
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.1 1.1	108 106			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	0.98	98			
OCDF OCDD	2.0 2.0	2.0 2.2	102 110			

Qs = Quantity Spiked Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)
R = Recovery outside of target range

Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable

* = See Discussion

Sample Condition Upon Receipt

Pace Analytical Client Name	: <u>Bnw</u>	m s. Co	udwell	Project # 2 5 6 1 7 7
Courier: Fed Ex UPS USPS Clie Tracking #: §138 824 5380	nt □Com	nmercial	Pace Other	
Custody Seal on Cooler/Box Present: Yes	☐ No	Seals	intact: Yes	□ No
Packing Material: Bubble Wrap	Bags [None	Other	Temp. Blank YesNo
Thermometer Used 132013 or 101731962 or 2260	99 Type of I	lce: Wet	Blue None	Samples on ice, cooling process has begun
Cooler Temperature 2.1 ⊂ Temp should be above freezing ≤ 6 °C	Biologic	al Tissue	is Frozen: Yes No Comments:	Date and Initials of person examining contents: <u>DIDGI</u> CW
Chain of Custody Present:	☑Yes □	No □N/A	1.	
Chain of Custody Filled Out:	Øyes □	No □N/A	2.	·
Chain of Custody Relinquished:	⊠Yes □	No □N/A	3.	
Sampler Name & Signature on COC:	□Ves □	No □N/A	4.	
Samples Arrived within Hold Time:	☑Yes □	No □N/A	5.	
Short Hold Time Analysis (<72hr):	□Yes ☑	No □N/A	6.	
Rush Turn Around Time Requested:	□Yes	No □N/A	7.	
Sufficient Volume:	☑Yes □	No □N/A	8.	
Correct Containers Used:	⊠Yes □	lNo □N/A	9.	
-Pace Containers Used:	☑Yes □	No □N/A		
Containers Intact:	⊡Yes □	No □N/A	10.	
Filtered volume received for Dissolved tests	□Yes □	No MN/A	11.	
Sample Labels match COC:	⊡Yes □	No □N/A	12.	
morado datorimienson manyole manni	SL			
All containers needing preservation have been checked.	□Yes □	No ⊠N/A	13.	
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes □	INo ⊠N/A		
Exceptions: VOA, coliform, TOC, O&G			Initial when completed	Lot # of added preservative
Samples checked for dechlorination:	□Yes □	INo ⊡Ń/A	14.	
Headspace in VOA Vials (>6mm):	□Yes □	INO MIN/A	15.	
Trip Blanks Present:	□Yes □	INO ØNJA	16.	
Trip Blank Custody Seals Present	□Yes □	Ino 🖆 N/A		
Pace Trip Blank Lot # (if purchased):	-			
Client Notification/ Resolution:			,	Field Data Required? Y / N
Person Contacted:		Date/	Time:	
Comments/ Resolution:				
		,		
Project Manager Review:	GR	<i>SS</i>		Date: 4 (0 11
Note: Whanavar there is a discrepancy affecting North	Carolina com	nliance sam	inles a conv of this form	m will be sent to the North Carolina DEHNR

Certification Office (i.e out of hold, incorrect preservative, out of temp, incorrect containers)

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

256177

"Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month to any invoices not paid within 30 days.			OBIG				ADDITIONAL COMMENTS	12	11 CN=-3/+-11 - 6	10 CNF-34-10-5:5	9 CNF-34-9-55	8 CNF-34-8-5.5	-34 - 7 - 3	1	5 CNF-34-5-3,X	4 ひとて・シャー・コング	Cù	2 CNF 34 - Y- 30	1 CNF -34 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	Drinking Water Waster Waste Water Waste Water Product Soil/Solid Oil Wifpe (A-Z, 0-9 / -) Air Sample IDs MUST BE UNIQUE Tissue Other #	Section D Matrix Codes Required Client Information MATRIX / CODE			Phone:	Email To: Hurk & broweald com	CIWMANU, WA OKSO!	Address: Jay (dimmin) St NW#426	Company: SYCHIN + COLCHE!	
ing Pace's NET 30 day paym		u and	ORIGINAI			Kake Cakeen	RELINQUIS		*										2 5	의 경우 등은 유고 등록 등 MATRIX CODE (see valid codes SAMPLE TYPE (G=GRAB C=Cd	to left)		Project Number: しないる	Project Name:	Purchase Order No.:			Report To:	Section B Required Project Information:
ent terms and agreeing to late cha	SIGNA	PRINT	SAMPLER NAME		•	1,80	RELINQUISHED BY / AFFILIATION		*										15/11	COMPOSITE COMI	COLLECTED		8	East Buy reduvelopy wut			CNOSTANIOS	TAKE	ation:
arges of 1.5% per month for	SIGNATURE of SAMPLER:	PRINT Name of SAMPLER:	SAMPLER NAME AND SIGNATURE				DATE			12:70	マス	12 TO	ा पुरु	7	7.74	7.28	110	11.05	- - - - - - - - - -	SAMPLE TEMP AT COLLECTION					Pa Re	Ad	Cc	Att	Se
	X	Join Timb			sauce.	MY & DIMONIFORM & FIRST	TIME ACCEPTED BY / AFFILIATION		4						g_maidsets				7.	# OF CONTAINERS Unpreserved H ₂ SO ₄ HNO ₃ HCI NaOH Na ₂ S ₂ O ₃ Methanol Other I Analysis Test I	Preservatives.	Re	Pace Profile #:	Pace Project Manager:	Pace Quote Reference:	Address:	Company Name: See H	Attention: Tesh Shaken	Section C Invoice Information:
	DATE Signed				PACE DIOCH	N. Policy	LIATION DATE															Requested Analysis Filtered (Y/N)	STATE:	Site Location	T UST	NPDES	REGULATORY AGENCY		
F-AI	Ten	np in	°C		0920 216		TIME															red (Y/N)	NI3		RCRA	GROUND WATER	Y AGENCY		Page:
-May-2007	Cu Seale (Y/N)	y poler		<u> </u>		SAMPLE CONDITIONS													Residual Chlorine (Y/N) Pace Project No./ Lab I.D.					OTHER TO	VATER DRINKING WATER		70001	\$ 000000000000000000000000000000000000

Sample Container Count

CLIENT: Brown & Caldwell

Pace Analytical"

12	11	10	9	8	7	6	CT	4	ယ	2	_	Item
												VG9H
												AG1H AG1U BG1H BP1U BP2U BP3U BP2N
												AG1U
												BG1H
												BP1U
												BP2U
												BP3U
												BP2N
****												BP2S
	₫,								enormalist en en	easone.	essentary	WGFU
			,									BP2S WGFU WGKU
			L									
Trip Blank?												Comments

BP20 500mL NaOH plastic	BP2N 500mL HNO3 plastic DG9U 40mL unpreserved amber vial	BP1Z 1 liter NaOH, Zn, Ac DG9T 40mL Na Thio amber vial	BP1U 1 liter unpreserved plastic DG9M 40mL MeOH clear vial	BP1S 1 liter H2SO4 plastic DG9H 40mL HCL amber voa vial	BP1N 1 liter HNO3 plastic DG9B 40mL Na Bisulfate amber vial	BG1U 1 liter unpreserved glass BP3U 250mL unpreserved plastic	BG1H 1 liter HCL clear glass BP3S 250mL H2SO4 plastic	AG3S 250mL H2SO4 amber glass BP3N 250mL HNO3 plastic	AG2U 500mL unpreserved amber glass BP3C 250mL NaOH plastic	AG2S 500mL H2SO4 amber glass BP2Z 500mL NaOH, Zn Ac	
	_	2	V	×		V	<		<		
		PLC ZI	GFX 40	GFU 40	VSG H	39W 40	G9U 40	G9T 40	G9H 4(U S	
		ZPLC Ziploc Bag	WGFX 4oz wide jar w/hexane wipe	WGFU 4oz clear soil jar	Headspace septa vial & HCL	VG9W 40mL glass vial preweighted (EPA 5035)	VG9U 40mL unpreserved clear vial	VG9T 40mL Na Thio. clear vial	VG9H 40mL HCL clear vial	Summa Can	

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Jennifer Gross PASI Seattle 940 S. Harney Street Seattle WA 98108

> REPORT OF LABORATORY ANALYSIS FOR PCDD/PCDF

Report Information:

Pace Project #: 10142843

Sample Receipt Date: 11/10/2010

Client Project #: 255663 Client Sub PO #: N/A State Cert #: C755

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Nate Habte, your Pace Project Manager.

This report has been reviewed by:

November 23, 2010

Nate Habte, Project Manager

(612) 607-6407

(612) 607-6444 (fax)

natnael.habte@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

November 22, 2010

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on twenty-five samples submitted by a representative of Pace Analytical Services, Inc. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290. Reporting limits were based on signal-to-noise measurements.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 33-158%. With the exceptions of thirteen values, which were flagged "R" on the results tables, the labeled standard recoveries obtained for this project were within the 40-135% target range specified in Method 8290. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, interfering substances impacted the determinations of PCDD or PCDF congeners; the affected values were flagged "I" where incorrect isotope ratios were obtained or "P" where polychlorinated diphenyl ethers were present. Values above the calibration range were flagged "E" and should be regarded as estimates.

A laboratory method blank was prepared and analyzed with each sample batch as part of our routine quality control procedures. The results show the blanks to contain background levels of selected congeners. With the exception of one non-2,3,7,8-substituted TCDF congener in Blank-26969, these were below the calibration range of the method. Sample levels similar to the corresponding blank levels were flagged "B" on the results tables and may be, at least partially, attributed to the background. It should be noted that levels less than ten times the background are not generally considered to be statistically different from the background.

Laboratory and matrix spike samples were also prepared with the sample batch using clean sand or sample matrix that had been fortified with native standard materials. The results show that the spiked native compounds were recovered at 98-128%, with relative percent differences of 0.4-14.4%. These results indicate high degrees of accuracy and precision for these determinations. Matrix spikes were prepared with the 11/15/2010 sample batch using sample material from a separate project; results from these analyses will be provided upon request.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	
Arizona	AZ0014	Nevada	MN000642010A
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New Mexico	MN00064
Colorado	MN00064	New York (NEL	11647
Connecticut	PH-0256	North Carolina	27700
EPA Region 5	WD-15J	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Ohio VAP	CL101
Georgia (DNR)	959	Oklahoma	D9922
Guam	09-019r	Oregon (ELAP)	MN200001-005
Hawaii	SLD	Oregon (OREL	MN200001-005
Idaho	MN00064	Pennsylvania	68-00563
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennesee	2818
lowa	368	Tennessee	02818
Kansas	E-10167	Texas	T104704192-08
Kentucky	90062	Utah (NELAP)	PAM
Louisiana	LA0900016	Virginia	00251
Maine	2007029	Washington	C755
Maryland	322	West Virginia	9952C
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q
Mississippi	MN00064		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

77	
-	

्रंट		:	17/				<u>Q</u>	7	[0142843	\sim	\bigvee	7	-C	(or p. 16+2)
5	Ciani oi custody		A THE PARTY OF THE					***************************************	***		CONTRACTOR		Pace	Analytical www.pacelabs.com
Wo	Workorder: 255663 Wo	rkorder	Workorder Name:Olympia Soils	Soils			Owner Received Date:	Received	d Date:	11/9/2010		Results Requested By:	ted By:	11/23/2010
Jen	Jennifer Gross		Pace Analy	Analytical Minne	sota					Reques	Requested Analysis		1	
Pac 940	Pace Analytical Services, Inc. 940 South Harney		1700 Elm Suite 200	1700 Elm Street Suite 200				31	وسو					
Sea Pho Fax	Seattle WA 98108 Phone (206)767-5060 Fax (206)767-5063		Minne. Phone	Minneapolis, MN 55414 Phone (612)607-1700	4			<u> </u>	The Car					
					233	Preserv	Preserved Containers		<u>))</u>					
		J	100 E			pevies		120	140 (2)					
Item	a Sample ID	Type		Lab ID	Matrix	Unpres		. 7d	J.					LAB USE ONLY
-	CNF-3-1-1.5	PS	11/9/2010 08:05	255663001	Solid	-		×	x					
2	CNF-3-2-1.5	PS	11/9/2010 08:10	255663002 🗸	Solid			×						
ო	CNF-3-3-1.5	PS	11/9/2010 08:15	255663003	Solid	-		×						
4	CNF-3-4-1.5	PS	11/9/2010 08:25	255663004	Solid	7-		×						
2	CNF-3-5-1	PS	11/9/2010 08:28	255663005	Solid	+		×						
9	CNF-3-6-1	PS	11/9/2010 08:32	255663006	Solid	1		×						
_	CNF-3-7-2.5	PS	11/9/2010 08:35	255663007	Solid	1		×						
œ	CNF-3-8-2.5	PS	11/9/2010 08:40	255663008	Solid	1		×						
တ	CNF-3-9-2.5	PS	11/9/2010 08:43	255663009	Solid	1		×						
5	CNF-3-10-2.5	PS	11/9/2010 08:48	255663010	Solid	1		×						
= 3	CNF-3-11-2.5	PS	11/9/2010 08:52	255663011	Solid	-		×						
2 5	CNF-3-12-2.5	PS	11/9/2010 08:55	255663012	Solid	-		×						
73	CNF-3-13-3.5	PS	11/9/2010 08:58	255663013	Solid	-		×						
4 ,	CNF-3-14-3.5	PS	11/9/2010 09:05	255663014	Solid	-		×						
12	CNF-3-15-3.5	PS	11/9/2010 09:10	255663015	Solid	-		×						
16	CNF-3-16-3.5	PS	11/9/2010 09:15	255663016	Solid	-		×						
12	CNF-3-17-3.5	PS	11/9/2010 09:25	255663017	Solid	1		×						
82	CNF-3-18-3.5	PS	11/9/2010 09:35	255663018	Solid	-		×					_	
19	CNF-3-19-7.5	PS	11/9/2010 09:50	255663019	Solid	_		×	>					

	٦							10	47	JAX	Š	4	(849 6 5 707 SH8PH)01
Š	Chain of Custody			Commence of the commence of th							****	Fau	Pace Analytical ®
Wor	Workorder: 255663	Vorkorder	Workorder Name:Olympia Soils	Soils			Owner	Owner Received Date:		11/9/2010	Results Requested By:	quested By	11/23/2010
Repo	Report To		Subcontract To	at To						Requeste	Requested Analysis		
Jenn Pace	Jennifer Gross Pace Analytical Services, Inc. 940 South Harney		Pace / 1700 I	Pace Analytical Minnesota 1700 Elm Street Suite 200	lesota			sur	4				
Seat Phon Fax (Seattle WA 98108 Phone (206)767-5060 Fax (206)767-5063		Minne	Minneapolis, MN 55414 Phone (612)607-1700	414			Jene /	भ हिर्				
						Proces	Presented Containors	5U1>	m				
Item	Sample ID	Sample Type	Collect Date/Time	Lab ID	Matrix	peweseidur		(0) (T	Frd.			:	LAB USE ONLY
8	CNF-3-20-7.5	PS	11/9/2010 09:58	255663020	Solid	-		×	X				
21	CNF-3-21-7.5	PS	11/9/2010 10:10	255663021,	Solid	-		×					
22	CNF-3-22-7.5	PS	11/9/2010 10:20	255663022 €	Solid	1		X					
23	CNF-3-23-7.5	PS	11/9/2010 10:30	255663023	Solid	1		×					
24	CNF-3-24-7.4	PS	11/9/2010 10:40	255663024	Solid	1		×					
25	CNF-3-25-10	PS	11/9/2010 09:48	255663025	Solid	-		×	>				
			•								Comments	ınts	
Trans	Transfers Released By		Date/Time	Received By	By			Date/Time					
-	Shorthi		11 /04/10	150 Miles	(play)	Par MI		Medio lao					
2	2				-				- 1		٠		
3													
Coo	Cooler Temperature on Receipt 💈	eipt 2.1	sno ວ.	Custody Seal ((Ser N		Receiv	Received on Ice (Roar	Ż	Z	Sampl	Samples Intact (P)or	⊘or N

Sa	mple Condition	on Upon Receipt	
Pace Analytical Client Name	: Pace	WA	Project # / <i>0/42843</i>
Courier: Fed Ex UPS USPS Clie Tracking #: 7941 0 02 53 92			Objection (Proj.
Custody Seal on Cooler/Box Present:	₃ □ no Sea	als intact: 📲 yes 🔲	no line
Packing Material: Bubble Wrap Bubbl	e Bage 🔲 None	Other	Temp Blank: Yes No
Thermometer Used 80344042 or 179425	Type of Ice: W	Blue None	Samples on ice, cooling process has begun
Cooler Temperature $\frac{2}{1}$	Biological Tissu	u e is Frozen: Yes No	Date and initials of person examining contents: \(\lambda / \lambda / \lambda / \lambda \)
Temp should be above freezing to 6°C		Comments:	
Chain of Custody Present:	Pres DNo DN	/A 1.	
Chain of Custody Filled Out:	Dies Ono On	'A 2.	
Chain of Custody Relinquished:	ØYes □Ng/ □N/	/A 3.	
Sampler Name & Signature on COC:	□Yest □kko □N/	A 4.	
Samples Arrived within Hold Time:	TYPES CINO CINA	A 5.	
Short Hold Time Analysis (<72hr):	□Yes □Mo /□N/	A 6.	
Rush Turn Around Time Requested:	UYes (INO UN	A 7.	
Sufficient Volume:	Neg No N	A 8.	
Correct Containers Used:	Dayes ONO ON	A 9.	
-Pace Containers Used:	EYes DNo DNA	A	
Containers Intact:	Tyres DNo DNA	10.	
Filtered volume received for Dissolved tests	□Yes INO □N/	A 11.	
Sample Labels match COC:	Des Ono On/A	12.	
-includes date/time/ID/Analysis Matrix:	SL		
All containers needing acid/base preservation have been checked. Noncompliance are noted in 13.	Dyes DNo BRA	13. D HNO3	☐ H2SO4 ☐ NeOH ☐ HCI
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes □No □N/A	Samp #	-
Exceptions: VOA,Coliform, TOC, Oil and Grease, Wi-DRO (water	Yes 19No	Initial when completed	Lot # of added preservative
Samples checked for dechlorination:	☐Yes ☐No ŒNA	14.	
Headspace in VOA Vials (>6mm):	☐Yes ☐No ŒNVA	15.	
Trip Blank Present:	□Yee □No ØNA	16.	
Trip Blank Custody Seals Present	□Yes □No □N/A		
Pace Trip Blank Lot # (if purchased):	-		
Client Notification/ Resolution:			Field Data Required? Y / N
Person Contacted:	Date/	Time:	
Comments/ Resolution:			
	<u>.,,</u>		

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the Read-Acalytical SEMBLES, inc. F-L213Rev.00, 05Aug2009 1700 Elm Street SE, Suite 200, Minneapolis, MN 55414

Project Manager Review:

Date:

Fax: 612-607-6444

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

Appendix B

Sample Analysis Summary

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID CNF-3-1-1.5 Lab Sample ID 255663001 P101119A_04 Filename Injected By BAL

Total Amount Extracted 1.07 g Solid Matrix % Moisture Dilution NA 7.8

Dry Weight Extracted Collected 11/09/2010 08:05 0.987 g **ICAL ID** P100312 Received 11/10/2010 10:00 CCal Filename(s) P101118B 17 & P101119A 17 Extracted 11/15/2010 15:45 Method Blank ID **BLANK-26969** Analyzed 11/19/2010 10:17

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	11.0 160.0		2.30 2.30	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	64 71 67
2,3,7,8-TCDD Total TCDD	3.3 130.0		1.10 J 1.10	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	72 80 75
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	19.0 110.0 870.0		0.95 J 1.30 1.10	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	75 72 73
1,2,3,7,8-PeCDD Total PeCDD	19.0 270.0		2.10 J 2.10	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	77 82 73 72
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	320.0 59.0	 490 	2.90 1.90 P 1.90	1,2,3,4,7,8,9-проде-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	84 66
1,2,3,7,8,9-HxCDF Total HxCDF	66.0 3300.0		2.20 2.20	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	36.0 170.0 78.0 1000.0	 	2.10 J 2.20 2.30 2.20	2,3,7,8-TCDD-37Cl4	0.20	74
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	2000.0 160.0 7600.0		3.10 4.20 3.70	Total 2,3,7,8-TCDD Equivalence: 210 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	4600.0 7300.0		5.70 5.70			
OCDF OCDD	6800.0 50000.0		1.80 1.30			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value P = PCDE Interference

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID CNF-3-2-1.5
Lab Sample ID 255663002
Filename F101118A_10
Injected By SMT

Total Amount Extracted 12.6 g Matrix Solid % Moisture 5.3 Dilution NA

Dry Weight Extracted 11.9 g Collected 11/09/2010 08:10 **ICAL ID** F101012 Received 11/10/2010 10:00 CCal Filename(s) F101117B_19 & F101118A_18 Extracted 11/15/2010 15:45 Method Blank ID **BLANK-26969** Analyzed 11/18/2010 11:32

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.180 1.200		0.100 BJ 0.100 B	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	72 72 78
2,3,7,8-TCDD Total TCDD	ND ND		0.140 0.140	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	93 91 62
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.180 0.930	 	0.130 0.082 J 0.100 BJ	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00 2.00	75 69 75 61
1,2,3,7,8-PeCDD Total PeCDD	ND 0.160		0.091 0.091 J	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	74 56 57
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.100 0.120	0.51 	0.055 P 0.052 J 0.050 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	54 55
1,2,3,7,8,9-HxCDF Total HxCDF	ND 0.700		0.069 0.056 BJ	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.080 0.120 0.086 0.570	 	0.074 J 0.048 J 0.056 J 0.059 J	2,3,7,8-TCDD-37Cl4	0.20	67
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.720 ND 0.720	 	0.096 J 0.140 0.120 J	Total 2,3,7,8-TCDD Equivalence: 0.29 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	2.500 5.100		0.210 J 0.210			
OCDF OCDD	2.500 28.000		0.170 J 0.490			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

P = PCDE Interference

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID CNF-3-3-1.5
Lab Sample ID 255663003
Filename P101119A_05
Injected By BAL

Total Amount Extracted 1.29 g Matrix Solid % Moisture 11.5 Dilution NA

Dry Weight Extracted Collected 11/09/2010 08:15 1.14 g **ICAL ID** P100312 Received 11/10/2010 10:00 CCal Filename(s) P101118B_17 & P101119A_17 Extracted 11/15/2010 15:45 Method Blank ID **BLANK-26969** Analyzed 11/19/2010 11:02

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	4.4 53.0		1.30 J 1.30	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	69 78 69
2,3,7,8-TCDD Total TCDD	ND 18.0		1.30 1.30	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	74 82 70
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	5.8 15.0 120.0		1.30 J 1.40 J 1.30	1,2,3,4,7,6-FIXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	70 71 70 71 74
1,2,3,7,8-PeCDD Total PeCDD	3.2 71.0		1.70 J 1.70	1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	74 79 69 67
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	42.0 10.0	14 	1.10 J 0.79 P 0.92 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	78 56
1,2,3,7,8,9-HxCDF Total HxCDF	7.9 260.0		1.40 J 1.10	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	3.8 15.0 6.8 140.0	 	1.40 J 1.50 J 1.40 J 1.40	2,3,7,8-TCDD-37Cl4	0.20	81
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	89.0 9.3 290.0	 	1.20 1.70 J 1.50	Total 2,3,7,8-TCDD Equivalence: 22 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	240.0 440.0		2.10 2.10			
OCDF OCDD	150.0 3000.0		2.30 2.00			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value P = PCDE Interference

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID CNF-3-4-1.5 Lab Sample ID 255663004 P101119A_03 Filename Injected By BAL **Total Amount Extracted** 12.4 g Solid Matrix % Moisture Dilution 10 10.3 Dry Weight Extracted Collected 11/09/2010 08:25 11.1 g **ICAL ID** P100312 Received 11/10/2010 10:00 CCal Filename(s) P101118B_17 & P101119A_17 Extracted 11/15/2010 15:45 Method Blank ID **BLANK-26969** Analyzed 11/19/2010 09:31

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.93 12.00		0.82 BJD 0.82 BD	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	70 D 81 D 73 D
2,3,7,8-TCDD Total TCDD	ND 7.90		1.00 1.00 JD	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	76 D 85 D 70 D
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	8.00 53.00	1.40 	0.83 I 0.80 JD 0.81 D	1,2,3,4,7,6-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	69 D 68 D 67 D 74 D
1,2,3,7,8-PeCDD Total PeCDD	9.80	1.20	1.10 I 1.10 JD	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	76 D 66 D 59 D
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	14.00 3.00 3.10	1.90	0.79 JD 0.81 JD 0.66 I 0.72 JD	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 2.00 4.00	73 D 41 D NA
Total HxCDF	92.00		0.74 D	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	4.40 1.60 33.00	0.87 	0.75 I 0.74 JD 0.74 JD 0.74 JD	2,3,7,8-TCDD-37Cl4	0.20	82 D
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	20.00 2.30 63.00		0.68 JD 0.94 JD 0.81 D	Total 2,3,7,8-TCDD Equivalence: 7.2 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	55.00 110.00		0.62 D 0.62 D			
OCDF OCDD	19.00 650.00		1.50 JD 1.40 D			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

I = Interference present

D = Result obtained from analysis of diluted sample

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID CNF-3-5-1
Lab Sample ID 255663005
Filename F101118A_11
Injected By SMT

Total Amount Extracted 12.8 g Matrix Solid % Moisture 7.8 Dilution NA

Dry Weight Extracted 11.8 g Collected 11/09/2010 08:28 **ICAL ID** F101012 Received 11/10/2010 10:00 CCal Filename(s) F101117B_19 & F101118A_18 Extracted 11/15/2010 15:45 Method Blank ID **BLANK-26969** Analyzed 11/18/2010 12:18

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 1.700		0.150 0.150 B	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	77 77 86
2,3,7,8-TCDD Total TCDD	ND 0.150		0.140 0.140 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	94 98 75
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.110 0.940		0.160 0.099 J 0.130 BJ	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	68 69 74
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.075 0.075	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	70 66 54 56
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.290 0.087 0.083		0.093 BJ 0.072 J 0.076 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	54 50
1,2,3,7,8,9-HxCDF Total HxCDF	ND 1.100		0.100 0.086 BJ	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND 0.700	 	0.093 0.100 0.120 0.100 J	2,3,7,8-TCDD-37Cl4	0.20	75
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.670 ND 0.670	 	0.120 J 0.160 0.140 J	Total 2,3,7,8-TCDD Equivalence: 0.25 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	2.400 5.400		0.130 J 0.130			
OCDF OCDD	1.800 21.000		0.180 J 0.320			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID CNF-3-6-1
Lab Sample ID 255663006
Filename P101118B_13
Injected By BAL

Total Amount Extracted 13.9 g Matrix Solid % Moisture 7.6 Dilution NA

Dry Weight Extracted 12.8 g Collected 11/09/2010 08:32 **ICAL ID** P100312 Received 11/10/2010 10:00 CCal Filename(s) P101118B 01 & P101119B 17 Extracted 11/16/2010 18:30 Method Blank ID BLANK-26974 Analyzed 11/19/2010 04:10

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.120 0.920		0.110 J 0.110 B	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00	73 80
2,3,7,8-TCDD Total TCDD	ND 0.360		0.160 0.160 J	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00	68 78 81
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	ND 0.180		0.180 0.130 J	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C	2.00 2.00 2.00	75 77 75
Total PeCDF 1,2,3,7,8-PeCDD	1.600 ND		0.150 J 0.130	1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C	2.00 2.00 2.00	76 77 83
Total PeCDD	1.500		0.130 J 0.083 J	1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00	73 72 79
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.310 0.180	0.74	0.069 P 0.072 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	4.00	61
1,2,3,7,8,9-HxCDF Total HxCDF	0.096 3.800		0.078 J 0.075 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.120 0.420 0.190 4.000		0.092 J 0.098 J 0.094 J 0.095	2,3,7,8-TCDD-37Cl4	0.20	86
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	2.200 0.200 7.100		0.099 J 0.079 J 0.089	Total 2,3,7,8-TCDD Equivalence: 0.47 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	8.000 17.000		0.120 0.120			
OCDF OCDD	5.800 63.000		0.130 J 0.110			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

P = PCDE Interference

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID CNF-3-7-2.5
Lab Sample ID 255663007
Filename F101119A_08
Injected By BAL

Total Amount Extracted 10.2 g Matrix Solid % Moisture 4.4 Dilution NA

Dry Weight Extracted 9.79 g Collected 11/09/2010 08:35 **ICAL ID** F101012 Received 11/10/2010 10:00 CCal Filename(s) F101118B_12 & F101119A_17 Extracted 11/16/2010 18:30 Method Blank ID BLANK-26974 Analyzed 11/19/2010 08:56

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.75 9.20		0.21 J 0.21	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	68 73 81
2,3,7,8-TCDD Total TCDD	0.22 7.30		0.16 J 0.16	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	91 97 70
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.50 6.20 46.00		0.73 J 0.43 0.58	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	78 73 75 66
1,2,3,7,8-PeCDD Total PeCDD	1.70 16.00		0.35 J 0.35	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	66 81 67 63
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	21.00 4.50 3.70		0.49 0.50 J 0.52 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	72 62
1,2,3,7,8,9-HxCDF Total HxCDF	2.70 78.00		0.68 J 0.55	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	2.10 6.80 3.90 60.00	 	0.26 J 0.23 0.30 J 0.26	2,3,7,8-TCDD-37Cl4	0.20	75
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	63.00 5.40 68.00	 	0.70 1.20 0.97	Total 2,3,7,8-TCDD Equivalence: 12 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	210.00 470.00		1.30 1.30			
OCDF OCDD	330.00 1900.00		0.61 0.30			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. $J = Estimated \ value$

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID CNF-3-8-2.5
Lab Sample ID 255663008
Filename P101118B_07
Injected By BAL
Total Amount Extracted 12.3 g

Total Amount Extracted 12.3 g Matrix Solid % Moisture 7.7 Dilution NA

Dry Weight Extracted 11.4 g Collected 11/09/2010 08:40 **ICAL ID** P100312 Received 11/10/2010 10:00 CCal Filename(s) P101118B_01 & P101118B_17 Extracted 11/16/2010 18:30 Method Blank ID BLANK-26974 Analyzed 11/18/2010 23:36

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20 2.40		0.170 J 0.170	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	51 58 60
2,3,7,8-TCDD Total TCDD	ND 4.40		0.160 0.160	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	71 74 68
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.30 0.95 7.80		0.110 J 0.062 J 0.088	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	70 71 71 77
1,2,3,7,8-PeCDD Total PeCDD	0.27 6.40		0.150 J 0.150	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	77 76 71 70
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	2.70 1.00	6.2 	0.130 J 0.110 P 0.094 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	77 63
1,2,3,7,8,9-HxCDF Total HxCDF	0.64 29.00		0.100 J 0.110	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.53 1.70 0.77 16.00	 	0.095 J 0.120 J 0.095 J 0.100	2,3,7,8-TCDD-37Cl4	0.20	63
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	17.00 1.40 61.00	 	0.088 0.110 J 0.100	Total 2,3,7,8-TCDD Equivalence: 2.1 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	43.00 82.00		0.210 0.210			
OCDF OCDD	51.00 400.00		0.100 0.053			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value P = PCDE Interference

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID CNF-3-9-2.5 Lab Sample ID 255663009 Filename F101119A_09 Injected By BAL

Total Amount Extracted 12.1 g Matrix Solid % Moisture 6.8 Dilution NA

Dry Weight Extracted Collected 11/09/2010 08:43 11.3 g **ICAL ID** F101012 Received 11/10/2010 10:00 CCal Filename(s) F101118B_12 & F101119A_17 Extracted 11/16/2010 18:30 Method Blank ID BLANK-26974 Analyzed 11/19/2010 09:42

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.51 6.90		0.20 J 0.20	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	70 76 75
2,3,7,8-TCDD Total TCDD	ND 13.00		0.23 0.23	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	87 91 66
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.67 2.30 16.00		0.15 J 0.10 J 0.13	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	69 65 68
1,2,3,7,8-PeCDD Total PeCDD	0.81 16.00		0.36 J 0.36	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	65 63 55 55
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	6.50 2.20 1.20	 	0.26 0.26 J 0.27 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	63 49
1,2,3,7,8,9-HxCDF Total HxCDF	1.10 30.00		0.37 J 0.29	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.89 3.70 1.80 39.00	 	0.33 J 0.30 J 0.30 J 0.31	2,3,7,8-TCDD-37Cl4	0.20	82
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	25.00 2.00 27.00		0.26 0.49 J 0.37	Total 2,3,7,8-TCDD Equivalence: 4.7 ng/Kg (Using 2005 WHO Factors -	Using PRL/	/2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	70.00 130.00		0.68 0.68			
OCDF OCDD	75.00 890.00		0.15 0.19			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID CNF-3-10-2.5
Lab Sample ID 255663010
Filename P101118B_08
Injected By BAL

Total Amount Extracted 13.0 g Matrix Solid % Moisture 8.5 Dilution NA

Dry Weight Extracted Collected 11/09/2010 08:48 11.9 g **ICAL ID** P100312 Received 11/10/2010 10:00 CCal Filename(s) P101118B 01 & P101118B 17 Extracted 11/16/2010 18:30 Method Blank ID BLANK-26974 Analyzed 11/19/2010 00:21

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.47 8.30		0.120 J 0.120	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	61 68 61
2,3,7,8-TCDD Total TCDD	0.17 8.90		0.110 J 0.110	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	71 73 68
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.81 3.80 24.00		0.100 J 0.062 J 0.081	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	69 68 70
1,2,3,7,8-PeCDD Total PeCDD	0.74 15.00		0.100 J 0.100	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	75 73 68 67
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	13.00 1.80	4.8	0.110 0.100 P 0.110 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	75 63
1,2,3,7,8,9-HxCDF Total HxCDF	2.10 68.00		0.120 J 0.110	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.92 3.50 1.50 32.00		0.096 J 0.099 J 0.081 J 0.092	2,3,7,8-TCDD-37Cl4	0.20	78
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	24.00 2.50 74.00		0.094 0.072 J 0.083	Total 2,3,7,8-TCDD Equivalence: 5.6 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	64.00 120.00		0.220 0.220			
OCDF OCDD	30.00 830.00		0.071 0.081			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value P = PCDE Interference

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID CNF-3-11-2.5
Lab Sample ID 255663011
Filename P101118B_09
Injected By BAL

Total Amount Extracted 13.3 g Matrix Solid % Moisture 5.2 Dilution NA

Dry Weight Extracted Collected 11/09/2010 08:52 12.6 g **ICAL ID** P100312 Received 11/10/2010 10:00 CCal Filename(s) P101118B 01 & P101119B 17 Extracted 11/16/2010 18:30 Method Blank ID BLANK-26974 Analyzed 11/19/2010 01:07

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 0.32		0.100 0.100 BJ	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	59 66 63
2,3,7,8-TCDD Total TCDD	ND ND		0.120 0.120	1,2,3,4,7,8-PeCDF-13C 2,3,4,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	72 77 77 72
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.13 0.81		0.100 0.089 J 0.096 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	71 70 74
1,2,3,7,8-PeCDD Total PeCDD	ND 0.35		0.110 0.110 J	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	72 78 71 72
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.24 0.10	0.710	0.050 J 0.066 P 0.093 J	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	79 61
1,2,3,7,8,9-HxCDF Total HxCDF	ND 2.60		0.097 0.076 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 0.24 0.94	0.087	0.070 0.084 J 0.071 I 0.075 J	2,3,7,8-TCDD-37Cl4	0.20	70
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.40 0.12 5.20		0.059 J 0.060 J 0.060	Total 2,3,7,8-TCDD Equivalence: 0.31 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	4.40 7.70		0.140 0.140			
OCDF OCDD	4.20 50.00		0.130 J 0.100			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

ND = Not Detected NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

P = PCDE Interference

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID CNF-3-12-2.5
Lab Sample ID 255663012
Filename P101118B_10
Injected By BAL

Total Amount Extracted 13.2 g Matrix Solid % Moisture 9.9 Dilution NA

Dry Weight Extracted Collected 11/09/2010 08:55 11.9 g **ICAL ID** P100312 Received 11/10/2010 10:00 CCal Filename(s) P101118B_01 & P101118B_17 Extracted 11/16/2010 18:30 Method Blank ID BLANK-26974 Analyzed 11/19/2010 01:53

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.23 3.20		0.098 J 0.098	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	67 75 64
2,3,7,8-TCDD Total TCDD	ND 3.20		0.120 0.120	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	73 76 69
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.33 0.78 5.50	 	0.220 J 0.082 J 0.150	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00 2.00	71 70 73 73
1,2,3,7,8-PeCDD Total PeCDD	0.39 7.70		0.180 J 0.180	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	73 78 68 67
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.50 0.41	2.1 	0.100 J 0.087 P 0.086 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	76 59
1,2,3,7,8,9-HxCDF Total HxCDF	0.41 10.00		0.100 J 0.095	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.36 1.20 0.71 16.00	 	0.094 J 0.086 J 0.090 J 0.090	2,3,7,8-TCDD-37Cl4	0.20	81
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	5.50 0.59 18.00	 	0.061 0.083 J 0.072	Total 2,3,7,8-TCDD Equivalence: 1.5 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	21.00 54.00		0.100 0.100			
OCDF OCDD	16.00 170.00		0.190 0.130			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value P = PCDE Interference

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID CNF-3-13-3.5
Lab Sample ID 255663013
Filename F101119A_10
Injected By BAL
Total Amount Extracted 12.1 g

Total Amount Extracted 12.1 g Matrix Solid % Moisture 5.0 Dilution NA

Dry Weight Extracted 11.5 g Collected 11/09/2010 08:58 **ICAL ID** F101012 Received 11/10/2010 10:00 CCal Filename(s) F101118B_12 & F101119A_17 Extracted 11/16/2010 18:30 Method Blank ID BLANK-26974 Analyzed 11/19/2010 10:28

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.71 8.00		0.34 J 0.34	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	55 61 72
2,3,7,8-TCDD Total TCDD	ND 3.70		0.19 0.19	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	84 88 64
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.40 6.70 44.00	 	0.42 J 0.30 0.36	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	68 66 69 65
1,2,3,7,8-PeCDD Total PeCDD	1.60 12.00		0.30 J 0.30	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	68 61 60
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	18.00 5.60 3.10		0.33 0.47 0.46 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	67 55
1,2,3,7,8,9-HxCDF Total HxCDF	2.80 79.00		0.60 J 0.46	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.40 6.80 3.30 44.00	 	0.22 J 0.30 0.24 J 0.25	2,3,7,8-TCDD-37Cl4	0.20	66
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	56.00 4.90 61.00		0.46 0.88 0.67	Total 2,3,7,8-TCDD Equivalence: 10 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	150.00 250.00		0.18 0.18			
OCDF OCDD	210.00 1300.00		0.39 0.34			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. $J = Estimated \ value$

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID CNF-3-14-3.5 Lab Sample ID 255663014 F101119A_11 Filename Injected By BAL **Total Amount Extracted** 12.2 g Solid Matrix % Moisture Dilution NA 13.6 Dry Weight Extracted Collected 11/09/2010 09:05 10.5 g **ICAL ID** F101012 Received 11/10/2010 10:00 CCal Filename(s) F101118B_12 & F101119A_17 Extracted 11/16/2010 18:30 Method Blank ID BLANK-26974 Analyzed 11/19/2010 11:13

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.70 24.00		0.36 0.36	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	78 85 86
2,3,7,8-TCDD Total TCDD	0.45 40.00		0.20 J 0.20	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	97 102 74
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.70 4.30 47.00		0.65 J 0.20 J 0.42	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	74 76 73 76 72
1,2,3,7,8-PeCDD Total PeCDD	2.20 57.00		0.35 J 0.35	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	72 70 62 58
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	7.40 3.90 2.40		0.45 0.44 J 0.41 J	1,2,3,4,7,8,9-проде-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	69 51
1,2,3,7,8,9-HxCDF Total HxCDF	1.70 49.00		0.47 J 0.44	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	2.40 6.40 3.60 96.00	 	0.32 J 0.33 0.37 J 0.34	2,3,7,8-TCDD-37Cl4	0.20	84
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	31.00 79.00	1.7 	0.36 0.61 I 0.49	Total 2,3,7,8-TCDD Equivalence: 8.4 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	95.00 170.00		0.32 0.32			
OCDF OCDD	76.00 800.00		0.28 0.37			

ND = Not Detected

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID CNF-3-15-3.5 Lab Sample ID 255663015 Filename P101118B_11 Injected By BAL

Total Amount Extracted 12.6 g Matrix Solid % Moisture 8.8 Dilution NA

Dry Weight Extracted 11.5 g Collected 11/09/2010 09:10 **ICAL ID** P100312 Received 11/10/2010 10:00 CCal Filename(s) P101118B_01 & P101118B_17 Extracted 11/16/2010 18:30 Method Blank ID BLANK-26974 Analyzed 11/19/2010 02:39

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 0.25		0.200 0.200 BJ	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	35 R 43 50
2,3,7,8-TCDD Total TCDD	ND ND		0.230 0.230	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	60 64 63
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.14 0.34		0.170 0.091 J 0.130 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	64 64 64
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.120 0.120	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	66 72 64 63
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF		0.170 0.170 0.082	0.082 I 0.080 P 0.074 I	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	70 53
1,2,3,7,8,9-HxCDF Total HxCDF	ND 0.79		0.096 0.083 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND 0.30	0.081 	0.082 0.078 I 0.094 0.085 J	2,3,7,8-TCDD-37Cl4	0.20	46
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.53 ND 1.60		0.059 BJ 0.070 0.064 J	Total 2,3,7,8-TCDD Equivalence: 0.28 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.20 2.30		0.100 J 0.100 J			
OCDF OCDD	1.10 12.00		0.110 BJ 0.130			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

R = Recovery outside target range

P = PCDE Interference

I = Interference present

Solid

NA

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - PASI Seattle

Matrix

Dilution

Client's Sample ID CNF-3-16-3.5
Lab Sample ID 255663016
Filename P101118B_12
Injected By BAL
Total Amount Extracted 13.1 g
% Moisture 13.3

Dry Weight Extracted Collected 11/09/2010 09:15 11.4 g **ICAL ID** P100312 Received 11/10/2010 10:00 CCal Filename(s) P101118B_01 & P101118B_17 Extracted 11/16/2010 18:30 Method Blank ID BLANK-26974 Analyzed 11/19/2010 03:24

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.28 2.90		0.150 J 0.150	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	45 52 52
2,3,7,8-TCDD Total TCDD	ND 5.50		0.130 0.130	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	62 65 61
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.28 0.34 2.80	 	0.130 J 0.095 J 0.110 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00 2.00	60 61 63 65
1,2,3,7,8-PeCDD Total PeCDD	5.10	0.21	0.097 I 0.097	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	67 60 61
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.35	0.35 0.25	0.094 J 0.079 P 0.075 I	1,2,3,4,7,6,9-1 pCDP-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	68 52
1,2,3,7,8,9-HxCDF Total HxCDF	ND 1.30		0.084 0.083 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.25 0.44 0.35 6.30	 	0.110 J 0.110 J 0.090 J 0.100	2,3,7,8-TCDD-37Cl4	0.20	58
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.87 0.10 2.00	 	0.063 J 0.076 J 0.070 J	Total 2,3,7,8-TCDD Equivalence: 0.45 ng/Kg (Using 2005 WHO Factors -	Using PRL/2	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	2.70 5.00		0.120 J 0.120			
OCDF OCDD	1.30 17.00		0.110 BJ 0.120			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

P = PCDE Interference

I = Interference present

Solid

NA

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - PASI Seattle

Matrix

Dilution

Client's Sample ID CNF-3-17-3.5
Lab Sample ID 255663017
Filename F101119A_12
Injected By BAL
Total Amount Extracted 1.25 g
% Moisture 12.5

Dry Weight Extracted Collected 11/09/2010 09:25 1.09 g **ICAL ID** F101012 Received 11/10/2010 10:00 CCal Filename(s) F101118B_12 & F101119A_17 Extracted 11/16/2010 18:30 Method Blank ID BLANK-26974 Analyzed 11/19/2010 11:59

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	100 1200		6.0 6.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	77 88 91
2,3,7,8-TCDD Total TCDD	21 1800		2.3 2.3	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	101 109 76
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1400 12000	320 	5.6 P 2.3 3.9	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	81 73 73
1,2,3,7,8-PeCDD Total PeCDD	230 3500		4.5 4.5	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	69 71 61 57
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	4600 1400 740		17.0 16.0 18.0	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	71 57
1,2,3,7,8,9-HxCDF Total HxCDF	880 23000		12.0 16.0	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	300 1400 660 11000		8.0 12.0 9.6 10.0	2,3,7,8-TCDD-37Cl4	0.20	88
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	11000 1000 26000		13.0 19.0 16.0	Total 2,3,7,8-TCDD Equivalence: 2200 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	30000 52000		2.9 E 2.9 E			
OCDF OCDD	20000 250000		6.7 4.1 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

P = PCDE Interference

E = Exceeds calibration range

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID CNF-3-18-3.5 Lab Sample ID 255663018 P101119A_14 Filename Injected By BAL **Total Amount Extracted** 12.4 g Solid Matrix % Moisture Dilution NA 13.1 Dry Weight Extracted Collected 11/09/2010 09:35 10.8 g **ICAL ID** F101012 Received 11/10/2010 10:00 CCal Filename(s) F101118B_12 & F101119A_17 Extracted 11/16/2010 18:30 Method Blank ID BLANK-26974 Analyzed 11/19/2010 17:55

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 0.560		0.140 0.140 BJ	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	52 56 77
2,3,7,8-TCDD Total TCDD	ND ND		0.170 0.170	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00	92 100 71
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.098 0.300		0.120 0.089 J 0.110 J	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	66 67 74
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.140 0.140	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	78 71 60
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	 ND	0.17 0.21 	0.056 I 0.072 P 0.062	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	66 71 69
1,2,3,7,8,9-HxCDF Total HxCDF	ND 0.600		0.078 0.067 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 0.120 ND 0.900	 	0.098 0.100 J 0.079 0.093 J	2,3,7,8-TCDD-37Cl4	0.20	56
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.550 ND 1.600		0.110 BJ 0.120 0.110 J	Total 2,3,7,8-TCDD Equivalence: 0.25 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.600 3.100		0.100 J 0.100 J			
OCDF OCDD	1.200 17.000		0.150 BJ 0.170			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

P = PCDE Interference

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

CNF-3-19-7.5 Client's Sample ID Lab Sample ID 255663019 F101119A_14 Filename Injected By BAL

Total Amount Extracted 15.7 g Solid Matrix % Moisture Dilution NA 20.8

Dry Weight Extracted 12.5 g Collected 11/09/2010 09:50 **ICAL ID** F101012 Received 11/10/2010 10:00 CCal Filename(s) F101118B_12 & F101119A_17 Extracted 11/16/2010 18:30 Method Blank ID BLANK-26974 Analyzed 11/19/2010 13:31

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	 ND	0.64	0.41 I 0.41	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	66 88 128
2,3,7,8-TCDD Total TCDD	ND ND		0.35 0.35	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	132 151 R 51
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	3.80 27.00	37.00 	0.22 P 0.16 J 0.19	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	59 55 60 52
1,2,3,7,8-PeCDD Total PeCDD	0.35	0.39	0.24 I 0.24 J	1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	60 54 56
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	12.00	2.10 1.10	0.49 0.37 0.35	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	61 47
1,2,3,7,8,9-HxCDF Total HxCDF	2.50 110.00		0.48 J 0.42	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 4.30 0.95 17.00		0.38 0.34 0.31 J 0.34	2,3,7,8-TCDD-37Cl4	0.20	98
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	44.00 4.10 170.00		0.59 1.10 0.83	Total 2,3,7,8-TCDD Equivalence: 5.0 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	90.00 150.00		0.55 0.55			
OCDF OCDD	140.00 490.00		0.50 0.68			

ND = Not Detected Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

P = PCDE Interference

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID CNF-3-20-7.5
Lab Sample ID 255663020
Filename F101119A_03
Injected By BAL

Total Amount Extracted 15.4 g Matrix Solid % Moisture 21.5 Dilution NA

Dry Weight Extracted Collected 11/09/2010 09:58 12.1 g **ICAL ID** F101012 Received 11/10/2010 10:00 CCal Filename(s) F101118B_12 & F101119A_17 Extracted 11/16/2010 18:30 Method Blank ID BLANK-26974 Analyzed 11/19/2010 05:06

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 0.60		0.27 0.27 BJ	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	50 54 62
2,3,7,8-TCDD Total TCDD	ND ND		0.28 0.28	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	69 72 56
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 1.40	0.28 	0.35 0.18 I 0.26 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00 2.00	55 54 57 52
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.22 0.22	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	64 47 47
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	 ND	0.75 0.21	0.18 0.14 0.15	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	52 39 R
1,2,3,7,8,9-HxCDF Total HxCDF	ND 1.20		0.23 0.17 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 0.28 ND 1.90	 	0.22 0.18 J 0.18 0.19 J	2,3,7,8-TCDD-37Cl4	0.20	66
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.30 ND 1.30		0.16 J 0.21 0.19 J	Total 2,3,7,8-TCDD Equivalence: 0.47 ng/Kg (Using 2005 WHO Factors -	Using PRL	/2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	4.70 12.00		0.25 0.25			
OCDF OCDD	4.70 87.00		0.30 J 0.30			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

R = Recovery outside target range

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID CNF-3-21-7.5
Lab Sample ID 255663021
Filename F101119A_04
Injected By BAL

Total Amount Extracted 16.2 g Matrix Solid % Moisture 20.3 Dilution NA

Dry Weight Extracted Collected 11/09/2010 10:10 12.9 g **ICAL ID** F101012 Received 11/10/2010 10:00 CCal Filename(s) F101118B_12 & F101119A_17 Extracted 11/16/2010 18:30 Method Blank ID BLANK-26974 Analyzed 11/19/2010 05:52

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.210 0.210	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	40 45 57
2,3,7,8-TCDD Total TCDD	ND ND		0.190 0.190	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	69 71 53
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND	0.12 	0.190 0.110 I 0.150	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	53 61 58 61 53
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.110 0.110	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	53 71 53 48
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND	0.12	0.100 I 0.096 0.097	1,2,3,4,6,7,8-HpCDD-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	56 43
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		0.160 0.120	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND 0.13		0.120 0.100 0.088 0.100 J	2,3,7,8-TCDD-37Cl4	0.20	50
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.18 ND 0.18		0.130 BJ 0.200 0.170 BJ	Total 2,3,7,8-TCDD Equivalence: 0.23 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.89 2.30		0.280 J 0.280 J			
OCDF OCDD	0.61 6.60		0.280 BJ 0.390 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID CNF-3-22-7.5
Lab Sample ID 255663022
Filename F101119A_05
Injected By BAL
Total Amount Extracted 15.8 g

Total Amount Extracted 15.8 g Matrix Solid % Moisture 15.9 Dilution NA

Dry Weight Extracted Collected 11/09/2010 10:20 13.3 g **ICAL ID** F101012 Received 11/10/2010 10:00 CCal Filename(s) F101118B_12 & F101119A_17 Extracted 11/16/2010 18:30 Method Blank ID BLANK-26974 Analyzed 11/19/2010 06:38

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 0.340		0.140 0.140 BJ	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	57 62 67
2,3,7,8-TCDD Total TCDD	ND ND		0.160 0.160	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	76 79 62
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.150 0.081 0.110	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	68 65 71 62
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.110 0.110	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	62 77 58 58
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.110 ND ND		0.059 J 0.063 0.047	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	64 48
1,2,3,7,8,9-HxCDF Total HxCDF	ND 0.110		0.088 0.064 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND 0.120	 	0.089 0.068 0.074 0.077 J	2,3,7,8-TCDD-37Cl4	0.20	67
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND 0.094		0.052 0.110 0.079 BJ	Total 2,3,7,8-TCDD Equivalence: 0.19 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.250	0.12	0.091 I 0.091 BJ			
OCDF OCDD	0.150	 0.85	0.110 BJ 0.210 I			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID CNF-3-23-7.5 Lab Sample ID 255663023 Filename F101119A_15 Injected By BAL

Total Amount Extracted 16.0 g Matrix Solid % Moisture 22.0 Dilution NA

Dry Weight Extracted 12.5 g Collected 11/09/2010 10:30 **ICAL ID** F101012 Received 11/10/2010 10:00 CCal Filename(s) F101118B 12 & F101119A 17 Extracted 11/16/2010 18:30 Method Blank ID BLANK-26974 Analyzed 11/19/2010 14:18

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	2.10		0.46	2,3,7,8-TCDF-13C	2.00	69
Total TCDF	6.20		0.46	2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00	96 138 R
2,3,7,8-TCDD	ND		0.25	2,3,4,7,8-PeCDF-13C	2.00	139 R
Total TCDD	1.30		0.25	1,2,3,7,8-PeCDD-13C	2.00	158 R
				1,2,3,4,7,8-HxCDF-13C	2.00	60
1,2,3,7,8-PeCDF		73.00	0.16 P	1,2,3,6,7,8-HxCDF-13C	2.00	63
2,3,4,7,8-PeCDF		17.00	0.22 P	2,3,4,6,7,8-HxCDF-13C	2.00	58 65
Total PeCDF	83.00		0.19	1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00	65 59
1,2,3,7,8-PeCDD	0.35		0.22 J	1,2,3,4,7,8-11xCDD-13C 1,2,3,6,7,8-HxCDD-13C	2.00	62
Total PeCDD	3.30		0.22 J	1,2,3,4,6,7,8-HpCDF-13C	2.00	56
			• • • • • • • • • • • • • • • • • • • •	1,2,3,4,7,8,9-HpCDF-13C	2.00	58
1,2,3,4,7,8-HxCDF	44.00		0.27	1,2,3,4,6,7,8-HpCDD-13C	2.00	65
1,2,3,6,7,8-HxCDF	7.50		0.24	OCDD-13C	4.00	54
2,3,4,6,7,8-HxCDF	3.80		0.27 J	4 0 0 4 TODD 40C	2.00	NA
1,2,3,7,8,9-HxCDF Total HxCDF	9.00 390.00		0.37 0.29	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00	NA NA
Total TIXODI	330.00		0.29	1,2,3,7,0,9-11,000-130	2.00	INA
1,2,3,4,7,8-HxCDD		0.36	0.26 I	2,3,7,8-TCDD-37Cl4	0.20	107
1,2,3,6,7,8-HxCDD	12.00		0.21			
1,2,3,7,8,9-HxCDD	1.50		0.25 J			
Total HxCDD	42.00		0.24			
1,2,3,4,6,7,8-HpCDF	130.00		0.63	Total 2,3,7,8-TCDD		
1,2,3,4,7,8,9-HpCDF	10.00		0.86	Equivalence: 13 ng/Kg		
Total HpCDF	430.00		0.74	(Using 2005 WHO Factors -	Using PRL/	2 where ND)
400407011-000	000.00		4.40			
1,2,3,4,6,7,8-HpCDD	260.00 440.00		1.10 1.10			
Total HpCDD	440.00		1.10			
OCDF	530.00		0.45			
OCDD	2300.00		0.40			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

P = PCDE Interference

I = Interference present

Solid

ND = Not Detected

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID CNF-3-24-7.4
Lab Sample ID 255663024
Filename F101119A_06
Injected By BAI

Injected By
Total Amount Extracted
% Moisture

BAL
16.4 g
Matrix
24.4
Dilution

NA Dry Weight Extracted 12.4 g Collected 11/09/2010 10:40 **ICAL ID** F101012 Received 11/10/2010 10:00 CCal Filename(s) F101118B_12 & F101119A_17 Extracted 11/16/2010 18:30 Method Blank ID BLANK-26974 Analyzed 11/19/2010 07:24

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 1.10		0.20 0.20 B	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	66 73 76
2,3,7,8-TCDD Total TCDD	ND 0.50		0.14 0.14 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	89 92 63
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.64 1.80 11.00		0.16 J 0.16 J 0.16	1,2,3,4,7,6-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	70 66 73 60
1,2,3,7,8-PeCDD Total PeCDD	0.33 5.00		0.16 J 0.16	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	70 59 58
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	 1.10	7.1 1.6 	0.18 P 0.21 P 0.19 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	65 55
1,2,3,7,8,9-HxCDF Total HxCDF	0.61 11.00		0.32 J 0.22	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.71 1.30 0.75 22.00		0.18 J 0.17 J 0.21 J 0.19	2,3,7,8-TCDD-37Cl4	0.20	72
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	8.10 0.94 9.00		0.25 0.39 J 0.32	Total 2,3,7,8-TCDD Equivalence: 2.2 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	41.00 160.00		0.91 0.91			
OCDF OCDD	28.00 830.00		0.45 2.00			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

P = PCDE Interference

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID CNF-3-25-10
Lab Sample ID 255663025
Filename P101119A_13
Injected By BAL

Total Amount Extracted 15.5 g Matrix Solid % Moisture 20.7 Dilution NA

Dry Weight Extracted Collected 11/09/2010 09:48 12.3 g **ICAL ID** P100312 Received 11/10/2010 10:00 CCal Filename(s) P101118B_17 & P101119A_17 Extracted 11/16/2010 18:30 Method Blank ID BLANK-26974 Analyzed 11/19/2010 17:09

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 0.30		0.140 0.140 BJ	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	33 R 37 R 39 R
2,3,7,8-TCDD Total TCDD	ND ND		0.170 0.170	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	45 50 46
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.160 0.094 0.130	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	46 46 46 45 48
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.130 0.130	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	46 52 45 43
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND	0.11 	0.099 I 0.100 0.081	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	50 34 R
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		0.110 0.097	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	0.100 0.086 0.098 0.094	2,3,7,8-TCDD-37Cl4	0.20	52
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND 0.26	0.19 	0.085 I 0.110 0.096 BJ	Total 2,3,7,8-TCDD Equivalence: 0.21 ng/Kg (Using 2005 WHO Factors -	Using PRL/:	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.51 1.00		0.120 J 0.120 BJ			
OCDF OCDD	0.41 3.60		0.160 BJ 0.210 BJ			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

R = Recovery outside target range

I = Interference present

Page 35 of 41

Tel: 612-607-1700 Fax: 612-607-6444

Method 8290 Blank Analysis Results

Lab Sample ID Filename

Total Amount Extracted ICAL ID

CCal Filename(s)

BLANK-26969 F101117B_09 10.4 g

F101012 F101117B_02 & F101117B_19 Matrix Solid Dilution NA

Extracted 11/15/2010 15:45 Analyzed 11/17/2010 20:06

Injected By **SMT**

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20 1.40		0.140 J 0.140	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	59 60 67
2,3,7,8-TCDD Total TCDD	ND ND		0.160 0.160	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	81 80 63
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.22	0.13 	0.190 0.120 I 0.160 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	71 68 76 59
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.092 0.092	1,2,3,4,7,6-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	76 57 54
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.17 ND ND		0.098 J 0.095 0.078	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	55 54
1,2,3,7,8,9-HxCDF Total HxCDF	0.12 0.41		0.110 J 0.095 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	0.071 0.069 0.088 0.076	2,3,7,8-TCDD-37Cl4	0.20	57
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND	0.11 	0.077 I 0.120 0.097	Total 2,3,7,8-TCDD Equivalence: 0.22 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.15 0.15		0.140 J 0.140 J			
OCDF OCDD		0.42 0.74	0.120 I 0.090 I			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Blank Analysis Results

Matrix

Dilution

Solid

NA

Lab Sample ID BLANK-26974
Filename P101118B_06

Total Amount Extracted 10.1 g Extracted 11/16/2010 18:30 ICAL ID P100312 Analyzed 11/18/2010 22:50

CCal Filename(s) P101118B_01 & P101118B_17 Injected By BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 0.200		0.095 0.095 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	52 58 57
2,3,7,8-TCDD Total TCDD	ND ND		0.110 0.110	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	66 69 68
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.120 0.076 0.099	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	68 66 69
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.084 0.084	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	72 73 68
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.054 0.049 0.052	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	69 75 57
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		0.056 0.053	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	0.071 0.073 0.063 0.069	2,3,7,8-TCDD-37Cl4	0.20	60
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.071 ND 0.071		0.041 J 0.059 0.050 J	Total 2,3,7,8-TCDD Equivalence: 0.14 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.140	0.11	0.062 I 0.062 J			
OCDF OCDD	0.170 0.560		0.063 J 0.130 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted

ICAL ID
CCal Filename(s)
Method Blank ID

LCS-26970 F101118A_16 10.3 g

F101012 F101117B_19 & F101118A_18 BLANK-26969 Matrix Solid
Dilution NA
Extracted 11/15

Extracted 11/15/2010 15:45 Analyzed 11/18/2010 16:01 Injected By SMT

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.26	128	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.0 2.0 2.0	61 66 74
2,3,7,8-TCDD Total TCDD	0.20	0.20	100	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.0 2.0 2.0 2.0	85 97 68
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.2 1.1	117 111	1,2,3,4,7,6-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.0 2.0 2.0 2.0 2.0	68 67 72 68
1,2,3,7,8-PeCDD Total PeCDD	1.0	1.1	106	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.0 2.0 2.0 2.0	58 61 62
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	1.0 1.0 1.0 1.0	1.1 1.1 1.1 1.1	107 115 112 111	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.0 4.0 2.0 2.0	68 53 NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	1.1 1.1 1.3	109 111 128	2,3,7,8-TCDD-37Cl4	0.20	61
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.1 1.1	111 108			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	1.0	101			
OCDF OCDD	2.0 2.0	2.5 2.5	125 123			

Qs = Quantity Spiked Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)
R = Recovery outside of target range

Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable
* = See Discussion

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted

P101118B_02 10.3 g P100312

LCS-26975

Matrix Dilution Extracted Solid NA 11/16/2010 18:

ICAL ID CCal Filename(s) Method Blank ID

P101118B_01 & P101118B_17 BLANK-26974 Extracted 11/16/2010 18:30 Analyzed 11/18/2010 19:48

Injected By BAL

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.23	113	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.0 2.0 2.0	33 R 39 R 52
2,3,7,8-TCDD Total TCDD	0.20	0.22	108	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.0 2.0 2.0 2.0	64 69 71
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.1 1.1	112 107	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.0 2.0 2.0 2.0 2.0	73 73 76 76
1,2,3,7,8-PeCDD Total PeCDD	1.0	0.98	98	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.0 2.0 2.0	79 75 78
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.0 1.0 1.0	1.1 1.1 1.1	113 112 113	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.0 4.0	89 67
1,2,3,7,8,9-HxCDF Total HxCDF	1.0	1.1	115	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.0 2.0	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	1.1 1.1 1.1	108 107 113	2,3,7,8-TCDD-37Cl4	0.20	41
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.1 1.1	112 109			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	1.0	104			
OCDF OCDD	2.0 2.0	2.3 2.3	114 113			

Qs = Quantity Spiked Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)
R = Recovery outside of target range

Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable

* = See Discussion

Method 8290 Spiked Sample Report

Client - PASI Seattle

Client's Sample ID CNF-3-6-1-MS
Lab Sample ID 255663006-MS
Filename P101118B_14
Total Amount Extracted 13.5 g

Total Amount Extracted 13.5 g
ICAL ID P100312

CCal Filename(s) P101118B_01 & P101118B_17

Method Blank ID BLANK-26974

Matrix Solid Dilution NA

Extracted 11/16/2010 18:30 Analyzed 11/19/2010 04:56

Injected By BAL

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20	0.24	118	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	76 86 74
2,3,7,8-TCDD	0.20	0.22	109	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	80 89 79
1,2,3,7,8-PeCDF	1.00 1.00	1.14 1.09	114 109	1,2,3,6,7,8-HxCDF-13C	2.00	77
2,3,4,7,8-PeCDF	1.00	1.09	109	2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00	75 77
1,2,3,7,8-PeCDD	1.00	1.00	100	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	82 82 74
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	1.14 1.19 1.16	114 119 116	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	73 83 59
1,2,3,7,8,9-HxCDF	1.00	1.16	116	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	1.00 1.00 1.00	1.06 1.10 1.11	106 110 111	2,3,7,8-TCDD-37Cl4	0.20	89
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	1.00 1.00	1.14 1.09	114 109			
1,2,3,4,6,7,8-HpCDD	1.00	1.11	111			
OCDF OCDD	2.00 2.00	2.22 2.85	111 143			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

Method 8290 Spiked Sample Report

Client - PASI Seattle

Client's Sample ID
Lab Sample ID
Filename
Total Amount Extracted

CNF-3-6-1-MSD 255663006-MSD P101118B_15

Total Amount Extracted ICAL ID

13.4 g P100312 P101118B_01 & P101119B_17 Matrix Solid Dilution NA

ICAL ID P100312

CCal Filename(s) P101118B_01 & P101

Method Blank ID BLANK-26974

Extracted 11/16/2010 18:30 Analyzed 11/19/2010 05:42

Injected By BAL

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20	0.24	120	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	74 84 72
2,3,7,8-TCDD	0.20	0.22	112	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	74 85 76
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	1.00 1.00	1.19 1.13	119 113	1,2,3,4,7,8-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	73 71 71 82
1,2,3,7,8-PeCDD	1.00	1.02	102	1,2,3,4,7,6-FIXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	62 77 65 57
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	1.15 1.22 1.18	115 122 118	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	70 33 R
1,2,3,7,8,9-HxCDF	1.00	1.16	116	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	1.00 1.00 1.00	1.08 1.12 1.13	108 112 113	2,3,7,8-TCDD-37Cl4	0.20	90
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	1.00 1.00	1.19 1.14	119 114			
1,2,3,4,6,7,8-HpCDD	1.00	1.21	121			
OCDF OCDD	2.00 2.00	2.48 3.30	124 165			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures. R = Recovery outside target range

REPORT OF LABORATORY ANALYSIS

Method 8290 Spike Sample Results

Client - PASI Seattle

Client Sample ID Lab Sample ID MS ID MSD ID CNF-3-6-1 255663006 255663006-MSD

Sample Filename MS Filename MSD Filename P101118B_13 P101118B_14 P101118B_15 Dry Weights
Sample Amount 12.8 g
MS Amount 12.5 g
MSD Amount 12.4 g

	Sample Conc.	MS/MSD Qs	MS Qm	MSD Qm		Backgrou	und Subtracted	
Analyte	ng/Kg	(ng)	(ng)	(ng)	RPD	MS % Rec.	MSD % Rec.	RPD
2,3,7,8-TCDF	0.122	0.20	0.24	0.24	1.5	118	119	1.5
2,3,7,8-TCDD	0.000	0.20	0.22	0.22	3.3	109	112	3.3
1,2,3,7,8-PeCDF	0.000	1.00	1.14	1.19	3.9	114	119	3.9
2,3,4,7,8-PeCDF	0.182	1.00	1.09	1.13	3.5	109	113	3.5
1,2,3,7,8-PeCDD	0.000	1.00	1.00	1.02	2.1	100	102	2.1
1,2,3,4,7,8-HxCDF	0.310	1.00	1.14	1.15	1.0	113	114	1.0
1,2,3,6,7,8-HxCDF	0.000	1.00	1.19	1.22	1.9	118	121	1.9
2,3,4,6,7,8-HxCDF	0.179	1.00	1.16	1.18	1.5	116	118	1.5
1,2,3,7,8,9-HxCDF	0.096	1.00	1.16	1.16	0.4	115	116	0.4
1,2,3,4,7,8-HxCDD	0.120	1.00	1.06	1.08	1.4	106	108	1.4
1,2,3,6,7,8-HxCDD	0.416	1.00	1.10	1.12	1.7	110	112	1.7
1,2,3,7,8,9-HxCDD	0.194	1.00	1.11	1.13	1.9	110	112	1.9
1,2,3,4,6,7,8-HpCDF	2.190	1.00	1.14	1.19	4.1	112	117	4.2
1,2,3,4,7,8,9-HpCDF	0.202	1.00	1.09	1.14	3.7	109	113	3.7
1,2,3,4,6,7,8-HpCDD	7.970	1.00	1.11	1.21	8.4	101	111	9.2
OCDF '	5.800	2.00	2.22	2.48	10.7	108	120	11.1
OCDD	63.400	2.00	2.85	3.30	14.4	103	126	19.5

Definitions

MS = Matrix Spike MSD = Matrix Spike Duplicate

Qm = Quantity Measured Qs = Quantity Spiked

% Rec. = Percent Recovery RPD = Relative Percent Difference

NA = Not Applicable

NC = Not Calculated

CDD = Chlorinated dibenzo-p-dioxin CDF = Chlorinated dibenzo-p-furan

T = Tetra Pe = Penta Hx = Hexa

Hp = Hepta O = Octa

	Sample Cond	ilion Upon Rec	elpt	
Pace Analytical Client Name:	2	C	Drain at #	255663
Pace Analytical Client Name:			Project #	
		□ n O#	PC5	
Courier: Fed Ex UPS USPS Clien	t UCommercial	Pace Other		
Tracking #:	No Seals	intact: Yes	□ No	
	_		Temp. Blank Yes	No
Packing Material: Bubble Wrap Bubble		\	Samples on ice, cooli	
Thermometer Used 132013 of 101731962 on 226099		is Frozen: Yes No	Date and Initials	of person examining
Cooler Temperature 5.5 Temp should be above freezing ≤ 6℃	Biological Hasac	Comments:	contents:	US (1) 4
Chain of Custody Present:	DYes □No □N/A			
Chain of Custody Fresent. Chain of Custody Filled Out:	Yes DNo DN/A			
Chain of Custody Relinquished:	ØYes □No □N/A			
Sampler Name & Signature on COC:	Yes DNo DN/A			
Samples Arrived within Hold Time:	ØYes □No □N/A	5.		
Short Hold Time Analysis (<72hr):	□Yes □Ko □N/A	6.		
Rush Turn Around Time Requested:	□Yes ØNo •N/A	7.		
Sufficient Volume:	PAes □No □N/A	8.		,1
Correct Containers Used:	□¥es □No □N/A	9.		,
-Pace Containers Used:	ØYes □No □N/A			
Containers Intact:	ØYes □No □N/A	10.		
Filtered volume received for Dissolved tests	□Yes □No □N/A	11.		
Sample Labels match COC:	DYes DNo DN/A	12.		
-Includes date/time/ID/Analysis Matrix:	Soil			•
All containers needing preservation have been checked.	□Yes □No ØN/A	13.		
All containers needing preservation are found to be in	□Yes □No □NA			
compliance with EPA recommendation.		Initial when	Lot # of added	
Exceptions: VOA, coliform, TOC, O&G		completed	preservative	
Samples checked for dechlorination:	□Yes □No □NIA	14.		
Headspace in VOA Vials (>6mm):	□Yes □No □NIA	15.		
Trip Blanks Present:	□Yes ☑No □N/A	16.		
Trip Blank Custody Seals Present	□Yes □No □N/A			
Pace Trip Blank Lot # (if purchased):				
Client Notification/ Resolution:		, 1	Field Data Required?	Y / N
Person Contacted: JoSh	Date	/Time: 11/9/10)	
Comments/ Resolution:		-	<i></i>	
Dioxins need 10-day	TAT! +;	20% mark	up. Ole.	
			•	
				· · · · · · · · · · · · · · · · · · ·
	2.2.8		Date:	alio
Project Manager Review:	JK0972		Date. M	-410

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e out of hold, incorrect preservative, out of temp, incorrect containers)

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

ITEM# 3 Requested Due Date/TAT: Ճ Required Client Information: 360-534-120 Fax: 360-943-7513 Email To: Ste 420 724 Columbia Required Client Information CNF-3-2-1. CNE-3-(A-Z, 0-9 / ,-)
Sample IDs MUST BE UNIQUE CNE-3-7-CNF -3.5-CAK-3 CNT-3-4-・ゴアン SAMPLE ID NF-3-12 ture 6 runcald, con ADDITIONAL COMMENTS Olympia, WA -8-8-1 & 1 3-10 Ĺ -3-1.5 1 6 -11-7 Waste Water Product Soil/Solid Oil Wipe Air Tissue Other 2. Ū Drinking Water Matrix Codes
MATRIX / CODE ORIGINAL Copy To: Required Project Information: Project Number Project Name: Purchase Order No.: Section B 97886688 Coch 75 RELINQUISHED BY / AFFILIATION MATRIX CODE (see valid codes to left) Josh Jon 2 SAMPLE TYPE (G=GRAB C=COMP) 2 DATE COMPOSITE START 2000 Johnson SAMPLER NAME AND SIGNATURE TIME COLLECTED 501 25 SIGNATURE of SAMPLER: PRINT Name of SAMPLER: 11/9/10 DATE COMPOSITE END/GRAB 6 8:43 84.8 8:15 1/2/0 B: 52 8:35 8:28 02:00 8:32 8 11 9 10 200 800 Ź I ME DATE ō SAMPLE TEMP AT COLLECTION Address: 724 Reference: Pace Project Company Name: Section C で20 Attention: Invoice Information: Soih ace Profile #: ace Quote # OF CONTAINERS TIME Unpreserved 0 H₂SO, Preservatives HNO₃ 2054 HCI 1407h Colan 2011 TO 101 NaOH ۶ Na₂S₂O₃ ACCEPTED BY / AFFILIATION Methanol 200 Other 6 loursor Y/N 🛮 Analysis Test 🌡 St Nic DATE Signed (MM/DD/YY): Requested Analysis Filtered (Y/N) REGULATORY AGENCY Site Location = TSU ã **NPDES** STATE: DATE 19/10 ō $\tilde{0}$ 140V TIME RCRA S **GROUND WATER** $\mathcal{W}\mathcal{A}$ Page: Temp in °C Residual Chlorine (Y/N) Received on 391158 SAMPLE CONDITIONS Ice (Y/N) Pace Project No./ Lab I.D. **~** 잌 رح OTHER DRINKING WATER
OTHER CC Custody Sealed Cooler 2 (Y/N) T W رت دري Samples Intact (Y/N)

*Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any afficiency not paid within 30 days.

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

								12	1	10	9	8	7	6	C)1	4	ω	2	-	ITEM#			Requ	^γ γ _P g	Emai		Addr	Company:	Sect
	(ADDITIONAL COMMENTS	CNF-3-24-75	6-3-23-	CNF-3-22-7,5	CNF-3-21 - 7,5	- 20 - 7	CNF-3-19-7.5	CNF-3-18-3.5	15-3-1	CNF-3-16-35	CNF-3-15-3.5	CNF-3-14-3,5	CNF-3-13-35	Dinking Water Water Water Waste Water Waste Water Waste Water Product Soil/Solid Oil Wipe (A-Z, 0-9 /) Sample IDs MUST BE UNIQUE Tissue Other	Section D Matrix Codes Required Client Information MATRIX / CODE			ax 860-943-7513	1 turk@ bouncald, com	420 O/m	bia Stava	+ (- 1 dwg 11	Section A
	September 19 Mary 19 and 19 Mary 19 and 19 Mary 19 Mar		-	0	X. Cotheral	X	RELINQUISHED BY / AFFILIATION	4	Declaration of the state of the										SL G	コプラミロ (see valid codes SAMPLE TYPE (G=GRAB C=CC	to left)		Project Number:	Project Name:	Purchase Order No.:		N N		Section B
SIGNATURE of SAMPLER:	PRINT Name of SAMPLER:	SAMPLER NAME AND SIGNATURE			nt pes In	2 (BC)	Y / AFFILIATION	\$ 10	10	<i>jo</i>	10	9:	, 9	2	9.	27.6	9:/0	9	11/9/10 8	POSITE COMPOSITE ENDIGRAB	COLLECTED			Soils			Tohnson	2/4	
SAMPLER:	SAMPLER:	IGNATURE			19/10/1520	1/9/10 14205	DATE TIME	10,140 V V	10:30	10:20	10:10	9:58	9:50	9:35	9:25	\[\text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \qq	0	9:05	8:58 / X	SAMPLE TEMP AT COLLECTION # OF CONTAINERS Unpreserved H ₂ SO ₄			Pace Profile #:	Pace Project Manager:	Pace Quote Reference:	Address: 724 C	Company Name:	Attention:	Section C
	on The			/) Just	K. Corti	АССЕРТЕ													HNO ₃ HCI NaOH Na ₂ S ₂ O ₃ Methanol Other	Preservatives					an	סניטיאר ל (756	
DATE Signed (MM/DD/YY):	Y			\	had Juley	1ght	ACCEPTED BY / AFFILIATION	<										Policy I	×	Analysis Test I	Y/N	1			- 1	·		Tahason	
olj 6/11				//	11/9/10 15	111 9110 14	DATE T															Requested Analysis Filtered (STATE: -	Site Location	UST	NPDES	REGULATORY AGENCY		
Ter	mp in	°C			1520 555	S	TIME													Residual Chlorine (Y/N)		(Y/N)	73	<u> </u>	RCRA	GROUND WATER	SENCY		Page:
	eived e (Y/N				<u>-ر</u>		SAMP																		हि	VTER		139	7
Seal	ustod ed Co (Y/N)	oler			ح		SAMPLE CONDITIONS		tanga.											5 5 6 Project N					OTHER .	DRINKING WATER		139115	(N
	oles Ii (Y/N)	ntact		,	4		SNC													2 5 5 6 6 3 Pace Project No./ Lab I.D.					でして	3 WATER		*****	6

*Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

ITEM# Phone: 360 - 534 - 1206 5 Section A 햐 9 ω Requested Due Date/TAT: Required Client Information: Address: Cola, Company: mail To: 54,420 Required Client Information (A-Z, 0-9 / ,-)
Sample IDs MUST BE UNIQUE Bownt, SAMPLE ID たんの ADDITIONAL COMMENTS Ohmoia 1 360-943-75B Sown cald, con 1 25 2 52.0 Soil/Solid Oil Wipe Air Tissue Other Waste Water Product Drinking Water Matrix Codes
MATRIX / CODE ORIGINAL Copy To: Required Project Information Project Number: Project Name: Purchase Order No.: Section B 973A4666A44 ਨ MATRIX CODE RELINQUISHED BY / AFFILIATION (see valid codes to left) Joh Josh 0 SAMPLE TYPE (G=GRAB C=COMP) LSC L 1 duch DATE COMPOSITE START SAMPLER NAME AND SIGNATURE Johnson TIME COLLECTED るなっ 7 SIGNATURE of SAMPLER: PRINT Name of SAMPLER: 11/9/10 DATE COMPOSITE END/GRAB V 1119 9:40 01/2/11 IIME DATE ō SAMPLE TEMP AT COLLECTION Company Name: Pace Quote
Reference:
Pace Project
Manager:
Pace Profile #: Section C 1520 Address: Invoice Information ? 8 # OF CONTAINERS Ħ Unpreserved 477 H₂SO₄ Preservatives HNO₃ 054 HÇI yoth NaOH 6 Na₂S₂O₃ ACCEPTED BY / AFFILIATION Methanol Other しつなんなのし S. C. Y/ N 🕽 Analysis Test DATE Signed (MM/DD/YY): Requested Analysis Filtered (Y/N) 3 REGULATORY AGENCY Site Location UST NPDES DATE STATE: ۵ 10 5 S0h1 TIME ₹ 8 RCRA **GROUND WATER** Page: Temp in °C Residual Chlorine (Y/N) M Received on 391156 SAMPLE CONDITIONS Ice (Y/N) Pace Project No./ Lab I.D. ~ 앜 Custody ርፓን OTHER DRINKING WATER 7 Sealed Cooler J (Y/N) \bigcirc W いつり ത Samples Intact (Y/N)

*Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for an injoices not paid within 30 days.

Sample Container Count

CLIENT: BY C

COC PAGE 1 of 3 CT 115 8

Face Analytical*

255663

12	<u>-</u>	10	9	ω	7	თ	CT1	4	ω	2	_	Item
												VG9H
												AG1H
												AG1U
												BG1H BP1U BP2U
												BP1U
					,							BP3U
												BP2N
												BP2S
<								į				
												WGFU WGKU
Trip Blank? No]								
0		The state of the s							Andrew - Tiple of the Control of the			Comments

BP20 500mL NaOH plastic	BP2N 500mL HNO3 plastic	BP1Z 1 liter NaOH, Zn, Ac	BP1U 1 liter unpreserved plastic	BP1S 1 liter H2SO4 plastic	BP1N 1 liter HNO3 plastic	BG1U 1 liter unpreserved glass	BG1H 1 liter HCL clear glass	AG3S 250mL H2SO4 amber glass	AG2U 500mL unpreserved amber glass	AG2S 500mL H2SO4 amber glass	AG1U 1liter unpreserved amber glass	AG1H 1 liter HCL amber glass
I Wipe/Swab	DG9U 40mL unpreserved amber vial	DG9T 40mL Na Thio amber vial	DG9M 40mL MeOH clear vial	DG9H 40mL HCL amber voa vial	DG9B 40mL Na Bisulfate amber vial	BP3U 250mL unpreserved plastic	BP3S 250mL H2SO4 plastic	BP3N 250mL HNO3 plastic	BP3C 250mL NaOH plastic	BP2Z 500mL NaOH, Zn Ac	BP2U 500mL unpreserved plastic	BP2S 500mL H2SO4 plastic
		ZPLC Ziploc Bag	WGFX 4oz wide jar w/hexane wipe	WGFU 4oz clear soil jar	VSG Headspace septa vial & HCL	VG9W 40mL glass vial preweighted (EPA 5035)	VG9U 40mL unpreserved clear vial	VG9T 40mL Na Thio. clear vial	VG9H 40mL HCL clear vial	U Summa Can	R terra core kit	JGFU 4oz unpreserved amber wide

1

Sample Container Count

CLIENT: BAC COC PAGE 2 of 3

Face Analytical "

255663

12	 10	9	8	7	o	CJ1	4	ω	2	 Item
										VG9H
								:		AG1H AG1U BG1H BP1U BP2U BP3U
										AG1U
										BG1H
										BP1U
										BP2U
				,						BP3U
										BP2N
										BP2S
e				*********			<u></u>			 WGFL
										BP2S WGFU WGKU
		1								-
							,			
Trip Bla										
Trip Blank? 💫 o										
0										Comments
		No. of Contract of								Ś
				:						

BP2O 500mL NaOH plastic I Wipe/Swab	BP2N 500mL HNO3 plastic DG9U 40mL unpreserved amber vial	BP1Z 1 liter NaOH, Zn, Ac DG9T 40mL Na Thio amber vial	BP1U 1 liter unpreserved plastic DG9M 40mL MeOH clear vial	BP1S 1 liter H2SO4 plastic DG9H 40mL HCL amber voa vial	BP1N 1 liter HNO3 plastic DG9B 40mL Na Bisulfate amber vial	BG1U 1 liter unpreserved glass BP3U 250mL unpreserved plastic	BG1H 1 liter HCL clear glass BP3S 250mL H2SO4 plastic	AG3S 250mL H2SO4 amber glass BP3N 250mL HNO3 plastic	AG2U 500mL unpreserved amber glass BP3C 250mL NaOH plastic	AG2S 500mL H2SO4 amber glass BP2Z 500mL NaOH, Zn Ac	AG1U 1liter unpreserved amber glass BP2U 500mL unpreserved plastic	AGIN I IIIEI HOL ailibei glass BF2S Suumi H2SO4 piasiic
		ZPLC Ziploc Bag	WGFX 4oz wide jar w/hexane wipe	WGFU 4oz clear soil jar	VSG Headspace septa vial & HCL	VG9W 40mL glass vial preweighted (EPA 5035)	VG9U 40mL unpreserved clear vial	VG9T 40mL Na Thio, clear vial	VG9H 40mL HCL clear vial	U Summa Can	R terra core kit	JGFU 40Z unpreserved amber wide

.. H

CLIENT: BA C

COC PAGE 5 of 5

COC ID# 1301156

Face Analytical

255663

12	11	10	9	8	7	o ,	(J)	4	ω	2	ے	ltem
												VG9H
												AG1H AG1U BG1H BP1U BP2U BP3U
												AG1U
												BG1H
												BP1U
												BP2U
					,							BP3U
												BP2N
												BP2S
								1				WGFU
								,				BP2S WGFU WGKU
			4									
								·				
Trip Blank? イソっ												
?	>			:			-					င္ပ
6												Comments
					: : : :				And the state of t			

BP20 500mL NaOH plastic	BP2N 500mL HNO3 plastic	BP1Z 1 liter NaOH, Zn, Ac	BP1U 1 liter unpreserved plastic	BP1S 1 liter H2SO4 plastic	BP1N 1 liter HNO3 plastic	BG1U 1 liter unpreserved glass	BG1H 1 liter HCL clear glass	AG3S 250mL H2SO4 amber glass	AG2U 500mL unpreserved amber glass	AG2S 500mL H2SO4 amber glass	AG1U 1liter unpreserved amber glass	AG1H 1 liter HCL amber glass
I Wipe/Swab	DG9U 40mL unpreserved amber vial	DG9T 40mL Na Thio amber vial	DG9M 40mL MeOH clear vial	DG9H 40mL HCL amber voa vial	DG9B 40mL Na Bisulfate amber vial	BP3U 250mL unpreserved plastic	BP3S 250mL H2SO4 plastic	BP3N 250mL HNO3 plastic	BP3C 250mL NaOH plastic	BP2Z 500mL NaOH, Zn Ac	BP2U 500mL unpreserved plastic	BP2S 500mL H2SO4 plastic
		ZPLC Ziploc Bag	WGFX 4oz wide jar w/hexane wipe	WGFU 4oz clear soil jar	VSG Headspace septa vial & HCL	VG9W 40mL glass vial preweighted (EPA 5035)	VG9U 40mL unpreserved clear vial	VG9T 40mL Na Thio. clear vial	VG9H 40mL HCL clear vial	U Summa Can	R terra core kit	JGFU 4oz unpreserved amber wide

1

January 26, 2011

Joshua Johnson Brown & Caldwell 724 Columbia St. NW#420 Olympia, WA 98501

RE: Project: HOCM 138130

Pace Project No.: 256348

Dear Joshua Johnson:

Enclosed are the analytical results for sample(s) received by the laboratory on January 22, 2011. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jennifer Gross

jennifer.gross@pacelabs.com Project Manager

ENNI (TROSS

Enclosures

cc: Jon Turk, Brown & Caldwell

Seattle, WA 98108 (206)767-5060

CERTIFICATIONS

Project: HOCM 138130

Pace Project No.: 256348

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

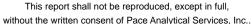
A2LA Certification #: 2926.01
Alaska Certification #: UST-078
Alaska Certification #: UST-078
Alaska Certification #: MN00064
Arizona Certification #: 88-0680
California Certification #: 01155CA
EPA Region 8 Certification #: Pace
Florida/NELAP Certification #: E87605
Georgia Certification #: 959
Idaho Certification #: MN00064
Illinois Certification #: 200011
Iowa Certification #: 368
Kansas Certification #: E-10167
Louisiana Certification #: D3086
Louisiana Certification #: LA080009
Maine Certification #: 2007029
Maryland Certification #: 322

Michigan DEQ Certification #: 9909

Mississippi Certification #: Pace

Minnesota Certification #: 027-053-137

Nevada Certification #: MN_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New Mexico Certification #: Pace New York Certification #: 11647 North Carolina Certification #: 530 North Dakota Certification #: R-036 North Dakota Certification #: R-036A Ohio VAP Certification #: CL101 Oklahoma Certification #: D9921 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification Tennessee Certification #: 02818 Texas Certification #: T104704192


Montana Certification #: MT CERT0092

Washington Certification #: C754
Wisconsin Certification #: 999407970

A2LA cert#

REPORT OF LABORATORY ANALYSIS

Page 2 of 11

SAMPLE ANALYTE COUNT

Project: HOCM 138130

Pace Project No.: 256348

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
256348001	CNF 2-1A-2	EPA 6020	RJS	4	PASI-M
		% Moisture	JDL	1	PASI-M
256348002	CNF 2-2A-1.75	EPA 6020	RJS	4	PASI-M
		% Moisture	JDL	1	PASI-M
256348003	CNF 2-3A-1.75	EPA 6020	RJS	4	PASI-M
		% Moisture	JDL	1	PASI-M
256348004	CNF 2-4A-10	EPA 6020	RJS	4	PASI-M
		% Moisture	JDL	1	PASI-M
256348005	CNF 2-6A-5	EPA 6020	RJS	4	PASI-M
		% Moisture	JDL	1	PASI-M
256348006	CNF 2-7A-9	EPA 6020	RJS	4	PASI-M
		% Moisture	JDL	1	PASI-M
256348007	CNF 2-8A-5	EPA 6020	RJS	4	PASI-M
		% Moisture	JDL	1	PASI-M
256348008	CNF 2-9A-9.5	EPA 6020	RJS	4	PASI-M
		% Moisture	JDL	1	PASI-M
256348009	CNF 2-10A-5	EPA 6020	RJS	4	PASI-M
		% Moisture	JDL	1	PASI-M
256348010	DUP	EPA 6020	RJS	4	PASI-M
		% Moisture	JDL	1	PASI-M
256348011	CNF-2-5A-9	EPA 6020	RJS	4	PASI-M
		% Moisture	JDL	1	PASI-M

Project: HOCM 138130
Pace Project No.: 256348

Sample: CNF 2-1A-2	Lab ID: 25	56348001	Collected:	01/21/1	1 10:53	Received: 01	/22/11 11:33 N	/latrix: Solid	
Results reported on a "dry-wei	ght" basis								
Parameters	Results	Units	Repo	rt Limit	DF	Prepared	Analyzed	CAS No.	Qua
6020 MET ICPMS	Analytical Mo	ethod: EPA 60	020						
Arsenic	3.9	mg/kg		0.46	20	01/24/11 08:53	01/25/11 02:28	7440-38-2	
Copper	17.5	mg/kg		0.46	20	01/24/11 08:53	01/25/11 02:28	7440-50-8	
Lead		mg/kg		0.46	20	01/24/11 08:53	01/25/11 02:28	7439-92-1	
Nickel	18.4	mg/kg		0.46	20	01/24/11 08:53	01/25/11 02:28	7440-02-0	
Dry Weight	Analytical Mo	ethod: % Mois	sture						
Percent Moisture	8.9	%		0.10	1		01/24/11 00:00		
Sample: CNF 2-2A-1.75	Lab ID: 25	56348002	Collected:	01/21/1	1 10:57	Received: 01	/22/11 11:33 N	Matrix: Solid	
Results reported on a "dry-wei	ght" basis								
Parameters	Results	Units	Repo	rt Limit	DF	Prepared	Analyzed	CAS No.	Qua
6020 MET ICPMS	Analytical Mo	ethod: EPA 60	020						
Arsenic	2.9	mg/kg		0.43	20	01/24/11 08:53	01/25/11 03:12	7440-38-2	
Copper	17.6	mg/kg		0.43	20	01/24/11 08:53	01/25/11 03:12	7440-50-8	
Lead	6.4	mg/kg		0.43	20	01/24/11 08:53	01/25/11 03:12	7439-92-1	
Nickel	29.9	mg/kg		0.43	20	01/24/11 08:53	01/25/11 03:12	7440-02-0	
Dry Weight	Analytical Mo	ethod: % Mois	sture						
Percent Moisture	14.4	%		0.10	1		01/24/11 00:00		
Sample: CNF 2-3A-1.75	Lab ID: 25	56348003	Collected:	01/21/1	1 11:02	Received: 01	/22/11 11:33 N	Matrix: Solid	
Results reported on a "dry-wei	ght" basis								
Parameters	Results	Units	Repo	rt Limit	DF	Prepared	Analyzed	CAS No.	Qua
6020 MET ICPMS	Analytical Mo	ethod: EPA 60	020						
Arsenic	3.8	mg/kg		0.42	20	01/24/11 08:53	01/25/11 03:17	7440-38-2	
Copper	20.2	mg/kg		0.42	20	01/24/11 08:53	01/25/11 03:17	7440-50-8	
Lead		mg/kg		0.42	20	01/24/11 08:53	01/25/11 03:17	7439-92-1	
Nickel	25.5	mg/kg		0.42	20	01/24/11 08:53	01/25/11 03:17	7440-02-0	
Dry Weight	Analytical Mo	ethod: % Mois	sture						
Percent Moisture	7.9	%		0.10	1		01/24/11 00:00		

Date: 01/26/2011 03:54 PM

REPORT OF LABORATORY ANALYSIS

Page 4 of 11

Project: HOCM 138130
Pace Project No.: 256348

Sample: CNF 2-4A-10	Lab ID: 2	56348004	Collected:	01/21/1	1 11:57	Received: 01	/22/11 11:33 N	/latrix: Solid	
Results reported on a "dry-wei	ight" basis								
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical M	lethod: EPA 602	20						
Arsenic	6.8	mg/kg		2.3	20	01/24/11 08:53	01/25/11 03:21	7440-38-2	
Copper	10.7	mg/kg		2.3	20	01/24/11 08:53	01/25/11 03:21	7440-50-8	
Lead	4.0	mg/kg		2.3	20	01/24/11 08:53	01/25/11 03:21	7439-92-1	
Nickel	7.3	mg/kg		2.3	20	01/24/11 08:53	01/25/11 03:21	7440-02-0	
Dry Weight	Analytical M	lethod: % Moist	ure						
Percent Moisture	83.1	%		0.10	1		01/24/11 00:00		
Sample: CNF 2-6A-5	Lab ID: 2	56348005	Collected:	01/21/1	1 12:31	Received: 01	/22/11 11:33 N	Matrix: Solid	
Results reported on a "dry-wei	ight" basis								
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qua
6020 MET ICPMS	Analytical M	lethod: EPA 602	20						
Arsenic	6.4	mg/kg		0.61	20	01/24/11 08:53	01/25/11 03:26	7440-38-2	
Copper	28.7	mg/kg		0.61	20	01/24/11 08:53	01/25/11 03:26	7440-50-8	
Lead	4.2	mg/kg		0.61	20	01/24/11 08:53	01/25/11 03:26	7439-92-1	
Nickel	38.4	mg/kg		0.61	20	01/24/11 08:53	01/25/11 03:26	7440-02-0	
Dry Weight	Analytical M	lethod: % Moist	ure						
Percent Moisture	20.6	%		0.10	1		01/24/11 00:00		
Sample: CNF 2-7A-9	Lab ID: 2	56348006	Collected:	01/21/1	1 12:35	Received: 01	/22/11 11:33 N	Matrix: Solid	
Results reported on a "dry-wei	ight" basis								
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qua
6020 MET ICPMS	Analytical M	lethod: EPA 602	20						
Arsenic	5.3	mg/kg		2.2	20	01/24/11 08:53	01/25/11 03:30	7440-38-2	
Copper	4.7	mg/kg		2.2	20	01/24/11 08:53	01/25/11 03:30	7440-50-8	
Lead		mg/kg		2.2	20	01/24/11 08:53	01/25/11 03:30	7439-92-1	
Nickel	4.0	mg/kg		2.2	20	01/24/11 08:53	01/25/11 03:30	7440-02-0	
Dry Weight	Analytical M	lethod: % Moist	ure						
Percent Moisture	79.4	%		0.10	1		01/24/11 00:00		
. S.SS Moloculo	70.4	, ,		0.10	•		5.,2 ,, 11 00.00		

Date: 01/26/2011 03:54 PM

REPORT OF LABORATORY ANALYSIS

Page 5 of 11

Project: HOCM 138130
Pace Project No.: 256348

Sample: CNF 2-8A-5	Lab ID: 25634	8007	Collected:	01/21/1	1 12:37	Received: 01	/22/11 11:33 M	latrix: Solid	
Results reported on a "dry-wei				, .				50	
Parameters	Results	Units	Report	t Limit	DF	Prepared	Analyzed	CAS No.	Qua
- Talamotoro									
6020 MET ICPMS	Analytical Method	d: EPA 602	20						
Arsenic	6.3 mg/k	g		0.49	20	01/24/11 08:53	01/25/11 03:34	7440-38-2	
Copper	28.8 mg/k	g		0.49	20	01/24/11 08:53	01/25/11 03:34	7440-50-8	
Lead	4.5 mg/k	0		0.49	20	01/24/11 08:53	01/25/11 03:34	7439-92-1	
Nickel	41.6 mg/k	g		0.49	20	01/24/11 08:53	01/25/11 03:34	7440-02-0	
Dry Weight	Analytical Method	d: % Moist	ure						
Percent Moisture	20.1 %			0.10	1		01/24/11 00:00		
Sample: CNF 2-9A-9.5	Lab ID: 25634	8008	Collected:	01/21/1	1 12:40	Received: 01	/22/11 11:33 M	latrix: Solid	
Results reported on a "dry-wei	ght" basis								
Parameters	Results	Units	Report	t Limit	DF	Prepared	Analyzed	CAS No.	Qua
6020 MET ICPMS	Analytical Method	d: EPA 602	20						
Arsenic	4.8 mg/k	g		2.1	20	01/24/11 08:53	01/25/11 04:05	7440-38-2	
Copper	9.2 mg/k	g		2.1	20	01/24/11 08:53	01/25/11 04:05	7440-50-8	
Lead	6.5 mg/k	g		2.1	20	01/24/11 08:53	01/25/11 04:05	7439-92-1	
Nickel	5.2 mg/k	g		2.1	20	01/24/11 08:53	01/25/11 04:05	7440-02-0	
Dry Weight	Analytical Method	d: % Moist	ure						
Percent Moisture	82.4 %			0.10	1		01/24/11 00:00		
Sample: CNF 2-10A-5	Lab ID: 25634	8009	Collected:	01/21/1	1 12:42	Received: 01	/22/11 11:33 M	latrix: Solid	
Results reported on a "dry-wei	ght" basis								
Parameters	Results	Units	Report	t Limit	DF	Prepared	Analyzed	CAS No.	Qua
6020 MET ICPMS	Analytical Method	d: EPA 602	20						
Arsenic	6.5 mg/k	g		0.54	20	01/24/11 08:53	01/25/11 04:10	7440-38-2	
Copper	25.8 mg/k	g		0.54	20	01/24/11 08:53	01/25/11 04:10	7440-50-8	
Lead	4.1 mg/k	g		0.54	20	01/24/11 08:53	01/25/11 04:10	7439-92-1	
Nickel	38.0 mg/k	g		0.54	20	01/24/11 08:53	01/25/11 04:10	7440-02-0	
Dry Weight	Analytical Method	d: % Moist	ure						
Percent Moisture	22.6 %			0.10	1		01/24/11 00:00		
i ercent moisture	22.0 %			0.10	'		01/24/11 00.00		

Date: 01/26/2011 03:54 PM

REPORT OF LABORATORY ANALYSIS

Page 6 of 11

Project: HOCM 138130
Page Project No : 256348

Sample: DUP	Lab ID: 2	56348010	Collected: 01/21/1	11 00:00	Received: 01	I/22/11 11:33 I	Matrix: Solid	
Results reported on a "dry-weig	ıht" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical M	ethod: EPA 60	020					
Arsenic	3.3	mg/kg	0.43	20	01/24/11 08:53	01/25/11 04:14	7440-38-2	
Copper	21.5	mg/kg	0.43	20	01/24/11 08:53	01/25/11 04:14	7440-50-8	
Lead	4.1	mg/kg	0.43	20	01/24/11 08:53	01/25/11 04:14	7439-92-1	
Nickel	25.7	mg/kg	0.43	20	01/24/11 08:53	01/25/11 04:14	7440-02-0	
Dry Weight	Analytical M	ethod: % Mois	sture					
Percent Moisture	6.9	%	0.10	1		01/24/11 00:00		
Sample: CNF-2-5A-9	Lab ID: 2	56348011	Collected: 01/21/1	11 12:22	Received: 01	I/22/11 11:33 I	Matrix: Solid	
Sample: CNF-2-5A-9 Results reported on a "dry-weig		56348011	Collected: 01/21/1	l1 12:22	Received: 01	1/22/11 11:33 f	Matrix: Solid	
•		56348011 Units	Collected: 01/21/1	l1 12:22 DF	Received: 01	1/22/11 11:33 I Analyzed	Matrix: Solid CAS No.	Qua
Results reported on a "dry-weig	ht" basis Results		Report Limit					Qua
Results reported on a "dry-weig Parameters	Results Analytical M	Units ethod: EPA 60	Report Limit			Analyzed	CAS No.	Qua
Results reported on a "dry-weig Parameters 6020 MET ICPMS	Results Analytical M	Units	Report Limit	DF	Prepared	Analyzed 01/25/11 04:19	CAS No.	Qua
Parameters 6020 MET ICPMS Arsenic Copper	Results Analytical M 10.6 14.0	Units ethod: EPA 60 mg/kg	Report Limit	DF 20	Prepared 01/24/11 08:53	Analyzed 01/25/11 04:19 01/25/11 04:19	CAS No. 7440-38-2 7440-50-8	Qua
Parameters 6020 MET ICPMS Arsenic	Analytical M 10.6 14.0 5.4	Units ethod: EPA 60 mg/kg mg/kg	Report Limit 220 2.4 2.4	DF 20 20	Prepared 01/24/11 08:53 01/24/11 08:53	Analyzed 01/25/11 04:19 01/25/11 04:19 01/25/11 04:19	CAS No. 7440-38-2 7440-50-8 7439-92-1	Qua
Parameters 6020 MET ICPMS Arsenic Copper Lead	Analytical M 10.6 14.0 5.4 9.4	Units ethod: EPA 60 mg/kg mg/kg mg/kg	Report Limit 220 2.4 2.4 2.4 2.4 2.4	DF 20 20 20	Prepared 01/24/11 08:53 01/24/11 08:53 01/24/11 08:53	Analyzed 01/25/11 04:19 01/25/11 04:19 01/25/11 04:19	CAS No. 7440-38-2 7440-50-8 7439-92-1	Qua

Date: 01/26/2011 03:54 PM

REPORT OF LABORATORY ANALYSIS

Page 7 of 11

QUALITY CONTROL DATA

Project: HOCM 138130

Pace Project No.: 256348

QC Batch: ICPM/24442 Analysis Method: EPA 6020
QC Batch Method: EPA 6020 Analysis Description: 6020 MET

Associated Lab Samples: 256348001, 256348002, 256348003, 256348004, 256348005, 256348006, 256348007, 256348009,

256348010, 256348011

METHOD BLANK: 922100 Matrix: Solid

Associated Lab Samples: 256348001, 256348002, 256348003, 256348004, 256348005, 256348006, 256348007, 256348009,

256348010, 256348011

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	mg/kg	ND	0.45	01/25/11 02:19	
Copper	mg/kg	ND	0.45	01/25/11 02:19	
Lead	mg/kg	ND	0.45	01/25/11 02:19	
Nickel	mg/kg	ND	0.45	01/25/11 02:19	

LABORATORY CONTROL SAMPLE: 922101

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/kg	19.2	19.3	101	75-125	
Copper	mg/kg	19.2	18.7	97	75-125	
Lead	mg/kg	19.2	19.6	102	75-125	
Nickel	mg/kg	19.2	19.8	103	75-125	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 922102 922103											
		256348001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Arsenic	mg/kg	3.9	19.4	18.8	23.1	21.9	99	96	75-125	5	
Copper	mg/kg	17.5	19.4	18.8	39.8	38.9	115	114	75-125	2	
Lead	mg/kg	3.6	19.4	18.8	23.6	22.6	103	101	75-125	4	
Nickel	mg/kg	18.4	19.4	18.8	38.8	39.8	105	114	75-125	3	

MATRIX SPIKE SAMPLE:	922104						
Parameter	Units	256348011 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/kg	10.6	97.1	105	98	75-125	
Copper	mg/kg	14.0	97.1	129	119	75-125	
Lead	mg/kg	5.4	97.1	106	104	75-125	
Nickel	mg/kg	9.4	97.1	107	101	75-125	

Date: 01/26/2011 03:54 PM

QUALITY CONTROL DATA

4

13.9

Project: HOCM 138130

Pace Project No.: 256348

QC Batch: MPRP/24448 Analysis Method: % Moisture

QC Batch Method: % Moisture Analysis Description: Dry Weight/Percent Moisture

256348001, 256348002, 256348003, 256348004, 256348005, 256348006, 256348007, 256348008, 256348009, Associated Lab Samples:

256348010, 256348011

SAMPLE DUPLICATE: 922140

10147825001 Dup Parameter Units Result Result **RPD** Qualifiers 13.4

Percent Moisture %

SAMPLE DUPLICATE: 922141

256323005 Dup **RPD** Parameter Units Result Result Qualifiers % 10.6 Percent Moisture 9.9 6

Date: 01/26/2011 03:54 PM

QUALIFIERS

Project: HOCM 138130

Pace Project No.: 256348

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel Clean-Up

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

Date: 01/26/2011 03:54 PM

PASI-M Pace Analytical Services - Minneapolis

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: HOCM 138130

Pace Project No.: 256348

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
256348001	CNF 2-1A-2	EPA 6020	ICPM/24442	EPA 6020	ICPM/9926
256348002	CNF 2-2A-1.75	EPA 6020	ICPM/24442	EPA 6020	ICPM/9926
256348003	CNF 2-3A-1.75	EPA 6020	ICPM/24442	EPA 6020	ICPM/9926
256348004	CNF 2-4A-10	EPA 6020	ICPM/24442	EPA 6020	ICPM/9926
256348005	CNF 2-6A-5	EPA 6020	ICPM/24442	EPA 6020	ICPM/9926
256348006	CNF 2-7A-9	EPA 6020	ICPM/24442	EPA 6020	ICPM/9926
256348007	CNF 2-8A-5	EPA 6020	ICPM/24442	EPA 6020	ICPM/9926
256348008	CNF 2-9A-9.5	EPA 6020	ICPM/24442	EPA 6020	ICPM/9926
256348009	CNF 2-10A-5	EPA 6020	ICPM/24442	EPA 6020	ICPM/9926
256348010	DUP	EPA 6020	ICPM/24442	EPA 6020	ICPM/9926
256348011	CNF-2-5A-9	EPA 6020	ICPM/24442	EPA 6020	ICPM/9926
256348001	CNF 2-1A-2	% Moisture	MPRP/24448		
256348002	CNF 2-2A-1.75	% Moisture	MPRP/24448		
256348003	CNF 2-3A-1.75	% Moisture	MPRP/24448		
256348004	CNF 2-4A-10	% Moisture	MPRP/24448		
256348005	CNF 2-6A-5	% Moisture	MPRP/24448		
256348006	CNF 2-7A-9	% Moisture	MPRP/24448		
256348007	CNF 2-8A-5	% Moisture	MPRP/24448		
256348008	CNF 2-9A-9.5	% Moisture	MPRP/24448		
256348009	CNF 2-10A-5	% Moisture	MPRP/24448		
256348010	DUP	% Moisture	MPRP/24448		
256348011	CNF-2-5A-9	% Moisture	MPRP/24448		

Date: 01/26/2011 03:54 PM

REPORT OF LABORATORY ANALYSIS

Seattle WA 98108 Phone (206)767-5060 Fax (206)767-5063 Cooler Temperature on Receipt Jennifer Gross
Pace Analytical Services, Inc.
940 South Harney Transfers Workorder: 256348 Report To DUP Sample ID CNF-2-5A-9 CNF 2-10A-5 CNF 2-8A-5 CNF 2-6A-5 CNF 2-9A-9.5 CNF 2-7A-9 CNF 2-4A-10 CNF 2-3A-1.76 CNF 2-2A-1.75 CNF 2-1A-2 Released By Workorder Name: HOCM PS PS PS PS PS PS PS PS 3, 9 °C Collect Date/Time 1/21/2011 12:22 1/21/2011 12:42 1/21/2011 12:40 1/21/2011 12:35 1/21/2011 12:31 1/21/2011 11:57 1/21/2011 11:02 1/21/2011 10:57 1/21/2011 10:53 1/21/2011 00:00 1/21/2011 12:37 Date/Time Subcontract To Minneapolis, MN 55414 Phone (612)607-1700 Suite 200 Pace Analytical Minnesota 1700 Elm Street **Custody Seal** 256348011 256348010 256348008 256348005 256348009 256348007 256348006 256348004 256348003 256348002 256348001 Lab ID Received By Y or Solid Solid Solid Solid Solid Solid Solid Matrix Solid Solid Solid Solid Z Dare Received on Ice Owner Received Date: Date/Time 12211 113₁3 × Y)or 1/21/2011 Results Requested By: Samples Intact Y Jor

LAB USE ONLY

tem

9

Ship To: Pace Analytical Minnesota 1700 Elm Street Suite 200 Minneapolis, MN 55414 Phone (612)607-1700

INTER_LABORATORY WORK ORDER # 256348

(To be completed by sending lab)

Sending Project No.	256348
Receiving Project No:	10147885
Check Box for Consolidated Invoice:	
Date Prepared:	01/21/11
REQUESTED COMPLETION DATE:	2/4/2011

Sending Region IR25-Seattle Sending Project Mgr. Jennifer Gross Receiving Region IR10-Minnesota External Client Brown & Caldwell State of Sample Origin WA QC Deliverable STD REPORT All questions should be addressed to sending project manager. Requested Reportable Units Report Wet or Dry Weight? **WORK REQUESTED** Container Type Quantity of containers Preservative Unit Price Amount **Method Description** 11 \$36.00 \$396.00 TOTAL \$396.00 Special Requirements: Acctg. Code Totals from above Revenue Allocation Receiving Region Department Receiving Region Client Services Dept. (80%) Sending Region (20%) Other \$396.00 \$316.80 \$79.20 Custom Revenue Allocation TOTAL \$396.00 \$316.80 \$79.20 FOR ANALYTICAL WORK COMPLETED THIS SECTION ALSO Chain of Custody Included: Return Samples to Sending Region: Matrix: Other (identify) Water Air Waste Dorder CONFIRMATION OF WORK COMPLETED Date Completed: Receiving Project Manager:

DISPOSITION of FORM

Original sent to the receiving lab - Copy kept at the sending lab.

When work completed: Original sent to the ABM at the receiving laboratory. Copies are made to corporate as needed.

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

ITEM# Email To: Johnson @ Epundered, com Address: 724 COWABIA ST NW STE HO Company BROW & CALDWELL Section A
Required Client Information: Requested Due Date/TAT: 30-534-1209 CNF CNF 2-3A - 1.75 Required Client Information Section D CNF 2-6A-5 CNF 2-4A-10 CNF 2-7A-9 CNF 2-10A - S CNF 2-9A-9.5 CNF 2-84-5 (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE OWN PUR SAMPLE ID 2-2A-1.75 2-1A-2 ADDITIONAL COMMENTS 2-5A-a 105Ab VM 360-943-7513 Waste Water Product Soil/Solid Oil Wipe Air Tissue Other Water Drinking Water Matrix Codes
MATRIX / CODE ORIGINAL Report To: Josh Copy To: Purchase Order No.: 138130 Required Project Information: Section B Project Number: Project Name: ₽₽₹₽₽₽₹₹₽₽₽ MATRIX CODE RELINQUISHED BY / AFFILIATION Tocz しつな 6 138130 1444 DATE TUPES COMPOSITE START DANSON SAMPLER NAME AND SIGNATURE TIME COLLECTED SIGNATURE of SAMPLER: PRINT Name of SAMPLER: 114/11 COMPOSITE END/GRAB 65:03 12:30 12:22 12:42 (2: **3** 9:30 102 10:57 11:57 TIME 121/11 DATE Ç SAMPLE TEMP AT COLLECTION Reference: Pace Project 3:00 PM Section C Attention: ace Quote Address: nvoice Information: # OF CONTAINERS Unpreserved ACHO! H₂SO₄ Josh Preservatives HNO₃ NaOH CEASS CHUSON Na₂S₂O₃ ACCEPTED BY / AFFILIATION YOHAN SON Methanol Other CAMMERY Y/ N 🕽 Analysis Test 🌡 DATE Signed (MM/DD/YY): ARSENIC Requested Analysis Filtered (Y/N) LEAD COPPER NICKEL REGULATORY AGENCY Site Location V21/1(UST 22 NPDES STATE: DATE T ME RCRA GROUND WATER Page: 9.5 Temp in °C Residual Chlorine (Y/N) 1446269 Received on Pace Project No./ Lab I.D. SAMPLE CONDITIONS Ice (Y/N) 잌 OTHER ECOLOGY DRINKING WATER Custody Sealed Cooler (Y/N) 000 100 B 188 010 500 300 003 Samples Intact (Y/N)

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

	Sample Conditio	n Upon Receipt		1//- 2
Pace Analytical Client Nar	me: Brown	+ caldwell	Project #	14 /02
Courier: Fed Ex UPS USPS USPS Tracking #: \$738 \$211 496 9			©stjenal (P(c),;Dte\Dat (P(c), Name	e e
Custody Seal on Cooler/Box Present:		s intact:	no	
	ibble Bags 🔲 None		Temp Blank: Yes	
Thermometer Used 80344042 0 179428	Type of ice: We		Samples on ice, cooling pr Date and initials of pe	
Cooler Temperature Temp should be above freezing to 6°C	Biological Tissu	e is Frozen: Yes No Comments:	contents:	123t(
Chain of Custody Present:	☐Yes ☐No ☐N/A	1.		
Chain of Custody Filled Out:	DYES DNO DNA	2.		
Chain of Custody Relinquished:	Yes DNo DNA	3.		
Sampler Name & Signature on COC:	DYes DNo DN/A	4.		
Samples Arrived within Hold Time:	- DYes DNO DNA	5.		
Short Hold Time Analysis (<72hr):	□Yes ZNo □N/A	6.		
Rush Turn Around Time Requested:	Dreg (Ino DIVA	7. 2 day	<i>!</i> 	
Sufficient Volume:	☐Yes ☐No ☐N/A	8.		
Correct Containers Used:	Yes ONO ONA	9.		
-Pace Containers Used:	ØYes □No □N/A			
Containers Intact:	ÆYes □No □N/A	10.		
Filtered volume received for Dissolved tests	DYes DNo DNA	11.		
Sample Labels match COC:	ØYes □No □N/A	12.		
-includes date/time/ID/Analysis Matrix:_	51			
All containers needing acid/base preservation have been checked. Noncompliance are noted in 13.	NO DYES DNO DN/A	13. 🗆 HNO:	H2SO4 NaOH	HCI HCI
All containers needing preservation are found to be in compliance with EPA recommendation.	DYSS DNO DNA	Samp #	-	
Exceptions: VOA,Coliform, TOC, Oil and Grease, WI-DRO (v	Nater: DYes ZNo	Initial when completed	Lot # of added preservative	
Samples checked for dechlorination:	□Yes □No ZIN/A	14.		
Headspace in VOA Vials (>6mm):	UY88 UNO ZINA	15.		
Trip Blank Present:	□Yee □No JZN/A	16.		
Trip Blank Custody Seals Present	□Yes □No ZIN/A			,
Pace Trip Blank Lot # (if purchased):				
Client Notification/ Resolution:			Field Data Required?	Y / N
Person Contacted:	Date/1	lime:		
Comments/ Resolution:				······································
				·····
·	·····			
				

Project Manager Review:

Date: 1/24/11

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

2 5 6 3 4 8

Section A	Section !	В						:	Secti	on C													,	ŀ	Page:			cf .	
Required Chent Information:	Required		ct Info	ппайол:							mation	:												ſ			1 / 4	626	۵ آ
Company Brows & CALPHELA	Report To	،ک	H 2c	Jones	Lose			ľ	Vient		os _{rt}	-	٠٠	w	~ 1												144	020	3
Address: 724 COLUMBIA ST NW STR 40	Copy To:		منا) PK			K	omp	arry N	ame:	٠				2				REG	יוט	TOF	RY A	GEN	ЮY				
owner WA 94301					2001			7	Vdd:e	33: C.O.	PH/M									-	NPC	ES	Γ	GR	OUND	WA'	TER [G WATER
Email Ta: Judusons @ REMARALD, Com	Purchose	Order	No.:	138130				7	ace C	bote			<u> </u>		71.					۲-	UST	•	Г	RC	RA		K	OTHER	COLOCY
Phone: 360-934-124 Fax: 360-975-7513	Project Na	me:			-			7	ace P	-	`		_							Sib	Loc	ation	T				i i		
360-934-(249 360-973-7513 Requested Due Date/TAT:	Project Nu		40						Asnag Page P	er rolde f	<u> </u>	<u> </u>	Cer.	95								ATE:	1				•		
	1		17	8130				_							_		Da		404	Anal			┸	NA.		Ŧ			ب
			7	·				-							╂	∓T	100	ques	T		7515	Гиц	T COL	<u> </u>	,	┨			
Section D Matrix C Required Clear Information MATRIX /		ŝ	Ē	1	COLL	ECTED		I			Pres	eve:	tives	\$	3		1	1					П			ł			
Drinking Wat	er DW	1 2	C=COMP)]	7	5		П				П	T	Т	1	Т	Т	П		T	П	П	T	T			
Water Waste Water		(see valid codes to left)	0	COMP	OSITE BT	COMPO	SITE S	IEMT AI COLLECTION		11				П	1	ı				Н	-					Ιź			
Product Soll/Solid	P SL	:	(0=0RAB			1		31	en en					П	ļ-	٠l		ı	1	П		1			ŀ	Residual Chlorine (Y/N)	l		
SAMPLE ID CH Mpp.	SL OL WP AR TS OT	1	١ë		T	1		31	# OF CONTAINERS			- [1981	ı	1	1	H						튙	İ		•
(A-Z, 0-97) Air Sample IDs MUST BE UNIQUE Tissue	AR TS	MATRIX CODE	E.	ļ.		1		ì l	Z	Unpreserved				П	- 13		ī		4]					-	Ĕ			
Other	OΤ	ıš	15					<u> </u>	S S	8		_	ුරු	ᅙ		اٍ≧	31	9 4	S C S C S C S C S C S C S C S C S C S C		1					13			
# # # # # # # # # # # # # # # # # # #		Į	SAMPLE TYPE	ł			TIME		P	20	၌င္ခါ	골 물	્ટુ	Methanol	2	Analysis	Aggente	Caber	引支	1	1					8			
		┢	+-	DATE	TIME	DATE	+	-	•	2	ᄪ	듸	ĮΖ	<u> ≥ </u>	악-	4	7	7	۲.,	₩	+	+	\vdash	Н	+	۳	Pace	Project N	اما لعا لها
1 CNF 2-14-2		SL	G	4/20/T	ļ	1/21/11	10:23 5.	P	t	XI-	4-1	+	╀	₽	-1	F	XI?	<u> </u>	ΨX	┦	+	╫	╀	Н	+-	╂	 		
2 CNF 2-2A-1.75		#	#	<u> </u>	<u> </u>	1	W-57	Н	+	╢	Н	+	+	₩	4	Н	Ш	Ш	₩	H	+	+	╁	┝╌┧		╂╾			
3 CNF 2-3A - 1.75		#	#	}	ļ	 	11:02	Н	╁	₩	+	+	╀	╁┼	4	Н	Ш	Ш	#	Н		+	-	Н	+	╀	 		
4 CNF 2-4A-10		#	₩	<u> </u>	 	┨	11:57	Н	+	#	+	+	╀	⊢╂	4	Н	Н		H	╌┤	+	+	╀	Н	+	╁	 		
5 CNF 2-GA - 5		Н	Н		 	╂╼╼╂	12:14	H	╀	₩	+		╀	╁╂	-	Н	Н	Ш	₩	Н	╁	╬	╀	H	+	-	 		
6 CNF 2-7A-9		Н	H	.		 	12:375	Н	+-	╫	╌┼┤	+	╀	Н	4	Н	Ш	Н	₩	Н	+	┿	╂	Н	+	╁	 		
7 (NF 2 - RA - S		#	#	 	!	╀╌╂╌	(2:78)	Н	╁	₩	+	-	+	Н	4	Н	Н	Ж	╫	┦	+	╁	+	Н	\dashv	+-	├──		
8 CNF 2-9A-9.5		Н.	₩,	 	-	-	שיימ	H	+	₩	₩	+	╄	╁┼		H	Н	Ш	╫	⊢	+	┿	╀	Н	+	╀	 		
9 CNF 2-10A-5		17	H	├	!	1 4	12:42	Н	╀	##	44		╁╌	H	4	╟	Н	Ш	₩	╢	+	+	+	Н	+	╁	 		
10 D.R		₩	1	 			n 122 0	Н	₽	₩	+	+	+	Н	4	╟	₩	Ш	₩	┦	+	┾	╀	Н	+	╀	 		
11 CNF- Z-5A-9		<u> </u>	•	 		-	15:37 A	4	<u> </u>	-	+	+	+	Н	4	┝	7	4	+	Н	+	╁	╀	Н		1	 		
12			<u> </u>	<u> </u>	1	<u> </u>		4		<u> </u>	₩		بــــــــــــــــــــــــــــــــــــــ	Ц					<u></u>	Ц			+		-			W C COMPANY	
ADDITIONAL COMMENTS		RE		MSHED BY	/ AFFILIATI		DATE	4		ME	+	_	AC	CEPT	E0 () T T T	NFF(JIATI			DA	TE	+	TIME	+		I I	PLE CONDITI	
	VX.2	_	<u> </u>	BC.			1/21/11		<u> 32</u>	70 Pr	灿									_									
•	9.3							T		_ 🔻 -		_		_	_	_						_		_					
	_							┪			丅												T		十				
								+			+									\dashv			T		\dashv		 		
	—				SAMPLE	R NAME A	ND SIGNATU	RE																	+	0	8 -	Į.	5
OR	IGINAL	•				PRINT Nor	ne of SAMPLE	R:	~	~~	4.15			<u></u>	W									-	\dashv	Temp In *C	38	Custody saled Ceater (Y/N)	8 E
					-		RE of SAMPLE	_	V		117		_	0	~>>			E Sig		1/2	21/1				7	Ten.	Received on loe (Y/N)	See S	Somples intact (Y/N)
Temporary Motor Du cionian Iris form why are access	na Bank M	ET 90				to lete chame			<u> </u>		es not s	ازد ادد	Nio 30	dave			(m.e.		11:	Ψ.				••		-AII		07, 15-May	

Sample Condition Upon Receipt

Face Analytical Client Name	: Brown	15(aldwell	Project #2 5 6 3 4 8
Courier: Fed Ex UPS USPS Clier	nt Commer	rcial	Pace Other	reet ship to Pace mr
Custody Seal on Cooler/Box Present: Yes	☐ No	Seals	intact: Yes	No
Packing Material: Bubble Wrap Bubble	Bags No	ne [Other	Temp. Blank Yes No
Thermometer Used 132013 or 101731962 or 22609	9 Type of Ice:	Wet	Blue None	Samples on ice, cooling process has begun
Cooler Temperature Temp should be above freezing ≤ 6 ℃	Biological Ti	issue i	is Frozen: Yes No Comments:	Date and Initials of person examining contents: 01211 CO
Chain of Custody Present:	☑Yes □No	□N/A	1.	
Chain of Custody Filled Out:	□Yes □No	□N/A	2.	
Chain of Custody Relinquished:	Yes 🗆 No	□N/A	3.	
Sampler Name & Signature on COC:	OYes □No	□n/a	4.	
Samples Arrived within Hold Time:	ØÝes □No	□n/a	5.	
Short Hold Time Analysis (<72hr):	□Yes ☑No	□N/A	6.	
Rush Turn Around Time Requested:	ØYes □No	□N/A	7. ASAP	
Sufficient Volume:	1	□n/a		
Correct Containers Used:	□Yes □No	□n/a	9.	
-Pace Containers Used:	□Yes □No	□n/a		
Containers Intact:	□Yes □No	□N/A	10.	
Filtered volume received for Dissolved tests	□Yes □No	□n/A	11.	
Sample Labels match COC:	□Yes □No	□N/A	12.	
	5011			
All containers needing preservation have been checked.	□Yes □No	ØN/A	13.	_
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes □No	ØN/A		
Exceptions: VOA, coliform, TOC, O&G			Initial when completed	Lot # of added preservative
Samples checked for dechlorination:	□Yes □No	□N/A		1.
Headspace in VOA Vials (>6mm):	1991	□n/A		
Trip Blanks Present:		□N/A		
Trip Blank Custody Seals Present		□N/A	\$20 KEYS	
Pace Trip Blank Lot # (if purchased):				
Client Notification/ Resolution:				Field Data Required? Y / N
Person Contacted:		Date/	Time:	
Comments/ Resolution:				
Samples were shipped	to mi	7 1	by dient a	derectly Do 1/24/11
Project Manager Review:	2ROSS			Date: 1/24/11

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e out of hold, incorrect preservative, out of temp, incorrect containers)

January 15, 2011

Joshua Johnson Brown & Caldwell 724 Columbia St. NW#420 Olympia, WA 98501

RE: Project: East Bay Redevelopment 138130

Pace Project No.: 256210

Dear Joshua Johnson:

Enclosed are the analytical results for sample(s) received by the laboratory on January 11, 2011. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jennifer Gross

jennifer.gross@pacelabs.com Project Manager

ENNI (-ROSS

Enclosures

cc: Jon Turk, Brown & Caldwell

(206)767-5060

CERTIFICATIONS

Project: East Bay Redevelopment 138130

Pace Project No.: 256210

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

Alaska Certification #: UST-078
Alaska Certification #MN00064
Arizona Certification #: AZ-0014
Arkansas Certification #: 88-0680
California Certification #: 01155CA
EPA Region 8 Certification #: Pace
Florida/NELAP Certification #: E87605
Georgia Certification #: 959
Idaho Certification #: MN00064
Illinois Certification #: 200011
Iowa Certification #: 368

lowa Certification #: 368
Kansas Certification #: E-10167
Louisiana Certification #: 03086
Louisiana Certification #: LA080009
Maine Certification #: 2007029
Maryland Certification #: 322
Michigan DEQ Certification #: 9909
Minnesota Certification #: 027-053-137

Mississippi Certification #: Pace

Montana Certification #: MT CERT0092
Nevada Certification #: MN_00064
Nebraska Certification #: Pace
New Jersey Certification #: MN-002
New Mexico Certification #: Pace
New York Certification #: 11647
North Carolina Certification #: 530
North Dakota Certification #: R-036
North Dakota Certification #: R-036A
Ohio VAP Certification #: CL101
Oklahoma Certification #: D9921
Oklahoma Certification #: 9507
Oregon Certification #: MN200001
Pennsylvania Certification #: 68-00563
Puerto Rico Certification

Puerto Rico Certification Tennessee Certification #: 02818 Texas Certification #: T104704192 Washington Certification #: C754 Wisconsin Certification #: 999407970

SAMPLE ANALYTE COUNT

Project: East Bay Redevelopment 138130

Pace Project No.: 256210

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
256210001	CNF-2-1-10	EPA 6020	RJS	4	PASI-M
		% Moisture	CCL	1	PASI-M
256210002	CNF-2-2-7	EPA 6020	RJS	4	PASI-M
		% Moisture	CCL	1	PASI-M
256210003	CNF-2-3-5	EPA 6020	RJS	4	PASI-M
		% Moisture	CCL	1	PASI-M
256210004	CNF-2-4-5	EPA 6020	RJS	4	PASI-M
		% Moisture	CCL	1	PASI-M
256210005	CNF-2-5-1.75	EPA 6020	RJS	4	PASI-M
		% Moisture	CCL	1	PASI-M
256210006	CNF-2-6-7	EPA 6020	RJS	4	PASI-M
		% Moisture	CCL	1	PASI-M
256210007	CNF-2-7-5	EPA 6020	RJS	4	PASI-M
		% Moisture	CCL	1	PASI-M
256210008	CNF-2-8-1.75	EPA 6020	RJS	4	PASI-M
		% Moisture	CCL	1	PASI-M
256210009	CNF-2-9-1.75	EPA 6020	RJS	4	PASI-M
		% Moisture	CCL	1	PASI-M
256210010	CNF-2-10-7	EPA 6020	RJS	4	PASI-M
		% Moisture	CCL	1	PASI-M
256210011	CNF-2-11-5	EPA 6020	RJS	4	PASI-M
		% Moisture	CCL	1	PASI-M
256210012	CNF-2-12-1.5	EPA 6020	RJS	4	PASI-M
		% Moisture	CCL	1	PASI-M
256210013	CNF-2-13-7	EPA 6020	RJS	4	PASI-M
		% Moisture	CCL	1	PASI-M
256210014	CNF-2-14-5	EPA 6020	RJS	4	PASI-M
		% Moisture	CCL	1	PASI-M
256210015	CNF-2-15-1.75	EPA 6020	RJS	4	PASI-M
		% Moisture	CCL	1	PASI-M

Project: East Bay Redevelopment 138130

Pace Project No.: 256210

Sample: CNF-2-1-10	Lab ID: 256	210001	Collec	ted: 01/10/	11 10.45	Received: 01	I/11/11 10·12 N	Matrix: Solid	
Results reported on a "dry-wei		210001	Collec	ieu. 01/10/	11 10.43	Received. 0	1/11/11 10.12 IV	iatrix. Soliu	
		Lloito	Б	on out Limit	DE	Dronorod	A not trad	CACNo	Ougl
Parameters	Results —	Units	K	eport Limit	DF	Prepared	Analyzed 	CAS No.	Qual
6020 MET ICPMS	Analytical Meth	nod: EPA 6	020						
Arsenic	3.5 mg	g/kg		2.8	20	01/11/11 16:02	01/13/11 12:52	7440-38-2	
Copper	18.9 mg	g/kg		2.8	20	01/11/11 16:02	01/13/11 12:52	7440-50-8	
Lead	5.5 mg	, ,		2.8	20	01/11/11 16:02	01/13/11 12:52	7439-92-1	
Nickel	7.8 mg	g/kg		2.8	20	01/11/11 16:02	01/13/11 12:52	7440-02-0	
Dry Weight	Analytical Meth	nod: % Moi	sture						
Percent Moisture	84.9 %			0.10	1		01/14/11 00:00		
Sample: CNF-2-2-7	Lab ID: 256	210002	Collec	ted: 01/10/	11 10:55	Received: 01	I/11/11 10:12 N	Matrix: Solid	
Results reported on a "dry-wei	ght" basis								
Parameters	Results	Units	R	eport Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical Meth	nod: EPA 6	020						
Arsenic	ND mg	g/kg		2.7	20	01/11/11 16:02	01/13/11 14:13	7440-38-2	
Copper	13.8 mg	g/kg		2.7	20	01/11/11 16:02	01/13/11 14:13	7440-50-8	
Lead	4.6 mg	g/kg		2.7	20	01/11/11 16:02	01/13/11 14:13	7439-92-1	
Nickel	9.4 mg	g/kg		2.7	20	01/11/11 16:02	01/13/11 14:13	7440-02-0	
Dry Weight	Analytical Meth	nod: % Moi	sture						
Percent Moisture	83.1 %			0.10	1		01/14/11 00:00		
Sample: CNF-2-3-5	Lab ID: 256	210003	Collec	ted: 01/10/	11 11:00	Received: 01	I/11/11 10:12 N	Matrix: Solid	
Results reported on a "dry-wei	ght" basis								
Parameters	Results	Units	R	eport Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical Meth	nod: EPA 6	020						
Arsenic	4.8 mg	g/kg		2.8	100	01/11/11 16:02	01/13/11 14:09	7440-38-2	
Copper	25.1 mg	g/kg		2.8	100	01/11/11 16:02	01/13/11 14:09	7440-50-8	
Lead	4.0 mg	g/kg		2.8	100	01/11/11 16:02	01/13/11 14:09	7439-92-1	
Nickel	35.6 mg	g/kg		2.8	100	01/11/11 16:02	01/13/11 14:09	7440-02-0	
Dry Weight	Analytical Meth	nod: % Moi	sture						
Percent Moisture	18.1 %			0.10	1		01/14/11 00:00		

Date: 01/15/2011 12:41 PM

REPORT OF LABORATORY ANALYSIS

Page 4 of 12

Project: East Bay Redevelopment 138130

Pace Project No.: 256210

Sample: CNF-2-4-5	Lab ID: 2562	10004	Collecte	d: 01/10/	11 11:00	Received: 01	I/11/11 10:12 N	fatrix: Solid	
Results reported on a "dry-wei	ght" basis								
Parameters	Results	Units	Rep	ort Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical Metho	od: EPA 60	020						
Arsenic	4.6 mg/	'kg		2.6	100	01/11/11 16:02	01/13/11 14:31	7440-38-2	
Copper	29.1 mg/	J		2.6	100	01/11/11 16:02	01/13/11 14:31	7440-50-8	
Lead	4.6 mg/	kg		2.6	100	01/11/11 16:02	01/13/11 14:31	7439-92-1	
Nickel	38.0 mg/	kg		2.6	100	01/11/11 16:02	01/13/11 14:31	7440-02-0	
Dry Weight	Analytical Metho	od: % Moi:	sture						
Percent Moisture	21.5 %			0.10	1		01/14/11 00:00		
Sample: CNF-2-5-1.75	Lab ID: 2562	10005	Collecte	d: 01/10/	11 11:03	Received: 01	I/11/11 10:12 M	Matrix: Solid	
Results reported on a "dry-wei	ght" basis								
Parameters	Results	Units	Rep	ort Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical Metho	od: EPA 60	020						
Arsenic	159 mg/	kg		2.0	100	01/11/11 16:02	01/13/11 10:21	7440-38-2	
Copper	26.3 mg/	kg		2.0	100	01/11/11 16:02	01/13/11 10:21	7440-50-8	
Lead	6.8 mg/	kg		2.0	100	01/11/11 16:02	01/13/11 10:21	7439-92-1	
Nickel	30.4 mg/	kg		2.0	100	01/11/11 16:02	01/13/11 10:21	7440-02-0	
Dry Weight	Analytical Metho	od: % Moi	sture						
Percent Moisture	6.5 %			0.10	1		01/14/11 00:00		
Sample: CNF-2-6-7	Lab ID: 2562	10006	Collecte	ed: 01/10/	11 11:05	Received: 01	I/11/11 10:12 N	Matrix: Solid	
Results reported on a "dry-wei	ght" basis								
Parameters	Results	Units	Rep	ort Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical Metho	od: EPA 60	020						
Arsenic	ND mg/	kg		2.7	20	01/11/11 16:02	01/13/11 10:26	7440-38-2	
Copper	20.5 mg/	kg		2.7	20	01/11/11 16:02	01/13/11 10:26	7440-50-8	
Lead	4.5 mg/	kg		2.7	20	01/11/11 16:02	01/13/11 10:26	7439-92-1	
Nickel	3.9 mg/	kg		2.7	20	01/11/11 16:02	01/13/11 10:26	7440-02-0	
Dry Weight	Analytical Metho	od: % Moi	sture						
Percent Moisture	83.3 %			0.10	1		01/14/11 00:00		

Date: 01/15/2011 12:41 PM

REPORT OF LABORATORY ANALYSIS

Page 5 of 12

Project: East Bay Redevelopment 138130

Pace Project No.: 256210

Sample: CNF-2-7-5	Lab ID: 25621	10007	Collected	d: 01/10/	11 11:08	Received: 01	/11/11 10:12 N	fatrix: Solid	
Results reported on a "dry-wei	ight" basis								
Parameters	Results	Units	Rep	ort Limit	DF	Prepared	Analyzed	CAS No.	Qua
6020 MET ICPMS	Analytical Metho	od: EPA 60)20						
Arsenic	6.0 mg/l	kg		3.2	100	01/11/11 16:02	01/13/11 10:35	7440-38-2	
Copper	41.1 mg/l	Ü		3.2	100	01/11/11 16:02	01/13/11 10:35	7440-50-8	
Lead	6.0 mg/l	kg		3.2	100	01/11/11 16:02	01/13/11 10:35	7439-92-1	
Nickel	58.3 mg/l	kg		3.2	100	01/11/11 16:02	01/13/11 10:35	7440-02-0	
Dry Weight	Analytical Metho	d: % Mois	sture						
Percent Moisture	22.7 %			0.10	1		01/14/11 00:00		
Sample: CNF-2-8-1.75	Lab ID: 25621	10008	Collected	d: 01/10/	11 11:10	Received: 01	/11/11 10:12 N	Matrix: Solid	
Results reported on a "dry-wei	ight" basis								
Parameters	Results	Units	Rep	ort Limit	DF	Prepared	Analyzed	CAS No.	Qua
6020 MET ICPMS	Analytical Metho	od: EPA 60)20						
Arsenic	5.6 mg/k	kg		2.2	100	01/11/11 16:02	01/13/11 10:39	7440-38-2	
Copper	40.3 mg/ł	kg		2.2	100	01/11/11 16:02	01/13/11 10:39	7440-50-8	
Lead	7.7 mg/l	kg		2.2	100	01/11/11 16:02	01/13/11 10:39	7439-92-1	
Nickel	37.9 mg/k	kg		2.2	100	01/11/11 16:02	01/13/11 10:39	7440-02-0	
Dry Weight	Analytical Metho	d: % Mois	sture						
Percent Moisture	4.6 %			0.10	1		01/14/11 00:00		
Sample: CNF-2-9-1.75	Lab ID: 25621	10009	Collected	d: 01/10/	11 11:10	Received: 01	/11/11 10:12 N	Matrix: Solid	
Results reported on a "dry-wei	ight" basis								
Parameters	Results	Units	Rep	ort Limit	DF	Prepared	Analyzed	CAS No.	Qua
6020 MET ICPMS	Analytical Metho	d: EPA 60)20						
Arsenic	9.1 mg/k	kg		2.6	100	01/11/11 16:02	01/13/11 10:58	7440-38-2	
Copper	47.8 mg/l	kg		2.6	100	01/11/11 16:02	01/13/11 10:58	7440-50-8	
Lead	10.8 mg/l	kg		2.6	100		01/13/11 10:58		
Nickel	35.7 mg/k	kg		2.6	100	01/11/11 16:02	01/13/11 10:58	7440-02-0	
Dry Weight	Analytical Metho	d: % Mois	sture						
Percent Moisture	5.8 %			0.10	1		01/14/11 00:00		

Date: 01/15/2011 12:41 PM

REPORT OF LABORATORY ANALYSIS

Page 6 of 12

Project: East Bay Redevelopment 138130

Pace Project No.: 256210

Sample: CNF-2-10-7	Lab ID: 2562	10010	Collect	ed: 01/10/	11 11:15	Received: 01	I/11/11 10:12 N	fatrix: Solid	
Results reported on a "dry-wei			00001	01, 10,			., ,		
Parameters	Results	Units	Re	port Limit	DF	Prepared	Analyzed	CAS No.	Qua
- Taramotoro						-			
6020 MET ICPMS	Analytical Metho	od: EPA 60	020						
Arsenic	3.4 mg/	/kg		2.4	20	01/11/11 16:02	01/13/11 10:49	7440-38-2	
Copper	19.9 mg/	/kg		2.4	20	01/11/11 16:02	01/13/11 10:49	7440-50-8	
Lead	4.8 mg/	/kg		2.4	20	01/11/11 16:02	01/13/11 10:49	7439-92-1	
Nickel	9.8 mg/	/kg		2.4	20	01/11/11 16:02	01/13/11 10:49	7440-02-0	
Dry Weight	Analytical Metho	od: % Mois	sture						
Percent Moisture	82.4 %			0.10	1		01/14/11 00:00		
Sample: CNF-2-11-5	Lab ID: 2562	10011	Collect	ed: 01/10/	11 11:16	Received: 01	I/11/11 10:12 N	Matrix: Solid	
Results reported on a "dry-wei	ight" basis								
Parameters	Results	Units	Re	port Limit	DF	Prepared	Analyzed	CAS No.	Qua
6020 MET ICPMS	Analytical Metho	od: EPA 60	020						
Arsenic	6.5 mg/	/kg		2.8	100	01/11/11 16:02	01/13/11 11:39	7440-38-2	
Copper	41.1 mg/	/kg		2.8	100	01/11/11 16:02	01/13/11 11:39	7440-50-8	M6
Lead	6.2 mg/	/kg		2.8	100	01/11/11 16:02	01/13/11 11:39	7439-92-1	
Nickel	59.1 mg/	/kg		2.8	100	01/11/11 16:02	01/13/11 11:39	7440-02-0	M6
Dry Weight	Analytical Metho	od: % Mois	sture						
Percent Moisture	22.4 %			0.10	1		01/14/11 00:00		
Sample: CNF-2-12-1.5	Lab ID: 2562	10012	Collect	ed: 01/10/	11 11:17	Received: 01	I/11/11 10:12 N	Matrix: Solid	
Results reported on a "dry-wei	ight" basis								
Parameters	Results	Units	Re	port Limit	DF	Prepared	Analyzed	CAS No.	Qua
6020 MET ICPMS	Analytical Metho	od: EPA 60	020						
Arsenic	11.2 mg/	/kg		2.4	100	01/11/11 16:02	01/13/11 11:48	7440-38-2	
Copper	44.3 mg/	/kg		2.4	100	01/11/11 16:02	01/13/11 11:48	7440-50-8	
Lead	28.4 mg/	/kg		2.4	100	01/11/11 16:02	01/13/11 11:48	7439-92-1	
Nickel	39.7 mg/	/kg		2.4	100	01/11/11 16:02	01/13/11 11:48	7440-02-0	
Dry Weight	Analytical Metho	od: % Mois	sture						
Percent Moisture	14.6 %			0.10	1		01/14/11 00:00		

Date: 01/15/2011 12:41 PM

REPORT OF LABORATORY ANALYSIS

Page 7 of 12

Project: East Bay Redevelopment 138130

Pace Project No.: 256210

Lab ID: 256210013 Sample: CNF-2-13-7 Collected: 01/10/11 11:20 Received: 01/11/11 10:12 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **6020 MET ICPMS** Analytical Method: EPA 6020 Arsenic 6.8 mg/kg 3.0 40 01/11/11 16:02 01/13/11 11:58 7440-38-2 Copper 48.1 mg/kg 3.0 40 01/11/11 16:02 01/13/11 11:58 7440-50-8 Lead 7.6 mg/kg 3.0 40 01/11/11 16:02 01/13/11 11:58 7439-92-1 Nickel 46.5 mg/kg 3.0 40 01/11/11 16:02 01/13/11 11:58 7440-02-0 **Dry Weight** Analytical Method: % Moisture Percent Moisture 72.7 % 0.10 01/14/11 00:00 Matrix: Solid Sample: CNF-2-14-5 Lab ID: 256210014 Collected: 01/10/11 11:23 Received: 01/11/11 10:12 Results reported on a "dry-weight" basis **Parameters** Report Limit DF CAS No. Qual Results Units Prepared Analyzed **6020 MET ICPMS** Analytical Method: EPA 6020 8.1 mg/kg 3.0 100 01/11/11 16:02 01/13/11 12:02 7440-38-2 Arsenic 7440-50-8 Copper 39.0 mg/kg 3.0 100 01/11/11 16:02 01/13/11 12:02 Lead **6.1** mg/kg 3.0 100 01/11/11 16:02 01/13/11 12:02 7439-92-1 Nickel **50.4** mg/kg 3.0 100 01/11/11 16:02 01/13/11 12:02 7440-02-0 **Dry Weight** Analytical Method: % Moisture Percent Moisture 23.9 % 0.10 01/14/11 00:00 1 Sample: CNF-2-15-1.75 Lab ID: 256210015 Collected: 01/10/11 11:25 Received: 01/11/11 10:12 Results reported on a "dry-weight" basis **Parameters** Results DF Units Report Limit Prepared Analyzed CAS No. Qual **6020 MET ICPMS** Analytical Method: EPA 6020 **7.0** mg/kg 2.2 100 01/11/11 16:02 01/13/11 12:07 7440-38-2 Arsenic **30.3** mg/kg 01/11/11 16:02 01/13/11 12:07 7440-50-8 Copper 2.2 100 Lead 19.4 mg/kg 2.2 100 01/11/11 16:02 01/13/11 12:07 7439-92-1 Nickel 34.8 mg/kg 2.2 100 01/11/11 16:02 01/13/11 12:07 7440-02-0 **Dry Weight** Analytical Method: % Moisture 6.3 % 01/14/11 00:00 Percent Moisture 0.10 1

Date: 01/15/2011 12:41 PM

REPORT OF LABORATORY ANALYSIS

Page 8 of 12

Project: East Bay Redevelopment 138130

Pace Project No.: 256210

QC Batch: ICPM/24308 Analysis Method: EPA 6020
QC Batch Method: EPA 6020 Analysis Description: 6020 MET

Associated Lab Samples: 256210001, 256210002, 256210003, 256210004, 256210005, 256210006, 256210007, 256210008, 256210009,

256210010, 256210011, 256210012, 256210013, 256210014, 256210015

METHOD BLANK: 917376 Matrix: Solid

Associated Lab Samples: 256210001, 256210002, 256210003, 256210004, 256210005, 256210006, 256210007, 256210008, 256210009,

256210010, 256210011, 256210012, 256210013, 256210014, 256210015

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	mg/kg	ND	0.44	01/13/11 12:43	
Copper	mg/kg	ND	0.44	01/13/11 12:43	
Lead	mg/kg	ND	0.44	01/13/11 12:43	
Nickel	mg/kg	ND	0.44	01/13/11 12:43	

LABORATORY CONTROL SAMPLE: 917377

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/kg	16.3	17.2	106	75-125	_
Copper	mg/kg	16.3	17.5	108	75-125	
Lead	mg/kg	16.3	18.6	115	75-125	
Nickel	mg/kg	16.3	17.7	109	75-125	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:	917378	917379	
	MS	MSD	

Parameter	Units	256210001 Result	MS Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Qual
Arsenic	mg/kg	3.5	109	117	96.5	108	85	89	75-125	11	
Copper	mg/kg	18.9	109	117	116	131	89	96	75-125	12	
Lead	mg/kg	5.5	109	117	110	123	95	100	75-125	11	
Nickel	mg/kg	7.8	109	117	102	116	86	92	75-125	13	

Parameter	Units	256210011 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/kg	6.5	23.1	28.7	96	75-125	
Copper	mg/kg	41.1	23.1	51.7	46	75-125	M6
Lead	mg/kg	6.2	23.1	30.0	103	75-125	
Nickel	mg/kg	59.1	23.1	65.1	26	75-125	M6

Date: 01/15/2011 12:41 PM

REPORT OF LABORATORY ANALYSIS

Page 9 of 12

Project: East Bay Redevelopment 138130

Pace Project No.: 256210

QC Batch: MPRP/24358 Analysis Method: % Moisture

QC Batch Method: % Moisture Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 256210001, 256210002, 256210003, 256210004, 256210005, 256210006, 256210007, 256210008, 256210009,

256210010, 256210011, 256210012, 256210013, 256210014, 256210015

METHOD BLANK: 919250 Matrix: Solid

Associated Lab Samples: 256210001, 256210002, 256210003, 256210004, 256210005, 256210006, 256210007, 256210008, 256210009,

256210010, 256210011, 256210012, 256210013, 256210014, 256210015

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Percent Moisture % ND 0.10 01/14/11 00:00

SAMPLE DUPLICATE: 919251

 Percent Moisture
 W
 256210001 Result
 Dup Result
 RPD
 Qualifiers

 84.9
 85.5
 .7

SAMPLE DUPLICATE: 919252

 Parameter
 Units
 Z56210010 Result
 Dup Result
 RPD
 Qualifiers

 Percent Moisture
 %
 82.4
 81.6
 .9

Date: 01/15/2011 12:41 PM

QUALIFIERS

Project: East Bay Redevelopment 138130

Pace Project No.: 256210

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel Clean-Up

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis

ANALYTE QUALIFIERS

Date: 01/15/2011 12:41 PM

M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: East Bay Redevelopment 138130

Pace Project No.: 256210

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
256210001	CNF-2-1-10	EPA 6020	ICPM/24308	EPA 6020	ICPM/9866
256210002	CNF-2-2-7	EPA 6020	ICPM/24308	EPA 6020	ICPM/9866
256210003	CNF-2-3-5	EPA 6020	ICPM/24308	EPA 6020	ICPM/9866
256210004	CNF-2-4-5	EPA 6020	ICPM/24308	EPA 6020	ICPM/9866
256210005	CNF-2-5-1.75	EPA 6020	ICPM/24308	EPA 6020	ICPM/9866
256210006	CNF-2-6-7	EPA 6020	ICPM/24308	EPA 6020	ICPM/9866
256210007	CNF-2-7-5	EPA 6020	ICPM/24308	EPA 6020	ICPM/9866
256210008	CNF-2-8-1.75	EPA 6020	ICPM/24308	EPA 6020	ICPM/9866
256210009	CNF-2-9-1.75	EPA 6020	ICPM/24308	EPA 6020	ICPM/9866
256210010	CNF-2-10-7	EPA 6020	ICPM/24308	EPA 6020	ICPM/9866
256210011	CNF-2-11-5	EPA 6020	ICPM/24308	EPA 6020	ICPM/9866
256210012	CNF-2-12-1.5	EPA 6020	ICPM/24308	EPA 6020	ICPM/9866
256210013	CNF-2-13-7	EPA 6020	ICPM/24308	EPA 6020	ICPM/9866
256210014	CNF-2-14-5	EPA 6020	ICPM/24308	EPA 6020	ICPM/9866
256210015	CNF-2-15-1.75	EPA 6020	ICPM/24308	EPA 6020	ICPM/9866
256210001	CNF-2-1-10	% Moisture	MPRP/24358		
256210002	CNF-2-2-7	% Moisture	MPRP/24358		
256210003	CNF-2-3-5	% Moisture	MPRP/24358		
256210004	CNF-2-4-5	% Moisture	MPRP/24358		
256210005	CNF-2-5-1.75	% Moisture	MPRP/24358		
256210006	CNF-2-6-7	% Moisture	MPRP/24358		
256210007	CNF-2-7-5	% Moisture	MPRP/24358		
256210008	CNF-2-8-1.75	% Moisture	MPRP/24358		
256210009	CNF-2-9-1.75	% Moisture	MPRP/24358		
256210010	CNF-2-10-7	% Moisture	MPRP/24358		
256210011	CNF-2-11-5	% Moisture	MPRP/24358		
256210012	CNF-2-12-1.5	% Moisture	MPRP/24358		
256210013	CNF-2-13-7	% Moisture	MPRP/24358		
256210014	CNF-2-14-5	% Moisture	MPRP/24358		
256210015	CNF-2-15-1.75	% Moisture	MPRP/24358		

Date: 01/15/2011 12:41 PM

REPORT OF LABORATORY ANALYSIS

Page 12 of 12

Sample Condition Upon Receipt

23	フ	
F	ace Analytica	ľ

Client Name:	bro	Wn	ξ' (aldwell	F	Project #
Courier: Fed Ex UPS USPS Clien Tracking #:	t 🗆c	omme	ercial	Pace Other	Direc	ct ship to Pace MN from client
Custody Seal on Cooler/Box Present: Yes		10	Seals	intact: Yes		No
Packing Material: Bubble Wrap	Bags	□ N	one	Other		Temp. Blank YesNo
Thermometer Used 132013 or 101731962 or 226098	Туре	of Ice:	Wet	Blue None		Samples on ice, cooling process has begun
Cooler Temperature Temp should be above freezing ≤ 6 ℃	Biolog	gical T	issue	is Frozen: Yes No	0	Date and Initials of person examining contents:
Chain of Custody Present:	⊠Yes	□No	□n/a	1.		
Chain of Custody Filled Out:	☐Yes	□No	□n/a	2.		
Chain of Custody Relinquished:	ØYes	□No	□n/a	3.		
Sampler Name & Signature on COC:	⊠Yes	□No	□n/a	4.		
Samples Arrived within Hold Time:	⊠Yes	□No	□n/a	5.		
Short Hold Time Analysis (<72hr):	□Yes	ĽNo.	□n/a	6.		
Rush Turn Around Time Requested:	☑Yes	□No	□N/A	7. 3 day	TA	T OV ASAPOTO ILIUIN
Sufficient Volume:	ŬYes	□No	□n/a	8.		
Correct Containers Used:	☑Yes	□No	□n/a	9.		
-Pace Containers Used:	Yes	□№	□N/A			
Containers Intact:	□Yes	□No	□n/a	10.		
Filtered volume received for Dissolved tests	□Yes	□№	□n/a	11.		
Sample Labels match COC:	□Yes	□No	□n/a	12.		
The state of the s	<u></u>					
All containers needing preservation have been checked.	□Yes	□No	☑N/A	13.		
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes	□No	©/N/A			T
Exceptions: VOA, coliform, TOC, O&G				Initial when completed		Lot # of added preservative
Samples checked for dechlorination:	□Yes	□No	ŪN/A	14.		
Headspace in VOA Vials (>6mm):	□Yes	□No	[]YN/A	15.		
Trip Blanks Present:	□Yes	□No	©N/A	16.	,	
Trip Blank Custody Seals Present	□Yes	□No	ĭ N/A			
Pace Trip Blank Lot # (if purchased):						· ·
Client Notification/ Resolution: Person Contacted: Jon Brown Comments/ Resolution:	Calc	Iwel	Date/	Time: 1/11/11	8:0	Field Data Required? Y / N
Per Jon Cd 15 not needed	on	th	45	project C	Rel	[u u10:12A.
				V neg		
						A CONTRACT OF CONT
Project Manager Review:	JNI	6	~~C	SS		Date: 1 W 1
Note: Whenever there is a discrepancy affecting North Ca		molier	/		rm will I	be sent to the North Carolina DEHNR

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNF Certification Office (i.e out of hold, incorrect preservative, out of temp, incorrect containers)

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

2.56210

0rev.07, 15-May-2007	FALL		10/11	+	<u></u>	e days.	paid velosa a	dose not		per month	SIGNATURE OF SAMPLER.	NOID IN THE	To have some 30 ft.	the same	e e e e e e e e e e e e e e e e e e e	SIGNAL LIKE OF SAMPLER.				- 1
C Seal	Tei		1	DATE Signed		.		4	1	WD: 500	ATIEDS of SA	elica				ť				
(Y/N	mp ir				1	10/6	-	7	1	MPLER:	PRINT Name of SAMPLER:	PRINI			er.	Ð				
dy cooler	1 \ 'C									NATURE	SAMPLER NAME AND SIGNATURE	MPLER NAI	SAI			\ \ \				
			,				J.C				٠.,									
					į		21													
		,		X)) (The state of the s	(Î	4	CAN			(Const	
		H	104	Server of the se	<u>,</u>	\		^	E				1	and the second					*	
SAMPLE CONDITIONS		, TIME	DATE	MOLLY	ACCEPTED BY I AFFILIATION	CEPTED	*		TIME	DATE	70	ILIATION	RELINQUISHED BY / AFFILIATION	NOUIS	REI		MENTS	ADDITIONAL COMMENTS	ומסג	. }
**************************************					1				5	<u> </u>	386.7	<-		<	<u>~</u>	٧1	1 - 1	·3	751	Ž,
											87.60				Ammar Ammar	· Pr		, 7 -	7/ X/L	3
		-			 		-				100	<u></u>					6 7	7 -	181	6
				, .			_			8	111/					75	J 1	. 2	7 85 7	ω.
				-	1		+									35		2	1 NE	00
					 		-			20	11:00						^	Š	/ADS	7
Lista Park				<u> </u>	1		_			Ų,							a i	7 7	1010	8
***************************************					-		-				11.03					od (1.7	7	1216	C)
***************************************		_									18:00			 				7 ~ .	7.715	*
							+		_	100	13.00						Ŋ	2 - 3	1215	(4) (
		-	1,51		4		-				I pois			-			of a sec	· - 2.	CNIFE.	N
		-			14.		ļ				FOR MUST	2,22	星	1	<u> </u>		Ö	2 -1	CNE	-à
Pace Project No./ Lab I.D.	Residual Chlori				Analysis Ter	Methanol Other	HCI NaOH Na ₂ S ₂ O ₃	H₂SO₄ HNO₃	# OF CONTAINE Unpreserved	SAMPLE TEMP AT	TIME	TIME DATE	DATE		MATRIX CODE			GALENT LE ID (A-Z, 0-9 (-) DIE IDS MUST BE UNID)	Sample IDs MUST BE UNIQUE	ITEM#
	ne (Y/N)								RS	COLLECTION	COMPOSITE	e 8	COMPOSITE	G=GRAB C=C	(see valid codes	Drinking Water DW Water WT Waste Water WW Product P ScritSolid SL Oil	Drinking Water Water Waste Water Product Soil/Solid Oil	y n j	2	
					Y/N 3	<u> </u>	Preservatives	Pres	J		Ų	COLLECTED	C C	OMP)	io leit)	Matrix Codes MATRIX / CODE	IVW RM	mation	Section D Required Client Information	X S
	1_	(N/M)	Requested Analysis Filtered (Y/N)	Juested Ana	Rec	L.														
			STATE		7,000,000,000,000,000,000,000,000,000,0			爽	Pace Profile #:		4.5	1	05:85.1	 .√\	umber:	Project Number:	[Requested Due Date/TAT:	eques
	Z/ oraz sors saj		Site Location	Š					Pace Project Manager:	7 T	10110	ر کر 2_	1. TU	π /	ame;	Project Name:		X _E	/ / / 5	Phone:
OTHER	,	RCRA	UST	ŕ					Pace Quote Reference:	20 '0				lo.:	Order N	Purchase Order No.:	7.7	3	\$ 1100; 1000; 1000; 1000;	Email To:
****9	GROUND WATER	GRO	NPDES						Address:)>			(03 76	- 1	NO. A	2
	Y	/ AGENC	REGULATORY AGENCY	R			<u>ر</u> ج	vlame:	Company Name:		* ,,	65 14:1		7	,	Copy To:				Address:
					V	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	011		Attention:	>) }	, X	Report To:	***************************************	*	T W	Company:
) :	, i			Shooten against an an an an an an an an an an an an an				mation	Section.C Invoice Information:	F 0			25.	Informati	B ! Project	Section B Required Project Information:		ation:	Section A Regulated Client Information:	Section A
of ~~	Page:	77	,															www.pacelabs.com	- Mark	

"Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per most live charge and junctions and page.

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

256210

Re Res		110/11	(MM/DD/YY):	(MM	<u></u>		\ \	1	1	<i>!</i> \\	M	H	SIGNATURE of SAMPLER:	GNATURE	SI						SIGNATURE OF SAMPLER:			
emp In						4	7 3		١	0	ال	25	PRINT Name of SAMPLER:	UNT Name	뭐				ŕ	Onidirent	9			
140												URE	SIGNAT	AME ANI	SAMPLER NAME AND SIGNATURE	s			-	2	lac			
				10	-	In.	-					-								_				
	また	गरिकारीर		1/	8	1	D	5	0	N	Shihi		Moh			4	2	، خ	हो					
`	пие	DATE	I AFFILIATION	AFFE.		ACCEPTED BY	10 OF			Ľ	TIME.	-	DATE		RELINQUISHED BY I AFFILIATION	ED BY / AF	HSIU	ELIN	23		NIS	ADDITIONAL COMMENTS	ADDITION	
				_					<u> </u>		\vdash						\vdash							
				$\vdash \vdash$	Н			\Box	\dashv		\dashv					_	+	\dashv	_					
				+			+	\dashv	\dashv	#	+	+			-	+	\dagger	+	-					
					-т		+	#		1	\dashv	+		-	-	_	+	+						
					-		+	1		1	+	+		_	<u> </u>		+	-	-					
				+			+	工	+		+	\dashv	_		_	-	+	╁	-					
				-		工	╬	1	+	1	+	+	- - -	-		-	1	+-	-					
	+			- -					+	1	+	-	-				+	+	+					'
	+			-	-	1	+		+	1	-	╬	11:25	7	-	-	+	-	-		-1.75	15	F-2	CNE
							+		+			+	11:23			-	\dagger				4	-14 -	F-2	CASE
-	+			-	т.		+	1	+	1		-	11:20	Jiphi /	-	-	Ť	20	*		4	-13-	2	SVE
1				4		I		T			4	-		-	╁	57.1	十		+					
Residual Chlorine (Y/N)				As, Ph, Ni, Co	Analysis Test \$	Other	Na ₂ S ₂ O ₃ Methanol	NaOH .	HNO₃ HCI	H₂SO₄	Unpreserved	# OF CONTAINERS	Z K M	OOMPOSITE ENDIGRAB	Ä		 1	SAMPLE TYPE (G=GRAB C=CC	MATRIX CODE (see valid codes t	OT AR SPECE	Drinking Water Water Wase Water Wase Water Product Solizoid Oil Wipe Air Tissue Other Other	SE UNIQUE	SAMPLE ID (A-Z, D-91) Semple IDs MUST BE UNQUE	Semp
				╁	Y/N	!	88	vativ	Preservatives	5	T			TEO	COLLECTED	_	<u> </u>		n left)	CODE	Matrix Codes MATRIX / CODE	3	Section D Required Client Information	Section D Required Cl
	(N/N)	Requested Analysis Fittered (Y/N)	quested Ana	₽	4	_					1	1												
	2	STATE:								3	Profil	100	,		ģ	130/30		ä	Numbe	Project Number:	4590	Cush ASA	Requested Duo Data/TAT:	sted Di
	-	Site Location	Si							Ω	Pace Project Manager:	33 2	relogian	Redevelor	30	East	W		Матте:	Project Name:	ELEE SMS 095.	Fax: 60	105341206	Phone: 0
	RCRA	UST									Reference:	72 70 et 8						ar No.:	on on one	Purchase Order No.:	bruneald.com		₩_ I	Email Td:
GROUND WATER	Ţ GROUN	NPDES	77								Address:	Ą			į.		¢				10586	- Sealer	2	3/
	AGENCY	REGULATORY AGENCY	RE			`	6	y	**	Name	Company Name:	ပ္ပ	*	ohn sox		750	21	ķ	2	Copy To:	O Steam	C34.460	Columbia	Address /
					5	<u>- </u>	ار ځ				Attention:				62	[-]	3	=1	ö	Report To:			73 1.	Сопранус
	•								5	omat C	Section C	\$ \f				ă	omati	된 50	a Po po	Section B Required Project Information:			Section A Required Client Information:	Section A Regulred Clie
*	Page:	٠								•		.	•									305.COH	MMM.pacerage.com	
																								,

brown & Caldwell

coc PAGE of 2

CLIENT:

Face Analytical"

12	11	10	9	8	7	6	σı	4	ω	2	-1	item
												VG9H
												AGIH
												AG1U
												BG1H
												8710
												BP20
					·							BF30
												BP2N
												BP2S
4					ODEC ON			Output may 7			*esserible	WGH
					,							AG1H AG1U BG1H BP1U BP2U BP3U BP2N BP2S WGFU WGKU
Trip Blank?											:	Com
												Comments

BP20 500mL NaOH plastic	BP2N 500mL HNO3 plastic	BP1Z 1 liter NaOH, Zn, Ac	BP1U 1 liter unpreserved plastic	BP1S 1 liter H2SO4 plastic	BP1N 1 liter HNO3 plastic	BG1U 1 liter unpreserved glass	BG1H 1 liter HCL clear glass	AG3S 250mL H2SO4 amber glass	AG2U 500mL unpreserved amber glass	AG2S 500mL H2SO4 amber glass	AG1U 1liter unpreserved amber glass	AG1H 1 liter HCL amber glass
	DG9L	DG9T	DG9N	DG9H	DG9E	BP3(BP3S	BP3N	BP3C	BP2Z	BP2U	BP2S
Wipe/Swab	DG9U 40mL unpreserved amber vial	DG9T 40mL Na Thio amber vial	DG9M 40mL MeOH clear vial	40mL HCL amber voa vial	DG9B 40mL Na Bisulfate amber vial	BP3U 250mL unpreserved plastic	BP3S 250mL H2SO4 plastic	250mL HNO3 plastic	BP3C 250mL NaOH plastic	BP2Z 500mL NaOH, Zn Ac	BP2U 500mL unpreserved plastic	BP2S 500mL H2SO4 plastic
		ZPLC	WGFX	WGFU	VSG	VG9W	VG9U	VG9T	VG9H	c	R	JGFU
		ZPLC Ziploc Bag	WGFX 4oz wide jar w/hexane wipe	WGFU 4oz clear soil jar	VSG Headspace septa vial & HCL	VG9W 40mL glass vial preweighted (EPA 5035)	VG9U 40mL unpreserved clear vial	40mL Na Thio. clear vial	VG9H 40mL HCL clear vial	U Summa Can	R terra core kit	JGFU 4oz unpreserved amber wide

CLIENT: Brown & Caldwell

Pace Analytical"

coc D# 13/8974

12		10	9	8	7	ი	Οī	4	ω	N	_	Item
												VG9H
												AG1H AG1U BG1H BP1U BP2U BP3U
												AG1U
												BG1H
												BP1U
												BP2U
												BP3U
												BP2N
												BP2S
									⋖-	and the same of	gammik	WGFU
					•							BP2S WGFU WGKU
—												
Trip Blank? No												
0												Comments
	Ē											

BP20 500mL NaOH plastic	BP2N 500mL HNO3 plastic	BP1Z 1 liter NaOH, Zn, Ac	BP1U 1 liter unpreserved plastic	BP1S 1 liter H2SO4 plastic	BP1N 1 liter HNO3 plastic	BG1U 1 liter unpreserved glass	BG1H 1 liter HCL clear glass	AG3S 250mL H2SO4 amber glass	AG2U 500mL unpreserved amber glass	AG2S 500mL H2SO4 amber glass	AG1U 1liter unpreserved amber glass	AG1H 1 liter HCL amber glass
I] Wipe/Swab	DG9U 40mL unpreserved amber vial	DG9T 40mL Na Thio amber vial	DG9M 40mL MeOH clear vial	DG9H 40mL HCL amber voa vial	DG9B 40mL Na Bisulfate amber vial	BP3U 250mL unpreserved plastic	BP3S 250mL H2SO4 plastic	BP3N 250mL HNO3 plastic	BP3C 250mL NaOH plastic	BP2Z 500mL NaOH, Zn Ac	BP2U 500mL unpreserved plastic	BP2S 500mL H2SO4 plastic
		ZPL(WGE	WGFU	VSO	VG9V	VG9	VG9T	VG9F			JGFI
		ZPLC Ziploc Bag	WGFX 4oz wide jar w/hexane wipe	U 4oz clear soil jar	VSG Headspace septa vial & HCL	VG9W 40mL glass vial preweighted (EPA 5035)	VG9U 40mL unpreserved clear vial	T 40mL Na Thio. clear vial	VG9H d0mL HCL clear vial	U Summa Can	R terra core kit	JGFU 4oz unpreserved amber wide

November 17, 2010

Joshua Johnson Brown & Caldwell 724 Columbia St. NW#420 Olympia, WA 98501

RE: Project: East Bay Redevelopment 138130

Pace Project No.: 255583

Dear Joshua Johnson:

Enclosed are the analytical results for sample(s) received by the laboratory on November 03, 2010. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

Client added Diesel with Silica Gel cleanup to 255583 005 (CNF-1-5-9) on 11/10/10.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Regina SteMarie for Jennifer Gross

Regina Se. Marie

jennifer.gross@pacelabs.com

Project Manager

Enclosures

CERTIFICATIONS

Project: East Bay Redevelopment 138130

Pace Project No.: 255583

Washington Certification IDs
940 South Harney Street, Seattle, WA 98108
Alaska CS Certification #: UST-025
Alaska Drinking Water VOC Certification #: WA01230
Alaska Drinking Water Micro Certification #: WA01230

California Certification #: 01153CA California Certification #: E87617
Oregon Certification #: WA200007
Washington Certification #: C1229

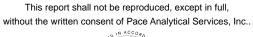
SAMPLE SUMMARY

Project: East Bay Redevelopment 138130

Pace Project No.: 255583

Lab ID	Sample ID	Matrix	Date Collected	Date Received
255583001	CNF-1-1-9	Solid	11/03/10 12:04	11/03/10 19:30
255583002	CNF-1-2-9	Solid	11/03/10 12:07	11/03/10 19:30
255583003	CNF-1-3-9	Solid	11/03/10 12:10	11/03/10 19:30
255583004	CNF-1-4-9	Solid	11/03/10 12:20	11/03/10 19:30
255583005	CNF-1-5-9	Solid	11/03/10 12:16	11/03/10 19:30
255583006	CNF-1-6-4	Solid	11/03/10 13:50	11/03/10 19:30
255583007	CNF-1-7-5	Solid	11/03/10 14:00	11/03/10 19:30
255583008	CNF-1-8-3	Solid	11/03/10 14:05	11/03/10 19:30
255583009	CNF-1-9-1.5	Solid	11/03/10 14:09	11/03/10 19:30
255583010	CNF-1-10-3.5	Solid	11/03/10 14:15	11/03/10 19:30
255583011	CNF-1-11-1	Solid	11/03/10 14:18	11/03/10 19:30
255583012	CNF-1-12-3	Solid	11/03/10 14:24	11/03/10 19:30

SAMPLE ANALYTE COUNT


Project: East Bay Redevelopment 138130

Pace Project No.: 255583

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
255583001	CNF-1-1-9	NWTPH-Dx	DMT	4	PASI-S
		EPA 6010	BGA	4	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
255583002	CNF-1-2-9	NWTPH-Dx	DMT	4	PASI-S
		EPA 6010	BGA	4	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
255583003	CNF-1-3-9	NWTPH-Dx	DMT	4	PASI-S
		EPA 6010	BGA	4	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
255583004	CNF-1-4-9	NWTPH-Dx	DMT	4	PASI-S
		EPA 6010	BGA	4	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
255583005	CNF-1-5-9	NWTPH-Dx	DMT	8	PASI-S
		EPA 6010	BGA	4	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
255583006	CNF-1-6-4	NWTPH-Dx	DMT	4	PASI-S
		EPA 6010	BGA	4	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
255583007	CNF-1-7-5	NWTPH-Dx	DMT	4	PASI-S
		EPA 6010	BGA	4	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
255583008	CNF-1-8-3	NWTPH-Dx	DMT	4	PASI-S
		EPA 6010	BGA	4	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
255583009	CNF-1-9-1.5	NWTPH-Dx	DMT	4	PASI-S
		EPA 6010	BGA	4	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
255583010	CNF-1-10-3.5	NWTPH-Dx	DMT	4	PASI-S
		EPA 6010	BGA	4	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
255583011	CNF-1-11-1	NWTPH-Dx	DMT	4	PASI-S
		EPA 6010	BGA	4	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
255583012	CNF-1-12-3	NWTPH-Dx	DMT	4	PASI-S
		EPA 6010	BGA	4	PASI-S
		ASTM D2974-87	DMT	1	PASI-S

REPORT OF LABORATORY ANALYSIS

Page 4 of 15

Project: East Bay Redevelopment 138130

Pace Project No.: 255583

Date: 11/17/2010 11:46 AM

Sample: CNF-1-1-9 Lab ID: 255583001 Collected: 11/03/10 12:04 Received: 11/03/10 19:30 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS	Analytica	l Method: NWT	PH-Dx Prepa	ration Me	thod: El	PA 3546			
Diesel Range	<4.7 r	ma/ka	23.1	4.7	1	11/05/10 09:50	11/08/10 23:35		
Motor Oil Range	<16.4 r		92.4	16.4	1	11/05/10 09:50	11/08/10 23:35	64742-65-0	
n-Octacosane (S)	114 9	%	50-150		1	11/05/10 09:50	11/08/10 23:35	630-02-4	
o-Terphenyl (S)	105 9	%	50-150		1	11/05/10 09:50	11/08/10 23:35	84-15-1	
6010 MET ICP	Analytica	Method: EPA	6010 Prepara	ation Meth	od: EPA	A 3050			
Arsenic	2.7J r	ng/kg	11.8	1.8	5	11/04/10 07:16	11/04/10 16:15	7440-38-2	
Copper	14.8 r	ng/kg	14.8	2.0	5	11/04/10 07:16	11/04/10 16:15	7440-50-8	
Lead	6.4 r	ng/kg	1.2	0.075	1	11/04/10 07:16	11/04/10 15:14	7439-92-1	
Nickel	29.8 r	ng/kg	23.7	0.19	5	11/04/10 07:16	11/04/10 16:15	7440-02-0	
Percent Moisture	Analytica	Method: ASTM	M D2974-87						
Percent Moisture	18.0	%	0.10	0.10	1		11/03/10 21:53		
Sample: CNF-1-2-9	Lab ID:	255583002	Collected:	11/03/10	12:07	Received: 11/	03/10 19:30 Ma	atrix: Solid	
Results reported on a "dry-weig									
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS	Analytica	I Method: NWT	PH-Dx Prepa	ration Me	thod: El	PA 3546			
Diesel Range	<5.1 r	ma/ka	25.0	5.1	1	11/05/10 09:50	11/09/10 00:21		
Motor Oil Range	<17.8 r	0 0	100	17.8	1	11/05/10 09:50	11/09/10 00:21	64742-65-0	
n-Octacosane (S)	109 9		50-150	17.0	1	11/05/10 09:50	11/09/10 00:21	630-02-4	
o-Terphenyl (S)	102 9		50-150		1	11/05/10 09:50	11/09/10 00:21		
6010 MET ICP	Analytica	l Method: EPA	6010 Prepara	ation Meth	od: EPA	A 3050			
Arsenic	2.6 r	ng/kg	2.5	0.37	1	11/04/10 07:16	11/04/10 16:24	7440-38-2	
Copper	11.8 r	0 0	3.1	0.41	1	11/04/10 07:16	11/04/10 16:24	7440-50-8	
Lead		ng/kg	1.2	0.077	1	11/04/10 07:16	11/04/10 16:24	7439-92-1	
Nickel	27.7 r		4.9	0.039	1	11/04/10 07:16	11/04/10 16:24	7440-02-0	
Percent Moisture	Analytica	l Method: ASTN	M D2974-87						
Percent Moisture	22.4	%	0.10	0.10	1		11/03/10 21:55		
Sample: CNF-1-3-9	Lab ID:	255583003	Collected:	11/03/10	12:10	Received: 11/	03/10 19:30 Ma	atrix: Solid	
Results reported on a "dry-weig									
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS	Analytica	I Method: NWT	PH-Dx Prepa	ration Me	hod: El	 PA 3546		•	
			.						

REPORT OF LABORATORY ANALYSIS

Page 5 of 15

Project: East Bay Redevelopment 138130

Pace Project No.: 255583

Lab ID: 255583003 Sample: CNF-1-3-9 Collected: 11/03/10 12:10 Received: 11/03/10 19:30 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters	Results	Units PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS	Analytical Met	thod: NWTPH-Dx Prep	paration Me	thod: E	PA 3546			
Motor Oil Range	1560 mg/kg	g 481	85.7	1	11/05/10 09:50	11/09/10 01:31	64742-65-0	
n-Octacosane (S)	93 %	50-150		1	11/05/10 09:50	11/09/10 01:31	630-02-4	
o-Terphenyl (S)	58 %	50-150		1	11/05/10 09:50	11/09/10 01:31	84-15-1	
6010 MET ICP	Analytical Met	thod: EPA 6010 Prepa	ration Meth	od: EP	A 3050			
Arsenic	4.1J mg/kg	g 12.9	1.9	1	11/04/10 07:16	11/04/10 15:32	7440-38-2	
Copper	27.8 mg/kg	g 16.1	2.1	1	11/04/10 07:16	11/04/10 15:32	7440-50-8	
Lead	153 mg/kg	g 6.5	0.41	1	11/04/10 07:16	11/04/10 15:32	7439-92-1	
Nickel	4.3J mg/k	g 25.8	0.21	1	11/04/10 07:16	11/04/10 15:32	7440-02-0	
Percent Moisture	Analytical Met	thod: ASTM D2974-87						
Percent Moisture	84.7 %	0.10	0.10	1		11/03/10 21:56		
Sample: CNF-1-4-9	Lab ID: 255	5583004 Collecte	d: 11/03/10	12:20	Received: 11/	/03/10 19:30 M	atrix: Solid	
Results reported on a "dry-w	eight" basis							

Parameters	Results	Units	PQL _	MDL	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS	Analytical N	Method: NWT	PH-Dx Prep	aration Met	hod: E	PA 3546			
Diesel Range	160 mg	g/kg	67.0	13.5	1	11/05/10 09:50	11/09/10 02:17		
Motor Oil Range	683 mg	g/kg	268	47.7	1	11/05/10 09:50	11/09/10 02:17	64742-65-0	
n-Octacosane (S)	121 %	-	50-150		1	11/05/10 09:50	11/09/10 02:17	630-02-4	
o-Terphenyl (S)	105 %		50-150		1	11/05/10 09:50	11/09/10 02:17	84-15-1	
6010 MET ICP	Analytical N	Method: EPA	6010 Prepar	ation Metho	od: EP/	A 3050			
Arsenic	9.3 mg	g/kg	6.9	1.0	1	11/04/10 07:16	11/04/10 15:35	7440-38-2	
Copper	25.6 mg	g/kg	8.6	1.1	1	11/04/10 07:16	11/04/10 15:35	7440-50-8	
Lead	123 mg	g/kg	3.4	0.22	1	11/04/10 07:16	11/04/10 15:35	7439-92-1	
Nickel	28.2 mg	g/kg	13.7	0.11	1	11/04/10 07:16	11/04/10 15:35	7440-02-0	
Percent Moisture	Analytical M	Method: ASTI	M D2974-87						
Percent Moisture	71.5 %		0.10	0.10	1		11/03/10 21:56		
Sample: CNF-1-5-9	l ab ID:	255583005	Collected	N: 11/03/10	10.16	Received: 11/	03/10 19:30 M	atriv: Solid	

Sample: CNF-1-5-9 Lab ID: 255583005 Collected: 11/03/10 12:16 Received: 11/03/10 19:30 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS SG	Analytical	Method: NWT	PH-Dx Pre	paration Me	thod: E	PA 3546			
Diesel Range Diesel Range SG	607 m 263 m	0 0	116 116	23.5 18.5	1 1	11/05/10 09:50 11/05/10 09:50	11/09/10 03:03 11/16/10 05:33		

Date: 11/17/2010 11:46 AM

REPORT OF LABORATORY ANALYSIS

Page 6 of 15

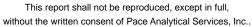
Project: East Bay Redevelopment 138130

Pace Project No.: 255583

Sample: CNF-1-5-9 Lab ID: 255583005 Collected: 11/03/10 12:16 Received: 11/03/10 19:30 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS SG	Analytical	Method: NW	TPH-Dx Prep	aration Met	thod: E	PA 3546			
Motor Oil Range	3500 m	ıg/kg	465	82.9	1	11/05/10 09:50	11/09/10 03:03	64742-65-0	
Motor Oil Range SG	1250 m	ıg/kg	465	125	1	11/05/10 09:50	11/16/10 05:33	64742-65-0	
n-Octacosane (S) SG	143 %		50-150		1	11/05/10 09:50	11/16/10 05:33	630-02-4	
o-Terphenyl (S) SG	105 %		50-150		1	11/05/10 09:50	11/16/10 05:33	84-15-1	
n-Octacosane (S)	100 %		50-150		1	11/05/10 09:50	11/09/10 03:03	630-02-4	
o-Terphenyl (S)	71 %	D	50-150		1	11/05/10 09:50	11/09/10 03:03	84-15-1	
6010 MET ICP	Analytical	Method: EPA	A 6010 Prepai	ration Metho	od: EP	A 3050			
Arsenic	7.1J m	ıg/kg	11.7	1.7	1	11/04/10 07:16	11/04/10 15:38	7440-38-2	
Copper	27.5 m	ig/kg	14.7	1.9	1	11/04/10 07:16	11/04/10 15:38	7440-50-8	
Lead	56.1 m		5.9	0.37	1	11/04/10 07:16	11/04/10 15:38	7439-92-1	
Nickel	4.5J m		23.5	0.19	1	11/04/10 07:16	11/04/10 15:38	7440-02-0	
Percent Moisture	Analytical	Method: AS	M D2974-87						
Percent Moisture	83.6 %	, D	0.10	0.10	1		11/03/10 21:57		


Sample: CNF-1-6-4 Lab ID: 255583006 Collected: 11/03/10 13:50 Received: 11/03/10 19:30 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS	Analytical	Method: NW	TPH-Dx Prep	aration Me	hod: E	EPA 3546			
Diesel Range	<4.7 n	ng/kg	23.0	4.7	1	11/05/10 09:50	11/09/10 03:50		
Motor Oil Range	19.9J n	ng/kg	92.1	16.4	1	11/05/10 09:50	11/09/10 03:50	64742-65-0	
n-Octacosane (S)	109 %	6	50-150		1	11/05/10 09:50	11/09/10 03:50	630-02-4	
o-Terphenyl (S)	101 %	6	50-150		1	11/05/10 09:50	11/09/10 03:50	84-15-1	
6010 MET ICP	Analytical	Method: EPA	A 6010 Prepar	ation Metho	od: EP	A 3050			
Arsenic	5.8J n	ng/kg	10.8	1.6	5	11/04/10 07:16	11/04/10 16:27	7440-38-2	
Copper	38.1 n	ng/kg	13.5	1.8	5	11/04/10 07:16	11/04/10 16:27	7440-50-8	
Lead	9.6 n	ng/kg	1.1	0.068	1	11/04/10 07:16	11/04/10 15:41	7439-92-1	
Nickel	45.7 n	ng/kg	21.6	0.17	5	11/04/10 07:16	11/04/10 16:27	7440-02-0	
Percent Moisture	Analytical	Method: AS7	ΓM D2974-87						
Percent Moisture	17.3 %	6	0.10	0.10	1		11/03/10 21:58		

Date: 11/17/2010 11:46 AM REPORT OF LABORATORY ANALYSIS

Page 7 of 15

Project: East Bay Redevelopment 138130

Pace Project No.: 255583

Date: 11/17/2010 11:46 AM

Sample: CNF-1-7-5 Lab ID: 255583007 Collected: 11/03/10 14:00 Received: 11/03/10 19:30 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS	Analytical	Method: NWT	PH-Dx Prepa	ration Me	thod: El	PA 3546			
Diesel Range	493 m	ng/kg	86.1	17.4	1	11/05/10 09:50	11/09/10 05:22		
Motor Oil Range	1540 m		344	61.3	1	11/05/10 09:50	11/09/10 05:22	64742-65-0	
n-Octacosane (S)	94 %	0 0	50-150		1	11/05/10 09:50	11/09/10 05:22	630-02-4	
o-Terphenyl (S)	83 %	6	50-150		1	11/05/10 09:50	11/09/10 05:22	84-15-1	
6010 MET ICP	Analytical	Method: EPA	6010 Prepara	tion Meth	od: EPA	A 3050			
Arsenic	6.8J m	ng/kg	8.3	1.2	1	11/04/10 07:16	11/04/10 15:45	7440-38-2	
Copper	38.1 m	ng/kg	10.4	1.4	1	11/04/10 07:16	11/04/10 15:45	7440-50-8	
Lead	51.2 m		4.2	0.26	1	11/04/10 07:16	11/04/10 15:45	7439-92-1	
Nickel	6.0J m	0 0	16.7	0.13	1	11/04/10 07:16	11/04/10 15:45	7440-02-0	
Percent Moisture	Analytical	Method: ASTN	M D2974-87						
Percent Moisture	77.6 %	6	0.10	0.10	1		11/03/10 21:59		
Sample: CNF-1-8-3	Lab ID:	255583008	Collected:	11/03/10	14:05	Received: 11/	/03/10 19:30 Ma	atrix: Solid	
Results reported on a "dry-weigh									
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS	Analytical	Method: NWT	PH-Dx Prepa	ration Me	thod: El	PA 3546		-	
Diesel Range	5.3J m	na/ka	23.3	4.7	1	11/05/10 09:50	11/09/10 06:08		
Motor Oil Range	25.6J m		93.1	16.6	1	11/05/10 09:50	11/09/10 06:08	64742-65-0	
n-Octacosane (S)	114 %		50-150		1	11/05/10 09:50	11/09/10 06:08		
o-Terphenyl (S)	106 %		50-150		1	11/05/10 09:50	11/09/10 06:08		
6010 MET ICP	Analytical	Method: EPA	6010 Prepara	tion Meth	od: EPA	A 3050			
Arsenic	3.6J n	ng/kg	10.3	1.5	5	11/04/10 07:16	11/04/10 16:30	7440-38-2	
Copper	19.4 m	0 0	12.9	1.7	5	11/04/10 07:16	11/04/10 16:30		
Lead	4.9 m		1.0	0.065	1	11/04/10 07:16	11/04/10 15:48		
Nickel	32.3 m		20.6	0.17	5		11/04/10 16:30		
Percent Moisture	Analytical	Method: ASTN	M D2974-87						
Percent Moisture	20.6 %	6	0.10	0.10	1		11/03/10 22:00		
Sample: CNF-1-9-1.5	Lab ID:	255583009	Collected:	11/03/10	14:09	Received: 11/	/03/10 19:30 Ma	atrix: Solid	
Results reported on a "dry-weigh	ht" basis								
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Parameters NWTPH-Dx GCS		Units Method: NWT				•	Analyzed	CAS No.	Qual

REPORT OF LABORATORY ANALYSIS

Page 8 of 15

Project: East Bay Redevelopment 138130

Pace Project No.: 255583

Sample: CNF-1-9-1.5 Lab ID: 255583009 Collected: 11/03/10 14:09 Received: 11/03/10 19:30 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters	Results	Units	PQL	MDL .	DF	Prepared	Analyzed	CAS No.	Qual	
NWTPH-Dx GCS	Analytical	Method: NW	TPH-Dx Prep	aration Met	hod: E	PA 3546				
Motor Oil Range	357 m	ıg/kg	82.6	14.7	1	11/05/10 09:50	11/09/10 06:54	64742-65-0		
n-Octacosane (S)	145 %)	50-150		1	11/05/10 09:50	11/09/10 06:54	630-02-4		
o-Terphenyl (S)	87 %)	50-150		1	11/05/10 09:50	11/09/10 06:54	84-15-1		
6010 MET ICP	Analytical Method: EPA 6010 Preparation Method: EPA 3050									
Arsenic	3.7J m	ıg/kg	10.3	1.5	5	11/04/10 07:16	11/04/10 16:33	7440-38-2		
Copper	19.6 m	ıg/kg	12.9	1.7	5	11/04/10 07:16	11/04/10 16:33	7440-50-8		
Lead	7.6 m	ıg/kg	1.0	0.065	1	11/04/10 07:16	11/04/10 15:51	7439-92-1		
Nickel	28.6 m	ıg/kg	20.6	0.16	5	11/04/10 07:16	11/04/10 16:33	7440-02-0		
Percent Moisture	Analytical	Method: AS	ΓM D2974-87							
Percent Moisture	7.4 %)	0.10	0.10	1		11/03/10 22:01			

Sample: CNF-1-10-3.5 Lab ID: 255583010 Collected: 11/03/10 14:15 Received: 11/03/10 19:30 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS	Analytical Method:	NWTPH-Dx Prep	paration Me	thod: E	EPA 3546			
Diesel Range	36.7 mg/kg	22.7	4.6	1	11/05/10 09:50	11/09/10 07:40		
Motor Oil Range	143 mg/kg	90.7	16.1	1	11/05/10 09:50	11/09/10 07:40	64742-65-0	
n-Octacosane (S)	112 %	50-150		1	11/05/10 09:50	11/09/10 07:40	630-02-4	
o-Terphenyl (S)	107 %	50-150		1	11/05/10 09:50	11/09/10 07:40	84-15-1	
6010 MET ICP	Analytical Method:	EPA 6010 Prepa	ration Meth	od: EP	A 3050			
Arsenic	2.5 mg/kg	2.2	0.33	1	11/04/10 07:16	11/04/10 15:54	7440-38-2	
Copper	21.0 mg/kg	2.8	0.37	1	11/04/10 07:16	11/04/10 15:54	7440-50-8	
Lead	108 mg/kg	1.1	0.070	1	11/04/10 07:16	11/04/10 15:54	7439-92-1	
Nickel	19.2 mg/kg	4.5	0.036	1	11/04/10 07:16	11/04/10 15:54	7440-02-0	
Percent Moisture	Analytical Method:	ASTM D2974-87						
Percent Moisture	13.9 %	0.10	0.10	1		11/03/10 22:02		
Sample: CNE-1-11-1	l ah ID: 2555930	111 Collecto	d: 11/02/10		Pacaiyad: 11	/00/40 40 00 M	atriv: Salid	

 Sample:
 CNF-1-11-1
 Lab ID:
 255583011
 Collected:
 11/03/10 14:18
 Received:
 11/03/10 19:30
 Matrix:
 Solid

Results reported on a "dry-weight" basis

Date: 11/17/2010 11:46 AM

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS	Analytical Method: NWTPH-Dx Preparation Method: EPA 3546								
Diesel Range Motor Oil Range	5.9J 18.5J	mg/kg mg/kg	21.6 86.4	4.4 15.4	1 1	11/05/10 09:50 11/05/10 09:50	11/09/10 09:13 11/09/10 09:13	64742-65-0	

REPORT OF LABORATORY ANALYSIS

Page 9 of 15

Project: East Bay Redevelopment 138130

Pace Project No.: 255583

Sample: CNF-1-11-1 Lab ID: 255583011 Collected: 11/03/10 14:18 Received: 11/03/10 19:30 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS	Analytical N	Method: NW	TPH-Dx Prep	aration Me	hod: E	PA 3546			
n-Octacosane (S)	114 %		50-150		1	11/05/10 09:50	11/09/10 09:13	630-02-4	
o-Terphenyl (S)	105 %		50-150		1	11/05/10 09:50	11/09/10 09:13	84-15-1	
6010 MET ICP	Analytical N	Method: EPA	6010 Prepar	ation Meth	od: EP	A 3050			
Arsenic	2.1J mg	g/kg	11.2	1.7	5	11/04/10 07:16	11/04/10 16:36	7440-38-2	
Copper	15.1 mg	g/kg	14.0	1.8	5	11/04/10 07:16	11/04/10 16:36	7440-50-8	
Lead	4.6 mg	g/kg	1.1	0.070	1	11/04/10 07:16	11/04/10 15:57	7439-92-1	
Nickel	28.2 mg	g/kg	22.3	0.18	5	11/04/10 07:16	11/04/10 16:36	7440-02-0	
Percent Moisture	Analytical N	Method: AST	M D2974-87						
Percent Moisture	13.9 %		0.10	0.10	1		11/03/10 22:03		

Sample: CNF-1-12-3 Lab ID: 255583012 Collected: 11/03/10 14:24 Received: 11/03/10 19:30 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS	Analytical I	Method: NW	TPH-Dx Prep	aration Met	thod: E	PA 3546			
Diesel Range	6.0J mg	g/kg	24.1	4.9	1	11/05/10 09:50	11/09/10 09:59		
Motor Oil Range	20.3J mg	g/kg	96.2	17.1	1	11/05/10 09:50	11/09/10 09:59	64742-65-0	
n-Octacosane (S)	111 %		50-150		1	11/05/10 09:50	11/09/10 09:59	630-02-4	
o-Terphenyl (S)	102 %		50-150		1	11/05/10 09:50	11/09/10 09:59	84-15-1	
6010 MET ICP	Analytical Method: EPA 6010 Preparation Method: EPA 3050								
Arsenic	3.6J mg	g/kg	9.7	1.5	5	11/04/10 07:16	11/04/10 16:46	7440-38-2	
Copper	22.1 mg	g/kg	12.2	1.6	5	11/04/10 07:16	11/04/10 16:46	7440-50-8	
Lead	8.9 mg	g/kg	0.97	0.061	1	11/04/10 07:16	11/04/10 16:00	7439-92-1	
Nickel	35.7 mg	g/kg	19.5	0.16	5	11/04/10 07:16	11/04/10 16:46	7440-02-0	
Percent Moisture	Analytical I	Method: AST	M D2974-87						
Percent Moisture	17.3 %		0.10	0.10	1		11/03/10 22:04		

Date: 11/17/2010 11:46 AM

REPORT OF LABORATORY ANALYSIS

Page 10 of 15

Project: East Bay Redevelopment 138130

Pace Project No.: 255583

QC Batch: OEXT/2931 Analysis Method: NWTPH-Dx
QC Batch Method: EPA 3546 Analysis Description: NWTPH-Dx GCS

Associated Lab Samples: 255583001, 255583002, 255583003, 255583004, 255583005, 255583006, 255583007, 255583008, 255583009,

255583010, 255583011, 255583012

METHOD BLANK: 48335 Matrix: Solid

Associated Lab Samples: 255583001, 255583002, 255583003, 255583004, 255583005, 255583006, 255583007, 255583008, 255583009,

255583010, 255583011, 255583012

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Diesel Range	mg/kg	<4.0	20.0	11/08/10 22:49	
Diesel Range SG	mg/kg	9.0J	20.0	11/08/10 17:48	
Motor Oil Range	mg/kg	<14.2	80.0	11/08/10 22:49	
Motor Oil Range SG	mg/kg	<21.5	80.0	11/08/10 17:48	
n-Octacosane (S)	%	106	50-150	11/08/10 22:49	
n-Octacosane (S) SG	%	112	50-150	11/08/10 17:48	
o-Terphenyl (S)	%	99	50-150	11/08/10 22:49	
o-Terphenyl (S) SG	%	101	50-150	11/08/10 17:48	

LABORATORY	CONTROL	SAMPLE:	48336

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Diesel Range	mg/kg	500	448	90	56-124	
Diesel Range SG	mg/kg	500	446	89	56-124	
Motor Oil Range	mg/kg	500	476	95	50-150	
Motor Oil Range SG	mg/kg	500	487	97	50-150	
n-Octacosane (S)	%			104	50-150	
n-Octacosane (S) SG	%			110	50-150	
o-Terphenyl (S)	%			108	50-150	
o-Terphenyl (S) SG	%			85	50-150	

SAMPI	F	DUPI	ICATE:	48337
SAIVIFL	_	DOFL	JUAIL.	40331

Ortivii EE DOI EIO/IIE. 40007		255583001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Diesel Range	mg/kg	<4.7	<4.8		50	
Motor Oil Range	mg/kg	<16.4	<17.0		50	1
n-Octacosane (S)	%	114	108	2		
o-Terphenyl (S)	%	105	99	2		

SAMPLE DUPLICATE: 48338

Parameter	Units	255562001 Result	Dup Result	RPD	Max RPD	Qualifiers
Diesel Range SG		38.7	34.4	12	50	
Motor Oil Range SG	mg/kg	ND	55.7J		50	
n-Octacosane (S) SG	%	105	108	.3		
o-Terphenyl (S) SG	%	97	98	2		

Date: 11/17/2010 11:46 AM

REPORT OF LABORATORY ANALYSIS

Page 11 of 15

Project: East Bay Redevelopment 138130

Pace Project No.: 255583

QC Batch: MPRP/1865 Analysis Method: EPA 6010
QC Batch Method: EPA 3050 Analysis Description: 6010 MET

Associated Lab Samples: 255583001, 255583002, 255583003, 255583004, 255583005, 255583006, 255583007, 255583008, 255583009,

255583010, 255583011, 255583012

METHOD BLANK: 48156 Matrix: Solid

Associated Lab Samples: 255583001, 255583002, 255583003, 255583004, 255583005, 255583006, 255583007, 255583008, 255583009,

255583010, 255583011, 255583012

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	mg/kg	<0.30	2.0	11/04/10 16:09	
Copper	mg/kg	< 0.33	2.5	11/04/10 16:09	
Lead	mg/kg	< 0.063	1.0	11/04/10 16:09	
Nickel	mg/kg	< 0.032	4.0	11/04/10 16:09	

LABORATORY CONTROL SAMPLE: 48157

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/kg	25	25.3	101	80-120	
Copper	mg/kg	25	23.2	93	80-120	
Lead	mg/kg	25	26.0	104	80-120	
Nickel	mg/kg	25	25.4	102	80-120	

MATRIX SPIKE & MATRIX S	SPIKE DUPLICA	ATE: 48158			48159							
Parameter	Units	255583001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Arsenic	mg/kg		25.6	26.3	27.8	28.3	98	97	75-125	2	20	
Copper	mg/kg	14.8	25.6	26.3	35.0	35.8	79	80	75-125	2	20	
Lead	mg/kg	6.4	25.6	26.3	30.3	30.5	93	92	75-125	.5	20	
Nickel	ma/ka	20.8	25.6	26.3	55.2	53.3	aa	80	75-125	3	20	

Date: 11/17/2010 11:46 AM

Project: East Bay Redevelopment 138130

Pace Project No.: 255583

QC Batch: PMST/1409 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

255583001, 255583002, 255583003, 255583004, 255583005, 255583006, 255583007, 255583008, 255583009, Associated Lab Samples:

255583010, 255583011, 255583012

SAMPLE DUPLICATE: 48150

		255526021	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Percent Moisture	%	33.0	32.4	2	30	

SAMPLE DUPLICATE: 48151

Date: 11/17/2010 11:46 AM

		255583001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Percent Moisture		18.0	20.0	11	30	

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

QUALIFIERS

Project: East Bay Redevelopment 138130

Pace Project No.: 255583

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

Date: 11/17/2010 11:46 AM

PASI-S Pace Analytical Services - Seattle

This report shall not be reproduced, except in full,

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: East Bay Redevelopment 138130

Pace Project No.: 255583

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
255583001	CNF-1-1-9	EPA 3546	OEXT/2931	NWTPH-Dx	GCSV/2052
255583002	CNF-1-2-9	EPA 3546	OEXT/2931	NWTPH-Dx	GCSV/2052
255583003	CNF-1-3-9	EPA 3546	OEXT/2931	NWTPH-Dx	GCSV/2052
255583004	CNF-1-4-9	EPA 3546	OEXT/2931	NWTPH-Dx	GCSV/2052
255583006	CNF-1-6-4	EPA 3546	OEXT/2931	NWTPH-Dx	GCSV/2052
255583007	CNF-1-7-5	EPA 3546	OEXT/2931	NWTPH-Dx	GCSV/2052
255583008	CNF-1-8-3	EPA 3546	OEXT/2931	NWTPH-Dx	GCSV/2052
255583009	CNF-1-9-1.5	EPA 3546	OEXT/2931	NWTPH-Dx	GCSV/2052
255583010	CNF-1-10-3.5	EPA 3546	OEXT/2931	NWTPH-Dx	GCSV/2052
255583011	CNF-1-11-1	EPA 3546	OEXT/2931	NWTPH-Dx	GCSV/2052
255583012	CNF-1-12-3	EPA 3546	OEXT/2931	NWTPH-Dx	GCSV/2052
255583005	CNF-1-5-9	EPA 3546	OEXT/2931	NWTPH-Dx	GCSV/2052
255583001	CNF-1-1-9	EPA 3050	MPRP/1865	EPA 6010	ICP/1780
255583002	CNF-1-2-9	EPA 3050	MPRP/1865	EPA 6010	ICP/1780
255583003	CNF-1-3-9	EPA 3050	MPRP/1865	EPA 6010	ICP/1780
255583004	CNF-1-4-9	EPA 3050	MPRP/1865	EPA 6010	ICP/1780
255583005	CNF-1-5-9	EPA 3050	MPRP/1865	EPA 6010	ICP/1780
255583006	CNF-1-6-4	EPA 3050	MPRP/1865	EPA 6010	ICP/1780
255583007	CNF-1-7-5	EPA 3050	MPRP/1865	EPA 6010	ICP/1780
255583008	CNF-1-8-3	EPA 3050	MPRP/1865	EPA 6010	ICP/1780
255583009	CNF-1-9-1.5	EPA 3050	MPRP/1865	EPA 6010	ICP/1780
255583010	CNF-1-10-3.5	EPA 3050	MPRP/1865	EPA 6010	ICP/1780
255583011	CNF-1-11-1	EPA 3050	MPRP/1865	EPA 6010	ICP/1780
255583012	CNF-1-12-3	EPA 3050	MPRP/1865	EPA 6010	ICP/1780
255583001	CNF-1-1-9	ASTM D2974-87	PMST/1409		
255583002	CNF-1-2-9	ASTM D2974-87	PMST/1409		
255583003	CNF-1-3-9	ASTM D2974-87	PMST/1409		
255583004	CNF-1-4-9	ASTM D2974-87	PMST/1409		
255583005	CNF-1-5-9	ASTM D2974-87	PMST/1409		
255583006	CNF-1-6-4	ASTM D2974-87	PMST/1409		
255583007	CNF-1-7-5	ASTM D2974-87	PMST/1409		
255583008	CNF-1-8-3	ASTM D2974-87	PMST/1409		
255583009	CNF-1-9-1.5	ASTM D2974-87	PMST/1409		
255583010	CNF-1-10-3.5	ASTM D2974-87	PMST/1409		
255583011	CNF-1-11-1	ASTM D2974-87	PMST/1409		
255583012	CNF-1-12-3	ASTM D2974-87	PMST/1409		

Date: 11/17/2010 11:46 AM

REPORT OF LABORATORY ANALYSIS

Page 15 of 15

	Sample C	Onc	tion Upon Receipt	
Pace Analytical Client Name	: <u>Bro</u> u	<u>)</u>	of Caldwell	roject # <u>255 583</u>
Courier: Fed Ex UPS USPS Clien	nt 🗆 Comme	ercial	Pace Other	
Tracking #:				
Custody Seal on Cooler/Box Present:	No	Seals	intact: Yes	No
Packing Material: Bubble Wrap Bubble	Bags N	one	Other	Temp. Blank YesNoNo
Thermometer Used 132013 or 101731962 or 22609	9 Type of Ice:	Wet	Blue None	Samples on ice, cooling process has begun
Cooler Temperature 5.7 Temp should be above freezing ≤ 6℃	Biological 7	Tissue	is Frozen: Yes No Comments:	Date and Initials of person examining contents:
Chain of Custody Present:	Yes No	□n/a	1. coc not r	eceived with samples.
Chain of Custody Filled Out:	☐Yes ☐No	□N⁄A	2.	
Chain of Custody Relinquished:	□Yes □No	□łN/A	3.	
Sampler Name & Signature on COC:	□Yes □No	[⊒N/A	4.	
Samples Arrived within Hold Time:	ØYes □No	□n/a	5.	
Short Hold Time Analysis (<72hr):	□Yes □Ño	□n/a		
Rush Turn Around Time Requested:	ØÝes □No	■N/A	7. Rushenete	ils
Sufficient Volume:	.⊠Yes □No	□n/a	8.	,1
Correct Containers Used:	ØYes □No	□n/a	9.	,
-Pace Containers Used:	⊠Ýes □No	□n/a		
Containers Intact:	ØYes □No	□N/A	10.	
Filtered volume received for Dissolved tests	□Yes □No	□N/A	11.	
Sample Labels match COC:	□Yes □No	□ŃA	12. COC Sorter	100 Pace NOTS 11/3/0
-Includes date/time/ID/Analysis Matrix:	Soil	_		1.7
All containers needing preservation have been checked.	□Yes □No	□M/A	13.	
All containers needing preservation are found to be in	□Yes □No	□N⁄A		
compliance with EPA recommendation.			Initial when	Lot # of added
Exceptions: VOA, coliform, TOC, O&G		· · ·	completed	preservative
Samples checked for dechlorination:	□Yes □No	DN/A		
Headspace in VOA Vials (>6mm):	☐Yes ☐No	⊠N/A		
Trip Blanks Present:	□Yes ☑No	,	16.	
Trip Blank Custody Seals Present	□Yes □No	-DN/A		
Pace Trip Blank Lot # (if purchased):				
Client Notification/ Resolution: Person Contacted: Josh John Comments/ Resolution: Needs Dx as Soon				Field Data Required? Y / N SETO NOT readed per
Client, asm				
COO was alelivered by	y PC8	11/	104/10 08:15	
Project Manager Review:	IVL			Date: ///04/10

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e out of hold, incorrect preservative, out of temp, incorrect containers)

CHAIN-OF-CUSTODY / Analytical Request Document

25558

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

			علا			4		12	1	10	9	8	7	6	5	4	з	2	1	ITEM#			Requ	OV.	Email To:	>	Addr	Com	Sect
	•	2	4 DAY TAT RISHA		COR, Nichel	Mobals for Arguic, Lease	ADDITIONAL COMMENTS	CN-1-12-13	CX-1-1-	CNF-1-10-35	CNT-1-9-1.5	25-1-8-3	0F1-75	CNF-1-6-4	ONE-1-5-9	CNF-1-4-9	OF-1-3-9	CNF-1-2-9	CNF-1-1-9	SAMPLE ID (A-Z, 0-9 / -) Sample IDs MUST BE UNIQUE Shirth its sue other Waste Water Waste Water Product Soll/Solid Oil Wipe Air Tissue Other	Section D Matri Required Client Information MATRI			7-7-7-7-XX	ナいんのかい	8	0	Company: Brand Chill College	Section A Required Client Information:
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					4		-												Vater DW tter WT SL SL AR 1TS OT OT	ig c		Project Number:	Project Name:	Purchase Order No.:		Copy To:	Report To:	Section B
	1		-		X	K	22	6:00	and the same of th				The Paris					acontain o	ζ;	MATRIX CODE (see valid codes			Numbe	Name:	se Orde		9;		n B Proj
				5		W	ELINQ	denial		-					lenne, man		THE REAL PROPERTY.		0	SAMPLE TYPE (G=GRAB C=C	-	1		A	er No.:			3	ect Info
				S		V	RELINQUISHED BY / AFFILIATION													COMPOSITE START			138130	なする				77	Section B Required Project Information:
	9	SAMPLER		lri ver			AFFILIATIO													TIME	COLLECTED			Rochero					
SIGNATURE of SAMPLER:	PRINT Name of SAMPLER:	SAMPLER NAME AND SIGNATURE					z	ggen.	water a	end,	Chapter 1	and a color		Ministración Ministración				Sizz. 9	11/3	COMPOSITE END/GRAB	CTED		,	byetotraci					
of SAMPLE	of SAMPLE	SIGNATU			18	11/3/10	DATE	1424	2	25/	B	28	8	1350	1216	1220	20	1207	129	TIME		-		4.					
7.7. A.		R	┝			eassey.				etra-	CHEST .	-	diposit.	-900	سندو		سم	essai	Classics	# OF CONTAINERS			Pac	Pac Mar	Pac Ref	Ad	ပ္ပ	ΑĦ	Se
A	Mered					525	TIME	×	× .	><	×	×	×	×.	Ж.	~	X	\times	X	Unpreserved	Γ		Pace Profile #:	Pace Proje Manager:	Pace Quote Reference:	Address:	mpany	Attention:	Section C
Section of the Control of the Contro	8			-la		1														H ₂ SO ₄	1,0		#	ğ	е		Company Name:	3	Section C
y	ŧ			1	K															HNO ₃	Preservatives							3	Ď.
	1 × ×			4	Ž.	400	l ⊳													NaOH Na ₂ S ₂ O ₃	vative							À	
	Ž			6	Was.	1	ACCEPTED BY / AFFILIATION													Methanol	Š						l		
				B	H	2	E E										- Anna Anna Anna Anna Anna Anna Anna Ann			Other ↓ Analysis Test ↓	Y/N.	-						7001	
- 0				na	1	B	Y/AF	X	×	×	7	<u>></u>	>:	$\overline{}$	\searrow	×	×	λ	×	Metals 6010 K	1713	1						3	
DATE Signed			\	5	Buch	1	FILIA	74.	×	X.	X	X.	×	X	Х,	×	X,	አ	7	TPH - D, G		equ						1	
signed				7	R.	B	NOIT		-												ļ	este							
			- ا	2		V				-							ļ				T	Ana		<u>s</u>	٦	-	ᇛ		
01/2/11				i .		=	g														<u> </u>	Requested Analysis Filtered	SI	Site Location	UST	NPDES	GUL		
g				'	3/10	3 10	DATE							<u> </u>							 	┨┋	STATE:	ation		SEC	NOT/		
					100	5									1							le e			٦	1	PY AC		
					53	1520	TIME											_				3	2	,	RCRA	GRO	REGULATORY AGENCY		٦
		80			Ų١			1														1	-	>	≻	GROUND WATER	¥		Page:
ren	np in				7	_			-											Residual Chlorine (Y/N)	2					WATE		<u> </u>	
	eived e (Y/N				1		SA													P						R		39	estain.
							MPLE													ace P	16					1		9	g,
Seale	ustod ed Co (Y/N)	oler			Z		SAMPLE CONDITIONS													oject					OTHER	ORINK		<u></u>	_
	,		-	-	-		NOITIC													No./					, I	ING V		4	
Samp	oles I (Y/N)				_		S													Pace Project No./ Lab I.D						DRINKING WATER			

COC PAGE	CLIENT:
of	BYOWN &
	Page 1

Sample Line Item

VG9H

AG1H

AG1U BG1H BP1U BP2U BP3U

BP2N

BP2S WGFU WGKU

COC ID#

Face Analytical*

		Wipe/Swab	BP20 500mL NaOH plastic
		DG9U 40mL unpreserved amber vial	BP2N 500mL HNO3 plastic
	ZPLC Ziploc Bag	DG9T 40mL Na Thio amber vial	BP1Z 1 liter NaOH, Zn, Ac
	WGFX 4oz wide jar w/hexane wipe	DG9M 40mL MeOH clear vial	BP1U 1 liter unpreserved plastic
	WGFU 4oz clear soil jar	DG9H 40mL HCL amber voa vial	BP1S 1 liter H2SO4 plastic
	VSG Headspace septa vial & HCL	DG9B 40mL Na Bisulfate amber vial	BP1N 1 liter HNO3 plastic
5)	VG9W 40mL glass vial preweighted (EPA 5035)	BP3U 250mL unpreserved plastic	BG1U 1 liter unpreserved glass
	VG9U 40mL unpreserved clear vial	BP3S 250mL H2SO4 plastic	BG1H 1 liter HCL clear glass
	VG9T 40mL Na Thio, clear vial	BP3N 250mL HNO3 plastic	AG3S 250mL H2SO4 amber glass
	VG9H 40mL HCL clear vial	BP3C 250mL NaOH plastic	AG2U 500mL unpreserved amber glass
	U Summa Can	BP2Z 500mL NaOH, Zn Ac	AG2S 500mL H2SO4 amber glass
	R terra core kit	BP2U 500mL unpreserved plastic	AG1U 1liter unpreserved amber glass
	JGFU 4oz unpreserved amber wide	BP2S 500mL H2SO4 plastic	AG1H 1 liter HCL amber glass
1424 CNF-1-12-3	Trip Blank?	•	12
«	1418 (NF-11-11-1)		
2	CMF-1-10-3.5 1415		10
20	Dati - 1-9-1.5 1409	3	σ
7	CNF-1-8-3: 1405		σ
8	1 P - 1 - 3NJ		7
R.	(NF-1-6-4 1350		0
16	CP1-1-5-9 1216		CA P
2251	CNF-1-4-9	1	4
120	H /3/10		ω
40%	CNF-1-2-9 11/3/10 1		2

i'

Stockpile Samples

November 18, 2010

Joshua Johnson Brown & Caldwell 724 Columbia St. NW#420 Olympia, WA 98501

RE: Project: East Bay Redevelopment 138130

Pace Project No.: 255574

Dear Joshua Johnson:

Enclosed are the analytical results for sample(s) received by the laboratory on November 02, 2010. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Melanie Miller for Jennifer Gross

mai hi

jennifer.gross@pacelabs.com

Project Manager

Enclosures

(206)767-5060

CERTIFICATIONS

Project: East Bay Redevelopment 138130

Pace Project No.: 255574

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

Alaska Certification #: UST-078 Alaska Certification #MN00064 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA EPA Region 8 Certification #: Pace Florida/NELAP Certification #: E87605

Georgia Certification #: 959 Idaho Certification #: MN00064 Illinois Certification #: 200011 Iowa Certification #: 368 Kansas Certification #: E-10167 Louisiana Certification #: 03086 Louisiana Certification #: LA080009 Maine Certification #: 2007029

Maryland Certification #: 322 Michigan DEQ Certification #: 9909 Minnesota Certification #: 027-053-137

Mississippi Certification #: Pace

Washington Certification IDs

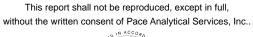
940 South Harney Street, Seattle, WA 98108 Alaska CS Certification #: UST-025 Alaska Drinking Water VOC Certification #: WA01230 Alaska Drinking Water Micro Certification #: WA01230 Montana Certification #: MT CERT0092 Nevada Certification #: MN_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New Mexico Certification #: Pace New York Certification #: 11647 North Carolina Certification #: 530 North Dakota Certification #: R-036 North Dakota Certification #: R-036A Ohio VAP Certification #: CL101 Oklahoma Certification #: D9921 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification

Tennessee Certification #: 02818 Texas Certification #: T104704192 Washington Certification #: C754 Wisconsin Certification #: 999407970

California Certification #: 01153CA Florida/NELAP Certification #: E87617 Oregon Certification #: WA200007 Washington Certification #: C1229

(206)767-5060

SAMPLE ANALYTE COUNT


Project: East Bay Redevelopment 138130

Pace Project No.: 255574

NWTPH-GX	Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
PAS PAS	255574001	SPL-1-1	NWTPH-Dx	DMT	4	PASI-S
EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EFA 8260 LPM 1 PASI-S ASTM D2974-87 DMT 1 PASI-S ASTM D2974-87 DMT 4 PASI-S NWTPH-Dx DMT 4 PASI-S NWTPH-Dx AY1 3 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 1 PASI-S ASTM D2974-87 DMT 1 PASI-S ASTM D2974-87 DMT 1 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 4 PASI-S ASTM D2974-87 DMT 1 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 4 PASI-S EPA 8270 by SIM DMT 4 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 4 PASI-S EPA 8			NWTPH-Gx	AY1	3	PASI-S
PASI-S P			EPA 6020	CJS	5	PASI-M
ASTM D2974-87 DMT			EPA 8270 by SIM	DMT	20	PASI-S
SPL-1-2 NWTPH-DX			EPA 8260	LPM	8	PASI-S
NWTPH-Gx			ASTM D2974-87	DMT	1	PASI-S
EPA 6020 C.J.S 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 1 PASI-S ASTM D2974-87 DMT 1 PASI-S EPA 6020 C.J.S 5 PASI-M NWTPH-Dx DMT 4 PASI-S EPA 6020 C.J.S 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 1 PASI-S EPA 8260 LPM 8 PASI-S EPA 8270 by SIM DMT 1 PASI-S EPA 6020 C.J.S 5 PASI-M EPA 8270 by SIM DMT 1 PASI-S EPA 6020 C.J.S 5 PASI-M EPA 6020 C.J.S 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 4 PASI-S EPA 8260 C.J.S 5 PASI-M EPA 8270 by SIM DMT 4 PASI-S EPA 8260 C.J.S 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 C.J.S 5 PASI-S EP	255574002	SPL-1-2	NWTPH-Dx	DMT	4	PASI-S
EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 DMT 1 PASI-S ASTM D2974-87 DMT 1 PASI-S ASTM D2974-87 DMT 4 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 1 PASI-S EPA 8260 LPM 1 PASI-S EPA 8270 by SIM DMT 1 PASI-S EPA 8270 by SIM DMT 1 PASI-S EPA 8270 by SIM DMT 1 PASI-S EPA 8270 by SIM DMT 1 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8270 by SIM DMT 1 PASI-S EPA 8280 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8280 LPM 8 PASI-S EPA 8280 LPM 8 PASI-S EPA 8280 LPM 8 PASI-S EPA 8280 LPM 8 PASI-S EPA 8280 LPM 8 PASI-S EPA 8280 LPM 1 PASI-S EPA 8280 L			NWTPH-Gx	AY1	3	PASI-S
EPA 8260 LPM 8 PASI-S ASTM D2974-87 DMT 1 PASI-S ASTM D2974-87 DMT 1 PASI-S BYTPH-Dx DMT 4 PASI-S NWTPH-Dx DMT 3 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 1 PASI-S EPA 8270 by SIM DMT 1 PASI-S ASTM D2974-87 DMT 1 PASI-S EPA 6020 CJS 5 PASI-M EPA 6020 CJS 5 PASI-S ASTM D2974-87 DMT 1 PASI-S EPA 6020 CJS 5 PASI-M EPA 6020 CJS 5 PASI-M EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S ASTM D2974-87 DMT 1 PASI-S EPA 6020 CJS 5 PASI-S EPA 6020 CJS 5 PASI-S EPA 6020 CJS 5 PASI-S EPA 6020 CJS 5 PASI-S EPA 6020 CJS 5 PASI-S EPA 6020 CJS 5 PASI-S EPA 6020 CJS 5 PASI-S EPA 6020 CJS 5 PASI-S EPA 6020 CJS 5 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 6020 CJS 5 PASI-S EPA 6020 CJS 5 PASI-S EPA 6020 CJS 5 PASI-S EPA 6020 CJS 5 PASI-S EPA 6020 CJS 5 PASI-S EPA 6020 CJS 5 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 6020 CJS 5 PASI-S EPA			EPA 6020	CJS	5	PASI-M
ASTM D2974-87 DMT 1 PASI-S NWTPH-Dx DMT 4 PASI-S NWTPH-Gx AY1 3 PASI-S EPA 6020 C.US 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 1 PASI-S EPA 8260 LPM 8 PASI-S ES5574004 SPL-2-1 NWTPH-Dx DMT 4 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 C.US 5 PASI-M EPA 8270 by SIM DMT 1 PASI-S EPA 6020 C.US 5 PASI-M EPA 8270 by SIM DMT 4 PASI-S EPA 6020 C.US 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 C.US 5 PASI-M EPA 8270 by SIM DMT 1 PASI-S EPA 6020 C.US 5 PASI-M EPA 8270 by SIM DMT 1 PASI-S EPA 8260 LPM 8 PASI-S			EPA 8270 by SIM	DMT	20	PASI-S
PASIS			EPA 8260	LPM	8	PASI-S
NWTPH-GX			ASTM D2974-87	DMT	1	PASI-S
EPA 6020 C.JS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 1 PASI-S EPA 8260 DMT 1 PASI-S ASTM D2974-87 DMT 1 PASI-S EPA 6020 C.JS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 6020 C.JS 5 PASI-M EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 6020 C.JS 5 PASI-M EPA 8270 by SIM DMT 1 PASI-S EPA 6020 C.JS 5 PASI-M EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 9 PASI-S EPA 8260 LP	255574003	SPL-1-3	NWTPH-Dx	DMT	4	PASI-S
EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 DMT 1 PASI-S EPA 6020 CJS 5 PASI-M EPA 8260 LPM 8 PASI-S EPA 6020 CJS 5 PASI-M EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 1 PASI-S EPA 8260 LPM 1 PASI-S EPA 8260 CJS 5 PASI-M EPA 8260 CJS 5 PASI-M EPA 8260 CJS 5 PASI-M EPA 8260 CJS 5 PASI-M EPA 8270 by SIM DMT 1 PASI-S EPA 8260 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 10 PASI-S			NWTPH-Gx	AY1	3	PASI-S
EPA 8260 LPM 8 PASI-S ASTM D2974-87 DMT 1 PASI-S PA			EPA 6020	CJS	5	PASI-M
ASTM D2974-87 DMT 1 PASI-S 25574004 SPL-2-1 NWTPH-Dx DMT 4 PASI-S NWTPH-Gx AY1 3 PASI-S EPA 6020 CJS 5 PASI-M EPA 8260 LPM 8 PASI-S 25574005 SPL-2-2 NWTPH-Dx DMT 1 PASI-S EPA 6020 CJS 5 PASI-M EPA 8260 LPM 8 PASI-S NWTPH-Gx AY1 3 PASI-S NWTPH-Gx AY1 3 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 1 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 CJS 5 PASI-M EPA 8260 CJS 5 PASI-M EPA 8260 CJS 5 PASI-M EPA 8260 CJS 5 PASI-M EPA 8260 CJS 5 PASI-M EPA 8260 CJS 5 PASI-M EPA 8260 CJS 5 PASI-M EPA 8270 by SIM DMT 1 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S			EPA 8270 by SIM	DMT	20	PASI-S
NWTPH-Dx			EPA 8260	LPM	8	PASI-S
NWTPH-GX AY1 3 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 DMT 1 PASI-S PASI-M PASI-S EPA 8260 CJS 5 PASI-M PASI-S PASI-M PASI-M PASI-S PASI-M PASI			ASTM D2974-87	DMT	1	PASI-S
EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 DMT 1 PASI-S NWTPH-Dx DMT 4 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 1 PASI-S EPA 8260 CJS 5 PASI-M EPA 8260 CJS 5 PASI-M EPA 8260 CJS 5 PASI-M EPA 8260 CJS 7 PASI-S EPA 6020 CJS 7 PASI-S EPA 6020 CJS 7 PASI-M EPA 8260 CJS 7 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 6020 CJS 7 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S	255574004	SPL-2-1	NWTPH-Dx	DMT	4	PASI-S
EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 DMT 1 PASI-S			NWTPH-Gx	AY1	3	PASI-S
EPA 8260 LPM 8 PASI-S ASTM D2974-87 DMT 1 PASI-S PASI-S PASI-S PASI-S PASI-S NWTPH-Dx DMT 4 PASI-S NWTPH-Gx AY1 3 PASI-S EPA 6020 CJS 5 PASI-M EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 DMT 1 PASI-S NWTPH-Dx DMT 4 PASI-S NWTPH-Dx DMT 4 PASI-S NWTPH-Gx AY1 3 PASI-S EPA 6020 CJS 5 PASI-M EPA 8260 CJS 5 PASI-M EPA 8260 CJS 5 PASI-M EPA 8260 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S			EPA 6020	CJS	5	PASI-M
ASTM D2974-87 DMT 1 PASI-S PAS			EPA 8270 by SIM	DMT	20	PASI-S
PASI-S PA			EPA 8260	LPM	8	PASI-S
NWTPH-Gx AY1 3 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 DMT 1 PASI-S NWTPH-Dx DMT 4 PASI-S NWTPH-Gx AY1 3 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 DMT 1 PASI-S			ASTM D2974-87	DMT	1	PASI-S
EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 DMT 1 PASI-S NWTPH-Dx DMT 4 PASI-S NWTPH-Gx AY1 3 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 DMT 1 PASI-S	255574005	SPL-2-2	NWTPH-Dx	DMT	4	PASI-S
EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 DMT 1 PASI-S NWTPH-Dx DMT 4 PASI-S NWTPH-Gx AY1 3 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 DMT 1 PASI-S			NWTPH-Gx	AY1	3	PASI-S
EPA 8260 LPM 8 PASI-S ASTM D2974-87 DMT 1 PASI-S PASI-S NWTPH-Dx DMT 4 PASI-S NWTPH-Gx AY1 3 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 DMT 1 PASI-S			EPA 6020	CJS	5	PASI-M
ASTM D2974-87 DMT 1 PASI-S 255574006 SPL-2-3 NWTPH-Dx DMT 4 PASI-S NWTPH-Gx AY1 3 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 DMT 1 PASI-S			EPA 8270 by SIM	DMT	20	PASI-S
PASI-S NWTPH-Dx NWTPH-Gx AY1 AY1 PASI-S EPA 6020 CJS TO PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 DMT 1 PASI-S			EPA 8260	LPM	8	PASI-S
NWTPH-Gx AY1 3 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 DMT 1 PASI-S			ASTM D2974-87	DMT	1	PASI-S
EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 DMT 1 PASI-S	255574006	SPL-2-3	NWTPH-Dx	DMT	4	PASI-S
EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 DMT 1 PASI-S			NWTPH-Gx	AY1	3	
EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 DMT 1 PASI-S			EPA 6020	CJS	5	
EPA 8260 LPM 8 PASI-S ASTM D2974-87 DMT 1 PASI-S			EPA 8270 by SIM	DMT	20	
ASTM D2974-87 DMT 1 PASI-S			EPA 8260	LPM	8	
					1	
	255574007	Trip Blank	NWTPH-Gx	AY1	3	

REPORT OF LABORATORY ANALYSIS

Page 3 of 23

SAMPLE ANALYTE COUNT

Project: East Bay Redevelopment 138130

Pace Project No.: 255574

Lab ID	Sample ID	Method	Analysts	Reported	Laboratory	_
		EPA 8260	LPM	8	PASI-S	_

Project: East Bay Redevelopment 138130

Pace Project No.: 255574

Sample: SPL-1-1	Lab ID: 255574001	Collected: 11/02/	10 12:45	Received: 11	/02/10 16:45	Matrix: Solid	
Results reported on a "dry-weight	t" basis						
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS	Analytical Method: NWT	PH-Dx Preparation M	ethod: E	PA 3546			
Diesel Range	ND mg/kg	22.4	1	11/07/10 14:15	11/08/10 20:27	7	
Motor Oil Range	ND mg/kg	89.6	1	11/07/10 14:15	11/08/10 20:27	7 64742-65-0	
n-Octacosane (S)	123 %	50-150	1	11/07/10 14:15	11/08/10 20:27	7 630-02-4	
o-Terphenyl (S)	116 %	50-150	1	11/07/10 14:15	11/08/10 20:27	7 84-15-1	
NWTPH-Gx GCV	Analytical Method: NWT	PH-Gx Preparation M	ethod: N	IWTPH-Gx			
Gasoline Range Organics	ND mg/kg	6.6	1	11/06/10 17:00	11/07/10 16:33	3	
a,a,a-Trifluorotoluene (S)	99 %	50-150	1	11/06/10 17:00	11/07/10 16:33	3 98-08-8	
4-Bromofluorobenzene (S)	92 %	50-150	1	11/06/10 17:00	11/07/10 16:33	3 460-00-4	
6020 MET ICPMS	Analytical Method: EPA	6020					
Arsenic	2.1 mg/kg	0.41	20	11/10/10 10:20	11/11/10 18:03	3 7440-38-2	
Cadmium	ND mg/kg	0.065	20	11/10/10 10:20	11/11/10 18:03	3 7440-43-9	
Copper	11.8 mg/kg	0.41	20	11/10/10 10:20	11/11/10 18:03	3 7440-50-8	
Lead	3.3 mg/kg	0.41	20		11/11/10 18:03		
Nickel	24.0 mg/kg	0.41	20	11/10/10 10:20	11/11/10 18:03	3 7440-02-0	
3270 MSSV PAH by SIM	Analytical Method: EPA	8270 by SIM Preparat	ion Meth	nod: EPA 3546			
Acenaphthene	ND ug/kg	7.4	1	11/12/10 16:30	11/16/10 19:48	83-32-9	
Acenaphthylene	ND ug/kg	7.4	1	11/12/10 16:30	11/16/10 19:48	3 208-96-8	
Anthracene	11.9 ug/kg	7.4	1		11/16/10 19:48		
Benzo(a)anthracene	34.7 ug/kg	7.4	1	11/12/10 16:30			
Benzo(a)pyrene	40.7 ug/kg	7.4	1	11/12/10 16:30			
Benzo(b)fluoranthene	24.2 ug/kg	7.4	1		11/16/10 19:48		
Benzo(g,h,i)perylene	23.6 ug/kg	7.4	1	11/12/10 16:30			
Benzo(k)fluoranthene	26.2 ug/kg	7.4	1		11/16/10 19:48		
Chrysene	40.4 ug/kg	7.4	1	11/12/10 16:30			
Dibenz(a,h)anthracene	8.6 ug/kg	7.4	1	11/12/10 16:30			
Fluoranthene	70.3 ug/kg	7.4	1		11/16/10 19:48		
Fluorene	7.6 ug/kg	7.4	1	11/12/10 16:30			
Indeno(1,2,3-cd)pyrene	18.6 ug/kg	7.4	1		11/16/10 19:48		
1-Methylnaphthalene	7.5 ug/kg	7.4	1	11/12/10 16:30			
2-Methylnaphthalene		7.4	1	11/12/10 16:30			
	14.8 ug/kg						
Naphthalene	20.5 ug/kg	7.4	1	11/12/10 16:30			
Phenanthrene	56.6 ug/kg	7.4	1	11/12/10 16:30			
Pyrene	90.6 ug/kg	7.4	1	11/12/10 16:30			
2-Fluorobiphenyl (S)	80 %	31-131	1	11/12/10 16:30			
Terphenyl-d14 (S)	80 %	30-133	1	11/12/10 16:30	11/16/10 19:48	3 1718-51-0	
8260/5035A Volatile Organics	Analytical Method: EPA	8260					
Benzene	ND ug/kg	3.6	1		11/05/10 14:08		
Ethylbenzene	ND ug/kg	3.6	1		11/05/10 14:08	3 100-41-4	
Toluene	ND ug/kg	3.6	1		11/05/10 14:08	3 108-88-3	
	ND ua/ka	10.8	1		11/05/10 14:08	3 1330-20-7	
Xylene (Total)	ND ug/kg	10.0			11/03/10 14.00	1000 20 7	

Date: 11/18/2010 11:06 AM

REPORT OF LABORATORY ANALYSIS

Page 5 of 23

Project: East Bay Redevelopment 138130

255574 Pace Project No.: Lab ID: 255574001 Sample: SPL-1-1 Collected: 11/02/10 12:45 Received: 11/02/10 16:45 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8260/5035A Volatile Organics Analytical Method: EPA 8260 Toluene-d8 (S) 98 % 80-120 1 11/05/10 14:08 2037-26-5 4-Bromofluorobenzene (S) 114 % 72-122 1 11/05/10 14:08 460-00-4 1,2-Dichloroethane-d4 (S) 101 % 80-143 11/05/10 14:08 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 12.3 % 0.10 1 11/07/10 20:41 Sample: SPL-1-2 Lab ID: 255574002 Received: 11/02/10 16:45 Collected: 11/02/10 12:50 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range ND mg/kg 21.2 11/07/10 14:15 11/08/10 20:43 Motor Oil Range 96.2 mg/kg 84.7 11/07/10 14:15 11/08/10 20:43 64742-65-0 1 n-Octacosane (S) 115 % 50-150 1 11/07/10 14:15 11/08/10 20:43 630-02-4 107 % 50-150 11/07/10 14:15 11/08/10 20:43 84-15-1 o-Terphenyl (S) **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 6.4 11/06/10 17:00 11/07/10 16:57 98 % 50-150 a,a,a-Trifluorotoluene (S) 1 11/06/10 17:00 11/07/10 16:57 98-08-8 4-Bromofluorobenzene (S) 92 % 50-150 11/06/10 17:00 11/07/10 16:57 460-00-4 1 **6020 MET ICPMS** Analytical Method: EPA 6020 11/10/10 10:20 11/11/10 18:07 7440-38-2 Arsenic 6.5 mg/kg 0.54 20 Cadmium ND mg/kg 0.086 20 11/10/10 10:20 11/11/10 18:07 7440-43-9 **19.9** mg/kg 0.54 20 Copper 11/10/10 10:20 11/11/10 18:07 7440-50-8 0.54 20 11/10/10 10:20 11/11/10 18:07 7439-92-1 Lead **7.5** mg/kg 20 11/10/10 10:20 11/15/10 12:37 7440-02-0 Nickel 35.8 mg/kg 0.54 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 7.6 Acenaphthene ND ug/kg 1 11/12/10 16:30 11/16/10 22:35 83-32-9 11/12/10 16:30 11/16/10 22:35 208-96-8 Acenaphthylene 18.0 ug/kg 7.6 1 39.5 ug/kg 7.6 Anthracene 1 11/12/10 16:30 11/16/10 22:35 120-12-7 Benzo(a)anthracene 69.8 ug/kg 7.6 1 11/12/10 16:30 11/16/10 22:35 56-55-3 Benzo(a)pyrene 87.2 ug/kg 7.6 11/12/10 16:30 11/16/10 22:35 50-32-8 1 Benzo(b)fluoranthene 58.9 ug/kg 7.6 1 11/12/10 16:30 11/16/10 22:35 205-99-2 48.4 ug/kg Benzo(g,h,i)perylene 7.6 1 11/12/10 16:30 11/16/10 22:35 191-24-2 Benzo(k)fluoranthene 45.3 ug/kg 7.6 1 11/12/10 16:30 11/16/10 22:35 207-08-9 Chrysene 79.1 ug/kg 7.6 11/12/10 16:30 11/16/10 22:35 218-01-9 1 7.6 Dibenz(a,h)anthracene 17.6 ug/kg 11/12/10 16:30 11/16/10 22:35 53-70-3 1 Fluoranthene 144 ug/kg 7.6 11/12/10 16:30 11/16/10 22:35 206-44-0 1 Fluorene 25.5 ug/kg 7.6 11/12/10 16:30 11/16/10 22:35 86-73-7 1 Indeno(1,2,3-cd)pyrene 38.9 ug/kg 7.6 11/12/10 16:30 11/16/10 22:35 193-39-5

Date: 11/18/2010 11:06 AM

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

Page 6 of 23

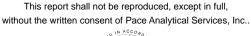
Project: East Bay Redevelopment 138130

Pace Project No.: 255574 Lab ID: 255574002 Sample: SPL-1-2 Collected: 11/02/10 12:50 Received: 11/02/10 16:45 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 1-Methylnaphthalene 10.3 ug/kg 7.6 11/12/10 16:30 11/16/10 22:35 90-12-0 2-Methylnaphthalene 13.5 ug/kg 7.6 11/12/10 16:30 11/16/10 22:35 91-57-6 Naphthalene 22.9 ug/kg 7.6 11/12/10 16:30 11/16/10 22:35 91-20-3 1 Phenanthrene 172 ug/kg 7.6 11/12/10 16:30 11/16/10 22:35 85-01-8 1 199 ug/kg Pyrene 7.6 1 11/12/10 16:30 11/16/10 22:35 129-00-0 2-Fluorobiphenyl (S) 73 % 31-131 11/12/10 16:30 11/16/10 22:35 321-60-8 1 Terphenyl-d14 (S) 76 % 30-133 11/12/10 16:30 11/16/10 22:35 1718-51-0 1 8260/5035A Volatile Organics Analytical Method: EPA 8260 ND ug/kg 3.1 11/11/10 19:08 71-43-2 Benzene 1 11/11/10 19:08 100-41-4 Ethylbenzene ND ug/kg 3.1 1 Toluene 3.1 11/11/10 19:08 108-88-3 ND ug/kg 1 11/11/10 19:08 1330-20-7 Xylene (Total) ND ug/kg 9.3 1 Dibromofluoromethane (S) 102 % 80-136 11/11/10 19:08 1868-53-7 1 Toluene-d8 (S) 104 % 80-120 1 11/11/10 19:08 2037-26-5 4-Bromofluorobenzene (S) 107 % 72-122 1 11/11/10 19:08 460-00-4 1,2-Dichloroethane-d4 (S) 104 % 80-143 11/11/10 19:08 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 13.1 % 0.10 1 11/07/10 20:42 Sample: SPL-1-3 Lab ID: 255574003 Collected: 11/02/10 12:55 Received: 11/02/10 16:45 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range ND mg/kg 21.2 11/07/10 14:15 11/08/10 20:59 Motor Oil Range ND mg/kg 84.7 1 11/07/10 14:15 11/08/10 20:59 64742-65-0 n-Octacosane (S) 117 % 50-150 11/07/10 14:15 11/08/10 20:59 630-02-4 o-Terphenyl (S) 110 % 50-150 11/07/10 14:15 11/08/10 20:59 84-15-1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 7.2 11/06/10 17:00 11/07/10 18:58 97 % 50-150 a,a,a-Trifluorotoluene (S) 1 11/06/10 17:00 11/07/10 18:58 98-08-8 4-Bromofluorobenzene (S) 88 % 50-150 1 11/06/10 17:00 11/07/10 18:58 460-00-4 **6020 MET ICPMS** Analytical Method: EPA 6020 11/10/10 10:20 11/11/10 18:38 Arsenic 2.2 mg/kg 0.45 20 7440-38-2 Cadmium ND mg/kg 0.071 20 11/10/10 10:20 11/11/10 18:38 7440-43-9 0.45 20 7440-50-8 Copper 11.6 mg/kg 11/10/10 10:20 11/11/10 18:38 **3.4** mg/kg Lead 0.45 20 11/10/10 10:20 11/11/10 18:38 7439-92-1 Nickel 0.45 20 11/10/10 10:20 11/15/10 12:42 7440-02-0 27.2 mg/kg

Date: 11/18/2010 11:06 AM

REPORT OF LABORATORY ANALYSIS

Page 7 of 23


Project: East Bay Redevelopment 138130

Pace Project No.: 255574

Lab ID: 255574003 Sample: SPL-1-3 Collected: 11/02/10 12:55 Received: 11/02/10 16:45 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 7.5 Acenaphthene ND ug/kg 11/12/10 16:30 11/16/10 20:44 83-32-9 Acenaphthylene 7.6 ug/kg 7.5 11/12/10 16:30 11/16/10 20:44 208-96-8 Anthracene 12.7 ug/kg 7.5 11/12/10 16:30 11/16/10 20:44 120-12-7 1 Benzo(a)anthracene 29.5 ug/kg 7.5 11/12/10 16:30 11/16/10 20:44 56-55-3 1 Benzo(a)pyrene 34.4 ug/kg 7.5 1 11/12/10 16:30 11/16/10 20:44 50-32-8 Benzo(b)fluoranthene 21.6 ug/kg 7.5 11/12/10 16:30 11/16/10 20:44 205-99-2 1 19.8 ug/kg 7.5 11/12/10 16:30 11/16/10 20:44 191-24-2 Benzo(g,h,i)perylene 1 Benzo(k)fluoranthene 22.1 ug/kg 7.5 11/12/10 16:30 11/16/10 20:44 207-08-9 1 11/12/10 16:30 11/16/10 20:44 218-01-9 **34.3** ug/kg Chrysene 7.5 1 ND ug/kg Dibenz(a,h)anthracene 7.5 11/12/10 16:30 11/16/10 20:44 53-70-3 1 66.5 ug/kg 7.5 11/12/10 16:30 11/16/10 20:44 206-44-0 Fluoranthene 1 Fluorene 8.0 ug/kg 7.5 1 11/12/10 16:30 11/16/10 20:44 86-73-7 Indeno(1,2,3-cd)pyrene 16.6 ug/kg 7.5 1 11/12/10 16:30 11/16/10 20:44 193-39-5 1-Methylnaphthalene 8.2 ug/kg 11/12/10 16:30 11/16/10 20:44 90-12-0 7.5 1 2-Methylnaphthalene 15.5 ug/kg 11/12/10 16:30 11/16/10 20:44 91-57-6 7.5 1 Naphthalene 21.1 ug/kg 7.5 1 11/12/10 16:30 11/16/10 20:44 91-20-3 Phenanthrene 57.8 ug/kg 7.5 1 11/12/10 16:30 11/16/10 20:44 85-01-8 **88.9** ug/kg Pyrene 7.5 11/12/10 16:30 11/16/10 20:44 129-00-0 1 31-131 2-Fluorobiphenyl (S) 76 % 1 11/12/10 16:30 11/16/10 20:44 321-60-8 Terphenyl-d14 (S) 88 % 30-133 11/12/10 16:30 11/16/10 20:44 1718-51-0 1 8260/5035A Volatile Organics Analytical Method: EPA 8260 ND ug/kg 3.3 11/05/10 15:25 71-43-2 Benzene 1 Ethylbenzene ND ug/kg 3.3 11/05/10 15:25 100-41-4 1 Toluene ND ug/kg 3.3 1 11/05/10 15:25 108-88-3 Xylene (Total) ND ug/kg 9.8 1 11/05/10 15:25 1330-20-7 Dibromofluoromethane (S) 97 % 80-136 11/05/10 15:25 1868-53-7 Toluene-d8 (S) 108 % 80-120 1 11/05/10 15:25 2037-26-5 4-Bromofluorobenzene (S) 110 % 72-122 11/05/10 15:25 460-00-4 1 1,2-Dichloroethane-d4 (S) 99 % 80-143 11/05/10 15:25 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 11.6 % 0.10 11/07/10 20:42 Sample: SPL-2-1 Lab ID: 255574004 Collected: 11/02/10 13:25 Received: 11/02/10 16:45 Results reported on a "dry-weight" basis **Parameters** Results Units DF CAS No. Qual Report Limit Prepared Analyzed **NWTPH-Dx GCS** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range ND mg/kg 20.5 11/07/10 14:15 11/08/10 21:16 ND mg/kg Motor Oil Range 82.0 1 11/07/10 14:15 11/08/10 21:16 64742-65-0 114 % n-Octacosane (S) 50-150 11/07/10 14:15 11/08/10 21:16 630-02-4 1 o-Terphenyl (S) 105 % 50-150 11/07/10 14:15 11/08/10 21:16 84-15-1

Date: 11/18/2010 11:06 AM

Project: East Bay Redevelopment 138130


Pace Project No.: 255574

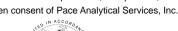
Sample: SPL-2-1	Lab ID: 255574004	Collected: 11/02/1	10 13:25	Received: 11	/02/10 16:45	Matrix: Solid	
Results reported on a "dry-weight	t" basis						
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Gx GCV	Analytical Method: NWT	PH-Gx Preparation M	ethod: N	WTPH-Gx			
Gasoline Range Organics	ND mg/kg	4.5	1	11/06/10 17:00	11/07/10 19:22	2	
a,a,a-Trifluorotoluene (S)	103 %	50-150	1	11/06/10 17:00	11/07/10 19:22	2 98-08-8	
4-Bromofluorobenzene (S)	95 %	50-150	1	11/06/10 17:00	11/07/10 19:22	2 460-00-4	
6020 MET ICPMS	Analytical Method: EPA	6020					
Arsenic	2.6 mg/kg	0.47	20	11/10/10 10:20	11/11/10 18:42	2 7440-38-2	
Cadmium	ND mg/kg	0.075	20	11/10/10 10:20	11/11/10 18:42	2 7440-43-9	
Copper	17.0 mg/kg	0.47	20	11/10/10 10:20	11/11/10 18:42	2 7440-50-8	
Lead	4.5 mg/kg	0.47	20	11/10/10 10:20			
Nickel	26.6 mg/kg	0.47	20	11/10/10 10:20			
3270 MSSV PAH by SIM	Analytical Method: EPA	8270 by SIM Preparat	ion Meth	od: EPA 3546			
Acenaphthene	92.7 ug/kg	7.3	1	11/12/10 16:30	11/16/10 21:02	2 83-32-9	
Acenaphthylene	18.9 ug/kg	7.3	1	11/12/10 16:30			
Anthracene	160 ug/kg	7.3	1	11/12/10 16:30			
Benzo(a)anthracene	237 ug/kg	7.3	1	11/12/10 16:30			
Benzo(a)pyrene	312 ug/kg	7.3	1	11/12/10 16:30			
Benzo(b)fluoranthene	153 ug/kg	7.3	1	11/12/10 16:30			
	0 0	7.3					
Benzo(g,h,i)perylene	179 ug/kg		1	11/12/10 16:30			
Benzo(k)fluoranthene	194 ug/kg	7.3	1	11/12/10 16:30			
Chrysene	255 ug/kg	7.3	1	11/12/10 16:30			
Dibenz(a,h)anthracene	72.5 ug/kg	7.3	1	11/12/10 16:30			
Fluoranthene	427 ug/kg	7.3	1	11/12/10 16:30			
Fluorene	125 ug/kg	7.3	1	11/12/10 16:30			
ndeno(1,2,3-cd)pyrene	148 ug/kg	7.3	1	11/12/10 16:30	11/16/10 21:02	2 193-39-5	
-Methylnaphthalene	91.7 ug/kg	7.3	1	11/12/10 16:30	11/16/10 21:02	2 90-12-0	
2-Methylnaphthalene	133 ug/kg	7.3	1	11/12/10 16:30	11/16/10 21:02	2 91-57-6	
Naphthalene	240 ug/kg	7.3	1	11/12/10 16:30	11/16/10 21:02	2 91-20-3	
Phenanthrene	701 ug/kg	7.3	1	11/12/10 16:30	11/16/10 21:02	2 85-01-8	
Pyrene	621 ug/kg	7.3	1	11/12/10 16:30	11/16/10 21:02	2 129-00-0	
2-Fluorobiphenyl (S)	78 %	31-131	1	11/12/10 16:30			
Ferphenyl-d14 (S)	86 %	30-133	1	11/12/10 16:30			
3260/5035A Volatile Organics	Analytical Method: EPA	8260					
Benzene	ND ug/kg	3.7	1		11/11/10 19:27	7 71-43-2	
Ethylbenzene	ND ug/kg	3.7	1		11/11/10 19:27		
Toluene	ND ug/kg	3.7	1		11/11/10 19:27		
(ylene (Total)	ND ug/kg	11.1	1		11/11/10 19:27		
Dibromofluoromethane (S)	103 %	80-136	1		11/11/10 19:27		
Foluene-d8 (S)	105 %	80-120	1		11/11/10 19:27		
• •							
1-Bromofluorobenzene (S)	113 %	72-122	1		11/11/10 19:27		
1,2-Dichloroethane-d4 (S)	102 %	80-143	1		11/11/10 19:27	7 17060-07-0	
Percent Moisture	Analytical Method: AST	M D2974-87					
Percent Moisture	10.1 %	0.10	1		11/07/10 20:4	4	

Date: 11/18/2010 11:06 AM

REPORT OF LABORATORY ANALYSIS

Page 9 of 23

Project: East Bay Redevelopment 138130


Pace Project No.: 255574

Sample: SPL-2-2	Lab ID: 255574005	Collected: 11/02/	10 13:30	Received: 11	/02/10 16:45	Matrix: Solid	
Results reported on a "dry-weight	t" basis						
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS	Analytical Method: NW	PH-Dx Preparation M	ethod: E	PA 3546			
Diesel Range	ND mg/kg	20.7	1	11/07/10 14:15	11/08/10 21:32	2	
Motor Oil Range	ND mg/kg	82.9	1	11/07/10 14:15	11/08/10 21:32	2 64742-65-0	
n-Octacosane (S)	116 %	50-150	1	11/07/10 14:15	11/08/10 21:32	2 630-02-4	
o-Terphenyl (S)	108 %	50-150	1	11/07/10 14:15	11/08/10 21:32	2 84-15-1	
NWTPH-Gx GCV	Analytical Method: NW	PH-Gx Preparation M	ethod: N	IWTPH-Gx			
Gasoline Range Organics	ND mg/kg	6.1	1	11/06/10 17:00	11/10/10 18:40)	
a,a,a-Trifluorotoluene (S)	106 %	50-150	1	11/06/10 17:00	11/10/10 18:40	98-08-8	
4-Bromofluorobenzene (S)	91 %	50-150	1	11/06/10 17:00	11/10/10 18:40	0 460-00-4	
6020 MET ICPMS	Analytical Method: EPA	6020					
Arsenic	3.4 mg/kg	0.51	20	11/10/10 10:20	11/11/10 18:47	7 7440-38-2	
Cadmium	ND mg/kg	0.082	20	11/10/10 10:20	11/11/10 18:47	7 7440-43-9	
Copper	22.9 mg/kg	0.51	20	11/10/10 10:20	11/11/10 18:47	7 7440-50-8	
Lead	7.9 mg/kg	0.51	20	11/10/10 10:20			
Nickel	32.5 mg/kg	0.51	20	11/10/10 10:20			
3270 MSSV PAH by SIM	Analytical Method: EPA	8270 by SIM Preparat	ion Meth	nod: EPA 3546			
Acenaphthene	18.5 ug/kg	7.3	1	11/12/10 16:30	11/16/10 21:2	1 83-32-9	
Acenaphthylene	ND ug/kg	7.3	1	11/12/10 16:30	11/16/10 21:2	1 208-96-8	
Anthracene	17.8 ug/kg	7.3	1	11/12/10 16:30			
Benzo(a)anthracene	30.7 ug/kg	7.3	1	11/12/10 16:30			
Benzo(a)pyrene	40.6 ug/kg	7.3	1	11/12/10 16:30			
Benzo(b)fluoranthene	23.5 ug/kg	7.3	1	11/12/10 16:30			
Benzo(g,h,i)perylene	25.1 ug/kg	7.3	1	11/12/10 16:30			
Benzo(k)fluoranthene	23.9 ug/kg	7.3	1	11/12/10 16:30			
Chrysene	35.7 ug/kg	7.3	1	11/12/10 16:30			
Dibenz(a,h)anthracene	9.0 ug/kg	7.3	1	11/12/10 16:30			
Fluoranthene	67.6 ug/kg	7.3	1	11/12/10 16:30			
Fluorene	20.7 ug/kg	7.3	1	11/12/10 16:30			
Indeno(1,2,3-cd)pyrene	19.8 ug/kg	7.3	1	11/12/10 16:30			
1-Methylnaphthalene	44.5 ug/kg	7.3	1	11/12/10 16:30			
2-Methylnaphthalene	49.0 ug/kg	7.3	1	11/12/10 16:30			
			1				
Naphthalene	104 ug/kg	7.3		11/12/10 16:30			
Phenanthrene	92.0 ug/kg	7.3	1	11/12/10 16:30			
Pyrene	95.3 ug/kg	7.3	1	11/12/10 16:30			
2-Fluorobiphenyl (S)	78 %	31-131	1	11/12/10 16:30			
Terphenyl-d14 (S)	96 %	30-133	1	11/12/10 16:30	11/16/10 21:2	1 1718-51-0	
8260/5035A Volatile Organics	Analytical Method: EPA	8260					
Benzene	ND ug/kg	3.2	1		11/05/10 16:04		
Ethylbenzene	ND ug/kg	3.2	1		11/05/10 16:04	4 100-41-4	
Toluene	ND ug/kg	3.2	1		11/05/10 16:04	4 108-88-3	
			4		44/05/40 40:0	1 1220 20 7	
Xylene (Total)	ND ug/kg	9.7	1		11/05/10 16:04	+ 1330-20-7	

Date: 11/18/2010 11:06 AM

REPORT OF LABORATORY ANALYSIS

Page 10 of 23

Project: East Bay Redevelopment 138130

255574 Pace Project No.: Lab ID: 255574005 Sample: SPL-2-2 Collected: 11/02/10 13:30 Received: 11/02/10 16:45 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8260/5035A Volatile Organics Analytical Method: EPA 8260 97 % Toluene-d8 (S) 80-120 1 11/05/10 16:04 2037-26-5 4-Bromofluorobenzene (S) 114 % 72-122 1 11/05/10 16:04 460-00-4 1,2-Dichloroethane-d4 (S) 98 % 80-143 11/05/10 16:04 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 11.3 % 0.10 1 11/07/10 20:44 Sample: SPL-2-3 Lab ID: 255574006 Received: 11/02/10 16:45 Collected: 11/02/10 13:40 Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range 63.5 mg/kg 22.0 11/07/10 14:15 11/08/10 21:48 Motor Oil Range 151 mg/kg 88.0 11/07/10 14:15 11/08/10 21:48 64742-65-0 1 n-Octacosane (S) 113 % 50-150 1 11/07/10 14:15 11/08/10 21:48 630-02-4 50-150 o-Terphenyl (S) 111 % 11/07/10 14:15 11/08/10 21:48 84-15-1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 6.0 11/06/10 17:00 11/10/10 19:12 108 % 50-150 a,a,a-Trifluorotoluene (S) 1 11/06/10 17:00 11/10/10 19:12 98-08-8 4-Bromofluorobenzene (S) 92 % 50-150 11/06/10 17:00 11/10/10 19:12 460-00-4 1 **6020 MET ICPMS** Analytical Method: EPA 6020 11/10/10 10:20 11/11/10 18:51 7440-38-2 Arsenic 3.9 mg/kg 0.45 20 Cadmium ND mg/kg 0.072 20 11/10/10 10:20 11/11/10 18:51 7440-43-9 **21.8** mg/kg 0.45 20 11/10/10 10:20 11/11/10 18:51 7440-50-8 Copper 0.45 20 11/10/10 10:20 11/11/10 18:51 7439-92-1 Lead 11.6 mg/kg 20 11/10/10 10:20 11/15/10 12:55 7440-02-0 Nickel 23.5 mg/kg 0.45 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 7.4 11/12/10 16:30 11/16/10 22:17 83-32-9 Acenaphthene 92.3 ug/kg Acenaphthylene 126 ug/kg 7.4 11/12/10 16:30 11/16/10 22:17 208-96-8 1 341 ug/kg 7.4 Anthracene 1 11/12/10 16:30 11/16/10 22:17 120-12-7 Benzo(a)anthracene 517 ug/kg 7.4 1 11/12/10 16:30 11/16/10 22:17 56-55-3 Benzo(a)pyrene 601 ug/kg 7.4 11/12/10 16:30 11/16/10 22:17 50-32-8 Benzo(b)fluoranthene 319 ug/kg 7.4 1 11/12/10 16:30 11/16/10 22:17 205-99-2 11/12/10 16:30 11/16/10 22:17 Benzo(g,h,i)perylene 327 ug/kg 7.4 1 191-24-2 Benzo(k)fluoranthene 365 ug/kg 7.4 1 11/12/10 16:30 11/16/10 22:17 207-08-9 Chrysene 560 ug/kg 7.4 11/12/10 16:30 11/16/10 22:17 218-01-9 1 7.4 Dibenz(a,h)anthracene 131 ug/kg 11/12/10 16:30 11/16/10 22:17 53-70-3 1 Fluoranthene 1160 ug/kg 7 4 11/12/10 16:30 11/16/10 22:17 206-44-0 1 Fluorene 280 ug/kg 7.4 11/12/10 16:30 11/16/10 22:17 86-73-7 1 Indeno(1,2,3-cd)pyrene 273 ug/kg 7.4 11/12/10 16:30 11/16/10 22:17 193-39-5

Date: 11/18/2010 11:06 AM

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

Page 11 of 23

Project: East Bay Redevelopment 138130

Pace Project No.: 255574

Lab ID: 255574006 Sample: SPL-2-3 Collected: 11/02/10 13:40 Received: 11/02/10 16:45 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit Prepared Analyzed CAS No. Qual 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 7.4 1-Methylnaphthalene 138 ug/kg 11/12/10 16:30 11/16/10 22:17 90-12-0 2-Methylnaphthalene 179 ug/kg 7.4 11/12/10 16:30 11/16/10 22:17 91-57-6 Naphthalene 311 ug/kg 7.4 11/12/10 16:30 11/16/10 22:17 91-20-3 1 Phenanthrene 1550 ug/kg 7.4 11/12/10 16:30 11/16/10 22:17 85-01-8 1 1490 ug/kg 11/12/10 16:30 11/16/10 22:17 129-00-0 Pyrene 7.4 1 2-Fluorobiphenyl (S) 71 % 31-131 11/12/10 16:30 11/16/10 22:17 321-60-8 1 Terphenyl-d14 (S) 79 % 30-133 11/12/10 16:30 11/16/10 22:17 1718-51-0 8260/5035A Volatile Organics Analytical Method: EPA 8260 ND ug/kg 3.4 11/05/10 16:22 71-43-2 Benzene 1 Ethylbenzene 11/05/10 16:22 100-41-4 ND ug/kg 3.4 1 Toluene 11/05/10 16:22 108-88-3 ND ug/kg 3.4 1 Xylene (Total) ND ug/kg 10.1 11/05/10 16:22 1330-20-7 1 Dibromofluoromethane (S) 97 % 80-136 11/05/10 16:22 1868-53-7 1 Toluene-d8 (S) 11/05/10 16:22 2037-26-5 102 % 80-120 1 4-Bromofluorobenzene (S) 119 % 72-122 1 11/05/10 16:22 460-00-4 1,2-Dichloroethane-d4 (S) 94 % 80-143 11/05/10 16:22 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 10.1 % 0.10 1 11/07/10 20:45 Sample: Trip Blank Lab ID: 255574007 Collected: 11/02/10 00:00 Received: 11/02/10 16:45 Matrix: Solid Results reported on a "wet-weight" basis **Parameters** Units Report Limit Prepared Analyzed CAS No. Qual **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 5.0 11/06/10 17:00 11/07/10 16:09 a,a,a-Trifluorotoluene (S) 111 % 50-150 1 11/06/10 17:00 11/07/10 16:09 98-08-8 4-Bromofluorobenzene (S) 109 % 50-150 11/06/10 17:00 11/07/10 16:09 460-00-4 8260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 3.0 1 11/05/10 13:48 71-43-2 Ethylbenzene ND ug/kg 3.0 11/05/10 13:48 100-41-4 1 Toluene ND ug/kg 3.0 1 11/05/10 13:48 108-88-3 Xylene (Total) ND ug/kg 9.0 11/05/10 13:48 1330-20-7 1 Dibromofluoromethane (S) 104 % 80-136 11/05/10 13:48 1868-53-7 1 97 % Toluene-d8 (S) 80-120 11/05/10 13:48 2037-26-5 1 4-Bromofluorobenzene (S) 109 % 72-122 11/05/10 13:48 460-00-4 1 1,2-Dichloroethane-d4 (S) 103 % 80-143 1 11/05/10 13:48 17060-07-0

Date: 11/18/2010 11:06 AM

REPORT OF LABORATORY ANALYSIS

Page 12 of 23

Project: East Bay Redevelopment 138130

Pace Project No.: 255574

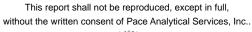
 QC Batch:
 OEXT/2936
 Analysis Method:
 NWTPH-Dx

 QC Batch Method:
 EPA 3546
 Analysis Description:
 NWTPH-Dx GCS

 Associated Lab Samples:
 255574001, 255574002, 255574003, 255574004, 255574005, 255574006

METHOD BLANK: 48641 Matrix: Solid

Associated Lab Samples: 255574001, 255574002, 255574003, 255574004, 255574005, 255574006


		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Diesel Range	mg/kg	ND	20.0	11/08/10 13:53	
Motor Oil Range	mg/kg	ND	80.0	11/08/10 13:53	
n-Octacosane (S)	%	112	50-150	11/08/10 13:53	
o-Terphenyl (S)	%	102	50-150	11/08/10 13:53	

LABORATORY CONTROL SAMPLE: 48642

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Diesel Range	mg/kg	500	460	92	56-124	
Motor Oil Range	mg/kg	500	534	107	50-150	
n-Octacosane (S)	%			116	50-150	
o-Terphenyl (S)	%			130	50-150	

Date: 11/18/2010 11:06 AM REPORT OF LABORATORY ANALYSIS

Page 13 of 23

Project: East Bay Redevelopment 138130

Pace Project No.: 255574

QC Batch: GCV/2002 Analysis Method: NWTPH-Gx

QC Batch Method: NWTPH-Gx Analysis Description: NWTPH-Gx Solid GCV

Associated Lab Samples: 255574001, 255574002, 255574003, 255574004, 255574007

METHOD BLANK: 48549 Matrix: Solid

Associated Lab Samples: 255574001, 255574002, 255574003, 255574004, 255574007

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Gasoline Range Organics	mg/kg	ND	5.0	11/07/10 15:45	
4-Bromofluorobenzene (S)	%	120	50-150	11/07/10 15:45	
a,a,a-Trifluorotoluene (S)	%	126	50-150	11/07/10 15:45	

LABORATORY CONTROL SAMPLE: 48550

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Gasoline Range Organics	mg/kg	12.5	13.1	105	54-156	
4-Bromofluorobenzene (S)	%			91	50-150	
a,a,a-Trifluorotoluene (S)	%			98	50-150	

SAMPLE DUPLICATE: 48886

Parameter	Units	255574002 Result	Dup Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND	1.5J		
4-Bromofluorobenzene (S)	%	92	59	43	
a,a,a-Trifluorotoluene (S)	%	98	80	20	

Date: 11/18/2010 11:06 AM

Project: East Bay Redevelopment 138130

Pace Project No.: 255574

QC Batch: GCV/2007 Analysis Method: NWTPH-Gx

QC Batch Method: NWTPH-Gx Analysis Description: NWTPH-Gx Solid GCV

Associated Lab Samples: 255574005, 255574006

METHOD BLANK: 48890 Matrix: Solid

Associated Lab Samples: 255574005, 255574006

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Gasoline Range Organics	mg/kg	ND	5.0	11/09/10 19:53	
4-Bromofluorobenzene (S)	%	93	50-150	11/09/10 19:53	
a,a,a-Trifluorotoluene (S)	%	100	50-150	11/09/10 19:53	

LABORATORY CONTROL SAMPLE: 48891

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Gasoline Range Organics	mg/kg	12.5	11.3	90	54-156	
4-Bromofluorobenzene (S)	%			65	50-150	
a,a,a-Trifluorotoluene (S)	%			66	50-150	

SAMPLE DUPLICATE: 49180

Parameter	Units	255590004 Result	Dup Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND	1.3J		
4-Bromofluorobenzene (S)	%	96	93	3	
a,a,a-Trifluorotoluene (S)	%	107	108	1	

Date: 11/18/2010 11:06 AM

Project: East Bay Redevelopment 138130

Pace Project No.: 255574

 QC Batch:
 ICPM/23408
 Analysis Method:
 EPA 6020

 QC Batch Method:
 EPA 6020
 Analysis Description:
 6020 MET

 Associated Lab Samples:
 255574001, 255574002, 255574003, 255574004, 255574005, 255574006

METHOD BLANK: 888630 Matrix: Solid

Associated Lab Samples: 255574001, 255574002, 255574003, 255574004, 255574005, 255574006

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	mg/kg	ND ND	0.49	11/11/10 17:41	
Cadmium	mg/kg	ND	0.078	11/11/10 17:41	
Copper	mg/kg	ND	0.49	11/11/10 17:41	
Lead	mg/kg	ND	0.49	11/11/10 17:41	
Nickel	mg/kg	ND	0.49	11/11/10 17:41	

LABORATORY CONTROL SAMPLE: 888631

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	 mg/kg	19.6	17.4	89	75-125	
Cadmium	mg/kg	19.6	17.2	88	75-125	
Copper	mg/kg	19.6	19.5	100	75-125	
Lead	mg/kg	19.6	18.8	96	75-125	
Nickel	mg/kg	19.6	19.7	100	75-125	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 888632 888633											
	50	043000010	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Arsenic	mg/kg	6.6	20.7	21.1	22.5	22.7	77	76	75-125	.8	
Cadmium	mg/kg	0.19	20.7	21.1	16.8	18.8	80	88	75-125	11	
Copper	mg/kg	10.9	20.7	21.1	29.9	29.8	92	89	75-125	.4	
Lead	mg/kg	5.5	20.7	21.1	22.7	23.7	83	86	75-125	4	
Nickel	mg/kg	11.2	20.7	21.1	31.2	29.3	97	86	75-125	6	

MATRIX SPIKE SAMPLE:	888634						
		5043055001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/kg	0.87	21.4	19.4	85	75-125	
Cadmium	mg/kg	0.058	21.4	16.6	77	75-125	
Copper	mg/kg	1.9	21.4	21.0	86	75-125	
Lead	mg/kg	0.61	21.4	17.3	77	75-125	
Nickel	mg/kg	1.7	21.4	30.0	129	75-125 M	6

Date: 11/18/2010 11:06 AM REPORT OF LABORATORY ANALYSIS

Page 16 of 23

Project: East Bay Redevelopment 138130

Pace Project No.: 255574

QC Batch: OEXT/2978 Analysis Method: EPA 8270 by SIM

QC Batch Method: EPA 3546 Analysis Description: 8270/3546 MSSV PAH by SIM

Associated Lab Samples: 255574001, 255574002, 255574003, 255574004, 255574005, 255574006

METHOD BLANK: 49322 Matrix: Solid

Associated Lab Samples: 255574001, 255574002, 255574003, 255574004, 255574005, 255574006

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/kg	ND	6.7	11/16/10 17:57	
2-Methylnaphthalene	ug/kg	ND	6.7	11/16/10 17:57	
Acenaphthene	ug/kg	ND	6.7	11/16/10 17:57	
Acenaphthylene	ug/kg	ND	6.7	11/16/10 17:57	
Anthracene	ug/kg	ND	6.7	11/16/10 17:57	
Benzo(a)anthracene	ug/kg	ND	6.7	11/16/10 17:57	
Benzo(a)pyrene	ug/kg	ND	6.7	11/16/10 17:57	
Benzo(b)fluoranthene	ug/kg	ND	6.7	11/16/10 17:57	
Benzo(g,h,i)perylene	ug/kg	ND	6.7	11/16/10 17:57	
Benzo(k)fluoranthene	ug/kg	ND	6.7	11/16/10 17:57	
Chrysene	ug/kg	ND	6.7	11/16/10 17:57	
Dibenz(a,h)anthracene	ug/kg	ND	6.7	11/16/10 17:57	
Fluoranthene	ug/kg	ND	6.7	11/16/10 17:57	
Fluorene	ug/kg	ND	6.7	11/16/10 17:57	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	6.7	11/16/10 17:57	
Naphthalene	ug/kg	ND	6.7	11/16/10 17:57	
Phenanthrene	ug/kg	ND	6.7	11/16/10 17:57	
Pyrene	ug/kg	ND	6.7	11/16/10 17:57	
2-Fluorobiphenyl (S)	%	71	31-131	11/16/10 17:57	
Terphenyl-d14 (S)	%	83	30-133	11/16/10 17:57	

LABORATORY CON'	TROL SAMPLE:	49323
-----------------	--------------	-------

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1-Methylnaphthalene	ug/kg	133	94.9	71	37-121	
2-Methylnaphthalene	ug/kg	133	96.4	72	33-132	
Acenaphthene	ug/kg	133	96.7	73	32-127	
Acenaphthylene	ug/kg	133	91.4	69	31-134	
Anthracene	ug/kg	133	91.2	68	42-135	
Benzo(a)anthracene	ug/kg	133	102	76	43-139	
Benzo(a)pyrene	ug/kg	133	110	82	44-144	
Benzo(b)fluoranthene	ug/kg	133	110	82	42-144	
Benzo(g,h,i)perylene	ug/kg	133	107	80	46-136	
Benzo(k)fluoranthene	ug/kg	133	101	76	45-147	
Chrysene	ug/kg	133	106	79	42-144	
Dibenz(a,h)anthracene	ug/kg	133	108	81	48-142	
Fluoranthene	ug/kg	133	99.8	75	44-143	
Fluorene	ug/kg	133	99.3	74	32-146	
Indeno(1,2,3-cd)pyrene	ug/kg	133	109	81	47-140	
Naphthalene	ug/kg	133	92.3	69	35-118	
Phenanthrene	ug/kg	133	103	77	42-131	

Date: 11/18/2010 11:06 AM

REPORT OF LABORATORY ANALYSIS

Page 17 of 23

Project: East Bay Redevelopment 138130

Pace Project No.: 255574

LABORATORY CONTROL SAMPLE: 49323

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Pyrene	ug/kg	133	107	80	47-136	
2-Fluorobiphenyl (S)	%			72	31-131	
Terphenyl-d14 (S)	%			83	30-133	

MATRIX SPIKE & MATRIX S	PIKE DUPLICAT	E: 49336	E: 49336			49337					•
			MS	MSD							
		255574001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1-Methylnaphthalene	ug/kg	7.5	152	151	127	135	79	84	31-123	6	
2-Methylnaphthalene	ug/kg	14.8	152	151	132	142	77	84	15-146	7	
Acenaphthene	ug/kg	ND	152	151	131	119	85	77	19-141	9	
Acenaphthylene	ug/kg	ND	152	151	132	118	82	73	30-142	11	
Anthracene	ug/kg	11.9	152	151	167	122	102	73	38-137	31	R1
Benzo(a)anthracene	ug/kg	34.7	152	151	222	139	124	69	37-143	46	R1
Benzo(a)pyrene	ug/kg	40.7	152	151	238	145	130	69	33-147	48	R1
Benzo(b)fluoranthene	ug/kg	24.2	152	151	188	134	109	73	25-156	34	R1
Benzo(g,h,i)perylene	ug/kg	23.6	152	151	181	133	104	73	26-142	30	R1
Benzo(k)fluoranthene	ug/kg	26.2	152	151	189	121	108	63	35-142	44	R1
Chrysene	ug/kg	40.4	152	151	234	144	128	69	23-150	48	R1
Dibenz(a,h)anthracene	ug/kg	8.6	152	151	144	122	90	75	41-140	17	
Fluoranthene	ug/kg	70.3	152	151	375	163	201	62	25-155	79	M1,R1
Fluorene	ug/kg	7.6	152	151	165	126	104	78	33-152	27	R1
Indeno(1,2,3-cd)pyrene	ug/kg	18.6	152	151	171	128	101	72	36-139	29	R1
Naphthalene	ug/kg	20.5	152	151	133	134	74	75	25-121	.9	
Phenanthrene	ug/kg	56.6	152	151	431	169	247	75	29-141	87	M1,R1
Pyrene	ug/kg	90.6	152	151	432	188	226	65	36-145	79	M1,R1
2-Fluorobiphenyl (S)	%						77	76	31-131		
Terphenyl-d14 (S)	%						83	82	30-133		

Date: 11/18/2010 11:06 AM

REPORT OF LABORATORY ANALYSIS

Page 18 of 23

Project: East Bay Redevelopment 138130

Pace Project No.: 255574

QC Batch: MSV/3395 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5035A Volatile Organics

Associated Lab Samples: 255574001, 255574003, 255574005, 255574006, 255574007

METHOD BLANK: 48409 Matrix: Solid

Associated Lab Samples: 255574001, 255574003, 255574005, 255574006, 255574007

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND	3.0	11/05/10 10:30	
Ethylbenzene	ug/kg	ND	3.0	11/05/10 10:30	
Toluene	ug/kg	ND	3.0	11/05/10 10:30	
Xylene (Total)	ug/kg	ND	9.0	11/05/10 10:30	
1,2-Dichloroethane-d4 (S)	%	100	80-143	11/05/10 10:30	
4-Bromofluorobenzene (S)	%	101	72-122	11/05/10 10:30	
Dibromofluoromethane (S)	%	99	80-136	11/05/10 10:30	
Toluene-d8 (S)	%	107	80-120	11/05/10 10:30	

LABORATORY CONTROL SAME	PLE & LCSD: 48410		48	3411						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene	ug/kg	50	39.1	39.7	78	79	75-133	2	30	
Ethylbenzene	ug/kg	50	43.0	41.5	86	83	68-131	4	30	
Toluene	ug/kg	50	43.6	39.6	87	79	73-124	10	30	
Xylene (Total)	ug/kg	150	127	126	84	84	68-130	.4	30	
1,2-Dichloroethane-d4 (S)	%				99	101	80-143			
4-Bromofluorobenzene (S)	%				110	105	72-122			
Dibromofluoromethane (S)	%				97	107	80-136			
Toluene-d8 (S)	%				105	100	80-120			

Date: 11/18/2010 11:06 AM REPORT OF LA

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: East Bay Redevelopment 138130

Pace Project No.: 255574

QC Batch: MSV/3429 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5035A Volatile Organics

Associated Lab Samples: 255574002, 255574004

METHOD BLANK: 49263 Matrix: Solid

Associated Lab Samples: 255574002, 255574004

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND	3.0	11/11/10 18:30	
Ethylbenzene	ug/kg	ND	3.0	11/11/10 18:30	
Toluene	ug/kg	ND	3.0	11/11/10 18:30	
Xylene (Total)	ug/kg	ND	9.0	11/11/10 18:30	
1,2-Dichloroethane-d4 (S)	%	101	80-143	11/11/10 18:30	
4-Bromofluorobenzene (S)	%	106	72-122	11/11/10 18:30	
Dibromofluoromethane (S)	%	105	80-136	11/11/10 18:30	
Toluene-d8 (S)	%	106	80-120	11/11/10 18:30	

LABORATORY CONTROL SAME	PLE & LCSD: 49264		49	9265						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene	ug/kg	50	43.5	42.5	87	85	75-133	2	30	
Ethylbenzene	ug/kg	50	38.5	37.6	77	75	68-131	2	30	
Toluene	ug/kg	50	41.6	40.7	83	81	73-124	2	30	
Xylene (Total)	ug/kg	150	124	120	82	80	68-130	3	30	
1,2-Dichloroethane-d4 (S)	%				104	102	80-143			
4-Bromofluorobenzene (S)	%				104	106	72-122			
Dibromofluoromethane (S)	%				112	111	80-136			
Toluene-d8 (S)	%				109	108	80-120			

Date: 11/18/2010 11:06 AM

Project: East Bay Redevelopment 138130

Pace Project No.: 255574

QC Batch: PMST/1416 Analysis Method: ASTM D2974-87

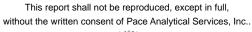
QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 255574001, 255574002, 255574003, 255574004, 255574005, 255574006

SAMPLE DUPLICATE: 48654

Parameter

255574001 Dup Units Result Result RPD Qualifiers


Percent Moisture % 12.3 13.5 9

SAMPLE DUPLICATE: 48655

ParameterUnits255604001 ResultDup ResultRPDQualifiersPercent Moisture%8.09.315

Date: 11/18/2010 11:06 AM REPORT OF LABORATORY ANALYSIS

Page 21 of 23

QUALIFIERS

Project: East Bay Redevelopment 138130

Pace Project No.: 255574

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis
PASI-S Pace Analytical Services - Seattle

ANALYTE QUALIFIERS

Date: 11/18/2010 11:06 AM

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

R1 RPD value was outside control limits.

REPORT OF LABORATORY ANALYSIS

Page 22 of 23

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: East Bay Redevelopment 138130

Pace Project No.: 255574

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
255574001	SPL-1-1	EPA 3546	OEXT/2936	NWTPH-Dx	GCSV/2051
255574002	SPL-1-2	EPA 3546	OEXT/2936	NWTPH-Dx	GCSV/2051
255574003	SPL-1-3	EPA 3546	OEXT/2936	NWTPH-Dx	GCSV/2051
255574004	SPL-2-1	EPA 3546	OEXT/2936	NWTPH-Dx	GCSV/2051
255574005	SPL-2-2	EPA 3546	OEXT/2936	NWTPH-Dx	GCSV/2051
255574006	SPL-2-3	EPA 3546	OEXT/2936	NWTPH-Dx	GCSV/2051
255574001	SPL-1-1	NWTPH-Gx	GCV/2002	NWTPH-Gx	GCV/2005
255574002	SPL-1-2	NWTPH-Gx	GCV/2002	NWTPH-Gx	GCV/2005
255574003	SPL-1-3	NWTPH-Gx	GCV/2002	NWTPH-Gx	GCV/2005
255574004	SPL-2-1	NWTPH-Gx	GCV/2002	NWTPH-Gx	GCV/2005
255574005	SPL-2-2	NWTPH-Gx	GCV/2007	NWTPH-Gx	GCV/2013
255574006	SPL-2-3	NWTPH-Gx	GCV/2007	NWTPH-Gx	GCV/2013
255574007	Trip Blank	NWTPH-Gx	GCV/2002	NWTPH-Gx	GCV/2005
255574001	SPL-1-1	EPA 6020	ICPM/23408	EPA 6020	ICPM/9523
255574002	SPL-1-2	EPA 6020	ICPM/23408	EPA 6020	ICPM/9523
255574003	SPL-1-3	EPA 6020	ICPM/23408	EPA 6020	ICPM/9523
255574004	SPL-2-1	EPA 6020	ICPM/23408	EPA 6020	ICPM/9523
255574005	SPL-2-2	EPA 6020	ICPM/23408	EPA 6020	ICPM/9523
255574006	SPL-2-3	EPA 6020	ICPM/23408	EPA 6020	ICPM/9523
255574001	SPL-1-1	EPA 3546	OEXT/2978	EPA 8270 by SIM	MSSV/1436
255574002	SPL-1-2	EPA 3546	OEXT/2978	EPA 8270 by SIM	MSSV/1436
255574003	SPL-1-3	EPA 3546	OEXT/2978	EPA 8270 by SIM	MSSV/1436
255574004	SPL-2-1	EPA 3546	OEXT/2978	EPA 8270 by SIM	MSSV/1436
255574005	SPL-2-2	EPA 3546	OEXT/2978	EPA 8270 by SIM	MSSV/1436
255574006	SPL-2-3	EPA 3546	OEXT/2978	EPA 8270 by SIM	MSSV/1436
255574001	SPL-1-1	EPA 8260	MSV/3395		
255574002	SPL-1-2	EPA 8260	MSV/3429		
255574003	SPL-1-3	EPA 8260	MSV/3395		
255574004	SPL-2-1	EPA 8260	MSV/3429		
255574005	SPL-2-2	EPA 8260	MSV/3395		
255574006	SPL-2-3	EPA 8260	MSV/3395		
255574007	Trip Blank	EPA 8260	MSV/3395		
255574001	SPL-1-1	ASTM D2974-87	PMST/1416		
255574002	SPL-1-2	ASTM D2974-87	PMST/1416		
255574003	SPL-1-3	ASTM D2974-87	PMST/1416		
255574004	SPL-2-1	ASTM D2974-87	PMST/1416		
255574005	SPL-2-2	ASTM D2974-87	PMST/1416		
255574006	SPL-2-3	ASTM D2974-87	PMST/1416		

Date: 11/18/2010 11:06 AM REF

REPORT OF LABORATORY ANALYSIS

Page 23 of 23

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

4555K

Face Analytical ® www.pacelabs.com

Pace Project No./ Lab I.D. DSW 11/03/10 DRINKING WATER (N/Y) Samples Intact toost as Separate SAMPLE CONDITIONS いらかる米 1391140 200 OTHER (N/Y) Sealed Cooler Z Custody οŧ Received on Ice (Y/N) 7 GROUND WATER 2 Residual Chlorine (Y/N) O° ni qmeT Page: REGULATORY AGENCY RCRA **ふ**ら 12/10/645 Requested Analysis Filtered (Y/N) TIME werd corteicht pesinglic Site Location STATE: NPDES DATE UST 124 - 12 (Furens 878 124 - 12 | HO, C 124 - 12 | HO, C 2220 DATE Signed (MM/DD/YY): ACCEPTED BY / AFFILIATION * appldos なるなが 20458 A93 7 REPLIS Analysis Test N/ Other Reference:
Pace Project
Manager:
Pace Profile #32338 Methanol FEET STATES Preservatives _EO_SS_SbV HOBV IOF Attention: Same Invoice Information: Company Name ^⁵OS^ZH 11210 1135 Section C Unpreserved TIME ace Quote 500 Address: 9 ٥ S O J # OF CONTAINERS O M SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SAMPLE TEMP AT COLLECTION Project Name: East Bey Redevelopment 11/2/10 9451 1250 330 30 1245 1255 TIME COMPOSITE END/GRAB DATE COLLECTED RELINQUISHED BY / AFFILIATION Koreu Corteran প্র 1245 TIME COMPOSITE START Meralin Smith DATE Project Number: 138132 7/2 Section B
Required Project Information: Ø O SPO 9 9 9 D S SAMPLE TYPE Purchase Order No.: (G=GRAB C=COMP) MATRIX CODE Report To: ORIGINAL Address: 724 Colombia St. NW#4200 To. Matrix Codes
MATRIX / CODE Odmium, lead, coper, Nickel Drinking Water Water Waste Water Product Soil/Solid Oil Wipe Air Air Air Other Fax 360-943-7513 * Motals for Arsenic, Jompany: Bown + Caldwell 9850 ADDITIONAL COMMENTS (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE SAMPLE ID 3 Trip Blank Phone: 20-943-755 Requested Due Date/TAT: Required Client Information SPL - 7-2 Section A Required Client Information: 2-2-7dS N-1-7dV SPL-2-1 SPL-1-2 SP2-1-Olympia, Email To: Section D 2 Ξ 9 7 œ 6 7 # MaTI

*Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

SIGNATURE of SAMPLER:

F-ALL-Q-020rev.07, 15-May-2007

Sample Container Count

Pace Analytical"

BRONDY & Cald Well

COC PAGE | of |

CLIENT:

Comments Trip Blank? 16 BP2S WGFU WGKU TEMM VEMW d BP2N BP3U AG1H AG1U BG1H BP1U BP2U VG9H Sample Line Item 5 유 Ξ 12 2 9 တ က 4 8 ~

AG1H 1 liter HCL amber glass	BP2S 500mL H2SO4 plastic	JGFU 4oz unpreserved amber wide
AG1U 1liter unpreserved amber glass	BP2U 500mL unpreserved plastic	R terra core kit
AG2S 500mL H2SO4 amber glass	BP2Z 500mL NaOH, Zn Ac	U Summa Can
AG2U 500mL unpreserved amber glass	BP3C 250mL NaOH plastic	VG9H 40mL HCL clear vial
AG3S 250mL H2SO4 amber glass	BP3N 250mL HNO3 plastic	VG9T 40mL Na Thio. clear vial
BG1H 1 liter HCL clear glass	BP3S 250mL H2SO4 plastic	VG9U 40mL unpreserved clear vial
BG1U 1 liter unpreserved glass	BP3U 250mL unpreserved plastic	VG9W 40mL glass vial preweighted (EPA 5035)
BP1N 1 liter HNO3 plastic	DG9B 40mL Na Bisulfate amber vial	VSG Headspace septa vial & HCL
BP1S 1 liter H2SO4 plastic	DG9H 40mL HCL amber voa vial	WGFU 4oz clear soil jar
BP1U 1 liter unpreserved plastic	DG9M 40mL MeOH clear vial	WGFX 4oz wide jar w/hexane wipe
BP1Z 1 liter NaOH, Zn, Ac	DG9T 40mL Na Thio amber vial	ZPLC Ziploc Bag
BP2N 500mL HNO3 plastic	DG9U 40mL unpreserved amber vial	
BP2O 500mL NaOH plastic	Wipe/Swab	

					Pace Trip Blank Lot # (if purchased):
		A∖N□	oN□	SƏAZ	Trip Blank Custody Seals Present
	,9 <i>t</i>	A\N□	0N□	SƏA	Trip Blanks Present:
	15,	ANK	٥N□	Nes	Headspace in VOA Visls (>6mm3<)
	.41	AM	0N□	SeY□	Samples checked for dechlorination:
preservative	completed				Exceptions: VOA, coliform, TOC, O&G
Lot # of added	nərw İsitiri	AWK	oN□	S⊕从□	All containers needing preservation are found to be in compliance with EPA recommendation.
	.51	AM	0N□	□Yes	All containers needing preservation have been checked.
					-Includes date/time/AD/Analysis abuloni-
	.21	Α̈́Ν□	oN□	SeY	Sample Labels match COC:
	.11.	ANN	oN□	S∋Y□	Filtered volume received for Dissolved tests
	.01	Α∖N□	оИ□	SBY	Containers Intact:
		Α∖N□	oN□	SaY	-Pace Containers Used:
,	·6	¥/N□	oN□	sə	Correct Containers Used:
1'	.8	Ψ/N□	oN□	N/es	Sufficient Volume:
	7.	A\N.	ONIZ	S∂∖□	Rush Turn Around Time Requested:
	.9	A\N□	ONZ	□Yes	Short Hold Time Analysis (<72hr;
	·5	A∖N□	oN□	SaY	Samples Arrived within Hold Time:
	·þ	A\N□	ONE	Se∀□	Sampler Name & Signature on COC:
	.5	∀N□	oN□	SƏAZ	Chain of Custody Relinquished:
	.2.	A∖N□	oN□	S∌Y\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Chain of Custody Filled Out:
	٦.	Α∖N□	oN□	SeY	Chain of Custody Present:
	Comments:				~ 3 ≥ gnizəəti əvods əd bluoda qməT
s No contents: 10210CW	ay :nəxoา∃ ei	-20-			Cooler Temperature
	enoN aula ((Wet	eol lo	Туре о	Peal reference of the second o
Temp. Blank Yes / No	Other	oue	N 🗌	sags	Packing Material: Bubble Wrap Bubble B
ор □ гэ).	intact:	Seals	οN	1 🔼	Custody Seal on Coolet/Box Present:
				•	Tracking #:
Let Des Salaria	□ Pace Oth	stcial	эшшо		Courter: Ted Ex DPS DSPS Client
Project # 2555+4	Hampy	D) į	Un		Glient Name:
1,600)	noct from		ofell	MES	

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Date/Time:

N / A

Field Data Required?

Project Manager Review:

Person Contacted: Comments/ Resolution:

Client Notification/ Resolution:

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Client Services PASI Seattle 940 South Harney Seattle WA 98108

> REPORT OF LABORATORY ANALYSIS FOR PCDD/PCDF

Report Information:

Pace Project #: 10142530

Sample Receipt Date: 11/05/2010

Client Project #: 255572 Brown & Caldwell

Client Sub PO #: N/A State Cert #: C755

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Nate Habte, your Pace Project Manager.

This report has been reviewed by:

November 19, 2010

Nate Habte, Project Manager

(612) 607-6407

(612) 607-6444 (fax)

natnael.habte@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

November 19, 2010

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on six samples submitted by a representative of Pace Analytical Services, Inc - Seattle. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290. Reporting limits were based on signal-to-noise measurements.

The isotopically-labeled PCDD/PCDF internal standards in the sample extracts were recovered at 43-88%. All of the labeled standard recoveries obtained for this project were within the 40-135% target range specified in Method 8290. Also, since the quantification of the native congeners was based on isotope dilution and internal standard methodology, the data were automatically corrected for recovery and accurate values were obtained.

In some cases, interfering substances impacted the determinations of PCDD or PCDF congeners; the affected values were flagged "I" where incorrect isotope ratios were obtained or "P" where polychlorinated diphenyl ethers were present.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to contain trace levels of selected PCDD/PCDF congeners. With the exception of a non-2,3,7,8-substituted TCDF congener, these levels were below the calibration range of the method. The field sample extracts contained selected analytes at levels within ten times those seen in the method blank. The affected congeners were flagged "B" on the results tables and should be considered to have originated, at least partially, in the laboratory. In general, levels less than ten times the background are not considered statistically different from the background.

Laboratory and matrix spike samples were also prepared with the sample batch using clean sand or sample material that had been fortified with native standards. The results show that the spiked native compounds were recovered at 99-143%, with relative percent differences of 0.0-10.6%. These results indicate generally high degrees of accuracy and precision for these determinations. The laboratory spike exhibited an elevated recovery for OCDF and is flagged "R" on the results table. This could indicate a high bias for the OCDF results. While the method does not specify a recovery range for matrix spikes, several analytes in the matrix spikes were recovered at levels above the target range utilized by Pace Analytical. The affected analytes were flagged "R" on the matrix spike tables (based on the background subtracted results) and could indicate a high bias for these analytes.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	
Arizona	AZ0014	Nevada	MN000642010A
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New Mexico	MN00064
Colorado	MN00064	New York (NEL	11647
Connecticut	PH-0256	North Carolina	27700
EPA Region 5	WD-15J	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Ohio VAP	CL101
Georgia (DNR)	959	Oklahoma	D9922
Guam	09-019r	Oregon (ELAP)	MN200001-005
Hawaii	SLD	Oregon (OREL	MN200001-005
Idaho	MN00064	Pennsylvania	68-00563
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennesee	2818
lowa	368	Tennessee	02818
Kansas	E-10167	Texas	T104704192-08
Kentucky	90062	Utah (NELAP)	PAM
Louisiana	LA0900016	Virginia	00251
Maine	2007029	Washington	C755
Maryland	322	West Virginia	9952C
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q
Mississippi	MN00064		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

Chain of Custody

10/42530

Workorder: 255572									
	Workorder	Name:East Bay	Workorder Name:East Bay Redevelopment 13830	3830	Owner	Owner Received Date:	7	Results Requested By:	y: 11/23/2010
Jennifer Gross Pace Analytical Services, Inc. 940 South Harney Seattle WA 98108 Phone (206)767-5060 Fax (206)767-5063		Pace Analy Pace Analy 1700 Elm S Suite 200 Minneapoli Phone (612	Pace Analytical Minnesota 1700 Elm Street Suite 200 Minneapolis, MN 55414 Phone (612)607-1700			Dioxins Furans	and the state of t		
frem Sample ID	Sample Type	Sample Collect Type Date/Time	Lab ID Matriix	Unpreserved					LAB USE ONLY
SPL-1-1	PS	11/2/2010 12:45	255572001 Solid	ط ع		×			
SPL-1-2	PS	11/2/2010 12:50	255572002 Solid	d 1		×			
SPL-1-3	PS	11/2/2010 12:55	255572003 Solid	م -		×			
SPL-2-1	PS	11/2/2010 13:25	255572004 Solid	d 1		×			
SPL-2-2	PS	11/2/2010 13:30	255572005 Solid	7		×			
SPL-2-3	PS	11/2/2010 13:40	255572006 Solid	1		×			
								Comments	
Transfers Released By		Date/Time	Received By	,		Date/Ţime			
Earth	smon.	11 4 10 12:30	8	·		15/iv 195			
Scoler Temperature on Receipt	Receipt 3%	. Custody	ody Seal Vor	Z	Rece	Received on Ice Y	N	Samples Intack	V Jor N

Sample Condition Upon Receipt

Pace Analytical Cl	ient Name:	IA	E.	Sen	THE	· 		Projec	t#_	10Ha	252	<u> </u>
Courier: Fed Ex UPS Tracking #: 7964 1759 9 Custody Seal on Cooler/Box Pre	1115				☐ Pa			no	Proj	nál Due Dat Name	- -	
Packing Material: Bubble Wro	ap Bubble	Bags		None	☐ Oth	ner		_ Temp B	3lank: Y	'es	<u> </u>	No
Thermometer Used 80344042	or 179425	Туре	of Ice	:/Wet	Blue	None				cooling pr		· · · · · · · · · · · · · · · · · · ·
Cooler Temperature Temp should be above freezing to 6°C		Biolo	gical	Tissue	is Froz		No	Date	and init	iale of pe	reon e	kemining
Chain of Custody Present:		∠ZYes	□No	□n⁄a	1.							
Chain of Custody Filled Out:		Z Yes	□No	□N⁄A	2.					·		
Chain of Custody Relinquished:		/21Ves	□No	□N⁄A	3.							
Sampler Name & Signature on CO	C:	∐Yes	₽₩o	□n⁄a	4.							
Samples Arrived within Hold Time:		//Yes	□No	□N⁄A	5.							
Short Hold Time Analysis (<72hr	<u>): </u>	□Yes,	PNo	□n/a	6.							
Rush Turn Around Time Reques	ted:	□Yes	ZNo	□N⁄A	7.							
Sufficient Volume:	· .	.El¥es	□No	□n/a	8.							
Correct Containers Used:		Ø Yes	□No	□N⁄A	9.							
-Pace Containers Used:		Ø Yes	ДNο	□N⁄A								
Containers Intact:		/2Yes	□No	□N⁄A	10.							
Filtered volume received for Dissol	ved tests	□Yes	□No	ØN⁄A	11.							
Sample Labels match COC:		ØŸes	□No	□N⁄A	12.							
-Includes date/time/ID/Analysis	Matrix:	DL.										
All containers needing acid/base preserva checked. Noncompliance are noted in 13		□Yes	□No	ØÑ/A	13.		EONH [□ H2	SO4	□ NaO	H	□ HCI
All containers needing preservation are compliance with EPA recommendation.	found to be in	□Yes	□No	EINA	Samp #	 		,				
Exceptions: VOA,Cotiform, TOC, Oil and Gre	ase, WI-DRO (water				Initial wh complete			Lot # of a preservat				
Samples checked for dechlorination):	□Yes	□No.	- EINA	14.							
Headspace in VOA Vials (>6mm):		☐Yes	□No	.EITVA	15.							
Trip Blank Present:		□Yes	□No	ØÑ∕A	16.							ŀ
Trip Blank Custody Seals Present		□Yes	□No	ZINA								ļ
Pace Trip Blank Lot # (if purchased):											
Client Notification/ Resolution:			~					Field Data	a Requir	ed?	Υ /	N
Person Contacted: Comments/ Resolution:				_Date/1	ıme:				·			
Project Manager Review:			(WA'	4			Da	ate:	11/9	10	

Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the Routh Carolina SEMBLES, Inc. 1,213Rev.00, 05Aug2009 1700 Elm Street SE, Suite 200, Minneapolis, MN 55414

Report No.....10142530_8290

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- See Discussion

Appendix B

Sample Analysis Summary

Method 8290 Sample Analysis Results

Client - PASI Seattle

SPL-1-1 Client's Sample ID Lab Sample ID 255572001 F101117B_10 Filename Injected By SMT **Total Amount Extracted** 11.9 g Matrix Solid % Moisture Dilution NA 12.3 Dry Weight Extracted 10.4 g Collected 11/02/2010 12:45 **ICAL ID** F101012 Received 11/05/2010 10:15

CCal Filename(s) F101117B_02 & F101117B_19 Extracted 11/15/2010 15:45
Method Blank ID BLANK-26969 Analyzed 11/17/2010 20:51

Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
ND		0.200	2,3,7,8-TCDF-13C	2.00	64
1.70		0.200 B			66 70
ND		0.150			73 78
					84
		000	1,2,3,4,7,8-HxCDF-13C	2.00	60
0.14		0.140 J	1,2,3,6,7,8-HxCDF-13C	2.00	61
					60
0.50		0.120 BJ			66 58
ND		0.120			63
					51
,,,,		020		2.00	51
	0.17	0.110 PI	1,2,3,4,6,7,8-HpCDD-13C	2.00	51
			OCDD-13C	4.00	47
			4 0 0 4 TODD 400	2.00	NΙΔ
					NA NA
0.10		0.037 D3	1,2,3,7,0,9-110000-130	2.00	INA
ND		0.095	2,3,7,8-TCDD-37Cl4	0.20	78
ND		0.093			
0.26		0.094 J			
0.56		0.140 I	Total 2378-TCDD		
1.50		0.170 J		Using PRL/	2 where ND)
4.00			-	_	
3.00		U.∠5U J			
1.80		0.210 J			
12.00		0.570			
	ND 1.70 ND ND 0.14 0.18 0.50 ND ND ND ND ND ND ND ND ND ND ND ND ND N	ng/Kg ng/Kg ND 1.70 ND ND 0.14 0.50 ND 1.50 1.30 1.80	ng/Kg ng/Kg ng/Kg ND 0.200 1.70 0.200 B ND 0.200 B ND 0.150 0.14 0.150 0.14 0.140 J 0.18 0.110 J 0.50 0.120 BJ ND 0.120 D ND 0.120 PI ND 0.120 DI ND 0.120 DI ND 0.120 DI ND 0.094 I ND 0.095 D ND 0.095 D ND 0.095 D ND 0.094 D 0.26 0.140 J ND <t< td=""><td>Ng/Kg ng/Kg Standards ND 0.200 2,3,7,8-TCDF-13C 1.70 0.200 B 2,3,7,8-TCDD-13C 1.70 0.150 2,3,4,7,8-PeCDF-13C ND 0.150 1,2,3,7,8-PeCDD-13C ND 0.150 1,2,3,7,8-PeCDD-13C 0.14 0.140 J 1,2,3,6,7,8-HxCDF-13C 0.18 0.110 J 2,3,4,6,7,8-HxCDF-13C 0.50 0.120 BJ 1,2,3,4,7,8-HxCDD-13C ND 0.120 1,2,3,4,6,7,8-HxCDD-13C ND 0.120 1,2,3,4,6,7,8-HpCDF-13C ND 0.11 0.087 I ND 0.11 0.087 I ND 0.094 I 1,2,3,4,6,7,8-HpCDD-13C ND 0.094 I 1,2,3,4-TCDD-13C ND 0.095 1,2,3,4-TCDD-37CI4 <!--</td--><td> ND</td></td></t<>	Ng/Kg ng/Kg Standards ND 0.200 2,3,7,8-TCDF-13C 1.70 0.200 B 2,3,7,8-TCDD-13C 1.70 0.150 2,3,4,7,8-PeCDF-13C ND 0.150 1,2,3,7,8-PeCDD-13C ND 0.150 1,2,3,7,8-PeCDD-13C 0.14 0.140 J 1,2,3,6,7,8-HxCDF-13C 0.18 0.110 J 2,3,4,6,7,8-HxCDF-13C 0.50 0.120 BJ 1,2,3,4,7,8-HxCDD-13C ND 0.120 1,2,3,4,6,7,8-HxCDD-13C ND 0.120 1,2,3,4,6,7,8-HpCDF-13C ND 0.11 0.087 I ND 0.11 0.087 I ND 0.094 I 1,2,3,4,6,7,8-HpCDD-13C ND 0.094 I 1,2,3,4-TCDD-13C ND 0.095 1,2,3,4-TCDD-37CI4 </td <td> ND</td>	ND

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

P = PCDE Interference

I = Interference present

EDL = Estimated Detection Limit

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-1-2 Lab Sample ID 255572002 F101117B_11 Filename Injected By SMT **Total Amount Extracted** 12.4 g Solid Matrix % Moisture Dilution NA 13.1 Dry Weight Extracted Collected 11/02/2010 12:50 10.8 g **ICAL ID** F101012 Received 11/05/2010 10:15 CCal Filename(s) F101117B_02 & F101117B_19 Extracted 11/15/2010 15:45 Method Blank ID BLANK-26969 Analyzed 11/17/2010 21:37

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.18 2.50		0.14 BJ 0.14 B	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	70 69 73
2,3,7,8-TCDD Total TCDD	ND 0.36		0.15 0.15 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00	87 84
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.21 1.70		0.28 0.11 J 0.20 BJ	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	58 68 63 68
1,2,3,7,8-PeCDD Total PeCDD	0.15 0.72		0.14 J 0.14 J	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	56 66 52 51
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND	0.99 	0.26 P 0.31 0.31	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	51 51 50
1,2,3,7,8,9-HxCDF Total HxCDF	ND 1.70		0.15 0.26 BJ	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 0.46 2.70	0.24	0.18 0.16 J 0.17 I 0.17 J	2,3,7,8-TCDD-37Cl4	0.20	71
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	2.70 ND 7.70		0.37 J 0.36 0.37	Total 2,3,7,8-TCDD Equivalence: 0.62 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	12.00 25.00		0.49 0.49			
OCDF OCDD	16.00 120.00		0.36 0.20			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

P = PCDE Interference

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-1-3 Lab Sample ID 255572003 F101117B_12 Filename Injected By SMT **Total Amount Extracted** 11.7 g Solid Matrix % Moisture Dilution NA 11.6 Dry Weight Extracted Collected 11/02/2010 12:55 10.4 g **ICAL ID** F101012 Received

ICAL ID F101012 Received 11/05/2010 10:15
CCal Filename(s) F101117B_02 & F101117B_19 Extracted 11/15/2010 15:45
Method Blank ID BLANK-26969 Analyzed 11/17/2010 22:23

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF		0.25	0.200 I	2,3,7,8-TCDF-13C	2.00	64
Total TCDF	2.90		0.200 B	2,3,7,8-TCDD-13C	2.00	64 75
2,3,7,8-TCDD	ND		0.180	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C	2.00 2.00	75 86
Total TCDD	0.63		0.180 J	1,2,3,7,8-PeCDD-13C	2.00	83
				1,2,3,4,7,8-HxCDF-13C	2.00	61
1,2,3,7,8-PeCDF	ND		0.220	1,2,3,6,7,8-HxCDF-13C	2.00	64
2,3,4,7,8-PeCDF	0.70	0.13	0.120 I	2,3,4,6,7,8-HxCDF-13C	2.00	63
Total PeCDF	0.70		0.170 BJ	1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00	69 60
1,2,3,7,8-PeCDD	ND		0.160	1,2,3,6,7,8-HxCDD-13C	2.00	65
Total PeCDD	0.36		0.160 J	1,2,3,4,6,7,8-HpCDF-13C	2.00	52
				1,2,3,4,7,8,9-HpCDF-13C	2.00	53
1,2,3,4,7,8-HxCDF		0.28	0.130 I	1,2,3,4,6,7,8-HpCDD-13C	2.00	52
1,2,3,6,7,8-HxCDF	ND		0.120	OCDD-13C	4.00	49
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND		0.087 0.130	1,2,3,4-TCDD-13C	2.00	NA
Total HxCDF	0.16		0.130 0.120 BJ	1,2,3,7,8,9-HxCDD-13C	2.00	NA NA
Total Tixobi	0.10		0.120 00	1,2,3,7,0,3 110000 100	2.00	14/1
1,2,3,4,7,8-HxCDD	ND		0.130	2,3,7,8-TCDD-37Cl4	0.20	68
1,2,3,6,7,8-HxCDD	0.25		0.100 J			
1,2,3,7,8,9-HxCDD	0.17		0.120 J			
Total HxCDD	2.20		0.120 J			
1,2,3,4,6,7,8-HpCDF	0.93		0.170 J	Total 2,3,7,8-TCDD		
1,2,3,4,7,8,9-HpCDF	ND		0.250	Equivalence: 0.37 ng/Kg		
Total HpCDF	2.30		0.210 J	(Using 2005 WHO Factors -	Using PRL/	2 where ND)
400407011.000	0.70		0.000			
1,2,3,4,6,7,8-HpCDD	6.70 16.00		0.680 0.680			
Total HpCDD	10.00		0.000			
OCDF	4.10		0.290 J			
OCDD	49.00		0.470			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-2-1
Lab Sample ID 255572004
Filename F101117B_13
Injected By SMT
Total Amount Extracted 11.7 g

Total Amount Extracted 11.7 g Matrix Solid % Moisture 10.1 Dilution NA

Dry Weight Extracted Collected 11/02/2010 13:25 10.5 g **ICAL ID** F101012 Received 11/05/2010 10:15 CCal Filename(s) F101117B_02 & F101117B_19 Extracted 11/15/2010 15:45 Method Blank ID BLANK-26969 Analyzed 11/17/2010 23:09

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	2.80	0.20	0.18 I 0.18 B	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	73 73 76
2,3,7,8-TCDD Total TCDD	ND 0.17		0.14 0.14 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00	88 86 60
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND 1.80		0.23 0.19 0.21 BJ	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	70 67 74
1,2,3,7,8-PeCDD Total PeCDD	0.21 0.63		0.10 J 0.10 J	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	58 71 53
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND	0.81 	0.36 P 0.20 0.23	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	51 51 49
1,2,3,7,8,9-HxCDF Total HxCDF	ND 2.10		0.23 0.27 0.27 BJ	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.49 3.90	0.26 0.35 	0.19 I 0.19 J 0.20 I 0.19 J	2,3,7,8-TCDD-37Cl4	0.20	73
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	4.70 ND 14.00		0.31 J 0.24 0.28	Total 2,3,7,8-TCDD Equivalence: 0.65 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	11.00 25.00		0.61 0.61			
OCDF OCDD	26.00 100.00		0.36 0.82			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

P = PCDE Interference

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

SPL-2-2 Client's Sample ID Lab Sample ID 255572005 F101117B_14 Filename Injected By SMT **Total Amount Extracted** 12.4 g Solid Matrix % Moisture Dilution NA 11.3 Dry Weight Extracted Collected 11/02/2010 13:30 11.0 g **ICAL ID** F101012 Received 11/05/2010 10:15 CCal Filename(s) F101117B_02 & F101117B_19 Extracted 11/15/2010 15:45 Method Blank ID BLANK-26969 Analyzed 11/17/2010 23:56

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.500	0.16	0.150 I 0.150 B	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	62 62 73
2,3,7,8-TCDD Total TCDD	ND 0.130		0.120 0.120 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	83 81 64
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND 0.400		0.210 0.120 0.170 BJ	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00 2.00	63 64 69 62
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.190 0.190	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	65 53 53
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.220 0.091 0.089		0.088 BJ 0.087 J 0.070 J	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	52 51
1,2,3,7,8,9-HxCDF Total HxCDF	ND 0.500		0.120 0.092 BJ	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	 ND ND 1.400	0.12 	0.110 I 0.120 0.120 0.120 J	2,3,7,8-TCDD-37Cl4	0.20	65
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND 0.860	0.40 	0.140 I 0.140 0.140 J	Total 2,3,7,8-TCDD Equivalence: 0.28 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	2.300 5.500		0.220 J 0.220			
OCDF OCDD	2.400 13.000		0.200 J 0.290			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

I = Interference present

EDL = Estimated Detection Limit

Method 8290 Sample Analysis Results

Client - PASI Seattle

SPL-2-3 Client's Sample ID Lab Sample ID 255572006 F101117B_15 Filename Injected By SMT **Total Amount Extracted** 11.4 g Solid Matrix % Moisture Dilution NA 10.1 Dry Weight Extracted Collected 11/02/2010 13:40 10.2 g **ICAL ID** F101012 Received 11/05/2010 10:15 CCal Filename(s) F101117B_02 & F101117B_19 Extracted 11/15/2010 15:45 Method Blank ID BLANK-26969 Analyzed 11/18/2010 00:42

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.28 10.00		0.12 BJ 0.12 B	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	74 75 78
2,3,7,8-TCDD Total TCDD	0.80 27.00		0.26 J 0.26	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	88 88 64
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.38 0.48 8.60		0.22 J 0.25 J 0.23	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	73 69 73 65
1,2,3,7,8-PeCDD Total PeCDD	8.50 130.00		0.14 0.14	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	66 53 57
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.40 0.78	3.1 	0.20 P 0.30 J 0.25 J	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	57 55 57
1,2,3,7,8,9-HxCDF Total HxCDF	0.82 16.00		0.28 BJ 0.26	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	41.00 17.00 32.00 530.00	 	0.96 0.89 0.82 0.89	2,3,7,8-TCDD-37Cl4	0.20	78
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	31.00 2.10 53.00		0.72 0.83 J 0.77	Total 2,3,7,8-TCDD Equivalence: 24 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	410.00 1300.00		3.30 3.30			
OCDF OCDD	87.00 1300.00		0.28 0.35			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

P = PCDE Interference

Method 8290 Blank Analysis Results

Lab Sample ID BLANK-26969
Filename F101117B_09

Total Amount Extracted 10.4 g ICAL ID F101012

CCal Filename(s) F101117B_02 & F101117B_19

Matrix Solid Dilution NA

Extracted 11/15/2010 15:45 Analyzed 11/17/2010 20:06

Injected By SMT

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20 1.40		0.140 J 0.140	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	59 60 67
2,3,7,8-TCDD Total TCDD	ND ND		0.160 0.160	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	81 80 63
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.22	0.13 	0.190 0.120 I 0.160 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	71 68 76
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.092 0.092	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	59 76 57 54
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.17 ND ND		0.098 J 0.095 0.078	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	55 54
1,2,3,7,8,9-HxCDF Total HxCDF	0.12 0.41		0.110 J 0.095 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		0.071 0.069 0.088 0.076	2,3,7,8-TCDD-37Cl4	0.20	57
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND	0.11 	0.077 I 0.120 0.097	Total 2,3,7,8-TCDD Equivalence: 0.22 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.15 0.15		0.140 J 0.140 J			
OCDF OCDD		0.42 0.74	0.120 I 0.090 I			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted

I otal Amount Extracted ICAL ID CCal Filename(s) Method Blank ID

LCS-26970 F101117B_03 10.3 g F101012

F101012 F101117B_02 & F101117B_19 BLANK-26969 Matrix Dilution Extracted Analyzed

Solid NA 11/15/2010 19

11/15/2010 15:45 11/17/2010 15:28

injected by Sivi i	Injected B	y SMT
--------------------	------------	-------

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.25	123	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.0 2.0 2.0	58 60 69
2,3,7,8-TCDD Total TCDD	0.20	0.20	99	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.0 2.0 2.0 2.0	80 84 64
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.2 1.1	115 108	1,2,3,6,7,8-HXCDF-13C 1,2,3,6,7,8-HXCDF-13C 2,3,4,6,7,8-HXCDF-13C 1,2,3,7,8,9-HXCDF-13C 1,2,3,4,7,8-HXCDD-13C	2.0 2.0 2.0 2.0 2.0	65 65 71 66
1,2,3,7,8-PeCDD Total PeCDD	1.0	1.0	103	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.0 2.0 2.0 2.0	65 58 60
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	1.0 1.0 1.0 1.0	1.1 1.1 1.1 1.1	111 110 113 113	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.0 4.0 2.0	63 56 NA
Total HxCDF				1,2,3,7,8,9-HxCDD-13C	2.0	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	1.1 1.1 1.3	110 111 125	2,3,7,8-TCDD-37Cl4	0.20	58
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.2 1.1	115 113			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	1.0	103			
OCDF OCDD	2.0 2.0	2.7 2.4	135 R 122			

Qs = Quantity Spiked Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)
R = Recovery outside of target range

Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable
* = See Discussion

Tel: 612-607-1700 Fax: 612-607-6444

Method 8290 Spiked Sample Report

Client - PASI Seattle

Client's Sample ID Lab Sample ID Filename

SPL-1-1 255572001-MS F101117B_06

Total Amount Extracted ICAL ID

12.5 g F101012

Matrix Solid Dilution NA

CCal Filename(s) Method Blank ID

F101117B_02 & F101117B_19 **BLANK-26969**

Extracted 11/15/2010 15:45 Analyzed 11/17/2010 17:47

Injected By SMT

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20	0.25	127	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	56 61 69
2,3,7,8-TCDD	0.20	0.21	104	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	82 85 60
1,2,3,7,8-PeCDF	1.00	1.20	120	1,2,3,6,7,8-HxCDF-13C	2.00	63
2,3,4,7,8-PeCDF	1.00	1.13	113	2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00	63 67
1,2,3,7,8-PeCDD	1.00	1.06	106	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	62 63 53
1,2,3,4,7,8-HxCDF	1.00	1.10	110	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C	2.00 2.00	53 55
1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00	1.17 1.13	117 113	OCDD-13C	4.00	52
1,2,3,7,8,9-HxCDF	1.00	1.15	115	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD	1.00 1.00	1.14 1.20	114 120	2,3,7,8-TCDD-37Cl4	0.20	62
1,2,3,7,8,9-HxCDD	1.00	1.25	125			
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	1.00 1.00	1.20 1.19	120 119			
400407011.000	4.00	4.40	440			
1,2,3,4,6,7,8-HpCDD	1.00	1.12	112			
OCDF OCDD	2.00 2.00	2.86 2.69	143 R 135			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures. R = Recovery outside target range

REPORT OF LABORATORY ANALYSIS

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Spiked Sample Report

Client - PASI Seattle

Client's Sample ID

Lab Sample İD Filename

Total Amount Extracted

ICAL ID

CCal Filename(s)
Method Blank ID

SPL-1-1

255572001-MSD

F101117B_07 13.2 g

F101012 F101117B_02 & F101117B_19 BLANK-26969 Matrix Solid Dilution NA

Extracted 11/15/2010 15:45 Analyzed 11/17/2010 18:33

Injected By SMT

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20	0.25	127	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	52 54 58
2,3,7,8-TCDD	0.20	0.21	105	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00	69 69
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	1.00 1.00	1.19 1.10	119 110	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C	2.00 2.00 2.00	49 57 53 58
1,2,3,7,8-PeCDD	1.00	1.08	108	1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	50 58 45
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	1.10 1.17 1.17	110 117 117	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	47 45 43
1,2,3,7,8,9-HxCDF	1.00	1.15	115	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	1.00 1.00 1.00	1.12 1.19 1.32	112 119 132 R	2,3,7,8-TCDD-37Cl4	0.20	63
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	1.00 1.00	1.11 1.09	111 109			
1,2,3,4,6,7,8-HpCDD	1.00	1.15	115			
OCDF OCDD	2.00 2.00	2.86 2.99	143 R 150 R			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures. R = Recovery outside target range

REPORT OF LABORATORY ANALYSIS

Pace Analytical"

Tel: 612-607-1700 Fax: 612-607-6444

Method 8290 Spike Sample Results

Client - PASI Seattle

Client Sample ID Lab Sample ID MS ID

MSD ID

SPL-1-1 255572001 255572001-MS 255572001-MSD

Sample Filename MS Filename MSD Filename

F101117B_10 F101117B_06 F101117B_07

Dry Weights Sample Amount 10.4 g MS Amount MSD Amount

11.0 g 11.6 g

	Sample Conc.	MS/MSD Qs	MS Qm	MSD Qm		Backgrou	und Subtracted	
Analyte	ng/Kg	(ng)	(ng)	(ng)	RPD	MS % Rec.	MSD % Rec.	RPD
2,3,7,8-TCDF	0.000	0.20	0.25	0.25	0.0	126	126	0.1
2,3,7,8-TCDD	0.000	0.20	0.21	0.21	1.4	104	105	1.4
1,2,3,7,8-PeCDF	0.142	1.00	1.20	1.19	1.2	120	119	1.2
2,3,4,7,8-PeCDF	0.182	1.00	1.13	1.10	2.1	112	110	2.1
1,2,3,7,8-PeCDD	0.000	1.00	1.06	1.08	1.7	106	108	1.7
1,2,3,4,7,8-HxCDF	0.000	1.00	1.10	1.10	0.2	110	110	0.2
1,2,3,6,7,8-HxCDF	0.000	1.00	1.17	1.17	0.1	117	117	0.1
2,3,4,6,7,8-HxCDF	0.000	1.00	1.13	1.17	3.4	113	117	3.4
1,2,3,7,8,9-HxCDF	0.000	1.00	1.15	1.15	0.1	115	115	0.1
1,2,3,4,7,8-HxCDD	0.000	1.00	1.14	1.12	1.7	113	112	1.7
1,2,3,6,7,8-HxCDD	0.000	1.00	1.20	1.19	0.7	120	119	0.7
1,2,3,7,8,9-HxCDD	0.000	1.00	1.25	1.32	5.3	125	132	5.3
1,2,3,4,6,7,8-HpCDF	0.555	1.00	1.20	1.11	8.2	120	110	8.2
1,2,3,4,7,8,9-HpCDF	0.000	1.00	1.19	1.09	8.6	119	109	8.6
1,2,3,4,6,7,8-HpCDD	1.341	1.00	1.12	1.15	2.8	110	113	2.8
OCDF '	1.831	2.00	2.86	2.86	0.0	142	142	0.0
OCDD	11.706	2.00	2.69	2.99	10.6	128	143	10.8

Definitions

MS = Matrix Spike MSD = Matrix Spike Duplicate

Qm = Quantity Measured Qs = Quantity Spiked

% Rec. = Percent Recovery RPD = Relative Percent Difference

NA = Not Applicable NC = Not Calculated CDD = Chlorinated dibenzo-p-dioxin CDF = Chlorinated dibenzo-p-furan

T = Tetra Pe = Penta Hx = HexaHp = Hepta

O = Octa

November 19, 2010

Joshua Johnson Brown & Caldwell 724 Columbia St. NW#420 Olympia, WA 98501

RE: Project: East Bay Redevelopment 138130

Pace Project No.: 255590

Dear Joshua Johnson:

Enclosed are the analytical results for sample(s) received by the laboratory on November 03, 2010. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jennifer Gross

jennifer.gross@pacelabs.com Project Manager

ENNI (TROSS

Enclosures

(206)767-5060

CERTIFICATIONS

Project: East Bay Redevelopment 138130

Pace Project No.: 255590

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

Alaska Certification #: UST-078 Alaska Certification #MN00064 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA EPA Region 8 Certification #: Pace Florida/NELAP Certification #: E87605

Georgia Certification #: 959 Idaho Certification #: MN00064 Illinois Certification #: 200011 Iowa Certification #: 368 Kansas Certification #: E-10167 Louisiana Certification #: 03086 Louisiana Certification #: LA080009 Maine Certification #: 2007029 Maryland Certification #: 322

Michigan DEQ Certification #: 9909 Minnesota Certification #: 027-053-137

Mississippi Certification #: Pace

Washington Certification IDs

940 South Harney Street, Seattle, WA 98108 Alaska CS Certification #: UST-025

Alaska Drinking Water VOC Certification #: WA01230 Alaska Drinking Water Micro Certification #: WA01230 Montana Certification #: MT CERT0092 Nevada Certification #: MN_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New Mexico Certification #: Pace New York Certification #: 11647 North Carolina Certification #: 530 North Dakota Certification #: R-036 North Dakota Certification #: R-036A Ohio VAP Certification #: CL101 Oklahoma Certification #: D9921 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Pennsylvania Certification #: 68-00563

Puerto Rico Certification Tennessee Certification #: 02818 Texas Certification #: T104704192 Washington Certification #: C754 Wisconsin Certification #: 999407970

California Certification #: 01153CA Florida/NELAP Certification #: E87617 Oregon Certification #: WA200007 Washington Certification #: C1229

SAMPLE ANALYTE COUNT

Project: East Bay Redevelopment 138130

Pace Project No.: 255590

NWTPH-GX	Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
PAS PAS	255590001	SPL-4-1	NWTPH-Dx	DMT	4	PASI-S
EPA 8270 by SIM DMT 20 PASI-S EPA 8200 LPM 8 PASI-S EFA 8200 LPM 8 PASI-S ASTM D2974-87 CC 1 PASI-S EFB 44 PASI-S NWTPH-Dx EFB 4 PASI-S NWTPH-GX AY1 3 PASI-S EPA 8200 LPM 8 PASI-S EPA 8200 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EFA 8280 LPM 8 PASI-S ASTM D2974-87 CC 1 PASI-S EPA 8270 by SIM DMT 20 PASI-S EFA 8200 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EFA 8200 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EFA 8280 LPM 8 PASI-S EFA 8280 L			NWTPH-Gx	AY1	3	PASI-S
PASIS PASI			EPA 6020	CJS	5	PASI-M
ASTM D2974-87 CC			EPA 8270 by SIM	DMT	20	PASI-S
SPL-4-2 NWTPH-DX			EPA 8260	LPM	8	PASI-S
NWTPH-Gx			ASTM D2974-87	CC	1	PASI-S
EPA 6020 C.J.S 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 6020 C.J.S 5 PASI-M NWTPH-Dx ERB 4 PASI-S EPA 6020 C.J.S 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 3 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 6020 C.J.S 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 6020 C.J.S 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 C.J.S 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 C.J.S 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 C.J.S 5 PASI-M EPA 8260 C.J.S 5 PASI-S EPA 8260 C.J.S	255590002	SPL-4-2	NWTPH-Dx	ERB	4	PASI-S
EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 CC 1 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 CC 1 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8280 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8280 LPM 8 PASI-S EPA 8280 LPM 8 PASI-S EPA 8280 LPM 8 PASI-S EPA 8280 LPM 8 PASI-S EPA 8280 LPM 8 PASI-S EPA 8280 LPM 8 PASI-S EPA 8280 LPM 8 PASI-S EPA 8280 LPM 8 PASI-S EPA 8280 LPM 8 PASI-S EPA 8280 LPM 8 PASI-S EPA 8280 LPM 8 PASI-S EPA 8280 LPM 8 PASI-S EPA 8280 LPM 8 PASI-S EPA 8280 CJS 5 PASI-M EPA 8280 CJS 5 CJS 5 PASI-M EPA 8280 CJS 5 CJS			NWTPH-Gx	AY1	3	PASI-S
EPA 8260 LPM 8 PASI-S ASTM D2974-87 CC 1 PASI-S ASTM D2974-87 CC 1 PASI-S EPA 6020 CJS 5 PASI-M EPA 6020 CJS 5 PASI-M EPA 6220 LPM 8 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S ASTM D2974-87 CC 1 PASI-S ES559004 SPL-5-1 NWTPH-Dx ERB 4 PASI-S EPA 6020 CJS 5 PASI-M EPA 6020 CJS 1 PASI-S ASTM D2974-87 CC 1 PASI-S EPA 6020 CJS 5 PASI-M EPA 6020 CJS 5 PASI-M EPA 6020 CJS 5 PASI-M EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S ASTM D2974-87 CC 1 PASI-S EPA 6020 CJS 5 PASI-S			EPA 6020	CJS	5	PASI-M
ASTM D2974-87 CC 1 PASI-S NWTPH-Dx ERB 4 PASI-S NWTPH-Gx AY1 3 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 CC 1 PASI-S EPA 6020 CJS 5 PASI-M EPA 8260 LPM 8 PASI-S ES5590004 SPL-5-1 NWTPH-Dx ERB 4 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 CC 1 PASI-S EPA 6020 CJS 5 PASI-M EPA 8260 LPM 8 PASI-S EPA 6020 CJS 5 PASI-M EPA 8260 CJS 5 PASI-M EPA 8260 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 CC 1 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 CJS 5 PASI-M EPA 8260 CJS 5 PASI-M EPA 8260 CJS 5 PASI-M EPA 8260 CJS 5 PASI-M EPA 8260 CJS 5 PASI-M EPA 6020 CJS 5 PASI-M EPA 6020 CJS 5 PASI-M EPA 6020 CJS 5 PASI-M EPA 6020 CJS 5 PASI-M EPA 6020 CJS 5 PASI-M EPA 6020 CJS 5 PASI-M EPA 6020 CJS 5 PASI-M EPA 6020 CJS 5 PASI-M EPA 8260 LPM 8 PASI-S EPA 6020 CJS 5 PASI-M EPA 6020 CJS 5 PA			EPA 8270 by SIM	DMT	20	PASI-S
SPL-4-3 NWTPH-DX			EPA 8260	LPM	8	PASI-S
NWTPH-GX			ASTM D2974-87	CC	1	PASI-S
EPA 6020 C.JS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 C.C 1 PASI-S EPA 6020 C.JS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 6020 C.JS 5 PASI-M EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 C.JS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 C.JS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 3 PASI-S EPA 8260 LPM 3 PASI-S EPA 8260 LPM 3 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 3 PASI-S EPA 8260 LPM 8 PASI-S EPA 8270 by SIM DMT 3 PASI-S EPA 8270 by SIM DMT 3 PASI-S EPA 8260 LPM 8 PASI-S EPA 8270 by SIM DMT 3 PASI-S EPA 8260 LPM 8 PASI-S EPA 8270 by SIM DMT 3 PASI-S EPA 8260 LPM 8 PASI-S EPA 8270 by SIM DMT 3 PASI-S EPA 8260 LPM 8 PASI-S EPA 8270 by SIM DMT 3 PASI-S EPA 8260 LPM 8 PASI-S EPA 8270 by SIM DMT 3 PASI-S EPA 8260 LPM 8 PASI-S EPA 8270 by SIM DMT 3 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8270 by SIM DMT 3 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM	255590003	SPL-4-3	NWTPH-Dx	ERB	4	PASI-S
EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 CC 1 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 CC 1 PASI-S EPA 6020 CJS 5 PASI-M EPA 8260 LPM 8 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 CJS 5 PASI-M EPA 8260 CJS 5 PASI-M EPA 8260 CJS 5 PASI-M EPA 8260 CJS 5 PASI-M EPA 8260 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S			NWTPH-Gx	AY1	3	PASI-S
EPA 8260 LPM 8 PASI-S ASTM D2974-87 CC 1 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 CJS 5 PASI-M EPA 8260 CJS 5 PASI-M EPA 8260 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S			EPA 6020	CJS	5	PASI-M
ASTM D2974-87 CC 1 PASI-S 25590004 SPL-5-1 NWTPH-Dx ERB 4 PASI-S NWTPH-Gx AY1 3 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S 25590005 SPL-5-2 NWTPH-Dx ERB 4 PASI-S EPA 6020 CJS 1 PASI-S EPA 8260 LPM 8 PASI-S EPA 6020 CJS 1 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 CJS 5 PASI-M EPA 8260 CJS 5 PASI-M EPA 8260 CJS 5 PASI-M EPA 8260 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S			EPA 8270 by SIM	DMT	20	PASI-S
NWTPH-DX			EPA 8260	LPM	8	PASI-S
NWTPH-GX AY1 3 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 CC 1 PASI-S PASI-M PASI-S EPA 8260 CJS 5 PASI-M PASI-S PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DM			ASTM D2974-87	CC	1	PASI-S
EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 CC 1 PASI-S NWTPH-Dx ERB 4 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S	255590004	SPL-5-1	NWTPH-Dx	ERB	4	PASI-S
EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 CC 1 PASI-S P			NWTPH-Gx	AY1	3	PASI-S
EPA 8260 LPM 8 PASI-S ASTM D2974-87 CC 1 PASI-S PASI-S PASI-S SPL-5-2 NWTPH-Dx ERB 4 PASI-S NWTPH-Gx AY1 3 PASI-S EPA 6020 CJS 5 PASI-M EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 CC 1 PASI-S NWTPH-Dx ERB 4 PASI-S NWTPH-Dx ERB 4 PASI-S NWTPH-Dx ERB 4 PASI-S NWTPH-Gx AY1 3 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 CC 1 PASI-S			EPA 6020	CJS	5	PASI-M
ASTM D2974-87			EPA 8270 by SIM	DMT	20	PASI-S
PASI-S NWTPH-DX ERB 4 PASI-S NWTPH-GX AY1 3 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 CC 1 PASI-S NWTPH-DX ERB 4 PASI-S PASI-S EPA 8260 LPM 8 PASI-S NWTPH-DX ERB 4 PASI-S NWTPH-DX ERB 4 PASI-S NWTPH-GX AY1 3 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 CC 1 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 CC 1 PASI-S			EPA 8260	LPM	8	PASI-S
NWTPH-Gx AY1 3 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 CC 1 PASI-S NWTPH-Dx ERB 4 PASI-S NWTPH-Gx AY1 3 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 CC 1 PASI-S			ASTM D2974-87	CC	1	PASI-S
EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 CC 1 PASI-S NWTPH-Dx ERB 4 PASI-S NWTPH-Gx AY1 3 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 CC 1 PASI-S	255590005	SPL-5-2	NWTPH-Dx	ERB	4	PASI-S
EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 CC 1 PASI-S NWTPH-Dx ERB 4 PASI-S NWTPH-Gx AY1 3 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 CC 1 PASI-S			NWTPH-Gx	AY1	3	PASI-S
EPA 8260 LPM 8 PASI-S ASTM D2974-87 CC 1 PASI-S NWTPH-Dx ERB 4 PASI-S NWTPH-Gx AY1 3 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 CC 1 PASI-S ASTM D2974-87 CC 1 PASI-S			EPA 6020	CJS	5	PASI-M
ASTM D2974-87			EPA 8270 by SIM	DMT	20	PASI-S
PASI-S NWTPH-Dx ERB 4 PASI-S NWTPH-Gx AY1 3 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 CC 1 PASI-S			EPA 8260	LPM	8	PASI-S
NWTPH-Gx AY1 3 PASI-S EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 CC 1 PASI-S			ASTM D2974-87	CC	1	PASI-S
EPA 6020 CJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 CC 1 PASI-S	255590006	SPL-5-3	NWTPH-Dx	ERB	4	PASI-S
EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S ASTM D2974-87 CC 1 PASI-S			NWTPH-Gx	AY1	3	PASI-S
EPA 8260 LPM 8 PASI-S ASTM D2974-87 CC 1 PASI-S			EPA 6020	CJS	5	
ASTM D2974-87 CC 1 PASI-S			EPA 8270 by SIM	DMT	20	
ASTM D2974-87 CC 1 PASI-S			EPA 8260	LPM	8	PASI-S
255590007 SPL-3-1 NWTPH-Dx ERB 4 PASI-S			ASTM D2974-87	CC	1	
	255590007	SPL-3-1	NWTPH-Dx	ERB	4	PASI-S

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

(206)767-5060

SAMPLE ANALYTE COUNT

Project: East Bay Redevelopment 138130

Pace Project No.: 255590

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	CJS	5	PASI-M
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	CC	1	PASI-S
255590008	SPL-3-2	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	CJS	5	PASI-M
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	CC	1	PASI-S
255590009	SPL-3-3	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	CJS	5	PASI-M
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	CC	1	PASI-S
255590010	Trip Blank	EPA 5030B/8260	LPM	8	PASI-S

Project: East Bay Redevelopment 138130

·						
Sample: SPL-4-1	Lab ID: 255590001	Collected: 11/03/10 1	0:25 Received	d: 11/03/10 19:30	Matrix: Solid	
Results reported on a "dry-weight	" basis					
Parameters	Results Units	Report Limit D	F Prepar	ed Analyzed	CAS No.	Qua
NWTPH-Dx GCS	Analytical Method: NW	PH-Dx Preparation Metho	od: EPA 3546			
Diesel Range	ND mg/kg	21.1	1 11/12/10 1	2:35 11/14/10 06:	13	
Motor Oil Range	ND mg/kg	84.4	1 11/12/10 1	2:35 11/14/10 06:	13 64742-65-0	
n-Octacosane (S)	116 %	50-150	1 11/12/10 1	2:35 11/14/10 06:	13 630-02-4	
o-Terphenyl (S)	110 %	50-150	1 11/12/10 1	2:35 11/14/10 06:	13 84-15-1	
NWTPH-Gx GCV	Analytical Method: NW	PH-Gx Preparation Metho	od: NWTPH-Gx			
Gasoline Range Organics	ND mg/kg	6.1	1 11/09/10 1	2:00 11/10/10 19:	36	
a,a,a-Trifluorotoluene (S)	101 %	50-150	1 11/09/10 1	2:00 11/10/10 19:	36 98-08-8	
4-Bromofluorobenzene (S)	90 %	50-150	1 11/09/10 1	2:00 11/10/10 19:	36 460-00-4	
6020 MET ICPMS	Analytical Method: EPA	6020				
Arsenic	2.8 mg/kg	0.54 2	20 11/10/10 1	0:20 11/11/10 19: ⁻	18 7440-38-2	
Cadmium	ND mg/kg			0:20 11/11/10 19:		
Copper	16.1 mg/kg			0:20 11/11/10 19:		
Lead	5.1 mg/kg			0:20 11/11/10 19:		
Nickel	30.7 mg/kg			0:20 11/15/10 15:		
8270 MSSV PAH by SIM		8270 by SIM Preparation	Method: EPA 35	46		
Acenaphthene	ND ug/kg	7.4	1 11/15/10 1	4:30 11/17/10 15:	46 83-32-9	
Acenaphthylene	8.3 ug/kg			4:30 11/17/10 15:4		
Anthracene	8.6 ug/kg			4:30 11/17/10 15:4:30 11/17/10 15:4		
Benzo(a)anthracene	26.1 ug/kg			4:30 11/17/10 15:4		
Benzo(a)pyrene	28.9 ug/kg			4:30 11/17/10 15:4		
				4:30 11/17/10 15:4		
Benzo(b)fluoranthene	15.5 ug/kg					
Benzo(g,h,i)perylene	24.7 ug/kg			4:30 11/17/10 15:		
Benzo(k)fluoranthene	24.2 ug/kg			4:30 11/17/10 15:		
Chrysene	31.8 ug/kg			4:30 11/17/10 15:		
Dibenz(a,h)anthracene	ND ug/kg			4:30 11/17/10 15:		
Fluoranthene	51.2 ug/kg			4:30 11/17/10 15:		
Fluorene	ND ug/kg			4:30 11/17/10 15:		
Indeno(1,2,3-cd)pyrene	16.2 ug/kg			4:30 11/17/10 15:		
1-Methylnaphthalene	ND ug/kg			4:30 11/17/10 15:		
2-Methylnaphthalene	ND ug/kg			4:30 11/17/10 15:		
Naphthalene	14.3 ug/kg	7.4	1 11/15/10 1	4:30 11/17/10 15:4	46 91-20-3	
Phenanthrene	33.9 ug/kg	7.4	1 11/15/10 1	4:30 11/17/10 15:	46 85-01-8	
Pyrene	78.0 ug/kg	7.4	1 11/15/10 1	4:30 11/17/10 15:4	46 129-00-0	
2-Fluorobiphenyl (S)	71 %	31-131	1 11/15/10 1	4:30 11/17/10 15:4	46 321-60-8	
Terphenyl-d14 (S)	78 %	30-133	1 11/15/10 1	4:30 11/17/10 15:	46 1718-51-0	
8260/5035A Volatile Organics	Analytical Method: EPA	8260				
Benzene	ND ug/kg	3.1	1	11/05/10 17:	20 71-43-2	
Ethylbenzene	ND ug/kg	3.1	1	11/05/10 17::	20 100-41-4	
Toluene	ND ug/kg	3.1	1		20 108-88-3	
Xylene (Total)	ND ug/kg		1		20 1330-20-7	
Dibromofluoromethane (S)	95 %		1	11/05/10 17:		

Date: 11/19/2010 06:47 PM

REPORT OF LABORATORY ANALYSIS

Page 5 of 30

Project: East Bay Redevelopment 138130

Sample: SPL-4-1	Lab ID: 255	590001	Collected: 11/03/1	0 10:25	Received: 11	/03/10 19:30 N	Matrix: Solid	
Results reported on a "dry-weigh			2000					
		Lloito	Donart Limit	DE	Dranarad	A solution d	CACNo	Oug
Parameters	Results —	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260/5035A Volatile Organics	Analytical Met	hod: EPA 82	260					
Toluene-d8 (S)	107 %		80-120	1		11/05/10 17:20	2037-26-5	
4-Bromofluorobenzene (S)	115 %		72-122	1		11/05/10 17:20	460-00-4	
1,2-Dichloroethane-d4 (S)	96 %		80-143	1		11/05/10 17:20	17060-07-0	
Percent Moisture	Analytical Met	hod: ASTM I	D2974-87					
Percent Moisture	9.4 %		0.10	1		11/10/10 17:16		
Sample: SPL-4-2	Lab ID: 255	590002	Collected: 11/03/1	0 10:30	Received: 11	/03/10 19:30 N	Matrix: Solid	
Results reported on a "dry-weigh	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS	Analytical Met	nod: NWTPI	H-Dx Preparation Me	ethod: E	PA 3546			
Diesel Range	33.6 mg	a/ka	20.8	1	11/15/10 16:05	11/16/10 22:29		
Motor Oil Range	253 m		83.1	1		11/16/10 22:29		
n-Octacosane (S)	109 %		50-150	1	11/15/10 16:05	11/16/10 22:29	630-02-4	
o-Terphenyl (S)	101 %		50-150	1	11/15/10 16:05	11/16/10 22:29	84-15-1	
NWTPH-Gx GCV	Analytical Met	hod: NWTPI	H-Gx Preparation M	ethod: N	WTPH-Gx			
Gasoline Range Organics	ND m	g/kg	5.9	1	11/09/10 12:00	11/10/10 20:00		
a,a,a-Trifluorotoluene (S)	110 %	-	50-150	1	11/09/10 12:00	11/10/10 20:00	98-08-8	
4-Bromofluorobenzene (S)	96 %		50-150	1	11/09/10 12:00	11/10/10 20:00	460-00-4	
6020 MET ICPMS	Analytical Met	hod: EPA 60	20					
Arsenic	2.6 mg	g/kg	0.39	20	11/10/10 10:20	11/11/10 19:44	7440-38-2	
Cadmium	ND m	g/kg	0.062	20	11/10/10 10:20	11/11/10 19:44	7440-43-9	
Copper	12.9 mg	g/kg	0.39	20	11/10/10 10:20	11/11/10 19:44	7440-50-8	
Lead	3.8 mg	g/kg	0.39	20	11/10/10 10:20	11/11/10 19:44	7439-92-1	
Nickel	20.1 mg	g/kg	0.39	20	11/10/10 10:20	11/15/10 15:08	7440-02-0	
3270 MSSV PAH by SIM	Analytical Met	hod: EPA 82	70 by SIM Preparat	ion Meth	od: EPA 3546			
Acenaphthene	ND ug	ı/kg	7.3	1	11/15/10 14:30	11/17/10 17:55	83-32-9	
Acenaphthylene	ND ug		7.3	1	11/15/10 14:30	11/17/10 17:55	208-96-8	
Anthracene	8.1 ug	ı/kg	7.3	1	11/15/10 14:30	11/17/10 17:55	120-12-7	
Benzo(a)anthracene	18.4 ug	ı/kg	7.3	1	11/15/10 14:30	11/17/10 17:55	56-55-3	
Benzo(a)pyrene	20.7 ug	ı/kg	7.3	1	11/15/10 14:30	11/17/10 17:55	50-32-8	
Benzo(b)fluoranthene	15.9 ug	ı/kg	7.3	1	11/15/10 14:30	11/17/10 17:55	205-99-2	
Benzo(g,h,i)perylene	15.9 ug	ı/kg	7.3	1	11/15/10 14:30	11/17/10 17:55	191-24-2	
Benzo(k)fluoranthene	13.8 ug		7.3	1	11/15/10 14:30	11/17/10 17:55	207-08-9	
Chrysene	20.0 ug		7.3	1		11/17/10 17:55		
Dibenz(a,h)anthracene	ND ug		7.3	1		11/17/10 17:55		
Fluoranthene	36.5 ug		7.3	1		11/17/10 17:55		
		, J						
Fluorene	ND ug	ı/ka	7.3	1	11/15/10 14:30	11/17/10 17:55	86-73-7	

Date: 11/19/2010 06:47 PM

REPORT OF LABORATORY ANALYSIS

Page 6 of 30

Project: East Bay Redevelopment 138130

Pace Project No.: 255590 Lab ID: 255590002 Sample: SPL-4-2 Collected: 11/03/10 10:30 Received: 11/03/10 19:30 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 1-Methylnaphthalene ND ug/kg 7.3 11/15/10 14:30 11/17/10 17:55 90-12-0 2-Methylnaphthalene ND ug/kg 7.3 11/15/10 14:30 11/17/10 17:55 91-57-6 Naphthalene ND ug/kg 7.3 11/15/10 14:30 11/17/10 17:55 91-20-3 1 Phenanthrene 43.4 ug/kg 7.3 11/15/10 14:30 11/17/10 17:55 85-01-8 1 Pyrene 51.7 ug/kg 7.3 1 11/15/10 14:30 11/17/10 17:55 129-00-0 2-Fluorobiphenyl (S) 72 % 31-131 11/15/10 14:30 11/17/10 17:55 321-60-8 1 Terphenyl-d14 (S) 79 % 30-133 11/15/10 14:30 11/17/10 17:55 1718-51-0 1 8260/5035A Volatile Organics Analytical Method: EPA 8260 ND ug/kg 3.0 11/05/10 17:39 71-43-2 Benzene 1 11/05/10 17:39 100-41-4 Ethylbenzene ND ug/kg 3.0 1 Toluene 11/05/10 17:39 108-88-3 ND ug/kg 3.0 1 Xylene (Total) ND ug/kg 9.1 11/05/10 17:39 1330-20-7 1 Dibromofluoromethane (S) 98 % 80-136 11/05/10 17:39 1868-53-7 1 Toluene-d8 (S) 96 % 80-120 1 11/05/10 17:39 2037-26-5 4-Bromofluorobenzene (S) 112 % 72-122 1 11/05/10 17:39 460-00-4 1,2-Dichloroethane-d4 (S) 94 % 80-143 11/05/10 17:39 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 9.8 % 0.10 1 11/10/10 17:18 Sample: SPL-4-3 Lab ID: 255590003 Collected: 11/03/10 10:40 Received: 11/03/10 19:30 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range ND mg/kg 21.4 11/15/10 16:05 11/17/10 00:03 Motor Oil Range 150 mg/kg 85.6 11/15/10 16:05 11/17/10 00:03 64742-65-0 n-Octacosane (S) 104 % 50-150 11/15/10 16:05 11/17/10 00:03 630-02-4 o-Terphenyl (S) 95 % 50-150 11/15/10 16:05 11/17/10 00:03 84-15-1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 5.9 11/09/10 12:00 11/10/10 20:24 102 % 50-150 a,a,a-Trifluorotoluene (S) 1 11/09/10 12:00 11/10/10 20:24 98-08-8 4-Bromofluorobenzene (S) 89 % 50-150 1 11/09/10 12:00 11/10/10 20:24 460-00-4 **6020 MET ICPMS** Analytical Method: EPA 6020 11/10/10 10:20 11/11/10 19:48 7440-38-2 Arsenic 3.5 mg/kg 0.46 20 Cadmium ND mg/kg 0.073 20 11/10/10 10:20 11/11/10 19:48 7440-43-9 23.6 mg/kg 0.46 20 11/10/10 10:20 11/11/10 19:48 7440-50-8 Copper **6.4** mg/kg Lead 0.46 20 11/10/10 10:20 11/11/10 19:48 7439-92-1 Nickel **31.4** mg/kg 0.46 20 11/10/10 10:20 11/15/10 15:13 7440-02-0

Date: 11/19/2010 06:47 PM

REPORT OF LABORATORY ANALYSIS

Page 7 of 30

Project: East Bay Redevelopment 138130

Pace Project No.: 255590

Lab ID: 255590003 Sample: SPL-4-3 Collected: 11/03/10 10:40 Received: 11/03/10 19:30 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 7.1 Acenaphthene ND ug/kg 11/15/10 14:30 11/17/10 18:14 83-32-9 Acenaphthylene ND ug/kg 7.1 11/15/10 14:30 11/17/10 18:14 208-96-8 Anthracene ND ug/kg 7.1 11/15/10 14:30 11/17/10 18:14 120-12-7 1 Benzo(a)anthracene ND ug/kg 7.1 11/15/10 14:30 11/17/10 18:14 56-55-3 1 Benzo(a)pyrene 8.2 ug/kg 7.1 1 11/15/10 14:30 11/17/10 18:14 50-32-8 Benzo(b)fluoranthene ND ug/kg 7.1 11/15/10 14:30 11/17/10 18:14 205-99-2 1 8.4 ug/kg 7.1 11/15/10 14:30 11/17/10 18:14 191-24-2 Benzo(g,h,i)perylene 1 Benzo(k)fluoranthene ND ug/kg 7.1 11/15/10 14:30 11/17/10 18:14 207-08-9 1 11/15/10 14:30 11/17/10 18:14 218-01-9 Chrysene 9.9 ug/kg 7.1 1 Dibenz(a,h)anthracene ND ug/kg 7.1 11/15/10 14:30 11/17/10 18:14 53-70-3 1 13.0 ug/kg 11/15/10 14:30 11/17/10 18:14 206-44-0 Fluoranthene 7.1 1 Fluorene ND ug/kg 7.1 1 11/15/10 14:30 11/17/10 18:14 86-73-7 Indeno(1,2,3-cd)pyrene ND ug/kg 7.1 11/15/10 14:30 11/17/10 18:14 193-39-5 1-Methylnaphthalene ND ug/kg 7.1 11/15/10 14:30 11/17/10 18:14 90-12-0 1 2-Methylnaphthalene ND ug/kg 7.1 11/15/10 14:30 11/17/10 18:14 91-57-6 1 Naphthalene ND ug/kg 7.1 1 11/15/10 14:30 11/17/10 18:14 91-20-3 11/15/10 14:30 11/17/10 18:14 85-01-8 Phenanthrene 13.1 ug/kg 7.1 1 **20.0** ug/kg Pyrene 7.1 11/15/10 14:30 11/17/10 18:14 129-00-0 1 67 % 31-131 2-Fluorobiphenyl (S) 1 11/15/10 14:30 11/17/10 18:14 321-60-8 Terphenyl-d14 (S) 72 % 30-133 11/15/10 14:30 11/17/10 18:14 1718-51-0 1 8260/5035A Volatile Organics Analytical Method: EPA 8260 ND ug/kg 3.1 11/05/10 17:58 71-43-2 Benzene 1 Ethylbenzene ND ug/kg 3.1 11/05/10 17:58 100-41-4 1 Toluene ND ug/kg 3.1 1 11/05/10 17:58 108-88-3 Xylene (Total) ND ug/kg 9.4 1 11/05/10 17:58 1330-20-7 Dibromofluoromethane (S) 103 % 80-136 11/05/10 17:58 1868-53-7 Toluene-d8 (S) 98 % 80-120 1 11/05/10 17:58 2037-26-5 4-Bromofluorobenzene (S) 116 % 72-122 11/05/10 17:58 460-00-4 1 1,2-Dichloroethane-d4 (S) 100 % 80-143 11/05/10 17:58 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 8.4 % 0.10 11/10/10 17:19 Sample: SPL-5-1 Lab ID: 255590004 Collected: 11/03/10 11:00 Received: 11/03/10 19:30 Results reported on a "dry-weight" basis **Parameters** Results Units DF CAS No. Qual Report Limit Prepared Analyzed **NWTPH-Dx GCS** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range ND mg/kg 21.7 11/15/10 16:05 11/17/10 00:49 ND mg/kg Motor Oil Range 86.6 1 11/15/10 16:05 11/17/10 00:49 64742-65-0 107 % n-Octacosane (S) 50-150 11/15/10 16:05 11/17/10 00:49 630-02-4 1 o-Terphenyl (S) 100 % 50-150 11/15/10 16:05 11/17/10 00:49 84-15-1

Date: 11/19/2010 06:47 PM

REPORT OF LABORATORY ANALYSIS

Page 8 of 30

Project: East Bay Redevelopment 138130

Pace Project No.: 255590							
Sample: SPL-5-1	Lab ID: 25559000	4 Collected: 11/03/10	11:00	Received: 11	/03/10 19:30	Matrix: Solid	
Results reported on a "dry-weight	t" basis						
Parameters	Results U	nits Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Gx GCV	Analytical Method: N	WTPH-Gx Preparation Me	thod: N	WTPH-Gx			
Gasoline Range Organics	ND mg/kg	6.0	1	11/09/10 12:00	11/10/10 20:48	3	
a,a,a-Trifluorotoluene (S)	107 %	50-150	1	11/09/10 12:00	11/10/10 20:48	3 98-08-8	
4-Bromofluorobenzene (S)	96 %	50-150	1	11/09/10 12:00	11/10/10 20:48	3 460-00-4	
6020 MET ICPMS	Analytical Method: E	PA 6020					
Arsenic	2.9 mg/kg	0.39	20	11/10/10 10:20	11/11/10 19:53	3 7440-38-2	
Cadmium	ND mg/kg	0.062	20	11/10/10 10:20	11/11/10 19:53	3 7440-43-9	
Copper	13.0 mg/kg	0.39	20		11/11/10 19:53		
Lead	4.4 mg/kg	0.39	20		11/11/10 19:53		
Nickel	29.6 mg/kg	0.39	20		11/12/10 16:15		
8270 MSSV PAH by SIM	Analytical Method: E	PA 8270 by SIM Preparation	on Meth	od: EPA 3546			
Acenaphthene	ND ug/kg	7.3	1	11/15/10 14:30	11/17/10 18:32	2 83-32-9	
Acenaphthylene	ND ug/kg	7.3	1		11/17/10 18:32		
Anthracene	ND ug/kg	7.3	1		11/17/10 18:32		
Benzo(a)anthracene	ND ug/kg	7.3	1		11/17/10 18:32		
* *		7.3	1		11/17/10 18:32		
Benzo(a)pyrene	ND ug/kg	7.3 7.3		11/15/10 14:30			
Benzo(b)fluoranthene	ND ug/kg		1				
Benzo(g,h,i)perylene	ND ug/kg	7.3	1		11/17/10 18:32		
Benzo(k)fluoranthene	ND ug/kg	7.3	1		11/17/10 18:32		
Chrysene	8.0 ug/kg	7.3	1		11/17/10 18:32		
Dibenz(a,h)anthracene	ND ug/kg	7.3	1		11/17/10 18:32		
Fluoranthene	10 ug/kg	7.3	1		11/17/10 18:32		
Fluorene	ND ug/kg	7.3	1	11/15/10 14:30	11/17/10 18:32	2 86-73-7	
Indeno(1,2,3-cd)pyrene	ND ug/kg	7.3	1	11/15/10 14:30	11/17/10 18:32	2 193-39-5	
1-Methylnaphthalene	ND ug/kg	7.3	1	11/15/10 14:30	11/17/10 18:32	2 90-12-0	
2-Methylnaphthalene	ND ug/kg	7.3	1	11/15/10 14:30	11/17/10 18:32	2 91-57-6	
Naphthalene	ND ug/kg	7.3	1	11/15/10 14:30	11/17/10 18:32	2 91-20-3	
Phenanthrene	8.0 ug/kg	7.3	1	11/15/10 14:30	11/17/10 18:32	2 85-01-8	
Pyrene	14.5 ug/kg	7.3	1	11/15/10 14:30	11/17/10 18:32	2 129-00-0	
2-Fluorobiphenyl (S)	75 %	31-131	1	11/15/10 14:30	11/17/10 18:32	2 321-60-8	
Terphenyl-d14 (S)	73 %	30-133	1		11/17/10 18:32		
8260/5035A Volatile Organics	Analytical Method: E	PA 8260					
Benzene	ND ug/kg	3.0	1		11/11/10 20:42	2 71-43-2	
Ethylbenzene	ND ug/kg	3.0	1		11/11/10 20:42		
Toluene	ND ug/kg	3.0	1		11/11/10 20:42	2 108-88-3	
Xylene (Total)	ND ug/kg	9.1	1		11/11/10 20:42		
Dibromofluoromethane (S)	102 %	80-136	1		11/11/10 20:42		
Toluene-d8 (S)	103 %	80-120	1		11/11/10 20:42		
4-Bromofluorobenzene (S)	120 %	72-122	1		11/11/10 20:42		
1,2-Dichloroethane-d4 (S)	103 %	80-143	1		11/11/10 20:42		
Percent Moisture	Analytical Method: A	STM D2974-87					
Percent Moisture	10.1 %	0.10	1		11/10/10 17:29	9	

Date: 11/19/2010 06:47 PM

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

Page 9 of 30

Project: East Bay Redevelopment 138130

Pace Project No.: 255590							
Sample: SPL-5-2	Lab ID: 255590005	Collected: 11/03/10	11:05	Received: 11	/03/10 19:30 I	Matrix: Solid	
Results reported on a "dry-weigh	t" basis						
Parameters	Results Uni	ts Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS	Analytical Method: NV	VTPH-Dx Preparation Met	hod: E	PA 3546			
Diesel Range	ND mg/kg	21.8	1	11/15/10 16:05	11/17/10 02:22		
Motor Oil Range	ND mg/kg	87.2	1	11/15/10 16:05	11/17/10 02:22	64742-65-0	
n-Octacosane (S)	111 %	50-150	1	11/15/10 16:05	11/17/10 02:22	630-02-4	
o-Terphenyl (S)	104 %	50-150	1	11/15/10 16:05	11/17/10 02:22	84-15-1	
NWTPH-Gx GCV	Analytical Method: NV	VTPH-Gx Preparation Me	thod: N	WTPH-Gx			
Gasoline Range Organics	ND mg/kg	5.8	1	11/09/10 12:00	11/10/10 21:36		
a,a,a-Trifluorotoluene (S)	113 %	50-150	1	11/09/10 12:00	11/10/10 21:36	98-08-8	
4-Bromofluorobenzene (S)	102 %	50-150	1	11/09/10 12:00	11/10/10 21:36	460-00-4	
6020 MET ICPMS	Analytical Method: EP	A 6020					
Arsenic	4.6 mg/kg	0.41	20	11/10/10 10:20	11/11/10 19:57	7440-38-2	
Cadmium	ND mg/kg	0.066	20		11/11/10 19:57		
Copper	29.0 mg/kg	0.41	20		11/11/10 19:57		
Lead	6.9 mg/kg	0.41	20	11/10/10 10:20	11/11/10 19:57	7439-92-1	
Nickel	28.8 mg/kg	0.41	20	11/10/10 10:20	11/12/10 16:19	7440-02-0	
8270 MSSV PAH by SIM	Analytical Method: EP	A 8270 by SIM Preparation	n Meth	nod: EPA 3546			
Acenaphthene	ND ug/kg	7.5	1	11/15/10 14:30	11/17/10 18:51	83-32-9	
Acenaphthylene	ND ug/kg	7.5	1		11/17/10 18:51		
Anthracene	ND ug/kg	7.5	1	11/15/10 14:30	11/17/10 18:51	120-12-7	
Benzo(a)anthracene	16.9 ug/kg	7.5	1	11/15/10 14:30	11/17/10 18:51	56-55-3	
Benzo(a)pyrene	19.3 ug/kg	7.5	1	11/15/10 14:30	11/17/10 18:51	50-32-8	
Benzo(b)fluoranthene	13.8 ug/kg	7.5	1	11/15/10 14:30	11/17/10 18:51	205-99-2	
Benzo(g,h,i)perylene	13.3 ug/kg	7.5	1	11/15/10 14:30	11/17/10 18:51	191-24-2	
Benzo(k)fluoranthene	12.5 ug/kg	7.5	1		11/17/10 18:51		
Chrysene	19.5 ug/kg	7.5	1		11/17/10 18:51		
Dibenz(a,h)anthracene	ND ug/kg	7.5	1	11/15/10 14:30	11/17/10 18:51	53-70-3	
Fluoranthene	31.0 ug/kg	7.5	1	11/15/10 14:30	11/17/10 18:51	206-44-0	
Fluorene	ND ug/kg	7.5	1	11/15/10 14:30	11/17/10 18:51	86-73-7	
Indeno(1,2,3-cd)pyrene	9.9 ug/kg	7.5	1		11/17/10 18:51		
1-Methylnaphthalene	ND ug/kg	7.5	1		11/17/10 18:51		
2-Methylnaphthalene	ND ug/kg	7.5	1		11/17/10 18:51		
Naphthalene	ND ug/kg	7.5	1		11/17/10 18:51		
Phenanthrene	21.2 ug/kg	7.5	1		11/17/10 18:51		
Pyrene		7.5 7.5	1		11/17/10 18:51		
•	46.3 ug/kg						
2-Fluorobiphenyl (S)	73 % 79 %	31-131 30-133	1 1		11/17/10 18:51 11/17/10 18:51		
Terphenyl-d14 (S)			1	11/15/10 14.30	11/17/10 16.51	1710-31-0	
8260/5035A Volatile Organics	Analytical Method: EP		4		44/44/40.04:04	74 42 0	
Benzene	ND ug/kg	2.9	1		11/11/10 21:01		
Ethylbenzene	ND ug/kg	2.9	1		11/11/10 21:01		
Toluene	ND ug/kg	2.9	1		11/11/10 21:01		
Xylene (Total)	ND ug/kg	8.6	1		11/11/10 21:01		
Dibromofluoromethane (S)	103 %	80-136	1		11/11/10 21:01	1868-53-7	

Date: 11/19/2010 06:47 PM

REPORT OF LABORATORY ANALYSIS

Page 10 of 30

Project: East Bay Redevelopment 138130

Pace Project No.: 255590	evelopment 136130								
Sample: SPL-5-2	Lab ID: 2555	90005	Collected:	11/03/1	0 11:05	Received: 11	I/03/10 19:30 I	Matrix: Solid	
Results reported on a "dry-weight	t" basis								
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
3260/5035A Volatile Organics	Analytical Meth	od: EPA 82	260						
Toluene-d8 (S)	101 %			80-120	1		11/11/10 21:01	2037-26-5	
4-Bromofluorobenzene (S)	118 %			72-122	1		11/11/10 21:01	460-00-4	
1,2-Dichloroethane-d4 (S)	104 %			80-143	1		11/11/10 21:01	17060-07-0	
Percent Moisture	Analytical Meth	od: ASTM	D2974-87						
Percent Moisture	10.4 %			0.10	1		11/10/10 17:31		
Sample: SPL-5-3	Lab ID: 2555	90006	Collected:	11/03/1	0 11:10	Received: 11	1/03/10 19:30	Matrix: Solid	
Results reported on a "dry-weight	t" basis								
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS	Analytical Meth	od: NWTP	H-Dx Prepai	ration Me	ethod: El	PA 3546			
Diesel Range	ND mg	/ka		20.4	1	11/15/10 16:05	11/17/10 03:09	ı	
Motor Oil Range	ND mg	-		81.4	1		11/17/10 03:09		
n-Octacosane (S)	109 %	3		50-150	1	11/15/10 16:05	11/17/10 03:09	630-02-4	
o-Terphenyl (S)	103 %			50-150	1	11/15/10 16:05	11/17/10 03:09	84-15-1	
NWTPH-Gx GCV	Analytical Meth	od: NWTP	H-Gx Prepa	ration Me	ethod: N	WTPH-Gx			
Gasoline Range Organics	ND mg	/kg		5.6	1	11/12/10 17:00	11/13/10 04:56	i	
a,a,a-Trifluorotoluene (S)	92 %	Ü		50-150	1	11/12/10 17:00	11/13/10 04:56	98-08-8	
4-Bromofluorobenzene (S)	93 %			50-150	1	11/12/10 17:00	11/13/10 04:56	460-00-4	
6020 MET ICPMS	Analytical Meth	od: EPA 60	020						
Arsenic	2.6 mg.	/kg		0.42	20	11/10/10 10:20	11/11/10 20:02	7440-38-2	
Cadmium	ND mg	/kg		0.067	20	11/10/10 10:20	11/11/10 20:02	7440-43-9	
Copper	10.7 mg.	/kg		0.42	20	11/10/10 10:20	11/11/10 20:02	7440-50-8	
∟ead	1.8 mg.	/kg		0.42	20	11/10/10 10:20	11/11/10 20:02	7439-92-1	
Nickel	34.4 mg	/kg		0.42	20	11/10/10 10:20	11/12/10 16:24	7440-02-0	
3270 MSSV PAH by SIM	Analytical Meth	od: EPA 82	270 by SIM F	Preparati	on Meth	od: EPA 3546			
Acenaphthene	ND ug/	kg		7.2	1	11/15/10 14:30	11/17/10 16:42	83-32-9	
Acenaphthylene	ND ug/			7.2	1	11/15/10 14:30	11/17/10 16:42	208-96-8	
Anthracene	ND ug/	kg		7.2	1	11/15/10 14:30	11/17/10 16:42	120-12-7	
Benzo(a)anthracene	ND ug/	kg		7.2	1	11/15/10 14:30	11/17/10 16:42	56-55-3	
Benzo(a)pyrene	ND ug/	kg		7.2	1	11/15/10 14:30	11/17/10 16:42	50-32-8	
Benzo(b)fluoranthene	ND ug/	-		7.2	1	11/15/10 14:30	11/17/10 16:42	205-99-2	
Benzo(g,h,i)perylene	ND ug/	-		7.2	1	11/15/10 14:30	11/17/10 16:42	191-24-2	
Benzo(k)fluoranthene	ND ug/	-		7.2	1		11/17/10 16:42		
Chrysene	ND ug/	kg		7.2	1	11/15/10 14:30	11/17/10 16:42	218-01-9	
Dibenz(a,h)anthracene	ND ug/	kg		7.2	1	11/15/10 14:30	11/17/10 16:42	53-70-3	
Fluoranthene	ND ug/			7.2	1	11/15/10 14:30	11/17/10 16:42	206-44-0	
	•								
Fluorene	ND ug/	kg		7.2	1	11/15/10 14:30	11/17/10 16:42	86-73-7	

Date: 11/19/2010 06:47 PM

REPORT OF LABORATORY ANALYSIS

Page 11 of 30

Project: East Bay Redevelopment 138130

Pace Project No.: 255590 Lab ID: 255590006 Sample: SPL-5-3 Collected: 11/03/10 11:10 Received: 11/03/10 19:30 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit Prepared Analyzed CAS No. Qual 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 1-Methylnaphthalene ND ug/kg 7.2 11/15/10 14:30 11/17/10 16:42 90-12-0 2-Methylnaphthalene ND ug/kg 7.2 11/15/10 14:30 11/17/10 16:42 91-57-6 Naphthalene ND ug/kg 7.2 11/15/10 14:30 11/17/10 16:42 91-20-3 1 Phenanthrene ND ug/kg 7.2 1 11/15/10 14:30 11/17/10 16:42 85-01-8 11/15/10 14:30 11/17/10 16:42 129-00-0 Pyrene ND ug/kg 7.2 1 2-Fluorobiphenyl (S) 78 % 31-131 11/15/10 14:30 11/17/10 16:42 321-60-8 1 Terphenyl-d14 (S) 89 % 30-133 11/15/10 14:30 11/17/10 16:42 1718-51-0 8260/5035A Volatile Organics Analytical Method: EPA 8260 ND ug/kg 3.4 11/11/10 21:20 71-43-2 Benzene 1 11/11/10 21:20 100-41-4 Ethylbenzene ND ug/kg 3.4 1 11/11/10 21:20 108-88-3 Toluene ND ug/kg 3.4 1 Xylene (Total) ND ug/kg 10.1 11/11/10 21:20 1330-20-7 1 Dibromofluoromethane (S) 103 % 80-136 11/11/10 21:20 1868-53-7 1 Toluene-d8 (S) 100 % 80-120 1 11/11/10 21:20 2037-26-5 4-Bromofluorobenzene (S) 119 % 72-122 1 11/11/10 21:20 460-00-4 1,2-Dichloroethane-d4 (S) 103 % 80-143 11/11/10 21:20 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 7.2 % 0.10 1 11/10/10 17:32 Sample: SPL-3-1 Lab ID: 255590007 Collected: 11/03/10 12:40 Received: 11/03/10 19:30 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range 132 mg/kg 38.1 11/15/10 16:05 11/17/10 03:55 Motor Oil Range 358 mg/kg 152 11/15/10 16:05 11/17/10 03:55 64742-65-0 n-Octacosane (S) 119 % 50-150 11/15/10 16:05 11/17/10 03:55 630-02-4 o-Terphenyl (S) 102 % 50-150 11/15/10 16:05 11/17/10 03:55 84-15-1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 13.2 11/12/10 18:00 11/13/10 05:20 a,a,a-Trifluorotoluene (S) 95 % 50-150 1 11/12/10 18:00 11/13/10 05:20 98-08-8 4-Bromofluorobenzene (S) 92 % 50-150 1 11/12/10 18:00 11/13/10 05:20 460-00-4 **6020 MET ICPMS** Analytical Method: EPA 6020 0.78 11/10/10 10:20 11/11/10 20:06 7440-38-2 Arsenic 7.1 mg/kg 20 Cadmium ND mg/kg 0.12 20 11/10/10 10:20 11/11/10 20:06 7440-43-9 139 mg/kg 0.78 20 11/10/10 10:20 11/11/10 20:06 7440-50-8 Copper **553** mg/kg Lead 0.78 20 11/10/10 10:20 11/11/10 20:06 7439-92-1 Nickel 0.78 20 11/10/10 10:20 11/12/10 16:28 7440-02-0 23.5 mg/kg

Date: 11/19/2010 06:47 PM

REPORT OF LABORATORY ANALYSIS

Page 12 of 30

Project: East Bay Redevelopment 138130

Pace Project No.: 255590

Lab ID: 255590007 Sample: SPL-3-1 Collected: 11/03/10 12:40 Received: 11/03/10 19:30 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Acenaphthene 44.8 ug/kg 13.0 11/15/10 14:30 11/17/10 17:00 83-32-9 Acenaphthylene 129 ug/kg 13.0 11/15/10 14:30 11/17/10 17:00 208-96-8 Anthracene 212 ug/kg 13.0 11/15/10 14:30 11/17/10 17:00 120-12-7 1 Benzo(a)anthracene 528 ug/kg 13.0 11/15/10 14:30 11/17/10 17:00 56-55-3 1 Benzo(a)pyrene 571 ug/kg 13.0 1 11/15/10 14:30 11/17/10 17:00 50-32-8 Benzo(b)fluoranthene 258 ug/kg 13.0 11/15/10 14:30 11/17/10 17:00 205-99-2 1 293 ug/kg 13.0 11/15/10 14:30 11/17/10 17:00 191-24-2 Benzo(g,h,i)perylene 1 Benzo(k)fluoranthene 448 ug/kg 13.0 11/15/10 14:30 11/17/10 17:00 207-08-9 1 11/15/10 14:30 11/17/10 17:00 218-01-9 Chrysene 561 ug/kg 13.0 1 126 ug/kg 11/15/10 14:30 11/17/10 17:00 53-70-3 Dibenz(a,h)anthracene 13.0 1 993 ug/kg 11/15/10 14:30 11/17/10 17:00 206-44-0 Fluoranthene 13.0 1 Fluorene 120 ug/kg 13.0 1 11/15/10 14:30 11/17/10 17:00 86-73-7 Indeno(1,2,3-cd)pyrene 268 ug/kg 13.0 11/15/10 14:30 11/17/10 17:00 193-39-5 1-Methylnaphthalene 80.4 ug/kg 13.0 11/15/10 14:30 11/17/10 17:00 90-12-0 1 2-Methylnaphthalene 168 ug/kg 13.0 1 11/15/10 14:30 11/17/10 17:00 91-57-6 Naphthalene **512** ug/kg 13.0 1 11/15/10 14:30 11/17/10 17:00 91-20-3 1020 ug/kg Phenanthrene 13.0 1 11/15/10 14:30 11/17/10 17:00 85-01-8 **1380** ug/kg Pyrene 13.0 11/15/10 14:30 11/17/10 17:00 129-00-0 1 2-Fluorobiphenyl (S) 69 % 31-131 1 11/15/10 14:30 11/17/10 17:00 321-60-8 Terphenyl-d14 (S) 57 % 30-133 11/15/10 14:30 11/17/10 17:00 1718-51-0 1 8260/5035A Volatile Organics Analytical Method: EPA 8260 ND ug/kg 11/11/10 21:39 71-43-2 Benzene 4.7 1 Ethylbenzene ND ug/kg 4.7 11/11/10 21:39 100-41-4 1 Toluene ND ug/kg 4.7 1 11/11/10 21:39 108-88-3 Xylene (Total) ND ug/kg 14.2 1 11/11/10 21:39 1330-20-7 Dibromofluoromethane (S) 91 % 80-136 11/11/10 21:39 1868-53-7 Toluene-d8 (S) 124 % 80-120 1 11/11/10 21:39 2037-26-5 S3 4-Bromofluorobenzene (S) 144 % 72-122 11/11/10 21:39 460-00-4 S3 1 1,2-Dichloroethane-d4 (S) 94 % 80-143 11/11/10 21:39 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 48.4 % 0.10 11/10/10 17:34 Sample: SPL-3-2 Lab ID: 255590008 Collected: 11/03/10 12:45 Received: 11/03/10 19:30 Results reported on a "dry-weight" basis **Parameters** Results Units DF CAS No. Qual Report Limit Prepared Analyzed **NWTPH-Dx GCS** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range ND mg/kg 25.2 11/15/10 16:05 11/17/10 04:42 ND mg/kg Motor Oil Range 101 1 11/15/10 16:05 11/17/10 04:42 64742-65-0 108 % n-Octacosane (S) 50-150 11/15/10 16:05 11/17/10 04:42 630-02-4 1

Date: 11/19/2010 06:47 PM

o-Terphenyl (S)

REPORT OF LABORATORY ANALYSIS

50-150

101 %

Page 13 of 30

11/15/10 16:05 11/17/10 04:42 84-15-1

Project: East Bay Redevelopment 138130

Pace Project No.: 255590

Sample: SPL-3-2	Lab ID: 25559000	8 Collected: 11/03/	10 12:45	Received: 11	/03/10 19:30	Matrix: Solid	
Results reported on a "dry-weight	t" basis						
Parameters	Results U	nits Report Limit	DF	Prepared	Analyzed	CAS No.	Qu
IWTPH-Gx GCV	Analytical Method: N	WTPH-Gx Preparation M	lethod: N	IWTPH-Gx			
Gasoline Range Organics	ND mg/kg	7.7	1	11/12/10 18:00	11/13/10 05:43	3	
a,a,a-Trifluorotoluene (S)	89 %	50-150	1	11/12/10 18:00	11/13/10 05:43	3 98-08-8	
4-Bromofluorobenzene (S)	89 %	50-150	1	11/12/10 18:00	11/13/10 05:43	3 460-00-4	
6020 MET ICPMS	Analytical Method: E	PA 6020					
Arsenic	7.4 mg/kg	0.46	20	11/10/10 10:20	11/11/10 20:11	7440-38-2	
Cadmium	ND mg/kg	0.073	20	11/10/10 10:20	11/11/10 20:11	7440-43-9	
Copper	46.8 mg/kg	0.46	20	11/10/10 10:20			
_ead	56.3 mg/kg	0.46	20	11/10/10 10:20			
Nickel	43.1 mg/kg	0.46	20	11/10/10 10:20			
3270 MSSV PAH by SIM		PA 8270 by SIM Prepara	tion Meth	nod: EPA 3546			
Acenaphthene	15.8 ug/kg	8.6	1	11/15/10 14:30	11/17/10 17:19	9 83-32-9	
Acenaphthylene	30.9 ug/kg	8.6	1		11/17/10 17:19		
Anthracene	60.9 ug/kg	8.6	1		11/17/10 17:19		
Benzo(a)anthracene	188 ug/kg	8.6	1		11/17/10 17:19		
* *							
senzo(a)pyrene	240 ug/kg	8.6	1		11/17/10 17:19		
Senzo(b)fluoranthene	156 ug/kg	8.6	1	11/15/10 14:30			
Benzo(g,h,i)perylene	139 ug/kg	8.6	1		11/17/10 17:19		
Benzo(k)fluoranthene	135 ug/kg	8.6	1		11/17/10 17:19		
Chrysene	202 ug/kg	8.6	1	11/15/10 14:30			
Dibenz(a,h)anthracene	53.1 ug/kg	8.6	1	11/15/10 14:30			
fluoranthene	338 ug/kg	8.6	1	11/15/10 14:30	11/17/10 17:19	9 206-44-0	
luorene	32.9 ug/kg	8.6	1	11/15/10 14:30	11/17/10 17:19	9 86-73-7	
ndeno(1,2,3-cd)pyrene	118 ug/kg	8.6	1	11/15/10 14:30	11/17/10 17:19	9 193-39-5	
-Methylnaphthalene	17.1 ug/kg	8.6	1	11/15/10 14:30	11/17/10 17:19	9 90-12-0	
-Methylnaphthalene	23.7 ug/kg	8.6	1	11/15/10 14:30	11/17/10 17:19	9 91-57-6	
laphthalene	69.0 ug/kg	8.6	1	11/15/10 14:30	11/17/10 17:19	9 91-20-3	
Phenanthrene	234 ug/kg	8.6	1	11/15/10 14:30	11/17/10 17:19	9 85-01-8	
Pyrene	457 ug/kg	8.6	1		11/17/10 17:19		
P-Fluorobiphenyl (S)	66 %	31-131	1	11/15/10 14:30			
erphenyl-d14 (S)	65 %	30-133	1		11/17/10 17:19		
260/5035A Volatile Organics	Analytical Method: E	PA 8260					
Benzene	ND ug/kg	3.3	1		11/11/10 21:57	7 71-43-2	
Ethylbenzene	ND ug/kg	3.3	1		11/11/10 21:57		
Toluene	ND ug/kg	3.3	1		11/11/10 21:57		
(ylene (Total)	ND ug/kg	9.8	1		11/11/10 21:57		
Dibromofluoromethane (S)	87 %	80-136	1		11/11/10 21:57		
. ,							
Toluene-d8 (S)	114 %	80-120	1		11/11/10 21:57		00
I-Bromofluorobenzene (S)	133 %	72-122	1		11/11/10 21:57		S3
1,2-Dichloroethane-d4 (S)	89 %	80-143	1		11/11/10 21:57	1/060-07-0	
Percent Moisture	Analytical Method: A	STM D2974-87					
Percent Moisture	23.3 %	0.10	1		11/10/10 17:36	6	

Date: 11/19/2010 06:47 PM

REPORT OF LABORATORY ANALYSIS

Page 14 of 30

Project: East Bay Redevelopment 138130

Pace Project No.: 255590

Sample: SPL-3-3	Lab ID: 255590009	Collected: 11/03/	10 12:50	Received: 11	/03/10 19:30	Matrix: Solid	
Results reported on a "dry-weight	" basis						
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS	Analytical Method: NWT	PH-Dx Preparation M	lethod: E	PA 3546			
Diesel Range	36.4 mg/kg	25.6	1	11/15/10 16:05	11/17/10 06:1	5	
Motor Oil Range	ND mg/kg	102	1	11/15/10 16:05	11/17/10 06:1	5 64742-65-0	
n-Octacosane (S)	105 %	50-150	1	11/15/10 16:05	11/17/10 06:1	5 630-02-4	
o-Terphenyl (S)	97 %	50-150	1	11/15/10 16:05	11/17/10 06:1	5 84-15-1	
NWTPH-Gx GCV	Analytical Method: NWT	PH-Gx Preparation M	lethod: N	WTPH-Gx			
Gasoline Range Organics	ND mg/kg	7.4	1	11/12/10 18:00	11/13/10 06:0	6	
a,a,a-Trifluorotoluene (S)	93 %	50-150	1	11/12/10 18:00	11/13/10 06:0	6 98-08-8	
1-Bromofluorobenzene (S)	91 %	50-150	1	11/12/10 18:00	11/13/10 06:00	6 460-00-4	
6020 MET ICPMS	Analytical Method: EPA	6020					
Arsenic	4.8 mg/kg	0.46	20	11/10/10 10:20	11/11/10 20:15	5 7440-38-2	
Cadmium	ND mg/kg	0.073	20	11/10/10 10:20	11/11/10 20:15	5 7440-43-9	
Copper	31.5 mg/kg	0.46	20	11/10/10 10:20	11/11/10 20:15	5 7440-50-8	
-ead	45.2 mg/kg	0.46	20	11/10/10 10:20			
Nickel	41.5 mg/kg	0.46	20	11/10/10 10:20	11/12/10 16:3	7 7440-02-0	
270 MSSV PAH by SIM	Analytical Method: EPA	8270 by SIM Prepara	tion Meth	od: EPA 3546			
Acenaphthene	ND ug/kg	8.7	1	11/15/10 14:30	11/17/10 17:3	7 83-32-9	
Acenaphthylene	ND ug/kg	8.7	1	11/15/10 14:30	11/17/10 17:3	7 208-96-8	
Anthracene	17.1 ug/kg	8.7	1	11/15/10 14:30			
Benzo(a)anthracene	29.6 ug/kg	8.7	1	11/15/10 14:30	11/17/10 17:37	7 56-55-3	
Benzo(a)pyrene	34.3 ug/kg	8.7	1	11/15/10 14:30			
Benzo(b)fluoranthene	22.6 ug/kg	8.7	1	11/15/10 14:30			
Benzo(g,h,i)perylene	19.6 ug/kg	8.7	1	11/15/10 14:30	11/17/10 17:3	7 191-24-2	
Benzo(k)fluoranthene	19.1 ug/kg	8.7	1	11/15/10 14:30			
Chrysene	32.2 ug/kg	8.7	1	11/15/10 14:30			
Dibenz(a,h)anthracene	ND ug/kg	8.7	1	11/15/10 14:30			
Fluoranthene	62.7 ug/kg	8.7	1	11/15/10 14:30			
Fluorene	16.3 ug/kg	8.7	1	11/15/10 14:30			
ndeno(1,2,3-cd)pyrene	16.2 ug/kg	8.7	1	11/15/10 14:30			
I-Methylnaphthalene	12.6 ug/kg	8.7	1	11/15/10 14:30			
2-Methylnaphthalene	18.1 ug/kg	8.7	1	11/15/10 14:30			
Naphthalene	51.9 ug/kg	8.7	1	11/15/10 14:30			
Phenanthrene	79.5 ug/kg	8.7	1	11/15/10 14:30			
Pyrene	91.3 ug/kg	8.7	1	11/15/10 14:30			
2-Fluorobiphenyl (S)	70 %	31-131	1	11/15/10 14:30			
Ferphenyl-d14 (S)	70 %	30-133	1	11/15/10 14:30			
3260/5035A Volatile Organics	Analytical Method: EPA	8260					
Benzene	ND ug/kg	3.0	1		11/11/10 22:16	6 71-43-2	
Ethylbenzene	ND ug/kg	3.0	1		11/11/10 22:16		
Toluene	ND ug/kg	3.0	1		11/11/10 22:16		
OIUOIIO	IND Ug/kg						
Kylene (Total)	ND ug/kg	8.9	1		11/11/10 22:16	3 1330 _€ 20 ₋ 7	

Date: 11/19/2010 06:47 PM

REPORT OF LABORATORY ANALYSIS

Page 15 of 30

11/10/10 06:16 2037-26-5

ANALYTICAL RESULTS

Project: East Bay Redevelopment 138130

Pace Project No.: 255590

Sample: SPL-3-3	Lab ID: 2555	90009	Collected: 11/03/1	0 12:50	Received: 1	11/03/10 19:30	Matrix: Solid	
Results reported on a "dry-weight	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260/5035A Volatile Organics	Analytical Metho	od: EPA 82	260					
Toluene-d8 (S)	112 %		80-120	1		11/11/10 22:16	2037-26-5	
4-Bromofluorobenzene (S)	127 %		72-122	1		11/11/10 22:16	460-00-4	S3
1,2-Dichloroethane-d4 (S)	92 %		80-143	1		11/11/10 22:16	17060-07-0	
Percent Moisture	Analytical Metho	od: ASTM	D2974-87					
						44/40/40 47 00		
Percent Moisture	23.2 %		0.10	1		11/10/10 17:38	3	
Percent Moisture Sample: Trip Blank	23.2 % Lab ID: 2555	90010		1 0 00:00	Received: 1		Matrix: Water	
		90010 Units			Received: 1			Qua
Sample: Trip Blank Parameters	Lab ID: 2555	Units	Collected: 11/03/1	0 00:00		11/03/10 19:30	Matrix: Water	Qua
Sample: Trip Blank	Lab ID: 2555	Units od: EPA 50	Collected: 11/03/1	0 00:00		11/03/10 19:30	Matrix: Water CAS No.	Qua
Sample: Trip Blank Parameters 8260 MSV	Lab ID: 2555 Results Analytical Methor	Units od: EPA 50 L	Collected: 11/03/1 Report Limit 030B/8260	0 00:00 DF		11/03/10 19:30 Analyzed	CAS No.	Qua
Sample: Trip Blank Parameters 8260 MSV Benzene	Lab ID: 2555 Results Analytical Methology	Units od: EPA 50 L L	Collected: 11/03/1 Report Limit 030B/8260 1.0	0 00:00 DF		11/03/10 19:30 Analyzed 11/10/10 06:16	CAS No. 6 71-43-2 6 100-41-4	Qua
Sample: Trip Blank Parameters 8260 MSV Benzene Ethylbenzene	Lab ID: 2555 Results Analytical Methor ND ug/l ND ug/l	Units od: EPA 50 L L L	Collected: 11/03/1 Report Limit 030B/8260 1.0 1.0	DF 1 1		11/03/10 19:30 Analyzed 11/10/10 06:16 11/10/10 06:16	Matrix: Water CAS No. 3 71-43-2 3 100-41-4 5 108-88-3	Qua
Sample: Trip Blank Parameters 8260 MSV Benzene Ethylbenzene Toluene	Lab ID: 2555 Results Analytical Methor ND ug/l ND ug/l ND ug/l	Units od: EPA 50 L L L	Collected: 11/03/1 Report Limit 030B/8260 1.0 1.0 1.0	DF 1 1 1 1		11/03/10 19:30 Analyzed 11/10/10 06:16 11/10/10 06:16 11/10/10 06:16	Matrix: Water CAS No. 3 71-43-2 3 100-41-4 5 108-88-3 6 1330-20-7	Qua
Sample: Trip Blank Parameters 8260 MSV Benzene Ethylbenzene Toluene Xylene (Total)	Lab ID: 2555 Results Analytical Methor ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l	Units od: EPA 50 L L L	Collected: 11/03/1 Report Limit 030B/8260 1.0 1.0 1.0 3.0	0 00:00 DF 1 1 1 1		11/03/10 19:30 Analyzed 11/10/10 06:16 11/10/10 06:16 11/10/10 06:16 11/10/10 06:16	Matrix: Water CAS No. 6 71-43-2 6 100-41-4 6 108-88-3 6 1330-20-7 6 460-00-4	Qua

80-123

93 %

Date: 11/19/2010 06:47 PM

Toluene-d8 (S)

REPORT OF LABORATORY ANALYSIS

Page 16 of 30

Project: East Bay Redevelopment 138130

Pace Project No.: 255590

QC Batch: OEXT/2979 Analysis Method: NWTPH-Dx
QC Batch Method: EPA 3546 Analysis Description: NWTPH-Dx GCS

Associated Lab Samples: 255590001

METHOD BLANK: 49421 Matrix: Solid

Associated Lab Samples: 255590001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Diesel Range	mg/kg	ND	20.0	11/14/10 02:08	
Motor Oil Range	mg/kg	ND	80.0	11/14/10 02:08	
n-Octacosane (S)	%	115	50-150	11/14/10 02:08	
o-Terphenyl (S)	%	109	50-150	11/14/10 02:08	

LABORATORY CONTROL SAMPLE: 49422

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Diesel Range		500	472	94	56-124	
Motor Oil Range	mg/kg	500	550	110	50-150	
n-Octacosane (S)	%			111	50-150	
o-Terphenyl (S)	%			127	50-150	

SAMPLE DUPLICATE: 49423

		255628001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Diesel Range	mg/kg	ND	ND		
Motor Oil Range	mg/kg	ND	ND		
n-Octacosane (S)	%	114	115	.1	
o-Terphenyl (S)	%	109	110	.3	

Project: East Bay Redevelopment 138130

Pace Project No.: 255590

QC Batch: OEXT/2986 Analysis Method: NWTPH-Dx
QC Batch Method: EPA 3546 Analysis Description: NWTPH-Dx GCS

Associated Lab Samples: 255590002, 255590003, 255590004, 255590005, 255590006, 255590007, 255590008, 255590009

METHOD BLANK: 49598 Matrix: Solid

Associated Lab Samples: 255590002, 255590003, 255590004, 255590005, 255590006, 255590007, 255590008, 255590009

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Diesel Range	mg/kg	ND ND	20.0	11/16/10 20:56	
Motor Oil Range	mg/kg	ND	80.0	11/16/10 20:56	
n-Octacosane (S)	%	104	50-150	11/16/10 20:56	
o-Terphenyl (S)	%	96	50-150	11/16/10 20:56	

LABORATORY CONTROL SAMPLE: 49599

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Diesel Range	mg/kg	500	435	87	56-124	
Motor Oil Range	mg/kg	500	472	94	50-150	
n-Octacosane (S)	%			111	50-150	
o-Terphenyl (S)	%			145	50-150	

SAMPLE DUPLICATE: 49600

		255590002	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Diesel Range	mg/kg	33.6	19.2J		
Motor Oil Range	mg/kg	253	106	82	R1
n-Octacosane (S)	%	109	110	1	
o-Terphenyl (S)	%	101	103	1	

Project: East Bay Redevelopment 138130

Pace Project No.: 255590

QC Batch: GCV/2007 Analysis Method: NWTPH-Gx

QC Batch Method: NWTPH-Gx Analysis Description: NWTPH-Gx Solid GCV

Associated Lab Samples: 255590001, 255590002, 255590003, 255590004, 255590005

METHOD BLANK: 48890 Matrix: Solid

Associated Lab Samples: 255590001, 255590002, 255590003, 255590004, 255590005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Faiametei				Analyzeu	Qualifiers
Gasoline Range Organics	mg/kg	ND	5.0	11/09/10 19:53	
4-Bromofluorobenzene (S)	%	93	50-150	11/09/10 19:53	
a,a,a-Trifluorotoluene (S)	%	100	50-150	11/09/10 19:53	

LABORATORY CONTROL SAMPLE: 48891

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Gasoline Range Organics	mg/kg	12.5	11.3	90	54-156	
4-Bromofluorobenzene (S)	%			65	50-150	
a,a,a-Trifluorotoluene (S)	%			66	50-150	

SAMPLE DUPLICATE: 49180

Parameter	Units	255590004 Result	Dup Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND ND	1.3J		
4-Bromofluorobenzene (S)	%	96	93	3	
a,a,a-Trifluorotoluene (S)	%	107	108	1	

Project: East Bay Redevelopment 138130

Pace Project No.: 255590

QC Batch: GCV/2016 Analysis Method: NWTPH-Gx

QC Batch Method: NWTPH-Gx Analysis Description: NWTPH-Gx Solid GCV

Associated Lab Samples: 255590006, 255590007, 255590008, 255590009

METHOD BLANK: 49395 Matrix: Solid

%

Associated Lab Samples: 255590006, 255590007, 255590008, 255590009

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Gasoline Range Organics	mg/kg	ND	5.0	11/13/10 04:33	
4-Bromofluorobenzene (S)	%	87	50-150	11/13/10 04:33	
a.a.a-Trifluorotoluene (S)	%	86	50-150	11/13/10 04:33	

LABORATORY CONTROL SAMPL	E: 49396					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Gasoline Range Organics	mg/kg	12.5	12.4	100	54-156	
4-Bromofluorobenzene (S)	%			101	50-150	

103

50-150

SAMPLE DUPLICATE: 49625

a,a,a-Trifluorotoluene (S)

Parameter	Units	255605004 Result	Dup Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND	2.9J		
4-Bromofluorobenzene (S)	%	89	87	2	
a,a,a-Trifluorotoluene (S)	%	92	92	.7	

SAMPLE DUPLICATE: 49626

Date: 11/19/2010 06:47 PM

		255632002	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND	1.4J		
4-Bromofluorobenzene (S)	%	91	84	8	
a,a,a-Trifluorotoluene (S)	%	91	85	7	

REPORT OF LABORATORY ANALYSIS

Page 20 of 30

Project: East Bay Redevelopment 138130

Pace Project No.: 255590

QC Batch: ICPM/23408 Analysis Method: EPA 6020
QC Batch Method: EPA 6020 Analysis Description: 6020 MET

Associated Lab Samples: 255590001, 255590002, 255590003, 255590004, 255590005, 255590006, 255590007, 255590008, 255590009

METHOD BLANK: 888630 Matrix: Solid

Associated Lab Samples: 255590001, 255590002, 255590003, 255590004, 255590005, 255590006, 255590007, 255590008, 255590009

Parameter	Blank Units Result		Reporting Limit	Analyzed	Qualifiers
Arsenic	mg/kg	ND	0.49	11/11/10 17:41	
Cadmium	mg/kg	ND	0.078	11/11/10 17:41	
Copper	mg/kg	ND	0.49	11/11/10 17:41	
Lead	mg/kg	ND	0.49	11/11/10 17:41	
Nickel	mg/kg	ND	0.49	11/11/10 17:41	

LABORATORY CONTROL SAMPLE: 888631

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/kg	19.6	17.4	89	75-125	
Cadmium	mg/kg	19.6	17.2	88	75-125	
Copper	mg/kg	19.6	19.5	100	75-125	
Lead	mg/kg	19.6	18.8	96	75-125	
Nickel	mg/kg	19.6	19.7	100	75-125	

MATRIX SPIKE & MATRIX S	MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 888632 888633										
	50	043000010	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Arsenic	mg/kg	6.6	20.7	21.1	22.5	22.7	77	76	75-125	.8	
Cadmium	mg/kg	0.19	20.7	21.1	16.8	18.8	80	88	75-125	11	
Copper	mg/kg	10.9	20.7	21.1	29.9	29.8	92	89	75-125	.4	
Lead	mg/kg	5.5	20.7	21.1	22.7	23.7	83	86	75-125	4	
Nickel	mg/kg	11.2	20.7	21.1	31.2	29.3	97	86	75-125	6	

Date: 11/19/2010 06:47 PM REPORT OF LABORATORY ANALYSIS

Page 21 of 30

Project: East Bay Redevelopment 138130

Pace Project No.: 255590

QC Batch: OEXT/2985 Analysis Method: EPA 8270 by SIM

QC Batch Method: EPA 3546 Analysis Description: 8270/3546 MSSV PAH by SIM

Associated Lab Samples: 255590001, 255590002, 255590003, 255590004, 255590005, 255590006, 255590007, 255590008, 255590009

METHOD BLANK: 49594 Matrix: Solid

Associated Lab Samples: 255590001, 255590002, 255590003, 255590004, 255590005, 255590006, 255590007, 255590008, 255590009

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/kg	ND ND	6.7	11/17/10 12:42	
2-Methylnaphthalene	ug/kg	ND	6.7	11/17/10 12:42	
Acenaphthene	ug/kg	ND	6.7	11/17/10 12:42	
Acenaphthylene	ug/kg	ND	6.7	11/17/10 12:42	
Anthracene	ug/kg	ND	6.7	11/17/10 12:42	
Benzo(a)anthracene	ug/kg	ND	6.7	11/17/10 12:42	
Benzo(a)pyrene	ug/kg	ND	6.7	11/17/10 12:42	
Benzo(b)fluoranthene	ug/kg	ND	6.7	11/17/10 12:42	
Benzo(g,h,i)perylene	ug/kg	ND	6.7	11/17/10 12:42	
Benzo(k)fluoranthene	ug/kg	ND	6.7	11/17/10 12:42	
Chrysene	ug/kg	ND	6.7	11/17/10 12:42	
Dibenz(a,h)anthracene	ug/kg	ND	6.7	11/17/10 12:42	
Fluoranthene	ug/kg	ND	6.7	11/17/10 12:42	
Fluorene	ug/kg	ND	6.7	11/17/10 12:42	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	6.7	11/17/10 12:42	
Naphthalene	ug/kg	ND	6.7	11/17/10 12:42	
Phenanthrene	ug/kg	ND	6.7	11/17/10 12:42	
Pyrene	ug/kg	ND	6.7	11/17/10 12:42	
2-Fluorobiphenyl (S)	%	68	31-131	11/17/10 12:42	
Terphenyl-d14 (S)	%	86	30-133	11/17/10 12:42	

LABORATORY CONTROL SAM	MPLE: 49595					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/kg	133	104	78	37-121	
2-Methylnaphthalene	ug/kg	133	106	79	33-132	
Acenaphthene	ug/kg	133	101	76	32-127	
Acenaphthylene	ug/kg	133	99.0	74	31-134	
Anthracene	ug/kg	133	99.1	74	42-135	
Benzo(a)anthracene	ug/kg	133	112	84	43-139	
Benzo(a)pyrene	ug/kg	133	118	89	44-144	
Benzo(b)fluoranthene	ug/kg	133	106	80	42-144	
Benzo(g,h,i)perylene	ug/kg	133	112	84	46-136	
Benzo(k)fluoranthene	ug/kg	133	113	85	45-147	
Chrysene	ug/kg	133	109	82	42-144	
Dibenz(a,h)anthracene	ug/kg	133	113	85	48-142	
Fluoranthene	ug/kg	133	104	78	44-143	
Fluorene	ug/kg	133	104	78	32-146	
Indeno(1,2,3-cd)pyrene	ug/kg	133	113	85	47-140	
Naphthalene	ug/kg	133	96.3	72	35-118	
Phenanthrene	ug/kg	133	104	78	42-131	

Date: 11/19/2010 06:47 PM REPORT OF LABORATORY ANALYSIS

Page 22 of 30

Project: East Bay Redevelopment 138130

Pace Project No.: 255590

LABORATORY CONTROL SAMPLE: 49595

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Pyrene	ug/kg	133	121	91	47-136	
2-Fluorobiphenyl (S)	%			76	31-131	
Terphenyl-d14 (S)	%			93	30-133	

MATRIX SPIKE & MATRIX S	PIKE DUPLICAT	ΓE: 49596			49597						
			MS	MSD							
		255590001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1-Methylnaphthalene	ug/kg	ND	146	145	111	127	75	85	31-123	13	
2-Methylnaphthalene	ug/kg	ND	146	145	114	154	74	101	15-146	30 R1	
Acenaphthene	ug/kg	ND	146	145	109	109	74	74	19-141	.1	
Acenaphthylene	ug/kg	8.3	146	145	110	110	70	70	30-142	.2	
Anthracene	ug/kg	8.6	146	145	107	112	68	71	38-137	4	
Benzo(a)anthracene	ug/kg	26.1	146	145	120	129	65	71	37-143	7	
Benzo(a)pyrene	ug/kg	28.9	146	145	124	136	66	74	33-147	9	
Benzo(b)fluoranthene	ug/kg	15.5	146	145	121	122	72	73	25-156	1	
Benzo(g,h,i)perylene	ug/kg	24.7	146	145	113	118	60	64	26-142	5	
Benzo(k)fluoranthene	ug/kg	24.2	146	145	101	109	52	58	35-142	8	
Chrysene	ug/kg	31.8	146	145	122	133	62	70	23-150	9	
Dibenz(a,h)anthracene	ug/kg	ND	146	145	106	108	68	70	41-140	2	
Fluoranthene	ug/kg	51.2	146	145	120	144	47	64	25-155	18	
Fluorene	ug/kg	ND	146	145	114	114	75	75	33-152	.6	
Indeno(1,2,3-cd)pyrene	ug/kg	16.2	146	145	109	116	64	69	36-139	6	
Naphthalene	ug/kg	14.3	146	145	107	118	64	71	25-121	10	
Phenanthrene	ug/kg	33.9	146	145	133	148	68	79	29-141	11	
Pyrene	ug/kg	78.0	146	145	155	181	53	71	36-145	15	
2-Fluorobiphenyl (S)	%						73	71	31-131		
Terphenyl-d14 (S)	%						79	77	30-133		

Date: 11/19/2010 06:47 PM

REPORT OF LABORATORY ANALYSIS

Page 23 of 30

Project: East Bay Redevelopment 138130

Pace Project No.: 255590

QC Batch: MSV/3414 Analysis Method: EPA 5030B/8260

QC Batch Method: EPA 5030B/8260 Analysis Description: 8260 MSV Water 10 mL Purge

Associated Lab Samples: 255590010

METHOD BLANK: 48936 Matrix: Water

Associated Lab Samples: 255590010

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/L	ND ND	1.0	11/10/10 04:15	
Ethylbenzene	ug/L	ND	1.0	11/10/10 04:15	
Toluene	ug/L	ND	1.0	11/10/10 04:15	
Xylene (Total)	ug/L	ND	3.0	11/10/10 04:15	
1,2-Dichloroethane-d4 (S)	%	90	80-124	11/10/10 04:15	
4-Bromofluorobenzene (S)	%	90	80-120	11/10/10 04:15	
Dibromofluoromethane (S)	%	95	80-122	11/10/10 04:15	
Toluene-d8 (S)	%	95	80-123	11/10/10 04:15	

LABORATORY CONTROL SAME	PLE & LCSD: 48937	48984								
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene	ug/L	20	18.5	15.3	92	77	76-127	18	30	
Ethylbenzene	ug/L	20	18.9	16.0	94	80	72-125	16	30	
Toluene	ug/L	20	18.3	15.4	91	77	69-125	17	30	
Xylene (Total)	ug/L	60	55.8	47.5	93	79	74-124	16	30	
1,2-Dichloroethane-d4 (S)	%				90	90	80-124			
4-Bromofluorobenzene (S)	%				94	92	80-120			
Dibromofluoromethane (S)	%				94	92	80-122			
Toluene-d8 (S)	%				95	94	80-123			

Project: East Bay Redevelopment 138130

Pace Project No.: 255590

QC Batch: MSV/3395 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5035A Volatile Organics

Associated Lab Samples: 255590001, 255590002, 255590003

METHOD BLANK: 48409 Matrix: Solid

Associated Lab Samples: 255590001, 255590002, 255590003

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND	3.0	11/05/10 10:30	
Ethylbenzene	ug/kg	ND	3.0	11/05/10 10:30	
Toluene	ug/kg	ND	3.0	11/05/10 10:30	
Xylene (Total)	ug/kg	ND	9.0	11/05/10 10:30	
1,2-Dichloroethane-d4 (S)	%	100	80-143	11/05/10 10:30	
4-Bromofluorobenzene (S)	%	101	72-122	11/05/10 10:30	
Dibromofluoromethane (S)	%	99	80-136	11/05/10 10:30	
Toluene-d8 (S)	%	107	80-120	11/05/10 10:30	

LABORATORY CONTROL SAME	PLE & LCSD: 48410		48	3411						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene	ug/kg	50	39.1	39.7	78	79	75-133	2	30	
Ethylbenzene	ug/kg	50	43.0	41.5	86	83	68-131	4	30	
Toluene	ug/kg	50	43.6	39.6	87	79	73-124	10	30	
Xylene (Total)	ug/kg	150	127	126	84	84	68-130	.4	30	
1,2-Dichloroethane-d4 (S)	%				99	101	80-143			
4-Bromofluorobenzene (S)	%				110	105	72-122			
Dibromofluoromethane (S)	%				97	107	80-136			
Toluene-d8 (S)	%				105	100	80-120			

Project: East Bay Redevelopment 138130

Pace Project No.: 255590

QC Batch: MSV/3429 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5035A Volatile Organics

Associated Lab Samples: 255590004, 255590005, 255590006, 255590007, 255590008, 255590009

METHOD BLANK: 49263 Matrix: Solid

Associated Lab Samples: 255590004, 255590005, 255590006, 255590007, 255590008, 255590009

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND	3.0	11/11/10 18:30	
Ethylbenzene	ug/kg	ND	3.0	11/11/10 18:30	
Toluene	ug/kg	ND	3.0	11/11/10 18:30	
Xylene (Total)	ug/kg	ND	9.0	11/11/10 18:30	
1,2-Dichloroethane-d4 (S)	%	101	80-143	11/11/10 18:30	
4-Bromofluorobenzene (S)	%	106	72-122	11/11/10 18:30	
Dibromofluoromethane (S)	%	105	80-136	11/11/10 18:30	
Toluene-d8 (S)	%	106	80-120	11/11/10 18:30	

LABORATORY CONTROL SAME	PLE & LCSD: 49264		49	9265						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene	ug/kg	50	43.5	42.5	87	85	75-133	2	30	
Ethylbenzene	ug/kg	50	38.5	37.6	77	75	68-131	2	30	
Toluene	ug/kg	50	41.6	40.7	83	81	73-124	2	30	
Xylene (Total)	ug/kg	150	124	120	82	80	68-130	3	30	
1,2-Dichloroethane-d4 (S)	%				104	102	80-143			
4-Bromofluorobenzene (S)	%				104	106	72-122			
Dibromofluoromethane (S)	%				112	111	80-136			
Toluene-d8 (S)	%				109	108	80-120			

Project: East Bay Redevelopment 138130

Pace Project No.: 255590

QC Batch: PMST/1417 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 255590001, 255590002, 255590003, 255590004, 255590005, 255590006, 255590007, 255590008, 255590009

SAMPLE DUPLICATE: 48916

Parameter Units Result Result RPD Qualifiers

Percent Moisture % 15.8 15.5 2

SAMPLE DUPLICATE: 48917

ParameterUnits255590005 ResultDup ResultRPDQualifiersPercent Moisture%10.410.03

Date: 11/19/2010 06:47 PM RE

REPORT OF LABORATORY ANALYSIS

Page 27 of 30

QUALIFIERS

Project: East Bay Redevelopment 138130

Pace Project No.: 255590

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis
PASI-S Pace Analytical Services - Seattle

ANALYTE QUALIFIERS

Date: 11/19/2010 06:47 PM

R1 RPD value was outside control limits.

S3 Surrogate recovery exceeded laboratory control limits. Analyte presence below reporting limits in associated samples.

Results unaffected by high bias.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: East Bay Redevelopment 138130

Pace Project No.: 255590

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
255590001	SPL-4-1	EPA 3546	OEXT/2979	NWTPH-Dx	GCSV/2074
255590002	SPL-4-2	EPA 3546	OEXT/2986	NWTPH-Dx	GCSV/2082
255590003	SPL-4-3	EPA 3546	OEXT/2986	NWTPH-Dx	GCSV/2082
255590004	SPL-5-1	EPA 3546	OEXT/2986	NWTPH-Dx	GCSV/2082
255590005	SPL-5-2	EPA 3546	OEXT/2986	NWTPH-Dx	GCSV/2082
255590006	SPL-5-3	EPA 3546	OEXT/2986	NWTPH-Dx	GCSV/2082
255590007	SPL-3-1	EPA 3546	OEXT/2986	NWTPH-Dx	GCSV/2082
255590008	SPL-3-2	EPA 3546	OEXT/2986	NWTPH-Dx	GCSV/2082
255590009	SPL-3-3	EPA 3546	OEXT/2986	NWTPH-Dx	GCSV/2082
255590001	SPL-4-1	NWTPH-Gx	GCV/2007	NWTPH-Gx	GCV/2013
255590002	SPL-4-2	NWTPH-Gx	GCV/2007	NWTPH-Gx	GCV/2013
255590003	SPL-4-3	NWTPH-Gx	GCV/2007	NWTPH-Gx	GCV/2013
255590004	SPL-5-1	NWTPH-Gx	GCV/2007	NWTPH-Gx	GCV/2013
255590005	SPL-5-2	NWTPH-Gx	GCV/2007	NWTPH-Gx	GCV/2013
255590006	SPL-5-3	NWTPH-Gx	GCV/2016	NWTPH-Gx	GCV/2024
255590007	SPL-3-1	NWTPH-Gx	GCV/2016	NWTPH-Gx	GCV/2024
255590008	SPL-3-2	NWTPH-Gx	GCV/2016	NWTPH-Gx	GCV/2024
255590009	SPL-3-3	NWTPH-Gx	GCV/2016	NWTPH-Gx	GCV/2024
255590001	SPL-4-1	EPA 6020	ICPM/23408	EPA 6020	ICPM/9523
255590002	SPL-4-2	EPA 6020	ICPM/23408	EPA 6020	ICPM/9523
255590003	SPL-4-3	EPA 6020	ICPM/23408	EPA 6020	ICPM/9523
255590004	SPL-5-1	EPA 6020	ICPM/23408	EPA 6020	ICPM/9523
255590005	SPL-5-2	EPA 6020	ICPM/23408	EPA 6020	ICPM/9523
255590006	SPL-5-3	EPA 6020	ICPM/23408	EPA 6020	ICPM/9523
255590007	SPL-3-1	EPA 6020	ICPM/23408	EPA 6020	ICPM/9523
255590008	SPL-3-2	EPA 6020	ICPM/23408	EPA 6020	ICPM/9523
255590009	SPL-3-3	EPA 6020	ICPM/23408	EPA 6020	ICPM/9523
255590001	SPL-4-1	EPA 3546	OEXT/2985	EPA 8270 by SIM	MSSV/1440
255590002	SPL-4-2	EPA 3546	OEXT/2985	EPA 8270 by SIM	MSSV/1440
255590003	SPL-4-3	EPA 3546	OEXT/2985	EPA 8270 by SIM	MSSV/1440
255590004	SPL-5-1	EPA 3546	OEXT/2985	EPA 8270 by SIM	MSSV/1440
255590005	SPL-5-2	EPA 3546	OEXT/2985	EPA 8270 by SIM	MSSV/1440
255590006	SPL-5-3	EPA 3546	OEXT/2985	EPA 8270 by SIM	MSSV/1440
255590007	SPL-3-1	EPA 3546	OEXT/2985	EPA 8270 by SIM	MSSV/1440
255590008	SPL-3-2	EPA 3546	OEXT/2985	EPA 8270 by SIM	MSSV/1440
255590009	SPL-3-3	EPA 3546	OEXT/2985	EPA 8270 by SIM	MSSV/1440
255590010	Trip Blank	EPA 5030B/8260	MSV/3414		
255590001	SPL-4-1	EPA 8260	MSV/3395		
255590002	SPL-4-2	EPA 8260	MSV/3395		
255590003	SPL-4-3	EPA 8260	MSV/3395		
255590004	SPL-5-1	EPA 8260	MSV/3429		
255590005	SPL-5-2	EPA 8260	MSV/3429		
255590006	SPL-5-3	EPA 8260	MSV/3429		
255590007	SPL-3-1	EPA 8260	MSV/3429		
255590008	SPL-3-2	EPA 8260	MSV/3429		

Date: 11/19/2010 06:47 PM

REPORT OF LABORATORY ANALYSIS

Page 29 of 30

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: East Bay Redevelopment 138130

Pace Project No.: 255590

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch		
255590009	SPL-3-3	EPA 8260	MSV/3429				
255590001	SPL-4-1	ASTM D2974-87	PMST/1417				
255590002	SPL-4-2	ASTM D2974-87	PMST/1417				
255590003	SPL-4-3	ASTM D2974-87	PMST/1417				
255590004	SPL-5-1	ASTM D2974-87	PMST/1417				
255590005	SPL-5-2	ASTM D2974-87	PMST/1417				
255590006	SPL-5-3	ASTM D2974-87	PMST/1417				
255590007	SPL-3-1	ASTM D2974-87	PMST/1417				
255590008	SPL-3-2	ASTM D2974-87	PMST/1417				
255590009	SPL-3-3	ASTM D2974-87	PMST/1417				

Date: 11/19/2010 06:47 PM

REPORT OF LABORATORY ANALYSIS

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

				+ Netrois 1013/8290	Les Coxer Nickel	FRANK OF ASSOCIATION	ADDITIONAL COMMENTS	12	11	10 Top Black	1	8 SPL -3-2	7 SPL-3-1	6 SPL-S-3	5 52-5-2	4 SPL -5-1	3 SPL-4-3	2 SPL-4-Z	1 SP2-4-1	Dninking Water Water Waste Water Product Soil/Soild Oil (A-Z, 0-9 / -) Sample IDs MUST BE UNIQUE Tissue Other #	Section D Matrix Codes Required Client Information MATRIX / CODE		10 xx 797	(v)	k Chyraddian	and the	St. NW#420	d adved	
				PCS &			RELINQUISHED BY / AFFILIATION				5								St 6	MATRIX CODE (see valid codes SAMPLE TYPE (G=GRAB C=C START DATE	to left)		1	Project Name: East Ray Rod	Purchase Order No.:			Report To: Jan Tark	Section B Required Project Information:
SIGNATURE of SAMPLER:	PRINT Name of SAMPLER:	SAMPLER NAME AND SIGNATURE	, : :	driver	And Provide the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of	11/3/10	ILIATION DATE			C Miles Marian	750	1245	2,50	Ē	Ē	Š	1000	1030	W3/10 1025	TIME DATE TIME SAMPLE TEMP	COLLECTED		Andrews of Assessment and Assessment Control of Control	Ratevelopment					
R:	R. Meredith Simith	RE /	Jyotha	10 W CO		1525 X. Cottug	TIME ACCEPTE			\(\frac{1}{2}\)	X	×	×.	X	X	×	X	6 X	×	# OF CONTAINERS Unpreserved H ₂ SO ₄ HNO ₃ HCI NaOH Na ₂ S ₂ O ₃ Methanol Other	Preservatives		** 23238/	Pace Project Manager:	Pace Quote Reference:	Address:		Attention: Sive as dien	Section C Invoice Information:
DATE Signed (MM/DD/YY):			Swan	Rualyti	G	ght pes	ACCEPTED BY / AFFILIATION	Sef), re	PRA	XX XX X	X X X	入 入 入	X X X X	X X X	X X X X	XXXX	XXXX	XX XX XX	Analysis Test I Metals 6020 A * CPAH 8270 C Noxins / Forcas ** TPH - D. HO. 6	Y/ N	1	71					nt	
11/3/10			1103/10/19	8		03201510	DATE T				X	XX	X	X. X.	X X	<u>X</u> <u>X</u>	× ×	<u>X</u> X	X	B7EX 8260B Tot. Nap. 8270C		Requested Analysis Filtered (Y/N)	STATE: _	Site Location	r ust r	NPDES	REGULATORY AGENCY		
Tei	mp in	°C	3052			02	TIME													Residual Chlorine (Y/N)		- <u>R</u>	S. S. S. S. S. S. S. S. S. S. S. S. S. S	>	RCRA	GROUND WATER	ENCY	L_3	Page:
C Seal Sam	ceived e (Y/N sustod ed Co (Y/N) ples li (Y/N)	y poler	2				SAMPLE CONDITIONS				The state of the s				A THE TAX A STATE OF TAX A STATE OF TAX A STATE OF TAX A STATE OF TAX A STATE OF TAX A STATE OF TAX A STATE OF TAX A STATE OF TAX A STATE OF TAX A					to appear or a separate report of papear or or or post of post of the pace Project No./Lab I.D.	£	n			OTHER	ER DRINKING WATER		1391148	of .

COC PAGE of COC ID# CLIENT: brown + Cabure ! Sample Line Item コ 12 10 ပ σ တ S 4 ယ 2 7 S VG9H AG1H AG1U BG1H BP1U BP2U BP3U BP2N BP2S WGFU WGKU WGKU WGKU Ŋ 5/2-3-2 5849 Sbr-2-1 Sbr-4-3 5/2-4-1 Trip Blank? UCS -wated SP2-3-1 Face Analytical* 255590 Comments 11/3/10 1110 501 1040 1025 1030 1240 1250 745

	_	_	7	Т-	T	Т		T-	T-	T	_	Т
BP20	BP2N	BP1Z	BP1U	BP1S	BP1N	BG1U	BG1H	AG3S	AG2U	AG2S	AG1U	AG1H
BP20 500mL NaOH plastic	BP2N 500mL HNO3 plastic	BP1Z 1 liter NaOH, Zn, Ac	BP1U 1 liter unpreserved plastic	BP1S 1 liter H2SO4 plastic	BP1N 1 liter HNO3 plastic	BG1U 1 liter unpreserved glass	BG1H 1 liter HCL clear glass	AG3S 250mL H2SO4 amber glass	AG2U 500mL unpreserved amber glass	AG2S 500mL H2SO4 amber glass	AG1U 1liter unpreserved amber glass	AG1H 1 liter HCL amber glass
	DG9	DGs	DG9	DG9	DG9	BP3	BP3	BP3	BP3	BP2	BP2	BP2
II Wipe/Swab	DG9U 40mL unpreserved amber vial	DG9T 40mL Na Thio amber vial	DG9M 40mL MeOH clear vial	DG9H 40mL HCL amber voa vial	DG9B 40mL Na Bisulfate amber vial	BP3U 250mL unpreserved plastic	BP3S 250mL H2SO4 plastic	BP3N 250mL HNO3 plastic	BP3C 250mL NaOH plastic	BP2Z 500mL NaOH, Zn Ac	BP2U 500mL unpreserved plastic	BP2S 500mL H2SO4 plastic
		ZPLC	WGF	WGFL	VSG	VG9W	VG9L	VG97	VG9F			JGFL
		ZPLC Ziploc Bag	WGFX 4oz wide jar w/hexane wipe	WGFU 4oz clear soil jar	VSG Headspace septa vial & HCL	VG9W 40mL glass vial preweighted (EPA 5035)	VG9U 40mL unpreserved clear vial	VG9T 40mL Na Thio. clear vial	VG9H 40mL HCL clear vial	Summa Can	R terra core kit	JGFU 4oz unpreserved amber wide

.' }*

	Sample (ono	llon	Upon i	icelj.		orre	· ^
Pace Analytical Client Name	•	Res	ا دیج	+ Cal	Jwell	Project #	())) !	JŲ
Short Harris		W • •		·····			· · · · · · · · · · · · · · · · · · ·	
Courier: Fed Ex UPS USPS Clier	nt 🗆 Commo	ercial	□Pa	ace Othe	r <u>P</u>	CS		
Custody Seal on Cooler/Box Present: Yes	No	Seals	intact:	Пүе	es 🗍	No		
Packing Material: Bubble Wrap Bubble		lone	Ot			Temp. Blank Yes	No	
		_		None	П	Samples on ice, coolin		beoup '
	Biological		_,		No.	Date and Initials		
Cooler Temperature	Biological	113340		nents:	110	contents:		
Chain of Custody Present:	□Yes ØNo	BONA	3	COC	no	of received	11/3/10	19:30 N
Chain of Custody Filled Out:	□Yes □No	□n/a	2.				77	
Chain of Custody Relinquished:	□Yes □No	□n/a	3.					
Sampler Name & Signature on COC:	□Yes □No	□n/a	4.					
Samples Arrived within Hold Time:	□Yes □No	□n/a	5.					
Short Hold Time Analysis (<72hr):	□Yes □No	□N/A	6.				******	
Rush Turn Around Time Requested:	□Yes □No	■N/A	7.					
Sufficient Volume:	□Yes □No	□n/a	8.					<i>i</i> (
Correct Containers Used:	□Yes □No	□N/A	9.					,
-Pace Containers Used:	□Yes □No	□n/a					•	
Containers Intact:	✓Yes □No	□n/a	10.					
Filtered volume received for Dissolved tests	□Yes □No	ØN/A	11.					
Sample Labels match COC:	□Yes □No	□n/a	12.					
- Includes date/time/ID/Analysis Matrix:		_						
All containers needing preservation have been checked.	□Yes □No	□n/a	13.					
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes □No	□n/a						
Exceptions: VOA, coliform, TOC, O&G		•	Initial v			Lot # of added preservative		
Samples checked for dechlorination:	□Yes □No	ØN/A	14.					
Headspace in VOA Vials (>6mm):	□Yes □No	DN/A	15.		-+.	-,	······	
Trip Blanks Present:	Øyes □No	□n/a	16W2	te1	top	blanks ·		
Trip Blank Custody Seals Present	ØYes □No	□n/a			1			
Pace Trip Blank Lot # (if purchased):	±							
Client Notification/ Resolution: Person Contacted: Tohnson Comments/ Resolution: COC received 11/04/10		Date/∏		Mo4/		Field Data Required?	Υ /	N
•								
Run Spei client	Yo wo	tuc	hov	4 on	the	tip blank	. Rsm	
Project Manager Review: RSm						Date: ///	14/10	

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Jennifer Gross PASI Seattle 940 S. Harney Street Seattle WA 98108

> REPORT OF LABORATORY ANALYSIS FOR PCDD/PCDF

Report Information:

Pace Project #: 10142541

Sample Receipt Date: 11/05/2010

Client Project #: 255589 Client Sub PO #: N/A State Cert #: C755

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Nate Habte, your Pace Project Manager.

This report has been reviewed by:

November 19, 2010

Nate Habte, Project Manager

(612) 607-6407

(612) 607-6444 (fax)

natnael.habte@pacelabs.com

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

Report Prepared Date:

November 19, 2010

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on nine samples submitted by a representative of Pace Analytical Services, Inc. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290. Reporting limits were based on signal-to-noise measurements.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 41-96%. All of the labeled standard recoveries obtained for this project were within the 40-135% target range specified in Method 8290. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, interfering substances impacted the determinations of PCDD or PCDF congeners. The affected values were flagged "I" where incorrect isotope ratios were obtained or "P" where polychlorinated diphenyl ethers were present.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to contain background levels of selected congeners. With the exception of one non-2,3,7,8-substituted TCDF congener, these were below the calibration range of the method. Sample levels similar to the corresponding blank levels were flagged "B" on the results tables and may be, at least partially, attributed to the background. It should be noted that levels less than ten times the background are not generally considered to be statistically different from the background.

A laboratory spike sample was also prepared with the sample batch using clean sand that had been fortified with native standard materials. The results show that the spiked native compounds were recovered at 100-128%, indicating a high degree of accuracy for these determinations. Matrix spikes were prepared with the sample batch using sample material from a separate project; results from these analyses will be provided upon request.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Certificate #	Authority	Certificate #
40770	Montana	92
MN00064	Nebraska	
AZ0014	Nevada	MN000642010A
88-0680	New Jersey (NE	MN002
01155CA	New Mexico	MN00064
MN00064	New York (NEL	11647
PH-0256	North Carolina	27700
WD-15J	North Dakota	R-036
8TMS-Q	Ohio	4150
E87605	Ohio VAP	CL101
959	Oklahoma	D9922
09-019r	Oregon (ELAP)	MN200001-005
SLD	Oregon (OREL	MN200001-005
MN00064	Pennsylvania	68-00563
200012	Saipan	MP0003
C-MN-01	South Carolina	74003001
C-MN-01	Tennesee	2818
368	Tennessee	02818
E-10167	Texas	T104704192-08
90062	Utah (NELAP)	PAM
LA0900016	Virginia	00251
2007029	Washington	C755
322	West Virginia	9952C
9909	Wisconsin	999407970
027-053-137	Wyoming	8TMS-Q
MN00064		
	40770 MN00064 AZ0014 88-0680 01155CA MN00064 PH-0256 WD-15J 8TMS-Q E87605 959 09-019r SLD MN00064 200012 C-MN-01 C-MN-01 C-MN-01 368 E-10167 90062 LA0900016 2007029 322 9909 027-053-137	40770 Montana MN00064 Nebraska AZ0014 Nevada 88-0680 New Jersey (NE 01155CA New Mexico MN00064 New York (NEL PH-0256 North Carolina WD-15J North Dakota 8TMS-Q Ohio E87605 Ohio VAP 959 Oklahoma 09-019r Oregon (ELAP) SLD Oregon (OREL MN00064 Pennsylvania 200012 Saipan C-MN-01 South Carolina C-MN-01 Tennesee E-10167 Texas 90062 Utah (NELAP) LA0900016 Virginia 2007029 Washington 322 West Virginia 9909 027-053-137 Wyoming

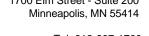
REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

Chain of Custody


8	Workorder: 255589		Workorder	Workorder Name:East Bay Red	. Redevelopm∈	evelopment 138130		Owner Received Date:	Date: 11/3/2010		Results Requested By:	11/29/2010
8	Report To			Subcontract To	4 To				Reques	Requested Analysis		
a 2 8 8 년 rg	Jennifer Gross Pace Analytical Servic 940 South Harney Seattle WA 98108 Phone (206)767-5060 Fax (206)767-5063	Jennifer Gross Pace Analytical Services, Inc. 940 South Harney Seattle WA 98108 Phone (206)767-5060 Fax (206)767-5063	·	Pace / 1700 [Suite : Minne Phone	Pace Analytical Minnesota 1700 Elm Street Suite 200 Minneapolis, MN 55414 Phone (612)607-1700	ssota 14		אַניאָל ציינטיין אַניינטיין				
<u> </u>	Item Sample ID	C	Sample Type	Sample Collect Type Date/Time	Cab ID	Matrix	Deviese and Devies	Preserved Containers				LAB USE ONLY
-	SPL-4-1		PS	11/3/2010 10:25	255589001	Solid	-	×		********		
7	SPL-4-2		PS	11/3/2010 10:30	255589002	Solid	1	×				
က	SPL-4-3		PS	11/3/2010 10:40	255589003	Solid	 -	×				
4	SPL-5-1		PS	11/3/2010 11:00	255589004	Solid	1	×				
ഹ	SPL-5-2		PS	11/3/2010 11:05	255589005	Solid	-	×				
ဖ	SPL-5-3		PS	11/3/2010 11:10	255589006	Solid	1	×				
~	SPL-3-1		PS	11/3/2010 12:40	255589007	Solid	-	×				
∞	SPL-3-2		PS	11/3/2010 12:45	255589008	Solid	-	×				
თ	SPL-3-3		PS	11/3/2010 12:50	255589009	Solid	-	×				
	*****									Comments	ıts	
ř	Transfers Re	Released By		Date/Time	Received By		C	Date/Time	,			
-		B		11/4/10	N. W.	WASS	17.45	2	Total Com Constact		J. J. J. S.	ب ز خ
2						7		-	2	202	2 - 0	
m (7	_							Q	
ပျ	oler Temp	Cooler Temperature on Receipt	eipt 1	SnO Cns	Custody Seal /Y	Z	02	Received on Ice	(≺ òr N	Sample	Samples Intakt	N TO
			3				×				1	1

Sar	nple	Con	ditio	ı Upon Receipt	t		
Pace Analytical Client Name	. 1	TU 0		1 (A	F	Project # \0 4 25 L	41
J. Silone Hamile	, <u></u>	,,,,		(() /)	•		<u> </u>
Courier: Fed Ex UPS USPS Clie	pt 🗆	Comn	nercial	☐ Pace Other		Ogilonal	
Tracking #: <u>1964 /88 L3 Fet</u>	7_			-		Rroj Duaioate Proj Name	
Custody Seal on Cooler/Box Present: 2 yes		no	Seal	intact: L yes	Ш	10	
Packing Material: Bubble Wrap Bubble	Bags		None	Other		Temp Blank: Yes N	o
Thermometer Used 80344042 o 179425	Type	of ice:	: (Wet	Blue None		Samples on ice, cooling process ha	
Cooler Temperature / 8	Biolo	gical '	Tissue	is Frozen: Yes No	•	Date and initials of person ex contents:	
Temp should be above freezing to 6°C		,		Comments:			, , , , , , , , , , , , , , , , , , ,
Chain of Custody Present:	□Ves	□No	□n/a	1.			
Chain of Custody Filled Out:	☑ Yes	□No	□N⁄A	2.			
Chain of Custody Relinquished:	Æ]Yes	□No	□N⁄A	3.			
Sampler Name & Signature on COC:	□Yes	Z/No	□N/A	4.			
Samples Arrived within Hold Time:	EYes	□No	□N⁄A	5.			-,.,
Short Hold Time Analysis (<72hr):	□Yes	ÆÍNo	□N⁄A	6.			
Rush Turn Around Time Requested:	□Yes		ONA	7.			
Sufficient Volume:	ElYes	□No	□N⁄A	8.			
Correct Containers Used:	☑ Yes	□No	□N⁄A	9.			
-Pace Containers Used:	DYes	□No	□N⁄A				
Containers Intact:	E Yes	□No	□N⁄A	10.			
Filtered volume received for Dissolved tests	□Yes	□No	-EIN/A	11.			
Sample Labels match COC:	Z Yes	□No	□N⁄A	12.			
-includes date/time/ID/Analysis Matrix:	3	1					
Ni containers needing acid/base preservation have been hecked. Noncompliance are noted in 13.	□Yes	□No	ØΝΑ	13. ⊔	воин	H2SO4 D NaOH D	HCI
All containers needing preservation are found to be in compliance with EPA recommendation.	□Y68	□No		Samp #			
xceptions: VOA,Coliform, TOC, Oil and Grease, WI-DRO (water	□Yes	12No		Initial when completed		Lot # of added preservative	
Samples checked for dechlorination:	□Yes	□No	ZINA	14.			
teadspace in VOA Vials (>6mm):	□Yes	□No	EINA	15.			
rip Blank Present:	□Yes	□No	₽Ñ∕A	16.			
rip Blank Custody Seals Present	□Yes	□№	□N/A				:
			_	1			

Pace Trip Blank Lot # (II purchaseu)			
Client Notification/ Resolution:		Field Data Required?	Y / N
Person Contacted:	Date/Time:		
Comments/ Resolution:			
	0/11/	Date:	(1)
Project Manager Review:	10477	Date:] -

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the Routh Coahdinai SEIMME. Inc. F-L213Rev.00, 05Aug2009

1700 Elm Street SE, Suite 200, Minneapolis, MN 55414

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

Appendix B

Sample Analysis Summary

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-4-1 Lab Sample ID 255589001 F101117B_16 Filename Injected By SMT

Total Amount Extracted 12.2 g Solid Matrix % Moisture Dilution NA 9.4

Dry Weight Extracted Collected 11/03/2010 10:25 11.1 g **ICAL ID** F101012 Received 11/05/2010 10:15 CCal Filename(s) F101117B_19 & F101117B_19 Extracted 11/15/2010 15:45 Method Blank ID **BLANK-26969** Analyzed 11/18/2010 01:28

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.35 4.70		0.22 BJ 0.22 B	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00	75 77
2,3,7,8-TCDD Total TCDD	ND 2.90		0.20 0.20	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00	84 91 95
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.70 6.30		0.25 0.14 J 0.20	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	73 72 70 73
1,2,3,7,8-PeCDD Total PeCDD	0.49 8.60		0.23 J 0.23	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	72 63 56
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	0.70	5.00	0.14 P 0.11 J 0.16 J	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	54 57 50
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	0.42 0.36 6.80		0.16 J 0.15 BJ 0.14	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.50 0.88 16.00	0.52 	0.26 I 0.23 J 0.20 J 0.23	2,3,7,8-TCDD-37Cl4	0.20	75
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	8.80 0.70 21.00		0.19 0.27 J 0.23	Total 2,3,7,8-TCDD Equivalence: 1.8 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	34.00 64.00		0.42 0.42			
OCDF OCDD	34.00 320.00		0.31 0.19			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable NC = Not Calculated

EDL = Estimated Detection Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

P = PCDE Interference

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-4-2
Lab Sample ID 255589002
Filename F101117B_17
Injected By SMT

Total Amount Extracted 11.2 g Matrix Solid % Moisture 9.8 Dilution NA

Dry Weight Extracted Collected 11/03/2010 10:30 10.1 g **ICAL ID** F101012 Received 11/05/2010 10:15 CCal Filename(s) F101117B_19 & F101117B_19 Extracted 11/15/2010 15:45 Method Blank ID **BLANK-26969** Analyzed 11/18/2010 02:15

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	4.30	0.33	0.14 I 0.14 B	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 79 83
2,3,7,8-TCDD Total TCDD	ND 2.70		0.12 0.12	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	91 95 73
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.37 3.30	 	0.15 0.30 J 0.22 J	1,2,3,6,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	73 71 67 69 73
1,2,3,7,8-PeCDD Total PeCDD	0.36 6.90		0.31 J 0.31	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	55 50 41
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.10 0.61 	 0.42	0.19 BJ 0.22 J 0.27 I	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	50 42
1,2,3,7,8,9-HxCDF Total HxCDF	ND 8.00		0.33 0.25	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.56 1.10 0.83 15.00		0.20 J 0.16 J 0.18 J 0.18	2,3,7,8-TCDD-37Cl4	0.20	77
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	9.60 0.64 35.00	 	0.30 0.52 J 0.41	Total 2,3,7,8-TCDD Equivalence: 1.5 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	28.00 51.00		0.61 0.61			
OCDF OCDD	33.00 280.00		0.59 0.36			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-4-3 Lab Sample ID 255589003 F101118A_03 Filename Injected By **SMT**

Total Amount Extracted 11.8 g Solid Matrix % Moisture Dilution NA 8.4

Dry Weight Extracted Collected 11/03/2010 10:40 10.8 g **ICAL ID** F101012 Received 11/05/2010 10:15 CCal Filename(s) F101117B_19 & F101118A_18 Extracted 11/15/2010 15:45 Method Blank ID **BLANK-26969** Analyzed 11/18/2010 06:07

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	4.70	0.45	0.19 I 0.19 B	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	72 74 81
2,3,7,8-TCDD Total TCDD	ND 7.80		0.14 0.14	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	93 96 68
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.35 0.75 6.30	 	0.30 J 0.25 J 0.28	1,2,3,6,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	69 68 75 66
1,2,3,7,8-PeCDD Total PeCDD	0.44 11.00		0.27 J 0.27	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	66 56 59
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.61 0.49	4.30 	0.14 P 0.15 J 0.20 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	57 56
1,2,3,7,8,9-HxCDF Total HxCDF	0.32 6.70		0.22 BJ 0.18	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.37 1.40 0.74 16.00		0.19 J 0.14 J 0.25 J 0.19	2,3,7,8-TCDD-37Cl4	0.20	72
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	6.90 0.74 7.70	 	0.26 0.32 J 0.29	Total 2,3,7,8-TCDD Equivalence: 1.5 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	24.00 44.00		0.41 0.41			
OCDF OCDD	24.00 200.00		0.27 0.39			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

P = PCDE Interference

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-5-1
Lab Sample ID 255589004
Filename F101118A_04
Injected By SMT
Total Amount Extracted 11.6 g

Total Amount Extracted 11.6 g Matrix Solid % Moisture 10.1 Dilution NA

Dry Weight Extracted Collected 11/03/2010 11:00 10.4 g **ICAL ID** F101012 Received 11/05/2010 10:15 CCal Filename(s) F101117B_19 & F101118A_18 Extracted 11/15/2010 15:45 Method Blank ID **BLANK-26969** Analyzed 11/18/2010 06:53

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.25 1.90		0.200 BJ 0.200 B	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	62 64 70
2,3,7,8-TCDD Total TCDD	ND ND		0.330 0.330	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	83 82 60
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.25 1.80		0.160 0.160 J 0.160 BJ	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	65 63 69
1,2,3,7,8-PeCDD Total PeCDD	ND 1.20		0.190 0.190 J	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	55 68 51 50
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	 0.15	1.30 0.17 	0.170 P 0.130 I 0.100 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	49 51
1,2,3,7,8,9-HxCDF Total HxCDF	ND 1.90		0.160 0.140 BJ	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 0.31 ND 2.70	 	0.210 0.180 J 0.160 0.180 J	2,3,7,8-TCDD-37Cl4	0.20	67
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	2.00 ND 6.50	 	0.200 J 0.290 0.250	Total 2,3,7,8-TCDD Equivalence: 0.57 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	7.80 16.00		0.480 0.480			
OCDF OCDD	5.50 67.00		0.310 J 0.480			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

P = PCDE Interference

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-5-2 Lab Sample ID 255589005 F101118A_05 Filename Injected By **SMT Total Amount Extracted** 11.9 g Solid Matrix % Moisture Dilution NA 10.4 Dry Weight Extracted Collected 11/03/2010 11:05 10.7 g **ICAL ID** F101012 Received 11/05/2010 10:15 CCal Filename(s) F101117B_19 & F101118A_18 Extracted 11/15/2010 15:45 Method Blank ID **BLANK-26969** Analyzed 11/18/2010 07:40

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 1.40		0.200 0.200 B	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	68 68 78
2,3,7,8-TCDD Total TCDD	ND 0.96		0.180 0.180	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	87 89 65
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.64	0.15 	0.200 0.130 I 0.160 BJ	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	64 66 70
1,2,3,7,8-PeCDD Total PeCDD	ND 1.50		0.150 0.150 J	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	64 65 55 56
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.14 ND	0.92	0.100 P 0.140 J 0.140	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	53 56
1,2,3,7,8,9-HxCDF Total HxCDF	ND 0.95		0.200 0.140 BJ	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 0.25 ND 1.70	 	0.120 0.093 J 0.170 0.130 J	2,3,7,8-TCDD-37Cl4	0.20	66
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.40 ND 3.40		0.090 J 0.110 0.100 J	Total 2,3,7,8-TCDD Equivalence: 0.35 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	5.10 9.10		0.210 0.210			
OCDF OCDD	4.60 44.00		0.270 J 0.310			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

P = PCDE Interference

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-5-3
Lab Sample ID 255589006
Filename F101118A_06
Injected By SMT

Total Amount Extracted 11.3 g Matrix Solid % Moisture 7.2 Dilution NA

Dry Weight Extracted 10.4 g Collected 11/03/2010 11:10 **ICAL ID** F101012 Received 11/05/2010 10:15 CCal Filename(s) F101117B_19 & F101118A_18 Extracted 11/15/2010 15:45 Method Blank ID **BLANK-26969** Analyzed 11/18/2010 08:26

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 0.67		0.120 0.120 BJ	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	70 70 77
2,3,7,8-TCDD Total TCDD	ND ND		0.130 0.130	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	89 88 64
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.15	0.13 	0.120 0.083 I 0.100 BJ	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	64 69 67 72 57
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.120 0.120	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	57 71 52 54
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.19 ND ND		0.088 BJ 0.082 0.093	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	50 50
1,2,3,7,8,9-HxCDF Total HxCDF	ND 0.19		0.120 0.096 BJ	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND 0.55	 	0.110 0.088 0.083 0.095 J	2,3,7,8-TCDD-37Cl4	0.20	74
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.30 ND 0.30	 	0.150 J 0.190 0.170 J	Total 2,3,7,8-TCDD Equivalence: 0.22 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.50 3.70		0.270 BJ 0.270 J			
OCDF OCDD	1.10 14.00		0.240 J 0.260			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-3-1
Lab Sample ID 255589007
Filename F101118A_07
Injected By SMT
Total Amount Extracted 13.8 g

Total Amount Extracted 13.8 g Matrix Solid % Moisture 48.4 Dilution NA

Dry Weight Extracted Collected 11/03/2010 12:40 7.12 g **ICAL ID** F101012 Received 11/05/2010 10:15 CCal Filename(s) F101117B_19 & F101118A_18 Extracted 11/15/2010 15:45 Method Blank ID **BLANK-26969** Analyzed 11/18/2010 09:13

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.30 29.00		0.29 BJ 0.29	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	66 70 73
2,3,7,8-TCDD Total TCDD	ND 11.00		0.36 0.36	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	73 80 59
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.95 8.80	 	0.46 0.31 J 0.39	1,2,3,4,7,6-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	59 57 53 56 56
1,2,3,7,8-PeCDD Total PeCDD	8.90	0.49	0.34 I 0.34	1,2,3,4,7,6-11XCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	48 42 41
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.43 0.38 0.38		0.23 BJ 0.24 J 0.27 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	42 41
1,2,3,7,8,9-HxCDF Total HxCDF	ND 4.30		0.23 0.24 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 5.10	0.65 0.46	0.37 0.40 I 0.31 I 0.36 J	2,3,7,8-TCDD-37Cl4	0.20	79
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	2.40 ND 4.80	 	0.26 J 0.32 0.29 J	Total 2,3,7,8-TCDD Equivalence: 1.1 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	7.50 17.00		0.50 0.50			
OCDF OCDD	8.40 95.00		0.42 J 0.56			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-3-2 Lab Sample ID 255589008 F101118A_08 Filename Injected By SMT

Total Amount Extracted 13.2 g Solid Matrix % Moisture Dilution NA 23.3

Dry Weight Extracted Collected 11/03/2010 12:45 10.1 g **ICAL ID** F101012 Received 11/05/2010 10:15 CCal Filename(s) F101117B_19 & F101118A_18 Extracted 11/15/2010 15:45 Method Blank ID **BLANK-26969** Analyzed 11/18/2010 09:59

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.35 2.90		0.17 BJ 0.17 B	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	63 65 71
2,3,7,8-TCDD Total TCDD	ND 0.28		0.17 0.17 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	83 83 58
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND 1.30		0.27 0.16 0.22 BJ	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	63 61 66 51
1,2,3,7,8-PeCDD Total PeCDD	ND 0.75		0.15 0.15 J	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	65 50 47
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND	0.92 	0.15 P 0.14 0.16	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	47 47 47
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		0.20 0.17	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND 0.39	 	0.19 0.11 0.13 0.14 J	2,3,7,8-TCDD-37Cl4	0.20	73
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.41 ND 1.40		0.16 J 0.28 0.22 J	Total 2,3,7,8-TCDD Equivalence: 0.29 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.60	1.00	0.25 I 0.25 J			
OCDF OCDD	9.80	1.20	0.32 I 0.18 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

P = PCDE Interference

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-3-3
Lab Sample ID 255589009
Filename F101118A_09
Injected By SMT
Total Amount Extracted 13.5 g

Total Amount Extracted 13.5 g Matrix Solid
% Moisture 23.2 Dilution NA
Dry Weight Extracted 10.3 g Collected 11/03/2010 12:50

ICAL ID F101012 Received 11/05/2010 10:15
CCal Filename(s) F101117B_19 & F101118A_18 Extracted 11/15/2010 15:45
Method Blank ID BLANK-26969 Analyzed 11/18/2010 10:45

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.300 4.300		0.170 BJ 0.170 B	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00	66 67
2,3,7,8-TCDD Total TCDD	ND 0.310		0.180 0.180 J	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00	72 78 81
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	ND 0.200		0.200 0.130 J	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C	2.00 2.00 2.00	62 60 59
Total PeCDF 1,2,3,7,8-PeCDD Total PeCDD	1.700 ND 0.690		0.170 BJ 0.170 0.170 J	1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	65 57 60 50
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	0.100	0.25	0.092 P 0.074 J	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	51 50 50
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	ND ND 0.230		0.100 0.096 0.091 BJ	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND 1.100	 	0.140 0.130 0.088 0.120 J	2,3,7,8-TCDD-37Cl4	0.20	73
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.450 ND 1.300	 	0.120 J 0.160 0.140 J	Total 2,3,7,8-TCDD Equivalence: 0.33 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.100 1.100		0.130 BJ 0.130 BJ			
OCDF OCDD	1.200 9.800		0.220 J 0.310			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

P = PCDE Interference

Method 8290 Blank Analysis Results

Lab Sample ID BLANK-26969 Filename F101117B_09

Total Amount Extracted ICAL ID

CCal Filename(s)

F101117B_09 10.4 g F101012 F101117B_02 & F101117B_19 Dilution Extracted Analyzed

Matrix

Solid NA 11/15/2010 15:45 11/17/2010 20:06

Injected By SMT

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20 1.40		0.140 J 0.140	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	59 60 67
2,3,7,8-TCDD Total TCDD	ND ND		0.160 0.160	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	81 80 63
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.22	0.13 	0.190 0.120 I 0.160 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	71 68 76 59
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.092 0.092	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	76 57 54
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.17 ND ND		0.098 J 0.095 0.078	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	55 54
1,2,3,7,8,9-HxCDF Total HxCDF	0.12 0.41		0.110 J 0.095 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	0.071 0.069 0.088 0.076	2,3,7,8-TCDD-37Cl4	0.20	57
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND	0.11 	0.077 I 0.120 0.097	Total 2,3,7,8-TCDD Equivalence: 0.22 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.15 0.15		0.140 J 0.140 J			
OCDF OCDD		0.42 0.74	0.120 I 0.090 I			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted

ICAL ID CCal Filename(s) Method Blank ID LCS-26970 F101118A_16 10.3 g

F101012 F101117B_19 & F101118A_18 BLANK-26969 Matrix Dilution Extracted Analyzed

Solid NA 11/15/2010 19

11/15/2010 15:45 11/18/2010 16:01

Injected By SMT

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.26	128	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.0 2.0 2.0	61 66 74
2,3,7,8-TCDD Total TCDD	0.20	0.20	100	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.0 2.0 2.0 2.0	85 97 68
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.2 1.1	117 111	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.0 2.0 2.0 2.0 2.0	68 67 72 68
1,2,3,7,8-PeCDD Total PeCDD	1.0	1.1	106	1,2,3,4,7,6-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.0 2.0 2.0 2.0	58 61 62
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.0 1.0 1.0	1.1 1.1 1.1	107 115 112	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.0 4.0	68 53
1,2,3,7,8,9-HxCDF Total HxCDF	1.0	1.1	111	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.0 2.0	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	1.1 1.1 1.3	109 111 128	2,3,7,8-TCDD-37Cl4	0.20	61
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.1 1.1	111 108			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	1.0	101			
OCDF OCDD	2.0 2.0	2.5 2.5	125 123			

Qs = Quantity Spiked Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)
R = Recovery outside of target range

Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable

* = See Discussion

December 09, 2010

Joshua Johnson Brown & Caldwell 724 Columbia St. NW#420 Olympia, WA 98501

RE: Project: East Bay Redevelopment 138130

Pace Project No.: 255812

Dear Joshua Johnson:

Enclosed are the analytical results for sample(s) received by the laboratory on November 24, 2010. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jennifer Gross

jennifer.gross@pacelabs.com Project Manager

ENNI (TROSS

Enclosures

(206)767-5060

CERTIFICATIONS

Project: East Bay Redevelopment 138130

Pace Project No.: 255812

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

Alaska Certification #: UST-078 Alaska Certification #MN00064 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA EPA Region 8 Certification #: Pace Florida/NELAP Certification #: E87605

Florida/NELAP Certification #: E8760 Georgia Certification #: 959 Idaho Certification #: MN00064 Illinois Certification #: 200011 Iowa Certification #: 368 Kansas Certification #: E-10167 Louisiana Certification #: 03086 Louisiana Certification #: LA080009 Maine Certification #: 2007029

Maryland Certification #: 322 Michigan DEQ Certification #: 9909 Minnesota Certification #: 027-053-137

Mississippi Certification #: Pace

Washington Certification IDs

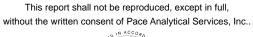
940 South Harney Street, Seattle, WA 98108
Alaska CS Certification #: UST-025
Alaska Drinking Water VOC Certification #: WA01230
Alaska Drinking Water Micro Certification #: WA01230

Montana Certification #: MT CERT0092
Nevada Certification #: MN_00064
Nebraska Certification #: Pace
New Jersey Certification #: MN-002
New Mexico Certification #: Pace
New York Certification #: Pace
New York Certification #: 11647
North Carolina Certification #: 530
North Dakota Certification #: R-036
North Dakota Certification #: R-036A
Ohio VAP Certification #: D9921
Oklahoma Certification #: 9507
Oregon Certification #: MN200001
Pennsylvania Certification #: 68-00563
Puerto Rico Certification #: 03818

Puerto Rico Certification Tennessee Certification #: 02818 Texas Certification #: T104704192 Washington Certification #: C754 Wisconsin Certification #: 999407970

California Certification #: 01153CA Florida/NELAP Certification #: E87617 Oregon Certification #: WA200007 Washington Certification #: C1229

SAMPLE ANALYTE COUNT


Project: East Bay Redevelopment 138130

Pace Project No.: 255812

255812001 SPL-6-1	Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
PASS PASS	255812001	SPL-6-1	NWTPH-Dx	DMT	4	PASI-S
ASTM D2974-87 KMC			EPA 6020	RJS	5	PASI-M
255812002 SPL-6-2 NWTFH-DX DMT 4 PASI-8 EPA 8020 RJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S ASTM D2974-87 KMC 1 PASI-S 255812003 PL6-3 NWTPH-DX DMT 4 PASI-S EPA 8270 by SIM DMT 20 PASI-S 255812004 PL6-4 NWTPH-DX DMT 4 PASI-S 255812004 PL6-4 NWTPH-DX DMT 4 PASI-S 255812005 PL6-5 NWTPH-DX DMT 4 PASI-S EPA 8270 by SIM DMT 20 PASI-S 255812005 PL6-5 NWTPH-DX DMT 4 PASI-S EPA 8270 by SIM DMT 20 PASI-S 255812006 PL9-1 NWTPH-DX DMT 4 PASI-S EPA 8270 by SIM DMT 20 PASI-S 255812006 PL9-1 NWTPH-DX DMT 4<			EPA 8270 by SIM	DMT	20	PASI-S
PASI-000 PASI-000			ASTM D2974-87	KMC	1	PASI-S
PASIS PASI	255812002	SPL-6-2	NWTPH-Dx	DMT	4	PASI-S
ASTM D2974-87			EPA 6020	RJS	5	PASI-M
255812003 SPL-6-3 NWTPH-DX DMT 4 PASI-8 EPA 6020 RJS 5 PASI-8 EPA 8270 by SIM DMT 20 PASI-8 ASTM D2974-87 KMC 1 PASI-8 255812004 SPL-6-4 NWTPH-DX DMT 4 PASI-8 EPA 8270 by SIM DMT 20 PASI-8 EPA 8270 by SIM DMT 20 PASI-8 EPA 8270 by SIM DMT 4 PASI-8 <td></td> <td></td> <td>EPA 8270 by SIM</td> <td>DMT</td> <td>20</td> <td>PASI-S</td>			EPA 8270 by SIM	DMT	20	PASI-S
PASI			ASTM D2974-87	KMC	1	PASI-S
PASIS	255812003	SPL-6-3	NWTPH-Dx	DMT	4	PASI-S
ASTM D2974-87 KMC			EPA 6020	RJS	5	PASI-M
255812004 SPL-6-4 NWTPH-DX DMT 4 PASI-S EPA 6020 RJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S ASTM D2974-87 KMC 1 PASI-S EPA 6020 RJS 5 PASI-M ASTM D2974-87 KMC 1 PASI-S EPA 6020 RJS 5 PASI-M EPA 6020 RJS 5 PASI-M ASTM D2974-87 KMC 1 PASI-S EPA 6020 RJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 6020 RJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 827			EPA 8270 by SIM	DMT	20	PASI-S
PASI-000			ASTM D2974-87	KMC	1	PASI-S
PASI-005 PASI-005	255812004	SPL-6-4	NWTPH-Dx	DMT	4	PASI-S
ASTM D2974-87			EPA 6020	RJS	5	PASI-M
255812005 SPL-6-5 NWTPH-Dx DMT 4 PASI-S EPA 6020 RJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S ASTM D2974-87 KMC 1 PASI-S 255812006 PL-9-1 NWTPH-Dx DMT 4 PASI-S EPA 6020 RJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S ASTM D2974-87 KMC 1 PASI-S EPA 6020 RJS 5 PASI-M ASTM D2974-87 KMC 1 PASI-S EPA 6020 RJS 5 PASI-M EPA 8270 by SIM DMT 4 PASI-S 255812008 SPL-9-3 NWTPH-DX DMT 4 PASI-S EPA 8270 by SIM DMT 4 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 4 PASI-S EPA 8270 by SIM DMT 4 PASI-S EPA 8270 by SIM DMT 4 PASI-S			EPA 8270 by SIM	DMT	20	PASI-S
EPA 6020 RJS 5			ASTM D2974-87	KMC	1	PASI-S
PASI-S P	255812005	SPL-6-5	NWTPH-Dx	DMT	4	PASI-S
ASTM D2974-87 KMC 1			EPA 6020	RJS	5	PASI-M
255812006 SPL-9-1 NWTPH-DX DMT 4 PASI-S EPA 6020 RJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 6020 RJS 1 PASI-S EPA 6020 RJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S ASTM D2974-87 KMC 1 PASI-S EPA 6020 RJS 5 PASI-M PASI-S ASTM D2974-87 KMC 1 PASI-S EPA 6020 RJS 5 PASI-M EPA 6020 RJS 5 PASI-S EPA 8270 by SIM DMT 20 PASI-S ASTM D2974-87 KMC 1 PASI-S EPA 6020 RJS 5 PASI-M EPA 6020 RJS 5 PASI-S EPA 8270 by SIM DMT 4 PASI-S EPA 6020 RJS 5 PASI-M EPA 8270 by SIM DMT			EPA 8270 by SIM	DMT	20	PASI-S
EPA 6020 RJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S ASTM D2974-87 KMC 1 PASI-S DMT 4 PASI-S EPA 8270 by SIM DMT 4 PASI-S EPA 6020 RJS 5 PASI-M EPA 6020 RJS 5 PASI-M EPA 6020 RJS 5 PASI-M EPA 6020 RJS 6 PASI-S EPA 6020 RJS 6 PASI-S EPA 6020 RJS 6 PASI-S EPA 6020 RJS 6 PASI-S EPA 6020 RJS 6 PASI-S EPA 6020 RJS 6 PASI-S EPA 6020 RJS 6 PASI-M EPA 6020 RJS 6 PASI-M EPA 6020 RJS 6 PASI-M EPA 6020 RJS 6 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 6020 RJS 6 PASI-S EPA 6020 RJS 6 PASI-S EPA 6020 RJS 6 PASI-M PASI-S 6 PASI-M RJS 6 PAS			ASTM D2974-87	KMC	1	PASI-S
BEPA 8270 by SIM DMT 20 PASI-S ASTM D2974-87 KMC 1 PASI-S 255812007 SPL-9-2 NWTPH-Dx DMT 4 PASI-S EPA 6020 RJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S ASTM D2974-87 KMC 1 PASI-S EPA 6020 RJS 5 PASI-M EPA 6020 RJS 5 PASI-M EPA 6020 RJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S ASTM D2974-87 KMC 1 PASI-S EPA 6020 RJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S	255812006	SPL-9-1	NWTPH-Dx	DMT	4	PASI-S
ASTM D2974-87 KMC 1 PASI-S 255812007 SPL-9-2 NWTPH-Dx DMT 4 PASI-S EPA 6020 RJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S ASTM D2974-87 KMC 1 PASI-S 255812008 SPL-9-3 NWTPH-Dx DMT 4 PASI-S EPA 6020 RJS 5 PASI-M EPA 6020 RJS 5 PASI-M EPA 6020 RJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S ASTM D2974-87 KMC 1 PASI-S ASTM D2974-87 KMC 1 PASI-S EPA 6020 RJS 5 PASI-M EPA 6020 RJS 5 PASI			EPA 6020	RJS	5	PASI-M
255812007 SPL-9-2 NWTPH-Dx DMT 4 PASI-S EPA 6020 RJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S ASTM D2974-87 KMC 1 PASI-S 255812008 SPL-9-3 NWTPH-Dx DMT 4 PASI-S EPA 6020 RJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S 255812009 SPL-8-3 NWTPH-Dx DMT 4 PASI-S EPA 6020 RJS 5 PASI-M EPA 6020 RJS 5 PASI-S EPA 6020 RJS 5 PASI-S EPA 6020 RJS 5 PASI-S EPA 8270 by SIM DMT 20 PASI-S ASTM D2974-87 KMC 1 PASI-S			EPA 8270 by SIM	DMT	20	PASI-S
EPA 6020 RJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S ASTM D2974-87 KMC 1 PASI-S 255812008 SPL-9-3 NWTPH-Dx DMT 4 PASI-S EPA 6020 RJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S ASTM D2974-87 KMC 1 PASI-S ASTM D2974-87 KMC 1 PASI-S 255812009 SPL-8-3 NWTPH-Dx DMT 20 PASI-S EPA 6020 RJS 5 PASI-M EPA 6020 RJS 5 PASI-M EPA 6020 RJS 5 PASI-M EPA 6020 RJS 5 PASI-M EPA 6020 RJS 5 PASI-M EPA 6020 RJS 5 PASI-M EPA 6020 RJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S ASTM D2974-87 KMC 1 PASI-S			ASTM D2974-87	KMC	1	PASI-S
EPA 8270 by SIM DMT 20 PASI-S ASTM D2974-87 KMC 1 PASI-S NWTPH-Dx DMT 4 PASI-S EPA 6020 RJS 5 PASI-M EPA 8270 by SIM D2974-87 KMC 1 PASI-S ASTM D2974-87 KMC 1 PASI-S PASI-M EPA 8270 by SIM DMT 20 PASI-S ASTM D2974-87 KMC 1 PASI-S EPA 6020 RJS 5 PASI-M EPA 6020 RJS 5 PASI-M EPA 6020 RJS 5 PASI-M EPA 6020 RJS 5 PASI-M EPA 6020 RJS 5 PASI-M EPA 6020 RJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S ASTM D2974-87 KMC 1 PASI-S FASI-M EPA 8270 by SIM DMT 20 PASI-S FASI-M EPA 8270 by SIM DMT 20 PASI-S FASI-M EPA 8270 by SIM DMT 20 PASI-S FASI-M EPA 8270 by SIM DMT 20 PASI-S FASI-M EPA 8270 by SIM DMT 20 PASI-S FASI-M EPA 8270 by SIM D2974-87 KMC 1 PASI-S FASI-M PASI-	255812007	SPL-9-2	NWTPH-Dx	DMT	4	PASI-S
ASTM D2974-87 KMC 1 PASI-S 255812008 SPL-9-3 NWTPH-Dx DMT 4 PASI-S EPA 6020 RJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S ASTM D2974-87 KMC 1 PASI-S ASTM D2974-87 KMC 1 PASI-S EPA 6020 RJS 5 PASI-M EPA 6020 RJS 5 PASI-M EPA 6020 RJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S ASTM D2974-87 KMC 1 PASI-S EPA 8270 by SIM DMT 20 PASI-S ASTM D2974-87 KMC 1 PASI-S			EPA 6020	RJS	5	PASI-M
255812008 SPL-9-3 NWTPH-Dx DMT 4 PASI-S EPA 6020 RJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S ASTM D2974-87 KMC 1 PASI-S NWTPH-Dx DMT 4 PASI-S EPA 6020 RJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S ASTM D2974-87 KMC 1 PASI-S			EPA 8270 by SIM	DMT	20	PASI-S
EPA 6020 RJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S ASTM D2974-87 KMC 1 PASI-S NWTPH-Dx DMT 4 PASI-S EPA 6020 RJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-M EPA 8270 by SIM DMT 20 PASI-S ASTM D2974-87 KMC 1 PASI-S			ASTM D2974-87	KMC	1	PASI-S
EPA 8270 by SIM DMT 20 PASI-S ASTM D2974-87 KMC 1 PASI-S NWTPH-Dx DMT 4 PASI-S EPA 6020 RJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S ASTM D2974-87 KMC 1 PASI-S	255812008	SPL-9-3	NWTPH-Dx	DMT	4	PASI-S
ASTM D2974-87 KMC 1 PASI-S 255812009 SPL-8-3 NWTPH-Dx DMT 4 PASI-S EPA 6020 RJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S ASTM D2974-87 KMC 1 PASI-S			EPA 6020	RJS	5	PASI-M
255812009 SPL-8-3 NWTPH-Dx DMT 4 PASI-S EPA 6020 RJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S ASTM D2974-87 KMC 1 PASI-S			EPA 8270 by SIM	DMT	20	PASI-S
EPA 6020 RJS 5 PASI-M EPA 8270 by SIM DMT 20 PASI-S ASTM D2974-87 KMC 1 PASI-S			ASTM D2974-87	KMC	1	PASI-S
EPA 8270 by SIM DMT 20 PASI-S ASTM D2974-87 KMC 1 PASI-S	255812009	SPL-8-3	NWTPH-Dx	DMT	4	PASI-S
ASTM D2974-87 KMC 1 PASI-S			EPA 6020	RJS	5	PASI-M
			EPA 8270 by SIM	DMT	20	PASI-S
255812010 SPL-7-5 NWTPH-Dx DMT 4 PASI-S			ASTM D2974-87	KMC	1	PASI-S
	255812010	SPL-7-5	NWTPH-Dx	DMT	4	PASI-S

REPORT OF LABORATORY ANALYSIS

Page 3 of 24

(206)767-5060

SAMPLE ANALYTE COUNT

Project: East Bay Redevelopment 138130

Pace Project No.: 255812

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
	-	EPA 6020	RJS	5	PASI-M
		EPA 8270 by SIM	DMT	20	PASI-S
		ASTM D2974-87	KMC	1	PASI-S
255812011	SPL-8-1	NWTPH-Dx	DMT	4	PASI-S
		EPA 6020	RJS	5	PASI-M
		EPA 8270 by SIM	DMT	20	PASI-S
		ASTM D2974-87	KMC	1	PASI-S
255812012	SPL-8-2	NWTPH-Dx	DMT	4	PASI-S
		EPA 6020	RJS	5	PASI-M
		EPA 8270 by SIM	DMT	20	PASI-S
		ASTM D2974-87	KMC	1	PASI-S

Project: East Bay Redevelopment 138130

Pace Project No.: 255812

Date: 12/09/2010 05:32 PM

Lab ID: 255812001 Sample: SPL-6-1 Collected: 11/22/10 13:20 Received: 11/24/10 14:08 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG ND mg/kg 77.3 12/01/10 12:45 12/03/10 20:44 309 Motor Oil Range SG ND mg/kg 1 12/01/10 12:45 12/03/10 20:44 64742-65-0 n-Octacosane (S) SG 100 % 50-150 12/01/10 12:45 12/03/10 20:44 630-02-4 1 o-Terphenyl (S) SG 91 % 50-150 12/01/10 12:45 12/03/10 20:44 84-15-1 **6020 MET ICPMS** Analytical Method: EPA 6020 **7.0** mg/kg 12/03/10 10:38 12/07/10 16:36 7440-38-2 Arsenic 1.6 20 **0.80** mg/kg Cadmium 0.26 20 12/03/10 10:38 12/07/10 16:36 7440-43-9 Copper 43.3 mg/kg 1.6 20 12/03/10 10:38 12/07/10 16:36 7440-50-8 Lead 26.1 mg/kg 1.6 20 12/03/10 10:38 12/07/10 16:36 7439-92-1 26.5 mg/kg 20 12/03/10 10:38 12/07/10 16:36 7440-02-0 Nickel 1.6 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 12/01/10 13:30 12/08/10 17:04 83-32-9 Acenaphthene 28.3 ug/kg 25.7 1 25.7 Acenaphthylene 47.2 ug/kg 12/01/10 13:30 12/08/10 17:04 208-96-8 1 41.8 ug/kg 25.7 12/01/10 13:30 12/08/10 17:04 120-12-7 Anthracene 1 12/01/10 13:30 12/08/10 17:04 56-55-3 90.5 ug/kg 25.7 Benzo(a)anthracene 1 120 ug/kg 25.7 12/01/10 13:30 12/08/10 17:04 50-32-8 Benzo(a)pyrene 1 Benzo(b)fluoranthene 55.9 ug/kg 25.7 1 12/01/10 13:30 12/08/10 17:04 205-99-2 Benzo(g,h,i)perylene 83.5 ug/kg 25.7 12/01/10 13:30 12/08/10 17:04 191-24-2 Benzo(k)fluoranthene 94.2 ug/kg 25.7 12/01/10 13:30 12/08/10 17:04 207-08-9 99.5 ug/kg Chrysene 25.7 12/01/10 13:30 12/08/10 17:04 218-01-9 Dibenz(a,h)anthracene 32.3 ug/kg 25.7 12/01/10 13:30 12/08/10 17:04 53-70-3 Fluoranthene 183 ug/kg 25.7 12/01/10 13:30 12/08/10 17:04 206-44-0 Fluorene 41.1 ug/kg 25.7 12/01/10 13:30 12/08/10 17:04 86-73-7 1 Indeno(1,2,3-cd)pyrene 72.9 ug/kg 25.7 12/01/10 13:30 12/08/10 17:04 193-39-5 25.7 12/01/10 13:30 12/08/10 17:04 90-12-0 1-Methylnaphthalene 51.0 ug/kg 1 2-Methylnaphthalene 73.8 ug/kg 25.7 12/01/10 13:30 12/08/10 17:04 91-57-6 1 Naphthalene 328 ug/kg 25.7 1 12/01/10 13:30 12/08/10 17:04 91-20-3 Phenanthrene 154 ug/kg 25.7 1 12/01/10 13:30 12/08/10 17:04 85-01-8 Pyrene 174 ug/kg 25.7 12/01/10 13:30 12/08/10 17:04 129-00-0 1 2-Fluorobiphenyl (S) 57 % 31-131 12/01/10 13:30 12/08/10 17:04 321-60-8 1 Terphenyl-d14 (S) 51 % 30-133 12/01/10 13:30 12/08/10 17:04 1718-51-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 74.3 % 0.10 11/30/10 17:03 Sample: SPL-6-2 Lab ID: 255812002 Collected: 11/22/10 13:40 Received: 11/24/10 14:08 Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 **NWTPH-Dx GCS SG** Diesel Range SG ND mg/kg 25.3 12/01/10 12:45 12/03/10 21:01

REPORT OF LABORATORY ANALYSIS

Page 5 of 24

Project: East Bay Redevelopment 138130

Sample: SPL-6-2	Lab ID: 255	812002	Collected:	11/22/1	0 13:40	Received: 11	/24/10 14:08 I	Matrix: Solid	
Results reported on a "dry-wei	ght" basis								
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS SG	Analytical Met	hod: NWTF	PH-Dx Prepa	ration Me	ethod: El	PA 3546			
Motor Oil Range SG	ND m	g/kg		101	1	12/01/10 12:45	12/03/10 21:01	64742-65-0	
n-Octacosane (S) SG	103 %			50-150	1	12/01/10 12:45	12/03/10 21:01	630-02-4	
o-Terphenyl (S) SG	96 %			50-150	1	12/01/10 12:45	12/03/10 21:01	84-15-1	
6020 MET ICPMS	Analytical Met	hod: EPA 6	020						
Arsenic	5.5 m	g/kg		0.62	20	12/03/10 10:38	12/07/10 16:55	7440-38-2	
Cadmium	ND m			0.10	20	12/03/10 10:38	12/07/10 16:55	7440-43-9	
Copper	43.4 m			0.62	20		12/07/10 16:55		
Lead	11.3 m			0.62	20		12/07/10 16:55		
Nickel	47.6 m			0.62	20		12/07/10 16:55		
8270 MSSV PAH by SIM	Analytical Met	hod: EPA 8	270 by SIM I	Preparati	on Meth	od: EPA 3546			
Acenaphthene	ND ug	ı/ka		9.0	1	12/01/10 13:30	12/08/10 13:53	83-32-9	
Acenaphthylene	ND ug			9.0	1		12/08/10 13:53		
Anthracene	ND ug	_		9.0	1		12/08/10 13:53		
Benzo(a)anthracene	ND ug	_		9.0	1		12/08/10 13:53		
* *				9.0			12/08/10 13:53		
Benzo(a)pyrene	ND ug	-			1				
Benzo(b)fluoranthene	ND ug			9.0	1		12/08/10 13:53		
Benzo(g,h,i)perylene	ND ug	_		9.0	1		12/08/10 13:53	_	
Benzo(k)fluoranthene	ND ug	_		9.0	1		12/08/10 13:53		
Chrysene	ND ug			9.0	1		12/08/10 13:53		
Dibenz(a,h)anthracene	ND ug	-		9.0	1		12/08/10 13:53		
Fluoranthene	10.7 ug	_		9.0	1		12/08/10 13:53		
Fluorene	ND ug	J/kg		9.0	1	12/01/10 13:30	12/08/10 13:53	86-73-7	
Indeno(1,2,3-cd)pyrene	ND ug			9.0	1	12/01/10 13:30	12/08/10 13:53	193-39-5	
1-Methylnaphthalene	ND ug			9.0	1	12/01/10 13:30	12/08/10 13:53	90-12-0	
2-Methylnaphthalene	13.0 ug	J/kg		9.0	1	12/01/10 13:30	12/08/10 13:53	91-57-6	
Naphthalene	80.4 ug	J/kg		9.0	1	12/01/10 13:30	12/08/10 13:53	91-20-3	
Phenanthrene	23.2 ug	J/kg		9.0	1	12/01/10 13:30	12/08/10 13:53	85-01-8	
Pyrene	ND ug	ı/kg		9.0	1	12/01/10 13:30	12/08/10 13:53	129-00-0	
2-Fluorobiphenyl (S)	72 %	_		31-131	1	12/01/10 13:30	12/08/10 13:53	321-60-8	
Terphenyl-d14 (S)	72 %			30-133	1		12/08/10 13:53		
Percent Moisture	Analytical Met	hod: ASTM	D2974-87						
Percent Moisture	26.5 %			0.10	1		11/30/10 17:04		
Sample: SPL-6-3	Lab ID: 255	812003	Collected:	11/22/1	0 13:40	Received: 11	/24/10 14:08	Matrix: Solid	
Results reported on a "dry-weig	ynt" basis								
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS SG	Analytical Met	hod: NWTF	PH-Dx Prepa	ration Me	ethod: El	PA 3546			
Diesel Range SG	ND m	g/kg		41.9	1	12/01/10 12:45	12/03/10 21:17	•	
Motor Oil Range SG	ND m	0 0		168	1		12/03/10 21:17		

Date: 12/09/2010 05:32 PM

REPORT OF LABORATORY ANALYSIS

Page 6 of 24

Project: East Bay Redevelopment 138130

Pace Project No.: 255812						
Sample: SPL-6-3	Lab ID: 25581200	Collected: 11/22/10	13:40 Receive	d: 11/24/10 14:08	Matrix: Solid	
Results reported on a "dry-wei	ght" basis					
Parameters	Results Ur	its Report Limit	DF Prepar	ed Analyzed	CAS No.	Qual
NWTPH-Dx GCS SG	Analytical Method: N	NTPH-Dx Preparation Meth	nod: EPA 3546			
n-Octacosane (S) SG	93 %	50-150	1 12/01/10	12:45 12/03/10 21:	17 630-02-4	
o-Terphenyl (S) SG	87 %	50-150	1 12/01/10	12:45 12/03/10 21:	17 84-15-1	
6020 MET ICPMS	Analytical Method: E	PA 6020				
Arsenic	6.8 mg/kg	0.91	20 12/03/10	10:38 12/07/10 17:0	04 7440-38-2	
Cadmium	1.8 mg/kg	0.15	20 12/03/10	10:38 12/07/10 17:0	04 7440-43-9	
Copper	36.9 mg/kg	0.91	20 12/03/10	10:38 12/07/10 17:0	04 7440-50-8	
Lead	14.2 mg/kg	0.91		10:38 12/07/10 17:0		
Nickel	35.1 mg/kg	0.91		10:38 12/07/10 17:0		
8270 MSSV PAH by SIM	Analytical Method: E	PA 8270 by SIM Preparation	n Method: EPA 35	546		
Acenaphthene	ND ug/kg	14.5	1 12/01/10	13:30 12/08/10 14:4	10 83-32-9	
Acenaphthylene	ND ug/kg	14.5		13:30 12/08/10 14:4		
Anthracene	21.9 ug/kg	14.5		13:30 12/08/10 14:4		
Benzo(a)anthracene	60.5 ug/kg	14.5		13:30 12/08/10 14:4		
Benzo(a)pyrene		14.5		13:30 12/08/10 14:4		
	50.9 ug/kg					
Benzo(b)fluoranthene	26.2 ug/kg	14.5		13:30 12/08/10 14:4		
Benzo(g,h,i)perylene	22.6 ug/kg	14.5		13:30 12/08/10 14:4		
Benzo(k)fluoranthene	46.8 ug/kg	14.5		13:30 12/08/10 14:4		
Chrysene	65.0 ug/kg	14.5		13:30 12/08/10 14:4		
Dibenz(a,h)anthracene	ND ug/kg	14.5	1 12/01/10	13:30 12/08/10 14:4	10 53-70-3	
Fluoranthene	98.0 ug/kg	14.5	1 12/01/10	13:30 12/08/10 14:4	10 206-44-0	
Fluorene	ND ug/kg	14.5	1 12/01/10	13:30 12/08/10 14:4	10 86-73-7	
Indeno(1,2,3-cd)pyrene	22.4 ug/kg	14.5	1 12/01/10	13:30 12/08/10 14:4	10 193-39-5	
1-Methylnaphthalene	18.6 ug/kg	14.5	1 12/01/10	13:30 12/08/10 14:4	10 90-12-0	
2-Methylnaphthalene	43.4 ug/kg	14.5	1 12/01/10	13:30 12/08/10 14:4	10 91-57-6	
Naphthalene	50.7 ug/kg	14.5	1 12/01/10	13:30 12/08/10 14:4	10 91-20-3	
Phenanthrene	34.7 ug/kg	14.5	1 12/01/10	13:30 12/08/10 14:4	10 85-01-8	
Pyrene	91.7 ug/kg	14.5		13:30 12/08/10 14:4		
2-Fluorobiphenyl (S)	72 %	31-131		13:30 12/08/10 14:4		
Terphenyl-d14 (S)	67 %	30-133		13:30 12/08/10 14:4		
Percent Moisture	Analytical Method: A	STM D2974-87				
Percent Moisture	54.1 %	0.10	1	11/30/10 17:0	06	
reitent Moisture	J4.1 /0	0.10	ı	11/30/10 17.0	00	
Sample: SPL-6-4	Lab ID: 25581200	Collected: 11/22/10	13:50 Receive	d: 11/24/10 14:08	Matrix: Solid	
Results reported on a "dry-wei	ght" basis					
Parameters	Results Ur	its Report Limit	DF Prepar	ed Analyzed	CAS No.	Qual
NWTPH-Dx GCS SG	Analytical Method: N	NTPH-Dx Preparation Meth	nod: EPA 3546			
Diesel Range SG	ND mg/kg	37.9	1 12/01/10	12:45 12/03/10 21:3	34	
Motor Oil Range SG	ND mg/kg	151		12:45 12/03/10 21:3		
•						
n-Octacosane (S) SG	108 %	50-150	1 12/01/10	12:45 12/03/10 21:3	04 030-02-4	

Date: 12/09/2010 05:32 PM **REPORT OF LABORATORY ANALYSIS**

Page 7 of 24

This report shall not be reproduced, except in full,

Project: East Bay Redevelopment 138130

Pace Project No.: 255812

Sample: SPL-6-4	Lab ID: 2558	312004	Collected:	11/22/1	0 13:50	Received: 11	/24/10 14:08 N	Matrix: Solid	
Results reported on a "dry-wei									
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS SG	Analytical Meth	od: NWTP	H-Dx Prepar	ation Me	ethod: E	PA 3546			
o-Terphenyl (S) SG	96 %		į	50-150	1	12/01/10 12:45	12/03/10 21:34	84-15-1	
6020 MET ICPMS	Analytical Meth	od: EPA 60	020						
Arsenic	5.5 mg	/kg		0.88	20	12/03/10 10:38	12/07/10 17:28	7440-38-2	
Cadmium	1.3 mg	/kg		0.14	20	12/03/10 10:38	12/07/10 17:28	7440-43-9	
Copper	31.3 mg	-		0.88	20	12/03/10 10:38	12/07/10 17:28	7440-50-8	
Lead	13.8 mg	-		0.88	20	12/03/10 10:38	12/07/10 17:28	7439-92-1	
Nickel	28.0 mg			0.88	20	12/03/10 10:38	12/07/10 17:28	7440-02-0	
8270 MSSV PAH by SIM	Analytical Meth	od: EPA 82	270 by SIM F	Preparati	on Meth	od: EPA 3546			
Acenaphthene	13.0 ug/	'kg		13.0	1	12/01/10 13:30	12/08/10 17:19	83-32-9	
Acenaphthylene	20.6 ug/			13.0	1		12/08/10 17:19		
Anthracene	42.4 ug/			13.0	1		12/08/10 17:19		
Benzo(a)anthracene	108 ug/	-		13.0	1		12/08/10 17:19		
Benzo(a)pyrene	138 ug/	•		13.0	1		12/08/10 17:19		
Benzo(b)fluoranthene	71.5 ug/	-		13.0	1		12/08/10 17:19		
` '	-	-		13.0	1		12/08/10 17:19		
Benzo(g,h,i)perylene	82.8 ug/	-		13.0	1		12/08/10 17:19		
Benzo(k)fluoranthene	102 ug/								
Chrysene	124 ug/	-		13.0	1		12/08/10 17:19		
Dibenz(a,h)anthracene	31.0 ug/	-		13.0	1		12/08/10 17:19		
Fluoranthene	177 ug/	-		13.0	1		12/08/10 17:19		
Fluorene	23.6 ug/	-		13.0	1		12/08/10 17:19		
Indeno(1,2,3-cd)pyrene	78.5 ug/	-		13.0	1		12/08/10 17:19		
1-Methylnaphthalene	18.0 ug/	-		13.0	1		12/08/10 17:19		
2-Methylnaphthalene	32.2 ug/	-		13.0	1		12/08/10 17:19		
Naphthalene	95.0 ug/	-		13.0	1		12/08/10 17:19		
Phenanthrene	76.1 ug/	-		13.0	1		12/08/10 17:19		
Pyrene	178 ug/	′kg		13.0	1	12/01/10 13:30	12/08/10 17:19	129-00-0	
2-Fluorobiphenyl (S)	66 %		3	31-131	1	12/01/10 13:30	12/08/10 17:19	321-60-8	
Terphenyl-d14 (S)	60 %		3	30-133	1	12/01/10 13:30	12/08/10 17:19	1718-51-0	
Percent Moisture	Analytical Meth	od: ASTM	D2974-87						
Percent Moisture	48.7 %			0.10	1		11/30/10 17:07		
		1000-	0 "	44/00/:	0.46.7=	.	10.4/4.0.4.2.2.2.2	1	
Sample: SPL-6-5	Lab ID: 2558	512005	Collected:	11/22/1	บ 13:55	Received: 11	/∠4/10 14:08 N	Matrix: Solid	
Results reported on a "dry-wei									
Parameters	Results —	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS SG	Analytical Meth	od: NWTP	H-Dx Prepar	ation Me	ethod: E	PA 3546			
Diesel Range SG	68.8 mg	/kg		65.7	1	12/01/10 12:45	12/03/10 22:23		
Motor Oil Range SG	ND mg			263	1		12/03/10 22:23		
- O-t (C) CO	100 %	· · · · · · · · · · · · · · · · · · ·	,	-00			12/00/10 22:20		

Date: 12/09/2010 05:32 PM

n-Octacosane (S) SG

o-Terphenyl (S) SG

REPORT OF LABORATORY ANALYSIS

50-150

50-150

106 %

97 %

Page 8 of 24

12/01/10 12:45 12/03/10 22:23 630-02-4

12/01/10 12:45 12/03/10 22:23 84-15-1

Project: East Bay Redevelopment 138130

Pace Project No.: 255812

Lab ID: 255812005 Sample: SPL-6-5 Collected: 11/22/10 13:55 Received: 11/24/10 14:08 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **6020 MET ICPMS** Analytical Method: EPA 6020 Arsenic 5.6 mg/kg 1.5 20 12/03/10 10:38 12/07/10 17:37 7440-38-2 Cadmium ND mg/kg 0.24 20 12/03/10 10:38 12/07/10 17:37 7440-43-9 Copper 28.6 mg/kg 1.5 20 12/03/10 10:38 12/07/10 17:37 7440-50-8 Lead 22.9 mg/kg 1.5 20 12/03/10 10:38 12/07/10 17:37 7439-92-1 12/03/10 10:38 12/07/10 17:37 7440-02-0 Nickel 12.1 mg/kg 1.5 20 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Acenaphthene 289 ua/ka 22.4 12/01/10 13:30 12/08/10 17:35 83-32-9 36.2 ug/kg 22.4 Acenaphthylene 1 12/01/10 13:30 12/08/10 17:35 208-96-8 Anthracene 69.2 ug/kg 22.4 12/01/10 13:30 12/08/10 17:35 120-12-7 1 69.2 ug/kg 22.4 12/01/10 13:30 12/08/10 17:35 56-55-3 Benzo(a)anthracene 1 74.0 ug/kg 22.4 12/01/10 13:30 12/08/10 17:35 50-32-8 Benzo(a)pyrene 1 57.4 ug/kg 22.4 Benzo(b)fluoranthene 12/01/10 13:30 12/08/10 17:35 205-99-2 1 Benzo(g,h,i)perylene 65.0 ug/kg 22.4 12/01/10 13:30 12/08/10 17:35 191-24-2 1 71.1 ug/kg 22.4 12/01/10 13:30 12/08/10 17:35 207-08-9 Benzo(k)fluoranthene 1 Chrysene 113 ug/kg 22.4 1 12/01/10 13:30 12/08/10 17:35 218-01-9 Dibenz(a,h)anthracene ND ug/kg 22.4 1 12/01/10 13:30 12/08/10 17:35 53-70-3 Fluoranthene 333 ug/kg 22.4 12/01/10 13:30 12/08/10 17:35 1 206-44-0 22.4 Fluorene 126 ug/kg 1 12/01/10 13:30 12/08/10 17:35 86-73-7 Indeno(1,2,3-cd)pyrene 49.6 ug/kg 22.4 12/01/10 13:30 12/08/10 17:35 193-39-5 1 1-Methylnaphthalene 55.2 ug/kg 22.4 12/01/10 13:30 12/08/10 17:35 90-12-0 1 22.4 2-Methylnaphthalene 115 ug/kg 12/01/10 13:30 12/08/10 17:35 91-57-6 1 Naphthalene 520 ug/kg 22 4 12/01/10 13:30 12/08/10 17:35 91-20-3 1 Phenanthrene 361 ug/kg 22 4 12/01/10 13:30 12/08/10 17:35 85-01-8 1 Pyrene 199 ug/kg 22.4 1 12/01/10 13:30 12/08/10 17:35 129-00-0 2-Fluorobiphenyl (S) 58 % 31-131 1 12/01/10 13:30 12/08/10 17:35 321-60-8 Terphenyl-d14 (S) 56 % 30-133 12/01/10 13:30 12/08/10 17:35 1718-51-0 1 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 71.0 % 0.10 1 11/30/10 17:08 Sample: SPL-9-1 Matrix: Solid Lab ID: 255812006 Collected: 11/22/10 13:00 Received: 11/24/10 14:08 Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG ND mg/kg 21.0 1 12/01/10 12:45 12/03/10 22:39 Motor Oil Range SG ND mg/kg 84.2 1 12/01/10 12:45 12/03/10 22:39 64742-65-0 n-Octacosane (S) SG 104 % 50-150 1 12/01/10 12:45 12/03/10 22:39 630-02-4 o-Terphenyl (S) SG 94 % 50-150 12/01/10 12:45 12/03/10 22:39 84-15-1 1

Date: 12/09/2010 05:32 PM

6020 MET ICPMS

Arsenic

REPORT OF LABORATORY ANALYSIS

Analytical Method: EPA 6020

5.4 mg/kg

Page 9 of 24

0.46

20

12/03/10 10:38 12/07/10 17:47 7440-38-2

Project: East Bay Redevelopment 138130

Pace Project No.: 255812

Lab ID: 255812006 Sample: SPL-9-1 Collected: 11/22/10 13:00 Received: 11/24/10 14:08 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **6020 MET ICPMS** Analytical Method: EPA 6020 Cadmium 0.12 mg/kg 0.073 20 12/03/10 10:38 12/07/10 17:47 7440-43-9 Copper 26.0 mg/kg 0.46 20 12/03/10 10:38 12/07/10 17:47 7440-50-8 Lead 6.7 mg/kg 0.46 20 12/03/10 10:38 12/07/10 17:47 7439-92-1 Nickel 26.7 mg/kg 0.46 20 12/03/10 10:38 12/07/10 17:47 7440-02-0 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 7.0 12/01/10 13:30 12/08/10 17:51 83-32-9 Acenaphthene 8.2 ug/kg 41.3 ug/kg Acenaphthylene 7.0 1 12/01/10 13:30 12/08/10 17:51 208-96-8 **56.2** ug/kg Anthracene 7.0 1 12/01/10 13:30 12/08/10 17:51 120-12-7 Benzo(a)anthracene 148 ug/kg 7.0 12/01/10 13:30 12/08/10 17:51 56-55-3 1 179 ug/kg 7.0 12/01/10 13:30 12/08/10 17:51 50-32-8 Benzo(a)pyrene 1 Benzo(b)fluoranthene 84.3 ug/kg 7.0 12/01/10 13:30 12/08/10 17:51 205-99-2 1 97.3 ug/kg Benzo(g,h,i)perylene 7.0 12/01/10 13:30 12/08/10 17:51 191-24-2 1 Benzo(k)fluoranthene 123 ug/kg 7.0 12/01/10 13:30 12/08/10 17:51 207-08-9 1 164 ug/kg Chrysene 7.0 1 12/01/10 13:30 12/08/10 17:51 218-01-9 Dibenz(a,h)anthracene 28.7 ug/kg 7.0 1 12/01/10 13:30 12/08/10 17:51 53-70-3 Fluoranthene 318 ug/kg 7.0 1 12/01/10 13:30 12/08/10 17:51 206-44-0 20.8 ug/kg 12/01/10 13:30 12/08/10 17:51 Fluorene 7.0 1 Indeno(1,2,3-cd)pyrene 91.6 ug/kg 7.0 1 12/01/10 13:30 12/08/10 17:51 193-39-5 1-Methylnaphthalene 7.2 ug/kg 7.0 12/01/10 13:30 12/08/10 17:51 90-12-0 1 2-Methylnaphthalene 9.2 ug/kg 7.0 12/01/10 13:30 12/08/10 17:51 91-57-6 1 Naphthalene 13.5 ug/kg 7.0 12/01/10 13:30 12/08/10 17:51 91-20-3 1 Phenanthrene 214 ug/kg 7.0 12/01/10 13:30 12/08/10 17:51 85-01-8 1 Pyrene 316 ug/kg 7.0 12/01/10 13:30 12/08/10 17:51 129-00-0 1 2-Fluorobiphenyl (S) 69 % 31-131 1 12/01/10 13:30 12/08/10 17:51 321-60-8 Terphenyl-d14 (S) 79 % 30-133 1 12/01/10 13:30 12/08/10 17:51 1718-51-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 6.8 % 0.10 1 11/30/10 17:09 Lab ID: 255812007 Sample: SPL-9-2 Collected: 11/22/10 13:10 Received: 11/24/10 14:08 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG ND mg/kg 21.4 1 12/01/10 12:45 12/03/10 22:55 Motor Oil Range SG ND mg/kg 85.4 1 12/01/10 12:45 12/03/10 22:55 64742-65-0

Date: 12/09/2010 05:32 PM

n-Octacosane (S) SG

o-Terphenyl (S) SG

6020 MET ICPMS

Arsenic

Cadmium

REPORT OF LABORATORY ANALYSIS

50-150

50-150

0.41

0.065

1

1

20

20

12/01/10 12:45 12/03/10 22:55 630-02-4

12/03/10 10:38 12/07/10 17:56 7440-38-2

12/03/10 10:38 12/07/10 17:56 7440-43-9

12/01/10 12:45 12/03/10 22:55 84-15-1

110 %

99 %

Analytical Method: EPA 6020

4.0 mg/kg

0.079 mg/kg

Page 10 of 24

Matrix: Solid

ANALYTICAL RESULTS

Collected: 11/22/10 13:10

Received: 11/24/10 14:08

Lab ID: 255812007

101 %

Analytical Method: EPA 6020

3.0 mg/kg

ND mg/kg

15.8 mg/kg

Project: East Bay Redevelopment 138130

Pace Project No.: 255812

Sample: SPL-9-2

Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **6020 MET ICPMS** Analytical Method: EPA 6020 Copper 22.1 mg/kg 0.41 20 12/03/10 10:38 12/07/10 17:56 7440-50-8 Lead **6.7** mg/kg 0.41 20 12/03/10 10:38 12/07/10 17:56 7439-92-1 22.9 mg/kg 0.41 20 12/03/10 10:38 12/07/10 17:56 7440-02-0 Nickel 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Acenaphthene 7.7 ug/kg 7.1 12/01/10 13:30 12/08/10 18:06 83-32-9 Acenaphthylene 50.6 ug/kg 12/01/10 13:30 12/08/10 18:06 208-96-8 7.1 1 Anthracene **63.0** ua/ka 7.1 1 12/01/10 13:30 12/08/10 18:06 120-12-7 **161** ug/kg Benzo(a)anthracene 7.1 1 12/01/10 13:30 12/08/10 18:06 56-55-3 Benzo(a)pyrene 181 ug/kg 7.1 12/01/10 13:30 12/08/10 18:06 50-32-8 1 Benzo(b)fluoranthene 91.0 ug/kg 7.1 12/01/10 13:30 12/08/10 18:06 205-99-2 1 97.2 ug/kg 7.1 12/01/10 13:30 12/08/10 18:06 191-24-2 Benzo(g,h,i)perylene 1 7.1 12/01/10 13:30 12/08/10 18:06 207-08-9 Benzo(k)fluoranthene 120 ug/kg 1 7.1 Chrysene 178 ug/kg 12/01/10 13:30 12/08/10 18:06 218-01-9 1 44.3 ug/kg Dibenz(a,h)anthracene 7.1 1 12/01/10 13:30 12/08/10 18:06 53-70-3 Fluoranthene 308 ug/kg 7.1 1 12/01/10 13:30 12/08/10 18:06 206-44-0 Fluorene 19.1 ug/kg 7.1 1 12/01/10 13:30 12/08/10 18:06 86-73-7 Indeno(1,2,3-cd)pyrene 12/01/10 13:30 12/08/10 18:06 193-39-5 87.3 ug/kg 7.1 1 1-Methylnaphthalene ND ug/kg 7.1 1 12/01/10 13:30 12/08/10 18:06 90-12-0 2-Methylnaphthalene 9.3 ug/kg 7.1 12/01/10 13:30 12/08/10 18:06 91-57-6 1 Naphthalene 14.4 ug/kg 7.1 12/01/10 13:30 12/08/10 18:06 91-20-3 1 Phenanthrene 194 ug/kg 7.1 12/01/10 13:30 12/08/10 18:06 85-01-8 1 12/01/10 13:30 12/08/10 18:06 129-00-0 Pyrene 329 ug/kg 7.1 1 2-Fluorobiphenyl (S) 63 % 31-131 12/01/10 13:30 12/08/10 18:06 321-60-8 1 Terphenyl-d14 (S) 70 % 30-133 1 12/01/10 13:30 12/08/10 18:06 1718-51-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 7.4 % 0.10 1 11/30/10 17:10 Sample: SPL-9-3 Lab ID: 255812008 Collected: 11/22/10 13:00 Received: 11/24/10 14:08 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG 89.0 mg/kg 20.6 1 12/01/10 12:45 12/03/10 23:12 **611** mg/kg Motor Oil Range SG 82.2 1 12/01/10 12:45 12/03/10 23:12 64742-65-0 n-Octacosane (S) SG 108 % 50-150 1 12/01/10 12:45 12/03/10 23:12 630-02-4

Date: 12/09/2010 05:32 PM

o-Terphenyl (S) SG

6020 MET ICPMS

Arsenic

Copper

Cadmium

REPORT OF LABORATORY ANALYSIS

50-150

0.39

0.063

0.39

1

20

20

20

12/01/10 12:45 12/03/10 23:12 84-15-1

12/03/10 10:38 12/07/10 18:06 7440-38-2

12/03/10 10:38 12/07/10 18:06 7440-43-9

12/03/10 10:38 12/07/10 18:06 7440-50-8

Page 11 of 24

Project: East Bay Redevelopment 138130

Pace Project No.: 255812

Lab ID: 255812008 Sample: SPL-9-3 Collected: 11/22/10 13:00 Received: 11/24/10 14:08 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **6020 MET ICPMS** Analytical Method: EPA 6020 12/03/10 10:38 12/07/10 18:06 7439-92-1 Lead 4.7 mg/kg 0.39 20 Nickel 18.5 mg/kg 0.39 20 12/03/10 10:38 12/07/10 18:06 7440-02-0 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Acenaphthene ND ug/kg 7.1 12/01/10 13:30 12/08/10 18:22 83-32-9 Acenaphthylene 35.0 ug/kg 7.1 12/01/10 13:30 12/08/10 18:22 208-96-8 1 35.2 ug/kg 7.1 12/01/10 13:30 12/08/10 18:22 120-12-7 Anthracene 1 Benzo(a)anthracene 101 ua/ka 7.1 1 12/01/10 13:30 12/08/10 18:22 56-55-3 164 ug/kg Benzo(a)pyrene 7.1 1 12/01/10 13:30 12/08/10 18:22 50-32-8 Benzo(b)fluoranthene 67.3 ug/kg 7.1 12/01/10 13:30 12/08/10 18:22 205-99-2 1 108 ug/kg 7.1 12/01/10 13:30 12/08/10 18:22 191-24-2 Benzo(g,h,i)perylene 1 Benzo(k)fluoranthene 84.3 ug/kg 7.1 12/01/10 13:30 12/08/10 18:22 207-08-9 1 124 ug/kg 7.1 12/01/10 13:30 12/08/10 18:22 218-01-9 Chrysene 1 **30.5** ug/kg Dibenz(a,h)anthracene 7.1 12/01/10 13:30 12/08/10 18:22 53-70-3 1 192 ug/kg 7.1 12/01/10 13:30 12/08/10 18:22 206-44-0 Fluoranthene 1 Fluorene 10.3 ug/kg 7.1 1 12/01/10 13:30 12/08/10 18:22 86-73-7 Indeno(1,2,3-cd)pyrene 72.3 ug/kg 7.1 1 12/01/10 13:30 12/08/10 18:22 193-39-5 1-Methylnaphthalene ND ug/kg 7.1 12/01/10 13:30 12/08/10 18:22 90-12-0 1 2-Methylnaphthalene ND ug/kg 7.1 1 12/01/10 13:30 12/08/10 18:22 91-57-6 Naphthalene 11.0 ug/kg 7.1 12/01/10 13:30 12/08/10 18:22 91-20-3 1 Phenanthrene 105 ug/kg 7.1 12/01/10 13:30 12/08/10 18:22 85-01-8 1 Pyrene 210 ug/kg 7.1 12/01/10 13:30 12/08/10 18:22 129-00-0 1 58 % 31-131 12/01/10 13:30 12/08/10 18:22 321-60-8 2-Fluorobiphenyl (S) 1 Terphenyl-d14 (S) 64 % 30-133 12/01/10 13:30 12/08/10 18:22 1718-51-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 6.6 % 11/30/10 17:12 0.10 1 Sample: SPL-8-3 Lab ID: 255812009 Collected: 11/22/10 14:30 Received: 11/24/10 14:08 Matrix: Solid

Results reported on a "dry-weight" basis									
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
NWTPH-Dx GCS SG	Analytical Me	thod: NWTPH-	Dx Preparation M	ethod:	EPA 3546				
Diesel Range SG	538 m	ng/kg	23.6	1	12/01/10 12:45	12/03/10 23:28			
Motor Oil Range SG	ND m	ng/kg	94.4	1	12/01/10 12:45	12/03/10 23:28	64742-65-0		
n-Octacosane (S) SG	109 %	, D	50-150	1	12/01/10 12:45	12/03/10 23:28	630-02-4		
o-Terphenyl (S) SG	100 %	, D	50-150	1	12/01/10 12:45	12/03/10 23:28	84-15-1		
6020 MET ICPMS	Analytical Me	thod: EPA 6020	0						
Arsenic	4.3 m	ng/kg	0.53	20	12/03/10 10:38	12/07/10 18:29	7440-38-2		

ND mg/kg

3.8 mg/kg

15.3 mg/kg

Date: 12/09/2010 05:32 PM

Cadmium

Copper

Lead

REPORT OF LABORATORY ANALYSIS

0.085

0.53

0.53

20

20

20

12/03/10 10:38 12/07/10 18:29 7440-43-9

12/03/10 10:38 12/07/10 18:29 7440-50-8

12/03/10 10:38 12/07/10 18:29 7439-92-1

Page 12 of 24

Project: East Bay Redevelopment 138130

Pace Project No.: 255812

Lab ID: 255812009 Sample: SPL-8-3 Collected: 11/22/10 14:30 Received: 11/24/10 14:08 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **6020 MET ICPMS** Analytical Method: EPA 6020 Nickel 31.6 mg/kg 0.53 20 12/03/10 10:38 12/07/10 18:29 7440-02-0 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 **31.2** ug/kg 7.8 12/01/10 13:30 12/08/10 18:38 83-32-9 Acenaphthene 1 Acenaphthylene ND ug/kg 7.8 1 12/01/10 13:30 12/08/10 18:38 208-96-8 Anthracene 29.6 ug/kg 7.8 12/01/10 13:30 12/08/10 18:38 120-12-7 1 9.0 ug/kg 12/01/10 13:30 12/08/10 18:38 56-55-3 Benzo(a)anthracene 7.8 1 Benzo(a)pyrene ND ua/ka 7.8 1 12/01/10 13:30 12/08/10 18:38 50-32-8 Benzo(b)fluoranthene ND ug/kg 7.8 1 12/01/10 13:30 12/08/10 18:38 205-99-2 Benzo(g,h,i)perylene ND ug/kg 7.8 12/01/10 13:30 12/08/10 18:38 191-24-2 1 Benzo(k)fluoranthene ND ug/kg 7.8 12/01/10 13:30 12/08/10 18:38 207-08-9 1 Chrysene 13.6 ug/kg 7.8 12/01/10 13:30 12/08/10 18:38 218-01-9 1 12/01/10 13:30 12/08/10 18:38 53-70-3 Dibenz(a,h)anthracene ND ug/kg 7.8 1 Fluoranthene 32.3 ug/kg 7.8 12/01/10 13:30 12/08/10 18:38 206-44-0 1 Fluorene 11.0 ug/kg 7.8 1 12/01/10 13:30 12/08/10 18:38 86-73-7 Indeno(1,2,3-cd)pyrene ND ug/kg 7.8 1 12/01/10 13:30 12/08/10 18:38 193-39-5 1-Methylnaphthalene 13.9 ug/kg 7.8 1 12/01/10 13:30 12/08/10 18:38 90-12-0 2-Methylnaphthalene 12/01/10 13:30 12/08/10 18:38 91-57-6 16.9 ug/kg 7.8 1 Naphthalene 14.6 ug/kg 7.8 1 12/01/10 13:30 12/08/10 18:38 91-20-3 Phenanthrene 10.7 ug/kg 7.8 12/01/10 13:30 12/08/10 18:38 85-01-8 1 Pyrene 33.5 ug/kg 7.8 12/01/10 13:30 12/08/10 18:38 129-00-0 1 31-131 2-Fluorobiphenyl (S) 69 % 12/01/10 13:30 12/08/10 18:38 321-60-8 1 Terphenyl-d14 (S) 66 % 30-133 12/01/10 13:30 12/08/10 18:38 1718-51-0 1 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 15.9 % 0.10 1 11/30/10 17:13 Sample: SPL-7-5 Lab ID: 255812010 Collected: 11/22/10 15:10 Received: 11/24/10 14:08 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG ND mg/kg 61.1 12/01/10 12:45 12/03/10 23:45 1 Motor Oil Range SG ND mg/kg 245 12/01/10 12:45 12/03/10 23:45 64742-65-0 1 n-Octacosane (S) SG 108 % 50-150 1 12/01/10 12:45 12/03/10 23:45 630-02-4 o-Terphenyl (S) SG 96 % 50-150 1 12/01/10 12:45 12/03/10 23:45 84-15-1 **6020 MET ICPMS** Analytical Method: EPA 6020

Date: 12/09/2010 05:32 PM

Arsenic

Copper

Lead

Nickel

Cadmium

REPORT OF LABORATORY ANALYSIS

1.2

0.20

1.2

1.2

1.2

20

20

20

20

20

12/03/10 10:38 12/07/10 18:39 7440-38-2

12/03/10 10:38 12/07/10 18:39 7440-43-9

12/03/10 10:38 12/07/10 18:39 7440-50-8

12/03/10 10:38 12/07/10 18:39 7439-92-1

12/03/10 10:38 12/07/10 18:39 7440-02-0

Page 13 of 24

4.6 mg/kg

2.0 mg/kg

40.4 mg/kg

18.8 mg/kg

32.7 mg/kg

Project: East Bay Redevelopment 138130

Pace Project No.: 255812

Lab ID: 255812010 Sample: SPL-7-5 Collected: 11/22/10 15:10 Received: 11/24/10 14:08 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Acenaphthene 25.6 ug/kg 20.7 12/01/10 13:30 12/08/10 14:56 83-32-9 Acenaphthylene ND ug/kg 20.7 12/01/10 13:30 12/08/10 14:56 208-96-8 Anthracene 39.9 ug/kg 20.7 12/01/10 13:30 12/08/10 14:56 120-12-7 1 Benzo(a)anthracene 55.1 ug/kg 20.7 12/01/10 13:30 12/08/10 14:56 56-55-3 1 52.9 ug/kg 20.7 Benzo(a)pyrene 1 12/01/10 13:30 12/08/10 14:56 50-32-8 Benzo(b)fluoranthene 28.0 ug/kg 20.7 12/01/10 13:30 12/08/10 14:56 205-99-2 1 Benzo(g,h,i)perylene 25.2 ug/kg 20.7 12/01/10 13:30 12/08/10 14:56 191-24-2 1 20.7 Benzo(k)fluoranthene 46.7 ug/kg 12/01/10 13:30 12/08/10 14:56 207-08-9 1 **54.9** ug/kg 20.7 12/01/10 13:30 12/08/10 14:56 218-01-9 Chrysene 1 ND ug/kg 20.7 12/01/10 13:30 12/08/10 14:56 53-70-3 Dibenz(a,h)anthracene 1 Fluoranthene 118 ug/kg 20.7 12/01/10 13:30 12/08/10 14:56 206-44-0 1 Fluorene 23.5 ug/kg 20.7 1 12/01/10 13:30 12/08/10 14:56 86-73-7 Indeno(1,2,3-cd)pyrene 24.2 ug/kg 20.7 12/01/10 13:30 12/08/10 14:56 193-39-5 1-Methylnaphthalene 23.0 ug/kg 20.7 12/01/10 13:30 12/08/10 14:56 90-12-0 1 2-Methylnaphthalene **39.0** ug/kg 20.7 12/01/10 13:30 12/08/10 14:56 91-57-6 Naphthalene 159 ug/kg 20.7 1 12/01/10 13:30 12/08/10 14:56 91-20-3 Phenanthrene 12/01/10 13:30 12/08/10 14:56 85-01-8 70.4 ug/kg 20.7 1 Pyrene 110 ug/kg 20.7 12/01/10 13:30 12/08/10 14:56 129-00-0 1 76 % 31-131 2-Fluorobiphenyl (S) 1 12/01/10 13:30 12/08/10 14:56 321-60-8 Terphenyl-d14 (S) 76 % 30-133 12/01/10 13:30 12/08/10 14:56 1718-51-0 1 Analytical Method: ASTM D2974-87 **Percent Moisture** Percent Moisture 68.2 % 0.10 11/30/10 17:13 1 Sample: SPL-8-1 Lab ID: 255812011 Collected: 11/22/10 14:00 Received: 11/24/10 14:08 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG 26.5 12/01/10 12:45 12/04/10 00:01 132 mg/kg 1 ND mg/kg Motor Oil Range SG 106 12/01/10 12:45 12/04/10 00:01 64742-65-0 1 n-Octacosane (S) SG 105 % 50-150 1 12/01/10 12:45 12/04/10 00:01 630-02-4 o-Terphenyl (S) SG 96 % 50-150 1 12/01/10 12:45 12/04/10 00:01 84-15-1 **6020 MET ICPMS** Analytical Method: EPA 6020 Arsenic 3.2 mg/kg 0.46 20 12/03/10 10:38 12/07/10 18:48 7440-38-2 0.080 mg/kg Cadmium 0.073 20 12/03/10 10:38 12/07/10 18:48 7440-43-9 Copper 15.4 mg/kg 0.46 20 12/03/10 10:38 12/07/10 18:48 7440-50-8 Lead 9.3 mg/kg 0.46 20 12/03/10 10:38 12/07/10 18:48 7439-92-1 M6 Nickel 28.2 mg/kg 0.46 20 12/03/10 10:38 12/07/10 18:48 7440-02-0 M6

Date: 12/09/2010 05:32 PM

8270 MSSV PAH by SIM

Acenaphthene

REPORT OF LABORATORY ANALYSIS

8.8

Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546

30.7 ug/kg

Page 14 of 24

12/01/10 13:30 12/08/10 18:54 83-32-9

Project: East Bay Redevelopment 138130

Pace Project No.: 255812

Lab ID: 255812011 Sample: SPL-8-1 Collected: 11/22/10 14:00 Received: 11/24/10 14:08 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Acenaphthylene ND ug/kg 8.8 12/01/10 13:30 12/08/10 18:54 208-96-8 Anthracene 11.9 ug/kg 8.8 12/01/10 13:30 12/08/10 18:54 120-12-7 Benzo(a)anthracene ND ug/kg 8.8 12/01/10 13:30 12/08/10 18:54 56-55-3 1 Benzo(a)pyrene ND ug/kg 8.8 12/01/10 13:30 12/08/10 18:54 50-32-8 1 Benzo(b)fluoranthene ND ug/kg 8.8 1 12/01/10 13:30 12/08/10 18:54 205-99-2 Benzo(g,h,i)perylene ND ug/kg 8.8 12/01/10 13:30 12/08/10 18:54 191-24-2 1 Benzo(k)fluoranthene ND ug/kg 8.8 12/01/10 13:30 12/08/10 18:54 207-08-9 1 Chrysene ND ug/kg 8.8 12/01/10 13:30 12/08/10 18:54 218-01-9 1 12/01/10 13:30 12/08/10 18:54 53-70-3 Dibenz(a,h)anthracene ND ug/kg 8.8 1 12/01/10 13:30 12/08/10 18:54 206-44-0 Fluoranthene 23.1 ug/kg 8.8 1 13.5 ug/kg 12/01/10 13:30 12/08/10 18:54 86-73-7 Fluorene 8.8 1 Indeno(1,2,3-cd)pyrene ND ug/kg 8.8 1 12/01/10 13:30 12/08/10 18:54 193-39-5 1-Methylnaphthalene 21.0 ug/kg 8.8 12/01/10 13:30 12/08/10 18:54 90-12-0 2-Methylnaphthalene **37.3** ug/kg 12/01/10 13:30 12/08/10 18:54 91-57-6 8.8 1 Naphthalene 41.4 ug/kg 8.8 12/01/10 13:30 12/08/10 18:54 91-20-3 1 18.5 ug/kg Phenanthrene 8.8 1 12/01/10 13:30 12/08/10 18:54 85-01-8 Pvrene 21.5 ug/kg 8.8 1 12/01/10 13:30 12/08/10 18:54 129-00-0 2-Fluorobiphenyl (S) 64 % 31-131 12/01/10 13:30 12/08/10 18:54 321-60-8 1 Terphenyl-d14 (S) 63 % 30-133 12/01/10 13:30 12/08/10 18:54 1718-51-0 **Percent Moisture** Analytical Method: ASTM D2974-87 25.7 % 0.10 Percent Moisture 1 11/30/10 17:14 Sample: SPL-8-2 Lab ID: 255812012 Collected: 11/22/10 14:15 Received: 11/24/10 14:08 Results reported on a "dry-weight" basis Prepared Analyzed CAS No. **Parameters** Results Units Report Limit DF Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG 22.0 12/01/10 12:45 12/04/10 00:17 ND mg/kg 1 Motor Oil Range SG ND mg/kg 88.2 12/01/10 12:45 12/04/10 00:17 64742-65-0 1 n-Octacosane (S) SG 101 % 50-150 12/01/10 12:45 12/04/10 00:17 630-02-4 1 o-Terphenyl (S) SG 94 % 50-150 12/01/10 12:45 12/04/10 00:17 84-15-1 **6020 MET ICPMS** Analytical Method: EPA 6020 Arsenic 6.0 mg/kg 0.55 20 12/03/10 10:39 12/07/10 19:02 7440-38-2 Cadmium ND mg/kg 0.087 20 12/03/10 10:39 12/07/10 19:02 7440-43-9 12/03/10 10:39 12/07/10 19:02 7440-50-8 Copper 29.4 mg/kg 0.55 20 Lead 5.7 mg/kg 0.55 20 12/03/10 10:39 12/07/10 19:02 7439-92-1 Nickel 39.8 mg/kg 0.55 20 12/03/10 10:39 12/07/10 19:02 7440-02-0

Date: 12/09/2010 05:32 PM

8270 MSSV PAH by SIM

Acenaphthene

Acenaphthylene

REPORT OF LABORATORY ANALYSIS

Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546

11.0 ug/kg

ND ug/kg

Page 15 of 24

12/01/10 13:30 12/08/10 19:10 83-32-9

12/01/10 13:30 12/08/10 19:10 208-96-8

7.4

7.4

12/01/10 13:30 12/08/10 19:10 86-73-7

12/01/10 13:30 12/08/10 19:10 193-39-5

12/01/10 13:30 12/08/10 19:10 90-12-0

12/01/10 13:30 12/08/10 19:10 91-57-6

12/01/10 13:30 12/08/10 19:10 91-20-3

12/01/10 13:30 12/08/10 19:10 85-01-8

12/01/10 13:30 12/08/10 19:10 129-00-0

12/01/10 13:30 12/08/10 19:10 321-60-8

11/30/10 17:15

ANALYTICAL RESULTS

Project: East Bay Redevelopment 138130

Pace Project No.: 255812

Fluorene

Naphthalene

Phenanthrene

Pyrene

Indeno(1,2,3-cd)pyrene

1-Methylnaphthalene

2-Methylnaphthalene

2-Fluorobiphenyl (S)

Percent Moisture

Date: 12/09/2010 05:32 PM

Lab ID: 255812012 Sample: SPL-8-2 Collected: 11/22/10 14:15 Received: 11/24/10 14:08 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 7.4 Anthracene ND ug/kg 12/01/10 13:30 12/08/10 19:10 120-12-7 Benzo(a)anthracene ND ug/kg 7.4 12/01/10 13:30 12/08/10 19:10 56-55-3 Benzo(a)pyrene ND ug/kg 7.4 12/01/10 13:30 12/08/10 19:10 50-32-8 1 Benzo(b)fluoranthene ND ug/kg 7.4 1 12/01/10 13:30 12/08/10 19:10 205-99-2 12/01/10 13:30 12/08/10 19:10 191-24-2 Benzo(g,h,i)perylene ND ug/kg 7.4 1 Benzo(k)fluoranthene ND ug/kg 7.4 12/01/10 13:30 12/08/10 19:10 207-08-9 1 Chrysene ND ug/kg 7.4 12/01/10 13:30 12/08/10 19:10 218-01-9 1 Dibenz(a,h)anthracene ND ug/kg 7.4 12/01/10 13:30 12/08/10 19:10 53-70-3 1 Fluoranthene 8.8 ug/kg 12/01/10 13:30 12/08/10 19:10 206-44-0 7.4 1

7.4

7.4

7.4

7.4

7.4

7.4

7.4

0.10

31-131

1

1

1

1

1

1

1

1

Terphenyl-d14 (S) 63 % 30-133 1 12/01/10 13:30 12/08/10 19:10 1718-51-0 **Percent Moisture** Analytical Method: ASTM D2974-87

ND ug/kg

ND ug/kg

ND ug/kg

10.4 ug/kg

10.9 ug/kg

7.8 ug/kg

9.0 ug/kg

68 %

12.0 %

QUALITY CONTROL DATA

Project: East Bay Redevelopment 138130

Pace Project No.: 255812

QC Batch: OEXT/3040 Analysis Method: NWTPH-Dx
QC Batch Method: EPA 3546 Analysis Description: NWTPH-Dx GCS

Associated Lab Samples: 255812001, 255812002, 255812003, 255812004, 255812005, 255812006, 255812007, 255812008, 255812009,

255812010, 255812011, 255812012

METHOD BLANK: 50754 Matrix: Solid

Associated Lab Samples: 255812001, 255812002, 255812003, 255812004, 255812005, 255812006, 255812007, 255812008, 255812009,

255812010, 255812011, 255812012

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Diesel Range SG	mg/kg	ND ND	20.0	12/03/10 19:22	
Motor Oil Range SG	mg/kg	ND	80.0	12/03/10 19:22	
n-Octacosane (S) SG	%	102	50-150	12/03/10 19:22	
o-Terphenyl (S) SG	%	96	50-150	12/03/10 19:22	

LABORATORY CONTROL SAMPLE: 50755

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Diesel Range SG	mg/kg	500	456	91	56-124	
Motor Oil Range SG	mg/kg	500	559	112	50-150	
n-Octacosane (S) SG	%			103	50-150	
o-Terphenyl (S) SG	%			110	50-150	

SAMPLE DUPLICATE: 50756

		255797001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Diesel Range SG	mg/kg	29.5	70.5	82	R1
Motor Oil Range SG	mg/kg	ND	ND		
n-Octacosane (S) SG	%	100	100	6	
o-Terphenyl (S) SG	%	94	94	6	

SAMPLE DUPLICATE: 50757

Parameter	Units	255818001 Result	Dup Result	RPD	Qualifiers
Diesel Range SG	mg/kg	ND ND	ND		
Motor Oil Range SG	mg/kg	ND	ND		
n-Octacosane (S) SG	%	106	111	4	
o-Terphenyl (S) SG	%	98	101	2	

Date: 12/09/2010 05:32 PM REPORT OF LABORATORY ANALYSIS

Page 17 of 24

Project: East Bay Redevelopment 138130

Pace Project No.: 255812

QC Batch: ICPM/23802 Analysis Method: EPA 6020
QC Batch Method: EPA 6020 Analysis Description: 6020 MET

Associated Lab Samples: 255812001, 255812002, 255812003, 255812004, 255812005, 255812006, 255812007, 255812008, 255812009,

255812010, 255812011, 255812012

METHOD BLANK: 899839 Matrix: Solid

Associated Lab Samples: 255812001, 255812002, 255812003, 255812004, 255812005, 255812006, 255812007, 255812008, 255812009,

255812010, 255812011, 255812012

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	mg/kg	ND ND	0.48	12/07/10 16:27	
Cadmium	mg/kg	ND	0.077	12/07/10 16:27	
Copper	mg/kg	ND	0.48	12/07/10 16:27	
Lead	mg/kg	ND	0.48	12/07/10 16:27	
Nickel	mg/kg	ND	0.48	12/07/10 16:27	

LABORATORY CONTROL SAMPLE: 899840

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/kg	19.8	18.7	94	75-125	
Cadmium	mg/kg	19.8	19.3	98	75-125	
Copper	mg/kg	19.8	20.1	101	75-125	
Lead	mg/kg	19.8	19.8	100	75-125	
Nickel	mg/kg	19.8	19.9	101	75-125	

MATRIX SPIKE & MATRIX SP	PIKE DUPLICAT	E: 89984	1		899842						
	2	255812001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Arsenic	mg/kg	7.0	59.9	57.9	71.4	65.4	108	101	75-125	9	
Cadmium	mg/kg	0.80	59.9	57.9	63.8	58.0	105	99	75-125	10	
Copper	mg/kg	43.3	59.9	57.9	106	91.9	104	84	75-125	14	
Lead	mg/kg	26.1	59.9	57.9	94.5	83.6	114	99	75-125	12	
Nickel	mg/kg	26.5	59.9	57.9	91.1	79.6	108	91	75-125	14	

MATRIX SPIKE SAMPLE:	899843						
ъ.	11.5	255812011	Spike	MS	MS	% Rec	0 ""
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/kg	3.2	20.6	24.3	103	75-125	
Cadmium	mg/kg	0.080	20.6	20.6	100	75-125	
Copper	mg/kg	15.4	20.6	36.1	100	75-125	
Lead	mg/kg	9.3	20.6	24.6	74	75-125 N	16
Nickel	mg/kg	28.2	20.6	54.8	129	75-125 N	16

Date: 12/09/2010 05:32 PM REPORT OF LABORATORY ANALYSIS

Page 18 of 24

Project: East Bay Redevelopment 138130

Pace Project No.: 255812

QC Batch: OEXT/3039 Analysis Method: EPA 8270 by SIM

QC Batch Method: EPA 3546 Analysis Description: 8270/3546 MSSV PAH by SIM

Associated Lab Samples: 255812001, 255812002, 255812003, 255812004, 255812005, 255812006, 255812007, 255812008, 255812009,

255812010, 255812011, 255812012

METHOD BLANK: 50750 Matrix: Solid

Associated Lab Samples: 255812001, 255812002, 255812003, 255812004, 255812005, 255812006, 255812007, 255812008, 255812009,

255812010, 255812011, 255812012

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/kg	ND ND	6.7	12/08/10 13:21	
2-Methylnaphthalene	ug/kg	ND	6.7	12/08/10 13:21	
Acenaphthene	ug/kg	ND	6.7	12/08/10 13:21	
Acenaphthylene	ug/kg	ND	6.7	12/08/10 13:21	
Anthracene	ug/kg	ND	6.7	12/08/10 13:21	
Benzo(a)anthracene	ug/kg	ND	6.7	12/08/10 13:21	
Benzo(a)pyrene	ug/kg	ND	6.7	12/08/10 13:21	
Benzo(b)fluoranthene	ug/kg	ND	6.7	12/08/10 13:21	
Benzo(g,h,i)perylene	ug/kg	ND	6.7	12/08/10 13:21	
Benzo(k)fluoranthene	ug/kg	ND	6.7	12/08/10 13:21	
Chrysene	ug/kg	ND	6.7	12/08/10 13:21	
Dibenz(a,h)anthracene	ug/kg	ND	6.7	12/08/10 13:21	
Fluoranthene	ug/kg	ND	6.7	12/08/10 13:21	
Fluorene	ug/kg	ND	6.7	12/08/10 13:21	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	6.7	12/08/10 13:21	
Naphthalene	ug/kg	ND	6.7	12/08/10 13:21	
Phenanthrene	ug/kg	ND	6.7	12/08/10 13:21	
Pyrene	ug/kg	ND	6.7	12/08/10 13:21	
2-Fluorobiphenyl (S)	%	76	31-131	12/08/10 13:21	
Terphenyl-d14 (S)	%	84	30-133	12/08/10 13:21	

LABORATORY CONTROL	. SAMPLE:	50751
--------------------	-----------	-------

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1-Methylnaphthalene	ug/kg	133	90.1	68	37-121	
2-Methylnaphthalene	ug/kg	133	93.3	70	33-132	
Acenaphthene	ug/kg	133	91.9	69	32-127	
Acenaphthylene	ug/kg	133	94.0	71	31-134	
Anthracene	ug/kg	133	91.3	68	42-135	
Benzo(a)anthracene	ug/kg	133	103	77	43-139	
Benzo(a)pyrene	ug/kg	133	97.6	73	44-144	
Benzo(b)fluoranthene	ug/kg	133	91.5	69	42-144	
Benzo(g,h,i)perylene	ug/kg	133	110	83	46-136	
Benzo(k)fluoranthene	ug/kg	133	107	80	45-147	
Chrysene	ug/kg	133	107	80	42-144	
Dibenz(a,h)anthracene	ug/kg	133	110	82	48-142	
Fluoranthene	ug/kg	133	99.7	75	44-143	
Fluorene	ug/kg	133	99.2	74	32-146	
Indeno(1,2,3-cd)pyrene	ug/kg	133	112	84	47-140	
Naphthalene	ug/kg	133	90.1	68	35-118	

Date: 12/09/2010 05:32 PM

REPORT OF LABORATORY ANALYSIS

Page 19 of 24

Project: East Bay Redevelopment 138130

Pace Project No.: 255812

LABORATORY CONTROL SAMPLE: 50751

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Phenanthrene	ug/kg	133	94.5	71	42-131	
Pyrene	ug/kg	133	99.8	75	47-136	
2-Fluorobiphenyl (S)	%			68	31-131	
Terphenyl-d14 (S)	%			77	30-133	

MATRIX SPIKE & MATRIX SPIKE DUPLI	CATE: 50752			50753						
		MS	MSD							
	255812002	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter Unit	ts Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1-Methylnaphthalene ug/kg	ND	178	175	134	132	72	71	31-123	2	
2-Methylnaphthalene ug/kg	13.0	178	175	138	136	70	70	15-146	.9	
Acenaphthene ug/kg	ND	178	175	134	130	74	73	19-141	4	
Acenaphthylene ug/kg	ND	178	175	130	124	70	67	30-142	5	
Anthracene ug/kg	ND	178	175	127	114	70	64	38-137	11	
Benzo(a)anthracene ug/kg	ND	178	175	131	121	73	68	37-143	8	
Benzo(a)pyrene ug/kg	ND	178	175	124	108	69	61	33-147	13	
Benzo(b)fluoranthene ug/kg	ND	178	175	117	113	65	64	25-156	4	
Benzo(g,h,i)perylene ug/kg	ND	178	175	131	117	73	66	26-142	12	
Benzo(k)fluoranthene ug/kg	ND	178	175	129	114	72	64	35-142	13	
Chrysene ug/kg	ND	178	175	136	128	76	73	23-150	7	
Dibenz(a,h)anthracene ug/kg	ND	178	175	130	118	73	67	41-140	10	
Fluoranthene ug/kg	10.7	178	175	135	133	69	70	25-155	1	
Fluorene ug/kg	ND	178	175	139	131	77	74	33-152	5	
ndeno(1,2,3-cd)pyrene ug/kg	ND	178	175	134	117	74	66	36-139	13	
Naphthalene ug/kg	80.4	178	175	140	167	34	49	25-121	17	
Phenanthrene ug/kg	23.2	178	175	138	135	64	64	29-141	2	
Pyrene ug/kg	ND	178	175	145	139	76	74	36-145	5	
2-Fluorobiphenyl (S) %						74	71	31-131		
Terphenyl-d14 (S) %						76	74	30-133		

Date: 12/09/2010 05:32 PM

Project: East Bay Redevelopment 138130

Pace Project No.: 255812

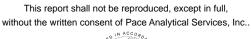
QC Batch: PMST/1438 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 255812001, 255812002, 255812003, 255812004, 255812005, 255812006, 255812007, 255812008, 255812009,

255812010, 255812011, 255812012

SAMPLE DUPLICATE: 50742


SAMPLE DUPLICATE: 50743

 Parameter
 Units
 Z55830001 Result
 Dup Result
 RPD
 Qualifiers

 Percent Moisture
 %
 13.1
 14.3
 9

Date: 12/09/2010 05:32 PM REPORT OF LABORATORY ANALYSIS

Page 21 of 24

QUALIFIERS

Project: East Bay Redevelopment 138130

Pace Project No.: 255812

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis
PASI-S Pace Analytical Services - Seattle

ANALYTE QUALIFIERS

Date: 12/09/2010 05:32 PM

M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: East Bay Redevelopment 138130

Pace Project No.: 255812

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
255812001	SPL-6-1	EPA 3546	OEXT/3040	NWTPH-Dx	GCSV/2114
255812002	SPL-6-2	EPA 3546	OEXT/3040	NWTPH-Dx	GCSV/2114
255812003	SPL-6-3	EPA 3546	OEXT/3040	NWTPH-Dx	GCSV/2114
255812004	SPL-6-4	EPA 3546	OEXT/3040	NWTPH-Dx	GCSV/2114
255812005	SPL-6-5	EPA 3546	OEXT/3040	NWTPH-Dx	GCSV/2114
255812006	SPL-9-1	EPA 3546	OEXT/3040	NWTPH-Dx	GCSV/2114
255812007	SPL-9-2	EPA 3546	OEXT/3040	NWTPH-Dx	GCSV/2114
255812008	SPL-9-3	EPA 3546	OEXT/3040	NWTPH-Dx	GCSV/2114
255812009	SPL-8-3	EPA 3546	OEXT/3040	NWTPH-Dx	GCSV/2114
255812010	SPL-7-5	EPA 3546	OEXT/3040	NWTPH-Dx	GCSV/2114
255812011	SPL-8-1	EPA 3546	OEXT/3040	NWTPH-Dx	GCSV/2114
255812012	SPL-8-2	EPA 3546	OEXT/3040	NWTPH-Dx	GCSV/2114
255812001	SPL-6-1	EPA 6020	ICPM/23802	EPA 6020	ICPM/9660
255812002	SPL-6-2	EPA 6020	ICPM/23802	EPA 6020	ICPM/9660
255812003	SPL-6-3	EPA 6020	ICPM/23802	EPA 6020	ICPM/9660
255812004	SPL-6-4	EPA 6020	ICPM/23802	EPA 6020	ICPM/9660
255812005	SPL-6-5	EPA 6020	ICPM/23802	EPA 6020	ICPM/9660
255812006	SPL-9-1	EPA 6020	ICPM/23802	EPA 6020	ICPM/9660
255812007	SPL-9-2	EPA 6020	ICPM/23802	EPA 6020	ICPM/9660
255812008	SPL-9-3	EPA 6020	ICPM/23802	EPA 6020	ICPM/9660
255812009	SPL-8-3	EPA 6020	ICPM/23802	EPA 6020	ICPM/9660
255812010	SPL-7-5	EPA 6020	ICPM/23802	EPA 6020	ICPM/9660
255812011	SPL-8-1	EPA 6020	ICPM/23802	EPA 6020	ICPM/9660
255812012	SPL-8-2	EPA 6020	ICPM/23802	EPA 6020	ICPM/9660
255812001	SPL-6-1	EPA 3546	OEXT/3039	EPA 8270 by SIM	MSSV/1461
255812002	SPL-6-2	EPA 3546	OEXT/3039	EPA 8270 by SIM	MSSV/1461
255812003	SPL-6-3	EPA 3546	OEXT/3039	EPA 8270 by SIM	MSSV/1461
255812004	SPL-6-4	EPA 3546	OEXT/3039	EPA 8270 by SIM	MSSV/1461
255812005	SPL-6-5	EPA 3546	OEXT/3039	EPA 8270 by SIM	MSSV/1461
255812006	SPL-9-1	EPA 3546	OEXT/3039	EPA 8270 by SIM	MSSV/1461
255812007	SPL-9-2	EPA 3546	OEXT/3039	EPA 8270 by SIM	MSSV/1461
255812008	SPL-9-3	EPA 3546	OEXT/3039	EPA 8270 by SIM	MSSV/1461
255812009	SPL-8-3	EPA 3546	OEXT/3039	EPA 8270 by SIM	MSSV/1461
255812010	SPL-7-5	EPA 3546	OEXT/3039	EPA 8270 by SIM	MSSV/1461
255812011	SPL-8-1	EPA 3546	OEXT/3039	EPA 8270 by SIM	MSSV/1461
255812012	SPL-8-2	EPA 3546	OEXT/3039	EPA 8270 by SIM	MSSV/1461
255812001	SPL-6-1	ASTM D2974-87	PMST/1438		
255812002	SPL-6-2	ASTM D2974-87	PMST/1438		
255812003	SPL-6-3	ASTM D2974-87	PMST/1438		
255812004	SPL-6-4	ASTM D2974-87	PMST/1438		
255812005	SPL-6-5	ASTM D2974-87	PMST/1438		
255812006	SPL-9-1	ASTM D2974-87	PMST/1438		
255812007	SPL-9-2	ASTM D2974-87	PMST/1438		
255812008	SPL-9-3	ASTM D2974-87	PMST/1438		
255812009	SPL-8-3	ASTM D2974-87	PMST/1438		
255812010	SPL-7-5	ASTM D2974-87	PMST/1438		
255812011	SPL-8-1	ASTM D2974-87	PMST/1438		

Date: 12/09/2010 05:32 PM

REPORT OF LABORATORY ANALYSIS

Page 23 of 24

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: East Bay Redevelopment 138130

Pace Project No.: 255812

Lab ID Sample ID QC Batch Method QC Batch Method Batch

SPL-8-2 ASTM D2974-87 PMST/1438

Analytical Method Batch

PMST/1438

Date: 12/09/2010 05:32 PM

REPORT OF LABORATORY ANALYSIS

Page 24 of 24

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Jennifer Gross PASI Seattle 940 S. Harney Street Seattle WA 98108

> REPORT OF LABORATORY ANALYSIS FOR PCDD/PCDF

Report Information:

Pace Project #: 10144154

Sample Receipt Date: 11/30/2010

Client Project #: 255812 Brown & Caldwell

Client Sub PO #: N/A State Cert #: C755

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Nate Habte, your Pace Project Manager.

This report has been reviewed by:

December 09, 2010

Nate Habte, Project Manager

(612) 607-6407

(612) 607-6444 (fax)

natnael.habte@pacelabs.com

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

Report Prepared Date:

December 9, 2010

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on twelve samples submitted by a representative of Pace Analytical Services, Inc. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290. Reporting limits were based on signal-to-noise measurements.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 49-107%. With the exception of one low value in the associated method blank, which was flagged "R" on the result table, the labeled standard recoveries obtained for this project were within the 40-135% target range specified in Method 8290. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, interfering substances impacted the determinations of PCDD or PCDF congeners. The affected value were flagged "I" where incorrect isotope ratios were obtained.

A laboratory method blank was prepared and analyzed with each sample batch as part of our routine quality control procedures. The results show the blanks to contain trace levels of selected congeners. These were below the calibration range of the method. Sample levels similar to the corresponding blank levels were flagged "B" on the results tables and may be, at least partially, attributed to the background. It should be noted that levels less than ten times the background are not generally considered to be statistically different from the background.

Laboratory and matrix spike samples were also prepared with the sample batches using clean sand or sample matrix that had been fortified with native standard materials. The results show that the spiked native compounds were generally recovered at 96-128%, with relative percent differences of 0.1-11.0%. These results indicate generally high degrees of accuracy and precision for these determinations. The background-subtracted recovery values obtained for OCDD in the matrix spike samples were above the 70-130% target range and may indicate a high bias for this congener in these determinations.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	
Arizona	AZ0014	Nevada	MN000642010A
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New Mexico	MN00064
Colorado	MN00064	New York (NEL	11647
Connecticut	PH-0256	North Carolina	27700
EPA Region 5	WD-15J	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Ohio VAP	CL101
Georgia (DNR)	959	Oklahoma	D9922
Guam	09-019r	Oregon (ELAP)	MN200001-005
Hawaii	SLD	Oregon (OREL	MN200001-005
Idaho	MN00064	Pennsylvania	68-00563
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennesee	2818
Iowa	368	Tennessee	02818
Kansas	E-10167	Texas	T104704192-08
Kentucky	90062	Utah (NELAP)	PAM
Louisiana	LA0900016	Virginia	00251
Maine	2007029	Washington	C755
Maryland	322	West Virginia	9952C
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q
Mississippi	MN00064		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

(SC P. 1(SPS)

Chain of Custody

:			*******************************										Regulested Analysis	nd Anatu	٥			(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
nniii rce / 0 Sc 3 attle ione	Jennifer Gross Pace Analytical Services, Inc. 940 South Harney Seattle WA 98108 Phone (206)767-5060 Fax (206)767-5063			Pace Anal 1700 Elm Suite 200 Minneapol Phone (61	Pace Analytical Minnesota 1700 Elm Street Suite 200 Minneapolis, MN 55414 Phone (612)607-1700	lesota 414 0				Cal who	1200 51 ×25							
							الم الم) Political	Proceed Containers	'PP'	שומט בין מיט		······································				***************************************	
Tem .	Sample ID		Sample Type	Collect Date/Time	Lab ID	Matrix	bevieseidn				tiuixoio		······································					- 200 000 000
	SPL-6-1	Ė	PS	11/22/2010 13:20	255812001	Solid	2	-		×	1 2			-	1		9	Car Ois
	SPL-6-2		PS	11/22/2010 13:40	255812002	Solid	2	1			<u> </u>				_	1		***************************************
	SPL-6-3		PS	11/22/2010 13:40		Solid	2	-		<u> </u>	/ >		-	-	_	-		
~	SPL-6-4		PS	11/22/2010 13:50	255812004	Solid	2		1	\	<u></u>			_	1			
-	SPL-6-5	<u> </u>	PS	11/22/2010 13:55	255812005	Solid	2			: ×	<u> </u>		+		-	-		
-	SPL-9-1	<u> </u>	PS	11/22/2010 13:00 255812006	255812006	Solid	2	-	T	×	1>	-	+			+	-	***************************************
	SPL-9-2	<u> </u>	PS	11/22/2010 13:10	255812007	Solid	2			×	<u></u>		,	<u> </u>	_		***************************************	
-	SPL-9-3	1	PS	11/22/2010 13:00	255812008	Solid	2		<u> </u>	(×	1×	-	+		-			
~	SPL-8-3	<u></u>	PS	11/22/2010 14:30 255812009	255812009	Solid	2	†	F	<u>×</u>	1>		-	<u> </u>		-	1	
	SPL-7-5	<u>т</u>	PS	11/22/2010 15:10	255812010	Solid	2			×	×		+	-		-	-	
~	SPL-8-1	<u> </u>	PS	11/22/2010 14:00	255812011	Solid	2		 	×	×	1						
12 8	SPL-8-2		PS	11/22/2010 14:15	255812012	Solid	2			×	\ \	-			_			
					-										Comments	- - s		
Iransiers	7			Date/Time	Received-By	λ.			Date/Time	Time	-12711							
	(Metti Wignith			1112910/1401	5				1/18/10	io 10	T*Q							
		***************************************	Manufactorina						+	Ţ	 							
											·							

Monday, November 29, 2010 9:17:16 AM

FMT-ALL-C-002rev.00 24March2009

Report No....10144 54 \$290

					Ŭ			G	7	45)			7	1 p. d(p/d) 0 (-1415-14			
5	Chain of Custody	- ybx				Res	1		9						P. S.	ace Analytical	, Total
Wor	Workorder: 255812 Report to	Work	Workorder Name:Ea	me:East Ba	st Bay Redevelopment 138130	lopment	138130		Омпег	Owner Received Date:	d Data	e e	24/2010	Results	11/24/2010 Results Requested By:	12/5/16 3y: +2/8/2018	₽ 9
Jenn Pace 940 3	Jennifer Gross Pace Analytical Services, Inc. 940 South Hamey	ວເ			Pace Analytical Minnesota 1700 Elm Street Sutte 200	Minnesot	o de la companya de l				bana ka			A Canada			
Phor Fax (Deame ver 30 ruo Phone (206)767-5060 Fax (206)767-5063			Phor	Minneapolis, MN 55414 Phone (612)607-1700	-1700					150, Cd.						
							Ŀ	Preserv	Preserved Conta	mers						•	
item	Sample ID		Sample (Type	Sample: Collect. Type: Date/Time	Lab		Matrix				AS, U., DIOXID.	1				LAB USE ONLY	ž Z
-	SPL-6-1		PS 1	11/22/2010 13:20 255812001	to 25581200		Solid 2	_			×	-	_		-		
7	SPL-6-2		PS 1	11/22/2010 13:40 25581200Z	JO 25581200		Solid 2	_			×						
m	SPL-6-3			11/22/2010 13:40 255812003	to 25581200		Solid 2				×						Ī
4	SPL-6-4			11/22/2010 13:50 255812004	0 25581200		Solid 2				×						
3	SPL-6-5			11/22/2010 13:55 255812005	5 25581200						×						
9 1	SPL-9-1		PS	11/22/2010 13:00 255812006	30 25581200	\top	\dashv		_			_					
. 00	SPL-9-3			11/22/2010 13:00 255812008	0 25581200		Solid 2	_			<u> </u>						
6	SPL-8-3		PS 1	11/22/2010 14:30 255812009	30 25581200		T	-									
2	SPL-7-5		PS 1	11/22/2010 15:10 255812010	0 2558120		Solid 2				×						<u> </u>
12	SPL-8-1		PS 1	11/22/2010 14:00 255812011	30 2558120		Solid 2				×						
52	SPL-8-2		PS	11/22/2010 14:15 255812012	15 2558120		Solid 2				×						
	"	はは、	教育					7.				33.50	100 m	රි	Comments	1000年から、1000年の	
, lan	Iransters Released By			Date/Time		Received By				Date/Time	1	$\sum_{i=1}^{\infty}$	3	are	Diox ins are RUSH		**********
2					-						<u> </u>	•	•				
63											Τ						
Co	Cooler Temperature on Receipt	Receipt	0	ပ ပ	Custody Seal	-	or N	H	Recei	Received on Ice	\ %	o Z		Sa	Samples Intact Y or	Y or N	

Monday, November 29, 2010 9:17:16 AM

Sample Condition Upon Receipt

Project # 10144154 Client Name: PALE SEARTE Courier: Fed Ex UPS USPS Client Commercial Pace Other Tracking #: 7964 9617 4291 Proj. Due Date Pro Name Custody Seal on Cooler/Box Present: ves no Seals intact: Packing Material: Bubble Wrap Bubble Bags None Other Temp Blank: Yes No Thermometer Used 80344042 or/179425 Type of Ice: Web Blue ☐ Samples on ice, cooling process has begun Date and initials of person examining Biological Tissue is Frozen: Yes No **Cooler Temperature** contents: 11/30/10 /V Temp should be above freezing to 6°C Comments: ZYes DNo DNA Chain of Custody Present: Chain of Custody Filled Out: ZYes DNo □N⁄A ØYes □No Chain of Custody Relinquished: **DNA** 3. Sampler Name & Signature on COC: □Yes ☑No □N⁄A Samples Arrived within Hold Time: ØYes □No DNA 5. Short Hold Time Analysis (<72hr): ☐Yes ☑No □N/A Rush Turn Around Time Requested: □Yes ☑No **DNA** ÚYes □No Sufficient Volume: □N⁄A Correct Containers Used: □Yes □No □N⁄A -Pace Containers Used: ☑Yes □No **□N/A** ØYes □No □NA 10. Containers Intact: 20NA 111. Filtered volume received for Dissolved tests □Yes □No ZYes DNo DNA 12. Sample Labels match COC: -Includes date/time/ID/Analysis All containers needing acid/base preservation have been H2SO4 NaOH ☐Yes ☐No ☑M/A 13. checked. Noncompliance are noted in 13. Samp # All containers needing preservation are found to be in ☐Yes ☐No ZINA compliance with EPA recommendation. Initial when Lot # of added DYes DNo Exceptions: VOA, Coliform, TOC, Oil and Grease, WI-DRO (water completed preservative Samples checked for dechlorination: □Yes □No ☑KVA 14. Headspace in VOA Vials (>6mm): ☐Yes ☐No DKVA 15. □Yes ☑No □N/A Trip Blank Present: 16. Trip Blank Custody Seals Present □Yes □No ØN/A Pace Trip Blank Lot # (if purchased): **Client Notification/ Resolution:** Field Data Required? Y / Person Contacted: Comments/ Resolution:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the **Readth Calydical Stimbles**, Inc. F-L213Rev.00, 05Aug2009 1700 Elm Street SE, Suite 200, Minneapolis, MN 55414

Report No.....10144154_8290

Project Manager Review:

Fax: 612-607-6444

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

Appendix B

Sample Analysis Summary

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-6-1
Lab Sample ID 255812001
Filename F101206B_16
Injected By BAL

Total Amount Extracted 39.6 g Matrix Solid % Moisture 74.3 Dilution NA

Dry Weight Extracted Collected 10.2 g 11/22/2010 13:20 F101206 **ICAL ID** Received 11/30/2010 10:48 CCal Filename(s) F101206B_10 & F101206B_26 Extracted 12/02/2010 17:15 Method Blank ID BLANK-27127 Analyzed 12/07/2010 04:22

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	5.70 80.00		0.24 0.24	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	74 86 64
2,3,7,8-TCDD Total TCDD	0.86 39.00		0.29 J 0.29	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	65 68 80
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	2.60 2.70 28.00		0.18 J 0.24 J 0.21	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	77 81 76
1,2,3,7,8-PeCDD Total PeCDD	1.40 27.00		0.19 J 0.19	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	84 73 61 58
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	2.00 1.20 1.40		0.19 J 0.20 J 0.18 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	65 58
1,2,3,7,8,9-HxCDF Total HxCDF	0.97 17.00		0.14 J 0.18	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.20 1.50 21.00	2.0 	0.23 J 0.28 I 0.36 J 0.29	2,3,7,8-TCDD-37Cl4	0.20	80
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	7.70 1.30 27.00		0.36 0.36 J 0.36	Total 2,3,7,8-TCDD Equivalence: 5.0 ng/Kg (Using 2005 WHO Factors -	Using PRL/	/2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	27.00 55.00		0.51 0.51			
OCDF OCDD	29.00 300.00		0.62 0.61			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. $J = Estimated \ value$

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-6-2
Lab Sample ID 255812002
Filename F101207A_04
Injected By SMT

Total Amount Extracted 13.8 g Matrix Solid % Moisture 26.5 Dilution NA

Dry Weight Extracted Collected 11/22/2010 13:40 10.1 g F101206 **ICAL ID** Received 11/30/2010 10:48 CCal Filename(s) F101206B_26 & F101207A_16 Extracted 12/02/2010 14:00 Method Blank ID BLANK-27124 Analyzed 12/07/2010 15:59

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 0.97		0.180 0.180 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	52 61 60
2,3,7,8-TCDD Total TCDD	ND 1.70		0.180 0.180	2,3,4,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	76 Y 70 74
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 1.80	0.26	0.150 0.110 I 0.130 BJ	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	68 56 59
1,2,3,7,8-PeCDD Total PeCDD	1.30	0.15	0.086 I 0.086 BJ	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	76 69 62 57
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.20 0.24 0.21	 	0.086 BJ 0.097 BJ 0.110 BJ	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	64 49
1,2,3,7,8,9-HxCDF Total HxCDF	0.26 1.90		0.140 BJ 0.110 BJ	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 0.39 0.27 3.70		0.150 0.160 BJ 0.110 BJ 0.140 BJ	2,3,7,8-TCDD-37Cl4	0.20	66
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.91 2.10	0.19 	0.085 BJ 0.072 I 0.078 BJ	Total 2,3,7,8-TCDD Equivalence: 0.36 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	2.00 5.20		0.130 BJ 0.130 B			
OCDF OCDD	2.10 16.00		0.170 BJ 0.250 B			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

I = Interference present

EDL = Estimated Detection Limit

Y = Calculated using average of daily RFs

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-6-3
Lab Sample ID 255812003
Filename F101206B_17
Injected By BAL

Total Amount Extracted 22.5 g Matrix Solid % Moisture 54.1 Dilution NA

Dry Weight Extracted Collected 10.3 g 11/22/2010 13:40 F101206 **ICAL ID** Received 11/30/2010 10:48 CCal Filename(s) F101206B 10 & F101206B 26 Extracted 12/02/2010 17:15 Method Blank ID BLANK-27127 Analyzed 12/07/2010 05:10

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	1.30		0.21 B	2,3,7,8-TCDF-13C	2.00	89
Total TCDF	14.00		0.21	2,3,7,8-TCDD-13C	2.00	103
2,3,7,8-TCDD	ND		0.23	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C	2.00 2.00	75 76
Total TCDD	3.40		0.23	1,2,3,7,8-PeCDD-13C	2.00	83
10101 1000	0.10		0.20	1,2,3,4,7,8-HxCDF-13C	2.00	90
1,2,3,7,8-PeCDF	0.59		0.16 J	1,2,3,6,7,8-HxCDF-13C	2.00	85
2,3,4,7,8-PeCDF	0.58		0.17 J	2,3,4,6,7,8-HxCDF-13C	2.00	84
Total PeCDF	5.30		0.17	1,2,3,7,8,9-HxCDF-13C	2.00	81
				1,2,3,4,7,8-HxCDD-13C	2.00	88
1,2,3,7,8-PeCDD	0.55		0.25 J	1,2,3,6,7,8-HxCDD-13C	2.00	83
Total PeCDD	7.90		0.25	1,2,3,4,6,7,8-HpCDF-13C	2.00	68 67
1 2 2 4 7 9 HyCDE	0.58		0.15 J	1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00	67 75
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	0.36		0.15 J 0.15 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	63
2,3,4,6,7,8-HxCDF	0.51		0.13 J 0.14 J	OCDD-13C	4.00	03
1,2,3,7,8,9-HxCDF	0.44		0.17 J	1,2,3,4-TCDD-13C	2.00	NA
Total HxCDF	3.50		0.15 J	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD	0.53		0.20 J	2,3,7,8-TCDD-37Cl4	0.20	95
1,2,3,6,7,8-HxCDD	0.72		0.26 J			
1,2,3,7,8,9-HxCDD	0.64		0.20 J			
Total HxCDD	13.00		0.22			
1,2,3,4,6,7,8-HpCDF	0.93		0.18 J	Total 2,3,7,8-TCDD		
1,2,3,4,7,8,9-HpCDF	0.45		0.10 J	Equivalence: 1.5 ng/Kg		
Total HpCDF	3.10		0.25 J	(Using 2005 WHO Factors -	Using PRL/	2 where ND)
•				` 3	J	,
1,2,3,4,6,7,8-HpCDD	6.20		0.44			
Total HpCDD	13.00		0.44			
OCDF	3.30		0.33 J			
OCDD	61.00		0.41			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. $J = Estimated \ value$

B = Less than 10x higher than method blank level

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-6-4
Lab Sample ID 255812004
Filename F101206B_18
Injected By BAL

Total Amount Extracted 19.6 g Matrix Solid % Moisture 48.7 Dilution NA

Dry Weight Extracted Collected 11/22/2010 13:50 10.1 g F101206 **ICAL ID** Received 11/30/2010 10:48 CCal Filename(s) F101206B_10 & F101206B_26 Extracted 12/02/2010 17:15 Method Blank ID BLANK-27127 Analyzed 12/07/2010 05:58

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	6.70 110.00		0.29 0.29	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 87 65
2,3,7,8-TCDD Total TCDD	1.20 50.00		0.26 0.26	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	65 69 94
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	3.60 4.00 49.00		0.29 J 0.19 J 0.24	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	82 81 81
1,2,3,7,8-PeCDD Total PeCDD	3.20 52.00		0.29 J 0.29	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	93 75 66 65
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	2.50 1.80 2.20		0.20 J 0.18 J 0.13 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	71 57
1,2,3,7,8,9-HxCDF Total HxCDF	0.66 26.00		0.17 J 0.17	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.70 3.80 2.20 56.00		0.30 J 0.25 J 0.23 J 0.26	2,3,7,8-TCDD-37Cl4	0.20	85
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	10.00 1.20 35.00	 	0.25 0.28 J 0.26	Total 2,3,7,8-TCDD Equivalence: 8.7 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	47.00 92.00		0.45 0.45			
OCDF OCDD	36.00 490.00		0.40 0.63			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. $J = Estimated \ value$

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-6-5
Lab Sample ID 255812005
Filename F101206B_19
Injected By BAL
Total Amount Extracted 35.3 g

Total Amount Extracted 35.3 g Matrix Solid % Moisture 71.0 Dilution NA

Dry Weight Extracted Collected 11/22/2010 13:55 10.2 g F101206 **ICAL ID** Received 11/30/2010 10:48 CCal Filename(s) F101206B_10 & F101206B_26 Extracted 12/02/2010 17:15 Method Blank ID BLANK-27127 Analyzed 12/07/2010 06:46

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	16.0		0.71	2,3,7,8-TCDF-13C	2.00	79
Total TCDF	320.0		0.71	2,3,7,8-TCDD-13C	2.00	86
2 2 7 0 TODD	2.0		0.50	1,2,3,7,8-PeCDF-13C	2.00	70 60
2,3,7,8-TCDD Total TCDD	3.9 260.0		0.53 0.53	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00	69 74
Total TCDD	200.0		0.55	1,2,3,4,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00	100
1,2,3,7,8-PeCDF	12.0		0.70	1,2,3,6,7,8-HxCDF-13C	2.00	79
2,3,4,7,8-PeCDF	23.0		0.81	2,3,4,6,7,8-HxCDF-13C	2.00	77
Total PeCDF	250.0		0.76	1,2,3,7,8,9-HxCDF-13C	2.00	76
				1,2,3,4,7,8-HxCDD-13C	2.00	107
1,2,3,7,8-PeCDD	14.0		0.79	1,2,3,6,7,8-HxCDD-13C	2.00	79
Total PeCDD	290.0		0.79	1,2,3,4,6,7,8-HpCDF-13C	2.00	65
				1,2,3,4,7,8,9-HpCDF-13C	2.00	64
1,2,3,4,7,8-HxCDF	23.0		0.56	1,2,3,4,6,7,8-HpCDD-13C	2.00	77
1,2,3,6,7,8-HxCDF	15.0		0.42	OCDD-13C	4.00	67
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	19.0 7.3		0.62 0.90	1,2,3,4-TCDD-13C	2.00	NA
Total HxCDF	220.0		0.90	1,2,3,7,8,9-HxCDD-13C	2.00	NA NA
TOTALLINGDI	220.0		0.02	1,2,3,7,0,9-110000-130	2.00	INA
1,2,3,4,7,8-HxCDD	11.0		0.95	2,3,7,8-TCDD-37Cl4	0.20	85
1,2,3,6,7,8-HxCDD	27.0		0.70	_,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
1,2,3,7,8,9-HxCDD	13.0		0.49			
Total HxCDD	380.0		0.72			
1,2,3,4,6,7,8-HpCDF	150.0		0.57	Total 2,3,7,8-TCDD		
1,2,3,4,7,8,9-HpCDF	16.0		0.80	Equivalence: 47 ng/Kg		
Total HpCDF	210.0		0.69	(Using 2005 WHO Factors -	Using PRL/	2 where ND)
1 0 0 4 6 7 0 HpCDD	460.0		1.60			
1,2,3,4,6,7,8-HpCDD	460.0 870.0		1.60 1.60			
Total HpCDD	010.0		1.00			
OCDF	610.0		1.00			
OCDD	5400.0		1.10			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-9-1
Lab Sample ID 255812006
Filename F101207A_05
Injected By SMT

Total Amount Extracted 10.8 g Matrix Solid % Moisture 6.8 Dilution NA

Dry Weight Extracted Collected 11/22/2010 13:00 10.1 g F101206 **ICAL ID** Received 11/30/2010 10:48 CCal Filename(s) F101206B_26 & F101207A_16 Extracted 12/02/2010 14:00 Method Blank ID BLANK-27124 Analyzed 12/07/2010 16:47

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 1.10		0.220 0.220	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	67 81 61
2,3,7,8-TCDD Total TCDD	ND 0.76		0.150 0.150 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	83 Y 74 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.20 0.39 4.20		0.110 BJ 0.072 J 0.090 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	77 59 67 79
1,2,3,7,8-PeCDD Total PeCDD	0.18 1.30		0.160 BJ 0.160 BJ	1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	76 62 65
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	 0.33	0.39 0.38 	0.110 I 0.110 I 0.110 BJ	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	73 60
1,2,3,7,8,9-HxCDF Total HxCDF	0.22 6.20		0.097 BJ 0.110 B	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.17 0.51 2.50	0.23	0.130 BJ 0.130 BJ 0.120 I 0.130 BJ	2,3,7,8-TCDD-37Cl4	0.20	84
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	3.00 ND 11.00		0.130 BJ 0.230 0.180	Total 2,3,7,8-TCDD Equivalence: 0.79 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	17.00 36.00		0.270 0.270			
OCDF OCDD	9.60 170.00		0.310 BJ 0.380			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

I = Interference present

Y = Calculated using average of daily RFs

Method 8290 Sample Analysis Results

Client - PASI Seattle

SPL-9-2 Client's Sample ID Lab Sample ID 255812007 F101207A_06 Filename Injected By SMT

Total Amount Extracted 10.9 g Solid Matrix % Moisture Dilution NA 7.4

Dry Weight Extracted 10.1 g Collected 11/22/2010 13:10 F101206 **ICAL ID** Received 11/30/2010 10:48 CCal Filename(s) F101206B_26 & F101207A_16 Extracted 12/02/2010 14:00 Method Blank ID BLANK-27124 Analyzed 12/07/2010 17:35

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	ND		0.190	2,3,7,8-TCDF-13C	2.00	72
Total TCDF	0.25		0.190 J	2,3,7,8-TCDD-13C	2.00	85
0.07.0 TODD	ND		0.450	1,2,3,7,8-PeCDF-13C	2.00	58
2,3,7,8-TCDD	ND		0.150	2,3,4,7,8-PeCDF-13C	2.00	81 Y
Total TCDD	0.65		0.150 J	1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00	72 81
1,2,3,7,8-PeCDF	ND		0.140	1,2,3,4,7,6-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C	2.00	81
2,3,4,7,8-PeCDF	0.36		0.140 0.100 J	2,3,4,6,7,8-HxCDF-13C	2.00	55
Total PeCDF	3.40		0.120 J	1,2,3,7,8,9-HxCDF-13C	2.00	63
10101110021	0.10		0.1.20	1,2,3,4,7,8-HxCDD-13C	2.00	90
1,2,3,7,8-PeCDD	ND		0.130	1,2,3,6,7,8-HxCDD-13C	2.00	72
Total PeCDD	0.16		0.130 BJ	1,2,3,4,6,7,8-HpCDF-13C	2.00	60
				1,2,3,4,7,8,9-HpCDF-13C	2.00	60
1,2,3,4,7,8-HxCDF	0.37		0.150 BJ	1,2,3,4,6,7,8-HpCDD-13C	2.00	69
1,2,3,6,7,8-HxCDF	ND		0.130	OCDD-13C	4.00	58
2,3,4,6,7,8-HxCDF		0.26	0.170 I	4 0 0 4 TODD 400	0.00	
1,2,3,7,8,9-HxCDF	0.20		0.096 BJ	1,2,3,4-TCDD-13C	2.00	NA
Total HxCDF	5.80		0.140 B	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD	ND		0.280	2,3,7,8-TCDD-37Cl4	0.20	92
1,2,3,6,7,8-HxCDD	0.63		0.230 BJ			
1,2,3,7,8,9-HxCDD	ND		0.190			
Total HxCDD	5.20		0.240 B			
1,2,3,4,6,7,8-HpCDF	2.70		0.200 BJ	Total 2,3,7,8-TCDD		
1,2,3,4,7,8,9-HpCDF	ND		0.220	Equivalence: 0.70 ng/Kg		
Total HpCDF	9.70		0.210	(Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD	19.00		0.330			
Total HpCDD	41.00		0.330			
·	7.00		0.400 5.1			
OCDF	7.90		0.400 BJ			
OCDD	190.00		0.860			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

ND = Not Detected NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

I = Interference present

Y = Calculated using average of daily RFs

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-9-3
Lab Sample ID 255812008
Filename F101207A_07
Injected By SMT

Total Amount Extracted 10.8 g Matrix Solid % Moisture 6.6 Dilution NA

Dry Weight Extracted Collected 10.1 g 11/22/2010 13:00 F101206 **ICAL ID** Received 11/30/2010 10:48 CCal Filename(s) F101206B 26 & F101207A 16 Extracted 12/02/2010 14:00 Method Blank ID BLANK-27124 Analyzed 12/07/2010 18:23

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	ND		0.24	2,3,7,8-TCDF-13C	2.00	76
Total TCDF	0.96		0.24 J	2,3,7,8-TCDD-13C	2.00	88
2,3,7,8-TCDD	ND		0.26	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C	2.00 2.00	54 83 Y
Total TCDD	0.44		0.26 J	1,2,3,7,8-PeCDD-13C	2.00	76
	.		0.20	1,2,3,4,7,8-HxCDF-13C	2.00	83
1,2,3,7,8-PeCDF	ND		0.24	1,2,3,6,7,8-HxCDF-13C	2.00	79
2,3,4,7,8-PeCDF	0.40		0.16 J	2,3,4,6,7,8-HxCDF-13C	2.00	59
Total PeCDF	5.00		0.20	1,2,3,7,8,9-HxCDF-13C	2.00	64
1 2 2 7 9 DoCDD	ND		0.16	1,2,3,4,7,8-HxCDD-13C	2.00 2.00	84 77
1,2,3,7,8-PeCDD Total PeCDD	ND 0.93		0.16 0.16 BJ	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00	77 57
Total FeCDD	0.95		0.10 00	1,2,3,4,7,8,9-HpCDF-13C	2.00	65
1,2,3,4,7,8-HxCDF	0.51		0.16 BJ	1,2,3,4,6,7,8-HpCDD-13C	2.00	74
1,2,3,6,7,8-HxCDF		0.25	0.16 I	OCDD-13C	4.00	62
2,3,4,6,7,8-HxCDF	ND		0.25			
1,2,3,7,8,9-HxCDF	ND		0.15	1,2,3,4-TCDD-13C	2.00	NA
Total HxCDF	7.30		0.18 B	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD	ND		0.22	2,3,7,8-TCDD-37Cl4	0.20	95
1,2,3,6,7,8-HxCDD	0.78		0.25 BJ			
1,2,3,7,8,9-HxCDD	0.36		0.20 BJ			
Total HxCDD	6.20		0.22 B			
1,2,3,4,6,7,8-HpCDF	3.70		0.23 J	Total 2,3,7,8-TCDD		
1,2,3,4,7,8,9-HpCDF	0.34		0.28 BJ	Equivalence: 0.95 ng/Kg		
Total HpCDF	14.00		0.26	(Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD	28.00		0.36			
Total HpCDD	56.00		0.36			
OCDF	11.00		0.33 B			
OCDD	290.00		0.47			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

ND = Not Detected NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

I = Interference present

Y = Calculated using average of daily RFs

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-8-3 Lab Sample ID 255812009 Filename F101207A_08 Injected By SMT **Total Amount Extracted** 11.9 g Solid Matrix % Moisture Dilution 15.9 NA Dry Weight Extracted Collected 10.0 g 11/22/2010 14:30 F101206 **ICAL ID** Received 11/30/2010 10:48 CCal Filename(s) F101206B_26 & F101207A_16 Extracted 12/02/2010 14:00 Method Blank ID BLANK-27124 Analyzed 12/07/2010 19:12

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.80 13.00		0.26 J 0.26	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	68 84 66
2,3,7,8-TCDD Total TCDD	ND 10.00		0.22 0.22	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	83 Y 74 79
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.10 4.20 30.00		0.22 BJ 0.21 J 0.22	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	73 58 68
1,2,3,7,8-PeCDD Total PeCDD	0.67 16.00		0.27 BJ 0.27	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	82 76 65 67
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	6.60 1.90 2.60		0.22 0.21 BJ 0.18 BJ	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	74 67
1,2,3,7,8,9-HxCDF Total HxCDF	1.80 79.00		0.30 BJ 0.23	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.85 3.50 1.00 31.00		0.29 BJ 0.28 J 0.22 BJ 0.27	2,3,7,8-TCDD-37Cl4	0.20	86
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	28.00 120.00	2.0	0.11 0.31 I 0.21	Total 2,3,7,8-TCDD Equivalence: 5.3 ng/Kg (Using 2005 WHO Factors -	Using PRL	/2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	73.00 140.00		0.40 0.40			
OCDF OCDD	100.00 880.00		0.30 0.46			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

I = Interference present

Y = Calculated using average of daily RFs

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-7-5
Lab Sample ID 255812010
Filename F101206B_20
Injected By BAL

Total Amount Extracted 32.2 g Matrix Solid % Moisture 68.2 Dilution NA

Dry Weight Extracted 10.2 g Collected 11/22/2010 15:10 F101206 **ICAL ID** Received 11/30/2010 10:48 CCal Filename(s) F101206B_10 & F101206B_26 Extracted 12/02/2010 17:15 Method Blank ID BLANK-27127 Analyzed 12/07/2010 07:34

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	2.50		0.35 0.35	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00	86 99
Total TCDF	30.00		0.35	2,3,7,6-1CDD-13C 1,2,3,7,8-PeCDF-13C	2.00	65
2,3,7,8-TCDD	0.58		0.41 J	2,3,4,7,8-PeCDF-13C	2.00	66
Total TCDD	17.00		0.41	1,2,3,7,8-PeCDD-13C	2.00	67
				1,2,3,4,7,8-HxCDF-13C	2.00	91
1,2,3,7,8-PeCDF	1.20		0.32 J	1,2,3,6,7,8-HxCDF-13C	2.00	84
2,3,4,7,8-PeCDF	1.30		0.43 J	2,3,4,6,7,8-HxCDF-13C	2.00	84 81
Total PeCDF	12.00		0.38	1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00	93
1,2,3,7,8-PeCDD	1.40		0.70 J	1,2,3,6,7,8-HxCDD-13C	2.00	79
Total PeCDD	16.00		0.70	1,2,3,4,6,7,8-HpCDF-13C	2.00	68
				1,2,3,4,7,8,9-HpCDF-13C	2.00	66
1,2,3,4,7,8-HxCDF	0.92		0.37 J	1,2,3,4,6,7,8-HpCDD-13C	2.00	73
1,2,3,6,7,8-HxCDF	0.74		0.29 J	OCDD-13C	4.00	57
2,3,4,6,7,8-HxCDF	0.82		0.32 J	4 0 0 4 TODD 400	0.00	NIA
1,2,3,7,8,9-HxCDF Total HxCDF	0.50 9.30		0.34 J 0.33	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
TOTAL MXCDF	9.30		0.33	1,2,3,7,6,9-000-130	2.00	INA
1,2,3,4,7,8-HxCDD	0.93		0.36 J	2,3,7,8-TCDD-37Cl4	0.20	93
1,2,3,6,7,8-HxCDD	1.30		0.39 J	,-, ,		
1,2,3,7,8,9-HxCDD	0.82		0.34 J			
Total HxCDD	17.00		0.36			
1,2,3,4,6,7,8-HpCDF	3.90		0.42 J	Total 2,3,7,8-TCDD		
1,2,3,4,7,8,9-HpCDF	0.83		0.42 J	Equivalence: 3.5 ng/Kg		
Total HpCDF	14.00		0.45	(Using 2005 WHO Factors -	Usina PRL/	2 where ND)
,				(11 9 111 1	3	,
1,2,3,4,6,7,8-HpCDD	11.00		0.40			
Total HpCDD	23.00		0.40			
OCDF	15.00		0.66			
OCDD	130.00		1.10			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. $J = Estimated \ value$

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-8-1
Lab Sample ID 255812011
Filename F101207A_09
Injected By SMT

Total Amount Extracted 13.5 g Matrix Solid % Moisture 25.7 Dilution NA

Dry Weight Extracted 10.0 g Collected 11/22/2010 14:00 F101206 **ICAL ID** Received 11/30/2010 10:48 CCal Filename(s) F101206B_26 & F101207A_16 Extracted 12/02/2010 14:00 Method Blank ID BLANK-27124 Analyzed 12/07/2010 20:00

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.49 11.00		0.40 J 0.40	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	64 78 63
2,3,7,8-TCDD Total TCDD	ND 5.20		0.25 0.25	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	79 Y 70 70
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.71 2.70 26.00	 	0.29 BJ 0.22 J 0.26	1,2,3,6,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	65 53 61 74
1,2,3,7,8-PeCDD Total PeCDD	0.55 7.80		0.29 BJ 0.29	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	65 59 58
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	3.30 0.90 1.60		0.32 J 0.29 BJ 0.37 BJ	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	66 54
1,2,3,7,8,9-HxCDF Total HxCDF	40.00	0.87	0.21 I 0.30	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.57 1.80 18.00	0.70	0.34 BJ 0.24 J 0.23 I 0.27	2,3,7,8-TCDD-37Cl4	0.20	93
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	13.00 1.50 58.00	 	0.17 0.30 BJ 0.23	Total 2,3,7,8-TCDD Equivalence: 3.0 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	33.00 67.00		0.40 0.40			
OCDF OCDD	45.00 390.00		0.47 1.30			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

ND = Not Detected NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

I = Interference present

Y = Calculated using average of daily RFs

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-8-2
Lab Sample ID 255812012
Filename F101207A_10
Injected By SMT

Total Amount Extracted 12.2 g Matrix Solid % Moisture 12.0 Dilution NA

Dry Weight Extracted Collected 10.7 g 11/22/2010 14:15 F101206 **ICAL ID** Received 11/30/2010 10:48 CCal Filename(s) F101206B_26 & F101207A_16 Extracted 12/02/2010 14:00 Method Blank ID BLANK-27124 Analyzed 12/07/2010 20:48

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.98		0.28	2,3,7,8-TCDF-13C	2.00	69
Total TCDF	24.00		0.28	2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00	82 66
2,3,7,8-TCDD		0.18	0.15 I	2,3,4,7,8-PeCDF-13C	2.00	82 Y
Total TCDD	10.00		0.15	1,2,3,7,8-PeCDD-13C	2.00	73
1,2,3,7,8-PeCDF	2.50		0.25 J	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C	2.00 2.00	79 76
2,3,4,7,8-PeCDF	12.00		0.23 3	2,3,4,6,7,8-HxCDF-13C	2.00	70 59
Total PeCDF	130.00		0.25	1,2,3,7,8,9-HxCDF-13C	2.00	66
				1,2,3,4,7,8-HxCDD-13C	2.00	83
1,2,3,7,8-PeCDD	0.81		0.23 BJ	1,2,3,6,7,8-HxCDD-13C	2.00	74
Total PeCDD	26.00		0.23	1,2,3,4,6,7,8-HpCDF-13C	2.00	62
1 2 2 4 7 0 HVCDE	23.00		0.40	1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00	61 70
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	23.00 5.60		0.40	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	4.00	60
2,3,4,6,7,8-HxCDF	11.00		0.35	0000 100	4.00	00
1,2,3,7,8,9-HxCDF	5.20		0.26	1,2,3,4-TCDD-13C	2.00	NA
Total HxCDF	280.00		0.30	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD	1.50		0.32 BJ	2,3,7,8-TCDD-37Cl4	0.20	86
1,2,3,6,7,8-HxCDD	8.90		0.32	, , ,		
1,2,3,7,8,9-HxCDD	2.30		0.22 BJ			
Total HxCDD	140.00		0.29			
1,2,3,4,6,7,8-HpCDF	82.00		0.47	Total 2,3,7,8-TCDD		
1,2,3,4,7,8,9-HpCDF	8.20		0.66	Equivalence: 14 ng/Kg		, <u> </u>
Total HpCDF	350.00		0.56	(Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD	200.00		0.59			
Total HpCDD	420.00		0.59			
OCDF	250.00		0.86			
OCDD	2500.00		0.36			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

NA = Not Applicable NC = Not Calculated

ND = Not Detected

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

I = Interference present

Y = Calculated using average of daily RFs

Method 8290 Blank Analysis Results

Lab Sample ID BLANK-27127 Matrix Solid Filename U101206A_06 Dilution NA

Total Amount Extracted 20.2 g Extracted 12/02/2010 17:15 ICAL ID U101204A Analyzed 12/06/2010 17:29

CCal Filename(s) U101206A_02 & U101206A_17 Injected By BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.200 0.320		0.047 J 0.047 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	51 61 39 R
2,3,7,8-TCDD Total TCDD	0.039 0.039		0.026 J 0.026 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	40 48 80
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.050 0.050		0.044 0.036 J 0.040 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	70 73 70
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.041 0.041	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	86 77 68 66
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND ND	 	0.068 0.081 0.063 0.087	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	77 72 NA
Total HxCDF	ND		0.075	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		0.094 0.100 0.097 0.098	2,3,7,8-TCDD-37Cl4	0.20	56
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		0.071 0.086 0.078	Total 2,3,7,8-TCDD Equivalence: 0.13 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND 0.130		0.100 0.100 J			
OCDF OCDD	ND 0.550		0.140 0.210 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

Method 8290 Blank Analysis Results

Lab Sample ID BLANK-27124 Matrix Solid Filename F101207A_03 Dilution NA

Total Amount Extracted 10.4 g Extracted 12/02/2010 14:00 ICAL ID F101206 Analyzed 12/07/2010 15:10

CCal Filename(s) F101206B_26 & F101207A_16 Injected By SMT

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	54 66 64	
2,3,7,8-TCDD Total TCDD	ND ND		2.00 2.00 2.00 2.00	83 Y 75 78		
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.24 0.24	0.19 	0.100 J 0.071 I 0.086 J	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	72 61 70 80
1,2,3,7,8-PeCDD Total PeCDD	0.21 0.21		0.110 J 0.110 J	1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	76 70 69
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	0.22 0.21 0.33 0.42	0.22 0.075 J 1,2,3,4,6,7,8-HpCDD-13C 0.21 0.067 J OCDD-13C 0.33 0.088 J 0.42 0.120 J 1,2,3,4-TCDD-13C	2.00 4.00 2.00	74 57 NA		
Total HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.20 0.19 0.18 0.27 0.64	 	2.00 0.20	NA 75		
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.32 0.37 0.69	 	0.082 J 0.120 J 0.100 J	Total 2,3,7,8-TCDD Equivalence: 0.49 ng/Kg (Using 2005 WHO Factors -	2 where ND)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.46 0.70		0.100 J 0.100 J			
OCDF OCDD	1.10 1.70		0.170 J 0.320 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Y = Calculated using average of daily RFs

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted

ICAL ID CCal Filename(s) Method Blank ID LCS-27128 U101206A_03 20.4 g

U101204A U101206A_02 & U101206A_17 BLANK-27127 Matrix Dilution Extracted Analyzed

Injected By

Solid NA

12/02/2010 17:15 12/06/2010 15:03 BAL

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.25	124	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.0 2.0 2.0	57 71 60
2,3,7,8-TCDD Total TCDD	0.20	0.20	100	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.0 2.0 2.0 2.0	57 78 79
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.1 1.1	115 113	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.0 2.0 2.0 2.0 2.0	79 69 71 71 73
1,2,3,7,8-PeCDD Total PeCDD	1.0	0.98	98	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.0 2.0 2.0 2.0	77 70 66
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	1.0 1.0 1.0 1.0	1.1 1.1 1.1 1.1	110 113 115 115	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.0 4.0 2.0	76 63 NA
Total HxCDF 1,2,3,4,7,8-HxCDD	1.0	1.1	112	1,2,3,7,8,9-HxCDD-13C 2,3,7,8-TCDD-37Cl4	2.0 0.20	NA 68
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	1.1 1.1 1.1	109 114	2,3,7,0-1000-37014	0.20	00
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.2 1.1	116 110			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	1.0	102			
OCDF OCDD	2.0 2.0	2.3 2.4	115 122			

Qs = Quantity Spiked Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)
R = Recovery outside of target range

Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable
* = See Discussion

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename **Total Amount Extracted**

ICAL ID

CCal Filename(s) Method Blank ID

LCS-27125 F101207A_01 10.1 g

F101206 F101206B_26 & F101207A_16 BLANK-27124

Matrix Dilution Extracted Analyzed

Solid NA

12/02/2010 14:00 12/07/2010 13:35

Injected By S	MΤ
---------------	----

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.23	117	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.0 2.0 2.0	54 65 62
2,3,7,8-TCDD Total TCDD	0.20	0.20	99	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.0 2.0 2.0 2.0	81 Y 75 77
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.1 1.1	111 108	1,2,3,4,7,6-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.0 2.0 2.0 2.0 2.0	77 72 59 68 81
1,2,3,7,8-PeCDD Total PeCDD	1.0	1.00	100	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.0 2.0 2.0 2.0	73 66 63
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	1.0 1.0 1.0 1.0	1.1 1.1 1.0 1.1	107 109 101 110	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.0 4.0 2.0	69 57 NA
Total HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	0.99 1.1 1.0	99 108 102	1,2,3,7,8,9-HxCDD-13C 2,3,7,8-TCDD-37Cl4	2.0 0.20	NA 71
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.1 1.0	106 102			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	0.96	96			
OCDF OCDD	2.0 2.0	2.3 2.2	116 109			

Qs = Quantity Spiked Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent) R = Recovery outside of target range

Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable * = See Discussion

Method 8290 Spiked Sample Report

Client - PASI Seattle

Matrix

Solid

Client's Sample ID SPL-9-1-MS
Lab Sample ID 255812006-MS
Filename F101207A_12
Total Amount Extracted 10.9 g

Total Amount Extracted 10.9 g Dilution NA ICAL ID F101206 Extracted 12/02/2010 14:00

CCal Filename(s) F101206B_26 & F101207A_16 Analyzed 12/07/2010 22:24 Method Blank ID BLANK-27124 Injected By SMT

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20	0.26	128	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	68 78 60
2,3,7,8-TCDD	0.20	0.21	105	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	80 Y 69 78
1,2,3,7,8-PeCDF	1.00	1.15	115	1,2,3,6,7,8-HxCDF-13C	2.00	76
2,3,4,7,8-PeCDF	1.00	1.11	111	2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00	59 65 83
1,2,3,7,8-PeCDD	1.00	1.01	101	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00	75 56
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	1.00 1.00	1.07 1.09	107 109	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	55 61 49
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	1.00 1.00	1.11 1.07	111 107	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	1.00 1.00 1.00	1.04 1.04 0.96	104 104 96	2,3,7,8-TCDD-37Cl4	0.20	82
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	1.00 1.00	1.10 1.03	110 103			
1,2,3,4,6,7,8-HpCDD	1.00	1.26	126			
OCDF OCDD	2.00 2.00	2.28 5.27	114 264			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

Y = Calculated using average of daily RFs

Method 8290 Spiked Sample Report

Client - PASI Seattle

Client's Sample ID Lab Sample ID Filename

Total Amount Extracted ICAL ID

CCal Filename(s) Method Blank ID

SPL-9-1-MSD 255812006-MSD F101207A_13

10.8 g F101206

F101206B_26 & F101207A_16 BLANK-27124

Matrix Solid Dilution NA

12/02/2010 14:00 Extracted Analyzed 12/07/2010 23:12

Injected By SMT

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20	0.24	119	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	71 83 61
2,3,7,8-TCDD	0.20	0.21	104	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	79 Y 72 81
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	1.00 1.00	1.11 1.06	111 106	1,2,3,6,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	79 57 64
1,2,3,7,8-PeCDD	1.00	0.99	99	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	84 79 62
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	1.10 1.07 1.12	110 107 112	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	58 68 55
1,2,3,7,8,9-HxCDF	1.00	1.10	110	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	1.00 1.00 1.00	1.04 1.07 0.98	104 107 98	2,3,7,8-TCDD-37Cl4	0.20	86
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	1.00 1.00	1.13 1.05	113 105			
1,2,3,4,6,7,8-HpCDD	1.00	1.16	116			
OCDF OCDD	2.00 2.00	2.30 4.72	115 236			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures. Y = Calculated using average of daily RFs

Pace Analytical[™]

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Spike Sample Results

Client - PASI Seattle

Client Sample ID Lab Sample ID MS ID

MSD ID

SPL-9-1 255812006 255812006-MS 255812006-MSD

Sample Filename MS Filename MSD Filename F101207A_05 F101207A_12 F101207A_13 Dry Weights
Sample Amount 10.1 g
MS Amount 10.2 g
MSD Amount 10.1 g

	Sample Conc.	MS/MSD Qs	MS Qm	MSD Qm		Background Subtracted						
Analyte	ng/Kg	(ng)	(ng)	(ng)	RPD	MS % Rec.	MSD % Rec.	RPD				
2,3,7,8-TCDF	0.000	0.20	0.26	0.24	7.4	128	119	7.4				
2,3,7,8-TCDD	0.000	0.20	0.21	0.21	1.1	105	104	1.1				
1,2,3,7,8-PeCDF	0.197	1.00	1.15	1.11	3.8	115	111	3.8				
2,3,4,7,8-PeCDF	0.393	1.00	1.11	1.06	4.7	111	106	4.7				
1,2,3,7,8-PeCDD	0.184	1.00	1.01	0.99	1.6	100	99	1.6				
1,2,3,4,7,8-HxCDF	0.000	1.00	1.07	1.10	1.9	107	109	2.0				
1,2,3,6,7,8-HxCDF	0.000	1.00	1.09	1.07	1.6	108	107	1.6				
2,3,4,6,7,8-HxCDF	0.330	1.00	1.11	1.12	1.0	110	111	1.0				
1,2,3,7,8,9-HxCDF	0.216	1.00	1.07	1.10	2.9	106	110	2.9				
1,2,3,4,7,8-HxCDD	0.168	1.00	1.04	1.04	0.1	104	104	0.0				
1,2,3,6,7,8-HxCDD	0.512	1.00	1.04	1.07	2.9	103	106	3.0				
1,2,3,7,8,9-HxCDD	0.000	1.00	0.96	0.98	1.7	96	97	1.7				
1,2,3,4,6,7,8-HpCDF	2.957	1.00	1.10	1.13	2.8	107	110	3.0				
1,2,3,4,7,8,9-HpCDF	0.000	1.00	1.03	1.05	2.4	103	105	2.4				
1,2,3,4,6,7,8-HpCDD	17.290	1.00	1.26	1.16	8.7	109	98	10.0				
OCDF	9.566	2.00	2.28	2.30	0.8	109	110	8.0				
OCDD	167.498	2.00	5.27	4.72	11.0	178	152	16.2				

Definitions

MS = Matrix Spike MSD = Matrix Spike Duplicate

Qm = Quantity Measured Qs = Quantity Spiked % Rec. = Percent Recovery

RPD = Relative Percent Difference

NA = Not Applicable NC = Not Calculated CDD = Chlorinated dibenzo-p-dioxin CDF = Chlorinated dibenzo-p-furan

T = Tetra Pe = Penta Hx = Hexa Hp = Hepta O = Octa

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

					<u> </u>			12	11	5	9	∞	7	6	O1	4	ω	2		ITEM#		1	Re	P	ᇤ		Ad	ဝွ	R Se
	(0			in challed	Jemp 15 lawl	ADDITIONAL COMMENTS	-745	1 25-8-1	いとしている。		. ^	- P-1-32	SD	582-6-5	57-6-4	SPL-6-3	- C-0-7-	Spr-10-1	SAMPLE ID (A-Z, 0-9 /) Sample IDs MIUST BE UNIQUE Samble Other	Section D Mat Required Client Information MATE	, , , ,	TATE	Phone: 0-945-1525 Fax -943-1513	0	CALLAND IN TARK	5	Company: The Man As (BINILLE)	Section A Required Client Information:
	(ORIGINAI					73												\$	A Water OT S A P P C S P W T MATRIX CODE (see valid codes	des ODE)	3 Project Name:	Purchase Order No.:		Copy To:	Report To:	Section B Required Project Information:
						₹\	ELINQ											_	<u>ر</u> ا	SAMPLE TYPE (G=GRAB C=C	•		, T	8 R.	er No.:	ļ	3	3	ect inf
					,		UISHED	<u> </u>												COM			1280	7		L	. <u>.</u>	2	ormation:
		SAMPL				1	RELINQUISHED BY / AFFILIATION													COMPOSITE START TIME	COL						2 N N N N N N N N N N N N N N N N N N N		
SIGNAT	PRINT N	ER NAME				12	NOIT	+			N										COLLECTED			the histograms with					
SIGNATURE of SAMPLER:	PRINT Name of SAMPLER:	SAMPLER NAME AND SIGNATURE			_)W/22	DATE	14:15	Id set	15:10	14:30	13.00	(5: 10	13.00	3 5	13:50	13:40	130,40	5	COMPOSITE END/GRAB				F.					
NPLES	NPLER	IATUF				200	ΤE	-	_						V j	(*	G	<u>U</u>	<u>u</u>	SAMPLE TEMP AT COLLECTION								ı	
"	"	ñ						1	-	-								;	ع	# OF CONTAINERS		20	Pace	Pace Mana	Pace Refe	Add	Con	Atte	Sec
	ازر					(600)	TIME	2							Sand-House			· same	7.	Unpreserved		1	Pace Profile #:	Pace Project Manager:	Pace Quote Reference:	Address:	Company Name:	Attention: Set	Section C
}]	01					0		L	-			_			ļ					H ₂ SO ₄	PŢ		#				Name:	8	ormati
#	7	,	3	, ,	V	đ														HCI	Preservatives.							ľ	3
[/].	_\		PAN		200 100	0	Ą					_								NaOH Na ₂ S ₂ O ₃	ative							7	
	3)	` حک	\$			CEP.													Methanol	ķ								
501	\geq			3	d,	\\\\\	TED B	e			stown-score	<u> </u>						Sourcema	Manuscourt Comment	Other ↓ Analysis Test ↓	Y/ N .								
> ₽	1		\mathcal{E}	6	7	g_	ACCEPTED BY / AFFILIATION	-			02000			Newson.					4	As. Ni, Cu. Pb. Cd	—								
DATE Signed(MM/DD/YY):			Rw	7	6	(FILIA	F	-	-			_						*	DAH, Naphalene	<u></u>	Requested							
igned		· · · · · · · · · · · · · · · · · · ·	Š	1	6		NOI	<u> </u>			-	-							7.	TPH-HO, TPH-N DIOXIVI, FURAN	54	estec							
7																			()	SIVA 11 PURM		Ana		<u>s</u>	~1	Trace	교		
77		*New Yorkstone					D,	L		<u> </u>				_	_						ļ	Analysis Filtered	S	Site Location	UST	NPI	REGULATORY AGENCY		
1/4		Name and Address of the Owner, where the Owner, where the Owner, where the Owner, where the Owner, where the Owner, where the Owner, where the Owner, where the Owner, where the Owner, where the Owner, where the Owner, where the Owner, where the Owner, where the Owner, where the Owner, where the Owner, where the Owner, where the Owner, which is the Owner, where the Owner, which is the					DATE	\vdash	 	-	 		_									File	STATE:	ation	_	NPDES	ATOF		
Ō																						red			7		RY A		
U			多				TIME			ļ												(K)	2		RCRA	GRO	GEN		Ī
							/ **********		 	-		_	-					-	_				4	.	Š	DUND	욉		Page:
Ter	mp in	°C	0,2																	Residual Chlorine (Y/N)						GROUND WATER	ı		
	eived e (Y/N		کہ				SAMP													Pace					Ø.	R			
Seal	ustod ed Co (Y/N)	oler					SAMPLE CONDITIONS													Pace Project No./ Lab I.D.					OTHER	DRINKI		1000	1
Sam	ples li	ntact		-			TIONS													No./ Lab					人人	DRINKING WATER		559	
	(Y/N)		ک																	Ē					`	R			1

*Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any (woices) of paid within 30 days.

F-ALL-Q-020rev.07, 15-May-2007

Sample Container Count

CLIENT: BOWN & Caldwell

Face Analytical*

COC ID# 1318 559

12	11	10	9	8	7	O) 4	ហ	4	ω	N		Item
												VG9H
												AG1H
												AG1U
												BG1H
												BP10
												B720
												BP30
												BEZN
												8728
_				- A.D. (2000)							4	WGFU
												AG1U BG1H BP1U BP2U BP3U BP2N BP2S WGFU WGKU
			4									
Trip Blank?												
20					•							Collination

		I Wipe/Swab	BP20 500mL NaOH plastic
		DG9U 40mL unpreserved amber vial	BP2N 500mL HNO3 plastic
ZPLC Ziploc Bag	ZPLC	DG9T 40mL Na Thio amber vial	BP1Z 1 liter NaOH, Zn, Ac
WGFX 4oz wide jar w/hexane wipe	WGFX	DG9M 40mL MeOH clear vial	BP1U 1 liter unpreserved plastic
WGFU 4oz clear soil jar	WGFU	DG9H 40mL HCL amber voa vial	BP1S 1 liter H2SO4 plastic
VSG Headspace septa vial & HCL	VSG	DG9B 40mL Na Bisulfate amber vial	BP1N 1 liter HNO3 plastic
VG9W 40mL glass vial preweighted (EPA 5035)	VG9W	BP3U 250mL unpreserved plastic	BG1U 1 liter unpreserved glass
VG9U 40mL unpreserved clear vial	VG9U	BP3S 250mL H2SO4 plastic	BG1H 1 liter HCL clear glass
VG9T 40mL Na Thio. clear vial	VG9T	BP3N 250mL HNO3 plastic	AG3S 250mL H2SO4 amber glass
VG9H 40mL HCL clear vial	VG9H	BP3C 250mL NaOH plastic	AG2U 500mL unpreserved amber glass
Summa Can	C	BP2Z 500mL NaOH, Zn Ac	AG2S 500mL H2SO4 amber glass
R terra core kit	B	BP2U 500mL unpreserved plastic	AG1U 1liter unpreserved amber glass
JGFU 4oz unpreserved amber wide	JGFU	BP2S 500mL H2SO4 plastic	AG1H 1 liter HCL amber glass

.' }[‡]

	Sample Co	neli	ion Upor	Receip		
Pace Analytical* Client Name:	Brown	nd	Corld	well F	Project #	2 5 5 8 1 2
Courier: Fed Ex UPS USPS Clien Tracking #: 8138 821 5369	t DCommerc	cial	Pace Ot	ner		
Custody Seal on Cooler/Box Present: Yes	☐ No S	Seals i	intact:	Yes 🔲	No	
Packing Material: Bubble Wrap Bubble	Bags 🗌 No	ne _ [Other		Temp. Blank Yes	No
Thermometer Used 132013 or 101731962 o) 226099	Type of Ice:	Wet	Blue Non	e 🔲	Samples on ice, cooli	ng process has begyn
Cooler Temperature (), 20 C Temp should be above freezing ≤ 6 ℃	Biological Ti	ssue I	s Frozen: Ye Comments:	s No	Date and Initials contents:	of person examining
Chain of Custody Present:	∠ Yes □No	□N/A	1.			
Chain of Custody Filled Out:	Yes □No	□n/a	2.			
Chain of Custody Relinquished:	□Yes □No	□n/a	3.			
Sampler Name & Signature on COC:	□Yes □No	□n/a	4.			
Samples Arrived within Hold Time:	ØYes □No	□n/a	5.			
Short Hold Time Analysis (<72hr):	□Yes □No	□n/a	6.			
Rush Turn Around Time Requested:	□Yes □No	⊡ N/A	7.			
Sufficient Volume:	ØYes □No	□n/a	8.			,1
Correct Containers Used:	☑Yes □No	□n/a	9.			,
-Pace Containers Used:	☑Yes □No	□n/a				· · · · · · · · · · · · · · · · · · ·
Containers Intact:	ØYes □No	□n/a	10.			
Filtered volume received for Dissolved tests	□Yes □No	DN/A	11.			
Sample Labels match COC:	☑Yes □No	□N/A	12.			
-Includes date/time/ID/Analysis Matrix:	4011					•
All containers needing preservation have been checked.	□Yes □No	□N/A	13.			
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes □No	□N/A			•	
Exceptions: VOA, coliform, TOC, O&G			Initial when completed		Lot # of added preservative	
Samples checked for dechlorination:	□Yes □No	□N/A	14.			
Headspace in VOA Vials (>6mm):	□Yes □No	□N/A	15.			
Trip Blanks Present:	□Yes ☑No	□N/A	16.			
Trip Blank Custody Seals Present	□Yes □No	[⊒Ñ/A				
Pace Trip Blank Lot # (if purchased):						
Client Notification/ Resolution:					Field Data Required?	Y / N
Person Contacted:		Date/T	Time:			
Comments/ Resolution:						
		•				
		·······				
Project Manager Review:	Sm				Date: ///	29/10

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

December 27, 2010

Joshua Johnson Brown & Caldwell 724 Columbia St. NW#420 Olympia, WA 98501

RE: Project: East Bay Redevelopment 138130

Pace Project No.: 255986

Dear Joshua Johnson:

Enclosed are the analytical results for sample(s) received by the laboratory on December 11, 2010. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

No sample jars were received for dry weight correction. Per client previous results from the same sampling points (reported on work order 255812) can be used for the dry weight correction.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jennifer Gross

jennifer.gross@pacelabs.com Project Manager

ENNI (-PROSS

Enclosures

cc: John Turk, Brown & Caldwell

CERTIFICATIONS

Project: East Bay Redevelopment 138130

Pace Project No.: 255986

Washington Certification IDs
940 South Harney Street, Seattle, WA 98108
Alaska CS Certification #: UST-025
Alaska Drinking Water VOC Certification #: WA01230
Alaska Drinking Water Micro Certification #: WA01230

California Certification #: 01153CA California Certification #: E87617
Oregon Certification #: WA200007
Washington Certification #: C1229

SAMPLE ANALYTE COUNT

Project: East Bay Redevelopment 138130

Pace Project No.: 255986

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
255986001	SPL-6-1	NWTPH-Gx	AY1	3	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
255986002	SPL-6-2	NWTPH-Gx	AY1	3	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
255986003	SPL-6-3	NWTPH-Gx	AY1	3	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
255986004	SPL-6-4	NWTPH-Gx	AY1	3	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
255986005	SPL-6-5	NWTPH-Gx	AY1	3	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
255986006	SPL-9-1	NWTPH-Gx	AY1	3	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
255986007	SPL-9-2	NWTPH-Gx	AY1	3	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
255986008	SPL-9-3	NWTPH-Gx	AY1	3	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
255986009	SPL-8-1	NWTPH-Gx	AY1	3	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
255986010	SPL-8-2	NWTPH-Gx	AY1	3	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
255986011	TB-1318558	NWTPH-Gx	AY1	3	PASI-S
		EPA 8260	LPM	8	PASI-S

Project: East Bay Redevelopment 138130

255986 Pace Project No.:

NWTPH-Gx CCV Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics a.a.a-Trifluorotoluene (S) 91 % 50-150 1 12/15/10 10:00 12/15/10 23:54 98-08-8 4-Bromofluorobenzene (S) 75 % 50-150 1 12/15/10 10:00 12/15/10 23:54 98-08-8 4-Bromofluorobenzene (S) 75 % 50-150 1 12/15/10 10:00 12/15/10 23:54 98-08-8 4-Bromofluorobenzene (S) 75 % 50-150 1 12/15/10 10:00 12/15/10 23:54 98-08-8 4-Bromofluorobenzene (S) 8-Browner Benzene ND ug/kg 16.3 1 12/15/10 10:00 12/15/10 23:54 460-00-4 8-Browner Benzene ND ug/kg 16.3 1 12/15/10 15:14 71-43-2 Ethlybenzene ND ug/kg 16.3 1 12/15/10 15:14 100-41-4 Tolluene ND ug/kg 16.3 1 12/15/10 15:14 1309-20-7 Dibloromofluoromethane (S) 100 % 80-136 1 12/15/10 15:14 1309-20-7 Dibloromofluoromethane (S) 100 % 80-136 1 12/15/10 15:14 1309-20-7 Dibloromofluorobenzene (S) 128 % 80-120 1 12/15/10 15:14 1309-20-7 Dibloromofluorobenzene (S) 142 % 72-122 1 12/15/10 15:14 2037-28-5 S3 4-Bromofluorobenzene (S) 110 % 80-143 1 12/15/10 10:514 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87 Percent Moisture Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 11.5 1 12/15/10 10:00 12/15/10 00:40 8a,a,a-Trifluorotoluene (S) 79 % 50-150 1 12/15/10 10:00 12/15/10 00:40 98-08-8 4-Bromofluorobenzene (S) 4-Bromofluorobe	Lab ID: 255986001	Collected: 12/10/1	0 10:30	Received: 12	2/11/10 09:26 I	Matrix: Solid	
NWTPH-Gx GCV Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics a.a.a-Trifluorotoluene (S) 91 % 50-150 1 12/15/10 10:00 12/15/10 23:54 98-08-8 4-Bromofiluorobenzene (S) 75 % 50-150 1 12/15/10 10:00 12/15/10 23:54 98-08-8 4-Bromofiluorobenzene (S) 75 % 50-150 1 12/15/10 10:00 12/15/10 23:54 460-00-4 8260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 16.3 1 12/16/10 15:14 71-43-2 Ethylbenzene ND ug/kg 16.3 1 12/16/10 15:14 100-41-4 Tolluene ND ug/kg 16.3 1 12/16/10 15:14 100-41-4 Tolluene ND ug/kg 16.3 1 12/16/10 15:14 130-20-7 Dibromofiluoromethane (S) 100 % 80-136 1 12/16/10 15:14 130-20-7 Dibromofiluoromethane (S) 112 8 % 80-120 1 12/16/10 15:14 130-20-7 Percent Moisture Analytical Method: ASTM D2974-87 Percent Moisture Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qu. NWTPH-Gx GCV Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics Analytical Method: EPA 8260 Benzene ND ug/kg 11.5 1 12/15/10 10:00 12/16/10 00-40 98-08-8 4-8-07-07-07-07-07-07-07-07-07-07-07-07-07-	t" basis						
Gasoline Range Organics ND mg/kg 44.7 1 12/15/10 10:00 12/15/10 23:54 80-08-8	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
a.a.a.Trifluorotoluene (S) 91 % 50-150 1 12/15/10 10:00 12/15/10 23:54 88-08-8 48-00-04 48-000-04 48-07-05/10 23:54 48-00-04 48-07-05/10 23:54 48-00-04 48-07-05/10 23:54 48-00-04 48-07-05/10 23:54 48-00-04 48-07-05/10 23:55/10 23:55/10 2	Analytical Method: NW	ΓΡΗ-Gx Preparation Me	ethod: N	WTPH-Gx			
### ABROMOFILIDED HISTORY 1	ND mg/kg	44.7	1	12/15/10 10:00	12/15/10 23:54	ļ.	
Benzene	91 %	50-150	1	12/15/10 10:00	12/15/10 23:54	98-08-8	
Benzene	75 %	50-150	1	12/15/10 10:00	12/15/10 23:54	460-00-4	
Ethylbenzene ND ug/kg 16.3 1 12/16/10 15:14 100-41-4 Toluene ND ug/kg 16.3 1 12/16/10 15:14 100-41-4 Toluene ND ug/kg 16.3 1 12/16/10 15:14 108-88-3 ND ug/kg 48.9 1 12/16/10 15:14 108-88-3 ND ug/kg 48.9 1 12/16/10 15:14 1303-20-7 Dibromofluoromethane (S) 100 % 80-136 1 12/16/10 15:14 1868-53-7 Toluene-d8 (S) 128 % 80-120 1 12/16/10 15:14 1868-53-7 Toluene-d8 (S) 142 % 72-122 1 12/16/10 15:14 1460-00-4 S3 1,2-Dichloroethane-d4 (S) 101 % 80-143 1 12/16/10 15:14 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87 Percent Moisture Analytical Method: ASTM D2974-87 Percent Moisture Analytical Method: NWTPH-GX Preparation Method: NWTPH-GX Prepared Analyzed CAS No. Qui NWTPH-GX GCV Analytical Method: NWTPH-GX Preparation Method: NWTPH-GX Gasoline Range Organics Analytical Method: NWTPH-GX Preparation Method: NWTPH-GX Gasoline Range Organics Analytical Method: NWTPH-GX Preparation Method: NWTPH-GX Gasoline Range Organics Analytical Method: EPA 8260 Benzene ND ug/kg 5.9 1 12/15/10 10:00 12/16/10 00:40 98-08-8 4-Bromofluorobenzene (S) 62 % 50-150 1 12/15/10 10:00 12/16/10 00:40 98-08-8 4-Bromofluorobenzene (S) 62 % 50-150 1 12/15/10 10:00 12/16/10 00:40 98-08-8 4-Bromofluorobenzene (S) 62 % 50-150 1 12/15/10 10:00 12/16/10 00:40 98-08-8 4-Bromofluorobenzene (S) 62 % 50-150 1 12/15/10 10:00 12/16/10 15:34 100-41-4 Toluene ND ug/kg 5.9 1 12/16/10 15:34 100-41-4 Toluene ND ug/kg 5.9 1 12/16/10 15:34 100-41-4 Toluene ND ug/kg 5.9 1 12/16/10 15:34 1300-20-7 Dibromofluoromethane (S) 115 % 80-136 1 12/16/10 15:34 1300-20-7 Dibromofluoromethane (S) 146 % 80-120 1 12/16/10 15:34 1808-83-7 Toluene-d8 (S) 146 % 80-120 1 12/16/10 15:34 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	Analytical Method: EPA	8260					
Toluene ND ug/kg 16.3 1 12/16/10 15:14 108-88-3 Xy/ene (Total) ND ug/kg 48.9 1 12/16/10 15:14 108-88-3 Xy/ene (Total) ND ug/kg 48.9 1 12/16/10 15:14 1330-20-7 Dibromofluoromethane (S) 100 % 80-136 1 12/16/10 15:14 1380-20-7 Toluene-d8 (S) 128 % 80-120 1 12/16/10 15:14 2037-26-5 S3 4-Bromofluorobenzene (S) 142 % 72-122 1 12/16/10 15:14 2037-26-5 S3 1.2-Dichloroethane-d4 (S) 101 % 80-143 1 12/16/10 15:14 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87 Percent Moisture Analytical Method: ASTM D2974-87 Percent Moisture T4.3 % 0.10 1 11/30/10 17:03 Sample: SPL-6-2 Lab ID: 255986002 Collected: 12/10/10 10:50 Received: 12/11/10 09:26 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Quital Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 11.5 1 12/15/10 10:00 12/16/10 00:40 4.a,a,a-frifluorotoluene (S) 79 % 50-150 1 12/15/10 10:00 12/16/10 00:40 480-00-4 4806/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 5.9 1 12/15/10 10:00 12/16/10 00:40 460-00-4 4806/5035A Volatile Organics ND ug/kg 5.9 1 12/16/10 15:34 71-43-2 Ethylbenzene ND ug/kg 5.9 1 12/16/10 15:34 100-41-4 Toluene ND ug/kg 5.9 1 12/16/10 15:34 100-41-4 Toluene ND ug/kg 5.9 1 12/16/10 15:34 130-20-7 Dibromofluoromethane (S) 115 % 80-136 1 12/16/10 15:34 130-20-7 Dibromofluoromethane (S) 146 % 72-122 1 12/16/10 15:34 1688-53-7 Toluene-d8 (S) 146 % 80-120 1 12/16/10 15:34 1688-53-7 Toluene-d8 (S) 146 % 72-122 1 12/16/10 15:34 1688-53-7 Toluene-d8 (S) 146 % 72-122 1 12/16/10 15:34 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	ND ug/kg	16.3	1		12/16/10 15:14	71-43-2	
Xylene (Total) ND ug/kg 48.9 1 12/16/10 15:14 1330-20-7	ND ug/kg	16.3	1		12/16/10 15:14	100-41-4	
Dibromofluoromethane (S)	ND ug/kg	16.3	1		12/16/10 15:14	108-88-3	
Dibromofluoromethane (S)	ND ug/kg	48.9	1		12/16/10 15:14	1330-20-7	
Toluene-d8 (S)	100 %	80-136	1				
4-Bromofluorobenzene (S) 142 % 72-122 1 12/16/10 15:14 460-00-4 S3 1,2-Dichloroethane-d4 (S) 101 % 80-143 1 12/16/10 15:14 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87 Percent Moisture 74.3 % 0.10 1 11/30/10 17:03 Sample: SPL-6-2 Lab ID: 255986002 Collected: 12/10/10 10:50 Received: 12/11/10 09:26 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Quantum NWTPH-Gx GCV Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 11.5 1 12/15/10 10:00 12/16/10 00:40 89-08-8 4-Bromofluorobenzene (S) 79 % 50-150 1 12/15/10 10:00 12/16/10 00:40 460-00-4 4-Bromofluorobenzene (S) 62 % 50-150 1 12/15/10 10:00 12/16/10 00:40 460-00-4 8260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 5.9 1 12/16/10 15:34 71-43-2 Ethylbenzene ND ug/kg 5.9 1 12/16/10 15:34 100-41-4 Tolluene ND ug/kg 5.9 1 12/16/10 15:34 100-41-4 Tolluene ND ug/kg 5.9 1 12/16/10 15:34 100-41-4 Tolluene ND ug/kg 5.9 1 12/16/10 15:34 100-88-3 Xylene (Total) ND ug/kg 5.9 1 12/16/10 15:34 108-88-3 Tolluene-d8 (S) 146 % 80-120 1 12/16/10 15:34 1300-20-7 Dibromofluorobenzene (S) 146 % 80-120 1 12/16/10 15:34 1600-07-0 Percent Moisture Analytical Method: ASTM D2974-87		80-120	1		12/16/10 15:14	2037-26-5	S3
1,2-Dichloroethane-d4 (S) 101 % 80-143 1 12/16/10 15:14 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87 Percent Moisture 74.3 % 0.10 1 11/30/10 17:03 Sample: SPL-6-2 Lab ID: 255986002 Collected: 12/10/10 10:50 Received: 12/11/10 09:26 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Quantum NWTPH-Gx GCV Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 11.5 1 12/15/10 10:00 12/16/10 00:40 8-08-8 4-Bromofluorobenzene (S) 79 % 50-150 1 12/15/10 10:00 12/16/10 00:40 98-08-8 4-Bromofluorobenzene (S) 62 % 50-150 1 12/15/10 10:00 12/16/10 00:40 460-00-4 8260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 5.9 1 12/16/10 15:34 100-41-4 Toluene ND ug/kg 5.9 1 12/16/10 15:34 130-20-7 Dibromofluoromethane (S) 115 % 80-136 1 12/16/10 15:34 130-20-7 Dibromofluoromethane (S) 115 % 80-136 1 12/16/10 15:34 2037-26-5 S3 4-Bromofluorobenzene (S) 146 % 80-120 1 12/16/10 15:34 460-00-4 S3 1,2-Dichloroethane-d4 (S) 111 % 80-143 1 12/16/10 15:34 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	142 %	72-122	1				
Percent Moisture 74.3 % 0.10 1 11/30/10 17:03							•
Sample: SPL-6-2 Lab ID: 255986002 Collected: 12/10/10 10:50 Received: 12/11/10 09:26 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Quality NWTPH-Gx GCV Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics a,a,a-Trifluorotoluene (S) ND mg/kg 11.5 1 12/15/10 10:00 12/16/10 00:40 98-08-8 4-Bromofluorobenzene (S) 62 % 50-150 1 12/15/10 10:00 12/16/10 00:40 98-08-8 4-Bromofluorobenzene (S) Analytical Method: EPA 8260 Benzene ND ug/kg 5.9 1 12/16/10 15:34 71-43-2 Ethylbenzene ND ug/kg 5.9 1 12/16/10 15:34 100-41-4 Toluene ND ug/kg 5.9 1 12/16/10 15:34 100-41-4 Toluene-d8 (S) 115 % 80-136 1 12/16/10 15:34 130-20-7 Dibromofluoromethane (S) 1146 % 80-120 1 12/16/10 15:34	Analytical Method: AST	M D2974-87					
Parameters Results Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Quality CAS No. Quality Quality Prepared Analyzed CAS No. Quality Prepared Analyzed CAS No. Quality Prepared Analyzed CAS No. Quality Prepared Analyzed CAS No. Quality Prepared Analyzed CAS No. Quality Prepared Analyzed CAS No. Quality Prepared Analyzed CAS No. Quality Prepared Analyzed CAS No. Quality Prepared Analyzed CAS No. Quality Prepared Analyzed CAS No. Quality Prepared Analyzed CAS No. Quality Prepared Analyzed CAS No. Quality Prepared Analyzed CAS No. Quality Prepared Analyzed CAS No. Quality Prepared Analyzed CAS No. Quality Prepared Analyzed CAS No. Quality Quality Prepared NWTPH-Gx Prepar	74.3 %	0.10	1		11/30/10 17:03	,	
Parameters Results Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qualified CAS No. Qualified Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qualified CAS N							
Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Quality NWTPH-Gx GCV Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx NWTPH-Gx Preparation Method: NWTPH-Gx NWTPH-Gx Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx NWTPH-Gx Prepared Analytical Method: NWTPH-Gx Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx	Lab ID: 255986002	Collected: 12/10/1	0 10:50	Received: 12	2/11/10 09:26	Matrix: Solid	
NWTPH-Gx GCV Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics	t" basis						
Gasoline Range Organics	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Our
a,a,a-Trifluorotoluene (S) 79 % 50-150 1 12/15/10 10:00 12/16/10 00:40 98-08-8 4-Bromofluorobenzene (S) 62 % 50-150 1 12/15/10 10:00 12/16/10 00:40 460-00-4 8260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 5.9 1 12/16/10 15:34 71-43-2 Ethylbenzene ND ug/kg 5.9 1 12/16/10 15:34 100-41-4 Toluene ND ug/kg 5.9 1 12/16/10 15:34 108-88-3 Xylene (Total) ND ug/kg 17.6 1 12/16/10 15:34 1330-20-7 Dibromofluoromethane (S) 115 % 80-136 1 12/16/10 15:34 1868-53-7 Toluene-d8 (S) 146 % 80-120 1 12/16/10 15:34 2037-26-5 S3 4-Bromofluorobenzene (S) 116 % 80-143 1 12/16/10 15:34 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87							_ Qua
4-Bromofluorobenzene (S) 62 % 50-150 1 12/15/10 10:00 12/16/10 00:40 460-00-4 8260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 5.9 1 12/16/10 15:34 71-43-2 Ethylbenzene ND ug/kg 5.9 1 12/16/10 15:34 100-41-4 Toluene ND ug/kg 5.9 1 12/16/10 15:34 108-88-3 Xylene (Total) ND ug/kg 17.6 1 12/16/10 15:34 1330-20-7 Dibromofluoromethane (S) 115 % 80-136 1 12/16/10 15:34 1868-53-7 Toluene-d8 (S) 4-Bromofluorobenzene (S) 146 % 80-120 1 12/16/10 15:34 460-00-4 S3 4-Bromofluorobenzene (S) 111 % 80-143 1 12/16/10 15:34 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	Analytical Method: NW	ΓΡΗ-Gx Preparation Me	ethod: N	WTPH-Gx			
8260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 5.9 1 12/16/10 15:34 71-43-2 Ethylbenzene ND ug/kg 5.9 1 12/16/10 15:34 100-41-4 Toluene ND ug/kg 5.9 1 12/16/10 15:34 108-88-3 Xylene (Total) ND ug/kg 17.6 1 12/16/10 15:34 1330-20-7 Dibromofluoromethane (S) 115 % 80-136 1 12/16/10 15:34 1868-53-7 Toluene-d8 (S) 146 % 80-120 1 12/16/10 15:34 2037-26-5 S3 4-Bromofluorobenzene (S) 146 % 72-122 1 12/16/10 15:34 460-00-4 S3 1,2-Dichloroethane-d4 (S) 111 % 80-143 1 12/16/10 15:34 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	-				12/16/10 00:40	_	_ Q ua
Benzene ND ug/kg 5.9 1 12/16/10 15:34 71-43-2 Ethylbenzene ND ug/kg 5.9 1 12/16/10 15:34 100-41-4 Toluene ND ug/kg 5.9 1 12/16/10 15:34 108-88-3 Xylene (Total) ND ug/kg 17.6 1 12/16/10 15:34 1330-20-7 Dibromofluoromethane (S) 115 % 80-136 1 12/16/10 15:34 1868-53-7 Toluene-d8 (S) 146 % 80-120 1 12/16/10 15:34 2037-26-5 S3 4-Bromofluorobenzene (S) 146 % 72-122 1 12/16/10 15:34 460-00-4 S3 1,2-Dichloroethane-d4 (S) 111 % 80-143 1 12/16/10 15:34 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	ND mg/kg	11.5	1	12/15/10 10:00)	
Ethylbenzene ND ug/kg 5.9 1 12/16/10 15:34 100-41-4 Toluene ND ug/kg 5.9 1 12/16/10 15:34 108-88-3 Xylene (Total) ND ug/kg 17.6 1 12/16/10 15:34 1330-20-7 Dibromofluoromethane (S) 115 % 80-136 1 12/16/10 15:34 1868-53-7 Toluene-d8 (S) 146 % 80-120 1 12/16/10 15:34 2037-26-5 S3 4-Bromofluorobenzene (S) 146 % 72-122 1 12/16/10 15:34 460-00-4 S3 1,2-Dichloroethane-d4 (S) 111 % 80-143 1 12/16/10 15:34 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	ND mg/kg 79 %	11.5 50-150	1 1	12/15/10 10:00 12/15/10 10:00	12/16/10 00:40)) 98-08-8	_ <u> </u>
Ethylbenzene ND ug/kg 5.9 1 12/16/10 15:34 100-41-4 Toluene ND ug/kg 5.9 1 12/16/10 15:34 108-88-3 Xylene (Total) ND ug/kg 17.6 1 12/16/10 15:34 1330-20-7 Dibromofluoromethane (S) 115 % 80-136 1 12/16/10 15:34 1868-53-7 Toluene-d8 (S) 146 % 80-120 1 12/16/10 15:34 2037-26-5 S3 4-Bromofluorobenzene (S) 146 % 72-122 1 12/16/10 15:34 460-00-4 S3 1,2-Dichloroethane-d4 (S) 111 % 80-143 1 12/16/10 15:34 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	ND mg/kg 79 % 62 %	11.5 50-150 50-150	1 1	12/15/10 10:00 12/15/10 10:00	12/16/10 00:40)) 98-08-8	_ - Qu
Toluene ND ug/kg 5.9 1 12/16/10 15:34 108-88-3 Xylene (Total) ND ug/kg 17.6 1 12/16/10 15:34 1330-20-7 Dibromofluoromethane (S) 115 % 80-136 1 12/16/10 15:34 1868-53-7 Toluene-d8 (S) 146 % 80-120 1 12/16/10 15:34 2037-26-5 S3 4-Bromofluorobenzene (S) 146 % 72-122 1 12/16/10 15:34 460-00-4 S3 1,2-Dichloroethane-d4 (S) 111 % 80-143 1 12/16/10 15:34 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	ND mg/kg 79 % 62 % Analytical Method: EPA	11.5 50-150 50-150 8260	1 1 1	12/15/10 10:00 12/15/10 10:00	12/16/10 00:40 12/16/10 00:40	98-08-8 0 460-00-4	
Xylene (Total) ND ug/kg 17.6 1 12/16/10 15:34 1330-20-7 Dibromofluoromethane (S) 115 % 80-136 1 12/16/10 15:34 1868-53-7 Toluene-d8 (S) 146 % 80-120 1 12/16/10 15:34 2037-26-5 S3 4-Bromofluorobenzene (S) 146 % 72-122 1 12/16/10 15:34 460-00-4 S3 1,2-Dichloroethane-d4 (S) 111 % 80-143 1 12/16/10 15:34 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	ND mg/kg 79 % 62 % Analytical Method: EPA ND ug/kg	11.5 50-150 50-150 8260 5.9	1 1 1	12/15/10 10:00 12/15/10 10:00	12/16/10 00:40 12/16/10 00:40 12/16/10 15:34	98-08-8 9 460-00-4 71-43-2	
Dibromofluoromethane (S) 115 % 80-136 1 12/16/10 15:34 1868-53-7 Toluene-d8 (S) 146 % 80-120 1 12/16/10 15:34 2037-26-5 S3 4-Bromofluorobenzene (S) 146 % 72-122 1 12/16/10 15:34 460-00-4 S3 1,2-Dichloroethane-d4 (S) 111 % 80-143 1 12/16/10 15:34 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	ND mg/kg 79 % 62 % Analytical Method: EPA ND ug/kg ND ug/kg	11.5 50-150 50-150 8260 5.9 5.9	1 1 1	12/15/10 10:00 12/15/10 10:00	12/16/10 00:40 12/16/10 00:40 12/16/10 15:34 12/16/10 15:34	98-08-8 9 460-00-4 4 71-43-2 4 100-41-4	Qua
Toluene-d8 (S) 146 % 80-120 1 12/16/10 15:34 2037-26-5 S3 4-Bromofluorobenzene (S) 146 % 72-122 1 12/16/10 15:34 460-00-4 S3 1,2-Dichloroethane-d4 (S) 111 % 80-143 1 12/16/10 15:34 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	ND mg/kg 79 % 62 % Analytical Method: EPA ND ug/kg ND ug/kg ND ug/kg	11.5 50-150 50-150 8260 5.9 5.9 5.9	1 1 1 1 1	12/15/10 10:00 12/15/10 10:00	12/16/10 00:40 12/16/10 00:40 12/16/10 15:34 12/16/10 15:34 12/16/10 15:34	98-08-8 9 460-00-4 1 71-43-2 1 100-41-4 1 108-88-3	Qui
4-Bromofluorobenzene (S) 146 % 72-122 1 12/16/10 15:34 460-00-4 S3 1,2-Dichloroethane-d4 (S) 111 % 80-143 1 12/16/10 15:34 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	ND mg/kg 79 % 62 % Analytical Method: EPA ND ug/kg ND ug/kg ND ug/kg ND ug/kg	11.5 50-150 50-150 8260 5.9 5.9 5.9 17.6	1 1 1 1 1 1	12/15/10 10:00 12/15/10 10:00	12/16/10 00:40 12/16/10 00:40 12/16/10 15:34 12/16/10 15:34 12/16/10 15:34 12/16/10 15:34	98-08-8 9 460-00-4 1 71-43-2 1 100-41-4 1 108-88-3 1 1330-20-7	Qui
1,2-Dichloroethane-d4 (S) 111 % 80-143 1 12/16/10 15:34 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	ND mg/kg 79 % 62 % Analytical Method: EPA ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg	11.5 50-150 50-150 8260 5.9 5.9 5.9 17.6 80-136	1 1 1 1 1 1 1	12/15/10 10:00 12/15/10 10:00	12/16/10 00:40 12/16/10 00:40 12/16/10 15:34 12/16/10 15:34 12/16/10 15:34 12/16/10 15:34	98-08-8 9 460-00-4 1 71-43-2 1 100-41-4 1 108-88-3 1 1330-20-7 1 1868-53-7	
Percent Moisture Analytical Method: ASTM D2974-87	ND mg/kg 79 % 62 % Analytical Method: EPA ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg 115 % 146 %	11.5 50-150 50-150 8260 5.9 5.9 5.9 17.6 80-136 80-120	1 1 1 1 1 1 1 1	12/15/10 10:00 12/15/10 10:00	12/16/10 00:40 12/16/10 00:40 12/16/10 15:34 12/16/10 15:34 12/16/10 15:34 12/16/10 15:34 12/16/10 15:34	98-08-8 9460-00-4 171-43-2 100-41-4 108-88-3 1330-20-7 1868-53-7 2037-26-5	S3
	ND mg/kg 79 % 62 % Analytical Method: EPA ND ug/kg ND ug/kg ND ug/kg ND ug/kg 115 % 146 % 146 %	11.5 50-150 50-150 8260 5.9 5.9 5.9 17.6 80-136 80-120 72-122	1 1 1 1 1 1 1 1	12/15/10 10:00 12/15/10 10:00	12/16/10 00:40 12/16/10 00:40 12/16/10 15:34 12/16/10 15:34 12/16/10 15:34 12/16/10 15:34 12/16/10 15:34 12/16/10 15:34	98-08-8 98-08-8 1460-00-4 171-43-2 100-41-4 108-88-3 1330-20-7 1868-53-7 2037-26-5 460-00-4	S3
	ND mg/kg 79 % 62 % Analytical Method: EPA ND ug/kg ND ug/kg ND ug/kg ND ug/kg 115 % 146 % 146 % 111 %	11.5 50-150 50-150 8260 5.9 5.9 5.9 17.6 80-136 80-120 72-122 80-143	1 1 1 1 1 1 1 1	12/15/10 10:00 12/15/10 10:00	12/16/10 00:40 12/16/10 00:40 12/16/10 15:34 12/16/10 15:34 12/16/10 15:34 12/16/10 15:34 12/16/10 15:34 12/16/10 15:34	98-08-8 98-08-8 1460-00-4 171-43-2 100-41-4 108-88-3 1330-20-7 1868-53-7 2037-26-5 460-00-4	S3
Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics Benzene Ethylbenzene Toluene Xylene (Total) Dibromofluoromethane (S) Toluene-d8 (S) 4-Bromofluorobenzene (S) 1,2-Dichloroethane-d4 (S) Percent Moisture		Analytical Method: NWT ND mg/kg 91 % 75 % Analytical Method: EPA ND ug/kg ND ug/kg ND ug/kg ND ug/kg 100 % 128 % 142 % 101 % Analytical Method: AST 74.3 % Lab ID: 255986002	Results Units Report Limit Analytical Method: NWTPH-Gx Preparation Method: S0-150 ND mg/kg 44.7 91 % 50-150 75 % 50-150 Analytical Method: EPA 8260 ND ug/kg 16.3 ND ug/kg 16.3 ND ug/kg 48.9 100 % 80-136 128 % 80-120 142 % 72-122 101 % 80-143 Analytical Method: ASTM D2974-87 74.3 % 0.10	Results Units Report Limit DF Analytical Method: NWTPH-Gx Preparation Method: N ND mg/kg 44.7 1 91 % 50-150 1 75 % 50-150 1 Analytical Method: EPA 8260 ND ug/kg 16.3 1 ND ug/kg 16.3 1 ND ug/kg 16.3 1 ND ug/kg 48.9 1 100 % 80-136 1 128 % 80-120 1 142 % 72-122 1 101 % 80-143 1 Analytical Method: ASTM D2974-87 74.3 % 0.10 1	Results Units Report Limit DF Prepared Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx ND mg/kg 44.7 1 12/15/10 10:00 91 % 50-150 1 12/15/10 10:00 75 % 50-150 1 12/15/10 10:00 Analytical Method: EPA 8260 ND ug/kg 16.3 1 ND ug/kg 16.3 1 ND ug/kg 16.3 1 ND ug/kg 48.9 1 100 % 80-136 1 128 % 80-120 1 142 % 72-122 1 101 % 80-143 1 Analytical Method: ASTM D2974-87 74.3 0.10 1	Results Units Report Limit DF Prepared Analyzed Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx ND mg/kg 44.7 1 12/15/10 10:00 12/15/10 23:54 91 % 50-150 1 12/15/10 10:00 12/15/10 23:54 Analytical Method: EPA 8260 75 % 50-150 1 12/15/10 10:00 12/15/10 23:54 Analytical Method: EPA 8260 ND ug/kg 16.3 1 12/16/10 15:14 ND ug/kg 16.3 1 12/16/10 15:14 ND ug/kg 16.3 1 12/16/10 15:14 ND ug/kg 48.9 1 12/16/10 15:14 100 % 80-136 1 12/16/10 15:14 128 % 80-120 1 12/16/10 15:14 142 % 72-122 1 12/16/10 15:14 Analytical Method: ASTM D2974-87 74.3 % 0.10 1 11/30/10 17:03	Results Units Report Limit DF Prepared Analyzed CAS No. Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx ND mg/kg 44.7 1 12/15/10 10:00 12/15/10 23:54 98-08-8 91 % 50-150 1 12/15/10 10:00 12/15/10 23:54 98-08-8 75 % 50-150 1 12/15/10 10:00 12/15/10 23:54 460-00-4 Analytical Method: EPA 8260 ND ug/kg 16.3 1 12/16/10 15:14 71-43-2 ND ug/kg 16.3 1 12/16/10 15:14 100-41-4 ND ug/kg 16.3 1 12/16/10 15:14 100-41-4 ND ug/kg 16.3 1 12/16/10 15:14 108-88-3 ND ug/kg 48.9 1 12/16/10 15:14 108-88-3 ND ug/kg 48.9 1 12/16/10 15:14 1300-20-7 100 % 80-120 1 12/16/10 15:14 2037-26-5 142 % 72-122 1 12/16/10 15:14 17060-07-0

Date: 12/27/2010 04:25 PM

REPORT OF LABORATORY ANALYSIS

Page 4 of 14

Project: East Bay Redevelopment 138130

Pace Project No.: 255986

Sample: SPL-6-3	Lab ID: 2559	86003	Collected:	12/10/1	10 10:40	Received: 1	2/11/10 09:26	Matrix: Solid	
Results reported on a "dry-weight	t" basis								
Parameters	Results	Units	Report	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Gx GCV	Analytical Metho	od: NWTP	H-Gx Prepar	ration M	ethod: N	WTPH-Gx			
Gasoline Range Organics	ND mg/	/kg		22.8	1	12/15/10 10:00	12/16/10 01:03	3	
a,a,a-Trifluorotoluene (S)	80 %			50-150	1	12/15/10 10:00	12/16/10 01:03	3 98-08-8	
4-Bromofluorobenzene (S)	60 %		:	50-150	1	12/15/10 10:00	12/16/10 01:03	3 460-00-4	
8260/5035A Volatile Organics	Analytical Metho	od: EPA 82	260						
Benzene	ND ug/l	kg		7.2	1		12/16/10 15:53	3 71-43-2	
Ethylbenzene	ND ug/l	kg		7.2	1		12/16/10 15:53	3 100-41-4	
Toluene	ND ug/l	kg		7.2	1		12/16/10 15:53	3 108-88-3	
Xylene (Total)	ND ug/l	-		21.6	1		12/16/10 15:53	3 1330-20-7	
Dibromofluoromethane (S)	101 %	•		80-136	1		12/16/10 15:53	3 1868-53-7	
Toluene-d8 (S)	146 %		:	80-120	1		12/16/10 15:53	3 2037-26-5	S3
4-Bromofluorobenzene (S)	137 %		-	72-122	1		12/16/10 15:53		S3
1,2-Dichloroethane-d4 (S)	100 %			80-143	1		12/16/10 15:53		
Percent Moisture	Analytical Metho	od: ASTM	D2974-87						
Percent Moisture	54.1 %			0.10	1		11/30/10 17:06	5	
Sample: SPL-6-4	Lab ID: 2559	86004	Collected:	12/10/1	10 10:40	Received: 1	2/11/10 09:26	Matrix: Solid	
•		86004	Collected:	12/10/1	10 10:40	Received: 1	2/11/10 09:26	Matrix: Solid	
•		86004 Units	Collected:		10 10:40 DF	Received: 1 Prepared	2/11/10 09:26 Analyzed	Matrix: Solid CAS No.	Qual
Results reported on a "dry-weight Parameters	t" basis	Units	Report	t Limit	DF	Prepared			Qual
Results reported on a "dry-weight Parameters NWTPH-Gx GCV	t" basis Results	Units	Report	t Limit	DF	Prepared 		CAS No.	Qual
Results reported on a "dry-weight Parameters NWTPH-Gx GCV Gasoline Range Organics	Results Analytical Metho	Units	Report	t Limit ration M	DF ethod: N	Prepared WTPH-Gx 12/15/10 10:00	Analyzed	CAS No.	Qual
Results reported on a "dry-weight Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S)	Results Analytical Methor	Units	Report	t Limit ration M 22.9	DF ethod: N	Prepared WTPH-Gx 12/15/10 10:00 12/15/10 10:00	Analyzed 0 12/16/10 01:27	CAS No.	Qual
Results reported on a "dry-weight Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)	Results Analytical Methor ND mg/ 78 %	Units od: NWTP /kg	Report	t Limit ration M 22.9 50-150	DF ethod: N' 1 1	Prepared WTPH-Gx 12/15/10 10:00 12/15/10 10:00	Analyzed 0 12/16/10 01:27 0 12/16/10 01:27	CAS No.	Qual
Results reported on a "dry-weight Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)	Results Analytical Metho ND mg/ 78 % 63 %	Units od: NWTP /kg od: EPA 82	Report	t Limit ration M 22.9 50-150	DF ethod: N' 1 1	Prepared WTPH-Gx 12/15/10 10:00 12/15/10 10:00	Analyzed 0 12/16/10 01:27 0 12/16/10 01:27	CAS No. 7 98-08-8 7 460-00-4	Qual
Results reported on a "dry-weight Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics Benzene	Analytical Methors Analytical Methors Analytical Methors Analytical Methors	Units od: NWTP /kg od: EPA 82	Report	t Limit ration M 22.9 50-150 50-150	DF ethod: N 1 1	Prepared WTPH-Gx 12/15/10 10:00 12/15/10 10:00	Analyzed 12/16/10 01:27 12/16/10 01:27	CAS No. 7 7 98-08-8 7 460-00-4 7 71-43-2	Qual
Results reported on a "dry-weight Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics Benzene Ethylbenzene	Analytical Methors Analytical Methors 78 % 63 % Analytical Methors ND ug/l ND ug/l	Units od: NWTP /kg od: EPA 82 kg	Report	t Limit ration M 22.9 50-150 50-150	DF ethod: N 1 1 1	Prepared WTPH-Gx 12/15/10 10:00 12/15/10 10:00	Analyzed 12/16/10 01:27 12/16/10 01:27 12/16/10 01:27	CAS No. 7 7 98-08-8 7 460-00-4 7 71-43-2 7 100-41-4	Qual
Results reported on a "dry-weight Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics Benzene Ethylbenzene Toluene	Analytical Methors Analytical Methors 78 % 63 % Analytical Methors ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l	Units od: NWTP /kg od: EPA 82 kg kg kg	Report	t Limit ration M 22.9 50-150 50-150	DF ethod: N' 1 1 1 1	Prepared WTPH-Gx 12/15/10 10:00 12/15/10 10:00	Analyzed 12/16/10 01:27 12/16/10 01:27 12/16/10 01:27 12/21/10 14:27 12/21/10 14:27	CAS No. 7 98-08-8 7 460-00-4 7 71-43-2 7 100-41-4 7 108-88-3	Qual
Results reported on a "dry-weight Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics Benzene Ethylbenzene Toluene Xylene (Total)	Analytical Methor ND mg/78 % 63 % Analytical Methor ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l	Units od: NWTP /kg od: EPA 82 kg kg kg	Report H-Gx Prepar	ration M 22.9 50-150 50-150 10.0 10.0 10.0 30.0	DF ethod: N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Prepared WTPH-Gx 12/15/10 10:00 12/15/10 10:00	Analyzed 12/16/10 01:27 12/16/10 01:27 12/21/10 14:27 12/21/10 14:27 12/21/10 14:27 12/21/10 14:27	CAS No. 7 98-08-8 7 460-00-4 7 71-43-2 7 100-41-4 7 108-88-3 7 1330-20-7	Qual
Results reported on a "dry-weight Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics Benzene Ethylbenzene Toluene Xylene (Total) Dibromofluoromethane (S)	Analytical Methor Analytical M	Units od: NWTP /kg od: EPA 82 kg kg kg	Report H-Gx Prepar	ration M 22.9 50-150 50-150 10.0 10.0 10.0 30.0 80-136	DF ethod: N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Prepared WTPH-Gx 12/15/10 10:00 12/15/10 10:00	Analyzed 12/16/10 01:27 12/16/10 01:27 12/16/10 01:27 12/21/10 14:27 12/21/10 14:27 12/21/10 14:27 12/21/10 14:27 12/21/10 14:27	CAS No. 7 98-08-8 7 460-00-4 7 71-43-2 7 100-41-4 7 108-88-3 7 1330-20-7 7 1868-53-7	
Results reported on a "dry-weight Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics Benzene Ethylbenzene Toluene Xylene (Total) Dibromofluoromethane (S) Toluene-d8 (S)	Analytical Methor ND mg/78 % 63 % Analytical Methor ND ug/l	Units od: NWTP /kg od: EPA 82 kg kg kg	Report H-Gx Prepar	ration M 22.9 50-150 50-150 10.0 10.0 30.0 80-136 80-120	DF ethod: N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Prepared WTPH-Gx 12/15/10 10:00 12/15/10 10:00	Analyzed 12/16/10 01:27 12/16/10 01:27 12/21/10 14:27 12/21/10 14:27 12/21/10 14:27 12/21/10 14:27 12/21/10 14:27 12/21/10 14:27 12/21/10 14:27	CAS No. 7 98-08-8 7 71-43-2 7 71-43-2 7 100-41-4 108-88-3 1330-20-7 1868-53-7 2037-26-5	S3
Results reported on a "dry-weight Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics Benzene Ethylbenzene Toluene Xylene (Total)	Analytical Methor Analytical M	Units od: NWTP /kg od: EPA 82 kg kg kg	Report H-Gx Prepar	ration M 22.9 50-150 50-150 10.0 10.0 10.0 30.0 80-136	DF ethod: N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Prepared WTPH-Gx 12/15/10 10:00 12/15/10 10:00	Analyzed 12/16/10 01:27 12/16/10 01:27 12/16/10 01:27 12/21/10 14:27 12/21/10 14:27 12/21/10 14:27 12/21/10 14:27 12/21/10 14:27	CAS No. 7 98-08-8 7 70 71-43-2 7 100-41-4 7 108-88-3 7 1330-20-7 1868-53-7 2037-26-5 7 460-00-4	
Results reported on a "dry-weight Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics Benzene Ethylbenzene Toluene Xylene (Total) Dibromofluoromethane (S) Toluene-d8 (S) 4-Bromofluorobenzene (S)	Analytical Methor ND mg/78 % 63 % Analytical Methor ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l 147 % 144 %	Units od: NWTP /kg od: EPA 82 kg kg kg	Report H-Gx Prepare	ration M 22.9 50-150 10.0 10.0 10.0 30.0 80-136 80-120 72-122	DF ethod: N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Prepared WTPH-Gx 12/15/10 10:00 12/15/10 10:00	Analyzed 12/16/10 01:27 12/16/10 01:27 12/21/10 14:27 12/21/10 14:27 12/21/10 14:27 12/21/10 14:27 12/21/10 14:27 12/21/10 14:27 12/21/10 14:27 12/21/10 14:27	CAS No. 7 98-08-8 7 70 71-43-2 7 100-41-4 7 108-88-3 7 1330-20-7 1868-53-7 2037-26-5 7 460-00-4	S3

Date: 12/27/2010 04:25 PM

REPORT OF LABORATORY ANALYSIS

Project: East Bay Redevelopment 138130

Pace Project No.: 255986

Lab ID: 255986005 Sample: SPL-6-5 Collected: 12/10/10 10:40 Received: 12/11/10 09:26 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx 12/15/10 10:00 12/16/10 01:50 Gasoline Range Organics ND mg/kg 34.1 1 81 % a,a,a-Trifluorotoluene (S) 50-150 1 12/15/10 10:00 12/16/10 01:50 98-08-8 4-Bromofluorobenzene (S) 72 % 50-150 12/15/10 10:00 12/16/10 01:50 460-00-4 8260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 12.6 12/16/10 16:13 71-43-2 1 Ethylbenzene ND ug/kg 12/16/10 16:13 100-41-4 12.6 1 Toluene ND ug/kg 12.6 12/16/10 16:13 108-88-3 1 Xylene (Total) ND ug/kg 37.9 1 12/16/10 16:13 1330-20-7 Dibromofluoromethane (S) 96 % 80-136 12/16/10 16:13 1868-53-7 1 Toluene-d8 (S) 135 % 80-120 12/16/10 16:13 2037-26-5 S3 1 4-Bromofluorobenzene (S) 157 % 72-122 12/16/10 16:13 460-00-4 S3 1 1,2-Dichloroethane-d4 (S) 103 % 80-143 12/16/10 16:13 17060-07-0 1 **Percent Moisture** Analytical Method: ASTM D2974-87 71.0 % Percent Moisture 0.10 11/30/10 17:08 1 Lab ID: 255986006 Sample: SPL-9-1 Collected: 12/10/10 10:55 Received: 12/11/10 09:26 Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 6.0 12/15/10 10:00 12/16/10 02:13 86 % a,a,a-Trifluorotoluene (S) 50-150 12/15/10 10:00 12/16/10 02:13 98-08-8 1 76 % 50-150 12/15/10 10:00 12/16/10 02:13 460-00-4 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics Analytical Method: EPA 8260 ND ug/kg 12/16/10 16:32 71-43-2 Benzene 3.1 1 Ethylbenzene ND ug/kg 12/16/10 16:32 100-41-4 3.1 1 Toluene ND ug/kg 3.1 1 12/16/10 16:32 108-88-3 Xylene (Total) ND ug/kg 9.3 12/16/10 16:32 1330-20-7 1 Dibromofluoromethane (S) 94 % 80-136 1 12/16/10 16:32 1868-53-7 Toluene-d8 (S) 106 % 80-120 12/16/10 16:32 2037-26-5 1 4-Bromofluorobenzene (S) 114 % 72-122 1 12/16/10 16:32 460-00-4 1,2-Dichloroethane-d4 (S) 98 % 80-143 12/16/10 16:32 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 6.8 % 11/30/10 17:09 0.10 1

Date: 12/27/2010 04:25 PM

REPORT OF LABORATORY ANALYSIS

Page 6 of 14

Project: East Bay Redevelopment 138130

Pace Project No.: 255986

Sample: SPL-9-2	Lab ID: 255986007	Collected: 12/10/10	0 10:55	Received: 12	2/11/10 09:26	Matrix: Solid	
Results reported on a "dry-weigh	t" basis						
Parameters	Results Uni	ts Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Gx GCV	Analytical Method: NW	TPH-Gx Preparation Me	thod: N	WTPH-Gx			
Gasoline Range Organics	ND mg/kg	5.0	1	12/15/10 10:00	12/16/10 02:37	•	
a,a,a-Trifluorotoluene (S)	83 %	50-150	1	12/15/10 10:00	12/16/10 02:37	98-08-8	
4-Bromofluorobenzene (S)	72 %	50-150	1	12/15/10 10:00	12/16/10 02:37	460-00-4	
8260/5035A Volatile Organics	Analytical Method: EP	A 8260					
Benzene	ND ug/kg	2.5	1		12/16/10 16:52	2 71-43-2	
Ethylbenzene	ND ug/kg	2.5	1		12/16/10 16:52	2 100-41-4	
Toluene	ND ug/kg	2.5	1		12/16/10 16:52	2 108-88-3	
Xylene (Total)	ND ug/kg	7.6	1		12/16/10 16:52	1330-20-7	
Dibromofluoromethane (S)	100 %	80-136	1		12/16/10 16:52	1868-53-7	
Toluene-d8 (S)	108 %	80-120	1		12/16/10 16:52		
4-Bromofluorobenzene (S)	113 %	72-122	1		12/16/10 16:52		
1,2-Dichloroethane-d4 (S)	102 %	80-143	1		12/16/10 16:52		
Percent Moisture	Analytical Method: AS	ГМ D2974-87					
Percent Moisture	7.4 %	0.10	1		11/30/10 17:10)	
Sample: SPL-9-3	Lab ID: 255986008	Collected: 12/10/10	0 11:00	Received: 12	2/11/10 09:26	Matrix: Solid	
Results reported on a "dry-weigh	t" basis						
Parameters	Results Uni	ts Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Gx GCV	Analytical Method: NW	TPH-Gx Preparation Me	thod: N	WTPH-Gx			
Gasoline Range Organics	ND mg/kg	6.0	1	12/15/10 10:00	12/16/10 03:00)	
a,a,a-Trifluorotoluene (S)	84 %	50-150	1	12/15/10 10:00	12/16/10 03:00	98-08-8	
4-Bromofluorobenzene (S)	73 %	50-150	1	12/15/10 10:00	12/16/10 03:00	460-00-4	
8260/5035A Volatile Organics	Analytical Method: EP	A 8260					
Benzene	ND ug/kg	3.5	1		12/16/10 17:11	71-43-2	
Ethylbenzene	ND ug/kg	3.5	1		12/16/10 17:11		
Toluene	ND ug/kg	3.5	1		12/16/10 17:11		
			1		12/16/10 17:11		
Xylene (Total)		10.4			.2, 10, 10 17.11		
Xylene (Total) Dibromofluoromethane (S)	ND ug/kg	10.4 80-136			12/16/10 17:11		
Dibromofluoromethane (S)	ND ug/kg 96 %	80-136	1		12/16/10 17:11	1868-53-7	
Dibromofluoromethane (S) Toluene-d8 (S)	ND ug/kg 96 % 108 %	80-136 80-120	1 1		12/16/10 17:11	1868-53-7 2037-26-5	
Dibromofluoromethane (S) Toluene-d8 (S) 4-Bromofluorobenzene (S)	ND ug/kg 96 % 108 % 115 %	80-136 80-120 72-122	1 1 1		12/16/10 17:11 12/16/10 17:11	1868-53-7 2037-26-5 460-00-4	
Dibromofluoromethane (S) Toluene-d8 (S)	ND ug/kg 96 % 108 %	80-136 80-120	1 1		12/16/10 17:11	1868-53-7 2037-26-5 460-00-4	
Dibromofluoromethane (S) Toluene-d8 (S) 4-Bromofluorobenzene (S)	ND ug/kg 96 % 108 % 115 %	80-136 80-120 72-122 80-143	1 1 1		12/16/10 17:11 12/16/10 17:11	1868-53-7 2037-26-5 460-00-4	
Dibromofluoromethane (S) Toluene-d8 (S) 4-Bromofluorobenzene (S) 1,2-Dichloroethane-d4 (S)	ND ug/kg 96 % 108 % 115 % 105 %	80-136 80-120 72-122 80-143	1 1 1		12/16/10 17:11 12/16/10 17:11	1868-53-7 2037-26-5 460-00-4 17060-07-0	

Date: 12/27/2010 04:25 PM

REPORT OF LABORATORY ANALYSIS

Project: East Bay Redevelopment 138130

Pace Project No.: 255986

Sample: SPL-8-1	Lab ID: 2559860	O09 Collected: 12	2/10/10 10:4	5 Received: 1	2/11/10 09:26	Matrix: Solid	
Results reported on a "dry-weight	t" basis						
Parameters	Results	Units Report Li	mit DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Gx GCV	Analytical Method:	NWTPH-Gx Preparati	on Method: I	NWTPH-Gx			
Gasoline Range Organics	25.1 mg/kg		8.4 1	12/15/10 10:00	11/30/10 12:05	j	
a,a,a-Trifluorotoluene (S)	109 %	50-	150 1	12/15/10 10:00	11/30/10 12:05	98-08-8	
4-Bromofluorobenzene (S)	124 %	50-	150 1	12/15/10 10:00	11/30/10 12:05	460-00-4	
8260/5035A Volatile Organics	Analytical Method:	EPA 8260					
Benzene	ND ug/kg		4.0 1		12/16/10 17:31	71-43-2	
Ethylbenzene	ND ug/kg		4.0 1		12/16/10 17:31	1 100-41-4	
Toluene	ND ug/kg		4.0 1		12/16/10 17:31	1 108-88-3	
Xylene (Total)	ND ug/kg		12.1 1		12/16/10 17:31	1330-20-7	
Dibromofluoromethane (S)	97 %	80-	136 1		12/16/10 17:31	I 1868-53-7	
Toluene-d8 (S)	109 %	80-	120 1		12/16/10 17:31	2037-26-5	
4-Bromofluorobenzene (S)	126 %	72-	122 1		12/16/10 17:31	I 460-00-4	S3
1,2-Dichloroethane-d4 (S)	103 %	80-	143 1		12/16/10 17:31	17060-07-0	
Percent Moisture	Analytical Method:	ASTM D2974-87					
Percent Moisture	25.7 %		0.10 1		11/30/10 17:14	ļ	
Sample: SPL-8-2	Lab ID: 2559860	O10 Collected: 12	2/10/10 10:4	8 Received: 1	2/11/10 09:26	Matrix: Solid	
Results reported on a "dry-weight	t" basis						
Parameters	Results	Units Report Li	mit DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Gx GCV	Analytical Method:	NWTPH-Gx Preparati	on Method: I	NWTPH-Gx			
Gasoline Range Organics	ND mg/kg		5.8 1	12/15/10 10:00	12/16/10 09:20)	
a,a,a-Trifluorotoluene (S)	80 %	50-	150 1	12/15/10 10:00	12/16/10 09:20	98-08-8	
4-Bromofluorobenzene (S)	71 %	50-	150 1	12/15/10 10:00	12/16/10 09:20	460-00-4	
8260/5035A Volatile Organics	Analytical Method:	EPA 8260					
Benzene	ND ug/kg		3.4 1		12/16/10 17:50	71-43-2	
Ethylbenzene	ND ug/kg		3.4 1		12/16/10 17:50		
Toluene	ND ug/kg		3.4 1		12/16/10 17:50		
Xylene (Total)	ND ug/kg		10.1 1		12/16/10 17:50		
Dibromofluoromethane (S)	90 %		136 1		12/16/10 17:50		
Toluene-d8 (S)	106 %		120 1		12/16/10 17:50		
4-Bromofluorobenzene (S)	118 %		120 1		12/16/10 17:50		
1,2-Dichloroethane-d4 (S)	96 %		143 1		12/16/10 17:50		
Percent Moisture	Analytical Method:						
	•					_	
Percent Moisture	12.0 %	(0.10 1		11/30/10 17:15		

Date: 12/27/2010 04:25 PM

REPORT OF LABORATORY ANALYSIS

Page 8 of 14

12/16/10 12:18 2037-26-5

12/16/10 12:18 460-00-4

12/16/10 12:18 17060-07-0

ANALYTICAL RESULTS

Project: East Bay Redevelopment 138130

Pace Project No.: 255986

Toluene-d8 (S)

4-Bromofluorobenzene (S)

1,2-Dichloroethane-d4 (S)

Sample: TB-1318558 Lab ID: 255986011 Collected: 12/10/10 00:00 Received: 12/11/10 09:26 Matrix: Solid Results reported on a "wet-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics 5.0 12/15/10 10:00 12/16/10 09:44 ND mg/kg 92 % a,a,a-Trifluorotoluene (S) 50-150 1 12/15/10 10:00 12/16/10 09:44 98-08-8 4-Bromofluorobenzene (S) 81 % 50-150 12/15/10 10:00 12/16/10 09:44 460-00-4 8260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 3.0 1 12/16/10 12:18 71-43-2 Ethylbenzene ND ug/kg 3.0 12/16/10 12:18 100-41-4 1 Toluene ND ug/kg 3.0 1 12/16/10 12:18 108-88-3 Xylene (Total) ND ug/kg 9.0 12/16/10 12:18 1330-20-7 1 104 % Dibromofluoromethane (S) 80-136 12/16/10 12:18 1868-53-7 1

80-120

72-122

80-143

1

1

1

100 %

109 %

107 %

Date: 12/27/2010 04:25 PM

REPORT OF LABORATORY ANALYSIS

Project: East Bay Redevelopment 138130

Pace Project No.: 255986

QC Batch: GCV/2080 Analysis Method: NWTPH-Gx

QC Batch Method: NWTPH-Gx Analysis Description: NWTPH-Gx Solid GCV

Associated Lab Samples: 255986001, 255986002, 255986003, 255986004, 255986005, 255986006, 255986007, 255986008, 255986009,

255986010, 255986011

METHOD BLANK: 52268 Matrix: Solid

Associated Lab Samples: 255986001, 255986002, 255986003, 255986004, 255986005, 255986006, 255986007, 255986008, 255986009,

255986010, 255986011

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Gasoline Range Organics	mg/kg	ND	5.0	12/15/10 20:24	
4-Bromofluorobenzene (S)	%	101	50-150	12/15/10 20:24	
a,a,a-Trifluorotoluene (S)	%	109	50-150	12/15/10 20:24	

LABORATORY CONTROL SAMPLE: 52269

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Gasoline Range Organics	mg/kg	12.5	12.6	101	54-156	
4-Bromofluorobenzene (S)	%			122	50-150	
a,a,a-Trifluorotoluene (S)	%			117	50-150	

SAMPLE DUPLICATE: 52395

Parameter	Units	255986006 Result	Dup Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND	.77J		
4-Bromofluorobenzene (S)	%	76	79	5	
a,a,a-Trifluorotoluene (S)	%	86	88	2	

SAMPLE DUPLICATE: 52396

Date: 12/27/2010 04:25 PM

		255986008	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND	1.3J		
4-Bromofluorobenzene (S)	%	73	78	8	
a,a,a-Trifluorotoluene (S)	%	84	85	1	

REPORT OF LABORATORY ANALYSIS

Page 10 of 14

Project: East Bay Redevelopment 138130

Pace Project No.: 255986

QC Batch: MSV/3610 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5035A Volatile Organics

Associated Lab Samples: 255986001, 255986002, 255986003, 255986005, 255986006, 255986007, 255986008, 255986009, 255986010,

255986011

METHOD BLANK: 52353 Matrix: Solid

Associated Lab Samples: 255986001, 255986002, 255986003, 255986005, 255986006, 255986007, 255986008, 255986009, 255986010,

25598601

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND	3.0	12/16/10 11:59	
Ethylbenzene	ug/kg	ND	3.0	12/16/10 11:59	
Toluene	ug/kg	ND	3.0	12/16/10 11:59	
Xylene (Total)	ug/kg	ND	9.0	12/16/10 11:59	
1,2-Dichloroethane-d4 (S)	%	108	80-143	12/16/10 11:59	
4-Bromofluorobenzene (S)	%	104	72-122	12/16/10 11:59	
Dibromofluoromethane (S)	%	106	80-136	12/16/10 11:59	
Toluene-d8 (S)	%	104	80-120	12/16/10 11:59	

LABORATORY CONTROL SAME	PLE & LCSD: 52354		52	2355						
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD	Qualifiers
Benzene	 ug/kg	50	56.0	53.3	112	107	75-133	5	30	
Ethylbenzene	ug/kg	50	55.9	52.8	112	106	68-131	6	30	
Toluene	ug/kg	50	56.9	55.3	114	111	73-124	3	30	
Xylene (Total)	ug/kg	150	165	155	110	103	68-130	7	30	
1,2-Dichloroethane-d4 (S)	%				102	102	80-143			
4-Bromofluorobenzene (S)	%				105	110	72-122			
Dibromofluoromethane (S)	%				105	101	80-136			
Toluene-d8 (S)	%				112	111	80-120			

Date: 12/27/2010 04:25 PM

Project: East Bay Redevelopment 138130

Pace Project No.: 255986

QC Batch: MSV/3636 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5035A Volatile Organics

Associated Lab Samples: 255986004

METHOD BLANK: 52906 Matrix: Solid

Associated Lab Samples: 255986004

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND ND	3.0	12/21/10 13:29	
Ethylbenzene	ug/kg	ND	3.0	12/21/10 13:29	
Toluene	ug/kg	ND	3.0	12/21/10 13:29	
Xylene (Total)	ug/kg	ND	9.0	12/21/10 13:29	
1,2-Dichloroethane-d4 (S)	%	106	80-143	12/21/10 13:29	
4-Bromofluorobenzene (S)	%	109	72-122	12/21/10 13:29	
Dibromofluoromethane (S)	%	91	80-136	12/21/10 13:29	
Toluene-d8 (S)	%	123	80-120	12/21/10 13:29	S3

LABORATORY CONTROL SAME	PLE & LCSD: 52907		52	2908						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene	ug/kg	50	49.2	48.1	98	96	75-133	2	30	
Ethylbenzene	ug/kg	50	61.8	60.1	124	120	68-131	3	30	
Toluene	ug/kg	50	64.4	62.7	129	125	73-124	3	30	L3
Xylene (Total)	ug/kg	150	177	174	118	116	68-130	2	30	
1,2-Dichloroethane-d4 (S)	%				102	102	80-143			
4-Bromofluorobenzene (S)	%				113	116	72-122			
Dibromofluoromethane (S)	%				96	93	80-136			
Toluene-d8 (S)	%				126	125	80-120			S0

Date: 12/27/2010 04:25 PM

QUALIFIERS

Project: East Bay Redevelopment 138130

Pace Project No.: 255986

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel Clean-Up

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-S Pace Analytical Services - Seattle

ANALYTE QUALIFIERS

- L3 Analyte recovery in the laboratory control sample (LCS) exceeded QC limits. Analyte presence below reporting limits in associated samples. Results unaffected by high bias.
- S0 Surrogate recovery outside laboratory control limits.
- Surrogate recovery exceeded laboratory control limits. Analyte presence below reporting limits in associated samples. Results unaffected by high bias.

Date: 12/27/2010 04:25 PM

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: East Bay Redevelopment 138130

Pace Project No.: 255986

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
255986001	SPL-6-1	NWTPH-Gx	GCV/2080	NWTPH-Gx	GCV/2084
255986002	SPL-6-2	NWTPH-Gx	GCV/2080	NWTPH-Gx	GCV/2084
255986003	SPL-6-3	NWTPH-Gx	GCV/2080	NWTPH-Gx	GCV/2084
255986004	SPL-6-4	NWTPH-Gx	GCV/2080	NWTPH-Gx	GCV/2084
255986005	SPL-6-5	NWTPH-Gx	GCV/2080	NWTPH-Gx	GCV/2084
255986006	SPL-9-1	NWTPH-Gx	GCV/2080	NWTPH-Gx	GCV/2084
255986007	SPL-9-2	NWTPH-Gx	GCV/2080	NWTPH-Gx	GCV/2084
255986008	SPL-9-3	NWTPH-Gx	GCV/2080	NWTPH-Gx	GCV/2084
255986009	SPL-8-1	NWTPH-Gx	GCV/2080	NWTPH-Gx	GCV/2084
255986010	SPL-8-2	NWTPH-Gx	GCV/2080	NWTPH-Gx	GCV/2084
255986011	TB-1318558	NWTPH-Gx	GCV/2080	NWTPH-Gx	GCV/2084
255986001	SPL-6-1	EPA 8260	MSV/3610		
255986002	SPL-6-2	EPA 8260	MSV/3610		
255986003	SPL-6-3	EPA 8260	MSV/3610		
255986004	SPL-6-4	EPA 8260	MSV/3636		
255986005	SPL-6-5	EPA 8260	MSV/3610		
255986006	SPL-9-1	EPA 8260	MSV/3610		
255986007	SPL-9-2	EPA 8260	MSV/3610		
255986008	SPL-9-3	EPA 8260	MSV/3610		
255986009	SPL-8-1	EPA 8260	MSV/3610		
255986010	SPL-8-2	EPA 8260	MSV/3610		
255986011	TB-1318558	EPA 8260	MSV/3610		
255986001	SPL-6-1	ASTM D2974-87	PMST/1450		
255986002	SPL-6-2	ASTM D2974-87	PMST/1450		
255986003	SPL-6-3	ASTM D2974-87	PMST/1450		
255986004	SPL-6-4	ASTM D2974-87	PMST/1450		
255986005	SPL-6-5	ASTM D2974-87	PMST/1450		
255986006	SPL-9-1	ASTM D2974-87	PMST/1450		
255986007	SPL-9-2	ASTM D2974-87	PMST/1450		
255986008	SPL-9-3	ASTM D2974-87	PMST/1450		
255986009	SPL-8-1	ASTM D2974-87	PMST/1450		
255986010	SPL-8-2	ASTM D2974-87	PMST/1450		

Date: 12/27/2010 04:25 PM

REPORT OF LABORATORY ANALYSIS

Page 14 of 14

	Sample C	onell	ion Upon Receipt		a = = a	0
Pace Analytical Client Nar	ne: Brow	14	Caldwell F	Project #	2 5 5 9 8	b
Courier: Fed Ex UPS USPS USPS Tracking #: 8138 821 4970	Client Comme	rcial	Pace Other			
Custody Seal on Cooler/Box Present:	res 🗌 No	Seals i	intact: 🛛 Yes 🗍 I	No		
Packing Material: Bubble Wrap But	oble Bags 🔲 No	one [Other	Temp. Blank Yes	No	
Thermometer Used 132013/or 101731962 or 2	26099 Type of Ice:	(Wet)	Blue None	Samples on ice, cooling p		
Cooler Temperature 0,7 Temp should be above freezing ≤ 6℃	Biological T		s Frozen: Yes No Comments:	Date and initials of p	Person examining	
Chain of Custody Present:	ØYes □No	□n/a	1.			
Chain of Custody Filled Out:	DYes □No	□N/A	2.			
Chain of Custody Relinquished:	DYes □No	□n/a	3.			
Sampler Name & Signature on COC:	ØYes □No	□n/a	4.			
Samples Arrived within Hold Time:	Yes DNo	□n/a	5.			
Short Hold Time Analysis (<72hr):	□Yes ⊅No	□n/a	6.			
Rush Turn Around Time Requested:	□Yes □No			^ .	10010	
Sufficient Volume:	Obles DNo	□n/a	8. No containe	13 for dry we	But, Elisho	
Correct Containers Used:	ØYes □No	□N/A	9.			
-Pace Containers Used:	ØYes □No	□N/A			<u>:</u>	
Containers Intact:	ØYes □No	□N/A				
Filtered volume received for Dissolved tests	□Yes □No	□ł√i/A ·	11.			
Sample Labels match COC:	ØYes □No	□n/a	12.		00:	
-Includes date/time/ID/Analysis Matrix: All containers needing preservation have been checked			13. No Soil J	iars received	Top move	stuce
	Lies Livo	ØN/A	13. NO SON J	jais 1000	2	-
All containers needing preservation are found to be compliance with EPA recommendation.	in □Yes □No	□N/A				
Compliance with Li //resemmonation		•	Initial when	Lot # of added		
Exceptions: VOA, coliform, TOC, O&G			completed	preservative		
Samples checked for dechlorination:	☐Yes ☐No	DINIA DINIA				
Headspace in VOA Vials (>6mm):	□Yes □No	- (
Trip Blanks Present:	□Yes □No	□N/A	10.			
Trip Blank Custody Seals Present	TIES TIND	٨٣٧ري				
Pace Trip Blank Lot # (if purchased):						
Client Notification/ Resolution:	L-		- mlista	Field Data Required?	Y / N	
Person Contacted: John Tur	<u> </u>	_ Date/	Time: 12/13/10			
Comments/ Resolution:	.00 4		alt acou. Ho	In the fram	255812.Q	pzfr
Per John-please	use dry	NY 1	ght results	301 11011		
·						
			_			
				1	1	

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Project Manager Review:

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

ITEM# Section A
Required Client Information: Requested Due Date/TAT 360 943 7525 360 943 7513 Email John 14 @ bruncold . com OLYMPIA, WA 724 COLUMBIA ST NW # 420 ORGINZ AND CALDWELL Temp Blank Included 201 201-582-7887 Ser-6-5 SPL-586-6-4 586-6-5 Required Client Information T6-1318558 SPL-9-2 SPL-6-3 Sample IDs MUST BE UNIQUE SAMPLE ID -9-3 2 ADDITIONAL COMMENTS 0 × ≀ O 1 9 8SO) Product Soil/Solid Oil Wipe Air Tissue Water Waste Water Orinking Water Matrix Codes
MATRIX / CODE ORIGINAL Project Name: Purchase Order No.: Section B
Required Project Information: Project Number: Copy To: Report To: 8 9 سائي کي E MATRIX CODE RELINQUISHED BY / AFFILIATION (see valid codes to left) GAST BAY 138130 4 SAMPLE TYPE 9 (G=GRAB C=COMP) マラ Johnson DATE COMPOSITE START SAMPLER NAME AND SIGNATURE REDEVELDIMENT TIME COLLECTED 130 SIGNATURE of SAMPLER: PRINT Name of SAMPLER: 12-10-10 DATE COMPOSITE END/GRAB 10. KS 10:50 10:30 55:01 op:40 8h.01 25.0 11:00 oh:01 02:00 12100 TIME DATE SAMPLE TEMP AT COLLECTION Pace Quote Reference: Pace Project Manager: J. 30 Company Name: See A 4 Address: Attention: Invoice Information Section C Pace Profile #: # OF CONTAINERS TIME Unpreserved H₂SO₄ 5 Preservatives HNO₃ HCI votedy つべか NaOH Na₂S₂O₃ ACCEPTED BY / AFFILIATION Methanol 1 \geq Other 🛮 Analysis Test 🌡 Y/ N 44 56 00 BTEX, TPH-G DATE Signed (MM/DD/YY): Requested Analysis Filtered (Y/N) REGULATORY AGENCY 1210/10 Site Location N UST NPDES DATE STATE: 0 0926 TIME RCRA XA **GROUND WATER** Page: 4.0 Temp in °C Residual Chlorine (Y/N) Received on Pace Project No./ Lab I.D. Ice (Y/N) SAMPLE CONDITIONS < ω **~** 앜 Custody OTHER co DRINKING WATER Sealed Cooler . တ ဟ **C**57 (Y/N) 9 ECY O 00 00 Samples Intact O (Y/N)

'Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for 👧 in occepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for 👧 in occepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for 👧 in occepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for the occupance of the occupance occupance of the occupance occupance occupance occupance occupance

F-ALL-Q-020rev.07, 15-May-2007

.' }[!]

Sample Container Count

CLIENT: BROWN + Cal	tauel	Pace Analytical
COC PAGE Of COC ID# 1 318558		· · · · · · · · · · · · · · · · · · ·
VG9H AG1H AG1H BG1H	RD11 RD21 RD31 RD2N RD2S WGEI WGKII	Comments
N		
ω		
4		
OT P		
O		
7		
œ		
Ψ		
10		
<u></u>		
12		Trip Blank? VPS
AG1H 1 liter HCL amber glass	BP2S 500mL H2SO4 plastic	Т.
AG1U 1liter unpreserved amber glass		R terra core kit
AG2U 500mL unpreserved amber glass	BP3C 250mL NaOH plastic	
		VG9T 40mL Na Thio. clear vial
	BP3S 250mL H2SO4 plastic	VG9U 40mL unpreserved clear vial
BG1U 1 liter unpreserved glass	BP3U 250mL unpreserved plastic	VG9W 40mL glass vial preweighted (EPA 5035)
BP1N 1 liter HNO3 plastic	DG9B 40mL Na Bisulfate amber vial	VSG Headspace septa vial & HCL
BP1S 1 liter H2SO4 plastic	DG9H 40mL HCL amber voa vial	WGFU 4oz clear soil jar
BP1U 1 liter unpreserved plastic		_
RD3N 500ml UNIO3 plactic	DROIT And Impreserved amber vial	P. Contract of the contract of
BP2O 500mL NaOH plastic	\neg	

December 09, 2010

Joshua Johnson Brown & Caldwell 724 Columbia St. NW#420 Olympia, WA 98501

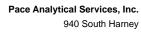
RE: Project: East Bay Redevelopment 138130

Pace Project No.: 255818

Dear Joshua Johnson:

Enclosed are the analytical results for sample(s) received by the laboratory on November 24, 2010. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.


Sincerely,

Jennifer Gross

jennifer.gross@pacelabs.com Project Manager

ENNI (TROSS

Enclosures

Seattle, WA 98108 (206)767-5060

CERTIFICATIONS

Project: East Bay Redevelopment 138130

Pace Project No.: 255818

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

Alaska Certification #: UST-078 Alaska Certification #MN00064 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA EPA Region 8 Certification #: Pace Florida/NELAP Certification #: E87605

Georgia Certification #: 959 Idaho Certification #: MN00064 Illinois Certification #: 200011 Iowa Certification #: 368 Kansas Certification #: E-10167 Louisiana Certification #: 03086 Louisiana Certification #: LA080009 Maine Certification #: 2007029

Maryland Certification #: 322 Michigan DEQ Certification #: 9909 Minnesota Certification #: 027-053-137

Mississippi Certification #: Pace

Washington Certification IDs 940 South Harney Street, Seattle, WA 98108 Alaska CS Certification #: UST-025

Alaska Drinking Water VOC Certification #: WA01230 Alaska Drinking Water Micro Certification #: WA01230 Montana Certification #: MT CERT0092 Nevada Certification #: MN_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New Mexico Certification #: Pace New York Certification #: 11647 North Carolina Certification #: 530 North Dakota Certification #: R-036 North Dakota Certification #: R-036A Ohio VAP Certification #: CL101 Oklahoma Certification #: D9921 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Pennsylvania Certification #: 68-00563

Puerto Rico Certification Tennessee Certification #: 02818

Texas Certification #: T104704192 Washington Certification #: C754 Wisconsin Certification #: 999407970

California Certification #: 01153CA Florida/NELAP Certification #: E87617 Oregon Certification #: WA200007 Washington Certification #: C1229

SAMPLE ANALYTE COUNT

Project: East Bay Redevelopment 138130

Pace Project No.: 255818

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
255818001	SPL-7-1	NWTPH-Dx	DMT	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	RJS	5	PASI-M
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
255818002	SPL-7-2	NWTPH-Dx	DMT	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	RJS	5	PASI-M
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
255818003	SPL-7-3	NWTPH-Dx	DMT	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	RJS	5	PASI-M
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
255818004	SPL-7-4	NWTPH-Dx	DMT	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	RJS	5	PASI-M
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
255818005	SPL-6-1	NWTPH-Gx	AY1	3	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
255818006	SPL-6-2	NWTPH-Gx	AY1	3	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
255818007	SPL-6-3	NWTPH-Gx	AY1	3	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
255818008	SPL-6-4	NWTPH-Gx	AY1	3	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
255818009	SPL-6-5	NWTPH-Gx	AY1	3	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
255818010	SPL-9-1	NWTPH-Gx	AY1	3	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
255818011	SPL-9-2	NWTPH-Gx	AY1	3	PASI-S

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

Page 3 of 24

SAMPLE ANALYTE COUNT

Project: East Bay Redevelopment 138130

Pace Project No.: 255818

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
	-	ASTM D2974-87	DMT	1	PASI-S
255818012	SPL-9-3	NWTPH-Gx	AY1	3	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
255818013	SPL-8-1	NWTPH-Gx	AY1	3	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
255818014	SPL-8-2	NWTPH-Gx	AY1	3	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
255818015	SPL-8-3	NWTPH-Gx	AY1	3	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
255818016	TB-1318561	NWTPH-Gx	AY1	3	PASI-S
		EPA 8260	LPM	8	PASI-S
255818017	SPL-7-5	NWTPH-Gx	AY1	3	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S

Project: East Bay Redevelopment 138130

Sample: SPL-7-1	Lab ID: 255818001	Collected: 11/22/10 1	4:46	Received: 11	/24/10 14:08	Matrix: Solid	
Results reported on a "dry-weight							
Parameters	Results Un	ts Report Limit D)F	Prepared	Analyzed	CAS No.	Qua
- alamotolo							
NWTPH-Dx GCS SG	Analytical Method: NV	/TPH-Dx Preparation Methor	od: El	PA 3546			
Diesel Range SG	ND mg/kg	24.5	1	12/01/10 12:45	12/04/10 00:33	3	
Motor Oil Range SG	ND mg/kg	98.1	1	12/01/10 12:45	12/04/10 00:33	8 64742-65-0	
n-Octacosane (S) SG	106 %	50-150	1	12/01/10 12:45	12/04/10 00:33	3 630-02-4	
o-Terphenyl (S) SG	98 %	50-150	1	12/01/10 12:45	12/04/10 00:33	84-15-1	
NWTPH-Gx GCV	Analytical Method: NV	TPH-Gx Preparation Metho	od: N	WTPH-Gx			
Gasoline Range Organics	ND mg/kg	7.3	1	12/01/10 17:00	12/01/10 21:45	5	
a,a,a-Trifluorotoluene (S)	116 %	50-150	1	12/01/10 17:00	12/01/10 21:45	98-08-8	
4-Bromofluorobenzene (S)	124 %	50-150	1	12/01/10 17:00	12/01/10 21:45	460-00-4	
6020 MET ICPMS	Analytical Method: EF	A 6020					
Arsenic	5.4 mg/kg	0.62 2	20	12/03/10 11:02	12/07/10 01:09	7440-38-2	
Cadmium	0.47 mg/kg		20	12/03/10 11:02	12/07/10 01:09	7440-43-9	
Copper	12.2 mg/kg	0.62	20	12/03/10 11:02			M6
Lead	10 mg/kg		20	12/03/10 11:02			M6
Nickel	16.0 mg/kg		20	12/03/10 11:02			M6
8270 MSSV PAH by SIM	Analytical Method: EF	A 8270 by SIM Preparation	Meth	od: EPA 3546			
Acenaphthene	ND ug/kg	8.8	1	12/01/10 13:30	12/08/10 15:12	83-32-9	
Acenaphthylene	ND ug/kg		1	12/01/10 13:30			
Anthracene	ND ug/kg		1		12/08/10 15:12		
Benzo(a)anthracene	ND ug/kg		1	12/01/10 13:30			
Benzo(a)pyrene	ND ug/kg		1	12/01/10 13:30			
Benzo(b)fluoranthene	ND ug/kg		1	12/01/10 13:30			
Benzo(g,h,i)perylene	12.3 ug/kg		1	12/01/10 13:30			
Benzo(k)fluoranthene	ND ug/kg		1		12/08/10 15:12		
Chrysene	ND ug/kg		1		12/08/10 15:12		
•			1	12/01/10 13:30			
Dibenz(a,h)anthracene Fluoranthene	9.9 ug/kg						
	ND ug/kg		1	12/01/10 13:30			
Fluorene	ND ug/kg		1	12/01/10 13:30			
Indeno(1,2,3-cd)pyrene	10.6 ug/kg		1		12/08/10 15:12		
1-Methylnaphthalene	ND ug/kg		1		12/08/10 15:12		
2-Methylnaphthalene	ND ug/kg		1	12/01/10 13:30			
Naphthalene	ND ug/kg		1	12/01/10 13:30			
Phenanthrene	ND ug/kg		1		12/08/10 15:12		
Pyrene	ND ug/kg	8.8	1	12/01/10 13:30	12/08/10 15:12	2 129-00-0	
2-Fluorobiphenyl (S)	67 %		1		12/08/10 15:12		
Terphenyl-d14 (S)	70 %	30-133	1	12/01/10 13:30	12/08/10 15:12	2 1718-51-0	
8260/5035A Volatile Organics	Analytical Method: EF	A 8260					
Benzene	ND ug/kg	3.6	1		11/30/10 14:53	3 71-43-2	
Ethylbenzene	ND ug/kg	3.6	1		11/30/10 14:53	100-41-4	
Toluene	ND ug/kg	3.6	1		11/30/10 14:53	108-88-3	
Xylene (Total)	ND ug/kg	10.9	1		11/30/10 14:53	1330-20-7	
Dibromofluoromethane (S)	105 %		1		11/30/10 14:53		

Date: 12/09/2010 05:41 PM

REPORT OF LABORATORY ANALYSIS

Page 5 of 24

Project: East Bay Redevelopment 138130

Pace Project No.: 255818 Lab ID: 255818001 Sample: SPL-7-1 Collected: 11/22/10 14:46 Received: 11/24/10 14:08 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8260/5035A Volatile Organics Analytical Method: EPA 8260 Toluene-d8 (S) 102 % 80-120 1 11/30/10 14:53 2037-26-5 4-Bromofluorobenzene (S) 118 % 72-122 1 11/30/10 14:53 460-00-4 1,2-Dichloroethane-d4 (S) 100 % 80-143 11/30/10 14:53 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 24.1 % 0.10 11/30/10 18:59 1 Sample: SPL-7-2 Lab ID: 255818002 Collected: 11/22/10 14:40 Received: 11/24/10 14:08 Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG 86.1 mg/kg 63.2 12/01/10 12:45 12/04/10 01:39 Motor Oil Range SG ND mg/kg 253 12/01/10 12:45 12/04/10 01:39 64742-65-0 1 n-Octacosane (S) SG 105 % 50-150 1 12/01/10 12:45 12/04/10 01:39 630-02-4 o-Terphenyl (S) SG 94 % 50-150 1 12/01/10 12:45 12/04/10 01:39 84-15-1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 30.9 12/01/10 17:00 12/01/10 22:08 97 % 50-150 a,a,a-Trifluorotoluene (S) 1 12/01/10 17:00 12/01/10 22:08 98-08-8 4-Bromofluorobenzene (S) 94 % 50-150 12/01/10 17:00 12/01/10 22:08 460-00-4 1 **6020 MET ICPMS** Analytical Method: EPA 6020 12/03/10 11:02 12/07/10 01:27 7440-38-2 Arsenic 2.7 mg/kg 1.4 20 Cadmium ND mg/kg 0.22 20 12/03/10 11:02 12/07/10 01:27 7440-43-9 **12.5** mg/kg 1.4 20 Copper 12/03/10 11:02 12/07/10 01:27 7440-50-8 18.8 mg/kg 20 12/03/10 11:02 12/07/10 01:27 7439-92-1 Lead 1.4 20 12/03/10 11:02 12/07/10 01:27 7440-02-0 Nickel 5.7 mg/kg 1.4 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 12/01/10 13:30 12/08/10 16:17 83-32-9 Acenaphthene 197 ug/kg 21.2 1 Acenaphthylene ND ug/kg 21.2 12/01/10 13:30 12/08/10 16:17 208-96-8 1 88.3 ug/kg 21.2 12/01/10 13:30 12/08/10 16:17 120-12-7 Anthracene 1 Benzo(a)anthracene 54.0 ug/kg 21.2 1 12/01/10 13:30 12/08/10 16:17 56-55-3 Benzo(a)pyrene 42.1 ug/kg 21.2 12/01/10 13:30 12/08/10 16:17 50-32-8 1 Benzo(b)fluoranthene 32.5 ug/kg 21.2 1 12/01/10 13:30 12/08/10 16:17 205-99-2 26.4 ug/kg 21.2 Benzo(g,h,i)perylene 1 12/01/10 13:30 12/08/10 16:17 191-24-2 Benzo(k)fluoranthene 37.9 ug/kg 21.2 1 12/01/10 13:30 12/08/10 16:17 207-08-9 Chrysene 70.3 ug/kg 21.2 12/01/10 13:30 12/08/10 16:17 218-01-9 1 ND ug/kg 21.2 Dibenz(a,h)anthracene 12/01/10 13:30 12/08/10 16:17 53-70-3 1 Fluoranthene 266 ug/kg 21.2 12/01/10 13:30 12/08/10 16:17 206-44-0 1 Fluorene 133 ug/kg 21.2 12/01/10 13:30 12/08/10 16:17 86-73-7 1 Indeno(1,2,3-cd)pyrene 22.5 ug/kg 12/01/10 13:30 12/08/10 16:17 193-39-5

Date: 12/09/2010 05:41 PM

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

Page 6 of 24

Project: East Bay Redevelopment 138130

Pace Project No.:

255818 Lab ID: 255818002 Sample: SPL-7-2 Collected: 11/22/10 14:40 Received: 11/24/10 14:08 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 1-Methylnaphthalene 63.9 ug/kg 21.2 12/01/10 13:30 12/08/10 16:17 90-12-0 2-Methylnaphthalene 129 ug/kg 21.2 12/01/10 13:30 12/08/10 16:17 91-57-6 Naphthalene 271 ug/kg 21.2 12/01/10 13:30 12/08/10 16:17 91-20-3 1 Phenanthrene 256 ug/kg 21.2 1 12/01/10 13:30 12/08/10 16:17 85-01-8 278 ug/kg Pyrene 21.2 1 12/01/10 13:30 12/08/10 16:17 129-00-0 2-Fluorobiphenyl (S) 66 % 31-131 12/01/10 13:30 12/08/10 16:17 321-60-8 1 Terphenyl-d14 (S) 56 % 30-133 12/01/10 13:30 12/08/10 16:17 1718-51-0 1 8260/5035A Volatile Organics Analytical Method: EPA 8260 ND ug/kg 12.9 11/30/10 15:12 71-43-2 Benzene 1 12.9 11/30/10 15:12 100-41-4 Ethylbenzene ND ug/kg 1 Toluene 12.9 11/30/10 15:12 108-88-3 ND ug/kg 1 Xylene (Total) ND ug/kg 38.6 11/30/10 15:12 1330-20-7 1 Dibromofluoromethane (S) 114 % 80-136 11/30/10 15:12 1868-53-7 1 Toluene-d8 (S) 134 % 80-120 1 11/30/10 15:12 2037-26-5 S3 4-Bromofluorobenzene (S) 131 % 72-122 1 11/30/10 15:12 460-00-4 S3 1,2-Dichloroethane-d4 (S) 107 % 80-143 11/30/10 15:12 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 68.5 % 0.10 1 11/30/10 18:59 Sample: SPL-7-3 Lab ID: 255818003 Received: 11/24/10 14:08 Collected: 11/22/10 14:50 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG 66.4 mg/kg 59.9 12/01/10 12:45 12/04/10 01:55 Motor Oil Range SG ND mg/kg 239 1 12/01/10 12:45 12/04/10 01:55 64742-65-0 n-Octacosane (S) SG 104 % 50-150 12/01/10 12:45 12/04/10 01:55 630-02-4 1 o-Terphenyl (S) SG 92 % 50-150 12/01/10 12:45 12/04/10 01:55 84-15-1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 32.6 12/01/10 17:00 12/01/10 22:32 108 % 50-150 a,a,a-Trifluorotoluene (S) 1 12/01/10 17:00 12/01/10 22:32 98-08-8 4-Bromofluorobenzene (S) 113 % 50-150 1 12/01/10 17:00 12/01/10 22:32 460-00-4 6020 MET ICPMS Analytical Method: EPA 6020 12/03/10 11:02 12/07/10 01:36 7440-38-2 Arsenic 10.2 mg/kg 1.3 20 Cadmium 1.2 mg/kg 0.20 20 12/03/10 11:02 12/07/10 01:36 7440-43-9 53.6 mg/kg 20 Copper 1.3 12/03/10 11:02 12/07/10 01:36 7440-50-8 12/03/10 11:02 12/07/10 01:36 7439-92-1 **514** mg/kg 20 Lead 1.3 Nickel 20 12/03/10 11:02 12/07/10 01:36 7440-02-0 19.7 mg/kg 1.3

Date: 12/09/2010 05:41 PM

REPORT OF LABORATORY ANALYSIS

Page 7 of 24

Project: East Bay Redevelopment 138130

Pace Project No.: 255818

Lab ID: 255818003 Sample: SPL-7-3 Collected: 11/22/10 14:50 Received: 11/24/10 14:08 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Acenaphthene 26.0 ug/kg 20.4 12/01/10 13:30 12/08/10 16:32 83-32-9 Acenaphthylene 34.5 ug/kg 20.4 12/01/10 13:30 12/08/10 16:32 208-96-8 Anthracene 50.4 ug/kg 20.4 12/01/10 13:30 12/08/10 16:32 120-12-7 1 Benzo(a)anthracene 101 ug/kg 20.4 1 12/01/10 13:30 12/08/10 16:32 56-55-3 115 ug/kg 20.4 Benzo(a)pyrene 1 12/01/10 13:30 12/08/10 16:32 50-32-8 Benzo(b)fluoranthene 66.0 ug/kg 20.4 12/01/10 13:30 12/08/10 16:32 205-99-2 1 66.3 ug/kg 20.4 12/01/10 13:30 12/08/10 16:32 191-24-2 Benzo(g,h,i)perylene 1 20.4 Benzo(k)fluoranthene 75.1 ug/kg 12/01/10 13:30 12/08/10 16:32 207-08-9 1 108 ug/kg 20.4 12/01/10 13:30 12/08/10 16:32 218-01-9 Chrysene 1 **30.2** ug/kg 20.4 12/01/10 13:30 12/08/10 16:32 53-70-3 Dibenz(a,h)anthracene 1 235 ug/kg 20.4 12/01/10 13:30 12/08/10 16:32 206-44-0 Fluoranthene 1 Fluorene 50.1 ug/kg 20.4 1 12/01/10 13:30 12/08/10 16:32 86-73-7 Indeno(1,2,3-cd)pyrene 59.2 ug/kg 20.4 1 12/01/10 13:30 12/08/10 16:32 193-39-5 1-Methylnaphthalene 71.0 ug/kg 20.4 12/01/10 13:30 12/08/10 16:32 90-12-0 1 2-Methylnaphthalene 138 ug/kg 20.4 12/01/10 13:30 12/08/10 16:32 91-57-6 1 Naphthalene **361** ug/kg 20.4 1 12/01/10 13:30 12/08/10 16:32 91-20-3 219 ug/kg 12/01/10 13:30 12/08/10 16:32 85-01-8 Phenanthrene 20.4 1 233 ug/kg Pyrene 20.4 12/01/10 13:30 12/08/10 16:32 129-00-0 1 31-131 2-Fluorobiphenyl (S) 71 % 1 12/01/10 13:30 12/08/10 16:32 321-60-8 Terphenyl-d14 (S) 64 % 30-133 12/01/10 13:30 12/08/10 16:32 1718-51-0 1 8260/5035A Volatile Organics Analytical Method: EPA 8260 ND ug/kg 11/30/10 15:31 71-43-2 Benzene 12.5 1 Ethylbenzene ND ug/kg 12.5 11/30/10 15:31 100-41-4 1 Toluene ND ug/kg 12.5 1 11/30/10 15:31 108-88-3 Xylene (Total) ND ug/kg 37.5 1 11/30/10 15:31 1330-20-7 Dibromofluoromethane (S) 107 % 80-136 11/30/10 15:31 1868-53-7 Toluene-d8 (S) 132 % 80-120 1 11/30/10 15:31 2037-26-5 S3 4-Bromofluorobenzene (S) 123 % 72-122 11/30/10 15:31 460-00-4 S3 1 1,2-Dichloroethane-d4 (S) 95 % 80-143 11/30/10 15:31 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 67.4 % 0.10 11/30/10 19:00 Sample: SPL-7-4 Lab ID: 255818004 Collected: 11/22/10 15:00 Received: 11/24/10 14:08 Results reported on a "dry-weight" basis Results Units DF CAS No. Qual **Parameters** Report Limit Prepared Analyzed **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG ND mg/kg 72.8 12/01/10 12:45 12/04/10 02:11 ND mg/kg Motor Oil Range SG 291 1 12/01/10 12:45 12/04/10 02:11 64742-65-0 100 % n-Octacosane (S) SG 50-150 12/01/10 12:45 12/04/10 02:11 630-02-4 1 o-Terphenyl (S) SG 91 % 50-150 12/01/10 12:45 12/04/10 02:11 84-15-1

Date: 12/09/2010 05:41 PM

REPORT OF LABORATORY ANALYSIS

Page 8 of 24

Project: East Bay Redevelopment 138130

Pace Project No.: 255818

Sample: SPL-7-4	Lab ID: 255818004	Collected: 11/22/	10 15:00	Received: 11	/24/10 14:08 I	Matrix: Solid	
Results reported on a "dry-weight	t" basis						
Parameters	Results Uni	ts Report Limit	DF	Prepared	Analyzed	CAS No.	Qu
IWTPH-Gx GCV	Analytical Method: NV	/TPH-Gx Preparation M	ethod: N	WTPH-Gx			
Gasoline Range Organics	ND mg/kg	40.5	1	12/01/10 17:00	12/01/10 23:19)	
a,a,a-Trifluorotoluene (S)	108 %	50-150	1	12/01/10 17:00	12/01/10 23:19	98-08-8	
4-Bromofluorobenzene (S)	117 %	50-150	1	12/01/10 17:00	12/01/10 23:19	460-00-4	
6020 MET ICPMS	Analytical Method: EP	A 6020					
Arsenic	7.7 mg/kg	1.4	20	12/03/10 11:02	12/07/10 01:59	7440-38-2	
Cadmium	0.85 mg/kg	0.22	20	12/03/10 11:02	12/07/10 01:59	7440-43-9	
Copper	37.9 mg/kg	1.4	20	12/03/10 11:02	12/07/10 01:59	7440-50-8	
Lead	1210 mg/kg	13.8	200	12/03/10 11:02	12/07/10 02:03	7439-92-1	
Nickel	20.5 mg/kg	1.4	20		12/07/10 01:59		
3270 MSSV PAH by SIM	Analytical Method: EP	A 8270 by SIM Preparat	tion Meth	od: EPA 3546			
Acenaphthene	190 ug/kg	25.6	1	12/01/10 13:30	12/08/10 16:48	83-32-9	
Acenaphthylene	31.8 ug/kg	25.6	1		12/08/10 16:48		
Anthracene	116 ug/kg	25.6	1		12/08/10 16:48		
Benzo(a)anthracene	208 ug/kg	25.6	1		12/08/10 16:48		
Benzo(a)pyrene	227 ug/kg	25.6	1		12/08/10 16:48		
Benzo(b)fluoranthene	134 ug/kg	25.6	1		12/08/10 16:48		
Benzo(g,h,i)perylene	122 ug/kg	25.6	1		12/08/10 16:48	-	
Benzo(k)fluoranthene	148 ug/kg	25.6	1		12/08/10 16:48		
Chrysene	231 ug/kg	25.6	1		12/08/10 16:48		
Dibenz(a,h)anthracene	39.1 ug/kg	25.6	1		12/08/10 16:48		
fluoranthene	455 ug/kg	25.6	1	12/01/10 13:30	12/08/10 16:48	206-44-0	
luorene	194 ug/kg	25.6	1	12/01/10 13:30	12/08/10 16:48	86-73-7	
ndeno(1,2,3-cd)pyrene	107 ug/kg	25.6	1	12/01/10 13:30	12/08/10 16:48	193-39-5	
-Methylnaphthalene	93.1 ug/kg	25.6	1	12/01/10 13:30	12/08/10 16:48	90-12-0	
-Methylnaphthalene	182 ug/kg	25.6	1	12/01/10 13:30	12/08/10 16:48	91-57-6	
Naphthalene	764 ug/kg	25.6	1	12/01/10 13:30	12/08/10 16:48	91-20-3	
Phenanthrene	407 ug/kg	25.6	1		12/08/10 16:48		
Pyrene	406 ug/kg	25.6	1		12/08/10 16:48		
?-Fluorobiphenyl (S)	70 %	31-131	1		12/08/10 16:48		
erphenyl-d14 (S)	62 %	30-133	1		12/08/10 16:48		
260/5035A Volatile Organics	Analytical Method: EP	A 8260					
Benzene	ND ug/kg	13.2	1		11/30/10 15:50	71-43-2	
Ethylbenzene	ND ug/kg	13.2	1		11/30/10 15:50		
oluene	ND ug/kg	13.2	1		11/30/10 15:50		
(ylene (Total)	ND ug/kg	39.5	1		11/30/10 15:50		
,							
Dibromofluoromethane (S)	108 %	80-136	1		11/30/10 15:50		60
Toluene-d8 (S)	122 %	80-120	1		11/30/10 15:50		S3
-Bromofluorobenzene (S)	135 %	72-122	1		11/30/10 15:50		S3
,2-Dichloroethane-d4 (S)	103 %	80-143	1		11/30/10 15:50	17060-07-0	
Percent Moisture	Analytical Method: AS	TM D2974-87					
Percent Moisture	73.8 %	0.10	1		11/30/10 19:01		

Date: 12/09/2010 05:41 PM

REPORT OF LABORATORY ANALYSIS

Page 9 of 24

Project: East Bay Redevelopment 138130

Pace Project No.: 255818

Date: 12/09/2010 05:41 PM

Lab ID: 255818005 Sample: SPL-6-1 Collected: 11/22/10 13:20 Received: 11/24/10 14:08 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 45.4 12/01/10 17:00 12/01/10 23:43 107 % a,a,a-Trifluorotoluene (S) 50-150 12/01/10 17:00 12/01/10 23:43 98-08-8 4-Bromofluorobenzene (S) 107 % 50-150 12/01/10 17:00 12/01/10 23:43 460-00-4 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 74.3 % 0.10 11/30/10 17:03 1 Sample: SPL-6-2 Lab ID: 255818006 Collected: 11/22/10 13:40 Received: 11/24/10 14:08 Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 7.4 12/01/10 17:00 12/02/10 04:48 a,a,a-Trifluorotoluene (S) 106 % 50-150 12/01/10 17:00 12/02/10 04:48 98-08-8 1 4-Bromofluorobenzene (S) 107 % 50-150 12/01/10 17:00 12/02/10 04:48 460-00-4 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 26.5 % 0.10 11/30/10 17:04 1 Sample: SPL-6-3 Lab ID: 255818007 Collected: 11/22/10 13:40 Received: 11/24/10 14:08 Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit Prepared Analyzed CAS No. Qual **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 18.4 12/01/10 17:00 12/02/10 00:06 a,a,a-Trifluorotoluene (S) 102 % 50-150 12/01/10 17:00 12/02/10 00:06 98-08-8 4-Bromofluorobenzene (S) 99 % 50-150 12/01/10 17:00 12/02/10 00:06 460-00-4 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 54.1 % 0.10 11/30/10 17:06 Sample: SPL-6-4 Lab ID: 255818008 Collected: 11/22/10 13:50 Received: 11/24/10 14:08 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF CAS No. Qual Prepared Analyzed Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx **NWTPH-Gx GCV** Gasoline Range Organics ND mg/kg 12.8 12/01/10 17:00 12/02/10 00:30 a,a,a-Trifluorotoluene (S) 106 % 50-150 12/01/10 17:00 12/02/10 00:30 98-08-8 1 4-Bromofluorobenzene (S) 107 % 50-150 12/01/10 17:00 12/02/10 00:30 460-00-4

REPORT OF LABORATORY ANALYSIS

Page 10 of 24

Matrix: Solid

ANALYTICAL RESULTS

Project: East Bay Redevelopment 138130

Pace Project No.: 255818

4-Bromofluorobenzene (S)

Percent Moisture

Sample: SPL-6-4

Results reported on a "dry-weight" basis

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual

Collected: 11/22/10 13:50

Received: 11/24/10 14:08

12/01/10 17:00 12/02/10 00:53 460-00-4

11/30/10 17:09

Percent Moisture Analytical Method: ASTM D2974-87

Percent Moisture **48.7** % 0.10 1 11/30/10 17:07

Lab ID: 255818008

104 %

6.8 %

Sample: SPL-6-5 Lab ID: 255818009 Collected: 11/22/10 13:55 Received: 11/24/10 14:08 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters Results Units Report Limit Prepared Analyzed CAS No. Qual **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx 43.0 12/01/10 17:00 12/02/10 00:53 Gasoline Range Organics ND mg/kg 105 % a,a,a-Trifluorotoluene (S) 50-150 12/01/10 17:00 12/02/10 00:53 98-08-8

50-150

Percent Moisture Analytical Method: ASTM D2974-87

Percent Moisture 71.0 % 0.10 1 11/30/10 17:08

Sample: SPL-9-1 Lab ID: 255818010 Collected: 11/22/10 13:00 Received: 11/24/10 14:08 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics 12/01/10 17:00 12/02/10 01:17 ND mg/kg 5.3 a,a,a-Trifluorotoluene (S) 110 % 50-150 1 12/01/10 17:00 12/02/10 01:17 98-08-8 4-Bromofluorobenzene (S) 109 % 50-150 12/01/10 17:00 12/02/10 01:17 460-00-4 **Percent Moisture** Analytical Method: ASTM D2974-87

0.10

1

Sample: SPL-9-2 Lab ID: 255818011 Collected: 11/22/10 13:10 Received: 11/24/10 14:08 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 5.3 1 12/01/10 17:00 12/02/10 02:04 a,a,a-Trifluorotoluene (S) 103 % 50-150 12/01/10 17:00 12/02/10 02:04 98-08-8 4-Bromofluorobenzene (S) 105 % 50-150 12/01/10 17:00 12/02/10 02:04 460-00-4 **Percent Moisture** Analytical Method: ASTM D2974-87

Percent Moisture 7.4 % 0.10 1 11/30/10 17:10

Date: 12/09/2010 05:41 PM REPORT OF LAP

REPORT OF LABORATORY ANALYSIS

Page 11 of 24

Project: East Bay Redevelopment 138130

Pace Project No.: 255818

Lab ID: 255818012 Sample: SPL-9-3 Collected: 11/22/10 13:00 Received: 11/24/10 14:08 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 6.7 12/01/10 17:00 12/02/10 02:27 105 % a,a,a-Trifluorotoluene (S) 50-150 12/01/10 17:00 12/02/10 02:27 98-08-8 4-Bromofluorobenzene (S) 108 % 50-150 12/01/10 17:00 12/02/10 02:27 460-00-4 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 6.6 % 0.10 11/30/10 17:12 1 Sample: SPL-8-1 Lab ID: 255818013 Collected: 11/22/10 14:00 Received: 11/24/10 14:08 Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics 9.8 mg/kg 7.5 12/01/10 17:00 12/02/10 02:51 a,a,a-Trifluorotoluene (S) 98 % 50-150 12/01/10 17:00 12/02/10 02:51 98-08-8 1 4-Bromofluorobenzene (S) 100 % 50-150 12/01/10 17:00 12/02/10 02:51 460-00-4 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 25.7 % 0.10 11/30/10 17:14 1 Sample: SPL-8-2 Lab ID: 255818014 Collected: 11/22/10 14:15 Received: 11/24/10 14:08 Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit Prepared Analyzed CAS No. Qual **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics 9.2 mg/kg 7.9 12/01/10 17:00 12/02/10 03:14 a,a,a-Trifluorotoluene (S) 110 % 50-150 12/01/10 17:00 12/02/10 03:14 98-08-8 4-Bromofluorobenzene (S) 112 % 50-150 12/01/10 17:00 12/02/10 03:14 460-00-4 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 12.0 % 0.10 11/30/10 17:15 Sample: SPL-8-3 Lab ID: 255818015 Collected: 11/22/10 14:30 Received: 11/24/10 14:08 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF CAS No. Qual

4-Bromofluorobenzene (S) Date: 12/09/2010 05:41 PM

Gasoline Range Organics

a,a,a-Trifluorotoluene (S)

NWTPH-Gx GCV

REPORT OF LABORATORY ANALYSIS

6.1

1

50-150

50-150

Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx

17.0 mg/kg

118 %

119 %

Prepared

12/01/10 17:00 12/02/10 04:01

12/01/10 17:00 12/02/10 04:01 98-08-8

12/01/10 17:00 12/02/10 04:01 460-00-4

Analyzed

Page 12 of 24

Project: East Bay Redevelopment 138130

Pace Project No.: 255818

Lab ID: 255818015 Sample: SPL-8-3 Collected: 11/22/10 14:30 Received: 11/24/10 14:08 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 3.2 1 11/30/10 16:10 71-43-2 Ethylbenzene ND ug/kg 3.2 11/30/10 16:10 100-41-4 1 Toluene 3.2 11/30/10 16:10 108-88-3 ND ug/kg 1 Xylene (Total) ND ug/kg 9.7 11/30/10 16:10 1330-20-7 1 Dibromofluoromethane (S) 80-136 107 % 1 11/30/10 16:10 1868-53-7 Toluene-d8 (S) 108 % 80-120 11/30/10 16:10 2037-26-5 1 4-Bromofluorobenzene (S) 145 % 72-122 11/30/10 16:10 460-00-4 S3 1 1,2-Dichloroethane-d4 (S) 106 % 80-143 11/30/10 16:10 17060-07-0 1 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 0.10 11/30/10 17:13 15.9 % 1 Lab ID: 255818016 Sample: TB-1318561 Collected: 11/22/10 00:00 Received: 11/24/10 14:08 Matrix: Solid Results reported on a "wet-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics 1 12/01/10 17:00 12/01/10 20:57 ND mg/kg 5.0 50-150 a,a,a-Trifluorotoluene (S) 105 % 12/01/10 17:00 12/01/10 20:57 98-08-8 1 50-150 4-Bromofluorobenzene (S) 114 % 12/01/10 17:00 12/01/10 20:57 460-00-4 1 8260/5035A Volatile Organics Analytical Method: EPA 8260 ND ug/kg 3.0 11/30/10 14:35 71-43-2 Benzene 1 11/30/10 14:35 100-41-4 Ethylbenzene ND ug/kg 3.0 1 11/30/10 14:35 108-88-3 Toluene ND ug/kg 3.0 1 Xylene (Total) ND ug/kg 9.0 11/30/10 14:35 1330-20-7 Dibromofluoromethane (S) 107 % 80-136 11/30/10 14:35 1868-53-7 Toluene-d8 (S) 104 % 80-120 11/30/10 14:35 2037-26-5 4-Bromofluorobenzene (S) 102 % 72-122 11/30/10 14:35 460-00-4 1,2-Dichloroethane-d4 (S) 106 % 80-143 11/30/10 14:35 17060-07-0 Sample: SPL-7-5 Lab ID: 255818017 Collected: 11/22/10 15:10 Received: 11/24/10 14:08 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** DF Results Units Report Limit Prepared Analyzed CAS No. Qual **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx **Gasoline Range Organics** ND mg/kg 32.3 12/01/10 17:00 12/02/10 03:38 a,a,a-Trifluorotoluene (S) 108 % 50-150 1 12/01/10 17:00 12/02/10 03:38 98-08-8 4-Bromofluorobenzene (S) 109 % 50-150 12/01/10 17:00 12/02/10 03:38 460-00-4

Date: 12/09/2010 05:41 PM

REPORT OF LABORATORY ANALYSIS

Page 13 of 24

Project: East Bay Redevelopment 138130

Pace Project No.: 255818

Sample: SPL-7-5 Lab ID: 255818017 Collected: 11/22/10 15:10 Received: 11/24/10 14:08 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260/5035A Volatile Organics	Analytical Met	hod: EPA 826	0					
Benzene	ND ug	g/kg	12.5	1		11/30/10 16:29	71-43-2	
Ethylbenzene	ND ug	g/kg	12.5	1		11/30/10 16:29	100-41-4	
Toluene	ND ug	g/kg	12.5	1		11/30/10 16:29	108-88-3	
Xylene (Total)	ND ug	g/kg	37.6	1		11/30/10 16:29	1330-20-7	
Dibromofluoromethane (S)	108 %)	80-136	1		11/30/10 16:29	1868-53-7	
Toluene-d8 (S)	124 %)	80-120	1		11/30/10 16:29	2037-26-5	S3
4-Bromofluorobenzene (S)	132 %)	72-122	1		11/30/10 16:29	460-00-4	S3
1,2-Dichloroethane-d4 (S)	102 %)	80-143	1		11/30/10 16:29	17060-07-0	
Percent Moisture	Analytical Met	hod: ASTM D2	2974-87					
Percent Moisture	68.2 %)	0.10	1		11/30/10 17:13		

Date: 12/09/2010 05:41 PM

REPORT OF LABORATORY ANALYSIS

Project: East Bay Redevelopment 138130

Pace Project No.: 255818

QC Batch: OEXT/3040 Analysis Method: NWTPH-Dx
QC Batch Method: EPA 3546 Analysis Description: NWTPH-Dx GCS

Associated Lab Samples: 255818001, 255818002, 255818003, 255818004

METHOD BLANK: 50754 Matrix: Solid

Associated Lab Samples: 255818001, 255818002, 255818003, 255818004

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Diesel Range SG	mg/kg	ND ND	20.0	12/03/10 19:22	
Motor Oil Range SG	mg/kg	ND	80.0	12/03/10 19:22	
n-Octacosane (S) SG	%	102	50-150	12/03/10 19:22	
o-Terphenyl (S) SG	%	96	50-150	12/03/10 19:22	

LABORATORY CONTROL SAMPLE: 50755

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Diesel Range SG	mg/kg	500	456	91	56-124	
Motor Oil Range SG	mg/kg	500	559	112	50-150	
n-Octacosane (S) SG	%			103	50-150	
o-Terphenyl (S) SG	%			110	50-150	

SAMPLE DUPLICATE: 50756

Parameter	Units	255797001 Result	Dup Result	RPD	Qualifiers
Diesel Range SG	mg/kg	29.5	70.5	82	R1
Motor Oil Range SG	mg/kg	ND	ND		
n-Octacosane (S) SG	%	100	100	6	
o-Terphenyl (S) SG	%	94	94	6	

SAMPLE DUPLICATE: 50757

		255818001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Diesel Range SG	mg/kg	ND ND	ND		
Motor Oil Range SG	mg/kg	ND	ND		
n-Octacosane (S) SG	%	106	111	4	4
o-Terphenyl (S) SG	%	98	101	2	2

Date: 12/09/2010 05:41 PM

East Bay Redevelopment 138130 Project:

Pace Project No.: 255818

QC Batch: GCV/2055 Analysis Method: NWTPH-Gx

QC Batch Method: **NWTPH-Gx** Analysis Description: NWTPH-Gx Solid GCV

255818001, 255818002, 255818003, 255818004, 255818005, 255818006, 255818007, 255818008, 255818009, Associated Lab Samples:

255818010, 255818011, 255818012, 255818013, 255818014, 255818015, 255818016, 255818017

METHOD BLANK: 50822 Matrix: Solid

255818001, 255818002, 255818003, 255818004, 255818005, 255818006, 255818007, 255818008, 255818009, Associated Lab Samples:

255818010, 255818011, 255818012, 255818013, 255818014, 255818015, 255818016, 255818017

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Gasoline Range Organics	mg/kg	ND ND	5.0	12/01/10 20:34	
4-Bromofluorobenzene (S)	%	133	50-150	12/01/10 20:34	
a.a.a-Trifluorotoluene (S)	%	110	50-150	12/01/10 20:34	

LABORATORY CONTROL SAMPLE:

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Gasoline Range Organics	mg/kg	12.5	14.1	113	54-156	
4-Bromofluorobenzene (S)	%			139	50-150	
a,a,a-Trifluorotoluene (S)	%			123	50-150	

SAMPLE DUPLICATE: 50972

Parameter	Units	255818003 Result	Dup Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND	5.6J		
4-Bromofluorobenzene (S)	%	113	110	3	
a,a,a-Trifluorotoluene (S)	%	108	107	.5	

SAMPLE DUPLICATE: 50973

Parameter	Units	255818006 Result	Dup Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND ND	1.6J		
4-Bromofluorobenzene (S)	%	107	112	5	
a.a.a-Trifluorotoluene (S)	%	106	110	3	

Date: 12/09/2010 05:41 PM REPORT OF LABORATORY ANALYSIS Page 16 of 24

Project: East Bay Redevelopment 138130

Pace Project No.: 255818

QC Batch: ICPM/23821 Analysis Method: EPA 6020
QC Batch Method: EPA 6020 Analysis Description: 6020 MET

Associated Lab Samples: 255818001, 255818002, 255818003, 255818004

METHOD BLANK: 900205 Matrix: Solid

Associated Lab Samples: 255818001, 255818002, 255818003, 255818004

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Arsenic	mg/kg	ND ND	0.42	12/07/10 01:00	
Cadmium	mg/kg	ND	0.067	12/07/10 01:00	
Copper	mg/kg	ND	0.42	12/07/10 01:00	
Lead	mg/kg	ND	0.42	12/07/10 01:00	
Nickel	mg/kg	ND	0.42	12/07/10 01:00	

LABORATORY CONTROL SAMPLE: 900206

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/kg	17.5	17.1	98	75-125	
Cadmium	mg/kg	17.5	17.6	100	75-125	
Copper	mg/kg	17.5	17.8	101	75-125	
Lead	mg/kg	17.5	17.7	101	75-125	
Nickel	mg/kg	17.5	17.7	101	75-125	

MATRIX SPIKE & MATRIX S	SPIKE DUPLICAT	E: 90020	7		900208						
Demonstra		255818001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec	000	01
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Arsenic	mg/kg	5.4	22.3	21.2	22.8	22.5	78	81	75-125	1	
Cadmium	mg/kg	0.47	22.3	21.2	19.8	17.9	87	82	75-125	10	
Copper	mg/kg	12.2	22.3	21.2	27.1	25.9	67	65	75-125	4 M6	6
Lead	mg/kg	10	22.3	21.2	24.3	22.6	64	60	75-125	7 M	6
Nickel	mg/kg	16.0	22.3	21.2	31.1	30.2	67	67	75-125	3 M6	6

Date: 12/09/2010 05:41 PM REPORT OF LABORATORY ANALYSIS

Page 17 of 24

Project: East Bay Redevelopment 138130

Pace Project No.: 255818

QC Batch: OEXT/3039 Analysis Method: EPA 8270 by SIM

QC Batch Method: EPA 3546 Analysis Description: 8270/3546 MSSV PAH by SIM

Associated Lab Samples: 255818001, 255818002, 255818003, 255818004

METHOD BLANK: 50750 Matrix: Solid

Associated Lab Samples: 255818001, 255818002, 255818003, 255818004

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/kg	ND ND	6.7	12/08/10 13:21	
2-Methylnaphthalene	ug/kg	ND	6.7	12/08/10 13:21	
Acenaphthene	ug/kg	ND	6.7	12/08/10 13:21	
Acenaphthylene	ug/kg	ND	6.7	12/08/10 13:21	
Anthracene	ug/kg	ND	6.7	12/08/10 13:21	
Benzo(a)anthracene	ug/kg	ND	6.7	12/08/10 13:21	
Benzo(a)pyrene	ug/kg	ND	6.7	12/08/10 13:21	
Benzo(b)fluoranthene	ug/kg	ND	6.7	12/08/10 13:21	
Benzo(g,h,i)perylene	ug/kg	ND	6.7	12/08/10 13:21	
Benzo(k)fluoranthene	ug/kg	ND	6.7	12/08/10 13:21	
Chrysene	ug/kg	ND	6.7	12/08/10 13:21	
Dibenz(a,h)anthracene	ug/kg	ND	6.7	12/08/10 13:21	
Fluoranthene	ug/kg	ND	6.7	12/08/10 13:21	
Fluorene	ug/kg	ND	6.7	12/08/10 13:21	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	6.7	12/08/10 13:21	
Naphthalene	ug/kg	ND	6.7	12/08/10 13:21	
Phenanthrene	ug/kg	ND	6.7	12/08/10 13:21	
Pyrene	ug/kg	ND	6.7	12/08/10 13:21	
2-Fluorobiphenyl (S)	%	76	31-131	12/08/10 13:21	
Terphenyl-d14 (S)	%	84	30-133	12/08/10 13:21	

	LABORATORY	CONTROL	SAMPLE:	50751
--	-------------------	---------	---------	-------

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1-Methylnaphthalene	ug/kg	133	90.1	68	37-121	
2-Methylnaphthalene	ug/kg	133	93.3	70	33-132	
Acenaphthene	ug/kg	133	91.9	69	32-127	
Acenaphthylene	ug/kg	133	94.0	71	31-134	
Anthracene	ug/kg	133	91.3	68	42-135	
Benzo(a)anthracene	ug/kg	133	103	77	43-139	
Benzo(a)pyrene	ug/kg	133	97.6	73	44-144	
Benzo(b)fluoranthene	ug/kg	133	91.5	69	42-144	
Benzo(g,h,i)perylene	ug/kg	133	110	83	46-136	
Benzo(k)fluoranthene	ug/kg	133	107	80	45-147	
Chrysene	ug/kg	133	107	80	42-144	
Dibenz(a,h)anthracene	ug/kg	133	110	82	48-142	
Fluoranthene	ug/kg	133	99.7	75	44-143	
Fluorene	ug/kg	133	99.2	74	32-146	
ndeno(1,2,3-cd)pyrene	ug/kg	133	112	84	47-140	
Naphthalene	ug/kg	133	90.1	68	35-118	
Phenanthrene	ug/kg	133	94.5	71	42-131	

Date: 12/09/2010 05:41 PM

REPORT OF LABORATORY ANALYSIS

Page 18 of 24

Project: East Bay Redevelopment 138130

Pace Project No.: 255818

LABORATORY CONTROL SAMPLE: 50751

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Pyrene	ug/kg	133	99.8		47-136	
2-Fluorobiphenyl (S)	%			68	31-131	
Terphenyl-d14 (S)	%			77	30-133	

MATRIX SPIKE & MATRIX S	PIKE DUPLICAT	E: 50752		•	50753			•	•	•	
			MS	MSD							
	:	255812002	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1-Methylnaphthalene	ug/kg	ND	178	175	134	132	72	71	31-123	2	
2-Methylnaphthalene	ug/kg	13.0	178	175	138	136	70	70	15-146	.9	
Acenaphthene	ug/kg	ND	178	175	134	130	74	73	19-141	4	
Acenaphthylene	ug/kg	ND	178	175	130	124	70	67	30-142	5	
Anthracene	ug/kg	ND	178	175	127	114	70	64	38-137	11	
Benzo(a)anthracene	ug/kg	ND	178	175	131	121	73	68	37-143	8	
Benzo(a)pyrene	ug/kg	ND	178	175	124	108	69	61	33-147	13	
Benzo(b)fluoranthene	ug/kg	ND	178	175	117	113	65	64	25-156	4	
Benzo(g,h,i)perylene	ug/kg	ND	178	175	131	117	73	66	26-142	12	
Benzo(k)fluoranthene	ug/kg	ND	178	175	129	114	72	64	35-142	13	
Chrysene	ug/kg	ND	178	175	136	128	76	73	23-150	7	
Dibenz(a,h)anthracene	ug/kg	ND	178	175	130	118	73	67	41-140	10	
Fluoranthene	ug/kg	10.7	178	175	135	133	69	70	25-155	1	
Fluorene	ug/kg	ND	178	175	139	131	77	74	33-152	5	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	178	175	134	117	74	66	36-139	13	
Naphthalene	ug/kg	80.4	178	175	140	167	34	49	25-121	17	
Phenanthrene	ug/kg	23.2	178	175	138	135	64	64	29-141	2	
Pyrene	ug/kg	ND	178	175	145	139	76	74	36-145	5	
2-Fluorobiphenyl (S)	%						74	71	31-131		
Terphenyl-d14 (S)	%						76	74	30-133		

Date: 12/09/2010 05:41 PM

REPORT OF LABORATORY ANALYSIS

Page 19 of 24

Project: East Bay Redevelopment 138130

Pace Project No.: 255818

QC Batch: MSV/3520 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5035A Volatile Organics

Associated Lab Samples: 255818001, 255818002, 255818003, 255818004, 255818015, 255818016, 255818017

METHOD BLANK: 50634 Matrix: Solid

Associated Lab Samples: 255818001, 255818002, 255818003, 255818004, 255818015, 255818016, 255818017

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND	3.0	11/30/10 11:39	
Ethylbenzene	ug/kg	ND	3.0	11/30/10 11:39	
Toluene	ug/kg	ND	3.0	11/30/10 11:39	
Xylene (Total)	ug/kg	ND	9.0	11/30/10 11:39	
1,2-Dichloroethane-d4 (S)	%	109	80-143	11/30/10 11:39	
4-Bromofluorobenzene (S)	%	108	72-122	11/30/10 11:39	
Dibromofluoromethane (S)	%	109	80-136	11/30/10 11:39	
Toluene-d8 (S)	%	98	80-120	11/30/10 11:39	

LABORATORY CONTROL SAME	PLE & LCSD: 50635		50	0885						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene	ug/kg	50	52.3	51.1	105	102	75-133	2	30	
Ethylbenzene	ug/kg	50	54.0	49.5	108	99	68-131	9	30	
Toluene	ug/kg	50	57.3	49.8	115	100	73-124	14	30	
Xylene (Total)	ug/kg	150	165	152	110	102	68-130	8	30	
1,2-Dichloroethane-d4 (S)	%				106	110	80-143			
4-Bromofluorobenzene (S)	%				100	105	72-122			
Dibromofluoromethane (S)	%				106	113	80-136			
Toluene-d8 (S)	%				111	102	80-120			

Date: 12/09/2010 05:41 PM

Project: East Bay Redevelopment 138130

Pace Project No.: 255818

QC Batch: PMST/1439 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 255818001, 255818002, 255818003, 255818004

SAMPLE DUPLICATE: 50748

255821001 Dup

Parameter Units Result Result RPD Qualifiers

Percent Moisture % 27.2 26.2 4

SAMPLE DUPLICATE: 50749

255820005 Dup

ParameterUnitsResultResultRPDQualifiersPercent Moisture%16.815.48

Date: 12/09/2010 05:41 PM

QUALIFIERS

Project: East Bay Redevelopment 138130

Pace Project No.: 255818

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

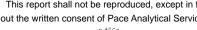
N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis PASI-S Pace Analytical Services - Seattle

ANALYTE QUALIFIERS


Date: 12/09/2010 05:41 PM

M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

R1 RPD value was outside control limits.

Surrogate recovery exceeded laboratory control limits. Analyte presence below reporting limits in associated samples. S3

Results unaffected by high bias.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: East Bay Redevelopment 138130

Pace Project No.: 255818

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
255818001	SPL-7-1	EPA 3546	OEXT/3040	NWTPH-Dx	GCSV/2114
255818002	SPL-7-2	EPA 3546	OEXT/3040	NWTPH-Dx	GCSV/2114
255818003	SPL-7-3	EPA 3546	OEXT/3040	NWTPH-Dx	GCSV/2114
255818004	SPL-7-4	EPA 3546	OEXT/3040	NWTPH-Dx	GCSV/2114
255818001	SPL-7-1	NWTPH-Gx	GCV/2055	NWTPH-Gx	GCV/2060
255818002	SPL-7-2	NWTPH-Gx	GCV/2055	NWTPH-Gx	GCV/2060
255818003	SPL-7-3	NWTPH-Gx	GCV/2055	NWTPH-Gx	GCV/2060
255818004	SPL-7-4	NWTPH-Gx	GCV/2055	NWTPH-Gx	GCV/2060
255818005	SPL-6-1	NWTPH-Gx	GCV/2055	NWTPH-Gx	GCV/2060
255818006	SPL-6-2	NWTPH-Gx	GCV/2055	NWTPH-Gx	GCV/2060
255818007	SPL-6-3	NWTPH-Gx	GCV/2055	NWTPH-Gx	GCV/2060
255818008	SPL-6-4	NWTPH-Gx	GCV/2055	NWTPH-Gx	GCV/2060
255818009	SPL-6-5	NWTPH-Gx	GCV/2055	NWTPH-Gx	GCV/2060
255818010	SPL-9-1	NWTPH-Gx	GCV/2055	NWTPH-Gx	GCV/2060
255818011	SPL-9-2	NWTPH-Gx	GCV/2055	NWTPH-Gx	GCV/2060
255818012	SPL-9-3	NWTPH-Gx	GCV/2055	NWTPH-Gx	GCV/2060
255818013	SPL-8-1	NWTPH-Gx	GCV/2055 GCV/2055	NWTPH-Gx	GCV/2060 GCV/2060
255818014	SPL-8-2	NWTPH-Gx	GCV/2055 GCV/2055	NWTPH-Gx	GCV/2060 GCV/2060
	SPL-8-3				
255818015		NWTPH-Gx	GCV/2055	NWTPH-Gx	GCV/2060
255818016 255818017	TB-1318561 SPL-7-5	NWTPH-Gx NWTPH-Gx	GCV/2055 GCV/2055	NWTPH-Gx NWTPH-Gx	GCV/2060 GCV/2060
255818001	SPL-7-1	EPA 6020	ICPM/23821	EPA 6020	ICPM/9649
255818002	SPL-7-2	EPA 6020	ICPM/23821	EPA 6020	ICPM/9649
255818003	SPL-7-3	EPA 6020	ICPM/23821	EPA 6020	ICPM/9649
255818004	SPL-7-4	EPA 6020	ICPM/23821	EPA 6020	ICPM/9649
255818001	SPL-7-1	EPA 3546	OEXT/3039	EPA 8270 by SIM	MSSV/1461
255818002	SPL-7-2	EPA 3546	OEXT/3039	EPA 8270 by SIM	MSSV/1461
255818003	SPL-7-3	EPA 3546	OEXT/3039	EPA 8270 by SIM	MSSV/1461
255818004	SPL-7-4	EPA 3546	OEXT/3039	EPA 8270 by SIM	MSSV/1461
255818001	SPL-7-1	EPA 8260	MSV/3520		
255818002	SPL-7-2	EPA 8260	MSV/3520		
255818003	SPL-7-3	EPA 8260	MSV/3520		
255818004	SPL-7-4	EPA 8260	MSV/3520		
255818015	SPL-8-3	EPA 8260	MSV/3520		
255818016	TB-1318561	EPA 8260	MSV/3520		
255818017	SPL-7-5	EPA 8260	MSV/3520		
255818001	SPL-7-1	ASTM D2974-87	PMST/1439		
255818002	SPL-7-2	ASTM D2974-87	PMST/1439		
255818003	SPL-7-3	ASTM D2974-87	PMST/1439		
255818004	SPL-7-4	ASTM D2974-87	PMST/1439		
255818005	SPL-6-1	ASTM D2974-87	PMST/1440		
255818006	SPL-6-2	ASTM D2974-87	PMST/1440		
255818007	SPL-6-3	ASTM D2974-87	PMST/1440		
255818008	SPL-6-4	ASTM D2974-87	PMST/1440		
255818009	SPL-6-5	ASTM D2974-87	PMST/1440		
255818010	SPL-9-1	ASTM D2974-87	PMST/1440		

Date: 12/09/2010 05:41 PM

REPORT OF LABORATORY ANALYSIS

Page 23 of 24

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: East Bay Redevelopment 138130

Pace Project No.: 255818

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
255818011	SPL-9-2	ASTM D2974-87	PMST/1440		
255818012	SPL-9-3	ASTM D2974-87	PMST/1440		
255818013	SPL-8-1	ASTM D2974-87	PMST/1440		
255818014	SPL-8-2	ASTM D2974-87	PMST/1440		
255818015	SPL-8-3	ASTM D2974-87	PMST/1440		
255818017	SPL-7-5	ASTM D2974-87	PMST/1440		

Date: 12/09/2010 05:41 PM

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Jennifer Gross PASI Seattle 940 S. Harney Street Seattle WA 98108

> REPORT OF LABORATORY ANALYSIS FOR PCDD/PCDF

Report Information:

Pace Project #: 10144251

Sample Receipt Date: 12/01/2010

Client Project #: 255818 Brown & Caldwell

Client Sub PO #: N/A State Cert #: C755

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Nate Habte, your Pace Project Manager.

This report has been reviewed by:

December 09, 2010

Nate Habte, Project Manager

(612) 607-6407

(612) 607-6444 (fax)

natnael.habte@pacelabs.com

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

December 9, 2010

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on four samples submitted by a representative of PASI Seattle. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290. Reporting limits were based on signal-to-noise measurements.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 50-99%. With the exception of onelow value in the method blank, which was flagged "R" on the result table, the labeled standard recoveries obtained for this project were within the 40-135% target range specified in Method 8290. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

In one case, an interfering substance impacted the determination of a PCDF congener. The affected value was flagged "I" due to an incorrect isotope ratio.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to contain trace levels of selected congeners. These were below the calibration range of the method. Sample levels similar to the corresponding blank levels were flagged "B" on the results tables and may be, at least partially, attributed to the background. It should be noted that levels less than ten times the background are not generally considered to be statistically different from the background.

A laboratory spike sample was also prepared with the sample batch using clean sand that had been fortified with native standard materials. The results show that the spiked native compounds were recovered at 98-124%, indicating a high degree of accuracy for these determinations. Matrix spikes were prepared with the sample batch using sample material from a separate project; results from these analyses will be provided upon request.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	
Arizona	AZ0014	Nevada	MN000642010A
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New Mexico	MN00064
Colorado	MN00064	New York (NEL	11647
Connecticut	PH-0256	North Carolina	27700
EPA Region 5	WD-15J	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Ohio VAP	CL101
Georgia (DNR)	959	Oklahoma	D9922
Guam	09-019r	Oregon (ELAP)	MN200001-005
Hawaii	SLD	Oregon (OREL	MN200001-005
Idaho	MN00064	Pennsylvania	68-00563
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennesee	2818
lowa	368	Tennessee	02818
Kansas	E-10167	Texas	T104704192-08
Kentucky	90062	Utah (NELAP)	PAM
Louisiana	LA0900016	Virginia	00251
Maine	2007029	Washington	C755
Maryland	322	West Virginia	9952C
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q
Mississippi	MN00064		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

_
,
5
_
_

128440/

చ్	Chain of Custody				1014495	1901	C	
							Pace	Face Analytical ® www.pacelebs.com
Wo	Workorder: 255818 Wo	rkorder	Workorder Name:East Bay Redevelopment 138130	ment 138130	Owner Received Date:		11/24/2010 Results Requested By:	(2/2/2010 12/1/2010
			Suncontract 10			Requested Analysis	Analysis	
Pace	Pace Analytical Services, Inc.		Pace Analytical Minnesota 1700 Elm Street	nnesota	07.0			
Seat	Seattle WA 98108 Phone (206)767-5060		Suite 200 Minneapolis, MN 55414	15414	ን <i>ሳ</i> ን			
ă L L	Fax (206)767-5063		Phone (612)607-17	,00	۱۹ (م			
					ıd'			
				Prese	Preserved Containers	CIA		
	e e e e e e e e e e e e e e e e e e e	Sample	Sample (Collect	релеѕ	'\'\	1 X 2		
lten		Type	Date/Time Lab ID	Matrix	żA	12		LAB USE ONLY
-	SPL-7-1	PS	11/22/2010 14:46 255818001	Solid 2	×			
2	SPL-7-2	PS	11/22/2010 14:40 255818002	Solid 2				100
8	SPL-7-3	PS	11/22/2010 14:50 255818003	Solid 2	-			2/0
4	SPL-7-4	PS	11/22/2010 15:00 255818004	Solid 2	+-			5000
2								5
		Part of the second					Commente	
Transfers	٦		Date/Time Received By	1 By	Date/Time	, 0 %	20	1 1
-	ELANDONMEN		11/30/10/200 AVE	446) Oce /Paro MA	3/10 ON 1/21	veed threi	Need thrail data by #1 12/9/10	12/9/10
2 6						DISH They	٥	V
» (FUN	
8	Cooler Temperature on Receipt	1,7	°C Custody Seal 🕅 or	S or N	Received on Ice (4) or) or N	Samples Infact & Jor	Vor N
								Ì

Sample Condition Upon Receipt Client Name: Pace WA Courier: DFed Ex UPS USPS Client Commercial Pace Other Tracking #: 7941664318/2 Proj. Due Date Rroj Name Custody Seal on Cooler/Box Present: ✓ yes ✓ no Y yes Seals intact: ☐ no Packing Material: ☐ Bubble Wrap ☐ Subble Bags ☐ None ☐ Other Temp Blank: Yes No Thermometer Used 80344042 or 179425> Type of Ice: West Blue None Samples on ice, cooling process has begun Date and initials of person examining contents: 12/1/10 MS Biological Tissue is Frozen: Yes No **Cooler Temperature** Temp should be above freezing to 6°C Comments: ☑Yes □No □NA 1. Chain of Custody Present: ØYes □No □N⁄A Chain of Custody Filled Out: ØYes □No □N/A Chain of Custody Relinquished: □Yes INo Sampler Name & Signature on COC: **□N/A** ZYes DNo DINA 5 Samples Arrived within Hold Time: ☐Yes ☐No □N/A Short Hold Time Analysis (<72hr): ☐Yes ☐No Rush Turn Around Time Requested: **DNA** MYes INo **□N/A** Sufficient Volume: Correct Containers Used: Yes DNo **□N/A** ØYes_□No **□N/A** -Pace Containers Used: ØYes □No **□N/A** Containers Intact: Filtered volume received for Dissolved tests ☐Yes ☐No **GIKVA** 11 ØYes □No Sample Labels match COC: 12. -Includes date/time/ID/Analysis Matrix: H2SO4 All containers needing acid/base preservation have been NaOH □Yes □No □N/A П checked. Noncompliance are noted in 13. Samp # All containers needing preservation are found to be in □Yes □No []KVA compliance with EPA recommendation. Initial when Lot # of added Exceptions: VOA, Coliform, TOC, Oil and Grease, WI-DRO (water: DYes MNo preservative completed MNA 14. □Yes □No Samples checked for dechlorination: ENA ☐Yes ☐No Headspace in VOA Vials (>6mm): ☐Yes ☐No ØN/A 16. Trip Blank Present: Trip Blank Custody Seals Present ☐Yes ☐No ØN/A Pace Trip Blank Lot # (if purchased): Field Data Required? Y / N Date/Time: Person Contacted:

Client Notification/ Resolution:

Person Contacted:

Date/Time:

Comments/ Resolution:

Project Manager Review:

Field Data Required?

Y / N

Date: 12 10

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the Root Ababitical SEMBLES, Inc. F-L213Rev.00, 05Aug2009

1700 Elm Street SE, Suite 200, Minneapolis, MN 55414

Fax: 612-607-6444

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

Appendix B

Sample Analysis Summary

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-7-1
Lab Sample ID 255818001
Filename F101206B_21
Injected By BAL

Total Amount Extracted 15.5 g Matrix Solid % Moisture 24.1 Dilution NA

Dry Weight Extracted 11.8 g Collected 11/22/2010 14:46 F101206 **ICAL ID** Received 12/01/2010 09:55 CCal Filename(s) F101206B_10 & F101206B_26 Extracted 12/02/2010 17:15 Method Blank ID BLANK-27127 Analyzed 12/07/2010 08:22

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.70 1.20		0.160 BJ 0.160 B	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	63 78 53
2,3,7,8-TCDD Total TCDD	ND ND		0.160 0.160	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	55 62 86
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.130 0.070 0.098	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	78 80 78
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.095 0.095	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	89 76 69 71
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.100 0.130 0.098	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	77 67
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		0.110 0.110	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	0.270 0.250 0.140 0.220	2,3,7,8-TCDD-37Cl4	0.20	74
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		0.140 0.170 0.160	Total 2,3,7,8-TCDD Equivalence: 0.28 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.60 0.60		0.130 J 0.130 BJ			
OCDF OCDD	0.64 5.20		0.160 J 0.510 BJ			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

Page 10 of 14

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-7-2
Lab Sample ID 255818002
Filename F101206B_22
Injected By BAL

Total Amount Extracted 32.5 g Matrix Solid % Moisture 68.5 Dilution NA

Dry Weight Extracted Collected 11/22/2010 14:40 10.2 g F101206 **ICAL ID** Received 12/01/2010 09:55 CCal Filename(s) F101206B_10 & F101206B_26 Extracted 12/02/2010 17:15 Method Blank ID BLANK-27127 Analyzed 12/07/2010 09:10

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	16.0		1.00	2,3,7,8-TCDF-13C	2.00	76
Total TCDF	260.0		1.00	2,3,7,8-TCDD-13C	2.00	87
0.0.7.0.TODD	0.0		0.00	1,2,3,7,8-PeCDF-13C	2.00	59
2,3,7,8-TCDD	3.2		0.20	2,3,4,7,8-PeCDF-13C	2.00	61 65
Total TCDD	210.0		0.20	1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00	97
1,2,3,7,8-PeCDF	8.3		0.72	1,2,3,6,7,8-HxCDF-13C	2.00	74
2,3,4,7,8-PeCDF	12.0		0.37	2,3,4,6,7,8-HxCDF-13C	2.00	81
Total PeCDF	160.0		0.55	1,2,3,7,8,9-HxCDF-13C	2.00	72
				1,2,3,4,7,8-HxCDD-13C	2.00	99
1,2,3,7,8-PeCDD	10.0		0.49	1,2,3,6,7,8-HxCDD-13C	2.00	74
Total PeCDD	180.0		0.49	1,2,3,4,6,7,8-HpCDF-13C	2.00	63
				1,2,3,4,7,8,9-HpCDF-13C	2.00	59
1,2,3,4,7,8-HxCDF	9.1		0.66	1,2,3,4,6,7,8-HpCDD-13C	2.00	70
1,2,3,6,7,8-HxCDF	6.8		0.49	OCDD-13C	4.00	50
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	8.7 2.7		0.52 0.77 J	1,2,3,4-TCDD-13C	2.00	NA
Total HxCDF	110.0		0.77 3	1,2,3,7,8,9-HxCDD-13C	2.00	NA NA
Total FIXODI	110.0		0.01	1,2,3,7,0,9-110000-130	2.00	INA
1,2,3,4,7,8-HxCDD	5.9		1.50	2,3,7,8-TCDD-37Cl4	0.20	79
1,2,3,6,7,8-HxCDD	11.0		1.20	_,-,-,-		
1,2,3,7,8,9-HxCDD	6.7		0.86			
Total HxCDD	170.0		1.20			
1,2,3,4,6,7,8-HpCDF	56.0		0.36	Total 2,3,7,8-TCDD		
1,2,3,4,7,8,9-HpCDF	5.5		0.64	Equivalence: 27 ng/Kg		
Total HpCDF	190.0		0.50	(Using 2005 WHO Factors -	Using PRL/	2 where ND)
•				, ,	J	,
1,2,3,4,6,7,8-HpCDD	160.0		0.76			
Total HpCDD	300.0		0.76			
OCDF	240.0		1.90			
OCDD	1800.0		0.99			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. $J = Estimated \ value$

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-7-3
Lab Sample ID 255818003
Filename F101206B_23
Injected By BAL

Total Amount Extracted 31.0 g Matrix Solid % Moisture 67.4 Dilution NA

Dry Weight Extracted Collected 11/22/2010 14:50 10.1 g **ICAL ID** F101206 Received 12/01/2010 09:55 CCal Filename(s) F101206B_10 & F101206B_26 Extracted 12/02/2010 17:15 Method Blank ID BLANK-27127 Analyzed 12/07/2010 09:58

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	5.7 70.0		0.320 0.320	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00	86 90
2,3,7,8-TCDD Total TCDD	1.2 51.0		0.300 0.300	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00	71 70 75
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	2.0 2.2 29.0		0.330 J 0.250 J 0.290	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	91 75 82 78
1,2,3,7,8-PeCDD Total PeCDD	2.8 32.0		0.190 J 0.190	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	92 75 66
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.4 1.1 1.3		0.240 J 0.200 J 0.200 J	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	69 76 61
2,3,4,6,7,6-FXCDF 1,2,3,7,8,9-HxCDF Total HxCDF	ND 13.0		0.200 J 0.150 0.200	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.2 1.8 1.7 27.0		0.150 J 0.260 J 0.096 J 0.170	2,3,7,8-TCDD-37Cl4	0.20	83
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	6.6 ND 23.0	 	0.260 0.230 0.250	Total 2,3,7,8-TCDD Equivalence: 6.4 ng/Kg (Using 2005 WHO Factors -	Using PRL/	/2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	17.0 34.0		0.330 0.330			
OCDF OCDD	26.0 200.0		0.550 1.000			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. $J = Estimated \ value$

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-7-4
Lab Sample ID 255818004
Filename F101206B_24
Injected By BAL

Total Amount Extracted 38.4 g Matrix Solid % Moisture 73.8 Dilution NA

Dry Weight Extracted Collected 11/22/2010 15:00 10.1 g F101206 **ICAL ID** Received 12/01/2010 09:55 CCal Filename(s) F101206B_10 & F101206B_26 Extracted 12/02/2010 17:15 Method Blank ID BLANK-27127 Analyzed 12/07/2010 10:47

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	5.7 93.0		0.49 0.49	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	94 96 82
2,3,7,8-TCDD Total TCDD	1.3 67.0		0.28 0.28	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	77 89 93
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	2.9 5.5 56.0		0.31 J 0.37 0.34	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	77 84 78 97
1,2,3,7,8-PeCDD Total PeCDD	4.2 56.0		0.44 J 0.44	1,2,3,4,7,8-11,CDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	77 71 72
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	5.0 2.9 3.7		0.33 0.31 J 0.33 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	80 67
1,2,3,7,8,9-HxCDF Total HxCDF	1.4 32.0		0.22 J 0.30	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	2.1 5.4 3.1 76.0		0.41 J 0.40 0.49 J 0.43	2,3,7,8-TCDD-37Cl4	0.20	88
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	22.0 78.0	1.9 	1.20 1.10 I 1.10	Total 2,3,7,8-TCDD Equivalence: 11 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	71.0 160.0		1.10 1.10			
OCDF OCDD	87.0 800.0		2.30 17.00			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Blank Analysis Results

Lab Sample ID BLANK-27127 Matrix Solid Filename U101206A_06 Dilution NA

Total Amount Extracted 20.2 g Extracted 12/02/2010 17:15 ICAL ID U101204A Analyzed 12/06/2010 17:29

CCal Filename(s) U101206A_02 & U101206A_17 Injected By BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.200 0.320		0.047 J 0.047 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	51 61 39 R
2,3,7,8-TCDD Total TCDD	0.039 0.039		0.026 J 0.026 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	40 48 80
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.050 0.050	 	0.044 0.036 J 0.040 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	70 73 70 86
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.041 0.041	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	68 66
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.068 0.081 0.063	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	77 72
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		0.087 0.075	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	0.094 0.100 0.097 0.098	2,3,7,8-TCDD-37Cl4	0.20	56
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		0.071 0.086 0.078	Total 2,3,7,8-TCDD Equivalence: 0.13 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND 0.130		0.100 0.100 J			
OCDF OCDD	ND 0.550		0.140 0.210 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted

I otal Amount Extracted ICAL ID CCal Filename(s) Method Blank ID

LCS-27128 U101206A_03 20.4 g U101204A

U101204A U101206A_02 & U101206A_17 BLANK-27127 Matrix Solid
Dilution NA
Extracted 12/02

Analyzed

Injected By

NA 12/02/2010 17:15 12/06/2010 15:03

BAL

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.25	124	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.0 2.0 2.0	57 71 60
2,3,7,8-TCDD Total TCDD	0.20	0.20	100	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.0 2.0 2.0 2.0	57 78 79
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.1 1.1	115 113	1,2,3,4,7,6-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.0 2.0 2.0 2.0 2.0	79 69 71 71 73
1,2,3,7,8-PeCDD Total PeCDD	1.0	0.98	98	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.0 2.0 2.0 2.0	73 77 70 66
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	1.0 1.0 1.0 1.0	1.1 1.1 1.1 1.1	110 113 115 115	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.0 4.0 2.0 2.0	76 63 NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	1.1 1.1 1.1	112 109 114	2,3,7,8-TCDD-37Cl4	0.20	68
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.2 1.1	116 110			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	1.0	102			
OCDF OCDD	2.0 2.0	2.3 2.4	115 122			

Qs = Quantity Spiked Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)
R = Recovery outside of target range

Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable

* = See Discussion

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

2 5 5 8 1 8

Section A Section Required Client Information: Require		ect Info	mation:						on C	mation:									Page:				
Company: Blann + Caldwell Report	To: 5		MKK					entic		see s	Seet	ton	A	-			- 11 	1176			13	3185	062
Address: 724 (olivalan St Nu = 426 Copy T			1 Solv		1		Co	mpa	ny Na	ame:						RE	GULATO	RY AGE	NCY				
Olympia wa 98501		us.				11	Ad	dres	s:							T	□ NPDES □ GROUND WATER □ DRINKI				DRINKIN	IG WATER	
Email To: Hirk @ Wown cold com Purcha	se Orde	er No.:						ce Qu ferenc									UST	□ RC	CRA		X	OTHER	ECY
Phone: 3100-943-1525 310-943-1513 Project	Name:						Pa	ce Pro	oject							Si	te Locatio	n				RATE TAN	
Requested Due Date/TAT: Project	Numbe	r:				77 1		nager ce Pro	r; ofile #:				10.1	W ₂		-	STATE		AV	W Co			
1219110														Por	nuact	od An	lysis Filt	2		_			
Section D.	Т	1					Т	T	_			_	-	Rec	T			leu (1/h	1	-			
Section D Matrix Codes Required Client Information MATRIX / CODE	len (Help	(MP)		COLL	ECTED	1				Presen	vatives		N/A		56	2	-At 1	day a		180			
Drinking Water DW Water Water WW WW WW WW Product P Soil/Soild SL SAMPLE ID Oil	(see valid code		COMPO		COMPO END/G	SITE RAB	COLLECTION	CA	2 4		52		st 🖡	b) ad h)		Naudindene Patry				ne (Y/N)	in ay		
(A-Z, 0-9 /,-) Wipe Air AR Sample IDs MUST BE UNIQUE Tissue TS Other OT	ODE	NPE	DATE	TIME	DATE		SAMPLE TEMP AT CC	# CONTAINE	Unpreserved H ₂ SO ₂	HNO ₃	NaOH Na ₂ S ₂ O ₃	Methanol Other	Analysis Test	1	TH-A-H-AL	PH-G Pit				Residual Chlorine (Y/N)	Pace	Project N	lo./ Lab I.D.
1 SPL-7-1	SL	. 4			11/22/10	14:46	-		4			44		××		XX				\Box			
2 SDL-7-7						14:40		1		131		11		11		11				П	r _ aba	100	
3 52-7-3						14:50						111		111		111				П			
4 572-7-4			2 76-	1941 4		15:00	1	,	V			9 1	1	V	1	44						-11	
5 SPL- W-1			- 17 77	0.5	317	4-13-ZA	2	3				XX				X					nyn		
6 572-6-7						13:46	1					1				1				П			
7 SPL-4 - 3						13:40			1			111						101		П	ALC: Y	4.	
8 SPL-10-41						13:50						111	1							\Box	SUIT TO		
9 SPL-U-5	\sqcap		-			13:55														\Box			
10 SPL-9-1/					1	13:00														\Box	1111		
11 SPL-9-2						13110											100		- 1	П			
12 SPL-9-3	U	-			d	13:00	,					V	+			V							
ADDITIONAL COMMENTS	RE	LINQU	ISHED BY /	AFFILIATI	ON	DATE		TIM	ME		ACC	CEPTE	D BY /	AFFILI	IATION	1	DATE	TIME			SAME	LE CONDIT	IONS
	-		Tonk	1		W221	10 1	021	D	ha	-			<	1								
	8		, ,			19001	14 (DC		to		ac	1/2	1	n	1	· ph			u.			
							-			Ju	10/1		_	an			11/24/10	140	8 1	,4	Ч	4	И
ODIONIA				SAMPLE	R NAME A	ND SIGNATU	JRE			/				1			11		1		5	ler .	Intact ()
ORIGINA	-				PRINT Nan	e of SAMPLE	R: -	To	べ	Th	-k									Temp in °C	Received on Ice (Y/N)	Custody Sealed Cooler (Y/N)	Samples Int (Y/N)
*Important Note: By signing this form you are accepting Pace's	NET 30) day nav	ment terms a		ALC: SHE COLORS	E of SAMPLE		To le	nyoice	ts not residu	vithin 30 -	dave		DATE (MM/	Signe DD/YY): \\	122/1	0	F			07, 15-May	The second secon

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1,5% per month for any involces not paid within 30 days. F-ALL-Q-020rev.07, 15-May-2007 (MM/DD/XX): Temp in °C SIGNATURE of SAMPLER: nples Inta (Y/N) PRINT Name of SAMPLER: -ORIGINAL SAMPLER NAME AND SIGNATURE 0/2911 10 8041 00:81 **BTAG** ACCEPTED BY / AFFILIATION TIME **BATE** RELINQUISHED BY / AFFILIATION SAMPLE CONDITIONS TIME ADDITIONAL COMMENTS 11 10 6 01:210/2011 2 5 75 > 8 08:41 Hill 2211 1-8-705 3 1 point 5 Methanol Na2S2O3 H₂SO₄ Pace Project No./ Lab I.D. X41819-44 HCI Residual Chlorine (Y/N) # OF CONTAINERS MATRIX CODE Unpreserved SAMPLE TEMP AT COLLECTION SAMPLE TYPE Analysis Test | Sample IDs MUST BE UNIQUE (-' / 6-0 'Z-\) Wipe (G=GRAB SAMPLE ID (see valid codes to left) piloS/lioS THATE END/GRAB Waste Water COMPOSITE COMPOSITE C=COMP) Drinking Water 1 N/Y Preservatives COLLECTED WATRIX / CODE Required Client Information Matrix Codes G noitoes Requested Analysis Filtered (Y/N) Project Number: Site Location Email To: SHANK & WILMICKLIA COM K OTHER FCY RCRA TSU ace Quote Purchase Order No.: GROUND WATER [NPDES [DRINKING WATER defess of which the the LOSVINOS MASS REGULATORY AGENCY Company Name: Report To: LON JUNK Attention: Section It 1318261 Invoice Information: Required Project Information: Required Client Information: Section C Section B 8 1 8 9 9 7

CLIENT: Brown a Caldwell

Pace Analytical

COC PAGE | of 2 COC ID# | 318562

Sample Line Item	VG9H	AG1H	AG1U	BG1H	BP1U	BP2U	BP3U	BP2N	BP2S	WGFU	WGKU	DG9m	169,	Comments
1										4		1	2	
2										4		1		
3										4				
4										4	84			
5														
6														
7														La company of the second
8														
9												-	-	
10														
11													1	
12												9	V	Trip Blank? 49

AG1H	1 liter HCL amber glass	BP2S	500mL H2SO4 plastic	JGFU	4oz unpreserved amber wide
	1liter unpreserved amber glass	BP2U	500mL unpreserved plastic	R	terra core kit
	500mL H2SO4 amber glass	BP2Z	500mL NaOH, Zn Ac	U	Summa Can
AG2U	500mL unpreserved amber glass	BP3C	250mL NaOH plastic	VG9H	40mL HCL clear vial
AG3S	250mL H2SO4 amber glass	BP3N	250mL HNO3 plastic	VG9T	40mL Na Thio. clear vial
BG1H	1 liter HCL clear glass	BP3S	250mL H2SO4 plastic	VG9U	40mL unpreserved clear vial
BG1U	1 liter unpreserved glass	BP3U	250mL unpreserved plastic	VG9W	40mL glass vial preweighted (EPA 5035
BP1N	1 liter HNO3 plastic	DG9B	40mL Na Bisulfate amber vial	VSG	Headspace septa vial & HCL
BP1S	1 liter H2SO4 plastic	DG9H	40mL HCL amber voa vial	WGFU	4oz clear soil jar
BP1U	1 liter unpreserved plastic	DG9M	40mL MeOH clear vial	WGFX	4oz wide jar w/hexane wipe
BP1Z	1 liter NaOH, Zn, Ac	DG9T	40mL Na Thio amber vial	ZPLC	Ziploc Bag
BP2N	500mL HNO3 plastic	DG9U	40mL unpreserved amber vial		
BP2O	500mL NaOH plastic		Wipe/Swab		

Brown & Caldwell

Pace Analytical

COC PAGE 2 of 2 COC ID# 1318562

CLIENT:

ample Line Item	VG9H	AG1H	AG1U	BG1H	BP1U	BP2U	BP3U	BP2N	BP2S	WGFU	WGKU	D99m	VG9W	Comments
1												1	2	
2														
3														
4												\vee	V	
5											_	1	2	
6														
7														
8														
9														
10														
11														
12														Trip Blank? 1 (S

AG1H 1 liter HCL amber glass	BP2S	500mL H2SO4 plastic	JGFU	4oz unpreserved amber wide
AG1U 1liter unpreserved amber glass	BP2U	500mL unpreserved plastic	R	terra core kit
AG2S 500mL H2SO4 amber glass	BP2Z	500mL NaOH, Zn Ac	U	Summa Can
AG2U 500mL unpreserved amber glass	BP3C	250mL NaOH plastic	VG9H	40mL HCL clear vial
AG3S 250mL H2SO4 amber glass	BP3N	250mL HNO3 plastic	VG9T	40mL Na Thio. clear vial
BG1H 1 liter HCL clear glass	BP3S	250mL H2SO4 plastic	VG9U	40mL unpreserved clear vial
BG1U 1 liter unpreserved glass	BP3U	250mL unpreserved plastic	VG9W	40mL glass vial preweighted (EPA 5035
BP1N 1 liter HNO3 plastic	DG9B	40mL Na Bisulfate amber vial	VSG	Headspace septa vial & HCL
BP1S 1 liter H2SO4 plastic	DG9H	40mL HCL amber voa vial	WGFU	4oz clear soil jar
BP1U 1 liter unpreserved plastic	DG9M	40mL MeOH clear vial	WGFX	4oz wide jar w/hexane wipe
BP1Z 1 liter NaOH, Zn, Ac	DG9T	40mL Na Thio amber vial	ZPLC	Ziploc Bag
BP2N 500mL HNO3 plastic	DG9U	40mL unpreserved amber vial		
BP2O 500mL NaOH plastic		Wipe/Swab		

	Sample Condition L	pon Receipt	
Pace Analytical Client Name:	Brown + C	aldwe Uprojec	t #2 5 5 8 1 8
Courier: Fed Ex UPS USPS Client Tracking #: 8738 821 5370	Commercial Page	e Other	
Custody Seal on Cooler/Box Present: Yes	☐ No Seals intact:	Yes No	
Packing Material: Bubble Wrap Bubble B	ags None Othe	er Temp. B	llank (Yes)No
Thermometer Used 132013 of 101731962 or 226099	Type of Ice: Wet Blue		on ice, cooling process has begun
Cooler Temperature Temp should be above freezing ≤ 6 ℃	Biological Tissue is Froz	en: Yes No co	and Initials of person examining intents: 15 11 24 10
Chain of Custody Present:	ØYes □No □N/A 1.		
Chain of Custody Filled Out:	PYes □No □N/A 2.		
Chain of Custody Relinquished:	DYES DNO DN/A 3.		
Sampler Name & Signature on COC:	DYes □No □N/A 4.		
Samples Arrived within Hold Time:	ØYes □No □N/A 5.		
Short Hold Time Analysis (<72hr):	□Yes ☑No □N/A 6.		
Rush Turn Around Time Requested:	□Yes □N/A 7.		
Sufficient Volume:	Yes ONO ON/A 8.		, i
Correct Containers Used:	Yes No N/A 9.		,
-Pace Containers Used:	Yes ONO ON/A		
Containers Intact:	□Yes □No □N/A 10.		
Filtered volume received for Dissolved tests	□Yes □No ☑N/A 11.		
Sample Labels match COC:	Yes No ONA 12.		
-Includes date/time/ID/Analysis Matrix:	5011		. 0
All containers needing preservation have been checked.	□Yes □No ☑N/A 13.	Terracore ki	its frozen at
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes □No □N/A	1/24/10 14:2	7 NJS
Compilative with LFA recommendation.	· Initial w		
Exceptions: VOA, coliform, TOC, O&G	comple	ed preserva	ttive
Samples checked for dechlorination:	□Yes □No □N/A 14.		
Headspace in VOA Vials (>6mm):	□Yes □No □N/A 15.		
Trip Blanks Present:	Yes ONO ON/A 16.		
Trip Blank Custody Seals Present	□Yes □No □N/A		
Pace Trip Blank Lot # (if purchased):			
Client Notification/ Resolution: Person Contacted: Jash Johnson Comments/ Resolution:	Jon Turk Date/Time:		ta Required? Y / N

Notified Client Ghat 10 Samples were troten ontside the 18 hour Window. esm -> SPL-10-1, SPL-10-2, SPL-10-3, SPL-10-4, SPL-10-5, SPL-9-1, SPL-9-2, SPL-9-3, SPL-8-1, ASPL-8-2

Per Jon Turk - BIEX will be recollected for Samples listed above, Proceed with the rest of the analyses. RSM

Project Manager Review: RSM

Date: 111, 29/10 14:00

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

December 09, 2010

Joshua Johnson Brown & Caldwell 724 Columbia St. NW#420 Olympia, WA 98501

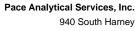
RE: Project: Olympia Soils

Pace Project No.: 255764

Dear Joshua Johnson:

Enclosed are the analytical results for sample(s) received by the laboratory on November 18, 2010. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.


Sincerely,

Jennifer Gross

jennifer.gross@pacelabs.com Project Manager

ENNI (TROSS

Enclosures

Seattle, WA 98108 (206)767-5060

CERTIFICATIONS

Project: Olympia Soils
Pace Project No.: 255764

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

Alaska Certification #: UST-078
Alaska Certification #MN00064
Arizona Certification #: AZ-0014
Arkansas Certification #: 88-0680
California Certification #: 01155CA
EPA Region 8 Certification #: Pace
Florida/NELAP Certification #: E87605
Georgia Certification #: 959
Idaho Certification #: MN000064

Idano Certification #: MN00064
Illinois Certification #: 200011
Iowa Certification #: 368
Kansas Certification #: E-10167
Louisiana Certification #: 03086
Louisiana Certification #: LA080009
Maine Certification #: 2007029
Maryland Certification #: 322
Maryland DEO Certification #: 300

Michigan DEQ Certification #: 9909 Minnesota Certification #: 027-053-137 Mississippi Certification #: Pace Montana Certification #: MT CERT0092 Nevada Certification #: MN_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New Mexico Certification #: Pace New York Certification #: 11647 North Carolina Certification #: 530 North Dakota Certification #: R-036 North Dakota Certification #: R-036A Ohio VAP Certification #: CL101 Oklahoma Certification #: D9921 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification Tennessee Certification #: 02818 Texas Certification #: T104704192

Washington Certification IDs

940 South Harney Street, Seattle, WA 98108
Alaska CS Certification #: UST-025
Alaska Drinking Water VOC Certification #: WA01230
Alaska Drinking Water Micro Certification #: WA01230

California Certification #: 01153CA Florida/NELAP Certification #: E87617 Oregon Certification #: WA200007 Washington Certification #: C1229

Washington Certification #: C754

Wisconsin Certification #: 999407970

(206)767-5060

SAMPLE ANALYTE COUNT

Project: Olympia Soils
Pace Project No.: 255764

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
255764001	SPL-11-1	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	RJS	5	PASI-M
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
255764002	SPL-11-2	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	RJS	5	PASI-M
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
255764003	SPL-11-3	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	RJS	5	PASI-M
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
255764004	SPL-10-1	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	RJS	5	PASI-M
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
255764005	SPL-10-2	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	RJS	5	PASI-M
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
255764006	SPL-10-3	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	RJS	5	PASI-M
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
255764007	TB-1318922	NWTPH-Gx	AY1	3	PASI-S

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

SAMPLE ANALYTE COUNT

Project: Olympia Soils
Pace Project No.: 255764

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 8260	LPM	8	PASI-S

Project: Olympia Soils Pace Project No.: 255764

Lab ID: 255764001 Sample: SPL-11-1 Collected: 11/16/10 11:00 Received: 11/18/10 09:25 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG ND mg/kg 20.6 11/29/10 11:00 11/30/10 10:04 Motor Oil Range SG ND mg/kg 82.3 1 11/29/10 11:00 11/30/10 10:04 64742-65-0 n-Octacosane (S) SG 106 % 50-150 11/29/10 11:00 11/30/10 10:04 630-02-4 1 o-Terphenyl (S) SG 102 % 50-150 11/29/10 11:00 11/30/10 10:04 84-15-1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics 6.3 11/29/10 12:00 11/30/10 05:48 ND mg/kg a.a.a-Trifluorotoluene (S) 112 % 50-150 1 11/29/10 12:00 11/30/10 05:48 98-08-8 4-Bromofluorobenzene (S) 120 % 50-150 1 11/29/10 12:00 11/30/10 05:48 460-00-4 **6020 MET ICPMS** Analytical Method: EPA 6020 Arsenic 4.5 mg/kg 0.49 20 11/24/10 07:01 11/30/10 11:49 7440-38-2 Cadmium 0.084 mg/kg 0.078 20 11/24/10 07:01 11/30/10 11:49 7440-43-9 Copper 35.2 mg/kg 0.49 20 11/24/10 07:01 11/30/10 11:49 7440-50-8 0.49 20 Lead 8.1 mg/kg 11/24/10 07:01 11/30/10 11:49 7439-92-1 20 Nickel 36.0 mg/kg 0.49 11/24/10 07:01 11/30/10 11:49 7440-02-0 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Acenaphthene 7.9 ND ug/kg 1 11/24/10 12:40 12/02/10 15:12 83-32-9 11/24/10 12:40 12/02/10 15:12 208-96-8 7.9 Acenaphthylene ND ug/kg 1 11/24/10 12:40 12/02/10 15:12 120-12-7 ND ug/kg 7.9 Anthracene 1 7.9 Benzo(a)anthracene 10.0 ug/kg 1 11/24/10 12:40 12/02/10 15:12 56-55-3 Benzo(a)pyrene 11.5 ug/kg 7.9 11/24/10 12:40 12/02/10 15:12 50-32-8 1 Benzo(b)fluoranthene 13.1 ug/kg 7.9 11/24/10 12:40 12/02/10 15:12 205-99-2 Benzo(q,h,i)perylene 13.0 ug/kg 7.9 1 11/24/10 12:40 12/02/10 15:12 191-24-2 Benzo(k)fluoranthene 8.7 ua/ka 7.9 1 11/24/10 12:40 12/02/10 15:12 207-08-9 Chrysene 24.9 ug/kg 7.9 1 11/24/10 12:40 12/02/10 15:12 218-01-9 Dibenz(a,h)anthracene ND ug/kg 7.9 11/24/10 12:40 12/02/10 15:12 53-70-3 1 Fluoranthene 14.8 ug/kg 7.9 11/24/10 12:40 12/02/10 15:12 206-44-0 1 ND ug/kg 7.9 11/24/10 12:40 12/02/10 15:12 86-73-7 Fluorene 1 Indeno(1,2,3-cd)pyrene ND ug/kg 7.9 11/24/10 12:40 12/02/10 15:12 193-39-5 1 1-Methylnaphthalene ND ug/kg 7.9 11/24/10 12:40 12/02/10 15:12 90-12-0 1 2-Methylnaphthalene ND ug/kg 7.9 1 11/24/10 12:40 12/02/10 15:12 91-57-6 Naphthalene ND ug/kg 7.9 1 11/24/10 12:40 12/02/10 15:12 91-20-3 Phenanthrene 8.1 ug/kg 7.9 11/24/10 12:40 12/02/10 15:12 85-01-8 24.0 ug/kg 11/24/10 12:40 12/02/10 15:12 129-00-0 Pyrene 7.9 1 2-Fluorobiphenyl (S) 66 % 31-131 1 11/24/10 12:40 12/02/10 15:12 321-60-8 2n Terphenyl-d14 (S) 64 % 30-133 11/24/10 12:40 12/02/10 15:12 1718-51-0 8260/5035A Volatile Organics Analytical Method: EPA 8260 3.3 11/30/10 12:40 71-43-2 Benzene ND ug/kg 1 Ethylbenzene ND ug/kg 3.3 11/30/10 12:40 100-41-4 1 ND ug/kg 3.3 11/30/10 12:40 108-88-3 Toluene 1 11/30/10 12:40 1330-20-7 Xylene (Total) ND ug/kg 10 1 Dibromofluoromethane (S) 104 % 80-136 11/30/10 12:40 1868-53-7

Date: 12/09/2010 05:20 PM

REPORT OF LABORATORY ANALYSIS

Page 5 of 21

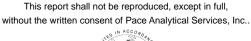
Project: Olympia Soils Pace Project No.: 255764

Lab ID: 255764001 Sample: SPL-11-1 Collected: 11/16/10 11:00 Received: 11/18/10 09:25 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8260/5035A Volatile Organics Analytical Method: EPA 8260 Toluene-d8 (S) 111 % 80-120 1 11/30/10 12:40 2037-26-5 4-Bromofluorobenzene (S) 123 % 72-122 1 11/30/10 12:40 460-00-4 S3 1,2-Dichloroethane-d4 (S) 103 % 80-143 11/30/10 12:40 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 14.5 % 0.10 1 11/19/10 16:52 Sample: SPL-11-2 Lab ID: 255764002 Collected: 11/16/10 11:30 Received: 11/18/10 09:25 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG 31.2 mg/kg 18.9 11/29/10 11:00 11/30/10 10:21 Motor Oil Range SG 428 mg/kg 75.8 11/29/10 11:00 11/30/10 10:21 64742-65-0 1 n-Octacosane (S) SG 115 % 50-150 1 11/29/10 11:00 11/30/10 10:21 630-02-4 o-Terphenyl (S) SG 105 % 50-150 11/29/10 11:00 11/30/10 10:21 84-15-1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 6.3 11/29/10 12:00 11/30/10 09:19 117 % 50-150 a,a,a-Trifluorotoluene (S) 1 11/29/10 12:00 11/30/10 09:19 98-08-8 4-Bromofluorobenzene (S) 112 % 50-150 11/29/10 12:00 11/30/10 09:19 460-00-4 1 **6020 MET ICPMS** Analytical Method: EPA 6020 11/24/10 07:01 11/30/10 11:54 7440-38-2 Arsenic 4.4 mg/kg 0.47 20 Cadmium 0.10 mg/kg 0.076 20 11/24/10 07:01 11/30/10 11:54 7440-43-9 27.2 mg/kg 0.47 20 11/24/10 07:01 11/30/10 11:54 7440-50-8 Copper 13.0 mg/kg 0.47 20 11/24/10 07:01 11/30/10 11:54 7439-92-1 Lead Nickel 26.6 mg/kg 20 11/24/10 07:01 11/30/10 11:54 7440-02-0 0.47 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 11/24/10 12:40 12/02/10 16:01 83-32-9 7.6 Acenaphthene ND ug/kg 1 11/24/10 12:40 12/02/10 16:01 208-96-8 Acenaphthylene 7.5 ug/kg 7.6 1 9.0 ug/kg 7.6 Anthracene 1 11/24/10 12:40 12/02/10 16:01 120-12-7 Benzo(a)anthracene 22.8 ug/kg 7.6 1 11/24/10 12:40 12/02/10 16:01 56-55-3 Benzo(a)pyrene 27.9 ug/kg 7.6 11/24/10 12:40 12/02/10 16:01 50-32-8 1 Benzo(b)fluoranthene 41.3 ug/kg 7.6 1 11/24/10 12:40 12/02/10 16:01 205-99-2 28.1 ug/kg Benzo(g,h,i)perylene 7.6 1 11/24/10 12:40 12/02/10 16:01 191-24-2 Benzo(k)fluoranthene 26.6 ug/kg 7.6 1 11/24/10 12:40 12/02/10 16:01 207-08-9 Chrysene 51.0 ug/kg 7.6 11/24/10 12:40 12/02/10 16:01 218-01-9 1 7.6 Dibenz(a,h)anthracene 8.1 ug/kg 11/24/10 12:40 12/02/10 16:01 53-70-3 1 Fluoranthene 46.2 ug/kg 7.6 11/24/10 12:40 12/02/10 16:01 206-44-0 1 Fluorene ND ug/kg 7.6 11/24/10 12:40 12/02/10 16:01 86-73-7 1 Indeno(1,2,3-cd)pyrene 21.0 ug/kg 7.6 11/24/10 12:40 12/02/10 16:01 193-39-5

Date: 12/09/2010 05:20 PM

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

Page 6 of 21


Project: Olympia Soils Pace Project No.: 255764

Lab ID: 255764002 Sample: SPL-11-2 Collected: 11/16/10 11:30 Received: 11/18/10 09:25 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 1-Methylnaphthalene ND ug/kg 7.6 11/24/10 12:40 12/02/10 16:01 90-12-0 2-Methylnaphthalene 13.7 ug/kg 7.6 11/24/10 12:40 12/02/10 16:01 91-57-6 Naphthalene 9.6 ug/kg 7.6 11/24/10 12:40 12/02/10 16:01 91-20-3 1 Phenanthrene 20.1 ug/kg 7.6 11/24/10 12:40 12/02/10 16:01 85-01-8 1 64.1 ug/kg Pyrene 7.6 1 11/24/10 12:40 12/02/10 16:01 129-00-0 2-Fluorobiphenyl (S) 65 % 31-131 11/24/10 12:40 12/02/10 16:01 321-60-8 2n 1 Terphenyl-d14 (S) 76 % 30-133 11/24/10 12:40 12/02/10 16:01 1718-51-0 1 8260/5035A Volatile Organics Analytical Method: EPA 8260 ND ug/kg 3.3 11/30/10 12:59 71-43-2 Benzene 1 11/30/10 12:59 100-41-4 Ethylbenzene ND ug/kg 3.3 1 Toluene 3.3 11/30/10 12:59 108-88-3 ND ug/kg 1 Xylene (Total) ND ug/kg 9.8 11/30/10 12:59 1330-20-7 1 Dibromofluoromethane (S) 90 % 80-136 11/30/10 12:59 1868-53-7 1 Toluene-d8 (S) 112 % 80-120 1 11/30/10 12:59 2037-26-5 4-Bromofluorobenzene (S) 116 % 72-122 1 11/30/10 12:59 460-00-4 1,2-Dichloroethane-d4 (S) 91 % 80-143 11/30/10 12:59 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 11.8 % 0.10 1 11/19/10 16:53 Sample: SPL-11-3 Lab ID: 255764003 Received: 11/18/10 09:25 Collected: 11/16/10 14:30 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG ND mg/kg 20.4 11/29/10 11:00 11/30/10 10:37 Motor Oil Range SG ND mg/kg 81.6 11/29/10 11:00 11/30/10 10:37 64742-65-0 n-Octacosane (S) SG 108 % 50-150 11/29/10 11:00 11/30/10 10:37 630-02-4 1 o-Terphenyl (S) SG 97 % 50-150 11/29/10 11:00 11/30/10 10:37 84-15-1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 7.1 11/29/10 12:00 11/30/10 06:11 a,a,a-Trifluorotoluene (S) 106 % 50-150 1 11/29/10 12:00 11/30/10 06:11 4-Bromofluorobenzene (S) 111 % 50-150 1 11/29/10 12:00 11/30/10 06:11 460-00-4 **6020 MET ICPMS** Analytical Method: EPA 6020 11/24/10 07:01 11/30/10 11:58 Arsenic 3.6 mg/kg 0.51 20 7440-38-2 Cadmium ND mg/kg 0.081 20 11/24/10 07:01 11/30/10 11:58 7440-43-9 17.2 mg/kg 0.51 20 7440-50-8 Copper 11/24/10 07:01 11/30/10 11:58 4.5 mg/kg 7439-92-1 Lead 0.51 20 11/24/10 07:01 11/30/10 11:58 Nickel 0.51 20 11/24/10 07:01 11/30/10 11:58 7440-02-0 29.6 mg/kg

Date: 12/09/2010 05:20 PM

REPORT OF LABORATORY ANALYSIS

Page 7 of 21

Project: Olympia Soils Pace Project No.: 255764

Lab ID: 255764003 Sample: SPL-11-3 Collected: 11/16/10 14:30 Received: 11/18/10 09:25 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 7.9 Acenaphthene ND ug/kg 11/24/10 12:40 12/02/10 16:21 83-32-9 Acenaphthylene ND ug/kg 7.9 11/24/10 12:40 12/02/10 16:21 208-96-8 Anthracene ND ug/kg 7.9 11/24/10 12:40 12/02/10 16:21 120-12-7 1 Benzo(a)anthracene ND ug/kg 7.9 11/24/10 12:40 12/02/10 16:21 56-55-3 1 Benzo(a)pyrene ND ug/kg 7.9 1 11/24/10 12:40 12/02/10 16:21 50-32-8 Benzo(b)fluoranthene ND ug/kg 7.9 11/24/10 12:40 12/02/10 16:21 205-99-2 1 ND ug/kg 7.9 11/24/10 12:40 12/02/10 16:21 191-24-2 Benzo(g,h,i)perylene 1 Benzo(k)fluoranthene ND ug/kg 7.9 11/24/10 12:40 12/02/10 16:21 207-08-9 1 10.9 ug/kg 7.9 11/24/10 12:40 12/02/10 16:21 218-01-9 Chrysene 1 ND ug/kg 7.9 11/24/10 12:40 12/02/10 16:21 53-70-3 Dibenz(a,h)anthracene 1 ND ug/kg 7.9 11/24/10 12:40 12/02/10 16:21 206-44-0 Fluoranthene 1 Fluorene ND ug/kg 7.9 1 11/24/10 12:40 12/02/10 16:21 86-73-7 Indeno(1,2,3-cd)pyrene ND ug/kg 7.9 11/24/10 12:40 12/02/10 16:21 193-39-5 1-Methylnaphthalene ND ug/kg 7.9 11/24/10 12:40 12/02/10 16:21 90-12-0 1 2-Methylnaphthalene 10.8 ug/kg 11/24/10 12:40 12/02/10 16:21 91-57-6 7.9 1 Naphthalene ND ug/kg 7.9 1 11/24/10 12:40 12/02/10 16:21 91-20-3 11/24/10 12:40 12/02/10 16:21 85-01-8 Phenanthrene ND ug/kg 7.9 1 8.6 ug/kg Pyrene 7.9 11/24/10 12:40 12/02/10 16:21 129-00-0 1 65 % 31-131 2-Fluorobiphenyl (S) 1 11/24/10 12:40 12/02/10 16:21 321-60-8 2n Terphenyl-d14 (S) 56 % 30-133 11/24/10 12:40 12/02/10 16:21 1718-51-0 1 8260/5035A Volatile Organics Analytical Method: EPA 8260 ND ug/kg 3.6 11/30/10 13:19 71-43-2 Benzene 1 Ethylbenzene ND ug/kg 3.6 11/30/10 13:19 100-41-4 1 Toluene ND ug/kg 3.6 1 11/30/10 13:19 108-88-3 Xylene (Total) ND ug/kg 10.9 1 11/30/10 13:19 1330-20-7 Dibromofluoromethane (S) 102 % 80-136 11/30/10 13:19 1868-53-7 Toluene-d8 (S) 108 % 80-120 1 11/30/10 13:19 2037-26-5 4-Bromofluorobenzene (S) 112 % 72-122 11/30/10 13:19 460-00-4 1 1,2-Dichloroethane-d4 (S) 108 % 80-143 11/30/10 13:19 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 17.4 % 0.10 11/19/10 16:54 Sample: SPL-10-1 Lab ID: 255764004 Collected: 11/16/10 15:00 Received: 11/18/10 09:25 Results reported on a "dry-weight" basis Results Units DF CAS No. Qual **Parameters** Report Limit Prepared Analyzed **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG 63.6 mg/kg 20.2 11/29/10 11:00 11/30/10 10:54 478 mg/kg Motor Oil Range SG 81.0 1 11/29/10 11:00 11/30/10 10:54 64742-65-0 n-Octacosane (S) SG 117 % 50-150 11/29/10 11:00 11/30/10 10:54 630-02-4 1 o-Terphenyl (S) SG 105 % 50-150 11/29/10 11:00 11/30/10 10:54 84-15-1

Date: 12/09/2010 05:20 PM REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

Project: Olympia Soils
Pace Project No.: 255764

Lab ID: 255764004 Sample: SPL-10-1 Collected: 11/16/10 15:00 Received: 11/18/10 09:25 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 7.3 1 11/29/10 12:00 11/30/10 06:58 114 % 50-150 a,a,a-Trifluorotoluene (S) 1 11/29/10 12:00 11/30/10 06:58 98-08-8 4-Bromofluorobenzene (S) 122 % 50-150 11/29/10 12:00 11/30/10 06:58 460-00-4 **6020 MET ICPMS** Analytical Method: EPA 6020 Arsenic 3.3 mg/kg 0.45 20 11/24/10 07:01 12/03/10 09:35 7440-38-2 Cadmium **0.12** mg/kg 0.072 11/24/10 07:01 12/03/10 09:35 7440-43-9 20 Copper 20.3 mg/kg 0.45 20 11/24/10 07:01 12/03/10 09:35 7440-50-8 Lead **6.0** mg/kg 0.45 20 11/24/10 07:01 12/03/10 09:35 7439-92-1 Nickel 28.8 mg/kg 0.45 20 11/24/10 07:01 12/03/10 09:35 7440-02-0 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Acenaphthene 10.9 ua/ka 7.8 1 11/24/10 12:40 12/09/10 05:51 83-32-9 ND ug/kg 7.8 11/24/10 12:40 12/09/10 05:51 208-96-8 Acenaphthylene 1 7.8 Anthracene 9.7 ug/kg 11/24/10 12:40 12/09/10 05:51 120-12-7 1 7.8 Benzo(a)anthracene 15.9 ug/kg 11/24/10 12:40 12/09/10 05:51 56-55-3 1 15.6 ug/kg 7.8 11/24/10 12:40 12/09/10 05:51 50-32-8 Benzo(a)pyrene 1 7.8 11/24/10 12:40 12/09/10 05:51 205-99-2 Benzo(b)fluoranthene 16.2 ug/kg 1 Benzo(g,h,i)perylene 16.5 ug/kg 7.8 1 11/24/10 12:40 12/09/10 05:51 191-24-2 Benzo(k)fluoranthene 11.5 ug/kg 7.8 11/24/10 12:40 12/09/10 05:51 207-08-9 Chrysene 30.9 ug/kg 7.8 11/24/10 12:40 12/09/10 05:51 218-01-9 Dibenz(a,h)anthracene ND ug/kg 7.8 1 11/24/10 12:40 12/09/10 05:51 53-70-3 Fluoranthene 46.5 ug/kg 7.8 11/24/10 12:40 12/09/10 05:51 206-44-0 1 Fluorene 9.9 ug/kg 7.8 11/24/10 12:40 12/09/10 05:51 86-73-7 1 **9.3** ug/kg 7.8 11/24/10 12:40 12/09/10 05:51 193-39-5 Indeno(1,2,3-cd)pyrene 1 7.8 1-Methylnaphthalene 8.5 ug/kg 11/24/10 12:40 12/09/10 05:51 90-12-0 1 7.8 11/24/10 12:40 12/09/10 05:51 91-57-6 2-Methylnaphthalene 18.8 ug/kg 1 Naphthalene 21.9 ug/kg 7.8 11/24/10 12:40 12/09/10 05:51 91-20-3 1 Phenanthrene 33.6 ug/kg 7.8 1 11/24/10 12:40 12/09/10 05:51 85-01-8 Pyrene 55.3 ug/kg 7.8 1 11/24/10 12:40 12/09/10 05:51 129-00-0 2-Fluorobiphenyl (S) 60 % 31-131 11/24/10 12:40 12/09/10 05:51 321-60-8 1 2n 66 % 30-133 11/24/10 12:40 12/09/10 05:51 1718-51-0 Terphenyl-d14 (S) 8260/5035A Volatile Organics Analytical Method: EPA 8260 ND ug/kg 3.5 11/30/10 13:38 71-43-2 Benzene 1 ND ug/kg 11/30/10 13:38 100-41-4 Ethylbenzene 3.5 1 Toluene ND ug/kg 3.5 1 11/30/10 13:38 108-88-3 Xylene (Total) ND ug/kg 10.6 11/30/10 13:38 1330-20-7 1 Dibromofluoromethane (S) 109 % 80-136 11/30/10 13:38 1868-53-7 1 Toluene-d8 (S) 115 % 80-120 11/30/10 13:38 2037-26-5 1 4-Bromofluorobenzene (S) 123 % 72-122 11/30/10 13:38 460-00-4 S3 1 1,2-Dichloroethane-d4 (S) 108 % 80-143 1 11/30/10 13:38 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 13.6 % 0.10 1 11/19/10 16:55

Date: 12/09/2010 05:20 PM

REPORT OF LABORATORY ANALYSIS

Page 9 of 21

Project: Olympia Soils Pace Project No.: 255764

Lab ID: 255764005 Sample: SPL-10-2 Collected: 11/16/10 15:30 Received: 11/18/10 09:25 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG 98.0 mg/kg 21.4 11/29/10 11:00 11/30/10 11:10 Motor Oil Range SG 444 mg/kg 85.6 1 11/29/10 11:00 11/30/10 11:10 64742-65-0 n-Octacosane (S) SG 120 % 50-150 11/29/10 11:00 11/30/10 11:10 630-02-4 1 o-Terphenyl (S) SG 108 % 50-150 11/29/10 11:00 11/30/10 11:10 84-15-1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 6.7 11/29/10 12:00 11/30/10 07:22 a.a.a-Trifluorotoluene (S) 104 % 50-150 1 11/29/10 12:00 11/30/10 07:22 98-08-8 4-Bromofluorobenzene (S) 113 % 50-150 1 11/29/10 12:00 11/30/10 07:22 460-00-4 **6020 MET ICPMS** Analytical Method: EPA 6020 Arsenic 5.2 mg/kg 0.42 20 11/24/10 07:01 12/03/10 09:39 7440-38-2 Cadmium 0.14 mg/kg 0.067 20 11/24/10 07:01 12/03/10 09:39 7440-43-9 34.3 mg/kg 0.42 20 11/24/10 07:01 12/03/10 09:39 7440-50-8 Copper 0.42 20 Lead 16.3 mg/kg 11/24/10 07:01 12/03/10 09:39 7439-92-1 20 Nickel 38.5 mg/kg 0.42 11/24/10 07:01 12/03/10 09:39 7440-02-0 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Acenaphthene 7.7 ND ug/kg 1 11/24/10 12:40 12/09/10 06:06 83-32-9 11/24/10 12:40 12/09/10 06:06 208-96-8 Acenaphthylene 21.8 ug/kg 7.7 1 11/24/10 12:40 12/09/10 06:06 120-12-7 40.3 ug/kg 7.7 Anthracene 1 52.4 ug/kg 7.7 Benzo(a)anthracene 1 11/24/10 12:40 12/09/10 06:06 56-55-3 Benzo(a)pyrene 70.0 ug/kg 7.7 11/24/10 12:40 12/09/10 06:06 50-32-8 Benzo(b)fluoranthene 61.6 ug/kg 7.7 11/24/10 12:40 12/09/10 06:06 205-99-2 Benzo(q,h,i)perylene 42.2 ug/kg 7.7 1 11/24/10 12:40 12/09/10 06:06 191-24-2 **50.6** ua/ka Benzo(k)fluoranthene 7.7 1 11/24/10 12:40 12/09/10 06:06 207-08-9 Chrysene 96.5 ug/kg 7.7 11/24/10 12:40 12/09/10 06:06 218-01-9 1 Dibenz(a,h)anthracene 15.9 ug/kg 7.7 11/24/10 12:40 12/09/10 06:06 53-70-3 1 Fluoranthene 84.4 ug/kg 7.7 11/24/10 12:40 12/09/10 06:06 206-44-0 1 15.2 ug/kg 7.7 11/24/10 12:40 12/09/10 06:06 86-73-7 Fluorene 1 11/24/10 12:40 12/09/10 06:06 193-39-5 Indeno(1,2,3-cd)pyrene 33.9 ug/kg 7.7 1 1-Methylnaphthalene 24.9 ug/kg 7.7 11/24/10 12:40 12/09/10 06:06 90-12-0 1 2-Methylnaphthalene 60.4 ug/kg 7.7 1 11/24/10 12:40 12/09/10 06:06 91-57-6 Naphthalene 36.0 ug/kg 7.7 1 11/24/10 12:40 12/09/10 06:06 91-20-3 Phenanthrene 93.0 ug/kg 7.7 11/24/10 12:40 12/09/10 06:06 85-01-8 131 ug/kg 7.7 11/24/10 12:40 12/09/10 06:06 129-00-0 Pyrene 1 2-Fluorobiphenyl (S) 58 % 31-131 1 11/24/10 12:40 12/09/10 06:06 321-60-8 2n Terphenyl-d14 (S) 65 % 30-133 11/24/10 12:40 12/09/10 06:06 1718-51-0 8260/5035A Volatile Organics Analytical Method: EPA 8260 3.3 11/30/10 13:56 71-43-2 Benzene ND ug/kg 1 Ethylbenzene ND ug/kg 3.3 1 11/30/10 13:56 100-41-4 ND ug/kg 3.3 11/30/10 13:56 108-88-3 Toluene 1 ND ug/kg 9.9 11/30/10 13:56 1330-20-7 Xylene (Total) 1 Dibromofluoromethane (S) 91 % 80-136 11/30/10 13:56 1868-53-7

Date: 12/09/2010 05:20 PM

REPORT OF LABORATORY ANALYSIS

Page 10 of 21

ANALYTICAL RESULTS

Project: Olympia Soils
Pace Project No.: 255764

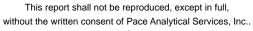
Lab ID: 255764005 Sample: SPL-10-2 Collected: 11/16/10 15:30 Received: 11/18/10 09:25 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8260/5035A Volatile Organics Analytical Method: EPA 8260 Toluene-d8 (S) 110 % 80-120 1 11/30/10 13:56 2037-26-5 4-Bromofluorobenzene (S) 126 % 72-122 1 11/30/10 13:56 460-00-4 S3 1,2-Dichloroethane-d4 (S) 98 % 80-143 11/30/10 13:56 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 12.9 % 0.10 1 11/19/10 16:56 Sample: SPL-10-3 Lab ID: 255764006 Collected: 11/16/10 16:00 Received: 11/18/10 09:25 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG 42.3 mg/kg 19.5 11/29/10 11:00 11/30/10 11:27 Motor Oil Range SG 289 mg/kg 77.9 11/29/10 11:00 11/30/10 11:27 1 64742-65-0 n-Octacosane (S) SG 119 % 50-150 1 11/29/10 11:00 11/30/10 11:27 630-02-4 o-Terphenyl (S) SG 107 % 50-150 11/29/10 11:00 11/30/10 11:27 84-15-1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 5.7 11/29/10 12:00 11/30/10 07:45 103 % 50-150 a,a,a-Trifluorotoluene (S) 1 11/29/10 12:00 11/30/10 07:45 98-08-8 4-Bromofluorobenzene (S) 112 % 50-150 11/29/10 12:00 11/30/10 07:45 460-00-4 1 **6020 MET ICPMS** Analytical Method: EPA 6020 11/24/10 07:01 12/03/10 09:49 7440-38-2 Arsenic 7.7 mg/kg 0.40 20 Cadmium 0.15 mg/kg 0.064 20 11/24/10 07:01 12/03/10 09:49 7440-43-9 36.0 mg/kg 0.40 20 11/24/10 07:01 12/03/10 09:49 7440-50-8 Copper 20.9 mg/kg 0.40 20 11/24/10 07:01 12/03/10 09:49 7439-92-1 Lead Nickel 38.5 mg/kg 20 11/24/10 07:01 12/03/10 09:49 7440-02-0 0.40 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 11/24/10 12:40 12/09/10 06:22 83-32-9 7.4 Acenaphthene ND ug/kg Acenaphthylene ND ug/kg 7.4 11/24/10 12:40 12/09/10 06:22 208-96-8 1 9.2 ug/kg 7.4 Anthracene 1 11/24/10 12:40 12/09/10 06:22 120-12-7 Benzo(a)anthracene 14.8 ug/kg 7.4 1 11/24/10 12:40 12/09/10 06:22 56-55-3 Benzo(a)pyrene 17.0 ug/kg 7.4 11/24/10 12:40 12/09/10 06:22 50-32-8 Benzo(b)fluoranthene 12.6 ug/kg 7.4 1 11/24/10 12:40 12/09/10 06:22 205-99-2 17.2 ug/kg Benzo(g,h,i)perylene 7.4 1 11/24/10 12:40 12/09/10 06:22 191-24-2 Benzo(k)fluoranthene 15.8 ug/kg 7.4 1 11/24/10 12:40 12/09/10 06:22 207-08-9 Chrysene 22.5 ug/kg 7.4 11/24/10 12:40 12/09/10 06:22 218-01-9 1 ND ug/kg 7.4 Dibenz(a,h)anthracene 11/24/10 12:40 12/09/10 06:22 53-70-3 1 Fluoranthene 27.7 ug/kg 7 4 11/24/10 12:40 12/09/10 06:22 206-44-0 1 Fluorene ND ug/kg 7.4 11/24/10 12:40 12/09/10 06:22 86-73-7 1 Indeno(1,2,3-cd)pyrene 10 ug/kg 7.4 11/24/10 12:40 12/09/10 06:22 193-39-5

Date: 12/09/2010 05:20 PM

REPORT OF LABORATORY ANALYSIS

Page 11 of 21

ANALYTICAL RESULTS


Project: Olympia Soils
Pace Project No.: 255764

Sample: SPL-10-3	Lab ID: 2	55764006	Collected: 11/16/1	0 16:00	Received: 11	/18/10 09:25	Matrix: Solid	
Results reported on a "dry-weight	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV PAH by SIM	Analytical M	ethod: EPA 82	270 by SIM Preparat	ion Meth	od: EPA 3546			
1-Methylnaphthalene	15.2	ug/kg	7.4	1	11/24/10 12:40	12/09/10 06:22	90-12-0	
2-Methylnaphthalene	39.6	ug/kg	7.4	1	11/24/10 12:40	12/09/10 06:22	91-57-6	
Naphthalene	20.7	ug/kg	7.4	1	11/24/10 12:40	12/09/10 06:22	91-20-3	
Phenanthrene	23.8	ug/kg	7.4	1	11/24/10 12:40	12/09/10 06:22	85-01-8	
Pyrene	30.2	ug/kg	7.4	1	11/24/10 12:40	12/09/10 06:22	129-00-0	
2-Fluorobiphenyl (S)	58	%	31-131	1	11/24/10 12:40	12/09/10 06:22	2 321-60-8	2n
Terphenyl-d14 (S)	58	%	30-133	1	11/24/10 12:40	12/09/10 06:22	2 1718-51-0	
8260/5035A Volatile Organics	Analytical M	ethod: EPA 82	260					
Benzene	ND	ug/kg	3.0	1		11/30/10 14:16	71-43-2	
Ethylbenzene	ND	ug/kg	3.0	1		11/30/10 14:16	100-41-4	
Toluene	ND	ug/kg	3.0	1		11/30/10 14:16	108-88-3	
Xylene (Total)	ND	ug/kg	8.9	1		11/30/10 14:16	1330-20-7	
Dibromofluoromethane (S)	104	%	80-136	1		11/30/10 14:16	1868-53-7	
Toluene-d8 (S)	111	%	80-120	1		11/30/10 14:16	2037-26-5	
4-Bromofluorobenzene (S)	131	%	72-122	1		11/30/10 14:16	460-00-4	S3
1,2-Dichloroethane-d4 (S)	105	%	80-143	1		11/30/10 14:16	17060-07-0	
Percent Moisture	Analytical M	ethod: ASTM	D2974-87					
Percent Moisture	11.5	%	0.10	1		11/19/10 16:57	•	
Sample: TB-1318922	Lab ID: 2	55764007	Collected: 11/16/1	0 00:00	Received: 11	/18/10 09:25	Matrix: Solid	
Results reported on a "wet-weigh								
	t" basis							
Parameters	t" basis Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
	Results		Report Limit 'H-Gx Preparation M		•	Analyzed	CAS No.	Qua
Parameters	Results Analytical M		<u> </u>		WTPH-Gx	Analyzed 11/30/10 03:04	_	Qua
Parameters NWTPH-Gx GCV	Results Analytical M	ethod: NWTP	H-Gx Preparation M	ethod: N	WTPH-Gx	11/30/10 03:04		Qua
Parameters NWTPH-Gx GCV Gasoline Range Organics	Analytical M	ethod: NWTP mg/kg %	H-Gx Preparation M	ethod: N		11/30/10 03:04	98-08-8	Qua
Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S)	Analytical M ND 103 114	ethod: NWTP mg/kg %		ethod: N 1 1		11/30/10 03:04 11/30/10 03:04	98-08-8	Qua
Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics Benzene	Analytical M ND 103 114 Analytical M	ethod: NWTP mg/kg % % lethod: EPA 82 ug/kg	5.0 50-150 50-150 50-150 260	ethod: N' 1 1 1		11/30/10 03:04 11/30/10 03:04 11/30/10 03:04 11/30/10 12:21	98-08-8 460-00-4 71-43-2	Qua
Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics Benzene Ethylbenzene	Analytical M ND 103 114 Analytical M ND ND ND	ethod: NWTP mg/kg % % lethod: EPA 82 ug/kg ug/kg	5.0 50-150 50-150 50-150 260 3.0 3.0	ethod: N' 1 1 1 1		11/30/10 03:04 11/30/10 03:04 11/30/10 03:04 11/30/10 12:21 11/30/10 12:21	98-08-8 460-00-4 71-43-2 100-41-4	Qua
Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics Benzene	Analytical M ND 103 114 Analytical M ND ND ND	ethod: NWTP mg/kg % 6 wethod: EPA 82 ug/kg ug/kg ug/kg ug/kg	5.0 50-150 50-150 50-150 260 3.0 3.0 3.0	ethod: N' 1 1 1		11/30/10 03:04 11/30/10 03:04 11/30/10 03:04 11/30/10 12:21 11/30/10 12:21 11/30/10 12:21	71-43-2 100-41-4 108-88-3	Qua
Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics Benzene Ethylbenzene Toluene Xylene (Total)	Analytical M ND 103 114 Analytical M ND ND ND	ethod: NWTP mg/kg % % lethod: EPA 82 ug/kg ug/kg	5.0 50-150 50-150 50-150 260 3.0 3.0	ethod: N' 1 1 1 1		11/30/10 03:04 11/30/10 03:04 11/30/10 03:04 11/30/10 12:21 11/30/10 12:21	71-43-2 100-41-4 108-88-3	Qua
Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics Benzene Ethylbenzene Toluene	Analytical M ND 103 114 Analytical M ND ND ND	ethod: NWTP mg/kg % ethod: EPA 82 ug/kg ug/kg ug/kg ug/kg ug/kg	5.0 50-150 50-150 50-150 260 3.0 3.0 3.0	ethod: N' 1 1 1 1 1 1 1		11/30/10 03:04 11/30/10 03:04 11/30/10 03:04 11/30/10 12:21 11/30/10 12:21 11/30/10 12:21	71-43-2 100-41-4 108-88-3 1330-20-7	Qua
Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics Benzene Ethylbenzene Toluene Xylene (Total)	Analytical M ND 103 114 Analytical M ND ND ND ND ND	ethod: NWTP mg/kg % ethod: EPA 82 ug/kg ug/kg ug/kg ug/kg ug/kg %	5.0 50-150 50-150 50-150 260 3.0 3.0 3.0 9.0	ethod: N 1 1 1 1 1 1 1 1		11/30/10 03:04 11/30/10 03:04 11/30/10 03:04 11/30/10 12:21 11/30/10 12:21 11/30/10 12:21 11/30/10 12:21	71-43-2 100-41-4 108-88-3 1330-20-7 1868-53-7	Qua
Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics Benzene Ethylbenzene Toluene Xylene (Total) Dibromofluoromethane (S)	Analytical M ND 103 114 Analytical M ND ND ND ND ND ND 108	ethod: NWTP mg/kg % ethod: EPA 82 ug/kg ug/kg ug/kg ug/kg ug/kg % %	5.0 50-150 50-150 50-150 260 3.0 3.0 3.0 9.0 80-136	ethod: N 1 1 1 1 1 1 1 1 1 1		11/30/10 03:04 11/30/10 03:04 11/30/10 03:04 11/30/10 12:21 11/30/10 12:21 11/30/10 12:21 11/30/10 12:21 11/30/10 12:21	71-43-2 100-41-4 108-88-3 1330-20-7 1868-53-7 2037-26-5	Qua

Date: 12/09/2010 05:20 PM

REPORT OF LABORATORY ANALYSIS

Page 12 of 21

Project: Olympia Soils
Pace Project No.: 255764

 QC Batch:
 OEXT/3029
 Analysis Method:
 NWTPH-Dx

 QC Batch Method:
 EPA 3546
 Analysis Description:
 NWTPH-Dx GCS

 Associated Lab Samples:
 255764001, 255764002, 255764003, 255764004, 255764005, 255764006

METHOD BLANK: 50537 Matrix: Solid

Associated Lab Samples: 255764001, 255764002, 255764003, 255764004, 255764005, 255764006

Blank Reporting Analyzed Qualifiers Parameter Units Result Limit Diesel Range SG ND 20.0 11/30/10 07:35 mg/kg Motor Oil Range SG mg/kg ND 80.0 11/30/10 07:35 n-Octacosane (S) SG 11/30/10 07:35 % 114 50-150 o-Terphenyl (S) SG % 102 50-150 11/30/10 07:35

LABORATORY CONTROL SAMPLE: 50538

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Diesel Range SG	mg/kg	500	430	86	56-124	
Motor Oil Range SG	mg/kg	500	564	113	50-150	
n-Octacosane (S) SG	%			112	50-150	
o-Terphenyl (S) SG	%			117	50-150	

SAMPLE DUPLICATE: 50540

		255768007	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Diesel Range SG	mg/kg	ND	ND		
Motor Oil Range SG	mg/kg	ND	ND		
n-Octacosane (S) SG	%	109	106	6	
o-Terphenyl (S) SG	%	100	100	3	

Date: 12/09/2010 05:20 PM

Project: Olympia Soils
Pace Project No.: 255764

QC Batch: GCV/2048 Analysis Method: NWTPH-Gx

QC Batch Method: NWTPH-Gx Analysis Description: NWTPH-Gx Solid GCV Associated Lab Samples: 255764001, 255764002, 255764003, 255764004, 255764005, 255764006, 255764007

METHOD BLANK: 50587 Matrix: Solid

Associated Lab Samples: 255764001, 255764002, 255764003, 255764004, 255764005, 255764006, 255764007

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Gasoline Range Organics	mg/kg	ND ND	5.0	11/29/10 14:11	
4-Bromofluorobenzene (S)	%	130	50-150	11/29/10 14:11	
a,a,a-Trifluorotoluene (S)	%	113	50-150	11/29/10 14:11	

LABORATORY CONTROL SAMPLE: 50588

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Gasoline Range Organics	mg/kg	12.5	14.5	116	54-156	
4-Bromofluorobenzene (S)	%			122	50-150	
a,a,a-Trifluorotoluene (S)	%			110	50-150	

SAMPLE DUPLICATE: 50670

Parameter	Units	255768003 Result	Dup Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND	1.4J		
4-Bromofluorobenzene (S)	%	116	121	4	
a,a,a-Trifluorotoluene (S)	%	104	109	4	

SAMPLE DUPLICATE: 50671

		255764002	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND	3.5J		
4-Bromofluorobenzene (S)	%	112	123	9	
a,a,a-Trifluorotoluene (S)	%	117	112	4	

Date: 12/09/2010 05:20 PM REPORT OF LABORATORY ANALYSIS

Page 14 of 21

Project: Olympia Soils
Pace Project No.: 255764

 QC Batch:
 ICPM/23712
 Analysis Method:
 EPA 6020

 QC Batch Method:
 EPA 6020
 Analysis Description:
 6020 MET

 Associated Lab Samples:
 255764001, 255764002, 255764003, 255764004, 255764005, 255764006

METHOD BLANK: 897274 Matrix: Solid

Associated Lab Samples: 255764001, 255764002, 255764003, 255764004, 255764005, 255764006

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	mg/kg	ND ND	0.48	11/30/10 02:11	
Cadmium	mg/kg	ND	0.076	11/30/10 02:11	
Copper	mg/kg	ND	0.48	11/30/10 02:11	
Lead	mg/kg	ND	0.48	11/30/10 02:11	
Nickel	mg/kg	ND	0.48	11/30/10 02:11	

LABORATORY CONTROL SAMPLE: 897275

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/kg	18.2	16.3	90	75-125	
Cadmium	mg/kg	18.2	17.1	94	75-125	
Copper	mg/kg	18.2	17.2	95	75-125	
Lead	mg/kg	18.2	17.7	97	75-125	
Nickel	mg/kg	18.2	17.5	96	75-125	

MATRIX SPIKE & MATRIX S	SPIKE DUPLICAT	E: 89727	6		897277						
	10 ⁻	143739002	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Arsenic	mg/kg	2.9	17.5	19.6	18.6	21.6	90	95	75-125	15	
Cadmium	mg/kg	0.11	17.5	19.6	17.0	19.1	97	96	75-125	12	
Copper	mg/kg	6.6	17.5	19.6	22.6	25.8	92	98	75-125	14	
Lead	mg/kg	4.8	17.5	19.6	20.9	24.2	92	98	75-125	14	
Nickel	mg/kg	10.1	17.5	19.6	27.0	29.8	97	100	75-125	10	

Date: 12/09/2010 05:20 PM REPORT OF LABORATORY ANALYSIS

Project: Olympia Soils
Pace Project No.: 255764

QC Batch: OEXT/3025 Analysis Method: EPA 8270 by SIM

QC Batch Method: EPA 3546 Analysis Description: 8270/3546 MSSV PAH by SIM

Associated Lab Samples: 255764001, 255764002, 255764003, 255764004, 255764005, 255764006

METHOD BLANK: 50452 Matrix: Solid

Associated Lab Samples: 255764001, 255764002, 255764003, 255764004, 255764005, 255764006

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/kg	ND ND	6.7	12/02/10 13:15	
2-Methylnaphthalene	ug/kg	ND	6.7	12/02/10 13:15	
Acenaphthene	ug/kg	ND	6.7	12/02/10 13:15	
Acenaphthylene	ug/kg	ND	6.7	12/02/10 13:15	
Anthracene	ug/kg	ND	6.7	12/02/10 13:15	
Benzo(a)anthracene	ug/kg	ND	6.7	12/02/10 13:15	
Benzo(a)pyrene	ug/kg	ND	6.7	12/02/10 13:15	
Benzo(b)fluoranthene	ug/kg	ND	6.7	12/02/10 13:15	
Benzo(g,h,i)perylene	ug/kg	ND	6.7	12/02/10 13:15	
Benzo(k)fluoranthene	ug/kg	ND	6.7	12/02/10 13:15	
Chrysene	ug/kg	ND	6.7	12/02/10 13:15	
Dibenz(a,h)anthracene	ug/kg	ND	6.7	12/02/10 13:15	
Fluoranthene	ug/kg	ND	6.7	12/02/10 13:15	
Fluorene	ug/kg	ND	6.7	12/02/10 13:15	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	6.7	12/02/10 13:15	
Naphthalene	ug/kg	ND	6.7	12/02/10 13:15	
Phenanthrene	ug/kg	ND	6.7	12/02/10 13:15	
Pyrene	ug/kg	ND	6.7	12/02/10 13:15	
2-Fluorobiphenyl (S)	%	1	31-131	12/02/10 13:15	1n,S0
Terphenyl-d14 (S)	%	74	30-133	12/02/10 13:15	

LABORATORY CONTROL	SAMPLE:	50453
--------------------	---------	-------

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/kg	133	74.1	56	37-121	
2-Methylnaphthalene	ug/kg	133	73.5	55	33-132	
Acenaphthene	ug/kg	133	79.2	59	32-127	
Acenaphthylene	ug/kg	133	79.1	59	31-134	
Anthracene	ug/kg	133	86.1	65	42-135	
Benzo(a)anthracene	ug/kg	133	97.6	73	43-139	
Benzo(a)pyrene	ug/kg	133	105	79	44-144	
Benzo(b)fluoranthene	ug/kg	133	96.7	73	42-144	
Benzo(g,h,i)perylene	ug/kg	133	96.2	72	46-136	
Benzo(k)fluoranthene	ug/kg	133	108	81	45-147	
Chrysene	ug/kg	133	99.2	74	42-144	
Dibenz(a,h)anthracene	ug/kg	133	99.7	75	48-142	
Fluoranthene	ug/kg	133	95.4	72	44-143	
Fluorene	ug/kg	133	96.7	73	32-146	
Indeno(1,2,3-cd)pyrene	ug/kg	133	99.3	74	47-140	
Naphthalene	ug/kg	133	71.9	54	35-118	
Phenanthrene	ug/kg	133	90.0	68	42-131	

Date: 12/09/2010 05:20 PM

REPORT OF LABORATORY ANALYSIS

Page 16 of 21

Project: Olympia Soils
Pace Project No.: 255764

LABORATORY CONTROL SAMPLE: 50453

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Pyrene	ug/kg	133	101	76	47-136	
2-Fluorobiphenyl (S)	%			60	31-131	
Terphenyl-d14 (S)	%			78	30-133	

MATRIX SPIKE & MATRIX S	PIKE DUPLICAT	E: 50454			50455						
			MS	MSD							
	:	255764001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1-Methylnaphthalene	ug/kg	ND	157	157	110	109	68	68	31-123	.5	
2-Methylnaphthalene	ug/kg	ND	157	157	112	112	68	68	15-146	.2	
Acenaphthene	ug/kg	ND	157	157	98.7	97.1	62	62	19-141	2	
Acenaphthylene	ug/kg	ND	157	157	101	98.8	63	62	30-142	2	
Anthracene	ug/kg	ND	157	157	100	96.2	62	59	38-137	4	
Benzo(a)anthracene	ug/kg	10.0	157	157	101	95.0	58	54	37-143	6	
Benzo(a)pyrene	ug/kg	11.5	157	157	102	98.4	58	55	33-147	4	
Benzo(b)fluoranthene	ug/kg	13.1	157	157	103	94.6	58	52	25-156	9	
Benzo(g,h,i)perylene	ug/kg	13.0	157	157	87.4	73.7	47	39	26-142	17	
Benzo(k)fluoranthene	ug/kg	8.7	157	157	87.2	83.7	50	48	35-142	4	
Chrysene	ug/kg	24.9	157	157	104	100	50	48	23-150	4	
Dibenz(a,h)anthracene	ug/kg	ND	157	157	83.5	78.4	50	47	41-140	6	
Fluoranthene	ug/kg	14.8	157	157	88.2	88.1	47	47	25-155	.07	
Fluorene	ug/kg	ND	157	157	99.9	98.0	63	62	33-152	2	
ndeno(1,2,3-cd)pyrene	ug/kg	ND	157	157	85.4	76.6	51	45	36-139	11	
Naphthalene	ug/kg	ND	157	157	98.1	99.0	60	61	25-121	1	
Phenanthrene	ug/kg	8.1	157	157	101	99.0	59	58	29-141	2	
Pyrene	ug/kg	24.0	157	157	129	126	67	65	36-145	2	
2-Fluorobiphenyl (S)	%						60	59	31-131		
Геrphenyl-d14 (S)	%						66	60	30-133		

Date: 12/09/2010 05:20 PM

REPORT OF LABORATORY ANALYSIS

Page 17 of 21

Project: Olympia Soils
Pace Project No.: 255764

QC Batch: MSV/3520 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5035A Volatile Organics

Associated Lab Samples: 255764001, 255764002, 255764003, 255764004, 255764005, 255764006, 255764007

METHOD BLANK: 50634 Matrix: Solid

Associated Lab Samples: 255764001, 255764002, 255764003, 255764004, 255764005, 255764006, 255764007

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND	3.0	11/30/10 11:39	
Ethylbenzene	ug/kg	ND	3.0	11/30/10 11:39	
Toluene	ug/kg	ND	3.0	11/30/10 11:39	
Xylene (Total)	ug/kg	ND	9.0	11/30/10 11:39	
1,2-Dichloroethane-d4 (S)	%	109	80-143	11/30/10 11:39	
4-Bromofluorobenzene (S)	%	108	72-122	11/30/10 11:39	
Dibromofluoromethane (S)	%	109	80-136	11/30/10 11:39	
Toluene-d8 (S)	%	98	80-120	11/30/10 11:39	

LABORATORY CONTROL SAME	PLE & LCSD: 50635		50	0885						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene	ug/kg	50	52.3	51.1	105	102	75-133	2	30	
Ethylbenzene	ug/kg	50	54.0	49.5	108	99	68-131	9	30	
Toluene	ug/kg	50	57.3	49.8	115	100	73-124	14	30	
Xylene (Total)	ug/kg	150	165	152	110	102	68-130	8	30	
1,2-Dichloroethane-d4 (S)	%				106	110	80-143			
4-Bromofluorobenzene (S)	%				100	105	72-122			
Dibromofluoromethane (S)	%				106	113	80-136			
Toluene-d8 (S)	%				111	102	80-120			

Date: 12/09/2010 05:20 PM

Project: Olympia Soils Pace Project No.: 255764

QC Batch: PMST/1434 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 255764001, 255764002, 255764003, 255764004, 255764005, 255764006

SAMPLE DUPLICATE: 50207

255231039 Dup Parameter Units Result Result **RPD** Qualifiers

% 46.2 Percent Moisture 42.6 8

SAMPLE DUPLICATE: 50208

255231047 Dup RPD Parameter Units Result Qualifiers Result Percent Moisture % 13.1 13.1 .7

Date: 12/09/2010 05:20 PM REPORT OF LABORATORY ANALYSIS

QUALIFIERS

Project: Olympia Soils
Pace Project No.: 255764

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-M	Pace Analytical Services - Minneapolis
PASI-S	Pace Analytical Services - Seattle

ANALYTE QUALIFIERS

Date: 12/09/2010 05:20 PM

1n	All samples associated with this method blank were re-extracted for confirmation of results due to failing surrogate.
2n	Results for all target analytes were confirmed by the analysis of of an out-of-hold re-extract sample, associated with good batch QC and acceptable surrogate recoveries.
S0	Surrogate recovery outside laboratory control limits.
S3	Surrogate recovery exceeded laboratory control limits. Analyte presence below reporting limits in associated samples.

Results unaffected by high bias.

REPORT OF LABORATORY ANALYSIS

Page 20 of 21

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Olympia Soils
Pace Project No.: 255764

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
255764001	SPL-11-1	EPA 3546	OEXT/3029	NWTPH-Dx	GCSV/2103
255764002	SPL-11-2	EPA 3546	OEXT/3029	NWTPH-Dx	GCSV/2103
255764003	SPL-11-3	EPA 3546	OEXT/3029	NWTPH-Dx	GCSV/2103
255764004	SPL-10-1	EPA 3546	OEXT/3029	NWTPH-Dx	GCSV/2103
255764005	SPL-10-2	EPA 3546	OEXT/3029	NWTPH-Dx	GCSV/2103
255764006	SPL-10-3	EPA 3546	OEXT/3029	NWTPH-Dx	GCSV/2103
255764001	SPL-11-1	NWTPH-Gx	GCV/2048	NWTPH-Gx	GCV/2051
255764002	SPL-11-2	NWTPH-Gx	GCV/2048	NWTPH-Gx	GCV/2051
255764003	SPL-11-3	NWTPH-Gx	GCV/2048	NWTPH-Gx	GCV/2051
255764004	SPL-10-1	NWTPH-Gx	GCV/2048	NWTPH-Gx	GCV/2051
255764005	SPL-10-2	NWTPH-Gx	GCV/2048	NWTPH-Gx	GCV/2051
255764006	SPL-10-3	NWTPH-Gx	GCV/2048	NWTPH-Gx	GCV/2051
255764007	TB-1318922	NWTPH-Gx	GCV/2048	NWTPH-Gx	GCV/2051
255764001	SPL-11-1	EPA 6020	ICPM/23712	EPA 6020	ICPM/9625
255764002	SPL-11-2	EPA 6020	ICPM/23712	EPA 6020	ICPM/9625
255764003	SPL-11-3	EPA 6020	ICPM/23712	EPA 6020	ICPM/9625
255764004	SPL-10-1	EPA 6020	ICPM/23712	EPA 6020	ICPM/9625
255764005	SPL-10-2	EPA 6020	ICPM/23712	EPA 6020	ICPM/9625
255764006	SPL-10-3	EPA 6020	ICPM/23712	EPA 6020	ICPM/9625
255764001	SPL-11-1	EPA 3546	OEXT/3025	EPA 8270 by SIM	MSSV/1453
255764002	SPL-11-2	EPA 3546	OEXT/3025	EPA 8270 by SIM	MSSV/1453
255764003	SPL-11-3	EPA 3546	OEXT/3025	EPA 8270 by SIM	MSSV/1453
255764004	SPL-10-1	EPA 3546	OEXT/3025	EPA 8270 by SIM	MSSV/1453
255764005	SPL-10-2	EPA 3546	OEXT/3025	EPA 8270 by SIM	MSSV/1453
255764006	SPL-10-3	EPA 3546	OEXT/3025	EPA 8270 by SIM	MSSV/1453
255764001	SPL-11-1	EPA 8260	MSV/3520		
255764002	SPL-11-2	EPA 8260	MSV/3520		
255764003	SPL-11-3	EPA 8260	MSV/3520		
255764004	SPL-10-1	EPA 8260	MSV/3520		
255764005	SPL-10-2	EPA 8260	MSV/3520		
255764006	SPL-10-3	EPA 8260	MSV/3520		
255764007	TB-1318922	EPA 8260	MSV/3520		
255764001	SPL-11-1	ASTM D2974-87	PMST/1434		
255764002	SPL-11-2	ASTM D2974-87	PMST/1434		
255764003	SPL-11-3	ASTM D2974-87	PMST/1434		
255764004	SPL-10-1	ASTM D2974-87	PMST/1434		
255764005	SPL-10-2	ASTM D2974-87	PMST/1434		
255764006	SPL-10-3	ASTM D2974-87	PMST/1434		

Date: 12/09/2010 05:20 PM

REPORT OF LABORATORY ANALYSIS

Page 21 of 21

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Jennifer Gross **PASI** Seattle 940 S. Harney Street Seattle WA 98108

> REPORT OF LABORATORY **ANALYSIS FOR** PCDD/PCDF

Report Information:

Pace Project #: 10143645

Sample Receipt Date: 11/19/2010

Client Project #: 255764 Brown & Caldwell

Client Sub PO #: N/A State Cert #: C755

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Nate Habte, your Pace Project Manager.

This report has been reviewed by:

December 06, 2010

Nate Habte, Project Manager

(612) 607-6407

(612) 607-6444 (fax)

natnael.habte@pacelabs.com

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

December 6, 2010

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on six samples submitted by a representative of Pace Analytical Services, Inc. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290. Reporting limits were based on signal-to-noise measurements.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 42-94%. All of the labeled internal standard recoveries obtained for this project were within the 40-135% target range specified in Method 8290. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, interfering substances impacted the determinations of PCDD or PCDF congeners; the affected values were flagged "I" where incorrect isotope ratios were obtained or "P" where polychlorinated diphenyl ethers were present. The OCDD concentration reported for sample SPL-11-2 was above the calibration range; the value was flagged "E" and should be regarded as an estimate.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to contain trace levels of selected congeners. With the exception of the Total TCDF, these were below the calibration range of the method. The levels reported for the affected congeners in the field samples were higher than the corresponding blank levels by one or more orders of magnitude. These results indicate that the sample processing steps did not contribute significantly to the levels reported for the field samples.

A laboratory spike sample was also prepared with the sample batch using clean sand that had been fortified with native standard materials. The results show that the spiked native compounds were recovered at 92-117%, indicating a high degree of accuracy for these determinations. Matrix spikes were prepared with the sample batch using sample material from a separate project; results from these analyses will be provided upon request.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #	
Alabama	40770	Montana	92	
Alaska	MN00064	Nebraska		
Arizona	AZ0014	Nevada	MN000642010A	
Arkansas	88-0680	New Jersey (NE	MN002	
California	01155CA	New Mexico	MN00064	
Colorado	MN00064	New York (NEL	11647	
Connecticut	PH-0256	North Carolina	27700	
EPA Region 5	WD-15J	North Dakota	R-036	
EPA Region 8	8TMS-Q	Ohio	4150	
Florida (NELAP	E87605	Ohio VAP	CL101	
Georgia (DNR)	959	Oklahoma	D9922	
Guam	09-019r	Oregon (ELAP)	MN200001-005	
Hawaii	SLD	Oregon (OREL	MN200001-005	
Idaho	MN00064	Pennsylvania	68-00563	
Illinois	200012	Saipan	MP0003	
Indiana	C-MN-01	South Carolina	74003001	
Indiana	C-MN-01	Tennesee	2818	
lowa	368	Tennessee	02818	
Kansas	E-10167	Texas	T104704192-08	
Kentucky	90062	Utah (NELAP)	PAM	
Louisiana	LA0900016	Virginia	00251	
Maine	2007029	Washington	C755	
Maryland	322	West Virginia	9952C	
Michigan	9909	Wisconsin	999407970	
Minnesota	027-053-137	Wyoming	8TMS-Q	
Mississippi	MN00064			

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

() () () () ()

Jennife	21.12.12		Subcontract To	26		Cwn	Owner Received Date:		1/18/2010	11/18/2010 Results Requested By:	quested By:	12/2/2010
Pace A 940 So Seattle Phone Fax (20	Jennifer Gross Pace Analytical Services, Inc. 940 South Harney Seattle WA 98108 Phone (206)767-5060 Fax (206)767-5063		Pace Analyt 1700 Elm S 1700 Elm S Suite 200 Minneapolis Phone (612	Pace Analytical Minnesota 1700 Elm Street Suite 200 Minneapolis, MN 55414 Phone (612)607-1700	sota 4		4 FLYGAS	1 Ni, Culth, Cal			4 · · · · · · · · · · · · · · · · · · ·	
ftern S	Sample ID	Sample Type	Collect Date Time	ği Qigen	Pevieseiou.	Deserved Containers.	Dickins	9 0509				
7)	SPL-11-1	PS	11/16/2010 11:00 25	255764001	Solid		×	 x				LAB USE ONLY
2 S	SPL-11-2	PS	11/16/2010 11:30 25	T	Solid		< ×	\ \ X				5
3 S	SPL-11-3	PS	11/16/2010 14:30 25	255764003		(A)	×	 X				
4 S	SPL-10-1	PS	11/16/2010 15:00 25	255764004	Solid S		×	×				700
5 S	SPL-10-2	PS	11/16/2010 15:30 255764005			40		X				
9	SPL-10-3	PS	11/16/2010 16:00 25		Solid	<u></u>	×	 X				
Transfers	rs Released By		Date/Time	Received By	Commence of the commence of th	MIN. 10 TH. 10 T	Date/Time		-		-	
- 6	San Damen	ر ا	क्षीं जिल्ला	1/1		te m	+		10-day	R US II	Ť	,
3									(F)	Sattle will analyse on upig	Ma Jaso	and who
Cooler	Cooler Temperature on Receipt	1	°C Custoc	Custody Seal / Y	Y or N	Box	Pocoivod on Ico	_/_	1			2

10 DAY PUSH FOT DIOXIN

* 255764 001,003 only one 403 jar available for testing. return all samples XX) Please

Thursday, November 18, 2010 12:05:53 PM

Report No.....10143645_8290

	(dy/2 0)0	5)		Percent	Diff Moisture Date/Time	46.1786001611/19/2010 16:37:16	42.5986842111/19/2010 16:37:33	14.8867313911/19/2010 16:38:19	25.1497005911/19/2010 16:39:13	13.0718954211/19/2010 16:40:01	20.3020134211/19/2010 16:40:37	5.14883346711/19/2010 16:41:21	13.0615640511/19/2010 16:42:18	13.1470829911/19/2010 16:42:34	100 11/13/2010 16:52:36	14.4792548611/19/2010 16:52:40	11.7502054211/19/2010 16:53:48	17.3803526411/19/2010 16:54:28	13.6215334411/19/2010 16:55:29	12.8594249211/19/2010 16:56:15	11.5292233711/19/2010 16:57:18
) (1)	2		Weight	Diff %																
014364)	1 2 2	77 11 1		3	Dry Mass																
T > 0)	コ			% Diff																
D	-			Weight	Diff	8.97	9.24	12.85	11.11	12.92	11.75	14.09	12.71	12.89		12.47	13.02	12.13	12.92	13.18	13.36
				2	Dry Mass																
		KJ1	25BALB	Н	Dry Mass	8.97	9.24	12.85	11.11	12.92	11.75	14.09	12.71	12.89		12.47	13.02	12.13	12.92	13.18	13.36
s, Inc.	ure/%TS	Analyst	Instrument		Wet Mass	14.71	14.42	14.69	14.05	14.52	14.17	14.73	14.28	14.49		14.18	14.45	14.2	14.59	14.79	14.8
sal Services,	Percent Moisture/%TS		Ins		Tare Mass	2.28	2.26	2.33 ~	2.36	2.28	2.25	2.3	2.26	2.32		2.37	2.28	2.29	2.33	2.27	2.31
Pace Analytical	Pe:				Sample ID	255231039	50207	255231040	255231041	255231042	255231045	255231046	255231047	50208		255764001	255764002	255764003	255764004	255764005	255764006
				Tray	#	25	56	27	28	29	30	31	32	33		35	36	37	38	39	40

Report No.....10143645_8290

Pace Analytical Client N	Vame: Rec	<i>ω</i> Α	Project # 10143645
Courter: Fed Ex UPS USPS Tracking #: 7941-3314-876	Client Commercial	a Pace Other	
Custody Seal on Cooler/Box Present:	Ø yes □ no Sea	le intact: 🔲 yes 🔲	no
Packing Material: Bubble Wrap Thermometer Used 80344042 or 2794 Cooler Temperature Temp should be above freezing to 6°C	25 Type of loe: N	Other Blue None Frozen: Yes No Comments:	Temp Blank: Yes No Samples on ice, cooling process has begun Date and initials of passon examining contents:
Chain of Custody Present:	, ZYee □No □N	A 1.	
Chain of Custody Filled Out:	ZYee DNo DN	A 2.	
Chain of Custody Relinquished:	ZYes DNo DN	A 3.	
Sampler Name & Signature on GOC:	DY: OKO DN	A 4.	
Samples Arrived within Hold Time:	1 SYSS DNO DN	A 5.	· ·
Short Hold Time Analysis (<72hr):	□Yesy≦No □N	A 6.	
Rush Turn Around Time Requested:	√ZYes □No □NA	7.	·
Sufficient Volume:	√ZÍYes □No □N/	8.	
Correct Containers Used:	"ZÍYes □No □N/	y 9.	
-Pace Containers Used:	ZYes □No □N/	** \	
Containers intact:	ZYes □No □N/	10.	
Filtered volume received for Dissolved tests	B □Yes □No √□b#/	11.	
Sample Labels match COC:	VZYes □No □NV		for DIOKIN from
-Includes date/time/ID/Analysis Matr All containers needing acid/base preservation have	L	metals Jar	H2SO4 _ NaOH _ HCI
checked. Noncompliance are noted in 13.	DYes DNo DNA	13.	
All containers needing preservation are found to b compliance with EPA recommendation.	e in Oyes Ono Jeny	Chipper and the control of the contr	
Exceptions: VOA,Coifform, TOC, Oil and Grease, Wi-DF	RO (water DYes DINO	Initial when completed	Lot # of added preservative
Samples checked for dechlorination:	□Yes □No ØNA		
Headspace in VOA Viale (>6mm):	AND OND SOLD		
Trip Blank Present:	□Yee □No 12NA		
Trip Blank Custody Seals Present	□Yes □No ,☑NVA	1	
Pace Trip Blank Lot # (If purchased):	****		
Client Notification/ Resolution:			Field Data Required? Y / N
Person Contacted:	Date/	Time:	
Comments/ Resolution:			
	1		
Duniost Hanssey Payleys	NALL		Date: 11/19/17

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the **Phintir-Calyllical StillMNPs**, Inc. F-L213Rev.00, 05Aug2009 1700 Elm Street SE, Suite 200, Minneapolis, MN 55414

Fax: 612-607-6444

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

Appendix B

Sample Analysis Summary

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-11-1
Lab Sample ID 255764001
Filename P101203A_07
Injected By BAL

Total Amount Extracted 10.2 g Matrix Solid % Moisture 14.8 Dilution NA

Dry Weight Extracted Collected 11/16/2010 11:00 8.69 g **ICAL ID** P101202 Received 11/19/2010 10:00 CCal Filename(s) P101203A_01 & P101203A_17 Extracted 11/29/2010 14:30 Method Blank ID BLANK-27086 Analyzed 12/03/2010 04:51

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	7.3		0.19	2,3,7,8-TCDF-13C	2.00	70
Total TCDF	120.0		0.19	2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00	81 75
2,3,7,8-TCDD	1.7		0.25	2,3,4,7,8-PeCDF-13C	2.00	73 74
Total TCDD	170.0		0.25	1,2,3,7,8-PeCDD-13C	2.00	85
				1,2,3,4,7,8-HxCDF-13C	2.00	83
1,2,3,7,8-PeCDF	7.6		0.25	1,2,3,6,7,8-HxCDF-13C	2.00	78 70
2,3,4,7,8-PeCDF Total PeCDF	19.0 130.0		0.18 0.22	2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00	76 69
Total FeCDI	150.0		0.22	1,2,3,4,7,8-HxCDD-13C	2.00	85
1,2,3,7,8-PeCDD	10.0		0.21	1,2,3,6,7,8-HxCDD-13C	2.00	74
Total PeCDD	190.0		0.21	1,2,3,4,6,7,8-HpCDF-13C	2.00	69
				1,2,3,4,7,8,9-HpCDF-13C	2.00	65
1,2,3,4,7,8-HxCDF	19.0		0.29	1,2,3,4,6,7,8-HpCDD-13C	2.00	71
1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	13.0 14.0		0.32 0.36	OCDD-13C	4.00	52
1,2,3,7,8,9-HxCDF	7.1		0.36	1,2,3,4-TCDD-13C	2.00	NA
Total HxCDF	220.0		0.33	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1 2 2 4 7 0 HVCDD	7.7		0.35	2,3,7,8-TCDD-37Cl4	0.20	78
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD	23.0		0.35	2,3,7,6-1000-37014	0.20	70
1,2,3,7,8,9-HxCDD	15.0		0.35			
Total HxCDD	300.0		0.35			
1,2,3,4,6,7,8-HpCDF	110.0		0.48	Total 2,3,7,8-TCDD		
1,2,3,4,7,8,9-HpCDF	11.0		0.57	Equivalence: 34 ng/Kg		
Total HpCDF	350.0		0.52	(Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD	360.0		0.76			
Total HpCDD	640.0		0.76			
OCDF		330	0.47 P			
OCDD	3300.0		0.36			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

P = PCDE Interference

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-11-2
Lab Sample ID 255764002
Filename P101203A_08
Injected By BAL

Total Amount Extracted 10.1 g Matrix Solid % Moisture 11.8 Dilution NA

Dry Weight Extracted Collected 11/16/2010 11:30 8.91 g **ICAL ID** P101202 Received 11/19/2010 10:00 CCal Filename(s) P101203A_01 & P101203A_17 Extracted 11/29/2010 14:30 Method Blank ID BLANK-27086 Analyzed 12/03/2010 05:34

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	14.0 220.0		0.23 0.23	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00	63 73
2,3,7,8-TCDD Total TCDD	3.5 300.0		0.26 0.26	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00	66 65 75
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	19.0 78.0		0.17 0.19	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C	2.00 2.00 2.00	74 70 69
Total PeCDF 1,2,3,7,8-PeCDD	440.0 19.0		0.18 0.24	1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C	2.00 2.00 2.00	65 75 65
Total PeCDD	350.0		0.24	1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00	63 61
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	120.0 47.0 49.0		0.24 0.42 0.66	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	68 56
1,2,3,7,8,9-HxCDF Total HxCDF	36.0 1100.0		0.44 0.44	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	16.0 65.0 33.0 620.0	 	0.18 0.47 0.49 0.38	2,3,7,8-TCDD-37Cl4	0.20	70
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	490.0 47.0 1800.0	 	0.65 0.66 0.66	Total 2,3,7,8-TCDD Equivalence: 110 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	1200.0 2000.0		0.91 0.91	-	-	·
OCDF OCDD	12000.0	1400	0.51 P 0.18 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

P = PCDE Interference

E = Exceeds calibration range

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-11-3 Lab Sample ID 255764003 P101203A_09 Filename Injected By BAL **Total Amount Extracted** 10.1 g Matrix Solid % Moisture Dilution NA 17.4 Dry Weight Extracted Collected 11/16/2010 14:30 8.34 g ICAL ID P101202 Received 11/19/2010 10:00

CCal Filename(s) P101203A_01 & P101203A_17 Extracted 11/29/2010 14:30 Method Blank ID BLANK-27086 Analyzed 12/03/2010 06:16

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	6.4 99.0		0.200 0.200	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	78 92 81
2,3,7,8-TCDD Total TCDD	1.7 110.0		0.200 0.200	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	80 92 91
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	6.5 19.0 120.0		0.130 0.098 0.110	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	84 84 80
1,2,3,7,8-PeCDD Total PeCDD	8.2 140.0		0.160 0.160	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	87 85 77
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	29.0 12.0 7.8		0.190 0.170 0.110	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	72 80 61
1,2,3,7,8,9-HxCDF Total HxCDF	6.6 200.0		0.130 0.150	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	6.8 17.0 10.0 220.0		0.280 0.180 0.270 0.240	2,3,7,8-TCDD-37Cl4	0.20	86
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	79.0 7.6 240.0		0.250 0.360 0.310	Total 2,3,7,8-TCDD Equivalence: 29 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	250.0 430.0		0.670 0.670			
OCDF OCDD	2200.0	190 	0.400 P 0.440			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

P = PCDE Interference

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-10-1
Lab Sample ID 255764004
Filename P101203A_10
Injected By BAL

Total Amount Extracted 10.5 g Matrix Solid % Moisture 13.6 Dilution NA

Dry Weight Extracted Collected 11/16/2010 15:00 9.07 g **ICAL ID** P101202 Received 11/19/2010 10:00 CCal Filename(s) P101203A 01 & P101203A 17 Extracted 11/29/2010 14:30 Method Blank ID BLANK-27086 Analyzed 12/03/2010 06:59

Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2.60		0.25	2,3,7,8-TCDF-13C	2.00	71
42.00		0.25			84 74
0.67		0.18 J			74 71
23.00		0.18	1,2,3,7,8-PeCDD-13C	2.00	81
			1,2,3,4,7,8-HxCDF-13C	2.00	81
-		-			<u> 76</u>
					75 70
77.00		0.13			72 84
3.50		0.23 .1			67
			1.2.3.4.6.7.8-HpCDF-13C		64
			1,2,3,4,7,8,9-HpCDF-13C	2.00	59
	35	0.25 P	1,2,3,4,6,7,8-HpCDD-13C	2.00	66
			OCDD-13C	4.00	42
			4 0 0 4 TODD 40C	2.00	NIA
					NA NA
110.00		0.20	1,2,3,7,0,9-118CDD-13C	2.00	INA
3.70		0.30 J	2,3,7,8-TCDD-37Cl4	0.20	80
16.00		0.32	. , .		
6.50					
140.00		0.31			
140.00		ი ვი	Total 2 3 7 8-TCDD		
150.00		0.38		Using PRL/	2 where ND)
			, -		•
940.00		1.10			
600.00		0.33			
7800.00		3.90			
	ng/Kg 2.60 42.00 0.67 23.00 4.20 13.00 77.00 3.50 52.00 8.60 4.40 7.30 110.00 3.70 16.00 6.50 140.00 13.00 150.00 510.00 940.00 600.00	ng/Kg ng/Kg 2.60 42.00 0.67 23.00 4.20 13.00 77.00 3.50 52.00 35 8.60 4.40 7.30 110.00 3.70 16.00 6.50 140.00 510.00 510.00 600.00	ng/Kg ng/Kg ng/Kg 2.60 0.25 42.00 0.18 0.67 0.18 23.00 0.18 4.20 0.14 J 13.00 0.13 77.00 0.13 3.50 0.23 J 52.00 0.23 J 8.60 0.23 J 4.40 0.45 J 7.30 0.23 J 10.00 0.30 J 16.00 0.32 J 6.50 0.32 J 140.00 0.38 J 150.00 0.38 510.00 1.10 940.00 1.10 600.00 0.33	ng/Kg ng/Kg Standards 2.60	ng/Kg ng/Kg Ng/Kg Standards Added 2.60

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value P = PCDE Interference

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-10-2
Lab Sample ID 255764005
Filename P101203A_11
Injected By BAL

Total Amount Extracted 10.4 g Matrix Solid % Moisture 12.8 Dilution NA

Dry Weight Extracted Collected 11/16/2010 15:30 9.07 g ICAL ID P101202 Received 11/19/2010 10:00 CCal Filename(s) P101203A_01 & P101203A_17 Extracted 11/29/2010 14:30 Method Blank ID BLANK-27086 Analyzed 12/03/2010 07:42

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.40 30.00		0.25 0.25	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00	79 93
2,3,7,8-TCDD Total TCDD	0.41 14.00		0.21 J 0.21	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00	81 78 90
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	1.30 3.60		0.27 J 0.12 J	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C	2.00 2.00 2.00	85 86 81
Total PeCDF 1,2,3,7,8-PeCDD Total PeCDD	33.00 2.10 33.00		0.20 0.29 J 0.29	1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	78 90 78 68
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	 2.30	4.3	0.23 P 0.20 J	1,2,3,4,6,7,8-HPCDF-13C 1,2,3,4,6,7,8-HPCDD-13C OCDD-13C	2.00 2.00 2.00 4.00	62 69 43
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	1.80 0.96 27.00		0.23 J 0.25 J 0.23	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.50 5.70 3.20 67.00		0.17 J 0.20 0.20 J 0.19	2,3,7,8-TCDD-37Cl4	0.20	89
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	26.00 2.00 28.00		0.21 0.32 J 0.27	Total 2,3,7,8-TCDD Equivalence: 7.3 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	130.00 240.00		0.37 0.37			
OCDF OCDD	90.00 1500.00		0.39 0.39			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value P = PCDE Interference

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-10-3
Lab Sample ID 255764006
Filename P101203A_12
Injected By BAL
Total Amount Extracted 10.6 g

Total Amount Extracted 10.6 g Matrix Solid % Moisture 11.5 Dilution NA

Dry Weight Extracted Collected 11/16/2010 16:00 9.38 g **ICAL ID** P101202 Received 11/19/2010 10:00 CCal Filename(s) P101203A_01 & P101203A_17 Extracted 11/29/2010 14:30 Method Blank ID BLANK-27086 Analyzed 12/03/2010 08:25

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	3.6 60.0		0.87 0.87	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	79 94 81
2,3,7,8-TCDD Total TCDD	ND 54.0		0.92 0.92	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	80 90 89
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	3.6 9.6 75.0	 	0.73 J 0.67 0.70	1,2,3,4,7,8-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	85 83 79 92
1,2,3,7,8-PeCDD Total PeCDD	5.0 90.0		0.43 J 0.43	1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	82 74 67
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	14.0 6.2 6.3		1.50 1.10 1.40	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	76 52
1,2,3,7,8,9-HxCDF Total HxCDF	3.2 130.0		0.58 J 1.10	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	4.3 14.0 8.2 170.0	 	0.54 J 0.48 0.41 0.48	2,3,7,8-TCDD-37Cl4	0.20	173
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	70.0 6.1 240.0		0.52 1.20 0.85	Total 2,3,7,8-TCDD Equivalence: 20 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	320.0 600.0		1.60 1.60			
OCDF OCDD	240.0 3900.0		1.00 1.60			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. $J = Estimated \ value$

Method 8290 Blank Analysis Results

Lab Sample ID BLANK-27086 Matrix Solid Filename P101203B_02 Dilution NA

Total Amount Extracted 20.1 g Extracted 11/29/2010 14:30 ICAL ID P101202 Analyzed 12/03/2010 13:25

CCal Filename(s) P101203A_17 & P101203B_09 Injected By ACE

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.073 1.200		0.039 J 0.039	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	73 88 80
2,3,7,8-TCDD Total TCDD	ND ND		0.047 0.047	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	82 91 84
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.051 0.048 0.300		0.021 J 0.022 J 0.022 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	83 82 80 90
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.032 0.032	1,2,3,4,7,6-FXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	82 78 77
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	0.063 0.058 0.059	0.039	0.018 J 0.019 J 0.021 I 0.021 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 2.00 4.00	83 65 NA
Total HxCDF	0.260		0.021 J	1,2,3,7,8,9-HxCDD-13C	2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.039 0.087	0.040 0.036	0.023 J 0.024 I 0.021 I 0.023 J	2,3,7,8-TCDD-37Cl4	0.20	84
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.088 0.051 0.140		0.025 J 0.040 J 0.033 J	Total 2,3,7,8-TCDD Equivalence: 0.091 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.120 0.230		0.043 J 0.043 J			
OCDF OCDD	0.220 0.540		0.051 J 0.100 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted

F101201B_11 tracted 20.5 g F101201 F101201B 10

LCS-27087

Matrix
Dilution
Extracted
Analyzed

Solid NA 11/29/2010 1

ICAL ID CCal Filename(s) Method Blank ID

F101201B_10 & F101201B_22 BLANK-27086 Extracted 11/29/2010 14:30 Analyzed 12/01/2010 18:33

Injected By BAL

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.23	113	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.0 2.0 2.0	70 90 79
2,3,7,8-TCDD Total TCDD	0.20	0.18	92	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.0 2.0 2.0 2.0	81 97 74
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.0 1.0	102 100	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.0 2.0 2.0 2.0 2.0	69 70 75 83
1,2,3,7,8-PeCDD Total PeCDD	1.0	0.92	92	1,2,3,4,7,8-11XCDD-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,7,8,9-HpCDF-13C	2.0 2.0 2.0 2.0	77 73 76
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.0 1.0 1.0	0.99 0.98 0.96	99 98 96	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.0 4.0	84 66 NA
1,2,3,7,8,9-HxCDF Total HxCDF	1.0	1.0	101	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.0 2.0	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	0.95 0.98 0.99	95 98 99	2,3,7,8-TCDD-37Cl4	0.20	80
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.0 0.98	103 98			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	0.92	92			
OCDF OCDD	2.0 2.0	2.3 2.1	117 Y 105			

Qs = Quantity Spiked Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)
R = Recovery outside of target range

Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable

* = See Discussion

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

								12	=	10	ဖ	∞	7	6	U1	4	ω	2		ITEM#			Req	ا ولان ا	Ema		Addı	Com	Sec
	(OBIC					ADDITIONAL COMMENTS						15-13/8024	\$2-16-3	WP-16-4	かってーラー	SPL-11-3	いず ニード	Spell	SAMPLE ID (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE Spiriksolid Oil Wipe Air Sample Sample Ds MUST BE UNIQUE Other	Section D Matrix Codes Required Client Information MATRIX / CODE			-ax:	5	glumbia way okeoi	425	のまが着して	Section A Required Client Information:
		ORIGINAI				Tel.														01288668 01388668 01388668	₽e		Project Number:	Project Name:	Purchase Order No.:		Сору То:	Report To:	Section B Required Project Information:
					4	443	REI							<	-			5	J)	MATRIX CODE (see valid codes	to left)	1	ımber:		Order			ر ا ا	B Projec
						0	INQU									-			5	SAMPLE TYPE (G=GRAB C=C	OMP)			ê W	No.:		trees.	ತ್ರ	t Infor
		စ္			4	J.W.	RELINQUISHED BY / AFFILIATION													COMPOSITE START				ûlympilà s			Solvasor	で大	mation:
	-	AMPLER					FILIATIC													TIME	COLLECTED			Sylk			3		
SIGNATURE of SAMPLER:	PRINT Name of SAMPLER:	SAMPLER NAME AND SIGNATURE					Ñ							<					W W	COMPOSITE END/GRAB	CTED								
of SAMP	of SAMP	D SIGNA				01/17/16	DATE							No oo	15:30	S S	100	1.78	11:00	TIME									
Ж	В	TURE						L							<u> </u>	ļ		Ļ	ļ.,	SAMPLE TEMP AT COLLECTION	~~~~		'n	27	77 77		0		= 40
						1):10	П						هٔ گلیا	K -				L	7	# OF CONTAINERS	_		Pace Profile #:	Pace Project Manager:	Pace Quote Reference:	Address:	Company Name:	Attention:	Section C Invoice Information:
						O	TIME								├	├-	-	\vdash	×	Unpreserved H ₂ SO ₄	-		ofile #:	oject r:	uote	\mathbf{V}_{s}	any Na	3 (1	on C Infon
					_															HNO ₃	Pre					44	ime:	Ø.	natior
					4	Ţ												_	<u> </u>	HCI	Preservatives					Z	32	الأ	
					10 tr	Adex	A	 						\vdash	-	\vdash	╁	╁	┼	NaOH Na ₂ S ₂ O ₃	ative				Ì	7	† ()	ا ا ا ا	
					£ .	~	CEP						J.						*	Methanol].°							grand?	
					· •		TED I						7.			<u> </u>	<u> </u>		X	Other H2O							1618	25	
					Ų)	1	ACCEPTED BY / AFFILIATION				l	T	I	~	Ι	ļ			-	Analysis Test	Y/ N	I.							
DATE Signed (MM/DD/YY):					8		FFIL	<u> </u>						4	<u> </u>				. 1	ARSONIC, NI, LA, Pb. (10)	In Ite	Rea							
Sigr			l		5		АТЮ							4	e-record	PACTAGE!	Tana Tana T	Tall (No Piles	×.	TPH-D. TPH-HOSG		uesi							
<u>اء</u> ج		•					Z						-	L	a project sector	n bunasian	Lenne		7.	cPAH, Naphakine		ed A							
						_		_					Χ.	5		o breadour red	, and the second	CHARGE .	×.	THE GLATEX SCI		nal		Site	٦		REG		
				Ī	113	11111	DATE		<u> </u>	-					<u> </u>	╁	-		╁		ļ	sis	ST	Site Location	UST	NPDES	UL A		
				7	0	100	ΤE									ļ —	 	1	T		1	Filte	STATE:	tion		ES	딣		
					0	epar														ABSOME, NI, LA, PD, OD DOXIN, FURAN TPH-D, TPH-HOSG EPAH, Naphaline TPH-CI, BTPX SC		red (1		-1		ΥA		
			ļ		0925	11:00	TIME									<u> </u>	_	_	-		ļ	(N/X)	WH		RCRA	GR	REGULATORY AGENCY		ν
															 	├-	+-	-	+		<u> </u>	-	-	i>	8	ONI	위		Page:
Tem	np in	°C			22									STORESTON OF						Residual Chlorine (Y/N)			progration.			GROUND WATER			
Rece Ice	eived (Y/N				۷		SAMF													Pace					Ŕ	ER T		—	
Seale	ustod ed Co Y/N)	ooler					SAMPLE CONDITIONS													5 5 7		-	1		OTHER	DRINK		21837	3 9
`				<u> </u>			JTION													No.					١,	(ING)		C	3 -
Samp (les li Y/N)				Z		ะ													2 5 5 7 6 4 Pace Project No./ Lab I.D.				18	ECX.	DRINKING WATER			5

*Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

F-ALL-Q-020rev.07, 15-May-2007

Sample Container Count

CLIENT: Bot C COC PAGE 1 of 1 COC ID# 1318922		an an all	Face A
Sample Line Item VG9H AG1H AG1U BG1H I	BP1U BP2U BP3U BP2N BP2S WGFU WGKU	06	2 3 3 / b 4 Comments
		ر ا ا	
N		را 0	1 + DSAW POKON "SN
ω	2 Jeason	2	1 x USW broken
4	,	ь -	
5		۲	
6	4	<u>-</u>	
7	· +	7	
σ	0//E/\ii		
ω			
10			
12			Trip Blank? ()
AG1H 1 liter HCL amber glass	BP2S 500mL H2SO4 plastic	JGFU	4oz unpreserved amber wide
AG2S 500mL H2SO4 amber glass	BP2Z 500mL NaOH, Zn Ac		Summa Can
AG2U 500mL unpreserved amber glass	BP3C 250mL NaOH plastic	VG9H	40mL HCL clear vial
AG3S 250mL H2SO4 amber glass	BP3N 250mL HNO3 plastic	VG9T	40mL Na Thio. clear vial
BG1H 1 liter HCL clear glass	BP3S 250mL H2SO4 plastic	VG9U	40mL unpreserved clear vial
BG1U 1 liter unpreserved glass	BP3U 250mL unpreserved plastic	VG9W	40mL glass vial preweighted (EPA 5035)
BP1N 1 liter HNO3 plastic	DG9B 40mL Na Bisulfate amber vial	VSG	Headspace septa vial & HCL
BP1S 1 liter H2SO4 plastic		WGFU	4oz clear soil jar
BP1U 1 liter unpreserved plastic	DG9M 40mL MeOH clear vial	WGFX	
BP1Z 1 liter NaOH, Zn, Ac	DG9T 40mL Na Thio amber vial	ZPLC	Ziploc Bag
BP2N 500mL HNO3 plastic	DG9U 40mL unpreserved amber vial		
DD3O F00~ NoOU alcatic			

Pace Analytical Client Name	: Ba	Project # 2 5 5 7 6 4
Courier: Fed Ex UPS USPS Clier Tracking #: 8738 8211 5406	nt Commerci	Pace Other
Custody Seal on Cooler/Box Present:	☐ No Se	als intact: Yes No
Packing Material: Bubble Wrap Bubble	Bags None	Other Temp. Blank Yès (No)
Thermometer Used 132013 or 1731962 or 22609	9 Type of Ice:(\	Vet Blue None Samples on ice, cooling process has begun
Cooler Temperature 2.3	Biological Tis	ue is Frozen: Yes No Date and Initials of person examining contents:
Temp should be above freezing ≤ 6 ℃		Comments:
Chain of Custody Present:	DYes □No □	WA 1.
Chain of Custody Filled Out:	DYes □No □	WA 2.
Chain of Custody Relinquished:	Pres ONo D	V/A 3.
Sampler Name & Signature on COC:	√ZYes □No □	N/A 4.
Samples Arrived within Hold Time:	✓ Yes □No □	NA 5.
Short Hold Time Analysis (<72hr):	□XES □No □	N/A 6. Terracore Kits trozen cot 11.15
Rush Turn Around Time Requested:	□Yes ☑No □	V/A 7.
Sufficient Volume:	ÆYes □No □	N/A 8.
Correct Containers Used:	Yes 🗆 No 🗀	N/A 9.
-Pace Containers Used:	ØYes □No □	N/A
Containers Intact:	□Yes ☑No □	NA 10. Received broken, see 13.
Filtered volume received for Dissolved tests	□Yes □No □	M7A 11.
Sample Labels match COC:	⊠Yes □No □	N/A 12.
-Includes date/time/ID/Analysis Matrix:	Soil	·
All containers needing preservation have been checked.	□Yes □No ළ	N/A 13Broken 3 11-1 3 2 jois 3 11-2 3 1 jor 3 1 methane
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes □No Æ	11-3 = 2 soil jars; 1 water vial; 10-4 = 1 soil jar 10-2 = 1 soil jar; 10-3 = all intact.
Exceptions: VOA, coliform, TOC, O&G		Initial when Lot # of added completed preservative
Samples checked for dechlorination:	□Yes □No Æ	N/A 14.
Headspace in VOA Vials (>6mm):	□Yes □No →	
Trip Blanks Present:		N/A 16.
Trip Blank Custody Seals Present	DYes □No □	N/A
Pace Trip Blank Lot # (if purchased):	_	
Client Notification/ Resolution: Person Contacted: T. Turk	D	Field Data Required? Y / N
Comments/ Resolution:		1
Enriled IT, said to		eleing meterial a per would they
like to re-sample	or he	we possible elevated FC's:
Project Manager Review:	1	Date: [1/18/10 1303

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

December 02, 2010

Joshua Johnson Brown & Caldwell 724 Columbia St. NW#420 Olympia, WA 98501

RE: Project: Olympia Soils

Pace Project No.: 255708

Dear Joshua Johnson:

Enclosed are the analytical results for sample(s) received by the laboratory on November 12, 2010. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jennifer Gross

jennifer.gross@pacelabs.com Project Manager

ENNI (TROSS

Enclosures

(206)767-5060

CERTIFICATIONS

Project: Olympia Soils
Pace Project No.: 255708

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

Alaska Certification #: UST-078
Alaska Certification #MN00064
Arizona Certification #: AZ-0014
Arkansas Certification #: 88-0680
California Certification #: 01155CA
EPA Region 8 Certification #: Pace
Florida/NELAP Certification #: E87605
Georgia Certification #: 959
Idaho Certification #: MN00064
Illinois Certification #: 200011

Illinois Certification #: 200011
lowa Certification #: 368
Kansas Certification #: E-10167
Louisiana Certification #: 03086
Louisiana Certification #: LA080009
Maine Certification #: 2007029
Maryland Certification #: 322

Maryland Certification #: 322 Michigan DEQ Certification #: 9909 Minnesota Certification #: 027-053-137 Mississippi Certification #: Pace

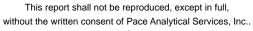
Washington Certification IDs

940 South Harney Street, Seattle, WA 98108
Alaska CS Certification #: UST-025
Alaska Prinking Water VOC Certification #: WA01336

Alaska Drinking Water VOC Certification #: WA01230 Alaska Drinking Water Micro Certification #: WA01230 Montana Certification #: MT CERT0092 Nevada Certification #: MN_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New Mexico Certification #: Pace New York Certification #: 11647 North Carolina Certification #: 530 North Dakota Certification #: R-036 North Dakota Certification #: R-036A Ohio VAP Certification #: CL101 Oklahoma Certification #: D9921 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification Tennessee Certification #: 02818

Texas Certification #: 7104704192 Washington Certification #: C754 Wisconsin Certification #: 999407970

California Certification #: 01153CA Florida/NELAP Certification #: E87617 Oregon Certification #: WA200007 Washington Certification #: C1229


SAMPLE ANALYTE COUNT

Project: Olympia Soils
Pace Project No.: 255708

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
255708001	SPL-12-1	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	RJS	4	PASI-M
		% Moisture	JDL	1	PASI-M
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
255708002	SPL-12-2	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	RJS	4	PASI-M
		% Moisture	JDL	1	PASI-M
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	ATH	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
55708003	SPL-12-3	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	RJS	4	PASI-M
		% Moisture	JDL	1	PASI-M
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
55708004	SPL-12-4	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	RJS	4	PASI-M
		% Moisture	JDL	1	PASI-M
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
255708005	SPL-12-5	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	RJS	4	PASI-M
		% Moisture	JDL	1	PASI-M
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
255708006	SPL-12-6	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S

REPORT OF LABORATORY ANALYSIS

Page 3 of 28

(206)767-5060

SAMPLE ANALYTE COUNT

Project: Olympia Soils
Pace Project No.: 255708

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 6020	RJS	4	PASI-M
		% Moisture	JDL	1	PASI-M
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
255708007	SPL-12-7	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	RJS	4	PASI-M
		% Moisture	JDL	1	PASI-M
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S

ANALYTICAL RESULTS

Project: Olympia Soils

Pace Project No.: 255708							
Sample: SPL-12-1	Lab ID: 25570800	1 Collected: 11/10/10	15:20	Received: 11	/12/10 09:03 I	Matrix: Solid	
Results reported on a "dry-weight	t" basis						
Parameters	Results Ur	nits Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS SG	Analytical Method: N	WTPH-Dx Preparation Met	hod: E	PA 3546			
Diesel Range SG	ND mg/kg	21.3	1	11/19/10 16:35	11/23/10 01:52	1	
Motor Oil Range SG	ND mg/kg	85.4	1	11/19/10 16:35	11/23/10 01:52	64742-65-0	
n-Octacosane (S) SG	115 %	50-150	1	11/19/10 16:35	11/23/10 01:52	630-02-4	
o-Terphenyl (S) SG	109 %	50-150	1	11/19/10 16:35	11/23/10 01:52	84-15-1	
NWTPH-Gx GCV	Analytical Method: N	WTPH-Gx Preparation Met	hod: N	WTPH-Gx			
Gasoline Range Organics	ND mg/kg	5.7	1	11/16/10 17:00	11/17/10 06:35	;	
a,a,a-Trifluorotoluene (S)	96 %	50-150	1	11/16/10 17:00	11/17/10 06:35	98-08-8	
4-Bromofluorobenzene (S)	84 %	50-150	1	11/16/10 17:00	11/17/10 06:35	460-00-4	
6020 MET ICPMS	Analytical Method: E	PA 6020					
Arsenic	3.9 mg/kg	0.95	40	11/17/10 16:56	11/24/10 17:45	7440-38-2	M6
Copper	12.3 mg/kg	0.95	40	11/17/10 16:56	11/24/10 17:45	7440-50-8	M6
Lead	2.6 mg/kg	0.95	40	11/17/10 16:56	11/24/10 17:45	7439-92-1	M6
Nickel	23.6 mg/kg	0.95	40	11/17/10 16:56	11/24/10 17:45	7440-02-0	M6
Dry Weight	Analytical Method: %	Moisture					
Percent Moisture	9.2 %	0.10	1		11/16/10 00:00	1	
8270 MSSV PAH by SIM	Analytical Method: E	PA 8270 by SIM Preparatio	n Meth	od: EPA 3546			
Acenaphthene	ND ug/kg	7.4	1	11/15/10 14:30	11/17/10 19:09	83-32-9	
Acenaphthylene	ND ug/kg	7.4	1	11/15/10 14:30	11/17/10 19:09	208-96-8	
Anthracene	ND ug/kg	7.4	1	11/15/10 14:30	11/17/10 19:09	120-12-7	
Benzo(a)anthracene	ND ug/kg	7.4	1	11/15/10 14:30	11/17/10 19:09	56-55-3	
Benzo(a)pyrene	ND ug/kg	7.4	1	11/15/10 14:30	11/17/10 19:09	50-32-8	
Benzo(b)fluoranthene	ND ug/kg	7.4	1	11/15/10 14:30	11/17/10 19:09	205-99-2	
Benzo(g,h,i)perylene	ND ug/kg	7.4	1	11/15/10 14:30	11/17/10 19:09	191-24-2	
Benzo(k)fluoranthene	ND ug/kg	7.4	1	11/15/10 14:30	11/17/10 19:09	207-08-9	
Chrysene	ND ug/kg	7.4	1	11/15/10 14:30	11/17/10 19:09	218-01-9	
Dibenz(a,h)anthracene	ND ug/kg	7.4	1	11/15/10 14:30	11/17/10 19:09	53-70-3	
Fluoranthene	ND ug/kg	7.4	1	11/15/10 14:30	11/17/10 19:09	206-44-0	
Fluorene	ND ug/kg	7.4	1		11/17/10 19:09		
Indeno(1,2,3-cd)pyrene	ND ug/kg	7.4	1	11/15/10 14:30	11/17/10 19:09		
1-Methylnaphthalene	76.1 ug/kg	7.4	1		11/17/10 19:09		
2-Methylnaphthalene	222 ug/kg	7.4	1		11/17/10 19:09		
Naphthalene	80.2 ug/kg	7.4	1		11/17/10 19:09		
Phenanthrene	ND ug/kg	7.4	1		11/17/10 19:09		
Pyrene	7.8 ug/kg	7.4	1		11/17/10 19:09		
2-Fluorobiphenyl (S)	67 %	31-131	1		11/17/10 19:09		
Terphenyl-d14 (S)	69 %	30-133	1		11/17/10 19:09		
8260/5035A Volatile Organics	Analytical Method: E	PA 8260					
Benzene	ND ug/kg	2.9	1		11/13/10 18:53	71-43-2	
Ethylbenzene	ND ug/kg	2.9	1		11/13/10 18:53		
Toluene	ND ug/kg	2.9	1		11/13/10 18:53		
TOTACTIC	ND ug/kg	2.9	'		11/13/10 10.33	100-00-3	

Date: 12/02/2010 06:06 PM

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

Page 5 of 28

Project: Olympia Soils
Pace Project No.: 255708

Lab ID: 255708001 Sample: SPL-12-1 Collected: 11/10/10 15:20 Received: 11/12/10 09:03 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8260/5035A Volatile Organics Analytical Method: EPA 8260 Xylene (Total) ND ug/kg 8.8 1 11/13/10 18:53 1330-20-7 Dibromofluoromethane (S) 93 % 80-136 11/13/10 18:53 1868-53-7 1 Toluene-d8 (S) 111 % 80-120 11/13/10 18:53 2037-26-5 1 4-Bromofluorobenzene (S) 117 % 72-122 11/13/10 18:53 460-00-4 1 1,2-Dichloroethane-d4 (S) 98 % 80-143 11/13/10 18:53 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 9.8 % 0.10 1 11/15/10 14:09 Sample: SPL-12-2 Lab ID: 255708002 Collected: 11/10/10 15:40 Received: 11/12/10 09:03 Results reported on a "dry-weight" basis **Parameters** Report Limit DF CAS No. Qual Results Units Prepared Analyzed **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG ND mg/kg 21.2 11/19/10 16:35 11/23/10 02:08 Motor Oil Range SG 85.0 ND mg/kg 1 11/19/10 16:35 11/23/10 02:08 64742-65-0 50-150 n-Octacosane (S) SG 118 % 11/19/10 16:35 11/23/10 02:08 630-02-4 1 111 % 50-150 11/19/10 16:35 11/23/10 02:08 84-15-1 o-Terphenyl (S) SG 1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 5.5 1 11/16/10 17:00 11/17/10 06:58 a,a,a-Trifluorotoluene (S) 108 % 50-150 11/16/10 17:00 11/17/10 06:58 98-08-8 1 4-Bromofluorobenzene (S) 96 % 50-150 11/16/10 17:00 11/17/10 06:58 460-00-4 1 **6020 MET ICPMS** Analytical Method: EPA 6020 2.5 100 11/17/10 16:56 11/24/10 18:03 7440-38-2 Arsenic 7.0 mg/kg 14.2 mg/kg 2.5 100 11/17/10 16:56 11/24/10 18:03 7440-50-8 Copper 100 11/17/10 16:56 11/24/10 18:03 7439-92-1 Lead 3.8 mg/kg 2.5 Nickel 24.7 mg/kg 2.5 100 11/17/10 16:56 11/24/10 18:03 7440-02-0 **Dry Weight** Analytical Method: % Moisture 6.5 % Percent Moisture 0.10 1 11/16/10 00:00 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 ND ug/kg Acenaphthene 7.1 1 11/15/10 14:30 11/17/10 19:28 83-32-9 208-96-8 Acenaphthylene ND ug/kg 7.1 1 11/15/10 14:30 11/17/10 19:28 7.1 Anthracene ND ug/kg 1 11/15/10 14:30 11/17/10 19:28 120-12-7 Benzo(a)anthracene 16.1 ug/kg 7.1 1 11/15/10 14:30 11/17/10 19:28 56-55-3 18.5 ug/kg 7.1 11/15/10 14:30 11/17/10 19:28 50-32-8 Benzo(a)pyrene Benzo(b)fluoranthene 13.7 ug/kg 7.1 1 11/15/10 14:30 11/17/10 19:28 205-99-2 Benzo(g,h,i)perylene 11.2 ug/kg 7.1 1 11/15/10 14:30 11/17/10 19:28 191-24-2 Benzo(k)fluoranthene 11.5 ug/kg 7.1 1 11/15/10 14:30 11/17/10 19:28 207-08-9 18.3 ug/kg 7.1 11/15/10 14:30 11/17/10 19:28 218-01-9 Chrysene

Date: 12/02/2010 06:06 PM REPORT OF

REPORT OF LABORATORY ANALYSIS

Page 6 of 28

Project: Olympia Soils
Pace Project No.: 255708

Date: 12/02/2010 06:06 PM

Lab ID: 255708002 Sample: SPL-12-2 Collected: 11/10/10 15:40 Received: 11/12/10 09:03 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 7.1 Dibenz(a,h)anthracene ND ug/kg 11/15/10 14:30 11/17/10 19:28 53-70-3 Fluoranthene 28.0 ug/kg 7.1 11/15/10 14:30 11/17/10 19:28 206-44-0 ND ug/kg 7.1 11/15/10 14:30 11/17/10 19:28 86-73-7 Fluorene 1 Indeno(1,2,3-cd)pyrene 9.0 ug/kg 7.1 11/15/10 14:30 11/17/10 19:28 193-39-5 1 11/15/10 14:30 11/17/10 19:28 90-12-0 1-Methylnaphthalene ND ug/kg 7.1 1 2-Methylnaphthalene 9.1 ug/kg 7.1 11/15/10 14:30 11/17/10 19:28 91-57-6 1 Naphthalene 8.5 ug/kg 7.1 11/15/10 14:30 11/17/10 19:28 91-20-3 1 Phenanthrene 18.0 ug/kg 7.1 11/15/10 14:30 11/17/10 19:28 85-01-8 1 11/15/10 14:30 11/17/10 19:28 129-00-0 Pyrene 40.9 ug/kg 7.1 1 31-131 11/15/10 14:30 11/17/10 19:28 321-60-8 2-Fluorobiphenyl (S) 74 % 1 Terphenyl-d14 (S) 84 % 30-133 1 11/15/10 14:30 11/17/10 19:28 1718-51-0 8260 MSV 5035A Med Level VOA Analytical Method: EPA 8260 Preparation Method: EPA 5035A/5030B 32.0 11/24/10 14:30 11/24/10 16:54 71-43-2 ND ug/kg 1 Benzene 11/24/10 14:30 11/24/10 16:54 100-41-4 Ethylbenzene ND ug/kg 64.0 1 Toluene ND ug/kg 64.0 1 11/24/10 14:30 11/24/10 16:54 108-88-3 Xylene (Total) ND ug/kg 192 1 11/24/10 14:30 11/24/10 16:54 1330-20-7 Dibromofluoromethane (S) 81-114 90 % 1 11/24/10 14:30 11/24/10 16:54 1868-53-7 Toluene-d8 (S) 92 % 84-121 1 11/24/10 14:30 11/24/10 16:54 2037-26-5 4-Bromofluorobenzene (S) 94 % 78-127 11/24/10 14:30 11/24/10 16:54 460-00-4 1 1,2-Dichloroethane-d4 (S) 90 % 76-115 11/24/10 14:30 11/24/10 16:54 17060-07-0 1 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 7.3 % 0.10 1 11/15/10 14:10 Sample: SPL-12-3 Lab ID: 255708003 Collected: 11/10/10 16:00 Received: 11/12/10 09:03 Results reported on a "dry-weight" basis **Parameters** DF CAS No. Results Units Report Limit Prepared Analyzed Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG ND mg/kg 19.8 11/19/10 16:35 11/23/10 02:25 1 Motor Oil Range SG ND mg/kg 79.0 11/19/10 16:35 11/23/10 02:25 64742-65-0 1 n-Octacosane (S) SG 119 % 50-150 11/19/10 16:35 11/23/10 02:25 630-02-4 1 o-Terphenyl (S) SG 109 % 50-150 11/19/10 16:35 11/23/10 02:25 84-15-1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 5.1 11/16/10 17:00 11/17/10 07:22 1 a,a,a-Trifluorotoluene (S) 96 % 50-150 11/16/10 17:00 11/17/10 07:22 98-08-8 1 4-Bromofluorobenzene (S) 75 % 50-150 1 11/16/10 17:00 11/17/10 07:22 460-00-4 **6020 MET ICPMS** Analytical Method: EPA 6020 4.6 mg/kg 2.0 100 11/17/10 16:56 11/24/10 18:07 7440-38-2 Arsenic Copper 19.4 mg/kg 2.0 100 11/17/10 16:56 11/24/10 18:07 7440-50-8

REPORT OF LABORATORY ANALYSIS

Page 7 of 28

Project: Olympia Soils Pace Project No.: 255708

Lab ID: 255708003 Sample: SPL-12-3 Collected: 11/10/10 16:00 Received: 11/12/10 09:03 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **6020 MET ICPMS** Analytical Method: EPA 6020 Lead 5.9 mg/kg 2.0 100 11/17/10 16:56 11/24/10 18:07 7439-92-1 Nickel 27.5 mg/kg 2.0 100 11/17/10 16:56 11/24/10 18:07 7440-02-0 Analytical Method: % Moisture **Dry Weight** Percent Moisture 22.0 % 0.10 1 11/16/10 00:00 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Acenaphthene 166 ug/kg 7.1 11/15/10 14:30 11/17/10 19:46 83-32-9 Acenaphthylene 14.5 ug/kg 7.1 1 11/15/10 14:30 11/17/10 19:46 208-96-8 Anthracene 69.9 ug/kg 7.1 1 11/15/10 14:30 11/17/10 19:46 120-12-7 Benzo(a)anthracene 42.2 ug/kg 7.1 1 11/15/10 14:30 11/17/10 19:46 56-55-3 Benzo(a)pyrene 35.4 ug/kg 7.1 11/15/10 14:30 11/17/10 19:46 50-32-8 1 Benzo(b)fluoranthene 24.6 ug/kg 7.1 1 11/15/10 14:30 11/17/10 19:46 205-99-2 20.3 ug/kg 7.1 Benzo(g,h,i)perylene 1 11/15/10 14:30 11/17/10 19:46 191-24-2 7.1 Benzo(k)fluoranthene 25.4 ug/kg 11/15/10 14:30 11/17/10 19:46 207-08-9 1 11/15/10 14:30 11/17/10 19:46 218-01-9 Chrysene 52.8 ug/kg 7.1 1 Dibenz(a,h)anthracene 7.8 ug/kg 7.1 11/15/10 14:30 11/17/10 19:46 53-70-3 1 Fluoranthene 7.1 11/15/10 14:30 11/17/10 19:46 206-44-0 181 ug/kg 1 Fluorene 143 ug/kg 7.1 1 11/15/10 14:30 11/17/10 19:46 86-73-7 Indeno(1,2,3-cd)pyrene 16.5 ug/kg 7.1 11/15/10 14:30 11/17/10 19:46 193-39-5 1-Methylnaphthalene 102 ug/kg 7.1 11/15/10 14:30 11/17/10 19:46 90-12-0 2-Methylnaphthalene 7.1 184 ug/kg 11/15/10 14:30 11/17/10 19:46 91-57-6 Naphthalene 310 ug/kg 7.1 11/15/10 14:30 11/17/10 19:46 91-20-3 Phenanthrene 466 ug/kg 7.1 11/15/10 14:30 11/17/10 19:46 85-01-8 1 Pyrene 186 ug/kg 7.1 11/15/10 14:30 11/17/10 19:46 129-00-0 1 31-131 2-Fluorobiphenyl (S) 69 % 11/15/10 14:30 11/17/10 19:46 321-60-8 1 30-133 11/15/10 14:30 11/17/10 19:46 1718-51-0 Terphenyl-d14 (S) 80 % 1 8260/5035A Volatile Organics Analytical Method: EPA 8260 ND ug/kg 2.9 11/13/10 19:31 71-43-2 Benzene 1 Ethylbenzene ND ug/kg 2.9 11/13/10 19:31 100-41-4 1 Toluene ND ug/kg 2.9 11/13/10 19:31 108-88-3 1 Xylene (Total) ND ug/kg 8.7 1 11/13/10 19:31 1330-20-7 Dibromofluoromethane (S) 89 % 80-136 1 11/13/10 19:31 1868-53-7 Toluene-d8 (S) 115 % 80-120 11/13/10 19:31 2037-26-5 1 4-Bromofluorobenzene (S) 125 % 72-122 11/13/10 19:31 460-00-4 S3 1 1,2-Dichloroethane-d4 (S) 95 % 80-143 11/13/10 19:31 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 6.8 % 11/15/10 14:11

Date: 12/02/2010 06:06 PM

REPORT OF LABORATORY ANALYSIS

Page 8 of 28

0.10

1

Project: Olympia Soils
Pace Project No.: 255708

Pace Project No.: 255708							
Sample: SPL-12-4	Lab ID: 255708004	Collected: 11/10/1	0 16:15	Received: 11	/12/10 09:03 I	Matrix: Solid	
Results reported on a "dry-weight	t" basis						
Parameters	Results Un	ts Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
IWTPH-Dx GCS SG	Analytical Method: NV	/TPH-Dx Preparation Me	thod: E	PA 3546			
Diesel Range SG	ND mg/kg	21.1	1	11/19/10 16:35	11/23/10 02:41		
Motor Oil Range SG	205 mg/kg	84.5	1	11/19/10 16:35	11/23/10 02:41	64742-65-0	
n-Octacosane (S) SG	125 %	50-150	1	11/19/10 16:35	11/23/10 02:41	630-02-4	
o-Terphenyl (S) SG	115 %	50-150	1	11/19/10 16:35	11/23/10 02:41	84-15-1	
NWTPH-Gx GCV	Analytical Method: NV	/TPH-Gx Preparation Me	ethod: N	IWTPH-Gx			
Gasoline Range Organics	ND mg/kg	5.0	1	11/16/10 17:00	11/17/10 08:33	i	
a,a,a-Trifluorotoluene (S)	105 %	50-150	1	11/16/10 17:00	11/17/10 08:33	98-08-8	
4-Bromofluorobenzene (S)	92 %	50-150	1	11/16/10 17:00	11/17/10 08:33	460-00-4	
6020 MET ICPMS	Analytical Method: EF	A 6020					
Arsenic	6.8 mg/kg	2.2	100	11/17/10 16:56	11/24/10 18:12	7440-38-2	
Copper	33.1 mg/kg	2.2	100	11/17/10 16:56	11/24/10 18:12	7440-50-8	
Lead	17.3 mg/kg	2.2	100		11/24/10 18:12		
Nickel	38.7 mg/kg	2.2	100	11/17/10 16:56	11/24/10 18:12	7440-02-0	
Dry Weight	Analytical Method: %	Moisture					
Percent Moisture	16.7 %	0.10	1		11/16/10 00:00	ı	
8270 MSSV PAH by SIM	Analytical Method: EF	A 8270 by SIM Preparation	on Meth	nod: EPA 3546			
Acenaphthene	ND ug/kg	7.2	1	11/19/10 15:15	11/23/10 03:15	83-32-9	
Acenaphthylene	7.2 ug/kg	7.2	1	11/19/10 15:15	11/23/10 03:15	208-96-8	
Anthracene	8.5 ug/kg	7.2	1	11/19/10 15:15	11/23/10 03:15	120-12-7	
Benzo(a)anthracene	15.4 ug/kg	7.2	1	11/19/10 15:15	11/23/10 03:15	56-55-3	
Benzo(a)pyrene	26.3 ug/kg	7.2	1	11/19/10 15:15	11/23/10 03:15	50-32-8	
Benzo(b)fluoranthene	22.8 ug/kg	7.2	1	11/19/10 15:15	11/23/10 03:15	205-99-2	
Benzo(g,h,i)perylene	24.1 ug/kg	7.2	1	11/19/10 15:15	11/23/10 03:15	191-24-2	
Benzo(k)fluoranthene	18.0 ug/kg	7.2	1	11/19/10 15:15	11/23/10 03:15	207-08-9	
Chrysene	36.8 ug/kg	7.2	1		11/23/10 03:15		
Dibenz(a,h)anthracene	9.1 ug/kg	7.2	1	11/19/10 15:15	11/23/10 03:15	53-70-3	
Fluoranthene	19.4 ug/kg	7.2	1		11/23/10 03:15		
Fluorene	ND ug/kg	7.2	1		11/23/10 03:15		
Indeno(1,2,3-cd)pyrene	13.5 ug/kg	7.2	1		11/23/10 03:15		
1-Methylnaphthalene	ND ug/kg	7.2	1		11/23/10 03:15		
2-Methylnaphthalene	ND ug/kg	7.2	1		11/23/10 03:15		
Naphthalene	7.7 ug/kg	7.2	1		11/23/10 03:15		
Phenanthrene	11.8 ug/kg	7.2	1		11/23/10 03:15		
Pyrene		7.2	1		11/23/10 03:15		
	39.9 ug/kg						
2-Fluorobiphenyl (S)	60 %	31-131	1		11/23/10 03:15		
Terphenyl-d14 (S)	58 %	30-133	1	11/19/10 15:15	11/23/10 03:15	1710-51-0	
3260/5035A Volatile Organics	Analytical Method: EF	A 8∠6U					
Benzene	ND ug/kg	2.7	1		11/13/10 19:50	71-43-2	
Ethylbenzene	ND ug/kg	2.7	1		11/13/10 19:50	100-41-4	
Toluene	ND ug/kg	2.7	1		11/13/10 19:50	108-88-3	

Date: 12/02/2010 06:06 PM

REPORT OF LABORATORY ANALYSIS

Page 9 of 28

Project: Olympia Soils
Pace Project No.: 255708

Lab ID: 255708004 Sample: SPL-12-4 Collected: 11/10/10 16:15 Received: 11/12/10 09:03 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8260/5035A Volatile Organics Analytical Method: EPA 8260 Xylene (Total) ND ug/kg 8.1 1 11/13/10 19:50 1330-20-7 Dibromofluoromethane (S) 95 % 80-136 11/13/10 19:50 1868-53-7 1 Toluene-d8 (S) 110 % 80-120 11/13/10 19:50 2037-26-5 1 4-Bromofluorobenzene (S) 115 % 72-122 11/13/10 19:50 460-00-4 1 1,2-Dichloroethane-d4 (S) 103 % 80-143 11/13/10 19:50 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 7.6 % 0.10 1 11/15/10 14:11 Sample: SPL-12-5 Lab ID: 255708005 Collected: 11/11/10 08:15 Received: 11/12/10 09:03 Results reported on a "dry-weight" basis **Parameters** Report Limit DF CAS No. Qual Results Units Prepared Analyzed **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG ND mg/kg 21.4 11/19/10 16:35 11/23/10 02:57 Motor Oil Range SG 85.4 ND mg/kg 1 11/19/10 16:35 11/23/10 02:57 64742-65-0 50-150 n-Octacosane (S) SG 125 % 11/19/10 16:35 11/23/10 02:57 630-02-4 1 114 % 50-150 11/19/10 16:35 11/23/10 02:57 84-15-1 o-Terphenyl (S) SG 1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 6.1 1 11/16/10 17:00 11/17/10 08:56 a,a,a-Trifluorotoluene (S) 119 % 50-150 11/16/10 17:00 11/17/10 08:56 98-08-8 1 106 % 4-Bromofluorobenzene (S) 50-150 11/16/10 17:00 11/17/10 08:56 460-00-4 1 **6020 MET ICPMS** Analytical Method: EPA 6020 2.3 100 11/17/10 16:56 11/24/10 18:17 7440-38-2 Arsenic 5.6 mg/kg 21.1 mg/kg 2.3 100 11/17/10 16:56 11/24/10 18:17 7440-50-8 Copper 100 11/17/10 16:56 11/24/10 18:17 7439-92-1 Lead 5.3 mg/kg 2.3 Nickel 44.0 mg/kg 2.3 100 11/17/10 16:56 11/24/10 18:17 7440-02-0 **Dry Weight** Analytical Method: % Moisture Percent Moisture 21.7 % 0.10 1 11/16/10 00:00 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 ND ug/kg Acenaphthene 7 1 1 11/19/10 15:15 11/23/10 02:10 83-32-9 11/19/10 15:15 11/23/10 02:10 208-96-8 Acenaphthylene ND ug/kg 7.1 1 7.1 Anthracene ND ug/kg 1 11/19/10 15:15 11/23/10 02:10 120-12-7 Benzo(a)anthracene 7.4 ug/kg 7.1 1 11/19/10 15:15 11/23/10 02:10 56-55-3 8.2 ug/kg 7.1 11/19/10 15:15 11/23/10 02:10 50-32-8 Benzo(a)pyrene Benzo(b)fluoranthene ND ug/kg 7.1 1 11/19/10 15:15 11/23/10 02:10 205-99-2 11/19/10 15:15 11/23/10 02:10 191-24-2 Benzo(g,h,i)perylene ND ug/kg 7.1 1 Benzo(k)fluoranthene ND ua/ka 7.1 1 11/19/10 15:15 11/23/10 02:10 207-08-9 8.9 ug/kg 7.1 11/19/10 15:15 11/23/10 02:10 218-01-9 Chrysene

Date: 12/02/2010 06:06 PM

REPORT OF LABORATORY ANALYSIS

Page 10 of 28

Project: Olympia Soils
Pace Project No.: 255708

Date: 12/02/2010 06:06 PM

Lab ID: 255708005 Received: 11/12/10 09:03 Sample: SPL-12-5 Collected: 11/11/10 08:15 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 7.1 Dibenz(a,h)anthracene ND ug/kg 11/19/10 15:15 11/23/10 02:10 53-70-3 Fluoranthene 13.9 ug/kg 7.1 11/19/10 15:15 11/23/10 02:10 206-44-0 Fluorene ND ug/kg 7.1 11/19/10 15:15 11/23/10 02:10 86-73-7 1 Indeno(1,2,3-cd)pyrene ND ug/kg 7.1 11/19/10 15:15 11/23/10 02:10 193-39-5 1 11/19/10 15:15 11/23/10 02:10 90-12-0 1-Methylnaphthalene ND ug/kg 7.1 1 2-Methylnaphthalene ND ug/kg 7.1 11/19/10 15:15 11/23/10 02:10 91-57-6 1 Naphthalene ND ug/kg 7.1 11/19/10 15:15 11/23/10 02:10 91-20-3 1 Phenanthrene 11.6 ug/kg 7.1 11/19/10 15:15 11/23/10 02:10 85-01-8 1 11/19/10 15:15 11/23/10 02:10 129-00-0 Pyrene 20.0 ug/kg 7.1 1 2-Fluorobiphenyl (S) 65 % 31-131 11/19/10 15:15 11/23/10 02:10 321-60-8 1 Terphenyl-d14 (S) 62 % 30-133 11/19/10 15:15 11/23/10 02:10 1718-51-0 1 8260/5035A Volatile Organics Analytical Method: EPA 8260 11/13/10 20:09 71-43-2 ND ug/kg 3.0 1 Benzene 11/13/10 20:09 100-41-4 Ethylbenzene ND ug/kg 3.0 1 Toluene ND ug/kg 3.0 1 11/13/10 20:09 108-88-3 Xylene (Total) ND ug/kg 9.0 1 11/13/10 20:09 1330-20-7 Dibromofluoromethane (S) 80-136 11/13/10 20:09 1868-53-7 91 % 1 Toluene-d8 (S) 113 % 80-120 1 11/13/10 20:09 2037-26-5 4-Bromofluorobenzene (S) 113 % 72-122 11/13/10 20:09 460-00-4 1 1,2-Dichloroethane-d4 (S) 99 % 80-143 11/13/10 20:09 17060-07-0 1 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 8.8 % 0.10 1 11/15/10 14:12 Sample: SPL-12-6 Lab ID: 255708006 Collected: 11/11/10 08:30 Received: 11/12/10 09:03 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** CAS No. Results Units Report Limit DF Prepared Analyzed Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG ND mg/kg 21.3 11/19/10 16:35 11/23/10 03:45 1 Motor Oil Range SG ND mg/kg 85.0 11/19/10 16:35 11/23/10 03:45 64742-65-0 1 n-Octacosane (S) SG 115 % 50-150 11/19/10 16:35 11/23/10 03:45 630-02-4 1 o-Terphenyl (S) SG 106 % 50-150 11/19/10 16:35 11/23/10 03:45 84-15-1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 5.8 11/16/10 17:00 11/17/10 09:20 1 a,a,a-Trifluorotoluene (S) 112 % 50-150 11/16/10 17:00 11/17/10 09:20 98-08-8 1 4-Bromofluorobenzene (S) 96 % 50-150 1 11/16/10 17:00 11/17/10 09:20 460-00-4 **6020 MET ICPMS** Analytical Method: EPA 6020 **3.2** mg/kg 50 11/17/10 16:56 11/24/10 15:19 7440-38-2 Arsenic 1.3 Copper 11.6 mg/kg 1.3 50 11/17/10 16:56 11/24/10 15:19 7440-50-8

REPORT OF LABORATORY ANALYSIS

Page 11 of 28

Project: Olympia Soils
Pace Project No.: 255708

Lab ID: 255708006 Sample: SPL-12-6 Collected: 11/11/10 08:30 Received: 11/12/10 09:03 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **6020 MET ICPMS** Analytical Method: EPA 6020 Lead 3.3 mg/kg 1.3 50 11/17/10 16:56 11/24/10 15:19 7439-92-1 Nickel 26.3 mg/kg 1.3 50 11/17/10 16:56 11/24/10 15:19 7440-02-0 Analytical Method: % Moisture **Dry Weight** Percent Moisture 22.2 % 0.10 1 11/16/10 00:00 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Acenaphthene ND ug/kg 7.3 11/19/10 15:15 11/23/10 02:26 83-32-9 Acenaphthylene ND ug/kg 7.3 1 11/19/10 15:15 11/23/10 02:26 208-96-8 Anthracene ND ug/kg 7.3 1 11/19/10 15:15 11/23/10 02:26 120-12-7 Benzo(a)anthracene ND ug/kg 7.3 1 11/19/10 15:15 11/23/10 02:26 56-55-3 Benzo(a)pyrene ND ug/kg 7.3 11/19/10 15:15 11/23/10 02:26 50-32-8 1 Benzo(b)fluoranthene ND ug/kg 7.3 1 11/19/10 15:15 11/23/10 02:26 205-99-2 ND ug/kg 7.3 Benzo(g,h,i)perylene 1 11/19/10 15:15 11/23/10 02:26 191-24-2 7.3 Benzo(k)fluoranthene ND ug/kg 11/19/10 15:15 11/23/10 02:26 207-08-9 1 7.3 Chrysene ND ug/kg 11/19/10 15:15 11/23/10 02:26 218-01-9 1 Dibenz(a,h)anthracene ND ug/kg 7.3 11/19/10 15:15 11/23/10 02:26 53-70-3 1 Fluoranthene 7.3 11/19/10 15:15 11/23/10 02:26 206-44-0 ND ug/kg 1 Fluorene ND ug/kg 7.3 1 11/19/10 15:15 11/23/10 02:26 86-73-7 Indeno(1,2,3-cd)pyrene ND ug/kg 7.3 11/19/10 15:15 11/23/10 02:26 193-39-5 1-Methylnaphthalene ND ug/kg 7.3 11/19/10 15:15 11/23/10 02:26 90-12-0 2-Methylnaphthalene 11/19/10 15:15 11/23/10 02:26 91-57-6 ND ug/kg 7.3 11/19/10 15:15 11/23/10 02:26 91-20-3 Naphthalene ND ug/kg 7.3 Phenanthrene ND ug/kg 7.3 11/19/10 15:15 11/23/10 02:26 85-01-8 1 Pvrene 7.3 11/19/10 15:15 11/23/10 02:26 129-00-0 ND ug/kg 1 31-131 2-Fluorobiphenyl (S) 69 % 11/19/10 15:15 11/23/10 02:26 321-60-8 1 30-133 11/19/10 15:15 11/23/10 02:26 1718-51-0 Terphenyl-d14 (S) 69 % 8260/5035A Volatile Organics Analytical Method: EPA 8260 ND ug/kg 11/13/10 20:28 71-43-2 Benzene 3.1 1 Ethylbenzene ND ug/kg 11/13/10 20:28 100-41-4 3.1 1 Toluene ND ug/kg 3.1 11/13/10 20:28 108-88-3 1 Xylene (Total) ND ug/kg 9.4 1 11/13/10 20:28 1330-20-7 Dibromofluoromethane (S) 93 % 80-136 1 11/13/10 20:28 1868-53-7 Toluene-d8 (S) 113 % 80-120 11/13/10 20:28 2037-26-5 1 4-Bromofluorobenzene (S) 113 % 72-122 11/13/10 20:28 460-00-4 1 1,2-Dichloroethane-d4 (S) 98 % 11/13/10 20:28 17060-07-0 80-143 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 8.6 % 0.10 11/15/10 14:13 1

Date: 12/02/2010 06:06 PM

REPORT OF LABORATORY ANALYSIS

Page 12 of 28

Project: Olympia Soils

Pace Project No.: 255708 Lab ID: 255708007 Sample: SPL-12-7 Collected: 11/11/10 09:15 Received: 11/12/10 09:03 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 22.1 Diesel Range SG ND mg/kg 11/19/10 16:35 11/23/10 04:01 88.3 Motor Oil Range SG ND mg/kg 1 11/19/10 16:35 11/23/10 04:01 64742-65-0 n-Octacosane (S) SG 120 % 50-150 11/19/10 16:35 11/23/10 04:01 630-02-4 1 o-Terphenyl (S) SG 111 % 50-150 11/19/10 16:35 11/23/10 04:01 84-15-1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics 6.0 11/16/10 17:00 11/17/10 09:43 ND mg/kg a.a.a-Trifluorotoluene (S) 110 % 50-150 1 11/16/10 17:00 11/17/10 09:43 98-08-8 4-Bromofluorobenzene (S) 98 % 50-150 1 11/16/10 17:00 11/17/10 09:43 460-00-4 **6020 MET ICPMS** Analytical Method: EPA 6020 Arsenic 3.4 mg/kg 1.0 50 11/17/10 16:56 11/24/10 15:24 7440-38-2 Copper 12.2 mg/kg 1.0 50 11/17/10 16:56 11/24/10 15:24 7440-50-8 Lead 2.4 mg/kg 1.0 50 11/17/10 16:56 11/24/10 15:24 7439-92-1 Nickel 50 30.4 mg/kg 1.0 11/17/10 16:56 11/24/10 15:24 7440-02-0 **Dry Weight** Analytical Method: % Moisture 24.2 % 11/16/10 00:00 Percent Moisture 0.101 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Acenaphthene ND ua/ka 7.4 11/19/10 15:15 11/23/10 02:42 83-32-9 1 ND ug/kg 7.4 11/19/10 15:15 11/23/10 02:42 208-96-8 Acenaphthylene 1 11/19/10 15:15 11/23/10 02:42 120-12-7 Anthracene 8.2 ug/kg 7 4 1 Benzo(a)anthracene 28.7 ug/kg 7.4 11/19/10 15:15 11/23/10 02:42 56-55-3 1 Benzo(a)pyrene 36.6 ug/kg 7.4 1 11/19/10 15:15 11/23/10 02:42 50-32-8 Benzo(b)fluoranthene 17.1 ug/kg 7.4 1 11/19/10 15:15 11/23/10 02:42 205-99-2 Benzo(g,h,i)perylene 18.5 ug/kg 7.4 1 11/19/10 15:15 11/23/10 02:42 191-24-2 Benzo(k)fluoranthene 25.9 ug/kg 7.4 1 11/19/10 15:15 11/23/10 02:42 207-08-9 Chrysene **32.1** ug/kg 7.4 1 11/19/10 15:15 11/23/10 02:42 218-01-9 Dibenz(a,h)anthracene ND ug/kg 7.4 1 11/19/10 15:15 11/23/10 02:42 53-70-3 50.5 ug/kg Fluoranthene 7.4 11/19/10 15:15 11/23/10 02:42 206-44-0 1 Fluorene ND ug/kg 7.4 11/19/10 15:15 11/23/10 02:42 86-73-7 1 **15.7** ug/kg 7.4 Indeno(1,2,3-cd)pyrene 11/19/10 15:15 11/23/10 02:42 193-39-5 1 1-Methylnaphthalene ND ug/kg 7.4 11/19/10 15:15 11/23/10 02:42 90-12-0 1 2-Methylnaphthalene ND ug/kg 7.4 11/19/10 15:15 11/23/10 02:42 91-57-6 1 Naphthalene 7.4 11/19/10 15:15 11/23/10 02:42 91-20-3 ND ug/kg 1 Phenanthrene 26.0 ug/kg 7.4 1 11/19/10 15:15 11/23/10 02:42 85-01-8 Pyrene 75.2 ug/kg 7.4 1 11/19/10 15:15 11/23/10 02:42 129-00-0 2-Fluorobiphenyl (S) 69 % 31-131 11/19/10 15:15 11/23/10 02:42 321-60-8 1 Terphenyl-d14 (S) 30-133 68 % 1 11/19/10 15:15 11/23/10 02:42 1718-51-0 8260/5035A Volatile Organics Analytical Method: EPA 8260 11/13/10 20:47 71-43-2 Benzene ND ug/kg 3.1 1 Ethylbenzene ND ua/ka 3.1 1 11/13/10 20:47 100-41-4 Toluene ND ug/kg 3.1 11/13/10 20:47 108-88-3

Date: 12/02/2010 06:06 PM

REPORT OF LABORATORY ANALYSIS

Page 13 of 28

Project: Olympia Soils Pace Project No.: 255708

Lab ID: 255708007 Sample: SPL-12-7 Collected: 11/11/10 09:15 Received: 11/12/10 09:03 Matrix: Solid

Results reported on a "dry-weight	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260/5035A Volatile Organics	Analytical Met	thod: EPA 8260)					
Xylene (Total)	ND ug	g/kg	9.2	1		11/13/10 20:47	1330-20-7	
Dibromofluoromethane (S)	88 %)	80-136	1		11/13/10 20:47	1868-53-7	
Toluene-d8 (S)	115 %)	80-120	1		11/13/10 20:47	2037-26-5	
4-Bromofluorobenzene (S)	115 %)	72-122	1		11/13/10 20:47	460-00-4	
1,2-Dichloroethane-d4 (S)	98 %		80-143	1		11/13/10 20:47	17060-07-0	
Percent Moisture	Analytical Met	thod: ASTM D2	974-87					
Percent Moisture	10.8 %	·)	0.10	1		11/15/10 14:13		

Date: 12/02/2010 06:06 PM

REPORT OF LABORATORY ANALYSIS

Project: Olympia Soils
Pace Project No.: 255708

QC Batch: OEXT/3010 Analysis Method: NWTPH-Dx
QC Batch Method: EPA 3546 Analysis Description: NWTPH-Dx GCS

Associated Lab Samples: 255708001, 255708002, 255708003, 255708004, 255708005, 255708006, 255708007

METHOD BLANK: 50101 Matrix: Solid

Associated Lab Samples: 255708001, 255708002, 255708003, 255708004, 255708005, 255708006, 255708007

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Diesel Range SG	mg/kg	ND	20.0	11/22/10 23:27	
Motor Oil Range SG	mg/kg	ND	80.0	11/22/10 23:27	
n-Octacosane (S) SG	%	119	50-150	11/22/10 23:27	
o-Terphenyl (S) SG	%	108	50-150	11/22/10 23:27	

LABORATORY CONTROL SAMPLE: 50102

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Diesel Range SG	mg/kg	500	436	87	56-124	
Motor Oil Range SG	mg/kg	500	531	106	50-150	
n-Octacosane (S) SG	%			118	50-150	
o-Terphenyl (S) SG	%			117	50-150	

SAMPLE DUPLICATE: 50103

Parameter	Units	255745002 Result	Dup Result	RPD	Qualifiers
Diesel Range SG	mg/kg	ND ND	6.2J		
Motor Oil Range SG	mg/kg	ND	ND		
n-Octacosane (S) SG	%	90	88	3	
o-Terphenyl (S) SG	%	92	90	2	

SAMPLE DUPLICATE: 50104

		255708007	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Diesel Range SG	mg/kg	ND	ND		_
Motor Oil Range SG	mg/kg	ND	ND		
n-Octacosane (S) SG	%	120	120		2
o-Terphenyl (S) SG	%	111	111	;	3

Date: 12/02/2010 06:06 PM REPORT OF LABORATORY ANALYSIS

Page 15 of 28

Project: Olympia Soils
Pace Project No.: 255708

QC Batch: GCV/2028 Analysis Method: NWTPH-Gx

QC Batch Method: NWTPH-Gx Analysis Description: NWTPH-Gx Solid GCV
Associated Lab Samples: 255708001, 255708002, 255708003, 255708004, 255708005, 255708006, 255708007

METHOD BLANK: 49707 Matrix: Solid

Associated Lab Samples: 255708001, 255708002, 255708003, 255708004, 255708005, 255708006, 255708007

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Gasoline Range Organics	mg/kg	ND ND	5.0	11/17/10 02:16	
4-Bromofluorobenzene (S)	%	96	50-150	11/17/10 02:16	
a,a,a-Trifluorotoluene (S)	%	104	50-150	11/17/10 02:16	

LABORATORY CONTROL SAMPLE: 49708

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Gasoline Range Organics	mg/kg	12.5	13.7	110	54-156	
4-Bromofluorobenzene (S)	%			95	50-150	
a,a,a-Trifluorotoluene (S)	%			99	50-150	

SAMPLE DUPLICATE: 49856

Parameter	Units	255708003 Result	Dup Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND	.92J		
4-Bromofluorobenzene (S)	%	75	86	13	
a,a,a-Trifluorotoluene (S)	%	96	105	9	

SAMPLE DUPLICATE: 49857

		255708007	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND	.84J		
4-Bromofluorobenzene (S)	%	98	97	1	
a,a,a-Trifluorotoluene (S)	%	110	107	3	

Date: 12/02/2010 06:06 PM REPORT OF LABORATORY ANALYSIS

Page 16 of 28

Project: Olympia Soils
Pace Project No.: 255708

QC Batch: ICPM/23533 Analysis Method: EPA 6020
QC Batch Method: EPA 6020 Analysis Description: 6020 MET

Associated Lab Samples: 255708001, 255708002, 255708003, 255708004, 255708005, 255708006, 255708007

METHOD BLANK: 892711 Matrix: Solid

Associated Lab Samples: 255708001, 255708002, 255708003, 255708004, 255708005, 255708006, 255708007

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	mg/kg	ND	0.45	11/24/10 17:36	
Copper	mg/kg	ND	0.45	11/24/10 17:36	
Lead	mg/kg	ND	0.45	11/24/10 17:36	
Nickel	mg/kg	ND	0.45	11/24/10 17:36	

LABORATORY CONTROL SAMPLE: 892712

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	 mg/kg		18.8	98	75-125	
Copper	mg/kg	19	19.5	103	75-125	
Lead	mg/kg	19	18.9	99	75-125	
Nickel	mg/kg	19	19.2	101	75-125	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 892714 892713 MSD MS MS MSD MS MSD 255708001 Spike Spike % Rec Parameter Units Conc. Result % Rec RPD Qual Result Conc. Result % Rec Limits 3.9 17.4 27.6 75-125 16 M6 Arsenic mg/kg 17.7 23.6 111 136 12.3 32.4 56.4 113 253 75-125 54 D6,M6 Copper mg/kg 17.7 17.4 Lead mg/kg 2.6 17.7 17.4 20.9 24.6 103 126 75-125 17 M6 23.6 Nickel 17.7 17.4 48.3 58.0 139 197 75-125 18 M6 mg/kg

Date: 12/02/2010 06:06 PM

Project: Olympia Soils
Pace Project No.: 255708

QC Batch: MPRP/23557 Analysis Method: % Moisture

QC Batch Method: % Moisture Analysis Description: Dry Weight/Percent Moisture
Associated Lab Samples: 255708001, 255708002, 255708003, 255708004, 255708005, 255708006, 255708007

SAMPLE DUPLICATE: 893330

 Parameter
 Units
 Z55708007 Result
 Dup Result
 RPD
 Qualifiers

 Percent Moisture
 %
 24.2
 23.4
 3

SAMPLE DUPLICATE: 893444

Percent Moisture		38.4	38.0	.9	
Parameter	Units	Result	Result	RPD	Qualifiers
		10143060008	Dup		

Date: 12/02/2010 06:06 PM REPORT OF LABORATORY ANALYSIS

Page 18 of 28

Project: Olympia Soils
Pace Project No.: 255708

QC Batch: OEXT/2985 Analysis Method: EPA 8270 by SIM

QC Batch Method: EPA 3546 Analysis Description: 8270/3546 MSSV PAH by SIM

Associated Lab Samples: 255708001, 255708002, 255708003

METHOD BLANK: 49594 Matrix: Solid

Associated Lab Samples: 255708001, 255708002, 255708003

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/kg	ND	6.7	11/17/10 12:42	
2-Methylnaphthalene	ug/kg	ND	6.7	11/17/10 12:42	
Acenaphthene	ug/kg	ND	6.7	11/17/10 12:42	
Acenaphthylene	ug/kg	ND	6.7	11/17/10 12:42	
Anthracene	ug/kg	ND	6.7	11/17/10 12:42	
Benzo(a)anthracene	ug/kg	ND	6.7	11/17/10 12:42	
Benzo(a)pyrene	ug/kg	ND	6.7	11/17/10 12:42	
Benzo(b)fluoranthene	ug/kg	ND	6.7	11/17/10 12:42	
Benzo(g,h,i)perylene	ug/kg	ND	6.7	11/17/10 12:42	
Benzo(k)fluoranthene	ug/kg	ND	6.7	11/17/10 12:42	
Chrysene	ug/kg	ND	6.7	11/17/10 12:42	
Dibenz(a,h)anthracene	ug/kg	ND	6.7	11/17/10 12:42	
Fluoranthene	ug/kg	ND	6.7	11/17/10 12:42	
Fluorene	ug/kg	ND	6.7	11/17/10 12:42	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	6.7	11/17/10 12:42	
Naphthalene	ug/kg	ND	6.7	11/17/10 12:42	
Phenanthrene	ug/kg	ND	6.7	11/17/10 12:42	
Pyrene	ug/kg	ND	6.7	11/17/10 12:42	
2-Fluorobiphenyl (S)	%	68	31-131	11/17/10 12:42	
Terphenyl-d14 (S)	%	86	30-133	11/17/10 12:42	

	LABORATORY	CONTROL	SAMPLE:	49595
--	-------------------	---------	---------	-------

	.0000					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/kg	133	104	78	37-121	
2-Methylnaphthalene	ug/kg	133	106	79	33-132	
Acenaphthene	ug/kg	133	101	76	32-127	
Acenaphthylene	ug/kg	133	99.0	74	31-134	
Anthracene	ug/kg	133	99.1	74	42-135	
Benzo(a)anthracene	ug/kg	133	112	84	43-139	
Benzo(a)pyrene	ug/kg	133	118	89	44-144	
Benzo(b)fluoranthene	ug/kg	133	106	80	42-144	
Benzo(g,h,i)perylene	ug/kg	133	112	84	46-136	
Benzo(k)fluoranthene	ug/kg	133	113	85	45-147	
Chrysene	ug/kg	133	109	82	42-144	
Dibenz(a,h)anthracene	ug/kg	133	113	85	48-142	
Fluoranthene	ug/kg	133	104	78	44-143	
Fluorene	ug/kg	133	104	78	32-146	
Indeno(1,2,3-cd)pyrene	ug/kg	133	113	85	47-140	
Naphthalene	ug/kg	133	96.3	72	35-118	
Phenanthrene	ug/kg	133	104	78	42-131	

Date: 12/02/2010 06:06 PM

REPORT OF LABORATORY ANALYSIS

Page 19 of 28

Project: Olympia Soils
Pace Project No.: 255708

LABORATORY CONTROL SAMPLE: 49595

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Pyrene	ug/kg	133	121	91	47-136	
2-Fluorobiphenyl (S)	%			76	31-131	
Terphenyl-d14 (S)	%			93	30-133	

MATRIX SPIKE & MATRIX S	PIKE DUPLICAT	E: 49596			49597						
			MS	MSD							
	:	255590001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
-Methylnaphthalene	ug/kg	ND	146	145	111	127	75	85	31-123	13	
2-Methylnaphthalene	ug/kg	ND	146	145	114	154	74	101	15-146	30 R1	
Acenaphthene	ug/kg	ND	146	145	109	109	74	74	19-141	.1	
Acenaphthylene	ug/kg	8.3	146	145	110	110	70	70	30-142	.2	
Anthracene	ug/kg	8.6	146	145	107	112	68	71	38-137	4	
Benzo(a)anthracene	ug/kg	26.1	146	145	120	129	65	71	37-143	7	
Benzo(a)pyrene	ug/kg	28.9	146	145	124	136	66	74	33-147	9	
Benzo(b)fluoranthene	ug/kg	15.5	146	145	121	122	72	73	25-156	1	
Benzo(g,h,i)perylene	ug/kg	24.7	146	145	113	118	60	64	26-142	5	
Benzo(k)fluoranthene	ug/kg	24.2	146	145	101	109	52	58	35-142	8	
Chrysene	ug/kg	31.8	146	145	122	133	62	70	23-150	9	
Dibenz(a,h)anthracene	ug/kg	ND	146	145	106	108	68	70	41-140	2	
Fluoranthene	ug/kg	51.2	146	145	120	144	47	64	25-155	18	
Fluorene	ug/kg	ND	146	145	114	114	75	75	33-152	.6	
ndeno(1,2,3-cd)pyrene	ug/kg	16.2	146	145	109	116	64	69	36-139	6	
Naphthalene	ug/kg	14.3	146	145	107	118	64	71	25-121	10	
Phenanthrene	ug/kg	33.9	146	145	133	148	68	79	29-141	11	
Pyrene	ug/kg	78.0	146	145	155	181	53	71	36-145	15	
2-Fluorobiphenyl (S)	%						73	71	31-131		
Terphenyl-d14 (S)	%						79	77	30-133		

Date: 12/02/2010 06:06 PM

REPORT OF LABORATORY ANALYSIS

Page 20 of 28

Project: Olympia Soils
Pace Project No.: 255708

QC Batch: OEXT/3011 Analysis Method: EPA 8270 by SIM

QC Batch Method: EPA 3546 Analysis Description: 8270/3546 MSSV PAH by SIM

Associated Lab Samples: 255708004, 255708005, 255708006, 255708007

METHOD BLANK: 50105 Matrix: Solid

Associated Lab Samples: 255708004, 255708005, 255708006, 255708007

Parameter Units		Blank Result	Reporting Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/kg	ND -	6.7	11/23/10 00:33	
2-Methylnaphthalene	ug/kg	ND	6.7	11/23/10 00:33	
Acenaphthene	ug/kg	ND	6.7	11/23/10 00:33	
Acenaphthylene	ug/kg	ND	6.7	11/23/10 00:33	
Anthracene	ug/kg	ND	6.7	11/23/10 00:33	
Benzo(a)anthracene	ug/kg	ND	6.7	11/23/10 00:33	
Benzo(a)pyrene	ug/kg	ND	6.7	11/23/10 00:33	
Benzo(b)fluoranthene	ug/kg	ND	6.7	11/23/10 00:33	
Benzo(g,h,i)perylene	ug/kg	ND	6.7	11/23/10 00:33	
Benzo(k)fluoranthene	ug/kg	ND	6.7	11/23/10 00:33	
Chrysene	ug/kg	ND	6.7	11/23/10 00:33	
Dibenz(a,h)anthracene	ug/kg	ND	6.7	11/23/10 00:33	
Fluoranthene	ug/kg	ND	6.7	11/23/10 00:33	
Fluorene	ug/kg	ND	6.7	11/23/10 00:33	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	6.7	11/23/10 00:33	
Naphthalene	ug/kg	ND	6.7	11/23/10 00:33	
Phenanthrene	ug/kg	ND	6.7	11/23/10 00:33	
Pyrene	ug/kg	ND	6.7	11/23/10 00:33	
2-Fluorobiphenyl (S)	%	61	31-131	11/23/10 00:33	
Terphenyl-d14 (S)	%	73	30-133	11/23/10 00:33	

LABORATORY CONTROL SAMPLE: 5010	_ABORATORY	Y CONTROL	SAMPLE:	50106
---------------------------------	------------	-----------	---------	-------

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/kg	133	87.6	66	37-121	
2-Methylnaphthalene	ug/kg	133	90.3	68	33-132	
Acenaphthene	ug/kg	133	85.7	64	32-127	
Acenaphthylene	ug/kg	133	84.2	63	31-134	
Anthracene	ug/kg	133	82.7	62	42-135	
Benzo(a)anthracene	ug/kg	133	96.7	73	43-139	
Benzo(a)pyrene	ug/kg	133	111	83	44-144	
Benzo(b)fluoranthene	ug/kg	133	104	78	42-144	
Benzo(g,h,i)perylene	ug/kg	133	99.7	75	46-136	
Benzo(k)fluoranthene	ug/kg	133	117	88	45-147	
Chrysene	ug/kg	133	98.8	74	42-144	
Dibenz(a,h)anthracene	ug/kg	133	102	77	48-142	
Fluoranthene	ug/kg	133	90.2	68	44-143	
Fluorene	ug/kg	133	90.7	68	32-146	
Indeno(1,2,3-cd)pyrene	ug/kg	133	104	78	47-140	
Naphthalene	ug/kg	133	83.0	62	35-118	
Phenanthrene	ug/kg	133	92.8	70	42-131	

Date: 12/02/2010 06:06 PM

REPORT OF LABORATORY ANALYSIS

Page 21 of 28

Project: Olympia Soils
Pace Project No.: 255708

LABORATORY CONTROL SAMPLE: 50106

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Pyrene	ug/kg	133	105	78	47-136	
2-Fluorobiphenyl (S)	%			64	31-131	
Terphenyl-d14 (S)	%			68	30-133	

MATRIX SPIKE & MATRIX S	PIKE DUPLICAT	E: 50107			50108						
			MS	MSD							
	:	255745001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1-Methylnaphthalene	ug/kg	63.2	173	173	170	168	62	61	31-123	1	
2-Methylnaphthalene	ug/kg	82.5	173	173	193	185	64	59	15-146	4	
Acenaphthene	ug/kg	ND	173	173	121	125	67	70	19-141	4	
Acenaphthylene	ug/kg	ND	173	173	115	122	66	70	30-142	6	
Anthracene	ug/kg	ND	173	173	117	122	67	70	38-137	4	
Benzo(a)anthracene	ug/kg	ND	173	173	134	134	77	78	37-143	.6	
Benzo(a)pyrene	ug/kg	ND	173	173	140	140	81	81	33-147	.2	
Benzo(b)fluoranthene	ug/kg	ND	173	173	140	144	81	83	25-156	3	
Benzo(g,h,i)perylene	ug/kg	ND	173	173	125	127	72	73	26-142	1	
Benzo(k)fluoranthene	ug/kg	ND	173	173	138	139	80	80	35-142	.1	
Chrysene	ug/kg	ND	173	173	134	139	77	80	23-150	3	
Dibenz(a,h)anthracene	ug/kg	ND	173	173	125	128	72	74	41-140	2	
Fluoranthene	ug/kg	ND	173	173	129	131	74	76	25-155	2	
Fluorene	ug/kg	ND	173	173	130	138	71	76	33-152	6	
ndeno(1,2,3-cd)pyrene	ug/kg	ND	173	173	129	130	74	75	36-139	1	
Naphthalene	ug/kg	14.8	173	173	124	126	63	64	25-121	2	
Phenanthrene	ug/kg	11.2	173	173	134	137	71	72	29-141	2	
Pyrene	ug/kg	ND	173	173	141	144	81	83	36-145	2	
2-Fluorobiphenyl (S)	%						63	67	31-131		
Геrphenyl-d14 (S)	%						64	66	30-133		

Date: 12/02/2010 06:06 PM

REPORT OF LABORATORY ANALYSIS

Page 22 of 28

Project: Olympia Soils
Pace Project No.: 255708

QC Batch: MSV/3507 Analysis Method: EPA 8260

QC Batch Method: EPA 5035A/5030B Analysis Description: 8260 MSV 5035A Medium Soil

Associated Lab Samples: 255708002

METHOD BLANK: 50495 Matrix: Solid

Associated Lab Samples: 255708002

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND	25.0	11/24/10 16:07	
Ethylbenzene	ug/kg	ND	50.0	11/24/10 16:07	
Toluene	ug/kg	ND	50.0	11/24/10 16:07	
Xylene (Total)	ug/kg	ND	150	11/24/10 16:07	
1,2-Dichloroethane-d4 (S)	%	88	76-115	11/24/10 16:07	
4-Bromofluorobenzene (S)	%	94	78-127	11/24/10 16:07	
Dibromofluoromethane (S)	%	90	81-114	11/24/10 16:07	
Toluene-d8 (S)	%	91	84-121	11/24/10 16:07	

LABORATORY CONTROL SAMI	PLE & LCSD: 50496		50)497						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene	ug/kg	1000	956	960	96	96	78-123	.4	30	
Ethylbenzene	ug/kg	1000	970	977	97	98	74-120	.7	30	
Toluene	ug/kg	1000	929	957	93	96	70-121	3	30	
Xylene (Total)	ug/kg	3000	2910	2880	97	96	76-120	1	30	
1,2-Dichloroethane-d4 (S)	%				87	89	76-115			
4-Bromofluorobenzene (S)	%				94	95	78-127			
Dibromofluoromethane (S)	%				95	92	81-114			
Toluene-d8 (S)	%				94	96	84-121			

Date: 12/02/2010 06:06 PM

Project: Olympia Soils
Pace Project No.: 255708

QC Batch: MSV/3441 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5035A Volatile Organics

Associated Lab Samples: 255708001, 255708003, 255708004, 255708005, 255708006, 255708007

METHOD BLANK: 49435 Matrix: Solid

Associated Lab Samples: 255708001, 255708003, 255708004, 255708005, 255708006, 255708007

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND	3.0	11/13/10 17:57	
Ethylbenzene	ug/kg	ND	3.0	11/13/10 17:57	
Toluene	ug/kg	ND	3.0	11/13/10 17:57	
Xylene (Total)	ug/kg	ND	9.0	11/13/10 17:57	
1,2-Dichloroethane-d4 (S)	%	98	80-143	11/13/10 17:57	
4-Bromofluorobenzene (S)	%	109	72-122	11/13/10 17:57	
Dibromofluoromethane (S)	%	92	80-136	11/13/10 17:57	
Toluene-d8 (S)	%	110	80-120	11/13/10 17:57	

LABORATORY CONTROL SAME	PLE & LCSD: 49436		49	9437						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene	ug/kg	50	46.3	45.2	93	90	75-133	3	30	
Ethylbenzene	ug/kg	50	47.3	46.5	95	93	68-131	2	30	
Toluene	ug/kg	50	46.7	45.1	93	90	73-124	3	30	
Xylene (Total)	ug/kg	150	136	134	91	89	68-130	1	30	
1,2-Dichloroethane-d4 (S)	%				104	100	80-143			
4-Bromofluorobenzene (S)	%				111	115	72-122			
Dibromofluoromethane (S)	%				101	100	80-136			
Toluene-d8 (S)	%				106	106	80-120			

Date: 12/02/2010 06:06 PM

Project: Olympia Soils
Pace Project No.: 255708

QC Batch: PMST/1428 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture Associated Lab Samples: 255708001, 255708002, 255708003, 255708004, 255708005, 255708006, 255708007

SAMPLE DUPLICATE: 49589

255708002 Dup
Parameter Units Result Result RPD Qualifiers

Percent Moisture % 7.3 8.0 8

SAMPLE DUPLICATE: 49590

ParameterUnits255633001 ResultDup ResultRPDQualifiersPercent Moisture%6.57.19

Date: 12/02/2010 06:06 PM

REPORT OF LABORATORY ANALYSIS

QUALIFIERS

Project: Olympia Soils
Pace Project No.: 255708

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-M	Pace Analytical Services - Minneapolis
PASI-S	Pace Analytical Services - Seattle

ANALYTE QUALIFIERS

Date: 12/02/2010 06:06 PM

D6	The relative percent difference	(RPD) between the sample	and sample duplicate ex	ceeded laboratory control limits.

M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

R1 RPD value was outside control limits.

Surrogate recovery exceeded laboratory control limits. Analyte presence below reporting limits in associated samples.

Results unaffected by high bias.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Olympia Soils
Pace Project No.: 255708

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
255708001	SPL-12-1	EPA 3546	OEXT/3010	NWTPH-Dx	GCSV/2097
255708002	SPL-12-2	EPA 3546	OEXT/3010	NWTPH-Dx	GCSV/2097
255708003	SPL-12-3	EPA 3546	OEXT/3010	NWTPH-Dx	GCSV/2097
255708004	SPL-12-4	EPA 3546	OEXT/3010	NWTPH-Dx	GCSV/2097
255708005	SPL-12-5	EPA 3546	OEXT/3010	NWTPH-Dx	GCSV/2097
255708006	SPL-12-6	EPA 3546	OEXT/3010	NWTPH-Dx	GCSV/2097
255708007	SPL-12-7	EPA 3546	OEXT/3010	NWTPH-Dx	GCSV/2097
255708001	SPL-12-1	NWTPH-Gx	GCV/2028	NWTPH-Gx	GCV/2032
255708002	SPL-12-2	NWTPH-Gx	GCV/2028	NWTPH-Gx	GCV/2032
255708003	SPL-12-3	NWTPH-Gx	GCV/2028	NWTPH-Gx	GCV/2032
255708004	SPL-12-4	NWTPH-Gx	GCV/2028	NWTPH-Gx	GCV/2032
255708005	SPL-12-5	NWTPH-Gx	GCV/2028	NWTPH-Gx	GCV/2032
255708006	SPL-12-6	NWTPH-Gx	GCV/2028	NWTPH-Gx	GCV/2032
255708007	SPL-12-7	NWTPH-Gx	GCV/2028	NWTPH-Gx	GCV/2032
255708001	SPL-12-1	EPA 6020	ICPM/23533	EPA 6020	ICPM/9581
255708002	SPL-12-2	EPA 6020	ICPM/23533	EPA 6020	ICPM/9581
255708003	SPL-12-3	EPA 6020	ICPM/23533	EPA 6020	ICPM/9581
255708004	SPL-12-4	EPA 6020	ICPM/23533	EPA 6020	ICPM/9581
255708005	SPL-12-5	EPA 6020	ICPM/23533	EPA 6020	ICPM/9581
255708006	SPL-12-6	EPA 6020	ICPM/23533	EPA 6020	ICPM/9581
255708007	SPL-12-7	EPA 6020	ICPM/23533	EPA 6020	ICPM/9581
255708001	SPL-12-1	% Moisture	MPRP/23557		
255708002	SPL-12-2	% Moisture	MPRP/23557		
255708003	SPL-12-3	% Moisture	MPRP/23557		
255708004	SPL-12-4	% Moisture	MPRP/23557		
255708005	SPL-12-5	% Moisture	MPRP/23557		
255708006	SPL-12-6	% Moisture	MPRP/23557		
255708007	SPL-12-7	% Moisture	MPRP/23557		
255708001	SPL-12-1	EPA 3546	OEXT/2985	EPA 8270 by SIM	MSSV/1440
255708002	SPL-12-2	EPA 3546	OEXT/2985	EPA 8270 by SIM	MSSV/1440
255708003	SPL-12-3	EPA 3546	OEXT/2985	EPA 8270 by SIM	MSSV/1440
255708004	SPL-12-4	EPA 3546	OEXT/3011	EPA 8270 by SIM	MSSV/1447
255708005	SPL-12-5	EPA 3546	OEXT/3011	EPA 8270 by SIM	MSSV/1447
255708006	SPL-12-6	EPA 3546	OEXT/3011	EPA 8270 by SIM	MSSV/1447
255708007	SPL-12-7	EPA 3546	OEXT/3011	EPA 8270 by SIM	MSSV/1447
255708002	SPL-12-2	EPA 5035A/5030B	MSV/3507	EPA 8260	MSV/3517
255708001	SPL-12-1	EPA 8260	MSV/3441		
255708003	SPL-12-3	EPA 8260	MSV/3441		
255708004	SPL-12-4	EPA 8260	MSV/3441		
255708005	SPL-12-5	EPA 8260	MSV/3441		
255708006	SPL-12-6	EPA 8260	MSV/3441		
255708007	SPL-12-7	EPA 8260	MSV/3441		
255708001	SPL-12-1	ASTM D2974-87	PMST/1428		
255708002	SPL-12-2	ASTM D2974-87	PMST/1428		
255708003	SPL-12-3	ASTM D2974-87	PMST/1428		

Date: 12/02/2010 06:06 PM

REPORT OF LABORATORY ANALYSIS

Page 27 of 28

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Olympia Soils
Pace Project No.: 255708

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
255708004	SPL-12-4	ASTM D2974-87	PMST/1428		
255708005	SPL-12-5	ASTM D2974-87	PMST/1428		
255708006	SPL-12-6	ASTM D2974-87	PMST/1428		
255708007	SPL-12-7	ASTM D2974-87	PMST/1428		

Date: 12/02/2010 06:06 PM

REPORT OF LABORATORY ANALYSIS

Page 28 of 28

Sample Condition Upon Receip Client Name: Brown & Caldwell

2 5 5 7 0 8 Project # Courier: Fed Ex UPS USPS Client Commercial Pace Other Tracking #: 8738 821 5071 ✓ Yes □ No Seals intact: Custody Seal on Cooler/Box Present: Bubble Bags None Other Temp. Blank Yes Packing Material: Dubble Wrap 132013 or 101731962 or 226099 Type of Ice: Wet Blue None Samples on ice, cooling process has begun Thermometer Used Date and Initials of person examining Biological Tissue is Frozen: Yes No contents: 111210 CW Cooler Temperature Comments: Temp should be above freezing ≤ 6 °C ØYes □No □N/A 1 Chain of Custody Present: ☑Yes □No □N/A Chain of Custody Filled Out: Yes ONO ONA Chain of Custody Relinquished: ØYes □No □N/A Sampler Name & Signature on COC: ∐Yes □No □N/A Samples Arrived within Hold Time: □Yes ☑No □N/A Short Hold Time Analysis (<72hr): ☑Yes □No ■N/A Rush Turn Around Time Requested: ☑Yes □No □N/A Sufficient Volume: ☑Yes □No □N/A Correct Containers Used: ØYes □No □N/A -Pace Containers Used: ØYes □No □N/A 10. Containers Intact: □Yes □No ØN/A Filtered volume received for Dissolved tests DYes DNO DNIA 12. RECVOLTAP blank not on COC Sample Labels match COC: Soil -Includes date/time/ID/Analysis Matrix: All containers needing preservation have been checked. □Yes □No □N/A 13. All containers needing preservation are found to be in □Yes □No compliance with EPA recommendation. Lot # of added Initial when preservative completed Exceptions: VOA, coliform, TOC, O&G ØN/A □Yes □No 14. Samples checked for dechlorination: ØN/A ☐Yes ☐No Headspace in VOA Vials (>6mm): ØYes □No X)N/A 16. Trip Blanks Present: ☑Yes □No Trip Blank Custody Seals Present Pace Trip Blank Lot # (if purchased): Y / N Field Data Required? Client Notification/ Resolution: Date/Time: Person Contacted: Comments/ Resolution:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e out of hold, incorrect preservative, out of temp, incorrect containers)

Project Manager Review:

Date:

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

*Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month or any invoices not paid within 30 days.		,	ORIGINAL				Relinguished to FEDEX	ADDITIONAL COMMENTS	12	11	10	9	00	1-61-765 2	0-61-192	5 -61-175 5	4 SPL-13-4	3 591-12-3	2 SPL-12-2	1 SPL-12-1	Waste Water WW Product P Poil/Solid SL SAMPLE ID OIL Wipe WP AR Sample IDs MUST BE UNIQUE Tissue TS Other OT	74	Section D Matrix Codes Required Client Information MATRIX / CODE	1	P. Dioxins-10d	- 360 943 7513	Com	420 Olympia WA	52 St	Company: Property + Collins / Report To:	Section A Section B Required Client Information: Required P
e's NET 30 day p		į	econica eco	٠	, Ja	C		RELINQ						4					_	ひち	A の刃 すご で を MATRIX CODE (see valid sample Type (G=GRAB	codes t			Project Number:	Project Name:	Purchase Order No.:		l . I		Section B Required Project Information:
ayment terms and agreeing to			SAMPLER			1	1-12-1	RELINQUISHED BY / AFFILIATION													START START TIME	COMPOSITE	COLLECTED		,	Dhympia			sλ	Turk	ormation:
o late charges of 1.5%	SIGNATURE of SAMPLER:	PRINT Name of SAMPLER:	SAMPLER NAME AND SIGNATURE			of.	BC) N/1	,					_		11/11/16 8:30	111111111111111111111111111111111111111	10/10	_	11 10/10 15:40	11/10/16 15:20	ENDIGRAB DATE TIME	COMPOSITE	CTED			Soils			02		
per mont	MPLER:	MPLER	NATUR				01/11/	DATE								,	7		0	3	SAMPLE TEMP AT COLLEC	TION									
or any invoices not paid	t	Jon 7	m				13:15	TIME						(-						X 7	# OF CONTAINERS Unpreserved H ₂ SO ₄ HNO ₃ HCI		Preser		Pace Profile #:	Pace Project Manager:	Pace Quote Reference:	Address: 724	"	Attention: Jash	Section C Invoice Information:
within 30 days.	1	mh					WHI WHA	ACCEPTED BY / AFFILIATION						<		9				××	NaOH Na ₂ S ₂ O ₃ Methanol Other H ₂		Preservatives.					Calum	200	140L 7	
	\ (a)						Juanes	BY / AF						e						×	I Analysis Test I Aresenic Ni, Cu, Pb		Y/ N	_				6/2	8	150	
	DATE Signed (MM/DD/YY):					•	1999	FILIATION						4						イメ	Oioxn/Fukan TPH-DB TPH-HC CPAH, Napinalen	L		Requested Analysis Filtered					1 devo 1/F	Z	
	w/w/10						111210	DATE						*						*	TPH-G, BTFX	54		าalysis Filteı	STATE:	Site Location	UST	NPDES	REGULATORY AGENCY		
	•						0203	TIME																ed (Y/N)	<u> </u>	•	RCRA	GRC	Y AGENO		و ا
F-A	Te	mp in	°C				2.20														B. 11. 101. 1. 4/h)					7 (A	GROUND WATER	۲		Page:
F-ALL-Q-020rev.07, 15-May-2007		celved					7	SAMP				:									Residual Chlorine (Y/N)					•	×	ATER		La)
07, 15-May	Sea	Custod led Co (Y/N)	ooler				-L.	SAMPLE CONDITIONS													Project N						OTHER	DRINKIN		000	9 -
.2007	Sam	iples I (Y/N)					7	SNO													Pace Project No./ Lab I.D.						ECY	DRINKING WATER		24	

Face Analytical*

CLIENT:	
Brown ? Caldwell	

COC PAGE of |

12	1	10	9	œ	7	6	Cn P	4	သ	2		Item
							V-100-100-100-100-100-100-100-100-100-10					VG9H
												AG1H AG1U
												AG1U
												BG1H
												BP1U BP2U
												4
												BP3U
												BP2N
												BP2S
					4			,			ا ا	WGFU
												WGKU
			•	4							escaperio	RESE
				6-							12	MEGIN
Trip Blank?			æ	trup blances not an acc								Comments

BP20 500mL NaOH plastic	BP2N 500mL HNO3 plastic	BP1Z 1 liter NaOH, Zn, Ac	BP1U 1 liter unpreserved plastic	BP1S 1 liter H2SO4 plastic	BP1N 1 liter HNO3 plastic	BG1U 1 liter unpreserved glass	BG1H 1 liter HCL clear glass	AG3S 250mL H2SO4 amber glass	AG2U 500mL unpreserved amber glass	AG2S 500mL H2SO4 amber glass	AG1U 1liter unpreserved amber glass	AG1H 1 liter HCL amber glass
I Wipe/Swab	DG9U 40mL unpreserved amber vial	DG9T 40mL Na Thio amber vial	DG9M 40mL MeOH clear vial	DG9H 40mL HCL amber voa vial	DG9B 40mL Na Bisulfate amber vial	BP3U 250mL unpreserved plastic	BP3S 250mL H2SO4 plastic	BP3N 250mL HNO3 plastic	BP3C 250mL NaOH plastic	BP2Z 500mL NaOH, Zn Ac	BP2U 500mL unpreserved plastic	BP2S 500mL H2SO4 plastic
		ZPLC Ziploc Bag	WGFX 4oz wide jar w/hexane wipe	WGFU 4oz clear soil jar	VSG Headspace septa vial & HCL	VG9W 40mL glass vial preweighted (EPA 5035)	VG9U 40mL unpreserved clear vial	VG9T 40mL Na Thio. clear vial	VG9H 40mL HCL clear vial	U Summa Can	R terra core kit	JGFU 4oz unpreserved amber wide

y'

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Jennifer Gross PASI Seattle 940 S. Harney Street Seattle WA 98108

> REPORT OF LABORATORY ANALYSIS FOR PCDD/PCDF

Report Information:

Pace Project #: 10143216

Sample Receipt Date: 11/13/2010

Client Project #: 255708 Brown & Caldwell

Client Sub PO #: N/A State Cert #: C755

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Nate Habte, your Pace Project Manager.

This report has been reviewed by:

November 30, 2010

Nate Habte, Project Manager

(612) 607-6407

(612) 607-6444 (fax)

natnael.habte@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

November 29, 2010

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on seven samples submitted by a representative of Pace Analytical Services, Inc. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290. Reporting limits were based on signal-to-noise measurements.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 57-96%. All of the labeled standard recoveries obtained for this project were within the 40-135% target range specified in Method 8290. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, interfering substances impacted the determinations of PCDD or PCDF congeners; the affected values were flagged "I" where incorrect isotope ratios were obtained or "P" where polychlorinated diphenyl ethers were present. Values above the calibration range were flagged "E" and should be regarded as estimates.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to contain trace levels of selected congeners. These were below the calibration range of the method. Sample levels similar to the corresponding blank levels were flagged "B" on the results tables and may be, at least partially, attributed to the background. It should be noted that levels less than ten times the background are not generally considered to be statistically different from the background.

Laboratory and matrix spike samples were also prepared with the sample batch using clean sand or sample matrix that had been fortified with native standard materials. The results show that the spiked native compounds were generally recovered at 87-126%, with relative percent differences (RPDs) of 4.2-26.4%. These results indicate generally high degrees of accuracy and precision for these determinations. Somewhat variable background-subtracted recovery (153-252%) and RPD (26.4%) results were obtained for OCDD in the matrix spike samples, possibly due to sample inhomogeneity; these values were above the 70-130% target recovery range and the 0-20% target RPD range. The RPD results may indicate an elevated degree of precision for OCDD in these determinations.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Tel: 612-607-1700 Fax: 612- 607-6444

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	
Arizona	AZ0014	Nevada	MN000642010A
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New Mexico	MN00064
Colorado	MN00064	New York (NEL	11647
Connecticut	PH-0256	North Carolina	27700
EPA Region 5	WD-15J	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Ohio VAP	CL101
Georgia (DNR)	959	Oklahoma	D9922
Guam	09-019r	Oregon (ELAP)	MN200001-005
Hawaii	SLD	Oregon (OREL	MN200001-005
Idaho	MN00064	Pennsylvania	68-00563
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennesee	2818
lowa	368	Tennessee	02818
Kansas	E-10167	Texas	T104704192-08
Kentucky	90062	Utah (NELAP)	PAM
Louisiana	LA0900016	Virginia	00251
Maine	2007029	Washington	C755
Maryland	322	West Virginia	9952C
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q
Mississippi	MN00064		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

Ser of Classes

30

Page 1 of 1

Wo	Workorder: 255708	Workorder	Workorder Name:Olympia Soils	. <u>s</u>	v	Owne	Owner Received Date:		1/12/2010	11/12/2010 Results Requested Bv:	127	20 20 20 20 20 20 20 20 20 20 20 20 20 2
Rep	Report To		Subcontract To	1000					Requested Analysis	Analysis		
Jen Pac 940 Ses Phc Fax	Jennifer Gross Pace Analytical Services, Inc. 940 South Harney Seattle WA 98108 Phone (206)767-5060 Fax (206)767-5063		Pace Anal 1700 Elm Suite 200 Minneapol Phone (61 AHM	Pace Analytical Minnesota 1700 Elm Street Suite 200 Minneapolis, MN 55414 Phone (612)607-1700 AHTM: Nocto	ota 4	Preserved Containers	Pb, Cu, ¢ Nr	Shortel &	গ্রানাদ স্টা-সার্ক্তির			
Item	Sample ID	Sample Type	Sample Collect Type Date/Time Lat	Lab ID	Matrix	Pubreserved	SA 0.000	,טואסיק	mta		LAB USE ONLY	>;
-	SPL-12-1	PS	11/10/2010 15:20 255	255708001	Solid	2	×	1-4.				
2	SPL-12-2	PŚ	11/10/2010 15:40 255	255708002	Solid	2	×					1
ო	SPL-12-3	PS	11/10/2010 16:00 7255708003	<u> </u>	Solid	2	×					
4	SPL-12-4	PS	11/10/2010 16:15 255	255708004	Solid	2	×	\ \ \ \				Τ
5	SPL-12-5	PS	11/11/2010 08:15 255708005		Solid	2	×	×				T
9	SPL-12-6	PS	11/11/2010 08:30 255	255708006	Solid	2	×	/ /×				
7	SPL-12-7	PS	11/11/2010 09:15 255708007		Solid	2	×	×				T
	-									Comments		7.C.
Tran	Transfers Released By		د	Received By	9	0	Date/Time	J-01.	A A	LIO-D. BUSH - due 11/24/10	2110	
- (321357	V2.62			THE THE	MAN 1	12. W. W. W. W. W. W. W. W. W. W. W. W. W.)			-	
7	<u>, j</u>							THE V	111010	Settlevell and use dry salved	BULYDIA	 پ
m		K	``````````````````````````````````````		A) %	·		7.)	<u>2</u>
ŏ	Cooler Temperature on Receipt 🕜	ceipt (A/	°C Custody Seal	y Seal Y	or (N	/ Rece	Received on Ice ((Y)or	z	Samples Intagt Yor	Y Yor N	Γ
)				-		1	1

Pace Analytical Client Name	PACE	e U	A	Control and the control of the contr	Project # <u>//)/432/6</u>
Courier: Fed Ex UPS USPS Clie Tracking #: 79411911350 Custody Seal on Cooler/Box Present: yes			Pilce O		Optional ProjeDue Date Proje Name:
Packing Material: Dubble Wrap Bubble	Bags 🔲	None	Other		Temp Blank: Yes X No
Thermometer Used 80344042 or 179425	Type of le	e: We	t Blue None	• 	Samples on ice, cooling process has begun
Cooler Temperature Temp should be above freezing to 6°C	- •		e is Frozen: Ye Comments:	es No	Date and initials of person examining contents:
Chain of Custody Present:	To Yes □N	to ON/A	1.		
Chain of Custody Filled Out:	D(Yes □N	io 🗆 N/A	2.		
Chain of Custody Relinquished:	Yes □N	to DN/	3.		
Sampler Name & Signature on COC:	□Yes Ø	io 🗆 N/A	4.		
Samples Arrived within Hold Time:	ØYes □N	lo 🗆 N/A	5.	****	
Short Hold Time Analysis (<72hr):	□Yes N	lo 🗆 N/A	6.		
Rush Turn Around Time Requested:	□Yes KN	o DIVA	7.	V	
Sufficient Volume:	¥ Yes □N	lo DN/A	8.		
Correct Containers Used:	Yes □N	o []N/A	9.		
-Pace Containers Used:	Tives □N	o □N⁄A			•
Containers Intact:	ØYes □N	o 🗆 N/A	10.	***************************************	
Filtered volume received for Dissolved tests	□Yes □N	o KÎN/A	11.		
Sample Labels match COC:)	o []N/A	12.		
-includes date/time/ID/Analysis Matrix:	SL				
All containers needing acid/base preservation have been checked. Noncompliance are noted in 13.	□Yes □N	D DNA	13.	EONH	H2SO4 NaOH HCI
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes □N	1	Samp#		
Exceptions: VOA,Coliform, TOC, Oil and Grease, WI-DRO (water	. □Yes □N)	Initial when completed		Lot # of added preservative
Samples checked for dechlorination:	☐Yes ☐No		***************************************		preservative
Headspace in VOA Vials (>6mm):	☐Yes ☐No		\		
Trip Blank Present:	□Yes □No				
Trip Blank Custody Seals Present	□Yes □No	V	,		
Pace Trip Blank Lot # (if purchased):		₩			
Client Notification/ Resolution:		D-4-6	11/1	1,50	Field Data Required? Y / N
Person Contacted: Tenny Comments/ Resolution:	55	Date/	ше: 1110	H0102	77.77
- Dre 113	10:00	NC 7	a yan	n)	sign TAT per scott
				· · · · · · · · · · · · · · · · · · ·	
Project Meneger Poylow		1 11			no William

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the Read-Acatylical SEIMBLES, Inc. F-L213Rev.00, 05Aug2009

1700 Elm Street SE, Suite 200, Minneapolis, MN 5541/

Fax: 612-607-6444

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

REPORT OF LABORATORY ANALYSIS

Appendix B

Sample Analysis Summary

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-12-1
Lab Sample ID 255708001
Filename U101124A_09
Injected By SMT

Total Amount Extracted 11.2 g Matrix Solid % Moisture 9.2 Dilution NA

Dry Weight Extracted 10.2 g Collected 11/10/2010 15:20 **ICAL ID** U100929 Received 11/13/2010 11:24 CCal Filename(s) U101124A 01 & U101124A 17 Extracted 11/22/2010 13:45 Method Blank ID BLANK-27052 Analyzed 11/24/2010 18:45

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.62 9.50		0.086 J 0.086 B	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00	70 90
2,3,7,8-TCDD Total TCDD	4.40	0.15	0.081 I 0.081	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00	70 71 86
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	 6.30	0.38 0.74	0.160 I 0.230 I 0.190	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	71 71 69 67
1,2,3,7,8-PeCDD Total PeCDD	3.00	0.56	0.240 I 0.240 J	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	78 84 73
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	0.41 0.50	 0.43	0.088 J 0.110 BJ 0.068 I	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	71 85 67
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	4.80	0.43 0.21 	0.066 I 0.120 I 0.094 BJ	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.47 1.30 0.78 12.00		0.170 J 0.200 BJ 0.190 J 0.190	2,3,7,8-TCDD-37Cl4	0.20	89
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	6.20 0.54 21.00		0.063 0.080 BJ 0.072	Total 2,3,7,8-TCDD Equivalence: 1.1 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	27.00 52.00		0.140 0.140			
OCDF OCDD	22.00 330.00		0.120 0.180			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

I = Interference present

REPORT OF LABORATORY ANALYSIS

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-12-2
Lab Sample ID 255708002
Filename U101124A_14
Injected By SMT

Total Amount Extracted 11.1 g Matrix Solid % Moisture 6.5 Dilution NA

Dry Weight Extracted Collected 11/10/2010 15:40 10.4 g **ICAL ID** U100929 Received 11/13/2010 11:24 CCal Filename(s) U101124A_01 & U101124A_17 Extracted 11/22/2010 13:45 Method Blank ID BLANK-27052 Analyzed 11/24/2010 22:30

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	4.3 72.0		0.070 0.070	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	69 89 70
2,3,7,8-TCDD Total TCDD	1.3 91.0		0.074 0.074	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00	70 71 86 68
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	14.0 140.0	5.1 	0.450 P 0.470 0.460	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	70 68 66
1,2,3,7,8-PeCDD Total PeCDD	4.3 100.0		0.200 J 0.200	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	78 80 74 75
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	12.0 7.3	28.0	0.340 P 0.290 0.320	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	89 77
1,2,3,7,8,9-HxCDF Total HxCDF	8.8 300.0		0.300 0.310	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	6.3 29.0 12.0 200.0		0.120 0.300 0.240 0.220	2,3,7,8-TCDD-37Cl4	0.20	89
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	290.0 28.0 1300.0		0.540 0.810 0.680	Total 2,3,7,8-TCDD Equivalence: 32 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	820.0 1300.0		0.860 0.860			
OCDF OCDD	1300.0 10000.0		0.690 1.200 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

E = Exceeds calibration range

REPORT OF LABORATORY ANALYSIS

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-12-3
Lab Sample ID 255708003
Filename U101124A_10
Injected By SMT

Total Amount Extracted 13.0 g Matrix Solid % Moisture 22.0 Dilution NA

Dry Weight Extracted Collected 11/10/2010 16:00 10.1 g **ICAL ID** U100929 Received 11/13/2010 11:24 CCal Filename(s) U101124A_01 & U101124A_17 Extracted 11/22/2010 13:45 Method Blank ID BLANK-27052 Analyzed 11/24/2010 19:30

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	2.50 35.00		0.110 0.110	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	63 80 64
2,3,7,8-TCDD Total TCDD	0.57 41.00		0.092 J 0.092	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	63 79 67
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	3.00 7.60 93.00	 	0.380 J 0.440 0.410	1,2,3,4,7,6-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	67 63 62 84
1,2,3,7,8-PeCDD Total PeCDD	3.50 50.00		0.180 J 0.180	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	70 67 67
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	8.70 4.50	50 	0.360 P 0.520 0.420 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	77 62
1,2,3,7,8,9-HxCDF Total HxCDF	5.90 170.00		0.510 0.450	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	4.70 26.00 7.90 150.00	 	0.240 J 0.240 0.220 0.230	2,3,7,8-TCDD-37Cl4	0.20	79
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	330.00 25.00 650.00	 	0.580 0.660 0.620	Total 2,3,7,8-TCDD Equivalence: 28 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	820.00 1300.00		0.790 0.790			
OCDF OCDD	1600.00 9400.00		0.091 0.094 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

P = PCDE Interference

E = Exceeds calibration range

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-12-4
Lab Sample ID 255708004
Filename U101124A_15
Injected By SMT

Total Amount Extracted 11.0 g Matrix Solid % Moisture 7.6 Dilution NA

Dry Weight Extracted 10.2 g Collected 11/10/2010 16:15 **ICAL ID** U100929 Received 11/13/2010 11:24 CCal Filename(s) U101124A_01 & U101124A_17 Extracted 11/22/2010 13:45 Method Blank ID BLANK-27052 Analyzed 11/24/2010 23:15

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	3.6 65.0		0.097 0.097	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	63 80 64
2,3,7,8-TCDD Total TCDD	1.1 86.0		0.180 0.180	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	65 79 68
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	5.1 11.0 160.0		0.370 0.270 0.320	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	67 65 63
1,2,3,7,8-PeCDD Total PeCDD	4.3 89.0		0.280 J 0.280	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	76 79 67 65
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	15.0 9.2	70 	0.470 P 0.460 0.470	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	57 57
1,2,3,7,8,9-HxCDF Total HxCDF	10.0 370.0		0.340 0.430	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	6.9 34.0 14.0 210.0	 	0.380 0.530 0.260 0.390	2,3,7,8-TCDD-37Cl4	0.20	83
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	360.0 34.0 1500.0	 	0.700 0.690 0.700	Total 2,3,7,8-TCDD Equivalence: 35 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	930.0 1500.0		0.900 0.900			
OCDF OCDD	1500.0 11000.0		0.690 3.000 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. $J = Estimated \ value$

P = PCDE Interference

E = Exceeds calibration range

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-12-5
Lab Sample ID 255708005
Filename U101124A_11
Injected By SMT
Total Amount Extracted 11.1 g

Total Amount Extracted 11.1 g Matrix Solid % Moisture 8.8 Dilution NA

Dry Weight Extracted Collected 10.1 g 11/11/2010 08:15 U100929 **ICAL ID** Received 11/13/2010 11:24 CCal Filename(s) U101124A 01 & U101124A 17 Extracted 11/22/2010 13:45 Method Blank ID BLANK-27052 Analyzed 11/24/2010 20:15

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.40 6.40		0.17 J 0.17 B	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00	67 85
2,3,7,8-TCDD Total TCDD	ND 1.40		0.16 0.16 B	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00	72 74 89
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	0.30 0.55		0.20 BJ 0.25 J	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C	2.00 2.00 2.00	72 72 70
Total PeCDF 1,2,3,7,8-PeCDD Total PeCDD	4.60 0.36 1.90		0.23 J 0.16 J 0.16 J	1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	68 84 83 77
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	0.39	0.82	0.14 P 0.15 BJ	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	77 77 89 69
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	4.30	0.29 0.19 	0.14 I 0.14 I 0.14 BJ	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.73 0.44 5.90	0.22 	0.16 I 0.11 BJ 0.19 J 0.15	2,3,7,8-TCDD-37Cl4	0.20	84
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	5.70 0.64 24.00		0.23 0.16 BJ 0.19	Total 2,3,7,8-TCDD Equivalence: 1.2 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	20.00 36.00		0.23 0.23			
OCDF OCDD	31.00 270.00		0.21 0.43			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

P = PCDE Interference

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-12-6
Lab Sample ID 255708006
Filename U101124A_12
Injected By SMT

Total Amount Extracted 11.5 g Matrix Solid % Moisture 8.6 Dilution NA

Dry Weight Extracted Collected 11/11/2010 08:30 10.5 g **ICAL ID** U100929 Received 11/13/2010 11:24 CCal Filename(s) U101124A_01 & U101124A_17 Extracted 11/22/2010 13:45 Method Blank ID BLANK-27052 Analyzed 11/24/2010 21:00

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.450 5.300		0.160 J 0.160 B	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	71 91 73
2,3,7,8-TCDD Total TCDD	0.094 2.500		0.093 J 0.093	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	74 88 73
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.360 0.850 6.500		0.150 BJ 0.200 J 0.170	1,2,3,4,7,6-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	75 75 72 72 85
1,2,3,7,8-PeCDD Total PeCDD	0.330 4.000		0.150 J 0.150 J	1,2,3,4,7,6-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	86 81 82
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.200 	0.38 0.32	0.160 J 0.140 I 0.140 I	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	94 77
1,2,3,7,8,9-HxCDF Total HxCDF	4.700	0.28	0.100 I 0.140 BJ	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.370 1.500 0.580 12.000	 	0.150 J 0.150 BJ 0.140 J 0.150	2,3,7,8-TCDD-37Cl4	0.20	86
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	7.900 0.540 30.000	 	0.180 0.200 BJ 0.190	Total 2,3,7,8-TCDD Equivalence: 1.8 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	44.000 81.000		0.280 0.280			
OCDF OCDD	33.000 530.000		0.200 0.820			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

I = Interference present

Solid

NA

Tel: 612-607-1700 Fax: 612-607-6444

Method 8290 Sample Analysis Results

Client - PASI Seattle

Matrix

Dilution

Client's Sample ID SPL-12-7 Lab Sample ID 255708007 Filename U101124A_13 Injected By SMT **Total Amount Extracted** 11.4 g % Moisture 10.8

Dry Weight Extracted 10.2 g Collected 11/11/2010 09:15 **ICAL ID** U100929 Received 11/13/2010 11:24 CCal Filename(s) U101124A 01 & U101124A 17 Extracted 11/22/2010 13:45 Method Blank ID BLANK-27052 Analyzed 11/24/2010 21:45

EMPC EDL Percent **Native** Conc Internal ng's **Standards** Isomers ng/Kg ng/Kg ng/Kg Added Recovery 2,3,7,8-TCDF-13C 2,3,7,8-TCDF 0.36 0.130 J 2.00 71 Total TCDF 0.130 B 2,3,7,8-TCDD-13C 93 4.00 2.00 76 1,2,3,7,8-PeCDF-13C 2.00 2,3,7,8-TCDD ND 0.084 2,3,4,7,8-PeCDF-13C 2.00 76 Total TCDD 0.50 0.084 BJ 1,2,3,7,8-PeCDD-13C 2.00 93 73 2.00 1,2,3,4,7,8-HxCDF-13C 1,2,3,7,8-PeCDF 0.20 0.120 BJ 2.00 74 1,2,3,6,7,8-HxCDF-13C 2,3,4,7,8-PeCDF 73 0.39 2,3,4,6,7,8-HxCDF-13C 0.110 J 2.00 71 Total PeCDF 4.00 0.110 J 1,2,3,7,8,9-HxCDF-13C 2.00 1,2,3,4,7,8-HxCDD-13C 2.00 85 88 1,2,3,7,8-PeCDD 0.24 0.220 J 1,2,3,6,7,8-HxCDD-13C 2.00 82 Total PeCDD 3.00 0.220 2.00 J 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C 79 2.00 1,2,3,4,7,8-HxCDF 0.24 0.120 1,2,3,4,6,7,8-HpCDD-13C 2.00 96 0.094 78 1,2,3,6,7,8-HxCDF 0.24 Ι OCDD-13C 4.00 2,3,4,6,7,8-HxCDF 0.29 0.098 BJ 1,2,3,7,8,9-HxCDF 0.16 0.110 BJ 1,2,3,4-TCDD-13C 2.00 NA Total HxCDF 2.90 0.110 BJ 1,2,3,7,8,9-HxCDD-13C 2.00 NA 1,2,3,4,7,8-HxCDD 0.26 0.110 J 2,3,7,8-TCDD-37CI4 0.20 88 0.57 0.150 BJ 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 0.35 0.092 Total HxCDD 4.80 0.120 J 0.150 3.30 Total 2,3,7,8-TCDD 1,2,3,4,6,7,8-HpCDF J. 1,2,3,4,7,8,9-HpCDF 0.39 0.140 BJ Equivalence: 0.84 ng/Kg Total HpCDF 15.00 0.140 (Using 2005 WHO Factors - Using PRL/2 where ND) 1,2,3,4,6,7,8-HpCDD 12.00 0.200 Total HpCDD 23.00 0.200 **OCDF** 11.00 0.100 OCDD 160.00 0.270

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

I = Interference present

Method 8290 Blank Analysis Results

Lab Sample ID BLANK-27052 Filename U101124A_08

Total Amount Extracted 10.1 g ICAL ID U100929

CCal Filename(s) U101124A_01 & U101124A_17 Matrix Solid Dilution NA

Extracted 11/22/2010 13:45 Analyzed 11/24/2010 18:00

Injected By **SMT**

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 1.70		0.130 0.130 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	65 78 68
2,3,7,8-TCDD Total TCDD	ND 0.18		0.110 0.110 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	71 85 69
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.21 ND 0.21	 	0.160 J 0.160 0.160 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00 2.00	71 68 64 80
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.190 0.190	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	80 81 74 72
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.20 0.21	0.21 	0.093 I 0.090 J 0.096 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	84 67
1,2,3,7,8,9-HxCDF Total HxCDF	0.35 0.75		0.110 J 0.097 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.18 0.18	0.12 0.13 	0.065 0.085 0.086 0.078	2,3,7,8-TCDD-37Cl4	0.20	76
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.37 0.37	0.35 	0.096 I 0.100 J 0.098 J	Total 2,3,7,8-TCDD Equivalence: 0.30 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.24	0.31	0.092 I 0.092 J			
OCDF OCDD	1.00 1.70		0.120 J 0.095 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename **Total Amount Extracted**

ICAL ID

CCal Filename(s) Method Blank ID

LCS-27053 U101124A_02 10.2 g

U100929 U101124A_01 & U101124A_17 BLANK-27052

Matrix Dilution Extracted

Solid NA

11/22/2010 13:45 Analyzed 11/24/2010 13:32

Injected By **SMT**

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.21	105	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.0 2.0 2.0	63 76 69
2,3,7,8-TCDD Total TCDD	0.20	0.19	93	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.0 2.0 2.0 2.0	72 85 71
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.0 1.00	102 100	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.0 2.0 2.0 2.0 2.0	69 68 67 79
1,2,3,7,8-PeCDD Total PeCDD	1.0	0.93	93	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.0 2.0 2.0 2.0	80 77 77
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	1.0 1.0 1.0 1.0	0.99 1.1 1.0 1.0	99 106 104 103	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.0 4.0 2.0	88 74 NA
Total HxCDF				1,2,3,7,8,9-HxCDD-13C	2.0	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	0.96 0.99 1.00	96 99 100	2,3,7,8-TCDD-37Cl4	0.20	73
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.0 1.0	104 104			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	0.94	94			
OCDF OCDD	2.0 2.0	2.0 2.1	102 106			

Qs = Quantity Spiked Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent) R = Recovery outside of target range

Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable * = See Discussion

Method 8290 Spiked Sample Report

Client - PASI Seattle

Client's Sample ID Lab Sample ID Filename

SPL-12-1-MS 255708001-MS U101124A_03

Total Amount Extracted ICAL ID

11.1 g U100929 Solid NA

CCal Filename(s) Method Blank ID

U101124A_01 & U101124A_17 BLANK-27052

Extracted 11/22/2010 13:45 Analyzed 11/24/2010 14:15

Injected By SMT

Matrix

Dilution

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20	0.23	113	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	67 84 70
2,3,7,8-TCDD	0.20	0.19	94	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	70 70 83 72
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	1.00 1.00	1.05 1.01	105 101	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	72 68 68
1,2,3,7,8-PeCDD	1.00	0.95	95	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	80 82 72 73
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	1.06 1.08 1.05	106 108 105	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	83 65
1,2,3,7,8,9-HxCDF	1.00	1.07	107	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	1.00 1.00 1.00	1.00 1.04 1.02	100 104 102	2,3,7,8-TCDD-37Cl4	0.20	82
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	1.00 1.00	1.19 1.06	119 106			
1,2,3,4,6,7,8-HpCDD	1.00	1.53	153			
OCDF OCDD	2.00 2.00	2.49 8.39	125 419			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

Method 8290 Spiked Sample Report

Client - PASI Seattle

Client's Sample ID Lab Sample ID Filename SPL-12-1-MSD 255708001-MSD U101124A_04

Total Amount Extracted ICAL ID

U101124A_04 Matrix 11.2 g Dilution U100929 Extracted

CCal Filename(s)
Method Blank ID

U101124A_01 & U101124A_17 BLANK-27052

Analyzed 11/24/2010 15:00 Injected By SMT

Solid

11/22/2010 13:45

NA

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20	0.22	108	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	73 94 74
2,3,7,8-TCDD	0.20	0.18	88	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	75 89 73
1,2,3,7,8-PeCDF	1.00	0.98	98	1,2,3,6,7,8-HxCDF-13C	2.00	74
2,3,4,7,8-PeCDF	1.00	0.97	97	2,3,4,6,7,8-HxCDF-13C	2.00	72
				1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00	70 83
1,2,3,7,8-PeCDD	1.00	0.90	90	1,2,3,6,7,8-HxCDD-13C	2.00	84
,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				1,2,3,4,6,7,8-HpCDF-13C	2.00	77
				1,2,3,4,7,8,9-HpCDF-13C	2.00	77
1,2,3,4,7,8-HxCDF	1.00	1.00	100	1,2,3,4,6,7,8-HpCDD-13C	2.00	88
1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00	1.02 1.00	102 100	OCDD-13C	4.00	73
1,2,3,7,8,9-HxCDF	1.00	1.00	100	1,2,3,4-TCDD-13C	2.00	NA
.,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	1.00 1.00 1.00	0.93 0.98 0.96	93 98 96	2,3,7,8-TCDD-37Cl4	0.20	87
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	1.00 1.00	1.10 0.99	110 99			
1,2,3,4,6,7,8-HpCDD	1.00	1.29	129			
OCDF OCDD	2.00 2.00	2.26 6.43	113 322			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

Pace Analytical[™]

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Spike Sample Results

Client - PASI Seattle

Client Sample ID Lab Sample ID MS ID

MSD ID

SPL-12-1 255708001 255708001-MS 255708001-MSD

Sample Filename MS Filename MSD Filename U101124A_09 U101124A_03 U101124A_04 Dry Weights
Sample Amount
MS Amount
MSD Amount
10.2 g
10.1 g
10.2 g

	Sample Conc.	MS/MSD Qs	MS Qm	MSD Qm		Backgrou	und Subtracted	
Analyte	ng/Kg	(ng)	(ng)	(ng)	RPD	MS % Rec.	MSD % Rec.	RPD
2,3,7,8-TCDF	0.623	0.20	0.23	0.22	4.6	110	105	4.8
2,3,7,8-TCDD	0.000	0.20	0.19	0.18	6.7	94	87	6.7
1,2,3,7,8-PeCDF	0.000	1.00	1.05	0.98	6.0	104	98	6.1
2,3,4,7,8-PeCDF	0.000	1.00	1.01	0.97	4.2	100	96	4.3
1,2,3,7,8-PeCDD	0.000	1.00	0.95	0.90	5.6	95	89	5.7
1,2,3,4,7,8-HxCDF	0.408	1.00	1.06	1.00	5.1	105	100	5.1
1,2,3,6,7,8-HxCDF	0.500	1.00	1.08	1.02	5.6	107	101	5.6
2,3,4,6,7,8-HxCDF	0.000	1.00	1.05	1.00	5.0	105	100	5.0
1,2,3,7,8,9-HxCDF	0.000	1.00	1.07	1.00	6.3	107	100	6.3
1,2,3,4,7,8-HxCDD	0.473	1.00	1.00	0.93	7.6	99	92	7.7
1,2,3,6,7,8-HxCDD	1.325	1.00	1.04	0.98	5.2	102	97	5.2
1,2,3,7,8,9-HxCDD	0.782	1.00	1.02	0.96	6.3	101	95	6.4
1,2,3,4,6,7,8-HpCDF	6.200	1.00	1.19	1.10	7.8	113	104	8.4
1,2,3,4,7,8,9-HpCDF	0.535	1.00	1.06	0.99	6.2	105	99	6.3
1,2,3,4,6,7,8-HpCDD	27.221	1.00	1.53	1.29	17.3	126	101	21.8
OCDF '	21.845	2.00	2.49	2.26	10.0	114	102	11.1
OCDD	331.572	2.00	8.39	6.43	26.4	252	153	48.9

Definitions

MS = Matrix Spike

MSD = Matrix Spike Duplicate

Qm = Quantity Measured Qs = Quantity Spiked

% Rec. = Percent Recovery

RPD = Relative Percent Difference

NA = Not Applicable NC = Not Calculated CDD = Chlorinated dibenzo-p-dioxin CDF = Chlorinated dibenzo-p-furan

T = Tetra
Pe = Penta

Hx = Hexa Hp = Hepta

O = Octa

December 17, 2010

Joshua Johnson Brown & Caldwell 724 Columbia St. NW#420 Olympia, WA 98501

RE: Project: East Bay Redevelopment 138130

Pace Project No.: 255893

Dear Joshua Johnson:

Enclosed are the analytical results for sample(s) received by the laboratory on December 03, 2010. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jennifer Gross

jennifer.gross@pacelabs.com Project Manager

ENNI (TROSS

Enclosures

cc: John Turk, Brown & Caldwell

(206)767-5060

CERTIFICATIONS

Project: East Bay Redevelopment 138130

Pace Project No.: 255893

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

Alaska Certification #: UST-078 Alaska Certification #MN00064 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA EPA Region 8 Certification #: Pace Florida/NELAP Certification #: E87605

Georgia Certification #: 959 Idaho Certification #: MN00064 Illinois Certification #: 200011 Iowa Certification #: 368 Kansas Certification #: E-10167 Louisiana Certification #: 03086 Louisiana Certification #: LA080009 Maine Certification #: 2007029 Maryland Certification #: 322

Michigan DEQ Certification #: 9909 Minnesota Certification #: 027-053-137 Mississippi Certification #: Pace

Washington Certification IDs

940 South Harney Street, Seattle, WA 98108 Alaska CS Certification #: UST-025

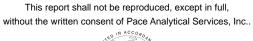
Alaska Drinking Water VOC Certification #: WA01230 Alaska Drinking Water Micro Certification #: WA01230 Montana Certification #: MT CERT0092 Nevada Certification #: MN_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New Mexico Certification #: Pace New York Certification #: 11647 North Carolina Certification #: 530 North Dakota Certification #: R-036 North Dakota Certification #: R-036A Ohio VAP Certification #: CL101 Oklahoma Certification #: D9921 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification

Tennessee Certification #: 02818 Texas Certification #: T104704192 Washington Certification #: C754 Wisconsin Certification #: 999407970

California Certification #: 01153CA Florida/NELAP Certification #: E87617 Oregon Certification #: WA200007 Washington Certification #: C1229

(206)767-5060

SAMPLE ANALYTE COUNT


Project: East Bay Redevelopment 138130

Pace Project No.: 255893

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
255893001	SPL-13-1	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	RJS	5	PASI-M
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
255893002	SPL-13-2	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	RJS	5	PASI-M
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
255893003	SPL-13-3	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	RJS	5	PASI-M
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
255893004	SPL-13-4	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	RJS	5	PASI-M
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
255893005	SPL-13-5	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	RJS	5	PASI-M
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
255893006	SPL-13-6	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	RJS	5	PASI-M
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
255893007	SPL-13-7	NWTPH-Dx	AY1	4	PASI-S

REPORT OF LABORATORY ANALYSIS

Page 3 of 23

(206)767-5060

SAMPLE ANALYTE COUNT

Project: East Bay Redevelopment 138130

Pace Project No.: 255893

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
•		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	RJS	5	PASI-M
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
255893008	TB-1318560	NWTPH-Gx	AY1	3	PASI-S
		EPA 8260	LPM	8	PASI-S

Project: East Bay Redevelopment 138130

Sample: SPL-13-1	Lab ID: 255893001	Collected: 12/03/10 1	3:10 Receive	d: 12/03/10 16:10	Matrix: Solid	
Results reported on a "dry-weight	" basis					
Parameters	Results Units	Report Limit [DF Prepai	red Analyzed	CAS No.	Qua
NWTPH-Dx GCS SG	Analytical Method: NWT	PH-Dx Preparation Metho	od: EPA 3546			
Diesel Range SG	ND mg/kg	20.7	1 12/08/10	12:45 12/10/10 19:	10	
Motor Oil Range SG	ND mg/kg	83.0	1 12/08/10	12:45 12/10/10 19:	10 64742-65-0	
n-Octacosane (S) SG	97 %	50-150	1 12/08/10	12:45 12/10/10 19:	10 630-02-4	
o-Terphenyl (S) SG	82 %	50-150	1 12/08/10	12:45 12/10/10 19:	10 84-15-1	
NWTPH-Gx GCV	Analytical Method: NWT	PH-Gx Preparation Metho	od: NWTPH-Gx			
Gasoline Range Organics	ND mg/kg	6.6	1 12/09/10	10:00 12/09/10 15:	42	
a,a,a-Trifluorotoluene (S)	99 %	50-150	1 12/09/10	10:00 12/09/10 15:	42 98-08-8	
4-Bromofluorobenzene (S)	97 %	50-150	1 12/09/10	10:00 12/09/10 15:	42 460-00-4	
6020 MET ICPMS	Analytical Method: EPA	6020				
Arsenic	5.5 mg/kg	0.44 2	20 12/08/10	16:42 12/16/10 00:	00 7440-38-2	
Cadmium	0.092 mg/kg			16:42 12/16/10 00:		
Copper	18.5 mg/kg			16:42 12/16/10 00:		
Lead	7.4 mg/kg			16:42 12/16/10 00:		
Nickel	29.9 mg/kg			16:42 12/16/10 00:		
3270 MSSV PAH by SIM		8270 by SIM Preparation	Method: EPA 35	546		
Acenaphthene	ND ug/kg	7.4	1 12/08/10	12:10 12/09/10 19:	10 83-32-9	
Acenaphthylene	ND ug/kg			12:10 12/09/10 19: 12:10 12/09/10 19:		
Anthracene	13.1 ug/kg			12:10		
Benzo(a)anthracene	19.4 ug/kg			12:10		
Benzo(a)pyrene	23.4 ug/kg			12:10		
				12:10		
Benzo(b)fluoranthene	13.9 ug/kg					
Benzo(g,h,i)perylene	17.4 ug/kg			12:10 12/09/10 19:		
Benzo(k)fluoranthene	16.7 ug/kg			12:10 12/09/10 19:		
Chrysene	23.8 ug/kg			12:10 12/09/10 19:		
Dibenz(a,h)anthracene	ND ug/kg			12:10 12/09/10 19:		
Fluoranthene	32.6 ug/kg			12:10 12/09/10 19:		
Fluorene	ND ug/kg			12:10 12/09/10 19:		
Indeno(1,2,3-cd)pyrene	11.0 ug/kg			12:10 12/09/10 19:		
1-Methylnaphthalene	14.2 ug/kg			12:10 12/09/10 19:		
2-Methylnaphthalene	27.1 ug/kg			12:10 12/09/10 19:		
Naphthalene	10.8 ug/kg	7.4	1 12/08/10	12:10 12/09/10 19:	10 91-20-3	
Phenanthrene	40.0 ug/kg	7.4		12:10 12/09/10 19:		
Pyrene	51.0 ug/kg	7.4	1 12/08/10	12:10 12/09/10 19:	10 129-00-0	
2-Fluorobiphenyl (S)	65 %	31-131	1 12/08/10	12:10 12/09/10 19:	10 321-60-8	
Terphenyl-d14 (S)	71 %	30-133	1 12/08/10	12:10 12/09/10 19:	10 1718-51-0	
3260/5035A Volatile Organics	Analytical Method: EPA	8260				
Benzene	ND ug/kg	3.5	1	12/07/10 12:	57 71-43-2	
Ethylbenzene	ND ug/kg	3.5	1		57 100-41-4	
Toluene	ND ug/kg		1	12/07/10 12:	57 108-88-3	
Xylene (Total)	ND ug/kg		1		57 1330-20-7	
Dibromofluoromethane (S)	106 %		1	12/07/10 12:		

Date: 12/17/2010 04:37 PM

REPORT OF LABORATORY ANALYSIS

Page 5 of 23

Project: East Bay Redevelopment 138130

Pace Project No.:

255893 Lab ID: 255893001 Sample: SPL-13-1 Collected: 12/03/10 13:10 Received: 12/03/10 16:10 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8260/5035A Volatile Organics Analytical Method: EPA 8260 Toluene-d8 (S) 107 % 80-120 1 12/07/10 12:57 2037-26-5 4-Bromofluorobenzene (S) 115 % 72-122 1 12/07/10 12:57 460-00-4 1,2-Dichloroethane-d4 (S) 111 % 80-143 12/07/10 12:57 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 9.5 % 0.10 1 12/06/10 17:18 Lab ID: 255893002 Sample: SPL-13-2 Collected: 12/03/10 13:15 Received: 12/03/10 16:10 Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG ND mg/kg 21.0 12/08/10 12:45 12/10/10 20:20 Motor Oil Range SG ND mg/kg 83.8 12/08/10 12:45 12/10/10 20:20 64742-65-0 1 n-Octacosane (S) SG 95 % 50-150 1 12/08/10 12:45 12/10/10 20:20 630-02-4 o-Terphenyl (S) SG 50-150 12/08/10 12:45 12/10/10 20:20 84-15-1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 5.4 12/09/10 10:00 12/09/10 16:05 91 % 50-150 12/09/10 10:00 12/09/10 16:05 98-08-8 a,a,a-Trifluorotoluene (S) 1 4-Bromofluorobenzene (S) 73 % 50-150 12/09/10 10:00 12/09/10 16:05 460-00-4 1 **6020 MET ICPMS** Analytical Method: EPA 6020 12/08/10 16:42 12/16/10 00:10 7440-38-2 Arsenic 4.4 ma/ka 0.39 20 Cadmium 0.065 mg/kg 0.063 20 12/08/10 16:42 12/16/10 00:10 7440-43-9 **30.5** mg/kg 0.39 20 12/08/10 16:42 12/16/10 00:10 7440-50-8 Copper 0.39 20 12/08/10 16:42 12/16/10 00:10 7439-92-1 Lead 8.2 mg/kg Nickel 20 12/08/10 16:42 12/16/10 00:10 7440-02-0 27.7 mg/kg 0.39 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 7.3 Acenaphthene ND ug/kg 12/08/10 12:10 12/09/10 19:25 83-32-9 Acenaphthylene ND ug/kg 7.3 12/08/10 12:10 12/09/10 19:25 208-96-8 1 9.5 ug/kg 7.3 Anthracene 1 12/08/10 12:10 12/09/10 19:25 120-12-7 Benzo(a)anthracene 8.9 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:25 56-55-3 Benzo(a)pyrene 12.8 ug/kg 7.3 12/08/10 12:10 12/09/10 19:25 50-32-8 1 Benzo(b)fluoranthene 11.3 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:25 205-99-2 9.5 ug/kg 12/08/10 12:10 12/09/10 19:25 191-24-2 Benzo(g,h,i)perylene 7.3 1 Benzo(k)fluoranthene 7.8 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:25 207-08-9 Chrysene 12.6 ug/kg 7.3 12/08/10 12:10 12/09/10 19:25 218-01-9 1 ND ug/kg 7.3 Dibenz(a,h)anthracene 12/08/10 12:10 12/09/10 19:25 53-70-3 1 Fluoranthene 13.3 ug/kg 7.3 12/08/10 12:10 12/09/10 19:25 206-44-0 1 Fluorene ND ug/kg 7.3 12/08/10 12:10 12/09/10 19:25 86-73-7 1 Indeno(1,2,3-cd)pyrene ND ug/kg 7.3 12/08/10 12:10 12/09/10 19:25 193-39-5

Date: 12/17/2010 04:37 PM

REPORT OF LABORATORY ANALYSIS

Page 6 of 23

Project: East Bay Redevelopment 138130

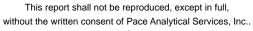
Pace Project No.:

255893 Lab ID: 255893002 Sample: SPL-13-2 Collected: 12/03/10 13:15 Received: 12/03/10 16:10 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 1-Methylnaphthalene 15.6 ug/kg 7.3 12/08/10 12:10 12/09/10 19:25 90-12-0 2-Methylnaphthalene 25.9 ug/kg 7.3 12/08/10 12:10 12/09/10 19:25 91-57-6 Naphthalene 11.8 ug/kg 7.3 12/08/10 12:10 12/09/10 19:25 91-20-3 1 Phenanthrene 22.1 ug/kg 7.3 12/08/10 12:10 12/09/10 19:25 85-01-8 1 24.6 ug/kg Pyrene 7.3 1 12/08/10 12:10 12/09/10 19:25 129-00-0 2-Fluorobiphenyl (S) 59 % 31-131 12/08/10 12:10 12/09/10 19:25 321-60-8 1 Terphenyl-d14 (S) 67 % 30-133 12/08/10 12:10 12/09/10 19:25 1718-51-0 1 8260/5035A Volatile Organics Analytical Method: EPA 8260 ND ug/kg 3.6 12/07/10 13:15 71-43-2 Benzene 1 12/07/10 13:15 100-41-4 Ethylbenzene ND ug/kg 3.6 1 Toluene 12/07/10 13:15 108-88-3 ND ug/kg 3.6 1 Xylene (Total) ND ug/kg 10.7 12/07/10 13:15 1330-20-7 1 Dibromofluoromethane (S) 106 % 80-136 12/07/10 13:15 1868-53-7 1 Toluene-d8 (S) 107 % 80-120 1 12/07/10 13:15 2037-26-5 4-Bromofluorobenzene (S) 118 % 72-122 1 12/07/10 13:15 460-00-4 1,2-Dichloroethane-d4 (S) 108 % 80-143 12/07/10 13:15 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 9.3 % 0.10 1 12/06/10 17:19 Sample: SPL-13-3 Lab ID: 255893003 Collected: 12/03/10 13:30 Received: 12/03/10 16:10 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG ND mg/kg 21.5 12/08/10 12:45 12/10/10 20:43 Motor Oil Range SG ND mg/kg 85.8 1 12/08/10 12:45 12/10/10 20:43 64742-65-0 n-Octacosane (S) SG 98 % 50-150 12/08/10 12:45 12/10/10 20:43 630-02-4 1 o-Terphenyl (S) SG 83 % 50-150 12/08/10 12:45 12/10/10 20:43 84-15-1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 6.3 12/09/10 10:00 12/09/10 16:29 97 % a,a,a-Trifluorotoluene (S) 50-150 1 12/09/10 10:00 12/09/10 16:29 98-08-8 4-Bromofluorobenzene (S) 95 % 50-150 1 12/09/10 10:00 12/09/10 16:29 460-00-4 **6020 MET ICPMS** Analytical Method: EPA 6020 12/08/10 16:42 12/16/10 00:32 7440-38-2 Arsenic 3.3 mg/kg 0.38 20 Cadmium **0.11** mg/kg 0.061 20 12/08/10 16:42 12/16/10 00:32 7440-43-9 0.38 20 Copper 16.4 mg/kg 12/08/10 16:42 12/16/10 00:32 7440-50-8 4.3 mg/kg Lead 0.38 20 12/08/10 16:42 12/16/10 00:32 7439-92-1 Nickel 0.38 20 12/08/10 16:42 12/16/10 00:32 7440-02-0 29.2 mg/kg

Date: 12/17/2010 04:37 PM

REPORT OF LABORATORY ANALYSIS

Page 7 of 23


Project: East Bay Redevelopment 138130

Pace Project No.: 255893

Parameters Results Parameters Results Units Report Limit DF Prepared Analyzed CAS No.	
### Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 ### Acenaphthylene ND ug/kg 7.3 1 1208/10 12:10 12/09/10 19:41 83-32-9 Acenaphthylene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 208-96-8 Anthracene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 208-96-8 Anthracene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 208-96-8 Benzo(a)pyrene 12.5 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 56-55-3 Benzo(a)pyrene 12.5 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 50-32-8 Benzo(g),hi)perylene 8.6 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 50-32-8 Benzo(g),hi)perylene 8.6 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 191-24-2 Benzo(g,hi)perylene 11.7 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 21-08-10 Benzo(g,hi)methracene 10.0 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 21-08-09-2 Benzo(g,hi)methracene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 21-08-09-2 Benzo(g,hi)methracene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 21-08-09-2 Biberz(a,h)anthracene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 93-70-3 Hothyrinaphthalene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 93-39-5 Hothyrinaphthalene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-67-6 Preparamethrace ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-67-6 Preparamethrace ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-67-6 Preparamethrace ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-67-6 Preparamethrace ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-67-6 Preparamethrace ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-67-6 Preparamethrace ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-67-6 Preparameter ND ug/kg 2.9 1 12/08/10 12:10 12/09/10 19:41 91-67-6 Preparameter ND ug/kg 2.9 1 12/07/10 13:34	
Acenaphthene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 83-32-9 Acenaphthylene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 208-96-8 Anthracene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 208-96-8 Benzo(a)anthracene 9.3 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 50-55-3 Benzo(a)pyrene 12.5 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 50-52-8 Benzo(b)fluoranthene 8.2 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 50-52-8 Benzo(b)fluoranthene 8.2 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 50-52-8 Benzo(b)fluoranthene 8.6 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 207-08-9 Benzo(b,fluoranthene 10.0 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 207-08-9 Benzo(b,fluoranthene 11.7 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 207-08-9 Chrysene 11.7 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 207-08-9 Chrysene 11.7 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 207-08-9 Elluoranthene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 206-44-0 Fluorene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 206-44-0 Fluorene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 806-47-0 Fluorene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 806-37-0 Fluorene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 90-42-0 Anthrhylaphthalene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-57-6 Naphthalene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-57-6 Naphthalene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-57-6 Naphthalene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-57-6 Naphthalene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-57-6 Naphthalene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-57-6 Naphthalene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-57-6 Naphthalene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-57-6 Naphthalene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-50-8 Benzene ND ug/kg 2.9 1 12/09/10 13:41 86-80-8 Benzene ND ug/kg 2.9 1 12/09/10 13:34 108-88-3 Terphenyl-d14 (S) 77 % 30-13 6 1 12/09/10 13:34 108-88-3 Tellorene-d8 (S) 108 % 80-120 1 1 12/09/10 13:34 108-88-3 Parameters Analytical Method: ASTM D2974-87 Percent Moisture Analytical M	Qual
Acenaphthylene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 208-96-8 Anthracene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 120-12-7 Benzo(a)anthracene 9.3 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 56-55-3 Benzo(a)pyrene 12.5 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 56-55-3 Benzo(a)pyrene 8.2 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 56-55-3 Benzo(b)fluoranthene 8.2 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 205-99-2-8 Benzo(b)fluoranthene 10.0 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 120-2-9 Benzo(b)fluoranthene 10.0 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 121-0-12-0-12-0-12-0-12-0-12-0-12-0-12	
Anthracene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 120-12-7 Benzo(a)pyrene 9.3 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 120-12-7 Benzo(a)pyrene 12.5 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 120-32-8 Benzo(b)fluoranthene 8.2 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 205-99-2 Benzo(b)fluoranthene 8.6 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 207-08-9 Benzo(b)fluoranthene 10.0 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 207-08-9 Chrysene 11.7 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 207-08-9 Chrysene 11.7 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 207-08-9 Chrysene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 206-49-2 Fluoranthene 24.8 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 206-44-7 Fluorene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 206-44-7 Indeno(1,2,3-cd)pyrene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 80-34-7 Indeno(1,2,3-cd)pyrene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 80-34-7 Indeno(1,2,3-cd)pyrene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 80-34-7 Indeno(1,2,3-cd)pyrene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 80-34-7 Indeno(1,2,3-cd)pyrene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 80-34-7 Indeno(1,2,3-cd)pyrene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 80-34-7 Indeno(1,2,3-cd)pyrene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 80-34-7 Indeno(1,2,3-cd)pyrene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 80-34-7 Indeno(1,2,3-cd)pyrene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 81-50-6 Naphthalene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 81-50-6 Naphthalene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 81-50-6 Naphthalene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 81-50-6 Naphthalene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 81-50-6 Naphthalene ND ug/kg 2.9 1 12/08/10 12:10 12/09/10 19:41 81-50-6 Naphthalene ND ug/kg 2.9 1 12/08/10 12:10 12/09/10 19:41 81-50-6 Naphthalene ND ug/kg 2.9 1 12/08/10 12:10 12/09/10 13:34 100-41-4 Naphthalene ND ug/kg 8.7 1 12/08/10 12:10 12/09/10 13:34 100-41-4 Naphthalene ND ug/kg 8.7 1 12/08/10 12:10 12/09/10 13:34 100-41-4 Naphthalene ND	
Benzo(a)anthracene 1.5 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 56-55-3 Benzo(a)pyrene 1.5 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 56-55-3 Benzo(a)pyrene 8.6 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 20-59-9-2 Benzo(b)fluoranthene 8.6 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 191-24-2 Benzo(b)fluoranthene 1.0 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 21-24-2 Benzo(b)fluoranthene 1.7 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 21-24-2 Benzo(b)fluoranthene 1.7 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 21-24-2 Benzo(b)fluoranthene 1.7 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 21-24-2 Benzo(b)fluoranthene 1.7 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 21-24-2 Benzo(b)fluoranthene 1.7 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 21-24-2 Benzo(a,h)anthracene 1.7 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 21-24-2 Benzo(a,h)anthracene 1.7 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 93-39-5 1-Methy/inaphthalene 1.0 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 93-39-5 1-Methy/inaphthalene 1.0 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 93-39-5 1-Methy/inaphthalene 1.0 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-57-6 1.0 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-57-6 1.0 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-57-6 1.0 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-57-6 1.0 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-57-6 1.0 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-57-6 1.0 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-57-6 1.0 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-57-6 1.0 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-57-6 1.0 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-57-6 1.0 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-57-6 1.0 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-57-6 1.0 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-57-6 1.0 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-57-6 1.0 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-57-6 1.0 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-57-6 1.0 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-57-6 1.0 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-57-6 1.0 ug/kg 7.3	
Benzo(a)pyrene	
Benzo(gh/fluoranthene	
Benzo(g,h,i)perylene	
Benzo(k)fluoranthene 10.0 ug/kg	
Chrysene	
Dibenz(a,h)anthracene	
Fluoranthene	
Fluorene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 86-73-7 Indeno(1,2,3-cd)pyrene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 93-39-5 1-14/08/10 12:10 12/09/10 19:41 193-39-5 1-14/08/10 12:10 12/09/10 19:41 193-39-5 1-14/08/10 12:10 12/09/10 19:41 193-39-5 1-14/08/10 12:10 12/09/10 19:41 193-39-5 1-14/08/10 12:10 12/09/10 19:41 193-39-5 1-14/08/10 12:10 12/09/10 19:41 193-39-5 1-14/08/10 12:10 12/09/10 19:41 193-39-5 1-14/08/10 12:10 12/09/10 19:41 193-39-5 1-14/08/10 12:10 12/09/10 19:41 193-39-5 1-14/08/10 12:10 12/09/10 19:41 193-39-5 1-14/08/10 12:10 12/09/10 19:41 193-39-5 1-14/08/10 12:10 12/09/10 19:41 193-39-5 1-14/08/10 12:10 12/09/10 19:41 193-39-5 1-14/08/10 12:10 12/09/10 19:41 193-39-5 1-14/08/10 12:10 12/09/10 19:41 12/09/10 13:41 12/09/10 13:41 12/09/10 13:41 12/09/10 13:41 12/09/10 13:41 12/09/10 13:41 12/09/10 13:41 12/09/10 13:41 12/09/10 13:41 12/09/10 13:41 12/09/10 13:41 12/09/10 13:41 12/09/10 13:41 12/09/10 13:41 12/09/10 13:41 12/09/10 13:41 12/09/10 13:41 12/09/10 13:41 12/09/10 13:	
Fluorene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 86-73-7 Indeno(1,2,3-cd)pyrene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 93-39-5 1-4 Methylnaphthalene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 93-39-5 1-4 Methylnaphthalene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-57-6 Naphthalene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-57-6 Naphthalene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-57-6 Naphthalene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-57-6 Naphthalene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-50-8 18-8 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-50-8 18-8 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 129-00-0 12-5 Ug/kg 1	
Indeno(1,2,3-cd)pyrene	
1-Methylnaphthalene	
2-Methylnaphthalene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-57-6 Naphthalene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 91-20-3 Phenanthrene 18.8 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 85-01-8 Pyrene 32.1 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 85-01-8 Pyrene 32.1 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 85-01-8 Terphenyl-d14 (S) 67 % 31-131 1 12/08/10 12:10 12/09/10 19:41 321-60-8 Terphenyl-d14 (S) 77 % 30-133 1 12/08/10 12:10 12/09/10 19:41 1718-51-0 8260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 2.9 1 12/07/10 13:34 100-41-4 Toluene ND ug/kg 2.9 1 12/07/10 13:34 100-41-4 Toluene ND ug/kg 2.9 1 12/07/10 13:34 100-41-4 Toluene ND ug/kg 8.7 1 12/07/10 13:34 100-41-4 Toluene ND ug/kg 8.7 1 12/07/10 13:34 100-88-3 Xylene (Total) ND ug/kg 8.7 1 12/07/10 13:34 108-88-3 Toluene-d8 (S) 108 % 80-136 1 12/07/10 13:34 1868-53-7 Toluene-d8 (S) 108 % 80-120 1 12/07/10 13:34 1686-53-7 Toluene-d8 (S) 108 % 80-120 1 12/07/10 13:34 1060-07-0 Percent Moisture Analytical Method: ASTM D2974-87 Percent Moisture Analytical Method: ASTM D2974-87 Percent Moisture Percent Moisture Results Units Report Limit DF Prepared Analyzed CAS No. NWTPH-Dx GCS SG Analytical Method: NWTPH-Dx Preparation Method: EPA 3546	
ND ug/kg	
Phenanthrene	
Pyrene 32.1 ug/kg 7.3 1 12/08/10 12:10 12/09/10 19:41 129-00-0 2-Fluorobiphenyl (S) 67 % 31-131 1 12/08/10 12:10 12/09/10 19:41 321-60-8 Terphenyl-d14 (S) 77 % 30-133 1 12/08/10 12:10 12/09/10 19:41 321-60-8 Terphenyl-d14 (S) 77 % 30-133 1 12/08/10 12:10 12/09/10 19:41 1718-51-0 8260/5035A Volatile Organics	
2-Fluorobiphenyl (S) 67 % 31-131 1 12/08/10 12:10 12/09/10 19:41 321-60-8 Terphenyl-d14 (S) 77 % 30-133 1 12/08/10 12:10 12/09/10 19:41 321-60-8 1718-51-0 12/08/5035A Volatile Organics Benzene	
Terphenyl-d14 (S)	
Benzene ND ug/kg 2.9 1 12/07/10 13:34 71-43-2 Ethylbenzene ND ug/kg 2.9 1 12/07/10 13:34 100-41-4 Toluene ND ug/kg 2.9 1 12/07/10 13:34 100-41-4 Toluene ND ug/kg 2.9 1 12/07/10 13:34 108-88-3 Xylene (Total) ND ug/kg 8.7 1 12/07/10 13:34 1330-20-7 Dibromofluoromethane (S) 82 % 80-136 1 12/07/10 13:34 1868-53-7 Toluene-d8 (S) 108 % 80-120 1 12/07/10 13:34 2037-26-5 4-Bromofluorobenzene (S) 108 % 72-122 1 12/07/10 13:34 460-00-4 1,2-Dichloroethane-d4 (S) 96 % 80-143 1 12/07/10 13:34 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87 Percent Moisture 9.8 % 0.10 1 12/06/10 17:20 Sample: SPL-13-4 Lab ID: 255893004 Collected: 12/03/10 14:00 Received: 12/03/10 16:10 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. NWTPH-Dx GCS SG Analytical Method: NWTPH-Dx Preparation Method: EPA 3546	
Ethylbenzene ND ug/kg 2.9 1 12/07/10 13:34 100-41-4 Toluene ND ug/kg 2.9 1 12/07/10 13:34 100-41-4 Toluene ND ug/kg 2.9 1 12/07/10 13:34 108-88-3 Xylene (Total) ND ug/kg 8.7 1 12/07/10 13:34 1330-20-7 Dibromofluoromethane (S) 82 % 80-136 1 12/07/10 13:34 1868-53-7 Toluene-d8 (S) 108 % 80-120 1 12/07/10 13:34 2037-26-5 4-Bromofluorobenzene (S) 108 % 72-122 1 12/07/10 13:34 460-00-4 1,2-Dichloroethane-d4 (S) 96 % 80-143 1 12/07/10 13:34 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87 Percent Moisture 9.8 % 0.10 1 12/06/10 17:20 Sample: SPL-13-4 Lab ID: 255893004 Collected: 12/03/10 14:00 Received: 12/03/10 16:10 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. NWTPH-Dx GCS SG Analytical Method: NWTPH-Dx Preparation Method: EPA 3546	
Ethylbenzene ND ug/kg 2.9 1 12/07/10 13:34 100-41-4 Toluene ND ug/kg 2.9 1 12/07/10 13:34 100-41-4 Toluene ND ug/kg 2.9 1 12/07/10 13:34 108-88-3 Xylene (Total) ND ug/kg 8.7 1 12/07/10 13:34 1330-20-7 Dibromofluoromethane (S) 82 % 80-136 1 12/07/10 13:34 1868-53-7 Toluene-d8 (S) 108 % 80-120 1 12/07/10 13:34 2037-26-5 4-Bromofluorobenzene (S) 108 % 72-122 1 12/07/10 13:34 460-00-4 1,2-Dichloroethane-d4 (S) 96 % 80-143 1 12/07/10 13:34 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87 Percent Moisture 9.8 % 0.10 1 12/06/10 17:20 Sample: SPL-13-4 Lab ID: 255893004 Collected: 12/03/10 14:00 Received: 12/03/10 16:10 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. NWTPH-Dx GCS SG Analytical Method: NWTPH-Dx Preparation Method: EPA 3546	
Toluene ND ug/kg 2.9 1 12/07/10 13:34 108-88-3 Xylene (Total) ND ug/kg 8.7 1 12/07/10 13:34 1330-20-7 Dibromofluoromethane (S) 82 % 80-136 1 12/07/10 13:34 1868-53-7 Toluene-d8 (S) 108 % 80-120 1 12/07/10 13:34 2037-26-5 4-Bromofluorobenzene (S) 108 % 72-122 1 12/07/10 13:34 460-00-4 1,2-Dichloroethane-d4 (S) 96 % 80-143 1 12/07/10 13:34 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87 Percent Moisture 9.8 % 0.10 1 12/06/10 17:20 Sample: SPL-13-4 Lab ID: 255893004 Collected: 12/03/10 14:00 Received: 12/03/10 16:10 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. NWTPH-Dx GCS SG Analytical Method: NWTPH-Dx Preparation Method: EPA 3546	
Xylene (Total) ND ug/kg 8.7 1 12/07/10 13:34 1330-20-7 Dibromofluoromethane (S) 82 % 80-136 1 12/07/10 13:34 1868-53-7 Toluene-d8 (S) 108 % 80-120 1 12/07/10 13:34 2037-26-5 4-Bromofluorobenzene (S) 108 % 72-122 1 12/07/10 13:34 460-00-4 1,2-Dichloroethane-d4 (S) 96 % 80-143 1 12/07/10 13:34 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87 Percent Moisture 9.8 % 0.10 1 12/06/10 17:20 Sample: SPL-13-4 Lab ID: 255893004 Collected: 12/03/10 14:00 Received: 12/03/10 16:10 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. NWTPH-Dx GCS SG Analytical Method: NWTPH-Dx Preparation Method: EPA 3546	
Dibromofluoromethane (S) 82 % 80-136 1 12/07/10 13:34 1868-53-7 Toluene-d8 (S) 108 % 80-120 1 12/07/10 13:34 2037-26-5 4-Bromofluorobenzene (S) 108 % 72-122 1 12/07/10 13:34 460-00-4 1,2-Dichloroethane-d4 (S) 96 % 80-143 1 12/07/10 13:34 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87 Percent Moisture 9.8 % 0.10 1 12/06/10 17:20 Sample: SPL-13-4 Lab ID: 255893004 Collected: 12/03/10 14:00 Received: 12/03/10 16:10 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. NWTPH-Dx GCS SG Analytical Method: NWTPH-Dx Preparation Method: EPA 3546	
Toluene-d8 (S) 108 % 80-120 1 12/07/10 13:34 2037-26-5 4-Bromofluorobenzene (S) 108 % 72-122 1 12/07/10 13:34 460-00-4 1,2-Dichloroethane-d4 (S) 96 % 80-143 1 12/07/10 13:34 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87 Percent Moisture 9.8 % 0.10 1 12/06/10 17:20 Sample: SPL-13-4 Lab ID: 255893004 Collected: 12/03/10 14:00 Received: 12/03/10 16:10 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. NWTPH-Dx GCS SG Analytical Method: NWTPH-Dx Preparation Method: EPA 3546	
4-Bromofluorobenzene (S) 108 % 72-122 1 12/07/10 13:34 460-00-4 1,2-Dichloroethane-d4 (S) 96 % 80-143 1 12/07/10 13:34 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87 Percent Moisture 9.8 % 0.10 1 12/06/10 17:20 Sample: SPL-13-4 Lab ID: 255893004 Collected: 12/03/10 14:00 Received: 12/03/10 16:10 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. NWTPH-Dx GCS SG Analytical Method: NWTPH-Dx Preparation Method: EPA 3546	
1,2-Dichloroethane-d4 (S) 96 % 80-143 1 12/07/10 13:34 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87 Percent Moisture 9.8 % 0.10 1 12/06/10 17:20 Sample: SPL-13-4 Lab ID: 255893004 Collected: 12/03/10 14:00 Received: 12/03/10 16:10 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. NWTPH-Dx GCS SG Analytical Method: NWTPH-Dx Preparation Method: EPA 3546	
Percent Moisture 9.8 % 0.10 1 12/06/10 17:20 Sample: SPL-13-4 Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. NWTPH-Dx GCS SG Analytical Method: NWTPH-Dx Preparation Method: EPA 3546	
Sample: SPL-13-4 Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. NWTPH-Dx GCS SG Analytical Method: NWTPH-Dx Preparation Method: EPA 3546	
Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. NWTPH-Dx GCS SG Analytical Method: NWTPH-Dx Preparation Method: EPA 3546	
Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. NWTPH-Dx GCS SG Analytical Method: NWTPH-Dx Preparation Method: EPA 3546	
Parameters Results Units Report Limit DF Prepared Analyzed CAS No. NWTPH-Dx GCS SG Analytical Method: NWTPH-Dx Preparation Method: EPA 3546	
1,000	Qual
Discol Dongs CC ND mallin 00.0 4 40/00/40 40.45 40/40/40 04.07	-
Diesel Range SG ND mg/kg 26.0 1 12/08/10 12:45 12/10/10 21:07	
Diesel Range SG ND mg/kg 26.0 1 12/08/10 12:45 12/10/10 21:07 Motor Oil Range SG ND mg/kg 104 1 12/08/10 12:45 12/10/10 21:07 64742-65-0	
n-Octacosane (S) SG 91 % 50-150 1 12/08/10 12:45 12/10/10 21:07 630-02-4 o-Terphenyl (S) SG 78 % 50-150 1 12/08/10 12:45 12/10/10 21:07 84-15-1	

Date: 12/17/2010 04:37 PM

Project: East Bay Redevelopment 138130

Sample: SPL-13-4	Lab ID: 25589300	4 Collected: 12/03/10	14:00	Received: 12	/03/10 16:10 I	Matrix: Solid	_
Results reported on a "dry-weight	t" basis						
Parameters	Results Ur	its Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Gx GCV	Analytical Method: N	NTPH-Gx Preparation Met	hod: N	WTPH-Gx			
Gasoline Range Organics	ND mg/kg	7.4	1	12/09/10 10:00	12/09/10 16:52	2	
a,a,a-Trifluorotoluene (S)	89 %	50-150	1	12/09/10 10:00	12/09/10 16:52	98-08-8	
4-Bromofluorobenzene (S)	88 %	50-150	1	12/09/10 10:00	12/09/10 16:52	460-00-4	
6020 MET ICPMS	Analytical Method: E	PA 6020					
Arsenic	4.4 mg/kg	0.59	20	12/08/10 16:42	12/16/10 00:42	7440-38-2	
Cadmium	0.29 mg/kg	0.094	20	12/08/10 16:42	12/16/10 00:42	7440-43-9	
Copper	28.1 mg/kg	0.59	20	12/08/10 16:42	12/16/10 00:42	2 7440-50-8	
Lead	9.6 mg/kg	0.59	20	12/08/10 16:42			
Nickel	35.1 mg/kg	0.59	20	12/08/10 16:42			
3270 MSSV PAH by SIM		PA 8270 by SIM Preparation	n Meth	od: FPA 3546			
•	-						
Acenaphthene	9.2 ug/kg	8.7	1	12/08/10 12:10			
Acenaphthylene	ND ug/kg	8.7	1	12/08/10 12:10			
Anthracene	ND ug/kg	8.7	1	12/08/10 12:10			
Benzo(a)anthracene	8.9 ug/kg	8.7	1	12/08/10 12:10			
Benzo(a)pyrene	10 ug/kg	8.7	1	12/08/10 12:10			
Benzo(b)fluoranthene	10.3 ug/kg	8.7	1	12/08/10 12:10			
Benzo(g,h,i)perylene	ND ug/kg	8.7	1	12/08/10 12:10	12/09/10 19:57	' 191-24-2	
Benzo(k)fluoranthene	ND ug/kg	8.7	1	12/08/10 12:10	12/09/10 19:57	207-08-9	
Chrysene	18.6 ug/kg	8.7	1	12/08/10 12:10	12/09/10 19:57	218-01-9	
Dibenz(a,h)anthracene	ND ug/kg	8.7	1	12/08/10 12:10	12/09/10 19:57	53-70-3	
Fluoranthene	39.8 ug/kg	8.7	1	12/08/10 12:10	12/09/10 19:57	206-44-0	
Fluorene	10.8 ug/kg	8.7	1	12/08/10 12:10	12/09/10 19:57	86-73-7	
ndeno(1,2,3-cd)pyrene	ND ug/kg	8.7	1	12/08/10 12:10	12/09/10 19:57	' 193-39-5	
1-Methylnaphthalene	23.6 ug/kg	8.7	1	12/08/10 12:10	12/09/10 19:57	90-12-0	
2-Methylnaphthalene	39.7 ug/kg	8.7	1	12/08/10 12:10	12/09/10 19:57	91-57-6	
Naphthalene	16.5 ug/kg	8.7	1	12/08/10 12:10	12/09/10 19:57	91-20-3	
Phenanthrene	38.9 ug/kg	8.7	1	12/08/10 12:10	12/09/10 19:57	85-01-8	
Pyrene	43.1 ug/kg	8.7	1	12/08/10 12:10	12/09/10 19:57	129-00-0	
2-Fluorobiphenyl (S)	67 %	31-131	1	12/08/10 12:10			
Terphenyl-d14 (S)	72 %	30-133	1	12/08/10 12:10			
3260/5035A Volatile Organics	Analytical Method: E	PA 8260					
Benzene	ND ug/kg	4.3	1		12/07/10 13:53	71-43-2	
Ethylbenzene	ND ug/kg	4.3	1		12/07/10 13:53	3 100-41-4	
Toluene	ND ug/kg	4.3	1		12/07/10 13:53	108-88-3	
Xylene (Total)	ND ug/kg	12.8	1		12/07/10 13:53	1330-20-7	
Dibromofluoromethane (S)	103 %	80-136	1		12/07/10 13:53	1868-53-7	
Toluene-d8 (S)	109 %	80-120	1		12/07/10 13:53		
4-Bromofluorobenzene (S)	121 %	72-122	1		12/07/10 13:53		
1,2-Dichloroethane-d4 (S)	112 %	80-143	1		12/07/10 13:53	17060-07-0	
Percent Moisture	Analytical Method: A	STM D2974-87					
Percent Moisture	23.5 %	0.10	1		12/06/10 17:21		

Date: 12/17/2010 04:37 PM

REPORT OF LABORATORY ANALYSIS

Page 9 of 23

Project: East Bay Redevelopment 138130

Pace Project No.: 255893

Sample: SPL-13-5	Lab ID: 255893005	Collected: 12/03/	10 14:20	Received: 12	2/03/10 16:10	Matrix: Solid	
Results reported on a "dry-weight	t" basis						
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS SG	Analytical Method: NWT	PH-Dx Preparation M	ethod: E	PA 3546			
Diesel Range SG	ND mg/kg	21.2	1	12/08/10 12:45	12/10/10 21:3	0	
Motor Oil Range SG	ND mg/kg	84.9	1	12/08/10 12:45	12/10/10 21:3	0 64742-65-0	
n-Octacosane (S) SG	95 %	50-150	1	12/08/10 12:45	12/10/10 21:3	0 630-02-4	
o-Terphenyl (S) SG	81 %	50-150	1	12/08/10 12:45	12/10/10 21:3	0 84-15-1	
NWTPH-Gx GCV	Analytical Method: NWT	PH-Gx Preparation M	ethod: N	WTPH-Gx			
Gasoline Range Organics	ND mg/kg	5.3	1	12/09/10 10:00	12/09/10 18:0	3	
a,a,a-Trifluorotoluene (S)	93 %	50-150	1	12/09/10 10:00	12/09/10 18:0	3 98-08-8	
4-Bromofluorobenzene (S)	91 %	50-150	1	12/09/10 10:00	12/09/10 18:0	3 460-00-4	
6020 MET ICPMS	Analytical Method: EPA	6020					
Arsenic	4.1 mg/kg	0.44	20	12/08/10 16:42	12/16/10 00:5	1 7440-38-2	
Cadmium	0.084 mg/kg	0.070	20	12/08/10 16:42			
Copper	24.4 mg/kg	0.44	20	12/08/10 16:42	12/16/10 00:5	1 7440-50-8	
Lead	8.1 mg/kg	0.44	20	12/08/10 16:42	12/16/10 00:5	1 7439-92-1	
Nickel	33.5 mg/kg	0.44	20	12/08/10 16:42			
3270 MSSV PAH by SIM	Analytical Method: EPA	8270 by SIM Preparat	ion Meth	od: EPA 3546			
Acenaphthene	8.7 ug/kg	7.2	1	12/08/10 12:10	12/09/10 20:1	3 83-32-9	
Acenaphthylene	ND ug/kg	7.2	1	12/08/10 12:10	12/09/10 20:1	3 208-96-8	
Anthracene	7.3 ug/kg	7.2	1	12/08/10 12:10			
Benzo(a)anthracene	9.1 ug/kg	7.2	1	12/08/10 12:10			
Benzo(a)pyrene	11.2 ug/kg	7.2	1	12/08/10 12:10			
Benzo(b)fluoranthene	9.3 ug/kg	7.2	1	12/08/10 12:10			
Benzo(g,h,i)perylene	8.6 ug/kg	7.2	1	12/08/10 12:10			
Benzo(k)fluoranthene	7.5 ug/kg	7.2	1	12/08/10 12:10			
Chrysene	11.4 ug/kg	7.2	1	12/08/10 12:10			
Dibenz(a,h)anthracene	ND ug/kg	7.2	1	12/08/10 12:10			
Fluoranthene	18.2 ug/kg	7.2	1	12/08/10 12:10			
Fluorene	ND ug/kg	7.2	1	12/08/10 12:10			
Indeno(1,2,3-cd)pyrene	ND ug/kg	7.2	1	12/08/10 12:10			
1-Methylnaphthalene	ND ug/kg	7.2	1	12/08/10 12:10			
		7.2	1	12/08/10 12:10			
2-Methylnaphthalene	ND ug/kg						
Naphthalene	10.4 ug/kg	7.2	1	12/08/10 12:10			
Phenanthrene	23.2 ug/kg	7.2	1	12/08/10 12:10			
Pyrene	24.5 ug/kg	7.2	1	12/08/10 12:10			
2-Fluorobiphenyl (S)	71 %	31-131	1	12/08/10 12:10			
Terphenyl-d14 (S)	75 %	30-133	1	12/08/10 12:10	12/09/10 20:1	3 1718-51-0	
3260/5035A Volatile Organics	Analytical Method: EPA	8260					
Benzene	ND ug/kg	3.2	1		12/07/10 14:1		
Ethylbenzene	ND ug/kg	3.2	1		12/07/10 14:1		
Toluene	ND ug/kg	3.2	1		12/07/10 14:1	2 108-88-3	
	ND #	0.5	4		12/07/10 14:1	2 4220 20 7	
Xylene (Total)	ND ug/kg	9.5	1		12/07/10 14:1	2 1330-20-7	

Date: 12/17/2010 04:37 PM

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

Page 10 of 23

Project: East Bay Redevelopment 138130

Pace Project No.: 255893 Lab ID: 255893005 Sample: SPL-13-5 Collected: 12/03/10 14:20 Received: 12/03/10 16:10 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8260/5035A Volatile Organics Analytical Method: EPA 8260 Toluene-d8 (S) 106 % 80-120 1 12/07/10 14:12 2037-26-5 4-Bromofluorobenzene (S) 118 % 72-122 1 12/07/10 14:12 460-00-4 1,2-Dichloroethane-d4 (S) 115 % 80-143 12/07/10 14:12 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 8.5 % 0.10 1 12/06/10 17:22 Lab ID: 255893006 Sample: SPL-13-6 Collected: 12/03/10 14:40 Received: 12/03/10 16:10 Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG ND mg/kg 20.7 12/08/10 12:45 12/10/10 21:53 Motor Oil Range SG 125 mg/kg 82.7 12/08/10 12:45 12/10/10 21:53 64742-65-0 1 n-Octacosane (S) SG 91 % 50-150 1 12/08/10 12:45 12/10/10 21:53 630-02-4 o-Terphenyl (S) SG 50-150 12/08/10 12:45 12/10/10 21:53 84-15-1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 6.2 12/09/10 10:00 12/09/10 18:27 97 % 50-150 12/09/10 10:00 12/09/10 18:27 98-08-8 a,a,a-Trifluorotoluene (S) 1 4-Bromofluorobenzene (S) 94 % 50-150 12/09/10 10:00 12/09/10 18:27 460-00-4 1 **6020 MET ICPMS** Analytical Method: EPA 6020 12/08/10 16:42 12/16/10 23:49 7440-38-2 Arsenic 9.6 mg/kg 0.52 20 Cadmium 0.18 mg/kg 0.083 20 12/08/10 16:42 12/16/10 23:49 7440-43-9 **24.9** mg/kg 12/08/10 16:42 12/16/10 23:49 7440-50-8 0.52 20 Copper 0.52 20 12/08/10 16:42 12/16/10 23:49 7439-92-1 Lead 7.0 mg/kg Nickel 20 12/08/10 16:42 12/16/10 23:49 7440-02-0 41.2 mg/kg 0.52 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 7.3 Acenaphthene ND ug/kg 12/08/10 12:10 12/09/10 20:28 83-32-9 Acenaphthylene ND ug/kg 7.3 12/08/10 12:10 12/09/10 20:28 208-96-8 1 ND ug/kg 7.3 Anthracene 1 12/08/10 12:10 12/09/10 20:28 120-12-7 Benzo(a)anthracene ND ug/kg 7.3 1 12/08/10 12:10 12/09/10 20:28 56-55-3 Benzo(a)pyrene 11.6 ug/kg 7.3 12/08/10 12:10 12/09/10 20:28 50-32-8 1 Benzo(b)fluoranthene 8.6 ug/kg 7.3 1 12/08/10 12:10 12/09/10 20:28 205-99-2 10.1 ug/kg 7.3 12/08/10 12:10 12/09/10 20:28 191-24-2 Benzo(g,h,i)perylene 1 Benzo(k)fluoranthene 7.3 ug/kg 7.3 1 12/08/10 12:10 12/09/10 20:28 207-08-9 Chrysene 10.6 ug/kg 7.3 12/08/10 12:10 12/09/10 20:28 218-01-9 1 ND ug/kg 7.3 Dibenz(a,h)anthracene 12/08/10 12:10 12/09/10 20:28 53-70-3 1 12/08/10 12:10 12/09/10 20:28 206-44-0 Fluoranthene 10.3 ug/kg 7.3 1 Fluorene ND ug/kg 7.3 12/08/10 12:10 12/09/10 20:28 86-73-7 1 Indeno(1,2,3-cd)pyrene ND ug/kg 7.3 12/08/10 12:10 12/09/10 20:28 193-39-5

Date: 12/17/2010 04:37 PM

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

Page 11 of 23

Project: East Bay Redevelopment 138130

Pace Project No.: 255893

Lab ID: 255893006 Sample: SPL-13-6 Collected: 12/03/10 14:40 Received: 12/03/10 16:10 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit Prepared Analyzed CAS No. Qual 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 1-Methylnaphthalene ND ug/kg 7.3 12/08/10 12:10 12/09/10 20:28 90-12-0 2-Methylnaphthalene 8.0 ug/kg 7.3 12/08/10 12:10 12/09/10 20:28 91-57-6 Naphthalene ND ug/kg 7.3 12/08/10 12:10 12/09/10 20:28 91-20-3 1 Phenanthrene 9.6 ug/kg 7.3 1 12/08/10 12:10 12/09/10 20:28 85-01-8 16.4 ug/kg Pyrene 7.3 1 12/08/10 12:10 12/09/10 20:28 129-00-0 2-Fluorobiphenyl (S) 67 % 31-131 12/08/10 12:10 12/09/10 20:28 321-60-8 1 Terphenyl-d14 (S) 80 % 30-133 12/08/10 12:10 12/09/10 20:28 1718-51-0 8260/5035A Volatile Organics Analytical Method: EPA 8260 ND ug/kg 3.8 12/07/10 14:31 71-43-2 Benzene 1 12/07/10 14:31 100-41-4 Ethylbenzene ND ug/kg 3.8 1 Toluene 12/07/10 14:31 108-88-3 ND ug/kg 3.8 1 Xylene (Total) ND ug/kg 12/07/10 14:31 1330-20-7 11.4 1 12/07/10 14:31 1868-53-7 Dibromofluoromethane (S) 104 % 80-136 1 Toluene-d8 (S) 112 % 80-120 1 12/07/10 14:31 2037-26-5 4-Bromofluorobenzene (S) 116 % 72-122 1 12/07/10 14:31 460-00-4 1,2-Dichloroethane-d4 (S) 113 % 80-143 12/07/10 14:31 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 8.4 % 0.10 1 12/06/10 17:23 Sample: SPL-13-7 Lab ID: 255893007 Collected: 12/03/10 15:00 Received: 12/03/10 16:10 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG ND mg/kg 20.3 12/08/10 12:45 12/10/10 22:40 Motor Oil Range SG 128 mg/kg 81.3 12/08/10 12:45 12/10/10 22:40 64742-65-0 n-Octacosane (S) SG 96 % 50-150 12/08/10 12:45 12/10/10 22:40 630-02-4 o-Terphenyl (S) SG 82 % 50-150 12/08/10 12:45 12/10/10 22:40 84-15-1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 6.1 12/09/10 10:00 12/09/10 19:14 a,a,a-Trifluorotoluene (S) 97 % 50-150 1 12/09/10 10:00 12/09/10 19:14 98-08-8 4-Bromofluorobenzene (S) 92 % 50-150 1 12/09/10 10:00 12/09/10 19:14 460-00-4 **6020 MET ICPMS** Analytical Method: EPA 6020 **4.0** mg/kg 12/08/10 16:42 12/16/10 01:00 7440-38-2 Arsenic 0.48 20 Cadmium 0.23 mg/kg 0.076 20 12/08/10 16:42 12/16/10 01:00 7440-43-9 23.4 mg/kg 0.48 20 12/08/10 16:42 12/16/10 01:00 7440-50-8 M6 Copper Lead 10.4 mg/kg 0.48 20 12/08/10 16:42 12/16/10 01:00 7439-92-1 Nickel **31.8** mg/kg 0.48 20 12/08/10 16:42 12/16/10 01:00 7440-02-0 M6

Date: 12/17/2010 04:37 PM

REPORT OF LABORATORY ANALYSIS

Page 12 of 23

Project: East Bay Redevelopment 138130

Pace Project No.: 255893

Lab ID: 255893007 Sample: SPL-13-7 Collected: 12/03/10 15:00 Received: 12/03/10 16:10 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Acenaphthene ND ug/kg 7.2 12/08/10 12:10 12/09/10 20:44 83-32-9 7.2 Acenaphthylene ND ug/kg 12/08/10 12:10 12/09/10 20:44 208-96-8 Anthracene ND ug/kg 7.2 12/08/10 12:10 12/09/10 20:44 120-12-7 1 Benzo(a)anthracene 19.0 ug/kg 7.2 12/08/10 12:10 12/09/10 20:44 56-55-3 1 Benzo(a)pyrene 23.6 ug/kg 7.2 1 12/08/10 12:10 12/09/10 20:44 50-32-8 Benzo(b)fluoranthene 14.9 ug/kg 7.2 12/08/10 12:10 12/09/10 20:44 205-99-2 1 18.2 ug/kg 7.2 12/08/10 12:10 12/09/10 20:44 191-24-2 Benzo(g,h,i)perylene 1 Benzo(k)fluoranthene 16.9 ug/kg 7.2 12/08/10 12:10 12/09/10 20:44 207-08-9 1 23.7 ug/kg 7.2 12/08/10 12:10 12/09/10 20:44 218-01-9 Chrysene 1 ND ug/kg 7.2 12/08/10 12:10 12/09/10 20:44 53-70-3 Dibenz(a,h)anthracene 1 32.3 ug/kg 7.2 12/08/10 12:10 12/09/10 20:44 206-44-0 Fluoranthene 1 Fluorene ND ug/kg 7.2 1 12/08/10 12:10 12/09/10 20:44 86-73-7 Indeno(1,2,3-cd)pyrene 13.2 ug/kg 7.2 1 12/08/10 12:10 12/09/10 20:44 193-39-5 1-Methylnaphthalene ND ug/kg 7.2 12/08/10 12:10 12/09/10 20:44 90-12-0 1 2-Methylnaphthalene ND ug/kg 7.2 12/08/10 12:10 12/09/10 20:44 91-57-6 1 Naphthalene ND ug/kg 7.2 1 12/08/10 12:10 12/09/10 20:44 91-20-3 Phenanthrene 24.2 ug/kg 7.2 1 12/08/10 12:10 12/09/10 20:44 85-01-8 Pyrene 46.7 ug/kg 7.2 12/08/10 12:10 12/09/10 20:44 129-00-0 1 31-131 2-Fluorobiphenyl (S) 59 % 1 12/08/10 12:10 12/09/10 20:44 321-60-8 Terphenyl-d14 (S) 69 % 30-133 12/08/10 12:10 12/09/10 20:44 1718-51-0 1 8260/5035A Volatile Organics Analytical Method: EPA 8260 ND ug/kg 3.0 12/07/10 14:50 71-43-2 Benzene 1 Ethylbenzene ND ug/kg 3.0 12/07/10 14:50 100-41-4 1 Toluene ND ug/kg 3.0 1 12/07/10 14:50 108-88-3 Xylene (Total) ND ug/kg 8.9 1 12/07/10 14:50 1330-20-7 Dibromofluoromethane (S) 105 % 80-136 12/07/10 14:50 1868-53-7 Toluene-d8 (S) 110 % 80-120 1 12/07/10 14:50 2037-26-5 4-Bromofluorobenzene (S) 125 % 72-122 12/07/10 14:50 460-00-4 S3 1,2-Dichloroethane-d4 (S) 109 % 80-143 12/07/10 14:50 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 9.0 % 0.10 12/06/10 17:24 Sample: TB-1318560 Lab ID: 255893008 Collected: 12/03/10 00:00 Received: 12/03/10 16:10 Results reported on a "wet-weight" basis Results Units DF CAS No. Qual **Parameters** Report Limit Prepared Analyzed **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 5.0 1 12/09/10 10:00 12/09/10 14:31 a,a,a-Trifluorotoluene (S) 101 % 12/09/10 10:00 12/09/10 14:31 98-08-8 50-150 1 4-Bromofluorobenzene (S) 96 % 50-150 1 12/09/10 10:00 12/09/10 14:31 460-00-4

Date: 12/17/2010 04:37 PM

REPORT OF LABORATORY ANALYSIS

Page 13 of 23

Project: East Bay Redevelopment 138130

Pace Project No.: 255893

Sample: TB-1318560 Lab ID: 255893008 Collected: 12/03/10 00:00 Received: 12/03/10 16:10 Matrix: Solid

Results reported on a "wet-weight" basis

Results reported on a wet-weight	l Dasis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260/5035A Volatile Organics	Analytical Meth	od: EPA 8260						
Benzene	ND ug/	kg	3.0	1		12/07/10 09:29	71-43-2	
Ethylbenzene	ND ug/	kg	3.0	1		12/07/10 09:29	100-41-4	
Toluene	ND ug/	kg	3.0	1		12/07/10 09:29	108-88-3	
Xylene (Total)	ND ug/	kg	9.0	1		12/07/10 09:29	1330-20-7	
Dibromofluoromethane (S)	105 %		80-136	1		12/07/10 09:29	1868-53-7	
Toluene-d8 (S)	108 %		80-120	1		12/07/10 09:29	2037-26-5	
4-Bromofluorobenzene (S)	105 %		72-122	1		12/07/10 09:29	460-00-4	
1,2-Dichloroethane-d4 (S)	111 %		80-143	1		12/07/10 09:29	17060-07-0	

Date: 12/17/2010 04:37 PM

Project: East Bay Redevelopment 138130

Pace Project No.: 255893

QC Batch: OEXT/3071 Analysis Method: NWTPH-Dx
QC Batch Method: EPA 3546 Analysis Description: NWTPH-Dx GCS

Associated Lab Samples: 255893001, 255893002, 255893003, 255893004, 255893005, 255893006, 255893007

METHOD BLANK: 51572 Matrix: Solid

Associated Lab Samples: 255893001, 255893002, 255893003, 255893004, 255893005, 255893006, 255893007

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Diesel Range SG	mg/kg	ND ND	20.0	12/10/10 16:03	
Motor Oil Range SG	mg/kg	ND	80.0	12/10/10 16:03	
n-Octacosane (S) SG	%	89	50-150	12/10/10 16:03	
o-Terphenyl (S) SG	%	75	50-150	12/10/10 16:03	

LABORATORY CONTROL SAMPLE: 51573

		Spike	LCS	LCS	% Rec	0 ""
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Diesel Range SG	mg/kg	500	422	84	56-124	
Motor Oil Range SG	mg/kg	500	443	89	50-150	
n-Octacosane (S) SG	%			95	50-150	
o-Terphenyl (S) SG	%			117	50-150	

SAMPLE DUPLICATE: 51574

Parameter	Units	255892001 Result	Dup Result	RPD	Qualifiers
Diesel Range SG	mg/kg	ND	20.6		
Motor Oil Range SG	mg/kg	ND	73.6J		
n-Octacosane (S) SG	%	96	98	.9	
o-Terphenyl (S) SG	%	81	82	1	

SAMPLE DUPLICATE: 51575

ъ.	11.5	255893006	Dup	222	0 ""
Parameter	Units	Result	Result	RPD	Qualifiers
Diesel Range SG	mg/kg	ND	11.7J		
Motor Oil Range SG	mg/kg	125	100	22	
n-Octacosane (S) SG	%	91	94	7	
o-Terphenyl (S) SG	%	77	80	7	

Date: 12/17/2010 04:37 PM REPORT OF LABORATORY ANALYSIS

Project: East Bay Redevelopment 138130

Pace Project No.: 255893

QC Batch: GCV/2069 Analysis Method: NWTPH-Gx

QC Batch Method: NWTPH-Gx Analysis Description: NWTPH-Gx Solid GCV

Associated Lab Samples: 255893001, 255893002, 255893003, 255893004, 255893006, 255893006, 255893007, 255893008

METHOD BLANK: 51697 Matrix: Solid

Associated Lab Samples: 255893001, 255893002, 255893003, 255893004, 255893005, 255893006, 255893007, 255893008

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
		- 		7 11 101 1 2 0 0	
Gasoline Range Organics	mg/kg	ND	5.0	12/09/10 12:31	
4-Bromofluorobenzene (S)	%	103	50-150	12/09/10 12:31	
a,a,a-Trifluorotoluene (S)	%	101	50-150	12/09/10 12:31	

LABORATORY CONTROL SAMPLE:	51698					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Gasoline Range Organics	mg/kg	12.5	13.2	105	54-156	
4-Bromofluorobenzene (S)	%			119	50-150	
a,a,a-Trifluorotoluene (S)	%			107	50-150	

SAMPLE DUPLICATE: 51583					
Parameter	Units	255893004 Result	Dup Result	RPD	Qualifiers
- I didificted			- TCSuit		Qualificis
Gasoline Range Organics	mg/kg	ND	1.3J		
4-Bromofluorobenzene (S)	%	88	94	6	
a,a,a-Trifluorotoluene (S)	%	89	99	10	

255893006 Dup Parameter Units Result Result **RPD** Qualifiers Gasoline Range Organics ND .58J mg/kg 4-Bromofluorobenzene (S) % 94 95 .4 a,a,a-Trifluorotoluene (S) % 97 97 .03

Date: 12/17/2010 04:37 PM

SAMPLE DUPLICATE: 51843

Project: East Bay Redevelopment 138130

Pace Project No.: 255893

QC Batch: ICPM/23886 Analysis Method: EPA 6020
QC Batch Method: EPA 6020 Analysis Description: 6020 MET

Associated Lab Samples: 255893001, 255893002, 255893003, 255893004, 255893005, 255893006, 255893007

METHOD BLANK: 902297 Matrix: Solid

Associated Lab Samples: 255893001, 255893002, 255893003, 255893004, 255893005, 255893006, 255893007

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	mg/kg	ND ND	0.43	12/16/10 23:54	
Cadmium	mg/kg	ND	0.069	12/16/10 23:54	
Copper	mg/kg	ND	0.43	12/16/10 23:54	
Lead	mg/kg	ND	0.43	12/16/10 23:54	
Nickel	mg/kg	ND	0.43	12/16/10 23:54	

LABORATORY CONTROL SAMPLE: 902298

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/kg		14.7	93	75-125	
Cadmium	mg/kg	15.7	15.4	98	75-125	
Copper	mg/kg	15.7	15.9	101	75-125	
Lead	mg/kg	15.7	15.9	101	75-125	
Nickel	mg/kg	15.7	15.6	99	75-125	

MATRIX SPIKE & MATRIX SF	MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 902299 902300										
	10 ⁻	144652007	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Arsenic	mg/kg	5.8	17.1	16.8	21.9	21.6	94	94	75-125		
Cadmium	mg/kg	0.25	17.1	16.8	20.6	19.9	119	117	75-125	3	
Copper	mg/kg	11.2	17.1	16.8	25.9	25.9	86	88	75-125	.05	
Lead	mg/kg	9.1	17.1	16.8	25.1	24.4	94	91	75-125	3	
Nickel	mg/kg	15.7	17.1	16.8	28.2	28.7	73	77	75-125	2 M6	

MATRIX SPIKE SAMPLE:	902301						
		255893007	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/kg	4.0	18.9	23.5	103	75-125	
Cadmium	mg/kg	0.23	18.9	23.3	122	75-125	
Copper	mg/kg	23.4	18.9	35.8	65	75-125 N	<i>1</i> 6
Lead	mg/kg	10.4	18.9	29.9	103	75-125	
Nickel	mg/kg	31.8	18.9	37.8	32	75-125 N	<i>1</i> 6

Date: 12/17/2010 04:37 PM REPORT OF LABORATORY ANALYSIS

Page 17 of 23

Project: East Bay Redevelopment 138130

Pace Project No.: 255893

QC Batch: OEXT/3070 Analysis Method: EPA 8270 by SIM

QC Batch Method: EPA 3546 Analysis Description: 8270/3546 MSSV PAH by SIM Associated Lab Samples: 255893001, 255893002, 255893003, 255893004, 255893005, 255893006, 255893007

METHOD BLANK: 51521 Matrix: Solid

Associated Lab Samples: 255893001, 255893002, 255893003, 255893004, 255893005, 255893006, 255893007

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/kg	ND ND	6.7	12/09/10 15:45	
2-Methylnaphthalene	ug/kg	ND	6.7	12/09/10 15:45	
Acenaphthene	ug/kg	ND	6.7	12/09/10 15:45	
Acenaphthylene	ug/kg	ND	6.7	12/09/10 15:45	
Anthracene	ug/kg	ND	6.7	12/09/10 15:45	
Benzo(a)anthracene	ug/kg	ND	6.7	12/09/10 15:45	
Benzo(a)pyrene	ug/kg	ND	6.7	12/09/10 15:45	
Benzo(b)fluoranthene	ug/kg	ND	6.7	12/09/10 15:45	
Benzo(g,h,i)perylene	ug/kg	ND	6.7	12/09/10 15:45	
Benzo(k)fluoranthene	ug/kg	ND	6.7	12/09/10 15:45	
Chrysene	ug/kg	ND	6.7	12/09/10 15:45	
Dibenz(a,h)anthracene	ug/kg	ND	6.7	12/09/10 15:45	
Fluoranthene	ug/kg	ND	6.7	12/09/10 15:45	
Fluorene	ug/kg	ND	6.7	12/09/10 15:45	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	6.7	12/09/10 15:45	
Naphthalene	ug/kg	ND	6.7	12/09/10 15:45	
Phenanthrene	ug/kg	ND	6.7	12/09/10 15:45	
Pyrene	ug/kg	ND	6.7	12/09/10 15:45	
2-Fluorobiphenyl (S)	%	64	31-131	12/09/10 15:45	
Terphenyl-d14 (S)	%	80	30-133	12/09/10 15:45	

LABORATORY CONTROL SAMPLE: 51522

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/kg	133	80.3	60	37-121	
2-Methylnaphthalene	ug/kg	133	81.2	61	33-132	
Acenaphthene	ug/kg	133	85.2	64	32-127	
Acenaphthylene	ug/kg	133	87.1	65	31-134	
Anthracene	ug/kg	133	94.6	71	42-135	
Benzo(a)anthracene	ug/kg	133	95.9	72	43-139	
Benzo(a)pyrene	ug/kg	133	112	84	44-144	
Benzo(b)fluoranthene	ug/kg	133	103	77	42-144	
Benzo(g,h,i)perylene	ug/kg	133	85.9	64	46-136	
Benzo(k)fluoranthene	ug/kg	133	103	77	45-147	
Chrysene	ug/kg	133	97.2	73	42-144	
Dibenz(a,h)anthracene	ug/kg	133	87.2	65	48-142	
Fluoranthene	ug/kg	133	92.8	70	44-143	
Fluorene	ug/kg	133	88.0	66	32-146	
Indeno(1,2,3-cd)pyrene	ug/kg	133	88.4	66	47-140	
Naphthalene	ug/kg	133	80.3	60	35-118	
Phenanthrene	ug/kg	133	88.4	66	42-131	

Date: 12/17/2010 04:37 PM REPORT OF LABORATORY ANALYSIS

Page 18 of 23

Project: East Bay Redevelopment 138130

Pace Project No.: 255893

LABORATORY CONTROL SAMPLE: 51522

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Pyrene	ug/kg	133	98.2	74	47-136	
2-Fluorobiphenyl (S)	%			67	31-131	
Terphenyl-d14 (S)	%			79	30-133	

MATRIX SPIKE & MATRIX S	PIKE DUPLICAT	TE: 51523			51524						
			MS	MSD							
		255892001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qua
1-Methylnaphthalene	ug/kg	13.8	146	147	127	113	78	67	31-123	12	
2-Methylnaphthalene	ug/kg	22.7	146	147	141	125	81	69	15-146	12	
Acenaphthene	ug/kg	9.0	146	147	131	112	84	70	19-141	16	
Acenaphthylene	ug/kg	23.1	146	147	141	130	81	73	30-142	8	
Anthracene	ug/kg	42.0	146	147	234	154	132	76	38-137	41	R1
Benzo(a)anthracene	ug/kg	83.6	146	147	295	193	145	75	37-143	41	M1,R1
Benzo(a)pyrene	ug/kg	102	146	147	330	212	157	75	33-147	43	M1,R1
Benzo(b)fluoranthene	ug/kg	53.1	146	147	186	131	91	53	25-156	34	R1
Benzo(g,h,i)perylene	ug/kg	58.5	146	147	215	151	107	63	26-142	35	R1
Benzo(k)fluoranthene	ug/kg	61.3	146	147	245	168	126	73	35-142	37	R1
Chrysene	ug/kg	97.4	146	147	330	214	159	79	23-150	42	M1,R1
Dibenz(a,h)anthracene	ug/kg	18.5	146	147	134	110	79	62	41-140	20	R1
Fluoranthene	ug/kg	136	146	147	391	245	175	74	25-155	46	M1,R1
Fluorene	ug/kg	27.1	146	147	164	132	94	71	33-152	22	R1
ndeno(1,2,3-cd)pyrene	ug/kg	46.4	146	147	196	139	103	63	36-139	34	R1
Naphthalene	ug/kg	29.0	146	147	142	129	77	68	25-121	9	
Phenanthrene	ug/kg	148	146	147	487	279	233	90	29-141	54	M1,R1
Pyrene	ug/kg	225	146	147	595	364	254	94	36-145	48	M1,R1
2-Fluorobiphenyl (S)	%						68	63	31-131		
Terphenyl-d14 (S)	%						75	68	30-133		

Date: 12/17/2010 04:37 PM

Project: East Bay Redevelopment 138130

Pace Project No.: 255893

QC Batch: MSV/3555 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5035A Volatile Organics
Associated Lab Samples: 255893001, 255893002, 255893003, 255893004, 255893005, 255893006, 255893007, 255893008

METHOD BLANK: 51309 Matrix: Solid

Associated Lab Samples: 255893001, 255893002, 255893003, 255893004, 255893005, 255893006, 255893007, 255893008

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND ND	3.0	12/07/10 08:36	
Ethylbenzene	ug/kg	ND	3.0	12/07/10 08:36	
Toluene	ug/kg	ND	3.0	12/07/10 08:36	
Xylene (Total)	ug/kg	ND	9.0	12/07/10 08:36	
1,2-Dichloroethane-d4 (S)	%	108	80-143	12/07/10 08:36	
4-Bromofluorobenzene (S)	%	105	72-122	12/07/10 08:36	
Dibromofluoromethane (S)	%	103	80-136	12/07/10 08:36	
Toluene-d8 (S)	%	112	80-120	12/07/10 08:36	

LABORATORY CONTROL SAMI	PLE & LCSD: 51310		51	1311						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene	ug/kg	50	45.8	45.8	92	92	75-133	.1	30	
Ethylbenzene	ug/kg	50	50.8	51.5	102	103	68-131	1	30	
Toluene	ug/kg	50	53.2	54.0	106	108	73-124	2	30	
Xylene (Total)	ug/kg	150	142	144	95	96	68-130	1	30	
1,2-Dichloroethane-d4 (S)	%				111	106	80-143			
4-Bromofluorobenzene (S)	%				110	111	72-122			
Dibromofluoromethane (S)	%				107	103	80-136			
Toluene-d8 (S)	%				112	111	80-120			

Date: 12/17/2010 04:37 PM

Project: East Bay Redevelopment 138130

Pace Project No.: 255893

QC Batch: PMST/1445 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture
Associated Lab Samples: 255893001, 255893002, 255893003, 255893004, 255893005, 255893006, 255893007

SAMPLE DUPLICATE: 51381

255906001 Dup
Parameter Units Result Result RPD Qualifiers

Percent Moisture % 23.8 23.6 .9

SAMPLE DUPLICATE: 51382

Parameter Units 255893003 Dup Result Result RPD Qualifiers

Percent Moisture % 9.8 9.1 7

Date: 12/17/2010 04:37 PM REPORT OF LABORATORY ANALYSIS

Page 21 of 23

QUALIFIERS

Project: East Bay Redevelopment 138130

Pace Project No.: 255893

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-M	Pace Analytical Services - Minneapolis
PASI-S	Pace Analytical Services - Seattle

ANALYTE QUALIFIERS

M1	Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
M6	Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.
R1	RPD value was outside control limits.
S 3	Surrogate recovery exceeded laboratory control limits. Analyte presence below reporting limits in associated samples. Results unaffected by high bias.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: East Bay Redevelopment 138130

Pace Project No.: 255893

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
255893001	SPL-13-1	EPA 3546	OEXT/3071	NWTPH-Dx	GCSV/2136
255893002	SPL-13-2	EPA 3546	OEXT/3071	NWTPH-Dx	GCSV/2136
255893003	SPL-13-3	EPA 3546	OEXT/3071	NWTPH-Dx	GCSV/2136
255893004	SPL-13-4	EPA 3546	OEXT/3071	NWTPH-Dx	GCSV/2136
255893005	SPL-13-5	EPA 3546	OEXT/3071	NWTPH-Dx	GCSV/2136
255893006	SPL-13-6	EPA 3546	OEXT/3071	NWTPH-Dx	GCSV/2136
255893007	SPL-13-7	EPA 3546	OEXT/3071	NWTPH-Dx	GCSV/2136
255893001	SPL-13-1	NWTPH-Gx	GCV/2069	NWTPH-Gx	GCV/2073
255893002	SPL-13-2	NWTPH-Gx	GCV/2069	NWTPH-Gx	GCV/2073
255893003	SPL-13-3	NWTPH-Gx	GCV/2069	NWTPH-Gx	GCV/2073
255893004	SPL-13-4	NWTPH-Gx	GCV/2069	NWTPH-Gx	GCV/2073
255893005	SPL-13-5	NWTPH-Gx	GCV/2069	NWTPH-Gx	GCV/2073
255893006	SPL-13-6	NWTPH-Gx	GCV/2069	NWTPH-Gx	GCV/2073
255893007	SPL-13-7	NWTPH-Gx	GCV/2069	NWTPH-Gx	GCV/2073
255893008	TB-1318560	NWTPH-Gx	GCV/2069	NWTPH-Gx	GCV/2073
255893001	SPL-13-1	EPA 6020	ICPM/23886	EPA 6020	ICPM/9694
255893002	SPL-13-2	EPA 6020	ICPM/23886	EPA 6020	ICPM/9694
255893003	SPL-13-3	EPA 6020	ICPM/23886	EPA 6020	ICPM/9694
255893004	SPL-13-4	EPA 6020	ICPM/23886	EPA 6020	ICPM/9694
255893005	SPL-13-5	EPA 6020	ICPM/23886	EPA 6020	ICPM/9694
255893006	SPL-13-6	EPA 6020	ICPM/23886	EPA 6020	ICPM/9694
255893007	SPL-13-7	EPA 6020	ICPM/23886	EPA 6020	ICPM/9694
255893001	SPL-13-1	EPA 3546	OEXT/3070	EPA 8270 by SIM	MSSV/1463
255893002	SPL-13-2	EPA 3546	OEXT/3070	EPA 8270 by SIM	MSSV/1463
255893003	SPL-13-3	EPA 3546	OEXT/3070	EPA 8270 by SIM	MSSV/1463
255893004	SPL-13-4	EPA 3546	OEXT/3070	EPA 8270 by SIM	MSSV/1463
255893005	SPL-13-5	EPA 3546	OEXT/3070	EPA 8270 by SIM	MSSV/1463
255893006	SPL-13-6	EPA 3546	OEXT/3070	EPA 8270 by SIM	MSSV/1463
255893007	SPL-13-7	EPA 3546	OEXT/3070	EPA 8270 by SIM	MSSV/1463
255893001	SPL-13-1	EPA 8260	MSV/3555		
255893002	SPL-13-2	EPA 8260	MSV/3555		
255893003	SPL-13-3	EPA 8260	MSV/3555		
255893004	SPL-13-4	EPA 8260	MSV/3555		
255893005	SPL-13-5	EPA 8260	MSV/3555		
255893006	SPL-13-6	EPA 8260	MSV/3555		
255893007	SPL-13-7	EPA 8260	MSV/3555		
255893008	TB-1318560	EPA 8260	MSV/3555		
255893001	SPL-13-1	ASTM D2974-87	PMST/1445		
255893002	SPL-13-2	ASTM D2974-87	PMST/1445		
255893003	SPL-13-3	ASTM D2974-87	PMST/1445		
255893004	SPL-13-4	ASTM D2974-87	PMST/1445		
255893005	SPL-13-5	ASTM D2974-87	PMST/1445		
255893006	SPL-13-6	ASTM D2974-87	PMST/1445		
255893007	SPL-13-7	ASTM D2974-87	PMST/1445		

Date: 12/17/2010 04:37 PM

REPORT OF LABORATORY ANALYSIS

Page 23 of 23

	Sample Con	dition Upon Recei		
Pace Analytical Client Name	e: Brown	d Caldwell	Project #	2 5 5 8 9 3
			0.00	
Courier: Fed Ex UPS USPS Clie	nt Commercia	Pace Other	rcs .	
Tracking #:		,		
Custody Seal on Cooler/Box Present:	☐ No Se	als intact: Yes] No	
Packing Material: Bubble Wrap Bubble	A	Other	Temp. Blank (Yes) _	No
Thermometer Used 132013 or 101731962 of 2260	99 Type of Ice: (M	/e) Blue None 🗆	Samples on ice, cooling	g process has begun
Cooler Temperature Temp should be above freezing ≤ 6 °C	Biological Tiss	ue is Frozen: Yes No Comments:	contents	(2/4-/10
Chain of Custody Present:	ØYes □No □t	N/A 1.		•
Chain of Custody Filled Out:	Yes DNo DI	N/A 2.		
Chain of Custody Relinquished:	ØYes □No □I	N/A 3.		
Sampler Name & Signature on COC:	ØYes □No □t	VA 4.		
Samples Arrived within Hold Time:	ØYes □No □r	V/A 5.		
Short Hold Time Analysis (<72hr):	□Yes ☑No □I	V/A 6.		
Rush Turn Around Time Requested:	□Yes ☑Ño ☑ì	N/A 7.		
Sufficient Volume:	∠DYes □No □I	V/A 8.		. , ,
Correct Containers Used:	ZYes □No □1	N/A 9.		′
-Pace Containers Used:	ØYes □No □t			
Containers Intact:	□Yes □No □I	WA 10. Dr Water pre	served vials to	SP2-13-4 10001100
Filtered volume received for Dissolved tests	□Yes □No □	V/A 11.		Subsamplea 1
Sample Labels match COC:	DYes □No □I	N/A 12.		Or A
-Includes date/time/ID/Analysis Matrix:	Soil			
All containers needing preservation have been checked.	□Yes □No ☑1	√A 13.		,
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes □No 🕅	N/A .		
Exceptions: VOA, coliform, TOC, O&G		Initial when completed	Lot # of added preservative	
Samples checked for dechlorination:	□Yes □No □	VA 14.		
Headspace in VOA Vials (>6mm):	□Yes □No □1	V/A 15.		
Trip Blanks Present:	ØYes □No □I	N/A 16.		
Trip Blank Custody Seals Present	□Yes ∕ No □	N/A		
Pace Trip Blank Lot # (if purchased):				
Client Notification/ Resolution:			Field Data Required?	Y / N
Person Contacted:	Da	te/Time:	····	
Comments/ Resolution:				
· · · · · · · · · · · · · · · · · · ·				-
Project Manager Review	(ORASS		Date: (2	lielio

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e out of hold, incorrect preservative, out of temp, incorrect containers)

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

COMMENTS ORIGINAL ORIGINAL	Section D Required Client Information: Required Client Information: Required Client Information: Required Client Information: Report To: CILLY MAPIA WHASO Purchase Project Na Required Client Information Required Client Information Sample IDs MUST BE UNIQUE Tissue Other Required Client Information Sample IDs MUST BE UNIQUE Tissue Other Tissue Other Tissue Other Tissue Other
RELINQUISHED B RELINQUISHED B	MATRIX CODE (see valid codes to left)
13:30 14:00 14:00 14:00 14:00 15:00 14:00 15:00	No.: No.: COLLECTED COMPOSITE SAMPLE TYPE COMPOSITE START COMPOSITE ENDIGNAB TIME DATE TIME TIME TIME TIME TIME TIME TIME TI
TIME TO WOOD AND AND AND AND AND AND AND AND AND AN	SAMPLE TEMP AT COLLECTION Attention: Pace Project H ₂ SO ₄ HNO ₃ HCI SECTION Action C Attention: Pace Project Pace Pro
TED BY / AFFILIA	Methanol Other Analysis Test Y/NI
AFFILIATION DATE AFFILIATION DATE WAS THE Signed (MM/DD/YY): 12/2/10	REGULATORY AGENCY NPDES GROU NPDES GROU UST RCRA Site Location STATE: WA STATE: PARAMANANTE: NPDES GROU STATE: NPDES GROU
Temp in °C	Residual Chlorine (Y/N)
Temp in °C Received on lce (Y/N) Custody Sealed Cooler (Y/N) Samples Intact	1318560 DRINKING WATER OTHER ECY Pace Project No./ Lab I.D.

>	Sample Container Count	
CLIENT: Brown of Ca	alawell	Pace Analytical *
COC PAGE of SS 60		255893
AG1H AG1U BG1H	BP1U BP2U BP3U BP2N BP2S WGFU WGKU NGAN WOW	Comments
	4	
2	4	
ယ	¢	
4	4	
U)	7	7
6	•	
7	•	
α		
O	1	
10		
-1		
12		Trip Blank? 42-5
		0
AG1H 1 liter HCL amber glass	BP2S 500mL H2SO4 plastic	JGFU 4oz unpreserved amber wide
AG1U Iliter unpreserved amber glass	BP2U 500mL unpreserved plastic	_
AG2U 500mL unpreserved amber glass	BP3C 250mL NaOH plastic	VG9H 40mL HCL clear vial
AG3S 250mL H2SO4 amber glass		_
BG1H 1 liter HCL clear glass	BP3S 250mL H2SO4 plastic	VG9U 40mL unpreserved clear vial
BP1S 1 liter H2SO4 plastic	DG9BL 40mL Na bisuliate amber vial	WGFU 4oz clear soil iar
BP1U 1 liter unpreserved plastic		WGFX 4oz wide jar w/hexane wipe
BP1Z 1 liter NaOH, Zn, Ac	DG9T 40mL Na Thio amber vial	ZPLC Ziploc Bag
BP2N 500mL HNO3 plastic	DG9U 40mL unpreserved amber vial	
BFZO SOUME NACH plastic	II Wipe/Swab	

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Jennifer Gross PASI Seattle 940 S. Harney Street Seattle WA 98108

> REPORT OF LABORATORY ANALYSIS FOR PCDD/PCDF

Report Information:

Pace Project #: 10144557

Sample Receipt Date: 12/04/2010

Client Project #: 255893 Client Sub PO #: N/A State Cert #: C755

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Nate Habte, your Pace Project Manager.

This report has been reviewed by:

December 17, 2010

Nate Habte, Project Manager

(612) 607-6407

(612) 607-6444 (fax)

natnael.habte@pacelabs.com

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

Report Prepared Date:

December 17, 2010

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on seven samples submitted by a representative of Pace Analytica Services, Inc. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290. Reporting limits were based on signal-to-noise measurements.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 43-89%. All of the labeled standard recoveries obtained for this project were within the 40-135% target range specified in Method 8290. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, interfering substances impacted the determinations of PCDD or PCDF congeners; the affected value were flagged "I" where incorrect isotope ratios were obtained. Concentrations above the calibration range were flagged "E" and should be regarded as estimates.

A laboratory method blank was prepared and analyzed with each sample batch as part of our routine quality control procedures. The results show the blanks to contain trace levels of selected congeners. These were below the calibration range of the method. The levels reported for the affected congeners in the field samples were higher than the corresponding blank levels by one or more orders of magnitude. These results indicate that the sample processing steps did not contribute significantly to the levels reported for the field samples.

Laboratory spike samples were also prepared with the sample batches using clean sand that had been fortified with native standard materials. The results show that the spiked native compounds were recovered at 91-121%, indicating a high degree of accuracy for these determinations. Matrix spikes were prepared with the extraction batches using sample materials from separate projects; results from these analyses will be provided upon request.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	
Arizona	AZ0014	Nevada	MN000642010A
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New Mexico	MN00064
Colorado	MN00064	New York (NEL	11647
Connecticut	PH-0256	North Carolina	27700
EPA Region 5	WD-15J	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Ohio VAP	CL101
Georgia (DNR)	959	Oklahoma	D9922
Guam	09-019r	Oregon (ELAP)	MN200001-005
Hawaii	SLD	Oregon (OREL	MN200001-005
Idaho	MN00064	Pennsylvania	68-00563
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennesee	2818
Iowa	368	Tennessee	02818
Kansas	E-10167	Texas	T104704192-08
Kentucky	90062	Utah (NELAP)	PAM
Louisiana	LA0900016	Virginia	00251
Maine	2007029	Washington	C755
Maryland	322	West Virginia	9952C
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q
Mississippi	MN00064		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

	727		•
_	-	_)	_
		_	•

Ë	Chain of Custody	ا خ			·	2		+ -	1					
)		À.								OFF-100-ZPA, WHY VERBAR METHORS TO THE WASHINGTON TO THE STATE OFFI	THE STATE OF THE S		Pace Analytical	
Wor	Workorder: 255893	Workor	der Nar	ne:East Bay	Workorder Name:East Bay Redevelopment 138130	ent 138130		Owner Received Date:	ved Date:	12/3/2010		Results Requested By:	12/1/1010	5 /5
NE DO	September 1			Subseptiract To	t.To				0	Requeste	Requested Analysis			
Pace	Jennifer Gross Pace Analytical Services, Inc.	ပ		Pace A 1700 E	Pace Analytical Minnesota 1700 Elm Street	esota			0949			,		
Seatt	s40 South Harney Seattle WA 98108			Suite 2	:00 anolis MN 55414	114			şu P					••••
Phon Fax (Phone (206)767-5060 Fax (206)767-5063			Phone	Phone (612)607-1700				σλί 190					
<u></u>									n I n					
						<u></u>	Preserved Containers	ontainers	ر ک					
						-			U					
		Ŝ	Sample Co	Collect		> 2	- OAJOSE		1×c					
them.	Sample ID	<u>a</u>		Date/Time	Lablo	Matrix	a (duo		H.				LAB USE ONLY	 ≧
-	SPL-13-1	PS		12/3/2010 13:10	255893001	Solid	2		'₹ ×					T
2	SPL-13-2	PS		12/3/2010 13:15	255893002	Solid	2		¥					T
က	SPL-13-3	PS		12/3/2010 13:30	255893003	Solid	2		×					T
4	SPL-13-4	PS		12/3/2010 14:00	255893004	Solid	2		×					Τ
2 ,	SPL-13-5	PS		12/3/2010 14:20	255893008	Solid	2		+ ×					Τ
9	SPL-13-6	PS		12/3/2010 14:40	255893006	Solid	2		;+ ×					T
7	SPL-13-7	PS		12/3/2010 15:00	255893007	Solid	2		×					T
						i i					ဗိ	Comments		
Transfers	fers Released By			Date/Time	Received By	Y A A	. ~	Date/Time	4	j			-(
<u>-</u>]	6			WB 17	WWW ON	THE	M	10/1/6/		OFINS ORE	S S		RUSM	
2				_	/ , a				1					
3			Λ		·	8							(
Coo	Cooler Temperature on Receipt 3.	Receipt	3, / 3c		Custody Seal Y	or (N	/ R	Received on Ice	ادو لا م	Z	Sa	Samples Intage	of Y br N	Γ
))					

Sample Condition Upon Receipt

Face Analytical Client Name	:/	PACE	- 6	UA.	Project # /0/44557
Courier: X Fed Ex UPS USPS Clie Tracking #: 7965 /67706/					Ontonal Proj. Due Date Proj. Name:
Custody Seal on Cooler/Box Present: yes	•			s intact:	J no
Packing Material: Bubble Wrap Bubble	Bage		None	Other	Temp Blank: Yes No
Thermometer Used 80344042 or 79425	Type	of Ice	:(We	Blue None	Samples on ice, cooling process has begun
Cooler Temperature Temp should be above freezing to 6°C	Biolo	gical	Tissu	o is Frozen: Yes No Comments:	Date and initials of person examining contents:
Chain of Custody Present:	ŲŶes	□No	□N⁄A	1.	
Chain of Custody Filled Out:	LV es	□No	□N⁄A	2.	
Chain of Custody Relinquished:	YYes	□No	□N⁄A	3.	
Sampler Name & Signature on COC:	YYes	□No	□n/a	4.	
Samples Arrived within Hold Time:	Xves	□No	□N⁄A	5.	
Short Hold Time Analysis (<72hr):	□Yes	ANO	□N⁄A	6.	
Rush Turn Around Time Requested:	□Yes	XNo	□N⁄A	7.	
Sufficient Volume:	Yes	□No	□N⁄A	8.	
Correct Containers Used:	V Ŷes	□No	□N⁄A	9.	
-Pace Containers Used:	YYes	□No	□N⁄A		
Containers Intact:	1X(Ves	□No	□N⁄A	10.	
Filtered volume received for Dissolved tests	□Yes	□No	VINA	11.	
Sample Labels match COC:	Yes	□No	□N⁄A	12.	
-includes date/time/ID/Analysis Matrix:	<u> </u>				
All containers needing acid/base preservation have been checked. Noncompliance are noted in 13.	□Yes	□ _N	NA	13.	03 H2SO4 NaOH HCI
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes	□No	DONA	Samp #	
Exceptions: VOA, Coliform, TOC, Oil and Grease, WI-DRO (water	□Yes	□No		initial when completed	Lot # of added preservative
Samples checked for dechlorination:	□Yes	□No:	(ANA	14.	
Headspace in VOA Vials (>6mm):	☐Yes				
Trip Blank Present:	□Yes	□No	DAVA	16.]
Trip Blank Custody Seals Present	□Yes	□No	MNA		
Pace Trip Blank Lot # (if purchased):					
Client Notification/ Resolution: Person Contacted:		`	Date/T	īme:	Field Data Required? Y / N
Comments/ Resolution:					
					•
Project Manager Review:		N	44		Date: 12/6/10

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the **Reset Abalytical SEMBLES**, Inc. F-L213Rev.00, 05Aug2009 1700 Elm Street SE, Suite 200, Minneapolis, MN 55414

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- See Discussion

Appendix B

Sample Analysis Summary

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-13-1
Lab Sample ID 255893001
Filename F101211B_03
Injected By CVS

Total Amount Extracted 11.2 g Matrix Solid % Moisture 9.5 Dilution NA

Dry Weight Extracted Collected 12/03/2010 13:10 10.1 g F101206 **ICAL ID** Received 12/04/2010 11:55 CCal Filename(s) F101211B_01 & F101211B_14 Extracted 12/08/2010 18:00 Method Blank ID BLANK-27185 Analyzed 12/11/2010 16:48

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 27.0		0.74 0.74	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 89 79
2,3,7,8-TCDD Total TCDD	ND 39.0		1.00 1.00	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	77 89 77
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	4.9 13.0 100.0		0.66 J 0.88 0.77	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	83 63 71
1,2,3,7,8-PeCDD Total PeCDD	4.5 56.0		0.51 J 0.51	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	83 82 67 59
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	24.0 9.2 13.0		0.80 1.30 1.40	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	73 70 Y
1,2,3,7,8,9-HxCDF Total HxCDF	9.3 430.0		1.50 1.20	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	5.7 23.0 10.0 180.0		1.20 1.30 0.77 1.10	2,3,7,8-TCDD-37Cl4	0.20	84
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	210.0 22.0 900.0	 	0.84 1.60 1.20	Total 2,3,7,8-TCDD Equivalence: 31 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	680.0 1200.0		2.60 2.60			
OCDF OCDD	780.0 10000.0		1.40 1.50 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. $J = Estimated \ value$

E = Exceeds calibration range

Y = Calculated using average of daily RFs

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-13-2
Lab Sample ID 255893002
Filename F101211B_04
Injected By CVS

Total Amount Extracted 11.2 g Matrix Solid % Moisture 9.3 Dilution NA

Dry Weight Extracted 10.2 g Collected 12/03/2010 13:15 F101206 **ICAL ID** Received 12/04/2010 11:55 CCal Filename(s) F101211B 01 & F101211B 14 Extracted 12/08/2010 18:00 Method Blank ID BLANK-27185 Analyzed 12/11/2010 17:36

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	3.3 41.0		0.77 0.77	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00	53 65
2,3,7,8-TCDD Total TCDD	ND 40.0		0.78 0.78	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00	55 50 58
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	6.5 15.0		0.76 0.52	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C	2.00 2.00 2.00	64 61 48
Total PeCDF 1,2,3,7,8-PeCDD Total PeCDD	130.0 4.0 59.0		0.64 0.66 J 0.66	1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	55 65 63 55
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	23.0 7.3		1.30 0.86	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 2.00 4.00	49 63 60 Y
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	12.0 9.2 400.0		1.80 1.80 1.40	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	5.1 28.0 8.3 170.0	 	1.10 0.85 0.74 0.89	2,3,7,8-TCDD-37Cl4	0.20	61
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	160.0 14.0 640.0	 	1.20 1.60 1.40	Total 2,3,7,8-TCDD Equivalence: 29 ng/Kg (Using 2005 WHO Factors -	Using PRL/	'2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	660.0 1100.0		2.40 2.40			
OCDF OCDD	530.0 6900.0		3.70 1.90 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

E = Exceeds calibration range

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

ND = Not Detected

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-13-3
Lab Sample ID 255893003-R
Filename U101216B_06
Injected By SMT

Total Amount Extracted 12.4 g Matrix Solid % Moisture 9.8 Dilution NA

Dry Weight Extracted 11.2 g Collected 12/03/2010 13:30 **ICAL ID** U101204A Received 12/04/2010 11:55 CCal Filename(s) U101216B_02 & U101216B_17 Extracted 12/14/2010 17:00 Method Blank ID BLANK-27272 Analyzed 12/16/2010 18:06

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.60 27.00		0.053 0.053	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	56 78 57
2,3,7,8-TCDD Total TCDD	0.34 28.00		0.067 J 0.067	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	57 77 66
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.60 3.90 34.00		0.110 J 0.087 J 0.099	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00 2.00	60 60 60 76
1,2,3,7,8-PeCDD Total PeCDD	1.80 38.00		0.060 J 0.060	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	76 73 66 62
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	6.00 2.80 3.30		0.083 0.130 J 0.110 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	81 53
1,2,3,7,8,9-HxCDF Total HxCDF	1.50 72.00		0.120 J 0.110	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	2.70 7.70 4.60 77.00	 	0.170 J 0.170 0.160 0.170	2,3,7,8-TCDD-37Cl4	0.20	73
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	39.00 3.40 150.00	 	0.210 0.200 J 0.200	Total 2,3,7,8-TCDD Equivalence: 9.4 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	190.00 350.00		0.490 0.490			
OCDF OCDD	120.00 2200.00		0.120 0.180			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. $J = Estimated \ value$

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-13-4
Lab Sample ID 255893004
Filename F101211B_06
Injected By CVS

Total Amount Extracted 14.6 g Matrix Solid % Moisture 23.5 Dilution NA

Dry Weight Extracted Collected 12/03/2010 14:00 11.2 g F101206 **ICAL ID** Received 12/04/2010 11:55 CCal Filename(s) F101211B 01 & F101211B 14 Extracted 12/08/2010 18:00 Method Blank ID BLANK-27185 Analyzed 12/11/2010 19:12

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	6.7	1.1	0.47 I 0.47	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00	49 58
2,3,7,8-TCDD Total TCDD	ND 16.0		0.85 0.85	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00	54 50 60
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	2.6 5.6		0.45 J 0.71	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C	2.00 2.00 2.00	54 57 46
Total PeCDF 1,2,3,7,8-PeCDD Total PeCDD	39.0 2.8 23.0		0.58 0.63 J 0.63	1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	50 52 57 48
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	13.0 5.0		1.00 0.55	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	43 52 53 Y
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	4.9 3.8 150.0		0.84 1.50 J 0.98	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	3.0 13.0 8.0 95.0		0.85 J 1.10 0.90 0.94	2,3,7,8-TCDD-37Cl4	0.20	55
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	72.0 5.3 270.0		0.79 0.94 0.86	Total 2,3,7,8-TCDD Equivalence: 16 ng/Kg (Using 2005 WHO Factors -	Using PRL/	/2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	390.0 760.0		2.20 2.20			
OCDF OCDD	230.0 4600.0		1.60 1.20			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected
NA = Not Applicable
NC = Not Calculated

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Y = Calculated using average of daily RFs

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-13-5
Lab Sample ID 255893005
Filename F101211B_07
Injected By CVS

Total Amount Extracted 11.4 g Matrix Solid % Moisture 8.5 Dilution NA

Dry Weight Extracted 10.4 g Collected 12/03/2010 14:20 F101206 **ICAL ID** Received 12/04/2010 11:55 CCal Filename(s) F101211B 01 & F101211B 14 Extracted 12/08/2010 18:00 Method Blank ID BLANK-27185 Analyzed 12/11/2010 20:00

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	2.0 28.0		0.83 0.83	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	56 64 59
2,3,7,8-TCDD Total TCDD	ND 24.0		0.90 0.90	1,2,3,7,6-FeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	59 57 67 60
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	2.0 4.9 45.0		0.75 J 0.93 0.84	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	58 50 57
1,2,3,7,8-PeCDD Total PeCDD	1.8 44.0		0.68 J 0.68	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	59 64 50 48
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	7.7 2.8 3.8		1.00 1.10 J 1.20 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	58 55 Y
1,2,3,7,8,9-HxCDF Total HxCDF	2.2 120.0		1.80 J 1.30	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	2.7 7.4 84.0	2.9	0.99 J 1.00 1.00 I 1.00	2,3,7,8-TCDD-37Cl4	0.20	61
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	57.0 4.9 240.0		1.10 2.10 1.60	Total 2,3,7,8-TCDD Equivalence: 10 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	200.0 360.0		2.10 2.10			
OCDF OCDD	210.0 2300.0		3.00 1.30			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Y = Calculated using average of daily RFs

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-13-6
Lab Sample ID 255893006
Filename F101211B_08
Injected By CVS

Total Amount Extracted 12.6 g Matrix Solid % Moisture 8.4 Dilution NA

Dry Weight Extracted 11.5 g Collected 12/03/2010 14:40 ICAL ID F101206 Received 12/04/2010 11:55 CCal Filename(s) F101211B_01 & F101211B_14 Extracted 12/08/2010 18:00 Method Blank ID BLANK-27185 Analyzed 12/11/2010 20:48

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 3.6		0.85 0.85	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	69 81 76
2,3,7,8-TCDD Total TCDD	ND 12.0		0.97 0.97	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	75 89 77
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.2 3.1 20.0		0.56 J 0.38 J 0.47	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	77 64 76
1,2,3,7,8-PeCDD Total PeCDD	4.9	1.1	0.79 I 0.79	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	81 80 65 69
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	5.3 2.6 2.4		0.51 0.74 J 0.56 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	79 76 Y
1,2,3,7,8,9-HxCDF Total HxCDF	1.3 60.0		0.66 J 0.62	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.6 5.8 2.3 45.0	 	0.75 J 0.79 0.80 J 0.78	2,3,7,8-TCDD-37Cl4	0.20	77
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	24.0 2.0 87.0	 	0.64 1.20 J 0.91	Total 2,3,7,8-TCDD Equivalence: 5.9 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	120.0 210.0		1.50 1.50			
OCDF OCDD	66.0 1200.0		1.50 2.70			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Y = Calculated using average of daily RFs

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-13-7
Lab Sample ID 255893007
Filename F101211B_09
Injected By CVS

Total Amount Extracted 11.1 g Matrix Solid % Moisture 9.0 Dilution NA

Dry Weight Extracted Collected 12/03/2010 15:00 10.1 g **ICAL ID** F101206 Received 12/04/2010 11:55 CCal Filename(s) F101211B_01 & F101211B_14 Extracted 12/08/2010 18:00 Method Blank ID BLANK-27185 Analyzed 12/11/2010 21:36

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	5.9		0.98	2,3,7,8-TCDF-13C	2.00	66
Total TCDF	66.0		0.98	2,3,7,8-TCDD-13C	2.00	81
				1,2,3,7,8-PeCDF-13C	2.00	69
2,3,7,8-TCDD	1.1		1.00	2,3,4,7,8-PeCDF-13C	2.00	65
Total TCDD	68.0		1.00	1,2,3,7,8-PeCDD-13C	2.00	74
				1,2,3,4,7,8-HxCDF-13C	2.00	72
1,2,3,7,8-PeCDF	11.0		0.96	1,2,3,6,7,8-HxCDF-13C	2.00	73
2,3,4,7,8-PeCDF	31.0		0.93	2,3,4,6,7,8-HxCDF-13C	2.00	59
Total PeCDF	260.0		0.95	1,2,3,7,8,9-HxCDF-13C	2.00	65
			4.00	1,2,3,4,7,8-HxCDD-13C	2.00	73
1,2,3,7,8-PeCDD	6.7		1.00	1,2,3,6,7,8-HxCDD-13C	2.00	74
Total PeCDD	100.0		1.00	1,2,3,4,6,7,8-HpCDF-13C	2.00	57
40047011005	54.0		0.04	1,2,3,4,7,8,9-HpCDF-13C	2.00	57
1,2,3,4,7,8-HxCDF	51.0		0.94	1,2,3,4,6,7,8-HpCDD-13C	2.00	71
1,2,3,6,7,8-HxCDF	20.0		0.78	OCDD-13C	4.00	63 Y
2,3,4,6,7,8-HxCDF	23.0		1.20	4 0 0 4 TODD 400	0.00	NIA
1,2,3,7,8,9-HxCDF	16.0		2.70	1,2,3,4-TCDD-13C	2.00	NA
Total HxCDF	820.0		1.40	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD		8.9	1.10 I	2,3,7,8-TCDD-37Cl4	0.20	79
1,2,3,6,7,8-HxCDD	61.0		1.40			
1,2,3,7,8,9-HxCDD	20.0		1.60			
Total HxCDD	300.0		1.40			
1,2,3,4,6,7,8-HpCDF	360.0		1.80	Total 2,3,7,8-TCDD		
1,2,3,4,7,8,9-HpCDF	30.0		2.50	Equivalence: 61 ng/Kg		
Total HpCDF	1400.0		2.10	(Using 2005 WHO Factors -	Using PRI	2 where ND)
·				(309 2000 11110 1 001010	30g	,
1,2,3,4,6,7,8-HpCDD	1500.0		5.90			
Total HpCDD	2500.0		5.90			
OCDF	1100.0		2.00			
OCDD	14000.0		1.40 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

E = Exceeds calibration range I = Interference present

Y = Calculated using average of daily RFs

Solid

NA

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Blank Analysis Results

Lab Sample ID BLANK-27185 Matrix Filename F101210B_10 Dilution

Total Amount Extracted 20.1 g Extracted 12/08/2010 18:00 ICAL ID F101206 Analyzed 12/10/2010 23:59

CCal Filename(s) F101210B_02 & F101210B_14 Injected By CVS

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.21 0.21	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	73 82 64
2,3,7,8-TCDD Total TCDD	ND ND		0.25 0.25	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	60 72 89
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.21 0.19 0.20	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	82 70 70 91
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.19 0.19	1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	81 57 53
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	ND ND ND ND ND	 	0.21 0.20 0.26 0.40 0.27	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 4.00 2.00 2.00	62 46 NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	0.24 0.30 0.28 0.28	2,3,7,8-TCDD-37Cl4	0.20	78
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND	 	0.29 0.49 0.39	Total 2,3,7,8-TCDD Equivalence: 0.36 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		0.44 0.44			
OCDF OCDD	ND 2.2		0.74 1.00 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures. $J = Estimated \ value$

Method 8290 Blank Analysis Results

Lab Sample ID BLANK-27272 Matrix Solid Filename U101216B_05 Dilution NA

Total Amount Extracted 10.2 g Extracted 12/14/2010 17:00 ICAL ID U101204A Analyzed 12/16/2010 17:17

CCal Filename(s) U101216B_02 & U101216B_17 Injected By **SMT**

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.063 0.063	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	52 70 58
2,3,7,8-TCDD Total TCDD	ND ND		0.066 0.066	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	58 77 66
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND 0.120		0.065 0.063 0.064 J	1,2,3,4,7,6-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	62 60 55 78
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.056 0.056	1,2,3,4,7,6-FXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	76 77 69 64
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	0.078 ND	0.074 0.077	0.047 J 0.051 I 0.047 I 0.065	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 2.00 4.00	85 61 NA
Total HxCDF	0.078		0.053 J	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		0.057 0.057 0.056 0.057	2,3,7,8-TCDD-37Cl4	0.20	61
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.370 ND 0.370		0.110 J 0.140 0.120 J	Total 2,3,7,8-TCDD Equivalence: 0.11 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.190 0.400		0.089 J 0.089 J			
OCDF OCDD	1.100	0.200	0.180 I 0.310 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted

ICAL ID CCal Filename(s) Method Blank ID LCS-27186 F101211A_02 20.1 g

F101206 F101211A_01 & F101211A_14 BLANK-27185 Matrix Dilution Extracted

Analyzed

Injected By

Solid NA 12/08/2010 18:00

12/11/2010 04:47 CVS

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.24	121	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.0 2.0 2.0	68 78 69
2,3,7,8-TCDD Total TCDD	0.20	0.20	98	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.0 2.0 2.0	62 75 73
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.1 1.1	113 112	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.0 2.0 2.0 2.0 2.0	70 63 69 77
1,2,3,7,8-PeCDD Total PeCDD	1.0	0.98	98	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.0 2.0 2.0	69 62 60
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.0 1.0 1.0	1.1 1.1 1.1	107 112 106	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.0 4.0	68 54
1,2,3,7,8,9-HxCDF Total HxCDF	1.0	1.1	112	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.0 2.0	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	1.0 1.1 1.1	103 108 108	2,3,7,8-TCDD-37Cl4	0.20	82
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.1 1.0	106 101			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	0.96	96			
OCDF OCDD	2.0 2.0	2.1 2.2	106 108			

Qs = Quantity Spiked Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)
R = Recovery outside of target range

Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable
* = See Discussion

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted

Total Amount Extracted ICAL ID

CCal Filename(s) Method Blank ID LCS-27273 U101216B_16 10.5 g

U101204A U101216B_02 & U101216B_17 BLANK-27272 Matrix Dilution Extracted

Solid NA 12/14/2010 1

Extracted 12/14/2010 17:00 Analyzed 12/17/2010 02:08 Injected By SMT

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.24	118	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.0 2.0 2.0	54 74 54
2,3,7,8-TCDD Total TCDD	0.20	0.19	94	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.0 2.0 2.0 2.0	58 73 68
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.1 1.1	108 107	1,2,3,6,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.0 2.0 2.0 2.0 2.0	62 58 53 84
1,2,3,7,8-PeCDD Total PeCDD	1.0	0.91	91	1,2,3,4,7,0-11XCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.0 2.0 2.0 2.0	75 69 60
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	1.0 1.0 1.0 1.0	1.0 1.1 1.1 1.1	103 111 108 113	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.0 4.0 2.0 2.0 2.0	86 58 NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	1.0 1.0 0.99	101 103 99	2,3,7,8-TCDD-37Cl4	0.20	69
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.1 1.0	109 104			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	0.95	95			
OCDF OCDD	2.0 2.0	2.0 2.3	99 113			

Qs = Quantity Spiked Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)
R = Recovery outside of target range

Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable

* = See Discussion

December 16, 2010

Joshua Johnson Brown & Caldwell 724 Columbia St. NW#420 Olympia, WA 98501

RE: Project: East Bay Redevelopment 138130

Pace Project No.: 255892

Dear Joshua Johnson:

Enclosed are the analytical results for sample(s) received by the laboratory on December 03, 2010. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jennifer Gross

jennifer.gross@pacelabs.com Project Manager

ENNI (TROSS

Enclosures

cc: John Turk, Brown & Caldwell

(206)767-5060

CERTIFICATIONS

Project: East Bay Redevelopment 138130

Pace Project No.: 255892

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

Alaska Certification #: UST-078 Alaska Certification #MN00064 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA EPA Region 8 Certification #: Pace Florida/NELAP Certification #: E87605

Florida/NELAP Certification #: E8760 Georgia Certification #: 959 Idaho Certification #: MN00064 Illinois Certification #: 200011 Iowa Certification #: 368 Kansas Certification #: E-10167 Louisiana Certification #: 03086 Louisiana Certification #: LA080009 Maine Certification #: 2007029 Maryland Certification #: 322

Maryland Certification #: 322
Michigan DEQ Certification #: 9909
Minnesota Certification #: 027-053-137
Mississippi Certification #: Pace

Washington Certification IDs

940 South Harney Street, Seattle, WA 98108 Alaska CS Certification #: UST-025 Alaska Drinking Water VOC Certification #: WA01230

Alaska Drinking Water VOC Certification #: WA01230 Alaska Drinking Water Micro Certification #: WA01230 Montana Certification #: MT CERT0092 Nebraska Certification #: Pace

Nevada Certification #: MN_00064
New Jersey Certification #: MN_00064
New Jersey Certification #: MN-002
New Mexico Certification #: Pace
New York Certification #: 11647
North Carolina Certification #: 530
North Dakota Certification #: R-036
North Dakota Certification #: R-036
North Dakota Certification #: R-036A
Ohio VAP Certification #: CR-0101
Oklahoma Certification #: D9921
Oklahoma Certification #: 9507
Oregon Certification #: MN200001

Pennsylvania Certification #: 68-00563 Puerto Rico Certification Tennessee Certification #: 02818

Texas Certification #: T104704192 Washington Certification #: C754 Wisconsin Certification #: 999407970

California Certification #: 01153CA Florida/NELAP Certification #: E87617 Oregon Certification #: WA200007 Washington Certification #: C1229

SAMPLE ANALYTE COUNT

Project: East Bay Redevelopment 138130

Pace Project No.: 255892

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
255892001	SPL-14-1	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	RJS	5	PASI-M
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
255892002	SPL-14-2	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	RJS	5	PASI-M
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
255892003	SPL-14-3	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	RJS	5	PASI-M
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
255892004	SPL-14-4	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	RJS	5	PASI-M
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
255892005	SPL-14-5	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	RJS	5	PASI-M
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
255892006	TB_1391100	NWTPH-Gx	AY1	3	PASI-S
		EPA 8260	LPM	8	PASI-S

Project: East Bay Redevelopment 138130

Sample: SPL-14-1	Lab ID: 255892001	Collected: 12/03/10	08:40	Received: 12	2/03/10 16:10 I	Matrix: Solid	
Results reported on a "dry-weigh	t" basis						
Parameters	Results Uni	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS SG	Analytical Method: NW	TPH-Dx Preparation Met	hod: E	PA 3546		•	
Diesel Range SG	ND mg/kg	20.5	1	12/08/10 12:45	12/10/10 16:50)	
Motor Oil Range SG	ND mg/kg	81.9	1	12/08/10 12:45	12/10/10 16:50	64742-65-0	
n-Octacosane (S) SG	96 %	50-150	1	12/08/10 12:45			
o-Terphenyl (S) SG	81 %	50-150	1		12/10/10 16:50		
NWTPH-Gx GCV	Analytical Method: NW	TPH-Gx Preparation Met	hod: N	IWTPH-Gx			
Gasoline Range Organics	ND mg/kg	5.4	1	12/07/10 10:00	12/08/10 00:12		
a,a,a-Trifluorotoluene (S)	106 %	50-150	1	12/07/10 10:00			
4-Bromofluorobenzene (S)	103 %	50-150	1	12/07/10 10:00			
6020 MET ICPMS	Analytical Method: EP	A 6020					
Arsenic	•	0.41	20	12/07/10 16:52	12/11/10 04:50	7440 29 2	
Cadmium	4.1 mg/kg			12/07/10 16:52			
	ND mg/kg	0.066	20				MC
Copper	15.3 mg/kg	0.41	20	12/07/10 16:52			M6
Lead Nickel	5.4 mg/kg 15.6 mg/kg	0.41 0.41	20 20	12/07/10 16:52 12/07/10 16:52			M6
8270 MSSV PAH by SIM	3 3	A 8270 by SIM Preparation			12/11/10 04.50	7440-02-0	IVIO
•	•						
Acenaphthene	9.0 ug/kg	7.3	1		12/09/10 17:19		
Acenaphthylene	23.1 ug/kg	7.3	1	12/08/10 12:10	12/09/10 17:19	208-96-8	
Anthracene	42.0 ug/kg	7.3	1	12/08/10 12:10	12/09/10 17:19	120-12-7	
Benzo(a)anthracene	83.6 ug/kg	7.3	1	12/08/10 12:10	12/09/10 17:19	56-55-3	
Benzo(a)pyrene	102 ug/kg	7.3	1	12/08/10 12:10	12/09/10 17:19	50-32-8	
Benzo(b)fluoranthene	53.1 ug/kg	7.3	1	12/08/10 12:10	12/09/10 17:19	205-99-2	
Benzo(g,h,i)perylene	58.5 ug/kg	7.3	1	12/08/10 12:10	12/09/10 17:19	191-24-2	
Benzo(k)fluoranthene	61.3 ug/kg	7.3	1	12/08/10 12:10	12/09/10 17:19	207-08-9	
Chrysene	97.4 ug/kg	7.3	1	12/08/10 12:10	12/09/10 17:19	218-01-9	
Dibenz(a,h)anthracene	18.5 ug/kg	7.3	1	12/08/10 12:10	12/09/10 17:19	53-70-3	
Fluoranthene	136 ug/kg	7.3	1	12/08/10 12:10	12/09/10 17:19	206-44-0	
Fluorene	27.1 ug/kg	7.3	1	12/08/10 12:10	12/09/10 17:19	86-73-7	
Indeno(1,2,3-cd)pyrene	46.4 ug/kg	7.3	1	12/08/10 12:10			
1-Methylnaphthalene	13.8 ug/kg	7.3	1	12/08/10 12:10			
2-Methylnaphthalene	22.7 ug/kg	7.3	1		12/09/10 17:19		
Naphthalene	"	7.3	1	12/08/10 12:10			
•	29.0 ug/kg			12/08/10 12:10			
Phenanthrene	148 ug/kg	7.3	1				
Pyrene	225 ug/kg	7.3	1	12/08/10 12:10			
2-Fluorobiphenyl (S)	66 %	31-131	1	12/08/10 12:10			
Terphenyl-d14 (S)	73 %	30-133	1	12/08/10 12:10	12/09/10 17:19	1/18-51-0	
8260/5035A Volatile Organics	Analytical Method: EP						
Benzene	ND ug/kg	2.5	1		12/07/10 11:22		
Ethylbenzene	ND ug/kg	2.5	1		12/07/10 11:22		
Toluene	ND ug/kg	2.5	1		12/07/10 11:22		
Xylene (Total)	ND ug/kg	7.5	1		12/07/10 11:22		
Dibromofluoromethane (S)	108 %	80-136	1		12/07/10 11:22	1868-53-7	

Date: 12/16/2010 01:22 PM

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

Page 4 of 20

Project: East Bay Redevelopment 138130

Sample: SPL-14-1	Lab ID: 255	892001	Collected: 12/0	3/10 08:40	Received: 12	2/03/10 16:10 I	Matrix: Solid	
Results reported on a "dry-weight	t" basis							
Parameters	Results	Units	Report Limi	t DF	Prepared	Analyzed	CAS No.	Qua
260/5035A Volatile Organics	Analytical Meth	nod: EPA 82	 260		-	-		
Toluene-d8 (S)	106 %		80-12	0 1		12/07/10 11:22	2037-26-5	
4-Bromofluorobenzene (S)	118 %		72-12			12/07/10 11:22		
I,2-Dichloroethane-d4 (S)	113 %		80-14			12/07/10 11:22		
,		and ACTM		J 1		12/01/10 11.22	17000 07-0	
Percent Moisture	Analytical Meth	100. ASTIVI						
Percent Moisture	10.1 %		0.1	0 1		12/06/10 17:13		
Sample: SPL-14-2	Lab ID: 255	892002	Collected: 12/0	3/10 09:00	Received: 12	2/03/10 16:10 I	Matrix: Solid	
Results reported on a "dry-weight	t" basis							
Parameters	Results	Units	Report Limi	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS SG	Analytical Meth	nod: NWTP	H-Dx Preparation	Method: E	PA 3546			
Diesel Range SG	ND mg	g/kg	21	6 1	12/08/10 12:45	12/10/10 17:37		
Motor Oil Range SG	ND mg		86	3 1	12/08/10 12:45	12/10/10 17:37	64742-65-0	
i-Octacosane (S) SG	103 %	3	50-15			12/10/10 17:37		
p-Terphenyl (S) SG	81 %		50-15		12/08/10 12:45	12/10/10 17:37	84-15-1	
NWTPH-Gx GCV	Analytical Meth	nod: NWTP	H-Gx Preparation	Method: N	IWTPH-Gx			
Gasoline Range Organics	ND mg	n/ka	5	5 1	12/07/10 10:00	12/07/10 23:48		
a,a,a-Trifluorotoluene (S)	107 %	פייש	50-15			12/07/10 23:48		
4-Bromofluorobenzene (S)	103 %		50-15			12/07/10 23:48		
6020 MET ICPMS	Analytical Meth	nod: EPA 60						
Arsenic	4.6 mg	a/ka	0.4	4 20	12/07/10 16:52	12/11/10 05:17	7440-38-2	
Cadmium	0.083 mg		0.07			12/11/10 05:17		
Copper	21.4 mg		0.4			12/11/10 05:17		
_ead	8.6 mg		0.4			12/11/10 05:17		
lickel	22.2 mg		0.4			12/11/10 05:17		
270 MSSV PAH by SIM			270 by SIM Prepa					
\capanbthana	24.9 ug	/ka	7	2 1	12/09/10 12:10	12/00/10 19:07	. 63 33 0	
Acenaphthene Acenaphthylene	183 ug	•	7 7			12/09/10 18:07 12/09/10 18:07		
Anthracene			7			12/09/10 18:07		
	236 ug		7			12/09/10 18:07		
Benzo(a)anthracene	502 ug	-						
Benzo(a)pyrene	498 ug	•	7			12/09/10 18:07		
Benzo(b)fluoranthene	261 ug	-	7			12/09/10 18:07		
Benzo(g,h,i)perylene	255 ug	-	7			12/09/10 18:07		
Benzo(k)fluoranthene	336 ug	-	7			12/09/10 18:07		
Chrysene	562 ug	-	7			12/09/10 18:07		
Dibenz(a,h)anthracene	86.9 ug		7			12/09/10 18:07		
luoranthene	725 ug	/kg	7	2 1	12/08/10 12:10	12/09/10 18:07	206-44-0	
140141110110								
Fluorene	93.4 ug 234 ug		7	2 1		12/09/10 18:07 12/09/10 18:07		

Date: 12/16/2010 01:22 PM

REPORT OF LABORATORY ANALYSIS

Page 5 of 20

Project: East Bay Redevelopment 138130

Pace Project No.: 255892 Lab ID: 255892002 Sample: SPL-14-2 Collected: 12/03/10 09:00 Received: 12/03/10 16:10 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 1-Methylnaphthalene 18.2 ug/kg 7.2 12/08/10 12:10 12/09/10 18:07 90-12-0 2-Methylnaphthalene 24.8 ug/kg 7.2 12/08/10 12:10 12/09/10 18:07 91-57-6 1 Naphthalene 48.0 ug/kg 7.2 12/08/10 12:10 12/09/10 18:07 91-20-3 1 Phenanthrene 971 ug/kg 72.0 10 12/08/10 12:10 12/10/10 17:04 85-01-8 1130 ug/kg Pyrene 7.2 1 12/08/10 12:10 12/09/10 18:07 129-00-0 67 % 2-Fluorobiphenyl (S) 31-131 12/08/10 12:10 12/09/10 18:07 321-60-8 1 Terphenyl-d14 (S) 80 % 30-133 12/08/10 12:10 12/09/10 18:07 1718-51-0 1 8260/5035A Volatile Organics Analytical Method: EPA 8260 ND ug/kg 2.6 12/07/10 11:41 71-43-2 Benzene 1 2.6 12/07/10 11:41 100-41-4 Ethylbenzene ND ug/kg 1 Toluene 2.6 12/07/10 11:41 108-88-3 ND ug/kg 1 Xylene (Total) ND ug/kg 7.9 12/07/10 11:41 1330-20-7 1 107 % Dibromofluoromethane (S) 80-136 12/07/10 11:41 1868-53-7 1 Toluene-d8 (S) 107 % 80-120 1 12/07/10 11:41 2037-26-5 4-Bromofluorobenzene (S) 119 % 72-122 1 12/07/10 11:41 460-00-4 1,2-Dichloroethane-d4 (S) 112 % 80-143 12/07/10 11:41 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 8.8 % 0.10 1 12/06/10 17:14 Sample: SPL-14-3 Lab ID: 255892003 Collected: 12/03/10 09:20 Received: 12/03/10 16:10 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG ND mg/kg 21.5 12/08/10 12:45 12/10/10 18:00 Motor Oil Range SG 103 mg/kg 85.9 12/08/10 12:45 12/10/10 18:00 64742-65-0 n-Octacosane (S) SG 101 % 50-150 12/08/10 12:45 12/10/10 18:00 630-02-4 o-Terphenyl (S) SG 86 % 50-150 12/08/10 12:45 12/10/10 18:00 84-15-1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 5.3 12/07/10 10:00 12/08/10 00:35 a,a,a-Trifluorotoluene (S) 116 % 50-150 1 12/07/10 10:00 12/08/10 00:35 98-08-8 4-Bromofluorobenzene (S) 112 % 50-150 1 12/07/10 10:00 12/08/10 00:35 460-00-4 6020 MET ICPMS Analytical Method: EPA 6020 12/07/10 16:52 12/11/10 05:26 7440-38-2 Arsenic 4.2 mg/kg 0.40 20 0.084 mg/kg Cadmium 0.064 20 12/07/10 16:52 12/11/10 05:26 7440-43-9 17.3 mg/kg 0.40 20 12/07/10 16:52 12/11/10 05:26 7440-50-8 Copper **6.3** mg/kg Lead 0.40 20 12/07/10 16:52 12/11/10 05:26 7439-92-1 Nickel 25.1 mg/kg 0.40 20 12/07/10 16:52 12/11/10 05:26 7440-02-0

Date: 12/16/2010 01:22 PM

REPORT OF LABORATORY ANALYSIS

Page 6 of 20

Project: East Bay Redevelopment 138130

Pace Project No.: 255892

Lab ID: 255892003 Sample: SPL-14-3 Collected: 12/03/10 09:20 Received: 12/03/10 16:10 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 7.4 Acenaphthene ND ug/kg 12/08/10 12:10 12/09/10 18:22 83-32-9 Acenaphthylene 20.3 ug/kg 7.4 12/08/10 12:10 12/09/10 18:22 208-96-8 Anthracene 31.5 ug/kg 7.4 12/08/10 12:10 12/09/10 18:22 120-12-7 1 Benzo(a)anthracene 56.8 ug/kg 7.4 1 12/08/10 12:10 12/09/10 18:22 56-55-3 71.9 ug/kg Benzo(a)pyrene 7.4 1 12/08/10 12:10 12/09/10 18:22 50-32-8 Benzo(b)fluoranthene 46.1 ug/kg 7.4 12/08/10 12:10 12/09/10 18:22 205-99-2 1 45.0 ug/kg 7.4 12/08/10 12:10 12/09/10 18:22 191-24-2 Benzo(g,h,i)perylene 1 Benzo(k)fluoranthene 40.6 ug/kg 7 4 12/08/10 12:10 12/09/10 18:22 207-08-9 1 69.3 ug/kg 12/08/10 12:10 12/09/10 18:22 218-01-9 Chrysene 7.4 1 13.3 ug/kg 12/08/10 12:10 12/09/10 18:22 53-70-3 Dibenz(a,h)anthracene 7.4 1 Fluoranthene 82.0 ug/kg 12/08/10 12:10 12/09/10 18:22 206-44-0 7.4 1 Fluorene 9.8 ug/kg 7.4 1 12/08/10 12:10 12/09/10 18:22 86-73-7 Indeno(1,2,3-cd)pyrene 33.9 ug/kg 7.4 1 12/08/10 12:10 12/09/10 18:22 193-39-5 1-Methylnaphthalene 8.6 ug/kg 7.4 12/08/10 12:10 12/09/10 18:22 90-12-0 1 2-Methylnaphthalene 11.8 ug/kg 12/08/10 12:10 12/09/10 18:22 91-57-6 7.4 1 Naphthalene 14.1 ug/kg 7.4 1 12/08/10 12:10 12/09/10 18:22 91-20-3 Phenanthrene 76.8 ug/kg 7.4 1 12/08/10 12:10 12/09/10 18:22 85-01-8 12/08/10 12:10 12/09/10 18:22 129-00-0 Pyrene 124 ug/kg 7.4 1 66 % 31-131 2-Fluorobiphenyl (S) 1 12/08/10 12:10 12/09/10 18:22 321-60-8 Terphenyl-d14 (S) 71 % 30-133 12/08/10 12:10 12/09/10 18:22 1718-51-0 1 8260/5035A Volatile Organics Analytical Method: EPA 8260 ND ug/kg 2.8 12/07/10 12:00 71-43-2 Benzene 1 Ethylbenzene ND ug/kg 28 12/07/10 12:00 100-41-4 1 Toluene ND ug/kg 2.8 1 12/07/10 12:00 108-88-3 Xylene (Total) ND ug/kg 8.3 1 12/07/10 12:00 1330-20-7 Dibromofluoromethane (S) 110 % 80-136 12/07/10 12:00 1868-53-7 Toluene-d8 (S) 107 % 80-120 1 12/07/10 12:00 2037-26-5 4-Bromofluorobenzene (S) 118 % 72-122 12/07/10 12:00 460-00-4 1 1,2-Dichloroethane-d4 (S) 114 % 80-143 12/07/10 12:00 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 10.6 % 0.10 12/06/10 17:15 Sample: SPL-14-4 Lab ID: 255892004 Collected: 12/03/10 09:40 Received: 12/03/10 16:10 Results reported on a "dry-weight" basis Results Units DF CAS No. Qual **Parameters** Report Limit Prepared Analyzed **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG 52.2 mg/kg 21.3 1 12/08/10 12:45 12/10/10 18:23 165 mg/kg Motor Oil Range SG 85.4 1 12/08/10 12:45 12/10/10 18:23 64742-65-0 n-Octacosane (S) SG 96 % 50-150 12/08/10 12:45 12/10/10 18:23 630-02-4 1 o-Terphenyl (S) SG 81 % 50-150 12/08/10 12:45 12/10/10 18:23 84-15-1

Date: 12/16/2010 01:22 PM

REPORT OF LABORATORY ANALYSIS

Page 7 of 20

Project: East Bay Redevelopment 138130

Pace Project No.: 255892							
Sample: SPL-14-4	Lab ID: 255892004	Collected: 12/03/	10 09:40	Received: 12	2/03/10 16:10	Matrix: Solid	
Results reported on a "dry-weigh	t" basis						
Parameters	Results Ur	its Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
IWTPH-Gx GCV	Analytical Method: N	WTPH-Gx Preparation M	ethod: N	IWTPH-Gx			
Gasoline Range Organics	ND mg/kg	5.7	1	12/09/10 10:00	12/09/10 14:54	4	
a,a,a-Trifluorotoluene (S)	107 %	50-150	1	12/09/10 10:00	12/09/10 14:54	4 98-08-8	
1-Bromofluorobenzene (S)	107 %	50-150	1	12/09/10 10:00	12/09/10 14:54	4 460-00-4	
020 MET ICPMS	Analytical Method: El	PA 6020					
Arsenic	4.0 mg/kg	0.42	20	12/07/10 16:52	12/11/10 05:35	5 7440-38-2	
Cadmium	ND mg/kg	0.068	20	12/07/10 16:52	12/11/10 05:35	7440-43-9	
Copper	17.3 mg/kg	0.42	20	12/07/10 16:52	12/11/10 05:35	5 7440-50-8	
_ead	7.4 mg/kg	0.42	20	12/07/10 16:52	12/11/10 05:35	7439-92-1	
Nickel	21.6 mg/kg	0.42	20	12/07/10 16:52	12/11/10 05:35	5 7440-02-0	
270 MSSV PAH by SIM	Analytical Method: El	PA 8270 by SIM Preparat	tion Meth	nod: EPA 3546			
Acenaphthene	7.7 ug/kg	7.5	1	12/08/10 12:10	12/09/10 18:38	8 83-32-9	
Acenaphthylene	27.9 ug/kg	7.5	1	12/08/10 12:10	12/09/10 18:38	3 208-96-8	
Anthracene	44.0 ug/kg	7.5	1	12/08/10 12:10	12/09/10 18:38	3 120-12-7	
Benzo(a)anthracene	93.1 ug/kg	7.5	1	12/08/10 12:10		_	
Benzo(a)pyrene	109 ug/kg	7.5	1		12/09/10 18:38		
Benzo(b)fluoranthene	57.0 ug/kg	7.5	1	12/08/10 12:10			
Benzo(g,h,i)perylene	62.7 ug/kg	7.5	1		12/09/10 18:38		
Benzo(k)fluoranthene	65.6 ug/kg	7.5	1		12/09/10 18:38		
Chrysene	109 ug/kg	7.5	1	12/08/10 12:10			
Dibenz(a,h)anthracene	19.5 ug/kg	7.5	1		12/09/10 18:38		
Fluoranthene	0 0	7.5 7.5	1	12/08/10 12:10			
	133 ug/kg						
Fluorene	18.3 ug/kg	7.5	1	12/08/10 12:10			
ndeno(1,2,3-cd)pyrene	49.9 ug/kg	7.5	1	12/08/10 12:10			
-Methylnaphthalene	13.7 ug/kg	7.5	1	12/08/10 12:10			
2-Methylnaphthalene	23.9 ug/kg	7.5	1		12/09/10 18:38		
Naphthalene	24.5 ug/kg	7.5	1	12/08/10 12:10			
Phenanthrene	128 ug/kg	7.5	1		12/09/10 18:38		
Pyrene	220 ug/kg	7.5	1		12/09/10 18:38		
2-Fluorobiphenyl (S)	64 %	31-131	1	12/08/10 12:10			
Ferphenyl-d14 (S)	70 %	30-133	1	12/08/10 12:10	12/09/10 18:38	3 1/18-51-0	
260/5035A Volatile Organics	Analytical Method: El						
Benzene	ND ug/kg	3.2	1		12/07/10 12:19		
Ethylbenzene	ND ug/kg	3.2	1		12/07/10 12:19		
Toluene	ND ug/kg	3.2	1		12/07/10 12:19		
(ylene (Total)	ND ug/kg	9.7	1		12/07/10 12:19		
Dibromofluoromethane (S)	106 %	80-136	1		12/07/10 12:19		
Гoluene-d8 (S)	106 %	80-120	1		12/07/10 12:19		
1-Bromofluorobenzene (S)	122 %	72-122	1		12/07/10 12:19		
1,2-Dichloroethane-d4 (S)	112 %	80-143	1		12/07/10 12:19	9 17060-07-0	
Percent Moisture	Analytical Method: AS	STM D2974-87					
Percent Moisture	11.4 %	0.10	1		12/06/10 17:16	6	

Date: 12/16/2010 01:22 PM

REPORT OF LABORATORY ANALYSIS

Page 8 of 20

Project: East Bay Redevelopment 138130

Sample: SPL-14-5	Lab ID: 255892005	Collected: 12/03/10	10:00	Received: 12	/03/10 16:10 I	Matrix: Solid	
Results reported on a "dry-weight	t" basis						
Parameters	Results Units	Report Limit [DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS SG	Analytical Method: NWT	PH-Dx Preparation Meth	od: El	PA 3546			
Diesel Range SG	37.4 mg/kg	20.5	1	12/08/10 12:45	12/10/10 18:47	•	
Motor Oil Range SG	138 mg/kg	82.1	1	12/08/10 12:45	12/10/10 18:47	64742-65-0	
n-Octacosane (S) SG	104 %	50-150	1	12/08/10 12:45	12/10/10 18:47	630-02-4	
o-Terphenyl (S) SG	82 %	50-150	1	12/08/10 12:45	12/10/10 18:47	' 84-15-1	
NWTPH-Gx GCV	Analytical Method: NWT	PH-Gx Preparation Meth	od: N	WTPH-Gx			
Gasoline Range Organics	ND mg/kg	5.0	1	12/09/10 10:00	12/09/10 15:18	3	
a,a,a-Trifluorotoluene (S)	98 %	50-150	1	12/09/10 10:00	12/09/10 15:18	98-08-8	
4-Bromofluorobenzene (S)	94 %	50-150	1	12/09/10 10:00	12/09/10 15:18	3 460-00-4	
6020 MET ICPMS	Analytical Method: EPA	6020					
Arsenic	7.0 mg/kg	0.49	20	12/07/10 16:52	12/11/10 05:44	7440-38-2	
Cadmium	ND mg/kg	0.079	20	12/07/10 16:52	12/11/10 05:44	7440-43-9	
Copper	27.4 mg/kg	0.49	20	12/07/10 16:52	12/11/10 05:44	7440-50-8	
Lead	7.7 mg/kg	0.49	20	12/07/10 16:52	12/11/10 05:44	7439-92-1	
Nickel	26.2 mg/kg	0.49	20	12/07/10 16:52	12/11/10 05:44	7440-02-0	
8270 MSSV PAH by SIM	Analytical Method: EPA	3270 by SIM Preparation	Meth	od: EPA 3546			
Acenaphthene	17.1 ug/kg	7.2	1	12/08/10 12:10	12/09/10 18:54	83-32-9	
Acenaphthylene	42.4 ug/kg	7.2	1	12/08/10 12:10	12/09/10 18:54	208-96-8	
Anthracene	89.2 ug/kg	7.2	1	12/08/10 12:10	12/09/10 18:54	120-12-7	
Benzo(a)anthracene	145 ug/kg	7.2	1	12/08/10 12:10	12/09/10 18:54	56-55-3	
Benzo(a)pyrene	182 ug/kg	7.2	1	12/08/10 12:10	12/09/10 18:54	50-32-8	
Benzo(b)fluoranthene	81.9 ug/kg	7.2	1	12/08/10 12:10	12/09/10 18:54	205-99-2	
Benzo(g,h,i)perylene	99.8 ug/kg	7.2	1	12/08/10 12:10	12/09/10 18:54	191-24-2	
Benzo(k)fluoranthene	125 ug/kg	7.2	1	12/08/10 12:10			
Chrysene	168 ug/kg	7.2	1	12/08/10 12:10			
Dibenz(a,h)anthracene	40.3 ug/kg	7.2	1	12/08/10 12:10			
Fluoranthene	246 ug/kg	7.2	1	12/08/10 12:10			
Fluorene	51.1 ug/kg	7.2	1	12/08/10 12:10			
Indeno(1,2,3-cd)pyrene	85.5 ug/kg	7.2	1	12/08/10 12:10			
1-Methylnaphthalene	29.7 ug/kg	7.2	1	12/08/10 12:10			
2-Methylnaphthalene	48.8 ug/kg	7.2	1	12/08/10 12:10			
Naphthalene	45.8 ug/kg	7.2	1	12/08/10 12:10			
	300 ug/kg			12/08/10 12:10			
Phenanthrene			1				
Pyrene	363 ug/kg	7.2	1	12/08/10 12:10			
2-Fluorobiphenyl (S)	61 %	31-131	1	12/08/10 12:10			
Terphenyl-d14 (S)	64 %	30-133	1	12/08/10 12:10	12/09/10 18:54	1/18-51-0	
8260/5035A Volatile Organics	Analytical Method: EPA	3260					
Benzene	ND ug/kg	3.1	1		12/07/10 12:38		
Ethylbenzene	ND ug/kg	3.1	1		12/07/10 12:38		
Toluene	ND ug/kg	3.1	1		12/07/10 12:38		
Xylene (Total)	ND ug/kg	9.3	1		12/07/10 12:38		
Dibromofluoromethane (S)	84 %	80-136	1		12/07/10 12:38	1868-53-7	

Date: 12/16/2010 01:22 PM

REPORT OF LABORATORY ANALYSIS

Page 9 of 20

Project: East Bay Redevelopment 138130

Pace Project No.: 255892

Lab ID: 255892005 Sample: SPL-14-5 Collected: 12/03/10 10:00 Received: 12/03/10 16:10 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8260/5035A Volatile Organics Analytical Method: EPA 8260 Toluene-d8 (S) 104 % 80-120 1 12/07/10 12:38 2037-26-5 4-Bromofluorobenzene (S) 109 % 72-122 1 12/07/10 12:38 460-00-4 1,2-Dichloroethane-d4 (S) 94 % 80-143 12/07/10 12:38 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 9.8 % 0.10 1 12/06/10 17:17 Sample: TB_1391100 Lab ID: 255892006 Collected: 12/03/10 00:00 Received: 12/03/10 16:10 Results reported on a "wet-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 5.0 12/09/10 10:00 12/09/10 14:07 a,a,a-Trifluorotoluene (S) 107 % 50-150 12/09/10 10:00 12/09/10 14:07 98-08-8 1 4-Bromofluorobenzene (S) 102 % 50-150 12/09/10 10:00 12/09/10 14:07 460-00-4 8260/5035A Volatile Organics Analytical Method: EPA 8260 ND ug/kg 3.0 12/07/10 09:10 71-43-2 Benzene 1 Ethylbenzene ND ug/kg 3.0 1 12/07/10 09:10 100-41-4 Toluene ND ug/kg 3.0 1 12/07/10 09:10 108-88-3 Xylene (Total) ND ug/kg 9.0 12/07/10 09:10 1330-20-7 1 Dibromofluoromethane (S) 104 % 80-136 12/07/10 09:10 1868-53-7 1 109 % 80-120 12/07/10 09:10 2037-26-5 Toluene-d8 (S) 1 72-122 4-Bromofluorobenzene (S) 12/07/10 09:10 460-00-4 110 % 1

80-143

1

106 %

Date: 12/16/2010 01:22 PM

1,2-Dichloroethane-d4 (S)

REPORT OF LABORATORY ANALYSIS

Page 10 of 20

12/07/10 09:10 17060-07-0

Project: East Bay Redevelopment 138130

Pace Project No.: 255892

QC Batch: OEXT/3071 Analysis Method: NWTPH-Dx
QC Batch Method: EPA 3546 Analysis Description: NWTPH-Dx GCS

Associated Lab Samples: 255892001, 255892002, 255892003, 255892004, 255892005

METHOD BLANK: 51572 Matrix: Solid

Associated Lab Samples: 255892001, 255892002, 255892003, 255892004, 255892005

Parameter	Units	Result	Limit	Analyzed	Qualifiers
Diesel Range SG	mg/kg	ND ND	20.0	12/10/10 16:03	
Motor Oil Range SG	mg/kg	ND	80.0	12/10/10 16:03	
n-Octacosane (S) SG	%	89	50-150	12/10/10 16:03	
o-Terphenyl (S) SG	%	75	50-150	12/10/10 16:03	

LABORATORY CONTROL SAMPLE: 51573

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Diesel Range SG	mg/kg	500	422	84	56-124	
Motor Oil Range SG	mg/kg	500	443	89	50-150	
n-Octacosane (S) SG	%			95	50-150	
o-Terphenyl (S) SG	%			117	50-150	

SAMPLE DUPLICATE: 51574

Parameter	Units	255892001 Result	Dup Result	RPD	Qualifiers
Diesel Range SG	mg/kg	ND ND	20.6		_
Motor Oil Range SG	mg/kg	ND	73.6J		
n-Octacosane (S) SG	%	96	98	.9	
o-Terphenyl (S) SG	%	81	82	1	

SAMPLE DUPLICATE: 51575

		255893006	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Diesel Range SG	mg/kg	ND ND	11.7J		
Motor Oil Range SG	mg/kg	125	100	22	
n-Octacosane (S) SG	%	91	94	7	
o-Terphenyl (S) SG	%	77	80	7	

Date: 12/16/2010 01:22 PM REPORT OF LABORATORY ANALYSIS

Page 11 of 20

Project: East Bay Redevelopment 138130

Pace Project No.: 255892

QC Batch: GCV/2066 Analysis Method: NWTPH-Gx

QC Batch Method: NWTPH-Gx Analysis Description: NWTPH-Gx Solid GCV

Associated Lab Samples: 255892001, 255892002, 255892003

METHOD BLANK: 51423 Matrix: Solid

Associated Lab Samples: 255892001, 255892002, 255892003

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Gasoline Range Organics	mg/kg	ND	5.0	12/07/10 21:05	
4-Bromofluorobenzene (S)	%	99	50-150	12/07/10 21:05	
a,a,a-Trifluorotoluene (S)	%	92	50-150	12/07/10 21:05	

LABORATORY CONTROL SAMPLE: 51424

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Gasoline Range Organics	mg/kg	12.5	13.2	106	54-156	
4-Bromofluorobenzene (S)	%			128	50-150	
a,a,a-Trifluorotoluene (S)	%			114	50-150	

SAMPLE DUPLICATE: 51582

Parameter	Units	255892002 Result	Dup Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND	4.1J		
4-Bromofluorobenzene (S)	%	103	99	4	
a,a,a-Trifluorotoluene (S)	%	107	99	8	

Date: 12/16/2010 01:22 PM

Project: East Bay Redevelopment 138130

Pace Project No.: 255892

QC Batch: GCV/2069 Analysis Method: NWTPH-Gx

QC Batch Method: NWTPH-Gx Analysis Description: NWTPH-Gx Solid GCV

Associated Lab Samples: 255892004, 255892005, 255892006

METHOD BLANK: 51697 Matrix: Solid

Associated Lab Samples: 255892004, 255892005, 255892006

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Gasoline Range Organics	mg/kg	ND	5.0	12/09/10 12:31	
4-Bromofluorobenzene (S)	%	103	50-150	12/09/10 12:31	
a,a,a-Trifluorotoluene (S)	%	101	50-150	12/09/10 12:31	

LABORATORY CONTROL SAMPLE: 51698

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Gasoline Range Organics	mg/kg	12.5	13.2	105	54-156	
4-Bromofluorobenzene (S)	%			119	50-150	
a,a,a-Trifluorotoluene (S)	%			107	50-150	

SAMPLE DUPLICATE: 51583

Parameter	Units	255893004 Result	Dup Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND ND	1.3J		
4-Bromofluorobenzene (S)	%	88	94	6	
a,a,a-Trifluorotoluene (S)	%	89	99	10	

SAMPLE DUPLICATE: 51843

		255893006	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND	.58J		
4-Bromofluorobenzene (S)	%	94	95	.4	
a,a,a-Trifluorotoluene (S)	%	97	97	.03	

Date: 12/16/2010 01:22 PM REPORT OF LABORATORY ANALYSIS

Page 13 of 20

Project: East Bay Redevelopment 138130

Pace Project No.: 255892

QC Batch: ICPM/23872 Analysis Method: EPA 6020
QC Batch Method: EPA 6020 Analysis Description: 6020 MET

Associated Lab Samples: 255892001, 255892002, 255892003, 255892004, 255892005

METHOD BLANK: 901817 Matrix: Solid

Associated Lab Samples: 255892001, 255892002, 255892003, 255892004, 255892005

Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
mg/kg	ND ND	0.50	12/11/10 02:27	
mg/kg	ND	0.079	12/11/10 02:27	
mg/kg	ND	0.50	12/11/10 02:27	
mg/kg	ND	0.50	12/11/10 02:27	
mg/kg	ND	0.50	12/11/10 02:27	
	mg/kg mg/kg mg/kg mg/kg	Units Result mg/kg ND mg/kg ND mg/kg ND mg/kg ND mg/kg ND	Units Result Limit mg/kg ND 0.50 mg/kg ND 0.079 mg/kg ND 0.50 mg/kg ND 0.50	Units Result Limit Analyzed mg/kg ND 0.50 12/11/10 02:27 mg/kg ND 0.079 12/11/10 02:27 mg/kg ND 0.50 12/11/10 02:27 mg/kg ND 0.50 12/11/10 02:27 mg/kg ND 0.50 12/11/10 02:27

LABORATORY CONTROL SAMPLE: 901818

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/kg	14.8	14.1	95	75-125	
Cadmium	mg/kg	14.8	14.1	95	75-125	
Copper	mg/kg	14.8	14.3	97	75-125	
Lead	mg/kg	14.8	14.5	98	75-125	
Nickel	mg/kg	14.8	14.2	96	75-125	

MATRIX SPIKE & MATRIX SP	IKE DUPLICAT	E: 90181	9		901820						
			MS	MSD							
	101	144578006	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Arsenic	mg/kg	4.8	19.6	20.2	22.9	24.3	93	97	75-125	6	
Cadmium	mg/kg	0.17	19.6	20.2	18.5	18.8	93	92	75-125	2	
Copper	mg/kg	10.2	19.6	20.2	28.4	30.6	93	101	75-125	7	
Lead	mg/kg	7.7	19.6	20.2	26.8	28.5	98	103	75-125	6	
Nickel	mg/kg	13.9	19.6	20.2	33.9	36.8	102	114	75-125	8	

MATRIX SPIKE SAMPLE:	901821						
		255892001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/kg	4.1	18.6	23.1	102	75-125	<u> </u>
Cadmium	mg/kg	ND	18.6	17.3	93	75-125	
Copper	mg/kg	15.3	18.6	43.9	154	75-125 M6	i
Lead	mg/kg	5.4	18.6	25.4	108	75-125	
Nickel	mg/kg	15.6	18.6	46.9	169	75-125 M6	i

Date: 12/16/2010 01:22 PM REPORT OF LABORATORY ANALYSIS

Page 14 of 20

Project: East Bay Redevelopment 138130

Pace Project No.: 255892

QC Batch: OEXT/3070 Analysis Method: EPA 8270 by SIM

QC Batch Method: EPA 3546 Analysis Description: 8270/3546 MSSV PAH by SIM

Associated Lab Samples: 255892001, 255892002, 255892003, 255892004, 255892005

METHOD BLANK: 51521 Matrix: Solid

Associated Lab Samples: 255892001, 255892002, 255892003, 255892004, 255892005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/kg	ND ND	6.7	12/09/10 15:45	
2-Methylnaphthalene	ug/kg	ND	6.7	12/09/10 15:45	
Acenaphthene	ug/kg	ND	6.7	12/09/10 15:45	
Acenaphthylene	ug/kg	ND	6.7	12/09/10 15:45	
Anthracene	ug/kg	ND	6.7	12/09/10 15:45	
Benzo(a)anthracene	ug/kg	ND	6.7	12/09/10 15:45	
Benzo(a)pyrene	ug/kg	ND	6.7	12/09/10 15:45	
Benzo(b)fluoranthene	ug/kg	ND	6.7	12/09/10 15:45	
Benzo(g,h,i)perylene	ug/kg	ND	6.7	12/09/10 15:45	
Benzo(k)fluoranthene	ug/kg	ND	6.7	12/09/10 15:45	
Chrysene	ug/kg	ND	6.7	12/09/10 15:45	
Dibenz(a,h)anthracene	ug/kg	ND	6.7	12/09/10 15:45	
Fluoranthene	ug/kg	ND	6.7	12/09/10 15:45	
Fluorene	ug/kg	ND	6.7	12/09/10 15:45	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	6.7	12/09/10 15:45	
Naphthalene	ug/kg	ND	6.7	12/09/10 15:45	
Phenanthrene	ug/kg	ND	6.7	12/09/10 15:45	
Pyrene	ug/kg	ND	6.7	12/09/10 15:45	
2-Fluorobiphenyl (S)	%	64	31-131	12/09/10 15:45	
Terphenyl-d14 (S)	%	80	30-133	12/09/10 15:45	

LABORATORY CONTROL SAMPLE: 515

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
1-Methylnaphthalene	ug/kg	133	80.3	60	37-121		
2-Methylnaphthalene	ug/kg	133	81.2	61	33-132		
Acenaphthene	ug/kg	133	85.2	64	32-127		
Acenaphthylene	ug/kg	133	87.1	65	31-134		
Anthracene	ug/kg	133	94.6	71	42-135		
Benzo(a)anthracene	ug/kg	133	95.9	72	43-139		
Benzo(a)pyrene	ug/kg	133	112	84	44-144		
Benzo(b)fluoranthene	ug/kg	133	103	77	42-144		
Benzo(g,h,i)perylene	ug/kg	133	85.9	64	46-136		
Benzo(k)fluoranthene	ug/kg	133	103	77	45-147		
Chrysene	ug/kg	133	97.2	73	42-144		
Dibenz(a,h)anthracene	ug/kg	133	87.2	65	48-142		
Fluoranthene	ug/kg	133	92.8	70	44-143		
Fluorene	ug/kg	133	88.0	66	32-146		
Indeno(1,2,3-cd)pyrene	ug/kg	133	88.4	66	47-140		
Naphthalene	ug/kg	133	80.3	60	35-118		
Phenanthrene	ug/kg	133	88.4	66	42-131		

Date: 12/16/2010 01:22 PM

REPORT OF LABORATORY ANALYSIS

Page 15 of 20

Project: East Bay Redevelopment 138130

Pace Project No.: 255892

LABORATORY CONTROL SAMPLE: 51522

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Pyrene	ug/kg	133	98.2	74	47-136	
2-Fluorobiphenyl (S)	%			67	31-131	
Terphenyl-d14 (S)	%			79	30-133	

MATRIX SPIKE & MATRIX S	PIKE DUPLICAT	E: 51523			51524	•	•				•
			MS	MSD							
		255892001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1-Methylnaphthalene	ug/kg	13.8	146	147	127	113	78	67	31-123	12	
2-Methylnaphthalene	ug/kg	22.7	146	147	141	125	81	69	15-146	12	
Acenaphthene	ug/kg	9.0	146	147	131	112	84	70	19-141	16	
Acenaphthylene	ug/kg	23.1	146	147	141	130	81	73	30-142	8	
Anthracene	ug/kg	42.0	146	147	234	154	132	76	38-137	41	R1
Benzo(a)anthracene	ug/kg	83.6	146	147	295	193	145	75	37-143	41	M1,R1
Benzo(a)pyrene	ug/kg	102	146	147	330	212	157	75	33-147	43	M1,R1
Benzo(b)fluoranthene	ug/kg	53.1	146	147	186	131	91	53	25-156	34	R1
Benzo(g,h,i)perylene	ug/kg	58.5	146	147	215	151	107	63	26-142	35	R1
Benzo(k)fluoranthene	ug/kg	61.3	146	147	245	168	126	73	35-142	37	R1
Chrysene	ug/kg	97.4	146	147	330	214	159	79	23-150	42	M1,R1
Dibenz(a,h)anthracene	ug/kg	18.5	146	147	134	110	79	62	41-140	20	R1
Fluoranthene	ug/kg	136	146	147	391	245	175	74	25-155	46	M1,R1
Fluorene	ug/kg	27.1	146	147	164	132	94	71	33-152	22	R1
Indeno(1,2,3-cd)pyrene	ug/kg	46.4	146	147	196	139	103	63	36-139	34	R1
Naphthalene	ug/kg	29.0	146	147	142	129	77	68	25-121	9	
Phenanthrene	ug/kg	148	146	147	487	279	233	90	29-141	54	M1,R1
Pyrene	ug/kg	225	146	147	595	364	254	94	36-145	48	M1,R1
2-Fluorobiphenyl (S)	%						68	63	31-131		
Terphenyl-d14 (S)	%						75	68	30-133		

Date: 12/16/2010 01:22 PM

REPORT OF LABORATORY ANALYSIS

Page 16 of 20

Project: East Bay Redevelopment 138130

Pace Project No.: 255892

QC Batch: MSV/3555 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5035A Volatile Organics

Associated Lab Samples: 255892001, 255892002, 255892003, 255892004, 255892005, 255892006

METHOD BLANK: 51309 Matrix: Solid

Associated Lab Samples: 255892001, 255892002, 255892003, 255892004, 255892005, 255892006

_		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND	3.0	12/07/10 08:36	
Ethylbenzene	ug/kg	ND	3.0	12/07/10 08:36	
Toluene	ug/kg	ND	3.0	12/07/10 08:36	
Xylene (Total)	ug/kg	ND	9.0	12/07/10 08:36	
1,2-Dichloroethane-d4 (S)	%	108	80-143	12/07/10 08:36	
4-Bromofluorobenzene (S)	%	105	72-122	12/07/10 08:36	
Dibromofluoromethane (S)	%	103	80-136	12/07/10 08:36	
Toluene-d8 (S)	%	112	80-120	12/07/10 08:36	

LABORATORY CONTROL SAME	51311									
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene	ug/kg	50	45.8	45.8	92	92	75-133	.1	30	
Ethylbenzene	ug/kg	50	50.8	51.5	102	103	68-131	1	30	
Toluene	ug/kg	50	53.2	54.0	106	108	73-124	2	30	
Xylene (Total)	ug/kg	150	142	144	95	96	68-130	1	30	
1,2-Dichloroethane-d4 (S)	%				111	106	80-143			
4-Bromofluorobenzene (S)	%				110	111	72-122			
Dibromofluoromethane (S)	%				107	103	80-136			
Toluene-d8 (S)	%				112	111	80-120			

Date: 12/16/2010 01:22 PM

Project: East Bay Redevelopment 138130

Pace Project No.: 255892

QC Batch: PMST/1445 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 255892001, 255892002, 255892003, 255892004, 255892005

SAMPLE DUPLICATE: 51381

255906001 Dup

Parameter Units Result Result RPD Qualifiers

Percent Moisture % 23.8 23.6 .9

SAMPLE DUPLICATE: 51382

Date: 12/16/2010 01:22 PM

255893003 Dup

Parameter Units Result Result RPD Qualifiers

Percent Moisture % 9.8 9.1 7

QUALIFIERS

Project: East Bay Redevelopment 138130

Pace Project No.: 255892

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis
PASI-S Pace Analytical Services - Seattle

ANALYTE QUALIFIERS

Date: 12/16/2010 01:22 PM

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

R1 RPD value was outside control limits.

REPORT OF LABORATORY ANALYSIS

Page 19 of 20

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: East Bay Redevelopment 138130

Pace Project No.: 255892

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
255892001	SPL-14-1	EPA 3546	OEXT/3071	NWTPH-Dx	GCSV/2136
255892002	SPL-14-2	EPA 3546	OEXT/3071	NWTPH-Dx	GCSV/2136
255892003	SPL-14-3	EPA 3546	OEXT/3071	NWTPH-Dx	GCSV/2136
255892004	SPL-14-4	EPA 3546	OEXT/3071	NWTPH-Dx	GCSV/2136
255892005	SPL-14-5	EPA 3546	OEXT/3071	NWTPH-Dx	GCSV/2136
255892001	SPL-14-1	NWTPH-Gx	GCV/2066	NWTPH-Gx	GCV/2070
255892002	SPL-14-2	NWTPH-Gx	GCV/2066	NWTPH-Gx	GCV/2070
255892003	SPL-14-3	NWTPH-Gx	GCV/2066	NWTPH-Gx	GCV/2070
255892004	SPL-14-4	NWTPH-Gx	GCV/2069	NWTPH-Gx	GCV/2073
255892005	SPL-14-5	NWTPH-Gx	GCV/2069	NWTPH-Gx	GCV/2073
255892006	TB_1391100	NWTPH-Gx	GCV/2069	NWTPH-Gx	GCV/2073
255892001	SPL-14-1	EPA 6020	ICPM/23872	EPA 6020	ICPM/9675
255892002	SPL-14-2	EPA 6020	ICPM/23872	EPA 6020	ICPM/9675
255892003	SPL-14-3	EPA 6020	ICPM/23872	EPA 6020	ICPM/9675
255892004	SPL-14-4	EPA 6020	ICPM/23872	EPA 6020	ICPM/9675
255892005	SPL-14-5	EPA 6020	ICPM/23872	EPA 6020	ICPM/9675
255892001	SPL-14-1	EPA 3546	OEXT/3070	EPA 8270 by SIM	MSSV/1463
255892002	SPL-14-2	EPA 3546	OEXT/3070	EPA 8270 by SIM	MSSV/1463
255892003	SPL-14-3	EPA 3546	OEXT/3070	EPA 8270 by SIM	MSSV/1463
255892004	SPL-14-4	EPA 3546	OEXT/3070	EPA 8270 by SIM	MSSV/1463
255892005	SPL-14-5	EPA 3546	OEXT/3070	EPA 8270 by SIM	MSSV/1463
255892001	SPL-14-1	EPA 8260	MSV/3555		
255892002	SPL-14-2	EPA 8260	MSV/3555		
255892003	SPL-14-3	EPA 8260	MSV/3555		
255892004	SPL-14-4	EPA 8260	MSV/3555		
255892005	SPL-14-5	EPA 8260	MSV/3555		
255892006	TB_1391100	EPA 8260	MSV/3555		
255892001	SPL-14-1	ASTM D2974-87	PMST/1445		
255892002	SPL-14-2	ASTM D2974-87	PMST/1445		
255892003	SPL-14-3	ASTM D2974-87	PMST/1445		
255892004	SPL-14-4	ASTM D2974-87	PMST/1445		
255892005	SPL-14-5	ASTM D2974-87	PMST/1445		

Date: 12/16/2010 01:22 PM

REPORT OF LABORATORY ANALYSIS

Page 20 of 20

	Sample Con	dition Upon Res	elpt	
Pace Analytical Client Name:	Brown	d Caldwell	Project #	2 5 5 8 9 2
Courier: Fed Ex UPS USPS Client Tracking #:	t Commercial	Pace Other	PCS	
Custody Seal on Cooler/Box Present: Yes	☐ No Sea	ls intact: Yes	□ No	
,		Other	Temp. Blank (es)	No
		< T	Samples on ice, coolin	
100	Total Control	e is Frozen: Yes No	Date and Initials	of person examining
Cooler Temperature 113 C Temp should be above freezing ≤ 6 °C	3	Comments:	contents: N5	> (2/3/12
Chain of Custody Present:	ØYes □No □N	/A 1.		
Chain of Custody Filled Out:	Dres Ono On	/A 2.		
Chain of Custody Relinquished:	ØYes □No □N	/A 3.		
Sampler Name & Signature on COC:	∠ZYes □No □N	/A 4.		
Samples Arrived within Hold Time:	Yes DNo DN	/A 5.		
Short Hold Time Analysis (<72hr):	□Yes ☑No □N	/A 6.		
Rush Turn Around Time Requested:	□Yes □No □N	/A 7.		
Sufficient Volume:	DYes DNo DN	^{/A} 8.	<u> </u>	,1
Correct Containers Used:	ØYes □No □N	/A 9.		,
-Pace Containers Used:	GYes □No □N	/A		
Containers Intact:	DYes □No □N	/A 10.		
Filtered volume received for Dissolved tests	□Yes □No □M	A 11.		
Sample Labels match COC:	* 4	/A 12.		
-Includes date/time/ID/Analysis Matrix:	<u> 9011 </u>			•
All containers needing preservation have been checked.	□Yes □No ☑N	/A 13.		
All containers needing preservation are found to be in	□Yes □No ☑N	/A		
compliance with EPA recommendation. Exceptions: VOA, colliorm, TOC, O&G	•	Initial when completed	Lot # of added preservative	
Samples checked for dechlorination:	□Yes □No □K	/A 14.		
Headspace in VOA Vials (>6mm):	□Yes □No ☑N	/A 15.		
Trip Blanks Present:	ØYes □No □N	/A 16.		
Trip Blank Custody Seals Present	□Yes ☑No □N	/A		
Pace Trip Blank Lot # (if purchased):				
Client Notification/ Resolution: Person Contacted:	Dat	e/Time:	Field Data Required?	Υ / Ν
Comments/ Resolution:				
Project Manager Review:	CROS _		Date: 12	16/10

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section C Section B Section C Repaired Project Information:	12/3/2010	12/3/	12/3/			DATE Signed (MM/DD/YY):		ý (30 day	within	not pair	invoices 1	for any i	PLER:	RE of SAMI	SIGNATURE of SAMPLER: olate charges of 1.5% per mont	S agreeing to	t terms and	paymen	30 day	ace's NET	*Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.	ning this form yo	ant Note: By sig	*Import		
Section C Required Frederic Information A CALCULAR 1992 I Required Frederic Information The Act of Act o	eived (np in °							2	8		6		PLER:	ne of SAM	RINT Nam	٦	Т			É	C G					
Section B Required Project Information: A (Bidduel) Required Project Information: A (Bidduel) Required Project Information: A (Bidduel) Required Project Information: A (Bidduel) Required Project Information: A (Bidduel) Required Project Information: A (Bidduel) Required Project Information: A (Bidduel) Required Project Information: A (Bidduel) Required Project Information: A (Bidduel) Required Project Information: A (Bidduel) Required Project Information: A (Bidduel) Required Project Information: A (Bidduel) Required Project Information: A (Bidduel) Required Project Information: A (Bidduel) Required Project Information: A (Bidduel) Required Project Information: Required Required Required Reduction Information: Required Reduction Information Infor		С											111	ATURE	ND SIGN	NAME AI	AMPLER	S			b m						_
Section B Regular Project Information: Regular COMP To Test A TAMESON AND TO TEST A TAMESON Regular COMP Project Information: Regular COMP Project Info																											
Section C Required Policy Information: MACAI A. COM Policy Name Po			6:10	Sho	73	ywa.	C-	3	0	72	1]								
Section C Section C Repaired To polect Information: Repaired To Town A TWAN			*	2	_	1 1	Jun.		B	18	OK.	Ĺ	10	C	12/5/11		ľ		N O	E S	石色	red	molud	Blank	T EMAD ?	E	
Section C Required Project Information: A NAME HAVE A NAME AND A NAME COMPTO NAME CONTROL NAM			TIME	DATE		FILIATION	BY / AF	PTED !	ACCE			Ħ	₫	пí	DAT	Z	FFILIATION	D BY / AI	HSIU	ELING	70		OMMENTS	DDITIONAL	≙		
Section C Required Project Information: Report To. TOM TURK At (10th turt) Report To. TOM TURK Report To. TOM							٠		\vdash		F								一	H	L					12	_
Section B Required Project Information: Report To: To: To: To: To: To: To: To: To: To:									\vdash														ALL PROPERTY OF THE PROPERTY O			=	
Regular Polject Information: A CONTINUE Continue																			-							<u>\$</u> 6	The same same and
A CONTROL Report To TAN TANK Codes A CONTROL Report To TAN TANK CODE AND MATRIX CODES MATRIX CODE MATRIX			1						-		-								╁┈	-						8	A 19 A 19 A 19 A 19 A 19 A 19 A 19 A 19
REGULATORY AS A TANKSON TO THE TIME DATE TIME							T	1	-																	7	
Regulation: Regulation: Report To. CAM TIMEX Attention: Report To. CAM TIMEX Attention: Report To. CAM TIMEX Attention: Matrix Codes	1				*				7				Ŋ		Ì					7	Q:				13-13	6	
Section C Required Project Information: A (NI) A (12)	1				4	4	(۴		00:00				_	- Am				Y	ı	ن. م	
Section B Required Project Information: Report To: Tom TWX Address: A Addr	1														-a -C -C									4	582-	4	
Section B Required Project Information: Report To: Tom TWEX Although HIVE Copy To: Tom TWEX Although HIVE HIVE Copy To: Tom TWEX And Address: Regulatory Accompany Name: And Address: Reformation: Tom Tweet Name: And Address: Reformation: Tom Tweet Name: And Address: Reformation: Tom Tweet Name: And Address: Reformation: Tom Tweet Name: And Address: Reformation: Tom Tweet Name: And Address: Reformation: Tom Tweet Name: And Address: Reformation: Tom Tweet Name: And Address: Reformation: Tom Tweet Name: And Address: Reformation: Tom Tweet Name: And Address: Reformation: Tom Tweet Name: And Address: Reformation: Tom Tweet Name: And Address: Reformation: Tom Tweet Name: And Address: Reformation: Tom Tweet Name: And Address: Reformation: Tom Tweet Name: And Tw													-		9:20									4.3	391-	ω	
Section C Required Project Information: Required Project Information: Report To: A CALCAL A COM Report To: A CALCAL A COM Report To: A CALCAL A COM Report To: A CALCAL A COM Report To: A COMPTO SEA SAMPSON MATRIX CODE									_						4:00				<u> </u>						502-	2	
Section B Required Project Information: Required Project Information: Required Project Information: Required Project Information: Required Project Information: Regular of Project Name: Regular of Project Name: Regular of Project Name: Regular of Project Name: Regular of Project Name: Regular of Project Name: Regular of Project Name: Regular of Project Name: Regular of Project Name: Regular of Project Name: Regular of Project Name: Regular of Project Name: Regular of Project Name: Regular of Name: Regular of Project Name: Regular of Name: Site Location Name: Starte: Starte: Starte: Starte: Starte: Starte: Starte: Regular of Name: Regular o	1							X	Y		 	X	1		34.40				page.		4,						
Section B Required Project Information: A (Althoriton: Section C Required Project Information: Invoice Information: Invoice Information: Attention: Section C Invoice Information: Attention: Section		Residual Chlorine (Y/N)			Cu, Cd, Pb, IVi As	DIOXIM FURTIN		Other No wake	Na ₂ S ₂ O ₃ Methanol	NaOH		H ₂ SO ₄		SAMPLE TEMP AT COLLECTION	TIME	COMPOS END/GR	TIME	ART						MPLE -Z, 0-9/,-) : MUST BE U	SA (A Sample IDs	ITEM#	
Section B Required Project Information: A (Did Use) Report To: Tom Turk A (Did Use) Report To: Tom Turk A (Did Use) Report To: Tom Turk A (Did Use) Report To: Tom Turk A (Did Use) Report To: Tom Turk A (Did Use) Report To: Tom Turk A (Address: Address: Address: Address: Reference: Ref	17 - 15 - 1	file e a			54			V/ II I	es .	vativ	rese	1	1			CTED	COLLEC		<u> </u>			i≍ o		Information	ection D equired Client	ম ত	
Section B Required Project Information: A (I)		1_		is Filtere	d Analys	Requeste		igdash																			
Section B Required Project Information: A (DIDCLURAL) Report To: Sch TWSCM Attention: Sch TWSCM Attention: Sch TWSCM Address: REGULATORY AGENCY Address: Recount	l .		٤	STATE:								offle #	Manager Pace Pro		Frank	18 A	To de	3 E	35		ect Numb			I	Requested Due Date/TAT:	Reque	
Section B Required Project Information: A COLOCUPUL Report To: San TWKK Attention: San TWKK Attention: San TWKK Copy To: Scan Sangara Address: Address: Address: Section C Invoice Information: Antention: San TWKK REGULATORY AC REGULATORY AC Address:	ii .		RCRA	ST	 							ce:	Pace Qu Reference Pace Pro							er No.:	chase Ord		aid o	1	Email To:	Email	
Section B Required Project Information: Report To: Attention: Attention: Copy To: Company Name: Company Name: REGULATORY AGENCY	O1 8	IND WAT	GROL	PDES	z							ξij	Addres									:	9850		l who had	6	
n: Section B Required Project Information: Invoice Information: Attention: Town Turk		ſ	AGENC	LATORY	REGU	1		'	F	5	χ ^ñ	ny Nam	Compa		•		3		أ ر	3	y To:		20 # W.	200		Addres	
Section B Section C								`	2	1	Š' ation:	yn: Unform.	Invoice Attentio						orman	3 [8]	ort To:			\$r. ∺	ny:	Compa	
		je:	Pa									ň	Sectio						•	· <u>:</u>	tion B	Sec		:	ňΑ	Section A	

Sample
Container
Count

			r									1	_
12	11	10	ပ	ω	7	o ,	ហ	4	ω	N		Sample Line Item	COC ID#
												VG9H	1391160
												AG1H	0
												AG1U	
												BG1H	
												BP1U	
												BP2U	
									-			врзи	
												BP2N	
					:							BP2S	
							F	F	4	チ	4	WGFU	٠,
												WGKU [®]	
			4		<	=			en _{ter} anga pangangan		~	93) }
						<					6	WGFU WGKU GAT JGOW	,
rip Blank					! !								
Trip Blank?	100											Comments	255892

DG9H

DG9B

40mL Na Bisulfate amber vial

250mL unpreserved plastic

40mL HCL amber voa vial

WGFU

4oz clear soil jar

WGFX

4oz wide jar w/hexane wipe

Ziploc Bag

VG9W 40mL glass vial preweighted (EPA 5035)

VSG Headspace septa vial & HCL

VG9U 40mL unpreserved clear vial VG9T 40mL Na Thio. clear vial

BP3U

BP3S BP3N BP3C

250mL NaOH plastic

VG9H 40mL HCL clear vial

U Summa Can

terra core kit

JGFU 4oz unpreserved amber wide

250mL HNO3 plastic 250mL H2SO4 plastic

BP2U 500mL unpreserved plastic

BP2S 500mL H2SO4 plastic

BP2Z 500mL NaOH, Zn Ac

DG9M 40mL MeOH clear vial

DG9U 40mL unpreserved amber vial DG9T 40mL Na Thio amber vial

Wipe/Swab

i

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Jennifer Gross PASI Seattle 940 S. Harney Street Seattle WA 98108

> REPORT OF LABORATORY ANALYSIS FOR PCDD/PCDF

Report Information:

Pace Project #: 10144556

Sample Receipt Date: 12/04/2010

Client Project #: 255892 Client Sub PO #: N/A State Cert #: C755

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Nate Habte, your Pace Project Manager.

This report has been reviewed by:

December 14, 2010

Nate Habte, Project Manager

(612) 607-6407

(612) 607-6444 (fax)

natnael.habte@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

December 14, 2010

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on five samples submitted by a representative of Pace Analytical Services, Inc. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290. Reporting limits were based on signal-to-noise measurements.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 32-89%. With the exceptions of four low values, which were flagged "R" on the results tables, the labeled standard recoveries obtained for this project were within the 40-135% target range specified in Method 8290. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, interfering substances impacted the determinations of PCDD or PCDF congeners. The affected value were flagged "I" where incorrect isotope ratios were obtained.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to be free of PCDDs and PCDFs at the reporting limits, with the exception of a trace level of OCDD. This was below the calibration range of the method. The OCDD levels reported for the field samples were higher than the OCDD level in the blank by one or more orders of magnitude. These results indicate that the sample processing steps did not contribute significantly to the levels reported for the field samples.

Laboratory and matrix spike samples were also prepared with the sample batch using clean sand or sample matrix that had been fortified with native standard materials. The results show that the spiked native compounds were generally recovered at 86-121%, with relative percent differences of 0.1-14.7%. These results indicate generally high degrees of accuracy and precision for these determinations. The background-subtracted recovery value obtained for OCDD in the matrix spike duplicate sample was above the 70-130% target range and may indicate a high bias for this congener in these determinations.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	
Arizona	AZ0014	Nevada	MN000642010A
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New Mexico	MN00064
Colorado	MN00064	New York (NEL	11647
Connecticut	PH-0256	North Carolina	27700
EPA Region 5	WD-15J	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Ohio VAP	CL101
Georgia (DNR)	959	Oklahoma	D9922
Guam	09-019r	Oregon (ELAP)	MN200001-005
Hawaii	SLD	Oregon (OREL	MN200001-005
Idaho	MN00064	Pennsylvania	68-00563
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennesee	2818
Iowa	368	Tennessee	02818
Kansas	E-10167	Texas	T104704192-08
Kentucky	90062	Utah (NELAP)	PAM
Louisiana	LA0900016	Virginia	00251
Maine	2007029	Washington	C755
Maryland	322	West Virginia	9952C
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q
Mississippi	MN00064		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

	ب	
	ر ۲	_
	ر	_
~		
	7	7
	C	
1		_
		,

, (10(9 (144)0	0			
5	Cilain of Custody				March Construction of the	RADIOCE, PARA PER ENTRE PROPERTY CONTRACT AND AND AND AND AND AND AND AND AND AND	Polymene advantage and the control of the control o				Face Analytical www.pacopabs.com
Wo	Workorder: 255892	Workorder	Workorder Name:East Bay Redevelopment 138130	y Redevelopm	ent 138130		Owner Received Date:	Date:	12/3/2010	Results Requested By:	- Halfstano
Rep	Réport To		Subcontract To	net To					Requested Analysis	Analysis	
Jenr	Jennifer Gross		Pace	Pace Analytical Minnesota	esota			90		-	
940	race Allalylical Services, Itic. 940 South Harney		Suite	EIM Street 200							
Sea	Seattle WA 98108 Phone (206)767-5060		Minne	Minneapolis, MN 55414 Phone (612)607-1700	414 0		540	ייי)			
Fax	Fax (206)767-5063						mJ	1. N.			
	,,,					Preserved Containers	Z	.₩			•
)),							ş	1			
4		Sample	o.			Dreserve	ĺΧοί	oeo.			
шеш	Sample ID	iype	Date/Ilme	Lab ID	Matrix	lu L	<u> </u>	9			LAB USE ONLY
-	SPL-14-1	PS	12/3/2010 08:40	255892001	Solid	2	×	X			
2	SPL-14-2	PS	12/3/2010 09:00	255892002	Solid	2	×	X			
က	SPL-14-3	PS	12/3/2010 09:20	255892003	Solid	2	×	X			
4	SPL-14-4	PS	12/3/2010 09:40	255892004	Solid	2	×	χ			
,	, SPL-14-5	PS	12/3/2010 10:00	255892005	Solid	2	×	Х			-
										Comments	
Tran	Transfers Released By		Date/Time	Received By	3y //		Date/Time			4	_
-	B		12/2	JULIE COL	TK 1	the	1240 11.5	/-		AND AND ONLY	Puch
2	7			,				 	∠ 2 \		
3					8			7			E
Co	Cooler Temperature on Receipt	ceipt 3.	Z°c cus	Custody Seal	Y or (N)	Rec	Received on Ice	(Y Sor	Z	Samples Intack Y	N Jo
		,	-	•))		J	

Sample Condition Upon Receipt Client Name: Pare WA Project # Courier: M Fed Ex UPS USPS Client Commercial Pace Other Poj. Due Dale Tracking #: 7965 Rroj Name Custody Seal on Cooler/Box Present: yes no ☐ yes Seals intact: Packing Material: ⊠ Bubble Wrap ⊠ Bubble Bage □ None □ Other Temp Blank: Yes No 60344042 or (79425 Type of Ice: (Wet) Blue None Samples on ice, cooling process has begun **Thermometer Used** Date and initials of person examining Biological Tissue is Frozen: Yes No **Cooler Temperature** contents: 12 ^ 4. Temp should be above freezing to 6°C Comments: QYes □No □N/A Chain of Custody Present: Wes □No □N/A Chain of Custody Filled Out: YZYes □No **DNA** Chain of Custody Relinquished: YYes INo **DNA** Sampler Name & Signature on COC: XVes DNo **DN/A** Samples Arrived within Hold Time: ☐Yes No □N/A Short Hold Time Analysis (<72hr): □Yes DNo **□N/A** Rush Turn Around Time Requested: Yes INo Sufficient Volume: □N/A 18. Correct Containers Used: MYes □No □NA 9. -Pace Containers Used: Yes INo 1X(Yes □No □N/A Containers Intact: 10. DYes DNo VONA Filtered volume received for Dissolved tests 11. MYes □No □N/A Sample Labels match COC:

Project Manager Review:

Date: 1 2/6/0

Date/Time:

□Yes □No

□Yes □No

☐Yes ☐No

☐Yes ☐No

☐Yes ☐No

□Yes □No

□Yes □No INNA

NA

130VA 115

DAN/A

MNA

13.

14.

16.

Samp #

initial when

completed

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the **Readt-Attack Stinkles**, Inc. F-L213Rev.O0, 05Aug2009 1700 Elm Street SE, Suite 200, Minneapolis, MN 55414

-Includes date/time/ID/Analysis

checked. Noncompliance are noted in 13.

compliance with EPA recommendation.

Samples checked for dechlorination: Headspace in VOA Vials (>6mm):

Trip Blank Custody Seals Present

Client Notification/ Resolution:

Person Contacted:

Comments/ Resolution:

Pace Trip Blank Lot # (if purchased):

Trip Blank Present:

All containers needing acid/base preservation have been

All containers needing preservation are found to be in

Exceptions: VOA, Coliform, TOC, Oil and Grease, WI-DRO (water

Y / N

NaOH

HNO3

H2SO4

Field Data Required?

Lot # of added

preservative

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- See Discussion

Appendix B

Sample Analysis Summary

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-14-1 Lab Sample ID 255892001 Filename F101211A_07 Injected By CVS **Total Amount Extracted** 11.2 g Solid Matrix % Moisture Dilution NA 10.1 Dry Weight Extracted Collected 12/03/2010 08:40 10.1 g F101206 **ICAL ID** Received 12/04/2010 11:55 CCal Filename(s) F101211A_01 & F101211A_14 Extracted 12/08/2010 18:00 Method Blank ID BLANK-27185 Analyzed 12/11/2010 08:47

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	2.2 17.0		1.30 1.30	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	72 79 50
2,3,7,8-TCDD Total TCDD	ND 8.4		1.30 1.30	1,2,3,7,6-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	43 53 89
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	3.4 2.8 46.0		1.40 J 1.60 J 1.50	1,2,3,6,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	72 77 61 86
1,2,3,7,8-PeCDD Total PeCDD	ND 16.0		1.00 1.00	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	69 48 40
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	2.2 3.6	3.1 	1.00 I 0.84 J 1.50 J	1,2,3,4,7,8,9-HPCDF-13C 1,2,3,4,6,7,8-HPCDD-13C OCDD-13C	2.00 2.00 4.00	58 34 R
1,2,3,7,8,9-HxCDF Total HxCDF	ND 54.0		2.30 1.40	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 4.6 3.1 50.0		1.40 1.80 J 1.60 J 1.60	2,3,7,8-TCDD-37Cl4	0.20	76
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	37.0 ND 140.0		1.70 2.80 2.30	Total 2,3,7,8-TCDD Equivalence: 6.3 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	150.0 320.0		2.20 2.20			
OCDF OCDD	120.0 1600.0		3.80 10.00			

ND = Not Detected

NA = Not Applicable

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit NC = Not Calculated Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-14-2
Lab Sample ID 255892002
Filename F101210B_11
Injected By CVS

Total Amount Extracted 11.4 g Matrix Solid % Moisture 8.8 Dilution NA

Dry Weight Extracted 10.4 g Collected 12/03/2010 09:00 F101206 **ICAL ID** Received 12/04/2010 11:55 CCal Filename(s) F101210B_02 & F101210B_14 Extracted 12/08/2010 18:00 Method Blank ID BLANK-27185 Analyzed 12/11/2010 00:47

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.10 11.00		0.32 0.32	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00	64 75 55
2,3,7,8-TCDD Total TCDD	0.65 12.00		0.44 J 0.44	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00	53 63
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.90 18.00	0.74 	0.28 I 0.36 J 0.32	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	86 82 63 67
1,2,3,7,8-PeCDD Total PeCDD	1.00 16.00		0.29 J 0.29	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	89 74 58
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	0.98	0.59	0.34 I 0.38 J	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	52 64 51
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	1.60 0.68 23.00		0.65 J 0.29 J 0.42	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.95 2.20 1.30 32.00	 	0.30 J 0.37 J 0.47 J 0.38	2,3,7,8-TCDD-37Cl4	0.20	72
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	11.00 ND 34.00		0.46 0.63 0.55	Total 2,3,7,8-TCDD Equivalence: 4.1 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	61.00 170.00		0.95 0.95			
OCDF OCDD	35.00 610.00		1.30 2.50			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-14-3 Lab Sample ID 255892003 F101210B_12 Filename Injected By **CVS Total Amount Extracted** 11.5 g Solid Matrix % Moisture Dilution NA 10.6 Dry Weight Extracted Collected 12/03/2010 09:20 10.3 g F101206 **ICAL ID** Received 12/04/2010 11:55 CCal Filename(s) F101210B_02 & F101210B_14 Extracted 12/08/2010 18:00 Method Blank ID BLANK-27185 Analyzed 12/11/2010 01:35

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.4 17.0		0.40 0.40	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	62 70 59
2,3,7,8-TCDD Total TCDD	ND 14.0		0.37 0.37	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	59 66 72
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.1 2.4 27.0	 	0.57 J 0.31 J 0.44	1,2,3,4,7,8-11XCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	66 53 58 70
1,2,3,7,8-PeCDD Total PeCDD	1.8 18.0		0.45 J 0.45	1,2,3,4,7,8-1 XCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	63 51 47
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	2.1 2.0	0.85 	1.20 J 0.39 I 0.43 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	55 46
1,2,3,7,8,9-HxCDF Total HxCDF	55.0	0.85	0.67 I 0.67	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	2.2 7.8 4.0 71.0	 	0.74 J 0.70 0.95 J 0.80	2,3,7,8-TCDD-37Cl4	0.20	70
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	29.0 ND 95.0	 	1.10 2.20 1.70	Total 2,3,7,8-TCDD Equivalence: 8.1 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	240.0 560.0		3.90 3.90			
OCDF OCDD	82.0 2100.0		3.30 3.60			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-14-4 Lab Sample ID 255892004 F101210B_13 Filename Injected By CVS **Total Amount Extracted** 11.3 g Matrix Solid % Moisture Dilution NA 11.4 Dry Weight Extracted Collected 12/03/2010 09:40 10.0 g F101206 **ICAL ID** Received 12/04/2010 11:55 CCal Filename(s) F101210B_02 & F101210B_14 Extracted 12/08/2010 18:00 Method Blank ID BLANK-27185 Analyzed 12/11/2010 02:23

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.9 41.0		1.20 1.20	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	40 44 44
2,3,7,8-TCDD Total TCDD	ND 36.0		1.00 1.00	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	42 45 64
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	 30.0	1.6 3.6 	0.55 I 0.60 I 0.57	1,2,3,6,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	52 49 47 64
1,2,3,7,8-PeCDD Total PeCDD	37.0	2.4	0.55 I 0.55	1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	52 38 R 34 R
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	1.8 2.4 3.2	 1.5	1.20 J 1.10 J 1.30 J 1.40 l	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 2.00 4.00	34 R 42 32 R NA
Total HxCDF	58.0		1.30	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	2.9 2.8 53.0	5.6 	1.10 J 0.90 I 1.40 J 1.10	2,3,7,8-TCDD-37Cl4	0.20	39
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	38.0 4.6 160.0		0.95 1.30 J 1.10	Total 2,3,7,8-TCDD Equivalence: 5.9 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	200.0 450.0		3.30 3.30			
OCDF OCDD	160.0 2900.0		3.10 3.30			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

EDL = Estimated Detection Limit

NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. $J = Estimated \ value$

R = Recovery outside target range

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-14-5
Lab Sample ID 255892005
Filename F101211A_06
Injected By CVS

Total Amount Extracted 11.4 g Matrix Solid % Moisture 9.8 Dilution NA

Dry Weight Extracted Collected 12/03/2010 10:00 10.3 g F101206 **ICAL ID** Received 12/04/2010 11:55 CCal Filename(s) F101211A_01 & F101211A_14 Extracted 12/08/2010 18:00 Method Blank ID BLANK-27185 Analyzed 12/11/2010 07:59

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	 15.0	1.7	0.49 I 0.49	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00	56 65
Total TODI	13.0		0.43	1,2,3,7,8-PeCDF-13C	2.00	51
2,3,7,8-TCDD	ND		0.65	2,3,4,7,8-PeCDF-13C	2.00	54
Total TCDD	8.0		0.65	1,2,3,7,8-PeCDD-13C	2.00	61
100705 055	0.0		0.74	1,2,3,4,7,8-HxCDF-13C	2.00	63
1,2,3,7,8-PeCDF	2.2		0.74 J	1,2,3,6,7,8-HxCDF-13C	2.00	61
2,3,4,7,8-PeCDF Total PeCDF	3.7 37.0		0.57 J 0.65	2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00	49 54
Total FeCDF	37.0		0.05	1,2,3,4,7,8-HxCDD-13C	2.00	66
1,2,3,7,8-PeCDD	1.8		0.52 J	1,2,3,6,7,8-HxCDD-13C	2.00	59
Total PeCDD	17.0		0.52	1,2,3,4,6,7,8-HpCDF-13C	2.00	48
				1,2,3,4,7,8,9-HpCDF-13C	2.00	46
1,2,3,4,7,8-HxCDF	5.1		0.83	1,2,3,4,6,7,8-HpCDD-13C	2.00	54
1,2,3,6,7,8-HxCDF	4.1		1.00 J	OCDD-13C	4.00	42
2,3,4,6,7,8-HxCDF	6.7		1.50			
1,2,3,7,8,9-HxCDF	3.5		1.10 J	1,2,3,4-TCDD-13C	2.00	NA
Total HxCDF	73.0		1.10	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD	1.9		0.82 J	2,3,7,8-TCDD-37Cl4	0.20	63
1,2,3,6,7,8-HxCDD	6.0		0.55			
1,2,3,7,8,9-HxCDD	4.5		0.61 J			
Total HxCDD	52.0		0.66			
1,2,3,4,6,7,8-HpCDF	44.0		1.30	Total 2,3,7,8-TCDD		
1,2,3,4,7,8,9-HpCDF	4.8		1.80 J	Equivalence: 8.9 ng/Kg		
Total HpCDF	120.0		1.50	(Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD	140.0		2.10			
Total HpCDD	310.0		2.10			
OCDF	110.0		2.70			
OCDD	1500.0		1.80			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Blank Analysis Results

Lab Sample IDBLANK-27185MatrixSolidFilenameF101210B_10DilutionNA

Total Amount Extracted 20.1 g Extracted 12/08/2010 18:00 ICAL ID F101206 Analyzed 12/10/2010 23:59

CCal Filename(s) F101210B_02 & F101210B_14 Injected By CVS

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.21 0.21	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	73 82 64
2,3,7,8-TCDD Total TCDD	ND ND		0.25 0.25	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	60 72 89
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.21 0.19 0.20	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	82 70 70
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.19 0.19	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	91 81 57
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.21 0.20 0.26	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	53 62 46
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		0.40 0.27	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	0.24 0.30 0.28 0.28	2,3,7,8-TCDD-37Cl4	0.20	78
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		0.29 0.49 0.39	Total 2,3,7,8-TCDD Equivalence: 0.36 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		0.44 0.44			
OCDF OCDD	ND 2.2		0.74 1.00 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures. $J = Estimated \ value$

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename **Total Amount Extracted**

Method Blank ID

ICAL ID CCal Filename(s) LCS-27186 F101211A_02 20.1 g F101206

F101211A_01 & F101211A_14 BLANK-27185

Matrix Solid Dilution NA Extracted

12/08/2010 18:00 Analyzed 12/11/2010 04:47

Injected By **CVS**

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.24	121	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.0 2.0 2.0	68 78 69
2,3,7,8-TCDD Total TCDD	0.20	0.20	98	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.0 2.0 2.0 2.0	62 75 73
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.1 1.1	113 112	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.0 2.0 2.0 2.0 2.0	70 63 69 77
1,2,3,7,8-PeCDD Total PeCDD	1.0	0.98	98	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.0 2.0 2.0 2.0	69 62 60
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	1.0 1.0 1.0 1.0	1.1 1.1 1.1 1.1	107 112 106 112	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.0 4.0 2.0	68 54 NA
Total HxCDF	1.0	1.1	112	1,2,3,7,8,9-HxCDD-13C	2.0	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	1.0 1.1 1.1	103 108 108	2,3,7,8-TCDD-37Cl4	0.20	82
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.1 1.0	106 101			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	0.96	96			
OCDF OCDD	2.0 2.0	2.1 2.2	106 108			

Qs = Quantity Spiked Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent) R = Recovery outside of target range

Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable * = See Discussion

Method 8290 Spiked Sample Report

Client - PASI Seattle

Client's Sample ID SPL-14-2-MS
Lab Sample ID 255892002-MS
Filename F101210B_04

Filename F101210B_04 Matrix Solid Total Amount Extracted 11.1 g Dilution NA ICAL ID F101206 Extracted 12/08

ICAL ID F101206 Extracted 12/08/2010 18:00 CCal Filename(s) F101210B_02 & F101210B_14 Analyzed 12/10/2010 19:11

Method Blank ID BLANK-27185 Injected By CVS

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20	0.24	120	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	64 78 54
2,3,7,8-TCDD	0.20	0.19	97	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	60 71 88
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	1.00 1.00	1.11 1.06	111 106	1,2,3,4,7,6-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	63 64
1,2,3,7,8-PeCDD	1.00	0.93	93	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	78 74 54
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	1.09 1.14 1.03	109 114 103	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	48 60 43
1,2,3,7,8,9-HxCDF	1.00	1.08	108	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	1.00 1.00 1.00	1.03 1.06 1.03	103 106 103	2,3,7,8-TCDD-37Cl4	0.20	72
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	1.00 1.00	1.26 1.02	126 102			
1,2,3,4,6,7,8-HpCDD	1.00	1.52	152			
OCDF OCDD	2.00 2.00	2.46 7.92	123 396			

Qs = Quantity Spiked Qm = Quantity Measured Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

Method 8290 Spiked Sample Report

Client - PASI Seattle

Client's Sample ID Lab Sample ID Filename SPL-14-2-MSD 255892002-MSD F101210B_05

Total Amount Extracted ICAL ID

F101210B_05 Matrix 11.2 g Dilution F101206 Extracte Solid NA

CCal Filename(s)
Method Blank ID

F101206 F101210B_02 & F101210B_14 BLANK-27185 Extracted 12/08/2010 18:00 Analyzed 12/10/2010 20:00

Injected By CVS

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20	0.24	122	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	71 79 52
2,3,7,8-TCDD	0.20	0.20	99	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	63 76 100
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	1.00 1.00	1.18 1.06	118 106	1,2,3,6,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	59 60 54
1,2,3,7,8-PeCDD	1.00	0.94	94	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	97 59 49
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	1.14 0.99 1.14	114 99 114	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	55 68 56
1,2,3,7,8,9-HxCDF	1.00	1.03	103	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	1.00 1.00 1.00	1.02 1.04 1.04	102 104 104	2,3,7,8-TCDD-37Cl4	0.20	74
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	1.00 1.00	1.30 1.00	130 100			
1,2,3,4,6,7,8-HpCDD	1.00	1.63	163			
OCDF OCDD	2.00 2.00	2.38 9.05	119 453			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

Method 8290 Spike Sample Results

Client - PASI Seattle

Client Sample ID SPL-14-2 Lab Sample ID 255892002 MS ID 255892002-MS MSD ID

255892002-MSD

Sample Filename MS Filename MSD Filename

F101210B 11 F101210B 04 F101210B_05

Dry Weights Sample Amount 10.4 g 10.1 g MS Amount 10.2 g MSD Amount

	Sample Conc.	MS/MSD Qs	MS Qm	MSD Qm		Backgrou	und Subtracted	
Analyte	ng/Kg	(ng)	(ng)	(ng)	RPD	MS % Rec.	MSD % Rec.	RPD
2,3,7,8-TCDF	1.143	0.20	0.24	0.24	2.2	114	117	2.3
2,3,7,8-TCDD	0.652	0.20	0.19	0.20	1.2	94	95	1.2
1,2,3,7,8-PeCDF	0.000	1.00	1.11	1.18	6.2	110	117	6.2
2,3,4,7,8-PeCDF	1.918	1.00	1.06	1.06	0.1	104	104	0.1
1,2,3,7,8-PeCDD	1.021	1.00	0.93	0.94	2.0	92	93	2.0
1,2,3,4,7,8-HxCDF	0.000	1.00	1.09	1.14	4.5	109	114	4.5
1,2,3,6,7,8-HxCDF	0.979	1.00	1.14	0.99	14.7	113	98	14.8
2,3,4,6,7,8-HxCDF	1.559	1.00	1.03	1.14	10.1	102	113	10.3
1,2,3,7,8,9-HxCDF	0.677	1.00	1.08	1.03	4.8	107	102	4.8
1,2,3,4,7,8-HxCDD	0.953	1.00	1.03	1.02	1.0	102	101	1.0
1,2,3,6,7,8-HxCDD	2.151	1.00	1.06	1.04	2.0	104	102	2.0
1,2,3,7,8,9-HxCDD	1.343	1.00	1.03	1.04	0.5	102	102	0.5
1,2,3,4,6,7,8-HpCDF	11.238	1.00	1.26	1.30	3.3	114	118	3.5
1,2,3,4,7,8,9-HpCDF	0.000	1.00	1.02	1.00	2.0	102	100	2.0
1,2,3,4,6,7,8-HpCDD	60.590	1.00	1.52	1.63	7.3	91	102	11.4
OCDF '	35.442	2.00	2.46	2.38	3.3	105	101	4.0
OCDD	612.907	2.00	7.92	9.05	13.4	86	140	47.9

Definitions

MS = Matrix Spike

MSD = Matrix Spike Duplicate

Qm = Quantity Measured Qs = Quantity Spiked

% Rec. = Percent Recovery

RPD = Relative Percent Difference

NA = Not Applicable NC = Not Calculated CDD = Chlorinated dibenzo-p-dioxin CDF = Chlorinated dibenzo-p-furan

T = Tetra Pe = Penta Hx = Hexa

Hp = Hepta O = Octa

December 27, 2010

Joshua Johnson Brown & Caldwell 724 Columbia St. NW#420 Olympia, WA 98501

RE: Project: East Bay Redevelopment 138130

Pace Project No.: 255985

Dear Joshua Johnson:

Enclosed are the analytical results for sample(s) received by the laboratory on December 11, 2010. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jennifer Gross

jennifer.gross@pacelabs.com Project Manager

ENNI (TROSS

Enclosures

cc: John Turk, Brown & Caldwell

(206)767-5060

CERTIFICATIONS

Project: East Bay Redevelopment 138130

Pace Project No.: 255985

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

Alaska Certification #: UST-078 Alaska Certification #MN00064 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA EPA Region 8 Certification #: Pace Florida/NELAP Certification #: E87605

Georgia Certification #: 959 Idaho Certification #: MN00064 Illinois Certification #: 200011 Iowa Certification #: 368 Kansas Certification #: E-10167 Louisiana Certification #: 03086 Louisiana Certification #: LA080009 Maine Certification #: 2007029 Maryland Certification #: 322

Michigan DEQ Certification #: 9909 Minnesota Certification #: 027-053-137 Mississippi Certification #: Pace

Washington Certification IDs

940 South Harney Street, Seattle, WA 98108 Alaska CS Certification #: UST-025

Alaska Drinking Water VOC Certification #: WA01230 Alaska Drinking Water Micro Certification #: WA01230 Montana Certification #: MT CERT0092 Nevada Certification #: MN_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New Mexico Certification #: Pace New York Certification #: 11647 North Carolina Certification #: 530 North Dakota Certification #: R-036 North Dakota Certification #: R-036A Ohio VAP Certification #: CL101 Oklahoma Certification #: D9921 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Pennsylvania Certification #: 68-00563

Puerto Rico Certification Tennessee Certification #: 02818 Texas Certification #: T104704192 Washington Certification #: C754 Wisconsin Certification #: 999407970

California Certification #: 01153CA Florida/NELAP Certification #: E87617 Oregon Certification #: WA200007 Washington Certification #: C1229

(206)767-5060

SAMPLE ANALYTE COUNT

Project: East Bay Redevelopment 138130

Pace Project No.: 255985

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
255985001	SPL-15-1	NWTPH-Dx	DMT	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	RJS	5	PASI-M
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
255985002	SPL-15-2	NWTPH-Dx	DMT	4	PASI-S
	NWTPH-Gx	AY1	3	PASI-S	
		EPA 6020	RJS	5	PASI-M
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
255985003	SPL-15-3	NWTPH-Dx	DMT	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6020	RJS	5	PASI-M
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S

Project: East Bay Redevelopment 138130

Sample: SPL-15-1	Lab ID: 255985001	Collected: 12/10/10 1	11:15	Received: 12	/11/10 09:26 I	Matrix: Solid	
Results reported on a "dry-weight	t" basis						
Parameters	Results Units	Report Limit [)F	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS SG	Analytical Method: NWT	PH-Dx Preparation Metho	od: EF	PA 3546			
Diesel Range SG	26.0 mg/kg	21.6	1	12/13/10 12:50	12/14/10 12:44	ļ	
Motor Oil Range SG	97.3 mg/kg	86.4	1	12/13/10 12:50	12/14/10 12:44	64742-65-0	
n-Octacosane (S) SG	107 %	50-150	1	12/13/10 12:50	12/14/10 12:44	630-02-4	
o-Terphenyl (S) SG	90 %	50-150	1	12/13/10 12:50	12/14/10 12:44	84-15-1	
NWTPH-Gx GCV	Analytical Method: NWT	PH-Gx Preparation Metho	od: N\	WTPH-Gx			
Gasoline Range Organics	ND mg/kg	5.7	1	12/15/10 10:00	12/15/10 22:44	ļ.	
a,a,a-Trifluorotoluene (S)	84 %	50-150	1	12/15/10 10:00	12/15/10 22:44	98-08-8	
4-Bromofluorobenzene (S)	73 %	50-150	1	12/15/10 10:00	12/15/10 22:44	460-00-4	
6020 MET ICPMS	Analytical Method: EPA	6020					
Arsenic	5.0 mg/kg	0.48 2	20	12/22/10 09:06	12/24/10 00:08	3 7440-38-2	
Cadmium	0.10 mg/kg			12/22/10 09:06	12/24/10 00:08	3 7440-43-9	
Copper	22.9 mg/kg	0.48 2		12/22/10 09:06			
Lead	10.9 mg/kg	0.48 2	20	12/22/10 09:06	12/24/10 00:08	3 7439-92-1	
Nickel	28.2 mg/kg			12/22/10 09:06			
8270 MSSV PAH by SIM	Analytical Method: EPA	3270 by SIM Preparation	Metho	od: EPA 3546			
Acenaphthene	7.2 ug/kg	7.2	1	12/13/10 12:45	12/13/10 18:59	83-32-9	
Acenaphthylene	52.9 ug/kg			12/13/10 12:45			
Anthracene	54.0 ug/kg			12/13/10 12:45			
Benzo(a)anthracene	120 ug/kg			12/13/10 12:45			
Benzo(a)pyrene	153 ug/kg			12/13/10 12:45			
Benzo(b)fluoranthene	79.5 ug/kg			12/13/10 12:45			
Benzo(g,h,i)perylene	88.1 ug/kg			12/13/10 12:45			
Benzo(k)fluoranthene	104 ug/kg			12/13/10 12:45			
Chrysene	153 ug/kg			12/13/10 12:45			
Dibenz(a,h)anthracene	27.5 ug/kg			12/13/10 12:45			
Fluoranthene	237 ug/kg			12/13/10 12:45			
Fluorene	22.0 ug/kg			12/13/10 12:45			
Indeno(1,2,3-cd)pyrene	73.4 ug/kg			12/13/10 12:45			
1-Methylnaphthalene	20.5 ug/kg			12/13/10 12:45			
	• •						
2-Methylnaphthalene	30.6 ug/kg			12/13/10 12:45			
Naphthalene	36.5 ug/kg			12/13/10 12:45			
Phenanthrene	182 ug/kg			12/13/10 12:45			
Pyrene	302 ug/kg			12/13/10 12:45			
2-Fluorobiphenyl (S)	66 %			12/13/10 12:45			
Terphenyl-d14 (S)	72 %	30-133	1	12/13/10 12:45	12/13/10 18:59	9 1718-51-0	
8260/5035A Volatile Organics	Analytical Method: EPA	3260					
Benzene	ND ug/kg	3.1	1		12/16/10 14:15		
Ethylbenzene	ND ug/kg	3.1	1		12/16/10 14:15	100-41-4	
Toluene	ND ug/kg	3.1	1		12/16/10 14:15	108-88-3	
Xylene (Total)	ND ug/kg	9.2	1		12/16/10 14:15	1330-20-7	
Dibromofluoromethane (S)	96 %	80-136	1		12/16/10 14:15	1868-53-7	

Date: 12/27/2010 02:32 PM

REPORT OF LABORATORY ANALYSIS

Page 4 of 16

Project: East Bay Redevelopment 138130

255985 Pace Project No.: Lab ID: 255985001 Sample: SPL-15-1 Collected: 12/10/10 11:15 Received: 12/11/10 09:26 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8260/5035A Volatile Organics Analytical Method: EPA 8260 Toluene-d8 (S) 109 % 80-120 1 12/16/10 14:15 2037-26-5 4-Bromofluorobenzene (S) 120 % 72-122 1 12/16/10 14:15 460-00-4 1,2-Dichloroethane-d4 (S) 106 % 80-143 12/16/10 14:15 17060-07-0 Analytical Method: ASTM D2974-87 **Percent Moisture** Percent Moisture 8.5 % 0.10 1 12/13/10 17:04 Sample: SPL-15-2 Lab ID: 255985002 Collected: 12/10/10 11:15 Received: 12/11/10 09:26 Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG ND mg/kg 21.8 12/13/10 12:50 12/14/10 13:31 Motor Oil Range SG ND mg/kg 87.3 12/13/10 12:50 12/14/10 13:31 64742-65-0 1 n-Octacosane (S) SG 101 % 50-150 1 12/13/10 12:50 12/14/10 13:31 630-02-4 o-Terphenyl (S) SG 50-150 91 % 1 12/13/10 12:50 12/14/10 13:31 84-15-1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 4.9 12/15/10 10:00 12/15/10 23:07 83 % 50-150 12/15/10 10:00 12/15/10 23:07 98-08-8 a,a,a-Trifluorotoluene (S) 1 4-Bromofluorobenzene (S) 72 % 50-150 12/15/10 10:00 12/15/10 23:07 460-00-4 1 **6020 MET ICPMS** Analytical Method: EPA 6020 12/22/10 09:06 12/24/10 00:17 7440-38-2 Arsenic 5.7 mg/kg 0.50 20 Cadmium 0.087 mg/kg 0.080 20 12/22/10 09:06 12/24/10 00:17 7440-43-9 20.6 mg/kg 0.50 20 12/22/10 09:06 12/24/10 00:17 7440-50-8 Copper 10.4 mg/kg 0.50 20 12/22/10 09:06 12/24/10 00:17 7439-92-1 Lead Nickel 20.9 mg/kg 20 12/22/10 09:06 12/24/10 00:17 7440-02-0 0.50 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 7.3 Acenaphthene 10.3 ug/kg 1 12/13/10 12:45 12/13/10 19:15 83-32-9 Acenaphthylene 42.6 ug/kg 7.3 12/13/10 12:45 12/13/10 19:15 208-96-8 1 59.9 ug/kg 7.3 Anthracene 1 12/13/10 12:45 12/13/10 19:15 120-12-7 Benzo(a)anthracene 133 ug/kg 7.3 1 12/13/10 12:45 12/13/10 19:15 56-55-3 Benzo(a)pyrene 168 ug/kg 7.3 12/13/10 12:45 12/13/10 19:15 50-32-8 Benzo(b)fluoranthene 82.4 ug/kg 7.3 1 12/13/10 12:45 12/13/10 19:15 205-99-2 98.6 ug/kg 12/13/10 12:45 12/13/10 19:15 191-24-2 Benzo(g,h,i)perylene 7.3 1 Benzo(k)fluoranthene 118 ug/kg 7.3 1 12/13/10 12:45 12/13/10 19:15 207-08-9 Chrysene 159 ug/kg 7.3 12/13/10 12:45 12/13/10 19:15 218-01-9 1 32.0 ug/kg 7.3 Dibenz(a,h)anthracene 12/13/10 12:45 12/13/10 19:15 53-70-3 1 Fluoranthene 264 ug/kg 7.3 12/13/10 12:45 12/13/10 19:15 206-44-0 1 Fluorene 26.6 ug/kg 7.3 12/13/10 12:45 12/13/10 19:15 86-73-7 1 Indeno(1,2,3-cd)pyrene 85.5 ug/kg 7.3 12/13/10 12:45 12/13/10 19:15 193-39-5

Date: 12/27/2010 02:32 PM

REPORT OF LABORATORY ANALYSIS

Page 5 of 16

Project: East Bay Redevelopment 138130

Pace Project No.:

255985 Lab ID: 255985002 Sample: SPL-15-2 Collected: 12/10/10 11:15 Received: 12/11/10 09:26 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 1-Methylnaphthalene 12.4 ug/kg 7.3 12/13/10 12:45 12/13/10 19:15 90-12-0 2-Methylnaphthalene 16.3 ug/kg 7.3 12/13/10 12:45 12/13/10 19:15 91-57-6 Naphthalene 32.0 ug/kg 7.3 12/13/10 12:45 12/13/10 19:15 91-20-3 1 Phenanthrene 195 ug/kg 7.3 12/13/10 12:45 12/13/10 19:15 85-01-8 1 392 ug/kg Pyrene 7.3 1 12/13/10 12:45 12/13/10 19:15 129-00-0 2-Fluorobiphenyl (S) 72 % 31-131 12/13/10 12:45 12/13/10 19:15 321-60-8 1 Terphenyl-d14 (S) 94 % 30-133 12/13/10 12:45 12/13/10 19:15 1718-51-0 8260/5035A Volatile Organics Analytical Method: EPA 8260 ND ug/kg 2.7 12/16/10 14:35 71-43-2 Benzene 1 12/16/10 14:35 100-41-4 2.7 Ethylbenzene ND ug/kg 1 Toluene 2.7 12/16/10 14:35 108-88-3 ND ug/kg 1 ND ug/kg Xylene (Total) 8.1 12/16/10 14:35 1330-20-7 1 97 % 12/16/10 14:35 1868-53-7 Dibromofluoromethane (S) 80-136 1 Toluene-d8 (S) 112 % 80-120 1 12/16/10 14:35 2037-26-5 4-Bromofluorobenzene (S) 119 % 72-122 1 12/16/10 14:35 460-00-4 1,2-Dichloroethane-d4 (S) 107 % 80-143 12/16/10 14:35 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 8.6 % 0.10 1 12/13/10 17:05 Sample: SPL-15-3 Lab ID: 255985003 Collected: 12/10/10 11:15 Received: 12/11/10 09:26 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG 29.5 mg/kg 21.3 12/13/10 12:50 12/14/10 13:55 Motor Oil Range SG ND mg/kg 85.2 12/13/10 12:50 12/14/10 13:55 64742-65-0 n-Octacosane (S) SG 118 % 50-150 12/13/10 12:50 12/14/10 13:55 630-02-4 o-Terphenyl (S) SG 91 % 50-150 12/13/10 12:50 12/14/10 13:55 84-15-1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 5.5 12/15/10 10:00 12/15/10 23:30 a,a,a-Trifluorotoluene (S) 82 % 50-150 1 12/15/10 10:00 12/15/10 23:30 98-08-8 4-Bromofluorobenzene (S) 71 % 50-150 1 12/15/10 10:00 12/15/10 23:30 460-00-4 6020 MET ICPMS Analytical Method: EPA 6020 12/22/10 09:06 12/24/10 00:26 7440-38-2 Arsenic 4.7 mg/kg 0.46 20 Cadmium 0.082 mg/kg 0.074 20 12/22/10 09:06 12/24/10 00:26 7440-43-9 24.2 mg/kg 0.46 20 12/22/10 09:06 12/24/10 00:26 7440-50-8 Copper **9.2** mg/kg Lead 0.46 20 12/22/10 09:06 12/24/10 00:26 7439-92-1 Nickel 25.1 mg/kg 0.46 20 12/22/10 09:06 12/24/10 00:26 7440-02-0

Date: 12/27/2010 02:32 PM

REPORT OF LABORATORY ANALYSIS

Page 6 of 16

Project: East Bay Redevelopment 138130

Pace Project No.: 255985

Lab ID: 255985003 Sample: SPL-15-3 Collected: 12/10/10 11:15 Received: 12/11/10 09:26 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 7.3 Acenaphthene 61.1 ug/kg 12/13/10 12:45 12/14/10 14:16 83-32-9 7.3 Acenaphthylene 48.9 ug/kg 12/13/10 12:45 12/14/10 14:16 208-96-8 Anthracene 104 ug/kg 7.3 12/13/10 12:45 12/14/10 14:16 120-12-7 1 Benzo(a)anthracene 246 ug/kg 7.3 1 12/13/10 12:45 12/14/10 14:16 56-55-3 274 ug/kg 7.3 12/13/10 12:45 12/14/10 14:16 50-32-8 Benzo(a)pyrene 1 Benzo(b)fluoranthene 147 ug/kg 7.3 12/13/10 12:45 12/14/10 14:16 205-99-2 1 Benzo(g,h,i)perylene 145 ug/kg 7.3 12/13/10 12:45 12/14/10 14:16 191-24-2 1 Benzo(k)fluoranthene 183 ug/kg 7.3 12/13/10 12:45 12/14/10 14:16 207-08-9 1 282 ug/kg 7.3 12/13/10 12:45 12/14/10 14:16 218-01-9 Chrysene 1 45.8 ug/kg 7.3 12/13/10 12:45 12/14/10 14:16 53-70-3 Dibenz(a,h)anthracene 1 Fluoranthene 558 ug/kg 7.3 12/13/10 12:45 12/14/10 14:16 206-44-0 1 Fluorene 65.7 ug/kg 7.3 1 12/13/10 12:45 12/14/10 14:16 86-73-7 Indeno(1,2,3-cd)pyrene 128 ug/kg 7.3 12/13/10 12:45 12/14/10 14:16 193-39-5 1-Methylnaphthalene 15.5 ug/kg 7.3 12/13/10 12:45 12/14/10 14:16 90-12-0 1 2-Methylnaphthalene 18.8 ug/kg 7.3 12/13/10 12:45 12/14/10 14:16 91-57-6 1 Naphthalene 31.0 ug/kg 7.3 1 12/13/10 12:45 12/14/10 14:16 91-20-3 Phenanthrene 429 ug/kg 7.3 1 12/13/10 12:45 12/14/10 14:16 85-01-8 Pyrene 792 ug/kg 7.3 12/13/10 12:45 12/14/10 14:16 129-00-0 1 67 % 31-131 2-Fluorobiphenyl (S) 1 12/13/10 12:45 12/14/10 14:16 321-60-8 Terphenyl-d14 (S) 99 % 30-133 12/13/10 12:45 12/14/10 14:16 1718-51-0 1 8260/5035A Volatile Organics Analytical Method: EPA 8260 ND ug/kg 3.0 12/16/10 14:55 71-43-2 Benzene 1 Ethylbenzene ND ug/kg 3.0 1 12/16/10 14:55 100-41-4 Toluene ND ug/kg 3.0 1 12/16/10 14:55 108-88-3 Xylene (Total) ND ug/kg 8.9 1 12/16/10 14:55 1330-20-7 Dibromofluoromethane (S) 103 % 80-136 12/16/10 14:55 1868-53-7 1 Toluene-d8 (S) 107 % 80-120 1 12/16/10 14:55 2037-26-5 4-Bromofluorobenzene (S) 116 % 72-122 12/16/10 14:55 460-00-4 1 1,2-Dichloroethane-d4 (S) 107 % 80-143 12/16/10 14:55 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87

Date: 12/27/2010 02:32 PM

Percent Moisture

REPORT OF LABORATORY ANALYSIS

9.3 %

Page 7 of 16

12/13/10 17:06

0.10

Project: East Bay Redevelopment 138130

Pace Project No.: 255985

QC Batch: OEXT/3090 Analysis Method: NWTPH-Dx
QC Batch Method: EPA 3546 Analysis Description: NWTPH-Dx GCS

Associated Lab Samples: 255985001, 255985002, 255985003

METHOD BLANK: 52068 Matrix: Solid

Associated Lab Samples: 255985001, 255985002, 255985003

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Diesel Range SG	mg/kg	ND	20.0	12/14/10 11:57	
Motor Oil Range SG	mg/kg	ND	80.0	12/14/10 11:57	
n-Octacosane (S) SG	%	103	50-150	12/14/10 11:57	
o-Terphenyl (S) SG	%	88	50-150	12/14/10 11:57	

LABORATORY CONTROL SAMPLE: 52069

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Diesel Range SG	mg/kg	500	440	88	56-124	
Motor Oil Range SG	mg/kg	500	455	91	50-150	
n-Octacosane (S) SG	%			103	50-150	
o-Terphenyl (S) SG	%			127	50-150	

SAMPLE DUPLICATE: 52070

		255985001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Diesel Range SG	mg/kg	26.0	19.3J		
Motor Oil Range SG	mg/kg	97.3	81J		
n-Octacosane (S) SG	%	107	109	1	
o-Terphenyl (S) SG	%	90	91	.1	

Date: 12/27/2010 02:32 PM

Project: East Bay Redevelopment 138130

Pace Project No.: 255985

QC Batch: GCV/2080 Analysis Method: NWTPH-Gx

QC Batch Method: NWTPH-Gx Analysis Description: NWTPH-Gx Solid GCV

Associated Lab Samples: 255985001, 255985002, 255985003

METHOD BLANK: 52268 Matrix: Solid

Associated Lab Samples: 255985001, 255985002, 255985003

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Gasoline Range Organics	mg/kg	ND	5.0	12/15/10 20:24	
4-Bromofluorobenzene (S)	%	101	50-150	12/15/10 20:24	
a,a,a-Trifluorotoluene (S)	%	109	50-150	12/15/10 20:24	

LABORATORY CONTROL SAMPLE: 52269

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Gasoline Range Organics	mg/kg	12.5	12.6	101	54-156	
4-Bromofluorobenzene (S)	%			122	50-150	
a,a,a-Trifluorotoluene (S)	%			117	50-150	

SAMPLE DUPLICATE: 52395

Parameter	Units	255986006 Result	Dup Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND ND			
4-Bromofluorobenzene (S)	%	76	79	5	
a,a,a-Trifluorotoluene (S)	%	86	88	2	

SAMPLE DUPLICATE: 52396

		255986008	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND	1.3J		
4-Bromofluorobenzene (S)	%	73	78	8	
a,a,a-Trifluorotoluene (S)	%	84	85	1	

Date: 12/27/2010 02:32 PM

Project: East Bay Redevelopment 138130

Pace Project No.: 255985

QC Batch: ICPM/24074 Analysis Method: EPA 6020
QC Batch Method: EPA 6020 Analysis Description: 6020 MET

Associated Lab Samples: 255985001, 255985002, 255985003

METHOD BLANK: 908668 Matrix: Solid

Associated Lab Samples: 255985001, 255985002, 255985003

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Arsenic	mg/kg	ND	0.47	12/23/10 23:14	
Cadmium	mg/kg	ND	0.075	12/23/10 23:14	
Copper	mg/kg	ND	0.47	12/23/10 23:14	
Lead	mg/kg	ND	0.47	12/23/10 23:14	
Nickel	mg/kg	ND	0.47	12/23/10 23:14	

LABORATORY CONTROL SAMPLE: 908669

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/kg	19.2	18.6	97	75-125	
Cadmium	mg/kg	19.2	18.6	97	75-125	
Copper	mg/kg	19.2	19.1	99	75-125	
Lead	mg/kg	19.2	19.1	99	75-125	
Nickel	mg/kg	19.2	18.9	98	75-125	

MATRIX SPIKE & MATRIX S	SPIKE DUPLICAT	E: 90867	0		908671						
	50	044293001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Arsenic	mg/kg	ND	17.2	17.7	18.2	18.0	104	100	75-125	1	
Cadmium	mg/kg	0.098	17.2	17.7	17.7	18.0	102	101	75-125	1	
Copper	mg/kg	1.1	17.2	17.7	18.3	18.0	100	96	75-125	2	
Lead	mg/kg	ND	17.2	17.7	16.5	16.0	94	89	75-125	3	
Nickel	mg/kg	0.92	17.2	17.7	18.3	18.6	101	100	75-125	1	

Date: 12/27/2010 02:32 PM

Project: East Bay Redevelopment 138130

Pace Project No.: 255985

QC Batch: OEXT/3087 Analysis Method: EPA 8270 by SIM

QC Batch Method: EPA 3546 Analysis Description: 8270/3546 MSSV PAH by SIM

Associated Lab Samples: 255985001, 255985002, 255985003

METHOD BLANK: 52032 Matrix: Solid

Associated Lab Samples: 255985001, 255985002, 255985003

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/kg	ND ND	6.7	12/13/10 16:05	
2-Methylnaphthalene	ug/kg	ND	6.7	12/13/10 16:05	
Acenaphthene	ug/kg	ND	6.7	12/13/10 16:05	
Acenaphthylene	ug/kg	ND	6.7	12/13/10 16:05	
Anthracene	ug/kg	ND	6.7	12/13/10 16:05	
Benzo(a)anthracene	ug/kg	ND	6.7	12/13/10 16:05	
Benzo(a)pyrene	ug/kg	ND	6.7	12/13/10 16:05	
Benzo(b)fluoranthene	ug/kg	ND	6.7	12/13/10 16:05	
Benzo(g,h,i)perylene	ug/kg	ND	6.7	12/13/10 16:05	
Benzo(k)fluoranthene	ug/kg	ND	6.7	12/13/10 16:05	
Chrysene	ug/kg	ND	6.7	12/13/10 16:05	
Dibenz(a,h)anthracene	ug/kg	ND	6.7	12/13/10 16:05	
Fluoranthene	ug/kg	ND	6.7	12/13/10 16:05	
Fluorene	ug/kg	ND	6.7	12/13/10 16:05	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	6.7	12/13/10 16:05	
Naphthalene	ug/kg	ND	6.7	12/13/10 16:05	
Phenanthrene	ug/kg	ND	6.7	12/13/10 16:05	
Pyrene	ug/kg	ND	6.7	12/13/10 16:05	
2-Fluorobiphenyl (S)	%	58	31-131	12/13/10 16:05	
Terphenyl-d14 (S)	%	63	30-133	12/13/10 16:05	

LABORATORY CONTROL SAMPLE: 5203

	02000					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/kg	133	69.2	52	37-121	
2-Methylnaphthalene	ug/kg	133	72.6	54	33-132	
Acenaphthene	ug/kg	133	75.3	56	32-127	
Acenaphthylene	ug/kg	133	74.9	56	31-134	
Anthracene	ug/kg	133	82.4	62	42-135	
Benzo(a)anthracene	ug/kg	133	81.8	61	43-139	
Benzo(a)pyrene	ug/kg	133	88.6	66	44-144	
Benzo(b)fluoranthene	ug/kg	133	77.6	58	42-144	
Benzo(g,h,i)perylene	ug/kg	133	83.9	63	46-136	
Benzo(k)fluoranthene	ug/kg	133	83.9	63	45-147	
Chrysene	ug/kg	133	88.1	66	42-144	
Dibenz(a,h)anthracene	ug/kg	133	85.5	64	48-142	
Fluoranthene	ug/kg	133	81.2	61	44-143	
Fluorene	ug/kg	133	76.2	57	32-146	
Indeno(1,2,3-cd)pyrene	ug/kg	133	86.9	65	47-140	
Naphthalene	ug/kg	133	73.4	55	35-118	
Phenanthrene	ug/kg	133	78.9	59	42-131	

Date: 12/27/2010 02:32 PM

REPORT OF LABORATORY ANALYSIS

Page 11 of 16

Project: East Bay Redevelopment 138130

Pace Project No.: 255985

LABORATORY CONTROL SAMPLE: 52033

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Pyrene	ug/kg	133	83.8	63	47-136	
2-Fluorobiphenyl (S)	%			56	31-131	
Terphenyl-d14 (S)	%			63	30-133	

MATRIX SPIKE & MATRIX S	PIKE DUPLICA	TE: 52034			52035						
			MS	MSD							
		255915001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1-Methylnaphthalene	ug/kg	17100	167	165	17900	20200	473	1880	31-123	12 M3	
2-Methylnaphthalene	ug/kg	55100	167	165	35700	37700	-11700	-10500	15-146	6 M3	
Acenaphthene	ug/kg	2240	167	165	2350	2790	63	328	19-141	17 M3	
Acenaphthylene	ug/kg	508	167	165	865	888	214	229	30-142	3 M3	
Anthracene	ug/kg	1240	167	165	1270	1530	17	177	38-137	19 M3	
Benzo(a)anthracene	ug/kg	23.0	167	165	115	144	55	73	37-143	23 R1	
Benzo(a)pyrene	ug/kg	ND	167	165	100	94.3	59	56	33-147	6	
Benzo(b)fluoranthene	ug/kg	ND	167	165	74.1	82.9	45	50	25-156	11	
Benzo(g,h,i)perylene	ug/kg	ND	167	165	114	85.6	69	52	26-142	29 R1	
Benzo(k)fluoranthene	ug/kg	ND	167	165	85.9	89.0	52	54	35-142	4	
Chrysene	ug/kg	136	167	165	223	232	52	58	23-150	4	
Dibenz(a,h)anthracene	ug/kg	ND	167	165	113	85.8	68	52	41-140	28 R1	
Fluoranthene	ug/kg	317	167	165	420	447	62	78	25-155	6	
Fluorene	ug/kg	4450	167	165	5310	5050	517	363	33-152	5 M3	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	167	165	114	87.4	68	53	36-139	26 R1	
Naphthalene	ug/kg	16500	167	165	17200	18300	436	1110	25-121	6 M3	
Phenanthrene	ug/kg	12000	167	165	10700	11500	-786	-265	29-141	8 M3	
Pyrene	ug/kg	732	167	165	895	809	98	46	36-145	10	
2-Fluorobiphenyl (S)	%						70	62	31-131		
Terphenyl-d14 (S)	%						78	82	30-133		

Date: 12/27/2010 02:32 PM

REPORT OF LABORATORY ANALYSIS

Page 12 of 16

QUALITY CONTROL DATA

Project: East Bay Redevelopment 138130

Pace Project No.: 255985

QC Batch: MSV/3610 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5035A Volatile Organics

Associated Lab Samples: 255985001, 255985002, 255985003

METHOD BLANK: 52353 Matrix: Solid

Associated Lab Samples: 255985001, 255985002, 255985003

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND	3.0	12/16/10 11:59	
Ethylbenzene	ug/kg	ND	3.0	12/16/10 11:59	
Toluene	ug/kg	ND	3.0	12/16/10 11:59	
Xylene (Total)	ug/kg	ND	9.0	12/16/10 11:59	
1,2-Dichloroethane-d4 (S)	%	108	80-143	12/16/10 11:59	
4-Bromofluorobenzene (S)	%	104	72-122	12/16/10 11:59	
Dibromofluoromethane (S)	%	106	80-136	12/16/10 11:59	
Toluene-d8 (S)	%	104	80-120	12/16/10 11:59	

LABORATORY CONTROL SAME	PLE & LCSD: 52354		52	2355						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene	ug/kg	50	56.0	53.3	112	107	75-133	5	30	
Ethylbenzene	ug/kg	50	55.9	52.8	112	106	68-131	6	30	
Toluene	ug/kg	50	56.9	55.3	114	111	73-124	3	30	
Xylene (Total)	ug/kg	150	165	155	110	103	68-130	7	30	
1,2-Dichloroethane-d4 (S)	%				102	102	80-143			
4-Bromofluorobenzene (S)	%				105	110	72-122			
Dibromofluoromethane (S)	%				105	101	80-136			
Toluene-d8 (S)	%				112	111	80-120			

QUALITY CONTROL DATA

Project: East Bay Redevelopment 138130

Pace Project No.: 255985

QC Batch: PMST/1451 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 255985001, 255985002, 255985003

SAMPLE DUPLICATE: 52119

Parameter

255983001 Dup
Units Result Result RPD Qualifiers

Percent Moisture % 11.9 11.6 2

SAMPLE DUPLICATE: 52120

Date: 12/27/2010 02:32 PM

QUALIFIERS

Project: East Bay Redevelopment 138130

Pace Project No.: 255985

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

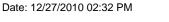
RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel Clean-Up

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.


LABORATORIES

PASI-M Pace Analytical Services - Minneapolis
PASI-S Pace Analytical Services - Seattle

ANALYTE QUALIFIERS

M3 Matrix spike recovery was outside laboratory control limits due to matrix interferences.

R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: East Bay Redevelopment 138130

Pace Project No.: 255985

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
255985001	SPL-15-1	EPA 3546	OEXT/3090	NWTPH-Dx	GCSV/2141
255985002	SPL-15-2	EPA 3546	OEXT/3090	NWTPH-Dx	GCSV/2141
255985003	SPL-15-3	EPA 3546	OEXT/3090	NWTPH-Dx	GCSV/2141
255985001	SPL-15-1	NWTPH-Gx	GCV/2080	NWTPH-Gx	GCV/2084
255985002	SPL-15-2	NWTPH-Gx	GCV/2080	NWTPH-Gx	GCV/2084
255985003	SPL-15-3	NWTPH-Gx	GCV/2080	NWTPH-Gx	GCV/2084
255985001	SPL-15-1	EPA 6020	ICPM/24074	EPA 6020	ICPM/9759
255985002	SPL-15-2	EPA 6020	ICPM/24074	EPA 6020	ICPM/9759
255985003	SPL-15-3	EPA 6020	ICPM/24074	EPA 6020	ICPM/9759
255985001	SPL-15-1	EPA 3546	OEXT/3087	EPA 8270 by SIM	MSSV/1467
255985002	SPL-15-2	EPA 3546	OEXT/3087	EPA 8270 by SIM	MSSV/1467
255985003	SPL-15-3	EPA 3546	OEXT/3087	EPA 8270 by SIM	MSSV/1467
255985001	SPL-15-1	EPA 8260	MSV/3610		
255985002	SPL-15-2	EPA 8260	MSV/3610		
255985003	SPL-15-3	EPA 8260	MSV/3610		
255985001	SPL-15-1	ASTM D2974-87	PMST/1451		
255985002	SPL-15-2	ASTM D2974-87	PMST/1451		
255985003	SPL-15-3	ASTM D2974-87	PMST/1451		

Date: 12/27/2010 02:32 PM

REPORT OF LABORATORY ANALYSIS

Page 16 of 16

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Jennifer Gross PASI Seattle 940 S. Harney Street Seattle WA 98108

> REPORT OF LABORATORY ANALYSIS FOR PCDD/PCDF

Report Information:

Pace Project #: 10145215

Sample Receipt Date: 12/14/2010

Client Project #: 255985 Client Sub PO #: N/A State Cert #: C755

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Nate Habte, your Pace Project Manager.

This report has been reviewed by:

December 27, 2010 Scott Unze, Project Manager

Scott Unze, Project Manag (612) 607-6383

(612) 607-6444 (fax)

scott.unze@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

December 27, 2010

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on three samples submitted by a representative of Pace Analytical Services, Inc. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290. Reporting limits were based on signal-to-noise measurements.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 63-96%. All of the labeled standard recoveries obtained for this project were within the 40-135% target range specified in Method 8290. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, interfering substances impacted the determinations of PCDD or PCDF congeners. The affected values were flagged "I" where incorrect isotope ratios were obtained or "P" where polychlorinated diphenyl ethers were present.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to contain trace levels of selected congeners. These were below the calibration range of the method. The levels reported for the affected congeners in the field samples were higher than the corresponding blank levels by one or more orders of magnitude. These results indicate that the sample processing steps did not contribute significantly to the levels reported for the field samples.

A laboratory spike sample was also prepared with the sample batch using clean sand that had been fortified with native standard materials. The results show that the spiked native compounds were recovered at 104-128%, indicating a high degree of accuracy for these determinations. Matrix spikes were prepared with the sample batch using sample material from a separate project; results from these analyses will be provided upon request.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Certificate #	Authority	Certificate #
40770	Montana	92
MN00064	Nebraska	
AZ0014	Nevada	MN000642010A
88-0680	New Jersey (NE	MN002
01155CA	New Mexico	MN00064
MN00064	New York (NEL	11647
PH-0256	North Carolina	27700
WD-15J	North Dakota	R-036
8TMS-Q	Ohio	4150
E87605	Ohio VAP	CL101
959	Oklahoma	D9922
09-019r	Oregon (ELAP)	MN200001-005
SLD	Oregon (OREL	MN200001-005
MN00064	Pennsylvania	68-00563
200012	Saipan	MP0003
C-MN-01	South Carolina	74003001
C-MN-01	Tennesee	2818
368	Tennessee	02818
E-10167	Texas	T104704192-08
90062	Utah (NELAP)	PAM
LA0900016	Virginia	00251
2007029	Washington	C755
322	West Virginia	9952C
9909	Wisconsin	999407970
027-053-137	Wyoming	8TMS-Q
MN00064		
	40770 MN00064 AZ0014 88-0680 01155CA MN00064 PH-0256 WD-15J 8TMS-Q E87605 959 09-019r SLD MN00064 200012 C-MN-01 C-MN-01 368 E-10167 90062 LA0900016 2007029 322 9909 027-053-137	40770 Montana MN00064 Nebraska AZ0014 Nevada 88-0680 New Jersey (NE 01155CA New Mexico MN00064 New York (NEL PH-0256 North Carolina WD-15J North Dakota 8TMS-Q Ohio E87605 Ohio VAP 959 Oklahoma 09-019r Oregon (ELAP) SLD Oregon (OREL MN00064 Pennsylvania 200012 Saipan C-MN-01 South Carolina C-MN-01 Tennessee E-10167 Texas 90062 Utah (NELAP) LA0900016 Virginia 2007029 Washington 322 West Virginia 909 Wisconsin 027-053-137 Wyoming

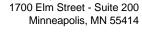
REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

FMT-ALL-C-002rev.00 24March2009


Chain of Custody

51251701

*								www.pacelabs.com
Workorder: 255985 Report To	Workorder	Workorder Name:East Bay Redevelopment 138130	velopment 13813		Owner Received Date:		12/11/2010 Results Requested By:	By: 12/28/2010
Jennifer Gross Pace Analytical Services, Inc. 940 South Harney Seattle WA 98108 Phone (206)767-5060 Fax (206)767-5063		Pace Analytical Minnesota 1700 Elm Street Suite 200 Minneapolis, MN 55414 Phone (612)607-1700	al Minnesota set MN 55414 07-1700		A HOYNT			
Item Sample ID	Sample. Type	Collect	ID Matrix	Preserved Containers	J 0.509			LAB USE ONLY
SPL-15-1	PS G	12/10/2010 11:15 255985001	3001 Solid	2 0	 			
SPL-15-3	SA SA	12/10/2010 11:15 255985003		2	\ \ \ < \ <			
								1. A. T. A.
Transfers Released By		Date/Time Rec	lecej/gd By		Date/Time		Sillallings	(1) G
mor.	म्हिल्य विस्	(7/2)a (400)	14/m		विड्रा थी।	SUXUN	are	are RUSHI
Sooler Temperature on Receipt	eceipt	°C Custody S	Seal X or N	Roce	Roceived on Ice	2	Manufacture S	- 1
				2221) an III nau	-	Samples Intact	r) or N

Filtered volume received for Dissolved tests Sample Labels match COC: -includes date/time/ID/Analysis Matrix: All containers needing acid/base preservation have been checked. Noncompliance are noted in 13. All containers needing preservation are found to be in compliance with EPA recommendation. Exceptions: VOA,Coliform, TOC, Oil and Grease, Wi-DRO (water Ves INo INA Initial when completed preservative Samples checked for dechlorination: I Yes INO INA I4. Headepace in VOA Vials (>6mm): Trip Blank Present: I Yes INO INA I6. Trip Blank Custody Seals Present I Yes INO INA IA. Client Notification/ Resolution: Person Contacted: Person Contacted: DY INA II. I 12. I 12. I 13. I I I I I I I I I I I I I I I I I I I	Sai	nple Conditi	on Upon Receipt	
Tracking #:		,		Project # 10145215
Packing Material: Bubble Wrap Bubble Bage None Other Tempe Blank: Yee No Thermometer Used 80344042 of 179425 Type of los: Web Blue None Date and initiale of persyste examining contents: Date and init	Tracking #: 1965 4902 96 55			Proj. Due Date. Proj. Name
Thermometer Used S0344042 of 179425 Cooler Temperature Temp should be above freezing to 6°C Chain of Custody Present: Chain of Custody Relinquished: Dayse DNo DNA 1. Chain of Custody Relinquished: Sempler Name & Signature on COC: Semple		•		no la la la la la la la la la la la la la
Cooler Temperature Temp should be above freezing to 6*C Chain of Custody Present: Chain of Custody Present: Chain of Custody Pilled Out: Chain of Custody Pilled		_		
Content Temperature Temp should be above freezing to 8°C Chain of Custody Present: Chain of Custody Present: Chain of Custody Filled Out: Chain of Custody Relinquished: Chain of Custody	Thermometer Used 80344042 of 179425			
Chain of Custody Filled Out:	* ************************************	Biological liss		
Chain of Custody Relinquished:	Chain of Custody Present:		<u>/A 1</u>	·
Sampler Name & Signature on COC:	Chain of Custody Filled Out:	ØYes □No □N	<u>/A 2. </u>	
Samples Arrived within Hold Time:	Chain of Custody Relinquished:	ZYes DNo DN	<u>/A 3</u>	
Short Hold Time Analysis (<72hr):	Sampler Name & Signature on COC:	☐Yes ☐No ☐N	/A 4.	
Rush Turn Around Time Requested: Gives Invo Inva 8. Correct Containers Used: -Pace Containers Used:	Samples Arrived within Hold Time:	ZYes ONO ON	Ά 5.	
Sufficient Volume: Correct Containers Used: Pace Containers Used: Pace Containers Used: Pace Containers Intact: Containers I	Short Hold Time Analysis (<72hr):	□Yes ☑No □N		
Correct Containers Used: Pace Containers Used: Pace Containers Intact: Pace Containers Intact: Piltered volume received for Dissolved tests Prescript Intact: Prescript Intact	Rush Turn Around Time Requested:	☐Yes ☐No ☐N	A7. Duxin's	
Page Containers Used: Page No NA NA NA NA NA NA NA	Sufficient Volume:	ØYes □No □N	/A 8.	
Containers Intact: Containers Intact: Containers C	Correct Containers Used:	ØYes □No □N	⁄A 9.	
Filtered volume received for Dissolved tests	-Pace Containers Used:	ZYes DNo DN	Α	
Sample Labels match COC: -includes date/time/ID/Analysis Matrix: All containers needing acid/base preservation have been checked. Noncompliance are noted in 13. All containers needing preservation are found to be in compliance with EPA recommendation. Exceptions: VOA,Coliform, TOC, Olf and Grease, Wi-DRO (water) Samples checked for dechlorination:	Containers Intact:	ØYes □No □N	A 10.	
-Includes date/time/ID/Analysis Matrix: All containers needing acid/base preservation have been checked. Noncompilance are noted in 13. All containers needing preservation are found to be in compilance with EPA recommendation. Exceptions: VOA,Cofform, TOC, Off and Grease, Wi-DRO (water: DYes DNo DNA Samp # District District DYes DNo DNA DNA DNA DNA DNA DNA DNA DNA DNA DNA	Filtered volume received for Dissolved tests	□Yes ☐No □N	A 11.	
All containers needing acid/base preservation have been checked. Noncompliance are noted in 13. All containers needing preservation are found to be in compliance with EPA recommendation. Exceptions: VOA,Coliform, TOC, Oli and Grease, Wi-DRO (water: Pes DNo DNA Dinitial when completed preservative) Samples checked for dechlorination: Pes DNo DNA Dinitial when completed preservative Headspace in VOA Viale (>6mm): Pes DNo DNA Dinitial William	Sample Labels match COC:		A 12.	
checked. Noncompliance are noted in 13. All containers needing preservation are found to be in compliance with EPA recommendation. Exceptions: VOA,Coliform, TOC, Oil and Grease, Wi-DRO (water: Yes INo INVA IA. Headspace in VOA Vials (>6mm): IYes INo INVA IS. Trip Blank Present: IYes INO INVA IA. Trip Blank Custody Seals Present IYes INO INVA IA. Pace Trip Blank Lot # (if purchased): Client Notification/ Resolution: IYes INO IAVA IAI. Person Contacted: IYes INO IAVA IAI. Field Data Required? Y / N Date/Time:	-includes date/time/ID/Analysis Matrix:		HNO	3 H2SO4 NaOH HCI
All containers needing preservation are round to be in compliance with EPA recommendation. Exceptions: VOA, Coliform, TOC, Oli and Grease, Wi-DRO (water) Samples checked for dechlorination: Yes No No 14. Headspace in VOA Vials (>6mm): Trip Blank Present: Yes No No No 15. Trip Blank Custody Seals Present Yes No No No No No No No No No No No No No		□Yes □No □N	A 13.	
Exceptions: VOA,Coliform, TOC, Oli and Grease, Wi-DRO (water: Dives DNo DN/A 14. Headepace in VOA Vials (>6mm):	All containers needing preservation are found to be in compilance with EPA recommendation.	□Yes □No □N	Α	1
Samples checked for dechlorination:	Exceptions: VOA,Coifform, TOC, Oil and Grease, Wi-DRO (water	□Yes ☑No		
Trip Blank Present: Yes No ØNA	Samples checked for dechlorination:		A 14.	
Trip Blank Custody Seals Present Pace Trip Blank Lot # (if purchased): Client Notification/ Resolution: Person Contacted: Date/Time:	Headspace in VOA Vials (>6mm):	□Yes □No ☑N	15.	
Pace Trip Blank Lot # (if purchased): Client Notification/ Resolution: Person Contacted: Date/Time:	Trip Blank Present:	□Yes □No ☑N/	A 16.	
Client Notification/ Resolution: Field Data Required? Y / N Person Contacted: Date/Time:	Trip Blank Custody Seals Present	□Yes □No □N/		
Person Contacted:Date/Time:	Pace Trip Blank Lot # (if purchased):	•		
Person Contacted:Date/Time:	Client Notification/ Resolution:		<u> </u>	Field Data Required? Y / N
	Person Contacted:	Date	/Time:	·
	Comments/ Resolution:			

Date: **Project Manager Review:**

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- See Discussion

Appendix B

Sample Analysis Summary

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-15-1
Lab Sample ID 255985001
Filename U101224A_05
Injected By BAL

Total Amount Extracted 11.9 g Matrix Solid % Moisture 8.5 Dilution NA

Dry Weight Extracted Collected 12/10/2010 11:15 10.9 g **ICAL ID** U101204A Received 12/14/2010 10:50 CCal Filename(s) U101223A_17 & U101224A_16 Extracted 12/16/2010 18:25 Method Blank ID BLANK-27315 Analyzed 12/24/2010 05:36

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.30 22.00		0.14 0.14	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	66 80 75
2,3,7,8-TCDD Total TCDD	0.45 14.00		0.17 J 0.17	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	76 90 85
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.20 2.90 31.00	 	0.24 J 0.18 J 0.21	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	75 63 67 96
1,2,3,7,8-PeCDD Total PeCDD	1.80 13.00		0.12 J 0.12	1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	75 73 86 Y
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	3.70 2.20 3.50	 	0.11 J 0.17 J 0.20 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	78 90 Y
1,2,3,7,8,9-HxCDF Total HxCDF	1.10 71.00		0.14 J 0.15	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	3.10 9.60 4.40 95.00	 	0.23 J 0.24 0.22 J 0.23	2,3,7,8-TCDD-37Cl4	0.20	77
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	48.00 3.00 150.00	 	0.27 0.31 J 0.29	Total 2,3,7,8-TCDD Equivalence: 11 ng/Kg (Using 2005 WHO Factors -	Using PRL/:	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	360.00 880.00		1.20 1.20			
OCDF OCDD	160.00 3600.00		0.16 0.18			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

Y = Calculated using average of daily RFs

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-15-2
Lab Sample ID 255985002
Filename U101224A_06
Injected By BAL

Total Amount Extracted 15.1 g Matrix Solid % Moisture 8.6 Dilution NA

Dry Weight Extracted Collected 12/10/2010 11:15 13.8 g **ICAL ID** U101204A Received 12/14/2010 10:50 CCal Filename(s) U101223A 17 & U101224A 16 Extracted 12/16/2010 18:25 Method Blank ID BLANK-27315 Analyzed 12/24/2010 06:25

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.73 14.00		0.160 0.160	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00	64 79
2,3,7,8-TCDD Total TCDD	ND 8.40		0.140 0.140	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00	73 74 87
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	0.73 2.00		0.150 J 0.160 J	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C	2.00 2.00 2.00	94 77 66
Total PeCDF 1,2,3,7,8-PeCDD	21.00 7.60	0.88	0.160 0.130 I	1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C	2.00 2.00 2.00	77 99 84
Total PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	7.60 1.40	4.10	0.130 0.130 P 0.086 J	1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 2.00 4.00	78 89 Y 81 96 Y
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	2.10 0.56 42.00		0.080 J 0.180 J 0.070 J 0.120	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	5.50 2.30 37.00	1.30	0.190 I 0.210 0.200 J 0.200	2,3,7,8-TCDD-37Cl4	0.20	76
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	33.00 1.80 90.00		0.260 0.170 J 0.220	Total 2,3,7,8-TCDD Equivalence: 4.7 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	180.00 410.00		0.620 0.620			
OCDF OCDD	110.00 1800.00		0.140 0.120			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

I = Interference present

Y = Calculated using average of daily RFs

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-15-3
Lab Sample ID 255985003
Filename U101224A_07
Injected By BAL

Total Amount Extracted 15.8 g Matrix Solid % Moisture 9.3 Dilution NA

Dry Weight Extracted 14.3 g Collected 12/10/2010 11:15 **ICAL ID** U101204A Received 12/14/2010 10:50 CCal Filename(s) U101223A 17 & U101224A 16 Extracted 12/16/2010 18:25 Method Blank ID BLANK-27315 Analyzed 12/24/2010 07:13

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.99 12.00		0.170 0.170	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	67 81 75
2,3,7,8-TCDD Total TCDD	0.29 10.00		0.250 J 0.250	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	76 90 87
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.76 1.60 16.00		0.170 J 0.110 J 0.140	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	75 66 64
1,2,3,7,8-PeCDD Total PeCDD	1.00 11.00		0.098 J 0.098	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	92 77 73 83 Y
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.30 1.10 1.40		0.140 J 0.190 J 0.130 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	76 89 Y
1,2,3,7,8,9-HxCDF Total HxCDF	0.51 17.00		0.061 J 0.130	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.30 4.00 1.80 47.00		0.170 J 0.190 0.140 J 0.170	2,3,7,8-TCDD-37Cl4	0.20	78
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	19.00 52.00	1.1 	0.260 0.300 I 0.280	Total 2,3,7,8-TCDD Equivalence: 4.7 ng/Kg (Using 2005 WHO Factors -	Using PRL/	/2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	110.00 250.00		0.470 0.470			
OCDF OCDD	56.00 1200.00		0.160 0.230			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Y = Calculated using average of daily RFs

Method 8290 Blank Analysis Results

Lab Sample ID BLANK-27315 Matrix Solid Filename U101221A_08 Dilution NA

Total Amount Extracted 20.7 g Extracted 12/16/2010 18:25 ICAL ID U101204A Analyzed 12/21/2010 13:32

CCal Filename(s) U101220B_15 & U101222A_01 Injected By SMT

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.076 0.076	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	59 67 61
2,3,7,8-TCDD Total TCDD	ND 0.074		0.072 0.072 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	62 70 73
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.074 0.062 0.068	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	75 54 66
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.170 0.170	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	78 79 61 53
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.071 0.063 0.093	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	66 66 Y
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		0.085 0.078	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		0.240 0.240 0.230 0.230	2,3,7,8-TCDD-37Cl4	0.20	64
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.200 ND 0.200		0.130 J 0.210 0.170 J	Total 2,3,7,8-TCDD Equivalence: 0.19 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.300 0.550		0.100 J 0.100 J			
OCDF OCDD	ND 1.900		0.230 0.310 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

Y = Calculated using average of daily RFs

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename **Total Amount Extracted**

ICAL ID CCal Filename(s)

Method Blank ID

LCS-27316 U101222B_01 21.1 g

U101204A U101222A_09 & U101222B_05 BLANK-27315

Matrix Solid Dilution NA

Extracted 12/16/2010 18:25 Analyzed 12/22/2010 15:40 Injected By **SMT**

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.25	126	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.0 2.0 2.0	58 79 66
2,3,7,8-TCDD Total TCDD	0.20	0.21	104	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.0 2.0 2.0 2.0	68 93 75
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.2 1.2	117 116	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.0 2.0 2.0 2.0 2.0	64 60 67 88
1,2,3,7,8-PeCDD Total PeCDD	1.0	1.0	104	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.0 2.0 2.0 2.0	77 81 82
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.0 1.0 1.0	1.2 1.2 1.2	118 124 120	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.0 4.0	101 83
1,2,3,7,8,9-HxCDF Total HxCDF	1.0	1.2	124	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.0 2.0	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	1.1 1.2 1.1	112 116 114	2,3,7,8-TCDD-37Cl4	0.20	72
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.2 1.2	121 118			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	1.1	110			
OCDF OCDD	2.0 2.0	2.3 2.6	113 128			

Qs = Quantity Spiked Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent) R = Recovery outside of target range

Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable * = See Discussion

Chain of Custody

Wor	korder: 255985	Workorder	Name:East Bay	Redevelopm	ent 1381	30	Owner	Receive	ed D	ate: 12/11/2010	Results Requested B	y: 12/28/2010
Repo	rt To		Subcontrac	t To	on the season		54 F 355	2.4	8	Requested A	nalysis	
Pace 940 S Seatt Phon	ifer Gross Analytical Services, Inc. South Harney le WA 98108 e (206)767-5060 206)767-5063		1700 I Suite 2 Minne	Analytical Minno Elm Street 200 apolis, MN 554 (612)607-1700	414			c	uran ba	49,4 Pb, Nz, As		
						Pres	erved Contai	13-34-34	+	3		
Item	Sample ID	Sample Type	Collect Date/Time	Lab ID	Matrix	Unpreserved			Dioxin	0209		LAB USE ONLY
1	SPL-15-1	PS	12/10/2010 11:15	255985001	Solid	2	1-1-1					
2	SPL-15-2	PS	12/10/2010 11:15	255985002	Solid	2				7		
3	SPL-15-3	PS	12/10/2010 11:15	255985003	Solid	2			X	×		
4												
5												
							Wall-El-				Comments	TO STATE OF THE ST
Trans	fers Released By	_	Date/Time	Received E	Ву		D	ate/Time		· ·		Du- 111
1	Jy Dhi	way	12/8/10/19	700					\neg	DINYINS	are	RUSHI
2									\dashv	D 10 KM3		
3			1						\dashv			
Cool	er Temperature on Re	ceipt	°C Cus	tody Seal	or N	T	Receiv	ed on l	ce	Y or N	Samples Intact	Y or N

INTER_LABORATORY WORK ORDER # 255985

(To be completed by sending lab)

Ship To:	(To be completed by	:
Pace Analytical Minnesota 1700 Elm Street Suite 200 Minneapolis, MN 55414 Phone (612)607-1700	Sending Project No 255985	
	Receiving Project No:	
	Check Box for Consolidated Invoice:	
	Date Prepared: 12/11/10	
, ,	REQUESTED COMPLETION DATE: 12/28/2010	•

Sending Region	IR25-Seattle	Sending Project Mgr.	Jennifer Gross
Receiving Region	!R10-Minnesota	External Client	Brown & Caldwell
State of Sample Origin	WA	QC Deliverable	STD REPORT

All questions should be addressed to sending project manager.

	WORK R	EQUESTED)			.,	
Method Description	Container Type	Quantity of containers	Preservative	Quantity of Samples	Unit Pr	ice	Amount
DIONI Turan, ally 1290	WGFU	•	Unpreserved	3		\$46.00	\$138.0
6020 CM CA PO, N. AS	WGFU		Unpreserved	3	\$	660.00	\$1,980.0
Special Requirements:							
	Acctg. Code	Totals fro	om above		levenue A	llocation	l jag til e
Receiving Region Department			R	eceiving Re (80%)			ervices Dept. Region (20%)
Other	22		\$138.00		\$110.40		\$27.6
Dioxin, High Resolution	35		\$1,980.00		1,584.00		\$396.0
*Custom Revenue Allocation	TOTA	Ц	\$2,118.00	\$	1,694.40		\$423.6
FOR ANALYTIC	CAL WORK COI	MPLETED	THIS SECTION	ALSO			desar III.
Chain of Custody Included: Yes No		Re	eturn Samples to	Sending R	egion:	Yes	No
Matrix: Soil Water	Air Otl	her (identify)				
CON	FIRMATION OF	WORK CO	MPLETED				
Date Completed:	Receiving	Project Ma	nager:				
	DISPOSITI	ON: of EOR					

February 23, 2011

Joshua Johnson Brown & Caldwell 724 Columbia St. NW#420 Olympia, WA 98501

RE: Project: East Bay Redevelopment 138130

Pace Project No.: 256519

Dear Joshua Johnson:

Enclosed are the analytical results for sample(s) received by the laboratory on February 08, 2011. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Andy Brownfield for Jennifer Gross

andrea R. Brownfield

jennifer.gross@pacelabs.com

Project Manager

Enclosures

cc: Jon Turk, Brown & Caldwell

(206)767-5060

CERTIFICATIONS

Project: East Bay Redevelopment 138130

Pace Project No.: 256519

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

A2LA Certification #: 2926.01
Alaska Certification #: UST-078
Alaska Certification #MN00064
Arizona Certification #: AZ-0014
Arkansas Certification #: 88-0680
California Certification #: 01155CA
EPA Region 8 Certification #: Pace
Florida/NELAP Certification #: E87605
Georgia Certification #: 959
Idaho Certification #: MN00064
Illinois Certification #: 200011
lowa Certification #: 368
Kansas Certification #: E-10167
Louisiana Certification #: 03086

Louisiana Certification #: LA080009 Maine Certification #: 2007029 Maryland Certification #: 322 Michigan DEQ Certification #: 9909 Minnesota Certification #: 027-053-137 Mississippi Certification #: Pace Montana Certification #: MT CERT0092 Nevada Certification #: MN_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New Mexico Certification #: Pace New York Certification #: 11647 North Carolina Certification #: 530 North Dakota Certification #: R-036 North Dakota Certification #: R-036A Ohio VAP Certification #: CL101 Oklahoma Certification #: D9921 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification Tennessee Certification #: 02818 Texas Certification #: T104704192

Washington Certification #: C754

Wisconsin Certification #: 999407970 A2LA cert#

SAMPLE ANALYTE COUNT

Project: East Bay Redevelopment 138130

Pace Project No.: 256519

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
256519001	SPL-22-1	EPA 6020	TL1	5	PASI-M
256519002	SPL-22-2	EPA 6020	TL1	5	PASI-M
256519003	SPL-22-3	EPA 6020	TL1	5	PASI-M
256519004	SPL-23-1	EPA 6020	TL1	5	PASI-M
256519005	SPL-23-2	EPA 6020	TL1	5	PASI-M
256519006	SPL-23-3	EPA 6020	TL1	5	PASI-M
256519007	SPL-24-1	EPA 6020	TL1	5	PASI-M
256519008	SPL-24-2	EPA 6020	TL1	5	PASI-M
256519009	SPL-24-3	EPA 6020	TL1	5	PASI-M
256519010	SPL-24-4	EPA 6020	TL1	5	PASI-M

ANALYTICAL RESULTS

Project: East Bay Redevelopment 138130

Pace Project No.: 256519

Lab ID: 256519001 Received: 02/08/11 10:20 Sample: SPL-22-1 Collected: 02/07/11 12:15 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **6020 MET ICPMS** Analytical Method: EPA 6020 Arsenic 3.1 mg/kg 0.45 20 02/16/11 15:27 02/18/11 06:20 7440-38-2 Cadmium 0.074 mg/kg 0.072 20 02/16/11 15:27 02/18/11 06:20 7440-43-9 15.3 mg/kg 0.45 20 02/16/11 15:27 02/18/11 06:20 7440-50-8 Copper M1 Lead 4.5 mg/kg 0.45 20 02/16/11 15:27 02/18/11 06:20 7439-92-1 Nickel 02/16/11 15:27 02/18/11 06:20 7440-02-0 23.0 mg/kg 0.45 20 Sample: SPL-22-2 Lab ID: 256519002 Collected: 02/07/11 12:30 Received: 02/08/11 10:20 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF CAS No. Prepared Analyzed Qual **6020 MET ICPMS** Analytical Method: EPA 6020 4.6 mg/kg 0.41 20 02/16/11 15:27 02/18/11 06:38 7440-38-2 Arsenic Cadmium 0.092 mg/kg 0.066 20 02/16/11 15:27 02/18/11 06:38 7440-43-9 Copper 21.0 mg/kg 0.41 20 02/16/11 15:27 02/18/11 06:38 7440-50-8 Lead 7.9 mg/kg 0.41 20 02/16/11 15:27 02/18/11 06:38 7439-92-1 Nickel 25.5 mg/kg 0.41 20 02/16/11 15:27 02/18/11 06:38 7440-02-0 Sample: SPL-22-3 Lab ID: 256519003 Collected: 02/07/11 12:44 Received: 02/08/11 10:20 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Report Limit DF Qual Results Units Prepared Analyzed CAS No. **6020 MET ICPMS** Analytical Method: EPA 6020 **4.2** mg/kg Arsenic 0.40 20 02/16/11 15:27 02/18/11 06:43 7440-38-2 0.065 20 Cadmium 0.10 mg/kg 02/16/11 15:27 02/18/11 06:43 7440-43-9 20 Copper 20.0 mg/kg 0.40 02/16/11 15:27 02/18/11 06:43 7440-50-8 Lead **7.3** mg/kg 0.40 20 02/16/11 15:27 02/18/11 06:43 7439-92-1 20 Nickel 24.7 mg/kg 0.40 02/16/11 15:27 02/18/11 06:43 7440-02-0 Lab ID: 256519004 Sample: SPL-23-1 Collected: 02/07/11 13:00 Received: 02/08/11 10:20 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **6020 MET ICPMS** Analytical Method: EPA 6020 20 Arsenic 6.4 mg/kg 0.58 02/16/11 15:27 02/18/11 06:47 7440-38-2 **0.11** mg/kg 0.093 20 7440-43-9 Cadmium 02/16/11 15:27 02/18/11 06:47 Copper 27.2 mg/kg 0.58 20 02/16/11 15:27 02/18/11 06:47 7440-50-8 Lead 12.3 mg/kg 0.58 20 02/16/11 15:27 02/18/11 06:47 7439-92-1 Nickel 34.7 mg/kg 0.58 20 02/16/11 15:27 02/18/11 06:47 7440-02-0

Date: 02/23/2011 11:03 AM

REPORT OF LABORATORY ANALYSIS

Page 4 of 9

ANALYTICAL RESULTS

Project: East Bay Redevelopment 138130

Pace Project No.: 256519

Lab ID: 256519005 Sample: SPL-23-2 Collected: 02/07/11 13:15 Received: 02/08/11 10:20 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **6020 MET ICPMS** Analytical Method: EPA 6020 Arsenic 3.6 mg/kg 0.55 20 02/16/11 15:27 02/18/11 06:52 7440-38-2 Cadmium ND mg/kg 0.088 20 02/16/11 15:27 02/18/11 06:52 7440-43-9 15.4 mg/kg 0.55 20 02/16/11 15:27 02/18/11 06:52 7440-50-8 Copper Lead **6.0** mg/kg 0.55 20 02/16/11 15:27 02/18/11 06:52 7439-92-1 Nickel 0.55 02/16/11 15:27 02/18/11 06:52 7440-02-0 24.3 mg/kg 20 Sample: SPL-23-3 Lab ID: 256519006 Collected: 02/07/11 13:30 Received: 02/08/11 10:20 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF CAS No. Prepared Analyzed Qual **6020 MET ICPMS** Analytical Method: EPA 6020 5.8 mg/kg 0.42 20 02/16/11 15:27 02/18/11 07:05 7440-38-2 Arsenic Cadmium 0.19 mg/kg 0.067 20 02/16/11 15:27 02/18/11 07:05 7440-43-9 Copper 28.1 mg/kg 0.42 20 02/16/11 15:27 02/18/11 07:05 7440-50-8 Lead 32.3 mg/kg 0.42 20 02/16/11 15:27 02/18/11 07:05 7439-92-1 Nickel 33.1 mg/kg 0.42 20 02/16/11 15:27 02/18/11 07:05 7440-02-0 Sample: SPL-24-1 Lab ID: 256519007 Collected: 02/07/11 14:00 Received: 02/08/11 10:20 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Report Limit DF Qual Results Units Prepared Analyzed CAS No. **6020 MET ICPMS** Analytical Method: EPA 6020 4.5 mg/kg Arsenic 0.40 20 02/16/11 15:27 02/18/11 07:10 7440-38-2 0.064 20 Cadmium 0.17 mg/kg 02/16/11 15:27 02/18/11 07:10 7440-43-9 20 Copper 23.0 mg/kg 0.40 02/16/11 15:27 02/18/11 07:10 7440-50-8 Lead 11.1 mg/kg 0.40 20 02/16/11 15:27 02/18/11 07:10 7439-92-1 Nickel 27.0 mg/kg 0.40 20 02/16/11 15:27 02/18/11 07:10 7440-02-0 Lab ID: 256519008 Sample: SPL-24-2 Collected: 02/07/11 14:15 Received: 02/08/11 10:20 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **6020 MET ICPMS** Analytical Method: EPA 6020 20 Arsenic 9.3 mg/kg 0.45 02/16/11 15:27 02/18/11 07:14 7440-38-2 **0.13** mg/kg 20 02/16/11 15:27 02/18/11 07:14 7440-43-9 Cadmium 0.073 Copper 23.7 mg/kg 0.45 20 02/16/11 15:27 02/18/11 07:14 7440-50-8 Lead 11.9 mg/kg 0.45 20 02/16/11 15:27 02/18/11 07:14 7439-92-1 Nickel 27.6 mg/kg 0.45 20 02/16/11 15:27 02/18/11 07:14 7440-02-0

Date: 02/23/2011 11:03 AM

REPORT OF LABORATORY ANALYSIS

Page 5 of 9

ANALYTICAL RESULTS

Project: East Bay Redevelopment 138130

Pace Project No.: 256519

Sample: SPL-24-3	Lab ID: 256	519009	Collected: 02/07/	11 14:30	Received: 02	2/08/11 10:20 I	Matrix: Solid	
Results reported on a "dry-wei	ight" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical Meth	nod: EPA 60	020					
Arsenic	6.2 mg	g/kg	0.47	20	02/16/11 15:27	02/18/11 07:19	7440-38-2	
Cadmium	0.10 mg	g/kg	0.075	20	02/16/11 15:27	02/18/11 07:19	7440-43-9	
Copper	25.1 mg	g/kg	0.47	20	02/16/11 15:27	02/18/11 07:19	7440-50-8	
Lead	11.0 mg	g/kg	0.47	20	02/16/11 15:27	02/18/11 07:19	7439-92-1	
Niekal	27.4 mg	~/l.a	0.47	20	02/16/11 15:27	02/18/11 07:19	7//0-02-0	
Sample: SPL-24-4	Lab ID: 256			11 13:45			Matrix: Solid	
Sample: SPL-24-4	Lab ID: 256							Qual
Nickel Sample: SPL-24-4 Results reported on a "dry-wei Parameters 6020 MET ICPMS	Lab ID: 256 ight" basis	519010 Units	Collected: 02/07/	11 13:45	6 Received: 02	2/08/11 10:20	Matrix: Solid	Qual
Sample: SPL-24-4 Results reported on a "dry-weil Parameters 6020 MET ICPMS	Lab ID: 256 ight" basis Results	519010 Units nod: EPA 60	Collected: 02/07/	11 13:45 DF	6 Received: 02	2/08/11 10:20 Analyzed	Matrix: Solid CAS No.	Qual
Sample: SPL-24-4 Results reported on a "dry-weil Parameters 6020 MET ICPMS Arsenic	Lab ID: 256 ight" basis Results Analytical Meth	519010 Units nod: EPA 60 g/kg	Collected: 02/07/ Report Limit	11 13:45 DF	Received: 02	2/08/11 10:20 Analyzed 02/18/11 07:23	CAS No.	Qual
Sample: SPL-24-4 Results reported on a "dry-weil Parameters 6020 MET ICPMS Arsenic Cadmium	Lab ID: 256 ight" basis Results Analytical Meth	519010	Collected: 02/07/ Report Limit 020 0.48	DF 20	Prepared 02/16/11 15:27	2/08/11 10:20 Analyzed 02/18/11 07:23 02/18/11 07:23	CAS No. 3 7440-38-2 3 7440-43-9	Qual
Sample: SPL-24-4 Results reported on a "dry-wei Parameters	Lab ID: 256 ight" basis Results Analytical Meth 5.6 mg	Units Units Dod: EPA 60 g/kg g/kg g/kg	Collected: 02/07/ Report Limit 020 0.48 0.077	DF 20 20	Prepared 02/16/11 15:27 02/16/11 15:27	2/08/11 10:20 Analyzed 02/18/11 07:23 02/18/11 07:23 02/18/11 07:23	CAS No. 3 7440-38-2 3 7440-43-9 3 7440-50-8	Qual

Date: 02/23/2011 11:03 AM

QUALITY CONTROL DATA

Project: East Bay Redevelopment 138130

Pace Project No.: 256519

QC Batch: ICPM/24744 Analysis Method: EPA 6020
QC Batch Method: EPA 6020 Analysis Description: 6020 MET

Associated Lab Samples: 256519001, 256519002, 256519003, 256519004, 256519005, 256519006, 256519007, 256519008, 256519009,

256519010

METHOD BLANK: 931564 Matrix: Solid

Associated Lab Samples: 256519001, 256519002, 256519003, 256519004, 256519005, 256519006, 256519007, 256519008, 256519009,

256519010

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	mg/kg	ND	0.43	02/18/11 06:11	
Cadmium	mg/kg	ND	0.070	02/18/11 06:11	
Copper	mg/kg	ND	0.43	02/18/11 06:11	
Lead	mg/kg	ND	0.43	02/18/11 06:11	
Nickel	mg/kg	ND	0.43	02/18/11 06:11	

LABORATORY CONTROL SAMPLE: 931565

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/kg		18.0	100	75-125	
Cadmium	mg/kg	18	19.1	106	75-125	
Copper	mg/kg	18	19.0	105	75-125	
Lead	mg/kg	18	19.5	108	75-125	
Nickel	mg/kg	18	19.7	109	75-125	

MATRIX SPIKE & MATRIX S	SPIKE DUPLICAT	E: 93156	6		931567										
Parameter	Units	256519001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Qual				
Arsenic	mg/kg	3.1	17.2	17.4	19.9	20.1	97	98	75-125	.9					
Cadmium	mg/kg	0.074	17.2	17.4	19.0	18.8	110	107	75-125	1					
Copper	mg/kg	15.3	17.2	17.4	37.1	37.7	126	129	75-125	2 M1					
Lead	mg/kg	4.5	17.2	17.4	24.3	24.7	115	116	75-125	1					
Nickel	mg/kg	23.0	17.2	17.4	43.3	39.5	117	95	75-125	9					

Date: 02/23/2011 11:03 AM

QUALIFIERS

Project: East Bay Redevelopment 138130

Pace Project No.: 256519

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel Clean-Up

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis

ANALYTE QUALIFIERS

Date: 02/23/2011 11:03 AM

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: East Bay Redevelopment 138130

Pace Project No.: 256519

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
256519001	SPL-22-1	EPA 6020	ICPM/24744	EPA 6020	ICPM/10076
256519002	SPL-22-2	EPA 6020	ICPM/24744	EPA 6020	ICPM/10076
256519003	SPL-22-3	EPA 6020	ICPM/24744	EPA 6020	ICPM/10076
256519004	SPL-23-1	EPA 6020	ICPM/24744	EPA 6020	ICPM/10076
256519005	SPL-23-2	EPA 6020	ICPM/24744	EPA 6020	ICPM/10076
256519006	SPL-23-3	EPA 6020	ICPM/24744	EPA 6020	ICPM/10076
256519007	SPL-24-1	EPA 6020	ICPM/24744	EPA 6020	ICPM/10076
256519008	SPL-24-2	EPA 6020	ICPM/24744	EPA 6020	ICPM/10076
256519009	SPL-24-3	EPA 6020	ICPM/24744	EPA 6020	ICPM/10076
256519010	SPL-24-4	EPA 6020	ICPM/24744	EPA 6020	ICPM/10076

Date: 02/23/2011 11:03 AM

REPORT OF LABORATORY ANALYSIS

Page 9 of 9

Pace Analytical "

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

256519

www.pacelabs.com																								Pa	ue.		of i	
Section A Required Client Information:	Section I		ct Infor	mation:						tion ice In		ation:												- 4	5		1	
Company: BROWN AND CALDWELL Address:				TURK					_	ntion:		0 0	T	IRI	K											14	4626	54
Address: 724 COLUMBUS NW #420				JOHN	402				Con	npany										R	EGL	JLATO	RY A	GENC	Υ			
OLYMPIA, WA 98501									Add	ress:										ſ	☐ NPDES ☐ GROUND WATER ☐ DRINKING WA						IG WATER	
Email To: jturk@bruncald.com	Purchase (Order	No.:							Quote										- 1	- (JST	Γ	RCRA	1501			
Phone: 343-7525 Fax:	Project Na	me:	EAC-	TRAV	PE	PERELO	PINEN	7	Pace	Proje											Site I	Location	n					
Requested Due Date/TAT:	Project Nu	mber	17	8130	1001	70000		•	Mana	Profile	le #:						_			-		STATE		WI	4	Harr		
			13	8120)			_	_	_	_	_			_	Т	F	Reau	iest	ed A	nalv	sis Filte		(Y/N)				
Section D Matrix C	adaa							Т	Т	T					_	=	_	-				T						
Required Client Information MATRIX /		to left)	(AWC) isl	COLL	ECTED	7,- 1		. 1	L	I	Prese	ervati	ves		X	SG			ò	8						418. 4	
Drinking Wate Water Waste Water Product Soil/Solid Oil	WT WW P SL	(see valid codes t	(G=GRAB C=COMP)	COMPO: STAR		COMPO END/G		COLLECTION	RS							it 🕇	Q-HO-	FURAN	THALENE	Pb, As, Ni	1				ie (Y/N)			
(A-Z, 0-9 / ,-) Wipe Air Sample IDs MUST BE UNIQUE Tissue Other	OL WP AR TS OT	MATRIX CODE	SAMPLE TYPE (0	DATE	TIME	DATE	TIME	SAMPLE TEMP AT	NTAIL	Unpreserved	H ₂ SO₄	HNO ₃	NaOH	Na ₂ S ₂ O ₃	Methanol	Analysis Test	TOH - HO. TOH	NI)	CPAH, NAPTHALENE	3	BICK, IM				Residual Chlorine (Y/N)	Pac	e Project I	No./ Lab I.D.
1 SPL -22-1		SL	G			02-07-11	12:15		7	X			1	1	XX		X	X	X	XY	6							
2 SPL - 22 - Z		1		Preju			12:30		1	1					11		1	1	1				100					
3 SPL-22-3							12:44																					
4 SPL - 23-1							1300	0	П	П																	- 6	
5 SPL-23-1	-0-10			rative.	Mary Mary	10 11	13:15																					
6 SPL-23-3							13:30)									1											
7 SPL-24-1							14:00										П											
8 SPL-24-2							14:15		\prod																		21	
9 SPL-24-3							14:30																					
10 SPL-24-4		1				1	13:45		1		1				7	1	Ц											
11 TB-020711		WT						-	3						K X		4	~	T	V .	4							
12																					_		_					
ADDITIONAL COMMENTS		REL	LINQU	ISHED BY /	AFFILIAT	ION	DAT	E		TIME				ACC	EPTE	DBY	/ AF	FILIA	MOITA	1		DATE		TIME		SAM	PLE CONDIT	TIONS
temp blank included	ade	20	Hus	vite /	BC		02-08	-11	10	1.2	0	4	ust	00	9	80	t.	- 0	Uri	CO	4							
151				-							-	. 6	nr	u/	6	m	2	18	ap	e.	2	118	10	:20	4.0	V	N	Y
											1			1			11					•						
OB	IGINAL				SAMPLE	ER NAME A	ND SIGNA	ATUR	RE					H		ME.									O.	00 (1	y	itact
PRINT Name of SAMP						PLER	ER: ADA HAMILTON						Temp in "C Received on Ice (Y/N) Custody Sealed Cooler (Y/N)															
		PRINT Name of SAMPLES SIGNATURE of SAMPLES							://	DATE Signed (MM/DD/YY):						ed 0	02/07/11				Ten	Rec	Seale	Samp				

Sample Container Count

					i	1	, 3	ampie	Conte	211116		Journe						
CLIENT:	B	row.	n d		ald	wel			_							Pace A	nalytical*	
CLIENT: COC PAGE COC ID# Sample Line	14463	64														7	565	19
Sample Line	VG9H	AG1H			BP1U		BP3U	BP2N	BP2S	we	iFU	WGKU					Comments	.
. 1										1 2	2							
2																		
3										\Box								
										\Box								
4		<u> </u>								╁				<u> </u>				· · · · · · · · · · · · · · · · · · ·
5						ļ			-		-							
6										_	<u> </u>							
7																		
8						İ				$\perp I$								
9											/							
10	<u> </u>						,			6	<u> </u>							
11									-									
																Trip Blank?	No	
12	<u> </u>	L	<u> </u>	L	L	L	l	!	<u> </u>	<u> </u>				<u> </u>		ттр ыапк?	100	
	_						_								,			
	1 liter HC					·		500mL H			_					4oz unpreserve	ed amber w	ride
	1liter unp				ļ			500mL unpreserved plastic							R			
	500mL H2						BP2Z	500mL NaOH, Zn Ac							+	Summa Can	•••	
_	500mL un					· · · · · · · · · · · · · · · · · · ·	BP3C									40mL HCL clea		
	250mL H2						BP3N BP3S								1	40mL Na Thio. 40mL unpreser		int
	1 liter HCl				<u> </u>	-	BP3U		unpreser			ic			,	40mL glass via		
	1 liter HN					-		40mL N								Headspace se		
	1 liter H2S						DG9H		ICL ambe							4oz clear soil ja		
	1 liter unp			_				40mL M		_	_					4oz wide jar w/		ie
																		

DG9T 40mL Na Thio amber vial

I Wipe/Swab

DG9U 40mL unpreserved amber vial

ZPLC Ziploc Bag

BP1Z 1 liter NaOH, Zn, Ac

BP2N 500mL HNO3 plastic

BP2O 500mL NaOH plastic

Sample Condition Upon Receipt ace Analytical* 256519 Client Name:__ Project # Courier: Fed Ex UPS USPS Client Commercial Pace Other Tracking #: Custody Seal on Cooler/Box Present: Yes Seals intact: ☐ Yes Packing Material: Bubble Wcap Other Temp. Blank (Yes 132013 or 101791962 or \$26099 Type of Ice: (Wet) Thermometer Used Blue None Samples on ice, cooling process has/begu/ Date and Initials of person exa Biological Tissue is Frozen: Yes No **Cooler Temperature** contents: Temp should be above freezing ≤ 6°C Comments: Chain of Custody Present: ضes □No □N/A Chain of Custody Filled Out: ZYes □No □n/a ØYes □No □N/A Chain of Custody Relinquished: ØYes □No □N/A Sampler Name & Signature on COC: ZYes DNo □N/A Samples Arrived within Hold Time: □n/A □Yes ☑No Short Hold Time Analysis (<72hr): □Yes ☑No □N/A Rush Turn Around Time Requested: DYes □No □N/A Sufficient Volume: Correct Containers Used: Øfes □No □N/A Pres □No -Pace Containers Used: □N/A Øes □No □N/A Containers Intact: Filtered volume received for Dissolved tests ☐Yes ☐No □MA ØYes □No □N/A Sample Labels match COC: 12. Includes date/time/ID/Analysis Matrix: All containers needing preservation have been checked. □Yes □No □MA 13. All containers needing preservation are found to be in DYes DNo DMA compliance with EPA recommendation. Initial when Lot # of added Exceptions: VOA, coliform, TOC, O&G completed preservative **DN**A Samples checked for dechlorination: ☐Yes ☐No DN/A Headspace in VOA Vials (>6mm): □Yes □No 15. Trip Blanks Present: ☐Yes ☐No □N/A 16. Trip Blank Custody Seals Present ☐Yes ☐No □N/A Pace Trip Blank Lot # (if purchased): Client Notification/ Resolution: Field Data Required?

Person Contacted: Date/Time: Comments/ Resolution:

Y / N

Date: 28

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e out of hold, incorrect preservative, out of temp, incorrect containers)

Project Manager Review:

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Jennifer Gross PASI Seattle 940 S. Harney Street Seattle WA 98108

> REPORT OF LABORATORY ANALYSIS FOR PCDD/PCDF

Report Information:

Pace Project #: 10149094

Sample Receipt Date: 02/09/2011

Client Project #: 256519 Client Sub PO #: N/A State Cert #: C755

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Nate Habte, your Pace Project Manager.

This report has been reviewed by:

February 23, 2011

Nate Habte, Project Manager

(612) 607-6407

(612) 607-6444 (fax)

natnael.habte@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

February 23, 2011

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on ten samples submitted by a representative of Pace Analytical Services, Inc. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290. Reporting limits were based on signal-to-noise measurements.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 41-139%. With the exception of one low value, which was flagged "R" on the results table, the labeled standard recoveries obtained for this project were within the 40-135% target range specified in Method 8290. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, interfering substances impacted the determinations of PCDD or PCDF congeners; the affected values were flagged "I" where incorrect isotope ratios were obtained or "P" where polychlorinated diphenyl ethers were present. Values above the calibration range were flagged "E" and should be regarded as estimates.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to contain a trace level of OCDD. This was below the calibration range of the method. The OCDD levels reported for the field samples were higher than the OCDD level in the blank by one or more orders of magnitude. These results indicate that the sample processing steps did not contribute significantly to the levels reported for the field samples.

Laboratory and matrix spike samples were also prepared with the sample batch using clean sand or sample matrix that had been fortified with native standard materials. The results show that the spiked native compounds were generally recovered at 89-118%, with relative percent differences (RPDs) generally from 0.0-16.9%. The background-subtracted recovery values obtained for HpCDD and OCDD in the matrix spike and/or matrix spike duplicate samples were outside the 70-130% target range. Also, the RPD value for OCDD in the matrix spike samples was above the 20% target upper limit; this may indicate an elevated degree of variability for this congener in these determinations.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Certificate #	Authority	Certificate #
40770	Montana	92
MN00064	Nebraska	
AZ0014	Nevada	MN000642010A
88-0680	New Jersey (NE	MN002
01155CA	New Mexico	MN00064
MN00064	New York (NEL	11647
PH-0256	North Carolina	27700
WD-15J	North Dakota	R-036
8TMS-Q	Ohio	4150
E87605	Ohio VAP	CL101
959	Oklahoma	D9922
09-019r	Oregon (ELAP)	MN200001-005
SLD	Oregon (OREL	MN200001-005
MN00064	Pennsylvania	68-00563
200012	Saipan	MP0003
C-MN-01	South Carolina	74003001
C-MN-01	Tennesee	2818
368	Tennessee	02818
E-10167	Texas	T104704192-08
90062	Utah (NELAP)	PAM
LA0900016	Virginia	00251
2007029	Washington	C755
322	West Virginia	9952C
9909	Wisconsin	999407970
027-053-137	Wyoming	8TMS-Q
MN00064		
	40770 MN00064 AZ0014 88-0680 01155CA MN00064 PH-0256 WD-15J 8TMS-Q E87605 959 09-019r SLD MN00064 200012 C-MN-01 C-MN-01 C-MN-01 368 E-10167 90062 LA0900016 2007029 322 9909 027-053-137	40770 Montana MN00064 Nebraska AZ0014 Nevada 88-0680 New Jersey (NE 01155CA New Mexico MN00064 New York (NEL PH-0256 North Carolina WD-15J North Dakota 8TMS-Q Ohio E87605 Ohio VAP 959 Oklahoma 09-019r Oregon (ELAP) SLD Oregon (OREL MN00064 Pennsylvania 200012 Saipan C-MN-01 South Carolina C-MN-01 Tennesee E-10167 Texas 90062 Utah (NELAP) LA0900016 Virginia 2007029 Washington 322 West Virginia 9909 027-053-137 Wyoming

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

Ŀ										requester	Requested Analysis		•	
Par 940	Jenniter Gross Pace Analytical Services, Inc. 940 South Harney		Pace 1700 Suite	Pace Analytical Minnesota 1700 Elm Street Suite 200	nesota			5	oz(_
Phe Se	Seattle WA 98108 Phone (206)767-5060		Minn	Minneapolis, MN 55414 Phone (612)607-1700	3414 10			vor	sH SH	Ŧ		************		
<u>ğ</u>	Fax (206)767-5063							ਤ [']	ΛίΛ	ybi a				
						Preserve	Preserved Containers	ИI	¹ 9d	n			###***********	•
		<u>n</u>				reserved		XOIC	1p) 1	hs			***************************************	
		lype	Date/Time	Lab	Matrix	dun	***************************************	<u>r</u>	no	<u>a</u>	***************************************	**********	LAB USE ONLY	
-	SPL-22-1	PS	2/7/2011 12:15	256519001	Solid	2		×	_ د (7		-		T
7	SPL-22-2	PS	2/7/2011 12:30	256519002	Solid	2		×	· *	1+			-	T
ო	SPL-22-3	PS	2/7/2011 12:44	256519003	Solid	2		×	' X	\ J				T
4	SPL-23-1	PS	2/7/2011 13:00	256519004	Solid	2		×	لد /	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\				T
ည	SPL-23-2	PS	2/7/2011 13:15	256519005	Solid	2		×	لا)	1				
9	SPL-23-3	PS	2/7/2011 13:30	256519006	Solid	2		 : ×	13	14				T
7	SPL-24-1	PS	2/7/2011 14:00	256519007	Solid	2		×	د ا	ر /				T
œ	SPL-24-2	PS	2/7/2011 14:15	256519008	Solid	2		×	ر د	1				Ť
တ	SPL-24-3	PS	2/7/2011 14:30	256519009	Solid	2		×	1	13				T
9	SPL-24-4	PS	2/7/2011 13:45	256519010	Solid	2		×	χ	λ				T
						.		-			Comments			T
Trar	4		Date/Ifime	Received By	By		Date/Time	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(-	1,0				
-1	12/8/11-34 6/hu	M Jalay	2/8/11	1430 \Jam	souther by	ister	560 11-6-1	125	2	1/22/1				
2	/ //		//)	5	16		<u> </u>	<i>Y</i> -	_	_	<i></i>		~~~~
က			-					<u> </u>	<i>→</i>	7 2	X/JS M	-J	SVIXOIT	······································
ပ္ပိ	Cooler Temperature on Receipt	27	ပ္ ပ	Custody Seal	Oor N		Received on Ice		(Y) or N	 	Samples	Samples Intact Y or	Y or N	T
								1	\					1

Face Analytical

Chain of Custody 10 Day Rush - DIOXINS

Results Requested By:

Owner Received Date: 2/8/2011

Workorder Name:East Bay Redevelopment 138130

Workorder: 256519

ISHGOAN

Sample Condition Upon Receipt

Pace Analytical Client Name	• •	Pac	e (JA	Project # 10149094
Courier: Fed Ex UPS USPS Clientracking #: 7967 466 Seq Present: Yes				□ Pace Others intact: 🖄 yes □	Optional (Proj. Due: Date: (Proj. Name)
Packing Material: Bubble Wrap Bubble	Bags		None	Other	Temp Blank: Yes <u>R</u> No
Thermometer Used 80344042 or 1(9425)	Туре	of Ice	: We	Blue None	Samples on ice, cooling process has begun
Cooler Temperature 2.7° Temp should be above freezing to 6°C	Biolo	ogical	Tissu	e is Frozen: Yes No Comments:	Date and initials of person examining contents:
Chain of Custody Present:	K Yes	□No	□N/A	1.	
Chain of Custody Filled Out:	TYes	□No	□N⁄A	2.	
Chain of Custody Relinquished:	AYes	□No	□N/A	3.	
Sampler Name & Signature on COC:	□Yes	Mino	□N/A	4.	,
Samples Arrived within Hold Time:	X Yes	□No	□N⁄A	5.	
Short Hold Time Analysis (<72hr):	□Yes	MNo	□N/A	6.	
Rush Turn Around Time Requested:	Vives		□N⁄A	7.	
Sufficient Volume:	k Yes	□No	□n/a	8.	
Correct Containers Used:	A Yes	□No	□N⁄A	9.	
-Pace Containers Used:	XYes	□No	□N⁄A		
Containers Intact:	Yes	□No	□N⁄A	10.	
Filtered volume received for Dissolved tests	□Yes	□No	ANA	11.	
Sample Labels match COC:	X Yes	□No	□n⁄a	12.	
-includes date/time/ID/Analysis Matrix:	SL				
All containers needing acid/base preservation have been checked. Noncompliance are noted in 13.	□Yes	□No	ZĮĪN/A	13. 🗆 HNOS	H2SO4 NaOH HCI
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes	□No	DAN/A	Samp #	
Exceptions: VOA,Coliform, TOC, Oil and Grease, WI-DRO (water	□Yes	X No		Initial when completed	Lot # of added preservative
Samples checked for dechlorination:	□Yes	□No	E N/A	14.	
Headepace in VOA Vials (>6mm):	□Yes	□N ₀	PINA	15.	
Trip Blank Present:	□Yes	₩ o	□N⁄A	16.	
Trip Blank Custody Seals Present	□Yes	□No	ZINA		
Pace Trip Blank Lot # (if purchased):	·		'		
Client Notification/ Resolution:		n nest c			Field Data Required? Y / N
Person Contacted:			Date/	Time:	
Comments/ Resolution:					
				······································	
		····-		· · · · · · · · · · · · · · · · · · ·	
7, 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10				·	
					
					71

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the **Fronth-Coahdinal SteinMiss**, Inc. F-L213Rev.00, 05Aug2009 1700 Elm Street SE, Suite 200, Minneapolis, MN 55414

Report No.....10149094_8290

Project Manager Review:

Fax: 612-607-6444

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

Appendix B

Sample Analysis Summary

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-22-1
Lab Sample ID 256519001
Filename F110216C_05
Injected By BAL

Total Amount Extracted 11.3 g Matrix Solid % Moisture 8.8 Dilution NA

Dry Weight Extracted Collected 02/07/2011 12:15 10.3 g F101206 **ICAL ID** Received 02/09/2011 09:55 CCal Filename(s) F110216B 13 & F110216C 16 Extracted 02/14/2011 18:45 Method Blank ID BLANK-27881 Analyzed 02/17/2011 00:02

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.90 12.00		0.21 JY 0.21 Y	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	67 85 73
2,3,7,8-TCDD Total TCDD	0.37 16.00		0.13 J 0.13	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	73 71 83 79
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.75 2.30 24.00		0.29 J 0.16 J 0.22	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	78 77 75
1,2,3,7,8-PeCDD Total PeCDD	2.90 24.00		0.16 J 0.16	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	91 82 73 68
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	7.80 2.00 2.30	 	0.22 0.20 J 0.13 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	82 72
1,2,3,7,8,9-HxCDF Total HxCDF	36.00	1.5 	0.16 I 0.18	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	3.60 14.00 8.30 100.00	 	0.31 J 0.41 0.48 0.40	2,3,7,8-TCDD-37Cl4	0.20	75
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	48.00 3.70 170.00		0.29 0.39 J 0.34	Total 2,3,7,8-TCDD Equivalence: 15 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	470.00 1000.00		1.20 1.20			
OCDF OCDD	190.00 6500.00		0.92 5.10 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit.

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

E = Exceeds calibration range

I = Interference present

Y = Calculated using average of daily RFs

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-22-2
Lab Sample ID 256519002
Filename P110216A_14
Injected By BAL

Total Amount Extracted 11.4 g Matrix Solid % Moisture 9.0 Dilution NA

Dry Weight Extracted 10.4 g Collected 02/07/2011 12:30 **ICAL ID** P110216 Received 02/09/2011 09:55 CCal Filename(s) P110216A 09 & P110216A 24 Extracted 02/14/2011 18:45 Method Blank ID BLANK-27881 Analyzed 02/17/2011 01:04

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.92 14.00		0.23 J 0.23	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	67 79 71
2,3,7,8-TCDD Total TCDD	0.33 16.00		0.15 J 0.15	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00	65 73 135
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.20 4.10 32.00		0.26 J 0.12 J 0.19	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	135 121 114 97
1,2,3,7,8-PeCDD Total PeCDD	1.50 28.00		0.35 J 0.35	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	139 R 123 96
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	9.90 4.30	9.0	0.38 0.51 P 0.32 J	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	99 71 104
1,2,3,7,8,9-HxCDF Total HxCDF	2.20 120.00		0.43 J 0.41	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	3.30 7.60 2.10 72.00	 	0.48 J 0.43 0.39 J 0.43	2,3,7,8-TCDD-37Cl4	0.20	78
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	58.00 5.20 240.00		0.58 0.66 0.62	Total 2,3,7,8-TCDD Equivalence: 9.6 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	200.00 470.00		2.20 2.20			
OCDF OCDD	280.00 2300.00		0.89 2.50			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable

RL = Reporting Limit.

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

P = PCDE Interference

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-22-3 Lab Sample ID 256519003 Filename P110216A_15 Injected By BAL

Total Amount Extracted 11.3 g Matrix Solid % Moisture 8.3 Dilution NA

Dry Weight Extracted 10.4 g Collected 02/07/2011 12:44 **ICAL ID** P110216 Received 02/09/2011 09:55 CCal Filename(s) P110216A 09 & P110216A 24 Extracted 02/14/2011 18:45 Method Blank ID BLANK-27881 Analyzed 02/17/2011 01:52

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	1.60		0.16	2,3,7,8-TCDF-13C	2.00	72
Total TCDF	23.00		0.16	2,3,7,8-TCDD-13C	2.00	80
2,3,7,8-TCDD	0.64		0.35 J	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C	2.00 2.00	74 75
Total TCDD	28.00		0.35 J 0.35	1,2,3,7,8-PeCDD-13C	2.00	75 82
Total TODD	20.00		0.55	1,2,3,4,7,8-HxCDF-13C	2.00	84
1,2,3,7,8-PeCDF	2.00		0.29 J	1,2,3,6,7,8-HxCDF-13C	2.00	77
2,3,4,7,8-PeCDF	5.00		0.21	2,3,4,6,7,8-HxCDF-13C	2.00	77
Total PeCDF	43.00		0.25	1,2,3,7,8,9-HxCDF-13C	2.00	75
				1,2,3,4,7,8-HxCDD-13C	2.00	84
1,2,3,7,8-PeCDD	3.40		0.31 J	1,2,3,6,7,8-HxCDD-13C	2.00	79
Total PeCDD	43.00		0.31	1,2,3,4,6,7,8-HpCDF-13C	2.00	68
4.0.0.4.7.0.11.000	44.00		0.00	1,2,3,4,7,8,9-HpCDF-13C	2.00	72 75
1,2,3,4,7,8-HxCDF	11.00	0.6	0.38 0.37 P	1,2,3,4,6,7,8-HpCDD-13C	2.00	75 79
1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	5.40	9.6	0.37 P 0.43	OCDD-13C	4.00	79
1,2,3,7,8,9-HxCDF	3.10		0.43 0.38 J	1,2,3,4-TCDD-13C	2.00	NA
Total HxCDF	160.00		0.39	1,2,3,7,8,9-HxCDD-13C	2.00	NA
			0.00	1,=,0,1,0,0 1 110 2 2 100		
1,2,3,4,7,8-HxCDD	7.00		0.48	2,3,7,8-TCDD-37Cl4	0.20	81
1,2,3,6,7,8-HxCDD	22.00		0.47			
1,2,3,7,8,9-HxCDD	13.00		0.38			
Total HxCDD	180.00		0.44			
1,2,3,4,6,7,8-HpCDF	88.00		0.54	Total 2,3,7,8-TCDD		
1,2,3,4,7,8,9-HpCDF	7.30		0.47	Equivalence: 25 ng/Kg		
Total HpCDF	360.00		0.51	(Using 2005 WHO Factors -	Using PRI	2 where ND)
rotarripobi	000.00		0.01	(55)119 2555 11115 1 45(5)5	Comig i ita	2 111010 110)
1,2,3,4,6,7,8-HpCDD	850.00		0.38			
Total HpCDD	1800.00		0.38			
OODE	200.00		0.50			
OCDF	380.00		0.53			
OCDD	10000.00		0.44 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit.

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

E = Exceeds calibration range

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-23-1
Lab Sample ID 256519004
Filename P110216A_16
Injected By BAL

Total Amount Extracted 14.3 g Matrix Solid % Moisture 22.3 Dilution NA

Dry Weight Extracted Collected 02/07/2011 13:00 11.1 g **ICAL ID** P110216 Received 02/09/2011 09:55 CCal Filename(s) P110216A_09 & P110216A_24 Extracted 02/14/2011 18:45 Method Blank ID BLANK-27881 Analyzed 02/17/2011 02:39

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.10 17.00		0.17 0.17	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	70 79 75
2,3,7,8-TCDD Total TCDD	0.31 15.00		0.20 J 0.20	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	76 85 85
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.30 3.80 29.00	 	0.24 J 0.25 J 0.25	1,2,3,4,7,8-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	78 79 76 88
1,2,3,7,8-PeCDD Total PeCDD	1.00 19.00		0.26 J 0.26	1,2,3,4,7,6-FXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	79 73 76
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	6.20 3.40	5.8 	0.26 0.29 P 0.20 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	83 76
1,2,3,7,8,9-HxCDF Total HxCDF	1.50 75.00		0.20 J 0.23	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.50 6.30 2.60 48.00		0.29 J 0.38 0.25 J 0.31	2,3,7,8-TCDD-37Cl4	0.20	79
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	37.00 2.90 150.00	 	0.33 0.44 J 0.38	Total 2,3,7,8-TCDD Equivalence: 7.4 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	170.00 320.00		0.81 0.81			
OCDF OCDD	170.00 1700.00		0.50 1.50			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

RL = Reporting Limit. NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. $J = Estimated \ value$

P = PCDE Interference

Method 8290 Sample Analysis Results

Client - PASI Seattle

SPL-23-2 Client's Sample ID Lab Sample ID 256519005 P110216A_17 Filename Injected By BAL **Total Amount Extracted** 13.2 g Matrix Solid % Moisture Dilution NA 19.9 Dry Weight Extracted 10.6 g Collected 02/07/2011 13:15 ICAL ID P110216 Received 02/09/2011 09:55

CCal Filename(s) P110216A_09 & P110216A_24 Extracted 02/14/2011 18:45
Method Blank ID BLANK-27881 Analyzed 02/17/2011 03:26

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	2.8 45.0		0.49 0.49	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00	77 88
TOTAL TODE	45.0		0.49	1,2,3,7,8-PeCDF-13C	2.00	81
2,3,7,8-TCDD		0.70	0.28 I	2,3,4,7,8-PeCDF-13C	2.00	81
Total TCDD	46.0		0.28	1,2,3,7,8-PeCDD-13C	2.00	89
				1,2,3,4,7,8-HxCDF-13C	2.00	88
1,2,3,7,8-PeCDF	2.3		0.34 J	1,2,3,6,7,8-HxCDF-13C	2.00	79
2,3,4,7,8-PeCDF Total PeCDF	4.6 40.0		0.41 J 0.37	2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00	83 83
Total FeCDF	40.0		0.37	1,2,3,4,7,8-HxCDD-13C	2.00	94
1,2,3,7,8-PeCDD	2.2		0.41 J	1,2,3,6,7,8-HxCDD-13C	2.00	83
Total PeCDD	47.0		0.41	1,2,3,4,6,7,8-HpCDF-13C	2.00	77
				1,2,3,4,7,8,9-HpCDF-13C	2.00	80
1,2,3,4,7,8-HxCDF	4.8		0.19	1,2,3,4,6,7,8-HpCDD-13C	2.00	87
1,2,3,6,7,8-HxCDF		5.60	0.34 P	OCDD-13C	4.00	83
2,3,4,6,7,8-HxCDF	3.1 1.3		0.30 J	1 2 2 4 TCDD 12C	2.00	NA
1,2,3,7,8,9-HxCDF Total HxCDF	56.0		0.29 J 0.28	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00	NA NA
Total FIXODI	30.0		0.20	1,2,3,7,0,9-118CDD-13C	2.00	INA
1,2,3,4,7,8-HxCDD	2.0		0.50 J	2,3,7,8-TCDD-37Cl4	0.20	89
1,2,3,6,7,8-HxCDD	5.3		0.31	. , ,		
1,2,3,7,8,9-HxCDD	3.0		0.22 J			
Total HxCDD	68.0		0.34			
1,2,3,4,6,7,8-HpCDF	23.0		0.37	Total 2,3,7,8-TCDD		
1,2,3,4,7,8,9-HpCDF	23.0		0.57 0.61 J	Equivalence: 7.5 ng/Kg		
Total HpCDF	89.0		0.49	(Using 2005 WHO Factors -	Using PRL/	2 where ND)
				(009 = 0000		,
1,2,3,4,6,7,8-HpCDD	89.0		1.00			
Total HpCDD	170.0		1.00			
OCDF	82.0		0.39			
OCDD	910.0		1.20			
-	0.0.0					

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable

RL = Reporting Limit.

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

I = Interference present

02/17/2011 04:14

Method Blank ID

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - PASI Seattle

Analyzed

SPL-23-3 Client's Sample ID Lab Sample ID 256519006 P110216A_18 Filename Injected By BAL **Total Amount Extracted** 12.4 g Solid Matrix % Moisture Dilution NA 13.9 Dry Weight Extracted Collected 02/07/2011 13:30 10.7 g **ICAL ID** P110216 Received 02/09/2011 09:55 CCal Filename(s) P110216A 09 & P110216A 24 Extracted 02/14/2011 18:45

BLANK-27881

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	2.50		0.26	2,3,7,8-TCDF-13C	2.00	77
Total TCDF	160.00		0.26	2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00	88 76
2,3,7,8-TCDD	0.30		0.14 J	2,3,4,7,8-PeCDF-13C	2.00	76 76
Total TCDD	17.00		0.14	1,2,3,7,8-PeCDD-13C	2.00	83
400708 005	0.00		0.00	1,2,3,4,7,8-HxCDF-13C	2.00	88
1,2,3,7,8-PeCDF	3.00		0.33 J	1,2,3,6,7,8-HxCDF-13C	2.00	82
2,3,4,7,8-PeCDF Total PeCDF	24.00 290.00		0.27 0.30	2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00	79 78
Total TeoDi	230.00		0.50	1,2,3,4,7,8-HxCDD-13C	2.00	92
1,2,3,7,8-PeCDD	1.20		0.33 J	1,2,3,6,7,8-HxCDD-13C	2.00	76
Total PeCDD	23.00		0.33	1,2,3,4,6,7,8-HpCDF-13C	2.00	68
				1,2,3,4,7,8,9-HpCDF-13C	2.00	67
1,2,3,4,7,8-HxCDF	2.20		0.16 J	1,2,3,4,6,7,8-HpCDD-13C	2.00	74
1,2,3,6,7,8-HxCDF	4.20		0.17 J 0.18	OCDD-13C	4.00	64
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	11.00	1.1	0.16 0.25 I	1,2,3,4-TCDD-13C	2.00	NA
Total HxCDF	140.00		0.19	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD	1.30		0.46 J	2,3,7,8-TCDD-37Cl4	0.20	84
1,2,3,6,7,8-HxCDD	4.00		0.29 J			
1,2,3,7,8,9-HxCDD Total HxCDD	1.80 45.00		0.44 J 0.40			
TOTAL LIXCOD	45.00		0.40			
1,2,3,4,6,7,8-HpCDF	25.00		0.36	Total 2,3,7,8-TCDD		
1,2,3,4,7,8,9-HpCDF	1.60		0.68 J	Equivalence: 13 ng/Kg		
Total HpCDF	69.00		0.52	(Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD	100.00		0.65			
Total HpCDD	270.00		0.65			
0005	00.00		0.40			
OCDF OCDD	62.00 1100.00		0.46 0.45			
0000	1100.00		0.45			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

RL = Reporting Limit. NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-24-1
Lab Sample ID 256519007
Filename P110216A_19
Injected By BAL

Total Amount Extracted 11.6 g Matrix Solid % Moisture 12.9 Dilution NA

Dry Weight Extracted Collected 02/07/2011 14:00 10.1 g **ICAL ID** P110216 Received 02/09/2011 09:55 CCal Filename(s) P110216A 09 & P110216A 24 Extracted 02/14/2011 18:45 Method Blank ID BLANK-27881 Analyzed 02/17/2011 05:01

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.50 28.00		0.36 0.36	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 85 69
2,3,7,8-TCDD Total TCDD	ND 19.00		0.39 0.39	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	72 81 79
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.30 3.00 31.00		0.21 J 0.25 J 0.23	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	71 70 68
1,2,3,7,8-PeCDD Total PeCDD	1.30 24.00		0.39 J 0.39	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	84 72 60 62
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	2.90 2.60	4.0	0.25 J 0.22 P 0.33 J	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	68 65
1,2,3,7,8,9-HxCDF Total HxCDF	0.95 53.00		0.34 J 0.29	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	2.40 6.90 3.80 65.00	 	0.28 J 0.41 0.31 J 0.34	2,3,7,8-TCDD-37Cl4	0.20	82
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	33.00 2.50 110.00		0.58 0.59 J 0.58	Total 2,3,7,8-TCDD Equivalence: 7.6 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	200.00 480.00		0.95 0.95			
OCDF OCDD	120.00 2300.00		0.84 2.10			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

RL = Reporting Limit. NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

Method 8290 Sample Analysis Results

Client - PASI Seattle

SPL-24-2 Client's Sample ID Lab Sample ID 256519008 P110216A_20 Filename Injected By BAL

Total Amount Extracted 13.6 g Solid Matrix % Moisture Dilution NA 18.4

Dry Weight Extracted Collected 02/07/2011 14:15 11.1 g **ICAL ID** P110216 Received 02/09/2011 09:55 CCal Filename(s) P110216A 09 & P110216A 24 Extracted 02/14/2011 18:45 Method Blank ID BLANK-27881 Analyzed 02/17/2011 05:48

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.66 5.60		0.17 J 0.17	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	73 83 76
2,3,7,8-TCDD Total TCDD	ND 4.40		0.22 0.22	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	78 87 87
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.10 11.00	0.39 	0.24 I 0.21 J 0.23	1,2,3,4,7,6-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	78 80 77 92
1,2,3,7,8-PeCDD Total PeCDD	0.51 6.30		0.22 J 0.22	1,2,3,4,7,6-FIXEDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	78 72 72
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.30 0.97	1.50	0.15 J 0.12 P 0.15 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	79 75
1,2,3,7,8,9-HxCDF Total HxCDF	ND 22.00		0.18 0.15	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.69 2.30 1.20 20.00	 	0.21 J 0.28 J 0.25 J 0.25	2,3,7,8-TCDD-37Cl4	0.20	83
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	13.00 1.10 47.00	 	0.34 0.39 J 0.37	Total 2,3,7,8-TCDD Equivalence: 2.8 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	68.00 140.00		0.46 0.46			
OCDF OCDD	48.00 810.00		0.35 0.93			

ND = Not Detected Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

NC = Not Calculated RL = Reporting Limit.

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-24-3
Lab Sample ID 256519009
Filename P110216A_21
Injected By BAL

Total Amount Extracted 11.3 g Matrix Solid % Moisture 9.5 Dilution NA

Dry Weight Extracted 10.2 g Collected 02/07/2011 14:30 **ICAL ID** P110216 Received 02/09/2011 09:55 CCal Filename(s) P110216A 09 & P110216A 24 Extracted 02/14/2011 18:45 Method Blank ID BLANK-27881 Analyzed 02/17/2011 06:36

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.55 10.00		0.12 J 0.12	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	74 85 79
2,3,7,8-TCDD Total TCDD	0.20 3.90		0.18 J 0.18	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	81 89 88
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.20 12.00	0.42 	0.22 I 0.14 J 0.18	1,2,3,4,7,6-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	81 80 77 91
1,2,3,7,8-PeCDD Total PeCDD	7.80	0.50	0.18 I 0.18	1,2,3,4,7,6-FIXEDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	80 72 74
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.60 1.20	2.20 	0.12 J 0.17 P 0.12 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	81 76
1,2,3,7,8,9-HxCDF Total HxCDF	0.50 28.00		0.14 J 0.14	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.86 2.70 1.40 27.00	 	0.27 J 0.19 J 0.17 J 0.21	2,3,7,8-TCDD-37Cl4	0.20	84
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	16.00 1.40 61.00	 	0.23 0.30 J 0.27	Total 2,3,7,8-TCDD Equivalence: 2.8 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	77.00 160.00		0.69 0.69			
OCDF OCDD	68.00 950.00		0.37 1.30			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable RL = Reporting Limit.

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

I = Interference present

Page 18 of 23

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-24-4
Lab Sample ID 256519010
Filename P110216A_22
Injected By BAL

Total Amount Extracted 11.6 g Matrix Solid % Moisture 12.4 Dilution NA

Dry Weight Extracted 10.2 g Collected 02/07/2011 13:45 **ICAL ID** P110216 Received 02/09/2011 09:55 CCal Filename(s) P110216A 09 & P110216A 24 Extracted 02/14/2011 18:45 Method Blank ID BLANK-27881 Analyzed 02/17/2011 07:23

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.20 21.00		0.27 0.27	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	72 82 73
2,3,7,8-TCDD Total TCDD	0.42 15.00		0.25 J 0.25	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	69 76 89
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	2.70 27.00	0.77 	0.32 I 0.44 J 0.38	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00 2.00	73 76 71 92
1,2,3,7,8-PeCDD Total PeCDD	1.80 19.00		0.39 J 0.39	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	92 72 56 54
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	2.60 1.60 2.60		0.33 J 0.25 J 0.24 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	61 41
1,2,3,7,8,9-HxCDF Total HxCDF	ND 60.00		0.33 0.29	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.70 6.80 3.00 61.00		0.36 J 0.35 0.29 J 0.33	2,3,7,8-TCDD-37Cl4	0.20	79
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	33.00 2.60 120.00	 	0.52 0.70 J 0.61	Total 2,3,7,8-TCDD Equivalence: 8.2 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	210.00 520.00		0.95 0.95			
OCDF OCDD	130.00 2500.00		1.40 2.50			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

RL = Reporting Limit. NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. $J = Estimated \ value$

I = Interference present

Method 8290 Blank Analysis Results

Lab Sample ID BLANK-27881 Matrix Solid Filename P110216A_12 Dilution NA

Total Amount Extracted 20.7 g Extracted 02/14/2011 18:45 ICAL ID P110216 Analyzed 02/16/2011 23:30

CCal Filename(s) P110216A_09 & P110216A_24 Injected By BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.120 0.120	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	47 56 61
2,3,7,8-TCDD Total TCDD	ND ND		0.100 0.100	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	68 73 77
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.076 0.064 0.070	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	75 77 74
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.058 0.058	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	88 81 72 75
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.066 0.063 0.065	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	80 70
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		0.081 0.069	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		0.064 0.066 0.068 0.066	2,3,7,8-TCDD-37Cl4	0.20	56
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND	 	0.090 0.110 0.099	Total 2,3,7,8-TCDD Equivalence: 0.12 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		0.130 0.130			
OCDF OCDD	ND 0.32		0.140 0.180 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted

Total Amount Extracted ICAL ID CCal Filename(s) Method Blank ID

20.7 P11 P11 BL*A*

LCS-27882

P110216A_23 20.7 g P110216 P110216A_09 & P110216A_24 BLANK-27881 Matrix Dilution Extracted Analyzed Injected By

Solid NA 02/14/2011

02/14/2011 18:45 02/17/2011 08:10 BAL

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.23	117	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.0 2.0 2.0	51 60 64
2,3,7,8-TCDD Total TCDD	0.20	0.19	97	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.0 2.0	67 76
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.1 1.1	111 112	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.0 2.0 2.0 2.0 2.0	81 72 77 76 88
1,2,3,7,8-PeCDD Total PeCDD	1.0	1.0	101	1,2,3,4,7,0-11xCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.0 2.0 2.0 2.0	77 68 70
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.0 1.0 1.0	1.1 1.2 1.1	112 116 112	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.0 4.0	78 70
1,2,3,7,8,9-HxCDF Total HxCDF	1.0	1.2	117	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.0 2.0	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	1.1 1.1 1.0	107 108 103	2,3,7,8-TCDD-37Cl4	0.20	61
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.1 1.1	110 111			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	1.0	103			
OCDF OCDD	2.0 2.0	2.3 2.4	117 118			

Qs = Quantity Spiked Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)
R = Recovery outside of target range

Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable

* = See Discussion

Method 8290 Spiked Sample Report

Client - PASI Seattle

Client's Sample ID SPL-22-1-MS
Lab Sample ID 256519001-MS
Filename F110216C_02

Filename F110216C_02 Matrix Solid Total Amount Extracted 11.5 g Dilution NA

ICAL ID F101206 Extracted 02/14/2011 18:45 CCal Filename(s) F110216B_13 & F110216C_16 Analyzed 02/16/2011 21:45

Method Blank ID BLANK-27881 Injected By BAL

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20	0.25	123 Y	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	59 75 68
2,3,7,8-TCDD	0.20	0.18	91	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	68 77 73
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	1.00 1.00	1.01 1.03	101 103	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	72 71 73
1,2,3,7,8-PeCDD	1.00	0.98	98	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	88 79 69
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	1.16 1.06 1.06	116 106 106	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	69 80 69
1,2,3,7,8,9-HxCDF	1.00	1.07	107	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	1.00 1.00 1.00	1.01 1.14 1.03	101 114 103	2,3,7,8-TCDD-37Cl4	0.20	71
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	1.00 1.00	1.51 1.01	151 101			
1,2,3,4,6,7,8-HpCDD	1.00	5.97	597			
OCDF OCDD	2.00 2.00	4.07 76.86	203 3843 E			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

E = Exceeds calibration range

Y = Calculated using average of daily RFs

Method 8290 Spiked Sample Report

Client - PASI Seattle

Client's Sample ID Lab Sample ID Filename

SPL-22-1-MSD 256519001-MSD F110216C_03

Total Amount Extracted ICAL ID

11.0 g F101206 Matrix Solid Dilution NA

CCal Filename(s) Method Blank ID

F110216B_13 & F110216C_16

Extracted 02/14/2011 18:45 Analyzed 02/16/2011 22:30

BLANK-27881 Injected By BAL

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20	0.24	118 Y	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	68 87 76
2,3,7,8-TCDD	0.20	0.18	90	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	76 88 81
1,2,3,7,8-PeCDF	1.00	0.95	95	1,2,3,6,7,8-HxCDF-13C	2.00	79
2,3,4,7,8-PeCDF	1.00	0.99	99	2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00	78 78
1,2,3,7,8-PeCDD	1.00	0.97	97	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	89 89 74
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	1.12 1.05 1.04	112 105 104	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	70 86 74
1,2,3,7,8,9-HxCDF	1.00	1.07	107	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	1.00 1.00 1.00	1.03 1.14 1.04	103 114 104	2,3,7,8-TCDD-37Cl4	0.20	81
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	1.00 1.00	1.51 1.04	151 104			
1,2,3,4,6,7,8-HpCDD	1.00	5.04	504			
OCDF OCDD	2.00 2.00	3.76 49.95	188 2497			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

Y = Calculated using average of daily RFs

Method 8290 Spike Sample Results

Client - PASI Seattle

Client Sample ID SPL-22-1 Lab Sample ID 256519001 MS ID 256519001-MS MSD ID

256519001-MSD

Sample Filename MS Filename MSD Filename

F110216C_05 F110216C 02 F110216C_03 **Dry Weights**

Sample Amount 10.3 g 10.5 g MS Amount 10.0 g MSD Amount

Sample Conc. MS/MSD Qs MS Qm MSD Qm Backgrou				und Subtracted				
Analyte	ng/Kg	(ng)	(ng)	(ng)	RPD	MS % Rec.	MSD % Rec.	RPD
2,3,7,8-TCDF	0.897	0.20	0.25	0.24	4.2	118	113	4.2
2,3,7,8-TCDD	0.370	0.20	0.18	0.18	0.7	89	89	0.7
1,2,3,7,8-PeCDF	0.749	1.00	1.01	0.95	5.3	100	95	5.3
2,3,4,7,8-PeCDF	2.262	1.00	1.03	0.99	3.9	101	97	3.9
1,2,3,7,8-PeCDD	2.896	1.00	0.98	0.97	0.3	95	94	0.2
1,2,3,4,7,8-HxCDF	7.815	1.00	1.16	1.12	3.4	108	104	3.3
1,2,3,6,7,8-HxCDF	2.028	1.00	1.06	1.05	1.3	104	103	1.2
2,3,4,6,7,8-HxCDF	2.296	1.00	1.06	1.04	1.9	104	102	1.8
1,2,3,7,8,9-HxCDF	0.000	1.00	1.07	1.07	0.3	106	105	0.2
1,2,3,4,7,8-HxCDD	3.567	1.00	1.01	1.03	2.0	97	99	2.3
1,2,3,6,7,8-HxCDD	13.846	1.00	1.14	1.14	0.0	99	100	0.7
1,2,3,7,8,9-HxCDD	8.255	1.00	1.03	1.04	1.2	94	96	1.7
1,2,3,4,6,7,8-HpCDF	47.765	1.00	1.51	1.51	0.0	101	103	2.2
1,2,3,4,7,8,9-HpCDF	3.668	1.00	1.01	1.04	2.3	98	100	2.6
1,2,3,4,6,7,8-HpCDD	470.075	1.00	5.97	5.04	16.9	104	32	105.4
OCDF '	194.873	2.00	4.07	3.76	7.9	101	90	11.6
OCDD	6463.273	2.00	76.86	49.95	42.4	454	0	200.0

Definitions

MS = Matrix Spike

MSD = Matrix Spike Duplicate

Qm = Quantity Measured Qs = Quantity Spiked

% Rec. = Percent Recovery

RPD = Relative Percent Difference

NA = Not Applicable NC = Not Calculated CDD = Chlorinated dibenzo-p-dioxin CDF = Chlorinated dibenzo-p-furan

T = Tetra Pe = Penta

Hx = HexaHp = Hepta

O = Octa

February 23, 2011

Joshua Johnson Brown & Caldwell 724 Columbia St. NW#420 Olympia, WA 98501

RE: Project: East Bay Redevelopment 138130

Pace Project No.: 256520

Dear Joshua Johnson:

Enclosed are the analytical results for sample(s) received by the laboratory on February 08, 2011. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Andy Brownfield for Jennifer Gross

andrea R. Brownfield

jennifer.gross@pacelabs.com

Project Manager

Enclosures

cc: Jon Turk, Brown & Caldwell

CERTIFICATIONS

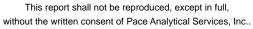
Project: East Bay Redevelopment 138130

Pace Project No.: 256520

Washington Certification IDs
940 South Harney Street, Seattle, WA 98108
Alaska CS Certification #: UST-025
Alaska Drinking Water VOC Certification #: WA01230
Alaska Drinking Water Micro Certification #: WA01230

California Certification #: 01153CA California Certification #: E87617
Oregon Certification #: WA200007
Washington Certification #: C1229

SAMPLE ANALYTE COUNT


Project: East Bay Redevelopment 138130

Pace Project No.: 256520

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
256520001	SPL-22-1	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	CC	3	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
256520002	SPL-22-2	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	CC	3	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
256520003	SPL-22-3	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	CC	3	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
256520004	SPL-23-1	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	CC	3	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
256520005	SPL-23-2	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	CC	3	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
256520006	SPL-23-3	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	CC	3	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
256520007	SPL-24-1	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	CC	3	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
256520008	SPL-24-2	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	CC	3	PASI-S

REPORT OF LABORATORY ANALYSIS

Page 3 of 26

SAMPLE ANALYTE COUNT

Project: East Bay Redevelopment 138130

Pace Project No.: 256520

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
256520009	SPL-24-3	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	CC	3	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
256520010	SPL-24-4	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	CC	3	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
256520011	TB-020711	NWTPH-Gx	CC	3	PASI-S
		EPA 8260	LPM	8	PASI-S

Project: East Bay Redevelopment 138130

Pace Project No.: 256520

Sample: SPL-22-1	Lab ID: 256520001	Collected: 02/07/11 12:	:15 Received: 0	2/08/11 10:20 N	fatrix: Solid	
Results reported on a "dry-weight	t" basis					
Parameters	Results Units	Report Limit DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS SG	Analytical Method: NW	TPH-Dx Preparation Method	I: EPA 3546			
Diesel Range SG	ND mg/kg	21.5 1	02/09/11 10:15	02/09/11 21:52		
Motor Oil Range SG	ND mg/kg	86.1 1	02/09/11 10:15	02/09/11 21:52	64742-65-0	
n-Octacosane (S) SG	94 %	50-150 1	02/09/11 10:15	02/09/11 21:52	630-02-4	
o-Terphenyl (S) SG	97 %	50-150 1		02/09/11 21:52		
NWTPH-Gx GCV	Analytical Method: NW	FPH-Gx Preparation Method	l: NWTPH-Gx			
Gasoline Range Organics	ND mg/kg	5.2 1	02/09/11 17:00	02/10/11 07:20		
a,a,a-Trifluorotoluene (S)	101 %	50-150 1		02/10/11 07:20	98-08-8	
4-Bromofluorobenzene (S)	90 %	50-150 1		02/10/11 07:20		
8270 MSSV PAH by SIM	Analytical Method: EPA	8270 by SIM Preparation M	lethod: EPA 3546			
Acenaphthene	ND ug/kg	7.2 1		02/11/11 22:21	83-32-9	
Acenaphthylene	ND ug/kg	7.2 1		02/11/11 22:21	208-96-8	
Anthracene	ND ug/kg	7.2		02/11/11 22:21	120-12-7	
Benzo(a)anthracene	22.2 ug/kg	7.2 1		02/11/11 22:21	56-55-3	
Benzo(a)pyrene	21.7 ug/kg	7.2 1		02/11/11 22:21	50-32-8	
Benzo(b)fluoranthene	19.2 ug/kg	7.2 1		02/11/11 22:21	205-99-2	
Benzo(g,h,i)perylene	11.2 ug/kg	7.2 1		02/11/11 22:21	191-24-2	
Benzo(k)fluoranthene	12.1 ug/kg	7.2 1		02/11/11 22:21	207-08-9	
Chrysene	19.7 ug/kg	7.2 1		02/11/11 22:21	218-01-9	
Dibenz(a,h)anthracene	ND ug/kg	7.2 1	02/09/11 11:10	02/11/11 22:21	53-70-3	
Fluoranthene	41.2 ug/kg	7.2 1		02/11/11 22:21	206-44-0	
Fluorene	ND ug/kg	7.2 1	02/09/11 11:10	02/11/11 22:21	86-73-7	
ndeno(1,2,3-cd)pyrene	8.8 ug/kg	7.2 1	02/09/11 11:10	02/11/11 22:21	193-39-5	
I-Methylnaphthalene	ND ug/kg	7.2 1	02/09/11 11:10	02/11/11 22:21	90-12-0	
2-Methylnaphthalene	ND ug/kg	7.2 1	02/09/11 11:10	02/11/11 22:21	91-57-6	
Naphthalene	ND ug/kg	7.2 1	02/09/11 11:10	02/11/11 22:21	91-20-3	
Phenanthrene	29.7 ug/kg	7.2 1	02/09/11 11:10	02/11/11 22:21	85-01-8	
Pyrene	54.2 ug/kg	7.2 1	02/09/11 11:10	02/11/11 22:21	129-00-0	
2-Fluorobiphenyl (S)	61 %	31-131 1	02/09/11 11:10	02/11/11 22:21	321-60-8	
Ferphenyl-d14 (S)	78 %	30-133 1	02/09/11 11:10	02/11/11 22:21	1718-51-0	
2260/5035A Volatile Organics	Analytical Method: EPA	8260				
Benzene	ND ug/kg	3.0 1		02/09/11 13:03	71-43-2	
Ethylbenzene	ND ug/kg	3.0 1		02/09/11 13:03		
Toluene	ND ug/kg	3.0 1		02/09/11 13:03		
(ylene (Total)	ND ug/kg	8.9 1		02/09/11 13:03		
Dibromofluoromethane (S)	95 %	80-136 1		02/09/11 13:03		
Foluene-d8 (S)	107 %	80-120 1		02/09/11 13:03		
4-Bromofluorobenzene (S)	101 %	72-122 1		02/09/11 13:03		
1,2-Dichloroethane-d4 (S)	101 %	80-143 1		02/09/11 13:03		
,				02/03/11 13.03	17000-07-0	
Percent Moisture	Analytical Method: AST					
Percent Moisture	7.3 %	0.10 1		02/12/11 15:13		

Date: 02/23/2011 11:03 AM

REPORT OF LABORATORY ANALYSIS

Page 5 of 26

Project: East Bay Redevelopment 138130

Pace Project No.: 256520

Sample: SPL-22-2	Lab ID: 256520002	Collected: 02/07/11	12:30	Received: 02	2/08/11 10:20 I	Matrix: Solid	
Results reported on a "dry-weigh	t" basis						
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
IWTPH-Dx GCS SG	Analytical Method: NWT	PH-Dx Preparation Meth	od: El	PA 3546			
Diesel Range SG	ND mg/kg	20.9	1	02/09/11 10:15	02/09/11 22:09)	
Motor Oil Range SG	ND mg/kg	83.5	1	02/09/11 10:15	02/09/11 22:09	64742-65-0	
n-Octacosane (S) SG	93 %	50-150	1	02/09/11 10:15	02/09/11 22:09	630-02-4	
p-Terphenyl (S) SG	95 %	50-150	1	02/09/11 10:15	02/09/11 22:09	84-15-1	
IWTPH-Gx GCV	Analytical Method: NWT	PH-Gx Preparation Meth	nod: N	WTPH-Gx			
Gasoline Range Organics	ND mg/kg	5.5	1	02/09/11 17:00	02/10/11 07:44		
a,a,a-Trifluorotoluene (S)	98 %	50-150	1	02/09/11 17:00	02/10/11 07:44	98-08-8	
1-Bromofluorobenzene (S)	87 %	50-150	1	02/09/11 17:00	02/10/11 07:44	460-00-4	
3270 MSSV PAH by SIM	Analytical Method: EPA	3270 by SIM Preparation	Meth	od: EPA 3546			
Acenaphthene	ND ug/kg	7.2	1	02/09/11 11:10	02/11/11 23:16	83-32-9	
Acenaphthylene	15.7 ug/kg	7.2	1		02/11/11 23:16		
Anthracene	30.0 ug/kg	7.2	1		02/11/11 23:16		
Benzo(a)anthracene	68.3 ug/kg	7.2	1		02/11/11 23:16		
senzo(a)pyrene	68.6 ug/kg	7.2	1		02/11/11 23:16		
Benzo(b)fluoranthene	58.6 ug/kg	7.2	1		02/11/11 23:16		
Benzo(g,h,i)perylene	34.8 ug/kg	7.2	1		02/11/11 23:16		
Benzo(k)fluoranthene	27.4 ug/kg	7.2	1		02/11/11 23:16		
Chrysene	65.4 ug/kg	7.2	1		02/11/11 23:16		
Dibenz(a,h)anthracene	8.9 ug/kg	7.2	1		02/11/11 23:16		
Tuoranthene	129 ug/kg	7.2	1		02/11/11 23:16		
luorene	14.5 ug/kg	7.2	1		02/11/11 23:16		
ndeno(1,2,3-cd)pyrene	28.0 ug/kg	7.2	1		02/11/11 23:16		
-Methylnaphthalene	ND ug/kg	7.2	1		02/11/11 23:16		
-Methylnaphthalene	7.6 ug/kg	7.2	1		02/11/11 23:16		
laphthalene	12.7 ug/kg	7.2	1		02/11/11 23:16		
rhenanthrene		7.2	1		02/11/11 23:16		
Pyrene	111 ug/kg 188 ug/kg	7.2	1		02/11/11 23:16		
	55 %	31-131	1		02/11/11 23:16		
-Fluorobiphenyl (S) erphenyl-d14 (S)	71 %	30-133	1		02/11/11 23:16		
260/5035A Volatile Organics	Analytical Method: EPA						
Benzene	ND ug/kg	2.8	1		02/09/11 13:22	71-43-2	
Ethylbenzene	ND ug/kg	2.8	1		02/09/11 13:22		
oluene	ND ug/kg	2.8	1		02/09/11 13:22		
(ylene (Total)	ND ug/kg	8.4	1		02/09/11 13:22		
Dibromofluoromethane (S)	93 %	80-136	1		02/09/11 13:22		
oluene-d8 (S)	111 %	80-120	1		02/09/11 13:22		
-Bromofluorobenzene (S)	102 %	72-122	1		02/09/11 13:22		
,2-Dichloroethane-d4 (S)	100 %	80-143	1		02/09/11 13:22		
Percent Moisture	Analytical Method: ASTM		•		12,00,11 10.22		
	•		4		00/40/44 45 44		
Percent Moisture	9.0 %	0.10	1		02/12/11 15:14		

Date: 02/23/2011 11:03 AM

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

Page 6 of 26

Project: East Bay Redevelopment 138130

Pace Project No.: 256520

			12:44			Matrix: Solid	
Results reported on a "dry-weight" b	pasis						
Parameters	Results Uni	ts Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS SG	Analytical Method: NV	TPH-Dx Preparation Met	thod: El	PA 3546			
Diesel Range SG	ND mg/kg	21.6	1	02/09/11 10:15	02/09/11 22:25		
Motor Oil Range SG	ND mg/kg	86.2	1	02/09/11 10:15	02/09/11 22:25	64742-65-0	
n-Octacosane (S) SG	92 %	50-150	1	02/09/11 10:15	02/09/11 22:25	630-02-4	
o-Terphenyl (S) SG	93 %	50-150	1	02/09/11 10:15	02/09/11 22:25	84-15-1	
NWTPH-Gx GCV	Analytical Method: NV	TPH-Gx Preparation Met	thod: N	WTPH-Gx			
Gasoline Range Organics	ND mg/kg	5.4	1	02/09/11 17:00	02/10/11 08:08		
a,a,a-Trifluorotoluene (S)	103 %	50-150	1	02/09/11 17:00			
4-Bromofluorobenzene (S)	92 %	50-150	1	02/09/11 17:00			
8270 MSSV PAH by SIM	Analytical Method: EP	A 8270 by SIM Preparatio	n Meth	od: EPA 3546			
Acenaphthene	ND ug/kg	7.2	1	02/09/11 11:10	02/11/11 23:34	83-32-9	
Acenaphthylene	13.9 ug/kg	7.2	1	02/09/11 11:10			
Anthracene	27.8 ug/kg	7.2	1	02/09/11 11:10			
Benzo(a)anthracene	61.8 ug/kg	7.2	1	02/09/11 11:10			
* *		7.2	1	02/09/11 11:10			
Benzo(a)pyrene	61.0 ug/kg						
Benzo(b)fluoranthene	54.2 ug/kg	7.2 7.2	1 1	02/09/11 11:10 02/09/11 11:10			
Benzo(g,h,i)perylene	33.7 ug/kg	7.2 7.2					
Benzo(k)fluoranthene	26.6 ug/kg		1	02/09/11 11:10			
Chrysene	58.8 ug/kg	7.2	1	02/09/11 11:10			
Dibenz(a,h)anthracene	8.9 ug/kg	7.2	1	02/09/11 11:10			
Fluoranthene	124 ug/kg	7.2	1	02/09/11 11:10			
Fluorene	12.5 ug/kg	7.2	1	02/09/11 11:10			
ndeno(1,2,3-cd)pyrene	26.2 ug/kg	7.2	1	02/09/11 11:10			
I-Methylnaphthalene	ND ug/kg	7.2	1	02/09/11 11:10			
2-Methylnaphthalene	ND ug/kg	7.2	1	02/09/11 11:10			
Naphthalene	9.4 ug/kg	7.2	1	02/09/11 11:10			
Phenanthrene	100 ug/kg	7.2	1	02/09/11 11:10			
Pyrene	181 ug/kg	7.2	1	02/09/11 11:10	02/11/11 23:34	129-00-0	
2-Fluorobiphenyl (S)	57 %	31-131	1	02/09/11 11:10	02/11/11 23:34	321-60-8	
Terphenyl-d14 (S)	78 %	30-133	1	02/09/11 11:10	02/11/11 23:34	1718-51-0	
3260/5035A Volatile Organics	Analytical Method: EP	A 8260					
Benzene	ND ug/kg	2.9	1		02/09/11 13:41		
Ethylbenzene	ND ug/kg	2.9	1		02/09/11 13:41		
Toluene	ND ug/kg	2.9	1		02/09/11 13:41	108-88-3	
Kylene (Total)	ND ug/kg	8.6	1		02/09/11 13:41	1330-20-7	
Dibromofluoromethane (S)	97 %	80-136	1		02/09/11 13:41	1868-53-7	
Toluene-d8 (S)	105 %	80-120	1		02/09/11 13:41	2037-26-5	
4-Bromofluorobenzene (S)	105 %	72-122	1		02/09/11 13:41	460-00-4	
,2-Dichloroethane-d4 (S)	99 %	80-143	1		02/09/11 13:41	17060-07-0	
Percent Moisture	Analytical Method: AS	TM D2974-87					
Crociii moistare	,a.,aa	B201 1 01					

Date: 02/23/2011 11:03 AM

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

Page 7 of 26

Project: East Bay Redevelopment 138130

Pace Project No.: 256520

Sample: SPL-23-1	Lab ID: 2565200	4 Collected: 02/07/11	13:00	Received: 02	2/08/11 10:20 I	Matrix: Solid	
Results reported on a "dry-weight	t" basis						
Parameters	Results L	nits Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS SG	Analytical Method: N	WTPH-Dx Preparation Met	thod: E	PA 3546			
Diesel Range SG	36.7 mg/kg	23.3	1	02/09/11 10:15	02/09/11 22:59	1	
Motor Oil Range SG	ND mg/kg	93.0	1	02/09/11 10:15	02/09/11 22:59	64742-65-0	
n-Octacosane (S) SG	83 %	50-150	1	02/09/11 10:15	02/09/11 22:59	630-02-4	
o-Terphenyl (S) SG	86 %	50-150	1		02/09/11 22:59		
NWTPH-Gx GCV	Analytical Method: N	WTPH-Gx Preparation Me	thod: N	WTPH-Gx			
Gasoline Range Organics	19.5 mg/kg	5.9	1	02/11/11 15:20	02/12/11 06:37		
a,a,a-Trifluorotoluene (S)	112 %	50-150	1		02/12/11 06:37		
4-Bromofluorobenzene (S)	100 %	50-150	1		02/12/11 06:37		
3270 MSSV PAH by SIM	Analytical Method: E	PA 8270 by SIM Preparation	n Meth	od: EPA 3546			
Acenaphthene	ND ug/kg	7.9	1	02/09/11 11:10	02/11/11 23:52	83-32-9	
Acenaphthylene	18.6 ug/kg	7.9	1		02/11/11 23:52		
Anthracene	30.8 ug/kg	7.9	1		02/11/11 23:52		
Benzo(a)anthracene	68.0 ug/kg	7.9	1		02/11/11 23:52		
Benzo(a)pyrene	77.3 ug/kg	7.9	1		02/11/11 23:52		
Benzo(b)fluoranthene	71.9 ug/kg	7.9	1		02/11/11 23:52		
Benzo(g,h,i)perylene	40.9 ug/kg	7.9	1		02/11/11 23:52		
Benzo(k)fluoranthene	41.9 ug/kg	7.9	1		02/11/11 23:52		
Chrysene	70.1 ug/kg	7.9	1		02/11/11 23:52		
Dibenz(a,h)anthracene	10.2 ug/kg	7.9	1		02/11/11 23:52		
Fluoranthene	138 ug/kg	7.9	1		02/11/11 23:52		
Fluorene	17.1 ug/kg	7.9	1		02/11/11 23:52		
		7.9 7.9	1		02/11/11 23:52		
ndeno(1,2,3-cd)pyrene	31.9 ug/kg						
I-Methylnaphthalene	ND ug/kg	7.9	1		02/11/11 23:52		
2-Methylnaphthalene	9.2 ug/kg	7.9	1		02/11/11 23:52		
Naphthalene	11.4 ug/kg	7.9	1		02/11/11 23:52		
Phenanthrene	121 ug/kg	7.9	1		02/11/11 23:52		
Pyrene	200 ug/kg	7.9	1		02/11/11 23:52		
2-Fluorobiphenyl (S)	58 %	31-131	1		02/11/11 23:52		
Terphenyl-d14 (S)	74 %	30-133	1	02/09/11 11:10	02/11/11 23:52	1718-51-0	
3260/5035A Volatile Organics	Analytical Method: E						
Benzene	ND ug/kg	3.0	1		02/09/11 14:00		
Ethylbenzene	ND ug/kg	3.0	1		02/09/11 14:00		
Toluene	ND ug/kg	3.0	1		02/09/11 14:00		
(Yotal)	ND ug/kg	9.0	1		02/09/11 14:00		
Dibromofluoromethane (S)	91 %	80-136	1		02/09/11 14:00		
Toluene-d8 (S)	105 %	80-120	1		02/09/11 14:00		
1-Bromofluorobenzene (S)	103 %	72-122	1		02/09/11 14:00	460-00-4	
1,2-Dichloroethane-d4 (S)	99 %	80-143	1		02/09/11 14:00	17060-07-0	
Percent Moisture	Analytical Method: A	STM D2974-87					
Percent Moisture	17.0 %	0.10	1		02/12/11 15:16	i	
		- · · ·					

Date: 02/23/2011 11:03 AM

REPORT OF LABORATORY ANALYSIS

Page 8 of 26

Project: East Bay Redevelopment 138130

Pace Project No.: 256520

Sample: SPL-23-2	Lab ID: 2	56520005	Collected: (02/07/1	1 13:15	Received: 02	2/08/11 10:20 N	/latrix: Solid	
Results reported on a "dry-weigh	t" basis								
Parameters	Results	Units	Report	Limit _	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS SG	Analytical M	lethod: NWTP	H-Dx Prepara	ation Me	thod: El	PA 3546			
Diesel Range SG	ND	mg/kg		22.3	1	02/09/11 10:15	02/09/11 23:15		
Motor Oil Range SG	ND	mg/kg		89.0	1	02/09/11 10:15	02/09/11 23:15	64742-65-0	
n-Octacosane (S) SG	96	%	50	0-150	1	02/09/11 10:15	02/09/11 23:15	630-02-4	
o-Terphenyl (S) SG	97	%	50	0-150	1	02/09/11 10:15	02/09/11 23:15	84-15-1	
NWTPH-Gx GCV	Analytical M	lethod: NWTP	H-Gx Prepara	ation Me	thod: N	WTPH-Gx			
Gasoline Range Organics	ND	mg/kg		5.4	1	02/11/11 15:20	02/12/11 07:24		
a,a,a-Trifluorotoluene (S)	100	%	50	0-150	1	02/11/11 15:20	02/12/11 07:24	98-08-8	
4-Bromofluorobenzene (S)	89		50	0-150	1	02/11/11 15:20	02/12/11 07:24	460-00-4	
8270 MSSV PAH by SIM	Analytical M	lethod: EPA 8	270 by SIM Pr	reparati	on Meth	od: EPA 3546			
Acenaphthene	ND	ug/kg		7.4	1	02/09/11 11:10	02/12/11 00:11	83-32-9	
Acenaphthylene		ug/kg		7.4	1		02/12/11 00:11		
Anthracene		ug/kg		7.4	1		02/12/11 00:11		
Benzo(a)anthracene		ug/kg		7.4	1		02/12/11 00:11	56-55-3	
Benzo(a)pyrene		ug/kg		7.4	1		02/12/11 00:11		
Benzo(b)fluoranthene		ug/kg		7.4	1		02/12/11 00:11		
Benzo(g,h,i)perylene		ug/kg		7.4	1		02/12/11 00:11		
Benzo(k)fluoranthene		ug/kg		7.4	1		02/12/11 00:11		
` ,				7.4 7.4	1		02/12/11 00:11		
Chrysene		ug/kg		7.4 7.4	1		02/12/11 00:11		
Dibenz(a,h)anthracene		ug/kg							
Fluoranthene		ug/kg		7.4	1		02/12/11 00:11		
Fluorene		ug/kg		7.4	1		02/12/11 00:11		
ndeno(1,2,3-cd)pyrene		ug/kg		7.4	1		02/12/11 00:11		
1-Methylnaphthalene		ug/kg		7.4	1		02/12/11 00:11	90-12-0	
2-Methylnaphthalene		ug/kg		7.4	1		02/12/11 00:11		
Naphthalene		ug/kg		7.4	1		02/12/11 00:11		
Phenanthrene		ug/kg		7.4	1		02/12/11 00:11		
Pyrene		ug/kg		7.4	1		02/12/11 00:11		
2-Fluorobiphenyl (S)	59		_	1-131	1		02/12/11 00:11		
Terphenyl-d14 (S)	68			0-133	1	02/09/11 11:10	02/12/11 00:11	1718-51-0	
8260/5035A Volatile Organics	•	lethod: EPA 8	260						
Benzene		ug/kg		3.0	1		02/10/11 12:33		
Ethylbenzene		ug/kg		3.0	1		02/10/11 12:33		
Toluene		ug/kg		3.0	1		02/10/11 12:33		
Xylene (Total)		ug/kg		8.9	1		02/10/11 12:33	1330-20-7	
Dibromofluoromethane (S)	95			0-136	1		02/10/11 12:33		
Toluene-d8 (S)	107	%	80	0-120	1		02/10/11 12:33		
4-Bromofluorobenzene (S)	102	%	72	2-122	1		02/10/11 12:33	460-00-4	
1,2-Dichloroethane-d4 (S)	102	%	80	0-143	1		02/10/11 12:33	17060-07-0	
Percent Moisture	Analytical M	lethod: ASTM	D2974-87						
Percent Moisture	12.1	%		0.10	1		02/12/11 15:17		
					-				

Date: 02/23/2011 11:03 AM

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

Page 9 of 26

Project: East Bay Redevelopment 138130

Pace Project No.: 256520

Sample: SPL-23-3	Lab ID:	256520006	Collected: 02/07/	11 13:30	Received: 02	2/08/11 10:20 I	Matrix: Solid	
Results reported on a "dry-weigh	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS SG	Analytical	Method: NWTP	H-Dx Preparation M	lethod: E	PA 3546			
Diesel Range SG	32.1	1 mg/kg	21.6	1	02/09/11 10:15	02/09/11 23:32) :	
Motor Oil Range SG	135	5 mg/kg	86.2	1	02/09/11 10:15	02/09/11 23:32	64742-65-0	
n-Octacosane (S) SG	94	4 %	50-150	1	02/09/11 10:15	02/09/11 23:32	630-02-4	
o-Terphenyl (S) SG	97	7 %	50-150	1	02/09/11 10:15	02/09/11 23:32	84-15-1	
NWTPH-Gx GCV	Analytical	Method: NWTP	H-Gx Preparation M	1ethod: N	IWTPH-Gx			
Gasoline Range Organics	NE) mg/kg	5.2	1	02/11/11 15:20	02/12/11 08:12	!	
a,a,a-Trifluorotoluene (S)	108	3 %	50-150	1	02/11/11 15:20	02/12/11 08:12	98-08-8	
4-Bromofluorobenzene (S)	96	6 %	50-150	1	02/11/11 15:20	02/12/11 08:12	460-00-4	
8270 MSSV PAH by SIM	Analytical	Method: EPA 8	270 by SIM Prepara	tion Meth	nod: EPA 3546			
Acenaphthene	17.0	0 ug/kg	7.4	1	02/09/11 11:10	02/12/11 00:29	83-32-9	
Acenaphthylene		6 ug/kg	7.4	1	02/09/11 11:10	02/12/11 00:29	208-96-8	
Anthracene		3 ug/kg	7.4	1	02/09/11 11:10	02/12/11 00:29	120-12-7	
Benzo(a)anthracene		0 ug/kg	7.4	1	02/09/11 11:10	02/12/11 00:29	56-55-3	
Benzo(a)pyrene		7 ug/kg	7.4	1		02/12/11 00:29		
Benzo(b)fluoranthene		1 ug/kg	7.4	1		02/12/11 00:29		
Benzo(g,h,i)perylene		3 ug/kg	7.4	1		02/12/11 00:29		
Benzo(k)fluoranthene		g ug/kg	7.4	1		02/12/11 00:29		
Chrysene		ug/kg ug/kg	7.4	1		02/12/11 00:29		
Dibenz(a,h)anthracene		g ug/kg g ug/kg	7.4	1		02/12/11 00:29		
Fluoranthene		ug/kg ug/kg	7.4	1		02/12/11 00:29		
Fluorene		ug/kg ug/kg	7.4	1		02/12/11 00:29		
			7.4	1		02/12/11 00:29		
Indeno(1,2,3-cd)pyrene		1 ug/kg	7.4	1		02/12/11 00:29		
1-Methylnaphthalene		3 ug/kg						
2-Methylnaphthalene		g ug/kg	7.4	1		02/12/11 00:29		
Naphthalene		g ug/kg	7.4	1		02/12/11 00:29		
Phenanthrene		ug/kg	7.4	1		02/12/11 00:29		
Pyrene		9 ug/kg	7.4	1		02/12/11 00:29		
2-Fluorobiphenyl (S)		5 %	31-131	1		02/12/11 00:29		
Terphenyl-d14 (S)		9 %	30-133	1	02/09/11 11:10	02/12/11 00:29	1/18-51-0	
8260/5035A Volatile Organics	•	Method: EPA 8		4		00/40/44 40 50	74 40 0	
Benzene) ug/kg	3.0	1		02/10/11 12:52	-	
Ethylbenzene) ug/kg	3.0	1		02/10/11 12:52		
Toluene) ug/kg	3.0	1		02/10/11 12:52		
Xylene (Total)		0 ug/kg	8.9	1		02/10/11 12:52		
Dibromofluoromethane (S)		2 %	80-136	1		02/10/11 12:52		
Toluene-d8 (S)		7 %	80-120	1		02/10/11 12:52		
4-Bromofluorobenzene (S)		1 %	72-122	1		02/10/11 12:52	460-00-4	
1,2-Dichloroethane-d4 (S)	97	7 %	80-143	1		02/10/11 12:52	17060-07-0	
Percent Moisture	Analytical	Method: ASTM	D2974-87					
Percent Moisture	11.2	2 %	0.10	1		02/12/11 15:18	;	

Date: 02/23/2011 11:03 AM

REPORT OF LABORATORY ANALYSIS

Page 10 of 26

Project: East Bay Redevelopment 138130

Pace Project No.: 256520

Sample: SPL-24-1	Lab ID: 256520007	Collected: 02/07/	11 14:00	Received: 02	2/08/11 10:20 N	/latrix: Solid	
Results reported on a "dry-weight	t" basis						
Parameters	Results Unit	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS SG	Analytical Method: NW	TPH-Dx Preparation M	ethod: E	EPA 3546			
Diesel Range SG	29.3 mg/kg	21.9	1	02/09/11 10:15	02/10/11 00:21		
Motor Oil Range SG	116 mg/kg	87.7	1	02/09/11 10:15	02/10/11 00:21	64742-65-0	
n-Octacosane (S) SG	93 %	50-150	1	02/09/11 10:15	02/10/11 00:21	630-02-4	
o-Terphenyl (S) SG	96 %	50-150	1	02/09/11 10:15	02/10/11 00:21	84-15-1	
NWTPH-Gx GCV	Analytical Method: NW	TPH-Gx Preparation M	ethod: N	NWTPH-Gx			
Gasoline Range Organics	ND mg/kg	5.3	1	02/11/11 15:20	02/12/11 08:35		
a,a,a-Trifluorotoluene (S)	111 %	50-150	1	02/11/11 15:20	02/12/11 08:35	98-08-8	
4-Bromofluorobenzene (S)	98 %	50-150	1	02/11/11 15:20	02/12/11 08:35	460-00-4	
8270 MSSV PAH by SIM	Analytical Method: EPA	A 8270 by SIM Preparat	ion Met	hod: EPA 3546			
Acenaphthene	41.3 ug/kg	7.4	1	02/09/11 11:10	02/12/11 00:47	83-32-9	
Acenaphthylene	95.7 ug/kg	7.4	1	02/09/11 11:10	02/12/11 00:47	208-96-8	
Anthracene	188 ug/kg	7.4	1	02/09/11 11:10	02/12/11 00:47	120-12-7	
Benzo(a)anthracene	447 ug/kg	7.4	1	02/09/11 11:10	02/12/11 00:47	56-55-3	
Benzo(a)pyrene	484 ug/kg	7.4	1	02/09/11 11:10	02/12/11 00:47	50-32-8	
Benzo(b)fluoranthene	365 ug/kg	7.4	1	02/09/11 11:10	02/12/11 00:47	205-99-2	
Benzo(g,h,i)perylene	235 ug/kg	7.4	1	02/09/11 11:10	02/12/11 00:47	191-24-2	
Benzo(k)fluoranthene	214 ug/kg	7.4	1	02/09/11 11:10	02/12/11 00:47	207-08-9	
Chrysene	402 ug/kg	7.4	1	02/09/11 11:10	02/12/11 00:47	218-01-9	
Dibenz(a,h)anthracene	60.9 ug/kg	7.4	1	02/09/11 11:10	02/12/11 00:47	53-70-3	
Fluoranthene	780 ug/kg	7.4	1	02/09/11 11:10	02/12/11 00:47	206-44-0	
Fluorene	112 ug/kg	7.4	1	02/09/11 11:10	02/12/11 00:47	86-73-7	
ndeno(1,2,3-cd)pyrene	196 ug/kg	7.4	1	02/09/11 11:10	02/12/11 00:47	193-39-5	
I-Methylnaphthalene	36.6 ug/kg	7.4	1		02/12/11 00:47		
2-Methylnaphthalene	36.0 ug/kg	7.4	1	02/09/11 11:10	02/12/11 00:47	91-57-6	
Naphthalene	52.8 ug/kg	7.4	1	02/09/11 11:10	02/12/11 00:47	91-20-3	
Phenanthrene	637 ug/kg	7.4	1		02/12/11 00:47		
Pyrene	1090 ug/kg	7.4	1		02/12/11 00:47		
2-Fluorobiphenyl (S)	59 %	31-131	1		02/12/11 00:47		
Terphenyl-d14 (S)	63 %	30-133	1		02/12/11 00:47		
3260/5035A Volatile Organics	Analytical Method: EPA	A 8260					
Benzene	ND ug/kg	3.3	1		02/10/11 13:12	71-43-2	
Ethylbenzene	ND ug/kg	3.3	1		02/10/11 13:12	100-41-4	
Toluene	ND ug/kg	3.3	1		02/10/11 13:12	108-88-3	
(ylene (Total)	ND ug/kg	9.9	1		02/10/11 13:12		
Dibromofluoromethane (S)	96 %	80-136	1		02/10/11 13:12	1868-53-7	
Toluene-d8 (S)	107 %	80-120	1		02/10/11 13:12		
1-Bromofluorobenzene (S)	100 %	72-122	1		02/10/11 13:12		
1,2-Dichloroethane-d4 (S)	105 %	80-143	1		02/10/11 13:12		
Percent Moisture	Analytical Method: AS	ΓM D2974-87					
Percent Moisture	10.2 %	0.10	1		02/12/11 15:18		
	,-	20	•				

Date: 02/23/2011 11:03 AM

REPORT OF LABORATORY ANALYSIS

Page 11 of 26

Project: East Bay Redevelopment 138130

Pace Project No.: 256520

Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG Motor Oil Range SG Motor Oil Range SG 198 mg/kg 84.5 1 02009/11 10:15 02/10/11 00:37 64742-65-0 **Co-Clacosane (S) SG 93 % 50-150 1 02/09/11 10:15 02/10/11 00:37 64742-65-0 **Co-Terphenyl (S) SG 95 % 50-150 1 02/09/11 10:15 02/10/11 00:37 64742-65-0 **So-Terphenyl (S) SG 95 % 50-150 1 02/09/11 10:15 02/10/11 00:37 64742-65-0 **Analytical Method: NWTPH-Gx **Part SGCV Analytical Method: SPA 8270 by SIM Preparation Method: NWTPH-Gx **Part SGCV Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 **Acenaphthylene (S) 199 % 50-150 1 02/11/11 15:20 02/12/11 08:59 88-08-8 **Acenaphthylene 18.1 ug/kg 7.3 1 02/09/11 11:10 02/12/11 08:59 86-08-8 **Acenaphthylene 18.1 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 83-32-9 **Acenaphthylene 18.1 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 83-32-9 **Acenaphthylene 18.1 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 02/12/12 01:06 83-32-9 **Acenaphthylene 18.1 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 02/12/12 01:06 83-32-9 **Acenaphthylene 18.1 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 02/12/12 01:06 83-32-9 **Acenaphthylene 18.1 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 65-53-3 **Banzo(s)[hjutoranthene 62.5 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 65-53-3 **Banzo(s)[hjutoranthene 62.5 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 65-53-3 **Banzo(s)[hjutoranthene 62.5 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 65-53-3 **Banzo(s)[hjutoranthene 62.5 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 65-53-3 **Banzo(s)[hjutoranthene 62.5 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 65-53-3 **Banzo(s)[hjutoranthene 62.5 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 65-53-3 **Banzo(s)[hjutoranthene 62.5 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 65-53-3 **Banzo(s)[hjutoranthene 62.5 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 65-53-3 **Banzo(s)[hjutoranthene 62.5 ug/kg 7.3 1 02/09/1	Sample: SPL-24-2	Lab ID: 256520	Ollected: 02/07/11	14:15	Received: 02	2/08/11 10:20	Matrix: Solid	
Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG Motor Oil Range SG Motor Oil Range SG 198 mg/kg 84.5 1 02009/11 10:15 02/10/11 00:37 64742-65-0 **Co-Clacosane (S) SG 93 % 50-150 1 02/09/11 10:15 02/10/11 00:37 64742-65-0 **Co-Terphenyl (S) SG 95 % 50-150 1 02/09/11 10:15 02/10/11 00:37 64742-65-0 **So-Terphenyl (S) SG 95 % 50-150 1 02/09/11 10:15 02/10/11 00:37 64742-65-0 **Analytical Method: NWTPH-Gx **Part SGCV Analytical Method: SPA 8270 by SIM Preparation Method: NWTPH-Gx **Part SGCV Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 **Acenaphthylene (S) 199 % 50-150 1 02/11/11 15:20 02/12/11 08:59 88-08-8 **Acenaphthylene 18.1 ug/kg 7.3 1 02/09/11 11:10 02/12/11 08:59 86-08-8 **Acenaphthylene 18.1 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 83-32-9 **Acenaphthylene 18.1 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 83-32-9 **Acenaphthylene 18.1 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 02/12/12 01:06 83-32-9 **Acenaphthylene 18.1 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 02/12/12 01:06 83-32-9 **Acenaphthylene 18.1 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 02/12/12 01:06 83-32-9 **Acenaphthylene 18.1 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 65-53-3 **Banzo(s)[hjutoranthene 62.5 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 65-53-3 **Banzo(s)[hjutoranthene 62.5 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 65-53-3 **Banzo(s)[hjutoranthene 62.5 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 65-53-3 **Banzo(s)[hjutoranthene 62.5 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 65-53-3 **Banzo(s)[hjutoranthene 62.5 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 65-53-3 **Banzo(s)[hjutoranthene 62.5 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 65-53-3 **Banzo(s)[hjutoranthene 62.5 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 65-53-3 **Banzo(s)[hjutoranthene 62.5 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 65-53-3 **Banzo(s)[hjutoranthene 62.5 ug/kg 7.3 1 02/09/1	Results reported on a "dry-weight	t" basis						
Diesel Range SG	Parameters	Results	Inits Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Motor Oil Range SG	NWTPH-Dx GCS SG	Analytical Method:	IWTPH-Dx Preparation Met	thod: E	PA 3546			
Motor Oil Range SG 198 mg/kg 84.5 1 02/09/11 10:15 02/10/11 00:37 6742-65-0 1-0-Ctacosane (S) SG 93 % 50-150 1 02/09/11 10:15 02/10/11 00:37 84-15-1 02/09/11 10:15 02/10/11 00:37 84-15-1 02/09/11 10:15 02/10/11 00:37 84-15-1 02/09/11 10:15 02/10/11 00:37 84-15-1 02/09/11 10:15 02/10/11 00:37 84-15-1 02/09/11 10:15 02/10/11 00:37 84-15-1 02/09/11 10:15 02/10/11 00:37 84-15-1 02/09/11 10:15 02/10/11 00:37 84-15-1 02/09/11 10:15 02/10/11 00:37 84-15-1 02/09/11 10:15 02/10/11 00:37 84-15-1 02/09/11 10:15 02/10/11 00:37 84-15-1 02/09/11 10:15 02/10/11 00:37 84-15-1 02/09/11 10:15 02/09/11 10:15 02/09/11 10:15 02/09/11 10:15 02/09/11 10:15 02/09/11 10:15 02/09/11 10:15 02/09/11 10:15 02/09/11 10:15 02/09/11 10:15 02/09/11 00:15 02/09/	Diesel Range SG	40.5 mg/kg	21.1	1	02/09/11 10:15	02/10/11 00:37	7	
1-Cotacosane (S) SG 93 % 50-150 1 02/09/11 10:15 02/10/11 00:37 03/0-02-4 0-0-Terphenyl (S) SG 95 % 50-150 1 02/09/11 10:15 02/10/11 00:37 03/0-02-4 0-0-Terphenyl (S) SG 95 % 50-150 1 02/09/11 11:10 02/11/11 00:37 03/0-02-4 0-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	•		84.5	1	02/09/11 10:15	02/10/11 00:37	64742-65-0	
Description (S) SG 95 % 50-150 1 02/09/11 10:15 02/10/11 00:37 84-16-1 WWTPH-Gx CCV	=		50-150	1	02/09/11 10:15	02/10/11 00:37	630-02-4	
Assoline Range Organics a.a.a-Trifluorotoluene (S) 109 % 50-150 1 02/11/11 15:20 02/12/11 08:59 98-08-8 a.a.a-Trifluorotoluene (S) 98 % 50-150 1 02/11/11 15:20 02/12/11 08:59 98-08-8 98-08-98-98-98-98-98-98-98-98-98-98-98-98-98			50-150	1	02/09/11 10:15	02/10/11 00:37	7 84-15-1	
a.a.aTrifluorotoluene (S) 98 % 50-150 1 02/11/11 15:20 02/12/11 08:59 98-08-8 4-Bromofluorobenzene (S) 98 % 50-150 1 02/11/11 15:20 02/12/11 08:59 98-08-8 4-Bromofluorobenzene (S) 98 % 50-150 1 02/11/11 15:20 02/12/11 08:59 98-08-8 4-Bromofluorobenzene (S) 98 % 50-150 1 02/11/11 15:20 02/12/11 08:59 98-08-8 4-Bromofluorobenzene (S) 98 % 50-150 1 02/11/11 15:20 02/12/11 08:59 98-08-8 4-Bromofluorobenzene (S) 98 % 50-150 1 02/11/11 15:20 02/12/11 08:59 98-08-8 4-Bromofluorobenzene (S) 98 % 50-150 1 02/11/11 15:20 02/12/11 01:06 83-32-9 4-Bromofluorobenzene (S) 98 % 50-150 1 02/11/11 15:20 02/12/11 01:06 83-32-9 4-Bromofluorobenzene (S) 98 % 50-150 1 02/11/11 15:20 02/12/11 01:06 83-32-9 4-Bromofluorobenzene (S) 98 % 50-150 1 02/11/11 11:10 02/12/11 01:06 83-32-9 4-Bromofluorobenzene (S) 98 % 50-150 1 02/11/11 11:10 02/12/11 01:06 83-32-9 4-Bromofluorobenzene (S) 98 % 50-150 1 02/11/11 11:10 02/12/11 01:06 80-32-9 8-Bromofluorobenzene (S) 98 % 50-150 1 02/09/11 11:10 02/12/11 01:06 20-99-8-8 8-Bromofluorobenzene (S) 98 % 50-150 1 02/09/11 11:10 02/12/11 01:06 90-95-8-8 8-Bromofluorobenzene (S) 98 % 50-150 1 02/09/11 11:10 02/12/11 01:06 90-95-99-2 8-Bromofluorobenzene (S) 98 % 30-133 1 02/09/11 11:10 02/12/11 01:06 90-75-9 8-Bromofluorobenzene (S) 98 % 31-131 1 02/09/11 11:10 02/12/11 01:06 90-75-9 8-Bromofluorobenzene (S) 98 % 31-131 1 02/09/11 11:10 02/12/11 01:06 91-75-6 8-Bromofluorobenzene (S) 98 % 31-131 1 02/09/11 11:10 02/12/11 01:06 129-00-0 98-Bromofluorobenzene (S) 98 % 30-133 1 02/09/11 11:10 02/12/11 01:06 129-00-0 98-Bromofluorobenzene (S) 98 % 30-133 1 02/09/11 11:10 02/12/11 01:06 129-00-0 98-Bromofluorobenzene (S) 98 % 30-133 1 02/09/11 11:10 02/12/11 01:06 129-00-0 98-Bromofluorobenzene (S) 98 % 30-133 1 02/09/11 11:10 02/12/11 01:06 129-00-0 98-Bromofluorobenzene (S) 98 % 30-133 1 02/09/11 11:10 02/12/11 01:06 129-00-0 98-Bromofluorobenzene (S) 98 % 30-133 1 02/09/11 11:10 02/12/11 01:06 129-00-0 98-Bromofluorobenzene (S) 98 % 30-133 1 02/09/11 11:10 02/12/11 01:06 129-00-0 98-Bromofluorobenze	NWTPH-Gx GCV	Analytical Method:	IWTPH-Gx Preparation Me	thod: N	WTPH-Gx			
a.a.aTrifluorotoluene (S) 98 % 50-150 1 02/11/11 15:20 02/12/11 08:59 98-08-8 4-Bromofluorobenzene (S) 98 % 50-150 1 02/11/11 15:20 02/12/11 08:59 98-08-8 4-Bromofluorobenzene (S) 98 % 50-150 1 02/11/11 15:20 02/12/11 08:59 98-08-8 4-Bromofluorobenzene (S) 98 % 50-150 1 02/11/11 15:20 02/12/11 08:59 98-08-8 4-Bromofluorobenzene (S) 98 % 50-150 1 02/11/11 15:20 02/12/11 08:59 98-08-8 4-Bromofluorobenzene (S) 98 % 50-150 1 02/11/11 15:20 02/12/11 08:59 98-08-8 4-Bromofluorobenzene (S) 98 % 50-150 1 02/11/11 15:20 02/12/11 01:06 83-32-9 4-Bromofluorobenzene (S) 98 % 50-150 1 02/11/11 15:20 02/12/11 01:06 83-32-9 4-Bromofluorobenzene (S) 98 % 50-150 1 02/11/11 15:20 02/12/11 01:06 83-32-9 4-Bromofluorobenzene (S) 98 % 50-150 1 02/11/11 11:10 02/12/11 01:06 83-32-9 4-Bromofluorobenzene (S) 98 % 50-150 1 02/11/11 11:10 02/12/11 01:06 83-32-9 4-Bromofluorobenzene (S) 98 % 50-150 1 02/11/11 11:10 02/12/11 01:06 80-32-9 8-Bromofluorobenzene (S) 98 % 50-150 1 02/09/11 11:10 02/12/11 01:06 20-99-8-8 8-Bromofluorobenzene (S) 98 % 50-150 1 02/09/11 11:10 02/12/11 01:06 90-95-8-8 8-Bromofluorobenzene (S) 98 % 50-150 1 02/09/11 11:10 02/12/11 01:06 90-95-99-2 8-Bromofluorobenzene (S) 98 % 30-133 1 02/09/11 11:10 02/12/11 01:06 90-75-9 8-Bromofluorobenzene (S) 98 % 31-131 1 02/09/11 11:10 02/12/11 01:06 90-75-9 8-Bromofluorobenzene (S) 98 % 31-131 1 02/09/11 11:10 02/12/11 01:06 91-75-6 8-Bromofluorobenzene (S) 98 % 31-131 1 02/09/11 11:10 02/12/11 01:06 129-00-0 98-Bromofluorobenzene (S) 98 % 30-133 1 02/09/11 11:10 02/12/11 01:06 129-00-0 98-Bromofluorobenzene (S) 98 % 30-133 1 02/09/11 11:10 02/12/11 01:06 129-00-0 98-Bromofluorobenzene (S) 98 % 30-133 1 02/09/11 11:10 02/12/11 01:06 129-00-0 98-Bromofluorobenzene (S) 98 % 30-133 1 02/09/11 11:10 02/12/11 01:06 129-00-0 98-Bromofluorobenzene (S) 98 % 30-133 1 02/09/11 11:10 02/12/11 01:06 129-00-0 98-Bromofluorobenzene (S) 98 % 30-133 1 02/09/11 11:10 02/12/11 01:06 129-00-0 98-Bromofluorobenzene (S) 98 % 30-133 1 02/09/11 11:10 02/12/11 01:06 129-00-0 98-Bromofluorobenze	Gasoline Range Organics	ND ma/ka	6.1	1	02/11/11 15:20	02/12/11 08:59	9	
A-Bromofluorobenzene (\$) 98 % Analytical Method: EPA 8270 by SIM Analytical Method: ASTM D2974-87 Analytical Method: ASTM D2974-87 Analytical Method: ASTM D2974-87 Analytical Method: ASTM D2974-87 Analytical Method: ASTM D2974-87 Analytical Method: ASTM D2974-87 Analytical Method: ASTM D2974-87 Analytical Method: ASTM D2974-87								
Acenaphthene	4-Bromofluorobenzene (S)							
Acenaphthylene 18.1 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 208-96-8 Anthracene 33.6 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 120-12-7 02/09/11 01:06 56-55-3 02/09/11 01:06 56-55-3 02/09/09/11 01:06 56-55-3 02/09/09/11 01:06 56-55-3 02/09/09/11 01:06 56-55-3 02/09/09/09/11 01:06 56-55-3 02/09/09/09/11 01:06 56-55-3 02/09/09/09/11 01:06 56-55-3 02/09/09/09/11 01:06 56-55-3 02/09/09/09/11 01:06 56-55-3 02/09/09/09/11 01:06 56-55-3 02/09/09/11 01:06 56-55-3 02/09/09/11 01:06 56-55-3 02/09/09/11 01:06 56-55-3 02/09/09/11 01:06 56-55-3 02/09/09/11 01:06 56-55-3 02/09/09/11 01:06 56-55-3 02/09/09/11 01:06 56-55-3 02/09/09/11 01:06 56-50-92 02/09/09/11 01:06 56-50-92 02/09/09/11 01:06 56-50-92 02/09/09/11 01:06 56-50-92 02/09/09/11 01:06 56-50-92 02/09/09/09/09/09/09/09/09/09/09/09/09/09/	8270 MSSV PAH by SIM	Analytical Method:	EPA 8270 by SIM Preparation	n Meth	od: EPA 3546			
Acenaphthylene 18.1 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 208-96-8 Anthracene 33.6 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 120-12-7 02/09/11 01:06 56-55-3 02/09/11 01:06 56-55-3 02/09/09/11 01:06 56-55-3 02/09/09/11 01:06 56-55-3 02/09/09/11 01:06 56-55-3 02/09/09/09/11 01:06 56-55-3 02/09/09/09/11 01:06 56-55-3 02/09/09/09/11 01:06 56-55-3 02/09/09/09/11 01:06 56-55-3 02/09/09/09/11 01:06 56-55-3 02/09/09/09/11 01:06 56-55-3 02/09/09/11 01:06 56-55-3 02/09/09/11 01:06 56-55-3 02/09/09/11 01:06 56-55-3 02/09/09/11 01:06 56-55-3 02/09/09/11 01:06 56-55-3 02/09/09/11 01:06 56-55-3 02/09/09/11 01:06 56-55-3 02/09/09/11 01:06 56-50-92 02/09/09/11 01:06 56-50-92 02/09/09/11 01:06 56-50-92 02/09/09/11 01:06 56-50-92 02/09/09/11 01:06 56-50-92 02/09/09/09/09/09/09/09/09/09/09/09/09/09/	Acenaphthene	17.4 ua/ka	73	1	02/09/11 11:10	02/12/11 01:06	83-32-9	
Anthracene 33.6 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 120-12-7 Benzo(a)anthracene 65.0 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 56-55-3 Benzo(a)pyrene 78.8 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 56-55-3 Benzo(b)fluoranthene 62.5 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 205-99-2 Benzo(b)fluoranthene 41.5 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 207-98-9 Benzo(b)fluoranthene 41.5 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 207-08-9 Chrysene 67.5 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 207-08-9 Chrysene 67.5 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 207-08-9 Chrysene 67.5 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 207-08-9 Chrysene 67.5 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 207-08-9 Chrysene 11.9 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 53-70-3 Fluoranthene 110 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 53-70-3 Fluorenthene 29.6 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 50-37-03 Fluorenthene 20.5 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 90-12-0 02-04-04-04-04-04-04-04-04-04-04-04-04-04-	•							
Benzo(a)anthracene 65.0 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 56-55-3 Benzo(a)pyrene 78.8 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 50-32-8 Benzo(g)hyrene 62.5 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 50-32-8 Benzo(g)h,i)perylene 47.6 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 191-24-2 Benzo(g)h,i)perylene 47.6 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 207-08-9 Chrysene 67.5 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 207-08-9 Chrysene 67.5 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 207-08-9 Chrysene 67.5 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 207-08-9 Chrysene 11.9 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 53-70-3 Chrysene 11.9 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 53-70-3 Chrysene 11.9 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 206-44-0 Chrysene 29.6 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 86-73-7 Chrysene 29.6 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 88-73-7 Chrysene 29.6 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 99-12-0 Chrysene 29.6 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 99-12-0 Chrysene 29.6 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 99-12-0 Chrysene 29.6 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 99-12-0 Chrysene 29.6 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 99-12-0 Chrysene 29.6 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 99-12-0 Chrysene 29.6 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 99-12-0 Chrysene 29.6 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 99-12-0 Chrysene 29.6 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 99-12-0 Chrysene 29.6 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 99-12-0 Chrysene 29.6 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 99-12-0 Chrysene 29.6 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 99-12-0 Chrysene 29.6 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 99-12-0 Chrysene 29.6 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 99-12-0 Chrysene 29.6 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 99-12-0 Chrysene 29.6 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 99-12-0 Chrysene 29.6 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 99-12-0 Chrysene 29.6 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 99-12-0 Chrysene 2	· •							
Benzo(a)pyrene 78.8 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 50-32-8								
Benzo(b)fluoranthene 62.5 ug/kg								
Senzo(g,h,i)perylene	1 11 1							
Senzo(k)fluoranthene								
Chrysene 67.5 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 218-01-9 Dibenz(a,h)anthracene 11.9 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 53-70-3 Fluoranthene 110 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 206-44-0 Fluorene 29.6 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 86-73-7 ndeno(1,2,3-cd)pyrene 36.1 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 193-39-5 I-Methylnaphthalene 20.5 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 90-12-0 2-Methylnaphthalene 26.9 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 91-57-6 Naphthalene 37.3 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 91-57-6 Naphthalene 37.3 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 91-57-6 Naphthalene 118 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 91-57-6 Naphthalene 118 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 91-57-6 Naphthalene 118 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 91-57-6 Naphthalene 118 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 91-57-6 Naphthalene 118 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 91-57-6 Naphthalene 118 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 91-57-6 Naphthalene 118 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 91-57-6 Naphthalene 118 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 91-57-6 Naphthalene 118 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 91-57-6 Naphthalene 118 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 91-57-6 Naphthalene 118 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 91-57-6 Naphthalene 118 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 91-57-6 Naphthalene 118 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 91-57-6 Naphthalene 118 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 91-57-6 Naphthalene 118 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 91-57-6 Naphthalene 118 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 91-57-6 Naphthalene 118 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 91-57-6 Naphthalene 118 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 91-57-6 Naphthalene 118 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 91-57-6 Naphthalene 118 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 91-57-6 Naphthalene 118 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 91-57-6 Naphthalene 118 ug/kg 9.	·- · · · · · · · · · · · · · · · · · ·							
11.9 ug/kg								
Fluoranthene	-							
Fluorene 29.6 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 86-73-7 ndeno(1,2,3-cd)pyrene 36.1 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 193-39-5 1-Methylnaphthalene 20.5 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 90-12-0 12-Methylnaphthalene 26.9 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 90-12-0 12-Methylnaphthalene 26.9 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 91-57-6 12-7								
Servent Serv								
1-Methylnaphthalene								
2-Methylnaphthalene 26.9 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 91-57-6 Naphthalene 37.3 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 91-20-3 Phenanthrene 118 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 85-01-8 Pyrene 185 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 85-01-8 Pyrene 185 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 129-00-0 2-Fluorobiphenyl (S) 59 % 31-131 1 02/09/11 11:10 02/12/11 01:06 321-60-8 Perphenyl-d14 (S) 69 % 30-133 1 02/09/11 11:10 02/12/11 01:06 321-60-8 Perphenyl-d14 (S) Analytical Method: EPA 8260 Benzene ND ug/kg 3.7 1 02/10/11 13:31 71-43-2 Ethylbenzene ND ug/kg 3.7 1 02/10/11 13:31 100-41-4 Foluene ND ug/kg 3.7 1 02/10/11 13:31 100-41-4 Foluene ND ug/kg 11.1 1 02/10/11 13:31 138-88-3 Rylene (Total) ND ug/kg 11.1 1 02/10/11 13:31 138-85-37 Foluene-d8 (S) 95 % 80-136 1 02/10/11 13:31 1868-53-7 Foluene-d8 (S) 98 % 72-122 1 02/10/11 13:31 460-00-4 1,2-Dichloroethane-d4 (S) Percent Moisture Analytical Method: ASTM D2974-87								
Naphthalene 37.3 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 91-20-3 Phenanthrene 118 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 85-01-8 Pyrene 185 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 129-00-0 2-Fluorobiphenyl (S) 59 % 31-131 1 02/09/11 11:10 02/12/11 01:06 321-60-8 Terphenyl-d14 (S) 69 % 30-133 1 02/09/11 11:10 02/12/11 01:06 1718-51-0 8260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 3.7 1 02/10/11 13:31 71-43-2 Ethylbenzene ND ug/kg 3.7 1 02/10/11 13:31 100-41-4 Toluene ND ug/kg 3.7 1 02/10/11 13:31 100-41-4 Toluene ND ug/kg 3.7 1 02/10/11 13:31 108-88-3 Xylene (Total) ND ug/kg 11.1 1 02/10/11 13:31 1330-20-7 Dibromofluoromethane (S) 95 % 80-136 1 02/10/11 13:31 1868-53-7 Toluene-d8 (S) 103 % 80-120 1 02/10/11 13:31 2037-26-5 4-Bromofluorobenzene (S) 98 % 72-122 1 02/10/11 13:31 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87								
Phenanthrene Phenanthrene Pyrene 185 ug/kg 1.3 1 02/09/11 11:10 02/12/11 01:06 85-01-8 Pyrene 185 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 129-00-0 Pyrene 185 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 129-00-0 Pyrene 185 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 129-00-0 Pyrene 185 ug/kg 131-131 1 02/09/11 11:10 02/12/11 01:06 321-60-8 Pyrene 186 w	• •							
Pyrene 185 ug/kg 7.3 1 02/09/11 11:10 02/12/11 01:06 129-00-0 2-Fluorobiphenyl (S) 59 % 31-131 1 02/09/11 11:10 02/12/11 01:06 321-60-8 30-133 1 02/09/11 11:10 02/12/11 01:06 321-60-8 30-133 1 02/09/11 11:10 02/12/11 01:06 1718-51-0 3260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 3.7 1 02/10/11 13:31 71-43-2 51-0 51-0 51-0 51-0 51-0 51-0 51-0 51-0	•							
2-Fluorobiphenyl (S) 59 % 31-131 1 02/09/11 11:10 02/12/11 01:06 321-60-8 Terphenyl-d14 (S) 69 % 30-133 1 02/09/11 11:10 02/12/11 01:06 1718-51-0 3260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 3.7 1 02/10/11 13:31 71-43-2 Ethylbenzene ND ug/kg 3.7 1 02/10/11 13:31 100-41-4 Toluene ND ug/kg 3.7 1 02/10/11 13:31 108-88-3 Xylene (Total) ND ug/kg 11.1 1 02/10/11 13:31 1330-20-7 Dibromofluoromethane (S) 95 % 80-136 1 02/10/11 13:31 1868-53-7 Toluene-d8 (S) 103 % 80-120 1 02/10/11 13:31 2037-26-5 4-Bromofluorobenzene (S) 98 % 72-122 1 02/10/11 13:31 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87								
Benzene ND ug/kg 3.7 1 02/09/11 11:10 02/12/11 01:06 1718-51-0 Benzene ND ug/kg 3.7 1 02/10/11 13:31 71-43-2 Ethylbenzene ND ug/kg 3.7 1 02/10/11 13:31 100-41-4 Toluene ND ug/kg 3.7 1 02/10/11 13:31 108-88-3 Xylene (Total) ND ug/kg 11.1 1 02/10/11 13:31 1330-20-7 Dibromofluoromethane (S) 95 % 80-136 1 02/10/11 13:31 1868-53-7 Toluene-d8 (S) 103 % 80-120 1 02/10/11 13:31 2037-26-5 4-Bromofluorobenzene (S) 98 % 72-122 1 02/10/11 13:31 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	•	0 0						
Analytical Method: EPA 8260 Benzene Benzene ND ug/kg 3.7 1 02/10/11 13:31 71-43-2 Ethylbenzene ND ug/kg 3.7 1 02/10/11 13:31 100-41-4 Toluene ND ug/kg 3.7 1 02/10/11 13:31 100-41-4 Toluene Kylene (Total) Dibromofluoromethane (S) 95 % 80-136 1 02/10/11 13:31 1330-20-7 Toluene-d8 (S) 103 % 80-120 1 02/10/11 13:31 1868-53-7 Toluene-d8 (S) 4-Bromofluorobenzene (S) 98 % 72-122 1 02/10/11 13:31 460-00-4 1,2-Dichloroethane-d4 (S) Analytical Method: ASTM D2974-87								
Benzene ND ug/kg 3.7 1 02/10/11 13:31 71-43-2 Ethylbenzene ND ug/kg 3.7 1 02/10/11 13:31 100-41-4 Toluene ND ug/kg 3.7 1 02/10/11 13:31 108-88-3 Xylene (Total) ND ug/kg 11.1 1 02/10/11 13:31 1330-20-7 Dibromofluoromethane (S) 95 % 80-136 1 02/10/11 13:31 1368-53-7 Toluene-d8 (S) 80-120 1 02/10/11 13:31 2037-26-5 4-Bromofluorobenzene (S) 98 % 72-122 1 02/10/11 13:31 460-00-4 1,2-Dichloroethane-d4 (S) 106 % 80-143 1 02/10/11 13:31 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87								
Ethylbenzene ND ug/kg 3.7 1 02/10/11 13:31 100-41-4 Toluene ND ug/kg 3.7 1 02/10/11 13:31 108-88-3 Xylene (Total) ND ug/kg 11.1 1 02/10/11 13:31 1330-20-7 Dibromofluoromethane (S) 95 % 80-136 1 02/10/11 13:31 1868-53-7 Toluene-d8 (S) 103 % 80-120 1 02/10/11 13:31 2037-26-5 4-Bromofluorobenzene (S) 98 % 72-122 1 02/10/11 13:31 460-00-4 1,2-Dichloroethane-d4 (S) 106 % 80-143 1 02/10/11 13:31 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	_	•		1		02/10/11 13:31	71-43-2	
Toluene ND ug/kg 3.7 1 02/10/11 13:31 108-88-3 Xylene (Total) ND ug/kg 11.1 1 02/10/11 13:31 1330-20-7 Dibromofluoromethane (S) 95 % 80-136 1 02/10/11 13:31 1868-53-7 Toluene-d8 (S) 103 % 80-120 1 02/10/11 13:31 2037-26-5 4-Bromofluorobenzene (S) 98 % 72-122 1 02/10/11 13:31 460-00-4 1,2-Dichloroethane-d4 (S) 106 % 80-143 1 02/10/11 13:31 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87								
Xylene (Total) ND ug/kg 11.1 1 02/10/11 13:31 1330-20-7 Dibromofluoromethane (S) 95 % 80-136 1 02/10/11 13:31 1868-53-7 Toluene-d8 (S) 103 % 80-120 1 02/10/11 13:31 2037-26-5 4-Bromofluorobenzene (S) 98 % 72-122 1 02/10/11 13:31 460-00-4 1,2-Dichloroethane-d4 (S) 106 % 80-143 1 02/10/11 13:31 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	•							
Dibromofluoromethane (S) 95 % 80-136 1 02/10/11 13:31 1868-53-7 Toluene-d8 (S) 103 % 80-120 1 02/10/11 13:31 2037-26-5 4-Bromofluorobenzene (S) 98 % 72-122 1 02/10/11 13:31 460-00-4 1,2-Dichloroethane-d4 (S) 106 % 80-143 1 02/10/11 13:31 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87								
Toluene-d8 (S) 103 % 80-120 1 02/10/11 13:31 2037-26-5 4-Bromofluorobenzene (S) 98 % 72-122 1 02/10/11 13:31 460-00-4 1,2-Dichloroethane-d4 (S) 106 % 80-143 1 02/10/11 13:31 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	, ,							
4-Bromofluorobenzene (S) 98 % 72-122 1 02/10/11 13:31 460-00-4 1,2-Dichloroethane-d4 (S) 106 % 80-143 1 02/10/11 13:31 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	` ,							
1,2-Dichloroethane-d4 (S) 106 % 80-143 1 02/10/11 13:31 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	` ,							
Percent Moisture Analytical Method: ASTM D2974-87	. ,							
·	Percent Moisture						,	
	Percent Moisture	9.1 %	0.10	1		02/12/11 15:10))	

Date: 02/23/2011 11:03 AM

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

Page 12 of 26

Project: East Bay Redevelopment 138130

Pace Project No.: 256520

Sample: SPL-24-3	Lab ID: 256520009	Collected: 02/07/11	14:30	Received: 02	2/08/11 10:20 I	Matrix: Solid	
Results reported on a "dry-weigh	t" basis						
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
IWTPH-Dx GCS SG	Analytical Method: NWTI	PH-Dx Preparation Meth	nod: E	PA 3546			
Diesel Range SG	26.6 mg/kg	21.0	1	02/09/11 10:15	02/10/11 00:54		
Motor Oil Range SG	133 mg/kg	84.0	1	02/09/11 10:15	02/10/11 00:54	64742-65-0	
n-Octacosane (S) SG	91 %	50-150	1	02/09/11 10:15	02/10/11 00:54	630-02-4	
p-Terphenyl (S) SG	95 %	50-150	1	02/09/11 10:15	02/10/11 00:54	84-15-1	
IWTPH-Gx GCV	Analytical Method: NWTI	PH-Gx Preparation Meth	nod: N	WTPH-Gx			
Gasoline Range Organics	6.6 mg/kg	6.1	1	02/11/11 15:20	02/12/11 09:23	i	
a,a,a-Trifluorotoluene (S)	107 %	50-150	1	02/11/11 15:20	02/12/11 09:23	98-08-8	
1-Bromofluorobenzene (S)	97 %	50-150	1	02/11/11 15:20	02/12/11 09:23	460-00-4	
3270 MSSV PAH by SIM	Analytical Method: EPA 8	3270 by SIM Preparation	n Meth	od: EPA 3546			
Acenaphthene	10.7 ug/kg	7.4	1	02/09/11 11:10	02/12/11 01:24	83-32-9	
Acenaphthylene	40.1 ug/kg	7.4	1		02/12/11 01:24		
Anthracene	44.8 ug/kg	7.4	1		02/12/11 01:24		
Benzo(a)anthracene	98.2 ug/kg	7.4	1		02/12/11 01:24		
Benzo(a)pyrene	135 ug/kg	7.4	1		02/12/11 01:24		
Benzo(b)fluoranthene	103 ug/kg	7.4	1		02/12/11 01:24		
Benzo(g,h,i)perylene	74.6 ug/kg	7.4	1		02/12/11 01:24		
Benzo(k)fluoranthene	65.1 ug/kg	7.4	1		02/12/11 01:24		
Chrysene	103 ug/kg	7.4	1		02/12/11 01:24		
Dibenz(a,h)anthracene	19.8 ug/kg	7.4	1		02/12/11 01:24		
Tuoranthene	130 ug/kg	7.4	1		02/12/11 01:24		
luorene	30.9 ug/kg	7.4	1		02/12/11 01:24		
ndeno(1,2,3-cd)pyrene	60.2 ug/kg	7.4	1		02/12/11 01:24		
-Methylnaphthalene	10.9 ug/kg	7.4	1		02/12/11 01:24		
-Methylnaphthalene	17.9 ug/kg	7.4	1		02/12/11 01:24		
laphthalene	28.1 ug/kg	7.4	1		02/12/11 01:24		
Phenanthrene		7.4	1		02/12/11 01:24		
Pyrene	142 ug/kg 285 ug/kg	7.4	1		02/12/11 01:24		
	263 ug/kg 54 %	31-131	1		02/12/11 01:24		
:-Fluorobiphenyl (S) erphenyl-d14 (S)	56 %	30-133	1		02/12/11 01:24		
260/5035A Volatile Organics	Analytical Method: EPA 8						
Benzene	ND ug/kg	2.9	1		02/10/11 13:51	71-43-2	
Ethylbenzene	ND ug/kg	2.9	1		02/10/11 13:51		
oluene	ND ug/kg	2.9	1		02/10/11 13:51		
(ylene (Total)	ND ug/kg	8.7	1		02/10/11 13:51		
Dibromofluoromethane (S)	95 %	80-136	1		02/10/11 13:51		
oluene-d8 (S)	106 %	80-120	1		02/10/11 13:51		
-Bromofluorobenzene (S)	99 %	72-122	1		02/10/11 13:51		
,2-Dichloroethane-d4 (S)	103 %	80-143	1		02/10/11 13:51		
Percent Moisture	Analytical Method: ASTM		•		52, 10, 11 10.01	11000 01-0	
	•						
Percent Moisture	10.1 %	0.10	1		02/12/11 15:20		

Date: 02/23/2011 11:03 AM

REPORT OF LABORATORY ANALYSIS

Page 13 of 26

Project: East Bay Redevelopment 138130

Pace Project No.: 256520

NWTPH-Dx GCS SG	Sample: SPL-24-4	Lab ID: 256520	10 Collected: 02/07/1	l 13:45	Received: 02	2/08/11 10:20	Matrix: Solid	
Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diasel Range SG 25.3 mg/kg 22.8 1 02/09/11 10:15 02/10/11 01:10 64742-65-0 Motor Oil Range SG 115 mg/kg 31.4 1 02/09/11 10:15 02/10/11 01:10 64742-65-0 Pro-Ctacosane (S) SC 95 % 50-150 1 02/09/11 10:15 02/10/11 01:10 64742-65-0 Pro-Terphenyl (S) SG 95 % 50-150 1 02/09/11 10:15 02/10/11 01:10 64742-65-0 Pro-Terphenyl (S) SG Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Analytical Method: NWTPH-Gx Assoline Range Organics as.aTrillurorlollure (S) 96 % 50-150 1 02/11/11 15:20 02/12/11 09:46 98-08-8 4-Bromofluorobenzene (S) 122 % 50-150 1 02/11/11 15:20 02/12/11 09:46 98-08-8 4-Bromofluorobenzene (S) 122 % 50-150 1 02/11/11 15:20 02/12/11 09:46 98-08-8 Acenaphthylene Acenaphthylene 52.2 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 83-32-9 Acenaphthylene 57.2 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 83-32-9 Anthracene 87.2 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 83-32-9 Benzo(a)phyrene 255 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 60-32-8 Benzo(a)phyrene 255 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 60-32-8 Benzo(a)phyrene 187 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 60-32-8 Benzo(a)phyrene 187 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 60-32-8 Benzo(a)phyrene 131 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 60-32-8 Benzo(a)phyrene 131 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 60-32-8 Benzo(a)phyrene 134 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 60-32-8 Benzo(a)phyrene 135 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 60-32-8 Benzo(a)phyrene 144 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 60-32-8 Benzo(a)phyrene 134 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 60-32-8 Benzo(a)phyrene 148 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 60-32-8 Benzo(a)phyrene 149 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 60-32-8 Benzo(a)phyrene 158 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 60-32-8 Benzo(a)phyrene 149 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42	Results reported on a "dry-weight	t" basis						
Diesel Range SG	Parameters	Results	Jnits Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Motor Oil Range SG	NWTPH-Dx GCS SG	Analytical Method:	NWTPH-Dx Preparation Me	thod: E	PA 3546			
Motor Oil Range SG	Diesel Range SG	25.3 mg/kg	22.8	1	02/09/11 10:15	02/10/11 01:10)	
n-Octacosane (S) SG 91 % 50-150 1 02/09/11 10:15 02/10/11 01:10 630-02-4 0-1erphenyl (S) SG 95 % 50-150 1 02/09/11 10:15 02/10/11 01:10 630-02-4 0-1erphenyl (S) SG 95 % 50-150 1 02/09/11 10:15 02/10/11 01:10 84-15-1 NNTPH-GX CV Analytical Method: NWTPH-GX Preparation Method: NWTPH-GX 10 02/11/11 15:20 02/12/11 09:46 8a.a.a-Trifluorotolusne (S) 96 % 50-150 1 02/11/11 15:20 02/12/11 09:46 96-08-8 4-16-romofluorobenzene (S) 122 % 50-150 1 02/11/11 15:20 02/12/11 09:46 46-00-04 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 9270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 9270 by SIM Preparation Method: PAM 9270 by SIM Preparation Method: PAM 9270 by SIM Preparation Method: PAM 9270 by SIM Preparation Method: PAM 9270 by SIM Preparation Method: PAM 9270 by SIM Preparation Method: PAM 9270 by SIM Preparation Method: PAM 9270 by SIM Preparation Method: PAM 9270 by SIM Preparation Method: PAM 9270 by SIM Preparation Method: PAM 9270 by SIM Preparation Method: PAM 9270 by SIM Preparation Method: PAM 9270 by SIM Preparation Method: PAM 9270 by SIM Preparation Method: PAM 9270 by SIM 9270 by	_		91.4	1	02/09/11 10:15	02/10/11 01:10	64742-65-0	
O-Terphenyl (S) SG 95 % 50-150 1 02/09/11 10:15 02/10/11 01:10 84-15-1 NWTPH-Gx GCV Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx GCV Gasoline Range Organics 76.5 mg/kg 6.1 1 02/11/11 15:20 02/12/11 09:46 8.a.,a-Trifluorotoluene (S) 96 % 50-150 1 02/11/11 15:20 02/12/11 09:46 48-00-04 BBZ70 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3548 Acenaphthene 25.2 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 83-32-9 Acenaphthene 56.7 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 208-96-8 Anthracene 87.2 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 120-12-7 Benzo(a)prene 255 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 120-12-7 Benzo(a)prene 255 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 120-12-7 Benzo(a)prene 131 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 191-24-2 Benzo(gl.)preylene 131 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 20-99-2 Benzo(gl.)preylene 133 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 191-24-2 Benzo(gl.)preylene 133 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 20-99-2 Benzo(gl.)preylene 133 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 20-99-2 Benzo(gl.)preylene 134 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 20-99-2 Benzo(gl.)preylene 340 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 20-99-2 Benzo(gl.)preylene 340 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 20-99-2 Benzo(gl.)preylene 130 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 20-99-2 Benzo(gl.)preylene 58.3 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 20-89-2 Benzo(gl.)preylene 58.3 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 20-90-2 Benzo(gl.)preylene 58.3 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 20-90-2 Benzo(gl.)preylene 58.3 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 20-90-2 Benzo(gl.)preylene 59.3 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 20-90-2 Benzo(gl.)preylene 59.3 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 20-90-2 Benzo(gl.)preylene 59.3 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 20-90-2 Benzo(gl.)preylene 59.3 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 20-90-2 Benzo(gl.)preylene 59.3 ug/kg 7.6 1 02/09/11 1	_		50-150	1	02/09/11 10:15	02/10/11 01:10	630-02-4	
Casoline Range Organics 76.5 mg/kg 6.1 02/11/11 15:20 02/12/11 09:46 8.a.aTifluorotoluene (S) 9.6 % 50-150 1 02/11/11 15:20 02/12/11 09:46 88-08-8 4-Bromofluorobenzene (S) 122 % 50-150 1 02/11/11 15:20 02/12/11 09:46 460-00-4 8270 MSSV PAH by SIM			50-150	1	02/09/11 10:15	02/10/11 01:10	84-15-1	
a.a.aTriffluorotoluene (S) 4-Bromofluorobenzene (S) 122 % 50-150 1 02/11/11 15:20 02/12/11 09:46 98-08-8 4-Bromofluorobenzene (S) 122 % 50-150 1 02/11/11 15:20 02/12/11 09:46 460-00-4 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 35:0 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 35:0 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 35:0 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 35:0 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 35:0 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 35:0 8271 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 35:0 8272 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 35:0 8272 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 35:0 8272 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 35:0 8272 MSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 35:0 8272 MSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 35:0 8272 MSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 35:0 8272 MSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 8270 log/11 11:10 02/12/11 01:42 02-12-10 11:42 02-12-12-12-12-1	NWTPH-Gx GCV	Analytical Method:	NWTPH-Gx Preparation Me	thod: N	WTPH-Gx			
a.a.a-Triffuorotoluene (S) 4-Bromofluorobenzene (S) 122 % 50-150 1 02/11/11 15:20 02/12/11 09:46 98-08-8 4-Bromofluorobenzene (S) 122 % 50-150 1 02/11/11 15:20 02/12/11 09:46 460-00-4 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Acenaphthene 25.2 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 20:9-96-8 Anthracene 87.2 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 20:9-96-8 Anthracene 87.2 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 20:12-7 Benzo(a)prene 255 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 50-32-8 Benzo(a)prene 255 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 50-32-8 Benzo(a)prene 187 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 50-32-8 Benzo(g),fluoranthene 187 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 50-32-8 Benzo(g),fluoranthene 133 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 50-32-8 Benzo(g),fluoranthene 133 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 50-32-8 Benzo(g),fluoranthene 133 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 50-32-8 Benzo(g),fluoranthene 134 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 50-32-8 Benzo(g),fluoranthene 134 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 50-37-0-3 Fluoranthene 134 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 50-37-0-3 Fluoranthene 134 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 50-37-0-3 Indeno(1,2,3-cd)pyrene 108 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 50-37-0-3 Indeno(1,2,3-cd)pyrene 108 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 50-37-0-3 Indeno(1,2,3-cd)pyrene 108 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 50-37-0-3 Indeno(1,2,3-cd)pyrene 108 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 50-37-0-3 Indeno(1,2,3-cd)pyrene 108 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 50-37-0-3 Indeno(1,2,3-cd)pyrene 108 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 50-37-0-3 Indeno(1,2,3-cd)pyrene 108 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 50-37-0-3 Indeno(1,2,3-cd)pyrene 108 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 50-37-0-3 Indeno(1,2,3-cd)pyrene 108 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 50-37-0-3 Indeno(1,2,3-cd)pyrene 108 ug/kg 7.6 1 02/09/11 11:10 02/12/1	Gasoline Range Organics	76.5 ma/ka	6.1	1	02/11/11 15:20	02/12/11 09:46	6	
Acenaphthene	<u> </u>							
Acenaphthene 25.2 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 83-32-9 Acenaphthylene 56.7 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 208-96-8 Anthracene 87.2 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 208-96-8 Benzo(a)anthracene 228 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 56-85-3 Benzo(a)pyrene 255 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 56-85-3 Benzo(a)pyrene 255 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 50-32-8 Benzo(b)fluoranthene 187 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 205-99-2 Benzo(g),fliperylene 131 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 205-99-2 Benzo(g),fliperylene 133 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 205-99-2 Benzo(g),fliperylene 133 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 207-08-9 Chrysene 214 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 53-70-3 Fluoranthene 34.0 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 53-70-3 Fluoranthene 34.0 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 53-70-3 Fluoranthene 34.0 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 206-44-0 Fluorene 58.3 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 206-44-0 Fluorene 58.3 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 206-44-0 Fluorene 58.3 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 90-12-0 C2-Methylnaphthalene 25.8 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 91-37-6 Fluoranthrene 301 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 91-37-6 Fluoranthrene 301 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 91-20-3 Flenanthrene 301 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 91-20-3 Flenanthrene 301 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 91-00-3 Flenanthrene 301 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 91-00-3 Flenanthrene 301 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 91-00-3 Flenanthrene 301 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 91-00-3 Flenanthrene 301 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 91-00-3 Flenanthrene 301 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 91-00-3 Flenanthrene 301 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 91-00-3 Flenanthrene 301 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 91-00-3 Flenanthrene 301 ug/kg 7.6 1 02/09/11 11:10 02/1	. ,							
Acenaphthylene	8270 MSSV PAH by SIM	Analytical Method:	EPA 8270 by SIM Preparation	on Meth	od: EPA 3546			
Acenaphthylene	Acenaphthene	25.2 ug/kg	7.6	1	02/09/11 11:10	02/12/11 01:42	83-32-9	
Anthracene 87.2 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 120-12-7 Benzo(a)anthracene 225 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 120-12-7 Benzo(a)anthracene 255 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 50-52-8 Benzo(b)fluoranthene 187 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 05-59-9-2 Benzo(b)fluoranthene 187 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 120-59-9-2 Benzo(b)fluoranthene 133 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 120-59-9-2 Benzo(b)fluoranthene 133 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 120-09-9 Chrysene 214 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 120-09-9 Chrysene 214 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 120-09-9 Chrysene 34.0 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 120-09-9 Chrysene 58.3 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 206-44-0 Fluorene 58.3 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 180-73-7 Indeno(1,2,3-cd)pyrene 108 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 180-73-7 Indeno(1,2,3-cd)pyrene 108 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 90-12-0 12-0-14 11-0-14 11-0 12-0-14 11-0 12-0-14 11-0-14 11-0 12-0-14 11-0-14 11-0 12-0-14 11-0-14 11-0 12-0-14 11-0-14 11-0-14 11-0 12-0-14 11-	•							
Benzo(a)anthracene	• •							
Benzo(a)pyrene								
Benzo(b)fluoranthene								
Benzo(g,h,i)perylene	1 11 1							
Senzo(k)fluoranthene								
Chrysene 214 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 218-01-9 216-02(a,h)anthracene 34.0 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 53-70-3 21-007-01 21-007-	·- · · · ·							
Dibenz(a,h)anthracene 34.0 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 53-70-3								
Fluoranthene 340 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 206-44-0 Fluorene 58.3 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 86-73-7 ndeno(1,2,3-cd)pyrene 108 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 90-12-0 11-14-10 11-14-10 11-14-10 11-14-10 11-14-10 10-14-4 02-14-14-14-10-14-14-10 12-14-14-16-14-16-16-16-16-16-16-16-16-16-16-16-16-16-	-							
Fluorene 58.3 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 86-73-7 ndeno(1,2,3-cd)pyrene 108 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 193-39-5 l-Methylnaphthalene 25.8 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 90-12-0 2-Methylnaphthalene 27.5 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 91-57-6 Naphthalene 30.1 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 91-20-3 -2 ndenathrene 30.1 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 91-20-3 -2 ndenathrene 30.1 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 91-20-3 -2 ndenathrene 30.1 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 91-20-3 -2 ndenathrene 30.1 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 91-20-3 -2 ndenathrene 30.1 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 91-20-3 -2 ndenathrene 30.1 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 129-00-0 92-Fluorobiphenyl (S) 60 % 31-131 1 02/09/11 11:10 02/12/11 01:42 129-00-0 92-Fluorobiphenyl (S) 64 % 30-133 1 02/09/11 11:10 02/12/11 01:42 1718-51-0 93-20-0 93-20-14								
108 ug/kg								
### 1. Methylnaphthalene								
2-Methylnaphthalene								
Naphthalene 44.3 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 91-20-3 Phenanthrene 301 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 85-01-8 Pyrene 516 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 129-00-0 2-Fluorobiphenyl (S) 60 % 31-131 1 02/09/11 11:10 02/12/11 01:42 321-60-8 Terphenyl-d14 (S) 64 % 30-133 1 02/09/11 11:10 02/12/11 01:42 1718-51-0 8260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 3.1 1 02/10/11 14:10 71-43-2 Ethylbenzene ND ug/kg 3.1 1 02/10/11 14:10 100-41-4 Toluene ND ug/kg 3.1 1 02/10/11 14:10 108-88-3 Xylene (Total) ND ug/kg 9.2 1 02/10/11 14:10 108-88-3 Toluene-d8 (S) 4-Bromofluoromethane (S) 95 % 80-136 1 02/10/11 14:10 1868-53-7 Toluene-d8 (S) 4-Bromofluorobenzene (S) 103 % 80-120 1 02/10/11 14:10 2037-26-5 4-Bromofluorobenzene (S) 106 % 80-143 1 02/10/11 14:10 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87								
Phenanthrene Pyrene S16 ug/kg T.6 1 02/09/11 11:10 02/12/11 01:42 85-01-8 Pyrene S16 ug/kg T.6 1 02/09/11 11:10 02/12/11 01:42 129-00-0 Pyrene S16 ug/kg T.6 1 02/09/11 11:10 02/12/11 01:42 129-00-0 Pyrene S16 ug/kg T.6 1 02/09/11 11:10 02/12/11 01:42 129-00-0 Pyrene S16 ug/kg T.6 1 02/09/11 11:10 02/12/11 01:42 129-00-0 Tyrene S2-Fluorobiphenyl (S) Ferphenyl-d14 (S) Fer	·							
Pyrene 516 ug/kg 7.6 1 02/09/11 11:10 02/12/11 01:42 129-00-0 2-Fluorobiphenyl (S) 60 % 31-131 1 02/09/11 11:10 02/12/11 01:42 321-60-8 30-133 1 02/09/11 11:10 02/12/11 01:42 1718-51-0 3260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 3.1 1 02/09/11 11:10 71-43-2 514/10	•							
2-Fluorobiphenyl (S) 60 % 31-131 1 02/09/11 11:10 02/12/11 01:42 321-60-8 Terphenyl-d14 (S) 64 % 30-133 1 02/09/11 11:10 02/12/11 01:42 1718-51-0 3260/5035A Volatile Organics Analytical Method: EPA 8260 Senzene ND ug/kg 3.1 1 02/10/11 14:10 71-43-2 Ethylbenzene ND ug/kg 3.1 1 02/10/11 14:10 100-41-4 Toluene ND ug/kg 3.1 1 02/10/11 14:10 108-88-3 Xylene (Total) ND ug/kg 9.2 1 02/10/11 14:10 1330-20-7 Dibromofluoromethane (S) 95 % 80-136 1 02/10/11 14:10 1868-53-7 Toluene-d8 (S) 103 % 80-120 1 02/10/11 14:10 2037-26-5 4-Bromofluorobenzene (S) 103 % 72-122 1 02/10/11 14:10 460-00-4 1,2-Dichloroethane-d4 (S) 106 % 80-143 1 02/10/11 14:10 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87								
Benzene ND ug/kg 3.1 1 02/09/11 11:10 02/12/11 01:42 1718-51-0 Benzene ND ug/kg 3.1 1 02/10/11 14:10 71-43-2 Ethylbenzene ND ug/kg 3.1 1 02/10/11 14:10 100-41-4 Toluene ND ug/kg 3.1 1 02/10/11 14:10 108-88-3 Xylene (Total) ND ug/kg 9.2 1 02/10/11 14:10 1330-20-7 Dibromofluoromethane (S) 95 % 80-136 1 02/10/11 14:10 1868-53-7 Toluene-d8 (S) 103 % 80-120 1 02/10/11 14:10 2037-26-5 4-Bromofluorobenzene (S) 103 % 72-122 1 02/10/11 14:10 460-00-4 1,2-Dichloroethane-d4 (S) 106 % 80-143 1 02/10/11 14:10 17060-07-0	•							
Analytical Method: EPA 8260 Benzene Benzene ND ug/kg 3.1 1 02/10/11 14:10 71-43-2 Ethylbenzene ND ug/kg 3.1 1 02/10/11 14:10 100-41-4 Toluene ND ug/kg 3.1 1 02/10/11 14:10 100-41-4 Toluene ND ug/kg 3.1 1 02/10/11 14:10 100-41-4 Toluene ND ug/kg 9.2 1 02/10/11 14:10 1330-20-7 Dibromofluoromethane (S) 95 % 80-136 1 02/10/11 14:10 1868-53-7 Toluene-d8 (S) 4-Bromofluorobenzene (S) 103 % 80-120 1 02/10/11 14:10 2037-26-5 4-Bromofluorobenzene (S) 103 % 72-122 1 02/10/11 14:10 460-00-4 1,2-Dichloroethane-d4 (S) Analytical Method: ASTM D2974-87								
Ethylbenzene ND ug/kg 3.1 1 02/10/11 14:10 100-41-4 Toluene ND ug/kg 3.1 1 02/10/11 14:10 108-88-3 Xylene (Total) ND ug/kg 9.2 1 02/10/11 14:10 1330-20-7 Dibromofluoromethane (S) 95 % 80-136 1 02/10/11 14:10 1868-53-7 Toluene-d8 (S) 80-120 1 02/10/11 14:10 2037-26-5 4-Bromofluorobenzene (S) 103 % 72-122 1 02/10/11 14:10 460-00-4 1,2-Dichloroethane-d4 (S) 106 % 80-143 1 02/10/11 14:10 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87								
Ethylbenzene ND ug/kg 3.1 1 02/10/11 14:10 100-41-4 Toluene ND ug/kg 3.1 1 02/10/11 14:10 108-88-3 Xylene (Total) ND ug/kg 9.2 1 02/10/11 14:10 1330-20-7 Dibromofluoromethane (S) 95 % 80-136 1 02/10/11 14:10 1868-53-7 Toluene-d8 (S) 80-120 1 02/10/11 14:10 2037-26-5 4-Bromofluorobenzene (S) 103 % 72-122 1 02/10/11 14:10 460-00-4 1,2-Dichloroethane-d4 (S) 106 % 80-143 1 02/10/11 14:10 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	- Benzene	•		1		02/10/11 14:10	71-43-2	
Toluene ND ug/kg 3.1 1 02/10/11 14:10 108-88-3 Xylene (Total) ND ug/kg 9.2 1 02/10/11 14:10 1330-20-7 Dibromofluoromethane (S) 95 % 80-136 1 02/10/11 14:10 1868-53-7 Toluene-d8 (S) 103 % 80-120 1 02/10/11 14:10 2037-26-5 4-Bromofluorobenzene (S) 103 % 72-122 1 02/10/11 14:10 460-00-4 1,2-Dichloroethane-d4 (S) 106 % 80-143 1 02/10/11 14:10 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	Ethylbenzene			1				
Xylene (Total) ND ug/kg 9.2 1 02/10/11 14:10 1330-20-7 Dibromofluoromethane (S) 95 % 80-136 1 02/10/11 14:10 1868-53-7 Toluene-d8 (S) 103 % 80-120 1 02/10/11 14:10 2037-26-5 4-Bromofluorobenzene (S) 103 % 72-122 1 02/10/11 14:10 460-00-4 1,2-Dichloroethane-d4 (S) 106 % 80-143 1 02/10/11 14:10 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	•							
Dibromofluoromethane (S) 95 % 80-136 1 02/10/11 14:10 1868-53-7 Toluene-d8 (S) 103 % 80-120 1 02/10/11 14:10 2037-26-5 4-Bromofluorobenzene (S) 103 % 72-122 1 02/10/11 14:10 460-00-4 1,2-Dichloroethane-d4 (S) 106 % 80-143 1 02/10/11 14:10 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87								
Toluene-d8 (S) 103 % 80-120 1 02/10/11 14:10 2037-26-5 4-Bromofluorobenzene (S) 103 % 72-122 1 02/10/11 14:10 460-00-4 1,2-Dichloroethane-d4 (S) 106 % 80-143 1 02/10/11 14:10 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	, ,							
4-Bromofluorobenzene (S) 103 % 72-122 1 02/10/11 14:10 460-00-4 1,2-Dichloroethane-d4 (S) 106 % 80-143 1 02/10/11 14:10 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	. ,							
1,2-Dichloroethane-d4 (S) 106 % 80-143 1 02/10/11 14:10 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	` ,							
Percent Moisture Analytical Method: ASTM D2974-87	. ,							
·								
Jarcont Molecture 12.7 % 0.40 1 00/40/44 4E-04	Percent Moisture	12.7 %	0.10	1		02/12/11 15:21		

Date: 02/23/2011 11:03 AM

REPORT OF LABORATORY ANALYSIS

Page 14 of 26

02/10/11 12:13 100-41-4

02/10/11 12:13 108-88-3

02/10/11 12:13 1330-20-7

02/10/11 12:13 1868-53-7

02/10/11 12:13 2037-26-5

02/10/11 12:13 460-00-4

02/10/11 12:13 17060-07-0

ANALYTICAL RESULTS

Project: East Bay Redevelopment 138130

Pace Project No.: 256520

Ethylbenzene

Xylene (Total)

Toluene-d8 (S)

Dibromofluoromethane (S)

4-Bromofluorobenzene (S)

1,2-Dichloroethane-d4 (S)

Toluene

Lab ID: 256520011 Received: 02/08/11 10:20 Sample: TB-020711 Collected: 02/07/11 00:00 Matrix: Solid Results reported on a "wet-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx 02/11/11 15:20 02/12/11 04:14 Gasoline Range Organics 5.0 ND mg/kg 99 % a,a,a-Trifluorotoluene (S) 50-150 1 02/11/11 15:20 02/12/11 04:14 98-08-8 4-Bromofluorobenzene (S) 87 % 50-150 02/11/11 15:20 02/12/11 04:14 460-00-4 8260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 3.0 1 02/10/11 12:13 71-43-2

3.0

3.0

9.0

80-136

80-120

72-122

80-143

1

1

1

1

1

1

1

ND ug/kg

ND ug/kg

ND ug/kg

96 %

103 %

100 %

104 %

Date: 02/23/2011 11:03 AM

REPORT OF LABORATORY ANALYSIS

Page 15 of 26

QUALITY CONTROL DATA

Project: East Bay Redevelopment 138130

Pace Project No.: 256520

QC Batch: OEXT/3284 Analysis Method: NWTPH-Dx
QC Batch Method: EPA 3546 Analysis Description: NWTPH-Dx GCS

Associated Lab Samples: 256520001, 256520002, 256520003, 256520004, 256520005, 256520006, 256520007, 256520008, 256520009,

256520010

METHOD BLANK: 57662 Matrix: Solid

Associated Lab Samples: 256520001, 256520002, 256520003, 256520004, 256520005, 256520006, 256520007, 256520008, 256520009,

256520010

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Diesel Range SG		ND	20.0	02/09/11 21:19	
Motor Oil Range SG	mg/kg	ND	80.0	02/09/11 21:19	
n-Octacosane (S) SG	%	93	50-150	02/09/11 21:19	
o-Terphenyl (S) SG	%	86	50-150	02/09/11 21:19	

LABORATORY CONTROL SAMPLE: 57663

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Diesel Range SG	mg/kg	500	473	95	56-124	
Motor Oil Range SG	mg/kg	500	533	107	50-150	
n-Octacosane (S) SG	%			98	50-150	
o-Terphenyl (S) SG	%			101	50-150	

SAMPLE DUPLICATE: 57664

		256520003	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Diesel Range SG	mg/kg	ND	17.8J		
Motor Oil Range SG	mg/kg	ND	73.8J		
n-Octacosane (S) SG	%	92	92	6	
o-Terphenyl (S) SG	%	93	95	4	

Date: 02/23/2011 11:03 AM

QUALITY CONTROL DATA

Project: East Bay Redevelopment 138130

Pace Project No.: 256520

QC Batch: GCV/2150 Analysis Method: NWTPH-Gx

QC Batch Method: NWTPH-Gx Analysis Description: NWTPH-Gx Solid GCV

Associated Lab Samples: 256520001, 256520002, 256520003

METHOD BLANK: 57717 Matrix: Solid

Associated Lab Samples: 256520001, 256520002, 256520003

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Gasoline Range Organics	mg/kg	ND ND	5.0	02/09/11 22:37	
4-Bromofluorobenzene (S)	%	90	50-150	02/09/11 22:37	
a.a.a-Trifluorotoluene (S)	%	102	50-150	02/09/11 22:37	

LABORATORY CONTROL SAMPLE: 57718

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Gasoline Range Organics	mg/kg	12.5	11.0	88	54-156	
4-Bromofluorobenzene (S)	%			85	50-150	
a,a,a-Trifluorotoluene (S)	%			90	50-150	

SAMPLE DUPLICATE: 58143

Parameter	Units	256498001 Result	Dup Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND	.95J		
4-Bromofluorobenzene (S)	%	88	101	14	
a,a,a-Trifluorotoluene (S)	%	96	110	14	

SAMPLE DUPLICATE: 58144

		256498006	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND	.67J		
4-Bromofluorobenzene (S)	%	86	86	.7	
a,a,a-Trifluorotoluene (S)	%	98	97	.8	

Date: 02/23/2011 11:03 AM REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALITY CONTROL DATA

Project: East Bay Redevelopment 138130

Pace Project No.: 256520

QC Batch: GCV/2161 Analysis Method: NWTPH-Gx

QC Batch Method: NWTPH-Gx Analysis Description: NWTPH-Gx Solid GCV

Associated Lab Samples: 256520004, 256520005, 256520006, 256520007, 256520008, 256520009, 256520010, 256520011

METHOD BLANK: 58273 Matrix: Solid

Associated Lab Samples: 256520004, 256520005, 256520006, 256520007, 256520008, 256520009, 256520010, 256520011

_		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Gasoline Range Organics	mg/kg	ND	5.0	02/12/11 03:50	
4-Bromofluorobenzene (S)	%	87	50-150	02/12/11 03:50	
a,a,a-Trifluorotoluene (S)	%	101	50-150	02/12/11 03:50	

LABORATORY CONTROL SAMPLE: 58274

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Gasoline Range Organics	mg/kg	12.5	12.3	99	54-156	
4-Bromofluorobenzene (S)	%			92	50-150	
a,a,a-Trifluorotoluene (S)	%			95	50-150	

SAMPLE DUPLICATE: 58443

Parameter	Units	256575003 Result	Dup Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND	1.2J		
4-Bromofluorobenzene (S)	%	97	93	4	
a,a,a-Trifluorotoluene (S)	%	109	105	3	

SAMPLE DUPLICATE: 58444

		256520004	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	19.5	15.1	26	
4-Bromofluorobenzene (S)	%	100	99	1	
a,a,a-Trifluorotoluene (S)	%	112	110	1	

Date: 02/23/2011 11:03 AM REF

Project: East Bay Redevelopment 138130

Pace Project No.: 256520

QC Batch: OEXT/3283 Analysis Method: EPA 8270 by SIM

QC Batch Method: EPA 3546 Analysis Description: 8270/3546 MSSV PAH by SIM

Associated Lab Samples: 256520001, 256520002, 256520003, 256520004, 256520005, 256520006, 256520007, 256520008, 256520009,

256520010

METHOD BLANK: 57658 Matrix: Solid

Associated Lab Samples: 256520001, 256520002, 256520003, 256520004, 256520005, 256520006, 256520007, 256520008, 256520009,

256520010

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/kg	ND ND	6.7	02/11/11 21:44	
2-Methylnaphthalene	ug/kg	ND	6.7	02/11/11 21:44	
Acenaphthene	ug/kg	ND	6.7	02/11/11 21:44	
Acenaphthylene	ug/kg	ND	6.7	02/11/11 21:44	
Anthracene	ug/kg	ND	6.7	02/11/11 21:44	
Benzo(a)anthracene	ug/kg	ND	6.7	02/11/11 21:44	
Benzo(a)pyrene	ug/kg	ND	6.7	02/11/11 21:44	
Benzo(b)fluoranthene	ug/kg	ND	6.7	02/11/11 21:44	
Benzo(g,h,i)perylene	ug/kg	ND	6.7	02/11/11 21:44	
Benzo(k)fluoranthene	ug/kg	ND	6.7	02/11/11 21:44	
Chrysene	ug/kg	ND	6.7	02/11/11 21:44	
Dibenz(a,h)anthracene	ug/kg	ND	6.7	02/11/11 21:44	
Fluoranthene	ug/kg	ND	6.7	02/11/11 21:44	
Fluorene	ug/kg	ND	6.7	02/11/11 21:44	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	6.7	02/11/11 21:44	
Naphthalene	ug/kg	ND	6.7	02/11/11 21:44	
Phenanthrene	ug/kg	ND	6.7	02/11/11 21:44	
Pyrene	ug/kg	ND	6.7	02/11/11 21:44	
2-Fluorobiphenyl (S)	%	49	31-131	02/11/11 21:44	
Terphenyl-d14 (S)	%	60	30-133	02/11/11 21:44	

LABORATORY	CONTROL	SAMPLE:	57659
-------------------	---------	---------	-------

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1-Methylnaphthalene	 ug/kg		89.3	67	37-121	
2-Methylnaphthalene	ug/kg	133	90.0	68	33-132	
Acenaphthene	ug/kg	133	82.3	62	32-127	
Acenaphthylene	ug/kg	133	82.2	62	31-134	
Anthracene	ug/kg	133	83.5	63	42-135	
Benzo(a)anthracene	ug/kg	133	89.9	67	43-139	
Benzo(a)pyrene	ug/kg	133	91.5	69	44-144	
Benzo(b)fluoranthene	ug/kg	133	83.0	62	42-144	
Benzo(g,h,i)perylene	ug/kg	133	70.0	53	46-136	
Benzo(k)fluoranthene	ug/kg	133	84.9	64	45-147	
Chrysene	ug/kg	133	81.1	61	42-144	
Dibenz(a,h)anthracene	ug/kg	133	73.2	55	48-142	
Fluoranthene	ug/kg	133	86.5	65	44-143	
Fluorene	ug/kg	133	87.3	65	32-146	
Indeno(1,2,3-cd)pyrene	ug/kg	133	72.8	55	47-140	
Naphthalene	ug/kg	133	77.2	58	35-118	

Date: 02/23/2011 11:03 AM REPORT OF LABORATORY ANALYSIS

Page 19 of 26

Project: East Bay Redevelopment 138130

Pace Project No.: 256520

LABORATORY CONTROL SAMPLE: 57659

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Phenanthrene	ug/kg	133	86.8	65	42-131	
Pyrene	ug/kg	133	88.3	66	47-136	
2-Fluorobiphenyl (S)	%			58	31-131	
Terphenyl-d14 (S)	%			70	30-133	

MATRIX SPIKE & MATRIX SF	PIKE DUPLICAT	E: 57660			57661						
			MS	MSD							
	:	256520001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1-Methylnaphthalene	ug/kg	ND	143	143	99.5	100	68	68	31-123	.6	
2-Methylnaphthalene	ug/kg	ND	143	143	99.7	103	68	69	15-146	3	
Acenaphthene	ug/kg	ND	143	143	91.6	91.8	63	63	19-141	.2	
Acenaphthylene	ug/kg	ND	143	143	96.1	97.3	63	64	30-142	1	
Anthracene	ug/kg	ND	143	143	101	101	65	66	38-137	.6	
Benzo(a)anthracene	ug/kg	22.2	143	143	121	126	69	72	37-143	4	
Benzo(a)pyrene	ug/kg	21.7	143	143	123	123	71	71	33-147	.1	
Benzo(b)fluoranthene	ug/kg	19.2	143	143	125	109	74	62	25-156	14	
Benzo(g,h,i)perylene	ug/kg	11.2	143	143	93.0	92.9	57	57	26-142	.1	
Benzo(k)fluoranthene	ug/kg	12.1	143	143	95.4	107	58	66	35-142	11	
Chrysene	ug/kg	19.7	143	143	113	114	66	66	23-150	.6	
Dibenz(a,h)anthracene	ug/kg	ND	143	143	84.1	83.4	57	56	41-140	.9	
Fluoranthene	ug/kg	41.2	143	143	150	153	76	78	25-155	2	
Fluorene	ug/kg	ND	143	143	101	102	68	68	33-152	.5	
Indeno(1,2,3-cd)pyrene	ug/kg	8.8	143	143	90.8	90.9	57	57	36-139	.08	
Naphthalene	ug/kg	ND	143	143	87.5	89.0	58	59	25-121	2	
Phenanthrene	ug/kg	29.7	143	143	141	149	78	83	29-141	6	
Pyrene	ug/kg	54.2	143	143	187	199	93	101	36-145	6	
2-Fluorobiphenyl (S)	%						58	59	31-131		
Terphenyl-d14 (S)	%						75	74	30-133		

Date: 02/23/2011 11:03 AM

REPORT OF LABORATORY ANALYSIS

Page 20 of 26

Project: East Bay Redevelopment 138130

Pace Project No.: 256520

QC Batch: MSV/3825 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5035A Volatile Organics

Associated Lab Samples: 256520001, 256520002, 256520003, 256520004

METHOD BLANK: 57637 Matrix: Solid

Associated Lab Samples: 256520001, 256520002, 256520003, 256520004

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND	3.0	02/09/11 12:43	
Ethylbenzene	ug/kg	ND	3.0	02/09/11 12:43	
Toluene	ug/kg	ND	3.0	02/09/11 12:43	
Xylene (Total)	ug/kg	ND	9.0	02/09/11 12:43	
1,2-Dichloroethane-d4 (S)	%	102	80-143	02/09/11 12:43	
4-Bromofluorobenzene (S)	%	105	72-122	02/09/11 12:43	
Dibromofluoromethane (S)	%	95	80-136	02/09/11 12:43	
Toluene-d8 (S)	%	104	80-120	02/09/11 12:43	

LABORATORY CONTROL SAME	PLE & LCSD: 57638		57	7639						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene	ug/kg	50	51.0	48.4	102	97	75-133	5	30	
Ethylbenzene	ug/kg	50	50.5	46.7	101	93	68-131	8	30	
Toluene	ug/kg	50	55.1	48.4	110	97	73-124	13	30	
Xylene (Total)	ug/kg	150	158	145	105	96	68-130	9	30	
1,2-Dichloroethane-d4 (S)	%				111	98	80-143			
4-Bromofluorobenzene (S)	%				103	109	72-122			
Dibromofluoromethane (S)	%				103	95	80-136			
Toluene-d8 (S)	%				107	99	80-120			

Date: 02/23/2011 11:03 AM

Project: East Bay Redevelopment 138130

Pace Project No.: 256520

QC Batch: MSV/3835 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5035A Volatile Organics

Associated Lab Samples: 256520005, 256520006, 256520007, 256520008, 256520009, 256520010, 256520011

METHOD BLANK: 57832 Matrix: Solid

Associated Lab Samples: 256520005, 256520006, 256520007, 256520008, 256520009, 256520010, 256520011

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND	3.0	02/10/11 11:54	
Ethylbenzene	ug/kg	ND	3.0	02/10/11 11:54	
Toluene	ug/kg	ND	3.0	02/10/11 11:54	
Xylene (Total)	ug/kg	ND	9.0	02/10/11 11:54	
1,2-Dichloroethane-d4 (S)	%	109	80-143	02/10/11 11:54	
4-Bromofluorobenzene (S)	%	98	72-122	02/10/11 11:54	
Dibromofluoromethane (S)	%	94	80-136	02/10/11 11:54	
Toluene-d8 (S)	%	101	80-120	02/10/11 11:54	

LABORATORY CONTROL SAME	PLE & LCSD: 57833		58	3364						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene	ug/kg	50	45.0	45.0	90	90	75-133	.008	30	
Ethylbenzene	ug/kg	50	44.0	43.7	88	87	68-131	.6	30	
Toluene	ug/kg	50	47.1	44.7	94	89	73-124	5	30	
Xylene (Total)	ug/kg	150	138	135	92	90	68-130	2	30	
1,2-Dichloroethane-d4 (S)	%				109	104	80-143			
4-Bromofluorobenzene (S)	%				105	105	72-122			
Dibromofluoromethane (S)	%				99	96	80-136			
Toluene-d8 (S)	%				106	100	80-120			

Date: 02/23/2011 11:03 AM

Qualifiers

QUALITY CONTROL DATA

Project: East Bay Redevelopment 138130

Pace Project No.: 256520

QC Batch: PMST/1517 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 256520001, 256520002, 256520003, 256520004, 256520005, 256520006, 256520007, 256520008, 256520009,

256520010

SAMPLE DUPLICATE: 58349

256499001 Dup
Parameter Units Result Repl

Percent Moisture % 11.4 12.2 6

SAMPLE DUPLICATE: 58350

 Percent Moisture
 Units
 256520010 Result
 Dup Result
 RPD
 Qualifiers

 Percent Moisture
 %
 12.7
 11.8
 7

Date: 02/23/2011 11:03 AM REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALIFIERS

Project: East Bay Redevelopment 138130

Pace Project No.: 256520

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel Clean-Up

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-S Pace Analytical Services - Seattle

BATCH QUALIFIERS

Batch: MSV/3825

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: MSV/3835

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Date: 02/23/2011 11:03 AM

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: East Bay Redevelopment 138130

Pace Project No.: 256520

256520002 SPL-22-2 EPA 3546 OEXT/3284 NWTPH-Dx GCSV/2248 256520003 SPL-23-3 EPA 3546 OEXT/3284 NWTPH-Dx GCSV/2248 256520005 SPL-23-2 EPA 3546 OEXT/3284 NWTPH-Dx GCSV/2248 256520006 SPL-23-3 EPA 3546 OEXT/3284 NWTPH-Dx GCSV/2248 256520007 SPL-24-1 EPA 3546 OEXT/3284 NWTPH-Dx GCSV/2248 256520008 SPL-24-2 EPA 3546 OEXT/3284 NWTPH-Dx GCSV/2248 256520009 SPL-24-3 EPA 3546 OEXT/3284 NWTPH-Dx GCSV/2248 256520009 SPL-24-4 EPA 3546 OEXT/3284 NWTPH-Dx GCSV/2248 256520001 SPL-22-1 NWTPH-Gx GCV/2150 NWTPH-Dx GCSV/2248 256520001 SPL-22-2 NWTPH-Gx GCV/2160 NWTPH-Gx GCV/2168 256520002 SPL-22-3 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520003 SPL-23-3 NWTPH-Gx	Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
256520002 SPL-22-3 EPA 3546 OEXT/3284 NWTPH-DD GCSV/2248 256520004 SPL-23-1 EPA 3546 OEXT/3284 NWTPH-DD GCSV/2248 256520005 SPL-23-2 EPA 3546 OEXT/3284 NWTPH-DD GCSV/2248 256520006 SPL-23-3 EPA 3546 OEXT/3284 NWTPH-DD GCSV/2248 256520007 SPL-24-1 EPA 3546 OEXT/3284 NWTPH-DD GCSV/2248 256520008 SPL-24-2 EPA 3546 OEXT/3284 NWTPH-DD GCSV/2248 256520009 SPL-24-3 EPA 3546 OEXT/3284 NWTPH-DD GCSV/2248 256520001 SPL-22-1 NWTPH-GX OEXT/3284 NWTPH-DD GCSV/2248 256520002 SPL-22-2 NWTPH-GX GCV/2150 NWTPH-GX GCV/2160 256520003 SPL-23-3 NWTPH-GX GCV/2161 NWTPH-GX GCV/2161 256520004 SPL-23-1 NWTPH-GX GCV/2161 NWTPH-GX GCV/2161 256520005 SPL-23-3 NWTPH-GX	256520001	SPL-22-1	EPA 3546	OEXT/3284	NWTPH-Dx	GCSV/2248
26522003 SPL-22-3 EPA 3546 OEXT/3224 NWTPH-DD GCSV/2245 265620005 SPL-23-2 EPA 3546 OEXT/3284 NWTPH-DD GCSV/2245 265620006 SPL-23-2 EPA 3546 OEXT/3284 NWTPH-DD GCSV/2246 265620007 SPL-24-1 EPA 3546 OEXT/3284 NWTPH-DD GCSV/2246 265620008 SPL-24-2 EPA 3546 OEXT/3284 NWTPH-DD GCSV/2246 265620009 SPL-24-3 EPA 3546 OEXT/3284 NWTPH-DD GCSV/2246 265620001 SPL-24-4 EPA 3546 OEXT/3284 NWTPH-DD GCSV/2246 256520002 SPL-22-1 NWTPH-GX GCV/2150 NWTPH-GX GCV/2150 256520003 SPL-22-2 NWTPH-GX GCV/2150 NWTPH-GX GCV/2161 256520004 SPL-23-1 NWTPH-GX GCV/2161 NWTPH-GX GCV/2161 256520005 SPL-23-1 NWTPH-GX GCV/2161 NWTPH-GX GCV/2161 256520006 SPL-23-1 NWTPH-GX		SPL-22-2			NWTPH-Dx	GCSV/2248
256520004 SPL-23-1 EPA 354B OEXT/3284 NVTPH-Dx GCSW/224 256520006 SPL-23-3 EPA 354B OEXT/3284 NWTPH-Dx GCSW/224 256520007 SPL-24-1 EPA 354B OEXT/3284 NWTPH-Dx GCSW/224 256520008 SPL-24-2 EPA 354B OEXT/3284 NWTPH-Dx GCSW/224 256520009 SPL-24-3 EPA 354B OEXT/3284 NWTPH-Dx GCSW/224 256520001 SPL-24-4 EPA 354B OEXT/3284 NWTPH-Dx GCSW/224B 256520001 SPL-22-1 NWTPH-Gx GCV/2150 NWTPH-Gx GCV/216B 256520002 SPL-22-2 NWTPH-Gx GCV/2150 NWTPH-Gx GCV/216B 256520005 SPL-23-3 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520005 SPL-23-3 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520007 SPL-24-1 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520008 SPL-24-2 NWTPH-Gx G	256520003	SPL-22-3		OEXT/3284	NWTPH-Dx	GCSV/2248
26520005 SPL-23-2 EPA 3546 OEXT/3284 NNTPH-Dx GCSW/2245 256520007 SPL-24-1 EPA 3546 OEXT/3284 NWTPH-Dx GCSW/2246 256520007 SPL-24-1 EPA 3546 OEXT/3284 NWTPH-Dx GCSW/2246 256520009 SPL-24-2 EPA 3546 OEXT/3284 NWTPH-Dx GCSW/2246 256520001 SPL-24-4 EPA 3546 OEXT/3284 NWTPH-Dx GCSW/2246 256520001 SPL-24-4 EPA 3546 OEXT/3284 NWTPH-Dx GCSW/2246 256520002 SPL-22-1 NWTPH-Gx GCV/2150 NWTPH-Gx GCV/2168 256520003 SPL-22-2 NWTPH-Gx GCV/2150 NWTPH-Gx GCV/2163 256520004 SPL-23-1 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520005 SPL-23-2 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520006 SPL-23-3 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520007 SPL-24-4 NWTPH-Gx <	256520004	SPL-23-1			NWTPH-Dx	GCSV/2248
26620006 SPL-23-3 EPA 3546 OEXT/3284 MYTPH-Dx GCSW/2246 256520007 SPL-24-1 EPA 3546 OEXT/3284 MYTPH-Dx GCSW/2246 256520008 SPL-24-2 EPA 3546 OEXT/3284 MYTPH-Dx GCSW/2246 256520001 SPL-24-3 EPA 3546 OEXT/3284 MYTPH-Dx GCSW/2246 256520001 SPL-22-1 NWTPH-Gx GCV/2150 MVTPH-Gx GCV/2168 256520002 SPL-22-2 NWTPH-Gx GCV/2150 NWTPH-Gx GCV/2168 256520003 SPL-23-1 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2161 256520004 SPL-23-1 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520005 SPL-23-3 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520006 SPL-24-1 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520007 SPL-24-1 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2161 256520008 SPL-24-2 NWTPH-Gx G						GCSV/2248
265620007 SPL-24-1 EPA 3546 OEXT/3284 NWTPH-Dx GCSW/224 265620009 SPL-24-3 EPA 3546 OEXT/3284 NWTPH-Dx GCSW/2246 26562000 SPL-24-4 EPA 3546 OEXT/3284 NWTPH-Dx GCSW/2246 265620001 SPL-24-1 NWTPH-Ox GCV/2150 NWTPH-Ox GCSV/2248 265620002 SPL-22-2 NWTPH-Gx GCV/2150 NWTPH-Gx GCV/2168 265620003 SPL-22-3 NWTPH-Gx GCV/2150 NWTPH-Gx GCV/2168 265620004 SPL-23-1 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 266520005 SPL-23-2 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 266520007 SPL-24-1 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 266520007 SPL-24-2 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 266520007 SPL-24-3 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 266520008 SPL-24-4 NWTPH-Gx GCV						
256520008 SPL-24-3 EPA 3546 OEXT/3284 NWTPH-Dx GCSW/2246 256520010 SPL-24-4 EPA 3546 OEXT/3284 NWTPH-Dx GCSW/2246 256520010 SPL-24-4 EPA 3546 OEXT/3284 NWTPH-Dx GCSW/2246 256520001 SPL-22-1 NWTPH-Gx GCV/2150 NWTPH-Gx GCV/2168 256520003 SPL-22-2 NWTPH-Gx GCV/2150 NWTPH-Gx GCV/2168 256520004 SPL-23-1 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520005 SPL-23-2 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520006 SPL-23-3 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520007 SPL-24-1 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520008 SPL-24-1 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520009 SPL-24-3 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520001 SPL-24-1 NWTPH-Gx GC						GCSV/2248
265620001 SPL-24-4 EPA 3546 OEXT/3284 NWTPH-Dx GCSV/2246 256520010 SPL-22-4 EPA 3546 OEXT/3284 NWTPH-Dx GCSV/2246 256520001 SPL-22-1 NWTPH-Gx GCV/2150 NWTPH-Gx GCV/2168 256520003 SPL-22-2 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2168 256520004 SPL-23-1 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520005 SPL-23-2 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520006 SPL-23-3 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520007 SPL-24-1 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520008 SPL-24-2 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520009 SPL-24-3 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520001 TB-020711 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520001 TB-02711 NWTPH-Gx GCV						GCSV/2248
256520010 SPL-244 EPA 3546 OEXT/3284 NWTPH-DX GCSV/2242 256520001 SPL-221 NWTPH-GX GCV/2160 NWTPH-GX GCV/2168 256520002 SPL-22-3 NWTPH-GX GCV/2160 NWTPH-GX GCV/2168 256520004 SPL-23-1 NWTPH-GX GCV/2161 NWTPH-GX GCV/2163 256520005 SPL-23-2 NWTPH-GX GCV/2161 NWTPH-GX GCV/2163 256520006 SPL-23-3 NWTPH-GX GCV/2161 NWTPH-GX GCV/2163 256520007 SPL-24-1 NWTPH-GX GCV/2161 NWTPH-GX GCV/2163 256520008 SPL-24-3 NWTPH-GX GCV/2161 NWTPH-GX GCV/2163 256520009 SPL-24-3 NWTPH-GX GCV/2161 NWTPH-GX GCV/2163 256520010 SPL-24-4 NWTPH-GX GCV/2161 NWTPH-GX GCV/2163 256520001 SPL-22-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/152C 256520002 SPL-22-3 EPA 3546 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
256520002 SPL-22-2 NWTPH-Gx GCV/2150 NWTPH-Gx GCV/2168 256520003 SPL-23-3 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520005 SPL-23-2 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520006 SPL-23-3 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520007 SPL-24-1 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520008 SPL-24-2 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520001 SPL-24-3 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520010 SPL-24-4 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520011 TB-020711 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520001 SPL-22-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520002 SPL-22-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520003 SPL-23-1 EPA 3546						GCSV/2248
256520003 SPL-22-3 NWTPH-GX GCV/2150 NWTPH-GX GCV/2161 256520004 SPL-23-1 NWTPH-GX GCV/2161 NWTPH-GX GCV/2163 256520005 SPL-23-2 NWTPH-GX GCV/2161 NWTPH-GX GCV/2163 256520006 SPL-24-1 NWTPH-GX GCV/2161 NWTPH-GX GCV/2163 256520008 SPL-24-2 NWTPH-GX GCV/2161 NWTPH-GX GCV/2163 256520009 SPL-24-3 NWTPH-GX GCV/2161 NWTPH-GX GCV/2163 256520010 SPL-24-4 NWTPH-GX GCV/2161 NWTPH-GX GCV/2163 256520011 TB-020711 NWTPH-GX GCV/2161 NWTPH-GX GCV/2163 256520001 SPL-22-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520002 SPL-22-2 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520003 SPL-23-3 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520005 SPL-23-1 EPA 35	256520001	SPL-22-1	NWTPH-Gx	GCV/2150	NWTPH-Gx	GCV/2168
256520004 SPL-23-1 NWTPH-GX GCV/2161 NWTPH-GX GCV/2163 256520005 SPL-23-2 NWTPH-GX GCV/2161 NWTPH-GX GCV/2163 256520006 SPL-23-3 NWTPH-GX GCV/2161 NWTPH-GX GCV/2163 256520007 SPL-24-1 NWTPH-GX GCV/2161 NWTPH-GX GCV/2163 256520008 SPL-24-2 NWTPH-GX GCV/2161 NWTPH-GX GCV/2163 256520009 SPL-24-4 NWTPH-GX GCV/2161 NWTPH-GX GCV/2163 256520001 SPL-24-4 NWTPH-GX GCV/2161 NWTPH-GX GCV/2163 256520001 SPL-22-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520002 SPL-22-3 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520003 SPL-23-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520004 SPL-23-2 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520005 SPL-23-3 <t< td=""><td>256520002</td><td>SPL-22-2</td><td>NWTPH-Gx</td><td>GCV/2150</td><td>NWTPH-Gx</td><td>GCV/2168</td></t<>	256520002	SPL-22-2	NWTPH-Gx	GCV/2150	NWTPH-Gx	GCV/2168
256520005 SPL-23-2 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520006 SPL-23-3 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520007 SPL-24-1 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520008 SPL-24-3 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520010 SPL-24-4 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520011 TB-020711 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520001 SPL-22-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520002 SPL-22-2 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520003 SPL-23-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520004 SPL-23-2 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520005 SPL-23-3 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520006 SPL-24-1	256520003	SPL-22-3	NWTPH-Gx	GCV/2150	NWTPH-Gx	GCV/2168
256520006 SPL-23-3 NWTPH-GX GCV/2161 NWTPH-GX GCV/2163 256520007 SPL-24-1 NWTPH-GX GCV/2161 NWTPH-GX GCV/2163 256520008 SPL-24-2 NWTPH-GX GCV/2161 NWTPH-GX GCV/2163 25652009 SPL-24-3 NWTPH-GX GCV/2161 NWTPH-GX GCV/2161 256520010 SPL-24-4 NWTPH-GX GCV/2161 NWTPH-GX GCV/2163 256520011 TB-020711 NWTPH-GX GCV/2161 NWTPH-GX GCV/2163 256520012 SPL-22-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520002 SPL-22-3 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520003 SPL-23-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520004 SPL-23-2 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520005 SPL-23-2 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520007 SPL-24-1					NWTPH-Gx	
256520007 SPL-24-1 NWTPH-GX GCV/2161 NWTPH-GX GCV/2163 256520008 SPL-24-2 NWTPH-GX GCV/2161 NWTPH-GX GCV/2163 256520010 SPL-24-3 NWTPH-GX GCV/2161 NWTPH-GX GCV/2163 256520010 SPL-24-4 NWTPH-GX GCV/2161 NWTPH-GX GCV/2163 256520011 TB-020711 NWTPH-GX GCV/2161 NWTPH-GX GCV/2163 256520001 SPL-22-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520002 SPL-22-3 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520003 SPL-23-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520004 SPL-23-2 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520005 SPL-23-3 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520006 SPL-23-3 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520007 SPL-2	256520005	SPL-23-2	NWTPH-Gx	GCV/2161	NWTPH-Gx	GCV/2163
256520008 SPL-24-2 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520009 SPL-24-3 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520101 SPL-24-4 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520011 TB-020711 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520001 SPL-22-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520002 SPL-22-3 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520003 SPL-23-3 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520004 SPL-23-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520005 SPL-23-3 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520006 SPL-24-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520007 SPL-24-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520009	256520006	SPL-23-3	NWTPH-Gx	GCV/2161	NWTPH-Gx	GCV/2163
256520009 SPL-24-3 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520010 SPL-24-4 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520011 TB-020711 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 25652001 SPL-22-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 25652002 SPL-22-3 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520003 SPL-23-3 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520004 SPL-23-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520005 SPL-23-2 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520006 SPL-23-3 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520007 SPL-24-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520008 SPL-24-2 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520001	256520007	SPL-24-1	NWTPH-Gx	GCV/2161	NWTPH-Gx	GCV/2163
256520010 SPL-24-4 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520011 TB-020711 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520001 SPL-22-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1522 256520002 SPL-22-2 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1522 256520003 SPL-23-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1522 256520004 SPL-23-2 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1522 256520005 SPL-23-2 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1522 256520006 SPL-23-3 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1522 256520007 SPL-24-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1522 256520008 SPL-24-2 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1522 256520009 SPL-24-4 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1522 25652	256520008	SPL-24-2	NWTPH-Gx	GCV/2161	NWTPH-Gx	GCV/2163
256520011 TB-020711 NWTPH-Gx GCV/2161 NWTPH-Gx GCV/2163 256520001 SPL-22-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520002 SPL-22-2 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520003 SPL-22-3 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520004 SPL-23-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520005 SPL-23-2 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520006 SPL-23-3 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520007 SPL-24-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520008 SPL-24-2 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520010 SPL-24-3 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520010 SPL-24-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520	256520009	SPL-24-3	NWTPH-Gx	GCV/2161	NWTPH-Gx	GCV/2163
256520001 SPL-22-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520002 SPL-22-2 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520003 SPL-22-3 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520004 SPL-23-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520005 SPL-23-2 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520006 SPL-23-3 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520007 SPL-24-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520008 SPL-24-2 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520010 SPL-24-3 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520010 SPL-24-4 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520001 SPL-22-1 EPA 8260 MSV/3825 EPA 8270 by SIM MSSV/1520	256520010	SPL-24-4	NWTPH-Gx	GCV/2161	NWTPH-Gx	GCV/2163
256520002 SPL-22-2 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520003 SPL-22-3 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520004 SPL-23-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520005 SPL-23-2 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 25652006 SPL-23-3 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 25652007 SPL-24-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 25652008 SPL-24-2 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 25652009 SPL-24-3 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 25652001 SPL-24-4 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 25652001 SPL-22-1 EPA 8260 MSV/3825 EPA 8270 by SIM MSSV/1520 256520002 SPL-22-3 EPA 8260 MSV/3825 EPA 8270 by SIM MSSV/1520	256520011	TB-020711	NWTPH-Gx	GCV/2161	NWTPH-Gx	GCV/2163
256520003 SPL-22-3 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520004 SPL-23-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520005 SPL-23-2 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520006 SPL-23-3 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 25652007 SPL-24-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 25652008 SPL-24-2 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 25652009 SPL-24-3 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520010 SPL-24-4 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 25652001 SPL-22-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 25652001 SPL-22-1 EPA 8260 MSV/3825 EPA 8270 by SIM MSSV/1520 25652002 SPL-23-3 EPA 8260 MSV/3835 MSV/3835 ASM 256520005	256520001	SPL-22-1	EPA 3546	OEXT/3283		MSSV/1520
256520004 SPL-23-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 25652005 SPL-23-2 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 25652006 SPL-23-3 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 25652007 SPL-24-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 25652008 SPL-24-2 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 25652009 SPL-24-3 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520010 SPL-24-4 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520011 SPL-22-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 25652001 SPL-22-1 EPA 8260 MSV/3825 EPA 8270 by SIM MSSV/1520 25652002 SPL-22-2 EPA 8260 MSV/3825 MSV/3825 SPA 8270 by SIM MSSV/1520 256520005 SPL-23-3 EPA 8260 MSV/3835 MSV/3835 SPA 8260 <th< td=""><td>256520002</td><td>SPL-22-2</td><td>EPA 3546</td><td>OEXT/3283</td><td>EPA 8270 by SIM</td><td>MSSV/1520</td></th<>	256520002	SPL-22-2	EPA 3546	OEXT/3283	EPA 8270 by SIM	MSSV/1520
256520005 SPL-23-2 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520006 SPL-23-3 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520007 SPL-24-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520008 SPL-24-2 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520010 SPL-24-3 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520010 SPL-24-4 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520011 SPL-24-4 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520001 SPL-22-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520001 SPL-22-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520002 SPL-22-1 EPA 8260 MSV/3825 MSV/3825 256520003 SPL-23-3 EPA 8260 MSV/3835 MSV/3835 256520004 SPL-24-4 EPA 8	256520003	SPL-22-3	EPA 3546	OEXT/3283	EPA 8270 by SIM	MSSV/1520
256520006 SPL-23-3 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520007 SPL-24-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520008 SPL-24-2 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520009 SPL-24-3 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520010 SPL-24-4 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520011 SPL-24-4 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520001 SPL-24-4 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520001 SPL-24-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520002 SPL-22-1 EPA 8260 MSV/3825 MSV/3825 MSV/3825 256520003 SPL-23-3 EPA 8260 MSV/3835 MSV/3835 MSV/3835 256520004 SPL-24-3 EPA 8260 MSV/3835 MSV/3835 MSV/3835 256520010	256520004	SPL-23-1	EPA 3546	OEXT/3283	EPA 8270 by SIM	MSSV/1520
256520007 SPL-24-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520008 SPL-24-2 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520009 SPL-24-3 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520010 SPL-24-4 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520001 SPL-22-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520001 SPL-22-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520001 SPL-22-1 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520002 SPL-22-1 EPA 8260 MSV/3825 MSV/3825 MSV/3825 256520003 SPL-23-2 EPA 8260 MSV/3835 MSV/3835 MSV/3835 256520006 SPL-24-1 EPA 8260 MSV/3835 MSV/3835 MSV/3835 256520009 SPL-24-2 EPA 8260 MSV/3835 MSV/3835 MSV/3835 256520001 <						MSSV/1520
256520008 SPL-24-2 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520009 SPL-24-3 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520010 SPL-24-4 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520001 SPL-22-1 EPA 8260 MSV/3825 EPA 8270 by SIM MSSV/1520 256520002 SPL-22-2 EPA 8260 MSV/3825 EPA 8270 by SIM MSSV/1520 256520003 SPL-22-2 EPA 8260 MSV/3825 MSV/3825 ASSTAND 2874 ASSTAND 2874 ASSTAND 2874 ASSTAND 2874-87 MSSV/3835 ASSTAND 2874-87 MSSV/3835 ASSTAND 2874-87 PMST/1517 ASSTM D2974-87 PMST/1517 256520001 SPL-22-1 ASTM D2974-87 PMST/1517 PMST/1517 ASTM D2974-87 PMST/1517 256520003 SPL-22-3 ASTM D2974-87 PMST/1517 PMST/1517 256520003 SPL-22-3 ASTM D2974-87 PMST/1517	256520006	SPL-23-3	EPA 3546	OEXT/3283		MSSV/1520
256520009 SPL-24-3 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520010 SPL-24-4 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520001 SPL-22-1 EPA 8260 MSV/3825 EPA 8270 by SIM MSSV/1520 256520002 SPL-22-2 EPA 8260 MSV/3825 EPA 8270 by SIM MSSV/1520 256520002 SPL-22-2 EPA 8260 MSV/3825 MSV/3825 EPA 8260 MSV/3835 256520004 SPL-23-1 EPA 8260 MSV/3835 MSV/3835 MSV/3835 EPA 8260 MSV/3835 MSV/3835 MSV/3835 MSV/3835 EPA 8260 MSV/3835	256520007	SPL-24-1			•	MSSV/1520
256520010 SPL-24-4 EPA 3546 OEXT/3283 EPA 8270 by SIM MSSV/1520 256520001 SPL-22-1 EPA 8260 MSV/3825 256520002 SPL-22-2 EPA 8260 MSV/3825 256520003 SPL-22-3 EPA 8260 MSV/3825 256520004 SPL-23-1 EPA 8260 MSV/3835 256520005 SPL-23-2 EPA 8260 MSV/3835 256520006 SPL-23-3 EPA 8260 MSV/3835 256520007 SPL-24-1 EPA 8260 MSV/3835 256520008 SPL-24-2 EPA 8260 MSV/3835 256520010 SPL-24-3 EPA 8260 MSV/3835 256520011 TB-020711 EPA 8260 MSV/3835 256520001 SPL-22-4 EPA 8260 MSV/3835 256520001 SPL-22-1 ASTM D2974-87 PMST/1517 256520002 SPL-22-2 ASTM D2974-87 PMST/1517 256520003 SPL-22-3 ASTM D2974-87 PMST/1517	256520008	SPL-24-2	EPA 3546	OEXT/3283	•	MSSV/1520
256520001 SPL-22-1 EPA 8260 MSV/3825 256520003 SPL-22-3 EPA 8260 MSV/3825 256520004 SPL-23-1 EPA 8260 MSV/3825 256520005 SPL-23-2 EPA 8260 MSV/3825 256520006 SPL-23-3 EPA 8260 MSV/3835 256520007 SPL-24-1 EPA 8260 MSV/3835 256520008 SPL-24-2 EPA 8260 MSV/3835 256520009 SPL-24-3 EPA 8260 MSV/3835 256520009 SPL-24-4 EPA 8260 MSV/3835 256520010 SPL-24-4 EPA 8260 MSV/3835 256520011 TB-020711 EPA 8260 MSV/3835 256520001 SPL-22-1 ASTM D2974-87 PMST/1517 256520002 SPL-22-2 ASTM D2974-87 PMST/1517 256520003 SPL-22-3 ASTM D2974-87 PMST/1517					•	MSSV/1520
256520002 SPL-22-2 EPA 8260 MSV/3825 256520003 SPL-22-3 EPA 8260 MSV/3825 256520004 SPL-23-1 EPA 8260 MSV/3825 256520005 SPL-23-2 EPA 8260 MSV/3835 256520006 SPL-23-3 EPA 8260 MSV/3835 256520007 SPL-24-1 EPA 8260 MSV/3835 256520008 SPL-24-2 EPA 8260 MSV/3835 256520010 SPL-24-3 EPA 8260 MSV/3835 256520010 SPL-24-4 EPA 8260 MSV/3835 256520011 TB-020711 EPA 8260 MSV/3835 256520001 SPL-22-1 ASTM D2974-87 PMST/1517 256520002 SPL-22-2 ASTM D2974-87 PMST/1517 256520003 SPL-22-3 ASTM D2974-87 PMST/1517	256520010	SPL-24-4	EPA 3546	OEXT/3283	EPA 8270 by SIM	MSSV/1520
256520003 SPL-22-3 EPA 8260 MSV/3825 256520004 SPL-23-1 EPA 8260 MSV/3825 256520005 SPL-23-2 EPA 8260 MSV/3835 256520006 SPL-23-3 EPA 8260 MSV/3835 256520007 SPL-24-1 EPA 8260 MSV/3835 256520008 SPL-24-2 EPA 8260 MSV/3835 256520019 SPL-24-3 EPA 8260 MSV/3835 256520010 SPL-24-4 EPA 8260 MSV/3835 256520011 TB-020711 EPA 8260 MSV/3835 256520001 SPL-22-1 ASTM D2974-87 PMST/1517 256520002 SPL-22-2 ASTM D2974-87 PMST/1517 256520003 SPL-22-3 ASTM D2974-87 PMST/1517						
256520004 SPL-23-1 EPA 8260 MSV/3825 256520005 SPL-23-2 EPA 8260 MSV/3835 256520006 SPL-23-3 EPA 8260 MSV/3835 256520007 SPL-24-1 EPA 8260 MSV/3835 256520008 SPL-24-2 EPA 8260 MSV/3835 256520009 SPL-24-3 EPA 8260 MSV/3835 256520010 SPL-24-4 EPA 8260 MSV/3835 256520011 TB-020711 EPA 8260 MSV/3835 256520001 SPL-22-1 ASTM D2974-87 PMST/1517 256520002 SPL-22-2 ASTM D2974-87 PMST/1517 256520003 SPL-22-3 ASTM D2974-87 PMST/1517	256520002		EPA 8260	MSV/3825		
256520005 SPL-23-2 EPA 8260 MSV/3835 256520006 SPL-23-3 EPA 8260 MSV/3835 256520007 SPL-24-1 EPA 8260 MSV/3835 256520008 SPL-24-2 EPA 8260 MSV/3835 256520009 SPL-24-3 EPA 8260 MSV/3835 256520010 SPL-24-4 EPA 8260 MSV/3835 256520011 TB-020711 EPA 8260 MSV/3835 256520001 SPL-22-1 ASTM D2974-87 PMST/1517 256520002 SPL-22-2 ASTM D2974-87 PMST/1517 256520003 SPL-22-3 ASTM D2974-87 PMST/1517	256520003	SPL-22-3		MSV/3825		
256520006 SPL-23-3 EPA 8260 MSV/3835 256520007 SPL-24-1 EPA 8260 MSV/3835 256520008 SPL-24-2 EPA 8260 MSV/3835 256520009 SPL-24-3 EPA 8260 MSV/3835 256520010 SPL-24-4 EPA 8260 MSV/3835 256520011 TB-020711 EPA 8260 MSV/3835 256520001 SPL-22-1 ASTM D2974-87 PMST/1517 256520002 SPL-22-2 ASTM D2974-87 PMST/1517 256520003 SPL-22-3 ASTM D2974-87 PMST/1517	256520004	SPL-23-1	EPA 8260	MSV/3825		
256520007 SPL-24-1 EPA 8260 MSV/3835 256520008 SPL-24-2 EPA 8260 MSV/3835 256520009 SPL-24-3 EPA 8260 MSV/3835 256520010 SPL-24-4 EPA 8260 MSV/3835 256520011 TB-020711 EPA 8260 MSV/3835 256520001 SPL-22-1 ASTM D2974-87 PMST/1517 256520002 SPL-22-2 ASTM D2974-87 PMST/1517 256520003 SPL-22-3 ASTM D2974-87 PMST/1517						
256520008 SPL-24-2 EPA 8260 MSV/3835 256520009 SPL-24-3 EPA 8260 MSV/3835 256520010 SPL-24-4 EPA 8260 MSV/3835 256520011 TB-020711 EPA 8260 MSV/3835 256520001 SPL-22-1 ASTM D2974-87 PMST/1517 256520002 SPL-22-2 ASTM D2974-87 PMST/1517 256520003 SPL-22-3 ASTM D2974-87 PMST/1517	256520006	SPL-23-3	EPA 8260	MSV/3835		
256520009 SPL-24-3 EPA 8260 MSV/3835 256520010 SPL-24-4 EPA 8260 MSV/3835 256520011 TB-020711 EPA 8260 MSV/3835 256520001 SPL-22-1 ASTM D2974-87 PMST/1517 256520002 SPL-22-2 ASTM D2974-87 PMST/1517 256520003 SPL-22-3 ASTM D2974-87 PMST/1517	256520007	SPL-24-1	EPA 8260	MSV/3835		
256520010 SPL-24-4 EPA 8260 MSV/3835 256520011 TB-020711 EPA 8260 MSV/3835 256520001 SPL-22-1 ASTM D2974-87 PMST/1517 256520002 SPL-22-2 ASTM D2974-87 PMST/1517 256520003 SPL-22-3 ASTM D2974-87 PMST/1517	256520008	_	EPA 8260	MSV/3835		
256520011 TB-020711 EPA 8260 MSV/3835 256520001 SPL-22-1 ASTM D2974-87 PMST/1517 256520002 SPL-22-2 ASTM D2974-87 PMST/1517 256520003 SPL-22-3 ASTM D2974-87 PMST/1517	256520009		EPA 8260			
256520001 SPL-22-1 ASTM D2974-87 PMST/1517 256520002 SPL-22-2 ASTM D2974-87 PMST/1517 256520003 SPL-22-3 ASTM D2974-87 PMST/1517	256520010	SPL-24-4	EPA 8260	MSV/3835		
256520002 SPL-22-2 ASTM D2974-87 PMST/1517 256520003 SPL-22-3 ASTM D2974-87 PMST/1517	256520011	TB-020711	EPA 8260	MSV/3835		
256520003 SPL-22-3 ASTM D2974-87 PMST/1517						
256520004 SPL-23-1 ASTM D2974-87 PMST/1517						
	256520004	SPL-23-1	ASTM D2974-87	PMST/1517		

Date: 02/23/2011 11:03 AM

REPORT OF LABORATORY ANALYSIS

Page 25 of 26

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: East Bay Redevelopment 138130

Pace Project No.: 256520

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
256520005	SPL-23-2	ASTM D2974-87	PMST/1517		
256520006	SPL-23-3	ASTM D2974-87	PMST/1517		
256520007	SPL-24-1	ASTM D2974-87	PMST/1517		
256520008	SPL-24-2	ASTM D2974-87	PMST/1517		
256520009	SPL-24-3	ASTM D2974-87	PMST/1517		
256520010	SPL-24-4	ASTM D2974-87	PMST/1517		

Date: 02/23/2011 11:03 AM

REPORT OF LABORATORY ANALYSIS

Page 26 of 26

6

~

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

ITEM# Required Client Information: Section A Email To: JAUCKE BOWN CO. LANCESCA terro DEL MA SHOWING DALLA 360-943-7525 equested Due Date/TAT: BROWN AND CALDWELL SPL-24-200 Se 2 201-TB-020711 3PL-24-SR L -SP L-24 -292 Section D SPL-23-Required Chert Information SPL OCYMPIA, WA 9850 (A-Z, 0-9/.-)
Sample IDs MUST BE UNIQUE **SAMPLE ID** 75.29 1-23-1 -22-2 -22-ADDITIONAL COMMENTS 23-1 24-2 27-3 SCI CAROL 2 Waste Water Product Soil/Soild Oil Wipe Air Tissue Other Drinking Water Water Matrix Codes ORIGINAL Project Number: 138130 Copy To: Seporto Low TORK Required Project Information: Project Name: EAST BAY Purchase Order No.: 9335222358 Chee House RELINQUISHED BY I ATTILIATION 4 MATRIX CODE JOST LOKKIGO (see valid codes to loft) G SAMPLE TYPE (G=GRAB C=COMP) DATE COMPOSITE START 800 SAMPLER NAME AND SIGNATURE TIME COLLECTED をよりでいるいからいて FRINT Name of SAMPLER: 02-07-11 SKINATURE OF SAMPLER: DATE ENCHORAB J. 51:21 14:00 14:30 13:15 12:30 11-85-23 13:30 13:45 12:44 3:00 TIME DATE 4 SAMPLE TEMP AT COLLECTION Pace Quote Reference. Pace Project Company Name: Acciress: Attornion: avoice information: Section C 10:20 Castody W # OF CONTAINERS が記れ Unpreserved 202 H₂SO₄ エネスラーでも **Preservatives** HNO₃ かびでは HCI NaOH つつやア Na₂S₂O₃ ACCEPTED BY A AFFILIATION * * の名の方の Methanol Other TOT - KOLLEGE Y/ N 1 Analysis Test ТРН-НО, ТРН-D SG (-DATE Signed 52/07/11 Requested Analysis Filtered (Y/N) ٤ DIDXIN, FURAN CPAH, NAPTHALENE Cd, Cu, Pb, As, Ni REGULATORY AGENCY SG BTEX. TPH-G Site Location 1 12.67 บรา NPDES DATE STATE 10:20 中心 - 1 THE RCRA **GROUND WATER** X A Page: Tomp in 'C Residual Chlorine (Y/N) Received on 4. Pace Project No./ Lab I. SAMPLE CONDITIONS Ica (Y/N) 4 ₽, 6264 名出の DRINKING WATER Guelody Conféd Cooler (Y/N) KOE

they have do expension for form you are accepted yours side? In the payment terms and agreeme to the ordinated of 1,5% payments to the ordinated of 1,5% payments are set and the ordinated of the ordinated of 1,5% payments and the ordinated of 1,5% payments are set of 1,5% payments and 1,5% payments are set of 1,5% payme

5-ALL-0-020sev.07. 15-Nay-2007

Samples Intact (Y/N)

Sample Container Count

CLIENT: COC PAGE _ COC ID#	Bra	<u> અત</u>	d d	<u>Ca</u>	ldw	el					_		•				Pace Analytical
COC PAGE _ COC ID#	1 44 G	<u>52</u> 6	4														2 5 6 5 2 0
Sample Line	VG9H		AG1U					BP2N	BP2S	wg	FU	WGKU	4	za	\sim	JO	Comments
1										2			٩			a	
2										١			'			1	
3														П			
4										\Box	7						
5											1						
6										┝╌┤	_						
7											\dashv		Н			H	
										\vdash			\vdash			-	
8	 									\vdash	-,					 	
9				_						A	-			,		 	
10										-	2		_	V		\bigvee	
11														1		ス	
12																	Trip Blank?
			-										•	'			
AG1H	1 liter HCL	amber o	ılass				BP2S	500mL H	12SO4 pla	astic						JGFL	4oz unpreserved amber wide
	1liter unpr			ISS				500mL u			astic	;					terra core kit
AG2S	500mL H2	SO4 amb	per glass					500mL N									Summa Can
AG2U	500mL un	preserved	d amber g	lass			ВР3С	250mL N	VaOH pla	stic						VG9F	40mL HCL clear vial
	250mL H2					_	BP3N		HNO3 pla							VG91	40mL Na Thio. clear vial
BG1H	1 liter HCL	. clear gla	ass				BP3S	250mL									40mL unpreserved clear vial
BG1U	1 liter unpi	reserved	glass				BP3U		unpreserv		astic						40mL glass vial preweighted (EPA 5035)
BP1N	1 liter HNC	03 plastic	;				DG9B	40mL Na									Headspace septa vial & HCL
	1 liter H2S						DG9H		CL ambe								4oz clear soil jar
	1 liter unpre						DG9M	40mL MeOH clear vial									4oz wide jar w/hexane wipe
	1 liter NaO							40mL Na Thio amber vial									Ziploc Bag
	500mL HN							40mL un		_		vial					
BP2O	500mL Na	OH plast	ic				1	Wipe/Sw									

Sample Condition Upon Receipt 256520 Client Name: Brown d Project # Courier: Ted Ex TUPS TUSPS Tellient Commercial Pace Other Tracking #: ☐ Yes Seals intact: Temp. Blank (Yes Bubble Bags Other None Packing Material: | Bubble Wrap Samples on ice, cooling process has 132013 or 101791962 or 25099 Type of Ice: (Wet) Blue None Thermometer Used Date and Initials of person e Biological Tissue is Frozen: Yes No Cooler Temperature contents:___ Comments: Temp should be above freezing ≤ 6°C **□N/A** Dres □No Chain of Custody Present: **□**N/A ¥JYes □No Chain of Custody Filled Out: ZYes □No **□N/A** Chain of Custody Relinquished: Fres CINO □N/A Samplor Name & Signature on COC: Yes DNo DNA Samples Arrived within Hold Time: □N/A ☐Yes ☑No Short Hold Time Analysis (<72hr): □Yes □No □N/A Rush Turn Around Time Requested: DYes ONO ONA Sufficient Volume: ØYes □No []N/A Correct Containers Used: IZYes □No **□N/A** -Pace Containers Used: Cares DNo □N/A Containers Intact: 11. □Yas □No DMA. Filtered volume received for Dissolved tests DYes □No □N/A Sample Labels match COC: Matrix: -Includes date/time/ID/Analysis All containers needing preservation have been checked. CIYes CINO DATA All containers needing preservation are found to be in ☐Yes ☐No compliance with EPA recommendation. Lot # of added initial when preservative completed Exceptions: VOA, collium, TOC, O&G □Yes □No □N/A Samples checked for dechlorination: ☐Yes ☐No DAVA 15. Headspace in VOA Vials (>6mm): ☐Yes ☐No **□N/A** Trip Blanks Present: ∐Yes □No □N/A Trip Blank Custody Scals Present Pace Trip Blank Lot # (if purchased): Field Data Required? Client Notification/ Resolution: Date/Timo: Person Contacted: Comments/ Resolution:

Project Manager Review: ENNI CROS Date: 2/8/1/1

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEFINA Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

February 25, 2011

Joshua Johnson Brown & Caldwell 724 Columbia St. NW#420 Olympia, WA 98501

RE: Project: East Bay Redevelopment 138130

Pace Project No.: 256548

Dear Joshua Johnson:

Enclosed are the analytical results for sample(s) received by the laboratory on February 10, 2011. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Andy Brownfield for Jennifer Gross

Andy Brownfield

jennifer.gross@pacelabs.com

Project Manager

Enclosures

cc: Jon Turk, Brown & Caldwell

(206)767-5060

CERTIFICATIONS

Project: East Bay Redevelopment 138130

Pace Project No.: 256548

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

A2LA Certification #: 2926.01
Alaska Certification #: UST-078
Alaska Certification #MN00064
Arizona Certification #: AZ-0014
Arkansas Certification #: 88-0680
California Certification #: 01155CA
EPA Region 8 Certification #: Pace
Florida/NELAP Certification #: E87605
Georgia Certification #: 959
Idaho Certification #: MN00064
Illinois Certification #: 200011
Iowa Certification #: 368
Kansas Certification #: E-10167

Maine Certification #: 2007029 Maryland Certification #: 322 Michigan DEQ Certification #: 9909 Minnesota Certification #: 027-053-137 Mississippi Certification #: Pace

Louisiana Certification #: 03086 Louisiana Certification #: LA080009 Montana Certification #: MT CERT0092 Nevada Certification #: MN_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New Mexico Certification #: Pace New York Certification #: 11647 North Carolina Certification #: 530 North Dakota Certification #: R-036 North Dakota Certification #: R-036A Ohio VAP Certification #: CL101 Oklahoma Certification #: D9921 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification Tennessee Certification #: 02818

Texas Certification #: T104704192 Washington Certification #: C754 Wisconsin Certification #: 999407970

A2LA cert#

SAMPLE ANALYTE COUNT

Project: East Bay Redevelopment 138130

Pace Project No.: 256548

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
256548001	SPL-25-1	EPA 6020		5	PASI-M
		% Moisture	JDL	1	PASI-M
256548002	SPL-25-2	EPA 6020	TL1	5	PASI-M
		% Moisture	JDL	1	PASI-M
256548003	SPL-25-3	EPA 6020	TL1	5	PASI-M
		% Moisture	JDL	1	PASI-M
256548004	SPL-25-4	EPA 6020	TL1	5	PASI-M
		% Moisture	JDL	1	PASI-M
256548005	SPL-25-5	EPA 6020	TL1	5	PASI-M
		% Moisture	JDL	1	PASI-M
256548006	SPL-26-1	EPA 6020	TL1	5	PASI-M
		% Moisture	JDL	1	PASI-M
256548007	SPL-26-2	EPA 6020	TL1	5	PASI-M
		% Moisture	JDL	1	PASI-M
256548008	SPL-26-3	EPA 6020	TL1	5	PASI-M
		% Moisture	JDL	1	PASI-M
256548009	SPL-26-4	EPA 6020	TL1	5	PASI-M
		% Moisture	JDL	1	PASI-M

ANALYTICAL RESULTS

Project: East Bay Redevelopment 138130

Pace Project No.: 256548

Lab ID: 256548001 Sample: SPL-25-1 Collected: 02/09/11 10:30 Received: 02/10/11 07:45 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **6020 MET ICPMS** Analytical Method: EPA 6020 Arsenic 4.0 mg/kg 0.43 20 02/14/11 09:13 02/23/11 11:58 7440-38-2 Cadmium 0.14 mg/kg 0.068 20 02/14/11 09:13 02/23/11 11:58 7440-43-9 Copper 24.2 mg/kg 0.43 20 02/14/11 09:13 02/23/11 11:58 7440-50-8 Lead 4.9 mg/kg 0.43 20 02/14/11 09:13 02/23/11 11:58 7439-92-1 20 02/14/11 09:13 02/23/11 11:58 Nickel 33.8 mg/kg 0.43 **Dry Weight** Analytical Method: % Moisture Percent Moisture 7.8 % 0.10 1 02/14/11 00:00 Sample: SPL-25-2 Lab ID: 256548002 Collected: 02/09/11 10:45 Received: 02/10/11 07:45 Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF CAS No. Qual Prepared Analyzed 6020 MET ICPMS Analytical Method: EPA 6020 Arsenic 4.7 mg/kg 0.39 20 02/14/11 09:13 02/23/11 12:08 7440-38-2 Cadmium 0.063 20 02/14/11 09:13 02/23/11 12:08 0.53 mg/kg 7440-43-9 Copper 69.4 mg/kg 0.39 20 02/14/11 09:13 02/23/11 12:08 7440-50-8 M6 Lead 21.2 mg/kg 0.39 20 02/14/11 09:13 02/23/11 12:08 7439-92-1 0.39 20 Nickel 26.9 mg/kg 02/14/11 09:13 02/23/11 12:08 7440-02-0 **Dry Weight** Analytical Method: % Moisture Percent Moisture 10.6 % 0.10 02/14/11 00:00 1 Sample: SPL-25-3 Lab ID: 256548003 Collected: 02/09/11 11:00 Received: 02/10/11 07:45 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **6020 MET ICPMS** Analytical Method: EPA 6020 02/14/11 09:13 02/23/11 12:01 Arsenic 4.0 mg/kg 0.40 20 7440-38-2 Cadmium 0.12 mg/kg 0.064 20 02/14/11 09:13 02/23/11 12:01 7440-43-9 Copper 21.6 mg/kg 0.40 20 02/14/11 09:13 02/23/11 12:01 7440-50-8 0.40 02/14/11 09:13 02/23/11 12:01 7439-92-1 Lead 7.4 mg/kg 20 23.0 mg/kg 20 02/14/11 09:13 02/23/11 12:01 7440-02-0 Nickel 0.40 **Dry Weight** Analytical Method: % Moisture Percent Moisture 8.1 % 02/14/11 00:00 0.10 1

Date: 02/25/2011 10:10 AM

ANALYTICAL RESULTS

Project: East Bay Redevelopment 138130

Pace Project No.: 256548

Lab ID: 256548004 Sample: SPL-25-4 Collected: 02/09/11 11:15 Received: 02/10/11 07:45 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **6020 MET ICPMS** Analytical Method: EPA 6020 Arsenic 2.9 mg/kg 0.45 20 02/14/11 09:13 02/23/11 12:05 7440-38-2 Cadmium 0.14 mg/kg 0.072 20 02/14/11 09:13 02/23/11 12:05 7440-43-9 Copper 17.5 mg/kg 0.45 20 02/14/11 09:13 02/23/11 12:05 7440-50-8 Lead 7.8 mg/kg 0.45 20 02/14/11 09:13 02/23/11 12:05 7439-92-1 0.45 20 02/14/11 09:13 02/23/11 12:05 7440-02-0 Nickel 26.2 mg/kg **Dry Weight** Analytical Method: % Moisture Percent Moisture 9.9 % 0.10 1 02/14/11 00:00 Sample: SPL-25-5 Lab ID: 256548005 Collected: 02/09/11 11:27 Received: 02/10/11 07:45 Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF CAS No. Qual Prepared Analyzed 6020 MET ICPMS Analytical Method: EPA 6020 Arsenic 5.3 mg/kg 0.51 20 02/14/11 09:13 02/23/11 12:28 7440-38-2 **0.43** mg/kg Cadmium 0.082 20 02/14/11 09:13 02/23/11 12:28 7440-43-9 Copper 67.3 mg/kg 0.51 20 02/14/11 09:13 02/23/11 12:28 7440-50-8 Lead 17.2 mg/kg 0.51 20 02/14/11 09:13 02/23/11 12:28 7439-92-1 0.51 20 Nickel 32.4 mg/kg 02/14/11 09:13 02/23/11 12:28 7440-02-0 **Dry Weight** Analytical Method: % Moisture Percent Moisture 10.5 % 0.10 02/14/11 00:00 1 Sample: SPL-26-1 Lab ID: 256548006 Collected: 02/09/11 11:45 Received: 02/10/11 07:45 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **6020 MET ICPMS** Analytical Method: EPA 6020 02/14/11 09:13 02/23/11 12:32 7440-38-2 Arsenic 5.8 mg/kg 0.44 20 Cadmium 1.6 mg/kg 0.070 20 02/14/11 09:13 02/23/11 12:32 7440-43-9 **58.0** mg/kg Copper 0.44 20 02/14/11 09:13 02/23/11 12:32 7440-50-8 0.44 02/14/11 09:13 02/23/11 12:32 7439-92-1 Lead 40.3 mg/kg 20 25.3 mg/kg 20 02/14/11 09:13 02/23/11 12:32 7440-02-0 Nickel 0.44 **Dry Weight** Analytical Method: % Moisture Percent Moisture 13.5 % 02/14/11 00:00 0.10 1

Date: 02/25/2011 10:10 AM

ANALYTICAL RESULTS

Project: East Bay Redevelopment 138130

Pace Project No.: 256548

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qu	Sample: SPL-26-2	Lab ID: 256	548007	Collected:	02/09/1	1 12:03	Received: 02	/10/11 07·45 N	//atrix: Solid	
Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Question	•			Conduction.	32,00/1	2.00	1.000.100. 02	, . 5, 11 57.70		
Analytical Method: EPA 6020 Arsenic 5.6 mg/kg 0.40 20 02/14/11 09:13 02/23/11 12:35 7440-38-2 Cadmium 1.4 mg/kg 0.063 20 02/14/11 09:13 02/23/11 12:35 7440-38-2 Capper 37.8 mg/kg 0.40 20 02/14/11 09:13 02/23/11 12:35 7440-38-9 Capper 37.8 mg/kg 0.40 20 02/14/11 09:13 02/23/11 12:35 7440-38-9 Capper 37.8 mg/kg 0.40 20 02/14/11 09:13 02/23/11 12:35 7440-38-9 Capper 37.8 mg/kg 0.40 0.20 02/14/11 09:13 02/23/11 12:35 7440-38-9 Capper 10.9 % Analytical Method: % Moisture Percent Moisture 10.9 % Collected: 02/09/11 12:16 Received: 02/10/11 07:45 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qu Cadmium 1.9 mg/kg 0.55 20 02/14/11 09:13 02/23/11 12:38 7440-38-2 Cadmium 1.9 mg/kg 0.55 20 02/14/11 09:13 02/23/11 12:38 7440-38-2 Capper 35.7 mg/kg 0.55 20 02/14/11 09:13 02/23/11 12:38 7440-38-2 Capper 35.7 mg/kg 0.55 20 02/14/11 09:13 02/23/11 12:38 7440-38-2 Capper 35.7 mg/kg 0.55 20 02/14/11 09:13 02/23/11 12:38 7440-38-2 Capper 35.7 mg/kg 0.55 00 02/14/11 09:13 02/23/11 12:38 7440-30-8 Results reported on a "dry-weight" basis Parameters Results Method: % Moisture Percent Moisture 11.0 % 0.10 1 0.70 11 0.70 0.71 0				_						
Arsenic 5.6 mg/kg 0.40 20 02/14/11 09:13 02/23/11 12:35 7440-38-2 Cadmium 1.4 mg/kg 0.663 20 02/14/11 09:13 02/23/11 12:35 7440-39-8 Copper 37.8 mg/kg 0.40 20 02/14/11 09:13 02/23/11 12:35 7440-50-8 Lead 21.7 mg/kg 0.40 20 02/14/11 09:13 02/23/11 12:35 7440-50-8 Lead 21.7 mg/kg 0.40 20 02/14/11 09:13 02/23/11 12:35 7440-50-8 Copper 38.5 mg/kg 0.40 20 02/14/11 09:13 02/23/11 12:35 7440-02-0 Dry Weight Analytical Method: Moisture Percent Moisture 10.9 % 0.10 1 02/14/11 09:13 02/23/11 12:35 7440-02-0 Dry Weight Analytical Method: Moisture Percent Moisture 10.9 % 0.10 1 02/14/11 09:00 Sample: SPL-26-3 Lab ID: 256548008 Collected: 02/09/11 12:16 Received: 02/10/11 07:45 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Question 1.9 mg/kg 0.55 20 02/14/11 09:13 02/23/11 12:38 7440-39-8 Copper 85.7 mg/kg 0.55 20 02/14/11 09:13 02/23/11 12:38 7440-59-8 Lead 49.6 mg/kg 0.55 20 02/14/11 09:13 02/23/11 12:38 7439-92-1 Nickel 26.8 mg/kg 0.55 20 02/14/11 09:13 02/23/11 12:38 7439-92-1 Nickel 26.8 mg/kg 0.55 20 02/14/11 09:13 02/23/11 12:38 7439-92-1 Dry Weight Analytical Method: Woisture Percent Moisture 11.0 % 0.10 1 02/14/11 09:13 02/23/11 12:38 7440-02-0 Dry Weight Analytical Method: EPA 6020 Arsenic 7.3 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:38 7440-03-9 Copper Sp.1 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-39-9 Copper Sp.1 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-39-9 Copper Sp.1 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-39-9 Copper Sp.1 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-39-9 Copper Sp.1 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-39-9 Copper Sp.1 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-39-9 Copper Sp.1 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-39-9 Copper Sp.1 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-39-9 Copper Sp.1 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-02-0 Dry Weight Analytical Method: W Moisture	Parameters	Results	Units	Report	t Limit	DF	Prepared	Analyzed 	CAS No.	Qua
Cadmium	6020 MET ICPMS	Analytical Met	hod: EPA 6	020						
Copper	Arsenic	5.6 m	g/kg		0.40	20	02/14/11 09:13	02/23/11 12:35	7440-38-2	
Lead 21.7 mg/kg 0.40 20 02/14/11 09:13 02/23/11 12:35 7439-92-1 Nickel 23.9 mg/kg 0.40 20 02/14/11 09:13 02/23/11 12:35 7439-92-1 Nickel 23.9 mg/kg 0.40 20 02/14/11 09:13 02/23/11 12:35 7440-02-0 Dry Weight Analytical Method: % Moisture Percent Moisture 10.9 % 0.10 1 02/14/11 00:00 Sample: SPL-26-3 Lab ID: 256548008 Collected: 02/09/11 12:16 Received: 02/10/11 07:45 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Que 6020 MET ICPMS Analytical Method: EPA 6020 Arsenic 7.4 mg/kg 0.55 20 02/14/11 09:13 02/23/11 12:38 7440-43-9 Capper 85.7 mg/kg 0.55 20 02/14/11 09:13 02/23/11 12:38 7440-43-9 Nickel 28.8 mg/kg 0.55 20 02/14/11 09:13 02/23/11 12:38 7440-02-0 Dry Weight Analytical Method: % Moisture Percent Moisture 11.0 % 0.10 1 02/14/11 09:13 02/23/11 12:38 7440-02-0 Dry Weight Capper Results Units Report Limit DF Prepared Analytical Method: % Moisture Percent Moisture 11.0 % 0.10 1 02/14/11 09:13 02/23/11 12:38 7440-02-0 Dry Weight Analytical Method: EPA 6020 Arsenic 7.3 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-39-2 Cadmium 1.7 mg/kg 0.68 20 02/14/11 09:13 02/23/11 12:41 7440-39-2 Cadmium 1.7 mg/kg 0.68 20 02/14/11 09:13 02/23/11 12:41 7440-39-2 Cadmium 1.7 mg/kg 0.68 20 02/14/11 09:13 02/23/11 12:41 7440-39-2 Cadmium 1.7 mg/kg 0.68 20 02/14/11 09:13 02/23/11 12:41 7440-39-2 Cadmium 1.7 mg/kg 0.68 20 02/14/11 09:13 02/23/11 12:41 7440-39-2 Cadmium 1.7 mg/kg 0.68 20 02/14/11 09:13 02/23/11 12:41 7440-39-2 Cadmium 1.7 mg/kg 0.68 20 02/14/11 09:13 02/23/11 12:41 7440-39-2 Cadmium 1.7 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-39-2 Cadmium 1.7 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-39-2 Cadmium 1.7 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-39-2 Cadmium 1.7 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-39-2 Cadmium 1.7 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-39-2 Cadmium 1.7 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-02-0 Dry Weight Analytical Method: % Moisture	Cadmium	1.4 m	g/kg		0.063	20	02/14/11 09:13	02/23/11 12:35	7440-43-9	
Nicke 23.9 mg/kg	Copper	37.8 m	g/kg		0.40	20	02/14/11 09:13	02/23/11 12:35	7440-50-8	
Nicke 23.9 mg/kg	Lead	21.7 m	g/kg		0.40	20	02/14/11 09:13	02/23/11 12:35	7439-92-1	
Percent Moisture 10.9 % 0.10 1 02/14/11 00:00	Nickel		0 0		0.40	20	02/14/11 09:13	02/23/11 12:35	7440-02-0	
Sample: SPL-26-3	Dry Weight	Analytical Met	hod: % Moi	sture						
Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Question Que	Percent Moisture	10.9 %			0.10	1		02/14/11 00:00		
Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Question	Sample: SPL-26-3	Lab ID: 256	548008	Collected:	02/09/1	1 12:16	Received: 02	/10/11 07:45 N	Matrix: Solid	
Analytical Method: EPA 6020 Arsenic 7.4 mg/kg 0.55 20 02/14/11 09:13 02/23/11 12:38 7440-38-2 Cadmium 1.9 mg/kg 0.087 20 02/14/11 09:13 02/23/11 12:38 7440-43-9 Copper 85.7 mg/kg 0.55 20 02/14/11 09:13 02/23/11 12:38 7440-50-8 Lead 49.6 mg/kg 0.55 20 02/14/11 09:13 02/23/11 12:38 7440-50-8 Lead 49.6 mg/kg 0.55 20 02/14/11 09:13 02/23/11 12:38 7440-02-0 Dry Weight Analytical Method: % Moisture Percent Moisture 11.0 % 0.10 1 02/14/11 00:00 Sample: SPL-26-4 Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qu 6020 MET ICPMS Analytical Method: EPA 6020 Arsenic 7.3 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-38-2 Cadmium 1.7 mg/kg 0.089 20 02/14/11 09:13 02/23/11 12:41 7440-39-9 Copper 59.1 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-50-8 Lead 34.5 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-02-0 Dry Weight Analytical Method: % Moisture	Results reported on a "dry-wei	ight" basis								
Arsenic 7.4 mg/kg 0.55 20 02/14/11 09:13 02/23/11 12:38 7440-38-2 Cadmium 1.9 mg/kg 0.087 20 02/14/11 09:13 02/23/11 12:38 7440-43-9 Copper 85.7 mg/kg 0.55 20 02/14/11 09:13 02/23/11 12:38 7440-50-8 Lead 49.6 mg/kg 0.55 20 02/14/11 09:13 02/23/11 12:38 7439-92-1 Nickel 26.8 mg/kg 0.55 20 02/14/11 09:13 02/23/11 12:38 7440-02-0 Dry Weight Analytical Method: % Moisture Percent Moisture 11.0 % 0.10 1 02/14/11 00:00 Sample: SPL-26-4 Lab ID: 256548009 Collected: 02/09/11 12:27 Received: 02/10/11 07:45 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qu 6020 MET ICPMS Analytical Method: EPA 6020 Arsenic 7.3 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-38-2 Cadmium 1.7 mg/kg 0.089 20 02/14/11 09:13 02/23/11 12:41 7440-43-9 Copper 59.1 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-43-9 Copper 59.1 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-50-8 Lead 34.5 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-02-0 Dry Weight Analytical Method: % Moisture	Parameters	Results	Units	Report	t Limit	DF	Prepared	Analyzed	CAS No.	Qua
1.9 mg/kg	6020 MET ICPMS	Analytical Met	hod: EPA 6	020						
1.9 mg/kg	Arsenic	7.4 m	g/kg		0.55	20	02/14/11 09:13	02/23/11 12:38	7440-38-2	
Copper 85.7 mg/kg 0.55 20 02/14/11 09:13 02/23/11 12:38 7440-50-8 Lead 49.6 mg/kg 0.55 20 02/14/11 09:13 02/23/11 12:38 7440-50-8 Nickel 26.8 mg/kg 0.55 20 02/14/11 09:13 02/23/11 12:38 7440-02-0 Dry Weight Analytical Method: % Moisture Moisture 11.0 % 0.10 1 02/14/11 09:13 02/23/11 12:38 7440-02-0 Sample: SPL-26-4 Lab ID: 256548009 Collected: 02/09/11 12:27 Received: 02/10/11 07:45 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qu 6020 MET ICPMS Analytical Method: EPA 6020 Arsenic 7.3 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-38-2 Cadmium 1.7 mg/kg 0.089 20 02/14/11 09:13 02/23/11 12:41 7440-39-9 Copper 59.1 mg/kg 0.56 20 02/14/11 09:13 02	Cadmium	1.9 m	a/ka		0.087	20	02/14/11 09:13	02/23/11 12:38	7440-43-9	
Lead	Copper		0 0		0.55	20	02/14/11 09:13	02/23/11 12:38	7440-50-8	
Nickel 26.8 mg/kg 0.55 20 02/14/11 09:13 02/23/11 12:38 7440-02-0 Dry Weight Analytical Method: % Moisture Percent Moisture 11.0 % 0.10 1 02/14/11 00:00 Sample: SPL-26-4 Lab ID: 256548009 Collected: 02/09/11 12:27 Received: 02/10/11 07:45 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qu 6020 MET ICPMS Analytical Method: EPA 6020 Arsenic 7.3 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-38-2 Cadmium 1.7 mg/kg 0.089 20 02/14/11 09:13 02/23/11 12:41 7440-50-8 1.7 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-50-8 1.2 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7430-90-1 Nickel 24.1 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-02-0 Dry Weight Analytical Method: % Moisture	• •		0 0							
Percent Moisture 11.0 % 0.10 1 02/14/11 00:00			~ ~							
Sample: SPL-26-4 Lab ID: 256548009 Collected: 02/09/11 12:27 Received: 02/10/11 07:45 Matrix: Solid Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qu 6020 MET ICPMS Analytical Method: EPA 6020 Arsenic 7.3 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-38-2 Cadmium 1.7 mg/kg 0.089 20 02/14/11 09:13 02/23/11 12:41 7440-43-9 Copper 59.1 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-50-8 Lead 34.5 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7439-92-1 Nickel Analytical Method: % Moisture Moisture	Dry Weight	Analytical Met	hod: % Moi	sture						
Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qu 6020 MET ICPMS Analytical Method: EPA 6020 Arsenic 7.3 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-38-2 Cadmium 1.7 mg/kg 0.089 20 02/14/11 09:13 02/23/11 12:41 7440-43-9 Copper 59.1 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-50-8 Lead 34.5 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-92-0 Dry Weight Analytical Method: % Moisture	Percent Moisture	11.0 %			0.10	1		02/14/11 00:00		
Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Que 6020 MET ICPMS Analytical Method: EPA 6020 Arsenic 7.3 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-38-2 Cadmium 1.7 mg/kg 0.089 20 02/14/11 09:13 02/23/11 12:41 7440-43-9 Copper 59.1 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-50-8 Lead 34.5 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-92-0 Dry Weight Analytical Method: % Moisture	Sample: SPL-26-4	Lab ID: 256	548009	Collected:	02/09/1	1 12:27	Received: 02	/10/11 07:45 N	Matrix: Solid	
Analytical Method: EPA 6020 Arsenic 7.3 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-38-2 Cadmium 1.7 mg/kg 0.089 20 02/14/11 09:13 02/23/11 12:41 7440-43-9 Copper 59.1 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-50-8 Lead 34.5 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7439-92-1 Nickel 24.1 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-02-0 Dry Weight Analytical Method: % Moisture	Results reported on a "dry-wei	ight" basis								
Arsenic 7.3 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-38-2 Cadmium 1.7 mg/kg 0.089 20 02/14/11 09:13 02/23/11 12:41 7440-43-9 Copper 59.1 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-50-8 Lead 34.5 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7439-92-1 Nickel 24.1 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-02-0 Dry Weight Analytical Method: % Moisture	Parameters	Results	Units	Report	t Limit	DF	Prepared	Analyzed	CAS No.	Qua
Cadmium 1.7 mg/kg 0.089 20 02/14/11 09:13 02/23/11 12:41 7440-43-9 Copper 59.1 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-50-8 Lead 34.5 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7439-92-1 Nickel 24.1 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-02-0 Dry Weight Analytical Method: % Moisture	6020 MET ICPMS	Analytical Met	hod: EPA 6	020						
Cadmium 1.7 mg/kg 0.089 20 02/14/11 09:13 02/23/11 12:41 7440-43-9 Copper 59.1 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-50-8 Lead 34.5 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7439-92-1 Nickel 24.1 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-02-0 Dry Weight Analytical Method: % Moisture	Arsenic	7.3 m	g/kg		0.56	20	02/14/11 09:13	02/23/11 12:41	7440-38-2	
Copper 59.1 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-50-8 Lead 34.5 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7439-92-1 Nickel 24.1 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-02-0 Dry Weight Analytical Method: % Moisture	Cadmium				0.089	20	02/14/11 09:13	02/23/11 12:41	7440-43-9	
Lead 34.5 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7439-92-1 Nickel 24.1 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-02-0 Dry Weight Analytical Method: % Moisture	Copper					20	02/14/11 09:13	02/23/11 12:41	7440-50-8	
Nickel 24.1 mg/kg 0.56 20 02/14/11 09:13 02/23/11 12:41 7440-02-0 Dry Weight Analytical Method: % Moisture	• •									
Dry Weight Analytical Method: % Moisture										
Percent Moisture 11.1 % 0.10 1 02/14/11.00:00				sture						
	Percent Moisture	11.1 %			0.10	1		02/14/11 00:00		

Date: 02/25/2011 10:10 AM

REPORT OF LABORATORY ANALYSIS

Page 6 of 11

Project: East Bay Redevelopment 138130

Pace Project No.: 256548

QC Batch: ICPM/24719 Analysis Method: EPA 6020
QC Batch Method: EPA 6020 Analysis Description: 6020 MET

Associated Lab Samples: 256548001, 256548002, 256548003, 256548004, 256548005, 256548006, 256548007, 256548008, 256548009

METHOD BLANK: 930612 Matrix: Solid

Associated Lab Samples: 256548001, 256548002, 256548003, 256548004, 256548005, 256548006, 256548007, 256548008, 256548009

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	mg/kg	ND ND	0.48	02/23/11 11:00	
Cadmium	mg/kg	ND	0.076	02/23/11 11:00	
Copper	mg/kg	ND	0.48	02/23/11 11:00	
Lead	mg/kg	ND	0.48	02/23/11 11:00	
Nickel	mg/kg	ND	0.48	02/23/11 11:00	

LABORATORY CONTROL SAMPLE: 930613

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/kg	19.2	20.1	105	75-125	
Cadmium	mg/kg	19.2	20.2	105	75-125	
Copper	mg/kg	19.2	21.1	110	75-125	
Lead	mg/kg	19.2	20.4	106	75-125	
Nickel	mg/kg	19.2	20.8	108	75-125	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 930614 930615												
	2	256547001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec			
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual	
Arsenic	mg/kg	3.3	20.8	20.2	24.9	23.6	104	101	75-125	5		
Cadmium	mg/kg	0.11	20.8	20.2	22.2	21.3	106	105	75-125	4		
Copper	mg/kg	19.8	20.8	20.2	48.6	41.3	138	106	75-125	16 M6		
Lead	mg/kg	7.7	20.8	20.2	29.9	30.7	107	114	75-125	3		
Nickel	mg/kg	21.8	20.8	20.2	55.4	48.2	162	130	75-125	14 M6		

MATRIX SPIKE SAMPLE:	930616						
		256548002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/kg	4.7	17.8	22.0	97	75-125	
Cadmium	mg/kg	0.53	17.8	20.1	111	75-125	
Copper	mg/kg	69.4	17.8	59.7	-55	75-125 N	/16
Lead	mg/kg	21.2	17.8	41.3	113	75-125	
Nickel	mg/kg	26.9	17.8	46.6	111	75-125	

Date: 02/25/2011 10:10 AM REPORT OF LABORATORY ANALYSIS

Page 7 of 11

Project: East Bay Redevelopment 138130

Pace Project No.: 256548

QC Batch: MPRP/24722 Analysis Method: % Moisture

QC Batch Method: % Moisture Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 256548001, 256548002, 256548003, 256548004, 256548005

SAMPLE DUPLICATE: 930649

10149339001 Dup

Parameter Units Result Result RPD Qualifiers

Percent Moisture % 13.5 14.3 6

SAMPLE DUPLICATE: 930650

ParameterUnits256548005 ResultDup ResultRPDQualifiersPercent Moisture%10.59.510

Date: 02/25/2011 10:10 AM

Project: East Bay Redevelopment 138130

Pace Project No.: 256548

QC Batch: MPRP/24723 Analysis Method: % Moisture

QC Batch Method: % Moisture Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 256548006, 256548007, 256548008, 256548009

SAMPLE DUPLICATE: 930686

256548006 Dup
Parameter Units Result Result RPD Qualifiers

Percent Moisture % 13.5 13.1 3

SAMPLE DUPLICATE: 930703

 Parameter
 Units
 10149367001 Result
 Dup Result
 RPD
 Qualifiers

 Percent Moisture
 %
 21.5
 21.6
 .4

Date: 02/25/2011 10:10 AM

QUALIFIERS

Project: East Bay Redevelopment 138130

Pace Project No.: 256548

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel Clean-Up

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis

ANALYTE QUALIFIERS

Date: 02/25/2011 10:10 AM

M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: East Bay Redevelopment 138130

Pace Project No.: 256548

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
256548001	SPL-25-1	EPA 6020	ICPM/24719	EPA 6020	ICPM/10092
256548002	SPL-25-2	EPA 6020	ICPM/24719	EPA 6020	ICPM/10092
256548003	SPL-25-3	EPA 6020	ICPM/24719	EPA 6020	ICPM/10092
256548004	SPL-25-4	EPA 6020	ICPM/24719	EPA 6020	ICPM/10092
256548005	SPL-25-5	EPA 6020	ICPM/24719	EPA 6020	ICPM/10092
256548006	SPL-26-1	EPA 6020	ICPM/24719	EPA 6020	ICPM/10092
256548007	SPL-26-2	EPA 6020	ICPM/24719	EPA 6020	ICPM/10092
256548008	SPL-26-3	EPA 6020	ICPM/24719	EPA 6020	ICPM/10092
256548009	SPL-26-4	EPA 6020	ICPM/24719	EPA 6020	ICPM/10092
256548001	SPL-25-1	% Moisture	MPRP/24722		
256548002	SPL-25-2	% Moisture	MPRP/24722		
256548003	SPL-25-3	% Moisture	MPRP/24722		
256548004	SPL-25-4	% Moisture	MPRP/24722		
256548005	SPL-25-5	% Moisture	MPRP/24722		
256548006	SPL-26-1	% Moisture	MPRP/24723		
256548007	SPL-26-2	% Moisture	MPRP/24723		
256548008	SPL-26-3	% Moisture	MPRP/24723		
256548009	SPL-26-4	% Moisture	MPRP/24723		

Date: 02/25/2011 10:10 AM

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

256548

Page: Section A Section B Section C Required Client Information: Required Project Information: 1446265 Invoice Information: Report TO: JUN TURK BROWN AND (ALDWELL JUN TURK Address: 1 (ULUMBUS NW#470 COPY TO: JOSH JOHNSON Company Name: REGULATORY AGENCY OLYMPIA, WA 98501 Email To: jturk@bruncald.com Address: DRINKING WATER GROUND WATER NPDES X OTHER ECY Purchase Order No.: Pace Quote I RCRA UST Reference: Project Name: EAST BAY CODEVELOYMENT Pace Project Site Location Manager: WA Requested Due Date/TAT: Pace Profile #: STATE: Requested Analysis Filtered (Y/N) Y/N Section D **Matrix Codes** C=COMP) valid codos to left) COLLECTED **Preservatives** Required Citent Information MATRIX / CODE **Drinking Water** WT Water COMPOSITE COMPOSITE アトアアアア **Waste Water** ww (G=GRAB Chlorine (Y/N) END/GRAB Р Product SL Soil/Solid 98 | Analysis Test # OF CONTAINERS OL WP Oil SAMPLE ID Wipe MATRIX CODE (A-Z, 0-9 / ,-) Unpreserved
H₂SO₄
HNO₃
HCI
NaOH
Na₂S₂O₃
Methanol SAMPLE TYPE Sample IDs MUST BE UNIQUE Tissue Residual (Pace Project No./ Lab I.D. DATE TIME 62-09-11 [0:30 SPL-25-1 SPL-25-2 10:45 50L-25-3 11.00 58- 25-4 SPL- 25-5 SYL- 26-1 SUL-26-5 12:03 582-26-3 SPL-26-4 17:27 TB 020911-A 01.07-11 12 ACCEPTED BY / AFFILIATION ADDITIONAL COMMENTS **RELINQUISHED BY / AFFILIATION** SAMPLE CONDITIONS DATE DATE temp Hark included 2-10-11 07411.0 Hanilan 2-10-11 Custody Seated Cooler (Y/N) SAMPLER NAME AND SIGNATURE Received on Ice (Y/N) ë S 3 HAIN ILTON PRINT Name of SAMPLER: ADA MM/DD/YY): DZ /D1/11 SIGNATURE of SAMPLER:

Sample Container Count

CLIENT: Brown & Cald Well												Pace Analytical*				
COC PAGE _ COC ID#	of 1 14442															2 5 6 5 4 8
Sample Line Item	VG9H	AG1H	AG1U	BG1H	BP1U	BP2U	BP3U	BP2N	BP2S	W	GFU	WGKU				Comments
1										_	2					
2										1						
3																
4																
5																
6																
7																
8																_
9											4					
10	3															
11																
12																Trip Blank? No
														-0		
AG1H	1 liter HCl	amber	lass				BP2S	500mL H	12SO4 pl	astic			-		JGFU	4oz unpreserved amber wide
AG1U	1liter unpr	eserved a	amber gla	iss					inpreserv			С			R	terra core kit
	500mL H2						BP2Z	500mL N	VaOH, Zn	ı Ac					U	Summa Can
AG2U	500mL un	preserve	d amber o	alass			BP3C	250mL N	NaOH pla	stic					VG9H	40mL HCL clear vial
AG3S	250mL H2	SO4 amb	per glass						HNO3 pla						VG9T	40mL Na Thio. clear vial
BG1H	1 liter HCl	clear gla	ass						H2SO4 p						VG9U	40mL unpreserved clear vial
BG1U	1 liter unp	reserved	glass						unpresen			ic			VG9W	40mL glass vial preweighted (EPA 5035)
BP1N	1 liter HNO	03 plastic					DG9B	40mL Na	a Bisulfat	e am	ber	vial				Headspace septa vial & HCL
	1 liter H2S								ICL ambe							4oz clear soil jar
	1 liter unpr								eOH clea							4oz wide jar w/hexane wipe
	1 liter NaO		THE RESERVE OF THE PARTY OF THE						a Thio an							Ziploc Bag
	500mL HN								40mL unpreserved amber vial							
	500ml Na								Vine/Swah							

Sample Condition Upon Receipt

2 5 6 5 4 8

Pace Analytical Client Name:	Bro	wn	40	aldwell Project # 2 3 6 5 4 8
Courier: Fed Ex UPS USPS Clien	t 🗆 C	omme	ercial	Pace Other
Custody Seal on Cooler/Box Present: Yes	MI	lo	Seals	intact: Yes No
Packing Material: Bubble Wrap Bubble	Bags	Πи	one	Other Temp. Blank Yes No
Thermometer Used 132013 of 101731962 or 226099	Туре о	of Ice:	Wet	
Cooler Temperature .3≥ Temp should be above freezing ≤ 6 ℃	Biolog	ical T	Tissue	is Frozen: Yes No Date and Initials of person examining contents: D21011 Cw
Chain of Custody Present:	Yes	□No	□N/A	1.
Chain of Custody Filled Out:	Myes	□No	□N/A	2.
Chain of Custody Relinquished:	Yes	□No	□N/A	3.
Sampler Name & Signature on COC:	VYes	□No	□N/A	4.
Samples Arrived within Hold Time:	MYes	□No	□N/A	5.
Short Hold Time Analysis (<72hr):	□Yes	DNo	□n/a	6.
Rush Turn Around Time Requested:	Wes	□No	□N/A	7. 10 RUSH FOX DIOXINS
Sufficient Volume:	Yes	□No	□N/A	8.
Correct Containers Used:	l Yes	□No	□N/A	9.
-Pace Containers Used:	Ves	□No	□N/A	
Containers Intact:	Toyes	□No	□N/A	10.
Filtered volume received for Dissolved tests	□Yes	□No	MN/A	11.
Sample Labels match COC:	Yes	□No	□N/A	12.
-Includes date/time/ID/Analysis Matrix: 5	i			
All containers needing preservation have been checked.	□Yes	□No	₩ N/A	13.
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes	□No	DNA	
Exceptions: VOA, coliform, TOC, O&G				Initial when Lot # of added completed preservative
Samples checked for dechlorination:	□Yes	□No	DN/A	14.
Headspace in VOA Vials (>6mm):	□Yes	□No	N/A	15.
Trip Blanks Present:	□Yes	□No	DN/A	16.
Trip Blank Custody Seals Present	□Yes	□No	DN/A	
Pace Trip Blank Lot # (if purchased):				
Client Notification/ Resolution: Person Contacted: Comments/ Resolution:			Date/	Field Data Required? Y / N Fime:
				-1 1
Project Manager Review:	gre	U2c	<u> </u>	Date: 2/10/11

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e out of hold, incorrect preservative, out of temp, incorrect containers)

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Jennifer Gross PASI Seattle 940 S. Harney Street Seattle WA 98108

> REPORT OF LABORATORY ANALYSIS FOR PCDD/PCDF

Report Information:

Pace Project #: 10149299

Sample Receipt Date: 02/11/2011

Client Project #: 256548 Client Sub PO #: N/A State Cert #: C755

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Nate Habte, your Pace Project Manager.

This report has been reviewed by:

February 25, 2011

Nate Habte, Project Manager

(612) 607-6407

(612) 607-6444 (fax)

natnael.habte@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

February 24, 2011

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on nine samples submitted by a representative of Pace Analytical Services, Inc. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290. Reporting limits were based on signal-to-noise measurements.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 45-109%. All of the labeled standard recoveries obtained for this project were within the 40-135% target range specified in Method 8290. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, interfering substances impacted the determinations of PCDD or PCDF congeners; the affected values were flagged "I" where incorrect isotope ratios were obtained or "P" where polychlorinated diphenyl ethers were present. Values above the calibration range were flagged "E" and should be regarded as estimates.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to be free of PCDDs and PCDFs at the reporting limits. These results indicate that the sample processing steps did not contribute significantly to the levels reported for the field samples.

A laboratory spike sample was also prepared with the sample batch using clean sand that had been fortified with native standard materials. The results show that the spiked native compounds were recovered at 85-107%, indicating a high degree of accuracy for these determinations. Matrix spikes were prepared with the sample batch using sample material from a separate project; results from these analyses will be provided upon request.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Tel: 612-607-1700 Fax: 612- 607-6444

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	
Arizona	AZ0014	Nevada	MN000642010A
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New Mexico	MN00064
Colorado	MN00064	New York (NEL	11647
Connecticut	PH-0256	North Carolina	27700
EPA Region 5	WD-15J	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Ohio VAP	CL101
Georgia (DNR)	959	Oklahoma	D9922
Guam	09-019r	Oregon (ELAP)	MN200001-005
Hawaii	SLD	Oregon (OREL	MN200001-005
Idaho	MN00064	Pennsylvania	68-00563
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennesee	2818
lowa	368	Tennessee	02818
Kansas	E-10167	Texas	T104704192-08
Kentucky	90062	Utah (NELAP)	PAM
Louisiana	LA0900016	Virginia	00251
Maine	2007029	Washington	C755
Maryland	322	West Virginia	9952C
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q
Mississippi	MN00064		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

6076101	Pace Analytical www.pacelebs.com	A/a5/11 Results Requested By: 2/24/2011— Analysis			LAB USE ONLY									ıts	· (·	ach Working	Samples Intact (Y) or N	
		2/10/2011 Requested	ozog Gg stj	npran	1 hy 1p) 'n	X		X	× ×			×	メ 	Comments	(10-Day K	Y or N Sample	*
	KISD	Owner Received Date:	5000	Preserved Containers		X	X		× ×			×	×	Nate/Time	10.10 ZIIII 100 Z		Received on Ice (Y	-
ć	Diokin	oils To	Pace Analytical Minnesota 1700 Elm Street Suite 200 Minneapolis, MN 55414 Phone (612)607-1700		M Matrix	256548001 Solid 2	256548002 Solid 2	Solid	256548004 Solid 2 256548005 Solid 2	Solid	256548007 Solid 2	256548008 Solid 2	256548009 Solid 2	Boreived Rv	1300 MATH	and	Custody Seal Y or (N)	ľ
<i>(</i> -	10-Day	Workorder Name:Olympia Solls	Pace Anal 1700 Elm Suite 200 Minneapol Phone (61		Sample Collect Type Date/Time	PS 2/9/2011 10:30	PS 2/9/2011 10:45	2/9/2011 11:00	PS 2/9/2011 11:15 PS 2/9/2011 11:27	2/9/2011 11:45	2/9/2011 12:03	PS 2/9/2011 12:16	PS 2/9/2011 12:27		5) 1/0/K		5.5°C	
	Chain of Custody -	ier: 256548	Jennifer Gross Pace Analytical Services, Inc. 940 South Harney Seattle WA 98108 Phone (206)767-5060	Fax (206)767-5063	Sample ID	SPL-25-1	SPL-25-2	SPL-25-3	SPL-25-4 SPL-25-5	SPL-26-1	SPL-26-2	SPL-26-3	SPL-26-4	PR Released Rv			Sooler Temperature on Receipt	
	င်္ခ	Workord Report To	Jennif Pace / 940 Sr Seattik Phone	Fax (2	l tem	_	2	က	4 ro	9	7	ω	б	Transfere	_	2 2	, Joo Cool	

Sample Condition Upon Receipt

Project # 1014 92 99 Client Name: Pure seattle Courler: Fed Ex UPS USPS Client Commercial Pace Other Tracking #: 7467504/3(58 Proj. Due Date/ Proj. Name Custody Seal on Cooler/Box Present: yes no Seals intact: yes no Packing Material: Bubble Wrap Bubble Bags None Other Temp Blank: Yes No Thermometer Used Type of Icey Wet) Blue None Samples on ice, cooling process has begun Date and initials of person examining Biological Tissue is Frozen: Yes No Cooler Temperature contents: Temp should be above freezing to 6°C Comments: -EYes □No Chain of Custody Present: DNA 1 Chain of Custody Filled Out: ZYes UNo **□N/A** Chain of Custody Relinquished: □N⁄A Sampler Name & Signature on COC: **□N/A** Samples Arrived within Hold Time: DINA Short Hold Time Analysis (<72hr): □N/A Rush Turn Around Time Requested: ZYes DNo □N/A Sufficient Volume: ZYes □No □N⁄A Correct Containers Used: **□N/A** DYes DNo -Pace Containers Used: □N⁄A ∐Yes □No □N/A Containers Intact: □Yes □No ÆNA Filtered volume received for Dissolved tests ZYes ONO ONA 12. Sample Labels match COC: -includes date/time/ID/Analysis Matrix: All containers needing acid/base preservation have been H2SO4 □Yes □No ØNA 13. checked. Noncompliance are noted in 13. Samp # All containers needing preservation are found to be in ☐Yes ☐No ☐N/A compliance with EPA recommendation. Initial when Lot # of added Exceptions: VOA, Coliform, TOC, Oil and Grease, WI-DRO (water DYes DNo completed preservative □Yes □No ZÍNA Samples checked for dechlorination: Headspace in VOA Vials (>6mm): TYPE THE ZINA □Yes □No 1 NA Trip Blank Present: Trip Blank Custody Seals Present □Yes □No ≠IN/A Pace Trip Blank Lot # (if purchased): Client Notification/ Resolution: Field Data Required? Person Contacted: Date/Time: Comments/ Resolution: **Project Manager Review:** Date:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the React-Calylinal SeinAste, Inc. F-L213Rev.00, 05Aug2009

1700 Elm Street SE, Suite 200, Minneapolis, MN 55414

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

Appendix B

Sample Analysis Summary

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-25-1
Lab Sample ID 256548001
Filename U110223A_03
Injected By BAL

Total Amount Extracted 11.0 g Matrix Solid % Moisture 7.8 Dilution NA

Dry Weight Extracted 10.1 g Collected 02/09/2011 10:30 **ICAL ID** U101204A Received 02/11/2011 10:03 CCal Filename(s) U110222B_17 & U110223A_16 Extracted 02/17/2011 17:00 Method Blank ID BLANK-27910 Analyzed 02/23/2011 08:48

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	220.0	15 	0.11 P 0.11	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	67 86 76
2,3,7,8-TCDD Total TCDD	3.8 280.0		0.25 0.25	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	78 92 72
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	27.0 220.0	17 	0.32 P 0.39 0.36	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	74 74 71
1,2,3,7,8-PeCDD Total PeCDD	15.0 370.0		0.33 0.33	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	85 82 80 80
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	20.0 22.0	28 	0.26 P 0.31 0.23	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	92 80
1,2,3,7,8,9-HxCDF Total HxCDF	6.0 150.0		0.15 0.24	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	15.0 33.0 23.0 480.0		0.57 0.48 0.49 0.51	2,3,7,8-TCDD-37Cl4	0.20	81
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	69.0 8.0 150.0	 	0.27 0.28 0.27	Total 2,3,7,8-TCDD Equivalence: 43 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	250.0 470.0		0.60 0.60			
OCDF OCDD	ND 1900.0		0.15 0.21			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable RL = Reporting Limit.

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

P = PCDE Interference

02/23/2011 09:36

Method Blank ID

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - PASI Seattle

Analyzed

SPL-25-2 Client's Sample ID Lab Sample ID 256548002 U110223A_04 Filename Injected By BAL **Total Amount Extracted** 11.5 g Solid Matrix % Moisture Dilution NA 10.6 Dry Weight Extracted Collected 02/09/2011 10:45 10.3 g **ICAL ID** U101204A Received 02/11/2011 10:03 CCal Filename(s) U110222B_17 & U110223A_16 Extracted 02/17/2011 17:00

BLANK-27910

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	 850	60	0.33 P 0.33	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	69 79 77
2,3,7,8-TCDD Total TCDD	16 1500		0.32 0.32 E	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	80 93 77
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	100 780	68 	0.52 P 0.48 0.50	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00 2.00	77 71 73 66 95
1,2,3,7,8-PeCDD Total PeCDD	70 1700		0.48 0.48	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	95 70 78 77
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	 78 86	93 	0.57 P 0.82 0.47	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	89 77
1,2,3,7,8,9-HxCDF Total HxCDF	20 590		0.41 0.57	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	67 140 87 2200		0.87 0.79 0.74 0.80	2,3,7,8-TCDD-37Cl4	0.20	78
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	210 28 380		0.37 0.48 0.42	Total 2,3,7,8-TCDD Equivalence: 170 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	730 1400		0.69 0.69			
OCDF OCDD	3000	140	0.27 P 0.25			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
RL = Reporting Limit.

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

P = PCDE Interference

E = Exceeds calibration range

Tel: 612-607-1700 Fax: 612-607-6444

Method 8290 Sample Analysis Results

Client - PASI Seattle

SPL-25-3 Client's Sample ID Lab Sample ID 256548003 U110223A_05 Filename Injected By BAL

Total Amount Extracted 11.0 g Solid Matrix % Moisture Dilution NA 8.1

Dry Weight Extracted Collected 02/09/2011 11:00 10.1 g **ICAL ID** U101204A Received 02/11/2011 10:03 CCal Filename(s) U110222B_17 & U110223A_16 Extracted 02/17/2011 17:00 Method Blank ID BLANK-27910 Analyzed 02/23/2011 10:24

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	4.4 78.0		0.12 0.12	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	66 82 76
2,3,7,8-TCDD Total TCDD	1.1 84.0		0.23 0.23	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	77 91 88
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	7.3 66.0	4.3 	0.36 P 0.30 0.33	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	73 71 73
1,2,3,7,8-PeCDD Total PeCDD	4.6 120.0		0.36 J 0.36	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	108 77 94 92
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	5.7 4.7	5.8 	0.27 P 0.33 0.33 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	109 94
1,2,3,7,8,9-HxCDF Total HxCDF	1.3 42.0		0.17 J 0.27	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	6.0 10.0 5.7 150.0	 	0.29 0.33 0.25 0.29	2,3,7,8-TCDD-37Cl4	0.20	79
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	16.0 1.8 38.0	 	0.15 0.15 J 0.15	Total 2,3,7,8-TCDD Equivalence: 13 ng/Kg (Using 2005 WHO Factors - Using PRL/2 where ND)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	61.0 120.0		0.43 0.43			
OCDF OCDD	23.0 350.0		0.26 1.10			

ND = Not Detected Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

NC = Not Calculated RL = Reporting Limit.

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value P = PCDE Interference

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-25-4
Lab Sample ID 256548004
Filename U110223A_06
Injected By BAL

Total Amount Extracted 11.2 g Matrix Solid % Moisture 9.9 Dilution NA

Dry Weight Extracted Collected 02/09/2011 11:15 10.1 g **ICAL ID** U101204A Received 02/11/2011 10:03 CCal Filename(s) U110222B 17 & U110223A 16 Extracted 02/17/2011 17:00 Method Blank ID BLANK-27910 Analyzed 02/23/2011 11:12

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	4.9 84.0		0.200 0.200	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	67 85 78
2,3,7,8-TCDD Total TCDD	1.3 88.0		0.280 0.280	1,2,3,7,6-FeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	76 78 91 74
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	8.2 70.0	5.0	0.190 P 0.200 0.190	1,2,3,4,7,8-HXCDF-13C 1,2,3,6,7,8-HXCDF-13C 2,3,4,6,7,8-HXCDF-13C 1,2,3,7,8,9-HXCDF-13C	2.00 2.00 2.00 2.00	74 71 73 68
1,2,3,7,8-PeCDD Total PeCDD	5.9 120.0		0.160 0.160	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	93 70 80
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	6.2 6.5	7.7 	0.190 P 0.190 0.170	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	77 89 77
1,2,3,7,8,9-HxCDF Total HxCDF	1.7 48.0		0.098 J 0.160	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	4.9 11.0 6.6 150.0		0.290 J 0.380 0.240 0.300	2,3,7,8-TCDD-37Cl4	0.20	84
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	23.0 2.7 54.0		0.130 0.140 J 0.130	Total 2,3,7,8-TCDD Equivalence: 15 ng/Kg (Using 2005 WHO Factors -	Using PRL/	/2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	85.0 170.0		0.400 0.400			
OCDF OCDD	35.0 730.0		0.190 0.200			

 $\label{eq:concentration} \mbox{Conc} = \mbox{Concentration (Totals include 2,3,7,8-substituted isomers)}. & \mbox{ND} = \mbox{Not Detected} \\ \mbox{EMPC} = \mbox{Estimated Maximum Possible Concentration} & \mbox{NA} = \mbox{Not Applicable} \\ \mbox{NA} = \mbox{Not Applicable} \\ \mbox{NA} = \mbox{Not Applicable} \\ \mbox{NA} = \mbox{Not Applicable} \\ \mbox{NA} = \mbox{Not Applicable} \\ \mbox{NA} = \mbox{Not Applicable} \\ \mbox{NA} = \mbox{Not Applicable} \\ \mbox{NO} = \mbox{Not Applicable} \\ \mbox{NO} = \mbox{Not Applicable} \\ \mbox{NO} = \mbox{Not Applicable} \\ \mbox{NO} = \mbox{Not Applicable} \\ \mbox{NO} = \mbox{Not Applicable} \\ \mbox{NO} = \mbox{Not Applicable} \\ \mbox{NO} = \mbox{Not Applicable} \\ \mbox{NO} = \mbox{Not Applicable} \\ \mbox{NO} = \mbox{NO} = \mbox{Not Applicable} \\ \mbox{NO} = \mbox{NO} = \mbox{Not Applicable} \\ \mbox{NO} = \mbox{NO} = \mbox{NO} \\ \mbox{NO} = \mbox{NO} = \mbox{NO} \\ \mbox{NO} = \mbox{NO} = \mbox{NO} \\ \mbox{NO} = \mbox{NO} = \mbox{NO} \\ \mbox{NO} = \mbox{NO} = \mbox{NO} \\ \mbox{NO} = \mbox{NO} = \mbox{NO} \\ \mbox{NO} = \mbox{NO} = \mbox{NO} \\ \mbox{NO} = \mbox{NO} = \mbox{NO} \\ \mbox{NO} = \mbox{NO} = \mbox{NO} \\ \mbox{NO} = \mbox{NO} = \mbox{NO} = \mbox{NO} \\ \mbox{NO} = \mbox{NO} = \mbox{NO} = \mbox{NO} \\ \mbox{NO} = \mbox{NO} = \mbox{NO} \\ \mbox{NO} = \mbox{NO} = \m$

RL = Reporting Limit. NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value P = PCDE Interference

Tel: 612-607-1700 Fax: 612-607-6444

Method 8290 Sample Analysis Results

Client - PASI Seattle

SPL-25-5 Client's Sample ID Lab Sample ID 256548005 U110223A_07 Filename Injected By BAL **Total Amount Extracted** 11.5 g Solid Matrix % Moisture Dilution NA 10.5 Dry Weight Extracted Collected 02/09/2011 11:27 10.3 g **ICAL ID** U101204A Received 02/11/2011 10:03 CCal Filename(s) U110222B_17 & U110223A_16 Extracted 02/17/2011 17:00 Method Blank ID BLANK-27910 Analyzed 02/23/2011 11:59

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	470.0	34	0.19 P 0.19	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	66 80 74
2,3,7,8-TCDD Total TCDD	9.5 720.0		0.28 0.28	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	76 89 81
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	58.0 390.0	39 	0.51 P 0.55 0.53	1,2,3,6,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	69 59 67 94
1,2,3,7,8-PeCDD Total PeCDD	57.0 920.0		0.37 0.37	1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	72 83 79
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	48.0 46.0	54 	0.33 P 0.37 0.41	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	94 82
1,2,3,7,8,9-HxCDF Total HxCDF	12.0 340.0		0.27 0.35	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	41.0 85.0 52.0 1200.0		0.42 0.62 0.60 0.55	2,3,7,8-TCDD-37Cl4	0.20	80
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	140.0 18.0 270.0	 	0.24 0.40 0.32	Total 2,3,7,8-TCDD Equivalence: 120 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	450.0 870.0		0.71 0.71			
OCDF OCDD	2800.0	130	0.25 P 0.19			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

RL = Reporting Limit.

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

P = PCDE Interference

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-26-1
Lab Sample ID 256548006
Filename U110223A_08
Injected By BAL
Total Amount Extracted 12.4 g

Total Amount Extracted 12.4 g Matrix Solid % Moisture 13.5 Dilution NA Dry Weight Extracted 10.7 g Collected 02/09

 Dry Weight Extracted
 10.7 g
 Collected
 02/09/2011 11:45

 ICAL ID
 U101204A
 Received
 02/11/2011 10:03

 CCal Filename(s)
 U110222B_17 & U110223A_16
 Extracted
 02/17/2011 17:00

 Method Blank ID
 BLANK-27910
 Analyzed
 02/23/2011 12:47

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	 580.0	43 	0.49 P 0.49	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	70 83 75
2,3,7,8-TCDD Total TCDD	9.8 720.0		0.40 0.40	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	76 90 85
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	61.0 510.0	43 	0.68 P 0.66 0.67	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00 2.00	74 71 56 91
1,2,3,7,8-PeCDD Total PeCDD	54.0 810.0		0.75 0.75	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	78 72 61
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	43.0 42.0	46 	0.35 P 0.41 0.38	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	73 56
1,2,3,7,8,9-HxCDF Total HxCDF	11.0 380.0		0.86 0.50	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	32.0 69.0 44.0 1000.0	 	0.45 0.57 0.50 0.50	2,3,7,8-TCDD-37Cl4	0.20	83
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	120.0 14.0 260.0		0.43 0.56 0.49	Total 2,3,7,8-TCDD Equivalence: 110 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	420.0 840.0		1.20 1.20			
OCDF OCDD	3000.0	130	0.58 P 3.70			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable RL = Reporting Limit.

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

P = PCDE Interference

02/23/2011 13:35

Method Blank ID

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - PASI Seattle

Analyzed

SPL-26-2 Client's Sample ID Lab Sample ID 256548007 U110223A_09 Filename Injected By BAL **Total Amount Extracted** 11.6 g Solid Matrix % Moisture Dilution NA 10.9 Dry Weight Extracted Collected 02/09/2011 12:03 10.3 g **ICAL ID** U101204A Received 02/11/2011 10:03 CCal Filename(s) U110222B_17 & U110223A_16 Extracted 02/17/2011 17:00

BLANK-27910

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1400	96 	0.37 P 0.37	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	64 65 73
2,3,7,8-TCDD Total TCDD	29 2400		0.43 0.43 E	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	75 75 88 77
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	120 850	91 	0.83 P 0.52 0.67	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	65 66 58
1,2,3,7,8-PeCDD Total PeCDD	100 2300		0.60 0.60	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	84 68 66 59
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	87 93	85 	0.42 P 0.33 0.37	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	70 57
1,2,3,7,8,9-HxCDF Total HxCDF	24 560		0.50 0.41	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	88 160 120 2900	 	0.96 0.85 0.72 0.84	2,3,7,8-TCDD-37Cl4	0.20	70
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	200 25 390	 	0.27 0.55 0.41	Total 2,3,7,8-TCDD Equivalence: 240 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	940 1800		1.50 1.50			
OCDF OCDD	 4300	150 	0.54 P 0.39			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable RL = Reporting Limit.

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

P = PCDE Interference

E = Exceeds calibration range

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - PASI Seattle

SPL-26-3 Client's Sample ID Lab Sample ID 256548008 U110223A_10 Filename Injected By BAL **Total Amount Extracted** 11.5 g Solid Matrix % Moisture Dilution NA 11.0 Dry Weight Extracted Collected 02/09/2011 12:16 10.2 g **ICAL ID** U101204A Received 02/11/2011 10:03 CCal Filename(s) U110222B_17 & U110223A_16 Extracted 02/17/2011 17:00 Method Blank ID BLANK-27910 Analyzed 02/23/2011 14:22

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	 1700	100	0.35 P 0.35	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	58 69 65
2,3,7,8-TCDD Total TCDD	26 2000		0.48 0.48 E	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	66 77 70
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	130 1200	95 	0.92 P 0.42 0.67	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00 2.00	70 62 54 53 75
1,2,3,7,8-PeCDD Total PeCDD	93 2100		0.55 0.55	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	65 62 55
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	 90 110	95 	0.38 P 0.50 0.37	1,2,3,4,7,6,9-проде-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	65 52
1,2,3,7,8,9-HxCDF Total HxCDF	24 660		0.40 0.41	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	85 140 100 2500	 	0.67 0.97 0.77 0.80	2,3,7,8-TCDD-37Cl4	0.20	70
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	210 24 270		0.24 0.35 0.29	Total 2,3,7,8-TCDD Equivalence: 230 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	650 1300		0.74 0.74			
OCDF OCDD	3000	150 	0.61 P 0.48			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable NC = Not Calculated

RL = Reporting Limit. NC :
Results reported on a dry weight basis and are valid to no more than 2 significant figures.

P = PCDE Interference

E = Exceeds calibration range

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - PASI Seattle

SPL-26-4 Client's Sample ID Lab Sample ID 256548009 U110223A_11 Filename Injected By BAL **Total Amount Extracted** 11.7 g Solid Matrix % Moisture Dilution NA 11.1 Dry Weight Extracted Collected 02/09/2011 12:27 10.4 g **ICAL ID** U101204A Received 02/11/2011 10:03 CCal Filename(s) U110222B_17 & U110223A_16 Extracted 02/17/2011 17:00 Method Blank ID BLANK-27910 Analyzed 02/23/2011 15:10

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	 1500	100	0.78 P 0.78	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	61 74 64
2,3,7,8-TCDD Total TCDD	27 1900		0.46 0.46	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	63 75 84
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	150 1200	100 	0.69 P 1.10 0.89	1,2,3,4,7,6-FIXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	68 63 56 85
1,2,3,7,8-PeCDD Total PeCDD	140 2200		1.30 1.30	1,2,3,4,7,6-FIXEDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	69 62 54
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	100 96	100	0.76 P 0.90 0.90	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	63 45
1,2,3,7,8,9-HxCDF Total HxCDF	25 790		0.74 0.83	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	92 170 110 2900	 	1.10 1.30 0.71 1.00	2,3,7,8-TCDD-37Cl4	0.20	74
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	250 28 320	 	0.93 0.58 0.76	Total 2,3,7,8-TCDD Equivalence: 280 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	840 1600		2.80 2.80			
OCDF OCDD	3800	180	1.70 P 1.20			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable RL = Reporting Limit.

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

P = PCDE Interference

Tel: 612-607-1700 Fax: 612-607-6444

Method 8290 Blank Analysis Results

Lab Sample ID BLANK-27910 Matrix Solid Filename U110222B_05 Dilution NA

Total Amount Extracted 10.0 g Extracted 02/17/2011 17:00 ICAL ID U101204A Analyzed 02/22/2011 20:54

CCal Filename(s) U110222B_02 & U110222B_17 Injected By BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.140 0.140	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	59 80 67
2,3,7,8-TCDD Total TCDD	ND ND		0.200 0.200	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	69 86 69
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.130 0.120 0.120	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	71 71 65
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.140 0.140	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	80 85 82 76
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.100 0.086 0.088	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	95 73
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		0.120 0.098	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		0.160 0.160 0.150 0.160	2,3,7,8-TCDD-37Cl4	0.20	75
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND	 	0.100 0.160 0.130	Total 2,3,7,8-TCDD Equivalence: 0.24 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		0.210 0.210			
OCDF OCDD		0.35 0.83	0.170 I 0.280 I			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

I = Interference present

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted

ICAL ID CCal Filename(s) Method Blank ID LCS-27911 U110222B_03 10.5 g

U101204A U110222B_02 & U110222B_17 BLANK-27910 Matrix Dilution Extracted Analyzed Solid NA

02/17/2011 17:00 02/22/2011 19:21

injected by	DAL

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.21	107	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.0 2.0 2.0	58 77 65
2,3,7,8-TCDD Total TCDD	0.20	0.17	85	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.0 2.0 2.0 2.0	65 81 68
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.0 1.0	102 102	1,2,3,6,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.0 2.0 2.0 2.0 2.0	69 71 64 81
1,2,3,7,8-PeCDD Total PeCDD	1.0	0.89	89	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.0 2.0 2.0 2.0	83 81 77
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	1.0 1.0 1.0 1.0	1.0 1.1 1.0 1.1	103 108 104 107	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.0 4.0 2.0	97 77 NA
Total HxCDF	1.0		101	1,2,3,7,8,9-HxCDD-13C	2.0	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	0.95 0.97 0.93	95 97 93	2,3,7,8-TCDD-37Cl4	0.20	74
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.0 0.96	101 96			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	0.89	89			
OCDF OCDD	2.0 2.0	1.8 2.1	91 106			

Qs = Quantity Spiked Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent) R = Recovery outside of target range Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable
* = See Discussion

February 24, 2011

Joshua Johnson Brown & Caldwell 724 Columbia St. NW#420 Olympia, WA 98501

RE: Project: East Bay Redevelopment 138130

Pace Project No.: 256550

Dear Joshua Johnson:

Enclosed are the analytical results for sample(s) received by the laboratory on February 10, 2011. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Andy Brownfield for Jennifer Gross

Andy Brownfield

jennifer.gross@pacelabs.com

Project Manager

Enclosures

cc: Jon Turk, Brown & Caldwell

CERTIFICATIONS

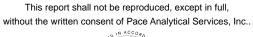
Project: East Bay Redevelopment 138130

Pace Project No.: 256550

Washington Certification IDs
940 South Harney Street, Seattle, WA 98108
Alaska CS Certification #: UST-025
Alaska Drinking Water VOC Certification #: WA01230
Alaska Drinking Water Micro Certification #: WA01230

California Certification #: 01153CA California Certification #: E87617
Oregon Certification #: WA200007
Washington Certification #: C1229

SAMPLE ANALYTE COUNT


Project: East Bay Redevelopment 138130

Pace Project No.: 256550

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
256550001	SPL-25-1	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	CC	3	PASI-S
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
256550002	SPL-25-2	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	CC	3	PASI-S
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
256550003	SPL-25-3	NWTPH-Dx	AY1	6	PASI-S
		NWTPH-Gx	CC	3	PASI-S
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
256550004	SPL-25-4	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	CC	3	PASI-S
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
256550005	SPL-25-5	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	CC	3	PASI-S
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
256550006	SPL-26-1	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	CC	3	PASI-S
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
256550007	SPL-26-2	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	CC	3	PASI-S
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
256550008	SPL-26-3	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	CC	3	PASI-S

REPORT OF LABORATORY ANALYSIS

Page 3 of 25

(206)767-5060

SAMPLE ANALYTE COUNT

Project: East Bay Redevelopment 138130

Pace Project No.: 256550

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
256550009	SPL-26-4	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	CC	3	PASI-S
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
256550010	TB 020911-A	NWTPH-Gx	CC	3	PASI-S
		EPA 8260	LPM	8	PASI-S

Project: East Bay Redevelopment 138130

Pace Project No.: 256550

Sample: SPL-25-1	Lab ID: 2565500	1 Collected: 02/09/11 1	10:30	Received: 02	2/10/11 07:45	Matrix: Solid	
Results reported on a "dry-weight	t" basis						
Parameters	Results L	nits Report Limit I	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS SG	Analytical Method: I	WTPH-Dx Preparation Meth	od: El	PA 3546			
Diesel Range SG	ND mg/kg	20.2	1	02/11/11 11:00	02/15/11 07:14	1	
Motor Oil Range SG	ND mg/kg	80.9	1	02/11/11 11:00	02/15/11 07:14	64742-65-0	
n-Octacosane (S) SG	102 %	50-150	1	02/11/11 11:00	02/15/11 07:14	1 630-02-4	
o-Terphenyl (S) SG	98 %	50-150	1	02/11/11 11:00	02/15/11 07:14	84-15-1	
NWTPH-Gx GCV	Analytical Method: I	WTPH-Gx Preparation Meth	od: N	WTPH-Gx			
Gasoline Range Organics	ND mg/kg	5.5	1	02/18/11 15:45	02/18/11 22:52	2	
a,a,a-Trifluorotoluene (S)	101 %		1	02/18/11 15:45			
4-Bromofluorobenzene (S)	83 %		1	02/18/11 15:45			
8270 MSSV PAH by SIM	Analytical Method: I	PA 8270 by SIM Preparation	Meth	od: EPA 3546			
Acenaphthene	ND ug/kg	7.1	1	02/11/11 11:55	02/15/11 01:54	1 83-32-9	
Acenaphthylene	ND ug/kg	7.1	1	02/11/11 11:55			
Anthracene	10.6 ug/kg	7.1	1	02/11/11 11:55			
Benzo(a)anthracene	23.2 ug/kg	7.1	1	02/11/11 11:55			
Benzo(a)pyrene	22.9 ug/kg	7.1	1	02/11/11 11:55			
Benzo(b)fluoranthene	21.2 ug/kg	7.1	1	02/11/11 11:55			
Benzo(g,h,i)perylene	20.7 ug/kg	7.1 7.1	1	02/11/11 11:55			
Benzo(k)fluoranthene	9.2 ug/kg	7.1 7.1	1	02/11/11 11:55			
		7.1 7.1	1	02/11/11 11:55			
Chrysene	22.4 ug/kg						
Dibenz(a,h)anthracene	ND ug/kg		1	02/11/11 11:55			
Fluoranthene	34.2 ug/kg	7.1	1	02/11/11 11:55			
Fluorene	ND ug/kg	7.1	1	02/11/11 11:55			
ndeno(1,2,3-cd)pyrene	14.1 ug/kg	7.1	1	02/11/11 11:55			
1-Methylnaphthalene	ND ug/kg	7.1	1	02/11/11 11:55			
2-Methylnaphthalene	ND ug/kg	7.1	1	02/11/11 11:55			
Naphthalene	ND ug/kg	7.1	1	02/11/11 11:55			
Phenanthrene	40.4 ug/kg	7.1	1	02/11/11 11:55			
Pyrene	56.1 ug/kg		1	02/11/11 11:55			
2-Fluorobiphenyl (S)	46 %		1	02/11/11 11:55			
Terphenyl-d14 (S)	55 %	30-133	1	02/11/11 11:55	02/15/11 01:54	1718-51-0	
3260/5035A Volatile Organics	Analytical Method: I	PA 8260					
Benzene	ND ug/kg		1		02/14/11 15:16		
Ethylbenzene 	ND ug/kg		1		02/14/11 15:16		
Toluene	ND ug/kg	2.8	1		02/14/11 15:16		
Xylene (Total)	ND ug/kg	8.3	1		02/14/11 15:16	3 1330-20-7	
Dibromofluoromethane (S)	95 %	80-136	1		02/14/11 15:16	1868-53-7	
Toluene-d8 (S)	105 %	80-120	1		02/14/11 15:16	2037-26-5	
4-Bromofluorobenzene (S)	96 %	72-122	1		02/14/11 15:16	6 460-00-4	
1,2-Dichloroethane-d4 (S)	99 %	80-143	1		02/14/11 15:16	3 17060-07-0	
Percent Moisture	Analytical Method: A	STM D2974-87					
Percent Moisture	7.7 %	0.10	1		02/13/11 21:12	2	

Date: 02/24/2011 12:04 PM

REPORT OF LABORATORY ANALYSIS

Page 5 of 25

Project: East Bay Redevelopment 138130

Pace Project No.: 256550

Sample: SPL-25-2	Lab ID: 256550002	Collected: 02/09/11 10	:45 Received: 02	2/10/11 07:45	Matrix: Solid	
Results reported on a "dry-weight	t" basis					
Parameters	Results Units	Report Limit DF	Prepared	Analyzed	CAS No.	Qua
IWTPH-Dx GCS SG	Analytical Method: NWT	PH-Dx Preparation Method	I: EPA 3546			
Diesel Range SG	32.7 mg/kg	20.3 1	02/11/11 11:00	02/15/11 07:30)	
Motor Oil Range SG	369 mg/kg	81.2 1	02/11/11 11:00	02/15/11 07:30	64742-65-0	
n-Octacosane (S) SG	105 %	50-150 1	02/11/11 11:00	02/15/11 07:30	630-02-4	
o-Terphenyl (S) SG	103 %	50-150 1	02/11/11 11:00	02/15/11 07:30	84-15-1	
NWTPH-Gx GCV	Analytical Method: NWT	PH-Gx Preparation Method	d: NWTPH-Gx			
Gasoline Range Organics	ND mg/kg	5.6 1	02/18/11 15:45	02/18/11 23:40)	
a,a,a-Trifluorotoluene (S)	96 %	50-150 1	02/18/11 15:45	02/18/11 23:40	98-08-8	
4-Bromofluorobenzene (S)	78 %	50-150 1	02/18/11 15:45	02/18/11 23:40	460-00-4	
3270 MSSV PAH by SIM	Analytical Method: EPA	3270 by SIM Preparation M	lethod: EPA 3546			
Acenaphthene	ND ug/kg	7.3 1	02/11/11 11:55	02/15/11 02:12	2 83-32-9	
Acenaphthylene	12.2 ug/kg	7.3 1	02/11/11 11:55	02/15/11 02:12	2 208-96-8	
Anthracene	18.5 ug/kg	7.3 1	02/11/11 11:55	02/15/11 02:12	2 120-12-7	
Benzo(a)anthracene	56.1 ug/kg	7.3 1	02/11/11 11:55	02/15/11 02:12	2 56-55-3	
Benzo(a)pyrene	63.1 ug/kg	7.3 1	02/11/11 11:55	02/15/11 02:12	2 50-32-8	
Benzo(b)fluoranthene	61.3 ug/kg	7.3 1	02/11/11 11:55	02/15/11 02:12	2 205-99-2	
Benzo(g,h,i)perylene	53.4 ug/kg	7.3 1	02/11/11 11:55	02/15/11 02:12	2 191-24-2	
Benzo(k)fluoranthene	26.8 ug/kg	7.3 1	02/11/11 11:55	02/15/11 02:12	2 207-08-9	
Chrysene	69.1 ug/kg	7.3 1	02/11/11 11:55	02/15/11 02:12	2 218-01-9	
Dibenz(a,h)anthracene	13.3 ug/kg	7.3 1	02/11/11 11:55	02/15/11 02:12	2 53-70-3	
luoranthene	73.5 ug/kg	7.3 1	02/11/11 11:55	02/15/11 02:12	2 206-44-0	
Fluorene	7.9 ug/kg	7.3 1		02/15/11 02:12		
ndeno(1,2,3-cd)pyrene	37.3 ug/kg	7.3 1	02/11/11 11:55	02/15/11 02:12	2 193-39-5	
-Methylnaphthalene	ND ug/kg	7.3 1	02/11/11 11:55	02/15/11 02:12	2 90-12-0	
-Methylnaphthalene	8.3 ug/kg	7.3 1	02/11/11 11:55	02/15/11 02:12	2 91-57-6	
laphthalene	11.9 ug/kg	7.3 1	02/11/11 11:55	02/15/11 02:12	2 91-20-3	
Phenanthrene	62.8 ug/kg	7.3 1		02/15/11 02:12		
Pyrene	105 ug/kg	7.3 1	02/11/11 11:55	02/15/11 02:12	2 129-00-0	
2-Fluorobiphenyl (S)	43 %	31-131 1	02/11/11 11:55	02/15/11 02:12	2 321-60-8	
erphenyl-d14 (S)	43 %	30-133 1		02/15/11 02:12		
260/5035A Volatile Organics	Analytical Method: EPA	3260				
Benzene	ND ug/kg	2.8 1		02/11/11 17:15	5 71-43-2	
Ethylbenzene	ND ug/kg	2.8 1		02/11/11 17:15		
Toluene	ND ug/kg	2.8 1		02/11/11 17:15	108-88-3	
(Ylene (Total)	ND ug/kg	8.3 1		02/11/11 17:15		
Dibromofluoromethane (S)	80 %	80-136 1		02/11/11 17:15		
Toluene-d8 (S)	175 %	80-120 1		02/11/11 17:15	2037-26-5	S2
1-Bromofluorobenzene (S)	877 %	72-122 1		02/11/11 17:15		S2
1,2-Dichloroethane-d4 (S)	116 %	80-143 1		02/11/11 17:15		
Percent Moisture	Analytical Method: ASTM	1 D2974-87				
Percent Moisture	10.0 %	0.10 1		02/13/11 21:13	3	
		33			-	

Date: 02/24/2011 12:04 PM

REPORT OF LABORATORY ANALYSIS

Page 6 of 25

Project: East Bay Redevelopment 138130

Pace Project No.: 256550

Sample: SPL-25-3	Lab ID: 256550003	Collected: 02/09/1	1 11:00	Received: 02	2/10/11 07:45 N	Matrix: Solid	
Results reported on a "dry-weight							
Parameters	Results Uni	ts Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS SG	Analytical Method: NV	/TPH-Dx Preparation Me	ethod: E	EPA 3546			
Diesel Range SG	ND mg/kg	21.2	1	02/11/11 11:00	02/15/11 07:47		
Motor Oil Range SG	111 mg/kg	84.7	1	02/11/11 11:00	02/15/11 07:47	64742-65-0	
n-Octacosane (S)	107 %	50-150	1	02/11/11 11:00	02/15/11 07:47	630-02-4	
n-Octacosane (S) SG	107 %	50-150	1	02/11/11 11:00	02/15/11 07:47	630-02-4	
o-Terphenyl (S)	105 %	50-150	1	02/11/11 11:00	02/15/11 07:47	84-15-1	
o-Terphenyl (S) SG	105 %	50-150	1	02/11/11 11:00	02/15/11 07:47	84-15-1	
NWTPH-Gx GCV	Analytical Method: NV	/TPH-Gx Preparation M	ethod: N	NWTPH-Gx			
Gasoline Range Organics	ND mg/kg	5.5	1	02/18/11 15:45	02/19/11 00:04		
a,a,a-Trifluorotoluene (S)	98 %	50-150	1	02/18/11 15:45	02/19/11 00:04	98-08-8	
-Bromofluorobenzene (S)	80 %	50-150	1	02/18/11 15:45	02/19/11 00:04	460-00-4	
3270 MSSV PAH by SIM	Analytical Method: EP	A 8270 by SIM Preparat	ion Met	hod: EPA 3546			
Acenaphthene	ND ug/kg	7.1	1	02/11/11 11:55	02/15/11 02:31	83-32-9	
Acenaphthylene	18.8 ug/kg	7.1	1	02/11/11 11:55	02/15/11 02:31	208-96-8	
Anthracene	19.8 ug/kg	7.1	1	02/11/11 11:55	02/15/11 02:31	120-12-7	
Benzo(a)anthracene	64.9 ug/kg	7.1	1	02/11/11 11:55	02/15/11 02:31	56-55-3	
Benzo(a)pyrene	73.2 ug/kg	7.1	1		02/15/11 02:31		
Benzo(b)fluoranthene	57.2 ug/kg	7.1	1	02/11/11 11:55	02/15/11 02:31	205-99-2	
Benzo(g,h,i)perylene	53.8 ug/kg	7.1	1	02/11/11 11:55			
Benzo(k)fluoranthene	38.8 ug/kg	7.1	1		02/15/11 02:31		
Chrysene	68.6 ug/kg	7.1	1	02/11/11 11:55			
Dibenz(a,h)anthracene	13.7 ug/kg	7.1	1		02/15/11 02:31		
Fluoranthene	84.7 ug/kg	7.1	1		02/15/11 02:31		
Fluorene	ND ug/kg	7.1	1	02/11/11 11:55			
ndeno(1,2,3-cd)pyrene	43.5 ug/kg	7.1	1	02/11/11 11:55			
-Methylnaphthalene	ND ug/kg	7.1	1	02/11/11 11:55			
2-Methylnaphthalene	ND ug/kg	7.1	1		02/15/11 02:31		
Naphthalene	7.1 ug/kg	7.1	1		02/15/11 02:31		
Phenanthrene	67.4 ug/kg	7.1	1	02/11/11 11:55			
Pyrene	130 ug/kg	7.1	1		02/15/11 02:31		
2-Fluorobiphenyl (S)	47 %	31-131	1	02/11/11 11:55			
erphenyl-d14 (S)	49 %	30-133	1	02/11/11 11:55	02/15/11 02:31		
3260/5035A Volatile Organics	Analytical Method: EP	A 8260					
Benzene	ND ug/kg	2.8	1		02/11/11 17:34	71-43-2	
Ethylbenzene	ND ug/kg	2.8	1		02/11/11 17:34	100-41-4	
Toluene	ND ug/kg	2.8	1		02/11/11 17:34		
(ylene (Total)	ND ug/kg	8.3	1		02/11/11 17:34		
Dibromofluoromethane (S)	89 %	80-136	1		02/11/11 17:34		
oluene-d8 (S)	105 %	80-120	1		02/11/11 17:34		
I-Bromofluorobenzene (S)	104 %	72-122	1		02/11/11 17:34		
1,2-Dichloroethane-d4 (S)	101 %	80-143	1		02/11/11 17:34		

Date: 02/24/2011 12:04 PM

REPORT OF LABORATORY ANALYSIS

Page 7 of 25

Matrix: Solid

ANALYTICAL RESULTS

Project: East Bay Redevelopment 138130

Pace Project No.: 256550

Sample: SPL-25-3

Results reported on a "dry-weight" basis

Collected: 02/09/11 11:00

Received: 02/10/11 07:45

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual

Percent Moisture Analytical Method: ASTM D2974-87

Percent Moisture **8.0** % 0.10 1 02/13/11 21:14

Lab ID: 256550003

Sample: SPL-25-4 Lab ID: 256550004 Collected: 02/09/11 11:15 Received: 02/10/11 07:45 Matrix: Solid

Results reported on a "dry-weight" basis

NWTPH-Dx GCS SG	Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Motor Oil Range SG ND mg/kg 86.8 1 02/11/11 11:00 02/15/11 08:20 630-02-4 0-0-02 0-0	NWTPH-Dx GCS SG	Analytical Met	thod: NWTPH-Dx	Preparation Me	ethod: I	EPA 3546			
n-Octacosane (S) SG o-Terphenyl (S) SG o-Terphenyl (S) SG 100 % 50-150 1 0 02/11/11 11:00 02/15/11 08:20 84-15-1 NWTPH-Gx GCV Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics a,aTrifluorotoluene (S) 100 % 50-150 1 02/18/11 15:45 02/19/11 00:28 98-08-8 4-Bromofluorobenzene (S) 82 % 50-150 1 02/18/11 15:45 02/19/11 00:28 98-08-8 4-Bromofluorobenzene (S) 82 % 50-150 1 02/18/11 15:45 02/19/11 00:28 98-08-8 4-Bromofluorobenzene (S) 82 % 50-150 1 02/18/11 15:45 02/19/11 00:28 98-08-8 4-Bromofluorobenzene (S) 82 % 80-00-4 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Acenaphthene ND ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 83-32-9 Acenaphthylene 13.8 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 120-16-17 Benzo(a)anthracene 19.9 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 120-16-17 Benzo(a)apyrene 72.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 120-16-17 Benzo(g)h,i)perylene 18.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 120-16-18 Benzo(g)(iluoranthene 43.9 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 120-16-18 Benzo(g)(iluoranthene 43.9 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 120-16-16 Benzo(g)(iluoranthene 17.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 18-01-09	Diesel Range SG	ND m	ng/kg	21.7	1	02/11/11 11:00	02/15/11 08:20		
c-Terphenyl (\$) \$G\$ 101 % 50-150 1 02/11/11 11:00 02/15/11 08:20 84-15-1 NWTPH-Gx GCV Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx WVTPH-Gx VWTPH-Gx Gasoline Range Organics a, a,a-Tiffluorotoluene (\$) 100 % 50-150 1 02/18/11 15:45 02/19/11 00:28 98-08-8 4-Bromoffluorobenzene (\$) 82 % 50-150 1 02/18/11 15:45 02/19/11 00:28 98-08-8 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 VIII 11 11:55 02/15/11 00:24 98-08-8 Acenaphthene ND ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 83-32-9 Acenaphthylene 13.8 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 28-96-8 Anthracene 19.9 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 28-96-8 Benzo(a)phrene 7.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 28-93-3 Benzo(b)fluoranthene 9.5 ug/kg 7.3 1 02/11/1	Motor Oil Range SG	ND m	ng/kg	86.8	1	02/11/11 11:00	02/15/11 08:20	64742-65-0	
NWTPH-Gx GCV	n-Octacosane (S) SG	100 %	D	50-150	1	02/11/11 11:00	02/15/11 08:20	630-02-4	
Sasoline Range Organics ND mg/kg 5.2 1 02/18/11 15:45 02/19/11 00:28 8-08-8 4-Bromofluorobluene (S) 100 % 50-150 1 02/18/11 15:45 02/19/11 00:28 8-08-8 4-Bromofluorobenzene (S) 82 % 50-150 1 02/18/11 15:45 02/19/11 00:28 460-00-4 4-Bromofluorobenzene (S) 82 % 50-150 1 02/18/11 15:45 02/19/11 00:28 460-00-4 4-Bromofluorobenzene (S) 82 % 50-150 1 02/18/11 15:45 02/19/11 00:28 460-00-4 4-Bromofluorobenzene (S) 82 % 50-150 1 02/18/11 15:45 02/19/11 00:28 460-00-4 4-Bromofluorobenzene (S) 82 % 7-3 1 02/11/11 11:55 02/15/11 02:49 83-32-9 4-Bromofluorobenzene 19.9 ug/kg 7-3 1 02/11/11 11:55 02/15/11 02:49 20-9-2 4-Brozo(a)anthracene 19.9 ug/kg 7-3 1 02/11/11 11:55 02/15/11 02:49 20-8-6-8 4-Brozo(a)anthracene 70.2 ug/kg 7-3 1 02/11/11 11:55 02/15/11 02:49 50-32-8 4-Brozo(a)anthracene 69.5 ug/kg 7-3 1 02/11/11 11:55 02/15/11 02:49 50-32-8 4-Brozo(a)anthracene 69.5 ug/kg 7-3 1 02/11/11 11:55 02/15/11 02:49 50-32-8 4-Brozo(a)anthracene 58.0 ug/kg 7-3 1 02/11/11 11:55 02/15/11 02:49 20-9-9-2 4-Brozo(a)anthracene 43.9 ug/kg 7-3 1 02/11/11 11:55 02/15/11 02:49 20-9-9-2 4-Brozo(a)anthracene 43.9 ug/kg 7-3 1 02/11/11 11:55 02/15/11 02:49 20-0-9-9-2 4-Brozo(a)anthracene 43.9 ug/kg 7-3 1 02/11/11 11:55 02/15/11 02:49 20-0-9-9-2 4-Brozo(a)anthracene 43.9 ug/kg 7-3 1 02/11/11 11:55 02/15/11 02:49 20-0-0-9-2 4-Brozo(a)anthracene 43.9 ug/kg 7-3 1 02/11/11 11:55 02/15/11 02:49 20-0-0-9-2 4-Brozo(a)anthracene 45.8 ug/kg 7-3 1 02/11/11 11:55 02/15/11 02:49 20-0-4-0 4-Brozo(a)anthracene 45.8 ug/kg 7-3 1 02/11/11 11:55 02/15/11 02:49 20-0-3 4-Brozo(a)anthracene 80.0 ug/kg 7-3 1 02/11/11 11:55 02/15/11 02:49 30-3-3 4-Brozo(a)anthracene 80.0 ug/kg 7-3 1 02/11/11 11:55 02/15/11 02:49 30-3-3 4-Brozo(a)anthracene 80.0 ug/kg 7-3 1	o-Terphenyl (S) SG	101 %	D	50-150	1	02/11/11 11:00	02/15/11 08:20	84-15-1	
a,a,a-Trifluorotoluene (S) 100 % 50-150 1 02/18/11 15:45 02/19/11 00:28 98-08-8 4-Bromofluorobenzene (S) 82 % 50-150 1 02/18/11 15:45 02/19/11 00:28 98-08-8 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparative Method: EPA 8564 EPA 3546 Acenaphthene ND ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 83-32-9 Acenaphthylene 13.8 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 208-96-8 Anthracene 19.9 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 208-96-8 Anthracene 19.9 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 208-96-8 Anthracene 70.2 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 26-55-3 Benzo(a)pyrene 72.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 56-55-3 Benzo(b)(iluoranthene 58.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 20-	NWTPH-Gx GCV	Analytical Met	thod: NWTPH-Gx	Preparation Me	ethod:	NWTPH-Gx			
4-Bromofluorobenzene (S) 82 % 50-150 1 02/18/11 15:45 02/19/11 00:28 460-00-4 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparative text execute te	Gasoline Range Organics	ND m	ng/kg	5.2	1	02/18/11 15:45	02/19/11 00:28		
8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Acenaphthene ND ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 83-32-9 Acenaphthylene 13.8 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 208-96-8 Anthracene 19.9 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 120-12-7 Benzo(a)anthracene 70.2 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 56-55-3 Benzo(a)pyrene 72.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 56-55-3 Benzo(b)fluoranthene 69.5 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 205-99-2 Benzo(k)fluoranthene 58.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 205-99-2 Benzo(k)fluoranthene 43.9 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 207-08-9 Chrysene 76.9 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 207-08-9	a,a,a-Trifluorotoluene (S)	100 %	D	50-150	1	02/18/11 15:45	02/19/11 00:28	98-08-8	
Acenaphthene ND ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 83-32-9 Acenaphthylene 13.8 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 208-96-8 Anthracene 19.9 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 120-12-7 Benzo(a)anthracene 70.2 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 56-55-3 Benzo(a)pyrene 72.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 56-55-3 Benzo(b)fluoranthene 69.5 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 50-32-8 Benzo(g,h,i)perylene 58.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 207-98-9 Benzo(k)fluoranthene 43.9 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 207-08-9 Chrysene 76.9 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 207-08-9 Chrysene 76.9 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 207-08-9 Dibenz(a,h)anthracene 17.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 218-01-9 Dibenz(a,h)anthracene 90.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 206-44-0 Fluorene 8.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 206-44-0 Fluorene 8.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 39-3-5 Indeno(1,2,3-cd)pyrene 45.8 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 90-12-0 2-Methylnaphthalene ND ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-20-3 Phenanthrene ND ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-20-3 Phenanthrene ND ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-20-3 Phenanthrene 68.5 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-20-3 Phenanthrene 68.5 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-20-3 Phenanthrene 68.5 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-20-3 Phenanthrene 68.5 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-20-3 Phenanthrene 68.5 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-20-3 Phenanthrene 68.5 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-20-3 Phenanthrene 68.5 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-20-3 Phenanthrene 68.5 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-20-3 Phenanthrene 68.5 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-20-3 Phenanthrene 68.5 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-20-3 Phenanthrene 7.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-20-3 Phenanthrene 7.0 ug/kg 7.3	4-Bromofluorobenzene (S)	82 %	D	50-150	1	02/18/11 15:45	02/19/11 00:28	460-00-4	
Acenaphthylene	8270 MSSV PAH by SIM	Analytical Met	thod: EPA 8270 b	y SIM Preparati	on Me	thod: EPA 3546			
Anthracene 19.9 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 120-12-7 Benzo(a)anthracene 70.2 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 56-55-3 Benzo(a)pyrene 72.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 50-32-8 Benzo(b)fluoranthene 69.5 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 205-99-2 Benzo(k)fluoranthene 58.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 205-99-2 Benzo(k)fluoranthene 58.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-2-2 Benzo(k)fluoranthene 43.9 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-2-2 Benzo(k)fluoranthene 76.9 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-2-0 Chrysene 76.9 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 207-0-3 Pluoranthene 90.0 ug/kg 7.3 1 02/11/11 11:55 <	Acenaphthene	ND u	g/kg	7.3	1	02/11/11 11:55	02/15/11 02:49	83-32-9	
Benzo(a)anthracene 70.2 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 56-55-3 Benzo(a)pyrene 72.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 50-32-8 Benzo(b)fluoranthene 69.5 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 205-99-2 Benzo(k)fluoranthene 58.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 205-99-2 Benzo(k)fluoranthene 58.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 207-08-9 Chrysene 76.9 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 207-08-9 Chrysene 76.9 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 207-08-9 Chrysene 76.9 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 208-04-9 Dibenz(a,h)anthracene 17.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 208-04-9 Dibenz(a,h)anthracene 17.0 ug/kg 7.3 1 02/11/11 11:55	Acenaphthylene	13.8 ug	g/kg	7.3	1	02/11/11 11:55	02/15/11 02:49	208-96-8	
Benzo(a)pyrene 72.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 50-32-8	Anthracene	19.9 u	g/kg	7.3	1	02/11/11 11:55	02/15/11 02:49	120-12-7	
Benzo(b)fluoranthene 69.5 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 205-99-2 Benzo(g,h,i)perylene 58.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 191-24-2 Benzo(k)fluoranthene 43.9 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 207-08-9 Chrysene 76.9 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 218-01-9 Dibenz(a,h)anthracene 17.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 218-01-9 Pluoranthene 90.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 206-44-0 Fluoranthene 90.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 206-44-0 Fluoranthene 8.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 86-73-7 Indeno(1,2,3-cd)pyrene 45.8 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 90-12-0 2-Methylnaphthalene ND ug/kg 7.3 1 02/11/11 11:55	Benzo(a)anthracene	70.2 u	g/kg	7.3	1	02/11/11 11:55	02/15/11 02:49	56-55-3	
Benzo(g,h,i)perylene 58.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 191-24-2 Benzo(k)fluoranthene 43.9 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 207-08-9 Chrysene 76.9 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 218-01-9 Dibenz(a,h)anthracene 17.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 53-70-3 Fluoranthene 90.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 53-70-3 Fluoranthene 90.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 53-70-3 Fluoranthene 8.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 86-73-7 Indeno(1,2,3-cd)pyrene 45.8 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 98-73-7 I-Methylnaphthalene ND ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 90-12-0 2-Methylnaphthalene ND ug/kg 7.3 1 02/11/11 11:55	Benzo(a)pyrene	72.0 ug	g/kg	7.3	1	02/11/11 11:55	02/15/11 02:49	50-32-8	
Benzo(k)fluoranthene 43.9 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 207-08-9 Chrysene 76.9 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 218-01-9 Dibenz(a,h)anthracene 17.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 53-70-3 Fluoranthene 90.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 206-44-0 Fluorene 8.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 206-44-0 Fluorene 8.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 206-44-0 Fluorene 8.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 86-73-7 Indeno(1,2,3-cd)pyrene 45.8 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 90-12-0 1-Methylnaphthalene ND ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-20-3 Naphthalene ND ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49	Benzo(b)fluoranthene	69.5 ug	g/kg	7.3	1	02/11/11 11:55	02/15/11 02:49	205-99-2	
Chrysene 76.9 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 218-01-9 Dibenz(a,h)anthracene 17.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 53-70-3 Fluoranthene 90.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 206-44-0 Fluorene 8.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 86-73-7 Indeno(1,2,3-cd)pyrene 45.8 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 193-39-5 1-Methylnaphthalene ND ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 90-12-0 2-Methylnaphthalene ND ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-20-3 Naphthalene ND ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-20-3 Phenanthrene 68.5 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-20-3 Pyrene 139 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49	Benzo(g,h,i)perylene	58.0 ug	g/kg	7.3	1	02/11/11 11:55	02/15/11 02:49	191-24-2	
Dibenz(a,h)anthracene 17.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 53-70-3 Fluoranthene 90.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 206-44-0 Fluorene 8.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 86-73-7 Indeno(1,2,3-cd)pyrene 45.8 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 86-73-7 1-Methylnaphthalene ND ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 90-12-0 2-Methylnaphthalene ND ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 90-12-0 2-Methylnaphthalene ND ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-20-3 Naphthalene ND ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-20-3 Phenanthrene 68.5 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 85-01-8 Pyrene 139 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 32-60-8 Terphenyl-d14 (S) 46 % 30-133	Benzo(k)fluoranthene	43.9 ug	g/kg	7.3	1	02/11/11 11:55	02/15/11 02:49	207-08-9	
Fluoranthene 90.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 206-44-0 Fluorene 8.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 86-73-7 Indeno(1,2,3-cd)pyrene 45.8 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 193-39-5 1-Methylnaphthalene ND ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 90-12-0 2-Methylnaphthalene ND ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-57-6 Naphthalene ND ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-20-3 Phenanthrene 68.5 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-20-3 Pyrene 139 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 129-00-0 2-Fluorobiphenyl (S) 45 % 31-131 1 02/11/11 11:55 02/15/11 02:49 178-51-0 8260/5035A Volatile Organics Analytical Method: EPA 8260 1 02/11/11 11:55 02/14/11 15:5	Chrysene	76.9 ug	g/kg	7.3	1	02/11/11 11:55	02/15/11 02:49	218-01-9	
Fluorene 8.0 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 86-73-7 Indeno(1,2,3-cd)pyrene 45.8 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 193-39-5 1-Methylnaphthalene ND ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 90-12-0 2-Methylnaphthalene ND ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-57-6 Naphthalene ND ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-57-6 Naphthalene ND ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-20-3 Phenanthrene 68.5 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 85-01-8 Pyrene 139 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 85-01-8 Pyrene 139 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 321-60-8 2-Fluorobiphenyl (S) 45 % 31-131 1 02/11/11 11:55 02/15/11 02:49 321-60-8 Terphenyl-d14 (S) 46 % 30-133 1 02/11/11 11:55 02/15/11 02:49 1718-51-0	Dibenz(a,h)anthracene	17.0 ug	g/kg	7.3	1	02/11/11 11:55	02/15/11 02:49	53-70-3	
Indeno(1,2,3-cd)pyrene 45.8 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 193-39-5 1-Methylnaphthalene ND ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 90-12-0 2-Methylnaphthalene ND ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-57-6 Naphthalene ND ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-20-3 Phenanthrene 68.5 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-20-3 Pyrene 139 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-20-3 2-Fluorobiphenyl (S) 45 % 31-131 1 02/11/11 11:55 02/15/11 02:49 321-60-8 Terphenyl-d14 (S) 46 % 30-133 1 02/11/11 11:55 02/15/11 02:49 1718-51-0 8260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 2.8 1 02/14/11 15:56 71-43-2 Ethylbenzene ND ug/kg	Fluoranthene	90.0 ug	g/kg	7.3	1	02/11/11 11:55	02/15/11 02:49	206-44-0	
1-Methylnaphthalene ND ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 90-12-0 2-Methylnaphthalene ND ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-57-6 Naphthalene ND ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-20-3 Phenanthrene 68.5 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-20-3 Pyrene 139 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 85-01-8 2-Fluorobiphenyl (S) 45 % 31-131 1 02/11/11 11:55 02/15/11 02:49 321-60-8 Terphenyl-d14 (S) 46 % 30-133 1 02/11/11 11:55 02/15/11 02:49 1718-51-0 8260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 2.8 1 02/14/11 15:56 71-43-2 Ethylbenzene ND ug/kg 2.8 1 02/14/11 15:56 100-41-4	Fluorene	8.0 ug	g/kg	7.3	1	02/11/11 11:55	02/15/11 02:49	86-73-7	
2-Methylnaphthalene ND ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-57-6 Naphthalene ND ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-20-3 Phenanthrene 68.5 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 85-01-8 Pyrene 139 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 85-01-8 2-Fluorobiphenyl (S) 45 % 31-131 1 02/11/11 11:55 02/15/11 02:49 321-60-8 Terphenyl-d14 (S) 46 % 30-133 1 02/11/11 11:55 02/15/11 02:49 1718-51-0 8260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 2.8 1 02/14/11 15:56 71-43-2 Ethylbenzene ND ug/kg 2.8 1 02/14/11 15:56 100-41-4	Indeno(1,2,3-cd)pyrene	45.8 ug	g/kg	7.3	1	02/11/11 11:55	02/15/11 02:49	193-39-5	
Naphthalene ND ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 91-20-3 Phenanthrene 68.5 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 85-01-8 Pyrene 139 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 129-00-0 2-Fluorobiphenyl (S) 45 % 31-131 1 02/11/11 11:55 02/15/11 02:49 321-60-8 Terphenyl-d14 (S) 46 % 30-133 1 02/11/11 11:55 02/15/11 02:49 1718-51-0 8260/5035A Volatile Organics Analytical Method: EPA 8260 2.8 1 02/14/11 15:56 71-43-2 Ethylbenzene ND ug/kg 2.8 1 02/14/11 15:56 70-41-4	1-Methylnaphthalene	ND u	g/kg	7.3	1	02/11/11 11:55	02/15/11 02:49	90-12-0	
Phenanthrene 68.5 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 85-01-8 Pyrene 139 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 129-00-0 2-Fluorobiphenyl (S) 45 % 31-131 1 02/11/11 11:55 02/15/11 02:49 321-60-8 Terphenyl-d14 (S) 46 % 30-133 1 02/11/11 11:55 02/15/11 02:49 1718-51-0 8260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 2.8 1 02/14/11 15:56 71-43-2 Ethylbenzene ND ug/kg 2.8 1 02/14/11 15:56 100-41-4	2-Methylnaphthalene	ND u	g/kg	7.3	1	02/11/11 11:55	02/15/11 02:49	91-57-6	
Pyrene 139 ug/kg 7.3 1 02/11/11 11:55 02/15/11 02:49 129-00-0 2-Fluorobiphenyl (S) 45 % 31-131 1 02/11/11 11:55 02/15/11 02:49 321-60-8 Terphenyl-d14 (S) 46 % 30-133 1 02/11/11 11:55 02/15/11 02:49 1718-51-0 8260/5035A Volatile Organics Benzene ND ug/kg 2.8 1 02/14/11 15:56 71-43-2 Ethylbenzene ND ug/kg 2.8 1 02/14/11 15:56 100-41-4	Naphthalene	ND u	g/kg	7.3	1	02/11/11 11:55	02/15/11 02:49	91-20-3	
2-Fluorobiphenyl (S) 45 % 31-131 1 02/11/11 11:55 02/15/11 02:49 321-60-8 Terphenyl-d14 (S) 46 % 30-133 1 02/11/11 11:55 02/15/11 02:49 1718-51-0 8260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 2.8 1 02/14/11 15:56 71-43-2 Ethylbenzene ND ug/kg 2.8 1 02/14/11 15:56 100-41-4	Phenanthrene	68.5 ug	g/kg	7.3	1	02/11/11 11:55	02/15/11 02:49	85-01-8	
Terphenyl-d14 (S) 46 % 30-133 1 02/11/11 11:55 02/15/11 02:49 1718-51-0 8260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 2.8 1 02/14/11 15:56 71-43-2 Ethylbenzene ND ug/kg 2.8 1 02/14/11 15:56 100-41-4	Pyrene	139 ug	g/kg	7.3	1	02/11/11 11:55	02/15/11 02:49	129-00-0	
8260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 2.8 1 02/14/11 15:56 71-43-2 Ethylbenzene ND ug/kg 2.8 1 02/14/11 15:56 100-41-4	2-Fluorobiphenyl (S)	45 %	D	31-131	1	02/11/11 11:55	02/15/11 02:49	321-60-8	
Benzene ND ug/kg 2.8 1 02/14/11 15:56 71-43-2 Ethylbenzene ND ug/kg 2.8 1 02/14/11 15:56 100-41-4	Terphenyl-d14 (S)	46 %	, D	30-133	1	02/11/11 11:55	02/15/11 02:49	1718-51-0	
Ethylbenzene ND ug/kg 2.8 1 02/14/11 15:56 100-41-4	8260/5035A Volatile Organics	Analytical Met	thod: EPA 8260						
Ethylbenzene ND ug/kg 2.8 1 02/14/11 15:56 100-41-4	Benzene	ND u	g/kg	2.8	1		02/14/11 15:56	71-43-2	
· · · · · · · · · · · · · · · · · · ·	Ethylbenzene			2.8	1		02/14/11 15:56	100-41-4	
Toluene ND ug/kg 2.8 1 02/14/11 15:56 108-88-3	Toluene			2.8	1				

Date: 02/24/2011 12:04 PM

REPORT OF LABORATORY ANALYSIS

Page 8 of 25

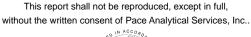
Project: East Bay Redevelopment 138130

Pace Project No.: 256550 Lab ID: 256550004 Sample: SPL-25-4 Collected: 02/09/11 11:15 Received: 02/10/11 07:45 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8260/5035A Volatile Organics Analytical Method: EPA 8260 Xylene (Total) ND ug/kg 8.5 1 02/14/11 15:56 1330-20-7 Dibromofluoromethane (S) 94 % 80-136 02/14/11 15:56 1868-53-7 1 Toluene-d8 (S) 103 % 80-120 02/14/11 15:56 2037-26-5 1 4-Bromofluorobenzene (S) 102 % 72-122 02/14/11 15:56 460-00-4 1 1,2-Dichloroethane-d4 (S) 103 % 80-143 02/14/11 15:56 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 10 % 0.10 1 02/13/11 21:14 Sample: SPL-25-5 Lab ID: 256550005 Collected: 02/09/11 11:27 Received: 02/10/11 07:45 Results reported on a "dry-weight" basis Parameters Results Report Limit DF CAS No. Qual Units Prepared Analyzed **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG 40.1 mg/kg 20.6 02/11/11 11:00 02/15/11 08:37 Motor Oil Range SG 82.3 02/11/11 11:00 430 mg/kg 1 02/15/11 08:37 64742-65-0 50-150 n-Octacosane (S) SG 106 % 02/11/11 11:00 02/15/11 08:37 630-02-4 1 103 % 50-150 02/11/11 11:00 02/15/11 08:37 84-15-1 o-Terphenyl (S) SG 1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 6.2 1 02/18/11 15:45 02/19/11 01:16 a,a,a-Trifluorotoluene (S) 101 % 50-150 02/18/11 15:45 02/19/11 01:16 98-08-8 1 84 % 4-Bromofluorobenzene (S) 50-150 02/18/11 15:45 02/19/11 01:16 460-00-4 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 02/11/11 11:55 02/15/11 03:07 83-32-9 Acenaphthene ND ug/kg 7.4 1 Acenaphthylene ND ug/kg 7.4 02/11/11 11:55 02/15/11 03:07 208-96-8 1 7.4 10.4 ug/kg Anthracene 02/11/11 11:55 02/15/11 03:07 120-12-7 1 Benzo(a)anthracene 41.9 ug/kg 7.4 02/11/11 11:55 02/15/11 03:07 56-55-3 1 Benzo(a)pyrene 44.5 ug/kg 7.4 1 02/11/11 11:55 02/15/11 03:07 50-32-8 Benzo(b)fluoranthene 44.5 ug/kg 7.4 1 02/11/11 11:55 02/15/11 03:07 205-99-2 Benzo(g,h,i)perylene 37.2 ug/kg 7.4 1 02/11/11 11:55 02/15/11 03:07 191-24-2 02/11/11 11:55 02/15/11 03:07 207-08-9 Benzo(k)fluoranthene 20.4 ug/kg 7.4 1 42.7 ug/kg 02/11/11 11:55 02/15/11 03:07 218-01-9 Chrysene 7.4 1 Dibenz(a,h)anthracene 9.6 ug/kg 7.4 02/11/11 11:55 02/15/11 03:07 53-70-3 1 **49.8** ug/kg Fluoranthene 7.4 02/11/11 11:55 02/15/11 03:07 206-44-0 1 ND ug/kg Fluorene 7 4 02/11/11 11:55 02/15/11 03:07 86-73-7 1 Indeno(1,2,3-cd)pyrene **27.6** ug/kg 7 4 1 02/11/11 11:55 02/15/11 03:07 193-39-5 1-Methylnaphthalene ND ug/kg 7.4 1 02/11/11 11:55 02/15/11 03:07 90-12-0 2-Methylnaphthalene ND ug/kg 7.4 1 02/11/11 11:55 02/15/11 03:07 91-57-6 Naphthalene ND ug/kg 7.4 1 02/11/11 11:55 02/15/11 03:07 91-20-3 Phenanthrene 40.9 ug/kg 7.4 02/11/11 11:55 02/15/11 03:07 85-01-8 1 Pyrene 78.5 ug/kg 7.4 02/11/11 11:55 02/15/11 03:07 129-00-0

Date: 02/24/2011 12:04 PM

REPORT OF LABORATORY ANALYSIS

Page 9 of 25


Project: East Bay Redevelopment 138130

Pace Project No.: 256550

Lab ID: 256550005 Sample: SPL-25-5 Collected: 02/09/11 11:27 Received: 02/10/11 07:45 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 2-Fluorobiphenyl (S) 37 % 31-131 02/11/11 11:55 02/15/11 03:07 321-60-8 30-133 Terphenyl-d14 (S) 43 % 02/11/11 11:55 02/15/11 03:07 1718-51-0 8260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 2.8 1 02/14/11 16:15 71-43-2 Ethylbenzene ND ug/kg 2.8 02/14/11 16:15 100-41-4 1 Toluene ND ug/kg 02/14/11 16:15 108-88-3 2.8 1 Xvlene (Total) ND ua/ka 8.3 1 02/14/11 16:15 1330-20-7 Dibromofluoromethane (S) 64 % 80-136 1 02/14/11 16:15 1868-53-7 S2 Toluene-d8 (S) 118 % 80-120 02/14/11 16:15 2037-26-5 1 81 % 4-Bromofluorobenzene (S) 72-122 02/14/11 16:15 460-00-4 1 1,2-Dichloroethane-d4 (S) 80-143 02/14/11 16:15 17060-07-0 96 % 1 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 9.7 % 0.10 02/13/11 21:15 1 Lab ID: 256550006 Sample: SPL-26-1 Collected: 02/09/11 11:45 Received: 02/10/11 07:45 Matrix: Solid Results reported on a "dry-weight" basis DF **Parameters** Results Units Report Limit Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG 254 mg/kg 22.4 02/11/11 11:00 02/15/11 09:26 1 **2860** mg/kg 89.7 Motor Oil Range SG 02/11/11 11:00 02/15/11 09:26 64742-65-0 1 93 % 50-150 n-Octacosane (S) SG 02/11/11 11:00 02/15/11 09:26 630-02-4 1 99 % 50-150 02/11/11 11:00 02/15/11 09:26 84-15-1 o-Terphenyl (S) SG **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx ND mg/kg 02/18/11 15:45 02/19/11 01:39 Gasoline Range Organics 6.2 1 a,a,a-Trifluorotoluene (S) 101 % 50-150 02/18/11 15:45 02/19/11 01:39 98-08-8 1 4-Bromofluorobenzene (S) 84 % 50-150 1 02/18/11 15:45 02/19/11 01:39 460-00-4 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 7.6 Acenaphthene ND ug/kg 1 02/11/11 11:55 02/15/11 03:26 83-32-9 Acenaphthylene 8.4 ug/kg 7.6 1 02/11/11 11:55 02/15/11 03:26 208-96-8 Anthracene 18.3 ug/kg 7.6 02/11/11 11:55 02/15/11 03:26 120-12-7 1 Benzo(a)anthracene 202 ug/kg 7.6 1 02/11/11 11:55 02/15/11 03:26 56-55-3 358 ug/kg 37.9 02/15/11 12:07 Benzo(a)pyrene 5 02/11/11 11:55 50-32-8 Benzo(b)fluoranthene 531 ug/kg 37.9 5 02/11/11 11:55 02/15/11 12:07 205-99-2 Benzo(g,h,i)perylene 387 ug/kg 37.9 5 02/11/11 11:55 02/15/11 12:07 191-24-2 Benzo(k)fluoranthene 37.9 492 ug/kg 5 02/11/11 11:55 02/15/11 12:07 207-08-9 272 ug/kg 7.6 02/11/11 11:55 02/15/11 03:26 218-01-9 Chrysene 1 Dibenz(a,h)anthracene 120 ug/kg 37.9 02/11/11 11:55 02/15/11 12:07 53-70-3 5 Fluoranthene 248 ug/kg 7.6 02/11/11 11:55 02/15/11 03:26 206-44-0

Date: 02/24/2011 12:04 PM

Project: East Bay Redevelopment 138130

Sample: SPL-26-1	Lab ID: 256550006	Collected: 02/09/1	1 11:45	Received: 02	2/10/11 07:45 N	Matrix: Solid	
Results reported on a "dry-weigh	t" basis						
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3270 MSSV PAH by SIM	Analytical Method: EPA 8	3270 by SIM Preparati	on Meth	nod: EPA 3546			
Fluorene	8.0 ug/kg	7.6	1	02/11/11 11:55	02/15/11 03:26	86-73-7	
Indeno(1,2,3-cd)pyrene	346 ug/kg	37.9	5	02/11/11 11:55	02/15/11 12:07	193-39-5	
1-Methylnaphthalene	ND ug/kg	7.6	1	02/11/11 11:55	02/15/11 03:26	90-12-0	
2-Methylnaphthalene	11.8 ug/kg	7.6	1	02/11/11 11:55	02/15/11 03:26	91-57-6	
Naphthalene	19.8 ug/kg	7.6	1	02/11/11 11:55	02/15/11 03:26	91-20-3	
henanthrene	94.4 ug/kg	7.6	1	02/11/11 11:55	02/15/11 03:26	85-01-8	
Pyrene	190 ug/kg	7.6	1	02/11/11 11:55			
2-Fluorobiphenyl (S)	47 %	31-131	1	02/11/11 11:55			
Ferphenyl-d14 (S)	42 %	30-133	1		02/15/11 03:26		
3260/5035A Volatile Organics	Analytical Method: EPA 8	3260					
Benzene	ND ug/kg	3.5	1		02/11/11 18:13	71_//3.2	
	0 0	3.5	1		02/11/11 18:13	-	
Ethylbenzene Toluene	ND ug/kg						
	ND ug/kg	3.5	1 1		02/11/11 18:13		
Xylene (Total)	ND ug/kg	10.6			02/11/11 18:13		
Dibromofluoromethane (S)	92 %	80-136	1		02/11/11 18:13		
Toluene-d8 (S)	107 %	80-120	1		02/11/11 18:13		
4-Bromofluorobenzene (S) 1,2-Dichloroethane-d4 (S)	107 % 103 %	72-122 80-143	1 1		02/11/11 18:13 02/11/11 18:13		
			ı		02/11/11 16.13	17060-07-0	
Percent Moisture	Analytical Method: ASTM	1 D2974-87					
Percent Moisture	12.6 %	0.10	1		02/13/11 21:15		
Sample: SPL-26-2	Lab ID: 256550007	Collected: 02/09/1	1 12:03	Received: 02	2/10/11 07:45 N	Matrix: Solid	
oap.o. o. 2 20 2	Lub ID. Luddud	Collected. 02/03/1					
•		Collected. 02/03/1					
•		Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Results reported on a "dry-weight Parameters	t" basis	Report Limit	DF	 	Analyzed	CAS No.	Qua
Parameters NWTPH-Dx GCS SG	Results Units Analytical Method: NWT	Report Limit	DF ethod: E	PA 3546			Qua
Parameters NWTPH-Dx GCS SG Diesel Range SG	Results Units Analytical Method: NWTI 189 mg/kg	Report LimitPH-Dx Preparation Me21.9	DF ethod: E	PA 3546 02/11/11 11:00	02/15/11 09:43		Qua
Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG	Results Units Analytical Method: NWTI 189 mg/kg 2170 mg/kg	Report Limit PH-Dx Preparation Me 21.9 87.6	DF ethod: E 1 1	PA 3546 02/11/11 11:00 02/11/11 11:00	02/15/11 09:43 02/15/11 09:43	64742-65-0	Qua
Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG	Analytical Method: NWTI 189 mg/kg 2170 mg/kg 103 %	PH-Dx Preparation Me 21.9 87.6 50-150	DF ethod: E	PA 3546 02/11/11 11:00 02/11/11 11:00 02/11/11 11:00	02/15/11 09:43 02/15/11 09:43 02/15/11 09:43	64742-65-0 630-02-4	Qua
Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG D-Terphenyl (S) SG	Results Units Analytical Method: NWTI 189 mg/kg 2170 mg/kg	Report Limit	DF ethod: E 1 1 1	EPA 3546 02/11/11 11:00 02/11/11 11:00 02/11/11 11:00 02/11/11 11:00	02/15/11 09:43 02/15/11 09:43	64742-65-0 630-02-4	Qua
Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG D-Terphenyl (S) SG NWTPH-Gx GCV	Analytical Method: NWTI 189 mg/kg 2170 mg/kg 103 % 100 % Analytical Method: NWTI	PH-Dx Preparation Me 21.9 87.6 50-150 50-150 PH-Gx Preparation Me	DF othod: E 1 1 1 1 thod: N	PA 3546 02/11/11 11:00 02/11/11 11:00 02/11/11 11:00 02/11/11 11:00 02/11/11 11:00 IWTPH-Gx	02/15/11 09:43 02/15/11 09:43 02/15/11 09:43 02/15/11 09:43	64742-65-0 630-02-4 84-15-1	Qua
Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG p-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics	Analytical Method: NWTI 189 mg/kg 2170 mg/kg 103 % 100 % Analytical Method: NWTI	PH-Dx Preparation Me 21.9 87.6 50-150 50-150 PH-Gx Preparation Me 6.0	DF thod: E 1 1 1 1 thod: N	PA 3546 02/11/11 11:00 02/11/11 11:00 02/11/11 11:00 02/11/11 11:00 IWTPH-Gx 02/18/11 15:45	02/15/11 09:43 02/15/11 09:43 02/15/11 09:43 02/15/11 09:43 02/15/11 02:03	64742-65-0 630-02-4 84-15-1	Qua
Results reported on a "dry-weight Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG p-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S)	Analytical Method: NWTI 189 mg/kg 2170 mg/kg 103 % 100 % Analytical Method: NWTI	PH-Dx Preparation Me 21.9 87.6 50-150 50-150 PH-Gx Preparation Me 6.0 50-150	DF thod: E 1 1 1 1 ethod: N 1 1	PA 3546 02/11/11 11:00 02/11/11 11:00 02/11/11 11:00 02/11/11 11:00 IWTPH-Gx 02/18/11 15:45 02/18/11 15:45	02/15/11 09:43 02/15/11 09:43 02/15/11 09:43 02/15/11 09:43 02/15/11 02:03 02/19/11 02:03	64742-65-0 630-02-4 84-15-1 98-08-8	Qua
Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG D-Octacosane (S) SG D-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) I-Bromofluorobenzene (S)	Analytical Method: NWTI 189 mg/kg 2170 mg/kg 103 % 100 % Analytical Method: NWTI ND mg/kg 87 % 72 %	Report Limit PH-Dx Preparation Me 21.9 87.6 50-150 50-150 PH-Gx Preparation Me 6.0 50-150 50-150	DF thod: E 1 1 1 thod: N 1 1 1	PA 3546 02/11/11 11:00 02/11/11 11:00 02/11/11 11:00 02/11/11 11:00 IWTPH-Gx 02/18/11 15:45 02/18/11 15:45	02/15/11 09:43 02/15/11 09:43 02/15/11 09:43 02/15/11 09:43 02/15/11 02:03	64742-65-0 630-02-4 84-15-1 98-08-8	Qua
Results reported on a "dry-weight Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG D-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)	Analytical Method: NWTI 189 mg/kg 2170 mg/kg 103 % 100 % Analytical Method: NWTI	Report Limit PH-Dx Preparation Me 21.9 87.6 50-150 50-150 PH-Gx Preparation Me 6.0 50-150 50-150	DF thod: E 1 1 1 thod: N 1 1 1	PA 3546 02/11/11 11:00 02/11/11 11:00 02/11/11 11:00 02/11/11 11:00 IWTPH-Gx 02/18/11 15:45 02/18/11 15:45	02/15/11 09:43 02/15/11 09:43 02/15/11 09:43 02/15/11 09:43 02/15/11 02:03 02/19/11 02:03	64742-65-0 630-02-4 84-15-1 98-08-8	Qua
Results reported on a "dry-weighter Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG p-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8270 MSSV PAH by SIM	Analytical Method: NWTI 189 mg/kg 2170 mg/kg 103 % 100 % Analytical Method: NWTI ND mg/kg 87 % 72 %	Report Limit PH-Dx Preparation Me 21.9 87.6 50-150 50-150 PH-Gx Preparation Me 6.0 50-150 50-150	DF thod: E 1 1 1 thod: N 1 1 1	2/11/11 11:00 02/11/11 11:00 02/11/11 11:00 02/11/11 11:00 02/11/11 11:00 IWTPH-Gx 02/18/11 15:45 02/18/11 15:45 02/18/11 15:45 nod: EPA 3546	02/15/11 09:43 02/15/11 09:43 02/15/11 09:43 02/15/11 09:43 02/15/11 02:03 02/19/11 02:03	64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4	Qua
Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG D-Terphenyl (S) SG	Analytical Method: NWTI 189 mg/kg 2170 mg/kg 103 % 100 % Analytical Method: NWTI ND mg/kg 87 % 72 % Analytical Method: EPA 8 7.5 ug/kg	Report Limit PH-Dx Preparation Me 21.9 87.6 50-150 50-150 PH-Gx Preparation Me 6.0 50-150 50-150 3270 by SIM Preparati	DF thod: E 1 1 1 thod: N 1 1 non Meth	2/11/11 11:00 02/11/11 11:00 02/11/11 11:00 02/11/11 11:00 02/11/11 11:00 IWTPH-Gx 02/18/11 15:45 02/18/11 15:45 02/18/11 15:45 nod: EPA 3546 02/11/11 11:55	02/15/11 09:43 02/15/11 09:43 02/15/11 09:43 02/15/11 09:43 02/15/11 02:03 02/19/11 02:03 02/19/11 02:03	64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4	Qua
Results reported on a "dry-weighter Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG p-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 3270 MSSV PAH by SIM Acenaphthene	Analytical Method: NWTI 189 mg/kg 2170 mg/kg 103 % 100 % Analytical Method: NWTI ND mg/kg 87 % 72 % Analytical Method: EPA 8	Report Limit PH-Dx Preparation Me 21.9 87.6 50-150 50-150 PH-Gx Preparation Me 6.0 50-150 50-150 3270 by SIM Preparati 7.4	DF thod: E 1 1 1 thod: N 1 1 non Meth	2/11/11 11:00 02/11/11 11:00 02/11/11 11:00 02/11/11 11:00 02/11/11 11:00 IWTPH-Gx 02/18/11 15:45 02/18/11 15:45 02/18/11 15:45 nod: EPA 3546 02/11/11 11:55 02/11/11 11:55	02/15/11 09:43 02/15/11 09:43 02/15/11 09:43 02/15/11 09:43 02/15/11 02:03 02/19/11 02:03 02/19/11 02:03 02/19/11 02:03	64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4 83-32-9 208-96-8	Qua

Date: 02/24/2011 12:04 PM

REPORT OF LABORATORY ANALYSIS

Page 11 of 25

Project: East Bay Redevelopment 138130

Pace Project No.: 256550

Lab ID: 256550007 Sample: SPL-26-2 Collected: 02/09/11 12:03 Received: 02/10/11 07:45 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Benzo(a)pyrene 285 ug/kg 36.9 5 02/11/11 11:55 02/15/11 12:23 50-32-8 Benzo(b)fluoranthene 279 ug/kg 36.9 5 02/11/11 11:55 02/15/11 12:23 205-99-2 209 ug/kg 36.9 02/11/11 11:55 02/15/11 12:23 191-24-2 Benzo(g,h,i)perylene 5 Benzo(k)fluoranthene 267 ug/kg 36.9 5 02/11/11 11:55 02/15/11 12:23 207-08-9 Chrysene 149 ug/kg 7.4 1 02/11/11 11:55 02/15/11 03:44 218-01-9 Dibenz(a,h)anthracene 66.7 ug/kg 36.9 5 02/11/11 11:55 02/15/11 12:23 53-70-3 Fluoranthene 256 ug/kg 7.4 02/11/11 11:55 02/15/11 03:44 206-44-0 1 Fluorene 16.1 ug/kg 7.4 02/11/11 11:55 02/15/11 03:44 86-73-7 1 36.9 Indeno(1,2,3-cd)pyrene 180 ug/kg 5 02/11/11 11:55 02/15/11 12:23 193-39-5 1-Methylnaphthalene ND ug/kg 7.4 02/11/11 11:55 02/15/11 03:44 90-12-0 1 02/11/11 11:55 02/15/11 03:44 91-57-6 2-Methylnaphthalene 9.2 ug/kg 7.4 1 Naphthalene 15.6 ug/kg 7.4 1 02/11/11 11:55 02/15/11 03:44 91-20-3 Phenanthrene 121 ug/kg 7.4 1 02/11/11 11:55 02/15/11 03:44 85-01-8 175 ug/kg 7.4 02/11/11 11:55 02/15/11 03:44 129-00-0 Pyrene 1 2-Fluorobiphenyl (S) 51 % 31-131 02/11/11 11:55 02/15/11 03:44 321-60-8 1 Terphenyl-d14 (S) 38 % 30-133 02/11/11 11:55 02/15/11 03:44 1718-51-0 8260/5035A Volatile Organics Analytical Method: EPA 8260 ND ug/kg 3.2 02/11/11 18:33 71-43-2 Benzene 1 Ethylbenzene ND ug/kg 3.2 1 02/11/11 18:33 100-41-4 Toluene ND ug/kg 3.2 02/11/11 18:33 108-88-3 1 Xylene (Total) 9.5 02/11/11 18:33 1330-20-7 ND ug/kg 1 Dibromofluoromethane (S) 80-136 02/11/11 18:33 1868-53-7 92 % 1 Toluene-d8 (S) 106 % 80-120 02/11/11 18:33 2037-26-5 1 4-Bromofluorobenzene (S) 110 % 72-122 1 02/11/11 18:33 460-00-4 1,2-Dichloroethane-d4 (S) 99 % 80-143 02/11/11 18:33 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 11.2 % 0.10 1 02/13/11 21:16 Sample: SPL-26-3 Lab ID: 256550008 Collected: 02/09/11 12:16 Received: 02/10/11 07:45 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG 218 mg/kg 21.7 1 02/11/11 11:00 02/15/11 10:00 Motor Oil Range SG 2270 mg/kg 86.7 1 02/11/11 11:00 02/15/11 10:00 64742-65-0 n-Octacosane (S) SG 109 % 50-150 1 02/11/11 11:00 02/15/11 10:00 630-02-4 o-Terphenyl (S) SG 104 % 50-150 02/11/11 11:00 02/15/11 10:00 84-15-1 1

Date: 02/24/2011 12:04 PM

Gasoline Range Organics

a,a,a-Trifluorotoluene (S)

NWTPH-Gx GCV

REPORT OF LABORATORY ANALYSIS

7.3

50-150

Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx

ND mg/kg

104 %

Page 12 of 25

02/18/11 15:45 02/19/11 02:27

02/18/11 15:45 02/19/11 02:27 98-08-8

Project: East Bay Redevelopment 138130

Pace Project No.: 256550

Date: 02/24/2011 12:04 PM

Lab ID: 256550008 Received: 02/10/11 07:45 Sample: SPL-26-3 Collected: 02/09/11 12:16 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx 82 % 4-Bromofluorobenzene (S) 50-150 02/18/11 15:45 02/19/11 02:27 460-00-4 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 ND ug/kg 7.4 Acenaphthene 1 02/11/11 11:55 02/15/11 04:02 83-32-9 Acenaphthylene ND ug/kg 7.4 1 02/11/11 11:55 02/15/11 04:02 208-96-8 Anthracene 15.7 ug/kg 7.4 02/11/11 11:55 02/15/11 04:02 120-12-7 1 Benzo(a)anthracene **124** ug/kg 02/11/11 11:55 02/15/11 04:02 56-55-3 7.4 1 Benzo(a)pyrene 206 ua/ka 37.2 5 02/11/11 11:55 02/15/11 12:40 50-32-8 Benzo(b)fluoranthene 237 ug/kg 37.2 5 02/11/11 11:55 02/15/11 12:40 205-99-2 Benzo(g,h,i)perylene 179 ug/kg 37.2 5 02/11/11 11:55 02/15/11 12:40 191-24-2 Benzo(k)fluoranthene 228 ug/kg 37.2 02/11/11 11:55 02/15/11 12:40 207-08-9 5 Chrysene 130 ug/kg 7.4 02/11/11 11:55 02/15/11 04:02 218-01-9 1 37.2 Dibenz(a,h)anthracene 51.6 ug/kg 5 02/11/11 11:55 02/15/11 12:40 53-70-3 177 ug/kg Fluoranthene 7.4 02/11/11 11:55 02/15/11 04:02 206-44-0 1 7.4 Fluorene ND ug/kg 1 02/11/11 11:55 02/15/11 04:02 86-73-7 Indeno(1,2,3-cd)pyrene 152 ug/kg 37.2 5 02/11/11 11:55 02/15/11 12:40 193-39-5 1-Methylnaphthalene ND ug/kg 7.4 1 02/11/11 11:55 02/15/11 04:02 90-12-0 2-Methylnaphthalene 02/11/11 11:55 02/15/11 04:02 91-57-6 8.0 ug/kg 7.4 1 Naphthalene 15.7 ug/kg 7.4 1 02/11/11 11:55 02/15/11 04:02 91-20-3 Phenanthrene 82.2 ug/kg 7.4 02/11/11 11:55 02/15/11 04:02 85-01-8 1 Pyrene 116 ug/kg 7.4 02/11/11 11:55 02/15/11 04:02 129-00-0 1 43 % 31-131 2-Fluorobiphenyl (S) 02/11/11 11:55 02/15/11 04:02 321-60-8 1 Terphenyl-d14 (S) 33 % 30-133 02/11/11 11:55 02/15/11 04:02 1718-51-0 1 8260/5035A Volatile Organics Analytical Method: EPA 8260 ND ug/kg 3.8 02/11/11 18:53 71-43-2 Benzene 1 02/11/11 18:53 100-41-4 Ethylbenzene ND ug/kg 3.8 1 Toluene ND ug/kg 3.8 02/11/11 18:53 108-88-3 1 Xylene (Total) ND ug/kg 11.5 1 02/11/11 18:53 1330-20-7 Dibromofluoromethane (S) 95 % 80-136 1 02/11/11 18:53 1868-53-7 Toluene-d8 (S) 105 % 80-120 02/11/11 18:53 2037-26-5 1 4-Bromofluorobenzene (S) 115 % 72-122 02/11/11 18:53 460-00-4 1 1,2-Dichloroethane-d4 (S) 101 % 80-143 02/11/11 18:53 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 11.4 % 0.10 02/13/11 21:17 Sample: SPL-26-4 Lab ID: 256550009 Collected: 02/09/11 12:27 Received: 02/10/11 07:45 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG 250 mg/kg 20.9 02/11/11 11:00 02/15/11 10:16

REPORT OF LABORATORY ANALYSIS

Page 13 of 25

Project: East Bay Redevelopment 138130

Pace Project No.: 256550

Sample: SPL-26-4	Lab ID: 25655000	9 Collected: 02/09/	11 12:27	Received: 02	2/10/11 07:45 N	Matrix: Solid	
Results reported on a "dry-weight	t" basis						
Parameters	Results Ui	nits Report Limit	DF	Prepared	Analyzed	CAS No.	- Qua
NWTPH-Dx GCS SG	Analytical Method: N	WTPH-Dx Preparation M	ethod: E	EPA 3546			
Motor Oil Range SG	3050 mg/kg	83.4	1	02/11/11 11:00	02/15/11 10:16	64742-65-0	
n-Octacosane (S) SG	97 %	50-150	1	02/11/11 11:00	02/15/11 10:16	630-02-4	
o-Terphenyl (S) SG	101 %	50-150	1	02/11/11 11:00	02/15/11 10:16	84-15-1	
NWTPH-Gx GCV	Analytical Method: N	WTPH-Gx Preparation M	lethod: N	NWTPH-Gx			
Gasoline Range Organics	ND mg/kg	6.7	1	02/18/11 15:45	02/19/11 02:51		
a,a,a-Trifluorotoluene (S)	102 %	50-150	1	02/18/11 15:45	02/19/11 02:51	98-08-8	
4-Bromofluorobenzene (S)	78 %	50-150	1	02/18/11 15:45	02/19/11 02:51	460-00-4	
8270 MSSV PAH by SIM	Analytical Method: E	PA 8270 by SIM Preparat	tion Met	hod: EPA 3546			
Acenaphthene	ND ug/kg	7.3	1	02/11/11 11:55	02/15/11 04:21	83-32-9	
Acenaphthylene	ND ug/kg	7.3	1	02/11/11 11:55			
Anthracene	9.6 ug/kg	7.3	1	02/11/11 11:55	02/15/11 04:21	120-12-7	
Benzo(a)anthracene	102 ug/kg	7.3	1	02/11/11 11:55	02/15/11 04:21	56-55-3	
Benzo(a)pyrene	184 ug/kg	36.7	5	02/11/11 11:55	02/15/11 12:57	50-32-8	
Benzo(b)fluoranthene	226 ug/kg	36.7	5	02/11/11 11:55	02/15/11 12:57	205-99-2	
Benzo(g,h,i)perylene	184 ug/kg	36.7	5		02/15/11 12:57		
Benzo(k)fluoranthene	233 ug/kg	36.7	5		02/15/11 12:57		
Chrysene	113 ug/kg	7.3	1		02/15/11 04:21		
Dibenz(a,h)anthracene	53.8 ug/kg	36.7	5		02/15/11 12:57		
Fluoranthene	130 ug/kg	7.3	1		02/15/11 04:21		
Fluorene	ND ug/kg	7.3	1		02/15/11 04:21		
ndeno(1,2,3-cd)pyrene	155 ug/kg	36.7	5		02/15/11 04:21		
	ND ug/kg	7.3	1		02/15/11 12:37		
I-Methylnaphthalene							
2-Methylnaphthalene	9.5 ug/kg	7.3	1		02/15/11 04:21		
Naphthalene	17.2 ug/kg	7.3	1		02/15/11 04:21		
Phenanthrene	53.1 ug/kg	7.3	1		02/15/11 04:21		
Pyrene	84.2 ug/kg	7.3	1		02/15/11 04:21		
2-Fluorobiphenyl (S)	47 %	31-131	1		02/15/11 04:21		
Terphenyl-d14 (S)	34 %	30-133	1	02/11/11 11:55	02/15/11 04:21	1718-51-0	
3260/5035A Volatile Organics	Analytical Method: E	PA 8260					
Benzene	ND ug/kg	2.8	1		02/11/11 19:13		
Ethylbenzene	ND ug/kg	2.8	1		02/11/11 19:13		
- Toluene	ND ug/kg	2.8	1		02/11/11 19:13	108-88-3	
(ylene (Total)	ND ug/kg	8.5	1		02/11/11 19:13	1330-20-7	
Dibromofluoromethane (S)	91 %	80-136	1		02/11/11 19:13	1868-53-7	
oluene-d8 (S)	104 %	80-120	1		02/11/11 19:13	2037-26-5	
I-Bromofluorobenzene (S)	108 %	72-122	1		02/11/11 19:13	460-00-4	
,2-Dichloroethane-d4 (S)	105 %	80-143	1		02/11/11 19:13		
Percent Moisture	Analytical Method: A	STM D2974-87					
Percent Moisture	10.3 %	0.10	1		02/13/11 21:18		
	, , ,	0.10	•				

Date: 02/24/2011 12:04 PM

REPORT OF LABORATORY ANALYSIS

Page 14 of 25

Project: East Bay Redevelopment 138130

Pace Project No.: 256550

Sample: TB 020911-A Lab ID: 256550010 Collected: 02/09/11 00:00 Received: 02/10/11 07:45 Matrix: Solid

Results reported on a "wet-weight" basis

Parameters Parameters Parameters Populate Lipits Report Limit DE Propered Applying CAS No.

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Gx GCV	Analytical Met	hod: NWTPH-	Gx Preparation M	ethod:	NWTPH-Gx			
Gasoline Range Organics	ND m	g/kg	5.0	1	02/18/11 15:45	02/18/11 20:04		
a,a,a-Trifluorotoluene (S)	103 %		50-150	1	02/18/11 15:45	02/18/11 20:04	98-08-8	
4-Bromofluorobenzene (S)	84 %		50-150	1	02/18/11 15:45	02/18/11 20:04	460-00-4	
8260/5035A Volatile Organics	Analytical Met	hod: EPA 826	0					
Benzene	ND uç	g/kg	3.0	1		02/11/11 12:41	71-43-2	
Ethylbenzene	ND ug	g/kg	3.0	1		02/11/11 12:41	100-41-4	
Toluene	ND ug	g/kg	3.0	1		02/11/11 12:41	108-88-3	
Xylene (Total)	ND ug	g/kg	9.0	1		02/11/11 12:41	1330-20-7	
Dibromofluoromethane (S)	95 %		80-136	1		02/11/11 12:41	1868-53-7	
Toluene-d8 (S)	103 %		80-120	1		02/11/11 12:41	2037-26-5	
4-Bromofluorobenzene (S)	103 %		72-122	1		02/11/11 12:41	460-00-4	
1,2-Dichloroethane-d4 (S)	98 %		80-143	1		02/11/11 12:41	17060-07-0	

Date: 02/24/2011 12:04 PM

REPORT OF LABORATORY ANALYSIS

Page 15 of 25

Project: East Bay Redevelopment 138130

Pace Project No.: 256550

QC Batch: OEXT/3298 Analysis Method: NWTPH-Dx QC Batch Method: EPA 3546 Analysis Description: NWTPH-Dx GCS

Associated Lab Samples: 256550001, 256550002, 256550003, 256550004, 256550005, 256550006, 256550007, 256550008, 256550009

METHOD BLANK: 58160 Matrix: Solid

Associated Lab Samples: 256550001, 256550002, 256550003, 256550004, 256550005, 256550006, 256550007, 256550008, 256550009

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Diesel Range SG	mg/kg	ND	20.0	02/15/11 03:22	
Motor Oil Range SG	mg/kg	ND	80.0	02/15/11 03:22	
n-Octacosane (S)	%	102	50-150	02/15/11 01:59	
n-Octacosane (S) SG	%	105	50-150	02/15/11 03:22	
o-Terphenyl (S)	%	96	50-150	02/15/11 01:59	
o-Terphenyl (S) SG	%	95	50-150	02/15/11 03:22	

LABORATORY CONTROL SAMPLE: 58161

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Diesel Range SG	mg/kg	500	536	107	56-124	
Motor Oil Range SG	mg/kg	500	576	115	50-150	
n-Octacosane (S)	%			101	50-150	
n-Octacosane (S) SG	%			105	50-150	
o-Terphenyl (S)	%			125	50-150	
o-Terphenyl (S) SG	%			126	50-150	

SAMPLE DUPLICATE: 58162

		256549002	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Diesel Range SG	mg/kg	35.0	33.3	5	
Motor Oil Range SG	mg/kg	212	184	14	
n-Octacosane (S)	%	97	96	2	
n-Octacosane (S) SG	%	97	96	2	
o-Terphenyl (S)	%	98	99	.2	
o-Terphenyl (S) SG	%	98	99	.2	

SAMPLE DUPLICATE: 58163

Parameter	Units	256550003 Result	Dup Result	RPD	Qualifiers
Diesel Range SG	mg/kg	ND	14.7J		
Motor Oil Range SG	mg/kg	111	89.4	21	
n-Octacosane (S)	%	107	104	3	
n-Octacosane (S) SG	%	107	104	3	
o-Terphenyl (S)	%	105	101	3	
o-Terphenyl (S) SG	%	105	101	3	

Date: 02/24/2011 12:04 PM REPORT OF LABORATORY ANALYSIS

Project: East Bay Redevelopment 138130

Pace Project No.: 256550

QC Batch: GCV/2177 Analysis Method: NWTPH-Gx

QC Batch Method: NWTPH-Gx Analysis Description: NWTPH-Gx Solid GCV

Associated Lab Samples: 256550001, 256550002, 256550003, 256550004, 256550005, 256550006, 256550007, 256550008, 256550009,

256550010

METHOD BLANK: 59173 Matrix: Solid

Associated Lab Samples: 256550001, 256550002, 256550003, 256550004, 256550005, 256550006, 256550007, 256550008, 256550009,

256550010

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Gasoline Range Organics	mg/kg	ND	5.0	02/18/11 19:16	
4-Bromofluorobenzene (S)	%	84	50-150	02/18/11 19:16	
a,a,a-Trifluorotoluene (S)	%	105	50-150	02/18/11 19:16	

LABORATORY CONTROL SAMPLE: 59174

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Gasoline Range Organics	mg/kg	12.5	12.9	103	54-156	
4-Bromofluorobenzene (S)	%			85	50-150	
a,a,a-Trifluorotoluene (S)	%			101	50-150	

SAMPLE DUPLICATE: 59555

Parameter	Units	256549007 Result	Dup Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND	.85J		
4-Bromofluorobenzene (S)	%	80	83	4	
a,a,a-Trifluorotoluene (S)	%	98	102	4	

SAMPLE DUPLICATE: 59556

		256550001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND	.7J		
4-Bromofluorobenzene (S)	%	83	80	3	
a,a,a-Trifluorotoluene (S)	%	101	99	2	

Date: 02/24/2011 12:04 PM

Project: East Bay Redevelopment 138130

Pace Project No.: 256550

QC Batch: OEXT/3297 Analysis Method: EPA 8270 by SIM

QC Batch Method: EPA 3546 Analysis Description: 8270/3546 MSSV PAH by SIM

Associated Lab Samples: 256550001, 256550002, 256550003, 256550004, 256550005, 256550006, 256550007, 256550008, 256550009

METHOD BLANK: 58156 Matrix: Solid

Associated Lab Samples: 256550001, 256550002, 256550003, 256550004, 256550005, 256550006, 256550007, 256550008, 256550009

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/kg	ND ND	6.7	02/14/11 14:16	
2-Methylnaphthalene	ug/kg	ND	6.7	02/14/11 14:16	
Acenaphthene	ug/kg	ND	6.7	02/14/11 14:16	
Acenaphthylene	ug/kg	ND	6.7	02/14/11 14:16	
Anthracene	ug/kg	ND	6.7	02/14/11 14:16	
Benzo(a)anthracene	ug/kg	ND	6.7	02/14/11 14:16	
Benzo(a)pyrene	ug/kg	ND	6.7	02/14/11 14:16	
Benzo(b)fluoranthene	ug/kg	ND	6.7	02/14/11 14:16	
Benzo(g,h,i)perylene	ug/kg	ND	6.7	02/14/11 14:16	
Benzo(k)fluoranthene	ug/kg	ND	6.7	02/14/11 14:16	
Chrysene	ug/kg	ND	6.7	02/14/11 14:16	
Dibenz(a,h)anthracene	ug/kg	ND	6.7	02/14/11 14:16	
Fluoranthene	ug/kg	ND	6.7	02/14/11 14:16	
Fluorene	ug/kg	ND	6.7	02/14/11 14:16	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	6.7	02/14/11 14:16	
Naphthalene	ug/kg	ND	6.7	02/14/11 14:16	
Phenanthrene	ug/kg	ND	6.7	02/14/11 14:16	
Pyrene	ug/kg	ND	6.7	02/14/11 14:16	
2-Fluorobiphenyl (S)	%	54	31-131	02/14/11 14:16	
Terphenyl-d14 (S)	%	69	30-133	02/14/11 14:16	

LABORATORY CONTROL SAMPLE:	58157

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1-Methylnaphthalene	ug/kg		98.0	73	37-121	
2-Methylnaphthalene	ug/kg	133	98.3	74	33-132	
Acenaphthene	ug/kg	133	78.4	59	32-127	
Acenaphthylene	ug/kg	133	78.0	58	31-134	
Anthracene	ug/kg	133	80.5	60	42-135	
Benzo(a)anthracene	ug/kg	133	91.4	69	43-139	
Benzo(a)pyrene	ug/kg	133	91.4	69	44-144	
Benzo(b)fluoranthene	ug/kg	133	86.0	65	42-144	
Benzo(g,h,i)perylene	ug/kg	133	73.8	55	46-136	
Benzo(k)fluoranthene	ug/kg	133	85.1	64	45-147	
Chrysene	ug/kg	133	79.9	60	42-144	
Dibenz(a,h)anthracene	ug/kg	133	76.8	58	48-142	
Fluoranthene	ug/kg	133	84.2	63	44-143	
Fluorene	ug/kg	133	83.6	63	32-146	
Indeno(1,2,3-cd)pyrene	ug/kg	133	76.5	57	47-140	
Naphthalene	ug/kg	133	71.2	53	35-118	
Phenanthrene	ug/kg	133	81.9	61	42-131	

Date: 02/24/2011 12:04 PM

REPORT OF LABORATORY ANALYSIS

Page 18 of 25

Project: East Bay Redevelopment 138130

Pace Project No.: 256550

LABORATORY CONTROL SAMPLE: 58157

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Pyrene	ug/kg	133	88.9	67	47-136	
2-Fluorobiphenyl (S)	%			55	31-131	
Terphenyl-d14 (S)	%			68	30-133	

MATRIX SPIKE & MATRIX S	PIKE DUPLICAT	E: 58158			58159						
			MS	MSD							
		256549001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1-Methylnaphthalene	ug/kg	ND	143	144	84.5	95.3	54	61	31-123	12	
2-Methylnaphthalene	ug/kg	9.7	143	144	90.4	102	56	64	15-146	12	
Acenaphthene	ug/kg	ND	143	144	86.2	94.8	57	62	19-141	9	
Acenaphthylene	ug/kg	19.7	143	144	89.9	108	49	61	30-142	18	
Anthracene	ug/kg	27.0	143	144	108	142	56	80	38-137	28	R1
Benzo(a)anthracene	ug/kg	101	143	144	166	229	45	88	37-143	32	R1
Benzo(a)pyrene	ug/kg	112	143	144	154	270	29	109	33-147	55	M1,R1
Benzo(b)fluoranthene	ug/kg	104	143	144	129	235	17	91	25-156	58	M1,R1
Benzo(g,h,i)perylene	ug/kg	67.6	143	144	140	225	51	109	26-142	46	R1
Benzo(k)fluoranthene	ug/kg	63.3	143	144	107	151	30	61	35-142	35	M1,R1
Chrysene	ug/kg	123	143	144	150	221	19	68	23-150	38	M1,R1
Dibenz(a,h)anthracene	ug/kg	19.2	143	144	98.8	119	56	69	41-140	18	
Fluoranthene	ug/kg	162	143	144	200	307	26	100	25-155	42	R1
Fluorene	ug/kg	12.1	143	144	101	117	62	73	33-152	15	
Indeno(1,2,3-cd)pyrene	ug/kg	54.3	143	144	125	192	49	95	36-139	42	R1
Naphthalene	ug/kg	16.5	143	144	90.9	98.3	52	57	25-121	8	
Phenanthrene	ug/kg	103	143	144	226	341	86	164	29-141	41	M1,R1
Pyrene	ug/kg	296	143	144	334	457	26	111	36-145	31	M1,R1
2-Fluorobiphenyl (S)	%						49	51	31-131		
Terphenyl-d14 (S)	%						62	57	30-133		

Date: 02/24/2011 12:04 PM

REPORT OF LABORATORY ANALYSIS

Page 19 of 25

Project: East Bay Redevelopment 138130

Pace Project No.: 256550

QC Batch: MSV/3844 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5035A Volatile Organics

Associated Lab Samples: 256550002, 256550003, 256550006, 256550007, 256550008, 256550009, 256550010

METHOD BLANK: 58168 Matrix: Solid

Associated Lab Samples: 256550002, 256550003, 256550006, 256550007, 256550008, 256550009, 256550010

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND	3.0	02/11/11 12:22	
Ethylbenzene	ug/kg	ND	3.0	02/11/11 12:22	
Toluene	ug/kg	ND	3.0	02/11/11 12:22	
Xylene (Total)	ug/kg	ND	9.0	02/11/11 12:22	
1,2-Dichloroethane-d4 (S)	%	98	80-143	02/11/11 12:22	
4-Bromofluorobenzene (S)	%	100	72-122	02/11/11 12:22	
Dibromofluoromethane (S)	%	93	80-136	02/11/11 12:22	
Toluene-d8 (S)	%	102	80-120	02/11/11 12:22	

LABORATORY CONTROL SAMPLE: 58169

Date: 02/24/2011 12:04 PM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	 ug/kg	50	45.8	92	75-133	
Ethylbenzene	ug/kg	50	45.3	91	68-131	
Toluene	ug/kg	50	47.1	94	73-124	
Xylene (Total)	ug/kg	150	140	93	68-130	
1,2-Dichloroethane-d4 (S)	%			98	80-143	
4-Bromofluorobenzene (S)	%			111	72-122	
Dibromofluoromethane (S)	%			95	80-136	
Toluene-d8 (S)	%			101	80-120	

MATRIX SPIKE & MATRIX SP	IKE DUPLICAT	E: 58249			58250						
	2	256598001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Benzene	ug/kg	ND	48.5	45.4	43.6	41.5	90	92	68-124	5	
Ethylbenzene	ug/kg	ND	48.5	45.4	42.7	40.5	88	89	63-131	5	
Toluene	ug/kg	ND	48.5	45.4	44.7	42.3	92	93	61-126	5	
Xylene (Total)	ug/kg	ND	146	136	131	124	89	90	68-129	5	
1,2-Dichloroethane-d4 (S)	%						99	99	80-143		
4-Bromofluorobenzene (S)	%						109	115	72-122		
Dibromofluoromethane (S)	%						91	99	80-136		
Toluene-d8 (S)	%						101	103	80-120		

REPORT OF LABORATORY ANALYSIS

Page 20 of 25

Project: East Bay Redevelopment 138130

Pace Project No.: 256550

QC Batch: MSV/3857 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5035A Volatile Organics

Associated Lab Samples: 256550001, 256550004, 256550005

METHOD BLANK: 58439 Matrix: Solid

Associated Lab Samples: 256550001, 256550004, 256550005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND ND	3.0	02/14/11 12:49	
Ethylbenzene	ug/kg	ND	3.0	02/14/11 12:49	
Toluene	ug/kg	ND	3.0	02/14/11 12:49	
Xylene (Total)	ug/kg	ND	9.0	02/14/11 12:49	
1,2-Dichloroethane-d4 (S)	%	114	80-143	02/14/11 12:49	
4-Bromofluorobenzene (S)	%	98	72-122	02/14/11 12:49	
Dibromofluoromethane (S)	%	100	80-136	02/14/11 12:49	
Toluene-d8 (S)	%	102	80-120	02/14/11 12:49	

LABORATORY CONTROL SAMPLE: 58440

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/kg	50	54.4	109	75-133	
Ethylbenzene	ug/kg	50	51.1	102	68-131	
Toluene	ug/kg	50	56.5	113	73-124	
Xylene (Total)	ug/kg	150	160	107	68-130	
1,2-Dichloroethane-d4 (S)	%			100	80-143	
4-Bromofluorobenzene (S)	%			106	72-122	
Dibromofluoromethane (S)	%			96	80-136	
Toluene-d8 (S)	%			103	80-120	

MATRIX SPIKE & MATRIX SP	IKE DUPLICAT	E: 58441			58442						
			MS	MSD							
	:	256550004	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Benzene	ug/kg	ND	50.2	46.1	49.4	44.7	98	97	68-124	10	
Ethylbenzene	ug/kg	ND	50.2	46.1	47.0	44.6	94	97	63-131	5	
Toluene	ug/kg	ND	50.2	46.1	49.4	46.6	98	101	61-126	6	
Xylene (Total)	ug/kg	ND	151	138	142	135	94	97	68-129	5	
1,2-Dichloroethane-d4 (S)	%						84	81	80-143		
4-Bromofluorobenzene (S)	%						108	111	72-122		
Dibromofluoromethane (S)	%						91	83	80-136		
Toluene-d8 (S)	%						105	107	80-120		

Date: 02/24/2011 12:04 PM REPORT OF LABORATORY ANALYSIS

Page 21 of 25

Project: East Bay Redevelopment 138130

Pace Project No.: 256550

QC Batch: PMST/1522 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 256550001, 256550002, 256550003, 256550004, 256550005, 256550006, 256550007, 256550008, 256550009

SAMPLE DUPLICATE: 58359

Parameter

256498001 Dup Result Result **RPD**

Qualifiers

% 8.8 2 Percent Moisture 8.9

SAMPLE DUPLICATE: 58360

256550009

Units

Dup RPD Parameter Units Result Result Qualifiers % Percent Moisture 10.3 10.3 .5

Date: 02/24/2011 12:04 PM

REPORT OF LABORATORY ANALYSIS

Page 22 of 25

QUALIFIERS

Project: East Bay Redevelopment 138130

Pace Project No.: 256550

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel Clean-Up

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-S Pace Analytical Services - Seattle

ANALYTE QUALIFIERS

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

R1 RPD value was outside control limits.

Surrogate recovery outside laboratory control limits due to matrix interferences (confirmed by similar results from sample

re-analysis).

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: East Bay Redevelopment 138130

Pace Project No.: 256550

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
256550001	SPL-25-1	EPA 3546	OEXT/3298	NWTPH-Dx	GCSV/2256
256550002	SPL-25-2	EPA 3546	OEXT/3298	NWTPH-Dx	GCSV/2256
256550003	SPL-25-3	EPA 3546	OEXT/3298	NWTPH-Dx	GCSV/2256
256550004	SPL-25-4	EPA 3546	OEXT/3298	NWTPH-Dx	GCSV/2256
256550005	SPL-25-5	EPA 3546	OEXT/3298	NWTPH-Dx	GCSV/2256
256550006	SPL-26-1	EPA 3546	OEXT/3298	NWTPH-Dx	GCSV/2256
256550007	SPL-26-2	EPA 3546	OEXT/3298	NWTPH-Dx	GCSV/2256
256550008	SPL-26-3	EPA 3546	OEXT/3298	NWTPH-Dx	GCSV/2256
256550009	SPL-26-4	EPA 3546	OEXT/3298	NWTPH-Dx	GCSV/2256
256550001	SPL-25-1	NWTPH-Gx	GCV/2177	NWTPH-Gx	GCV/2186
256550002	SPL-25-2	NWTPH-Gx	GCV/2177	NWTPH-Gx	GCV/2186
256550003	SPL-25-3	NWTPH-Gx	GCV/2177	NWTPH-Gx	GCV/2186
256550004	SPL-25-4	NWTPH-Gx	GCV/2177	NWTPH-Gx	GCV/2186
256550005	SPL-25-5	NWTPH-Gx	GCV/2177	NWTPH-Gx	GCV/2186
256550006	SPL-26-1	NWTPH-Gx	GCV/2177	NWTPH-Gx	GCV/2186
256550007	SPL-26-2	NWTPH-Gx	GCV/2177	NWTPH-Gx	GCV/2186
256550008	SPL-26-3	NWTPH-Gx	GCV/2177	NWTPH-Gx	GCV/2186
256550009	SPL-26-4	NWTPH-Gx	GCV/2177	NWTPH-Gx	GCV/2186
256550010	TB 020911-A	NWTPH-Gx	GCV/2177	NWTPH-Gx	GCV/2186
256550001	SPL-25-1	EPA 3546	OEXT/3297	EPA 8270 by SIM	MSSV/1524
256550002	SPL-25-2	EPA 3546	OEXT/3297	EPA 8270 by SIM	MSSV/1524
256550003	SPL-25-3	EPA 3546	OEXT/3297	EPA 8270 by SIM	MSSV/1524
256550004	SPL-25-4	EPA 3546	OEXT/3297	EPA 8270 by SIM	MSSV/1524
256550005	SPL-25-5	EPA 3546	OEXT/3297	EPA 8270 by SIM	MSSV/1524
256550006	SPL-26-1	EPA 3546	OEXT/3297	EPA 8270 by SIM	MSSV/1524
256550007	SPL-26-2	EPA 3546	OEXT/3297	EPA 8270 by SIM	MSSV/1524
256550008	SPL-26-3	EPA 3546	OEXT/3297	EPA 8270 by SIM	MSSV/1524
256550009	SPL-26-4	EPA 3546	OEXT/3297	EPA 8270 by SIM	MSSV/1524
256550001	SPL-25-1	EPA 8260	MSV/3857		
256550002	SPL-25-2	EPA 8260	MSV/3844		
256550003	SPL-25-3	EPA 8260	MSV/3844		
256550004	SPL-25-4	EPA 8260	MSV/3857		
256550005	SPL-25-5	EPA 8260	MSV/3857		
256550006	SPL-26-1	EPA 8260	MSV/3844		
256550007	SPL-26-2	EPA 8260	MSV/3844		
256550008	SPL-26-3	EPA 8260	MSV/3844		
256550009	SPL-26-4	EPA 8260	MSV/3844		
256550010	TB 020911-A	EPA 8260	MSV/3844		
256550001	SPL-25-1	ASTM D2974-87	PMST/1522		
256550002	SPL-25-2	ASTM D2974-87	PMST/1522		
256550003	SPL-25-3	ASTM D2974-87	PMST/1522		
256550004	SPL-25-4	ASTM D2974-87	PMST/1522		
256550005	SPL-25-5	ASTM D2974-87	PMST/1522		
256550006	SPL-26-1	ASTM D2974-87	PMST/1522		
256550007	SPL-26-2	ASTM D2974-87	PMST/1522		

Date: 02/24/2011 12:04 PM

REPORT OF LABORATORY ANALYSIS

Page 24 of 25

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: East Bay Redevelopment 138130

Pace Project No.: 256550

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
256550008 256550009	SPL-26-3 SPL-26-4	ASTM D2974-87 ASTM D2974-87	PMST/1522 PMST/1522		

Date: 02/24/2011 12:04 PM

REPORT OF LABORATORY ANALYSIS

Page 25 of 25

CHAIN-OF-CUSTODY / Analytical Request Document

2 5 6 5 5 0

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A	Section B								Secti	ion C													Pag	ge:		of	
Required Client Information:	Required P	rojec							Invoice Information:											1.6	1//	1626	5				
BROWN AND CALDWELL	Report To:	N	T	JRK					JON IURK							1446265											
724 COLUMBUS NW#420	Copy To:	70,	SH	JOI	HNSON				Company Name:						RE	REGULATORY AGENCY											
			411		promise and				Address:						Г	NPDE	S	G	ROL	JND WA			IG WATER				
JIM FEBRUARICAMICON	Purchase O								Pace Quote Reference:						Г	UST RCRA X OTHER ECY				EY							
Phone: -943-7525 Fax:	Project Nam	1e: €	7457	- BAY	REDE	VELOP	MENT		Pace F Manag	Project per:									Si	te Locat	tion		.1	_			
	Project Num	ber:	13	813	0	The			Pace F	Profile #	ŧ;	17-11						- 14-	15	STA	TE:	_\	NA		10 -10		
																		este	d Ana	lysis F	ilter	ed (Y/	/N)				
Section D Matrix Co		eft)	(P)	6 4777	COLL	ECTED					Pro	sonia	atives		NI	SG			50								
Required Client Information MATRIX / COD Drinking Water Water Waste Water		(see valid codes to left)	(G=GRAB C=COMP)	СОМРО	OSITE	COMPOSITE END/GRAB		COLLECTION		П	100	serva	ilives		Í	0	3	2					1	9			
Product Soil/Solid SAMPLE ID	P SL OL	(see vali	3=GRAI	STAF		ENUX	JI III III	COLLE	RS					e de	→	- He	FURAN	Nephrelene	コード				P	Residual Chlorine (Y/N)	Maga		
(A-Z, 0-9 / ,-) Air Sample IDs MUST BE UNIQUE Tissue	WP	CODE			on it	HT-U-	e ma	MP AT	AINE	pe				2	Test	TPM.	T.	7600	TPH					hlorir	Į ir da		
Other	OT	XCC	E TYPE		1180	le by	Jan 1-16	E TE	TNOC	Serve		7	03	lou	lysis	무	XIN	7	5 X				him	nal O	Mr. org		
TEM#	March 4	MATRIX	SAMPLE	DATE	TIME	DATE	TIME	SAMPLE	# OF CONTAINERS	Unpre	H2SO4 HNO3	HCI	Na ₂ S ₂ (Methanol	Analysis	THE	Dio	CPAH, NAPPARENE	3/15			us.		Resid	Pac	e Project I	No./ Lab I.D.
1 SPL-25-1		SL	6			62-09-1	10:30	7	7	X				XX		X	X	X	XX								
2 501 -25 -2		1	1	g my,		li	10:45	5	1	1				11		1	1		1						d List	dvin 3	
3 SPL-25-3 4 SPL-25-4 5 SPL-25-5		T					11:00	5	1																		
4 SPL-25-4	reil nug	1		71 77	Man h	12.00	11:15	ń	11	$\ \ $			1			П	П	П									
5 SPL-25-5	1420			om III		OUNT		रो	7				Tu			П		П						10	lian		
6 SPL-26-1		1					1):45	0	1	П					1	T	П	П									
7501-76-7	Danis I	10		HAY	L His		12:03						1												10000		
8 SeL-26-3		1					12:16	D		$\parallel \parallel$			14		1		Π	П			П				100	Set Vil	
9 SPL-26-4		1	V			1		4	1					11	1		1	本	M								
10 TR 020911 -A	11.50					02-09-1		3	3	4				77	1	T		V	V	,						-1-1	
8 SPL-26-3 9 SPL-26-4 10 TB 020911-A 11		-					11 11 11 11								19												
12																											
ADDITIONAL COMMENTS	1 100	REL	INQUI	SHED BY	AFFILIAT	TON	DATE		Т	IME	-	,	AC	CEPTE	D BY	/ AF	FILIA	TION		DAT	E	TIN	ΛE		SAM	PLE CONDIT	TONS
temp black included	Ad	a	H	nilk	2/BC		2-10-11		0	741	N	\geq 1	L	et		PC	20	0	_	2-10-	i(07	45	1.0	Y	N	Y
,					•																		1				
		r																									
ORIG	GINAL				SAMPLE		AND SIGNAT		_			-										2000		ပ္	Received on Ice (Y/N)	Custody Sealed Cooler (Y/N)	samples Intact (Y.N)
PRINT Name of SAM					me of SAMPL	ER:	AD	A	HA	MI	U	2		T =		lac-						Temp in °C	ceive Ce (Y	Susto Nod C (Y/N	(Y.IN		
					SIGNATURE of SAMPLER: A DATE Signed (MM/DD/YY): DZ /							02/09/11			16	Re	Sea	Sarr									

Sample Container Count

CLIENT:	Brown & Caldwell	-28 	Pace Analytical*
COC PAGE	of 1		Į.
COC ID#	446265		25655

256550

Sample Line Item	VG9H	AG1H	AG1U	BG1H	BP1U	BP2U	BP3U	BP2N	BP2S	WGFU	WGKU	DEAM	VERW	Comments
1										2			2	
2														
3													*	
4												1	6	
5													2	
6														
7														
8														
9										P				
10	2											4	4	
11														
12														Trip Blank? \eS

AG1H 1 liter HCL amber glass	. BP2S	500mL H2SO4 plastic	JGFU	4oz unpreserved amber wide
AG1U 1liter unpreserved amber glass	BP2U	500mL unpreserved plastic	R	terra core kit
AG2S 500mL H2SO4 amber glass	BP2Z	500mL NaOH, Zn Ac	U	Summa Can
AG2U 500mL unpreserved amber glass	BP3C	250mL NaOH plastic	VG9H	40mL HCL clear vial
AG3S 250mL H2SO4 amber glass	BP3N	250mL HNO3 plastic	VG9T	40mL Na Thio. clear vial
BG1H 1 liter HCL clear glass	BP3S	250mL H2SO4 plastic	VG9U	40mL unpreserved clear vial
BG1U 1 liter unpreserved glass	BP3U	250mL unpreserved plastic	VG9W	40mL glass vial preweighted (EPA 5035
BP1N 1 liter HNO3 plastic	DG9B	40mL Na Bisulfate amber vial	VSG	Headspace septa vial & HCL
BP1S 1 liter H2SO4 plastic	DG9H	40mL HCL amber voa vial	WGFU	4oz clear soil jar
BP1U 1 liter unpreserved plastic	DG9M	40mL MeOH clear vial	WGFX	4oz wide jar w/hexane wipe
BP1Z 1 liter NaOH, Zn, Ac	DG9T	40mL Na Thio amber vial	ZPLC	Ziploc Bag
BP2N 500mL HNO3 plastic	DG9U	40mL unpreserved amber vial		
BP2O 500mL NaOH plastic	1	Wipe/Swab		

Sample Condition Upon Receipt

Pace Analytical Client Name	: Brown & C	aldwell	Project # 2 5 6 5 5 0
Courier: Fed Ex UPS USPS Clie Tracking #:	nt Commercial	Pace Other	
Custody Seal on Cooler/Box Present:	No Seals	intact: Yes	No
Packing Material: Bubble Wrap Bubble	Bags None	Other	Temp. Blank YesNo
Thermometer Used 132013 or 101731962 or 2260	99 Type of Ice: Wet	Blue None	Samples on ice, cooling process has begun
Cooler Temperature .0c Temp should be above freezing ≤ 6℃	Biological Tissue	is Frozen: Yes No Comments:	Date and Initials of person examining contents: 02[0] CM
Chain of Custody Present:	☐Yes ☐No ☐N/A	1.	
Chain of Custody Filled Out:	☑Yes ☐No ☐N/A	2.	
Chain of Custody Relinquished:	MYes ONO ON/A	3.	
Sampler Name & Signature on COC:	LYes ONO ON/A	4.	
Samples Arrived within Hold Time:	☐Yes ☐No ☐N/A	5.	
Short Hold Time Analysis (<72hr):	□Yes □No □N/A	6.	
Rush Turn Around Time Requested:	□Yes ØNo □N/A	7.	
Sufficient Volume:	✓Yes □No □N/A	8.	
Correct Containers Used:	Øyes □No □N/A	9.	
-Pace Containers Used:	Yes ONO ON/A		
Containers Intact:	☐Yes ☐No ☐N/A	10.	
Filtered volume received for Dissolved tests	□Yes □No □N/A	11.	
Sample Labels match COC:	Yes ONo ON/A	12.	
-Includes date/time/ID/Analysis Matrix:	SV		
All containers needing preservation have been checked.	□Yes □No □N/A	13.	
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes □No ŒN/A		T
Exceptions: VOA, coliform, TOC, O&G		Initial when completed	Lot # of added preservative
Samples checked for dechlorination:	□Yes □No □N/A	14.	
Headspace in VOA Vials (>6mm):	□Yes □No ☑N/A	15.	
Trip Blanks Present:	□Yes □No □N/A	16.	
Trip Blank Custody Seals Present	□Yes □No □N/A		
Pace Trip Blank Lot # (if purchased):			
Client Notification/ Resolution: Person Contacted:	Date	/Time:	Field Data Required? Y / N
Comments/ Resolution:			
Project Manager Review:	(PROSS		Date: 2/10/11

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

February 24, 2011

Joshua Johnson Brown & Caldwell 724 Columbia St. NW#420 Olympia, WA 98501

RE: Project: East Bay Redevelopment 138130

Pace Project No.: 256547

Dear Joshua Johnson:

Enclosed are the analytical results for sample(s) received by the laboratory on February 10, 2011. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Andy Brownfield for Jennifer Gross

Andy Brownfield

jennifer.gross@pacelabs.com

Project Manager

Enclosures

cc: Jon Turk, Brown & Caldwell

(206)767-5060

CERTIFICATIONS

Project: East Bay Redevelopment 138130

Pace Project No.: 256547

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

A2LA Certification #: 2926.01
Alaska Certification #: UST-078
Alaska Certification #MN00064
Arizona Certification #: AZ-0014
Arkansas Certification #: 88-0680
California Certification #: 01155CA
EPA Region 8 Certification #: Pace
Florida/NELAP Certification #: E87605
Georgia Certification #: 959
Idaho Certification #: MN00064
Illinois Certification #: 200011
lowa Certification #: 368
Kansas Certification #: E-10167

Louisiana Certification #: 03086 Louisiana Certification #: LA080009 Maine Certification #: 2007029 Maryland Certification #: 322 Michigan DEQ Certification #: 9909 Minnesota Certification #: 027-053-137 Mississippi Certification #: Pace Montana Certification #: MT CERT0092 Nevada Certification #: MN_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New Mexico Certification #: Pace New York Certification #: 11647 North Carolina Certification #: 530 North Dakota Certification #: R-036 North Dakota Certification #: R-036A Ohio VAP Certification #: CL101 Oklahoma Certification #: D9921 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification Tennessee Certification #: 02818

Texas Certification #: T104704192 Washington Certification #: C754 Wisconsin Certification #: 999407970

A2LA cert#

SAMPLE ANALYTE COUNT

Project: East Bay Redevelopment 138130

Pace Project No.: 256547

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
256547001	SPL-27-1	EPA 6020	TL1	5	PASI-M
		% Moisture	JDL	1	PASI-M
256547002	SPL-27-2	EPA 6020	TL1	5	PASI-M
		% Moisture	JDL	1	PASI-M
256547003	SPL-27-3	EPA 6020	TL1	5	PASI-M
		% Moisture	JDL	1	PASI-M
256547004	SPL-27-4	EPA 6020	TL1	5	PASI-M
		% Moisture	JDL	1	PASI-M
256547005	SPL-27-5	EPA 6020	TL1	5	PASI-M
		% Moisture	JDL	1	PASI-M
256547006	SPL-28-1	EPA 6020	TL1	5	PASI-M
		% Moisture	JDL	1	PASI-M
256547007	SPL-28-2	EPA 6020	TL1	5	PASI-M
		% Moisture	JDL	1	PASI-M
256547008	SPL-28-3	EPA 6020	TL1	5	PASI-M
		% Moisture	JDL	1	PASI-M
256547009	SPL-28-4	EPA 6020	TL1	5	PASI-M
		% Moisture	JDL	1	PASI-M

ANALYTICAL RESULTS

Project: East Bay Redevelopment 138130

Pace Project No.: 256547

Lab ID: 256547001 Sample: SPL-27-1 Collected: 02/09/11 12:47 Received: 02/10/11 07:45 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **6020 MET ICPMS** Analytical Method: EPA 6020 Arsenic 3.3 mg/kg 0.56 20 02/14/11 09:13 02/23/11 11:04 7440-38-2 Cadmium **0.11** mg/kg 0.089 20 02/14/11 09:13 02/23/11 11:04 7440-43-9 Copper 19.8 mg/kg 0.56 20 02/14/11 09:13 02/23/11 11:04 7440-50-8 M6 Lead **7.7** mg/kg 0.56 20 02/14/11 09:13 02/23/11 11:04 7439-92-1 0.56 20 02/14/11 09:13 02/23/11 11:04 7440-02-0 Nickel 21.8 mg/kg M6 **Dry Weight** Analytical Method: % Moisture Percent Moisture 10.0 % 0.10 1 02/14/11 00:00 Sample: SPL-27-2 Lab ID: 256547002 Collected: 02/09/11 13:05 Received: 02/10/11 07:45 Results reported on a "dry-weight" basis Parameters Units Report Limit DF CAS No. Qual Results Prepared Analyzed 6020 MET ICPMS Analytical Method: EPA 6020 Arsenic 2.9 mg/kg 0.54 20 02/14/11 09:13 02/23/11 11:11 7440-38-2 **0.11** mg/kg Cadmium 0.086 20 02/14/11 09:13 02/23/11 11:11 7440-43-9 Copper 17.2 mg/kg 0.54 20 02/14/11 09:13 02/23/11 11:11 7440-50-8 02/14/11 09:13 02/23/11 11:11 Lead 8.0 mg/kg 0.54 20 7439-92-1 0.54 20 Nickel 20.3 mg/kg 02/14/11 09:13 02/23/11 11:11 7440-02-0 **Dry Weight** Analytical Method: % Moisture Percent Moisture 16.6 % 0.10 02/14/11 00:00 1 Sample: SPL-27-3 Lab ID: 256547003 Collected: 02/09/11 13:20 Received: 02/10/11 07:45 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **6020 MET ICPMS** Analytical Method: EPA 6020 02/14/11 09:13 02/23/11 11:14 7440-38-2 Arsenic 4.6 mg/kg 0.53 20 Cadmium 0.10 mg/kg 0.085 20 02/14/11 09:13 02/23/11 11:14 7440-43-9 **21.7** mg/kg Copper 0.53 20 02/14/11 09:13 02/23/11 11:14 7440-50-8 0.53 02/14/11 09:13 02/23/11 11:14 7439-92-1 Lead 16.1 mg/kg 20 **30.4** mg/kg 20 02/14/11 09:13 02/23/11 11:14 7440-02-0 Nickel 0.53 **Dry Weight** Analytical Method: % Moisture Percent Moisture 6.1 % 0.10 02/14/11 00:00 1

Date: 02/24/2011 11:55 AM

ANALYTICAL RESULTS

Project: East Bay Redevelopment 138130

Pace Project No.: 256547

Lab ID: 256547004 Sample: SPL-27-4 Collected: 02/09/11 13:35 Received: 02/10/11 07:45 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **6020 MET ICPMS** Analytical Method: EPA 6020 Arsenic 3.9 mg/kg 0.43 20 02/14/11 09:13 02/23/11 11:17 7440-38-2 Cadmium **0.11** mg/kg 0.068 20 02/14/11 09:13 02/23/11 11:17 7440-43-9 Copper 17.7 mg/kg 0.43 20 02/14/11 09:13 02/23/11 11:17 7440-50-8 Lead 8.7 mg/kg 0.43 20 02/14/11 09:13 02/23/11 11:17 7439-92-1 0.43 20 02/14/11 09:13 02/23/11 11:17 7440-02-0 Nickel 24.1 mg/kg **Dry Weight** Analytical Method: % Moisture Percent Moisture 8.0 % 0.10 1 02/14/11 00:00 Sample: SPL-27-5 Lab ID: 256547005 Collected: 02/09/11 14:00 Received: 02/10/11 07:45 Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF CAS No. Qual Prepared Analyzed 6020 MET ICPMS Analytical Method: EPA 6020 Arsenic 4.2 mg/kg 0.54 20 02/14/11 09:13 02/23/11 11:21 7440-38-2 **0.11** mg/kg Cadmium 0.087 20 02/14/11 09:13 02/23/11 11:21 7440-43-9 Copper 19.4 mg/kg 0.54 20 02/14/11 09:13 02/23/11 11:21 7440-50-8 02/14/11 09:13 02/23/11 11:21 Lead 8.4 mg/kg 0.54 20 7439-92-1 0.54 20 Nickel 28.9 mg/kg 02/14/11 09:13 02/23/11 11:21 7440-02-0 **Dry Weight** Analytical Method: % Moisture Percent Moisture 9.7 % 0.10 02/14/11 00:00 1 Sample: SPL-28-1 Lab ID: 256547006 Collected: 02/09/11 14:12 Received: 02/10/11 07:45 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **6020 MET ICPMS** Analytical Method: EPA 6020 02/14/11 09:13 02/23/11 11:44 7440-38-2 Arsenic 4.7 mg/kg 0.46 20 Cadmium **0.11** mg/kg 0.073 20 02/14/11 09:13 02/23/11 11:44 7440-43-9 Copper 24.1 mg/kg 0.46 20 02/14/11 09:13 02/23/11 11:44 7440-50-8 0.46 02/14/11 09:13 02/23/11 11:44 7439-92-1 Lead 8.7 mg/kg 20 **24.2** mg/kg 20 02/14/11 09:13 02/23/11 11:44 7440-02-0 Nickel 0.46 **Dry Weight** Analytical Method: % Moisture Percent Moisture 9.1 % 02/14/11 00:00 0.10 1

Date: 02/24/2011 11:55 AM

ANALYTICAL RESULTS

Project: East Bay Redevelopment 138130

Pace Project No.: 256547

Lab ID: 256547007 Sample: SPL-28-2 Collected: 02/09/11 14:23 Received: 02/10/11 07:45 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **6020 MET ICPMS** Analytical Method: EPA 6020 Arsenic 3.6 mg/kg 0.41 20 02/14/11 09:13 02/23/11 11:48 7440-38-2 Cadmium 0.088 mg/kg 0.065 20 02/14/11 09:13 02/23/11 11:48 7440-43-9 Copper 25.3 mg/kg 0.41 20 02/14/11 09:13 02/23/11 11:48 7440-50-8 Lead 7.3 mg/kg 0.41 20 02/14/11 09:13 02/23/11 11:48 7439-92-1 20 02/14/11 09:13 02/23/11 11:48 7440-02-0 Nickel 25.1 mg/kg 0.41 **Dry Weight** Analytical Method: % Moisture Percent Moisture 8.6 % 0.10 1 02/14/11 00:00 Sample: SPL-28-3 Lab ID: 256547008 Collected: 02/09/11 14:34 Received: 02/10/11 07:45 Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF CAS No. Qual Prepared Analyzed 6020 MET ICPMS Analytical Method: EPA 6020 Arsenic 3.4 mg/kg 0.55 20 02/14/11 09:13 02/23/11 11:51 Cadmium 0.088 20 02/14/11 09:13 02/23/11 11:51 ND mg/kg 7440-43-9 Copper 23.1 mg/kg 0.55 20 02/14/11 09:13 02/23/11 11:51 7440-50-8 02/14/11 09:13 02/23/11 11:51 Lead 7.5 mg/kg 0.55 20 7439-92-1 0.55 20 Nickel 21.7 mg/kg 02/14/11 09:13 02/23/11 11:51 7440-02-0 **Dry Weight** Analytical Method: % Moisture Percent Moisture 17.0 % 0.10 02/14/11 00:00 1 Sample: SPL-28-4 Lab ID: 256547009 Collected: 02/09/11 14:45 Received: 02/10/11 07:45 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **6020 MET ICPMS** Analytical Method: EPA 6020 02/14/11 09:13 02/23/11 11:55 Arsenic 3.3 mg/kg 0.41 20 7440-38-2 Cadmium 0.087 mg/kg 0.065 20 02/14/11 09:13 02/23/11 11:55 7440-43-9 Copper 20.1 mg/kg 0.41 20 02/14/11 09:13 02/23/11 11:55 7440-50-8 0.41 02/14/11 09:13 02/23/11 11:55 7439-92-1 Lead 7.0 mg/kg 20 20 02/14/11 09:13 02/23/11 11:55 7440-02-0 Nickel 23.1 mg/kg 0.41 **Dry Weight** Analytical Method: % Moisture Percent Moisture 9.9 % 02/14/11 00:00 0.10 1

Date: 02/24/2011 11:55 AM

QUALITY CONTROL DATA

Project: East Bay Redevelopment 138130

Pace Project No.: 256547

QC Batch: ICPM/24719 Analysis Method: EPA 6020
QC Batch Method: EPA 6020 Analysis Description: 6020 MET

Associated Lab Samples: 256547001, 256547002, 256547003, 256547004, 256547005, 256547006, 256547007, 256547008, 256547009

METHOD BLANK: 930612 Matrix: Solid

Associated Lab Samples: 256547001, 256547002, 256547003, 256547004, 256547005, 256547006, 256547007, 256547008, 256547009

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	mg/kg	ND ND	0.48	02/23/11 11:00	
Cadmium	mg/kg	ND	0.076	02/23/11 11:00	
Copper	mg/kg	ND	0.48	02/23/11 11:00	
Lead	mg/kg	ND	0.48	02/23/11 11:00	
Nickel	mg/kg	ND	0.48	02/23/11 11:00	

LABORATORY CONTROL SAMPLE: 930613

Date: 02/24/2011 11:55 AM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/kg	19.2	20.1	105	75-125	
Cadmium	mg/kg	19.2	20.2	105	75-125	
Copper	mg/kg	19.2	21.1	110	75-125	
Lead	mg/kg	19.2	20.4	106	75-125	
Nickel	mg/kg	19.2	20.8	108	75-125	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 930614 930615												
Parameter	2 Units	256547001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec	RPD	Qual	
Parameter	Units	Result	Conc.	Conc.	Result	Kesuit	% Rec	% Rec	Limits	KPD	Quai	
Arsenic	mg/kg	3.3	20.8	20.2	24.9	23.6	104	101	75-125	5		
Cadmium	mg/kg	0.11	20.8	20.2	22.2	21.3	106	105	75-125	4		
Copper	mg/kg	19.8	20.8	20.2	48.6	41.3	138	106	75-125	16 M6		
Lead	mg/kg	7.7	20.8	20.2	29.9	30.7	107	114	75-125	3		
Nickel	mg/kg	21.8	20.8	20.2	55.4	48.2	162	130	75-125	14 M6		

MATRIX SPIKE SAMPLE:	930616						
		256548002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/kg	4.7	17.8	22.0	97	75-125	
Cadmium	mg/kg	0.53	17.8	20.1	111	75-125	
Copper	mg/kg	69.4	17.8	59.7	-55	75-125 M	3
Lead	mg/kg	21.2	17.8	41.3	113	75-125	
Nickel	mg/kg	26.9	17.8	46.6	111	75-125	

REPORT OF LABORATORY ANALYSIS

Page 7 of 10

QUALITY CONTROL DATA

Project: East Bay Redevelopment 138130

Pace Project No.: 256547

QC Batch: MPRP/24722 Analysis Method: % Moisture

QC Batch Method: % Moisture Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 256547001, 256547002, 256547003, 256547004, 256547005, 256547006, 256547007, 256547008, 256547009

SAMPLE DUPLICATE: 930649

10149339001 Dup Parameter Units Result Result **RPD** Qualifiers

% 13.5 Percent Moisture 14.3 6

SAMPLE DUPLICATE: 930650

256548005 Dup RPD Parameter Units Result Result Qualifiers Percent Moisture % 10.5 9.5 10

Date: 02/24/2011 11:55 AM REPORT OF LABORATORY ANALYSIS Page 8 of 10

QUALIFIERS

Project: East Bay Redevelopment 138130

Pace Project No.: 256547

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel Clean-Up

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis

ANALYTE QUALIFIERS

Date: 02/24/2011 11:55 AM

M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: East Bay Redevelopment 138130

Pace Project No.: 256547

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
256547001	SPL-27-1	EPA 6020	ICPM/24719	EPA 6020	ICPM/10092
256547002	SPL-27-2	EPA 6020	ICPM/24719	EPA 6020	ICPM/10092
256547003	SPL-27-3	EPA 6020	ICPM/24719	EPA 6020	ICPM/10092
256547004	SPL-27-4	EPA 6020	ICPM/24719	EPA 6020	ICPM/10092
256547005	SPL-27-5	EPA 6020	ICPM/24719	EPA 6020	ICPM/10092
256547006	SPL-28-1	EPA 6020	ICPM/24719	EPA 6020	ICPM/10092
256547007	SPL-28-2	EPA 6020	ICPM/24719	EPA 6020	ICPM/10092
256547008	SPL-28-3	EPA 6020	ICPM/24719	EPA 6020	ICPM/10092
256547009	SPL-28-4	EPA 6020	ICPM/24719	EPA 6020	ICPM/10092
256547001	SPL-27-1	% Moisture	MPRP/24722		
256547002	SPL-27-2	% Moisture	MPRP/24722		
256547003	SPL-27-3	% Moisture	MPRP/24722		
256547004	SPL-27-4	% Moisture	MPRP/24722		
256547005	SPL-27-5	% Moisture	MPRP/24722		
256547006	SPL-28-1	% Moisture	MPRP/24722		
256547007	SPL-28-2	% Moisture	MPRP/24722		
256547008	SPL-28-3	% Moisture	MPRP/24722		
256547009	SPL-28-4	% Moisture	MPRP/24722		

Date: 02/24/2011 11:55 AM

REPORT OF LABORATORY ANALYSIS

Page 10 of 10

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

256547

Sec	ction A	Section E	В						5	Secti	on C														Pa	ogo:			of	
	rulred Client Information:	Required I								nvoic	e Infor	mation				_									r		-	9 8 8	626	6
A T	rpany: Lown And (MIDL-CIL Pessi (OLUMBUS NW # 470	Report To:	<u> </u>	7	TUR	<u>r</u>			1	Attenti		10 N	•	()(RK					4	_				<u>l</u>			<u></u>	-020	
7	774 (OLUMBUS NW # 470	Сору (о:	ال	<u>5H</u>	SH JOHNSON Company Name:													R		JLAT	_		-							
7	DLYMPIA, WA 98501 BITO: STUIKE DIWNICALD. COM								Address:							_ ı	NPDES					WA"	TER (**	DRINKIN	G WATER					
Em	sturké bruncald.com	Purchase (- 5	Pace C Referen	nce:									!	- (JST		_ F	RCR	A		17	OTHER	
	ne: 60 - 143 - 1525 Fax:	Project Na	me:	34	Y NCO	KLUP	MENT	•		Pace P Vanage											Site	Locati	on	,	/	/Λ				
Roc	juested Due Date/TAT:	Project Nur	mber:	15	88 B	2	-		ľ	Pace P	rofile #	:					-					STAT	E:	_	W	<u> </u>				
																		Requ	jest	ed A	naly	sis Fi	ltere	d (Y	/N)		Г		=	
	Section D Matrix C Required Client information MATRIX /		(pal c)MP)		COLL	ECTED		Ī			Pres	erva	tives		Y/N	2,5	<u>ן</u>		1	5								13	
	Drinking Wat Water Waste Water	WT WW	(see valid codes to left)) 0 0	COMP STAI		COMPO END/GI											اح	375	2	ש						2			
	Product Soil/Solid SAMPLE ID Oil	P SL OL	(see val	(G=GRAB C=COMP)	3170	1				RS						Test 1	1	FURRA	anatrician	Z							Residual Chlorine (Y/N)			
	(A-Z, 0-9 / ,-) Wipe Air Sample IDs MUST BE UNIQUE Tissue Other	WP AR TS OT	CODE	TYPE						# OF CONTAINERS	ved		ŀ			is Te	Ç	2 2	2	9	- -						Chlori			
ITEM#		OI	MATRIX	SAMPLE			,	TIME		OF CO	prese	HNO ₃	ᅴ	2203	athano	Analysis	1.2- HO	ひないる	CABIL	၂	X T X X X X X X X X						sidual			
					DATE	TIME	DATE		4	#	う i		되	ž	žõ		15	2	7	4	1	1	4	4	4	<u> </u>	8	Pace	Project I	lo./ Lab I.D.
1	SPL-27-1		5L	4			02-01-1	12:47 0	4	-/-	X	+	4	\dashv	<u>کا×</u>	1	12	Y.Y	X	<u> </u>	<u> </u>	\downarrow	4	4	+	4	1			
2	581.57.5		1	₩		1	\longrightarrow	13:05	+	+	+	+	+	Н	Н.	-	\mathbb{H}	\mathbb{H}		#	#	+	+	+	+	+	-			
3	SPL-27-3			\square		 	 	13:20	+	\mathcal{H}	++-	++	- -	╁┤	┼┼	1	1+	++	╫╢	╫	 	╁┼	┿	+	╀	╁	+			
4	SPL-27-2 SPL-27-3 SPL-27-4 SPL-27-5 SPL-28-1		H	$\vdash\vdash$		-	 	14:00	╁	+	╫	╁┼	+	H		1	H	+	Н	╫	₩	++	╁		╁	╁	╀			
•	572 - 28 -1		H			 	 	14:12	╁	+	╫	╁┼	╁	\vdash	+	1	H	++	H	╫	╢╴	┿	\dashv	+	╁	╁	+			-
7	504-78-2		$\vdash \vdash$	$\vdash \vdash \vdash$			 	14:23	†	+	₩	╁	╅	H	+	1	H		\forall	+	╫	+	\dashv	+	+	+	t			
8	506-28-3		Н	\forall			-	14:34	†	\top	+	\top	+	Н	+	1	H	1/	7	#	#	11	十	十	+	十	┢			
9	512-28-2 512-28-3 512-28-4 TB 020911-B		V	J			1	14:45	†	V	V	77	十	T	रीर	7	1	14	7	JI.	坩	T	寸	\top	十	┪	T			
10	TB 020911-B								†		\top	Ħ	1	П	1	1	Г	П		Ť	T	\Box	寸	┪	T	T	T			
11			П	П					T			П		П		1	T	П			Τ	\top		7	T	T				
12												П				1_						$\prod_{i=1}^{n} a_i$								
	ADDITIONAL COMMENTS		REL	INQU	ISHED BY	/ AFFILIATI	ION	DATE			ME	<u>, </u>		ACC	EPTE					1		DATE		TIA				SAMF	LE CONDIT	IONS
1	emp blank included	Ad	4 1	Man	ni Hun	BC		2-10-11	į	579	je,	*	٩			VC.	20	و			2.	10-	П	07	45	> 1.	3	Y	7	У
																										┸				
							-	_	1			\perp									\perp		_			\perp				
						SAMPLE	R NAME A	ND SIGNATU	L RE																	+			5	<u> </u>
		3						no of SAMPLE			A	HA	, h j l	To	٦٢							-			_	1	Тетр іл °С	Received on Ice (Y/N)	Custody Sealed Cools (Y/N)	Samples Intact (Y/N)
										Ined 02/09//(Team	Теп	Rece	Seate	Samp														

Sample Container Count

CLIENT:		Br	nwo	E. Ca	ldw	ell					. *					Face Analytical write pacellabs com
COC PAGE _	1 of 1 144626	6														2 5 6 5 4 7
Sample Line	1/05		2020000													
Item	VG9H	AG1H	AG1U	BG1H	BP1U	BP2U	BP3U	BP2N	BP2S			WGKU		-	,	Comments
1										1	2					
2																
3												,				
4																
5																
6													,			
7																
8																
9										1	V					
10	· P															
11																
12																Trip Blank? No
AG1H	1 liter HCl	amber g	lass				BP2S	500mL H	2SO4 pla	astic					JGFU	4oz unpreserved amber wide
	1liter unpr			iss				500mL u								terra core kit
AG2S	500mL H2	SO4 amb	per glass				BP2Z	500mL N	aOH, Zn	Ac						Summa Can
	500mL un			glass			BP3C	250mL N	aOH plas	stic		,				40mL HCL clear vial
	250mL H2						BP3N	250mL H	HNO3 pla	stic						40mL Na Thio. clear vial
	1 liter HCl						BP3S	250mL H	12SO4 pl	asti	С					40mL unpreserved clear vial
	1 liter unp		~				BP3U	250mL u	npreserv	ed p	olastic					40mL glass vial preweighted (EPA 5035)
	1 liter HNO						DG9B	40mL Na	Bisulfate	am	ber v	ial				Headspace septa vial & HCL
	1 liter H2S						DG9H									4oz clear soil jar
	1 liter unpr							40mL Me								4oz wide jar w/hexane wipe
	1 liter NaO							40mL Na				national and the second				Ziploc Bag
	500mL HN							40mL un		an	ber	vial				
BP2O	500mL Na	OH plast	ic				1	Wipe/Sw	ab							

Pace Analytical"

Sample Condition Upon Receipt

2 5 6 5 4 7

Client Name:	Brown & Ca	Idwell Project #
Courier: Fed Ex UPS USPS Clien	t Commercial	Pace Other
Tracking #: Custody Seal on Cooler/Box Present: Yes	No Seals	intact: Yes No
		/
Packing Material: Bubble Wrap Bubble		Other Temp. Blank Yes No
Thermometer Used 132013 of 101731952 or 226099	_	Date and Initials of person examining
Cooler Temperature 1.3 € Temp should be above freezing ≤ 6 ℃	Biological Tissue	Comments:
Chain of Custody Present:	ØYes □No □N/A	1.
Chain of Custody Filled Out:	∐Yes □No □N/A	2.
Chain of Custody Relinquished:	Yes ONO ON/A	3.
Sampler Name & Signature on COC:	LYes □No □N/A	4.
Samples Arrived within Hold Time:	Maryes □No □N/A	5.
Short Hold Time Analysis (<72hr):	□Yes □No □N/A	6.
Rush Turn Around Time Requested:	MYes □No □N/A	7. 10 RUSH for Ploxins
Sufficient Volume:	Yes ONO ON/A	8.
Correct Containers Used:	ØYes □No □N/A	9.
-Pace Containers Used:	Yes OND ON/A	
Containers Intact:	Yes ONO ON/A	10.
Filtered volume received for Dissolved tests	□Yes □No □N/A	11.
Sample Labels match COC:	Yes ONO ON/A	12.
main y		
All containers needing preservation have been checked.	□Yes □No □N/A	13.
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes □No ►N/A	
Exceptions: VOA, coliform, TOC, O&G		Initial when Lot # of added completed preservative
Samples checked for dechlorination:	□Yes □No □N/A	14.
Headspace in VOA Vials (>6mm):	□Yes □No □N/A	
Trip Blanks Present:	□Yes □No □N/A	
Trip Blank Custody Seals Present	□Yes □No MN/A	
Pace Trip Blank Lot # (if purchased):		
Client Notification/ Resolution:		Field Data Required? Y / N
2 2	Date/	
Comments/ Resolution:	Date	Time:
		
Project Manager Review: ENNI	GROSS	Date: 2 10 11

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e out of hold, incorrect preservative, out of temp, incorrect containers)

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Jennifer Gross PASI Seattle 940 S. Harney Street Seattle WA 98108

> REPORT OF LABORATORY ANALYSIS FOR PCDD/PCDF

Report Information:

Pace Project #: 10149297

Sample Receipt Date: 02/11/2011

Client Project #: 256547 Client Sub PO #: N/A State Cert #: C755

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Nate Habte, your Pace Project Manager.

This report has been reviewed by:

February 24, 2011

Nate Habte, Project Manager

(612) 607-6407

(612) 607-6444 (fax) natnael.habte@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

February 24, 2011

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on nine samples submitted by a representative of Pace Analytical Services, Inc. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290. Reporting limits were based on signal-to-noise measurements.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 60-112%. All of the labeled standard recoveries obtained for this project were within the 40-135% target range specified in Method 8290. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, interfering substances impacted the determinations of PCDD or PCDF congeners; the affected values were flagged "I" where incorrect isotope ratios were obtained or "P" where polychlorinated diphenyl ethers were present. Values above the calibration range were flagged "E" and should be regarded as estimates.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to be free of PCDDs and PCDFs at the reporting limits. These results indicate that the sample processing steps did not contribute significantly to the levels reported for the field samples.

Laboratory and matrix spike samples were also prepared with the sample batch using clean sand or sample matrix that had been fortified with native standard materials. The results show that the spiked native compounds were generally recovered at 85-127%, with relative percent differences (RPDs) generally from 2.1-17.3%. The background-subtracted recovery values obtained for most of the hepta and octa-chlorinated congeners in the matrix spike samples were outside the 70-130% target range. Also, the RPD values for HpCDD, OCDF, and OCDD in the matrix spike samples were above the 20% target upper limit; these results may indicate elevated degrees of variability for these congeners in these determinations.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	
Arizona	AZ0014	Nevada	MN000642010A
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New Mexico	MN00064
Colorado	MN00064	New York (NEL	11647
Connecticut	PH-0256	North Carolina	27700
EPA Region 5	WD-15J	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Ohio VAP	CL101
Georgia (DNR)	959	Oklahoma	D9922
Guam	09-019r	Oregon (ELAP)	MN200001-005
Hawaii	SLD	Oregon (OREL	MN200001-005
Idaho	MN00064	Pennsylvania	68-00563
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennesee	2818
lowa	368	Tennessee	02818
Kansas	E-10167	Texas	T104704192-08
Kentucky	90062	Utah (NELAP)	PAM
Louisiana	LA0900016	Virginia	00251
Maine	2007029	Washington	C755
Maryland	322	West Virginia	9952C
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q
Mississippi	MN00064		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

Thursday, February 10, 2011 11:49:50 AM

Page 1 of

FMT-ALL-C-002rev.00 24March2009

Sample Condition Upon Receipt

Client Name: Puiz seattle Project # 10149297 Courler: Fed Ex UPS USPS Client Commercial Pace Other Tracking #: 7967504/3(58 Proj. Due Date Proj. Name Custody Seal on Cooler/Box Present: yes no Seals intact: yes no Packing Material: Bubble Wrap Bubble Bags None Other Temp Blank: Yes Thermometer Used -80344042 or 179425 Type of Ice: Wet) Blue None ☐ Samples on ice, cooling process has begun Date and initials of person examining Biological Tissue is Frozen: Yes **Cooler Temperature** contents: Temp should be above freezing to 6°C Comments: -EYes □No □N/A 1 Chain of Custody Present: Chain of Custody Filled Out: Yes □No □N⁄A DINA Chain of Custody Relinquished: **□N/A** Sampler Name & Signature on COC: DINA Samples Arrived within Hold Time: □N/A Short Hold Time Analysis (<72hr): ØYes □No □N⁄A Rush Turn Around Time Requested: ZZYes □No □N⁄A Sufficient Volume: □N⁄A Correct Containers Used: DYes DNo -Pace Containers Used: **□N/A** TYPES ONO ONA 10. Containers Intact: □Yes □No ÆNA Filtered volume received for Dissolved tests ZIYes ONO ONA 12 Sample Labels match COC: -Includes date/time/ID/Analysis All containers needing acid/base preservation have been ☐Yes ☐No ZN/A 13. checked. Noncompliance are noted in 13. Samp # All containers needing preservation are found to be in ☐Yes ☐No ☐N/A compliance with EPA recommendation. Initial when Lot # of added completed preservative □Yes □No ZIN/A Samples checked for dechlorination: UYes UNO ZINA 15. Headspace in VOA Vials (>6mm): □Yes □No 1 NA 18 Trip Blank Present: □Yes □No ⊅□N/A Trip Blank Custody Seals Present Pace Trip Blank Lot # (if purchased): Client Notification/ Resolution: Field Data Required? Date/Time: Person Contacted: Comments/ Resolution:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the Rhost Adalytical SEMBLES, Inc. F-L213Rev.00, 05Aug2009 1700 Elm Street SE, Suite 200, Minneapolis, MN 55414

Project Manager Review:

Fax: 612-607-6444

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

Appendix B

Sample Analysis Summary

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-27-1
Lab Sample ID 256547001
Filename U110222B_06
Injected By BAL

Total Amount Extracted 11.8 g Matrix Solid % Moisture 10.0 Dilution NA

Dry Weight Extracted Collected 02/09/2011 12:47 10.6 g ICAL ID U101204A Received 02/11/2011 10:03 CCal Filename(s) U110222B_02 & U110222B_17 Extracted 02/17/2011 17:00 Method Blank ID BLANK-27910 Analyzed 02/22/2011 21:41

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.6 25.0		0.28 0.28	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00	60 78
2,3,7,8-TCDD Total TCDD	 24.0	0.33	0.23 I 0.23	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00	65 65 81
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.6 4.8		0.17 J 0.21 0.19	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C	2.00 2.00 2.00	67 70 69 63
1,2,3,7,8-PeCDD Total PeCDD	43.0 2.3 29.0		0.19 0.35 J 0.35	1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	80 79 77
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	 3.5	10.00	0.29 P 0.43 J	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	75 94 78
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	3.8 2.1 91.0		0.33 J 0.27 J 0.33	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	2.4 9.3 4.7 85.0	 	0.29 J 0.37 0.38 0.35	2,3,7,8-TCDD-37Cl4	0.20	73
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	52.0 4.6 190.0		0.49 0.60 J 0.54	Total 2,3,7,8-TCDD Equivalence: 11 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	290.0 650.0		1.20 1.20			
OCDF OCDD	170.0 3500.0		0.24 0.34			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

RL = Reporting Limit. NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. $J = Estimated \ value$

P = PCDE Interference

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-27-2
Lab Sample ID 256547002
Filename U110222B_07
Injected By BAL

Total Amount Extracted 12.1 g Matrix Solid % Moisture 16.6 Dilution NA

Dry Weight Extracted Collected 02/09/2011 13:05 10.1 g **ICAL ID** U101204A Received 02/11/2011 10:03 CCal Filename(s) U110222B 02 & U110222B 17 Extracted 02/17/2011 17:00 Method Blank ID BLANK-27910 Analyzed 02/22/2011 22:29

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	2.80 48.00		0.26 0.26	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	60 79 66
2,3,7,8-TCDD Total TCDD	0.84 57.00		0.27 J 0.27	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	68 84 88
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	5.70 49.00	2.7	0.26 P 0.31 0.28	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	65 65 65
1,2,3,7,8-PeCDD Total PeCDD	4.20 59.00		0.58 J 0.58	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	103 72 94 90
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	7.10 3.80 3.00		0.25 0.47 J 0.39 J	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	112 95
1,2,3,7,8,9-HxCDF Total HxCDF	70.00	1.8	0.16 I 0.32	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	4.60 10.00 4.40 110.00	 	0.22 J 0.47 0.37 J 0.35	2,3,7,8-TCDD-37Cl4	0.20	80
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	56.00 5.30 180.00		0.39 0.50 0.45	Total 2,3,7,8-TCDD Equivalence: 15 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	240.00 450.00		1.00 1.00			
OCDF OCDD	210.00 3800.00		0.23 0.22			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

RL = Reporting Limit. NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. $J = Estimated \ value$

P = PCDE Interference

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-27-3
Lab Sample ID 256547003
Filename U110222B_08
Injected By BAL

Total Amount Extracted 11.1 g Matrix Solid % Moisture 6.1 Dilution NA

Dry Weight Extracted 10.4 g Collected 02/09/2011 13:20 **ICAL ID** U101204A Received 02/11/2011 10:03 CCal Filename(s) U110222B 02 & U110222B 17 Extracted 02/17/2011 17:00 Method Blank ID BLANK-27910 Analyzed 02/22/2011 23:17

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	3.6 57.0		0.25 0.25	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00	61 78
2,3,7,8-TCDD	1.1 73.0		0.34 0.34	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00	67 68 83
Total TCDD 1,2,3,7,8-PeCDF	4.6		0.34 0.47 J	1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C	2.00 2.00 2.00	71 71
2,3,4,7,8-PeCDF Total PeCDF	14.0 120.0		0.40 0.43	2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00	71 66
1,2,3,7,8-PeCDD Total PeCDD	6.3 96.0		0.43 0.43	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	86 73 77
1,2,3,4,7,8-HxCDF		40	0.41 P	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C	2.00 2.00	75 90
1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	10.0 14.0 7.6		0.54 0.82 0.59	OCDD-13C 1,2,3,4-TCDD-13C	4.00 2.00	81 NA
Total HxCDF	350.0		0.59	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	5.5 25.0 9.9 210.0		0.42 0.51 0.49 0.48	2,3,7,8-TCDD-37Cl4	0.20	76
1,2,3,4,6,7,8-HpCDF	220.0		0.46	Total 2,3,7,8-TCDD		
1,2,3,4,7,8,9-HpCDF Total HpCDF	22.0 830.0		0.75 0.65	Equivalence: 31 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	700.0 1300.0		1.20 1.20			
OCDF OCDD	860.0 8100.0		1.30 0.32 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

RL = Reporting Limit.

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

E = Exceeds calibration range

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-27-4
Lab Sample ID 256547004
Filename U110222B_09
Injected By BAL

Total Amount Extracted 10.9 g Matrix Solid % Moisture 8.0 Dilution NA

Dry Weight Extracted 10.0 g Collected 02/09/2011 13:35 **ICAL ID** U101204A Received 02/11/2011 10:03 CCal Filename(s) U110222B 02 & U110222B 17 Extracted 02/17/2011 17:00 Method Blank ID BLANK-27910 Analyzed 02/23/2011 00:04

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	1.70		0.24 0.24	2,3,7,8-TCDF-13C	2.00 2.00	62 78
Total TCDF	30.00		0.24	2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00	76 67
2,3,7,8-TCDD	0.57		0.31 J	2,3,4,7,8-PeCDF-13C	2.00	69
Total TCDD	30.00		0.31	1,2,3,7,8-PeCDD-13C	2.00	83
				1,2,3,4,7,8-HxCDF-13C	2.00	77
1,2,3,7,8-PeCDF	1.90		0.46 J	1,2,3,6,7,8-HxCDF-13C	2.00	72
2,3,4,7,8-PeCDF Total PeCDF	5.60 52.00		0.37 0.42	2,3,4,6,7,8-HxCDF-13C	2.00 2.00	74 65
Total Peode	32.00		0.42	1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00	96
1,2,3,7,8-PeCDD	2.20		0.32 J	1,2,3,6,7,8-HxCDD-13C	2.00	70
Total PeCDD	41.00		0.32	1,2,3,4,6,7,8-HpCDF-13C	2.00	79
				1,2,3,4,7,8,9-HpCDF-13C	2.00	78
1,2,3,4,7,8-HxCDF	8.90		0.25	1,2,3,4,6,7,8-HpCDD-13C	2.00	92
1,2,3,6,7,8-HxCDF	4.10		0.25 J	OCDD-13C	4.00	79
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	4.60 2.60		0.25 J 0.17 J	1,2,3,4-TCDD-13C	2.00	NA
Total HxCDF	120.00		0.17 3	1,2,3,7,8,9-HxCDD-13C	2.00	NA NA
rotal rixob!	120.00		0.20	1,2,6,1,6,611,022	2.00	
1,2,3,4,7,8-HxCDD	3.30		0.33 J	2,3,7,8-TCDD-37Cl4	0.20	74
1,2,3,6,7,8-HxCDD	11.00		0.40			
1,2,3,7,8,9-HxCDD	4.60		0.39 J			
Total HxCDD	96.00		0.37			
1,2,3,4,6,7,8-HpCDF	69.00		0.37	Total 2,3,7,8-TCDD		
1,2,3,4,7,8,9-HpCDF	5.80		0.36	Equivalence: 13 ng/Kg		
Total HpCDF	240.00		0.36	(Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD	290.00		0.61			
Total HpCDD	590.00		0.61			
OCDF	250.00		1.30			
OCDD	3400.00		3.70			
	3 100.00		0.70			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable RL = Reporting Limit.

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. $J = Estimated \ value$

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-27-5
Lab Sample ID 256547005
Filename U110222B_10
Injected By BAL

Total Amount Extracted 11.3 g Matrix Solid % Moisture 9.7 Dilution NA

Dry Weight Extracted 10.2 g Collected 02/09/2011 14:00 **ICAL ID** U101204A Received 02/11/2011 10:03 CCal Filename(s) U110222B_02 & U110222B_17 Extracted 02/17/2011 17:00 Method Blank ID BLANK-27910 Analyzed 02/23/2011 00:52

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	2.3		0.32	2,3,7,8-TCDF-13C	2.00	62
Total TCDF	38.0		0.32	2,3,7,8-TCDD-13C	2.00	74
2 2 7 0 TODD		0.50	0.22	1,2,3,7,8-PeCDF-13C	2.00	68
2,3,7,8-TCDD Total TCDD	38.0	0.56	0.33 I 0.33	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00	70 85
Total TCDD	36.0		0.33	1,2,3,4,7,8-HxCDF-13C	2.00	84
1,2,3,7,8-PeCDF	2.3		0.48 J	1,2,3,6,7,8-HxCDF-13C	2.00	71
2,3,4,7,8-PeCDF	6.4		0.38	2,3,4,6,7,8-HxCDF-13C	2.00	75
Total PeCDF	59.0		0.43	1,2,3,7,8,9-HxCDF-13C	2.00	67
				1,2,3,4,7,8-HxCDD-13C	2.00	108
1,2,3,7,8-PeCDD	3.1		0.50 J	1,2,3,6,7,8-HxCDD-13C	2.00	68
Total PeCDD	47.0		0.50	1,2,3,4,6,7,8-HpCDF-13C	2.00	80
				1,2,3,4,7,8,9-HpCDF-13C	2.00	76
1,2,3,4,7,8-HxCDF	7.4		0.36	1,2,3,4,6,7,8-HpCDD-13C	2.00	91
1,2,3,6,7,8-HxCDF	4.3		0.28 J	OCDD-13C	4.00	76
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	4.9 2.7		0.29 0.25 J	1,2,3,4-TCDD-13C	2.00	NA
Total HxCDF	120.0		0.25 3	1,2,3,7,8,9-HxCDD-13C	2.00	NA NA
Total TIXODI	120.0		0.29	1,2,3,7,0,9-110000-130	2.00	INA
1,2,3,4,7,8-HxCDD	4.0		0.34 J	2,3,7,8-TCDD-37Cl4	0.20	73
1,2,3,6,7,8-HxCDD	12.0		0.32	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
1,2,3,7,8,9-HxCDD	4.7		0.28 J			
Total HxCDD	110.0		0.32			
1,2,3,4,6,7,8-HpCDF	64.0		0.33	Total 2,3,7,8-TCDD		
1,2,3,4,7,8,9-HpCDF	5.2		0.59	Equivalence: 15 ng/Kg		
Total HpCDF	200.0		0.46	(Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD	340.0		0.96			
Total HpCDD	800.0		0.96			
· · · ·	200.0		0.00			
OCDF	240.0		0.79			
OCDD	4000.0		0.33			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

RL = Reporting Limit.

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

SPL-28-1 Client's Sample ID Lab Sample ID 256547006 U110222B_11 Filename Injected By BAL

Total Amount Extracted 11.0 g Solid Matrix % Moisture 9.1 Dilution NA

Dry Weight Extracted 10.00 g Collected 02/09/2011 14:12 **ICAL ID** U101204A Received 02/11/2011 10:03 CCal Filename(s) U110222B 02 & U110222B 17 Extracted 02/17/2011 17:00 Method Blank ID BLANK-27910 Analyzed 02/23/2011 01:39

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.1 18.0		0.21 0.21	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00	63 82
2,3,7,8-TCDD Total TCDD	ND 14.0		0.27 0.27	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00	69 71 85
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.1 4.0 43.0		0.53 J 0.40 J 0.46	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	78 64 67 60
1,2,3,7,8-PeCDD Total PeCDD	1.5 19.0		0.30 J 0.30	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	92 68 74
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	5.0 2.1 3.7		0.24 0.27 J 0.28 J	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	69 85 69
1,2,3,7,8,9-HxCDF Total HxCDF	2.0 66.0		0.28 J 0.28	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	2.1 7.8 2.9 64.0	 	0.32 J 0.43 0.41 J 0.39	2,3,7,8-TCDD-37Cl4	0.20	80
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	61.0 4.7 87.0		0.31 0.33 J 0.32	Total 2,3,7,8-TCDD Equivalence: 9.3 ng/Kg (Using 2005 WHO Factors -	Using PRL/	/2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	230.0 470.0		0.73 0.73			
OCDF OCDD	230.0 2400.0		0.25 0.46			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable RL = Reporting Limit. NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-28-2
Lab Sample ID 256547007
Filename U110222B_12
Injected By BAL

Total Amount Extracted 11.0 g Matrix Solid % Moisture 8.6 Dilution NA

Dry Weight Extracted Collected 02/09/2011 14:23 10.1 g **ICAL ID** U101204A Received 02/11/2011 10:03 CCal Filename(s) U110222B 02 & U110222B 17 Extracted 02/17/2011 17:00 Method Blank ID BLANK-27910 Analyzed 02/23/2011 02:27

Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
0.90		0.27 J	2,3,7,8-TCDF-13C	2.00	64
17.00		0.27			77 72
0.33		0.26 J			72 74
16.00		0.26	1,2,3,7,8-PeCDD-13C	2.00	88
			1,2,3,4,7,8-HxCDF-13C	2.00	76
					71
					72 67
56.00		0.36			67 88
1 20		0.29 J			76
24.00			1,2,3,4,6,7,8-HpCDF-13C	2.00	76
			1,2,3,4,7,8,9-HpCDF-13C	2.00	75
	16		1,2,3,4,6,7,8-HpCDD-13C	2.00	90
			OCDD-13C	4.00	73
			1 2 2 4 TCDD 12C	2.00	NA
					NA NA
210.00		0.57	1,2,0,7,0,0 110000 100	2.00	14/3
2.00		0.28 J	2,3,7,8-TCDD-37Cl4	0.20	73
11.00		0.28			
90.00		0.29			
110.00		0.34	Total 2 3 7 8-TCDD		
390.00		0.39		Using PRL/	2 where ND)
.=					
770.00		0.81			
420.00		0.75			
4000.00		3.30			
	ng/Kg 0.90 17.00 0.33 16.00 1.60 5.20 56.00 1.20 24.00 4.40 5.10 3.40 210.00 11.00 3.50 90.00 110.00 8.10 390.00 370.00 770.00 420.00	ng/Kg ng/Kg 0.90 17.00 0.33 16.00 1.60 5.20 56.00 1.20 24.00 16 4.40 5.10 3.40 210.00 11.00 3.50 90.00 110.00 370.00 370.00 420.00	ng/Kg ng/Kg ng/Kg 0.90 0.27 17.00 0.27 0.33 0.26 16.00 0.26 1.60 0.38 J 5.20 0.34 56.00 J 24.00 0.29 J J 24.00 0.29 J J J 5.10 0.60 J </td <td>ng/Kg ng/Kg Standards 0.90 </td> <td>ng/Kg ng/Kg Ng/Kg Standards Added 0.90 </td>	ng/Kg ng/Kg Standards 0.90	ng/Kg ng/Kg Ng/Kg Standards Added 0.90

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

RL = Reporting Limit. NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value P = PCDE Interference

Solid

NA

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - PASI Seattle

SPL-28-3 Client's Sample ID Lab Sample ID 256547008 U110222B_13 Filename Injected By BAL **Total Amount Extracted** 12.5 g Matrix % Moisture Dilution 17.0 Dry Weight Extracted 10.4 g

 Dry Weight Extracted
 10.4 g
 Collected
 02/09/2011 14:34

 ICAL ID
 U101204A
 Received
 02/11/2011 10:03

 CCal Filename(s)
 U110222B_02 & U110222B_17 Extracted
 02/17/2011 17:00

 Method Blank ID
 BLANK-27910 Analyzed
 02/23/2011 03:15

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.00 17.00		0.37 0.37	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	67 83 75
2,3,7,8-TCDD Total TCDD	0.37 12.00		0.20 J 0.20	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	77 77 92 85
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.10 4.10 41.00		0.28 J 0.32 J 0.30	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	70 72 63
1,2,3,7,8-PeCDD Total PeCDD	1.10 19.00		0.26 J 0.26	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	98 73 79 74
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	6.00 2.60 3.70		0.32 0.32 J 0.29 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	89 74
1,2,3,7,8,9-HxCDF Total HxCDF	2.00 63.00		0.18 J 0.28	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	2.20 8.20 3.00 67.00	 	0.24 J 0.39 0.26 J 0.30	2,3,7,8-TCDD-37Cl4	0.20	80
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	66.00 5.60 140.00	 	0.24 0.33 0.28	Total 2,3,7,8-TCDD Equivalence: 9.5 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	240.00 500.00		0.73 0.73			
OCDF OCDD	260.00 2800.00		0.80 0.35			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable RL = Reporting Limit.

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. $J = Estimated \ value$

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-28-4
Lab Sample ID 256547009
Filename U110222B_14
Injected By BAL

Total Amount Extracted 11.6 g Matrix Solid % Moisture 9.9 Dilution NA

Dry Weight Extracted Collected 02/09/2011 14:45 10.5 g **ICAL ID** U101204A Received 02/11/2011 10:03 CCal Filename(s) U110222B_02 & U110222B_17 Extracted 02/17/2011 17:00 Method Blank ID BLANK-27910 Analyzed 02/23/2011 04:02

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.95 18.00		0.27 J 0.27	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	68 84 75
2,3,7,8-TCDD Total TCDD	0.36 12.00		0.25 J 0.25	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	75 75 88 81
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.40 4.00 41.00		0.43 J 0.34 J 0.39	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	73 75 63
1,2,3,7,8-PeCDD Total PeCDD	1.00 17.00		0.29 J 0.29	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	101 72 76 73
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	6.70 3.30 4.30		0.29 0.36 J 0.32 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	86 71
1,2,3,7,8,9-HxCDF Total HxCDF	2.10 59.00		0.30 J 0.32	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.90 7.40 3.00 62.00	 	0.22 J 0.33 0.37 J 0.31	2,3,7,8-TCDD-37Cl4	0.20	83
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	69.00 5.60 220.00		0.50 0.45 0.48	Total 2,3,7,8-TCDD Equivalence: 9.3 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	220.00 440.00		0.69 0.69			
OCDF OCDD	240.00 2600.00		0.59 1.70			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable RL = Reporting Limit.

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. $J = Estimated \ value$

Method 8290 Blank Analysis Results

Lab Sample ID BLANK-27910 Matrix Solid Filename U110222B_05 Dilution NA

 Total Amount Extracted
 10.0 g
 Extracted
 02/17/2011 17:00

 ICAL ID
 U101204A
 Analyzed
 02/22/2011 20:54

CCal Filename(s) U110222B_02 & U110222B_17 Injected By BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.140 0.140	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	59 80 67
2,3,7,8-TCDD Total TCDD	ND ND		0.200 0.200	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	69 86 69
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.130 0.120 0.120	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	71 71 65
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.140 0.140	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	80 85 82 76
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.100 0.086 0.088	1,2,3,4,7,8,9-1 pCDI - 13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	95 73
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		0.120 0.098	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	0.160 0.160 0.150 0.160	2,3,7,8-TCDD-37Cl4	0.20	75
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		0.100 0.160 0.130	Total 2,3,7,8-TCDD Equivalence: 0.24 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		0.210 0.210			
OCDF OCDD		0.35 0.83	0.170 I 0.280 I			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

I = Interference present

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted

ICAL ID CCal Filename(s) Method Blank ID LCS-27911 U110222B_03 10.5 g

U101204A U110222B_02 & U110222B_17 BLANK-27910 Matrix Dilution Extracted Analyzed

Injected By

Solid NA

02/17/2011 17:00 02/22/2011 19:21 BAL

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.21	107	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.0 2.0 2.0	58 77 65
2,3,7,8-TCDD Total TCDD	0.20	0.17	85	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.0 2.0 2.0 2.0	65 81 68
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.0 1.0	102 102	1,2,3,4,7,0-11XCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.0 2.0 2.0 2.0 2.0	69 71 64 81
1,2,3,7,8-PeCDD Total PeCDD	1.0	0.89	89	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.0 2.0 2.0 2.0	83 81 77
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	1.0 1.0 1.0 1.0	1.0 1.1 1.0 1.1	103 108 104 107	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.0 4.0 2.0 2.0	97 77 NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	0.95 0.97 0.93	95 97 93	2,3,7,8-TCDD-37Cl4	0.20	74
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.0 0.96	101 96			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	0.89	89			
OCDF OCDD	2.0 2.0	1.8 2.1	91 106			

Qs = Quantity Spiked Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)
R = Recovery outside of target range

Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable

* = See Discussion

Method 8290 Spiked Sample Report

Client - PASI Seattle

Client's Sample ID
Lab Sample ID
Filename

SPL-27-3-MS 256547003-MS U110222B_15

Total Amount Extracted ICAL ID

CCal Filename(s)

Method Blank ID

10.9 g U101204A U110222B_02 & U110222B_17 BLANK-27910 Matrix Solid Dilution NA

Extracted Analyzed

NA 02/17/2011 17:00 02/23/2011 04:50

Injected By BAL

				,		
Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20	0.26	132	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	59 76 71
2,3,7,8-TCDD	0.20	0.20	98	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	65 81 81
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	1.00 1.00	1.08 1.22	108 122	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00	76 67 64 86
1,2,3,7,8-PeCDD	1.00	0.97	97	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00	85 76 68
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	1.51 1.20 1.20	151 120 120	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	83 64
1,2,3,7,8,9-HxCDF	1.00	1.16	116	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	1.00 1.00 1.00	1.01 1.21 0.99	101 121 99	2,3,7,8-TCDD-37Cl4	0.20	71
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	1.00 1.00	3.57 1.21	357 121			
1,2,3,4,6,7,8-HpCDD	1.00	7.75	775			
OCDF OCDD	2.00 2.00	11.59 84.05	579 4203 E			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures. E = Exceeds calibration range

Method 8290 Spiked Sample Report

Client - PASI Seattle

Client's Sample ID Lab Sample ID Filename

Total Amount Extracted ICAL ID

CCal Filename(s) Method Blank ID

SPL-27-3-MSD 256547003-MSD U110222B_16

10.7 g U101204A

U110222B_02 & U110222B_17 BLANK-27910

Matrix Solid Dilution NA

Extracted 02/17/2011 17:00 Analyzed 02/23/2011 05:38

Injected By BAL

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20	0.26	128	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	70 87 78
2,3,7,8-TCDD	0.20	0.20	100	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	76 77 94 76
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	1.00 1.00	1.12 1.28	112 128	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	74 73 70
1,2,3,7,8-PeCDD	1.00	1.01	101	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	84 84 79 77
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	1.68 1.25 1.28	168 125 128	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	91 77
1,2,3,7,8,9-HxCDF	1.00	1.28	128	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	1.00 1.00 1.00	1.08 1.28 1.11	108 128 111	2,3,7,8-TCDD-37Cl4	0.20	84
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	1.00 1.00	4.25 1.38	425 138			
1,2,3,4,6,7,8-HpCDD	1.00	9.87	987			
OCDF OCDD	2.00 2.00	19.95 120.49	998 6024 E			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

E = Exceeds calibration range

Pace Analytical[™]

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Spike Sample Results

Client - PASI Seattle

Client Sample ID Lab Sample ID MS ID

MSD ID

SPL-27-3 256547003 256547003-MS 256547003-MSD

Sample Filename MS Filename MSD Filename U110222B_08 U110222B_15 U110222B_16 Dry Weights
Sample Amount
MS Amount
MSD Amount
10.4 g
10.2 g
10.0 g

	Sample Conc.	MS/MSD Qs	MS Qm	MSD Qm		Backgrou	und Subtracted	
Analyte	ng/Kg	(ng)	(ng)	(ng)	RPD	MS % Rec.	MSD % Rec.	RPD
2,3,7,8-TCDF	3.566	0.20	0.26	0.26	3.0	114	110	3.1
2,3,7,8-TCDD	1.117	0.20	0.20	0.20	2.1	92	94	2.3
1,2,3,7,8-PeCDF	4.621	1.00	1.08	1.12	3.4	103	107	3.7
2,3,4,7,8-PeCDF	14.499	1.00	1.22	1.28	4.8	107	113	5.6
1,2,3,7,8-PeCDD	6.252	1.00	0.97	1.01	4.3	91	95	4.7
1,2,3,4,7,8-HxCDF	0.000	1.00	1.51	1.68	10.1	110	127	14.2
1,2,3,6,7,8-HxCDF	10.184	1.00	1.20	1.25	4.7	109	115	5.3
2,3,4,6,7,8-HxCDF	13.677	1.00	1.20	1.28	5.8	106	114	6.8
1,2,3,7,8,9-HxCDF	7.612	1.00	1.16	1.28	10.0	108	121	10.8
1,2,3,4,7,8-HxCDD	5.498	1.00	1.01	1.08	6.8	95	102	7.3
1,2,3,6,7,8-HxCDD	25.093	1.00	1.21	1.28	5.6	95	103	7.5
1,2,3,7,8,9-HxCDD	9.857	1.00	0.99	1.11	10.8	89	101	12.1
1,2,3,4,6,7,8-HpCDF	215.950	1.00	3.57	4.25	17.3	136	208	41.7
1,2,3,4,7,8,9-HpCDF	22.236	1.00	1.21	1.38	13.4	98	116	16.7
1,2,3,4,6,7,8-HpCDD	700.994	1.00	7.75	9.87	24.0	58	282	132.2
OCDF	863.205	2.00	11.59	19.95	53.0	138	564	121.6
OCDD	8072.033	2.00	84.05	120.49	35.6	72	1969	186.0

Definitions

MS = Matrix Spike

MSD = Matrix Spike Duplicate

Qm = Quantity Measured Qs = Quantity Spiked

% Rec. = Percent Recovery

RPD = Relative Percent Difference

NA = Not Applicable NC = Not Calculated CDD = Chlorinated dibenzo-p-dioxin CDF = Chlorinated dibenzo-p-furan

T = Tetra Pe = Penta Hx = Hexa

Hp = Hepta O = Octa

February 24, 2011

Joshua Johnson Brown & Caldwell 724 Columbia St. NW#420 Olympia, WA 98501

RE: Project: East Bay Redevelopment 138130

Pace Project No.: 256549

Dear Joshua Johnson:

Enclosed are the analytical results for sample(s) received by the laboratory on February 10, 2011. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Andy Brownfield for Jennifer Gross

andrea R. Brownfield

jennifer.gross@pacelabs.com

Project Manager

Enclosures

cc: Jon Turk, Brown & Caldwell

CERTIFICATIONS

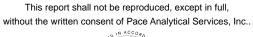
Project: East Bay Redevelopment 138130

Pace Project No.: 256549

Washington Certification IDs
940 South Harney Street, Seattle, WA 98108
Alaska CS Certification #: UST-025
Alaska Drinking Water VOC Certification #: WA01230
Alaska Drinking Water Micro Certification #: WA01230

California Certification #: 01153CA California Certification #: E87617
Oregon Certification #: WA200007
Washington Certification #: C1229

SAMPLE ANALYTE COUNT


Project: East Bay Redevelopment 138130

Pace Project No.: 256549

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
256549001	SPL-27-1	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	CC	3	PASI-S
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
256549002	SPL-27-2	NWTPH-Dx	AY1	6	PASI-S
		NWTPH-Gx	CC	3	PASI-S
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
256549003	SPL-27-3	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	CC	3	PASI-S
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
256549004	SPL-27-4	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	CC	3	PASI-S
	EPA 8270 by SIM	ERB	20	PASI-S	
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
256549005	SPL-27-5	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	CC	3	PASI-S
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
256549006	SPL-28-1	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	CC	3	PASI-S
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
256549007	SPL-28-2	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	CC	3	PASI-S
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
256549008	SPL-28-3	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	CC	3	PASI-S

REPORT OF LABORATORY ANALYSIS

Page 3 of 28

SAMPLE ANALYTE COUNT

Project: East Bay Redevelopment 138130

Pace Project No.: 256549

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
256549009	SPL-28-4	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	CC	3	PASI-S
		EPA 8270 by SIM	ERB	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
256549010	TB020911-B	NWTPH-Gx	CC	3	PASI-S
		EPA 8260	LPM	8	PASI-S

Project: East Bay Redevelopment 138130

Pace Project No.: 256549

Sample: SPL-27-1	Lab ID: 256549001	Collected: 02/09/11 12	2:47	Received: 02	2/10/11 07:45 I	Matrix: Solid	
Results reported on a "dry-weight	t" basis						
Parameters	Results Units	Report Limit D	F	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS SG	Analytical Method: NWT	PH-Dx Preparation Metho	d: El	PA 3546			
Diesel Range SG	ND mg/kg	21.6	1	02/11/11 11:00	02/15/11 03:55	i	
Motor Oil Range SG	ND mg/kg	86.4	1	02/11/11 11:00	02/15/11 03:55	64742-65-0	
n-Octacosane (S) SG	101 %	50-150	1	02/11/11 11:00	02/15/11 03:55	630-02-4	
o-Terphenyl (S) SG	104 %	50-150	1	02/11/11 11:00	02/15/11 03:55	84-15-1	
NWTPH-Gx GCV	Analytical Method: NWT	PH-Gx Preparation Metho	d: N	WTPH-Gx			
Gasoline Range Organics	ND mg/kg	5.0	1	02/11/11 15:20	02/12/11 11:45		
a,a,a-Trifluorotoluene (S)	99 %		1	02/11/11 15:20	02/12/11 11:45	98-08-8	
4-Bromofluorobenzene (S)	90 %	50-150	1		02/12/11 11:45		
8270 MSSV PAH by SIM	Analytical Method: EPA	8270 by SIM Preparation I	Meth	od: EPA 3546			
Acenaphthene	ND ug/kg	7.2	1	02/11/11 11:55	02/14/11 22:32	83-32-9	
Acenaphthylene	19.7 ug/kg		1		02/14/11 22:32		
Anthracene	27.0 ug/kg		1		02/14/11 22:32		
Benzo(a)anthracene	101 ug/kg		1		02/14/11 22:32		
Benzo(a)pyrene	112 ug/kg		1	02/11/11 11:55			
Benzo(b)fluoranthene	104 ug/kg		1	02/11/11 11:55			
Benzo(g,h,i)perylene	67.6 ug/kg		1		02/14/11 22:32		
Benzo(k)fluoranthene	63.3 ug/kg		1		02/14/11 22:32		
Chrysene	123 ug/kg		1		02/14/11 22:32		
Dibenz(a,h)anthracene	19.2 ug/kg		1		02/14/11 22:32		
Fluoranthene	162 ug/kg		' 1		02/14/11 22:32		
Fluorene	102 ug/kg 12.1 ug/kg		1		02/14/11 22:32		
ndeno(1,2,3-cd)pyrene	54.3 ug/kg		' 1		02/14/11 22:32		
I-Methylnaphthalene	ND ug/kg		1		02/14/11 22:32		
2-Methylnaphthalene	9.7 ug/kg		1	02/11/11 11:55			
Naphthalene	16.5 ug/kg		1		02/14/11 22:32		
Phenanthrene	10.3 ug/kg 103 ug/kg		1		02/14/11 22:32		
Pyrene	296 ug/kg		1	02/11/11 11:55			
- yrene 2-Fluorobiphenyl (S)	47 %		1		02/14/11 22:32		
Ferphenyl-d14 (S)	60 %		1		02/14/11 22:32		
3260/5035A Volatile Organics	Analytical Method: EPA			02, ,	02/ 1 1/ 11 22:02		
Benzene	ND ug/kg		1		02/11/11 13:40	71-43-2	
Ethylbenzene	ND ug/kg	2.7			02/11/11 13:40		
Toluene	ND ug/kg		1		02/11/11 13:40		
Xylene (Total)	ND ug/kg		1		02/11/11 13:40		
Dibromofluoromethane (S)	94 %		1		02/11/11 13:40		
Foluene-d8 (S)	104 %		1		02/11/11 13:40		
1-Bromofluorobenzene (S)	102 %		1		02/11/11 13:40		
1,2-Dichloroethane-d4 (S)	101 %		1		02/11/11 13:40		
Percent Moisture			1		02/11/11 13:40	17000-07-0	
	Analytical Method: AST						
Percent Moisture	9.9 %	0.10	1		02/12/11 16:21		

Date: 02/24/2011 11:24 AM

REPORT OF LABORATORY ANALYSIS

Page 5 of 28

Project: East Bay Redevelopment 138130

Pace Project No.: 256549

Sample: SPL-27-2	Lab ID: 256549002	Collected: 02/09/11 1	13:05	Received: 02	/10/11 07:45	Matrix: Solid	
Results reported on a "dry-weight	t" basis						
Parameters	Results Units	Report Limit [DF	Prepared	Analyzed	CAS No.	Qua
WTPH-Dx GCS SG	Analytical Method: NWT	PH-Dx Preparation Method	od: El	PA 3546			
Diesel Range SG	35.0 mg/kg	22.0	1	02/11/11 11:00	02/15/11 04:12	2	
Motor Oil Range SG	212 mg/kg	88.0	1	02/11/11 11:00	02/15/11 04:12	2 64742-65-0	
n-Octacosane (S)	97 %	50-150	1	02/11/11 11:00	02/15/11 04:12	2 630-02-4	
n-Octacosane (S) SG	97 %	50-150	1	02/11/11 11:00	02/15/11 04:12	2 630-02-4	
o-Terphenyl (S)	98 %	50-150	1	02/11/11 11:00	02/15/11 04:12	2 84-15-1	
o-Terphenyl (S) SG	98 %	50-150	1	02/11/11 11:00	02/15/11 04:12	2 84-15-1	
NWTPH-Gx GCV	Analytical Method: NWT	PH-Gx Preparation Meth	od: N	WTPH-Gx			
Gasoline Range Organics	ND mg/kg	6.2	1	02/11/11 15:20	02/14/11 16:53	3	
a,a,a-Trifluorotoluene (S)	101 %		1	02/11/11 15:20	02/14/11 16:53	3 98-08-8	
4-Bromofluorobenzene (S)	81 %	50-150	1	02/11/11 15:20	02/14/11 16:53	3 460-00-4	
8270 MSSV PAH by SIM	Analytical Method: EPA 8	3270 by SIM Preparation	Meth	od: EPA 3546			
Acenaphthene	42.5 ug/kg	7.4	1	02/11/11 11:55	02/14/11 23:27	7 83-32-9	
Acenaphthylene	127 ug/kg	7.4	1	02/11/11 11:55	02/14/11 23:27	7 208-96-8	
Anthracene	256 ug/kg	7.4	1	02/11/11 11:55	02/14/11 23:27	7 120-12-7	
Benzo(a)anthracene	509 ug/kg	7.4	1	02/11/11 11:55	02/14/11 23:27	7 56-55-3	
Benzo(a)pyrene	468 ug/kg	7.4	1	02/11/11 11:55	02/14/11 23:27	7 50-32-8	
Benzo(b)fluoranthene	405 ug/kg	7.4	1	02/11/11 11:55	02/14/11 23:27	7 205-99-2	
Benzo(g,h,i)perylene	262 ug/kg	7.4	1	02/11/11 11:55	02/14/11 23:27	7 191-24-2	
Benzo(k)fluoranthene	139 ug/kg	7.4	1	02/11/11 11:55	02/14/11 23:27	7 207-08-9	
Chrysene	445 ug/kg	7.4	1	02/11/11 11:55	02/14/11 23:27	7 218-01-9	
Dibenz(a,h)anthracene	74.5 ug/kg	7.4	1	02/11/11 11:55	02/14/11 23:27	7 53-70-3	
Fluoranthene	837 ug/kg	7.4	1	02/11/11 11:55	02/14/11 23:27	7 206-44-0	
Fluorene	175 ug/kg	7.4	1	02/11/11 11:55	02/14/11 23:27	7 86-73-7	
ndeno(1,2,3-cd)pyrene	218 ug/kg	7.4	1	02/11/11 11:55	02/14/11 23:27	7 193-39-5	
I-Methylnaphthalene	49.2 ug/kg	7.4	1	02/11/11 11:55	02/14/11 23:27	7 90-12-0	
2-Methylnaphthalene	64.2 ug/kg	7.4	1	02/11/11 11:55	02/14/11 23:27	7 91-57-6	
Naphthalene	87.0 ug/kg	7.4	1	02/11/11 11:55	02/14/11 23:27	7 91-20-3	
Phenanthrene	1130 ug/kg	7.4	1	02/11/11 11:55	02/14/11 23:27	7 85-01-8	
Pyrene	1450 ug/kg	7.4	1	02/11/11 11:55	02/14/11 23:27	7 129-00-0	
2-Fluorobiphenyl (S)	49 %	31-131	1	02/11/11 11:55	02/14/11 23:27	7 321-60-8	
Terphenyl-d14 (S)	58 %	30-133	1	02/11/11 11:55	02/14/11 23:27	7 1718-51-0	
3260/5035A Volatile Organics	Analytical Method: EPA 8	3260					
Benzene	ND ug/kg	2.8	1		02/11/11 14:19	71-43-2	
Ethylbenzene	ND ug/kg	2.8	1		02/11/11 14:19	100-41-4	
Toluene	ND ug/kg	2.8	1		02/11/11 14:19	108-88-3	
Kylene (Total)	ND ug/kg	8.3	1		02/11/11 14:19	1330-20-7	
Dibromofluoromethane (S)	94 %	80-136	1		02/11/11 14:19	1868-53-7	
Toluene-d8 (S)	96 %	80-120	1		02/11/11 14:19	2037-26-5	
1-Bromofluorobenzene (S)	99 %	72-122	1		02/11/11 14:19	9 460-00-4	
1,2-Dichloroethane-d4 (S)	102 %	80-143	1		02/11/11 14:19	17060-07-0	

Date: 02/24/2011 11:24 AM

REPORT OF LABORATORY ANALYSIS

Page 6 of 28

Matrix: Solid

Received: 02/10/11 07:45

02/11/11 15:20 02/12/11 12:57

02/11/11 15:20 02/12/11 12:57 98-08-8

ANALYTICAL RESULTS

Collected: 02/09/11 13:05

Project: East Bay Redevelopment 138130

Pace Project No.: 256549

Sample: SPL-27-2

NWTPH-Gx GCV

Gasoline Range Organics

a,a,a-Trifluorotoluene (S)

Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **Percent Moisture** Analytical Method: ASTM D2974-87 10.9 % Percent Moisture 0.10 1 02/12/11 16:23 Sample: SPL-27-3 Lab ID: 256549003 Collected: 02/09/11 13:20 Received: 02/10/11 07:45 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG 23.9 mg/kg 21.1 02/11/11 11:00 02/15/11 04:44 Motor Oil Range SG 161 mg/kg 84.6 02/11/11 11:00 02/15/11 04:44 64742-65-0 n-Octacosane (S) SG 105 % 50-150 02/11/11 11:00 02/15/11 04:44 630-02-4 o-Terphenyl (S) SG 101 % 50-150 02/11/11 11:00 02/15/11 04:44 84-15-1

Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx

5.4

1

50-150

-,-,-						
4-Bromofluorobenzene (S)	99 %	50-150	1	02/11/11 15:20	02/12/11 12:57	460-00-4

ND ug/kg

ND ug/kg

ND mg/kg

112 %

Lab ID: 256549002

8270 MSSV PAH by SIM	Analytical Method: EPA 8270 by S	IM Preparation	on Me	thod: EPA 3546		
Acenaphthene	58.3 ug/kg	7.1	1	02/11/11 11:55	02/14/11 23:45	83-32-9
Acenaphthylene	12.7 ug/kg	7.1	1	02/11/11 11:55	02/14/11 23:45	208-96-8
Anthracene	139 ug/kg	7.1	1	02/11/11 11:55	02/14/11 23:45	120-12-7
Benzo(a)anthracene	252 ug/kg	7.1	1	02/11/11 11:55	02/14/11 23:45	56-55-3
Benzo(a)pyrene	202 ug/kg	7.1	1	02/11/11 11:55	02/14/11 23:45	50-32-8
Benzo(b)fluoranthene	178 ug/kg	7.1	1	02/11/11 11:55	02/14/11 23:45	205-99-2
Benzo(g,h,i)perylene	118 ug/kg	7.1	1	02/11/11 11:55	02/14/11 23:45	191-24-2
Benzo(k)fluoranthene	126 ug/kg	7.1	1	02/11/11 11:55	02/14/11 23:45	207-08-9
Chrysene	269 ug/kg	7.1	1	02/11/11 11:55	02/14/11 23:45	218-01-9
Dibenz(a,h)anthracene	41.7 ug/kg	7.1	1	02/11/11 11:55	02/14/11 23:45	53-70-3
Fluoranthene	407 ug/kg	7.1	1	02/11/11 11:55	02/14/11 23:45	206-44-0
Fluorene	54.7 ug/kg	7.1	1	02/11/11 11:55	02/14/11 23:45	86-73-7
Indeno(1,2,3-cd)pyrene	104 ug/kg	7.1	1	02/11/11 11:55	02/14/11 23:45	193-39-5
1-Methylnaphthalene	8.0 ug/kg	7.1	1	02/11/11 11:55	02/14/11 23:45	90-12-0
2-Methylnaphthalene	10.8 ug/kg	7.1	1	02/11/11 11:55	02/14/11 23:45	91-57-6
Naphthalene	13.0 ug/kg	7.1	1	02/11/11 11:55	02/14/11 23:45	91-20-3
Phenanthrene	403 ug/kg	7.1	1	02/11/11 11:55	02/14/11 23:45	85-01-8
Pyrene	574 ug/kg	7.1	1	02/11/11 11:55	02/14/11 23:45	129-00-0
2-Fluorobiphenyl (S)	49 %	31-131	1	02/11/11 11:55	02/14/11 23:45	321-60-8
Terphenyl-d14 (S)	57 %	30-133	1	02/11/11 11:55	02/14/11 23:45	1718-51-0
8260/5035A Volatile Organics	Analytical Method: EPA 8260					
Benzene	ND ug/kg	2.9	1		02/11/11 14:39	71-43-2

Date: 02/24/2011 11:24 AM

Ethylbenzene

Toluene

REPORT OF LABORATORY ANALYSIS

Page 7 of 28

02/11/11 14:39 100-41-4

02/11/11 14:39 108-88-3

2.9

2.9

1

Project: East Bay Redevelopment 138130

Pace Project No.: 256549 Lab ID: 256549003 Sample: SPL-27-3 Collected: 02/09/11 13:20 Received: 02/10/11 07:45 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8260/5035A Volatile Organics Analytical Method: EPA 8260 Xylene (Total) ND ug/kg 8.8 1 02/11/11 14:39 1330-20-7 Dibromofluoromethane (S) 93 % 80-136 1 02/11/11 14:39 1868-53-7 Toluene-d8 (S) 103 % 80-120 02/11/11 14:39 2037-26-5 1 4-Bromofluorobenzene (S) 102 % 72-122 02/11/11 14:39 460-00-4 1 1,2-Dichloroethane-d4 (S) 100 % 80-143 02/11/11 14:39 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 6.9 % 0.10 1 02/12/11 16:24 Sample: SPL-27-4 Lab ID: 256549004 Collected: 02/09/11 13:35 Received: 02/10/11 07:45 Results reported on a "dry-weight" basis Parameters Results Report Limit DF CAS No. Qual Units Prepared Analyzed **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG 24.0 mg/kg 21.3 02/11/11 11:00 02/15/11 05:01 Motor Oil Range SG 85.3 02/11/11 11:00 91.7 mg/kg 1 02/15/11 05:01 64742-65-0 50-150 n-Octacosane (S) SG 106 % 02/11/11 11:00 02/15/11 05:01 630-02-4 1 02/11/11 11:00 02/15/11 05:01 84-15-1 101 % 50-150 o-Terphenyl (S) SG 1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 6.4 1 02/11/11 15:20 02/12/11 13:21 a,a,a-Trifluorotoluene (S) 109 % 50-150 02/11/11 15:20 02/12/11 13:21 98-08-8 1 97 % 4-Bromofluorobenzene (S) 50-150 02/11/11 15:20 02/12/11 13:21 460-00-4 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Acenaphthene 33.4 ug/kg 7.2 02/11/11 11:55 02/15/11 00:04 83-32-9 1 Acenaphthylene 38.6 ug/kg 7.2 02/11/11 11:55 02/15/11 00:04 208-96-8 1 116 ug/kg 7.2 Anthracene 02/11/11 11:55 02/15/11 00:04 120-12-7 1 Benzo(a)anthracene 194 ug/kg 7.2 02/11/11 11:55 02/15/11 00:04 56-55-3 1 Benzo(a)pyrene 197 ug/kg 7.2 1 02/11/11 11:55 02/15/11 00:04 50-32-8 Benzo(b)fluoranthene 144 ug/kg 7.2 1 02/11/11 11:55 02/15/11 00:04 205-99-2 Benzo(g,h,i)perylene 125 ug/kg 7.2 1 02/11/11 11:55 02/15/11 00:04 191-24-2 Benzo(k)fluoranthene 93.1 ug/kg 7.2 02/11/11 11:55 02/15/11 00:04 207-08-9 1 194 ug/kg 7.2 Chrysene 1 02/11/11 11:55 02/15/11 00:04 218-01-9 Dibenz(a,h)anthracene 31.5 ug/kg 7.2 02/11/11 11:55 02/15/11 00:04 53-70-3 1 Fluoranthene 347 ug/kg 7.2 02/11/11 11:55 02/15/11 00:04 206-44-0 1 87.4 ug/kg 7.2 Fluorene 02/11/11 11:55 02/15/11 00:04 86-73-7 1 Indeno(1,2,3-cd)pyrene 101 ug/kg 7.2 02/11/11 11:55 02/15/11 00:04 193-39-5 1 1-Methylnaphthalene 39.8 ug/kg 7.2 1 02/11/11 11:55 02/15/11 00:04 90-12-0 2-Methylnaphthalene 50.7 ug/kg 7.2 1 02/11/11 11:55 02/15/11 00:04 91-57-6 7.2 Naphthalene 61.2 ug/kg 1 02/11/11 11:55 02/15/11 00:04 91-20-3 Phenanthrene 491 ug/kg 7.2 02/11/11 11:55 02/15/11 00:04 85-01-8 1 Pyrene 556 ug/kg 7.2 02/11/11 11:55 02/15/11 00:04 129-00-0

Date: 02/24/2011 11:24 AM

REPORT OF LABORATORY ANALYSIS

Page 8 of 28

Project: East Bay Redevelopment 138130

Pace Project No.: 256549 Lab ID: 256549004 Sample: SPL-27-4 Collected: 02/09/11 13:35 Received: 02/10/11 07:45 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 2-Fluorobiphenyl (S) 48 % 31-131 02/11/11 11:55 02/15/11 00:04 321-60-8 Terphenyl-d14 (S) 58 % 30-133 02/11/11 11:55 02/15/11 00:04 1718-51-0 8260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 2.9 1 02/11/11 14:59 71-43-2 Ethylbenzene ND ug/kg 2.9 02/11/11 14:59 100-41-4 1 Toluene ND ug/kg 2.9 1 02/11/11 14:59 108-88-3 Xvlene (Total) ND ua/ka 8.7 1 02/11/11 14:59 1330-20-7 Dibromofluoromethane (S) 94 % 80-136 1 02/11/11 14:59 1868-53-7 Toluene-d8 (S) 102 % 80-120 02/11/11 14:59 2037-26-5 1 4-Bromofluorobenzene (S) 100 % 72-122 02/11/11 14:59 460-00-4 1 1,2-Dichloroethane-d4 (S) 02/11/11 14:59 17060-07-0 100 % 80-143 1 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 7.9 % 0.10 02/12/11 16:25 1 Lab ID: 256549005 Sample: SPL-27-5 Collected: 02/09/11 14:00 Received: 02/10/11 07:45 Matrix: Solid Results reported on a "dry-weight" basis DF **Parameters** Results Units Report Limit Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG 21.6 02/11/11 11:00 02/15/11 05:18 ND mg/kg 1 86.2 Motor Oil Range SG ND mg/kg 02/11/11 11:00 02/15/11 05:18 64742-65-0 1 104 % 50-150 n-Octacosane (S) SG 02/11/11 11:00 02/15/11 05:18 630-02-4 1 102 % 50-150 02/11/11 11:00 02/15/11 05:18 84-15-1 o-Terphenyl (S) SG **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx ND mg/kg Gasoline Range Organics 5.5 1 02/17/11 14:17 02/18/11 16:51 a,a,a-Trifluorotoluene (S) 101 % 50-150 02/17/11 14:17 02/18/11 16:51 98-08-8 1 4-Bromofluorobenzene (S) 82 % 50-150 1 02/17/11 14:17 02/18/11 16:51 460-00-4 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 7.3 ND ug/kg 1 02/11/11 11:55 02/15/11 00:22 83-32-9 Acenaphthene Acenaphthylene 15.4 ug/kg 7.3 1 02/11/11 11:55 02/15/11 00:22 208-96-8 Anthracene 26.1 ug/kg 7.3 02/11/11 11:55 02/15/11 00:22 120-12-7 1 Benzo(a)anthracene 64.2 ug/kg 7.3 1 02/11/11 11:55 02/15/11 00:22 56-55-3 64.2 ug/kg 7.3 02/15/11 00:22 Benzo(a)pyrene 1 02/11/11 11:55 50-32-8 Benzo(b)fluoranthene 57.3 ug/kg 7.3 1 02/11/11 11:55 02/15/11 00:22 205-99-2 Benzo(g,h,i)perylene 46.7 ug/kg 7.3 02/11/11 11:55 02/15/11 00:22 191-24-2 1 Benzo(k)fluoranthene 7.3 25.5 ug/kg 02/11/11 11:55 02/15/11 00:22 207-08-9 1 62.1 ug/kg 7.3 02/11/11 11:55 02/15/11 00:22 218-01-9 Chrysene 1 7.3 02/11/11 11:55 02/15/11 00:22 53-70-3 Dibenz(a,h)anthracene 13.4 ug/kg 1 Fluoranthene 93.7 ug/kg 7.3 02/11/11 11:55 02/15/11 00:22 206-44-0

Date: 02/24/2011 11:24 AM REPORT OF LABORATORY ANALYSIS

Page 9 of 28

Project: East Bay Redevelopment 138130

Pace Project No.: 256549

Date: 02/24/2011 11:24 AM

Lab ID: 256549005 Sample: SPL-27-5 Collected: 02/09/11 14:00 Received: 02/10/11 07:45 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Fluorene 15.2 ug/kg 7.3 02/11/11 11:55 02/15/11 00:22 86-73-7 40.1 ug/kg Indeno(1,2,3-cd)pyrene 7.3 02/11/11 11:55 02/15/11 00:22 193-39-5 1-Methylnaphthalene 7.9 ug/kg 7.3 02/11/11 11:55 02/15/11 00:22 90-12-0 1 2-Methylnaphthalene 11.1 ug/kg 7.3 02/11/11 11:55 02/15/11 00:22 91-57-6 1 15.9 ug/kg Naphthalene 7.3 1 02/11/11 11:55 02/15/11 00:22 91-20-3 Phenanthrene 101 ug/kg 7.3 02/11/11 11:55 02/15/11 00:22 85-01-8 1 158 ug/kg 7.3 02/11/11 11:55 02/15/11 00:22 129-00-0 Pyrene 1 2-Fluorobiphenyl (S) 45 % 31-131 02/11/11 11:55 02/15/11 00:22 321-60-8 1 53 % 30-133 02/11/11 11:55 02/15/11 00:22 1718-51-0 Terphenyl-d14 (S) 1 8260/5035A Volatile Organics Analytical Method: EPA 8260 ND ug/kg 2.9 02/11/11 15:18 71-43-2 1 Benzene 02/11/11 15:18 100-41-4 Ethylbenzene ND ug/kg 2.9 1 Toluene ND ug/kg 2.9 02/11/11 15:18 108-88-3 1 Xylene (Total) ND ug/kg 8.6 1 02/11/11 15:18 1330-20-7 Dibromofluoromethane (S) 91 % 80-136 1 02/11/11 15:18 1868-53-7 Toluene-d8 (S) 105 % 80-120 1 02/11/11 15:18 2037-26-5 4-Bromofluorobenzene (S) 99 % 72-122 1 02/11/11 15:18 460-00-4 1,2-Dichloroethane-d4 (S) 99 % 80-143 02/11/11 15:18 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87 Percent Moisture 10.5 % 02/12/11 16:27 0.10 1 Sample: SPL-28-1 Lab ID: 256549006 Collected: 02/09/11 14:12 Received: 02/10/11 07:45 Results reported on a "dry-weight" basis **Parameters** Results Units Prepared CAS No. Qual Report Limit Analyzed **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG ND mg/kg 21.2 02/11/11 11:00 02/15/11 05:34 Motor Oil Range SG 136 mg/kg 84.9 02/11/11 11:00 02/15/11 05:34 64742-65-0 1 50-150 n-Octacosane (S) SG 101 % 02/11/11 11:00 02/15/11 05:34 630-02-4 1 o-Terphenyl (S) SG 99 % 50-150 02/11/11 11:00 02/15/11 05:34 84-15-1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 6.1 02/18/11 15:45 02/18/11 20:52 a,a,a-Trifluorotoluene (S) 103 % 50-150 02/18/11 15:45 02/18/11 20:52 98-08-8 1 50-150 4-Bromofluorobenzene (S) 84 % 1 02/18/11 15:45 02/18/11 20:52 460-00-4 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 02/11/11 11:55 02/15/11 00:41 83-32-9 Acenaphthene 7.6 ug/kg 7.2 1 7.2 Acenaphthylene 14.4 ug/kg 02/11/11 11:55 02/15/11 00:41 208-96-8 1 Anthracene **34.4** ug/kg 7.2 02/15/11 00:41 120-12-7 02/11/11 11:55 1 Benzo(a)anthracene 53.8 ug/kg 7.2 02/11/11 11:55 02/15/11 00:41 56-55-3

REPORT OF LABORATORY ANALYSIS

Page 10 of 28

Project: East Bay Redevelopment 138130

Pace Project No.: 256549

a,a,a-Trifluorotoluene (S)

Sample: SPL-28-1	Lab ID:	256549006	Collected: 02/09/1	1 14:12	Received: 02	2/10/11 07:45 N	/latrix: Solid	
Results reported on a "dry-weight	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3270 MSSV PAH by SIM	Analytical I	Method: EPA 8	270 by SIM Preparati	on Meth	nod: EPA 3546			
Benzo(a)pyrene	57.7	ug/kg	7.2	1	02/11/11 11:55	02/15/11 00:41	50-32-8	
Benzo(b)fluoranthene	49.5	ug/kg	7.2	1	02/11/11 11:55	02/15/11 00:41	205-99-2	
Benzo(g,h,i)perylene		ug/kg	7.2	1	02/11/11 11:55	02/15/11 00:41	191-24-2	
Benzo(k)fluoranthene	25.1	ug/kg	7.2	1	02/11/11 11:55	02/15/11 00:41	207-08-9	
Chrysene	54.7	' ug/kg	7.2	1	02/11/11 11:55	02/15/11 00:41	218-01-9	
Dibenz(a,h)anthracene		ug/kg	7.2	1	02/11/11 11:55	02/15/11 00:41	53-70-3	
Fluoranthene		ug/kg	7.2	1	02/11/11 11:55	02/15/11 00:41	206-44-0	
Fluorene		ug/kg	7.2	1	02/11/11 11:55	02/15/11 00:41	86-73-7	
Indeno(1,2,3-cd)pyrene		ug/kg	7.2	1		02/15/11 00:41		
1-Methylnaphthalene		ug/kg ug/kg	7.2	1		02/15/11 00:41		
2-Methylnaphthalene		ug/kg ug/kg	7.2	1	02/11/11 11:55			
Naphthalene		ug/kg ug/kg	7.2	1	02/11/11 11:55			
Phenanthrene		ug/kg ug/kg	7.2	1	02/11/11 11:55			
Pyrene		ug/kg ug/kg	7.2	1		02/15/11 00:41		
2-Fluorobiphenyl (S)		3 %	31-131	1		02/15/11 00:41		
Terphenyl-d14 (S)		; %	30-133	1		02/15/11 00:41		
				1	02/11/11 11.55	02/15/11 00.41	1710-31-0	
3260/5035A Volatile Organics	Analytical I	Method: EPA 8	260					
Benzene	ND	ug/kg	2.9	1		02/11/11 15:37	71-43-2	
Ethylbenzene	ND	ug/kg	2.9	1		02/11/11 15:37	100-41-4	
Toluene	ND	ug/kg	2.9	1		02/11/11 15:37	108-88-3	
Xylene (Total)	ND	ug/kg	8.7	1		02/11/11 15:37	1330-20-7	
Dibromofluoromethane (S)	87	′ %	80-136	1		02/11/11 15:37	1868-53-7	
Toluene-d8 (S)	105	· %	80-120	1		02/11/11 15:37	2037-26-5	
4-Bromofluorobenzene (S)	102	2 %	72-122	1		02/11/11 15:37	460-00-4	
1,2-Dichloroethane-d4 (S)	96	%	80-143	1		02/11/11 15:37	17060-07-0	
Percent Moisture	Analytical I	Method: ASTM	D2974-87					
Percent Moisture	8.7	′ %	0.10	1		02/12/11 16:28		
Sample: SPL-28-2	Lab ID:	256549007	Collected: 02/09/1	1 14:23	Received: 02	2/10/11 07:45 N	Matrix: Solid	
Results reported on a "dry-weight	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS SG	Analytical I	Method: NWTP	PH-Dx Preparation Me	ethod: E	PA 3546			
Diesel Range SG	ND	mg/kg	21.4	1	02/11/11 11:00	02/15/11 06:24		
Motor Oil Range SG		mg/kg	85.7	1	02/11/11 11:00		64742-65-0	
n-Octacosane (S) SG	105		50-150	1	02/11/11 11:00			
o-Terphenyl (S) SG) %	50-150	1	02/11/11 11:00			
						22, 10, 11 00.24	J . .	
NWTPH-Gx GCV	Analytical I	vietnod: NWTP	PH-Gx Preparation Me	ethod: N	IVV I PH-GX			
Gasoline Range Organics		mg/kg	5.7	1		02/18/11 21:16		
o o o Trifluorotaluana (C)	00	0/	E0 4E0	4	00/40/44 45 45	00/40/44 04.46	00 00 0	

Date: 02/24/2011 11:24 AM REPORT OF LABORATORY ANALYSIS

98 %

Page 11 of 28

02/18/11 15:45 02/18/11 21:16 98-08-8

50-150

Project: East Bay Redevelopment 138130

Pace Project No.: 256549

Date: 02/24/2011 11:24 AM

Lab ID: 256549007 Sample: SPL-28-2 Collected: 02/09/11 14:23 Received: 02/10/11 07:45 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx 4-Bromofluorobenzene (S) 80 % 50-150 02/18/11 15:45 02/18/11 21:16 460-00-4 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 ND ug/kg 7.4 Acenaphthene 1 02/11/11 11:55 02/15/11 00:59 83-32-9 Acenaphthylene ND ug/kg 7.4 1 02/11/11 11:55 02/15/11 00:59 208-96-8 Anthracene 13.7 ug/kg 7.4 02/11/11 11:55 02/15/11 00:59 120-12-7 1 Benzo(a)anthracene 38.7 ug/kg 7.4 1 02/11/11 11:55 02/15/11 00:59 56-55-3 Benzo(a)pyrene **32.7** ua/ka 7.4 1 02/11/11 11:55 02/15/11 00:59 50-32-8 29.9 ug/kg Benzo(b)fluoranthene 7.4 1 02/11/11 11:55 02/15/11 00:59 205-99-2 Benzo(g,h,i)perylene 23.4 ug/kg 7.4 02/11/11 11:55 02/15/11 00:59 191-24-2 1 Benzo(k)fluoranthene 18.2 ug/kg 7.4 02/11/11 11:55 02/15/11 00:59 207-08-9 1 Chrysene 45.1 ug/kg 7.4 02/11/11 11:55 02/15/11 00:59 218-01-9 1 ND ug/kg Dibenz(a,h)anthracene 7.4 02/11/11 11:55 02/15/11 00:59 53-70-3 1 Fluoranthene 77.3 ug/kg 7.4 02/11/11 11:55 02/15/11 00:59 206-44-0 1 ND ug/kg Fluorene 7.4 1 02/11/11 11:55 02/15/11 00:59 86-73-7 Indeno(1,2,3-cd)pyrene 17.4 ug/kg 7.4 1 02/11/11 11:55 02/15/11 00:59 193-39-5 1-Methylnaphthalene ND ug/kg 7.4 1 02/11/11 11:55 02/15/11 00:59 90-12-0 2-Methylnaphthalene 02/11/11 11:55 ND ug/kg 7.4 1 02/15/11 00:59 91-57-6 Naphthalene 9.1 ug/kg 7.4 1 02/11/11 11:55 02/15/11 00:59 91-20-3 Phenanthrene 41.9 ug/kg 7.4 02/11/11 11:55 02/15/11 00:59 85-01-8 1 132 ug/kg Pyrene 7.4 02/11/11 11:55 02/15/11 00:59 129-00-0 1 40 % 31-131 2-Fluorobiphenyl (S) 02/11/11 11:55 02/15/11 00:59 321-60-8 1 Terphenyl-d14 (S) 48 % 30-133 02/11/11 11:55 02/15/11 00:59 1718-51-0 1 8260/5035A Volatile Organics Analytical Method: EPA 8260 ND ug/kg 3.5 02/11/11 15:57 71-43-2 Benzene 1 02/11/11 15:57 100-41-4 Ethylbenzene ND ug/kg 3.5 1 Toluene ND ug/kg 3.5 02/11/11 15:57 108-88-3 1 Xylene (Total) ND ug/kg 10.4 1 02/11/11 15:57 1330-20-7 Dibromofluoromethane (S) 88 % 80-136 1 02/11/11 15:57 1868-53-7 Toluene-d8 (S) 105 % 80-120 02/11/11 15:57 2037-26-5 1 4-Bromofluorobenzene (S) 108 % 72-122 02/11/11 15:57 460-00-4 1 1,2-Dichloroethane-d4 (S) 97 % 80-143 02/11/11 15:57 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 9.3 % 0.10 02/12/11 16:28 Sample: SPL-28-3 Lab ID: 256549008 Collected: 02/09/11 14:34 Received: 02/10/11 07:45 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG 27.1 mg/kg 20.8 02/11/11 11:00 02/15/11 06:41

REPORT OF LABORATORY ANALYSIS

Page 12 of 28

Project: East Bay Redevelopment 138130

Pace Project No.: 256549

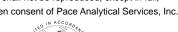
Lab ID: 256549008 Sample: SPL-28-3 Collected: 02/09/11 14:34 Received: 02/10/11 07:45 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Motor Oil Range SG 149 mg/kg 83.3 02/11/11 11:00 02/15/11 06:41 64742-65-0 101 % n-Octacosane (S) SG 50-150 02/11/11 11:00 02/15/11 06:41 630-02-4 o-Terphenyl (S) SG 102 % 50-150 02/11/11 11:00 02/15/11 06:41 84-15-1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics ND mg/kg 5.2 02/18/11 15:45 02/18/11 22:04 a,a,a-Trifluorotoluene (S) 102 % 50-150 02/18/11 15:45 02/18/11 22:04 98-08-8 1 4-Bromofluorobenzene (S) 83 % 50-150 1 02/18/11 15:45 02/18/11 22:04 460-00-4 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Acenaphthene 12.7 ug/kg 7.2 02/11/11 11:55 02/15/11 01:17 83-32-9 Acenaphthylene 25.8 ua/ka 7.2 1 02/11/11 11:55 02/15/11 01:17 208-96-8 Anthracene 42.3 ug/kg 7.2 1 02/11/11 11:55 02/15/11 01:17 120-12-7 95.8 ug/kg 7.2 Benzo(a)anthracene 1 02/11/11 11:55 02/15/11 01:17 56-55-3 7.2 107 ug/kg 02/11/11 11:55 02/15/11 01:17 50-32-8 Benzo(a)pyrene 1 Benzo(b)fluoranthene 75.5 ug/kg 7.2 02/11/11 11:55 02/15/11 01:17 205-99-2 1 63.8 ug/kg 7.2 02/11/11 11:55 02/15/11 01:17 191-24-2 Benzo(g,h,i)perylene 1 7.2 02/11/11 11:55 02/15/11 01:17 207-08-9 Benzo(k)fluoranthene 49.0 ug/kg 1 Chrysene 91.1 ug/kg 7.2 1 02/11/11 11:55 02/15/11 01:17 218-01-9 Dibenz(a,h)anthracene 18.6 ug/kg 7.2 02/11/11 11:55 02/15/11 01:17 53-70-3 Fluoranthene 137 ug/kg 7.2 02/11/11 11:55 02/15/11 01:17 206-44-0 Fluorene 29.0 ug/kg 7.2 1 02/11/11 11:55 02/15/11 01:17 86-73-7 Indeno(1,2,3-cd)pyrene 56.1 ug/kg 7.2 02/11/11 11:55 02/15/11 01:17 193-39-5 1 1-Methylnaphthalene 7.3 ug/kg 7.2 02/11/11 11:55 02/15/11 01:17 90-12-0 1 8.5 ug/kg 7.2 02/11/11 11:55 02/15/11 01:17 91-57-6 2-Methylnaphthalene 1 15.6 ug/kg 7.2 Naphthalene 02/11/11 11:55 02/15/11 01:17 91-20-3 1 7.2 02/11/11 11:55 02/15/11 01:17 85-01-8 Phenanthrene 155 ug/kg 1 230 ug/kg 7.2 02/11/11 11:55 02/15/11 01:17 129-00-0 Pvrene 1 2-Fluorobiphenyl (S) 45 % 31-131 1 02/11/11 11:55 02/15/11 01:17 321-60-8 52 % Terphenyl-d14 (S) 30-133 02/11/11 11:55 02/15/11 01:17 1718-51-0 8260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 2.6 1 02/11/11 16:16 71-43-2 Ethylbenzene ND ug/kg 2.6 1 02/11/11 16:16 100-41-4 Toluene ND ug/kg 2.6 02/11/11 16:16 108-88-3 1 02/11/11 16:16 1330-20-7 Xylene (Total) ND ug/kg 7.8 1 Dibromofluoromethane (S) 87 % 80-136 1 02/11/11 16:16 1868-53-7 Toluene-d8 (S) 106 % 80-120 02/11/11 16:16 2037-26-5 1 4-Bromofluorobenzene (S) 102 % 72-122 02/11/11 16:16 460-00-4 1 1,2-Dichloroethane-d4 (S) 94 % 80-143 02/11/11 16:16 17060-07-0 1 **Percent Moisture** Analytical Method: ASTM D2974-87 Percent Moisture 9.3 % 0.10 02/12/11 16:29 1

Date: 02/24/2011 11:24 AM

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

Page 13 of 28

Project: East Bay Redevelopment 138130


Pace Project No.: 256549

Lab ID: 256549009 Sample: SPL-28-4 Collected: 02/09/11 14:45 Received: 02/10/11 07:45 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Dx GCS SG** Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG ND mg/kg 21.4 02/11/11 11:00 02/15/11 06:57 Motor Oil Range SG ND mg/kg 85.7 02/11/11 11:00 02/15/11 06:57 64742-65-0 1 n-Octacosane (S) SG 107 % 50-150 02/11/11 11:00 02/15/11 06:57 630-02-4 1 o-Terphenyl (S) SG 104 % 50-150 02/11/11 11:00 02/15/11 06:57 84-15-1 **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics 5.0 02/18/11 15:45 02/18/11 22:29 ND mg/kg a.a.a-Trifluorotoluene (S) 101 % 50-150 1 02/18/11 15:45 02/18/11 22:29 98-08-8 4-Bromofluorobenzene (S) 82 % 50-150 1 02/18/11 15:45 02/18/11 22:29 460-00-4 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Acenaphthene 11.0 ua/ka 7.2 1 02/11/11 11:55 02/15/11 01:36 83-32-9 Acenaphthylene 17.5 ug/kg 7.2 1 02/11/11 11:55 02/15/11 01:36 208-96-8 33.4 ug/kg 7.2 02/11/11 11:55 02/15/11 01:36 120-12-7 Anthracene 1 7.2 Benzo(a)anthracene 68.3 ug/kg 02/11/11 11:55 02/15/11 01:36 56-55-3 1 71.3 ug/kg Benzo(a)pyrene 7.2 02/11/11 11:55 02/15/11 01:36 50-32-8 1 02/11/11 11:55 02/15/11 01:36 205-99-2 Benzo(b)fluoranthene 55.1 ug/kg 7.2 1 50.2 ug/kg 7.2 Benzo(g,h,i)perylene 1 02/11/11 11:55 02/15/11 01:36 191-24-2 Benzo(k)fluoranthene 35.0 ug/kg 7.2 1 02/11/11 11:55 02/15/11 01:36 207-08-9 Chrysene 67.9 ug/kg 7.2 02/11/11 11:55 02/15/11 01:36 218-01-9 Dibenz(a,h)anthracene 12.8 ug/kg 7.2 02/11/11 11:55 02/15/11 01:36 53-70-3 Fluoranthene 100 ug/kg 7.2 1 02/11/11 11:55 02/15/11 01:36 206-44-0 Fluorene 23.7 ug/kg 7.2 02/11/11 11:55 02/15/11 01:36 86-73-7 1 Indeno(1,2,3-cd)pyrene 38.9 ug/kg 7.2 02/11/11 11:55 02/15/11 01:36 193-39-5 1 **7.3** ug/kg 7.2 02/11/11 11:55 02/15/11 01:36 90-12-0 1-Methylnaphthalene 1 **8.0** ug/kg 7.2 2-Methylnaphthalene 02/11/11 11:55 02/15/11 01:36 91-57-6 1 7.2 02/11/11 11:55 02/15/11 01:36 91-20-3 Naphthalene 15.6 ug/kg 1 Phenanthrene 120 ug/kg 7.2 02/11/11 11:55 02/15/11 01:36 85-01-8 1 Pyrene 184 ug/kg 7.2 1 02/11/11 11:55 02/15/11 01:36 129-00-0 2-Fluorobiphenyl (S) 44 % 31-131 1 02/11/11 11:55 02/15/11 01:36 321-60-8 Terphenyl-d14 (S) 50 % 30-133 02/11/11 11:55 02/15/11 01:36 1718-51-0 8260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 3.2 1 02/14/11 14:57 71-43-2 Ethylbenzene ND ug/kg 02/14/11 14:57 100-41-4 3.2 1 3.2 Toluene ND ug/kg 1 02/14/11 14:57 108-88-3 Xylene (Total) ND ug/kg 9.6 1 02/14/11 14:57 1330-20-7 Dibromofluoromethane (S) 92 % 80-136 02/14/11 14:57 1868-53-7 1 Toluene-d8 (S) 103 % 80-120 02/14/11 14:57 2037-26-5 1 4-Bromofluorobenzene (S) 100 % 72-122 02/14/11 14:57 460-00-4 1 1,2-Dichloroethane-d4 (S) 99 % 80-143 02/14/11 14:57 17060-07-0 **Percent Moisture** Analytical Method: ASTM D2974-87 10.0 % 0.10 02/12/11 16:31 Percent Moisture 1

Date: 02/24/2011 11:24 AM

REPORT OF LABORATORY ANALYSIS

Page 14 of 28

02/11/11 13:01 2037-26-5

02/11/11 13:01 460-00-4

02/11/11 13:01 17060-07-0

ANALYTICAL RESULTS

Project: East Bay Redevelopment 138130

Pace Project No.: 256549

Toluene-d8 (S)

4-Bromofluorobenzene (S)

1,2-Dichloroethane-d4 (S)

Sample: TB020911-B Lab ID: 256549010 Received: 02/10/11 07:45 Collected: 02/09/11 00:00 Matrix: Solid Results reported on a "wet-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics 5.0 ND mg/kg 02/18/11 15:45 02/18/11 19:40 101 % a,a,a-Trifluorotoluene (S) 50-150 1 02/18/11 15:45 02/18/11 19:40 98-08-8 4-Bromofluorobenzene (S) 82 % 50-150 02/18/11 15:45 02/18/11 19:40 460-00-4 8260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 3.0 1 02/11/11 13:01 71-43-2 Ethylbenzene ND ug/kg 3.0 02/11/11 13:01 100-41-4 1 Toluene ND ug/kg 3.0 1 02/11/11 13:01 108-88-3 Xylene (Total) ND ug/kg 9.0 1 02/11/11 13:01 1330-20-7 91 % Dibromofluoromethane (S) 80-136 02/11/11 13:01 1868-53-7 1

80-120

72-122

80-143

1

1

1

103 %

99 %

101 %

Date: 02/24/2011 11:24 AM

REPORT OF LABORATORY ANALYSIS

Project: East Bay Redevelopment 138130

Pace Project No.: 256549

QC Batch: OEXT/3298 Analysis Method: NWTPH-Dx QC Batch Method: EPA 3546 Analysis Description: NWTPH-Dx GCS

Associated Lab Samples: 256549001, 256549002, 256549003, 256549004, 256549005, 256549006, 256549007, 256549008, 256549009

METHOD BLANK: 58160 Matrix: Solid

Associated Lab Samples: 256549001, 256549002, 256549003, 256549004, 256549005, 256549006, 256549007, 256549008, 256549009

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Diesel Range SG	mg/kg	ND	20.0	02/15/11 03:22	
Motor Oil Range SG	mg/kg	ND	80.0	02/15/11 03:22	
n-Octacosane (S)	%	102	50-150	02/15/11 01:59	
n-Octacosane (S) SG	%	105	50-150	02/15/11 03:22	
o-Terphenyl (S)	%	96	50-150	02/15/11 01:59	
o-Terphenyl (S) SG	%	95	50-150	02/15/11 03:22	

LABORATORY CONTROL SAMPLE: 58161

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Diesel Range SG	mg/kg	500	536	107	56-124	
Motor Oil Range SG	mg/kg	500	576	115	50-150	
n-Octacosane (S)	%			101	50-150	
n-Octacosane (S) SG	%			105	50-150	
o-Terphenyl (S)	%			125	50-150	
o-Terphenyl (S) SG	%			126	50-150	

SAMPLE DUPLICATE: 58162

		256549002	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Diesel Range SG	mg/kg	35.0	33.3	5	
Motor Oil Range SG	mg/kg	212	184	14	
n-Octacosane (S)	%	97	96	2	
n-Octacosane (S) SG	%	97	96	2	
o-Terphenyl (S)	%	98	99	.2	
o-Terphenyl (S) SG	%	98	99	.2	

SAMPLE DUPLICATE: 58163

Parameter	Units	256550003 Result	Dup Result	RPD	Qualifiers
Diesel Range SG	 mg/kg		14.7J		
Motor Oil Range SG	mg/kg	111	89.4	21	
n-Octacosane (S)	%	107	104	3	
n-Octacosane (S) SG	%	107	104	3	
o-Terphenyl (S)	%	105	101	3	
o-Terphenyl (S) SG	%	105	101	3	

Date: 02/24/2011 11:24 AM REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

Project: East Bay Redevelopment 138130

Pace Project No.: 256549

QC Batch: GCV/2161 Analysis Method: NWTPH-Gx

QC Batch Method: NWTPH-Gx Analysis Description: NWTPH-Gx Solid GCV

Associated Lab Samples: 256549001, 256549003, 256549004

METHOD BLANK: 58273 Matrix: Solid

Associated Lab Samples: 256549001, 256549003, 256549004

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Gasoline Range Organics	mg/kg	ND	5.0	02/12/11 03:50	
4-Bromofluorobenzene (S)	%	87	50-150	02/12/11 03:50	
a,a,a-Trifluorotoluene (S)	%	101	50-150	02/12/11 03:50	

LABORATORY CONTROL SAMPLE: 58274

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Gasoline Range Organics	mg/kg	12.5	12.3	99	54-156	
4-Bromofluorobenzene (S)	%			92	50-150	
a,a,a-Trifluorotoluene (S)	%			95	50-150	

SAMPLE DUPLICATE: 58443

Parameter	Units	256575003 Result	Dup Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND	1.2J		
4-Bromofluorobenzene (S)	%	97	93	4	
a,a,a-Trifluorotoluene (S)	%	109	105	3	

SAMPLE DUPLICATE: 58444

		256520004	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	19.5	15.1	26	
4-Bromofluorobenzene (S)	%	100	99	1	
a,a,a-Trifluorotoluene (S)	%	112	110	1	

Date: 02/24/2011 11:24 AM

Project: East Bay Redevelopment 138130

Pace Project No.: 256549

QC Batch: GCV/2172 Analysis Method: NWTPH-Gx

QC Batch Method: NWTPH-Gx Analysis Description: NWTPH-Gx Solid GCV

Associated Lab Samples: 256549002

METHOD BLANK: 58791 Matrix: Solid

Associated Lab Samples: 256549002

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Gasoline Range Organics	mg/kg	ND	5.0	02/14/11 15:09	
4-Bromofluorobenzene (S)	%	90	50-150	02/14/11 15:09	
a.a.a-Trifluorotoluene (S)	%	104	50-150	02/14/11 15:09	

LABORATORY CONTROL SAMPLE: 58792

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Gasoline Range Organics	mg/kg	12.5	13.1	105	54-156	
4-Bromofluorobenzene (S)	%			74	50-150	
a,a,a-Trifluorotoluene (S)	%			82	50-150	

SAMPLE DUPLICATE: 58793

Parameter	Units	256549002 Result	Dup Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg		.81J		
4-Bromofluorobenzene (S)	%	81	80	2	
a,a,a-Trifluorotoluene (S)	%	101	102	.9	

Date: 02/24/2011 11:24 AM

REPORT OF LABORATORY ANALYSIS

Page 18 of 28

Project: East Bay Redevelopment 138130

Pace Project No.: 256549

QC Batch: GCV/2174 Analysis Method: NWTPH-Gx

QC Batch Method: NWTPH-Gx Analysis Description: NWTPH-Gx Solid GCV

Associated Lab Samples: 256549005

METHOD BLANK: 58919 Matrix: Solid

Associated Lab Samples: 256549005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Gasoline Range Organics	mg/kg	ND ND	5.0	02/18/11 08:56	
4-Bromofluorobenzene (S)	%	75	50-150	02/18/11 08:56	
a,a,a-Trifluorotoluene (S)	%	94	50-150	02/18/11 08:56	

LABORATORY CONTROL SAMPLE: 58920

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Gasoline Range Organics	mg/kg	12.5	12.1	97	54-156	
4-Bromofluorobenzene (S)	%			76	50-150	
a,a,a-Trifluorotoluene (S)	%			91	50-150	

SAMPLE DUPLICATE: 59193

Parameter	Units	256575005 Result	Dup Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND	.76J		
4-Bromofluorobenzene (S)	%	76	77	.9	
a,a,a-Trifluorotoluene (S)	%	96	98	2	

SAMPLE DUPLICATE: 59258

		256597013	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND	6.5J		
4-Bromofluorobenzene (S)	%	81	82	2	
a,a,a-Trifluorotoluene (S)	%	99	101	2	

Date: 02/24/2011 11:24 AM

Project: East Bay Redevelopment 138130

Pace Project No.: 256549

QC Batch: GCV/2177 Analysis Method: NWTPH-Gx

QC Batch Method: NWTPH-Gx Analysis Description: NWTPH-Gx Solid GCV

Associated Lab Samples: 256549006, 256549007, 256549008, 256549009, 256549010

METHOD BLANK: 59173 Matrix: Solid

Associated Lab Samples: 256549006, 256549007, 256549008, 256549009, 256549010

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Gasoline Range Organics	mg/kg	ND	5.0	02/18/11 19:16	
4-Bromofluorobenzene (S)	%	84	50-150	02/18/11 19:16	
a,a,a-Trifluorotoluene (S)	%	105	50-150	02/18/11 19:16	

LABORATORY CONTROL SAMPLE: 59174

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Gasoline Range Organics	mg/kg	12.5	12.9	103	54-156	
4-Bromofluorobenzene (S)	%			85	50-150	
a,a,a-Trifluorotoluene (S)	%			101	50-150	

SAMPLE DUPLICATE: 59555

Parameter	Units	256549007 Result	Dup Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND	.85J		
4-Bromofluorobenzene (S)	%	80	83	4	
a,a,a-Trifluorotoluene (S)	%	98	102	4	

SAMPLE DUPLICATE: 59556

		256550001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND			
4-Bromofluorobenzene (S)	%	83	80	3	
a,a,a-Trifluorotoluene (S)	%	101	99	2	

Date: 02/24/2011 11:24 AM REPORT OF LABORATORY ANALYSIS

Page 20 of 28

Project: East Bay Redevelopment 138130

Pace Project No.: 256549

QC Batch: OEXT/3297 Analysis Method: EPA 8270 by SIM

QC Batch Method: EPA 3546 Analysis Description: 8270/3546 MSSV PAH by SIM

Associated Lab Samples: 256549001, 256549002, 256549003, 256549004, 256549005, 256549006, 256549007, 256549008, 256549009

METHOD BLANK: 58156 Matrix: Solid

Associated Lab Samples: 256549001, 256549002, 256549003, 256549004, 256549005, 256549006, 256549007, 256549008, 256549009

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/kg	ND	6.7	02/14/11 14:16	
2-Methylnaphthalene	ug/kg	ND	6.7	02/14/11 14:16	
Acenaphthene	ug/kg	ND	6.7	02/14/11 14:16	
Acenaphthylene	ug/kg	ND	6.7	02/14/11 14:16	
Anthracene	ug/kg	ND	6.7	02/14/11 14:16	
Benzo(a)anthracene	ug/kg	ND	6.7	02/14/11 14:16	
Benzo(a)pyrene	ug/kg	ND	6.7	02/14/11 14:16	
Benzo(b)fluoranthene	ug/kg	ND	6.7	02/14/11 14:16	
Benzo(g,h,i)perylene	ug/kg	ND	6.7	02/14/11 14:16	
Benzo(k)fluoranthene	ug/kg	ND	6.7	02/14/11 14:16	
Chrysene	ug/kg	ND	6.7	02/14/11 14:16	
Dibenz(a,h)anthracene	ug/kg	ND	6.7	02/14/11 14:16	
Fluoranthene	ug/kg	ND	6.7	02/14/11 14:16	
Fluorene	ug/kg	ND	6.7	02/14/11 14:16	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	6.7	02/14/11 14:16	
Naphthalene	ug/kg	ND	6.7	02/14/11 14:16	
Phenanthrene	ug/kg	ND	6.7	02/14/11 14:16	
Pyrene	ug/kg	ND	6.7	02/14/11 14:16	
2-Fluorobiphenyl (S)	%	54	31-131	02/14/11 14:16	
Terphenyl-d14 (S)	%	69	30-133	02/14/11 14:16	

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1-Methylnaphthalene	ug/kg		98.0	73	37-121	
2-Methylnaphthalene	ug/kg	133	98.3	74	33-132	
Acenaphthene	ug/kg	133	78.4	59	32-127	
Acenaphthylene	ug/kg	133	78.0	58	31-134	
Anthracene	ug/kg	133	80.5	60	42-135	
Benzo(a)anthracene	ug/kg	133	91.4	69	43-139	
Benzo(a)pyrene	ug/kg	133	91.4	69	44-144	
Benzo(b)fluoranthene	ug/kg	133	86.0	65	42-144	
Benzo(g,h,i)perylene	ug/kg	133	73.8	55	46-136	
Benzo(k)fluoranthene	ug/kg	133	85.1	64	45-147	
Chrysene	ug/kg	133	79.9	60	42-144	
Dibenz(a,h)anthracene	ug/kg	133	76.8	58	48-142	
Fluoranthene	ug/kg	133	84.2	63	44-143	
Fluorene	ug/kg	133	83.6	63	32-146	
Indeno(1,2,3-cd)pyrene	ug/kg	133	76.5	57	47-140	
Naphthalene	ug/kg	133	71.2	53	35-118	
Phenanthrene	ug/kg	133	81.9	61	42-131	

Date: 02/24/2011 11:24 AM

REPORT OF LABORATORY ANALYSIS

Page 21 of 28

Project: East Bay Redevelopment 138130

Pace Project No.: 256549

LABORATORY CONTROL SAMPLE: 58157

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Pyrene	ug/kg	133	88.9	67	47-136	
2-Fluorobiphenyl (S)	%			55	31-131	
Terphenyl-d14 (S)	%			68	30-133	

MATRIX SPIKE & MATRIX SP	IKE DUPLICAT	E: 58158			58159					
			MS	MSD						
	2	256549001	Spike	Spike	MS	MSD	MS	MSD	% Rec	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD Qua
1-Methylnaphthalene	ug/kg	ND	143	144	84.5	95.3	54	61	31-123	12
2-Methylnaphthalene	ug/kg	9.7	143	144	90.4	102	56	64	15-146	12
Acenaphthene	ug/kg	ND	143	144	86.2	94.8	57	62	19-141	9
Acenaphthylene	ug/kg	19.7	143	144	89.9	108	49	61	30-142	18
Anthracene	ug/kg	27.0	143	144	108	142	56	80	38-137	28 R1
Benzo(a)anthracene	ug/kg	101	143	144	166	229	45	88	37-143	32 R1
Benzo(a)pyrene	ug/kg	112	143	144	154	270	29	109	33-147	55 M1,R1
Benzo(b)fluoranthene	ug/kg	104	143	144	129	235	17	91	25-156	58 M1,R1
Benzo(g,h,i)perylene	ug/kg	67.6	143	144	140	225	51	109	26-142	46 R1
Benzo(k)fluoranthene	ug/kg	63.3	143	144	107	151	30	61	35-142	35 M1,R1
Chrysene	ug/kg	123	143	144	150	221	19	68	23-150	38 M1,R1
Dibenz(a,h)anthracene	ug/kg	19.2	143	144	98.8	119	56	69	41-140	18
Fluoranthene	ug/kg	162	143	144	200	307	26	100	25-155	42 R1
Fluorene	ug/kg	12.1	143	144	101	117	62	73	33-152	15
ndeno(1,2,3-cd)pyrene	ug/kg	54.3	143	144	125	192	49	95	36-139	42 R1
Naphthalene	ug/kg	16.5	143	144	90.9	98.3	52	57	25-121	8
Phenanthrene	ug/kg	103	143	144	226	341	86	164	29-141	41 M1,R1
Pyrene	ug/kg	296	143	144	334	457	26	111	36-145	31 M1,R1
2-Fluorobiphenyl (S)	%						49	51	31-131	
erphenyl-d14 (S)	%						62	57	30-133	

Date: 02/24/2011 11:24 AM

REPORT OF LABORATORY ANALYSIS

Page 22 of 28

Project: East Bay Redevelopment 138130

Pace Project No.: 256549

QC Batch: MSV/3844 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5035A Volatile Organics

Associated Lab Samples: 256549001, 256549002, 256549003, 256549004, 256549005, 256549006, 256549007, 256549008, 256549010

METHOD BLANK: 58168 Matrix: Solid

Associated Lab Samples: 256549001, 256549002, 256549003, 256549004, 256549005, 256549006, 256549007, 256549008, 256549010

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND ND	3.0	02/11/11 12:22	
Ethylbenzene	ug/kg	ND	3.0	02/11/11 12:22	
Toluene	ug/kg	ND	3.0	02/11/11 12:22	
Xylene (Total)	ug/kg	ND	9.0	02/11/11 12:22	
1,2-Dichloroethane-d4 (S)	%	98	80-143	02/11/11 12:22	
4-Bromofluorobenzene (S)	%	100	72-122	02/11/11 12:22	
Dibromofluoromethane (S)	%	93	80-136	02/11/11 12:22	
Toluene-d8 (S)	%	102	80-120	02/11/11 12:22	

LABORATORY CONTROL SAMPLE: 58169

Date: 02/24/2011 11:24 AM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/kg	50	45.8	92	75-133	
Ethylbenzene	ug/kg	50	45.3	91	68-131	
Toluene	ug/kg	50	47.1	94	73-124	
Xylene (Total)	ug/kg	150	140	93	68-130	
1,2-Dichloroethane-d4 (S)	%			98	80-143	
4-Bromofluorobenzene (S)	%			111	72-122	
Dibromofluoromethane (S)	%			95	80-136	
Toluene-d8 (S)	%			101	80-120	

MATRIX SPIKE & MATRIX SP	IKE DUPLICAT	E: 58249			58250						
			MS	MSD							
	2	256598001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Benzene	ug/kg	ND	48.5	45.4	43.6	41.5	90	92	68-124	5	
Ethylbenzene	ug/kg	ND	48.5	45.4	42.7	40.5	88	89	63-131	5	
Toluene	ug/kg	ND	48.5	45.4	44.7	42.3	92	93	61-126	5	
Xylene (Total)	ug/kg	ND	146	136	131	124	89	90	68-129	5	
1,2-Dichloroethane-d4 (S)	%						99	99	80-143		
4-Bromofluorobenzene (S)	%						109	115	72-122		
Dibromofluoromethane (S)	%						91	99	80-136		
Toluene-d8 (S)	%						101	103	80-120		

REPORT OF LABORATORY ANALYSIS

Page 23 of 28

Project: East Bay Redevelopment 138130

Pace Project No.: 256549

QC Batch: MSV/3857 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5035A Volatile Organics

Associated Lab Samples: 256549009

METHOD BLANK: 58439 Matrix: Solid

Associated Lab Samples: 256549009

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND ND	3.0	02/14/11 12:49	
Ethylbenzene	ug/kg	ND	3.0	02/14/11 12:49	
Toluene	ug/kg	ND	3.0	02/14/11 12:49	
Xylene (Total)	ug/kg	ND	9.0	02/14/11 12:49	
1,2-Dichloroethane-d4 (S)	%	114	80-143	02/14/11 12:49	
4-Bromofluorobenzene (S)	%	98	72-122	02/14/11 12:49	
Dibromofluoromethane (S)	%	100	80-136	02/14/11 12:49	
Toluene-d8 (S)	%	102	80-120	02/14/11 12:49	

LABORATORY CONTROL SAMPLE: 58440

Date: 02/24/2011 11:24 AM

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/kg	50	54.4	109	75-133	
Ethylbenzene	ug/kg	50	51.1	102	68-131	
Toluene	ug/kg	50	56.5	113	73-124	
Xylene (Total)	ug/kg	150	160	107	68-130	
1,2-Dichloroethane-d4 (S)	%			100	80-143	
4-Bromofluorobenzene (S)	%			106	72-122	
Dibromofluoromethane (S)	%			96	80-136	
Toluene-d8 (S)	%			103	80-120	

MATRIX SPIKE & MATRIX SP	IKE DUPLICAT	TE: 58441			58442						
Parameter	Units	256550004 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Qual
Benzene	ug/kg	ND	50.2	46.1	49.4	44.7	98	97	68-124	10	
Ethylbenzene	ug/kg	ND	50.2	46.1	47.0	44.6	94	97	63-131	5	
Toluene	ug/kg	ND	50.2	46.1	49.4	46.6	98	101	61-126	6	
Xylene (Total)	ug/kg	ND	151	138	142	135	94	97	68-129	5	
1,2-Dichloroethane-d4 (S)	%						84	81	80-143		
4-Bromofluorobenzene (S)	%						108	111	72-122		
Dibromofluoromethane (S)	%						91	83	80-136		
Toluene-d8 (S)	%						105	107	80-120		

REPORT OF LABORATORY ANALYSIS

Page 24 of 28

Project: East Bay Redevelopment 138130

Pace Project No.: 256549

QC Batch: PMST/1518 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

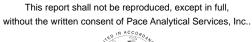
Associated Lab Samples: 256549001, 256549002, 256549003, 256549004, 256549005, 256549006, 256549007, 256549008, 256549009

SAMPLE DUPLICATE: 58351

256549001 Dup

Parameter Units Result Result RPD Qualifiers

Percent Moisture % 9.9 11.2 13


SAMPLE DUPLICATE: 58352

ParameterUnits256549009 ResultDup ResultRPDQualifiersPercent Moisture%10.010.1.6

Date: 02/24/2011 11:24 AM

REPORT OF LABORATORY ANALYSIS

Page 25 of 28

QUALIFIERS

Project: East Bay Redevelopment 138130

Pace Project No.: 256549

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel Clean-Up

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-S Pace Analytical Services - Seattle

ANALYTE QUALIFIERS

Date: 02/24/2011 11:24 AM

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

R1 RPD value was outside control limits.

Page 26 of 28

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: East Bay Redevelopment 138130

Pace Project No.: 256549

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
256549001	SPL-27-1	EPA 3546	OEXT/3298	NWTPH-Dx	GCSV/2256
256549002	SPL-27-2	EPA 3546	OEXT/3298	NWTPH-Dx	GCSV/2256
256549003	SPL-27-3	EPA 3546	OEXT/3298	NWTPH-Dx	GCSV/2256
256549004	SPL-27-4	EPA 3546	OEXT/3298	NWTPH-Dx	GCSV/2256
256549005	SPL-27-5	EPA 3546	OEXT/3298	NWTPH-Dx	GCSV/2256
256549006	SPL-28-1	EPA 3546	OEXT/3298	NWTPH-Dx	GCSV/2256
256549007	SPL-28-2	EPA 3546	OEXT/3298	NWTPH-Dx	GCSV/2256
256549008	SPL-28-3	EPA 3546	OEXT/3298	NWTPH-Dx	GCSV/2256
256549009	SPL-28-4	EPA 3546	OEXT/3298	NWTPH-Dx	GCSV/2256
256549001	SPL-27-1	NWTPH-Gx	GCV/2161	NWTPH-Gx	GCV/2163
256549002	SPL-27-2	NWTPH-Gx	GCV/2172	NWTPH-Gx	GCV/2183
256549003	SPL-27-3	NWTPH-Gx	GCV/2161	NWTPH-Gx	GCV/2163
256549004	SPL-27-4	NWTPH-Gx	GCV/2161	NWTPH-Gx	GCV/2163
256549005	SPL-27-5	NWTPH-Gx	GCV/2174	NWTPH-Gx	GCV/2182
256549006	SPL-28-1	NWTPH-Gx	GCV/2177	NWTPH-Gx	GCV/2186
256549007	SPL-28-2	NWTPH-Gx	GCV/2177	NWTPH-Gx	GCV/2186
256549008	SPL-28-3	NWTPH-Gx	GCV/2177	NWTPH-Gx	GCV/2186
256549009	SPL-28-4	NWTPH-Gx	GCV/2177	NWTPH-Gx	GCV/2186
256549010	TB020911-B	NWTPH-Gx	GCV/2177	NWTPH-Gx	GCV/2186
256549001	SPL-27-1	EPA 3546	OEXT/3297	EPA 8270 by SIM	MSSV/1524
256549002	SPL-27-2	EPA 3546	OEXT/3297	EPA 8270 by SIM	MSSV/1524
256549003	SPL-27-3	EPA 3546	OEXT/3297	EPA 8270 by SIM	MSSV/1524
256549004	SPL-27-4	EPA 3546	OEXT/3297	EPA 8270 by SIM	MSSV/1524
256549005	SPL-27-5	EPA 3546	OEXT/3297	EPA 8270 by SIM	MSSV/1524
256549006	SPL-28-1	EPA 3546	OEXT/3297	EPA 8270 by SIM	MSSV/1524
256549007	SPL-28-2	EPA 3546	OEXT/3297	EPA 8270 by SIM	MSSV/1524
256549008	SPL-28-3	EPA 3546	OEXT/3297	EPA 8270 by SIM	MSSV/1524
256549009	SPL-28-4	EPA 3546	OEXT/3297	EPA 8270 by SIM	MSSV/1524
256549001	SPL-27-1	EPA 8260	MSV/3844		
256549002	SPL-27-2	EPA 8260	MSV/3844		
256549003	SPL-27-3	EPA 8260	MSV/3844		
256549004	SPL-27-4	EPA 8260	MSV/3844		
256549005	SPL-27-5	EPA 8260	MSV/3844		
256549006	SPL-28-1	EPA 8260	MSV/3844		
256549007	SPL-28-2	EPA 8260	MSV/3844		
256549008	SPL-28-3	EPA 8260	MSV/3844		
256549009	SPL-28-4	EPA 8260	MSV/3857		
256549010	TB020911-B	EPA 8260	MSV/3844		
256549001	SPL-27-1	ASTM D2974-87	PMST/1518		
256549002	SPL-27-2	ASTM D2974-87	PMST/1518		
256549003	SPL-27-3	ASTM D2974-87	PMST/1518		
256549004	SPL-27-4	ASTM D2974-87	PMST/1518		
256549005	SPL-27-5	ASTM D2974-87	PMST/1518		
256549006	SPL-28-1	ASTM D2974-87	PMST/1518		

Date: 02/24/2011 11:24 AM

REPORT OF LABORATORY ANALYSIS

Page 27 of 28

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: East Bay Redevelopment 138130

Pace Project No.: 256549

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
256549007	SPL-28-2	ASTM D2974-87	PMST/1518		
256549008	SPL-28-3	ASTM D2974-87	PMST/1518		
256549009	SPL-28-4	ASTM D2974-87	PMST/1518		

Date: 02/24/2011 11:24 AM **REPORT OF LABORATORY ANALYSIS** Page 28 of 28

Pace Analytical www.pacelabs.com

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

256549

of Page: Section A Section B Section C Required Client Information: Required Project Information: Invoice Information 1446266 BROWN AND CALDWELL not TURK JON TURK Company Name: 724 COLUMBUS NW # 420 MOZUHOL HZOL REGULATORY AGENCY Address: GROUND WATER DRINKING WATER DLYMPIA, WA 98 SOI V OTHER ECY Email To: turke bruncald, com Purchase Order No.: Page Quote **RCRA** Reference: Project Name: BAY PENELOPMENT Pace Project Site Location Manager. WA Requested Due Date/TAT: Pace Profile #: STATE: 138 130 Requested Analysis Filtered (Y/N) N/A Section D Matrix Codes valid codes to left) C=COMP) COLLECTED Preservatives Required Client Information COLLECTION WT CPAH, NEPTROLEN COMPOSITE COMPOSITE PB, AB, N WW Waste Water TPM-HO, TPM-D Chlorine (Y/N) (G=GRAB END/GRAB START Product Soil/Solid SL Analysis Test CONTAINERS SAMPLE ID Wipe MATRIX CODE (A-Z, 0-9/,-) SAMPLE TYPE Sample IDs MUST BE UNIQUE 乙丈のる Other Na₂S₂O₃ Methanol Residual ITEM # # OF Pace Project No./ Lab I.D. DATE TIME DATE TIME SPL-27-1 G 02-09-11 12:47 18 SPL-27-2 13:05 SPL-27-3 13:20 58L-27-4 13:35 SPL-27-S 14:00 SPL-28-1 14:12 SPL-28-2 14:23 14:34 SPL-28-3 MI SPL-28-4 14:45 TB 020911-B 11 12 ADDITIONAL COMMENTS RELINQUISHED BY / AFFILIATION ACCEPTED BY / AFFILIATION SAMPLE CONDITIONS 0745 2-10-11 blank included Ada Harritton /BC SAMPLER NAME AND SIGNATURE ORIGINAL Received or Ice (Y/N) Custody raled Cool (Y/N) Temp in ° PRINT Name of SAMPLER: ADA HAMILTON **DATE Signed** (MM/DD/YY); 07/09//(SIGNATURE of SAMPLER:

Sample Container Count

CLIENT:	Brown	9	Caldwell	1

Face Analytical*

COC PAGE 194626

2 5 6 5 4 9

ample Line Item	VG9H	AG1H	AG1U	BG1H	BP1U	BP2U	BP3U	BP2N	BP2S	WGFU	WGKU	DE9H	VERW	Comments
1										2		1	2	
2													1	
3														
4														
5														
6														
7														
8														
9										de				
10	#											P	9	
11														
12														Trip Blank?

AG1H	1 liter HCL amber glass	. BP2S	500mL H2SO4 plastic	JGFU	4oz unpreserved amber wide
AG1U	1liter unpreserved amber glass	BP2U	500mL unpreserved plastic	R	terra core kit
AG2S	500mL H2SO4 amber glass	BP2Z	500mL NaOH, Zn Ac	U	Summa Can
AG2U	500mL unpreserved amber glass	BP3C	250mL NaOH plastic	VG9H	40mL HCL clear vial
AG3S	250mL H2SO4 amber glass	BP3N	250mL HNO3 plastic	VG9T	40mL Na Thio. clear vial
BG1H	1 liter HCL clear glass	BP3S	250mL H2SO4 plastic	VG9U	40mL unpreserved clear vial
BG1U	1 liter unpreserved glass	BP3U	250mL unpreserved plastic	VG9W	40mL glass vial preweighted (EPA 5035
BP1N	1 liter HNO3 plastic	DG9B	40mL Na Bisulfate amber vial	VSG	Headspace septa vial & HCL
BP1S	1 liter H2SO4 plastic	DG9H	40mL HCL amber voa vial	WGFU	4oz clear soil jar
BP1U	1 liter unpreserved plastic	DG9M	40mL MeOH clear vial	WGFX	4oz wide jar w/hexane wipe
BP1Z	1 liter NaOH, Zn, Ac	DG9T	40mL Na Thio amber vial	ZPLC	Ziploc Bag
BP2N	500mL HNO3 plastic	DG9U	40mL unpreserved amber vial		
BP2O	500mL NaOH plastic	1	Wipe/Swab		

Pace Analytical

Sample Condition Upon Receipt

5 6 5 4 g.

Client Name: Brown & Caldwell Project # Courier: Fed Ex UPS USPS Client Commercial Pace Other Tracking #: No. Custody Seal on Cooler/Box Present: Yes Yes Seals intact: Packing Material: Bubble Wrap Bubble Bags None Other Temp. Blank Yes Thermometer Used 132013 or 101731962 of 226099 Type of Ice: Wet Blue None Samples on ice, cooling process has begun Date and Initials of person examining Biological Tissue is Frozen: Yes No Cooler Temperature contents: DOLO CW Temp should be above freezing ≤ 6 °C Comments: TYes ONO ON/A 1. Chain of Custody Present: Yes DNo □N/A 2. Chain of Custody Filled Out: LYes DNo □N/A 3. Chain of Custody Relinquished: Dyes DNo □N/A 4. Sampler Name & Signature on COC: Tyes DNo □N/A 5. Samples Arrived within Hold Time: Yes No □N/A 6. Short Hold Time Analysis (<72hr): ☐Yes □No □N/A Rush Turn Around Time Requested: _ DNo □N/A Sufficient Volume: PYes DNo Correct Containers Used: □N/A 9. ■Yes □No -Pace Containers Used: □N/A Containers Intact: □Yes □No □N/A Filtered volume received for Dissolved tests ☐Yes ☐No ₩N/A Sample Labels match COC: TYes DNo DN/A 12. -Includes date/time/ID/Analysis Matrix: All containers needing preservation have been checked. □Yes □No IN/A 13. All containers needing preservation are found to be in □Yes □No □N/A compliance with EPA recommendation. Initial when Lot # of added Exceptions: VOA, coliform, TOC, O&G completed preservative N/A ☐Yes ☐No Samples checked for dechlorination: 14. ☐Yes ☐No UN/A Headspace in VOA Vials (>6mm): 15. DN/A Trip Blanks Present: ☐Yes ☐No 16. Trip Blank Custody Seals Present ☐Yes ☐No DN/A Pace Trip Blank Lot # (if purchased): Client Notification/ Resolution: Field Data Required? Y / N Person Contacted: Date/Time: Comments/ Resolution: Project Manager Review: Date:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

February 18, 2011

Joshua Johnson Brown & Caldwell 724 Columbia St. NW#420 Olympia, WA 98501

RE: Project: East Bay Redevelopment 138130

Pace Project No.: 256490

Dear Joshua Johnson:

Enclosed are the analytical results for sample(s) received by the laboratory on February 05, 2011. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jennifer Gross

jennifer.gross@pacelabs.com Project Manager

ENNI (-ROSS

Enclosures

cc: Jon Turk, Brown & Caldwell

Seattle, WA 98108 (206)767-5060

CERTIFICATIONS

Project: East Bay Redevelopment 138130

Pace Project No.: 256490

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

A2LA Certification #: 2926.01 Alaska Certification #: UST-078 Alaska Certification #MN00064 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA EPA Region 8 Certification #: Pace Florida/NELAP Certification #: E87605 Georgia Certification #: 959 Idaho Certification #: MN00064 Illinois Certification #: 200011 Iowa Certification #: 368

Louisiana Certification #: 03086 Louisiana Certification #: LA080009 Maine Certification #: 2007029 Maryland Certification #: 322 Michigan DEQ Certification #: 9909 Minnesota Certification #: 027-053-137 Mississippi Certification #: Pace

Kansas Certification #: E-10167

Montana Certification #: MT CERT0092 Nevada Certification #: MN_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New Mexico Certification #: Pace New York Certification #: 11647 North Carolina Certification #: 530 North Dakota Certification #: R-036 North Dakota Certification #: R-036A Ohio VAP Certification #: CL101 Oklahoma Certification #: D9921 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification Tennessee Certification #: 02818 Texas Certification #: T104704192

Washington Certification #: C754

Wisconsin Certification #: 999407970 A2LA cert#

SAMPLE ANALYTE COUNT

Project: East Bay Redevelopment 138130

Pace Project No.: 256490

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
256490001	SPL-29-1	EPA 6020		5	PASI-M
		% Moisture	JDL	1	PASI-M
256490002	SPL-29-2	EPA 6020	TL1	5	PASI-M
		% Moisture	JDL	1	PASI-M
256490003	SPL-29-3	EPA 6020	TL1	5	PASI-M
		% Moisture	JDL	1	PASI-M
256490004	SPL-29-4	EPA 6020	TL1	5	PASI-M
		% Moisture	JDL	1	PASI-M
256490005	SPL-29-5	EPA 6020	TL1	5	PASI-M
		% Moisture	JDL	1	PASI-M
256490006	SPL-29-6	EPA 6020	TL1	5	PASI-M
		% Moisture	JDL	1	PASI-M
256490007	SPL-29-7	EPA 6020	TL1	5	PASI-M
		% Moisture	JDL	1	PASI-M
256490008	SPL-29-8	EPA 6020	TL1	5	PASI-M
		% Moisture	JDL	1	PASI-M

Project: East Bay Redevelopment 138130

Pace Project No.: 256490

Pace Project No.: 256490	Lab ID: 050400004	Collected: 00"	14/44 00:05	Descional of	2/0E/44 44:20	Motelus Callel	
Sample: SPL-29-1 Results reported on a "dry-wei	Lab ID: 256490001	Collected: 02/0	14/11 09:35	Received: 02	2/05/11 11:38	Matrix: Solid	
•		5				0.0.0	
Parameters —	Results Units	Report Lim	t DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical Method: EPA	6020					
Arsenic	4.0 mg/kg	0.3	38 20	02/08/11 17:26	02/17/11 20:39	9 7440-38-2	
Cadmium	0.10 mg/kg	0.00	31 20	02/08/11 17:26	02/17/11 20:39	9 7440-43-9	
Copper	23.3 mg/kg	0.3	38 20	02/08/11 17:26	02/17/11 20:39	9 7440-50-8	
Lead	8.7 mg/kg	0.3	38 20	02/08/11 17:26	02/17/11 20:39	9 7439-92-1	
Nickel	36.1 mg/kg	0.3	38 20	02/08/11 17:26	02/17/11 20:39	9 7440-02-0	M6
Dry Weight	Analytical Method: % N	oisture					
Percent Moisture	8.8 %	0.	10 1		02/08/11 00:00	0	
Sample: SPL-29-2	Lab ID: 256490002	Collected: 02/0	04/11 09:50	Received: 02	2/05/11 11:38	Matrix: Solid	
Results reported on a "dry-wei	ight" basis						
Parameters	Results Units	Report Lim	t DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical Method: EPA	6020					
Arsenic	4.8 mg/kg	0.4	16 20	02/08/11 17:26	02/17/11 20:30	7440-38-2	
Cadmium	0.14 mg/kg	0.0	74 20	02/08/11 17:26	02/17/11 20:30	7440-43-9	
Copper	22.8 mg/kg	0.4	16 20	02/08/11 17:26	02/17/11 20:30	7440-50-8	
Lead	9.0 mg/kg	0.4	16 20	02/08/11 17:26	02/17/11 20:30	7439-92-1	
Nickel	31.2 mg/kg	0.4	16 20	02/08/11 17:26	02/17/11 20:30	7440-02-0	
Dry Weight	Analytical Method: % N	oisture					
Percent Moisture	15.1 %	0.	10 1		02/08/11 00:00	0	
Sample: SPL-29-3	Lab ID: 256490003	Collected: 02/0	04/11 10:10	Received: 02	2/05/11 11:38	Matrix: Solid	
Results reported on a "dry-wei	ight" basis						
Parameters	Results Units	Report Lim	t DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical Method: EPA	6020					
Arsenic	4.9 mg/kg	0.4	18 20	02/08/11 17:26	02/17/11 20:3	5 7440-38-2	
Cadmium	0.14 mg/kg	0.0	77 20	02/08/11 17:26	02/17/11 20:3	5 7440-43-9	
Copper	22.6 mg/kg	0.4	18 20		02/17/11 20:3		
Lead	7.1 mg/kg	0.4			02/17/11 20:3		
Nickel	32.0 mg/kg	0.4	18 20	02/08/11 17:26	02/17/11 20:3	5 7440-02-0	
Dry Weight	Analytical Method: % N	oisture					
Percent Moisture	14.6 %	0.	10 1		02/08/11 00:00	0	

Date: 02/18/2011 04:08 PM

REPORT OF LABORATORY ANALYSIS

Project: East Bay Redevelopment 138130

Pace Project No.: 256490

Sample: SPL-29-4 Lab ID: 256490004 Collected: 02/04/11 10:35 Received: 02/05/11 11:38 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **6020 MET ICPMS** Analytical Method: EPA 6020 Arsenic 3.8 mg/kg 0.53 20 02/08/11 17:26 02/17/11 21:06 7440-38-2 Cadmium 0.085 mg/kg 0.084 20 02/08/11 17:26 02/17/11 21:06 7440-43-9 Copper 12.8 mg/kg 0.53 20 02/08/11 17:26 02/17/11 21:06 7440-50-8 Lead 4.3 mg/kg 0.53 20 02/08/11 17:26 02/17/11 21:06 7439-92-1 0.53 20 02/08/11 17:26 02/17/11 21:06 7440-02-0 Nickel 32.4 mg/kg **Dry Weight** Analytical Method: % Moisture Percent Moisture 12.1 % 0.10 1 02/08/11 00:00 Sample: SPL-29-5 Lab ID: 256490005 Collected: 02/04/11 10:45 Received: 02/05/11 11:38 Results reported on a "dry-weight" basis Parameters Units Report Limit DF CAS No. Qual Results Prepared Analyzed 6020 MET ICPMS Analytical Method: EPA 6020 Arsenic 3.7 mg/kg 0.48 20 02/08/11 17:26 02/17/11 21:11 Cadmium 0.076 20 02/08/11 17:26 02/17/11 21:11 0.088 mg/kg 7440-43-9 Copper 13.6 mg/kg 0.48 20 02/08/11 17:26 02/17/11 21:11 7440-50-8 Lead 3.5 mg/kg 0.48 20 02/08/11 17:26 02/17/11 21:11 7439-92-1 Nickel 26.3 mg/kg 0.48 20 02/08/11 17:26 02/17/11 21:11 7440-02-0 **Dry Weight** Analytical Method: % Moisture Percent Moisture 10.6 % 0.10 02/08/11 00:00 1 Sample: SPL-29-6 Lab ID: 256490006 Collected: 02/04/11 10:55 Received: 02/05/11 11:38 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **6020 MET ICPMS** Analytical Method: EPA 6020 Arsenic 14.2 mg/kg 0.55 20 02/08/11 17:26 02/17/11 21:15 7440-38-2 Cadmium 0.098 mg/kg 0.088 20 02/08/11 17:26 02/17/11 21:15 7440-43-9 Copper **58.7** mg/kg 0.55 20 02/08/11 17:26 02/17/11 21:15 7440-50-8 0.55 20 02/08/11 17:26 02/17/11 21:15 7439-92-1 Lead 9.3 mg/kg **68.7** mg/kg 20 02/08/11 17:26 02/17/11 21:15 7440-02-0 Nickel 0.55 **Dry Weight** Analytical Method: % Moisture 26.5 % 02/08/11 00:00 Percent Moisture 0.10 1

Date: 02/18/2011 04:08 PM

REPORT OF LABORATORY ANALYSIS

Project: East Bay Redevelopment 138130

Pace Project No.: 256490

Sample: SPL-29-7	Lab ID: 256	3490007	Collected:	02/04/1	1 11:05	Received: 02	2/05/11 11:38 N	fatrix: Solid	
Results reported on a "dry-wei	ght" basis								
Parameters	Results	Units	Repo	rt Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical Met	hod: EPA 60	20						
Arsenic	5.0 m	g/kg		0.64	20	02/08/11 17:26	02/17/11 21:20	7440-38-2	
Cadmium	0.17 m	g/kg		0.10	20	02/08/11 17:26	02/17/11 21:20	7440-43-9	
Copper	37.9 m	g/kg		0.64	20	02/08/11 17:26	02/17/11 21:20	7440-50-8	
Lead	5.3 m	g/kg		0.64	20	02/08/11 17:26	02/17/11 21:20	7439-92-1	
Nickel	61.0 m	g/kg		0.64	20	02/08/11 17:26	02/17/11 21:20	7440-02-0	
Dry Weight	Analytical Met	hod: % Mois	sture						
Percent Moisture	30.0 %			0.10	1		02/08/11 00:00		
	33.3 /	,		00	•		02/00/11/00:00		
Sample: SPL-29-8	Lab ID: 256		Collected:			Received: 02		Matrix: Solid	
Sample: SPL-29-8 Results reported on a "dry-weig	Lab ID: 256		Collected:			Received: 02		Matrix: Solid	
	Lab ID: 256					Received: 02		Matrix: Solid CAS No.	Qual
Results reported on a "dry-wei	Lab ID: 256 ght" basis	5490008 Units	Repo	02/04/1	1 11:15		:/05/11 11:38 N		Qual
Results reported on a "dry-weig Parameters	Lab ID: 256 ght" basis Results Analytical Met	6490008 Units thod: EPA 60	Repo	02/04/1	1 11:15	Prepared	:/05/11 11:38 N	CAS No.	Qual
Results reported on a "dry-weig Parameters 6020 MET ICPMS	Lab ID: 256 ght" basis Results	6490008 Units thod: EPA 60	Repo	: 02/04/1 rt Limit	1 11:15 DF	Prepared	./05/11 11:38 N Analyzed	CAS No.	Qual
Results reported on a "dry-weign Parameters 6020 MET ICPMS Arsenic	Lab ID: 256 ght" basis Results Analytical Met 3.7 m 0.095 m	Units thod: EPA 60 g/kg g/kg	Repo	rt Limit 0.52	1 11:15 DF	Prepared 02/08/11 17:26 02/08/11 17:26	Analyzed 02/17/11 21:24	CAS No. 7440-38-2 7440-43-9	Qual
Parameters 6020 MET ICPMS Arsenic Cadmium	Lab ID: 256 ght" basis Results Analytical Met 3.7 m	Units thod: EPA 60 g/kg g/kg g/kg	Repo	02/04/1 rt Limit 0.52 0.084	1 11:15 DF 20 20	Prepared 02/08/11 17:26 02/08/11 17:26 02/08/11 17:26	Analyzed 02/17/11 21:24 02/17/11 21:24	CAS No. 7440-38-2 7440-43-9 7440-50-8	Qual
Parameters 6020 MET ICPMS Arsenic Cadmium Copper	Lab ID: 256 ght" basis Results Analytical Met 3.7 m 0.095 m 18.3 m	Units Chod: EPA 60 g/kg g/kg g/kg g/kg	Repo	0.52 0.084 0.52	1 11:15 DF 20 20 20	Prepared 02/08/11 17:26 02/08/11 17:26 02/08/11 17:26 02/08/11 17:26	Analyzed 02/17/11 21:24 02/17/11 21:24 02/17/11 21:24	CAS No. 7440-38-2 7440-43-9 7440-50-8 7439-92-1	Qual
Parameters 6020 MET ICPMS Arsenic Cadmium Copper Lead	Lab ID: 256 ght" basis Results Analytical Met 3.7 m 0.095 m 18.3 m 4.0 m	Units Chod: EPA 60 g/kg g/kg g/kg g/kg g/kg g/kg	Repo	0.52 0.084 0.52 0.52	1 11:15 DF 20 20 20 20 20	Prepared 02/08/11 17:26 02/08/11 17:26 02/08/11 17:26 02/08/11 17:26	Analyzed 02/17/11 21:24 02/17/11 21:24 02/17/11 21:24 02/17/11 21:24	CAS No. 7440-38-2 7440-43-9 7440-50-8 7439-92-1	Qua

Date: 02/18/2011 04:08 PM

REPORT OF LABORATORY ANALYSIS

Page 6 of 10

QUALITY CONTROL DATA

Project: East Bay Redevelopment 138130

Pace Project No.: 256490

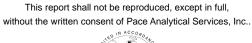
QC Batch: ICPM/24628 Analysis Method: EPA 6020 QC Batch Method: EPA 6020 Analysis Description: 6020 MET

Associated Lab Samples: 256490001, 256490002, 256490003, 256490004, 256490005, 256490006, 256490007, 256490008

METHOD BLANK: 927810 Matrix: Solid

Associated Lab Samples: 256490001, 256490002, 256490003, 256490004, 256490005, 256490006, 256490007, 256490008

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Arsenic	mg/kg	ND	0.48	02/17/11 20:21	
Cadmium	mg/kg	ND	0.076	02/17/11 20:21	
Copper	mg/kg	ND	0.48	02/17/11 20:21	
Lead	mg/kg	ND	0.48	02/17/11 20:21	
Nickel	mg/kg	ND	0.48	02/17/11 20:21	


LABORATORY CONTROL SAMPLE: 927811

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/kg		18.8	99	75-125	
Cadmium	mg/kg	19	19.5	102	75-125	
Copper	mg/kg	19	19.9	104	75-125	
Lead	mg/kg	19	19.7	103	75-125	
Nickel	mg/kg	19	20.4	107	75-125	

MATRIX SPIKE & MATRIX SP	IKE DUPLICAT	E: 92781	927813								
	:	256490001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Arsenic	mg/kg	4.0	18.9	17.4	22.1	22.2	95	104	75-125	.7	
Cadmium	mg/kg	0.10	18.9	17.4	18.9	18.7	99	107	75-125	.9	
Copper	mg/kg	23.3	18.9	17.4	40.3	43.2	90	114	75-125	7	
Lead	mg/kg	8.7	18.9	17.4	27.0	28.6	97	114	75-125	6	
Nickel	mg/kg	36.1	18.9	17.4	48.2	48.1	64	69	75-125	.1 M6	

MATRIX SPIKE SAMPLE:	927814						
		256491001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/kg	4.2	17.8	26.2	125	75-125	
Cadmium	mg/kg	0.086	17.8	20.4	114	75-125	
Copper	mg/kg	21.0	17.8	47.6	150	75-125 ľ	Л 6
Lead	mg/kg	5.2	17.8	28.6	132	75-125 ľ	Л 6
Nickel	mg/kg	22.5	17.8	51.3	162	75-125 l	М 6

Date: 02/18/2011 04:08 PM REPORT OF LABORATORY ANALYSIS Page 7 of 10

QUALITY CONTROL DATA

Project: East Bay Redevelopment 138130

Pace Project No.: 256490

QC Batch: MPRP/24633 Analysis Method: % Moisture

QC Batch Method: % Moisture Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 256490001, 256490002, 256490003, 256490004, 256490005, 256490006, 256490007, 256490008

SAMPLE DUPLICATE: 928009

Parameter Units Result Result RPD Qualifiers

Percent Moisture % 20.6 23.4 13

SAMPLE DUPLICATE: 928010

 Parameter
 Units
 10148885002 Result
 Dup Result
 RPD
 Qualifiers

 Percent Moisture
 %
 5.0
 5.5
 10

Date: 02/18/2011 04:08 PM

QUALIFIERS

Project: East Bay Redevelopment 138130

Pace Project No.: 256490

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel Clean-Up

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis

ANALYTE QUALIFIERS

Date: 02/18/2011 04:08 PM

M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

inelac:

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: East Bay Redevelopment 138130

Pace Project No.: 256490

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
256490001	SPL-29-1	EPA 6020	ICPM/24628	EPA 6020	ICPM/10078
256490002	SPL-29-2	EPA 6020	ICPM/24628	EPA 6020	ICPM/10078
256490003	SPL-29-3	EPA 6020	ICPM/24628	EPA 6020	ICPM/10078
256490004	SPL-29-4	EPA 6020	ICPM/24628	EPA 6020	ICPM/10078
256490005	SPL-29-5	EPA 6020	ICPM/24628	EPA 6020	ICPM/10078
256490006	SPL-29-6	EPA 6020	ICPM/24628	EPA 6020	ICPM/10078
256490007	SPL-29-7	EPA 6020	ICPM/24628	EPA 6020	ICPM/10078
256490008	SPL-29-8	EPA 6020	ICPM/24628	EPA 6020	ICPM/10078
256490001	SPL-29-1	% Moisture	MPRP/24633		
256490002	SPL-29-2	% Moisture	MPRP/24633		
256490003	SPL-29-3	% Moisture	MPRP/24633		
256490004	SPL-29-4	% Moisture	MPRP/24633		
256490005	SPL-29-5	% Moisture	MPRP/24633		
256490006	SPL-29-6	% Moisture	MPRP/24633		
256490007	SPL-29-7	% Moisture	MPRP/24633		
256490008	SPL-29-8	% Moisture	MPRP/24633		

Date: 02/18/2011 04:08 PM

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

збол А		Section									Section C.								Page: 1 d			-								
spired Cleritariometros		Republic	-	oct ind	mation.		·				ica Infon	merion												-	 -		7 7	<u> </u>		_
Bown +C	dwell	Report To		To		Tend	سط			ACIE	reism:	7) in	1/2					•	. •			i ii ya ige		و دول هو در . د منصر مند و در	95	384	
EH (Slumbia S+N	W 5648	Сору То:	_	Je	54	Jok	nso	<u>م</u>		Com	לאל עיישט	me:	Se		A					REG	GULATORY AGENCY									
Olympia WH	9850									Add:	255.									Į.	NPDE	S :	- G	ROUS	מא כא	ATER	DR:N	KING W	ATER	_
turelba	uncaldio	Purcrose	Orde	r No,:						Price	Overe.									TUST TROPA OTHE					•					
05341706 3609	437513	Project N	ane:		STB	an Roderte loguest					Pace Pages' Manager							-1	Site Location					<u> </u>	1:35.0	Sode in . 8		erw ij	-	
Jested Due Daie/TAT: 10 -d	ev.	Project N	umper		1301		ewse.c	7			Prohio St	- :							\dashv		STA		L	اك	4					•
	t									<u> </u>					-		Re	CI LINA	ted A	Inali				N)			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			ك
Section D	Matrix C	odes	T _p	15					T		1				7	जा		1	7~				1	,	4	از در در در در در در در در در در در در در	g green, Arger			-
Required Client Information	MATRIX / Drinking Wate		ecdos to left)	C=COMP)	<u> </u>	COTT	ECTED		1		L	Pres	ervath	ves		3	1	<u> </u>		N					150	de de				•
	Water Wasto Water	WT	School	8	COVE	оѕле	COMP	CSUTE	COLLECTION							-	, d	V	1					П	T					
	Product	WW P	Ę		STA		ENDA		E						1	ı	¥.								Ê					
SAMPLE ID	Soil/Solid Oil	SL OL WP	8	(G=GRAB			<u> </u>	-,	[양	33				j	14	<u>-</u>	4	24	F	1.			i		١٤	4				
(A-Z, 0-9 / ,-)	Wipe Air	WP AR TS	胃	1			1		PAT	CONTAINERS			+1		됩	1 2 3	5	, K	1		4				튵	ŀ				
Sample IDs MUST BE UNIQUE	Tissue Other	TS OT	MATRIX CODE	T PE	j				TEMP,	Ž	ğ		11		ועו.	10	\mathbf{k}	1	3		4 [}	11	ਣ	; [
			Ě	SAMPLE		}			P.E.	8	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		=	င္သါ ရွိ		清	J:		E	<u> </u>	ן ל	Ì			를	.1				
			₹	SAN	DATE	TIME	DATE	TIME	SAMPLE	# OF CONTAIL Unpreserved H ₂ SO ₄ HNO ₃ HNO ₃ NaCH HNO ₃ NaCH NaCH NacH NacH NacH NacH NacH NacH NacH Nac					σ	Ħ,	7				Residual Chiorine (Y/N)					i				
SPL-29-1			SL	6			2/4/1	-	 	7		171	++	_	ار	₹	7		1	+	+	+	+-	1	╫	Pac	e Projec	LON	ab I.D.	-
SPL-29-2			ī	Ī			1	0250	\Box		1	\sqcap	11	-	H	ŀ	╫	₩		H	H	+	╅	\vdash	+	 				닉
SPL-29-3			П	\sqcap		_		1010			\vdash		++	+	H	┢	╫	##	H	₩	H	+			- -	 		·		닉
SPL-29-4		_	П	1				1035	1	1		\sqcap	++	╅	Н	f		H	┝╫	Ш		\dashv	+		+	}				\dashv
SPL-29-5			П					1045	_	1			++	十	Н	t	#	H		#1		\dashv	+	\vdash	十	┼──				\dashv
SP2-29-6								1953	$\overline{}$	7		\sqcap	11	+	H	ı	11		#	Ш	11	+	+		十	\vdash				1
SPL-29-7								1105					11	1	H	F	$\dagger \dagger \dagger$		1	111	1	+	\Box		十	 				┨
5PL-29-8			Y	<				1115	-	V		\sqcap	11		П	 	Ш	π	1		++	+	11		+	 		•—		┨
TB-020411			7				1		П	3			11	+	П	J,	11		₹,	Ш	$\dagger \dagger$	+			+-	 				┨
													\sqcap	\top		1	+	Ħ			† †			+	+	 				1
														10		1	+	†	+	+	++	+	+		1-	— —				1
													\sqcap			1	\top	11	-	+	11	+			1	 				┨
ADDITIONAL COMMEN	rs ; ; ;		REL	Moni	SHED BY /	AFFILIATI	ON .	DATE		∵.T1	ME .			CCEP	TED E	YIA	\FFILL	OITA	1 ·	1.	DATE	4.	TIME		لبسلس	SAM	PLE COND	TIONS		┪
Tomo Blankin	du dest.	-	Jo			1		z#/1	,	17:	50	/		1	1	_		7		+	A		33	\			T	1		4
- Company			JO				-		-	ندے			45		2		124	u_		-12	177	111	<u> </u>	ᆜ			 	-		4
		+	50	to				1	-				-	j -	<u>,</u>	_		-		1_	11						<u> </u>			_]
		 	Fe	<u>مر</u>	<u>X</u>			थ्य	<i>!!</i>		38	J	40	74 <u>:</u>	<u>, </u>	10	a,			2	ls[]	1 /	138	0	7,4	4	4	1 6	1	1
		!						11								_				1/	1			1						1
					•	Samples	R NAME A	ND SIGNA	TURE			1.		· · ·			C. V.:	1,			-::.			1	5	- a	1.5	†	ا	1
		ORIG	٦٩٧	-	PRIST Name of SAMPLER:				-	Jar	ر ک	12	7	2			-						4	Tenpln 'C	threshed as ico (Y/N)	Custody Seriod Coole (Y/N)	1	Samples Infact (YIN)	1	
					Ī	SIGNATURE of SAMPLER:				Y		=	1			1	DATE	Signe	d	2	11	11		\dashv	Ten;	60 j	3 8 5		ک انتان	1
the second base the economy this for	Walton and personalism	. 0							(MM.700/YY): 7-/4/					1)		- 1	- 1		1 50	1	ശ്	ļ								

Sample Container Count

CLIENT:	bown	+	Calawell	
COC PAGE	01 1195894			

Pace Analytical*

256490

VG9H	AG1H	AG1U	BG1H	BP1U	BP2U	BP3U	BP2N	BP2S	WGFU	WGKU				Commer	ts
									2						
									2						
									2						
									2						
									2						
									2						
									2						
									2						
														-	
1													Trip Blank?	·A.	2. yes
	VG9H	VG9H AGTH	VG9H AG1H AG1U	VG9H AG1H AG1U BG1H	VG9H AG1H AG1U BG1H BP1U	VG9H AG1H AG1U BG1H BP1U BP2U	VG9H AG1H AG1U BG1H BP1U BP2U BP3U	VG9H AG1H AG1U BG1H BP1U BP2U BP3U BP2N	VG9H AG1H AG1U BG1H BP1U BP2U BP3U BP2N BP2S	2 2 2 2 2 2	2 2 2 2 2 2	2 2 2 2 2 2	2 2 2 2 2 2 2		

AG1H	1 liter HCL amber glass	. BP2S	500mL H2SO4 plastic	JGFU	4oz unpreserved amber wide
AG1U	1liter unpreserved amber glass	BP2U	500mL unpreserved plastic	R	terra core kit
AG2S	500mL H2SO4 amber glass	BP2Z	500mL NaOH, Zn Ac	U	Summa Can
AG2U	500mL unpreserved amber glass	BP3C	250mL NaOH plastic	VG9H	40mL HCL clear vial
AG3S	250mL H2SO4 amber glass	BP3N	250mL HNO3 plastic	VG9T	40mL Na Thio. clear vial
BG1H	1 liter HCL clear glass	BP3S	250mL H2SO4 plastic	VG9U	40mL unpreserved clear vial
BG1U	1 liter unpreserved glass	BP3U	250mL unpreserved plastic	VG9W	40mL glass vial preweighted (EPA 5035)
BP1N	1 liter HNO3 plastic	DG9B	40mL Na Bisulfate amber vial	VSG	Headspace septa vial & HCL
BP1S	1 liter H2SO4 plastic	DG9H	40mL HCL amber voa vial	WGFU	4oz clear soil jar
BP1U	1 liter unpreserved plastic	DG9M	40mL MeOH clear vial	WGFX	4oz wide jar w/hexane wipe
BP1Z	1 liter NaOH, Zn, Ac	DG9T	40mL Na Thio amber vial	ZPLC	Ziploc Bag
BP2N	500mL HNO3 plastic	DG9U	40mL unpreserved amber vial		
BP2O	500mL NaOH plastic	1	Wipe/Swab		

a marine		Samp	le C	ondit	ion Upon F	Receipt		9 [A O
Pace Analytical	Client Name:	Bri	DW,	14(aldwell	<u>/</u> P	Project #			4 7
	82114947				F139 Pace Othe					
Custody Sual on Cooler/Box	Present: Yes	[] N	0	Seals i	ntact: 🛮 Ye	es [] N	No Contraction		:	
Packing Material: 📋 Bubble			☐ No		Other		Temp. Blank Yos	No ·	• ••••	*****
Thermometer Used 1320	13 (r 101731362 de 226091			\sim			Samples on ice, couling Date and Initials of			
Coolor Temperaturo Femp should be above freezing ≤	04-	Biolog	ical T		s Frozen: Yes Comments:	No	contents: (1)	2 5 1		
Chain of Custody Present:	444 <u>-</u> 444	Yes	□No	□N/A	1		and the second s	n anderstan instrum de 18	·~ ·~ ·	
Chain of Custody Filled Out:		DV6s	□No	□N⁄A	2					
Chain of Custody Relinquisher	d:	DYes	□No	□N⁄A	3.				_,	
Sampler Name & Signature or	COC:	Dres	[]No	□N/A	4		manage o majoramento communicativa de la color de la c	~~~~~~~~~	··	
Samples Arrived within Hold 1	line:	TOYes	□No	∐N/A	<u>5. </u>		و جوم ماهم مناسب مناسب من مناسب المناسبة المناسبة المناسبة المناسبة المناسبة المناسبة المناسبة المناسبة المناسبة		<u></u> .	
Short Hold Time Analysis (<	72hr):	☐Yes /	ZNo	□N⁄A	6.		واحر ماطدر كينتيبوا بوندها بديد مجينسينيورون	g tops g a 1 gar pr to mark fillers and d	***	
Rush Turn Around Time Re	quested:	□Yes	ZNo.	□n/a	7.					
Sufficient Volume:		Tyes	□No	□N/A	8.					
Correct Containers Used:		ElÝcs	□No		9.					
-Pace Containers Used:		∑ Yes		□N⁄A						
Containers Intact:	,			□N/A	10.					
Fillered volume received for D	Dissolved tests	□Yes		DIM.	11.		-			
Sample Labels malch COC:			[]No	□N⁄A						
-Includes date/lime/ID/Ana All containers needing preservation		-		<u> </u>						
All containers needing preservati	on are found to be in			ADN/A DN/A	13.			yr y glygy allwys lledd o'i lleddioleth	t de s'anne dans	
Exceptions: VOA, coliform, TOC, O&C					Initial when completed		Lot # of added preservative	ماده مدوان در او در در موسود، برد در دوسود، ودر دوسود		
Samples checked for dechlor	ination:	□Yes	□No	[]MA	14.					
Headspace in VOA Vials (>6	inm):	□Yes	□No	DAVA	15.		<u>nga a mahan</u> akanyaya a n ara a sa raa med 4 at 6 - A			
Trip Blanks Present:		□Yes	□No	□N⁄A	16.	•				
Trip Blank Custody Scals Pre	esent	[]]Yes		□N/A						1
Paco Trip Blank Lot # (if pure	hased):	· 13			<u> </u>			dersonati arek 6 aremari 170		
Client Notification/ Resolut				Date	Time:		Field Dala Required?	Y /	N	rhad marrie (\$41)
Person Contacted: Comments/ Resolution:				- ^{Dale}						
Comments/ Nesolution:					^		ده . « « « « « « « « « « « « « « « « « «			
										جمعاوجوني . منعم جدجونيو و
Construction of the second sec								and a supporting to the state of	W	
Angele California de la company de la compan										
Project Manager Review	: FUNI	(a)	KO	عی			Date: 2			

Note: Whonever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEFINR Cortification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Jennifer Gross PASI Seattle 940 S. Harney Street Seattle WA 98108

> REPORT OF LABORATORY ANALYSIS FOR PCDD/PCDF

Report Information:

Pace Project #: 10148907

Sample Receipt Date: 02/07/2011

Client Project #: 256490 Client Sub PO #: N/A State Cert #: C755

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Nate Habte, your Pace Project Manager.

This report has been reviewed by:

February 16, 2011

Nate Habte, Project Manager

(612) 607-6407

(612) 607-6444 (fax)

natnael.habte@pacelabs.com

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

February 15, 2011

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on eight samples submitted by a representative of Pace Analytical Services, Inc. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290. Reporting limits were based on signal-to-noise measurements.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 45-91%. All of the labeled standard recoveries obtained for this project were within the 40-135% target range specified in Method 8290. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, interfering substances impacted the determinations of PCDD or PCDF congeners. The affected values were flagged "I" where incorrect isotope ratios were obtained or "P" where polychlorinated diphenyl ethers were present.

A laboratory method blank was prepared and analyzed with each sample batch as part of our routine quality control procedures. The results show Blank-27836 to contain a trace level of OCDD. This was below the calibration range of the method. The OCDD levels reported for the associated field samples were higher than the OCDD level in the blank by one or more orders of magnitude. These results indicate that the sample processing steps did not contribute significantly to the levels reported for the field samples.

A laboratory spike sample was also prepared with each sample batch using clean sand that had been fortified with native standard materials. The results show that the spiked native compounds were recovered at 87-113%, indicating a high degree of accuracy for these determinations. Matrix spikes were prepared with the sample batches using sample materials from separate projects; results from these analyses will be provided upon request.

The amount of the labeled cleanup standard used in the preparation of the extracts for samples SPL-29-6, SPL-29-7, and the associated quality control blank and spike was twice the amount specified in our procedures. The actual spike amounts were used in the calculations, and accurate recovery values were reported. It should be noted that the accuracy of the native congener determinations was not impacted by this deviation.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	
Arizona	AZ0014	Nevada	MN000642010A
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New Mexico	MN00064
Colorado	MN00064	New York (NEL	11647
Connecticut	PH-0256	North Carolina	27700
EPA Region 5	WD-15J	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Ohio VAP	CL101
Georgia (DNR)	959	Oklahoma	D9922
Guam	09-019r	Oregon (ELAP)	MN200001-005
Hawaii	SLD	Oregon (OREL	MN200001-005
Idaho	MN00064	Pennsylvania	68-00563
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennesee	2818
lowa	368	Tennessee	02818
Kansas	E-10167	Texas	T104704192-08
Kentucky	90062	Utah (NELAP)	PAM
Louisiana	LA0900016	Virginia	00251
Maine	2007029	Washington	C755
Maryland	322	West Virginia	9952C
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q
Mississippi	MN00064		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

Page 1of

FMT-ALL-C-002rev.00 24March2009

Sample Condition Upon Receipt

Face Analytical Client Name	: 1	1	٥	-W(7 Project # 10(48907
Courier: Fed Ex UPS USPS USPS USPS USPS USPS USPS USPS	nt 🏻 c	omm	ercial	Proj. Due Date
Custody Seal on Cooler/Box Present: yes		10	Seals	intact: yes no Proj. Name:
Packing Material: Bubble Wrap Bubble	Bags	" 1	Vone_	Other Temp Blank: Yes No
Thermometer Used 80344042 or 179425	Type of	lce:	Wet	
Cooler Temperature Temp should be above freezing to 6°C	Biolog	ical 1	issue	is Frozen: Yes No Date and initials of person examining contents:
Chain of Custody Present:	₽Yes [JN₀	□N⁄A	1.
Chain of Custody Filled Out:	LIYes [JNo	□N⁄A	2.
Chain of Custody Relinquished: 、	ØYes I	No	□N⁄A	3.
Sampler Name & Signature on COC:	□Yes [2186	□N⁄A	4.
Samples Arrived within Hold Time:	Yes [JNo	□N⁄A	5.
Short Hold Time Analysis (<72hr):	□Yes E	INO	□N⁄A	6.
Rush Turn Around Time Requested:	.EYes [JNo	□N⁄A	7.
Sufficient Volume:	11Yes [JNo	□N⁄A	8.
Correct Containers Used:	ZYes [ONE	□N⁄A	9.
-Pace Containers Used:	ØYes □]No	□N⁄A	
Containers Intact:	ElYes L]No	□N⁄A	10.
Filtered volume received for Dissolved tests	□Yes □]No	DWA	11.
Sample Labels match COC:	ДYes □]No	□N⁄A	12.
-Includes date/time/ID/Analysis Matrix:	<u>_S</u> \			
All containers needing acid/base preservation have been checked. Noncompliance are noted in 13.	□Yes □]No	CINA	
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes □]No	□N/A	Samp#
Exceptions: VOA,Coliform, TOC, Olf and Grease, WI-DRO (water	□Yes □	HV0		Initial when Lot # of added completed preservative
Samples checked for dechlorination:	□Yes □	lNo	ØN/A	
Headspace in VOA Vials (>6mm):	□Yes □		ONA	
Trip Blank Present:	□Yes □	No	□M⁄A	16.
Trip Blank Custody Seals Present	□Yes □	No	DNA	
Pace Trip Blank Lot # (if purchased):				
Client Notification/ Resolution:				} , Field Data Required? Y / N
Person Contacted: Jevni Gr	T	Ţ	Date/T	
Comments/ Resolution:)			
Sationed	arb		\gg	2. docote rate en inno
				J. 7
				,
				,
Project Manager Review:	· ·	M	4	Date: 27 11

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the **Report Adaptical SEMBLES**, Inc. F-L213Rev.00, 05Aug2009 1700 Elm Street SE, Suite 200, Minneapolis, MN 55414 1700 Elm Street SE, Suite 200, Minneapolis, MN 55414

Report No.....10148907_8290

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

Appendix B

Sample Analysis Summary

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-29-1
Lab Sample ID 256490001
Filename F110211A_05
Injected By BAL

Total Amount Extracted 10.9 g Matrix Solid % Moisture 8.8 Dilution NA

Dry Weight Extracted 9.94 g Collected 02/04/2011 09:35 F101206 **ICAL ID** Received 02/07/2011 10:30 CCal Filename(s) F110210B_16 & F110211A_16 Extracted 02/09/2011 16:35 Method Blank ID BLANK-27836 Analyzed 02/11/2011 18:04

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.54 6.70		0.21 J 0.21	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	73 84 79
2,3,7,8-TCDD Total TCDD	ND 4.60		0.16 0.16	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	80 87 77
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.64 1.80 18.00		0.31 J 0.24 J 0.27	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	77 75 71 74
1,2,3,7,8-PeCDD Total PeCDD	9.90	0.31	0.25 I 0.25	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	81 76 62
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	2.70 1.10 1.70		0.31 J 0.27 J 0.19 J	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	61 68 55
1,2,3,7,8,9-HxCDF Total HxCDF	0.89 20.00		0.20 J 0.24	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.00 2.70 1.20 22.00	 	0.29 J 0.37 J 0.29 J 0.32	2,3,7,8-TCDD-37Cl4	0.20	83
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	15.00 1.30 17.00		0.22 0.29 J 0.26	Total 2,3,7,8-TCDD Equivalence: 2.7 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	44.00 78.00		0.34 0.34			
OCDF OCDD	46.00 340.00		0.32 0.64			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected
NA = Not Applicable

RL = Reporting Limit.

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

SPL-29-2 Client's Sample ID Lab Sample ID 256490002 F110211A_06 Filename Injected By BAL **Total Amount Extracted** 11.9 g Matrix Solid % Moisture Dilution NA 15.1 Dry Weight Extracted Collected 02/04/2011 09:50 10.1 g

 ICAL ID
 F101206
 Received
 02/07/2011 10:30

 CCal Filename(s)
 F110210B_16 & F110211A_16
 Extracted
 02/09/2011 16:35

 Method Blank ID
 BLANK-27836
 Analyzed
 02/11/2011 18:49

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.0 13.0		0.30 0.30	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	70 79 76
2,3,7,8-TCDD Total TCDD	ND 22.0		0.25 0.25	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	78 84 76
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.2 3.5 30.0		0.51 J 0.46 J 0.49	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	73 72 75 82
1,2,3,7,8-PeCDD Total PeCDD	1.8 25.0		0.26 J 0.26	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	76 65 66
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	8.8 2.7 3.8		0.28 0.40 J 0.21 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	71 70
1,2,3,7,8,9-HxCDF Total HxCDF	1.9 53.0		0.30 J 0.29	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.6 9.0 3.7 69.0	 	0.86 J 0.43 0.40 J 0.57	2,3,7,8-TCDD-37Cl4	0.20	83
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	61.0 4.4 230.0	 	0.30 0.52 J 0.41	Total 2,3,7,8-TCDD Equivalence: 11 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	300.0 560.0		0.85 0.85			
OCDF OCDD	250.0 3500.0		0.45 0.28			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
RL = Reporting Limit.

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. $J = Estimated \ value$

02/11/2011 19:35

Method Blank ID

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - PASI Seattle

Analyzed

SPL-29-3 Client's Sample ID Lab Sample ID 256490003 Filename F110211A_07 Injected By BAL **Total Amount Extracted** 12.5 g Solid Matrix % Moisture Dilution NA 14.6 Dry Weight Extracted Collected 02/04/2011 10:10 10.7 g F101206 **ICAL ID** Received 02/07/2011 10:30 CCal Filename(s) F110210B_16 & F110211A_16 Extracted 02/09/2011 16:35

BLANK-27836

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.0 19.0		0.19 0.19	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	67 75 72
2,3,7,8-TCDD Total TCDD	ND 21.0		0.31 0.31	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	72 77 77 71
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.3 5.3 44.0		0.53 J 0.43 0.48	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00 2.00	67 67 71 71
1,2,3,7,8-PeCDD Total PeCDD	2.3 19.0		0.34 J 0.34	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	71 71 62 65
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	 3.6 5.1	18 	0.27 P 0.26 J 0.24	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	69 69
1,2,3,7,8,9-HxCDF Total HxCDF	2.7 58.0		0.46 J 0.31	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	2.0 9.8 4.8 68.0		0.57 J 0.50 0.59 0.56	2,3,7,8-TCDD-37Cl4	0.20	82
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	85.0 5.9 280.0		0.61 0.76 0.68	Total 2,3,7,8-TCDD Equivalence: 12 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	270.0 470.0		1.10 1.10			
OCDF OCDD	350.0 2900.0		0.96 0.41			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable RL = Reporting Limit.

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

02/11/2011 20:21

Method Blank ID

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - PASI Seattle

Analyzed

SPL-29-4 Client's Sample ID Lab Sample ID 256490004 F110211A_08 Filename Injected By BAL **Total Amount Extracted** 11.7 g Solid Matrix % Moisture Dilution NA 12.1 Dry Weight Extracted Collected 02/04/2011 10:35 10.3 g F101206 **ICAL ID** Received 02/07/2011 10:30 CCal Filename(s) F110210B_16 & F110211A_16 Extracted 02/09/2011 16:35

BLANK-27836

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.1 17.0		0.26 0.26	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00	64 72
2,3,7,8-TCDD Total TCDD	ND 23.0		0.31 0.31	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00	70 70 74
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	1.7 5.1		0.48 J 0.31	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C	2.00 2.00 2.00	66 66 65
Total PeCDF 1,2,3,7,8-PeCDD	42.0	1.4	0.39 0.39 I	1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C	2.00 2.00 2.00	69 71 69
Total PeCDD 1,2,3,4,7,8-HxCDF	27.0	20.0	0.39 0.39 P	1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C	2.00 2.00 2.00	60 63 65
1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	4.2 5.2 3.0		0.44 J 0.32 0.32 J	OCDD-13C 1,2,3,4-TCDD-13C	4.00 2.00	67 NA
Total HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD	64.0 2.1 9.8		0.37 0.39 J 0.61	1,2,3,7,8,9-HxCDD-13C 2,3,7,8-TCDD-37Cl4	2.00 0.20	NA 77
1,2,3,7,8,9-HxCDD Total HxCDD	4.6 71.0		0.42 J 0.47			
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	88.0 6.1 300.0		0.37 0.61 0.49	Total 2,3,7,8-TCDD Equivalence: 9.8 ng/Kg (Using 2005 WHO Factors -	Using PRL/	/2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	290.0 500.0		1.40 1.40			
OCDF OCDD	380.0 3000.0		0.27 0.31			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable NC = Not Calculated

RL = Reporting Limit. NC :
Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-29-5
Lab Sample ID 256490005
Filename F110211A_09
Injected By BAL

Total Amount Extracted 11.4 g Matrix Solid % Moisture 10.6 Dilution NA

Dry Weight Extracted 10.2 g Collected 02/04/2011 10:45 F101206 **ICAL ID** Received 02/07/2011 10:30 CCal Filename(s) F110210B_16 & F110211A_16 Extracted 02/09/2011 16:35 Method Blank ID BLANK-27836 Analyzed 02/11/2011 21:07

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	8.30	0.59	0.22 I 0.22	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	63 69 67
2,3,7,8-TCDD Total TCDD	ND 6.70		0.27 0.27	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	66 71 64
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.77 1.30 15.00		0.36 J 0.24 J 0.30	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00 2.00	61 61 62 68
1,2,3,7,8-PeCDD Total PeCDD	1.40 11.00		0.23 J 0.23	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	62 54 57
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.10 1.40	2.90 	0.26 P 0.26 J 0.25 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	59 54
1,2,3,7,8,9-HxCDF Total HxCDF	ND 14.00		0.30 0.27	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.77 3.50 1.50 27.00		0.37 J 0.38 J 0.35 J 0.37	2,3,7,8-TCDD-37Cl4	0.20	79
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	22.00 1.50 57.00		0.41 0.33 J 0.37	Total 2,3,7,8-TCDD Equivalence: 4.0 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	66.00 120.00		0.52 0.52			
OCDF OCDD	98.00 690.00		0.46 0.37			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

RL = Reporting Limit. NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. $J = Estimated \ value$

P = PCDE Interference

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-29-6
Lab Sample ID 256490006
Filename F110212A_06
Injected By BAL

Total Amount Extracted 16.2 g Matrix Solid % Moisture 26.5 Dilution NA

Dry Weight Extracted 11.9 g Collected 02/04/2011 10:55 F101206 **ICAL ID** Received 02/07/2011 10:30 CCal Filename(s) F110211B_16 & F110212A_17 Extracted 02/09/2011 17:15 Method Blank ID BLANK-27842 Analyzed 02/12/2011 19:28

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF		0.40	0.180 I	2,3,7,8-TCDF-13C	2.00	71
Total TCDF	4.30		0.180	2,3,7,8-TCDD-13C	2.00	79
				1,2,3,7,8-PeCDF-13C	2.00	82
2,3,7,8-TCDD	ND		0.190	2,3,4,7,8-PeCDF-13C	2.00	85
Total TCDD	0.57		0.190 J	1,2,3,7,8-PeCDD-13C	2.00	90
				1,2,3,4,7,8-HxCDF-13C	2.00	82
1,2,3,7,8-PeCDF	ND		0.210	1,2,3,6,7,8-HxCDF-13C	2.00	83
2,3,4,7,8-PeCDF	0.28		0.150 J	2,3,4,6,7,8-HxCDF-13C	2.00	82
Total PeCDF	1.80		0.180 J	1,2,3,7,8,9-HxCDF-13C	2.00	78
				1,2,3,4,7,8-HxCDD-13C	2.00	89
1,2,3,7,8-PeCDD		0.23	0.130 I	1,2,3,6,7,8-HxCDD-13C	2.00	82
Total PeCDD	2.50		0.130 J	1,2,3,4,6,7,8-HpCDF-13C	2.00	68
				1,2,3,4,7,8,9-HpCDF-13C	2.00	63
1,2,3,4,7,8-HxCDF		0.44	0.110 I	1,2,3,4,6,7,8-HpCDD-13C	2.00	70
1,2,3,6,7,8-HxCDF	0.22		0.110 J	OCDD-13C	4.00	53
2,3,4,6,7,8-HxCDF	0.21		0.120 J			
1,2,3,7,8,9-HxCDF	ND		0.095	1,2,3,4-TCDD-13C	2.00	NA
Total HxCDF	1.60		0.110 J	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD		0.15	0.110 I	2,3,7,8-TCDD-37Cl4	0.40	75
1,2,3,6,7,8-HxCDD	0.52		0.130 J			
1,2,3,7,8,9-HxCDD	0.32		0.160 J			
Total HxCDD	3.60		0.130 J			
1,2,3,4,6,7,8-HpCDF	1.50		0.130 J	Total 2,3,7,8-TCDD		
1,2,3,4,7,8,9-HpCDF	ND		0.210	Equivalence: 0.63 ng/Kg		
Total HpCDF	5.60		0.170	(Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD	11.00		0.210			
Total HpCDD	21.00		0.210			
OCDF	4.90		0.400 J			
OCDD	350.00		0.520			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable RL = Reporting Limit.

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-29-7
Lab Sample ID 256490007
Filename F110212A_07
Injected By BAL

Total Amount Extracted 16.6 g Matrix Solid % Moisture 30.0 Dilution NA

Dry Weight Extracted Collected 02/04/2011 11:05 11.6 g F101206 **ICAL ID** Received 02/07/2011 10:30 CCal Filename(s) F110211B 16 & F110212A 17 Extracted 02/09/2011 17:15 Method Blank ID BLANK-27842 Analyzed 02/12/2011 20:13

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.24 0.91		0.160 J 0.160	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 84 85
2,3,7,8-TCDD Total TCDD	ND 0.32		0.180 0.180 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	84 89 82
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.27 1.20		0.180 0.130 J 0.150 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	84 87 82
1,2,3,7,8-PeCDD Total PeCDD	ND 0.96		0.190 0.190 J	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	91 82 72 69
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.22 0.24	1.10 	0.120 P 0.090 J 0.072 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	76 58
1,2,3,7,8,9-HxCDF Total HxCDF	ND 1.60		0.100 0.095 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 0.46 0.22 3.60		0.170 0.160 J 0.170 J 0.170 J	2,3,7,8-TCDD-37Cl4	0.40	79
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	2.90 14.00	0.18 	0.130 J 0.160 I 0.140	Total 2,3,7,8-TCDD Equivalence: 0.62 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	12.00 21.00		0.170 0.170			
OCDF OCDD	12.00 140.00		0.210 0.290			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

RL = Reporting Limit. NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. $J = Estimated \ value$

P = PCDE Interference

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-29-8
Lab Sample ID 256490008
Filename F110211A_10
Injected By BAL

Total Amount Extracted 11.7 g Matrix Solid % Moisture 9.7 Dilution NA

Dry Weight Extracted 10.6 g Collected 02/04/2011 11:15 F101206 **ICAL ID** Received 02/07/2011 10:30 CCal Filename(s) F110210B_16 & F110211A_16 Extracted 02/09/2011 16:35 Method Blank ID BLANK-27836 Analyzed 02/11/2011 21:52

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 4.20		0.24 0.24	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	56 60 57
2,3,7,8-TCDD Total TCDD	ND 2.50		0.36 0.36	1,2,3,7,6-FeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	57 57 61 53
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.63 3.80		0.33 0.31 J 0.32 J	1,2,3,4,7,6-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	53 52 51 53
1,2,3,7,8-PeCDD Total PeCDD	0.42 3.40		0.28 J 0.28 J	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	56 54 45
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.30 0.44	0.40	0.29 J 0.21 I 0.27 J	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	47 49 47
1,2,3,7,8,9-HxCDF Total HxCDF	ND 4.50		0.27 0.20 0.24 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.41 0.72 ND 6.90	 	0.35 J 0.33 J 0.34 0.34	2,3,7,8-TCDD-37Cl4	0.20	76
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	3.90 ND 14.00		0.25 J 0.38 0.31	Total 2,3,7,8-TCDD Equivalence: 1.3 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	13.00 22.00		0.47 0.47			
OCDF OCDD	11.00 130.00		0.41 0.35			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

RL = Reporting Limit.

I = Interference present

Method 8290 Blank Analysis Results

Matrix

Dilution

Solid

NA

Lab Sample ID BLANK-27836 Filename F110211B_06

Total Amount Extracted 10.2 g Extracted 02/09/2011 16:35 F101206 ICAL ID Analyzed 02/12/2011 07:03

CCal Filename(s) F110211A_16 & F110211B_16 Injected By BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.170 0.170	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	60 68 69
2,3,7,8-TCDD Total TCDD	ND ND		0.230 0.230	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	71 77 73
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND	 	0.170 0.130 0.150	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	73 70 75 72 77
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.140 0.140	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	77 79 65 61
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	ND ND ND ND	0.11 	0.100 0.099 0.100 I 0.140 0.110	1,2,3,4,6,7,8-HpCDD-13C 1,2,3,4-6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00 4.00 2.00 2.00	68 56 NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	0.150 0.140 0.140 0.140	2,3,7,8-TCDD-37Cl4	0.20	69
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		0.110 0.170 0.140	Total 2,3,7,8-TCDD Equivalence: 0.26 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		0.170 0.170			
OCDF OCDD	ND 0.81		0.580 0.230 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Page 18 of 20

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Blank Analysis Results

Lab Sample ID BLANK-27842 Matrix Solid Filename F110212A_05 Dilution NA

Total Amount Extracted 20.0 g Extracted 02/09/2011 17:15 ICAL ID F101206 Extracted 02/12/2011 18:42

CCal Filename(s) F110211B_16 & F110212A_17 Injected By BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.086 0.086	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	64 72 76
2,3,7,8-TCDD Total TCDD	ND ND		0.086 0.086	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	80 86 86
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.084 0.048 0.066	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	85 81 76
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.053 0.053	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	87 86 63
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.082 0.083 0.088	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	54 61 43
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		0.100 0.089	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		0.110 0.120 0.110 0.110	2,3,7,8-TCDD-37Cl4	0.40	68
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		0.110 0.210 0.160	Total 2,3,7,8-TCDD Equivalence: 0.12 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		0.240 0.240			
OCDF OCDD	ND ND		0.330 0.510			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted

ICAL ID CCal Filename(s) Method Blank ID LCS-27837 F110211B_01 10.3 g

F101206 F110211A_16 & F110211B_16 BLANK-27836 Matrix Dilution Extracted Analyzed Solid NA

02/09/2011 16:35 02/12/2011 03:14

	ed By BAL	Injected
--	-----------	----------

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.23	113	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.0 2.0 2.0	51 57 61
2,3,7,8-TCDD Total TCDD	0.20	0.20	98	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.0 2.0 2.0 2.0	61 67 64
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.1 1.1	111 111	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.0 2.0 2.0	63 67 71
1,2,3,7,8-PeCDD Total PeCDD	1.0	0.98	98	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.0 2.0 2.0 2.0	71 67 61 67
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	1.0 1.0 1.0 1.0	1.1 1.1 1.1 1.1	108 109 111 112	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.0 4.0 2.0 2.0	70 63 NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	1.1 1.0 1.0	107 104 103	2,3,7,8-TCDD-37Cl4	0.20	63
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.1 1.0	108 102			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	0.98	98			
OCDF OCDD	2.0 2.0	2.2 2.2	112 109			

Qs = Quantity Spiked Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)
R = Recovery outside of target range

Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable

* = See Discussion

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename **Total Amount Extracted**

ICAL ID

CCal Filename(s) Method Blank ID

LCS-27843 F110212A_01 20.4 g

F101206 F110211B_16 & F110212A_17 BLANK-27842

Matrix Dilution Extracted Analyzed

Solid NA

02/09/2011 17:15 02/12/2011 15:39

Injected I	Ву	BAL
------------	----	-----

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.21	103	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.0 2.0 2.0	58 65 70
2,3,7,8-TCDD Total TCDD	0.20	0.17	87	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.0 2.0 2.0 2.0	70 72 80 71
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.0 1.0	102 101	1,2,3,4,7,0-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.0 2.0 2.0 2.0 2.0	73 77 75 78
1,2,3,7,8-PeCDD Total PeCDD	1.0	0.92	92	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.0 2.0 2.0 2.0	76 65 67
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	1.0 1.0 1.0 1.0	1.00 1.0 1.0 1.0	100 103 104 104	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.0 4.0 2.0	73 62 NA
Total HxCDF 1,2,3,4,7,8-HxCDD	1.0	0.94	94	1,2,3,7,8,9-HxCDD-13C 2,3,7,8-TCDD-37Cl4	2.0 0.40	NA 64
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	1.0 0.94	100 94	2,0,7,0 1000 07014	0.40	04
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.0 0.98	102 98			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	0.90	90			
OCDF OCDD	2.0 2.0	2.0 1.9	98 97			

Qs = Quantity Spiked Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent) R = Recovery outside of target range

Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable * = See Discussion

February 18, 2011

Joshua Johnson Brown & Caldwell 724 Columbia St. NW#420 Olympia, WA 98501

RE: Project: East Bay Redevelopment 138130

Pace Project No.: 256498

Dear Joshua Johnson:

Enclosed are the analytical results for sample(s) received by the laboratory on February 05, 2011. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jennifer Gross

jennifer.gross@pacelabs.com Project Manager

ENNI (-ROSS

Enclosures

cc: Jon Turk, Brown & Caldwell

CERTIFICATIONS

Project: East Bay Redevelopment 138130

Pace Project No.: 256498

Washington Certification IDs
940 South Harney Street, Seattle, WA 98108
Alaska CS Certification #: UST-025
Alaska Drinking Water VOC Certification #: WA01230
Alaska Drinking Water Micro Certification #: WA01230

California Certification #: 01153CA California Certification #: E87617
Oregon Certification #: WA200007
Washington Certification #: C1229

SAMPLE ANALYTE COUNT

Project: East Bay Redevelopment 138130

Pace Project No.: 256498

NWTPH-DX	Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
PASI-00	256498001	SPL-29-1	NWTPH-Dx	AY1	4	PASI-S
PAS PAS			NWTPH-Gx	CC	3	PASI-S
256498002 SPL-29-2 NWTPH-DX AY1 4 PASI-S 266498003 PSL-29-3 NWTPH-DX CC 3 PASI-S 256498003 SPL-29-3 NWTPH-DX LPM 8 PASI-S 256498003 SPL-29-3 NWTPH-DX AY1 4 PASI-S 256498004 PSL-29-3 NWTPH-DX AY1 4 PASI-S 256498004 PSL-29-4 NWTPH-DX AY1 4 PASI-S 256498004 PSL-29-4 NWTPH-DX AY1 4 PASI-S 256498005 PSL-29-4 NWTPH-DX AY1 4 PASI-S 256498005 PSL-29-5 NWTPH-DX AY1 4 PASI-S 256498006 PSL-29-5 NWTPH-DX AY1 4 PASI-S 256498007 PSL-29-5 NWTPH-DX AY1 4 PASI-S 256498006 PSL-29-6 NWTPH-DX AY1 4 PASI-S 256498007 PSL-29-7 NWTPH-DX			EPA 8270 by SIM	DMT	20	PASI-S
NWTPH-GX			EPA 8260	LPM	8	PASI-S
PASTOR P	256498002	SPL-29-2	NWTPH-Dx	AY1	4	PASI-S
PASIS PASI			NWTPH-Gx	CC	3	PASI-S
256498003 SPL-29-3 NWTPH-DX AY1 4 PASI-S NWTPH-GX CC 3 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 82800 LPM 8 PASI-S 256498004 SPL-29-4 NWTPH-DX AY1 4 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8270 by SIM DMT 4 PASI-S EPA 8270 by SIM DMT 20 PASI-S			EPA 8270 by SIM	DMT	20	PASI-S
NWTPH-GX			EPA 8260	LPM	8	PASI-S
PASS PASS	256498003	SPL-29-3	NWTPH-Dx	AY1	4	PASI-S
PASS PASS			NWTPH-Gx	CC	3	PASI-S
256498004 SPL-29-4 NWTPH-DX AY1 4 PASI-S 1000 NWTPH-GX CC 3 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S 256498005 SPL-29-5 NWTPH-DX AY1 4 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S 256498006 SPL-29-6 NWTPH-DX AY1 4 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 4 PASI-S EPA 8270 by SIM DMT <td></td> <td></td> <td>EPA 8270 by SIM</td> <td>DMT</td> <td>20</td> <td>PASI-S</td>			EPA 8270 by SIM	DMT	20	PASI-S
NWTPH-Gx			EPA 8260	LPM	8	PASI-S
PASI-S P	256498004	SPL-29-4	NWTPH-Dx	AY1	4	PASI-S
PAS 260 LPM			NWTPH-Gx	CC	3	PASI-S
256498005 SPL-29-5 NWTPH-Dx AY1 4 PASI-S NWTPH-Gx CC 3 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S 256498006 SPL-29-6 NWTPH-Dx AY1 4 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S NWTPH-Dx AY1 4 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S NWTPH-Dx AY1 4 PASI-S NWTPH-Gx CC 3 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8			EPA 8270 by SIM	DMT	20	PASI-S
NWTPH-Gx CC 3 PASI-S			EPA 8260	LPM	8	PASI-S
PASI-S P	256498005	SPL-29-5	NWTPH-Dx	AY1	4	PASI-S
EPA 8260 LPM 8 PASI-S 256498006 SPL-29-6 NWTPH-Dx AY1 4 PASI-S NWTPH-Gx CC 3 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S NWTPH-Dx AY1 4 PASI-S NWTPH-Gx CC 3 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S NWTPH-Dx AY1 4 PASI-S NWTPH-Gx CC 3 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S			NWTPH-Gx	CC	3	PASI-S
256498006 SPL-29-6 NWTPH-Dx AY1 4 PASI-S NWTPH-Gx CC 3 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 4 PASI-S NWTPH-Gx CC 3 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S NWTPH-Dx AY1 4 PASI-S NWTPH-Gx CC 3 PASI-S NWTPH-Gx CC 3 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA			EPA 8270 by SIM	DMT	20	PASI-S
NWTPH-Gx CC 3 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S NWTPH-Dx AY1 4 PASI-S NWTPH-Gx CC 3 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S NWTPH-Dx AY1 4 PASI-S NWTPH-Gx CC 3 PASI-S NWTPH-Gx CC 3 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM RASI-S EPA 8260 LPM			EPA 8260	LPM	8	PASI-S
EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S 256498007 SPL-29-7 NWTPH-Dx AY1 4 PASI-S NWTPH-Gx CC 3 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S NWTPH-Dx AY1 4 PASI-S NWTPH-Gx CC 3 PASI-S NWTPH-Gx CC 3 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S	256498006	SPL-29-6	NWTPH-Dx	AY1	4	PASI-S
EPA 8260 LPM 8 PASI-S 256498007 SPL-29-7 NWTPH-Dx AY1 4 PASI-S NWTPH-Gx CC 3 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S NWTPH-Dx AY1 4 PASI-S NWTPH-Gx CC 3 PASI-S NWTPH-Gx CC 3 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S NWTPH-Gx CC 3 PASI-S EPA 8260 LPM 8 PASI-S NWTPH-Gx CC 3 PASI-S			NWTPH-Gx	CC	3	PASI-S
256498007 SPL-29-7 NWTPH-Dx AY1 4 PASI-S NWTPH-Gx CC 3 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S NWTPH-Dx AY1 4 PASI-S NWTPH-Gx CC 3 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S EPA 8260 LPM 8 PASI-S 256498009 TB-020411 NWTPH-Gx CC 3 PASI-S			EPA 8270 by SIM	DMT	20	PASI-S
NWTPH-Gx			EPA 8260	LPM	8	PASI-S
EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S 256498008 SPL-29-8 NWTPH-Dx AY1 4 PASI-S NWTPH-Gx CC 3 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S 256498009 TB-020411 NWTPH-Gx CC 3 PASI-S	256498007	SPL-29-7	NWTPH-Dx	AY1	4	PASI-S
EPA 8260 LPM 8 PASI-S 256498008 SPL-29-8 NWTPH-Dx AY1 4 PASI-S NWTPH-Gx CC 3 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S 256498009 TB-020411 NWTPH-Gx CC 3 PASI-S			NWTPH-Gx	CC	3	PASI-S
256498008 SPL-29-8 NWTPH-Dx AY1 4 PASI-S NWTPH-Gx CC 3 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S 256498009 TB-020411 NWTPH-Gx CC 3 PASI-S			EPA 8270 by SIM	DMT	20	PASI-S
NWTPH-Gx CC 3 PASI-S EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S 256498009 TB-020411 NWTPH-Gx CC 3 PASI-S			EPA 8260	LPM	8	PASI-S
EPA 8270 by SIM DMT 20 PASI-S EPA 8260 LPM 8 PASI-S 256498009 TB-020411 NWTPH-Gx CC 3 PASI-S	256498008	SPL-29-8	NWTPH-Dx	AY1	4	PASI-S
EPA 8260 LPM 8 PASI-S 256498009 TB-020411 NWTPH-Gx CC 3 PASI-S			NWTPH-Gx	CC	3	PASI-S
256498009 TB-020411 NWTPH-Gx CC 3 PASI-S			EPA 8270 by SIM	DMT	20	PASI-S
256498009 TB-020411 NWTPH-Gx CC 3 PASI-S			EPA 8260	LPM	8	PASI-S
EPA 8260 LPM 8 PASI-S	256498009	TB-020411	NWTPH-Gx	СС	3	PASI-S
			EPA 8260	LPM	8	PASI-S

Project: East Bay Redevelopment 138130

Pace Project No.: 256498

Sample: SPL-29-1	Lab ID: 256498001	Collected: 02/04/11	09:35	Received: 02	2/05/11 11:38 I	Matrix: Solid	
Results reported on a "dry-weigh	t" basis						
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
IWTPH-Dx GCS SG	Analytical Method: NWTF	PH-Dx Preparation Meth	nod: E	PA 3546			
Diesel Range SG	24.6 mg/kg	20.5	1	02/07/11 14:45	02/10/11 15:30)	
Notor Oil Range SG	119 mg/kg	82.2	1	02/07/11 14:45	02/10/11 15:30	64742-65-0	
-Octacosane (S) SG	107 %	50-150	1	02/07/11 14:45	02/10/11 15:30	630-02-4	
-Terphenyl (S) SG	110 %	50-150	1	02/07/11 14:45			
IWTPH-Gx GCV	Analytical Method: NWTF	PH-Gx Preparation Meth	nod: N	WTPH-Gx			
Sasoline Range Organics	ND mg/kg	5.8	1	02/09/11 17:00	02/10/11 00:12	2	
,a,a-Trifluorotoluene (S)	96 %	50-150	1	02/09/11 17:00			
-Bromofluorobenzene (S)	88 %	50-150	1	02/09/11 17:00			
270 MSSV PAH by SIM	Analytical Method: EPA 8	3270 by SIM Preparation	n Meth	od: EPA 3546			
cenaphthene	ND ug/kg	7.2	1	02/07/11 17:40	02/10/11 23:27	7 83-32-9	
cenaphthylene	ND ug/kg	7.2	1	02/07/11 17:40			
Anthracene	ND ug/kg	7.2	1	02/07/11 17:40			
Benzo(a)anthracene	ND ug/kg	7.2	1	02/07/11 17:40			
Benzo(a)pyrene	ND ug/kg	7.2	1	02/07/11 17:40			
Benzo(b)fluoranthene	10.7 ug/kg	7.2	1	02/07/11 17:40			
Benzo(g,h,i)perylene	8.3 ug/kg	7.2	1	02/07/11 17:40			
Benzo(k)fluoranthene	ND ug/kg	7.2	1	02/07/11 17:40			
Chrysene	10.5 ug/kg	7.2	1	02/07/11 17:40			
Dibenz(a,h)anthracene	ND ug/kg	7.2	1	02/07/11 17:40			
Fluoranthene	14.9 ug/kg	7.2	1	02/07/11 17:40			
luorene	ND ug/kg	7.2	1	02/07/11 17:40			
ndeno(1,2,3-cd)pyrene	ND ug/kg	7.2	1	02/07/11 17:40			
		7.2	1	02/07/11 17:40			
-Methylnaphthalene	ND ug/kg		1				
-Methylnaphthalene	10.6 ug/kg	7.2		02/07/11 17:40			
laphthalene	10.1 ug/kg	7.2	1	02/07/11 17:40			
Phenanthrene	12.1 ug/kg	7.2 7.2	1	02/07/11 17:40			
Pyrene	17.3 ug/kg		1	02/07/11 17:40			
-Fluorobiphenyl (S) erphenyl-d14 (S)	70 % 82 %	31-131 30-133	1 1	02/07/11 17:40 02/07/11 17:40			
260/5035A Volatile Organics	Analytical Method: EPA 8		-	02/01/11 11110	02/10/1120121		
Benzene	ND ug/kg	2.9	1		02/07/11 16:10) 71-43-2	
Ethylbenzene	ND ug/kg	2.9	1		02/07/11 16:10		
oluene	ND ug/kg	2.9	1		02/07/11 16:10		
(ylene (Total)	ND ug/kg	8.7	1		02/07/11 16:10		
Dibromofluoromethane (S)	97 %	80-136	1		02/07/11 16:10		
` '	104 %	80-130	1		02/07/11 16:10		
oluene-d8 (S)							
-Bromofluorobenzene (S)	103 %	72-122 90 143	1		02/07/11 16:10		
,2-Dichloroethane-d4 (S)	102 %	80-143	1		02/07/11 16:10	0-17-000-07-0	
	Analytical Method: ASTM	I D2974-87					
Percent Moisture	8.8 %	0.10	1		02/13/11 21:05	5	

Date: 02/18/2011 01:32 PM

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

Page 4 of 21

Project: East Bay Redevelopment 138130

Pace Project No.: 256498

Sample: SPL-29-2	Lab ID: 256	498002	Collected:	02/04/1	1 09:50	Received: 02	2/05/11 11:38 I	Matrix: Solid	
Results reported on a "dry-weight	t" basis								
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qua
WTPH-Dx GCS SG	Analytical Meth	hod: NWTF	PH-Dx Prepara	ation Me	ethod: El	PA 3546			
Diesel Range SG	28.7 mg	g/kg		21.6	1	02/09/11 14:45	02/10/11 15:47		
Motor Oil Range SG	131 mg			86.3	1	02/09/11 14:45	02/10/11 15:47	64742-65-0	
n-Octacosane (S) SG	112 %		5	0-150	1	02/09/11 14:45	02/10/11 15:47	630-02-4	
o-Terphenyl (S) SG	112 %		5	0-150	1		02/10/11 15:47		
NWTPH-Gx GCV	Analytical Metl	hod: NWTF	PH-Gx Prepara	ation Me	ethod: N	WTPH-Gx			
Gasoline Range Organics	ND mg	a/ka		5.2	1	02/09/11 17:00	02/10/11 01:00		
a,a,a-Trifluorotoluene (S)	112 %		5	0-150	1		02/10/11 01:00		
4-Bromofluorobenzene (S)	103 %			0-150	1		02/10/11 01:00		
3270 MSSV PAH by SIM	Analytical Meth	nod: EPA 8	270 by SIM Pi	reparati	on Meth	od: EPA 3546			
\cananhthana	15.0 ug		·	7.3	1		02/10/11 21:55	92 22 0	
Acenaphthene Acenaphthylene	ND ug	_		7.3 7.3	1		02/10/11 21:55		
Anthracene	ND ug	-		7.3	1		02/10/11 21:55		
	_	-		7.3	1		02/10/11 21:55		
Benzo(a)anthracene	14.4 ug	-					02/10/11 21:55		
Benzo(a)pyrene	13.4 ug	-		7.3	1				
Benzo(b)fluoranthene	17.1 ug	-		7.3	1		02/10/11 21:55		
Benzo(g,h,i)perylene	10.4 ug	-		7.3	1		02/10/11 21:55		
Benzo(k)fluoranthene	ND ug	-		7.3	1		02/10/11 21:55		
Chrysene	14.6 ug	-		7.3	1		02/10/11 21:55		
Dibenz(a,h)anthracene	ND ug	-		7.3	1		02/10/11 21:55		
Fluoranthene	28.0 ug	-		7.3	1		02/10/11 21:55		
luorene	ND ug	-		7.3	1		02/10/11 21:55		
ndeno(1,2,3-cd)pyrene	7.3 ug			7.3	1	02/07/11 17:40	02/10/11 21:55	193-39-5	
-Methylnaphthalene	11.9 ug	ı/kg		7.3	1	02/07/11 17:40	02/10/11 21:55	90-12-0	
2-Methylnaphthalene	16.5 ug	ı/kg		7.3	1	02/07/11 17:40	02/10/11 21:55	91-57-6	
Naphthalene	8.8 ug	ı/kg		7.3	1	02/07/11 17:40	02/10/11 21:55	91-20-3	
Phenanthrene	28.9 ug	ı/kg		7.3	1	02/07/11 17:40	02/10/11 21:55	85-01-8	
Pyrene	33.6 ug	ı/kg		7.3	1	02/07/11 17:40	02/10/11 21:55	129-00-0	
2-Fluorobiphenyl (S)	72 %		3	1-131	1	02/07/11 17:40	02/10/11 21:55	321-60-8	
Ferphenyl-d14 (S)	86 %		3	0-133	1	02/07/11 17:40	02/10/11 21:55	1718-51-0	
260/5035A Volatile Organics	Analytical Meth	hod: EPA 8	260						
Benzene	ND ug	ı/kg		2.8	1		02/07/11 16:29	71-43-2	
Ethylbenzene	ND ug	ı/kg		2.8	1		02/07/11 16:29	100-41-4	
Toluene	ND ug	ı/kg		2.8	1		02/07/11 16:29	108-88-3	
(ylene (Total)	ND ug			8.3	1		02/07/11 16:29	1330-20-7	
Dibromofluoromethane (S)	95 %		8	0-136	1		02/07/11 16:29	1868-53-7	
Toluene-d8 (S)	108 %		8	0-120	1		02/07/11 16:29	2037-26-5	
I-Bromofluorobenzene (S)	100 %			2-122	1		02/07/11 16:29		
,2-Dichloroethane-d4 (S)	100 %			0-143	1		02/07/11 16:29		
, , , , , , , , , , , , , , , , , , , ,	Analytical Meth				-				
Paraant Maintura	•			0.40	4		00/40/44 04:00		
Percent Moisture	9.7 %			0.10	1		02/13/11 21:06		

Date: 02/18/2011 01:32 PM

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

Page 5 of 21

Project: East Bay Redevelopment 138130

Pace Project No.: 256498

Sample: SPL-29-3	Lab ID:	256498003	Collected: 02/04/1	1 10:10	Received: 02	2/05/11 11:38 I	Matrix: Solid	
Results reported on a "dry-weigh	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS SG	Analytical	Method: NWTP	PH-Dx Preparation Me	ethod: E	PA 3546			
Diesel Range SG	N	D mg/kg	21.5	1	02/09/11 14:45	02/09/11 14:03	}	
Motor Oil Range SG	N	D mg/kg	85.9	1	02/09/11 14:45	02/09/11 14:03	64742-65-0	
n-Octacosane (S) SG	10	7 %	50-150	1	02/09/11 14:45	02/09/11 14:03	630-02-4	
o-Terphenyl (S) SG	11	2 %	50-150	1	02/09/11 14:45	02/09/11 14:03	84-15-1	
NWTPH-Gx GCV	Analytical	Method: NWTP	PH-Gx Preparation Me	ethod: N	IWTPH-Gx			
Gasoline Range Organics	N	D mg/kg	5.3	1	02/09/11 17:00	02/10/11 01:24		
a,a,a-Trifluorotoluene (S)	11	1 %	50-150	1	02/09/11 17:00	02/10/11 01:24	98-08-8	
4-Bromofluorobenzene (S)	10	1 %	50-150	1	02/09/11 17:00	02/10/11 01:24	460-00-4	
8270 MSSV PAH by SIM	Analytical	Method: EPA 8	270 by SIM Preparati	on Meth	nod: EPA 3546			
Acenaphthene	N	D ug/kg	7.4	1	02/07/11 17:40	02/10/11 22:14	83-32-9	
Acenaphthylene		D ug/kg	7.4	1		02/10/11 22:14		
Anthracene		0 ug/kg	7.4	1		02/10/11 22:14		
Benzo(a)anthracene		6 ug/kg	7.4	1	02/07/11 17:40	02/10/11 22:14	56-55-3	
Benzo(a)pyrene		5 ug/kg	7.4	1		02/10/11 22:14		
Benzo(b)fluoranthene		6 ug/kg	7.4	1		02/10/11 22:14		
Benzo(g,h,i)perylene		7 ug/kg	7.4	1		02/10/11 22:14		
Benzo(k)fluoranthene		0 ug/kg	7.4	1		02/10/11 22:14		
Chrysene		5 ug/kg	7.4	1		02/10/11 22:14		
Dibenz(a,h)anthracene		D ug/kg	7.4	1		02/10/11 22:14		
Fluoranthene		4 ug/kg	7.4	1		02/10/11 22:14		
Fluorene		Tug/kg Dug/kg	7.4	1		02/10/11 22:14		
Indeno(1,2,3-cd)pyrene		8 ug/kg	7.4	1		02/10/11 22:14		
7			7.4	1		02/10/11 22:14		
1-Methylnaphthalene		D ug/kg						
2-Methylnaphthalene		D ug/kg	7.4	1		02/10/11 22:14		
Naphthalene		7 ug/kg	7.4	1		02/10/11 22:14		
Phenanthrene		2 ug/kg	7.4	1		02/10/11 22:14		
Pyrene		7 ug/kg	7.4	1		02/10/11 22:14		
2-Fluorobiphenyl (S)		7 %	31-131	1		02/10/11 22:14		
Terphenyl-d14 (S)		3 %	30-133	1	02/07/11 17:40	02/10/11 22:14	1/18-51-0	
8260/5035A Volatile Organics	•	Method: EPA 8		4		00/07/44 40 40	74 40 0	
Benzene		D ug/kg	2.9	1		02/07/11 16:49	-	
Ethylbenzene		D ug/kg	2.9	1		02/07/11 16:49		
Toluene		D ug/kg	2.9	1		02/07/11 16:49		
Xylene (Total)		D ug/kg	8.8	1		02/07/11 16:49		
Dibromofluoromethane (S)		5 %	80-136	1		02/07/11 16:49		
Toluene-d8 (S)		6 %	80-120	1		02/07/11 16:49		
4-Bromofluorobenzene (S)		1 %	72-122	1		02/07/11 16:49		
1,2-Dichloroethane-d4 (S)	10	7 %	80-143	1		02/07/11 16:49	17060-07-0	
	Analytical	Method: ASTM	D2974-87					
Percent Moisture	11.	3 %	0.10	1		02/13/11 21:07	•	

Date: 02/18/2011 01:32 PM

REPORT OF LABORATORY ANALYSIS

Page 6 of 21

Project: East Bay Redevelopment 138130

Pace Project No.: 256498

Sample: SPL-29-4	Lab ID: 256498004	Collected: 02/04/11 1	10.55	Received: 02	/03/11 11.36 1	Matrix: Solid	
Results reported on a "dry-weight" b	pasis						
Parameters	Results Units	Report Limit [DF	Prepared	Analyzed	CAS No.	Qua
WTPH-Dx GCS SG	Analytical Method: NWT	PH-Dx Preparation Metho	od: El	PA 3546			
Diesel Range SG	ND mg/kg	20.7	1	02/09/11 14:45	02/09/11 14:20		
Motor Oil Range SG	ND mg/kg	82.8	1	02/09/11 14:45	02/09/11 14:20	64742-65-0	
n-Octacosane (S) SG	106 %	50-150	1	02/09/11 14:45	02/09/11 14:20	630-02-4	
o-Terphenyl (S) SG	99 %	50-150	1	02/09/11 14:45	02/09/11 14:20	84-15-1	
NWTPH-Gx GCV	Analytical Method: NWT	PH-Gx Preparation Method	od: N	WTPH-Gx			
Gasoline Range Organics	ND mg/kg	5.6	1	02/09/11 17:00	02/10/11 01:47		
a,a,a-Trifluorotoluene (S)	98 %		1	02/09/11 17:00			
4-Bromofluorobenzene (S)	91 %		1	02/09/11 17:00			
3270 MSSV PAH by SIM	Analytical Method: EPA	8270 by SIM Preparation	Meth	od: EPA 3546			
Acenaphthene	ND ug/kg	7.2	1	02/07/11 17:40	02/10/11 22:32	83-32-0	
Acenaphthylene	ND ug/kg		1	02/07/11 17:40			
Anthracene	ND ug/kg		1	02/07/11 17:40			
Benzo(a)anthracene	ND ug/kg		1	02/07/11 17:40			
Benzo(a)pyrene	ND ug/kg		1	02/07/11 17:40			
Benzo(b)fluoranthene	ND ug/kg		1	02/07/11 17:40			
Benzo(g,h,i)perylene	ND ug/kg		1	02/07/11 17:40			
Benzo(k)fluoranthene	ND ug/kg		1	02/07/11 17:40			
* *			1	02/07/11 17:40			
Chrysene	ND ug/kg		1	02/07/11 17:40			
Dibenz(a,h)anthracene	ND ug/kg			02/07/11 17:40			
Fluoranthene	ND ug/kg		1				
Fluorene	ND ug/kg		1	02/07/11 17:40			
ndeno(1,2,3-cd)pyrene	ND ug/kg		1	02/07/11 17:40			
I-Methylnaphthalene	ND ug/kg		1	02/07/11 17:40			
2-Methylnaphthalene	ND ug/kg		1	02/07/11 17:40			
Naphthalene	ND ug/kg		1	02/07/11 17:40			
Phenanthrene	ND ug/kg		1	02/07/11 17:40			
Pyrene	7.9 ug/kg		1	02/07/11 17:40			
2-Fluorobiphenyl (S)	70 %		1	02/07/11 17:40			
Ferphenyl-d14 (S)	83 %		1	02/07/11 17:40	02/10/11 22:32	1718-51-0	
3260/5035A Volatile Organics	Analytical Method: EPA						
Benzene	ND ug/kg		1		02/08/11 10:46		
Ethylbenzene	ND ug/kg		1		02/08/11 10:46		
Toluene	ND ug/kg		1		02/08/11 10:46		
(Ylene (Total)	ND ug/kg		1		02/08/11 10:46		
Dibromofluoromethane (S)	95 %		1		02/08/11 10:46	1868-53-7	
Toluene-d8 (S)	102 %		1		02/08/11 10:46		
I-Bromofluorobenzene (S)	102 %	72-122	1		02/08/11 10:46	460-00-4	
,2-Dichloroethane-d4 (S)	101 %	80-143	1		02/08/11 10:46	17060-07-0	
	Analytical Method: AST	M D2974-87					
	•						

Date: 02/18/2011 01:32 PM

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

Page 7 of 21

Project: East Bay Redevelopment 138130

Pace Project No.: 256498

Results reported on a "dry-weight" b	!-						
	asis						
Parameters	Results l	Inits Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
WTPH-Dx GCS SG	Analytical Method: I	NWTPH-Dx Preparation M	lethod: E	PA 3546			
Diesel Range SG	ND mg/kg	21.4	1	02/09/11 14:45	02/09/11 14:37		
Motor Oil Range SG	ND mg/kg	85.6	1	02/09/11 14:45	02/09/11 14:37	64742-65-0	
n-Octacosane (S) SG	85 %	50-150	1	02/09/11 14:45	02/09/11 14:37	630-02-4	
o-Terphenyl (S) SG	95 %	50-150	1		02/09/11 14:37		
NWTPH-Gx GCV	Analytical Method: I	NWTPH-Gx Preparation M	lethod: N	IWTPH-Gx			
Gasoline Range Organics	ND mg/kg	4.7	1	02/09/11 17:00	02/10/11 02:11		
a,a,a-Trifluorotoluene (S)	97 %	50-150	1		02/10/11 02:11	98-08-8	
4-Bromofluorobenzene (S)	91 %	50-150	1		02/10/11 02:11		
3270 MSSV PAH by SIM	Analytical Method: I	EPA 8270 by SIM Prepara	tion Meth	nod: EPA 3546			
\capanhthana	ND ug/kg	7.1	1	02/07/11 17:40	02/10/11 22:50	93 33 0	
Acenaphthene Acenaphthylene	ND ug/kg ND ug/kg	7.1	1		02/10/11 22:50		
Anthracene	ND ug/kg	7.1	1		02/10/11 22:50		
		7.1	1		02/10/11 22:50		
Benzo(a)anthracene	ND ug/kg				02/10/11 22:50		
Senzo(a)pyrene	ND ug/kg	7.1	1				
Benzo(b)fluoranthene	ND ug/kg	7.1	1		02/10/11 22:50		
Benzo(g,h,i)perylene	ND ug/kg	7.1	1		02/10/11 22:50		
Benzo(k)fluoranthene	ND ug/kg	7.1	1		02/10/11 22:50		
Chrysene	ND ug/kg	7.1	1		02/10/11 22:50		
Dibenz(a,h)anthracene	ND ug/kg	7.1	1		02/10/11 22:50		
Fluoranthene	8.2 ug/kg	7.1	1		02/10/11 22:50		
luorene	ND ug/kg	7.1	1		02/10/11 22:50		
ndeno(1,2,3-cd)pyrene	ND ug/kg	7.1	1		02/10/11 22:50		
-Methylnaphthalene	ND ug/kg	7.1	1	02/07/11 17:40	02/10/11 22:50	90-12-0	
2-Methylnaphthalene	ND ug/kg	7.1	1	02/07/11 17:40	02/10/11 22:50	91-57-6	
Naphthalene	ND ug/kg	7.1	1	02/07/11 17:40	02/10/11 22:50	91-20-3	
Phenanthrene	ND ug/kg	7.1	1	02/07/11 17:40	02/10/11 22:50	85-01-8	
Pyrene	10.1 ug/kg	7.1	1	02/07/11 17:40	02/10/11 22:50	129-00-0	
2-Fluorobiphenyl (S)	67 %	31-131	1	02/07/11 17:40	02/10/11 22:50	321-60-8	
Terphenyl-d14 (S)	81 %	30-133	1	02/07/11 17:40	02/10/11 22:50	1718-51-0	
260/5035A Volatile Organics	Analytical Method: I	EPA 8260					
Benzene	ND ug/kg	2.5	1		02/07/11 17:28	71-43-2	
Ethylbenzene	ND ug/kg	2.5	1		02/07/11 17:28	100-41-4	
Toluene	ND ug/kg	2.5	1		02/07/11 17:28	108-88-3	
(ylene (Total)	ND ug/kg	7.6	1		02/07/11 17:28	1330-20-7	
Dibromofluoromethane (S)	91 %	80-136	1		02/07/11 17:28	1868-53-7	
Toluene-d8 (S)	101 %	80-120	1		02/07/11 17:28	2037-26-5	
1-Bromofluorobenzene (S)	96 %	72-122	1		02/07/11 17:28		
I,2-Dichloroethane-d4 (S)	103 %	80-143	1		02/07/11 17:28		
,			-				
	Analytical Method: A	ASTM D2974-87					

Date: 02/18/2011 01:32 PM

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

Page 8 of 21

Project: East Bay Redevelopment 138130

Pace Project No.: 256498

Sample: SPL-29-6	Lab ID: 256498006	Collected: 02/04/11 10	:55 Received	d: 02/05/11 11:38	Matrix: Solid	
Results reported on a "dry-weigh	t" basis					
Parameters	Results Uni	Report Limit DI	F Prepar	ed Analyzed	d CAS No.	Qua
NWTPH-Dx GCS SG	Analytical Method: NW	TPH-Dx Preparation Method	d: EPA 3546			
Diesel Range SG	ND mg/kg	24.4 1	02/09/11 1	4:45 02/09/11 14	:53	
Motor Oil Range SG	ND mg/kg	97.4 1	02/09/11 1	4:45 02/09/11 14	:53 64742-65-0	
n-Octacosane (S) SG	110 %	50-150 1	02/09/11 1	4:45 02/09/11 14	:53 630-02-4	
o-Terphenyl (S) SG	100 %	50-150 1		4:45 02/09/11 14		
NWTPH-Gx GCV	Analytical Method: NW	TPH-Gx Preparation Metho	d: NWTPH-Gx			
Gasoline Range Organics	ND mg/kg	7.2 1	02/09/11 1	7:00 02/10/11 02	:35	
a,a,a-Trifluorotoluene (S)	98 %	50-150 1		7:00 02/10/11 02		
4-Bromofluorobenzene (S)	86 %	50-150 1		7:00 02/10/11 02		
3270 MSSV PAH by SIM	Analytical Method: EP	A 8270 by SIM Preparation M	Лethod: EPA 35	546		
Acenaphthene	ND ug/kg	8.7 1	02/07/11 1	7:40 02/10/11 20	:42 83-32-9	
Acenaphthylene	ND ug/kg	8.7 1		7:40 02/10/11 20		
Anthracene	ND ug/kg	8.7 1		7:40 02/10/11 20		
Benzo(a)anthracene	ND ug/kg	8.7 1		7:40 02/10/11 20		
Benzo(a)pyrene	ND ug/kg	8.7 1		7:40 02/10/11 20		
Benzo(b)fluoranthene	ND ug/kg	8.7 1		7:40 02/10/11 20		
Benzo(g,h,i)perylene	ND ug/kg	8.7 1		7:40 02/10/11 20		
Benzo(k)fluoranthene	ND ug/kg	8.7 1		7:40 02/10/11 20		
Chrysene	ND ug/kg	8.7 1		7:40 02/10/11 20		
Dibenz(a,h)anthracene	ND ug/kg	8.7 1		7:40 02/10/11 20		
Fluoranthene	ND ug/kg	8.7 1		7:40 02/10/11 20 7:40 02/10/11 20		
Fluorene	ND ug/kg	8.7 1		7:40 02/10/11 20 7:40 02/10/11 20		
ndeno(1,2,3-cd)pyrene	ND ug/kg	8.7 1		7:40 02/10/11 20 7:40 02/10/11 20		
		8.7 1		7:40 02/10/11 20 7:40 02/10/11 20		
I-Methylnaphthalene	ND ug/kg					
2-Methylnaphthalene	ND ug/kg	8.7 1		7:40 02/10/11 20		
Naphthalene Phenanthrene	ND ug/kg	8.7 1 8.7 1		7:40 02/10/11 20 7:40 02/10/11 20		
	ND ug/kg					
Pyrene	ND ug/kg	8.7 1		7:40 02/10/11 20 7:40 02/10/11 20		
2-Fluorobiphenyl (S) Ferphenyl-d14 (S)	70 % 80 %	31-131 1 30-133 1		7:40 02/10/11 20 7:40 02/10/11 20		
3260/5035A Volatile Organics	Analytical Method: EP		02/01/11	7.10 02/10/11 20	.12 1110010	
Benzene	ND ug/kg	3.1 1		02/07/11 17	:48 71-43-2	
Ethylbenzene	ND ug/kg	3.1 1			:48 100-41-4	
Toluene	ND ug/kg	3.1 1			:48 108-88-3	
Kylene (Total)	ND ug/kg	9.2 1			:48 1330-20-7	
Dibromofluoromethane (S)	95 %	80-136 1			:48 1868-53-7	
Foluene-d8 (S)	104 %	80-120 1			:48 2037-26-5	
	104 %				:48 460-00-4	
4-Bromofluorobenzene (S) 1,2-Dichloroethane-d4 (S)						
1,2-Dichloroethane-04 (5)	102 %	80-143 1		02/07/11 17	:48 17060-07-0	
	Analytical Method: AS					
Percent Moisture	24.8 %	0.10 1		02/13/11 21	:10	

Date: 02/18/2011 01:32 PM

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

Page 9 of 21

Project: East Bay Redevelopment 138130

Pace Project No.: 256498

Sample: SPL-29-7	Lab ID: 256498007	Collected: 02/04/11	11:05	Received: 02	/05/11 11:38	Matrix: Solid	
Results reported on a "dry-weight	" basis						
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
WTPH-Dx GCS SG	Analytical Method: NWT	PH-Dx Preparation Met	thod: E	PA 3546			
Diesel Range SG	ND mg/kg	29.2	1	02/09/11 14:45	02/09/11 15:44		
Motor Oil Range SG	ND mg/kg	117	1	02/09/11 14:45	02/09/11 15:44	64742-65-0	
n-Octacosane (S) SG	110 %	50-150	1	02/09/11 14:45	02/09/11 15:44	630-02-4	
p-Terphenyl (S) SG	107 %	50-150	1	02/09/11 14:45			
WTPH-Gx GCV	Analytical Method: NWT	PH-Gx Preparation Met	thod: N	WTPH-Gx			
Gasoline Range Organics	ND mg/kg	8.7	1	02/09/11 17:00	02/10/11 03:22		
a,a,a-Trifluorotoluene (S)	113 %	50-150	1	02/09/11 17:00			
I-Bromofluorobenzene (S)	99 %	50-150	1	02/09/11 17:00			
270 MSSV PAH by SIM	Analytical Method: EPA	8270 by SIM Preparatio	n Meth	nod: EPA 3546			
Acenaphthene	ND ug/kg	9.6	1	02/07/11 17:40	02/10/11 21:00	83-32-9	
Acenaphthylene	ND ug/kg	9.6	1	02/07/11 17:40			
Anthracene	ND ug/kg	9.6	1	02/07/11 17:40			
Benzo(a)anthracene	ND ug/kg	9.6	1		02/10/11 21:00		
Benzo(a)pyrene	ND ug/kg	9.6	1	02/07/11 17:40			
Benzo(b)fluoranthene	ND ug/kg	9.6	1		02/10/11 21:00		
Benzo(g,h,i)perylene	ND ug/kg	9.6	1	02/07/11 17:40			
Benzo(k)fluoranthene	ND ug/kg	9.6	1	02/07/11 17:40			
Chrysene	ND ug/kg	9.6	1		02/10/11 21:00		
Dibenz(a,h)anthracene	ND ug/kg	9.6	1	02/07/11 17:40			
Fluoranthene	ND ug/kg	9.6	1		02/10/11 21:00		
Fluorene	ND ug/kg	9.6	1	02/07/11 17:40			
	• •		1	02/07/11 17:40			
ndeno(1,2,3-cd)pyrene	ND ug/kg	9.6					
-Methylnaphthalene	ND ug/kg	9.6	1		02/10/11 21:00		
2-Methylnaphthalene	ND ug/kg	9.6	1	02/07/11 17:40			
Naphthalene	ND ug/kg	9.6	1		02/10/11 21:00		
Phenanthrene	ND ug/kg	9.6	1	02/07/11 17:40			
Pyrene	ND ug/kg	9.6	1	02/07/11 17:40			
2-Fluorobiphenyl (S) Terphenyl-d14 (S)	70 % 78 %	31-131 30-133	1 1	02/07/11 17:40 02/07/11 17:40	02/10/11 21:00		
2260/5035A Volatile Organics	Analytical Method: EPA		ļ	02/07/11 17.40	02/10/11 21.00	1710-31-0	
Benzene	ND ug/kg	3.8	1		02/08/11 11:25	71-43-2	
			1		02/08/11 11:25		
Ethylbenzene	ND ug/kg	3.8	1				
Toluene (vlana (Total)	ND ug/kg	3.8 11.5	1		02/08/11 11:25		
(ylene (Total)	ND ug/kg		1		02/08/11 11:25		
Dibromofluoromethane (S)	96 %	80-136	1		02/08/11 11:25		
Foluene-d8 (S)	106 %	80-120	1		02/08/11 11:25		
I-Bromofluorobenzene (S)	102 %	72-122	1		02/08/11 11:25		
,2-Dichloroethane-d4 (S)	100 %	80-143	1		02/08/11 11:25	17060-07-0	
	Analytical Method: ASTM	/I D2974-87					
Percent Moisture	31.8 %	0.10	1		02/13/11 21:10		

Date: 02/18/2011 01:32 PM

REPORT OF LABORATORY ANALYSIS

Page 10 of 21

Project: East Bay Redevelopment 138130

Pace Project No.: 256498

Results reported on a "dry-weight" ba	sis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
WTPH-Dx GCS SG	Analytical I	Method: NWTP	H-Dx Preparation N	/lethod: E	PA 3546			
Diesel Range SG	NE	mg/kg	21.8	1	02/09/11 14:45	02/09/11 16:01		
Motor Oil Range SG		mg/kg	87.1	1	02/09/11 14:45	02/09/11 16:01	64742-65-0	
n-Octacosane (S) SG		5 %	50-150	1	02/09/11 14:45	02/09/11 16:01	630-02-4	
p-Terphenyl (S) SG		5 %	50-150			02/09/11 16:01		
NWTPH-Gx GCV	Analytical I	Method: NWTP	H-Gx Preparation N	/lethod: N	IWTPH-Gx			
Gasoline Range Organics	NE	mg/kg	6.1	1	02/09/11 17:00	02/10/11 03:46		
a,a,a-Trifluorotoluene (S)) %	50-150			02/10/11 03:46		
4-Bromofluorobenzene (S)		3 %	50-150			02/10/11 03:46		
3270 MSSV PAH by SIM	Analytical I	Method: EPA 8	270 by SIM Prepara	ation Meth	nod: EPA 3546			
Acenaphthene	NΓ	ug/kg	7.2	1	02/07/11 17:40	02/10/11 23:09	83-32-0	
Acenaphthylene		ug/kg ug/kg	7.2			02/10/11 23:09		
Anthracene		ug/kg ug/kg	7.2			02/10/11 23:09		
Benzo(a)anthracene		ug/kg ug/kg	7.2			02/10/11 23:09		
• •			7.2			02/10/11 23:09		
Benzo(a)pyrene		l ug/kg						
Benzo(b)fluoranthene		ug/kg	7.2			02/10/11 23:09		
Benzo(g,h,i)perylene		l ug/kg	7.2			02/10/11 23:09		
Benzo(k)fluoranthene		ug/kg	7.2			02/10/11 23:09		
Chrysene		ug/kg	7.2			02/10/11 23:09		
Dibenz(a,h)anthracene		ug/kg	7.2			02/10/11 23:09		
Fluoranthene		l ug/kg	7.2			02/10/11 23:09		
luorene		ug/kg	7.2			02/10/11 23:09		
ndeno(1,2,3-cd)pyrene		ug/kg	7.2			02/10/11 23:09		
-Methylnaphthalene		ug/kg	7.2			02/10/11 23:09		
2-Methylnaphthalene		ug/kg	7.2		02/07/11 17:40	02/10/11 23:09	91-57-6	
Naphthalene	NE	ug/kg	7.2			02/10/11 23:09		
Phenanthrene		ug/kg	7.2		02/07/11 17:40	02/10/11 23:09	85-01-8	
Pyrene	34.7	' ug/kg	7.2	1	02/07/11 17:40	02/10/11 23:09	129-00-0	
2-Fluorobiphenyl (S)	70) %	31-131	1	02/07/11 17:40	02/10/11 23:09	321-60-8	
erphenyl-d14 (S)	85	5 %	30-133	1	02/07/11 17:40	02/10/11 23:09	1718-51-0	
260/5035A Volatile Organics	Analytical I	Method: EPA 8	260					
Benzene		ug/kg	2.8	1		02/08/11 11:44		
Ethylbenzene	NE	ug/kg	2.8	1		02/08/11 11:44	100-41-4	
Toluene	NE	ug/kg	2.8	1		02/08/11 11:44	108-88-3	
(Ylene (Total)	NE	ug/kg	8.3	1		02/08/11 11:44	1330-20-7	
Dibromofluoromethane (S)	94	1 %	80-136	1		02/08/11 11:44	1868-53-7	
Toluene-d8 (S)	107	7 %	80-120	1		02/08/11 11:44	2037-26-5	
1-Bromofluorobenzene (S)	98	3 %	72-122	1		02/08/11 11:44	460-00-4	
,2-Dichloroethane-d4 (S)	103	3 %	80-143	1		02/08/11 11:44	17060-07-0	
	Analytical I	Method: ASTM	D2974-87					

Date: 02/18/2011 01:32 PM

REPORT OF LABORATORY ANALYSIS

Page 11 of 21

02/07/11 11:57 460-00-4

02/07/11 11:57 17060-07-0

ANALYTICAL RESULTS

Project: East Bay Redevelopment 138130

Pace Project No.: 256498

4-Bromofluorobenzene (S)

1,2-Dichloroethane-d4 (S)

Sample: TB-020411	Lab ID: 256498009 Co	ollected: 02/04/1	1 00:00	Received: 02	2/05/11 11:38 N	Matrix: Solid			
Results reported on a "wet-weight" basis									
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
NWTPH-Gx GCV	Analytical Method: NWTPH-G	x Preparation Me	ethod: N	IWTPH-Gx					
Gasoline Range Organics	ND mg/kg	5.0	1	02/09/11 17:00	02/09/11 23:01				
a,a,a-Trifluorotoluene (S)	95 %	50-150	1	02/09/11 17:00	02/09/11 23:01	98-08-8			
4-Bromofluorobenzene (S)	86 %	50-150	1	02/09/11 17:00	02/09/11 23:01	460-00-4			
8260/5035A Volatile Organics	Analytical Method: EPA 8260								
Benzene	ND ug/kg	3.0	1		02/07/11 11:57	71-43-2			
Ethylbenzene	ND ug/kg	3.0	1		02/07/11 11:57	100-41-4			
Toluene	ND ug/kg	3.0	1		02/07/11 11:57	108-88-3			
Xylene (Total)	ND ug/kg	9.0	1		02/07/11 11:57	1330-20-7			
Dibromofluoromethane (S)	96 %	80-136	1		02/07/11 11:57	1868-53-7			
Toluene-d8 (S)	104 %	80-120	1		02/07/11 11:57	2037-26-5			

72-122

80-143

1

1

106 %

100 %

Date: 02/18/2011 01:32 PM

Project: East Bay Redevelopment 138130

Pace Project No.: 256498

QC Batch: OEXT/3272 Analysis Method: NWTPH-Dx
QC Batch Method: EPA 3546 Analysis Description: NWTPH-Dx GCS

Associated Lab Samples: 256498001, 256498002, 256498003, 256498004, 256498005, 256498006, 256498007, 256498008

METHOD BLANK: 57286 Matrix: Solid

Associated Lab Samples: 256498001, 256498002, 256498003, 256498004, 256498005, 256498006, 256498007, 256498008

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Diesel Range SG	mg/kg	ND ND	20.0	02/10/11 15:13	
Motor Oil Range SG	mg/kg	ND	80.0	02/10/11 15:13	
n-Octacosane (S) SG	%	120	50-150	02/10/11 15:13	
o-Terphenyl (S) SG	%	115	50-150	02/10/11 15:13	

LABORATORY CONTROL SAMPLE: 57287

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Diesel Range SG	mg/kg	500	458	92	56-124	
Motor Oil Range SG	mg/kg	500	510	102	50-150	
n-Octacosane (S) SG	%			113	50-150	
o-Terphenyl (S) SG	%			116	50-150	

SAMPLE DUPLICATE: 57288

Parameter	Units	256498002 Result	Dup Result	RPD	Qualifiers
Diesel Range SG	mg/kg	28.7	23.9	18	
Motor Oil Range SG	mg/kg	131	86.4	41	
n-Octacosane (S) SG	%	112	116	.4	
o-Terphenyl (S) SG	%	112	112	3	

SAMPLE DUPLICATE: 57289

		256499003	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Diesel Range SG	mg/kg	51.1	33.0	43	
Motor Oil Range SG	mg/kg	213	172	21	
n-Octacosane (S) SG	%	143	108	24	
o-Terphenyl (S) SG	%	95	96	4	

Project: East Bay Redevelopment 138130

Pace Project No.: 256498

QC Batch: GCV/2150 Analysis Method: NWTPH-Gx

QC Batch Method: NWTPH-Gx Analysis Description: NWTPH-Gx Solid GCV

Associated Lab Samples: 256498001, 256498002, 256498003, 256498004, 256498005, 256498006, 256498007, 256498008, 256498009

METHOD BLANK: 57717 Matrix: Solid

Associated Lab Samples: 256498001, 256498002, 256498003, 256498004, 256498005, 256498006, 256498007, 256498008, 256498009

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Gasoline Range Organics	mg/kg	ND ND	5.0	02/09/11 22:37	
4-Bromofluorobenzene (S)	%	90	50-150	02/09/11 22:37	
a,a,a-Trifluorotoluene (S)	%	102	50-150	02/09/11 22:37	

LABORATORY CONTROL SAMPLE: 57718

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Gasoline Range Organics	mg/kg	12.5	11.0	88	54-156	
4-Bromofluorobenzene (S)	%			85	50-150	
a,a,a-Trifluorotoluene (S)	%			90	50-150	

SAMPLE DUPLICATE: 58143

Parameter	Units	256498001 Result	Dup Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND	.95J		
4-Bromofluorobenzene (S)	%	88	101	14	
a,a,a-Trifluorotoluene (S)	%	96	110	14	

SAMPLE DUPLICATE: 58144

		256498006	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND	.67J		
4-Bromofluorobenzene (S)	%	86	86	.7	
a,a,a-Trifluorotoluene (S)	%	98	97	.8	

Project: East Bay Redevelopment 138130

Pace Project No.: 256498

QC Batch: OEXT/3270 Analysis Method: EPA 8270 by SIM

QC Batch Method: EPA 3546 Analysis Description: 8270/3546 MSSV PAH by SIM

Associated Lab Samples: 256498001, 256498002, 256498003, 256498004, 256498005, 256498006, 256498007, 256498008

METHOD BLANK: 57279 Matrix: Solid

Associated Lab Samples: 256498001, 256498002, 256498003, 256498004, 256498005, 256498006, 256498007, 256498008

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/kg	ND	6.7	02/10/11 20:05	
2-Methylnaphthalene	ug/kg	ND	6.7	02/10/11 20:05	
Acenaphthene	ug/kg	ND	6.7	02/10/11 20:05	
Acenaphthylene	ug/kg	ND	6.7	02/10/11 20:05	
Anthracene	ug/kg	ND	6.7	02/10/11 20:05	
Benzo(a)anthracene	ug/kg	ND	6.7	02/10/11 20:05	
Benzo(a)pyrene	ug/kg	ND	6.7	02/10/11 20:05	
Benzo(b)fluoranthene	ug/kg	ND	6.7	02/10/11 20:05	
Benzo(g,h,i)perylene	ug/kg	ND	6.7	02/10/11 20:05	
Benzo(k)fluoranthene	ug/kg	ND	6.7	02/10/11 20:05	
Chrysene	ug/kg	ND	6.7	02/10/11 20:05	
Dibenz(a,h)anthracene	ug/kg	ND	6.7	02/10/11 20:05	
Fluoranthene	ug/kg	ND	6.7	02/10/11 20:05	
Fluorene	ug/kg	ND	6.7	02/10/11 20:05	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	6.7	02/10/11 20:05	
Naphthalene	ug/kg	ND	6.7	02/10/11 20:05	
Phenanthrene	ug/kg	ND	6.7	02/10/11 20:05	
Pyrene	ug/kg	ND	6.7	02/10/11 20:05	
2-Fluorobiphenyl (S)	%	67	31-131	02/10/11 20:05	
Terphenyl-d14 (S)	%	83	30-133	02/10/11 20:05	

LADONATORT	CONTINUE OAMI EL	3/200

LABORATORY CONTROL SAMPLE:

	0.200					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/kg	133	97.3	73	37-121	
2-Methylnaphthalene	ug/kg	133	98.6	74	33-132	
Acenaphthene	ug/kg	133	92.3	69	32-127	
Acenaphthylene	ug/kg	133	92.6	69	31-134	
Anthracene	ug/kg	133	94.4	71	42-135	
Benzo(a)anthracene	ug/kg	133	105	79	43-139	
Benzo(a)pyrene	ug/kg	133	109	82	44-144	
Benzo(b)fluoranthene	ug/kg	133	99.0	74	42-144	
Benzo(g,h,i)perylene	ug/kg	133	96.7	73	46-136	
Benzo(k)fluoranthene	ug/kg	133	101	75	45-147	
Chrysene	ug/kg	133	95.6	72	42-144	
Dibenz(a,h)anthracene	ug/kg	133	97.5	73	48-142	
Fluoranthene	ug/kg	133	101	75	44-143	
Fluorene	ug/kg	133	98.4	74	32-146	
Indeno(1,2,3-cd)pyrene	ug/kg	133	97.6	73	47-140	
Naphthalene	ug/kg	133	86.0	64	35-118	
Phenanthrene	ug/kg	133	97.1	73	42-131	

Date: 02/18/2011 01:32 PM

REPORT OF LABORATORY ANALYSIS

Page 15 of 21

Project: East Bay Redevelopment 138130

Pace Project No.: 256498

LABORATORY CONTROL SAMPLE: 57280

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Pyrene	ug/kg	133	103	77	47-136	
2-Fluorobiphenyl (S)	%			69	31-131	
Terphenyl-d14 (S)	%			83	30-133	

MATRIX SPIKE & MATRIX S	PIKE DUPLICAT	TE: 57281	•	•	57282	•		•	•	•	
			MS	MSD							
		256498001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1-Methylnaphthalene	ug/kg	ND	144	141	111	110	74	74	31-123	1	
2-Methylnaphthalene	ug/kg	10.6	144	141	118	119	75	76	15-146	.3	
Acenaphthene	ug/kg	ND	144	141	100	99.5	69	69	19-141	.5	
Acenaphthylene	ug/kg	ND	144	141	101	102	69	70	30-142	.5	
Anthracene	ug/kg	ND	144	141	103	103	70	71	38-137	.3	
Benzo(a)anthracene	ug/kg	ND	144	141	112	116	73	77	37-143	3	
Benzo(a)pyrene	ug/kg	ND	144	141	110	115	72	76	33-147	4	
Benzo(b)fluoranthene	ug/kg	10.7	144	141	111	105	70	66	25-156	6	
Benzo(g,h,i)perylene	ug/kg	8.3	144	141	96.1	97.3	61	63	26-142	1	
Benzo(k)fluoranthene	ug/kg	ND	144	141	93.6	111	61	75	35-142	17	
Chrysene	ug/kg	10.5	144	141	103	106	65	67	23-150	2	
Dibenz(a,h)anthracene	ug/kg	ND	144	141	92.5	93.9	63	65	41-140	1	
Fluoranthene	ug/kg	14.9	144	141	111	118	67	73	25-155	6	
Fluorene	ug/kg	ND	144	141	107	107	73	74	33-152	.5	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	144	141	94.2	96.4	62	65	36-139	2	
Naphthalene	ug/kg	10.1	144	141	104	105	65	67	25-121	.9	
Phenanthrene	ug/kg	12.1	144	141	109	115	67	73	29-141	5	
Pyrene	ug/kg	17.3	144	141	124	131	74	80	36-145	5	
2-Fluorobiphenyl (S)	%						69	69	31-131		
Terphenyl-d14 (S)	%						80	81	30-133		

Date: 02/18/2011 01:32 PM

REPORT OF LABORATORY ANALYSIS

Page 16 of 21

Project: East Bay Redevelopment 138130

Pace Project No.: 256498

QC Batch: MSV/3810 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5035A Volatile Organics

Associated Lab Samples: 256498001, 256498002, 256498003, 256498005, 256498006, 256498009

METHOD BLANK: 57244 Matrix: Solid

Associated Lab Samples: 256498001, 256498002, 256498003, 256498005, 256498006, 256498009

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND	3.0	02/07/11 11:37	
Ethylbenzene	ug/kg	ND	3.0	02/07/11 11:37	
Toluene	ug/kg	ND	3.0	02/07/11 11:37	
Xylene (Total)	ug/kg	ND	9.0	02/07/11 11:37	
1,2-Dichloroethane-d4 (S)	%	105	80-143	02/07/11 11:37	
4-Bromofluorobenzene (S)	%	96	72-122	02/07/11 11:37	
Dibromofluoromethane (S)	%	96	80-136	02/07/11 11:37	
Toluene-d8 (S)	%	105	80-120	02/07/11 11:37	

LABORATORY CONTROL SAME	PLE & LCSD: 57245		57	7246						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene	ug/kg	50	49.5	49.5	99	99	75-133	.05	30	
Ethylbenzene	ug/kg	50	50.6	49.3	101	99	68-131	3	30	
Toluene	ug/kg	50	54.0	51.8	108	104	73-124	4	30	
Xylene (Total)	ug/kg	150	159	157	106	105	68-130	1	30	
1,2-Dichloroethane-d4 (S)	%				97	90	80-143			
4-Bromofluorobenzene (S)	%				101	102	72-122			
Dibromofluoromethane (S)	%				95	98	80-136			
Toluene-d8 (S)	%				107	103	80-120			

Project: East Bay Redevelopment 138130

Pace Project No.: 256498

QC Batch: MSV/3818 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5035A Volatile Organics

Associated Lab Samples: 256498004, 256498007, 256498008

METHOD BLANK: 57451 Matrix: Solid

Associated Lab Samples: 256498004, 256498007, 256498008

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND	3.0	02/08/11 09:13	
Ethylbenzene	ug/kg	ND	3.0	02/08/11 09:13	
Toluene	ug/kg	ND	3.0	02/08/11 09:13	
Xylene (Total)	ug/kg	ND	9.0	02/08/11 09:13	
1,2-Dichloroethane-d4 (S)	%	102	80-143	02/08/11 09:13	
4-Bromofluorobenzene (S)	%	99	72-122	02/08/11 09:13	
Dibromofluoromethane (S)	%	94	80-136	02/08/11 09:13	
Toluene-d8 (S)	%	103	80-120	02/08/11 09:13	

LABORATORY CONTROL SAME	PLE & LCSD: 57452		57	7453						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene	ug/kg	50	48.8	51.4	98	103	75-133	5	30	
Ethylbenzene	ug/kg	50	48.7	50.1	97	100	68-131	3	30	
Toluene	ug/kg	50	52.7	54.4	105	109	73-124	3	30	
Xylene (Total)	ug/kg	150	153	158	102	105	68-130	3	30	
1,2-Dichloroethane-d4 (S)	%				111	103	80-143			
4-Bromofluorobenzene (S)	%				105	102	72-122			
Dibromofluoromethane (S)	%				101	98	80-136			
Toluene-d8 (S)	%				107	105	80-120			

Project: East Bay Redevelopment 138130

Pace Project No.: 256498

QC Batch: PMST/1522 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 256498001, 256498002, 256498003, 256498004, 256498005, 256498006, 256498007, 256498008

SAMPLE DUPLICATE: 58359

Parameter Units Result Result RPD Qualifiers

Percent Moisture % 8.8 8.9 2

SAMPLE DUPLICATE: 58360

ParameterUnits256550009 ResultDup ResultRPDQualifiersPercent Moisture%10.310.3.5

QUALIFIERS

Project: East Bay Redevelopment 138130

Pace Project No.: 256498

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel Clean-Up

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-S Pace Analytical Services - Seattle

BATCH QUALIFIERS

Batch: MSV/3810

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: MSV/3818

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: East Bay Redevelopment 138130

Pace Project No.: 256498

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
256498001	SPL-29-1	EPA 3546	OEXT/3272	NWTPH-Dx	GCSV/2247
256498002	SPL-29-2	EPA 3546	OEXT/3272	NWTPH-Dx	GCSV/2247
256498003	SPL-29-3	EPA 3546	OEXT/3272	NWTPH-Dx	GCSV/2247
256498004	SPL-29-4	EPA 3546	OEXT/3272	NWTPH-Dx	GCSV/2247
256498005	SPL-29-5	EPA 3546	OEXT/3272	NWTPH-Dx	GCSV/2247
256498006	SPL-29-6	EPA 3546	OEXT/3272	NWTPH-Dx	GCSV/2247
256498007	SPL-29-7	EPA 3546	OEXT/3272	NWTPH-Dx	GCSV/2247
256498008	SPL-29-8	EPA 3546	OEXT/3272	NWTPH-Dx	GCSV/2247
256498001	SPL-29-1	NWTPH-Gx	GCV/2150	NWTPH-Gx	GCV/2168
256498002	SPL-29-2	NWTPH-Gx	GCV/2150	NWTPH-Gx	GCV/2168
256498003	SPL-29-3	NWTPH-Gx	GCV/2150	NWTPH-Gx	GCV/2168
256498004	SPL-29-4	NWTPH-Gx	GCV/2150	NWTPH-Gx	GCV/2168
256498005	SPL-29-5	NWTPH-Gx	GCV/2150	NWTPH-Gx	GCV/2168
256498006	SPL-29-6	NWTPH-Gx	GCV/2150	NWTPH-Gx	GCV/2168
256498007	SPL-29-7	NWTPH-Gx	GCV/2150	NWTPH-Gx	GCV/2168
256498008	SPL-29-8	NWTPH-Gx	GCV/2150	NWTPH-Gx	GCV/2168
256498009	TB-020411	NWTPH-Gx	GCV/2150	NWTPH-Gx	GCV/2168
256498001	SPL-29-1	EPA 3546	OEXT/3270	EPA 8270 by SIM	MSSV/1518
256498002	SPL-29-2	EPA 3546	OEXT/3270	EPA 8270 by SIM	MSSV/1518
256498003	SPL-29-3	EPA 3546	OEXT/3270	EPA 8270 by SIM	MSSV/1518
256498004	SPL-29-4	EPA 3546	OEXT/3270	EPA 8270 by SIM	MSSV/1518
256498005	SPL-29-5	EPA 3546	OEXT/3270	EPA 8270 by SIM	MSSV/1518
256498006	SPL-29-6	EPA 3546	OEXT/3270	EPA 8270 by SIM	MSSV/1518
256498007	SPL-29-7	EPA 3546	OEXT/3270	EPA 8270 by SIM	MSSV/1518
256498008	SPL-29-8	EPA 3546	OEXT/3270	EPA 8270 by SIM	MSSV/1518
256498001	SPL-29-1	EPA 8260	MSV/3810		
256498002	SPL-29-2	EPA 8260	MSV/3810		
256498003	SPL-29-3	EPA 8260	MSV/3810		
256498004	SPL-29-4	EPA 8260	MSV/3818		
256498005	SPL-29-5	EPA 8260	MSV/3810		
256498006	SPL-29-6	EPA 8260	MSV/3810		
256498007	SPL-29-7	EPA 8260	MSV/3818		
256498008	SPL-29-8	EPA 8260	MSV/3818		
256498009	TB-020411	EPA 8260	MSV/3810		

Date: 02/18/2011 01:32 PM

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

								12	#	10	9	00	7	6	Ci	4	ω	2	-	ITEM#		1	Rec	MP	m		A A	8	Se	
						Temp Blank included	ADDITIONAL COMMENTS				TB-020411	SPL-29-8	SPL-29-7	SPL-29-6	SPL-29-5	SPL-29-4	SPL-29-3	SPL-29-2	SPL-29-1	SAMPLE ID (A-Z, 0-9 / ,) Sample IDs MUST BE UNIQUE Other	Section D Matrix Codes Required Client Information MATRIX / CODE	7	Requested Due Date/TAT: 10 -day	UN Fax	tukeb	umpia WA	-	Company: Bown + Caldwoll	Section A Required Client Information:	
	ORIGINAL			tede		Jon	RELINQUIS				SI .	マヤ							546	의 교육 등은 위 및 등록 및 MATRIX CODE (see valid codes to SAMPLE TYPE (G=GRAB C=CO	to left)		Project Number:	Project Name:			Copy To:	Report To:	Section B Required Project Information:	
SIC	PR	SAMPLER N		×		whe	RELINQUISHED BY / AFFILIATION												2	COMPOSITE START DATE TIME	COLLECTED		38130	East Bay Red			5	Tink	nation:	
SIGNATURE of SAMPLER:	PRINT Name of SAMPLER:	SAMPLER NAME AND SIGNATURE	11	2/5/11	1	2/4/11	DATE				4	11/5	1/05	1053	1045	1035	0101	0950	214/11 0935	DATE TIME SAMPLE TEMP AT COLLECTION	TED			Educa bomest			SON			
1	Jon	æ		1/38		1330	TIME				W	4						-	×	# OF CONTAINERS Unpreserved H ₂ SO ₄	F		Pace Profile #:	Pace Project Manager:	Pace Quote Reference:	Address:	Company Name:	Attention:	Section C	
1	Inte		1	J40th		Custed	ACCEPT												×	HNO ₃ HCI NaOH Na ₂ S ₂ O ₃ Methanol Other	Preservatives		Man Black				See	1 2	tion:	
	,			51	1	2	ED BY												25	Analysis Test	Y/N.		8				A	[]		
(MM/DD/YY):			1	(a)	11 Maria	Seal	ACCEPTED BY / AFFILIATION				2 4 4 4									PAHSALOHIAMS	SG	Requested.	Superior State Sta					-		
14/2			11	2/5/11	1	11/11/2	DATE				~	///								TPH-G' BTEX	54	Requested Analysis Filtered	STATE:	Site Location	□ UST	NPDES	REGULATORY AGENCY	The state of		
=				1138		1330	TIME															red (Y/N)	WIT		☐ RCRA	□ GRO	RY AGENC		Page:	٦
Te	mp in	°C	1	0.9																Residual Chlorine (Y/N)			F	>		GROUND WATER	Y		ge:	
	ceived ce (Y/N		,	4			SAM		100			THE REAL PROPERTY.											DE LE LOS		x	TER [
	Custod led Co (Y/N)	oler		2			SAMPLE CONDITIONS	V				100								5 6 4					OTHER	DRINKIN		119		
	ples Ir (Y/N)	ntact	-	4			SNOI													2 5 6 4 9 8 Pace Project No./ Lab I.D.					ENS	DRINKING WATER		5894		

'Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month (any invoices not paid within 30 days.

(MM/DD/YY): 2

F-ALL-Q-020rev.07, 15-May-2007

Sample Container Count

CLIENT:	br	awn	d		ald	vel	X							Pace Analytical write pacellabs core 2 5 6 4 9 8 Comments Trip Blank? JGFU 4oz unpreserved amber wide R terra core kit						
COC PAGE _	11958	94														2 5 6 4 9 8				
Sample Line Item	VG9H	AG1H	AG1U	BG1H	BP1U	BP2U	BP3U	BP2N	BP2S	WC	3FU	WGKU	199	an.	199	W				
1											2		1		1					
2													1		1					
3																				
4																				
5																				
6	1															-				
7											/									
8										2			1							
9												Annual Control	1		. 2					
10																				
11																				
12																Trip Blank?				
				_												1				
AG1H	1 liter HCL	amber	lass				BP2S	500mL H	12SO4 pl	astic				t-	JGFU	4oz unpreserved amber wide				
AG1U	1liter unpr	eserved a	amber gla	iss					inpreserv			0								
AG2S	500mL H2	SO4 amb	per glass						VaOH, Zn						L	Summa Can				
AG2U	500mL un	preserve	d amber o	glass					VaOH pla						VG9F	40mL HCL clear vial				
AG3S	250mL H2	SO4 amb	per glass				BP3N		HNO3 pla							40mL Na Thio. clear vial				
	1 liter HCL						BP3S		H2SO4 p		0			70		40mL unpreserved clear vial				
	1 liter unp						BP3U					C				40mL glass vial preweighted (EPA 5035)				
	1 liter HNC		×				DG9B									Headspace septa vial & HCL				
	1 liter H2S						DG9H									4oz clear soil jar				
	1 liter unpre						DG9M		eOH clea					20-21/2-14-00-		4oz wide jar w/hexane wipe				
	1 liter NaO						DG9T		a Thio am							Ziploc Bag				
	500mL HN								preserve			vial								
	500mL Na						1	Wipe/Sv												
										_										

Sample Condition Upon Receipt Pace Analytical Client Name: Brown + Cald 2 5 6 4 9 8 Project # Courier: Fed Ex UPS USPS Client Commercial Pace Other Tracking #: 8138 82114947 Custody Seal on Cooler/Box Present: Yes No Seals intact: Yes Packing Material: Bubble Wrap Bubble Bags None Other Temp. Blank Yes Thermometer Used 132013 or 101731962 or 226099 Type of Ice: (Wet) Blue None Samples on ice, cooling process has begun Date and Initials of person examining Biological Tissue is Frozen: Yes No Cooler Temperature Occ contents: NO Temp should be above freezing ≤ 6 °C Comments: Yes DNo DN/A 1 Chain of Custody Present: Chain of Custody Filled Out: DYES DNo □N/A Chain of Custody Relinquished: TYes DNo □N/A Sampler Name & Signature on COC: Tes DNo □N/A ☐Yes ☐No Samples Arrived within Hold Time: □N/A Short Hold Time Analysis (<72hr): Yes No □N/A ☐Yes ☐No Rush Turn Around Time Requested: □N/A Yes ONo □N/A Sufficient Volume: Correct Containers Used: Yes No □N/A 9. Yes DNo -Pace Containers Used: □N/A □N/A ☐Yes ☐No 10. Containers Intact: □Yes □No Filtered volume received for Dissolved tests □NYA 11. □N/A TYES No 12. Sample Labels match COC: Soul -Includes date/time/ID/Analysis All containers needing preservation have been checked. □Yes □No N/A 13. All containers needing preservation are found to be in □Yes □No □N/A compliance with EPA recommendation. Lot # of added Initial when Exceptions: VOA, coliform, TOC, O&G completed preservative ☐Yes ☐No □M/A 14. Samples checked for dechlorination: □Yes □No DN/A Headspace in VOA Vials (>6mm): 15.

Client Notification/ Resolution:		Field Data Required?	Υ	/	Ν	
Person Contacted:	Date/Time:					
Comments/ Resolution:						

□N/A 16.

□N/A

Project Manager Review: Date: 27/11

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Yes DNo

☐Yes ☐No

Trip Blanks Present:

Trip Blank Custody Seals Present

Pace Trip Blank Lot # (if purchased):

February 18, 2011

Joshua Johnson Brown & Caldwell 724 Columbia St. NW#420 Olympia, WA 98501

RE: Project: East Bay Redevelopment 138130

Pace Project No.: 256491

Dear Joshua Johnson:

Enclosed are the analytical results for sample(s) received by the laboratory on February 05, 2011. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jennifer Gross

jennifer.gross@pacelabs.com Project Manager

ENNI (-ROSS

Enclosures

cc: Jon Turk, Brown & Caldwell

(206)767-5060

CERTIFICATIONS

Project: East Bay Redevelopment 138130

Pace Project No.: 256491

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

A2LA Certification #: 2926.01
Alaska Certification #: UST-078
Alaska Certification #MN00064
Arizona Certification #: AZ-0014
Arkansas Certification #: 88-0680
California Certification #: 01155CA
EPA Region 8 Certification #: Pace
Florida/NELAP Certification #: E87605
Georgia Certification #: 959
Idaho Certification #: MN00064
Illinois Certification #: 200011

Illinois Certification #: 200011
Iowa Certification #: 368
Kansas Certification #: E-10167
Louisiana Certification #: 03086
Louisiana Certification #: LA080009
Maine Certification #: 2007029
Maryland Certification #: 322
Michigan DEQ Certification #: 9909
Minnesota Certification #: 027-053-137

Mississippi Certification #: 027-08

Montana Certification #: MT CERT0092
Nevada Certification #: MN_00064
Nebraska Certification #: Pace
New Jersey Certification #: MN-002
New Mexico Certification #: Pace
New York Certification #: 11647
North Carolina Certification #: 530
North Dakota Certification #: R-036
North Dakota Certification #: R-036A
Ohio VAP Certification #: CL101
Oklahoma Certification #: D9921
Oklahoma Certification #: 9507
Oregon Certification #: MN200001
Pennsylvania Certification #: 68-00563
Puerto Rico Certification

Puerto Rico Certification Tennessee Certification #: 02818 Texas Certification #: T104704192 Washington Certification #: C754 Wisconsin Certification #: 999407970

A2LA cert#

SAMPLE ANALYTE COUNT

Project: East Bay Redevelopment 138130

Pace Project No.: 256491

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
256491001	SPL-30-1	EPA 6020		5	PASI-M
		% Moisture	JDL	1	PASI-M
256491002	SPL-30-2	EPA 6020	TL1	5	PASI-M
		% Moisture	JDL	1	PASI-M
256491003	SPL-30-3	EPA 6020	TL1	5	PASI-M
		% Moisture	JDL	1	PASI-M
256491004	SPL-30-4	EPA 6020	TL1	5	PASI-M
		% Moisture	JDL	1	PASI-M
256491005	SPL-30-5	EPA 6020	TL1	5	PASI-M
		% Moisture	JDL	1	PASI-M
256491006	SPL-30-6	EPA 6020	TL1	5	PASI-M
		% Moisture	JDL	1	PASI-M
256491007	SPL-30-7	EPA 6020	TL1	5	PASI-M
		% Moisture	JDL	1	PASI-M

Project: East Bay Redevelopment 138130

Pace Project No.: 256491

Lab ID: 256491001 Sample: SPL-30-1 Collected: 02/03/11 13:10 Received: 02/05/11 11:38 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **6020 MET ICPMS** Analytical Method: EPA 6020 Arsenic 4.2 mg/kg 0.47 20 02/08/11 17:26 02/17/11 21:29 7440-38-2 Cadmium 0.086 mg/kg 0.075 20 02/08/11 17:26 02/17/11 21:29 7440-43-9 Copper 21.0 mg/kg 0.47 20 02/08/11 17:26 02/17/11 21:29 7440-50-8 M6 Lead 5.2 mg/kg 0.47 20 02/08/11 17:26 02/17/11 21:29 7439-92-1 M6 22.5 mg/kg 20 02/08/11 17:26 02/17/11 21:29 7440-02-0 Nickel 0.47 M6 **Dry Weight** Analytical Method: % Moisture Percent Moisture 20.6 % 0.10 1 02/08/11 00:00 Sample: SPL-30-2 Lab ID: 256491002 Collected: 02/03/11 13:20 Received: 02/05/11 11:38 Results reported on a "dry-weight" basis Parameters Units Report Limit DF CAS No. Qual Results Prepared Analyzed 6020 MET ICPMS Analytical Method: EPA 6020 Arsenic 4.2 mg/kg 0.51 20 02/08/11 17:26 02/17/11 21:51 7440-38-2 **0.10** mg/kg Cadmium 0.082 20 02/08/11 17:26 02/17/11 21:51 7440-43-9 Copper 24.6 mg/kg 0.51 20 02/08/11 17:26 02/17/11 21:51 7440-50-8 Lead 8.0 mg/kg 0.51 20 02/08/11 17:26 02/17/11 21:51 7439-92-1 0.51 Nickel **31.1** mg/kg 20 02/08/11 17:26 02/17/11 21:51 7440-02-0 **Dry Weight** Analytical Method: % Moisture Percent Moisture 10.9 % 0.10 02/08/11 00:00 1 Sample: SPL-30-3 Lab ID: 256491003 Collected: 02/03/11 13:40 Received: 02/05/11 11:38 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **6020 MET ICPMS** Analytical Method: EPA 6020 Arsenic 4.3 mg/kg 0.40 20 02/08/11 17:26 02/17/11 21:56 7440-38-2 Cadmium 0.12 mg/kg 0.064 20 02/08/11 17:26 02/17/11 21:56 7440-43-9 **26.1** mg/kg Copper 0.40 20 02/08/11 17:26 02/17/11 21:56 7440-50-8 9.3 mg/kg 0.40 20 02/08/11 17:26 02/17/11 21:56 7439-92-1 Lead **31.5** mg/kg 20 02/08/11 17:26 02/17/11 21:56 7440-02-0 Nickel 0.40 **Dry Weight** Analytical Method: % Moisture Percent Moisture 02/08/11 00:00 11.4 % 0.10 1

Date: 02/18/2011 04:23 PM

Project: East Bay Redevelopment 138130

Pace Project No.: 256491

Pace Project No.: 256491	Lab ID: 25640400	1 Collocted	02/02/4	1 12:55	Pagaired: 0	2/05/11 11:20	Motrix: Colid	
Sample: SPL-30-4	Lab ID: 256491004	4 Collected:	02/03/1	1 13:55	Received: 02	2/05/11 11:38	Matrix: Solid	
Results reported on a "dry-wei					_			
Parameters —	Results Ur	nits Repor	rt Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical Method: EF	PA 6020						
Arsenic	5.1 mg/kg		0.49	20	02/08/11 17:26	02/17/11 22:00	7440-38-2	
Cadmium	0.11 mg/kg		0.078	20	02/08/11 17:26	02/17/11 22:00	7440-43-9	
Copper	27.6 mg/kg		0.49	20	02/08/11 17:26	02/17/11 22:00	7440-50-8	
Lead	9.5 mg/kg		0.49	20	02/08/11 17:26	02/17/11 22:00	7439-92-1	
Nickel	31.1 mg/kg		0.49	20	02/08/11 17:26	02/17/11 22:00	7440-02-0	
Dry Weight	Analytical Method: %	Moisture						
Percent Moisture	8.9 %		0.10	1		02/08/11 00:00	0	
Sample: SPL-30-5	Lab ID: 256491005	5 Collected:	02/03/1	1 14:10	Received: 02	2/05/11 11:38	Matrix: Solid	
Results reported on a "dry-wei	ight" basis							
Parameters	Results Ur	its Repor	rt Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical Method: EF	PA 6020						
Arsenic	9.0 mg/kg		0.57	20	02/08/11 17:26	02/17/11 22:05	5 7440-38-2	
Cadmium	0.12 mg/kg		0.091	20	02/08/11 17:26	02/17/11 22:0	5 7440-43-9	
Copper	33.5 mg/kg		0.57	20	02/08/11 17:26	02/17/11 22:05	5 7440-50-8	
Lead	6.1 mg/kg		0.57	20	02/08/11 17:26	02/17/11 22:0	5 7439-92-1	
Nickel	32.7 mg/kg		0.57	20	02/08/11 17:26	02/17/11 22:05	5 7440-02-0	
Dry Weight	Analytical Method: %	Moisture						
Percent Moisture	13.7 %		0.10	1		02/08/11 00:00	0	
Sample: SPL-30-6	Lab ID: 256491006	6 Collected:	02/03/1	1 14:30	Received: 02	2/05/11 11:38	Matrix: Solid	
Results reported on a "dry-wei	ight" basis							
Parameters	Results Ur	nits Repor	rt Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical Method: EF	PA 6020						
Arsenic	5.3 mg/kg		0.42	20	02/08/11 17:26	02/17/11 22:09	9 7440-38-2	
Cadmium	0.12 mg/kg		0.068	20	02/08/11 17:26	02/17/11 22:09	9 7440-43-9	
Copper	31.2 mg/kg		0.42	20	02/08/11 17:26	02/17/11 22:09	9 7440-50-8	
Lead	44.9 mg/kg		0.42	20	02/08/11 17:26	02/17/11 22:09	9 7439-92-1	
Nickel	34.3 mg/kg		0.42	20		02/17/11 22:09		
Dry Weight	Analytical Method: %	Moisture						
Percent Moisture	6.9 %		0.10	1		02/08/11 00:00	0	

Date: 02/18/2011 04:23 PM

Project: East Bay Redevelopment 138130

Pace Project No.: 256491

Sample: SPL-30-7	Lab ID: 256491007	Collected: 02/03/	11 14:45	Received: 02	2/05/11 11:38 N	Matrix: Solid	
Results reported on a "dry-wei	ght" basis						
Parameters	Results Unit	s Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical Method: EPA	A 6020					
Arsenic	4.1 mg/kg	0.41	20	02/08/11 17:26	02/17/11 22:14	7440-38-2	
Cadmium	0.11 mg/kg	0.065	20	02/08/11 17:26	02/17/11 22:14	7440-43-9	
Copper	22.7 mg/kg	0.41	20	02/08/11 17:26	02/17/11 22:14	7440-50-8	
Lead	6.4 mg/kg	0.41	20	02/08/11 17:26	02/17/11 22:14	7439-92-1	
Nickel	27.0 mg/kg	0.41	20	02/08/11 17:26	02/17/11 22:14	7440-02-0	
Dry Weight	Analytical Method: % N	Moisture					
Percent Moisture	6.9 %	0.10	1		02/08/11 00:00	ı	

Date: 02/18/2011 04:23 PM

Project: East Bay Redevelopment 138130

Pace Project No.: 256491

QC Batch: ICPM/24628 Analysis Method: EPA 6020
QC Batch Method: EPA 6020 Analysis Description: 6020 MET

Associated Lab Samples: 256491001, 256491002, 256491003, 256491004, 256491005, 256491006, 256491007

METHOD BLANK: 927810 Matrix: Solid

Associated Lab Samples: 256491001, 256491002, 256491003, 256491004, 256491005, 256491006, 256491007

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	mg/kg	ND ND	0.48	02/17/11 20:21	
Cadmium	mg/kg	ND	0.076	02/17/11 20:21	
Copper	mg/kg	ND	0.48	02/17/11 20:21	
Lead	mg/kg	ND	0.48	02/17/11 20:21	
Nickel	mg/kg	ND	0.48	02/17/11 20:21	

LABORATORY CONTROL SAMPLE: 927811

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	 mg/kg		18.8	99	75-125	
Cadmium	mg/kg	19	19.5	102	75-125	
Copper	mg/kg	19	19.9	104	75-125	
Lead	mg/kg	19	19.7	103	75-125	
Nickel	mg/kg	19	20.4	107	75-125	

MATRIX SPIKE & MATRIX SP	IKE DUPLICA	TE: 92781	2		927813						
			MS	MSD							
		256490001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Arsenic	mg/kg	4.0	18.9	17.4	22.1	22.2	95	104	75-125	.7	
Cadmium	mg/kg	0.10	18.9	17.4	18.9	18.7	99	107	75-125	.9	
Copper	mg/kg	23.3	18.9	17.4	40.3	43.2	90	114	75-125	7	
Lead	mg/kg	8.7	18.9	17.4	27.0	28.6	97	114	75-125	6	
Nickel	mg/kg	36.1	18.9	17.4	48.2	48.1	64	69	75-125	.1 M	6

MATRIX SPIKE SAMPLE:	927814						
		256491001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/kg	4.2	17.8	26.2	125	75-125	
Cadmium	mg/kg	0.086	17.8	20.4	114	75-125	
Copper	mg/kg	21.0	17.8	47.6	150	75-125 N	16
Lead	mg/kg	5.2	17.8	28.6	132	75-125 N	16
Nickel	mg/kg	22.5	17.8	51.3	162	75-125 N	16

Date: 02/18/2011 04:23 PM REPORT OF LABORATORY ANALYSIS

Page 7 of 10

Project: East Bay Redevelopment 138130

Pace Project No.: 256491

QC Batch: MPRP/24633 Analysis Method: % Moisture

QC Batch Method: % Moisture Analysis Description: Dry Weight/Percent Moisture
Associated Lab Samples: 256491001, 256491002, 256491003, 256491004, 256491005, 256491006, 256491007

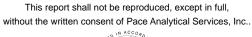
SAMPLE DUPLICATE: 928009

256491001 Dup

Parameter Units Result Result RPD Qualifiers

Percent Moisture % 20.6 23.4 13

SAMPLE DUPLICATE: 928010


 Percent Moisture
 Units
 10148885002 Result
 Dup Result
 RPD
 Qualifiers

 Percent Moisture
 %
 5.0
 5.5
 10

Date: 02/18/2011 04:23 PM

REPORT OF LABORATORY ANALYSIS

Page 8 of 10

QUALIFIERS

Project: East Bay Redevelopment 138130

Pace Project No.: 256491

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel Clean-Up

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis

ANALYTE QUALIFIERS

Date: 02/18/2011 04:23 PM

M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: East Bay Redevelopment 138130

Pace Project No.: 256491

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
256491001	SPL-30-1	EPA 6020	ICPM/24628	EPA 6020	ICPM/10078
256491002	SPL-30-2	EPA 6020	ICPM/24628	EPA 6020	ICPM/10078
256491003	SPL-30-3	EPA 6020	ICPM/24628	EPA 6020	ICPM/10078
256491004	SPL-30-4	EPA 6020	ICPM/24628	EPA 6020	ICPM/10078
256491005	SPL-30-5	EPA 6020	ICPM/24628	EPA 6020	ICPM/10078
256491006	SPL-30-6	EPA 6020	ICPM/24628	EPA 6020	ICPM/10078
256491007	SPL-30-7	EPA 6020	ICPM/24628	EPA 6020	ICPM/10078
256491001	SPL-30-1	% Moisture	MPRP/24633		
256491002	SPL-30-2	% Moisture	MPRP/24633		
256491003	SPL-30-3	% Moisture	MPRP/24633		
256491004	SPL-30-4	% Moisture	MPRP/24633		
256491005	SPL-30-5	% Moisture	MPRP/24633		
256491006	SPL-30-6	% Moisture	MPRP/24633		
256491007	SPL-30-7	% Moisture	MPRP/24633		

Date: 02/18/2011 04:23 PM

REPORT OF LABORATORY ANALYSIS

Page 10 of 10

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. As relevant fields must be completed accurately.

256491

Pace Analytical		٠																				Page	:		of.		
A	Section 6								ection recion	n C Idoms	ซื้อว:													J.	43	Q 2/A	€
Cliant Information.	Required 2	o-ect	insom.	870n;	<u> </u>				ten's		G.A.	7.	14				7					1.			<u>ت ہے۔</u>	<u> </u>	
Brown + Callwell	Rejut To:	J	<u>~ ^.</u>	lus	<u> </u>				Compa	sty Nem	₽ <i>В</i>		<u> </u>				1	REG	ĽA.	YSC	,AG	NCY			- · · · .		
Columbia ST NW St=421	Cary 70:	Je	×4.	Jo	14501	ــــــــــــــــــــــــــــــــــــــ		-1,	Acdre 3	is:	54	<u></u>	<u> </u>				-		NPDS	S	G	ROUN	E W	ATER		つるいだいほ	WATER
mois WA 98501	:								Acce C		:_								บรา	-		CRA			\$	OTHER 1	-27
iturko bruncaldican	Purchase C	roer A	, C.					_ f:	anteres	KG.								<u> </u>		wing!							
534-206360-943-4515	Project lian	na: 1	50	S+3	y Red	leveb,	omen	7 }	Puce ? Vanog	er:								ວານ	Loca		. 1	NE	7	12		e al l'Applia de la La companya	garage services.
of One Date TAT:	Project NVI			138	7				Pace P	roka a:									STA	<u> </u>	_=		7	ـــاـــ	. 15		
d Die Date TAT:	<u></u> .			203										1_	R	ques	ted /	Analy	/SIS	Filtere	17) 12	/N)	\dashv				
	Outon												_	NIX		R			X				ı				
ion D Matrix Ired Client Information MATRIX		lo kofi	C=COMP)		COLLE	CTED			İ	<u> </u>	Preser	Valive	11	1-		1	নি			++	十			T			
Drinking Water Water	ter DW WT	9,63	3	- Comp		CCM/POS	ne.	흳					1 1	1	13	3	1		1	1				Î			
Waste Wate Product		(see void corles to loft)	8	GA	اطة	ENDYGR	AB	Į						_	4	\ \	1							إغ			
Soil/Solid		(86.0)	(G=GRAB					SAMPLE TEMP AT COLLECTION	RS			1	1 1	ies Test	[]	봤	9	-	Q	1 1				Residual Chlorina (Y/N)			
SAMPLE ID Oil Wipe (A-Z, 0-9/) Air	SL OL WP AR TS OT		1		i			AP A	CONTAINERS	اوا			1 }			4	43	×	•			1		흥			
ample IDs MUST BE UNIQUE Tissue Other	TS OT	00 00 00 00 00 00 00 00 00 00 00 00 00	SAMPLE TYPE		i '			TE	INO	Unpreserved H ₂ SO ₄		ے ا	ং ছ	Other Malysis	12	<u>.</u>	ΞĒ	H	HO	1 1		İ	}	3			
Oner	0.	MATRIX			-			Æ	OF C	a Sign	인 된 모	NaOH	Wethanol	到夏	7	4	10 10	12	H					esic		Deninet N	lab I.i
		Į₹	SAN	DATE	TIME	DATE	TIME	SS	O#	5 £	를 모	2 2		ō 🍣	15	H	<u> </u>	\Box			+		H	-	Pace	rroject iv	03 Edb
AL-30-		SL	-	2/2/1					3	X		\sqcup	X	뇐	4	44	╟╂	111	₩		\rightarrow	+	\vdash	+			
81-30-Z		1			1320					11	$\bot \bot$	\bot	-44	4	1	-111	╟╫	╁╂╂	₩		\vdash	┪	╁┤	\dashv			
SPL-30-3	 	Π	П		1340			┺	Ц	Ш	11	14	44	#	\mathbf{H}		- -	╫┤	H	+	┝┤	+	$\dagger \exists$	H		_	
SPL-30-4		\prod			1355			1	Н	 -	₩	╁┼	+H	H	H	+H	++	╫┤	╂┼	+	-	1	\Box	H			
SPL-30-5		\prod			1410			↓_	Н		₩-	┵		H	H	HH	$\dashv f$	++-	+	╅		\dashv		H			
SPL-30-6		\prod	\prod		1430	<u> </u>		╀-	\sqcup	##	╁┼	╁┼		44	H		Ht	+H	++	+	1 1	一	T	H			
SPL-30-7		V		4	1445		<u> </u>	1	14		++	╀	4	🏲	H	.)//)	, ,		+	\Box	_	1	\sqcap			
TB-02031		wi		2/3/1				1_	3	XI.	+-+-	┵┼	- X		-		<u>* </u>			1-			1				
		$\prod_{i=1}^{n}$				ļ	<u> </u>	\bot	↓_	44	+-+	+-+	+-	H	\vdash	+ +	+	+-	\vdash		1 1		1	\Box			
							<u> </u>	╀	╀	++	++		+	H	\vdash	╂╍┼	╁	+	\vdash		H		+-	11			
			\mathbb{I}_{-}				ļ	╀-	↓_	++	++	++		\mathbf{H}	-	╁	+	+-	-		H		T	\sqcap			
					<u> </u>	<u> </u>		<u>_</u>	1	ليك	1			TEDE		EV 16	nos.	٠.	-	ATE	1	TIME	1	اسبل	SAM	LE CONDI	TIONS
ADDITIONAL COMMENTS	٠, ،	RE	TINGL	JISHED.B	// AFFILIAT	TON	DA	<u> </u>	4	THUE	4					_	,		_		+-		+			1	1
mp Blank Included		-7	2	10	سطسر	•	2/3	<u>/11</u>	13	<u> 1:45</u>	1/	کسے	100	<u> </u>	<u>S</u> 4	<u>م/</u>			Z(3 ∖iŕ	11	745	+			 	
HOURT INCUSTED			<u>o</u> n				1	r		_	-	•	t			1.			1	<u>14 </u>	↓_	· 	\bot			1 1 4	1
			- 7	10.0			25	H	11	:38	1	انما	lu,	Si	say	18	ta	==	2	sli		138		14	4	14	14
			08	ex.			1717	!1)	'\-`	1	·_•		1	+			11	7							
							111					<u>.</u>			—	·		,	} 	+	٠-	٠.	1	S	8 <u>~</u>	ुं	lact
	ORIGIN	Al			SAMPL	ER NAME		_				· 		1				_					4	Tomp in °C	Received on Ica (Y/N)	Custudy Sepled Cooler (Y/N)	8
	o ::cane						me of SAI				Ion		Zu	علم		DATES	Signe	d	7	1.			\dashv	Tom	79 P	ا قاد د	Samples Inlact
						SIGNATI	JRE of SAI	MPLE	R: 🔪			L			- 1	CARREN	חאאו	. Z	73							7.07, 15-M	

Comple Container Count

						01	0 1	ample	Conta	amer C	ount			
CLIENT:	1	Bron	on	d	Ca	ldev	ell							Pace Analytical*
CLIENT: COC PAGE _ COC ID# Sample Line	of_(3834	6											256491
Sample Line Item	VG9H	AG1H	AG1U	BG1H	BP1U	BP2U	BP3U	BP2N	BP2S	WGFU	WGKU			Comments
1										2		AND THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED		
										2				
2														
3										2				
4										2				
5										2				
6										2				
7										2				
8														
						-							-	
9										-			-	
10														
11														
12														Trip Blank? YES
														0
10011	1 liter UC	Lambara	lana		I		DDOC	F001 1	10004 =	lantin.			LICELI	4oz unpreserved amber wide
	1 liter HC			200				500mL t			0			terra core kit
	500mL H			155				500mL N						Summa Can
	500mL un			rlass				250mL N						40mL HCL clear vial
AG3S				grado			BP3N		HNO3 pla					40mL Na Thio. clear vial
	1 liter HC						BP3S		H2SO4 p					40mL unpreserved clear vial
	1 liter unp						BP3U		unpreser		ic			40mL glass vial preweighted (EPA 5035)
BP1N	1 liter HN	O3 plastic					DG9B	40mL Na	a Bisulfat	e amber	vial		VSG	Headspace septa vial & HCL
BP1S	1 liter H2S	O4 plastic	С				DG9H	40mL H	ICL ambe	er voa via	1		WGFU	4oz clear soil jar
	1 liter unpr						DG9M	40mL M	eOH clea	r vial				4oz wide jar w/hexane wipe
BP1Z	1 liter NaC	H, Zn, Ac					DG9T	40mL Na	a Thio an	nber vial			ZPLC	Ziploc Bag

DG9U 40mL unpreserved amber vial

I Wipe/Swab

BP2N 500mL HNO3 plastic

BP2O 500mL NaOH plastic

			•	
-	Sample Condition	Upon Receipt		
Paco Analytical Client Nam	e: pronut (aldwell F	Project #	25649
Courler: Trodex Ours Ousps Oc Tracking #: 87288211 4936	#00043	ace Other		
Custody Seal on Cooler/Box Present:		Yes	Vo Co	
Packing Moterial: [] Bubblo WrapBubb	le Bags 🔲 None 🔲 Ot	her	Temp. Blank (Yes)	No
Thermometer Used 132013 (101731962 or 2	,,, ,	e None	Samples on Ice, cooling p Date and Initials of p	
Cooler Temperature 1.4 Temp should be above freezing 5.6°C	Biological Tissue is Fro	zen: Yos No ments:	contents:	
Chain of Custody Present:	Ayes OND ONA 1.			
Chain of Custody Filled Out:	Yes DNo DN/A 2.			
Chain of Custody Relinquished:	AYes □No □N/A 3.			
Sampler Name & Elgnature on COC:	EYes LINO DN/A 4.			
Samples Arrived within Hold Time:	DYOS ONO ONA 5.			to a second second second second second second second second second second second second second second second
Short Hold Time Analysis (<72hr):	□Yes ØNo □N/A 6.			and the second section of the section of the sectio
Rush Turn Around Time Requested:	□Yes PNo □N/A 7.			
Sullicient Volumo:	Pres EINO EIN/A 8.			
Correct Containers Used:	FYes DNo DN/A 9.			
Pacu Containors Used:	Dres DNo DNA			
Containers Intact:	ØYes UNO DNA 10.			
Fillared yolume received for Dissolved tests	□Yos □No □MA 11.			
Sample Labels match COC:	DYOS []NO []N/A 12.			
-Includes date/time/ID/Analysis Matrix:	Soil			
All containers apoding proservation have been checked.	Dyes Ono ZNA 13.			
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes □No ZINA			propertie glengelige ligenskyllegen it den 4 al-187 i s "skysleg tillgeli
Exceptions: VOA, colling, TOC, OSG	Initial comp	when leted	Lot # of added preservative	
Samples checked for dechlorination:	DYes DNo PANIA 14.			and the second s
Headspace in VOA Vials (>6mm):	□Yes □No □N/A 15.			
Trip Blanks Present:	□Yes Cino □N/A 16.	•		
Trip Blank Custody Soals Present	□Yes □No □N/A			
Pace Trip Dlunk Lot # (if purchased):				

Client Notification/ Resolution:

Person Contacted:

Comments/ Flosolution:

Date/Time:

Comments/ Stosolution:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Contilionation Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Project Manager Review:

Date: 27

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Jennifer Gross PASI Seattle 940 S. Harney Street Seattle WA 98108

> REPORT OF LABORATORY ANALYSIS FOR PCDD/PCDF

Report Information:

Pace Project #: 10148906

Sample Receipt Date: 02/07/2011

Client Project #: 256491 Client Sub PO #: N/A State Cert #: C755

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Nate Habte, your Pace Project Manager.

This report has been reviewed by:

February 15, 2011

Scott Unze, Project Manager

(612) 607-6383

(612) 607-6444 (fax)

scott.unze@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

February 15, 2011

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on seven samples submitted by a representative of Pace Analytical Services, Inc. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290. Reporting limits were based on signal-to-noise measurements.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 27-93%. With the exceptions of four low values, which were flagged "R" on the results tables, the labeled standard recoveries obtained for this project were within the 40-135% target range specified in Method 8290. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, interfering substances impacted the determinations of PCDD or PCDF congeners. The affected values were flagged "I" where incorrect isotope ratios were obtained or "P" where polychlorinated diphenyl ethers were present.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to contain a trace level of OCDD. This was below the calibration range of the method. The OCDD levels reported for the field samples were higher than the OCDD level in the blank by one or more orders of magnitude. These results indicate that the sample processing steps did not contribute significantly to the levels reported for the field samples.

A laboratory spike sample was also prepared with the sample batch using clean sand that had been fortified with native standard materials. The results show that the spiked native compounds were recovered at 98-113%, indicating a high degree of accuracy for these determinations. Matrix spikes were prepared with the sample batch using sample material from a separate project; results from these analyses will be provided upon request.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Tel: 612-607-1700 Fax: 612- 607-6444

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	
Arizona	AZ0014	Nevada	MN000642010A
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New Mexico	MN00064
Colorado	MN00064	New York (NEL	11647
Connecticut	PH-0256	North Carolina	27700
EPA Region 5	WD-15J	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Ohio VAP	CL101
Georgia (DNR)	959	Oklahoma	D9922
Guam	09-019r	Oregon (ELAP)	MN200001-005
Hawaii	SLD	Oregon (OREL	MN200001-005
Idaho	MN00064	Pennsylvania	68-00563
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennesee	2818
lowa	368	Tennessee	02818
Kansas	E-10167	Texas	T104704192-08
Kentucky	90062	Utah (NELAP)	PAM
Louisiana	LA0900016	Virginia	00251
Maine	2007029	Washington	C755
Maryland	322	West Virginia	9952C
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q
Mississippi	MN00064		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

Page 1 of

Sample Condition Upon Receipt

Pace Analytical Client Name	:	A	Co	
Courier: Fed Ex UPS USPS Clie Tracking #: 1943 95109505		Com		Pro Name
Custody Seal on Cooler/Box Present: yes	L	no	Seal	s intact: yes no
Packing Material: Bubble Wrap Bubble	_	_	None	
Thermometer Used 80344042 6r 179425			<u></u>	Samples on ice, cooling process has begun Date and initially of person examining
Temp should be above freezing to 6°C	Biolo	ogical	Tissu	e is Frozen: Yes No Comments:
Chain of Custody Present:	Yes	□No	□N/A	1.
Chain of Custody Filled Out:	€]Yes	□No	□N/A	2.
Chain of Custody Relinquished: .	□ Yes	□No	□N/	3.
Sampler Name & Signature on COC:	□Yes	□N ₀	□N/A	4.
Samples Arrived within Hold Time:	☑Yes	□No	DNA	5.
Short Hold Time Analysis (<72hr):	☐Yes	EINO	□N/A	6.
Rush Turn Around Time Requested:	.ElYes	□No	□N⁄A	7.
Sufficient Volume:	Yes	□No	□N/A	8.
Correct Containers Used:	ØYes	□No	□N/A	9.
-Pace Containers Used:	Ø Yes	□No	□N⁄A	
Containers Intact:	Yes	□No	□N⁄A	10.
Filtered volume received for Dissolved tests	□Yes	□No	DWA	11.
Sample Labels match COC:	∠ Yes	□No	□N⁄A	12.
-Includes date/time/ID/Analysis Matrix:		1		
All containers needing acid/base preservation have been checked. Noncompliance are noted in 13.	□Yes	□No	DNA	13. D HNO3 D H2SO4 D NaOH D HCI
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes	□No	DNA	Samp #
Exceptions: VOA,Coliform, TOC, Oil and Grease, WI-DRO (water	□Yes	□ 1√0		Initial when Lot # of added completed preservative
Samples checked for dechlorination:	□Yes	□No	ZINA	
Headspace in VOA Vials (>6mm):	□Yes	□N ₀	DINA	
Trip Blank Present:	□Yes	□No	□MA	
Trip Blank Custody Seals Present	□Yes	□No	DINA	!
Pace Trip Blank Lot # (if purchased):	-			•
Client Notification/ Resolution: Person Contacted: Town (For Date/Time: 2 100 1				
Language	 ادر	1,0		2/18 20101te note on inva
With way		~~		The season of the season
				,
Project Manager Review:		Q.	AH	Date: 27

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the Rooth Ababilities, Inc. F-L213Rev.00, 05Aug2009 1700 Elm Street SE, Suite 200, Minneapolis, MN 55414 1700 Elm Street SE, Suite 200, Minneapolis, MN 55414 Page 6 of 17

Fax: 612-607-6444

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

Appendix B

Sample Analysis Summary

Method 8290 Sample Analysis Results

Client - PASI Seattle

SPL-30-1 Client's Sample ID Lab Sample ID 256491001 F110211A_11 Filename Injected By BAL

Total Amount Extracted 13.0 g Matrix Solid % Moisture Dilution NA 20.6

Dry Weight Extracted Collected 02/03/2011 13:10 10.3 g F101206 **ICAL ID** Received 02/07/2011 10:30 CCal Filename(s) F110210B_16 & F110211A_16 Extracted 02/09/2011 16:35 Method Blank ID BLANK-27836 Analyzed 02/11/2011 22:38

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.23 4.60		0.12 J 0.12	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	81 90 87
2,3,7,8-TCDD Total TCDD	ND 4.00		0.16 0.16	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	88 93 82
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.75 6.50	 	0.24 0.17 J 0.20	1,2,3,4,7,8-11XCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	82 79 81 84
1,2,3,7,8-PeCDD Total PeCDD	4.30	0.32	0.19 I 0.19 J	1,2,3,4,7,8-1 XCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	82 72 73
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.62 0.72	1.90 	0.16 P 0.18 J 0.16 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	73 77 70
1,2,3,7,8,9-HxCDF Total HxCDF	0.29 6.20		0.20 J 0.18	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.50 0.46 10.00	0.27 	0.17 I 0.29 J 0.26 J 0.24	2,3,7,8-TCDD-37Cl4	0.20	87
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	9.00 9.00	0.69 	0.19 0.26 I 0.22	Total 2,3,7,8-TCDD Equivalence: 1.4 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	36.00 72.00		0.34 0.34			
OCDF OCDD	34.00 420.00		0.42 0.24			

ND = Not Detected

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable NC = Not Calculated RL = Reporting Limit.

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

SPL-30-2 Client's Sample ID Lab Sample ID 256491002 F110211A_12 Filename Injected By BAL **Total Amount Extracted** 11.8 g Solid Matrix % Moisture Dilution NA 10.9 Dry Weight Extracted 10.5 g Collected 02/03/2011 13:20 F101206 **ICAL ID** Received 02/07/2011 10:30

CCal Filename(s) F110210B_16 & F110211A_16 Extracted 02/09/2011 16:35
Method Blank ID BLANK-27836 Analyzed 02/11/2011 23:24

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.2 14.0		0.51 0.51	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00	70 76
2,3,7,8-TCDD Total TCDD	ND 23.0		0.43 0.43	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00	69 65 70
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	3.0	1.3	0.64 P 0.79 J	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C	2.00 2.00 2.00	83 81 68
Total PeCDF 1,2,3,7,8-PeCDD	36.0 2.0		0.71 0.59 J	1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C	2.00 2.00 2.00	64 71 79
Total PeCDD 1,2,3,4,7,8-HxCDF	35.0 6.3		0.59 0.48	1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C	2.00 2.00 2.00	41 35 R 42
1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	1.9 3.1 1.8		0.63 J 0.47 J 0.66 J	OCDD-13C 1,2,3,4-TCDD-13C	4.00 2.00	27 R NA
Total HxCDF 1,2,3,4,7,8-HxCDD	80.0	2.1	0.56 0.37 I	1,2,3,7,8,9-HxCDD-13C 2,3,7,8-TCDD-37Cl4	2.00 0.20	NA 80
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	6.2 3.4 65.0		0.86 0.44 J 0.56			
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	34.0 3.7 130.0	 	0.76 0.94 J 0.85	Total 2,3,7,8-TCDD Equivalence: 7.8 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	140.0 270.0		1.20 1.20			
OCDF OCDD	100.0 1500.0		1.60 2.30			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable NC = Not Calculated

RL = Reporting Limit.

nt figures

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

P = PCDE Interference

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

SPL-30-3 Client's Sample ID Lab Sample ID 256491003 F110211A_13 Filename Injected By BAL **Total Amount Extracted** 11.5 g Solid Matrix % Moisture Dilution NA 11.4 Dry Weight Extracted Collected 02/03/2011 13:40 10.2 g F101206 **ICAL ID** Received 02/07/2011 10:30 CCal Filename(s) F110210B_16 & F110211A_16 Extracted 02/09/2011 16:35 Method Blank ID BLANK-27836 Analyzed 02/12/2011 00:10

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 4.10		0.46 0.46	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	62 70 66
2,3,7,8-TCDD Total TCDD	ND 3.20		0.58 0.58	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	66 71 64
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.79 5.80		0.53 0.49 J 0.51	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	62 58 60
1,2,3,7,8-PeCDD Total PeCDD	2.20	0.53	0.41 l 0.41 J	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	64 64 48 48
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.94 0.47 0.83		0.37 J 0.29 J 0.37 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	53 42
1,2,3,7,8,9-HxCDF Total HxCDF	ND 8.70		0.29 0.33	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 4.50	1.40 0.65	0.32 0.36 I 0.41 I 0.36 J	2,3,7,8-TCDD-37Cl4	0.20	90
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	8.20 ND 8.20		0.45 0.53 0.49	Total 2,3,7,8-TCDD Equivalence: 1.7 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	38.00 74.00		0.49 0.49			
OCDF OCDD	28.00 420.00		0.91 0.67			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit.

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-30-4
Lab Sample ID 256491004
Filename F110211A_14
Injected By BAL

Total Amount Extracted 11.2 g Matrix Solid % Moisture 8.9 Dilution NA

Dry Weight Extracted 10.2 g Collected 02/03/2011 13:55 F101206 **ICAL ID** Received 02/07/2011 10:30 CCal Filename(s) F110210B_16 & F110211A_16 Extracted 02/09/2011 16:35 Method Blank ID BLANK-27836 Analyzed 02/12/2011 00:56

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.32 3.30		0.28 J 0.28	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 84 81
2,3,7,8-TCDD Total TCDD	ND 2.70		0.47 0.47	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	82 88 87
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 1.10 9.20		0.45 0.16 J 0.30	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	76 71 75
1,2,3,7,8-PeCDD Total PeCDD	0.54 4.20		0.28 J 0.28 J	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	84 75 58 51
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	2.50 0.78 1.20	 	0.39 J 0.30 J 0.30 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	59 42
1,2,3,7,8,9-HxCDF Total HxCDF	ND 26.00		0.30 0.32	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.60 20.00	2.00 0.94 	0.48 J 0.46 I 0.44 I 0.46	2,3,7,8-TCDD-37Cl4	0.20	86
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	14.00 ND 62.00		0.45 0.70 0.58	Total 2,3,7,8-TCDD Equivalence: 3.1 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	91.00 190.00		0.76 0.76			
OCDF OCDD	52.00 1100.00		0.95 0.81			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

RL = Reporting Limit. NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-30-5
Lab Sample ID 256491005
Filename F110211B_09
Injected By BAL

Total Amount Extracted 12.0 g Matrix Solid % Moisture 13.7 Dilution NA

Dry Weight Extracted 10.4 g Collected 02/03/2011 14:10 F101206 **ICAL ID** Received 02/07/2011 10:30 CCal Filename(s) F110211A_16 & F110211B_16 Extracted 02/09/2011 16:35 Method Blank ID BLANK-27836 Analyzed 02/12/2011 09:21

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.95 15.00		0.36 J 0.36	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	72 79 74
2,3,7,8-TCDD Total TCDD	ND 15.00		0.20 0.20	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	74 79 85
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	2.70 23.00	0.98 	0.29 P 0.29 J 0.29	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	68 72 68 86
1,2,3,7,8-PeCDD Total PeCDD	1.50 25.00		0.32 J 0.32	1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	63 47 36 R
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	4.00 2.30	1.60	0.23 J 0.28 I 0.22 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	45 30 R
1,2,3,7,8,9-HxCDF Total HxCDF	52.00	0.75 	0.36 I 0.27	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.20 5.30 2.70 49.00	 	0.39 J 0.57 0.31 J 0.42	2,3,7,8-TCDD-37Cl4	0.20	85
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	30.00 110.00	2.10 	0.45 0.86 I 0.65	Total 2,3,7,8-TCDD Equivalence: 6.0 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	120.00 230.00		1.10 1.10			
OCDF OCDD	110.00 1200.00		0.96 1.70			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable NC = Not Calculated

RL = Reporting Limit.

INC = INOL Calculati

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

P = PCDE Interference

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-30-6
Lab Sample ID 256491006
Filename F110211B_10
Injected By BAL

Total Amount Extracted 11.1 g Matrix Solid % Moisture 6.9 Dilution NA

Dry Weight Extracted Collected 02/03/2011 14:30 10.3 g **ICAL ID** F101206 Received 02/07/2011 10:30 CCal Filename(s) F110211A_16 & F110211B_16 Extracted 02/09/2011 16:35 Method Blank ID BLANK-27836 Analyzed 02/12/2011 10:07

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 2.50		0.34 0.34	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 83 79
2,3,7,8-TCDD Total TCDD	ND 2.50		0.38 0.38	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	79 79 85 79
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 1.10 9.50		0.43 0.33 J 0.38	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	75 70 71
1,2,3,7,8-PeCDD Total PeCDD	 1.70	0.35	0.28 I 0.28 J	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	82 72 55 52
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.70 0.57 1.00		0.21 J 0.24 J 0.23 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	56 41
1,2,3,7,8,9-HxCDF Total HxCDF	0.52 14.00		0.29 J 0.24	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 2.00 1.00 14.00		0.42 0.38 J 0.42 J 0.41	2,3,7,8-TCDD-37Cl4	0.20	87
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	12.00 0.88 13.00		0.19 0.36 J 0.27	Total 2,3,7,8-TCDD Equivalence: 2.1 ng/Kg (Using 2005 WHO Factors -	Using PRL/	/2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	47.00 94.00		0.61 0.61			
OCDF OCDD	44.00 470.00		0.80 0.90			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

RL = Reporting Limit. NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-30-7
Lab Sample ID 256491007
Filename F110211B_11
Injected By BAL

Total Amount Extracted 11.1 g Matrix Solid % Moisture 6.9 Dilution NA

Dry Weight Extracted Collected 02/03/2011 14:45 10.3 g **ICAL ID** F101206 Received 02/07/2011 10:30 CCal Filename(s) F110211A_16 & F110211B_16 Extracted 02/09/2011 16:35 Method Blank ID BLANK-27836 Analyzed 02/12/2011 10:53

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.60 21.00		0.26 0.26	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	73 81 81
2,3,7,8-TCDD Total TCDD	ND 28.00		0.27 0.27	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	82 89 77
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.90 17.00	0.69 	0.37 I 0.33 J 0.35	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00 2.00	75 73 73 78
1,2,3,7,8-PeCDD Total PeCDD	28.00	1.70	0.32 I 0.32	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	78 78 62 60
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	2.90 1.30 1.60	 	0.24 J 0.26 J 0.21 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	63 50
1,2,3,7,8,9-HxCDF Total HxCDF	0.49 16.00		0.25 J 0.24	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.40 1.80 41.00	2.30	0.18 J 0.25 I 0.36 J 0.26	2,3,7,8-TCDD-37Cl4	0.20	83
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	14.00 1.10 15.00		0.33 0.50 J 0.42	Total 2,3,7,8-TCDD Equivalence: 2.9 ng/Kg (Using 2005 WHO Factors -	Using PRL/	/2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	53.00 99.00		0.57 0.57			
OCDF OCDD	56.00 600.00		0.60 0.51			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable RL = Reporting Limit.

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Solid

NA

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Blank Analysis Results

Lab Sample ID BLANK-27836 Matrix Filename F110211B_06 Dilution

Total Amount Extracted 10.2 g Extracted 02/09/2011 16:35 ICAL ID F101206 Extracted 02/12/2011 07:03

CCal Filename(s) F110211A_16 & F110211B_16 Injected By BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.170 0.170	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	60 68 69
2,3,7,8-TCDD Total TCDD	ND ND		0.230 0.230	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	71 77 73
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND	 	0.170 0.130 0.150	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	70 75 72 77
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.140 0.140	1,2,3,4,7,8-1 XCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	77 79 65 61
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	ND ND ND ND	0.11 	0.100 0.099 0.100 I 0.140 0.110	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00 4.00 2.00 2.00	68 56 NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	0.150 0.140 0.140 0.140	2,3,7,8-TCDD-37Cl4	0.20	69
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND	 	0.110 0.170 0.140	Total 2,3,7,8-TCDD Equivalence: 0.26 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		0.170 0.170			
OCDF OCDD	ND 0.81		0.580 0.230 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted

ICAL ID CCal Filename(s) Method Blank ID LCS-27837 F110211B_01 10.3 g

F101206 F110211A_16 & F110211B_16 BLANK-27836 Matrix Dilution Extracted Analyzed

Solid NA 02/09/2011 1

02/09/2011 16:35 02/12/2011 03:14

Injected By	BAL
-------------	-----

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.23	113	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.0 2.0 2.0	51 57 61
2,3,7,8-TCDD Total TCDD	0.20	0.20	98	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.0 2.0 2.0 2.0	61 67 64
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.1 1.1	111 111	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.0 2.0 2.0	64 63 67 71 71
1,2,3,7,8-PeCDD Total PeCDD	1.0	0.98	98	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.0 2.0 2.0 2.0	67 61 67
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	1.0 1.0 1.0 1.0	1.1 1.1 1.1 1.1	108 109 111 112	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.0 4.0 2.0 2.0 2.0	70 63 NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	1.1 1.0 1.0	107 104 103	2,3,7,8-TCDD-37Cl4	0.20	63
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.1 1.0	108 102			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	0.98	98			
OCDF OCDD	2.0 2.0	2.2 2.2	112 109			

Qs = Quantity Spiked Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent) R = Recovery outside of target range Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable
* = See Discussion

February 18, 2011

Joshua Johnson Brown & Caldwell 724 Columbia St. NW#420 Olympia, WA 98501

RE: Project: East Bay Redevelopment 138130

Pace Project No.: 256499

Dear Joshua Johnson:

Enclosed are the analytical results for sample(s) received by the laboratory on February 05, 2011. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jennifer Gross

jennifer.gross@pacelabs.com Project Manager

ENNI (-ROSS

Enclosures

cc: Jon Turk, Brown & Caldwell

CERTIFICATIONS

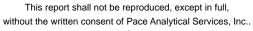
Project: East Bay Redevelopment 138130

Pace Project No.: 256499

Washington Certification IDs
940 South Harney Street, Seattle, WA 98108
Alaska CS Certification #: UST-025
Alaska Drinking Water VOC Certification #: WA01230
Alaska Drinking Water Micro Certification #: WA01230

California Certification #: 01153CA California Certification #: E87617
Oregon Certification #: WA200007
Washington Certification #: C1229

SAMPLE ANALYTE COUNT


Project: East Bay Redevelopment 138130

Pace Project No.: 256499

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
256499001	SPL-30-1	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	CC	3	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
256499002	SPL-30-2	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	CC	3	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
256499003	SPL-30-3	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	CC	3	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
256499004	SPL-30-4	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	CC	3	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
256499005	SPL-30-5	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	CC	3	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
256499006	SPL-30-6	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	CC	3	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
256499007	SPL-30-7	NWTPH-Dx	AY1	4	PASI-S
		NWTPH-Gx	СС	3	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
256499008	TB-020311	NWTPH-Gx	CC	3	PASI-S
		EPA 8260	LPM	8	PASI-S

REPORT OF LABORATORY ANALYSIS

Page 3 of 19

Project: East Bay Redevelopment 138130

Pace Project No.: 256499

NWTPH-Dx GCS SG Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG 25.6 mg/kg 21.4 1 0209/11 14:45 02/10/11 16:20 Motor Oil Range SG 22.0 mg/kg 85.8 1 0209/11 14:45 02/10/11 16:20 64742-65-0 Torphenyl (S) SG 113 % 50-150 1 0209/11 14:45 02/10/11 16:20 84742-65-0 Torphenyl (S) SG 119 % 50-150 1 0209/11 14:45 02/10/11 16:20 84742-65-0 Torphenyl (S) SG 119 % 50-150 1 0209/11 14:45 02/10/11 16:20 84742-65-0 Torphenyl (S) SG 119 % Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics a.aTrifluorrotoluene (S) 102 % 50-150 1 02/09/11 17:00 02/10/11 04:34 8-a.a-Trifluorrotoluene (S) 91 % 50-150 1 02/09/11 17:00 02/10/11 04:34 98-08-8 4-Bromofluorobenzene (S) 91 % Analytical Method: EPA 8270 by SIM Preparation Method: PA 3546 Acenaphthene ND ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 83-32-9 Acenaphthylene 8.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 83-32-9 Benzo(a)gardhracene 8.2 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 86-55-3 Benzo(a)gardhracene 8.2 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 86-55-3 Benzo(b)Jinoranthene 12.9 ug/kg 7.5 1 02/07/11 17:40 22/12/11 03:14 91-22-7 Benzo(b)Jinoranthene 15.1 ug/kg 7.5 1 02/07/11 17:40 22/12/11 03:14 19/12-27 Benzo(b)Jinoranthene 15.1 ug/kg 7.5 1 02/07/11 17:40 22/12/11 03:14 19/12-27 Benzo(b)Jinoranthene 15.1 ug/kg 7.5 1 02/07/11 17:40 22/12/11 03:14 19/12-27 Benzo(b)Jinoranthene 15.1 ug/kg 7.5 1 02/07/11 17:40 22/12/11 03:14 19/12-27 Benzo(b)Jinoranthene 15.1 ug/kg 7.5 1 02/07/11 17:40 22/12/11 03:14 19/12-27 Benzo(b)Jinoranthene 15.2 ug/kg 7.5 1 02/07/11 17:40 22/12/11 03:14 19/12-27 Benzo(b)Jinoranthene 16.4 ug/kg 7.5 1 02/07/11 17:40 22/12/11 03:14 19/12-27 Benzo(b)Jinoranthene 16.4 ug/kg 7.5 1 02/07/11 17:40 22/12/11 03:14 19/12-27 18-07-39 18-07-30 18-07-30 18-07-30 18-07-30 18-07-30 18-07-30 18-07-30 18-07-30 18-07-30 18-07-30 18-07-30 18-07-30 18-07-30 18-07-30 18-07-30 18-07-30 18-	Sample: SPL-30-1	Lab ID: 256	499001	Collected: 02/03/1	1 13:10	Received: 02	2/05/11 11:38	Matrix: Solid	
Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diesel Range SG 25.6 mg/kg 21.4 1 02/09/11 14:45 02/10/11 16:20 64742-65-0 10/02/09/11 14:45 02/10/11 16:20 64742-65-0 10/02/09/11 14:45 02/10/11 16:20 64742-65-0 10/02/09/11 14:45 02/10/11 16:20 63/02-4 0-16-01/02/09/11 14:45 02/10/11 16:20 63/02-4 0-16-01/02/09/11 14:45 02/10/11 16:20 63/02-4 0-16-01/02/09/11 14:45 02/10/11 16:20 63/02-4 0-16-01/02/09/11 14:45 02/10/11 16:20 63/02-4 0-16-01/02/09/11 14:45 02/10/11 16:20 63/02-4 0-16-01/02/09/11 14:45 02/10/11 16:20 63/02-4 0-16-01/02/09/11 14:45 02/10/11 16:20 63/02-4 0-16-01/02/09/11 14:45 02/10/11 16:20 63/02-4 0-16-01/02/09/11 14:45 02/10/11 16:20 63/02-4 0-16-01/02/09/11 14:45 02/10/11 16:20 63/02-4 0-16-01/02/09/11 14:45 02/10/11 16:20 63/02-4 0-16-01/02/09/11 14:45 02/10/11 16:20 64/12-12 02/09/11 17:00 02/10/11 16:20 64/12-12 02/09/11 03/02/09/09/09/09/09/09/09/09/09/09/09/09/09/	Results reported on a "dry-weight	t" basis							
Diesel Range SG 25.6 mg/kg 21.4 1 02/09/11 14:45 02/10/11 16:20 Motor Oil Range SG 92.0 mg/kg 85.8 1 02/09/11 14:45 02/10/11 16:20 64742-65-0 1-0-Ctacosane (S) SG 113 % 50-150 1 02/09/11 14:45 02/10/11 16:20 630-02-4 0-Terphenyl (S) SG 119 % 50-150 1 02/09/11 14:45 02/10/11 16:20 630-02-4 0-Terphenyl (S) SG 119 % 50-150 1 02/09/11 17:00 02/10/11 04:34 02/10/11	Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Motor Oil Range SG 92.0 mg/kg 85.8 1 02/09/11 14/45 02/10/11 16/20 64742-65-0 1-0-0-10-0-10-0-10-0-10-0-10-0-10-0	NWTPH-Dx GCS SG	Analytical Meth	nod: NWTPI	H-Dx Preparation Me	ethod: E	PA 3546			
Motor Oil Range SG 92.0 mg/kg 85.8 1 02/09/11 14/45 02/10/11 16/20 64742-65-0 1-00-00-00-00-00-00-00-00-00-00-00-00-00	Diesel Range SG	25.6 mg	g/kg	21.4	1	02/09/11 14:45	02/10/11 16:20)	
n-Octacosane (S) SG 113 % 50-150 1 0.209/f11 14:45 02/10/f1 16:20 630-02-4 0-0-Terphenyl (S) SG 119 % 50-150 1 0.209/f1 14:45 02/10/f1 16:20 84-15-1 NWTPH-GX GCV				85.8	1	02/09/11 14:45	02/10/11 16:20	64742-65-0	
O-Terphenyl (S) SG 119 % 50-150 1 0.2/09/11 14:45 02/10/11 16:20 84-15-1 NWTPH-Gx GCV Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics a.a. a.Triffurortolulone (S) 102 % 50-150 1 0.2/09/11 17:00 02/10/11 04:34 98-08-8 a.a. a.Triffurortolulone (S) 102 % 50-150 1 0.2/09/11 17:00 02/10/11 04:34 46-00-4 BBZ70 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Acenaphthene ND ug/kg 7.5 1 0.2/07/11 17:40 02/12/11 03:14 83-32-9 Acenaphthene 8.1 ug/kg 7.5 1 0.2/07/11 17:40 02/12/11 03:14 208-96-8 Anthracene 12.9 ug/kg 7.5 1 0.2/07/11 17:40 02/12/11 03:14 208-96-8 Benzo(a)aphrene 3.14 ug/kg 7.5 1 0.2/07/11 17:40 02/12/11 03:14 208-96-8 Benzo(a)aphrene 3.14 ug/kg 7.5 1 0.2/07/11 17:40 02/12/11 03:14 205-99-2 Benzo(a)aphrene 29.6 ug/kg 7.5 1 0.2/07/11 17:40 02/12/11 03:14 205-99-2 Benzo(a)hpeylene 31.4 ug/kg 7.5 1 0.2/07/11 17:40 02/12/11 03:14 205-99-2 Benzo(a)hpeylene 15.1 ug/kg 7.5 1 0.2/07/11 17:40 02/12/11 03:14 205-99-2 Benzo(a)hpeylene 15.1 ug/kg 7.5 1 0.2/07/11 17:40 02/12/11 03:14 205-99-2 Benzo(a)hpeylene 15.2 ug/kg 7.5 1 0.2/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 38.4 ug/kg 7.5 1 0.2/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 10.5 ug/kg 7.5 1 0.2/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 10.5 ug/kg 7.5 1 0.2/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 10.5 ug/kg 7.5 1 0.2/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 10.5 ug/kg 7.5 1 0.2/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 10.5 ug/kg 7.5 1 0.2/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 10.5 ug/kg 7.5 1 0.2/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 10.5 ug/kg 7.5 1 0.2/07/11 17:40 02/12/11 03:14 91:02-0 2-Methylnaphthalene 10.5 ug/kg 7.5 1 0.2/07/11 17:40 02/12/11 03:14 91:02-0 2-Methylnaphthalene 10.5 ug/kg 7.5 1 0.2/07/11 17:40 02/12/11 03:14 91:02-0 2-Methylnaphthalene 10.5 ug/kg 7.5 1 0.2/07/11 17:40 02/12/11 03:14 91:02-0 2-Methylnaphthalene 10.5 ug/kg 7.5 1 0.2/07/11 17:40 02/12/11 03:14 91:02-0 2-Methylnaphthalene 10.5 ug/kg 7.5 1 0.2/07/11 17:	_			50-150	1	02/09/11 14:45	02/10/11 16:20	630-02-4	
Asacline Range Organics A.9 1 02/09/11 17:00 02/10/11 04:34 a.a.a-Trifluorotoluene (S) 102 % 50-150 1 02/09/11 17:00 02/10/11 04:34 88-08-8 4-Bromofluorobenzene (S) 91 % 50-150 1 02/09/11 17:00 02/10/11 04:34 88-08-8 50-150 1 02/09/11 17:00 02/10/11 04:34 88-08-8 50-150 1 02/09/11 17:00 02/10/11 04:34 88-08-8 50-150 1 02/09/11 17:00 02/10/11 04:34 88-08-8 50-150 1 02/09/11 17:00 02/10/11 04:34 88-08-8 50-150 1 02/09/11 17:00 02/10/11 04:34 88-08-8 50-150 1 02/09/11 17:40 02/12/11 03:14 88-32-9 60-60				50-150	1	02/09/11 14:45	02/10/11 16:20	84-15-1	
a.a.aTrifluorotoluene (S) 102 % 50-150 1 02/09/11 17:00 02/10/11 04:34 88-08-8 4-Bromofluorobenzene (S) 91 % 50-150 1 02/09/11 17:00 02/10/11 04:34 460-00-4 Bazzo MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Acenaphthene ND ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 208-96-8 Acenaphthylene 8.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 208-96-8 Anthracene Benzo(a)prene 31.4 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 208-96-8 Benzo(a)prene 31.4 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 50-32-8 Benzo(a)prene 31.4 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 50-32-8 Benzo(a)prene 15.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 50-32-8 Benzo(g/k)fluoranthene 12.5 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 50-32-8 Benzo(g/k)fluoranthene 12.5 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 50-32-8 Benzo(g/k)fluoranthene 12.5 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 50-32-8 Benzo(g/k)fluoranthene 12.5 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 50-32-8 Benzo(g/k)fluoranthene 10.5 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 50-32-8 Benzo(g/k)fluoranthene 10.5 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 50-32-8 Benzo(g/k)fluoranthene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 50-32-8 Benzo(g/k)fluoranthene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 50-32-8 Benzo(g/k)fluoranthene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 50-33-8 Benzo(g/k)fluoranthene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 50-33-8 Benzo(g/k)fluoranthene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 50-33-8 Benzo(g/k)fluoranthene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 50-33-8 Benzo(g/k)fluoranthene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 50-33-8 Benzo(g/k)fluoranthene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 50-33-8 Benzo(g/k)fluoranthene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 50-33-8 Benzo(g/k)fluoranthene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 50-33-8 Benzo(g/k)fluoranthene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 50-33-8 Benzo(g/k)fluoranthene 10.6 ug/kg 10.6 ug/kg 10.	NWTPH-Gx GCV	Analytical Meth	nod: NWTPI	H-Gx Preparation Me	ethod: N	WTPH-Gx			
a.a.a-Trifluorofoluene (S) 4-Bromofluorobenzene (S) 91 % 50-150 1 02/09/11 17:00 02/10/11 04:34 460-00-4 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 5546 Acenaphthene ND ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 208-96-8 Anthracene Benzo(a)phrene 31.9 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 208-96-8 Benzo(a)phrene 31.4 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 208-96-8 Benzo(a)phrene 31.4 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 208-96-8 Benzo(a)phrene 31.4 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 205-99-2 Benzo(g),fliperylne 29.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 205-99-2 Benzo(g),fliperylne 29.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 205-99-2 Benzo(g),fliperylne 29.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 205-99-2 Benzo(g),fliperylne 29.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 205-99-2 Benzo(g),fliperylne 29.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 38.4 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 38.4 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 38.4 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 38.4 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 10.7 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 206-04-0 Fluoranthene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 206-04-0 Fluoranthene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 206-04-0 Fluoranthene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 206-04-0 Fluoranthene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 206-04-0 Fluoranthene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 206-08-0 Fluoranthene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 206-08-0 Fluoranthene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 206-08-0 Fluoranthene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 206-08-0 Fluoranthene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 206-08-0 Fluoranthene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 206-08-0 Fluoranthene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 206-08-0 Fluoranthene 10.6 ug/kg 7.5	Gasoline Range Organics	ND mo	g/kg	4.9	1	02/09/11 17:00	02/10/11 04:34	ļ	
Acenaphthere ND ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 83-32-9 Acenaphthylene 8.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 83-32-9 Acenaphthylene 8.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 83-32-9 Acenaphthylene 8.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 120-12-7 Benzo(a)anthracene 32.9 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 120-12-7 Benzo(a)anthracene 32.9 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 120-12-7 Benzo(a)prome 31.4 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 120-12-7 Benzo(a)prome 31.4 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 120-12-7 Benzo(a)prome 15.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 20-99-2 Benzo(b)fluoranthene 15.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 20-99-2 Benzo(b)fluoranthene 15.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 20-99-2 Benzo(b)fluoranthene 15.9 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 20-99-2 Benzo(b)fluoranthene 15.9 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 218-01-9 Dibenz(a,f)anthracene ND ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 218-01-9 Dibenz(a,f)anthracene 52.9 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 218-01-9 Dibenz(a,f)anthracene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 218-01-9 Dibenz(a,f)anthracene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 20-04-40 Dibenz(a,f)anthracene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 20-04-40 Dibenz(a,f)anthracene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 20-04-40 Dibenz(a,f)anthracene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 20-04-40 Dibenz(a,f)anthracene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 20-04-40 Dibenz(a,f)anthracene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 20-04-40 Dibenz(a,f)anthracene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 20-04-40 Dibenz(a,f)anthracene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 20-04-40 Dibenz(a,f)anthracene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 20-04-40 Dibenz(a,f)anthracene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 20-04-40 Dibenz(a,f)anthracene 10.6 ug/kg 2.5 1 02/07/11 17:40 02/12/11 03:14 20-04-40 Dibenz(a,f)anthrac	<u> </u>		, ,						
Acenaphthene ND ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 83-32-9 Acenaphthylene 8.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 208-96-8 Anthracene 12.9 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 120-12-7 Benzo(a)nthracene 32.9 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 120-12-7 Benzo(a)pyrene 31.4 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 205-99-2 Benzo(b)fluoranthene 29.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 205-99-2 Benzo(b)fluoranthene 15.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 205-99-2 Benzo(k)fluoranthene 12.5 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 205-99-2 Benzo(k)fluoranthene 12.5 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 38.4 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 38.4 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 38.4 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Fluoranthene 52.9 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 206-44-0 Fluorene 10.7 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 206-44-0 Fluorene 10.7 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 206-44-0 Fluorene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-37-3 Fluoranthene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-57-6 Naphthalene 18.0 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-57-6 Naphthalene 18.0 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-57-6 Naphthalene 18.0 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-57-6 Naphthalene 18.0 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-57-6 Naphthalene 18.0 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-57-6 Naphthalene 18.0 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-57-6 Naphthalene 18.0 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-57-6 Naphthalene 18.0 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-57-6 Naphthalene 18.0 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-57-6 Naphthalene 18.0 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-57-6 Naphthalene 18.0 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-57-6 Naphthalene ND ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-57-6 Naphthalene ND ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-57									
Acenaphthylene 8.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 208-96-8 Anthracene 12.9 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 120-12-7 Benzo(a)anthracene 32.9 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 120-12-7 Benzo(a)pyrene 31.4 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 56-55-3 Benzo(a)pyrene 29.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 56-55-3 Benzo(b)fluoranthene 29.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 205-99-2 Benzo(b)fluoranthene 12.5 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 38.4 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 38.4 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 38.4 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 38.4 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 38.4 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 38.4 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/1	8270 MSSV PAH by SIM	Analytical Meth	nod: EPA 82	70 by SIM Preparati	on Meth	od: EPA 3546			
Acenaphthylene	Acenaphthene	ND ua	/ka	7.5	1	02/07/11 17:40	02/12/11 03:14	83-32-9	
Anthracene 12.9 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 120-12-7 Benzo(a)anthracene 32.9 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 156-53-3 Benzo(a)pyrene 31.4 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 56-53-8 Benzo(b)fluoranthene 29.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 50-32-8 Benzo(b)fluoranthene 15.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 2 Benzo(b)fluoranthene 15.5 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 2 Benzo(b)fluoranthene 12.5 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 2 Dibenz(a,h)anthracene ND ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 2 Dibenz(a,h)anthracene ND ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 2 Dibenz(a,h)anthracene 10.7 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 2 Dibenz(a,h)anthracene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 206-04-0 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 206-04-0 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 86-73-7 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 90-12-0 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 90-12-0 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 90-12-0 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 90-12-0 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 90-12-0 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 90-12-0 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 90-12-0 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 90-12-0 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 90-12-0 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-50-3 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-50-3 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-50-3 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-50-3 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-50-3 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-50-3 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-50-3 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-50-3 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-50-3 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-50-3 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-5	•	-	•						
Benzo(a)anthracene 32.9 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 56-55-3 Benzo(a)pyrene 31.4 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 50-32-8 Benzo(g,h,i)perylene 19.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 50-32-8 Benzo(g,h,i)perylene 19.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 19.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 19.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 19.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 19.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 19.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 Chrysene 19.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 206-04-0 Chrysene 19.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 206-04-0 Chrysene 19.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 206-04-0 Chrysene 19.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 206-04-0 Chrysene 19.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 206-04-0 Chrysene 19.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 206-04-0 Chrysene 19.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 206-04-0 Chrysene 19.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 206-04-0 Chrysene 19.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 206-04-0 Chrysene 19.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 20-12-0 Chrysene 19.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 20-12-0 Chrysene 19.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 20-0-0 Chrysene 19.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 20-0-0 Chrysene 19.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 20-0-0 Chrysene 19.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 20-0-0 Chrysene 19.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 20-0-0 Chrysene 19.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 20-0-0 Chrysene 19.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 20-0-0 Chrysene 19.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 12-0-0 Chrysene 19.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 12-0-0 Chrysene 19.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 12-0-0 Chrysene 19.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 12-0-0 Chrysene 19.1 ug/k	• •	_	-						
Benzo(a)pyrene 31.4 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 50-32-8 Benzo(b)fluoranthene 29.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 205-99-2 Benzo(b)fluoranthene 15.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 205-99-2 Benzo(b)fluoranthene 12.5 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 205-99-2 Benzo(b)fluoranthene 12.5 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 205-99-2 Benzo(b)fluoranthene 12.5 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 218-01-9 02/01/21 03:14 218-01-9 02/01/21 03:14 218-01-9 02/01/21 03:14 218-01-9 02/01/21 03:14 218-01-9 02/01/21 03:14 218-01-9 02/01/21 03:14 218-01-9 02/01/21 03:14 218-01-9 02/01/21 03:14 206-44-0 02/01/21 03:14 206-44-0 02/01/21 03:14 206-44-0 02/01/21 03:14 206-44-0 02/01/21 03:14 206-44-0 02/01/21 03:14 206-44-0 02/01/21 03:14 206-44-0 02/01/21 03:14 206-44-0 02/01/21 03:14 206-44-0 02/01/21 03:14 206-44-0 02/01/21 03:14 206-44-0 02/01/21 03:14 206-44-0 02/01/21 03:14 206-44-0 02/01/21 03:14 206-44-0 02/01/21 03:14 206-37 02/01/21 03:14 206-44-0 02/01/21 03:14 206-44-0 02/01/21 03:14 206-37 02/01/21 03:14 206-07 02/01/21 03:14 206-07 02/01/21 03:14 206-07 02/01/21 03:14 206-07 02/01/21 03:14 206-07 02/01/21 03:14 206-07 02/01/21 03:14 206-07 02/01		_	-						
Benzo(b)fluoranthene 29.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 205-99-2 20-20(g)h,l)perylene 15.1 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 20-20(g)h,l)perylene 38.4 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 20-20(g)h,l)perylene 38.4 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 207-08-9 20-20(g)h,l)perylene 38.4 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 218-01-9 20-20(g)h,l)perylene 38.4 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 218-01-9 20-20(g)h,l)perylene 52.9 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 206-44-0 20-20(g)h,l)perylene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 206-44-0 20-20(g)h,l)perylene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 206-44-0 20-20(g)h,l)perylene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 206-44-0 20-20(g)h,l)perylene 18.0 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 206-20-20(g)h,l)perylene 18.0 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 20-20-20(g)h,l)perylene 18.0 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 20-20-20(g)h,l)perylene 20-20(g)h,l)perylene 20-2		_	-						
Senzo(g,h,i)perylene	1 11 1	_	-						
Benzo(k)fluoranthene 12.5 ug/kg		-	-						
Chrysene 38.4 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 218-01-9 218-01-	·- · · · · · · · · · · · · · · · · · ·	_	-						
Dibenz(a,h)anthracene		_	-						
Fluoranthene 52.9 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 206-44-0 Fluorene 10.7 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 86-73-7 Indeno(1,2,3-cd)pyrene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 193-39-5 1-1 Methylnaphthalene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 193-39-5 1-1 Methylnaphthalene 18.0 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-57-6 Naphthalene 16.4 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-57-6 Naphthalene 16.4 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-57-6 Naphthalene 16.4 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-20-3 Phenanthrene 48.9 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 85-01-8 Pyrene 81.3 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 85-01-8 Pyrene 81.3 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 129-00-0 Pyrene 81.3 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 321-60-8 Pyrene 81.3 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 321-60-8 Pyrene 91.3 ug/kg 91.3 1 02/07/11 17:40 02/12/11 03:14 321-60-8 Pyrene 91.3 ug/kg 91.3 1 02/07/11 17:40 02/12/11 03:14 129-00-0 Pyrene 91.3 ug/kg 91.3 1 02/07/11 17:40 02/12/11 03:14 129-00-0 Pyrene 91.3 ug/kg 91.3 1 02/07/11 17:40 02/12/11 03:14 129-00-0 Pyrene 91.3 ug/kg 91.3 1 02/07/11 17:40 02/12/11 03:14 129-00-0 Pyrene 91.3 ug/kg 91.3 1 02/07/11 17:40 02/12/11 03:14 129-00-0 Pyrene 91.3 ug/kg 91.3 1 02/07/11 17:40 02/12/11 03:14 129-00-0 Pyrene 91.3 ug/kg 91.3 1 02/07/11 17:40 02/12/11 03:14 129-00-0 Pyrene 91.3 ug/kg 91.3 1 02/07/11 17:40 02/12/11 03:14 129-00-0 Pyrene 91.3 ug/kg 91.3 1 02/07/11 17:40 02/12/11 03:14 129-00-0 Pyrene 91.3 ug/kg 91.3 u	-	_	-						
Fluorene 10.7 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 86-73-7 ndeno(1,2,3-cd)pyrene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 193-39-5 1-Methylnaphthalene 10.6 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 90-12-0 18.0 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-57-6 18.0 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-57-6 18.0 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-57-6 18.0 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-57-6 18.0 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-20-3 18.0 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-20-3 18.0 ug/kg 9.5 1 02/07/11 17:40 02/12/11 03:14 85-01-8 18.0 ug/kg 9.5 1 02/07/11 17:40 02/12/11 03:14 85-01-8 18.0 ug/kg 9.5 1 02/07/11 17:40 02/12/11 03:14 85-01-8 18.0 ug/kg 9.5 1 02/07/11 17:40 02/12/11 03:14 129-00-0 18.0 ug/kg 19.5 1 02/07/11 17:40 02/12/11 03:14 129-00-0 18.0 ug/kg 19.5 1 02/07/11 17:40 02/12/11 03:14 1718-51-0 18.0 ug/kg 19.5 1 02/07/11 17:40 02/12/11 03:14 1718-51-0 18.0 ug/kg 19.5 1 02/07/11 17:40 02/12/11 03:14 1718-51-0 18.0 ug/kg 19.5 1 02/08/11 12:04 100-41-4 18.0 ug/kg 19.5 1 02/08/11 12:04 100-41-4 18.0 ug/kg 19.5 1 02/08/11 12:04 108-88-3 18.0 ug/kg 19.5 102.0 ug/kg 19.5 102.0 ug/kg 19.5 102.0 ug/kg 19.5 102.0 ug/kg 19									
Indeno(1,2,3-cd)pyrene		-	-						
1-Methylnaphthalene									
2-Methylnaphthalene 18.0 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-57-6 Naphthalene 16.4 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 91-20-3 Phenanthrene 48.9 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 85-01-8 Pyrene 81.3 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 85-01-8 Pyrene 81.3 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 129-00-0 2-Fluorobiphenyl (S) 64 % 31-131 1 02/07/11 17:40 02/12/11 03:14 321-60-8 Terphenyl-d14 (S) 70 % 30-133 1 02/07/11 17:40 02/12/11 03:14 321-60-8 Benzene ND ug/kg 2.5 1 02/08/11 12:04 71-43-2 Ethylbenzene ND ug/kg 2.5 1 02/08/11 12:04 100-41-4 Toluene ND ug/kg 2.5 1 02/08/11 12:04 100-41-4 Toluene ND ug/kg 7.5 1 02/08/11 12:04 108-88-3 ND ug/kg 7.5 1 02/08/11 12:04 1330-20-7 Dibromofluoromethane (S) 91 % 80-136 1 02/08/11 12:04 1368-53-7 Toluene-d8 (S) 104 % 80-120 1 02/08/11 12:04 460-00-4 1,2-Dichloroethane-d4 (S) Analytical Method: ASTM D2974-87									
Naphthalene		_	-						
Phenanthrene 48.9 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 85-01-8 Pyrene 81.3 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 129-00-0 2-Fluorobiphenyl (S) 64 % 31-131 1 02/07/11 17:40 02/12/11 03:14 129-00-0 31-131 1 02/07/11 17:40 02/12/11 03:14 129-00-0 31-131 1 02/07/11 17:40 02/12/11 03:14 1718-51-0 3260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 2.5 1 02/08/11 12:04 71-43-2 Ethylbenzene ND ug/kg 2.5 1 02/08/11 12:04 100-41-4 Toluene ND ug/kg 7.5 1 02/08/11 12:04 100-41-4 Toluene Kylene (Total) ND ug/kg 7.5 1 02/08/11 12:04 1330-20-7 Dibromofluoromethane (S) 91 % 80-136 1 02/08/11 12:04 1868-53-7 Toluene-d8 (S) 4-Bromofluorobenzene (S) 102 % 72-122 1 02/08/11 12:04 460-00-4 1,2-Dichloroethane-d4 (S) Analytical Method: ASTM D2974-87	·	_	-						
Pyrene 81.3 ug/kg 7.5 1 02/07/11 17:40 02/12/11 03:14 129-00-0 2-Fluorobiphenyl (S) 64 % 31-131 1 02/07/11 17:40 02/12/11 03:14 321-60-8 30-133 1 02/07/11 17:40 02/12/11 03:14 1718-51-0 3260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 2.5 1 02/08/11 12:04 71-43-2 Ethylbenzene ND ug/kg 2.5 1 02/08/11 12:04 100-41-4 Toluene ND ug/kg 2.5 1 02/08/11 12:04 108-88-3 Xylene (Total) ND ug/kg 7.5 1 02/08/11 12:04 1330-20-7 Dibromofluoromethane (S) 91 % 80-136 1 02/08/11 12:04 1868-53-7 Toluene-d8 (S) 104 % 80-120 1 02/08/11 12:04 2037-26-5 4-Bromofluorobenzene (S) 102 % 72-122 1 02/08/11 12:04 460-00-4 1,2-Dichloroethane-d4 (S) 4nalytical Method: ASTM D2974-87	·	-	-						
2-Fluorobiphenyl (S) 64 % 31-131 1 02/07/11 17:40 02/12/11 03:14 321-60-8 Terphenyl-d14 (S) 70 % 30-133 1 02/07/11 17:40 02/12/11 03:14 1718-51-0 8260/5035A Volatile Organics Benzene		-	-						
Terphenyl-d14 (S) 70 % 30-133 1 02/07/11 17:40 02/12/11 03:14 1718-51-0 8260/5035A Volatile Organics	•	-	/kg						
Analytical Method: EPA 8260 Benzene ND ug/kg 2.5 1 02/08/11 12:04 71-43-2 Ethylbenzene ND ug/kg 2.5 1 02/08/11 12:04 100-41-4 Toluene ND ug/kg 2.5 1 02/08/11 12:04 100-41-4 Toluene ND ug/kg 2.5 1 02/08/11 12:04 108-88-3 Xylene (Total) ND ug/kg 7.5 1 02/08/11 12:04 1330-20-7 Dibromofluoromethane (S) 91 % 80-136 1 02/08/11 12:04 1868-53-7 Toluene-d8 (S) 4-Bromofluorobenzene (S) 102 % 72-122 1 02/08/11 12:04 460-00-4 1,2-Dichloroethane-d4 (S) Percent Moisture Analytical Method: ASTM D2974-87									
Benzene ND ug/kg 2.5 1 02/08/11 12:04 71-43-2 Ethylbenzene ND ug/kg 2.5 1 02/08/11 12:04 100-41-4 Toluene ND ug/kg 2.5 1 02/08/11 12:04 108-88-3 Xylene (Total) ND ug/kg 7.5 1 02/08/11 12:04 1330-20-7 Dibromofluoromethane (S) 91 % 80-136 1 02/08/11 12:04 1868-53-7 Toluene-d8 (S) 104 % 80-120 1 02/08/11 12:04 2037-26-5 4-Bromofluorobenzene (S) 102 % 72-122 1 02/08/11 12:04 460-00-4 1,2-Dichloroethane-d4 (S) 100 % 80-143 1 02/08/11 12:04 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87			nod: EPA 82						
Ethylbenzene ND ug/kg 2.5 1 02/08/11 12:04 100-41-4 Toluene ND ug/kg 2.5 1 02/08/11 12:04 108-88-3 Xylene (Total) ND ug/kg 7.5 1 02/08/11 12:04 1330-20-7 Dibromofluoromethane (S) 91 % 80-136 1 02/08/11 12:04 1868-53-7 Toluene-d8 (S) 104 % 80-120 1 02/08/11 12:04 2037-26-5 4-Bromofluorobenzene (S) 102 % 72-122 1 02/08/11 12:04 460-00-4 1,2-Dichloroethane-d4 (S) 100 % 80-143 1 02/08/11 12:04 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	_	,			1		02/08/11 12:04	71-43-2	
Toluene ND ug/kg 2.5 1 02/08/11 12:04 108-88-3 Xylene (Total) ND ug/kg 7.5 1 02/08/11 12:04 1330-20-7 Dibromofluoromethane (S) 91 % 80-136 1 02/08/11 12:04 1868-53-7 Toluene-d8 (S) 104 % 80-120 1 02/08/11 12:04 2037-26-5 4-Bromofluorobenzene (S) 102 % 72-122 1 02/08/11 12:04 460-00-4 1,2-Dichloroethane-d4 (S) 100 % 80-143 1 02/08/11 12:04 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87					· ·				
Xylene (Total) ND ug/kg 7.5 1 02/08/11 12:04 1330-20-7 Dibromofluoromethane (S) 91 % 80-136 1 02/08/11 12:04 1868-53-7 Toluene-d8 (S) 104 % 80-120 1 02/08/11 12:04 2037-26-5 4-Bromofluorobenzene (S) 102 % 72-122 1 02/08/11 12:04 460-00-4 1,2-Dichloroethane-d4 (S) 100 % 80-143 1 02/08/11 12:04 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	•								
Dibromofluoromethane (S) 91 % 80-136 1 02/08/11 12:04 1868-53-7 Toluene-d8 (S) 104 % 80-120 1 02/08/11 12:04 2037-26-5 4-Bromofluorobenzene (S) 102 % 72-122 1 02/08/11 12:04 460-00-4 1,2-Dichloroethane-d4 (S) 100 % 80-143 1 02/08/11 12:04 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87									
Toluene-d8 (S) 104 % 80-120 1 02/08/11 12:04 2037-26-5 4-Bromofluorobenzene (S) 102 % 72-122 1 02/08/11 12:04 460-00-4 1,2-Dichloroethane-d4 (S) 100 % 80-143 1 02/08/11 12:04 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	, ,	_	· · · ʊ						
4-Bromofluorobenzene (S) 102 % 72-122 1 02/08/11 12:04 460-00-4 1,2-Dichloroethane-d4 (S) 100 % 80-143 1 02/08/11 12:04 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	` ,								
1,2-Dichloroethane-d4 (S) 100 % 80-143 1 02/08/11 12:04 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	` ,								
Percent Moisture Analytical Method: ASTM D2974-87	` ,								
			nod: ASTM I		•		32,00,11 12.0-		
	Percent Moisture	11.4 %	.54.7.011011	0.10	1		02/12/11 15:01		

Date: 02/18/2011 01:43 PM

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

Page 4 of 19

Project: East Bay Redevelopment 138130

Pace Project No.: 256499

Sample: SPL-30-2	Lab ID:	256499002	Collected: 0	2/03/11	13:20	Received: 02	2/05/11 11:38 N	/latrix: Solid	
Results reported on a "dry-weigh	t" basis								
Parameters	Results	Units	Report L	imit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS SG	Analytical	Method: NWTP	H-Dx Preparat	ion Me	thod: El	PA 3546			
Diesel Range SG	51.:	2 mg/kg		21.1	1	02/09/11 14:45	02/10/11 16:37		
Motor Oil Range SG	41	5 mg/kg		84.5	1	02/09/11 14:45	02/10/11 16:37	64742-65-0	
n-Octacosane (S) SG	113	8 %	50	-150	1	02/09/11 14:45	02/10/11 16:37	630-02-4	
o-Terphenyl (S) SG	11-	4 %	50	-150	1	02/09/11 14:45	02/10/11 16:37	84-15-1	
NWTPH-Gx GCV	Analytical	Method: NWTP	H-Gx Preparat	ion Me	thod: N	WTPH-Gx			
Gasoline Range Organics	NI	D mg/kg		5.0	1	02/09/11 17:00	02/10/11 04:57		
a,a,a-Trifluorotoluene (S)	10	0 %	50	-150	1	02/09/11 17:00	02/10/11 04:57	98-08-8	
4-Bromofluorobenzene (S)		8 %	50	-150	1	02/09/11 17:00	02/10/11 04:57	460-00-4	
8270 MSSV PAH by SIM	Analytical	Method: EPA 8	270 by SIM Pre	eparatio	n Meth	od: EPA 3546			
Acenaphthene	NI	O ug/kg		7.1	1	02/07/11 17:40	02/12/11 03:32	83-32-9	
Acenaphthylene		D ug/kg		7.1	1		02/12/11 03:32		
Anthracene		O ug/kg		7.1	1	02/07/11 17:40	02/12/11 03:32	120-12-7	
Benzo(a)anthracene		3 ug/kg		7.1	1		02/12/11 03:32		
Benzo(a)pyrene		6 ug/kg		7.1	1		02/12/11 03:32		
Benzo(b)fluoranthene		5 ug/kg		7.1	1		02/12/11 03:32		
Benzo(g,h,i)perylene		7 ug/kg		7.1	1		02/12/11 03:32		
Benzo(k)fluoranthene		D ug/kg		7.1	1		02/12/11 03:32		
Chrysene		1 ug/kg		7.1	1		02/12/11 03:32		
Dibenz(a,h)anthracene		D ug/kg		7.1	1		02/12/11 03:32		
Fluoranthene		4 ug/kg		7.1	1		02/12/11 03:32		
Fluorene		ug/kg Dug/kg		7.1	1		02/12/11 03:32		
				7.1	1		02/12/11 03:32		
Indeno(1,2,3-cd)pyrene		D ug/kg		7.1 7.1	1		02/12/11 03.32		
1-Methylnaphthalene		O ug/kg							
2-Methylnaphthalene		1 ug/kg		7.1	1		02/12/11 03:32		
Naphthalene		O ug/kg		7.1	1		02/12/11 03:32		
Phenanthrene		3 ug/kg		7.1	1		02/12/11 03:32		
Pyrene		9 ug/kg	0.4	7.1	1		02/12/11 03:32		
2-Fluorobiphenyl (S)		3 %		-131	1		02/12/11 03:32		
Terphenyl-d14 (S)		9 %		-133	1	02/07/11 17:40	02/12/11 03:32	1/18-51-0	
8260/5035A Volatile Organics	•	Method: EPA 8	20 U	0.0	4		00/00/44 40:00	74 40 0	
Benzene		O ug/kg		2.6	1		02/08/11 12:23		
Ethylbenzene		O ug/kg		2.6	1		02/08/11 12:23		
Toluene		O ug/kg		2.6	1		02/08/11 12:23		
Xylene (Total)		O ug/kg		7.9	1		02/08/11 12:23		
Dibromofluoromethane (S)		1 %		-136	1		02/08/11 12:23		
Toluene-d8 (S)		5 %		-120	1		02/08/11 12:23		
4-Bromofluorobenzene (S)		8 %		!-122	1		02/08/11 12:23		
1,2-Dichloroethane-d4 (S)	9	8 %	80	-143	1		02/08/11 12:23	17060-07-0	
Percent Moisture	Analytical	Method: ASTM	D2974-87						
Percent Moisture	7.	6 %		0.10	1		02/12/11 15:04		

Date: 02/18/2011 01:43 PM

REPORT OF LABORATORY ANALYSIS

Page 5 of 19

Project: East Bay Redevelopment 138130

Pace Project No.: 256499

Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diasel Range SG 51.1 mg/kg 20.7 1 02/09/11 14.45 02/11/11 21:11 64742-65-0 **Cotacosane (S) SG 143 % 50-150 1 02/09/11 14.45 02/11/11 21:11 64742-65-0 **Cotacosane (S) SG 143 % 50-150 1 02/09/11 14.45 02/11/11 21:11 64742-65-0 **Cotacosane (S) SG 143 % 50-150 1 02/09/11 14.45 02/11/11 21:11 64742-65-0 **Cotacosane (S) SG 35 % 50-150 1 02/09/11 14.45 02/11/11 21:11 64742-65-0 **Cotacosane (S) SG 36 % 50-150 1 02/09/11 14.45 02/11/11 21:11 8415-1 **WYPH-Gx GCV Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx **Sasoline Range Organics 13a, a2-Tiflucrotolloune (S) 109 % 50-150 1 02/09/11 17:00 02/10/11 05:21 98-06-8 **Bromofluorobenzene (S) 19 % 50-150 1 02/09/11 17:00 02/10/11 05:21 98-06-8 **Bromofluorobenzene (S) 40-00-4 **Accenaphthene Accenaphthene Accenaphthene ND ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 20-9-6-8 **Achthracene 9.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 20-9-6-8 **Anthracene 9.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 50-32-8 **Benzo(g)-hiperylene 19.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 50-32-8 **Benzo(g)-hiperylene 19.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 50-32-8 **Benzo(g)-hiperylene 14.5 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 50-32-8 **Benzo(g)-hiperylene 14.5 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 20-12-7 **Benzo(g)-hiperylene 14.5 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 20-12-7 **Benzo(g)-hiperylene 14.5 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 20-12-7 **Benzo(g)-hiperylene 19.0 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 20-59-9-2 **Benzo(g)-hiperylene 19.0 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 20-59-9-2 **Benzo(g)-hiperylene 19.0 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 20-59-9-2 **Benzo(g)-hiperylene 19.0 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 20-59-9-2 **Benzo(g)-hiperylene 19.0 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 20-59-9-2 **Benzo(g)-hiperylene 19.0 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 20-59-9-2 **Benzo(g)	Sample: SPL-30-3	Lab ID: 256	499003	Collected: 02/03/11	13:40	Received: 02	2/05/11 11:38	Matrix: Solid	
Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 Diasel Range SG 51.1 mg/kg 20.7 1 02/09/11 14.45 02/11/11 21:11 64742-65-0 **Cotacosane (S) SG 143 % 50-150 1 02/09/11 14.45 02/11/11 21:11 64742-65-0 **Cotacosane (S) SG 143 % 50-150 1 02/09/11 14.45 02/11/11 21:11 64742-65-0 **Cotacosane (S) SG 143 % 50-150 1 02/09/11 14.45 02/11/11 21:11 64742-65-0 **Cotacosane (S) SG 35 % 50-150 1 02/09/11 14.45 02/11/11 21:11 64742-65-0 **Cotacosane (S) SG 36 % 50-150 1 02/09/11 14.45 02/11/11 21:11 8415-1 **WYPH-Gx GCV Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx **Sasoline Range Organics 13a, a2-Tiflucrotolloune (S) 109 % 50-150 1 02/09/11 17:00 02/10/11 05:21 98-06-8 **Bromofluorobenzene (S) 19 % 50-150 1 02/09/11 17:00 02/10/11 05:21 98-06-8 **Bromofluorobenzene (S) 40-00-4 **Accenaphthene Accenaphthene Accenaphthene ND ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 20-9-6-8 **Achthracene 9.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 20-9-6-8 **Anthracene 9.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 50-32-8 **Benzo(g)-hiperylene 19.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 50-32-8 **Benzo(g)-hiperylene 19.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 50-32-8 **Benzo(g)-hiperylene 14.5 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 50-32-8 **Benzo(g)-hiperylene 14.5 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 20-12-7 **Benzo(g)-hiperylene 14.5 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 20-12-7 **Benzo(g)-hiperylene 14.5 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 20-12-7 **Benzo(g)-hiperylene 19.0 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 20-59-9-2 **Benzo(g)-hiperylene 19.0 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 20-59-9-2 **Benzo(g)-hiperylene 19.0 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 20-59-9-2 **Benzo(g)-hiperylene 19.0 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 20-59-9-2 **Benzo(g)-hiperylene 19.0 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 20-59-9-2 **Benzo(g)-hiperylene 19.0 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 20-59-9-2 **Benzo(g)	Results reported on a "dry-weight	t" basis							
Diesel Range SG	Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Motor Oil Range SG	NWTPH-Dx GCS SG	Analytical Meth	nod: NWTPH	-Dx Preparation Me	thod: El	PA 3546			
Motor Oil Range SG	Diesel Range SG	51.1 mg	g/kg	20.7	1	02/09/11 14:45	02/11/11 21:11		
1-Cotacosane (S) SG 143 % 50-150 1 0 20/09/11 14:45 02/11/11 21:11 02/09/11 14:45 02/11/11 21:11 02/09/11 14:45 02/11/11 21:11 02/09/11 14:45 02/11/11 21:11 02/09/11 14:45 02/11/11 21:11 02/09/11 17:00 02/11/11 02:11 02/09/11 02:1	Motor Oil Range SG			82.8	1	02/09/11 14:45	02/11/11 21:11	64742-65-0	
Second S	_			50-150	1	02/09/11 14:45	02/11/11 21:11	630-02-4	
Asacline Range Organics a.aTrifluorotoluene (S) 108 % 50-150 1 02/09/11 17:00 02/10/11 05:21 98-08-8 1-98 (S) 108 % 50-150 1 02/09/11 17:00 02/10/11 05:21 98-08-8 1-98 (S) 108 % 50-150 1 02/09/11 17:00 02/10/11 05:21 98-08-8 1-98 (S) 108 % 50-150 1 02/09/11 17:00 02/10/11 05:21 98-08-8 1-98 (S) 108 % 50-150 1 02/09/11 17:00 02/10/11 05:21 98-08-8 1-98 (S) 108 (S	o-Terphenyl (S) SG			50-150	1	02/09/11 14:45	02/11/11 21:11	84-15-1	
a.a.ainfluorotouene (S) 109 % 50-150 1 1 02/09/11 17:00 02/10/11 05:21 98-08-8 4-Bromofluorobenzene (S) 97 % 50-150 1 1 02/09/11 17:00 02/10/11 05:21 98-08-8 4-Bromofluorobenzene (S) 97 % 50-150 1 1 02/09/11 17:00 02/10/11 05:21 460-00-4 82070 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Acenaphthylene ND ug/kg 7.2 1 0 02/07/11 17:40 02/12/11 03:51 208-96-8 Anthracene 9.2 ug/kg 7.2 1 0 02/07/11 17:40 02/12/11 03:51 208-96-8 Benzo(a)pyrene 19.2 ug/kg 7.2 1 0 02/07/11 17:40 02/12/11 03:51 205-52-3 Benzo(a)pyrene 19.2 ug/kg 7.2 1 0 02/07/11 17:40 02/12/11 03:51 205-52-3 Benzo(a)pyrene 19.2 ug/kg 7.2 1 0 02/07/11 17:40 02/12/11 03:51 205-52-3 Benzo(k)fluoranthene 8.2 ug/kg 7.2 1 0 02/07/11 17:40 02/12/11 03:51 205-59-2 Benzo(k)fluoranthene 8.2 ug/kg 7.2 1 0 02/07/11 17:	NWTPH-Gx GCV	Analytical Meth	nod: NWTPH	-Gx Preparation Me	thod: N	WTPH-Gx			
a.a.ainfluorotouene (S) 109 % 50-150 1 1 02/09/11 17:00 02/10/11 05:21 98-08-8 4-Bromofluorobenzene (S) 97 % 50-150 1 1 02/09/11 17:00 02/10/11 05:21 98-08-8 4-Bromofluorobenzene (S) 97 % 50-150 1 1 02/09/11 17:00 02/10/11 05:21 460-00-4 82070 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Acenaphthylene ND ug/kg 7.2 1 0 02/07/11 17:40 02/12/11 03:51 208-96-8 Anthracene 9.2 ug/kg 7.2 1 0 02/07/11 17:40 02/12/11 03:51 208-96-8 Benzo(a)pyrene 19.2 ug/kg 7.2 1 0 02/07/11 17:40 02/12/11 03:51 205-52-3 Benzo(a)pyrene 19.2 ug/kg 7.2 1 0 02/07/11 17:40 02/12/11 03:51 205-52-3 Benzo(a)pyrene 19.2 ug/kg 7.2 1 0 02/07/11 17:40 02/12/11 03:51 205-52-3 Benzo(k)fluoranthene 8.2 ug/kg 7.2 1 0 02/07/11 17:40 02/12/11 03:51 205-59-2 Benzo(k)fluoranthene 8.2 ug/kg 7.2 1 0 02/07/11 17:	Gasoline Range Organics	ND mo	g/kg	5.0	1	02/09/11 17:00	02/10/11 05:21	l	
Ale Promofluorobenzene (S) 97 % 50-150 1 02/09/11 17:00 02/10/11 05:21 460-00-4 Accapaphthene ND ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 83-32-9 Accapaphthylene ND ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 83-32-9 Accapaphthylene ND ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 208-96-8 Anthriacene 9.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 120-12-7 Benzo(a) anthracene 19.0 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 56-55-3 Benzo(a) pyrene 19.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 56-55-3 Benzo(b) fluoranthene 20.9 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 208-99-2 Benzo(b, hi) perylene 14.5 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 208-99-2 Benzo(b, hi) perylene 8.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 207-08-9 Chrysene 24.5 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 207-08-9 Chrysene 24.5 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 207-08-9 Chrysene 36.3 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 206-08-2 Housenthene 36.3 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 53-70-3 Benzo(a) pyrene 36.3 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 53-70-3 Benzo(a) pyrene 8.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 53-70-3 Benzo(a) pyrene 8.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 56-73-7 Benzo(a) pyrene 8.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 53-70-3 Benzo(a) pyrene 8.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 91-09-09 Perkethylnaphthalene ND ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 91-09-09 Perkethylnaphthalene ND ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 91-09-09 Perkethylnaphthalene ND ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 91-09-09 Perkethylnaphthalene ND ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 91-09-09 Perkethylnaphthalene ND ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 91-09-09 Perkethylnaphthalene ND ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 91-09-09 Perkethylnaphthalene ND ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 91-09-09 Perkethylnaphthylnaphthylnaphthylnaphthylnaphtylnaphtylnaphtylnaphtylnaphtylnaphtylnaphtylnaphtylnaphtylnaphtylnaphtylnaphtylnaphtylnaphtylnaphtylnap	<u> </u>				1	02/09/11 17:00	02/10/11 05:21	98-08-8	
Acenaphthene Acenaphthylene Acenaphthylene ND ug/kg Acenaphthylene ND ug/kg Acenaphthylene ND ug/kg Acenaphthylene ND ug/kg Acenaphthylene ND ug/kg Acenaphthylene ND ug/kg Acenaphthylene ND ug/kg Acenaphthylene ND ug/kg Acenaphthylene ND ug/kg Acenaphthylene ND ug/kg Acenaphthylene ND ug/kg Acenaphthylene ND ug/kg Acenaphthylene ND ug/kg Acenaphthylene ND ug/kg Acenaphthylene Acenaphthylene ND ug/kg Acenaphthylene Acenaphthylene ND ug/kg Acenaphthylene Acena	4-Bromofluorobenzene (S)			50-150	1				
Acenaphthylene Anthracene Anthracene 9.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 208-96-8 Anthracene 9.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 56-55-3 Benzo(a)pyrene 19.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 56-55-3 Benzo(a)pyrene 19.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 56-55-3 Benzo(a)pyrene 19.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 50-32-8 Benzo(g)filuoranthene 20.9 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 205-99-2 Benzo(g)filuoranthene 8.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 207-08-9 Benzo(g)filuoranthene 8.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 207-08-9 Benzo(g)filuoranthene 8.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 207-08-9 Benzo(g)filuoranthene 8.3 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 207-08-9 Benzo(g)filuoranthene 9.5 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 207-08-9 Benzo(g)filuoranthene 9.6 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 207-08-9 Benzo(g)filuoranthene 9.7 ug/kg 9.7 ug/co/11 17:40 02/12/11 03:51 207-08-9 Benzo(g)filuoranthene 9.8 ug/kg 9.2 ug/kg 9.	8270 MSSV PAH by SIM	Analytical Meth	nod: EPA 827	0 by SIM Preparation	n Meth	od: EPA 3546			
Acenaphthylene Anthracene Anthracene 9.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 208-96-8 Anthracene 9.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 56-55-3 Benzo(a)pyrene 19.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 56-55-3 Benzo(a)pyrene 19.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 56-55-3 Benzo(a)pyrene 19.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 50-32-8 Benzo(g)filuoranthene 20.9 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 205-99-2 Benzo(g)filuoranthene 8.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 207-08-9 Benzo(g)filuoranthene 8.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 207-08-9 Benzo(g)filuoranthene 8.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 207-08-9 Benzo(g)filuoranthene 8.3 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 207-08-9 Benzo(g)filuoranthene 9.5 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 207-08-9 Benzo(g)filuoranthene 9.6 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 207-08-9 Benzo(g)filuoranthene 9.7 ug/kg 9.7 ug/co/11 17:40 02/12/11 03:51 207-08-9 Benzo(g)filuoranthene 9.8 ug/kg 9.2 ug/kg 9.	Acenaphthene	ND ua	ı/ka	7.2	1	02/07/11 17:40	02/12/11 03:51	83-32-9	
Anthracene 9.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 120-12-7 26nzo(a)anthracene 19.0 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 56-55-3 26nzo(a)pyrene 19.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 56-55-3 26nzo(b)fluoranthene 20.9 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 56-55-3 26nzo(b)fluoranthene 20.9 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 207-98-9 26nzo(b)fluoranthene 8.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 207-08-9 26nzo(b)fluoranthene 8.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 207-08-9 26nzo(b)fluoranthene 8.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 207-08-9 26nzo(b)fluoranthene 8.3 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 207-08-9 26nzo(a)anthracene ND ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 207-08-9 26nzo(a)anthracene ND ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 207-08-9 26nzo(a)anthracene ND ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 207-08-9 26nzo(a)anthracene ND ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 207-08-9 26nzo(a)anthracene ND ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 207-08-9 26nzo(a)anthracene ND ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 207-07-02/11 17:40 02/12/11 03:51 207-07-02/12/1	Acenaphthylene	-	-						
Senzo(a)anthracene 19.0 ug/kg	Anthracene		•		1				
Senzo(a)pyrene 19.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 50-32-8		-	-						
Benzo(b)fluoranthene 20.9 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 205-99-2		-	-						
Senzo(g,h,i)perylene		-	-						
Benzo(k)fluoranthene		-	-						
Chrysene 24.5 ug/kg	·- · · · · · · · · · · · · · · · · · ·								
Dibenz(a,h)anthracene									
Fluoranthene 36.3 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 206-44-0 Fluorene ND ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 206-44-0 Record (1,2,3-cd)pyrene 8.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 193-39-5 Record (1,2,3-cd)pyrene ND ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 193-39-5 Record (1,2,3-cd)pyrene ND ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 193-39-5 Record (1,2,3-cd)pyrene ND ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 191-57-6 Record (1,2,3-cd)pyrene ND ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 191-57-6 Record (1,2,3-cd)pyrene ND ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 191-20-3 Record (1,2,3-cd)pyrene A5.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 191-20-3 Record (1,2,3-cd)pyrene A5.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 191-20-3 Record (1,2,3-cd)pyrene A5.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 129-00-0 Record (1,2,3-cd)pyrene A5.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 129-00-0 Record (1,2,3-cd)pyrene A5.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 129-00-0 Record (1,2,3-cd)pyrene A5.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 129-00-0 Record (1,2,3-cd)pyrene A5.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 129-00-0 Record (1,2,3-cd)pyrene A5.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 129-00-0 Record (1,2,3-cd)pyrene A5.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 129-00-0 Record (1,2,3-cd)pyrene A5.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 129-00-0 Record (1,2,3-cd)pyrene A5.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 129-00-0 Record (1,2,3-cd)pyrene A5.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 129-00-0 Record (1,2,3-cd)pyrene A5.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 129-00-0 Record (1,2,3-cd)pyrene A5.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 129-00-0 Record (1,2,3-cd)pyrene A5.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 129-00-0 Record (1,2,3-cd)pyrene A5.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 12/10 13:51 12/10 13/10 12/10 13/10 12/10 13/10 12/10 13/10 12/10 13/10 12/10 13/10 12/10 13/10 12/10 13/10 12/10 13/10 12/10 13/10 12/10 13/10 12/10 13/10 12/10 13/10 12/10	-	-	-						
Fluorene ND ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 86-73-7 ndeno(1,2,3-cd)pyrene 8.2 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 193-39-5 l-Methylnaphthalene ND ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 193-39-5 l-Methylnaphthalene ND ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 191-57-6 Naphthalene ND ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 191-57-6 Naphthalene ND ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 191-57-6 Naphthalene ND ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 191-20-3 191-57-6 Naphthalene ND ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 191-20-3 191-57-6 Naphthalene ND ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 191-20-3 191-57-6 Naphthalene ND ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 191-20-3 191-57-6 Naphthalene ND ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 129-00-0 191-10-10-10-10-10-10-10-10-10-10-10-10-10									
No No No No No No No No		-	-						
1-Methylnaphthalene		-	-						
Percent Moisture 10.3 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 91-57-6 Naphthalene ND ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 91-20-3 Phenanthrene 37.1 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 85-01-8 Pyrene 45.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 85-01-8 Pyrene 45.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 129-00-0 Pyrene 45.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 129-00-0 Pyrene 45.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 129-00-0 Pyrene 45.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 129-00-0 Pyrene 45.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 129-00-0 Pyrene 45.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 129-00-0 Pyrene 45.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 129-00-0 Pyrene 45.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 129-00-0 Pyrene 45.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 129-00-0 Pyrene 45.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 129-00-0 Pyrene 45.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 129-00-0 Pyrene 45.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 129-00-0 Pyrene 45.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 129-00-0 Pyrene 45.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 129-00-0 Pyrene 45.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 129-00-0 Pyrene 45.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 129-00-0 Pyrene 45.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 129-00-0 Pyrene 45.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 129-00-0 Pyrene 47.4 ug/kg 7.2 ug									
ND ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 91-20-3 Phenanthrene 37.1 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 85-01-8 Pyrene 45.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 129-00-0 P-Fluorobiphenyl (S) 64 % 31-131 1 02/07/11 17:40 02/12/11 03:51 321-60-8 Perphenyl-d14 (S) 71 % 30-133 1 02/07/11 17:40 02/12/11 03:51 321-60-8 Perphenyl-d14 (S) 71 % 30-133 1 02/07/11 17:40 02/12/11 03:51 1718-51-0 Percent Moisture ND ug/kg 2.8 1 02/08/11 12:43 71-43-2 Porcent Moisture ND ug/kg 8.4 1 02/08/11 12:43 1300-20-7 Percent Moisture Analytical Method: ASTM D2974-87		-	-						
Phenanthrene 37.1 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 85-01-8 Pyrene 45.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 129-00-0 P-Fluorobiphenyl (S) 64 % 31-131 1 02/07/11 17:40 02/12/11 03:51 321-60-8 Perphenyl-d14 (S) 71 % 30-133 1 02/07/11 17:40 02/12/11 03:51 321-60-8 Perphenyl-d14 (S) Analytical Method: EPA 8260 Senzene ND ug/kg 2.8 1 02/08/11 12:43 71-43-2 Pethylbenzene ND ug/kg 2.8 1 02/08/11 12:43 100-41-4 Polibene (Total) ND ug/kg 8.4 1 02/08/11 12:43 1330-20-7 Polibromofluoromethane (S) 95 % 80-136 1 02/08/11 12:43 1330-20-7 Polibromofluorobenzene (S) 108 % 80-120 1 02/08/11 12:43 2037-26-5 Percent Moisture Analytical Method: ASTM D2974-87	• •	-	-						
Pyrene 45.8 ug/kg 7.2 1 02/07/11 17:40 02/12/11 03:51 129-00-0 2-Fluorobiphenyl (S) 64 % 31-131 1 02/07/11 17:40 02/12/11 03:51 321-60-8 30-133 1 02/07/11 17:40 02/12/11 03:51 321-60-8 30-133 1 02/07/11 17:40 02/12/11 03:51 321-60-8 30-133 1 02/07/11 17:40 02/12/11 03:51 1718-51-0 3260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 2.8 1 02/08/11 12:43 71-43-2 2-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-	•	-	-						
2-Fluorobiphenyl (S) 64 % 31-131 1 02/07/11 17:40 02/12/11 03:51 321-60-8 Terphenyl-d14 (S) 71 % 30-133 1 02/07/11 17:40 02/12/11 03:51 1718-51-0 8260/5035A Volatile Organics Analytical Method: EPA 8260 Senzene ND ug/kg 2.8 1 02/08/11 12:43 71-43-2 Ethylbenzene ND ug/kg 2.8 1 02/08/11 12:43 100-41-4 Toluene ND ug/kg 2.8 1 02/08/11 12:43 100-41-4 Toluene (Total) ND ug/kg 8.4 1 02/08/11 12:43 1330-20-7 Dibromofluoromethane (S) 95 % 80-136 1 02/08/11 12:43 1868-53-7 Toluene-d8 (S) 108 % 80-120 1 02/08/11 12:43 2037-26-5 4-Bromofluorobenzene (S) 101 % 72-122 1 02/08/11 12:43 460-00-4 1,2-Dichloroethane-d4 (S) 96 % 80-143 1 02/08/11 12:43 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87		-	•						
Terphenyl-d14 (S) 71 % 30-133 1 02/07/11 17:40 02/12/11 03:51 1718-51-0 3260/5035A Volatile Organics	•	-	, J						
Analytical Method: EPA 8260 Benzene Benzene ND ug/kg 2.8 1 02/08/11 12:43 71-43-2 Ethylbenzene ND ug/kg 2.8 1 02/08/11 12:43 100-41-4 Toluene ND ug/kg 2.8 1 02/08/11 12:43 100-41-4 Toluene ND ug/kg 2.8 1 02/08/11 12:43 100-41-4 Toluene ND ug/kg 8.4 1 02/08/11 12:43 108-88-3 ND ug/kg 8.4 1 02/08/11 12:43 1330-20-7 Dibromofluoromethane (S) 95 % 80-136 1 02/08/11 12:43 1868-53-7 Toluene-d8 (S) 4-Bromofluorobenzene (S) 108 % 80-120 1 02/08/11 12:43 2037-26-5 4-Bromofluorobenzene (S) 101 % 72-122 1 02/08/11 12:43 460-00-4 1,2-Dichloroethane-d4 (S) Percent Moisture Analytical Method: ASTM D2974-87									
Ethylbenzene ND ug/kg 2.8 1 02/08/11 12:43 100-41-4 Toluene ND ug/kg 2.8 1 02/08/11 12:43 108-88-3 Xylene (Total) ND ug/kg 8.4 1 02/08/11 12:43 1330-20-7 Dibromofluoromethane (S) 95 % 80-136 1 02/08/11 12:43 1868-53-7 Toluene-d8 (S) 108 % 80-120 1 02/08/11 12:43 2037-26-5 4-Bromofluorobenzene (S) 101 % 72-122 1 02/08/11 12:43 460-00-4 1,2-Dichloroethane-d4 (S) 96 % 80-143 1 02/08/11 12:43 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	3260/5035A Volatile Organics	Analytical Meth	hod: EPA 826	60					
Ethylbenzene ND ug/kg 2.8 1 02/08/11 12:43 100-41-4 Toluene ND ug/kg 2.8 1 02/08/11 12:43 108-88-3 Xylene (Total) ND ug/kg 8.4 1 02/08/11 12:43 1330-20-7 Dibromofluoromethane (S) 95 % 80-136 1 02/08/11 12:43 1868-53-7 Toluene-d8 (S) 108 % 80-120 1 02/08/11 12:43 2037-26-5 4-Bromofluorobenzene (S) 101 % 72-122 1 02/08/11 12:43 460-00-4 1,2-Dichloroethane-d4 (S) 96 % 80-143 1 02/08/11 12:43 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	Benzene	ND ua	ı/kg	2.8	1		02/08/11 12:43	3 71-43-2	
Toluene ND ug/kg 2.8 1 02/08/11 12:43 108-88-3 Xylene (Total) ND ug/kg 8.4 1 02/08/11 12:43 1330-20-7 Dibromofluoromethane (S) 95 % 80-136 1 02/08/11 12:43 1868-53-7 Toluene-d8 (S) 108 % 80-120 1 02/08/11 12:43 2037-26-5 4-Bromofluorobenzene (S) 101 % 72-122 1 02/08/11 12:43 460-00-4 1,2-Dichloroethane-d4 (S) 96 % 80-143 1 02/08/11 12:43 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	Ethylbenzene				1				
Xylene (Total) ND ug/kg 8.4 1 02/08/11 12:43 1330-20-7 Dibromofluoromethane (S) 95 % 80-136 1 02/08/11 12:43 1868-53-7 Foluene-d8 (S) 108 % 80-120 1 02/08/11 12:43 2037-26-5 4-Bromofluorobenzene (S) 101 % 72-122 1 02/08/11 12:43 460-00-4 1,2-Dichloroethane-d4 (S) 96 % 80-143 1 02/08/11 12:43 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	Toluene								
Dibromofluoromethane (S) 95 % 80-136 1 02/08/11 12:43 1868-53-7 Toluene-d8 (S) 108 % 80-120 1 02/08/11 12:43 2037-26-5 4-Bromofluorobenzene (S) 101 % 72-122 1 02/08/11 12:43 460-00-4 1,2-Dichloroethane-d4 (S) 96 % 80-143 1 02/08/11 12:43 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	Xylene (Total)								
Toluene-d8 (S) 108 % 80-120 1 02/08/11 12:43 2037-26-5 4-Bromofluorobenzene (S) 101 % 72-122 1 02/08/11 12:43 460-00-4 1,2-Dichloroethane-d4 (S) 96 % 80-143 1 02/08/11 12:43 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	, ,		•						
4-Bromofluorobenzene (S) 101 % 72-122 1 02/08/11 12:43 460-00-4 1,2-Dichloroethane-d4 (S) 96 % 80-143 1 02/08/11 12:43 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	. ,								
1,2-Dichloroethane-d4 (S) 96 % 80-143 1 02/08/11 12:43 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	` ,								
·	. ,								
Percent Moisture 7.8 % 0.10 1 02/12/11 15:05	Percent Moisture			2974-87					
	Percent Moisture	7.8 %		0.10	1		02/12/11 15:05	5	

Date: 02/18/2011 01:43 PM

REPORT OF LABORATORY ANALYSIS

Page 6 of 19

Project: East Bay Redevelopment 138130

Pace Project No.: 256499

Sample: SPL-30-4	Lab ID.	256499004	Collected: 02/03/	11 13.55	Received: 02	/U5/11 11:36 I	Matrix: Solid	
Results reported on a "dry-weight"	basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS SG	Analytical	Method: NWTP	H-Dx Preparation M	ethod: E	PA 3546			
Diesel Range SG	35.9	mg/kg	20.9	1	02/09/11 14:45	02/10/11 18:01		
Motor Oil Range SG	29	3 mg/kg	83.7	1	02/09/11 14:45	02/10/11 18:01	64742-65-0	
n-Octacosane (S) SG	9:	5 %	50-150	1	02/09/11 14:45	02/10/11 18:01	630-02-4	
o-Terphenyl (S) SG	9:	5 %	50-150	1	02/09/11 14:45	02/10/11 18:01	84-15-1	
NWTPH-Gx GCV	Analytical	Method: NWTP	H-Gx Preparation M	ethod: N	WTPH-Gx			
Gasoline Range Organics	NE) mg/kg	5.1	1	02/09/11 17:00	02/10/11 05:45		
a,a,a-Trifluorotoluene (S)	98	3 %	50-150	1	02/09/11 17:00	02/10/11 05:45	98-08-8	
4-Bromofluorobenzene (S)	80	6 %	50-150	1	02/09/11 17:00	02/10/11 05:45	460-00-4	
8270 MSSV PAH by SIM	Analytical	Method: EPA 82	270 by SIM Preparat	ion Meth	nod: EPA 3546			
Acenaphthene	NE) ug/kg	7.2	1	02/07/11 17:40	02/12/11 04:09	83-32-9	
Acenaphthylene		0 ug/kg	7.2	1		02/12/11 04:09		
Anthracene		1 ug/kg	7.2	1		02/12/11 04:09		
Benzo(a)anthracene		5 ug/kg	7.2	1		02/12/11 04:09		
Benzo(a)pyrene		0 ug/kg	7.2	1		02/12/11 04:09		
Benzo(b)fluoranthene		3 ug/kg	7.2	1		02/12/11 04:09		
Benzo(g,h,i)perylene		ug/kg	7.2	1		02/12/11 04:09		
Benzo(k)fluoranthene		9 ug/kg	7.2	1		02/12/11 04:09		
Chrysene		ug/kg ug/kg	7.2	1		02/12/11 04:09		
Dibenz(a,h)anthracene		o ug/kg D ug/kg	7.2	1		02/12/11 04:09		
Fluoranthene			7.2	1		02/12/11 04:09		
		3 ug/kg D ug/kg	7.2	1		02/12/11 04:09		
Fluorene			7.2					
Indeno(1,2,3-cd)pyrene		4 ug/kg		1		02/12/11 04:09		
1-Methylnaphthalene		ug/kg	7.2	1		02/12/11 04:09		
2-Methylnaphthalene		1 ug/kg	7.2	1		02/12/11 04:09		
Naphthalene		2 ug/kg	7.2	1		02/12/11 04:09		
Phenanthrene		3 ug/kg	7.2	1		02/12/11 04:09		
Pyrene		5 ug/kg	7.2	1		02/12/11 04:09		
2-Fluorobiphenyl (S)		9 %	31-131	1		02/12/11 04:09		
Terphenyl-d14 (S)	6	5 %	30-133	1	02/07/11 17:40	02/12/11 04:09	1718-51-0	
3260/5035A Volatile Organics	Analytical	Method: EPA 82	260					
Benzene	NE	0 ug/kg	2.7	1		02/08/11 13:02	71-43-2	
Ethylbenzene	NE) ug/kg	2.7	1		02/08/11 13:02	100-41-4	
Toluene	NE) ug/kg	2.7	1		02/08/11 13:02	108-88-3	
Xylene (Total)	NE) ug/kg	8.1	1		02/08/11 13:02	1330-20-7	
Dibromofluoromethane (S)	9:	3 %	80-136	1		02/08/11 13:02	1868-53-7	
Toluene-d8 (S)		7 %	80-120	1		02/08/11 13:02		
4-Bromofluorobenzene (S)		6 %	72-122	1		02/08/11 13:02		
1,2-Dichloroethane-d4 (S)		5 %	80-143	1		02/08/11 13:02		
Percent Moisture	Analytical	Method: ASTM	D2974-87					
C. CO.II. MOISIUI C	,							

Date: 02/18/2011 01:43 PM

REPORT OF LABORATORY ANALYSIS

Page 7 of 19

Project: East Bay Redevelopment 138130

Pace Project No.: 256499

Results reported on a "dry-weight" be Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8270 MSSV PAH by SIM		NWTPH-Dx Prep	20.2 81.0 50-150 50-150 exaration Me 5.2 50-150 50-150	1 1 1	02/09/11 14:45 02/09/11 14:45 02/09/11 14:45 02/09/11 14:45 WTPH-Gx	Analyzed 02/10/11 18:17 02/10/11 18:17 02/10/11 18:17 02/10/11 18:17	64742-65-0 630-02-4 84-15-1	Qual
NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)	Analytical Method: 47.5 mg/kg 470 mg/kg 117 % 114 % Analytical Method: ND mg/kg 99 % 87 % Analytical Method:	NWTPH-Dx Prep	20.2 81.0 50-150 50-150 earation Me 5.2 50-150	ethod: El 1 1 1 1 1 ethod: N	PA 3546 02/09/11 14:45 02/09/11 14:45 02/09/11 14:45 02/09/11 14:45 WTPH-Gx 02/09/11 17:00	02/10/11 18:17 02/10/11 18:17 02/10/11 18:17 02/10/11 18:17 02/10/11 06:09	64742-65-0 630-02-4 84-15-1	Qual
Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG p-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)	47.5 mg/kg 470 mg/kg 117 % 114 % Analytical Method: ND mg/kg 99 % 87 % Analytical Method:	NWTPH-Gx Prep	20.2 81.0 50-150 50-150 exaration Me 5.2 50-150 50-150	1 1 1 1 ethod: N'	02/09/11 14:45 02/09/11 14:45 02/09/11 14:45 02/09/11 14:45 WTPH-Gx 02/09/11 17:00	02/10/11 18:17 02/10/11 18:17 02/10/11 18:17 02/10/11 06:09	64742-65-0 630-02-4 84-15-1	
Motor Oil Range SG n-Octacosane (S) SG p-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)	470 mg/kg 117 % 114 % Analytical Method: ND mg/kg 99 % 87 % Analytical Method:	NWTPH-Gx Prep	81.0 50-150 50-150 paration Me 5.2 50-150 50-150	1 1 1 ethod: N' 1 1	02/09/11 14:45 02/09/11 14:45 02/09/11 14:45 WTPH-Gx 02/09/11 17:00	02/10/11 18:17 02/10/11 18:17 02/10/11 18:17 02/10/11 06:09	64742-65-0 630-02-4 84-15-1	
n-Octacosane (S) SG p-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)	117 % 114 % Analytical Method: ND mg/kg 99 % 87 % Analytical Method:	NWTPH-Gx Prep	50-150 50-150 paration Me 5.2 50-150 50-150	1 1 ethod: N' 1 1	02/09/11 14:45 02/09/11 14:45 WTPH-Gx 02/09/11 17:00	02/10/11 18:17 02/10/11 18:17 02/10/11 06:09	630-02-4 84-15-1	
n-Octacosane (S) SG p-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)	117 % 114 % Analytical Method: ND mg/kg 99 % 87 % Analytical Method:	NWTPH-Gx Prep	50-150 paration Me 5.2 50-150 50-150	1 ethod: N 1 1	02/09/11 14:45 WTPH-Gx 02/09/11 17:00	02/10/11 18:17	84-15-1	
O-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)	Analytical Method: ND mg/kg 99 % 87 % Analytical Method:		5.2 50-150 50-150	ethod: N 1 1	WTPH-Gx 02/09/11 17:00	02/10/11 06:09		
Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)	ND mg/kg 99 % 87 % Analytical Method:		5.2 50-150 50-150	1 1	02/09/11 17:00			
a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)	99 % 87 % Analytical Method:		50-150 50-150	1				
a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)	99 % 87 % Analytical Method:		50-150 50-150	1				
4-Bromofluorobenzene (S)	87 % Analytical Method:	EPA 8270 by SIM	50-150			02/10/11 06:09		
3270 MSSV PAH by SIM		EPA 8270 by SIM		-	02/09/11 17:00	02/10/11 06:09		
	ND ug/kg		Preparati	on Meth	od: EPA 3546			
Acenaphthene	IND ug/kg		7.2	1		02/12/11 04:27	83-32-9	
Acenaphthylene	ND ug/kg		7.2 7.2	1		02/12/11 04:27		
Anthracene	8.4 ug/kg		7.2	1		02/12/11 04:27		
Benzo(a)anthracene	18.8 ug/kg		7.2	1		02/12/11 04:27		
* *	20.1 ug/kg		7.2	1		02/12/11 04:27		
Benzo(a)pyrene								
Benzo(b)fluoranthene	20.3 ug/kg 19.7 ug/kg		7.2 7.2	1 1		02/12/11 04:27 02/12/11 04:27		
Benzo(g,h,i)perylene	0 0		7.2 7.2					
Benzo(k)fluoranthene	12.7 ug/kg			1		02/12/11 04:27		
Chrysene	28.4 ug/kg		7.2	1		02/12/11 04:27		
Dibenz(a,h)anthracene	ND ug/kg		7.2	1		02/12/11 04:27		
Fluoranthene	31.5 ug/kg		7.2	1		02/12/11 04:27		
Fluorene	ND ug/kg		7.2	1		02/12/11 04:27		
ndeno(1,2,3-cd)pyrene	8.6 ug/kg		7.2	1		02/12/11 04:27		
I-Methylnaphthalene	ND ug/kg		7.2	1		02/12/11 04:27		
2-Methylnaphthalene	11.5 ug/kg		7.2	1		02/12/11 04:27		
Naphthalene	10 ug/kg		7.2	1		02/12/11 04:27		
Phenanthrene	28.1 ug/kg		7.2	1		02/12/11 04:27		
Pyrene	41.3 ug/kg		7.2	1	02/07/11 17:40	02/12/11 04:27	129-00-0	
2-Fluorobiphenyl (S)	58 %		31-131	1	02/07/11 17:40	02/12/11 04:27	321-60-8	
Terphenyl-d14 (S)	62 %		30-133	1	02/07/11 17:40	02/12/11 04:27	1718-51-0	
3260/5035A Volatile Organics	Analytical Method:	EPA 8260						
Benzene	ND ug/kg		2.8	1		02/08/11 13:22	71-43-2	
Ethylbenzene	ND ug/kg		2.8	1		02/08/11 13:22	100-41-4	
Toluene	ND ug/kg		2.8	1		02/08/11 13:22	108-88-3	
(ylene (Total)	ND ug/kg		8.5	1		02/08/11 13:22	1330-20-7	
Dibromofluoromethane (S)	92 %		80-136	1		02/08/11 13:22	1868-53-7	
Toluene-d8 (S)	109 %		80-120	1		02/08/11 13:22	2037-26-5	
1-Bromofluorobenzene (S)	105 %		72-122	1		02/08/11 13:22	460-00-4	
,2-Dichloroethane-d4 (S)	100 %		80-143	1		02/08/11 13:22	17060-07-0	
Percent Moisture	Analytical Method:	ASTM D2974-87						
Percent Moisture	8.0 %		0.10	1		02/12/11 15:07		

Date: 02/18/2011 01:43 PM

REPORT OF LABORATORY ANALYSIS

Page 8 of 19

Project: East Bay Redevelopment 138130

Pace Project No.: 256499

Sample: SPL-30-6	Lab ID: 2	256499006	Collected: 02/03	/11 14:30	Received: 02	2/05/11 11:38 N	Matrix: Solid	
Results reported on a "dry-weight	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
WTPH-Dx GCS SG	Analytical M	lethod: NWTP	H-Dx Preparation N	/lethod: E	EPA 3546			
Diesel Range SG	21.6	mg/kg	20.7	1	02/09/11 14:45	02/10/11 18:34		
Motor Oil Range SG	174	mg/kg	83.0	1	02/09/11 14:45	02/10/11 18:34	64742-65-0	
n-Octacosane (S) SG	113	%	50-150	1	02/09/11 14:45	02/10/11 18:34	630-02-4	
o-Terphenyl (S) SG	111	%	50-150	1	02/09/11 14:45	02/10/11 18:34	84-15-1	
NWTPH-Gx GCV	Analytical M	lethod: NWTP	H-Gx Preparation I	/lethod: N	IWTPH-Gx			
Gasoline Range Organics	ND	mg/kg	5.2	1	02/09/11 17:00	02/10/11 06:32		
a,a,a-Trifluorotoluene (S)	102	%	50-150	1	02/09/11 17:00	02/10/11 06:32	98-08-8	
1-Bromofluorobenzene (S)	90	%	50-150	1	02/09/11 17:00	02/10/11 06:32	460-00-4	
3270 MSSV PAH by SIM	Analytical M	lethod: EPA 8	270 by SIM Prepara	ation Metl	nod: EPA 3546			
Acenaphthene	ND	ug/kg	7.1	1	02/07/11 17:40	02/12/11 04:46	83-32-9	
Acenaphthylene		ug/kg	7.1	1	02/07/11 17:40	02/12/11 04:46	208-96-8	
Anthracene		ug/kg	7.1	1	02/07/11 17:40	02/12/11 04:46	120-12-7	
Benzo(a)anthracene		ug/kg	7.1	1	02/07/11 17:40	02/12/11 04:46	56-55-3	
Benzo(a)pyrene		ug/kg	7.1			02/12/11 04:46		
Benzo(b)fluoranthene		ug/kg	7.1			02/12/11 04:46		
Benzo(g,h,i)perylene		ug/kg	7.1			02/12/11 04:46		
Benzo(k)fluoranthene		ug/kg	7.1			02/12/11 04:46		
Chrysene		ug/kg	7.1			02/12/11 04:46		
Dibenz(a,h)anthracene		ug/kg	7.1			02/12/11 04:46		
Fluoranthene		ug/kg	7.1			02/12/11 04:46		
Fluorene		ug/kg	7.1			02/12/11 04:46		
ndeno(1,2,3-cd)pyrene		ug/kg	7.1			02/12/11 04:46		
-Methylnaphthalene		ug/kg	7.1			02/12/11 04:46		
			7.1 7.1			02/12/11 04:46		
2-Methylnaphthalene		ug/kg						
Naphthalene Phenanthrene		ug/kg	7.1 7.1			02/12/11 04:46 02/12/11 04:46		
		ug/kg						
Pyrene		ug/kg	7.1			02/12/11 04:46		
2-Fluorobiphenyl (S) Terphenyl-d14 (S)	59 67		31-131 30-133			02/12/11 04:46 02/12/11 04:46		
3260/5035A Volatile Organics		/° 1ethod: EPA 8		·	02/07/11 17.40	02/12/11 04:40	1710010	
Benzene	•	ug/kg	2.0	1		02/08/11 13:41	71-43-2	
Ethylbenzene		ug/kg	2.0			02/08/11 13:41	_	
Toluene		ug/kg	2.0			02/08/11 13:41		
Kylene (Total)		ug/kg	5.9			02/08/11 13:41		
Dibromofluoromethane (S)	93		80-136			02/08/11 13:41		1n
oluene-d8 (S)	104		80-120			02/08/11 13:41		
1-Bromofluorobenzene (S)	100		72-122			02/08/11 13:41		
1,2-Dichloroethane-d4 (S)	99		72-122 80-143			02/08/11 13:41		
Percent Moisture		/º lethod: ASTM		'		52,00,11 10. 4 1	170000170	
	,					00/40/44 45 55		
Percent Moisture	7.0	%	0.10	1		02/12/11 15:08		

Date: 02/18/2011 01:43 PM

REPORT OF LABORATORY ANALYSIS

Page 9 of 19

Project: East Bay Redevelopment 138130

Pace Project No.: 256499

Sample: SPL-30-7	Lab ID: 25649	9007 Collecte	ed: 02/03/1	11 14:45	Received: 02	2/05/11 11:38 N	Matrix: Solid	
Results reported on a "dry-weight	t" basis							
Parameters	Results	Units Re	port Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS SG	Analytical Metho	d: NWTPH-Dx Pre	paration M	ethod: El	PA 3546			
Diesel Range SG	ND mg/ł	кg	20.6	1	02/09/11 14:45	02/09/11 18:48		
Motor Oil Range SG	ND mg/l	κg	82.2	1	02/09/11 14:45	02/09/11 18:48	64742-65-0	
n-Octacosane (S) SG	108 %		50-150	1	02/09/11 14:45	02/09/11 18:48	630-02-4	
o-Terphenyl (S) SG	110 %		50-150	1	02/09/11 14:45	02/09/11 18:48	84-15-1	
NWTPH-Gx GCV	Analytical Metho	d: NWTPH-Gx Pre	paration M	ethod: N	WTPH-Gx			
Gasoline Range Organics	ND mg/ł	кg	5.1	1	02/09/11 17:00	02/10/11 06:56		
a,a,a-Trifluorotoluene (S)	97 %		50-150	1	02/09/11 17:00	02/10/11 06:56	98-08-8	
4-Bromofluorobenzene (S)	87 %		50-150	1	02/09/11 17:00	02/10/11 06:56	460-00-4	
8270 MSSV PAH by SIM	Analytical Metho	d: EPA 8270 by SIN	M Preparat	ion Meth	od: EPA 3546			
Acenaphthene	ND ug/k	g	7.2	1	02/07/11 17:40	02/10/11 21:37	83-32-9	
Acenaphthylene	20.0 ug/k	-	7.2	1	02/07/11 17:40	02/10/11 21:37	208-96-8	
Anthracene	34.9 ug/k		7.2	1	02/07/11 17:40	02/10/11 21:37	120-12-7	
Benzo(a)anthracene	99.9 ug/k		7.2	1	02/07/11 17:40	02/10/11 21:37	56-55-3	
Benzo(a)pyrene	107 ug/k	-	7.2	1	02/07/11 17:40	02/10/11 21:37	50-32-8	
Benzo(b)fluoranthene	93.8 ug/k	-	7.2	1		02/10/11 21:37		
Benzo(g,h,i)perylene	56.2 ug/k		7.2	1		02/10/11 21:37		
Benzo(k)fluoranthene	45.7 ug/k	~	7.2	1		02/10/11 21:37		
Chrysene	96.0 ug/k	-	7.2	1		02/10/11 21:37		
Dibenz(a,h)anthracene	14.5 ug/k	-	7.2	1		02/10/11 21:37		
Fluoranthene	195 ug/k	-	7.2	1		02/10/11 21:37		
Fluorene	13.9 ug/k	-	7.2	1		02/10/11 21:37		
Indeno(1,2,3-cd)pyrene	45.6 ug/k		7.2	1		02/10/11 21:37		
1-Methylnaphthalene	ND ug/k	-	7.2	1		02/10/11 21:37		
2-Methylnaphthalene	ND ug/k	-	7.2	1		02/10/11 21:37		
Naphthalene	ND ug/k		7.2	1		02/10/11 21:37		
Phenanthrene	137 ug/k		7.2	1		02/10/11 21:37		
Pyrene	244 ug/k		7.2	1		02/10/11 21:37		
2-Fluorobiphenyl (S)	70 %	g	31-131	1		02/10/11 21:37		
Terphenyl-d14 (S)	83 %		30-133	1		02/10/11 21:37		
3260/5035A Volatile Organics	Analytical Metho	d: EPA 8260						
Benzene	ND ug/k		2.5	1		02/08/11 14:00	71-43-2	
Ethylbenzene	ND ug/k	-	2.5	1		02/08/11 14:00	_	
Toluene	ND ug/k	~	2.5	1		02/08/11 14:00		
Xylene (Total)	ND ug/k	-	7.5	1		02/08/11 14:00		
Dibromofluoromethane (S)	95 %	•	80-136	1		02/08/11 14:00		
Toluene-d8 (S)	103 %		80-120	1		02/08/11 14:00		
4-Bromofluorobenzene (S)	102 %		72-122	1		02/08/11 14:00		
1,2-Dichloroethane-d4 (S)	101 %		80-143	1		02/08/11 14:00		
Percent Moisture		d: ASTM D2974-87						
Percent Moisture	7.6 %		0.10	1		02/12/11 15:09		
GIOGIII IVIOISIUIE	1.0 %		0.10	1		02/12/11 13.09		

Date: 02/18/2011 01:43 PM

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

Page 10 of 19

02/08/11 10:26 2037-26-5

02/08/11 10:26 460-00-4

02/08/11 10:26 17060-07-0

ANALYTICAL RESULTS

Project: East Bay Redevelopment 138130

Pace Project No.: 256499

Toluene-d8 (S)

4-Bromofluorobenzene (S)

1,2-Dichloroethane-d4 (S)

Lab ID: 256499008 Sample: TB-020311 Collected: 02/03/11 00:00 Received: 02/05/11 11:38 Matrix: Solid Results reported on a "wet-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual **NWTPH-Gx GCV** Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx Gasoline Range Organics 5.0 ND mg/kg 02/09/11 17:00 02/09/11 23:25 96 % a,a,a-Trifluorotoluene (S) 50-150 1 02/09/11 17:00 02/09/11 23:25 98-08-8 4-Bromofluorobenzene (S) 87 % 50-150 02/09/11 17:00 02/09/11 23:25 460-00-4 8260/5035A Volatile Organics Analytical Method: EPA 8260 Benzene ND ug/kg 3.0 1 02/08/11 10:26 71-43-2 Ethylbenzene ND ug/kg 3.0 02/08/11 10:26 100-41-4 1 Toluene ND ug/kg 3.0 1 02/08/11 10:26 108-88-3 Xylene (Total) ND ug/kg 9.0 02/08/11 10:26 1330-20-7 1 99 % Dibromofluoromethane (S) 80-136 02/08/11 10:26 1868-53-7 1

80-120

72-122

80-143

1

1

1

102 %

102 %

105 %

Date: 02/18/2011 01:43 PM

Project: East Bay Redevelopment 138130

Pace Project No.: 256499

QC Batch: OEXT/3272 Analysis Method: NWTPH-Dx
QC Batch Method: EPA 3546 Analysis Description: NWTPH-Dx GCS

Associated Lab Samples: 256499001, 256499002, 256499003, 256499004, 256499005, 256499006, 256499007

METHOD BLANK: 57286 Matrix: Solid

Associated Lab Samples: 256499001, 256499002, 256499003, 256499004, 256499005, 256499006, 256499007

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Diesel Range SG	mg/kg	ND	20.0	02/10/11 15:13	
Motor Oil Range SG	mg/kg	ND	80.0	02/10/11 15:13	
n-Octacosane (S) SG	%	120	50-150	02/10/11 15:13	
o-Terphenyl (S) SG	%	115	50-150	02/10/11 15:13	

LABORATORY CONTROL SAMPLE: 57287

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Diesel Range SG	mg/kg	500	458	92	56-124	
Motor Oil Range SG	mg/kg	500	510	102	50-150	
n-Octacosane (S) SG	%			113	50-150	
o-Terphenyl (S) SG	%			116	50-150	

SAMPLE DUPLICATE: 57288

Parameter	Units	256498002 Result	Dup Result	RPD	Qualifiers
Diesel Range SG	mg/kg	28.7	23.9	18	
Motor Oil Range SG	mg/kg	131	86.4	41	
n-Octacosane (S) SG	%	112	116	.4	
o-Terphenyl (S) SG	%	112	112	3	

SAMPLE DUPLICATE: 57289

		256499003	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Diesel Range SG	mg/kg	51.1	33.0	43	
Motor Oil Range SG	mg/kg	213	172	21	
n-Octacosane (S) SG	%	143	108	24	
o-Terphenyl (S) SG	%	95	96	4	

Date: 02/18/2011 01:43 PM

REPORT OF LABORATORY ANALYSIS

Page 12 of 19

Project: East Bay Redevelopment 138130

Pace Project No.: 256499

QC Batch: GCV/2150 Analysis Method: NWTPH-Gx

QC Batch Method: NWTPH-Gx Analysis Description: NWTPH-Gx Solid GCV

Associated Lab Samples: 256499001, 256499002, 256499003, 256499004, 256499005, 256499006, 256499007, 256499008

METHOD BLANK: 57717 Matrix: Solid

Associated Lab Samples: 256499001, 256499002, 256499003, 256499004, 256499005, 256499006, 256499007, 256499008

Blank Reporting Parameter Units Result Limit Qualifiers Analyzed Gasoline Range Organics ND 5.0 02/09/11 22:37 mg/kg 4-Bromofluorobenzene (S) % 90 50-150 02/09/11 22:37 % a,a,a-Trifluorotoluene (S) 102 02/09/11 22:37 50-150

LABORATORY CONTROL SAMPLE: 57718

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Gasoline Range Organics	mg/kg	12.5	11.0	88	54-156	
4-Bromofluorobenzene (S)	%			85	50-150	
a,a,a-Trifluorotoluene (S)	%			90	50-150	

SAMPLE DUPLICATE: 58143

Parameter	Units	256498001 Result	Dup Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND	.95J		
4-Bromofluorobenzene (S)	%	88	101	14	
a,a,a-Trifluorotoluene (S)	%	96	110	14	

SAMPLE DUPLICATE: 58144

		256498006	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND	.67J		
4-Bromofluorobenzene (S)	%	86	86	.7	
a,a,a-Trifluorotoluene (S)	%	98	97	.8	

Date: 02/18/2011 01:43 PM REPORT OF LABORATORY ANALYSIS

Page 13 of 19

Project: East Bay Redevelopment 138130

Pace Project No.: 256499

QC Batch: OEXT/3270 Analysis Method: EPA 8270 by SIM

QC Batch Method: EPA 3546 Analysis Description: 8270/3546 MSSV PAH by SIM Associated Lab Samples: 256499001, 256499002, 256499003, 256499004, 256499005, 256499006, 256499007

METHOD BLANK: 57279 Matrix: Solid

Associated Lab Samples: 256499001, 256499002, 256499003, 256499004, 256499005, 256499006, 256499007

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/kg	ND ND	6.7	02/10/11 20:05	
2-Methylnaphthalene	ug/kg	ND	6.7	02/10/11 20:05	
Acenaphthene	ug/kg	ND	6.7	02/10/11 20:05	
Acenaphthylene	ug/kg	ND	6.7	02/10/11 20:05	
Anthracene	ug/kg	ND	6.7	02/10/11 20:05	
Benzo(a)anthracene	ug/kg	ND	6.7	02/10/11 20:05	
Benzo(a)pyrene	ug/kg	ND	6.7	02/10/11 20:05	
Benzo(b)fluoranthene	ug/kg	ND	6.7	02/10/11 20:05	
Benzo(g,h,i)perylene	ug/kg	ND	6.7	02/10/11 20:05	
Benzo(k)fluoranthene	ug/kg	ND	6.7	02/10/11 20:05	
Chrysene	ug/kg	ND	6.7	02/10/11 20:05	
Dibenz(a,h)anthracene	ug/kg	ND	6.7	02/10/11 20:05	
Fluoranthene	ug/kg	ND	6.7	02/10/11 20:05	
Fluorene	ug/kg	ND	6.7	02/10/11 20:05	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	6.7	02/10/11 20:05	
Naphthalene	ug/kg	ND	6.7	02/10/11 20:05	
Phenanthrene	ug/kg	ND	6.7	02/10/11 20:05	
Pyrene	ug/kg	ND	6.7	02/10/11 20:05	
2-Fluorobiphenyl (S)	%	67	31-131	02/10/11 20:05	
Terphenyl-d14 (S)	%	83	30-133	02/10/11 20:05	

LABORATORY CONTROL SAI	MPLE: 57280
------------------------	-------------

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1-Methylnaphthalene	ug/kg	133	97.3	73	37-121	
2-Methylnaphthalene	ug/kg	133	98.6	74	33-132	
Acenaphthene	ug/kg	133	92.3	69	32-127	
Acenaphthylene	ug/kg	133	92.6	69	31-134	
Anthracene	ug/kg	133	94.4	71	42-135	
Benzo(a)anthracene	ug/kg	133	105	79	43-139	
Benzo(a)pyrene	ug/kg	133	109	82	44-144	
Benzo(b)fluoranthene	ug/kg	133	99.0	74	42-144	
Benzo(g,h,i)perylene	ug/kg	133	96.7	73	46-136	
Benzo(k)fluoranthene	ug/kg	133	101	75	45-147	
Chrysene	ug/kg	133	95.6	72	42-144	
Dibenz(a,h)anthracene	ug/kg	133	97.5	73	48-142	
Fluoranthene	ug/kg	133	101	75	44-143	
Fluorene	ug/kg	133	98.4	74	32-146	
Indeno(1,2,3-cd)pyrene	ug/kg	133	97.6	73	47-140	
Naphthalene	ug/kg	133	86.0	64	35-118	
Phenanthrene	ug/kg	133	97.1	73	42-131	

Date: 02/18/2011 01:43 PM

REPORT OF LABORATORY ANALYSIS

Page 14 of 19

Project: East Bay Redevelopment 138130

Pace Project No.: 256499

LABORATORY CONTROL SAMPLE: 57280

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Pyrene	ug/kg	133	103	77	47-136	
2-Fluorobiphenyl (S)	%			69	31-131	
Terphenyl-d14 (S)	%			83	30-133	

MATRIX SPIKE & MATRIX S	PIKE DUPLICAT	TE: 57281	•	•	57282	•		•	•	•	
			MS	MSD							
		256498001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1-Methylnaphthalene	ug/kg	ND	144	141	111	110	74	74	31-123	1	
2-Methylnaphthalene	ug/kg	10.6	144	141	118	119	75	76	15-146	.3	
Acenaphthene	ug/kg	ND	144	141	100	99.5	69	69	19-141	.5	
Acenaphthylene	ug/kg	ND	144	141	101	102	69	70	30-142	.5	
Anthracene	ug/kg	ND	144	141	103	103	70	71	38-137	.3	
Benzo(a)anthracene	ug/kg	ND	144	141	112	116	73	77	37-143	3	
Benzo(a)pyrene	ug/kg	ND	144	141	110	115	72	76	33-147	4	
Benzo(b)fluoranthene	ug/kg	10.7	144	141	111	105	70	66	25-156	6	
Benzo(g,h,i)perylene	ug/kg	8.3	144	141	96.1	97.3	61	63	26-142	1	
Benzo(k)fluoranthene	ug/kg	ND	144	141	93.6	111	61	75	35-142	17	
Chrysene	ug/kg	10.5	144	141	103	106	65	67	23-150	2	
Dibenz(a,h)anthracene	ug/kg	ND	144	141	92.5	93.9	63	65	41-140	1	
Fluoranthene	ug/kg	14.9	144	141	111	118	67	73	25-155	6	
Fluorene	ug/kg	ND	144	141	107	107	73	74	33-152	.5	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	144	141	94.2	96.4	62	65	36-139	2	
Naphthalene	ug/kg	10.1	144	141	104	105	65	67	25-121	.9	
Phenanthrene	ug/kg	12.1	144	141	109	115	67	73	29-141	5	
Pyrene	ug/kg	17.3	144	141	124	131	74	80	36-145	5	
2-Fluorobiphenyl (S)	%						69	69	31-131		
Terphenyl-d14 (S)	%						80	81	30-133		

Date: 02/18/2011 01:43 PM

REPORT OF LABORATORY ANALYSIS

Page 15 of 19

Project: East Bay Redevelopment 138130

Pace Project No.: 256499

QC Batch: MSV/3818 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5035A Volatile Organics
Associated Lab Samples: 256499001, 256499002, 256499003, 256499004, 256499005, 256499006, 256499007, 256499008

METHOD BLANK: 57451 Matrix: Solid

Associated Lab Samples: 256499001, 256499002, 256499003, 256499004, 256499005, 256499006, 256499007, 256499008

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND	3.0	02/08/11 09:13	
Ethylbenzene	ug/kg	ND	3.0	02/08/11 09:13	
Toluene	ug/kg	ND	3.0	02/08/11 09:13	
Xylene (Total)	ug/kg	ND	9.0	02/08/11 09:13	
1,2-Dichloroethane-d4 (S)	%	102	80-143	02/08/11 09:13	
4-Bromofluorobenzene (S)	%	99	72-122	02/08/11 09:13	
Dibromofluoromethane (S)	%	94	80-136	02/08/11 09:13	
Toluene-d8 (S)	%	103	80-120	02/08/11 09:13	

LABORATORY CONTROL SAME	PLE & LCSD: 57452		57	453						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene	ug/kg	50	48.8	51.4	98	103	75-133	5	30	
Ethylbenzene	ug/kg	50	48.7	50.1	97	100	68-131	3	30	
Toluene	ug/kg	50	52.7	54.4	105	109	73-124	3	30	
Xylene (Total)	ug/kg	150	153	158	102	105	68-130	3	30	
1,2-Dichloroethane-d4 (S)	%				111	103	80-143			
4-Bromofluorobenzene (S)	%				105	102	72-122			
Dibromofluoromethane (S)	%				101	98	80-136			
Toluene-d8 (S)	%				107	105	80-120			

Date: 02/18/2011 01:43 PM

Project: East Bay Redevelopment 138130

Pace Project No.: 256499

QC Batch: PMST/1517 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture Associated Lab Samples: 256499001, 256499002, 256499003, 256499004, 256499005, 256499006, 256499007

SAMPLE DUPLICATE: 58349

256499001 Dup

ParameterUnitsResultResultRPDQualifiersPercent Moisture%11.412.26

SAMPLE DUPLICATE: 58350

256520010 Dup

ParameterUnitsResultResultRPDQualifiersPercent Moisture%12.711.87

Date: 02/18/2011 01:43 PM

QUALIFIERS

Project: East Bay Redevelopment 138130

Pace Project No.: 256499

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel Clean-Up

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-S Pace Analytical Services - Seattle

BATCH QUALIFIERS

Batch: MSV/3818

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

ANALYTE QUALIFIERS

1n Sample weight exceeded method recommendations.

Date: 02/18/2011 01:43 PM

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: East Bay Redevelopment 138130

Pace Project No.: 256499

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
256499001	SPL-30-1	EPA 3546	OEXT/3272	NWTPH-Dx	GCSV/2247
256499002	SPL-30-2	EPA 3546	OEXT/3272	NWTPH-Dx	GCSV/2247
256499003	SPL-30-3	EPA 3546	OEXT/3272	NWTPH-Dx	GCSV/2247
256499004	SPL-30-4	EPA 3546	OEXT/3272	NWTPH-Dx	GCSV/2247
256499005	SPL-30-5	EPA 3546	OEXT/3272	NWTPH-Dx	GCSV/2247
256499006	SPL-30-6	EPA 3546	OEXT/3272	NWTPH-Dx	GCSV/2247
256499007	SPL-30-7	EPA 3546	OEXT/3272	NWTPH-Dx	GCSV/2247
256499001	SPL-30-1	NWTPH-Gx	GCV/2150	NWTPH-Gx	GCV/2168
256499002	SPL-30-2	NWTPH-Gx	GCV/2150	NWTPH-Gx	GCV/2168
256499003	SPL-30-3	NWTPH-Gx	GCV/2150	NWTPH-Gx	GCV/2168
256499004	SPL-30-4	NWTPH-Gx	GCV/2150	NWTPH-Gx	GCV/2168
256499005	SPL-30-5	NWTPH-Gx	GCV/2150	NWTPH-Gx	GCV/2168
256499006	SPL-30-6	NWTPH-Gx	GCV/2150	NWTPH-Gx	GCV/2168
256499007	SPL-30-7	NWTPH-Gx	GCV/2150	NWTPH-Gx	GCV/2168
256499008	TB-020311	NWTPH-Gx	GCV/2150	NWTPH-Gx	GCV/2168
256499001	SPL-30-1	EPA 3546	OEXT/3270	EPA 8270 by SIM	MSSV/1518
256499002	SPL-30-2	EPA 3546	OEXT/3270	EPA 8270 by SIM	MSSV/1518
256499003	SPL-30-3	EPA 3546	OEXT/3270	EPA 8270 by SIM	MSSV/1518
256499004	SPL-30-4	EPA 3546	OEXT/3270	EPA 8270 by SIM	MSSV/1518
256499005	SPL-30-5	EPA 3546	OEXT/3270	EPA 8270 by SIM	MSSV/1518
256499006	SPL-30-6	EPA 3546	OEXT/3270	EPA 8270 by SIM	MSSV/1518
256499007	SPL-30-7	EPA 3546	OEXT/3270	EPA 8270 by SIM	MSSV/1518
256499001	SPL-30-1	EPA 8260	MSV/3818		
256499002	SPL-30-2	EPA 8260	MSV/3818		
256499003	SPL-30-3	EPA 8260	MSV/3818		
256499004	SPL-30-4	EPA 8260	MSV/3818		
256499005	SPL-30-5	EPA 8260	MSV/3818		
256499006	SPL-30-6	EPA 8260	MSV/3818		
256499007	SPL-30-7	EPA 8260	MSV/3818		
256499008	TB-020311	EPA 8260	MSV/3818		
256499001	SPL-30-1	ASTM D2974-87	PMST/1517		
256499002	SPL-30-2	ASTM D2974-87	PMST/1517		
256499003	SPL-30-3	ASTM D2974-87	PMST/1517		
256499004	SPL-30-4	ASTM D2974-87	PMST/1517		
256499005	SPL-30-5	ASTM D2974-87	PMST/1517		
256499006	SPL-30-6	ASTM D2974-87	PMST/1517		
256499007	SPL-30-7	ASTM D2974-87	PMST/1517		

Date: 02/18/2011 01:43 PM

REPORT OF LABORATORY ANALYSIS

Page 19 of 19

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Z00Z-	07, 15-May-	2-020rev.	F-ALL-('S	Yeb 0	E nirthin	n pied	ou sa	olovni	40	цион	n 19q %č.f to	late charges	at gnieenge bn	ne armet t	раутеп	30 day	g Pace's NET	u kon ste scoebpu	not sint gning	s ya :etoM insportant*	
Sam	Custody Sealed Cooler (Y/N)	Rec	Te		11/	13	2	D\AA): gjaueq	TAG (MM)			-	7		1	_	7	:83	J4MA2 to E	яптаиы	3								
ples I (Y/N)	ustoc ed C	Received on Ice (Y/N)	Temp in °C								7	nn-		4	0	=		:83	J4MAS to 9	msN TNIA	d								
nples Intact (Y/N)	boler	2 0	ဂိ	But E		, ,		130										BRU	TANDIS GI	NA BMAN	SAMPLER				GINAL	190			
140									1	/				/	1			F	11	ner Tey									
h	h	h	7-1	SEII	11/9	Tr	-	+CE	al (200	K	h	1/0	1		38	:))		11/5/0			7	OP	0					
		1111		/3	1			V	1		,		ŋ		1				1				V						
	11.00	bern.		ShEI	11/2	2/3			000	5	hy	29	157	フ	1	Sh	:ŁI	1	1/8/2		7	المد	_ 4	0	2	pap	Indu	Jugg du	12/
SNO	те соиріці	4MA2		TIME	3T/	274		NOIT	/FFILIA	BAIL	D3Tc	CCE	A			ЭW	IIT		BTAG	N	OITAIJI34A	ED B. / \	GUISHI	ЗΕΓΙΝ		Name and Address of the Owner, where the Owner, which is the Owner, which is the Owner, where the Owner, which is the Owner, whic		JANOITIQQA	
			П		T	Т				T	П	Т	Т			T								T					12
																	laca!		D. W. Living										11
JAN 1		minut.		ou mi) en			lic s				1					in				nime .	- ans			illur.			First pr	- weith z	10
																								1.					6
	1 1	- Int	in to	1000		1	A 1	1	47			X	1			×						11/2	_	10	_			113 - DZO	
	- F 11	d'an	100	(in eg ei				Π	1	100	1	1			ı ji	1	1		DE DO		Shhi		4	1	motion	ARTHUR DE LUI		- 02-735	L
						Ш	1	Ш	Ш		Ш	1		Ш	_			_			0241			\perp				-05-705	9
		porte:				Ш		Ш			Ш	1				1			18-02	S 100	QIHI			\perp	5-46	CEPPLANT.	ج_	-02-705	S
		dament.		14 111		Ш		Ш	Ш		Ш	11				1			Mided	шсьр	1322		\perp	\perp	1000	isp min		-02-785	
						Ш	Ш	Ш			Ш			Ш		1					0481			11				-02-785	
	U.V.	40.11				Ш	Ш					1			_	1	1		W		6251		1	1			7	-05-785	
100			\perp			1	1 1		1 1	4	X	-	_		_	×		_			0121	-	_	_				-05-792	-
.d.l Lab l.D.	Project N	Pace	Residual Chlorine			TPH-G	BTEX	Dioxins /F.	TPH-D. HO	est	Other wder	Methanol	NaOH	HCI	HNO ₃	Unpreserved	# OF CONTAINERS	SAMPLE TEMP AT C	aMIT	∃TAQ	3MIT	3TA	WALTE LIFE (G	CODE (JO 9W ЯА 2T ТО	Oil Wipe Air Tissue Other		Sample IDs MUST BE	ITEM#
		be jac	(Y/N)				Naphingens	SAME	Cupla		10						S	COLLECTION	3TI 6A	END/CEN	die	QJC COWbos	G	ee valid	WW q JS	Drinking Water Waste Water Product Soil/Solid			
	4 1	Mary No.	100	1 10 10	111	56			8	1 N/A	- 1	S	evite	Nese	Pre		1		di di	CTED	COLLE		WIF)	o left)		O XISTAM		ction D quired Client Information	
6 6	t 9 9	2		(N/A) p	Filtere	sisyl	enA t	estec	Redn	200								_		Δ								1	
		Na V	1	7/\	:3TA	LS			no A							# 9(1)0	19 eos ⁶		remission (de	1112	05,	185	21	:Jec	roject Numi	4	AL DESPOY	:TAT of all belt belt.	Kednez
			'	4///	noits	оод ад	is .									2	yanage Preserve	1	vamo	down	y Ped	430	מצי	7 :	roject Name	STAF-E	46-03	Josepes-	SCO Phone:
ムつき	отнев ;	メ		AROR _	1 .	rsu	J									:00	ace Qr deteren	1							orchase Or	Maribla	שאמים	1 Junti "	oT lism3
G WATER	DEINKING	NE	ITAW Q	GROUN) SEC	NPC	_						4 4			:S	/qque	,	47	75		9-71			175-17		.96	aw -otomylo	ے
The same of				AGENCY	ҮЯОТ	enr	BE				0	A	-	3	:ewe	N Ku	sauppy			L	eosuy	1ºL	ys	70	copy To:	05/13/2V	N+S	if Columbia	Address
q:	8834	TT	The state of	77	198						7	n	10			:uc	ttentic	1			7	اسر	- ч	T	eport To:	1/00	Calde	James Ju	Compan
9	ot		7	Page										;u			Sectio					:uo	ntomat	il toelo	Section B Required Pro-			d Client Information:	Section
	,0																												

Sample Container Count

CLIENT:	Bro	Wn	4	(Udi	sel	X										C.	ace Ana	alyti	ical~	
COC PAGE _	(of 1 1438	346														V	2	5 6 4	4 9	9	
Sample Line Item	VG9H	AG1H	AG1U	BG1H	BP1U	BP2U	BP3U	BP2N	BP2S	WG	FU	WGKU	pgan		1GC	(ω	-			ments	
1										2			1	6	2						
2											1		1								
3																					
4																					
5																					
6																					
7										V			4	W	/						
8													1	2							
9																					
10																					
11																					
12					-												Trip Blar	nk?	V	>	
	•									•			•								
AG1H	1 liter HCL	amber	ılass				BP2S	500mL H	12SO4 pl	astic						JGFU	4oz unp	reserve	dan	nber wide	
	1liter unpre			iss					inpreserv		astic	:					terra co				
	500mL H2								NaOH, Zn							U	Summa	Can			
	500mL un			alass					NaOH pla							VG9H	40mL H	CL clear	via	Į.	
	250mL H2								HNO3 pla							VG9T	40mL N	a Thio.	clea	r vial	
	1 liter HCL						BP3S		H2SO4 p							VG9U	40mL ur	npreserv	red i	clear vial	
	1 liter unpr						BP3U		unpresen			С				VG9W	40mL gl	lass vial	pre	weighted (E	PA 5035)
	1 liter HNC					6			a Bisulfat										•	al & HCL	
BP1S	1 liter H2S	04 plastic	C				DG9H	40mL H	ICL ambe	er voa	vial					WGFU	4oz clea	ar soil jar			
	1 liter unpre			1			DG9M		eOH clea								4oz wid			ne wipe	
	1 liter NaO						DG9T		a Thio an								Ziploc B		migration, who sales		
	500mL HN						DG9U		preserve			vial						-			
	500mL Na						1	Wine/Sv													

Pace Analytical

Sample Condition Upon Receipt

Pace Analytical Client Name	e: brown =	- Caldwell	Project # 2 5 6 4 9 9
Courier: Fed Ex UPS USPS Clie Tracking #: 87388311 4936 Custody Seal on Cooler/Box Present: Yes	件00043	Pace Others intact: Yes	No
Packing Material: Bubble Wrap	e Bags None	Other	Temp. Blank (Yes) No
Thermometer Used 132013 of 101731962 of 2260	99 Type of Ice: We	Blue None	Samples on ice, cooling process has begun
Cooler Temperature Temp should be above freezing ≤ 6 ℃	Biological Tissu	is Frozen: Yes No Comments:	Date and Initials of person examining contents:
Chain of Custody Present:	Yes DNo DN/	1.	7-1
Chain of Custody Filled Out:	Yes DNo DN/	2.	
Chain of Custody Relinquished:	Yes DNo DN/	3.	
Sampler Name & Signature on COC:	Yes ONo ON/	4.	
Samples Arrived within Hold Time:	Yes DNo DN/	5.	
Short Hold Time Analysis (<72hr):	□Yes ☑No □N/	6.	
Rush Turn Around Time Requested:	□Yes □No □N/	7.	
Sufficient Volume:	ØYes □No □N//	8.	
Correct Containers Used:	ØYes □No □N/	9.	
-Pace Containers Used:	Yes ONO ON/		
Containers Intact:	ØYes □No □N/	10.	
Filtered volume received for Dissolved tests	□Yes □No □MA	11.	
Sample Labels match COC:	Yes ONO ON	12.	
-Includes date/time/ID/Analysis Matrix:	Spil		
All containers needing preservation have been checked.	□Yes □No ☑N/	13.	
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes □No ☑N/A		
Exceptions: VOA, coliform, TOC, O&G		Initial when completed	Lot # of added preservative
Samples checked for dechlorination:	□Yes □No ☑N/A	14.	
Headspace in VOA Vials (>6mm):	□Yes □No □MI	15.	
Trip Blanks Present:	ØYes □No □N/A	16.	
Trip Blank Custody Seals Present	□Yes ☑No □N/A		
Pace Trip Blank Lot # (if purchased):			
Client Notification/ Resolution: Person Contacted:	Date	Time:	Field Data Required? Y / N
Comments/ Resolution:			
Project Manager Review: ENNI	(gross		Date: 27/11

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e out of hold, incorrect preservative, out of temp, incorrect containers)

March 07, 2011

Joshua Johnson Brown & Caldwell 724 Columbia St. NW#420 Olympia, WA 98501

RE: Project: East Bay Redevelopment 138130

Pace Project No.: 256690

Dear Joshua Johnson:

Enclosed are the analytical results for sample(s) received by the laboratory on February 18, 2011. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jennifer Gross

jennifer.gross@pacelabs.com Project Manager

ENNI (-ROSS

Enclosures

cc: Jon Turk, Brown & Caldwell

(206)767-5060

CERTIFICATIONS

Project: East Bay Redevelopment 138130

Pace Project No.: 256690

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

A2LA Certification #: 2926.01
Alaska Certification #: UST-078
Alaska Certification #MN00064
Arizona Certification #: AZ-0014
Arkansas Certification #: 88-0680
California Certification #: 01155CA
EPA Region 8 Certification #: Pace
Florida/NELAP Certification #: E87605
Georgia Certification #: 959
Idaho Certification #: MN00064
Illinois Certification #: 200011

Georgia Certification #: 959
Idaho Certification #: MN00064
Illinois Certification #: 200011
Iowa Certification #: 200011
Iowa Certification #: E-10167
Louisiana Certification #: 03086
Louisiana Certification #: LA080009
Maine Certification #: 2007029
Maryland Certification #: 322
Michigan DEQ Certification #: 9909
Minnesota Certification #: 027-053-137
Mississippi Certification #: Pace

Montana Certification #: MT CERT0092 Nevada Certification #: MN_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New Mexico Certification #: Pace New York Certification #: 11647 North Carolina Certification #: 530 North Dakota Certification #: R-036 North Dakota Certification #: R-036A Ohio VAP Certification #: CL101 Oklahoma Certification #: D9921 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification Tennessee Certification #: 02818 Texas Certification #: T104704192

Washington Certification #: C754 Wisconsin Certification #: 999407970

A2LA cert#

SAMPLE ANALYTE COUNT

Project: East Bay Redevelopment 138130

Pace Project No.: 256690

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
256690001	SPL-31-1	EPA 6020	RJS	5	PASI-M
		% Moisture	JDL	1	PASI-M
256690002	SPL-31-2	EPA 6020	RJS	5	PASI-M
		% Moisture	JDL	1	PASI-M
256690003	SPL-31-3	EPA 6020	RJS	5	PASI-M
		% Moisture	JDL	1	PASI-M
256690004	SPL-31-4	EPA 6020	RJS	5	PASI-M
		% Moisture	JDL	1	PASI-M
256690005	SPL-31-5	EPA 6020	RJS	5	PASI-M
		% Moisture	JDL	1	PASI-M
256690006	SPL-31-6	EPA 6020	RJS	5	PASI-M
		% Moisture	JDL	1	PASI-M
256690007	SPL-32-1	EPA 6020	RJS	5	PASI-M
		% Moisture	JDL	1	PASI-M
256690008	SPL-32-2	EPA 6020	RJS	5	PASI-M
		% Moisture	JDL	1	PASI-M
256690009	SPL-32-3	EPA 6020	RJS	5	PASI-M
		% Moisture	JDL	1	PASI-M

Project: East Bay Redevelopment 138130

Pace Project No.: 256690

Sample: SPL-31-1	Lab ID: 25669000	1 Collected:	02/18/1	1 10:45	Received: 02	2/18/11 15:50 I	Matrix: Solid	
Results reported on a "dry-wei	ght" basis							
Parameters	Results U	nits Repor	rt Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical Method: E	PA 6020						
Arsenic	10.4 mg/kg		1.6	20	02/23/11 09:20	02/24/11 06:04	7440-38-2	M6
Cadmium	ND mg/kg		0.26	20	02/23/11 09:20	02/24/11 06:04	7440-43-9	
Copper	29.1 mg/kg		1.6	20	02/23/11 09:20	02/24/11 06:04	7440-50-8	M6
Lead	9.2 mg/kg		1.6	20	02/23/11 09:20	02/24/11 06:04	7439-92-1	
Nickel	29.5 mg/kg		1.6	20	02/23/11 09:20	02/24/11 06:04	7440-02-0	
Dry Weight	Analytical Method: %	Moisture						
Percent Moisture	70.0 %		0.10	1		02/24/11 00:00		
Sample: SPL-31-2	Lab ID: 25669000	2 Collected:	02/18/1	1 11:00	Received: 02	2/18/11 15:50	Matrix: Solid	
Results reported on a "dry-wei	ght" basis							
Parameters	Results U	nits Repor	rt Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical Method: E	PA 6020						
Arsenic	4.1 mg/kg		0.53	20	02/23/11 09:20	02/24/11 06:40	7440-38-2	
Cadmium	0.11 mg/kg		0.085	20	02/23/11 09:20	02/24/11 06:40	7440-43-9	
Copper	23.8 mg/kg		0.53	20	02/23/11 09:20	02/24/11 06:40	7440-50-8	
Lead	3.9 mg/kg		0.53	20	02/23/11 09:20	02/24/11 06:40	7439-92-1	
Nickel	26.5 mg/kg		0.53	20	02/23/11 09:20	02/24/11 06:40	7440-02-0	
Dry Weight	Analytical Method: %	Moisture						
Percent Moisture	21.2 %		0.10	1		02/24/11 00:00		
Sample: SPL-31-3	Lab ID: 25669000	3 Collected:	02/18/1	1 11:10	Received: 02	2/18/11 15:50 I	Matrix: Solid	
Results reported on a "dry-wei	ght" basis							
Parameters	Results U	nits Repoi	rt Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical Method: E	PA 6020						
Arsenic	2.4 mg/kg		0.51	20	02/23/11 09:20	02/24/11 06:45	7440-38-2	
Cadmium	ND mg/kg		0.081	20		02/24/11 06:45		
Copper	10.6 mg/kg		0.51	20		02/24/11 06:45		
Lead	4.8 mg/kg		0.51	20		02/24/11 06:45		
Nickel	16.3 mg/kg		0.51	20		02/24/11 06:45		
Dry Weight	Analytical Method: %	Moisture						
Percent Moisture	11.2 %		0.10	1		02/24/11 00:00		
GOOTH MOISIGIG	11.2 /0		0.10	'		52127111 00.00		

Date: 03/07/2011 02:49 PM

Project: East Bay Redevelopment 138130

Pace Project No.: 256690

Sample: SBI 24.4	Lab ID: 05000004	College de 00/40/4	4 44.00	Door	0/40/44 45-50 \$	Antrive Calla	
Sample: SPL-31-4	Lab ID: 256690004	Collected: 02/18/1	11 11:20	Received: 02	2/18/11 15:50 N	/latrix: Solid	
Results reported on a "dry-wei							
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical Method: EPA 6020						
Arsenic	5.7 mg/kg	0.43	20	02/23/11 09:20	02/24/11 06:49	7440-38-2	
Cadmium	0.16 mg/kg	0.068	20	02/23/11 09:20	02/24/11 06:49	7440-43-9	
Copper	23.3 mg/kg	0.43	20	02/23/11 09:20	02/24/11 06:49	7440-50-8	
Lead	9.4 mg/kg	0.43	20	02/23/11 09:20	02/24/11 06:49	7439-92-1	
Nickel	36.4 mg/kg	0.43	20	02/23/11 09:20	02/24/11 06:49	7440-02-0	
Dry Weight	Analytical Method: % M	Analytical Method: % Moisture					
Percent Moisture	10.5 %	0.10	1		02/24/11 00:00		
Sample: SPL-31-5	Lab ID: 256690005	Collected: 02/18/1	1 11:40	Received: 02	2/18/11 15:50 N	Matrix: Solid	
Results reported on a "dry-wei	ight" basis						
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6020 MET ICPMS	Analytical Method: EPA	6020					
Arsenic	1.6 mg/kg	0.72	20	02/23/11 09:20	02/24/11 06:54	7440-38-2	
Cadmium	ND mg/kg	0.11	20	02/23/11 09:20	02/24/11 06:54	7440-43-9	
Copper	5.5 mg/kg	0.72	20		02/24/11 06:54		
Lead	2.1 mg/kg	1.4	40	02/23/11 09:20	02/24/11 13:37	7439-92-1	
Nickel	3.6 mg/kg	0.72	20		02/24/11 06:54		
Dry Weight	Analytical Method: % Moisture						
Percent Moisture	40.4 %	0.10	1		02/24/11 00:00		
Sample: SPL-31-6	Lab ID: 256690006	Collected: 02/18/1	1 11:50	Received: 02	2/18/11 15:50 N	Matrix: Solid	
Results reported on a "dry-wei	ight" basis						
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6020 MET ICPMS	Analytical Method: EPA	6020					
Arsenic	4.5 mg/kg	1.7	20	02/23/11 09:20	02/24/11 06:58	7440-38-2	
Cadmium	ND mg/kg	0.28	20	02/23/11 09:20	02/24/11 06:58	7440-43-9	
Copper	12.6 mg/kg	1.7	20	02/23/11 09:20	02/24/11 06:58	7440-50-8	
Lead	4.9 mg/kg	3.5	40	02/23/11 09:20	02/24/11 13:42	7439-92-1	
Nickel	9.1 mg/kg	1.7	20		02/24/11 06:58		
Dry Weight	Analytical Method: % M	oisture					
Percent Moisture	78.0 %	0.10	1		02/24/11 00:00		
. S. SSIR MOISIGIO	20.0 /0	0.10	•		52,2 1, 11 00.00		

Date: 03/07/2011 02:49 PM

ANALYTICAL RESULTS

Project: East Bay Redevelopment 138130

Pace Project No.: 256690

Sample: SPL-32-1	Lab ID: 2566	90007	Collected:	02/18/1	1 12:00	Received: 02	2/18/11 15:50 I	Matrix: Solid	
Results reported on a "dry-wei	ght" basis								
Parameters	Results	Units	Report	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical Meth	od: EPA 6	020						
Arsenic	4.9 mg	/ka		0.64	20	02/23/11 09:20	02/24/11 07:03	7440-38-2	
Cadmium	0.48 mg/	J		0.10	20		02/24/11 07:03		
Copper	59.9 mg	J		0.64	20		02/24/11 07:03		
Lead	165 mg	J		0.64	20		02/24/11 07:03		
Nickel	23.9 mg/	J		0.64	20		02/24/11 07:03		
Dry Weight	Analytical Meth	od: % Moi	sture						
Percent Moisture	27.8 %			0.10	1		02/24/11 00:00		
Sample: SPL-32-2	Lab ID: 2566	90008	Collected:	02/18/1	1 12:15	Received: 02	2/18/11 15:50	Matrix: Solid	
Results reported on a "dry-wei	ght" basis								
Parameters	Results	Units	Report	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical Meth	od: EPA 6	020						
Arsenic	4.8 mg	/kg		0.64	20	02/23/11 09:20	02/24/11 07:07	7440-38-2	
Cadmium	0.17 mg/	/kg		0.10	20	02/23/11 09:20	02/24/11 07:07	7440-43-9	
Copper	35.8 mg	J		0.64	20	02/23/11 09:20	02/24/11 07:07	7440-50-8	
Lead	63.2 mg/	J		0.64	20		02/24/11 07:07		
Nickel	34.3 mg/	J		0.64	20		02/24/11 07:07		
Dry Weight	Analytical Metho	od: % Moi	sture						
Percent Moisture	30.8 %			0.10	1		02/24/11 00:00	ı	
Sample: SPL-32-3	Lab ID: 2566	90009	Collected:	02/18/1	1 12:30	Received: 02	2/18/11 15:50	Matrix: Solid	
Results reported on a "dry-wei				-, , .					
Parameters	Results	Units	Report	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical Meth	od: EPA 6	020						
Arsenic	3.3 mg/	/kg		0.51	20	02/23/11 09:20	02/24/11 07:12	7440-38-2	
Cadmium	0.22 mg/	•		0.081	20	02/23/11 09:20	02/24/11 07:12	7440-43-9	
Copper	36.1 mg/	J		0.51	20		02/24/11 07:12		
Lead	66.1 mg/	J		0.51	20		02/24/11 07:12		
Nickel	19.5 mg	J		0.51	20		02/24/11 07:12		
Dry Weight	Analytical Methor	Ü	sture		-				
	•	. 70 IVIOI	o.uio	0.10			00/04/:: 00 ==		
Percent Moisture	25.9 %			0.10	1		02/24/11 00:00		

Date: 03/07/2011 02:49 PM

REPORT OF LABORATORY ANALYSIS

Page 6 of 10

QUALITY CONTROL DATA

Project: East Bay Redevelopment 138130

Pace Project No.: 256690

QC Batch: ICPM/24797 Analysis Method: EPA 6020
QC Batch Method: EPA 6020 Analysis Description: 6020 MET

Associated Lab Samples: 256690001, 256690002, 256690003, 256690004, 256690005, 256690006, 256690007, 256690008, 256690009

METHOD BLANK: 933707 Matrix: Solid

Associated Lab Samples: 256690001, 256690002, 256690003, 256690004, 256690005, 256690006, 256690007, 256690008, 256690009

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	mg/kg	ND ND	0.48	02/24/11 06:31	
Cadmium	mg/kg	ND	0.077	02/24/11 06:31	
Copper	mg/kg	ND	0.48	02/24/11 06:31	
Lead	mg/kg	ND	0.48	02/24/11 06:31	
Nickel	mg/kg	ND	0.48	02/24/11 06:31	

LABORATORY CONTROL SAMPLE: 933708

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/kg		20.3	102	75-125	
Cadmium	mg/kg	20	19.9	99	75-125	
Copper	mg/kg	20	21.2	106	75-125	
Lead	mg/kg	20	20.2	101	75-125	
Nickel	mg/kg	20	20.9	105	75-125	

MATRIX SPIKE & MATRIX S	SPIKE DUPLICAT	E: 93370	9		933710						
P		256690001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec	DDD	0
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Arsenic	mg/kg	10.4	57	57	84.0	67.2	129	100	75-125	22	D6,M6
Cadmium	mg/kg	ND	57	57	57.7	57.0	101	100	75-125	1	
Copper	mg/kg	29.1	57	57	102	87.9	127	103	75-125	15	M6
Lead	mg/kg	9.2	57	57	67.6	65.0	103	98	75-125	4	
Nickel	mg/kg	29.5	57	57	101	91.5	125	109	75-125	9	

Date: 03/07/2011 02:49 PM

QUALITY CONTROL DATA

Project: East Bay Redevelopment 138130

Pace Project No.: 256690

QC Batch: MPRP/24857 Analysis Method: % Moisture

QC Batch Method: % Moisture Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 256690001, 256690002, 256690003, 256690004, 256690005, 256690006, 256690007, 256690008, 256690009

SAMPLE DUPLICATE: 935359

10150247003 Dup Parameter Units Result Result **RPD** Qualifiers % 18.2 4

Percent Moisture 17.5

SAMPLE DUPLICATE: 935426

10150342002 Dup RPD Parameter Units Result Result Qualifiers Percent Moisture % 9.9 8.9 11

Date: 03/07/2011 02:49 PM

REPORT OF LABORATORY ANALYSIS

Page 8 of 10

QUALIFIERS

Project: East Bay Redevelopment 138130

Pace Project No.: 256690

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel Clean-Up

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis

ANALYTE QUALIFIERS

Date: 03/07/2011 02:49 PM

D6 The relative percent difference (RPD) between the sample and sample duplicate exceeded laboratory control limits.

M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: East Bay Redevelopment 138130

Pace Project No.: 256690

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
256690001	SPL-31-1	EPA 6020	ICPM/24797	EPA 6020	ICPM/10108
256690002	SPL-31-2	EPA 6020	ICPM/24797	EPA 6020	ICPM/10108
256690003	SPL-31-3	EPA 6020	ICPM/24797	EPA 6020	ICPM/10108
256690004	SPL-31-4	EPA 6020	ICPM/24797	EPA 6020	ICPM/10108
256690005	SPL-31-5	EPA 6020	ICPM/24797	EPA 6020	ICPM/10108
256690006	SPL-31-6	EPA 6020	ICPM/24797	EPA 6020	ICPM/10108
256690007	SPL-32-1	EPA 6020	ICPM/24797	EPA 6020	ICPM/10108
256690008	SPL-32-2	EPA 6020	ICPM/24797	EPA 6020	ICPM/10108
256690009	SPL-32-3	EPA 6020	ICPM/24797	EPA 6020	ICPM/10108
256690001	SPL-31-1	% Moisture	MPRP/24857		
256690002	SPL-31-2	% Moisture	MPRP/24857		
256690003	SPL-31-3	% Moisture	MPRP/24857		
256690004	SPL-31-4	% Moisture	MPRP/24857		
256690005	SPL-31-5	% Moisture	MPRP/24857		
256690006	SPL-31-6	% Moisture	MPRP/24857		
256690007	SPL-32-1	% Moisture	MPRP/24857		
256690008	SPL-32-2	% Moisture	MPRP/24857		
256690009	SPL-32-3	% Moisture	MPRP/24857		

Date: 03/07/2011 02:49 PM

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

256690

www.pacelabs.com																										_				
Section A	Section								Sect	tion (С														P	age:		1	of	(
Required Client Information:	Required								_	ice Inf	_	_			_					_								1 1 /	1626	0
Company: BROWN AND CALDIELL Address:	Report 10	Noi	IT	URK									7	2	RK													144	626	0
724 COLUMBIA NW #420	Сору То:	20	SH	10111	NOW)				pany !	Nam	e:									REG	GUL	ATOF	RY A	GEN	CY				
OLYMPIA, WA 98501									Addr	ess:											I.	NPI	DES	Γ	GRO	DUND	WAT	ER [G WATER
OLYMPIA, WA 9850, Email To: jturk@bruncald.com	Purchase	Order	No.:							Quote rence:											-	US	Т	-	RCR	RA		X	OTHER	ECY
Phone: 340 943 7525 360 943 7513	Project Na	me:		0000	505	ELOPM	En ==		Pace	Projec	et										Sit	e Lo	cation							
Requested Due Date/TAT:	Project Nu	ımber:	17	BLIE IC	enev	ECOPINI	100	_	Mana Pace	Profile	#:					-				-		S	TATE:		W	A				
to Day			13	8130				_									CONT.	Ren	1105	tod	Δna		Filte			980333				
0										T				-		+	-	T	T	_	,	lysis	Titte	T	(1/14)	Т	1			
Section D Matrix C Required Client Information MATRIX /) teft)	(MP)		COLL	ECTED			1757	1	F	rese	ervat	ives		Y/ N			56		SG									
Drinking Water Water	er DW WT	(see valid codes to left)	C=COMP)					l g									1													
Waste Water Product	ww P	alid co		COMPC STAR		COMPO END/G		COLLECTION									3	~ 7	0	25							î			
Soil/Solid	SL	see v	(G=GRAB			122 102		5	S	7			13		-	-	Ac	3	D-Mdl	Naphelena	5	- 1				k l	3			
SAMPLE ID Oil Wipe (A-Z, 0-9 /,-) Air	OL WP		(G					1 F	NER.							Test	0 4		16	8	TPM-						l ju			
Sample IDs MUST BE UNIQUE Tissue	AR TS	CODE	YPE	DWAY .		1		EMP	Ι¥	ved						S	9	1			F						흥			
Other #	OT	×	LET	The state of		District -		ᄪ	S	eser	4	_	_	⁵ 0	anol	SVIE	3	9 3	T							A III	inal			
TEM#		MATRIX	SAMPLE TYPE	1 - 112/2			1	SAMPLE TEMP AT	# OF CONTAINERS	Unpreserved	H ₂ SO ₄	HNO3	300	Na ₂ S ₂ O ₃	Methanol	Analysis		DISKIN, FURAS	TPH-HO	CPAM	8 TCX						Residual Chlorine (Y/N)		D	- // - - - I D
1 594-31-1		SL		DATE	TIME	DATE	10:4S	65	7	X	_		- 2	2	XX		+	1	-	0	1	+		+			1-1	Pace	Project	lo./ Lab I.D.
2 586-31-2		34	- 0			1	11:00		,	,		+	+	H	AIN	+	H	+	+	H	+	1	+		\vdash	+	H	-	17	
3 SPL-31-3		H	\mathbf{H}				11:10	-	\vdash	+	\vdash	+	+		H		H		+	\vdash		+	+		\vdash	+	Н			
4 SPL-31-4	-	\vdash		- 4-1			11:20		\vdash			+	+	\vdash	H	-	H	+	+	H		A	+	\vdash			Н			
5 SPL -31 - S		\vdash					11:40		\vdash	$\forall \forall$	\vdash	+		Н			H	+	\dagger	1	1	1		\vdash	197		H	ary II	. 1	
6 SPL-31 -6		H					11:50		\vdash			+	+		H		H	1	+			\dashv				+	H			
7 SPL-32-1		H	\vdash				12:00			+		1		\Box			I	11	1											
8 SPL-32-2		\top					12: 15			+	\Box		\top	\Box	H		It	+	1	T	1			\top			П			
9 SPL-32-3		J	V				12:30		V	15/		\top	1	П	10	1	1	11	1	V	H						П			
10 TBOZ18/1						1										1	Г				V						П			
11																														
12																1	Г										\Box			
ADDITIONAL COMMENTS		REL	INQU	ISHED BY /	AFFILIAT	ION	DATE		7	TIME				ACC	EPTE	D B	Y/A	FFILI	ATIO	N		D	ATE /		TIME		-	SAMI	PLE CONDIT	IONS
Temp Blank included	+1	2	Ma	ni 760	1/B	_	2/18/1	11	1<	5:5	0			1	10	thi		S.	10			2	NII	16	550	09.	9	4	1/	4
TOTAL STATE OF THE	14		LOV	AL CALL			- (-)	-							101)		7	7"	10						•
											\dashv																			
	-							-																-		+	_			
					SAMPLE	R NAME A	ND SIGNA	TUR	E					70			_	_					_	_		-		u,	-ia	act
OR	IGINAL						ne of SAMP	_		OA	- 1.	100	20.6	1 75	,	_		_					_			-	Temp in °C	Received on Ice (Y/N)	Custody Sealed Cooler (Y/N)	Samples Intact (Y/N)
							RE of SAMP			DA	1	n	-111	10	7	_	1	DATE	Sign	ned			3-1	. ,		-	lemp	Recei	Cus 3aled (Y)	ample (7)
				- 1	l	SIGNATUR	L OI SAMP	LEK:	1/	24	eVI	a	150	-			1 /	MM/I	DD/Y	Y): (05.	- 1	5-	(ш.	Š	Š

Sample Container Count

CLIENT:	Br	Dw	14	Ca	ldi	90	U							Pace Analytical **
COC PAGE _ COC ID#	of!													
Sample Line Item	VG9H	AG1H	AG1U	BG1H	BP1U	BP2U	BP3U	BP2N	BP2S	WGFU	WGKU _			2 5 6 6 9 0 Comments
1										2				
2										2				
3										7				
4										2				
5										2				
6										2				
7										2				
8										2				
9										2				
10														A
11														\
12														Trip Blank?
											1			
AG1H	1 liter HCL	amber o	lass			,	BP2S	500mL H	12SO4 pla	astic			JGFU	4oz unpreserved amber wide
	1liter unpre			iss					inpreserv		C			terra core kit
	500mL H2								NaOH, Zn				U	Summa Can
AG2U	500mL unp	reserve	d amber o	lass			BP3C	250mL N	VaOH pla	stic			VG9H	40mL HCL clear vial
AG3S	250mL H2	SO4 amb	per glass						HNO3 pla				VG9T	40mL Na Thio. clear vial
	1 liter HCL								H2SO4 p					40mL unpreserved clear vial
	1 liter unpr								unpreserv		ic		VG9W	40mL glass vial preweighted (EPA 5035)
	1 liter HNC								a Bisulfate					Headspace septa vial & HCL
	1 liter H2SC													4oz clear soil jar
	1 liter unpre	_						9H 40mL HCL amber voa vial 9M 40mL MeOH clear vial						4oz wide jar w/hexane wipe
	1 liter NaOl								a Thio am					Ziploc Bag
	500mL HNO							35000 (60)	preserve		vial			
	500mL Na							Wipe/Sv						

Sample Condition Upon Receipt 256690 Pace Analytical Client Name: Project # Courier: Fed Ex UPS USPS Client Commercial Pace Other Tracking #: Custody Seal on Cooler/Box Present: Yes No Seals intact: Yes No Packing Material: Bubble Wrap Bubble Bags None ☐ Other Temp. Blank Yes Thermometer Used 132013 or 101731962 or 226099 Type of Ice. Wet Blue None Samples on ice, cooling process has begun Date and Initials of person examining Biological Tissue is Frozen: Yes No Cooler Temperature contents: Temp should be above freezing ≤ 6°C Comments: Chain of Custody Present: Très No □N/A ☐Yes ☐No Chain of Custody Filled Out: DN/A Yes DNo Chain of Custody Relinquished: □N/A 3. Sampler Name & Signature on COC: DYES No □N/A Samples Arrived within Hold Time: Yes No □N/A □N/A Short Hold Time Analysis (<72hr): ☐Yes ☐No Rush Turn Around Time Requested: ☐Yes ☐No □N/A □Yes □No Follow Up / Hold Analysis Requested: □N/A 8. EYes DNo □N/A Sufficient Volume: Correct Containers Used: □Yes □No □N/A 10. -Pace Containers Used: Yes DNo □N/A Containers Intact: □Yes □No □N/A 11. Filtered volume received for Dissolved tests □Yes □No 12. DNIA TYES No Sample Labels match COC: □N/A 13. 501 -Includes date/time/ID/Analysis Matrix: All containers needing preservation have been checked. □Yes □No □N/A 14. All containers needing preservation are found to be in □Yes □No □N/A compliance with EPA recommendation. Initial when Lot # of added Exceptions: VOA, coliform, TOC, O&G completed preservative □Yes □No □N/A Samples checked for dechlorination: 15. ☐Yes ☐No DIVIA Headspace in VOA Vials (>6mm): 16. Trip Blanks Present: □Yes □No □N/A 17. Trip Blank Custody Seals Present □Yes □No □NA

Person Contacted: ______ Date/Time: ______
Comments/ Resolution: ______

Field Data Required?

Project Manager Review: ENNI GROS Date: 21811

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Pace Trip Blank Lot # (if purchased):

Client Notification/ Resolution:

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Jennifer Gross PASI Seattle 940 S. Harney Street Seattle WA 98108

> REPORT OF LABORATORY ANALYSIS FOR PCDD/PCDF

Report Information:

Pace Project #: 10150056

Sample Receipt Date: 02/19/2011

Client Project #: 256690 Client Sub PO #: N/A State Cert #: C755

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Nate Habte, your Pace Project Manager.

This report has been reviewed by:

March 04, 2011

Nate Habte, Project Manager

(612) 607-6407 (612) 607-6444 (fax)

natnael.habte@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

March 4, 2011

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on nine samples submitted by a representative of Pace Analytical Services, Inc. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290. Reporting limits were based on signal-to-noise measurements.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 58-97%. All of the labeled standard recoveries obtained for this project were within the 40-135% target range specified in Method 8290. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, interfering substances impacted the determinations of PCDD or PCDF congeners; the affected values were flagged "I" where incorrect isotope ratios were obtained or "P" where polychlorinated diphenyl ethers were present. Values above the calibration range were flagged "E" and should be regarded as estimates.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to contain trace levels of selected congeners. These were below the calibration range of the method. The levels reported for the affected congeners in the field samples were higher than the corresponding blank levels by one or more orders of magnitude. These results indicate that the sample processing steps did not contribute significantly to the levels reported for the field samples.

Laboratory and matrix spike samples were also prepared with the sample batch using clean sand or sample matrix that had been fortified with native standard materials. The results show that the spiked native compounds were generally recovered at 90-127%, with relative percent differences (RPDs) generally from 0.4-12.4%. The background-subtracted recovery values obtained for most of the hepta and octa-chlorinated congeners in the matrix spike samples were outside the 70-130% target range. Also, the RPD values for 1,2,3,4,6,7,8-HpCDF, HpCDD, OCDF, and OCDD in the matrix spike samples were above the 20% target upper limit; these results may indicate elevated degrees of variability for these congeners in these determinations.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	
Arizona	AZ0014	Nevada	MN000642010A
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New Mexico	MN00064
Colorado	MN00064	New York (NEL	11647
Connecticut	PH-0256	North Carolina	27700
EPA Region 5	WD-15J	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Ohio VAP	CL101
Georgia (DNR)	959	Oklahoma	D9922
Guam	09-019r	Oregon (ELAP)	MN200001-005
Hawaii	SLD	Oregon (OREL	MN200001-005
Idaho	MN00064	Pennsylvania	68-00563
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennesee	2818
lowa	368	Tennessee	02818
Kansas	E-10167	Texas	T104704192-08
Kentucky	90062	Utah (NELAP)	PAM
Louisiana	LA0900016	Virginia	00251
Maine	2007029	Washington	C755
Maryland	322	West Virginia	9952C
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q
Mississippi	MN00064		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

		(A)	2000/S21/52	A		12,40	~7		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	8	हैं	1015 w54 - 607.0 t 044 weilun 1015 50086 - Dialin	ם + בת נהצינות
<u> </u>	Chain of Custody					3		7		9	Pac	ace Analytical	8
Work	ler: 256690	rkorder	Workorder Name:East Bay Redevelopment 138130	Redevelopme	nt 13813		Owner Received Date:	ved Date:	2/18/2011	Results R	Results Requested By:	3/7/11/ y: 3/42011	
Report To Jennifer C Pace Ana	Report To Jennifer Gross Pace Analytical Services, Inc.		Subcontract To Pace Analy 1700 Elm S	contract To Pace Analytical Minnesota 1700 Elm Street	ota			409	Requested Analysis	í Analysis			
940 Si Seattle Phone Fax (2)	940 South Harney Seattle WA 98108 Phone (206)767-5060 Fax (206)767-5063		Suite 2 Minner Phone	Suite 200 Minneapolis, MN 5541 Phone (612)607-1700	4			509 SH 6:11	£76€				
						Preserved	Preserved Containers		DAW D				
Ifem	Sample ID.	Sample Type	Collect Date/Time	Lab D	Matrix	hpreserved		1p) 1 ng	ЙŒ			S INC HOLL	
-	SPL-31-1	PS	2/18/2011 10:45	256690001	Solid	2)	Y			5 5 5	
2	SPL-31-2	PS	2/18/2011 11:00	256690002	Solid	2		×	×			1 KG	
က	SPL-31-3	PS	2/18/2011 11:10	256690003	Solid	2		<i>)</i> 3 ×	X			60,	
1	SPL-31-4	PS	2/18/2011 11:20		Solid	2		У ×	Х			LT.	
ဂ ဖ	SPL-31-5 SPL-31-6	PS PS	2/18/2011 11:20 2/18/2011 11:50	256690005 256690006	Solid	2 2		Х x × ×	XX			<i>205</i>	
7	SPL-32-1	PS	2/18/2011 12:00		Solid	2		-	Х			3 4 3	
æ	SPL-32-2	PS	2/18/2011 12:15	256690008	Solid	2		×	メ			S.	
o .	SPL-32-3	PS	2/18/2011 12:30	256690009	Solid	2		<u> </u>	メ			ğ	
Transfers	fers Released Bv		DateTimk	Received By			l Date/Time			Comments	ients		
-		229	11/1/1/1	多く			II)M/C	1028	, 2×2	, 		•	
2		N		1						>	20/20/() - M2/0/5	SNXV)	
ω (_		- 1		_	: 	1			1 ()	
3	Cooler lemperature on Receipt	1 2-C c	-	Custody Seal (Y.	Z JO		Received on Ice (Y) or	Ice (V) or	Z	Samp	Samples Intact (Y) or N	z io	

Sample Condition Upon Receipt

Face Analytical Client Name	: 1	ÉE	<u>h</u>	A	···		Project	# 0	500	56
		•								
Courier: 7944 4504 2006	ent 🗆	Comr	nercial	☐ Pa	ice C	ther	S. S. S. S. S. S. S. S. S. S. S. S. S. S	Ordonal Proj. Due	Date/	
Custody Seal on Cooler/Box Present: yes		uó	Seal	intact:	Ø	yes []no L	Proj. Nem		
Packing Material: Bubble Wrap Bubble	_	_	None	Oti	ner		Temp Bla	_	·····	No
Thermometer Used 80344042 or 179425			We		Non	_				s has begun examining
Cooler Temperature Temp should be above freezing to 6°C	Biolo	gical	Tissu	is Froz Comm		es No		nte:	jafii	3
Chain of Custody Present:	Yes	□No	□N⁄A	1.						····
Chain of Custody Filled Out:	ZYes	□No	□N⁄A	2.						
Chain of Custody Relinquished:	Z/Yes	□No	□N/A	3.	····					
Sampler Name & Signature on COC:		ZINO		4.						
Samples Arrived within Hold Time:		□No					···			
Short Hold Time Analysis (<72hr):	ZIV	LING	OHM.	6.						
Rush Turn Around Time Requested:	Yes	□No	□N⁄A	7. 10 5	2004	DOKY	7			
Sufficient Volume:	Zives	□No	□N⁄A	8.					 	·····
Correct Containers Used:	Yes	□No	□N/A	9.						
-Pace Containers Used:	ZYes		□N/A							
Containers Intact:	ZYes	□No	□N⁄A	10.					 	
Filtered volume received for Dissolved tests	□Yes	□No	EINA	11.		.,,				
Sample Labels match COC:		□No	□n⁄a	12.						
-includes date/time/ID/Analysis Matrix:	SL								NeOU	
All containers needing acid/base preservation have been checked. Noncompliance are noted in 13.	□Yes	□No	ZINA	l .)3 H2SC	⁷⁴ 🗀	NaOH	□ HCI
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes	□No	ØÑA	Samp #			· 1.		<u></u>	
Exceptions: VOA,Coliform, TOC, Oil and Grease, WI-DRO (water	_{ir]} ⊡Yes	DANO.	···	Initial wh			Lot # of add preservative			
Samples checked for dechlorination:	□Yes	□No	æIN/A	14.						
Headspace in VOA Vials (>6mm):	□Yes	□No	EINA	15.					<u></u>	
Trip Blank Present:	□Yes	PINO	□N⁄A	16.						
Trip Blank Custody Seals Present	□Yes	□No.	-EIN/A							
Pace Trip Blank Lot # (if purchased):	- 					·····				
Client Notification/ Resolution: Person Contacted:			Date/	Γime:			Field Data F	lequired?	Y	/ N
Comments/ Resolution:			-							
	· · · · · · · · · · · · · · · · · · ·									
									,	
Project Manager Review:		(D)					Date	: 02	122/	!1

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the Received Stimbles, Inc. F-L213Rev.00, 05Aug2009 1700 Eim Street SE, Suite 200, Minneapolis, MN 55414 Report No.....10150056_8290 Page 6 of 22

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

Appendix B

Sample Analysis Summary

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-31-1
Lab Sample ID 256690001
Filename U110302C_08
Injected By BAL

Total Amount Extracted 33.7 g Matrix Solid % Moisture 70.0 Dilution NA

Dry Weight Extracted Collected 02/18/2011 10:45 10.1 g **ICAL ID** U101204A Received 02/19/2011 10:25 CCal Filename(s) U110302C_02 & U110302C_18 Extracted 02/28/2011 14:40 Method Blank ID BLANK-28010 Analyzed 03/03/2011 00:39

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	2.30 37.00		0.38 0.38	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	64 81 63
2,3,7,8-TCDD Total TCDD	0.61 19.00		0.27 J 0.27	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	65 76 72
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.40 3.20 43.00		0.37 J 0.28 J 0.33	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	71 74 70
1,2,3,7,8-PeCDD Total PeCDD	2.50 26.00		0.23 J 0.23	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	78 83 75 71
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	3.50 3.80	13.0	0.47 P 0.36 J 0.41 J	1,2,3,4,7,8,9-1 ipcDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	88 73
1,2,3,7,8,9-HxCDF Total HxCDF	1.20 86.00		0.46 J 0.43	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	8.80 5.50 69.00	2.1 	0.36 I 0.56 0.36 0.43	2,3,7,8-TCDD-37Cl4	0.20	75
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	76.00 4.10 200.00	 	0.88 0.74 J 0.81	Total 2,3,7,8-TCDD Equivalence: 12 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	260.00 530.00		1.50 1.50			
OCDF OCDD	270.00 4400.00		1.70 0.32			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

RL = Reporting Limit. NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

SPL-31-2 Client's Sample ID Lab Sample ID 256690002 U110302C_09 Filename Injected By BAL

Total Amount Extracted 13.0 g Solid Matrix % Moisture Dilution NA 21.2

Dry Weight Extracted Collected 02/18/2011 11:00 10.2 g **ICAL ID** U101204A Received 02/19/2011 10:25 CCal Filename(s) U110302C_02 & U110302C_18 Extracted 02/28/2011 14:40 Method Blank ID BLANK-28010 Analyzed 03/03/2011 01:27

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.40 24.00		0.31 0.31	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	63 80 61
2,3,7,8-TCDD Total TCDD	0.52 15.00		0.31 J 0.31	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	64 76 67
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.20 3.00 30.00		0.24 J 0.24 J 0.24	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	70 70 63 77
1,2,3,7,8-PeCDD Total PeCDD	1.30 20.00		0.23 J 0.23	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	77 77 71 69
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	2.60 2.90	12 	0.36 P 0.26 J 0.27 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	81 70
1,2,3,7,8,9-HxCDF Total HxCDF	1.20 65.00		0.39 J 0.32	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.60 5.90 3.00 51.00	 	0.41 J 0.42 0.33 J 0.39	2,3,7,8-TCDD-37Cl4	0.20	73
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	49.00 3.50 160.00		0.48 0.70 J 0.59	Total 2,3,7,8-TCDD Equivalence: 8.0 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	190.00 360.00		0.46 0.46			
OCDF OCDD	210.00 3000.00		0.45 0.53			

ND = Not Detected Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

NC = Not Calculated RL = Reporting Limit.

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value P = PCDE Interference

Method 8290 Sample Analysis Results

Client - PASI Seattle

SPL-31-3 Client's Sample ID Lab Sample ID 256690003 U110302C_10 Filename Injected By BAL **Total Amount Extracted** 11.4 g Solid Matrix % Moisture Dilution NA 11.2 Dry Weight Extracted Collected 02/18/2011 11:10 10.1 g **ICAL ID** U101204A Received 02/19/2011 10:25 CCal Filename(s) U110302C_02 & U110302C_18 Extracted 02/28/2011 14:40 Method Blank ID BLANK-28010 Analyzed 03/03/2011 02:14

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.96 21.00		0.28 J 0.28	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	66 83 64
2,3,7,8-TCDD Total TCDD	ND 13.00		0.25 0.25	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	66 77 75
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.81 3.00 34.00	 	0.22 J 0.43 J 0.33	1,2,3,4,7,8-11XCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	73 70 73 70 87
1,2,3,7,8-PeCDD Total PeCDD	1.20 17.00		0.49 J 0.49	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	75 74 69
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	2.70 1.80 2.50		0.27 J 0.21 J 0.32 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	85 70
1,2,3,7,8,9-HxCDF Total HxCDF	31.00	0.56 	0.41 I 0.30	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.50 5.50 2.70 56.00	 	0.39 J 0.42 0.38 J 0.40	2,3,7,8-TCDD-37Cl4	0.20	77
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	46.00 46.00	2.00 	0.57 0.71 I 0.64	Total 2,3,7,8-TCDD Equivalence: 7.3 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	200.00 500.00		1.50 1.50			
OCDF OCDD	150.00 2500.00		0.26 0.35			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable

RL = Reporting Limit.

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Sample Analysis Results

Client - PASI Seattle

SPL-31-4 Client's Sample ID Lab Sample ID 256690004 U110302C_11 Filename Injected By BAL **Total Amount Extracted** 11.8 g Solid Matrix Dilution % Moisture 10.5 NA Dry Weight Extracted Collected 02/18/2011 11:20 10.6 g **ICAL ID** U101204A Received 02/19/2011 10:25 CCal Filename(s) U110302C_02 & U110302C_18 Extracted 02/28/2011 14:40 Method Blank ID BLANK-28010 Analyzed 03/03/2011 03:02

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.77		0.23 J	2,3,7,8-TCDF-13C	2.00	64
Total TCDF	16.00		0.23	2,3,7,8-TCDD-13C	2.00	80
0 0 7 0 TODD	0.40		0.05	1,2,3,7,8-PeCDF-13C	2.00	60
2,3,7,8-TCDD Total TCDD	0.42 11.00		0.25 J 0.25	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00	60 72
Total TODD	11.00		0.25	1,2,3,4,7,8-HxCDF-13C	2.00	72 71
1,2,3,7,8-PeCDF	1.10		0.37 J	1,2,3,6,7,8-HxCDF-13C	2.00	70
2,3,4,7,8-PeCDF	4.10		0.28 J	2,3,4,6,7,8-HxCDF-13C	2.00	69
Total PeCDF	48.00		0.33	1,2,3,7,8,9-HxCDF-13C	2.00	64
				1,2,3,4,7,8-HxCDD-13C	2.00	80
1,2,3,7,8-PeCDD	2.70		0.37 J	1,2,3,6,7,8-HxCDD-13C	2.00	77
Total PeCDD	20.00		0.37	1,2,3,4,6,7,8-HpCDF-13C	2.00	72
			0.40	1,2,3,4,7,8,9-HpCDF-13C	2.00	67
1,2,3,4,7,8-HxCDF	8.90		0.46	1,2,3,4,6,7,8-HpCDD-13C	2.00	79
1,2,3,6,7,8-HxCDF	4.50		0.43 J	OCDD-13C	4.00	69
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	3.00 2.40		0.57 J 0.42 J	1,2,3,4-TCDD-13C	2.00	NA
Total HxCDF	100.00		0.42 J 0.47	1,2,3,7,8,9-HxCDD-13C	2.00	NA NA
Total TIXODI	100.00		0.47	1,2,3,7,0,3-11,000-130	2.00	INA
1,2,3,4,7,8-HxCDD	4.90		0.35	2,3,7,8-TCDD-37Cl4	0.20	75
1,2,3,6,7,8-HxCDD	18.00		0.41			
1,2,3,7,8,9-HxCDD	11.00		0.33			
Total HxCDD	110.00		0.36			
1,2,3,4,6,7,8-HpCDF	140.00		0.65	Total 2,3,7,8-TCDD		
1,2,3,4,7,8,9-HpCDF	11.00		0.82	Equivalence: 21 ng/Kg		
Total HpCDF	150.00		0.74	(Using 2005 WHO Factors -	Using PRL	2 where ND)
'				` 3	J	,
1,2,3,4,6,7,8-HpCDD	630.00		2.10			
Total HpCDD	1300.00		2.10			
OCDF	680.00		1.10			
OCDD	11000.00		0.41 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

EMPC = Estimated Maximum Possible Concentration NA = Not Applicable RL = Reporting Limit. NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

E = Exceeds calibration range

REPORT OF LABORATORY ANALYSIS

ND = Not Detected

Method 8290 Sample Analysis Results

Client - PASI Seattle

SPL-31-5 Client's Sample ID Lab Sample ID 256690005 U110302C_12 Filename Injected By BAL **Total Amount Extracted** 16.8 g Solid Matrix % Moisture Dilution NA 40.4 Dry Weight Extracted 10.0 g Collected 02/18/2011 11:20 **ICAL ID** U101204A Received 02/19/2011 10:25

CCal Filename(s) U110302C_02 & U110302C_18 Extracted 02/28/2011 14:40 Method Blank ID BLANK-28010 Analyzed 03/03/2011 03:50

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	11.00	0.48	0.25 I 0.25	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	64 80 62
2,3,7,8-TCDD Total TCDD	ND 7.50		0.25 0.25	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	64 78 71
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.53 1.50 20.00		0.29 J 0.21 J 0.25	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	71 71 66
1,2,3,7,8-PeCDD Total PeCDD	0.74 8.00		0.29 J 0.29	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	76 82 74 72
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.10 1.70	3.50 	0.16 P 0.13 J 0.15 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	84 69
1,2,3,7,8,9-HxCDF Total HxCDF	32.00	0.38	0.22 I 0.16	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.00 3.30 2.10 25.00	 	0.40 J 0.39 J 0.35 J 0.38	2,3,7,8-TCDD-37Cl4	0.20	74
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	29.00 2.10 87.00		0.27 0.60 J 0.43	Total 2,3,7,8-TCDD Equivalence: 4.1 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	98.00 190.00		0.35 0.35			
OCDF OCDD	110.00 1600.00		0.37 0.65			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

RL = Reporting Limit. NC = Not Calculated Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

I = Interference present

Solid

NA

Tel: 612-607-1700 Fax: 612-607-6444

Method 8290 Sample Analysis Results

Client - PASI Seattle

SPL-31-6 Client's Sample ID Lab Sample ID 256690006 U110302C_13 Filename Injected By BAL **Total Amount Extracted** 45.5 g Matrix % Moisture Dilution 78.0 Dry Weight Extracted Collected 10.0 g

02/18/2011 11:50 **ICAL ID** U101204A Received 02/19/2011 10:25 CCal Filename(s) U110302C_02 & U110302C_18 Extracted 02/28/2011 14:40 Method Blank ID BLANK-28010 Analyzed 03/03/2011 04:37

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	2.70 40.00		0.15 0.15	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	72 90 68
2,3,7,8-TCDD Total TCDD	0.75 27.00		0.32 J 0.32	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	69 82 73
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.80 5.40 62.00		0.41 J 0.27 0.34	1,2,3,4,7,6-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	73 74 71 66 81
1,2,3,7,8-PeCDD Total PeCDD	3.40 40.00		0.44 J 0.44	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	79 72 70
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	10.00 5.70 3.60		0.35 0.37 0.51 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	83 72
1,2,3,7,8,9-HxCDF Total HxCDF	2.20 110.00		0.45 J 0.42	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	5.50 18.00 12.00 140.00	 	0.46 0.44 0.41 0.43	2,3,7,8-TCDD-37Cl4	0.20	80
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	160.00 9.80 170.00		0.60 1.20 0.88	Total 2,3,7,8-TCDD Equivalence: 23 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	640.00 1300.00		2.40 2.40			
OCDF OCDD	670.00 9500.00		0.63 0.65 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable NC = Not Calculated RL = Reporting Limit.

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

E = Exceeds calibration range

REPORT OF LABORATORY ANALYSIS

ND = Not Detected

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-32-1
Lab Sample ID 256690007
Filename U110302C_14
Injected By BAL

Total Amount Extracted 13.9 g Matrix Solid % Moisture 27.8 Dilution NA

Dry Weight Extracted 10.0 g Collected 02/18/2011 12:00 **ICAL ID** U101204A Received 02/19/2011 10:25 CCal Filename(s) U110302C_02 & U110302C_18 Extracted 02/28/2011 14:40 Method Blank ID BLANK-28010 Analyzed 03/03/2011 05:25

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	6.1 76.0		0.39 0.39	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00	66 81
Total TODI	70.0		0.55	1,2,3,7,8-PeCDF-13C	2.00	64
2,3,7,8-TCDD	1.5		0.26	2,3,4,7,8-PeCDF-13C	2.00	65
Total TCDD	94.0		0.26	1,2,3,7,8-PeCDD-13C	2.00	76
				1,2,3,4,7,8-HxCDF-13C	2.00	77
1,2,3,7,8-PeCDF		3.8	0.25 P	1,2,3,6,7,8-HxCDF-13C	2.00	73
2,3,4,7,8-PeCDF Total PeCDF	8.1 67.0		0.55 0.40	2,3,4,6,7,8-HxCDF-13C	2.00 2.00	73 67
Total PeCDF	67.0		0.40	1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00	86
1,2,3,7,8-PeCDD	4.5		0.51 J	1,2,3,6,7,8-HxCDD-13C	2.00	77
Total PeCDD	69.0		0.51	1,2,3,4,6,7,8-HpCDF-13C	2.00	71
				1,2,3,4,7,8,9-HpCDF-13C	2.00	68
1,2,3,4,7,8-HxCDF	10.0		0.56	1,2,3,4,6,7,8-HpCDD-13C	2.00	79
1,2,3,6,7,8-HxCDF	5.4		0.62	OCDD-13C	4.00	68
2,3,4,6,7,8-HxCDF	8.4		0.55	4 0 0 4 TODD 400	0.00	N 1.0
1,2,3,7,8,9-HxCDF	3.8		0.55 J 0.57	1,2,3,4-TCDD-13C	2.00	NA
Total HxCDF	90.0		0.57	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD	2.6		0.51 J	2,3,7,8-TCDD-37Cl4	0.20	76
1,2,3,6,7,8-HxCDD	14.0		0.42	_,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
1,2,3,7,8,9-HxCDD	4.5		0.50 J			
Total HxCDD	110.0		0.48			
1,2,3,4,6,7,8-HpCDF	120.0		1.40	Total 2,3,7,8-TCDD		
1,2,3,4,7,8,9-HpCDF	8.7		0.78	Equivalence: 20 ng/Kg		
Total HpCDF	130.0		1.10	(Using 2005 WHO Factors -	Using PRI	2 where ND)
10141119021	100.0		0	(35g 2555 THTS T deters	00mig : 11 <u>2</u>	2 1111010 112)
1,2,3,4,6,7,8-HpCDD	320.0		1.30			
Total HpCDD	550.0		1.30			
OCDE	620.0		1.20			
OCDF OCDD	630.0 3600.0		1.20 0.63			
0000	3000.0		0.03			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

RL = Reporting Limit. NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-32-2
Lab Sample ID 256690008
Filename U110302C_15
Injected By BAL
Total Amount Extracted 15.0 g

Total Amount Extracted 15.0 g Matrix Solid % Moisture 30.8 Dilution NA

Dry Weight Extracted Collected 02/18/2011 12:15 10.4 g **ICAL ID** U101204A Received 02/19/2011 10:25 CCal Filename(s) U110302C_02 & U110302C_18 Extracted 02/28/2011 14:40 Method Blank ID BLANK-28010 Analyzed 03/03/2011 06:12

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	5.6 74.0		0.38 0.38	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	67 83 64
2,3,7,8-TCDD Total TCDD	1.5 73.0		0.25 0.25	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	66 79 75
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	5.9 14.0 130.0		0.13 0.26 0.19	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	74 72 67
1,2,3,7,8-PeCDD Total PeCDD	5.9 73.0		0.52 0.52	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	84 77 70
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	28.0 15.0	13 	0.56 0.91 P 0.65	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	70 83 70
1,2,3,7,8,9-HxCDF Total HxCDF	8.5 190.0		0.79 0.73	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	5.3 31.0 14.0 210.0	 	0.78 0.62 0.58 0.66	2,3,7,8-TCDD-37Cl4	0.20	82
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	250.0 17.0 260.0	 	1.10 1.20 1.10	Total 2,3,7,8-TCDD Equivalence: 37 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	850.0 1500.0		1.30 1.30			
OCDF OCDD	1100.0 9400.0		0.51 0.38 E			

ND = Not Detected

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

EMPC = Estimated Maximum Possible Concentration NA = Not Applicable RL = Reporting Limit. NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

P = PCDE Interference

E = Exceeds calibration range

Method 8290 Sample Analysis Results

Client - PASI Seattle

Client's Sample ID SPL-32-3
Lab Sample ID 256690009
Filename U110302C_16
Injected By BAL
Total Amount Extracted 14.1 g

Total Amount Extracted 14.1 g Matrix Solid % Moisture 25.9 Dilution NA

Dry Weight Extracted 10.4 g Collected 02/18/2011 12:30 **ICAL ID** U101204A Received 02/19/2011 10:25 CCal Filename(s) U110302C_02 & U110302C_18 Extracted 02/28/2011 14:40 Method Blank ID BLANK-28010 Analyzed 03/03/2011 07:00

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	3.40 52.00		0.40 0.40	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	67 82 60
2,3,7,8-TCDD Total TCDD	0.68 45.00		0.32 J 0.32	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	58 68 86
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	8.50 71.00	7.2 	0.53 P 0.49 0.51	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	77 77 66
1,2,3,7,8-PeCDD Total PeCDD	4.80 54.00		0.68 0.68	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	97 82 73 63
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	18.00 7.20 16.00		0.84 0.88 0.97	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	86 75
1,2,3,7,8,9-HxCDF Total HxCDF	3.30 290.00		1.00 J 0.92	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	6.60 22.00 12.00 170.00	 	1.10 1.30 1.00 1.10	2,3,7,8-TCDD-37Cl4	0.20	80
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	150.00 10.00 620.00	 	2.40 1.80 2.10	Total 2,3,7,8-TCDD Equivalence: 26 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	540.00 970.00		1.80 1.80			
OCDF OCDD	550.00 5600.00		0.59 0.74 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable NC = Not Calculated

EMPC = Estimated Maximum RL = Reporting Limit.

INC = INOL Calculate

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

E = Exceeds calibration range

Method 8290 Blank Analysis Results

Lab Sample ID BLANK-28010 Matrix Solid Filename U110302C_07 Dilution NA

Total Amount Extracted 20.2 g Extracted 02/28/2011 14:40 ICAL ID U101204A Analyzed 03/02/2011 23:52

CCal Filename(s) U110302C_02 & U110302C_18 Injected By BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 0.091		0.046 0.046 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	61 79 63
2,3,7,8-TCDD Total TCDD	ND ND		0.071 0.071	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	65 77 69
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.051 0.046 0.048	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	75 74 67
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.062 0.062	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	72 87 77 72
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.044 0.045 0.040	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	91 69
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		0.063 0.048	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	0.069 0.066 0.070 0.068	2,3,7,8-TCDD-37Cl4	0.20	69
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND 0.076	0.10 	0.051 I 0.081 0.066 J	Total 2,3,7,8-TCDD Equivalence: 0.098 ng/Kg (Using 2005 WHO Factors -	Using PRL/	2 where ND)
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.220	0.12	0.087 I 0.087 J			
OCDF OCDD	0.200 0.700		0.087 J 0.180 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted

Total Amount Extracted ICAL ID CCal Filename(s)

CCal Filename(s)
Method Blank ID

LCS-28011 U110302C_03 20.2 g

U101204A U110302C_02 & U110302C_18 BLANK-28010 Matrix Dilution Extracted

Analyzed

Solid NA

02/28/2011 14:40 03/02/2011 20:43

Injected By BAL

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.21	106	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.0 2.0 2.0	64 82 62
2,3,7,8-TCDD Total TCDD	0.20	0.18	90	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.0 2.0 2.0 2.0	64 76 73
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.1 1.0	107 103	1,2,3,6,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.0 2.0 2.0 2.0 2.0	76 77 68 79
1,2,3,7,8-PeCDD Total PeCDD	1.0	0.92	92	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.0 2.0 2.0 2.0	92 78 71
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	1.0 1.0 1.0 1.0	1.0 1.1 1.0 1.1	104 108 104 107	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.0 4.0 2.0	83 64 NA
Total HxCDF	1.0	1.1	107	1,2,3,7,8,9-HxCDD-13C	2.0	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	0.97 1.00 1.0	97 100 102	2,3,7,8-TCDD-37Cl4	0.20	75
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.0 1.0	105 101			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	0.96	96			
OCDF OCDD	2.0 2.0	2.0 2.2	100 109			

Qs = Quantity Spiked Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)
R = Recovery outside of target range

Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable

* = See Discussion

Method 8290 Spiked Sample Report

Client - PASI Seattle

Client's Sample ID SPL-31-4-MS Lab Sample ID 256690004-MS Filename U110303A_01

Matrix Solid **Total Amount Extracted** Dilution NA 11.4 g **ICAL ID** U101204A Extracted 02/28/2011 14:40

CCal Filename(s) U110302C_18 & U110302C_18 Analyzed 03/03/2011 09:36

Method Blank ID BLANK-28010 **CVS** Injected By

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20	0.25	126	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	68 85 66
2,3,7,8-TCDD	0.20	0.20	99	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	68 81 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	1.00 1.00	1.11 1.20	111 120	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	72 75 72
1,2,3,7,8-PeCDD	1.00	1.02	102	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	83 82 77
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	1.36 1.25 1.29	136 125 129	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	73 89 78
1,2,3,7,8,9-HxCDF	1.00	1.22	122	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	1.00 1.00 1.00	1.13 1.40 1.28	113 140 128	2,3,7,8-TCDD-37Cl4	0.20	76
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	1.00 1.00	3.53 1.40	353 140			
1,2,3,4,6,7,8-HpCDD	1.00	11.18	1118			
OCDF OCDD	2.00 2.00	14.36 190.29	718 9514 E			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures. E = Exceeds calibration range

Method 8290 Spiked Sample Report

Client - PASI Seattle

Client's Sample ID Lab Sample ID Filename Total Amount Extracted SPL-31-4-MSD 256690004-MSD U110303A_02

acted

U110303A_02 Matrix 11.5 g Dilution U101204A Extrac Solid NA

ICAL ID CCal Filename(s) Method Blank ID

U101204A U110302C_18 & U110302C_18 BLANK-28010 Dilution NA Extracted 02/28/2011 14:40 Analyzed 03/03/2011 10:22

Injected By CVS

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20	0.24	120	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	67 84 66
2,3,7,8-TCDD	0.20	0.19	97	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	68 81 74
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	1.00 1.00	1.10 1.14	110 114	1,2,3,6,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	74 71 73 67
1,2,3,7,8-PeCDD	1.00	0.98	98	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	82 80 73
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	1.29 1.20 1.21	129 120 121	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	71 84 69
1,2,3,7,8,9-HxCDF	1.00	1.16	116	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	1.00 1.00 1.00	1.07 1.27 1.15	107 127 115	2,3,7,8-TCDD-37Cl4	0.20	76
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	1.00 1.00	2.66 1.24	266 124			
1,2,3,4,6,7,8-HpCDD	1.00	6.91	691			
OCDF OCDD	2.00 2.00	9.52 112.07	476 5603 E			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures. E = Exceeds calibration range

Method 8290 Spike Sample Results

Client - PASI Seattle

Client Sample ID Lab Sample ID MS ID

MSD ID

SPL-31-4 256690004 256690004-MSD 256690004-MSD

Sample Filename MS Filename MSD Filename U110302C_11 U110303A_01 U110303A_02 <u>Dry Weights</u> Sample Amount MS Amount

MSD Amount

10.6 g 10.2 g 10.3 g

	Sample Conc.	MS/MSD Qs	MS Qm	MSD Qm		Background Subtracted		
Analyte	ng/Kg	(ng)	(ng)	(ng)	RPD	MS % Rec.	MSD % Rec.	RPD
2,3,7,8-TCDF	0.768	0.20	0.25	0.24	5.3	123	116	5.5
2,3,7,8-TCDD	0.416	0.20	0.20	0.19	2.1	97	94	2.1
1,2,3,7,8-PeCDF	1.119	1.00	1.11	1.10	0.4	109	109	0.4
2,3,4,7,8-PeCDF	4.128	1.00	1.20	1.14	5.5	116	110	5.7
1,2,3,7,8-PeCDD	2.676	1.00	1.02	0.98	3.7	99	95	3.9
1,2,3,4,7,8-HxCDF	8.867	1.00	1.36	1.29	5.0	127	120	5.5
1,2,3,6,7,8-HxCDF	4.545	1.00	1.25	1.20	3.6	120	116	3.8
2,3,4,6,7,8-HxCDF	2.980	1.00	1.29	1.21	6.4	126	118	6.6
1,2,3,7,8,9-HxCDF	2.370	1.00	1.22	1.16	4.5	119	114	4.6
1,2,3,4,7,8-HxCDD	4.887	1.00	1.13	1.07	5.3	108	102	5.6
1,2,3,6,7,8-HxCDD	17.631	1.00	1.40	1.27	10.1	122	109	11.9
1,2,3,7,8,9-HxCDD	10.771	1.00	1.28	1.15	10.6	117	104	11.7
1,2,3,4,6,7,8-HpCDF	139.319	1.00	3.53	2.66	28.1	211	123	53.0
1,2,3,4,7,8,9-HpCDF	11.241	1.00	1.40	1.24	12.4	128	112	13.7
1,2,3,4,6,7,8-HpCDD	625.129	1.00	11.18	6.91	47.2	480	47	164.1
OCDF	679.589	2.00	14.36	9.52	40.5	371	126	98.4
OCDD	11316.631	2.00	190.29	112.07	51.7	3741	0	200.0

Definitions

MS = Matrix Spike

MSD = Matrix Spike Duplicate

Qm = Quantity Measured Qs = Quantity Spiked

% Rec. = Percent Recovery

RPD = Relative Percent Difference

NA = Not Applicable NC = Not Calculated CDD = Chlorinated dibenzo-p-dioxin CDF = Chlorinated dibenzo-p-furan

T = Tetra Pe = Penta

Hx = Hexa Hp = Hepta

O = Octa

March 07, 2011

Joshua Johnson Brown & Caldwell 724 Columbia St. NW#420 Olympia, WA 98501

RE: Project: East Bay Redevelopment 138130

Pace Project No.: 256691

Dear Joshua Johnson:

Enclosed are the analytical results for sample(s) received by the laboratory on February 18, 2011. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jennifer Gross

jennifer.gross@pacelabs.com Project Manager

ENNI (-ROSS

Enclosures

cc: Jon Turk, Brown & Caldwell

CERTIFICATIONS

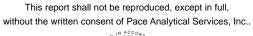
Project: East Bay Redevelopment 138130

Pace Project No.: 256691

Washington Certification IDs
940 South Harney Street, Seattle, WA 98108
Alaska CS Certification #: UST-025
Alaska Drinking Water VOC Certification #: WA01230
Alaska Drinking Water Micro Certification #: WA01230

California Certification #: 01153CA California Certification #: E87617
Oregon Certification #: WA200007
Washington Certification #: C1229

SAMPLE ANALYTE COUNT


Project: East Bay Redevelopment 138130

Pace Project No.: 256691

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory	
256691001	SPL-31-1	NWTPH-Dx	AY1	4	PASI-S	
		NWTPH-Gx	ATH	3	PASI-S	
		EPA 8270 by SIM	ERB	20	PASI-S	
		EPA 8260	LPM	8	PASI-S	
		ASTM D2974-87	DMT	1	PASI-S	
256691002	SPL-31-2	NWTPH-Dx	AY1	4	PASI-S	
		NWTPH-Gx	ATH	3	PASI-S	
		EPA 8270 by SIM	ERB	20	PASI-S	
		EPA 8260	LPM	8	PASI-S	
		ASTM D2974-87	DMT	1	PASI-S	
256691003	SPL-31-3	NWTPH-Dx	AY1	4	PASI-S	
		NWTPH-Gx	ATH	3	PASI-S	
		EPA 8270 by SIM	ERB	20	PASI-S	
		EPA 8260	LPM	8	PASI-S	
		ASTM D2974-87	DMT	1	PASI-S	
256691004	SPL-31-4	NWTPH-Dx	AY1	4	PASI-S	
		NWTPH-Gx	ATH	3	PASI-S	
		EPA 8270 by SIM	ERB	20	PASI-S	
		EPA 8260	LPM	8	PASI-S	
		ASTM D2974-87	DMT	1	PASI-S	
256691005	SPL-31-5	NWTPH-Dx	AY1	4	PASI-S	
		NWTPH-Gx	ATH	3	PASI-S	
		EPA 8270 by SIM	ERB	20	PASI-S	
		EPA 8260	LPM	8	PASI-S	
		ASTM D2974-87	DMT	1	PASI-S	
256691006	SPL-31-6	NWTPH-Dx	AY1	4	PASI-S	
		NWTPH-Gx	ATH	3	PASI-S	
		EPA 8270 by SIM	ERB	20	PASI-S	
		EPA 8260	LPM	8	PASI-S	
		ASTM D2974-87	DMT	1	PASI-S	
256691007	SPL-32-1	NWTPH-Dx	AY1	4	PASI-S	
		NWTPH-Gx	ATH	3	PASI-S	
		EPA 8270 by SIM	ERB	20	PASI-S	
		EPA 8260	LPM	8	PASI-S	
		ASTM D2974-87	DMT	1	PASI-S	
256691008	SPL-32-2	NWTPH-Dx	AY1	4	PASI-S	
		NWTPH-Gx	ATH	3	PASI-S	

REPORT OF LABORATORY ANALYSIS

Page 3 of 25

SAMPLE ANALYTE COUNT

Project: East Bay Redevelopment 138130

Pace Project No.: 256691

Lab ID Sample ID		Method	Analysts	Analysts Reported		
		EPA 8270 by SIM	ERB	20	PASI-S	
		EPA 8260	LPM	8	PASI-S	
		ASTM D2974-87	DMT	1	PASI-S	
256691009	SPL-32-3	NWTPH-Dx	AY1	4	PASI-S	
		NWTPH-Gx	ATH	3	PASI-S	
		EPA 8270 by SIM	ERB	20	PASI-S	
		EPA 8260	LPM	8	PASI-S	
		ASTM D2974-87	DMT	1	PASI-S	
256691010	TB 021811	NWTPH-Gx	ATH	3	PASI-S	
		EPA 8260	LPM	8	PASI-S	

ANALYTICAL RESULTS

Project: East Bay Redevelopment 138130

Pace Project No.: 256691

Sample: SPL-31-1	Lab ID:	256691001	Collected: 02/18/	11 10:45	Received: 02	2/18/11 15:50 N	Matrix: Solid		
Results reported on a "dry-weight	t" basis								
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua	
NWTPH-Dx GCS SG	Analytical	Method: NWTF	PH-Dx Preparation M	lethod: E	PA 3546				
Diesel Range SG	NE	O mg/kg	55.2	1	02/22/11 11:40	02/23/11 14:21			
Motor Oil Range SG	NE	D mg/kg	221	1	02/22/11 11:40	02/23/11 14:21	64742-65-0		
n-Octacosane (S) SG	89	9 %	50-150	1	02/22/11 11:40	02/23/11 14:21	630-02-4		
o-Terphenyl (S) SG	98	8 %	50-150	1	02/22/11 11:40	02/23/11 14:21	84-15-1		
NWTPH-Gx GCV	Analytical	Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx							
Gasoline Range Organics	NE	O mg/kg	28.1	1	02/28/11 08:00	02/28/11 10:42			
a,a,a-Trifluorotoluene (S)	139	9 %	50-150	1	02/28/11 08:00	02/28/11 10:42	98-08-8		
4-Bromofluorobenzene (S)	110	0 %	50-150	1	02/28/11 08:00	02/28/11 10:42	460-00-4		
8270 MSSV PAH by SIM	Analytical	Method: EPA 8	270 by SIM Prepara	tion Meth	nod: EPA 3546				
Acenaphthene	NI	D ug/kg	18.5	1	02/22/11 11:40	02/24/11 17:28	83-32-9		
Acenaphthylene		1 ug/kg	18.5	1	02/22/11 11:40	02/24/11 17:28	208-96-8		
Anthracene		4 ug/kg	18.5	1	02/22/11 11:40	02/24/11 17:28	120-12-7		
Benzo(a)anthracene		5 ug/kg	18.5	1	02/22/11 11:40	02/24/11 17:28	56-55-3		
Benzo(a)pyrene		4 ug/kg	18.5	1	02/22/11 11:40	02/24/11 17:28	50-32-8		
Benzo(b)fluoranthene		5 ug/kg	18.5	1		02/24/11 17:28			
Benzo(g,h,i)perylene		3 ug/kg	18.5	1		02/24/11 17:28			
Benzo(k)fluoranthene		5 ug/kg	18.5	1		02/24/11 17:28			
Chrysene		0 ug/kg	18.5	1		02/24/11 17:28			
Dibenz(a,h)anthracene		D ug/kg	18.5	1		02/24/11 17:28			
Fluoranthene		0 ug/kg	18.5	1		02/24/11 17:28			
Fluorene		7 ug/kg	18.5	1		02/24/11 17:28			
Indeno(1,2,3-cd)pyrene		3 ug/kg	18.5	1		02/24/11 17:28			
1-Methylnaphthalene		6 ug/kg	18.5	1		02/24/11 17:28			
			18.5	1		02/24/11 17:28			
2-Methylnaphthalene		4 ug/kg							
Naphthalene Phenanthrene		9 ug/kg	18.5 18.5	1 1		02/24/11 17:28 02/24/11 17:28			
		3 ug/kg							
Pyrene		6 ug/kg	18.5	1		02/24/11 17:28			
2-Fluorobiphenyl (S) Terphenyl-d14 (S)		5 % 0 %	31-131 30-133	1 1		02/24/11 17:28 02/24/11 17:28			
3260/5035A Volatile Organics		Method: EPA 8		•	02/22/11 11.40	02/24/11 17.20	1710-31-0		
Benzene	•	D ug/kg	10.9	1		02/23/11 16:07	71-43-2		
Ethylbenzene		D ug/kg	10.9	1		02/23/11 16:07			
Toluene		D ug/kg	10.9	1		02/23/11 16:07			
Xylene (Total)		D ug/kg	32.7	1		02/23/11 16:07			
Dibromofluoromethane (S)		6 %	80-136	1		02/23/11 16:07			
Toluene-d8 (S)		2 %	80-120	1		02/23/11 16:07			
4-Bromofluorobenzene (S)		2 % 2 %	72-122	1		02/23/11 16:07			
1,2-Dichloroethane-d4 (S)		2 % 6 %	80-143	1		02/23/11 16:07			
Percent Moisture		Method: ASTM		'		02/20/11 10.U <i>I</i>	11000-01-0		
	•								
Percent Moisture	64.0	0 %	0.10	1		02/21/11 17:53			

Date: 03/07/2011 02:56 PM

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

Page 5 of 25

ANALYTICAL RESULTS

Project: East Bay Redevelopment 138130

Pace Project No.: 256691

Sample: SPL-31-2	Lab ID: 256691002	Collected: 02/18/11 1	11:00	Received: 02	/18/11 15:50 N	Matrix: Solid			
Results reported on a "dry-weight	t" basis								
Parameters	Results Units	Report Limit [DF	Prepared	Analyzed	CAS No.	Qua		
NWTPH-Dx GCS SG	Analytical Method: NWT	PH-Dx Preparation Meth	od: E	PA 3546					
Diesel Range SG	ND mg/kg	25.8	1	02/22/11 11:40	02/23/11 14:38				
Motor Oil Range SG	ND mg/kg	103	1	02/22/11 11:40	02/23/11 14:38	64742-65-0			
n-Octacosane (S) SG	99 %	50-150	1	02/22/11 11:40	02/23/11 14:38	630-02-4			
o-Terphenyl (S) SG	98 %	50-150	1	02/22/11 11:40	02/23/11 14:38	84-15-1			
NWTPH-Gx GCV	Analytical Method: NWT	Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx							
Gasoline Range Organics	ND mg/kg	8.1	1	02/28/11 08:00	02/28/11 12:42				
a,a,a-Trifluorotoluene (S)	133 %		1	02/28/11 08:00	02/28/11 12:42	98-08-8			
4-Bromofluorobenzene (S)	110 %	50-150	1		02/28/11 12:42				
3270 MSSV PAH by SIM	Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546								
Acenaphthene	8.6 ug/kg	8.6	1	02/22/11 11:40	02/24/11 18:18	83-32-9			
Acenaphthylene	25.7 ug/kg		1		02/24/11 18:18				
Anthracene	13.3 ug/kg		1		02/24/11 18:18				
Benzo(a)anthracene	22.2 ug/kg		1		02/24/11 18:18				
Benzo(a)pyrene	23.9 ug/kg		1		02/24/11 18:18				
Benzo(b)fluoranthene	15.0 ug/kg		1		02/24/11 18:18				
Benzo(g,h,i)perylene	14.5 ug/kg		1		02/24/11 18:18				
Benzo(k)fluoranthene	15.0 ug/kg		1		02/24/11 18:18				
Chrysene	25.9 ug/kg		1		02/24/11 18:18				
Dibenz(a,h)anthracene	ND ug/kg		1		02/24/11 18:18				
Fluoranthene	63.8 ug/kg		1		02/24/11 18:18				
Fluorene	9.6 ug/kg		1		02/24/11 18:18				
ndeno(1,2,3-cd)pyrene	10.6 ug/kg		1		02/24/11 18:18				
			1		02/24/11 18:18				
I-Methylnaphthalene	15.6 ug/kg								
2-Methylnaphthalene	24.0 ug/kg		1		02/24/11 18:18				
Naphthalene	128 ug/kg		1		02/24/11 18:18				
Phenanthrene	73.2 ug/kg		1		02/24/11 18:18				
Pyrene	71.8 ug/kg 92 %		1		02/24/11 18:18				
2-Fluorobiphenyl (S) Ferphenyl-d14 (S)	92 % 83 %		1		02/24/11 18:18 02/24/11 18:18				
3260/5035A Volatile Organics	Analytical Method: EPA			02/22/11 11:40	02/24/11 10:10	1710-31-0			
Benzene	ND ug/kg		1		02/23/11 16:27	71-43-2			
Ethylbenzene	ND ug/kg		1		02/23/11 16:27				
Toluene	ND ug/kg		1		02/23/11 16:27				
Kylene (Total)	ND ug/kg		1		02/23/11 16:27				
Dibromofluoromethane (S)	95 %		1		02/23/11 16:27				
Foluene-d8 (S)	96 %		1		02/23/11 16:27				
1-Bromofluorobenzene (S)	93 %				02/23/11 16:27				
I,2-Dichloroethane-d4 (S)			1						
	91 %		1		02/23/11 16:27	17000-07-0			
Percent Moisture	Analytical Method: ASTN								
Percent Moisture	22.7 %	0.10	1		02/21/11 17:54				

Date: 03/07/2011 02:56 PM

REPORT OF LABORATORY ANALYSIS

Page 6 of 25

Project: East Bay Redevelopment 138130

Sample: SPL-31-3	Lab ID: 25669100	Collected: 02/18/11 11	1.10	Received: 02)/18/11 15·50	Matrix: Solid	
Sample. SPL-31-3 Results reported on a "dry-weight		Collected. 02/16/11 1	1.10	Received. 02	./16/11 15.50	Matrix. Solid	
			_			0.40.11	•
Parameters	Results Ur	its Report Limit D) 	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS SG	Analytical Method: N	VTPH-Dx Preparation Metho	d: EF	PA 3546			
Diesel Range SG	61.7 mg/kg	20.4	1	02/22/11 11:40	02/23/11 14:5	5	
Motor Oil Range SG	270 mg/kg	81.6	1	02/22/11 11:40	02/23/11 14:5	5 64742-65-0	
n-Octacosane (S) SG	103 %	50-150	1	02/22/11 11:40	02/23/11 14:5	5 630-02-4	
o-Terphenyl (S) SG	103 %	50-150 1	1	02/22/11 11:40	02/23/11 14:5	5 84-15-1	
NWTPH-Gx GCV	Analytical Method: N	VTPH-Gx Preparation Metho	od: N\	WTPH-Gx			
Gasoline Range Organics	ND mg/kg	5.3 1	1	02/28/11 08:00	02/28/11 13:00	6	
a,a,a-Trifluorotoluene (S)	122 %	50-150	1	02/28/11 08:00	02/28/11 13:00	6 98-08-8	
4-Bromofluorobenzene (S)	100 %	50-150	1	02/28/11 08:00	02/28/11 13:00	6 460-00-4	
8270 MSSV PAH by SIM	Analytical Method: El	A 8270 by SIM Preparation I	Metho	od: EPA 3546			
Acenaphthene	185 ug/kg	7.3 1	1	02/22/11 11:40	02/24/11 18:3	5 83-32-9	
Acenaphthylene	44.5 ug/kg	7.3 1	1	02/22/11 11:40	02/24/11 18:3	5 208-96-8	
Anthracene	322 ug/kg	7.3 1	1	02/22/11 11:40	02/24/11 18:3	5 120-12-7	
Benzo(a)anthracene	514 ug/kg	7.3	1	02/22/11 11:40	02/24/11 18:3	5 56-55-3	
Benzo(a)pyrene	580 ug/kg	7.3	1	02/22/11 11:40	02/24/11 18:3	5 50-32-8	
Benzo(b)fluoranthene	341 ug/kg	7.3	1	02/22/11 11:40	02/24/11 18:3	5 205-99-2	
Benzo(g,h,i)perylene	310 ug/kg	7.3	1	02/22/11 11:40	02/24/11 18:3	5 191-24-2	
Benzo(k)fluoranthene	337 ug/kg	7.3		02/22/11 11:40			
Chrysene	518 ug/kg	7.3		02/22/11 11:40			
Dibenz(a,h)anthracene	79.0 ug/kg		1	02/22/11 11:40	02/24/11 18:3	5 53-70-3	
Fluoranthene	911 ug/kg			02/22/11 11:40			
Fluorene	162 ug/kg			02/22/11 11:40			
ndeno(1,2,3-cd)pyrene	257 ug/kg			02/22/11 11:40			
I-Methylnaphthalene	70.9 ug/kg			02/22/11 11:40			
2-Methylnaphthalene	119 ug/kg			02/22/11 11:40			
Naphthalene	132 ug/kg			02/22/11 11:40			
Phenanthrene	1100 ug/kg			02/22/11 11:40			
Pyrene	1190 ug/kg			02/22/11 11:40			
2-Fluorobiphenyl (S)	84 %			02/22/11 11:40			
Terphenyl-d14 (S)	84 %			02/22/11 11:40			
3260/5035A Volatile Organics	Analytical Method: El						
Benzene	ND ug/kg	2.9	1		02/23/11 16:4	7 71-43-2	
Ethylbenzene	ND ug/kg	2.9	1		02/23/11 16:47		
Toluene	ND ug/kg	2.9			02/23/11 16:47		
Xylene (Total)	ND ug/kg	8.8 1			02/23/11 16:47		
Dibromofluoromethane (S)	98 %	80-136			02/23/11 16:47		
Toluene-d8 (S)	93 %		' 1		02/23/11 16:47		
4-Bromofluorobenzene (S)	97 %	72-122 1			02/23/11 16:4		
1,2-Dichloroethane-d4 (S)	98 %		1			7 17060-07-0	
Percent Moisture	Analytical Method: As		•		52/25/11 10.4·	1 11000-01-0	
	•						
Percent Moisture	10.8 %	0.10	1		02/21/11 17:5	5	

Date: 03/07/2011 02:56 PM

REPORT OF LABORATORY ANALYSIS

Page 7 of 25

Project: East Bay Redevelopment 138130

Pace Project No.: 256691

Sample: SPL-31-4	Lab ID: 256691004	Collected: 02/18/11 1	11:20	Received: 02	2/18/11 15:50 N	/latrix: Solid	
Results reported on a "dry-weight	t" basis						
Parameters	Results Unit	Report Limit [DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS SG	Analytical Method: NW	TPH-Dx Preparation Methor	od: E	PA 3546			
Diesel Range SG	89.9 mg/kg	22.9	1	02/22/11 11:40	02/23/11 15:11		
Motor Oil Range SG	122 mg/kg	91.5	1	02/22/11 11:40	02/23/11 15:11	64742-65-0	
n-Octacosane (S) SG	106 %	50-150	1	02/22/11 11:40	02/23/11 15:11	630-02-4	
o-Terphenyl (S) SG	98 %		1		02/23/11 15:11		
NWTPH-Gx GCV	Analytical Method: NW	TPH-Gx Preparation Meth	od: N	IWTPH-Gx			
Gasoline Range Organics	ND mg/kg	5.5	1	02/28/11 08:00	02/28/11 13:30		
a,a,a-Trifluorotoluene (S)	128 %		1		02/28/11 13:30		
4-Bromofluorobenzene (S)	107 %		1		02/28/11 13:30		
3270 MSSV PAH by SIM	Analytical Method: EPA	8270 by SIM Preparation	Meth	nod: EPA 3546			
Acenaphthene	ND ug/kg	7.6	1	02/22/11 11:40	02/24/11 18:51	83-32-9	
Acenaphthylene	9.2 ug/kg		1		02/24/11 18:51		
Anthracene	16.1 ug/kg		1		02/24/11 18:51		
Benzo(a)anthracene	29.4 ug/kg		1		02/24/11 18:51		
Benzo(a)pyrene	40.4 ug/kg		1		02/24/11 18:51		
Benzo(b)fluoranthene	23.2 ug/kg		1		02/24/11 18:51		
Benzo(g,h,i)perylene	31.5 ug/kg		1		02/24/11 18:51		
Benzo(k)fluoranthene	26.5 ug/kg		1		02/24/11 18:51		
Chrysene	37.3 ug/kg		1		02/24/11 18:51		
Dibenz(a,h)anthracene	8.0 ug/kg		1		02/24/11 18:51		
Fluoranthene	58.6 ug/kg		1		02/24/11 18:51		
Fluorene			1		02/24/11 18:51		
	10.5 ug/kg		1		02/24/11 18:51		
ndeno(1,2,3-cd)pyrene	22.6 ug/kg						
I-Methylnaphthalene	12.4 ug/kg		1		02/24/11 18:51		
2-Methylnaphthalene	24.6 ug/kg		1		02/24/11 18:51		
Naphthalene	37.9 ug/kg		1		02/24/11 18:51		
Phenanthrene	56.5 ug/kg		1		02/24/11 18:51		
Pyrene	94.9 ug/kg		1		02/24/11 18:51		
2-Fluorobiphenyl (S) Ferphenyl-d14 (S)	92 % 93 %		1 1		02/24/11 18:51 02/24/11 18:51		
3260/5035A Volatile Organics	Analytical Method: EPA		1	02/22/11 11.40	02/24/11 10.51	1710-31-0	
Benzene	ND ug/kg		1		02/23/11 17:06	71-43-2	
	ND ug/kg ND ug/kg		1		02/23/11 17:06		
Ethylbenzene	0 0		1				
Toluene	ND ug/kg		1		02/23/11 17:06		
(ylene (Total)	ND ug/kg		1		02/23/11 17:06		
Dibromofluoromethane (S)	93 %		1		02/23/11 17:06		
Toluene-d8 (S)	93 %		1		02/23/11 17:06		
I-Bromofluorobenzene (S)	91 %		1		02/23/11 17:06		
1,2-Dichloroethane-d4 (S)	95 %	80-143	1		02/23/11 17:06	17060-07-0	
Percent Moisture	Analytical Method: AST	M D2974-87					
Percent Moisture	13.6 %	0.10	1		02/21/11 17:56		

Date: 03/07/2011 02:56 PM

REPORT OF LABORATORY ANALYSIS

Page 8 of 25

Project: East Bay Redevelopment 138130

Pace Project No.: 256691

Sample: SPL-31-5	Lab ID:	256691005	Collected: 02/18/	11 11:40	Received: 02	2/18/11 15:50 N	Matrix: Solid	
Results reported on a "dry-weight	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS SG	Analytical I	Method: NWTP	H-Dx Preparation M	lethod: E	PA 3546			
Diesel Range SG	NE	mg/kg	92.8	1	02/22/11 11:40	02/23/11 15:28		
Motor Oil Range SG	NE	mg/kg	371	1	02/22/11 11:40	02/23/11 15:28	64742-65-0	
n-Octacosane (S) SG	102	2 %	50-150	1	02/22/11 11:40	02/23/11 15:28	630-02-4	
o-Terphenyl (S) SG	92	2 %	50-150	1	02/22/11 11:40	02/23/11 15:28	84-15-1	
NWTPH-Gx GCV	Analytical I	Method: NWTP	H-Gx Preparation N	1ethod: N	IWTPH-Gx			
Gasoline Range Organics	NE	mg/kg	55.5	1	02/28/11 08:00	02/28/11 13:54		
a,a,a-Trifluorotoluene (S)	143	3 %	50-150	1	02/28/11 08:00	02/28/11 13:54	98-08-8	
4-Bromofluorobenzene (S)	117	7 %	50-150	1	02/28/11 08:00	02/28/11 13:54	460-00-4	
8270 MSSV PAH by SIM	Analytical I	Method: EPA 8	270 by SIM Prepara	tion Meth	nod: EPA 3546			
Acenaphthene	NE	ug/kg	33.3	1	02/22/11 11:40	02/24/11 19:08	83-32-9	
Acenaphthylene		3 ug/kg	33.3			02/24/11 19:08		
Anthracene		ug/kg	33.3	1	02/22/11 11:40	02/24/11 19:08	120-12-7	
Benzo(a)anthracene		3 ug/kg	33.3	1	02/22/11 11:40	02/24/11 19:08	56-55-3	
Benzo(a)pyrene		ug/kg	33.3	1	02/22/11 11:40	02/24/11 19:08	50-32-8	
Benzo(b)fluoranthene		ug/kg	33.3	1		02/24/11 19:08		
Benzo(g,h,i)perylene		ug/kg	33.3			02/24/11 19:08		
Benzo(k)fluoranthene		ug/kg	33.3	1		02/24/11 19:08		
Chrysene		2 ug/kg	33.3	1		02/24/11 19:08		
Dibenz(a,h)anthracene		ug/kg ug/kg	33.3	1		02/24/11 19:08		
Fluoranthene		ug/kg ug/kg	33.3			02/24/11 19:08		
Fluorene		ug/kg ug/kg	33.3	1		02/24/11 19:08		
ndeno(1,2,3-cd)pyrene		ug/kg ug/kg	33.3	1		02/24/11 19:08		
			33.3	1		02/24/11 19:08		
1-Methylnaphthalene		ug/kg						
2-Methylnaphthalene		ug/kg	33.3	1		02/24/11 19:08		
Naphthalene		ug/kg	33.3	1		02/24/11 19:08		
Phenanthrene		l ug/kg	33.3			02/24/11 19:08		
Pyrene		l ug/kg	33.3	1		02/24/11 19:08		
2-Fluorobiphenyl (S)		3 % 3 %	31-131 30-133	1 1		02/24/11 19:08 02/24/11 19:08		
Terphenyl-d14 (S) 3260/5035A Volatile Organics		Method: EPA 8		ı	02/22/11 11.40	02/24/11 19.00	1710-31-0	
Benzene	•) ug/kg	19.0	1		02/24/11 10:34	71-43-2	
Ethylbenzene		ug/kg ug/kg	19.0	1		02/24/11 10:34		
Toluene		ug/kg ug/kg	19.0	1		02/24/11 10:34		
Xylene (Total)		ug/kg ug/kg	57.1	1		02/24/11 10:34		
Dibromofluoromethane (S)		6 %				02/24/11 10:34		
` '			80-136	1				
Toluene-d8 (S)		9 %	80-120	1		02/24/11 10:34		
4-Bromofluorobenzene (S)		9 %	72-122	1		02/24/11 10:34		
1,2-Dichloroethane-d4 (S)		5 %	80-143	1		02/24/11 10:34	1/000-07-0	
Percent Moisture	Analytical I	Method: ASTM	D2974-87					
Percent Moisture	80.0) %	0.10	1		02/21/11 17:57		

Date: 03/07/2011 02:56 PM

REPORT OF LABORATORY ANALYSIS

Page 9 of 25

Project: East Bay Redevelopment 138130

Pace Project No.: 256691

Sample: SPL-31-6	Lab ID: 256691006	Collected: 02/18/11 11	:50 Received: 0	2/18/11 15:50 Matri	x: Solid
Results reported on a "dry-weigh	t" basis				
Parameters	Results Units	Report Limit D	F Prepared	Analyzed	CAS No. Qua
IWTPH-Dx GCS SG	Analytical Method: NWT	PH-Dx Preparation Metho	d: EPA 3546		
Diesel Range SG	ND mg/kg	98.6 1	02/22/11 11:40	02/23/11 15:45	
Motor Oil Range SG	418 mg/kg	395 1	02/22/11 11:40	02/23/11 15:45 64	742-65-0
n-Octacosane (S) SG	105 %	50-150 1	02/22/11 11:40	02/23/11 15:45 63	0-02-4
o-Terphenyl (S) SG	88 %	50-150 1		0 02/23/11 15:45 84	
IWTPH-Gx GCV	Analytical Method: NWT	PH-Gx Preparation Metho	d: NWTPH-Gx		
Gasoline Range Organics	ND mg/kg	59.9 1	02/28/11 08:00	0 02/28/11 14:18	
a,a,a-Trifluorotoluene (S)	128 %	50-150 1		02/28/11 14:18 98	-08-8
1-Bromofluorobenzene (S)	105 %	50-150 1	02/28/11 08:00	0 02/28/11 14:18 46	0-00-4
3270 MSSV PAH by SIM	Analytical Method: EPA	3270 by SIM Preparation M	Method: EPA 3546		
Acenaphthene	ND ug/kg	33.6 1	02/22/11 11:40	02/24/11 19:25 83	-32-9
Acenaphthylene	54.0 ug/kg	33.6 1		02/24/11 19:25 20	
Anthracene	ND ug/kg	33.6 1	02/22/11 11:40	02/24/11 19:25 12	0-12-7
Benzo(a)anthracene	ND ug/kg	33.6 1	02/22/11 11:40	02/24/11 19:25 56	-55-3
senzo(a)pyrene	ND ug/kg	33.6 1		02/24/11 19:25 50	
Benzo(b)fluoranthene	ND ug/kg	33.6 1		02/24/11 19:25 20	
Benzo(g,h,i)perylene	ND ug/kg	33.6 1		02/24/11 19:25 19	
Benzo(k)fluoranthene	ND ug/kg	33.6 1		02/24/11 19:25 20	
Chrysene	ND ug/kg	33.6 1		02/24/11 19:25 21	
Dibenz(a,h)anthracene	ND ug/kg	33.6 1		02/24/11 19:25 53	
Tuoranthene	76.9 ug/kg	33.6 1		0 02/24/11 19:25 20	
luorene	ND ug/kg	33.6 1		0 02/24/11 19:25 86	
ndeno(1,2,3-cd)pyrene	ND ug/kg	33.6 1		0 02/24/11 19:25 19	
-Methylnaphthalene	ND ug/kg	33.6 1		0 02/24/11 19:25 90	
-Methylnaphthalene	37.4 ug/kg	33.6 1)	
laphthalene	342 ug/kg	33.6 1		02/24/11 19:25 91	
Phenanthrene	124 ug/kg	33.6 1		02/24/11 19:25 85	
Pyrene	87.2 ug/kg	33.6 1)	
-Fluorobiphenyl (S)	85 %	31-131 1)	
erphenyl-d14 (S)	83 %	30-133 1)	
260/5035A Volatile Organics	Analytical Method: EPA				
Benzene	ND ug/kg	22.7 1		02/24/11 11:15 71	-43-2
Ethylbenzene	ND ug/kg	22.7 1		02/24/11 11:15 10	
oluene	ND ug/kg	22.7 1		02/24/11 11:15 10	
(ylene (Total)	ND ug/kg	68.1 1		02/24/11 11:15 13	
Dibromofluoromethane (S)	101 %	80-136 1		02/24/11 11:15 18	
oluene-d8 (S)	96 %	80-120 1		02/24/11 11:15 20	
-Bromofluorobenzene (S)	97 %	72-122 1		02/24/11 11:15 46	
,2-Dichloroethane-d4 (S)	100 %	80-143 1		02/24/11 11:15 40	
Percent Moisture	Analytical Method: ASTN				
Percent Moisture	•			02/21/11 17:50	
ercent worsture	80.1 %	0.10 1		02/21/11 17:58	

Date: 03/07/2011 02:56 PM

REPORT OF LABORATORY ANALYSIS

Page 10 of 25

Project: East Bay Redevelopment 138130

Pace Project No.: 256691

Sample: SPL-32-1	Lab ID:	256691007	Collected: 02/18	/11 12:00	Received: 02	2/18/11 15:50 I	Matrix: Solid	
Results reported on a "dry-weigh	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS SG	Analytical	Method: NWTP	H-Dx Preparation N	/lethod: E	EPA 3546			
Diesel Range SG	30.	0 mg/kg	27.2	1	02/22/11 11:40	02/23/11 16:02		
Motor Oil Range SG	19	6 mg/kg	109	1	02/22/11 11:40	02/23/11 16:02	64742-65-0	
n-Octacosane (S) SG	10	6 %	50-150	1	02/22/11 11:40	02/23/11 16:02	630-02-4	
o-Terphenyl (S) SG	9	8 %	50-150	1	02/22/11 11:40	02/23/11 16:02	84-15-1	
NWTPH-Gx GCV	Analytical	Method: NWTP	H-Gx Preparation N	/lethod: N	IWTPH-Gx			
Gasoline Range Organics	NI	O mg/kg	8.0	1	02/28/11 08:00	02/28/11 15:06	i	
a,a,a-Trifluorotoluene (S)	14	4 %	50-150	1	02/28/11 08:00	02/28/11 15:06	98-08-8	
4-Bromofluorobenzene (S)	11:	9 %	50-150	1	02/28/11 08:00	02/28/11 15:06	460-00-4	
8270 MSSV PAH by SIM	Analytical	Method: EPA 8	270 by SIM Prepara	ation Metl	nod: EPA 3546			
Acenaphthene	11.4	4 ug/kg	9.0	1	02/22/11 11:40	02/24/11 19:41	83-32-9	
Acenaphthylene		4 ug/kg	9.0	1	02/22/11 11:40	02/24/11 19:41	208-96-8	
Anthracene		9 ug/kg	9.0	1	02/22/11 11:40	02/24/11 19:41	120-12-7	
Benzo(a)anthracene		6 ug/kg	9.0	1	02/22/11 11:40	02/24/11 19:41	56-55-3	
Benzo(a)pyrene		1 ug/kg	9.0	1	02/22/11 11:40	02/24/11 19:41	50-32-8	
Benzo(b)fluoranthene		7 ug/kg	9.0			02/24/11 19:41		
Benzo(g,h,i)perylene		5 ug/kg	9.0			02/24/11 19:41		
Benzo(k)fluoranthene		1 ug/kg	9.0			02/24/11 19:41		
Chrysene		4 ug/kg	9.0			02/24/11 19:41		
Dibenz(a,h)anthracene		3 ug/kg	9.0			02/24/11 19:41		
Fluoranthene		8 ug/kg	9.0			02/24/11 19:41		
Fluorene		7 ug/kg	9.0			02/24/11 19:41		
ndeno(1,2,3-cd)pyrene		6 ug/kg	9.0			02/24/11 19:41		
			9.0			02/24/11 19:41		
1-Methylnaphthalene		3 ug/kg						
2-Methylnaphthalene		6 ug/kg	9.0			02/24/11 19:41		
Naphthalene		2 ug/kg	9.0			02/24/11 19:41		
Phenanthrene		5 ug/kg	9.0			02/24/11 19:41		
Pyrene		0 ug/kg	9.0			02/24/11 19:41		
2-Fluorobiphenyl (S)		0 %	31-131			02/24/11 19:41		
Terphenyl-d14 (S)		2 %	30-133	1	02/22/11 11:40	02/24/11 19:41	1718-51-0	
3260/5035A Volatile Organics	•	Method: EPA 8						
Benzene		O ug/kg	3.3			02/24/11 11:50		
Ethylbenzene		O ug/kg	3.3			02/24/11 11:50		
Toluene		D ug/kg	3.3			02/24/11 11:50		
Xylene (Total)	NI	D ug/kg	9.9	1		02/24/11 11:50	1330-20-7	
Dibromofluoromethane (S)		2 %	80-136			02/24/11 11:50		
Toluene-d8 (S)		6 %	80-120	1		02/24/11 11:50	2037-26-5	
4-Bromofluorobenzene (S)	9	8 %	72-122	1		02/24/11 11:50	460-00-4	
1,2-Dichloroethane-d4 (S)	9	8 %	80-143	1		02/24/11 11:50	17060-07-0	
Percent Moisture	Analytical	Method: ASTM	D2974-87					
Percent Moisture	27.	4 %	0.10	1		02/21/11 17:59	1	
			_					

Date: 03/07/2011 02:56 PM

REPORT OF LABORATORY ANALYSIS

Page 11 of 25

Project: East Bay Redevelopment 138130

Pace Project No.: 256691

Results reported on a "dry-weight" b Parameters NWTPH-Dx GCS SG	nasis Results								
	Results								
NWTPH-Dx GCS SG		Units	Report L	imit _	DF	Prepared	Analyzed	CAS No.	Qual
	Analytical I	Method: NWTP	H-Dx Preparati	ion Me	thod: El	PA 3546			
Diesel Range SG	526	mg/kg		29.0	1	02/22/11 11:40	02/23/11 16:52		
Motor Oil Range SG	2910	mg/kg		116	1	02/22/11 11:40	02/23/11 16:52	64742-65-0	
n-Octacosane (S) SG		%	50-	-150	1	02/22/11 11:40	02/23/11 16:52	630-02-4	
o-Terphenyl (S) SG	91	%	50-	-150	1	02/22/11 11:40	02/23/11 16:52	84-15-1	
NWTPH-Gx GCV	Analytical I	Method: NWTP	H-Gx Preparati	ion Me	thod: N	WTPH-Gx			
Gasoline Range Organics	ND	mg/kg		8.6	1	02/28/11 08:00	02/28/11 15:31		
a,a,a-Trifluorotoluene (S)		%	50-	-150	1	02/28/11 08:00	02/28/11 15:31	98-08-8	
4-Bromofluorobenzene (S)		%	50-	-150	1		02/28/11 15:31		
3270 MSSV PAH by SIM	Analytical I	Method: EPA 8	270 by SIM Pre	eparatio	n Meth	od: EPA 3546			
Acenaphthene	17.2	2 ug/kg		9.8	1	02/22/11 11:40	02/24/11 19:58	83-32-9	
Acenaphthylene		ug/kg		9.8	1		02/24/11 19:58		
Anthracene		ug/kg		9.8	1		02/24/11 19:58		
Benzo(a)anthracene		l ug/kg		9.8	1	02/22/11 11:40	02/24/11 19:58	56-55-3	
Benzo(a)pyrene		ug/kg		9.8	1		02/24/11 19:58		
Benzo(b)fluoranthene		ug/kg		9.8	1		02/24/11 19:58		
Benzo(g,h,i)perylene		ug/kg		9.8	1		02/24/11 19:58		
Benzo(k)fluoranthene		ug/kg		9.8	1		02/24/11 19:58		
Chrysene		ug/kg		9.8	1		02/24/11 19:58		
Dibenz(a,h)anthracene		2 ug/kg		9.8	1		02/24/11 19:58		
Fluoranthene		ug/kg		9.8	1		02/24/11 19:58		
Fluorene		ug/kg		9.8	1		02/24/11 19:58		
ndeno(1,2,3-cd)pyrene		ug/kg		9.8	1		02/24/11 19:58		
I-Methylnaphthalene		ug/kg		9.8	1		02/24/11 19:58		
2-Methylnaphthalene		ug/kg		9.8	1		02/24/11 19:58		
Naphthalene		ug/kg		9.8	1		02/24/11 19:58		
Phenanthrene		ug/kg		9.8	1		02/24/11 19:58		
Pyrene		ug/kg		9.8	1		02/24/11 19:58		
2-Fluorobiphenyl (S)		2 %	31-	-131	1		02/24/11 19:58		
Ferphenyl-d14 (S)		1 %		-133	1		02/24/11 19:58		
3260/5035A Volatile Organics	Analytical I	Method: EPA 8	260						
Benzene	ND	ug/kg		4.8	1		02/24/11 12:56	71-43-2	
Ethylbenzene		ug/kg		4.8	1		02/24/11 12:56		
Toluene		ug/kg		4.8	1		02/24/11 12:56		
Kylene (Total)		ug/kg		14.3	1		02/24/11 12:56		
Dibromofluoromethane (S)		5 %		-136	1		02/24/11 12:56		
Foluene-d8 (S)		%		-120	1		02/24/11 12:56		
4-Bromofluorobenzene (S)		5 %		-122	1		02/24/11 12:56		
,2-Dichloroethane-d4 (S)		3 %		-143	1		02/24/11 12:56		
Percent Moisture		Method: ASTM	D2974-87						
Percent Moisture	31.7	7 %		0.10	1		02/21/11 18:00		

Date: 03/07/2011 02:56 PM

REPORT OF LABORATORY ANALYSIS

Page 12 of 25

Project: East Bay Redevelopment 138130

Pace Project No.: 256691

Sample: SPL-32-3	Lab ID: 256691009	Collected: 02/18/11 1	2:30	Received: 02	/18/11 15:50 I	Matrix: Solid	
Results reported on a "dry-weight	t" basis						
Parameters	Results Unit	Report Limit D	F	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS SG	Analytical Method: NW	TPH-Dx Preparation Metho	od: E	PA 3546			
Diesel Range SG	35.6 mg/kg	28.3	1	02/22/11 11:40	02/23/11 17:26	i	
Motor Oil Range SG	250 mg/kg	113	1	02/22/11 11:40	02/23/11 17:26	64742-65-0	
n-Octacosane (S) SG	93 %	50-150	1	02/22/11 11:40	02/23/11 17:26	630-02-4	
o-Terphenyl (S) SG	95 %	50-150	1	02/22/11 11:40	02/23/11 17:26	84-15-1	
NWTPH-Gx GCV	Analytical Method: NW	TPH-Gx Preparation Metho	od: N	IWTPH-Gx			
Gasoline Range Organics	ND mg/kg	8.8	1	02/28/11 08:00	03/01/11 11:52		
a,a,a-Trifluorotoluene (S)	125 %		1	02/28/11 08:00			
4-Bromofluorobenzene (S)	102 %		1	02/28/11 08:00			
8270 MSSV PAH by SIM	Analytical Method: EPA	8270 by SIM Preparation	Meth	nod: EPA 3546			
Acenaphthene	ND ug/kg	9.8	1	02/22/11 11:40	02/24/11 20:14	83-32-0	
Acenaphthylene	ND ug/kg		1	02/22/11 11:40			
Anthracene	ND ug/kg		1	02/22/11 11:40			
Benzo(a)anthracene	ND ug/kg		1		02/24/11 20:14		
Benzo(a)pyrene	10.6 ug/kg		1	02/22/11 11:40			
Benzo(b)fluoranthene	ND ug/kg		1		02/24/11 20:14		
Benzo(g,h,i)perylene	ND ug/kg		1	02/22/11 11:40			
Benzo(k)fluoranthene	ND ug/kg		1		02/24/11 20:14		
Chrysene	11.0 ug/kg		1		02/24/11 20:14		
Dibenz(a,h)anthracene	ND ug/kg		1		02/24/11 20:14		
Fluoranthene	21.2 ug/kg		1		02/24/11 20:14		
Fluorene	ND ug/kg		1	02/22/11 11:40			
ndeno(1,2,3-cd)pyrene	ND ug/kg		1	02/22/11 11:40			
			1		02/24/11 20:14		
1-Methylnaphthalene	10.2 ug/kg		1	02/22/11 11:40			
2-Methylnaphthalene	14.2 ug/kg				02/24/11 20:14		
Naphthalene Phenanthrene	39.4 ug/kg		1 1	02/22/11 11:40			
	24.9 ug/kg 20.8 ug/kg		1	02/22/11 11:40			
Pyrene 2-Fluorobiphenyl (S)	20.8 ug/kg 78 %		1		02/24/11 20:14		
Terphenyl-d14 (S)	66 %		1	02/22/11 11:40			
3260/5035A Volatile Organics	Analytical Method: EPA		•	02/22/11 11:10	02/2 1/11 20:11	1110010	
Benzene	ND ug/kg		1		02/24/11 12:29	71_43-2	
Ethylbenzene	ND ug/kg		1		02/24/11 12:29		
Toluene	ND ug/kg		1		02/24/11 12:29		
Xylene (Total)	ND ug/kg		1		02/24/11 12:29		
Dibromofluoromethane (S)	104 %		1		02/24/11 12:29		
Foluene-d8 (S)	95 %		1		02/24/11 12:29		
1-Bromofluorobenzene (S)	96 %		1		02/24/11 12:29		
I,2-Dichloroethane-d4 (S)	98 %		1		02/24/11 12:29		
,			'		UZ/Z4/11 1Z.Z8	17000-07-0	
Percent Moisture	Analytical Method: AST						
Percent Moisture	33.6 %	0.10	1		02/21/11 18:01		

Date: 03/07/2011 02:56 PM

REPORT OF LABORATORY ANALYSIS

Page 13 of 25

Project: East Bay Redevelopment 138130

Pace Project No.: 256691

Sample: TB 021811 Lab ID: 256691010 Collected: 02/18/11 00:00 Received: 02/18/11 15:50 Matrix: Solid Results reported on a "wet-weight" basis

Results reported on a wet weigh	. Da3/3							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Gx GCV	Analytical Met	thod: NWTPH	-Gx Preparation M	ethod:	NWTPH-Gx			
Gasoline Range Organics	ND m	ıg/kg	5.0	1	02/28/11 08:00	02/28/11 12:18		
a,a,a-Trifluorotoluene (S)	125 %	· •	50-150	1	02/28/11 08:00	02/28/11 12:18	98-08-8	
4-Bromofluorobenzene (S)	102 %		50-150	1	02/28/11 08:00	02/28/11 12:18	460-00-4	
8260/5035A Volatile Organics	Analytical Met	thod: EPA 826	0					
Benzene	ND ug	g/kg	3.0	1		02/23/11 11:33	71-43-2	
Ethylbenzene	ND ug	g/kg	3.0	1		02/23/11 11:33	100-41-4	
Toluene	ND ug	g/kg	3.0	1		02/23/11 11:33	108-88-3	
Xylene (Total)	ND ug	g/kg	9.0	1		02/23/11 11:33	1330-20-7	
Dibromofluoromethane (S)	95 %)	80-136	1		02/23/11 11:33	1868-53-7	
Toluene-d8 (S)	95 %)	80-120	1		02/23/11 11:33	2037-26-5	
4-Bromofluorobenzene (S)	94 %	· •	72-122	1		02/23/11 11:33	460-00-4	
1,2-Dichloroethane-d4 (S)	99 %	· •	80-143	1		02/23/11 11:33	17060-07-0	

Date: 03/07/2011 02:56 PM

REPORT OF LABORATORY ANALYSIS

Project: East Bay Redevelopment 138130

Pace Project No.: 256691

QC Batch: OEXT/3337 Analysis Method: NWTPH-Dx
QC Batch Method: EPA 3546 Analysis Description: NWTPH-Dx GCS

Associated Lab Samples: 256691001, 256691002, 256691003, 256691004, 256691005, 256691006, 256691007, 256691008, 256691009

METHOD BLANK: 59441 Matrix: Solid

Associated Lab Samples: 256691001, 256691002, 256691003, 256691004, 256691005, 256691006, 256691007, 256691008, 256691009

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Diesel Range SG	mg/kg	ND ND	20.0	02/23/11 13:47	
Motor Oil Range SG	mg/kg	ND	80.0	02/23/11 13:47	
n-Octacosane (S) SG	%	100	50-150	02/23/11 13:47	
o-Terphenyl (S) SG	%	92	50-150	02/23/11 13:47	

LABORATORY CONTROL SAMPLE: 59442

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Diesel Range SG	mg/kg	500	421	84	56-124	
Motor Oil Range SG	mg/kg	500	457	91	50-150	
n-Octacosane (S) SG	%			102	50-150	
o-Terphenyl (S) SG	%			113	50-150	

SAMPLE DUPLICATE: 59444

		256691008	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Diesel Range SG	mg/kg	526	166	104	R1
Motor Oil Range SG	mg/kg	2910	1000	97	R1
n-Octacosane (S) SG	%	141	98	41	
o-Terphenyl (S) SG	%	91	87	9	

Project: East Bay Redevelopment 138130

Pace Project No.: 256691

QC Batch: GCV/2194 Analysis Method: NWTPH-Gx

QC Batch Method: NWTPH-Gx Analysis Description: NWTPH-Gx Solid GCV

Associated Lab Samples: 256691001, 256691002, 256691003, 256691004, 256691005, 256691006, 256691007, 256691008, 256691010

METHOD BLANK: 60203 Matrix: Solid

Associated Lab Samples: 256691001, 256691002, 256691003, 256691004, 256691005, 256691006, 256691007, 256691008, 256691010

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Gasoline Range Organics	mg/kg	ND	5.0	02/28/11 09:55	
4-Bromofluorobenzene (S)	%	90	50-150	02/28/11 09:55	
a,a,a-Trifluorotoluene (S)	%	113	50-150	02/28/11 09:55	

LABORATORY CONTROL SAMPLE: 60204

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Gasoline Range Organics	mg/kg	12.5	13.3	107	54-156	
4-Bromofluorobenzene (S)	%			95	50-150	
a,a,a-Trifluorotoluene (S)	%			117	50-150	

SAMPLE DUPLICATE: 60240

Parameter	Units	256691001 Result	Dup Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND	5.9J		
4-Bromofluorobenzene (S)	%	110	99	11	
a,a,a-Trifluorotoluene (S)	%	139	122	13	

SAMPLE DUPLICATE: 60241

		256691006	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND	7.1J		
4-Bromofluorobenzene (S)	%	105	105	.4	
a,a,a-Trifluorotoluene (S)	%	128	127	.4	

Project: East Bay Redevelopment 138130

Pace Project No.: 256691

QC Batch: GCV/2197 Analysis Method: NWTPH-Gx

QC Batch Method: NWTPH-Gx Analysis Description: NWTPH-Gx Solid GCV

Associated Lab Samples: 256691009

METHOD BLANK: 60406 Matrix: Solid

Associated Lab Samples: 256691009

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Gasoline Range Organics	mg/kg	ND ND	5.0	03/01/11 10:40	
4-Bromofluorobenzene (S)	%	111	50-150	03/01/11 10:40	
a,a,a-Trifluorotoluene (S)	%	132	50-150	03/01/11 10:40	

LABORATORY CONTROL SAMPLE: 60407

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Gasoline Range Organics	mg/kg	12.5	14.0	112	54-156	
4-Bromofluorobenzene (S)	%			108	50-150	
a,a,a-Trifluorotoluene (S)	%			131	50-150	

SAMPLE DUPLICATE: 60408

Parameter	Units	256698003 Result	Dup Result	RPD	Qualifiers
Gasoline Range Organics	mg/kg	ND -	.41J		
4-Bromofluorobenzene (S)	%	96	95	.4	
a,a,a-Trifluorotoluene (S)	%	121	117	3	

Project: East Bay Redevelopment 138130

Pace Project No.: 256691

QC Batch: OEXT/3338 Analysis Method: EPA 8270 by SIM

QC Batch Method: EPA 3546 Analysis Description: 8270/3546 MSSV PAH by SIM

Associated Lab Samples: 256691001, 256691002, 256691003, 256691004, 256691005, 256691006, 256691007, 256691008, 256691009

METHOD BLANK: 59445 Matrix: Solid

Associated Lab Samples: 256691001, 256691002, 256691003, 256691004, 256691005, 256691006, 256691007, 256691008, 256691009

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/kg	ND	6.7	02/24/11 16:38	
2-Methylnaphthalene	ug/kg	ND	6.7	02/24/11 16:38	
Acenaphthene	ug/kg	ND	6.7	02/24/11 16:38	
Acenaphthylene	ug/kg	ND	6.7	02/24/11 16:38	
Anthracene	ug/kg	ND	6.7	02/24/11 16:38	
Benzo(a)anthracene	ug/kg	ND	6.7	02/24/11 16:38	
Benzo(a)pyrene	ug/kg	ND	6.7	02/24/11 16:38	
Benzo(b)fluoranthene	ug/kg	ND	6.7	02/24/11 16:38	
Benzo(g,h,i)perylene	ug/kg	ND	6.7	02/24/11 16:38	
Benzo(k)fluoranthene	ug/kg	ND	6.7	02/24/11 16:38	
Chrysene	ug/kg	ND	6.7	02/24/11 16:38	
Dibenz(a,h)anthracene	ug/kg	ND	6.7	02/24/11 16:38	
Fluoranthene	ug/kg	ND	6.7	02/24/11 16:38	
Fluorene	ug/kg	ND	6.7	02/24/11 16:38	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	6.7	02/24/11 16:38	
Naphthalene	ug/kg	ND	6.7	02/24/11 16:38	
Phenanthrene	ug/kg	ND	6.7	02/24/11 16:38	
Pyrene	ug/kg	ND	6.7	02/24/11 16:38	
2-Fluorobiphenyl (S)	%	85	31-131	02/24/11 16:38	
Terphenyl-d14 (S)	%	93	30-133	02/24/11 16:38	

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1-Methylnaphthalene	 ug/kg		117		37-121	
2-Methylnaphthalene	ug/kg	133	121	90	33-132	
Acenaphthene	ug/kg	133	116	87	32-127	
Acenaphthylene	ug/kg	133	118	88	31-134	
Anthracene	ug/kg	133	117	88	42-135	
Benzo(a)anthracene	ug/kg	133	133	100	43-139	
Benzo(a)pyrene	ug/kg	133	139	104	44-144	
Benzo(b)fluoranthene	ug/kg	133	124	93	42-144	
Benzo(g,h,i)perylene	ug/kg	133	122	92	46-136	
Benzo(k)fluoranthene	ug/kg	133	134	101	45-147	
Chrysene	ug/kg	133	125	94	42-144	
Dibenz(a,h)anthracene	ug/kg	133	122	92	48-142	
Fluoranthene	ug/kg	133	124	93	44-143	
Fluorene	ug/kg	133	114	86	32-146	
Indeno(1,2,3-cd)pyrene	ug/kg	133	125	93	47-140	
Naphthalene	ug/kg	133	112	84	35-118	
Phenanthrene	ug/kg	133	120	90	42-131	

Date: 03/07/2011 02:56 PM

REPORT OF LABORATORY ANALYSIS

Page 18 of 25

Project: East Bay Redevelopment 138130

Pace Project No.: 256691

LABORATORY CONTROL SAMPLE: 59446

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Pyrene	ug/kg	133	128	96	47-136	
2-Fluorobiphenyl (S)	%			91	31-131	
Terphenyl-d14 (S)	%			101	30-133	

MATRIX SPIKE & MATRIX S	PIKE DUPLICAT	TE: 59447			59448						
			MS	MSD							
		256691001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1-Methylnaphthalene	ug/kg	54.6	361	367	294	299	66	66	31-123	2	
2-Methylnaphthalene	ug/kg	104	361	367	318	320	59	59	15-146	.5	
Acenaphthene	ug/kg	ND	361	367	289	295	77	77	19-141	2	
Acenaphthylene	ug/kg	26.1	361	367	298	292	75	72	30-142	2	
Anthracene	ug/kg	22.4	361	367	326	317	84	80	38-137	3	
Benzo(a)anthracene	ug/kg	39.5	361	367	376	299	93	71	37-143	23 R1	
Benzo(a)pyrene	ug/kg	48.4	361	367	372	315	89	73	33-147	16	
Benzo(b)fluoranthene	ug/kg	31.5	361	367	298	302	74	74	25-156	1	
Benzo(g,h,i)perylene	ug/kg	25.3	361	367	271	255	68	63	26-142	6	
Benzo(k)fluoranthene	ug/kg	29.5	361	367	308	255	77	61	35-142	19	
Chrysene	ug/kg	44.0	361	367	350	285	85	66	23-150	20	
Dibenz(a,h)anthracene	ug/kg	ND	361	367	234	230	62	60	41-140	1	
Fluoranthene	ug/kg	88.0	361	367	486	358	110	74	25-155	30 R1	
Fluorene	ug/kg	18.7	361	367	306	305	79	78	33-152	.6	
Indeno(1,2,3-cd)pyrene	ug/kg	21.3	361	367	266	248	68	62	36-139	7	
Naphthalene	ug/kg	169	361	367	367	366	55	54	25-121	.5	
Phenanthrene	ug/kg	97.3	361	367	487	370	108	74	29-141	27 R1	
Pyrene	ug/kg	116	361	367	546	389	119	74	36-145	34 R1	
2-Fluorobiphenyl (S)	%						80	81	31-131		
Terphenyl-d14 (S)	%						71	72	30-133		

Date: 03/07/2011 02:56 PM

REPORT OF LABORATORY ANALYSIS

Page 19 of 25

Project: East Bay Redevelopment 138130

Pace Project No.: 256691

QC Batch: MSV/3891 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5035A Volatile Organics

Associated Lab Samples: 256691001, 256691002, 256691003, 256691004, 256691010

METHOD BLANK: 59457 Matrix: Solid

Associated Lab Samples: 256691001, 256691002, 256691003, 256691004, 256691010

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND	3.0	02/23/11 10:54	
Ethylbenzene	ug/kg	ND	3.0	02/23/11 10:54	
Toluene	ug/kg	ND	3.0	02/23/11 10:54	
Xylene (Total)	ug/kg	ND	9.0	02/23/11 10:54	
1,2-Dichloroethane-d4 (S)	%	102	80-143	02/23/11 10:54	
4-Bromofluorobenzene (S)	%	97	72-122	02/23/11 10:54	
Dibromofluoromethane (S)	%	99	80-136	02/23/11 10:54	
Toluene-d8 (S)	%	97	80-120	02/23/11 10:54	

LABORATORY CONTROL SAME	PLE & LCSD: 59458		59	9890						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene	ug/kg	50	54.2	54.3	108	109	75-133	.2	30	
Ethylbenzene	ug/kg	50	46.4	47.5	93	95	68-131	2	30	
Toluene	ug/kg	50	49.2	51.0	98	102	73-124	4	30	
Xylene (Total)	ug/kg	150	148	151	98	101	68-130	2	30	
1,2-Dichloroethane-d4 (S)	%				100	98	80-143			
4-Bromofluorobenzene (S)	%				103	100	72-122			
Dibromofluoromethane (S)	%				101	99	80-136			
Toluene-d8 (S)	%				92	97	80-120			

Project: East Bay Redevelopment 138130

Pace Project No.: 256691

QC Batch: MSV/3904 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5035A Volatile Organics

Associated Lab Samples: 256691005, 256691006, 256691007, 256691008, 256691009

METHOD BLANK: 59831 Matrix: Solid

Associated Lab Samples: 256691005, 256691006, 256691007, 256691008, 256691009

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND	3.0	02/24/11 10:02	
Ethylbenzene	ug/kg	ND	3.0	02/24/11 10:02	
Toluene	ug/kg	ND	3.0	02/24/11 10:02	
Xylene (Total)	ug/kg	ND	9.0	02/24/11 10:02	
1,2-Dichloroethane-d4 (S)	%	94	80-143	02/24/11 10:02	
4-Bromofluorobenzene (S)	%	92	72-122	02/24/11 10:02	
Dibromofluoromethane (S)	%	99	80-136	02/24/11 10:02	
Toluene-d8 (S)	%	95	80-120	02/24/11 10:02	

LABORATORY CONTROL SAME	PLE & LCSD: 59832		59	9833						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene	ug/kg	50	54.1	53.9	108	108	75-133	.3	30	
Ethylbenzene	ug/kg	50	46.0	47.4	92	95	68-131	3	30	
Toluene	ug/kg	50	48.5	52.1	97	104	73-124	7	30	
Xylene (Total)	ug/kg	150	147	155	98	103	68-130	5	30	
1,2-Dichloroethane-d4 (S)	%				96	92	80-143			
4-Bromofluorobenzene (S)	%				101	98	72-122			
Dibromofluoromethane (S)	%				101	97	80-136			
Toluene-d8 (S)	%				90	101	80-120			

Project: East Bay Redevelopment 138130

Pace Project No.: 256691

QC Batch: PMST/1543 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 256691001, 256691002, 256691003, 256691004, 256691005, 256691006, 256691007, 256691008, 256691009

SAMPLE DUPLICATE: 59409

256691009 Dup

14

Parameter Units Result Result RPD Qualifiers

Percent Moisture % 33.6 29.3

QUALIFIERS

Project: East Bay Redevelopment 138130

Pace Project No.: 256691

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel Clean-Up

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-S Pace Analytical Services - Seattle

BATCH QUALIFIERS

Batch: MSV/3891

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: MSV/3904

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

ANALYTE QUALIFIERS

Date: 03/07/2011 02:56 PM

R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: East Bay Redevelopment 138130

Pace Project No.: 256691

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
256691001	SPL-31-1	EPA 3546	OEXT/3337	NWTPH-Dx	GCSV/2277
256691002	SPL-31-2	EPA 3546	OEXT/3337	NWTPH-Dx	GCSV/2277
256691003	SPL-31-3	EPA 3546	OEXT/3337	NWTPH-Dx	GCSV/2277
256691004	SPL-31-4	EPA 3546	OEXT/3337	NWTPH-Dx	GCSV/2277
256691005	SPL-31-5	EPA 3546	OEXT/3337	NWTPH-Dx	GCSV/2277
256691006	SPL-31-6	EPA 3546	OEXT/3337	NWTPH-Dx	GCSV/2277
256691007	SPL-32-1	EPA 3546	OEXT/3337	NWTPH-Dx	GCSV/2277
256691008	SPL-32-2	EPA 3546	OEXT/3337	NWTPH-Dx	GCSV/2277
256691009	SPL-32-3	EPA 3546	OEXT/3337	NWTPH-Dx	GCSV/2277
256691001	SPL-31-1	NWTPH-Gx	GCV/2194	NWTPH-Gx	GCV/2195
256691002	SPL-31-2	NWTPH-Gx	GCV/2194	NWTPH-Gx	GCV/2195
256691003	SPL-31-3	NWTPH-Gx	GCV/2194	NWTPH-Gx	GCV/2195
256691004	SPL-31-4	NWTPH-Gx	GCV/2194	NWTPH-Gx	GCV/2195
256691005	SPL-31-5	NWTPH-Gx	GCV/2194	NWTPH-Gx	GCV/2195
256691006	SPL-31-6	NWTPH-Gx	GCV/2194	NWTPH-Gx	GCV/2195
256691007	SPL-32-1	NWTPH-Gx	GCV/2194	NWTPH-Gx	GCV/2195
256691008	SPL-32-2	NWTPH-Gx	GCV/2194	NWTPH-Gx	GCV/2195
256691009	SPL-32-3	NWTPH-Gx	GCV/2197	NWTPH-Gx	GCV/2198
256691010	TB 021811	NWTPH-Gx	GCV/2194	NWTPH-Gx	GCV/2195
256691001	SPL-31-1	EPA 3546	OEXT/3338	EPA 8270 by SIM	MSSV/1535
256691002	SPL-31-2	EPA 3546	OEXT/3338	EPA 8270 by SIM	MSSV/1535
256691003	SPL-31-3	EPA 3546	OEXT/3338	EPA 8270 by SIM	MSSV/1535
256691004	SPL-31-4	EPA 3546	OEXT/3338	EPA 8270 by SIM	MSSV/1535
256691005	SPL-31-5	EPA 3546	OEXT/3338	EPA 8270 by SIM	MSSV/1535
256691006	SPL-31-6	EPA 3546	OEXT/3338	EPA 8270 by SIM	MSSV/1535
256691007	SPL-32-1	EPA 3546	OEXT/3338	EPA 8270 by SIM	MSSV/1535
256691008	SPL-32-2	EPA 3546	OEXT/3338	EPA 8270 by SIM	MSSV/1535
256691009	SPL-32-3	EPA 3546	OEXT/3338	EPA 8270 by SIM	MSSV/1535
256691001	SPL-31-1	EPA 8260	MSV/3891		
256691002	SPL-31-2	EPA 8260	MSV/3891		
256691003	SPL-31-3	EPA 8260	MSV/3891		
256691004	SPL-31-4	EPA 8260	MSV/3891		
256691005	SPL-31-5	EPA 8260	MSV/3904		
256691006	SPL-31-6	EPA 8260	MSV/3904		
256691007	SPL-32-1	EPA 8260	MSV/3904		
256691008	SPL-32-2	EPA 8260	MSV/3904		
256691009	SPL-32-3	EPA 8260	MSV/3904		
256691010	TB 021811	EPA 8260	MSV/3891		
256691001	SPL-31-1	ASTM D2974-87	PMST/1543		
256691002	SPL-31-2	ASTM D2974-87	PMST/1543		
256691003	SPL-31-3	ASTM D2974-87	PMST/1543		
256691004	SPL-31-4	ASTM D2974-87	PMST/1543		
256691005	SPL-31-5	ASTM D2974-87	PMST/1543		
256691006	SPL-31-6	ASTM D2974-87	PMST/1543		
256691007	SPL-32-1	ASTM D2974-87	PMST/1543		

Date: 03/07/2011 02:56 PM

REPORT OF LABORATORY ANALYSIS

Page 24 of 25

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: East Bay Redevelopment 138130

Pace Project No.: 256691

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
256691008 256691009	SPL-32-2 SPL-32-3	ASTM D2974-87 ASTM D2974-87	PMST/1543		

Date: 03/07/2011 02:56 PM

REPORT OF LABORATORY ANALYSIS

Page 25 of 25

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

256691 256690NJS

Section A	Section E	3						S	Section	on C													Page:		1	of	(
Required Client Information:	Required						-	-		e Inforn								_							1 / A	626	Q	\neg
BROWN AND CALDWELL Address:	Report To:	50	1	URK					ttenti	_	100	T	UP	K											144	020	0	\dashv
724 COLUMBIA SVW #420	Copy To:	10	SH	1011	NOW					any Na	me:								REG	ULAT	DRY	AGEN	ICY				And the second	
DLYMPIA, WA 9850,								^	Addres	ss:									1	NPDES	5 [GR	ROUNE	TAW C			G WATER	
Email To: jturk @bruncald.com	Purchase (R	ace Q Referen	nce:									Γ.	UST	Γ	RC	RA		X	OTHER	ECY	_
340 943 7525 346 943 7513	Project Na	me:	7	BAY R	EDEVE	ELOPMI	TUE	N	ace P tanage	er:									Site	Locati	on	1./	Λ.					
Requested Due Date/TAT:	Project Nu	mber:	13	8130				Р	ace P	rofile #:							Ì.	V		STAT			A		MARION AND PROPERTY.			_
		_	_												L	Re	ques	ted	Anal	ysis Fil	tere	d (Y/N	1)		2	5 6 6	9 1	
Section D Matrix Required Client Information MATRIX		left)	ξ		COLL	ECTED					Pres	ervati	ives		NIA		S		SG							0 0 0	0 1	
Drinking Wa	ter DW	es to	C=COMP)		COLL	I		z		\neg	1103	Si Vali	1	\top	1	,	- V	+	-	$\dashv \dashv$	+	+	+	+	-17			ヿ
Water Waste Wate		(see valid codes to left)		COMPO		COMPO END/GF		COLLECTION								2	70	2						9				
Product Soil/Solid	P SL	ee va	(G=GRAB	0170				OLLE	S							As,	FORAN TON-D	0	5					3				
SAMPLE ID Oil Wipe	OL WP		9					AT	CONTAINERS						Test	ρb,	20	8	7					orine				- 1
(A-Z, 0-9 / ,-) Air Sample IDs MUST BE UNIQUE Tissue	AR TS	CODE	TYPE					TEMP	ITAII	ved					S	9	T .	2	1					흥				- 1
Other **	OT	XX	LET					LE T	00	eser		_	02	oue .	alys	3	ラエ	Z	χ,					Inal				- 1
# E D H H H H H H H H H H H H H H H H H H		MATRIX	SAMPLE					SAMPLE	# 0F	Unpreserved H,SO ₄	HNO3	ag G	Na ₂ S ₂ O ₃	Other	↓ Analysis	3	TOH-HO TOW-	CPAH, NOPPHOLENS	3-15					Residual Chlorine (Y/N)	D	Dunings N	lo./ Lab I.D.	
1 594-31-1		SL	1 2	DATE	TIME	DATE	TIME			X	1			x X		-	1 1	1	1	+	+	+	+	+	Pace	Projecti	10./ Lab 1.D.	ᅥ
2 581-31-2		1				1	11:00	\top	,	-	\forall					H	H	Ħ	1	+	\top	\top		\top				\dashv
3 SPL-31-3		T	Π				11:10	\top	\Box	1	\Box		H	1		\parallel		\Box	1	+		\top		\sqcap				\neg
4 SPL-31-4			Π				11: 20	\top		\top				1		\Box		H	1		\top			П				
5 SPL -3) - S							11:40	\top	\sqcap	1	\Box						11	Π	1					\Box				
6 SPL-31 -6							11:50								1	Π	III							\sqcap				
7 SPL-32-1							12:00										\prod											
8 SPL-32-2							12:15										Ш		1					Ш				
9 SPL-32-3		小	V				12:30		1	1				ل را		1	77	1										
10 TBOZISII						1													V					Ш				
11												_		_		Ц								\square				
12								4											_		+		+					_
ADDITIONAL COMMENTS					AFFILIATI		DATE	_	TI	ME	_		-				LIATIC		_	DATE		TIME			SAMP	LE CONDIT		
Temp Blank included	AL	2	Han	11/1/10.	1/30		2618/1	1	15	:50			Ju	101	Tu	Si	va	٦	è	2/18	11	155	70 4	.9	4	N	4	
													1	,			_			1/	1							
								+															1					
	1011				SAMPLE	R NAME A	ND SIGNAT	TURE	_									_					-	0	u -	ler	act	-
OF	IGINAL	c				PRINT Nam	e of SAMPL	ER:	Ar)A	HA	mıı	Th	J										Temp in °C	Received on Ice (Y/N)	Custody Sealed Cooler (Y/N)	Samples Intact (Y/N)	
							E of SAMPL		1	1	77	log	-	_		DAT	TE Sign	ned	77 -	18-	- (/			Tem	Rece	Cu Sealet	ample	
								_/	IN		1 ou	3	-0			(MN	MODIY	1):	, -	. 0	11						(I)	

Sample Container Count

CLIENT:		Bra	own	d	C	ald	vel				- Curin					Face Analytical*
COC PAGE _	of	5268	3													256691
Sample Line Item	VG9H	AG1H	AG1U	BG1H	BP1U	BP2U	BP3U	BP2N	BP2S	WGFU	WGKU	P	391	1/9	qw	Comments
1										2		1		2		
2										2		1		1		
3										2						
4										v			\neg	+		
							-			2			\dashv	+		
5													-	_		
6										2						
7										2						
8										2						
9										2						
10												V	/	1		e e
11												-				
12													7			Trip Blank?
									1							/
10///															1	V
	1 liter HCL					•		500mL H								4oz unpreserved amber wide
	1liter unpr			ISS				500mL u			С				R	
	500mL H2							500mL N					_			Summa Can
	500mL un			lass				250mL N							-	40mL HCL clear vial
	250mL H2						BP3N		HNO3 pla							40mL Na Thio. clear vial
	1 liter HCL						BP3S		H2SO4 p						-	40mL unpreserved clear vial
	1 liter unpr							250mL								40mL glass vial preweighted (EPA 5035)
	1 liter HNC							40mL Na								Headspace septa vial & HCL
	1 liter H2S0						DG9H		ICL ambe		1		_			4oz clear soil jar
	1 liter unpre							40mL M								4oz wide jar w/hexane wipe
	1 liter NaO						DG9T	40mL Na	a Thio am	ber vial					ZPLC	Ziploc Bag
	500mL HN						DG9U	40mL ur		d amber	vial					
BP2O	500mL Na	OH plasti	С				1	Wipe/Sv	vab							

Pace Analytical

Sample Condition Upon Receipt

Client Name: frank d Caldwe Project #

256691

Courter: Feld x		. 🗆	**************************************			
Custody Seal on Cooler/Box Present:		nt UComm	ercial	☐ Pace Other		
Packing Material:		No.	Seals	intact:	No	
Thermometer Used 192013 of 10/13/1982 01/22/2009 Type of Ice: Well Blue None Samples on ice, cooling process has begy Date and Initials of person examples on ice Cooling process has begy Date and Initials of person examples on ice Cooling process has begy Date and Initials of person examples Comments: Date and Initials of person examples Date and Initial when Date and Initial when Date and Initial when Date and Initial when Date and Initial when Date and Initials of person examples Date and Initial when Date and Initials of person examples Date and Initial when Date and Initials of person examples Date and Initial when Date and Initial when Date and Initial when Date and Initial when Date and Initial when Date and Initial when Date and Initial when Date and Initial when Date and Initial when Date and Initial				_	6	Ne
Biological Tissue is Frozen: Yes No Comments: Comm			1			
Temp should be above freezing ≤ 6°C Chain of Custody Present: Chain of Custody Filled Out: Chain of Gustody Filled Out: Ch	0000					
Chain of Custody Present: Chain of Custody Filled Out: Chain of Custody Relinquished: Chain		Biological	115506		contents:	2/18/4
Chain of Custody Filled Out: Office One On On On On On On On On On On On On On		Yes DNo	□n/a	T	hanne and the same	
Chain of Custody Relinquished: Sampler Name & Signature on COC: Samples Arrived within Hold Time: Short Hold Time Analysis (<72hr): Pes DN0 DNA 5. Short Hold Time Analysis (<72hr): Pyes DN6 DNA 6. Rush Turn Around Time Requested: Pyes DN6 DNA 8. Sufficient Volume: Pyes DN6 DNA 8. Sufficient Volume: Pyes DN0 DNA 10. Pace Containers Used: Pyes DN0 DNA 11. Filtered volume received for Dissolved tests Pyes DN0 DNA 13. Sample Labels match COC: Includes date/time/ID/Analysis Matrix: All containers needing preservation have been checked. All containers needing preservation have been checked. Pyes DN0 DNA 14. All containers needing preservation are found to be in compliance with EPA recommendation. Pyes DN0 DNA 15. Headspace in VOA Vials (>6mm): Pyes DN0 DNA 15. Headspace in VOA Vials (>6mm): Pyes DN0 DNA 17. Field Data Required? Y / N Person Contacted: Pyes DN6 Date/Time:	Deliver out of the transport of the transport		20,760.0, 10,700.0			
Sampler Name & Signature on COC:		□Yes □No	□N/A	3.		
Samples Arrived within Hold Time:		□Yes □No	□N/A	4.	2:	
Rush Turn Around Time Requested: Yes Mo DNA 7. Follow Up / Hold Analysis Requested: Yes Mb DNA 8. Sufficient Volume: DYes DNO DNA 9. Correct Containers Used: PYes DNO DNA 10. -Pace Containers Used: PYes DNO DNA 11. Filtered volume received for Dissolved tests Yes DNO DNA 12. Sample Labels match COC: DYES DNO DNA 13. All containers needing preservation have been checked. PYes DNO DNA 14. All containers needing preservation are found to be in compliance with EPA recommendation. PYes DNO DNA 15. Headspace in VOA vials (>6mm): Yes DNO DNA 16. Trip Blanks Present: DYES DNO DNA 17. Trip Blank Custody Seals Present PYes DNO DNA 17. Trip Blank Custody Resolution: PYes DNO DNA 17. Field Data Required? Y / N Person Contacted: Date/Time: Date/Time:		DYES DNo	□N/A	5.		
Rush Turn Around Time Requested: Yes Mo ONA 7. Follow Up / Hold Analysis Requested: Yes Mo ONA 8. Sufficient Volume: OY65 No ONA 9. Correct Containers Used: OY65 No ONA 10. -Pace Containers Used: OY65 ONO ONA 11. Filtered volume received for Dissolved tests Yes ONO ONA 12. Sample Labels match COC: OY65 ONO ONA 13. All containers needing preservation have been checked. OY65 ONO ONA 14. All containers needing preservation are found to be in compliance with EPA recommendation. OY65 ONO ONA 15. Headspace in VOA, coliform, TOC, O&G OY65 ONO ONA 16. Trip Blanks Present: OY65 ONO ONA 17. Trip Blank Custody Seals Present OY65 ONO ONA 17. Pace Trip Blank Lot # (if purchased): Oate/Time: Oate/Time: Field Data Required? Y / N	Short Hold Time Analysis (<72hr):	□Yes □Wo	□n/a	6.		
Sufficient Volume: Correct Containers Used: Pace Containers Used: Pace Containers Used: Pace Containers Used: Pace Containers Used: Pace Containers Intact: Containers Intact: Pace Containers Intact: Filtered volume received for Dissolved tests Pace Inoludes date/time/ID/Analysis Matrix: Pace Inoludes date/time/ID/Analysis Matrix: Pace Inoludes date/time/ID/Analysis Matrix: Pace Trip Blank Custody Seals Present Pace Trip Blank Lot # (if purchased): Client Notification/ Resolution: Person Contacted: Pace Inoludes Inolude Inolu		□Yes □No	□N/A	7.		
Correct Containers Used: Pace Containers Used: Pace Containers Used: Pace Containers Intact: Ves No No No No No No	Follow Up / Hold Analysis Requested:	□Yes □No	□n/a	8.		
-Pace Containers Used: Pres No N/A	Sufficient Volume:	□Yes □No	□N/A	9.		
Containers Intact:	Correct Containers Used:	☐Yes ☐No	□n/a	10.		
Filtered volume received for Dissolved tests Yes	-Pace Containers Used:	DYes DNo	□N/A			
Sample Labels match COC: -Includes date/time/ID/Analysis Matrix: All containers needing preservation have been checked. All containers needing preservation are found to be in compliance with EPA recommendation. Exceptions: VOA, coliform, TOC, O&G Samples checked for dechlorination: Headspace in VOA Vials (>6mm): Trip Blanks Present: Trip Blank Custody Seals Present Pace Trip Blank Lot # (if purchased): Client Notification/ Resolution: Person Contacted: Date/Time:	Containers Intact:	□Yes □No	□N/A	11.		
-Includes date/time/ID/Analysis Matrix: All containers needing preservation have been checked. All containers needing preservation are found to be in compliance with EPA recommendation. Exceptions: VOA, coliform, TOC, O&G Samples checked for dechlorination: Headspace in VOA Vials (>6mm): Trip Blanks Present: Trip Blank Custody Seals Present Pace Trip Blank Lot # (if purchased): Client Notification/ Resolution: Person Contacted: Date/Time:	Filtered volume received for Dissolved tests	□Yes □No	DN/A	12.		
All containers needing preservation have been checked. All containers needing preservation are found to be in compliance with EPA recommendation. Exceptions: VOA, coliform, TOC, O&G Samples checked for dechlorination: Headspace in VOA Vials (>6mm): Trip Blanks Present: Trip Blank Custody Seals Present Pace Trip Blank Lot # (if purchased): Client Notification/ Resolution: Person Contacted: Date/Time:	Sample Labels match COC:	4 -1	□n/A	13.		
All containers needing preservation are found to be in compliance with EPA recommendation. Yes No N/A 14.		Soil				
Compliance with EPA recommendation. Initial when completed preservative Samples checked for dechlorination: Yes No QN/A 15. Headspace in VOA Vials (>6mm): Yes No QN/A 16. Trip Blanks Present: QYes No QN/A 17. Trip Blank Custody Seals Present QYes No QN/A 17. Pace Trip Blank Lot # (if purchased): Pace Trip Blank Contacted: Date/Time: Pate/Time: Pate/Time: Pate/Time: Pate/Time: Pace/Time: P	All containers needing preservation have been checked.	□Yes □No	DNIA	14.		
Completed preservative Completed preservative		□Yes □No	DWA			
Samples checked for dechlorination: Yes No QN/A 15. Headspace in VOA Vials (>6mm): QYes No QN/A 16. Trip Blanks Present: QYes DNO DN/A 17. Trip Blank Custody Seals Present QYes DNO DN/A Pace Trip Blank Lot # (if purchased): Person Contacted: Date/Time:	Exceptions: VOA, coliform, TOC, O&G			The second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the sec		
Headspace in VOA Vials (>6mm):		□Yes □No	□N/A	15.		The state of the s
Trip Blanks Present: Description Descri	Headspace in VOA Vials (>6mm):	□Yes □No				
Pace Trip Blank Lot # (if purchased): Client Notification/ Resolution: Field Data Required? Y / N Person Contacted: Date/Time:		DYes DNo	□N/A	17.		
Pace Trip Blank Lot # (if purchased): Client Notification/ Resolution: Person Contacted: Date/Time:	Trip Blank Custody Seals Present	□Yes □No	□N/A			32
Person Contacted: Date/Time:						
	Client Notification/ Resolution:				Field Data Required?	Y / N
Comments/ Resolution:	Person Contacted:		_ Date/	Time:		
	Comments/ Resolution:					
Project Manager Review: Date: 218/11		1201		0		- l

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Appendix F - PARCEL 4:

Landfill 3434 South Silver Lake Rd Castle Rock WA 98611 Tel (360) 274 6492 Fax (360) 274 6393

LOAD SUMMARY

CECCANTI - CHILDRENS HANDS ON MUSEUM 1/17/2011 thru 1/21/2011

DATE	TIME	CUSTOMER	HAULER, DRIVER, TRUCK#	GROSS WGT (LBS)	TARE WGT (LBS)	NET WGT (LBS)	TICKET#
1/19/2011	12:25P	Childrens Museum	Ceccanti - John - #C85	105,500	42,360	63,140	30177
1/20/2011	9:20A	Childrens Museum	Ceccanti - John - #C85	104,640	42,360	62,280	30215
1/20/2011	9:20A	Childrens Museum	Ceccanti - Mike - #C83	105,240	42,300	62,940	30214
1/20/2011	1:05P	Childrens Museum	Ceccanti - John - #C85	105,880	42,360	63,520	30240
1/20/2011	1:06P	Childrens Museum	Ceccanti - Mike - #C83	103,460	42,300	61,160	30239
1/21/2011	9:20A	Childrens Museum	Ceccanti - Mike - #C83	104,360	42,300	62,060	30277
1/21/2011	9:20A	Childrens Museum	Ceccanti - John - #C85	105,560	42,360	63,200	30278
1/21/2011	1:15P	Childrens Museum	Ceccanti - Mike - #C83	91,860	42,300	49,560	30297
1/21/2011	1:15P	Childrens Museum	Ceccanti - John - #C85	96,380	42,360	54,020	30301

Total Load Count: 9	Total Net Weight (LBS):	541,880
	Total Net Weight (TONS):	270.9

Landfill 3434 South Silver Lake Rd Castle Rock WA 98611 Tel (360) 274 6492 Fax (360) 274 6393

LOAD SUMMARY

CECCANTI - CHILDRENS HANDS ON MUSEUM 1/24/2011 thru 1/28/2011

DATÉ	TIME	CUSTOMER	HAULER, DRIVER, TRUCK#	GROSS WGT (LBS)	TARE WGT (LBS)	NET WGT (LBS)	TICKET#
1/25/2011	9:10A	Childrens Museum	Ceccanti - John - #C85	92,020	42,360	49,660	95027524
1/25/2011	1:00P	Childrens Museum	Ceccanti - John - #C85	96,400	42,360	54,040	95027534
1/26/2011	9:05A	Childrens Museum	Ceccanti - John - #C85	87,820	42,360	45,460	30420
1/26/2011	1:00P	Childrens Museum	Ceccanti - John - #C85	104,720	42,360	62,360	30439
1/28/2011	9:50A	Childrens Museum	Ceccanti - John - #C85	96,480	42,360	54,120	30504

Total Load Count:	5	Total Net Weight (LBS):	265,640
		Total Net Weight (TONS):	132.8

Light weight C-83

PORT OF OLYMPIA

TICKET 30210

SCALE NO. 1

CUSTOMER 82 CECCANTI

42300 LB

TIME 06:08 AM 20 JAN 11

49,580 = 24.78 TONS 62,060 = 31.03 TONS

TRUCK C-83

TARE WEIGHT 42,300

Stock Pile #7

PORT OF OLYMPIA

TICKET 30297

SCALE NO. 1

CUSTOMER 82 CECCANTI B 04444 21 JAN 113 42,300 91860 LB GROSS

NET- 49,560

TIME 11:03 AM

TRUCK C-85 TARE WEIGHT 42,360

54,020= 27.01 TONS 63,200 = 31.60 TONS PORT OF OLYMPIA

TICKET 30277

SCALE NO. 1

CUSTOMER 82 CECCANTI TATE-42, 300

GROSS 104360 LB NCT- 62,060

TIME 06:59 AM 21 JAN 11

14.42 TONS

TOTAL

LOADS

0-83

1-21-(1

PORT OF OLYMPIA

TICKET 30173

SCALE NO. 1

GROSS 42360 LB

TIME 09:18 AM 19 JAN 11

C-85

Stockple #7

PORT OF OLYMPIA

TICKET 30301

SCALE NO. 1

CLISTOMER 82 CECCANTI 44360 TAVE-96380 LB GROSS NCT- 54,020 21 JAN 11 TIME 11:12 AM

0-85

9# 7/1945

PORT OF OLYMPIA

TICKET 30278

SCALE NO. 1

CUSTOMER 82 CECCANTI

TARC- 42,360

GROSS 105560 LB NCT - 63,200

TIME 07:01 AM 21 JAN 11

0-85

Light weight

PORT OF OLYMPIA

TICKET 30210

SCALE NO. 1

CUSTOMER 82 CECCANTI

20 JAN 11 TIME 06:08 AM

C-83 61, 160=30.58 TONS C-83 62, 940=31.47 TONS

Stock Pile #6

PORT OF OLYMPIA

TICKET 30239

TRUCK C-85

TRUCK C-83

TAIRE WEIGHT 42,300

SCALE NO. 2

TARE WEIGHT 42,360

CUSTOMER 82 CECCANTI

TAKE - 43,300

GROSS 103460 LB

C-85 63,520 = 31.76 TIME 10:55 AM 20 JAN 11 C-85 62,280 = 31.14 T

TOTAL LOAPS

124.95 TONS

Stock Pile # 6

PORT OF OLYMPIA

TICKET 30214

SCALE NO. 1

CUSTOMER 82 CECCANTI
THRE- 43,300

GROSS 105240 LB

NeT - 62,940

TIME 06:59 AM 20 JAN 11

-20-11

PORT OF OLYMPIA

TICKET 30173

SCALE NO. 1

GROSS 42360 LB

19 JAN 11 TIME 09:18 AM

C-85

PORT OF OLYMPIA

TICKET 30240

SCALE NO. 1

CUSTOMER 82 CECCANTI

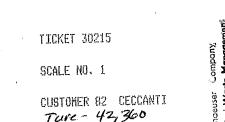
Ture - 42,360

GROSS 105880 LB

NET 63,520 . TIME 10:56 AM 20 JAN 11

sketpil

Ture - 42,360


GROSS 104640 LB Ner- 62,280

TIME 07:02 AM 20 JAN 11

C-85 stockpile

1-19-11

TRUCK

TARE WEIGHT 42,360

PORT OF OLYMPIA

TICKET 30173

SCALE NO. 1

42360 LB GROSS

TIME 09:18 AM 19 JAN 11

C-85

PORT OF OLYMPIA

G12055 WEIGHT 105,500

TICKET 30177

SCALE NO. 1

CUSTOMER 82 CECCANTI

Tare 42,360
GROSS 105500 LB
NET 63,140
TIME 09:54 AM 19

C-85 STK. Piket

31.57 TONS

95027534

TICKET NUMBER

CERTIFIED **A**UTOMATED

TRUCK SCALE

CAT SCALE COMPANY SCALE LOCATION: WALCOTT, IA 52773 (563) 284-6263 www.catscale.com 1211

95027534

THE CAT SCALE GUARANTEE

The CAT Scale Company GUARANTEES that our scales will give an accurate weight. What makes us different from other scale companies is that we back up our guarantee with cash.©

IF YOU SHOULD GET AN OVERWEIGHT FINE, YOU SHOULD DO THE FOLLOWING TO GET THE PROBLEM RESOLVED:

1) Post bond and request a court date.

Call CAT Scale Company direct 24 hours a day at 1-877-CAT-SCALE (toll free).

IMMEDIATELY send a copy of the citation, CAT Scale ticket, your name, company, address, and phone number to CAT Scale Company Attn: Operations Manager.

Stockpile # 7

The four weights shown below are separate weights. The TOTAL WEIGHT was weighed on a full length platform scale. AXLE WEIGHTS CAN NOT BE CERTIFIED and are NOT LEGAL FOR TRADE, however, CAT SCALE COMPANY GUARANTEES THESE WEIGHTS TO BE CORRECT.

DATE:

1-25-2011

TOLEDO WA

STEER AXLE

ユロ 21600

10 29580

DRIVE AXLE

45220 1 6

TRAILER AXLE

TOTAL WEIGHT

 $1 \triangleright$ 96400

COMPANY.

WEIGHER'S SIGNATUR

278

I-5 AND EXIT 57

GEE-CEE'S TRUCKSTOP

TRACTOR # _

T85 TRAILER # .

FEE:

1.00

C85

FULL WEIGH TICKET #

95027524

THANK YOU FOR

WEIGHING

ON

CAT

SCALE

ဝ် O Box

88

(IF REWEIGH)

ONLY CERTIFIED WEIGHTS APPEAR BELOW THIS LINE

CERTIFIED WEIGHTS (imprint seal)

GROSS

96,400

TARE

42, 360 54, 040

NET

WEIGH NUMBER 21.02 Pas 7521.

WEIGHMASTER CERTIFICATE

This is to certify that the following described commodity was weighed, measured, or counted by a Weighmaster, whose signature is on this Certificate, who is a recognized authority of accuracy, as prescribed by State Law.

FREIGHT ALL KINDS

_____ TRACTOR #_

_____ TRAILER # _

COMMODITY WEIGHED:___

REMARKS: _

TRACTOR LICENSE #___

TRAILER LICENSE # ___

TRAILER LICENSE # __

______ TRAILER # __

NAME OF WEIGHMASTER (print): _____ WEIGHMASTER SIGNATURE:

© CAT SCALE COMPANY® 12

1-25-11 C-85 54,040 = 27.02 TON.5

THE CAT SCALE GUARANTEE **THANK YOU FOR** 95027524 The CAT Scale Company GUARANTEES that our scales will give an accurate weight. What makes us WEIGHING different from other scale companies is that we back up our guarantee with cash.® TICKET NUMBER IF YOU SHOULD GET AN OVERWEIGHT FINE, YOU SHOULD DO THE FOLLOWING TO GET THE PROBLEM RESOLVED: 1) Post bond and request a court date. 2) Call CAT Scale Company direct 24 hours a day at 1-877-CAT-SCALE (toll free). IMMEDIATELY send a copy of the citation, CAT Scale ticket, your name, company, address, and phone number to CAT Scale Company Attn: Operations Manager. The four weights shown below are separate weights. The TOTAL WEIGHT was weighed on a full length platform scale. AXLE WEIGHTS CAN NOT BE CERTIFIED and are NOT LEGAL FOR TRADE, however, CAT SCALE COMPANY GUARANTEES THESE WEIGHTS TO BE CORRECT. CERTIFIED **A**UTOMATED 17700 16 DATE: STEER AXLE TRUCK 1-25-2011 1 b 35200 **DRIVE AXLE** SCALE 278 CAT SCALE COMPANY SCALE LOCATION: 39120 1 b GEE-CEE'S TRUCKSTOP TRAILER AXLE I-5 AND EXIT 57 WALCOTT, IA 52773 92020 16 (563) 284-6263 TOLEDO WA **TOTAL WEIGHT** www.catscale.com 832 'eccanti 95027524 **DOWN TO THE PROPERTY OF THE PA** T85 CA5 __ TRAILER # _ _ TRACTOR # _ COMPANY stockpike 9.50 FULL WEIGH TICKET #_ WEIGHER'S SIGNATURE #7 (IF REWEIGH) ONLY CERTIFIED WEIGHTS APPEAR BELOW THIS LINE CERTIFIED WEIGHTS (imprint seal) WEIGHMASTER CERTIFICATE

92,020 **GROSS** 42,360 **TARE**

49,660

NET

WEIGH NUMBER

This is to certify that the following described commodity was weighed, measured, or counted by a Weighmaster, whose signature is on this Certificate, who is a recognized authority of accuracy, as prescribed by State Law.

FREIGHT ALL KINDS COMMODITY WEIGHED:_____ REMARKS: TRACTOR LICENSE #_____ TRACTOR #_ TRAILER LICENSE # _____ TRAILER # _____ TRAILER LICENSE # _____ TRAILER # ___ NAME OF WEIGHMASTER (print): _____ © CAT SCALE COMPANY® 12/0 WEIGHMASTER SIGNATURE:

ON

CAT

SCALE!

7524

TRUCK

1-25-1149,660=24.83 TONS

Stukpile #7

PORT OF OLYMPIA

C-85

TICKET 30439

SCALE NO. 1

CUSTOMER 82 CECCANTI

THAC - 42,360

GROSS 104720 LB

NCT - 62,360

TIME 11:05 AM 26 JAN 11

31.18 Tons

Week Consultation of the Management of the Manag

Stockpile #7

PORT OF OLYMPIA

0-85

TICKET 30420

SCALE NO. 2

CUSTOMER 82 CECCANTI

THIC - 42,600 42,360

GROSS 87820 LB

NCT - 45,460

TIME 07-07-08

TIME 07:27 AM 26 JAN 11 27.73 7005

Merial Recovery / Transfer Facility 3 Sox 188

Od) 578-4616

Willed Wiste Monagement

Stockpile #7

TICKET 30504

SCALE NO. 1

CUSTOMER 82 CECCANTI

THE- 42, 360
GROSS 96480 LB

NOT 54, 120
TIME 08:16 AM 28 JAN 11

27.06 Tens

Principle Waste Management Material Recovery / Transfer Facility FO Box 188
Longview, WA 98637
(205) 578-4616

QUALITY ROCK PRODUCTS, TICKET # 471694 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 1/26/2011 2:20:30 PM CUSTOMER: 17150 - Ceccanti Construction SHIP LOC. : 11367 - Hands On Children's Museum JOB ЈОВ РО # JOB ADD.: Marine Drive JOB CITY: Olympia MAP PAGE PRODUCT: 50BP - Ballast PU Picked Up TRUCK TYPE: TRUCK # Cecc-30 CARRIER: 17150 - Ceccanti Construction TRAILER # GROSS 99300 1b NET TONS 27.52 tn 44260 1b TARE DAILY TONS : JOB TOTAL : 165.57 tn 1168.07 tn NET 55040 1b 691/009 165,57 CUSTOMER SIGN:_ NOTES: STANDBY TIME:__ STANDBY INITIALS:___ QUALITY ROCK PRODUCTS, TICKET # 471693 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 1/26/2011 1:12:51 PM DATE & TIME: 17150 - Ceccanti Construction CUSTOMER: SHIP LOC. : 11367 - Hands On Children's Museum JOB JOB PO # JOB ADD.: Marine Drive JOB CITY: Olympia MAP PAGE PRODUCT: 50BP - Ballast PU TRUCK TYPE : Picked Up TRUCK # Cecc-30 CARRIER: 17150 - Ceccanti Construction TRAILER # GROSS 100220 lb 27.98 tn NET TONS 44260 1b 55960 1b DAILY TONS : 138.05_tn TARE NET JOB TOTAL : 1140.55 tn 691/009 CUSTOMER SIGN:___ _____Ticket В NOTES: STANDBY TIME:__ STANDBY INITIALS:___ ROCK PRODUCTS, TICKET # 471692 INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 1/26/2011 11:56:18 AM CUSTOMER: 17150 - Ceccanti Construction SHIP LOC. : 11367 - Hands On Children's Museum JOB JOB PO # JOB ADD.: Marine Drive JOB CITY: Olvmpia MAP PAGE PRODUCT: 50BP - Ballast PU TRUCK TYPE : Truck & Trailer TRUCK # Cecc-30 CARRIER: 17150 - Ceccanti Construction TRAILER # 98980 lb 44260 lb 54720 lb GROSS NET TONS 27.36 tn TARE 110.07 tn DAILY TONS : NET JOB TOTAL : 1112.57 tn 691/009 CUSTOMER SIGN:___ _____Ticket в NOTES: STANDBY TIME:_ STANDBY INITIALS:_

QUALITY ROCK PRODUCTS, INC. TICKET # 471684 10201 LITTLEROCK RD SW _- OLYMPIA, WA 98512 - OFFICE: 360-754-7777 1/26/2011 8:27:30 AM DATE & TIME: CUSTOMER: 17150 - Ceccanti Construction SHIP LOC. : 11367 - Hands On Children's Museum JOB PO # JOB ADD.: Marine Drive JOB CITY: Olympia MAP PAGE 50BP - Ballast PU PRODUCT: Picked Up TRUCK TYPE: TRUCK # Cecc-30 CARRIER: 17150 - Ceccanti Construction TRAILER # 99420 lb 44260 lb GROSS **NET TONS** 27.58 tn TARE DAILY TONS : 27.58 tn 55160 1b JOB TOTAL : NET 1030.08 tn CUSTOMER SIGN:___ NOTES: 691/009 STANDBY TIME:___ STANDBY INITIALS:____ **TICKET # 471687** QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 1/26/2011 9:41:05 AM SHIP LOC. : 17150 - Ceccanti Construction JOB PO # 11367 - Hands On Children's Museum TOR JOB ADD.: Marine Drive MAP PAGE JOB CITY: Olympia TRUCK TYPE : Picked Up PRODUCT: 50BP - Ballast PU TRUCK # Cecc-30 TRAILER # 17150 - Ceccanti Construction CARRIER : 27.41 tn 54.99 tn NET TONS : DAILY TONS : JOB TOTAL : 99080 lb GROSS 44260 lb TARE 1057.49 tn 54820 1b NET 691/009 NOTES: CUSTOMER SIGN:____ STANDBY TIME:_ STANDBY INITIALS:_____ QUALITY ROCK PRODUCTS, TICKET # 471690 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 1/26/2011 10:48:02 AM CUSTOMER: 17150 - Ceccanti Construction SHIP LOC. : 4 11367 - Hands On Children's Museum JOB ADD.: JOB PO # Marine Drive JOB CITY: Olympia MAP PAGE : PRODUCT: 50BP - Ballast PU TRUCK TYPE : TRUCK # : Picked Up 17150 - Ceccanti Construction CARRIER: TRAILER # GROSS 99700 lb TARE 44260 1b NET TONS NET TONS : DAILY TONS : 27.72 tn NET 55440 1b 82.71 tn 1085.21 tn JOB TOTAL : 691/009 CUSTOMER SIGN:__ _____Ticket B NOTES: STANDBY TIME:_ STANDBY INITIALS:____

QUALITY ROCK PRODUCTS, INC.

-				-					_			-				 	 	_		_									 						-							_
()2	0.	L	L	ľ	т	L	ΞR	0	CI	K	R	D	S	W	-	0	Ľ١	ΥM	IP	I/	۹,	١	NΑ	١.	98	55	L2	_	-	OF	F	ΙC	E:		36	0-	-7	54	ļ- '	77	7

CUSTOMER: 17150 - Ceccanti Construction

11367 - Hands On Children's Museum

Marine Drive JOB ADD.:

JOB CITY: Olympia

JOB

PRODUCT: 50BP - Ballast PU

CARRIER: 17150 - Ceccanti Construction

105920 lb GROSS :

TARE : 42480 1b NET : 63440 lb

CUSTOMER SIGN:_______Ticket B

STANDBY TIME:

STANDBY INITIALS:

TICKET # 471752

DATE & TIME: 1/28/2011 9:36:04 AM

SHIP LOC. : 4

JOB PO # :

MAP PAGE :

TRUCK TYPE: Picked Up

TRUCK # : TRAILER # :

NET TONS : 31.72 tn DAILY TONS: 190.11 tn JOB TOTAL : 1358,18 tn

NOTES:

ZITY ROCK PRODUCTS, INC.

201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

17150 - Ceccanti Construction CUSTOMER:

JOB : 11367 - Hands On Children's Museum

JOB ADD.: Marine Drive Olympia JOB CITY:

PRODUCT: 50BP - Ballast PU

CARRIER : 17150 - Ceccanti Construction

105340 lb GROSS : 42480 lb TARE : 62860 1b NET :

CUSTOMER SIGN:______Ticket B

STANDBY TIME:_____

STANDBY INITIALS:_____

TICKET # 471749

DATE & TIME: 1/28/2011 8:28:15 AM

SHIP LOC. : 4

JOB PO # :

MAP PAGE :

TRUCK TYPE: Picked Up TRUCK # : TRAILER # :

NET TONS : 31.43 tn DAILY TONS: 158.39 tn

JOB TOTAL : 1326.46 tn

NOTES:

UALI ⁻	TY ROCK	PRODUCTS	, INC.	TICK	ET #	301087
•		иріа, wa 98512 - OFF		DATE & TIME:	8/31/2011 3:	20:50 PM
CUSTOMER:	22650 - DLB Eau	rthworks		SHIP LOC. :	2	
JOB : JOB ADD.: JOB CITY:	11555 - East Ba 421 Jefferson St Olympia	ay Public Plaza		JOB PO # : MAP PAGE :		Lot 8
PRODUCT :	• •	Scale Contaminated Di	rt Backhaul	TRUCK TYPE : TRUCK # :	Picked Up 18-701	
CARRIER :	01 - Quality R	ock Products, Inc.		TRAILER # :	18-701	
GROSS : TARE : NET :	101640 lb 39520 lb 62120 lb			NET TONS : DAILY TONS : JOB TOTAL :	31.06 tn 57.92 tn 187.01 tn	
		Ti	chat R	NOTES:	verhaelises Compa	nV
		ті	CKEL B	D D Into	grated Waste Man	connect
	ME:	5	cket B	Mat PO Lon 12C	erial Recovery / Tro Box 188 gview, WA 9863 (6) 578-4616	
)UALI	TY ROCK	PRODUCTS	, INC.	TICK	KET #	301086
)201 LITTLE	ROCK RD SW - OLY	MPIA, WA 98512 - OFF	ICE: 360-754-7777	DATE & TIME:	8/31/2011 3	:01:24 PM
CUSTOMER:	22650 - DLB Ea	rthworks		SHIP LOC. :	2	d
JOB :	11555 - East B	ay Public Plaza		JOB PO # :	7	7010
JOB ADD.: JOB CITY:	421 Jefferson St Olympia	: NE		MAP PAGE :	(000
PRODUCT :	92 - Certified	Scale Contaminated Di	rt Backhaul	TRUCK TYPE : TRUCK # :	Picked Up 18-704	
CARRIER :	01 - Quality F	Rock Products, Inc."	m}	TRAILER # :	18-704	
GROSS : TARE : NET :	92200 lb 38480 lb 53720 lb	Material Recovery / Transfer : FO Box 188 Vanity aw, VVA 98632 (414) 518-4514		NET TONS : DAILY TONS : JOB TOTAL :	26.86 tn 26.86 tn 155.95 tn	Dark
CUSTOMER S	IGN:	т	icket B	NOTES:	CA	N KEE
					1 20	y
STANDBY IN	IITIALS:					
QUAL:	ITY ROC	K PRODUCT	S, INC.	TIC	CKET #	¢ 48129
10201 LITTL	EROCK RD SW - OL	YMPIA, WA 98512 - OF	FICE: 360-754-7777	DATE & TIME:	8/31/2011 1	1:51:36 AM
CUSTOMER:	22650 - DLB E	arthworks		SHIP LOC. :	4 Rochester	
JOB :		Bay Public Plaza		JOB PO # :		Lots
JOB CITY:	: Olympia			MAP PAGE :		
PRODUCT :		ed Scale Contaminated D	irt Back Haul	TRUCK TYPE :	Picked Up 18-703	
CROSS :	: 01 - Quality : 99660 lb	Rock Products Inc		TRAILER # :	18-703 30.41 tn	
TARE :	38840 1b 60820 1b			DAILY TONS : JOB TOTAL :	131.39 tn 1595.70 tn	
CUSTOMER	SIGN:	T	icket B	NOTES:		
			Disable Control	2 Pur		
STANDBY I	INITIALS:		Cart	NOTES:		

TICKET # 481285

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

22650 - DLB Earthworks **CUSTOMER:**

11555 - East Bay Public Plaza JOB JOB ADD.: 421 Jefferson St NE

JOB CITY: Olympia

92 - Certified Scale Contaminated Dirt Back Haul PRODUCT:

01 - Quality Rock Products Inc CARRIER :

103840 lb **GROSS** 39320 lb 64520 lb TARE

_Ticket B ette Rock CUSTOMER SIGN:___

STANDBY TIME:___

STANDBY INITIALS:___

DATE & TIME: 8/31/2011 10:38:35 AM

SHIP LOC. : 4 Rochester

JOB PO # MAP PAGE

NOTES:

TRUCK TYPE : Picked Up TRUCK # 18-701 TRAILER #

NET TONS 32.26 tn DAILY TONS : JOB TOTAL : 100.98 tn 1565.29 tn

Veryorhseuser Company

Integrated Waste Management Material Recovery / Transfer Facility

PO Box 188

Congress, WA 98632

5 3-1015

QUALITY ROCK PRODUCTS,

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

JOB 11555 - East Bay Public Plaza

JOB ADD.: 421 Jefferson St NE

JOB CITY: Olympia

92 - Certified Scale Contaminated Dirt Back Haul PRODUCT:

CARRIER: 01 - Quality Rock Products Inc

Very brigher Company

105420 lb GROSS Integrated Waste Management 37840 1b TARE

National Recovery Transfer Laville 67580 1b NFT

CUSTOMER SIGN: __Ticket B

STANDBY TIME:_

STANDBY INITIALS:__

TICKET # 481279

DATE & TIME: 8/31/2011 10:22:46 AM

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # 18-704 18-704 TRAILER #

NET TONS 33.79 tn DAILY TONS : 68.72 tn 1533.03 tn JOB TOTAL :

este Kock.

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

22650 - DLB Earthworks CUSTOMER:

11555 - East Bay Public Plaza JOB

421 Jefferson St NE JOB ADD.:

30B CITY: Olympia

92 - Certified Scale Contaminated Dirt Back Haul PRODUCT:

01 - Quality Rock Products Inc CARRIER :

GROSS 108700 lb 38840 1b 69860 1b TARE

STANDRY INITIALS:

CUSTOMER SIGN:_ _Ticket B

STANDBY TIME:

ste Rock

TICKET # 481234

DATE & TIME: 8/31/2011 7:44:06 AM

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

TRUCK TYPE : TRUCK # : Picked Up 18-703 TRAILER # 18-703

NET TONS 34.93 tn 34.93 tn DAILY TONS : JOB TOTAL 1499.24 tn

STANDBY TIME:_____
STANDBY INITIALS:___

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 8/30/2011 2:39:57 PM SHIP LOC. : 2 22650 - DLB Earthworks CUSTOMER: JOB PO # 11555 - East Bay Public Plaza 421 Jefferson St NE JOB ADD.: MAP PAGE JOB CITY: Olympia Picked Up 92 - Certified Scale Contaminated Dirt Backhaul TRUCK TYPE : PRODUCT : TRUCK # 18-704 18-704 TRAILER # 01 - Quality Rock Products, Inc. CARRIER : John Holly Vol. 11 or gament NET TONS : DAILY TONS : JOB TOTAL : 33.21 tn 66.31 tn 104900 lb GROSS Minimum Restovery / Transfer Facility 38480 1b 66420 1b TARE FU BIN 1.5 129.09 tn NET Lamena 1. a 180 12 NOTES: ____Ticket A CUSTOMER SIGN:___ STANDBY TIME:__ STANDRY INITIALS: **TICKET # 301043** QUALITY ROCK PRODUCTS, INC. DATE & TIME: 8/30/2011 2:34:54 PM 10201 LITTLEROCK RD SW = OLYMPIA, WA 98512 - OFFICE: 360-754-7777 SHIP LOC. : CUSTOMER: 22650 - DLB Earthworks Jathe Pork JOB PO # 11555 - East Bay Public Plaza 421 Jefferson St NE JOB ADD.: MAP PAGE JOB CITY: Olympia Picked Up 92 - Certified Scale Contaminated Dirt Backhaul TRUCK TYPE : PRODUCT: TRUCK # 18-701 TRAILER # 18-701 01 - Quality Rock Products, Inc. CARRIER: 33.10 tn NET TONS 105720 lb GROSS 33.10 tn DAILY TONS : 39520 1b TARE 95.88 tn JOB TOTAL : 66200 1b NET Visyorhanurer Co _____Ticket B NOTES: CUSTOMER SIGN:____ Integrated Waste Manager - I Minterial Recovery | Transfer Lessing STANDBY TIME: STANDBY INITIALS: TICKET # 481163 QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 8/30/2011 11:51:12 AM 22650 - DLB Earthworks CUSTOMER: SHIP LOC. : 4 Rochester 11555 - East Bay Public Plaza JOB PO # 421 Jefferson St NE JOB ADD.: JOB CITY: Olympia MAP PAGE and Rock 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : *PRODUCT : Picked Up TRUCK # 18-703 CARRIER: 01 - Quality Rock Products Inc TRAILER # : 18-703 99040 1b GROSS **NET TONS** 30.10 tn 38840 1b DAILY TONS : TARE 126.56 tn 60200 1b JOB TOTAL : NFT 1464.31 tn CUSTOMER SIGN:__ __Ticket B NOTES:

TICKET # 301044

JUALT	IT ROCK PRODUCTS, INC.	110	KEI # 401140
0201 LITTLER	OCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777	DATE & TIME:	8/30/2011 10:28:02 AM
CUSTOMER:	22650 - DLB Earthworks	SHIP LOC. :	4 Rochester
јов :	11555 - East Bay Public Plaza	ЈОВ РО # :	58002
JOB ADD.: JOB CITY:	421 Jefferson St ŃE Olympia	MAP PAGE :	
PRODUCT :	92 - Certified Scale Contaminated Dirt Back Haul	TRUCK TYPE : TRUCK # :	Picked Up 18-704
CARRIER :	01 - Quality Rock Products Inc	TRAILER # :	18-704
GROSS :	103140 lb 37840 lb 65300 lb	DAILY TONS :	32.65 tn 96.46 tn
NET :	65300 1b	JOB TOTAL :	1434.21 tn
		100	96.46 tn 1434.21 tn
	IGN:Ticket A	NOTES:	/ gst
	ME:		
STANDET INT	TIALS.		
DUALI	TY ROCK PRODUCTS, INC.	TIC	CKET # 481143
	ROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777	DATE & TIME:	8/30/2011 10:18:18 AM
CUSTOMER:	22650 - DLB Earthworks	SHIP LOC. :	4 Rochester
јов :	11555 _ East Bay Public Plaza	JOB PO # :	
JOB ADD.: JOB CITY:	421 Jefferson St NE Olympia	MAP PAGE :	٥
PRODUCT :	92 - Certified Scale Contaminated Dirt Back Haul	TRUCK TYPE : TRUCK # :	Picked Up 18-701 18-701 31.45 tn 63.81 tn 1401 56 tn
CARRIER:	01 - Quality Rock Products Inc	TRAILER # :	18-701
GROSS : TARE :	102220 lb 39320 lb	NET TONS : DAILY TONS :	31.45 tn 63.81 tn
NET :	62900 16	JOB TOTAL :	1401:30 (1)
			\$199-872 (80.1)
	IGN:Ticket B	NOTES:	Florerial Recovery L Jransfer Locil
	ME:		InameronoM etspVV billiot
STANDBY IN:	ITIALS:		Aundi (m)
QUALI	TY ROCK PRODUCTS, INC.	TIC	CKET # 481115
.0201 LITTLE	ROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777	DATE & TIME:	8/30/2011 7:49:35 AM
CUSTOMER:	22650 - DLB Earthworks	SHIP LOC. :	4 Rochester
JOB :	11555 - East Bay Public Plaza	JOB PO # :	X
JOB ADD.: JOB CITY:	421 Jefferson St NE Olympia	MAP PAGE :	2 1
PRODUCT :	92 - Certified Scale Contaminated Dirt Back Haul	TRUCK TYPE :	Picked Up
CARRIER :	01 - Quality Rock Products Inc	TRUCK # : TRAILER # :	Picked Up 18-703 18-703 32.36 tn
GROSS :	103560 lb	NET TONS : DAILY TONS :	32.36 tn A
TARE : NET :	38840 lb 64720 lb	JOB TOTAL :	1370.11 tn

STANDBY INITIALS:___

____Ticket B CUSTOMER SIGN:___ STANDBY TIME:____

7000 500 000000

NOTES:

TICKET # 300977 QUALITY ROCK PRODUCTS, 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 8/29/2011 2:29:02 PM DATE & TIME: SHIP LOC. : 2 22650 - DLB Earthworks **CUSTOMER:** JOB PO # 11555 - East Bay Public Plaza JOB JOB ADD.: 421 Jefferson St NE MAP PAGE JOB CITY: Olympia 92 - Certified Scale Contaminated Dirt Backhaul TRUCK TYPE : Picked Up PRODUCT : 18-701 18-701 TRUCK # TRAILER # 01 - Quality Rock Products, Inc. CARRTER: 31.46 tn NET TONS 102440 lb GROSS DAILY TONS : JOB TOTAL : 62.78 tn 62.78 tn 39520 1b 62920 1b TARE NET Wayerhaeuser Company Integrated Waste Management NOTES: _____Ticket B CUSTOMER SIGN:___ Material Recovery | Transfer Facility STANDBY TIME:___ ⊕ Box 188 Limitalew, WA 98632 STANDBY INITIALS:___ TICKET # 300973 QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 8/29/2011 1:41:09 PM SHIP LOC. : 2 22650 - DLB Earthworks **CUSTOMER:** JOB PO # 11555 - East Bay Public Plaza JOB 421 Jefferson St NE JOB ADD.: MAP PAGE JOB CITY: Olympia Picked Up TRUCK TYPE : PRODUCT : 92 - Certified Scale Contaminated Dirt Backhaul 18-704 18-704 TRUCK # TRAILER # 01 - Quality Rock Products, Inc. CARRIER : 101120 lb 38480 lb 62640 lb **NET TONS** 31.32 tn GROSS DAILY TONS : 31.32 tn TARE 31.32 tn JOB TOTAL : NET ____Ticket Ahamar Levans NOTES: CUSTOMER SIGN:__ oled World Malescopers Material Recovery Francier receils STANDBY TIME: PO Box 188 STANDBY INITIALS:__ Longview, WA 28632 (206) 578-4616

DOCK DOODLICTS TNC

4	(U	HL	. т	1 1	ſ	7	U			V	OL	<i>,</i> \cup	C	ı	•	•	TIA	C .	
10	201	LITT	LER	оск	RD	SW	-	OLYM	PIA,	WA	9851	L2	-	OFFI	CE:	360	0-754	-7777	,
												-							
	CUST	TOMER	≀:	226	550	-	DLE	B Ear	thwo	rks									
	JOB JOB JOB	ADD.	· · · · · · · · · · · · · · · · · · ·	115 421 Oly	555 L Je /mpi	- effe a	Eas rsor	t Bay	y Pu NE	blid	Pla	aza							
. 1	PROD	DUCT	:	92	-	Ce	rtii	fied s	scal	e Co	ontan	nina	ited	Dir	t Ba	ack	Haul		
	CARF	RIER	:	01	-	Qu	alit	y Ro	ck P	rodı	ıcts	Inc	:						
	GROS TARE NET	SS E	:	987 388 599	740 340 900	1b 1b 1b													
	CUST	TOMER	R SI	GN:_										_Tic	ket	В			
	STAN	IDBY	TIM	E:										_					

STANDBY INITIALS:_____

TICKET # 481062

8/29/2011 12:43:56 PM DATE & TIME:

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # 18-703

TRAILER # 18-703 NET TONS : DAILY TONS : 29.95 tn

136.09 tn JOB TOTAL : 389.14 tn

NOTES:

her graves virusin income moved Protectal Recovery in the Parish FU 50x 118 LEUSVIEW, W.R. 98632

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

22650 - DLB Earthworks CUSTOMER:

11555 - East Bay Public Plaza

JOB ADD.: 421 Jefferson St NE

JOB CITY: Olympia

PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul

01 - Quality Rock Products Inc CARRIER:

105840 lb GROSS 37840 lb 68000 lb TARE NET

_____Ticket C CUSTOMER SIGN:___ STANDBY TIME:____ STANDBY INITIALS:___

TICKET # 481026

8/29/2011 9:01:59 AM DATE & TIME:

SHIP LOC. : 4 Rochester

JOB PO #

919#-8/G (chr) MAP PAGE EE986 VM 'MARASINE

TRUCK TYPE : Picked Up 881 von 18-704 Juni / Alexandr pour TRUCK #

18-704 орган TRAILER # :

34.00 th NET TONS DAILY TONS : JOB TOTAL : 106.14 tn 359.19 tn

NOTES:

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

22650 - DLB Earthworks CUSTOMER:

11555 - East Bay Public Plaza 421 Jefferson St NE

JOB :

JOB CITY: Olympia

PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul

01 - Quality Rock Products Inc CARRIER:

109460 lb GROSS 39320 1b 70140 1b TARE NET

_____Ticket C CUSTOMER SIGN:___

STANDBY TIME:____

STANDBY INITIALS:___

TICKET # 481022

8/29/2011 8:45:46 AM DATE & TIME:

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # TRAILER # :

NET TONS DAILY TONS : JOB TOTAL : 72.14 tn 325.19 tn

NOTES:

5191-872 (302) ESSE AW , WEIVER BSL XOS OF

Menai Recovery Linuster Lacility nemeganaM etsaWv bettal

Auponon 40

OUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

22650 - DLB Earthworks CUSTOMER:

11555 - East Bay Public Plaza

JOB ADD.: 421 Jefferson St NE

olympia JOB CITY:

92 - Certified Scale Contaminated Dirt Back Haul PRODUCT :

01 - Quality Rock Products Inc CARRIER :

112980 lb GROSS TARE

38840 lb 74140 lb NET

_____Ticket B CUSTOMER SIGN:____

STANDBY TIME:____ STANDBY INITIALS:___ TICKET # 481017

8/29/2011 8:31:25 AM DATE & TIME:

SHIP LOC. : 4 Rochester

10B PO #

MAP PAGE

TRUCK TYPE : Picked Up 18-703 18-703 TRUCK # TRAILER # :

NET TONS : DAILY TONS : 37.07 tn 37.07 tn JOB TOTAL : 290.12 tn

NOTES: lengt Freezyd y Troche Freezy FU 50x 188 Lingsiew, WA 98632 (260) 5, 5-4014

36804

Quality Rock Products Inc

10201 Littlerock Rd SW Olympia, WA 98512 Phone: (360) 754-7777

7

PIT LOCATION

0.17
LITTLEROCK ROCHESTER DELPHI OTHER CAST BAY SINGA
DATE: 8/86/11TIME: 6500
CUSTOMER:
JOB: Cast Bay Sloga
PRODUCT: Dirt PO#: 1/555
CARRIER: VKP
TRUCK#: 18-708 - DELIVERED PICKED UP
Programmer Company
GROSS WT. 97.500 Moterial Recovery LT
NET WT. 59 480 Longwiew, WA 98632
NET TONS 2964
NOTES:
Case Dag
a te
aleashouses
CUSTOMER SIGNATURE:
STANDBY TIME: INITIALS:
5 (5)

Weyerhaeuser MRF 3401 Industrial Way Longview, WA 98632 360-578-4616 N N

Ticket #: 146,682

In: 12:25:58 8/26/2011 Out: 12:37:46 8/26/2011

Truck Id: 2
Customer Id: 575
Product Id: 61

Truck #: 18704

SAFETY FIRST

Gross Lbs: 99,480

Tare Lbs: 37,820

Net Lbs: 61,660

Net Tons 30.83

LOT H

Weyerhaeuser MRF 3401 Industrial Way Longview, WA 98632 360-578-4616

Ticket #: 145,677

In: 11:49:19 8/26/2011 Out: 12:07:43 8/26/2011

Truck Id: 16
Customer Id: 575
Product Id: 61

Truck #: 703 SAFETY FIRST

Gross Lbs: 102,320
Tare Lbs: 37,880
Net Lbs: 64,440

Rental needs Lignature

Weyerhaeuser MRF 3401 Industrial Way Longview, WA 98632 360-578-4616

Ticket #: 146,681

In: 12:22:43 8/26/2011 Out: 12:33:54 8/26/2011

Truck Id: 19
Customer Id: 575
Product Id: 611

Truck #: 7088 SAFETY FIRST

Gross Lbs: 103,240
Tare Lbs: 37,980
Net Lbs: 65,260
Net Tons 32.63

Weyerhaeuser MRF 3401 Industrial Way Longview, WA 98632 360-578-4616

Ticket #: 146,658

In: 9:21:02 8/26/2011 Out: 9:35:08 8/26/2011

Truck Id: 16
Customer Id: 575
Froduct Id: 61

Truck #: 701 SAFETY FIRST

Gross Lbs: 99,660
Tare Lbs: 38,180
Net Lbs: 61,480

Quality Rock Products Inc 36763

10201 Littlerock Rd SW Olympia, WA 98512 Phone: (360) 754-7777

PIT LOCATION

LITTLEROCK	ROCHESTER DELPHI OTHER:
DATE:	8/25(11. TIME: 2:20
CUSTOMER:	DLB Earthworks Job #11555
JOB:	East Bay Public Plaza Olympia, wa
PRODUCT:	Blt contaminents po#:
CARRIER:	are
TRUCK#:	18-704 DELIVERED PICKED UP
GROSS WT.	100,520
	37,980
NET WT.	marytras 62,540
	31.27
NOTES:	Departer Vaste Management Material Recovery / Transfer Facility FU Box 188 Congriew, WA 98632 (2001)
CUSTOMER S	

TTCKET # 480823 **OUALITY ROCK PRODUCTS, INC.** 8/25/2011 12:22:04 PM DATE & TIME: 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 SHIP LOC. : 4 Rochester 22650 - DLB Earthworks CUSTOMER: JOB PO # 11555 - East Bay Public Plaza 421 Jefferson St NE JOB ADD.: MAP PAGE olympia JOB CITY: 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : Picked Up PRODUCT: TRUCK # 18-703 TRAILER # 18-703 01 - Quality Rock Products Inc CARRIER : NET TONS : DAILY TONS : JOB TOTAL : GROSS 99160 lb 253.05 tn 253.05 tn 38840 lb TARE 60320 1b NET NOTES: _____Ticket B CUSTOMER SIGN:___ I light Recovery / Transfer Family 10 Box 188 STANDBY TIME:___ Lingview, WA 98632 STANDBY INITIALS:___ (200) 578-4016 **TICKET # 480819** QUALITY ROCK PRODUCTS, INC. 8/25/2011 11:59:18 AM DATE & TIME: 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 SHIP LOC. : 4 Rochester 22650 - DLB Earthworks CUSTOMER: 11555 - East Bay Public Plaza 421 Jefferson St NE JOB PO # 10B JOB ADD.: MAP PAGE JOB CITY: 01vmpia 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : Picked Up PRODUCT: TRUCK # 18-701 01 - Quality Rock Products Inc TRAILER # 18-701 CARRIER: **NET TONS** 102900 lb GROSS 222.89 tn 222.89 tn DAILY TONS : 39320 lb 63580 lb TARE JOB TOTAL : NET THE STATE OF THE S tongratus Weste Management Sugar at Recovery Tour his feet to NOTES: _____Ticket B CUSTOMER SIGN:_____ TO BIX 148 STANDBY TIME:__ Lenes La 78632 STANDBY INITIALS:___

STANDBY INITIALS:___

TICKET # 480815

8/25/2011 11:33:46 AM DATE & TIME:

4 Rochester SHIP LOC. :

JOB PO # :

MAP PAGE

Picked Up TRUCK TYPE : TRUCK # MUMME11

TRAILER #

30.79 tn NET TONS : DAILY TONS : 191.10 tn JOB TOTAL : 191.10 tn

NOTES:

Weyerhaeuser Company Integrated Waste Management Material Recovery | Iranster Facilities PO Box 188

Longview, WA 98632 (206) 578-4616

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

JOB : 11555 - East Bay Public Plaza

JOB ADD.: 421 Jefferson St NE

JOB CITY: Olympia

PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul

CARRIER: 01 - Quality Rock Products Inc

GROSS : 101660 lb TARE : 37840 lb NET : 63820 lb

CUSTOMER SIGN:_______Ticket A

STANDBY TIME:_____

STANDBY INITIALS:____

TICKET # 480811

DATE & TIME: 8/25/2011 10:56:28 AM

.

SHIP LOC. : 4 Rochester

JOB PO # :
MAP PAGE :

TRUCK TYPE: Picked Up TRUCK # : 18-704 TRAILER # : 18-704

NET TONS : 31.91 tn DAILY TONS : 160.31 tn JOB TOTAL : 160.31 tn

NOTES:

Nuterial Recovery Transle in action

10 Box 188

Lingview, WA 98632 (206) 5/8-4614

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

JOB : 11555 - East Bay Public Plaza

JOB ADD.: 421 Jefferson St NE

JOB CITY: Olympia

PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul

CARRIER: 01 - Quality Rock Products Inc

GROSS : 98460 lb TARE : 38240 lb NET : 60220 lb

CUSTOMER SIGN:_______Ticket B

STANDBY TIME:_____

STANDBY INITIALS:____

TICKET # 480809

DATE & TIME: 8/25/2011 10:43:37 AM

SHIP LOC. : 4 Rochester

JOB PO # :

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # : 18-708 TRAILER # : 18-708

NET TONS : 30.11 tn DAILY TONS : 128.40 tn

JOB TOTAL : 128.40 tnV ry thouser Company

Integrated Waste Management Material Recovery / Jransfer Facility PO Box 188

'NOTES:

Longview, WA 98632 (205) 578-4516

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

JOB : 11555 - East Bay Public Plaza

JOB ADD.: 421 Jefferson St NE

JOB CITY: Olympia

PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul

CARRIER: 01 - Quality Rock Products Inc

GROSS : 104300 lb TARE : 38840 lb NET : 65460 lb

CUSTOMER SIGN:______Ticket B

STANDBY TIME:_____

STANDBY INITIALS:_____

TICKET # 480780

DATE & TIME: 8/25/2011 8:18:35 AM

SHIP LOC. : 4 Rochester

JOB PO # :

MAP PAGE :

TRUCK TYPE: Picked Up
TRUCK # : 18-703
TRAILER # : 18-703

NET TONS : 32.73 tn DAILY TONS : 98.29 tn JOB TOTAL : 98.29 tn

NOTES:

free proof According to the version of the second to the s

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

JOB : 11555 - East Bay Public Plaza

JOB ADD.: 421 Jefferson St NE

JOB CITY: Olympia

PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul

CARRIER: 01 = Quality Rock Products Inc

GROSS : 103000 lb TARE : 39320 lb NET : 63680 lb

CUSTOMER SIGN:______Ticket B

STANDBY TIME:_____

STANDBY INITIALS:_____

TICKET # 480776

DATE & TIME: 8/25/2011 7:58:04 AM

SHIP LOC. : 4 Rochester

JOB PO # :

MAP PAGE

NOTES:

TRUCK TYPE: Picked Up
TRUCK #: 18-701
TRAILER #: 18-701

NET TONS : 31.84 tn DAILY TONS : 65.56 tn JOB TOTAL : 65.56 tn

Integrated Waste Management

Material Recovery / Transfer Facility

PO Box 188

Lorevew, WA 98632 (205) 578-4-16

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

JOB : 11555 - East Bay Public Plaza

JOB ADD.: 421 Jefferson St NE

JOB CITY: Olympia

PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul

CARRIER: 4103 - Mumme Excavating LLC

GROSS : 107520 lb TARE : 40080 lb NET : 67440 lb

CUSTOMER SIGN:______Ticket B

STANDBY TIME:_____

STANDBY INITIALS:_____

TICKET # 480771

DATE & TIME: 8/25/2011 7:37:43 AM

SHIP LOC. : 4 Rochester

JOB PO # :

MAP PAGE :

TRUCK TYPE : Picked Up
TRUCK # : MUMME11

TRAILER #

NET TONS : 33.72 tn DAILY TONS : 33.72 tn

DAILY TONS: 33.72 tn JOB TOTAL: 33.72 tn

NOTES:

Weyerhaeuser Company
Integrated Waste Management
Material Recovery | Transfer Facility

PQ Box 188

Longview, WA 98632 (206) 578-4616

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

JOB : 11555 - East Bay Public Plaza

JOB ADD.: 421 Jefferson St NE

JOB CITY: Olympia

PRODUCT: 91ST - Dirt Back Haul by the Ton
CARRIER: 01 - Quality Rock Products, Inc.

GROSS : 109980 lb TARE : 37980 lb NET : 72000 lb

CUSTOMER SIGN:_____Ticket A

STANDBY TIME:____

STANDRY INITIALS:

TICKET # 300783

DATE & TIME: 8/24/2011 2:56:57 PM

SHIP LOC. : 2

JOB PO # :

TRUCK TYPE: Picked Up
TRUCK # : 18-704
TRAILER # : 18-704

NET TONS : 36.00 tn DAILY TONS : 68.87 tn JOB TOTAL : 166.31 tn

Majorial Recovery Turns FO Bits 188

NOTES:

LINGSON, PAR STREET

GROSS :

CUSTOMER SIGN:____

STANDBY TIME:____

STANDBY INITIALS:_

TARE NET

102260 lb

39320 lb

62940 1b

TICKET # 300780 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 8/24/2011 2:45:27 PM DATE & TIME: SHIP LOC. : 2 CUSTOMER: 22650 - DLB Earthworks JOB PO # 11555 - East Bay Public Plaza JOB 421 Jefferson St NE JOB ADD.: MAP PAGE JOB CITY: olympia TRUCK TYPE : TRUCK # : Picked Up 91ST - Dirt Back Haul by the Ton PRODUCT: 18-708 TRAILER # : 01 - Quality Rock Products, Inc. CARRIER: 32.87 tn 32.87 tn 130.31 tn NET TONS : DAILY TONS : JOB TOTAL : 104240 lb GROSS 38500 1b 65740 1b TARE NET \$198-872 (205) NOTES: 100.98 AW , WD VEOLS _____Ticket A CUSTOMER SIGN:___ 881 xc= ~ STANDBY TIME:__ Land a recovery / Transler, Locuity Justine burne of the STANDBY INITIALS:____ **TICKET # 480720** QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 8/24/2011 12:39:00 PM CUSTOMER: 22650 - DLB Earthworks SHIP LOC. : 4 Rochester JOB 11555 - East Bay Public Plaza JOB PO # JOB ADD.: 421 Jefferson St NE JOB CITY: Olympia MAP PAGE PRODUCT : 91ST = Dirt Back Haul by the Ton TRUCK TYPE : Picked Up TRUCK # 18-703 CARRTER : 01 - Quality Rock Products Inc TRAILER # : 18-703 104620 1b GROSS **NET TONS** 32.89 tn 38840 1b 65780 1b TARE DAILY TONS : 248.97 tn JOB TOTAL : NET 948.61 tn CUSTOMER SIGN:___ NOTES: E 986 VA 98833 STANDBY TIME:__ ו אור ואפנא | ונסטיופני [מכון [א STANDBY INITIALS:___ linemediana di editeri Aucoun QUALITY ROCK PRODUCTS, INC. TICKET # 480711 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 8/24/2011 12:19:02 PM DATE & TIME: CUSTOMER: 22650 - DLB Earthworks SHIP LOC. : 4 Rochester JOB : 11555 - East Bay Public Plaza JOB PO # 421 Jefferson St NE JOB CITY: Olympia MAP PAGE PRODUCT : 91ST - Dirt Back Haul by the Ton TRUCK TYPE : Picked Up TRUCK # 18-701 CARRIER : 01 - Quality Rock Products Inc TRAILER # 18-701

_____Ticket B

NET TONS

NOTES:

DAILY TONS : JOB TOTAL :

31.47 tn

216.08 tn 915.72 tn

PO Box 188

Lingview, WA 98632 (206) 578-4616

Imagistes Waste Management Material Recovery / Transfer Facette

STANDBY INITIALS:__

Т

TICKET # 480701

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 8/24/2011 11:50:10 AM CUSTOMER: 22650 DLB Earthworks SHIP LOC. : 4 Rochester 11555 East Bay Public Plaza JOB PO # JOB ADD.: 421 Jefferson St NE JOB CITY: Olympia MAP PAGE TRUCK TYPE : PRODUCT: 91ST - Dirt Back Haul by the Ton Picked Up TRUCK # MUMME11 CARRIER : 4103 - Mumme Excavating LLC TRAILER # 110620 lb 40080 lb 70540 lb GROSS NET TONS NET TONS : DAILY TONS : JOB TOTAL : 35.27 tn TARE 184.61 tn 884.25 tn NFT Vveyerhaeuser Company Integrated Waste Management CUSTOMER SIGN:____ ____Ticket C NOTES: Material Recovery | Iranster Facility STANDBY TIME:_____ PO Box 188 Longview, WA 98632 STANDBY INITIALS:____ (206) 578-4616 **TICKET # 480685** QUALITY ROCK PRODUCTS, INC. 8/24/2011 10:48:12 AM 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: SHIP LOC. : 4 Rochester 22650 - DLB Earthworks CUSTOMER: JOB PO # 11555 - East Bay Public Plaza JOB 421 Jefferson St NE 'JOB ADD.: MAP PAGE JOB CITY: Olympia Picked Up TRUCK TYPE : PRODUCT: 91ST - Dirt Back Haul by the Ton TRUCK # 18-704 TRAILER # 18-704 CARRIER: 01 - Quality Rock Products Inc **NET TONS** 28.03 tn 93900 lb NET TONS : DAILY TONS : GROSS 149.34 tn 37840 lb 56060 lb TARE JOB TOTAL : 848.98 tn NET: their receivery limited to the NOTES: __Ticket B CUSTOMER SIGN:___ STANDBY TIME:_ STANDBY INITIALS:___ **TICKET # 480680** QUALITY ROCK PRODUCTS, INC. 8/24/2011 10:29:49 AM 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 4 Rochester SHIP LOC. : **CUSTOMER:** 22650 - DLB Earthworks 11555 - East Bay Public Plaza 421 Jefferson St NE JOB PO # 11555 JOB ADD.: MAP PAGE JOB CITY: olympia \$5986 AW , we v TRUCK TYPE : Picked Up 91ST - Dirt Back Haul by the Ton PRODUCT: 881 XGB 18-708 TRUCK # Fillian Recovery | Transfer Lacilita TRAILER # 18-708 01 - Quality Rock Products Inc CARRIER: InsmaganaM etasty ante NET TONS Aupd on Jo 28.89 tn 96020 1b GROSS DAILY TONS : 121.31 tn 38240 1b 57780 1b TARE 820.95 tn JOB TOTAL : NET NOTES: _____Ticket B CUSTOMER SIGN:___ STANDBY TIME:___

•						
.0201 LITTLEROCK RD SW	-	OLYMPIA, W	A 98512	-	OFFICE:	360-754-7777

CUSTOMER: 22650 - DLB Earthworks

11555 - East Bay Public Plaza

421 Jefferson St NE JOB ADD.:

JOB CITY: Olympia

91ST Pirt Back Haul by the Ton PRODUCT: 01 @ Quality Rock Products Inc CARRIER:

100360 lb GROSS 38800 1b 61560 1b TARE NET

CUSTOMER SIGN:___

STANDBY TIME:____

STANDBY INITIALS:___

TICKET # 480657

8/24/2011 8:29:59 AM DATE & TIME:

SHIP LOC. : 4 Rochester

JOB PO # MAP PAGE

TRUCK TYPE : Picked Up TRUCK # 18-703 TRUCK # : TRAILER # :

NET TONS NET TONS : DAILY TONS : 30.78 tn 92.42 tn 792.06 tn JOB TOTAL :

NOTES:

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

11555 - East Bay Public Plaza JOB

JOB ADD.: 421 Jefferson St NE

JOB CITY: Olympia

91ST - Dirt Back Haul by the Ton PRODUCT: CARRTER : 01 - Quality Rock Products Inc

GROSS

CUSTOMER SIGN:

102060 1b 39149 1b 39,27-0 62920 1b TARE NET

______Ticket C

STANDBY TIME:___

STANDBY INITIALS:___

TICKET # 480654

8/24/2011 8:09:18 AM DATE & TIME:

SHIP LOC. : 4 Rochester

JOB PO # MAP PAGE

TRUCK TYPE : Picked Up 18-701 18-701 TRUCK # TRAILER #

NET TONS 31.46 tn DAILY TONS : 61.64 tn JOB TOTAL : 761.28 tn

Weyerhaeuser Company NOTES:

Integrated Waste Management Material Recovery / Transfer Facility

PO Box 188

Longview, WA 98632 (206) 578-4616

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

22650 - DLB Earthworks CUSTOMER:

East Bay Public Plaza 11555

JOB ADD.: 421 Jefferson St NE

Olympia JOB CITY:

91ST - Dirt Back Haul by the Ton PRODUCT:

4103 - Mumme Excavating LLC CARRIER :

100440 lb GROSS 40080 lb TARE 60360 1b NET

CUSTOMER SIGN:_____ ___Ticket C

STANDBY TIME:____

STANDBY INITIALS:___

TICKET # 480651

DATE & TIME: 8/24/2011 7:42:52 AM

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

Picked Up TRUCK TYPE : TRUCK # MUMME11

TRAILER #

NET TONS 30.18 tn DAILY TONS : 30.18 tn JOB TOTAL : 729.82 tn

Weyerhaeuser Company

integrated Waste Management NOTES: Material Recovery | Iransfer Facility

PO Box 188

Longview, WA 98632 (206) 578-4616

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 22650 - DLB Earthworks CUSTOMER: 11555 😑 East Bay Public Plaza JOB : 421 Jefferson St NE OB CITY: Olympia PRODUCT : 91ST - Dirt Back Haul by the Ton 01 - Quality Rock Products, Inc. CARRIER: 105000 lb GROSS 37940 1b 67060 1b TARE NET

TICKET # 300624

8/23/2011 3:13:50 PM DATE & TIME:

SHIP LOC. : 2 JOB PO # :

MAP PAGE

Picked Up 18-704 18-704 TRUCK TYPE : TRUCK # TRAILER # 33.53 tn NET TONS : DAILY TONS : 65.69 tn

Fotorial Recovery

NOTES:

DATE & TIME:

SHIP LOC. :

TRUCK TYPE :

DAILY TONS :

JOB TOTAL :

10B PO #

MAP PAGE

TRUCK # TRAILER #

NET TONS

NOTES:

JOB TOTAL :

97.44 tn

TICKET # 300623

Wayerhaeuser Company

18-708₈₈ 18-708

31 60 km

32.16 tn

63.91 tn

I tegrated Waste Management

Pickede Upery / Transfer Facility

4 98632

2

8/23/2011 3:12:21 PM

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

22650 - DLB Earthworks CUSTOMER:

11555 - East Bay Public Plaza

421 Jefferson St NE JOB ADD.:

JOB CITY: olympia

CUSTOMER SIGN:_____ STANDBY TIME:____

STANDBY INITIALS:_____

91ST - Dirt Back Haul by the Ton PRODUCT :

¢ARRIER : 01 - Quality Rock Products, Inc.

101500 lb **GROSS**

STANDBY INITIALS:___

37180 1b 38 2 3 64320 1b 63 2 3 TARE NET

____Ticket A CUSTOMER SIGN:_ STANDBY TIME:___

__Ticket A

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

QUALITY ROCK PRODUCTS, INC.

CUSTOMER: 22650 - DLB Earthworks

JOB : 11555 - East Bay Public Plaza

421 Jefferson St NE

JOB CITY: olvmpia

PRODUCT : 91ST - Dirt Back Haul by the Ton CARRIER: 01 - Quality Rock Products Inc

104860 lb GROSS 38000 1b 66860 1b TARE NET

_____Ticket C CUSTOMER SIGN:___

STANDBY TIME:____ STANDBY INITIALS:___ **TICKET # 480616**

8/23/2011 12:30:47 PM DATE & TIME:

SHIP LOC. : 4 Rochester

JOB PO # MAP PAGE

TRUCK TYPE : Picked Up TRUCK # 18-701 18-701 TRAILER #

NET TONS 33.43 tn DAILY TONS :

249.03 tn 699.64 tn 825 (907) JOB TOTAL : Longview, WK 98637

881 xo8 Oa

Children Recovery Lansler Eachily NOTES: иемебриру наруу рег

Aucollur

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

11555 - East Bay Public Plaza

421 Jefferson St NE JOB ADD.:

JOB CITY: Olympia

PRODUCT: 91ST Dirt Back Haul by the Ton 01 @ Quality Rock Products Inc CARRIER:

105680 lb GROSS 38340 lb 67340 lb TARE

NET

__Ticket C CUSTOMER SIGN:___

STANDBY TIME:____

STANDBY INITIALS:___

TICKET # 480614

DATE & TIME: 8/23/2011 12:01:57 PM

SHIP LOC. : 4 Rochester

JOB PO # MAP PAGE

TRUCK TYPE : Picked Up 18-703 18-703 TRUCK # TRAILER # :

NET TONS : DAILY TONS : 33.67 tn 215.60 tn JOB TOTAL : 666.21 tn

Integrated Waste Management NOTES: Material Recovery / Transfer Family

PO Box 188

Longview, WA 98612 (206) 578-4616

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW -- OLYMPIA, WA 98512 -- OFFICE: 360-754-7777

22650 - DLB Earthworks **CUSTOMER:**

11555 - East Bay Public Plaza

421 Jefferson St NE JOB ADD.:

JOB CITY: Olympia

PRODUCT: 91ST - Dirt Back Haul by the Ton

4103 - Mumme Excavating LLC CARRIER :

109820 lb GROSS 40080 lb TARE 69740 lb NET

CUSTOMER SIGN:__

STANDBY TIME:__

STANDBY INITIALS:

TICKET # 480609

DATE & TIME: 8/23/2011 11:26:10 AM

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # MUMME11

TRAILER #

NET TONS DAILY TONS JOB TOTAL

34.87 tn 181.93 tn 632.54 tn Company

Integrated Waste Management Material Recovery / Iransfer facilities

NOTES:

PO Box 188

Longview, WA 98632 (206) 578-4616

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

11555 - East Bay Public Plaza 421 Jefferson St NE JOB

JOB ADD.:

JOB CITY: Olympia

91ST - Dirt Back Haul by the Ton PRODUCT : 01 - Quality Rock Products Inc CARRIER:

101780 lb GROSS 38260 lb 63520 lb TARE

CUSTOMER SIGN:_____

STANDBY TIME:___

STANDBY INITIALS:___

TICKET # 480604

8/23/2011 10:48:47 AM DATE & TIME:

4 Rochester SHIP LOC. :

JOB PO #

MAP PAGE

Picked Up 18-708 TRUCK TYPE : TRUCK # 18-708 TRAILER #

31.76 tn 147.06 tn **NET TONS** DAILY TONS JOB TOTAL

597.67 tn

VIOF-879 (90Z) EE986 VM MENSURY

NOTES:

881 XE S Mecovery / Iransfer focility nemeganaM etsaVV tielle Aubdium as may an

QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

DATE & TIME:

TICKET # 480602

CUSTOMER:

22650 - DLB Earthworks

11555 - East Bay Public Plaza

JOB ADD.:

421 Jefferson St NE

JOB CITY:

Olympia

PRODUCT:

91ST - Dirt Back Haul by the Ton

CARRIER:

01 - Quality Rock Products Inc

GROSS TARE

94760 1b 37980 1b

NET

56780 1b

CUSTOMER SIGN:__

__Ticket A

STANDBY TIME:_

STANDBY INITIALS:_____

Virginia and Constitute

8/23/2011 10:41:06 AM

4 Rochester

Picked Up

28.39 tn

115.30 tn 565.91 tn

18-704

18-704

Imagicited Vegeta Meangainard Noterial Recovery - Franke For Tr

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER:

22650 - DLB Earthworks

11555 - East Bay Public Plaza

JOB ADD.: JOB CITY: 421 Jefferson St NE

Olympia

PRODUCT:

91ST - Dirt Back Haul by the Ton

CARRIER:

01 - Quality Rock Products Inc

GROSS TARE

96100 lb

NET

38000 1b 58100 1b

CUSTOMER SIGN:___

_____Ticket B

STANDBY TIME:____

STANDBY INITIALS:_____

TICKET # 480593

DATE & TIME:

SHIP LOC. :

TRUCK TYPE :

NET TONS : DAILY TONS :

JOB TOTAL :

JOB PO #

MAP PAGE

TRUCK #

NOTES:

TRAILER #

8/23/2011 8:23:05 AM

SHIP LOC. :

JOB PO #

MAP PAGE

TRUCK TYPE : TRUCK #

Picked Up 18-701 18-701

4 Rochester

TRAILER #

NET TONS DAILY TONS : 29.05 tn 86.91 tn 537.52 tn

JOB TOTAL :

NOTES:

\$104-872 (001)

E288 AW , WB V. 1.

881 xcc O

School Recovery | Iransfor Lacility hemogonoM atta Wondgemen!

Aupolion as many as to

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER:

22650 - DLB Earthworks

JOB ADD.:

11555 - East Bay Public Plaza 421 Jefferson St NE

JOB CITY:

Olympia

PRODUCT : CARRIER:

91ST - Dirt Back Haul by the Ton

01 - Quality Rock Products Inc

GROSS

94060 lb

TARE NET

38340 lb 55720 lb

_____Ticket C CUSTOMER SIGN:____

STANDBY TIME:___

STANDBY INITIALS:____

TICKET # 480590

DATE & TIME: 8/23/2011 7:55:31 AM

SHIP LOC. :

4 Rochester

JOB PO #

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # TRAILER # : 18-703

NET TONS 27.86 tn DAILY TONS : 57.86 tn 508.47 tn JOB TOTAL :

NOTES: Leval Fectivary , Fander Facility Engven, NA 48632 12601 5 3-4.14

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

22650 - DLB Earthworks CUSTOMER:

11555 - East Bay Public Plaza 421 Jefferson St NE JOR

JOB : JOB ADD.: JOB CITY:

Olympia

PRODUCT: 91ST - Dirt Back Haul by the Ton

CARRIER : 4103 - Mumme Excavating LLC

100080 lb 40080 lb 60000 lb GROSS TARE NET

CUSTOMER SIGN:_____ ______Ticket C STANDBY TIME:_____ STANDBY INITIALS:_____

TICKET # 480585

DATE & TIME: 8/23/2011 7:33:24 AM

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # : TRAILER # : MUMME11

NET TONS
DAILY TONS
JOB TOTAL

Wey30:00 The Management
Supply the Management
Material Translat facilities
Material 188

Longview, WA 98632

NOTES:

1206) 578-4616

THE CAT SCALE GUARANTEE THANK YOU FOR 95114585 The CAT Scale Company GUARANTEES that our scales will give an accurate weight. What makes us WEIGHING different from other scale companies is that we back up our guarantee with cash. IF YOU SHOULD GET AN OVERWEIGHT FINE, YOU SHOULD DO THE FOLLOWING TO GET THE PROBLEM RESOLVED: ON 1) Post bond and request a court date. CAT Call CAT Scale Company direct 24 hours a day at 1-877-CAT-SCALE (toll free). IMMEDIATELY send a copy of the citation, CAT Scale ticket, your name, company, SCALE! address, and phone number to CAT Scale Company Attn: Operations Manager. The four weights shown below are separate weights. The TOTAL WEIGHT was weighed on a full length platform scale. AXLE WEIGHTS CAN NOT BE CERTIFIED and are NOT LEGAL FOR TRADE, CERTIFIED however, CAT SCALE COMPANY GUARANTEES THESE WEIGHTS TO BE CORRECT. AUTOMATED 8-23-2011 DATE: STEER AXLE 29540 TRUCK 278 SCALE **DRIVE AXLE** 47000 16 GEE-CEE'S TRUCKSTOP CAT SCALE COMPANY SCALE I-S AND EXIT 57 LOCATION: P.O. BOX 630 TRAILER AXLE 97940 WALCOTT, IA 52773 TOLEDO WA (563) 284-6263 www.datscale.com **TOTAL WEIGHT** QUALITY ROCK COMPANY 3 TRAILER # WEIGHER'S SIGNATURE: **FULL WEIGH TICKET #** (IF REWEIGH) ONLY CERTIFIED WEIGHTS APPEAR BELOW THIS LINE **CERTIFIED WEIGHTS** (imprint seal) WEIGHMASTER CERTIFICATE THE CAT SCALE GUARANTEE THANK YOU FOR 95114584 The CAT Scale Company GUARANTEES that our scales will give an accurate weight. What makes us WEIGHING different from other scale companies is that we back up our guarantee with cash. TICKET NUMBER IF YOU SHOULD GET AN OVERWEIGHT FINE, YOU SHOULD DO THE FOLLOWING TO GET THE PROBLEM RESOLVED: ON Post bond and request a court date. CAT Call CAT Scale Company direct 24 hours a day at 1-877-CAT-SCALE (toll free). SCALE! IMMEDIATELY send a copy of the citation, CAT Scale ticket, your name, company, address, and phone number to CAT Scale Company Attn: Operations Manager. The four weights shown below are separate weights. The TOTAL WEIGHT was weighed on a full length platform scale. AXLE WEIGHTS CAN NOT BE CERTIFIED and are NOT LEGAL FOR TRADE, CERTIFIED however, CAT SCALE COMPANY GUARANTEES THESE WEIGHTS TO BE CORRECT. 20720 **A**UTOMATED DATE: 8-23-2011 STEER AXLE 3142 Profise Vempony TRUCK Integraled Waste Management 3 9 Lytarenja Recovery Transfer, Eacility SCALE **DRIVE AXLE** PO Box 188 GEE-CEE'S TRUCKSTOP CAT SCALE COMPANY SCALE LOCATION: Longview, WA 98637 P.O. BOX 630 TRAILER AXLE I-5 AND EXIT 57 WALCOTT, IA 52773 60 4200 578-361 TOLEDO (563) 284-6263 **TOTAL WEIGHT** QUALITY 708 TRACTOR # TRAILER # COMPANY TIFFANY RUSSO **FULL WEIGH TICKET #** WEIGHER'S SIGNATURE: (IF REWEIGH) ONLY CERTIFIED WEIGHTS APPEAR BELOW THIS LINE **CERTIFIED WEIGHTS** (imprint seal) WEIGHMASTER CERTIFICATE This is to certify that the following described commodity was weighed, measured, or counted by a Weighmaster, whose signature is on this Certificate, who is a recognized authority of accuracy, as prescribed by State Law. **GROSS** TARE COMMODITY WEIGHED: REMARKS: _

TRACTOR LICENSE #.

_ TRACTOR #

NET

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

11555 - East Bay Public Plaza

421 Jefferson St NE JOB ADD.:

JOB CITY: Olympia

91ST - Dirt Back Haul by the Ton PRODUCT:

01 - Quality Rock Products Inc CARRIER :

96620 lb GROSS 38000 1b 58620 1b TARE NET

_____Ticket C CUSTOMER SIGN:_____

STANDBY TIME:_____

STANDBY INITIALS:___

TICKET # 480547

DATE & TIME: 8/22/2011 1:09:07 PM

SHIP LOC. : 4 Rochester

JOB PO # MAP PAGE

TRUCK TYPE : Picked Up TRUCK # TRAILER #

NET TONS 29.31 tn 257.07 tn 450.61 tn DAILY TONS : JOB TOTAL :

Weyerhaeuser Company Integrated Waste Management NOTESoferial Recovery | Ironsfer Facility

PO Box 188 Longview, WA 98632 (206) 578-4614

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

11555 East Bay Public Plaza

JOB ADD.: 421 Jefferson St NE

JOB CITY: Olympia

PRODUCT: 91ST - Dirt Back Haul by the Ton 01 - Quality Rock Products Inc CARRIER:

99940 1b GROSS

38340 1b TARE 61600 lb NET

____Ticket C CUSTOMER SIGN:___

STANDBY TIME:__

STANDBY INITIALS:_____

TICKET # 480541

DATE & TIME: 8/22/2011 12:49:04 PM

SHIP LOC. : 4 Rochester

JOB PO # MAP PAGE

TRUCK TYPE : Picked Up TRUCK # 18-703 TRAILER # 18-703

30.80 tn **NET TONS** DAILY TONS : 227.76 tn JOB TOTAL : 421.30 tn

NOTES:

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

22650 - DLB Earthworks CUSTOMER:

11555 - East Bay Public Plaza

421 Jefferson St NE JOB ADD.:

JOB CITY: Olympia

91ST - Dirt Back Haul by the Ton PRODUCT:

4103 - Mumme Excavating LLC CARRIER :

100880 lb GROSS 40080 1b 60800 1b TARE NET

STANDBY INITIALS:___

______Ticket C CUSTOMER SIGN:___

STANDBY TIME:_

TTCKET # 480530

8/22/2011 11:47:00 AM DATE & TIME:

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

Picked Up TRUCK TYPE : TRUCK # MUMME11 TRAILER #

NET TONS 30.40 tn 196.96 tn 390.50 tn DAILY TONS : JOB TOTAL :

NOTES:

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 CUSTOMER: 22650 - DLB Earthworks 11555 - East Bay Public Plaza 421 Jefferson St NE JOB ADD.: JOB CITY: Olympia PRODUCT: 91ST - Dirt Back Haul by the Ton 01 - Ouality Rock Products Inc CARRTER : 102920 lb GROSS 37980 1b 64940 1b TARE NET __Ticket B CUSTOMER SIGN:____ STANDBY TIME:_____ STANDBY INITIALS:_____

TICKET # 480505

DATE & TIME: 8/22/2011 9:30:55 AM

4 Rochester SHIP LOC. :

JOB PO # MAP PAGE

TRUCK TYPE : Picked Up 18-704 TRUCK # 18-704 TRAILER # :

NET TONS 32.47 tn 166.56 tn DAILY TONS : JOB TOTAL : 360.10 tn

Wrytch aur er Compony

NOTES:

Integrated Waste Management Moterral Recovery | Transfer Facilities

FO Box 188

Commercia 14 4 78034

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

22650 - DLB Earthworks **CUSTOMER:**

11555 - East Bay Public Plaza

JOB : 421 Jefferson St NE

JOB CITY: Olympia

91ST - Dirt Back Haul by the Ton PRODUCT:

01 - Quality Rock Products Inc CARRIER :

105400 lb GROSS 38260 lb 67140 lb TARE

_____Ticket B CUSTOMER SIGN:____ STANDBY TIME:__

STANDBY INITIALS:___

TICKET # 480502

8/22/2011 9:04:34 AM DATE & TIME:

SHIP LOC. : 4 Rochester

JOB PO # MAP PAGE

Picked Up TRUCK TYPE : TRUCK # 18-708 TRAILER # : 18-708

NET TONS 33.57 tn NET TONS : DAILY TONS : 134.09 tn JOB TOTAL : 327.63 tn

NOTES:

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

11555 - East Bay Public Plaza

JOB : 421 Jefferson St NE

JOB CITY: Olympia

PRODUCT: 91ST - Dirt Back Haul by the Ton CARRIER : 01 - Quality Rock Products Inc

106060 lb GROSS TARE 38000 lb 68060 1b NET

CUSTOMER SIGN:___ _____Ticket C

STANDBY TIME:___

STANDBY INITIALS:__

TICKET # 480499

DATE & TIME: 8/22/2011 8:54:11 AM

SHIP LOC. : 4 Rochester

JOB PO # MAP PAGE

TRUCK TYPE : Picked Up TRUCK # 18-701 18-701 TRAILER #

34.03 tn 100.52 tn 294.06 tn NET TONS DAILY TONS : JOB TOTAL :

NOTES:

Weyerhoeuser Company Integrated Waste Management Material Recovery / Transfer Lacility

PO Box 188

Longview, WA 98632 (206) 578-4616

STANDBY TIME:_ STANDBY INITIALS:__

QUALITY ROCK PRODUCTS, INC.	11CKE1 # 400437
10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777	DATE & TIME: 8/22/2011 8:43:44 AM
CUSTOMER: 22650 - DLB Earthworks	SHIP LOC. : 4 Rochester
JOB : 11555 - East Bay Public Plaza	JOB PO # :
JOB ADD.: 421 Jefferson St NE JOB CITY: Olympia	MAP PAGE :
PRODUCT : 91ST - Dirt Back Haul by the Ton	TRUCK TYPE : Picked Up TRUCK # : 18-703
CARRIER: 01 - Quality Rock Products Inc	TRAILER # : 18-703
GROSS : 107080 lb TARE : 38340 lb NET : 68740 lb	NET TONS : 34.37 th DAILY TONS : 66.49 th JOB TOTAL : 260.03 th
CUSTOMER SIGN:Ticket B	NOTES:
STANDBY TIME:	
QUALITY ROCK PRODUCTS, INC.	TICKET # 480488
	DATE & TIME: 8/22/2011 7:43:31 AM
10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777	DATE & TIME: 0/22/2011 7.43.31 AM
CUSTOMER: 22650 - DLB Earthworks	SHIP LOC. : 4 Rochester
JOB : 11555 - East Bay Public Plaza JOB ADD.: 421 Jefferson St NE	JOB PO # :
JOB CITY: Olympia	MAP PAGE :
PRODUCT: 91ST - Dirt Back Haul by the Ton	TRUCK TYPE : Picked Up TRUCK # : MUMME11
CARRIER: 4103 - Mumme Excavating LLC	TRAILER # :
GROSS : 104320 lb TARE : 40080 lb NET : 64240 lb	NET TONS : 32.12 tn DAILY TONS : 32.12 tn JOB TOTAL : 225.66 tn
CUSTOMER SIGN:Ticket C	NOTES:
STANDBY TIME:	
STANDBY INITIALS:	
QUALITY ROCK PRODUCTS, INC.	TICKET # 48048
10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777	DATE & TIME: 8/22/2011 7:26:10 AM
CUSTOMER: 22650 - DLB Earthworks	SHIP LOC. : 4 Rochester
JOB : 11555 - East Bay Public Plaza	JOB PO # :
JOB ADD.: 421 Jefferson St NE JOB CITY: Olympia	MAP PAGE :
PRODUCT : 13 - 5/8"- CSTC Del	TRUCK TYPE : Truck & Trailer TRUCK # : 18-708
CARRIER: 01 - Quality Rock Products Inc	TRUCK # : 18-708 TRAILER # : 18-708
GROSS : 105540 lb TARE : 38260 lb NET : 67280 lb	NET TONS : 33.64 th DAILY TONS : 33.64 th JOB TOTAL : 100.20 th
CUSTOMER STGN. Ticket B	NOTES:

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

22650 - DLB Earthworks CUSTOMER:

11555 - East Bay I 421 Jefferson St NE East Bay Public Plaza JOB :

JOB CITY: Olympia

91ST - Dirt Back Haul by the Ton PRODUCT :

CARRIER: 4103 - Mumme Excavating LLC

107300 lb GROSS 40080 lb 67220 lb TARE

CUSTOMER SIGN:____ ____Ticket B

STANDBY TIME:_____

STANDBY INITIALS:___

TICKET # 480472

8/19/2011 12:42:24 PM DATE & TIME:

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # MUMME11

TRAILER #

33.61 tn NET TONS DAILY TONS : 162.10 tn

162.10 tn JOB TOTAL :

NOTES:

QUALITY ROCK PRODUCTS,

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

11555 - East Bay Public Plaza JOB

JOB ADD.: 421 Jefferson St NE

JOB CITY: Olympia

91ST - Dirt Back Haul by the Ton PRODUCT:

01 - Quality Rock Products Inc CARRIER :

102220 lb GROSS 38000 lb TARE 64220 1b NET

______Ticket B CUSTOMER SIGN:___

STANDBY TIME:___

STANDBY INITIALS:____

TICKET # 480468

DATE & TIME: 8/19/2011 11:56:15 AM

SHIP LOC. : 4 Rochester

JOB PO # MAP PAGE

TRUCK TYPE : Picked Up TRUCK # TRAILER # 18-701

NET TONS 32.11 tn 128.49 tn DAILY TONS : JOB TOTAL :Way 128.49 tn

Integrated Waste Managerner Moterial Recovery | Ligarder Facilities

NOTES: PO Box 188

Longview A. 78632

(206) 5/ 5-18TA

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

11555 - East Bay Public Plaza

421 Jefferson St NE JOB ADD.:

JOB CITY: Olympia

91ST - Dirt Back Haul by the Ton PRODUCT:

01 - Ouality Rock Products Inc CARRIER:

104980 lb GROSS 37980 1b 67000 1b TARE NET

CUSTOMER SIGN:____

STANDBY TIME:_

STANDBY INITIALS:___

TICKET # 480464

8/19/2011 10:53:14 AM DATE & TIME:

4 Rochester SHIP LOC. :

JOB PO # : MAP PAGE

NOTES:

TRUCK TYPE : Picked Up TRUCK # 18-704 18-704 TRAILER #

33.50 tn NET TONS : DAILY TONS : 96.38 tn JOB TOTAL :

96.38 tn

Versychemier Company kana sted Waste Management Miller of Recovery Transfer Lacilla

40 See 198

4 86 2

TICKET # 480461

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

11555 * East Bay Public Plaza

JOB : 421 Jefferson St NE

JOB CITY: Olympia 5191-872 (302)

91ST - Dirt Back Haul by the Ton MEIAGUET PRODUCT: 01 - Quality Rock Products Theun Times (Notes of the Products Theun Times of the Product Theun Times of CARRIER:

Integrated Waste Management 102800 lb GROSS Leave Donnor Company 38260 1b 64540 1b TARE NET

CUSTOMER SIGN: _Ticket B

STANDBY TIME:_

STANDBY INITIALS:_

DATE & TIME: 8/19/2011 10:35:21 AM

SHIP LOC. : 4 Rochester

JOB PO # MAP PAGE

TRUCK TYPE : Picked Up TRUCK # TRAILER #

NET TONS : DAILY TONS : JOB TOTAL : 62.88 tn 62.88 tn

NOTES:

QUALITY ROCK PRODUCTS Littlerock Site

PRINT WEIGHT TICKET

: 8/19/2011 10:25:52 AM

Scale

: 38160 lb Total

TiktTrir-701

QUALITY ROCK PRODUCTS Littlerock Site

#704

PRINT WEIGHT TICKET

Date : 8/19/2011 9:14:16 AM

Scale : 1

Total : 37900 lb

QUALITY ROCK PRODUCTS Grand Mound Scale

PRINT WEIGHT TICKET

Date : 8/19/2011 8:56:50 AM Scale : 1

Total : 38540 lb

STANDBY INITIALS:_____

TRUCKS TRLR# 708

QUALITY ROCK PRODUCTS, INC.

TICKET # 480445

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFI	ICE: 360-754-7777 DATE &	A TIME: 8/19/2011 8:15:23 AM
CUSTOMER: 22650 - DLB Earthworks JOB : 11555 - East Bay Public Plaza JOB ADD.: 421 Jefferson St NE JOB CITY: Olympia	SHIP LO JOB PO : MAP PAG	•
PRODUCT: 91ST - Dirt Back Haul by the Ton CARRIER: 4103 - Mumme Excavating LLC	TRUCK T TRUCK # TRAILER	
GROSS : 101300 lb TARE : 40080 lb NET : 61220 lb	DAILY TO	NS : 30.61 tn TONS : 30.61 tn NTAL : 30.61 tn
CUSTOMER SIGN:Tic STANDBY TIME: STANDBY INITIALS:	ket B NOTES:	

349

QUALI	TY ROCK PRODUCTS, INC.	TICK	KET # 3003
[0201 LITTLER	OCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777	DATE & TIME:	8/19/2011 8:01:18 AM
CUSTOMER:	22650 - DLB Earthworks	SHIP LOC. :	2
	11555 – East Bay Public Plaza 421 Jefferson St NE	JOB PO # :	
JOB ADD.: JOB CITY:	Olympia	MAP PAGE :	
PRODUCT :	91Y - Birty Brush Back Haul by the Yard Tirt	TRUCK TYPE : TRUCK # :	
CARRIER :	01 - Quality Rock Products, Inc.	TRUCK # :	
	101780 lb	NET TONS :	
	38280 1b 63500 1b	DAILY TONS : JOB TOTAL :	
CUSTOMER SI	GN:Ticket B	NOTES:	
STANDBY TIM	E:		

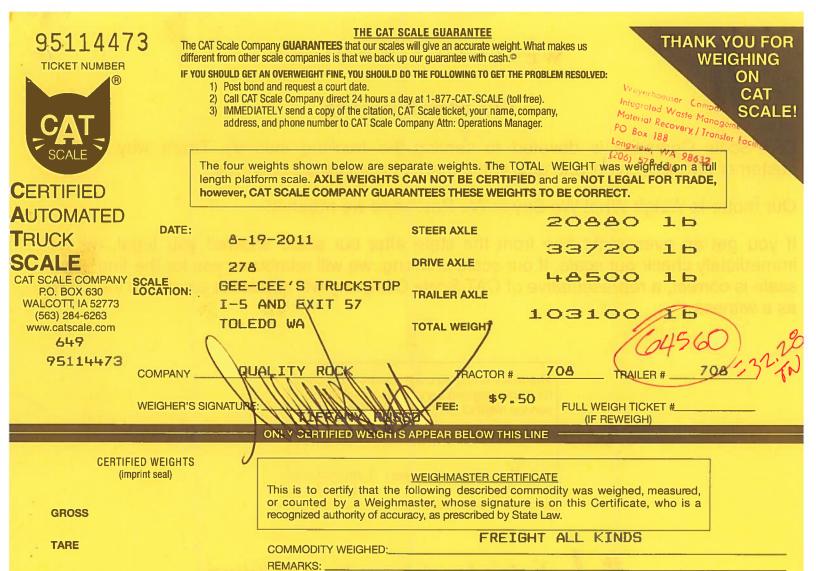
THE CAT SCALE GUARANTEE 95114475 THANK YOU FOR The CAT Scale Company GUARANTEES that our scales will give an accurate weight. What makes us different from other scale companies is that we back up our guarantee with cash. WEIGHING TICKET NUMBER IF YOU SHOULD GET AN OVERWEIGHT FINE, YOU SHOULD DO THE FOLLOWING TO GET THE PROBLEM RESOLVED: ON 1) Post bond and request a court date. CAT Call CAT Scale Company direct 24 hours a day at 1-877-CAT-SCALE (toll free). IMMEDIATELY send a copy of the citation, CAT Scale ticket, your name, company, SCALE! address, and phone number to CAT Scale Company Attn: Operations Manager. The four weights shown below are separate weights. The TOTAL WEIGHT was weighed on a full length platform scale. AXLE WEIGHTS CAN NOT BE CERTIFIED and are NOT LEGAL FOR TRADE, CERTIFIED however, CAT SCALE COMPANY GUARANTEES THESE WEIGHTS TO BE CORRECT. **A**UTOMATED 21120 16 DATE: STEER AXLE TRUCK 8-19-2011 31600 SCALE **DRIVE AXLE** CAT SCALE COMPANY SCALE 44820 GEE-CEE'S TRUCKSTOP P.O. BOX 630 LOCATION: TRAILER AXLE WALCOTT, IA 52773 I-5 AND EXIT 57 97540 (563) 284-6263 TOLEDO WA **TOTAL WEIGHT** www.catscale.com 800 95114475 QUALITY ROCK TRAILER # **COMPANY** TRACTOR # \$9.50 WEIGHER'S SIGNATURE FULL WEIGH TICKET # (IF REWEIGH) ONLY CERTIFIED WE'GHTS APPEAR BELOW THIS LINE **CERTIFIED WEIGHTS** (imprint seal) WEIGHMASTER CERTIFICATE THE CAT SCALE GUARANTEE 95114474 THANK YOU FOR The CAT Scale Company GUARANTEES that our scales will give an accurate weight. What makes us different from other scale companies is that we back up our guarantee with cash. WEIGHING **TICKET NUMBER** IF YOU SHOULD GET AN OVERWEIGHT FINE, YOU SHOULD DO THE FOLLOWING TO GET THE PROBLEM RESOLVED: ON Post bond and request a court date. CAT Call CAT Scale Company direct 24 hours a day at 1-877-CAT-SCALE (toll free). SCALE! IMMEDIATELY send a copy of the citation, CAT Scale ticket, your name, company, address, and phone number to CAT Scale Company Attn: Operations Manager. The four weights shown below are separate weights. The TOTAL WEIGHT was weighed on a full length platform scale. AXLE WEIGHTS CAN NOT BE CERTIFIED and are NOT LEGAL FOR TRADE, **C**ERTIFIED however, CAT SCALE COMPANY GUARANTEES THESE WEIGHTS TO BE CORRECT. **A**UTOMATED 21480 16 DATE: STEER AXLE TRUCK 8-19-2011 32440 SCALE **DRIVE AXLE** 278 CAT SCALE COMPANY SCALE LOCATION: 51120 GEE-CEE'S TRUCKSTOP TRAILER AXLE I-5 AND EXIT 57 WALCOTT, IA 52773 (563) 284-6263 TOLEDO WA **TOTAL WEIGHT** www.catscale.com 649 95114474 YTIZAUD 704 COMPANY. TRACTOR # WEIGHER'S SIGNATURE FULL WEIGH TICKET # (IF REWEIGH) ONLY CERTIFIED WEIGHTS APPEAR BELOW THIS LINE **CERTIFIED WEIGHTS** (imprint seal) WEIGHMASTER CERTIFICATE This is to certify that the following described commodity was weighed, measured, Integrated Waste Management or counted by a Weighmaster, whose signature is on this Certificate, who is a GROSSI Recovery | Transfer Facility

recognized authority of accuracy, as prescribed by State Law.

COMMODITY WEIGHED:_

REMARKS: _

FREIGHT ALL KINDS


NET

TARE

FO Box 188

VEW. WA 98632

578-4616

TRACTOR LICENSE # TRACTOR #_
TRAILER LICENSE # TRAILER #

_____ TRAILER # _

CAT SCALE COMPANY® 12/08

(WA)

TRAILER LICENSE # _

NAME OF WEIGHMASTER (print): _

WEIGHMASTER SIGNATURE:

NET

WEIGH NUMBER

4473

36728

Quality Rock Products Inc 10201 Littlerock Rd SW

10201 Littlerock Rd SW Olympia, WA 98512 Phone: (360) 754-7777

PIT LOCATION

LITTLEROCK R	ROCHESTER DELPHI OTHER! EASY BUY Plaza
DATE:	8-18-11 TIME: 7:00
CUSTOMER:	DILIB,
JOB:	gast Bay Plaza
PRODUCT:	Dirt-BackLaul po#: 11555
CARRIER:	Quality Roul
TRUCK #:	18-701 DELIVERED PICKED UP
GROSS WT.	101980
TARE WT. 3	
NET WT.	
NET TONS 3	1.85
NOTES:	1,85
	nouset Workers Inc. 32
	Western Company of the Company of th
	Wo de dans Jan
CUSTOMER SIG	SNATURE:
STANDBY TIME	: INITIALS:

THE CAT SCALE GUARANTEE THANK YOU FOR 95114437 The CAT Scale Company GUARANTEES that our scales will give an accurate weight. What makes us different from other scale companies is that we back up our guarantee with cash. WEIGHING IF YOU SHOULD GET AN OVERWEIGHT FINE, YOU SHOULD DO THE FOLLOWING TO GET THE PROBLEM RESOLVED: ON 1) Post bond and request a court date. CAT Call CAT Scale Company direct 24 hours a day at 1-877-CAT-SCALE (toll free). IMMEDIATELY send a copy of the citation, CAT Scale ticket, your name, company, SCALE! address, and phone number to CAT Scale Company Attn. Operations Manager. The four weights shown below are separate weights. The TOTAL WEIGHT was weighed on a full length platform scale. AXLE WEIGHTS CAN NOT BE CERTIFIED and are NOT LEGAL FOR TRADE, CERTIFIED however, CAT SCALE COMPANY GUARANTEES THESE WEIGHTS TO BE CORRECT. **A**UTOMATED 22660 1 b DATE: STEER AXLE TRUCK 8-18-2011 33540 Th SCALE **DRIVE AXLE** 27A CAT SCALE COMPANY SCALE LOCATION: 50040 1 6 GEE-CEE'S TRUCKSTOP P.O. BOX 630 TRAILER AXLE WALCOTT, IA 52773 I-5 AND EXIT 57 (563) 284-6263 106240 1 b **TOTAL WEIGHT** ww.catscale.com TOLEDO WA FRACTOR # GUALITY ROC 701 TRAILER # ___ \$9.50 WEIGHER'S SIGNATURE: FULL WEIGH TICKET #_ (IF REWEIGH) ONLY CERTIFIED WEIGHTS APPEAR BELOW THIS LINE CERTIFIED WEIGHTS THE CAT SCALE GUARANTEE 95114433 THANK YOU FOR The CAT Scale Company GUARANTEES that our scales will give an accurate weight. What makes us different from other scale companies is that we back up our guarantee with cash. WEIGHING TICKET NUMBER IF YOU SHOULD GET AN OVERWEIGHT FINE, YOU SHOULD DD THE FOLLOWING TO GET THE PROBLEM RESOLVED: ON 1) Post bond and request a court date. CAT Call CAT Scale Company direct 24 hours a day at 1-877-CAT-SCALE (toll free). IMMEDIATELY send a copy of the citation, CAT Scale ticket, your name, company, SCALE! address, and phone number to CAT Scale Company Attn: Operations Manager. The four weights shown below are separate weights. The TOTAL WEIGHT was weighed on a full length platform scale. AXLE WEIGHTS CAN NOT BE CERTIFIED and are NOT LEGAL FOR TRADE. CERTIFIED however, CAT SCALE COMPANY GUARANTEES THESE WEIGHTS TO BE CORRECT. **A**UTOMATED 22840 1 b DATE: STEER AXLE TRUCK 8-18-2011 34600 16 SCALE **DRIVE AXLE** 278 CAT SCALE COMPANY SCALE
PO. BOX 630 LOCATION: 50540 16 GEE-CEE'S TRUCKSTOP TRAILER AXLE WALCOTT, IA 52773 I-5 AND EXIT 57 107980 16 (563) 284-6263 OLEDO WA **TOTAL WEIGHT** www.catscale.com 1127 95114433 ROCK 704 COMPANY TRACTOR # TRAILER # \$9.50 WEIGHER'S SIGNATU FULL WEIGH TICKET # (IF REWEIGH) ONLY CERTIFIED WEIGHTS APPEAR BELOW THIS LINE **CERTIFIED WEIGHTS** (imprint seal) WEIGHMASTER CERTIFICATE his is to certify that the following described commodity was weighed, measured, or counted by a Weighmaster, whose signature is on this Certificate, who is a Jelec Wash Management GROSS recognized authority of accuracy, as prescribed by State Law. erial Recovery | Transfer Facility FREIGHT ALL KINDS ngview WA 98632 COMMODITY WEIGHED: REMARKS: _

TRACTOR LICENSE #

TRACTOR #

THE CAT SCALE GUARANTEE 95114432 THANK YOU FOR The CAT Scale Company GUARANTEES that our scales will give an accurate weight. What makes us WEIGHING different from other scale companies is that we back up our guarantee with cash. TICKET NUMBER IF YOU SHOULD GET AN OVERWEIGHT FINE, YOU SHOULD DO THE FOLLOWING TO GET THE PROBLEM RESOLVED: ON 1) Post bond and request a court date. Weyerhaeuser Company CAT Call CAT Scale Company direct 24 hours a day at 1-877-CAT-SCALE (toll free). Integrated Waste Management IMMEDIATELY send a copy of the citation, CAT Scale ticket, your name, company, address, and phone number to CAT Scale Company Attn: Operations Manager. SCALE! Material Recovery | Iranster Facility PQ Box 188 Longview, WA 28632 The four weights shown below are separate weights. The TOTAL WEIGHT was weighed on a full length platform scale. AXLE WEIGHTS CAN NOT BE CERTIFIED and are NOT LEGAL FOR TRADE, **C**ERTIFIED however, CAT SCALE COMPANY GUARANTEES THESE WEIGHTS TO BE CORRECT. **A**UTOMATED 21860 16 DATE: STEER AXLE 8-18-2011 TRUCK 35040 1 b SCALE **DRIVE AXLE** 278 52120 1 b CAT SCALE COMPANY SCALE LOCATION: GEE-CEE'S TRUCKSTOP P.O. BOX 630 TRAILER AXLE I-5 AND EXIT 57 WALCOTT, IA 52773 109020 (563) 284-6263 TOLEDO WA **TOTAL WEIGHT** www.catscale.com 1126 95114432 ROCK DUALITY COMPANY RACTOR # \$9.50 WEIGHER'S SIGNATURE FULL WEIGH TICKET #_ (IF REWEIGH) ONLY CERTIFIED WEIGHTS AFFRAR BELOW THIS LINE **CERTIFIED WEIGHTS** (imprint seal) WEIGHMASTER CERTIFICATE This is to certify that the following described commodity was weighed, measured, or counted by a Weighmaster, whose signature is on this Certificate, who is a **GROSS** recognized authority of accuracy, as prescribed by State Law. THE CAT SCALE GUARANTEE THANK YOU FOR The CAT Scale Company **GUARANTEES** that our scales will give an accurate weight. What makes us different from other scale companies is that we back up our guarantee with cash. WEIGHING IF YOU SHOULD GET AN OVERWEIGHT FINE, YOU SHOULD DO THE FOLLOWING TO GET THE PROBLEM RESOLVED: ON Post bond and request a court date. CAT Call CAT Scale Company direct 24 hours a day at 1-877-CAT-SCALE (toll free). SCALE! IMMEDIATELY send a copy of the citation, CAT Scale ticket, your name, company, address, and phone number to CAT Scale Company Attn: Operations Manager. The four weights shown below are separate weights. The TOTAL WEIGHT was weighed on a full length platform scale. AXLE WEIGHTS CAN NOT BE CERTIFIED and are NOT LEGAL FOR TRADE, however, CAT SCALE COMPANY GUARANTEES THESE WEIGHTS TO BE CORRECT. CERTIFIED AUTOMATED 22160 16 STEER AXLE DATE: TRUCK 8-18-2011 33620 1 b **DRIVE AXLE** SCALE CAT SCALE COMPANY SCALE LOCATION: 48180 1 b GEE-CEE'S TRUCKSTOP TRAILER AXLE WALCOTT, IA 52773 T-5 AND EXIT 57 (563) 284-6263 103960 TOLEDO WA **TOTAL WEIGHT** www.catscale.com COMPANY _ **QUALITY ROCK** TRACTOR # 704 TRAILER # _ \$9.50 FULL WEIGH TICKET # WEIGHER'S SIGNATURE: (IF REWEIGH) ONLY CERTIFIED WEIGHTS APPEAR BELOW THIS LINE

CERTIFIED WEIGHTS (imprint seal)

GROSS

ESUBAIGM MY 88633

9194-872 (302)

881 xog O-

WEIGHMASTER CERTIFICATE

This is to certify that the following described commodity was weighed, measured, or counted by a Weighmaster, whose signature is on this Certificate, who is a recognized authority of accuracy, as prescribed by State Law.

THE CAT SCALE GUARANTEE 95114413 THANK YOU FOR The CAT Scale Company GUARANTEES that our scales will give an accurate weight. What makes us different from other scale companies is that we back up our guarantee with cash. WEIGHING TICKET NUMBER IF YOU SHOULD GET AN OVERWEIGHT FINE, YOU SHOULD OD THE FOLLOWING TO GET THE PROBLEM RESOLVED: ON 1) Post bond and request a court date. CAT Call CAT Scale Company direct 24 hours a day at 1-877-CAT-SCALE (toll free). IMMEDIATELY send a copy of the citation, CAT Scale ticket, your name, company, 9191-825 (902) SCALE! EED86 VM MAINE address, and phone number to CAT Scale Company Attn: Operations Manager. 881 xog O The four weights shown below are separate weights. The TOTAL WEIGHT was weighed on a full length platform scale. AXLE WEIGHTS CAN NOT BE CERTIFIED and are NOT LEGAL FOR TRADE, CERTIFIED however, CAT SCALE COMPANY GUARANTEES THESE WEIGHTS TO BE CORRECT. AUTOMATED 21360 1 b DATE: STEER AXLE TRUCK 8-18-2011 35160 16 SCALE **DRIVE AXLE** 27A CAT SCALE COMPANY SCALE 47280 GEE-CEE'S TRUCKSTOP P.O. BOX 630 LOCATION: TRAILER AXLE WALCOTT, IA 52773 I-5 AND EXIT 57 103800 (563) 284-6263 TOLEDO WA www.catscale.com **TOTAL WEIGHT** 653 95114413 QUALITY ROCK 708 708A TRAILER # COMPANY _ TRACTOR # \$9.50 WEIGHER'S SIGNATURE: FULL WEIGH TICKET #_ (IF REWEIGH) ONLY CERTIFIED WEIGHTS APPEAR BELOW THIS LINE **CERTIFIED WEIGHTS** (imprint seal) WEIGHMASTER CERTIFICATE This is to certify that the following described commodity was weighed, measured, or counted by a Weighmaster, whose signature is on this Certificate, who is a **GROSS** recognized authority of accuracy, as prescribed by State Law. FREIGHT ALL KINDS **TARE** COMMODITY WEIGHED: THE CAT SCALE GUARANTEE THANK YOU FOR The CAT Scale Company GUARANTEES that our scales will give an accurate weight. What makes us different from other scale companies is that we back up our guarantee with cash. WEIGHING TICKET NUMBER IF YOU SHOULD GET AN OVERWEIGHT FINE, YOU SHOULD DO THE FOLLOWING TO GET THE PROBLEM RESOLVED: ON 1) Post bond and request a court date. CAT Call CAT Scale Company direct 24 hours a day at 1-877-CAT-SCALE (toll free). IMMEDIATELY send a copy of the citation, CAT Scale ticket, your name, company, SCALE! address, and phone number to CAT Scale Company Attn: Operations Manager. The four weights shown below are separate weights. The TOTAL WEIGHT was weighed on a full length platform scale. AXLE WEIGHTS CAN NOT BE CERTIFIED and are NOT LEGAL FOR TRADE, CERTIFIED however, CAT SCALE COMPANY GUARANTEES THESE WEIGHTS TO BE CORRECT. AUTOMATED 21580 1 b DATE: STEER AXLE TRUCK 8-17-2011 32720 1 1 **DRIVE AXLE** SCALE 27A CAT SCALE COMPANY SCALE
PO BOX 630 LOCATION: 51140 GEE-CEE'S TRUCKSTOP TRAILER AXLE WALCOTT, IA 52773 I-5 AND EXIT 57 (563) 284-6263 105440 TOLEDO WA **TOTAL WEIGHT** www.catscale.com COMPANY _ QUALITY ROCK TRAILER # TRACTOR # _ \$9.50 FULL WEIGH TICKET #_ WEIGHER'S SIGNATURE: (IF REWEIGH)

ONLY CERTIFIED WEIGHTS APPEAR BELOW THIS LINE

CERTIFIED WEIGHTS (imprint seal)

WEIGHMASTER CERTIFICATS

This is to certify that the following described commodity was weighed, measured, or counted by a Weighmaster, whose signature is on this Certificate, who is a

95114381 TICKET NUMBER

CERTIFIED AUTOMATED TRUCK

SCALE CAT SCALE COMPANY SCALE P.O. BOX 630 WALCOTT, IA 52773 (563) 284-6263 www.catscale.com

> 1306 95114381

THE CAT SCALE GUARANTEE

The CAT Scale Company GUARANTEES that our scales will give an accurate weight. What makes us different from other scale companies is that we back up our guarantee with cash.

IF YOU SHOULD GET AN OVERWEIGHT FINE, YOU SHOULD DO THE FOLLOWING TO GET THE PROBLEM RESOLVEO:

Post bond and request a court date.

Call CAT Scale Company direct 24 hours a day at 1-877-CAT-SCALE (toll free).

IMMEDIATELY send a copy of the citation, CAT Scale ticket, your name, company, address, and phone number to CAT Scale Company Attn: Operations Manager.

THANK YOU FOR WEIGHING ON CAT SCALE!

The four weights shown below are separate weights. The TOTAL WEIGHT was weighed on a full length platform scale. AXLE WEIGHTS CAN NOT BE CERTIFIED and are NOT LEGAL FOR TRADE, however, CAT SCALE COMPANY GUARANTEES THESE WEIGHTS TO BE CORRECT.

DATE:

8-17-2011

TOLEDO WA

278

STEER AXLE

21260 1 b

33740 16 **DRIVE AXLE**

> 50720 16

TRAILER AXLE

TOTAL WEIGHT

105720

COMPANY _

LOCATION:

QUALITY ROCK

I-5 AND EXIT 57

GEE-CEE'S TRUCKSTOP

TRACTOR # _ \$9.50 701

___ TRAILER # __

WEIGHER'S SIGNATURE:

FULL WEIGH TICKET #_ (IF REWEIGH)

ONLY CERTIFIED WEIGHTS APPEAR BELOW THIS LINE

CERTIFIED WEIGHTS (imprint seal)

WEIGHMASTER CERTIFICATE

This is to certify that the following described commodity was weighed, measured, or counted by a Weighmaster, whose signature is on this Certificate, who is a recognized authority of accuracy, as prescribed by State Law.

GROSS

CERTIFIED **A**UTOMATED TRUCK

SCALE CAT SCALE COMPANY SCALE LOCATION: P.O. BOX 630 WALCOTT, IA 52773 (563) 284-6263

THE CAT SCALE GUARANTEE

The CAT Scale Company GUARANTEES that our scales will give an accurate weight. What makes us different from other scale companies is that we back up our guarantee with cash.

IF YOU SHOULD GET AN OVERWEIGHT FINE, YOU SHOULD DO THE FOLLOWING TO GET THE PROBLEM RESOLVED:

1) Post bond and request a court date.

Call CAT Scale Company direct 24 hours a day at 1-877-CAT-SCALE (toll free),

IMMEDIATELY send a copy of the citation, CAT Scale ticket, your name, company, address, and phone number to CAT Scale Company Attn: Operations Manager.

THANK YOU FOR WEIGHING ON CAT SCALE!

The four weights shown below are separate weights. The TOTAL WEIGHT was weighed on a full length platform scale. AXLE WEIGHTS CAN NOT BE CERTIFIED and are NOT LEGAL FOR TRADE, however, CAT SCALE COMPANY GUARANTEES THESE WEIGHTS TO BE CORRECT.

DATE:

8-17-2011

TOLEDO WA

STEER AXLE

21740 16

DRIVE AXLE

1 b

53140

I-5 AND EXIT 57

TRAILER AXLE

TOTAL WEIGHT

COMPANY_

TRACTOR # _

TRAILER #

WEIGHER'S SIGNATURE:

FULL WEIGH TICKET #

(IF REWEIGH)

ONLY CERTIFIED WEIGHTS APPEAR BELOW THIS LINE

CERTIFIED WEIGHTS (imprint seal)

WEIGHMASTER CERTIFICATE

This is to certify that the following described commodity was weighed, measured, or counted by a Weighmaster, whose signature is on this Certificate, who is a recognized authority of accuracy, as prescribed by State Law.

GROSS

95114360 TICKET NUMBER

CERTIFIED **A**UTOMATED TRUCK

CAT SCALE COMPANY SCALE LOCATION: P.O. BOX 630 WALCOTT, IA 52773 (563) 284-6263 www.catscale.com

95114360

THE CAT SCALE GUARANTEE

The CAT Scale Company GUARANTEES that our scales will give an accurate weight. What makes us different from other scale companies is that we back up our guarantee with cash.

IF YOU SHOULD GET AN OVERWEIGHT FINE, YOU SHOULD DO THE FOLLOWING TO GET THE PROBLEM RESOLVED:

Post bond and request a court date.

Call CAT Scale Company direct 24 hours a day at 1-877-CAT-SCALE (toll free).

IMMEDIATELY send a copy of the citation, CAT Scale ticket, your name, company, address, and phone number to CAT Scale Company Attn: Operations Manager.

THANK YOU FOR WEIGHING ON CAT SCALE!

The four weights shown below are separate weights. The TOTAL WEIGHT was weighed on a full length platform scale. AXLE WEIGHTS CAN NOT BE CERTIFIED and are NOT LEGAL FOR TRADE, however, CAT SCALE COMPANY GUARANTEES THESE WEIGHTS TO BE CORRECT.

DATE: 8-17-2011

STEER AXLE

30240 T P

21740

DRIVE AXLE

7220 1 6

GEE-CEE'S TRUCKSTOP I-5 AND EXIT 57

QUALITY ROCK

TRAILER AXLE

TOLEDO WA

TOTAL WEIGHT

16

COMPANY

WEIGHER'S SIGNATURE:

TRACTOR #

\$9.50

FULL WEIGH TICKET # (IF REWEIGH)

ONLY CERTIFIED WEIGHTS APPEAR BELOW THIS LINE

CERTIFIED WEIGHTS

(imprint seal)

Imparated Waste Management

GROSS³¹ Recovery / Transfer Facility Box 188

WEIGHMASTER CERTIFICATE

This is to certify that the following described commodity was weighed, measured, or counted by a Weighmaster, whose signature is on this Certificate, who is a recognized authority of accuracy, as prescribed by State Law.

FREIGHT ALL KINDS

CERTIFIED **A**UTOMATED TRUCK SCALE

CAT SCALE COMPANY SCALE LOCATION: P.O. BOX 630 WALCOTT, IA 52773 (563) 284-6263 www.catscale.com

THE CAT SCALE GUARANTEE

The CAT Scale Company GUARANTEES that our scales will give an accurate weight. What makes us different from other scale companies is that we back up our guarantee with cash.

IF YOU SHOULD GET AN OVERWEIGHT FINE, YOU SHOULD DO THE FOLLOWING TO GET THE PROBLEM RESOLVED:

Post bond and request a court date.

Call CAT Scale Company direct 24 hours a day at 1-877-CAT-SCALE (toll free).

IMMEDIATELY send a copy of the citation, CAT Scale ticket, your name, company, address, and phone number to CAT Scale Company Attn: Operations Manager.

THANK YOU FOR

WEIGHING

ON

CAT

SCALE!

The four weights shown below are separate weights. The TOTAL WEIGHT was weighed on a full length platform scale. AXLE WEIGHTS CAN NOT BE CERTIFIED and are NOT LEGAL FOR TRADE, however, CAT SCALE COMPANY GUARANTEES THESE WEIGHTS TO BE CORRECT.

DATE:

8-17-2011

STEER AXLE

17480 1 b

DRIVE AXLE

37580 1 5

45500 1 15

-CEE'S TRUCKSTOP EXIT I-5 AND

TRAILER AXLE

TOLEDO WA

TOTAL WEIGHT

100560 16

QUALITY ROCK COMPANY

18703 TRACTOR #

\$9.50

TRAILER #

WEIGHER'S SIGNATURE:

FULL WEIGH TICKET # (IF REWEIGH)

ONLY CERTIFIED WEIGHTS APPEAR BELOW THIS LINE

CERTIFIED WEIGHTS (imprint seal)

WEIGHMASTER CERTIFICATE

This is to certify that the following described commodity was weighed, measured, or counted by a Weighmaster, whose signature is on this Certificate, who is a recognized authority of accuracy, as prescribed by State Law.

GROSS

95114357 NICKET NUMBER

CERTIFIED **A**UTOMATED TRUCK SCALE

CAT SCALE COMPANY SCALE LOCATION: WALCOTT, IA 52773 (563) 284-6263 www.catscale.com

95114357

THE CAT SCALE GUARANTEE

The CAT Scale Company GUARANTEES that our scales will give an accurate weight. What makes us different from other scale companies is that we back up our guarantee with cash.

IF YOU SHOULD GET AN OVERWEIGHT FINE, YOU SHOULD DO THE FOLLOWING TO GET THE PROBLEM RESOLVED:

Post bond and request a court date.

Call CAT Scale Company direct 24 hours a day at 1-877-CAT-SCALE (toll free).

IMMEDIATELY send a copy of the citation, CAT Scale ticket, your name, company, address, and phone number to CAT Scale Company Attn: Operations Manager.

THANK YOU FOR WEIGHING ON CAT SCALE!

The four weights shown below are separate weights. The TOTAL WEIGHT was weighed on a full length platform scale. AXLE WEIGHTS CAN NOT BE CERTIFIED and are NOT LEGAL FOR TRADE, however, CAT SCALE COMPANY GUARANTEES THESE WEIGHTS TO BE CORRECT.

DATE:

8-17-2011

TOLEDO WA

278

STEER AXLE

29820 16

20960

DRIVE AXLE

44120

TRAILER AXLE

TOTAL WEIGHT

94900

701

1 b

QUALITY ROCK

I-5 AND EXIT 57

GEE-CEE'S TRUCKSTOP

TRACTOR #

\$9.50

TRAILER #

701T

WEIGHER'S SIGNATURE:

COMPANY

FULL WEIGH TICKET #_ (IF REWEIGH)

ONLY CERTIFIED WEIGHTS APPEAR BELOW THIS LINE

CERTIFIED WEIGHTS (imprint seal)

WEIGHMASTER CERTIFICATE

This is to certify that the following described commodity was weighed, measured. or counted by a Weighmaster, whose signature is on this Certificate, who is a recognized authority of accuracy, as prescribed by State Law.

GROSS

95114356

TICKET NUMBER

CERTIFIED **A**UTOMATED TRUCK SCALE

CAT SCALE COMPANY SCALE LOCATION: WALCOTT, IA 52773 (563) 284-6263 www.catscale.com

THE CAT SCALE GUARANTEE

The CAT Scale Company GUARANTEES that our scales will give an accurate weight. What makes us different from other scale companies is that we back up our guarantee with cash.

IF YOU SHOULD GET AN OVERWEIGHT FINE, YOU SHOULD DO THE FOLLOWING TO GET THE PROBLEM RESOLVED:

1) Post bond and request a court date.

Call CAT Scale Company direct 24 hours a day at 1-877-CAT-SCALE (toll free).

IMMEDIATELY send a copy of the citation, CAT Scale ticket, your name, company, address, and phone number to CAT Scale Company Attn: Operations Manager.

THANK YOU FOR WEIGHING ON CAT SCALE!

The four weights shown below are separate weights. The TOTAL WEIGHT was weighed on a full length platform scale. AXLE WEIGHTS CAN NOT BE CERTIFIED and are NOT LEGAL FOR TRADE, however, CAT SCALE COMPANY GUARANTEES THESE WEIGHTS TO BE CORRECT.

DATE:

8-17-2011

27A

STEER AXLE

DRIVE AXLE

20640 1. b

33160 16

GEE-CEE'S TRUCKSTOP

TRAILER AXLE

45220

I-5 AND EXIT 57 TOLEDO WA

TOTAL WEIGHT

COMPANY

QUALITY ROCK

TRACTOR #

WEIGHER'S SIGNATURE:

\$9.50

FULL WEIGH TICKET #_ (IF REWEIGH)

ONLY CERTIFIED WEIGHTS APPEAR BELOW THIS LINE

CERTIFIED WEIGHTS (imprint seal)

WEIGHMASTER CERTIFICATE

This is to certify that the following described commodity was weighed, measured, or counted by a Weighmaster, whose signature is on this Certificate, who is a recognized authority of accuracy, as prescribed by State Law.

GROSS

FREIGHT ALL KINDS

708

QUALITY ROCK PRODUCTS, INC. TICKET # 483060 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 9/29/2011 12:26:05 PM 22650 - DLB Earthworks CUSTOMER: SHIP LOC. : 4 Rochester 11555 - East Bay Public Plaza JOB PO # JOB ADD.: 421 Jefferson St NE JOB CITY: Olympia MAP PAGE PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : Picked Up 18-708 18-708 TRUCK # CARRIER : 01 - Quality Rock Products Inc. TRAILER # Pinterral Recovery : Transfer Facility GROSS 104960 lb NET TONS : DAILY TONS : JOB TOTAL : 33.25 tn 38460 lb TARE 51.20 tn FU Box 188 66500 lb 4577.87 tn tungview WA 98632 12061 578-4616 CUSTOMER SIGN: __Ticket B NOTES: STANDBY TIME:____ STANDBY INITIALS:___ TICKET # 483011 QUALITY ROCK PRODUCTS. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 9/29/2011 8:06:32 AM CUSTOMER: 22650 - DLB Farthworks SHIP LOC. : 4 Rochester 11555 😑 East Bay Public Plaza **JOB PO #** 421 Jefferson St NE JOB ADD.: JOB CITY: Olympia MAP PAGE 92 - Certified Scale Contaminated Dirt Back Haul PRODUCT: TRUCK TYPE : Picked Up 18-708 18-708 TRUCK # CARRIER: 01 - Quality Rock Products Inc TRAILER # 74360 lb GROSS **NET TONS** Weyerhaeuser Company DAILY TONS : 38460]b 17.95 tn TARE Integrated Waste Management JOB TOTAL 35900 lb 4544.62 tn Material Recovery / Iransfer Facility PO Box 188 Longview, WA 98637 Ticket A CUSTOMER SIGN: NOTES: (206) 2/8-4016 STANDBY TIME: STANDBY INITIALS:_ **TICKET # 482959** QUALITY ROCK PRODUCTS. 9/28/2011 12:39:30 PM DATE & TIME: 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 CUSTOMER: 22650 - DLB Earthworks SHIP LOC. : 4 Rochester - East Bay Public Plaza JOB PO # JOB JOB ADD.: 421 Jefferson St NE MAP PAGE JOB CITY: Olympia 92 - Certified Scale Contaminated Dirt Back Haul PRODUCT: TRUCK TYPE : Picked Up TRUCK # TRAILER # 18-708 CARRIER: 01 - Quality Rock Products Inc 7177-8ZS (90 83340 lb 38460 lb **NET TONS** 22.44 tn GROSS AW ,WOIV DAILY TONS : 51.46 tn TARE BBF XO? JOB TOTAL : 4526.67 tn 44880 1b NET WEST RECOVERY LIGHTED STREET Management etsow au Xupdwon ___Ticket C

CUSTOMER SIGN:___ STANDBY TIME:_ STANDBY INITIALS:_ NOTES:

QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650, - DLB Earthworks

11555 - East Bay Public Plaza JOB

421 Jefferson St NE JOB ADD.:

JOB CITY: Olympia

PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul

CARRIFR: 01 - Quality Rock Products Products Integrated Waste Management

96500 1b 38460 1b GROSS TARE

Material Recovery Transim Lacilly

58040 lb NFT

PO Box 188 Longview, WA 98632

(206) 578-4616

CUSTOMER SIGN:___ ___Ticket A STANDBY TIME:____

STANDBY INITIALS:___

TICKET # 482920

DATE & TIME: 9/28/2011 9:05:06 AM

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

TRUCK TYPE : Picked Up 18-708 TRUCK # TRAILER # 18-708

NET TONS : DAILY TONS : 29.02 tn 29.02 tn JOB TOTAL : 4504.23 tn

NOTES:

QUALITY ROCK PRODUCTS. INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

11555 - East Bay Public Plaza

JOB ADD.: 421 Jefferson St NE

JOB CITY: Olympia

PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul

01 - Quality Rock Products Inc CARRIER:

92160 lb 38460 lb GROSS

TARE 53700 1b NET

ale Management Bellet a Recovery | Transfer Excline 881 xod Oq

Longview, WA 98632 (206) 578-4616

CUSTOMER SIGN:_ Ticket A

STANDBY TIME:_

STANDBY INITIALS:____

TICKET # 482865

DATE & TIME: 9/27/2011 12:33:42 PM

SHIP LOC. : 4 Rochester

JOB PO # :

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # 18-708 TRAILER # 18-708

26.85 tn NET TONS DAILY TONS : 57.39 tn JOB TOTAL : 4475.21 tn

NOTES:

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

11555 - East Bay Public Plaza

421 Jefferson St NE JOB ADD.:

JOB CITY: Olympia

PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul

01 - Quality Rock, Products Inc. CARRIER : Integrated Waste Management 99540 1b GROSS

38460 1b 61080 1b Moterial Recovery Transfer Facility TARE PO Box 188 NFT

> Longview, WA 98632 (206) 578-4616

CUSTOMER SIGN:_ _Ticket A

STANDBY TIME:_ STANDBY INITIALS:__

TICKET # 482838

DATE & TIME: 9/27/2011 8:51:39 AM

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # 18-708 TRAILER # 18-708

30.54 tn 30.54 tn NET TONS DAILY TONS : JOB TOTAL :

4448.36 tn

NOTES:

Weyerhaeuser MRF 3401 Industrial Way Longview, WA 98632 360-578-4616

Ticket #:

148,404

12:54:50 9/26/2011 In: 13:04:20 9/26/2011 Out:

Truck Id:

20

Customer Id: 575

Product Id:

Truck #:

SAFETY FIRST

Gross Lbs:

Tare Lbs:

Net Lbs:

Net Tuns

25.97

88,540

36,600

51,940

Weyer!lacu er 3401 Inductri Longview, WA 632 360-578-4010

Ticket #:

148,403

12:52:31 9/26/2011 In:

13:02:46 9/26/2011

Out:

Truck Id:

Customer Id:

Product Id:

SAFETY FIRST

Gross Lbs:

Tare Lbs:

Het Lbs:

Net Tons

94,300

39,940

54,360

27.18

QUALITY ROCK PRODUCTS,

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

22650 - DLB Earthworks CUSTOMER:

11555 - East Bay Public Plaza 421 Jefferson St NE JOB

JOB ADD.:

JOB CITY: Olympia

92 - Certified Scale Contaminated Dirt Back Haul PRODUCT:

01 - Quality Rock Products Inc CARRIER:

101960 lb GROSS TARE 38120 lb 63840 1b NET

CUSTOMER SIGN:

STANDBY TIME: STANDBY INITIALS:_ **TICKET # 482796**

9/26/2011 12:38:41 PM DATE & TIME:

4 Rochester SHIP LOC.

JOB PO #

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # 18-703 18-703 TRAILER #

31.92 tn **NET TONS** 198.77 tn 4417.82 tn DAILY TONS : JOB TOTAL :

CUSTOMER SIGN:_

STANDBY TIME:_

STANDBY INITIALS:___

TICKET # 482795

NUCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 9/26/2011 12:17:23 PM CUSTOMER: 22650 - DLB Earthworks SHIP LOC. : 4 Rochester 11555 - East Bay Public Plaza JOB PO # **30B** JOB : 421 Jefferson St NE JOB CITY: Olympia MAP PAGE Picked Up 92 - Certified Scale Contaminated Dirt Back Haul PRODUCT: TRUCK TYPE : TRUCK # 18-708 01 - Quality Rock Products Int Abuon TRAILER # : CARRIER: 18-708 881 xog Og Material Recovery | Transfer Eacility 94780 lb 38460 lb 56320 lb 28.16 tn **GROSS NET TONS** InemegonoM etzoW betorgetini DAILY TONS : JOB TOTAL : 166.85 tn 4385.90 tn TARE NET Мечеглавизег Сомрану _____Ticket B NOTES: CUSTOMER SIGN:___ STANDBY TIME:_ STANDBY INITIALS:____ **TICKET # 482793** QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 9/26/2011 12:10:56 PM SHIP LOC. : 22650 - DLB Earthworks 4 Rochester CUSTOMER: 11555 - East Bay Public Plaza **JOB PO #** JOB JOB : 421 Jefferson St NE MAP PAGE JOB CITY: Olympia 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : Picked Up PRODUCT : TRUCK # 18-701 01 - Quality Rock Products Incoment TRAILER # : CARRIER : 18-701 Muterial Recovery Transfer Facility GROSS -101620 1b NET TONS : DAILY TONS : 31.15 tn PO Box 188 138.69 tn 4357.74 tn TARE Longview, WA 98632 JOB TOTAL : NET (206) 578-4616

_____Ticket B

Weyerhaeuser MRF 3401 Industrial Way Longview, WA 98632 360-3 0-4616

Ticket #:

148,389

In:

9:09:41 9/26/2011

Out:--

9:22:05 9/26/2011

Truck Id:

20

Id: 575

Promot Id: 61

Track #: 1

FIRST

Gross Lbs:

91,760

Tare Lbs:

36,700

Net Lbs:

55,060

Het Tons

17.53

Weyerhaeuser MRF 3401 Industrial Way Longview, WA 98632 360-578-4616

Ticket #:

148,388

In:

9:06:57 9/26/2011

Out:

9:16:28 9/26/2011

Truck Id:

19

Customer Id: 579

Froduct Id: 61

Truck #:

11

SAFETY FIRST

Gross Lbs:

99,560

Tare Lbs:

40,180

Net Lbs:

59,380

Net Tons

29.69

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

JOB : 11555 - East Bay Public Plaza

JOB ADD.: 421 Jefferson St NE

JOB CITY: Olympia

PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul

CARRIER: 01 - Quality Rock Products Inc

GROSS : 95120 lb TARE : 37840 lb NET : 57280 lb

CUSTOMER SIGN:______Ticket B

STANDBY TIME:____

STANDBY INITIALS:_____

TICKET # 482760

DATE & TIME: 9/26/2011 8:59:44 AM

SHIP LOC. : 4 Rochester

JOB PO # :

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # : 18-704 TRAILER # : 18-704

NET TONS : 28.64 tn DAILY TONS : 107.54 tn JOB TOTAL : 4326.59 tn

NOTES:

. .

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: SHIP LOC. : CUSTOMER: 22650 - DLB Earthworks 11555 - East Bay Public Plaza JOB PO # JOB ADD.: 421 Jefferson St NE JOB CITY: Olympia MAP PAGE 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : Picked Up PRODUCT: TRUCK # 18-703 01 - Quality Rock Products Inc TRAILER # 18-703 CARRIER : 25.32 tn GROSS 88760 1b **NET TONS** 78.90 tn 38120 1b DAILY TONS : TARE 50640 1b NFT

____Ticket B CUSTOMER SIGN:____ STANDBY TIME:___ STANDBY INITIALS:___

TICKET # 482758

9/26/2011 8:50:54 AM

4 Rochester

JOB TOTAL : 4297.95 tn

NOTES:

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

11555 - East Bay Public Plaza JOB

JOB ADD.: 421 Jefferson St NE

Olympia JOB CITY:

92 - Certified Scale Contaminated Dirt Back Haul PRODUCT:

01 - Quality Rock Products Inc CARRIER :

89700 lb 39320 lb GROSS TARE 50380 1b

_____Ticket B CUSTOMER SIGN:___

STANDBY TIME:___ STANDBY INITIALS:___

TICKET # 482757

DATE & TIME: 9/26/2011 8:36:01 AM

SHIP LOC. : 4 Rochester

JOB PO # MAP PAGE

TRUCK TYPE : Picked Up TRUCK # 18-701 TRAILER # $18 - 70\bar{1}$ **NET TONS**

25.19 tn 53.58 tn 4272.63 tn NET TONS : DAILY TONS : JOB TOTAL :

NOTES:

Mideral Recovery i Transler Lacillie

relegated veste Managainest

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

22650 - DLB Earthworks CUSTOMER:

- East Bay Public Plaza 11555 10B

JOB ADD.: 421 Jefferson St NE

olympia JOB CITY:

92 - Certified Scale Contaminated Dirt Back Haul PRODUCT:

01 - Quality Rock Products Inc CARRIER :

95240 lb 38460 lb GROSS TARE 56780 lb

__Ticket A CUSTOMER SIGN:_____

STANDBY TIME:___ STANDBY INITIALS:___

TICKET # 482755

DATE & TIME: 9/26/2011 8:28:58 AM

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # 18-708 TRAILER # 18-708

NET TONS 28.39 tn DAILY TONS : 28.39 tn JOB TOTAL : 4247.44 tn

QUALITY ROCK PRODUCTS, INC. TICKET # 482718 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 9/23/2011 12:33:02 PM CUSTOMER: 22650 - DLB Earthworks SHIP LOC. 4 Rochester JOB - East Bay Public Plaza JOB PO # JOB ADD.: 421 Jefferson St NE JOB CITY: MAP PAGE PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : Picked Up 18-703 18-703 TRUCK # 01 - Quality Rock Products Inc CARRIER: TRAILER # GROSS 103400 lb 32.64 tn 196.02 tn NET TONS 38120 1b 65280 1b TARE DAILY TONS : NET JOB TOTAL : 4186.68 tn CUSTOMER SIGN: Ticket B NOTES: STANDBY TIME: STANDBY INITIALS:

QUALITY ROCK PRODUCTS, INC.

DATE & TIME: 9/23/2011 12:17:12 PM

10201 LITTLEROCK RD SW OLYMPIA, WA 98512 - OFFICE: 360-754-7777

22650 - DLB Earthworks CUSTOMER:

JOB - East Bay Public Plaza

JOB ADD.: 421 Jefferson St NE

JOB CITY: Olympia

PRODUCT : 92 - Certified Scale Contaminated Dirt Back Haul

01 - Quality Rock Products Inc CARRIER:

104560 lb GROSS 39320 lb 65240 lb TARE NET

CUSTOMER SIGN:_ _____Ticket B

STANDBY TIME:_ STANDBY INITIALS:__

TICKET # 482716

SHIP LOC. 4 Rochester

JOB PO # MAP PAGE

TRUCK TYPE : Picked Up 18-701 18-701 TRUCK # TRAILER #

NET TONS 32.62 tn DAILY TONS : 163.38 tn JOB TOTAL 4154.04 tn

> \$104-8/5 (002) FRONT WAY 'MOATING

NOTES:

THISE DISHRIP CORRORDS TO IN-

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

- East Bay Public Plaza

421 Jefferson St NE JOB ADD.:

JOB CITY: Olympia

92 - Certified Scale Contaminated Dirt Back Haul PRODUCT:

CARRIER: 01 - Quality Rock Products Inc

GROSS 101540 lb 37840 1b 63700 1b TARE NET

CUSTOMER SIGN:__ _____Ticket B

STANDBY TIME:_ STANDBY INITIALS:___

TICKET # 482712

DATE & TIME: 9/23/2011 11:54:58 AM

SHIP LOC. : 4 Rochester

JOB PO # MAP PAGE

TRUCK TYPE : Picked Up TRUCK # TRAILER # 18-704

31.85 tn NET TONS DAILY TONS : 130.76 tn JOB TOTAL 4121.42 tn

NOTES:

Weyerhaed of Company Integrated Waste Management Material Recovery 1 Iranslet Eacility PO Box 188 Longview, WA 98632 1206) 578-4616

TICKET # 482706 QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 9/23/2011 10:40:17 AM 22650 - DLB Earthworks CUSTOMER: SHIP LOC. : 4 Rochester 11555 - East Bay Public Plaza JOB PO # 421 Jefferson St NE JOB ADD.: JOB CITY: Olympia MAP PAGE PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : Picked Up 18-708 18-708 TRUCK # 01 - Quality Rock Products Inc TRAILER # CARRIER: GROSS 97860 1b NET TONS 29.70 tn 38460 1b 59400 1b DAILY TONS : JOB TOTAL : 98.91 tn 4089.57 tn TARE NET NOTES: CUSTOMER SIGN: Ticket B STANDBY TIME:__ STANDBY INITIALS:____ **TICKET # 482686** QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 9/23/2011 8:24:48 AM DATE & TIME: CUSTOMER: 22650 - DLB Earthworks SHIP LOC. : 4 Rochester 11555 - East Bay F 421 Jefferson St NE - East Bay Public Plaza JOB JOB PO # JOB ADD.: JOB CITY: Olympia MAP PAGE PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : TRUCK # : Picked Up 18-703 18-703 01 - Quality Rock Products Inc TRAILER # CARRIER: 107160 lb 34.52 tn 69.21 tn 4059.87 tn GROSS **NET TONS** TARE 38120 lb DAILY TONS : 69040 lb JOB TOTAL : NOTES: CUSTOMER SIGN: STANDBY TIME:___ STANDBY INITIALS:___ **TICKET # 482685** QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 9/23/2011 8:02:27 AM CUSTOMER: 22650 - DLB Earthworks SHIP LOC. : 4 Rochester 11555 - East Bay Public Plaza JOB PO # JOB ADD.: 421 Jefferson St NE JOB CITY: Olympia MAP PAGE 92 - Certified Scale Contaminated Dirt Back Haul PRODUCT : TRUCK TYPE : Picked Up TRUCK # 01 - Quality Rock Products Inc CARRIER : TRAILER # 18 - 704107220 lb GROSS **NET TONS** 34.69 tn 37840 1b 69380 1b TARE DAILY TONS : 34.69 tn NET JOB TOTAL : 4025.35 tn Weyerhaeuser Company

__Ticket B

Integrated Waste Management

Langview, WA 98632

(200) 5/8-4615

FO Box 188

Finterial Recovery | Iransfer Exclimation

NOTES:

CUSTOMER SIGN:___

STANDBY INITIALS:___

STANDBY TIME:_

QUALITY ROCK PRODUCTS, INC. TICKET # 482682 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 9/23/2011 7:42:22 AM 22650 - DLB Earthworks CUSTOMER: SHIP LOC. : 4 Rochester JOB 11509 - Port of Olympia Maintenance JOB PO # JOB ADD.: JOB CITY: Olympia MAP PAGE PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : Picked Up TRUCK # 18-701 18-701 CARRIER: 01 - Quality Rock Products Inc TRAILER # : GROSS 104060 lb NET TONS 32.37 tn 39320 1b 64740 1b DAILY TONS : JOB TOTAL : TARE 32.37 tn NET 32.37 tn 919F-8Z# 700-1 CUSTOMER SIGN:___ _____Ticket B NOTES: SEABY AW WAYEL STANDBY TIME:___ BRI YOU A. THE PART PARTY IN STANDBY INITIALS:_____ TICKET # 301608 QUALITY ROCK PRODUCTS, INC. DATE & TIME: 9/22/2011 3:14:00 PM 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 SHIP LOC. : 2 22650 - DLB Earthworks CUSTOMER: 11555 - East Bay Public Plaza JOB PO # JOB JOB ADD.: 421 Jefferson St NE JOB CITY: olympia MAP PAGE 92 - Certified Scale Contaminated Dirt Backhaul TRUCK TYPE : Picked Up PRODUCT : TRUCK # 18-708 TRAILER # : 18-708 CARRIER : 01 - Quality Rock Products, Inc. 99680 lb 38500 lb NET TONS : DAILY TONS : 30.59 tn GROSS 30.59 tn TARE JOB TOTAL : 627.74 tn 61180 1b NET NOTES: _Ticket B CUSTOMER SIGN:__ STANDBY TIME: STANDBY INITIALS:___

ALIAL TTV DACK DRADUCTS TNC

TICKET # 482649

QUALT	II ROCK PRODUCTS, INC.
10201 LITTLER	OCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777
CUSTOMER:	22650 - DLB Earthworks
JOB : JOB ADD.: JOB CITY:	11555 - East Bay Public Plaza 421 Jefferson St NE Olympia
PRODUCT :	92 - Certified Scale Contaminated Dirt Back Haul
CARRIER :	01 - Quality Rock Products Inc
GROSS : TARE : NET :	95080 lb 39320 lb 55760 lb

_____Ticket B

CUSTOMER SIGN:__

STANDBY TIME:____ STANDBY INITIALS:__

DATE & TIME: 9/22/2011 12:51:21 PM

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE :

TRUCK TYPE : Picked Up TRUCK # 18-701 TRAILER # : 18-701

NET TONS DAILY TONS : 187.77 tn JOB TOTAL : 3990.66 tn

TICKET # 482644 QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 9/22/2011 12:21:18 PM DATE & TIME: CUSTOMER: 22650 - DLB Earthworks SHIP LOC. : 4 Rochester 11555 - East Bay Public Plaza JOB JOB PO # JOB ADD.: 421 Jefferson St NE JOB CITY: Olympia MAP PAGE 92 Gertified Scale Contaminated Dirt Back Haul TRUCK TYPE : PRODUCT: Picked Up TRUCK # 18-704 CARRIER: 01 - Quality Rock Products Inc TRAILER # 18-704 30.45 tn 159.89 tn 98740 1b GROSS **NET TONS** 37840 1b DAILY TONS : TARE 60900 1b 3962.78 tn JOB TOTAL : NET Weyerhaeuser Company Integrated Waste Management ____Ticket B NOTES: CUSTOMER SIGN:__ Material Recovery | Iranslet Eaching PO Box 188 STANDBY TIME:__ Longview, WA 98632 STANDBY INITIALS:_____ (206) 578-4616 QUALITY ROCK PRODUCTS, INC. TICKET # 482628 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 9/22/2011 10:34:22 AM SHIP LOC. : 4 Rochester 22650 - DLB Earthworks CUSTOMER: JOB 11555 - East Bay Public Plaza JOB PO # 421 Jefferson St NE JOB ADD.: JOB CITY: Olympia MAP PAGE 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : Picked Up PRODUCT: TRUCK # TRAILER # 18-703 - CARRIER : 01 - Quality Rock Products Inc 103160 lb 38120 lb **NET TONS** 32.52 tn GROSS DAILY TONS : 129.44 tn TARE 65040 1b JOB TOTAL : 3932.33 tn NET CUSTOMER SIGN:__ Ticket A NOTES: STANDBY TIME:___ STANDBY INITIALS:___ **TICKET # 482620** QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 9/22/2011 9:55:34 AM SHIP LOC. : 4 Rochester 22650 - DLB Earthworks CUSTOMER: 11555 - East Bay Public Plaza JOB PO # 421 Jefferson St NE JOB ADD.: MAP PAGE JOB CITY: Olympia TRUCK TYPE : TRUCK # : Picked Up 92 - Certified Scale Contaminated Dirt Back Haul PRODUCT : 18-708 18-708 TRAILER # 01 - Quality Rock Products Inc CARRIER: 32.27 tn 96.92 tn NET TONS : DAILY TONS : 103000 lb GROSS 38460 1b 64540 1b TARE JOB TOTAL : 3899.81 tn NET NOTES: ____Ticket A CUSTOMER SIGN:___

STANDBY TIME:______
STANDBY INITIALS:____

TICKET # 482609 QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 9/22/2011 8:44:16 AM SHIP LOC. : 4 Rochester CUSTOMER: 22650 - DLB Earthworks **JOB PO #** 11555 - East Bay Public Plaza JOB ADD.: 421 Jefferson St NE JOB CITY: MAP PAGE Olympia 92 - Certified Scale Contaminated Dirt Back Haul Picked Up TRUCK TYPE : PRODUCT: 18-701 18-701 TRUCK # TRAILER # 01 - Quality Rock Products Inc _ CARRTER : 30.85 tn 101020 lb **NET TONS** GROSS 39320 lb 61700 lb 64.65 tn 3867.54 tn DAILY TONS : TARE JOB TOTAL : NET NOTES: _____Ticket B CUSTOMER SIGN:___ STANDBY TIME:_ STANDBY INITIALS:____

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

JOB : 11555 - East Bay Public Plaza

JOB ADD.: 421 Jefferson St NE

JOB CITY: Olympia

PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul

CARRIER: 01 - Quality Rock Products Inc

GROSS : 105440 lb TARE : 37840 lb NET : 67600 lb

CUSTOMER SIGN: Ticket B

STANDBY TIME:_____

STANDBY INITIALS:

TICKET # 482607

DATE & TIME: 9/22/2011 8:22:04 AM

SHIP LOC. : 4 Rochester

JOB PO # :

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # : 18-704 TRAILER # : 18-704

NET TONS : 33.80 tn DAILY TONS : 33.80 tn JOB TOTAL : 3836.69 tn

NOTES:

Weyerhaeuser Company
Integrated Waste Management
Material Recovery I Transfer Eaching
PQ Box 188

Longview, WA 98632 (206) 578-4616

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

JOB : 11555 - East Bay Public Plaza

JOB ADD.: 421 Jefferson St NE

JOB CITY: Olympia

PRODUCT: 92 - Certified Scale Contaminated Dirt Backhaul

CARRIER: 01 - Quality Rock Products, Inc.

GROSS : 105100 lb TARE : 38500 lb NET : 66600 lb

CUSTOMER SIGN:	- 1 A 44 K IV	Ticket A
STANDBY TIME:		pd

STANDBY TIME:______STANDBY INITIALS:_____

TICKET # 301578

DATE & TIME: 9/21/2011 4:03:06 PM

SHIP LOC. : 2

JOB PO # :

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # : 18-708 TRAILER # : 18-708

NET TONS : 33.30 tn DAILY TONS : 64.54 tn JOB TOTAL : 597.15 tn

QUALITY ROCK PRODUCTS, INC. TICKEI # 3U150/ 9/21/2011 1:17:19 PM 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: SHIP LOC. : 2 22650 - DLB Earthworks CUSTOMER: 11555 - East Bay Public Plaza JOB PO # JOB 421 Jefferson St NE JOB ADD.: MAP PAGE JOB CITY: Olympia 92 - Certified Scale Contaminated Dirt Backhaul TRUCK TYPE : Picked Up PRODUCT: TRUCK # 18-703 TRAILER # 18-703 01 - Quality Rock Products, Inc. CARRIER : **NET TONS GROSS** 101860 lb DAILY TONS : JOB TOTAL : 31.24 tn 39380 1b 62480 1b TARE 563.85 tn NET NOTES: ____Ticket C CUSTOMER SIGN:___ STANDBY TIME:___ STANDBY INITIALS:_____ **TICKET # 482558** QUALITY ROCK PRODUCTS, INC. 9/21/2011 12:53:14 PM 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: SHIP LOC. : 22650 - DLB Earthworks 4 Rochester CUSTOMER: TOR - East Bay Public Plaza 10B PO # JOB : 421 Jefferson St NE JOB CITY: Olympia MAP PAGE 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : Picked Up PRODUCT: TRUCK # CARRIER: 01 - Quality Rock Products Inc TRAILER # 18-704 **GROSS** 100780 lb **NET TONS** 31.47 tn 37840 1b 62940 1b DAILY TONS : 222.08 tn TARE JOB TOTAL : 3802.89 tn Wayerhaeuser Company CUSTOMER SIGN:_____ NOTES: Integraled Waste Management Material Recovery | Iransfer Eacility STANDBY TIME:__ PO Box 188 STANDBY INITIALS:____ Longview, WA 98632 (206) 578-4616 QUALITY ROCK PRODUCTS, INC. TICKET # 482554 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 9/21/2011 12:16:06 PM **CUSTOMER:** 22650 - DLB Earthworks SHIP LOC. : 4 Rochester - East Bay Public Plaza JOB 11555 JOB PO # JOB ADD.: 421 Jefferson St NE JOB CITY: Olympia MAP PAGE PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : Picked Up TRUCK # CARRIER: 01 - Quality Rock Products Inc TRAILER # 18-701 101880 lb GROSS **NET TONS** 31.28 tn DAILY TONS : JOB TOTAL : 190.61 tn 3771.42 tn TARE 39320 lb 62560 lb NET

NOTES:

CUSTOMER SIGN:___

STANDBY TIME:_____
STANDBY INITIALS:__

QUALI	IY ROCK PRODUCTS, INC.	TIC	CKET # 482550
10201 LITTLERO	OCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777	DATE & TIME:	9/21/2011 12:02:20 PM
CUSTOMER:	22650 - DLB Earthworks	SHIP LOC. :	4 Rochester
јов :	11555 - East Bay Public Plaza	JOB PO # :	1
	421 Jefferson St NE Olympia	MAP PAGE :	Lot 8
PRODUCT :	92 - Certified Scale Contaminated Dirt Back Haul	TRUCK TYPE :	Picked Up
CARRIER :	01 - Quality Rock Products Inc	TRUCK # : TRAILER # :	18-708 18-708
	104240 lb 38460 lb	NET TONS : DAILY TONS :	32.89 tn 159.33 tn
NET :	38460 lb 65780 lb	JOB TOTAL :	3740.14 tn
CUSTOMER SIG	n:Ticket A	NOTES:	
STANDBY TIME	::	*	
STANDBY INIT	TALS:		
QUALI	TY ROCK PRODUCTS, INC.	TIC	CKET # 482514
10201 LITTLERO	OCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777	DATE & TIME:	9/21/2011 8:54:50 AM
CUSTOMER:	22650 - DLB Earthworks	SHIP LOC. :	4 Rochester
JOB : JOB ADD.:	11555 - East Bay Public Plaza 421 Jefferson St NE	JOB PO # :	× /0
JOB ADD.:	Olympia	MAP PAGE :	2518
PRODUCT :	92 - Certified Scale Contaminated Dirt Back Haul	TRUCK TYPE : TRUCK # :	Picked Up 18-704
CARRIER :	01 - Quality Rock Products Inc	TRUCK # : TRAILER # :	18-704
GROSS : TARE :	102860 lb 37840 lb	NET TONS : DAILY TONS :	32.51 tn 126.44 tn
NET :	65020 lb	JOB TOTAL :	3707.25 tn Weyerhaeuser Company
			Integrated Waste Management
	GN:Ticket B	NOTES:	Material Recovery Iransfor Eacility PQ Box 188
	::		Longview, WA 98632 (206) 578-4616
21ANDBY INTI	TALS:		trad Minania
			9
			# #02F12
QUALI	TY ROCK PRODUCTS, INC.	ITC	KET # 482513
10201 LITTLERO	CK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777	DATE & TIME:	9/21/2011 8:52:12 AM
CUSTOMER:	22650 - DLB Earthworks	SHIP LOC. :	4 Rochester
јов :	11555 - East Bay Public Plaza	JOB PO # :	
	421 Jefferson St NE Olympia	MAP PAGE :	2018
PRODUCT :	92 - Certified Scale Contaminated Dirt Back Haul	TRUCK TYPE :	Picked Up 18-703
CARRIER :	01 - Quality Rock Products Inc	TRUCK # :	
GROSS : TARE :	102800 lb 38120 lb	NET TONS : DAILY TONS :	32.34 tn 93.93 tn
NET :	64680 1b	JOB TOTAL :	3674.74 tn
	N:Ticket B	110123.	2 3 1 1 109
STANDBY TIME	:		m) 3/3-44/5
STANDBY INIT	TALS:		

TICKET # 482501 QUALITY ROCK PRODUCTS, 9/21/2011 8:08:09 AM 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: CUSTOMER: 22650 - DLB Earthworks SHIP LOC. : 4 Rochester 11555 - East Bay Public Plaza JOB PO # JOB JOB ADD.: 421 Jefferson St NE MAP PAGE JOB CITY: Olympia TRUCK TYPE : 92 - Certified Scale Contaminated Dirt Back Haul Picked Up PRODUCT: TRUCK # CARRIER : 01 - Quality Rock Products Inc TRAILER # 18-701 100120 lb 39320 lb 60800 lb 30.40 tn 61.59 tn GROSS **NET TONS** DAILY TONS : TARE 3642.40 tn JOB TOTAL : NET _____Ticket B NOTES: CUSTOMER SIGN:__ Fresh San Western STANDBY TIME:___ STANDBY INITIALS:_____ Ember jaknest ! Vieword's total, **TICKET # 482498** QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 9/21/2011 7:57:15 AM DATE & TIME: CUSTOMER: 22650 - DLB Earthworks SHIP LOC. : 4 Rochester JOB 11555 - East Bay Public Plaza ЈОВ РО # JOB ADD.: 421 Jefferson St NE JOB CITY: Olympia MAP PAGE 92 - Certified Scale Contaminated Dirt Back Haul PRODUCT: TRUCK TYPE : Picked Up 18-708 18-708 TRUCK # CARRIER : 01 - Quality Rock Products Inc TRAILER # 100840 lb GROSS 31.19 tn **NET TONS** 38460 1b DAILY TONS : JOB TOTAL : 31.19 tn 3612.00 tn TARE 62380 1b NET CUSTOMER SIGN:__ ____Ticket A NOTES: STANDBY TIME:___ STANDBY INITIALS:____ **TICKET # 482455** QUALITY ROCK PRODUCTS, INC. DATE & TIME: 9/20/2011 12:37:02 PM SHIP LOC. : 4 Rochester JOB PO # MAP PAGE TRUCK TYPE : Picked Up

1	.0201 LITTLER	OCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777
	CUSTOMER:	22650 - DLB Earthworks
	JOB : JOB ADD.: JOB CITY:	11555 - East Bay Public Plaza 421 Jefferson St NE Olympia
,	PRODUCT :	92 - Certified Scale Contaminated Dirt Back Haul
	CARRIER :	01 - Quality Rock Products Inc
i	GROSS : TARE : NET :	99660 lb 37840 lb 61820 lb

_____Ticket B

TRUCK # 18-704 TRAILER # 18-704 **NET TONS**

30.91 tn 185.72 tn 3580.81 tn DAILY TONS : JOB TOTAL : JOB TOTAL

NOTES:

Weyerhaeuser Company Integrated Waste Management Material Recovery | Iransies Eachity PQ Box 188 Longview, WA 98637 (206) 578-4616

STANDBY TIME:___ STANDBY INITIALS:__

CUSTOMER SIGN:___

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

22650 - DLB Earthworks CUSTOMER:

11555 - East Bay Public Plaza

421 Jefferson St NE JOB ADD.:

JOB CITY: Olympia

92 - Certified Scale Contaminated Dirt Back Haul PRODUCT :

01 - Quality Rock Products Inc CARRIER:

94420 lb GROSS 39320 lb TARE 55100 lb NFT

_____Ticket B CUSTOMER SIGN: STANDBY TIME:___

STANDBY INITIALS:____

TICKET # 482452

9/20/2011 12:22:57 PM DATE & TIME:

SHIP LOC. : 4 Rochester

10B PO # MAP PAGE

Picked Up TRUCK TYPE : TRUCK # 18-701 TRAILER # 18-701

NET TONS 27.55 tn DAILY TONS : 154.81 tn JOB TOTAL : 3549.90 tn

NOTES:

5101-875 (cn7) EDUDANEN' ANY SECTO Sal and di

4018

STREET INFLICT LANDACOUT IS OF

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

22650 - DLB Earthworks CUSTOMER:

11555 - East Bay Public Plaza 421 Jefferson St NE

JOB :

JOB CITY: Olympia

92 - Certified Scale Contaminated Dirt Back Haul PRODUCT :

01 - Quality Rock Products Inc CARRIER :

101060 lb GROSS 38460 lb 62600 lb TARE NET

STANDBY INITIALS:___

__Ticket B CUSTOMER SIGN:___

STANDBY TIME:__

TICKET # 482447

DATE & TIME: 9/20/2011 12:10:34 PM

4 Rochester SHIP LOC. :

JOB PO #

MAP PAGE

Picked Up TRUCK TYPE : TRUCK # 18-708 TRAILER # 18-708

31.30 tn **NET TONS** 127.26 tn DAILY TONS : JOB TOTAL : 3522.35 tn

NOTES:

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

11555 - East Bay Public Plaza

JOB ADD.: 421 Jefferson St NE

olympia JOB CITY:

PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul

01 - Quality Rock Products Inc CARRIER :

102060 lb GROSS 37840 lb 64220 lb TARE NET

___Ticket B CUSTOMER SIGN:____

STANDBY TIME:____ STANDBY INITIALS:__

TICKET # 482413

DATE & TIME: 9/20/2011 8:32:10 AM

4 Rochester SHIP LOC. :

10R PO #

MAP PAGE

NOTES:

TRUCK TYPE : Picked Up TRUCK # 18-704 TRAILER # 18-704

32.11 tn 95.96 tn 3491.05 tn NET TONS DAILY TONS : JOB TOTAL

Weyerhaeuser Company

Integrated Waste Management Material Recovery | Iransfer Facility PQ Box 188

Longview, WA 98637 1206) 578-4616

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 22650 - DLB Earthworks CUSTOMER: 11555 - East Bay Public Plaza 421 Jefferson St NE JOB ADD.: JOB CITY: Olympia 92 - Certified Scale Contaminated Dirt Back Haul PRODUCT: 01 - Quality Rock Products Inc CARRIER : 100060 lb GROSS 39320 1b 60740 1b TARE NET CUSTOMER SIGN:______Ticket C STANDBY TIME:____

TICKET # 482412

DATE & TIME: 9/20/2011 8:21:57 AM

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

Picked Up

TRUCK TYPE : 18-701 18-701 TRUCK # TRAILER #

NET TONS 30.37 tn 63.85 tn DAILY TONS : 3458.94 tn JOB TOTAL :

NOTES:

Mislerial Rocovery High this tack

10 Box 188

tongview, WA 98632

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

22650 - DLB Earthworks CUSTOMER:

11555 - East Bay Public Plaza

JOB : 421 Jefferson St NE

JOB CITY: Olympia

STANDBY INITIALS:____

92 - Certified Scale Contaminated Dirt Back Haul PRODUCT:

01 - Quality Rock Products Inc CARRIER :

GROSS 105420 lb

38460 1b 66960 1b TARE NET

Material receivery a framework action

____Ticket A CUSTOMER SIGN:___

STANDBY TIME:__

STANDBY INITIALS:___

TICKET # 482411

9/20/2011 8:11:35 AM DATE & TIME:

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # 18-708 TRAILER # 18-708

NET TONS : DAILY TONS : JOB TOTAL : 33.48 tn 33.48 tn 3428.57 tn

Lot 8

Weyerhaeuser MRF 3401 Industrial Way Longview, WA 98632 360-578-4616

Ticket #: 147,850

In: 15:08:29 9/16/2011 Out: 15:19:23 9/16/2011

Truck Id: 1
Customer Id: 57
Product Id: 61

Truck #: 703 SAFETY FIRST

Gross Lbs: 101,940
Tare Lbs: 37,920
Net Lbs: 64,020

Net Ton 32.01

Lot 8

Weyerhaeuser MRF 3401 Industrial Way Longview, WA 98632 360-578-4616

Ticket #: 147,831

In: 12:35:25 9/16/2011 Out: 12:44:26 9/16/2011

Truck Id: 7
Customer Id: 575
Product Id: 61

Truck #: 11
SAFETY FIRST

Mar Mara

Gross Lbs: 101,260
Tare Lbs: 39,760
Net Lbs: 61,500

20 75

Lot 8

Weyerhaeuser MRF 3401 Industrial Way Longview, WA 98632 360-578-4616

Ticket #: 147,845

In: 14:14:50 9/16/2011 Out: 14:32:14 9/16/2011

Truck Id: 2
Customer Id: 575
Product Id: 61

Truck #: 18704

SAFETY FIRST

· Lot 8

Weyerhaeuser MRF 3401 Industrial ' Longview, MA 360-578-4616

Ticket #: 147,823

In: 11:30:08 9/16/2011 Out: 11:42:32 9/16/2011

Truck Id: 4
Customer Id: 575
Product Id: 61

Truck #: 708 NAFETY FIRST

Gross Lbs: 94,140
Tare Lbs: 37,980
Net Lbs: 56,160

Net Tons 28.08

Weyerhaeuser MRF 3401 Industrial Way Longview, WA 98632 360-578-4616

Ticket #:

147,822

In:

11:25:14 9/16/2011

Out:

11:40:47 9/16/2011

Truck Id:

Customer Id: 575

Product Id:

Truck #:

701

SAFETY FIRST

Gros lbs:

94,460

Tale list

37,780

Het [hs:

56,680

Net Tons

28,34

Weyerhaeuser MRF 3401 Industrial Way Longview, WA 98632 360-578-4616

Ticket #:

147,816

9:33:56 9/16/2011

In: Out:

9:53:30 9/16/2011

Truck Id:

Customer Id: 575

Product Id:

Truck #: 18703

SAFETY FIRST

94,700

Gross Lbs: Tare Lbs:

37,500

Met Lbs:

57,200

Weyerhaeuser MRF 3401 Industrial Way Longview, WA 98632 360-578-4616

Ticket #: ·

147,817

In:

9:39:41 9/16/2011

Out:

9:55:18 9/16/2011

Truck Id:

Customer Id: 575

Product Id:

Truck #: 18704

SAFETY FIR T

Gross Lbs:

93,620

Tare Lbs:

37,820

Net Lbs:

55,800

Net Tons

27.90

ITCKE	I #	48	221
-------	-----	----	-----

9/16/2011 7:42:27 AM

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

22650 - DLB Earthworks CUSTOMER:

11555 - East Bay Public Plaza JOB

421 Jefferson St NE JOB ADD.:

JOB CITY: Olympia

92 - Certified Scale Contaminated Dirt Back Haul PRODUCT:

CARRIER: 4103 - Mumme Excavating LLC

99840 1b GROSS 40080 lb TARE 59760 lb NET

____Ticket B CUSTOMER SIGN:____

STANDBY TIME:____

STANDBY INITIALS:____

SHIP LOC. : 4 Rochester

JOB PO #

DATE & TIME:

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # MUMME11

TRAILER #

29.88 tn **NET TONS** DAILY TONS : JOB TOTAL : 29.88 tn 3250.32 tn

V. Athaner Company

Integraled Waste Management Material Recovery [Jransler, Locillia

NOTES:

FO Box 188

Longview, WA 98632

(206) 578-4616

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

- East Bay Public Plaza

JOB ADD.: 421 Jefferson St NE

JOB CITY: olympia

92 - Certified Scale Contaminated Dirt Backhaul PRODUCT:

01 - Quality Rock Products, Inc. CARRIER:

GROSS 99440 1b 38500 1b TARE 60940 1b NET

CUSTOMER SIGN:_ __Ticket B

STANDBY TIME:

STANDBY INITIALS:__

TICKET # 301473

9/15/2011 1:50:12 PM DATE & TIME:

2 SHIP LOC. :

JOB PO #

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # 18-708 TRAILER # 18-708

NET TONS 30.47 tn DAILY TONS : 60.90 tn JOB TOTAL : 532.61 tn

NOTES:

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

- East Bay Public Plaza JOB 11555

421 Jefferson St NE JOB ADD.:

JOB CITY: Olvmpia

92 - Certified Scale Contaminated Dirt Backhaul PRODUCT:

01 - Quality Rock Products, Inc. CARRIER:

99180 lb 38320 lb **GROSS** TARE 60860 1b NET

STANDBY INITIALS:_____

____Ticket B CUSTOMER SIGN:_____

STANDBY TIME:__

TICKET # 301471

9/15/2011 1:26:59 PM DATE & TIME:

SHIP LOC. 2

JOB PO #

MAP PAGE

Picked Up TRUCK TYPE : TRUCK # TRAILER # 18-701

NET TONS 30.43 tn 30.43 tn DAILY TONS : 502.14 tn JOB TOTAL :

NOTES:

to a wind viate to magazine Flaterial Recovery / Translation (2013) WEN. WA 98637

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 22650 - DLB Earthworks CLISTOMER:

11555 - East Bay Public Plaza TOR

JOB : 421 Jefferson St NE

JOB CITY: Olympia

92 - Certified Scale Contaminated Dirt Back Haul PRODUCT:

CARRIER: 01 - Quality Rock Products Inc

GROSS 102660 lb 37840 1b 64820 1b TARE

CUSTOMER SIGN:______Ticket B

STANDBY TIME:___

STANDBY INITIALS:

TICKET # 482223

9/15/2011 11:55:32 AM DATE & TIME:

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

Picked Up TRUCK TYPE : TRUCK # TRAILER # 18-704

NET TONS 32.41 tn DAILY TONS : 239.08 tn JOB TOTAL : 3220.44 tn

NOTES:

Weyerhoeuser Company Integrated Waste Management

Material Recovery | Ironsier Facilities

PO Box 188

Longview, WA 98632 (206) 578-4616

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

- East Bay Public Plaza **308** 11555

421 Jefferson St NE JOB ADD.:

JOB CITY: Olympia

PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul

CARRIER: 01 - Quality Rock Products Inc

GROSS 96460 lb 38120 1b 58340 1b TARE NET

CUSTOMER SIGN:______Ticket B

STANDBY TIME:_

STANDBY INITIALS:

TICKET # 482221

DATE & TIME: 9/15/2011 11:45:23 AM

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

Picked Up TRUCK TYPE : TRUCK # TRAILER # 18-703

29.17 tn **NET TONS** DAILY TONS : 206.67 tn 3188.03 tn JOB TOTAL :

NOTES:

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

- East Bay Public Plaza JOB 11555

JOB ADD.: 421 Jefferson St NE

JOB CITY: olympia

92 - Certified Scale Contaminated Dirt Back Haul PRODUCT :

CARRIER: 4103 - Mumme Excavating LLC

102800 lb GROSS 40080 lb TARE 62720 lb NET

_Ticket B

CUSTOMER SIGN: STANDBY TIME:

STANDBY INITIALS:_

TICKET # 482216

9/15/2011 11:06:23 AM DATE & TIME:

SHIP LOC. 4 Rochester

JOB PO #

MAP PAGE

TRUCK TYPE : Picked Up MIIMME11 TRUCK #

TRAILER #

NOTES:

31.36 tn 177.50 tn **NET TONS**

DAILY TONS JOB TOTAL 3158.86 tn

Viryinhaeurer Company Integrated Waste Management

Material Recovery [Iransfer Focilities

Longy ew. WA 98632 (106) 278-4616

TICKET # 482203 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 9/15/2011 9:50:03 AM CUSTOMER: 22650 - DLB Earthworks SHIP LOC. : 4 Rochester 11555 - East Bay Public Plaza JOB PO # JOB ADD.: 421 Jefferson St NE JOB CITY: Olympia MAP PAGE PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : Picked Up TRUCK # 18-701 01 - Quality Rock Products Inc CARRIER: TRAILER # 18-701 96080 lb 39320 lb GROSS **NET TONS** DAILY TONS : JOB TOTAL : 146.14 tn 3127.50 tn TARE 56760 1b NFT Principle Waste Management CUSTOMER SIGN:____ NOTES: Material Recovery / Transfer Tools STANDBY TIME:____ 10 Box 188 STANDBY INITIALS:____ QUALITY ROCK PRODUCTS, INC. TICKET # 482202 9/15/2011 9:46:33 AM 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: CUSTOMER: 22650 - DLB Earthworks SHIP LOC. : 4 Rochester 11555 - East Bay Public Plaza 421 Jefferson St NE JOB PO # JOB ADD.: JOB CITY: Olympia MAP PAGE 92 - Certified Scale Contaminated Dirt Back Haul PRODUCT: TRUCK TYPE : Picked Up 18-708 18-708 TRUCK # TRAILER # CARRIER : 01 - Quality Rock Products Inc GROSS 96540 lb NET TONS 29.04 tn 117.76 tn 3099.12 tn TARE 38460 1b DAILY TONS : 58080 1b JOB TOTAL : NET CUSTOMER SIGN:____ ____Ticket A NOTES: STANDBY TIME:___ STANDBY INITIALS:__ **TICKET # 482187** QUALITY ROCK PRODUCTS, INC. DATE & TIME: 9/15/2011 8:00:18 AM 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 22650 - DLB Earthworks SHIP LOC. : 4 Rochester CUSTOMER: 11555 - East Bay Public Plaza JOB PO # JOB ADD.: 421 Jefferson St NE JOB CITY: Olympia MAP PAGE 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : Picked Up PRODUCT: TRUCK # TRAILER # CARRIER: 01 - Quality Rock Products Inc 18-704 NET TONS : DAILY TONS : JOB TOTAL : 100960 lb 31.56 tn 88.72 tn 3070.08 tn GROSS TARE 37840 lb 63120 1b NET Weyerhaeuser Company Integrated Waste Management

_____Ticket B

CUSTOMER SIGN:____

STANDBY INITIALS:__

STANDBY TIME:____

NOTES:

Material Recovery | Iransfet Facility

Longview, WA 28632

(206) 578-4616

PO Box 188

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

11555 - East Bay Public Plaza

421 Jefferson St NE JOB ADD.:

JOB CITY: Olympia

PRODUCT : 92 - Certified Scale Contaminated Dirt Back Haul

01 - Quality Rock Products Inc CARRIER:

94800 1b GROSS 38120 1b TARE 56680 1b NET

CUSTOMER SIGN:___ __Ticket B

STANDBY TIME:____

STANDBY INITIALS:____

TICKET # 482185

9/15/2011 7:50:11 AM DATE & TIME:

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # 18-703 TRAILER # :

NET TONS : DAILY TONS : JOB TOTAL : 28.34 tn 57.16 tn 3038.52 tn

NOTES:

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

11555 - East Bay Public Plaza 421 Jefferson St NE

JOB ADD.:

JOB CITY: Olympia

PRODUCT : 92 - Certified Scale Contaminated Dirt Back Haul

4103 - Mumme Excavating LLC CARRIER :

GROSS 97720 lb TARE 40080 1b NET 57640 lb

______Ticket C CUSTOMER SIGN:___

STANDBY TIME:

STANDBY INITIALS:____

TICKET # 482183

9/15/2011 7:42:30 AM DATE & TIME:

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # MUMME11

TRAILER #

28.82 tn 28.82 tn NET TONS DAILY TONS :

3010.18 tn Company JOB TOTAL :

Integrated Waste Management Material Recovery / Translet Tacilly

NOTES: PO Box 188

> Longview, WA 98632 (206) 578-4616

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

10B 11555 - East Bay Public Plaza

421 Jefferson St NE JOB ADD.:

JOB CITY: Olympia

PRODUCT: 92 - Certified Scale Contaminated Dirt Backhaul

CARRTER: 01 - Quality Rock Products, Inc.

GROSS 98120 lb 38500 lb 59620 lb TARE NET

CUSTOMER SIGN:___ _____Ticket A

STANDBY TIME:_

STANDBY INITIALS:___

TICKET # 301441

9/14/2011 2:40:03 PM DATE & TIME:

SHIP LOC. :

JOB PO #

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # 18-708 TRAILER # 18-708

NET TONS 29.81 tn 61.25 tn

DAILY TONS : JOB TOTAL : 471.71 tn

OUALITY ROCK PRODUCTS. TICKET # 3U144U 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 9/14/2011 2:33:23 PM DATE & TIME: SHIP LOC. : 2 **CUSTOMER:** 22650 - DLB Earthworks 11555 - East Bay Public Plaza 421 Jefferson St NE JOB PO # JOB : JOB ADD.: JOB CITY: MAP PAGE Olympia 92 - Certified Scale Contaminated Dirt Backhaul Picked Up PRODUCT: TRUCK # 18-701 TRAILER # 18-701 CARRIER : 01 - Quality Rock Products, Inc. 101200 lb 38320 lb 62880 lb **NET TONS** GROSS DAILY TONS : 31.44 tn TARE JOB TOTAL 441.90 tn NET 51 r-8 1 (207) NOTES: ____Ticket B CUSTOMER SIGN:__ TEORS WAS 'MOUSTIES STANDBY TIME:____ Lot 8 STANDBY INITIALS:___ **TICKET # 482113** QUALITY ROCK PRODUCTS, INC. 9/14/2011 12:35:51 PM 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: CUSTOMER: 22650 - DLB Earthworks SHIP LOC. : 4 Rochester JOB 11555 - East Bay Public Plaza JOB PO # 421 Jefferson St NE JOB ADD.: JOB CITY: Olympia MAP PAGE PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : Picked Up TRUCK # 18-704 01 - Quality Rock Products Inc TRAILER # 18-704 CARRIER : GROSS 100500 lb **NET TONS** 31.33 tn 245.82 tn 37840 1b DAILY TONS : TARE 62660 1b JOB TOTAL : NET 2981.36 tn Weyerhaeuser Company CUSTOMER SIGN: _Ticket C NOTES: Integrated Waste Management Material Recovery | Iransfer Eacility STANDRY TIME: Lot 8 PO Box 188 Longview, WA 98632 STANDBY INITIALS: (206) 578-4616 TICKET # 482108 OUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 9/14/2011 12:25:11 PM CUSTOMER: 22650 - DLB Earthworks SHIP LOC. : 4 Rochester JOB PO # - East Bay Public Plaza 421 Jefferson St NE JOB ADD.: MAP PAGE JOB CITY: Olympia 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : Picked Up PRODUCT: 18-703 18-703 TRUCK # TRAILER # 01 - Quality Rock Products Inc CARRIER : 101640 lb **NET TONS** 31.76 tn GROSS 38120 1b 63520 1b DAILY TONS 214.49 tn TARE 2950.03 tn JOB TOTAL : NET

_____Ticket B

CUSTOMER SIGN:_____
STANDBY TIME:____
STANDBY INITIALS:_

TICKET # 482082 QUALITY ROCK PRODUCTS, INC. 9/14/2011 11:16:17 AM 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: SHIP LOC. : 4 Rochester CUSTOMER: 22650 - DLB Earthworks 11555 - East Bay Public Plaza JOB PO # JOB JOB ADD.: 421 Jefferson St NE MAP PAGE JOB CITY: Olympia PRODUCT : 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : Picked Up TRUCK # MUMME11 4103 - Mumme Excavating LLC TRAILER # CARRIER: 33.34 tn 182.73 tn 2918.27 tn NET TONS **GROSS** 106760 lb 40080 lb 66680 lb DAILY TONS : TARE JOB TOTAL : 9191-8/5 (907) Lengview, WA 98632 NOTES: CUSTOMER SIGN:____ 881 xo8 Oa Moterial Recovery Luansler Locilla STANDBY TIME:___ Inemorphoral etsoW beloughing Kupduoy Johnsy STANDBY INITIALS:_____

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CLISTOMER: 22650 - DLB Earthworks

JOB 11555 - East Bay Public Plaza

421 Jefferson St NE JOB ADD.:

JOB CITY: Olympia

92 - Certified Scale Contaminated Dirt Back Haul PRODUCT :

CARRIER: 01 - Quality Rock Products Inc

100580 lb GROSS 39320 lb 61260 lb TARE

CUSTOMER SIGN:___ _____Ticket B

STANDBY TIME:___

STANDBY INITIALS:___

TICKET # 482075

DATE & TIME: 9/14/2011 10:48:46 AM

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

TRUCK TYPE : TRUCK # : Picked Up 18-701 TRAILER # 18-701

NET TONS 30.63 tn DAILY TONS : JOB TOTAL : 149.39 tn 2884.93 tn

SESSE AW WANTED NOTES:

881 And C4

C Had in Eccovery [Transler form]

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

11555 - East Bay Public Plaza

421 Jefferson St NE JOB ADD.:

JOB CITY: Olympia

PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul

CARRIER: 01 - Quality Rock Products Inc

97580 1b GROSS 38460 lb TARE 59120 lb NET

CUSTOMER SIGN:___ ____Ticket A

STANDBY TIME:__

STANDBY INITIALS:___

TICKET # 482073

वार्य-वर्ष राजारो

DATE & TIME: 9/14/2011 10:44:38 AM

4 Rochester SHIP LOC. :

JOB PO #

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # 18-708 18-708 TRAILER #

NET TONS : DAILY TONS : JOB TOTAL : **NET TONS** 118.76 tn 2854.30 tn

TICKET # 482043 QUALITY ROCK PRODUCTS. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 9/14/2011 8:07:21 AM DATE & TIME: CUSTOMER: 22650 - DLB Earthworks SHIP LOC. : 4 Rochester 11555 - East Bay Public Plaza JOB PO # JOB ADD.: 421 Jefferson St NE JOB CITY: Olympia MAP PAGE TRUCK TYPE : TRUCK # : Picked Up PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul 18-703 CARRIER : 01 - Quality Rock Products Inc TRAILER # 18-703 29.07 tn 89.20 tn GROSS 96260 1b NET TONS 38120 1b TARE DAILY TONS : 58140 1b JOB TOTAL : NET 2824.74 tn NOTES: STANDBY TIME: STANDBY INITIALS:__ **TICKET # 482042** QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 9/14/2011 8:05:23 AM CUSTOMER: 22650 - DLB Earthworks SHIP LOC. : 4 Rochester 11555 - East Bay Public Plaza JOB PO # JOB ADD.: 421 Jefferson St NE JOB CITY: Olympia MAP PAGE PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : Picked Up TRUCK # 18-704 CARRIER: 01 - Quality Rock Products Inc TRAILER # 18-704 GROSS 98380 lb **NET TONS** 30.27 tn 37840 1b TARE DAILY TONS : 60.13 tn 60540 1b NET JOB TOTAL 2795.67 tn Vieyerhaeuser Company CUSTOMER SIGN:___ ____Ticket B NOTES: Integrated Waste Management Material Recovery | Iransfer Eaching STANDBY TIME:___ PQ Box 188 STANDBY INITIALS:___ Longview, WA 98632 (206) 578-4616 **TICKET # 482039** QUALITY ROCK PRODUCTS. INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 9/14/2011 7:47:29 AM **CUSTOMER:** 22650 - DLB Earthworks SHIP LOC. : 4 Rochester 11555 - East Bay Public Plaza JOB JOB PO # JOB ADD.: 421 Jefferson St NE

JOB CITY: Olympia

PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul

4103 - Mumme Excavating LLC CARRIER:

99800 1ь GROSS 40080 1b TARE 59720 1b

CUSTOMER SIGN:___

STANDBY TIME:_

STANDBY INITIALS:_

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # MUMME11

TRAILER #

NOTES:

Lat

NET TONS 29.86 tn DAILY TONS : 29.86 tn JOB TOTAL 2765.40 tn

Weyerhaeurer Company Integraled Waste Management Material Recovery / Transfer Facility PO Box 188 Longview, WA 98632 (206) 578-4616

TICKET # 301407 QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 9/13/2011 2:14:35 PM SHIP LOC. : 2 22650 - DLB Earthworks **CUSTOMER:** JOB PO # 11555 - East Bay Public Plaza JOB 421 Jefferson St NE JOB ADD.: MAP PAGE JOB CITY: **Olympia** TRUCK TYPE : Picked Up 92 - Certified Scale Contaminated Dirt Backhaul PRODUCT : TRUCK # 18-708 18-708 TRAILER # 01 - Quality Rock Products, Inc. CARRIER : 98040 1b 38500 1b **NET TONS** 29.77 tn GROSS 58.40 tn DAILY TONS : TARE JOB TOTAL : 410.46 tn 59540 1b French and NET NOTES: __Ticket B CUSTOMER SIGN:___ STANDBY TIME:____ 4018 STANDBY INITIALS:____ TICKET # 301401 QUALITY ROCK PRODUCTS, INC. 9/13/2011 1:31:26 PM DATE & TIME: 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 2 SHIP LOC. : 22650 - DLB Earthworks CUSTOMER: JOB PO # 11555 - East Bay Public Plaza 421 Jefferson St NE JOB ADD.: MAP PAGE JOB CITY: Olympia 92 - Certified Scale Contaminated Dirt Backhaul TRUCK TYPE : Picked Up PRODUCT: TRUCK # 18-701 TRAILER # 18-701 01 - Quality Rock Products, Inc. CARRIER: 28.63 tn **NET TONS** GROSS 95580 1b DAILY TONS : 28.63 tn TARE JOB TOTAL 380.69 tn

______Ticket C CUSTOMER SIGN:___ STANDBY TIME:___ STANDBY INITIALS:____

57260 1b

NET

NOTES:

OUALITY ROCK PRODUCTS. INC.

TICKET # 481958

510 mg / (0 m+)

AΜ

ZTORK WAS TO SEE

	483	
10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFIC	E: 360-754-7777 DATE & TIME:	9/13/2011 11:58:11
CUSTOMER: 22650 - DLB Earthworks	SHIP LOC. :	4 Rochester
JOB : 11555 - East Bay Public Plaza	JOB PO # :	
JOB ADD.: 421 Jefferson St ŃE JOB CITY: Olympia	MAP PAGE :	
PRODUCT: 92 - Certified Scale Contaminated Dirt		Picked Up
CARRIER: 01 - Quality Rock Products Inc		18-704 18-704
GROSS : 102120 lb		32.14 tn
TARE : 37840 lb	DAILY TONS :	254.01 tn
NET : 64280 lb	JOB TOTAL :	2735.54 tn

_____Ticket B CUSTOMER SIGN: STANDBY TIME:_

STANDBY INITIALS:__

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

JOB : 11555 - East Bay Public Plaza

421 Jefferson St NE

JOB CITY: Olympia

PRODUCT : 92 - Certified Scale Contaminated Dirt Back Haul

CARRIER: 01 - Quality Rock Products Inc

97380 1b GROSS TARE 38120 lb 59260 lb NET

CUSTOMER SIGN:___

STANDBY TIME:_____

STANDBY INITIALS:____

TICKET # 481951

DATE & TIME: 9/13/2011 11:36:16 AM

SHIP LOC. : 4 Rochester

JOB PO # MAP PAGE

TRUCK TYPE : Picked Up TRUCK # 18-703 TRAILER # 18-703

NET TONS 29.63 tn DAILY TONS : 221.87 tn JOB TOTAL : 2703.40 tn

NOTES:

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

JOB 11555 - East Bay Public Plaza

421 Jefferson St NE JOB ADD.:

Olympia JOB CITY:

PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul

4103 - Mumme Excavating LLC CARRIER:

103280 lb GROSS 40080 1b 63200 1b TARE

CUSTOMER SIGN:____

STANDBY TIME:___ STANDBY INITIALS:___

TICKET # 481949

9/13/2011 11:19:54 AM DATE & TIME:

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # MUMME11

TRAILER #

NOTES:

31.60 tn NET TONS

DAILY TONS : JOB TOTAL : 192.24 tn 2673.77 tn

> \$198-87£ (602) EEDBY AW WBINDHES

881 xo8 Q4

Potental Recovery (Itansfer Eaching Imagende Worte Management Auddino's company

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

22650 - DLB Earthworks **CUSTOMER:**

11555 - East Bay Public Plaza

421 Jefferson St NE JOB ADD.:

JOB CITY: olympia

92 - Certified Scale Contaminated Dirt Back Haul PRODUCT:

CARRIER : 01 - Quality Rock Products Inc

GROSS 102720 lb TARE 38460 lb 64260 lb NET

_Ticket A CUSTOMER SIGN:

STANDBY TIME:__

STANDBY INITIALS:___

TICKET # 481940

DATE & TIME: 9/13/2011 10:05:36 AM

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # 18-708 TRAILER # 18-708

NET TONS 32.13 tn DAILY TONS : 160.64 tn JOB TOTAL : 2642.17 tn

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

JOB : 11555 - East Bay Public Plaza

JOB ADD.: 421 Jefferson St NE

JOB CITY: Olympia

PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul

CARRIER: 01 - Quality Rock Products Inc

GROSS : 98660 lb TARE : 39320 lb NET : 59340 lb

CUSTOMER SIGN:______Ticket C

STANDBY TIME:____

STANDBY INITIALS:___

TICKET # 481937

DATE & TIME: 9/13/2011 9:52:38 AM

3, 23, 2022 3.32.30 A

SHIP LOC. : 4 Rochester

JOB PO # :

MAP PAGE

TRUCK TYPE: Picked Up TRUCK #: 18-701 TRAILER #: 18-701

NET TONS : 29.67 tn DAILY TONS : 128.51 tn JOB TOTAL : 2610.04 tn

NOTES:

LO+8

quantizative and

Atobe And

Ellipe Intensif I Views

giornalia ininti

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

JOB : 11555 - East Bay Public Plaza

JOB ADD.: 421 Jefferson St NE

JOB CITY: Olympia

PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul

CARRIER: 01 - Quality Rock Products Inc

GROSS : 97120 lb TARE : 37840 lb NET : 59280 lb

CUSTOMER SIGN:_______Ticket A

STANDBY TIME:_____

STANDBY INITIALS:____

TICKET # 481918

DATE & TIME: 9/13/2011 8:15:58 AM

SHIP LOC. : 4 Rochester

JOB PO # :

MAP PAGE :

TRUCK TYPE : Picked Up TRUCK # : 18-704 TRAILER # : 18-704

NET TONS : 29.64 tn DAILY TONS : 98.84 tn JOB TOTAL : 2580.37 tn

NOTES:

York Company

York Company

Integrated Waste Management

Noterial Recovery I transfer Leadility

PO Box 188

PO Box 188

PO Box 188

PO Box 188

PO Box 188

PIPF-872 (202)

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

JOB : 11555 - East Bay Public Plaza

JOB ADD.: 421 Jefferson St NE

JOB CITY: Olympia

PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul

CARRIER: 01 - Quality Rock Products Inc

GROSS : 100780 lb TARE : 38120 lb NET : 62660 lb

CUSTOMER SIGN:_____Ticket B

STANDBY TIME:_____

STANDBY INITIALS:_____

TICKET # 481914

DATE & TIME: 9/13/2011 7:56:00 AM

SHIP LOC. : 4 Rochester

JOB PO # :

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # : 18-703 TRAILER # : 18-703

NET TONS : 31.33 tn DAILY TONS : 69.20 tn JOB TOTAL : 2550.73 tn

NOTES:

Lots

QUALITY ROCK PRODUCTS, INC. TICKET # 481913

COVE	LII KOCK PRODUC	13, THE	1 1 (RLIT	TOISI.
LO201 LITTLE	ROCK RD SW - OLYMPIA, WA 98512 -	OFFICE: 360-754-7777	DATE & TIME:	9/13/2011 7:	54:47 AM
CUSTOMER:	22650 - DLB Earthworks		SHIP LOC. :	4 Rochester	2
JOB :	11555 - East Bay Public Plaza		JOB PO # :		
JOB ADD.: JOB CITY:	421 Jefferson St ŃE Olympia		MAP PAGE :		
PRODUCT :	92 - Certified Scale Contaminate	d Dirt Back Haul	TRUCK TYPE : TRUCK # :	Picked Up MUMME11	
CARRIER:	4103 - Mumme Excavating LLC		TRAILER # :	MOMMETT	3
GROSS : TARE : NET :	115820 lb 40080 lb 75740 lb		NET TONS : DAILY TONS : JOB TOTAL :	37.87 tn	
CUSTOMER S	SIGN:	Ticket B	NOTES: Mo	terral Recovery (Tra	san fasica
	ME:		PO	Box 188 19Vaw, WA 98633	
	HITIALS:	X ./o	(2)	06) 578-4616	
QUALI	TY ROCK PRODUCT	TS, INC.	TIC	KET #	301358
			DATE & TIME:	9/12/2011 3:	:12:22 PM
CUSTOMER:	22650 - DLB Earthworks		SHIP LOC. :	2	
JOB :	11555 - East Bay Public Plaza		JOB PO # :	-	
JOB ADD.: JOB CITY:	421 Jefferson St NE Olympia		MAP PAGE :		
PRODUCT :	92 - Certified Scale Contaminate	d Dirt Backhaul	TRUCK TYPE :		
CARRIER:	01 - Quality Rock Products, Inc.		TRUCK # : TRAILER # :	18-708 18-708	120
GROSS : TARE : NET :	104100 lb 38500 lb 65600 lb		NET TONS : DAILY TONS : JOB TOTAL :	67.92 tn	2000
CUSTOMER S	IGN:	Ticket B	NOTES:		
STANDBY TI					
	ITIALS:				
QUALI	TY ROCK PRODUCT	TS, INC.	TIC	KET #	301349
0201 LITTLE	ROCK RD SW - OLYMPIA, WA 98512 -	OFFICE: 360-754-7777	DATE & TIME:	9/12/2011 1:	47:56 PM
CUSTOMER:	22650 - DLB Earthworks		SHIP LOC. :	2	
JOB : JOB ADD.: JOB CITY:			JOB PO # : MAP PAGE :		1/0
PRODUCT :	92 - Certified Scale Contaminate	d Dirt Backhaul	TRUCK TYPE : TRUCK # :		40x 8
CARRIER :	01 - Quality Rock Products, Inc.		TRAILER # :		
GROSS : TARE : NET :	108560 lb 38320 lb 70240 lb		NET TONS : DAILY TONS : JOB TOTAL :	35.12 tn 35.12 tn 319.26 tn	
CUSTOMER S	IGN:	Ticket C	NOTES:		979F-875 (chr)
	ME:		NOTES:	78	881 AUG SO
	ITIALS:	_		galaxi micani	A A IDA COME TO SO

•	ALTII	Y	K	UCK	P	'K	UDU		.15,	INC.		ITC	KE I	#	401	-0
		RD	SW	- OLYMI	PIA,	WA	98512	=	OFFICE:	360-754-7777	DATE	& TIME:	9/12/2011	12:1	2:47 PM	

CUSTOMER: 22650 - DLB Earthworks

11555 - East Bay Public Plaza JOB

JOB ADD.: 421 Jefferson St NE

JOB CITY: Olympia

92 - Certified Scale Contaminated Dirt Back Haul PRODUCT:

CARRIER: 01 - Quality Rock Products Inc

96780 lb 38120 lb GROSS TARE 58660 1b NET

____Ticket B CUSTOMER SIGN:__ STANDBY TIME:__ STANDBY INITIALS:____

4 Rochester SHIP LOC. :

JOB PO #

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # TRAILER # 18-703

NET TONS : DAILY TONS : 29.33 tn 212.39 tn JOB TOTAL : 2481.53 tn

NOTES:

ROCK PRODUCTS, INC. QUALITY

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

22650 - DLB Earthworks **CUSTOMER:**

East Bay Public Plaza

421 Jefferson St NE JOB ADD.:

JOB CITY: Olympia

92 - Certified Scale Contaminated Dirt Back Haul PRODUCT:

01 - Quality Rock Products Inc CARRIER:

115380 lb GROSS 37840 1b 77540 1b TARE NET

STANDBY INITIALS:____

____Ticket A CUSTOMER SIGN:____ STANDBY TIME:_

TICKET # 481885

9/12/2011 12:03:23 PM DATE & TIME:

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # 18-704

TRAILER # 18-704

38.77 tn 183.06 tn **NET TONS** DAILY TONS : 2452.20 tn JOB TOTAL :

NOTES:

5196-872 (302) LENGYIBW, WA 98637 881 xog Ca Michael Recovery | Iransfer Lacility InemispandM elseVV beimen Хирашол за полу

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

JOB 11555 - East Bay Public Plaza

JOB ADD.: 421 Jefferson St NE

JOB CITY: Olympia

PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul

CARRIER: 01 - Quality Rock Products Inc

GROSS 103980 lb 38460 lb TARE 65520 1b NET

CUSTOMER SIGN:_ _Ticket B

STANDBY TIME:_ STANDBY INITIALS:__ TICKET # 481882

9/12/2011 11:25:40 AM DATE & TIME:

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

TRUCK TYPE : TRUCK # : Picked Up 18-708 TRAILER # 18-708

NET TONS : DAILY TONS : 32.76 tn 144.29 tn JOB TOTAL : 2413.43 tn

QUALITY ROCK PRODUCTS, INC.	TI	CKET # 48187
.0201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777	DATE & TIME:	9/12/2011 10:06:48 AM
CUSTOMER: 22650 - DLB Earthworks JOB : 11555 - East Bay Public Plaza JOB ADD.: 421 Jefferson St NE JOB CITY: Olympia PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul CARRIER: 01 - Quality Rock Products Inc GROSS: 100420 lb TARE: 39320 lb NET: 61100 lb CUSTOMER SIGN:	SHIP LOC. : JOB PO # : MAP PAGE : TRUCK TYPE : TRUCK # : TRAILER # : NET TONS : DAILY TONS : JOB TOTAL :	Picked Up 18-701 18-701 30.55 tn 111.53 tn
QUALITY ROCK PRODUCTS, INC.	,TI	CKET # 48186
0201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777	DATE & TIME:	9/12/2011 8:23:40 AM
CUSTOMER: 22650 - DLB Earthworks JOB : 11555 - East Bay Public Plaza JOB ADD.: 421 Jefferson St NE JOB CITY: Olympia PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul	SHIP LOC. : JOB PO # : MAP PAGE : TRUCK TYPE :	4 Rochester Picked Up
CARRIER: 01 - Quality Rock Products Inc	TRUCK # : TRAILER # :	18-703 18-703
GROSS : 98300 lb TARE : 38120 lb NET : 60180 lb	NET TONS : DAILY TONS : JOB TOTAL :	80.98 tn
CUSTOMER SIGN:Ticket B	NOTES:	Dax 128

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

11555 - East Bay Public Plaza 421 Jefferson St NE JOB

JOB : JOB ADD.: JOB CITY:

olympia

STANDBY TIME:___

STANDBY INITIALS:_____

PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul

01 - Quality Rock Products Inc CARRIER:

97540 lb GROSS 37840 1b 59700 1b TARE NET

CUSTOMER SIGN:______Ticket B STANDBY TIME:___ STANDBY INITIALS:___

TICKET # 481860

DATE & TIME: 9/12/2011 8:11:13 AM

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

NOTES:

TRUCK TYPE : Picked Up 18-704 18-704 TRUCK # TRAILER #

NET TONS 29.85 tn 50.89 tn DAILY TONS : JOB TOTAL : 2320.03 tn

Y Withouter Company

harmoned Waste Management Material Recovery / Jeansfer Facility

10 Box 188

(200) 578-4614

Lungview, WA 98632

TICKET # 481856 QUALITY ROCK PRODUCTS, INC. DATE & TIME: 9/12/2011 7:55:13 AM 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 SHIP LOC. : CUSTOMER: 22650 - DLB Earthworks 4 Rochester 11555 - East Bay Public Plaza JOB PO # JOB 421 Jefferson St NE JOB ADD.: MAP PAGE Olympia JOB CITY: 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : Picked Up PRODUCT: TRUCK # TRAILER # 18-708 01 - Quality Rock Products Inc CARRIER : 21.04 tn 21.04 tn 80540 lb 38460 lb NET TONS ZEORA DA GROSS DAILY TONS : JOB TOTAL : Fillish Julyana Ampanya 2290.18 tn 42080 lb __Ticket A NOTES: CUSTOMER SIGN:___ STANDBY TIME:___ STANDBY INITIALS:___ QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME:

22650 - DLB Earthworks **CUSTOMER:**

JOB 11555 - East Bay Public Plaza

421 Jefferson St NE JOB ADD.:

JOB CITY: Olympia

PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul

CARRIER : 01 - Quality Rock Products Inc

99720 lb GROSS 39320 1b 60400 1b TARE

_____Ticket B CUSTOMER SIGN:___

STANDBY TIME:__ STANDBY INITIALS:_____

TICKET # 481811

9/9/2011 1:06:34 PM

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # 18-701 18-701 TRAILER #

30.20 tn NET TONS 117.10 tn DAILY TONS : JOB TOTAL, : 2269.14 tn

NOTES:

Palance Recovery Transler Facety

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

11555 - East Bay Public Plaza

JOB ADD.: 421 Jefferson St NE

JUB CITY: Olympia

CUSTOMER SIGN:___

92 - Certified Scale Contaminated Dirt Back Haul PRODUCT :

CARRIER : 01 - Quality Rock Products Inc

98740 lb GROSS 38460 1b 60280 1b TARE NET

Mater at Recovery , Transfer Lacility

__Ticket B

STANDBY TIME:_ STANDBY INITIALS:___

TICKET # 481804

	•	0 (0 (3011	13.31.61	
DATE	ሌ TIME:	9/9/2011	TC: CT: 2T	PM .

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # TRUCK # : TRAILER # : 18-708

NET TONS : DAILY TONS : JOB TOTAL : 30.14 tn 86.90 tn 2238.94 tn

STANDBY TIME:_ STANDBY INITIALS:__

TICKET # 481772 - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 9/9/2011 8:19:11 AM 10201 LITTLEROCK RD SW SHIP LOC. : 4 Rochester 22650 - DLB Earthworks CUSTOMER: JOB PO # : 11555 🕒 East Bay Public Plaza 421 Jefferson St NE JOB ADD.: MAP PAGE OB CITY: olympia TRUCK TYPE : 92 - Certified Scale Contaminated Dirt Back Haul Picked Up PRODUCT: TRUCK # 18-708 TRAILER # : 18-708 01 - Quality Rock Products Inc CARRIER : NET TONS : DAILY TONS : 29.72 tn GROSS 97900 lb 56.76 tn 38460 1b 59440 1b TARE קוסד-פיל וסח-ן JOB TOTAL : 2208.80 tn NET Tropy And wester Figure 1 property pacific NOTES: ___Ticket A CUSTOMER SIGN:__ STANDBY TIME:_ STANDBY INITIALS:____ **TICKET # 481765** QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 9/9/2011 7:57:59 AM DATE & TIME: SHIP LOC. : CUSTOMER: 22650 - DLB Earthworks 4 Rochester 11555 - East Bay Public Plaza JOB PO # JOB ADD.: 421 Jefferson St NE MAP PAGE JOB CITY: Olympia PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : Picked Up TRUCK # 18-701 01 - Quality Rock Products Inc TRAILER # 18-701 CARRIER : 93400 lb 39320 lb 27.04 tn 27.04 tn GROSS NET TONS DAILY TONS : TARE 54080 1b JOB TOTAL : 2179.08 tn NFT Villagerhammer Company Interrated Waste Management CUSTOMER SIGN:__ ____Ticket B NOTES: Moternal Recovery | Transfer Facility F⊅ Box 188 STANDBY TIME:__ Longview, WA 98632 STANDBY INITIALS:___ QUALITY ROCK PRODUCTS, INC. TICKET # 481594 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 9/7/2011 12:18:22 PM CUSTOMER: 22650 - DLB Earthworks SHIP LOC. : 4 Rochester JOB 11555 - East Bay Public Plaza **JOB PO #** JOB ADD.: 421 Jefferson St NE JOB CITY: Olympia MAP PAGE PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : Picked Up TRUCK # 18-703 CARRIER: 01 - Quality Rock Products Inc TRAILER # 18-703 GROSS 107240 lb **NET TONS** 34.56 tn 38120 lb TARE DAILY TONS : 133.42 tn 2152.04 tn 69120 1b JOB TOTAL : CUSTOMER SIGN:___ __Ticket B NOTES:

STANDBY TIME:___

STANDBY INITIALS:_____

TNC OUALTTY POCK PRODUCTS

TICKET # 481589

QUALITY ROCK PRODUCTS, INC.	DATE & TIME:	9/7/2011 11:43:56 AM
10201 LITTLEROCK RD SW - 0LYMPIA, WA 98512 - OFFICE: 360-754-7777	DATE OF TIME.	3/1/2022 22:13:34 741
CUSTOMER: 22650 - pLB Earthworks	SHIP LOC. :	4 Rochester ?
JOB : 11555 - East Bay Public Plaza JOB ADD.: 421 Jefferson St NE	JOB PO # :	4
JOB ADD.: 421 Jefferson St NE JOB CITY; Olympia	MAP PAGE :	
PRODUCT 92 - Certified Scale Contaminated Dirt Back Haul CARRIER: 01 - Quality Rock Products Inc	TRUCK TYPE : TRUCK # : TRAILER # :	Picked Up 18-708 18-708
GROSS : 103280 lb	NET TONS : DAILY TONS : JOB TOTAL :	32.41 tn 98.86 tn 2117.48 tn
CUSTOMER SIGN: Ticket B	NOTES:	
STANDBY INITIALS:		
QUALITY ROCK PRODUCTS, INC.	TIC	KET # 48156
201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777	DATE & TIME:	9/7/2011 8:33:55 AM
CUSTOMER: 22650 - DLB Earthworks	SHIP LOC. :	4 Rochester
JOB : 11555 - East Bay Public Plaza	JOB PO # :	1
JOB ADD.: 421 Jefferson St NE JOB CITY: Olympia	MAP PAGE :	Lots
PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul	TRUCK TYPE : TRUCK # :	Picked Up 18-703
CARRIER: 01 - Quality Rock Products Inc	TRAILER # :	18-703
GROSS : 107660 lb TARE : 38120 lb NET : 69540 lb	NET TONS : DAILY TONS : JOB TOTAL :	
	F	THE WILL THE STATE OF THE
CUSTOMER SIGN:Ticket B	NOTES:	Environmental September 1985
STANDBY TIME:		r Ye Best ID
STANDBY INITIALS:		
QUALITY ROCK PRODUCTS, INC.	TIC	KET # 48155
D201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777	DATE & TIME:	9/7/2011 8:02:29 AM

QUALI	IT ROCK PRODUCTS, INC.	IICKEI #			
10201 LITTLE	ROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777	DATE & TIME:	9/7/2011 8:02		
CUSTOMER:	22650 - DLB Earthworks	SHIP LOC. :	4 Rochester		
JOB :	11555 - East Bay Public Plaza 421 Jefferson St NE	JOB PO # :			
JOB CITY:	Olympia Volumber Deserve	MAP PAGE :			
PRODUCT :	92 - Certified Scale Contaminated Dirt Back Haul	TRUCK TYPE : TRUCK # :			
CARRIER:	01 - Quality Rock Products Inc	TRAILER # :			
GROSS : TARE : NET :	101820 lb 38460 lb 63360 lb	NET TONS : DAILY TONS : JOB TOTAL :	31.68 tn		
CUSTOMER S	IGN:Ticket B	NOTES:			

TICKET # 301189 QUALITY ROCK PRODUCTS, INC. 9/6/2011 1:25:55 PM 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: SHIP LOC. : 2 22650 - DLB Earthworks CUSTOMER: JOB PO # 11555 - East Bay Public Plaza JOB 421 Jefferson St NE JOB ADD.: MAP PAGE JOB CITY: olympia TRUCK TYPE : Picked Up 92 - Certified Scale Contaminated Dirt Backhaul PRODUCT: 18-701 TRUCK # TRAILER # 18-701 01 E Quality Rock Products, Inc. CARRIER: 32.32 tn 32.32 tn **NET TONS** 102960 lb GROSS DAILY TONS : 38320 1b 64640 1b TARE JOB TOTAL : 284.14 tn NET 919F-875 (907) NOTES: CEASO AW , WEIVEREL ____Ticket B CUSTOMER SIGN:_____ 881 xod Oq STANDBY TIME:___ Photostal Recovery (Translat Locality frameganett stably care gar a STANDBY INITIALS:_____ **TICKET # 481530** QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 9/6/2011 1:06:02 PM DATE & TIME: SHIP LOC. : 4 Rochester 22650 - DLB Earthworks CUSTOMER: **JOB PO #** - East Bay Public Plaza 421 Jefferson St NE JOB ADD.: MAP PAGE JOB CITY: 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : Picked Up PRODUCT: TRUCK # 18-703 18-703 TRAILER # CARRIER: 01 - Quality Rock Products Inc 27.57 tn 158.07 tn **NET TONS** 93260 1b GROSS DAILY TONS : 38120 lb TARE JOB TOTAL : 2018.62 tn 55140 1b NFT NOTES: CUSTOMER SIGN:_____ STANDBY TIME:_ STANDBY INITIALS:_____ QUALITY ROCK PRODUCTS, INC. TICKET # 481529 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 9/6/2011 12:58:32 PM CUSTOMER: 22650 - DLB Earthworks SHIP LOC. : 4 Rochester 11555 – East Bay Public Plaza 10B 10B PO # : JOB ADD.: 421 Jefferson St NE Olympia JOB CITY: MAP PAGE TRUCK TYPE : PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul Picked Up TRUCK # 18-708 TRAILER # : CARRIER : 01 - Quality Rock Products Inc 18-708 TO BUT THE **GROSS** 101240 lb NET TONS 31.39 tn 38460 1b 62780 1b 130.50 tn 1991.05 tn DAILY TONS : TARE JOB TOTAL : NET

____Ticket A

NOTES:

CUSTOMER SIGN:___

STANDBY INITIALS:__

STANDBY TIME:

TICKET # 481501 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 9/6/2011 9:21:48 AM 4 Rochester SHIP LOC. : CUSTOMER: 22650 - DLB Earthworks 11555 - East Bay Public Plaza JOB PO # 10B JOB ADD.: 421 Jefferson St NE MAP PAGE Olympia JOB CITY: TRUCK TYPE : Picked Up 92 - Certified Scale Contaminated Dirt Back Haul PRODUCT: TRUCK # 18-703 TRAILER # 18-703 01 - Quality Rock Products Inc CARRIER: **NET TONS** 33.11 tn 105060 lb GROSS DAILY TONS : 99.11 tn 38840 lb 66220 lb TARE JOB TOTAL : 1959.66 tn NET Ticket B NOTES: CUSTOMER SIGN:___ STANDBY TIME: STANDBY INITIALS:___

QUALITY ROCK PRODUCTS, INC.

TICKET # 481497

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 9/6/2011 8:56:06 AM 22650 - DLB Earthworks SHIP LOC. : 4 Rochester CUSTOMER:

11555 - East Bay Public Plaza JOB PO # 58002 JOB

JOB ADD.: 421 Jefferson St NE MAP PAGE JOB CITY: Olympia

92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : Picked Up PRODUCT: 18-708 18-708 TRUCK #

TRAILER # CARRIER: 01 - Quality Rock Products Inc

GROSS 105520 lb **NET TONS** 33.64 tn Internal Waste Names was F DAILY TONS : 38240 lb 66.00 tn TARE

NET 67280 lb JOB TOTAL : 1926.55 tn Note: Recovery / Transfer Facility FO Box 188

Longvaw, VIA 98627 1206) 5/8-4616 Ticket A NOTES: CUSTOMER SIGN: ___

STANDBY TIME:__

QUALITY ROCK PRODUCTS, INC.

STANDBY INITIALS:___

STANDBY INITIALS:__

TICKET # 481495

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 9/6/2011 8:41:49 AM

22650 - DLB Earthworks SHIP LOC. : 4 Rochester CUSTOMER:

11555 - East Bay Public Plaza JOB PO # 421 Jefferson St NE JOB ADD.:

JOB CITY: Olympia MAP PAGE

PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : Picked Up TRUCK # 18-701

TRAILER # : CARRIER: 01 - Quality Rock Products Inc 18-701 104040 lb GROSS

NET TONS : DAILY TONS : JOB TOTAL : 32.36 tn 32.36 tn 1892.91 tn 39320 1b 64720 1b TARE NET

DICE-815 (201) ZE986 VM 'MO 40 1 _____Ticket B NOTES: CUSTOMER SIGN:___ 881 AND US STINDER INCHEST | VIBVOSON IENO. STANDBY TIME:____

TICKET # 481457 QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 9/2/2011 11:43:00 AM DATE & TIME: 4 Rochester SHIP LOC. : CUSTOMER: 22650 - DLB Earthworks JOB PO # 11555 - East Bay Public Plaza JOB JOB ADD.: 421 Jefferson St NE MAP PAGE JOB CITY: Olympia TRUCK TYPE : Picked Up 92 - Certified Scale Contaminated Dirt Back Haul PRODUCT: 18-703 18-703 TRUCK # TRAILER # CARRIER : 01 - Quality Rock Products Inc 32.67 tn 128.76 tn 104180 lb 38840 lb 65340 lb **NET TONS** GROSS DAILY TONS : TARE JOB TOTAL 1860.55 tn NET NOTES: __Ticket B CUSTOMER SIGN:_ STANDBY TIME:__ STANDBY INITIALS:___ **TICKET # 481448** QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 9/2/2011 11:01:42 AM DATE & TIME: 4 Rochester SHIP LOC. : 22650 - DLB Earthworks CUSTOMER: 11555 - East Bay Public Plaza JOB PO # 421 Jefferson St NE JOB ADD.: MAP PAGE JOB CITY: Olympia Picked Up PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : 18-701 18-701 TRUCK # TRAILER # 01 - Quality Rock Products Inc CARRIER: 102720 lb **NET TONS** 31.70 tn GROSS DAILY TONS : 39320 lb 96.09 tn TARE 63400 1b JOB TOTAL 1827.88 tn NET NOTES: CUSTOMER SIGN:__ ____Ticket B \$194.8 16 10001 \$5089 AVI , VAD VE STANDBY TIME:_ STANDBY INITIALS:___ **TICKET # 481446** QUALITY ROCK PRODUCTS, INC. 9/2/2011 10:56:26 AM 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 4 Rochester 22650 - DLB Earthworks SHIP LOC. : CUSTOMER: 11555 - East Bay Public Plaza JOB PO # 421 Jefferson St NE JOB ADD.: MAP PAGE JOB CITY: olympia 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : Picked Up PRODUCT:

01 - Quality Rock Products Inc CARRIER: 101280 lb GROSS 37840]b TARE NET 63440 lb प्रावह-बर्द रववार LEDSO AW WOLVER

TRUCK # 18-704 TRAILER # 18-704

NET TONS 31.72 tn DAILY TONS : JOB TOTAL : 64.39 tn 1796.18 tn

NOTES:

881 xod Ot Thought active _Ticket A CUSTOMER SIGN:_ STANDBY TIME:___

STANDBY INITIALS:___

TICKET # 481423 QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 9/2/2011 7:38:54 AM 22650 - DLB Earthworks SHIP LOC. : 4 Rochester 11555 - East Bay Public Plaza JOB PO # 421 Jefferson St NE JOB ADD.: JOB CITY: Olympia MAP PAGE 92 - Certified Scale Contaminated Dirt Back Haul PRODUCT: TRUCK TYPE : Picked Up TRUCK # 18-703 01 - Quality Rock Products Inc TRAILER # CARRIER : 18-703 104180 lb GROSS NET TONS 32.67 tn 38840 1b 65340 1b TARE DAILY TONS : 32.67 tn JOB TOTAL : 1764.46 tn NET NOTES: CUSTOMER SIGN:___ _Ticket B STANDBY TIME:___ STANDBY INITIALS:_____ TICKET # 301127 QUALITY ROCK PRODUCTS, INC. 9/1/2011 3:13:21 PM 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: SHIP LOC. : 2 22650 - DLB Earthworks CUSTOMER: 11555 - East Bay Public Plaza 421 Jefferson St NE 108 PO # 108 JOB ADD.: MAP PAGE JOB CITY: Olympia Picked Up 92 - Certified Scale Contaminated Dirt Backhaul TRUCK TYPE : PRODUCT: TRUCK # 18-704 01 - Quality Rock Products, Inc. TRAILER # 18-704 CARRIER : Telegrated Waste Management **NET TONS** 32.10 tn 102680 lb **GROSS** DAILY TONS : 64.81 tn 38480 1b 64200 1b Patenal Perovery ! Transfer Levilling TARE JOB TOTAL : 251.82 tn NET NOTES: ____Ticket A CUSTOMER SIGN:_ STANDBY TIME:_ STANDBY INITIALS:____ **TICKET # 301126** QUALITY ROCK PRODUCTS, INC. DATE & TIME: 9/1/2011 3:12:29 PM

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

 East Bay Public Plaza JOB

JOB ADD.: 421 Jefferson St NE

JOB CITY: Olympia

92 - Certified Scale Contaminated Dirt Backhaul PRODUCT:

01 - Quality Rock Products, Inc. CARRIER :

104940 lb GROSS 39520 lb TARE 65420 1b NET

STANDBY INITIALS:

CUSTOMER SIGN:___ STANDBY TIME:_

SHIP LOC. : 2

JOB PO # :

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # TRAILER # 18-701

NET TONS 32.71 tn DAILY TONS : 32.71 tn 219.72 tn JOB TOTAL :

NOTES:

place the vices have not Stoterial Encovery - Transfer oc 10 Bex 188 L movew, WA 98632

QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 CUSTOMER: 22650 - DLB Earthworks 11555 - East Bay Public Plaza 421 Jefferson St NE JOB ADD.: MAP PAGE JOB CITY: Olympia 92 - Certified Scale Contaminated Dirt Back Haul PRODUCT: CARRIER : 01 - Quality Rock Products Inc 110200 lb GROSS 38840 lb 71360 lb TARE NET CUSTOMER SIGN:______Ticket B NOTES: STANDBY TIME:____ STANDBY INITIALS:___ QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 CUSTOMER: 22650 - DLB Earthworks 11555 - East Bay Public Plaza 10B JOB ADD.: 421 Jefferson St NE JOB CITY: olympia 92 - Certified Scale Contaminated Dirt Back Haul PRODUCT: TRUCK # 01 - Quality Rock Products Inc CARRIER : **NET TONS** 106260 lb GROSS 39320 lb TARE NET 66940 lb CUSTOMER SIGN:______Ticket B NOTES: STANDBY TIME:___ STANDBY INITIALS:____ QUALITY ROCK PRODUCTS, INC. TICKET # 481367 DATE & TIME: 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

TICKET # 481380

9/1/2011 11:46:03 AM DATE & TIME:

SHIP LOC. : 4 Rochester

JOB PO #

TRUCK TYPE : TRUCK # : Picked Up 18-703 TRUCK # : TRAILER # : 18-703

NET TONS 35.68 tn DAILY TONS : JOB TOTAL : 136.09 tn 1731.79 tn

7500/ + An ...

שומרים יה וסחיו

TICKET # 481369

DATE & TIME: 9/1/2011 10:42:17 AM

SHIP LOC. : 4 Rochester

JOB PO # MAP PAGE

Picked Up TRUCK TYPE : 18-701 TRAILER # 18-701

33.47 tn DAILY TONS : 100.41 tn JOB TOTAL : 1696.11 tn

> Weyr hoeuser Company Integrated Waste Management Material Recovery / Transfer Facilities

> > 9/1/2011 10:25:34 AM

4 Rochester

Picked Up

18-704

18-704

33.30 tn

66.94 tn

1662.64 tn

FO Box 188

1 100 N WA 986 12

CUSTOMER: 22650 - DLB Earthworks

- East Bay Public Plaza 11555

JOB ADD: 421 Jefferson St NE

JOB CITY: Olympia

CUSTOMER SIGN:____

STANDBY INITIALS:___

92 - Certified Scale Contaminated Dirt Back Haul PRODUCT:

01 - Quality Rock Products Inc CARRIER :

Integrated Waste Management GROSS 104440 lb Moterial Recovery / Transfer Leading 37840 1b TARE 66600 1b NET PO Box 188

Lungview, WA 98632

1206) 5/8-40 5

____Ticket A

STANDBY TIME:__

NOTES:

SHIP LOC. :

TRUCK TYPE : TRUCK # :

TRAILER # :

DAILY TONS :

JOB TOTAL :

JOB PO #

MAP PAGE

NET TONS

TICKET # 481349

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

22650 - DLB Earthworks CUSTOMER:

11555 - East Bay Public Plaza JOB : JOB ADD.: JOB CITY:

421 Jefferson St NE

Olympia

PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul

CARRIER : 01 - Quality Rock Products Inc

106120 lb 38840 lb 67280 lb GROSS TARE NET

CUSTOMER SIGN:______Ticket B STANDBY TIME:____

STANDBY INITIALS:___

DATE & TIME: 9/1/2011 7:42:27 AM

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # :
TRAILER # : 18-703 18-703

NET TONS : DAILY TONS : JOB TOTAL : 33.64 tn 33.64 tn 1629.34 tn

NOTES:

9104-676 (007) 75084 VIII

STANDBY TIME:___

STANDBY INITIALS:___

TICKET # 484245 10/31/2011 9:01:07 AM 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: SHIP LOC. : 4 Rochester 22650 - DLB Earthworks CUSTOMER: 10B PO # 11555 - East Bay Public Plaza JOB JOB ADD.: 421 Jefferson St NE MAP PAGE Olympia JOB CITY: TRUCK TYPE : Picked Up 92 - Certified Scale Contaminated Dirt Back Haul PRODUCT: **DLB 57** TRUCK # TRAILER # 22650 - DLB Earthworks CARRIER : 110720 lb 42420 lb 68300 lb 34.15 tn **NET TONS** GROSS DAILY TONS : 34.15 tn TARE 5818.94 tn JOB TOTAL : NET NOTES: Ticket C CUSTOMER SIGN:_____ STANDBY TIME:____ STANDBY INITIALS:___ TICKET # 484241 QUALITY ROCK PRODUCTS, INC. 10/28/2011 11:57:43 AM 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: SHIP LOC. : 4 Rochester CUSTOMER: 22650 - DLB Earthworks **JOB PO #** 11555 - East Bay Public Plaza 421 Jefferson St NE JOB ADD.: MAP PAGE JOB CITY: Olympia 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : Picked Up PRODUCT: TRUCK # **DLB 57** TRAILER # 22650 - DLB Earthworks CARRIER: 31.25 tn 68.15 tn **NET TONS** GROSS 104920 lb DAILY TONS : 42420 1b 62500 1b TARE 5784.79 tn JOB TOTAL : NET control violate Magazinaria NOTES: ...___Ticket C CUSTOMER SIGN: to John Recovery Trum, Horizon STANDBY TIME:__ Turner 188 4 48632 STANDBY INITIALS:_____ 5. 5.4016 **TICKET # 484240** QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 10/28/2011 8:31:10 AM DATE & TIME: SHIP LOC. : 22650 - DLB Earthworks 4 Rochester CUSTOMER: 11555 - East Bay Public Plaza 10B PO # 421 Jefferson St NE JOB ADD.: MAP PAGE JOB CITY: Olympia 92 - Certified Scale Contaminated Dirt Back Haul Picked Up PRODUCT: TRUCK TYPE : TRUCK # **DLB 57** TRAILER # CARRIER : 22650 - DLB Earthworks 36.90 tn 36.90 tn 5753.54 tn GROSS 116220 lb NET TONS : DAILY TONS : JOB TOTAL : 42420 1b TARE 73800 1b Varyer's accept the recent Enterprise Visite Montheman NOTES: CUSTOMER SIGN:______Ticket C Noticinal Recovery Transfer net-

> 301 1 - 108

Section 1 to Aurilla

QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

22650 - DLB Earthworks CUSTOMER:

11555 - East Bay Public Plaza

JOB ADD.: 421 Jefferson St NE

JOB CITY: Olympia

PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul

CARRIER : 22650 - DLB Earthworks

GROSS 106640 lb 36520 1b 70120 1b TARE

CUSTOMER SIGN:_

9194-872 (205) LEASO AW ,WAIVERLY 881 xo8 Oq

Molerial Recovery, Iransler Eacility InemeganaM etsoW belongalni Auromo Ticket C

STANDBY TIME:__

STANDRY INTITIALS:

TICKET # 484228

DATE & TIME: 10/27/2011 9:53:55 AM

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

TRUCK TYPE : Picked Up cliff 01 TRUCK #

TRAILER #

35.06 tn NET TONS DAILY TONS : JOB TOTAL : 35.06 tn 5716.64 tn

NOTES:

QUALITY ROCK PRODUCTS,

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

22650 - DLB Earthworks # CUSTOMER:

11555 - East Bay Public Plaza 421 Jefferson St NE TOR

JOB ADD.:

JOB CITY: Olympia

PRODUCT : 92 - Certified Scale Contaminated Dirt Back Haul

CARRIER : 22650 - DLB Earthworks

GROSS 36520 1b TARE

NET

down knowed Ticket Margor Delofer Land Mark Mark Control of the Contro CUSTOMER SIGN:_ STANDBY TIME:

STANDBY INITIALS:_

TICKET # 484206

TICKET # 484184

10/26/2011 9:07:12 AM

4 Rochester

Picked Up

DLB 57

10/26/2011 12:45:29 PM DATE & TIME:

SHIP LOC. : 4 Rochester

JOB PO # MAP PAGE

TRUCK TYPE : Picked Up TRUCK #

TRAILER #

DATE & TIME:

SHIP LOC. :

TRUCK TYPE :

JOB PO #

MAP PAGE

TRUCK #

TRAILER #

NET TONS 28.38 tn DAILY TONS : JOB TOTAL : 76.78 tn 5681.58 tn

NOTES:

OUALITY ROCK PRODUCTS. INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

22650 - DLB Earthworks CUSTOMER:

11555 - East Bay Public Plaza

421 Jefferson St NE JOB ADD.:

JOB CITY: Olympia

92 - Certified Scale Contaminated Dirt Back Haul PRODUCT :

CARRIER: 22650 - DLB Earthworks

83660 lb GROSS 42340 lb TARE 41320 lb NET

1.881 to 8 Co

NET TONS 20.66 tn DAILY TONS : 48.40 tn JOB TOTAL : 5653.20 tn

NOTES:

his led Weste Management Milderich Recovery , Translet Facility -U June 188

_____Ticket C CUSTOMER SIGN:___ STANDBY TIME:__ STANDBY INITIALS:___

TICKET # 484179 QUALITY ROCK PRODUCTS, INC. 10/26/2011 8:42:32 AM 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: SHIP LOC. : 4 Rochester 22650 - DLB Earthworks CUSTOMER: JOB PO # 11555 - East Bay Public Plaza 421 Jefferson St NE JOB ADD.: MAP PAGE JOB CITY: Olympia TRUCK TYPE : TRUCK # : Picked Up 92 - Certified Scale Contaminated Dirt Back Haul PRODUCT: cliff 01 TRAILER # 22650 - DLB Earthworks CARRIER : 27.74 tn 27.74 tn 5632.54 tn NET TONS : DAILY TONS : GROSS 92260 1b 36780 1b TARE 55480 1b JOB TOTAL NFT home toovery house forth ______Ticket C CUSTOMER SIGN:_ 831 108 STANDBY TIME: 4 ×8032 1000 318-4019 STANDBY INITIALS:____

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

22650 - DLB Earthworks CUSTOMER:

JOB 11555 - East Bay Public Plaza

JOB ADD.: 421 Jefferson St NE

JOB CITY: Olympia

PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul

22650 - DLB Earthworks CARRIER :

GROSS 105880 lb 42340 lb TARE 63540 1b NET

STANDBY INITIALS:___

CUSTOMER STGN: _____Ticket C

STANDBY TIME:_

TICKET # 484140

DATE & TIME: 10/25/2011 12:38:27 PM

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # **DLB 57**

TRAILER #

NET TONS 31.77 tn DAILY TONS : JOB TOTAL : 62.54 tn 5604.80 tn

NOTES:

Immunitier Waste Management Miller at Recovery / Transler Facility

PO Box 188

Longview, WA 98632 (206) 578-4616

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

22650 - DLB Earthworks CUSTOMER:

JOB 11555 East Bay Public Plaza

JOB ADD.: JOB CITY: 421 Jefferson St NE

Olympia

PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul

CARRIER : 22650 - DLB Earthworks

103880 lb GROSS TARE 42340 lb 61540 lb NET

STANDBY INITIALS:___

CUSTOMER SIGN:____ STANDBY TIME:___

TICKET # 484115

DATE & TIME: 10/25/2011 8:31:11 AM

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # **DLB 57**

TRAILER #

NET TONS 30.77 tn DAILY TONS : 30.77 tn 5573.03 tn JOB TOTAL :

NOTES:

When his after Company Imegrated Waste Management Millianial Recovery / Transfer Facility 10 Dex 188 Liggies WA 98032

1.05 578-4015

TICKET # 484077 QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 10/24/2011 1:02:58 PM CUSTOMER: 22650 - DLB Earthworks SHIP LOC. : 4 Rochester 11555 - East Bay Public Plaza 421 Jefferson St NE JOB PO # JOB : JOB ADD.: JOB CITY: Olympia MAP PAGE Picked Up PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : TRUCK # **DLB 57** 22650 - DLB Earthworks TRAILER # CARRIER: 105040 lb GROSS **NET TONS** 31.35 tn 42340 lb 62700 lb TARE DAILY TONS : 61.55 tn JOB TOTAL : 5542.26 tn NOTES: CUSTOMER SIGN:____ C. Indiana Liver Med Waste Management STANDBY TIME:__ In neval Recovery / Transfer Facility STANDBY INITIALS:____ ■ Fox 188 WA 98632 1200 5/8-4616 TICKET # 484042 QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 10/24/2011 8:52:58 AM DATE & TIME: SHIP LOC. : 4 Rochester CUSTOMER: 22650 - DLB Earthworks 10B PO # East Bay Public Plaza 421 Jefferson St NE JOB ADD.: MAP PAGE JOB CITY: Olympia PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : Picked Up TRUCK # **DLB 57** 22650 - DLB Earthworks TRAILER # CARRIER: 102740 lb NET TONS 30.20 tn GROSS 42340 1b 60400 1b DAILY TONS : 30.20 tn TARE JOB TOTAL : 5510.91 tn NET _____Ticket C NOTES: men, the West Marmonert CUSTOMER SIGN:___ * Programme Transfer Focility STANDBY TIME:_ . 1801z STANDBY INITIALS:___

QUALITY ROCK PRODUCTS, INC.

TICKET # 484000

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 CUSTOMER: 22650 - DLB Earthworks - East Bay Public Plaza JOB 11555 421 Jefferson St NE JOB ADD.: JOB CITY: Olympia PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul 22650 - DLB Earthworks CARRIER: GROSS 110540 lb 40400 lb 70140 lb TARE

______Ticket B

CUSTOMER SIGN:___

STANDBY INITIALS:___

STANDBY TIME:_

DATE & TIME: 10/21/2011 12:02:38 PM

SHIP LOC. : 4 Rochester

JOB PO # : MAP PAGE

Picked Up TRUCK TYPE : TRUCK # Mumm11

TRAILER #

NET TONS 35.07 tn DAILY TONS : JOB TOTAL :

93.86 tn 5480.71 tn

Weyerhaeuser Company Integrated Waste Management NOTES: Material Recovery | Ironsfer Facility

PO Box 188

Longview, WA PROS (206) 678-4614

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

11555 - East Bay Public Plaza 421 Jefferson St NE JOB ADD.:

JOB CITY: Olympia

PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul

22650 - DLB Earthworks CARRIER :

105580 lb GROSS 41300 lb 64280 lb TARE NET

___Ticket C CUSTOMER SIGN:___

STANDBY TIME:_____

STANDBY INITIALS:___

TICKET # 483968

DATE & TIME: 10/21/2011 8:29:51 AM

SHIP LOC. : 4 Rochester JOB PO #

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # Mumm20

TRAILER #

32.14 tn 58.79 tn **NET TONS** DAILY TONS : JOB TOTAL : 5445.64 tn

NOTES:

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

11555 - East Bay Public Plaza

421 Jefferson St NE JOB ADD.:

JOB CITY: Olympia

PRODUCT : 92 - Certified Scale Contaminated Dirt Back Haul

22650 - DLB Earthworks CARRIER :

93700 lb GROSS 40400 1b 53300 1b TARE NET

CUSTOMER SIGN:___

STANDBY TIME:_ STANDBY INITIALS:_____

TICKET # 483967

DATE & TIME: 10/21/2011 8:17:08 AM

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # Mumm11

TRAILER #

26.65 tn NET TONS DAILY TONS : 26.65 tn JOB TOTAL 5413.50 tn

Weverhoouser Company

Integrated Waste Management

NOTES:

Material Recovery | Transfer Facility PO Box 188

Longview, WA 28632 (206) 578-4618

OUALITY ROCK PRODUCTS. INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

11555 - East Bay Public Plaza

421 Jefferson St NE JOB ADD.:

JOB CITY:

92 - Certified Scale Contaminated Dirt Back Haul PRODUCT :

22650 - DLB Earthworks CARRIER:

110140 lb GROSS 40400 1b TARE 69740 1b NFT

_____Ticket B CUSTOMER SIGN:___

STANDBY TIME:_

STANDBY INITIALS:_

TICKET # 483919

10/20/2011 9:34:20 AM DATE & TIME:

SHIP LOC. : 4 Rochester

JOB PO # : MAP PAGE

Picked Up TRUCK TYPE : TRUCK # Mumm11

TRAILER #

NOTES:

34.87 tn **NET TONS** DAILY TONS : 34.87 tn JOB TOTAL

5386.85 tn

Weyerhaeuser Company Integrated Waste Management

Material Recovery | Transfer Families

PO Box 185 Longview, WA 2265 (206) 578-4516

TICKET # 483877 QUALITY ROCK PRODUCTS, INC. 10/19/2011 12:00:35 PM 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: CUSTOMER: 22650 - DLB Earthworks SHIP LOC. : 4 Rochester 11555 - East Bay Public Plaza JOB PO # JOB ADD.: 421 Jefferson St NE JOB CITY: Olympia MAP PAGE PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : Picked Up TRUCK # Mumm20 CARRTER: 22650 - DLB Earthworks TRAILER # 30.92 tn 30.92 tn GROSS 103140 lb NET TONS : DAILY TONS : 41300 lb 61840 lb TARE JOB TOTAL 5351.98 tn NET ___Ticket C CUSTOMER SIGN: NOTES: STANDBY TIME:___ STANDBY INITIALS:____ **TICKET # 483650** QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 10/14/2011 12:03:43 PM DATE & TIME: SHIP LOC. : 4 Rochester CUSTOMER: 22650 - DLB Earthworks 11555 - East Bay Public Plaza JOB PO # 421 Jefferson St NE JOB ADD.: JOB CITY: Olympia MAP PAGE PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : Picked Up TRUCK # **DLB 57** 22650 - DLB Earthworks TRAILER # CARRIER: 104940 lb GROSS **NET TONS** 31.22 tn 42500 1b 62440 1b 63.50 tn TARE DAILY TONS JOB TOTAL 5321.06 tn NET Mulena Recovery Transe Facility _Ticket C NOTES: CUSTOMER SIGN: FC BUA 188 LICEN W. NA 18632 STANDBY TIME:_ (200) 5/8-4016 STANDBY INITIALS:_ TICKET # 483633 **OUALITY ROCK PRODUCTS,** INC 10/14/2011 8:07:12 AM 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: SHIP LOC. : 4 Rochester 22650 - DLB Earthworks CUSTOMER: JOB PO # 11555 - East Bay Public Plaza : 10B 421 Jefferson St NE JOB ADD.: MAP PAGE JOB CITY: Olympia 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : Picked Up PRODUCT: TRUCK # **DLB 57** TRAILER # CARRIER: 22650 - DLB Earthworks **NET TONS** 32.28 tn GROSS 106740 lb DAILY TONS JOB TOTAL 42180 lb 64560 lb 63.50 tn TARE 5321.06 tn NET

NOTES? 2005 203-314 Vote 5 major Compony
Imagisting vVotte Management
Imagisting Recovery Transfer Facility
Facility 198
Language Act V8034

TICKET # 483596 QUALITY ROCK PRODUCTS, INC. DATE & TIME: 10/13/2011 12:18:57 PM 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 4 Rochester SHIP LOC. : 22650 - DLB Earthworks CUSTOMER: 11555 - East Bay Public Plaza JOB PO # JOB 421 Jefferson St NE JOB ADD.: MAP PAGE JOB CITY: Olympia 92 - Certified Scale Contaminated Dirt Back Haul Picked Up TRUCK TYPE : PRODUCT : TRUCK # **DLB 57** TRAILER # 22650 - DLB Earthworks CARRIER : **NET TONS** 31.27 tn 105040 lb GROSS 63.06 tn 5257.56 tn DAILY TONS : 42500 lb TARE JOB TOTAL 62540 1b NFT Vicin hierer Company Literated Waste Management NOTES: Millerial Recovery Transfer Facilities _____Ticket C CUSTOMER SIGN:____ 881 xua U-STANDBY TIME:___ 1 98632 (LUC) 5/8-1016 STANDBY INITIALS:___ **TICKET # 483571** QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 10/13/2011 8:33:16 AM 4 Rochester SHIP LOC. : 22650 - DLB Earthworks CUSTOMER: 5/005 JOB PO # - East Bay Public Plaza JOB JOB : 421 Jefferson St NE MAP PAGE JOB CITY: Olympia Picked Up TRUCK TYPE : PRODUCT : 92 - Certified Scale Contaminated Dirt Back Haul TRUCK # **DLB 57** TRAILER # 22650 - DLB Earthworks CARRIER : 31.79 tn 31.79 tn NET TONS 106300 lb GROSS DAILY TONS : JOB TOTAL : TARE 42720 lb 63580 lb 5226.29 tn NET M. A Sector Company Prograted Waste Management _____Ticket C NOTES: CUSTOMER SIGN:____ Migrerial Recovery / Transfer Facilities STANDBY TIME:_ PO Box 188 Langview, WA 98632 STANDBY INITIALS:___ 1206) 578-4616 TICKET # 483500 QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 10/12/2011 8:44:41 AM **CUSTOMER:** 22650 - DLB Earthworks SHIP LOC. : 4 Rochester - East Bay Public Plaza 11555 JOB PO # JOB 421 Jefferson St NE JOB ADD.: MAP PAGE JOB CITY: Olympia 92 - Certified Scale Contaminated Dirt Back Haul PRODUCT: Picked Up TRUCK TYPE : TRUCK # HARL25 CARRIER : 22650 - DLB Earthworks TRAILER # 116480_lb GROSS **NET TONS** 37.42 tn 41640 lb 74840 lb DAILY TONS : 37.42 tn TARE JOB TOTAL 5194.50 tn NET _____Ticket C CUSTOMER SIGN:____ NOTES: Viryrihaeuter Campany

STANDBY TIME:_

STANDBY INITIALS:

Integrated Waste Management

Longview, WA 98632 (206) 578-4616

PO Box 188

Material Recovery & Transfer Facility

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

22650 - DLB Earthworks

421 Jefferson St NE

11555 - East Bay Public Plaza

CUSTOMER:

JOB ADD.:

JOB CITY:	Olympia		
PRODUCT :	92 - Ce	rtified Scale Contamina	ted Dirt Back Haul
CARRIER :	22650 -	DLB Earthworks	
GROSS : TARE : NET :	100220 lb 41580 lb 58640 lb	*)	
		4- *	
CUSTOMER SI	GN:	J.	Ticket B
STANDBY TIM	IE:		
STANDBY INI	TIALS:	100	s
OUALI	TY R	OCK PRODU	CTS, INC.
		- OLYMPIA, WA 98512	
10201 LITTLE		OLIMITA, WA 30312	
		DLB Earthworks	
JOB : JOB ADD.: JOB CITY:	11555 - 421 Jeffe Olympia	East Bay Public Plaza erson St NE	
PRODUCT :	92 - Ce	ertified Scale Contamina	ted Dirt Back Haul
CARRIER:	22650 -	DLB Earthworks	
GROSS : TARE : NET :	87240 lb 41640 lb 45600 lb		
			minima n
			TICKET B
STANDBY IN	ITTALS:		
		0.014	
QUALI	IY K	OCK PRODU	CIS, INC.
10201 LITTLER	OCK RD SW	- OLYMPIA, WA 98512 -	- OFFICE: 360-754-7777
		DLB Earthworks	
JOB : JOB ADD.: JOB CITY:	11555 - 421 Jeffe Olympia	East Bay Public Plaza rson St NE	
PRODUCT :	92 - Ce	rtified Scale Contaminat	ced Dirt Back Haul
CARRIER:	22650 -	DLB Earthworks	
GROSS : TARE : NET :	107940 lb 42720 lb 65220 lb		
CUSTOMER SI	GN:		Ticket C
CTANDDY TAIT	TTALC.		

TICKET # 483457

DATE & TIME: 10/11/2011 12:18:26 PM

SHIP LOC. : 4 Rochester

JOB PO # MAP PAGE

TRUCK TYPE : TRUCK # : Picked Up HARL15

TRAILER #

NET TONS 29.32 tn 52.12 tn 5157.08 tn DAILY TONS : JOB TOTAL :

NOTES:

Variation i er Company Interpreted Waste Management Micharial Recovery | Transfer Facility

₽○ Box 188

Longview, WA 28637 (206) 578-4616

TICKET # 483425

10/11/2011 8:23:56 AM DATE & TIME:

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

Picked Up TRUCK TYPE : TRUCK # HARL25

TRAILER #

22.80 tn 22.80 tn 5127.76 tn NET TONS DAILY TONS : JOB TOTAL :

NOTES:

Integrated Waste Management Material Recovery / Transfer Facility

PO Box 188

Longview, WA 98632 (206) 578-4616

Vice habuter Company

STANDBY INITIALS:_

TICKET # 483393

10/10/2011 9:50:46 AM DATE & TIME:

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # **DLB 57**

TRAILER #

32.61 tn 32.61 tn **NET TONS** DAILY TONS : JOB TOTAL : 5104.96 tn

Weyerhaeuser Company, NOTES: Integrated Waste Management

Material Recovery | Transfer Facility

DO BOX 188

Longview, WA 98632 (.04) 578-4615

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

22650 - DLB Earthworks

Olympia

11555 - East Bay Public Plaza 421 Jefferson St NE

CUSTOMER:

JOB : JOB ADD.: JOB CITY:

PRODUCT:

JOB:

NET

92 - Certified Scale Contaminated Dirt Back Haul 22650 - DLB Earthworks CARRIER : 5/005 108680 7b GROSS TARE 66340 1b CUSTOMER SIGN:_ STANDBY TIME: STANDBY INITIALS:_ QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 **CUSTOMER:** 22650 - DLB Earthworks 11555 - East Bay Public Plaza JOB ADD.: 421 Jefferson St NE JOB CITY: Olympia PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul 22650 - DLB Earthworks CARRIER: 93180 lb GROSS 36760 lb 56420 lb TARE CUSTOMER SIGN:___ ____Ticket B STANDBY TIME:_ STANDBY INITIALS:___ QUALITY ROCK PRODUCTS, INC. 22650 - DLB Earthworks 11555 - East Bay Public Plaza 421 Jefferson St NE Olympia 92 - Certified Scale Contaminated Dirt Back Haul 22650 - DLB Earthworks Mummell Mummell 90400 lb 40300]b 50100 lb CUSTOMER SIGN:__ STANDBY TIME:_ STANDBY INITIALS:___

TICKET # 483377

DATE & TIME: 10/7/2011 12:44:18 PM

SHIP LOC. : 4 Rochester

308 PO # MAP PAGE

TRUCK TYPE : Picked Up TRUCK # **DLB 57**

TRAILER #

33.17 tn 33.17 tn NET TONS DAILY TONS : 5072.35 tn JOB TOTAL

NOTES:

Vyererhauser Company Integrated Waste Management Material Recovery | Transfer Facilities

₽Q Box 188

Langview, WA 98632 (206) 578-4616

TICKET # 483312

DATE & TIME:	10/5/2011	11:47:58	ΑM
--------------	-----------	----------	----

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

TRUCK TYPE : TRUCK # : Picked Up CLIFF1

TRAILER #

NET TONS 28.21 tn 164.48 tn DAILY TONS : 5039.18 tn JOB TOTAL

NOTES:

We verhouser Company Irregrated Waste Management Midlerial Recovery | Irander Fortille O Box 188 Longview, WA 98632 (206) 578-4616

0201	LITTLEROCK	RD	SW	-	OLYMPIA,	WA	98512	-	OFFICE:	360-7	54-777
	·										

CUSTOMER:

JOB ADD.:

JOB CITY:

PRODUCT:

CARRIER :

GROSS TARE

NOTES:

TICKET # 483298

DATE & TIME: 10/5/2011 8:33:26 AM

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

TRUCK TYPE : TRUCK # : Picked Up MUNN11 TRAILER #

25.05 tn 136.27 tn 5010.97 tn NET TONS DAILY TONS : JOB TOTAL

> Weyerhoesser Company Integrated Waste Management Material Recovery Laureier Results

PQ Box 188 Longview, WA TONS (206) 578-4618

1 WA 98632

5/8-4616

TICKET # 483297 QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 10/5/2011 8:27:16 AM 22650 - DLB Earthworks SHIP LOC. : 4 Rochester CUSTOMER: 11555 - East Bay Public Plaza JOB PO # JOB ADD.: 421 Jefferson St NE JOB CITY: Olympia MAP PAGE TRUCK TYPE : PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul Picked Up TRUCK # HARL25 22650 - DLB Earthworks TRAILER # CARRIER: 29.50 tn 111.22 tn 100640 lb GROSS NET TONS 41640 lb 59000 lb DAILY TONS : JOB TOTAL : TARE 4985.92 tn NET Version Toler et Loripony Injegrated Waste Management CUSTOMER SIGN:____ __Ticket C NOTES: Material Recovery | Iransfer Facility STANDBY TIME:____ PO Box 188 Longview, WA Plant STANDBY INITIALS:___ (206) 578-4614 TICKET # 483296 QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 10/5/2011 8:24:49 AM DATE & TIME: **CUSTOMER:** 22650 - DLB Earthworks SHIP LOC. : 4 Rochester JOB PO #15 (907) 11555 - East Bay Public Plaza 421 Jefferson St NE JOB ADD.: TRUCK TOPE PICKED UP
TRUCK # M PRINT HARLIS

TRUCK TOPE PICKED UP
TRAILER # HARLIS JOB CITY: Olympia PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul CARRIER: 22650 - DLB Earthworks GROSS 100160 lb 29.29 tn 41580 1b 58580 1b DAILY TONS : 81.72 tn 4956.42 tn TARE NET JOB TOTAL : ______Ticket C CUSTOMER SIGN:___ NOTES: STANDBY TIME:___ STANDBY INITIALS:___ TICKET # 483294 QUALITY ROCK PRODUCTS, INC. 10/5/2011 8:02:34 AM 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 22650 - DLB Earthworks CUSTOMER: SHIP LOC. : 4 Rochester 11555 - East Bay Public Plaza JOB PO # 421 Jefferson St NE JOB ADD.: JOB CITY: Olympia MAP PAGE PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : Picked Up TRUCK # **DLB 57** 22650 - DLB Earthworks TRAILER # CARRIER: 27.19 tn 52.43 tn 96720 lb NET TONS : DAILY TONS : GROSS 42340 1b TARE 54380 lb JOB TOTAL : 4927.13 tn NET Waverhasuser Company Irregioled Woste Management CUSTOMER SIGN:_ ___Ticket C NOTES: Marchai Recovery Transfer Facility 2 Bus 188

STANDBY TIME:__

STANDBY INITIALS:__

QUALITY ROCK PRODUCTS, INC. TICKET # 483293

10201 LITTLE	ROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777	DATE & TIME:	10/5/2011 7:51:18 AM
CUSTOMER:	22650 - DLB Earthworks	SHIP LOC. :	4 Rochester
JOB :	11555 - East Bay Public Plaza	JOB PO # :	
JOB ADD.: JOB CITY:	421 Jefferson St NE Olympia	MAP PAGE :	
PRODUCT :	92 - Certified Scale Contaminated Dirt Back Haul	TRUCK TYPE : TRUCK # :	Picked Up CLIFF1
CARRIER:	22650 - DLB Earthworks	TRAILER # :	521.12
GROSS : TARE : NET :	87240 lb 36760 lb 50480 lb	NET TONS : DAILY TONS : JOB TOTAL :	25.24 tn
	IGN:Ticket C	NOTES:	6194-872 (804) M. Weivend
	ME:		Singmo Jasuson IIIVavv Marsh
QUAL1	TTY ROCK PRODUCTS, INC.	TIC	CKET # 483267
10201 LITTLE	ROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777	DATE & TIME:	10/4/2011 1:02:42 PM
CUSTOMER:	22650 - DLB Earthworks	SHIP LOC. :	4 Rochester
јов :	11555 - East Bay Public Plaza	JOB PO # :	
JOB ADD.: JOB CITY:	421 Jefferson St NE Olympia	MAP PAGE :	
PRODUCT :	92 - Certified Scale Contaminated Dirt Back Haul	TRUCK TYPE : TRUCK # :	Picked Up MUNN11
CARRIER :	22650 - DLB Earthworks	TRAILER # :	MOMITT
GROSS : TARE : NET :	40300 1b	NET TONS : DAILY TONS : JOB TOTAL :	296.83 tn 4874.70 tn
STANDBY TI	Ticket C IME: NITIALS:	NOTES:	Weyerhoeuser Company Integrated Waste Management Material Recovery I Transfer Excelling PCI Best Staff Longview, WW WASTE 12041 12744445
QUALI	TY ROCK PRODUCTS, INC.	TIC	CKET # 483266
10201 LITTLE	ROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777	DATE & TIME:	10/4/2011 12:51:02 PM
CUSTOMER:	22650 - DLB Earthworks	SHIP LOC. :	4 Rochester
јов :		JOB PO # :	end the second of the second o
JOB ADD.: JOB CITY:	421 Jefferson St NE Olympia	MAP PAGE :	
PRODUCT :	92 - Certified Scale Contaminated Dirt Back Haul	TRUCK TYPE : TRUCK # :	Picked Up HARL25
CARRIER:	22650 - DLB Earthworks	TRAILER # :	
GROSS : TARE : NET :	108460 lb 41640 lb 66820 lb	NET TONS : DAILY TONS : JOB TOTAL :	33.41 tn 266.26 tn 4844.13 tn
CUSTOMER S	SIGN:Ticket B	NOTES:	Longview, WR 970001
STANDBY TI	ME:		Material Recovery Immines Market Ma
STANDBY IN	NITIALS:		Weyerchoeuser Company

TICKET # 483265

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 10/4/2011 12:48:39 PM 22650 - DLB Earthworks CUSTOMER: SHIP LOC. : 4 Rochester 11555 - East Bay Public Plaza JOB PO # JOB : 421 Jefferson St NE JOB CITY: MAP PAGE PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : Picked Up TRUCK # 22650 - DLB Earthworks TRAILER # CARRIER : 31.53 tn 232.85 tn 4810.72 tn 104640 lb GROSS NET TONS 41580 lb 63060 lb DAILY TONS : TARE on Monspanard JOB TOTAL : NET Transfer Equilibria 8.01 1200) 578-4014 C NOTES: CUSTOMER SIGN:___ STANDBY TIME:____ STANDBY INITIALS:___ **TICKET # 483258** QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 10/4/2011 12:27:13 PM SHIP LOC. : 4 Rochester 22650 - DLB Earthworks CUSTOMER: 11555 - East Bay Public Plaza JOB PO # 10B JOB ADD.: 421 Jefferson St NE JOB CITY: MAP PAGE Olympia TRUCK TYPE : 92 - Certified Scale Contaminated Dirt Back Haul Picked Up PRODUCT: TRUCK # **DLB 57** 22650 - DLB Earthworks TRAILER # CARRIER : GROSS 104260 lb **NET TONS** 30.96 tn 42340 1b DAILY TONS : 201.32 tn TARE JOB TOTAL : 4779.19 tn NET Weynthaeuser Company NOTES: CUSTOMER SIGN:___ _____Ticket C Integrated Waste Management Material Recovery Transfer facility STANDBY TIME:___ PO Box 188 STANDBY INITIALS:___ Langvey WA 9861/ (206) 578-4-16 TICKET # 483252 INC. QUALITY ROCK PRODUCTS, 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 10/4/2011 12:09:30 PM 4 Rochester CUSTOMER: 22650 - DLB Earthworks SHIP LOC. : 11555 - East Bay F 421 Jefferson St NE JOB PO # - East Bay Public Plaza JOB ADD.: MAP PAGE JOB CITY: Olympia TRUCK TYPE : Picked Up 92 - Certified Scale Contaminated Dirt Back Haul PRODUCT: TRUCK # CLIFF1 TRAILER # 22650 - DLB Earthworks CARRIER : 89240 1b 36760 1b 52480 1b NET TONS 26.24 tn GROSS DAILY TONS : 170.36 tn TARE 4748.23 tn JOB TOTAL : _____Ticket C NOTES: CUSTOMER SIGN:_____ STANDBY TIME:___ STANDBY INITIALS:___

QUALITY ROCK PRODUCTS, INC. TICKET # 483226

STANDBY INITIALS:_____

InemeganaM ettaW betargetni

Weyerhoeuser Company

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777	DATE & TIME:	10/4/2011 8:42:29 AM
CUSTOMER: 22650 - DLB Earthworks	SHIP LOC. :	4 Rochester
JOB : 11555 - East Bay Public Plaza	JOB PO # :	
JOB ADD.: 421 Jefferson St NE JOB CITY: Olympia	MAP PAGE :	
PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul	TRUCK TYPE :	Picked Up
CARRIER: 22650 - DLB Earthworks	TRUCK # : TRAILER # :	MUNN11
GROSS : 99440 lb TARE : 40400 lb *NET : 59040 lb	NET TONS : DAILY TONS : JOB TOTAL :	29.52 tn 144.12 tn 4721.99 tn
CUSTOMER SIGN:	NOTES:	Weyerhouser Company Integrated Waste Management Material Received Linguistry
STANDBY TIME:		PCI Bott BIR
STANDBY TIME:	- 11	Longram, Will
QUALITY ROCK PRODUCTS, INC.	TIC	CKET # 483224
10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777	DATE & TIME:	10/4/2011 8:37:39 AM
CUSTOMER: 22650 - DLB Earthworks	SHIP LOC. :	4 Rochester
JOB : 11555 - East Bay Public Plaza	JOB PO # :	
JOB ADD.: 421 Jefferson St NE JOB CITY: Olympia	MAP PAGE :	
PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul	TRUCK TYPE : TRUCK # :	Picked Up HARL15
CARRIER: 22650 - DLB Earthworks 5191-825 (902)	TRAILER # :	HARLIS
GROSS : 99000 1b TARE : 41660 1b NET : 57340 1b Weight part formation for a formation formation for a formation formation for a for	NET TONS : DAILY TONS : JOB TOTAL :	114.60 tn
CUSTOMER SIGN:Ticket C	NOTES:	
STANDBY TIME:		
STANDBY INITIALS:		
QUALITY ROCK PRODUCTS, INC.	TIC	CKET # 483223
10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777	DATE & TIME:	10/4/2011 8:34:21 AM
CUSTOMER: 22650 - DLB Earthworks	SHIP LOC. :	4 Rochester
JOB : 11555 - East Bay Public Plaza	JOB PO # :	
JOB ADD.: 421 Jefferson St NE JOB CITY: Olympia	MAP PAGE :	
PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul	TRUCK TYPE :	Picked Up
CARRIER: 22650 - DLB Earthworks	TRUCK # : TRAILER # :	HARL25
GROSS : 99320 lb TARE : 41660 lb NET : 57660 lb	NET TONS : DAILY TONS : JOB TOTAL :	28.83 tn 85.93 tn 4663.80 tn
CUSTOMER SIGN:Ticket C	NOTES:	MANA SAMPON (205)
STANDBY TIME:		Material Recovers American Communication (Communication Communication Co

QUALITY ROCK PRODUCTS, INC. TICKET # 483221 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 10/4/2011 8:17:36 AM CUSTOMER: 22650 - DLB Earthworks SHIP LOC. : 4 Rochester 11555 - East Bay Public Plaza 70B JOB PO # 421 Jefferson St NE JOB ADD.: JOB CITY: Olympia MAP PAGE PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul Picked Up TRUCK TYPE : TRUCK # CLIFF1 22650 - DLB Earthworks CARRIER: TRAILER # 25.84 tn 57.10 tn GROSS 88380 lb NET TONS : DAILY TONS : NET TONS 36700 1b 51680 1b TARE NET JOB TOTAL : 4634.97 tn CUSTOMER SIGN:_____ ____Ticket B NOTES: STANDBY TIME:___ STANDBY INITIALS:____ **TICKET # 483220** QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 10/4/2011 8:10:53 AM SHIP LOC. : 4 Rochester 22650 - DLB Earthworks CUSTOMER: JOB PO # JOB 11555 - East Bay Public Plaza 421 Jefferson St NE JOB ADD.: MAP PAGE JOB CITY: Olympia Picked Up 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : PRODUCT : TRUCK # **DLB 57** TRAILER # CARRIER: 22650 - DLB Earthworks 31.26 tn GROSS 104680 lb **NET TONS** 31.26 tn 4609.13 tn 42160 lb DAILY TONS : TARE 62520 1b JOB TOTAL : NET NOTES: CUSTOMER SIGN:___ _____Ticket B Weyerhaeuser Company STANDBY TIME: Integrated Waste Management Material Recovery / Transfer Facility STANDBY INITIALS:___ PO Box 188 Longview, WA 98632 (206) 578-4616 **TICKET # 301866** QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 10/3/2011 11:44:06 AM 22650 - DLB Earthworks SHIP LOC. : 2 11555 - East Bay Public Plaza JOB PO # : JOB ADD.: 421 Jefferson St NE JOB CITY: Olympia MAP PAGE TRUCK TYPE : TRUCK # : 92 - Certified Scale Contaminated Dirt Backhaul PRODUCT: Picked Up DLB57 TRAILER

CUSTOMER: 22650 - DLB Earthworks **5196-872** [307] CARRIER: CE986 VM Mainfile 104960 lb 41640 lb GROSS

841 XING 17-Elipse | Industry | Judicial | actiff

TARE 63320 1b NET panundanong debe NET TONS : DAILY TONS : 31.66 tn 31.66 tn JOB TOTAL : 659.40 tn

CUSTOMER SIGN:_ Ticket B STANDBY TIME:

STANDBY INITIALS:__

NOTES:

TICKET # 483177

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

11555 East Bay Public Plaza 421 Jefferson St NE Olympia

JOB : JOB CITY:

92 - Certified Scale Contaminated Dirt Back Haul PRODUCT:

22650 - DLB Earthworks CARRIER:

100760 lb 57280 lb 43480 lb GROSS TARE NET

10/3/2011 9:52:13 AM DATE & TIME:

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

TRUCK TYPE : TRUCK # : Picked Up DLB 50

TRAILER #

21.74 tn 21.74 tn 4599 61 tn NET TONS DAILY TONS : JOB TOTAL :

Ticket C CUSTOMER SIGN: STANDBY TIME: STANDBY INITIALS:___

10201	LITTLEROCK	RD	SW	-	OLYMPIA,	WA	98512	-	OFFICE:	360-754-777
					•					

CUSTOMER: 22650 - DLB Earthworks

JOB : 11555 - East Bay Public Plaza

JOB ADD.: 421 Jefferson St NE

JOB CITY: Olympia

PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul

CARRIER : 22650 - DLB Earthworks

GROSS : 109740 lb TARE : 42460 lb NET : 67280 lb

CUSTOMER SIGN:_______Ticket C

STANDBY TIME:______

STANDBY INITIALS:______

TICKET # 484590

DATE & TIME: 11/16/2011 12:20:55 PM

SHIP LOC. : 4 Rochester

JOB PO # :

MAP PAGE :

TRUCK TYPE : Picked Up
TRUCK # : DLB 57

TRAILER # :

NET TONS : 33.64 tn DAILY TONS : 63.46 tn JOB TOTAL : 6033.81 tn

NOTES:

Wyverhadbler Company
Integrated Waste Management
Misterial Recovery (Transfer Facility

PO 50x 188

Lugsew, WA 9863

QUALITY ROCK PRODUCTS, INC. TICKET # 484577 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 11/16/2011 8:17:28 AM **CUSTOMER:** 22650 - DLB Earthworks SHIP LOC. : 4 Rochester 11555 - East Bay Public Plaza JOB JOB : JOB PO # 421 Jefferson St NE JOB CITY: Olympia MAP PAGE PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul Picked Up TRUCK TYPE : TRUCK # **DLB 57** 22650 - DLB Earthworks CARRIER : TRAILER # 29.82 tn 29.82 tn GROSS 102200 lb **NET TONS** 42560 1b 59640 1b DAILY TONS : TARE JOB TOTAL : 6000.17 tn NET Private Company 1 --- cled Waste Mondinarent Misterial Recovery | Transfer Facility CUSTOMER SIGN:___ _____Ticket C NOTES: 60 Box 188 STANDBY TIME:____ tangview, WA 98632 (1.00) 578-4616 STANDBY INITIALS:____ TICKET # 484562 QUALITY ROCK PRODUCTS, INC. 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 11/15/2011 10:28:09 AM SHIP LOC. : 4 Rochester CUSTOMER: 22650 - DLB Earthworks 11555 - East Bay Public Plaza JOB PO # JOB ADD.: 421 Jefferson St NE MAP PAGE JOB CITY: Olympia Picked Up 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : PRODUCT: TRUCK # **DLB 57** TRAILER # CARRIER : 22650 - DLB Earthworks 29.19 tn GROSS 100740 lb NET TONS 42360 1b DAILY TONS : 60.54 tn TARE 58380 1b JOB TOTAL : 5970.35 tn NET CUSTOMER SIGN:______Ticket C NOTES: Miller of Recovery : Transfer Facility STANDBY TIME:___ FO Box 188 STANDBY INITIALS:___ Lungs ew. WA 98632 (200) 578-4616

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

JOB : 11555 - East Bay Public Plaza

JOB ADD.: 421 Jefferson St NE

JOB CITY: Olympia

PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul

CARRIER: 22650 - DLB Earthworks

GROSS : 105060 lb TARE : 42360 lb NET : 62700 lb

CUSTOMER SIGN:_____Ticket C

STANDBY TIME:_____

STANDBY INITIALS:_____

TICKET # 484557

DATE	P TTAM	11	/15/20	111 7·N	12 • 10	ΔΜ

SHIP LOC. : 4 Rochester

JOB PO # :
MAP PAGE :

TRUCK TYPE : Picked Up
TRUCK # : DLB 57

TRAILER #

NET TONS : 31.35 tn DAILY TONS : 31.35 tn JOB TOTAL : 5941.16 tn

Visite of the Control

NOTES: Indicate a Recovery Flansher Facility

FU BUX 188

1206) 578-4616

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 CUSTOMER: 22650 - DLB Earthworks 11555 - East Bay Public Plaza JOB JOB ADD.: 421 Jefferson St NE JOB CITY: Olympia PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul CARRIER : 22650 - DLB Earthworks 106360 lb GROSS 42360 lb TARE 64000 1b NET ______Ticket C CUSTOMER SIGN:___ STANDBY TIME:___

TICKET # 484550

DATE & TIME: 11/14/2011 10:19:27 AM

SHIP LOC. : 4 Rochester

JOB PO # MAP PAGE

TRUCK TYPE : Picked Up TRUCK # **DLB 57**

TRAILER #

NET TONS 32.00 tn DAILY TONS : 32.00 tn

JOB TOTAL : 5909.81 tn

NOTES:

is a steel Weste Management Maler at Recovery / Transfer Facility

4 to 5 bx 188

WA 98632

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

JOB 11509 - Port of Olympia Maintenance

JOB ADD.:

JOB CITY: Olympia

STANDBY INITIALS:___

PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul

CARRIER: 22650 - DLB Earthworks

100980 lb GROSS TARE 42420 1b

CUSTOMER SIGN:____ _____Ticket C STANDBY TIME:___

STANDBY INITIALS:___

TICKET # 484468

DATE & TIME: 11/9/2011 8:06:24 AM

SHIP LOC. : 4 Rochester JOB PO # Cargo Yard

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # **DLB 57**

TRAILER #

NOTES:

NET TONS 29.28 tn DAILY TONS : 29.28 tn JOB TOTAL 29.28 tn

VIII WAS TO A TO A STORY

secretar dieste Management

Coulded Responsive Transfer Facility

12 1 1 123

11 684 4

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

11555 - East Bay Public Plaza JOB

421 Jefferson St NE JOB ADD.:

JOB CITY: Olympia

92 - Certified Scale Contaminated Dirt Back Haul PRODUCT :

22650 - DLB Earthworks CARRIER:

101600 lb GROSS 42420 lb 59180 lb TARE NET

CUSTOMER SIGN:______Ticket C

STANDBY TIME:____

STANDBY INITIALS:___

TICKET # 484318

11/3/2011 11:53:41 AM DATE & TIME:

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # **DLB 57**

TRAILER #

NET TONS : DAILY TONS : 29.59 tn 29.59 tn JOB TOTAL : 5848.53 tn

NOTES:

Imagicilité Viesta Management Increase Recovery - Transfer Facility 188

5 154 SW STA 98632

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

22650 - DLB Earthworks CUSTOMER:

11555 - East Bay Public Plaza JOB

421 Jefferson St NE JOB ADD.:

Olympia JOB CITY:

PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul

CARRIER : 22650 - DLB Earthworks

106720 lb GROSS 42340 1b TARE NFT 64380 lb

STANDBY TIME:_____ STANDBY INITIALS:_____

TICKET # 484969

DATE & TIME: 12/12/2011 12:05:08 PM

SHIP LOC. : 4 Rochester

JOB PO #

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # DLB 57

TRAILER #

NET TONS : 32.19 tn DAILY TONS : 64.56 tn 6256.82 tn JOB TOTAL :

NOTES:

Mayorhadiser Company the other Weste Management

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA. WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

JOB 11555 - East Bay Public Plaza

JOB ADD.: 421 Jefferson St NE

JOB CITY: Olvmpia

PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul

22650 - DLB Earthworks CARRIER :

107340 lb GROSS TARE 42600 lb 64740 lb NET

CUSTOMER SIGN:______ Ticket C

STANDBY TIME:_____

STANDBY INITIALS:

TICKET # 484958

DATE & TIME: 12/12/2011 8:22:21 AM

4 Rochester SHIP LOC. :

JOB PO #

MAP PAGE

TRUCK TYPE : Picked Up TRUCK # **DLB 57**

TRAILER #

NET TONS 32.37 tn 32.37 tn DAILY TONS : 6224.63 tn JOB TOTAL :

NOTES:

Silving Recovery Transfer essential SU INIX 188 1 mgv 6w, WA 98632 (200) 5/8-4016

QUALITY ROCK PRODUCTS, INC. TICKET # 484950 12/9/2011 12:16:10 PM 10291 LITTEEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 51005 22650 - DLB Earthworks SHIP LOC. 4 Rochester CUSTOMER: 203-00 11555 - East Bay Public Plaza JOB PO # JOB ADD.: JOB CITY: 421 Jefferson St NE MAP PAGE olympia PRODUCT : 92 - Certified Scale Contaminated Dirt Back Haul TRUCK TYPE : Picked Up TRUCK # TRAILER # CARRIER : 22650 - DLB Earthworks 30.61 tn 63.01 tn 103820 lb **NET TONS** GROSS DAILY TONS JOB TOTAL 42600 1b 61220 1b TARE 6192.26 tn NET La de Care Care and the second CUSTOMER SIGN: _ . ____Ticket C NOTES: and a distribution 1. 750.14 STANDBY TIME:_ STANDBY INITIALS:_ **TICKET # 484944** QUALITY ROCK PRODUCTS, INC. 12/9/2011 8:43:09 AM 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 4 Rochester SHIP LOC. CUSTOMER: 22650 - DLB Earthworks 51005 **JOB PO #** East Bay Public Plaza 11555 JOB : 421 Jefferson St NE MAP PAGE JOB CITY: Olympia TRUCK TYPE : TRUCK # : Picked Up 92 - Certified Scale Contaminated Dirt Back Haul PRODUCT: **DLB 57** TRAILER # 22650 - DLB Earthworks CARRIER : 32.40 tn NET TONS 107400 lb GROSS 32.40 tn 6161.65 tn DAILY TONS : 42600 1b 64800 1b TARE JOB TOTAL NET Visuarhanuser Company NOTES: remarkly Wash Markement ____Ticket C CUSTOMER SIGN:___ s a cur viganiya sa V.A STANDBY TIME:_ STANDBY INITIALS:___ **TICKET # 484940** QUALITY ROCK PRODUCTS, INC. 12/8/2011 12:34:53 PM DATE & TIME: 51005 4 Rochester SHIP LOC. 22650 - DLB Earthworks CUSTOMER: JOB PO # - East Bay Public Plaza 11555 JOB 421 Jefferson St NE JOB ADD.: MAP PAGE JOB CITY: olympia Picked Up TRUCK TYPE : TRUCK # : 92 - Certified Scale Contaminated Dirt Back Haul PRODUCT: Mumm11

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 22650 - DLB Earthworks CARRIER: **GROSS** 104920 lb 40400 lb 64520 lb TARE NET

_____Ticket B CUSTOMER SIGN:___ STANDBY TIME:_ STANDBY INITIALS:___

TRAILER # 32.26 tn 65.47 tn **NET TONS** DAILY TONS

6129.25 tn JOB TOTAL

integrate'a Waste Management Piaterial Recovery | Iransfer Facility

NOTES: PO Box 188

Longview, WA 9855 (206) 578-4618

1	0201 LITT	TLER	OCK RD	5W		DLYMPI	A, WA	9	8512	-	OFF	CE:	360-7	54-777
-	CUSTOMER	::	22650	-	DLB	Earth	works			8				
	JOB ADD. JOB CITY	. :	421 Je	ffei	Eas rson	t Bay St NE	Publi	ic	Plaza	ı				٠
	PRODUCT	:	92 -	Ce	rtif	ied Sc	ale (on	tamir	ate	d Dir	t B	ack Ha	นใ
	CARRIER	:	22650	-	DLB	Eagth	works	5						
	GROSS TARE NET	:		1b										
	CUSTOMER		•	1	_	1	7		- J. 1100		Tic	ket	С	
	STANDBY	INI.	TIALS:_								_			

TICKET # 484935

DATE & TIME: 12/8/2011 8:22:29 AM

SHIP LOC!: 4 Rochester

JOB PO # :

MAP PAGE :

TRUCK TYPE : Picked Up
TRUCK # : Mummll

TRAILER # :

NET TONS : 33.21 tn DAILY TONS : 33.21 tn JOB TOTAL : 6096.99 tn

NOTES:

QUALITY ROCK PRODUCTS, INC.

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

CUSTOMER: 22650 - DLB Earthworks

JOB : 11555 - East Bay Public Plaza

JOB ADD.: 421 Jefferson St NE

JOB CITY: Olympia

PRODUCT: 92 - Certified Scale Contaminated Dirt Back Haul

CARRIER: 22650 - DLB Earthworks

GROSS : 102540 lb TARE : 42600 lb NET : 59940 lb

CUSTOMER SIGN:_____Ticket C
STANDBY TIME:

STANDBY INITIALS:

TICKET # 484925

DATE & TIME: 12/7/2011 11:25:46 AM

SHIP LOC. : 4 Rochester

JOB PO # :

MAP PAGE :

TRUCK TYPE : Picked Up
TRUCK # : DLB 57

TRAILER # :

NET TONS : 29.97 tn DAILY TONS : 29.97 tn JOB TOTAL : 6063.78 tn

NOTES:

According to State pages and the story particular and a story particular and a story

10.00

UALI	TY ROCK PRODUC	CTS, INC.	TIC	KET # 48539
201 LITTLER	OCK RD SW - OLYMPIA, WA 98512 -	- OFFICE: 360-754-7777	DATE & TIME:	1/26/2012 10:19:00 AM
CUSTOMER:	22650 - DLB Earthworks	F	SHIP LOC. :	4 Rochester
JOB :	11555 - East Bay Public Plaza 421 Jefferson St NE		JOB PO # :	
JOB CITY:			MAP PAGE :	
PRODUCT :	93 - Certified Weight Check		TRUCK TYPE : TRUCK # :	
CARRIER .	22650 - DIR Farthworks		TRATIFR #	ULB 37

CARRIER : 57140 lb 28920 lb 28220 lb GROSS TARE NET

CUSTOMER SIGN:	Ticket A
STANDBY TIME:	
STANDBY INITIALS:	

NET TONS : 14.11 tn 14.11 tn DAILY TONS :

JOB TOTAL : 14.11 tn

NOTES:

Appendix F - PARCEL 5:

QUALITY ROCK PRODUCTS, INC. TICKET # 471771 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 1/28/2011 1:43:04 PM 17150 - Ceccanti Construction CUSTOMER: SHIP LOC. : 4 10572 - Athletic Complex Ph II JOB : **JOB PO #** Marvin Rd JOB CITY: MAP PAGE 50BP - Ballast PU PRODUCT: TRUCK TYPE : TRUCK # : Picked Up Cecc-83 CARRIER : 17150 - Ceccanti Construction TRAILER # 105120 1b 42520 1b 62600 1b GROSS 31.30 tn 62.98 tn 62.98 tn NET TONS : DAILY TONS : JOB TOTAL : NET TONS TARE NET 691/009 CUSTOMER SIGN: _Ticket B NOTES: STANDBY TIME:_ STANDBY INITIALS:_ **TICKET # 471770** QUALITY ROCK PRODUCTS, 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 1/28/2011 1:41:33 PM CUSTOMER: 17150 - Ceccanti Construction SHIP LOC. : JOB 10572 - Athletic Complex Ph II JOB PO # JOB ADD.: Marvin Rd JOB CITY: MAP PAGE PRODUCT: 50BP - Ballast PU TRUCK TYPE : Picked Up TRUCK # CARRIER : 17150 - Ceccanti Construction TRAILER # GROSS 105840 lb **NET TONS** 31.68 tn DAILY TONS : TARE 31.68 tn 63360 1b JOB TOTAL 31.68 tn CUSTOMER SIGN:_ 691/009 __Ticket в NOTES: STANDBY TIME:_ STANDBY INITIALS:_ QUALITY ROCK PRODUCTS, INC. TICKET # 471767 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 1/28/2011 1:28:15 PM 17150 - Ceccanti Construction CUSTOMER: SHIP LOC. : 4 11367 - Hands On Children's Museum JOB PO # JOB ADD.: Marine Drive JOB CITY: Olympia MAP PAGE PRODUCT: 50BP - Ballast PU TRUCK TYPE : Picked Up TRUCK # 85 Solo CARRIER: 17150 - Ceccanti Construction TRAILER # GROSS 53860 lb 13.19 tn 389.14 tn NET TONS TARE 27480 1b DAILY TONS : JOB TOTAL : NET 1557.21 tn CUSTOMER SIGN:_ _____Ticket В NOTES: 691/009 STANDBY TIME: STANDBY INITIALS:__

QUALITY ROCK PRODUCTS, INC. TICKET # 471761 10201 LITTLEROCK RD SW' - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 1/28/2011 12:17:02 PM CUSTOMER: 17150 - Ceccanti Construction SHIP LOC. : 11367 - Hands On Children's Museum **JOB PO #** Marine Drive JOB ADD.: JOB CITY: Olympia MAP PAGE PRODUCT: 50BP - Ballast PU TRUCK TYPE : TRUCK # : Picked Up CARRIER: 17150 - Ceccanti Construction TRAILER # GROSS 105300 lb NET TONS : DAILY TONS : JOB TOTAL : 31.41 tn 375.95 tn 1544.02 tn 42480 1b 62820 1b TARE NET CUSTOMER SIGN:___ __Ticket B NOTES: STANDBY TIME: STANDBY INITIALS:___ TICKET # 471760 QUALITY ROCK PRODUCTS, 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 1/28/2011 12:13:54 PM DATE & TIME: SHIP LOC. : 17150 - Ceccanti Construction CUSTOMER: **JOB PO #** 11367 - Hands On Children's Museum JOB ADD.: Marine Drive MAP PAGE JOB CITY: Olympia TRUCK TYPE : TRUCK # : Picked Up PRODUCT: 50BP - Ballast PU Cecc-83 TRAILER # 17150 - Ceccanti Construction CARRIER: NET TONS : DAILY TONS : 31.36 tn GROSS 105240 lb 344.54 tn 42520 lb 62720 lb TARE JOB TOTAL : 1512.61 tn NET

CUSTOMER SIGN:___ STANDBY TIME:___ STANDBY INITIALS:___

CUSTOMER SIGN:_ STANDBY TIME:

STANDBY INITIALS:_

71759

NOTES:

691/009

QUALITY ROCK PRODUCTS, IN	C. TICKET # 471
10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754	7777 DATE & TIME: 1/28/2011 11:40:00 AM
CUSTOMER: 17150 - Ceccanti Construction	SHIP LOC. : 4
ров : 11367 - Hands On Children's Museum	JOB PO # :
JOB ADD.: Marine Drive JOB CITY: Olympia	MAP PAGE :
PRODUCT: 50BP - Ballast PU	TRUCK TYPE : Picked Up
CARRIER: 17150 - Ceccanti Construction	TRUCK # : 85 TRAILER # :
GROSS : 104980 lb TARE : 42640 lb NET : 62340 lb	NET TONS : 31.17 th DAILY TONS : 313.18 th JOB TOTAL : 1481.25 th
CUSTOMER SIGN:	NOTES: 691(009

_____Ticket B

QUALITY ROCK PRODUCTS, TICKET # 471756 10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 DATE & TIME: 1/28/2011 10:48:27 AM CUSTOMER: 17150 - Ceccanti Construction SHIP LOC. JQB 11367 - Hands On Children's Museum ЈОВ РО # JOB ADD.: Marine Drive JOB CITY: MAP PAGE Olympia TRUCK TYPE : PRODUCT: 50BP - Ballast PU Picked Up TRUCK # Cecc-83 TRAILER # CARRIER : 17150 - Ceccanti Construction GROSS 103380 lb NET TONS 30.43 tn 282.01 tn 42520 1b 60860 1b DAILY TONS : TARE JOB TOTAL NET 1450.08 tn 691/009 CUSTOMER SIGN: ____Ticket B NOTES: STANDBY TIME:_ STANDBY INITIALS:___ K PRODUCTS, INC. TICKET # 471755 TLEROCK RD SW – OLYMPIA, WA 98512 – OFFICE: 360-754-7777 DATE & TIME: 1/28/2011 10:43:47 AM **CUSTOMER:** 17150 - Ceccanti Construction SHIP LOC. JOB 11367 - Hands On Children's Museum JOB PO # JOB ADD.: Marine Drive JOB CITY: Olympia MAP PAGE PRODUCT: 50BP - Ballast PU TRUCK TYPE : Picked Up TRUCK # 84 CARRIER: 17150 - Ceccanti Construction TRAILER # 103140 lb GROSS **NET TONS** 30.33 tn 42480 lb 60660 lb TARE DAILY TONS : 251.58 tn NET JOB TOTAL 1419.65 tn 691/008 CUSTOMER SIGN: _Ticket в NOTES: STANDBY TIME: STANDBY INITIALS:_ PRODUCTS, TICKET # 471753 QUALITY ROCK INC. DATE & TIME: 1/28/2011 9:37:39 AM CUSTOMER: 17150 - Ceccanti Construction SHIP LOC. :

CUSTOMER SIGN:__

STANDBY TIME:_ STANDBY INITIALS:

10201 LITTLEROCK RD SW - OLYMPIA, WA 98512 - OFFICE: 360-754-7777 11367 - Hands On Children's Museum JOB PO # JOB ADD.: Marine Drive JOB CITY: Olympia MAP PAGE PRODUCT: 50BP - Ballast PU TRUCK TYPE : TRUCK # : Picked Up Cecc-83 CARRIER : 17150 - Ceccanti Construction TRAILER # 104800 lb GROSS NET TONS : DAILY TONS : JOB TOTAL : 31.14 tn 221.25 tn 1389.32 tn 42520 lb 62280 lb TARE NET

__Ticket B

691/008

NOTES:

QUALITY ROCK PRODUCTS,

10201 LITTLEROCK RD SW' - OLYMPIA, WA 98512 - OFFICE: 360-754-7777

____Ticket B

17150 - Ceccanti Construction

JOB .:

CUSTOMER:

11367 - Hands On Children's Museum

Marine Drive

JOB CITY: Olympia

PRODUCT:

30P - Washed Sand PU

CARRIER :

17150 - Ceccanti Construction

GROSS 48740 lb TARE

14780 lb 33960 lb NET

CUSTOMER SIGN:____

STANDBY TIME:____

STANDBY INITIALS:___

TICKET #

DATE & TIME: 1/28/2011 1:28:46 PM

SHIP LOC. :

ЈОВ РО #

MAP PAGE

TRUCK TYPE : TRUCK # :

Picked Up 85 Trailer

4


TRAILER # NET TONS NET TONS : DAILY TONS :

16.98 tn 16.98 tn

JOB TOTAL :

16.98 tn

NOTES: 691/009 Spared to bed catility french Thru South and of Ex.#1

PORT OF OLYMPIA

TO C

Pil 18319

TICKET 31153

SCALE NO. 1

TIME 07:30 AM 0 THE 43520 0R088 97860 LB

02 MAR 11 greled Waste Managament Moterial Recovery / Transfer Lacit

PO Box 188 Langview, WA 98632 (206) 578-4616

27.67 Tons

TOKET 31161

SCALE NO. 1

18519

71HE 11:39 AM D THR - 42,520 02 MAR 11

31.25 1000

ZAT Tara

PORT OF OLYMPIA

PORT OF OLYMPIA

122 J

70

00

SCALE NO. 2 TICKET 31150

GROSS CUSTOMER 82 CECCANTI

42040 LB

TIME 06:51 AM D2 KAR 11

02 MAR 11

PORT OF GLYMPIA 2/2 Childre

TICKET 31154

SCALE NO. 1

CUSTOKER 82 CECCANTI

GROSS 100,140 LB **58,120** TIME 07:45 AM 03 02 KAR 11

29.06 Tons

DIF 181 19 PORT OF OLYMPIA

SCALE NO. 1 TICKET 31165 Tere 42, 570 PORT OF OLYMPIA eigh ked**er**el kud box 168 e view, bya **bakut** ob 5,78**-a6**16 18

CUSTOMER 82 CECCANTY
THE - 47 520
GROSS 102460 LB
WCT- 60,140 GROSS 102660 (B) ルイエー 60,140

TIME 07:22 AM

03 MAR 11

30.07 7005

Tre Weight PORT OF OLYMPIA 42,520

CLISTOMER 82 CECCANTI Tave- 42,520 GROSS 104360 LB N eT- 6,840 TIME 11:20 AM 03 MAR

Lindary removed the second total

40. - 0110 N/A **外接到** (4) 07344分(

30.92 7075

SCALE NO. 1

TICKET 31172

18/19

102 5

C-85 C-85 Tare Weight 42.520 42,520 Tave Weight PORT OF OLYMPIA PORT OF OLYMPIA 18/18 Pile Pile **TICKET 31183 TICKET 31197** SCALE NO. 1 SCALE NO. 1 CUSTOMER 82 CECCANTI CUSTOMER 82 CECCANTI 106400 LB GROSS 105060·LB TIME 07:18 AM 04 MAR 11 TIME 11:41 AM 04 MAR 11 31.94 TONS 31.27 TONS Ceccantic 83 TIME 11:13 AM 04 MAR 11 Pole **TICKET 31195** SCALE NO. 1 TICKET 31105 CUSTOMER 82 CECCANTI SCALE NO. 1 102220 LB GROSS CUSTOMER 82 : CECCANTI TIME 11:30 AM 04 MAR GROSS 102240 LB

SCALE ND. 1

CUSTOMER SIZ CECCANTI

GROSS 42300 LB

TICKET 31181

TIME 07 37 AM

29.97 TONS

PORT OF OLYMPIA ET 31315

E NO. 1

06:05 AM

THER 82 CECCANTI

42200 LB

10 MAR 11

88[XOS O

Village Secovery | Iransfer facility InamegonoM etsoW ost....

PORT OF OLYMPIA

KET 31317

E NO. 1

OMER 82 CECCANTI

44860 LB

06:07 AM 10 MAR 11

PORT OF OLYMPIA

TICKET 31319

SCALE NO. 1

CUSTOMER 82 CECCANTI

GROSS 105540 LB

TIME 06:46 AM 10 MAR 11

\$194-872 (305) Serial Recovery (Itanker Facility

ハムて 44060 PORT OF OLYMPIA

SCALE NO. 1

CUSTOMER 82 - CECCANTI

104780 LB GROSS

TIME 07:02 AN 10 MAR 11

122.93 TONS

Tune 42200

PORT OF OLYMPIA

TICKET 31335

SCALE NO. 1

CUSTOMER 82 CECCANTI

103800 LB GROSS

TIME 10:33 AM

10 MAR 11

9194-878 (805) SE389 AW , Welvene.

881 xo8 Oq

Principle Recovery, Ironate Locility

30.08 TONS

C42 44860

PORT OF OLYMPIA

TICKET 31337

PILE 32

SCALE NO. 1

CUSTOMER 82 CECCANTI

GROSS 105860 LB

10 MAR 11 TIME 10:39 AM

30.5 TON

DI94-872 (30%) KEDBE AW , WBIVEROL

88[xo8 O4

Hoterial Recovers | Lunster Eacht. segrated Waste Management

Kunderon Josephin.

C-85 UZ,320 PORT OF OLYMPIA

TICKET 31318

Pile 32

SCALE NO. 2

CUSTOMER 82 CECCANTI

GROSS 105200 LB

TIME 06:36 AM 10 MAR 11

(31,44 TONS)

C-85 42,320 PORT OF OLYMPIA

11

Pile 32

SCALE NO. 1

TICKET 31336

CUSTOMER 82 CECCANTI

GROSS 105220 LB

TIME 10:38 AM 10 MAR 11

31,45 TONS

Longview, WK 98437

BSI NOS Od

Inequal Waste Management Moterial Recovery | Iranslet Eacility

vacation Company

C-85

TARE

PORT OF OLYMPIA

TICKET 31316

SCALE NO. 2

CUSTOMER 82 CECCANTI

GROSS 42320 LB

TIME 06:05 AM 1 10 MAR 11

3-10-11 62,89

. . 64,6 /

PORT OF OLYMPIA

Ceccunt

TICKET 31353

083

SCALE NO. 1

Pile 31

CUSTOMER 82 CECCANTI

GROSS 106100 LB

TIME 06:54 AM

11 MAR 1

31.92

Meyerhoeuser Company
Integraled Waste Management
Material Recovery I Inserted Excelling
PO Box 188

Longview, WX 98637 (206) 578-4616

TARE 42260

PORT OF OLYMPIA TARE,
31347 CECCIANTI

TICKET 31347

SCALE NO. 1

C83

CUSTOMER 82 CECCANTI

GROSS 42260 LB

TIME 06:04 AM 11 MAR 11

Weyerlineusen Company
Integrated Wuste Management
Material Recovers | Intensies Exclination
PO Box 188
Longview, W. 2005
(206) 578-4616

PORT OF OLYMPIA

Ceccawa

SCALE NO. 1

CUSTOMER 82 CECCANTI

GROSS 105320 LB

TIME 10:55 AM 11 MAR 11

1309 AW Welvens-

881 xo8 O

Moterial Recovery | Iransles Estelly

megroled Waste Managemen!

31.5 TON

42260

187.65 TONS TOTAL 3-11-11 C-85

TAK 42.320

PORT OF OLYMPIA

Pile

TICKET 31368

SCALE NO. 1

CUSTOMER 82 CECCANTI

GROSS 103540 LB

TIME 10:27 AM

11 MAR 11

\$195-825 (50 TALL AW WEIVER.

881 xo8 C

Edillas Johnson Linescover Latelling Ina Waste Management

Kundelen 191

C. 85

TARE 42.320

PORT OF OLYMPIA

Pile 31

TICKET 31351

SCALE NO. 1

CUSTOMER 82 CECCANTI

GROSS 105320, LB

TIME 06:34 AM 11 MAR

> Weyerhoester Company Integraled Waste Management Material Recovery / Transfer Faces PO Box 188 Longview, WA 98632

(206) 578-4616

PORT OF OLYMPIA

TICKET 31352

SCALE NO. 1

CUSTOMER 82 CECCANTI

GROSS 105160 LB

TIME 06:52 AM 11 HAR 11

> Weyerhouse Commons Integrated Waster III. . . . Noterial Recovery (Transp. 1964)

PO Box 188 tongview, WA 98632 (206) 678-4614

PORT OF OLYMPIA

TIICKET 31370

SCALE NO. 1

CUSTOMER 82 CECCANTI

103380 LB GROSS

11 MAR TIME 10:41 AM

> DISF-875 (907) ECOTS VAN MORABOUS

- 88t Xog △

Figure Recovery [Jugaslan Lucilità

Premisporopy also Wellert and a rest Appropriate on

83 TARR PORT OF OLYMPIA 42260

SCALE NO. 2

CUSTOMER 82 CECCANTI Net 42,260 GROSS 105860 LB NET- 63,600 TIME 10:04 AM 14 MAR 11

31.80

Weyerhouser Company Integrated Waste Management Material Recovery | Iransfer Eacility PO Box 188 Longview, WA 98632 (206) 578-4616

C83 TARE PORT OF OLYMPIA 42260

Ceccont.

TICKET 31388

SCALE NO. 1

CUSTOMER 82 CECCANTI TARE - 42,260 GROSS 104240 LB 30,99 NCT - 61,980 Tons 14 MAR 11 TIME 05:55 AM

Pile 31

\$199-872 (601) SEDSO AW WOINDER 881 xog ~ mismal Recovery | Iransfer Facility InemeganoM etsp Wongement

Autocally

PORT OF OLYMPIA

TICKET 31396

Pile 31

SCALE NO. 1

CUSTOKER 82 CECCANTI TAVE - 47,200 GROSS 104780 LB 31,29 70025 NET-62,580 TIME 10:08 AM 14 MAR 11

> Weverhoeuser Company Integrated Waste Management Material Recovery | Transfer Facility PO Box 188 Longview, WA 98632 (206) 578-4616

C 84 47700

PORT OF OLYMPIA

D/12/31 TICKET 31389

SCALE NO. 1

CUSTOMER 82 CECCANTI TAVE - 43,200 GROSS 105240 LB 31.53 NET- 63060 Tons TIME 05:56 AM 14 MAR 11.

> 9197-872 (602) SEASS AW , Walvench 881 xog O-

colerial Recovery | Iransfer Facility InemeganaM etsaW belatering Aunderen, 20.

3-14-11

1-85 42320

PORT OF OLYMPIA

Pile

TICKET 31393

SCALE NO. 1

CUSTOMER 82 CECCANTI

37.08

31

GROSS 108480 LB

TIME 09:40 AH 14 MAR 11

> horojolog Vvoste Management Moterial Recovery / Transfer Equility PO Box 188 Longview, WA 98632 (206) 578-4616

(-85 47,320 PORT OF OLYMPIA

Pile 31

TICKET 31387

SCALE NO. 1

alecanti 85

101040 LB GROSS

TIME 05:50 AM

14 MAR 11

9198-872 (807) KED89 AW , Welvone

381 xo8 C

HIND RECOVERY LIGHTER LEGILLY Had wydste Management

TANE C83

PORT OF OLYMPIA

eccanti

SCALE NO. 1

CUSTOMER 82 CECCANTI

102460 LB GROSS

TIME 05 to AM 15 MAR 11 Company

Integraled Waste Management Motorial Recovers | Iransfer facility PO Box 188 Longview, WA PEGTE 1206) 578-4618

16 26

LECCANTI

PORT OF OLYMPIA C 83

TICKET 31418 TIANS

SCALE NO. 1

42260

CUSTOMER 82 CECCANTI

GROSS 104800 LB 31.27

TIME 09:40 AM 15 MAR 11

Weyerhoouser Company Integrated Waste Management Material Recovers | Iransfer Facility PQ Box 188

Longview, WA 98632 (206) 578-4616

Pile 26

0.94 47200

TICKET 31410

ENTER 0 00

WEIGH-IN 103440 LB

TIME 06:02 AM 15 MAR 11

> 30-62 7075

PILEZL

Weyerhouser Company Integrated Waste Management Material Recovery / Transfer Facility. PO Box 188 Longview, WA 98632 (206) 578-4616

1-95

42.320

PORT OF OLYMPIA

lile Zb

ICKET 31417

CALE NO. 1

USTOMER 82 CECCANTI

ROSS 104140 LB 30,91

IME 09:39 AM 15 MAR 11

> 9194-872 (205) Longview, WA 98632 BBE xod Oq

Moterial Recovery | Iranster Lacility Integrated Waste Management Meyerhoeuser Company

PORT OF OLYMPIA

TICKET 31420

Y11E26

Weyerhouser Company

integraled Waste Management

SCALE NO. 1

CUSTOMER 82 CECCANTI

104540 LB GROSS

TIME 09:54 AM 15 MAR 11

O Box 188

1-85

42.320

PORT OF OLYMPIA

Pile 26

30.5

TICKET 31407

SCALE NO. 1

CUSTOMER 82 CECCANTI

103500 LB GROSS

TIME 05:41, AM 15 MAR 11

Integrated Waste Management Migterial Recovery / Iranster Eacility

PO Box 188

Longview, WA 98632

(206) 578-4616

Moterial Recovery / Transfer (acili Longview, WA 28637 283, C84, C85 (206) 578-4616

31.17

Toas

3-15-10

57 TONS

Landfill 3434 South Silver Lake Rd Castle Rock WA 98611 Tel (360) 274 6492 Fax (360) 274 6393

LOAD SUMMARY

CECCANTI - CHILDRENS HANDS ON MUSEUM 6/6/2011

DATE	TIME	CUSTOMER	HAULER, DRIVER, TRUCK#	GROSS WGT (LBS)	TARE WGT (LBS)	NET WGT (LBS)	TICKET#
6/6/2011	8:10A	Childrens Museum	Ceccanti - Cheryl - #42	105,640	44,180	61,460	32943
6/6/2011	8:12A	Childrens Museum	Ceccanti - Joanne - #C84	102,320	42,200	60,120	32942
6/6/2011	12:20P	Childrens Museum	Ceccanti - Joanne - #C84	102,680	42,200	60,480	32957
6/6/2011	12:20P	Childrens Museum	Ceccanti - Cheryl - #42	55,860	27,500	28,360	32959

Total Load Count: 4	Total Net Weight (LBS):	210,420
	Total Net Weight (TONS):	105.2

TOO^{yth} Xuniversary

TRUCK LOG SHEET

		36,516	101,780	CC MI	COMPART -	WASH C	LL Pibre	4:20	[-7-11	100 A
	312%		95 320	42	ا د د	CRT	Kraite	6,35	14	6958
	31232	40870 31232	85.5X	143	1700/	C12+	KININY	1	0-7-11	6957
	31235	346.517	88,080	44	37.00		XVC DIAZZ & ALL	8: 30	11-6-5	6956
	3123	いたか	31090	- Address	3,5	C87	かとおいまで		6-7-11	6955
		0.267.	97//6	Żο	2240	ういっぱく	<u> </u>	12 30		6954
	52959	27500 5295	55860	Charyl	trat 42	CECHAN	(c //	-	74 //	6953
	5775		102660		7 64	COOR	DESCRIM SCENICION H.	12:22	11-9:0	6952
		34,480		T 35	19416			5434	Company of the Party of the Par	6951
	-	30,60	102,440	35 must		A STATE OF		9:25	11.9-0	6950
	CATE!	18 18 18 18 18 18 18 18 18 18 18 18 18 1	74835	ムた	Bro	つない	Round	51,0	t 6 4	6949
	24126	42200	102320	NATA.	24 g	TO PARTY	WITE SECURITY CACINGTON	2	11-21-0	6948
	32943	28144	105640	Cheryl	4. 17	Coxin	Children Museus		661	6947
		6.2.3	756.0		Ker/10	Kenn	Jan Low	11.35		6946
	7.5115		S 78 C	17	दिन्द	55	THE CALC	6.3	(p. 3 - 1)	6945
	31141	00814	CTAR	4 7	00 3 3	CRI	Riversch	8.00	6-3-11	6944
	31136	43340 3112e	32460		303	これて	A LEW SOLL	1:25	6-2-11	6943
	i	36,30	78,100	11m 35	Comment	म्हेर्य प्रमुख्य	LV Fibia	11:00	6-2-11	6942
	3073	025.54	88/34	7	Set.		CINSOCOTTE	7:20	(p-2-11	6941
	なのな	41,22	87,160	377		(64	P. C.	7:30	11-7-0	6940
	3/088	35,600	908,300	The '	BNOL	23)	Dicknock		62-11	6939
		1,145!	21	158	ه ر	TOTAL DAY	Che Recycle	2.50		6938
1	17 184297	10800	14380	حزرتها بيسالا	المركاسة	MAY ZEL	الكمت الاجتجاء	460		6937
SYSTEM ID# (OFFICE USE ONLY)	TICKET#	GROSS/TARE WGT (LBS)	GROSS/TA	& TRUCK#	HAULER, DRIVER & TRUCK#	HAULE	CUSTOMER	TIME	DATE	Ctrl #

PLEASE OBEY STOP SIGNS @ RR CROSSING - TRAIN RAIL MTCE EQUIPMENT HAVE THE RIGHT OF WAY

* * * REMEMBER 30 MPH MAX SPEED THRU RESIDENTIAL AREAS * * *

C. 42 TARE 44180

PORT OF GLASTIC

FICKET 32943

Jah#691

BLALE No. 1

COSTOMER SP LECCEARTI

39988 (1669) B

1.27E 05:37 AM (66 JUL 3)

Whyerhaeuser Company Integrated Wasto Management Material Recovery / Transfer Eacility PO Box 188 Longview, WA 28632 [206] 578-4618

146 5020 27500

FORT OF OLYMPIA

TJCKET 32959

JOB#691 008

SCALE NO. (

- CUSTOMEN 82 LECCANTI

GROSS 55860 US

TIME 07:48 AM 04 JUN 11

Weyerhaauser Company
Integrated Waste Management
Material Recovery / Transfer Facility
PO Box 188
Langview, WA 98633
(206) 578-4616

Landfill 3434 South Silver Lake Rd Castle Rock WA 98611 Tel (360) 274 6492 Fax (360) 274 6393

LOAD SUMMARY

CECCANTI - CHILDRENS HANDS ON MUSEUM

5/30/2011 thru 6/3/2011

DATE	TIME	CUSTOMER	HAULER, DRIVER, TRUCK#	GROSS WGT (LBS)	TARE WGT (LBS)	NET WGT (LBS)	TICKET#
6/1/2011	9:04A	Childrens Museum	Ceccanti - Joanne - #C84	103,520	42,200	61,320	32868
6/1/2011	9:08A	Childrens Museum	Ceccanti - Chcryl - #42	106,240	44,180	62,060	32867
6/1/2011	1:15P	Childrens Museum	Ceccanti - Joanne - #C84	104,260	42,200	62,060	32880
6/1/2011	1:15P	Childrens Museum	Ceccanti - Cheryl - #42	106,880	44,180	62,700	32879

Total Load Count: 4	Total Net Weight (LBS):	248,140
	Total Net Weight (TONS):	124.1

[()()^{uh} Anniovesary

TRUCK LOG SHEET

	32879	HU180 32879	161880	(EXCHANTI 42 (WEIGHT		1. 15	: - ; - ;	986
	12880	4270 32880	104260	COCCURETI COF JOHNE	HUDICEUS MUSEUR	(2/2)	11-1-1	3935
		W164	926821	and the title of the tenth of the policy of the policy of	Schapper	#13%		3934
		270%	135 97400		And the order of the order	1	A Salar Lange	3933
4	かんか	1 January Charles A San Charles A	1432C	- Car	150 100	The state of the s		3932
	いるがらし		106240	724		\$ 0.5	11-11	3931
	32356		103520	CECCANT BY JOHN	CHATTA COUNTY HO	1	11-1-0	5930
	<	K'	104,340	WASTE CONTROL TIM 35	Lv Tribre	\$1.5 \$1.5		3929
	3104)	5,422	77,240	COT 47 Kg	Tichere	000°	0	3928
	31045		89,948	CCT 43	Rivery are	1	6-1-11	3927
	3027	00.1F	OHO TO	CAT JUH AS	Traine & rety	اندار	k-1-17	5926
	ν'	39560	102020	COFCREDE Start OFFE	55 Jan 2043	7.15	6-1-11	3925
	94984291	10800	14780	Arra 72 2 6 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Park	657	6-1-11	5924
	31038	. 48790	28.380	CR: 185	Row Joke	6.45	ć · / · / ·	6923
	4477760		14860	Huston Bark Our	ital Kolso	1:35	5-31-11	6922
	V	\.\.'	103,300	WK1.55 X WZ 08-101	CONVIT276	11.23	5-31-11	6921
	3045	45440	94,7B	CCT 42 Ket	Quericite	1125	11 15.9	6920
	<	40120	10/780	WILLERY'S, Strat OFFER	Schin 1/2 Day	11 18	5-31.11	6919
	309 SC		2000	CRT #43	River Refe	9.55	5-31-11	6918
	1456-164		14,250	Hertex 11 Dust Colox	1 1/0/50	950	5-31-11	6917
		137mi	EJN	DL-SON	Par.	Z.	11-16	6916
	<	THE TO	10 3, 820	201K125, Buck. 08-101	56 14,15 172-211	71.15		6915
	15 July 19	10,800	13,320	Hartzell Sisk +0104	Rul Ke/50	11.11.11	11 3/2 //	6914
SYSTEM ID#	TICKET#	GROSS/TARE WGT (LBS)	GROSS/TAF	HAULER, DRIVER & TRUCK#	CUSTOMER	TIME	DATE	2tr/ #
1								

PLEASE OBEY STOP SIGNS @ RR CROSSING - TRAIN RAIL MTCE EQUIPMENT HAVE THE RIGHT OF WAY

* * * REMEMBER 30 MPH MAX SPEED THRU RESIDENTIAL AREAS * * *

C 84 47.200

超碳压度 供入股票

THE REAL

图·加斯克·克

CENTER OF COLLEGE

Cooss 103020 i.g

- OF 16:22 AN - of our of

CECANTI# 42 44180 TARE

Permission of the second

104/ET 32847

MALE WO. 1

CUSTOMER SZ CECEANTI

2003 106240 13

100E 06:29 88 - C1 JUN 11

C84 42200

自治 证 建增强

TICKET 32880

SCALE NO. (

UTISTOPIER 82 CHICLAND

800**55** 164240 tin

19# 10#39 ## - HI JPD 11

PERCENTI HZ THRE 44180

PORT OF Mark Park

FREKEY 320/9

SCALE NO. .

CUSTOMER 82

siofice share

CONE 10 :34 AN OF THE

Landfill 3434 South Silver Lake Rd Castle Rock WA 98611 Tel (360) 274 6492 Fax (360) 274 6393

LOAD SUMMARY

Baker Underground Const. - LOTT Hands On Museum 3/7/2012 thru 3/9/2012

DATE	TIME	CUSTOMER	HAULER, DRIVER,	GROSS WGT	TARE WGT	NET WGT	TICKET#
			TRUCK# '	(LBS)	(LBS)	(LBS)	
			LOADS DELIVERED TO L.	ANDFILL			
3/7/2012	11:25A	Baker UC	Baker Underground - James - T10	97,580	39,280	58,300	25220323
3/7/2012	3:30P	Baker UC	Baker Underground - James	97,400	39,280	58,120	25220333
3/8/2012	9:20A	Baker UC	Lees Dumptrucking - L1	92,640	39,100	53,540	25220347
3/8/2012	12:50P	Baker UC	Lees Dumptrucking - L1	91,300	39,100	52,200	25220357
3/8/2012	1:30P	Baker UC	Baker Underground - James - #1	101,500	39,280	62,220	25220360
3/9/2012	8:40A	Baker UC	Lee Watkins - L1	98,380	39,100	59,280	25220376
3/9/2012	9:04A	Baker UC	Baker Underground - James	104,040	39,280	64,760	25220378
3/9/2012	12:15P	Baker UC	Lees Dumptrucking - L1	98,360	39,100	59,260	25220381
3/9/2012	12:55P	Baker UC	Baker Underground - James	98,420	39,280	59,140	25220385

Total Load Count: 9	Total Net Weight (LBS):	526,820
	Total Net Weight (TONS):	263.4

Landfill 3434 South Silver Lake Rd Castle Rock WA 98611 Tel (360) 274 6492 Fax (360) 274 6393

LOAD SUMMARY

Baker Underground Const. - LOTT Hands On Museum 3/12/2012 thru 3/16/2012

DATE	TIME	CUSTOMER	HAULER, DRIVER, TRUCK#	GROSS WGT (LBS)	TARE WGT (LBS)	NET WGT (LBS)	TICKET#
			LOADS DELIVERED TO	LANDFILL			
3/12/2012	8:50A	Baker UC	Lees Dumptrucking - L1	90,560	39,100	51,460	25220413
3/12/2012	9:30A	Baker UC	Baker Underground - James	102,680	39,280	63,400	25220416
3/12/2012	12:30P	Baker UC	Lees Dumptrucking - L1	99,680	39,100	60,580	25220422
3/12/2012	1:20P	Baker UC	Baker Underground - James	102,740	39,280	63,460	28220424

Total Load Count: 4	Total Net Weight (LBS):	238,900
144114000000000000000000000000000000000	Total Net Weight (TONS):	119.5

TRUCK LOG SHEET

)075)074)073)072	9/1	0706	6906	8906	1906	066	065	3064	3063	9062	9061	9060	9059	9058	9057	9056	9055	9054	9053	Ctrl #
3 10 12	1 1 1 1	31-21-2	3-12-12	75-12-12	1-17-12	2 2/5		21115	4/8/5	7		パープル	29.12	3-992	3.4.19	3/4/12	11.80	-	3-9-12	5	3-9-12	39.72	DATE
0 13	a. 55	Mind	3140	92P	04.30	27.6	7.71		8:50	3 . 3 0	0	1350	193	120		12:55	1253	12:40	17:16	12:15	35,11	04.00	TIME
HCJ -	100	**	ALT		Haws consus in a	121	467	ACT	Roker Under Dungum	KIN SEGALE	407	Ac.	HU1	(30)	ACT	HOURS CHILL SECTION	ACC.	ACT	ACI	Come Handon winsermy	CDC	Ship con	CUSTOMER
Harles B. H. U	of IMIO	tay or Leve ZX	Startow IXV 1X	The second	Externormonal funt	THIS COMPY TO	Harley Garage	Haulan Dawy 16	hous Durplewicking	CRI Alexe As	HARLES JUM 15	Holow Con 27	Marie Dave 20	Marketine liver 21	Herry Jun 22	Berker Un le grown de donnes	Hantew Bill	the land Koun 24	0	hees Durphyse Ring	Sereban 839	Obsert DAVE -5	HAULER, DRIVER & TRUCK#
12080	10 17 17 17 17 17 17 17 17 17 17 17 17 17	47.7		1	102680 36280	9/160 4/080	72320 4186036022	warn NOSD	90560 39100	13100 42160	93,260 41340	8 860 theco	90320 11030	88900 41920	an ih	98470 3920	製 点	079 14 (185.66	40	0	9250 40260	04554 00C-101	GROSS/TARE WGT (LBS)
3803	16.26	35038	380 L	4500	2140	3X0 27	Hozz	Stole	0413	40697	37981	37978	37985	3797E	37575	SARO	37973	02642	52668	-	5	A STATE OF THE PARTY OF THE PAR	TICKET#
V																							SYSTEM ID# (OFFICE USE ONLY)

PLEASE OBEY STOP SIGNS @ RR CROSSING - TRAIN RAIL MTCE EQUIPMENT HAVE THE RIGHT OF WAY

* * * REMEMBER 30 MPH MAX SPEED THRU RESIDENTIAL AREAS * * *

TRUCK LOG SHEET

9098	9097	9096	9095	9094	9093,	9095	90%	9090	9089	9088	9087	9806	9085	9084	9083	9082	9081	9080	9079	9078	9077	9076	Ctrl #
	1	いまれ	コレン	700	13 K	4	3/12/12	2/12/16	STATE	3-12-12	るなれ	3-17-12	212	2/10/10	3/12/12	N TO	STOP A	5 13 13	3-12-12	3 12	5, 12, 12	342 12	DATE
		1:36	-2	the	1,00		1.20	4:13	1.15	1236	1265	1240		35.6	12:30	0 : 0	24:11	10:40T	6e:01	10:25	<i>k</i> ::-7	30.5	TIME
		Col	ALT	276	100	100	Kans of mose only	RED	AT	TY T	Act	HCI .	AC	ACT	Baller Macongan	Rivergrate	Schutzer	onited Rose	ACTS	Fram biasti Control	ACT	100	CUSTOMER
		Jec 100	HARLOW TIM 15	Sporter Jim wir	Thiston Car 31	11 11 5 con 12 11 (/	Ankermorgened June	Line Come 3 C.	the last of the last	Harles TRY 17	parties That 25	HARIOUS CARY 21	Harlow Cong. 13-	Apple 1	Logs Duptincks	CRY 840 49	Obser OARC 5	FFL Dave 56	HARRIES TIM 15	Crews 40	they loca Jun 22	Mineral Cras, 2)	HAULER, DRIVER & TRUCK#
		00000 (11960	76,200 41,160	008/th 127/85	001/1/2 0200	911/2000	1	CAL-THO HAPOUC	98,840 MI 500	0880H 246 HS	No.	25160 11080	098.76 004,001	16,500 41,840	99680 39,100	10000 1/23/1	101 Sec 141 305 101	07,540 41,140	93260 41160	37340	28/80 (H. X2)	95120 MM	GROSS/TARE WGT (LBS)
		The second second	3806	38057	FEROE	3005	0424	1000	380 48	3 8048	11,385	34046	30075	Service St.	0424	ALIA	<	H	38039		3 XUXE	377.33	TICKET#
		1																					SYSTEM ID# (OFFICE USE ONLY)

PLEASE OBEY STOP SIGNS @ RR CROSSING - TRAIN RAIL MTCE EQUIPMENT HAVE THE RIGHT OF WAY *** REMEMBER 30 MPH MAX SPEED THRU RESIDENTIAL AREAS ***

Appendix G: Data Validation Report

Technical Memorandum

950 West Bannock Street, Suite 250 Boise, Idaho 83702

Tel: 208-389-7700 Fax: 208-389-7750

Prepared for: The City of Olympia and the Lott Alliance

Project Title: Parcel 4 and 5 Interim Action

Project No: 138130

Technical Memorandum

Subject: Data Quality Assessment—Pace Analytical

Date: June 21, 2012

To: Project File

From: Annika Deutsch

Copy to: Jon Turk

Prepared by:

Annika Deutsch

Limitations:

This document was prepared solely for the City of Olympia and the LOTT Alliance in accordance with professional standards at the time the services were performed and in accordance with the contract between the City of Olympia and the LOTT Alliance and Brown and Caldwell. This document is governed by the specific scope of work authorized by the City of Olympia and the LOTT Alliance; it is not intended to be relied upon by any other party except for regulatory authorities contemplated by the scope of work. We have relied on information or instructions provided by the City of Olympia and the LOTT Alliance and other parties and, unless otherwise expressly indicated, have made no independent investigation as to the validity, completeness, or accuracy of such information.

Executive Summary

A Qualitative Data Usability Review was performed on all analytical data for Sample Delivery Groups (SDGs) listed in Table 1 (see Sample Summary section below) analyzed by Pace Analytical (Pace) of Seattle, Washington. The samples were collected at the Parcels 4 and 5 Site in Olympia, Washington. This review was perform with the general guidance provided by the National Functional Guidelines for Data Review and the project quality assurance project plan.

The following were reviewed for the analysis in this report:

Table E-1. Review Item Summary		
Review Item	Review Summary	
COCs	Samples were analyzed for all methods requested on the COCs.	
Case narratives	No discrepancies were noted in the data that were not also mentioned in the case narratives.	
Analysis data sheets	All requested results were present and accounted for.	
Holding time and sample preservation	Some samples were received by Pace outside the recommended temperature.	
Laboratory control sample results	All laboratory control sample results were within the laboratory control limits.	
Matrix spike results	Some metal and cPAH matrix spike results were outside laboratory control limits.	
Laboratory duplicate results	One motor oil laboratory duplicate result was outside laboratory control limits.	
Surrogate recoveries	All surrogate recoveries were within the laboratory control limits.	
Field duplicate precision	Some field duplicate imprecision was identified. Dioxin/furan TEQ calculation field duplicate results, rather than individual dioxin/furan field duplicate results, were reviewed for precision.	
Blank contamination	Some dioxins/furans were detected in method blanks at levels that may bias the sample results.	

Overall, the data are acceptable for the intended purposes. No results were rejected as a result of this review. In addition to Pace-applied qualifiers, some results were qualified as estimated due to LCS recoveries, MS/MSD recoveries, and field duplicate imprecision as described in the sections below. Samples have been assessed within and among the sample delivery groups (SDGs), or lab batches.

Sample Summary

Data from the following samples were reviewed as part of this data quality assessment.

	Table 1. SDGs, La	ab IDs, and Sample IDs
SDG	Lab ID	Sample ID
255583	255583001	CNF-1-1-9
255583	255583002	CNF-1-2-9
255583	255583003	CNF-1-3-9
255583	255583004	CNF-1-4-9
255583	255583005	CNF-1-5-9
255583	255583006	CNF-1-6-4
255583	255583007	CNF-1-7-5
255583	255583008	CNF-1-8-3
255583	255583009	CNF-1-9-1.5
255583	255583010	CNF-1-10-3.5
255583	255583011	CNF-1-11-1
255583	255583012	CNF-1-12-3
255662	255662001	CNF-4-1-15
255662	255662002	CNF-4-2-13
255662	255662003	CNF-4-3-12
255662	255662004	CNF-4-4-12
255662	255662005	CNF-4-5-12
255662	255662006	CNF-4-6-10.5
255662	255662007	CNF-4-7-6
255662	255662008	CNF-4-8-2.5
255662	255662009	CNF-4-9-11
255662	255662010	CNF-4-10-7
255662	255662011	CNF-4-11-2
255662	255662012	CNF-4-12-11
255662	255662013	CNF-4-13-2.5
255662	255662014	CNF-4-14-11
255662	255662015	CNF-4-15-3.5
255662	255662016	CNF-4-16-2
255662	255662017	CNF-5-1-15
255662	255662018	CNF-5-2-13.5

	Table 1. SDGs, L	ab IDs, and Sample IDs
SDG	Lab ID	Sample ID
255662	255662019	CNF-5-3-10
255662	255662020	CNF-5-4-2
255662	255662021	CNF-5-5-13.5
255662	255662022	CNF-5-6-10
255662	255662023	CNF-5-7-2
255662	255662024	CNF-5-8-13
255662	255662025	CNF-5-9-10
255662	255662026	CNF-5-10-2
255662	255662027	CNF-5-11-13
255662	255662028	CNF-5-12-10
255662	255662029	CNF-5-13-2
255662	255662030	Trip Blank
255663	255663001	CNF-3-1-1.5
255663	255663002	CNF-3-2-0.5
255663	255663003	CNF-3-3-1.5
255663	255663004	CNF-3-4-1.5
255663	255663005	CNF-3-5-1
255663	255663006	CNF-3-6-1
255663	255663007	CNF-3-7-2.5
255663	255663008	CNF-3-8-2.5
255663	255663009	CNF-3-9-2.5
255663	255663010	CNF-3-10-2.5
255663	255663011	CNF-3-11-2.5
255663	255663012	CNF-3-12-2.5
255663	255663013	CNF-3-13-3.5
255663	255663014	CNF-3-14-3.5
255663	255663015	CNF-3-15-3.5
255663	255663016	CNF-3-16-3.5
255663	255663017	CNF-3-17-3.5
255663	255663018	CNF-3-18-3.5
255663	255663019	CNF-3-19-7.5
255663	255663020	CNF-3-20-7.5
255663	255663021	CNF-3-21-7.5

	Table 1. SDGs, La	ab IDs, and Sample IDs
SDG	Lab ID	Sample ID
255663	255663022	CNF-3-22-7.5
255663	255663023	CNF-3-23-7.5
255663	255663024	CNF-3-24-7.4
255663	255663025	CNF-3-25-10
256177	256177001	CNF-3A-1-1.75
256177	256177002	CNF-3A-2-3
256177	256177003	CNF-3A-3-3.25
256177	256177004	CNF-3A-4-2.25
256177	256177005	CNF-3A-5-3.25
256177	256177006	CNF-3A-6-2
256177	256177007	CNF-3A-7-3.25
256177	256177008	CNF-3A-8-5.5
256177	256177009	CNF-3A-9-5.5
256177	256177010	CNF-3A-10-5.5
256177	256177011	CNF-3A-11-6
256181	256181001	CNF-3-17-3.5_010511
256210	256210001	CNF-2-1-10
256210	256210002	CNF-2-7
		CNF-2-3-5
256210	256210003	(duplicate: CNF-2-4-5)
		CNF-2-4-5
256210	256210004	(parent: CNF-2-3-5)
256210	256210005	CNF-2-5-1.75
256210	256210006	CNF-2-6-7
256210	256210007	CNF-2-7-5
		CNF-2-8-1.75
256210	256210008	(duplicate: CNF-2-9-1.75)
		CNF-2-9-1.75
256210	256210009	(parent: CNF-2-8-1.75)
256210	256210010	CNF-2-10-7
256210	256210011	CNF-2-11-5
256210	256210012	CNF-2-12-1.5
256210	256210013	CNF-2-13-7

	Table 1. SDGs, L	ab IDs, and Sample IDs
SDG	Lab ID	Sample ID
256210	256210014	CNF-2-14-5
256210	256210015	CNF-2-15-1.75
256348	256348001	CNF 2-1A-2
256348	256348002	CNF 2-2A-1.75
		CNF 2-3A-1.75
256348	256348003	(duplicate: DUP)
256348	256348004	CNF 2-4A-10
256348	256348005	CNF 2-6A-5
256348	256348006	CNF 2-7A-9
256348	256348007	CNF 2-8A-5
256348	256348008	CNF 2-9A-9.5
256348	256348009	CNF 2-10A-5
		DUP
256348	256348010	(parent: CNF 2-3A-1.75)
256348	256348011	CNF 2-5A-9
255572	255572001	SPL-1-1
255572	255572002	SPL-1-2
255572	255572003	SPL-1-3
255572	255572004	SPL-2-1
255572	255572005	SPL-2-2
255572	255572006	SPL-2-3
255574	255574001	SPL-1-1
255574	255574002	SPL-1-2
255574	255574003	SPL-1-3
255574	255574004	SPL-2-1
255574	255574005	SPL-2-2
255574	255574006	SPL-2-3
255589	255589001	SPL-4-1
255589	255589002	SPL-4-2
255589	255589003	SPL-4-3
255589	255589004	SPL-5-1
255589	255589005	SPL-5-2
255589	255589006	SPL-5-3

	Table 1. SDGs, La	ab IDs, and Sample IDs
SDG	Lab ID	Sample ID
255589	255589007	SPL-3-1
255589	255589008	SPL-3-2
255589	255589009	SPL-3-3
255590	255590001	SPL-4-1
255590	255590002	SPL-4-2
255590	255590003	SPL-4-3
255590	255590004	SPL-5-1
255590	255590005	SPL-5-2
255590	255590006	SPL-5-3
255590	255590007	SPL-3-1
255590	255590008	SPL-3-2
255590	255590009	SPL-3-3
255590	255590010	Trip blank
255764	255764001	SPL-11-1
255764	255764002	SPL-11-2
255764	255764003	SPL-11-3
255764	255764004	SPL-10-1
255764	255764005	SPL-10-2
255764	255764006	SPL-10-3
255764	255764007	TB-1318922
255812	255812001	SPL-6-1
255812	255812002	SPL-6-2
255812	255812003	SPL-6-3
255812	255812004	SPL-6-4
255812	255812005	SPL-6-5
255812	255812006	SPL-9-1
255812	255812007	SPL-9-2
255812	255812008	SPL-9-3
255812	255812009	SPL-8-3
255812	255812010	SPL-7-5
255812	255812011	SPL-8-1
255812	255812012	SPL-8-2
255818	255818001	SPL-7-1

	Table 1. SDGs, La	ab IDs, and Sample IDs
SDG	Lab ID	Sample ID
255818	255818002	SPL-7-2
255818	255818003	SPL-7-3
255818	255818004	SPL-7-4
255818	255818005	SPL-6-1
255818	255818006	SPL-6-2
255818	255818007	SPL-6-3
255818	255818008	SPL-6-4
255818	255818009	SPL-6-5
255818	255818010	SPL-9-1
255818	255818011	SPL-9-2
255818	255818012	SPL-9-3
255818	255818013	SPL-8-1
255818	255818014	SPL-8-2
255818	255818015	SPL-8-3
255818	255818016	TB-1318561
255818	255818017	SPL-7-5
255986	255986001	SPL-6-1
255986	255986002	SPL-6-2
255986	255986003	SPL-6-3
255986	255986004	SPL-6-4
255986	255986005	SPL-6-5
255986	255986006	SPL-9-1
255986	255986007	SPL-9-2
255986	255986008	SPL-9-3
255986	255986009	SPL-8-1
255986	255986010	SPL-8-2
255986	255986011	TB-1318558
255708	255708001	SPL-12-1
255708	255708002	SPL-12-2
255708	255708003	SPL-12-3
255708	255708004	SPL-12-4
255708	255708005	SPL-12-5
255708	255708006	SPL-12-6

	Table 1. SDGs, La	ab IDs, and Sample IDs
SDG	Lab ID	Sample ID
255708	255708007	SPL-12-7
255892	255892001	SPL-14-1
255892	255892002	SPL-14-2
255892	255892003	SPL-14-3
255892	255892004	SPL-14-4
255892	255892005	SPL-14-5
255892	255892006	TB-1391160
255893	255893001	SPL-13-1
255893	255893002	SPL-13-2
255893	255893003	SPL-13-3
255893	255893004	SPL-13-4
255893	255893005	SPL-13-5
255893	255893006	SPL-13-6
255893	255893007	SPL-13-7
255893	255893008	TB-1318560
255895	255895001	SPL-15-1
255895	255895002	SPL-15-2
255895	255895003	SPL-15-3
		SPL-16-1
256083	256083001	(duplicate: SPL-16-7)
		SPL-16-2
256083	256083002	(duplicate: SPL-16-6)
256083	256083003	SPL-16-3
256083	256083004	SPL-16-4
256083	256083005	SPL-16-5
		SPL-16-6
256083	256083006	(parent: SPL-16-2)
		SPL-16-7
256083	256083007	(parent: SPL-16-1)
		SPL-16-1
256084	256084001	(duplicate: SPL-16-7)
		SPL-16-2
256084	256084002	(duplicate: SPL-16-6)

	Table 1. SDGs, La	ab IDs, and Sample IDs
SDG	Lab ID	Sample ID
256084	256084003	SPL-16-3
256084	256084004	SPL-16-4
256084	256084005	SPL-16-5
		SPL-16-6
256084	256084006	(parent: SPL-16-2)
		SPL-16-7
256084	256084007	(parent: SPL-16-1)
256084	256084008	TB-1391161
		SPL-18-1
256178	256178001	(duplicate: SPL-18-2)
		SPL-18-2
256178	256178002	(parent: SPL-18-1)
256178	256178003	SPL-18-3
256178	256178004	SPL-18-4
256178	256178005	SPL-18-5
256178	256178006	SPL-18-6
256178	256178007	SPL-17-1
256178	256178008	SPL-17-2
256178	256178009	SPL-17-3
256178	256178010	TB-1391152
256261	256261001	SPL-19-1
		SPL-19-2
256261	256261002	(duplicate: SPL-19-6)
256261	256261003	SPL-19-3
256261	256261004	SPL-19-4
256261	256261005	SPL-19-5
		SPL-19-6
256261	256261006	(parent: SPL-19-2)
256269	256269001	SPL-19-1
		SPL-19-2
256269	256269002	(duplicate: SPL-19-6)
256269	256269003	SPL-19-3
256269	256269004	SPL-19-4

	Table 1. SDGs, La	ab IDs, and Sample IDs
SDG	Lab ID	Sample ID
256269	256269005	SPL-19-5
		SPL-19-6
256269	256269006	(parent: SPL-19-2)
256269	256269007	TB-1446260
256323	256323001	SPL-20-1
256323	256323002	SPL-20-2
		SPL-20-3
256323	256323003	(parent: SPL-20-4)
		SPL-20-4
256323	256323004	(duplicate: SPL-20-3)
256323	256323005	SPL-20-5
256323	256323006	SPL-20-6
		SPL-21-1
256323	256323007	(duplicate: SPL-21-6)
256323	256323008	SPL-21-2
256323	256323009	SPL-21-3
256323	256323010	SPL-21-4
256323	256323011	SPL-21-5
		SPL-21-6
256323	256323012	(parent: SPL-21-1)
256324	256324001	SPL-20-1
256324	256324002	SPL-20-2
		SPL-20-3
256324	256324003	(parent: SPL-20-4)
		SPL-20-4
256324	256324004	(duplicate: SPL-20-3)
256324	256324005	SPL-20-5
256324	256324006	SPL-20-6
		SPL-21-1
256324	256324007	(duplicate: SPL-21-6)
256324	256324008	SPL-21-2
256324	256324009	SPL-21-3
256324	256324010	SPL-21-4

SDG Lab ID Sample ID 256324 256324011 SPL-21-5 SPL-21-6 SPL-21-6 256324 256324012 (parent: SPL-21-1) 256324 256324013 TB-011911 256519 256519001 SPL-22-1 256519 256519002 SPL-22-2	
SPL-21-6 256324 256324012 (parent: SPL-21-1) 256324 256324013 TB-011911 256519 256519001 SPL-22-1	
256324 256324012 (parent: SPL-21-1) 256324 256324013 TB-011911 256519 256519001 SPL-22-1	
256324 256324013 TB-011911 256519 256519001 SPL-22-1	
256519 256519001 SPL-22-1	
256519 256519002 SPL-22-2	
256519 256519003 SPL-22-3	
256519 256519004 SPL-23-1	
256519 256519005 SPL-23-2	
256519 256519006 SPL-23-3	
256519 256519007 SPL-24-1	
SPL-24-2	
256519 256519008 (duplicate: SPL-24-3)	
SPL-24-3	
256519 256519009 (parent: SPL-24-2)	
256519 256519010 SPL-24-4	
256520 256520001 SPL-22-1	
256520 256520002 SPL-22-2	
256520 256520003 SPL-22-3	
256520 256520004 SPL-23-1	
256520 256520005 SPL-23-2	
256520 256520006 SPL-23-3	
256520 256520007 SPL-24-1	
SPL-24-2	
256520 256520008 (duplicate: SPL-24-3)	
SPL-24-3	
256520 256520009 (parent: SPL-24-2)	
256520 256520010 SPL-24-4	
256520 256520011 TB-020711	
256548 256548001 SPL-25-1	
256548 256548002 SPL-25-2	
256548 256548003 SPL-25-3	
256548 256548004 SPL-25-4	

Table 1. SDGs, Lab IDs, and Sample IDs					
SDG	Lab ID	Sample ID			
256548	256548005	SPL-25-5			
256548	256548006	SPL-26-1			
256548	256548007	SPL-26-2			
		SPL-26-3			
256548	256548008	(duplicate: SPL-26-4)			
		SPL-26-4			
256548	256548009	(parent: SPL-26-3)			
256550	256550001	SPL-25-1			
256550	256550002	SPL-25-2			
256550	256550003	SPL-25-3			
256550	256550004	SPL-25-4			
256550	256550005	SPL-25-5			
256550	256550006	SPL-26-1			
256550	256550007	SPL-26-2			
		SPL-26-3			
256550	256550008	(duplicate: SPL-26-4)			
		SPL-26-4			
256550	256550009	(parent: SPL-26-3)			
256550	256550010	TB 020911-A			
256490	256490001	SPL-29-1			
256490	256490002	SPL-29-2			
256490	256490003	SPL-29-3			
		SPL-29-4			
256490	256490004	(parent: SPL-29-5)			
		SPL-29-5			
256490	256490005	(duplicate: SPL-29-4)			
256490	256490006	SPL-29-6			
256490	256490007	SPL-29-7			
256490	256490008	SPL-29-8			
256491	256491001	SPL-30-1			
256491	256491002	SPL-30-2			
256491	256491003	SPL-30-3			
256491	256491004	SPL-30-4			

Table 1. SDGs, Lab IDs, and Sample IDs					
SDG	Lab ID	Sample ID			
256491	256491005	SPL-30-5			
256491	256491006	SPL-30-6			
256491	256491007	SPL-30-7			
256498	256498001	SPL-29-1			
256498	256498002	SPL-29-2			
256498	256498003	SPL-29-3			
		SPL-29-4			
256498	256498004	(parent: SPL-29-5)			
		SPL-29-5			
256498	256498005	(duplicate: SPL-29-4)			
256498	256498006	SPL-29-6			
256498	256498007	SPL-29-7			
256498	256498008	SPL-29-8			
256498	256498009	TB-020411			
256499	256499001	SPL-30-1			
256499	256499002	SPL-30-2			
256499	256499003	SPL-30-3			
256499	256499004	SPL-30-4			
256499	256499005	SPL-30-5			
256499	256499006	SPL-30-6			
256499	256499007	SPL-30-7			
256499	256499008	TB-020311			
256547	256547001	SPL-27-1			
256547	256547002	SPL-27-2			
256547	256547003	SPL-27-3			
256547	256547004	SPL-27-4			
256547	256547005	SPL-27-5			
		SPL-28-1			
256547	256547006	(duplicate: SPL-28-4)			
256547	256547007	SPL-28-2			
256547	256547008	SPL-28-3			
		SPL-28-4			
256547	256547009	(parent: SPL-28-1)			

Table 1. SDGs, Lab IDs, and Sample IDs				
SDG	Lab ID	Sample ID		
256549	256549001	SPL-27-1		
256549	256549002	SPL-27-2		
256549	256549003	SPL-27-3		
256549	256549004	SPL-27-4		
256549	256549005	SPL-27-5		
		SPL-28-1		
256549	256549006	(duplicate: SPL-28-4)		
256549	256549007	SPL-28-2		
256549	256549008	SPL-28-3		
		SPL-28-4		
256549	256549009	(parent: SPL-28-1)		
256549	256549010	TB020911-B		
256690	256690001	SPL-31-1		
		SPL-31-2		
256690	256690002	(duplicate: SPL-31-4)		
256690	256690003	SPL-31-3		
		SPL-31-4		
256690	256690004	(parent: SPL-31-2)		
256690	256690005	SPL-31-5		
256690	256690006	SPL-31-6		
256690	256690007	SPL-32-1		
256690	256690008	SPL-32-2		
256690	256690009	SPL-32-3		
256691	256691001	SPL-31-1		
		SPL-31-2		
256691	256691002	(duplicate: SPL-31-4)		
256691	256691003	SPL-31-3		
		SPL-31-4		
256691	256691004	(parent: SPL-31-2)		
256691	256691005	SPL-31-5		
256691	256691006	SPL-31-6		
256691	256691007	SPL-32-1		
256691	256691008	SPL-32-2		

Table 1. SDGs, Lab IDs, and Sample IDs			
SDG	Lab ID	Sample ID	
256691	256691009	SPL-32-3	
256691	256691010	TB 021811	

A Qualitative Data Usability Review was performed on all analytical data for SDGs listed in Table 1 (above) analyzed by Pace Analytical (Pace) of Seattle, Washington. The samples were collected at the Parcels 4 and 5 Site in Olympia, Washington. The following table outlines the analytical methods uses to analyze the samples:

Table 2. Analytical Methods			
Matrix	Analysis	Method	
	Metals	EPA 6020A**	
Oanfirmation Committee (Cailly	TPH-D, -HO	NWTPH-Dx	
Confirmation Samples (Soil)*	TPH-Gx and BTEX	NWTPH-Gx and EPA 8260E	
	Dioxins/Furans	EPA 1613	
	Metals	EPA 6020A	
	cPAHs	EPA 8270C	
Stockpiles Samples (Soil)	TPH-D, -HO	NWTPH-Dx	
	TPH-Gx and BTEX	NWTPH-Gx and EPA 8260E	
	Dioxins/Furans	EPA 1613	

^{*}One or more of the following analyses were requested on the chain-of-custody for the confirmation samples.

The samples were analyzed for all methods requested on the chains-of-custody (COCs). This review was performed in accordance with the general guidance provided by the National Functional Guidelines for Data Review and the project quality assurance project plan.

Review Items

The following were reviewed for the analysis in this report:

- COCs
- Case narratives
- Analysis data sheets
- Holding time and sample preservation
- Laboratory control sample (LCS)/LCS duplicate (LCSD) recoveries and relative percent differences (RPDs)
- Matrix spike (MS)/MS duplicate (MSD) recoveries and RPDs
- Laboratory duplicate sample RPDs
- Surrogate recoveries
- · Field duplicate precision
- Blank contamination

^{**}Some samples were analyzed using EPA 6010.

COCs

The COCs were reviewed for completeness and accuracy. There were no discrepancies noted, and all requested analyses were performed.

Case Narratives

The case narratives were reviewed for completeness and accuracy. There were no discrepancies noted in the data that were not also mentioned in the case narratives.

Analysis Data Sheets

The analysis data sheets were reviewed for completeness and accuracy. All requested results were present and accounted for.

Holding Time and Sample Preservation

All samples were properly preserved and no analysis holding times were violated, with the exceptions noted below.

• Samples in SDGs 256323 and 256324 were received by Pace at a cooler temperature of 9.6 degrees Celsius, and samples in SDGs 256690 and 256991 were received by Pace at a cooler temperature of 9.9 degrees Celsius. This may result in a low bias for semivolatiles and volatiles. Based on a discussion with the project manager, no data were qualified based on this temperature exceedance.

LCS/LCSD Recoveries and RPDs

All LCS/LCSD recoveries and RPDs were within the laboratory control limits.

MS/MSD Recoveries and RPDs

All MS/MSD recoveries and RPDs were within the laboratory control limits, with the exceptions noted below.

		Table 3. Qua	lified Data Based on Matrix Spike Recoveries
WO	Lab ID	Sample ID	Analytes qualified as "J" (estimated)
256210	256210011	CNF-2-11-5	Copper and Nickel
255662	255662011	CNF-4-11-2	Arsenic, Copper, and Lead
255662	255662017	CNF-5-1-15	Lead
255574	255574001	SPL-1-1	cPAHs: anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, fluoranthene, fluorine, indeno(1,2,3-cd)pyrene, phenanthrene, and pyrene
255818	255818001	SPL-7-1	Copper, Lead, and Nickel
255812	255812011	SPL-8-1	Lead and Nickel
255708	255708001	SPL-12-1	Arsenic, Copper, Lead, Nickel
255893	255893007	SPL-13-7	Copper and Nickel
255892	255892001	SPL-14-1	Copper and Nickel and cPAHs: anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, phenanthrene, and pyrene
256084	256084001	SPL-16-1	cPAHs: anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, phenanthrene, and pyrene
256083	256083003	SPL-16-3	Lead and Nickel

Table 3. Qualified Data Based on Matrix Spike Recoveries			
WO	Lab ID	Sample ID	Analytes qualified as "J" (estimated)
256178	256178008	SPL-17-2	Copper and Lead
256261	256261006	SPL-19-6	Copper and Nickel
256323	256323001	SPL-20-1	Copper, Lead, and Nickel
256324	256324001	SPL-20-1	cPAHs:benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, chrysene, fluoranthene,, indeno(1,2,3-cd)pyrene, phenanthrene, and pyrene
256323	256323011	SPL-21-5	Copper, Lead, and Nickel
256519	256519001	SPL-22-1	Copper
256548	256548002	SPL-25-2	Copper
256547	256547001	SPL-27-1	Copper and Nickel
256549	256549001	SPL-27-1	cPAHs: anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, fluoranthene, indeno(1,2,3-cd)pyrene, phenanthrene, and pyrene
256490	256490001	SPL-29-1	Nickel
256491	256491001	SPL-30-1	Copper, Lead, and Nickel
256690	256690001	SPL-31-1	Arsenic and Copper
256691	256691001	SPL-31-1	cPAHs: benzo(a)anthracene, fluoranthene, phenanthrene, and pyrene

Laboratory Duplicate

All laboratory duplicate RPDs were within the laboratory control limits, with the exceptions noted below.

Table 4. Qualified Data Based on Laboratory Duplicate RPDs			
WO	Lab ID	Sample ID	Analytes qualified as "J" (estimated)
255590	255590002	SPL-4-2	Motor Oil

Surrogate Recoveries

All surrogate recoveries were within the laboratory control limits.

Field Duplicate Precision

All field duplicate RPDs were below the project-specific goals of 30 percent for soil samples, with the exceptions noted below. Individual dioxin/furan analytes were not reviewed for this assessment; rather, the Pacecalculated TEQ RPD was analyzed.

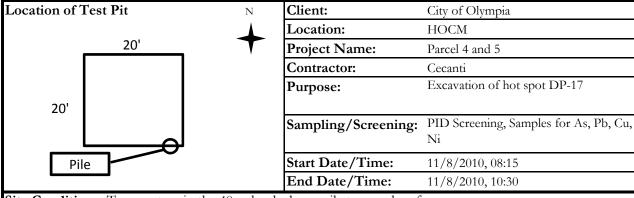
Table 4. Qualified Data Based on Field Duplicate Imprecision			
Parent Sample	Duplicate Sample	Analyte with RPD>30%	
CNF-2-8-1.75	CNF-2-9-1.75	Arsenic	
ON 2 0 1.70	ON 2 3 1.10	Lead	
	SPL-16-7	Copper	
SPL-16-1		Nickel	
3FL-10-1		Acenaphthene	
		Benzo(a)anthracene	

Table 4. Qualified Data Based on Field Duplicate Imprecision			
Parent Sample	Duplicate Sample	Analyte with RPD>30%	
		Benzo(a)pyrene	
		Benzo(b)fluoranthene	
		Benzo(g,h,i)perylene	
		Benzo(k)fluoranthene	
		Chrysene	
		Dibenz(a,h)anthracene	
SPL-16-1 (cont.)	SPL-16-7 (cont.)	Fluoranthene	
, ,		Fluorene	
		Indeno(1,2,3-cd)pyrene	
		Phenanthrene	
		Pyrene	
		Diesel Range SG	
		Dioxin/Furan TEQ	
		Benzo(k)fluoranthene	
ODI 40 O	001.40.0	Naphthalene	
SPL-16-2	SPL-16-6	Phenanthrene	
		Dioxin/Furan TEQ	
SPL-18-1	SPL-18-2	Arsenic	
SPL-20-4	SPL-20-3	Lead	
3FL-2U-4	01 L 20 0	Benzo(g,h,i)perylene	
		Arsenic	
		Anthracene	
		Benzo(a)anthracene	
		Benzo(a)pyrene	
		Benzo(b)fluoranthene	
		Benzo(g,h,i)perylene	
SPL-21-1	SPL-21-6	Benzo(k)fluoranthene	
		Chrysene	
		Fluoranthene	
		Indeno(1,2,3-cd)pyrene	
		Phenanthrene	
		Pyrene	
		Dioxin/Furan TEQ	
		Arsenic	
		1-Methylnaphthalene	
SPL-24-2	SPL-24-3	2-Methylnaphthalene	
		Acenaphthene	

Table 4. Qualified Dat	ta Based on Field Duplica	te Imprecision
Parent Sample	Duplicate Sample	Analyte with RPD>30%
		Acenaphthylene
		Benzo(a)anthracene
		Benzo(a)pyrene
		Benzo(b)fluoranthene
		Benzo(g,h,i)perylene
		Benzo(k)fluoranthene
SPL-24-2 (cont.)	SPL-24-3 (cont.)	Chrysene
		Dibenz(a,h)anthracene
		Indeno(1,2,3-cd)pyrene
		Pyrene
		Diesel Range SG
		Motor Oil Range SG
		Copper
		Lead
SPL-26-3	SPL-26-4	Anthracene
012200	012204	Fluoranthene
		Phenanthrene
		Pyrene
		Arsenic
SPL-28-1	SPL-28-4	Acenaphthene
		Benzo(k)fluoranthene
SPL-29-5	SPL-29-4	Dioxin/Furan TEQ
		Arsenic
		Cadmium
		Lead
		Nickel
		Acenaphthylene
		Benzo(a)pyrene
SPL-31-2	SPL-31-4	Benzo(b)fluoranthene
		Benzo(g,h,i)perylene
		Benzo(k)fluoranthene
		Chrysene
		Indeno(1,2,3-cd)pyrene
		Naphthalene
		Dioxin/Furan TEQ

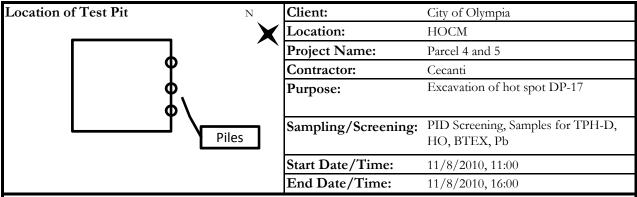
Blank Contamination

All blanks were non-detect for all compounds, with the exceptions noted below.

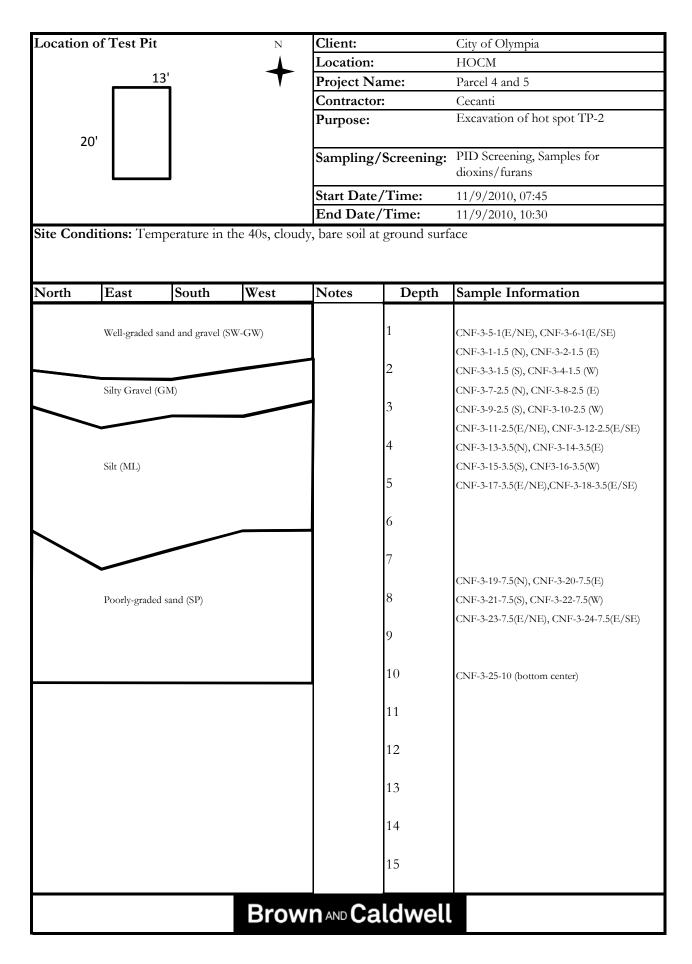

- Diesel in the method blank associated with CNF-1-5-9 (255583005); however, the sample result was more than five times the concentration detected in the method blank. Therefore, no data were qualified based on this blank contamination.
- Several dioxin/furan analytes were detected in associated samples. The Pace qualifiers were applied to the TEQ calculated concentrations per the project manager.

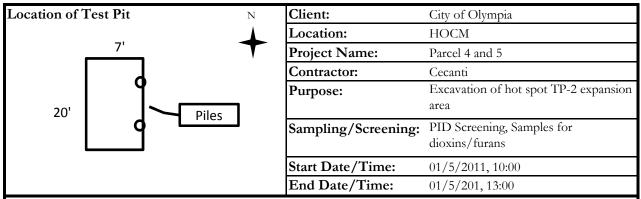
Summary Evaluation of Data and Potential Usability Issues

Overall, the data are acceptable for the intended purposes. No results were rejected as a result of this review. In addition to Pace-applied qualifiers, some results were qualified as estimated due to LCS recoveries, MS/MSD recoveries, and field duplicate imprecision as described in the sections above.

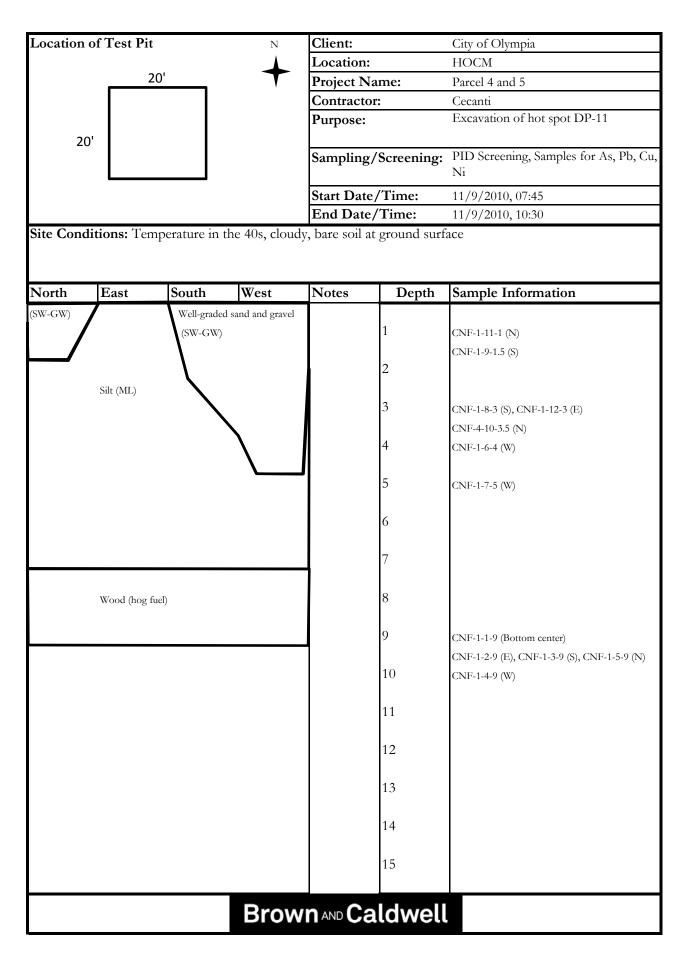


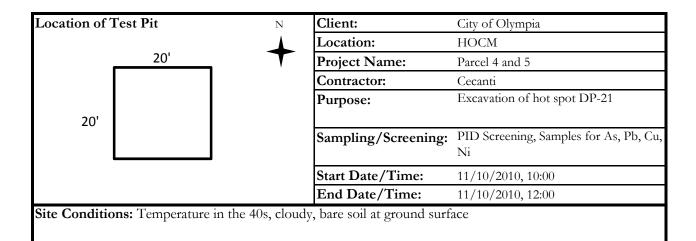
Appendix H: Excavation Logs

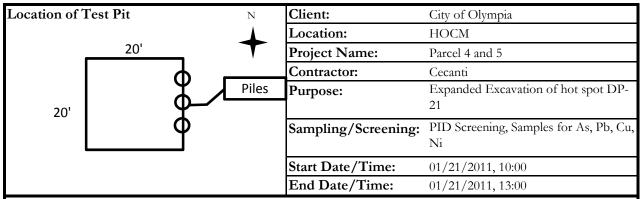

Site Conditions: Temperature in the 40s, cloudy, bare soil at ground surface


North	East	South	West	Notes	Depth	Sample Information
	Silt, silty gravel (ML-GM)				1	
$\mid X \mid$	Well-graded	sand and gravel (SW	V-GW)		2	CNF-4-16-2 (S), CNF-4-11-2 (W) CNF-4-8-2.5 (N), CNF-4-13-2.5 (E)
					3	CNF-4-0-2.3 (N), CNT-4-13-2.3 (E)
	Silt (ML)				4	CNF-4-13-3.5 (south)
	Siit (ML)				5	
					6	CNF-4-7-6 (N)
	_				7	CNF-4-10-7 (W)
					8	
	Wood (hog	fuel)			9	
					10	CNF-4-6-10.5 (N)
					11	CNF-4-9-11 (W), CNF-4-12-11 (E), CNF-4-14-11 (S)
	_				12	CNF-4-3-12 (S), CNF-4-4-12 (W) CNF-4-5-12 (N)
Silt, clay, so	ome wood near	top (ML-CL)			13	CNF-4-2-13 (E)
					14	
]	15	CNF-4-1-15 (bottom center)
			Brow	n and Ca	ldwell	

Site Conditions: Temperature in the 40s, cloudy, bare soil at ground surface


North	East	South	West	Notes	Depth	Sample Information
					1	
	Well-graded	l sand and gravel (S	SW-GW)		2	CNF-5-4-2 (E), CNF-5-7-2,
\setminus /			/		3	CNF-5-10-2 (S), CNF-5-13-2 (N)
					4	
					5	
					6	
					7	
					8	
	Wood (hoo	fuel), some silt nea			9	
	wood (nog	ruer), some siit nea	аг тор		10	CNF-5-3-10 (E), CNF-5-6-10 (W), CNF-5-9-10 (S), CNF-5-12-10 (N)
					11	CIVI -3-7-10 (3), CIVI -3-12-10 (1V)
				_	12	
	Silt some	e wood near top (N	мг.)		13	CNF-5-8-13 (S), CNF-5-11-13 (N) CNF-5-2-13.5(E), CNF-5-5-13.5(W)
	ощ, зопи	e mood fical top (F	,		14	(v)
					15	CNF-5-1-15 (bottom center)
			Brov	vn and Ca	aldwell	1




Site Conditions: Temperature in the 40s, moderate rain, bare soil at ground surface

North	East	South	West	Notes	Depth	Sample Information
		ed gravel (GP)			1	
Sidewalk subgrade				2	CNF-3a-1-1.75 (S)	
	Well-graded	sand and gravel		1	2	CNF-3a-6-2 (N), CNF-3a-4-2.25 (E)
	(SW-GW)	8-4			3	CNF-3a-2-3 (S), CNF-3a-3-3.25 (S)
				4		CNF-3a-5-3.25 (E), CNF-3a-7-3.25 (N)
					4	
		sand and gravel wind wood fragments			5	
	oome emy m	ra wood magmento	(6.1. 6.1.)			CNF-3a-8-5.5 (S), CNF-3a-9-5.5 (E)
					6	CNF-3a-10-5.5(N)
				4	7	CNF-3a-11-6 (bottom center)
					/	
	Poorly-grade	ed sand (SP)			8	
					9	
					10	
					11	
					12	
					12	
					13	
					14	
					15	
			Brow	n and Ca	Idwall	

North	East	South	West	Notes	Depth	Sample Information
	Well-grad	ed sand and gravel)			1	CNF-2-5-1.75 (N), CNF-2-12-1.5 (S)
					2	CNF-2-8-1.75 (W) (Dup CNF-2-9-1.75) CNF-2-15-1.75 (E)
				1	3	· · · · · · · · · · · · · · · · · · ·
	Silt (ML)				4	
					5	CNF-2-3-5 (N) (Dup CNF-2-4-5), CNF-2-7-5 (W) CNF-2-11-5 (S), CNF-2-14-5 (E)
					6	C.V. 2 11 3 (b), C.V. 2 11 3 (L)
					7	CNF-2-2-7 (N), CNF-2-6-7 (W) CNF-2-10-7 (S), CNF-2-12-7 (E)
	Wood (hog	fuel)			8	CM1-2-10-7 (3), CM1-2-12-7 (E)
					9	
				1	10	CNF-2-1-10 (bottom center)
					11	
					12	
					13	
					14	
					15	
			Brow	n and Ca	ldwell	

Site Conditions: Temperature in the 40s, cloudy, light rain, bare soil at ground surface

North	East	South	West	Notes	Depth	Sample Information
	Well-graded s (SW-GW)	and and gravel			1 2	CNF-2-3a-1.75 (E) (Dup) CNF-2-2a-1.75 (N), CNF-2-1a-2 (W)
					3	
	Silt (ML)				4	
	Siit (IVIL)				5	CNF-2-6a-5(N), CNF-2-8a-5(W), CNF-2-10a-5(E)
					6	
 /	/	\			7	
	Wood (hog fuel)			8	
					9	CNF-2-5a-9 (N), CNF-2-7a-9 (W) CNF-2-9a-9.5 (E)
					10	CNF-2-4a-10 (bottom center)
					11	
					12	
					13	
					14	
					15	
			Brow	n and Ca	ldwell	

Appendix I: Site Photos

CNF-3/3A Excavation, looking south

CNF-3 Excavation, looking east

CNF-4 Excavation, looking south

CNF-4 Excavation, looking down at west edge

Wood pole in CNF3A south end

Parcel 4 softscape area excavation, looking

Parcel 4 liner placement, looking north

Softscape area, looking east