FINAL FOCUSED SITE ASSESSMENT REPORT

BETTY BRITE CLEANERS SITE SOUTH 154TH STREET TRANSIT-ORIENTED DEVELOPMENT PROPERTY

> Prepared for **CITY OF SEATAC** SEATAC, WASHINGTON *April 13, 2015 Project No. 0879.01.02*

Prepared by Maul Foster & Alongi, Inc. 411 First Avenue South, Suite 610 Seattle, WA 98104

FINAL FOCUSED SITE ASSESSMENT REPORT BETTY BRITE CLEANERS SITE SOUTH 154TH STREET TRANSIT-ORIENTED DEVELOPMENT PROPERTY

> The material and data in this report were prepared under the supervision and direction of the undersigned.

> > MAUL FOSTER & ALONGI, INC.

Justin L. Clary, PE Principal Engineer

R:\0879.01 City of SeaTac\Report\02_2015.04.13 Focused Site Assessment Report\FINAL SeaTac Focused Site Assessment Rpt.docx

CONTENTS

TABLES	S AND ILLUSTRATIONS	V
ACRO	NYMS AND ABBREVIATIONS	VI
1	INTRODUCTION 1.1 REGULATORY FRAMEWORK 1.2 SITE ASSESSMENT OBJECTIVES	1 1 2
2	 BACKGROUND 2.1 SITE DESCRIPTION 2.2 SITE HISTORY 2.3 PREVIOUS INVESTIGATIONS 2.4 KNOWN OR POTENTIAL ENVIRONMENTAL CONDITIONS 2.5 GEOLOGY AND HYDROGEOLOGY 	2 2 3 3 3 4
3	FIELD AND ANALYTICAL METHODS 3.1 SOIL SAMPLING 3.2 GROUNDWATER SAMPLING	4 6 6
4	ANALYTICAL RESULTS 4.1 SOIL 4.2 GROUNDWATER	7 7 7
5	 CONCEPTUAL SITE MODEL 5.1 SOURCE CHARACTERIZATION 5.2 FATE AND TRANSPORT OF CONTAMINANTS 5.3 POTENTIAL SOIL EXPOSURE SCENARIOS 5.4 POTENTIAL GROUNDWATER EXPOSURE SCENARIOS 5.5 POTENTIAL SOIL VAPOR EXPOSURE SCENARIOS 5.6 CLEANUP STANDARDS 	8 8 9 10 11 12 12
6	RISK SCREENING 6.1 SOIL 6.2 GROUNDWATER 6.3 SUMMARY	13 14 14 14
7	CONCLUSIONS	14
8	CLEANUP ACTION EVALUATION 8.1 ALTERNATIVE 1: IN SITU BIOREMEDIATION—ENHANCED ANAEROBIC BIOREMEDIATION	15 15
	 8.2 ALTERNATIVE 2: MONITORED NATURAL ATTENUATION 8.3 EVALUATION OF CLEANUP ALTERNATIVES 8.4 OTHER CRITERIA 	16 16 17
LIMITA	TIONS	

REFERENCES

TABLES

FIGURES

CONTENTS (CONTINUED)

APPENDIX A BORING LOGS

APPENDIX B

GEOPHYSICAL SURVEY

APPENDIX C

ALTA LAND TITLE SURVEY

APPENDIX D

FIELD SAMPLING DATA SHEETS

APPENDIX E

LABORATORY ANALYTICAL REPORTS

APPENDIX F

DATA VALIDATION MEMORANDA

APPENDIX G

TERRESTRIAL ECOLOGICAL EVALUATION

FOLLOWING REPORT:

TABLES

- 1 SUMMARY OF SOIL ANALYTICAL RESULTS, BETTY BRITE CLEANERS SITE
- 2 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS, BETTY BRITE CLEANERS SITE
- 3 REMEDIAL COST ESTIMATE—ALTERNATIVE 1: IN SITU BIOREMEDIATION GROUNDWATER TREATMENT AND GROUNDWATER MONITORING
- 4 REMEDIAL COST ESTIMATE—ALTERNATIVE 2: LONG-TERM GROUNDWATER MONITORED NATURAL ATTENUATION
- 5 DISPROPORTIONATE-COST ANALYSIS

FIGURES

- 1 SITE LOCATION
- 2 SITE FEATURES
- 3 GROUNDWATER POTENTIOMETRIC MAP—JUNE 2014
- 4 GROUNDWATER PCE RESULTS
- 5 CONCEPTUAL SITE MODEL

ASTM	American Society for Testing and Materials, International
bgs	below ground surface
the City	City of SeaTac, Washington
COI	chemical of interest
CRS	Chemical Reducing Solution
CSM	conceptual site model
CUL	cleanup level
Ecology	Washington State Department of Ecology
ESA	environmental site assessment
Fe2+	ferrous iron
Golder	Golder Associates, Inc.
HVOC	halogenated volatile organic compound
IHS	indicator hazardous substance
IPG	Integrated Planning Grant
MFA	Maul Foster & Alongi, Inc.
mg/kg	milligrams per kilogram
mg/L	milligrams per liter
MTCA	Model Toxics Control Act
NFA	No Further Action
PCE	tetrachloroethene
PID	photoionization detector
POC	point of compliance
ppbv	parts per billion by volume
the City	the City of SeaTac, Washington
the Property	Parcels 0043000020, 0043000100, and 0043000093 of the
	South 154th Street Transit-Oriented Development
	Property, SeaTac, Washington
TCE	trichloroethene
TPH	total petroleum hydrocarbons
TOD	Transit-Oriented Development
ug/L	micrograms per liter
USEPA	U.S. Environmental Protection Agency
UST	underground storage tank
VC	vinyl chloride
VOC	volatile organic compound
WAC	Washington Administrative Code

INTRODUCTION

On behalf of the City of SeaTac, Washington (the City), Maul Foster & Alongi, Inc. (MFA) has prepared this focused site assessment report to further characterize the nature and extent of environmental impacts at the City's proposed South 154th Street Transit-Oriented Development (TOD) property in SeaTac, Washington (Figure 1). The proposed TOD comprises the following seven parcels: King County parcels 00430013 (parking garage), 0043000015 (SeaTac Center), 0043000018 (parking lot), 0043000019 (residential), 0043000020 (Betty Brite Dry Cleaners, Pancake Chef, and other retail businesses), 0043000100 (parking lot), and 0043000093 (Dalsan Financial Services). The City owns parcels 00430013, 0043000015, 0043000018, and 0043000019 and is in negotiation to acquire the remaining three parcels (0043000020, 0043000100, and 0043000093). These three parcels, referred to in this document as "the Property", are the focus of this site assessment. In this report, Parcel 004300020 is referred to as the "Betty Brite parcel", and Parcels 0043000100 and 0043000093 are referred to as "the triangle parcels". The Property currently is used for a variety of commercial applications, including a dry cleaner; money transfer services; retail clothing, food, and beauty supplies; a hair salon; a restaurant; and a law office. The Property includes Washington State Department of Ecology (Ecology) facility site ID 65773341 (Betty Brite Cleaners).

A dry-cleaning business has operated at the Betty Brite parcel since 1959. Additionally, historical archival information indicates that an oil burner served as the heating source at this parcel. The potential exists that, historically, a heating oil underground storage tank (UST) was used at this parcel. Activities associated with the dry cleaner's operations and the oil burner may have released hazardous substances that have potentially impacted environmental media at the Property. An investigation conducted by Golder Associates, Inc. (Golder) in 2009 detected elevated concentrations of tetrachloroethene (PCE) and trichloroethene (TCE) in soil vapor in Betty Brite Dry Cleaners and PCE-impacted groundwater underlying the adjoining parking lot to the east (inferred downgradient) (Golder, 2009). Groundwater samples were also analyzed for petroleum hydrocarbon identification and associated volatile organic compounds (VOCs). Petroleum hydrocarbons were not detected; however, benzene was identified in one of the groundwater samples collected beneath the parking lot adjacent to Betty Brite Dry Cleaners.

1.1 Regulatory Framework

The City received an Integrated Planning Grant (IPG) from Ecology supporting site assessment and development of a community-based plan to transform the Property into a revitalized asset for the community. The purpose of this focused site assessment is to characterize the nature and extent of the hazardous substance contamination, evaluate potential risk to human health, and screen potential cleanup alternatives. This assessment has been completed for the Property to address the substantive requirements of Washington Administrative Code (WAC) 173-340 of the Model Toxics Control Act (MTCA). The assessment was conducted generally consistent with the Ecology-approved work plan (MFA, 2014). Additionally, the scope of work for the focused site assessment was developed in general accordance with the American Society for Testing and Materials,

International (ASTM) Standard E 1903-11 for Phase II environmental site assessments (ESAs) (ASTM, 2011)and Standard EE 1689 – 95 for developing conceptual site models (CSMs) for contaminated sites (ASTM, 2014). Initial investigation efforts associated with this focused site assessment were limited to evaluating the nature and extent of contamination associated with the Site on the Property; however, based upon the initial investigation results and available funding under the IPG, a limited, supplemental investigation was also conducted to evaluate off-Property impacts.

1.2 Site Assessment Objectives

Historical site assessments identified hazardous substances, including VOCs, particularly PCE and benzene in groundwater at the Property. Site assessment objectives included the following:

- Review of the results of the historical investigations
- Assessing the validity of historical data and data quality objectives for additional site characterization
- Further characterization of the nature and extent of hazardous substances in environmental media above MTCA cleanup levels (CULs), as well as sources of contamination
- Developing a CSM and evaluating potential risk to current and reasonably likely future human receptors at the Property
- Evaluating potential cleanup options for impacted media on the Property

2 background

This section describes the physical location and characteristics of the Property, including the geology and hydrogeology, and summarizes the site history and previous investigations.

2.1 Site Description

The Property is located in the southwest quarter of section 22, township 23 north, range 4 east, of the Willamette Meridian (see Figure 1). The Property comprises three parcels: an irregular, 0.43-acre tax parcel (parcel number 0043000020); an irregular, rectangular-shaped, 0.11-acre tax parcel (parcel number 0043000093); The Property's general surface topography ranges from sloping to the east-southeast at parcel number 0043000020 to generally flat, with a slight downward slope to the east, at the remaining parcels.

Parcel 0443000020 is currently zoned "Community Business" with an "Urban Center" overlay (CB-C), and parcels 0043000100 and 0043000093 are zoned "Commercial" (C). Parcel 0443000020,

located at the southwest corner of South 152nd Street and Military Road South, is occupied by the law offices of Brian Wicks (15201 Military Road South), Tsehay Beauty Supply (15203 Military Road South), Mana Market and Shuruba Salon (15205 Military Road South), Betty Brite Dry Cleaners (15209 Military Road South), Tarak Mini Market and Halal (15213 Military Road South), and the Pancake Chef (15215 Military Road South). The Property is presented in Figure 2. The Pancake Chef is located on the western edge of the parcel and shares its eastern wall with the back (western) side of the retail strip mall below, where the abovementioned six businesses are located. The parking lot for the Pancake Chef is located on the roof of the retail strip mall. Parcels 0043000100 and 0043000093, located at the southeast corner of South 152nd Street and Military Road South, are currently occupied by a parking lot and a money transfer service business, respectively.

2.2 Site History

Archival records indicate that a dry-cleaning business has operated at parcel 0043000020 since building construction in 1959. Betty Brite Dry Cleaners has operated at this location since at least 1999. Archival records also indicate that a two-story office building has occupied parcel 0043000093 from 1949 to the present. Historical usages included real estate and insurance businesses. The adjoining parcel to the north, parcel 0043000100, has historically been used as a parking lot.

2.3 Previous Investigations

Golder conducted a subsurface investigation on the Property in 2009 to assess soil and groundwater related to Betty Brite Dry Cleaners. MFA conducted a Phase I ESA at the Property in July 2013 (MFA, 2013). MFA identified recognized environmental conditions, per ASTM E 1527-05 (ASTM, 2011), based on Golder's findings.

PCE-impacted groundwater was identified. However, the nature and extent of this halogenated VOC (HVOC) contamination at the Property associated with dry-cleaning operations have not been characterized. Additionally, evaluation of the potential presence of an abandoned historical UST and associated impacts has not been completed.

The following are reports that have been completed in association with the evaluation of potential PCE and petroleum hydrocarbon impacts, as well as to identify any additional environmental concerns on the Property. Environmental concerns identified by MFA are discussed in the next section (Section 2.4).

- Draft report on the groundwater, soil, and soil vapor investigation at the Pancake Chef property (Golder, 2009).
- Phase I ESA, City of SeaTac (MFA, 2013).

2.4 Known or Potential Environmental Conditions

MFA conducted a Phase I ESA for the Property in 2013 and identified several features as recognized environmental conditions. The sampling approach for the subsurface investigation was designed to investigate these features as well as to address data gaps, including the following:

- Betty Brite Dry Cleaners—confirmed groundwater impacts: A Phase II ESA, conducted by Golder in 2009, confirmed that historical operations of dry-cleaning businesses at Betty Brite Dry Cleaners and previous dry cleaners' operations at this parcel have adversely impacted the subsurface, including soil vapor, soil, and groundwater. PCE concentrations above MTCA Method A CULs were identified in groundwater at borings advanced in the parking lot east (inferred downgradient) of the dry-cleaning business. PCE and TCE were identified in soil vapor samples collected below the subslab inside the business and outside, beneath the adjoining parking lot. PCE, detected in a soil sample collected at 14 to 16 feet below ground surface (bgs) in the adjoining parking lot, was below the MTCA Method A CUL (Golder, 2009). The presence of petroleum hydrocarbons was not identified in the soil samples collected; however, benzene was reported in groundwater at concentrations below the associated MTCA Method A CUL. The nature and extent of the impacts have not been delineated and a risk screening was not performed as part of any prior ESA activities.
- **Inactive Oil Furnace**—An inactive oil furnace is located in a utility closet behind the strip mall, accessed only from the mini-market business at parcel 0043000020. The presence of the furnace as well as archival information regarding the heating source at this parcel indicate the potential presence of an abandoned heating oil UST at this parcel.

2.5 Geology and Hydrogeology

The subsurface conditions at the Property, at locations of investigation, generally consist of approximately 15 to 20 feet of sand, ranging from well sorted to poorly sorted, medium dense sand with silt and clay, overlying an approximately 10- to 15-foot-thick deposit of dense, silty sand.

The matrix of the unconfined shallow aquifer appears to be silty sand. Groundwater, encountered during subsurface exploration activities, ranged approximately from 20 to 33 feet bgs. The direction of groundwater flow at the Property during the June 2014 investigation event, based on professionally surveyed elevations at borings CST-B5 through CST-B8, is generally to the south-southeast (refer to Figure 3).

3 FIELD AND ANALYTICAL METHODS

The initial field site assessment was conducted in June 2014 and focused on assessing identified recognized environmental conditions at the Property (borings CST-B1 through CST-B8). The June 2014 investigation included evaluation of soil and groundwater for potential chemicals of interest (COIs), including HVOCs, diesel- and lube-oil-range total petroleum hydrocarbons (TPH), and petroleum-fuel-related VOCs, specifically benzene, toluene, ethylbenzene, and total xylenes. Based upon the results of the June 2014 investigation, a supplemental investigation that consisted of evaluation of soil and groundwater for HVOCs was conducted in March 2015 (borings CST-B9 through CST-B13).

Prior to the June 2014 subsurface exploration, Global Geophysics conducted a geophysical survey, employing electromagnetic induction to identify the potential presence of an abandoned heating oil UST associated with a historical oil burner furnace at parcel 0043000020. An abandoned heating oil UST was identified near the southeast corner of this parcel. The geophysical survey report is presented in Appendix B.

All samples collected under this focused site assessment were submitted to OnSite Environmental Inc. of Redmond, Washington, for analysis under standard chain-of-custody procedures. The investigations included collection of groundwater and soil samples at the following locations (see Figure 2):

CST- B1 and CST-B4: Adjacent on the east and west sides, respectively, of the Betty Brite Cleaners dry cleaning machine. Shallow soil samples were collected to evaluate potential soil PCE impacts near the footprint of the dry cleaning machine.

CST-B2 and CST-B3: East and southeast, respectively, of the dry cleaning machine at inferred downgradient locales. Soil samples were collected to evaluate potential soil PCE impacts.

CST-B5: East of Betty Brite Dry Cleaners, at the strip mall parking lot, inferred downgradient locale. Soil and groundwater samples were collected to evaluate potential PCE impacts.

CST-B6: Southeast of Betty Brite Dry Cleaners, at the strip mall parking lot, inferred downgradient locale near the southeast parcel boundary. This boring was also placed adjacent east, inferred downgradient, of the abandoned heating oil UST. Soil and groundwater samples were collected to evaluate potential PCE and petroleum hydrocarbons impacts.

CST-B7: Northeast of Betty Brite Dry Cleaners, at the strip mall parking lot, inferred downgradient locale near the eastern parcel boundary. Soil and groundwater samples were collected to evaluate potential PCE impacts.

CST-B8: East-southeast of Betty Brite Dry Cleaners, adjacent east of Military Road South at the triangle parcel, inferred downgradient locale. Soil and groundwater samples were collected to evaluate potential PCE impacts.

CST-B9 through CST-B11: Southeast and inferred downgradient of the Betty Brite Dry Cleaners and located off-Property in the City-owned SeaTac Center parking lot. Soil and groundwater samples were collected to better delineate the extent of potential off-Property PCE impacts.

CST-B12 and CST-B13: Southeast and inferred downgradient of the Betty Brite Dry Cleaners and located off-Property on a Sound Transit-owned parking lot. Soil and groundwater samples were collected to better delineate the extent of potential off-Property PCE impacts.

Pacific Geomatic Services (PGS) conducted an ALTA land title survey of the Property (Appendix C). The ground elevation at each boring (CST-B1 through CST-B8) was professionally surveyed by PGS. Subsequent groundwater elevation data was used for drafting groundwater potentiometric map for the Property.

3.1 Soil Sampling

Soil samples were collected from soil borings (see Figure 2 for sample locations). Four continuous soil cores (CST-B1 through CST-B4) were advanced within the Betty Brite Cleaners building using a direct-push drilling rig following coring through the foundation. Borings were advanced from the building foundation to drilling refusal, which was generally encountered between 2 and 4 feet bgs. Soil samples were collected at the bottom of each borehole, at the maximum depth explored.

At boreholes advanced at the Betty Brite parcel parking lot (CST-B5 through CST-B7) and at the triangle parcels (CST-B8), soil cores were collected via a split spoon sampler at intervals ranging from 2.5 to 5 feet with a hollow-stem auger drilling rig from ground surface to the bottom of each borehole. Soil samples were generally collected between 5.0 and 31.5 feet bgs and within the capillary fringe of the water table and near the bottom of each borehole in order to evaluate potential density-driven impacts characteristic of a dense nonaqueous-phase liquid release (e.g., PCE). Borings CST-B10 (SeaTac Center parking lot) and CST-B12 (Sound Transit property) were also advanced using a hollow-stem auger drilling rig with soil samples collected via a split spoon sampler within the capillary fringe of the water table. Soil conditions of all borings were described and visual and olfactory observations of the soil were recorded. Soil collected during the investigation was also screened for organic vapors, using a photoionization detector (PID). Boring logs are provided in Appendix A.

All soil samples collected were analyzed. The selection of samples for analysis was based on observed potential impacts, elevated head-space readings collected with a PID, depth of the sample with respect to the capillary fringe and total depth of the borehole, and/or on information from previous investigations. Table 1 summarizes soil samples submitted for analysis.

Soil samples collected during the investigation were analyzed for the following:

- VOCs, including HVOCs and selected petroleum fuel VOCs (including benzene, toluene, ethylbenzene, and xylenes) by U.S. Environmental Protection Agency (USEPA) Method 8260C with USEPA 5035 sample preparation.
- Diesel- and lube-oil-range TPH by the Northwest Method NWTPH-Dx Extended (sample collected from CST-B6 only).

3.2 Groundwater Sampling

Groundwater samples were collected from the water table and from the lower extent of the shallow aquifer¹ in order to evaluate potential density-driven impacts characteristic of a dense nonaqueousphase liquid release (e.g., PCE). Groundwater samples were collected from borings CST-B5 through CST-B13 (see Figure 2 for sample locations). All groundwater sampling was conducted using the methods and protocols outlined in MFA's sampling and analysis plan (MFA, 20014). Groundwater field sampling data sheets are provided in Appendix D.

¹ The lower screened interval extended to the bottom of each borehole.

R:\0879.01 City of SeaTac\Report\02_2015.04.13 Focused Site Assessment Report\FINAL SeaTac Focused Site Assessment Rpt.docx

All groundwater samples were analyzed for VOCs by USEPA Method 8260C. Selected groundwater samples (collected from borings CST-B6 through CST-B8) were also analyzed for diesel- and lube-oil-range TPH.

Additionally, groundwater samples collected from borings CST-B5 through CST-B8 were also analyzed for the following geochemical parameters to pre-screen for the presence of electron acceptors for assessment of the potential reductive dechlorination process:

- Nitrate by USEPA 353.2
- Ferrous iron (Fe2+) by USEPA ApplEnvMic7-87-1536
- Sulfate by ASTM D516-02
- Sulfide by SM 4500-S2
- Chloride by SM 4500-Cl
- Methane by RSK 175

ANALYTICAL RESULTS

Laboratory analytical reports are provided in Appendix E. Analytical data and the laboratory's internal quality assurance and quality control data were reviewed to assess whether they meet project-specific data quality objectives. This review was performed consistent with accepted USEPA procedures for evaluating laboratory analytical data and appropriate laboratory and method-specific guidelines (USEPA, 2004, 2008). Data validation memoranda summarizing data evaluation procedures, usability of data, and deviations from specific field and/or laboratory methods for the investigation data are presented in Appendix F. The data are considered acceptable for their intended use, with the appropriate data qualifiers assigned.

4.1 Soil

Soil analytical results are summarized in Table 1. Eighteen soil samples were collected from thirteen boring locations (see Figure 2). All soil samples collected were analyzed. All samples were analyzed for VOCs, and only one VOC was detected in one sample: PCE at 0.068 milligrams per kilogram (mg/kg) at CST-B8 (30.5 feet bgs). Two samples were analyzed for TPH. Diesel- and lube-oil-range organics were not detected at CST-B6, at depths of 8 and 31.5 feet bgs. The risk screening section (Section 6) includes a discussion of soil chemical detections compared to their respective CULs.

4.2 Groundwater

The groundwater analytical results are summarized in Table 2, and PCE-specific results are shown in Figure 4. Nine groundwater samples were collected from nine boring locations (CST-B5 through CST-B13). All samples collected were analyzed for VOCs. PCE was the only HVOC detected in groundwater at all locations of the June 2014 investigation, at concentrations ranging from 31 micrograms per liter (ug/L) to 180 ug/L. TCE was detected only at CST-B8, at 3.2 ug/L. No

HVOCs were detected in any of the groundwater samples collected during the supplemental, March 2015 investigation (borings CST-B9 through CST-B13). Groundwater was collected at depths ranging from 20.0 to 38.6 feet bgs.

Diesel- and lube-oil-range organics were not detected in groundwater samples collected for analysis (from CST-B6 through CST-B8). Detections of selected geochemical parameters (chloride, nitrate, sulfate, sulfide, methane, and Fe2+) in all groundwater samples are presented in Table 2. The risk screening section (Section 6) includes a discussion of groundwater chemical detections compared to their respective CULs.

5 CONCEPTUAL SITE MODEL

The CSM describes potential chemical sources, release mechanisms, environmental transport processes, exposure routes, and receptors. Development of a CSM is dynamic and iterative and may be refined as additional information becomes available. The primary purpose of the CSM is to describe pathways by which human and ecological receptors could be exposed to site-related chemicals. A complete exposure pathway consists of four necessary elements: (1) a source and mechanism of chemical release to the environment, (2) an environmental transport medium for a released chemical, (3) a point of potential contact with the impacted medium (referred to as the exposure point), and (4) an exposure route (e.g., soil ingestion) at the exposure point. The CSM describes potential exposure scenarios based on information collected during the site assessment. All of these components and the relationship between them are fundamental in determining potential adverse effects that could be posed by constituents at the facility. Elements of potentially complete exposure scenarios relevant to human health and ecological receptors are discussed below and are presented in Figure 5.

5.1 Source Characterization

Dry-cleaning businesses have operated on the Property at parcel 0043000020 since the building was constructed in 1959. Betty Brite Dry Cleaners has operated at this location since at least 1999. Additionally, historical archival information indicates that an oil burner served as the heating source at this parcel. The potential exists that, historically, a heating oil UST was used at this parcel. Activities associated with the dry cleaner's operations and the oil burner may have resulted in the release of hazardous substances that have potentially impacted environmental media at the Property.

Chemicals of potential concern on the Property include HVOCs and TPH. PCE is still used at Betty Brite Dry Cleaners. Hence, it provides a continuing potential source of hazardous-substance releases at the Property. An investigation conducted by Golder in 2009 detected elevated concentrations of PCE and TCE in soil vapor in Betty Brite Dry Cleaners, and PCE-impacted groundwater underlying the adjoining parking lot to the east (inferred downgradient) of Betty Brite Dry Cleaners. Further characterization of the source area and the adjacent downgradient area, generally to the east (including southeast and northeast) of the dry cleaner business is needed to assess the lateral and vertical extent of the PCE impact. Additionally, further characterization in the interior of Betty Brite Dry Cleaners is needed to assess whether shallow soil within the immediate footprint of the dry cleaning machine and areas nearby have been adversely impacted.

5.2 Fate and Transport of Contaminants

The primary mechanisms likely to influence the fate and transport of chemicals include natural biodegradation of organic chemicals, sorption to soil, advection and dispersion in groundwater, volatilization from soil or groundwater to air, and leaching of chemicals from soil to groundwater. The relative importance of these processes will vary, depending on the chemical and physical properties of a released contaminant. The properties of soil and the dynamics of groundwater flow also shape contaminant fate and transport.

Chemicals with sufficiently high solubility could leach from soil to pore water, and dissolved chemicals could be transported downward to local groundwater. PCE, however, was not detected in soil. In the dissolved phase, volatilization, dispersion, retardation, and biodegradation may act to further reduce concentrations of chemicals in groundwater downgradient of a source area. The fate and transport of PCE is discussed in more detail in the next section.

Much of the Property is paved; however, the Property's asphalt paving is deteriorated. The dry cleaner store does not currently have a floor drain, which was evaluated as a potential conduit to soil and/or groundwater. Hence, no contamination associated with this feature was identified. Soil impacts are limited to one PCE exceedance at boring CST-B8, located southeast of the dry cleaner business, in the triangle parcel. The slight PCE soil exceedance (0.068 mg/kg) likely is associated with the moist to wet soil encountered below the water table in CST-B8 during drilling. In our professional opinion, the exceedance is representative of the dissolved phase of PCE in groundwater.

PCE-impacted groundwater was encountered at all locations explored during the initial June 2014 investigation, including at borings adjacent east (CST-B5) of Betty Brite Dry Cleaners, southeast (CST-B6), and northeast (CST-B7), as well as adjacent east of Military Road South in the triangle parcel (CST-B8). These locations are deemed downgradient of the source area, based on the groundwater potentiometric map (Figure 3), which shows a south-southeasterly groundwater flow direction. However, PCE was not detected in any of the groundwater samples collected during the supplemental March 2015 investigation (borings CST-B9 through CST-B13); all of which were advanced at inferred downgradient locations of the initial June 2014 investigation. Figure 5 presents a CSM summarizing potential transport pathways.

PCE Fate and Transport

Analysis of the PCE data from the Property indicates that dissolved-phase PCE has migrated off the Property to locales east, southeast, and northeast of the Property. The lateral extent of PCE-impacted groundwater at off-Property areas is currently only partially defined because of the scope of this investigation. Detections of geochemical parameters and their associated concentrations in the groundwater media at borings CST-B5 through CST-B8 indicate the presence of electron

acceptors that is conducive to the reductive dechlorination process of PCE, and the groundwater media likely would be supportive of reductive dechlorination as a cleanup option.

Advection, dispersion, and sorption likely are the most significant mechanisms for naturally attenuating PCE concentrations at the Property. Biodegradation by anaerobic reductive dechlorination is not a likely mechanism, based on the lack of detections of PCE daughter products (e.g., TCE, *cis*-1,2-dichlorethene, vinyl chloride [VC]), and the aerobic groundwater conditions. Aerobic conditions are characterized by dissolved-oxygen concentrations greater than 1 milligram per liter (mg/L) (USEPA, 1998), as observed at two of the groundwater sampling points at the Betty Brite parcel. Abiotic degradation (e.g., hydrolysis and dehydrohalogenation) of PCE may also be occurring. While these processes may potentially be significant attenuation mechanisms, it is not practical to demonstrate that these processes are occurring at the Property, given the difficulties of detecting the unstable breakdown products (e.g., acids and alcohols) on a field scale (USEPA, 1998). However, without additional data, we cannot exclude the possibility that sequential dechlorination is occurring. Because of the lack of historical and currently limited groundwater analytical data as well as a lack of adequate downgradient off-property groundwater data, MFA is unable to assess at this time the lateral and vertical off-site extent of the dissolved-phase PCE plume.

Potential reasons and pathways for PCE to migrate into the subsurface beneath the Property include the following: historical use of PCE from the 1960s to the present time; spills and leakages during dry cleaning operations; poor concrete floor surface (i.e., porous and structurally unsound); subsurface soils with inherently high porosity and transmissivity characteristics; and relatively shallow depth to groundwater. Additional data (soil and groundwater analytical results and subsurface soil) are required from areas east to south-southeast of the Property to complete the offproperty characterization of the dissolved-phase PCE plume.

5.3 Potential Soil Exposure Scenarios

The Property is currently zoned as commercial business. It is likely that the Property will be redeveloped for mixed residential and commercial use, which may include retail, restaurants, and service industries. Therefore, it is possible that construction workers, commercial workers, and/or residents will occupy the Property in the foreseeable future.

Soil impact at the Property, based on locations of investigation, is limited to one PCE exceedance in soil at the triangle parcel (CST-B8)—refer to Table 1. The exceedance is vertically bounded by 30.5 feet bgs. In our professional opinion, it is likely that this exceedance is due to the moisture in the soil, which was representative of the dissolved-phase PCE in groundwater and not representative of the soil component. MFA collected soil samples from various depths during subsurface investigation to assess the potential for adverse impact. Depths assessed included shallow soil from approximately 5 to 20 feet bgs, the capillary fringe/water table zone from 20 to 33 feet bgs, and depth near the bottom of each boring. However, complete assessment of shallow soil (within 15 feet bgs) from directly beneath the Betty Brite Dry Cleaners building was not feasible. As a result, there is a potential for the presence of PCE within the shallow soil directly beneath the building (suspected source) at concentrations exceeding the associated CUL.

The Property and surrounding area consist of commercial and residential properties, which are unlikely to provide quality ecological habitat or important resources for wildlife. Given the Property's low habitat quality, ecological exposure to soil on the Property is expected to be insignificant. A simplified terrestrial ecological evaluation, completed for the Property determined that the site does not pose a substantial threat to potential ecological receptors (see Appendix G). Therefore, soil analytical results will not be compared to ecological screening values.

The following pathways are potentially incomplete for human health exposure to soil:

On-site residential and commercial workers—Because chemical concentrations have not been fully defined within shallow soil (top 15 feet bgs) directly beneath the Betty Brite Dry Cleaners building, the potential for contaminant exposure in soil for residential and commercial workers at the Property cannot be ruled out (Figure 5). The pathways by which future residences and workers could potentially be exposed to chemicals in soil include direct skin contact with soil, incidental ingestion of soil, and inhalation of soil particulates.

On-site construction workers—There are currently no construction workers (e.g., excavation workers, trench workers) on the Property. Construction activities likely will be performed as part of redevelopment. Construction workers could contact chemicals in soil, if present within the top 15 feet bgs, through incidental ingestion, dermal contact, and inhalation of impacted soil particulates.

The CSM specific to potential exposure to soil contamination should be reviewed and revised, as appropriate, should characterization of soil within the top 15 feet bgs from beneath the Betty Brite Dry Cleaners building be completed in the future.

5.4 Potential Groundwater Exposure Scenarios

The depth to groundwater at the Property is between approximately 25 and 28 feet bgs. Groundwater is inferred to flow in a south-southeasterly direction, based on groundwater monitoring data from this subsurface investigation.

Shallow groundwater is not currently used and is not likely to be used in the future. In addition, future construction activities would not include excavation to depths approaching the groundwater table. Therefore, the ingestion, direct-contact, and inhalation pathways for groundwater are currently incomplete (Figure 5).

PCE volatilizing from groundwater to outdoor air is an insignificant exposure pathway because of the depth to groundwater and rapid dispersion in outdoor air.

PCE exceeds the Ecology vapor-intrusion-to-indoor-air Method B groundwater screening level of 1 ug/L (Ecology, 2009). Groundwater samples were collected at borings CST-B5 through CST-B8. PCE concentrations exhibited at these borings ranged from 31 ug/L to 180 ug/L (refer to Figure 4). The combination of PCE impact to shallow groundwater and PCE present in subslab soil samples from beneath Betty Brite Dry Cleaners results in vapor intrusion concerns for the Property. The groundwater volatilization to indoor air pathway is complete.

5.5 Potential Soil Vapor Exposure Scenarios

PCE and TCE were identified in soil vapor samples collected below the subslab inside Betty Brite Dry Cleaners and outside, beneath the adjoining parking lot, as well as from ambient air of the business (Golder, 2009).

Golder reported that PCE (49 parts per billion by volume [ppbv] to 130 ppbv) and TCE (64 ppbv to 93 ppbv) were exhibited in all interior soil vapor samples. However, the highest concentrations of PCE (370 ppbv) and TCE (160 ppbv) were reported from ambient air samples collected within the dry cleaner business. Subsequently, Golder reported that "based on these analytical results and cracks observed within the concrete slab beneath the dry cleaning equipment, it was not possible to eliminate ambient air as the source of TCE and PCE in the sub-slab vapor samples" (Golder, 2009).

PCE and TCE were exhibited in soil gas (at less than 10-foot bgs) above Ecology screening levels of 1.0 and 4.2 micrograms per cubic meter (or ppbv), respectively. The elevated concentrations of these COIs pose a vapor intrusion threat to the Property and its commercial and (future) construction workers. However, the elevated ambient indoor vapor results indicate that it is a potential source of vapor intrusion for the interior of the dry-cleaning business. The vapor intrusion to indoor pathway is complete (Figure 5).

5.6 Cleanup Standards

According to MTCA, the cleanup standards for a particular site have two primary components: chemical-specific CULs and points of compliance (POCs). The CUL is the concentration of a chemical in a specific environmental medium that will not pose unacceptable risks to human health or the environment. The POC is the location where the CUL must be met.

MTCA provides three different options for establishing CULs for human health: Method A, Method B, and Method C. For Methods B and C, either the standard or the modified approach can be used. The standard method uses generic default assumptions to calculate CULs, and the modified method allows for site-specific adjustments to some assumptions when calculating CULs.

MTCA Method A is designed for cleanups at relatively simple sites, such as small sites that have only a few hazardous substances. Method B can be used at any site. Method C is used primarily for industrial sites.

5.6.1 Soil Cleanup Levels

The Property historically has been used for commercial purposes and it is anticipated that it will be used for commercial and/or mixed-use purposes in the future. Soil on the Property, at locations of investigation, is not impacted by the COIs, PCE and breakdown products, or TPH. Soil screened to Method A CULs for unrestricted land use were applied.

Soil CULs for the protection of potable groundwater (leaching to groundwater pathway) do not appear to be applicable as potential cleanup targets for soil on the Property because empirical evidence indicates that soil impacts are not causing unacceptable groundwater concentrations. The soil-to-drinking-water pathway was deemed incomplete based on the current and unlikely future uses of shallow groundwater at the Property and surrounding area.

5.6.1.1 Points of Compliance in Soil

The soil POC is the depth bgs at which soil CULs shall be attained. The standard POC is soil within 15 feet of the ground surface throughout the entire site. This standard POC is applied to soil on the Property. As discussed below, impacts were not exhibited in soil.

5.6.2 Groundwater Cleanup Levels

Historically, the Property has been used for commercial purposes and it is anticipated that it will continued to be used for commercial or mixed-use purposes in the future. Shallow groundwater at the Property is impacted by PCE. The Method A groundwater CUL is deemed applicable for the Property.

5.6.2.1 Points of Compliance in Groundwater

For groundwater, the POC is the point or points where the groundwater CULs must be attained for a site to be in compliance with the cleanup standards. Groundwater CULs shall be attained in all groundwater from the POC to the outer boundary of the dissolved-phase PCE plume.

5.6.3 Soil Vapor Cleanup Levels

Based on the elevated PCE and TCE concentrations identified by Golder in soil vapor samples collected from the interior of Betty Brite Dry Cleaners and the adjoining parking lot, and within ambient air of the business, a complete vapor intrusion assessment will be necessary after acquisition of the necessary data components presented above.

Soil vapor CULs will be referenced from Ecology's guidance for evaluating soil vapor intrusion (Ecology, 2009) and the USEPA's draft guidance for evaluating the vapor intrusion to indoor air pathway from groundwater and soils (USEPA, 2002).

The soil and groundwater sample results were compared to MTCA Method A CULs for unrestricted use (see Tables 1 and 2). Indicator hazardous substances (IHSs) are evaluated below by comparing the concentrations found in soil and groundwater to their respective CULs. An IHS is defined as a chemical exceeding a CUL at one or more locations.

6.1 Soil

Soil analytical results are compared to MTCA Methods A soil CULs for unrestricted land use. COIs, VOCs and TPH, were not detected above associated CULs in soil samples, with exception to sample CST-B8-S-30.5, submitted for laboratory analysis (refer to Table 1).

6.2 Groundwater

Groundwater analytical results are compared to MTCA Method A groundwater CULs. PCE was the only constituent identified in groundwater above associated CULs, with all sample analytical results of on-Property samples collected during the June 2014 investigation indicating PCE concentrations above the MTCA Method A groundwater CUL (refer to Table 2 and Figure 4). TCE was exhibited only at one boring, CST-B8, at concentration below the associated CUL. PCE is considered an IHS for the Property because of the elevated detections.

6.3 Summary

The only IHS identified at the Property is PCE in groundwater. The long historical use/operation of PCE at Betty Brite Dry Cleaners is likely the source of contamination. Building subslab conditions in the interior of the dry cleaner business and subsurface conditions (porous and transmissive soil, and relatively shallow groundwater) have resulted in adverse impact at the Property and downgradient generally to the south-southeast of the dry cleaner business. The lateral and vertical extent of PCE-impacted groundwater has not been fully characterized. Installation of monitoring wells both at on-site and off-Property locales will be necessary to delineate the extent of the off-Property dissolved-phase PCE groundwater plume. Additionally, a complete vapor intrusion assessment should be conducted concurrently with the future site characterization.

7 CONCLUSIONS

A focused subsurface investigation was completed to evaluate the nature and extent of VOCs and TPH in soil and groundwater at the Property and only VOCs at off-Property locations. The site investigation results and risk screening indicate that, of these COIs, only a halogenated VOC, specifically PCE, had adversely impacted soil and groundwater at the Property and is the Property's only IHS. However, the single detection of PCE in soil at the southeast area of the Property likely can be attributed to the presence of moist to wet moisture (i.e., representative of dissolved-phase PCE in groundwater) in this soil sample and is consequently not representative of the soil matrix. Because the uppermost 15 feet of soil beneath the Betty Brite Cleaners building could not be characterized, there is a potential for PCE to exist within this soil column that could create a potential exposure pathway for humans. That said, human direct contact pathways were deemed as incomplete for groundwater based on the current and unlikely future uses of shallow groundwater at the Property and surrounding area.

Findings from the ESA and subsurface investigations indicate that the Property's dry cleaner business, in operation from the 1960s to the present, is the likely source of PCE groundwater contamination beneath the Property. Additional site characterization downgradient and off-Property generally to the east and southeast of the Property is necessary to fully characterize the lateral and vertical extent of the dissolved-phase PCE plume. Installation of monitoring wells both on and off-Property should also be completed during this phase. Completion of a vapor intrusion assessment concurrently with additional site characterization is also recommended. Establishment of protective soil gas concentrations for the vapor intrusion pathway during a future phase of characterization, to protect current and future indoor air quality, is also recommended.

8 CLEANUP ACTION EVALUATION

This section summarizes two remedial alternatives for addressing the contamination identified on the Property. These alternatives are not all-inclusive, but represent the most likely cleanup scenarios and encompass a range from relatively aggressive to relatively limited remedial actions. Depending on the configuration of the Property redevelopment, additional cleanup alternatives could be developed and evaluated. Because the lateral extent of groundwater contamination remains undefined and likely extends beyond the Property boundaries, cleanup alternatives have been limited to on-Property, source-specific remedial actions.

8.1 Alternative 1: In situ Bioremediation—Enhanced Anaerobic Bioremediation

This alternative represents one of two options for groundwater remediation, but both Alternatives 1 and 2 include the same proposed remedy for dissolved-phase PCE-contaminated groundwater. Alternative 1 includes the following actions:

- Dissolved-phase PCE in Groundwater Treatment
 - Remediation via in situ bioremediation—enhanced anaerobic bioremediation: install dedicated monitoring wells at the Property and obtain an underground injection control permit from Ecology to conduct the in situ bioremediation by injection of bioremediation products into monitoring wells installed throughout the Property at areas exhibiting PCE concentrations above the CUL and at wells located within the dissolved phase plume at the Property. A baseline groundwater monitoring/sampling event will be conducted before the initial bioremediation injection to obtain background groundwater quality and parameters.
 - Conduct consecutive quarterly groundwater monitoring and sampling events and VOC analysis at designated monitoring wells for two years, followed by semiannual monitoring for a minimum of one additional year to meet the following objectives:
 (1) confirm effectiveness of the in situ treatment;
 (2) collect the necessary data for supporting a request for a No Further Action (NFA) or potentially a property-

specific NFA determination based on compliance with CULs; and (3) confirm that PCE-impacted groundwater is not migrating past the POC or downgradient of the Property boundary.

• The estimated cost of \$452,800 for this alternative is presented in Table 3.

8.2 Alternative 2: Monitored Natural Attenuation

Alternative 2 relies on the natural biodegradation of PCE. This approach for remediation of PCEcontaminated groundwater involves the progress of natural attenuation processes, including advection, dispersion, and sorption as the most significant mechanisms for naturally attenuating PCE concentrations at the Property to degrade PCE to its successive daughter (i.e., breakdown) products. Long-term monitoring of groundwater quality and natural attenuation of PCE for at least ten years of consecutive quarterly groundwater monitoring/sampling events is proposed. The estimated cost of \$635,700 for this alternative is presented in Table 4.

8.3 Evaluation of Cleanup Alternatives

Alternative 1 provides a more aggressive, and therefore more conservative, approach to remediation of PCE-impacted groundwater. Alternative 2 provides a longer-term, higher-cost approach than Alternative 1. Alternative 2 poses a higher risk of migration of impacted groundwater to downgradient properties and requires a longer restoration timeframe for obtaining compliance with PCE CUL.

8.3.1 MTCA Threshold Requirements

Cleanup actions are subject to the threshold requirements set forth in WAC 173-340-360 (2)(a). Under the threshold requirements, the cleanup action shall:

- Protect human health and the environment.
- Comply with cleanup standards.
- Comply with applicable state and federal laws.
- Provide for compliance monitoring.

8.3.1.1 Protect Human Health and the Environment and Comply with Cleanup Standards

Alternative 1 reduces or eliminates risk from contaminated groundwater through a combination of enhanced anaerobic bioremediation and monitored natural attenuation. These remedial actions would eliminate exposure pathways and protect human health and the environment and would comply with cleanup standards. Alternative 2 would reduce risk from contaminated groundwater through monitored natural attenuation.

8.3.1.2 Comply with Applicable State and Federal Laws

The selected CULs are consistent with MTCA. Additionally, local, state, and federal laws related to environmental protection, health and safety, transportation, and disposal apply to each proposed alternative. During remedial design, the selected alternative would be designed to comply with applicable, relevant, and appropriate requirements.

8.3.1.3 Provide for Compliance Monitoring

There are three types of compliance monitoring: protection, performance, and confirmational. Protection monitoring is designed to protect human health and the environment during the construction and operation and maintenance phases of the cleanup action. Performance monitoring confirms that the cleanup action has met cleanup and/or performance standards. Confirmational monitoring confirms the long-term effectiveness of the cleanup action once cleanup standards have been met or other performance standards have been attained. Both alternatives 1 and 2 would meet this provision, as it would require varying levels of all three types of compliance monitoring.

8.4 Other Criteria

MTCA states that when selecting a cleanup alternative, preference shall be given to "permanent solutions to the maximum extent practicable." "Permanent" is defined in WAC 173-340-200 as a cleanup action in which the cleanup standards of WAC 173-340-700 through 760 are met without further action being required at the site being cleaned up or at any other site involved with the cleanup action, other than the approved disposal of any residue from the treatment of hazardous substances.

In order to determine the "maximum extent practicable" for each alternative, a disproportionatecost analysis outlined in WAC 173-340-360(3)(e) is used. Costs are determined to be disproportionate to benefits if the incremental cost of a more expensive alternative over that of a lower-cost alternative exceeds the incremental degree of benefits achieved by the more expensive alternative. As outlined in WAC 173-340-360(3)(f), the evaluation criteria used were a mix of qualitative and quantitative factors, including protectiveness, permanence, effectiveness over the long term, management of short-term risks, technical and administrative implementability, and consideration of public concerns.

The cleanup alternatives are evaluated by the criteria below.

8.4.1 Protectiveness

Protectiveness is a factor by which human health and the environment are protected by the cleanup action, including the degree to which existing risks are reduced; time required to reduce risk at the facility and attain cleanup standards; on-site and off-site risks resulting from implementing the cleanup action alternative; and improvement of the overall environmental quality. Both of the cleanup alternatives are protective. Alternative 1 has the highest degree of protectiveness because it would actively reduce groundwater PCE concentrations below CULs in a relatively short timeframe

(two to three years). Alternative 2 is less protective because a longer natural attenuation timeframe would be required to meet groundwater CULs.

8.4.2 Permanence

Permanence is a factor by which the cleanup action alternative permanently reduces the toxicity, mobility, or volume of hazardous substances. It takes into account the adequacy of the alternative in destroying the hazardous substances, the reduction or elimination of hazardous substance releases and sources of releases, the degree of irreversibility of the waste-treatment process, and the characteristics and quantity of treatment residuals generated. With respect to groundwater, both alternatives are considered as permanent cleanup actions. PCE is destroyed by chemically enhanced and attenuation processes in alternative 1 while alternative 2 relies on long-term natural attenuation processes to reduce and destroy PCE.

8.4.3 Effectiveness over Long Term

Long-term effectiveness includes the degree of certainty that the alternative will be successful; the reliability of the alternative for the expected duration of hazardous substances remaining on site at concentrations that exceed CULs; the magnitude of residual risk with the alternative in place; and the effectiveness of controls required to manage treatment residues or remaining wastes. The long-term effectiveness of Alternative 1 is considered higher than that of Alternative 2, since it has a greater likelihood of successfully decreasing PCE concentrations to below CULs over a shorter timeframe.

8.4.4 Management of Short-Term Risks

Short-term risks to remediation workers, the public, and the environment are assessed under this criterion. Generally, short-term risks are expected to be linearly related to the amount of material handled, treated, and/or transported and disposed of (e.g., worker injury per cubic yard excavated [equipment failure], public exposure per cubic yard-mile transported [highway accident]).

This factor addresses the risk to human health and the environment associated with the alternative during construction and implementation, and the effectiveness of measures that will be taken to manage such risks. Potential exposure via transport, handling, and injection of oxidizing chemicals required for Alternative 1 could lead to short-term risks. Alternative 2 requires only groundwater monitoring/sampling activities and therefore does not involve short-term risks.

8.4.5 Technical and Administrative Implementability

This factor addresses whether the alternative can be implemented and is technically possible. The availability of necessary materials; regulatory requirements; scheduling; access for injection operations and subsequent monitoring; and integration with existing and neighboring properties must be considered. The proposed alternatives are both well proven and have been employed at many sites throughout the United States; both are readily implementable and rank equivalently.

8.4.6 Public Concerns

This factor includes considering concerns from individuals; community groups; and local governments, tribes, federal and state agencies, and any other organization that may have an interest in or knowledge of the site and that may have a preferred alternative. Both alternatives provide opportunity for members of the public to review and comment on plans.

8.4.7 Disproportionate-Cost Analysis

In accordance with WAC 173-340-360(3)(e), the most practicable permanent solution evaluated will be the baseline cleanup action alternative to which the other cleanup action alternatives are compared. On this basis, Alternative 1 is the baseline alternative for this analysis. Table 5 summarizes the comparative analysis. Each alternative was given a rating between 1 and 5 (5 being optimal, 1 being inadequate). Where there were only slight differences, fractional ratings were applied.

Based on these criteria, Alternative 1 has a higher rating (4.8) than Alternative 2 (3.8) (Table 5). The cost for Alternative 1 (\$452,800) is approximately 71 percent of the cost of Alternative 2 (\$635,700). A more significant factor is the estimated remediation time for Alternative 1, which ranges from approximately two to three years in comparison to Alternative 2, which ranges from at least ten years to a longer period of time for groundwater quality restoration.

8.4.8 Recommended Cleanup Alternative

Based upon review of the two alternatives to MTCA criteria and in consideration of the findings of the disproportionate cost analysis, Alternative 1, In Situ Bioremediation, is selected as the preferred remedial action alternative for addressing on-Property contamination at the Betty Brite Cleaners site.

The services undertaken in completing this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this report.

ASTM. 2011. ASTM Standard E 1903-11, standard practice for environmental site assessments: Phase II environmental site assessment process. American Society for Testing and Materials, International, West Conshohocken, Pennsylvania.

ASTM. 2014. ASTM Standard EE 1689 – 95 (reapproved 2014), standard guide for developing conceptual site models for contaminated sites. American Society for Testing and Materials, International, West Conshohocken, Pennsylvania.

Ecology. 2009. Guidance for evaluating soil vapor intrusion in Washington State: investigation and remediation action. Review draft. No. 09-09-047. Washington State Department of Ecology, Toxics Cleanup Program. October.

Golder. 2009. Draft report on groundwater, soil, and soil vapor investigation, Pancake Chef property, 15201 Military Road South, SeaTac, Washington. Golder Associates, Inc. June.

MFA. 2013. Phase I environmental site assessment, City of SeaTac, South 152nd/Military Road and International Blvd. Maul Foster & Alongi, Inc., Seattle, Washington. July 15.

MFA. 2014. Focused Site Assessment Work Plan, South 154th Street Transit-Oriented Development Property. May 8.

USEPA. 1998. Technical protocol for evaluating natural attenuation of chlorinated solvents in ground water. EPA 600/R-98/128. U.S. Environmental Protection Agency, Office of Research and Development. September.

USEPA. 2002. OSWER draft guidance for evaluating the vapor intrusion to indoor air pathway from groundwater and soils (subsurface vapor intrusion guidance). EPA 530-D-02-004. U.S. Environmental Protection Agency. November.

USEPA. 2004. USEPA contract laboratory program, national functional guidelines for inorganics data review. EPA 540/R-94/013. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. October.

USEPA. 2008. USEPA contract laboratory program, national functional guidelines for organics data review. EPA 540/R-08/01. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response. June.

TABLES

Summary of Soil Analytical Results, Betty Brite Cleaners Site City of SeaTac South 154th Street TOD Property SeaTac, Washington

Location				CST_B1	CST_B2	CST_B2	CST_B3	CST_B4	CST_B5	CST_B5	CST_B6
Sample Name	MTCA	MTCA	MTCA	CST-B1-S-2.0	CST-B2-S-2.0	CST-B2-S-4.0	CST-B3-S-2.0	CST-B4-S-2.0	CST-B5-S-23.5	CST-B5-S-31.0	CST-B6-S-31.5
Date Collected	Method A	Method B	Method B	06/03/2014	06/03/2014	06/03/2014	06/03/2014	06/03/2014	06/02/2014	06/02/2014	06/02/2014
Start Depth (feet)	URLU CUL	CAR CUL	NCAR CUL	1	1	3	1	1	22.5	30	30.5
End Depth (feet)				3	3	5	3	3	24.5	32	32.5
VOCs (mg/kg)							1	1			
1,1,1,2-Tetrachloroethane	NV	38.46	2400	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
1,1,1-Trichloroethane	2	NV	160000	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
1,1,2,2-Tetrachloroethane	NV	5	1600	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
1,1,2-Trichloroethane	NV	17.54	320	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
1,1-Dichloroethane	NV	NV	16000	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
1,1-Dichloroethene	NV	NV	4000	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
1,1-Dichloropropene	NV	NV	NV	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
1,2,3-Trichlorobenzene	NV	NV	NV	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
1,2,3-Trichloropropane	NV	0.03	320	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
1,2,4-Trichlorobenzene	NV	34.5	800	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
1,2,4-Trimethylbenzene	NV	NV	NV								0.001 U
1,2-Dibromo-3-chloropropane	NV	1.25	16	0.005 U	0.0053 U	0.0052 U	0.0055 U	0.0047 U	0.0047 U	0.0047 U	0.005 U
1,2-Dibromoethane	0.005	0.5	720	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
1,2-Dichlorobenzene	NV	NV	7200	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
1,2-Dichloroethane	NV	10.99	1600	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
1,2-Dichloropropane	NV	NV	NV	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
1,3,5-Trimethylbenzene	NV	NV	800								0.001 U
1,3-Dichlorobenzene	NV	NV	NV	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
1,3-Dichloropropane	NV	NV	NV	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
1,4-Dichlorobenzene	NV	NV	NV	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
2,2-Dichloropropane	NV	NV	NV	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
2-Butanone	NV	NV	48000								0.005 U
2-Chloroethylvinyl ether	NV	NV	NV	0.005 U	0.0053 U	0.0052 U	0.0055 U	0.0047 U	0.0047 U	0.0047 U	0.005 U
2-Chlorotoluene	NV	NV	1600	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
2-Hexanone	NV	NV	NV								0.005 U
4-Chlorotoluene	NV	NV	NV	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
4-Isopropyltoluene	NV	NV	NV								0.001 U
4-Methyl-2-pentanone	NV	NV	6400								0.005 U
Acetone	NV	NV	72000								0.005 U
Benzene	0.03	18.18	320								0.001 U
Bromobenzene	NV	NV	NV	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
Bromodichloromethane	NV	16.13	1600	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
Bromoform	NV	126.58	1600	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
Bromomethane	NV	NV	112	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
Carbon disulfide	NV	NV	8000								0.001 U
Carbon tetrachloride	NV	14.3	320	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
Chlorobenzene	NV	NV	1600	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U

Table 1

Location				CST_B1	CST_B2	CST_B2	CST_B3	CST_B4	CST_B5	CST_B5	CST_B6
Sample Name	MTCA	MTCA	MTCA	CST-B1-S-2.0	CST-B2-S-2.0	CST-B2-S-4.0	CST-B3-S-2.0	CST-B4-S-2.0	CST-B5-S-23.5	CST-B5-S-31.0	CST-B6-S-31.5
Date Collected	Method A	Method B	Method B	06/03/2014	06/03/2014	06/03/2014	06/03/2014	06/03/2014	06/02/2014	06/02/2014	06/02/2014
Start Depth (feet)	URLU CUL	CAR CUL	NCAR CUL	1	1	3	1	1	22.5	30	30.5
End Depth (feet)				3	3	5	3	3	24.5	32	32.5
Chlorobromomethane	NV	NV	NV	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
Chloroethane	NV	NV	NV	0.005 U	0.0053 U	0.0052 U	0.0055 U	0.0047 U	0.0047 U	0.0047 U	0.005 U
Chloroform	NV	NV	800	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
Chloromethane	NV	NV	NV	0.005 U	0.0053 U	0.0052 U	0.0055 U	0.0047 U	0.0047 U	0.0047 U	0.005 U
cis-1,2-Dichloroethene	NV	NV	160	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
cis-1,3-Dichloropropene	NV	NV	NV	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
Dibromochloromethane	NV	11.9	1600	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
Dibromomethane	NV	NV	800	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
Dichlorodifluoromethane	NV	NV	16000	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
Ethylbenzene	6	NV	8000								0.001 U
Hexachlorobutadiene	NV	12.82	80	0.005 U	0.0053 U	0.0052 U	0.0055 U	0.0047 U	0.0047 U	0.0047 U	0.005 U
Isopropylbenzene	NV	NV	8000								0.001 U
m,p-Xylene	NV	NV	NV								0.002 U
Methyl iodide	NV	NV	NV	0.005 U	0.0053 U	0.0052 U	0.0055 U	0.0047 U	0.0047 U	0.0047 U	0.005 U
Methyl tert-butyl ether	0.1	NV	NV								0.001 U
Methylene chloride	0.02	133.33	4800	0.005 U	0.0053 U	0.0052 U	0.0055 U	0.0047 U	0.0047 U	0.0047 U	0.005 U
Naphthalene	5	NV	1600								0.001 U
n-Butylbenzene	NV	NV	NV								0.001 U
n-Propylbenzene	NV	NV	8000								0.001 U
o-Xylene	NV	NV	16000								0.001 U
sec-Butylbenzene	NV	NV	NV								0.001 U
Styrene	NV	NV	16000								0.001 U
tert-Butylbenzene	NV	NV	NV								0.001 U
Tetrachloroethene	0.05	480	480	0.037	0.0029	0.029	0.0042	0.015	0.016	0.037	0.01
Toluene	7	NV	6400								0.005 U
trans-1,2-Dichloroethene	NV	NV	1600	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
trans-1,3-Dichloropropene	NV	NV	NV	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
Trichloroethene	0.03	12	40	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
Trichlorofluoromethane	NV	NV	24000	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
Vinyl acetate	NV	NV	80000								0.005 U
Vinyl chloride	NV	NV	240	0.001 U	0.0011 U	0.001 U	0.0011 U	0.00094 U	0.00093 U	0.00095 U	0.001 U
TPH (mg/kg)		•	-	-	-			-	•	•	-
Diesel-range hydrocarbons	2000	NV	NV								28 U
Lube-oil-range hydrocarbons	2000	NV	NV								56 U

Table 1

Summary of Soil Analytical Results, Betty Brite Cleaners Site City of SeaTac South 154th Street TOD Property SeaTac, Washington

Summary of Soil Analytical Results, Betty Brite Cleaners Site City of SeaTac South 154th Street TOD Property SeaTac, Washington

Location				CST_B6	CST_B7	CST_B7	CST_B7	CST_B7	CST_B8	CST_B8	CST_B8	CST_B10	CST_B12
Sample Name	MTCA	MTCA	MTCA	CST-B6-S-8.0	CST-B7-S-21.5	CST-B7-S-24.0	CST-B7-S-25.0	CST-B7-S-30.5	CST-B8-S-21.0	CST-B8-S-23.0	CST-B8-S-30.5	CSTB10-S-25.5	CSTB12-S-18.5
Date Collected	Method A	Method B	Method B	06/02/2014	06/02/2014	06/03/2014	06/03/2014	06/03/2014	06/03/2014	06/03/2014	06/03/2014	3/17/2015	3/16/2015
Start Depth (feet)	URLU CUL	CAR CUL	NCAR CUL	7	20.5	23	24	29.5	20	22	29.5	24	18.5
End Depth (feet)				9	22.5	25	26	31.5	22	24	31.5	25.5	20
VOCs (mg/kg)		L.		•	L	•	•	•					•
1,1,1,2-Tetrachloroethane	NV	38.46	2400	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U
1,1,1-Trichloroethane	2	NV	160000	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U
1,1,2,2-Tetrachloroethane	NV	5	1600	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U
1,1,2-Trichloroethane	NV	17.54	320	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U
1,1-Dichloroethane	NV	NV	16000	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U
1,1-Dichloroethene	NV	NV	4000	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U
1,1-Dichloropropene	NV	NV	NV	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U
1,2,3-Trichlorobenzene	NV	NV	NV	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U
1,2,3-Trichloropropane	NV	0.03	320	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U
1,2,4-Trichlorobenzene	NV	34.5	800	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U
1,2,4-Trimethylbenzene	NV	NV	NV	0.0011 U									
1,2-Dibromo-3-chloropropane	NV	1.25	16	0.0053 U	0.0043 U	0.0053 U	0.0046 U	0.0048 U	0.0042 U	0.0073 U	0.0049 U	0.0046 U	0.0074 U
1,2-Dibromoethane	0.005	0.5	720	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U
1,2-Dichlorobenzene	NV	NV	7200	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U
1,2-Dichloroethane	NV	10.99	1600	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U
1,2-Dichloropropane	NV	NV	NV	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U
1,3,5-Trimethylbenzene	NV	NV	800	0.0011 U									
1,3-Dichlorobenzene	NV	NV	NV	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U
1,3-Dichloropropane	NV	NV	NV	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U
1,4-Dichlorobenzene	NV	NV	NV	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U
2,2-Dichloropropane	NV	NV	NV	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U
2-Butanone	NV	NV	48000	0.0053 U									
2-Chloroethylvinyl ether	NV	NV	NV	0.0053 U	0.0043 U	0.0053 U	0.0046 U	0.0048 U	0.0042 U	0.0073 U	0.0049 U	0.0046 U	0.0074 U
2-Chlorotoluene	NV	NV	1600	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U
2-Hexanone	NV	NV	NV	0.0053 U									
4-Chlorotoluene	NV	NV	NV	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U
4-Isopropyltoluene	NV	NV	NV	0.0011 U									
4-Methyl-2-pentanone	NV	NV	6400	0.0053 U									
Acetone	NV	NV	72000	0.0053 U									
Benzene	0.03	18.18	320	0.0011 U									
Bromobenzene	NV	NV	NV	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U
Bromodichloromethane	NV	16.13	1600	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U
Bromoform	NV	126.58	1600	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U
Bromomethane	NV	NV	112	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U
Carbon disulfide	NV	NV	8000	0.0011 U									
Carbon tetrachloride	NV	14.3	320	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U
Chlorobenzene	NV	NV	1600	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U

Table 1

Summary of Soil Analytical Results, Betty Brite Cleaners Site City of SeaTac South 154th Street TOD Property SeaTac, Washington

Location				CST_B6	CST_B7	CST_B7	CST_B7	CST_B7	CST_B8	CST_B8	CST_B8	CST_B10	CST_B12
Sample Name	MTCA	MTCA	MTCA	CST-B6-S-8.0	CST-B7-S-21.5	CST-B7-S-24.0	CST-B7-S-25.0	CST-B7-S-30.5	CST-B8-S-21.0	CST-B8-S-23.0	CST-B8-S-30.5	CSTB10-S-25.5	CSTB12-S-18.5
Date Collected	Method A	Method B	Method B	06/02/2014	06/02/2014	06/03/2014	06/03/2014	06/03/2014	06/03/2014	06/03/2014	06/03/2014	3/17/2015	3/16/2015
Start Depth (feet)	URLU CUL	CAR CUL	NCAR CUL	7	20.5	23	24	29.5	20	22	29.5	24	18.5
End Depth (feet)				9	22.5	25	26	31.5	22	24	31.5	25.5	20
Chlorobromomethane	NV	NV	NV	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U
Chloroethane	NV	NV	NV	0.0053 U	0.0043 U	0.0053 U	0.0046 U	0.0048 U	0.0042 U	0.0073 U	0.0049 U	0.0046 U	0.0074 U
Chloroform	NV	NV	800	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U
Chloromethane	NV	NV	NV	0.0053 U	0.0043 U	0.0053 U	0.0046 U	0.0048 U	0.0042 U	0.0073 U	0.0049 U	0.0046 U	0.0074 U
cis-1,2-Dichloroethene	NV	NV	160	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.0023	0.00091 U	0.0015 U
cis-1,3-Dichloropropene	NV	NV	NV	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U
Dibromochloromethane	NV	11.9	1600	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U
Dibromomethane	NV	NV	800	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U
Dichlorodifluoromethane	NV	NV	16000	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U
Ethylbenzene	6	NV	8000	0.0011 U									
Hexachlorobutadiene	NV	12.82	80	0.0053 U	0.0043 U	0.0053 U	0.0046 U	0.0048 U	0.0042 U	0.0073 U	0.0049 U	0.0046 U	0.0074 U
Isopropylbenzene	NV	NV	8000	0.0011 U									
m,p-Xylene	NV	NV	NV	0.0021 U									
Methyl iodide	NV	NV	NV	0.0053 U	0.0043 U	0.0053 U	0.0046 U	0.0048 U	0.0042 U	0.0073 U	0.0049 U	0.0046 U	0.0074 U
Methyl tert-butyl ether	0.1	NV	NV	0.0011 U									
Methylene chloride	0.02	133.33	4800	0.0053 U	0.0043 U	0.0053 U	0.0046 U	0.0048 U	0.0042 U	0.0073 U	0.0049 U	0.0046 U	0.0074 U
Naphthalene	5	NV	1600	0.0011 U									
n-Butylbenzene	NV	NV	NV	0.0011 U									
n-Propylbenzene	NV	NV	8000	0.0011 U									
o-Xylene	NV	NV	16000	0.0011 U									
sec-Butylbenzene	NV	NV	NV	0.0011 U									
Styrene	NV	NV	16000	0.0011 U									
tert-Butylbenzene	NV	NV	NV	0.0011 U									
Tetrachloroethene	0.05	480	480	0.0033	0.012	0.0098	0.011	0.011	0.011	0.03	0.068	0.00091 U	0.0015 U
Toluene	7	NV	6400	0.0053 U									
trans-1,2-Dichloroethene	NV	NV	1600	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U
trans-1,3-Dichloropropene	NV	NV	NV	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U
Trichloroethene	0.03	12	40	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U
Trichlorofluoromethane	NV	NV	24000	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U
Vinyl acetate	NV	NV	80000	0.0053 U									
Vinyl chloride	NV	NV	240	0.0011 U	0.00087 U	0.0011 U	0.00091 U	0.00097 U	0.00084 U	0.0015 U	0.00097 U	0.00091 U	0.0015 U
TPH (mg/kg)													
Diesel-range hydrocarbons	2000	NV	NV	29 U									
Lube-oil-range hydrocarbons	2000	NV	NV	57 U									

Table 1

NOTES:

Result values in **bold** font indicate exceedance of MTCA Method A cleanup level. Non-detect results are not evaluated against MTCA cleanup levels.

Analytes and sample names with exceedances are also in **bold** font.

-- = not analyzed.

mg/kg = milligrams per kilogram (parts per million).

MTCA = Model Toxics Control Act.

NV = no value.

TPH = total petroleum hydrocarbon.

TOD = transit-oriented development.

U = Analyte not detected at or above method reporting limit.

URLU CULs = unrestricted land use cleanup levels.

CAR CULs = carcinogenic cleanup levels.

NCAR CULs = non-carcinogenic cleanup levels.

VOC = volatile organic compound.

Table 1 Summary of Soil Analytical Results, Betty Brite Cleaners Site City of SeaTac South 154th Street TOD Property SeaTac, Washington

Table 2 Summary of Groundwater Analytical Results, Betty Brite Cleaners City of SeaTac South 154th Street TOD Property SeaTac, Washington

Location		MTCA	CST_B5	CST_B6	CST_B7	CST_B8	CST_B9	CST_B10	CST_B11	CST_B12	CST_B13
Sample Name	MTCA Method A	Method B	CST-B5-	CST-B6-	CST-B7-	CST-B8-	CSTB09-W-	CSTB10-W-	CSTB11-W-	CSTB12-W-	CSTB13-W-
	CUL	CUL ^a	GW-27.0	GW-25.4	GW-30.0	GW-20.0	30.0	38.0	38.6	28	28
Date Collected			06/02/2014	06/02/2014	06/03/2014	06/03/2014	03/17/2015	03/17/2015	03/17/2015	03/16/2015	03/16/2015
TPH (mg/L)	•		r		I			Γ	1	1	
Diesel-range hydrocarbons	0.5	NV		0.26 U	0.27 U	0.27 U					
Lube-oil-range hydrocarbons	0.5	NV		0.42 U	0.44 U	0.43 U					
Ferrous Iron (mg/L)	•	-	-							1	
FERROUS Iron	NV	NV	1.42	8.3	0.496	5.56					
Anions/Cations (mg/L)											_
Chloride	NV	NV	63	22	22	13					
Nitrate	NV	25.6	1.5	1.2	1.8	6					
Sulfate	NV	NV	15	17	15	29					
Sulfide	NV	NV	0.1 U	0.1 U	0.1 U	0.1 U					
VOCs (ug/L)											
1,1,1,2-Tetrachloroethane	NV	1.68	1 U	0.2 U	0.4 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,1,1-Trichloroethane	200	16000	1 U	0.2 U	0.4 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	1 U
1,1,2,2-Tetrachloroethane	NV	0.22	1 U	0.2 U	0.4 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,1,2-Trichloroethane	NV	0.77	1 U	0.2 U	0.4 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,1-Dichloroethane	NV	1600	1 U	0.2 U	0.4 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	1 U
1,1-Dichloroethene	NV	400	1 U	0.2 U	0.4 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	1 U
1,1-Dichloropropene	NV	NV	1 U	0.2 U	0.4 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	1 U
1,2,3-Trichlorobenzene	NV	NV	1 U	0.2 U	0.4 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,2,3-Trichloropropane	NV	0.0015	1 U	0.2 U	0.56 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,2,4-Trichlorobenzene	NV	1.51	1 U	0.2 U	0.4 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,2,4-Trimethylbenzene	NV	NV	1 U	0.2 U	0.4 U	1 U					
1,2-Dibromo-3-chloropropane	NV	0.05	5 U	1 U	2 U	5 U	1 U	1 U	1 U	1 U	1 U
1,2-Dibromoethane	0.01	NV	1 U	0.2 U	0.4 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,2-Dichlorobenzene	NV	720	1 U	0.2 U	0.4 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,2-Dichloroethane	5	0.481	1 U	0.2 U	0.4 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	1 U
1,2-Dichloropropane	NV	NV	1 U	0.2 U	0.4 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,3,5-Trimethylbenzene	NV	80	1 U	0.2 U	0.4 U	1 U					
1,3-Dichlorobenzene	NV	NV	1 U	0.2 U	0.4 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,3-Dichloropropane	NV	NV	1 U	0.2 U	0.4 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
1,4-Dichlorobenzene	NV	NV	1 U	0.2 U	0.4 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
2,2-Dichloropropane	NV	NV	1 U	0.2 U	0.4 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	1 U
2-Butanone	NV	4800	25 U	5 U	10 U	25 U					
2-Chloroethylvinyl ether	NV	NV	5 U	1 U	2 U	5 U	2.4 U	3.2 U	3.2 U	2.4 U	2.4 U
2-Chlorotoluene	NV	NV	1 U	0.2 U	0.4 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
2-Hexanone	NV	NV	10 U	2 U	4 U	10 U					

Table 2 Summary of Groundwater Analytical Results, Betty Brite Cleaners City of SeaTac South 154th Street TOD Property SeaTac, Washington

Location	N ITO A	MTCA	CST_B5	CST_B6	CST_B7	CST_B8	CST_B9	CST_B10	CST_B11	CST_B12	CST_B13
Sample Name	MTCA Method A	Method B	CST-B5- GW-27.0	CST-B6- GW-25.4	CST-B7- GW-30.0	CST-B8- GW-20.0	CSTB09-W- 30.0	CSTB10-W- 38.0	CSTB11-W- 38.6	CSTB12-W- 28	CSTB13-W- 28
Date Collected	CUL	CUL ^a		06/02/2014			03/17/2015				03/16/2015
	NIV /	NIV /									
4-Chlorotoluene	NV	NV NV	1 U 1 U	0.2 U	0.4 U	1 U 1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
4-Isopropyltoluene	NV			0.2 U	0.4 U						
4-Methyl-2-pentanone	NV	640	10 U	2 U	4 U	10 U					
Acetone	NV	7200	25 U	5 U	10 U	25 U					
Benzene	5	0.795	1 U	0.2 U	0.4 U	1 U					
Bromobenzene	NV	NV	1 U	0.2 U	0.4 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Bromodichloromethane	NV	0.71	1 U	0.2 U	0.4 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Bromoform	NV	5.54	5 U	1 U	2 U	5 U	1 U	1 U	1 U	1 U	1 U
Bromomethane	NV	11.2	2.2 U	0.2 U	0.4 U	2.2 U	0.2 U	0.27 U	0.27 U	0.2 U	1 U
Carbon disulfide	NV	800	1 U	0.2 U	0.4 U	1 U					
Carbon tetrachloride	NV	0.63	1 U	0.2 U	0.4 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	1 U
Chlorobenzene	NV	160	1 U	0.2 U	0.4 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Chlorobromomethane	NV	NV	1 U	0.2 U	0.4 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	1 U
Chloroethane	NV	NV	5 U	1 U	2 U	5 U	1 U	1 U	1 U	1 U	5 U
Chloroform	NV	80	1 U	0.2 U	0.4 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	1 U
Chloromethane	NV	NV	6.5 U	1 U	2 U	6.5 U	1 U	1 U	1 U	1 U	5 U
cis-1,2-Dichloroethene	NV	16	1 U	0.2 U	0.4 U	4.3	0.2 U	0.2 U	0.2 U	0.2 U	1 U
cis-1,3-Dichloropropene	NV	0.44	1 U	0.2 U	0.4 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Dibromochloromethane	NV	0.52	1 U	0.2 U	0.4 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Dibromomethane	NV	80	1 U	0.2 U	0.4 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Dichlorodifluoromethane	NV	1600	1 U	0.2 U	0.4 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	1 U
Ethylbenzene	700	800	1 U	0.2 U	0.4 U	1 U					
Hexachlorobutadiene	NV	0.56	1 U	0.2 U	0.4 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
lsopropylbenzene	NV	800	1 U	0.2 U	0.4 U	1 U					
m,p-Xylene	1000	1600	2 U	0.4 U	0.8 U	2 U					
Methyl iodide	NV	NV	9.5 U	1 U	3 U	9.5 U	1 U	1 U	1 U	1 U	5 U
Methyl tert-butyl ether	20	24.3	1 U	0.2 U	0.4 U	1 U					
Methylene chloride	5	21.9	5 U	1 U	2 U	5 U	1 U	1 U	1 U	1 U	5 U
Naphthalene	160	160	5 U	1 U	2 U	5 U					
n-Butylbenzene	NV	NV	1 U	0.2 U	0.4 U	1 U					
n-Propylbenzene	NV	800	1 U	0.2 U	0.4 U	1 U					
o-Xylene	1000	1600	1 U	0.2 U	0.4 U	1 U					
sec-Butylbenzene	NV	NV	1 U	0.2 U	0.4 U	1 U					
Styrene	NV	1600	1 U	0.2 U	0.4 U	1 U					
tert-Butylbenzene	NV	NV	1 U	0.2 U	0.4 U	1 U					

Table 2 Summary of Groundwater Analytical Results, Betty Brite Cleaners City of SeaTac South 154th Street TOD Property SeaTac, Washington

Location			CST_B5	CST_B6	CST_B7	CST_B8	CST_B9	CST_B10	CST_B11	CST_B12	CST_B13
Sample Name	MTCA Method A CUL		CST-B5- GW-27.0	CST-B6- GW-25.4	CST-B7- GW-30.0	CST-B8- GW-20.0	CSTB09-W- 30.0	CSTB10-W- 38.0	CSTB11-W- 38.6	CSTB12-W- 28	CSTB13-W- 28
Date Collected	002		06/02/2014	06/02/2014	06/03/2014	06/03/2014	03/17/2015	03/17/2015	03/17/2015	03/16/2015	03/16/2015
Tetrachloroethene	5	20.8	140	31	66	180	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Toluene	1000	640	5 U	1 U	2 U	5 U					
trans-1,2-Dichloroethene	NV	160	1 U	0.2 U	0.4 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	1 U
trans-1,3-Dichloropropene	NV	0.44	1 U	0.2 U	0.4 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Trichloroethene	5	0.54	1 U	0.2 U	0.4 U	3.2	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Trichlorofluoromethane	NV	2400	1 U	0.2 U	0.4 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	1 U
Vinyl acetate	NV	NV	5 U	1 U	2 U	5 U					
Vinyl chloride	NV	0.2	1 U	0.2 U	0.4 U	1 U	0.2 U	0.2 U	0.2 U	0.2 U	1 U
Methane (ug/L)											
Methane	NV	NV	27	2.6	1.3	3.4					

NOTES:

Result values in **bold** font indicate exceedance of MTCA Method A cleanup level. Non-detect results are not evaluated against MTCA cleanup levels. Analytes and sample names with exceedances are also in **bold** font.

Exceedances of MTCA B CULS are shaded. Non-detect results are not evaluated against MTCA screening criteria.

-- = not analyzed.

CUL = cleanup level.

mg/L = milligrams per liter (parts per million).

MTCA = Model Toxics Control Act.

NV = no value.

TPH = total petroleum hydrocarbon.

TOD = transit-oriented development.

U = Analyte not detected at or above method reporting limit.

ug/L = micrograms per liter (parts per billion).

VOC = volatile organic compound.

^aMTCA Method B CUL will be used when no MTCA Method A CUL is available. Lower of carcinogen or noncarcinogen value will be used.

Table 2 Summary of Groundwater Analytical Results, Betty Brite Cleaners City of SeaTac South 154th Street TOD Property SeaTac, Washington

Table 3

Remedial Cost Estimate—Alternative 1: In Situ Bioremediation Groundwater Treatment and Groundwater Monitoring City of SeaTac South 154th Street TOD Property SeaTac, Washington

Remedy Components

- 1 Conduct baseline groundwater monitoring/sampling event prior to in situ bioremediation.
- 2 In situ bioremediation of groundwater using enhanced anaerobic bioremediation.
- 3 Conduct consecutive quarterly groundwater monitoring/sampling events for two years.
- 4 Conduct semiannual groundwater monitoring/sampling events for one year.
- 5 Environmental covenant recorded against the Property

Assumptions

1 In situ treatment via injection of bioremediation products into existing wells.

3 30% contingency.

Item Description	Quantity	Units	Unit Cost	Total Cost
Remedial Action - Dissolved-Phase Tetrachloroethene Ground	water Plume			
Well installation				
Compliance well installation (six wells)	1	LS	\$18,000	\$18,000
Groundwater remediation				
Injection point installation (33 direct-push locations)	10	DAY	\$2,900	\$29,000
In situ anaerobic bioremediation products	1	EA	\$68,174	\$68,174
Baseline, Quarterly, and Semiannual groundwater monito	pring/sampling	y events		
Monitoring	11	EA	\$3,800	\$41,800
Analytical	11	EA	\$1,100	\$12,100
Reporting	11	EA	\$4,200	\$46,200
Remedial Action Subtotal				\$215,300
Professional Services				
Project management	1	LS	\$6,000	\$6,000
Permitting and agency negotiations	1	LS	\$4,000	\$4,000
Environmental covenant	1	LS	\$7,500	\$7,500
Survey	1	LS	\$5,000	\$5,000
Remedial design	1	LS	\$15,000	\$15,000
Bid assistance	1	LS	\$7,000	\$7,000
Remedial action application/injection oversight	1	LS	\$50,000	\$50,000
Data analysis	11	EA	\$1,000	\$11,000
Reporting	11	EA	\$2,500	\$27,500
Professional Services Subtotal				\$133,000
Remedial Action and Professional Services Subtotal				\$348,300
Contingency			30%	\$104,500
TOTAL COST				\$452,800
Notes: EA = each; LS = lump sum				

Table 4

Remedial Cost Estimate—Alternative 2: Long-Term Groundwater Monitored Natural Attenuation City of SeaTac South 154th Street TOD Property SeaTac, Washington

Remedy Components

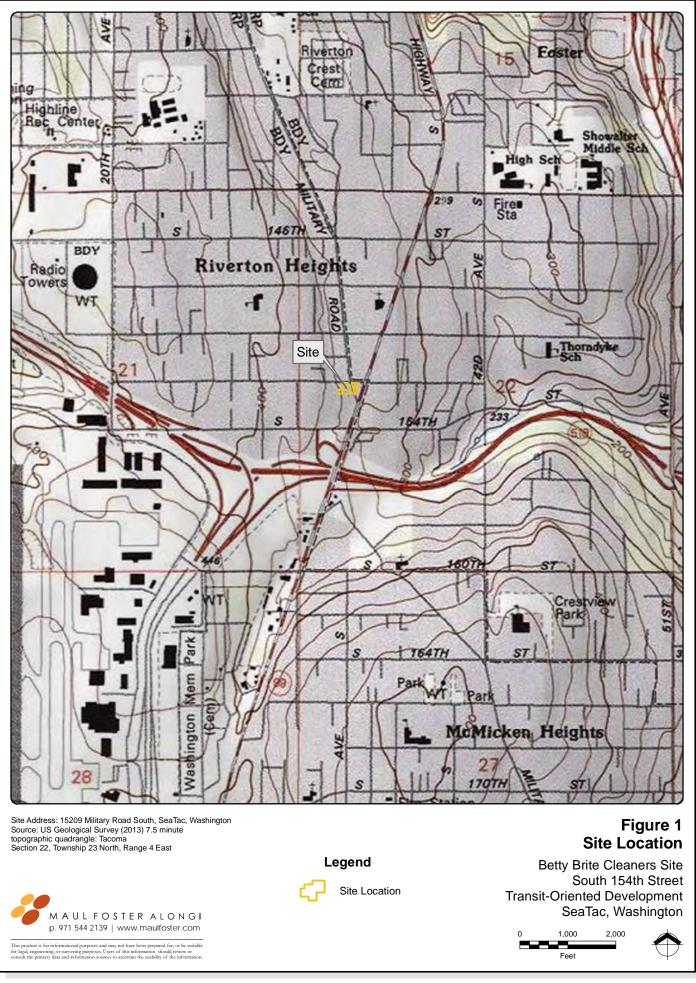
- 1 Long-term monitored natural attenuation of groundwater relying upon natural biodegradation.
- 2 Conduct consecutive quarterly groundwater monitoring/sampling events for ten years.
- 3 Environmental covenant recorded against the Property

Assumptions

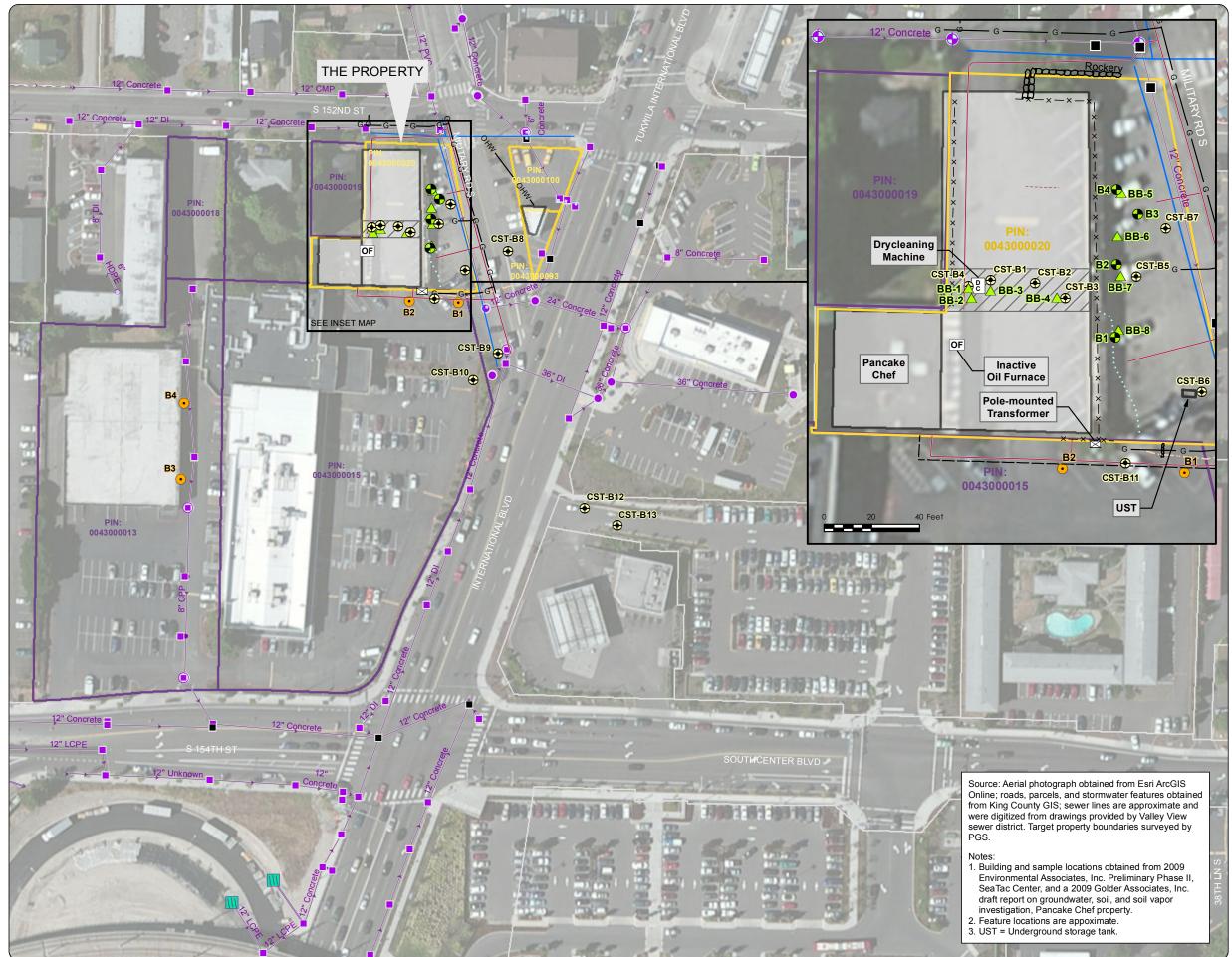
- 1 Contaminants will naturally degrade to below applicable cleanup levels over a ten year period.
- 2 30% contingency

Item	Description	Quantity	Units	Unit Cost	Total Cost
Remedial Action	- Dissolved-Phase Tetrachloroethene Ground	water Plume			
Well installat	ion				
Complian	ce well installation (six wells)	1	LS	\$18,000	\$18,000
Quarterly gr	oundwater monitoring/sampling events				
Monitoring	9	40	EA	\$3,800	\$152,000
Analytical		40	EA	\$1,100	\$44,000
Reporting		40	EA	\$4,200	\$168,000
Remedial A	ction Subtotal				\$382,000
Professional Servi	ces				
Project mar	agement	1	LS	\$10,000	\$10,000
Monitoring	vells design, oversight, and documentation	1	LS	\$17,000	\$17,000
Permitting a	nd agency negotiations	1	LS	\$2,500	\$2,500
Environmen	tal covenant	1	LS	\$7,500	\$7,500
Survey		1	LS	\$5,000	\$5,000
Remedial de	esign	1	LS	\$5,000	\$5,000
Data analys	is—ten years of quarterly events	40	EA	\$1,000	\$40,000
Coordinatio	n/reporting to Ecology	40	EA	\$500	\$20,000
Professional	Services Subtotal				\$107,000
Remedial Action	and Professional Services Subtotal				\$489,000
Contingency				30%	\$146,700
TOTAL COS	Т				\$635,700
Notes: EA = each; L	S = lump sum				

Table 5 Disproportionate-Cost Analysis, Betty Brite Cleaners Site City of SeaTac South 154th Street TOD Property SeaTac, Washington


Alternative	Description	200	CUP ROTE	arence Los	Herrie Road	e livere the second	5 Solution and a solution of the solution of t	1,617 P.85 1,1617	Incerts rota co	*
Alternative 1	In situ bioremediation of groundwater and groundwater monitoring	5		5	4	5	4.8	TBD	\$ 452,800	
Alternative 2	Long term groundwater monitored natural attenuation	1	5	3	5	5	3.8	TBD	\$ 635,700	

FIGURES





0879.01.02 Produced By: apadilla Approved By: yvan Print Date: 3/27/2015

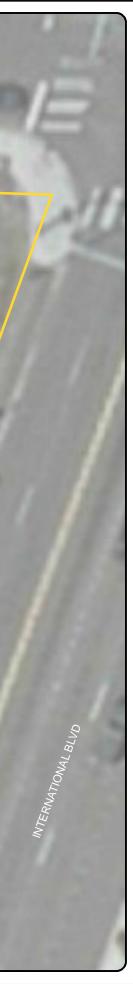

Site Features Betty Brite Cleaners Site South 154th Street **Transit-Oriented Development** SeaTac, Washington Legend 2014 MFA Environmental Assessment Boring Location 2009 Golder Investigation Groundwater Sample △ Soil Vapor Sample 2009 EAI Phase II Investigation • Soil Boring Site Features OF Inactive Oil Furnace ☑ Pole-Mounted Transformer \square Betty Brite Dry Cleaners **Building Extent Target Properties** City-owned Parcels - Sewer Line онw — Overhead Wire Underground Communications Line - Underground Water Line G-G- Underground Gas Line Underground Electric Line **City Stormwater Features** Unknown Type Cleanout CB/MH →→ Main Pipes CB Type 1/1L \rightarrow Culverts CB Type 2/3 \longrightarrow Laterals MH $\rightarrow \rightarrow \rightarrow$ Ditch Discharge Points Fitting • 100 0 50 Feet MAUL FOSTER ALONGI p. 971 544 2139 | www.maulfoster.com

Figure 2

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

0879.01.02 Produced By: rmaronn Approved By: yvan Print Date: 9/17/2014

Figure 3 Groundwater Potentiometric Map—June 2014

Betty Brite Cleaners Site South 154th Street Transit-Oriented Development SeaTac, Washington

Legend

•

 \square

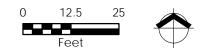
Groundwater Monitoring Location and Elevation (in Feet MSL)

Groundwater Elevation Contour

Groundwater Flow Direction

UST Underground Storage Tank

Betty Brite Dry Cleaners


Building Extent

Target Properties

City-owned Parcels

Notes:

- 1. MSL = mean sea level.
- 2. All groundwater monitoring locations were surveyed
- by Pacific Geomatic Surveyors in June 2014. 3. Groundwater elevations were measured June 2-4, 2014.

Source: Aerial photograph obtained from Esri ArcGIS Online; roads and parcels obtained from King County GIS; target property boundaries surveyed by Pacific Geomatic Surveyors.

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

Figure 4 Groundwater PCE Results

Betty Brite Cleaners Site South 154th Street Transit-Oriented Development SeaTac, Washington

Legend

Groundwater Boring Locations

 \bigcirc

CST-B8 - Boring ID 180 ug/L - PCE concentration

Underground Storage Tank

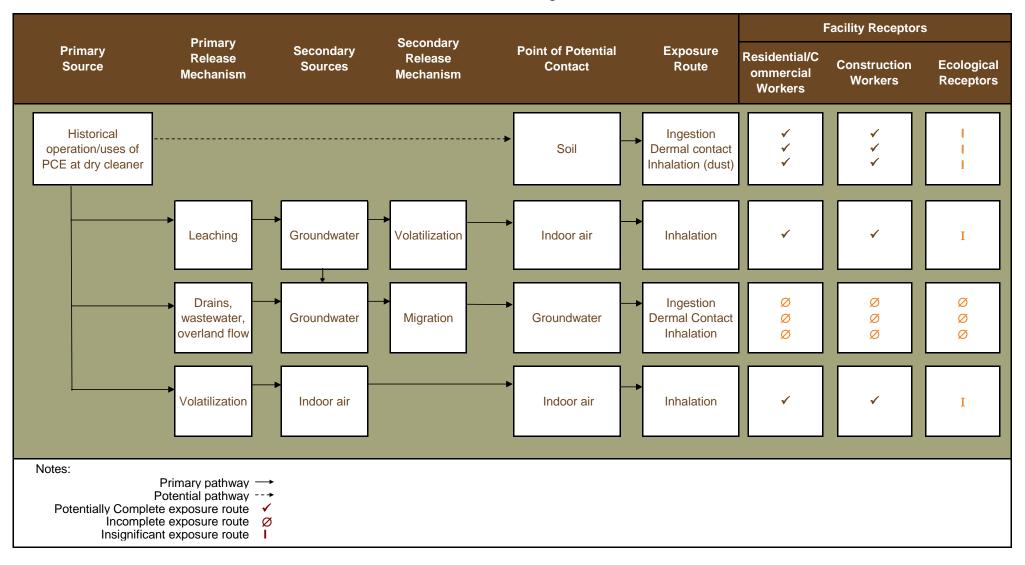
 \square Betty Brite Dry Cleaners

Building Extent

Target Properties

City-owned Parcels

- Notes: 1. PCE = Tetrachloroethene.
- 2. ug/L = micrograms per liter.
 3. All groundwater boring locations were surveyed by Pacific Geomatic Surveyors in June 2014.



Source: Aerial photograph obtained from Esri ArcGIS Online; roads and parcels obtained from King County GIS; target property boundaries surveyed by Pacific Geomatic Surveyors.

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

Figure 5 Conceptual Site Model of Potential Exposure Pathways Bette Brite Cleaners Site South 154th Street Transit-Oriented Development SeaTac, Washington

							Ge	eologic	Borehole Log/Well Cor	struction	
Mau	I Foster &	Alo	ngi,	Inc.		Project l	Numbe	er	Well Number	Sheet	
			•			0879.	01.02		CST B-1 1 of 1		
Proj∉	ect Name	City	of Sea	aTac					TOC Elevation (fe	eet)	
Proje	ect Location	S 15	4th St	. SeaT	ас, И	/ashington			Surface Elevation	(feet)	
Start	t/End Date	06/0	3/14 to	06/03	/14				Northing		
Drille	er/Equipment	ESN	North	west/l	imit	ed Access Ri	g		Easting Hole Depth 2.0-feet		
Geol	logist/Engineer	Y. V.	an								
Sam	ple Method	AMS	S Powe	er Prok	oe 91	00P			Outer Hole Diam	2.25-inch	
Depth (feet, BGS)	Well Details	Interval Interval Percent Recovery Method Number Number					Blows/6"	Lithologic Column	Soil Description	on	
Dept (feet		Interval	Perc Reco	Colle Meth	Number	Name (Type)	Blow	Lithc Colu			
1	$ \begin{vmatrix} \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet &$		100	SS		CSTB1-S-2.(•		0.0 to 0.3 feet: CONCRETE. 0.3 to 2.0 feet: SILTY SAND (SM); gu coarse, subrounded; 15% fines; to moist.	rayish brown; 15% gravel, fine to 70% sand; medium density; dry	

NOTES: Drilling refusal at 2.0 feet. Split spoon sampler and drive head stuck at 2.0 to 4.0 feet bgs. Abandoned both. PID = photoionization detector. ppm = parts per million. bgs = below ground surface.

									Borehole Log/Well Con					
Mau	I Foster &	Aloi	ngi, I	Inc.		Project I 0879. (Vumb	er	Well Number CST B-2	Sheet 1 of 1				
Proj Star Drille Geo	ect Name ect Location t/End Date er/Equipment logist/Engineer ople Method	S 15 06/0 ESN Y. V	3/14 to North	. SeaT 0 06/03 west/l	/14 Limite	/ashington ed Access Ri			TOC Elevation (feet)Surface Elevation (feet)NorthingEastingHole DepthOuter Hole Diam2.2					
	Well			•		Data			Soil Descriptio					
Depth (feet, BGS)	Details	Interval	Percent Recovery	Collection Method C	Number ⁻	Name (Type)	Blows/6"	Lithologic Column						
_ 1			100 100	SS SS		CSTB2-S-2.(PID - 0.2 ppn CSTB2-S-4.(PID = 0.1 ppr	n)		0.0 to 0.3 feet: CONCRETE. 0.0 to 2.0 feet: POORLY GRADED S gravel, fine to medium, subround damp. 2.0 to 4.0 feet: SILTY SAND (SM); gr sand; 30% fines; very compacted	led; 80% sand; medium density; avish brown: 10% gravel: 60%				
_ 3									weathered glacial till, moist.					
NOTE	S: Drilling refuse PID = photoic ppm = parts p bgs = below	onizatio oer milli	n detec on.	tor.	on san	npler and drive	head :	stuck at 3.0 t	o 5.0 feet bgs. Abandoned both.					

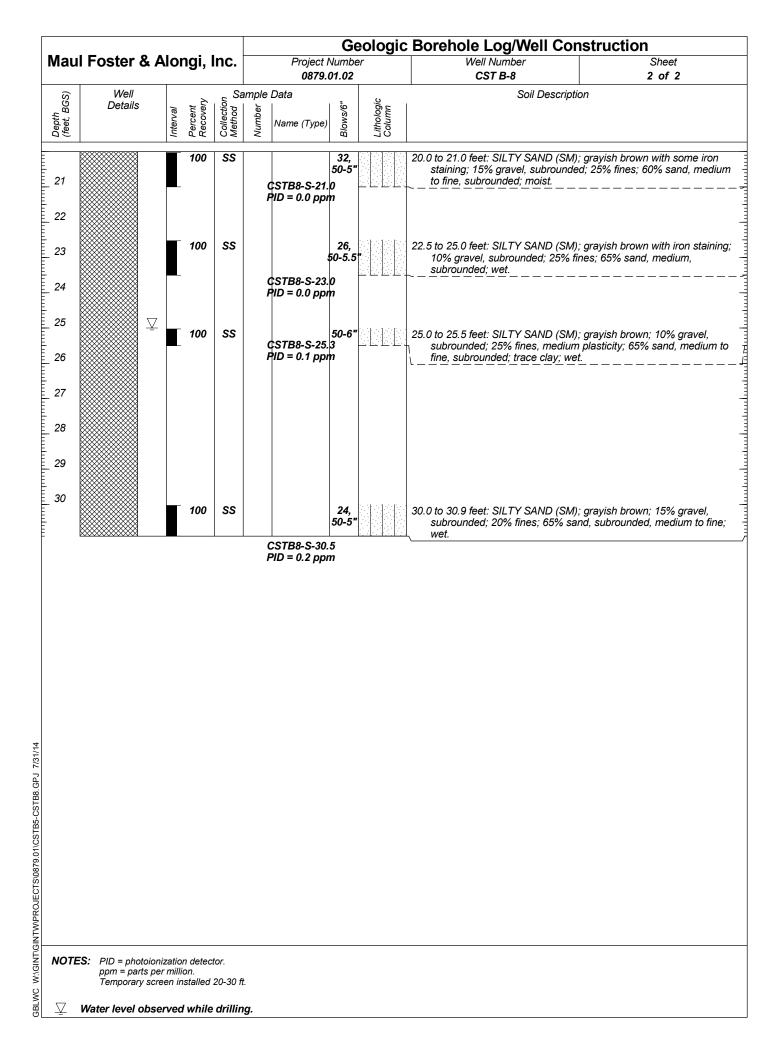
				Geologic Borehole Log/Well Construction							
Mau	Foster &	Alongi, I	nc. 📃	Project N	lumb	er	Well Number	Sheet			
		•		0879.0)1.02		CST B-3	1 of 1			
Proje	ect Name	City of Sea	Тас				TOC Elevation (fee	et)			
Proje	ect Location	S 154th St.	SeaTac, V	Vashington			Surface Elevation	(feet)			
Start	/End Date	06/03/14 to	06/03/14	-			Northing				
Drille	er/Equipment	ESN North	west/Limit	ed Access Ri	g		Easting				
	ogist/Engineer	Y. Van					Hole Depth	2.0-feet			
Sam	ple Method	Hard Drive	Steel Prob	be			Outer Hole Diam	2.25-inch			
S)	Well		_ Sample	e Data			Soil Description	n			
Depth (feet, BGS)	Details	Interval Percent Recovery	Collection Method S Number	Name (Type)	Blows/6"	Lithologic Column					
		100	SS	CSTB3-S-2.0			0.0 to 0.3 feet: CONCRETE.				
1	$\begin{array}{c} \cdot & \cdot & \cdot & \cdot \\ \Delta \mid \cdot & \Delta \cdot & \Delta \mid \cdot & \Delta \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \Delta \mid \cdot & \Delta \cdot & \Delta \mid \cdot & \Delta \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot &$			PID = 0.1 ppr	n		0.5 to 2.0 feet: POORLY GRADED SA sorted, subrounded, small to mea fines; minor silt; moist.				

NOTES: Drilling refusal at 2.0 feet. Sloughing of gravel caused by pea gravel. PID = photoionization detector. ppm = parts per million.

		Ge	eologic	Borehole Log/Well Construction			
Maul Foster &	Alongi, Inc.	Project Numbe	er	Well Number	Sheet		
	-	0879.01.02		CST B-4	1 of 1		
Project Name	City of SeaTac			TOC Elevation (fee	et)		
Project Location	S 154th St. SeaT	ac, Washington		Surface Elevation	(feet)		
Start/End Date	06/03/14 to 06/00	3/14		Northing			
Driller/Equipment	ESN Northwest/H	land Steel Probe		Easting			
Geologist/Engineer	Y. Van			Hole Depth	2.0-feet		
Sample Method	Hand Steel Prob	9		Outer Hole Diam	2.25-inch		
S Well	ے S	mple Data		Soil Description	n		
0 Details	al nt al) nr	··· ·· · · · · · · · · · · · · · · · ·			
Depth Depth Details	Interval Percent Recovery Collection	Name (Type) Blows/6	Lithologic Column				
Def)	ACC Re	Bli	CC				
	100 SS	CSTB4-S-2.0		0.0 feet: CONCRETE.			
	100 33	PID = 0.0 ppm	777777	0.5 feet: SILTY CLAYEY SAND (SC);	aray: 10% arayel subrounded:		
1				30% fines, low plasticity; 60% sar			
2							
2			<u></u>				

Proje Proje Start Drille	I Foster &	•		-	t Numb		Well Number	Sheet		
Proje Start Drille				087	9.01.02		CST B-5	1 of 2		
	t/End Date er/Equipment logist/Engineer nple Method	06/02/14 t	t. SeaTa o 06/02 ng Serv Roslui	rices Inc./B-59 H nd		Stem Auge	TOC Elevation (feet) Surface Elevation (feet) Northing Easting Hole Depth 36.5-feet Outer Hole Diam 8.25-inch			
	Well		0.	mple Data		0	Soil Description			
Ueptin (feet, BGS)	Details	Interval Percent Recovery	Collection Method C	Name (Typ	e) e)	Lithologic Column				
							0.0 to 0.2 feet: ASPHALT; dry.			
1 2 3 4										
5 6 7 8		75	SS	СSTB5-S-I PID = 0.2 р	14, 14, 12, 5.0 pm		5.0 to 6.5 feet: POORLY GRADED SAND (gravel, subrounded; 70% sand, mediun moist.	SP); grayish brown; 20% n, subrounded; 10% fines 		
9 10 11 12		100	SS	CSTB5-S-1 PID = 0.1 p	13, 42, 50-6' 1.0 pm		10.0 to 11.5 feet: POORLY GRADED SANL grayish brown; 25% gravel, subrounded subrounded; 15% fines; moist.			
13 14 15										
16 17		 100	SS	CSTB5-S-1 PID = 0.0 p	50-6' 6.0 pm	•	15.0 to 15.5 feet: POORLY GRADED SANE 20% gravel, subrounded; 70% sand, me fines, soft; moist.	0 (SP); grayish brown; edium, subrounded; 10% — — — — — — — — — —		
18 19 20										
	ES: PID = photoi		ctor.							
	ppm = parts									
∇	Water level ob:	served whil	e drillin	g.						

Foster Well Details		IO	ıgı, I	nc					Borehole Log/Well Cor	
						Project I 0879 .		ər	Well Number CST B-5	Sheet 2 of 2
	Interval Percent Recovery Collection		~	s Sa	mple			,u	Soil Description	
		Interval	ercent	Collection Method 6	Number	Name (Type)	Blows/6'	Lithologic Column		
		Int	Ре Ке	йй	NL		Ble	Lit		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			100	SS			50-6" -		20.0 to 20.5 feet: SILTY SAND (SM), subrounded; 70% sand, fine to n	; grayish brown; 10% gravel, nedium. subrounded: 20% fines;
						STB5-S-20. ID = 0.0 ppr			trace clay; moist. @ 19 feet; drilling becomes difficult.	,,,
								a de statelite		
			100	55			50-4"		subrounded; 75% sand, medium	; grayish brown; 10% gravei, , subrounded; 15% fines; trace
								notoneded. 		
			100	ss			31,	 회원회관	25.0 to 26.0 feet: SILTY SAND (SM),	; grayish brown; 10% gravel,
									subrounded; 70% sand, medium fines; moist.	, subrounded to subangular; 20
	$\overline{\Delta}$									
			100	ee.			24	इ.स.च.च्याच	20.0 to 21.5 to the OUTLY OAND (01.1)	arough brown 100/
			100	33			38,		subrounded; 70% sand, medium	, subrounded to subangular; 20
							0			
					,					
			100	SS			15, 50-4"		35.0 to 36.5 feet: POORLY GRADEL 45% gravel, subrounded; 50% s	
					C	STB5-S-36.	0		tines; wet.	
		Ţ		⊊ 100	↓ 100 SS	□ 100 SS □ 100 SS □ 100 SS □ 100 SS □ 100 SS	☐ 100 SS ☐ 100 SS	U 100 SS 50-4* CSTB5-S-23.5 PID = 0.1 ppm 100 SS 31, 50-5.5 CSTB5-S-26.0 PID = 0.0 ppm 100 SS 24, 38, 50-5° CSTB5-S-31.0 PID = 0.3 ppm	100       SS       31, solution         100       SS       31, solution         100       SS       CSTB5-S-26.0         PID = 0.0 ppm       PID = 0.0 ppm         100       SS       CSTB5-S-31.0         PID = 0.3 ppm       100         100       SS       15, solution         100       SS       15, solution	50-4"       subrounded; 75% sand, medium         CSTB5-S-23,5       clay; moist.         PID = 0.1 ppm       31,         50-5.5       25.0 to 26.0 feet: SILTY SAND (SM), subrounded; 70% sand, medium fines; moist.         PID = 0.0 ppm       700 SS         100       SS         100       SS         24,       30.0 to 31.5 feet: SILTY SAND (SM), subrounded; 70% sand, medium fines; moist.         PID = 0.0 ppm       50-5"         SS       24,         100       SS         CSTB5-S-31.0         PID = 0.3 ppm         100       SS         110       SS         115,       S5 0 to 36.5 feet: POORLY GRADEL


Mau	I Foster &	Alongi, I	nc.	Projec	t Numb	er	Borehole Log/Well Cons Well Number	Sheet			
				0879	0.01.02		CST B-6	1 of 2			
Proje Star	ect Name ect Location t/End Date er/Equipment	06/02/14 to	SeaTa 06/02	ac, Washington /14 /ices, Inc./B-59 I	lollow	Stem Auge	TOC Elevation (feet) Surface Elevation (fe Northing er Easting				
	logist/Engineer	Y. Van/ K. I B-59 Hollo					Hole Depth 35.0-				
	nple Method Well		0-	mple Data			Soil Description	8.25-incl			
Depth (feet, BGS)	Details	Interval Percent Recovery	Collection Method C	Name (Type	Blows/6"	Lithologic Column					
							0.0 to 0.2 feet: ASPHALT; dry.				
1											
2											
3											
4											
5											
2		100	SS	PID = 0.0 pj	om 11, 19,		5.0 to 6.5 feet: CLAYEY SILTY SAND ( gravel, subrounded; 20% fines; 70%	SM); grayish brown; 10% % sand_fine to medium: troo			
6					36		clay; PID = 0.0 ppm; moist.				
7						이러한					
7											
8		100	SS		7,		7.5 to 9.0 feet: CLAYEY SILTY SAND ( gravel, subrounded; 20% fines; 70%	SM); grayish brown; 10% % sand_fine to medium: mois			
				CST-B6-S-8 PID = 0.1 pj	D.U 47						
9											
10											
11											
12											
12		L									
13		100	SS		30, 50-5		12.5 to 14.0 feet: CLAYEY SILTY SAND gravel, subrounded; 20% fines; 70%	D (SM); grayish brown; 10% % sand, fine to medium; mois			
14				CST-B6-S-1	4.0						
14				PID = 0.0 pj							
15											
16											
17											
		100	SS	CST-B6-S-1 PID 0.1 pp			17.0 to 18.5 feet: CLAYEY SAND W/ G 15% gravel, subrounded; 30% fines				
18							55% sand, fine to medium; moist.	·····			
19											
20											
NOTE	S: PID = photoi ppm = parts		tor.								
		creen installed	25-35 ft								
$\nabla$	Water level ob	served while	drillin	g.							

lau	I Foster & A	lo	ngi, I	Inc.		Project N	Vumbe		Borehole Log/Well Const Well Number	Sheet	
		-				0879.0	01.02		CST B-6	2 of 2	
Depth (feet, BGS)	Well Details	Interval	Percent Recovery	Collection Method	Number du	Data Name (Type)	Blows/6"	Lithologic Column	Soil Description		
			100	SS	_				20.0 to 21.5 foot: CLAVEY SILTY SAME	) (SM): growigh brown: 10%	
21 22			100	35	C F	ST-B6-S-21. HD = 0.1 ppr	27, 50-3" .5 n		20.0 to 21.5 feet: CLAYEY SILTY SAND gravel, subrounded; 20% fines; 70% clay; moist.	6 (SM); grayish brown; 10% 6 sand, fine to medium; trace	
23 24 25											
26 27	Ţ		100	SS	C H	ST-B6-S-26. ID = 0.1 ppr	50-4" 5 n		25.0 to 26.5 feet: SILTY SAND (SM): gr. subrounded; 20% fines; 70% sand, moist.	ayish brown; 10% gravel, fine to medium; trace clay; 	
28 29											
30 31 32			100	SS	C I	ST-B6-S-31. ID = 0.5 ppr	22, 50-3" 5 n		30.0 to 31.5 feet: SILTY SAND (SM); gra subrounded; 20% fines; 70% sand,	ayish brown; 10% gravel, fine to medium; wet.	
33 34											
35											
	-										
ΝΟΤΕ	ES: PID = photoioni ppm = parts per Temporary scre	r milli	on.								
$\nabla$	Water level obse	rved	l while	drillin	g.						

Mau	I Foster &	Alor	ngi, I	Inc.		Project I <b>0879</b> .	Numb	er		e Log/Well Con Vell Number CST B-7	Sheet <b>1 of 2</b>	
Proj Star Drill Geo	ect Name ect Location t/End Date er/Equipment ologist/Engineer ople Method	S 15 06/02 Holt Y. Va	2/14 to Drillin an/ K.	. SeaT 0 06/03	/14 vices i nd	'ashington Inc./B-59 Ho		Stem Auge	er	TOC Elevation (feet) Surface Elevation (feet) Northing		
Depth (feet, BGS)	Well Details	al	nt /ery	stion Sg	ample আটু	Data	./6"	ogic nn		Soil Description		
Depth (feet,		Interval	Percent Recovery	Collection Method	Number	Name (Type)	Blows/6"	Lithologic Column				
									0.0 to 0.2 fee	t: ASPHALT; dry.		
1												
2												
3												
4												
_				ss		CSTB7-S-4.	5	 조금 지원대는	4.5 to 5.0 fee	t: SILTY SAND (SM) [,] an	ayish brown; 15% gravel,	
5					ŀ	PID = 5.4 ppi	n			ded; 65% sand; 20% fine	es; trace_clay; moist	
6												
7												
8												
9												
10												
10									10.0 to 11.5 i	feet: SILTY SAND (SM); % fines; trace clay; mois	grayish brown; 10% gravel; 65	
_ 11												
12			100	SS			50-6'	po pi de de de T	+			
						STB7-S-11. ID = 0.0 ppi						
13												
14												
15												
16												
17												
10				SS		STB7-S-17. D = 1.2 ppi			h 15% grav	vel, fine to medium, subr	SAND (SP); grayish brown; ounded; 75% sand, well-sorted	
18									<u>10% fine</u>	s, most		
19												
20												
	ES: PID = photoi			tor.								
_ 14 _ 15 _ 16 _ 17 _ 18 _ 19 _ 20 	ppm = parts Temporary s			20-30 fi	t.							
$\overline{\Delta}$	Water level ob	served	l while	drillin	ıg.							

Maul	Foster & A	٩lo	ngi, l	nc.		Project I <b>0879</b> .		er	Well Number CST B-7	Sheet <b>2 of 2</b>
s)	Well			_ Sa	mple				Soil Description	2 01 2
Depth (feet, BGS)	Details	Interval	Percent Recovery	Collection Method C	Number `	Name (Type)	Blows/6"	Lithologic Column		
21			100	SS		STB7-S-21.	31, 50-5" 5		20.0 to 21.5 feet: SILTY SAND (SM); g. subrounded; 65% sand, fine to me minor iron staining present; moist.	rayish brown; 15% gravel, dium, subrounded; 20% fines;
22			100	SS			28,	য় মনে ব্যাহন	22.5 to 24.0 feet: SILTY SAND (SM); g	ravish brown: 10% gravel: 65%
23 24			100	00		STB7-S-24.	50-4" 0		sand; 25% fines; moist.	
25			400			ID = 0.0 ppr STB7-S-25. ID = 0.1 ppr	h			
26			100	SS			25, 50-5"		25.0 to 26.5 feet: SILTY SAND (SM); 1 sorted, 20% fines; solvent-like odo	0% gravel, 70% sand, well r; wet.
27										
28										
29 30										
			100	SS		CSTB7-S-30.	35, 50-5"		30.0 to 30.9 feet: SILTY SAND (SM); g subrounded; 70% sand; 20% fines,	rayish brown; 10% gravel, : moist.
	<b>S:</b> PID = photoion ppm = parts pe Temporary scr <b>Water level obse</b>	er mill een ir	ion. Istalled :	20-30 ft						

Projec Start/E Driller/ Geolog	ct Name ct Location End Date /Equipment ogist/Engineer le Method Well Details	06/03/14 to	. SeaTa o 06/03/1 og Servi d w Stem	ces Inc./B-59 Ho	bllow \$	Stem Auger	Hole Depth 3	0.9-feet .25-incl
1 (Seef, BCS) 1 2 3 4 5	Well	Percent Recovery	0.0.0	nple Data	Blows/6"	Lithologic Column	Soil Description	.25-INCI
1 2 3 4 5			Collection Method S		Blows/6"	Lithologic Column	·	
2 3 4 5		70					0.0 to 0.5 feet: ASPHALT.	
2 3 4 5		70						
		70		1				
7 8			SS	CSTB8-S-6. PID = 0.5 ppi	11, 18, 6 5 m		5.0 to 6.5 feet: WELL GRADED SAND with SILT (SW-SM); brown; 10% gravel, subrounded to subangular; 10% fine sand, medium to fine, subrounded; moist.	grayish >s; 80% 
9 10 11 12		100	SS	¢STB8-S-11. PID = 0.0 ppi	4, 7, 11 .5 m		10.0 to 11.5 feet: CLAY WITH SAND OR GRAVEL (CL); me brown with mottled orange staining; 10% gravel, subrou 20% sand, fine, subrounded; 70% fines, hard, medium j moist.	inded;
'3 '4 '5								
6 7		100	SS	ÇSTB8-S-16. PID = 0.0 ppi	14, 35, 32 .5 m		15.0 to 16.5 feet: SILTY SAND (SM); grayish brown; 10% grayish brown; 20% fines; 70% sand, subrounded, mediur no clay impacts, large cobble-decomposed granite at bas sample; moist.	m to fine
18 19 20								
	: PID = photoio		tor.			,I		
	ppm = parts p							
v v	Vater level obs							



			Ge	eologic	Borehole Log/Well Con	struction
Μαι	Il Foster &	Alongi, Inc.	Project Numbe 0879.01.02		Well Number CST-B09	Sheet <b>1 of 2</b>
Pro Sta Dril Geo	ject Name ject Location rt/End Date ler/Equipment ologist/Engineer nple Method	15247 Pacific H 3/16/2015 to 3/1 Holt Services, I	nc./Mobile B-60 HSA	VA 98188	TOC Elevation (fe Surface Elevation Northing Easting Hole Depth Outer Hole Diam	
(S)	Well		Sample Data		Soil Descriptio	on
Depth (feet, BGS)	Details	Interval Percent Recovery Collection Method r	Name (Type)	Lithologic Column		
Ē					0.0 to 0.3 fee: ASPHALT.	
Ē 1					0.3 to 30.0 feet: SANDY CLAY w/ GF medium plasticity; 20% sand; 10	RAVEL (CL); gray; 70% fines, % gravel fine: moist to wet at
-					20.0 feet.	
2						
<u> </u>						
E.						
<u> </u>						
Ē						
1 2 3 4 5 6 7 8 9						
Ē						
5						
Ē						
6						
<u> </u>						
Ē						
<u> </u>						
Ē						
8						
Ē						
5 9						
Ē						
10						
È ,						
E_ 11						
Ē						
<u> </u>						
Ē						
12						
Г						
14				<i>\///////</i>		
				<i>\///////</i>		
<u>15</u>						
16				<i>\///////</i>		
<u> </u>						
						4
17				<i>\///////</i>		
§ 18				V///////		
						8
18 19 19						
≦⊑ ≧⊑ 20						
NOT	ES: There were	no photoionization dei	tector (PID) hits on any of the 20-30 feet below ground surfac	soil tested fr	om this boring. reconaissance groundwater.	
	Water level ob drilling.	oserved at time of	Water lev ▼ well insta	vel observ all.	ed after temporary	

Maul	Foster &	Aloi	ngi, I	Inc.		Project N	lumbe	er	Well Number		Sheet
						0879.0	01.02		CST-B09		2 of 2
Depth (feet, BGS)	Well Details	Interval	Percent Recovery	Collection Method	Number du	Data Name (Type)	Blows/6"	Lithologic Column	Soil Descri	iption	
۵ ۳		<i>u</i> /	d R	ΰž	N		BI	ŬĔ			
21	Ţ	-									
22											
23											
24											
25											
26											
27											
28											
29											
30											
	: There were no Temporary sc						- 644				

			G		<b>Borehole Log/Well Cor</b>	
Mau	I Foster &	Alongi, Inc.	Project Numb 0879.01.02		Well Number CST-B10	Sheet <b>1 of 2</b>
Proje Start Drille Geol	ect Name ect Location t/End Date er/Equipment logist/Engineer ple Method	15247 Pacific Hi 3/17/2015 to 3/1	Supplemental RI ighway South, SeaTac, 7/2015 nc./Mobile B-60 HSA		TOC Elevation (fe Surface Elevation Northing Easting Hole Depth Outer Hole Diam	eet)
(S	Well	<u> </u>	ample Data	0	Soil Description	on
Depth (feet, BGS)	Details	Interval Percent Recovery Collection Method <i>c</i>	, and the second	Lithologic Column		
1					0.0 to 0.3 feet: ASPHALT. 0.3 to 16.0 feet: SANDY CLAY w/ GI 20% sand; 5% gravel; moist. Fill	RAVEL (CL); brown; 75% fines; to approximately 5.0 feet.
2						
4						
2 3 4 5 6 7 8 9 9						
6 1 1 1						
8						
10						
13						
12 13 14 14						
15						
17					16.0 to 38.0 feet: SILTY SAND w/ Gi fines; 65% sand; 5% gravel, fine cobbles; dry.	RAVEL (SM); brown to gray; 30% , subrounded; dense soil; local
18 19						
<u>20</u> NOTE	Temporary so	creen installed from 2		face to collect	reconaissance groundwater.	
		piece of broken PVC served at time of		evel observ	ground surface. No sign of backfill gravel. ed after temporary	

laui	Foster &	Alo	ngi,	Inc.		Project I <b>0879</b> .0		er	Well Number CST-B10		Sheet 2 of 2
(S)	Well			_ Sa	ample			0		il Description	
Depth (feet, BGS)	Details	Interval	Percent Recovery	Collection Method &	umber	Name (Type)	Blows/6"	Lithologic Column			
		12	עע	02	Z		В				
21											
22											
23											
24											
25			100	SS			70-6'				
26			-		c	STB10-S-25	.5				
27											
28											
29		-									
30											
31											
32											
33		7									
34											
35											
36											
37											
38											

Maul	Foster &	Along	gi, In	IC.		Project N			Well Number	Sheet
<u> </u>	-4 0/-	0 -	- 0 1		0	0879.0	01.02		CST-B11	1 of 2
	ct Name ct Location					lemental RI v South, Sea	Tac I	NA 98188	TOC Elevation (feet) Surface Elevation (feet)	
	End Date	3/17/20					, 1		Northing	
Driller	r/Equipment	Holt Se	ervice			bile B-60 HS	A		Easting	
	ogist/Engineer	Y. Van							Hole Depth	38.0-fee
i	ole Method	Mobile	e B-60						Outer Hole Diam	9-inch
(feet, BGS)	Well Details			Sai	mple i	Data	2,	dic	Soil Description	
et, B		Interval	Recovery	Method S	Number	Name (Type)	Blows/6"	Lithologic Column		
fe (		Inte		Ne Co	NU		Blo	CCE		
									0.0 to 0.3 feet: ASPHALT.	
1									0.3 to 12.0 feet: SANDY CLAY w/ GRAVEL (	CL); brown; 75% fines,
1									medium plasticity; 20% sand, fine to coal moist.	rse; 5% gravel, fine;
,										
2										
3										
3										
4										
5										
~										
6										
~										
7										
8										
9										
10										
11										
12										
									12.0 to 38.0 feet: SILTY SAND w/ GRAVEL ( fines; 65% sand; 5% gravel, fine, subrou	אואו; prown to gray; 30 nded; dense soil; moist
13									wet at 33.0 feet.	
14										
_										
15										
16										
16										
17								김태리		
''										
18										
19										
20										
	C. The sec				4		-611			
VOTES		o pnotoioi creen insta	alled fro	n aeteo om 28-	:tor (Pl -38 fee	ID) hits on any et below ground	or the I surfa	son tested fr ce to collect i	om this boring. reconaissance groundwater.	

	oster & /	Aloi	ngi, I	nc.		Project N <b>0879.0</b>	lumb	er	Drehole Log/Well C Well Number CST-B11	Sheet 2 of 2
(s)	Well Details			_ Sa	ample				Soil Desci	
Depth (feet, BGS)	Details	Interval	Percent Recovery	Collection Method _{SS}	umber `	Name (Type)	Blows/6"	Lithologic Column		
			עע	02	2		В			
21										
22										
23										
24										
25										
26										
27										
28										
29										
30										
31										
32										
33	Ţ									
34										
35										
36										
37										
38										

laul	Foster 8	λA	lon	igi, l	nc.		Project	Numb	er	Well Number CST-B12	Sheet 1 of 2
Proje Start/ Drille Geolo	ect Name ect Location /End Date er/Equipment logist/Engineer ple Method	1 3 F	524 3/16/ olt . Va	7 Paci 2015 t Servic In	ific Hig to 3/16	ghway 2015 c./Mol	0879. emental RI South, Sea bile B-60 HS	Tac,		<i>CS1-B12</i> TOC Elevation (fe Surface Elevation Northing Easting Hole Depth Outer Hole Diam	et)
	Well				•	ample	Data	,	.0	Soil Descriptio	n
(feet, BGS)	Details		Interval	Percent Recovery	Collection Method C	Number	Name (Type)	Blows/6"	Lithologic Column		
1 2 3 4 5 6 7 8 9 10 11 12 13										0.0 to 0.3 feet: ASPHALT. 0.3 to 8.0 feet: SILTY SAND (SM); br gravel; minor gravel; moist. 8.0 to 15.0 feet: SAND w/ GRAVEL ( sand, fine to coarse; 25% gravel, local cobbles; moist.	SW); brown; 10% fines; 65%
14									0 0 0 0 0 0		
15										15.0 to 28.0 feet: CLAY w/ GRAVEL plasticity; 5% sand; 10% gravel, i	
17											
18		Ā		75	SS	с	STB12-S-18	.5 6,			
19								7, 22			
20											
NOTES		scree	en ins	stalled	from 18		t below groun	d surfa	ace to collect r	om this boring. reconaissance groundwater. e <b>d after temporary</b>	

		'gı, '	Inc.		Project N		er	Well Number		Sheet
14/- 1/					0879.0	01.02	Ι	CST-B12		2 of 2
Well Details	16	nt 'ery	aC ∣qition	imple ັວ	⊔ata 	.9/	in In	Soil Desc	ription	
	itervi	erce.	collec 1etho	qunı	Name (Type)	Swol	itholc olum			
	12	μĽ	50	2		В				
Ţ										
							//////			
5: There were no Temporary scre	ohoto	ionizati stalled	on dete from 18	ctor (P -28 fee	ID) hits on any	of the	soil tested fr	om this boring. reconaissance groundwater.		
		Details Interval	Details Interval Recovery	Details Interval Recovery Recovery Method	Details Interval Interval Method Number	Details Under Collection Name (Type)	Details Interval Interval Name (Type)	Details  Interval  Interval  Recovery  Recovery  Recovery  Interval  Interval  Interval  Collection  Recovery  Recov	Details Number Collection Blows/6" Columnin Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Col	Details Number Collection Name (Type) Blows/6" Collection Collection Number Collection Number Collection Number Collection Number Collection Number Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collect

								G	eologic	Borehole Log/Well Con	struction
Ma	ul Foster	& A	loi	ngi, l	Inc.		Project I <b>0879</b> .0	Vumb	er	Well Number CST-B13	Sheet <b>1 of 2</b>
Pro Sta Dri Ge	oject Name oject Location art/End Date iller/Equipment cologist/Engine mple Method	er	1524 3/16 Holt Y. V	47 Paci /2015 ( Servio	ific Hig to 3/16 ces, In	ghway /2015 c./Mo	lemental RI / South, Sea bile B-60 HS		WA 98188	TOC Elevation (fe Surface Elevation Northing Easting Hole Depth Outer Hole Diam	
(S)	Well			>	<u>ہ</u> Sa	ample	Data		6	Soil Descriptio	วท
Depth (feet, BGS)	Details		Interval	Percent Recovery	Collection Method C	Number	Name (Type)	Blows/6"	Lithologic Column		
1										0.0 to 0.3 feet: ASPHALT. 0.3 to 6.0 feet: SILTY SAND (SM); bi gravel; minor gravel; moist.	rown; 20% fines; 75% sand; 5%
2 3											
4 1											
2 3 4 5 6											
L									0 0 0	6.0 to 9.0 feet: SAND w/ GRAVEL (S 25% gravel; mosit to wet at 9.0 fe	W); brown; 10% fines; 65% sand; eet.
7 8 9									0 0 0		
9		$\underline{\nabla}$							° ° °	9.0 to 28.0 feet: SANDY CLAY (CH);	dark grav: 75% finan high
10										plasticity; 25% sand, fine; wet.	uark gray, 75% lines, nign
11											
12											
F											
14											
16											
17											
18											
19 20											
NOT	TES: There we Temporar	re no y scre	photo een in	oionizati istalled	on dete from 18	ctor (P 3-28 fee	ID) hits on any et below ground	of the	e soil tested fi ace to collect	rom this boring. reconaissance groundwater.	
Ţ	Water level drilling.	obse	rvea	l at tim	ne of		Wa ⊻ we	ter le Il inst	evel observ tall.	ed after temporary	

	Foster & A	lonai.	Inc.	<u> </u>	Project N	Vumbe	er	Borehole Log/ Well Number	er	Sheet
					0879.0			CST-B13		2 of 2
(SE	Well Details	4	Sa Sa	ample	Data		ic.		Soil Description	
Depth (feet, BGS)	Details	Interval Percent Recoverv	Collection Method	Number ⁷		Blows/6"	Lithologic Column			
		Inte Per Rec	Col	Nur	Name (Type)	Bloi	Col			
21	-									
21	Į ₹									
22										
23										
24										
25										
25										
26										
-										
27										
28										
NOTES	: There were no p	bhotoioniza	ation dete	ector (P	PID) hits on any	of the	soil tested fro	m this boring.		





**Global Geophysics** 



June 2, 2014

Our Ref.: 104-0528.000

Maul Foster & Alongi, Inc. 411 1st Avenue S., Suite 610 Seattle, WA 98104

Attention: Ms.Yen-Vy Van

# **RE: REPORT ON THE GEOPHYSICAL SURVEY AT A PROPERTY IN SEATAC,** WA

Dear Ms. Van:

Global Geophysics conducted electromagnetic survey on May 28th, 2014 at a property at the corner of S. 154th St. and International Blvd., SeaTac, WA. The proposed objective of the geophysical investigation was to assist in locating underground storage tank.

## METHODOLOGY AND INSTRUMENTATION

EM61 was used for this study. The following paragraphs describe the method and field procedure.

#### **Time Domain Electromagnetic (EM61)**

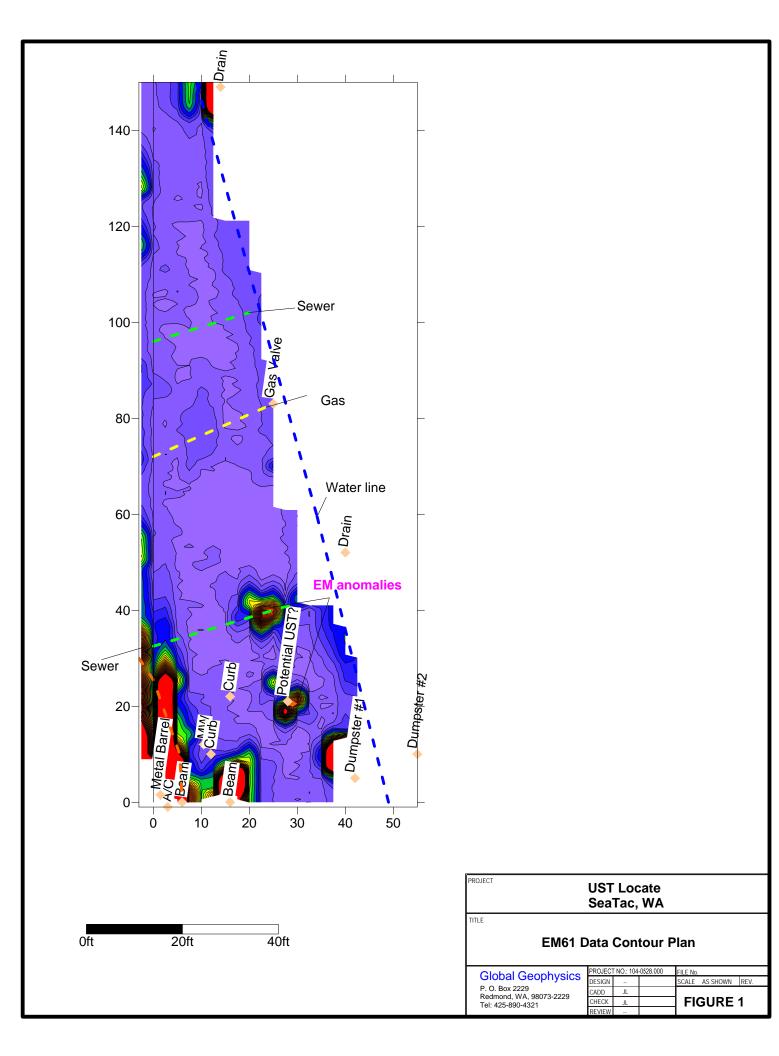
The time-domain electromagnetic system is capable of detecting buried metal objects. It transmits a pulsed electromagnetic field into the ground, which induces eddy currents in buried metallic objects. These eddy currents generate secondary electromagnetic fields that are detected by the system. The time duration or decay rate, of the secondary EM field is related to the electrical conductivity characteristics of the buried object.

A four-channel (gate) high sensitivity metal detector, Geonics EM61 Mk2, will be used to collect the data along the same traverses as the GPR. The low channel number (1) represents anomalies produced by shallow objects and the high channel number (4) represents anomalies produced by deeper objects. The subsurface depth range is from approximately 1 to 15 feet. The data will be stored digitally and downloaded after the survey for analysis and mapping

#### RESULTS

The EM response data is contoured and presented in Figure 1. The surface features and two EM anomalies are shown in this Figure. The two EM anomalies are the EM response from buried metal objects.

## LIMITATIONS OF THE GEOPHYSICAL METHOD


Global geophysics services are conducted in a manner consistent with the level of care and skill ordinarily exercised by other members of the geophysical community currently practicing under similar conditions subject to the time limits and financial and physical constraints applicable to the services. EM is a remote sensing geophysical method that may not detect all subsurface conditions due to the limitations of the methods, soil conditions, size of the features and their depths.

Sincerely,

**Global Geophysics** 

Jomes

John Liu, Ph.D., R.G. Principal Geophysicist



# APPENDIX C



## LEGAL DESCRIPTION ORDER NO. 1365934

(PER COMMITMENT FOR TITLE INSURANCE ISSUED BY CHICAGO TITLE INSURANCE COMPANY ORDER NO. 1365934, DATED JUNE 3, 2013 AT 8:00 A.M.) THE SOUTH 50 FEET OF LOT 5. EXCEPT THE WEST 90 FEET THEREOF: AND

THE NORTH 2 FEET OF THE EAST 175.8 FEET OF LOT 6, ALL IN BLOCK 1, THIRD ADDITION TO ADAMS HOME TRACTS, ACCORDING TO THE PLAT THEREOF, RECORDED IN VOLUME 15 OF PLATS, PAGE 17, IN KING COUNTY, WASHINGTON; TOGETHER WITH LOT 5. BLOCK 1. THIRD ADDITION TO ADAMS HOME TRACTS, ACCORDING TO THE PLAT THEREOF, RECORDED IN VOLUME 15 OF PLATS, PAGE 17, IN KING COUNTY, WASHINGTON; EXCEPT THE WEST 144 FEET THEREOF; AND EXCEPT THE SOUTH 50 FEET THEREOF.

## SPECIAL EXCEPTIONS ORDER NO. 1365934

(PER COMMITMENT FOR TITLE INSURANCE ISSUED BY CHICAGO TITLE INSURANCE COMPANY FILE

	COMMITMENT FOR TITLE 1365934 DATED: JUNE 3				AGO TITLE	INSURANCE	E COMPANY F	1
A	1. EASEMENT AGREEMENT BETWEEN: AND:	PACIFIC S	SOUTH CE T SAETY,	NTER AS				
	RECORDED : RECORDING NUMBER: REGARDING :		1986 59 INGRESS					
В	AMENDED EASEMENT AGR BY:	EEMENT A HERITAGE SOUTHCEN	PACIFIC	LIMITED		ONS THERE	EOF:	
	AND BETWEEN: RECORDED :	MARGARE BOYD KNI JULY 25,	T SAETY, EELAND 2003			AND		
С	RECORDING NO.: 2 . MATTERS DISCLOSED 20080409900004, AS FO A) BUILDING ON PREMISE	BY SURVE	EY RECOR					
	PROPERTY ADJOINING ON B) PORTION OF STEEL PI ADJOINING ON THE NORT C) CONCRETE WALL NOT D) OVERHEAD UTILITY LIN	THE NOR PE LIES W HWEST; CONFORMI	THWEST; ESTERLY NG TO W	OF BOUN	DARY LINE LINE;	ONTO PRO	OPERTY	
D	NORTHEASTERLY PORTION 3. PAYMENT OF THE REA THE PROPERTY DESCRIBE	I OF PROP L ESTATE	ERTY AD	JOINING ( Tax, if r	N THE NO EQUIRED.	RTHWEST.		
	LOCAL TAXING AUTHORITY	Y OF CITY	OF SEA	AC. PRES	SENT RATE	IS 1.78%.	UF	
	ANY CONVEYANCE DOCUM WASHINGTON STATE EXCI: MUST BE PAID AND THE OF THE CONVEYANCE DO	SE TAX AF AFFIDAVIT	FIDAVIT.	THE APP	LICABLE EX	KCISE TAX	ORDING	
	(NOTE: A DEED EXEMPT TECHNOLOGY FEE AND A							
E	4. GENERAL AND SPECIA IF FIRST HALF UNPAID OI NOVEMBER 1 OF THE TAX PENALTIES) :	N MAY 1,	SECOND MOUNTS	HALF DEL	INQUENT II	F UNPAID (	NC	
	YEAR : TAX ACCOUNT NUMBER: LEVY CODE : ASSESSED VALUE-LAND: ASSESSED VALUE-IMPRO'		2212 \$ 562,7		5			
	GENERAL & SPECIAL TAX		BILLED: PAID: \$	\$ 19,961 9,980.84 \$ 9,980				
F	5. DEED OF TRUST AND GRANTOR :	IMOGENE FRANKLIN KNEELANI	FRANKLIN SAETY, D, AND J R OF THE	I HUBBAR BOYD FRA OHN F. S	D, MARGA	RET		
	TRUSTEE: BENEFICIARY:	PACIFIC N COMPANY	ORTHWES	HINGTON				
	AMOUNT :	A WASHIN \$ 93,953	IGTON CO .52	RPORATIO	PANCAKE DN	UNEF,		
	DATED : RECORDED : RECORDING NUMBER: LOAN NUMBER:	SEPTEMBE JANUARY 20030103 NOT DISC	3, 2003 002837	J2				
	THE AMOUNT NOW SECUR THE SAME CAN BE DISCH HOLDER OF THE INDEBTE	ARGED OF	R ASSUM					
G	6. DEED OF TRUST AND GRANTOR :	IMOGENE FRANKLIN KNEELANI	FRANKLIN SAETY, D, AND J R OF THE	I HUBBAF BOYD FRA OHN F. S	D, MARGAI Anklin	RET		

-,
F

THE AMOUNT NOW SECURED BY SAID DEED OF TRUST AND THE TERMS UPON WHICH THE SAME CAN BE DISCHARGED OR ASSUMED SHOULD BE ASCERTAINED FROM THE HOLDER OF THE INDEBTEDNESS SECURED.

Н	7. LEASE AGREEMENT AN	ND THE TERMS AND CONDITIONS THEREOF:
	LESSOR:	MARGARET FRANKLIN SAETY, IMOGENE
		FRANKLIN HUBBARD, AND BOYD FRANKLIN
		KNEELAND
	LESSEE:	LOREN T. SISLEY AND RACHEL G.
		SISLEY, HUSBAND AND WIFE, DOING
		BUSINESS AS THE PANCAKE CHEF
		RESTAURANT
	FOR A TERM ENDING:	FEBRUARY 28, 2011, WITH TERMS OF

RENEWAL

JUNE 23, 2004

RECORDING NUMBER: 2	20040623001001
AMENDMENT AND/OR MOD	IFICATION OF LEASE: JUNE 23, 2004
RECORDING NUMBER: 2	
THE LESSEE'S INTEREST IN	I SAID LEASE IS NOW HELD OF RECORD BY:
ACCIONEE .	THREE S INC A WASHINGTON

RECORDED :

THREE S, INC., A WASHINGTON ASSIGNEE : CORPORATION, DOING BUSINESS AS THE PANCAKE CHÉF RESTAURANT RECORDED : JULY 15, 2004 RECORDING NUMBER: 20040715002385



- THE TERM.
- SECURITY INTERESTS AFFECTING THE RIGHTS OF LESSEES ONLY.
- K 9. THE EFFECT, IF ANY, OF CONDEMNATION ACTION: FILED IN: CAUSE NUMBER: 07-2-07470-8 RESULTS WILL FOLLOW BY SUPPLEMENTAL COMMITMENT
- M 10. MATTERS RELATING TO PROBATE FOR DORIS B. FRANKLIN, DECEASED: FILED IN: CAUSE NUMBER: PCE 222420

SAID PROBATE HAS NOT YET BEEN EXAMINED BY THIS COMPANY. RESULTS WILL FOLLOW BY SUPPLEMENTAL COMMITMENT. N 11. TITLE IS DERAIGNED IN PART PURSUANT TO DEED FROM IMOGENE FRANKLIN

- HUBBARD, INDIVIDUALLY AND AS TRUSTEE OF THE IMOGENE FRANKLIN HUBBARD MATTERS SHOWN IN PARAGRAPH(S) 12 AND 13.
- 0 12. RIGHT, TITLE AND INTEREST OF PATRICIA FRANKLIN KNEELAND, CO-GRANTEE IN RECORD IN KING COUNTY, WASHINGTON. X 13. NUMEROUS MATTERS AGAINST PERSONS/ENTITIES WITH NAMES SIMILAR TO
- WITH SAID PERSONS/ENTITIES.
- OF SAID MATTERS.
- 15201 MILITARY ROAD SOUTH, LLC, A WASHINGTON LIMITED LIABILITY COMPANY
- Q NOTE: A COPY OF THE LIMITED LIABILITY COMPANY AGREEMENT, AND AMENDMENTS THERETO, IF ANY, MUST BE SUBMITTED.
- HAVE BEEN AUTHORIZED TO ACT FOR THE LIMITED LIABILITY COMPANY.
- EVIDENCE MUST BE FURNISHED THAT SAID COMPANY IS IN GOOD STANDING PRIOR TO CLOSING
- DOES NOT CONFORM TO THEIR EXPECTATIONS.
- U NOTE 1: NO LIABILITY IS ASSUMED BY REASON OF RELIANCE THEREON. V NOTE 2:
- COUNTY RECORDER OR IMPOSITION OF A \$50.00 SURCHARGE. FOR DETAILS OF THESE STATEWIDE REQUIREMENTS PLEASE VISIT THE KING COUNTY RECORDER'S OFFICE WEBSITE AT

DOCUMENT STANDARDS.

THE FOLLOWING MAY BE USED AS AN ABBREVIATED LEGAL DESCRIPTION ON THE DOCUMENTS TO BE RECORDED TO COMPLY WITH THE REQUIREMENTS OF RCW 65.04. SAID ABBREVIATED LEGAL DESCRIPTION IS NOT A SUBSTITUTE FOR A COMPLETE LEGAL DESCRIPTION WHICH MUST ALSO APPEAR IN THE BODY OF THE DOCUMENT:

PTN LOTS 5-6 BLOCK 1 VOLUME 15 PLATS PG 17.

REV

# ALTA/ACSM LAND TITLE SURVEY

NW 1/4 OF THE SW 1/4, SEC. 22, T. 23 N., R. 4 E., W.M. CITY OF SEA-TAC, KING COUNTY, WASHINGTON

## 8. UNRECORDED LEASEHOLDS, IF ANY, RIGHTS OF VENDORS AND HOLDERS OF SECURITY INTERESTS ON PERSONAL PROPERTY INSTALLED UPON SAID PROPERTY AND RIGHTS OF TENANTS TO REMOVE TRADE FIXTURES AT THE EXPIRATION OF

MATTERS INCLUDING BUT NOT LIMITED TO MORTGAGES, DEEDS OF TRUST, ASSIGNMENT OF LEASES GIVEN AS SECURITY, FINANCING STATEMENTS AND OTHER

KING COUNTY SUPERIOR COURT

KING COUNTY SUPERIOR COURT

REVOCABLE TRUST DATED SEPTEMBER 20, 1997, BOYD FRANKLIN KNEELAND, AS SOLE SUCCESSOR TO PATRICIA FRANKLIN KNEELAND, AND BARBARA SMITH, AS TRUSTEE OF THE MARGARET FRANKLIN SAETY REVOCABLE TRUST DATED JANUARY 5, 1997, AS AMENDED AUGUST 26, 2005, RECORDED OCTOBER 5, 2010, UNDER RECORDING NUMBER 20101005000806. THE RECORDS DISCLOSE THE FOLLOWING

DEED RECORDED UNDER RECORDING NUMBER 7512310509. DEED RECORDED UNDER RECORDING NUMBER 20101005000806 WAS MADE IN PART BY BOYD FRANKLIN KNEELAND, AS SOLE SUCCESSOR TO SAID PATRICIA FRANKLIN KNEELAND. WE FIND NO DISPOSTION OF THE INTEREST OF PATRICIA FRANKLIN KNEELAND OF

PATRICIA FRANKLIN KNEELAND, THE EFFECT OF WHICH DEPENDS UPON IDENTITY

PLEASE HAVE THE CONFIDENTIAL INFORMATION STATEMENT(S) ATTACHED TO THIS COMMITMENT COMPLETED AND RETURNED TO THIS OFFICE IN A TIMELY MANNER IN ORDER FOR THE COMPANY TO MAKE A FINAL DETERMINATION AS TO THE EFFECT

P 14. TERMS AND CONDITIONS OF THE LIMITED LIABILITY COMPANY AGREEMENT FOR

R 15. ANY CONVEYANCE OR MORTGAGE BY 15201 MILITARY ROAD SOUTH, LLC, A WASHINGTON LIMITED LIABILITY COMPANY, MUST BE EXECUTED IN ACCORDANCE WITH THE LIMITED LIABILITY COMPANY AGREEMENT AND BY ALL THE MEMBERS, OR EVIDENCE MUST BE SUBMITTED THAT CERTAIN DESIGNATED MANAGERS/MEMBERS

S 16. ACCORDING TO THE WASHINGTON STATE CORPORATION DIVISION'S RECORDS DATED JUNE 7, 2013, THE ANNUAL FEES FOR 15201 MILITARY ROAD SOUTH, LLC, A WASHINGTON LIMITED LIABILITY COMPANY DUE ON APRIL 30, 2013, HAVE NOT BEEN PAID AND THE COMPANY IS SUBJECT TO ADMINISTRATIVE DISSOLUTION.

T 17. THE LEGAL DESCRIPTION IN THIS COMMITMENT IS BASED ON INFORMATION PROVIDED WITH THE APPLICATION AND THE PUBLIC RECORDS AS DEFINED IN THE POLICY TO ISSUE. THE PARTIES TO THE FORTHCOMING TRANSACTION MUST NOTIFY THE TITLE INSURANCE COMPANY PRIOR TO CLOSING IF THE DESCRIPTION

ANY MAP FURNISHED WITH THIS COMMITMENT IS FOR CONVENIENCE IN LOCATING THE LAND INDICATED HEREIN WITH REFERENCE TO STREETS AND OTHER LAND.

EFFECTIVE JANUARY 1, 1997, DOCUMENT FORMAT AND CONTENT REQUIREMENTS HAVE BEEN IMPOSED BY WASHINGTON LAW. FAILURE TO COMPLY WITH THE FOLLOWING REQUIREMENTS MAY RESULT IN REJECTION OF THE DOCUMENT BY THE

WW.KINGCOUNTY.GOV/BUSINESS/RECORDERS.ASPX AND SELECT ONLINE FORMS AND

LEGAL DESCRIPTION

FILE NO. NCS-613456-WA1:

(PER COMMITMENT FOR TITLE INSURANCE ISSUED BY FIRST AMERICAN TITLE INSURANCE COMPANY FILE NO. NCS-613456-WA1, DATED JUNE 06, 2013 AT 7:30 A.M.) PARCEL A:

THAT PORTION OF LOTS 4 AND 5, BLOCK 2, ADAMS HOME TRACTS NO. 3, ACCORDING TO PLAT RECORDED IN VOLUME 15 OF PLATS, PAGE 17, RECORDS OF KING COUNTY, WASHINGTON, LYING WEST OF PRIMARY STATE HIGHWAY NO. 1 AND SOUTH OF A LINE DRAWN PARALLEL TO AND A DISTANCE OF 65 FEET SOUTHERLY FROM THE SOUTH LINE OF SOUTH 152ND STREET.

PARCEL B:

THAT PORTION OF LOT 5, BLOCK 2, THIRD ADDITION TO ADAMS HOME TRACTS, ACCORDING TO THE PLAT THEREOF, RECORDED IN VOLUME 15 OF PLATS, PAGE 17, IN KING COUNIY, WASHINGTON, LYING WESTERLY OF THE WESTERLY LINE OF STATE HIGHWAY NO. 1 AND NORTH OF A LINE 65 SOUTH (AS MEASURED AT RIGHT ANGLES) OF AND PARALLEL WITH THE SOUTH LINE OF SOUTH 152ND STREET.

## SPECIAL EXCEPTIONS

## FILE NO. NCS-613456-WA1

(PER COMMITMENT FOR TITLE INSURANCE ISSUED BY FIRST AMERICAN TITLE INSURANCE COMPANY FILE NO.: NCS-613456-WA1 DATED: JUNE 06, 2013 AT 7:30 A.M.)

- 1. LIEN OF THE REAL ESTATE EXCISE SALES TAX AND SURCHARGE UPON ANY SALE OF SAID PREMISES, IF UNPAID. AS OF THE DATE HEREIN, THE EXCISE TAX RATE FOR THE CITY OF SEATAC IS AT 1.78%. LEVY/AREA CODE: 2243
- FOR ALL TRANSACTIONS RECORDED ON OR AFTER JULY 1,2005:
- A FEE OF \$10.00 WILL BE CHARGED ON ALL EXEMPT TRANSACTIONS; - A FEE OF \$5.00 WILL BE CHARGED ON ALL TAXABLE TRANSACTIONS IN ADDITION TO THE EXCISE TAX DUE.

2.	GENERAL TAXES FOR THE YEAR 2013.         TAX ACCOUNT NO.:       004300-00         AMOUNT BILLED:       \$ 1,847.07         AMOUNT PAID:       \$ 923.54         AMOUNT DUE:       \$ 923.53         ASSESSED LAND VALUE:       \$ 86,700.00         ASSESSED IMPROVEMENT VALUE:       \$ 33,300.00	0
	(AFFECTS PARCEL A)	
3.	GENERAL TAXES FOR THE YEAR 2013. TAX ACCOUNT NO.: 04300-010 AMOUNT BILLED: \$ 2,814.00	0-08

ASSESSED IMPROVEMENT VALUE: \$ 0.00 (AFFECTS PARCEL B)

ASSESSED LAND VALUE:

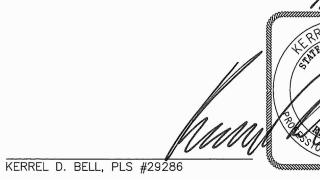
AMOUNT PAID:

AMOUNT DUE:

4. EVIDENCE OF THE AUTHORITY OF THE INDIVIDUAL(S) TO EXECUTE THE FORTHCOMING DOCUMENT FOR MP TRIANGLE LLC, A WASHINGTON LIMITED LIABILITY COMPANY, COPIES OF THE CURRENT OPERATING AGREEMENT SHOULD BE SUBMITTED PRIOR TO CLOSING.

\$ 1,407.00

\$ 1,407.00


\$ 183,300.00

- 5. TITLE TO VEST IN AN INCOMING OWNER WHOSE NAME IS NOT DISCLOSED, SUCH NAME MUST BE FURNISHED TO US SO THAT A NAME SEARCH MAY BE MADE.
- 6. UNRECORDED LEASEHOLDS, IF ANY, RIGHTS OF VENDORS AND SECURITY AGREEMENT ON PERSONAL PROPERTY AND RIGHTS OF TENANTS, AND SECURED PARTIES TO REMOVE TRADE FIXTURES AT THE EXPIRATION OF THE TERM.

## CERTIFICATION:

TO THE CITY OF SEATAC, A WASHINGTON MUNICIPAL CORPORATION, CHICAGO TITLE INSURANCE COMPANY, FIRST AMERICAN TITLE INSURANCE COMPANY, AND MAUL FOSTER & ALONGI, INC.:

THIS IS TO CERTIFY THAT THIS MAP OR PLAT AND THE SURVEY ON WHICH IT IS BASED WERE MADE IN ACCORDANCE WITH THE 2011 MINIMUM STANDARD DETAIL REQUIREMENTS FOR ALTA/ACSM LAND TITLE SURVEYS, JOINTLY ESTABLISHED AND ADOPTED BY ALTA AND NSPS, AND INCLUDES ITEMS (NONE) OF TABLE A THEREOF. THE FIELD WORK WAS COMPLETED ON JULY 9, 2014. DATE OF PLAT OR MAP: JULY 14, 2014



6608 216TH STREET SW, STE. MOUNTLAKE TERRACE, WA 9 PHONE:(425) 778-5620 FAX:(425 WEB: www.PacGeoInc.com



BY JNM DATE

07/14/2014

PGS / INC

## SURVEYORS NOTES:

1. ALL UNDERGROUND UTILITY LOCATIONS ARE BASED ON OBSERVED EVIDENCE OF STRUCTURES AND PAINT MARKS SET BY OTHERS. THE SURVEYOR MAKES NO GUARANTEE THAT THE UNDERGROUND UTILITIES SHOWN COMPRISE ALL SUCH UTILITIES IN THE AREA. FITHER IN-SERVICE OR ABANDONED. THE SURVEYOR DOES NOT WARRANT THAT THE UNDERGROUND UTILITIES SHOWN ARE IN THE EXACT LOCATION INDICATED ALTHOUGH HE DOES CERTIFY THAT THEY ARE LOCATED AS ACCURATELY AS POSSIBLE FROM THE INFORMATION PROVIDED.

2. ALL DIMENSIONS TO STRUCTURES SHOWN HEREON ARE MEASURED AT RIGHT ANGLES TO THE PROPERTY LINES.

## PARCEL AREAS:

APN	0043000020:	18,762 SQ.FT.	(0.43 ACRES)
APN	0043000093:	1,518 SQ.FT.	(0.03 ACRES)
APN	0043000100:	3,819 SQ.FT.	(0.09 ACRES)

## HORIZONTAL DATUM:

THE HORIZONTAL DATUM FOR THIS SURVEY IS NAD 83(11), WASHINGTON STATE PLANE NORTH, BASED ON THE WASHINGTON STATE REFERENCE NETWORK (WSRN) AND WSDOT MONUMENT ID 3172 (DESIGNATION: RIVERTON).

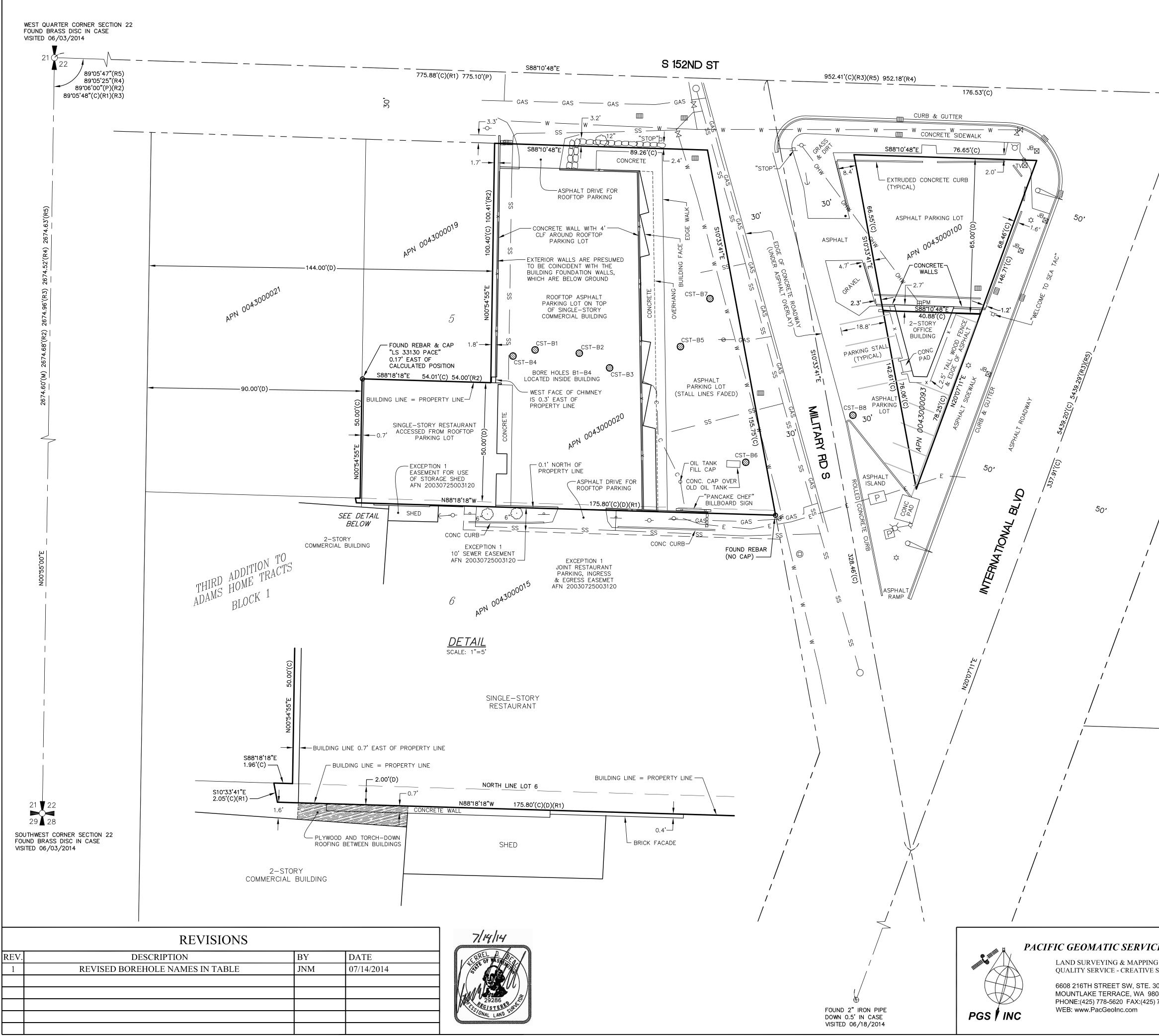
## VERTICAL DATUM:

THE VERTICAL DATUM FOR THIS SURVEY IS NAVD 88, BASED ON THE WASHINGTON STATE REFERENCE NETWORK (WSRN) AND PUBLISHED ELEVATIONS FOR WSDOT MONUMENT ID 6423 (DESIGNATION: IS17199) AND WSDOT MONUMENT ID 3172 (DESIGNATION: RIVERTON).

ELEVATION (IS17199): 268.26 FEET ELEVATION (RIVERTON): 363.78 FEET

## <u>STATISTICS:</u>

EQUIPMENT: TRIMBLE VX SPATIAL STATION TRIMBLE R10 GNSS SYSTEM METHODOLOGY: FIELD TRAVERSE AND NETWORK RTK MEETS OR EXCEEDS SURVEY STANDARD AS PER: WAC 332-130-050 WAC 332-130-090 WAC 332-130-100 ALL SURVEY WORK OCCURRED IN MAY JUNE OF 2014


## <u>REFERENCES:</u>

					ADAMS HOM					PAGE	17
(	(R1)	RECORD	OF	SURVEY	RECORDING	NO.	86062	27900	8		
(	(R2)	RECORD	OF	SURVEY	RECORDING	NO.	20080	04099	000	04	
(	(R3)	RECORD	OF	SURVEY	RECORDING	NO.	83040	07900	7		
(	(R4)	RECORD	OF	SURVEY	RECORDING	NO.	20040	04169	000	10	
(	(R5)	RECORD	OF	SURVEY	RECORDING	NO.	20070	01189	00C	23	
	. ,	RECORD	OF	SURVEY	RECORDING	NO.	20030	08139	000	03	

RECORD OF SURVEY RECORDING NO. 9310089007



CES, INC.	SHEET TITLE:	DRAWN BY: JNM	CHECKED BY: KDB		
IG SERVICES	ALTA/ACSM LAND TITLE SURVEY SEATAC, WA	SCALE: N/A			
E SOLUTIONS 304	CLIENT:	DATE: 07/09/2014			
8043 5) 775-2849	MAUL FOSTER & ALONGI, INC.	JOB NUMBER	SHEET		
	SEATTLE, WA	14-028-01	1 OF 2		
		•	-		



# ALTA/ACSM LAND TITLE SURVEY

NW 1/4 OF THE SW 1/4, SEC. 22, T. 23 N., R. 4 E., W.M. CITY OF SEA-TAC, KING COUNTY, WASHINGTON

р Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Голинания Гол	Ν
5	GRAPHIC SCALE 0 10 20 40 ( IN FEET ) 1 inch = 20 ft.
	BOREHOLE         NORTHING         EASTING         ELEVATION           CST-B1         173628.1         1280355.5         337.55           CST-B2         173626.7         1280374.1         337.53           CST-B3         173620.6         1280386.8         337.51           CST-B4         173625.5         1280346.3         337.53           CST-B5         173629.5         1280416.4         336.47           CST-B6         173581.0         1280443.8         335.55           CST-B7         173649.6         1280428.8         335.90           CST-B8         173600.7         1280488.7         334.40
4	Image: Description       BOREHOLE         Image: Description       CATCH BASIN         Image: Description       STORM DRAIN MANHOLE         Image: Description       SANITARY SEWER MANHOLE         Image: Description       WATER METER         Image: Description       GAS VALVE         Image: Description       POWER VAULT         Image: JBM       POWER METER         Image: Image: Description       STREET LIGHT         Image: Image: Description       TV RISER         Image: Image: Image: Description       TV RISER         Image:
BLOCK ² 3	Image: METAL SIGN POST         Image: WOOD SIGN POST         Image: BOLLARD
SHEET TITLE:	<ul> <li>(M) MEASURED BY PGS, INC.</li> <li>(C) CALCULATED BY PGS, INC.</li> <li>(D) DISTANCE OR ANGLE PER DEED</li> <li>(P) DISTANCE OR ANGLE PER PLAT</li> <li>(R#) DISTANCE OR ANGLE PER REFERENCE (SEE REFERENCES SHEET 1 OF 2)</li> </ul>

SHEET TITLE:	DRAWN BY: JNM	CHECKED BY: KDB			
	SCALE: 1" = 20'				
	DATE: 07/09/2014				
MAUL FOSTER & ALONGI, INC.	JOB NUMBER	SHEET			
SEATTLE, WA	14-028-01	2 OF 2			
	ALTA/ACSM LAND TITLE SURVEY SEATAC, WA CLIENT: MAUL FOSTER & ALONGI, INC.	ALTA/ACSM LAND TITLE SURVEY SEATAC, WA CLIENT: MAUL FOSTER & ALONGI, INC. SEATTLE WA			

# APPENDIX D FIELD SAMPLING DATA SHEETS



400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

## Water Field Sampling Data Sheet

Client Name	City of SeaTac	Sample Location	CST-B5
Project #	0879.01.02	Sampler	RD
Project Name	SeaTac S. 154th TOD	Sampling Date	6/2/2014
Sampling Event	June 2014	Sample Name	CSTB5-GW-27.0
Sub Area		Sample Depth	27
FSDS QA:	CRW 7/28/14	Easting	Northing

## Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
6/2/2014	14:15	35		26.3		8.7	

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

## Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pH	Temp (C)	E Cond (uS/cm)	DO (mg/L)	EH	Turbidity
(2) Peristaltic Pump	2:18:00 PM	0.2	0.4	6.79	17.3	532	4.75	-136.1	
	2:24:00 PM	0.6	0.4	6.92	20.03	537	7.03	-89.9	
Final Field Parameters									

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

## Water Quality Observations:

## **Sample Information**

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	2:26:00 PM	VOA-Glass	5	No
			Amber Glass	1	No
			White Poly	2	No
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	8	

## **General Sampling Comments**

Well was not recharging. Only able to collect 2 sets of parameters. Turbidity meter was not working, therefore no turbidity measurements.

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

## Water Field Sampling Data Sheet

Client Name	City of SeaTac	Sample Location	CST-B6
Project #	0879.01.02	Sampler	YV
Project Name	SeaTac S. 154th TOD	Sampling Date	6/2/2014
Sampling Event	June 2014	Sample Name	CSTB6-GW-25.4
Sub Area		Sample Depth	25.4
FSDS QA:	CRW 7/28/14	Easting	Northing

## Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
6/2/2014	15:30	35		25.4		9.6	

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

## Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	EH	Turbidity
(2) Peristaltic Pump									
Final Field Parameters									

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

## Water Quality Observations:

## **Sample Information**

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	5:15:00 PM	VOA-Glass	5	No
			Amber Glass	3	No
			White Poly	2	No
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	10	

## **General Sampling Comments**

Let boring sit for about 20 minutes. Driller developed temporary well in order to remove some of the fines in the groundwater. Did not collect groundwater parameters at this site; well was not recharging.

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

## Water Field Sampling Data Sheet

Client Name	City of SeaTac	Sample Location	CST-B7
Project #	0879.01.02	Sampler	RD/CW
Project Name	SeaTac S. 154th TOD	Sampling Date	6/3/2014
Sampling Event	June 2014	Sample Name	CSTB7-GW-30.0
Sub Area		Sample Depth	30
FSDS QA:	CRW 7/28/14	Easting	Northing TOC

## Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
6/3/2014	11:10	35		24.5		10.5	

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

## Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	EH	Turbidity
(2) Peristaltic Pump	11:46:00 AM	0.2	0.4	7.64	18.6	409	9.75	-112.5	
Final Field Parameters									

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

## Water Quality Observations:

## **Sample Information**

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	11:50:00 AM	VOA-Glass	4	No
		i.	Amber Glass	3	No
			White Poly	2	No
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	9	

## **General Sampling Comments**

Well was not recharging. Purge began at 11:10. At 11:15, stopped purge because water level dropped to 33.0 ft. bgs. Began pumping again at 11:40 to allow sufficient time to recharge before second purge. Well was still not recharging.

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

## Water Field Sampling Data Sheet

Client Name	City of SeaTac	Sample Location	CST-B8
Project #	0879.01.02	Sampler	RD/CW
Project Name	SeaTac S. 154th TOD	Sampling Date	6/3/2014
Sampling Event	June 2014	Sample Name	CSTB8-GW-20.0
Sub Area		Sample Depth	30
FSDS QA:	CRW 7/28/14	Easting	Northing TOC

## Hydrology/Level Measurements

			(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)		
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
6/3/2014	11:10	35		25		10	

 $(0.75" = 0.023 \text{ gal/ft}) (1" = 0.041 \text{ gal/ft}) (1.5" = 0.092 \text{ gal/ft}) (2" = 0.163 \text{ gal/ft}) (3" = 0.367 \text{ gal/ft}) (4" = 0.653 \text{ gal/ft}) (6" = 1.469 \text{ gal/ft}) (8" = 2.611 \text{ gal/ft}) (3" = 0.041 \text{ gal/ft}) (1.5" = 0.092 \text{ gal/ft}) (2" = 0.163 \text{ gal/ft}) (3" = 0.367 \text{ gal/ft}) (4" = 0.653 \text{ gal/ft}) (6" = 1.469 \text{ gal/ft}) (8" = 2.611 \text{ gal/ft}) (3" = 0.041 \text{ gal/ft$ 

## Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pH	Temp (C)	E Cond (uS/cm)	DO (mg/L)	EH	Turbidity
(2) Peristaltic Pump									
Final Field Parameters									

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations:	Turbidity meter broken.	Water level me
-----------------------------	-------------------------	----------------

eter broken.

## **Sample Information**

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	3:54:00 PM	VOA-Glass	5	No
			Amber Glass	3	No
			White Poly	2	No
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly		
			Total Bottles	10	

## **General Sampling Comments**

Water level meter was broken. Well was having difficulty recharging. Since there was no way to monitor the water level to ensure that enough water remained to collect parameters followed by sample, we proceeded to collect the sample without parameters.

# **APPENDIX E** LABORATORY ANALYTICAL REPORTS





14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

June 12, 2014

Jackie Gruber Maul Foster & Alongi, Inc. 411 First Avenue S., Suite 610 Seattle, WA 98104

Re: Analytical Data for Project 0879.01.02 Laboratory Reference No. 1406-006

Dear Jackie:

Enclosed are the analytical results and associated quality control data for samples submitted on June 2, 2014.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Date of Report: June 12, 2014 Samples Submitted: June 2, 2014 Laboratory Reference: 1406-006 Project: 0879.01.02

#### **Case Narrative**

Samples were collected on June 2, 2014 and received by the laboratory on June 2, 2014. They were maintained at the laboratory at a temperature of  $2^{\circ}$ C to  $6^{\circ}$ C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

#### Volatiles EPA 8260C Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

#### **NWTPH-Dx**

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	CST B6-S-8.0					
Laboratory ID:	06-006-05					
Diesel Range Organics	ND	29	NWTPH-Dx	6-6-14	6-6-14	
Lube Oil Range Organics	ND	57	NWTPH-Dx	6-6-14	6-6-14	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	67	50-150				
Client ID:	CST B6-S-31.5					
Laboratory ID:	06-006-06					
Diesel Range Organics	ND	28	NWTPH-Dx	6-6-14	6-6-14	
Lube Oil Range Organics	ND	56	NWTPH-Dx	6-6-14	6-6-14	
Surrogate:	Percent Recovery	Control Limits				

o-Terphenyl 79 50-150

#### NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0606S2					
Diesel Range Organics	ND	25	NWTPH-Dx	6-6-14	6-6-14	
Lube Oil Range Organics	ND	50	NWTPH-Dx	6-6-14	6-6-14	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	98	50-150				
e reipilenyi	00	00 100				

					Source	Perc	ent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	06-00	06-05									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		N	A	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		N	A	NA	NA	NA	
Surrogate:											
o-Terphenyl						67	85	50-150			

## VOLATILES EPA 8260C page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B5-GW-27.0					
Laboratory ID:	06-006-04					
Dichlorodifluoromethane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Chloromethane	ND	6.5	EPA 8260C	6-6-14	6-6-14	
Vinyl Chloride	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Bromomethane	ND	2.2	EPA 8260C	6-6-14	6-6-14	
Chloroethane	ND	5.0	EPA 8260C	6-6-14	6-6-14	
Trichlorofluoromethane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,1-Dichloroethene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Acetone	ND	25	EPA 8260C	6-6-14	6-6-14	
lodomethane	ND	9.5	EPA 8260C	6-6-14	6-6-14	
Carbon Disulfide	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Methylene Chloride	ND	5.0	EPA 8260C	6-6-14	6-6-14	
(trans) 1,2-Dichloroethene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Methyl t-Butyl Ether	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,1-Dichloroethane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Vinyl Acetate	ND	5.0	EPA 8260C	6-6-14	6-6-14	
2,2-Dichloropropane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
(cis) 1,2-Dichloroethene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
2-Butanone	ND	25	EPA 8260C	6-6-14	6-6-14	
Bromochloromethane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Chloroform	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,1,1-Trichloroethane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Carbon Tetrachloride	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,1-Dichloropropene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Benzene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,2-Dichloroethane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Trichloroethene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,2-Dichloropropane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Dibromomethane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Bromodichloromethane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
2-Chloroethyl Vinyl Ether	ND	5.0	EPA 8260C	6-6-14	6-6-14	
(cis) 1,3-Dichloropropene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Methyl Isobutyl Ketone	ND	10	EPA 8260C	6-6-14	6-6-14	
Toluene	ND	5.0	EPA 8260C	6-6-14	6-6-14	
(trans) 1,3-Dichloropropene	ND	1.0	EPA 8260C	6-6-14	6-6-14	

## VOLATILES EPA 8260C page 2 of 2

• • • •	<b>_</b>	<b>B</b> <i>C</i> ·		Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
	CST B5-GW-27.0					
Laboratory ID:	06-006-04					
1,1,2-Trichloroethane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Tetrachloroethene	140	1.0	EPA 8260C	6-6-14	6-6-14	
1,3-Dichloropropane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
2-Hexanone	ND	10	EPA 8260C	6-6-14	6-6-14	
Dibromochloromethane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,2-Dibromoethane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Chlorobenzene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,1,1,2-Tetrachloroethane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Ethylbenzene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
m,p-Xylene	ND	2.0	EPA 8260C	6-6-14	6-6-14	
o-Xylene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Styrene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Bromoform	ND	5.0	EPA 8260C	6-6-14	6-6-14	
sopropylbenzene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Bromobenzene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,1,2,2-Tetrachloroethane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,2,3-Trichloropropane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
n-Propylbenzene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
2-Chlorotoluene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
4-Chlorotoluene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,3,5-Trimethylbenzene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
ert-Butylbenzene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,2,4-Trimethylbenzene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
sec-Butylbenzene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,3-Dichlorobenzene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
o-Isopropyltoluene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,4-Dichlorobenzene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,2-Dichlorobenzene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
n-Butylbenzene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,2-Dibromo-3-chloropropane		5.0	EPA 8260C	6-6-14	6-6-14	
1.2.4-Trichlorobenzene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Hexachlorobutadiene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Naphthalene	ND	5.0	EPA 8260C	6-6-14	6-6-14	
1,2,3-Trichlorobenzene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Surrogate:	Percent Recovery	Control Limits	_17102000			
Dibromofluoromethane	118	62-122				
Toluene-d8	119	70-120				
4-Bromofluorobenzene	113	70-120 71-120				
+-DI UITIUIIUUI UDENZENE	113	11-120				

#### VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

Analyta	Popult	PQL	Method	Date Prepared	Date	Flace
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0606W2					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Chloromethane	ND	1.3	EPA 8260C	6-6-14	6-6-14	
Vinyl Chloride	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Bromomethane	ND	0.43	EPA 8260C	6-6-14	6-6-14	
Chloroethane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Trichlorofluoromethane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,1-Dichloroethene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Acetone	ND	5.0	EPA 8260C	6-6-14	6-6-14	
lodomethane	ND	1.9	EPA 8260C	6-6-14	6-6-14	
Carbon Disulfide	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Methylene Chloride	ND	1.0	EPA 8260C	6-6-14	6-6-14	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,1-Dichloroethane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Vinyl Acetate	ND	1.0	EPA 8260C	6-6-14	6-6-14	
2,2-Dichloropropane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
2-Butanone	ND	5.0	EPA 8260C	6-6-14	6-6-14	
Bromochloromethane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Chloroform	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Carbon Tetrachloride	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,1-Dichloropropene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Benzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,2-Dichloroethane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Trichloroethene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,2-Dichloropropane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Dibromomethane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Bromodichloromethane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	6-6-14	6-6-14	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	6-6-14	6-6-14	
Toluene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	6-6-14	6-6-14	

7

## VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 2 of 2

• • •		501		Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0606W2					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Tetrachloroethene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,3-Dichloropropane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
2-Hexanone	ND	2.0	EPA 8260C	6-6-14	6-6-14	
Dibromochloromethane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,2-Dibromoethane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Chlorobenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Ethylbenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
m,p-Xylene	ND	0.40	EPA 8260C	6-6-14	6-6-14	
o-Xylene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Styrene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Bromoform	ND	1.0	EPA 8260C	6-6-14	6-6-14	
lsopropylbenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Bromobenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
n-Propylbenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
2-Chlorotoluene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
4-Chlorotoluene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
tert-Butylbenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
sec-Butylbenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
p-Isopropyltoluene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
n-Butylbenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Hexachlorobutadiene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Naphthalene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	104	62-122				
Toluene-d8	107	70-120				
4-Bromofluorobenzene	104	71-120				

## VOLATILES by EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB06	06W2								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	8.92	8.83	10.0	10.0	89	88	63-142	1	17	
Benzene	9.60	9.75	10.0	10.0	96	98	78-125	2	15	
Trichloroethene	8.86	8.74	10.0	10.0	89	87	80-125	1	15	
Toluene	9.86	9.76	10.0	10.0	99	98	80-125	1	15	
Chlorobenzene	9.49	9.27	10.0	10.0	95	93	80-140	2	15	
Surrogate:										
Dibromofluoromethane					107	103	62-122			
Toluene-d8					107	107	70-120			
4-Bromofluorobenzene					101	101	71-120			

## HALOGENATED VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B5-S-23.5					
Laboratory ID:	06-006-02					
Dichlorodifluoromethane	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
Chloromethane	ND	0.0047	EPA 8260C	6-4-14	6-4-14	
Vinyl Chloride	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
Bromomethane	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
Chloroethane	ND	0.0047	EPA 8260C	6-4-14	6-4-14	
Trichlorofluoromethane	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
1,1-Dichloroethene	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
lodomethane	ND	0.0047	EPA 8260C	6-4-14	6-4-14	
Methylene Chloride	ND	0.0047	EPA 8260C	6-4-14	6-4-14	
(trans) 1,2-Dichloroethene	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
1,1-Dichloroethane	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
2,2-Dichloropropane	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
(cis) 1,2-Dichloroethene	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
Bromochloromethane	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
Chloroform	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
1,1,1-Trichloroethane	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
Carbon Tetrachloride	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
1,1-Dichloropropene	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
1,2-Dichloroethane	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
Trichloroethene	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
1,2-Dichloropropane	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
Dibromomethane	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
Bromodichloromethane	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
2-Chloroethyl Vinyl Ether	ND	0.0047	EPA 8260C	6-4-14	6-4-14	
(cis) 1,3-Dichloropropene	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
(trans) 1,3-Dichloropropene	ND	0.00093	EPA 8260C	6-4-14	6-4-14	

## HALOGENATED VOLATILES EPA 8260C

pa	ge	2	OI	2	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID: 0	CST B5-S-23.5					
Laboratory ID:	06-006-02					
1,1,2-Trichloroethane	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
Tetrachloroethene	0.016	0.00093	EPA 8260C	6-4-14	6-4-14	
1,3-Dichloropropane	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
Dibromochloromethane	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
1,2-Dibromoethane	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
Chlorobenzene	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
1,1,1,2-Tetrachloroethane	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
Bromoform	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
Bromobenzene	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
1,1,2,2-Tetrachloroethane	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
1,2,3-Trichloropropane	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
2-Chlorotoluene	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
4-Chlorotoluene	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
1,3-Dichlorobenzene	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
1,4-Dichlorobenzene	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
1,2-Dichlorobenzene	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
1,2-Dibromo-3-chloropropane	ND	0.0047	EPA 8260C	6-4-14	6-4-14	
1,2,4-Trichlorobenzene	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
Hexachlorobutadiene	ND	0.0047	EPA 8260C	6-4-14	6-4-14	
1,2,3-Trichlorobenzene	ND	0.00093	EPA 8260C	6-4-14	6-4-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	102	65-129				
Toluene-d8	104	77-122				
4-Bromofluorobenzene	101	73-124				

11

## HALOGENATED VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B5-S-31.0					
Laboratory ID:	06-006-03					
Dichlorodifluoromethane	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
Chloromethane	ND	0.0047	EPA 8260C	6-4-14	6-4-14	
Vinyl Chloride	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
Bromomethane	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
Chloroethane	ND	0.0047	EPA 8260C	6-4-14	6-4-14	
Trichlorofluoromethane	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
1,1-Dichloroethene	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
lodomethane	ND	0.0047	EPA 8260C	6-4-14	6-4-14	
Methylene Chloride	ND	0.0047	EPA 8260C	6-4-14	6-4-14	
(trans) 1,2-Dichloroethene	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
1,1-Dichloroethane	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
2,2-Dichloropropane	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
(cis) 1,2-Dichloroethene	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
Bromochloromethane	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
Chloroform	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
1,1,1-Trichloroethane	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
Carbon Tetrachloride	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
1,1-Dichloropropene	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
1,2-Dichloroethane	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
Trichloroethene	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
1,2-Dichloropropane	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
Dibromomethane	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
Bromodichloromethane	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
2-Chloroethyl Vinyl Ether	ND	0.0047	EPA 8260C	6-4-14	6-4-14	
(cis) 1,3-Dichloropropene	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
(trans) 1,3-Dichloropropene	ND	0.00095	EPA 8260C	6-4-14	6-4-14	

## HALOGENATED VOLATILES EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B5-S-31.0					
Laboratory ID:	06-006-03					
1,1,2-Trichloroethane	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
Tetrachloroethene	0.037	0.00095	EPA 8260C	6-4-14	6-4-14	
1,3-Dichloropropane	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
Dibromochloromethane	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
1,2-Dibromoethane	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
Chlorobenzene	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
1,1,1,2-Tetrachloroethane	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
Bromoform	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
Bromobenzene	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
1,1,2,2-Tetrachloroethane	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
1,2,3-Trichloropropane	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
2-Chlorotoluene	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
4-Chlorotoluene	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
1,3-Dichlorobenzene	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
1,4-Dichlorobenzene	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
1,2-Dichlorobenzene	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
1,2-Dibromo-3-chloropropane	ND	0.0047	EPA 8260C	6-4-14	6-4-14	
1,2,4-Trichlorobenzene	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
Hexachlorobutadiene	ND	0.0047	EPA 8260C	6-4-14	6-4-14	
1,2,3-Trichlorobenzene	ND	0.00095	EPA 8260C	6-4-14	6-4-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	103	65-129				
Toluene-d8	104	77-122				
4-Bromofluorobenzene	101	73-124				

#### VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B6-S-8.0					
Laboratory ID:	06-006-05					
Dichlorodifluoromethane	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
Chloromethane	ND	0.0053	EPA 8260C	6-4-14	6-4-14	
Vinyl Chloride	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
Bromomethane	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
Chloroethane	ND	0.0053	EPA 8260C	6-4-14	6-4-14	
Trichlorofluoromethane	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
1,1-Dichloroethene	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
Acetone	ND	0.0053	EPA 8260C	6-4-14	6-4-14	
lodomethane	ND	0.0053	EPA 8260C	6-4-14	6-4-14	
Carbon Disulfide	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
Methylene Chloride	ND	0.0053	EPA 8260C	6-4-14	6-4-14	
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
Methyl t-Butyl Ether	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
1,1-Dichloroethane	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
Vinyl Acetate	ND	0.0053	EPA 8260C	6-4-14	6-4-14	
2,2-Dichloropropane	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
2-Butanone	ND	0.0053	EPA 8260C	6-4-14	6-4-14	
Bromochloromethane	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
Chloroform	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
1,1,1-Trichloroethane	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
Carbon Tetrachloride	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
1,1-Dichloropropene	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
Benzene	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
1,2-Dichloroethane	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
Trichloroethene	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
1,2-Dichloropropane	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
Dibromomethane	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
Bromodichloromethane	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
2-Chloroethyl Vinyl Ether	ND	0.0053	EPA 8260C	6-4-14	6-4-14	
(cis) 1,3-Dichloropropene	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
Methyl Isobutyl Ketone	ND	0.0053	EPA 8260C	6-4-14	6-4-14	
Toluene	ND	0.0053	EPA 8260C	6-4-14	6-4-14	
(trans) 1,3-Dichloropropene	ND	0.0011	EPA 8260C	6-4-14	6-4-14	

14

## VOLATILES EPA 8260C page 2 of 2

• • • •	<b>_</b>	<b>B</b> <i>C</i> ·		Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B6-S-8.0					
Laboratory ID:	06-006-05					
1,1,2-Trichloroethane	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
Tetrachloroethene	0.0033	0.0011	EPA 8260C	6-4-14	6-4-14	
1,3-Dichloropropane	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
2-Hexanone	ND	0.0053	EPA 8260C	6-4-14	6-4-14	
Dibromochloromethane	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
1,2-Dibromoethane	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
Chlorobenzene	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
1,1,1,2-Tetrachloroethane	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
Ethylbenzene	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
m,p-Xylene	ND	0.0021	EPA 8260C	6-4-14	6-4-14	
o-Xylene	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
Styrene	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
Bromoform	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
sopropylbenzene	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
Bromobenzene	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
I,1,2,2-Tetrachloroethane	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
1,2,3-Trichloropropane	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
n-Propylbenzene	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
2-Chlorotoluene	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
1-Chlorotoluene	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
1,3,5-Trimethylbenzene	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
ert-Butylbenzene	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
1,2,4-Trimethylbenzene	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
sec-Butylbenzene	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
1,3-Dichlorobenzene	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
o-Isopropyltoluene	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
1,4-Dichlorobenzene	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
1,2-Dichlorobenzene	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
n-Butylbenzene	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
1,2-Dibromo-3-chloropropane		0.0053	EPA 8260C	6-4-14	6-4-14	
1,2,4-Trichlorobenzene	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
Hexachlorobutadiene	ND	0.0053	EPA 8260C	6-4-14	6-4-14	
Naphthalene	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
1,2,3-Trichlorobenzene	ND	0.0011	EPA 8260C	6-4-14	6-4-14	
Surrogate:	Percent Recovery	Control Limits		0-1-1-	0-+-1+	
Dibromofluoromethane	102	65-129				
Toluene-d8	102	77-122				
4-Bromofluorobenzene						
4-DI UTTUTUUTUDENZENE	100	73-124				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

## VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B6-S-31.5					
Laboratory ID:	06-006-06					
Dichlorodifluoromethane	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Chloromethane	ND	0.0050	EPA 8260C	6-4-14	6-4-14	
Vinyl Chloride	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Bromomethane	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Chloroethane	ND	0.0050	EPA 8260C	6-4-14	6-4-14	
Trichlorofluoromethane	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Acetone	ND	0.0050	EPA 8260C	6-4-14	6-4-14	
lodomethane	ND	0.0050	EPA 8260C	6-4-14	6-4-14	
Carbon Disulfide	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Methylene Chloride	ND	0.0050	EPA 8260C	6-4-14	6-4-14	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
1,1-Dichloroethane	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Vinyl Acetate	ND	0.0050	EPA 8260C	6-4-14	6-4-14	
2,2-Dichloropropane	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
2-Butanone	ND	0.0050	EPA 8260C	6-4-14	6-4-14	
Bromochloromethane	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Chloroform	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Carbon Tetrachloride	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
1,1-Dichloropropene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Benzene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
1,2-Dichloroethane	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Trichloroethene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
1,2-Dichloropropane	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Dibromomethane	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Bromodichloromethane	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260C	6-4-14	6-4-14	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Methyl Isobutyl Ketone	ND	0.0050	EPA 8260C	6-4-14	6-4-14	
Toluene	ND	0.0050	EPA 8260C	6-4-14	6-4-14	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	

16

## VOLATILES EPA 8260C page 2 of 2

Analista	Decili		Math!	Date Bromorod	Date	<b>F</b> 1
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B6-S-31.5					
Laboratory ID:	06-006-06	0.0040	<b>FRA 00000</b>	0.4.4.4	0.4.4.4	
1,1,2-Trichloroethane	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Tetrachloroethene	0.010	0.0010	EPA 8260C	6-4-14	6-4-14	
1,3-Dichloropropane	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
2-Hexanone	ND	0.0050	EPA 8260C	6-4-14	6-4-14	
Dibromochloromethane	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
1,2-Dibromoethane	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Chlorobenzene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Ethylbenzene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
m,p-Xylene	ND	0.0020	EPA 8260C	6-4-14	6-4-14	
o-Xylene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Styrene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Bromoform	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
lsopropylbenzene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Bromobenzene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
n-Propylbenzene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
2-Chlorotoluene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
4-Chlorotoluene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
tert-Butylbenzene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
1,2,4-Trimethylbenzene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
sec-Butylbenzene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
p-Isopropyltoluene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
n-Butylbenzene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
1,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260C	6-4-14	6-4-14	
1,2,4-Trichlorobenzene	ND	0.0030	EPA 8260C	6-4-14	6-4-14	
	ND			6-4-14 6-4-14	6-4-14 6-4-14	
Hexachlorobutadiene	ND	0.0050	EPA 8260C EPA 8260C	6-4-14 6-4-14		
Naphthalene		0.0010			6-4-14	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	65-129				
Toluene-d8	109	77-122				
4-Bromofluorobenzene	108	73-124				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

#### VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 1 of 2

Matrix: Soil Units: mg/kg

Analyta	Result	PQL	Method	Date Prepared	Date Analyzed	Flage
Analyte	Result	FQL	Wethou	Flepaleu	Analyzeu	Flags
Laboratory ID:	MB0604S1					
Dichlorodifluoromethane	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Chloromethane	ND	0.0050	EPA 8260C	6-4-14	6-4-14	
Vinyl Chloride	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Bromomethane	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Chloroethane	ND	0.0050	EPA 8260C	6-4-14	6-4-14	
Trichlorofluoromethane	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Acetone	ND	0.0050	EPA 8260C	6-4-14	6-4-14	
lodomethane	ND	0.0050	EPA 8260C	6-4-14	6-4-14	
Carbon Disulfide	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Methylene Chloride	ND	0.0050	EPA 8260C	6-4-14	6-4-14	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
1,1-Dichloroethane	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Vinyl Acetate	ND	0.0050	EPA 8260C	6-4-14	6-4-14	
2,2-Dichloropropane	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
2-Butanone	ND	0.0050	EPA 8260C	6-4-14	6-4-14	
Bromochloromethane	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Chloroform	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Carbon Tetrachloride	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
1,1-Dichloropropene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Benzene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
1,2-Dichloroethane	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Trichloroethene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
1,2-Dichloropropane	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Dibromomethane	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Bromodichloromethane	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260C	6-4-14	6-4-14	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Methyl Isobutyl Ketone	ND	0.0050	EPA 8260C	6-4-14	6-4-14	
Toluene	ND	0.0050	EPA 8260C	6-4-14	6-4-14	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	

## VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 2 of 2

Laboratory ID:	Result	PQL	Method	Prepared	Apolyzod	
				Troparoa	Analyzed	Flags
	MB0604S1					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Tetrachloroethene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
1,3-Dichloropropane	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
2-Hexanone	ND	0.0050	EPA 8260C	6-4-14	6-4-14	
Dibromochloromethane	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
1,2-Dibromoethane	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Chlorobenzene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Ethylbenzene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
n,p-Xylene	ND	0.0020	EPA 8260C	6-4-14	6-4-14	
o-Xylene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Styrene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Bromoform	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
sopropylbenzene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Bromobenzene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
n-Propylbenzene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
2-Chlorotoluene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
4-Chlorotoluene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
ert-Butylbenzene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
1,2,4-Trimethylbenzene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
sec-Butylbenzene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
p-lsopropyltoluene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
n-Butylbenzene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
1,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260C	6-4-14	6-4-14	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260C	6-4-14	6-4-14	
Hexachlorobutadiene	ND	0.0050	EPA 8260C	6-4-14	6-4-14	
Naphthalene	ND	0.0030	EPA 8260C	6-4-14	6-4-14	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260C	6-4-14 6-4-14	6-4-14 6-4-14	
	Percent Recovery	Control Limits		0-7-14	0-7-14	
Surrogate: Dibromofluoromethane	109	65-129				
Toluene-d8 4-Bromofluorobenzene	109 104	77-122 73-124				

## VOLATILES by EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB06	04S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0438	0.0450	0.0500	0.0500	88	90	56-141	3	15	
Benzene	0.0476	0.0478	0.0500	0.0500	95	96	70-121	0	15	
Trichloroethene	0.0490	0.0491	0.0500	0.0500	98	98	74-118	0	15	
Toluene	0.0474	0.0479	0.0500	0.0500	95	96	75-120	1	15	
Chlorobenzene	0.0462	0.0468	0.0500	0.0500	92	94	75-120	1	15	
Surrogate:										
Dibromofluoromethane					104	101	65-129			
Toluene-d8					105	103	77-122			
4-Bromofluorobenzene					103	100	73-124			

#### NITRATE (as Nitrogen) EPA 353.2

Matrix: Units:	Water mg/L				Date	Date	
Analyte		Result	PQL	Method	Prepared	Analyzed	Flags
Client ID	D:	CST B5-GW-27.0					
Laborato	ory ID:	06-006-04					
Nitrate		1.5	0.050	EPA 353.2	6-4-14	6-5-14	

#### NITRATE (as Nitrogen) EPÀ 353.2 QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0604F1					
Nitrate	ND	0.050	EPA 353.2	6-4-14	6-5-14	

				Source	Percent	Recovery		RPD	
Analyte	Result		Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	06-03	38-01							
	ORIG	DUP							
Nitrate	3.86	3.90	NA	NA	NA	NA	1	16	
MATRIX SPIKE									
Laboratory ID:	06-03	38-01							
	Ν	IS	MS		MS				
Nitrate	8.34		4.00	3.86	112	84-119	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB06	05W1							
	S	В	SB		SB				
Nitrate	2.	28	2.00	NA	114	86-114	NA	NA	

22

#### SULFATE ASTM D516-07

Matrix: Units:	Water mg/L				Date	Date	
Analyte		Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:		CST B5-GW-27.0					¥
Laborator	y ID:	06-006-04					
Sulfate		15	10	ASTM D516-07	6-4-14	6-10-14	

#### SULFATE ASTM D516-07 QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0604F1					
Sulfate	ND	5.0	ASTM D516-07	6-4-14	6-10-14	

				Source	Percent	Recovery		RPD	
Analyte	Result		Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	06-00	06-04							
	ORIG	DUP							
Sulfate	15.1	14.7	NA	NA	NA	NA	3	10	
MATRIX SPIKE									
Laboratory ID:	06-00	06-04							
	Ν	IS	MS		MS				
Sulfate	36.6		20.0	15.1	108	82-123	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB06	604F1							
	S	В	SB		SB				
Sulfate	10	).0	10.0	NA	100	91-114	NA	NA	

#### CHLORIDE SM 4500-CI E

Matrix: Water Units: mg/L						
				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B5-GW-27.0					
Laboratory ID:	06-006-04					
Chloride	63	2.0	SM 4500-CI E	6-4-14	6-4-14	

#### CHLORIDE SM 4500-CI E QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0604F1					
Chloride	ND	2.0	SM 4500-CI E	6-4-14	6-4-14	

				Source	Percent	Recovery		RPD	
Analyte	Result		Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	06-01	16-01							
	ORIG	DUP							
Chloride	21.7	21.5	NA	NA	NA	NA	1	11	
MATRIX SPIKE									
Laboratory ID:	06-01	16-01							
		S	MS		MS				
Chloride	78.7		50.0	21.7	114	94-126	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB06	04F1							
	S	В	SB		SB				
Chloride	52	2.9	50.0	NA	106	94-124	NA	NA	

### DISSOLVED METHANE RSK 175

Matrix:	Water						
Units:	ug/L (ppb)						
					Date	Date	
Analyte		Result	PQL	Method	Prepared	Analyzed	Flags
Client ID	<b>)</b> :	CST B5-GW-27.0					
Laborato	ory ID:	06-006-04					
Methane	•	27	1.5	RSK 175	6-5-14	6-5-14	

### DISSOLVED METHANE RSK 175 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

								Date	Date		
Analyte		Result		PQL	Met	thod	Pre	epared	Analyzed	F	lags
METHOD BLANK											
Laboratory ID:	Ν	/IB0605W	1								
Methane		ND		0.50	RSK	K 175	6	-5-14	6-5-14		
					Source	Pe	ercent	Recover	У	RPD	
Analyte	Re	sult	Spike	e Level	Result	Red	covery	Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB06	605W1									
	SB	SBD	SB	SBD		SB	SBD				
Methane	3.78	3.85	4.42	4.42	N/A	86	87	75-125	2	25	

Date of Report: June 12, 2014 Samples Submitted: June 2, 2014 Laboratory Reference: 1406-006 Project: 0879.01.02

### % MOISTURE

Date Analyzed: 6-4-14

Client ID	Lab ID	% Moisture
CST B5-S-23.5	06-006-02	9
CST B5-S-31.0	06-006-03	10
CST B6-S-8.0	06-006-05	13
CST B6-S-31.5	06-006-06	10

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.



#### **Data Qualifiers and Abbreviations**

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference



Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 Professional Analytical Services

Jun 12 2014 On-Site Environmental 14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister

Dear David Baumeister:

Enclosed please find the analytical data for your project.

The following is a cross correlation of client and laboratory identifications for your convenience.

CLIENT ID	MATRIX	AMTEST ID	TEST
CSTB5-GW-27.0	Water	14-A008248	CONV

Your sample was received on Thursday, June 5, 2014. At the time of receipt, the sample was logged in and properly maintained prior to the subsequent analysis.

The analytical procedures used at AmTest are well documented and are typically derived from the protocols of the EPA, USDA, FDA or the Army Corps of Engineers.

Following the analytical data you will find the Quality Control (QC) results.

Please note that the detection limits that are listed in the body of the report refer to the Practical Quantitation Limits (PQL's), as opposed to the Method Detection Limits (MDL's).

If you should have any questions pertaining to the data package, please feel free to conact me.

Sincerely,

Aaron W. Young Laboratory Manager

Project #: 0879.01.02

BACT = Bacteriological CONV = Conventionals MET = Metals ORG = Organics NUT=Nutrients DEM=Demand MIN=Minerals

**Am Test Inc.** 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 www.amtestlab.com



## ANALYSIS REPORT

Professional Analytical Services

On-Site Environmental 14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project #: 0879.01.02 All results reported on an as received basis. Date Received: 06/05/14 Date Reported: 6/12/14

AMTEST Identification Number	14-A008248
Client Identification	CSTB5-GW-27.0
Sampling Date	06/02/14, 14:26

### Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Sulfide	< 0.1	mg/l		0.1	EPA 376.2	AB	06/11/14

1 von Aaron W. Young Laboratory Manager

Am Test Inc. 13600 NE 126th PL Suite C Kirkland, WA, 98034 (425) 885-1664 www.amtestlab.com



### QC Summary for sample number: 14-A008248

### **MATRIX SPIKES**

SAMPLE # ANALYTE	UNITS	SAMPLE VALUE	SMPL+ SPK	SPK AMT	RECOVERY
14-A008248 Total Sulfide	mg/l	< 0.1	0.57	0.50	114.00 %
14-A008248 Total Sulfide	mg/l	< 0.1	0.66	0.50	132.00 %
MATRIX SPIKE DUPLICATES					
SAMPLE # ANALYTE	UNITS	SAMPLE + SPK	MSD VALUE		RPD
Spike Total Sulfide	mg/l	0.57	0.66		15.
	_				
STANDARD REFERENCE MATERIA	LS				
ANALYTE	UNITS	TRUE VALUE	MEASURED	VALUE	RECOVERY
Total Sulfide	mg/l	0.50	0.52		104. %
BLANKS					
ANALYTE	UNITS	RESULT			
Total Sulfide	mg/l	< 0.1			
		•			

Image: Subsection of the section of	Turnaround Request: 1 Day 2 Day 3 Day Other: Date Time Matrix Cont Sampled Sampled Matrix Cont	Page
CSTB5-		Sulfide
	Company Date	Time Contractors/Special Instituctions
Relinquished by	* ~ To 65	$\frac{1}{10}$
Received by:	LICO ETAL	
Received by:		
Relinguished by:		
Received by:		
		20

1=16.9°C



4 June 2014

David Baumeister OnSite Environmental, Inc. 14648 NE 95th Redmond, WA 98052

### RE: Client Project: SeaTac S. 154th TOD; Lab ID 1406-006 ARI Job No: YM18

Dear David:

Please find enclosed the chain-of-custody (COC) record and the final results for the sample from the project referenced above. Analytical Resources, Inc. (ARI) accepted one water sample on June 2, 2014. The sample was analyzed for ferrous iron as requested.

A matrix spike (MS) was prepared and analyzed in conjunction with this sample. The percent recovery for ferrous iron was high following the analysis of the MS. Since the percent recovery for ferrous iron was within acceptable QC limits for the corresponding LCS, it was concluded that the sample matrix was the cause of the high MS recovery. No corrective actions were taken.

A matrix duplicate (MD) was prepared and analyzed in conjunction with this sample. The RPD for ferrous iron was high following the analysis of the MD. Since the percent recovery for ferrous iron was within acceptable QC limits for the corresponding LCS, it was concluded that a lack of sample homogeneity was the cause of the high RPD. No corrective actions were taken.

An electronic copy of these reports will remain on file at ARI. Should you have any questions, please contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

Mal D. Man

Mark D. Harris Project Manager 206/695-6210 markh@arilabs.com

Enclosures

cc: file YM18

MDH/mdh

Page 1 of _____

<b>CAR OnSit</b>	OnSite Environmental Inc	U	Chain of	Cu	of Custody	>					Page	د	of	1
Analytical Le 14648 NE (	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turnarou (in worl	Turnaround Request (in working days)	La	borator	Laboratory Number:	e							
	Phone (425) 883-3881 • www.onsite-env.com	(Chee	(Check One)											
y	EN uto drentyl	Same Dav	1 Day					M						
	(20.10.pt80	Days	3 Days						Arati			7		
Project Name. SEATAC S. 1.	ى. (جىلى جەلى	K Standard (7 Days) (TPH analysis 5 Days)		SI		8560C		108 sebic 8 sebicite	8 səpioid		A4681	(لاه		
DI BAUMENTER				enistric	TEX	volatiles					(Jrease)			
Sampled by: / VAN/MFA	•		(other)		×9-I	/ bətsr	220D/8					aya		
Lab ID Si	Sample Identification	Date T Sampled Sar	Time Sampled Matrix	edmun 19TWN	натwи натwи натwи	Volatile	ol rtiw)	_	Chlorins Total Ri	M IstoT	TCLP (o			sioM %
CST 85-	ور 21.0	+	الكنيك طلالم									X		
													-	
														_
		-								-				-
										-				
	Signature	Company	y		Date	Ē	Commei	Comments/Special Instructions	Instruc	tions				
Relinquished		HEA	4		6/2/14									
Received	- avoil the merer	5/	V KARDY	56	6/2/14	/(°D3								
Relinquished	KIM	ベイ	1-20-2	49	41/29	1645								
Received		JAR	J.		M-E-7	191 ک								
Relinquished														
Received														
Reviewed/Date		Revie	Reviewed/Date				Chromat	Chromatograms with final report	rith final	report	X			
	Data Package: Standard	dard 🗌 Level III 🗌	Level IV	Ē	ectronic Data	Electronic Data Deliverables (EDDs)	)) [] (sc							

こくろう

## Analytical Resources, Incorporated Analytical Chemists and Consultants

# **Cooler Receipt Form**

ARI Client. USE		Project Name:	Seatac	- 154th	1011
COC No(s) [,]				ner Hand Delivered	Other:
Assigned ARI Job No ⁻	1m15	Tracking No:			
Preliminary Examination Phase:					
Were intact, properly signed and da	ted custody seals attached to	the outside of to coole	r?	YES	<b>1</b> 9
Were custody papers included with	the cooler?			yes	NO
Were custody papers properly filled	out (Ink, signed, etc.)		••••	ŶĔŞ	NO
Temperature of Cooler(s) (°C) (reco Time:	mmended 2.0-6 0 °C for chem	nistry) 3.4			
If cooler temperature is out of comp	liance fill out form 00070F		·	Temp Gun ID#	1057 7952
Cooler Accepted by:	1)	_Date:6 - 7	<i>L</i>   Time	1615	
	Complete custody forms a	nd attach all shippin	g documents		

## Log-In Phase:

Was a temperature blank included in the cooler?		YES	(NO)
What kind of packing material was used? Bubble Wrap Wet Ice Gel Packs Raggies Foam Block	Paper C	ther:	
Was sufficient ice used (if appropriate)?	NA	YES.	NO
Were all bottles sealed in individual plastic bags?		VES	NO
Did all bottles arrive in good condition (unbroken)?		<b>KES</b>	NO
Were all bottle labels complete and legible?		(ES	NO
Did the number of containers listed on COC match with the number of containers received?		YES	NO
Did all bottle labels and tags agree with custody papers?		YEŞ	NO
Were all bottles used correct for the requested analyses?		VES	NO
Do any of the analyses (bottles) require preservation? (attach preservation sheet, excluding VOCs)	NA	VES	NO
Were all VOC vials free of air bubbles?	<b>NA</b>	YES	NO
Was sufficient amount of sample sent in each bottle?		YES	NO
Date VOC Trip Blank was made at ARI.	NA/		
Was Sample Split by ARIYES Date/Time: Equipment:		Split by:	<u>-</u>
Samples Logged by: Time:	70		

** Notify Project Manager of discrepancies or concerns **

Sample ID on E	Bottle	Sample ID on COC	Sample ID on Bottle	Sample ID on COC
Additional Notes, D	iscrepancies, & R	esolutions:		
By:	Date:			
Small Air Bubbles	Peabubbles'	LARGE AN Bubbles	Small → "sm" (<2 mm)	<u>, , , , , , , , , , , , , , , , , , , </u>
2mm	2-4 mm	>4 mm	Peabubbles → "pb" (2 to < 4 mm)	······································
* * *	* <b>* • •</b>	$\bullet \bullet \bullet$	Large $\rightarrow$ "lg" (4 to < 6 mm)	
LJl		ا <u>لہ ، ، ، ، ، ا</u> ا	Headspace → "hs" (>6 mm)	

## Sample ID Cross Reference Report



ARI Job No: YM18 Client: OnSite Environmental, Inc. Project Event: 0879.01.02 Project Name: Seatac S. 154th TOD

	Sample ID	ARI Lab ID	ARI LIMS ID	Matrix	Sample Date/Time	VTSR
1.	CSTB5-GW-27.0	YM18A	14-10544	Water	06/02/14 14:26	06/02/14 16:15

Printed 06/02/14 Page 1 of 1



Analytical Resources, Incorporated Analytical Chemists and Consultants

# **Data Reporting Qualifiers**

Effective 12/31/13

## **Inorganic Data**

- U Indicates that the target analyte was not detected at the reported concentration
- * Duplicate RPD is not within established control limits
- В Reported value is less than the CRDL but  $\geq$  the Reporting Limit
- Ν Matrix Spike recovery not within established control limits
- NA Not Applicable, analyte not spiked
- н The natural concentration of the spiked element is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- L Analyte concentration is ≤5 times the Reporting Limit and the replicate control limit defaults to ±1 RL instead of the normal 20% RPD

# **Organic Data**

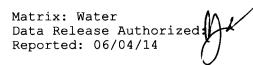
- U Indicates that the target analyte was not detected at the reported concentration
- * Flagged value is not within established control limits
- В Analyte detected in an associated Method Blank at a concentration greater than one-half of ARI's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.
- J Estimated concentration when the value is less than ARI's established reporting limits
- D The spiked compound was not detected due to sample extract dilution
- Ε Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.

Page 1 of 3



**Analytical Resources, Incorporated** Analytical Chemists and Consultants

- Q Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20%Drift or minimum RRF).
- S Indicates an analyte response that has saturated the detector. The calculated concentration is not valid; a dilution is required to obtain valid quantification of the analyte
- NA The flagged analyte was not analyzed for
- NR Spiked compound recovery is not reported due to chromatographic interference
- NS The flagged analyte was not spiked into the sample
- M Estimated value for an analyte detected and confirmed by an analyst but with low spectral match parameters. This flag is used only for GC-MS analyses
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification"
- Y The analyte is not detected at or above the reported concentration. The reporting limit is raised due to chromatographic interference. The Y flag is equivalent to the U flag with a raised reporting limit.
- EMPC Estimated Maximum Possible Concentration (EMPC) defined in EPA Statement of Work DLM02.2 as a value "calculated for 2,3,7,8-substituted isomers for which the quantitation and /or confirmation ion(s) has signal to noise in excess of 2.5, but does not meet identification criteria" (Dioxin/Furan analysis only)
- C The analyte was positively identified on only one of two chromatographic columns. Chromatographic interference prevented a positive identification on the second column
- P The analyte was detected on both chromatographic columns but the quantified values differ by ≥40% RPD with no obvious chromatographic interference
- X Analyte signal includes interference from polychlorinated diphenyl ethers. (Dioxin/Furan analysis only)
- Z Analyte signal includes interference from the sample matrix or perfluorokerosene ions. (Dioxin/Furan analysis only)




Analytical Resources, Incorporated Analytical Chemists and Consultants

# **Geotechnical Data**

- A The total of all fines fractions. This flag is used to report total fines when only sieve analysis is requested and balances total grain size with sample weight.
- F Samples were frozen prior to particle size determination
- SM Sample matrix was not appropriate for the requested analysis. This normally refers to samples contaminated with an organic product that interferes with the sieving process and/or moisture content, porosity and saturation calculations
- SS Sample did not contain the proportion of "fines" required to perform the pipette portion of the grain size analysis
- W Weight of sample in some pipette aliquots was below the level required for accurate weighting





Project: Seatac S. 154th TOD Event: 0879.01.02 Date Sampled: 06/02/14 Date Received: 06/02/14

Client ID: CSTB5-GW-27.0 ARI ID: 14-10544 YM18A

Analyte	Date Batch	Method	Units	RL	Sample
Ferrous Iron	06/02/14 060214#1	SM3500 FeD	mg/L	0.800	1.42

RL Analytical reporting limit

U Undetected at reported detection limit



Matrix: Water Data Release Authorized Reported: 06/04/14 Project: Seatac S. 154th TOD Event: 0879.01.02 Date Sampled: NA Date Received: NA

Analyte	Method	Date	Units	Blank	ID
Ferrous Iron	SM3500 FeD	06/02/14	mg/L	< 0.040 U	



Matrix: Water Data Release Authorized: Reported: 06/04/14

Project: Seatac S. 154th TOD Event: 0879.01.02 Date Sampled: NA Date Received: NA

Analyte/Method	QC ID	Date	Units	LCS	Spike Added	Recovery
Ferrous Iron SM3500 FeD	ICVL	06/02/14	mg/L	0.492	0.500	98.4%

Water Lab Control Report-YM18

YM18:00010

REPLICATE RESULTS-CONVENTIONALS ANALYTICAL YM18-OnSite Environmental, Inc. RESOURCES INCORPORATED Matrix: Water Project: Seatac S. 154th TOD Data Release Authorized: Event: 0879.01.02 Reported: 06/04/14 Date Sampled: 06/02/14 Date Received: 06/02/14 Analyte Method Date Units Sample Replicate(s) RPD/RSD ARI ID: YM18A Client ID: CSTB5-GW-27.0 Ferrous Iron SM3500 FeD 06/02/14 30.9% mg/L 1.42 1.04

MS/MSD RESULTS-CONVENTIONALS YM18-OnSite Environmental, Inc.



Matrix: Water Data Release Authorized: Reported: 06/04/14

Project: Seatac S. 154th TOD Event: 0879.01.02 Date Sampled: 06/02/14 Date Received: 06/02/14

Analyte	Method	Date	Units	Sample	Spike	Spike Added	Recovery
ARI ID: YM18A	Client ID: CSTB5	-GW-27.0					
Ferrous Iron	SM3500 F	eD 06/02/14	mg/L	1.42	11.9	8.00	131.0%

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received Specor How	Relinquished	Sidnature () ()		6 (ST B6-5-31.5	5 057 86-5-8.0	4 CST B5-GW-201.0	3 (STB5-5-31.0	2 CSTBS- 5-23.5	1 CST B5-5-20.5	Lab ID Sample Identification	RD, KS, VV	Jackie Gruber	Seatac S. 154th TUD	0879,01,02	Company		Analytical Laboratory Testing Services	OnSite
Reviewed/Date			N ORE	SLOWER WSS	55 × co= 25	MEA	Company		6/2/14 1510 S 5	6/2/141343 S 5	6/2/14/1424 GW 3	6/2/14/1041 5.5	S S 0001 h1/19	6/2/14 0923 S S	Date Time Sampled Sampled Matrix NumP	ere arde e	ontain	(TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(in working days) (Check One)	Turnaround Request	Chain of C
			6/2/14 1721	6/2/14 1721	6/2/14 600	6/2/2014 1600	Datey Time		XX			×			NWTP NWTP NWTP Volatile Haloge Semive (with Ic	H-Gx/E H-Gx H-Dx es 8260 enated platiles pw-leve	BTEX	s 8260C /SIM					of Custody
Chromatograms with final report					20	* Sent directly to APIT on 6/2/14.	Comments/Special Instructions								PAHs i PCBs i Organo Organo Chlorir Total F Total N TCLP HEM ( ST ST	BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BORDAN BO	SIM (lo ne Pest norus Pr .cid Her Aetals grease grease DE DE	w-level) icides 80 esticides bicides	081B 8270D/S 8151A			<b>8</b> 00-80	Page 1 of 1



14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

June 12, 2014

Jackie Gruber Maul Foster & Alongi, Inc. 411 First Avenue S., Suite 610 Seattle, WA 98104

Re: Analytical Data for Project 0879.01.02 Laboratory Reference No. 1406-016

Dear Jackie:

Enclosed are the analytical results and associated quality control data for samples submitted on June 3, 2014.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Date of Report: June 12, 2014 Samples Submitted: June 3, 2014 Laboratory Reference: 1406-016 Project: 0879.01.02

### **Case Narrative**

Samples were collected on June 2 and 3, 2014 and received by the laboratory on June 3, 2014. They were maintained at the laboratory at a temperature of  $2^{\circ}$ C to  $6^{\circ}$ C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

#### **NWTPH-Dx**

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	CST B6-GW-25.4					
Laboratory ID:	06-016-01					
Diesel Range Organics	ND	0.26	NWTPH-Dx	6-6-14	6-6-14	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	6-6-14	6-6-14	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	78	50-150				

### NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

Analyte		Result	PQL	Me	ethod	Date Prepared	Date Analyz		Flags
METHOD BLANK									
Laboratory ID:		MB0606W1							
Diesel Range Organics		ND	0.25	NW	「PH-Dx	6-6-14	6-6-1	4	
Lube Oil Range Organics		ND	0.40	NWT	「PH-Dx	6-6-14	6-6-1	4	
Surrogate:	Pe	rcent Recovery	Control Lim	its					
o-Terphenyl		83	50-150						
				Source	Percen	t Recovery	/	RPD	
Analyte	Res	sult	Spike Level	Result	Recove	ry Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	06-02	24-01							
C	RIG	DUP							
Diesel Range	ND	ND	NA NA		NA	NA	NA	NA	
Lube Oil Range	ND	ND	NA NA		NA	NA	NA	NA	
Surrogate: o-Terphenyl					75 8	30 50-150			

### VOLATILES EPA 8260C page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B6-GW-25.4					
Laboratory ID:	06-016-01					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Chloromethane	ND	1.0	EPA 8260C	6-5-14	6-5-14	
Vinyl Chloride	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Bromomethane	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Chloroethane	ND	1.0	EPA 8260C	6-5-14	6-5-14	
Trichlorofluoromethane	ND	0.20	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloroethene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Acetone	ND	5.0	EPA 8260C	6-5-14	6-5-14	
lodomethane	ND	1.0	EPA 8260C	6-5-14	6-5-14	
Carbon Disulfide	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Methylene Chloride	ND	1.0	EPA 8260C	6-5-14	6-5-14	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloroethane	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Vinyl Acetate	ND	1.0	EPA 8260C	6-5-14	6-5-14	
2,2-Dichloropropane	ND	0.20	EPA 8260C	6-5-14	6-5-14	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
2-Butanone	ND	5.0	EPA 8260C	6-5-14	6-5-14	
Bromochloromethane	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Chloroform	ND	0.20	EPA 8260C	6-5-14	6-5-14	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Carbon Tetrachloride	ND	0.20	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloropropene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Benzene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
1,2-Dichloroethane	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Trichloroethene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
1,2-Dichloropropane	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Dibromomethane	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Bromodichloromethane	ND	0.20	EPA 8260C	6-5-14	6-5-14	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	6-5-14	6-5-14	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	6-5-14	6-5-14	
Toluene	ND	1.0	EPA 8260C	6-5-14	6-5-14	
(trans) 1,3-Dichloropropene	e ND	0.20	EPA 8260C	6-5-14	6-5-14	

5

### VOLATILES EPA 8260C page 2 of 2

Analyte		DC'		<b>D</b>	A I	
	Result	PQL	Method	Prepared	Analyzed	Flags
	CST B6-GW-25.4					
Laboratory ID:	06-016-01					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Tetrachloroethene	31	0.20	EPA 8260C	6-5-14	6-5-14	
1,3-Dichloropropane	ND	0.20	EPA 8260C	6-5-14	6-5-14	
2-Hexanone	ND	2.0	EPA 8260C	6-5-14	6-5-14	
Dibromochloromethane	ND	0.20	EPA 8260C	6-5-14	6-5-14	
1,2-Dibromoethane	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Chlorobenzene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Ethylbenzene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
n,p-Xylene	ND	0.40	EPA 8260C	6-5-14	6-5-14	
o-Xylene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Styrene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Bromoform	ND	1.0	EPA 8260C	6-5-14	6-5-14	
lsopropylbenzene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Bromobenzene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	6-5-14	6-5-14	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	6-5-14	6-5-14	
n-Propylbenzene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
2-Chlorotoluene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
4-Chlorotoluene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
tert-Butylbenzene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
sec-Butylbenzene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
o-Isopropyltoluene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
n-Butylbenzene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
1,2-Dibromo-3-chloropropane		1.0	EPA 8260C	6-5-14	6-5-14	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Hexachlorobutadiene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Naphthalene	ND	1.0	EPA 8260C	6-5-14	6-5-14	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	117	62-122				
Toluene-d8	110	70-120				
4-Bromofluorobenzene	108	71-120				

6

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Date of Report: June 12, 2014 Samples Submitted: June 3, 2014 Laboratory Reference: 1406-016 Project: 0879.01.02

### VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0605W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Chloromethane	ND	1.0	EPA 8260C	6-5-14	6-5-14	
Vinyl Chloride	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Bromomethane	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Chloroethane	ND	1.0	EPA 8260C	6-5-14	6-5-14	
Trichlorofluoromethane	ND	0.20	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloroethene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Acetone	ND	5.0	EPA 8260C	6-5-14	6-5-14	
lodomethane	ND	1.0	EPA 8260C	6-5-14	6-5-14	
Carbon Disulfide	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Methylene Chloride	ND	1.0	EPA 8260C	6-5-14	6-5-14	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloroethane	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Vinyl Acetate	ND	1.0	EPA 8260C	6-5-14	6-5-14	
2,2-Dichloropropane	ND	0.20	EPA 8260C	6-5-14	6-5-14	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
2-Butanone	ND	5.0	EPA 8260C	6-5-14	6-5-14	
Bromochloromethane	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Chloroform	ND	0.20	EPA 8260C	6-5-14	6-5-14	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Carbon Tetrachloride	ND	0.20	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloropropene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Benzene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
1,2-Dichloroethane	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Trichloroethene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
1,2-Dichloropropane	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Dibromomethane	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Bromodichloromethane	ND	0.20	EPA 8260C	6-5-14	6-5-14	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	6-5-14	6-5-14	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	6-5-14	6-5-14	
Toluene	ND	1.0	EPA 8260C	6-5-14	6-5-14	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	6-5-14	6-5-14	

7

### VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0605W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Tetrachloroethene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
1,3-Dichloropropane	ND	0.20	EPA 8260C	6-5-14	6-5-14	
2-Hexanone	ND	2.0	EPA 8260C	6-5-14	6-5-14	
Dibromochloromethane	ND	0.20	EPA 8260C	6-5-14	6-5-14	
1,2-Dibromoethane	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Chlorobenzene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Ethylbenzene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
m,p-Xylene	ND	0.40	EPA 8260C	6-5-14	6-5-14	
o-Xylene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Styrene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Bromoform	ND	1.0	EPA 8260C	6-5-14	6-5-14	
sopropylbenzene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Bromobenzene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	6-5-14	6-5-14	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	6-5-14	6-5-14	
n-Propylbenzene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
2-Chlorotoluene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
4-Chlorotoluene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
tert-Butylbenzene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
sec-Butylbenzene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
o-Isopropyltoluene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
n-Butylbenzene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	6-5-14	6-5-14	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Hexachlorobutadiene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Naphthalene	ND	1.0	EPA 8260C	6-5-14	6-5-14	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	6-5-14	6-5-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	106	62-122				
Toluene-d8	103	70-120				
4-Bromofluorobenzene	103	71-120				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

### VOLATILES by EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rece	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB060	05W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	10.0	9.23	10.0	10.0	100	92	63-142	8	17	
Benzene	10.8	9.93	10.0	10.0	108	99	78-125	8	15	
Trichloroethene	9.72	8.95	10.0	10.0	97	90	80-125	8	15	
Toluene	11.0	10.2	10.0	10.0	110	102	80-125	8	15	
Chlorobenzene	10.3	10.0	10.0	10.0	103	100	80-140	3	15	
Surrogate:										
Dibromofluoromethane					104	103	62-122			
Toluene-d8					105	105	70-120			
4-Bromofluorobenzene					102	100	71-120			

9

# HALOGENATED VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B7-S-21.5					
Laboratory ID:	06-016-02					
Dichlorodifluoromethane	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
Chloromethane	ND	0.0043	EPA 8260C	6-5-14	6-5-14	
Vinyl Chloride	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
Bromomethane	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
Chloroethane	ND	0.0043	EPA 8260C	6-5-14	6-5-14	
Trichlorofluoromethane	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloroethene	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
lodomethane	ND	0.0043	EPA 8260C	6-5-14	6-5-14	
Methylene Chloride	ND	0.0043	EPA 8260C	6-5-14	6-5-14	
(trans) 1,2-Dichloroethene	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloroethane	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
2,2-Dichloropropane	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
(cis) 1,2-Dichloroethene	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
Bromochloromethane	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
Chloroform	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
1,1,1-Trichloroethane	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
Carbon Tetrachloride	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloropropene	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
1,2-Dichloroethane	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
Trichloroethene	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
1,2-Dichloropropane	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
Dibromomethane	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
Bromodichloromethane	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
2-Chloroethyl Vinyl Ether	ND	0.0043	EPA 8260C	6-5-14	6-5-14	
(cis) 1,3-Dichloropropene	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
(trans) 1,3-Dichloropropene	ND	0.00087	EPA 8260C	6-5-14	6-5-14	

# HALOGENATED VOLATILES EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B7-S-21.5					
Laboratory ID:	06-016-02					
1,1,2-Trichloroethane	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
Tetrachloroethene	0.012	0.00087	EPA 8260C	6-5-14	6-5-14	
1,3-Dichloropropane	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
Dibromochloromethane	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
1,2-Dibromoethane	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
Chlorobenzene	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
1,1,1,2-Tetrachloroethane	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
Bromoform	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
Bromobenzene	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
1,1,2,2-Tetrachloroethane	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
1,2,3-Trichloropropane	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
2-Chlorotoluene	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
4-Chlorotoluene	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
1,3-Dichlorobenzene	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
1,4-Dichlorobenzene	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
1,2-Dichlorobenzene	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
1,2-Dibromo-3-chloropropane	ND	0.0043	EPA 8260C	6-5-14	6-5-14	
1,2,4-Trichlorobenzene	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
Hexachlorobutadiene	ND	0.0043	EPA 8260C	6-5-14	6-5-14	
1,2,3-Trichlorobenzene	ND	0.00087	EPA 8260C	6-5-14	6-5-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	103	65-129				
Toluene-d8	102	77-122				
4-Bromofluorobenzene	99	73-124				

# HALOGENATED VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B7-S-24.0					
Laboratory ID:	06-016-03					
Dichlorodifluoromethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Chloromethane	ND	0.0053	EPA 8260C	6-5-14	6-5-14	
Vinyl Chloride	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Bromomethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Chloroethane	ND	0.0053	EPA 8260C	6-5-14	6-5-14	
Trichlorofluoromethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloroethene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
lodomethane	ND	0.0053	EPA 8260C	6-5-14	6-5-14	
Methylene Chloride	ND	0.0053	EPA 8260C	6-5-14	6-5-14	
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloroethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
2,2-Dichloropropane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Bromochloromethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Chloroform	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,1,1-Trichloroethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Carbon Tetrachloride	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloropropene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,2-Dichloroethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Trichloroethene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,2-Dichloropropane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Dibromomethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Bromodichloromethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
2-Chloroethyl Vinyl Ether	ND	0.0053	EPA 8260C	6-5-14	6-5-14	
(cis) 1,3-Dichloropropene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
(trans) 1,3-Dichloropropene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	

HALOGENATED VOLATILES EPA 8260C	
page 2 of 2	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B7-S-24.0					
Laboratory ID:	06-016-03					
1,1,2-Trichloroethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Tetrachloroethene	0.0098	0.0011	EPA 8260C	6-5-14	6-5-14	
1,3-Dichloropropane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Dibromochloromethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,2-Dibromoethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Chlorobenzene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,1,1,2-Tetrachloroethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Bromoform	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Bromobenzene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,1,2,2-Tetrachloroethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,2,3-Trichloropropane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
2-Chlorotoluene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
4-Chlorotoluene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,3-Dichlorobenzene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,4-Dichlorobenzene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,2-Dichlorobenzene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,2-Dibromo-3-chloropropane	ND	0.0053	EPA 8260C	6-5-14	6-5-14	
1,2,4-Trichlorobenzene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Hexachlorobutadiene	ND	0.0053	EPA 8260C	6-5-14	6-5-14	
1,2,3-Trichlorobenzene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	65-129				
Toluene-d8	106	77-122				
4-Bromofluorobenzene	103	73-124				

# HALOGENATED VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B7-S-25.0					
Laboratory ID:	06-016-04					
Dichlorodifluoromethane	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
Chloromethane	ND	0.0046	EPA 8260C	6-5-14	6-5-14	
Vinyl Chloride	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
Bromomethane	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
Chloroethane	ND	0.0046	EPA 8260C	6-5-14	6-5-14	
Trichlorofluoromethane	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloroethene	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
lodomethane	ND	0.0046	EPA 8260C	6-5-14	6-5-14	
Methylene Chloride	ND	0.0046	EPA 8260C	6-5-14	6-5-14	
(trans) 1,2-Dichloroethene	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloroethane	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
2,2-Dichloropropane	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
(cis) 1,2-Dichloroethene	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
Bromochloromethane	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
Chloroform	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
1,1,1-Trichloroethane	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
Carbon Tetrachloride	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloropropene	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
1,2-Dichloroethane	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
Trichloroethene	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
1,2-Dichloropropane	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
Dibromomethane	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
Bromodichloromethane	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
2-Chloroethyl Vinyl Ether	ND	0.0046	EPA 8260C	6-5-14	6-5-14	
(cis) 1,3-Dichloropropene	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
(trans) 1,3-Dichloropropene	ND	0.00091	EPA 8260C	6-5-14	6-5-14	

# HALOGENATED VOLATILES EPA 8260C

pa	ge	2	OI	2	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B7-S-25.0					
Laboratory ID:	06-016-04					
1,1,2-Trichloroethane	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
Tetrachloroethene	0.011	0.00091	EPA 8260C	6-5-14	6-5-14	
1,3-Dichloropropane	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
Dibromochloromethane	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
1,2-Dibromoethane	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
Chlorobenzene	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
1,1,1,2-Tetrachloroethane	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
Bromoform	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
Bromobenzene	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
1,1,2,2-Tetrachloroethane	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
1,2,3-Trichloropropane	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
2-Chlorotoluene	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
4-Chlorotoluene	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
1,3-Dichlorobenzene	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
1,4-Dichlorobenzene	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
1,2-Dichlorobenzene	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
1,2-Dibromo-3-chloropropane	ND	0.0046	EPA 8260C	6-5-14	6-5-14	
1,2,4-Trichlorobenzene	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
Hexachlorobutadiene	ND	0.0046	EPA 8260C	6-5-14	6-5-14	
1,2,3-Trichlorobenzene	ND	0.00091	EPA 8260C	6-5-14	6-5-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	101	65-129				
Toluene-d8	104	77-122				
4-Bromofluorobenzene	100	73-124				

15

# HALOGENATED VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B7-S-30.5					
Laboratory ID:	06-016-05					
Dichlorodifluoromethane	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
Chloromethane	ND	0.0048	EPA 8260C	6-5-14	6-5-14	
Vinyl Chloride	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
Bromomethane	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
Chloroethane	ND	0.0048	EPA 8260C	6-5-14	6-5-14	
Trichlorofluoromethane	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloroethene	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
lodomethane	ND	0.0048	EPA 8260C	6-5-14	6-5-14	
Methylene Chloride	ND	0.0048	EPA 8260C	6-5-14	6-5-14	
(trans) 1,2-Dichloroethene	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloroethane	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
2,2-Dichloropropane	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
(cis) 1,2-Dichloroethene	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
Bromochloromethane	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
Chloroform	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
1,1,1-Trichloroethane	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
Carbon Tetrachloride	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloropropene	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
1,2-Dichloroethane	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
Trichloroethene	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
1,2-Dichloropropane	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
Dibromomethane	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
Bromodichloromethane	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
2-Chloroethyl Vinyl Ether	ND	0.0048	EPA 8260C	6-5-14	6-5-14	
(cis) 1,3-Dichloropropene	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
(trans) 1,3-Dichloropropene	ND	0.00097	EPA 8260C	6-5-14	6-5-14	

## HALOGENATED VOLATILES EPA 8260C

pa	ge	2	OI	2	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B7-S-30.5					
Laboratory ID:	06-016-05					
1,1,2-Trichloroethane	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
Tetrachloroethene	0.011	0.00097	EPA 8260C	6-5-14	6-5-14	
1,3-Dichloropropane	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
Dibromochloromethane	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
1,2-Dibromoethane	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
Chlorobenzene	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
1,1,1,2-Tetrachloroethane	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
Bromoform	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
Bromobenzene	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
1,1,2,2-Tetrachloroethane	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
1,2,3-Trichloropropane	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
2-Chlorotoluene	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
4-Chlorotoluene	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
1,3-Dichlorobenzene	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
1,4-Dichlorobenzene	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
1,2-Dichlorobenzene	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
1,2-Dibromo-3-chloropropane	ND	0.0048	EPA 8260C	6-5-14	6-5-14	
1,2,4-Trichlorobenzene	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
Hexachlorobutadiene	ND	0.0048	EPA 8260C	6-5-14	6-5-14	
1,2,3-Trichlorobenzene	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	103	65-129				
Toluene-d8	105	77-122				
4-Bromofluorobenzene	101	73-124				

#### HALOGENATED VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B1-S-2.0					
Laboratory ID:	06-016-06					
Dichlorodifluoromethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Chloromethane	ND	0.0050	EPA 8260C	6-5-14	6-5-14	
Vinyl Chloride	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Bromomethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Chloroethane	ND	0.0050	EPA 8260C	6-5-14	6-5-14	
Trichlorofluoromethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
lodomethane	ND	0.0050	EPA 8260C	6-5-14	6-5-14	
Methylene Chloride	ND	0.0050	EPA 8260C	6-5-14	6-5-14	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloroethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
2,2-Dichloropropane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Bromochloromethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Chloroform	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Carbon Tetrachloride	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloropropene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,2-Dichloroethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Trichloroethene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,2-Dichloropropane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Dibromomethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Bromodichloromethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260C	6-5-14	6-5-14	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	

## HALOGENATED VOLATILES EPA 8260C

pa	ge	2	or	Z	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B1-S-2.0					
Laboratory ID:	06-016-06					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Tetrachloroethene	0.037	0.0010	EPA 8260C	6-5-14	6-5-14	
1,3-Dichloropropane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Dibromochloromethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,2-Dibromoethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Chlorobenzene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Bromoform	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Bromobenzene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
2-Chlorotoluene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
4-Chlorotoluene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260C	6-5-14	6-5-14	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Hexachlorobutadiene	ND	0.0050	EPA 8260C	6-5-14	6-5-14	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	103	65-129				
Toluene-d8	101	77-122				
4-Bromofluorobenzene	99	73-124				

#### HALOGENATED VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B2-S-2.0					
Laboratory ID:	06-016-07					
Dichlorodifluoromethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Chloromethane	ND	0.0053	EPA 8260C	6-5-14	6-5-14	
Vinyl Chloride	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Bromomethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Chloroethane	ND	0.0053	EPA 8260C	6-5-14	6-5-14	
Trichlorofluoromethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloroethene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
lodomethane	ND	0.0053	EPA 8260C	6-5-14	6-5-14	
Methylene Chloride	ND	0.0053	EPA 8260C	6-5-14	6-5-14	
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloroethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
2,2-Dichloropropane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Bromochloromethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Chloroform	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,1,1-Trichloroethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Carbon Tetrachloride	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloropropene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,2-Dichloroethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Trichloroethene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,2-Dichloropropane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Dibromomethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Bromodichloromethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
2-Chloroethyl Vinyl Ether	ND	0.0053	EPA 8260C	6-5-14	6-5-14	
(cis) 1,3-Dichloropropene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
(trans) 1,3-Dichloropropene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	

HALOGENATED VOLATILES EPA 8260C	
page 2 of 2	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B2-S-2.0					
Laboratory ID:	06-016-07					
1,1,2-Trichloroethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Tetrachloroethene	0.0029	0.0011	EPA 8260C	6-5-14	6-5-14	
1,3-Dichloropropane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Dibromochloromethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,2-Dibromoethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Chlorobenzene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,1,1,2-Tetrachloroethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Bromoform	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Bromobenzene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,1,2,2-Tetrachloroethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,2,3-Trichloropropane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
2-Chlorotoluene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
4-Chlorotoluene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,3-Dichlorobenzene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,4-Dichlorobenzene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,2-Dichlorobenzene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,2-Dibromo-3-chloropropane	ND	0.0053	EPA 8260C	6-5-14	6-5-14	
1,2,4-Trichlorobenzene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Hexachlorobutadiene	ND	0.0053	EPA 8260C	6-5-14	6-5-14	
1,2,3-Trichlorobenzene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	107	65-129				
Toluene-d8	110	77-122				
4-Bromofluorobenzene	105	73-124				

# HALOGENATED VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B2-S-4.0					
Laboratory ID:	06-016-08					
Dichlorodifluoromethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Chloromethane	ND	0.0052	EPA 8260C	6-5-14	6-5-14	
Vinyl Chloride	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Bromomethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Chloroethane	ND	0.0052	EPA 8260C	6-5-14	6-5-14	
Trichlorofluoromethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
lodomethane	ND	0.0052	EPA 8260C	6-5-14	6-5-14	
Methylene Chloride	ND	0.0052	EPA 8260C	6-5-14	6-5-14	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloroethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
2,2-Dichloropropane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Bromochloromethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Chloroform	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Carbon Tetrachloride	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloropropene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,2-Dichloroethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Trichloroethene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,2-Dichloropropane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Dibromomethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Bromodichloromethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
2-Chloroethyl Vinyl Ether	ND	0.0052	EPA 8260C	6-5-14	6-5-14	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	

## HALOGENATED VOLATILES EPA 8260C

pag	e	2	OI	2	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B2-S-4.0					
Laboratory ID:	06-016-08					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Tetrachloroethene	0.029	0.0010	EPA 8260C	6-5-14	6-5-14	
1,3-Dichloropropane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Dibromochloromethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,2-Dibromoethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Chlorobenzene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Bromoform	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Bromobenzene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
2-Chlorotoluene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
4-Chlorotoluene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,2-Dibromo-3-chloropropane	ND	0.0052	EPA 8260C	6-5-14	6-5-14	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Hexachlorobutadiene	ND	0.0052	EPA 8260C	6-5-14	6-5-14	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	65-129				
Toluene-d8	109	77-122				
4-Bromofluorobenzene	105	73-124				

# HALOGENATED VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B3-S-2.0					
Laboratory ID:	06-016-09					
Dichlorodifluoromethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Chloromethane	ND	0.0055	EPA 8260C	6-5-14	6-5-14	
Vinyl Chloride	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Bromomethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Chloroethane	ND	0.0055	EPA 8260C	6-5-14	6-5-14	
Trichlorofluoromethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloroethene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
lodomethane	ND	0.0055	EPA 8260C	6-5-14	6-5-14	
Methylene Chloride	ND	0.0055	EPA 8260C	6-5-14	6-5-14	
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloroethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
2,2-Dichloropropane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Bromochloromethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Chloroform	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,1,1-Trichloroethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Carbon Tetrachloride	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloropropene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,2-Dichloroethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Trichloroethene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,2-Dichloropropane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Dibromomethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Bromodichloromethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
2-Chloroethyl Vinyl Ether	ND	0.0055	EPA 8260C	6-5-14	6-5-14	
(cis) 1,3-Dichloropropene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
(trans) 1,3-Dichloropropene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	

24

HALOGENATED VOLATILES EPA 8260C	
page 2 of 2	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B3-S-2.0					
Laboratory ID:	06-016-09					
1,1,2-Trichloroethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Tetrachloroethene	0.0042	0.0011	EPA 8260C	6-5-14	6-5-14	
1,3-Dichloropropane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Dibromochloromethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,2-Dibromoethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Chlorobenzene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,1,1,2-Tetrachloroethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Bromoform	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Bromobenzene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,1,2,2-Tetrachloroethane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,2,3-Trichloropropane	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
2-Chlorotoluene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
4-Chlorotoluene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,3-Dichlorobenzene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,4-Dichlorobenzene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,2-Dichlorobenzene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
1,2-Dibromo-3-chloropropane	ND	0.0055	EPA 8260C	6-5-14	6-5-14	
1,2,4-Trichlorobenzene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Hexachlorobutadiene	ND	0.0055	EPA 8260C	6-5-14	6-5-14	
1,2,3-Trichlorobenzene	ND	0.0011	EPA 8260C	6-5-14	6-5-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	102	65-129				
Toluene-d8	108	77-122				
4-Bromofluorobenzene	105	73-124				

#### HALOGENATED VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B4-S-2.0					
Laboratory ID:	06-016-10					
Dichlorodifluoromethane	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
Chloromethane	ND	0.0047	EPA 8260C	6-5-14	6-5-14	
Vinyl Chloride	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
Bromomethane	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
Chloroethane	ND	0.0047	EPA 8260C	6-5-14	6-5-14	
Trichlorofluoromethane	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloroethene	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
lodomethane	ND	0.0047	EPA 8260C	6-5-14	6-5-14	
Methylene Chloride	ND	0.0047	EPA 8260C	6-5-14	6-5-14	
(trans) 1,2-Dichloroethene	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloroethane	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
2,2-Dichloropropane	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
(cis) 1,2-Dichloroethene	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
Bromochloromethane	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
Chloroform	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
1,1,1-Trichloroethane	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
Carbon Tetrachloride	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloropropene	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
1,2-Dichloroethane	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
Trichloroethene	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
1,2-Dichloropropane	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
Dibromomethane	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
Bromodichloromethane	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
2-Chloroethyl Vinyl Ether	ND	0.0047	EPA 8260C	6-5-14	6-5-14	
(cis) 1,3-Dichloropropene	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
(trans) 1,3-Dichloropropene	ND	0.00094	EPA 8260C	6-5-14	6-5-14	

#### HALOGENATED VOLATILES EPA 8260C page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B4-S-2.0					
Laboratory ID:	06-016-10					
1,1,2-Trichloroethane	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
Tetrachloroethene	0.015	0.00094	EPA 8260C	6-5-14	6-5-14	
1,3-Dichloropropane	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
Dibromochloromethane	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
1,2-Dibromoethane	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
Chlorobenzene	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
1,1,1,2-Tetrachloroethane	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
Bromoform	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
Bromobenzene	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
1,1,2,2-Tetrachloroethane	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
1,2,3-Trichloropropane	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
2-Chlorotoluene	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
4-Chlorotoluene	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
1,3-Dichlorobenzene	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
1,4-Dichlorobenzene	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
1,2-Dichlorobenzene	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
1,2-Dibromo-3-chloropropane	ND	0.0047	EPA 8260C	6-5-14	6-5-14	
1,2,4-Trichlorobenzene	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
Hexachlorobutadiene	ND	0.0047	EPA 8260C	6-5-14	6-5-14	
1,2,3-Trichlorobenzene	ND	0.00094	EPA 8260C	6-5-14	6-5-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	104	65-129				
Toluene-d8	104	77-122				
4-Bromofluorobenzene	101	73-124				

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed. Date of Report: June 12, 2014 Samples Submitted: June 3, 2014 Laboratory Reference: 1406-016 Project: 0879.01.02

#### HALOGENATED VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL Page 1 of 2

Matrix: Soil Units: mg/kg

5 5				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0605S1					
Dichlorodifluoromethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Chloromethane	ND	0.0050	EPA 8260C	6-5-14	6-5-14	
Vinyl Chloride	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Bromomethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Chloroethane	ND	0.0050	EPA 8260C	6-5-14	6-5-14	
Trichlorofluoromethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
lodomethane	ND	0.0050	EPA 8260C	6-5-14	6-5-14	
Methylene Chloride	ND	0.0050	EPA 8260C	6-5-14	6-5-14	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloroethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
2,2-Dichloropropane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Bromochloromethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Chloroform	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Carbon Tetrachloride	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloropropene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,2-Dichloroethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Trichloroethene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,2-Dichloropropane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Dibromomethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Bromodichloromethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260C	6-5-14	6-5-14	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	

28

Date of Report: June 12, 2014 Samples Submitted: June 3, 2014 Laboratory Reference: 1406-016 Project: 0879.01.02

#### HALOGENATED VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL Page 2 of 2

• • •				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0605S1					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Tetrachloroethene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,3-Dichloropropane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Dibromochloromethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,2-Dibromoethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Chlorobenzene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Bromoform	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Bromobenzene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
2-Chlorotoluene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
4-Chlorotoluene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260C	6-5-14	6-5-14	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Hexachlorobutadiene	ND	0.0050	EPA 8260C	6-5-14	6-5-14	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
	Percent Recovery	Control Limits				
Dibromofluoromethane	110	65-129				
Toluene-d8	108	77-122				
4-Bromofluorobenzene	102	73-124				

#### HALOGENATED VOLATILES EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Per	cent	Recovery		RPD	
Analyte	Result		Spike	Spike Level		overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB06	05S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0454	0.0440	0.0500	0.0500	91	88	56-141	3	15	
Benzene	0.0480	0.0478	0.0500	0.0500	96	96	70-121	0	15	
Trichloroethene	0.0496	0.0500	0.0500	0.0500	99	100	74-118	1	15	
Toluene	0.0477	0.0469	0.0500	0.0500	95	94	75-120	2	15	
Chlorobenzene	0.0475	0.0469	0.0500	0.0500	95	94	75-120	1	15	
Surrogate:										
Dibromofluoromethane					101	102	65-129			
Toluene-d8					99	99	77-122			
4-Bromofluorobenzene					99	98	73-124			

#### NITRATE (as Nitrogen) EPA 353.2

Matrix: Units:	Water mg/L				Date	Date	
Analyte		Result	PQL	Method	Prepared	Analyzed	Flags
Client I	):	CST B6-GW-25.4					
Laborato	ory ID:	06-016-01					
Nitrate		1.2	0.050	EPA 353.2	6-4-14	6-5-14	

#### NITRATE (as Nitrogen) EPÀ 353.2 QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0604F1					
Nitrate	ND	0.050	EPA 353.2	6-4-14	6-5-14	

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	06-03	38-01							
	ORIG	DUP							
Nitrate	3.86	3.90	NA	NA	NA	NA	1	16	
MATRIX SPIKE									
Laboratory ID:	06-03	38-01							
	Ν	IS	MS		MS				
Nitrate	8.	34	4.00	3.86	112	84-119	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB06	05W1							
	S	B	SB		SB				
Nitrate	2.	28	2.00	NA	114	86-114	NA	NA	

#### SULFATE ASTM D516-07

Matrix: Water Units: mg/L				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B6-GW-25.4					
Laboratory ID:	06-016-01					
Sulfate	17	5.0	ASTM D516-07	6-4-14	6-10-14	

#### SULFATE ASTM D516-07 QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0604F1					
Sulfate	ND	5.0	ASTM D516-07	6-4-14	6-10-14	

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	06-00	06-04							
	ORIG	DUP							
Sulfate	15.1	14.7	NA	NA	NA	NA	3	10	
MATRIX SPIKE									
Laboratory ID:	06-00	06-04							
	Ν	IS	MS		MS				
Sulfate	36	6.6	20.0	15.1	108	82-123	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB06	604F1							
	S	В	SB		SB				
Sulfate	10	).0	10.0	NA	100	91-114	NA	NA	

#### CHLORIDE SM 4500-CI E

Matrix:	Water
Units:	mg/L

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	CST B6-GW-25.4					
Laboratory ID:	06-016-01					
Chloride	22	2.0	SM 4500-CI E	6-4-14	6-4-14	

#### CHLORIDE SM 4500-CI E QUALITY CONTROL

Matrix: Water Units: mg/L

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB0604F1					
ND	2.0	SM 4500-CI E	6-4-14	6-4-14	
	MB0604F1	MB0604F1	MB0604F1	Result     PQL     Method     Prepared       MB0604F1	Result         PQL         Method         Prepared         Analyzed           MB0604F1         MB0604F1

				Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	06-0	16-01							
	ORIG	DUP							
Chloride	21.7	21.5	NA	NA	NA	NA	1	11	
MATRIX SPIKE									
Laboratory ID:	06-0	16-01							
	Ν	1S	MS		MS				
Chloride	78	8.7	50.0	21.7	114	94-126	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB06	604F1							
	S	SB	SB		SB				
Chloride	52	2.9	50.0	NA	106	94-124	NA	NA	

#### DISSOLVED METHANE RSK 175

Matrix: Units:	Water						
Units.	ug/L (ppb)				Date	Date	
Analyte		Result	PQL	Method	Prepared	Analyzed	Flags
Client I	D:	CST B6-GW-25.4					
Laborato	ory ID:	06-016-01					
Methane	)	2.6	0.50	RSK 175	6-5-14	6-5-14	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

#### DISSOLVED METHANE RSK 175 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

								Date	Date	•	
Analyte		Result		PQL	Me	ethod		Prepared	Analyz	ed	Flags
METHOD BLANK											
Laboratory ID:		MB0605W1									
Methane		ND		0.50	RS	K 175	5	6-5-14	6-5-1	4	
Analyte	Re	sult	Snike	Level	Source Result		ercent covery	Recovery Limits	RPD	RPD Limit	Flags
SPIKE BLANKS	110	oun	opine	Level	Rooun		Jevery	Linito		2	riugo
Laboratory ID:	SB06	05W1									
	SB	SBD	SB	SBD		SB	SBD				
Methane	3.78	3.85	4.42	4.42	N/A	86	87	75-125	2	25	

Date of Report: June 12, 2014 Samples Submitted: June 3, 2014 Laboratory Reference: 1406-016 Project: 0879.01.02

#### % MOISTURE

Date Analyzed: 6-5-14

Client ID	Lab ID	% Moisture
CST B7-S-21.5	06-016-02	8
CST B7-S-24.0	06-016-03	8
CST B7-S-25.0	06-016-04	11
CST B7-S-30.5	06-016-05	8
CST B1-S-2.0	06-016-06	6
CST B2-S-2.0	06-016-07	5
CST B2-S-4.0	06-016-08	8
CST B3-S-2.0	06-016-09	5
CST B4-S-2.0	06-016-10	8

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.



#### **Data Qualifiers and Abbreviations**

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference



Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 Professional Analytical Services

Jun 12 2014 On-Site Environmental 14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister

Dear David Baumeister:

Enclosed please find the analytical data for your project.

The following is a cross correlation of client and laboratory identifications for your convenience.

CLIENT ID	MATRIX	AMTEST ID	TEST
CSTB6-GW-25.4	Water	14-A008247	CONV

Your sample was received on Thursday, June 5, 2014. At the time of receipt, the sample was logged in and properly maintained prior to the subsequent analysis.

The analytical procedures used at AmTest are well documented and are typically derived from the protocols of the EPA, USDA, FDA or the Army Corps of Engineers.

Following the analytical data you will find the Quality Control (QC) results.

Please note that the detection limits that are listed in the body of the report refer to the Practical Quantitation Limits (PQL's), as opposed to the Method Detection Limits (MDL's).

If you should have any questions pertaining to the data package, please feel free to conact me.

Sincerely,

Aaron W. Young Laboratory Manager

Project #: 0879.01.02

BACT = Bacteriological CONV = Conventionals MET = Metals ORG = Organics NUT=Nutrients DEM=Demand MIN=Minerals

**Am Test Inc.** 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 www.amtestlab.com



## ANALYSIS REPORT

Professional Analytical Services

On-Site Environmental 14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project #: 0879.01.02 All results reported on an as received basis. Date Received: 06/05/14 Date Reported: 6/12/14

AMTEST Identification Number	14-A008247
Client Identification	CSTB6-GW-25.4
Sampling Date	06/02/14, 17:15

### Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Sulfide	< 0.1	mg/l		0.1	EPA 376.2	AB	06/11/14

1 von Aaron W. Young Laboratory Manager

Am Test Inc. 13600 NE 126th PL Suite C Kirkland, WA, 98034 (425) 885-1664 www.amtestlab.com



### QC Summary for sample number: 14-A008247

### **MATRIX SPIKES**

SAMPLE # ANALYTE	UNITS	SAMPLE VALUE	SMPL+ SPK	SPK AMT	RECOVERY
14-A008248 Total Sulfide	mg/l	< 0.1	0.57	0.50	114.00 %
14-A008248 Total Sulfide	mg/l	< 0.1	0.66	0.50	132.00 %
MATRIX SPIKE DUPLICATES					
SAMPLE # ANALYTE	UNITS	SAMPLE + SPK	MSD VALUE		RPD
Spike Total Sulfide	mg/l	0.57	0.66		15.
	_				
STANDARD REFERENCE MATERIA	LS				
ANALYTE	UNITS	TRUE VALUE	MEASURED	VALUE	RECOVERY
Total Sulfide	mg/l	0.50	0.52		104. %
BLANKS					
ANALYTE	UNITS	RESULT			
Total Sulfide	mg/l	< 0.1			
		•			

		Received by:
		Relinguished by:
		Received by:
		Relinquished by:
19 11:25	mitest 6/5/	Received by:
	NA TA AA	Relinquished by:
Sulfide	3	8247 CSTB6-GW-25.4
of nt. Requested Analysis	Date Time # of Sampled Sampled Matrix Cont.	Lab ID Sample Identification
		Date/Time:
Project Name:	Other:	Phone Number: (425)885-1664
Project Number: 08 /9,01.02	Standard	13600 NE 126th PI Kirkland, WA 98034
email: dbaumeister@onsite-env.com	1 Day 2 Day 3 Day	Attention: Aaron Young
Project Manager: David Baumeister	Turnaround Request:	Subcontract Laboratory: AmTest Laboratories
Laboratory Reference #: UD = U I D		14648 NE 95th Street, Redmond, WA 98052 · (425) 883-3881
		Environmental Inc.
Page of		

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished by m m	Signature	10 CST B4-5-2-0	9 CST 83-5-20	8 CST B2- 5-40	7 657 82-5-2-0	6 EST BL-5-2.0	5 CST PZ-S-30.5	4 CST PJ7- 5-25.0	3 (ST BJ-S-24.0	2 (ST B7-5-21.5	1 (ST BG-GW-25,4	Lab ID Sample Identification	V, KR, PD, CW	Jackie Gruber	Seatar S. 181th TOC	6879.01.02	Company: MPA	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services	OnSite
Reviewed/Date			- (086 63		Sply IV	r man 2	Company Date	6(3 1315 5 5	6(3 1240 5 5	6/3 1032 5 5	613 1010 5 5	6 (3/14 DESO 5 5	S 2420 41/6/2	0/3/14 0828 S S	6/3/14/0310 S S	6 2 5 22EN h1/2 0	6/2/14/17/5 Gw 9	Date Time Sampled Sampled Matrix Number NWTPI	H-HCID H-Gx/B	ontaine	(TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day		Turnaround Request Laboratory N	Chain of Custody
Electronic Data Deliverables (EDDs) 🕅			114 1630	1/630	1 71	11 1230	Time Comments/Special Instructions	8	7	8	78	*						NWTPH Volatile Haloge Semivc (with lo PAHs & PCBs & Organo Organo Chlorin Total R	H-Dx ( s 8260 nated \ latiles i 2270D/s 2270D/s 2270D/s 2082A chlorin phosph ated Ac	/olatiles 8270D/s PAHs) SIM (low e Pestic orus Pes cid Herb etals		3270D/S	IM		atory Number: 06 ·	ody
лт X																	XXX	nit Su	Netals iil and g rotus vat Kd tha	grease) t e   <	1664A	/ ct			-016	Page of



14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

June 12, 2014

Jackie Gruber Maul Foster & Alongi, Inc. 411 First Avenue S., Suite 610 Seattle, WA 98104

Re: Analytical Data for Project 0879.01.02 Laboratory Reference No. 1406-017

Dear Jackie:

Enclosed are the analytical results and associated quality control data for samples submitted on June 3, 2014.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Date of Report: June 12, 2014 Samples Submitted: June 3, 2014 Laboratory Reference: 1406-017 Project: 0879.01.02

#### **Case Narrative**

Samples were collected on June 3, 2014 and received by the laboratory on June 3, 2014. They were maintained at the laboratory at a temperature of  $2^{\circ}$ C to  $6^{\circ}$ C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be 1 discussed in detail below.

#### Halogenated Volatiles EPA 8260C Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

#### **NWTPH-Dx**

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	CST B7-GW-30.0					
Laboratory ID:	06-017-01					
Diesel Range Organics	ND	0.27	NWTPH-Dx	6-4-14	6-4-14	
Lube Oil Range Organics	ND	0.44	NWTPH-Dx	6-4-14	6-4-14	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	104	50-150				

3

#### NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

Date Date Prepared Analyzed Flags	d Pı		PQL	Result	Analyte
					METHOD BLANK
				MB0604W1	Laboratory ID:
6-4-14 6-4-14	-Dx (	Ν	0.25	ND	Diesel Range Organics
6-4-14 6-4-14	-Dx (	Ν	0.40	ND	Lube Oil Range Organics
		imits	Control Limits	Percent Recovery	Surrogate:
		0	50-150	102	o-Terphenyl
		)	50-750	102	0-Terphenyi

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	05-25	54-01									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		Ν	IA	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		Ν	IA	NA	NA	NA	
Surrogate:											
o-Terphenyl						99	102	50-150			

#### VOLATILES EPA 8260C page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B7-GW-30.0					
Laboratory ID:	06-017-01					
Dichlorodifluoromethane	ND	0.40	EPA 8260C	6-6-14	6-6-14	
Chloromethane	ND	2.0	EPA 8260C	6-6-14	6-6-14	
Vinyl Chloride	ND	0.40	EPA 8260C	6-6-14	6-6-14	
Bromomethane	ND	0.40	EPA 8260C	6-6-14	6-6-14	
Chloroethane	ND	2.0	EPA 8260C	6-6-14	6-6-14	
Trichlorofluoromethane	ND	0.40	EPA 8260C	6-6-14	6-6-14	
1,1-Dichloroethene	ND	0.40	EPA 8260C	6-6-14	6-6-14	
Acetone	ND	10	EPA 8260C	6-6-14	6-6-14	
lodomethane	ND	3.0	EPA 8260C	6-6-14	6-6-14	
Carbon Disulfide	ND	0.40	EPA 8260C	6-6-14	6-6-14	
Methylene Chloride	ND	2.0	EPA 8260C	6-6-14	6-6-14	
(trans) 1,2-Dichloroethene	ND	0.40	EPA 8260C	6-6-14	6-6-14	
Methyl t-Butyl Ether	ND	0.40	EPA 8260C	6-6-14	6-6-14	
1,1-Dichloroethane	ND	0.40	EPA 8260C	6-6-14	6-6-14	
Vinyl Acetate	ND	2.0	EPA 8260C	6-6-14	6-6-14	
2,2-Dichloropropane	ND	0.40	EPA 8260C	6-6-14	6-6-14	
(cis) 1,2-Dichloroethene	ND	0.40	EPA 8260C	6-6-14	6-6-14	
2-Butanone	ND	10	EPA 8260C	6-6-14	6-6-14	
Bromochloromethane	ND	0.40	EPA 8260C	6-6-14	6-6-14	
Chloroform	ND	0.40	EPA 8260C	6-6-14	6-6-14	
1,1,1-Trichloroethane	ND	0.40	EPA 8260C	6-6-14	6-6-14	
Carbon Tetrachloride	ND	0.40	EPA 8260C	6-6-14	6-6-14	
1,1-Dichloropropene	ND	0.40	EPA 8260C	6-6-14	6-6-14	
Benzene	ND	0.40	EPA 8260C	6-6-14	6-6-14	
1,2-Dichloroethane	ND	0.40	EPA 8260C	6-6-14	6-6-14	
Trichloroethene	ND	0.40	EPA 8260C	6-6-14	6-6-14	
1,2-Dichloropropane	ND	0.40	EPA 8260C	6-6-14	6-6-14	
Dibromomethane	ND	0.40	EPA 8260C	6-6-14	6-6-14	
Bromodichloromethane	ND	0.40	EPA 8260C	6-6-14	6-6-14	
2-Chloroethyl Vinyl Ether	ND	2.0	EPA 8260C	6-6-14	6-6-14	
(cis) 1,3-Dichloropropene	ND	0.40	EPA 8260C	6-6-14	6-6-14	
Methyl Isobutyl Ketone	ND	4.0	EPA 8260C	6-6-14	6-6-14	
Toluene	ND	2.0	EPA 8260C	6-6-14	6-6-14	
(trans) 1,3-Dichloropropene	e ND	0.40	EPA 8260C	6-6-14	6-6-14	

5

Surrogate:

Toluene-d8

Dibromofluoromethane

4-Bromofluorobenzene

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B7-GW-30.0					
Laboratory ID:	06-017-01					
1,1,2-Trichloroethane	ND	0.40	EPA 8260C	6-6-14	6-6-14	
Tetrachloroethene	66	0.40	EPA 8260C	6-6-14	6-6-14	
1,3-Dichloropropane	ND	0.40	EPA 8260C	6-6-14	6-6-14	
2-Hexanone	ND	4.0	EPA 8260C	6-6-14	6-6-14	
Dibromochloromethane	ND	0.40	EPA 8260C	6-6-14	6-6-14	
1,2-Dibromoethane	ND	0.40	EPA 8260C	6-6-14	6-6-14	
Chlorobenzene	ND	0.40	EPA 8260C	6-6-14	6-6-14	
1,1,1,2-Tetrachloroethane	ND	0.40	EPA 8260C	6-6-14	6-6-14	
Ethylbenzene	ND	0.40	EPA 8260C	6-6-14	6-6-14	
m,p-Xylene	ND	0.80	EPA 8260C	6-6-14	6-6-14	
o-Xylene	ND	0.40	EPA 8260C	6-6-14	6-6-14	
Styrene	ND	0.40	EPA 8260C	6-6-14	6-6-14	
Bromoform	ND	2.0	EPA 8260C	6-6-14	6-6-14	
Isopropylbenzene	ND	0.40	EPA 8260C	6-6-14	6-6-14	
Bromobenzene	ND	0.40	EPA 8260C	6-6-14	6-6-14	
1,1,2,2-Tetrachloroethane	ND	0.40	EPA 8260C	6-6-14	6-6-14	
1,2,3-Trichloropropane	ND	0.56	EPA 8260C	6-6-14	6-6-14	
n-Propylbenzene	ND	0.40	EPA 8260C	6-6-14	6-6-14	
2-Chlorotoluene	ND	0.40	EPA 8260C	6-6-14	6-6-14	
4-Chlorotoluene	ND	0.40	EPA 8260C	6-6-14	6-6-14	
1,3,5-Trimethylbenzene	ND	0.40	EPA 8260C	6-6-14	6-6-14	
tert-Butylbenzene	ND	0.40	EPA 8260C	6-6-14	6-6-14	
1,2,4-Trimethylbenzene	ND	0.40	EPA 8260C	6-6-14	6-6-14	
sec-Butylbenzene	ND	0.40	EPA 8260C	6-6-14	6-6-14	
1,3-Dichlorobenzene	ND	0.40	EPA 8260C	6-6-14	6-6-14	
p-Isopropyltoluene	ND	0.40	EPA 8260C	6-6-14	6-6-14	
1,4-Dichlorobenzene	ND	0.40	EPA 8260C	6-6-14	6-6-14	
1,2-Dichlorobenzene	ND	0.40	EPA 8260C	6-6-14	6-6-14	
n-Butylbenzene	ND	0.40	EPA 8260C	6-6-14	6-6-14	
1,2-Dibromo-3-chloropropane	e ND	2.0	EPA 8260C	6-6-14	6-6-14	
1,2,4-Trichlorobenzene	ND	0.40	EPA 8260C	6-6-14	6-6-14	
Hexachlorobutadiene	ND	0.40	EPA 8260C	6-6-14	6-6-14	
Naphthalene	ND	2.0	EPA 8260C	6-6-14	6-6-14	
1,2,3-Trichlorobenzene	ND	0.40	EPA 8260C	6-6-14	6-6-14	

#### VOLATILES EPA 8260C page 2 of 2

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Control Limits

62-122

70-120

71-120

Percent Recovery

103

97

103

6

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Date of Report: June 12, 2014 Samples Submitted: June 3, 2014 Laboratory Reference: 1406-017 Project: 0879.01.02

#### VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

		501	•• •	Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0606W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Chloromethane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Vinyl Chloride	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Bromomethane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Chloroethane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Trichlorofluoromethane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,1-Dichloroethene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Acetone	ND	5.0	EPA 8260C	6-6-14	6-6-14	
lodomethane	ND	1.5	EPA 8260C	6-6-14	6-6-14	
Carbon Disulfide	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Methylene Chloride	ND	1.0	EPA 8260C	6-6-14	6-6-14	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,1-Dichloroethane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Vinyl Acetate	ND	1.0	EPA 8260C	6-6-14	6-6-14	
2,2-Dichloropropane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
2-Butanone	ND	5.0	EPA 8260C	6-6-14	6-6-14	
Bromochloromethane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Chloroform	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Carbon Tetrachloride	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,1-Dichloropropene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Benzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,2-Dichloroethane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Trichloroethene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,2-Dichloropropane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Dibromomethane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Bromodichloromethane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	6-6-14	6-6-14	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	6-6-14	6-6-14	
Toluene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	6-6-14	6-6-14	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

## VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 2 of 2

• • • •	<b>_</b>	<b>B</b> <i>G</i> ⁺		Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0606W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Tetrachloroethene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,3-Dichloropropane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
2-Hexanone	ND	2.0	EPA 8260C	6-6-14	6-6-14	
Dibromochloromethane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,2-Dibromoethane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Chlorobenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Ethylbenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
n,p-Xylene	ND	0.40	EPA 8260C	6-6-14	6-6-14	
p-Xylene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Styrene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Bromoform	ND	1.0	EPA 8260C	6-6-14	6-6-14	
sopropylbenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Bromobenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,2,3-Trichloropropane	ND	0.28	EPA 8260C	6-6-14	6-6-14	
n-Propylbenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
2-Chlorotoluene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
4-Chlorotoluene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
ert-Butylbenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
sec-Butylbenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
p-Isopropyltoluene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
n-Butylbenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Hexachlorobutadiene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Naphthalene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	101	62-122				
Toluene-d8	101	70-120				
4-Bromofluorobenzene	100	71-120				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

## VOLATILES by EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB060	06W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	9.94	8.58	10.0	10.0	99	86	63-142	15	17	
Benzene	8.78	8.87	10.0	10.0	88	89	78-125	1	15	
Trichloroethene	9.35	8.85	10.0	10.0	94	89	80-125	5	15	
Toluene	9.56	9.05	10.0	10.0	96	91	80-125	5	15	
Chlorobenzene	9.38	9.21	10.0	10.0	94	92	80-140	2	15	
Surrogate:										
Dibromofluoromethane					100	101	62-122			
Toluene-d8					101	98	70-120			
4-Bromofluorobenzene					98	100	71-120			

# HALOGENATED VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B8-S-23.0					
Laboratory ID:	06-017-02					
Dichlorodifluoromethane	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
Chloromethane	ND	0.0073	EPA 8260C	6-5-14	6-5-14	
Vinyl Chloride	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
Bromomethane	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
Chloroethane	ND	0.0073	EPA 8260C	6-5-14	6-5-14	
Trichlorofluoromethane	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloroethene	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
lodomethane	ND	0.0073	EPA 8260C	6-5-14	6-5-14	
Methylene Chloride	ND	0.0073	EPA 8260C	6-5-14	6-5-14	
(trans) 1,2-Dichloroethene	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloroethane	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
2,2-Dichloropropane	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
(cis) 1,2-Dichloroethene	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
Bromochloromethane	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
Chloroform	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
1,1,1-Trichloroethane	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
Carbon Tetrachloride	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloropropene	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
1,2-Dichloroethane	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
Trichloroethene	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
1,2-Dichloropropane	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
Dibromomethane	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
Bromodichloromethane	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
2-Chloroethyl Vinyl Ether	ND	0.0073	EPA 8260C	6-5-14	6-5-14	
(cis) 1,3-Dichloropropene	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
(trans) 1,3-Dichloropropene	ND	0.0015	EPA 8260C	6-5-14	6-5-14	

HALOGENATED VOLATILES EPA 8260C	
page 2 of 2	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B8-S-23.0					
Laboratory ID:	06-017-02					
1,1,2-Trichloroethane	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
Tetrachloroethene	0.030	0.0015	EPA 8260C	6-5-14	6-5-14	
1,3-Dichloropropane	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
Dibromochloromethane	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
1,2-Dibromoethane	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
Chlorobenzene	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
1,1,1,2-Tetrachloroethane	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
Bromoform	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
Bromobenzene	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
1,1,2,2-Tetrachloroethane	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
1,2,3-Trichloropropane	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
2-Chlorotoluene	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
4-Chlorotoluene	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
1,3-Dichlorobenzene	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
1,4-Dichlorobenzene	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
1,2-Dichlorobenzene	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
1,2-Dibromo-3-chloropropane	ND	0.0073	EPA 8260C	6-5-14	6-5-14	
1,2,4-Trichlorobenzene	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
Hexachlorobutadiene	ND	0.0073	EPA 8260C	6-5-14	6-5-14	
1,2,3-Trichlorobenzene	ND	0.0015	EPA 8260C	6-5-14	6-5-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	106	65-129				
Toluene-d8	104	77-122				
4-Bromofluorobenzene	102	73-124				

# HALOGENATED VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B8-S-21.0					
Laboratory ID:	06-017-03					
Dichlorodifluoromethane	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
Chloromethane	ND	0.0042	EPA 8260C	6-5-14	6-5-14	
Vinyl Chloride	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
Bromomethane	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
Chloroethane	ND	0.0042	EPA 8260C	6-5-14	6-5-14	
Trichlorofluoromethane	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloroethene	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
lodomethane	ND	0.0042	EPA 8260C	6-5-14	6-5-14	
Methylene Chloride	ND	0.0042	EPA 8260C	6-5-14	6-5-14	
(trans) 1,2-Dichloroethene	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloroethane	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
2,2-Dichloropropane	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
(cis) 1,2-Dichloroethene	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
Bromochloromethane	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
Chloroform	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
1,1,1-Trichloroethane	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
Carbon Tetrachloride	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloropropene	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
1,2-Dichloroethane	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
Trichloroethene	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
1,2-Dichloropropane	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
Dibromomethane	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
Bromodichloromethane	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
2-Chloroethyl Vinyl Ether	ND	0.0042	EPA 8260C	6-5-14	6-5-14	
(cis) 1,3-Dichloropropene	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
(trans) 1,3-Dichloropropene	ND	0.00084	EPA 8260C	6-5-14	6-5-14	

# HALOGENATED VOLATILES EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B8-S-21.0					
Laboratory ID:	06-017-03					
1,1,2-Trichloroethane	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
Tetrachloroethene	0.011	0.00084	EPA 8260C	6-5-14	6-5-14	
1,3-Dichloropropane	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
Dibromochloromethane	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
1,2-Dibromoethane	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
Chlorobenzene	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
1,1,1,2-Tetrachloroethane	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
Bromoform	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
Bromobenzene	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
1,1,2,2-Tetrachloroethane	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
1,2,3-Trichloropropane	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
2-Chlorotoluene	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
4-Chlorotoluene	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
1,3-Dichlorobenzene	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
1,4-Dichlorobenzene	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
1,2-Dichlorobenzene	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
1,2-Dibromo-3-chloropropane	ND	0.0042	EPA 8260C	6-5-14	6-5-14	
1,2,4-Trichlorobenzene	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
Hexachlorobutadiene	ND	0.0042	EPA 8260C	6-5-14	6-5-14	
1,2,3-Trichlorobenzene	ND	0.00084	EPA 8260C	6-5-14	6-5-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	65-129				
Toluene-d8	108	77-122				
4-Bromofluorobenzene	101	73-124				

# HALOGENATED VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B8-S-30.5					
Laboratory ID:	06-017-04					
Dichlorodifluoromethane	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
Chloromethane	ND	0.0049	EPA 8260C	6-5-14	6-5-14	
Vinyl Chloride	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
Bromomethane	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
Chloroethane	ND	0.0049	EPA 8260C	6-5-14	6-5-14	
Trichlorofluoromethane	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloroethene	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
lodomethane	ND	0.0049	EPA 8260C	6-5-14	6-5-14	
Methylene Chloride	ND	0.0049	EPA 8260C	6-5-14	6-5-14	
(trans) 1,2-Dichloroethene	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloroethane	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
2,2-Dichloropropane	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
(cis) 1,2-Dichloroethene	0.0023	0.00097	EPA 8260C	6-5-14	6-5-14	
Bromochloromethane	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
Chloroform	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
1,1,1-Trichloroethane	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
Carbon Tetrachloride	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloropropene	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
1,2-Dichloroethane	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
Trichloroethene	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
1,2-Dichloropropane	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
Dibromomethane	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
Bromodichloromethane	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
2-Chloroethyl Vinyl Ether	ND	0.0049	EPA 8260C	6-5-14	6-5-14	
(cis) 1,3-Dichloropropene	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
(trans) 1,3-Dichloropropene	ND	0.00097	EPA 8260C	6-5-14	6-5-14	

# HALOGENATED VOLATILES EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B8-S-30.5					
Laboratory ID:	06-017-04					
1,1,2-Trichloroethane	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
Tetrachloroethene	0.068	0.00097	EPA 8260C	6-5-14	6-5-14	
1,3-Dichloropropane	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
Dibromochloromethane	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
1,2-Dibromoethane	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
Chlorobenzene	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
1,1,1,2-Tetrachloroethane	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
Bromoform	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
Bromobenzene	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
1,1,2,2-Tetrachloroethane	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
1,2,3-Trichloropropane	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
2-Chlorotoluene	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
4-Chlorotoluene	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
1,3-Dichlorobenzene	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
1,4-Dichlorobenzene	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
1,2-Dichlorobenzene	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
1,2-Dibromo-3-chloropropane	ND	0.0049	EPA 8260C	6-5-14	6-5-14	
1,2,4-Trichlorobenzene	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
Hexachlorobutadiene	ND	0.0049	EPA 8260C	6-5-14	6-5-14	
1,2,3-Trichlorobenzene	ND	0.00097	EPA 8260C	6-5-14	6-5-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	65-129				
Toluene-d8	107	77-122				
4-Bromofluorobenzene	103	73-124				

Date of Report: June 12, 2014 Samples Submitted: June 3, 2014 Laboratory Reference: 1406-017 Project: 0879.01.02

#### HALOGENATED VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL Page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0605S1					
Dichlorodifluoromethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Chloromethane	ND	0.0050	EPA 8260C	6-5-14	6-5-14	
Vinyl Chloride	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Bromomethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Chloroethane	ND	0.0050	EPA 8260C	6-5-14	6-5-14	
Trichlorofluoromethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
lodomethane	ND	0.0050	EPA 8260C	6-5-14	6-5-14	
Methylene Chloride	ND	0.0050	EPA 8260C	6-5-14	6-5-14	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloroethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
2,2-Dichloropropane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Bromochloromethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Chloroform	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Carbon Tetrachloride	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,1-Dichloropropene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,2-Dichloroethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Trichloroethene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,2-Dichloropropane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Dibromomethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Bromodichloromethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260C	6-5-14	6-5-14	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	

Date of Report: June 12, 2014 Samples Submitted: June 3, 2014 Laboratory Reference: 1406-017 Project: 0879.01.02

#### HALOGENATED VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL Page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0605S1					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Tetrachloroethene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,3-Dichloropropane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Dibromochloromethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,2-Dibromoethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Chlorobenzene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Bromoform	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Bromobenzene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
2-Chlorotoluene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
4-Chlorotoluene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
1,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260C	6-5-14	6-5-14	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Hexachlorobutadiene	ND	0.0050	EPA 8260C	6-5-14	6-5-14	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260C	6-5-14	6-5-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	110	65-129				
Toluene-d8	108	77-122				
4-Bromofluorobenzene	102	73-124				

#### HALOGENATED VOLATILES EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB06	05S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0454	0.0440	0.0500	0.0500	91	88	56-141	3	15	
Benzene	0.0480	0.0478	0.0500	0.0500	96	96	70-121	0	15	
Trichloroethene	0.0496	0.0500	0.0500	0.0500	99	100	74-118	1	15	
Toluene	0.0477	0.0469	0.0500	0.0500	95	94	75-120	2	15	
Chlorobenzene	0.0475	0.0469	0.0500	0.0500	95	94	75-120	1	15	
Surrogate:										
Dibromofluoromethane					101	102	65-129			
Toluene-d8					99	99	77-122			
4-Bromofluorobenzene					99	98	73-124			

#### DISSOLVED METHANE RSK 175

Matrix:	Water						
Units:	ug/L (ppb)						
					Date	Date	
Analyte		Result	PQL	Method	Prepared	Analyzed	Flags
Client ID	D:	CST B7-GW-30.0					
Laborato	ory ID:	06-017-01					
Methane	)	1.3	0.50	RSK 175	6-5-14	6-5-14	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

#### DISSOLVED METHANE RSK 175 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

							0	Date	Date		
Analyte		Result		PQL	Met	hod	Pre	pared	Analyzed	F	lags
METHOD BLANK											
Laboratory ID:	Ν	/IB0605W	1								
Methane		ND		0.50	RSK	(175	6-	5-14	6-5-14		
Analyte	Re	sult	Snike	e Level	Source Result		ercent covery	Recovery Limits	/ RPD	RPD Limit	Flags
SPIKE BLANKS		oun	opine		nooun						. lage
Laboratory ID:	SB06	605W1									
	SB	SBD	SB	SBD		SB	SBD				
Methane	3.78	3.85	4.42	4.42	N/A	86	87	75-125	2	25	

#### NITRATE (as Nitrogen) EPA 353.2

Matrix: Units:	Water mg/L				Date	Date	
Analyte		Result	PQL	Method	Prepared	Analyzed	Flags
Client ID	D:	CST B7-GW-30.0					
Laborato	ory ID:	06-017-01					
Nitrate		1.8	0.050	EPA 353.2	6-4-14	6-5-14	

#### NITRATE (as Nitrogen) EPÀ 353.2 QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0604F1					
Nitrate	ND	0.050	EPA 353.2	6-4-14	6-5-14	

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	06-00	06-04							
	ORIG	DUP							
Nitrate	1.47	1.49	NA	NA	NA	NA	1	16	
MATRIX SPIKE									
Laboratory ID:	06-00	06-04							
	Μ	IS	MS		MS				
Nitrate	3.3	85	2.00	1.47	119	84-119	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB06	604F1							
	S	В	SB		SB				
Nitrate	2.3	30	2.00	NA	115	86-114	NA	NA	

#### SULFATE ASTM D516-07

Matrix: Units:	Water mg/L				Date	Date	
Analyte		Result	PQL	Method	Prepared	Analyzed	Flags
Client ID	D:	CST B7-GW-30.0					
Laborato	ory ID:	06-017-01					
Sulfate		15	5.0	ASTM D516-07	6-4-14	6-10-14	

#### SULFATE ASTM D516-07 QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0604F1					
Sulfate	ND	5.0	ASTM D516-07	6-4-14	6-10-14	

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	06-00	06-04							
	ORIG	DUP							
Sulfate	15.1	14.7	NA	NA	NA	NA	3	10	
MATRIX SPIKE									
Laboratory ID:	06-00	06-04							
	Ν	IS	MS		MS				
Sulfate	36	6.6	20.0	15.1	108	82-123	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB06	604F1							
	S	В	SB		SB				
Sulfate	10	).0	10.0	NA	100	91-114	NA	NA	

#### CHLORIDE SM 4500-CI E

Matrix: Water Units: mg/L						
				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CST B7-GW-30.0					
Laboratory ID:	06-017-01					
Chloride	22	2.0	SM 4500-CI E	6-4-14	6-4-14	

#### CHLORIDE SM 4500-CI E QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0604F1					
Chloride	ND	2.0	SM 4500-CI E	6-4-14	6-4-14	

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	06-01	16-01							
	ORIG	DUP							
Chloride	21.7	21.5	NA	NA	NA	NA	1	11	
MATRIX SPIKE									
Laboratory ID:	06-01	16-01							
	Μ	S	MS		MS				
Chloride	78	3.7	50.0	21.7	114	94-126	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB06	04F1							
	S	В	SB		SB				
Chloride	52	.9	50.0	NA	106	94-124	NA	NA	

Date of Report: June 12, 2014 Samples Submitted: June 3, 2014 Laboratory Reference: 1406-017 Project: 0879.01.02

## % MOISTURE

Date Analyzed: 6-5-14

Client ID	Lab ID	% Moisture
CST B8-S-23.0	06-017-02	12
CST B8-S-21.0	06-017-03	10
CST B8-S-30.5	06-017-04	12

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.



#### **Data Qualifiers and Abbreviations**

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference



Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 Professional Analytical Services

Jun 12 2014 On-Site Environmental 14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister

Dear David Baumeister:

Enclosed please find the analytical data for your project.

The following is a cross correlation of client and laboratory identifications for your convenience.

CLIENT ID	MATRIX	AMTEST ID	TEST
CSTB7-GW-30.0	Water	14-A008246	CONV

Your sample was received on Thursday, June 5, 2014. At the time of receipt, the sample was logged in and properly maintained prior to the subsequent analysis.

The analytical procedures used at AmTest are well documented and are typically derived from the protocols of the EPA, USDA, FDA or the Army Corps of Engineers.

Following the analytical data you will find the Quality Control (QC) results.

Please note that the detection limits that are listed in the body of the report refer to the Practical Quantitation Limits (PQL's), as opposed to the Method Detection Limits (MDL's).

If you should have any questions pertaining to the data package, please feel free to conact me.

Sincerely,

Aaron W. Young Laboratory Manager

Project #: 0879.01.02

BACT = Bacteriological CONV = Conventionals MET = Metals ORG = Organics NUT=Nutrients DEM=Demand MIN=Minerals

**Am Test Inc.** 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 www.amtestlab.com



# ANALYSIS REPORT

Professional Analytical Services

On-Site Environmental 14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project #: 0879.01.02 All results reported on an as received basis. Date Received: 06/05/14 Date Reported: 6/12/14

AMTEST Identification Number	14-A008246
Client Identification	CSTB7-GW-30.0
Sampling Date	06/03/14, 11:50

# Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Sulfide	< 0.1	mg/l		0.1	EPA 376.2	AB	06/11/14

W von Aaron W. Young Laboratory Manager

Am Test Inc. 13600 NE 126th PL Suite C Kirkland, WA, 98034 (425) 885-1664 www.amtestlab.com



# QC Summary for sample number: 14-A008246

# **MATRIX SPIKES**

SAMPLE # ANALYTE	UNITS	SAMPLE VALUE	SMPL+ SPK	SPK AMT	RECOVERY
14-A008248 Total Sulfide	mg/l	< 0.1	0.57	0.50	114.00 %
14-A008248 Total Sulfide	mg/l	< 0.1	0.66	0.50	132.00 %
MATRIX SPIKE DUPLICATES					
SAMPLE # ANALYTE	UNITS	SAMPLE + SPK	MSD VALUE		RPD
Spike Total Sulfide	mg/l	0.57	0.66		15.
	_				
STANDARD REFERENCE MATERIA	LS				
ANALYTE	UNITS	TRUE VALUE	MEASURED	VALUE	RECOVERY
Total Sulfide	mg/l	0.50	0.52		104. %
BLANKS					
ANALYTE	UNITS	RESULT			
Total Sulfide	mg/l	< 0.1			
		•			

		Page of
Environmental Inc.		
14648 NE 95th Street, Redmond, WA 98052 · (425) 883-3881		Laboratory Reference #: UD U ] 7
Subcontract Laboratory: AmTest Laboratories	Turnaround Request:	Project Manager: David Baumeister
Attention: Aaron Young	1 Day 2 Day 3 Day	email: dbaumeister@onsite-env.com
13600 NE 126th PI Kirkland, WA 98034	Standard	Project Number: 0879,01.02
Phone Number: (425)885-1664	Other:	Project Name:
Date/Time:		
Lab ID Sample Identification	Date         Time         # of           Sampled         Sampled         Matrix         Cont.	Requested Analysis
8244CSTB7-GW-300	3	Sulfide
Sublidure	Company Date	Time Comments/Special Instructions
Relinquished by:	Store Cold	
Received by:	mitest 6/5/14	1/25
Relinguished by:		
Received by:		
Relinguished by:		
Received by:		
		70

1-16.9

Reviewed/Date	Received Relinquished Received	Relinquished 71	Received	Relinquished / Low m	Signature				4 CST*B8 -S-30.5	5 (ST B2- 5-21.0	2 (ST B3-5-23.0	1 CSTB7-GW-30.0	Lab ID Sample Identification	R. DERENS, K. ROSKUND, Y. VAN	J. GRJ ER	CUTY DEATLAC & ISEM ST. TOD	Project Number: 0879. 0(~02	Company: MPA	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services	OnSite
Reviewed/Date			Sport	MTA	Company		· .		6/3/14 B30 5 5	6/3/14 1150 S S	6/3/14 1203 S S	6/3/14 1150 GW 9	Date Time Sampled Sampled Matrix	(other)	ontaine	(TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	Chain of Custody
Electronic Data Deliverables (EDDs)	neol hile o	10/11/1030	11 11	6/3/14 1530	Date Time	*			$\otimes$				NWTF NWTF Volatil Halog Semiv	PH-Dx les 826 enated rolatiles	STEX Ext	s 8260C				Laboratory Number:	Sustody
Chromatograms with final report		2	Corpland III	and blochy of (STA)	Comments/Special Instructions	· · · · · · · · · · · · · · · · · · ·							PAHs PCBs Organ Organ Chlori Total Total TCLP HEM	8270D 8082A nochlori ophosp inated / RCRA I MTCA Metals (oil and 774 A	Acid He Metals I grease	w-level) icides 8( esticides rbicides	081B 8270D/S 8151A	SIM		06-017	Page of



14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

June 12, 2014

Jackie Gruber Maul Foster & Alongi, Inc. 411 First Avenue S., Suite 610 Seattle, WA 98104

Re: Analytical Data for Project 0879.01.02 Laboratory Reference No. 1406-031

Dear Jackie:

Enclosed are the analytical results and associated quality control data for samples submitted on June 4, 2014.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: June 12, 2014 Samples Submitted: June 4, 2014 Laboratory Reference: 1406-031 Project: 0879.01.02

#### **Case Narrative**

Samples were collected on June 3, 2014 and received by the laboratory on June 4, 2014. They were maintained at the laboratory at a temperature of  $2^{\circ}$ C to  $6^{\circ}$ C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

#### **NWTPH-Dx**

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	CSTB8-GW-20.0					
Laboratory ID:	06-031-01					
Diesel Range Organics	ND	0.27	NWTPH-Dx	6-9-14	6-9-14	
Lube Oil Range Organics	ND	0.43	NWTPH-Dx	6-9-14	6-9-14	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	77	50-150				

3

#### NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0609W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	6-9-14	6-9-14	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	6-9-14	6-9-14	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	81	50-150				

					Source	Perc	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	06-03	32-01									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		Ν	A	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		N	A	NA	NA	NA	
Surrogate:											
o-Terphenyl						78	76	50-150			

## VOLATILES EPA 8260C page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSTB8-GW-20.0					
Laboratory ID:	06-031-01					
Dichlorodifluoromethane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Chloromethane	ND	6.5	EPA 8260C	6-6-14	6-6-14	
Vinyl Chloride	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Bromomethane	ND	2.2	EPA 8260C	6-6-14	6-6-14	
Chloroethane	ND	5.0	EPA 8260C	6-6-14	6-6-14	
Trichlorofluoromethane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,1-Dichloroethene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Acetone	ND	25	EPA 8260C	6-6-14	6-6-14	
lodomethane	ND	9.5	EPA 8260C	6-6-14	6-6-14	
Carbon Disulfide	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Methylene Chloride	ND	5.0	EPA 8260C	6-6-14	6-6-14	
(trans) 1,2-Dichloroethene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Methyl t-Butyl Ether	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,1-Dichloroethane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Vinyl Acetate	ND	5.0	EPA 8260C	6-6-14	6-6-14	
2,2-Dichloropropane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
(cis) 1,2-Dichloroethene	4.3	1.0	EPA 8260C	6-6-14	6-6-14	
2-Butanone	ND	25	EPA 8260C	6-6-14	6-6-14	
Bromochloromethane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Chloroform	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,1,1-Trichloroethane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Carbon Tetrachloride	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,1-Dichloropropene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Benzene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,2-Dichloroethane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Trichloroethene	3.2	1.0	EPA 8260C	6-6-14	6-6-14	
1,2-Dichloropropane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Dibromomethane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Bromodichloromethane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
2-Chloroethyl Vinyl Ether	ND	5.0	EPA 8260C	6-6-14	6-6-14	
(cis) 1,3-Dichloropropene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Methyl Isobutyl Ketone	ND	10	EPA 8260C	6-6-14	6-6-14	
Toluene	ND	5.0	EPA 8260C	6-6-14	6-6-14	
(trans) 1,3-Dichloropropene	ND	1.0	EPA 8260C	6-6-14	6-6-14	

5

## VOLATILES EPA 8260C page 2 of 2

America	Dec. M			Date	Date	-
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
	CSTB8-GW-20.0					
Laboratory ID:	06-031-01					
1,1,2-Trichloroethane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Tetrachloroethene	180	1.0	EPA 8260C	6-6-14	6-6-14	
1,3-Dichloropropane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
2-Hexanone	ND	10	EPA 8260C	6-6-14	6-6-14	
Dibromochloromethane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,2-Dibromoethane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Chlorobenzene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,1,1,2-Tetrachloroethane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Ethylbenzene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
n,p-Xylene	ND	2.0	EPA 8260C	6-6-14	6-6-14	
o-Xylene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Styrene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Bromoform	ND	5.0	EPA 8260C	6-6-14	6-6-14	
lsopropylbenzene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Bromobenzene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,1,2,2-Tetrachloroethane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,2,3-Trichloropropane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
n-Propylbenzene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
2-Chlorotoluene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
4-Chlorotoluene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,3,5-Trimethylbenzene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
tert-Butylbenzene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,2,4-Trimethylbenzene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
sec-Butylbenzene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,3-Dichlorobenzene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
o-Isopropyltoluene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,4-Dichlorobenzene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,2-Dichlorobenzene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
n-Butylbenzene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,2-Dibromo-3-chloropropane		5.0	EPA 8260C	6-6-14	6-6-14	
1.2.4-Trichlorobenzene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Hexachlorobutadiene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Naphthalene	ND	5.0	EPA 8260C	6-6-14	6-6-14	
1,2,3-Trichlorobenzene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
Surrogate:	Percent Recovery	Control Limits		0011	0011	
Dibromofluoromethane	117	62-122				
Toluene-d8	115	70-120				
4-Bromofluorobenzene	112	70-120 71-120				
4-DI UTTIUTIUUT UDENZENE	112	11-120				

Date of Report: June 12, 2014 Samples Submitted: June 4, 2014 Laboratory Reference: 1406-031 Project: 0879.01.02

#### VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

		501	•• ••	Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Laboratory ID:	MB0606W2						
Dichlorodifluoromethane	ND	0.20	EPA 8260C	6-6-14	6-6-14		
Chloromethane	ND	1.3	EPA 8260C	6-6-14	6-6-14		
Vinyl Chloride	ND	0.20	EPA 8260C	6-6-14	6-6-14		
Bromomethane	ND	0.43	EPA 8260C	6-6-14	6-6-14		
Chloroethane	ND	1.0	EPA 8260C	6-6-14	6-6-14		
Trichlorofluoromethane	ND	0.20	EPA 8260C	6-6-14	6-6-14		
1,1-Dichloroethene	ND	0.20	EPA 8260C	6-6-14	6-6-14		
Acetone	ND	5.0	EPA 8260C	6-6-14	6-6-14		
lodomethane	ND	1.9	EPA 8260C	6-6-14	6-6-14		
Carbon Disulfide	ND	0.20	EPA 8260C	6-6-14	6-6-14		
Methylene Chloride	ND	1.0	EPA 8260C	6-6-14	6-6-14		
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	6-6-14	6-6-14		
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	6-6-14	6-6-14		
1,1-Dichloroethane	ND	0.20	EPA 8260C	6-6-14	6-6-14		
Vinyl Acetate	ND	1.0	EPA 8260C	6-6-14	6-6-14		
2,2-Dichloropropane	ND	0.20	EPA 8260C	6-6-14	6-6-14		
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	6-6-14	6-6-14		
2-Butanone	ND	5.0	EPA 8260C	6-6-14	6-6-14		
Bromochloromethane	ND	0.20	EPA 8260C	6-6-14	6-6-14		
Chloroform	ND	0.20	EPA 8260C	6-6-14	6-6-14		
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	6-6-14	6-6-14		
Carbon Tetrachloride	ND	0.20	EPA 8260C	6-6-14	6-6-14		
1,1-Dichloropropene	ND	0.20	EPA 8260C	6-6-14	6-6-14		
Benzene	ND	0.20	EPA 8260C	6-6-14	6-6-14		
1,2-Dichloroethane	ND	0.20	EPA 8260C	6-6-14	6-6-14		
Trichloroethene	ND	0.20	EPA 8260C	6-6-14	6-6-14		
1,2-Dichloropropane	ND	0.20	EPA 8260C	6-6-14	6-6-14		
Dibromomethane	ND	0.20	EPA 8260C	6-6-14	6-6-14		
Bromodichloromethane	ND	0.20	EPA 8260C	6-6-14	6-6-14		
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	6-6-14	6-6-14		
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	6-6-14	6-6-14		
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	6-6-14	6-6-14		
Toluene	ND	1.0	EPA 8260C	6-6-14	6-6-14		
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	6-6-14	6-6-14		

7

## VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 2 of 2

• • • •	<b>_</b>	<b>B</b> <i>G</i> ⁺		Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0606W2					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Tetrachloroethene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,3-Dichloropropane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
2-Hexanone	ND	2.0	EPA 8260C	6-6-14	6-6-14	
Dibromochloromethane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,2-Dibromoethane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Chlorobenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Ethylbenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
m,p-Xylene	ND	0.40	EPA 8260C	6-6-14	6-6-14	
p-Xylene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Styrene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Bromoform	ND	1.0	EPA 8260C	6-6-14	6-6-14	
sopropylbenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Bromobenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	6-6-14	6-6-14	
n-Propylbenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
2-Chlorotoluene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
4-Chlorotoluene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
ert-Butylbenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
sec-Butylbenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
p-Isopropyltoluene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
n-Butylbenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Hexachlorobutadiene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Naphthalene	ND	1.0	EPA 8260C	6-6-14	6-6-14	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	6-6-14	6-6-14	
Surrogate:	Percent Recovery	Control Limits		0011	0011	
Dibromofluoromethane	104	62-122				
Toluene-d8	107	70-120				
	107	10 120				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

## VOLATILES by EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

	Percer Result Spike Level Recove				Per	Percent			RPD	
Analyte			overy	Limits	RPD	Limit	Flags			
SPIKE BLANKS										
Laboratory ID:	SB0606W2									
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	8.92	8.83	10.0	10.0	89	88	63-142	1	17	
Benzene	9.60	9.75	10.0	10.0	96	98	78-125	2	15	
Trichloroethene	8.86	8.74	10.0	10.0	89	87	80-125	1	15	
Toluene	9.86	9.76	10.0	10.0	99	98	80-125	1	15	
Chlorobenzene	9.49	9.27	10.0	10.0	95	93	80-140	2	15	
Surrogate:										
Dibromofluoromethane					107	103	62-122			
Toluene-d8					107	107	70-120			
4-Bromofluorobenzene					101	101	71-120			

### DISSOLVED METHANE RSK 175

Matrix: Units:	Water ug/L (ppb)						
	սց/Ը (ppb)				Date	Date	
Analyte		Result	PQL	Method	Prepared	Analyzed	Flags
Client I	D:	CSTB8-GW-20.0					
Laborato	ory ID:	06-031-01					
Methane	)	3.4	0.50	RSK 175	6-5-14	6-5-14	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

### DISSOLVED METHANE RSK 175 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

								Date	Date	•	
Analyte Re		Result	PQL		Method I		Prepared	Analyzed		Flags	
METHOD BLANK											
Laboratory ID:		MB0605W1									
Methane		ND		0.50	RS	K 175	5	6-5-14	6-5-1	4	
Analyte	Re	sult	Snike	Level	Source Result		ercent covery	Recovery Limits	RPD	RPD Limit	Flags
SPIKE BLANKS	110	oun	opine	Level	Reoun		Jevery	Linito		2	riugo
Laboratory ID:	SB06	05W1									
	SB	SBD	SB	SBD		SB	SBD				
Methane	3.78	3.85	4.42	4.42	N/A	86	87	75-125	2	25	

### NITRATE (as Nitrogen) EPA 353.2

	Water mg/L				Date	Date	
Analyte		Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:		CSTB8-GW-20.0					
Laboratory	/ ID:	06-031-01					
Nitrate		6.0	0.10	EPA 353.2	6-4-14	6-5-14	

### NITRATE (as Nitrogen) EPA 353.2 QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0604F1					
Nitrate	ND	0.050	EPA 353.2	6-4-14	6-5-14	

				Source	Percent	Recovery		RPD	
Analyte	Res	ult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	06-00	6-04							
	ORIG	DUP							
Nitrate	1.47	1.49	NA	NA	NA	NA	1	16	
MATRIX SPIKE									
Laboratory ID:	06-00	6-04							
	M	S	MS		MS				
Nitrate	3.8	85	2.00	1.47	119	84-119	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB06	04F1							
	SI	3	SB		SB				
Nitrate	2.3	30	2.00	NA	115	86-114	NA	NA	

### SULFATE ASTM D516-07

Matrix:	Water
Units:	mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSTB8-GW-20.0					
Laboratory ID:	06-031-01					
Sulfate	29	10	ASTM D516-07	6-4-14	6-10-14	

### SULFATE ASTM D516-07 QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0604F1					
Sulfate	ND	5.0	ASTM D516-07	6-4-14	6-10-14	
Juliale	ND	5.0	ASTIN D310-07	0-4-14	0-10-14	

				Source	Percent	Recovery		RPD	
Analyte	Result		Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	06-00	06-04							
	ORIG	DUP							
Sulfate	15.1	14.7	NA	NA	NA	NA	3	10	
MATRIX SPIKE									
Laboratory ID:	06-00	06-04							
	N	IS	MS		MS				
Sulfate	36	6.6	20.0	15.1	108	82-123	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB06	604F1							
	S	B	SB		SB				
Sulfate	10	).0	10.0	NA	100	91-114	NA	NA	

### CHLORIDE SM 4500-CI E

Matrix:	Water
Units:	mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSTB8-GW-20.0					
Laboratory ID:	06-031-01					
Chloride	13	2.0	SM 4500-CI E	6-4-14	6-4-14	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

### CHLORIDE SM 4500-CI E QUALITY CONTROL

Matrix: Water Units: mg/L

		Date	Date	
esult PQL	Method	Prepared	Analyzed	Flags
604F1				
ND 2.0	SM 4500-CI E	6-4-14	6-4-14	
)	0604F1	0604F1	)604F1	)604F1

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	06-01	16-01							
	ORIG	DUP							
Chloride	21.7	21.5	NA	NA	NA	NA	1	11	
MATRIX SPIKE									
Laboratory ID:	06-01	16-01							
	Μ	S	MS		MS				
Chloride	78	3.7	50.0	21.7	114	94-126	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB06	04F1							
	S	В	SB		SB				
Chloride	52	2.9	50.0	NA	106	94-124	NA	NA	



### **Data Qualifiers and Abbreviations**

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference



Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 Professional Analytical Services

Jun 12 2014 On-Site Environmental 14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister

Dear David Baumeister:

Enclosed please find the analytical data for your project.

The following is a cross correlation of client and laboratory identifications for your convenience.

CLIENT ID	MATRIX	AMTEST ID	TEST
CSTB8-GW-20.0	Water	14-A008245	CONV

Your sample was received on Thursday, June 5, 2014. At the time of receipt, the sample was logged in and properly maintained prior to the subsequent analysis.

The analytical procedures used at AmTest are well documented and are typically derived from the protocols of the EPA, USDA, FDA or the Army Corps of Engineers.

Following the analytical data you will find the Quality Control (QC) results.

Please note that the detection limits that are listed in the body of the report refer to the Practical Quantitation Limits (PQL's), as opposed to the Method Detection Limits (MDL's).

If you should have any questions pertaining to the data package, please feel free to conact me.

Sincerely,

Aaron W. Young Laboratory Manager

Nanager 🚺

Project #: 0879.01.02

BACT = Bacteriological CONV = Conventionals MET = Metals ORG = Organics NUT=Nutrients DEM=Demand MIN=Minerals

**Am Test Inc.** 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 www.amtestlab.com



## ANALYSIS REPORT

Professional Analytical Services

On-Site Environmental 14648 NE 95th ST Redmond, WA 98052 Attention: David Baumeister Project #: 0879.01.02 All results reported on an as received basis. Date Received: 06/05/14 Date Reported: 6/12/14

AMTEST Identification Number	14-A008245
Client Identification	CSTB8-GW-20.0
Sampling Date	06/03/14, 15:54

## Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Sulfide	< 0.1	mg/l		0.1	EPA 376.2	AB	06/11/14

von W Aaron W. Young Laboratory Manager

Am Test Inc. 13600 NE 126th PL Suite C Kirkland, WA, 98034 (425) 885-1664 www.amtestlab.com



## QC Summary for sample number: 14-A008245

## **MATRIX SPIKES**

SAMPLE # ANALYTE	UNITS	SAMPLE VALUE	SMPL+ SPK	SPK AMT	RECOVERY
14-A008248 Total Sulfide	mg/l	< 0.1	0.57	0.50	114.00 %
14-A008248 Total Sulfide	mg/l	< 0.1	0.66	0.50	132.00 %
MATRIX SPIKE DUPLICATES					
SAMPLE # ANALYTE	UNITS	SAMPLE + SPK	MSD VALUE		RPD
Spike Total Sulfide	mg/l	0.57	0.66		15.
STANDARD REFERENCE MATERIAI	LS				
ANALYTE	UNITS	TRUE VALUE	MEASURED	VALUE	RECOVERY
Total Sulfide	mg/l	0.50	0.52		104. %
BLANKS					
ANALYTE	UNITS	RESULT			
Total Sulfide	mg/l	< 0.1			

Sample Identification Sample Identification STGS - GW - ZO, D bate STGS - GW - ZO, D bate Sample Identification STGS - GW - ZO, D bate Sample Identification SAMA Company Date Time Company Date Time Company Date Time Company Date Time Company Date Time
Page ( of pa

1 (6.2



9 June 2014

David Baumeister OnSite Environmental, Inc. 14648 NE 95th Redmond, WA 98052

## RE: Client Project: 0879.01.02; Lab ID 1406-031 ARI Job No: YM48

Dear David:

Please find enclosed the chain-of-custody (COC) record and the final results for the sample from the project referenced above. Analytical Resources, Inc. (ARI) accepted one water sample on June 4, 2014. The sample was analyzed for ferrous iron as requested.

This analysis proceeded without incident of note.

An electronic copy of these reports will remain on file at ARI. Should you have any questions, please contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

Mark D. Harris Project Manager 206/695-6210 markh@arilabs.com

Enclosures

cc: file YM48

MDH/mdh

Page 1 of <u>12</u>

RUSH ANALYSIS CONTACT LAB IN ADVANCE Need Results by: / / / Charges Authorized?   Yes   No (if yes, initial here) /   Email Results   Fax	I Information Direct Bill a 'P' if Preservative added.*) FOR LAB USE ONLY	Date/Time 6/1/14 Date/Time 6/1/14 Date/Time/04/14/14
<b>Ca, Inc.</b> Ste 300, <u>95, Oakwood Road</u> Lake Zurich <u>II, 60047</u> (888) <u>576, 7522</u> (847) 726, 3320 Fax (047) 720-3329	Lat 十 Lat 十 Add that for Credit Card Information Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add Add	A Coeptable □ Other (explain)
<b>U Veritas North America, Inc.</b> Atlanta Lab Heir 2000 Chastein Meadows Pky, Ste 300, <u>95, 0</u> 375 Kennesaw, GA-30144 Lake 887 (800) 252, 9949 887 (770) 400, 752, 9949 170 (770) 400, 7500 (847) 44, 2655 Faw (770) 49957511 Fax		(print) Collector's Signature: (print) Collector's Signature: かく、Received by: 人の人子ストス Received at Lab by: Sample Condition Upon Receipt: □ Acceptable
Y(Y) 4 8 Bureau Ve Detroit teb Detroit teb	Client Job. No. 08 39.01 Dept. S.U. HE Cell are tress A.O. Mater are tress from? A.M. All Vourd are tress from? A.M. All Vourd A.M. All Vourd	Date/Time
RY	Name Yen-Vy Van Results Along Results Along Results Along Results Along Company Maul Postor & Along City, State, Zip Seattle, LUA 93 (CH Telephone No. (206) 353 - 7618 Fax Special Instructions and/or specific rogulatory requirements: method, link of along Multide Chromotop rature w 1 in alo Standard data partage y ele Standard data autage y ele Standard Alara dulik ratules. Explanation of Preservation CLIENT SAMPLE IDENTIFICATION CLIENT SAMPLE IDENTIFICATION CLIENT SAMPLE IDENTIFICATION CLIENT SAMPLE IDENTIFICATION	CHAIN CHAIN Relinquished by: CUSTODY Relinquished by: Method of Shipment: Authorized by: Client Signature MUST Accompany, Request) Relind to the figurature MUST Accompany, Request)



# **Cooler Receipt Form**

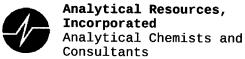
ARI Client ODSITE	Project Name		
COC No(s):NA	Delivered by: Fed-Ex U	IPS Courie) Hand Belivered Othe	r. Speady
Assigned ARI Job No ⁻	Tracking No:		NA)
Preliminary Examination Phase:			$-\bigcirc$
Were intact, properly signed and dated custody seals attached to	o the outside of to cooler?	YES	NO
Were custody papers included with the cooler?	······	TES	NO
Were custody papers properly filled out (ink, signed, etc.)	••• ••• • ••• • •••	YES	NO
Temperature of Coster(s) (°C) (recommended 2.0-6 0 °C for che Time:	emistry) 4.6		-
If cooler temperature is out of compliance fill out form 00070F		Temp Gun ID#	377952
Cooler Accepted by:	Date	Time:	-
Complete custody forms	and attach all shipping docu	uments	

## Log-In Phase:

Was a temperature blank included in the cooler?		YES	NO
What kind of packing material was used? Bubble Wrap Wet Ice Gel Packs Baggies Foam Block	Paper (	Other	
Was sufficient ice used (if appropriate)?	NA	(YES)	NO
Were all bottles sealed in individual plastic bags?		(FES)	NO
Did all bottles arrive in good condition (unbroken)?		(YE\$	NO
Were all bottle labels complete and legible?		(YES)	NO
Did the number of containers listed on COC match with the number of containers received?		(TE)\$	NO
Did all bottle labels and tags agree with custody papers?		(ES)	NO
Were all bottles used correct for the requested analyses?		(YES)	NO
Do any of the analyses (bottles) require preservation? (attach preservation sheet, excluding VOCs)	NA	YES	NO
Were all VOC vials free of air bubbles?	(NA)	YES	NO
Was sufficient amount of sample sent in each bottle?	$\bigcirc$	(ES)	NO
Date VOC Trip Blank was made at ARI	(NA)		. <u></u>
Was Sample Split by ARI : (NA) YES Date/Time Equipment:		Split by	<u> </u>
Samples Logged by Date: (0/4/14 Time/	43	5	

** Notify Project Manager of discrepancies or concerns **

Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample ID on COC
Additional Notes, Discrep	ancies & Resolutions		
Additional Notes, Discrept			
By [.]	Date:		
	bubbles' LARGE Air Bubbles	Small → "sm" (<2 mm)	
2mm 2	-4 mm > 4 mm	Peabubbles → "pb" ( 2 to < 4 mm )	
		Large → "lg" ( 4 to < 6 mm )	
L		Headspace → "hs" (>6 mm)	


## Sample ID Cross Reference Report



ARI Job No: YM48 Client: OnSite Environmental, Inc. Project Event: 0879.01.02 Project Name: N/A

	Sample ID	ARI Lab ID	ARI LIMS ID	Matrix	Sample Date/Time	VTSR
1.	CSTB8-GW-20.0	YM48A	14-10680	Water	06/03/14 15:54	06/04/14 14:30

Printed 06/04/14 Page 1 of 1



## **Data Reporting Qualifiers**

Effective 12/31/13

## Inorganic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Duplicate RPD is not within established control limits
- B Reported value is less than the CRDL but  $\geq$  the Reporting Limit
- N Matrix Spike recovery not within established control limits
- NA Not Applicable, analyte not spiked
- H The natural concentration of the spiked element is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- L Analyte concentration is ≤5 times the Reporting Limit and the replicate control limit defaults to ±1 RL instead of the normal 20% RPD

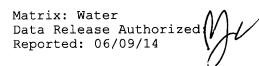
## **Organic Data**

- U Indicates that the target analyte was not detected at the reported concentration
- * Flagged value is not within established control limits
- B Analyte detected in an associated Method Blank at a concentration greater than one-half of ARI's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.
- J Estimated concentration when the value is less than ARI's established reporting limits
- D The spiked compound was not detected due to sample extract dilution
- E Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.



Analytical Resources, Incorporated Analytical Chemists and Consultants

- Q Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20%Drift or minimum RRF).
- S Indicates an analyte response that has saturated the detector. The calculated concentration is not valid; a dilution is required to obtain valid quantification of the analyte
- NA The flagged analyte was not analyzed for
- NR Spiked compound recovery is not reported due to chromatographic interference
- NS The flagged analyte was not spiked into the sample
- M Estimated value for an analyte detected and confirmed by an analyst but with low spectral match parameters. This flag is used only for GC-MS analyses
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification"
- Y The analyte is not detected at or above the reported concentration. The reporting limit is raised due to chromatographic interference. The Y flag is equivalent to the U flag with a raised reporting limit.
- EMPC Estimated Maximum Possible Concentration (EMPC) defined in EPA Statement of Work DLM02.2 as a value "calculated for 2,3,7,8-substituted isomers for which the quantitation and /or confirmation ion(s) has signal to noise in excess of 2.5, but does not meet identification criteria" (Dioxin/Furan analysis only)
- C The analyte was positively identified on only one of two chromatographic columns. Chromatographic interference prevented a positive identification on the second column
- P The analyte was detected on both chromatographic columns but the quantified values differ by ≥40% RPD with no obvious chromatographic interference
- X Analyte signal includes interference from polychlorinated diphenyl ethers. (Dioxin/Furan analysis only)
- Z Analyte signal includes interference from the sample matrix or perfluorokerosene ions. (Dioxin/Furan analysis only)




Analytical Resources, Incorporated Analytical Chemists and Consultants

## **Geotechnical Data**

- A The total of all fines fractions. This flag is used to report total fines when only sieve analysis is requested and balances total grain size with sample weight.
- F Samples were frozen prior to particle size determination
- SM Sample matrix was not appropriate for the requested analysis. This normally refers to samples contaminated with an organic product that interferes with the sieving process and/or moisture content, porosity and saturation calculations
- SS Sample did not contain the proportion of "fines" required to perform the pipette portion of the grain size analysis
- W Weight of sample in some pipette aliquots was below the level required for accurate weighting





Project: NA Event: 0879.01.02 Date Sampled: 06/03/14 Date Received: 06/04/14

Client ID: CSTB8-GW-20.0 ARI ID: 14-10680 YM48A

Analyte	Date Batch	Method	Units	RL	Sample
Ferrous Iron	06/04/14 060414#1	SM3500 FeD	mg/L	0.800	5.56

RL Analytical reporting limit

U Undetected at reported detection limit

### METHOD BLANK RESULTS-CONVENTIONALS YM48-OnSite Environmental, Inc.



Matrix: Water Data Release Authorized Reported: 06/09/14

Project: NA Event: 0879.01.02 Date Sampled: NA Date Received: NA

Analyte	Method	Date	Units	Blank I	D
Ferrous Iron	SM3500 FeD	06/04/14	mg/L	< 0.040 U	



Data Release Authorized Reported: 06/09/14

Project: NA Event: 0879.01.02 Date Sampled: NA Date Received: NA

Analyte/Method	QC ID	Date	Units	LCS	Spike Added	Recovery
Ferrous Iron SM3500 FeD	ICVL	06/04/14	mg/L	0.477	0.500	95.4%



Matrix: Water Data Release A Reported: 06/0	uthorized: 9/14		Date S	roject: NA Event: 0 ampled: 0 ceived: 0	879.01.02 6/03/14	
Analyte	Method	Date	Units	Sample	Replicate(s)	RPD/RSD
ARI ID: YM48A	Client ID: CSTB8-GW	7-20.0				
Ferrous Iron	SM3500 FeD	06/04/14	mg/L	5.56	5.00	10.6%



Matrix: Water Data Release Authorized: Reported: 06/09/14 Project: NA Event: 0879.01.02 Date Sampled: 06/03/14 Date Received: 06/04/14

Analyte	Method	Date	Units	Sample	Spike	Spike Added	Recovery
ARI ID: YM48A	Client ID: CSTB8-	GW-20.0					
Ferrous Iron	SM3500 Fe	D 06/04/14	mg/L	5.56	15.0	8.00	118.0%

Į	2	1	
	2	2	
Ę	J	U	
1	7	3	
÷	ï	5	
٢	2	۲	
1	2	5	
2	-	2	
5	-	2	
2	7	J	
2	4	C	
.,		2	
5	ŝ	ļ	
(	2	)	
-	ī	ŋ	
4	2	7	
	1	`	

Authorized by: (Client Signature MUST Accompany Request)	Method of Shipment:	CUSTODY Relinquished by: United Chimment		CHAIN Collected by:	CLIENT SAMPLE IDENTIFICATION	REQUEST FOR LABORATORY ANALYTICAL SERVICES
Date		CCO D			I ISSY ISSY	EUREAU Client Job. Client Job. Dept. Fax No. Soils Whid are trime
		Date/Time & Jul / 1/ 1346	9/13, 12:50	(print)		Bureau Verit         Detroit Lab         22345 Roethel Drive         Novi, MI 48375         (249) 866-5887         (248) 344-4770         Fax (248) 344-2855         b. No. (379-9, 61, 62         b. No. (379-9, 61, 62         b. No. (379-9, 61, 62         Drinking Water         these         m?         MATRIX         MATRIX         MATRIX         MATRIX         Alk VOLUME         MATRIX
	Received at Lab by:	Received by:	01000	Collector's Signature:		Bureau Veritas North America, I         Detroit Lab       Attanta Lab         22345 Reethel Drive       Attanta Lab         Noui, MI, 48375       3380 Chastain Meadows Pky, Ste 300         (249) 344-4770       (70) 499-7600         Fax (248) 344-2655       Fax (770) 499-7511         Fax (248) 344-2655       Fax (770) 499-7511         Vo. (57 7-0, 01.62       IPO #         waters:       IPO #         Waters:       Company Mage         Groundwater       City, State, Zip Cet Huck         Wastewater       City, State, Zip Cet Huck         Wastewater       Umber of Containers         Number of Containers       Enter an 'X' in the b
			Dock )	J		<b>РС.</b> Chicago Lab 95-Oelwood Road Lake Zurieh, IL-60047 (889) 576-7522 (889) 576-7522 Гах (847) 726-3323- Гах (847) 726-3323- Гах (847) 726-3323- Гах (847) 726-3323- Сол (447) 726-332- Сол (447) 726-33- Сол (447) 726-32- Сол (447) 726-33- Сол (447) 726-33- Сол (447) 726-32- Сол (447) 726-72- Сол (447) 726-72- Сол (447) 726-72- Сол (447) 726-7
	Date/Time	Date/Time	6/4/14		USE ONLY	
			1250Ju	2		



14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

March 24, 2015

Jackie Gruber Maul Foster & Alongi, Inc. 411 First Avenue S., Suite 610 Seattle, WA 98104

Re: Analytical Data for Project 0879.01.02 Laboratory Reference No. 1503-171

Dear Jackie:

Enclosed are the analytical results and associated quality control data for samples submitted on March 17, 2015.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely.

David Baumeister Project Manager

Enclosures

### **Case Narrative**

Samples were collected on March 16 and 17, 2015 and received by the laboratory on March 17, 2015. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

### Halogenated Volatiles (soil) EPA 8260C Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

### Halogenated Volatiles (water) EPA 8260C Analysis

Some MTCA Method A cleanup levels are non-achievable for sample CSTB13-W-28 due to sample matrix effects. The sample was initially analyzed straight (1:1), and the first Internal Standard did not meet acceptance criteria. The sample was then analyzed at a dilution (1:5) with normal Internal Standard recoveries. The compounds associated with the first Internal Standard are reported from the 1:5 data, and the remaining compounds are reported from the 1:1 data.

Surrogate Standard Toluene-d8 is outside control limits on the high end for sample CSTB09-W-30.0. Because the sample is non-detect, no further action was taken.

Surrogate Standard Dibromofluoromethane is outside control limits on the high end for sample Trip Blank. Because the sample is non-detect, no further action was taken.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

### HALOGENATED VOLATILES EPA 8260C

page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSTB12-S-18.5					
Laboratory ID:	03-171-01					
Dichlorodifluoromethane	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
Chloromethane	ND	0.0074	EPA 8260C	3-18-15	3-18-15	
Vinyl Chloride	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
Bromomethane	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
Chloroethane	ND	0.0074	EPA 8260C	3-18-15	3-18-15	
Trichlorofluoromethane	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
1,1-Dichloroethene	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
lodomethane	ND	0.0074	EPA 8260C	3-18-15	3-18-15	
Methylene Chloride	ND	0.0074	EPA 8260C	3-18-15	3-18-15	
(trans) 1,2-Dichloroethene	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
1,1-Dichloroethane	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
2,2-Dichloropropane	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
(cis) 1,2-Dichloroethene	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
Bromochloromethane	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
Chloroform	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
1,1,1-Trichloroethane	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
Carbon Tetrachloride	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
1,1-Dichloropropene	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
1,2-Dichloroethane	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
Trichloroethene	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
1,2-Dichloropropane	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
Dibromomethane	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
Bromodichloromethane	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
2-Chloroethyl Vinyl Ether	ND	0.0074	EPA 8260C	3-18-15	3-18-15	
(cis) 1,3-Dichloropropene	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
(trans) 1,3-Dichloropropene	ND	0.0015	EPA 8260C	3-18-15	3-18-15	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

HALOGENATED VO	LATILES EPA 8260C
----------------	-------------------

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSTB12-S-18.5					
Laboratory ID:	03-171-01					
1,1,2-Trichloroethane	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
Tetrachloroethene	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
1,3-Dichloropropane	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
Dibromochloromethane	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
1,2-Dibromoethane	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
Chlorobenzene	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
1,1,1,2-Tetrachloroethane	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
Bromoform	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
Bromobenzene	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
1,1,2,2-Tetrachloroethane	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
1,2,3-Trichloropropane	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
2-Chlorotoluene	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
4-Chlorotoluene	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
1,3-Dichlorobenzene	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
1,4-Dichlorobenzene	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
1,2-Dichlorobenzene	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
1,2-Dibromo-3-chloropropane	ND	0.0074	EPA 8260C	3-18-15	3-18-15	
1,2,4-Trichlorobenzene	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
Hexachlorobutadiene	ND	0.0074	EPA 8260C	3-18-15	3-18-15	
1,2,3-Trichlorobenzene	ND	0.0015	EPA 8260C	3-18-15	3-18-15	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	110	76-131				
Toluene-d8	111	82-129				
4-Bromofluorobenzene	114	79-126				

### HALOGENATED VOLATILES EPA 8260C

page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSTB10-S-25.5					
Laboratory ID:	03-171-04					
Dichlorodifluoromethane	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
Chloromethane	ND	0.0046	EPA 8260C	3-18-15	3-18-15	
Vinyl Chloride	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
Bromomethane	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
Chloroethane	ND	0.0046	EPA 8260C	3-18-15	3-18-15	
Trichlorofluoromethane	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
1,1-Dichloroethene	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
lodomethane	ND	0.0046	EPA 8260C	3-18-15	3-18-15	
Methylene Chloride	ND	0.0046	EPA 8260C	3-18-15	3-18-15	
(trans) 1,2-Dichloroethene	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
1,1-Dichloroethane	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
2,2-Dichloropropane	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
(cis) 1,2-Dichloroethene	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
Bromochloromethane	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
Chloroform	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
1,1,1-Trichloroethane	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
Carbon Tetrachloride	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
1,1-Dichloropropene	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
1,2-Dichloroethane	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
Trichloroethene	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
1,2-Dichloropropane	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
Dibromomethane	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
Bromodichloromethane	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
2-Chloroethyl Vinyl Ether	ND	0.0046	EPA 8260C	3-18-15	3-18-15	
(cis) 1,3-Dichloropropene	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
(trans) 1,3-Dichloropropene	ND	0.00091	EPA 8260C	3-18-15	3-18-15	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

## HALOGENATED VOLATILES EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSTB10-S-25.5					
Laboratory ID:	03-171-04					
1,1,2-Trichloroethane	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
Tetrachloroethene	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
1,3-Dichloropropane	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
Dibromochloromethane	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
1,2-Dibromoethane	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
Chlorobenzene	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
1,1,1,2-Tetrachloroethane	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
Bromoform	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
Bromobenzene	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
1,1,2,2-Tetrachloroethane	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
1,2,3-Trichloropropane	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
2-Chlorotoluene	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
4-Chlorotoluene	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
1,3-Dichlorobenzene	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
1,4-Dichlorobenzene	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
1,2-Dichlorobenzene	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
1,2-Dibromo-3-chloropropane	ND	0.0046	EPA 8260C	3-18-15	3-18-15	
1,2,4-Trichlorobenzene	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
Hexachlorobutadiene	ND	0.0046	EPA 8260C	3-18-15	3-18-15	
1,2,3-Trichlorobenzene	ND	0.00091	EPA 8260C	3-18-15	3-18-15	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	114	76-131				
Toluene-d8	107	82-129				
4-Bromofluorobenzene	113	79-126				

### HALOGENATED VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL Page 1 of 2

Matrix: Soil Units: mg/kg

3 3				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0318S1					
Dichlorodifluoromethane	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
Chloromethane	ND	0.0050	EPA 8260C	3-18-15	3-18-15	
Vinyl Chloride	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
Bromomethane	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
Chloroethane	ND	0.0050	EPA 8260C	3-18-15	3-18-15	
Trichlorofluoromethane	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
lodomethane	ND	0.0050	EPA 8260C	3-18-15	3-18-15	
Methylene Chloride	ND	0.0050	EPA 8260C	3-18-15	3-18-15	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
1,1-Dichloroethane	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
2,2-Dichloropropane	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
Bromochloromethane	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
Chloroform	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
Carbon Tetrachloride	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
1,1-Dichloropropene	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
1,2-Dichloroethane	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
Trichloroethene	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
1,2-Dichloropropane	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
Dibromomethane	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
Bromodichloromethane	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260C	3-18-15	3-18-15	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	3-18-15	3-18-15	

### HALOGENATED VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL Page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MD001001					
Laboratory ID:	MB0318S1	0.0010		0.10.15	0.40.45	
1,1,2-Trichloroethane	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
Tetrachloroethene	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
1,3-Dichloropropane	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
Dibromochloromethane	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
1,2-Dibromoethane	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
Chlorobenzene	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
Bromoform	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
Bromobenzene	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
2-Chlorotoluene	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
4-Chlorotoluene	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
1,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260C	3-18-15	3-18-15	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
Hexachlorobutadiene	ND	0.0050	EPA 8260C	3-18-15	3-18-15	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260C	3-18-15	3-18-15	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	117	76-131				
Toluene-d8	108	82-129				
4-Bromofluorobenzene	116	79-126				

### HALOGENATED VOLATILES EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB03	18S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0541	0.0507	0.0500	0.0500	108	101	66-129	6	15	
Benzene	0.0454	0.0451	0.0500	0.0500	91	90	71-123	1	15	
Trichloroethene	0.0487	0.0484	0.0500	0.0500	97	97	75-115	1	15	
Toluene	0.0497	0.0488	0.0500	0.0500	99	98	75-120	2	15	
Chlorobenzene	0.0474	0.0480	0.0500	0.0500	95	96	75-121	1	15	
Surrogate:										
Dibromofluoromethane					104	101	76-131			
Toluene-d8					100	100	82-129			
4-Bromofluorobenzene					104	106	79-126			

### HALOGENATED VOLATILES EPA 8260C

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSTB12-W-28					
Laboratory ID:	03-171-02					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Chloromethane	ND	1.0	EPA 8260C	3-19-15	3-19-15	
Vinyl Chloride	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Bromomethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Chloroethane	ND	1.0	EPA 8260C	3-19-15	3-19-15	
Trichlorofluoromethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,1-Dichloroethene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
lodomethane	ND	1.0	EPA 8260C	3-19-15	3-19-15	
Methylene Chloride	ND	1.0	EPA 8260C	3-19-15	3-19-15	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,1-Dichloroethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
2,2-Dichloropropane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Bromochloromethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Chloroform	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Carbon Tetrachloride	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,1-Dichloropropene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,2-Dichloroethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Trichloroethene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,2-Dichloropropane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Dibromomethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Bromodichloromethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
2-Chloroethyl Vinyl Ether	ND	2.4	EPA 8260C	3-19-15	3-19-15	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	3-19-15	3-19-15	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSTB12-W-28					
Laboratory ID:	03-171-02					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Tetrachloroethene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,3-Dichloropropane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Dibromochloromethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,2-Dibromoethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Chlorobenzene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Bromoform	ND	1.0	EPA 8260C	3-19-15	3-19-15	
Bromobenzene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
2-Chlorotoluene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
4-Chlorotoluene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	3-19-15	3-19-15	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Hexachlorobutadiene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	112	79-122				
Toluene-d8	105	80-120				
4-Bromofluorobenzene	95	80-120				

### HALOGENATED VOLATILES EPA 8260C

page 2 of 2

11

### HALOGENATED VOLATILES EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSTB13-W-28					
Laboratory ID:	03-171-03c					
Dichlorodifluoromethane	ND	1.0	EPA 8260C	3-19-15	3-19-15	
Chloromethane	ND	5.0	EPA 8260C	3-19-15	3-19-15	
Vinyl Chloride	ND	1.0	EPA 8260C	3-19-15	3-19-15	
Bromomethane	ND	1.0	EPA 8260C	3-19-15	3-19-15	
Chloroethane	ND	5.0	EPA 8260C	3-19-15	3-19-15	
Trichlorofluoromethane	ND	1.0	EPA 8260C	3-19-15	3-19-15	
1,1-Dichloroethene	ND	1.0	EPA 8260C	3-19-15	3-19-15	
Iodomethane	ND	5.0	EPA 8260C	3-19-15	3-19-15	
Methylene Chloride	ND	5.0	EPA 8260C	3-19-15	3-19-15	
(trans) 1,2-Dichloroethene	ND	1.0	EPA 8260C	3-19-15	3-19-15	
1,1-Dichloroethane	ND	1.0	EPA 8260C	3-19-15	3-19-15	
2,2-Dichloropropane	ND	1.0	EPA 8260C	3-19-15	3-19-15	
(cis) 1,2-Dichloroethene	ND	1.0	EPA 8260C	3-19-15	3-19-15	
Bromochloromethane	ND	1.0	EPA 8260C	3-19-15	3-19-15	
Chloroform	ND	1.0	EPA 8260C	3-19-15	3-19-15	
1,1,1-Trichloroethane	ND	1.0	EPA 8260C	3-19-15	3-19-15	
Carbon Tetrachloride	ND	1.0	EPA 8260C	3-19-15	3-19-15	
1,1-Dichloropropene	ND	1.0	EPA 8260C	3-19-15	3-19-15	
1,2-Dichloroethane	ND	1.0	EPA 8260C	3-19-15	3-19-15	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	112	79-122				
Toluene-d8	100	80-120				
4-Bromofluorobenzene	85	80-120				

### HALOGENATED VOLATILES EPA 8260C

Matrix: Water Units: ug/L

Jints. ug/L				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSTB13-W-28					
_aboratory ID:	03-171-03b					
Trichloroethene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,2-Dichloropropane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Dibromomethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Bromodichloromethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
2-Chloroethyl Vinyl Ether	ND	2.4	EPA 8260C	3-19-15	3-19-15	
cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Fetrachloroethene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
I,3-Dichloropropane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Dibromochloromethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
,2-Dibromoethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Chlorobenzene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Bromoform	ND	1.0	EPA 8260C	3-19-15	3-19-15	
Bromobenzene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
,2,3-Trichloropropane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
2-Chlorotoluene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
I-Chlorotoluene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
,3-Dichlorobenzene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
,4-Dichlorobenzene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
,2-Dichlorobenzene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	3-19-15	3-19-15	
,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
lexachlorobutadiene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	96	79-122				
Toluene-d8	100	80-120				
4-Bromofluorobenzene	93	80-120				

13

### HALOGENATED VOLATILES EPA 8260C

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSTB09-W-30.0					
Laboratory ID:	03-171-05					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Chloromethane	ND	1.0	EPA 8260C	3-19-15	3-19-15	
Vinyl Chloride	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Bromomethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Chloroethane	ND	1.0	EPA 8260C	3-19-15	3-19-15	
Trichlorofluoromethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,1-Dichloroethene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
lodomethane	ND	1.0	EPA 8260C	3-19-15	3-19-15	
Methylene Chloride	ND	1.0	EPA 8260C	3-19-15	3-19-15	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,1-Dichloroethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
2,2-Dichloropropane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Bromochloromethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Chloroform	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Carbon Tetrachloride	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,1-Dichloropropene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,2-Dichloroethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Trichloroethene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,2-Dichloropropane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Dibromomethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Bromodichloromethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
2-Chloroethyl Vinyl Ether	ND	2.4	EPA 8260C	3-19-15	3-19-15	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	3-19-15	3-19-15	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSTB09-W-30.0					
Laboratory ID:	03-171-05					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Tetrachloroethene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,3-Dichloropropane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Dibromochloromethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,2-Dibromoethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Chlorobenzene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Bromoform	ND	1.0	EPA 8260C	3-19-15	3-19-15	
Bromobenzene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
2-Chlorotoluene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
4-Chlorotoluene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	3-19-15	3-19-15	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Hexachlorobutadiene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	109	79-122				
Toluene-d8	168	80-120				Q
4-Bromofluorobenzene	93	80-120				

page 2 of 2

### HALOGENATED VOLATILES EPA 8260C

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Trip Blank					
Laboratory ID:	03-171-06					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Chloromethane	ND	1.0	EPA 8260C	3-19-15	3-19-15	
Vinyl Chloride	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Bromomethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Chloroethane	ND	1.0	EPA 8260C	3-19-15	3-19-15	
Trichlorofluoromethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,1-Dichloroethene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Iodomethane	ND	1.0	EPA 8260C	3-19-15	3-19-15	
Methylene Chloride	ND	1.0	EPA 8260C	3-19-15	3-19-15	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,1-Dichloroethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
2,2-Dichloropropane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Bromochloromethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Chloroform	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Carbon Tetrachloride	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,1-Dichloropropene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,2-Dichloroethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Trichloroethene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,2-Dichloropropane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Dibromomethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Bromodichloromethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
2-Chloroethyl Vinyl Ether	ND	2.4	EPA 8260C	3-19-15	3-19-15	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	3-19-15	3-19-15	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Trip Blank					
Laboratory ID:	03-171-06					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Tetrachloroethene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,3-Dichloropropane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Dibromochloromethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,2-Dibromoethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Chlorobenzene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Bromoform	ND	1.0	EPA 8260C	3-19-15	3-19-15	
Bromobenzene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
2-Chlorotoluene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
4-Chlorotoluene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	3-19-15	3-19-15	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Hexachlorobutadiene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	123	79-122				Q
Toluene-d8	108	80-120				
4-Bromofluorobenzene	89	80-120				

### HALOGENATED VOLATILES EPA 8260C

page 2 of 2

### HALOGENATED VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL Page 1 of 2

0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0319W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Chloromethane	ND	1.0	EPA 8260C	3-19-15	3-19-15	
Vinyl Chloride	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Bromomethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Chloroethane	ND	1.0	EPA 8260C	3-19-15	3-19-15	
Trichlorofluoromethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,1-Dichloroethene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
lodomethane	ND	1.0	EPA 8260C	3-19-15	3-19-15	
Methylene Chloride	ND	1.0	EPA 8260C	3-19-15	3-19-15	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,1-Dichloroethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
2,2-Dichloropropane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Bromochloromethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Chloroform	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Carbon Tetrachloride	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,1-Dichloropropene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,2-Dichloroethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Trichloroethene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,2-Dichloropropane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Dibromomethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Bromodichloromethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
2-Chloroethyl Vinyl Ether	ND	2.4	EPA 8260C	3-19-15	3-19-15	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	3-19-15	3-19-15	

### HALOGENATED VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL Page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0319W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Tetrachloroethene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,3-Dichloropropane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Dibromochloromethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,2-Dibromoethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Chlorobenzene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Bromoform	ND	1.0	EPA 8260C	3-19-15	3-19-15	
Bromobenzene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	3-19-15	3-19-15	
2-Chlorotoluene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
4-Chlorotoluene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	3-19-15	3-19-15	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Hexachlorobutadiene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	3-19-15	3-19-15	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	117	79-122				
Toluene-d8	106	80-120				
4-Bromofluorobenzene	91	80-120				

### HALOGENATED VOLATILES EPA 8260C SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB03	19W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	10.6	10.2	10.0	10.0	106	102	64-138	4	16	
Benzene	11.0	11.1	10.0	10.0	110	111	76-125	1	14	
Trichloroethene	9.91	9.63	10.0	10.0	99	96	70-125	3	16	
Toluene	10.4	10.3	10.0	10.0	104	103	75-125	1	15	
Chlorobenzene	9.45	9.38	10.0	10.0	95	94	80-140	1	15	
Surrogate:										
Dibromofluoromethane					107	114	79-122			
Toluene-d8					104	105	80-120			
4-Bromofluorobenzene					89	91	80-120			

### % MOISTURE

Date Analyzed: 3-18-15

Client ID	Lab ID	% Moisture
CSTB12-S-18.5	03-171-01	16
CSTB10-S-25.5	03-171-04	6

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

21



#### **Data Qualifiers and Abbreviations**

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Data Package: Standard	Deviewood/Dete	Received	Received	Relinquished	Received	Relinquished	Signature	,	6 Trip Blank	5 CSTB09- W-30.0	4 ESTBID-5-25,5	3 CSTB13-141-28	2 CSTB12-W-28	CST 812-5-18,5	Lab ID Sample Identification		Project Manager:	BETTY BRITE CLEANERS	Project Number:	Company: MFA	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services	OnSite Environmental Inc.
Heviewed/Jate			1000 E	1- (madb	5/0-07	HFA	Company		二十二 3	U	3/17/15 1315 Jour	3/16 1626 420	3/12 1501 420	3/16/15 1058 5014	Date Time Sampled Sampled Matrix	(other)		(TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request	Chain of
Electronic Data Deliverables (EDDs)		-	3/17/15 155	15 4 51/21/2	2/17/15 1505	31715 1505	Date Time		×	3 X	4 	*	3 X	4 4	Numbe NWTPH NWTPH NWTPH Volatile Haloge Semivo	H-HCIE H-Gx/B H-Gx H-Dx s 8260 nated 1	DC Volatiles	\$ 8260C				Laboratory Number:	Chain of Custody
Chromatograms with final report X	5		2				Comments/Special Instructions								(with lo PAHs 8 PCBs 8 Organo	w-leve 3270D/ 3082A ochlorir phosph ated A CRA M ITCA M	I PAHs) SIM (lov e Pestie orus Pe cid Herl letals letals	v-level) cides 80 sticides 8	3270D/S	SIM		n 03-171.	Page 1 of 1

## Sample/Cooler Receipt and Acceptance Checklist

Client: MFA	
Client Project Name/Number: 0879.01.02	_
OnSite Project Number:	_

$\Omega M \alpha$	
Initiated by:	
Date Initiated: 3/17/15	

### **1.0 Cooler Verification**

1.1 Were there custody seals on the outside of the cooler?	Yes	No	(N/A)	1 2 3 4	
1.2 Were the custody seals intact?	Yes	No	(N/A)	1 2 3 4	
1.3 Were the custody seals signed and dated by last custodian?	Yes	No	(N/A)	1 2 3 4	
1.4 Were the samples delivered on ice or blue ice?	Yes	No	$\bigcirc$	1 2 3 4	
1.5 Were samples received between 0-6 degrees Celsius?	Yes	No	Temperature:	0	
1.6 Have shipping bills (if any) been attached to the back of this form?	Yes	NA			
	Client	Courier	UPS/FedEx	OSE Pickup	Other
1.7 How were the samples delivered?     2.0 Chain of Custody Verification     2.1 Was a Chain of Custody submitted with the samples?	~		UPS/FedEx		Other
2.0 Chain of Custody Verification 2.1 Was a Chain of Custody submitted with the samples?	Yes	No	UPS/FedEx	1234	Other
2.0 Chain of Custody Verification 2.1 Was a Chain of Custody submitted with the samples? 2.2 Was the COC legible and written in permanent ink?	Yes	No No	UPS/FedEx	1 2 3 4 1 2 3 4	Other
<ul> <li>2.0 Chain of Custody Verification</li> <li>2.1 Was a Chain of Custody submitted with the samples?</li> <li>2.2 Was the COC legible and written in permanent ink?</li> <li>2.3 Have samples been relinquished and accepted by each custodian?</li> </ul>	Yes	No No No	UPS/FedEx	1 2 3 4 1 2 3 4 1 2 3 4	Other
	Yes	No No	UPS/FedEx	1 2 3 4 1 2 3 4	Other

### 3.0 Sample Verification

3.1 Were any sample containers broken or compromised?	Yes	(No)			1 :	2 3	4
3.2 Were any sample labels missing or illegible?	Yes	No			1 :	2 3	4
3.3 Have the correct containers been used for each analysis requested?	es	No			1 :	2 3	4
3.4 Have the samples been correctly preserved?	Yes	No	N/A	•	1 :	2 3	4
.5 Are volatiles samples free from headspace and bubbles greater than 6mm?	(es)	No	N/A		1 :	2 3	4
.6 Is there sufficient sample submitted to perform requested analyses?	Yes	No			1 :	2 3	4
7.7 Have any holding times already expired or will expire in 24 hours?	Yes	No			1 :	2 3	4
3.8 Was method 5035A used?	Yes	No	N/A		1 :	2 3	4
3.9 If 5035A was used, which sampling option was used (#1, 2, or 3).	#	1	N/A		1 :	2 3	4

### Explain any discrepancies:

Explain any discrepancies:
2.4) Sample 3) CSTB13-W-28 3/16 1626 on LOCA
CSTB13-W " n labels
Somple 5) CSTB09-W-30.0 3/17 1500 on LOC #
CSTB09-W " a livial
2.6) Trip Blanks not on (or (3) add \$
2.2) COC written in penuil

1 - Discuss issue in Case Narrative

2 - Process Sample As-is

3 - Client contacted to discuss problem

4 - Sample cannot be analyzed or client does not wish to proceed

//SERVER\OSE\Administration\forms\cooler_checklist.xls



14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

March 25, 2015

Jackie Gruber Maul Foster & Alongi, Inc. 411 First Avenue S., Suite 610 Seattle, WA 98104

Re: Analytical Data for Project 0879.01.02 Laboratory Reference No. 1503-235

Dear Jackie:

Enclosed are the analytical results and associated quality control data for samples submitted on March 23, 2015.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely.

David Baumeister Project Manager

Enclosures

#### **Case Narrative**

Samples were collected on March 17, 2015 and received by the laboratory on March 23, 2015. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

### HALOGENATED VOLATILES EPA 8260C

page 1 of 2

Matrix: Water Units: ug/L

onits. ug/L				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSTB11-W-38.6					
Laboratory ID:	03-235-01					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
Chloromethane	ND	1.0	EPA 8260C	3-24-15	3-24-15	
Vinyl Chloride	ND	0.20	EPA 8260C	3-24-15	3-24-15	
Bromomethane	ND	0.27	EPA 8260C	3-24-15	3-24-15	
Chloroethane	ND	1.0	EPA 8260C	3-24-15	3-24-15	
Trichlorofluoromethane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,1-Dichloroethene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
lodomethane	ND	1.0	EPA 8260C	3-24-15	3-24-15	
Methylene Chloride	ND	1.0	EPA 8260C	3-24-15	3-24-15	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,1-Dichloroethane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
2,2-Dichloropropane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
Bromochloromethane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
Chloroform	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
Carbon Tetrachloride	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,1-Dichloropropene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,2-Dichloroethane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
Trichloroethene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,2-Dichloropropane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
Dibromomethane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
Bromodichloromethane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
2-Chloroethyl Vinyl Ether	ND	3.2	EPA 8260C	3-24-15	3-24-15	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	3-24-15	3-24-15	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

3

Dibromochloromethane

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

1,2,3-Trichloropropane

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

1,2,4-Trichlorobenzene

1,2,3-Trichlorobenzene

Dibromofluoromethane

4-Bromofluorobenzene

Hexachlorobutadiene

Surrogate:

Toluene-d8

1,2-Dibromo-3-chloropropane

1.2-Dibromoethane

Chlorobenzene

Bromobenzene

2-Chlorotoluene

4-Chlorotoluene

Bromoform

		page 2 01 2	-		
Analyte	Result	PQL	Method	Date Prepared	Date Analyzed
Client ID:	CSTB11-W-38.6				
Laboratory ID:	03-235-01				
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	3-24-15	3-24-15
Tetrachloroethene	ND	0.20	EPA 8260C	3-24-15	3-24-15
1,3-Dichloropropane	ND	0.20	EPA 8260C	3-24-15	3-24-15

EPA 8260C

3-24-15

3-24-15

3-24-15

3-24-15

3-24-15

3-24-15

3-24-15

3-24-15

3-24-15

3-24-15

3-24-15

3-24-15

3-24-15

3-24-15

3-24-15

3-24-15

3-24-15

3-24-15

3-24-15

3-24-15

3-24-15

3-24-15

3-24-15

3-24-15

3-24-15

3-24-15

3-24-15

3-24-15

3-24-15

3-24-15

3-24-15

3-24-15

3-24-15

3-24-15

### HALOGENATED VOLATILES EPA 8260C

page 2 of 2

0.20

0.20

0.20

0.20

1.0

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

1.0

0.20

0.20

0.20

Control Limits

79-122

80-120

80-120

ND

Percent Recovery

93

98

90

4

Flags

### HALOGENATED VOLATILES EPA 8260C

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSTB10-W-38.0					
Laboratory ID:	03-235-02					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
Chloromethane	ND	1.0	EPA 8260C	3-24-15	3-24-15	
Vinyl Chloride	ND	0.20	EPA 8260C	3-24-15	3-24-15	
Bromomethane	ND	0.27	EPA 8260C	3-24-15	3-24-15	
Chloroethane	ND	1.0	EPA 8260C	3-24-15	3-24-15	
Trichlorofluoromethane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,1-Dichloroethene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
lodomethane	ND	1.0	EPA 8260C	3-24-15	3-24-15	
Methylene Chloride	ND	1.0	EPA 8260C	3-24-15	3-24-15	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,1-Dichloroethane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
2,2-Dichloropropane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
Bromochloromethane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
Chloroform	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
Carbon Tetrachloride	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,1-Dichloropropene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,2-Dichloroethane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
Trichloroethene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,2-Dichloropropane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
Dibromomethane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
Bromodichloromethane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
2-Chloroethyl Vinyl Ether	ND	3.2	EPA 8260C	3-24-15	3-24-15	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	3-24-15	3-24-15	

HALOGENATED VOLATILES EPA 8260	С
name 0 at 0	

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CSTB10-W-38.0					
Laboratory ID:	03-235-02					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
Tetrachloroethene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,3-Dichloropropane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
Dibromochloromethane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,2-Dibromoethane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
Chlorobenzene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
Bromoform	ND	1.0	EPA 8260C	3-24-15	3-24-15	
Bromobenzene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
2-Chlorotoluene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
4-Chlorotoluene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	3-24-15	3-24-15	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
Hexachlorobutadiene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	98	79-122				
Toluene-d8	97	80-120				
4-Bromofluorobenzene	91	80-120				

### HALOGENATED VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL Page 1 of 2

0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0324W2					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
Chloromethane	ND	1.0	EPA 8260C	3-24-15	3-24-15	
Vinyl Chloride	ND	0.20	EPA 8260C	3-24-15	3-24-15	
Bromomethane	ND	0.27	EPA 8260C	3-24-15	3-24-15	
Chloroethane	ND	1.0	EPA 8260C	3-24-15	3-24-15	
Trichlorofluoromethane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,1-Dichloroethene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
lodomethane	ND	1.0	EPA 8260C	3-24-15	3-24-15	
Methylene Chloride	ND	1.0	EPA 8260C	3-24-15	3-24-15	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,1-Dichloroethane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
2,2-Dichloropropane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
Bromochloromethane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
Chloroform	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
Carbon Tetrachloride	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,1-Dichloropropene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,2-Dichloroethane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
Trichloroethene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,2-Dichloropropane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
Dibromomethane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
Bromodichloromethane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
2-Chloroethyl Vinyl Ether	ND	3.2	EPA 8260C	3-24-15	3-24-15	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	3-24-15	3-24-15	

### HALOGENATED VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL Page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0324W2					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
Tetrachloroethene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,3-Dichloropropane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
Dibromochloromethane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,2-Dibromoethane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
Chlorobenzene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
Bromoform	ND	1.0	EPA 8260C	3-24-15	3-24-15	
Bromobenzene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	3-24-15	3-24-15	
2-Chlorotoluene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
4-Chlorotoluene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	3-24-15	3-24-15	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
Hexachlorobutadiene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	3-24-15	3-24-15	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	96	79-122				
Toluene-d8	97	80-120				
4-Bromofluorobenzene	92	80-120				

### HALOGENATED VOLATILES EPA 8260C SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB032	24W2								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	8.03	8.25	10.0	10.0	80	83	64-138	3	16	
Benzene	9.21	9.20	10.0	10.0	92	92	76-125	0	14	
Trichloroethene	9.22	8.88	10.0	10.0	92	89	70-125	4	16	
Toluene	9.49	9.47	10.0	10.0	95	95	75-125	0	15	
Chlorobenzene	9.58	9.27	10.0	10.0	96	93	80-140	3	15	
Surrogate:										
Dibromofluoromethane					94	98	79-122			
Toluene-d8					98	97	80-120			
4-Bromofluorobenzene					93	92	80-120			



#### **Data Qualifiers and Abbreviations**

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Reviewed/Date Data Package:	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature				2 CSTB10-W-38.0	CSTB11- W-38.6	Lab ID Sample Identification	Sampled by:	T, CAR J BER	BETTY 6MIC CLEANERS	0879.01.02	Company:	14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services	OnSite
Data Package: Standard Level III Level IV Electron			- One 3/1	15 hazady	5Pert 7 323	MPA 36	Company Date				3/17/15 1628 1420 0	3/17/15 1542 H20 3	NWTP	H-HCII	<b>ontaine</b> D	(TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day		Turnaround Request	Chain of Custody
Chromatograms with final report X Electronic Data Deliverables (EDDs) X			23/15 1705	205 · 211, 25	3/15 925	23/15 0925	Time Comments/Special Instructions				*	×	Semivo (with lo PAHs & PCBs & Organo	H-Dx nated nated latiles 3270D/ 3082A ochlorin phospl ated / CRA N	Volatile: 8270D/ el PAHs) /SIM (lor ne Pesti norus Pe acid Her Aetals	w-level) cides 80	081B 8270D/S	SIM	Laboratory Number:		
													HEM (		grease)	1664A			03-235		Page 1 of 1

## Sample/Cooler Receipt and Acceptance Checklist

lient: MFA lient Project Name/Number: <u>6879.61.02</u> InSite Project Number: <u>03-235</u>		nitiated by:	M/ 3/23/15		
.0 Cooler Verification	Vee	No	NA	1 2 3 4	
.1 Were there custody seals on the outside of the cooler?	Yes Yes	No	N/A	1 2 3 4	
.2 Were the custody seals intact?		No	NIA	1 2 3 4	
.3 Were the custody seals signed and dated by last custodian?	Yes	No		1 2 3 4	
.4 Were the samples delivered on ice or blue ice?	Yes		Temperature:	6	
.5 Were samples received between 0-6 degrees Celsius?	Yes	No	Temperature.	()	
1.6 Have shipping bills (if any) been attached to the back of this form?	Yes	Courier	UPS/FedEx	OSE Pickup C	Other
1.7 How were the samples delivered?	Client	Courier	or on call		
2.0 Chain of Custody Verification					
2.1 Was a Chain of Custody submitted with the samples?	Yes	No		1 2 3 4	
2.2 Was the COC legible and written in permanent ink?	Yes	No		1 2 3 4	
2.3 Have samples been relinquished and accepted by each custodian?	Yes	No		1 2 3 4	
2.4 Did the sample labels (ID, date, time, preservative) agree with COC?	Yes	No		1 2 3 4	
2.5 Were all of the samples listed on the COC submitted?	Yes	No		1 2 3 4	
2.6 Were any of the samples submitted omitted from the COC?	Yes	No		1234	
3.0 Sample Verification				1 2 3 4	
3.1 Were any sample containers broken or compromised?	Yes	NO		1 2 3 4	
3.2 Were any sample labels missing or illegible?	Yes	Nor			
3.3 Have the correct containers been used for each analysis requested?	Yes	No	Carl Street and	1 2 0 1	
3.4 Have the samples been correctly preserved?	Yes	No	N/A	1234	
3.5 Are volatiles samples free from headspace and bubbles greater than 6mm	? Yes	No	N/A	1234	
3.6 Is there sufficient sample submitted to perform requested analyses?	es	No	7.42	1 2 3 4	
3.7 Have any holding times already expired or will expire in 24 hours?	Yes	(Nð		1234	
3.8 Was method 5035A used?	Yes	No	N/A	1234	
3.9 If 5035A was used, which sampling option was used (#1, 2, or 3).	<b>#</b>		N/A	1234	

2.2.) COC written in pencil

1 - Discuss issue in Case Narrative

2 - Process Sample As-is

3 - Client contacted to discuss problem

4 - Sample cannot be analyzed or client does not wish to proceed

//SERVER\OSE\Administration\forms\cooler_checklist.xls

# APPENDIX F DATA VALIDATION MEMORANDA



## DATA QUALITY ASSURANCE/QUALITY CONTROL REVIEW

## PROJECT NO. 0879.01.02 | JUNE 24, 2014 | SEATAC S. 154TH STREET TOD

This report reviews the analytical results for groundwater and soil samples collected by the Maul Foster & Alongi, Inc. project team on the City of SeaTac South 154th Street located at 15209 Military Road, South SeaTac, Washington. The samples were collected in June 2014.

Onsite Environmental Incorporated (OES) in Redmond, Washington, AMTEST Laboratories (AMTEST) in Kirkland, Washington, and Analytical Resources, Incorporated (ARI) in Redmond, Washington, performed the analyses. OES report numbers 1406-006, 1406-016, 1406-017, and 1406-031 were reviewed. Subbed analyses and associated report results from AMTEST and ARI are attached to OES reports. Data validation tracking sheets documenting the review of each analysis for all laboratory reports are attached. Tracking sheets are to be referenced when further understanding of specific validation assessment is needed. The analyses performed are listed below.

Analysis	Reference
Volatile Organic Compounds	USEPA 8260C
Halogenated Volatiles	USEPA 8260C
Diesel- and Lube-Oil-Range Hydrocarbons	NWTPH-Dx
Nitrate (as Nitrogen)	USEPA 353.2
Chloride	SM 4500CL-E
Sulfate	ASTM D516-07
Dissolved Methane	RSK 175
Sulfide	USEPA 376.2
Ferrous Iron	SM3500 FeD

ASTM = American Society for Testing and Materials.

NWTPH = Northwest Total Petroleum Hydrocarbons.

SM = Standard Methods for the Examination of Water and Wastewater.

USEPA = U.S. Environmental Protection Agency.

## DATA QUALIFICATIONS

Analytical results were evaluated according to applicable sections of USEPA procedures (USEPA, 2008, 2010) and appropriate laboratory and method-specific guidelines (AMTEST, 2014; ARI, 2014; OES, 2014; USEPA, 1986). Data validation procedures were modified, as appropriate, to accommodate quality control requirements for methods not specifically addressed by the functional guidelines (e.g., NWTPH-Dx).

The data are considered acceptable for their intended use, with the appropriate data qualifiers assigned.

## HOLDING TIMES, PRESERVATION, AND SAMPLE STORAGE

## Holding Times

Extractions and analyses were performed within the recommended holding time criteria.

## Preservation and Sample Storage

The samples were preserved and stored appropriately.

## BLANKS

### Method Blanks

Laboratory method blank analyses were performed at the required frequencies. For purposes of data qualification, the method blanks were associated with all samples prepared in the analytical batch. If an analyte was detected in a sample and in the associated method blank, the sample result was qualified if the concentration was less than five times the method blank concentration. All method blank results were non-detect.

### Trip Blanks

Trip blanks were not required for this sampling event.

### Equipment Rinsate Blanks

Equipment rinsate blanks were not required for this sampling event, as all samples were collected using dedicated, single-use equipment.

## SURROGATE RECOVERY RESULTS

The samples were spiked with surrogate compounds to evaluate laboratory performance on individual samples. All surrogate recoveries were within acceptance limits.

## MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS

Matrix spike/matrix spike duplicate (MS/MSD) results are used to evaluate laboratory precision and accuracy. All MS/MSD samples were extracted and analyzed at the required frequency. Except for minor exceedances, all recoveries were within acceptance limits for percent recovery and relative percent differences (RPDs).

## LABORATORY DUPLICATE RESULTS

Duplicate results are used to evaluate laboratory precision. All duplicate samples were extracted and analyzed at the required frequency. Except for a minor lab duplicate exceedance associated with the analysis of ferrous iron, all laboratory duplicate RPDs were within acceptance limits. No qualifications were necessary, as the exceedance was minor.

# LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

A laboratory control sample/laboratory control sample duplicate (LCS/LCSD) is spiked with target analytes to provide information on laboratory precision and accuracy. The LCS/LCSD samples were extracted and analyzed at the required frequency. All LCS/LCSD analytes were within acceptance limits for percent recovery and RPDs.

## **REPORTING LIMITS**

OES, AMTEST, and ARI used routine reporting limits for non-detect results.

## DATA PACKAGE

The data packages were reviewed for transcription errors, omissions, and anomalies. None were found.

AMTEST. 2014. Quality assurance manual. AMTEST Laboratories, Kirkland, Washington.

- ARI. 2014. Quality assurance manual. Analytical Resources, Incorporated, Redmond, Washington.
- OES. 2014. Quality assurance manual. Onsite Environmental Incorporated, Redmond, Washington.
- USEPA. 1986. Test methods for evaluating solid waste: physical/chemical methods. EPA-530/SW-846. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. September (revision 6, February 2007).
- USEPA. 2008. USEPA contract laboratory program, national functional guidelines for organics data review. EPA 540/R-08/01. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response. June.
- USEPA. 2010. USEPA contract laboratory program national functional guidelines for inorganic superfund data review. EPA 540/R-10/011. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. January.

## DATA VALIDATION TRACKING

## PROJECT NO. 0879.01.02 | JUNE 24, 2014 | SEATAC S. 154TH TOD

This document tracks Stage 2A validation completion for the data validation memo and analysis indicated below.

Data Validation Memo	DVM_1406-006_1406-016_1406-017_1406-031	Reviewer	BTF
Lab Report	1406-006	Date	6/24/2014
Analysis	VOCs – 8260C/ Halogenated Volatiles	Page	1

	Validation Area	Acceptable √/NA/No	Comments	Q
	Temperature	✓	VOCs stored -7 and -20 deg C (pre-weighed vials)	
<u>e</u>	Holding Time	✓		
Sample	Trip Blank	NA	No indication on COC of TB collected	
Sa	Field/Eq. Blank	NA		
	Field Dup RPD	NA		
Ľ.	ССВ	NA		
Calibr.	ICV	NA	Not reported by lab	
0	CCV	NA	Not reported by lab	
	Method Blank	√/√	All ND	
	LCS/LCSD %	√/√	5 analytes in spiking soln	
Batch	LCS/LCSD RPD	√/√	5 analytes in spiking soln	
Bat	Lab Dup RPD	NA		
	MS/MSD %	NA		
	MS/MSD RPD	NA		
_	Dilution	NA	Dilution not indicated	
eneral	Reporting Limit	√/√		
Gen	MDL	NA	None requested	
	Surrogates	√/√		
SL	Labeled Analog	NA		
Dioxins	EMPC	NA		
D	2378-TCDF Conf	NA		

Samples reviewed: Samp	ole IDs bolded were analyze	ed for method evaluated on	current page.
CST B5-S-20.5	CST B6-S-31.5		
CST B5-S-23.5			
CST B5-S-31.0			
CST B5-GW-27.0			
CST B6-S-8.0			

Comments:	
Samples Collected 6/2/2014	
Full VOCs on GW Samples and Halogenated VOCs on Soil Samples	
	,

Data Validation Memo	DVM_1406-006_1406-016_1406-017_1406-031	Reviewer	BTF
Lab Report	1406-006	Date	6/24/2014
Analysis	NWTPH-Dx	Page	2

	Validation Area	Acceptable √/NA/No	Comments	Q
	Temperature	✓		
<u>e</u>	Holding Time	✓		
Sample	Trip Blank	NA		
Sa	Field/Eq. Blank	NA		
	Field Dup RPD	NA		
Ŀ.	ССВ	NA		
alibr.	ICV	NA	Not reported by lab	
Ö	CCV	NA	Not reported by lab	
	Method Blank	✓		
	LCS/LCSD %	NA		
Batch	LCS/LCSD RPD	NA		
Bat	Lab Dup RPD	✓	All NDs	
	MS/MSD %	NA		
	MS/MSD RPD	NA		
_	Dilution	NA		
eneral	Reporting Limit	✓		
Gen	MDL		None requested	
	Surrogates	✓		
SL	Labeled Analog	NA		
Dioxins	EMPC	NA		
Di	2378-TCDF Conf	NA		

Samples reviewed: Samp	Samples reviewed: Sample IDs bolded were analyzed for method evaluated on current page.							
CST B5-S-20.5	CST B6-S-31.5							
CST B5-S-23.5								
CST B5-S-31.0								
CST B5-GW-27.0								
CST B6-S-8.0								

Comments:
Samples Collected 6/2/2014

Data Validation Memo	DVM_1406-006_1406-016_1406-017_1406-031		Reviewer	BTF
Lab Report	1406-006		Date	6/24/2014
Analysis	EPA 353.2 / ASTM D516-07 / SM 4500CL-E / RSK 175		Page	3

	Validation Area	Acceptable √/NA/No	Comments	Q
	Temperature	✓		
<u>0</u>	Holding Time	✓		
Sample	Trip Blank	NA	No indication on COC of TB collected	
Sa	Field/Eq. Blank	NA		
	Field Dup RPD	NA		
Ľ.	ССВ	NA		
alibr.	ICV	NA	Not reported by lab	
C	CCV	NA	Not reported by lab	
	Method Blank	$\checkmark / \checkmark / \checkmark / \checkmark$	All ND	
	LCS/LCSD %	$\checkmark / \checkmark / \checkmark / \checkmark$	LCS only for nitrate, chloride, sulfate	
ح	LCS/LCSD RPD	NA/NA/NA/🗸	LCS only for nitrate, chloride, sulfate	
Batch	Lab Dup RPD	✓ / ✓ / ✓ / NA	Not assoc w/ project samples. No dup methane analysis.	
	MS/MSD %	✓ / ✓ / ✓ / NA	MS only, no MS methane analysis	
	MS/MSD RPD	NA		
=	Dilution	NA	Dilution not indicated	
General	Reporting Limit	✓		
Gen	MDL	NA	None requested	
0	Surrogates	NA		
SL	Labeled Analog	NA		
Dioxins	EMPC	NA		
Di	2378-TCDF Conf	NA		

Samples reviewed: Sample IDs bolded were analyzed for method evaluated on current page.				
CST B5-S-20.5	CST B6-S-31.5			
CST B5-S-23.5				
CST B5-S-31.0				
CST B5-GW-27.0				
CST B6-S-8.0				

Comments:	
Samples Collected 6/2/2014	
Nitrate (as nitrogen), chloride, sulfate, dissolved methane in water	

Data Validation Memo	a Validation Memo DVM_1406-006_1406-016_1406-017_1406-031		Reviewer	BTF
Lab Report	1406-006 / 14-A008248		Date	6/24/2014
Analysis	Sulfide EPA 376.2		Page	4

	Validation Area	Acceptable √/NA/No	Comments	Q
	Temperature	1		
<u>0</u>	Holding Time	✓		
Sample	Trip Blank	NA	No indication on COC of TB collected	
Sa	Field/Eq. Blank	NA		
	Field Dup RPD	NA		
Ľ.	ССВ	NA		
alibr.	ICV	NA	Not reported by lab	
C	CCV	NA	Not reported by lab	
	Method Blank	✓	All ND	
	LCS/LCSD %		Standard Reference Materials	
Ч	LCS/LCSD RPD	NA	A No LCSD	
Batc	Lab Dup RPD NA			
	MS/MSD %	✓		
	MS/MSD RPD	✓		
_	Dilution	NA	Dilution not indicated	
eneral	Reporting Limit	✓		
Gen	MDL	NA	None requested	
Ū	Surrogates	NA		
SL	Labeled Analog	NA		
Dioxins	EMPC	NA		
Di	2378-TCDF Conf	NA		

Samples reviewed: Sample IDs bolded were analyzed for method evaluated on current page.				
CST B5-S-20.5	CST B6-S-31.5			
CST B5-S-23.5				
CST B5-S-31.0				
CST B5-GW-27.0				
CST B6-S-8.0				

Comments:
Samples Collected 6/2/2014
AM Test Inc Sulfide

Data Validation Memo	DVM_1406-006_1406-016_1406-017_1406-031		Reviewer	BTF
Lab Report	1406-006 / YM18A		Date	6/24/2014
Analysis	SM3500 FeD		Page	5

	Validation Area	Acceptable ✓/NA/No	Comments	Q
	Temperature	✓		
<u>e</u>	Holding Time	✓		
Sample	Trip Blank	NA	No indication on COC of TB collected	
Sa	Field/Eq. Blank	NA		
	Field Dup RPD	NA		
	ССВ	NA		
alibr.	ICV	NA	Not reported by lab	
0	CCV	NA	Not reported by lab	
	Method Blank	✓	ND	
	LCS/LCSD %			
ч	LCS/LCSD RPD	NA	No LCSD	
Lab Dup RPD No Minor ex		Minor exceedance (30.9%)		
	MS/MSD %	✓	Minor exceedance (131%)	
	MS/MSD RPD	NA	No MSD	
_	Dilution	NA	Dilution not indicated	
General	Reporting Limit	✓		
Gen	MDL	NA	None requested	
	Surrogates	NA		
SL	Labeled Analog	NA		
Dioxins	EMPC	NA		
D	2378-TCDF Conf	NA		

Samples reviewed: Sample IDs bolded were analyzed for method evaluated on current page.				
CST B5-S-20.5	CST B6-S-31.5			
CST B5-S-23.5				
CST B5-S-31.0				
CST B5-GW-27.0				
CST B6-S-8.0				

Comments:
Samples Collected 6/2/2014
Analytical Resources, Incorporated—Ferrous Iron

## DATA VALIDATION TRACKING

#### PROJECT NO. 0879.01.02 | JUNE 24, 2014 | SEATAC S. 154TH TOD

This document tracks Stage 2A validation completion for the data validation memo and analysis indicated below.

Data Validation Memo	DVM_1406-006_1406-016_1406-017_1406-031		Reviewer	BTF
Lab Report	1406-016		Date	6/24/2014
Analysis	VOCs - 8260C/ Halogenated Volatiles		Page	1

	Validation Area	Acceptable √/NA/No	Comments	Q
	Temperature	$\checkmark$		
<u>e</u>	Holding Time	$\checkmark$		
Sample	Trip Blank	NA	No indication on COC of TB collected	
Sa	Field/Eq. Blank	NA		
	Field Dup RPD	NA		
<u> </u>	ССВ	NA		
Calibr.	ICV	NA	Not reported by lab	
0	CCV	NA	Not reported by lab	
	Method Blank	√/ √	All ND	
	LCS/LCSD %	$\checkmark/\checkmark$	5 analytes in spiking soln	
5 LCS/LCSD RPD		√/ √	5 analytes in spiking soln	
Bat	Lab Dup RPD	NA		
	MS/MSD %	NA		
	MS/MSD RPD	NA		
_	Dilution	NA	Dilution not indicated	
eneral	Reporting Limit	√/√		
Gen	MDL	NA	None requested	
0	Surrogates	√/ √		
SL	Labeled Analog	NA		
Dioxins	EMPC	NA		
D	2378-TCDF Conf	NA		

Samples reviewed: Sample IDs bolded were analyzed for method evaluated on current page.				
CST B6-GW-25.4	CST B1-S-2.0			
CST B7-S-21.5	CST B2-S-2.0			
CST B7-S-24.0	CST B2-S-4.0			
CST B7-S-25.0	CST B3-S-2.0			
CST B7-S-30.5	CST B4-S-2.0			

Comments:	
	Samples Collected 6/2/2014
	Full VOCs on GW Samples and Halogenated VOCs on Soil Samples

Data Validation Memo	DVM_1406-006_1406-016_1406-017_1406-031		Reviewer	BTF
Lab Report	1406-016		Date	6/24/2014
Analysis	NWTPH-Dx		Page	2

	Validation Area	Acceptable ✓/NA/No	Comments	Q
	Temperature	~		
<u>e</u>	Holding Time	✓		
Sample	Trip Blank	NA		
Sa	Field/Eq. Blank	NA		
	Field Dup RPD	NA		
Ŀ.	ССВ	NA		
Calibr.	ICV	NA	Not reported by lab	
0	CCV	NA	Not reported by lab	
	Method Blank	~		
	LCS/LCSD %	NA		
Batch	LCS/LCSD RPD	NA		
Bat	Lab Dup RPD	~	All NDs	
	MS/MSD %	NA		
	MS/MSD RPD	NA		
_	Dilution	NA		
eneral	Reporting Limit	✓		
Gen	MDL	NA	None requested	
	Surrogates	~		
SL	Labeled Analog	NA		
Dioxins	EMPC	NA		
D	2378-TCDF Conf	NA		

Samples reviewed: Sample IDs bolded were analyzed for method evaluated on current page.				
CST B6-GW-25.4	CST B1-S-2.0			
CST B7-S-21.5	CST B2-S-2.0			
CST B7-S-24.0	CST B2-S-4.0			
CST B7-S-25.0	CST B3-S-2.0			
CST B7-S-30.5	CST B4-S-2.0			

Comments:	
	Samples Collected 6/2/2014

Data Validation Memo	DVM_1406-006_1406-016_1406-017_1406-031		Reviewer	BTF
Lab Report	1406-016		Date	6/24/2014
Analysis	EPA 353.2 / ASTM D516-07 / SM 4500CL-E / RSK 175		Page	3

	Validation Area	Acceptable √/NA/No	Comments	
	Temperature	✓		
<u>0</u>	Holding Time	✓		
Sample	Trip Blank	NA	No indication on COC of TB collected	
Sa	Field/Eq. Blank	NA		
	Field Dup RPD	NA		
Ľ.	ССВ	NA		
alibr.	ICV	NA	Not reported by lab	
Ŭ	CCV	NA	Not reported by lab	
	Method Blank	$\checkmark / \checkmark / \checkmark / \checkmark$	All ND	
	LCS/LCSD %	$\checkmark / \checkmark / \checkmark / \checkmark$	LCS only for nitrate, chloride, sulfate	
۲	LCS/LCSD RPD	NA / NA / NA / 🗸	LCS only for nitrate, chloride, sulfate	
Batch	Lab Dup RPD	✓ / ✓ / ✓ / NA	Not assoc w/ project samples, no dup in methane analysis	
	MS/MSD %	✓ / ✓ / ✓ / NA	MS only, no MS methane analysis	
	MS/MSD RPD	NA	MS only, no MS methane analysis	
_	Dilution	NA	Dilution not indicated	
eneral	Reporting Limit	✓		
Gen	MDL	NA	None requested	
0	Surrogates	NA		
SL	Labeled Analog	NA		
Dioxins	EMPC	NA		
Di	2378-TCDF Conf	NA		

Samples reviewed: Sample IDs bolded were analyzed for method evaluated on current page.				
CST B6-GW-25.4	CST B1-S-2.0			
CST B7-S-21.5	CST B2-S-2.0			
CST B7-S-24.0	CST B2-S-4.0			
CST B7-S-25.0	CST B3-S-2.0			
CST B7-S-30.5	CST B4-S-2.0			

Comments:
Samples Collected 6/2/2014
Nitrate (as nitrogen), chloride, sulfate, dissolved methane in water

Data Validation Memo	DVM_1406-006_1406-016_1406-017_1406-031		Reviewer	BTF
Lab Report	1406-016 / 14-A008247		Date	6/24/2014
Analysis	Sulfide EPA 376.2	]	Page	4

	Validation Area	Acceptable √/NA/No	Comments	Q
	Temperature	$\checkmark$		
e	Holding Time	$\checkmark$		
Sample	Trip Blank	NA	No indication on COC of TB collected	
Sa	Field/Eq. Blank	NA		
	Field Dup RPD	NA		
Ľ.	ССВ	NA		
alibr.	ICV	NA	Not reported by lab	
Ŭ	CCV	NA	Not reported by lab	
	Method Blank	✓	All ND	
	LCS/LCSD %	✓	Standard Reference Materials	
ч	LCS/LCSD RPD	NA	No LCSD	
Batch	Lab Dup RPD	NA		
	MS/MSD %	No	MS 132% recovery (minor)	
	MS/MSD RPD	$\checkmark$		
_	Dilution	NA	Dilution not indicated	
General	Reporting Limit	$\checkmark$		
3en	MDL	NA	None requested	
0	Surrogates	NA		
SL	Labeled Analog	NA		
Dioxins	EMPC	NA		
Di	2378-TCDF Conf	NA		

Samples reviewed: Sample IDs bolded were analyzed for method evaluated on current page.				
CST B5-S-20.5	CST B6-S-31.5			
CST B5-S-23.5				
CST B5-S-31.0				
CST B5-GW-27.0				
CST B6-S-8.0				

Comments:
Samples Collected 6/2/2014
AM Test Inc.—Sulfide

## DATA VALIDATION TRACKING

#### PROJECT NO. 0879.01.02 | JUNE 24, 2014 | SEATAC S. 154TH TOD

This document tracks Stage 2A validation completion for the data validation memo and analysis indicated below.

Data Validation Memo	DVM_1406-006_1406-016_1406-017_1406-031		Reviewer	BTF
Lab Report	1406-017		Date	6/24/2014
Analysis	VOCs – 8260C/ Halogenated Volatiles		Page	1

	Validation Area	Acceptable ✓/NA/No	Comments	Q
	Temperature	✓		
<u>u</u>	Holding Time	✓		
Sample	Trip Blank	NA	No indication on COC of TB collected	
Sa	Field/Eq. Blank	NA		
	Field Dup RPD	NA		
	ССВ	NA		
alibr.	ICV	NA	Not reported by lab	
Ŭ	CCV	NA	Not reported by lab	
	Method Blank	$\checkmark/\checkmark$	All ND	
	LCS/LCSD %	$\checkmark/\checkmark$	5 analytes in spiking soln	
Batch	LCS/LCSD RPD	$\checkmark/\checkmark$	5 analytes in spiking soln	
Bat	Lab Dup RPD	NA		
	MS/MSD %	NA		
	MS/MSD RPD	NA		
_	Dilution	NA	Dilution not indicated	
eneral	Reporting Limit	$\checkmark/\checkmark$		
Gen	MDL	NA	None requested	
0	Surrogates	$\checkmark/\checkmark$		
SL	Labeled Analog	NA		
Dioxins	EMPC	NA		
D	2378-TCDF Conf	NA		

Samples reviewed: Sample IDs bolded were analyzed for method evaluated on current page.				
CST B7-GW-30.0				
CST B8-S-23.0				
CST B8-S-21.0				
CST B8-S-30.5				

Comments:	
Samples Collected 6/3/2014	
Full VOCs on GW Samples and Halogenated VOCs on Soil Samples	

Data Validation Memo	DVM_1406-006_1406-016_1406-017_1406-031
Lab Report	1406-017
Analysis	NWTPH-Dx

Reviewer	BTF	
Date	6/24/2014	
Page	2	

	Validation Area	Acceptable √/NA/No	Comments	Q
	Temperature	✓		
<u>e</u>	Holding Time	✓		
Sample	Trip Blank	NA		
Sa	Field/Eq. Blank	NA		
	Field Dup RPD	NA		
	ССВ	NA		
Calibr.	ICV	NA	Not reported by lab	
0	CCV	NA	Not reported by lab	
	Method Blank	✓		
	LCS/LCSD %	NA		
Batch	LCS/LCSD RPD	NA		
Bat	Lab Dup RPD	✓	All NDs	
	MS/MSD %	NA		
	MS/MSD RPD	NA		
_	Dilution	NA		
General	Reporting Limit	✓		
Gen	MDL		None requested	
0	Surrogates	✓		
SL	Labeled Analog	NA		
Dioxins	EMPC	NA		
Ō	2378-TCDF Conf	NA		

Samples reviewed: Sample IDs bolded were analyzed for method evaluated on current page.				
CST B7-GW-30.0				
CST B8-S-23.0				
CST B8-S-21.0				
CST B8-S-30.5				

Comments:
Samples Collected 6/3/2014

Data Validation Memo	DVM_1406-006_1406-016_1406-017_1406-031	Reviewer	BTF
Lab Report	1406-017	Date	6/24/2014
Analysis	EPA 353.2 / ASTM D516-07 / SM 4500CL-E / RSK 175	Page	3

	Validation Area	Acceptable √/NA/No	Comments	Q
	Temperature	✓	Halogenated VOCs stored -7 and -20 deg C (pre- weighed vials)	
Sample	Holding Time	✓		
San	Trip Blank	NA	No indication on COC of TB collected	
	Field/Eq. Blank	NA		
	Field Dup RPD	NA		
or.	ССВ	NA		
alibr.	ICV	NA	Not reported by lab	
C	CCV	NA	Not reported by lab	
	Method Blank	$\checkmark / \checkmark / \checkmark / \checkmark$	All ND	
	LCS/LCSD %	$\checkmark / \checkmark / \checkmark / \checkmark$	LCS only for nitrate, chloride, sulfate	
Ч	LCS/LCSD RPD	NA/NA/NA/🗸	LCS only for nitrate, chloride, sulfate	
Batch	Lab Dup RPD	✓ / ✓ / ✓ / NA	Not assoc w/ project samples, no dup in methane analysis	
	MS/MSD %	✓/✓/✓/NA	MS only, no MS methane analysis	
	MS/MSD RPD	NA	MS only, no MS methane analysis	
	Dilution	NA	Dilution not indicated	
eneral	Reporting Limit	$\checkmark$		
Ger	MDL	NA	None requested	
0	Surrogates	NA		
SL	Labeled Analog	NA		
Dioxins	EMPC	NA		
D	2378-TCDF Conf	NA		

Samples reviewed: Sample IDs bolded were analyzed for method evaluated on current page.				
CST B7-GW-30.0				
CST B8-S-23.0				
CST B8-S-21.0				
CST B8-S-30.5				

Comments:	
Samples Collected 6/3/2014	
Nitrate (as nitrogen), chloride, sulfate, dissolved methane in water	

Data Validation Memo	DVM_1406-006_1406-016_1406-017_1406-031	Reviewer	BTF
Lab Report	1406-017 / 14-A008246	Date	6/24/2014
Analysis	Sulfide EPA 376.2	Page	4

	Validation Area	Acceptable √/NA/No	Comments	Q
	Temperature	✓		
<u>e</u>	Holding Time	✓		
Sample	Trip Blank	NA	No indication on COC of TB collected	
Sa	Field/Eq. Blank	NA		
	Field Dup RPD	NA		
r.	ССВ	NA		
Calibr.	ICV	NA	Not reported by lab	
0	CCV	NA	Not reported by lab	
	Method Blank	✓	All ND	
	LCS/LCSD %	✓	Standard Reference Materials	
ح	LCS/LCSD RPD	NA	No LCSD	
Batch	Lab Dup RPD	NA		
	MS/MSD %	No	MS 132% recovery (minor)	
	MS/MSD RPD	✓		
_	Dilution	NA	Dilution not indicated	
era	Reporting Limit	✓		
General	MDL	NA	None requested	
	Surrogates	NA		
SL	Labeled Analog	NA		
Dioxins	EMPC	NA		
Di	2378-TCDF Conf	NA		

Samples reviewed: Sample IDs bolded were analyzed for method evaluated on current page.				
CST B7-GW-30.0				
CST B8-S-23.0				
CST B8-S-21.0				
CST B8-S-30.5				

Comments:	
Samples Collected 6/3/2014	
AM Test Inc.—Sulfide	

## DATA VALIDATION TRACKING

#### PROJECT NO. 0879.01.02 | JUNE 24, 2014 | SEATAC S. 154TH TOD

This document tracks Stage 2A validation completion for the data validation memo and analysis indicated below.

Data Validation Memo	DVM_1406-006_1406-016_1406-017_1406-031	Reviewer	BTF
Lab Report	1406-031	Date	6/24/2014
Analysis	VOCs - 8260C	Page	1

	Validation Area	Acceptable ✓/NA/No	Comments	Q
	Temperature	✓		
<u>e</u>	Holding Time	✓		
Sample	Trip Blank	NA	No indication on COC of TB collected	
Sa	Field/Eq. Blank	NA		
	Field Dup RPD	NA		
Ľ.	ССВ	NA		
Calibr.	ICV	NA	Not reported by lab	
0	CCV	NA	Not reported by lab	
	Method Blank	✓	All ND	
	LCS/LCSD %	✓	5 analytes in spiking soln	
Batch	LCS/LCSD RPD	✓	5 analytes in spiking soln	
Bat	Lab Dup RPD	NA		
	MS/MSD %	NA		
	MS/MSD RPD	NA		
_	Dilution	NA	Dilution not indicated	
eneral	Reporting Limit	✓		
Gen	MDL	NA	None requested	
	Surrogates	✓		
SL	Labeled Analog	NA		
Dioxins	EMPC	NA		
D	2378-TCDF Conf	NA		

Samples reviewed: Sample IDs bolded were analyzed for method evaluated on current page.				
CST B8-GW-20.0				

Comments:
Samples Collected 6/3/2014
Full VOCs on GW Samples

Data Validation Memo	DVM_1406-006_1406-016_1406-017_1406-031
Lab Report	1406-031
Analysis	NWTPH-Dx

Reviewer	BTF
Date	6/24/2014
Page	2

	Validation Area	Acceptable √/NA/No	Comments	Q
	Temperature	✓		
<u>e</u>	Holding Time	✓		
Sample	Trip Blank	NA		
Sa	Field/Eq. Blank	NA		
	Field Dup RPD	NA		
	ССВ	NA		
Calibr.	ICV	NA	Not reported by lab	
0	CCV	NA	Not reported by lab	
	Method Blank	~		
	LCS/LCSD %	NA		
Batch	LCS/LCSD RPD	NA		
Bat	Lab Dup RPD	~	All NDs	
	MS/MSD %	NA		
	MS/MSD RPD	NA		
_	Dilution	NA		
General	Reporting Limit	✓		
Ger	MDL		None requested	
	Surrogates	~		
SL	Labeled Analog	NA		
Dioxins	EMPC	NA		
Ō	2378-TCDF Conf	NA		

Samples reviewed: Sample IDs bolded were analyzed for method evaluated on current page.				
CST B8-GW-20.0				

Comments:
Samples Collected 6/3/2014

Data Validation Memo	Memo DVM_1406-006_1406-016_1406-017_1406-031		Reviewer	BTF
Lab Report	Lab Report 1406-031		Date	6/24/2014
Analysis	EPA 353.2 / ASTM D516-07 / SM 4500CL-E / RSK 175		Page	3

	Validation Area	Acceptable √/NA/No	Comments	Q
	Temperature	✓	Halogenated VOCs stored -7 and -20 deg C (pre- weighed vials)	
Sample	Holding Time	✓		
San	Trip Blank	NA	No indication on COC of TB collected	
	Field/Eq. Blank	NA		
	Field Dup RPD	NA		
or.	ССВ	NA		
alibr.	ICV	NA	Not reported by lab	
C	CCV	NA	Not reported by lab	
	Method Blank	$\checkmark / \checkmark / \checkmark / \checkmark$	All ND	
	LCS/LCSD %	$\checkmark / \checkmark / \checkmark / \checkmark$	LCS only for nitrate, chloride, sulfate	
Ч	LCS/LCSD RPD	NA/NA/NA/🗸	LCS only for nitrate, chloride, sulfate	
Batch	Lab Dup RPD	✓ / ✓ / ✓ / NA	Not assoc w/ project samples, no dup in methane analysis	
	MS/MSD %	✓/✓/✓/NA	MS only, no MS methane analysis	
	MS/MSD RPD	NA	MS only, no MS methane analysis	
	Dilution	NA	Dilution not indicated	
eneral	Reporting Limit	$\checkmark$		
Ger	MDL	NA	None requested	
0	Surrogates	NA		
SL	Labeled Analog	NA		
Dioxins	EMPC	NA		
D	2378-TCDF Conf	NA		

Samples reviewed: Sample IDs bolded were analyzed for method evaluated on current page.					
CST B8-GW-20.0					

Comments:	
Samples Collected 6/3/2014	
Nitrate (as nitrogen), chloride, sulfate, dissolved methane in water	

Data Validation Memo	Validation Memo DVM_1406-006_1406-016_1406-017_1406-031		Reviewer	BTF
Lab Report	Lab Report 1406-031 / 14-A008245		Date	6/24/2014
Analysis	Sulfide EPA 376.2	]	Page	4

	Validation Area	Acceptable √/NA/No	Comments	Q
	Temperature	✓		
<u>e</u>	Holding Time	✓		
Sample	Trip Blank	NA	No indication on COC of TB collected	
Sa	Field/Eq. Blank	NA		
	Field Dup RPD	NA		
<u>ب</u>	ССВ	NA		
Calibr.	ICV	NA	Not reported by lab	
C	CCV	NA	Not reported by lab	
	Method Blank	✓	All ND	
	LCS/LCSD %	✓	Standard Reference Materials	
ч	LCS/LCSD RPD	NA	No LCSD	
Batch	Lab Dup RPD	NA		
	MS/MSD %	✓	MS 132% recovery (minor)	
	MS/MSD RPD	✓		
_	Dilution	NA	Dilution not indicated	
era	Reporting Limit	✓		
General	MDL	NA	None requested	
0	Surrogates	NA		
SL	Labeled Analog	NA		
Dioxins	EMPC	NA		
Ō	2378-TCDF Conf	NA		

Samples reviewed: Sample IDs bolded were analyzed for method evaluated on current page.				
CST B8-GW-20.0				

Comments:
Samples Collected 6/3/2014
AM Test Inc.—Sulfide

Data Validation Memo	DVM_1406-006_1406-016_1406-017_1406-031	Reviewer	BTF
Lab Report	1406-031 / YM48	Date	6/24/2014
Analysis	SM3500 FeD	Page	5

	Validation Area	Acceptable √/NA/No	Comments	Q
	Temperature	√	4.6 deg C upon check-in at ARI	
<u>e</u>	Holding Time	√		
Sample	Trip Blank	NA	No indication on COC of TB collected	
Sa	Field/Eq. Blank	NA		
	Field Dup RPD	NA		
	ССВ	NA		
Calibr.	ICV	NA	Not reported by lab	
C	CCV	NA	Not reported by lab	
	Method Blank	✓	ND	
	LCS/LCSD %	√		
Ч	LCS/LCSD RPD	NA	No LCSD	
Batch	Lab Dup RPD	✓		
	MS/MSD %	√		
	MS/MSD RPD	NA	No MSD	
_	Dilution	NA	Dilution not indicated	
General	Reporting Limit	√		
Gen	MDL	NA	None requested	
0	Surrogates	NA		
SL	Labeled Analog	NA		
Dioxins	EMPC	NA		
Di	2378-TCDF Conf	NA		

Samples reviewed: Sample IDs bolded were analyzed for method evaluated on current page.				
CST B8-GW-20.0				

Comments:
Samples Collected 6/3/2014
Analytical Resources, Incorporated—Ferrous Iron

# DATA QUALITY ASSURANCE/QUALITY CONTROL REVIEW

# PROJECT NO. 0879.01.02 | MARCH 31, 2015 | CITY OF SEATAC – SEATAC S. 154TH TOD

This report reviews the analytical results for groundwater and soil samples collected by the Maul Foster & Alongi, Inc. (MFA) project team for the supplemental site investigation located at 15247 Pacific Highway South, SeaTac, Washington. The samples were collected on March 16 and 17, 2015.

OnSite Environmental Inc. (OSE) performed the analyses. OSE report numbers 03-171 and 03-235 were reviewed. The analyses performed and samples analyzed are listed below.

Analysis	Reference
Halogenated Volatile Organic Compounds (VOCs)	USEPA 8260C

USEPA = U.S. Environmental Protection Agency.

Samples Analyzed					
Report 03-171	Report 03-235				
CSTB12-S-18.5	CSTB11-W-38.6				
CSTB12-W-28	CSTB10-W-38.0				
CSTB13-W-28	-				
CSTB10-S-25.5	-				
CSTB09-W-30.0	-				
Trip Blank	-				

#### DATA QUALIFICATIONS

Analytical results were evaluated according to applicable sections of USEPA procedures (USEPA, 2014) and appropriate laboratory and method-specific guidelines (OES, 2012; USEPA, 1986).

The data are considered acceptable for their intended use, with the appropriate data qualifiers assigned.

#### HOLDING TIMES, PRESERVATION, AND SAMPLE STORAGE

#### Holding Times

Extractions and analyses were performed within the recommended holding time criteria.

#### Preservation and Sample Storage

The samples were preserved and stored appropriately.

#### BLANKS

#### Method Blanks

Laboratory method blank analyses were performed at the required frequencies. For purposes of data qualification, the method blanks were associated with all samples prepared in the analytical batch. All laboratory method blanks were non-detect.

#### Trip Blanks

A trip blank (Trip Blank) was submitted with sample delivery group 03-171 for analysis by USEPA Method 8260C. The trip blank was non-detect for all target analytes.

#### Equipment Rinsate Blanks

Equipment rinsate blanks were not required for this sampling event, as all samples were collected using dedicated, single-use equipment.

#### SURROGATE RECOVERY RESULTS

The samples were spiked with surrogate compounds to evaluate laboratory performance on individual samples. The laboratory appropriately documented and qualified surrogate outliers. For samples with surrogate outliers, associated batch quality assurance/quality control were within acceptance limits.

In report 03-171, the USEPA Method 8260C surrogate toluene-d8 result was above the upper percent recovery acceptance limit for sample CSTB09-W-30.0 at 168 percent (%), and surrogate dibromofluoromethane was above the upper percent recovery acceptance limit for sample Trip Blank at 123%. Both samples were non-detect for all target analytes; thus, no results were qualified.

All remaining surrogate recoveries were within acceptance limits.

#### MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) RESULTS

MS/MSD results are used to evaluate laboratory precision and accuracy. MS/MSD results were not reported.

#### LABORATORY DUPLICATE RESULTS

Duplicate results are used to evaluate laboratory precision. Laboratory duplicate results were not reported.

#### LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE (LCS/LCSD) RESULTS

An LCS/LCSD is spiked with target analytes to provide information on laboratory precision and accuracy. The LCS/LCSD samples were extracted and analyzed at the required frequency. All LCS analyte results were within acceptance limits for percent recovery and relative percent difference (RPD).

#### FIELD DUPLICATE RESULTS

Field duplicate samples measure both field and laboratory precision. Field duplicate samples were not submitted for analysis.

#### CONTINUING CALIBRATION VERIFICATION (CCV) RESULTS

CCV results are used to demonstrate instrument precision and accuracy through the end of the sample batch. CCV results were not reported by OES. The reviewer confirmed with OES that all associated CCVs met quality assurance/quality control acceptance criteria.

#### REPORTING LIMITS

OES used routine reporting limits for non-detect results, except when samples required dilutions because of high analyte concentrations and/or matrix interferences.

#### DATA PACKAGE

The data packages were reviewed for transcription errors, omissions, and anomalies.

In report 1503-171, OES indicated on the sample receipt form that the trip blank was received by the laboratory but not recorded on the chain of custody (COC). The trip blank was recorded on the COC by the laboratory. OES also noted sample name discrepancies between the COC and container label for samples CSTB13-W-28 (indicated as CSTB13-W on the label) and CSTB09-W-30.0 (indicated as CSTB09-W on the label). Sample names recorded on the COC were correct and were used in the report.

No additional issues were found.

OES. 2012. Quality Assurance Manual. OnSite Environmental Inc. Redmond, Washington.

- USEPA. 1986. Test methods for evaluating solid waste: physical/chemical methods. EPA-530/SW-846. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. September (revision 6, February 2007).
- USEPA. 2014. USEPA contract laboratory program, national functional guidelines for Superfund organic methods data review. EPA 540/R-014/002. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. August.

# APPENDIX G TERRESTRIAL ECOLOGICAL EVALUATION





# **Voluntary Cleanup Program**

#### Washington State Department of Ecology Toxics Cleanup Program

# TERRESTRIAL ECOLOGICAL EVALUATION FORM

Under the Model Toxics Control Act (MTCA), a terrestrial ecological evaluation is necessary if hazardous substances are released into the soils at a Site. In the event of such a release, you must take one of the following three actions as part of your investigation and cleanup of the Site:

- 1. Document an exclusion from further evaluation using the criteria in WAC 173-340-7491.
- 2. Conduct a simplified evaluation as set forth in WAC 173-340-7492.
- 3. Conduct a site-specific evaluation as set forth in WAC 173-340-7493.

When requesting a written opinion under the Voluntary Cleanup Program (VCP), you must complete this form and submit it to the Department of Ecology (Ecology). The form documents the type and results of your evaluation. You still need to submit your evaluation as part of your cleanup plan or report.

If you have questions about how to conduct a terrestrial ecological evaluation, please contact the Ecology site manager assigned to your Site. For additional guidance, please refer to <a href="http://www.ecy.wa.gov/programs/tcp/policies/terrestrial/TEEHome.htm">www.ecy.wa.gov/programs/tcp/policies/terrestrial/TEEHome.htm</a>.

#### Step 1: IDENTIFY HAZARDOUS WASTE SITE

Please identify below the hazardous waste site for which you are documenting an evaluation.

Facility/Site Name: Betty Brite Cleaners

Facility/Site Address:

15209 Military Rd S, SeaTac, WA 98188-2141

Facility/Site No:

VCP Project No.:

C100 0.	IDENTIFY		INTOD
Step Z:		EVALL	JAIUR

Please identify below the person who conducted the evaluation and their contact information.

Name: Yen-Vy Van					Title: S	Senior	Hydrogeologist
Organization:	Maul Foster Alongi, Inc.						
Mailing addres	s: 411 First Avenue S., Su	ite 610	)				
City: Seat	tle	Sta	te: _{WA}		Zip cod	le:	98104
Phone: 25	₃₋₃₂₀₋₅₃₇₈ Fax:		E-mail:	yvai	n@maulf	oster.	com

Step 3: DOCUMENT EVALUATION TYPE AND RESULTS				
A. Exclusion from further evaluation.				
1. Does the Site qualify for an exclusion from further evaluation?				
<b>OXYes</b> If you answered <b>"YES,</b> " then answer <b>Question 2</b> .				
□ No or Unknown If you answered " <b>NO" or "UKNOWN,"</b> then skip to <b>Step 3B</b> of this form.				
2. What is the basis for the exclusion? Check all that apply. Then skip to Step 4 of this form.				
Point of Compliance: WAC 173-340-7491(1)(a)				
$\mathbf{x}$ All soil contamination is, or will be,* at least 15 feet below the surface.				
All soil contamination is, or will be,* at least 6 feet below the surface (or alternative depth if approved by Ecology), and institutional controls are used to manage remaining contamination.				
Barriers to Exposure: WAC 173-340-7491(1)(b)				
All contaminated soil, is or will be,* covered by physical barriers (such as buildings or paved roads) that prevent exposure to plants and wildlife, and institutional controls are used to manage remaining contamination.				
Undeveloped Land: WAC 173-340-7491(1)(c)				
<ul> <li>There is less than 0.25 acres of contiguous[#] undeveloped[±] land on or within 500 feet of any area of the Site and any of the following chemicals is present: chlorinated dioxins or furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, heptachlor epoxide, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, or pentachlorobenzene.</li> </ul>				
For sites not containing any of the chemicals mentioned above, there is less than 1.5 acres of contiguous [#] undeveloped [±] land on or within 500 feet of any area of the Site.				
Background Concentrations: WAC 173-340-7491(1)(d)				
Concentrations of hazardous substances in soil do not exceed natural background levels as described in WAC 173-340-200 and 173-340-709.				
* An exclusion based on future land use must have a completion date for future development that is acceptable to Ecology.				
[±] "Undeveloped land" is land that is not covered by building, roads, paved areas, or other barriers that would prevent wildlife from feeding on plants, earthworms, insects, or other food in or on the soil.				
[#] "Contiguous" undeveloped land is an area of undeveloped land that is not divided into smaller areas of highways, extensive paving, or similar structures that are likely to reduce the potential use of the overall area by wildlife.				

В.	Simpl	Simplified evaluation.					
1.	Does t	Does the Site qualify for a simplified evaluation?					
	[	XY	es	If you answered "YES," then answer Question 2 below.			
	[	] N Jnkno	o or own	If you answered "NO" or "UNKNOWN," then skip to Step 3C of this form.			
2.	Did yo	ou co	nduc	ct a simplified evaluation?			
	[	X Y	es	If you answered "YES," then answer Question 3 below.			
	[	_ N	0	If you answered "NO," then skip to Step 3C of this form.			
3.	Was fu	urthe	er eva	aluation necessary?			
	C	] Y	es	If you answered "YES," then answer Question 4 below.			
	Σ	<u>N</u>	0	If you answered "NO," then answer Question 5 below.			
4.	lf furth	ner e	valua	ation was necessary, what did you do?			
	[			ed the concentrations listed in Table 749-2 as cleanup levels. <i>If so, then</i> s <i>kip to</i> <b><i>p</i> 4</b> of this form.			
	Ľ		Cor	nducted a site-specific evaluation. If so, then skip to Step 3C of this form.			
5.				aluation was necessary, what was the reason? Check all that apply. Then skip			
	to Step						
	•	uie A X	•	sis: WAC 173-340-7492(2)(a) a of soil contamination at the Site is not more than 350 square feet.			
	_			rent or planned land use makes wildlife exposure unlikely. Used Table 749-1.			
	-			is: WAC 173-340-7492(2)(b)			
	_		-	potential exposure pathways from soil contamination to ecological receptors.			
	-	-		alysis: WAC 173-340-7492(2)(c)			
		<u>c</u>	No	contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at centrations that exceed the values listed in Table 749-2.			
		X	alte liste	contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or rnative depth if approved by Ecology) at concentrations that exceed the values ed in Table 749-2, and institutional controls are used to manage remaining tamination.			
	Ę	<u>x</u>	con	contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at centrations likely to be toxic or have the potential to bioaccumulate as determined ing Ecology-approved bioassays.			
	x	_	alte the	contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or rnative depth if approved by Ecology) at concentrations likely to be toxic or have potential to bioaccumulate as determined using Ecology-approved bioassays, and itutional controls are used to manage remaining contamination.			

r	
C.	<b>Site-specific evaluation.</b> A site-specific evaluation process consists of two parts: (1) formulating the problem, and (2) selecting the methods for addressing the identified problem. Both steps require consultation with and approval by Ecology. <i>See</i> WAC 173-340-7493(1)(c).
1.	Was there a problem? See WAC 173-340-7493(2).
	Yes If you answered " <b>YES</b> ," then answer <b>Question 2</b> below.
	No If you answered " <b>NO</b> ," then identify the reason here and then skip to <b>Question 5</b> below:
	No issues were identified during the problem formulation step.
	While issues were identified, those issues were addressed by the cleanup actions for protecting human health.
2.	What did you do to resolve the problem? See WAC 173-340-7493(3).
	Used the concentrations listed in Table 749-3 as cleanup levels. <i>If so, then skip to</i> <b>Question 5</b> below.
	Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. <i>If so, then answer Questions 3 and 4 below.</i>
3.	f you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3).
	Literature surveys.
	Soil bioassays.
	Wildlife exposure model.
	Biomarkers.
	Site-specific field studies.
	Weight of evidence.
	Other methods approved by Ecology. If so, please specify:
4.	What was the result of those evaluations?
	Confirmed there was no problem.
	Confirmed there was a problem and established site-specific cleanup levels.
5.	Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps?
	Yes If so, please identify the Ecology staff who approved those steps:
	X No

#### Step 4: SUBMITTAL

Please mail your completed form to the Ecology site manager assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.



If you need this publication in an alternate format, please call the Toxics Cleanup Program at 360-407-7170. Persons with hearing loss can call 711 for Washington Relay Service. Persons with a speech disability can call 877-833-6341.