Gasoline Impacted Soils-Final Site Remediation 3733-3737 South "G" Street Tacoma, Washington

Prepared for:

Mr. & Mrs. Bich Lam 769 South 38th Street Tacoma, Washington

By:

Nowicki & Associates, Inc. 33616 Ninth Avenue South, Building #6 Federal Way, WA 98003

TABLE OF CONTENTS

II.	Summary
III.	Site Background A. Initial Soil Excavation – 1998 B. Site Clean-up Attempt – 1999
IV.	Final Site Clean-up
•	A. Discharge of Excavation WaterB. Existing Excavated Stockpiled Soil Small Stockpile

- ii. Large StockpileC. Former Tank Excavation Small Pit
- D. Former Dispenser Island and Abandoned Tank Excavation Large Pit
 - i. Removal of Impacted Soil Base of Excavation
 - ii. South Sidewall
 - iii. East Sidewall
 - iv. West Sidewall
 - v. North Sidewall
- V. Contaminated Soil Disposal
- VI. Excavation Backfill and Test Pit Sampling
- VII. Tank Disposal

I.

Introduction

- VIII. Field & Laboratory Methods

 Table 1 Data from Final Site Cleanup

 Table 2 Laboratory Data from Initial Site Assessment & Prior Soil

 Excavation
- IX. Conclusion and Recommendation
- X. Limitations

Appendices

- A. Site Map & Soil Sample Locations Figures
- B. DOE Abandoned UST Site Assessment & Closure Notice
- C. Photographic Documentation
- D. TEG Laboratory Reports
- E. OnSite & TEG Laboratory Reports for Excavation Water Samples

- F. Abandoned USTs Disposal Receipt
- G. City of Tacoma Public Works Special Approved Discharge Permit
- H. Olympic View Sanitary Landfill Soil Disposal Weight Tickets
- I. WM Dickson Import Fill Material Log Sheet
- J. NAI Update Letter Report to Wells Fargo (Dated April 15, 1998) with laboratory reports and TPS Soil Recycling Certificate
- K. ALS Site Assessment Report Dated August 19, 1996 with Attachments

I. Introduction

This report documents the results of the site remediation of gasoline contaminated soils at the property located at 3737 South G Street, Tacoma, Washington. Site clean-up was conducted independently under Washington State Model Toxics Control Act (MTCA) and in accordance with the appropriate guidelines from Washington State Department of Ecology (DOE) "Guidance for Site Checks and Site Assessments for Underground Storage Tanks". Nowicki & Associates, Inc. (NAI) served as the site assessor for the site assessment under an agreement with the property owners, Mr. & Mrs. Bich Lam located at 769 South 38th Street, Tacoma, Washington. Soil excavation services were provided by Wm. Dickson Company, a Washington State licensed UST contractor.

II. Executive Summary

Four gasoline underground storage tanks, two 1,000-gallon and two 2,000-gallon, were removed from the subject site located at 3737 South G Street, Tacoma, Washington in July of 1996. Soil impact with gasoline hydrocarbons was confirmed during the tank removal site assessment completed by ALS Consulting. In April of 1998, Nowicki & Associates, Inc. was retained by Wells Fargo Bank to oversee site clean-up. Approximately 300 tons of gasoline impacted soil were excavated for off-site treatment disposal. However, soil impact was discovered to be more extensive than anticipated and the site clean-up was halted due to the limited budget available. At the time, the site was in the Robert Lyons Trusts managed by Wells Fargo Bank.

In 1999, under the oversight of the property executor at the time, Leroy Hintz, a close friend of Robert Lyons, Fife Sand & Gravel was retained to perform the site clean up of remaining impacted soils. During soil excavation, four abandoned USTs between 300-500 gallon in size were discovered. However, due to some un-resolved issues between Mr. Hintz and Fife Sand, site clean-up was again halted and there was no available records documenting site clean-up activities.

In 2000, under the new ownership of the Lams, Nowicki & Associates, Inc. was retained to perform the final site clean up. A total of 925 tons of gasoline impacted soils were removed from the site in December of 2000 for off site treatment disposal at the Olympic View Sanitary Landfill located in Port Orchard, Washington. The removed impacted soils were from the excavated pit where the former dispenser island and the abandoned tanks were located. No petroleum-impacted soils were found at the former excavated tank pit during the final site clean-up.

Laboratory results of collected soil samples indicate all impacted soils were removed for disposal except for the soil at the south sidewall of the large excavated pit. The impacted soil was left inplace due to its inaccessible location directly underneath the concrete sidewalk along South 38th Street. The impacted soil on the south wall appeared to be confined in a gravelly sand seam at about 8' to 8.5' below ground surface, in the approximate western half of the south wall. TPH gasoline was detected at 180 ppm at the west end and 1,200 ppm at the middle of the wall. Benzene was detected at 1.2 ppm or less. Toluene, ethylbenzene, and xylenes were all below current MTCA Method A clean-up samples. The excavated pits were backfilled and compacted to grade with clean excavated soil and new clean materials.

III. Site Background

The site is located within the City Limits of Tacoma. Surrounding land use is mostly commercial with small retail businesses. Prior uses of the site include a restaurant and a gasoline service station. Currently, the site is a vacant lot and is under the ownership of the Lams located at 769 South 38th Street, Tacoma, Washington. Up until approximately 1999, site ownership was under the Robert Lyons Trust overseen by Wells Fargo Bank and a designated Executor, Mr. Leroy Hintz.

Former UST system at the site included four USTs: two 1,000-gallon and two 2,000-gallon with two dispenser islands. Although the original 30-Day Intent to Close indicates a 500-gallon waste oil UST, it was never found at the site. The tanks were located at the southeast corner of the lot and the dispenser islands located west and south of the former on-site building. The four USTs were removed in July of 1996 by Wes Pac Environmental, a licensed UST service provider. ALS Consulting provided site assessment services during the initial tank removals. Soil impacted with

gasoline and BTEX above current MTCA Method A was confirmed from the initial site assessment at the former tank excavation and the west dispenser island. Gasoline TPHs were found in the range between 700 ppm and 2,500 ppm. Refer to Table 2 for a summary of collected data. The Initial Site Assessment report by ALS dated August 19, 1996 is included with this report.

The original groundcover over the tanks is assumed asphalt and concrete. The on-site building was demolished in 1995 prior to tank removal. Sometimes before or during tank removal the asphalt and concrete surfacing materials were also removed. Native soil consists of brown to light brown silty sand corresponding to SM of the ASTM Designation D-2487. Beginning at about 5' bgs, interlayers of clay and dense silt are present. Contaminated soils were generally observed to be discolored light grey to grey. Only surface water from run-off and precipitation entered the excavated pit. No groundwater was confirmed at the maximum excavated depth of approximately 14' bgs.

A. Initial Soil Removal Activity - April of 1998:

In April of 1998, Nowicki & Associates, Inc. was retained by Wells Fargo Bank to oversee the impacted soil excavation at the site. Approximately 300 tons of gasoline impacted soil from the former west dispenser island were removed for disposal at TPS Technologies in Tacoma. Excavation limits were approximately 23' x 28' x 10' bgs with no encountered groundwater. Because of insufficient budget reserved for the project, site remedial activities were halted and impacted soils were left in-place. At the base of the excavation at 10' bgs, gas TPHs were found at 2,100 ppm. Soil from the north and east excavation walls were detected with gas TPHs at 193 ppm and 680 ppm, respectively. No remediation work was completed at the tank excavation pit. Refer to Table 2 for data summary.

B. Site Clean-up Attempt - 1999:

In 1999, under the direction of the Trust Executor at the time Mr. Leroy Hintz, Fife Sand & Gravel was retained to provide site remediation services. During soil removal activities, four additional abandoned USTs (appeared to be empty and some were torn-apart and/or partially crushed) ranging in sizes between approximately 300 and 500 gallon were found at the southwest corner of the lot. It was assumed by NAI that because of unresolved issues between the site owner's representative and Fife Sand, there was no documentation of the activities completed or laboratory data of soil samples. However, based on field observations, the excavated pit appeared to cover the former south pump island and part of the west dispenser island. The abandoned USTs were left on the north side of the excavated pit (See attached photos). A large and a small soil stockpiles were observed occupying the north and northeast corner of the lot. It is unknown if any excavated contaminated soil was transported off-site for treatment. The site was fenced and the excavated pit left open. As a result, the large excavated pit was filled with surface water runoff and precipitation accumulation.

IV. Final Site Clean-up, November & December of 2000

Prior to the final site clean-up activities, a sample was collected from the accumulated water in the large excavation on September 18, 2000 for laboratory analysis. Laboratory results

indicate non-detect for gasoline, BTEX, diesel and oil. A permit to discharge the water in the excavation into the nearby storm water catch basin was then obtained from the City of Tacoma Public Works Sewer Utility (Copy of permit is included with this report).

Site remedial activities are discussed below according to the locations where the work was performed. Because of site constraints imposed by space limitation, the site activities had been completed in the order dictated by the site conditions. In general, activities at the excavated pit took precedence once the water was pumped. However, the soil stockpiles also had to be cleared to allow room for any excavated contaminated soils. Prior to site clean-up activities, a site remediation Work Plan was submitted to the Pierce County Health Department for review and approval.

A. Discharge of Accumulated Water in the Excavated Pit:

On November 29, 2000, water from the excavation was pumped into the catch basin located next to the sidewalk, at northeast corner of the intersection of South 38th and G Street. The catch basin is part of the City of Tacoma municipal storm drainage system and discharge was under the Special Approved Discharge Permit. Under the permit, maximum allowable discharge rate was 450 gpm (gallons per minute) during dry conditions and 225 gpm during rainy conditions, with no flooding. Monitoring for turbidity and petroleum sheen was also part of the requirements. A few days prior to the water discharge, the City Sewer Utility was notified.

On the day of discharge weather conditions were mostly dry with occasional light drizzles. A suction pump with a maximum capacity of 300 gpm was attached and secured to an auto tire tube. The pump set up was then placed afloat in the excavation and tied to the chain-link fence on-site. Discharge rate was monitored with a flow meter which was attached to the discharge hose and had an initial reading of 6,937,500 gallons. Samples at the discharge point were collected into glass jars every ½ hour to assess visually for turbidity and oil sheen. Throughout the discharge period, approximately 5.5 hours, no oil sheen was noted in the collected water samples. No visually detectable particulates or color change in the water samples was observed. Pumping of the water was stopped when there was approximately 4" of water at the lowest point in the excavation, where the pump was set. The final pump meter reading was 7,001,900, giving a total discharge volume of 64,400 gallons. The average discharge rate was approximately 200 gpm. One water sample was collected toward the end of the discharge period and submitted for laboratory confirmation. The sample was observed to be clear with no settled solids and laboratory results indicate non-detect for gas, BTEX, diesel and oil TPHs. All discharge requirements were met.

B. Existing Excavated Stockpiled Soils:

Prior to any excavation activities, two soil stockpiles, one small (approximately 100 cubic yards) and one large (approximately 500 cubic yards), were observed present at the north portion of the lot. Because the excavated stockpiled soils had been left on-site by Fife Sand, uncovered, for approximately 12 to 16 months, it was assumed that some degradation of the gasoline hydrocarbons had occurred, especially within the exposed surface soils. Field screening indicated localized hot spots in the stockpiled soils. However, the majority of the stockpile soils had relatively low field screen readings above background levels. Soils were separated and field screened in approximately 2-foot lifts. Field screening was performed using a combustible gas indicator (CGI).

The suspected clean soils were placed at the asphalt parking lot immediately to the east of tank excavation area. The soils were placed on double layers of polyethylene sheeting and covered during off-site hours.

The clean separated soils were placed in three stockpiles, A, B & C. The separated contaminated soils were placed at the north end of the main lot, on polyethylene sheeting.

Stockpile A:

Stockpile A initially contained approximately 100 cubic yards and was placed at the south end of the asphalt parking lot. Five discrete soil samples were collected on November 29, 2000 and laboratory results were non-detect for gas TPHs and BTEX. These samples were also screened for diesel and oil TPHs by the laboratory and results were non-detect. An additional 50 cubic yards of soil were added to stockpile A and two soil samples were collected from the 50 cubic yards on December 1, 2000. Laboratory results were also non-detect for gas TPHs and BTEX.

Stockpile B:

Because of limited site access for the trackhoe during soil screening, stockpile B was initially placed at the north end of the asphalt parking lot. Additional screened soil was added to the stockpile later to give a total amount of approximately 100 cubic yards. Three soil samples were collected from the stockpile for laboratory analysis and laboratory results were all non-detect for gas TPHs, and BTEX.

Stockpile C:

Because the asphalt parking lot could not accommodate additional soil other than stockpiles A and B, the remaining clean separated soils were placed in stockpile C, located at the northeast corner of the large excavated pit. The stockpile consisted of minimal amount of clean soil from the previous existing pile and mostly clean soil from the excavation of the large excavated pit. A total of approximately 200 cubic yards were placed in stockpile C. Five discrete soil samples were collected from this stockpile for laboratory analysis and laboratory results were non-detect for gas and BTEX.

Throughout the site clean up, approximately 450 cubic yards of clean soil were separated and stockpiled at the site for use as backfill at the site.

C. Former Tank Excavation - Small Pit:

At the former tank excavation, the initial soil sampling during the tank removal in July of 1996 indicates two locations with remaining impacted soils moderately above the current MTCA Method A clean-up level. The two locations were the area below the former north UST (at 10.5' bgs with gas TPHs at 700 ppm) and the west sidewall where the product piping run to the dispenser islands (at 7' bgs and gas TPHs at 640 ppm).

At the time of final clean-up, the former tank excavation was noted to have some temporary sandy fill to within of approximately 3' to 4' from the ground surface. On November 30, the clean temporary sandy fill was removed and soil samples were obtained at the two aforementioned

locations with assumed remaining impacted soils. Excavation proceeded to approximately 11' bgs but no trace of impacted soil was found at the north end or at the north portion of the west sidewall. It appeared that the remaining impacted soils at these locations had been removed by Fife Sand & Gravel in 1999 and that the excavation had been backfilled with clean sand. Thus, two soil samples were collected for laboratory confirmation: one from the north bottom (approximately 30 north of the concrete sidewalk, or at 11' bgs or 2' north of the assumed original limit of excavation) and one from the west wall at 9' bgs. Laboratory results indicate non-detect for gas and BTEX in both samples. The excavation was then backfilled with the clean excavated fill to provide stability for the Ackerly sign footing.

D. Former Dispenser Island and Abandoned Tank Excavation - Large Pit:

The large excavated pit at the site covered the areas of the former dispenser islands and the locations of the four abandoned USTs. This excavated pit was located west and northwest of the former main tank pit.

i. Removal of Impacted Soil - Base of Excavation:

The initial soil profile of samples collected on November 30, 2000 indicated a hot spot at approximately the center of the existing excavation base, at approximately 10' bgs. Soil at this depth was dense brown/grey silty sand with strong petroleum odor. Gas TPHs were detected at 8,200 ppm. Benzene, ethylbenzene and xylenes were detected at 8.5 ppm, 32.7 ppm and 156 ppm, respectively. No lead was detected in the sample. Additional four soil samples collected at the excavation base east and west of the south end, from 8' to 13' bgs indicated non-detect for gas TPHs and BTEX. Due to limited accessibility, the contaminated soil at the center of the south end of the excavation was removed on December 6, after the north end was cleaned up and backfilled to provide support for the trackhoe. The impacted soil appeared to be limited to above 11.5' bgs, where brown clean dense silty sand was encountered. A soil sample was collected after soil removal, sample Bot-8 11.5'-12', was non-detect for gas and BTEX. Additional soil samples were also collected from the excavation base from various locations at depths of approximately 12' bgs (samples Bot-9, Bot-10, and Bot-11). All samples were non-detect for gas TPHs and BTEX.

On December 1, excavation of the contaminated soil at the former west dispenser island started. Impacted soil was removed to a depth of approximately 12' to 14' bgs, where clean brown dense clayey sand was found. Two bottom samples were collected, one at the center of the former dispenser excavation at 14' bgs (Disp-Bot 1) and the other at 12' (Disp-Bot 2) at the north end of the excavation. Both samples are non-detect for gas TPHs and BTEX. Additional impacted soils were also removed from the north, east and west sidewalls as the excavated pit was expanded on December 5 and 6. The impacted soil to the north of the former west dispenser island area appeared to be limited to the top 8' to 9' bgs. Bottom samples collected at 8' (Disp-Bot-4) and at 8' (Disp-Bot) were either non-detect or below current MTCA Method A clean-up levels.

ii. South Sidewall:

At the time of final site clean-up, the south sidewall was observed to have been excavated to approximately the edge of the concrete sidewalk. Four soil samples were collected at various depths from the south sidewall. Based on laboratory results of collected soil samples, some residual impacted soils are present at approximately 8' to 8.5' bgs, in a

dense gravelly sand seam. At approximately 15' east of the crosswalk post, which was taken as a reference point (See Figure 2), sample SW-2 was detected with 139 ppm gas TPHs. The impacted soil layer appeared to continue east to approximately 20' east where sample SW-5, which was collected between 8' and 8.5' bgs, was found with gas TPHs at 1,200 ppm. Benzene was detected at 1.2 ppm and TEX were below current MTCA Method A levels. At the same location of SW-5, SW-4 was collected at 6' to 6.5' bgs and was found to be non-detect of gas and BTEX. Because the residual impacted soil is located under the sidewalk, removal of the residual impacted soil was not feasible without the removal of the concrete sidewalk.

At the west and east ends of the south walls, locations of samples SW-1 and SW-3, soil samples were non-detect for gas and BTEX.

iii. East Excavation Sidewall:

The east sidewall was initially characterized with samples EW-1 (7.5' bgs) and NE-1 (10' bgs) with non-detect results for gas and BTEX. On December 1, 2000 impacted soils at the north end of the pit were excavated. Some sections of abandoned metal product piping were encountered at shallow depths (approximately 3' bgs) at the northeast corner of the pit. Contaminated soils were found associated with the presence of abandoned piping. After the removal of contaminated soils, three additional soil samples were collected from the north portion of the east sidewall at various depths, ranging from 5' to 10' bgs. All samples were non-detect or below MTCA Method A levels for gas and BTEX.

iv. West Excavation Sidewall:

Mark LaVergne of Tacoma Pierce County Health Department (TPCHD) was on-site on November 30 for a brief site visit. He mentioned that Fife Sand & Gravel informed him that the west sidewall might need additional detailed soil profiling, as the abandoned USTs were found in this approximate area. Field screening however did not indicate any presence of remaining impacted soil. The south end of the west sidewall was characterized with soil samples collected at approximately 6' to 8.5' bgs. All samples, WW-1 through WW-4, were non-detect for gas and BTEX.

As the removal of impacted soil continued at the north excavation end, in the former north fuel dispenser island area, the north end of the west wall was also excavated. Soil samples, Disp-WW-2 and Disp-WW-3 collected at 5' and 7' bgs, respectively, on the west wall after the impacted soil removal were non-detect of gas and BTEX.

v. North Excavation Sidewall:

As the removal of impacted soil proceeded north, the north excavation sidewall was also expanded approximately 25' to 30'. North of the former west dispenser island area, impacted soil appeared to be confined to within the top 8' to 9' bgs. The encountered impacted soil in this area also appeared to be not continuous with the soil plume found at the former west dispenser island area. Below 9' bgs, native soil was observed to be of clean brown clayey sand with no petroleum odor. Soil samples collected from the north wall between 5' and 7' bgs after removal of impacted soil were non-detect for gas and BTEX.

V. Contaminated Soil Disposal

Approximately 925 tons of gasoline hydrocarbon impacted soil were removed during the final site clean-up in November and December of 2000 and transported to the Olympic View Sanitary Landfill for treatment disposal. Soil disposal weight tickets are included in Appendix G. In addition, approximately 300 tons of contaminated soil were removed and disposed of at TPS Technologies in Tacoma in April of 1998 (TPS Soil Recycling Certificate is included in Appendix I). Thus, a combined total of 1225 tons of gasoline impacted soils were removed from the site for disposal treatment.

VI. Excavation Backfill and Test Pit Sampling:

As the laboratory results indicate, all accessible gasoline impacted soils were removed for disposal. The excavation south wall, approximately western half, is the only location with impacted soil left in-place. These impacted soils are directly located under the concrete sidewalk. The lateral extent of soil impact was not determined but assumed to be minimal due to the relatively dense native soil.

The excavated pit was backfilled and compacted to grade with the clean excavated stockpiled soils and new clean materials. The south sidewall was covered with polyethylene sheeting prior backfilling.

After the excavated pit was backfilled, the un-excavated area to the north was explored with three test pits to determine if there was any un-identified contaminated soils at or near ground surface. The test pits were placed at approximately 40' north of the northern edge of the former excavated pit, and about 25' apart. Field observations indicated no soil impact in any of the test pits. Soil samples were collected at 3' bgs at pits #1 and #3 (See Figure 2). Laboratory results were non-detect for gas TPHs and BTEX.

VII. Tank Disposal:

The original four removed USTs were assumed transported off-site and disposed of by Wes Pac Environemntal at the time of tank removal in 1996. However, there is no record of tank disposal receipt in the ALS Site Assessment Report.

The additional four discovered abandoned USTs were disposed of at Joseph Simon & Sons located at 2202 East River East, Tacoma, Washington. Disposal receipt is included with the report.

VIII. Field and Laboratory Methods:

During tank excavation, field screening was performed with a Tank Techtor, which measures the combustible volatile hydrocarbons. Soil samples were collected using the bucket of the trackhoe or with hand tools when applicable. Samples were taken from the undisturbed soil in the center of the trackhoe bucket and inserted directly into sample containers. For laboratory analysis, soil was collected into laboratory-provided pre-cleaned 4-oz glass jars with teflon lids, and samples were over-packed to minimize any head space. Water samples were collected into 40-ml vials with teflon lids. All samples were logged onto a sample chain of custody and stored in an ice cooler until delivery to the laboratory. Samples were lab-analyzed for gas TPHs and BTEX using

Washington State Methods NWTPH-Gx and EPA Method 8021B. Soil samples with elevated gasoline detection were also lab-analyzed for total lead using EPA Method 7000 Series.

Laboratory analyses were performed by Transglobal Environmental Geosciences Northwest, Inc. located at 677 Woodland Square Loop SE, Suite D, Lacey, Washington. Laboratory quality control parameters were within control limits. Analytical results are summarized in Table 1.

Table 1 - Final Site Clean-up Laboratory Data

Sample	Collection	· · · · · · · · · · · · · · · · · · ·	C. TDU	В	77.1	F. 11	
ID	Date	Description	Gas TPHs	Benzene	Toluene	Ethylbenz	Xylenes
SP1-1	11-29-00	Clean avaguated starts 1.1.1.1	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
SP1-2	"	Clean excavated stockpiled soil	nd ¹	nd	nd	nd	nd
SP1-3	11	71	nd¹	nd	nd	nd	nd
	"	11	nd¹	nd	nd	nd	nd
SP1-4	"	11	nd¹	nd	nd	nd	nd
SP1-5	"	"	nd	nd	nd	nd .	nd
SP2-1	"		nd ^{1, 2}	nd	nd	nd	nd
SE-1	11	Suspected clean sand at southeast corner of the lot	nd¹	nd	nd	nd	nd
WW-1	11-30-00	Main excavated pit, west wall, 7' bgs	nd	nd	nd	nd	nd
WW-2	17	West wall, middle, 8' bgs	nd	nd	nd	nd	nd
WW-3	11	West wall, south end, 8.5' bgs	nd	nd	nd	nd	nd
WW-4	*1	West wall, south end, 6' bgs	nd	nd	nd	nd	nd
SW-1	"	South wall, west end, 8' bgs	nd	nd	nd	nd	nd
SW-2	. 11	South wall, west end, 8' bgs	139	.08	.28	.5	1.26
SW-3	79	South wall, east end, 7' bgs	nd	nd	nd	nd	nd
EW-1	"	East wall, south end, 7.5' bgs	nd	nd	nd	nd	nd
NE-1	"	East wall, middle, 10' bgs	nd	nd	nd	nd	nd
NW-1	. "	Northeast area, 8.5' bgs	82	nd	.14	.1	.83
Bot-2	11	Excavation base, southwest corner, 10' bgs	nd	nd	nd	nd	nd
Bot-3		Removed contaminated soil from approx. middle of excavation base (10' bgs)	8,200 ³	8.5	22.6	32.7	156
Bot-4	11	Excavation base, west side, middle, 8.5' bgs	nd	nd	nd	nd	nd
Bot-6	••	Excavation base, east side, middle, 12.5' bgs	nd	nd	nd	nd	nd
Bot-7	17	Excavation base, southeast, 13' bgs	nd	nd	nd	nd	nd
SP2-2	11	Clean excavated stockpiled soil	nd	nd	nd	nd	nd
SP2-3		11	nd	nd	nd	nd	nd
EX-1	98	Hot spot from existing soil stockpile (removed for disposal)	246	.06	.8	.54	1.8
TP-1	11	Former tank pit, west wall, 11' bgs	nd	nd	nd	nd	nđ
TP-2	89 .	Former tank pit, north wall, 9' bgs	nd	nd	nd	nd	nd
Disp- Bot-1	12-1-00	Below former dispenser island, 14' bsg	nd	nd	nd	nd	nd
Disp- Bot-2	11	Below former dispenser island, east end, 12' bgs	nd	nd	nd .	nd	nd
Disp- EW-1	"	East wall, 9' bgs	nd	nd	nd	nd	nd
Disp- EW-2	"	East wall, 8' bgs	nd	nd	nd	nd	nd
Disp- EW-3	11	East wall, 5'	59	nd	.05	nd	1.4

						. ~	
Dips- NW-1	11	Northeast area of excavation, 8.5' bgs	nd	nd	nd	nd	nd
Disp- NW-2	,	North of former dispenser island, 12' bgs	nd	nd	nd	nd	nd
Disp- NW-3	"	North wall, 7' bgs	nd	nd	nd	nd	nd
Disp- WW-1	п	Excavated impacted soil west of former dispenser island	1800 ³	nd	.45	1.13	16.4
SP1-6	11	Clean stockpiled soil	nd	nd	nd	nd	nd
SP1-7	. "	n	nd	nd	nd	nd	nd
SP3-1	es	Suspected contaminated stockpiled soil (removed for disposal)	162	nd	.21	.65	1.42
SP3-2	"	0	74	nd	nd	nd	.44
SP3-3	11	" (removed for disposal)	198	.22	.93	.66	1.53
SP3-4	"	"	33	.23	.1	nd	.23
SP3-5	"	"	58	nd	nd	nd	27
Disp- Bot-3	12-5-00	Excavation base, west of former dispenser island, 8' bgs	nd	.11	.11	.07	.28
Disp- WW-2	"	West wall, northwest of former dispenser island, 7' bgs	.07	.05	nd	.18	nd
Disp- WW-3	**	NW corner, 5' bgs	nd	nd	nd	nd	nđ
Disp- NW-3	,	North wall, 7' bgs	nd	nd	nd	nd	nd
Disp- Bot-4	11	Excavation base, northwest corner, 9' bgs	nd	nd	nd	nd	nd
Disp- EW-4	11	East wall, north end, 7' bgs	nd	nd	.3	.11	.65
SC-SP1	"	Clean stockpiled soil	nd	nd	nd	nd	nd
SC-SP2	11	. 11	nd	nd	nd	nd	nd
SC-SP-3	12-6-00	11	nd	nd	nd	nd	nd
SC-SP4	11	11	nd	nd	nd	nd	nd
SC-SP5	"	ti	nd	nd	nd	nd	nd
SW-4	"	South wall, middle, beneath concrete sidewalk, 6'-6.5' bgs	nd	nd	nd	nd	nd
SW-5	"	South wall, middle, beneath concrete sidewalk, 8'-8.5' bgs	1200	1.2	1.5	4.8	13
Bot-8	11	Excavation base, 11.5'-12' bgs	nd	nd	nd	nd	nd
Bot-9	"	Excavation base, 12' bgs	nd	nd	nd	nd	nd
Bot-10	tr	Excavation base, southwest corner, 12' bgs	nd	nd	nd	nd	nd
Bot-11	11	Excavation base, west end, 12' bgs	nd	nd	nd	nd	nd
Near	12-11-00	Test pit #1, northwest corner of lot, 3' bgs	nd	nd	nd	nd	nd
Far	"	Test pit #3, northeast corner of lot, 3' bgs	nd	nd	nd	nd	nd
Exc-W	9-18-00	Water from excavated pit prior to site clean-up activities	nd!	nd	nd	nd	nd
Dis-W-1	11-30-00	Water from excavated pit during pumping	nd ¹	nd	nd	nd	nd
				1	1		

-	-	Method Detection Limit	S: 10 GW: 100 ppb	S: .05 GW. 1 ppb	S: .05 GW: 1 ppb	S: .05 GW: 1 ppb	S: .05 GW: 1 ppb
_		Current MTCA Method A	S: 100 ppm	S: 0.5 ppm	S: 40 ppm	S: 20 ppm	S: 20 ppm
L		Clean-up Level	GW: 1,000 ppb	GW: 5.0 ppb	GW: 40 pph	GW: 30 ppb	GW: 20 ppb

Note:

nd = Non-detect at the method detection limit.

S ... Denotes soil

GW ... Denotes groundwater

1... Samples were also non-detect for diesel and oil TPHs.
2... Sample was detected with total lead at 7 ppm, below MTCA Method A level of 250 ppm.
3... Samples were non-detect for total lead.

Table 2. Laboratory Data from Site Assessment and Prior Soil Excavation Activities

Sample	Collection	Description	Gas TPHs	Benzene	Toluene	Ethylbenz	Xylenes
ID	Date		(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
SW-7'	7-25-96	Former tank excavation south wall, 7' bgs	nd	nd	nd	nd	nd
B-1 10.5'	"	Below tank #1, 10' bgs	13	nd	nd	nd	nd
EW 5.5'	. "	East excavation wall, 5.5' bgs	18	nd	nd	nd	nd
B-2 10.5'	"	Below tank #2, 10.5' bgs	140	. nd	1.3.	1	3.6
B-3 10.5'	. "	Below tank #3, 10.5' bgs	nd	nd	nd	nd	nd
WW 7'	"	West wall, 7' bgs	640	nd	3.6	3.6	16
NW 6'	"	North wall, 6' bgs	30	nd	nd	nd	.3
B4 10.5'	**	Below tank #4, 10.5' bgs	700	. nd	4.4	8.1	22
SI 3.5'	"	Below product piping, 3.5' bgs	nd	nd	nd	nd	nd
WI 4'	"	Under dispenser island, 4' bgs	2500	10	nd	nd	nd
WP 4'	"	Under product piping, 4' bgs	nd	nd	nd	nd	nd
EP 3'	19	Under product piping, 3' bgs	nd	nd	nd	nd	nd
BGW	11	Water sample from tank excavation	25	.71	.3	.58	1.2
WI 8'	8-2-96	Under dispenser island, 8' bgs	140	nd	nd	, nd	1.4
SP 1	11	Excavated stockpiled soil	23	nd	nd	nd	nd
SP 2	11	tt ,	100	nd -	.47	.36	nd
SP 3	11	"	nd	nd	nd	nd	nd
Disp-Bot 3.5' 10'	4-14-98	Dispenser island excavation bottom, 10 bgs	2100¹	nd	nd	nd	11.7
Disp 4'- NW 8'	Ħ	Dispenser island excavation · north wall, 8' bgs	193 ¹	nd	nd	nd	1.16
DWP 4'isp-SW 6'	11	Dispenser island excavation 6' bgs	16 ¹	nd	nd	nd	nd
Disp-EW 7'10"	"	Dispenser island excavation east wall, 7' 10" bgs	680¹	nd	nd	nd	1.14
Disp- WW 9'	11	Dispenser island excavation west wall, 9' bgs	nd¹	nd	nd	nd	nd
Disp- EX1	11	Dispenser island excavated impacted soil	450 ¹	nd	nd	nd	2.73

Note:

All impacted soils as indicated in Table 2 above have been excavated for off-site disposal during subsequent site clean-up activities. Final confirmational samples results are listed in Table 1.

nd ... Non-detect at the method detection limit(s).

Data of samples collected on 7/25/96 and 8/2/96 were obtained from ALS Site Assessment Report dated August 19, 1996.

Refer to attached reports for method detection levels.

^{1 ...} Values reported as Intermediate Petroleum Distillate (IPD).

IX. Conclusion and Recommendation:

Field observations and laboratory data confirm all accessible gasoline impacted soils have been removed from the site for off-site treatment disposal. The only location where remaining soil is left in-place is the western half of the large excavated pit south sidewall along South 38th Street. The soil left in-place is located directly under the concrete sidewalk and is inaccessible for removal without alteration or removal of the concrete sidewalk. Relatively low levels of gasoline TPHs and trace levels of BTEX were detected in the remaining soil, which is believed to be very degraded soil associated with the abandoned USTs. The extents of soil impact appeared to be limited to a relatively dense gravelly sand seam at approximately 8' to 8.5' bgs.

Because no actual groundwater was present at the depth of soil excavation at the site and because of the relatively dense soil matrix at the depth where the impacted soil remains on the south sidewall, the potential for further contaminant migration of the left in-place soil is remote. In addition, because the remaining impacted soil is not near surface and is covered with polyethylene sheeting on the side and an impervious concrete layer at the top, the potential for un-planned direct human contact or exposure is low if not unlikely. Therefore, there appears to be no threat to human or the environment by the left in-place soil. However, additional characterization of the soil left in-place at a later time, such as when there is repair of or construction at the sidewalk that would render the soil accessible, is recommended.

X. Limitations:

This report has been prepared for the use of NAI's client, the Lams. The work was performed under an agreement between NAI and the Lams and in accordance with recommended guidelines established by Ecology for a UST site and clean-up standards established under the Washington State Model Toxics Control Act, and limited to the removed USTs only.

APPENDIX A

Site Map & Soil Sample Locations Figures

T. 20 N

1/2 0 . 1 MILE

SOURCE, USGS 7.5 MINUTE TOPOGRAPHIC SURVEY MAP OF SOUTH BEND, WASHINGTON QUADRANGLE PHOTOREVISED 1984

Site Address: 3733-3737 South 38th Street Tacoma, Washington

Figure 1. Site Location Map

APPENDIX B

DOE Abandoned UST Site Assessment & Closure Notice

-94 (Rev. 6-99)

: ✓ the appropriate box(es)

UNDERGROUND STORAGE TANK Closure and Site Assessment Notice

See back of form for instructions

☐ Temporary Tank Closure ☐ Change-In-Service	☐ Permanent Tank Closure ☐ Site Check/Site Assessment
Site Information Number N. A. ble from Ecology if the tanks are registered) usiness Name VACANT Street Idress 37-33-37-37-37-37 forth G sta ate Tatama WA de 784-01 Telephone ()	
	e-In-Service Company
Company WM DICKSON CO.	
	Decommissioning Certification No. 1038003 - 24
	Date <u>2 - 19 - 0 /</u>
Street	P.O. Box
TACOMA WA	98409 Telephone (253) 472 -4489
City State	Zip Code Telephone (233) 7+ 72 27+78
Site Check/S d Site Assessor MICHAEL LAM - s 33516 9TH AVE SOUTH Street FEDERAL WAY WA City State	
Tank Information	at the Time of Closure
KID Closure Date Closure Method Tanl ONED 11-29-01 REMOVAL N 300	Substance Stored Yes No Unknown Check unknown if no obvious contamination was observed and sample results have not yet been received from analytical lab. Yes No If contamination is present, has the release been reported to the appropriate regional office?

e this document in an alternative format, contact the TOXICS CLEANUP PROGRAM at 1-800-826-7716 (VOICE) OR (360) 407-6006 (TDD).

APPENDIX C

Photographic Documentation

Site in 1996, just after tank removal, looking southeast across South G Street.

During impacted soil removal in 1996 by NAI, former north dispenser island.

Impacted soil observed on excavated pit at former north fuel dispenser island, 1996.

North dispenser island excavated pit after soil removal, 1996.

3737 South G Street - Final Site Remediation

Nowicki & Associates, Inc.

Open pit prior to final soil clean-up. Note the accumulated water and abandoned USTs, looking east/southeast.

Excavated stockpiled soil before final site clean-up, looking east.

During pumping of excavation on November 29, 2000.

Existing excavated pit before final soil clean-up, looking toward South G Street.

Soil sampling locations on south wall of existing pit, 11-30-00.

Excavated pit before final soil clean-up, looking toward 38th South.

3737 South G Street - Final Site Remediation

Nowicki & Associates, Inc.

Southwest corner after impacted soil removal/soil sampling.

Soil sampling at west wall of excavation.

During soil excavation activity, looking northeast.

During soil characterization at the former UST removal pit, which had been backfilled by Fife Sand after assumed removal of impacted soil. Relocation of stockpiled soil over to asphalt parking lot.

Relocated stockpiled soil at the asphalt parking lot to the east.

Site looking from the southeast corner.

3737 South G Street - Final Site Remediation

Encountered impacted soil at northeast of excavation. Notice abandoned pipe in upper left of picture.

Impact soil removal continued at northeast corner.

After impacted soil removal at northeast area.

During removal of impacted soil at the north end of former north fuel island.

Soil removal continued at former fuel island.

North end of former fuel island after impacted soil removal, being lined with plastic to accommodate removed soil from south end.

Addition of removed impacted soil to plastic lined area.

South excavation wall after limited impacted soil removal.

After soil removal, looking at southeast corner.

Removed impacted soil being stockpiled at the north end, on plastic sheeting.

Excavation south end after impacted soil removal.

APPENDIX D

TEG Laboratory Reports with Gas Chromatograms for Final Site Clean-up Samples

TRANSGLOBAL ENVIRONMENTAL GEOSCIENCES NORTHWEST, INC.

800 Sleater-Kinney SE, PMB #262 Lacey, Washington 98503-1127

Mobile Environmental Laboratories Environmental Sampling Services

Telephone:

360-459-4670

Fax:

360-459-3432

December 14, 2000

Ron Nowicki Nowicki and Associates 33516 9th Ave. South Bldg. #6 Federal Way, WA 98003

Dear Mr. Nowicki:

Please find enclosed the analytical data report for the 38th & G Project in Washington State. Water samples were analyzed for Gasoline by NWTPH-Gx and BTEX by Method 8021B on December 14, 2000.

The results of these analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. An invoice for this analytical work is also enclosed.

TEG Northwest appreciates the opportunity to have provided analytical services to Nowicki and Associates for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Michael A. Korosec

President

TRANSGLOBAL ENVIRONMENTAL GEOSCIENCES NORTHWEST, INC.

38TH & G PROJECT Washington Nowicki & Associates, Inc.

Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8021B) in Water

Sample	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Gasoline	Surrogate
Number	Analyzed	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	Recovery (%)
Method Blank	12/14/00	nd	nd .	nd	nd	nd	96
Near	12/14/00	nd	nd	nd	nd	nd	85
Far	12/14/00	nd	nd	nd	nd	nd	103
Method Detection Limits		1	1	1	. 1	100	

"nd" Indicates not detected at the listed detection limits.
"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Chlorobenzene): 65% TO 135%

ANALYSES PERFORMED BY: Marilyn Farmer

CLIENT: MONNICK! & MESTOC.												DAT	E:_	//	2	<u>)</u>	- 2	200	0	_ P	AGE	<u>, , , , , , , , , , , , , , , , , , , </u>	· /	_OF _						
ADDRESS:														PRÓ	DJE	СТ	NAI	ME:	-	364 76										
PHONE:FAX:																									<u>uz</u>	. درسر	16			
CLIENT PROJECT # PROJECT MANAGER: 500									ړ. لل کۍ	7	COL	LE	СТ	OR:	L	,,,,	Ä	10	60	1021			DATE OF	F / CTION _	12	<u>}</u> -				
Sample Number	Depth	Time	Sample Type		1	وعه			//		~	***		//	/ ,	/,	//							OTES				Total Number of Containers		
MEAK 2. FAR.	<u></u>		Soic						V																				<u> </u>	
2. FAR.	3'			"					1		_	ļ		_		_				ļ <u>-</u>	ļ	1							<u> </u>	
<u>}.</u>					\vdash	-		_		\perp	ļ		_	 	ļ		-			ļ		 			·····		·		-	
									_	+	-	 	-	 • 	-		-			_	-	-							 	
), :						_							_	-	-														<u> </u>	
7							+			-					 															
·· · · · · · · · · · · · · · · · · · ·		-					T																							
).																														
0.																														
1											_	<u> </u>					-												ļ	
2.							+	_		_	_			<u> </u>	<u> </u>								ļ							
3.	-						++	-		-				-	-										.				ļ	
4. 5.	 						+			- 		ļ																		
6.	-		· · · · · · · · · · · · · · · · · · ·					_	_	+		-	`	 								 							-	
7.																									•					
8.																														
ELINQUISHED BY (Signa	iture)	DA	TE/TIME	RECEIVE	ED BY	∕ (Sign	ature)		DATE	/ŢIME	4				MPLE							_ \	ABORATO)RY NO	OTES:					
winds Experien 1100/11:00 Jmm(1) 11/10/0						الا	TOTAL NUMBER OF CONTAINERS						ļ	\dashv																
ELINQUISHED BY (Signa	iture)	DA	re/TIME	RECEIVE	ED BY	/ (Sign	ature)		DATE	TIME	1			CUS			ALS	Y/N/	NA_			_								
· · · · · · · · · · · · · · · · · · ·	SA	MPLF	DISPOSA	L INSTRUCT	ION	<u> </u>					F	ECE	VED	GO	OD C	ONE)./CO	LD						•				٠		
										1	NOTES: Turn Around Time:																			

800 Sleater-Kinney SE, PMB #262 Lacey, Washington 98503-1127

Mobile Environmental Laboratories Environmental Sampling Services

Telephone: 360-459-4670 Fax: 360-459-3432

December 8, 2000

Michael Lam Nowicki and Associates 33516 9th Ave South, Bldg. #6 Federal Way, WA 98003

Dear Mr. Lam:

Please find enclosed the analytical data report for the 3733 - 3737 South G Street Project in Tacoma, Washington. Soil samples were analyzed for Gasoline by NWTPH-Gx and BTEX by Method 8021B on December 6 & 7, 2000.

The results of these analyses are summarized in the attached tables. All soil values are reported on a dry weight basis. Applicable detection limits and QA/QC data are included. An invoice for this analytical work is also enclosed.

TEG Northwest appreciates the opportunity to have provided analytical services to Nowicki and Associates for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Michael A. Korosec

Michail a Korone

President

3733 - 3737 SOUTH G ST PROJECT
Tacoma, Washington
Nowicki & Associates, Inc.

Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8021B) in Soil

Sample	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Gasoline	Surrogate
Number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Recovery (%)
Method Blank	12/7/00	nd	nd	nd	nd	nd	106
SW-4	12/7/00	nd	nđ	nd	nd	nd	130
SW-5	12/7/00	1.2	1.5	4.8	13	1200	int
BOT-8	12/7/00	nd	nd	nd	nd	nd	86
BOT-9	12/7/00	nd	nd	nd	nd	nd	107
BOT-9 Dup.	12/7/00	nd	nd	nd .	nd	nd	94
BOT-10	12/7/00	nd	nd	nd	nd	nd	106
BOT-11	12/7/00	$\mathbf{n}\mathbf{d}$	nd	nd	nd	nď	112
SC-SP3	12/7/00	nd	nd	nd	nd	nd	80
SC-SP4	12/7/00	nd	nd	nd	nd	nd	84
SC-SP5	12/7/00	nd	nd	nd	nd	nd	112
Method Detection	Limits	0.05	0.05	0.05	0.05	10	

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Chlorobenzene): 65% TO 135%

ANALYSES PERFORMED BY: Tim McCall

[&]quot;int" Indicates that interference prevents determination.

CLIENT: Now	nile:		#14(2.	Î.i.						-			 ΤΔΤ	- <u>-</u>	17.	16/	C/ N		•	PΔ		·		.OF		
ADDRESS: 33				,		C									•	,							•	1. G		
ADDRESS.			 	: 14		<u> </u>	7:4	_/\//_)		<u> </u>	.5 1											101 H	L. 50		
PHONE: 253	(12)	7	5255	F/	۹X:		(5	944	(+03	2 3	3	. ι	-00	CATIC	N: _	į	<u> </u>	<u>,)2</u> ~ .	<u> </u>		15.7	4				
CLIENT PROJECT	T #:			PROJE	СТ	MAN	IAGE	R: <u>//</u>	dud		-Com	.	COL	LEC	ror:		11/1	<u> </u>	·	********				DATE OF	л <u>12/</u>	
Sample Number	Depth	Time	Sample Type	Container Typ	27	ANT SE	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	desoit (A)	SOLVE SOLVE	0/0/0	88 de la	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							NC	OTES			Total Number	of Containers Laboratory Note Number
NW-4		1/40	Sal	40-										1	1										1	-
: SN-5		141	(,											/										1/	
1. 1.01 - 3 1. 1.01 - 9		1650) .										1	1
. too - 1		1640		1																					77	
1. 100T - 10		263																								
1. 307 - 11		205												(
· SC-183		1. H.,																								
1. SC-S\$ (c		2 19)											(-			
1 30-175		حقد الأوارية سرز		V											/										V	
0.			1.																							
1.			-																							
2.																										
2. 3.																										
4.																										
5.]													
6.																										
7.																										
8.	<u> </u>																									
ELINQUISHED BY (Signa	ture)	DA	TE/TIME	RECEIV	ED BY	Y (Sign	ature)	D //	ATE/TII	ME			SAN	APLE R	ECEIF	Υ	<u>.</u>			LABO	DRATC	RY NO	TES:			
Hallak - 12	4 6	12/6/	(O) 3	por Jus	nr	nl (all	1474		3 s	TOTAL	_ NUN	JBEF	R OF C	IATAC	NERS	S			2	1.1/2 -	110	-	TA-	i	
ELINQUISHED BY (Signa	ture)	DA	TE/TIME	RECEIV	ED BY	(Sign	ature)	D	ATE/TI					TODY S		Y/N/I	NA 	\dashv			1					
								 -			 			DD CON		N D		\dashv		}						
				L INSTRUCT									300							_		. =-				
	TEG DIS	SPOSAL	@\$2.00	each 🛭 Rei	um 🗀	J Pici	kup				NOTE	S:								furn.	Around	Time:				

3733-3737 SOUTH G STREET PROJECT Tacoma, Washington
Nowicki & Associates

Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8021B) in Soil

Sample	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Gasoline	Surrogate
Number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Recovery (%)
Method Blank	12/6/00	nd	nd	nd	nd	nd	90
DISP-Bot-3	12/6/00	0.11	0.11	0.07	0.28	nd	81
DISP-WW-2	12/6/00	0.07	0.05	nd	0.18	nd	111
DISP-Bot-4	12/6/00	nd	nd	nd	nd	nd	91
DISP-NW-3	12/6/00	nd	nd	nd	nd	nd	101
DISP-WW-3	12/6/00	nd	. nd	nd	nd	nd	107
DISP-EW-4	12/6/00	nd .	0.3	0.11	0.65	nd ·	121
SC-SP1	12/6/00	nd	nd	nd	nd	nd	109
SC-SP-2	12/6/00	nd	nd	nd	nđ	nd	105
Method Detection	Limits	0.05	0.05	0.05	0.05	10	

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Chlorobenzene): 65% TO 135%

ANALYSES PERFORMED BY: Marilyn Farmer

[&]quot;int" Indicates that interference prevents determination.

CLIENT: Voi		- <u> </u>	$\langle \rangle$	HSS	GC2 -2	<i>.</i>			- 11								1 :	» /	· /	. ()					
							~				 -	,			1			*				•	PAGEOF	·	
ADDRESS:		,			- 6		ed	1)0	1			/(U	-	·									3717 Soll 6	Street	E.F
PHONE: 253	92	7 -	<i>52</i> 3	3	_ FA	X : .	2	53	9	2.4	1 0	37	3	_	LC	CAT	ΓΙΟΝ	l:	<u> </u>	1/1	<u> </u>	ردةر	1073		
CLIENT PROJECT	#:			PR	OJE	CT	MAN	IAGI	ER:_	1/1 +	ulc	4.	<u></u>	2_	-€(OLLE	ECTO	DR:		111			DATE OF COLLECTION	N12/	5/6
Sample Number	Depth	Time	Sample Type	Containe	er Type	ar v	AL SO	10/2 801/8 801/8	STO STORY	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	20 /2 20 /2 20 /2	S GREAT TO	S S S S S S S S S S S S S S S S S S S	10 00 00 00 00 00 00 00 00 00 00 00 00 0	\$ 08°	des all	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		100	//			NOTES	Total Number	Laboratory Note Number
1 A 1. 50T - 3		150	126	1-4-0	ت کے												V							1	
1.10 HH-2-		11/5	/	/				\perp	<u> </u>							_	1/_							1	
17. Sp. KT-4		71-	<u> </u>	 			_ _		<u> </u>				\perp	\perp	_		1							$\downarrow \downarrow$	
100 1 HILL S	نئت	1250			·			 	ļ			_	_		_		1/	ļ						11	
105 NH-3 166 EH-4		1	- (-						_		\downarrow							$\downarrow \downarrow$	
. USC 1 = N - 4		105					_	***	 			_	_		_		15-							\rightarrow	4-4
		1102	1	 \			-	+-						_			1				_		1) o text too		4-1
. 50182		4		1. 1/2				+							+	_	14		-		-		first med	14	-
								+				+	-	_	-					-		_	1 952 175 by		+
4						\dashv	\dashv	+					\dashv	-	+					-	-	+	There is a second of the secon		+
2						$\neg \dagger$	+	+-					\dashv	_	-		-			-	+		Henceks		+-1
3.						_		†					+	_	\top	_	+-			-			the rest need		1
4								1						\neg	1						_			7	+ 1
5.														\dashv						1			lay afternoon	- -	
6.																									
7.																									
3.																									
ELINQUISHED BY (Signatu	re)	DAT	E/TIME	RE	CEIVE	D BY	/ (Sigr	ature	_مِ	DA	TE/T	MĘ	<u> </u>			AMPL						[ABORATORY NOTES:		
Killedon - N	43	121	5/10	多书	۔۔۔۔در	\mathcal{Q}	بالمرك		المستعدار	1		7 Y	<u> </u>			BER O						_	-n-		
ELINQUISHED BY (Signature) DATE/TIME RECEIVED BY (Signature) DATE/TIME								ME	 			USTO		ALS	Y/N/N	VA.	+	\dashv	24 the TATE	. ^					
	CAI	UDI E r	DISPOSA	I INST	DUCT	IONS		t								OOD		./CO	LD		+		1775 1 1012,21g-		
			@ \$2.00					kun					 	TES:						· ·	_		um Around Time:	ţ	

		. 1	•	_																									
CLIENT: Now	<u>uci</u>		HUR	- , In					·			_	DA ⁻	TE:_	/.	z/1,	<u>/(_0</u>				. P	AGE.		1)F			_
ADDRESS: 335	16	<u> </u>	Lie +	He S #	t 6	Fa	1/1	<u> </u>	WA	18	003	-															Eef-		-
PHONE: 255 4	727	52	2.3	FA	x: <u>∠</u>	53	929	(03	23		_	LO	CAT	ION	l:	1.	2 ح م)- <u>\</u> .q			1014							_
CLIENT PROJECT	#:			PROJE	СТ М	IANA	GER	://.	1/10	<u> </u>	(CDM	-	СО														ON 12/4	1/00	2
Sample Number	Depth		Sample	Container Type			& /s	7 7		/-/	/ /			OTAL OTAL	ing)	T A							NOTE	ES.			Total Number	Laboratory	Note Number
1. DISP-80T-1	 	1225	Jel C_	4.07					[.]						V												1		_
2. Drsg - BOT-Z 2. Drsg - EN-1 1. Drsg EN-Z		123	/	,											1										-		1		
3. 100V-EN-1		ر ځ ن ا									(
1. Dring EN-2-		225	(1												1/						
i DISPEN-3		240	\ \ \ \ \												1														
1. DO 7-NU-1		128		/											\prod														
1. BCV. NO -2-		210																									\Box Z		
1. DISU. NA - 3		2 58))																									
1 Day - MW-1		() ()	-																										
0. 15P1-6		315	()								T	T		17											•			
0. SPI-6 1. SPI-7		7,16	(
2 583-1		2.8 2.0	7												П								_				7		
3. 583-2 4. 583-3 5. 583-4		3)																								7	T	
4. \$73.3		3)																										
5. SP3-4		312	1/2												3.														
6. JP3-5		: 77 B	<u>,</u>	V								L,			4					•							V		
7.																								v					
В.														<u> </u>															
ELINQUISHED BY (Signature) DATE/TIME RECEIVED BY (Signature) DATE/TI													SA	MPL	RE	CEIP	<u> </u>		_		بال	BORA	TORY	NOT	ES:				
deallan DHY	Kedlan DAY 10/1/10 4 for Jun MCall 12/11/05 410												UMBE	R OF	CO	NIAIN	VERS		_		_								
ELINQUISHED BY (Signat	3467 - 34												F CUS	STOD	Y SE	ALS	Y/N/N	Α .	_		4								
•													NTACT	? Y/N	I/NA				_		_								
	SA	MPLE I	DISPOSA	L INSTRUCT	IONS						REC	EIVE	D GO	00 0	ONE)./CO	LD												
	TEG DIS	POSAL	@ \$2.00	each 🛭 Ret	um 🗆	Picku	ip				NOT	ES:									Tu	rn Arol	und Ti	me:					

•••••••••

800 Sleater-Kinney SE, PMB #262 Lacey, Washington 98503-1127

Mobile Environmental Laboratories Environmental Sampling Services

Telephone: 360-459-4670 Fax: 360-459-3432

December 11, 2000

Michael Lam Nowicki and Associates 33516 9th Ave South, Bldg. #6 Federal Way, WA 98003

Dear Mr. Lam:

Please find enclosed the analytical data report for the 3733 – 3737 South G Street Project in Tacoma, Washington. Soil samples were analyzed for Pb by Method 7420 on December 6, 2000.

The results of these analyses are summarized in the attached tables. All soil values are reported on a dry weight basis. Applicable detection limits and QA/QC data are included. An invoice for this analytical work is also enclosed.

TEG Northwest appreciates the opportunity to have provided analytical services to Nowicki and Associates for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Michael A. Korosec President

3733-3737 SOUTH G STREET PROJECT Tacoma, Washington

Nowicki & Associates

Heavy Metals in Soil by EPA-7000 Series

		Lead (Pb)	
Sample	Date	EPA 7420	
Number	Analyzed	(mg/kg)	
Method Blank	12/6/00	nd	
Disp-Bot-3	12/6/00	nd	
Disp-WW-1	12/6/00	nd	,
Method Detection Li	mits	5	

"nd" Indicates not detected at listed detection limits.

ANALYSES PERFORMED BY: Sherry Chilcutt

3733-3737 SOUTH G STREET PROJECT Tacoma, Washington
Nowicki & Associates

QA/QC Data - Total Metals EPA-7000 Series Analyses

		Sa	mple Number:	Re-Sample			
		Matrix Spike		Ma	trix Spike Dup	olicate	RPD
	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)	(%)
Lead	250	202	81	250	202	81	0.0
	Labora	atory Control Sam	ple	-			
	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)				
Lead	250	244	98				

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Sherry Chilcutt

CLIENT: NOI	rik,	-4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	أ ب	٠.٠٠							DAY	·····	171							
ADDRESS: 37	16		U.	AL (11	1.	11		:1 /			UMI	C	1-1	<u> </u>	<u>o</u>		PAGE/	OF		
			·		7.6		سل		71 1	13.60)	ا ځ	PRO	NEC	TNA	ME:	-57	755-	3727 304	1- 54	Est	
PHONE:	16 7		<u>ئىر ئ</u>	!	AX:	<u> کە كەنە</u>	911	6	<u>ئ. ش</u>	\$		LOC	ATIC)N:	T.	 		1.32-			
CLIENT PROJEC	T#:_	· · ·		PROJ	ECT I	MANA	GER	1/1	pis	1/10	2	COL	TEC	TOR:		.7. ¿_			DATE OF	17/4	100
Sample Number	Depth	Time	<u> </u>	Container Ty	23	10 / S		() () () () () () () () () ()	ST. ST.		, so/	//			, to	195				Number	قع
10: 10: -1	 		1.36	4 07						\coprod			7,	1	\prod		11	NOTES		2.2	25
11 F. 121 -	+	3.3		 				$\bot \bot$	_ _											+	H
10/2 EN-1	 	, ()	 	 						\coprod										1/1	
	1	1 4 20	 \	 	+-+-			++		+			-1/							+>+	
132-111-1		138		 	┿					┨—┤				1						1	\neg
سسد فراه أأناه		11.2	-		++	++	- -	╀╌┼╴		-			$-\!$	-		_				11	\neg
11 11.1-j		25	1	 	+	++	+-	╂╼╂╌		╂┼-		╁╼╁			-					1)	7
111-11-1		13.00		1	1-1-	11			-{-	-						-	1			1)	\neg
141-6	1. 1	617	(1	11	-	 	-		-\	┝╼┾	-+	+	1	4		24-Hr	TAT	\mathcal{T}	
541-7		74	7		1	11	+	 - -	+-	-		 		╂═╂							
311-1						11			+-	 -	-		-1)	1		-		 			
11112		5 1		7		11			+		+	-	+	++							
11:3							1.		+-1		-		++	╂─┼	-					1/1	
523.4		, -	1			11			1	_	+-1	-	+	╁┯┼	+	+-+				11	
)13-5		1	V	V					1-1	1	1-1	+	1	+	+	++			-	131	_
									1-1	1	1-1		-	1-1	-	+-+				V	_
NO II O I I O I									7		1-1		_	╅╌╂	_	+-+	_	 			\dashv
VOUISHED BY (Signato	ure)	DATI	E/TIME	RECEN	ED BY	Signatu	(0)	DATE	TIME	I		SAMP	LE RE	CEPT	<u></u>		-4.	AROBATOTHE		<u> </u>	_
Chan Dis	- 1-1	1/13	y hp	Jon	MU	W	1211	,,, '4(<u>ى</u>	TOT	AL NUA					_		ABORATORY NOTE:	S :		1
NOUISHED BY (Signate	(6 1	DATE	TIME	RECEIV	ED BY (Signatu	o)	DATE		1.	IN OF (1
										SEA	S INT	VC77 Y	'NNA				-1				
				WSTRUCT						REC	EIVED	GO00	CONE)/COL	ַם,	==	= -	·	Hr 6)	
	EG DISP	OSAL (\$2.000	ech [] Rel	um D	Pickup				NOT	ES:						7,	#m Around Time:	y-thr E	دیس ایس کرمزر	

			Seoscie	VCE2																- -					I	J.Ma	•
CLIENT: 1345	K. Z	1	سمود	Tille									T	DAT	E:	111	<u>خ</u> ن	()		_ PAGE_)		ne	1]
ADDRESS: 3													5								- 1.40 - 1.40				<u> </u>		
PHONE: ركت ي	727	52	<u> </u>	FA	X:	22	27	24	0=	223	<u>`</u>			oc	ATIC	DN:	-	1.7	درن	ルて	10/4						
CLIENT PROJEC								-					1										0	ATE OF	143	2/00	
Sample Number		Time .	Sample Type	Comminer Type	The state of the s		\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			10 S					10 /4 /4 /4 /4 /4 /4 /4 /4 /4 /4 /4 /4 /4					a	N.	OTES	7		Total Number of Containers	aboratory lots Nilmber	
1. Wit-1	7		136	407												V	7	1	1			<u>5,65</u>	·	·	1	12	
2. 1412-3	14.5															<i>i</i>								~	+,		İ
3.100-4	£"		-					\perp								V								·	1		
4. 1 - 1	-		<u>'</u>	· ·		_ -	$\bot \bot$	4	1_			_	\dashv	_		11	\bot								\prod		ļ
5. 11 - 2- 6. 11 - 5	1							-	1		_		_	_	_	\sqcup		1	1								ļ
7. h/N-2	7		•					\bot	-		_	_	_	_		11			1								
8. E/1-1			\	,					-		\dashv	_	_		_	44	_		1_	_							
8. E/1-1 9. Nie-1	3.5						 		 	-	-	_	4		_	\Box	\perp	_	_		_	· · · · · · · · · · · · · · · · · · ·					
10. 1 ! ! - 1	10			}				-	-									\bot	-	<u> </u>					17.		
11.507-4	10'			-/	-			+	┼	┝		_			-	}-	-			 			•		1/_		
12. 117-2	1,		-}-			+		+-	╂	\vdash	\dashv	-	-	\dashv	-	\leftarrow	- -		J-	-					14	_	
13. 507 - 4	1			-	-			+	┼─		-	+	-			\leftarrow	+	K	-	<u> </u>	24.	-#~	181		1/ 1		٠
14. 65-6	12.5				-	+	-	+-	┼	\vdash	-+	-	-	-		4	+	- -	-	-	 				4}		
15, 1/51 - 7	13.1	~	-	\	-		 -	+	+	\vdash	\dashv	-+	+	-+	+	{ -	+	+	+		 				4-		
16. 12.	1 - 1		-		+			-	+		\dashv	\dashv	+	+		f +	+	+	+		 				+		
7. 12-2)		\dashv			+-	 		+	-+	-	\dashv	-	-	+	+-	+		<u> </u>				+1		
8. : X - 1		1	7/	V		+		十	1-		\dashv	$\neg \uparrow$	-	-	+	 	+-	+	+-						1		
RELINCUISHED BY (Signal			E/TIME	RECEIVE	O 8Y	(Signs	akire)	ם	ATE/	DME	T			SAM	PLE !	ZECZ			٠		LABORATO			<u></u>	11		
Hukedle in	ا سرکھا	110	, 7	1112 1	(11)	M	(1,0	1	5.0	7.:	10	TAL			OF C			RS		 		JICT INC	· 163;				
IEUNOUISHED BY (Signa	pre)	DAT	ETIME	RECEIVE	D BY	(Signa	ibure)		ATE/I		[CH	AIN (OF C	UST	YOO	SEAL	S YA	MA								ł	
								,			8E	ALS.	INTA	CT7	YANA	<u> </u>								11 -	i	į	
													ĐΙ	300	0 00	NO X	2000]		24	HY.	14		
0												TE8:									Tum Aroun	id Time:	हर्या	crd :	pola	75	

: 5

3733-3737 SOUTH G STREET PROJECT

Tacoma, Washington Nowicki & Associates

Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8021B) in Soil

Sample	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Gasoline	Surrogate
Number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Recovery (%)
Method Blank	12/4/00	nd	nd	nd	nd	nd	97
Method Blank	12/4/00	nd	nd	nd	$\mathbf{n}\mathbf{d}$	nd	93
Disp-Bot-1	12/4/00	nd	nd	nd	nd	nd	98
Disp-Bot-2	12/4/00	nd	nd	nd	nd	nd	100
Disp-EW-1	12/4/00	nd	. nd	nd	nd	nd	100
Disp-EW-2	12/4/00	nd	nd	nd	nd	nd	84
Disp-EW-3	12/4/00	nd	0.05	nd	1.4	59	94
Disp-NW-1	12/4/00	nd	. nd	nd	nd	nd '	133
Disp-NW-1 Dup.	12/4/00	nd	nd	nd	nd	nd	94
Disp-NW-2	12/4/00	nd	nd	nd	nd	nd	98
Disp-NW-3	12/4/00	nd	nd	nd	nd	nd	111
Disp-WW-1	12/4/00	nd	0.45	1.13	16.4	1800*	int
SP1-6	12/4/00	nd	nd	nd	nd	nd	96
SP1-7	12/4/00	nd	nd	nd	nd	nd	97
SP3-1	12/4/00	nd	0.21	0.65	1.42	162	102
SP3-2	12/4/00	nd	nd	nd	0.44	74	int
SP3-3	12/4/00	0.22	0.93	0.66	1.53	198	105
SP3-3 Dup	12/4/00	0.18	0.76	0.9	1.86	173	100
SP3-4	12/4/00	0.23	0.1	nd	0.23	33	int
SP3-5	12/4/00	nd	nd	nd	0.27	58	90
Method Detection L	imits	0.05	0.05	0.05	0.05	10	

[&]quot;*" Indicates possible mineral spirits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Chlorobenzene): 65% TO 135%

ANALYSES PERFORMED BY: Marilyn Farmer

[&]quot;nd" Indicates not detected at the listed detection limits.

[&]quot;int" Indicates that interference prevents determination.

800 Sleater-Kinney SE, PMB #262 Lacey, Washington 98503-1127

Mobile Environmental Laboratories Environmental Sampling Services Telephone: 360-459-4670

Fax:

360-459-3432

December 5, 2000

Michael Lam Nowicki and Associates 33516 9th Ave South, Bldg. #6 Federal Way, WA 98003

Dear Mr. Lam:

Please find enclosed the analytical data report for the 3733 – 3737 South G Street Project in Tacoma, Washington. Soil samples were analyzed for Gasoline by NWTPH-Gx and BTEX by Method 8021B on December 1, 2000.

The results of these analyses are summarized in the attached tables. All soil values are reported on a dry weight basis. Applicable detection limits and QA/QC data are included. An invoice for this analytical work is also enclosed.

TEG Northwest appreciates the opportunity to have provided analytical services to Nowicki and Associates for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Sherry L. Chilcutt

Vice President

3733-3737 SOUTH G STREET PROJECT Tacoma, Washington Nowicki & Associates

Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8021B) in Soil

Sample	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Gasoline	Surrogate
Number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Recovery (%)
Method Blank	12/1/00	nd	nd	nd	nd	nd	100
WW-1	12/1/00	nd	nd	nd	nd	nd	116
WW-3	12/1/00	nd	nd	nd	nd	nd	80
WW-4	12/1/00	. nd	nd	nd	nd	nd	114
SW-1	12/1/00	nd	, nd	` nd	nd	nd	104
SW-2	12/1/00	0.08	0.28	0.5	1.26	139	124
SW-3	12/1/00	- nd	nd	nd	nd	nd	104
WW-2 *	12/1/00	nd	nd	nd	nd	nd '	108
EW-1	12/1/00	nd	nd	nd	nd	nd	97
EW-1 Dup.	12/1/00	nd	nd	nd	nd	nd	108
NE-1	12/1/00	. nd	nd	nd	nd	nd	108
NW-1	12/1/00	nd	0.14	0.1	0.83	82	103
BOT-2	12/1/00	nd	nd	nd	nd	nd ·	108
BOT-3	12/1/00	8.5	22.6	32.7	156	8,200	int
BOT-4	12/1/00	nd	nd	nd	nd	nd	103
BOT-6	12/1/00	nd	nd	nd	nd ·	nd	114
BOT-7	12/1/00	nd	nd	nd	nd	nd	116
BOT-7 Dup.	12/1/00	nd	nd	nd	nd	nd	100
SP2-2	12/1/00	nd	nd	nđ	nd	nd	96
SP2-3	12/1/00	nd	nd	nd .	nd	nd	101
EX-1	12/1/00	0.06	0.8	0.54	1.8	246	int
ΓP-1	12/1/00	nd	nd	nd	nd	nd .	106
TP-2	12/1/00	nd	nd	nd	nd	nd	93
Method Detection	Limits	0.05	0.05	0.05	0.05	10	

'nd" Indicates not detected at the listed detection limits.
'int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Chlorobenzene): 65% TO 135%

ANALYSES PERFORMED BY: Marilyn Farmer

CLIENT: <u>Voint</u>	Ki g	<u>#</u>		Inc.										DATI	Ξ:_	11]	<u> </u>	⊅ c	. <u>U</u>			PA	AGE	1	0	F_2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
ADDRESS: 3/3	5/6	qt.	AUE J	46	Fid	LU,	į.	Ħ	98	200	نا		F	RO	JEC	T J	NAN	ЛE:	33	72	3.	: در سد	7737) (0)	Hi	6	5 7 :	
PHONE: 252						- :7							1										0H					
								- 6													,							
CLIENT PROJEC	T#:		·	PROJE	ECT	MAN	AGE	R: <u>!!</u>	1.18.1	1 1	614	<u> </u>	C	OL	LEC	OTC)R:_		11.6	<u></u>					_ COI	LECTION	11/3	900
Sample Number	Depth	Time	Sample Type	Container Typ	e Ar	ANT SE	\$0,66 \$0,66 \$0,66		\$10 \ \$10 \	15 88 15 15 88 15 15 88 15	TO SUBSIDIA	2000 2000 2000 2000	8 8	spicide.	SON THE PERSON NAMED IN PROPERTY OF THE PERSON NAMED IN PROPER	/ 80/				//		//	NOT	FQ			otal Number of Containers	Laboratory Note Number
. WW-1	7		SE	16-07	1 I				7												_		1101				1	
1 WW-3	5.5		,	,												/										· · · · · ·		
1. WN - 4 1. WN - 4 1. MN - 1 1. MN - 2 1. MN - 2 1. MN - 2 1. EN - 1 1. NE - 1 1. BOT - 2 2. 807 - 4 4. BOT - 6	('																											
1.91-1	5																											
1. 577-2-			,																									
1. SH - 3	7		<u> </u>			_																						<u> </u>
· WW-2-	9.5		<u> </u>	<u> </u>			1_1		_ _							4								·····			14	ļ
1. EH-1	7.5		<u> </u>	(1		1 1		<u></u>							\int				_							4	<u> </u>
1. NE-1	10'		/		-		4			_						}				_			······		·		17-	ļ
0. 1313 - 1	- Let						1-1								_	$\langle \ $	_				_		· · · · · · · · · · · · · · · · · · ·				1/_	
1. 807 -2.	10'		-	(-								\dashv		_												1	<u> </u>
2, 50/=	// /			<u> </u>	1											/				_	_						1/_	-
3. 301-4	5-1		_				1				_					-				\dashv	\dashv				·	······································	4)-	
4. 501 6	14.5		}	 	-					-						+							····				4	 -
5. 201 - 7	13'			/	-		╁╾┼			-		\dashv	$\overline{+}$			+		\dashv	-								$+\leftarrow$	
4. 507 - 6 5. 507 - 7 6. 582 - 2 7. 182 - 3	-		} -	- (-	+		┼┼	-	-	\vdash				\dashv	-+	$\{-\}$				-							+	
8. EX -1	$\frac{172-2}{6X-1}$									\vdash			\dashv			1,1					\dashv		·····	· · · · · · · · · · · · · · · · · · ·	<u> </u>		+	
	QUISHED BY (Signature) DATE/TIME RECEIVED BY (Signature) DA										7-1-			SAM		REC	FIPT	 r		-		<u> Ι</u>	BORATORY	V NOTE	: Q ·			<u></u>
Till all	alle 107 11 30 65 Fm Jun MC(all s											TAL		BER						\top		1	MA			5,00	20)	Russ
ELINQUISHED BY (Signa												IAIN	OF (CUST	ODY	SE	ALS Y	//N/N	IA]	() wo	X (1)	7/ 5	1		
•												ALS	INTA	CT?	Y/N/	NA												
	SAMPLE DISPOSAL INSTRUCTIONS											CEI	/ED	GOO	D CC	DND.	./COL	.D			-							}
	SAMPLE DISPOSAL INSTRUCTIONS ☐ TEG DISPOSAL @ \$2.00 each ☐ Return ☐ Pickup											TES	:									Tu	m Around T	ime:				

CLIENT:	12-														DAT	E:_		5.	li j	े व	<u>U-</u>	0	. P	AGE	OF	2		
ADDRESS:																								· 3+3+				
														- 1					مستر									
PHONE:				FA	X:					, .		. ,												/\ H-				
CLIENT PROJEC	T #:	-		PROJE	СТ							ر <u>ل</u> مد.	117		COL	LE	CTC	OR:			111	۷			DATE OF COLLECTION	on <u>4</u>	<u>خــــ/</u>	g/ι
Sample Number	Depth	Time	Sample Type	Container Type	7	HALY S	10 10 10 10 10 10 10 10 10 10 10 10 10 1	0 80 80 W	SO SO	10 XXXX	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Spire S	AS OF	0 / 8 0 / 8	382 de	STAL S					//	//		NOTES		Total Number	of Containers	Note Number
TP-1	11.		136	4-02-	_							_					X									i		
TP-2	11.1		ļ.	7	_			_	1	_		_		.	_		4		<u> </u>				<u>. </u>				\perp	
				ļ	<u> </u>			_	\perp			ļ	_	<u> </u>	<u> </u>				<u> </u>						·		_	
 	_				ļ		-	_	1	1	-		-	_					ļ						·			
					ļ				+	-	<u> </u>		-	_							-							
·	1		<u> </u>		-		-	-	+	-		┼	 	├	-			-	ļ	<u> </u>							_	
					-		-	-	_	-	+	-	-	-					 									
 				!			+			-	+-	_	ļ	ļ												-	-	
·						-	\dashv		+	+	+-	-	-	-				ļ								_		
4									+	+-	+	\vdash		-														
2							-	+	+-	 	 	+		<u> </u>				ļ							·	+	+	\dashv
<u>2. </u>	$\dagger = \dagger$					_	_	-	+	†		†		-					-							-	\vdash	\neg
<u>4</u> .		-				$\neg \dagger$	1		+	\dagger		1														_	_	
5,				· · · · · · · · · · · · · · · · · · ·					1	1		T^-															+	
6.														Ţ														\neg
7.																												
3.																												
ELINQUISHED BY (Signa	ature)	DA	TE/TIME	REÇEIVI			73		D	ATE/	TIME	\bot			SAN	IPLE	RE	CEIP	Т				JV	ABORATORY NOT				
HUKaller NA	2 11	30/00	5 T	m Mi	4.1	y: (/)	<u>al</u>	2	.,,	51					MBEF								_	(XM14 2)	that in	, :	<u>)</u> (2004)	٠.,
ELINQUISHED BY (Signa	iture)	DAT	TE/TIME	RECEIVE	D B	Y (Sig	natu	re)	D.	ATE/		70	HAIN	OF	cus.	TOD	SE	ALS	Y/N/	NA				**************************************	/			
												s	EALS	SINT	ACT?	Y/N	/NA						1		,			
	SAI	MPLE (DISPOSA	L INSTRUCT	ION	s						R	RECEIVED GOOD COND./COLD															
	TEG DIS	POSAL	@ \$2.00	each 🛭 Ret	urn [J P	ickup					N	OTE	S:									Tu	ım Around Time:				İ

800 Sleater-Kinney SE, PMB #262 Lacey, Washington 98503-1127

Mobile Environmental Laboratories Environmental Sampling Services Telephone: 360-459-4670

Fax: 3

360-459-3432

December 11, 2000

Michael Lam Nowicki and Associates 33516 9th Ave South, Bldg. #6 Federal Way, WA 98003

Dear Mr. Lam:

Please find enclosed the analytical data report for the 3733 – 3737 South G Street Project in Tacoma, Washington. Soil samples were analyzed for Gasoline by NWTPH-Gx and BTEX by Method 8021B on December 4, 2000.

The results of these analyses are summarized in the attached tables. All soil values are reported on a dry weight basis. Applicable detection limits and QA/QC data are included. An invoice for this analytical work is also enclosed.

TEG Northwest appreciates the opportunity to have provided analytical services to Nowicki and Associates for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Michael A. Korosec

Michael a flowren

President

800 Sleater-Kinney SE, PMB #262 Lacey, Washington 98503-1127

Mobile Environmental Laboratories Environmental Sampling Services Telephone: 360-459-4670

Fax: 360-459-3432

December 1, 2000

Michael Lam Nowicki and Associates 33516 9th Ave South, Bldg. #6 Federal Way, WA 98003

Dear Mr. Lam:

Please find enclosed the analytical data report for the 3733 – 3737 South G Street Project in Tacoma, Washington. Soil samples were analyzed for Diesel and Oil by NWTPH-Dx/Dx Extended, Gasoline by NWTPH-Gx, BTEX by Method 8021B, and Pb by Method 7420 on November 29 & 30, 2000.

The results of these analyses are summarized in the attached tables. All soil values are reported on a dry weight basis. Applicable detection limits and QA/QC data are included. An invoice for this analytical work is also enclosed.

TEG Northwest appreciates the opportunity to have provided analytical services to Nowicki and Associates for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Michael A. Korosec

Michael a Korone

President

3733-3737 SOUTH G STREET PROJECT Tacoma, Washnigton
Nowicki & Associates

Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8021B) in Soil

Sample	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Gasoline	Surrogate
Number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Recovery (%)
Method Blank	11/29/00	nd	nd	nd	nd	nd	103
SP1-1	11/29/00	nd	nđ	nd	nd	nd	109
SP1-2	11/29/00	nd	nd	nd	nd	nd	104
SP1-3	11/29/00	nd	nd	nd	. nd	nd	104
SP1-4	11/29/00	nd	nd	nd	nd	nd	80
SP1-5	11/29/00	nd	nd	nd	nd	nd	70
SP2-1	11/29/00	nd	nd	nd	nd	nd	87
SE-1	11/29/00	nd	nd	nd	nd	nd	115
Method Detection	Limits	0.05	0.05	0.05	0.05	10	

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Chlorobenzene): 65% TO 135%

ANALYSES PERFORMED BY: Marilyn farmer

[&]quot;int" Indicates that interference prevents determination.

3733-3737 SOUTH G STREET PROJECT

Tacoma, Washnigton Nowicki & Associates

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Soil

Sample	Date	Surrogate	Diesel	Oil
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)
Method Blank	11/29/00	103	nd	nd
SP2-1	11/29/00	109	21	nd
Method Blank	11/30/00	104	nd	nd
SP1-1	11/30/00	108	nd	nd
SP1-2	11/30/00	94	nd	nd
SP1-3	11/30/00	93	nd	nd
SP1-4	11/30/00	102	nd	nd
SP1-5	11/30/00	91	nd	nd
SE-1	11/30/00	93	nd	nd
3 4 d 135				•
Method Detection	Limits		20	. 40

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

ANALYSES PERFORMED BY: Marilyn Farmer

[&]quot;int" Indicates that interference prevents determination.

3733-3737 SOUTH G STREET PROJECT Tacoma, Washnigton
Nowicki & Associates

Heavy Metals in Soil by EPA-7000 Series

		Lead (Pb)	
Sample	Date	EPA 7420	
Number	Analyzed	(mg/kg)	
Method Blank	11/30/00	nd	
SP2-1	11/30/00	7	
Method Detection Lim	its	5	

ANALYSES PERFORMED BY: Sherry Chilcutt

3733-3737 SOUTH G STREET PROJECT

Tacoma, Washnigton Nowicki & Associates

QA/QC Data - Total Metals EPA-7000 Series Analyses

				Sample Number: S	SP-11B-112900			
Conc. Conc. Recovery Conc. Conc. Recovery (mg/kg) (mg/kg) (%) (mg/kg) (mg/kg) (%)			Matrix Spike	Matrix Spike Duplicate				
Lead 125 103 82 125 118 94 13.6		Conc.	Conc.	Recovery	Conc.	Conc.	Recovery	(%)
	Lead	125	103	82	125	118	94	13.6

 Spiked Conc. Conc. (mg/kg)
 Measured Conc. Recovery (mg/kg)
 Spike Recovery (%)

 Lead
 125
 108
 86

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Sherry Chilcutt

ADDRESS: PHONE: 25%	3351	6	91	A. S	#	£	Fed 1	1), /	<u>/17</u>	PR	OJECT	NAME	<u>:</u> _ 5	73.	9-373H	OF_	<u> </u>	e T
														,	1.77	DATE OF COLLECTION	- Icho	
CLIENT PROJEC	1. #:			PROJEC	JI MAN	NAGER	(: / " (A) /2~			CO	LLECTO)R:	/ / / <u>(</u>	·		COLLECTIO	4 <u>11/2</u>	7+0
Sample Number	Depth	Time		Container Type	ANALYSE JOR JO	3/10/5/11/ 801/808/ 801/808/	10 10 00 00 10 10 10 10 10 10 10 10 10 1	Sasting Sasting	24 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	26 20 8 1 C	Childry Co				NOTE	:s	Total Number of Containers	Laboratory Note Number
1. 17. 1		10 3%	Jol _	4-02									1 .				1	
2. \(\frac{P}{1} - \frac{7}{2} - \frac{3}{2} \\ 3. \(\frac{P}{1} - \frac{7}{2} - \frac		1035		ļ <u>ļ</u>				_ _	_					_			<u> </u>	
3. Vr 5.	-	1070	• '	/				-	-								<u> </u>	ļ
4. \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		70° 738 3	· · ·	1							\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_	+					
5. \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-	1575	1					_			1	_						
<u>6 </u>		70 TO	- 			-			-		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	- X	-	-				
<u>/ </u>	-	7.0	- 47	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				\dashv				-	+		H. C. A.			
8. 9.	 		-11			1					 		+- +		<u> </u>	<u> </u>		
10.								_					+				+-	
11.						+		-								المالية المولى والمالية	-	\vdash
12.															1 2 3 3			
13.											1							
14.																		
15,																		
16.																		
17.																		
18.																		
RELINQUISHED BY (Signa		7 7	E/TIME	RECEIVE	n 1.		DATE/TIN	7			MPLE REC			-	LABORATORY		1. 1.2	
Milliance 1,22			2 11 79	<i>v y</i> \	000		1/29/0				R OF CON			 	Plane 1	with he	149916	-
RELINQUISHED BY (Signa	ture)	DAT	E/TIME	RECEIVE	DBY (Sig	nature)	DATELTIN	`` ~ }			TODY SEA	ALS Y/N	I/NA		Tree of a	· Mayle	X	
	CAI	UDI E 1	NSDOSA	INSTRUCTO	246			- F			OD COND.	/COLD		†	7	2		
SAMPLE DISPOSAL INSTRUCTIONS ☐ TEG DISPOSAL @ \$2.00 each ☐ Return ☐ Pickup NOTES:											Turn Around Tir	ne:						

•••••••••••••

Lab name: TEG NW ysis date: 11/29/2000 11:40:37 scription: Ch. 1 Detector Data file: ch1det2007.CHR ()

Sample: 200 ppm gas

Operator: MF

Component	Retention	Area	External	Units
ine ne benzene	2.683 3.383 8.666	2035.7325 43.0560 1.7300	197.4564 1.2907 0.0678	ppm
		2080 5185	198 8149	

Lab name: TEG NW
ysis date: 11/29/2000 12:15:45
scription: Ch. 1 Detector
Data file: chldet2009.CHR ()
Sample: 10 ppm btex

Operator: MF

-10.112mV	·	99.888m
(unknown) (unknown) (unknown)		
	Benzene	
	Toluene	
gasoline	Ethylbenzene o-xylene	m_p-xylene

:omponent	Retention	Area	External Units
ne ne penzene ylene ene ine	3.150 5.600 8.216 8.433 9.133 9.933	298.5880 278.4740 230.2320 607.9230 235.6700 1651.7770	8.9509 ppm 9.0494 ppm 9.0274 ppm 17.9929 ppm 9.0202 ppm 160.2145 ppm
		3302.6640	214.2554

Lab name: TEG NW ysis date: 11/29/2000 12:29:48 scription: Ch. 1 Detector Data file: chldet2010.CHR () Sample: method blank

Operator: MF

-10.112mV

99.888mV

omponent	Retention	Area	External	Units
ine obenzene /lene ene	2.650 7.866 8.483 9.166	280.2880 133.5720 1.1140 0.6340	27.1866 597.9051 0.0330 0.0243	ppm
		415.6080	625.1489	

ysis date: 11/29/2000 12:56:02

scription: Ch. 1 Detector Data file: chldet2011.CHR ()

Sample: SP1-4 Operator: MF

-10.112mV
(unknown)
(unknown)
(unknown)
gasoline
Chlorobenzene

Component	Retention	Area	External Units
ine obenzene	2.383 7.866	119.0160 103.3900	11.5440 ppm 462.8021 ppm
		222.4060	474.3461

ysis date: 11/29/2000 13:14:43

escription: Ch. 1 Detector
Data file: chldet2012.CHR ()

Sample: SP2-1

Operator: MF

Component	Retention	Area	External Units
ine obenzene	2.400 7.850	205.8840 113.9620	19.9698 ppm 510.1253 ppm
		319.8460	530.0951

99.888mV

Lab name: TEG NW .ysis date: 11/29/2000 13:33:45

escription: Ch. 1 Detector Data file: chldet2013.CHR ()

Sample: SE-1 Operator: MF

-10.112mV

99.888mV

Component	Retention	Area	External Units
ine obenzene	4.333 7.916	181.8570 150.1560	17.6393 ppm 672.1397 ppm
		332.0130	689.7789

ysis date: 11/29/2000 13:51:52

scription: Ch. 1 Detector
Data file: ch1det2014.CHR ()

Sample: SE-1501-1

Operator: MF

(Anknown)

-5.056mV

49.944mV

(unknown)
gasoline
Chlorobenzene

!omponent Retention Area External Units
ine 2.883 168.1660 16.3113 ppm
obenzene 7.883 142.2490 636.7457 ppm
310.4150 653.0571

ysis date: 11/29/2000 14:19:43 scription: Ch. 1 Detector Data file: chldet2015.CHR ()

Sample: SP1-2 Operator: MF

-5.056mV (unknown) (unknown) 49.944mV gasoline Chlorobenzene

omponent	Retention	Area	External Units
ine obenzene	2.983 7.966	260.1940 136.1410	25.2376 ppm 609.4047 ppm
		396.3350	634.6422

ysis date: 11/29/2000 14:43:14 scription: Ch. 1 Detector Data file: chldet2016.CHR ()

Sample: SP1-3 Operator: MF

gasoline

-10.112mV (unknown) (unknown) 99.888mV

omponent	Retention	Area	External	Units
ine Obenzene	2.400 7.983	163.3300 136.4400	15.8422 610.7431	
		299.7700	626.5853·	

Chlorobenzene

ysis date: 11/29/2000 15:01:05

scription: Ch. 1 Detector Data file: chldet2017.CHR ()

Sample: SP1-5 Operator: MF

-10.112mV

99.888mV

(unknown)

gasoline

Chlorobenzene

omponent	Retention	Area	External	Units
ine obenzene	3.383 7.966	267.0560 90.0080	25.9032 402.9006	
		357.0640	428.8038	

ysis date: 11/29/2000 15:29:10 scription: Ch. 1 Detector Data file: ch1det2018.CHR ()

Sample: 200 PPM GAS

Operator: MF

-1.264mV	12.486mV
(unknown)	(unknown)
(unknown) gasoline Benzene	(dilkilowii)
† S	m_p-xylene
	·

!omponent	Retention	Area	External	Units
ine ne ylene	2.283 3.133 8.400	2220.4195 20.3100 75.8140	215.3702 0.6088 2.2439	ppm
		2316.5435	218.2229	

ysis date: 11/29/2000 15:52:15
scription: Ch. 1 Detector
Data file: ch1det2019.CHR ()
Sample: 10 PPM BTEX
Operator: MF

-10.112mV	99.888mV
(unknown)	33.000
gasoline Benze	ene .
Toluene	
Ethylben o-xylene	zenem_p-xylene

Component	Retention	Area	External	Units
ine ne ne benzene ylene ene	2.950 3.250 5.766 8.383 8.616 9.283	2026.7815 332.9720 309.2860 251.8370 675.7785 260.3770	196.5882 9.9817 10.0507 9.8746 20.0013 9.9658	ppm ppm ppm
		3857.0320	256.4622	

ysis date: 11/30/2000 10:57:05

scription:

Data file: ch3de1770.CHR ()
Sample: method blank

Operator: MF

'omponent	Retention	Area	External	Units
C C C C C C C C C C C C C C C C C C C	5.333 11.516 17.933	493.2460 480.3400 429.3595	18.3423 17.8631 15.9673	
		1402.9455	52.1727	

.ysis date: 11/30/2000 09:28:16

escription:

Data file: ch3de1767.CHR ()
Sample: 500 PPM DIESEL
Operator: MF

-10.000mV

100.000mV (unknown)-

(unknown) (unknown) DIESEL 2 FLUOROBIPHENYL

lomponent	Retention	Area	External	Units
L OROBIPHENYL	4.716 11.266	12073.2425 21.5005	448.9678 0.7996	
•		12094.7430	449.7674	

ysis date: 11/30/2000 09:28:16

escription: Ch. 4 Detector
Data file: ch4det1652.CHR ()
Sample: 500 PPM DIESEL

Operator: MF

Component	Retention	Area	External	Units
obenzene ine L OROBIPHENYL OROBIPHENYL	2.666 3.133 6.000 11.950 12.033	370.4810 229.0865 8473.0805 202.6600 89.7980	0.0000 0.0000 592.0156 7.4425 3.2978	
		9365.1060	602.7558	

ysis date: 11/30/2000 09:55:58 scription: Ch. 4 Detector Data file: ch4det1653.CHR () Sample: method blank

Operator: MF

Component	Retention	Area	External	Units
L OROBIPHENYL	9.166 11.883 17.300	385.0480 372.9900 1077.4380	26.9034 13.6978 39.5680	
		1835.4760	80.1692	

ysis date: 11/30/2000 10:29:51 escription: Ch. 4 Detector Data file: ch4det1654.CHR ()

Sample: SP1-4 Operator: MF

Component	Retention	Area	External	Units
L OROBIPHENYL	6.933 12.033 19.333	389.3300 365.8600 25.5870	27.2026 13.4359 0.9397	
•		780.7770	41.5781	

ysis date: 11/30/2000 10:57:05 scription: Ch. 4 Detector Data file: ch4det1655.CHR ()

Sample: SP1-1 Operator: MF

Component	Retention	Area	External	Units
L OROBIPHENYL	6.866 12.016 19.316	390.9820 384.8940 1568.8175	27.3180 14.1349 57.6136	
		2344.6935	99.0665	

ysis date: 11/30/2000 11:27:26 scription:

Data file: ch3de1771.CHR ()

Sample: SP1-2 Operator: MF

Component	Retention	Area	External	Units
L OROBIPHENYL	5.333 11.650 19.216	445.8710 438.6440 28.5820	16.5806 16.3125 1.0629	
		913.0970	33.9561	

ysis date: 11/30/2000 11:27:26 escription: Ch. 4 Detector Data file: ch4det1656.CHR ()

Sample: SP1-5 Operator: MF

100.000mV

		÷			
Component	Retention	Area	External	Units	
L OROBIPHENYL	6.950 12.050 19.216	348.2170 326.0060 889.7485	24.3300 11.9723 32.6753		
		1563.9715	68.9776	•	·

ysis date: 11/30/2000 11:56:43

scription:

Data file: ch3de1772.CHR ()

Sample: SP1-3 Operator: MF

-10.000mV — (unknown)

100.000mV

(Hnknewn)

DIESEL

2 FLUOROBIPHENYL

OIL

:omponent	Retention	Area	External	Units
L CROBIPHENYL	5.400 11.516 17.000	467.6415 434.4190 562.6180	17.3902 16.1554 20.9229	
		1464.6785	54.4685	

ysis date: 11/29/2000 16:12:16 scription:
Data file: ch3de1765.CHR ()

Sample: sp2-1 Operator: MF

omponent	Retention	Area	External	Units
ine CROBIPHENYL	2.866 4.133 11.166 19.016	639.6160 1094.5195 512.0100 23.0990	0.0000 40.7019 19.0409 0.8590	·
		2269.2445	60.6018	

ysis date: 11/30/2000 11:56:43 scription: Ch. 4 Detector Data file: ch4det1657.CHR ()

Sample: SE-1 Operator: MF

'omponent	Retention	Area	External	Units
)KOBIЬНЕИЛГ	6.950 12.050 19.600	351.5510 332.9180 40.6260	24.5629 12.2261 1.4920	
		725.0950	38.2810	

TEG ANALYSIS LOG EXTRACTION AND ANALYSIS OF HEAVY METALS

CLIENT				CLIENT PF	ROJECT#		
DATE	11-30	TEG PROJ	ECT#			 ANALYST	Sc

LOCATION

				,	10				20	/	10 = 2 400
Digester Cont. #	Sample #	Weight (g)	Dillution	Metal 1: conc. AA	PL conc.	Metal 2: conc. AA	conc.	Metal 3: conc. AA	/-S conc.	Metal 4: conc. AA	conc.
1	Std	·		1224	1	985		897		2469	
2	m Blank				ļ					• .	
3	LLS			947	108	965-	22	202	56	2343	122
4	SP9A			3415	388	189	4.3				
5	98			189	21	E18-	M			1365	iw
6	10A		,	·	mo	,				272).
7	103		•		W					316	
8	11 A		1	654	75			75		346	
9	113			838	95	!				279	
10	11BDp			881	100		\bigvee			267	→
11	HBMS			1789	205-100	1209	27.8	229	64	1907	. 99
12	11B MSD			1922	218-101	-1166	24.5	242	167	2280	119

49

Batch 2of 2

TEG ANALYSIS LOG EXTRACTION AND ANALYSIS OF HEAVY METALS

CLIENT			CLIE	NT PROJECT	#	 .		
DATE	11-30	TEG PROJECT	#		· · · · · · · · · · · · · · · · · · ·	/	ANALYST	54
LOCATION								

Digester	Sample #	Weight	Dillution	Metal 1:	conc.	Metal 2:		Metal 3:	As	Metal 4:	C'5-
Cont. #		(g)		conc. AA	conc.	conc. AA	conc.	conc. AA	conc.	conc. AA	conc.
1	Std			1091		985		906		2492	
2	SP2-1			60	\$7						
3	# 1				W						
4	#2			·	M				·		
5	H3			60	0,545	m/z = 0	.027ng				
6	±4				mp						
7	Styl			1070							
8											
9											
10											
11											
12					. 						

149

Lab name: TEG NW ysis date: 11/30/2000 10:10:46 escription: Ch. 1 Detector Data file: chldet2022.CHR ()
Sample: 10 ppm btex
Operator: MF

Component	Retention	Area	External	Units
ine ne ne benzene ylene ene	2.300 2.850 5.333 7.983 8.216 8.916	1881.2840 320.5090 289.5960 243.9680 636.2020 247.5120	182.4756 9.6080 9.4108 9.5660 18.8299 9.4734	ppm ppm ppm
		3619.0710	239 3639	

Lab name: TEG NW
ysis date: 11/30/2000 11:02:45
scription: Ch. 1 Detector
Data file: chldet2025.CHR ()
Sample: method blank
Operator: MF

-5.056mV 49.944mV (tulknown) (unknown) gasoline Chlorobenzene

!omponent	Retention	Area	External	Units
ine obenzene	2.633 7.616	392.7240 366.1700	38.0924 r 1639.0779 r	
		758 8940	1677 1703	

Lab name: TEG NW ysis date: 12/01/2000 09:38:45

scription: Ch. 1 Detector Data file: ch1det2036.CHR ()

Sample: 200 PPM GAS

Operator: MF

49.944mV -5.056mV ____(unknown) (unknown) (unknown) gasoline Benzeenzene -Ethylbenzene m p-xylene

lomponent	Retention	Area	External	Units
ine ne ne benzene ylene	2.550 3.233 3.416 8.383 8.766	2153.3800 0.5650 39.7640 365.7000 0.5880	208.8676 0.0169 1.1920 14.3392 0.0174	ppm ppm
		2559.9970	224.4332	

sis date: 12/01/2000 10:01:28 cription: Ch. 1 Detector

ata file: chldet2037.CHR ()
Sample: 200 PPM GAS 10 ppm b+ex
Operator: MF

-5.056mV	49.944mV
(unknown) (unknown)	
	Benzene
	Toluene
	Ethylbenzene m_p-xylene o-xylene
gasoline	O-Ayrene
; } -	
. ,	

omponent	Retention	Area	External	Units
ne ne penzene vlene ne ne	2.933 5.416 8.050 8.266 8.966 9.766	314.1400 293.2140 241.4360 637.2935 247.0140 1741.5645	9.4171 9.5284 9.4668 18.8622 9.4544 168.9235	bbw bbw bbw
		3474 6620	225 6523	

ysis date: 12/01/2000 10:50:14

escription: Ch. 1 Detector Data file: chldet2039.CHR ()

Sample: method blank Operator: MF

-5.056mV

49.944mV

(unknown) gasoline

Chlorobenzene

Component	Retention	Area	External Units
ine obenzene	4.000 7.783	166.2050 126.1740	16.1211 ppm 564.7896 ppm
		292.3790	580 9107

Lab name: TEG NW lysis date: 12/01/2000 12:07:53

escription: Ch. 1 Detector Data file: ch1det2040.CHR ()

Sample: NE-1 Operator: MF

-5.056mV

49.944mV

lomponent	Retention	Area	External Units
ine obenzene	2.716 7.866	201.2250 135.1580	19.5179 ppm 605.0045 ppm
		336.3830	624.5223

ysis date: 12/01/2000 12:28:17 scription: Ch. 1 Detector Data file: ch1det2041.CHR ()
Sample: WN-1
Operator: MF

-5.056mV

49.944mV

(unknown) (unknown)

gasoline

Chlorobenzene

Component	Retention	Area	External Units
ine obenzene	3.583 ·· 7.616	381.8930 145.4020	37.0418 ppm 650.8594 ppm
		527.2950	687.9013

ysis date: 12/01/2000 13:00:16 scription: Ch. 1 Detector

Data file: C:\PEAKWIN\ch1det2043.CHR ()

Sample: WW-2 Operator: MF

-5.000mV

50.000mV

(hipuomi) gasoline Chlorobenzene

Component Retention Area External Units ine 5.616 227.0040 22.0183 ppm obenzene 7.833 135.0470 604.5076 ppm 362.0510 626.5259

ysis date: 12/01/2000 13:19:41 scription: Ch. 1 Detector

Data file: C:\PEAKWIN\ch1det2044.CHR ()

Sample: WW-4 Operator: MF

-5.000mV

50.000mV

(william)) (unknown) (unknown) gasoline Chlorobenzene o-xylene

!omponent	Retention	Area	External Un	its
ine obenzene ene	3.233 7.900 9.516	212.7940 143.7320 0.6710	20.6400 ppr 643.3841 ppr 0.0257 ppr	m
•		357 1970	664 0498	

Lab name: TEG NW ysis date: 12/01/2000 13:40:53

scription: Ch. 1 Detector

Data file: C:\PEAKWIN\ch1det2045.CHR ()
Sample: SW-1

Operator: MF

-5.000mV

50.000mV

(unknown) — Chlorobenzene gasoline

Component	Retention	Area	External Units	
obenzene ine	7.916 11.350	129.2960 130.6610	578.7645 ppm 12.6735 ppm	
		259.9570	591.4380	

Lab name: TEG NW ysis date: 12/01/2000 14:42:15

scription: Ch. 1 Detector
Data file: C:\PEAKWIN\ch1det2048.CHR ()

Sample: SW-3 Operator: MF

-5.000mV

50.000mV

gasoline

(HILLIAND)

Chlorobenzene

omponent	Retention	Area	External	Units
ne obenzeńe	4.183 7.950	414.6150 131.2780	40.2157 587.6365	
		545.8930	627.8522	

ysis date: 12/01/2000 14:19:47
scription: Ch. 1 Detector
Data file: C:\PEAKWIN\ch1det2047.CHR ()

Sample: WW-3 Operator: MF

(MBRBOMY) ((unknown))

-5.000mV

50.000mV

gasoline Chlorobenzene

:omponent	Retention	Area	External Units
ine obenzene	1.133 3.416 7.966	22.2240 123.2685 99.7600	0.0000 11.9565 ppm 446.5533 ppm
		245.2525	458.5097

ysis date: 12/01/2000 15:01:11

escription: Ch. 1 Detector
Data file: C:\PEAKWIN\ch1det2049.CHR ()

Sample: EW-1 Operator: MF

-5.<u>000mV</u>

50.000mV

Component	Retention	Area	External Units	
ine obenzene	3.266 7.916	134.1930 121.5710	13.0161 ppm 544.1853 ppm	
		255.7640	557.2014	

Lab name: TEG NW ysis date: 12/01/2000 13:56:09

Sample: SW-2

Operator: MF

-5.000mV

50.000mV

Chlorobenzene

omponent	Retention	Area	External	Units
ine ne ne ne ne obenzene oenzene ylene ene	3.300 3.766 5.983 6.000 7.933 8.700 9.033 9.550	1593.6155 2.6980 8.6600 11.1290 155.3970 12.7655 24.7900 14.0100	154.5731 0.0809 0.2814 0.3617 695.5998 0.5005 0.7337 0.5362	ppm ppm
		1823.0650	852.6674	

ysis date: 12/01/2000 15:22:00 scription: Ch. 1 Detector Data file: chldet2050.CHR ()

Sample: BOT-3 Operator: MF

-80.000mV

Component	Retention	Area	External	Units
ine ne ne benzene ylene ene	1.133 3.116 3.816 6.050 8.750 9.066 9.600	85.2550 84565.9655 282.7820 697.7140 833.9900 2972.7540 1772.3140	0.0000 8202.4975 8.4771 22.6732 32.7009 87.9857 67.8346	ppm ppm ppm
		91210.7745	8422.1690	

ysis date: 12/01/2000 15:44:42 scription: Ch. 1 Detector Data file: ch1det2051.CHR ()

Sample: NW-1 Operator: MF

50.000mV

-5.000mV (unknown) (unknown) (unknown) Benzene gasoline Toluene

Chlorobenzene

:omponent	Retention	Area	External	Units
ne ine ne obenzene oenzene ylene ene	3.783 4.650 6.050 7.983 8.750 9.050 9.600	1.0540 979.8200 4.3400 129.9680 2.6075 17.0425 8.7980	0.0316 95.0379 0.1410 581.7726 0.1022 0.5044 0.3367	bbw bbw bbw bbw
·*		1143.6300	677 9265	

ysis date: 12/01/2000 16:07:57

scription: Ch. 1 Detector
Data file: ch1det2052.CHR ()

Sample: EW-1 Dup. Operator: MF

-5.000mV

50.000mV

gasoline

(tuknewi)

Chlorobenzene

'omponent	Retention	Area	External Units
ine obenzene	3.416 8.000	330.4440 136.6920	32.0515 ppm 611.8711 ppm
		467.1360	643.9226

Lab name: TEG NW
ysis date: 12/01/2000 16:24:55
scription: Ch. 1 Detector
Data file: chldet2053.CHR ()

Sample: BOT-2 Operator: MF

-5.000mV

50.000mV

(MINNESSEN)) (unknown) gasoline Chlorobenzene

!omponent	Retention	Area	External Units
ine Obenzene	3.516 7.983	142.9330 136.5270	13.8638 ppm 611.1325 ppm
		279.4600	624.9963

ysis date: 12/01/2000 16:39:55 escription: Ch. 1 Detector Data file: ch1det2054.CHR ()

Sample: BOT-4 Operator: MF

-5.000mV

50.000mV

Component	Retention	Area	External Units	
ine obenzene	3.466 7.983	167.5070 129.2620	16.2474 ppm 578.6124 ppm	
	÷	296.7690	594 8597	

ysis date: 12/01/2000 17:01:09 scription: Ch. 1 Detector Data file: ch1det2055.CHR ()

Sample: BOT-6 Operator: MF

50.000mV

(unknown) gasoline

Chlorobenzene

'omponent	Retention	Area	External Units	
ine obenzene	3.450 7.933	145.4600 143.2470	14.1089 ppm 641.2131 ppm	
		288.7070	655.3220	

Lab name: TEG NW ysis date: 12/01/2000 17:16:37

escription: Ch. 1 Detector
Data file: chldet2056.CHR ()

Sample: BOT-7

Operator: MF

-5.000mV

50.000mV

Component	Retention	Area	External Units	3
ine obenzene	3.366 7.966	150.7745 145.2600	14.6244 ppm 650.2238 ppm	
		296.0345	664.8482	

Lab name: TEG NW
.ysis date: 12/01/2000 17:32:02

escription: Ch. 1 Detector Data file: ch1det2057.CHR ()

Sample: 200 PPM GAS

Operator: MF

-5.000mV

50.000mV

lomponent	Retention	Area	External	Units
ine benzene benzene benzene ene	2.783 8.650 8.666 8.700 9.500	2213.5800 0.6425 0.5420 0.8570 2.1145	214.7068 0.0252 0.0213 0.0336 0.0809	ppm
		2217.7360	214.8677	

ysis date: 12/01/2000 17:54:23

escription: Ch. 1 Detector
Data file: chldet2058.CHR ()

Sample: 10 PPM BTEX

Operator: MF

-5.000mV	50.000mV
= (unknown) (unknown) (unknown)	30.000
	Вевоèmee
	Toluene
	Ethylbenzene m_p-xylene o-xylene

Component	Retention	Area	External	Units
ine ne ne benzene ylene ene	3.266 3.266 5.766 8.383 8.600 9.283	1679.7545 303.2550 287.0840 232.9545 618.5720 237.8890	162.9282 9.0908 9.3292 9.1342 18.3081 9.1051	ppm ppm ppm
		3359.5090	217.8956	

TEG ANALYSIS LOG EPA 602/8020 (BTEX)

CLIENT: No	CLIENT PROJECT #:									
DATE: 12-4	-00		TEG PROJECT #:							
LOCATION:										
INSTRUMENT: 60	- 1	pin	1+2	·	_ CON	DITION	S:	S٥	:15	
3.1 5.6 8.1 1.3 9.0										
Sample	Time	Run	Vol	Benz	Tol	Ebenz	M&P	O-Xyl	Chlor	Comments
100 ppm que	0430	ı	3uD							200 Z = 194
10 ppm blex	1004	2	320	10.0	10.7	9.8	20.2	10.0	129	
m. hlunje	1020	3	Sw					l	1354	177. ND
TP-2	1101		300	ND				->>>	121	ND
5/2-3 total	/121	6 3	W	ND			,	\Rightarrow	130	n0
Sp2-3	1142	7	Pup	ND				\rightarrow	131	ŊD
	_		·							
								·		
200 ppm y us	0934	1	320							1029=200
10 ppmhtex	1004	ζ.	320	3.0 ("	,05.4	8.0	F. 7	1.9	61	cal.
mhlunic	1020	3	3.0		·				66°°	70 np
TP-1	1101.	5	320	nn	-				565	87 N
EX+ 82-2	1121	6	300	ND				→	959	65 ND
EX-1	1192	7	Bul	.06	.80	155	1.04	.76	? n+	1329 296
		÷								
					·					•••
							÷	·	·	

Lab name: TEG NW ysis date: 12/04/2000 11:01:01

scription: Ch. 1 Detector Data file: chldet2063.CHR ()

Sample: TP-2 Operator: MF

-5.000mV

50.000mV

omponent	Retention	Ārea	External Units	
ine obenzene	2.300 7.766	158.7545 121.1000	15.3984 ppm 542.0770 ppm	
		279.8545	557.4754	

Lab name: TEG NW
ysis date: 12/04/2000 11:01:01
scription: PID- 2 GC-1
Data file: C:\PEAKWIN\ch3de1809.CHR ()
Sample: TP-1

Operator: TM

-5.000mV 50.000mV (unknown) gasoline Chlorobenzene

'omponent	Retention	Ārea	Ēxternal Ūnits
ine obenzene	4.750 7.616	87.2760 65.9120	16.9572 4.9977 ppm
		153.1880	21.9549

ysis date: 12/04/2000 11:21:28

escription: Ch. 1 Detector
Data file: ch1det2064.CHR ()

Sample: Bot-7 Dup.

Operator: MF

-5.000mV

50.000mV

lomponent	Retention	Area	External	Units
ine obenzene	4.866 7.800	153,5680 130.6080	14.8954 584.6374	
		284.1760	599.5328	

ysis date: 12/04/2000 11:21:28

scription: PID- 2 GC-1
Data file: C:\PEAKWIN\ch3de1810.CHR ()

Sample: SP2-2 Operator: TM

-5.000mV

50.000mV

(unknown)

Chlorobenzene

gasoline

:omponent	Retention	Area	External Units
obenzene ine	7.600 11.966	59.6620 65.2360	4.5238 ppm 12.6749
	•	124.8980	17.1987

Analysis date: 12/04/2000 11:42:23

Description: Ch. 1 Detector
Data file: chldet2065.CHR ()

Sample: SP2-3 Operator: MF

Component	Retention	Area	External	Units
gasoline Chlorobenzene	3.950 7.766	152.0220 131.6570	14.7454 589.3330	
		283.6790	604.0784	

 $\bar{L}ab$ name: $\bar{T}\bar{E}\bar{G}$ $\bar{N}\bar{W}$

Analysis date: 12/04/2000 11:42:23 Description: PID- 2 GC-1

Data file: C:\PEAKWIN\ch3de1811.CHR ()

Sample: EX1 Operator: TM

Component	Retention	Area	External	Units
Benzene	3.083	0.9800	0.0693	mag
<pre>soline</pre>	3.533	1329.2835	258.2710	,
talueñe	5.716	10.5810	0.8012	
Culorobenzene	7.616	73.0720	5.5406	ppm
hylbenzene	8.083	4.5710	0.5585	ppm
p-Dichloroben o-Dichlorobenz	8.366	11.8090	1.0410	ppm
o-Dichlorobenz	8.966	8.4615	0.7606	pþm
		1438 7580	267 0423	

Analysis date: 12/04/2000 12:03:26
Description: Ch. 1 Detector
Data file: chldet2066.CHR ()

Sample: SP1-6 Operator: MF

Component	Retention	Area	External	Units
asoline hlorobenzene	4.000 7.783	373.7270 134.8610	36.2497 603.6750	ppm
		508.5880	639.9248	

Analysis date: 12/04/2000 12:03:26 Description: PID- 2 GC-1

Data file: C:\PEAKWIN\ch3de1812.CHR ()

Sample: Bot-1 Operator: TM

Component	Rétention	Area	External	Units
gasoline hlorobenzene	2.533 7.583	60.9230 57.2300	11.8369 4.3394	ppm
		118.1530	16.1763	

Analysis date: 12/04/2000 12:18:58

Description: Ch. 1 Detector
Data file: ch1det2067.CHR ()

Sample: SP1-7 Operator: MF

component	Recention	Alea	Excernal	Units
gasoline Chlorobenzene	3.933 7.766	153.6510 135.9120	14.9034 608.3796	
		289.5630	623.2830	

Analysis date: 12/04/2000 12:18:58

Description: PID- 2 GC-1

Data file: C:\PEAKWIN\ch3de1813.CHR ()

Sample: Bot-2 Operator: TM

Component	Retention	Area	External	Units
gasoline Chlorobenzene	4.583 7.600	62.4450 58.4730	12.1327 4.4337	ppm
		120 9180	16 5663	

Analysis date: 12/04/2000 12:35:17 Description: Ch. 1 Detector Data file: chldet2068.CHR ()

Sample: SP3-1 Operator: MF

Component	Retention	Area	External	Units
gasoline Coluene Chlorobenzene Ethylbenzene Cp-xylene -xylene	3.383 5.883 7.783 8.150 8.383 9.383	1824.6735 6.7160 143.3060 16.6680 30.7945 13.4115	176.9847 0.2182 641.4772 0.6536 0.9114 0.5133	ppm ppm ppm
	•	2035.5695	820.7584	

Analysis date: 12/04/2000 12:35:17

Description: PID- 2 GC-1

Data file: C:\PEAKWIN\ch3de1814.CHR ()

Sample: EW-1 Operator: TM

Component	Retention	Area	External	Units
gasoline Chlorobenzene	3.816 7.566	75.9550 58.0510	14.7576 4.4017	ppm
		134.0060	19.1592	

Analysis date: 12/04/2000 12:56:55

Description: Ch. 1 Detector Data file: chldet2069.CHR ()

Sample: SP3-2
Operator: MF

Component	Rétention	Ārēā	External Units
gasoline Thlorobenzene o-xylene	3.366 7.750 9.366	904:2095 119.4230 11.6030	87.7040 ppm 534.5703 ppm 0.4441 ppm
		1035.2355	622.7184

Lab name: $\overline{\text{TEG}}$ $\overline{\text{NW}}$ Analysis date: 12/04/2000 12:56:55

Description: PID- 2 GC-1

Data file: C:\PEAKWIN\ch3de1815.CHR ()

Sample: EW-2 Operator: TM

Component	Retention	Arēā	External	Units	
gasoline Thlorobenzene	6.400 7.583	53.7120 49.7120	10.4359 3.7694	ppm	
		103.4240	14.2052		

Analysis date: 12/04/2000 13:19:09

Description: PID- 2 GC-1

Data file: C:\PEAKWIN\ch3de1816.CHR ()

Sample: EW-3 Operator: TM

Cómpónént	Rétention	Aréa	External	Units
gasoline Coluene Chlorobenzene m_p-Dichloroben -Dichlorobenz	4.416 5.666 7.550 8.316 8.916	360.2980 0.7560 55.3160 0.9080 0.6790	70.0035 0.0572 4.1943 0.0800 0.0610	pρm
		417.9570	74.3961	

Lab name: TEG NW Analysis date: 12/04/2000 13:19:09

Description: Ch. 1 Detector Data file: chldet2070.CHR ()

Sample: SP3-3 Operator: MF

Cômponent	Retention	Arėā	External	Units
Benzene	3.216	7.5420	0.2261	
gasoline	3.666	2197.7885	213.1751	mag
Toluene	5.866	28.7300	0.9336	
Chlorobenzene	7.766	147.3480	659.5703	
Ethylbenzene	8.133	17.0850	0.6699	
m_p-xylene o-xylene	8.366	30.6690	0.9077	ppm
o-xylene	9.366	16.6525	0.6374	
<u> </u>		2445 8150	976 1200	

Analysis date: 12/04/2000 13:42:51 Description: Ch. 1 Detector Data file: chldet2071.CHR ()

Sample: SP3-3 Dup.

Operator: MF

Component	Retention	Area	External	Units
Denzene Dasoline Coluene Chlorobenzene Sthylbenzene Lp-xylene -xylene	3.200 3.666 5.866 7.766 8.150 8.366 9.383	5.9270 1777.6125 23.2600 139.1300 25.0300 41.4870 17.4745	0.1777 172.4200 0.7559 622.7842 0.9814 1.2279 0.6688	ppm ppm ppm
		2029.9210	799.0159	

Analysis date: 12/04/2000 14:08:25

Description: Ch. 1 Detector
Data file: chldet2072.CHR ()

Sample: SP3-4 Operator: MF

Component	Retention	Area	External	Units
Benzene Jasoline Joluene Chlorobenzene Lhylbenzene _p-xylene -xylene	3.166 3.650 5.850 7.750 8.100 8.366 9.366	7.9320 480.6235 2.9940 97.6845 0.5050 3.5335 3.4220	0.2378 46.6182 0.0973 437.2628 0.0198 0.1046 0.1310	bbw bbw bbw bbw
•	•	596 6915	. 101 1711	

Analysis date: 12/04/2000 14:28:27

Description: PID- 2 GC-1

Data file: C:\PEAKWIN\ch3de1819.CHR ()

Sample: NW-2 Operator: TM

Component	Retention	Area	External	Units
Chlorobenzene jasoline	7.566 10.466	57.3700 62.6990	4.3500 12.1820	ppm
		120.0690	16.5320	

Lab name: $\overline{\text{TEG}}$ $\overline{\text{NW}}$

Analysis date: 12/04/2000 14:08:25 Description: PID- 2 GC-1

Data file: ch3de1818.CHR () Sample: NW-1 Dup.

Operator: TM

Component	Recention	Area	External	Unit
Chlorobenzene Jasoline	7.583 9.333	55.6540 61.9440	4.2199 12.0353	ppm
	 ·	117.5980	16.2552	

Analysis date: 12/04/2000 15:09:21

Description: Ch. 1 Detector
Data file: chldet2075.CHR ()

Sample: SP3-5 Operator: MF

Component	Retention	Area	External	Units
gasoline hlorobina yriani ozvien	4,600	722 - 8090	70,1090 567,9185 0,0516 0,2784	bbw bbw bbw bbw
		858.3060	638 3577	

Lab name: TEG NW Analysis date: 12/04/2000 15:09:21

Description: PID- 2 GC-1

Data file: ch3de1821.CHR () Sample: WW-1

Operator: TM

Component	Retention	Area	External	Units
rasoline coluene chlorobenzene thylbenzene thylbenzene thylbenzene thylbenzene -Dichloroben -Dichlorobenz	2.783 5.666 7.583 8.066 8.083 8.100 8.316 8.933	9500.0380 5.9960 142.6200 9.3240 1.4570 1.5485 87.1400 98.6130		ppm ppm ppm
		9846.7365	1875.1149	

Lab name: TEG NW Analysis date: 12/04/2000 16:02:55

Description: Ch. 1 Detector Data file: ch1det2077.CHR ()

Sample: NW-3 Operator: MF

-5.000mV (unknown)	(unknown)		50.00
(unknewn)) known) - (unkliuwkhown) - gasoline	(unknown)	(unknown)	
Chlorobenzene Ethylbenzene			
(unknown)			
	÷		

Component	Retention	Area	External	Units
gasoline Thlorobenzene Ethylbenzene Ethylbenzene	3.633 7.750 8.650 8.700	2096.1875 4.7240 0.8500 2.9220	203.3202 21.1459 0.0333 0.1146	ppm
		2104.6835	224.6141	

Lab name: $\overline{\text{TEG}}$ $\overline{\text{NW}}$ Analysis date: 12/04/2000 16:24:54

Description: FID 1, GC No. 9

Data file: C:\PEAKWIN\ch3de1823.CHR ()

Sample: 10 ppm btex

Operator: TM

Component	Retention	Area	Extérnal	Units
gasoline	1.600	42.3820	8.2345	ppm
Benzene	2.900	135.5080	9.5868	
toluene	5.350	128.1940	9.7071	ppm
Ethylbenzene	7.916	109.2000	13.3431	
h_p-Dichloroben	8.133	262.5685	23.1465	ppm
gasoline	8.400	0.5930	0.1152	
gasoline	8.533	0.5980	0.1162	þþm
D-Dichlorobenz	8.816	110.1730	9.9028	
		789.2165	74.1524	

50.000mV

Analysis date: 12/04/2000 16:24:54

Description: Ch. 1 Detector
Data file: chldet2078.CHR ()

Sample: 10 ppm btex

Operator: MF

Component	Retention	Area	External	Units
gasoline enzene Toluene Ethylbenzene _p-xylene -xylene	3.116 3.116 5.550 8.116 8.333 9.016	1967.3515 357.7790 331.8700 273.4525 725.7500 278.5000	190.8238 10.7253 10.7846 10.7221 21.4803 10.6595	bbw bbw bbw
•		3934.7030	255.1956	

Analysis date: 12/07/2000 10:39:08

Description: Ch. 1 Detector
Data file: chldet2100.CHR ()

Sample: SW4 Operator: MF

Component	Retention	Area	External	Units
gasoline Chlorobenzene	3.383 7.783	270.3230 44.1810	26.2200 197.7663	
		314.5040	223.9864	

Analysis date: 12/07/2000 10:54:46

Description: Ch. 1 Detector Data file: chldet2101.CHR ()

Sample: SW5 Operator: MF

Component	Retention	Area	External	Units
gasoline	3.000	12603.4265	1222.4726	
Benzene	3.216	40.3350	1.2091	ppm
oluene	5.666	44.8200	1.4565	ppm
Ethylbenzene	8.166	121.9975	4.7835	mqq
n_p-xylene	8.400	221.7730	6.5639	ppm
-xylene	9.033	158.9270	6.0829	

13191.2790

1242.5685

Analysis date: 12/07/2000 11:17:43
Description: Ch. 1 Detector

Data file: chldet2102.CHR ()

Sample: BOT8 Operator: MF

Component	Retention	Area	External	Units
Chlorobenzene gasoline	7.833 11.266	29.1260 31.9830	130.3760 3.1022	
		61.1090	133.4782	•

Analysis date: 12/07/2000 11:36:00 Description: Ch. 1 Detector Data file: ch1det2103.CHR ()

Sample: BOT9 Operator: MF

Component	Retention	Area	External	Units
gasoline Chlorobenzene	4.316 7.816	349.8170 34.0830	33.9306 152.5649	
		383.9000	186.4955	

Analysis date: 12/07/2000 11:52:59

Description: Ch. 1 Detector Data file: chldet2104.CHR ()

Sample: BOT9 DUP.

Operator: MF

Component	Retention	Area	External	Units
gasoline Chlorobenzene	3.633 7.833	237.1530 33.6940	23.0027 150.8236	- ~
		270 8470	173 9264	

Lab name: TEG NW Analysis date: 12/07/2000 09:34:00

Description: PID- 2 GC-1

Data file: C:\PEAKWIN\ch3de1857.CHR ()

Sample: 10 PPM BTEX

Operator: TM

Component	Retention	Area	External	Units
thylbenzene	7.650	17.7280	2.1662	mqq
asoline	7.650	17.7280	3.4444	
		35.4560	5.6106	

Analysis date: 12/07/2000 10:01:15

Description: PID- 2 GC-1

Data file: C:\PEAKWIN\ch3de1858.CHR ()

Sample: 200 ppm Gas

Operator: MF

Component	Retention	Area	External	Units
gasoline	2.000	1032.6825	200.6434	
Benzene	3.100	84.1080	5.9504	maa
toluene	5.450	220.8330	16.7219	LL
m_p-Dichloroben	8.183	162.9220	14.3623	mag
Dichlorobenz	8.866	51.0200		
		1551 5655	242 2639	

Analysis date: 12/07/2000 10:24:58

Description: PID- 2 GC-1

Data file: C:\PEAKWIN\ch3de1859.CHR ()

Sample: 10 ppm BTEX Operator: MF

Component	Retention	Area	External	Units
Benzene loluene Ethylbenzene m_p-Dichloroben b-Dichlorobenz gasoline	3.016 5.416 7.966 8.183 8.866 9.583	128.3520 122.4890 95.6330 235.5360 103.6060 686.4640	9.0806 9.2751 11.6854 20.7635 9.3126 133.3754	ppm
	•	1372.0800	193.4925	

Analysis date: 12/07/2000 10:39:08 Description: PID- 2 GC-1

Data file: C:\PEAKWIN\ch3de1860.CHR ()

Sample: BOT10 Operator: MF

Component	Retention	Area	External	Units
gasoline Chlorobenzene	2.266 7.583	70.8440 17.7720	13.7645 1.3475	
		88.6160	15.1121	

Analysis date: 12/07/2000 10:54:46

Description: PID- 2 GC-1

Data file: C:\PEAKWIN\ch3de1861.CHR ()

Sample: BOT11 Operator: MF

Component	Retention	Area	External	Units
gasoline	2.133	67.8750	13.1877	•
Chlorobenzene	7.600	18.6280	1.4124	ppm
		86.5030	14.6001	

Analysis date: 12/07/2000 11:17:43

Description: PID- 2 GC-1

Data file: C:\PEAKWIN\ch3de1862.CHR ()

Śample: SP3
Operator: MF

Component	Retention	Area	External	Units
gasoline	2.033	49.0690	9.5338	
hlorobenzene	7.633	13.4860	1.0226	ppm
		62.5550	10.5563	

Lab name: TEG NW Analysis date: 12/07/2000 11:36:00

Description: PID- 2 GC-1

Data file: C:\PEAKWIN\ch3de1863.CHR ()

Sample: SP4 Operator: MF

Component	Retention	Area	External Units	
gasoline	2.166	64.4680	12.5257	
chlorobenzene	7.316	0.9980	0.0757 ppm	
Chlorobenzene	7.633	14.0280	1.0637 ppm	
		79.4940	13.6650	

Analysis date: 12/07/2000 11:52:59

Description: PID- 2 GC-1
Data file: C:\PEAKWIN\ch3de1864.CHR ()

Sample: SP5 Operator: MF

Component	Retention	Area	External	Units
gasoline Thlorobenzene	2.100 7.650	61.5280 18.6900	11.9545 1.4171	ppm
		80.2180	13.3716	

Analysis date: 12/07/2000 16:05:04

Description: PID- 2 GC-1
Data file: C:\PEAKWIN\ch3de1872.CHR ()

Sample: 10 PPM BTEX

Component	Retention	Area	External	Units
Benzene coluene casoline thylbenzene _p-Dichloroben c-Dichlorobenz	3.050 5.433 6.583 7.983 8.183 8.866	138.3820 129.5300 682.3020 78.1920 224.2620 110.8260	9.7902 9.8083 132.5668 9.5543 19.7697 9.9615	ppm
		1363.4940	191.4507	

Analysis date: 12/07/2000 16:05:04 Description: Ch. 1 Detector

Data file: C:\PEAKWIN\ch1det2107.CHR ()

· Sample: 10 PPM btex

Component	Retention	Area	External	Units
Benzene Poluene Ethylbenzene M_p-xylene -xylene Masoline	3.166 5.600 8.166 8.383 9.066 9.866	273.9070 254.7800 205.8280 550.0640 211.3460 1496.4450	8.2110 8.2794 8.0706 16.2804 8.0892 145.1481	bbw bbw bbw
		2992.3700	194.0787	

Analysis date: 12/07/2000 15:37:12

Description: PID- 2 GC-1

Data file: C:\PEAKWIN\ch3de1871.CHR ()

Sample: 200 PPM gAS

Component	Retention	Area	External	Units
Jasoline Jenzene Jenzene Lithylbenzene Jenzene Jenzene	2.000 3.033 5.400 7.950 8.166 8.850	883.9240 76.7060 206.7300 24.8660 145.2150 48.8340	171.7406 5.4267 15.6540 3.0384 12.8013 4.3894	ppm ppm
	0.030	1386.2750	213.0505	ppiii

Lab name: TEG NW Analysis date: 12/04/2000 15:36:58

Description: Ch. 1 Detector Data file: chldet2076.CHR ()

Sample: NW-3 Operator: MF

Component	Recention	Area	External	Units
jasoline hlorobenzene	4.533 7.766	500.2230 155.5080	48.5193 696.0967	
		655.7310	744.6159	

TEG ANALYSIS LOG EPA 602/8020 (BTEX)

CLIENT: Nowicici	CLIENT PROJECT # South 6 12 4
DATE: 12-4-6- TEG PROJECT	#:ANALYST(S) mus_
LOCATION: Tacomy, wa.	
INSTRUMENT: 6CI NID 1+2	CONDITIONS: Soil S

Sample	Time	Run	Vol	Benz	Tol	Ebenz	M&P	O-Xyl	Chlor 139	Comments
SP3-4	1404	13	34	0.23	0.09	ØD	0.73	0.13	int	480 (33)
SP3-5	1428		3m						(3)0	stopped short
SP3-5 rev	1509	16	3nQ	ND			\rightarrow	0.27	9926	722(58
NW-3	1536	17.	3ul	MO				$\widehat{}$	(11)	ND
Loo pangus	1602	18	320					./		2046 =203
10 ppmb tex	-	19	3.40							
17					-					
•		٠.							58	·
SP NW-1Dup	1908	13	34	NO		· · · · · · · · · · · · · · · · · · ·	->-	10	(94)	dn
NW-2	142}	-14	Ril	ND.					(9b) 57	(7)
WW-1	1509	15	Bul	ND	0.45	1.13	7.6	4.8	int	9500 * Lois.
A W- Hop	16		?	मेंद्र <u>.</u>						1,820 sprits.
200 pm ques	1602	16	300							
10 ppm htex		17	31							
111										
					·					
·										
										••
			1							

Analysis date: 12/07/2000 15:37:12

Description: Ch. 1 Detector

Data file: C:\PEAKWIN\ch1det2106.CHR ()
Sample: 200 PPM gAS

Component	Retention	Area	External	Units
gasoline	2.966	1975.6205	191.6258	ppm
Benzene	3.183	173.4020	5.1982	ppm
Toluene	5.600	456.2400	14.8262	ppm
Ethylbenzene	8.166	66.2765	2.5987	ppm
_p-xylene	8.383	335.2130	9.9214	ppm
	•	3006.7520	224.1703	

Analysis date: 12/06/2000 09:13:37

Description: Ch. 1 Detector
Data file: ch1det2085.CHR ()
Sample: 10 PPM BTEX

Component	Retention	Area	External	Units
Benzene Toluene Ethylbenzene M_p-xylene D-xylene gasoline	3.066 5.533 8.116 8.333 9.000 9.783	291.0550 271.1720 218.5120 592.1950 227.4660 1600.9420	8.7251 8.8121 8.5679 17.5274 8.7062 155.2838	bbw bbw bbw
		3201.3420	207.6225	

Analysis date: 12/06/2000 09:13:37 Description: PID- 2 GC-1

Data file: C:\PEAKWIN\ch3de1841.CHR ()

Sample: 10 PPM BTEX

Component	Retention	Area	External	Units
pasoline lenzene toluene sthylbenzene	3.016 3.016 5.416 7.966	803.6280 163.6320 153.4000 93.8060	156.1396 11.5765 11.6158 11.4621	ppm
_p-Dichloroben -Dichlorobenz	8.183 8.850	263.3460 129.4440 1607.2560	23.2151 11.6350 225.6441	

Analysis date: 12/06/2000 08:47:06

Description: PID- 2 GC-1

Data file: C:\PEAKWIN\ch3de1840.CHR ()

Sample: 200 PPM GASOLINE

Component	Retention	Area	External	Units
gasoline Benzene toluene Chlorobenzene Thlorobenzene Ethylbenzene Lthylbenzene n_p-Dichloroben	2.066 3.066 5.416 7.566 7.716 7.933 8.150 8.350	1129.4650 87.0580 224.5700 2.5980 1.2690 36.5395 167.1050 1.8705	219.4476 6.1591 17.0049 0.1970 0.0962 4.4647 20.4185 0.1649	ppm ppm ppm
		1650.4750	267.9530°	

Analysis date: 12/06/2000 08:47:06

Description: Ch. 1 Detector
Data file: chldet2084.CHR ()
Sample: 200 PPM GASOLINE

Component	Retention	Area	External	Units
Jasoline thylbenzene p-xylene p-xylene -xylene	2.633 8.433 8.483 8.583 9.300	1951.9610 0.7180 0.9100 2.5670 2.1900	189.3310 0.0282 0.0269 0.0760 0.0838	ppm ppm
•		1958.3460	189.5458	

Analysis date: 12/06/2000 08:12:51

Description: PID- 2 GC-1

Data file: C:\PEAKWIN\ch3de1839.CHR ()

Sample: M BLANK

Component	Recention	Area	External	Units
hlorobenzene asoline	7.433 10.500	41.8520 58.8140	3.1734 11.4272	ppm
		100.6660	14.6006	

Analysis date: 12/06/2000 08:12:51

Description: Ch. 1 Detector
Data file: chldet2083.CHR ()

Sample: M BLANK

Component	Retention	Area	External	Units
asoline hlorobenzene	2.766 7.466	138.8880 110.1820	13.4715 493.2050	
	•	249 0700	506 6765	

Analysis date: 12/06/2000 09:27:39

Description: PID- 2 GC-1

Data file: C:\PEAKWIN\ch3de1842.CHR ()

Sample: WW-2 Operator: TM

Component	Retention	Area	External	Units
Benzene	3.000	0.9940	0.0703	ppm
Coluene	5.400	0.7200	0.0545	
yasoline	6.366	64.9730	12.6238	ppm
Chlorobenzene	7.550	58.3400	4.4236	
L_p-Dichloroben	8.166	1.1700	0.1031	
y-Dichlorobenz	8.850	0.9710	0.0873	
)	• .	127 1680	17 2627	PP

Analysis date: 12/06/2000 09:27:39

Description: Ch. 1 Detector
Data file: chldet2086.CHR ()

Sample: Bot-3 Operator: MF

Component	Retention	Area	External	Units
jasoline	2.150	126.3650	12.2568	ppm
Benzene	3.150	3.6790	0.1103	ppm
Toluene 🛒 🦠	5.566	3.4800	0.1131	mqq
chlorobenžene	7.733	99.1540	443.8406	maga
Ethylbenzene	8.116	1.9440	0.0762	
n_p-xylene	8.350	5.8930	0.1744	mag
o-xylene	9.033	3.0220	0.1157	
		243.5370	456.6871	-

Analysis date: 12/06/2000 09:46:18

Description: Ch. 1 Detector
Data file: chldet2087.CHR ()

Sample: Bot-4 Operator: MF

Component	Retention	Area	External	Units
gasoline hlorobenzene	3.516 7.416	350.4010 111.3400	33.9872 498.3885	
		461.7410	532.3758	

Analysis date: 12/06/2000 10:06:42 Description: PID- 2 GC-1

Data file: C:\PEAKWIN\ch3de1844.CHR ()

Sample: WW-3 Operator: TM

Component	Retention	Area	External	Units
gasoline hlorobenzene	2.000	93.6220	18.1901	
litoropenzene	7.633	56.3860	4.2754	ppm
,		150.0080	22.4655	

Analysis date: 12/06/2000 09:46:18

Description: PID- 2 GC-1

Data file: ch3de1843.CHR ()

Sample: EW-4 Operator: TM

Component	Retention	Area	External	Units
gasoline	2.716	149.6540	29.0768	
enzene	3.150	0.5870	0.0415	ppm
oluene	5.333	4.0490	0.3066	
Chlorobenzene	7.233	63.0000	4.7769	ppm
thylbenzene	7.966	0.9610	0.1174	
_p-Dichloroben	8.300	4.5580	0.4018	ppm
o-Dichlorobenz	8.833	2.8620	0.2572	
'		225 6710	34 9783	

Analysis date: 12/06/2000 10:28:47 Description: PID- 2 GC-1

Data file: ch3de1845.CHR ()

Sample: SP--2 Operator: TM

Component	Retention	Area	External	Units
gasoline hlorobenzene	5.666 7.583	84.9290 54.9420	16.5011 4.1659	ppm
		139 8710	20 6671	

Analysis date: 12/06/2000 10:28:47

Description: Ch. 1 Detector
Data file: chldet2089.CHR ()

Sample: SP-1 Operator: MF

Component	Retention	Area	External	Units
jasoline Thlorobenzene	2.400 7.783	178.7310 132.4100	17.3361 592.7037	
)		311.1410	610.0397	

Analysis date: 12/06/2000 10:06:42

Description: Ch. 1 Detector Data file: chldet2088.CHR ()

Sample: NW-3
Operator: MF

Component	Retention	Area	External	Units
gasoline Chlorobenzene	2.483 7.800	208.5910 123.1300	20.2323 551.1638	~ ~
		331 7210	571 3962	

APPENDIX E

OnSite & TEG Laboratory Reports for Excavation Water Samples

CHAIN-OF-CUSTODY RECORD TRANSGLOBAL ENVIRONMENTAL GEOSCIENCES CLIENT: Nowilla DATE: 1/25/50 PAGE / PROJECT NAME: 3733-3737 S. G Street ADDRESS: 335 16 PHONE: 253 727 3233 FAX: 203 974 - 6723 LOCATION: Transe, 1874 CLIENT PROJECT #: ______PROJECT MANAGER: hardest form COLLECTOR: Total Number of Containers RH BOTS GE CO. TON BOIS USE PAHOTO Sample Sample Number Depth Time Type Container Type **NOTES** DIS N-1 Heker 40-12-6 . 16 10. 11. 12. 13. 15. 16. 17. RELINQUISHED BY (Signature) DATE/TIME RECEIVED BY (Signature) DATE/TIME **SAMPLE RECEIPT** LABORATORY NOTES: 4 pm TOTAL NUMBER OF CONTAINERS 11/25/00 CHAIN OF CUSTODY SEALS Y/N/NA RELINQUISHED BY (Signature) RECEIVED BY (Signature) DATE/TIME DATE/TIME SEALS INTACT? Y/N/NA RECEIVED GOOD COND./COLD SAMPLE DISPOSAL INSTRUCTIONS ☐ TEG DISPOSAL @ \$2.00 each ☐ Return ☐ Pickup NOTES: Turn Around Time:

APPENDIX F

Abandoned UST Disposal Receipt

DUPLICATE

APPENDIX G

City of Tacoma Public Works Special Approved Discharge Permit

October 31, 2000

Mr. Michael Lam Nowicki & Associates 33516 9th Avenue So. Federal Way, WA 98003

RE: Special Approved Discharge Permit

Dear Mr. Lam:

Enclosed please find the Special Approved Discharge Permit for discharging groundwater into Tacoma's municipal storm drainage system from 3717 So. G Street. Please contact me 24 hours prior to discharging so I can verify the initial reading off of the flow meter. Should you have any questions please contact me at (253) 502-2120.

Sincerely,

Paul Tollefson

Stormwater Quality Representative

Environmental Services Technical Support Division

File: Nowicki & Associates S.A.D. file

SPECIAL AUTHORIZATION TO DISCHARGE TO THE CITY OF TACOMA'S STORM DRAINAGE SYSTEM

In accordance with Tacoma Municipal Code Chapter 12.08.080, 12.08.365, and subject to any other applicable conditions contained in Chapter 12.08 and in this authorization the entity specified herein is authorized to discharge to the City of Tacoma's (TACOMA) storm drainage system:

Nowicki & Associates, Michael Lam, (253) 927-5233
Name of Responsible Company, Authorized Representative, Phone Number
33516 9th Avenue So., Federal Way, WA 98003
Address of Company, Street, City, State, Zip
Michael Lam, Nowicki & Associates, (253) 927-5233
Company Contact Person, Phone Number, Emergency (24-Hour) Phone Number
Mr. & Mrs. Bich Lam, (253) 472-1320
Name of Property Owner, Phone Number
,
769 So. 38 th Street, Tacoma, WA 98409
Address of Property Owner, Street, City, State, Zip
3737 So. G Street, Tacoma, WA
Address of Discharge Location, Street, City

A. DISCHARGE CONDITIONS:

- 1. Flow Limitations and Monitoring Requirements:
 - (a) Discharge must not exceed <u>450 gpm</u> during dry conditions, <u>225 gpm</u> during rainy conditions. Discharge must not cause flooding during dry or rainy conditions.
 - (b) Flow rate must be metered (in gallons) for billing purposes.
 - (c) Discharging must be performed between the hours of 8:00 AM and 5:00 PM.
 - (d) Discharge must not interfere with vehicular or pedestrian traffic.
- 2. Quality Limitations and Monitoring Requirements:

Discharge must be monitored for turbidity and total petroleum hydrocarbons (TPH) during the duration of the operation. There shall be no visible sheen or discoloration (turbidity). Water must be prescreened prior to discharge. Samples may be required during discharge to insure compliance with Federal, State and Local water quality regulations.

SAD-Nowicki.doc 10/27/2000 Page 1 of 3

If samples for compliance are required, they shall be by grab method and shall be analyzed in conformance with **Guidelines Establishing Test Procedures for the Analysis of Pollutants**, contained in 40 CFR Part 136 and appendices, as amended.

B. DISCHARGE LOCATION:

Discharge from site will be to a catch basin located in the Northeast corner of South 38th and G streets. Basin is located in City right of way.

C. OTHER CONDITIONS:

- 1. Must possess a valid NPDES Permit or equivalent authorization from Department of Ecology and/or Environmental Protection Agency (if applicable), and operate in compliance with that permit as determined by the issuing agency.
- 2. Must sign and submit to Tacoma prior to discharge, a Hold Harmless Agreement provided by Tacoma (as with any legally binding document, your are advised and may wish to consult with your attorney before executing it).
- 3. Must pay the applicable fees and maintain payments as provided for in Tacoma Municipal Code Chapter 12.08.365.
- Must cease discharge upon <u>any</u> of the following conditions:
 - a. Violation, either suspected or detected, of any of the discharge conditions specified in A. above.
 - b. When directed to by TACOMA.
 - c. During rain events when 0.8 inches or more of precipitation has fallen during a consecutive 7-hour period (discharge may resume after less than or equal to 0.01 inches of precipitation has fallen during a consecutive 6-hour period); a rain gauge shall be placed on site and maintained for this purpose.
- 5. Must deliver a letter to TACOMA at the Utility Services Engineering Division, 2201 Portland Ave. E., Tacoma, WA 98421-2711, FAX 253-502-2107, within 5 calendar days of any exceedance of the discharge conditions specified in A. above, explaining the limitations exceeded, the cause, the measures taken to mitigate it and to prevent reoccurrence.

D. PRIOR TO COMMENCEMENT OF DISCHARGE:

At least 2 business days prior to the anticipated start of discharge, you must call the TACOMA representative at 253-591-5588 of your intent to start and receive final discharge approval. An on-site inspection may be performed by TACOMA staff including discharge sampling.

E. ENFORCEMENT:

Violations of this authorization or of Tacoma Municipal Code Chapter 12.08 will be subject to enforcement provisions of said Chapter.

F. DURATION:

This permit covers discharges from this event only. The permit will expire immediately after the discharge event is over or within 60 days after the issuance date of this permit, whichever occurs first.

SAD-Nowicki.doc 10/27/2000

ON BEHALF OF THE CITY OF TACOMA	
Stetso	10/27/00
Signature	Dated

The 24-hour emergency telephone number is 253-591-5595. The regular business hours (Mon-Fri 8:00 a.m. to 4:30 p.m.) number is 253-591-5588. Fax 253-502-2160.

STATEMENT OF SERVICES

24-hour automated service 253-502-8608

NAME

NOWICKI & ASSOCIATES INC

SERVICE 3800 S G ST

ADDRESS

ACCOUNT#010-108-993 **BILL DATE 12-20-00**

DATE DUE 01-03-01

AMOUNT DUE:

\$85.95

YPE OF SERVICE	RATE	SERVICE FROM	SERVICE TO	CURR READ	PREV READ	MULT	CONSUMPTION	COST/UNIT	AMOUNT DUE
Storm Drai	nage	5 502-210	0 Public Wor	ks					
		12-01-00	12-18-00	1					\$85.95
								1	
									1
					İ		·		
		,	·						
									·
					t t				
	<u></u>	L	<u> </u>	l		L]]		
If y	ou h	ave recently					due to develo - 502-2100	opment, please	contact

Information Center Closing Bill It has been a pleasure to serve you. If you have any questions regarding this bill, please call 591-5588.

PREVIOUS BALANCE	\$0.00
PAYMENTS APPLIED	\$-0.00
PAST DUE CHARGES	\$0.00
CURRENT CHARGES	\$85.95
AMOUNT DUE	\$85.95
	7.

DETACH AND KEEP FOR YOUR RECORD, DETACH AND KEEP FOR YOUR RECORDS, DETACH AND KEEP FOR YOUR RECORDS.

PLEASE RETURN THIS STUB AND PAYMENTS TO: **CITY TREASURER - P.O. BOX 11010**

TACOMA, WA 98411-1010

SERVICE ADDRESS: 3800 S G ST

Yes, I would like to donate to Project Need. Monthly pledge: \$ Donation:

Tacoma Power will match every dollar donated to Project Need with an additional \$2.

NOWICKI & ASSOCIATES INC BLDG 6 33516 9TH ABE S FEDERAL WAY WA 98003

010-108-993

DATE DUE 01-03-01

AMOUNT DUE

\$85.95