

RECEIVED

OCT 28 2016

Dept of Ecology Central Regional Office

Preliminary Site Characterization Report

Coleman Oil Company 1 East I Street Yakima, Washington

Ecology ERTS: 663825 PBS Project No. 41392.000

Prepared for: Mr. Jim Cash Coleman Oil Company 335 Mill Road Lewiston, Idaho 83501

August 2016

TABLE OF CONTENTS

EXECUTIVE SUMMARY	. 1
1.0 INTRODUCTION	3
1.1 Site Description and Topography	3
1.2 Site Ownership	3
2.0 REGIONAL GEOLOGY AND HYDROGEOLOGY	. 3
3.0 SITE DISCOVERY AND INITIAL RESPONSE	. 3
4.0 SITE INVESTIGATION AND INTERIM ACTIONS	4
4.1 Soil Excavation	4
4.2 Heat Oil UST Removal	5
4.3 Additional Soil Excavation	5
4.4 Drilling Investigation and Monitoring Well Installation	5
4.5 Groundwater Sampling	6
4.6 Diesel Product Removal	7
5.0 INVESTIGATION-DERIVED WASTES	7
6.0 APPLICABLE REGULATIONS AND CLEANUP STANDARDS	
6.1 Soil and Groundwater Cleanup Standards	
7.0 FINDINGS	8
7.1 Soil and Groundwater Field Observations	8
7.2 Groundwater Analytical Results	8
8.0 CONCLUSIONS AND RECOMMENDATIONS	9
8.1 Conclusions	9
8.2 Recommendations	9
9.0 LIMITATIONS 1	0

SUPPORTING DATA

FIGURES

Figure 1 - Site Location Map

Figure 2 - Site Plan

Figure 3 - Site Plan: Soil Excavation

Figure 4 - Site Plan: Groundwater Well Locations

Figure 5 - Site Cross Section

TABLES

Table 1 – Soil Analytical Results

Table 2 – Groundwater Analytical Results

APPENDICES

Appendix A - Petroleum Contaminated Soil Disposal Documentation

Appendix B - Soil Boring Logs

Appendix C - Groundwater Sampling Forms

Appendix D - Diesel Product Thickness and Removal Summary

Appendix E - Laboratory Reports

Chain-of-Custody Forms

EXECUTIVE SUMMARY

PBS Engineering and Environmental Inc. (PBS) has completed a Preliminary Site Characterization Investigation at the Coleman Oil facility, located at 1 East I Street in Yakima, Washington (property). The property is currently developed as a petroleum storage and active fueling facility. This report summarizes the work performed at the site, and presents the results of the investigation and PBS' conclusions and recommendations.

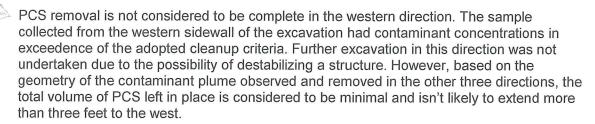
On March 21, 2016, on site personnel noted what appeared to be fuel product seeping to the surface through a crack in the asphalt (<1-gallon). This observation was made when diesel fuel was being pumped through a subsurface line beneath that location. The following actions were undertaken at the time by on site personnel:

- Ceased pumping fuel through the line.
- Mopped up fuel product on the surface using absorptive pads from the spill kit.
- Removed asphalt and overburden soil from on top of the line (pipe run is approximately 1foot below grade).
- Observed and plugged the hole in the line.
- Excavated impacted soil in the vicinity and approximately two to three feet below the breached fuel line.
- Stockpiled impacted soil (approximately seven cubic yards) on plastic sheeting and covered with plastic sheeting.

Visual observation of fuel product, in context with impacted soil and the breached fuel line, constitutes a confirmed release. As such, a Site Assessment is not required per *Guidance for Site Checks and Site Assessments for Underground Storage Tanks* (Ecology 1991). Coleman Oil personnel reported the release to Ecology within 24 hours per Washington Administrative Code (WAC) 173-340-300. The Department of Ecology (Ecology) assigned Environmental Report Tracking System (ERTS) number 663825 to the release.

Site characterization and interim actions conducted since the time of the release include the following:

- Initial response to stop continued release of fuel product.
- Petroleum contaminated soil (PCS) excavation and off-site disposal.
- Installation of groundwater monitoring wells and subsequent groundwater sampling.
- Fuel product removal from groundwater surface



Summary of Findings

A summary of the pertinent findings of the Preliminary Site Characterization Report are presented below:

- A release of a diesel product to the subsurface from a shallow pipe (approximately 1-foot deep) was confirmed through visual observation and reported to Ecology on March 21, 2016.
- Petroleum contaminated soil (PCS) removal conducted on March 23 and 30, 2016 included the excavation and off-site disposal of approximately 212 tons of material. PCS removal is considered to be complete to the north, east and south.

The sample collected from soil/groundwater interface, at approximately 18-feet bgs, had contaminant concentrations in exceedence of the adopted cleanup criteria. However, the excavation continued beneath the groundwater table to approximately 20-feet bgs. As infiltrating diesel fuel is lighter than water its vertical extent is expected to be 18-19 feet bgs. PCS removal is considered to be complete in the vertical direction.

- The groundwater investigation conducted on site in May 2016 included the installation of three monitoring wells outside the limits of the excavation (MW1- MW3) and one recovery well (RW1) located beneath the point of release. Approximately 4.5 feet of diesel product was initially observed in RW1 and MW3 (south of the excavation). Petroleum hydrocarbon contaminants exceed the adopted Cleanup Criteria in both MW1 (north of excavation) and MW2 (east of excavation).
- Interim Action: diesel fuel removal from RW1 has included eight removal events for a total removal of 50 gallons. The thickness of product in RW1 was last measured at 2.5 feet on August 5, 2016.

1.0 INTRODUCTION

PBS Engineering and Environmental Inc. (PBS) has completed a Preliminary Site Characterization Investigation at the Coleman Oil facility, located at 1 East I Street in Yakima, Washington (property). The property is currently developed as a petroleum storage and active fueling facility. This report summarizes the work performed at the site, and presents the results of the investigation and PBS' conclusions and recommendations.

1.1 Site Description and Topography

The site is located in the northeast quarter of Section 13, Township 13 North, Range 18 East of the Willamette Base and Meridian (W.M.) (Figure 1). The site is currently developed as a petroleum storage and active fueling facility, located in an industrial and commercial area of Yakima. The site is generally flat (Refer to Figure 2 for site layout).

1.2 Site Ownership

Based on the Yakima County Assessor's report the site has been owned by Carol Jean Wondrack since February 2010. The current property use is 51 Wholesale Trade.

2.0 REGIONAL GEOLOGY AND HYDROGEOLOGY

The site is located in the Yakima Valley, which lies within the central portion of the Columbia River Plateau physiographic province. This province is comprised of a series of flood basalts covering much of central and eastern Washington. The basalt flows of the Columbia River Basalt Group (CRBG) are late Miocene Epoch and early Pliocene Epoch (between 17 and 6 million years ago) in age, forming an extensive volcanic plateau. The Yakima Valley lies between anticlinal ridges that generally trend east-west as part of the Yakima Fold Belt; which consists of basaltic lava flows that have faulted and folded from the late Tertiary to the present. Glacial outwash and river-deposited silt, sand and gravel deposits overlie the Columbia River Basalt.

According to the Geologic Map of Washington – Southwest Quadrant (Washington Division of Geology and Earth Resources, 2002), 1:250,000 scale, the site is underlain by Quaternary aged terraced sediments such as sand, silt and gravel of diverse positions and origins, such as proglacial outwash, glacial outburst deposits, older alluvium, lahars and uplifted marine and estuarine deposits.

The closest surface water to the site is the Yakima River, located approximately one mile to the north. The inferred groundwater flow is anticipated to be in a northeasterly direction.

3.0 SITE DISCOVERY AND INITIAL RESPONSE

On March 21, 2016, on site personnel noted what appeared to be fuel product seeping to the surface through a crack in the asphalt (<1-gallon). This observation was made when diesel fuel was being pumped through a subsurface line beneath that location. The following actions were undertaken at the time by on site personnel:

- Ceased pumping fuel through the line.
- Mopped up fuel product on the surface using absorptive pads from the spill kit.
- Removed asphalt and overburden soil from on top of the line (pipe run is approximately 1foot below grade).
- Observed and plugged the hole in the line.

- Excavated impacted soil in the vicinity and approximately two to three feet below the breached fuel line.
- Stockpiled impacted soil (approximately seven cubic yards) on plastic sheeting and covered with plastic sheeting.

Visual observation of fuel product, in context with impacted soil and the breached fuel line, constitutes a confirmed release. As such, a Site Assessment is not required per *Guidance for Site Checks and Site Assessments for Underground Storage Tanks* (Ecology 1991). Coleman Oil personnel reported the release to Ecology within 24 hours per Washington Administrative Code (WAC) 173-340-300. The Department of Ecology (Ecology) assigned Environmental Report Tracking System (ERTS) number 663825 to the release.

4.0 SITE INVESTIGATION AND INTERIM ACTIONS

4.1 Soil Excavation

Coleman Oil contracted with PBS and Able Clean-up Technologies, Inc. (ACT) to provide Interim Remedial Action at the release site. On March 21, 2016 ACT filed a public utility notification request. PBS and ACT mobilized to the site on March 23, 2016. Prior to beginning excavation work a private utility locates company conducted clearance for subsurface obstructions. A site-specific health and safety plan (HASP) was prepared and reviewed with all field personnel prior to beginning work. This Interim Action is summarized as follows:

- The excavation expanded to a pit that was approximately 8' x 8'x 5' deep.
- Approximately eight additional cubic yards (15 cubic yards total) were removed from the excavation and stockpiled on site.
- Soil sampling for waste characterization for off-site disposal approval was conducted.
- Field screening (odor, visual observation, photoionization detector [PID]) indicated the extent of impacted soil was not delineated vertically or laterally.
- Soil samples were collected from the base of the excavation and the north and west sidewalls.
- An underground storage tank (UST) was encountered within the excavation area along the south sidewall (Refer Section 4.2 Heat Oil Tank Removal).

Preliminary analytical results from samples collected from the sidewalls and base of the excavation indicated soil impacted by diesel fuel was not delineated in any direction and remained at concentrations ranging from 11,000 to 34,000 milligrams per kilogram (mg/kg).

Soil analytical results are presented in Table 1. Figure 3 presents the approximate location of the excavations.

4.2 Heat Oil UST Removal

Prior to underground storage tank (UST) removal, ACT pumped approximately 80 gallons of what appeared to be heat oil and sludge. On March 27, 2016 Able Clean-up Technologies, Inc. (ACT) of Spokane, Washington removed the UST from the ground and temporarily stored it on site in the contaminated soil containment area (Refer to Figure 3 – Site Plan: Soil Excavation). The heat oil UST had not been in use for several years prior to the removal action.

The UST contents were stored on site in two 50-gallon steel drums. It is understood that this waste material will be disposed of to an appropriately licensed contractor/facility at a later date by Coleman Oil.

Based on the findings of the UST investigation, the soil contamination identified in the vicinity of the UST are related to the nearby diesel fuel release and do not indicate a release from the heat oil UST, based on the following:

- The presence of diesel range and low levels of gasoline range petroleum hydrocarbons and volatiles indicate a fresh release. This petroleum signature is consistent with that identified during the diesel release investigation and is not consistent with a release of weathered heat oil.
- The heat oil tank was inspected after removal and was found to be in fair condition.
 No perforations were observed.

The heat oil UST decommissioning was detailed in a report titled UST Removal, dated May 11, 2016. The report was submitted to Coleman Oil.

4.3 Additional Soil Excavation

Representative soil analytical results were sent to an Environmental Health Specialist at the Yakima Health District (YHD). YHD approved the disposal of petroleum contaminated soil (PCS) to the Anderson Rock and Demolition Pits facility (Anderson) in Yakima, Washington.

On March 30th, 2016 PBS oversaw the additional PCS excavation by ACT. The excavation was roughly square in shape and approximately 20 - 25 feet length of sidewalls and approximately 20 feet deep (Refer to Figure 3 – Site Plan: Soil Excavation and Figure 5: Cross-Section).

A total of 212.15 tons of PCS was disposed of to Anderson. The YHD PCS disposal approval letter and the PCS disposal documentation are presented in Appendix A.

4.4 Drilling Investigation and Monitoring Well Installation

A subsurface investigation and well installation to help determine the degree and extent of the fuel release was conducted on April 27 and 28, 2016.

Prior to beginning the drilling investigation, PBS filed a public utility notification request. On April 7, 2016, PBS supervised a private utility locates company, Geophysical Survey of Kennewick, WA, while they conducted borehole clearance for subsurface obstructions. PBS was on-site April 27 and 28, 2016 to conduct the drilling investigation, with Holt Services of Puyallup, Washington providing the drilling services.

The drilling and sampling program was comprised of the advancement of three monitoring wells (MW1 to MW3) and one recovery well (RW1). The monitoring wells were advanced to a maximum of 25 feet, with 2 inch casing diameter and 10 foot screen. RW1 was advanced to 30 feet, with a 4 inch casing diameter and 15 foot screen (Refer to Figure 4: Site Plan for well locations).

During the advancement of boreholes, soil was screened for volatiles using a hand-held PID. Cursory PID readings were taken along the runs of soil as they were brought to the surface. PID readings were also taken from select soil intervals by partially filling a sealable plastic bag and taking headspace readings within the bag. Volatiles were not detected in soil until the depth approaching the water table was reached. PID readings as high as 1,200 parts per million (ppm) were detected at groundwater depth.

In all borings, soils were logged continuously, noting grain size, density, color, odor, and moisture. Boring logs describing the subsurface lithology, sample depths, and PID readings are presented in Appendix B.

4.5 Groundwater Sampling

On May 10, 2016 PBS was on site to sample the four groundwater wells (MW1 to MW3 and RW1). Well locations are presented on Figure 4 – Site Plan.

Monitoring well information is summarized as follows:

Monitoring Well Construction Summary

Monitoring Well Identification	Screened Interval (feet bgs)	Well Depth (feet bgs)
MVV1	14.9 – 24.9	24.9
MVV2	15.3 – 25.3	25.3
MVV3	14.0 – 24.0	24.0
RW1	15.05 — 30.05	30.05

Prior to sampling the wells were gauged using an interface probe. Static water levels (SWLs) ranged from 19.13 feet below top of casing (fbTOC) in MW1 to 19.18 fbTOC in MW2. Light, non-aqueous phase liquid (LNAPL), in the form of diesel product, was identified in RW1 (4.2 feet thickness) and in MW3 (4.7 feet thickness). RW1 and MW3 were not sampled due to the presence of LNAPL.

Groundwater purging and sampling was conducted at MW1 and MW2 using a peristaltic pump, employing low flow sampling methodology with pumping rates not exceeding 0.20 liters/minute and creating minimal drawdown in the well. Groundwater field parameters (conductivity, pH, temperature, dissolved oxygen and oxidation-reduction potential) were recorded during purging using a YSI Model 556MSP water-quality analyzer equipped with a flow-through cell.

Once groundwater parameters stabilized, which indicates groundwater is representative of the aquifer formation and is not well column water, a sample was collected. PBS personnel wore new disposable nitrile gloves when collecting samples. Detailed groundwater sampling information is presented in Appendix C - Groundwater Sampling Forms.

All samples were collected in laboratory-supplied containers, placed on ice in a cooler and transported Friedman and Bruya Laboratory in Seattle, Washington, within specified holding times and under chain-of-custody documentation. Analyses were conducted under a 5-day turnaround time and included the following:

- Gasoline range Total Petroleum Hydrocarbons (TPH) by method NWTPH-Gx
- Diesel range TPHs by method NWTPH-Dx
- Benzene, toluene, ethylbenzene and xylenes by EPA method 8021
- Polycyclic Aromatic Hydrocarbons (PAHs) by EPA Method 8270D SIM

4.6 Diesel Product Removal

With guidance from PBS, on-site staff have conducted diesel product removal events using a peristaltic pump. From May 10 – August 5, 2016, eight product removal events have been undertaken at the RW1 location. An approximate cumulative of 50 gallons of product has been pumped and stored in an on-site 280 gallon tote. The product thickness in RW1 has decreased from approximately 5 feet to 2.5 feet.

A summary of diesel product thickness and removal is presented in Appendix D.

5.0 INVESTIGATION-DERIVED WASTES

Gloves, tubing and other disposable field supplies were disposed of as solid waste. Soil cuttings, purged groundwater and decontamination water were placed in 55-gallon drums, which are sealed, labeled and stored on site.

6.0 APPLICABLE REGULATIONS AND CLEANUP STANDARDS

Contaminated site assessment and cleanup is conducted under the Model Toxic Control Act (MTCA, Chapter 70.105D Revised Code of Washington [RCW]). Chapter 173-340 of the Washington Administrative Code (WAC) provides a workable process for MTCA to accomplish effective and expeditious cleanups in a manner that protects human health and the environment. The MTCA Cleanup Regulation includes a two-step process for establishing site cleanup requirements: 1) setting cleanup standards and 2) selecting remedies.

Site assessment and cleanup (if applicable) has been and will continue to be performed under MTCA. This section summarizes the cleanup standards established for this site.

6.1 Soil and Groundwater Cleanup Standards

In accordance with MTCA, development of preliminary cleanup levels includes identifying potential exposure pathways for human and ecological impacts based on the planned land use. MTCA provides for three methods (Method A, B or C) for establishing cleanup standards. Method A (unrestricted land use) is typically used as the default standard levels. Method B and C are used when developing site-specific cleanup levels.

Considering the current land use and unknown potential future land use, MTCA level A Cleanup Levels are adopted at this time. Method A cleanup levels for soil and groundwater are presented in Tables 1 and 2, along with the contaminant concentrations.

7.0 FINDINGS

7.1 Soil and Groundwater Field Observations

A typical subsurface profile encountered on site is presented below:

Typical Subsurface Profile

Classification	Description	Approximate Depth Range (feet bgs)
Fill	Loose dark grey gravel (GP) with sand; non-plastic; medium sand; subangular fine gravel; moist no odor	0.0 to 9.0
Sand	Loose grey sand (SM) with silt, gravel and cobbles; medium sand; subrounded coarse gravel; moist; no odor	9.0 to 30.0
	Groundwater	19.0

Graphic boring logs are provided in Appendix B.

7.2 Groundwater Analytical Results

Results of groundwater sample analysis indicated levels exceed the MTCA Cleanup Levels for a combination of gasoline, diesel, BTEX and naphthalene in groundwater samples collected on site. A summary of the contaminant levels are presented below:

Groundwater Sample Exceedance Summary

Sample ID	Contaminant Exceeds the MTCA cleanup levels
MW1	TPH-Gx, TPH-Dx, BTEX
MW2	TPH-Dx

In addition to the analytes mentioned in the table above, naphthalene was detected in MW1, albeit below the adopted cleanup levels. TPH-Gx and ethylbenzene were detected in MW2, albeit below the adopted cleanup levels.

It is noted that the presence of gasoline range hydrocarbons and volatiles are normal in a fresh diesel product and their presence does not represent the release of another fuel product.

Groundwater analytical results are presented in Table 4. A copy of the laboratory report and chain of custody documentation is included in Appendix E.

8.0 CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

A summary of the pertinent findings of the Preliminary Site Characterization Report are presented below:

- A release of a diesel product to the subsurface from a shallow pipe (approximately 1foot deep) was confirmed through visual observation and reported to Ecology on March 21, 2016.
- Petroleum contaminated soil (PCS) removal conducted on March 23 and 30, 2016 included the excavation and off-site disposal of approximately 212 tons of material.
 PCS removal is considered to be complete to the north, east and south.

The sample collected from soil/groundwater interface, at approximately 18-feet bgs, had contaminant concentrations in exceedence of the adopted cleanup criteria. However, the excavation continued beneath the groundwater table to approximately 20-feet bgs. As infiltrating diesel fuel is lighter than water its vertical extent is expected to be 18-19 feet bgs. PCS removal is considered to be complete in the vertical direction.

PCS removal is not considered to be complete in the western direction. The sample collected from the western sidewall of the excavation had contaminant concentrations in exceedence of the adopted cleanup criteria. Further excavation in this direction was not undertaken due to the possibility of destabilizing a structure. However, based on the geometry of the contaminant plume observed and removed in the other three directions, the total volume of PCS left in place is considered to be minimal and isn't likely to extent more than three feet to the west.

- The groundwater investigation conducted on site in April 2016 included the installation of three monitoring wells outside the limits of the excavation (MW1- MW3) and one recovery well (RW1) located beneath the point of release. Approximately 4.5 feet of diesel product has been observed in RW1 and MW3 (south of the excavation). Petroleum hydrocarbon contaminants exceed the adopted Cleanup Criteria in both MW1 (north of excavation) and MW2 (east of excavation).
- Interim Action: diesel fuel removal from MW3 and RW1 has included eight removal events for a total removal of 50 gallons. The thickness of product in RW1 was last measured at 2.5 feet on August 5, 2016.

8.2 Recommendations

With regard to the preliminary site characterization of the diesel fuel release on site, PBS recommends the following:

- Continue interim action: diesel fuel product removal. Evaluate additional interim recovery techniques.
- Conduct additional site characterization to better understand the extent and magnitude of impact to groundwater.

Submit this report to Ecology.

9.0 **LIMITATIONS**

PBS has prepared this report for use by the Coleman Oil Company. This report is for the exclusive use of the client and is not to be relied upon by other parties. It is not to be photographed, photocopied, or similarly reproduced, in total or in part, without the expressed written consent of the client and PBS.

This study was limited to the tests, locations, and depths as indicated to determine the absence or presence of certain contaminants. The site as a whole may have other contamination that was not characterized by this study. The findings and conclusions of this report are not scientific certainties but, rather, are probabilities based on professional judgment concerning the significance of the data gathered during the course of this investigation. PBS is not able to represent that the site or adjoining land contain no hazardous waste, oil or other latent conditions beyond that detected or observed by PBS.

Sincerely,

PBS Engineering and Environmental Inc.

KENNETH NOGEIRE

sed Geo THOMAS J. MERGY

August 16, 2016

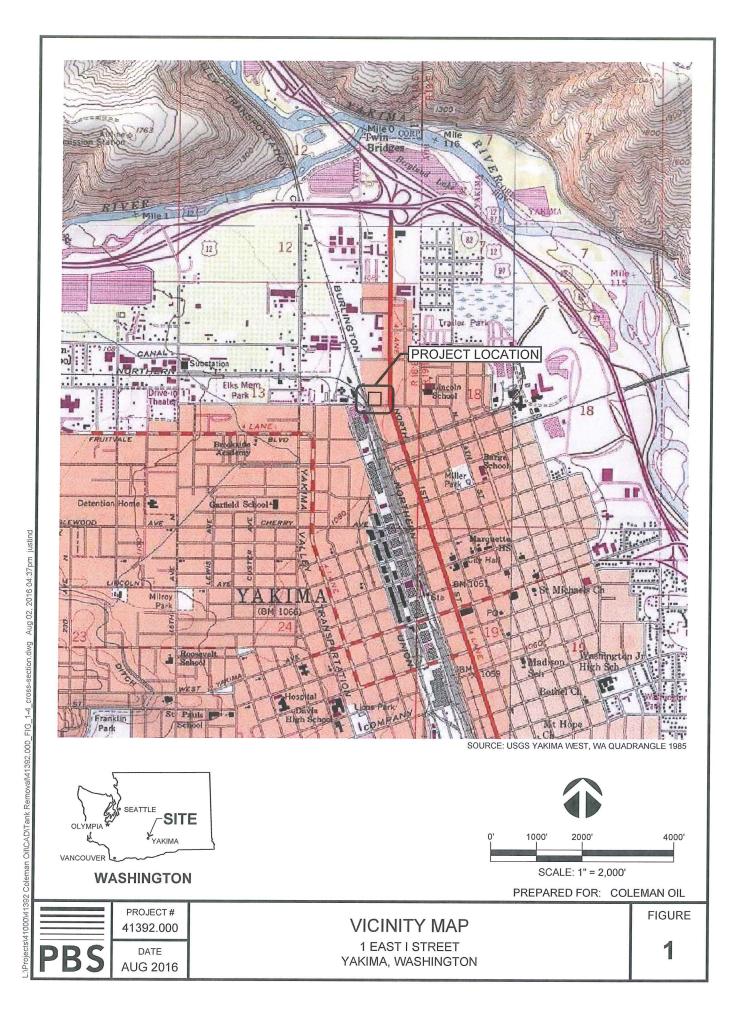
Date

Ken Nogeire, LHG

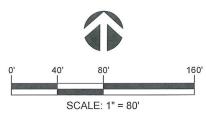
Tom Mergy, L

Senior Geologist

Senior Geologist/Hydrogeologist


Environmental Services Manager

Date

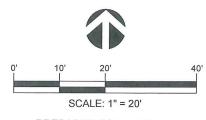

August 16, 2016

August 2016 Project No. 41392.000

FIGURES

SOURCE: © 2016 GOOGLE EARTH PRO

PREPARED FOR: COLEMAN OIL


PROJECT# 41392.000 DATE AUG 2016

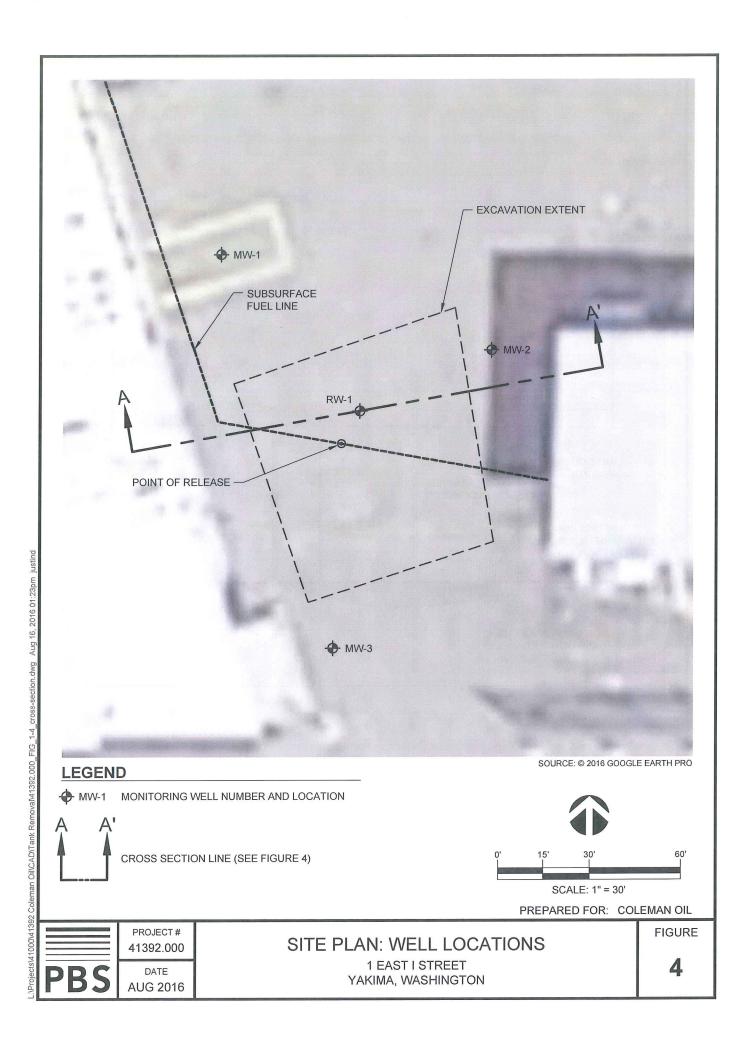
SITE PLAN

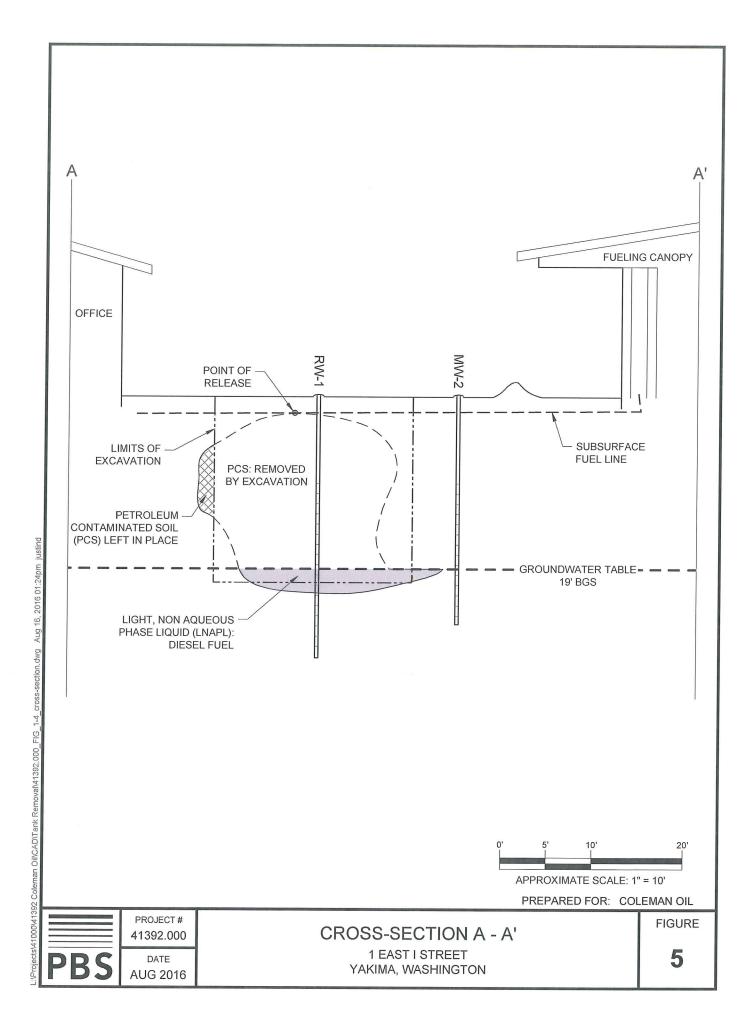
1 EAST I STREET YAKIMA, WASHINGTON

FIGURE

2

PREPARED FOR: COLEMAN OIL




PROJECT # 41392.000

DATE AUG 2016 SITE PLAN: SOIL EXCAVATION

1 EAST I STREET YAKIMA, WASHINGTON **FIGURE**

3

TABLES

TABLE 1: SOIL ANALYTICAL RESULTS

Project No: Site:

Coleman Oil: 1 East I St, Yakima, WA 41392.000

					Result	Result ma/Ka						
:	:		TPHs			BT	BTEX			PAHS	45	Metals
Location	Description	Ğx	Dx	lio	Benzene	Toluene	Ethyl	Xylene	B(a)P	Naph	Carcinogenic	Lead
Soil Sampling: Excavation confirmation sampling compl	vation confirmati	on sampli	ng completed I	eted March 23, 2016	2016						CHAI	
NSW1 - 4	Native		11,000	270x	1	1			,			1
WSW1 - 4	Native		26,000	570x		1	1	ı	,		1	.
B1 - 5.5	Native	5,100	34,000	770x	0.79	14	20	110	<0.5*	8.1	<0.05**	. .
Soil Sampling: Excavation confirmation sampling completed March 30, 2016	vation confirmati	on sampli	ng completed I	Warch 30,	2016							
NSW2 - 15	Native	\$	<50	<250	<0.02	<0.02	<0.02	<0.05			,	
ESW1 - 15	Native	ო	<50	<250	<0.02	<0.02	<0.02	>0.06	,	,		
SSW1 - 15	Native	5.5	<50	<250	<0.02	0.039	0.024	0.14			1	' '
WSW2 - 11	Native	3,400	***006'6	330x	<0.02	3.1	7.5	62		,		
B2 - 18	Native	1,600	25,000***	270x	0.65	5.1	7.3	44	<0.5*	7.2	<0.05**	4 94
Adopted Criteria	MTCA Method A Cleanup Levels For Soil	100	2,000	2,000	0.03	7	9	6	0.1	2	0.1	250

BOLD indicates above MTCA Method A Cleanup Levels for Groundwater

TPH - total petroleum hydrocarbons

Gx - gasoline range hydrocarbons

Dx - diesel range hydrocarbons

<50 - less than the laboratory method reporting limit mg/kg - miligrams per kilogram

PAHs - polycyclic aromatic hydrocarbons

Naph - naphthalenes (naphthalene+ 1-methyl naphthalene + 2-methyl naphthalene)

B(a)P - benzo(a)pyrene

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation

^{* -} Detection limit exceeded the adopted criteria due to significant diesel concentration

^{**}Value for carcinogenic PAHs by toxicity equivalency methodology in WAC 173-340-708(8) and table 708.2

^{***} VPH/EPH analysis was also conducted for this sample, and may be used at a later date to determine appropriate Cleanup Criteria. VPH/EPH results can be found in the attached laboratory reports

TABLE 2: GROUNDWATER ANALYTICAL RESULTS

Site:

Coleman Oil: 1 East I St, Yakima, WA

Project No:

41392.000

				Resul	Result ug/L						
			TPHs			BTEX	X			PA	PAHS
Location/ Depth	Description	ČX G	Dx	lio	Benzene Toluene	Toluene	Ethyl Benzene	Xylene B(a)P Naph	B(a)P	Naph	Carcinogenic PAHs**
Groundwater Sampling: Completed May 9	ng: Completed May	9, 2016									
MW1	Groundwater	4,300	12,000	1,100	49	78	88	440	<1.2*	56	<1.2*
MW2	Groundwater	420	1,300	250	₹	₹	1.1	8	'		1
MW3	Groundwater			Not sam	oled due to	the prese	Not sampled due to the presence of LNAPL: diesel product	PL: dies	el prod	nct	
RW1	Groundwater			Not sam	oled due to	the prese	Not sampled due to the presence of LNAPL: diesel product	PL: dies	el prod	nct	
Adopted Criteria	MTCA Method A	800	200	200	2	1,000	200	1,000	0.1	160	0.1

BOLD indicates above MTCA Method A Cleanup Levels for Groundwater

TPH - total petroleum hydrocarbons

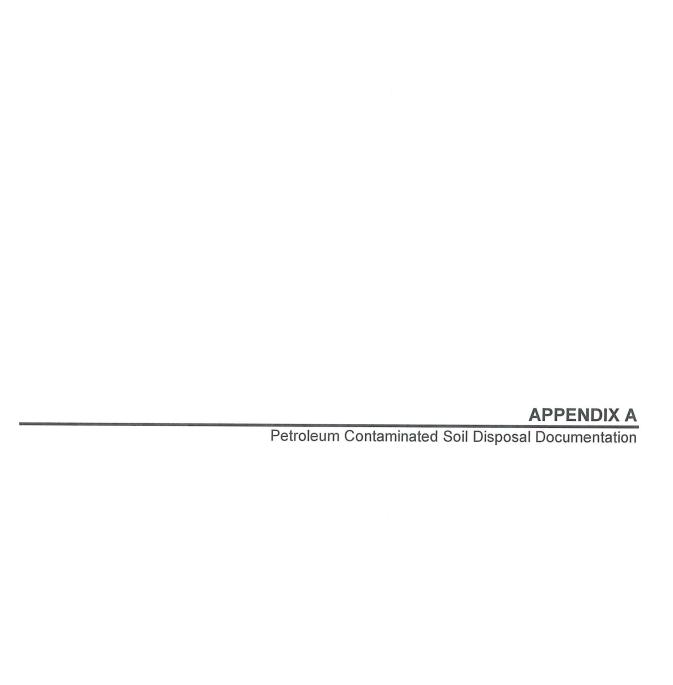
Gx - gasoline range hydrocarbons

Dx - diesel range hydrocarbons

ug/L - micrograms per litre

<50 - less than the laboratory method reporting limit

PAHs - polycyclic aromatic hydrocarbons


Naph - naphthalenes (naphthalene+ 1-methyl naphthalene + 2-methyl naphthalene)

B(a)P - benzo(a)pyrene

LNAPL - light, non-aqueous phase liquid

^{* -} Detection limit exceeded the adopted criteria due to significant diesel concentration

^{**}Value for carcinogenic PAHs by toxicity equivalency methodology in WAC 173-340-708(8) and table 708.2

Yakima Health District 1210 Ahtanum Ridge Drive Union Gap, Washington 98903 Phone (509) 575-4040

March 25, 2016

Mr. Kipp Silver C\O Able Clean-Up Technologies, Inc. 4117 East Nebraska Avenue Spokane, WA 99217

RE: Coleman Oil Co., 1 East "I" Street, Yakima, WA: Petroleum Contaminated Soil

Mr. Kipp Silver,

This office has reviewed the data on the above mentioned project. The data submitted indicates that the contaminant which requires remediation is diesel. Based on the data submitted it has been determined that the soil may be processed at the Anderson PCS Facility provided that all handling is in accordance with the procedure that has been approved by this office and Washington State Department of Ecology. This letter is to notify you that currently the soil will be considered to be stored on the property and no treatment can begin until the total fee is paid. Waste material may be stored for up to 90 days. Anderson PCS Facility will notify me of the total number of tons delivered for treatment and I will bill you for the remainder of the fee at that time.

FEE ACCOUNT:

Able Clean-Up Technologies, Inc.

PROJECT NAME:

Coleman Oil Co. 1 East "I" Street Yakima, WA

PRE-TREATMENT AUTHORIZATION:

(Based on time spent prior to soil delivery

to the site at \$141/hour)

TONNAGE FEE AT \$0.60 PER TON:

To be determined after delivery

BALANCE OWED:

To be billed after delivery

If you have any questions regarding this letter please contact me at (509) 249-6562.

Sincerely,

Ted Silvestri, RS

Environmental Health Specialist

Jaco Shatin

cc:

Anderson PCS Facility

PENDLETON EXCAVATING, INC.

Invoice

3702 Kern Rd Yakima, WA 98902

Date	Invoice #
3/31/2016	19791

Bill To	
Able Clean-Up Technologies Inc 4117 E Nebraska Ave Spokane, WA 99217-6644	

P.O. No.	Terms	Project
		a constitution

Quantity	Description		Date	T
			Rate	Amount
	16 loads 212.15 tons			
				74
	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1			
	=.57			
	St. 1.11			
	the management of the state of			
	- ALC: M. C. S. S. S. S. S.			
		_400		
	/·f			
	is the state of th	1.73		
		er eponant		
		150	Γotal	

Total

NDERSON 16153 CCCC

NO 78499

41 Rocky Top Road Yakima, WA 98908

ROCK & DEMOLITION PITS Bus. (509) 965-3621 • Fax (509) 965-8656 Petroleum Contaminated Soils Site - Topsoil - Shale - Crushed Rock www.andersonrock.com We make deliveries heide the bard-line at costomer's risk only and accept no responsibility whatsoever for echnologies) Address damages resulting from such deliveries. Received by Phone Sold by E. Glass A. Cured concrete F. Stainless Steel G. Aluminum B. Asphaltic materials P.O. # (does not include H. Lime roofing) Job I. Dirt Rock C. Brick and masonry J. Bldg. Demolition D. Ceramic materials eisen TRUCK NO. PRODUCT WEIGHT TICKET# TIME QUANTITY 0 6.95 14.81 G PES PCS PCS 4 2:35 PCS 17.54 FCS PCS

DATE BILLED

CUSTOMER AGREES TO PAY (a) A LATE CHARGE OF 1.5% PER MONTH IF ACCOUNT IS NOT PAID WITHIN 10 DAYS OF INVOICE, AND (b) ATTORNEY'S FEE INCURRED IN COLLECTION.

TOTAL

PC5

OUT OF COUNTY?

DYES D NO
OUT OF CITY?

PYES DNO

1-10-9 71

Name A Ble

78526

41 Rocky Top Road Yakima, WA 98908

Technologies

Bus. (509) 965-3621 • Fax (509) 965-8656 hed Rock www.andersonrock.com

Petroleum Contaminated Soils Site - Topsoil - Shale - Crushed Rock

DELIVERIES
We make deliveries inside the curb line at customer's

TAX

•

risk only and acce	ept no responsibility what from such deliveries.	soever for	Addr	ess	
Received by			Phon	ne Home Chris	
3 12% 16	Sold by			office 509-96	19-3600
A. Cured concrete B. Asphaltic mater (does not incluroning) C. Brick and masor D. Ceramic materi	rials F. Stainle de G. Alumi H. Lime nry I. Dirt Ro	num	P.O. i	C: -1	EIST.
WEIGHT TICKET#	TIME TRUCK	QUAN		PRODUCT	
132645	3:22 9	15.3	3	·PC5	
132653	400 6	15.0	نز	pcs	
		500	10		
		30:	4		
		-			-
	O.J. May	in the			
	U	1018	D. 1	ast 4 Of	
4800000	Cale	153		Cerd'	
a constitution	Job -				
	455	1/1			
	App			Polo	
	Check#	-			
	TOTAL				
DATE BILLED		1			OUT OF COUNTY?
TAX	PEI	R MONTH IF ACCO	OUNT IS N	a) A LATE CHARGE OF 1.5% OT PAID WITHIN 10 DAYS OF	OUT OF CITY? YES DNO

PER MONTH IF ACCOUNT IS NOT PAID WITHIN 10 DAYS OF INVOICE, AND (b) ATTORNEY'S FEE INCURRED IN COLLECTION.

LOAD TICKET

Nº - 78528

41 Rocky Top Road Yakima, WA 98908

Bus. (509) 965-3621 • Fax (509) 965-8656

Petroleum Contaminated Soils Site - Topsoil - Shale - Crushed Rock

www.andersonrock.com

-				
We make deliveried risk only and acce	DELIVERIES s inside the curb line at cus pt no responsibility whatsomer from such deliveries.	tomer's ever for	Addr	BLE Clean Up Pich
Received by			Phor	
330/16	Sold by			(HBO9)999-36(XC
A. Cured concrete B. Asphaltic mater (does not include roofing) C. Brick and mason D. Ceramic materia	ials F. Stainless de G. Aluminu H. Lime nry I. Dirt Rock	um k		# Edomancil E E I's led by
WEIGHT TICKET#	TIME TRUCK	QUAN	ΓΙΤΥ	PRODUCT
132664	4.341 6	14.1	0	265
132665	10:13 2 9	15.		PCS
132666	10:38 6	8.6	č	PC5
	4		-	
	5 ,	35.	43	
	: 6			
A	570			

D)Last 4

TOTAL

Card:

Check #

CUSTOMER AGREES TO PAY (a) A LATE CHARGE OF 1.5% PER MONTH IF ACCOUNT IS NOT PAID WITHIN 10 DAYS OF INVOICE, AND (b) ATTORNEY'S FEE INCURRED IN COLLECTION. OUT OF COUNTY?

YES NO
OUT OF CITY?

YES NO

41 Rocky Top Road Yakima, WA 98908

Petroleum Contaminated Soils Site - Topsoil - Sh	8us. (509) 965-3621 • Fax (509) 965-8656 hale - Crushed Rock www.andersonrock.com
DELIVERIES We make deliveries inside the curb line at customer's risk only and accept no responsibility whatsoever for damages resulting from such deliveries.	Name Able Clean Cy Technologie
Received by	- Chini
Date Sold by	Phone Home CVUV
A. Cured concrete B. Asphaltic materials (does not include G. Aluminum	PO.# PCS
roofing) H. Lime C. Brick and masonry I. Dirt Rock D. Ceramic materials J. Bldg. Demolition	Hauled by Anderson / Ahr
WEIGHT TICKET # TIME TRUCK QUAN	
132589 17.00 9 6.7	18 PCS -
132590 12342 6 13-	71 RS
132591 2.8 9 15.	3.7 PCS
132592 141 \$ 6 11.9	3 PCS
132394 2:01 9 16:3	33 PC5
132596 2.47 6 14.8	33 125
132598 3197 9 14:	76 PCS
8	
93	71
Colo Main no	
DISD	Secure assessment of the security of
1101533	. A. C.
Well.	
TOTAL	
DATE BUTED = 2010	OUT OF COUNTY?
PER MONTH IF ACCO	TO PAY (a) A LATE CHARGE OF 1.5% OUNT IS NOT PAID WITHIN 10 DAYS OF TORNEY'S FEE INCURRED IN COLLECTION. TORNEY'S FEE INCURRED IN COLLECTION.

LOAD TICKET

Nº 78543

41 Rocky Top Road Yakima, WA 98908

Petroleum Contaminated Soils Site - Topsoil - Shale - Crushed Rock

Bus. (509) 965-3621 • Fax (509) 965-8656 www.andersonrock.com

DELIVERIES We make deliveries inside the curb line at customer's	ABLE CleanUp Teck
risk only and accept no responsibility whatsoever for damages resulting from such deliveries.	Address
Received by	Phone (tomble)
Date: Sold by	Phone (Home Out)
A. Cured concrete B. Asphaltic materials (does not include roofing) C. Brick and masonry D. Ceramic materials E. Glass F. Stainless Steel G. Aluminum H. Lime I. Dirt Rock J. Bldg. Demolition	P.O.# Coldonan Oil EIST. Hauled by Andliken
WEIGHT TICKET # TIME TRUCK QUAN	TITY PRODUCT UNIT AMOUNT
132677 159 9 15	47 51800
132678720 CO 15	74 51800 6
13/1084 250 7 16.	53 5186
() () ()	t2 Peninus
The state of the s	9 78 mins
132688 4:00 6 15.3	
	TOM
93.	54 TON TAX
	MAN TOWN L
	The Dottes 4:
Care	10153 Card
	10133
	611
Apri	with the
TOTAL Che	ck #Paid
A CONTESTUED	OUT OF COUNTY?
CUSTOMER AGREE PER MONTH IF AC	S TO PAY (a) A LATE CHARGE OF 1.5% COUNT IS NOT PAID WITHIN 10 DAYS OF YES NO

INVOICE, AND (b) ATTORNEY'S FEE INCURRED IN COLLECTION.

APPENDIX B

Soil Boring Logs

COLEMAN OIL - YAKIMA **BORING EW** PBS Suite 100
Seattle, Washington 98102
Phone: 206.233.9639
Fax: 866.727.0140 1 EAST I STREET YAKIMA, WA BORING EW LOCATION: PBS PROJECT NUMBER: (See Site Plan) 41392.000 SAMPLE/ TEMPORARY WELL(S) RECOVERY (%) GROUND-WATER SAMPLE GRAPHIC LOG DEPTH FEET PID (PPM) COMMENTS/ MATERIAL DESCRIPTION WELL INSTALLATION 0.0 ASPHALT 5-inch x 12-inch flush-mount Loose dark grey GRAVEL (GP) with sand; non-plastic; medium sand; subangular fine monument with 1 foot of concrete backfill gravel; moist; no odor; FILL 4-inch PVC blank 80 5.0 - Bentonite chips 0.0 10.0 Loose dark grey-brown SAND (SM) with silt, gravel and cobbles to 4"; low plasticity; medium sand; subround coarse gravel; wet Sand 95 15.0 4/27/2016 - grades to wet V 820 20.0 -4-inch 0.010-slot prepack screen ORING LOG-ENV CORE 41392.000 MW1-3&EW JHD.GPJ DATATMPI 25.0 95 0.0 30.0 Final depth 30.0 ft bgs; Groundwater encountered at approximately 18 ft BORING METHOD: Sonic Drilling LOGGED BY: M. Bagley DRILLED BY: Holt Services BORING BIT DIAMETER: 8-inch COMPLETED: 4/27/16

COLEMAN OIL - YAKIMA **BORING MW1** 2517 Eastlake Ave. East 1 EAST I STREET Suite 100 YAKIMA, WA PBS Seattle, Washington 98102 Phone: 206.233.9639 BORING MW1 LOCATION: PBS PROJECT NUMBER: Engineering + Fax: 866.727.0140 (See Site Plan) 41392.000 GROUND-WATER SAMPLE NUMBER RECOVERY (%) **DEPTH** MATERIAL DESCRIPTION COMMENTS/ FEET WELL INSTALLATION 0.0 ASPHALT 5-inch x 12-inch flush-mount Brown SILT (MH) with sand and some monument with 1 foot of concrete gravel; high plasticity; fine sand; subround backfill fine gravel; moist; no odor; FILL 2-inch PVC blank 5.0 90 - Bentonite chips Loose grey SAND (SM) with silt, gravel 0.0 and cobbles to 4"; low plasticity; medium 10.0 sand; subround coarse gravel; moist; no Sand 95 15.0 -- grades to wet 1000 20.0 PRINT DATE: 5/18/16;JHD 2-inch 0.010-slot prepack screen 95 OG-ENV CORE 41392.000 MW1-3&EW JHD.GPJ DATATMPL.GDT 25 25.0 Final depth 25.0 ft bgs; Groundwater encountered at approximately 18 ft 30.0 BORING METHOD: Sonic Drilling LOGGED BY: M. Bagley DRILLED BY: Holt Services COMPLETED: 4/27/16 BORING BIT DIAMETER: 8-inch

COLEMAN OIL - YAKIMA **BORING MW2** 2517 Eastlake Ave. East 1 EAST I STREET Suite 100 Seattle, Washington 98102 Phone: 206.233.9639 YAKIMA, WA **BORING MW2 LOCATION:** PBS PROJECT NUMBER: (See Site Plan) Engineering + Fax: 866.727.0140 41392.000 SAMPLE/ TEMPORARY WELL(S) RECOVERY (%) SAMPLE PID (PPM) **DEPTH** COMMENTS/ MATERIAL DESCRIPTION FEET WELL INSTALLATION 0.0 ASPHALT 5-inch x 12-inch flush-mount Brown silty SAND (SM) and some gravel; monument with 1 foot of concrete backfill medium plasticity; fine sand; subround fine gravel; moist; no odor; FILL 2-inch PVC blank 70 5.0 - Bentonite chips Loose grey SAND (SM) with silt, gravel 0.0 and cobbles to 4"; low plasticity; medium 10.0 sand; subround coarse gravel; moist; no odor Sand 99 15.0 4/27/201 0.0 V - grades to wet 20.0 2-inch 0.010-slot prepack screen 95 ORING LOG-ENV CORE 41392.000 MW1-3&EW JHD.GPJ DATATMPL.GDT MW-2 76 25.0 Final depth 25.0 ft bgs; Groundwater encountered at approximately 18 ft 30.0 BORING METHOD: Sonic Drilling LOGGED BY: M. Bagley DRILLED BY: Holt Services BORING BIT DIAMETER: 8-inch COMPLETED: 4/27/16

COLEMAN OIL - YAKIMA **BORING MW3** 2517 Eastlake Ave. East 1 EAST I STREET Suite 100 YAKIMA, WA PBS Seattle, Washington 98102 Phone: 206.233.9639 **BORING MW3 LOCATION:** PBS PROJECT NUMBER: Engineering + Fax: 866.727.0140 (See Site Plan) 41392.000 RECOVERY (%) GRAPHIC LOG SAMPLE NUMBER **DEPTH** COMMENTS/ MATERIAL DESCRIPTION FEET WELL INSTALLATION 0.0 ASPHALT 5-inch x 12-inch flush-mount Brown silty SAND (SM) and some gravel; monument with 1 foot of concrete backfill medium plasticity; fine sand; subround fine gravel; moist; no odor; FILL 2-inch PVC blank 80 ■ Bentonite chips Loose grey SAND (SM) with silt, gravel and cobbles; low plasticity; medium sand; 10.0 subround coarse gravel; moist; no odor 95 Sand - grades to grey/black and wet with cobbles to 5" 15.0 -1200 $\overline{\mathbf{V}}$ 464 20.0 41392.000 MW1-3&EW JHD.GPJ DATATMPL.GDT PRINT DATE: 5/18/16:JHD - 2-inch 0.010-slot prepack screen 95 418 111 25.0 Final depth 25.0 ft bgs; Groundwater encountered at approximately 18 ft 30.0 BORING METHOD: Sonic Drilling LOGGED BY: M. Bagley COMPLETED: 4/27/16 DRILLED BY: Holt Services BORING BIT DIAMETER: 8-inch

APPENDIX C
Groundwater Sampling Forms

	PBS Engineering and Environmental	Project No: 41392	.000		
DDC	GROUNDWATER SAMPLING	Locations	nan Oil treet, Yakima, WA		
PBS	FORM (YSI 556)	Date: May 10, 2016			
Initial DTW (feet bgs)	19.13	Monitoring Well ID	MW1		
Screen Interval (feet bgs)	9.9 to 25.9	Sample ID (if not well ID)			
Well depth (feet bgs)	24.9	QC Sample	Not collected ■		
Depth of pump/tubing inlet (feet bgs)	22.5	type:	IDTime		
Sampling method (describe pump or sampler)	Peristaltic Pump	Field Personnel	MN		
Purge Rate (L/min)	0.16	Weather Conditions	Sunny, warm		

	WELL PURGING INFORMATION								
Time ☐ elapsed ☑ actual	DTW (feet)	Temp. (C)	Specific conductivity ☐ mS/cm ☑ µS/cm	Dissolved oxygen (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ Itr □ gal
1028	19.8	16.9	1408	0.55	7.13	-420.0	-	-	1.5
1032	20.0	16.8	1399	0.29	7.15	-431.2	-	-	2.5
1038	20.1	18.2	1381	0.31	7.16	-438.2	-	-	3.5
1044	20.1	19.0	1385	0.27	7.16	-434.2	-	-	4.5
			72.1						
Total Volume Purged							4.5		

FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment)

Well head in good condition. Groundwater is clear with yellow tint, medium recovery no odor or sheen.

Signature of Field Personnel: MN

	PBS Engineering and Environmental	Project No: 41392	.000
PBS	GROUNDWATER SAMPLING FORM (YSI 556)		an Oil treet, Yakima, WA 0, 2016
Initial DTW (feet bgs)	19.82	Monitoring Well ID	MW2
mitial BTVV (leet bgs)	10.02	monitoring won ib	
Screen Interval (feet bgs)	10.3 to 25.3	Sample ID (if not well ID)	
Well depth (feet bgs)	25.3	QC Sample	Not collected ■ Not collected ■ Not collected ■ Not collected Not
Depth of pump/tubing inlet (feet bgs)	22.5	type:	IDTime
Sampling method (describe pump or sampler)	Peristaltic Pump	Field Personnel	MN
Purge Rate (L/min)	0.2	Weather Conditions	Sunny, warm

WELL PURGING INFORMATION									
Time ☐ elapsed ☑ actual	DTW (feet)	Temp. (C)	Specific conductivity ☐ mS/cm ☑ µS/cm	Dissolved oxygen (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ Itr □ gal
1115	20.4	16.1	469.7	0.47	6.94	-293.7	-	-	1
1120	20.5	16.0	469.2	0.47	6.94	-312.9	-	-	2
1125	20.5	16.1	468.6	0.49	6.94	-352.7	-	-	3
1130	20.5	16.2	468.1	0.50	6.95	-352.7	-	-	4
1133	20.5	16.3	466.5	0.33	6.94	-398.2	-	-	4.5
1135	20.5	16.3	466.7	0.33	6.95	-400.3	-	-	5
1138	20.5	16.3	466.4	0.31	6.94	-402.1	-	-	5.5
Total Volume Purged						5.5			

FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment)

Well head in good condition. Groundwater is clear with yellow tint, medium recovery, strong odor/sheen.

Signature of Field Personnel:MN

PBS	PBS Engineering and Environmental GROUNDWATER SAMPLING	Location: 1EIS	nan Oil itreet, Yakima, WA		
. 55	FORM (YSI 556)	Date: May 1	0, 2016		
Initial DTW (feet bgs)	N/A	Monitoring Well ID	MW3		
Screen Interval (feet bgs)	14 to 24	Sample ID (if not well ID)			
Well depth (feet bgs)	24.0	QC Sample	☐ Not collected		
Depth of pump/tubing inlet (feet bgs)	N/A	type:	ID Time		
Sampling method (describe pump or sampler)	N/A	Field Personnel	MN		
Purge Rate (L/min)	N/A	Weather Conditions	Sunny, warm		
WELL BURGING INFORMATION					

Time DTW Temp. (C) Dissolved oxygen pH ORP (mV) Turbidity oxygen mS/cm mS/cm	WELL PURGING INFORMATION									
FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment) Well was not sampled due to presence of diesel product. Depth to water: 23.5 feet bgs Diesel product thickness: 4.7 feet	☐ elapsed		Temp.	Specific conductivity	Dissolved oxygen		ORP	Turbidity (NTU)	Observations	purged ☐ Itr
FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment) Well was not sampled due to presence of diesel product. Depth to product: 18.8 feet bgs Depth to water: 23.5 feet bgs Diesel product thickness: 4.7 feet										
FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment) Well was not sampled due to presence of diesel product. Depth to product: 18.8 feet bgs Depth to water: 23.5 feet bgs Diesel product thickness: 4.7 feet										
FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment) Well was not sampled due to presence of diesel product. Depth to product: 18.8 feet bgs Depth to water: 23.5 feet bgs Diesel product thickness: 4.7 feet										
FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment) Well was not sampled due to presence of diesel product. Depth to product: 18.8 feet bgs Depth to water: 23.5 feet bgs Diesel product thickness: 4.7 feet										
FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment) Well was not sampled due to presence of diesel product. Depth to product: 18.8 feet bgs Depth to water: 23.5 feet bgs Diesel product thickness: 4.7 feet										
FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment) Well was not sampled due to presence of diesel product. Depth to product: 18.8 feet bgs Depth to water: 23.5 feet bgs Diesel product thickness: 4.7 feet					1					
FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment) Well was not sampled due to presence of diesel product. Depth to product: 18.8 feet bgs Depth to water: 23.5 feet bgs Diesel product thickness: 4.7 feet										
FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment) Well was not sampled due to presence of diesel product. Depth to product: 18.8 feet bgs Depth to water: 23.5 feet bgs Diesel product thickness: 4.7 feet										
FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment) Well was not sampled due to presence of diesel product. Depth to product: 18.8 feet bgs Depth to water: 23.5 feet bgs Diesel product thickness: 4.7 feet								_		
FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment) Well was not sampled due to presence of diesel product. Depth to product: 18.8 feet bgs Depth to water: 23.5 feet bgs Diesel product thickness: 4.7 feet										
FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment) Well was not sampled due to presence of diesel product. Depth to product: 18.8 feet bgs Depth to water: 23.5 feet bgs Diesel product thickness: 4.7 feet										
FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment) Well was not sampled due to presence of diesel product. Depth to product: 18.8 feet bgs Depth to water: 23.5 feet bgs Diesel product thickness: 4.7 feet										
FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment) Well was not sampled due to presence of diesel product. Depth to product: 18.8 feet bgs Depth to water: 23.5 feet bgs Diesel product thickness: 4.7 feet										
FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment) Well was not sampled due to presence of diesel product. Depth to product: 18.8 feet bgs Depth to water: 23.5 feet bgs Diesel product thickness: 4.7 feet										
FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment) Well was not sampled due to presence of diesel product. Depth to product: 18.8 feet bgs Depth to water: 23.5 feet bgs Diesel product thickness: 4.7 feet										
Well was not sampled due to presence of diesel product. Depth to product: 18.8 feet bgs Depth to water: 23.5 feet bgs Diesel product thickness: 4.7 feet	Total Volume Purged									
Depth to product: 18.8 feet bgs Depth to water: 23.5 feet bgs Diesel product thickness: 4.7 feet	FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment)									
Depth to water: 23.5 feet bgs Diesel product thickness: 4.7 feet	Well was not sampled due to presence of diesel product.									
Diesel product thickness: 4.7 feet	Depth to product: 18.8 feet bgs									
	Depth to wa	ater: 23.5 fe	et bgs							
Signature of Field Personnel: MN	Diesel prod	uct thickne	ess: 4.7 feet	:						
Signature of Field Personnel: MN										
	Signature of	Field Perso	nnel: MN							

	PBS Engineering and Environmental	Project No: 41392.	.000
PBS	GROUNDWATER SAMPLING FORM (YSI 556)		an Oil treet, Yakima, WA 0, 2016
Initial DTW (feet bgs)	N/A	Monitoring Well ID	RW1
Screen Interval (feet bgs)	15.05 to 30.05	Sample ID (if not well ID)	
Well depth (feet bgs)	30.05	QC Sample	☐ Not collected
Depth of pump/tubing inlet (feet bgs)	N/A	type:	IDTime
Sampling method (describe pump or sampler)	N/A	Field Personnel	MN
Purge Rate (L/min)	N/A	Weather Conditions	Sunny, warm

Purg	e Rate (L/mi	in)	IN/A		vveatilei (Jonaitions		Sunny, warm	
				PURGING		TION			
Time ☐ elapsed ☑ actual	DTW (feet)	Temp. (C)	Specific conductivity ☐ mS/cm ☑ µS/cm	Dissolved oxygen (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Observations	Volume purged ⊠ ltr □ gal
							Total V	olume Purged	5.5
FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment)									
Well was not sampled due to presence of diesel product.									
Depth to product: 19.38 feet bgs									
Depth to wa	Depth to water: 23.64 feet bgs								
Diesel prod	uct thickne	ess: 4.26 fee	et						
Signature of	Field Perso	nnel:MN							

Diesel Product Thickness and Removal Summary

Diesel Product Thickness and Removal Summary

Coleman Oil Yakima

Address: 1 E. I Street, Yakima, WA

Ecology ERTS No: 663825 PBS Project No.: 41392

	RW1 product	RW1 product		MW3 product	MW3 product
	thickness (feet)	removed (liters)		thickness (feet)	removed (liters)
5/10/2016	4.26	0	5/10/2016	4.7	0
5/31/2016	4.94	35.4	5/31/2016	4.87	12
6/8/2016	4.25	32	6/8/2016		
6/10/2016		12	6/30/2016	4.25	3.6
6/30/2016	4.75	53			
7/12/2016	3.2	19.05			
7/21/2016	2.5	15.45			
8/5/2016	2.58	16.5			
total		183.4			15.6

APPENDIX E

Laboratory Reports Chain-of-Custody Documentation

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 31, 2016

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 2517 Eastlake Ave E, Suite 100 Seattle, WA 98102

Dear Mr. Nogeire:

Included are the results from the testing of material submitted on March 23, 2016 from the Coleman Yakima, 64116 PO, F&BI 603413 project. There are 9 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures PBS0331R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 23, 2016 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental Coleman Yakima, 64116 PO, F&BI 603413 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	PBS Engineering and Environmental
603413 -01	NSW1-4
603413 -02	WSW1-4
603413 -03	B1-5.5

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 03/31/16 Date Received: 03/23/16

Project: Coleman Yakima, 64116 PO, F&BI 603413

Date Extracted: 03/24/16 Date Analyzed: 03/24/16

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 50-150)
B1-5.5 603413-03 1/10	0.79	14	20	110	5,100	ip
Method Blank	<0.02	<0.02	<0.02	<0.06	<2	89

ENVIRONMENTAL CHEMISTS

Date of Report: 03/31/16 Date Received: 03/23/16

Project: Coleman Yakima, 64116 PO, F&BI 603413

Date Extracted: 03/24/16 Date Analyzed: 03/24/16

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 53-144)
NSW1-4 603413-01	11,000	270 x	91
WSW1-4 603413-02	26,000	570 x	72
B1-5.5 603413-03	34,000	770 x	103
Method Blank 06-567 MB	<50	<250	99

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

% Recovery: 3 d 163 d

Client Sample ID: B1-5.5
Date Received: 03/23/16
Date Extracted: 03/24/16
Date Analyzed: 03/24/16
Matrix: Soil
Units: mg/kg (ppm) Dry Weight

Surrogates:

Anthracene d10

Benzo(a)anthracene-d12

Client: Project: PBS Engineering and Environmental Coleman Yakima, 64116 PO, F&BI 603413

 Lab ID:
 603413-03 1/250

 Data File:
 032418.D

 Instrument:
 GCMS6

 Operator:
 VM

Lower	Upper
Limit:	Lîmit:
31	163
24	168

Compounds:	Concentration mg/kg (ppm)
Naphthalene	8.1
Acenaphthylene	< 0.5
Acenaphthene	1.4
Fluorene	3.4
Phenanthrene	5.0
Anthracene	< 0.5
Fluoranthene	< 0.5
Pyrene	2.4
Benz(a)anthracene	< 0.5
Chrysene	< 0.5
Benzo(a)pyrene	< 0.5
Benzo(b)fluoranthene	< 0.5
Benzo(k)fluoranthene	< 0.5
Indeno(1,2,3-cd)pyrene	< 0.5
Dibenz(a,h)anthracene	< 0.5
Benzo(g,h,i)perylene	< 0.5

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: Method Blank
Date Received: Not Applicable
Date Extracted: 03/24/16
Date Analyzed: 03/28/16
Matrix: Soil

Units: mg/kg (ppm) Dry Weight

Client: Project: PBS Engineering and Environmental Coleman Yakima, 64116 PO, F&BI 603413

Lab ID: 06-569 mb 1/5
Data File: 032803.D
Instrument: GCMS6

Operator:

VM

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
Anthracene-d10	92	31	163
Benzo(a)anthracene-d12	102	24	168

_	Concentration
Compounds:	mg/kg (ppm)
Naphthalene	< 0.01
Acenaphthylene	< 0.01
Acenaphthene	< 0.01
Fluorene	< 0.01
Phenanthrene	< 0.01
Anthracene	< 0.01
Fluoranthene	< 0.01
Pyrene	< 0.01
Benz(a) anthracene	< 0.01
Chrysene	< 0.01
Benzo(a)pyrene	< 0.01
Benzo(b)fluoranthene	< 0.01
Benzo(k)fluoranthene	< 0.01
Indeno(1,2,3-cd)pyrene	< 0.01
Dibenz(a,h)anthracene	< 0.01
Benzo(g,h,i)perylene	< 0.01

ENVIRONMENTAL CHEMISTS

Date of Report: 03/31/16 Date Received: 03/23/16

Project: Coleman Yakima, 64116 PO, F&BI 603413

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES USING EPA METHOD 8021B

· ·		•	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benzene	mg/kg (ppm)	0.5	94	91	69-120	3
Toluene	mg/kg (ppm)	0.5	100	96	70-117	4
Ethylbenzene	mg/kg (ppm)	0.5	101	98	65-123	3
Xylenes	mg/kg (ppm)	1.5	99	99	66-120	0

ENVIRONMENTAL CHEMISTS

Date of Report: 03/31/16 Date Received: 03/23/16

Project: Coleman Yakima, 64116 PO, F&BI 603413

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 603420-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	95	97	63-146	2

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	104	79-144

ENVIRONMENTAL CHEMISTS

Date of Report: 03/31/16 Date Received: 03/23/16

Project: Coleman Yakima, 64116 PO, F&BI 603413

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

3	J	•	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.17	93	91	58-121	2
Acenaphthylene	mg/kg (ppm)	0.17	96	93	54-121	3
Acenaphthene	mg/kg (ppm)	0.17	93	92	54-123	1
Fluorene	mg/kg (ppm)	0.17	94	91	56-127	3
Phenanthrene	mg/kg (ppm)	0.17	94	92	55-122	2
Anthracene	mg/kg (ppm)	0.17	90	86	50-120	5
Fluoranthene	mg/kg (ppm)	0.17	93	87	54-129	7
Pyrene	mg/kg (ppm)	0.17	92	97	53-127	5
Benz(a)anthracene	mg/kg (ppm)	0.17	95	94	51-115	1
Chrysene	mg/kg (ppm)	0.17	92	95	55-129	3
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	99	96	56-123	3
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	100	99	54-131	1
Benzo(a)pyrene	mg/kg (ppm)	0.17	93	89	51-118	4
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	91	87	49-148	4
Dibenz(a, h) anthracene	mg/kg (ppm)	0.17	86	83	50-141	4
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	86	84	52-131	2

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- $\mbox{\bf d}$ The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- \mbox{ip} Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- ${\bf j}$ The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- $\,$ nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- $\mbox{\it ve}$ The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

46 for Ge BTE ME U3/23/16
Page# of TURNAROUND TIME 019 3 TIME PAHS 27 For dress Rush charges authorized by: Candard Turnaround Notes Dispose after 30 days 3,23 % 3/23/16 DATE C Archive Samples Other. ANALYSES REQUESTED COMPANY INVOICE TO P.BS MIS GOTS8 8HA9 64116 SAOCe ph 8510D VOCs by 8260C K Doser BLEX PA 8051B SAMPLE CHAIN OF CUSTODY TPH-Gasoline PRINT NAME TPH-Diesel TPH-HCID Coloman Kakima # of Jars SAMPLERS (signature) Q PROJECT NAME Sample Type Ŕ Ś 58. REMARKS Sampled 0701 1200 Time 1140 Phone 504.512. & 6 DEmail Kernbyer Oppsend. com 3.23-16 13.23.V6 Sampled 323.16 SIGNATURE Date Relinquished by: 03 A-F Lab ID PBS Enjmering Relinquished by: 43 Received by: 8 Received by 603413 Report To Era Nogare 0 Scattle Friedman & Bruya, Inc. Seattle, WA 98119-2029 3012 16th Avenue West 7 J- LMSN Sample ID Ph. (206) 285-8282 City, State, ZIP R1-S.S WSW1 Company_ Address

Samples received at 4°

EKIEDWYN & BKUYA, INC.

ENVIRONMENTAL CHEMISTS

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

April 22, 2016

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. Seattle, WA 98102

Dear Mr. Nogeire:

Included are the results from the testing of material submitted on April 1, 2016 from the 41392, F&BI 604013 project. There are 14 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

EKIEDWYN & BKUYA, INC.

Michael Erdahl Project Manager

Enclosures PBS0422R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 1, 2016 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental 41392, F&BI 604013 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	PBS Engineering and Environmental
604013 -01	NSW2-17
604013 -02	ESW1-17
604013 -03	SSW1-17
604013 -04	WSW2-11
604013 -05	B2-18
604013 -06	Trip Blank

Samples WSW2-11 and B2-18 was sent to Fremont Analytical for EPH and VPH analyses. Review of the enclosed report indicates that all quality assurance were acceptable.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/22/16 Date Received: 04/01/16 Project: 41392, F&BI 604013 Date Extracted: 04/01/16

Date Analyzed: 04/01/16 and 04/05/16

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 50-150)
NSW2-17 604013-01	< 0.02	<0.02	< 0.02	< 0.06	<2	81
ESW1-17 604013-02	< 0.02	<0.02	< 0.02	<0.06	3.1	84
SSW1-17 604013-03	< 0.02	0.039	0.024	0.14	5.5	76
WSW2-11 604013-04	< 0.02	3.1	7.5	62	3,400	ip
B2-18 604013-05	0.65	5.1	7.3	44	1,600	ip
Method Blank 06-612 MB	<0.02	<0.02	< 0.02	<0.06	<2	86

ENVIRONMENTAL CHEMISTS

Date of Report: 04/22/16 Date Received: 04/01/16 Project: 41392, F&BI 604013 Date Extracted: 04/01/16 Date Analyzed: 04/01/16

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES USING METHOD 8021B

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Surrogate (% Recovery) Limit (52-124)
Trip Blank 604013-06	<1	<1	<1	<3	84
Method Blank	<1	<1	<1	<3	83

ENVIRONMENTAL CHEMISTS

Date of Report: 04/22/16 Date Received: 04/01/16 Project: 41392, F&BI 604013 Date Extracted: 04/04/16 Date Analyzed: 04/04/16

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Diesel Range</u> (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 48-168)
NSW2-17 604013-01	<50	<250	93
ESW1-17 604013-02	<50	<250	105
SSW1-17 604013-03	<50	<250	91
WSW2-11 604013-04	9,900	330 x	93
B2-18 604013-05	25,000	570 x	73
Method Blank 06-660 MB	<50	<250	105

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: B2-18

04/01/16

Date Extracted: Date Analyzed:

04/01/16 04/01/16

Matrix: Units:

Soil

mg/kg (ppm) Dry Weight

Concentration mg/kg (ppm)

Analyte:

Lead

4.94

Client:

PBS Engineering and Environmental

Project: 41392, F&BI 604013

Lab ID: Data File:

604013-05 604013-05.065

Instrument: Operator:

ICPMS1 AP

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:

Method Blank

Date Received: Date Extracted: NA 04/01/16 04/01/16

Date Analyzed: Matrix: Units:

Analyte:

Soil

mg/kg (ppm) Dry Weight

Concentration mg/kg (ppm)

Lead

<1

Client:

PBS Engineering and Environmental

Project: 41392, F&BI 604013

Lab ID: Data File:

I6-186 mb I6-186 mb.019

Instrument: ICPMS1 Operator:

AP

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: B2-18 Date Received: 04/01/16 Date Extracted: 04/04/16 Date Analyzed: 04/04/16 Matrix: Soil mg/kg (ppm) Dry Weight Units:

Client:

PBS Engineering and Environmental

Project: 41392, F&BI 604013 Lab ID: 604013-05 1/250

Data File: GCMS6 Instrument:

040415.D

Operator: ya

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit
Anthracene-d10	45	31	163
Benzo(a)anthracene-d12	160	24	168

Compounds:	Concentration mg/kg (ppm)
Naphthalene	7.2
Acenaphthylene	< 0.5
Acenaphthene	0.86
Fluorene	2.1
Phenanthrene	2.5
Anthracene	< 0.5
Fluoranthene	< 0.5
Pyrene	1.6
Benz(a)anthracene	< 0.5
Chrysene	< 0.5
Benzo(a)pyrene	< 0.5
Benzo(b)fluoranthene	< 0.5
Benzo(k)fluoranthene	< 0.5
Indeno(1,2,3-cd)pyrene	< 0.5
Dibenz(a,h)anthracene	< 0.5
Benzo(g,h,i)perylene	< 0.5

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	Method Blank
Date Received:	Not Applicable
Date Extracted:	04/04/16
Date Analyzed:	04/04/16
Matrix:	Soil
Units:	mg/kg (ppm) Dry Weight

Client: Project:	PBS Engineering and Environmental 41392, F&BI 604013
Lab ID: Data File: Instrument:	06-657 mb 1/5 040404.D GCMS6
Operator:	ya

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene d10	89	31	163
Benzo(a)anthracene-d12	90	24	168
	C		

	Concentration
Compounds:	mg/kg (ppm)
Naphthalene	< 0.01
Acenaphthylene	< 0.01
Acenaphthene	< 0.01
Fluorene	< 0.01
Phenanthrene	< 0.01
Anthracene	< 0.01
Fluoranthene	< 0.01
Pyrene	< 0.01
Benz(a)anthracene	< 0.01
Chrysene	< 0.01
Benzo(a)pyrene	< 0.01
Benzo(b)fluoranthene	< 0.01
Benzo(k)fluoranthene	< 0.01
Indeno(1,2,3-cd)pyrene	< 0.01
Dibenz(a,h)anthracene	< 0.01
Benzo(g,h,i)perylene	< 0.01

ENVIRONMENTAL CHEMISTS

Date of Report: 04/22/16
Date Received: 04/01/16

Project: 41392, F&BI 604013

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING METHOD 8021B AND NWTPH-Gx

Laboratory Code: 603575-02 (Duplicate)

	(-1-	/		
		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<2	<2	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	81	69-120
Toluene	mg/kg (ppm)	0.5	91	70-117
Ethylbenzene	mg/kg (ppm)	0.5	93	65-123
Xylenes	mg/kg (ppm)	1.5	94	66-120
Gasoline	mg/kg (ppm)	20	95	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 04/22/16 Date Received: 04/01/16

Project: 41392, F&BI 604013

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES USING EPA METHOD 8021B

Laboratory Code: 604014-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	100	65-118
Toluene	ug/L (ppb)	50	92	72-122
Ethylbenzene	ug/L (ppb)	50	92	73-126
Xylenes	ug/L (ppb)	150	89	74-118

ENVIRONMENTAL CHEMISTS

Date of Report: 04/22/16

Date Received: 04/01/16

Project: 41392, F&BI 604013

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 604013-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Ûnits	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	128	120	73-135	6

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Diesel Extended	mg/kg (ppm)	5,000	122	74-139	_

ENVIRONMENTAL CHEMISTS

Date of Report: 04/22/16 Date Received: 04/01/16

Project: 41392, F&BI 604013

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 603575-01 (Matrix Spike)

	Reporting	Spike	Sample Result	Percent Recovery	Percent	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	Recovery MSD	Acceptance Criteria	(Limit 20)
Lead	mg/kg (ppm)	50	30.1	96	111	70-130	14

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	mg/kg (ppm)	50	106	85-115

ENVIRONMENTAL CHEMISTS

Date of Report: 04/22/16 Date Received: 04/01/16 Project: 41392, F&BI 604013

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

Laboratory Code: 604023-02 1/5 (Matrix Spike)

-			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.17	< 0.01	87	87	44-129	0
Acenaphthylene	mg/kg (ppm)	0.17	< 0.01	85	86	52-121	1
Acenaphthene	mg/kg (ppm)	0.17	< 0.01	86	87	51-123	1
Fluorene	mg/kg (ppm)	0.17	< 0.01	82	83	37-137	1
Phenanthrene	mg/kg (ppm)	0.17	< 0.01	87	87	34-141	0
Anthracene	mg/kg (ppm)	0.17	< 0.01	81	85	32-124	5
Fluoranthene	mg/kg (ppm)	0.17	< 0.01	82	80	16-160	2
Pyrene	mg/kg (ppm)	0.17	< 0.01	90	91	10-180	1
Benz(a)anthracene	mg/kg (ppm)	0.17	< 0.01	87	87	23-144	0
Chrysene	mg/kg (ppm)	0.17	< 0.01	90	90	32-149	0
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	< 0.01	89	89	23-176	0
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	< 0.01	89	89	42-139	0
Benzo(a)pyrene	mg/kg (ppm)	0.17	< 0.01	83	88	21-163	6
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	< 0.01	95	90	23-170	5
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	< 0.01	91	89	31-146	2
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	< 0.01	93	89	37-133	4

		Percent				
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
Naphthalene	mg/kg (ppm)	0.17	90	58-121		
Acenaphthylene	mg/kg (ppm)	0.17	90	54-121		
Acenaphthene	mg/kg (ppm)	0.17	89	54-123		
Fluorene	mg/kg (ppm)	0.17	90	56-127		
Phenanthrene	mg/kg (ppm)	0.17	91	55-122		
Anthracene	mg/kg (ppm)	0.17	85	50-120		
Fluoranthene	mg/kg (ppm)	0.17	91	54-129		
Pyrene	mg/kg (ppm)	0.17	84	53-127		
Benz(a)anthracene	mg/kg (ppm)	0.17	88	51-115		
Chrysene	mg/kg (ppm)	0.17	91	55-129		
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	96	56-123		
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	91	54-131		
Benzo(a)pyrene	mg/kg (ppm)	0.17	85	51-118		
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	91	49-148		
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	90	50-141		
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	90	52-131		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- $\mbox{\bf d}$ The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- $\,$ nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 604013 Lab ID: 1604015

April 21, 2016

Attention Michael Erdahl:

Fremont Analytical, Inc. received 2 sample(s) on 4/1/2016 for the analyses presented in the following report.

Extractable Petroleum Hydrocarbons by NWEPH Sample Moisture (Percent Moisture) Volatile Petroleum Hydrocarbons by NWVPH

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Mike Ridgeway President

DoD/ELAP Certification #L2371, ISO/ICC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

Date: 04/21/2016

CLIENT:

Friedman & Bruya

Work Order Sample Summary

Project:

604013

Lab Order: 1604015

Lab Sample ID

Client Sample ID

1604015-001 1604015-002 WSW2-11

B1-18

Date/Time Collected

03/30/2016 12:00 AM 03/30/2016 12:00 AM

Date/Time Received 04/01/2016 3:54 PM

04/01/2016 3:54 PM

Case Narrative

WO#: **1604015**Date: **4/21/2016**

CLIENT:

Friedman & Bruya

Project:

604013

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#:

1604015

Date Reported:

4/21/2016

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

WO#:

1604015

Date Reported: 4/21/2016

Client: Friedman & Bruya

Collection Date: 3/30/2016

Project: 604013

Lab ID: 1604015-001

Matrix: Soil

Client Sample ID: WSW2-11

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Extractable Petroleum Hydrocarl	oons by NWEPH			Batch	ı ID:	13403 Analyst: CM
Aliphatic Hydrocarbon (C8-C10)	52.4	4.86	*	mg/Kg-dry	1	4/20/2016 12:26:00 AM
Aliphatic Hydrocarbon (C10-C12)	271	4.86	*	mg/Kg-dry	1	4/20/2016 12:26:00 AM
Aliphatic Hydrocarbon (C12-C16)	715	4.86	*	mg/Kg-dry	1	4/20/2016 12:26:00 AM
Aliphatic Hydrocarbon (C16-C21)	711	4.86	Q	mg/Kg-dry	1	4/20/2016 12:26:00 AM
Aliphatic Hydrocarbon (C21-C34)	176	4.86	*	mg/Kg-dry	1	4/20/2016 12:26:00 AM
Aromatic Hydrocarbon (C8-C10)	31.2	4.86	*	mg/Kg-dry	1	4/20/2016 9:30:00 AM
Aromatic Hydrocarbon (C10-C12)	160	4.86	*	mg/Kg-dry	1	4/20/2016 9:30:00 AM
Aromatic Hydrocarbon (C12-C16)	531	4.86	*	mg/Kg-dry	1	4/20/2016 9:30:00 AM
Aromatic Hydrocarbon (C16-C21)	820	4.86		mg/Kg-dry	1	4/20/2016 9:30:00 AM
Aromatic Hydrocarbon (C21-C34)	659	4.86		mg/Kg-dry	1	4/20/2016 9:30:00 AM
Surr: 1-Chlorooctadecane	64.3	60-140		%Rec	1	4/20/2016 12:26:00 AM
Surr: o-Terphenyl	104	60-140		%Rec	1	4/20/2016 9:30:00 AM

NOTES:

^{* -} Flagged value is not within established control limits.

Volatile Petroleum Hydrocarbons	by NWVPH			Batch	ID: 13	409 Analyst: BC
Aliphatic Hydrocarbon (C5-C6)	ND	2.23		mg/Kg-dry	1	4/7/2016 12:32:08 PM
Aliphatic Hydrocarbon (C6-C8)	16.6	2.23		mg/Kg-dry	1	4/7/2016 12:32:08 PM
Aliphatic Hydrocarbon (C8-C10)	122	44.7	D	mg/Kg-dry	20	4/7/2016 4:13:09 AM
Aliphatic Hydrocarbon (C10-C12)	509	44.7	D	mg/Kg-dry	20	4/7/2016 4:13:09 AM
Aromatic Hydrocarbon (C8-C10)	173	44.7	D	mg/Kg-dry	20	4/7/2016 4:13:09 AM
Aromatic Hydrocarbon (C10-C12)	2,960	44.7	DE	mg/Kg-dry	20	4/7/2016 4:13:09 AM
Aromatic Hydrocarbon (C12-C13)	4,630	44.7	DE	mg/Kg-dry	20	4/7/2016 4:13:09 AM
Benzene	ND	0.558		mg/Kg-dry	1	4/7/2016 12:32:08 PM
Toluene	1.82	0.558		mg/Kg-dry	1	4/7/2016 12:32:08 PM
Ethylbenzene	4.23	0.558	Q	mg/Kg-dry	1	4/7/2016 12:32:08 PM
m,p-Xylene	18.1	0.558		mg/Kg-dry	1	4/7/2016 12:32:08 PM
o-Xylene	11.1	0.558		mg/Kg-dry	1	4/7/2016 12:32:08 PM
Naphthalene	274	11.2	D	mg/Kg-dry	20	4/7/2016 4:13:09 AM
Methyl tert-butyl ether (MTBE)	ND	0.558	*	mg/Kg-dry	1	4/7/2016 12:32:08 PM
Surr: 1,4-Difluorobenzene	113	65-140		%Rec	1	4/7/2016 12:32:08 PM
Surr: Bromofluorobenzene	71.7	65-140	D	%Rec	20	4/7/2016 4:13:09 AM
NOTES.						

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF); high bias.

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF); high bias.

^{* -} Flagged value is not within established control limits.

WO#:

1604015

Date Reported: 4/21/2016

Client: Friedman & Bruya

Project: 604013

Percent Moisture

Lab ID: 1604015-001

Client Sample ID: WSW2-11

Collection Date: 3/30/2016

Matrix: Soil

Analyses

Result

RL

Qual

Units

DF

Batch ID: R28628

Date Analyzed

Analyst: CG

Sample Moisture (Percent Moisture)

7.71

0.500

wt%

4/6/2016 1:16:13 PM

WO#:

1604015

Date Reported: 4/21/2016

Client: Friedman & Bruya

Collection Date: 3/30/2016

Project: 604013

Lab ID: 1604015-002

Matrix: Soil

Client Sample ID: B1-18

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Extractable Petroleum Hydrocar	bons by NWEF	PH		Batch	ID: 13	403 Analyst: CM
Aliphatic Hydrocarbon (C8-C10)	196	5.30	*	mg/Kg-dry	1	4/20/2016 2:58:00 AM
Aliphatic Hydrocarbon (C10-C12)	761	5.30	*	mg/Kg-dry	1	4/20/2016 2:58:00 AM
Aliphatic Hydrocarbon (C12-C16)	1,870	53.0	D	mg/Kg-dry	10	4/20/2016 6:35:00 PM
Aliphatic Hydrocarbon (C16-C21)	630	53.0	DQ	mg/Kg-dry	10	4/20/2016 6:35:00 PM
Aliphatic Hydrocarbon (C21-C34)	338	5.30	*	mg/Kg-dry	1	4/20/2016 2:58:00 AM
Aromatic Hydrocarbon (C8-C10)	100	5.30	*	mg/Kg-dry	1	4/20/2016 11:56:00 AM
Aromatic Hydrocarbon (C10-C12)	323	5.30	*	mg/Kg-dry	1	4/20/2016 11:56:00 AM
Aromatic Hydrocarbon (C12-C16)	989	5.30	*	mg/Kg-dry	1	4/20/2016 11:56:00 AM
Aromatic Hydrocarbon (C16-C21)	830	53.0	D	mg/Kg-dry	10	4/20/2016 7:29:00 PM
Aromatic Hydrocarbon (C21-C34)	1,100	53.0	D	mg/Kg-dry	10	4/20/2016 7:29:00 PM
Surr: 1-Chlorooctadecane	110	60-140		%Rec	1	4/20/2016 2:58:00 AM
Surr: o-Terphenyl	130	60-140		%Rec	1	4/20/2016 11:56:00 AM

NOTES:

^{* -} Flagged value is not within established control limits.

Volatile Petroleum Hydrocarbons	by NWVPH			Batch	ID: 13	409 Analyst: BC
Aliphatic Hydrocarbon (C5-C6)	ND	1.86		mg/Kg-dry	1	4/7/2016 1:43:06 PM
Aliphatic Hydrocarbon (C6-C8)	27.5	1.86		mg/Kg-dry	1	4/7/2016 1:43:06 PM
Aliphatic Hydrocarbon (C8-C10)	ND	93.0	D	mg/Kg-dry	50	4/7/2016 4:48:40 AM
Aliphatic Hydrocarbon (C10-C12)	389	93.0	D	mg/Kg-dry	50	4/7/2016 4:48:40 AM
Aromatic Hydrocarbon (C8-C10)	159	93.0	D	mg/Kg-dry	50	4/7/2016 4:48:40 AM
Aromatic Hydrocarbon (C10-C12)	4,170	93.0	DE	mg/Kg-dry	50	4/7/2016 4:48:40 AM
Aromatic Hydrocarbon (C12-C13)	6,850	93.0	DE	mg/Kg-dry	50	4/7/2016 4:48:40 AM
Benzene	0.519	0.465		mg/Kg-dry	1	4/7/2016 1:43:06 PM
Toluene	7.80	0.465		mg/Kg-dry	1	4/7/2016 1:43:06 PM
Ethylbenzene	9.59	0.465	Q	mg/Kg-dry	1	4/7/2016 1:43:06 PM
m,p-Xylene	28.7	0.465		mg/Kg-dry	1	4/7/2016 1:43:06 PM
o-Xylene	14.7	0.465		mg/Kg-dry	1	4/7/2016 1:43:06 PM
Naphthalene	364	23.2	D	mg/Kg-dry	50	4/7/2016 4:48:40 AM
Methyl tert-butyl ether (MTBE)	ND	0.465	*	mg/Kg-dry	1	4/7/2016 1:43:06 PM
Surr: 1,4-Difluorobenzene	113	65-140		%Rec	1	4/7/2016 1:43:06 PM
Surr: Bromofluorobenzene	73.8	65-140	D	%Rec	50	4/7/2016 4:48:40 AM
NOTEO						

NOTES:

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF); high bias.

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF); high bias.

^{* -} Flagged value is not within established control limits.

WO#:

1604015

Date Reported: 4/21/2016

Client: Friedman & Bruya

Project: 604013

Percent Moisture

Lab ID: 1604015-002

Client Sample ID: B1-18

Collection Date: 3/30/2016

Matrix: Soil

Analyses

Result

RL Qual Units

DF

Date Analyzed

Analyst: CG

Sample Moisture (Percent Moisture)

12.9

0.500

wt%

Batch ID: R28628

4/6/2016 1:16:13 PM

Friedman & Bruya CLIENT: 604013 Project:

Extractable Petroleum Hydrocarbons by NWEPH

QC SUMMARY REPORT

Date: 4/21/2016

Sample ID: MB-13403	SampType: MBLK			Units: mg/Kg		Prep Dat	Prep Date: 4/6/2016	"	RunNo: 28874	4.	
Client ID: MBLKS	Batch ID: 13403					Analysis Dat	Analysis Date: 4/19/2016	91	SeqNo: 542942	942	
Analyte	Result	RL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
Aliphatic Hydrocarbon (C8-C10)	QN	5.00									
Aliphatic Hydrocarbon (C10-C12)	QN	5.00									
Aliphatic Hydrocarbon (C12-C16)	QN	5.00									
Aliphatic Hydrocarbon (C16-C21)	QN	5.00									
Aliphatic Hydrocarbon (C21-C34)	QN	5.00									
Surr: 1-Chlorooctadecane	13.4		20.00		8.99	09	140				
Sample ID: LCS-13403	SampTvpe: LCS			Units: ma/Ka		Pren Dat	Pren Dafe: 4/6/2016		RunNo: 28874		
Client ID: 1 CSS	Batch ID: 13403			, , ,		to do .			Common Food	. 3	
	Date: 0.					Tidiysis Dal	Allalysis Dale. 4/13/2016	٥	Sed No. 542847	14.1	

Qual

%RPD RPDLimit

%REC LowLimit HighLimit RPD Ref Val Analysis Date: 4/19/2016

SPK value SPK Ref Val

씸

Result

Analyte

SeqNo: 542941

00000

130 130 130 130 140

70 70 70 70 70 80

245 272 83.3 241 62.1

00000

50.00 50.00 50.00

5.00 5.00 5.00 5.00

155 123 136 41.7

50.00

S - Outlying spike recovery observed (high bias). Detections will be qualified with a *. NOTES:

121

Aliphatic Hydrocarbon (C21-C34)

Surr: 1-Chlorooctadecane

Aliphatic Hydrocarbon (C12-C16) Aliphatic Hydrocarbon (C16-C21)

Aliphatic Hydrocarbon (C10-C12) Aliphatic Hydrocarbon (C8-C10)

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF); high bias.

Sample ID: MB-13403	SampType: MBLK			Units: mg/Kg		Prep Dat	Prep Date: 4/6/2016		RunNo: 28874	
Client ID: MBLKS	Batch ID: 13403				4	Analysis Dat	Analysis Date: 4/19/2016		SeqNo: 542976	
Analyte	Result	RL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Val	RPD Ref Val	%RPD RPDLimit Qual	Qual
Aromatic Hydrocarbon (C8-C10)	QN	5.00								
Aromatic Hydrocarbon (C10-C12)	ND	5.00								
Aromatic Hydrocarbon (C12-C16)	ND	2.00								
Aromatic Hydrocarbon (C16-C21)	QN	2.00								
Aromatic Hydrocarbon (C21-C34)	ND	2.00								
Surr: o-Terphenyl	21.5		20.00		108	09	140			

Friedman & Bruya

CLIENT:

604013 Project:

Project: 604013						Extra	Extractable Petroleum Hydrocarbons by NWEPH	lydrocarbo	ns by N	NEPH
Sample ID: MB-13403	SampType: MBLK			Units: mg/Kg		Prep Date	Prep Date: 4/6/2016	RunNo: 28874		
Client ID: MBLKS	Batch ID: 13403			1	٩	analysis Date	Analysis Date: 4/19/2016	Soano: Fasoas		
nalyte	Result	R	SPK value	SPK value SPK Ref Val	%RFC	I owl imit	WREC Low imit High limit BDD Def Val	Oction of Car	 	-
							i igileliliit NFD Nel Val	%RFD RFDLIMIT Qual	APDLIMIT	Qual

QC SUMMARY REPORT

Date: 4/21/2016

Sample ID: LCS-13403	SampType: LCS			Units: mg/Kg		Prep Date: 4/6/2016	4/6/2016	RunNo: 28874	
Client ID: LCSS	Batch ID: 13403					Analysis Date: 4/19/2016	4/19/2016	Seallo: 54307F	
Analyte	Result	R	SPK value	SPK value SPK Ref Val	%REC	LowLimit H	%REC LowLimit HighLimit RPD Ref Val	WRPD RPDI imit	2
Aromatic Hydrocarbon (C8-C10)	143	5.00	50.00	0	285	70	130		٥
Aromatic Hydrocarbon (C10-C12)	166	2.00	50 00	C	333	0 0	0 0		n
Aromotic History				o	700	0	130		ഗ
Alornatic Hydrocarbon (C12-C16)	173	2.00	20.00	0	347	20	130		C
Aromatic Hydrocarbon (C16-C21)	62.6	2.00	50.00	C	125	0.7	130		o
Aromatic Hydrocarbon (C21-C34)	48.8	2.00	50 00	o c	07.7	0 0	130		
Surr: o-Terphenyl	19.3		20.00	o.	06.3	0,	130		
NOTES:					5.00	00	0 + 1		

S - Outlying spike recovery observed (high bias). Detections will be qualified with a * .

Sample ID: 1604015-001AMS	Samu-Tume S								
	Callip Lype. No			Units: mg/Kg-dry	g-dry	Prep Da	Prep Date: 4/6/2016	RunNo: 28874	
Client ID: WSW2-11	Batch ID: 13403					Analysis Da	Analysis Date: 4/20/2016	SeqNo: 543026	
Analyte	Result	RL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Val	RPD RPDLimit Qual	Qual
Aliphatic Hydrocarbon (C8-C10)	192	5.33	106.5	52.43	131	70	130		c
Aliphatic Hydrocarbon (C10-C12)	378	5.33	106.5	270.9	100	0.7	130		n
Aliphatic Hydrocarbon (C12-C16)	821	5.33	106.5	714.7	8 66	0 / /	130		
Aliphatic Hydrocarbon (C16-C21)	664	5.33	106.5	711.0	-43.9	207	130		(
Aliphatic Hydrocarbon (C21-C34)	288	5.33	106.5	176.4	105	2 2	130		Ŋ O
Surr: 1-Chlorooctadecane	12.9		21.31		909	0	140		
NOTES:						9	0		

S - Outlying spike recoveries were associated with this sample.

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF); high bias.

Friedman & Bruya CLIENT:

604013

Extractable Petroleum Hydrocarbons by NWEPH Project:

QC SUMMARY REPORT

Date: 4/21/2016

Sample ID: 1604015-001AMSD	SampType: MSD	SD		Units: mg/Kg-dry	g-dry	Prep Date:	e: 4/6/2016	60	RunNo: 28874	374	
Client ID: WSW2-11	Batch ID: 13403	403				Analysis Date: 4/20/2016	e: 4/20/20	16	SeqNo: 543027	3027	
Analyte	Result	ılt RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	RPDLimit Qual	Qual
Aliphatic Hydrocarbon (C8-C10)	21	212 4.74	94.80	52.43	168	70	130	191.5	10.2	30	S
Aliphatic Hydrocarbon (C10-C12)	427	4.74	94.80	270.9	164	70	130	377.7	12.2	30	S
Aliphatic Hydrocarbon (C12-C16)	75	4.74	94.80	714.7	43.6	70	130	820.5	8.18	30	S
Aliphatic Hydrocarbon (C16-C21)	73	731 4.74	94.80	711.0	21.4	70	130	664.2	9.62	30	SQ
Aliphatic Hydrocarbon (C21-C34)	32	326 4.74	94.80	176.4	158	70	130	287.9	12.4	30	S
Surr: 1-Chlorooctadecane	13.5	.5	18.96		71.3	09	140		0		
NOTES											

NOTES:											
S - Outlying spike recoveries were associated with this sample.	re associated with this san	nple.									
Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF); high bias.	initial or continuing calibra	tion that doe	s not meet es	tablished acceptand	ce criteria (<	20%RSD, <	20% Drift or	minimum RRF)	; high bias.		
Sample ID: 1604015-002ADUP	SampType: DUP			Units: mg/Kg-dry	I-dry	Prep Dat	Prep Date: 4/6/2016		RunNo: 28874	374	
Client ID: B1-18	Batch ID: 13403					Analysis Dat	Analysis Date: 4/20/2016	91	SeqNo: 543023	3023	
Analyte	Result	RL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	404	5.23						196.4	69.2	30	**
Aliphatic Hydrocarbon (C10-C12)	693	5.23						760.7	9.32	30	*
Aliphatic Hydrocarbon (C12-C16)	1,630	5.23						1,506	7.85	30	*Ш
Aliphatic Hydrocarbon (C16-C21)	1,500	5.23						1,211	21.1	30	В
Aliphatic Hydrocarbon (C21-C34)	334	5.23						338.4	1.31	30	*
Surr: 1-Chlorooctadecane	19.3		4.184		460	09	140		0		S
NOTES											

R - High RPD observed.

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF); high bias.

* - Flagged value is not within established control limits.

Sample ID: 1604015-001AMS	SampType: MS			Units: mg/Kg-dry	g-dry	Prep Dat	Prep Date: 4/6/2016	9	RunNo: 28874	374	
Client ID: WSW2-11	Batch ID: 13403					Analysis Dat	Analysis Date: 4/20/2016	16	SeqNo: 543038	3038	
Analyte	Result	RL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit	Qual
Aromatic Hydrocarbon (C8-C10)	188	5.33	106.5	0	177	70	130				S
Aromatic Hydrocarbon (C10-C12)	342	5.33	106.5	0	321	70	130				S
Aromatic Hydrocarbon (C12-C16)	629	5.33	106.5	0	637	70	130				S

Friedman & Bruya 1604015 Work Order: CLIENT:

QC SUMMARY REPORT

Date: 4/21/2016

Extractable Petroleum Hydrocarbons by NWEPH Qual %RPD RPDLimit SeqNo: 543038 RunNo: 28874 %REC LowLimit HighLimit RPD Ref Val Analysis Date: 4/20/2016 Prep Date: 4/6/2016 Units: mg/Kg-dry SPK value SPK Ref Val 106.5 5.33 \mathbb{R} Batch ID: 13403 Result 986 SampType: MS Aromatic Hydrocarbon (C16-C21) Sample ID: 1604015-001AMS 604013 Client ID: WSW2-11 Project: Analyte

တ တ

130 130 140

02 09

925 390 111

0 0

106.5 21.31

416

Aromatic Hydrocarbon (C21-C34)

Surr: o-Terphenyl

NOTES:
S - Outlying spike recoveries were associated with this sample.

Sample ID: 1604015-001AMSD	SampType: MSD			Units: mg/Kg-dry	g-dry	Prep Dat	Prep Date: 4/6/2016	60	RunNo: 28874	374	
Client ID: WSW2-11	Batch ID: 13403					Analysis Date: 4/20/2016	e: 4/20/20	16	SeqNo: 543034	3034	
Analyte	Result	R	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
Aromatic Hydrocarbon (C8-C10)	217	4.74	94.80	0	229	02	130	c	200	30	U
Aromatic Hydrocarbon (C10-C12)	413	4.74	94.80	0	435	202	130	0 0	200	8 6	o 0
Aromatic Hydrocarbon (C12-C16)	815	4.74	94.80	0	860	70	130	0 0	200	8) U
Aromatic Hydrocarbon (C16-C21)	1,420	4.74	94.80	0	1.490	0 2	130	0 0	200	000	o 0
Aromatic Hydrocarbon (C21-C34)	831	4.74	94.80	0	877	0. 2	130	0 0	200	000	n u
Surr: o-Terphenyl	26.1		18.96		138	09	140	o	00%	00	o
NOTES:)		o		

S - Outlying spike recoveries were associated with this sample.

Sample ID: 1604015-002ADUP	SampType: DUP			Units: mg/Kg-dry	dry	Prep Date	Prep Date: 4/6/2016		RunNo: 28874	74	
Client ID: B1-18	Batch ID: 13403				٩	Analysis Date: 4/20/2016	e: 4/20/20°	91	SeqNo: 543031	031	
Analyte	Result	RL		SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
Aromatic Hydrocarbon (C8-C10)	84.1	5.23						C	200	8	*
Aromatic Hydrocarbon (C10-C12)	278	5.23						0 0	200	8 6	*
Aromatic Hydrocarbon (C12-C16)	853	5.23						0 0	200	8 8	*
Aromatic Hydrocarbon (C16-C21)	1,730	5.23						0 0	200	8 %	Ц
Aromatic Hydrocarbon (C21-C34)	1,120	5.23						0 0	200	8 8	ם נ
Surr: o-Terphenyl	27.3		20.92		131	09	140	o	000	5	١
NOTES:						ţ	2		Þ		

* - Flagged value is not within established control limits.

Friedman & Bruya

CLIENT:

604013

Project:

Volatile Petroleum Hydrocarbons by NWVPH

QC SUMMARY REPORT

Date: 4/21/2016

Sample ID: LCS-13409	SampType: LCS			Units: mg/Kg		Prep Date	Prep Date: 4/6/2016	RunNo: 28673	
Client ID: LCSS	Batch ID: 13409					Analysis Date: 4/7/2016	3: 4/7/2016	SeqNo: 539441	
Analyte	Result	R	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	21.2	2.00	30.00	0	7.07	70	130		
Aliphatic Hydrocarbon (C6-C8)	8.35	2.00	10.00	0	83.5	70	130		
Aliphatic Hydrocarbon (C8-C10)	9.26	2.00	10.00	0	92.6	70	130		
Aliphatic Hydrocarbon (C10-C12)	8.58	2.00	10.00	0	82.8	70	130		
Aromatic Hydrocarbon (C8-C10)	37.2	2.00	40.00	0	93.0	70	130		
Aromatic Hydrocarbon (C10-C12)	9.07	2.00	10.00	0	90.7	70	130		
Aromatic Hydrocarbon (C12-C13)	7.36	2.00	10.00	0	73.6	70	130		
Benzene	8.17	0.500	10.00	0	81.7	70	130		
Toluene	8.13	0.500	10.00	0	81.3	70	130		
Ethylbenzene	8.51	0.500	10.00	0	85.1	70	130		
m,p-Xylene	17.4	0.500	20.00	0	86.8	70	130		
o-Xylene	8.84	0.500	10.00	0	88.4	70	130		
Naphthalene	7.43	0.500	10.00	0	74.3	70	130		
Methyl tert-butyl ether (MTBE)	QN	0.500	10.00	0	0	70	130		SO
Surr: 1,4-Difluorobenzene	2.57		2.500		103	99	140		
Surr: Bromofluorobenzene	2.57		2.500		103	65	140		
CLHOI									

NOTES:
S - Outlying spike recovery observed (low bias). Samples will be qualified with a *.
Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF); high bias.

Sample ID: MB-13409	SampType: MBLK			Units: mg/Kg		Prep Date:	Prep Date: 4/6/2016		RunNo: 28673	173	_
Client ID: MBLKS	Batch ID: 13409				∢	Analysis Date: 4/7/2016	4/7/2016		SeqNo: 539319	1319	
Analyte	Result	RL	SPK value SPK Ref Val		%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Val	ef Val	%RPD	%RPD RPDLimit Qual	Qual
Aliphatic Hydrocarbon (C5-C6)	QN	2.00		0	0						
Aliphatic Hydrocarbon (C6-C8)	QN	2.00		0	0						
Aliphatic Hydrocarbon (C8-C10)	QN	2.00		0	0						
Aliphatic Hydrocarbon (C10-C12)	QN	2.00		0	0						
Aromatic Hydrocarbon (C8-C10)	QN	2.00		0	0						
Aromatic Hydrocarbon (C10-C12)	QN	2.00		0	0						
Aromatic Hydrocarbon (C12-C13)	QN	2.00		0	0						

Friedman & Bruya

CLIENT:

604013 Project:

Sample ID: MB-13409	SampType: MBLK			Units: mg/Kg		Prep Date: 4/6/2016	4/6/2016	RunNo: 28673	
Client ID: MBLKS	Batch ID: 13409				4	Analysis Date: 4/7/2016	4/7/2016	SeqNo: 539319	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit Hi	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual	
Benzene	S	0.500		c	c			Remarks.	

Volatile Petroleum Hydrocarbons by NWVPH

QC SUMMARY REPORT

Date: 4/21/2016

140 65 0000000 000000 2.500 0.500 0.500 0.500 0.500 0.500 0.500 * - Flagged value is not within established control limits. Methyl tert-butyl ether (MTBE) Surr: Bromofluorobenzene Surr: 1,4-Difluorobenzene Ethylbenzene Naphthalene m,p-Xylene NOTES: Benzene o-Xylene Client ID: Analyte Toluene

Sample ID: 1604014-001BDUP	SampType: DUP			Units: mg/Kg-dry	-dry	Prep Date	Prep Date: 4/6/2016		RunNo: 28673	73	
Client ID: BATCH	Batch ID: 13409					Analysis Date: 4/7/2016	4/7/2016		SeqNo: 539305	305	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Val	Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	QN	1.65		0	0			C		20	
Aliphatic Hydrocarbon (C6-C8)	6.01	1.65		0	0			4.209	35.2	25	œ
Aliphatic Hydrocarbon (C8-C10)	7.10	1.65		0	0			3.721	62.4	25	<u> </u>
Aliphatic Hydrocarbon (C10-C12)	20.6	1.65		0	0			19.61	5.04	25	<u>.</u>
Aromatic Hydrocarbon (C8-C10)	11.8	1.65		0	0			8.624	30.8	25	ď
Aromatic Hydrocarbon (C10-C12)	89.9	1.65		0	0			80.54	11.0	25	: ц
Aromatic Hydrocarbon (C12-C13)	64.5	1.65		0	0			62.40	3.25	25	ı
Benzene	ND	0.413		0	0			0		25.	
Toluene	ND	0.413		0	0			C		25	
Ethylbenzene	QN	0.413		0	0			0		25	
m,p-Xylene	QN	0.413		0	0			0		25	
o-Xylene	ND	0.413		0	0			0		25	
Naphthalene	6.81	0.413		0	0			6.449	5.40	25	
Methyl tert-butyl ether (MTBE)	ND	0.413		0	0			0	:	25	*
Surr: 1,4-Difluorobenzene	2.10		2.064		102	65	140		0	ł	

Friedman & Bruya

CLIENT:

604013 Project:

Qual %RPD RPDLimit SeqNo: 539305 RunNo: 28673 LowLimit HighLimit RPD Ref Val Prep Date: 4/6/2016 Analysis Date: 4/7/2016 %REC Units: mg/Kg-dry SPK Ref Val SPK value R 13409 SampType: DUP Result 2.06 Batch ID: Sample ID: 1604014-001BDUP Surr: Bromofluorobenzene BATCH Client ID: Analyte

QC SUMMARY REPORT

Date: 4/21/2016

Volatile Petroleum Hydrocarbons by NWVPH

0

0

65

99.7

2.064

R - High RPD observed. The method is in control as indicated by the Laboratory Control Sample (LCS),

* - Flagged value is not within established control limits.

Sample ID: 1604015-002BMS	SampType: MS			Units: mg/Kg-dry	-dry	Prep Date	Prep Date: 4/6/2016	RunNo: 28673		
Client ID: B1-18	Batch ID: 13409					Analysis Dat	Analysis Date: 4/7/2016	SeqNo: 539310	0	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RF	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	22.2	1.86	27.90	1.398	74.7	70	130			
Aliphatic Hydrocarbon (C6-C8)	41.4	1.86	9.299	27.47	149	70	130			S
Aliphatic Hydrocarbon (C8-C10)	81.4	1.86	9.299	86.78	157	20	130			SE
Aliphatic Hydrocarbon (C10-C12)	414	1.86	9.299	329.4	913	70	130			SE
Aromatic Hydrocarbon (C8-C10)	313	1.86	37.20	245.5	180	70	130			SE
Aromatic Hydrocarbon (C10-C12)	613	1.86	9.299	589.6	253	70	130			SQE
Aromatic Hydrocarbon (C12-C13)	554	1.86	9.299	813.4	-2,790	70	130			SQE
Benzene	12.8	0.465	9.299	0.5190	132	70	130			S
Toluene	17.9	0.465	9.299	7.797	108	20	130			
Ethylbenzene	17.9	0.465	9.299	9.588	89.3	70	130			Ø
m,p-Xylene	44.2	0.465	18.60	28.70	83.6	70	130			
o-Xylene	22.8	0.465	9.299	14.67	87.5	70	130			
Naphthalene	152	0.465	9.299	100.5	551	70	130			S
Methyl tert-butyl ether (MTBE)	Q	0.465	9.299	0	0	70	130			*S
Surr: 1,4-Difluorobenzene	3.10		2.325		133	65	140			
Surr: Bromofluorobenzene	4.47		2.325		192	99	140			တ

S - Outlying surrogate recovery attributed to TPH interference. The method is in control as indicated by the Method Blank (MB) & Laboratory Control Sample (LCS).

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF); high bias.

* - Flagged value is not within established control limits.

Friedman & Bruya CLIENT:

604013 Project:

NWVPH
Ş
Hydrocarbons
Petroleum
Volatile

QC SUMMARY REPORT

Date: 4/21/2016

Sample ID: 1604015-002BMSD	SampType: MSD			Units: mg/Kg-dry	-dry	Prep Dai	Prep Date: 4/6/2016		RunNo: 28673	673	
Client ID: B1-18	Batch ID: 13409					Analysis Date: 4/7/2016	e: 4/7/201	"0	SeqNo: 539311	9311	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	23.5	1.86	27.90	1.398	79.4	70	130	22.24	5.70	30	
Aliphatic Hydrocarbon (C6-C8)	41.6	1.86	9.299	27.47	152	70	130	41.37	0.498	08	v.
Aliphatic Hydrocarbon (C8-C10)	9.62	1.86	9.299	86.78	138	70	130	81.39	2.27	30	, K
Aliphatic Hydrocarbon (C10-C12)	458	1.86	9.299	329.4	1,390	70	130	414.3	10.1	30	I II
Aromatic Hydrocarbon (C8-C10)	330	1.86	37.20	245.5	227	70	130	312.6	5 44	30	ПП
Aromatic Hydrocarbon (C10-C12)	593	1.86	9.299	589.6	40.2	70	130	613.1	3 2 9	08	SOF FOR
Aromatic Hydrocarbon (C12-C13)	688	1.86	9.299	813.4	-1,350	70	130	554.2	21.5	30	SON TO
Benzene	13.1	0.465	9.299	0.5190	135	70	130	12.80	2.14	08) N ()
Toluene	19.1	0.465	9.299	7.797	122	70	130	17.85	6 73	30)
Ethylbenzene	20.2	0.465	9.299	9.588	114	70	130	17.89	10.1	30	C
m,p-Xylene	49.2	0.465	18.60	28.70	110	70	130	44.24	10.7	30 00	ĭ
o-Xylene	25.2	0.465	9.299	14.67	113	70	130	22.80	06.6	30	
Naphthalene	167	0.465	9.299	100.5	720	70	130	151.7	9 85	S 08	Ц
Methyl tert-butyl ether (MTBE)	Q	0.465	9.299	0	0	70	130	C		30	1 * 0
Surr: 1,4-Difluorobenzene	3.52		2.325		151	65	140)	C	8) U
Surr: Bromofluorobenzene	4.89		2.325		210	65	140		0 0	c) (
NOTES:) - 	8	2		D	0	o

S - Outlying surrogate recovery attributed to TPH interference. The method is in control as indicated by the Method Blank (MB) & Laboratory Control Sample (LCS).

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF); high bias.

* - Flagged value is not within established control limits.

									100
CLIENT:	Friedman & Bruya	Bruya						C SUMMARY REPORT	
Project:	604013						Sample Mo	Sample Moisture (Percent Moisture)	(e)
Sample ID: 1604002-001ADUP	02-001ADUP	SampType: DUP			Units: wt%		Prep Date: 4/6/2016	RunNo: 28628	
Client ID: BATCH	x	Batch ID: R28628				4	Analysis Date: 4/6/2016	SeqNo: 538346	
Analyte		Result	RL	SPK value	SPK value SPK Ref Val	%REC	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual	
Percent Moisture		19.5	0.500				16.74	15.4 20	1

QC SUMMARY REPORT

Date: 4/21/2016

Sample Log-In Check List

Client Name: FB	Work Order Numb	per: 1604015	
Logged by: Erica Silva	Date Received:	4/1/2016 3:54:00 PM	
Chain of Custody			
1. Is Chain of Custody complete?	Yes 🗸	No ☐ Not Present ☐	
2. How was the sample delivered?	<u>FedEx</u>		
<u>Log In</u>			
3. Coolers are present?	Yes	No ✔ NA □	
	No cooler presen		
4. Shipping container/cooler in good condition?	Yes 🗹	No 🗌	
Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact)	Yes	No ✓ Not Required ☐	
6. Was an attempt made to cool the samples?	Yes 🗹	No 🗆 NA 🗀	
7. Were all items received at a temperature of >0°C to 10.0°C*	Yes	No ✔ NA □	
	se refer to Item Info		
8. Sample(s) in proper container(s)? 9. Sufficient complex volume for indicated tool(s)?	Yes 🗸	No L	
Sufficient sample volume for indicated test(s)? Are complete properly properly and a second of the second of	Yes ✔ Yes ✔	No L	
10. Are samples properly preserved?		No ☑ No ☑ NA ☐	
11. Was preservative added to bottles?	Yes \square	NO W NA L	
12. Is there headspace in the VOA vials?	Yes \square	No □ NA 🗹	
13. Did all samples containers arrive in good condition(unbroken)?	Yes 🗸	No 🗌	
14. Does paperwork match bottle labels?	Yes 🗹	No 🗌	
15. Are matrices correctly identified on Chain of Custody?	Yes 🗸	No 🗌	
16. Is it clear what analyses were requested?	Yes 🗸	No 🗆	
17. Were all holding times able to be met?	Yes 🗸	No 🗆	
Special Handling (if applicable)			
18. Was client notified of all discrepancies with this order?	Yes	No □ NA 🗹	
Person Notified: Date		All the second s	
By Whom: Via:	eMail Pho	ne 🗌 Fax 🔲 In Person	
Regarding:			
Client Instructions:			
19. Additional remarks:			
Item Information			
Item# Temp °C			
Cooler 10.1			

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

10.3

Sample

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

SUBCONTRACTER

Fax (206) 283-5044	Ph. (206) 285-8282	Seattle, WA 98119-2029	C TOWN TOWNERS WEST	2019 16th America West							81-18	WSW2-11	Sample ID		Phone # (206) 285-8282	City, State, ZIP Seattle	Address 3012 1	CompanyFriedm	Send Report To Micha
Received by:	Relinquished by:	Received by:	To named when himsen	Ralikamiek									Lab ID		Fax#	Seattle, WA 98119	3012 16th Ave W	Friedman and Bruya, Inc	Michael Erdahl
y:	ed by:	N. S.	200	SIGNATURE							4-	3/20/14	Date Sampled		(206) 283-5044	9		uya, Inc.	
		Mr. Z	h	TURE									Time Sampled		5044				
-	- (M								4	561	Matrix			REMARKS	6	PROJECT NAME/NO.	SOBCOMINACIEN
	C71.C	212	Michael Erdahl								4-	f4	# of		Please Email Results	KS	810409	TNAM	MINAC
	1	200	rdahl	PRINT NAME									Dioxins/Furans		Email		N	Œ/NO	UG1,
	100	1		TNA							γ	×	EPH		Resul				TI
				E							pl.	74	VPH		8				Francet
													Nitrate	ANALYSES REQUESTED			Ų		+
+	-		- T	-									Sulfate	YSES			0-906	PO#	
	-	14	riedm	_									Alkalinity	REQ			0	丰	
	土	T IN	an an	COMPANY		\perp	1		_				TOC-9060M	UEST					
			Friedman and Bruya	ANN					1	\sqcup				ED	□ Re	D.	Rusl	AStanda	
			ya						_			_	AD BOLD BOOK OF THE PARTY OF TH		☐ Return samples ☐ Will call with instructions	SAMPLE DISPO	Rush charges authorized by:	4Standard (2 Weeks) □ RUSH	TURNA
	77/	10	9/11/h	Į,		\parallel	1	1	+	\perp		4			amples with in	SAMPLE DISPOSAL	es aut	l (2 We	TURNAROUND TIME
	1 R	15	6	DATE									_		astruct	DISPO	horize	eks)	
	i,	n	14	T									Notes		saor	SAL	1 by:		TIME

15.54

74:05. TIME Notes

of

SAMPLE CHAIN OF CUSTODY

91-10-ho 3W

PROJECT NAME/NO. PROJECT ADDRESS SAMPLERS (signature) 41392 7

• ELECTRONIC DATA REQUESTED

Email Address Ken. nogeire @pbsenv.com

Phone # 509.573.8163 Fax #_

City, State, ZIP Son Hk,

EA A

Company PBS Engineering
Address 2517 East

		उ १ ३	PO#	
Samples Received at°C	SAMPLE DISPOSAL *Dispose after 30 days • Return samples • Will call with instructions	Rush charges authorized by:	Standard Turnaround RUSH	TURNAROUND TIME

Fax (206) 283-5044		_		Friedman & Bruva, Inc.						Ing Hank	+ - 21	152 - 18	20 80 F	JON TIL	LI MCI	,	Sample ID	
Received by:	Relinquished by:	Received by:	Relinquished by:	2						90		DS X	00	3	2	0/ A-D	Lab ID	
	1 m/c	(area)	C SIGNAL ORE									-	-	-	+	5.30.16	Date	
	ans	1.600															Time	
		- Ch	>									-			+	50:1	Sample Type	
	han	on P.C/RI	PRINT NAME									11	13	11	13	2	# of containers	
	1	1	MAN	H	+			+		_	_	<u>ر</u>	<u>7</u>	X	X	X	TPH-Diesel	
	okan	1	(1)	L	+		_	+		X		4	アメ	1 1	X	メ	TPH-Gasoline	$\ \ $
	1 /1			H	\dagger			\dagger		^	ť				-		BTEX by 8021B	1
	(H	十			\dagger			H	-					VOCs by 8260	P
					1			t				1					SVOCs by 8270 HFS	É
	7	R	S					1			5	1	X				NOH /EOH	SES
	8	24	COMPANY		T			T			×	7	ī				lend	ANALYSES REQUESTED
	17		A		Ť			T			>	-					PAHS	ÜE
				-	+	1		t	7		ŀ	+	_				PAH5	TEL
-	2	lac			+	7		t	+			+	\neg	_		\dashv		
	3	3/2/	DATE		+	1		+	+			+				-		
	2	Jus /	E										1					
	2																Notes	
	20:00		H														8	
	10																	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 19, 2016

Ken Nogeire, Project Manager PBS Engineering and Environmental, Inc. 2517 Eastlake Ave E, Suite 100 Seattle, WA 98102

Dear Mr. Nogeire:

Included are the results from the testing of material submitted on May 11, 2016 from the 41392, F&BI 605193 project. There are 12 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Megan Nogeire PBS0519R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 11, 2016 by Friedman & Bruya, Inc. from the PBS Engineering and Environmental 41392, F&BI 605193 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	PBS Engineering and Environmental
605193 -01	MW1
605193 -02	MW2
605193 -03	Trip blank

The 8270D laboratory control sample and laboratory control sample duplicate failed the relative percent difference for several compounds. The analytes were not detected therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/19/16 Date Received: 05/11/16 Project: 41392, F&BI 605193 Date Extracted: 05/12/16

Date Analyzed: 05/12/16 and 05/13/16

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
MW1 605193-01	49	78	89	440	4,300	118
MW2 605193-02	<1	<1	1.1	<3	420	101
Method Blank 06-943 MB	<1	<1	<1	<3	<100	96

ENVIRONMENTAL CHEMISTS

Date of Report: 05/19/16 Date Received: 05/11/16 Project: 41392, F&BI 605193 Date Extracted: 05/12/16 Date Analyzed: 05/12/16

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES USING METHOD 8021B

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Surrogate (% Recovery) Limit (52-124)
Trip blank 605193-03	<1	<1	<1	<3	98
Method Blank 06-943 MB	<1	<1	<1	<3	96

ENVIRONMENTAL CHEMISTS

Date of Report: 05/19/16 Date Received: 05/11/16 Project: 41392, F&BI 605193 Date Extracted: 05/12/16 Date Analyzed: 05/12/16

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 41-152)
MW1 605193-01	12,000	1,100 x	72
MW2 605193-02	1,300	250 x	112
Method Blank 06-959 MB	<50	<250	97

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

< 0.06

Client Sample ID:	MW1
Date Received:	05/11/16
Date Extracted:	05/12/16
Date Analyzed:	05/12/16
Matrix:	Water
Units:	ug/L (ppb)

	a 021 02 01111
Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental 41392, F&BI 605193 605193-01 1/2 051222.D GCMS6 ya
Lower Limit: 31 25	Upper Limit: 160 165

Surrogates: Anthracene-d10 Benzo(a)anthracene-d12	% Recovery: 87 67
Compounds:	Concentration ug/L (ppb)
Naphthalene	38 ve
Acenaphthylene	< 0.06
Acenaphthene	0.16
Fluorene	0.19
Phenanthrene	0.18
Anthracene	< 0.06
Fluoranthene	< 0.06
Pyrene	< 0.06
Benz(a) anthracene	< 0.06
Chrysene	< 0.06
Benzo(a)pyrene	< 0.06
Benzo(b)fluoranthene	< 0.06
Benzo(k)fluoranthene	< 0.06
Indeno(1,2,3-cd)pyrene	< 0.06
Dibenz(a,h)anthracene	< 0.06

Benzo(g,h,i)perylene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Date Extracted: 0: Date Analyzed: 0: Matrix: W	5/11/16 5/12/16 5/13/16 /ater g/L (ppb)
--	---

Client: Project: Lab ID: Data File: Instrument: Operator:	PBS Engineering and Environmental 41392, F&BI 605193 605193-01 1/40 051304.D GCMS6 VM
Lower Limit: 31 25	Upper Limit: 160 165

Surrogates: Anthracene-d10 Benzo(a)anthracene-d12	% Recovery: 111 d 76 d
Compounds:	Concentration ug/L (ppb)
Naphthalene	56
Acenaphthylene	<1.2
Acenaphthene	<1.2
Fluorene	<1.2
Phenanthrene	<1.2
Anthracene	<1.2
Fluoranthene	<1.2
Pyrene	<1.2
Benz(a)anthracene	<1.2
Chrysene	<1.2
Benzo(a)pyrene	<1.2
Benzo(b)fluoranthene	<1.2
Benzo(k)fluoranthene	<1.2
Indeno(1,2,3-cd)pyrene	<1.2
Dibenz(a,h)anthracene	<1.2
Benzo(g,h,i)perylene	<1.2

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: MW2 Date Received: 05/11/16 Date Extracted: 05/12/16 Date Analyzed: 05/12/16 Matrix: Water Units: ug/L (ppb)

Client: Project: Lab ID: Data File:

PBS Engineering and Environmental 41392, F&BI 605193

605193-02 1/2 051223.D Instrument: GCMS6

Operator:

ya

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
Anthracene-d10	105	31	160
Benzo(a)anthracene-d12	94	25	165

Compounds:	Concentration ug/L (ppb)
Naphthalene	3.9
Acenaphthylene	< 0.06
Acenaphthene	0.23
Fluorene	0.25
Phenanthrene	0.42
Anthracene	< 0.06
Fluoranthene	< 0.06
Pyrene	0.11
Benz(a)anthracene	< 0.06
Chrysene	< 0.06
Benzo(a)pyrene	< 0.06
Benzo(b)fluoranthene	< 0.06
Benzo(k)fluoranthene	< 0.06
Indeno(1,2,3-cd)pyrene	< 0.06
Dibenz(a,h)anthracene	< 0.06
Benzo(g,h,i)perylene	< 0.06

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: Method Blank
Date Received: Not Applicable
Date Extracted: 05/12/16
Date Analyzed: 05/12/16
Matrix: Water
Units: ug/L (ppb)

Client: PBS Engineering and Environmental Project: 41392, F&BI 605193
Lab ID: 06-934 mb

Data File: 06-934 ml
Osta File: 051217.D
Instrument: GCMS6
Operator: ya

Lower	Upper
ecovery: Limit:	Limit:
90 31	160
92 25	165
	90 31

Compounds:	Concentration ug/L (ppb)
Naphthalene	< 0.03
Acenaphthylene	< 0.03
Acenaphthene	< 0.03
Fluorene	< 0.03
Phenanthrene	< 0.03
Anthracene	< 0.03
Fluoranthene	< 0.03
Pyrene	< 0.03
Benz(a)anthracene	< 0.03
Chrysene	< 0.03
Benzo(a)pyrene	< 0.03
Benzo(b)fluoranthene	< 0.03
Benzo(k)fluoranthene	< 0.03
Indeno(1,2,3-cd)pyrene	< 0.03
Dibenz(a,h)anthracene	< 0.03
Benzo(g,h,i)perylene	< 0.03

ENVIRONMENTAL CHEMISTS

Date of Report: 05/19/16 Date Received: 05/11/16

Project: 41392, F&BI 605193

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING METHOD 8021B AND NWTPH-Gx

Laboratory Code: 605188-05 (Duplicate)

Analyte	Reporting Units	Sample Result	Duplicate Result	RPD (Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

Percent					
Reporting	Spike	Recovery	Acceptance		
Units	Level	LCS	Criteria		
ug/L (ppb)	50	95	65-118		
ug/L (ppb)	50	97	72-122		
ug/L (ppb)	50	97	73-126		
ug/L (ppb)	150	96	74-118		
ug/L (ppb)	1,000	93	69-134		
	Units ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb)	Units Level ug/L (ppb) 50 ug/L (ppb) 50 ug/L (ppb) 50 ug/L (ppb) 150	Reporting Units Spike Level Recovery LCS ug/L (ppb) 50 95 ug/L (ppb) 50 97 ug/L (ppb) 50 97 ug/L (ppb) 150 96		

ENVIRONMENTAL CHEMISTS

Date of Report: 05/19/16 Date Received: 05/11/16 Project: 41392, F&BI 605193

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	97	96	63-142	1

ENVIRONMENTAL CHEMISTS

Date of Report: 05/19/16 Date Received: 05/11/16

Project: 41392, F&BI 605193

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR PAHS BY EPA METHOD 8270D SIM

Laboratory Code: Laboratory Control Sample

•	<i>5</i>	1	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	1	98	89	67-116	10
Acenaphthylene	ug/L (ppb)	1	98	89	65-119	10
Acenaphthene	ug/L (ppb)	1	100	91	66-118	9
Fluorene	ug/L (ppb)	1	96	88	64-125	9
Phenanthrene	ug/L (ppb)	1	101	93	67-120	8
Anthracene	ug/L (ppb)	1	98	90	65-122	9
Fluoranthene	ug/L (ppb)	1	89	83	65-127	7
Pyrene	ug/L (ppb)	1	109	95	62-130	14
Benz(a)anthracene	ug/L (ppb)	1	112	98	60-118	13
Chrysene	ug/L (ppb)	1	109	96	66-125	13
Benzo(b)fluoranthene	ug/L (ppb)	1	107	91	55-135	16
Benzo(k)fluoranthene	ug/L (ppb)	1	100	93	62-125	7
Benzo(a)pyrene	ug/L (ppb)	1	102	89	58-127	14
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	1	102	77	36-142	28 vo
Dibenz(a,h)anthracene	ug/L (ppb)	1	94	69	37-133	31 vo
Benzo(g,h,i)perylene	ug/L (ppb)	1	96	74	34-135	26 vo

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- $\mbox{\bf d}$ The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dy Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- $\,$ nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- $\mbox{\it ve}$ The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

605.193

ຕໍ