

Antea USA, Inc. 4006 148th Avenue NE Redmond, Washington 98052 USA www.anteagroup.com

January 10, 2013

Mr. Dale Myers Washington State Department of Ecology Northwest Regional Office 3190 160th Avenue SE Bellevue, Washington 98008

Subject: Olympic Pipe Line Company Kent Block Valve Remedial Investigation Report South 259th Street Kent, Washington

Dear Mr. Myers,

On behalf of Olympic Pipe Line Company (OPLC), Antea[™]Group is pleased to submit the enclosed OPLC Kent Block Valve Remedial Investigation (RI) Report for the OPLC facility located at South 259th Street, Kent, Washington. Based on remedial actions completed to date, and groundwater analytical trends, it is Antea Group's opinion that four consecutive quarters of groundwater concentrations below MTCA Method A Cleanup Levels will be obtained following the second quarter 2013 sampling event. Subsequent to the submittal of this RI, Antea Group will submit the Site into the Voluntary Cleanup Program, and request an *Opinion Letter* on additional data necessary to obtain a No Further Action determination from Ecology.

Please feel free to contact Bryan Taylor of Antea Group at (425) 260-9321 if you have any questions regarding this report.

Sincerely,

Bryan Taylor Senior Project Manager ANTEA GROUP

Enclosure: Kent Block Valve Remedial Investigation Report

cc: Ms. Kelli Gustaf, Environmental Coordinator, OPLC, Renton, WA (Electronic Copy – CD) Mr. Paul Supple, Atlantic Richfield (Electronic Copy – Enfos Upload) Mr. James Chatham, BP Exploration (Alaska) Inc. (Electronic Copy – Enfos Upload) File, Antea Group

REMEDIAL INVESTIGATION REPORT

Olympic Pipe Line Company Kent Block Valve Kent, Washington Ecology Facility Site ID: 2401

Antea[™]Group Project No. WAKBV-HA121 December 31, 2012

Prepared for: Washington Department of Ecology Northwest Regional Office 3190-160th Avenue Southwest Bellevue, WA 98008

And

Atlantic Richfield Company

A BP Affiliated Company P.O. Box 1257 San Ramon, CA 94583

Prepared by: Antea™Group 4006 148th Avenue NE Redmond, WA 98052 800 477 4711

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	Purpose	1
2.0		 -
2.0	SITE IDENTIFICATION AND DESCRIPTION	2 2
2.1	Site and Property Description	2 2
2.2	Neighborhood Setting	2 ר
2.4	Physiographic Setting/Topography	3
3.0	PROPERTY DEVELOPMENT AND HISTORY	4
3.1 2.2	Past Property Uses and Facilities	4 1
3.2	Proposed or Potential Future Property Lises	4 1
3.5	Zoning	4 A
3.5	Zerning: Transportation/Roads	4
3.6	Utilities and Water Supply	4
3.7	Potential Sources of Contamination	5
3.8	Potential Sources of Contamination from Neighboring Properties	5
4.0	ENVIRONMENTAL INVESTIGATION/INTERIM ACTION SUMMARY	6
4.0	Soil	0
4.3	Surface Water	8
4.4	Groundwater	8
4.5	Sediment	9
4.6	Air/Soil Vapor	9
4.7	Natural Resources/Wildlife	9
4.8	Cultural History/Archeology	9
4.9	Interim Actions	9
5.0	NATURAL CONDITIONS	11
5.1	Geology	11
5.2	Surface Water	11
5.3	Groundwater	11
5.4	Natural Resources and Ecological Receptors	11
6.0	CONTAMINANT OCCURRENCE AND MOVEMENT	12
6.1	Waste Material	12
6.2	Soil	12
6.3	Surface Water	13
6.4	Groundwater	13
6.5	Sediment	14
6.6	Air/Soil Vapor	14
7.0	CONCEPTUAL MODEL	15
7.1	Contaminant Release, Fate, and Transport	15
7.2	Potential and Actual Receptors	15
7.3	Data Gaps	16
8.0	CLEANUP STANDARDS	17

9.0	AREAS REQUIRING CLEANUP	18
9.1	Constituents of Concern	18
9.2	Soil – Vertical and Lateral	18
9.3	Groundwater – Vertical and Lateral	18
9.4	Surface Water	18
9.5	Sediment	18
9.6	Soil Vapor/Air	18
10.0	CONCLUSIONS	20
11.0	REFERENCES	21
12.0	REMARKS	22

TABLE OF CONTENTS (Cont.)

Tables

Table 1	2012 Groundwater Gauging and Analytical Data
Table 2	Historical Groundwater Gauging and Analytical Data
Table 3	Groundwater Geochemical Data
Table 4	Soil and Groundwater Cleanup Levels

Figures

Figure 1	Site Location Map
Figure 2	Site Map
Figure 3	Utilities Map
Figure 4	Site Map with Geologic Cross Sections
Figure 5	Geologic Cross Section A-A'
Figure 6	Geologic Cross Section B-B'
Figure 7	Geologic Cross Section C-C'
Figure 8	Groundwater Flow Direction Rose Diagram
Figure 9	Groundwater Elevation Contour Map – Fourth Quarter 2012
Figure 10	Groundwater Chemistry Data – Third and Fourth Quarter 2012

Appendices

Appendix A	Legal Description of Property
Appendix B	Summary of Previous Investigations and Remedial Activities
Appendix C	Historical Soil and Groundwater Analytical Data Tables
Appendix D	Soil Boring/Well Logs
Appendix E	Figures from Previous Consultants

Remedial Investigation Report

Olympic Pipe Line Company Kent Block Valve 74th Avenue South & South 259th Street, Kent, WA

1.0 INTRODUCTION

1.1	Property Information	
Property	/ Name	Olympic Pipe Line Company Kent Block Valve
Property	/ Address	74 th Avenue South & South 259 th Street, Kent, WA
Ecology	Facility Site ID	2401
Cleanup	Site ID	3070
Project	Consultant	Antea [™] Group
Project (Consultant Contact Information	Bryan Taylor – Senior Project Manager 4006 148 th Avenue NE Redmond, Washington, 98052 Office – 425.882.3528 Direct – 425.498.7727
Current	Owner/Operator	Puget Sound Energy (PSE)/Olympic Pipe Line Company

1.2 Purpose

On behalf of Olympic Pipe Line Company (OPLC), Antea[™]Group (Antea Group) has prepared this Remedial Investigation (RI) report for the site cleanup in the Foster Industrial Park area of Kent located at 74th Avenue South and South 259th Street, Kent, Washington (the Site, Figure 1).

The RI report was prepared to include the required items in Washington Administrative Code (WAC) 173-340-350 and summarizes environmental investigations associated with the petroleum hydrocarbon release in the vicinity of an OPLC block valve and pipeline right-of-way (ROW) in the Foster Industrial Park area. The background and previous work history presented in this report is a summary of investigations and documents prepared by Antea Group and previous consultants.

2.0 SITE IDENTIFICATION AND DESCRIPTION

2.1 Site Discovery and Regulatory Status

Prior to a real estate transaction, GeoEngineers conducted a site assessment in August 1989 on the adjacent property west of the Site. Site assessment activities included the installation of three groundwater monitoring wells (MW-1 through MW-3) on the adjacent property. Groundwater laboratory analyses indicated elevated concentrations of benzene {2,400 parts per billion (ppb)} in MW-1. OPLC was informed of the results and responded immediately. OPLC inspected the pipeline and block valve and a pinhole-sized leak was observed in the threading of a bolt located on the west side of the block valve. Following repairs, OPLC excavated approximately 30 cubic yards of hydrocarbon impacted soil from the area immediately surrounding the block valve. OPLC then contracted GeoEngineers to conduct a complete subsurface investigation to determine the extent of hydrocarbon impacts related to the release. GeoEngineers directed the advancement of borings, test pits, and trenches in the release area. Once the impacted area(s) had been identified, approximately 1,950 tons of soil was excavated. During excavation activities, GeoEngineers personnel observed thin zones of soil with apparent fuel contamination underlying the upper sand layer west of the pipeline. Excavation of these deeper layers of contaminated soil was discontinued due to the logistics associated with the removal of large thicknesses of overlying uncontaminated soil (up to 20 feet) in order to access a thin zone of contaminated soil. Although soil known to be impacted with petroleum hydrocarbons was left in place, soil borings surrounding the excavation contained concentrations of petroleum hydrocarbons that did not exceed the Washington State Department of Ecology's (Ecology) Model Toxics Control Act (MTCA) Method A Cleanup Levels at the time; therefore, indicating that impacted soil left in place was limited. According to Ecology's Toxics Cleanup Program Database, the Site discovery and release was reported to Ecology on February 19, 1992.

Currently, quarterly groundwater monitoring is being conducted at the Site. To date, two consecutive quarters of groundwater concentrations below MTCA Method A Cleanup Levels has been collected from all monitoring wells associated with the Site. Site characterization and remedial activities have been conducted by OPLC in accordance with MTCA as an Independent Cleanup Action outside Ecology's Voluntary Cleanup Program (VCP). However, along with this RI report, Antea Group is submitting an application to Ecology to enter this Site into the VCP. Recent groundwater analytical results indicate that concentrations of petroleum hydrocarbons continue to trend towards laboratory Method Reporting Limits (MRLs). Antea Group is the current consultant for this Site.

2.2 Site and Property Description

The property in which the release occurred is a narrow ROW parcel located approximately 400 feet east-northeast of the intersection of 74th Avenue South and South 259th Street (the Property). The ROW where the block valve is located is owned by Puget Sound Energy (PSE) and leased by OPLC. The block valve is part of an underground pipeline that supplies refined petroleum products from refineries in north Washington State to bulk fuel terminals and other facilities for distribution. A legal description of the Property is included in Appendix A.

Characterization of the release indicates that the actual MTCA Site location (the Site) is an area extending approximately 60 feet to the southeast, 100 feet to the east, and 530 feet to the southwest of the block valve Property.

2.3 Neighborhood Setting

Land use in the vicinity of the Property is primarily commercial and industrial. The block valve is located approximately 570 feet north of the Green River. Between the Green River and the block valve is Foster Park, which is owned by the City of Kent. Adjacent to the Property to the west is a commercial warehousing facility referred to as Foster Industrial Park. The ROW owned by PSE contains a former railroad route that has been converted to a public park trail, called the Interurban Trail Right of Way. An existing railroad track parallels the trail to the east (Figure 2).

2.4 Physiographic Setting/Topography

The OPLC Kent Block Valve Site is situated approximately 35 feet above mean sea level in the Puget Lowlands. The Green River is the nearest surface water body and is located approximately 570 feet south of the Property. The River runs parallel between the Site and Maple Valley Highway and flows in a general northerly direction to Puget Sound approximately 15 miles north of the Site. The lower 12 miles of the Green River is referred to as the Duwamish River. With the exception of the parking lot for the warehouse facility located to the west of the Property, the remainder of the Site is mostly unpaved.

3.0 PROPERTY DEVELOPMENT AND HISTORY

3.1 Past Property Uses and Facilities

The pipeline has been operational since the mid 1960's. It is unknown at this time when PSE purchased the ROW Property. A review of historical aerial photographs revealed that the area was undeveloped farmland through the 1980's.

3.2 Current Property Use and Facilities

The Property is a ROW owned by PSE. The Property is leased by OPLC and operates as a pipeline ROW and block valve location.

3.3 Proposed or Potential Future Property Uses

The potential planned use for the Property is continued use as a pipeline ROW and block valve location.

3.4 Zoning

With the exception of Foster Park, the Property and surrounding region are mostly zoned as limited industrial (King County Department of Assessments, Appendix A).

3.5 Transportation/Roads

The Property is located approximately 400 feet east-northeast of the intersection of 74th Avenue South and South 259th Street. Both roads are secondary streets that provide access from State Route 167 (SR-167) to the surrounding neighborhood. SR-167 is located approximately 700 feet west of the Property and provides access to SR-512 in Puyallup 17 miles south and Interstate 405 in Renton 7 miles north. Public bus stops are located on Central Avenue South approximately one half mile east of the Property.

3.6 Utilities and Water Supply

The Site's water, sanitary sewer and storm drainage is supplied by the City of Kent. A 10-inch water mainline lies beneath the westbound lane of South 259th Street and continues along the northbound lane of 74th Avenue South. Storm drains are located along the southbound lane of 74th Avenue South and route stormwater to Foster Park, which acts as a seasonal stormwater retention area. Two additional stormwater catch basins are located in the gutter of the westbound lane of South 259th Street that also directs stormwater to Foster Park. An 8-inch sanitary sewer line is present beneath the westbound lane of South 259th Street and the northbound lane of 74th Avenue South. The exact location of the sanitary sewer line is unknown at this time. Electrical is provided to the area by PSE via underground power lines. High voltage power lines run in a north-south direction immediately above the Interurban Trail Right of Way. Presently, natural gas lines are not in the immediate area. The approximate locations of the subsurface utilities are shown on Figure 3.

Depth to groundwater has been observed to range from approximately 9 feet below ground surface (bgs) to 23 feet bgs within the Site monitoring wells (Table 1). The majority of the groundwater at the Site is below 10 feet

bgs. Therefore, it is unlikely that these utility trenches act as preferential pathways for groundwater flow. Groundwater flow is typically to the southwest towards Green River (Section 5.3).

3.7 Potential Sources of Contamination

The likely source of the release of hydrocarbons at the Property is the pipeline block valve, located in the central portion of the Property. The release Property is located in the northeast section of the Site.

3.8 Potential Sources of Contamination from Neighboring Properties

A search was completed within the Ecology Leaking Underground Storage Tank (LUST) database to identify LUST sites within a one-mile radius of the Property. 13 LUST sites were identified within a one-mile radius, five of which are up-gradient of the Site. The closest up-gradient LUST site, Southcenter Oil (LUST ID 1192), is located approximately 3,000 feet from the Property. This LUST site is currently in the monitoring phase of cleanup. Due to the distance, these are not considered to be a potential source of impact to the Site.

4.0 ENVIRONMENTAL INVESTIGATION/INTERIM ACTION SUMMARY

The following investigations have been completed at the OPLC Block Valve Site:

- Report of Geoenvironmental Services, Subsurface Contamination Study and Remedial Action Monitoring October 1, 1990, GeoEngineers;
- Results of Groundwater Monitoring and Monitoring Well Replacement October 1, 1999, GeoEngineers;
- *Results of Groundwater Monitoring, March 2000 April 25, 2000, GeoEngineers;*
- June and September 2000 Quarterly Groundwater Monitoring November 14, 2000, GeoEngineers;
- December 2000 Quarterly Groundwater Monitoring February 8, 2001, GeoEngineers;
- March 2001 Quarterly Groundwater Monitoring June 5, 2001, GeoEngineers;
- Supplemental Site Characterization September 18, 2001, GeoEngineers;
- December 2001 Quarterly Groundwater Monitoring January 28, 2002, GeoEngineers;
- March 2002 Quarterly Groundwater Monitoring May 6, 2002, GeoEngineers;
- June 2003 Drilling and Quarterly Groundwater Monitoring Report August 11, 2003, GeoEngineers;
- March 2004 Quarterly Monitoring April 30, 2001, Delta Environmental Consultants;
- June 2004 Quarterly Groundwater Monitoring Report August 31, 2004, Delta Environmental Consultants;
- September 2004 Quarterly Groundwater Monitoring January 15, 2005, Delta Environmental Consultants;
- October 2004 Quarterly Groundwater Monitoring Report April 13, 2005, Delta Environmental Consultants;
- July 2005 Annual Groundwater Monitoring Report December 7, 2005, Delta Environmental Consultants;
- May 2006 Annual Groundwater Monitoring Report August 3, 2006, Delta Environmental Consultants;
- Semiannual Groundwater Monitoring and Progress Report, First Half 2007 August 3, 2007, Delta Consultants;
- Semiannual Groundwater Monitoring and Progress Report, Second Half 2007 December 11, 2007, Delta Consultants;
- Semiannual Groundwater Monitoring and Progress Report, First Half 2008 October 9, 2008, Delta Consultants;
- Semiannual Groundwater Monitoring and Progress Report, Second Half 2008 January 13, 2009, Delta Consultants;
- Annual Status Report July 2009, Delta Consultants;

- Annual Status Report February 15, 2011, Antea Group; and
- Annual Status Report December 2011, Antea Group.

A chronological summary of investigations listed above is included as Appendix B. This summary represents all available investigation reports obtained by or provided to Antea Group. Historical soil analytical data tables and sample locations are attached as Appendix C. Current groundwater monitoring data are summarized in Table 1. Historical groundwater monitoring data are presented in Table 2 and Appendix C. All available historical boring logs for the previous investigations are included in Appendix D. Historical soil sample locations are included in Appendix E.

4.1 Constituents of Concern

Soil samples collected from the Site have been analyzed for benzene, toluene, ethylbenzene, and total xylenes (BTEX) compounds and total petroleum hydrocarbons (TPH). Groundwater samples collected from the Site have been analyzed for TPH as gasoline (TPH-G), TPH as diesel (TPH-D), TPH as oil (TPH-O), BTEX, methyl tert-butyl ether (MTBE), 1,2-dibromoethane (EDB), 1,2-dichloroethane (EDC), and lead. The available data indicate that media has not been adequately defined in accordance with current requirements in MTCA 173-340-900, Table 830-1. Future soil samples collected will be collected and analyzed by TPH-G, TPH-D, TPH-O, BTEX, and total lead. If MTBE, EDB, or EDC are detected in groundwater, future soil samples will also be analyzed for the detected constituent.

According to GeoEngineer's October 1, 1990, Report of Geoenvironmental Services Subsurface Contamination Study and Remedial Action Monitoring, a relatively small volume (less than 20 gallons) of free product was observed within the remedial excavation conducted between August and September 1989. According to the report, GeoEngineers understood that testing by OPLC personnel indicated that free product consisted of a mixture of gasoline, diesel, and jet fuel. The free product did not accumulate to measureable thicknesses and was collected with sorbent pads during the excavation. Although there is a potential that all three refined petroleum products were released, subsequent chemical analyses and investigations conducted at the Site indicate that the only constituents of concern (COCs) are related to gasoline released from the Property. One groundwater sample slightly exceeded the MTCA Method A Cleanup Level for TPH-D in 1999. However, all other groundwater samples were below the respective MTCA Method A Cleanup Levels or did not exceed laboratory MRLs for TPH-D and TPH-O. Based on the historical groundwater analytical data, TPH-D and TPH-O do not appear to be COCs. However, given the conditions regarding the original release, Antea Group will continue to analyze groundwater for TPH-D and TPH-O. The initial soil samples collected from the Site were analyzed for TPH using EPA Method 418.1. This method is no longer accepted for hydrocarbon analysis; therefore, soil samples collected in the future will also be analyzed for TPH-D and TPH-O. Therefore, for the purposes of this RI, the COCs are considered to be TPH-G, TPH-D, TPH-O, and BTEX.

4.2 Soil

Following the release discovery on August 23, 1989, GeoEngineers directed the excavation of test pits and trenches in the vicinity of the release. 15 soil samples were collected to define the extent of the petroleum hydrocarbon

impacts to soil. Based on the test pit and trench soil analytical results, two excavations were conducted to remove impacted to the east and west of the pipeline in the vicinity of the block valve. Ten additional soil samples were collected within the footprint of the excavations. The subsequent subsurface investigation conducted by GeoEngineers between September and December 1989 included the installation of monitoring wells MW-4 through MW-19 to depths between 16.5 feet and 32.5 feet bgs. In addition, recovery well RW-1 was installed to the west of the Property to a depth of 32 feet bgs. A soil sample was collected from well MW-9 at a depth of 33 feet bgs; however, soil samples were not collected from the other borings advanced during this investigation since field screening of soils did not indicate the presence of petroleum hydrocarbons.

On September 7, 1999, monitoring well MW-17A was installed at the Site to a depth of 30 feet bgs. One soil sample was collected during the installation activities at a depth of 24 feet bgs. On July 31, 2001, monitoring wells MW-20 and MW-21 were installed at the Site to depths of 20 feet and 30 feet bgs, respectively. One soil sample was collected from boring MW-21 at a depth of 16 feet bgs. In June 2003, four air sparge wells (BS-1 through BS-4) were installed at the Site to depths of 38 feet bgs. Composite soil samples were collected from the drill cuttings of each boring during the installation activities for waste characterization purposes.

Between 1989 and 2003, 32 soil samples were collected from the Site. Soil analytical data associated with these samples is included in Appendix C and is discussed in Section 6.2. The locations of the test pits, trenches, and associated soil samples from the August 1989 investigation are shown on GeoEngineer's Figure 3 of Appendix E. The locations of the two excavations and soil sample locations are shown on GeoEngineer's Figure 4 of Appendix E. The known locations of the previously installed monitoring wells, recovery well, and air sparge wells are shown on Figure 2. Available boring logs are included as Appendix D.

4.3 Surface Water

The Green River is the nearest surface water body and is located approximately 570 feet south of the Property. The River flows in a general northerly direction to Puget Sound approximately 15 miles north of the Site. No indication of surface water impact has been identified in association with the Site; therefore, surface water sampling has not been conducted in association with this Site.

4.4 Groundwater

Between August and December 1989, 19 groundwater monitoring wells were installed (MW-1 through MW-19) throughout the Site. Monitoring wells MW-1, MW-2, MW-4, MW-8, and MW-10 were abandoned in March and April 1990 due to constructions activities at the warehouse facility located adjacent to the Property. Monitoring wells MW-3, MW-5 through MW-7, MW 11, MW-12, and MW-17 have not been located since 1993. Monitoring well MW-17A was installed to replace MW-17 in September 1999. Well MW-15 was damaged in March 2011 during sidewalk/levee improvements.

Currently, nine groundwater monitoring wells (MW-9, MW-13, MW-14, MW-16, MW-17A, MW-18 through MW-21) are present at the Site. Groundwater monitoring has recently transitioned from annual monitoring to quarterly monitoring. Summaries of current and historical groundwater elevation and analytical data for existing

groundwater monitoring wells is included as Tables 1 and 2, respectively, and is further discussed within Section 6.4. Historical groundwater data from all other Site wells is included within Appendix C. A summary of groundwater natural attenuation parameters collected during 2011 and 2012 is presented in Table 3.

4.5 Sediment

Sediment sampling has not been conducted at the Site since there has been no indication of surface water impacts associated with the Site.

4.6 Air/Soil Vapor

Soil vapor sampling has not been conducted at the Site. Hydrocarbon vapor monitoring was conducted within the monitoring well casings during groundwater monitoring performed between September 1989 and August 1990. Vapor concentrations detected within the monitoring well casings are summarized in Section 6.6.

4.7 Natural Resources/Wildlife

Due to the proximity of Green River, Antea Group will complete a site-specific Terrestrial Ecological Evaluation (TEE) for the Site.

4.8 Cultural History/Archeology

Information collected in regards to the historical use of the Property does not indicate that additional investigation of Property history or archeology is necessary. No part of the Site is listed in the National Register of Historic places.

4.9 Interim Actions

Upon completion of repairs to the block valve, OPLC excavated approximately 30 cubic yards of hydrocarbon impacted soil from the area immediately surrounding the block valve. Between August 31 and September 27, 1989, two additional soil excavations were performed on the east and west sides of the pipeline and block valve. Excavation of impacted soil extended to approximately six feet bgs on the east side of the pipeline and extended to depths between 16 feet and 24 feet bgs on the west side of the pipeline. Excavation was discontinued in the vicinity of the pipeline due to the risk of compromising the structural integrity of the pipeline. Additional excavation to remove the deeper layers of impacted soil to the west of the pipeline and block valve was discontinued due to the logistics associated with the removal of large thicknesses of overlying uncontaminated soil (up to 20 feet) in order to access the thin zone of impacted soil. Approximately 1,950 tons of soil was removed during the remedial excavations. According to GeoEngineer's October 1, 1990, *Report of Geoenvironmental Services Subsurface Contamination Study and Remedial Action Monitoring*, soil which was not impacted with petroleum hydrocarbons or which contained concentrations of petroleum hydrocarbons below Ecology's previous cleanup guidelines was stored on-site in temporary stockpiles for use as backfill material. Upon completion of the excavations, a 30-inch diameter recovery well (RW-1) was installed in the backfill of the western excavation; however, additional groundwater recovery equipment was not installed.

Between September and December 1989, 16 groundwater monitoring wells (MW-4 through MW-19) were installed at the Site. Three additional monitoring wells were installed at the Site in 1999 (well MW-17A) and in 2001 (MW-20 and MW-21). In June 2003, four air sparge wells (BS-1 through BS-4) were installed at the Site in the vicinity of wells MW-15 and MW-16. Air sparging was initiated on January 21, 2004, with the purpose of increasing dissolved oxygen concentrations in the groundwater and to enhance volatilization of BTEX constituents in the groundwater. Air sparging activities occurred on a monthly basis through August 2004. On September 2 and 17, 2004, enhanced liquid recovery (ELR) events were performed. During these events, approximately 168 gallons of groundwater was extracted. Following the ELR events, oxygen-releasing compound (ORC) socks were placed in wells MW-15 and MW-16. The purpose of the ORC socks was to increase the amount of oxygen available for microbial respiration, thus facilitating the process of natural attenuation via aerobic degradation. An evaluation of the October 2004 groundwater analytical data indicated that concentrations of petroleum hydrocarbons were not decreasing significantly. Therefore, air sparging and ORC applications were subsequently discontinued.

5.0 NATURAL CONDITIONS

5.1 Geology

The Property is located within the Green River basin of the Puget Lowlands. Local geology is classified as Quaternary Alluvium, which is classified as unconsolidated sand and silt, with varying amounts of gravel and cobbles (Washington Division of Geology and Earth Resources, 2005). Soils observed at the Site during the well installation activities generally consisted of sand and/or silty-sand underlain by sandy-silt and silt. Figure 4 shows the location of the lines of cross-sections depicting soil conditions at the Site (Figure 5, Figure 6, and Figure 7).

5.2 Surface Water

Surface water runoff from the paved portions of the Site enters existing municipal storm water drains located in many locations throughout the Site and is piped to Foster Industrial Park, which acts as a seasonal storm water retention pond (Figure 2). The Green River is the nearest surface water body and is located approximately 570 feet south of the Property. The Green River flows in a general northerly direction to Puget Sound approximately 15 miles north of the Site. The lower 12 miles of the Green River is referred to as the Duwamish River.

5.3 Groundwater

The groundwater located beneath the Site is part of the Green River watershed system. Depth to groundwater within the monitoring wells has ranged from approximately 9 feet bgs (MW-20) to 23 feet bgs (MW-19; Table 2). Groundwater flow direction is generally to the southwest (Figure 8). The average gradient is approximately 0.003 foot-per-foot. Figure 9 illustrates the direction of groundwater flow and gradient as measured during the fourth quarter of 2012.

A search completed within the Ecology Well Log database indicates two water supply wells are located within a one-mile radius of the Site. Both wells are irrigation water wells and are located approximately 4,000 feet northwest of the Site. The distance and cross-gradient nature of these wells makes impact from contaminants associated with the Site unlikely.

5.4 Natural Resources and Ecological Receptors

A Simplified TEE was completed for the Property. The simplified TEE exposure analysis indicated that due to the proximity of Foster Industrial Park and the Green River, a site-specific TEE is necessary. Antea Group is in the process of completing a site-specific TEE.

6.0 CONTAMINANT OCCURRENCE AND MOVEMENT

6.1 Waste Material

Waste associated with previous investigations was transported off-site for proper disposal. Therefore, discussion of the occurrence or movement of contaminants in this media is not applicable.

6.2 Soil

Following block valve repairs completed in August 1989, OPLC excavated approximately 30 cubic yards of hydrocarbon impacted soil from the area immediately surrounding the block valve. OPLC then contracted GeoEngineers to conduct a complete subsurface investigation to determine the extent of hydrocarbon impacts related to the release. GeoEngineers directed the excavation of test pits and trenches to depths between 7 feet and 24 feet bgs in the vicinity of the release. Soil analytical results indicated that the petroleum hydrocarbons were detected in soil samples collected from test pits and trenches located approximately 25 feet to the northnortheast, 65 feet to the west, 70 feet to the southwest, and 50 feet to the south-southeast of the block valve. Concentrations of TPH and benzene were detected up to 1,100 parts per million (ppm) in OP-6 at 5 feet bgs and 1.5 ppm in OP-24 at 24.5 feet bgs. Maximum concentrations of toluene, ethylbenzene, and total xylenes were detected at 3.1 ppm, 12 ppm, and 89 ppm, respectively, within soil sample OP-1 at 6 feet bgs. The locations of the test pits are shown on GeoEngineer's Figure 3 of Appendix E.

Following the test pit and trench investigations, approximately 1,950 tons of soils were excavated from areas east and west of the block valve and pipeline. The soil sample collected from the eastern excavation at 6 feet bgs, OP-8, contained a concentration of TPH of 1.6 ppm and was non-detect for BTEX. Soil samples collected the western excavation between 5 feet and 6 feet bgs were non-detect for BTEX but contained concentrations of TPH up to 1.6 ppm. Soil samples collected from the western excavation between 15 feet and 22.5 feet bgs contained concentrations of TPH and/or BTEX up to 4.5 ppm, 3.9 ppm, 5 ppm, 0.54 ppm, and 2.61 ppm, respectively. During excavation activities, GeoEngineers personnel observed thin zones of soil with apparent petroleum hydrocarbon contamination underlying the upper sand layer west of the pipeline. Excavation of these deeper layers of contaminated soil was discontinued due to the logistics associated with the removal of large thicknesses of overlying uncontaminated soil (up to 20 feet) in order to access a thin zone of contaminated soil.

According to GeoEngineers, field screening of soil samples collected during the drilling of wells MW-4 through MW-8 and MW-10 through MW-19 did not indicate the presence of petroleum hydrocarbons and therefore, soil samples were not submitted for laboratory analysis. However, a sample from a depth of 33 feet bgs in boring MW-9 contained a vapor concentration of 1,000 ppm. The soil analytical results of this sample indicated that concentrations of TPH and BTEX were not detected above the laboratory MRLs.

On September 7, 1999, monitoring well MW-17A was installed at the Site to a depth of 30 feet bgs. One soil sample was collected during the installation activities at a depth of 24 feet bgs. Concentrations of TPH-G, TPH-D, and TPH-O were not detected above the laboratory MRLs. On July 31, 2001, monitoring wells MW-20 and MW-21

were installed at the Site to depths of 20 feet and 30 feet bgs, respectively. One soil sample was collected from boring MW-21 at a depth of 16 feet bgs. Concentrations of TPH-G, TPH-D, TPH-O, and BTEX were not detected above the laboratory MRLs or MTCA Method A Cleanup Levels. In June 2003, four air sparge wells (BS-1 through BS-4) were installed at the Site to depths of 38 feet bgs. Composite soil samples were collected during installation of each sparge well for waste characterization purposes. Laboratory analysis indicated that concentrations of TPH-G, TPH-D, TPH-O, and BTEX were not detected above the laboratory MRLs or MTCA Method A Cleanup Levels.

All historical soil analytical data are included within Appendix C. All available boring logs are included as Appendix D. Sample locations and the extent of the excavations are shown on GeoEngineer's Figures 3 and 4 within Appendix E.

6.3 Surface Water

The Green River is the nearest surface water body and is located approximately 570 feet south of the Property. The Green River flows in a general northerly direction to Puget Sound approximately 15 miles north of the Site. With the exception of well MW-18, dissolved-phase petroleum hydrocarbons have not been detected above the MTCA Method A Cleanup Levels and/or laboratory MRLs in groundwater samples collected from monitoring wells located between the Green River and the dissolved-phase plume. Benzene was historically detected in well MW-18 above the MTCA Method A Cleanup Level, but has not been detected above MTCA Method A since 1993. Based on these results, and the fact that there have been no known surface releases near the Green River in association with this Site, a discussion of contaminant occurrence and movement within this media is not necessary.

6.4 Groundwater

Between August and December 1989, nineteen groundwater monitoring wells were installed at the Site. Historical groundwater monitoring data indicate that the dissolved-phase plume extended west of the Property to well MW-10, east of the Property to well MW-9, and down-gradient to wells MW-14 through MW-16. Concentrations of BTEX were historically detected up to 10,000 ppb, 5,000 ppb, 980 ppb, and 4,700 ppb (well MW-8), respectively. In addition, groundwater monitoring conducted between December 1990 and June 1993 indicated that concentrations of benzene exceeded the MTCA Method A Cleanup Level within well MW-18. Concentrations of benzene were detected up to 97 micrograms per liter (μ g/L) within this well. However, monitoring conducted since 1999 confirms that concentrations of COCs were not detected above the laboratory MRLs and/or the MTCA Method A Cleanup Levels.

Currently, nine groundwater monitoring wells (MW-9, MW-13, MW-14, MW-16, MW-17A, MW-18 through MW-21) are present at the Site. Groundwater monitoring conducted since 1999 indicates concentrations of TPH-G were detected up to 1,090 µg/L in well MW-16. TPH-G was last detected above the MTCA Method A Cleanup Level in April 2006. TPH-D was detected above the MTCA Method A cleanup level in one sample collected from well MW-9 in 1999; however, concentration of TPH-D have not exceeded MTCA Cleanup Levels in any other groundwater samples, and have primarily remained below laboratory MRLs. Concentrations of TPH-O have not been detected above the laboratory MRLs in all wells sampled. Benzene has not been detected above the MTCA

Method A Cleanup Level since January 2009. All other COCs have been detected below the respective MTCA Method A Cleanup Levels and/or laboratory MRLs for several years.

Historical groundwater monitoring data from previous consultants is contained within Appendix C. A summary of groundwater analytical data and groundwater elevations from 1989 through September 2012 is provided in Table 2. Recent groundwater analytical results from the second half of 2012 are summarized in Table 1 and are shown on Figure 10.

6.5 Sediment

The Green River is the nearest surface water body and is located approximately 570 feet southwest of the Property. No indication of surface water impact has been identified in association with the Site; therefore, discussion of contaminant occurrence and movement within this media is not necessary.

6.6 Air/Soil Vapor

Between September 1989 and August 1990, hydrocarbon vapor concentrations were measured at the well head. Concentrations ranged from less than 100 ppm to greater than 10,000 ppm. Based on current locations and concentrations observed in groundwater, a soil vapor investigation is not warranted. A summary of hydrocarbon vapor concentrations at the well heads is included in Appendix C.

7.0 CONCEPTUAL MODEL

7.1 Contaminant Release, Fate, and Transport

The petroleum release was discovered at the Site in early August 1989, within the vicinity of an OPLC block valve and pipeline ROW. Based on the search that was completed using the Ecology LUST database to identify LUST sites, it is very unlikely that any off-site sources have impacted soil and groundwater at the Site (Section 3.8). Remedial excavation occurred at the Site immediately after discovery of the release. An approximate total of 1,950 tons of soil was excavated and removed from the Site.

Monitoring data indicate that the groundwater flow direction predominantly flows to the southwest (Section 5.3). Wells MW-9, MW-13, MW-14, MW-16, MW-17A, and wells MW-18 through MW-21 have been sampled on an annual basis since 2010 and have been below the TPH-G, TPH-D, TPH-O, and BTEX MTCA Method A Cleanup Levels. Antea Group is currently conducting quarterly sampling and is including all existing monitoring wells (MW-9, MW-13, MW-14, MW-16, MW-17A, and MW-18 through MW-21). Well MW-15 was damaged in March 2011 during sidewalk/levee improvements and may need to be replaced. Third and fourth quarter 2012 groundwater analytical data indicate that none of the wells contained concentrations of TPH-G, TPH-D, TPH-O, BTEX, EDB, EDC, MTBE, or total lead above the MTCA Method A Cleanup Levels.

7.2 Potential and Actual Receptors

A complete exposure pathway consists of: (1) an identified contaminant source, (2) a transport pathway to locations (exposure points) where potential receptors may come in contact with COCs and, (3) an exposure route (e.g., ingestion) through which potential receptors may become exposed to COCs.

Based on soil data from 1989, most of the soil impacts were excavated. However, some areas of soil known to be impacted with petroleum hydrocarbons were left in place. It is possible that future construction at the Site could encounter petroleum hydrocarbon-impacted soils, making the direct contact pathway a complete potential receptor. However, the depth to the soils with historic concentrations of COCs above MTCA Method A Cleanup Levels make this unlikely.

The adjacent Property down-gradient from the block valve Property is paved which does not allow a complete soil to outdoor air vapor exposure pathway. Other areas at the Site, including the up-gradient portion near well MW-9 and the down-gradient Foster Industrial Park are un-paved, vegetated land; therefore, it is possible a soil to outdoor air vapor exposure pathway is complete. However, present concentrations in groundwater make this pathway unlikely.

Due to the proximity of the Valley Freeway Building to the block valve Property and the location of historic impacts, the vapor intrusion pathway to indoor air may be a complete exposure pathway. Although groundwater has been in compliance with the MTCA Method A Cleanup Levels in the closest down-gradient well from the block valve Property (well MW-13) since 2010, additional assessment between the block valve Property and the Valley Freeway Building is planned to confirm current soil conditions.

A search completed within the Ecology Well Log database indicates two water supply wells are located within a one-mile radius of the Property. Both wells are irrigation water wells located approximately 4,000 feet northwest of the Site. The distance and cross-gradient nature of these wells makes impact from contaminants associated with the Property unlikely.

The Green River is the nearest surface water body and is located approximately 570 feet south of the Property. The Green River flows in a general northerly direction to Puget Sound approximately 15 miles north of the Site. The lower 12 miles of the Green River is referred to as the Duwamish River. With the exception of well MW-18, petroleum contaminants have not been detected above the MTCA Method A Cleanup Levels and/or laboratory MRLs in groundwater samples collected from monitoring wells located between the Green River and the dissolvedphase plume. Benzene has historically been detected in well MW-18 above the MTCA Method A Cleanup Levels, but has not been detected above laboratory MRLs since 1993. Therefore, the groundwater to surface water pathway is not complete and surface water is not a potential receptor.

The impacts at the Site immediately down-gradient of the release area are covered by buildings or pavement which indicates that plant and wildlife exposure to COCs is incomplete and therefore, should be excluded from further terrestrial ecological evaluation. However, up-gradient and further down-gradient areas are covered with grass. Although current concentrations of petroleum hydrocarbons are below MTCA Method A Cleanup Levels, a site-specific TEE may be warranted.

7.3 Data Gaps

The groundwater analytical data gathered from the Site indicates that the petroleum hydrocarbon concentrations previously detected in the soil have decreased and are likely present at concentrations below MTCA Method A Cleanup Levels. Confirmation soil samples may need to be collected in order to assess current soil conditions. In addition, current soil conditions between the block valve Property and the Valley Freeway Building are unknown and will be assessed in the future.

8.0 CLEANUP STANDARDS

Groundwater beneath the Site could potentially be used for drinking water. MTCA Method A Cleanup Levels for soil and groundwater are applicable for the Site. Cleanup Levels for the COCs in soil and groundwater are included in Table 4.

9.0 AREAS REQUIRING CLEANUP

9.1 Constituents of Concern

The constituents of concern associated with the Property release include TPH-G, TPH-D, TPH-O, and BTEX compounds.

9.2 Soil – Vertical and Lateral

During excavation activities following the initial response to the release, soil known to be impacted with petroleum hydrocarbons was left in place due to the impractical excavation logistics. Current groundwater analytical data suggest that petroleum hydrocarbons in soil have naturally attenuated. With the exception of limited soil data collected during the installation of air sparge wells BS-1 through BS-4, MW-17A, and MW-21 a full subsurface investigation has not been completed at the Site since 1989. Therefore, a subsurface investigation is warranted to assess current soil conditions, particularly in the area of the original release.

9.3 Groundwater – Vertical and Lateral

Monitoring data indicate that groundwater migration is predominately to the southwest. Groundwater analytical results from the most recent sampling events (September and November 2012) indicate that concentrations of COCs within all existing wells on-site were below the MTCA Method A Cleanup Levels and/or laboratory MRLs.

Antea Group has been conducting groundwater monitoring and sampling at wells MW-9, MW-13, MW-14, MW-16, MW-17A, and wells MW-18 through MW-21 on an annual basis since 2010. As concentrations of petroleum hydrocarbons in groundwater trend toward laboratory MRLs, Antea Group has transitioned to a quarterly groundwater monitoring and sampling program. To date, two consecutive quarters of groundwater concentrations below MTCA Method A Cleanup Levels has been collected from all monitoring wells associated with the Site.

9.4 Surface Water

The Green River is the nearest surface water body and is located approximately 570 feet south of the Property. No indication of surface water impact has been identified in association with the Site, and downgradient monitoring wells near the River are non-detect for petroleum constituents; therefore, impact to surface water is not likely and no action is required.

9.5 Sediment

The Green River is the nearest surface water body and is located approximately 570 feet south of the Property. No indication of surface water impact has been identified in association with the Site; therefore, impact to sediment is not likely and no action is required.

9.6 Soil Vapor/Air

Between September 1989 and August 1990 hydrocarbon vapor concentrations were measured at the well head. Concentrations ranged from less than 100 ppm to greater than 10,000 ppm. Based on current concentrations

observed in groundwater, soil vapor concentrations of petroleum hydrocarbons are not likely to pose a risk to human health an no action is required at this time.

10.0 CONCLUSIONS

Prior to a real estate transaction, GeoEngineers conducted a subsurface investigation at the Site on August 23, 1989. During the investigation, petroleum hydrocarbons were discovered in groundwater in the vicinity of an OPLC block valve and pipeline ROW. On August 24, 1989, OPLC performed an inspection of the block valve and identified and repaired a leak. The volume of the release is not known. GeoEngineers was contracted by OPLC to perform remedial excavation activities at the Site and approximately 1,950 tons of contaminated soil was removed from the Site. Areas of soil known to be impacted with petroleum hydrocarbons were left in place due to the risk of compromising the structural integrity of the pipeline and due to the impractical logistics of further excavation to the west of the block valve Property.

Following the remedial excavation, 16 groundwater monitoring wells were installed (MW-4 through MW-19). Between 1999 and 2001, three additional groundwater monitoring wells (MW-17A, MW-20, and MW-21) were installed to further delineate the extent of petroleum hydrocarbons in groundwater and subsurface soils. In 2003, four air-sparge wells (BS-1 through BS-4) were installed and sparging commenced on January 21, 2004. Additionally, ORC socks and ELR events were conducted to reduce concentrations of petroleum hydrocarbons in the subsurface. However, these remedial techniques proved to be ineffective and were ceased. Since 2004, monitored natural attenuation has been the remedial approach. As concentrations of petroleum hydrocarbons continue to trend towards laboratory MRLs, Antea Group has transitioned to quarterly groundwater monitoring and sampling. To date, two consecutive quarters of groundwater concentrations below MTCA Method A Cleanup Levels has been collected from all monitoring wells associated with the Site.

Based on remedial actions completed to date, and groundwater analytical trends, it is Antea Group's opinion that four consecutive quarters of groundwater concentrations below MTCA Method A Cleanup Levels will have been obtained following the second quarter 2013 sampling event. Subsequent to the submittal of this RI, Antea Group will submit the Site into the VCP, and request an *Opinion Letter* on additional data necessary to obtain a No Further Action determination from Ecology.

11.0 REFERENCES

Report of Geoenvironmental Services, Subsurface Contamination Study and Remedial Action Monitoring – October

1, 1990, GeoEngineers.

Results of Groundwater Monitoring and Monitoring Well Replacement – October 1, 1999, GeoEngineers Supplemental Site Characterization – September 18, 2001, GeoEngineers

June 2003 Drilling and Quarterly Groundwater Monitoring Report – August 11, 2003, GeoEngineers

12.0 REMARKS

The recommendations contained in this report represent Antea USA, Inc.'s professional opinions based upon the currently available information and are arrived at in accordance with currently accepted professional standards. This report is based upon a specific scope of work requested by the client. The contract between Antea USA, Inc. and its client outlines the scope of work, and only those tasks specifically authorized by that contract or outlined in this report were performed. This report is intended only for the use of Antea USA, Inc.'s client and anyone else specifically identified in writing by Antea USA, Inc. as a user of this report. Antea USA, Inc. will not and cannot be liable for unauthorized reliance by any other third party. Other than as contained in this paragraph, Antea USA, Inc. makes no express or implied warranty as to the contents of this report.

Prepared by:

Mar Kichard

Megan Richard Project Professional

Reviewed by:

Matthew Miller, LG Project Manager

Matthew Miller

Date: December 31, 2012

Date: December 31, 2012

Date: December 31, 2012

Bryan Taylor Senior Project Manager

Tables

- Table 12012 Groundwater Gauging and Analytical Data
- Table 2Historical Groundwater Gauging and Analytical Data
- Table 3 Groundwater Geochemical Data
- Table 4Soil and Groundwater Cleanup Levels

TABLE 12012 GROUNDWATER GAUGING AND ANALYTICAL DATAOlympic Pipe Line CompanyKent Block Valve74th Ave S S 259th StKent, Washington

Sample I.D.	Sample Date	TOC (feet)	DTW (feet)	SPH (feet)	GWE (feet)	TPH- Gasoline (µg/l)	TPH- Diesel (µg/l)	TPH-Oil (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Xylenes (µg/l)	EDC (µg/l)	EDB (µg/l)	MTBE (µg/l)	Total Lead (µg/l)
MW-9	09/12/12	95.21	19.43		75.78	<50.0	<78.4	<392	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<1.0	<10.0
	11/07/12	95.21	16.81	-	78.40	<100	<200	<200	<1.0	<1.0	<1.0	<3.0				9.4
MW-13	09/12/12	97.41	20.55		76.86	<50.0	<78.4	<392	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<1.0	<10.0
	11/07/12	97.41	17.78		79.63	<100	<200	<200	<1.0	<1.0	<1.0	<3.0				11.3
MW-14	09/12/12	97.15	21.33		75.82	<50.0	131	<392	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<1.0	<10.0
	11/07/12	97.15	18.31		78.84	<100	<200	<200	<1.0	<1.0	<1.0	<3.0				<3.0
MW-15	09/12/12	96.84	WD													
	11/07/12	96.84	WD													
MW-16	09/12/12	97.32	21.92		75.40	<50.0	<78.4	<392	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<1.0	<10.0
	11/07/12	97.32	19.15		78.17	170	<200	<200	<1.0	<1.0	<1.0	<3.0				7.2
MW-17A	09/12/12	97.96	23.46		74.50	<50.0	<78.4	<392	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<1.0	<10.0
	11/07/12	97.96	20.55		77.41	<100	<200	<200	<1.0	<1.0	<1.0	<3.0				8.0
MW-18	09/12/12	98.24	23.63		74.61	<50.0	<78.4	<392	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<1.0	<10.0
	11/07/12	98.24	21.01		77.23	<100	<200	<200	<1.0	<1.0	<1.0	<3.0				<3.0
MW-19	09/12/12	98.45	23.68		74.77	<50.0	<78.4	<392	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<1.0	<10.0
	11/07/12	98.45	21.15		77.30	<100	<200	<200	<1.0	<1.0	<1.0	<3.0				<3.0
MW-20	09/12/12	96.50	15.62		80.88	<50.0	<78.4	<392	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<1.0	<10.0
	11/07/12	96.50	13.27		83.23	<100	<167	<167	<1.0	<1.0	<1.0	<3.0				<3.0
MW-21	09/12/12	96.82	21.28		75.54	<50.0	<78.4	<392	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<1.0	<10.0
	11/07/12	96.82	18.31		78.51	<100	<200	<200	<1.0	<1.0	<1.0	<3.0				<3.0

TABLE 12012 GROUNDWATER GAUGING AND ANALYTICAL DATAOlympic Pipe Line CompanyKent Block Valve74th Ave S S 259th StKent, Washington

Sample I.D.	Sample Date	TOC (feet)	DTW (feet)	SPH (feet)	GWE (feet)	TPH- Gasoline (μg/l)	TPH- Diesel (μg/l)	TPH-Oil (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Xylenes (µg/l)	EDC (µg/l)	EDB (µg/l)	MTBE (µg/l)	Total Lead (μg/l)
	thod A					800*	500	500	5	1000	700	1000	5	0.01	20	15
Cleanup L																
Reporting	y Limits					Varies - see	laboratory	/ analytical	report for va	alues.						
Notes:																
ua/l = micr	g/l = micrograms per liter															
TOC = Tor	of casing	elevation, f	feet above	mean sea	level											
DTW = De	FW = Depth to water, feet below ground surface															
NL = Not le	cated		0													
NG = Not	G = Not gauged															
WD = Wel	VD = Well damaged															
SPH = Se	SPH = Separate-phase hydrocarbon thickness															
GWE = Gr	oundwater	elevation,	feet above	mean sea	level											
<N = Not o	letected at 1	he laborat	ory reportir	ng limits												
= Not sa	mpled, not	measured,	or not ana	lyzed												
Water tabl	e elevation	corrected	for separat	e-phase h	ydrocarbor	IS										
TPH as Ga	asoline = $1c$	tal petrole	um hydroc	arbons as	gasoline b	y Method NVV	TPH-Gx									
TPH as Di	esel = 1 otal	petroleum	hydrocarb	ons as die	esel by Mei		Dx with sili	ca gel clean	up							
	i = i otal pe		arocarbons	s as oil by			Nothod 8	cleanup								
	othyl tort h	ierie, etriyii itul Ethor c	belizelle, a				A Method o	200								
FDC = 12	-Dichloroet	nane analy	zed by EP	A Mothod	8260											
EDC = 1,2 EDB = 1.2	-Dibromoet	hane analy	zed by EF		8260											
Total lead	by FPA Me	thod 6010		, mounou	0200											
* MTCA M	ethod A Cle	anup Leve	el for TPH-	Gasoline i	s 1000 (ua	(I) if benzene i	is not detec	ctable in grou	undwater.							
						,		J								

			GROUN	DWATER GAUGI	NG DATA		GROUNDWATER ANALYTICAL DATA											
Well I.D.	Date	TOC Elevation (ft)	Depth to LNAPL (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Water Elevation* (ft)	TPH-G (C6-C12) (UG/L)	TPH-D (C12-C24) (UG/L)	TPH-O (C24-C40) (UG/L)	Benzene (UG/L)	Toluene (UG/L)	Ethylbenzene (UG/L)	Xylene (Total) (UG/L)	MTBE (UG/L)	EDB (UG/L)	EDC (UG/L)	TOTAL PB (UG/L)	
Applied Actio MTCA N	on Level: 2007 lethod A						800	500	500	5	1000	700	1000	20	0.01	5	15	
	9/20/1989	95.21	NG	NG	NG	NG				ND	ND	ND	ND					
	12/20/1989	95.21	NG	NG	NG	NG				4.8	86	25	120					
	1/23/1990	95.21	NG	NG	NG	NG				4.8	85	53	240					
	2/20/1990	95.21	NG	NG	NG	NG				14	38	41	120					
	3/20/1990	95.21	NG	NG	NG	NG				26	6.3	38	110					
	4/23/1990	95.21	NG	NG	NG	NG				23	6.7	42	81					
	12/13/1990	95.21	NG	NG	NG	NG				0.9	1.6	15	30					
	8/26/1992	95.21	NG	NG	NG	NG				3.3	ND	0.9	1.3					
	6/3/1993	95.21	NG	NG	NG	NG				ND	ND	ND	ND					
	8/17/1999	95.21	NP	18.82	NP	76.39	<50	530		<0.5	<0.5	<0.5	<1					
	3/17/2000	95.21	NP	16.1	NP	79.11	<50	<250		<0.5	<0.5	<0.5	<1					
	6/22/2000	95.21	NP	16.88	NP	78.33	<80			<0.5	<0.5	<0.5	<1					
	7/31/2000	95.21	NP	19.22	NP	75.99	<50	<250		<0.5	<0.5	<0.5	<1					
	9/27/2000	95.21	NP	19.31	NP	75.9	<50	<250		<0.5	<0.5	<0.5	<1					
	12/27/2000	95.21	NP	18	NP	77.21	<50	<250		<0.5	<0.5	<0.5	<1					
	3/30/2001	95.21	NP	23	NP	72.21	<50			<0.5	<0.5	<0.5	<1					
MW/ O	7/11/2001	95.21	NP	18.06	NP	77.15	<50			<0.5	<0.5	<0.5	<1					
10100-5	9/26/2001	95.21	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI					
	12/27/2001	95.21	NP	14.41	NP	80.8	<50			<0.5	<0.5	<0.5	<1					
	3/14/2002	95.21	NP	14.5	NP	80.71	<50			<0.5	<0.5	<0.5	<1					
	6/17/2003	95.21	NP	18.04	NP	77.17	<50			<0.5	<0.5	<0.5	<1					
	3/1/2004	95.21	NP	23.05	NP	72.16	<50			<0.5	<0.5	<0.5	<1					
	6/1/2004	95.21	NP	13.82	NP	81.39	<50			<0.5	<0.5	<0.5	<1					
	9/1/2004	95.21	NP	18.37	NP	76.84	<50			<0.5	<0.5	<0.5	<1					
	10/18/2004	95.21	NP	17.38	NP	77.83	<80			<0.5	<0.5	<0.5	<1					
	7/27/2005	95.21	NP	18.63	NP	76.58												
	4/11/2006	95.21	NG	NG	NG	NG												
	5/4/2007	95.21	NG	NG	NG	NG												
	9/5/2007	95.21	NP	19.39	NP	75.82												
	2/12/2008	95.21	NG	NG	NG	NG												
	7/17/2008	95.21	NG	NG	NG	NG												
	3/3/2010	95.21	NP	17.39	NP	77.82												
	3/3/2011	95.21	NP	16.32	NP	78.89												
	9/12/2012	95.21	NP	19.43	NP	75.78	<50.0	<78.4	<392	<1	<1	<1	<3	<1.0	<1.0	<1.0	<10.0	

			GROUN	DWATER GAUGI	NG DATA		GROUNDWATER ANALYTICAL DATA											
Well I.D.	Date	TOC Elevation (ft)	Depth to LNAPL (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Water Elevation* (ft)	TPH-G (C6-C12) (UG/L)	TPH-D (C12-C24) (UG/L)	TPH-O (C24-C40) (UG/L)	Benzene (UG/L)	Toluene (UG/L)	Ethylbenzene (UG/L)	Xylene (Total) (UG/L)	MTBE (UG/L)	EDB (UG/L)	EDC (UG/L)	TOTAL PB (UG/L)	
Applied Actio MTCA N	on Level: 2007 lethod A						800	500	500	5	1000	700	1000	20	0.01	5	15	
	10/18/1989	97.41	NG	NG	NG	NG				3.4	ND	ND	ND					
	12/21/1989	97.41	NG	NG	NG	NG				2.5	ND	ND	ND					
	1/23/1990	97.41	NG	NG	NG	NG				3.3	ND	ND	ND					
	2/20/1990	97.41	NG	NG	NG	NG				20	9.3	1.7	8					
	3/21/1990	97.41	NG	NG	NG	NG				29	37	13	64					
	4/23/1990	97.41	NG	NG	NG	NG				49	5.8	26	110					
	8/26/1992	97.41	NG	NG	NG	NG				9.5	0.5	1.6	3.7					
	6/3/1993	97.41	NG	NG	NG	NG				3.8	ND	0.6	2.1					
	8/17/1999	97.41	NP	19.5	NP	77.91	370	<250		66.5	3.45	2.63	28.8					
	3/17/2000	97.41	NP	17.72	NP	79.69	<50	<250		1.46	<0.5	<0.5	<1					
	6/22/2000	97.41	NP	18.38	NP	79.03	<80			1.35	<0.5	<0.5	<1					
	7/31/2000	97.41	NP	20.05	NP	77.36	222	<250		40	<1.05	<0.5	<1					
	9/27/2000	97.41	NP	20.96	NP	76.45	284	<250		47.5	<1.66	<1	8.99					
	12/27/2000	97.41	NP	20.68	NP	76.73	53.6	<250		<0.653	0.964	<0.5	1.61					
	3/30/2001	97.41	NP	18.77	NP	78.64	<50			1.03	<0.5	<0.5	2.89					
	7/11/2001	97.41	NP	20.91	NP	76.5	114			2.52	<0.5	<0.5	3.26					
MW-13	9/26/2001	97.41	NP	21.72	NP	75.69	144			2.66	<0.5	<0.5	3.74					
10	12/27/2001	97.41	NP	17.59	NP	79.82	70.4			1.57	<0.5	<0.5	1.67					
	3/14/2002	97.41	NP	17.9	NP	79.51	<50			0.61	<0.5	<0.5	<1					
	6/17/2003	97.41	NP	20.83	NP	76.58	55			<0.5	<0.5	<0.5	<1					
	3/1/2004	97.41	NP	19.2	NP	78.21	88.5			0.574	<0.5	<0.5	1.59					
	6/1/2004	97.41	NP	16.56	NP	80.85	<50			0.574	<0.5	<0.5	<1					
	9/1/2004	97.41	NP	20.99	NP	76.42	<50			0.658	<0.5	<0.5	<1					
	10/18/2004	97.41	NP	20.18	NP	77.23	86.1			0.747	<0.5	<0.5	<1					
	7/27/2005	97.41	NP	20.92	NP	76.49	115			0.956	<0.5	<0.5	<1					
	4/11/2006	97.41	NP	17.25	NP	80.16	58.6	<243		0.614	<0.5	<0.5	<1					
	5/4/2007	97.41	NP	18.07	NP	79.34	65.3	<236		<0.5	<0.5	<0.5	<1					
	9/5/2007	97.41	NP	20.61	NP	76.8	249	<236		8.4	<0.5	<0.5	<1					
	2/12/2008	97.41	NP	14.08	NP	83.33	55	<240		<0.5	<0.5	<0.5	<1					
	7/17/2008	97.41	NP	18.99	NP	78.42	<50	<243	<485	0.64	<0.5	<0.5	<1					
	1/12/2009	97.41	NP	15.53	NP	81.88	550	<238	<476	12.5	0.94	<0.5	1.93					
	3/3/2010	97.41	NP	18.52	NP	78.89	<50	<120	260	<1	<1	<1	<2					
	3/3/2011	97.41	NP	17.22	NP	80.19	<50	<75	<380	<1	<1	<1	<3					
	9/12/2012	97.41	NP	20.55	NP	76.86	<50.0	<78.4	<392	<1	<1	<1	<3	<1.0	<1.0	<1.0	<10.0	

			GROUN	DWATER GAUGI	NG DATA		GROUNDWATER ANALYTICAL DATA											
Well I.D.	Date	TOC Elevation (ft)	Depth to LNAPL (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Water Elevation* (ft)	TPH-G (C6-C12) (UG/L)	TPH-D (C12-C24) (UG/L)	TPH-O (C24-C40) (UG/L)	Benzene (UG/L)	Toluene (UG/L)	Ethylbenzene (UG/L)	Xylene (Total) (UG/L)	MTBE (UG/L)	EDB (UG/L)	EDC (UG/L)	TOTAL PB (UG/L)	
Applied Actio MTCA N	on Level: 2007 lethod A						800	500	500	5	1000	700	1000	20	0.01	5	15	
	11/10/1989	97.15	NG	NG	NG	NG				1800	22	41	170					
	12/20/1989	97.15	NG	NG	NG	NG				160	1.6	6.5	18					
	1/23/1990	97.15	NG	NG	NG	NG	-			110	1	ND	6.8					
	2/21/1990	97.15	NG	NG	NG	NG				14	ND	ND	1.3					
	3/21/1990	97.15	NG	NG	NG	NG				530	6.9	20	47					
	4/23/1990	97.15	NG	NG	NG	NG	-			360	2.2	1.9	7.8					
	5/18/1990	97.15	NG	NG	NG	NG				500	4.3	4.2	14					
	12/13/1990	97.15	NG	NG	NG	NG				16	ND	ND	ND					
	10/7/1991	97.15	NG	NG	NG	NG	-			8.4	ND	ND	ND					
	8/26/1992	97.15	NG	NG	NG	NG				ND	ND	ND	ND					
	6/3/1993	97.15	NG	NG	NG	NG	-			ND	ND	ND	ND					
	8/17/1999	97.15	NP	20.84	NP	76.31	<50	269		<0.5	<0.5	<0.5	<1					
	3/17/2000	97.15	NP	18.08	NP	79.07	<50	<250		<0.5	<0.5	<0.5	<1					
	6/22/2000	97.15	NP	18.86	NP	78.29	<80			1.91	0.888	<0.5	2.49					
	7/31/2000	97.15	NP	21.25	NP	75.9	<50	<250		<0.5	<0.5	<0.5	<1					
	9/27/2000	97.15	NP	21.45	NP	75.7	<50	<250		<0.5	<0.5	<0.5	<1					
	12/27/2000	97.15	NP	20.82	NP	76.33	<50	<250		<0.5	<0.5	<0.5	<1					
	3/30/2001	97.15	NP	18.67	NP	78.48	<50			<0.5	<0.5	<0.5	<1					
10100-14	7/11/2001	97.15	NP	20.7	NP	76.45	<50			<0.5	<0.5	<0.5	<1					
	9/26/2001	97.15	NP	21.53	NP	75.62	<50			<0.5	<0.5	<0.5	<1					
	12/27/2001	97.15	NP	17.05	NP	80.1	<50			<0.5	<0.5	<0.5	<1					
	3/14/2002	97.15	NP	17.72	NP	79.43	<50			<0.5	<0.5	<0.5	<1					
	6/17/2003	97.15	NP	20.6	NP	76.55	<50			<0.5	<0.5	<0.5	<1					
	3/1/2004	97.15	NP	19.01	NP	78.14	<50			<0.5	<0.5	<0.5	<1					
	6/1/2004	97.15	NP	16.57	NP	80.58	<50			<0.5	<0.5	<0.5	<1					
	9/1/2004	97.15	NP	20.81	NP	76.34	<50			<0.5	<0.5	<0.5	<1					
	10/18/2004	97.15	NP	20.21	NP	76.94	<80			<0.5	<0.5	<0.5	<1					
	7/27/2005	97.15	NP	21.02	NP	76.13	<80			<0.5	<0.5	<0.5	<1					
	4/11/2006	97.15	NG	NG	NG	NG												
	5/4/2007	97.15	NG	NG	NG	NG												
	9/5/2007	97.15	NG	NG	NG	NG												
	2/12/2008	97.15	NG	NG	NG	NG												
	7/17/2008	97.15	NG	NG	NG	NG												
	3/3/2010	97.15	NL	NL	NL	NL												
	3/3/2011	97.15	NP	17.99	NP	79.16												
	9/12/2012	97.15	NP	21.33	NP	75.82	<50.0	131	<392	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<1.0	<10.0	

			GROUN	DWATER GAUGI	NG DATA		GROUNDWATER ANALYTICAL DATA											
Well I.D.	Date	TOC Elevation (ft)	Depth to LNAPL (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Water Elevation* (ft)	TPH-G (C6-C12) (UG/L)	TPH-D (C12-C24) (UG/L)	TPH-O (C24-C40) (UG/L)	Benzene (UG/L)	Toluene (UG/L)	Ethylbenzene (UG/L)	Xylene (Total) (UG/L)	MTBE (UG/L)	EDB (UG/L)	EDC (UG/L)	TOTAL PB (UG/L)	
Applied Actio MTCA N	on Level: 2007 lethod A						800	500	500	5	1000	700	1000	20	0.01	5	15	
	11/10/1989	96.84	NG	NG	NG	NG				99	ND	ND	1					
	12/20/1989	96.84	NG	NG	NG	NG				200	2.2	1.7	6.4					
	1/23/1990	96.84	NG	NG	NG	NG				120	1.4	ND	2.6					
	2/21/1990	96.84	NG	NG	NG	NG				48	ND	ND	0.7					
	3/21/1990	96.84	NG	NG	NG	NG				53	0.5	ND	0.5					
	4/23/1990	96.84	NG	NG	NG	NG				53	ND	ND	ND					
	5/18/1990	96.84	NG	NG	NG	NG				59	ND	ND	ND					
	12/13/1990	96.84	NG	NG	NG	NG				450	120	17	97					
	10/7/1991	96.84	NG	NG	NG	NG				350	6.6	16	50					
	8/26/1992	96.84	NG	NG	NG	NG				380	3.6	21	66					
	6/3/1993	96.84	NG	NG	NG	NG				370	4.1	15	52					
	8/17/1999	96.84	NP	21.1	NP	75.74	<50	<250		611	12	23.4	72.7					
	3/17/2000	96.84	NP	18.33	NP	78.51	140	<250		300	4.19	0.064	20.5					
	6/22/2000	96.84	NP	19.02	NP	77.82	<800			631	13	11.6	55.7					
	7/31/2000	96.84	NP	21.3	NP	75.54	94.7	<250		72.1	1.33	<0.5	6.59					
	9/27/2000	96.84	NP	21.6	NP	75.24	<1000	<250		637	11	41.8	64.3					
	12/27/2000	96.84	NP	20.88	NP	75.96	587	<250		547	8.72	40.2	58.5					
NNN 45	3/30/2001	96.84	NP	18.59	NP	78.25	<50			<0.5	<0.5	<0.5	<1					
10100-15	7/11/2001	96.84	NP	20.72	NP	76.12	<50			<0.5	<0.5	<0.5	<1					
	9/26/2001	96.84	NP	21.54	NP	75.3	<50			<0.5	<0.5	<0.5	<1					
	12/27/2001	96.84	NP	17.73	NP	79.11	566			212	7.19	<2.5	16.8					
	3/14/2002	96.84	NP	17.98	NP	78.86	586			320	3.78	<0.5	15.5					
	6/17/2003	96.84	NP	20.83	NP	76.01	1020			386	4.86	0.555	16.8					
	3/1/2004	96.84	NP	19.29	NP	77.55	<50			<0.5	<0.5	<0.5	<1					
	6/1/2004	96.84	NP	16.27	NP	80.57	163			59	0.966	<0.5	2.55					
	9/1/2004	96.84	NP	20.78	NP	76.06	389			125	2.07	<0.5	5.52					
	10/18/2004	96.84	NP	19.99	NP	76.85	662			253	<2.5	<2.5	<5					
	7/27/2005	96.84	NP	21.36	NP	75.48	414			188	2.32	<1	9.07					
	4/11/2006	96.84	NP	19.32	NP	77.52	544	<250		145	2.28	<0.5	9.05					
	5/4/2007	96.84	NP	19.08	NP	77.76	159	<236		18.8	<0.5	<0.5	<1					
	9/5/2007	96.84	NP	21.67	NP	75.17	105	<236		0.99	<0.5	<0.5	1.27					
	2/12/2008	96.84	NP	14.9	NP	81.94	248	<243		16.4	0.97	<0.5	5.49					
	7/17/2008	96.84	NP	20.21	NP	76.63	384	<243	<485	24.7	1.54	<0.5	6.84					
	1/12/2009	96.84	NP	15.53	NP	81.31	289	<236	<472	0.829	1.01	<0.5	4.84					
	3/3/2010	96.84	NP	19.79	NP	77.05	<50	<120	<240	<1	<1	<1	<2					
	9/12/2012	96.84	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	

Well I.D.	Date		GROUN	DWATER GAUGI	NG DATA		GROUNDWATER ANALYTICAL DATA										
		TOC Elevation (ft)	Depth to LNAPL (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Water Elevation* (ft)	TPH-G (C6-C12) (UG/L)	TPH-D (C12-C24) (UG/L)	TPH-O (C24-C40) (UG/L)	Benzene (UG/L)	Toluene (UG/L)	Ethylbenzene (UG/L)	Xylene (Total) (UG/L)	MTBE (UG/L)	EDB (UG/L)	EDC (UG/L)	TOTAL PB (UG/L)
Applied Action Level: 2007 MTCA Method A							800	500	500	5	1000	700	1000	20	0.01	5	15
	12/19/1989	97.32	NG	NG	NG	NG				98	1.1	ND	ND				
	1/23/1990	97.32	NG	NG	NG	NG	-			560	6.8	2.4	5.5				
	2/21/1990	97.32	NG	NG	NG	NG				750	320	64	360				
	3/21/1990	97.32	NG	NG	NG	NG				720	400	63	310				
	4/23/1990	97.32	NG	NG	NG	NG				1200	740	140	630				
	5/18/1990	97.32	NG	NG	NG	NG				780	750	97	470				
	12/13/1990	97.32	NG	NG	NG	NG				590	98	26	130				
	10/7/1991	97.32	NG	NG	NG	NG				840	180	99	400				
	8/26/1992	97.32	NG	NG	NG	NG				520	20	150	480				
	6/3/1993	97.32	NG	NG	NG	NG				420	14	170	380				
	8/17/1999	97.32	NP	21.37	NP	75.95	710	256		48.6	3.4	3.99	30.1				
	3/17/2000	97.32	NP	18.76	NP	78.56	981	<250		168	8	39.4	71.7				
	6/22/2000	97.32	NP	19.31	NP	78.01	132			12.6	1.25	<0.5	4.15				
	7/31/2000	97.32	NP	21.7	NP	75.62	580	<250		61	4.19	1.07	20.8				
	9/27/2000	97.32	NP	21.71	NP	75.61	623	<250		55.4	4.72	3.34	18.4				
	12/27/2000	97.32	NP	21.15	NP	76.17	473	<250		34.7	2.83	<0.5	9.18				
	3/30/2001	97.32	NP	18.84	NP	78.48	649			30.6	2.66	<0.5	4.42				
MM/ 16	7/11/2001	97.32	NP	21.04	NP	76.28	538			33.8	2.36	<0.5	6.08				
10100-10	9/26/2001	97.32	NP	21.79	NP	75.53	305			22.1	1.51	<0.5	3.24				
	12/27/2001	97.32	NP	17.99	NP	79.33	468			23.7	2.48	<0.5	5.69				
	3/14/2002	97.32	NP	18.25	NP	79.07	630			95.7	3.78	5.54	6.69				
	6/17/2003	97.32	NP	21.08	NP	76.24	383			20.2	2.29	<0.5	3.29				
	3/1/2004	97.32	NP	19.57	NP	77.75	127			7.26	0.68	<0.5	1.11				
	6/1/2004	97.32	NP	16.52	NP	80.8	226			15.3	1.2	<0.5	1.06				
	9/1/2004	97.32	NP	21.03	NP	76.29	314			15.7	1.58	<0.5	1.37				
	10/18/2004	97.32	NP	20.2	NP	77.12	<80			2.7	<0.5	<0.5	<1				
	7/27/2005	97.32	NP	21.65	NP	75.67	122			4.27	0.523	<0.5	1.2				
	4/11/2006	97.32	NP	19.59	NP	77.73	1090	<258		152	3.84	70.6	3.7				
	5/4/2007	97.32	NP	19.35	NP	77.97	578	<236		22.3	0.58	4.77	<1				
	9/5/2007	97.32	NP	21.95	NP	75.37	251	<236		1.18	<0.5	<0.5	<1				
	2/12/2008	97.32	NP	15.11	NP	82.21	421	<238		2.01	0.77	<0.5	1.56				
	7/17/2008	97.32	NP	20.48	NP	76.84	379	<243	<485	1.31	0.514	<0.5	1.13				
	1/12/2009	97.32	NP	15.61	NP	81.71	307	<236	<472	1.22	<0.5	<0.5	<1				
	3/3/2010	97.32	NP	20.05	NP	77.27	52	<120	<240	<1	<1	<1	<2				
	3/3/2011	97.32	NP	19.02	NP	78.30	<50	<75	<380	<1	<1	<1	<3				
	9/12/2012	97.32	NP	21.92	NP	75.40	<50.0	<78.4	<392	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<1.0	<10.0

	Date	GROUNDWATER GAUGING DATA					GROUNDWATER ANALYTICAL DATA										
Well I.D.		TOC Elevation (ft)	Depth to LNAPL (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Water Elevation* (ft)	TPH-G (C6-C12) (UG/L)	TPH-D (C12-C24) (UG/L)	TPH-O (C24-C40) (UG/L)	Benzene (UG/L)	Toluene (UG/L)	Ethylbenzene (UG/L)	Xylene (Total) (UG/L)	MTBE (UG/L)	EDB (UG/L)	EDC (UG/L)	TOTAL PB (UG/L)
Applied Action Level: 2007 MTCA Method A							800	500	500	5	1000	700	1000	20	0.01	5	15
	9/19/1999	97.96	NP	23.35	NP	74.61	<50	269		<0.5	<0.5	<0.5	<1				
	3/17/2000	97.96	NP	20.24	NP	77.72	<50	<250		<0.5	<0.5	<0.5	<1				
	6/22/2000	97.96	NP	21.01	NP	76.95	<80			<0.5	<0.5	<0.5	<1				
	7/31/2000	97.96	NP	23.3	NP	74.66	<50	<250		<0.5	<0.5	<0.5	<1				
	9/27/2000	97.96	NP	23.09	NP	74.87	<50	<250		<0.5	<0.5	<0.5	<1				
	12/27/2000	97.96	NP	22.55	NP	75.41	<50	<250		<0.5	<0.5	<0.5	<1				
	3/30/2001	97.96	NP	19.98	NP	77.98	<50			<0.5	<0.5	<0.5	<1				
	7/11/2001	97.96	NP	22.59	NP	75.37	<50			<0.5	<0.5	<0.5	<1				
	9/26/2001	97.96	NP	23.11	NP	74.85	<50			<0.5	<0.5	<0.5	<1				
	12/27/2001	97.96	NP	19.82	NP	78.14	<50			<0.5	0.622	<0.5	1.24				
	3/14/2002	97.96	NP	19.54	NP	78.42	<50			<0.5	<0.5	<0.5	<1				
	6/17/2003	97.96	NP	22.72	NP	75.24	<50			<0.5	<0.5	<0.5	<1				
MW-17A	3/1/2004	97.96	NP	21.17	NP	76.79	<50			<0.5	<0.5	<0.5	<1				
	6/1/2004	97.96	NP	17.03	NP	80.93	<50			<0.5	<0.5	<0.5	<1				
	9/1/2004	97.96	NP	22.29	NP	75.67	<50			<0.5	<0.5	<0.5	<1				
	10/18/2004	97.96	NP	20.99	NP	76.97	<80			<0.5	<0.5	<0.5	<1				
	7/27/2005	97.96	NP	23.18	NP	74.78	-										
	4/11/2006	97.96	NG	NG	NG	NG											
	5/4/2007	97.96	NG	NG	NG	NG											
	9/5/2007	97.96	NP	23.36	NP	74.6											
	2/12/2008	97.96	NG	NG	NG	NG	-										
	7/17/2008	97.96	NG	NG	NG	NG											
	3/3/2010	97.96	NL	NL	NL	NL											
	3/3/2011	97.96	NP	20.63	NP	77.33											
	9/12/2012	97.96	NP	23.46	NP	74.5	<50.0	<78.4	<392	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<1.0	<10.0
			GROUN	DWATER GAUGI	NG DATA						GROUNDWATER	ANALYTICAL DA	ТА				
-------------------------	----------------------------	-----------------------	---------------------------	------------------------	-------------------------	--------------------------	-----------------------------	------------------------------	------------------------------	-------------------	----------------	------------------------	--------------------------	----------------	---------------	---------------	--------------------
Well I.D.	Date	TOC Elevation (ft)	Depth to LNAPL (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Water Elevation* (ft)	TPH-G (C6-C12) (UG/L)	TPH-D (C12-C24) (UG/L)	TPH-O (C24-C40) (UG/L)	Benzene (UG/L)	Toluene (UG/L)	Ethylbenzene (UG/L)	Xylene (Total) (UG/L)	MTBE (UG/L)	EDB (UG/L)	EDC (UG/L)	TOTAL PB (UG/L)
Applied Actic MTCA N	on Level: 2007 lethod A						800	500	500	5	1000	700	1000	20	0.01	5	15
	12/20/1989	98.24	NG	NG	NG	NG				ND	ND	ND	ND				
	1/22/1990	98.24	NG	NG	NG	NG				ND	ND	ND	ND				
	2/21/1990	98.24	NG	NG	NG	NG	-			ND	ND	ND	0.5				
	3/20/1990	98.24	NG	NG	NG	NG				1	1	ND	0.7				
	4/23/1990	98.24	NG	NG	NG	NG				ND	ND	ND	ND				
	5/18/1990	98.24	NG	NG	NG	NG	-			ND	ND	ND	ND				
	12/13/1990	98.24	NL	NL	NL	NL				14	ND	ND	ND				
	1/4/1991	98.24	NG	NG	NG	NG				3.3	ND	ND	ND				
	10/7/1991	98.24	NG	NG	NG	NG	-			12	ND	ND	ND				
	8/26/1992	98.24	NG	NG	NG	NG				64	ND	1.6	6.6				
	6/3/1993	98.24	NG	NG	NG	NG	-			97	1.5	ND	23				
	8/17/1999	98.24	NP	23.14	NP	75.1	<50	<250		<0.5	<0.5	<0.5	<1				
	3/17/2000	98.24	NP	20.52	NP	77.72	<50	<250		<0.5	<0.5	<0.5	<1				
	6/22/2000	98.24	NP	21.3	NP	76.94	<80			<0.5	<0.5	<0.5	<1				
	7/31/2000	98.24	NP	23.43	NP	74.81	<50	<250		<0.5	<0.5	<0.5	<1				
	9/27/2000	98.24	NP	23.21	NP	75.03	<50	<250		<0.5	<0.5	<0.5	<1				
	12/27/2000	98.24	NP	22.71	NP	75.53	54.6	<250		<0.5	<0.5	<0.5	<1				
MM/ 19	3/30/2001	98.24	NP	20.24	NP	78	<50			<0.5	<0.5	<0.5	<1				
10100-10	7/11/2001	98.24	NP	22.76	NP	75.48	<50			<0.5	<0.5	<0.5	<1				
	9/26/2001	98.24	NP	23.24	NP	75	77.5			0.602	<0.5	<0.5	1.05				
	12/27/2001	98.24	NP	20.21	NP	78.03	<50			<0.5	<0.5	<0.5	<1				
	3/14/2002	98.24	NP	19.85	NP	78.39	<50			<0.5	<0.5	<0.5	<1				
	6/17/2003	98.24	NP	22.89	NP	75.35	<50			<0.5	<0.5	<0.5	<1				
	3/1/2004	98.24	NP	21.43	NP	76.81	<50			<0.5	<0.5	<0.5	<1				
	6/1/2004	98.24	NP	17.16	NP	81.08	<50			<0.5	<0.5	<0.5	<1				
	9/1/2004	98.24	NP	22.44	NP	75.8	<50			<0.5	<0.5	<0.5	<1				
	10/18/2004	98.24	NP	21.15	NP	77.09	<80			<0.5	<0.5	<0.5	<1				
	7/27/2005	98.24	NP	23.37	NP	74.87	-										
	4/11/2006	98.24	NG	NG	NG	NG											
	5/4/2007	98.24	NG	NG	NG	NG											
	9/5/2007	98.24	NG	NG	NG	NG											
	2/12/2008	98.24	NG	NG	NG	NG											
	7/17/2008	98.24	NG	NG	NG	NG											
	3/3/2010	98.24	NP	21.65	NP	76.59											
	3/3/2011	98.24	NP	21.01	NP	77.23											
	9/12/2012	98.24	NP	23.63	NP	74.61	<50.0	<78.4	<392	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<1.0	<10.0

			GROUN	DWATER GAUGI	NG DATA						GROUNDWATER	ANALYTICAL DA	ТА				
Well I.D.	Date	TOC Elevation (ft)	Depth to LNAPL (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Water Elevation* (ft)	TPH-G (C6-C12) (UG/L)	TPH-D (C12-C24) (UG/L)	TPH-O (C24-C40) (UG/L)	Benzene (UG/L)	Toluene (UG/L)	Ethylbenzene (UG/L)	Xylene (Total) (UG/L)	MTBE (UG/L)	EDB (UG/L)	EDC (UG/L)	TOTAL PB (UG/L)
Applied Actio MTCA N	on Level: 2007 lethod A						800	500	500	5	1000	700	1000	20	0.01	5	15
	12/20/1989	98.45	NG	NG	NG	NG				ND	ND	ND	ND				
	4/23/1990	98.45	NG	NG	NG	NG				ND	ND	ND	ND				
	5/18/1990	98.45	NG	NG	NG	NG				ND	1.2	ND	ND				
	12/13/1990	98.45	NG	NG	NG	NG				ND	1.4	ND	ND				
	1/4/1991	98.45	NG	NG	NG	NG				ND	ND	ND	ND				
	10/7/1991	98.45	NG	NG	NG	NG				1.3	ND	ND	ND				
	8/26/1992	98.45	NG	NG	NG	NG				ND	ND	ND	ND				
	6/3/1993	98.45	NG	NG	NG	NG				3	ND	ND	ND				
	8/17/1999	98.45	NP	23.18	NP	75.27	<50	<250		<0.5	<0.5	<0.5	<1				
	3/17/2000	98.45	NP	20.65	NP	77.8	<50	<250		<0.5	<0.5	<0.5	<1				
	6/22/2000	98.45	NP	21.45	NP	77	<80			<0.5	<0.5	<0.5	<1				
	7/31/2000	98.45	NP	23.49	NP	74.96	<50	<250		<0.5	<0.5	<0.5	<1				
	9/27/2000	98.45	NP	23.27	NP	75.18	<50	<575		<0.5	<0.5	<0.5	<1				
	12/27/2000	98.45	NP	22.78	NP	75.67	<50	<250		<0.5	<0.5	<0.5	<1				
	3/30/2001	98.45	NP	20.38	NP	78.07	<50			<0.5	<0.5	<0.5	<1				
	7/11/2001	98.45	NP	22.83	NP	75.62	<50			<0.5	<0.5	<0.5	<1				
MW-19	9/26/2001	98.45	NP	23.29	NP	75.16	<50			<0.5	<0.5	<0.5	<1				
	12/27/2001	98.45	NP	20.39	NP	78.06	<50			<0.5	<0.5	<0.5	<1				
	3/14/2002	98.45	NP	19.19	NP	79.26	<50			<0.5	<0.5	<0.5	<1				
	6/17/2003	98.45	NP	22.98	NP	75.47	<50			<0.5	<0.5	<0.5	<1				
	3/1/2004	98.45	NP	21.61	NP	76.84	<50			<0.5	<0.5	<0.5	<1				
	6/1/2004	98.45	NP	17.24	NP	81.21	<50			<0.5	<0.5	<0.5	<1				
	9/1/2004	98.45	NP	22.55	NP	75.9	<50			<0.5	<0.5	<0.5	<1				
	10/18/2004	98.45	NP	21.24	NP	77.21	<80			<0.5	<0.5	<0.5	<1				
	7/27/2005	98.45	NP	23.44	NP	75.01											
	4/11/2006	98.45	NG	NG	NG	NG											
	5/4/2007	98.45	NG	NG	NG	NG											
	9/5/2007	98.45	NP	23.61	NP	74.84											
	2/12/2008	98.45	NG	NG	NG	NG											
	7/17/2008	98.45	NG	NG	NG	NG											
	3/3/2010	98.45	NP	21.96	NP	76.49											
	3/3/2011	98.45	NP	21.16	NP	77.29											
	9/12/2012	98.45	NP	23.68	NP	74.77	<50.0	<78.4	<392	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<1.0	<10.0

			GROUN	IDWATER GAUGI	NG DATA						GROUNDWATER	ANALYTICAL DA	ТА				
Well I.D.	Date	TOC Elevation (ft)	Depth to LNAPL (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Water Elevation* (ft)	TPH-G (C6-C12) (UG/L)	TPH-D (C12-C24) (UG/L)	TPH-O (C24-C40) (UG/L)	Benzene (UG/L)	Toluene (UG/L)	Ethylbenzene (UG/L)	Xylene (Total) (UG/L)	MTBE (UG/L)	EDB (UG/L)	EDC (UG/L)	TOTAL PB (UG/L)
Applied Actio MTCA N	on Level: 2007 lethod A						800	500	500	5	1000	700	1000	20	0.01	5	15
	8/8/2001	96.5	NP	15.91	NP	80.59	<50	<250		<0.5	<0.5	<0.5	<1				
	9/26/2001	96.5	NP	16.81	NP	79.69	<50			<0.5	<0.5	<0.5	<1				
	12/27/2001	96.5	NP	9.17	NP	87.33	<50			<0.5	<0.5	<0.5	<1				
	3/14/2002	96.5	NP	9.21	NP	87.29	<50			<0.5	<0.5	<0.5	<1				
	6/17/2003	96.5	NP	14.3	NP	82.2	<50			<0.5	<0.5	<0.5	<1				
	3/1/2004	96.5	NP	10.82	NP	85.68	<50			<0.5	<0.5	<0.5	<1				
	6/1/2004	96.5	NP	13.41	NP	83.09	<50			<0.5	<0.5	<0.5	<1				
	9/1/2004	96.5	NP	16.2	NP	80.3	<50			<0.5	<0.5	<0.5	<1				
MW-20	10/18/2004	96.5	NP	16.15	NP	80.35	<80			<0.5	<0.5	<0.5	<1				
11117 20	7/27/2005	96.5	NP	15.55	NP	80.95											
	4/11/2006	96.5	NG	NG	NG	NG											
	5/4/2007	96.5	NG	NG	NG	NG											
	9/5/2007	96.5	NG	NG	NG	NG											
	2/12/2008	96.5	NG	NG	NG	NG											
	7/17/2008	96.5	NG	NG	NG	NG											
	3/3/2010	96.5	NP	10.69	NP	85.81											
	3/3/2011	96.5	NP	9.11	NP	87.39											
	9/12/2012	96.5	NP	15.62	NP	80.88	<50.0	<78.4	<392	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<1.0	<10.0

			GROUN	DWATER GAUGI	NG DATA						GROUNDWATER	ANALYTICAL DA	ТА				
Well I.D.	Date	TOC Elevation (ft)	Depth to LNAPL (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Water Elevation* (ft)	TPH-G (C6-C12) (UG/L)	TPH-D (C12-C24) (UG/L)	TPH-O (C24-C40) (UG/L)	Benzene (UG/L)	Toluene (UG/L)	Ethylbenzene (UG/L)	Xylene (Total) (UG/L)	MTBE (UG/L)	EDB (UG/L)	EDC (UG/L)	TOTAL PB (UG/L)
Applied Actio MTCA N	on Level: 2007 lethod A						800	500	500	5	1000	700	1000	20	0.01	5	15
	8/8/2001	96.82	NP	21.38	NP	75.44	<50			<0.5	<0.5	<0.5	<1				
	9/26/2001	96.82	NP	21.42	NP	75.4	<50			<0.5	<0.5	<0.5	<1				
	12/27/2001	96.82	NP	17.06	NP	79.76	<50			<0.5	0.62	<0.5	1.11				
	3/14/2002	96.82	NP	17.2	NP	79.62	<50		-	<0.5	<0.5	<0.5	<1				
	6/17/2003	96.82	NP	20.4	NP	76.42	<50			<0.5	<0.5	<0.5	<1				
	3/1/2004	96.82	NP	18.33	NP	78.49	<50			<0.5	<0.5	<0.5	<1				
	6/1/2004	96.82	NP	16.3	NP	80.52	<50			<0.5	<0.5	<0.5	<1				
	9/1/2004	96.82	NP	20.5	NP	76.32	<50			<0.5	<0.5	<0.5	<1				
M/M/ 21	10/18/2004	96.82	NP	19.68	NP	77.14	<80			<0.5	<0.5	<0.5	<1				
10100-21	7/27/2005	96.82	NP	20.92	NP	75.9											
	4/11/2006	96.82	NG	NG	NG	NG											
	5/4/2007	96.82	NG	NG	NG	NG											
	9/5/2007	96.82	NG	NG	NG	NG											
	2/12/2008	96.82	NG	NG	NG	NG											
	7/17/2008	96.82	NG	NG	NG	NG											
	3/3/2010	96.82	NL	NL	NL	NL											
	3/3/2011	96.82	NP	17.42	NP	79.40	<50	<75	<380	<1	<1	<1	<3				
	9/12/2012	96.82	NP	21.28	NP	75.54	<50.0	<78.4	<392	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<1.0	<10.0

Notes:

TOC - Top of Casing

 $\ensuremath{\mathsf{DTB}}$ from TOC - Depth to Bottom of well from Top of Casing

TOS - Top of Screen

ft - Feet

NP - LNAPL not present

LNAPL - Light non-aqueous phase liquid

* - Corrected for LNAPL if present (assumes LNAPL specific gravity = 0.75)

Feet MSL - feet above mean sea level

NG - Not Gauged

NL - Not Located

WD - Well Damaged

WI - Well Inaccessible

NSVD - Not surveyed

-- - No information available

NGV - No guidance value

Analytical Notes:

Results in Bold exceed applicable action limits

< - Not detected at or above indicated laboratory reporting limit

UG/L - micrograms/liter

NW-GRO - Northwest Gasoline Range Organics using Ecology NWTPH-Gx

NW-DRO - Northwest Diesel Range Organics

NW-ORO - Northwest Oil Range Organics

NW-DRO and NW-ORO Analyzed using Ecology Method NWTPH-Dx with silica gel cleanup

B = benzene, T = toluene, E = ethylbenzene, X = xylenes; analyzed using EPA Method 8260

MTBE = methyl tert-butyl ether analyzed using EPA Method 8260

EDB = 1,2-dibromoethane, EDC = 1,2-dichloroethane; analyzed using EPA Method 8260

Total Pb = total lead analyzed using EPA Method 6010

EPA - Environmental Protection Agency

MTCA = Model Toxics Control Act

TABLE 3 GROUNDWATER GEOCHEMICAL DATA OPLC KENT BLOCK VALVE 74TH AVENUE SOUTH & SOUTH 259TH STREET KENT, WASHINGTON

	GROUNDWATER GEOCHEMICAL DATA										
Well I.D.	Date	Conductivity (MS/CM)	Oxygen, Dissolved (MG/L)	Oxidation Reduction Potential (MILLIVOLTS)	pH (PH UNITS)	Temperature (Field) (DEG C)	Solids, Total Dissolved (MG/L)				
	3/3/2011										
MW-9	9/12/2012	0.333	4.72	-36	6.14	11.89	220				
	11/7/2012	0.306	0.65	-140.3	6.30	11.00	199				
	3/3/2011	0.350	0.28	-177.3	6.49	13.16	227				
MW-13	9/12/2012	0.410	4.43	-21	6.61	13.73	270				
	11/7/2012	0.387	1.28	-177.6	6.54	13.71	252				
	3/3/2011										
MW-14	9/12/2012	0.369	4.30	0	6.03	14.93	240				
	11/7/2012	0.352	0.72	-23.9	6.10	14.03	229				
	3/3/2011										
MW-15	9/12/2012										
	11/7/2012										
	3/3/2011	0.381	0.33	-112.7	6.46	12.95	248				
MW-16	9/12/2012	0.365	7.58	-23	6.65	18.63	240				
	11/7/2012	0.340	1.04	-166.3	6.54	12.74	221				
	3/3/2011										
MW-17A	9/12/2012	0.339	4.49	-49	6.16	12.00	220				
	11/7/2012	0.465	0.67	-189.2	6.44	11.83	302				
	3/3/2011										
MW-18	9/12/2012	0.283	4.51	-46	6.02	12.72	180				
	11/7/2012	0.244	0.77	-137.5	6.34	11.84	159				
	3/3/2011										
MW-19	9/12/2012	0.259	4.94	-23	5.79	13.51	170				
	11/7/2012	0.308	0.88	-160.7	6.19	12.48	200				
	3/3/2011										
MW-20	9/12/2012	0.433	4.45	-16	5.86	15.05	280				
	11/7/2012	0.410	0.86	-77.8	5.98	14.40	266				
	3/3/2011	0.239	0.28	56	6.07	13.81	155				
MW-21	9/12/2012	0.328	4.42	-5	5.81	15.69	210				
	11/7/2012	0.325	1.17	-73.8	6.03	14.46	211				

Notes:

-- - No information available DEG C - degrees Celsius MG/L - milligrams per liter MILLIVOLTS - millivolts MS/CM - microsiemens per cen⁻ PH UNITS - pH units

TABLE 4 SOIL AND GROUNDWATER CLEANUP LEVELS OPLC KENT BLOCK VALVE

74th Avenue S S 259th Street Kent, Washington

Constituent of Concern	Soil - MTCA Method A (Table Value)	Groundwater - MTCA Method A (Table Value)				
	Soil (mg/kg)	Groundwater (µg/L)				
TPH-G	30	800				
TPH-D	2,000	500				
TPH-O	2,000	500				
Benzene	0.03	5				
Toluene	7	1,000				
Ethylbenzene	6	700				
Xylenes	9	1,000				

Notes:

MTCA = Model Toxics Control Act

TPH-G = Total Petroleum Hydrocarbons as Gasoline

TPH-D = Total Petroleum Hydrocarbons as Diesel

TPH-O = Total Petroleum Hydrocarbons as Oil

mg/kg = milligrams per kilogram

µg/L = micrograms per liter

Figures

- Figure 1 Site Location Map
- Figure 2 Site Map
- Figure 3 Utilities Map
- Figure 4 Site Map with Geologic Cross Sections
- Figure 5 Geologic Cross Section A-A'
- Figure 6 Geologic Cross Section B-B'
- Figure 7 Geologic Cross Section C-C'
- Figure 8 Groundwater Flow Direction Rose Diagram
- Figure 9 Groundwater Elevation Contour Map Fourth Quarter 2012
- Figure 10 Groundwater Chemistry Data Third and Fourth Quarter 2012

LEGEND

SCREENED INTERVAL

_

GROUNDWATER LEVEL AT TIME OF DRILLING

(SP) POORLY GRADED SAND

(SM) SILTY SAND

(SP-SM) SAND WITH SILT

(ML) SILT

Figure 5 Geologic Cross Section A-A' Kent Block Valve Olympic Pipe Line Company South 259th Street Kent, Washington

PROJECT NO.	PREPARED BY	DRAWN BY	0
WAKBVHA121	J.KC	PM/ND	\mathcal{C}
DATE	REVIEWED BY	FILE NAME	antearoun
01/07/2013		Fig5-XSec-A.dwg	anceayroup

LEGEND

SCREENED INTERVAL

GROUNDWATER LEVEL AT TIME OF DRILLING

(SP) POORLY GRADED SAND

(SM) SILTY SAND

(SP-SM) SAND WITH SILT

(GW) WELL GRADED GRAVEL

Figure 6 Geologic Cross Section B-B' Kent Block Valve Olympic Pipe Line Company South 259th Street Kent, Washington

PROJECT NO.	PREPARED BY	DRAWN BY	0
WAKBVHA121	J.KC	PM/ND	
DATE	REVIEWED BY	FILE NAME	antoaroun
01/07/2013		Fig6-XSec-B.dwg	anceayroup

С

ELEVATION (IN FEET)

LEGEND

SCREENED INTERVAL

GROUNDWATER LEVEL AT TIME OF DRILLING

(SP) POORLY GRADED SAND

(SM) SILTY SAND

(SP-SM) SAND WITH SILT

(ML) SILT

Figure 7 Geologic Cross Section C-C' Kent Block Valve Olympic Pipe Line Company South 259th Street Kent, Washington

PROJECT NO.	PREPARED BY	DRAWN BY	0
WAKBVHA121	J.KC	PM/ND	ϵ
DATE	REVIEWED BY	FILE NAME	antearoun
01/07/2013		Fig7-XSec-C.dwg	anceayioup

Groundwater Flow Direction

Legal Description of Property

	HOME NEWS SERVICES	DIRECTORY CONTACT	
King County	King County I	Department of	Assessmen
Always at your service	Fair. Equitable, and Underst	andable Property Valuations	
	You're in: Assessments >> Onlir	ne Services >> eReal Property	
New Search Property Tax	Bill Map This Property G	lossary of Terms Area Report	Print Property Detail 🏾 🗷
	1		
Parcel	000660-0028	Jurisdiction	KENT
Name Site Address	5TH AVE S 98032	Property Type	1525
Geo Area	65-30	Plat Block / Building Number	
Spec Area	0-0	Plat Lot / Unit Number	
Property Name	RR R/W	Quarter-Section-Township-Range	SW-24-22-4
egal Description			
USSELL S W-D C # 41 1	00 FT R/W OVER D C TCO	17-95 & 17-96	
ighest & Best Use As If Vacant	REGIONAL LAND USE	Percentage Unusable	0
ighest & Best Use As Improved	(unknown)	Unbuildable	NO
ase Land Value SoFt	1	Zoning	M2
Base Land Value	394,700	Water	WATER DISTRICT
6 Base Land Value Impacted	100	Sewer/Septic	PUBLIC
Base Land Valued Date	12/15/2011	Road Access	PUBLIC
Base Land Value Tax Year	2013	Parking	
and SqFt	315,810	Street Surface	
cres	7.25		
iews		Waterfront	
ainier		Waterfront Location	
erritorial		Waterfront Footage	
Dlympics		Lot Depth Factor	
Cascades		Waterfront Bank	
Seattle Skyline		Tide/Shore	
ruget Sound		Waterfront Access Rights	NO
ake Sammamish		Poor Quality	
ake/River/Creek		Proximity Influence	NO
ther View			I
esignations	1	Nuisances	
<u> </u>		Topography	NO
istoric Site		Traffic Noise	
urrent Use		Airport Noise	
br Bldg Sites		Power Lines	NO
djacent to Golf Fairway	NO	Other Nuisances	NO
Adjacent to Greenbelt	NO	Problems	
Other Designation	NO	Water Problems	NO
Deed Restrictions	NO	Transportation Concurrency	NO
Sevelopment Rights Purchased		Other Problems	NO
Vative Growth Protection Fasemen	t NO	Environmental	I
DNR Lease	NO		
		Environmental	NO
UILDING			
10.1			

TAX ROLL H	IISTOR	Y										
Account	Valued Year	Tax Year	Omit Year	Levy Code	Appraised Land Value	Appraised Imps Value	Appraised Total Value	New Dollars	Taxable Land Value	Taxable Imps Value	Taxable Total Value	Tax Value Reason
000660002809	2012	2013		1525	\$394,700	\$0	\$394,700	\$0	\$0	\$0	\$0	OP
000660002809	2011	2012		1525	\$315,800	\$0	\$315,800	\$0	\$0	\$0	\$0	OP
000660002809	2010	2011		1525	\$315,800	\$0	\$315,800	\$0	\$0	\$0	\$0	OP
000660002809	2009	2010		1525	\$347,300	\$0	\$347,300	\$0	\$0	\$0	\$0	OP
000660002809	2008	2009		1525	\$315,800	\$0	\$315,800	\$0	\$0	\$0	\$0	OP
000660002809	2007	2008		1525	\$315,800	\$0	\$315,800	\$0	\$0	\$0	\$0	OP
000660002809	2006	2007		1525	\$315,800	\$0	\$315,800	\$0	\$0	\$0	\$0	OP
000660002809	2005	2006		1525	\$315,800	\$0	\$315,800	\$0	\$0	\$0	\$0	OP
000660002809	2004	2005		1525	\$315,800	\$0	\$315,800	\$0	\$0	\$0	\$0	OP
000660002809	2003	2004		1525	\$315,800	\$0	\$315,800	\$0	\$0	\$0	\$0	OP
000660002809	2002	2003		1525	\$315,800	\$0	\$315,800	\$0	\$0	\$0	\$0	OP
000660002809	2001	2002		1525	\$315,800	\$0	\$315,800	\$0	\$0	\$0	\$0	OP
000660002809	2000	2001		1525	\$315,800	\$0	\$315,800	\$0	\$0	\$0	\$0	OP
000660002809	1999	2000		1525	\$315,800	\$0	\$315,800	\$0	\$0	\$0	\$0	OP
000660002809	1997	1998		1525	\$0	\$0	\$0	\$0	\$315,800	\$0	\$315,800	
000660002809	1996	1997		1525	\$0	\$0	\$0	\$0	\$315,800	\$0	\$315,800	
000660002809	1994	1995		1525	\$0	\$0	\$0	\$0	\$315,800	\$0	\$315,800	
000660002809	1992	1993		1525	\$0	\$0	\$0	\$0	\$315,800	\$0	\$315,800	
000660002809	1990	1991		1525	\$0	\$0	\$0	\$0	\$315,800	\$0	\$315,800	
000660002809	1988	1989		1525	\$0	\$0	\$0	\$0	\$315,800	\$0	\$315,800	
000660002809	1986	1987		1525	\$0 ©0	\$0 ©0	\$U ©0	\$U ©0	\$46,300	\$0 ©0	\$46,300	
000660002809	1984	1985		1525	\$U \$0	\$U \$0	\$U ©0	\$U ©0	\$43,200	\$U ©0	\$43,200	
SALES HIST	ORY	1303		1323	ψυ	40	40	ψŪ	¥43,200	ψυ	ψ 1 3,200	
REVIEW HIS	STORY											
PERMIT HIS	STORY											
	ROVEM	ENT	EXEN	IPTIO	N							
New Search	Prop	orty T		Ма	n This Pron	arty Glos	sary of Torr	ns Ar	ea Peport	Print P	Property De	tail 📆
Updated: Sept. 7, 2011												
Quick ans	swers	Prop	erty as	sessm	nents Tax	kpayer assist	tance On	line serv	ices Re	ports, data	a Forms	News
QUICK ans	swers	Prop	erty as	SESSI		Home	Privacy	Access	sibility T	erms of us	se Sear	ch

Links to external sites do not constitute endorsements by King County. By visiting this and other King County web pages, you expressly agree to be bound by terms and conditions of the site.

Appendix B

Summary of Previous Investigations and Remedial Activities

APPENDIX B – SUMMARY OF PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIVITIES

- A release of gasoline and diesel associated with the Olympic Pipe Line Company (OPLC) Kent Block Valve was discovered in August 1989. The Washington State Department of Ecology (Ecology) was involved at the time of release and subsequent remedial efforts.
- Following repair of the block valve, an estimated 1,950 tons of petroleum-contaminated soil was removed from the Site.
- Monitoring wells MW-1 through MW-19 were installed from September through December 1989. Groundwater sampling of the aforementioned monitoring wells began in December 1989.
- On March 27, 1990, monitoring wells MW-1, MW-4, MW-8 and MW-10 were abandoned. Monitoring well MW-2 was abandoned on April 4, 1990. The wells were abandoned due to the construction of the Valley Freeway Building.
- In 1993, the recovery well and monitoring wells MW-6, MW-7, MW-11 and MW-12 were found paved over. MW-17, adjacent to the Green River, could also not be located. Seven monitoring wells remained: MW-9, MW-13 through MW-16, MW-18, and MW-19.
- In 1999, the Seattle-King County Health Department, on behalf of the Ecology, conducted an Initial Site Hazard Assessment (SHA) of the Kent Block Valve site. The SHA was conducted under the Model Toxic Control Act (MTCA) Hazard Ranking program, and the process produced a ranking of "2" on a 5 point scale with 1 having the highest priority.
- In 1999, monitoring well MW-17A was installed after attempts to locate MW-6, MW-7, MW-11, MW-12 and MW-17 were unsuccessful. MW-17A was installed to a depth of 30 feet (ft) below ground surface (bgs). Analytical results from the soil samples submitted for analysis were below the laboratory method reporting limits (MRLs).
- In 2001, monitoring wells MW-20 and MW-21 were installed to depths of 20 ft bgs and 30 ft bgs, respectively. Based on field screening results, one soil sample collected from MW-21 was submitted for laboratory analysis. Analytical results from the soil sample submitted for analysis were below the laboratory method reporting limits.
- In 2003, air sparge wells BS-1 through BS-4 were installed to a depth of 40 ft bgs. Composite soil samples were collected during the installation of the sparge wells for waste disposal characterization.
- Monthly air sparging events on BS-1 through BS-4 were conducted in 2004.
- Annual groundwater sampling was initiated in 2009.
- Site characterization and remedial activities are being conducted by OPLC in accordance with the Ecology Model Toxics Control Act (MTCA) as an Independent Cleanup Action outside the Voluntary Cleanup Program (VCP).

Historical Soil and Groundwater Analytical Data Tables

TABLE 3 SUMMARY OF SOIL ANALYTICAL DATA

						EPA Method		
					Ethyl-		Total	418.1
Sample	Sample	Depth		Benzene	benzene	Toluene	Xylenes	TPH
Number	Date	(Feet)	Lithology	(ppb)	(ppb)	(ppb)	(ppb)	(ppm)
OP-1	08/28/89	6.0	Sand	760	12,000	3,100	89,000	290
OP-2	08/29/89	7.0	Silt	ND	ND	ND	ND	ND
OP-3	08/29/89	9.0	Silt	660	1,400	ND	1,940	68
OP-4	08/29/89	10.5	Silt	ND	74	36	218	ND
OP-5	08/29/89	11.5	Silt	180	1,200	84	4,400	55
OP-6	08/29/89	5.0	Sand	ND	ND	ND	ND	1,100
OP-7	08/29/89	8.0	Silt	71	260	200	1,130	1.4
OP-8	09/01/89	6.0	Sand	ND	ND	ND	ND	1.6
OP-9	09/01/89	5.0	Sand	ND	ND	ND	ND	1.7
OP-10	09/01/89	5.0	Sand	ND	ND	ND	ND	1.6
OP-11	09/05/89	5.0	Sand	ND	46	27	280	ND
OP-12	09/06/89	18.0	Sandy silt	910	390	2,300	2,060	ND
OP-13	09/06/89	16.0	Silt	ND	ND	ND	ND	1.6
OP-14	09/06/89	15.0	Silt	3,900	540	5,000	2,610	4.5
OP-16	09/07/89	16.0	Silt	880	320	1,200	1,670	ND
OP-17	09/07/89	12.0	Silt	ND	ND	ND	ND	ND
OP-18	09/07/89	12.0	Sand	ND	49	ND	158	ND
OP-19	09/07/89	24.0	Sand	ND	ND	ND	ND	ND
OP-20	09/08/89	22.0	Silt	ND	ND	ND	ND	ND
OP-21	09/08/89	17.0	Silt	ND	ND	ND	ND	ND
OP-22	09/08/89	22.0	Silty sand	ND	ND	ND	ND	ND
OP-23	09/08/89	22.5	Sand	390	530	1,200	2,840	470
OP-24	09/08/89	24.5	Sand	1,500	250	2,800	1,250	ND
OP-24B	09/11/89	22.5	Silt	180	ND	56	42	ND
OP-25	09/11/89	5.0	Sand	ND	ND	ND	ND	ND
MW-9-7	09/18/89	33.0	Sand	ND	ND	ND	ND	ND
DRAFT MTCA Compliance Cleanup Level				500	20,000	40,000	20,000	200

Notes:

"TPH" = Total petroleum hydrocarbons

"ppb" = parts per billion

"ppm" = parts per million

"ND" = not detected; see laboratory data sheets in Appendix B for analyte detection limits.

Shaded values indicate contaminant concentrations which exceed DRAFT MTCA Compliance Cleanup Levels.

i .

TABLE 3 SUMMARY OF SOIL CHEMICAL ANALYTICAL DATA¹ OPLC KENT BLOCK VALVE RELEASE KENT, WASHINGTON

			Field Scree	ening Results ³	Total Petroleum Hydrocarbons ⁴					
Sample	Sample	Sample		Headspace						
Number ²	Date	Depth (ft bgs)	Sheen	Vapor (ppm)	Gasoline-Range	Diesel-Range	Heavy Oil-Range			
MW-17A-24	09/07/99	24	NS	380	<20.0	<50.0	<100			
MTCA Method	A Cleanup				100	200	200			
Levels			ł		100	200	200			

¹Chemical analyses were performed by North Creek Analytical in Botheli, Washington, Laboratory report is attached.

²Approximate location shown in Figure 2.

³Field screening procedures described in Attachment A.

⁴Analyzed by Ecology Method WTPH-HCID.

bgs = below ground surface

MTCA = Model Toxics Control Act

NS = no sheen

Notes:

Chemical analysis conducted by North Creek Analytical of Bothell, Washington.

The laboratory report is presented in Attachment B.

Seattle Spokane

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 2023 Emic Avenue, Suite E 1 Panel OR 97701 5711 Portland

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Geo Engineers/Olympic Pipeline Co. 8410 154th Ave. NE

Redmond WA, 98052

Project: OPLC-Kent Block Valve Project Number: 0894-005-02 T2 Project Manager: Tina King

Reported: 08/13/01 14:42

ANALYTICAL REPORT FOR SAMPLES

Sample ID	•	 Laboratory ID	Matrix	Date Sampled	Date Received	
MW-21-16.0		B1H0035-01	Soil	07/31/01 12:00	08/01/01 16:15	-

North Creek Analytical - Bothell

Scott A. Woerman, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

 425.420.9200
 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

 509.924.9200
 fax 509.924.9200

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503.906.9210
 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

 541.383.9310
 fax 541.382.7588

Geo Engineers/Olympic Pipeline Co. 8410 154th Ave. NE Redmond WA, 98052

Project: OPLC-Kent Block Valve Project Number: 0894-005-02 T2 Project Manager: Tina King

Reported: 08/13/01 14:42

Volatile Petroleum Products and BTEX by NWTPH-Gx and EPA 8021B

North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units]	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-21-16.0 (B1H0035-01) Soil	Sampled: 07/31/0	1 12:00 Re	ceived: 08/01	/01 16:15					st.
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	1H07028	08/07/01	08/08/01	NWTPH-Gx/8021B	
Benzene	ND	0.0300	H	"	н	н		۳	
Toluene	ND	0.0500	"	"	.0	"		n ,	
Ethylbenzene	ND	0.0500			"		"	u	
Xylenes (total)	ND	0.100	"	0 E			н	л	
Surrogate: 4-BFB (FID)	78.7 %	50-147			"	"	"	"	
Surrogate: 4-BFB (PID)	81.8 %	54-123			"		"	э н .	

* orth Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Scott A. Woerman, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Page 2 of 9

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

425.420.9200 Tax 425.420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 Tax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 Tax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 Tax 541.382.7588 Spokane Portland

Bend

Project: OPLC-Kent Block Valve Geo Engineers/Olympic Pipeline Co. Project Number: 0894-005-02 T2 **Reported:** 8410 154th Ave. NE Redmond WA, 98052 Project Manager: Tina King 08/13/01 14:42

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

			Reporting							
Analyte	Ŷ	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-21-16.0 (B1H0035-01) Sol	il Sample	ed: 07/31/0	1 12:00 Re	ceived: 08/01	/01 16:15					
Diesel Range Hydrocarbons		ND	10.0	mg/kg dry	1	1H07007	08/07/01	08/12/01	NŴTPH-Dx SG	
Lube Oil Range Hydrocarbons		ND	25.0	"		"	Ŭ.	"	п	
Surrogate: 2-FBP		69.5 %	50-150			"	"	"		
Surrogate: Octacosane		83.1 %	50-150			"	"	"	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

 425.420.9200
 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

 509.924.9200
 fax 509.924.9200

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503.906.9200
 fax 503.906.9210

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

Geo Engineers/Olympic Pipeline Co.	Project:	OPLC-Kent Block Valve	
8410 154th Ave NE	Project Number:	0894-005-03	Reported:
Redmond, WA/USA 98052	Project Manager:	Tina King	07/17/03 10:29

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BS-1	B3G0264-01	Soil	06/26/03 14:40	07/10/03 17:00
BS-2	B3G0264-02	Soil	06/26/03 13:00	07/10/03 17:00
BS-3	B3G0264-03	Soil	06/26/03 11:15	07/10/03 17:00
BS-4	B3G0264-04	Soil	06/26/03 09:00	07/10/03 17:00
6/27/03 (lab composite)	B3G0264-05	Soil	06/26/03 09:00	07/10/03 17:00

GeoEngineers

JUL 21 2003

Routing Diamond

North Creek Analytical - Bothell

L berdes

Jeff Gerdes, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

-26-

 Seattle
 11720 North Creek Pkwy N. Suite 400, Bothell, WA 98011-8244

 425.420.9200
 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

 509.924.9200
 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503.906.9200
 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

 541.383.9310
 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

Redmond, WA/USA 98052	Project Manag		Tina King	07/17/03 10:29
8410 154th Ave NE	- P	Project Number:	0894-005-03	Pepertad:
Geo Engineers/Olympic Pipeline Co	ц	Project:	OPLC-Kent Block Valve	

North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BS-1 (B3G0264-01) Soil Sampled:	06/26/03 14:40	Received:	07/10/03 17:00	e v			8	,	I-02
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	3G14005	07/14/03	07/15/03	NWTPH-Gx	5)
Surrogate: 4-BFB (FID)	87.7 %	52-123			"	n	"		
BS-2 (B3G0264-02) Soil Sampled:	06/26/03 13:00	Received:	07/10/03 17:00					2	I-02
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	3G14005	07/14/03	07/15/03	NWTPH-Gx	
Surrogate: 4-BFB (FID)	87.7 %	52-123	10.000		"	"	"	"	
BS-3 (B3G0264-03) Soil Sampled: ()6/26/03 11:15	Received:	07/10/03 17:00			70			I-02
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	3G14005	07/14/03	07/15/03	NWTPH-Gx	
Surrogate: 4-BFB (FID)	86.7 %	52-123			"	"	"	"	
BS-4 (B3G0264-04) Soil Sampled: (6/26/03 09:00	Received: (07/10/03 17:00	8					I-02
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	·· 1	3G14005	07/14/03	07/15/03	NWTPH-Gx	
Surrogate: 4-BFB (FID)	82.8 %	52-123	14	10. N	п.	"	"	"	10
6/27/03 (lab composite) (B3G0264-05) Soil Sample	ed: 06/26/03	09:00 Receiv	ed: 07/10	0/03 17:00				I-02
Gasoline Range Hydrocarbons	ND	5.00	mg/kg dry	1	3G14005	07/14/03	07/15/03	NWTPH-Gx	
Surrogate: 4-BFB (FID)	83.9 %	52-123		1	"	"	"	"	

North Creek Analytical - Bothell

. beides

Jeff Gerdes, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

North Creek Analytical, Inc. Environmental Laboratory Network

-27-

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244

 425.420.9200
 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

 509.924.9200
 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503.906.9200
 fax 503.906.9210

 Bond
 2032 Empire Avenue, Suite F, L. Bend, OR 97701-5711

Bend 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

Anchorage 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

Geo Engineers/Olympic Pipeline C	0.	Project:	OPLC-Kent Block Valve	
8410 154th Ave NE		Project Number:	0894-005-03	Reported:
Redmond, WA/USA 98052		Project Manager:	Tina King	07/17/03 10:29

Semivolatile Petroleum Products by NWTPH-Dx (w/o Acid/Silica Gel Clean-up) North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BS-1 (B3G0264-01) Soil	Sampled: 06/26/03 14:40	Received:	07/10/03 17:00	l.		л в	14	4	
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	3G14023	07/14/03	07/16/03	NWTPH-Dx	
Lube Oil Range Hydrocarbon	s ND	25.0			u	"			
Surrogate: 2-FBP	101 %	50-150	-		"	"	"		
Surrogate: Octacosane	121 %	57-120			"	ⁿ	"	"	S-03
BS-2 (B3G0264-02) Soil	Sampled: 06/26/03 13:00	Received:	07/10/03 17:00						
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	3G14023	07/14/03	07/15/03	NWTPH-Dx	
Lube Oil Range Hydrocarbon	s ND	25.0		н		н	n	- 	
Surrogate: 2-FBP	82.0 %	50-150			"	. "	"	"	
Surrogate: Octacosane	97.4 %	57-120		8	· //	• 11		. "	
BS-3 (B3G0264-03) Soil	Sampled: 06/26/03 11:15	Received:	07/10/03 17:00)	u (÷	5		20
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	- 1	3G14023	07/14/03	07/16/03	NWTPH-Dx	
Lube Oil Range Hydrocarbon	s ND	25.0	н .	"	"		"	W	
Surrogate: 2-FBP	88.0 %	50-150		F	"	"	п	"	
Surrogate: Octacosane		57-120			"	<i>. 1</i>	"	"	
BS-4 (B3G0264-04) Soil	Sampled: 06/26/03 09:00	Received:	07/10/03 17:00			*			
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	3G14023	07/14/03	07/16/03	NWTPH-Dx	
Lube Oil Range Hydrocarbon	s ND	25.0	Ħ	ж	И В		н	÷U	
Surrogate: 2-FBP	90.4 %	50-150	3	(9.) -	"	"	"	"	e
Surrogate: Octacosane	113 %	57-120			11	"	"		
6/27/03 (lab composite) (I	33G0264-05) Soil Sample	ed: 06/26/03	09:00 Receiv	/ed: 07/1	0/03 17:00)			
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	3G14023	07/14/03	07/15/03	NWTPH-Dx	
Lube Oil Range Hydrocarbon	s ND	25.0	п.		, "		u	H.	
Surrogate: 2-FBP	82.6 %	50-150			"	"	"	"	
Surrogate: Octacosane	95.1 %	57-120			"	"	"	"	

North Creek Analytical - Bothell

perdis

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jeff Gerdes, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Page 3 of 11

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

 Anchorage
 2000 W. International Airport Road, Suite A10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

Project: OPLC-Kent B	Block Valve
Project Number: 0894-005-03	
Project Manager: Tina King	Reported: 07/17/03 10:29
	Project: OPLC-Kent I Project Number: 0894-005-03 Project Manager: Tina King

BTEX by EPA Method 8021B

North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Proparad	Angluged	M.d. 1	
				Dilution	Daten	riepaied	Analyzed	Method	Notes
BS-1 (B3G0264-01) Soil	Sampled: 06/26/03 14:40	Received:	07/10/03 17:00					,	I-02
Benzene	ND	0.0300	mg/kg dry	1	3G14005	07/14/03	07/15/03	EPA 8021B	
Toluene	ND	0.0500	3. 11		u	U		"	
Ethylbenzene	ND	0.0500		"		"	- "	u :	
Xylenes (total)	ND	0.100	100	u.	u.			<u></u>	
Surrogate: 4-BFB (PID)	78.0 %	60-127			"	"		"	
BS-2 (B3G0264-02) Soil	Sampled: 06/26/03 13:00	Received:	07/10/03 17:00				6		1.02
Benzene	ND	0.0300	mg/kg drv	1	3G14005	07/14/03	07/15/03	EDA 9021D	1-04
Toluene	ND	0.0500	<u>3</u> 5, "		"		"	EFA 8021B	
Ethylbenzene	ND	0.0500	u.		н з	H.		,	14.1
Xylenes (total)	ND	0.100							
Surrogate: 4-BFB (PID)	80.8 %	60-127			"	"	п	"	
BS-3 (B3G0264-03) Soil	Sampled: 06/26/03 11:15	Received:	07/10/03 17:00	2					107
Benzene	ND	0.0300	mg/kg dry	1	3G14005	07/14/03	07/15/02	EBA 9001D	1-02
Toluene	ND	0.0500	"		"	"	"	EPA 8021B	
Ethylbenzene	ND	0.0500	ü .	"	п				
Xylenes (total)	ND	0.100		<u>u</u>		н	"		
Surrogate: 4-BFB (PID)	99.2 %	60-127			, 11	"	"	"	
BS-4 (B3G0264-04) Soil	Sampled: 06/26/03 09:00	Received: (07/10/03-17:00	6		0 0			1.02
Benzene	ND	0.0300	mg/kg dry	1	3014005	07/14/02	07/16/02	EDI AGAID	1-02
Toluene	ND	0.0500	"		"	"	07/15/03	EPA 8021B	
Ethylbenzene	ND	0.0500	"						9. 17
Xylenes (total)	ND	0.100	п			u.			
Surrogate: 4-BFB (PID)	76.8 %	60-127	· · · · · · · · · · · · · · · · · · ·						

North Creek Analytical - Bothell

Secto

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

٦Į

-29-

TABLE 5 (Page 1 of 3) SUMMARY OF GROUND WATER QUALITY DATA

		EPA Method 8020				
			Ethyl-		Total	
Monitor	Sample	Benzene	benzene	Toluene	Xylenes	
Weli	Date	(ppb)	(ppb)	(ppb)	(ppb)	
MW-1	08-29-89	2,400	530	99	2,240	
	12-20-89	95	34	9.5	78	
MW-4	09-05-89	ND	ND	ND	ND	
	12-21-89	ND	ND	ND	ND	
MW-5	12-21-89	ND	ND	ND	ND	
	042390	ND	ND	ND	ND	
MW-6	09-20-89	410	13	11	41	
	12-21-89	79	2.2	1.1	11	
	01-23-90	910	23	17	83	
	02-20-90	950	65	190	280	
	03-20-90	9.6	0.6	ND	6.7	
	04-23-90	130	22	16	75	
	05-18-90	220	39	20	120	
MW-7	09-20-89	1.1	ND	ND	0.8	
	12-20-89	ND	ND	ND	ND	
	05-18-90	ND	ND	ND	ND	
MW-8	09-20-89	6,400	550	840	2,170	
	12-20-89	9,300	<2,500	<2,500	<2,500	
	01-23-90	10,000	9 80	5,000	4,700	
	02-20-90	2,700	500	1,900	2,200	
	03-20-90	1,800	470	1,100	1,700	
MW-9	09-20-89	ND	ND	NÐ	ND	
	12-20-89	• 4.8	- 25	86	120	
	01-23-90	4.8	53	85	240	
	02-20-90	14	41	38	120	
	03-20-90	26	38	6.3	110	
	04-23-90	23	42	6.7	81	
MW-10	09-20-89	29	ND	1.1	0.5	
	12-20-89	74	ND	0.77	1.6	
	01-23-90	140	12	87	53	
	02-20-90	130	-33	100	67	
	03-20-90	270	58	330	220	
DRAFT MTCA Compliance Cleanup Levels		5	20	40	20	

Notes: "ppb" = parts per billion

"ND" = Not detected; see laboratory data sheets in Appendix D for analyte detection limits. Shaded values indicate BETX concentrations which exceed DRAFT MTCA Compliance Cleanup Levels.

TABLE 5 (Page 2 of 3)

		EPA Method 8020				
			Ethyl		Total	
Monitor	Sample	Benzene	benzene	Toluene	Xylenes	
Well	Date	(ppb)	(ppb)	(ppb)	(ppb)	
MW-11	10-18-89	520	16	13	47	
	12-20-89	1,200	53.9	29.6	158	
	01-23-90	1,600	96	170	220	
	02-20-90	1,200	56	100	240	
	03-21-90	2,200	130	260	420	
	04-23-90	2,000	140	180	440	
	05-18-90	2,300	150	205	500	
MW-12	10-18-89	ND	ND	ND	ND	
	12-20-89	ND	ND	ND	ND	
	01-23-90	ND	ND	ND	ND	
	02-21-90	ND	ND	ND	ND	
	03-21-90	ND	ND	ND	ND	
	04-23-90	ND	ND	ND	ND	
	05-18-90	ND	ND	ND	ND	
MW-13	10-18-89	3.4	ND	ND	ND	
	12-21-89	2.5	ND	ND	ND	
	01-23-90	3.3	ND	ND	ND	
	02-20-90	20	1.7	9,3	8.0	
	03-21-90	29	13	37	64	
	04-23-90	49	26	5.8	110	
MW-14	11-10-89	1,800	41	22	170	
	12-20-89	160	6.5	1.6	18	
	01-23-90	110	ND	1.0	6.8	
	02-21-90	- 14	- ND	ND	1.3	
	03-21-90	530	20	6.9	66	
	04-23-90	360	1.9	2,2	7.8	
	05-18-90	500	4.2	4.3	14	
MW-15	11-10-89	99	ND	ND	1.0	
	12-20-89	200	1.7	2.2	6.4	
	01-23-90	120	ND	1.4	2.6	
	02-21-90	48	ND	ND	0.7	
	03-21-90	53	ND	0.5	0.5	
	04-23-90	53	ND	ND	ND	
05-18-90		59	ND	ND	NÐ	
DRAFT MTCA Comp	liance Cleanup Levels	5	20	40	20	

Notes: "ppb" = parts per billion

"ND" = Not detected; see laboratory data sheets in Appendix D for analyte detection limits.

Shaded values indicate BETX concentrations which exceed DRAFT MTCA Compliance Cleanup Levels.

TABLE 5 (Page 3 of 3)

		EPA Method 8020				
			Ethyl-		Total	
Monitor	Sample	Benzene	benzene	Toluene	Xylenes	
Well	Date	(ppb)	(ppb)	(ppb)	(ppb)	
MW-16	12-19-89	98	ND	1.1	ND	
	01-23-90	560	2.4	6.8	5.5	
	02-21-90	750	64	320	360	
	03-21-90	720	63	400	310	
	04-23-90	1,200	140	740	630	
	05-18-90	780	97	750	470	
MW-17	12-19-89	ND	ND	ND	ND	
	04-23-90	ND	ND	ND	ND	
	05-18-90	ND	ND	ND	ND	
MW-18	12-20-89	ND	ND	ND	ND	
	01-22-90	ND	ND	ND	ND	
	02-21-90	ND	ND	ND	0.5	
	03-20-90	1.0	ND	1.0	0.7	
	04-23-90	ND	ND	ND	ND	
	05-18-90	ND	ND	ND	ND	
MW-19	12-20-89	ND	ND	ND	ND	
	04-23-90	ND	ND	ND	ND	
J	05-18-90	ND	ND	1.2	ND	
DRAFT MTCA Compliance Cleanup Levels		5	20	40	20	

Notes:

"ppb" = parts per billion

"ND" = Not detected; see laboratory data sheets in Appendix D for analyte detection limits.

Shaded values indicate BETX concentrations which exceed DRAFT MTCA Compliance Cleanup Levels.

TABLE 1 (Page 1 of 4) SUMMARY OF GROUND WATER MONITORING DATA OPLC KENT BLOCK VALVE RELEASE KENT, WASHINGTON

			BETX		Petroleum Hydrocarbons		
Monitoring		(EPA r	(EPA method 8020 and/or 8021B)		(mg/l)		
Well	Date	(μg/l)		Gasoline (Ecology	Diesel (Ecology		
Number	Sampled	В	E	<u> T</u>		Method WTPH-G)	Method WTPH-D)
MW-6	09/20/89	410	13	11	41	-	-
	12/21/89	79	2.2	1.1	11		-
	01/23/90	910	23	17	83	-	-
	02/20/90	950	65	190	280	-	_
	03/20/90	9.6	0.6	ND	6.7	-	-
	04/23/90	130	22	16	75	-	
	05/18/90	220	39	20	120		_
	12/13/90	280	2.1	8.9	13	_	· -
	10/07/91	180	4.6	5.3	12	. —	
	08/26/92	320	18	7.8	47		-
	06/03/93	3.0	ND	ND	0.7		
MW-7	09/20/89	1.1	ND	ND	0.8		
	12/20/89	ND	ND	ND	ND	-	_
,	05/18/90	ND	ND	ND	ND		
	12/13/90	ND	ND	ND	ND	-	-
· ·	10/07/91	ND	ND	ND	ND		
	08/26/92	ND	ND	ND	ND	-	
	06/03/93	ND	ND	ND	ND		
MW-9	09/20/89	ND	ND	ND	ND		
	12/20/89	4.8	25	86	120	-	<u> </u>
	01/23/90	4.8	53	85	240	-	-
	02/20/90	14	41	38	120		
	03/20/90	26	38	6.3	110	-	-
	04/23/90	23	42	6.7	81	-	.
	12/13/90	0.9	15	1.6	30	_	-
	08/26/92	3.3	0.9	ND	1.3	-	-
	06/03/93	ND	ND	ND	ND	-	
	08/17/99	<0.500	<0.500	<0.500	<1.00	<0.0500	0.530
MTCA Method A Cleanup Level		5.0	30.0	40.0	20.0	1.0	

Notes appear on page 4 of 4
TABLE 1 (Page 2 of 4)

Ĵ

-Textus Verme

0. Star

-12.20

10,5

E.

نند الاعل

1. Sec. 10

Contraction of the second

		<u> </u>	BE	TX		Petroleum H	ydrocarbons			
Monitoring		(EPA n	nethod 80	20 and/or	8021B)	(mg/l)				
Well	Date		(μ	g/l)		Gasoline (Ecology	Diesel (Ecology			
Number	Sampled	В	E	T	X	Method WTPH-G)	Method WTPH-D)			
MW-11	10/18/89	520	16	13	47		-			
	12/20/89	1200	53.9	29.6	158	-	-			
	01/23/90	1600 96 170 220	-	-						
	02/20/90	1200	56	100	240	-	_			
	03/21/90	2200	130	260	420		-			
	04/23/90	2000	140	180	440	-	-			
	05/18/90	2300	150	205	500	-	-			
	12/13/90	5500	340	280	1,200		-			
	10/07/91	1100	100	21	280	-	-			
	08/26/92	1400	140	28	420	-	_			
	06/03/93	1000	170	25	420					
MW-12	10/18/89	ND	ND	ND	ND	<u> </u>	_			
	12/20/89	ND	ND	ND	ND	-	_			
	01/23/90	ND	ND	ND	ND	-				
	02/21/90	ND	ND	ND	ND	 ·				
	03/21/90						-			
	05/18/00									
	12/12/00						-			
	12/13/90	ND								
	10/07/91	20			14					
	06/20/92	3.9 ND				-	-			
NAVA/ 42	10/19/95	24								
10100-10	10/10/09	0.4				-				
	12/21/09	2.0				-				
	01/23/90	3.3	17				_			
	02/20/90	20	1.7	9.0	0.U CA	-	-			
	03/21/90	29	13	5/	440	-				
	04/23/90	49	∠0 1 0	0.5	2 7	-				
	08/26/92	9.5	7.6	0.5	3.1					
	06/03/93	3.8	0.6	ND	2.1					
1	08/17/99	50.5	2.63	3.45	20.8	0,370	<0.250			
MTCA Method	MTCA Method A Cleanup Level			40.0	20.0	1.0				

Notes appear on page 4 of 4

TABLE 1 (Page 3 of 4)

.

fr

En la

L Ca

i Ca

164

	1		BE	TX		Petroleum Hydrocarbons					
Monitoring		(EPA n	nethod 80	20 and/or	8021B)	(mg/l)					
Well	Date		(μ	g/l)		Gasoline (Ecology	Diesel (Ecology				
Number .	Sampled	В	E	Т	Х	Method WTPH-G)	Method WTPH-D)				
MW-14	11/10/89	1800	41	22	170		_				
	12/20/89	160	6.5	1.6	18	-	_				
	01/23/90	110	ND	1.0	6.8	-	_				
	02/21/90	14	ND	ND	1.3		_				
	03/21/90	530	20	6.9	47	-	-				
	04/23/90	360	1.9	2.2	7.8	-	-				
	05/18/90	500	4.2	4.3	14	. 	-				
	12/13/90	16	ND	ND	ND	-	-				
	10/07/91	8.4	ND	ND	ND	-	-				
	08/26/92	ND	ND	ND	ND		-				
	06/03/93	ND	ND	ND	ND	-					
	08/17/99	<0.500	<0.500	<0.500	<1.00	<0.0500	0.269				
MW-15	11/10/89	99	ND	ND	1.0						
	12/20/89	200	1.7	2.2	6.4		-				
	01/23/90	120	ND	1.4	2.6	-					
	02/21/90	48	ND	ND	0.7	-					
	03/21/90	53	NÐ	0.5	0.5		-				
	04/23/90	53	ND	ND	ND						
	05/18/90	59	ND	ND	ND	-					
	12/13/90	450	17	120	97	-					
	10/07/91	350	16	6.6	50	-	-				
	08/26/92	380	21	3.6	66	-					
	06/03/93	370	15	4.1	52		-				
	08/17/99	611	23.4	12	72.7	<0.500	<0.250				
MW-16	12/19/89	98	ND	1.1	ND	-	-				
	01/23/90	560	2.4	6.8	5.5						
	02/21/90	750	64	320	360	-					
	03/21/90	720	63	400	310						
	04/23/90	1200	140	740	630	_					
	05/18/90 12/13/90 10/07/91		97	750	470	-					
			26	98	130	_					
			99	180	400	-	-				
	08/26/92	520	150	20	480						
	06/03/93	420	170	14	380		- 0.256				
MTCA Method	A Cleanup Level	5.0	30.0	40.0	20.0	0.710	0.256				

· 2 · ·

•

Notes appear on page 4 of 4

TABLE 1 (Page 4 of 4)

		1	BE	TX		Petroleum H	ydrocarbons		
Monitoring		(EPA n	nethod 80	20 and/or	8021B)	(m	g/l)		
Well	Date		(μ	g/l)		Gasoline (Ecology	Diesel (Ecology		
Number	Sampled	В	Ē	Т	Х	Method WTPH-G)	Method WTPH-D)		
MW-17	12/19/89	ND	ND	ND	ND				
	04/23/90	ND	ND	ND	ND	-	-		
	05/18/90	ND	ND	ND	ND		-		
	12/13/90	ND	ND	ND	ND				
	10/07/91	ND	ND	ND	ND				
	08/26/92	ND	ND	ND	ND		-		
MW-17A	09/10/99	<0.500	<0.500	<0.500	<1.00	<0.0500	0.269		
MW-18	12/20/89	ND	ND	ND	ND	-	-		
	01/22/90	ND	ND	ND	ND	-			
	02/21/90	ND	ND	ND	0.5	-	-		
	03/20/90	1.0	ND	1.0	0.7		-		
	04/23/90	ND	ND	ND	ND	·	-		
	05/18/90	ND	ND	ND	ND	-	 ·		
	12/13/90	14	ND	ND	ND	-	-		
	01/04/91	3.3	ND	ND	ND	-			
	10/07/91	12	ND	ND	ND	¹ -			
	08/26/92	64	1.6	ND	6.6	-	-		
	06/03/93	97	ND	1.5	23	_	-		
	08/17/99	<0.500	<0.500	<0.500	<1.00	<0.0500	<0.250		
MW-19	12/20/89	ND	ND	ND	ND	_	-		
	04/23/90	ND	ND	ND	ND	-			
	05/18/90	ND	ND	1.2	ND	-			
	12/13/90	ND	ND	1.4	ND				
	01/04/91	ND	ND	ND	ND	-			
	10/07/91	1.3	ND	ND	ND	-	-		
	08/26/92	ND	ND	ND	ND	·	-		
	06/03/93	3.0	ND	ND	ND	-	-		
	08/17/99	<0.500	<0.500	<0.500	<1.00	<0.0500	<0.250		
MTCA Method	A Cleanup Level	5.0	5.0 30.0 40.0 20.0 1.0						

Notes:

63

µg/l = micrograms per lifer.

Shaded concentrations are greater than the MTCA Method A cleanup level.

mg/l = milligrams per liter.

ND = not detected, refer to laboratory reports for analyte detection limits.

- = not sampled or not tested.

p:\089005\01\finals\089400501t1.xls

TABLE 4 HYDROCARBON VAPOR CONCENTRATIONS IN GROUND WATER MONITOR WELL CASINGS SEPTEMBER 1989 THROUGH AUGUST 1990

Monitor	TLV Hydrocarbon Vapor Concentrations (ppm)												
Well	08/29/89	09/05/89	09/21/89	10/18/89	11/10/89	12/20/89	01/22/90	02/20/90	03/20/90	04/23/90	06/21/90	07/23/90	08/20/90
MW~1	100	200	100	<100	680	160	140	NM	<100				
MW-4		200	220	360	>10,000	<100	<100	NM	<100		·		
MW-5		190	800	NM	400	120	280	NM	120	660	300		
MW-6			>10,000	>10,000	>10,000	>10,000	>10,000	9,900	360	>10,000	>10,000	9,000	>10,000
MW7			>10,000	NM	8,000	>10,000	2,300	NM	280	220	120	NM	<100
MW-8			1,400	NM	, NM	>10,000	1,400	850	500				-
MW-9			180	180	NM	4,400	1,300	100	140	2,900	930	240	2,100
MW-10			320	<100	<100	<100	600	<100	<100				
MW-11				2,000	970	9,300	400	360	240	520	<100	NM	NM
MW-12			-	1,600	9,000	1,200	180	<100	140	<100	120	<100	<100
MW-13				3,800	>10,000	>10,000	2,500	760	3,000	1,800	320	<100	>10,000
MW-14		••••			800	8,100	1,700	200	<100	6,000	1,000	<100	<100
MW-15					400	450	530	<100	120	<100	110	<100	<100
MW-16						2,800	1,200	420	600	920	180	100	1,400
MW-17			-			600	5,800	NM	140	<100	100	<100	2,600
MW-18						1,100	400	4,000	160	190	100	<100	2,100
MW-19						600	1,200	NM	320	<100	210	<100	110

Notes:

"ppm" = parts per million

--- = Monitor well not yet constructed, or the monitor well was abandoned during site construction activities.

"NM" = Not measured

"NA" = Not analyzed

TLV Hydrocarbon vapor concentrations were measured in the monitor well casings using a Bacharach TLV Sniffer calibrated to hexane.

Soil Borings/Well Logs

0894.05.804 OKP:KT 12.4.89

JRG: CDO

1192-046-801

9/28/83 JRG: CDO

1192-046-B01

9/28/83 OKP: CDO

OKP:CD0 10/4/89

8894-085-B04

OKP:CD0 10/4/89

OKP:CD0 10/4/89

OKP: CD0 10/4/89

8894-805-B04

OKP: CD0 10/5/89

: OKP: CD0 12/8/89

12/8/89 OKP: CDO

: OKP: CD0 12/8/89

12/8/89 : OKP: CDO

3894-805-B04

:0KP:CD0 8/29/90

8894-805-B04

2/10/90 : OKP: CDO

: OKP: CD0 2/10/90

: OKP: CD0 2/10/90

8894-885-B04

1

:OKP:CD0 2/19/90

3894-805-B04

Kent Elock Valve Release US94-U01-01 Kent, VA Diff BP Clentuclor Hot Diffu Diff BP Clentuclor Hot Diffu Mando DAM Data Data Mando Data Data Data	Project	Olympic Pipe I	ine		Job	Numbe	r	Loc	cation	16-1-					
Drifted Medium Odd/07/99 By: DP Contractor Hot Drifting Medium Hollow Stem Auger 4" ID Emigracent Doit Distribution Distribution Medium Data Data Data Distribution Not Determined Medium So Determined So Distribution Not Determined Medium So Determined Sole Information Not Determined Total Depth (ft) So Determined Sole Information Not Determined Total Depth (ft) So Determined Not Determined Not Determined Total Depth (ft) So Determined Not Determined Not Determined Total Depth (ft) So Brown sity fine sand with usessional gravel Not Determined Total Depth (ft) So Brown sity fine sand with usessional gravel - SS Total Depth (ft) So So Brown sity fine sand (lows, most) - SS Total Depth (ft) So So Brown sity fine sand (lows, most) - - Total Depth (ft) So Si So Si So - - - So So Si So Si So - - - - <td>Date</td> <td>Kent Block Valve</td> <td>Releas</td> <td>se</td> <td>Logged</td> <td></td> <td>0894-005-01</td> <td></td> <td colspan="7"></td>	Date	Kent Block Valve	Releas	se	Logged		0894-005-01								
Method Method	Drilled Drill	09/07/99			Bv		BF)r	Ho	lt Drill	ing				
Staffiol Date Aud Preprint Staffiol Date Aud Preprint Staffiol Not Returning Not Returnin	Method Sample	Hollow Stem Aug	ier 4" ID		Hammer		Bit V-coordingte: Not Determine								
Indel Degit (ft) 30 Lewition (ft) Not Measured Syntam: Syntam: Not Determined 2esth (ft) 30 Monument Elewition Casting Elevition 07.06 2esth (ft) 30 Monument Elevition Casting Elevition 07.06 2esth (ft) 30 Stickur (ft) 07.06 07.06 2esth (ft) 40 5 5 5 5 30 - Stickur (ft) Stickur (ft) 07.06 10 - Stickur (ft) 5 5 5 - Stickur (ft) Stickur (ft) - 5 - - Stickur (ft) - - 10 - - Stickur (ft) - - 10 - - Stickur (ft) - - 10 - - - Stickur (ft) - - 10 - - - Stickur (ft) - - Stickur (ft) 10 - - - - - Stickur (ft) - - <	Method D&M Data						Ib nammer, 30° drop	Y-coordir Datum:	nate:	Not D)etern)etern	nined			
Derth (f) 30 Stickup (f) Stickup (f) Stickup (f) 97,96 U WELL SCHEMATIC if if <t< td=""><td>Total Dep</td><td>oth (ft) 30</td><td></td><td></td><td>Elevation (ft) Monument Ele</td><td>vation</td><td>Not Measured</td><td>System: Casing E</td><td>levation</td><td>Not L</td><td>)etern</td><td>nined</td><td></td></t<>	Total Dep	oth (ft) 30			Elevation (ft) Monument Ele	vation	Not Measured	System: Casing E	levation	Not L)etern	nined			
Number of the second provided and the	Depth (ft))30	T		Stickup (ft)			Stickup (ft)	97.96					
Share solvation on the send with occasional proves (modium danse, moist) SS	DEPTH IN FEET	WELL SCHEMATIC	Sample No. Blows per foot	Sample	Graphic Log USCS Group	oyitiluut	Material De	scriptior)	Headspace Vapol (ppm)	Sheen	Other Tests And Notes			
15- 2 9 1 240 NS 20- 2-inch Schedule 40 PVC well casing 3 4 2 9 400 NS 20- Sand backfill 3 4 2 9 400 NS 20- Sand backfill 4 3 2 9 400 NS 25- 2-inch Schedule 40 PVC well casing 4 3 2 9 380 NS 25- 2-inch Schedule 40 PVC screen, 0.020-inch slot width 4 3 2 380 NS CA 30- Base of well at 30.0 feet 5 9 2 9 250 NS 30- Base of well at 30.0 feet 5 9 2 8 9 250 NS	5- 10-	Steel surface monument Concrete surface scal	1 14		SM		Brown silty fine sand wit gravel (medium dense	h occasional , moist)	-	and and a submuch much much a column a family do so family and a second s	SS				
25 2-inch Schedule 40 PVC screen, 0.020-inch slot width 4 3	- 15- - - - - - - - - - - - - - - - - -		29				Brown gray slity line san moist) Brown silty fine sand (ve	d (loose, ry loose, mo	ist)	- 240 - 400	NS		- - - - - - - 20		
Black fine to medium sand with occasional gravel and a trace of silt (loose, wet) Boring completed at 30.0 feet on 07/07/99 Ground water encountered at 24.0 feet during drilling Well installed	25-25-	 ✓ 2-inch Schedule 40 PVC screen, 0.020-inch slot width 	4 3			-	Black line to medium san with brown silty fine s loose, wet)	a interbedda and (very	≥d 	- 380 -	NS	CA	- 25 		
	30	Base of well at 30.0 feet	5 9				Black line to medium san occasional gravel and (loose, wet) Boring completed at 30.0 07/07/99 Ground water encountere during drilling Well installed	ad with a trace of sil feet on ad at 24.0 fee	t	250	NS		- 30		
LOG OF MONITORING WELL MW-17A			_				LOG OF MONITORING WELL MW-17A								
Geo Engineers		Geo	igine	20	rs		FIGURE A-3								

ľ

1

Ĩ

÷

ļ

and the second second

2012/11/12/2012/01/12/2012/12/2012/12/2012/12/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012/2012

TATION STREET, STREET,

0594-005-03 GEI GEOWELL 2.10 PN00894005003/FINALS/059400503.GPJ GEIV2.GDT

8/6/03

Image: Source in the source is an use of the source is an us	Date(s) Drilled	-	06/	27/03			Logged		MET		Checked By			ТМК
Littletur Littletur Littletur Littletur Littletur Mahoda Truck-mounted Rig Edel Barry 40 Homen'r Edel Barry Difficing Truck-mounted Rig Wein (n) 38 Toor Vivil Bootnet Construction Solometric Interview Construction Interview Solometric Interview Construction Interview Solometric Interview Interview Interview Solometric Interview Inte	Drilling		Holt	Drillin		[⊡y Drilling Mathad	Hollov	w-stem Auger		Sampling	-	<u>.</u>	N/A
Loop (1) The set of	Total Boring			40	~		Hammer				Methods Drilling		Truck	nounted Pig
Uppen (n) -0 Execution (n) Uppen (n) OW FILL Topy SAMPLES Image: Same (n) Image: Same (n) Image: Same (n) Image: Same (n) Image: Same (n) Image: Same (n) Image: Same (n) Image: Same (n) Image: Same (n) Image: Same (n) Image: Same (n) Image: Same (n) Image: Same (n) Image: Same (n) Image: Same (n) Image: Same (n)	Depth (ft) Well					[Data Top of Well				Equipmen	it ater	HUCK-F	
EXAMPLES MATERIAL DESCRIPTION WELL TONSTRUCTION Image: Source of the state of	Depth (ft) System/			30		E	Elevation (ft)				Level (ft. t	ogs)		
SAMPLES WELL Big big big big big big big big big big b	Datum												n	
Implementation Implementation Implementation Implementation Implementation Implementatin		SAMPL	ES					ם זעוכ				/6 \S/ft ³	COI	WELL NSTRUCTION
0 Note: Refer to MW-15 Suil Log Image: Constrained of the second of the	Depth	Interval Number Recovere	Bìows/6in	Graphic Log	Group Symbol						Water	Content, 4 Dry Unit Veight, It		Steel surface monument
LOG OF AIR SPARGE WELL BS-4 Geo Engineers Project: OPLC Kent Block Valve Project Location: Kent, Washington Figure: C-4						Note:	: Refer to MW	7-15 Soil Lo	ρg					Concrete Surface seal Grout Bentonite seal Concrete Crout Schedule 40 PVC well casing Bentonite and grout Bentonite and grout Casing Bentonite and grout Casing Concrete Schedule 40 PVC well casing Concrete Schedule 40 PVC well Schedule 40 Schedule 40 PVC well Schedule 40 Schedule 40 Sc
Geo Engineers Project: OPLC Kent Block Valve Project Location: Kent, Washington Project Number: 0894-005-03 Figure: C-4												·····		
Geo Engineers Project Location: Kent, Washington Figure: C-4							Project	JFAK		Block	Valve			
	Ge	20	En	gine	ers		Project L	ocation:	Kent, Washi	ington	v ar c			Figure: C-4

No. No.

0894-005-03 GEI GEOWELL 2.1.0 P10/0894005/03/FINALS/089400503.GPJ GEIV2.GDT 8/6/03

Date Drille	(s) ed			07/	31/01		Lo By	ogged y		GJA		Che By	cked			DLC	2		
Drilli Cont	ng ractor		С	ascad	de Drill	ing	D M	rilling lethod		HSA		San Met	npling hods		Dar	nes &	Moo	re	
Tota Dept	l Boring h (ft)			3	1.5		H D	ammer ata	300 (lb) ha	mmer/ 30 (in) drop	Drill Equ	ing Ipmen	t	Truck-r	nounte	ed Di	rill Rig	
Well Dept	h (ft)				30		T(El	op of Well levation (ft)		96.82		Gro Elev	und W ration	/ater (ft)					
Syste Datu	System/ N/A Datum						E	Easting Not determined						Northing Not determine				ed	
\bigcap		SA	MPL	ES										bor	WELL				
tion	_		ed (in)	ţ				MATERIAL DESCRIPTION						ace Va n)					
Eleva feet	Depti feet	terval esting	ecover	lows/fo	raphic	roup ymbol							neen	eadspa -V(ppr			/	Steel surface monument	
-	0-	ΞĒ	R	8		ර ග SM	, _,		···· ·· ···				IS .	<u> 4 </u>				-Cement -	
95	-											-				NOVOX N			
-	-						-					-			22 22	X9X		seal –	
-	5	X	12	9			Brown	n silty fine	sand (loose, n	noist)			NS	<100					
-90 -	-		10	a	••••••		_						NS	<100					
-	-	Δ	12	ð			-							~100				backfill -	
-	-01	Ø	12	5			-					_	ы	<100					
-85	-	X	12	4			-							<100		-2 inch, Schedule 40 PVC solid			
-	- 15 —			-			-					-	SS	<100	V			pipe -	
-80	-	ACA	12	8			- Grade	s to wet										-	
-	1	M	12	8			-					-	NS	<100				-2 inch, Schedule 40	
-	- 20 —											_	NS	<100				inch slot width	
- 75	-	X	12	12			- Grade Groun	s to mediu 1d water ob	m dense served at 21.4	feet on 08/08/	01	-		₽			- · · ·		
1 9/6/01	-	X	12	8								-	NS	<100				-	
7 2.60	25 —						-					_	NS	<100				-	
	-	Å	12	31			- Gray s -	silty fine to	medium sand	(dense, wet)								-	
1 1	-	X	12	67			•• -					-	NS	<100				-	
NALSYOE	30	V	12	56			-					-	NS	<100			::::	-	
65	-	Λ	12				- Boring	g completed	d at 31.5 feet o	on 07/31/01	imotale	 			J			-	
0,08940	-						- 15 Monit	feet during oring well i	drilling installed to 30	feet	imaioità	+						-	
2,1.0 P:	35 Note:	See Fi	gure	A-2 fc	or expla	nation o	f symbols	5										-	
							٠												
								LOG	OF BOR		21	.) ()				•			
-005-02	G	eo		En	gine	Pers		Projec Projec	x; :t Location:	OPLC Ker Kent, Was	nt Block shingtor	∢Va า	ive				C :		
9894	U			.	'D'III	.010		Projec	t Number:	0894-005	-02						г IG Sh	ute: A-4 eet 1 of 1	

Ì

Ì

Appendix E

Figures from Previous Consultants

OKP: BDH 4/6/90 894-005-804

EXPLANATION:

MW-1 MONITOR WELL LOCATION AND NUMBER

- OP-8 ∅ SOIL SAMPLE LOCATION AND NUMBER FOR SAMPLES WHICH DID NOT EXCEED DRAFT MTCA COMPLIANCE CLEANUP LEVELS
- OP-1 6 SOIL SAMPLE LOCATION AND NUMBER FOR SAMPLES WHICH EXCEEDED DRAFT MTCA COMPLIANCE CLEANUP LEVELS

MAP OF SOIL TEST PITS AND TRENCHES

FIGURE 3

П

0KP: BDH 4/6/90

894-005-804

EXPLANATION:

MW-1 MONITOR WELL LOCATION AND NUMBER

- OP-8 ∅ SOIL SAMPLE LOCATION AND NUMBER FOR SAMPLES WHICH DID NOT EXCEED DRAFT MTCA COMPLIANCE CLEANUP LEVELS
- **OP-12** SOIL SAMPLE LOCATION AND NUMBER FOR SAMPLES WHICH EXCEEDED DRAFT MTCA COMPLIANCE CLEANUP LEVELS
- APPROXIMATE LIMITS OF SOIL EXCAVATION

MAP OF SOIL EXCAVATIONS

FIGURE 4