

Spring 2016 Groundwater and Surface Water Monitoring

PACCAR Renton Site Renton, Washington

Prepared for PACCAR

October 18, 2016 1639-69

Spring 2016 Groundwater and Surface Water Monitoring

PACCAR Renton Site

Renton, Washington

Prepared for

PACCAR

October 18, 2016 1639-69

Prepared by

Hart Crowser, Inc.

Roy E. Jensen, LG, LHG

Senior Associate Hydrogeologist Michael W. Ehlebracht, LG, LHG

Mile Ellehacht

Principal Geochemist

Contents

SECTION 1	
GROUNDWATER MONITORING	1-1
Introduction	1-1
Groundwater Monitoring	1-1
Recommendations	1-2
TABLES	
1-1 Groundwater Monitoring Program for March 2016 and March 2017	
1-2 Groundwater Elevation Data, March 2016	
1-3 Summary of Groundwater Analytical Data	
1-4 Groundwater Monitoring Program for Spring 2017, 2018, and 2019	
FIGURES	
1-1 Groundwater Elevation Contour Map	
Shallow Wells – March 2016	
1-2 Groundwater Elevation Contour Map	
Lower Sand Unit – March 2016	
SECTION 2	0.4
SURFACE WATER MONITORING	2-1
TABLE	
2-1 Analytical Results for Surface Water Samples, March 2016	
FIGURE	
2-1 Surface Water Sampling Location Plan	
SECTION 3	
PACCAR STRUCTURAL FILL COVER MONITORING	0.4
FIELD INSPECTION AND OBSERVATION FORM	3-1
Field Inspection Observations	3-1
North End of Site South End of Site	3-1 3-1
Recommended Actions and Follow-Up	3-1 3-1
Areas Needing Repair	3-1
Documentation of Renair Completion	3-1

ii | Contents

APPENDIX A

Data Validation Summary and Laboratory Report Groundwater Samples

APPENDIX B

Data Validation Summary and Laboratory Report Surface Water Samples

APPENDIX C

Groundwater Quality Summary Charts

Spring 2016 Groundwater and Surface Water Monitoring

PACCAR Renton Site

Renton, Washington

This report provides the Spring 2016 groundwater and surface water monitoring results for the PACCAR Renton National Priorities List (NPL) Site. This monitoring report contains the elements described in the Confirmational Monitoring and Inspection Plan (CMIP; DOF 1997) and the Periodic Review (Ecology 2014) and presents the results of the groundwater, surface water, and structural fill cover monitoring conducted at the site in March 2016.

This report is divided into three sections:

- **Section 1.** Groundwater Monitoring
- Section 2. Surface Water Monitoring
- Section 3. PACCAR Structural Fill Cover Monitoring Field Inspection and Observation Form

The information in these sections is supplemented by tables and figures presented at the end of the respective sections. In addition, Appendix A presents the chemical data quality review and laboratory reports for groundwater, Appendix B presents that information for surface water, and Appendix C presents groundwater quality summary charts.

L:\Notebooks\163969_PACCAR Renton Spring 2016 GW_SW Sampling\Deliverables\Reports\PACCAR Renton Spring GW_SW Sampling_101816

SECTION 1 Groundwater Monitoring

SECTION 1 GROUNDWATER MONITORING

Introduction

This section presents the results of the groundwater monitoring event conducted in March 2016. Specifically, it includes a tabulation of water level and groundwater quality data, groundwater flow maps, and an assessment of results relative to cleanup levels (CULs) for developing sampling and analysis recommendations consistent with the CMIP and Periodic Review (Ecology 2014).

Groundwater Monitoring

Groundwater monitoring was completed on March 10, 2016, in accordance with the planned elements described by the Periodic Review (Ecology 2014). The groundwater elevation and chemical test results obtained from this event are compiled in this section.

The CMIP provides compound-specific CULs and hot spot action levels (HSALs) for comparison with the site data. The CULs represent the groundwater remediation goals at the site, while HSALs for groundwater are based on drinking water standards. Planned actions described in this report are based on an interpretation of the updated data relative to the decision-making processes outlined in the CMIP.

Data presented in this report are organized as follows:

- Monitoring Summary. An overview of the data collected from each monitoring well is given in Table 1-1. This table lists the wells sampled and identifies the chemicals analyzed in each well.
- Groundwater Elevation. Groundwater elevation measurements are compiled in Table 1-2 and contoured on Figures 1-1 and 1-2 for the Upper Sand and Lower Sand units, respectively. Groundwater elevation for MW-2S was considered suspect since it was almost two feet lower than surrounding well elevations; therefore, this elevation was not used in developing groundwater contours. We will monitor this well in future sampling events to confirm the lower water table was an anomaly.
- Chemical Result Summary. A summary of groundwater analytical results is provided in Table 1-3. All groundwater samples were analyzed for arsenic and vinyl chloride (Table 1-1). Field parameter measurements including turbidity, temperature, pH, dissolved oxygen, redox potential, and conductivity are also included in Table 1-3.
- Purge Water Sampling. Groundwater collected during well purging (before sampling) was analyzed for arsenic, chromium, lead, diesel- and heavy-oil-range hydrocarbons, and volatile organic compounds (VOCs). These data are necessary for future disposal documentation and are presented in Table A-2.

- Chemical Data Compilation. Appendix A includes a data validation summary for the groundwater quality results and a compilation of the March 2016 groundwater data (Table A-1) and purge water data (Table A-2) along with the laboratory reports.
- **Groundwater Quality Summary Charts.** Appendix C includes groundwater quality summary charts for each well sampled as part of the March 2016 sampling program. The charts summarize the historical sampling results for these wells.

Future Monitoring

The Periodic Review establishes the groundwater sampling program (Table 1-4) for the site, which consists of:

- Sample groundwater in March 2017, 2018 and 2019 for arsenic in wells LW-6D, LW-9D, CW-1S, CW-1D, LW-9S, and MW-3I. Groundwater elevations and field parameters will also be measured in these wells.
- Sample groundwater in March 2017, 2018, and 2019 for vinyl chloride in wells CW-1S and LW-9D.
- Sample groundwater in March 2019 in wells SC-1S and SC-2S for arsenic, lead, and chromium. Groundwater elevations and field parameters will also be measured.
- Groundwater elevations will be measured in the PACCAR monitoring well network in March 2019.

Electronic Groundwater Quality Data

An electronic copy of the complete groundwater quality database is submitted on CD-ROM with this report for reference and further evaluation, if warranted. The CD contains a Microsoft Access data file in addition to a program that can be used as a viewer to create monitoring summary reports for any well or analyte. Instructions for viewing the data and generating the monitoring summary reports follow.

Instructions for Printing "Monitoring Summary Report" from PACCAR Database.

- 1. Open ACCESS 2000
- 2. Select File

Open database

CD Drive:\PACCAR Apr-16.mdb

- 3. The message, "The database 'PACCAR Apr-16' is read-only" will appear. Click the OK button.
- 4. The Reports Menu will appear.

- 5. Double click on "Monitoring Summary"
- 6. The Enter Parameter Value box will appear with the prompt, "Enter Well"

Type in the well name (such as LW-09D).

7. Another Parameter Value box will appear with the prompt, "Enter CAS or Analyte Code"

Type in analyte name (such as Vinyl Chloride).

- 8. The report will be displayed on screen.
- 9. To print, select the print icon.

If the error message "The expression On No Data you entered as the event property setting produced the following error" appears, you may have entered a well location or analyte name that doesn't exist in the database. Click OK, select "Well Water Level Analyte Summary" and re-enter the well name and analyte name as indicated above.

References

Dalton, Olmstead & Fluglevand. 1997. Confirmational Monitoring and Inspections Plans, Former PACCAR Defense Systems Site, Renton, Washington. November 1997.

Washington State Department of Ecology. 2014. Periodic Review. PACCAR, Facility Site ID#: 2065, ISIS Cleanup Site ID# 788. July 2014.

Table 1-1 - Groundwater Monitoring Program in March 2016

	Well	VOCa	Arsenic
Confirmat	ion Lower San	d/Delta Deposi	ts
	CW-1D	b	X
	LW-6D	b	Х
	LW-9D	X	X
Confirmat	ion Upper San	d/Aquitard Wel	ls
	CW-1S	X	X
	LW-9S	b	Χ
	MW-3I	b	Х
Stabilized	Cell Wells		
	SC-1S		
	SC-2S		
Informatio	n Wells		
Quality Co	ntrol Samples		
		X	X
Purge Wat	er Samples		
		X	X

^a VOC is vinyl chloride.

Water elevations measured at approximately 33 wells.

All wells with samples submitted for laboratory analysis have the following parameters measured: temperature, pH, conductivity, turbidity, dissolved oxygen, and redox potential.

Purge water samples analyzed for VOCs, arsenic, lead, total chromium, and TPH.

^b Samples analyzed for vinyl chloride in March 2016 only.

Table 1-2 – Groundwater Elevation Data, March 2016

	Depth to	Reference	Water
	Water	Elevation	Elevation
Well	in Feet	in Feet	in Feet
CW-1D	3.18	26.18	23.00
CW-1D CW-1S	2.70	26.16	23.44
CW-13	6.17	32.22	26.05
CW-3D CW-3S	4.78	32.22	27.26
DM-2D	6.11	32.04 28.40	22.29
DM-5D	7.77	40.13	32.36
LW-14S	7.77 18.94	40.13 (a)	32.30 NC
LW-143 LW-1D	2.54	(a) 25.98	23.44
LW-1D LW-1S	2.5 4 1.51		24.33
LW-13 LW-2D	4.69	25.84	24.33
LW-2D LW-2S		28.78	24.09 25.10
LW-2S LW-4S	3.88 6.59	28.98	33.28
LW-45 LW-6D	6.09	39.87	33.26 24.49
LW-6D LW-6S		30.58	24.49
	5.50 4.78	29.70	
LW-7S LW-9D	4.76 7.56	33.74	28.96 24.39
LW-9D LW-9S	7.56 7.77	31.95 32.12	24.39
MW-1S(N)	3.53	26.56	23.03
MW-2D(R)	6.20 5.81	29.43	23.23 23.04 (b)
MW-2S(W)	6.96	28.85 34.39	23.04 (b)
MW-3I(N)	6.92		27.43 27.47
MW-3S(S) OSP-10D	10.74	34.39 40.74	30.00
OSP-10D OSP-1D	10.74	40.74 41.51	30.00
OSP-1D OSP-1S	5.61	41.44	35.83
OSP-13 OW-4D	19.05	41.44 (a)	33.63 NC
OW-45	18.21	` '	NC NC
R-10D		(a)	
	10.67 9.28	38.24	27.57
R-10S	9.28 4.54	39.17	29.89 33.24
SC-1S		37.78	
SC-2S	13.05	40.52	27.47
U-1D	6.59	30.82	24.23
U-1S	4.64	30.44	25.80

NL = Not located.

NM = Not measured.

NC = Not calculated.

⁽a) Monitoring well stickup was modified during construction and needs to be resurveyed.

⁽b) Groundwater elevation for MW-2S was considered suspect since it was almost two feet lower than surrounding well elevations; therefore, this elevation was not used in developing groundwater contours. The well will be monitored in future sampling events to confirm the lower water table was an anomaly.

Well	Date	Arsenic in µg/L	Lead in µg/L	Chromium in µg/L	Benzene in µg/L	Vinyl Chloride in µg/L	Total cPAHs ^a in µg/L	PCP in ug/L	Diesel in mg/L	Heavy Oil in mg/L	Ferrous Iron ^b in mg/L	Temp. in °C	рН	Diss. Oxygen in mg/L	Cond. in µmhos /cm	Redox Potential in mV	Turbidity in NTU	TSS in mg/L
CU	L:	5	5	80	5	0.4	0.1	0.73	1	1	NE	NE	NE	NE	NE	NE	NE	NE
HSA		50	50	100	5	2	NE	1.0	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
Confirmation	Lower Sand	d/Delta Dep	osits							•					•			
CW-01D	3/24/98	4.1	-	-	0.5 U	0.13 U	-	-	0.24 U	0.71 U	-	-	-	-	-	-	-	-
	10/20/98	2 U	-	-	0.5 U	0.12 J	-	-	0.24 U	0.48 U	-	-	-	-	-	-	-	-
	3/4/99	3.2 +	-	-	0.5 U	0.039 U	-	-	0.24 U	0.71 U	-	-	-	-	-	-	-	-
	10/19/99	6.3	1 U	10 U	0.5 U	0.2	-	-	0.24 U	0.71 U	-	14	6.8	-	580	-	-	-
	5/18/00	6	-	-	0.2 U	0.4	-	-	0.25 U	0.5 U	-	14	6.8	-	560	-	-	-
	3/19/01	5.8	-	-	0.2 U	0.2	-	-	0.25 U	0.5 U	-	-	-	-	-	-	-	-
	3/25/02	7.9	-	-	0.2 U	0.6	-	-	0.25 U	0.5 U	-	12	7.1	-	780	-	0.08	-
	10/16/02	-	-	-	-	-	-	-	-	-	-	15.8	6.7	-	760	-	0.18	-
	4/2/03	6.7	1 U	1 U	0.2 U	0.2	0.15 U	-	0.25 U	0.5 U	4	13.2	6.8	1.18	442	-	28	-
	3/31/04	8.2	-	-	0.2 U	0.3	-	-	-	-	55.5	13.4	6.2	0.01	496	-34	12	74.5
	4/13/05	6.1	-	-	-	-	-	-	-	-	46.4	14.4	6.5	0.1	283	18	0	31.5
	3/28/06	5.1	-	-	-	-	-	-	-	-	52.5	13.9	6.2	0.26	448	25	0	51.9
	3/27/07	6.2	-	-	-	-	-	-	-	-	45.2	13.3	5.2	0.11	417	62	0	31.6
	4/1/10	5.6	-	-	-	-	-	-	-	-	52	13.1	7.1	0.26	-	-100	293	54.4
	3/29/11	5.7	-	-	-	-	-	-	-	-	43.8	12.8	6.4	<0.01	270	-	10	48.2
	3/22/12	5.5	-	-	-	-	-	-	-	-	46.4	12.9	6.1	0	727	-165	16.3	40
	11/15/12	-	-	-	-	0.14	-	-	-	-	48.4	13.9	6.3	1.15	332	-132	21	85.4
	3/12/13	5.4	0.3	1 U	0.02 U	0.1	0.2 U	0.25 U	0.1 U	0.2 U	55	13.1	9.9	<0.01	423	-13	24.9	80
	4/2/14	5.8	-	-	-	0.1	-	-	-	-	49.8	12.91	6.3	<0.01	410	-80	76.2	76.2
	4/15/15	5.4	-	-	-	-	-	-	-	-	-	13.99	6.2	0	433	-88	13.9	-
	3/10/16	0.4	-	-	-	0.02 U	-	-	-	-	-	13.61	6.6	0.01	797	-8	1.4	-
LW-06D	3/26/98	11	-	-	0.5 U	0.13 U	-		0.24 U	0.71 U	-	-	-	-	-	-	-	-
	10/22/98	12	-	-	0.5 U	0.08 J	-	-	0.24 U	0.47 U	-	-	-	-	-	-	-	-
	3/5/99	3.1	-	-	0.5 U	0.039 U	-	-	0.24 U	0.71 U	-	-	-	-	-	-	-	-
	10/19/99	10	1 U	10 U	0.5 U	0.099 J	-	-	0.24 U	0.71 U	-	14.1	6.4	-	530	-	-	-
	5/23/00	9	-	-	0.2 U	0.2 U	-	-	0.25 U	0.5 U	-	13	7.2	-	690	-	-	-
	3/16/01	10.8	-	-	0.2 U	0.2 U	-	-	0.25 U	0.5 U	-	14	7.1	-	900	-	0.14	-
	3/21/02	8.8	-	-	0.2 U	0.2 U	-	-	0.25 U	0.5 U	-	13	7.1	-	860	-	0.08	-
	4/3/03	3.3	1 U	1	0.2 U	0.2 U	0.15 U	-	0.25 U	0.5 U	4	11.4	6.9	1.25	454	-	18	-
	3/31/04	14.2	-	-	-	-	-	-	-	-	56.0	13.0	6.1	0.02	524	-2	27	93.0
	4/12/05	10.2	-	-	-	-	-	-	-	-	59.5	13.2	6.3	0.08	548	-15	0	38.9
	3/31/06	11.2	-	-	-	-	-	-	-	-	62.5	13.7	6.2	0.16	459	-10	0	20.3
	3/29/07	11.1	-	-	-	-	-	-	-	-	58.0	14.0	5.8	0.11	554	107	0	40.8
	3/26/08	9.8	-	-	-	-	-	-	-	-	49.6	11.1	6.7	0.52	436	-35	0	-
	3/26/09	10.4	-	-	-	-	-	-	-	-	63	13.36	5.6	2.64	764	-118	32	55
	4/2/10	10.4	-	-	-	-	-	-	-	-	62	12.5	7.1	0	445	-83	160	58.4
	3/31/11	9.7	-	-	-	-	-	-	-	-	63	13	6.1	0.05	382	-61	10	70
	3/23/12	9.1	-	-	-	-	-	-	-	-	61.5	13.3	6.0	0	724	-160	6.2	54.2
	3/13/13	9.1	0.1 U	1 U	0.025	0.14	0.2 U	-	0.1 U	0.2 U	65	13.18	8.6	<0.01	508	57	9.9	67.8
	4/2/14	7.8	-	-	-	-	-	-	-	-	56.5	14.01	6.3	0.01	527	-102	115.5	34.6
	4/15/15	7.8	-	-	-	0.24	-	-	-	-	-	14.05	6.2	0	529	-189	25.4	-
	3/10/16	8.0	-	-	-	0.24	-	-	-	-	-	13.72	6.2	U	533.9	-11	10.9	-

Well	Date	Arsenic in µg/L	Lead in µg/L	Chromium in µg/L	Benzene in µg/L	Vinyl Chloride in µg/L	Total cPAHs ^a in µg/L	PCP in ug/L	Diesel in mg/L	Heavy Oil in mg/L	Ferrous Iron ^b in mg/L	Temp. in °C	pН	Diss. Oxygen in mg/L	Cond. in µmhos /cm	Redox Potential in mV	Turbidity in NTU	TSS in mg/L
CL		5	5	80	5	0.4	0.1	0.73	1	1	NE	NE	NE	NE	NE	NE	NE	NE
HS	AL:	50	50	100	5	2	NE	1.0	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
LW-09D	3/26/98	9.5	-	-	0.5 U	0.97 J	-	0.82 U	0.24 U	0.71 U	-	-	-	-	-	-	-	-
	10/21/98	7.6	-	-	0.5 U	0.7 J	-	0.8 U	0.24 U	0.47 U	-	-	-	-	-	-	-	-
	3/7/99	7.9	-	-	0.5 U	0.86	-	0.9 U	0.24 U	0.71 U	-	-	-	-	-	-	-	-
	10/19/99	3.3	1 U	10 U	0.5 U	0.4 J	-	-	0.32	0.71 U	-	14.6	7.4	-	450	-	-	-
	5/24/00	9	-	-	0.2 U	0.3	-	-	0.25 U	0.5 U	-	14	6.7	-	740	-	-	-
	10/12/00	-	-	-	0.2 U	0.9	-	-	-	-	-	14	7.2	-	640	-	-	-
	3/15/01	9.4	-	-	0.2 U	0.9	-	-	0.25 U	0.5 U	-	14	6.8	-	590	-	0.14	-
	10/31/01	-	-	-	0.2 U	0.5	-	-	-	-	-	14	6.8	-	560	-	0.14	-
	3/20/02	11.4	-	-	0.2 U	1.6	-	-	0.25 U	0.5 U	-	13	8.0	-	910	-	0.11	-
	10/16/02	-	-	-	0.2 U	0.9	-	-	-	-	5.8	14.1	6.9	1.1	510	-	0.14	-
	4/4/03	0.9	1 U	1 U	0.2 U	0.2 U	0.15 U	0.25 U	0.25 U	0.5 U	3.4	12.6	7.3	0.71	389	-	12	-
	10/7/03	-	-	-	0.2 U	0.7	-	-	-	-	-	13	7.3	-	680	-	0.18	-
	3/31/04	12.2	-	-	0.2 U	1.1	-	-	-	-	54.5	12.2	6.2	0.22	523	-22	13	77.5
	10/20/04	-	-	-	0.2 U	1.0	-	-	-	-	52	12.6	6.2	0	528	-28	0	41.5
	4/12/05	8	-	-	0.2 U	1.3 J	-	-	-	-	54	12.5	6.4	0.05	540	-24	1	37.5
	11/3/05	-	-	-	0.2 U	0.8	-	-	-	-	52	12	6.7	0.32	517	-42	7	33.4
	3/31/06	7.7	-	-	0.2 U	0.8	-	-	-	-	53.5	12.6	6.3	0.12	433	-20	0	18.2
	3/27/07	8.5	-	-	0.2 U	0.9	-	-	-	-	-	12.2	6.0	0.19	541	54	0	-
	3/26/08	8.3	-	-	-	1.2	-	-	-	-	46.7	11.7	6.8	0.48	427	-15	0	-
	3/26/09	8.4	-	-	-	1.2	-	-	-	-	55.5	12.24	5.7	2.56	729	-129	48	36.4
	10/27/09	8	-	-	-	0.71	-	-	-	-	52.7	12.44	9.3	3.33	617	-146	20	51.1
	4/2/10	8.4	-	-	-	0.5	-	-	-	-	55	11.5	7.2	0	428	-90	242	41.2
	3/29/11	8.5	-	-	-	0.5	-	-	-	-	51.5	12	6.4	0.11	441	-	10	54.8
	3/23/12	7.5	-	-	-	0.32	-	-	-	-	51	11.9	6.0	0	666	-155	2.9	40
	3/15/13	8	0.1 U	0.7	0.02 U	0.41	0.2 U	0.25 U	0.1 U	0.2 U	54	12.31	7.2	0.02	491	235	59.8	62.2
	4/2/14	8.2	-	-	-	0.41	-	-	-	-	63	12.16	6.3	0.01	499.8	-65	27.6	27.7
	4/15/15	7.7	-	-	-	0.7	-	-	-	-	-	12.41	6.2	0.07	481	-192	164.8	-
	3/10/16	9.0	-	-	-	0.44 J	-	-	-	-	-	12.42	6.2	0	478	-50	6	-

Well	Date	Arsenic in µg/L	Lead in µg/L	Chromium in µg/L	Benzene in µg/L	Vinyl Chloride	Total cPAHs ^a	PCP	Diesel in mg/L	Heavy Oil in mg/L	Ferrous Iron ^b	Temp. in °C	рН	Diss. Oxygen	Cond. in µmhos	Redox Potential	Turbidity in NTU	TSS in
CU	1.	5	5	80	F	in μg/L	in μg/L	in ug/L 0.73	4	4	in mg/L NE	NE	NIE	in mg/L NE	/cm NE	in mV NE	NE	mg/L NE
HSA		5 50	50 50	100	5 5	0.4 2	0.1 NE	1.0	1 NE	1 NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE
Confirmation				100	Ū		145	1.0	1112	IVE	1112	112		IVE	142	142	142	
CW-01S	3/24/98	8.7	-	-	0.5 U	0.38 J		_	0.3	0.71 U	_	I -	-	_	_	-		_
CW-013	10/20/98	6.6	_	-	0.62	0.86 J	-		0.3 0.24 U	0.71 U	_				_		_	
	3/4/99	4.9	_	_	0.5 U	0.53	_	_	0.24 U	0.72 U						_		
	10/19/99	7.1	1 U	10 U	0.53	0.63 J	_	_	0.24 U	0.72 U	_	14.9	6.6	_	550	_	_	
	5/18/00	9	-	-	0.6	0.03 3	_	_	0.24 U	0.7 T U		15	7.0		810	_	_	
	3/19/01	8.7	_	_	0.7	1.3		_	0.25 U	0.5 U	_	-	-	_	-	_	_	_
	3/25/02	11.5	_	_	0.7	2.4		_	0.27	0.5 U	_	12	7.1	_	820	_	0.06	_
	10/16/02	-	_	_	-		_	_	-	-	_	16.1	6.6	_	580	_	0.14	_
	4/2/03	8.7	1 U	1	0.4	0.9	0.26 U	_	0.25 U	0.5 U	4	13.9	6.8	1.51	408	_	29	_
	10/7/03	-	-		0.2 U	0.6	-	_	-	-	_	14	6.9	-	770	_	0.09	_
	3/31/04	12.0	_	_	0.2	0.9	_	_	_	_	48.2	13.5	6.2	0.06	484	-7	30	72.5
	4/13/05	8.7	_	-	0.2 U	0.9	_	_	_	_	48.4	14.8	6.4	0.1	480	5	2	34.4
	3/28/06	8.1	_	_	0.2 U	0.9	_	_	_	_	46.6	14.2	6.5	0.2	524	9	0	33.5
	3/27/07	8.2	_	_	0.2 U	0.7	_	_	_	_	46.2	13.1	5.8	0.02	398	72	0	32.8
	3/27/08	8.1	_	-	-	0.63		_	_	_	37.6	12.3	6.6	0.67	379	-7	0	-
	3/24/09	8	_	_	_	0.54		_	_	_	0.999	12.83	5.8	2.2	665	-135	10	40.7
	4/1/10	8.1	-	-	0.2 U	0.4	-	-	-	-	49.7	13.1	7.0	0	-	-94	333	69.6
	3/29/11	8.1	-	-		0.64	-	-	-	-	50.5	13.2	6.4	<0.01	440	-	10	48.7
	3/22/12	4.7	-	-	-	0.3	-	-	-	-	22.6	13.3	6.0	0	441	-113	4.6	13.7
	3/12/13	7	0.2	1 U	0.023	0.62	0.2 U	-	0.16	0.2 U	52.5	13.01	9.9	0.01	464.3	3	1.2	48.3
	4/2/14	1.8	-	-	-	0.11	-	-	-	-	5.95	12.99	6.1	0.08	95.65	36	18	7
	4/15/15	3.6	-	-	-	0.46	-	-	-	-	-	14.4	5.9	0.08	237.5	-117	42.4	-
	3/10/16	0.4	-	ı	-	0.02 U	-	-	-	-	-	13.13	6.6	6.4	163	71	18.1	-
LW-09S	3/26/98	21	-	-	0.5 U	0.13 U	-	-	0.32	0.71 U	-	-	-	-	-	-	-	-
	10/21/98	17	-	-	0.5 U	0.31 J	-	-	0.36	0.47 U	-	-	-	-	-	-	-	-
	3/7/99	10 S	-	-	0.5 U	0.039 U	-	-	0.24 U	0.71 U	-	-	-	-	-	-	-	-
	10/19/99	18	1 U	10 U	0.5 U	0.22 J	-	-	0.56	0.71 U	-	13.6	6.7	-	810	-	-	-
	5/24/00	14	-	-	0.2 U	0.2 U	-	-	0.25 U	0.5 U	-	13	7.2	-	860	-	-	-
	3/15/01	19.2	-	-	0.2 U	0.2 U	-	-	0.25	0.5 U	-	14	6.3	-	720	-	0.11	-
	3/20/02	19.9	-	-	0.2 U	0.2 U	-	-	0.38	0.5 U	-	13	7.4	-	660	-	0.08	-
	10/16/02	-	-	-	-	-	-	-	-	-	-	14.1	7.0	-	600	-	0.1	-
	4/4/03	13.4	1 U	2	0.2 U	0.2 U	0.15 U	-	0.4	0.5 U	3.8	11.5	7.5	1.12	268	-	16	-
	3/30/04	17.7	-	-	-	-	-	-	-	-	61.5	11.1	5.9	0.39	420	-12	49	89.0
	4/12/05	11.6	-	-	-	-	-	-	-	-	48.8	11.4	6.6	0.07	418	-37	10	48.4
	3/30/06	8.5	-	-	-	-	-	-	-	-	36.2	11.9	6.5	0.3	299	-15	0	43.6
	3/28/07	14.8	-	-	-	-	-	-	-	-	61	10.7	6.6	0.03	367	92	46	68.2
	3/25/08	12.8	-	-	-	-	-	-	-	-	39	10	6.4	1.08	343	-140	62	-
	3/26/09	13.3	-	-	-	-	-	-	-	-	57.5	11.86	6.0	2.4	612	-127	81	46.7
	4/2/10	18.3	-	-	-	-	-	-	-	-	65	10.4	7.6	0	361	-124	77	56.4
	3/31/11	17.3	-	-	-	-	-	-	-	-	61	10.6	6.4	<0.01	322	-152	10	76 J
	3/23/12	14.1	-	-	-	-	-	-	-	-	54	10.5	6.2	0	570	-190	9.2	68.1
	3/15/13	13.6	0.1 U	1.8	0.02 U	0.039	0.2 U	-	0.2	0.25	50	11.46	7.5	0.03	360.1	201	42	79.3
	4/2/14	14.6	-	-	-	-	-	-	-	-	61	11.03	6.7	0.07	417	-118	33.1	76.5
	4/15/15	19.2	-	-	-	0.007.1	-	-	-	-	-	11.72	6.5	0.01	410.5	-95 74	47.3	-
	3/10/16	14.8	-	-	-	0.027 J	-	-	-	-	-	11.59	6.4	0	421.6	-74	27.6	-

Well	Date	Arsenic in µg/L	Lead in µg/L	Chromium in µg/L	Benzene in µg/L	Vinyl Chloride in µg/L	Total cPAHs ^a in µg/L	PCP in ug/L	Diesel in mg/L	Heavy Oil in mg/L	Ferrous Iron ^b in mg/L	Temp. in °C	pН	Diss. Oxygen in mg/L	Cond. in µmhos /cm	Redox Potential in mV	Turbidity in NTU	TSS in mg/L
CU	L:	5	5	80	5	0.4	0.1	0.73	1	1	NE	NE	NE	NE	NE	NE	NE	NE
HSA	AL:	50	50	100	5	2	NE	1.0	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
MW-03I	3/27/98	17	-	-	0.5 U	0.13 U	-		0.24 U	0.71 U	-	-	-	-	-	-	-	-
	10/22/98	15	-	-	0.5 U	0.15 J	-	-	0.24 U	0.47 U	-	-	-	-	-	-	-	-
	3/5/99	10	-	-	0.5 U	0.039 U	-	-	0.24 U	0.71 U	-	-	-	-	-	-	-	-
	10/20/99	19	1 U	10 U	0.5 U	0.14 J	-	-	0.34	0.71 U	-	15.7	7.3	-	430	-	-	-
	5/23/00	14	-	-	0.2 U	0.2	-	-	0.25 U	0.5 U	-	13	7.1	-	620	-	-	-
	3/16/01	18	-	-	0.2 U	0.3	-	-	0.25 U	0.5 U	-	14	7.1	-	810	-	0.19	-
	3/25/02	19.4	-	-	0.2 U	0.5	-	-	0.28	0.5 U	-	13	7.4	-	940	-	0.13	-
	10/16/02	-	-	-	-	-	-	-	-	-	-	15.4	6.9	-	410	-	0.08	-
	4/1/03	37.4	1 U	1	0.2 U	0.2 U	0.15 U	-	0.29	0.5 U	5.5	13.2	6.9	0.86	268	-	35	-
	3/30/04	18.2	-	-	0.2 U	0.2 J	-	-	-	-	49.9	13	6.0	0.35	382	-33	19	79.5
	10/20/04	19.4	-	-	-	-	-	-	-	-	50.5	15.4	6.4	0.01	404	-26	1	43.5
	4/12/05	14.9	-	-	-	-	-	-	-	-	50.5	12.8	6.5	0.16	386	-41	0	35.2
	11/2/05	17.5	-	-	-	-	-	-	-	-	49.3	15	6.9	0.36	449	-40	7	30
	3/30/06	12.8	-	-	-	-	-	-	-	-	51.5	13.8	6.3	0.14	316	-11	0	51.4
	3/28/07	12.9	1 U	1 U	0.2 U	0.2 U	0.1 U	0.25 U	0.25 U	0.5 U	46	12.6	5.7	0.1	339	103	0	47.7
	3/25/08	18.6	-	-	-	-	-	-	-	-	37	11.1	6.9	0.8	320	-31	0	-
	3/26/09	13	-	-	-	-	-	-	-	-	48	11.94	5.8	2.11	504	-119	12	27.2
	4/2/10	13.8	-	-	-	-	-	-	-	-	50	11.5	7.4	0.15	320	-92	33	60.5
	3/31/11	14.9	-	-	-	-	-	-	-	-	51	12.2	6.2	0.08	265	-	10	98.8
	3/23/12	14.7	-	-	-	-	-	-	-	-	54.5	12	6.0	0	547	-148	3	45.1
	11/15/12	-	-	-	-	0.029	-	-	-	-	46.2 J	12.9	6.3	2.29	284	-105	2.6	54
	3/14/13	10.9	0.1 U	0.5	0.02 U	0.066	0.2 U	-	0.1 U	0.2 U	52.0	12.35	8.4	< 0.01	343	77	7.1	58
	4/2/14	13.2	-	-	-	-	-	-	-	-	56.0	12.53	6.5	0.02	407.5	-100	3.9	33.4
	4/15/15	13.5	-	-	-	-	-	-	-	-	-	12.6	6.4	0.1	388.6	-85	5.6	-
	3/10/16	16.9	-	-	-	0.077 J	-	-	-	-	-	11.72	6.4	0	385.3	-36	9.2	-
Stabilized Ce	II Wells										•							
SC-01S	3/25/98	4.4	2.2	10 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	10/21/98	3.4	1.4	5 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	3/7/99	4.7	1 U	10 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	10/19/99	5.8	1 U	10 U	-	-	-	-	-	-	-	17.2	8.2	-	190	-	-	-
	5/24/00	5	1 U	0.5 U	-	-	-	-	-	-	-	13	7.0	-	740	-	-	-
	3/15/01	5.2	1 U	0.5 U	-	-	-	-	-	-	-	13	6.8	-	620	-	0.13	-
	3/20/02	5.8	1 U	0.5 U	-	-	-	-	-	-	-	12	7.2	-	860	-	0.15	-
	10/16/02	-	-	-	-	-	-	-	-	-	-	15.1	7.1	-	610	-	0.11	-
	4/4/03	4.9	1 U	0.5 U	-	-	-	-	-	-	0.6	13.8	8.1	2.6	107	-	26	-
	4/1/04	5.4	-	-	_	-	-	_	-	-	0.043	12.4	8.2	0.19	119	162	13	4.9
	4/12/05	5.1	-	-	-	-	-	-	-	-	0.04 U	12.7	8.0	0.15	123	-42	1	1.9
	3/29/06	4.7	-	-	-	-	_	_	_	-	0.04 U	12.8	7.7	0.32	97	-49	0	1.8
	3/29/07	4.6	-	-	-	-	-	-	-	-	0.04 U	12.9	7.1	0.2	118	93	0	2.9
	3/13/13	4.6	0.1 U	1 U	-	-	-	-	-	-	0.046	11.72	8.7	0.09	105.7	70	9.3	3.3

Well	Date	Arsenic in µg/L	Lead in µg/L	Chromium in µg/L	Benzene in µg/L	Vinyl Chloride in µg/L	Total cPAHs ^a in µg/L	PCP in ug/L	Diesel in mg/L	Heavy Oil in mg/L	Ferrous Iron ^b in mg/L	Temp. in °C	pН	Diss. Oxygen in mg/L		Redox Potential in mV	Turbidity in NTU	TSS in mg/L
CU	L:	5	5	80	5	0.4	0.1	0.73	1	1	NE	NE	NE	NE	NE	NE	NE	NE
HSA	AL:	50	50	100	5	2	NE	1.0	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
SC-02S	3/26/98	4.5	1 U	10 U	-	-	-		-	-	-	-	-	-	-	-	-	-
	10/21/98	4	1 U	5 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	3/7/99	2.6	1 U	10 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	10/19/99	4.7	1 U	10 U	-	-	-	-	-	-	-	16.5	-	-	-	-	-	-
	5/24/00	4	1 U	2 U	-	-	-	-	-	-	-	14	7.1	-	610	-	-	-
	3/15/01	4.1	1 U	2	-	-	-	-	-	-	-	13	6.3	-	810	-	0.17	-
	3/20/02	5.7	1 U	3.9	-	-	-	-	-	-	-	12	6.7	-	790	-	0.13	-
	10/16/02	-	-	-	-	-	-	-	-	-	-	13.4	6.5	-	560	-	0.09	-
	4/4/03	3.2	1 U	2	-	-	-	-	-	-	4.2	13	7.3	1.04	340	-	21	-
	4/1/04	4.9	-	-	-	-	-	-	-	-	36.5	12.7	6.2	0.03	386	66	18	23.2
	3/13/13	3.3	0.1 U	2	-	-	-	-	-	-	34.8	12.85	8.6	0.05	361	115	22.5	1.4

^a cPAHs are benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene (WAC 173-340-200). Total cPAH values presented are based on toxicity equivalency quotient (TEQ) calculation.

NE = Not established.

See pages A-3 and A-4 for explanation of data qualifiers.

^b Ferrous iron collected in October 2002 and April 2003 were field measurements using HACH kit. Other samples were analyzed in the laboratory using EPA Method SM 3500 **Notes:**

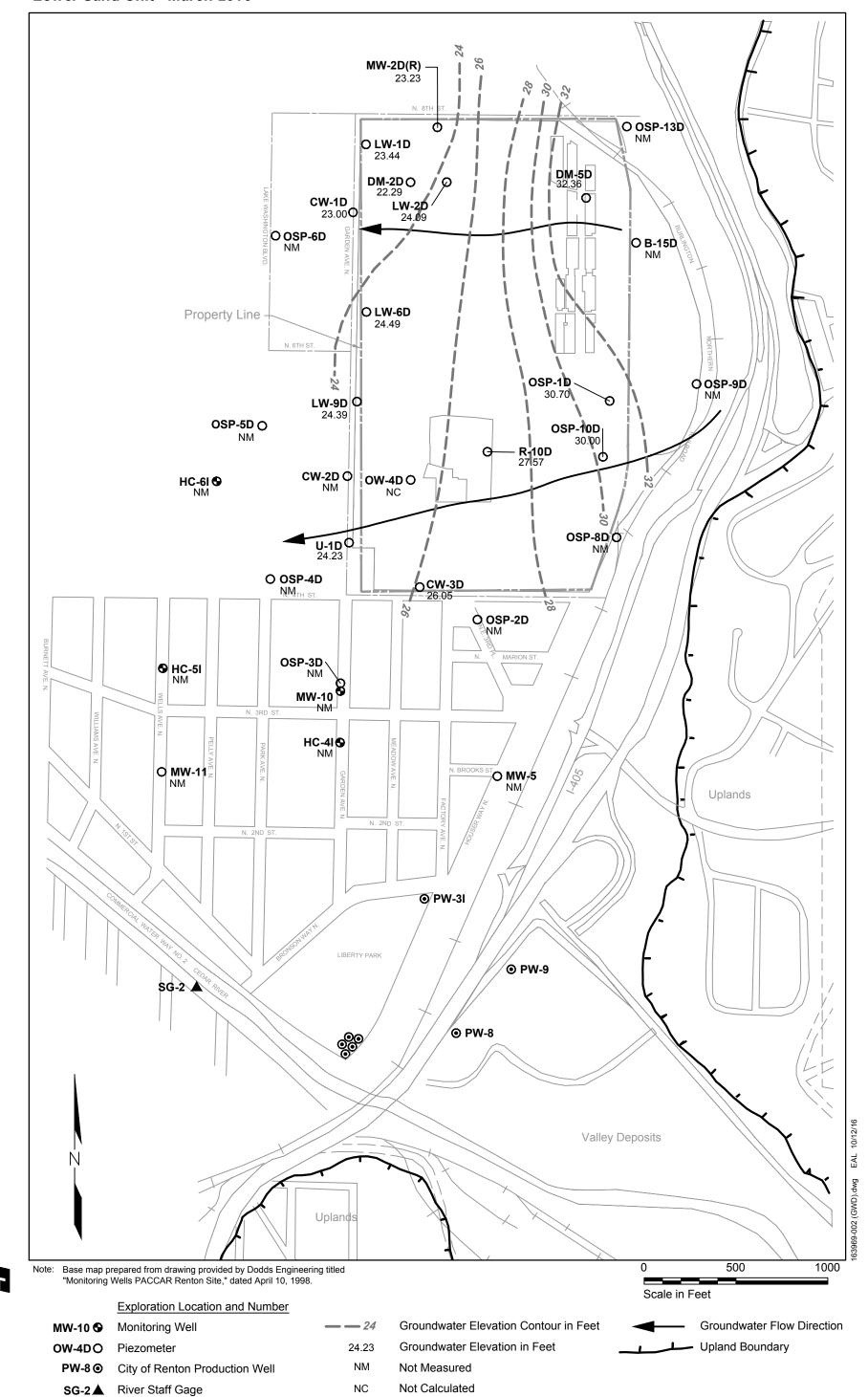
^{- =} Sample not analyzed for specific analyte.

J = Estimated value.

U = Not selected at the detection limit noted.

Table 1-4 - Groundwater Monitoring Program for Spring 2017, 2018, and 2019

		20	17	20	18	2019	
Well		VOCa	Arsenic	VOCa	Arsenic	VOC ^a	Arsenic
Confirmation Lo	ower Sand/D	elta Deposi	ts				
CW-1	ID		X		Χ		Х
LW-6	iD .		Χ		Х		Х
LW-9	D	X	Χ	Х	Х	Χ	Х
Confirmation U	pper Sand/A	quitard Wel	ls				
CW-1	IS	X	Χ	Х	X	Χ	X
LW-9	S		Χ		X		Х
MW-	31		Χ		Х		Х
Stabilized Cell \	Wells						
SC-1	s						X_p
SC-2	S						Xp
Quality Control	Samples						
		X	Χ	X	X	Χ	X
Purge Water Samples							
		Χ	Χ	X	X	Χ	X


^a VOC is vinyl chloride.

Water elevations will be measured at approximately 33 wells.

All wells with samples submitted for laboratory analysis will have the following parameters measured: temperature, pH, conductivity, turbidity, dissolved oxygen, and redox potential.

Purge water samples wil be analyzed for VOCs, arsenic, lead, total chromium, and TPH.

^b Samples will also be analyzed for lead and total chromium

SECTION 2 Surface Water Monitoring

SECTION 2 SURFACE WATER MONITORING

This section presents the results of the surface water monitoring event conducted in accordance with the CMIP and the Periodic Review. Samples were collected from five storm sewer manholes on March 10, 2016. Chemical test results are compiled in Table 2-1, and the sampling locations are shown with the generalized storm sewer configuration on Figure 2-1. The laboratory report is provided in Appendix B, along with a data quality review.

The Periodic Review specifies annual surface water monitoring. Surface water monitoring will be conducted in March 2016 for metals (total copper, lead and zinc, and hexavalent chromium) at the five locations identified in the CMIP to assess whether any long-term changes are occurring.

The following notes apply to this monitoring event:

- Off-Site Conditions. Monitoring point SW-MH was used to evaluate the quality of stormwater generated off site and upstream of the PACCAR site. As summarized in Table 2-1, metal concentrations detected in the sample from SW-MH are higher or similar to those detected in the sample from SW-3, which is the PACCAR property discharge point located downstream of SW-MH (Figure 2-1).
- Cleanup Level Compliance at SW-5. The CMIP specifies that water quality from SW-5 will be compared with CULs for compliance purposes. The detected copper (0.0114 mg/L), and lead (0.0052 mg/L) concentrations in the sample from SW-5 did exceed the CULs. It should be noted that copper and lead CULs are also exceeded in the upstream SW-MH sample.

Table 2-1 – Analytical Results for Surface Water Samples, March 2016

Sample ID		SW-3	SW-5	SW-6	SW-DP	SW-MD	SW-MH
Sample Date	CUL ^a	3/10/16	3/10/16	3/10/16	3/10/16	3/10/16	3/10/16
Total Metals in mg/L							
Copper	0.007	0.001	0.0114	0.0077	0.0011	0.0395	0.0401
Hexavalent chromium	0.011	0.01 UJ	0.01 UJ	0.01 UJ	0.01 U	0.01 U	0.01 U
Lead	0.001	0.0003	0.0052	0.0012	0.0001 U	0.0041	0.004
Zinc	0.047	0.125	0.024	0.01	0.081	0.164	0.169

^a Cleanup levels from CMIP (DOF 1997).

Notes:

See page B-3 for definition of data qualifiers.

SW-MD is a duplicate sample of SW-MH.

Surface Water Sampling Location Plan

Location and Number

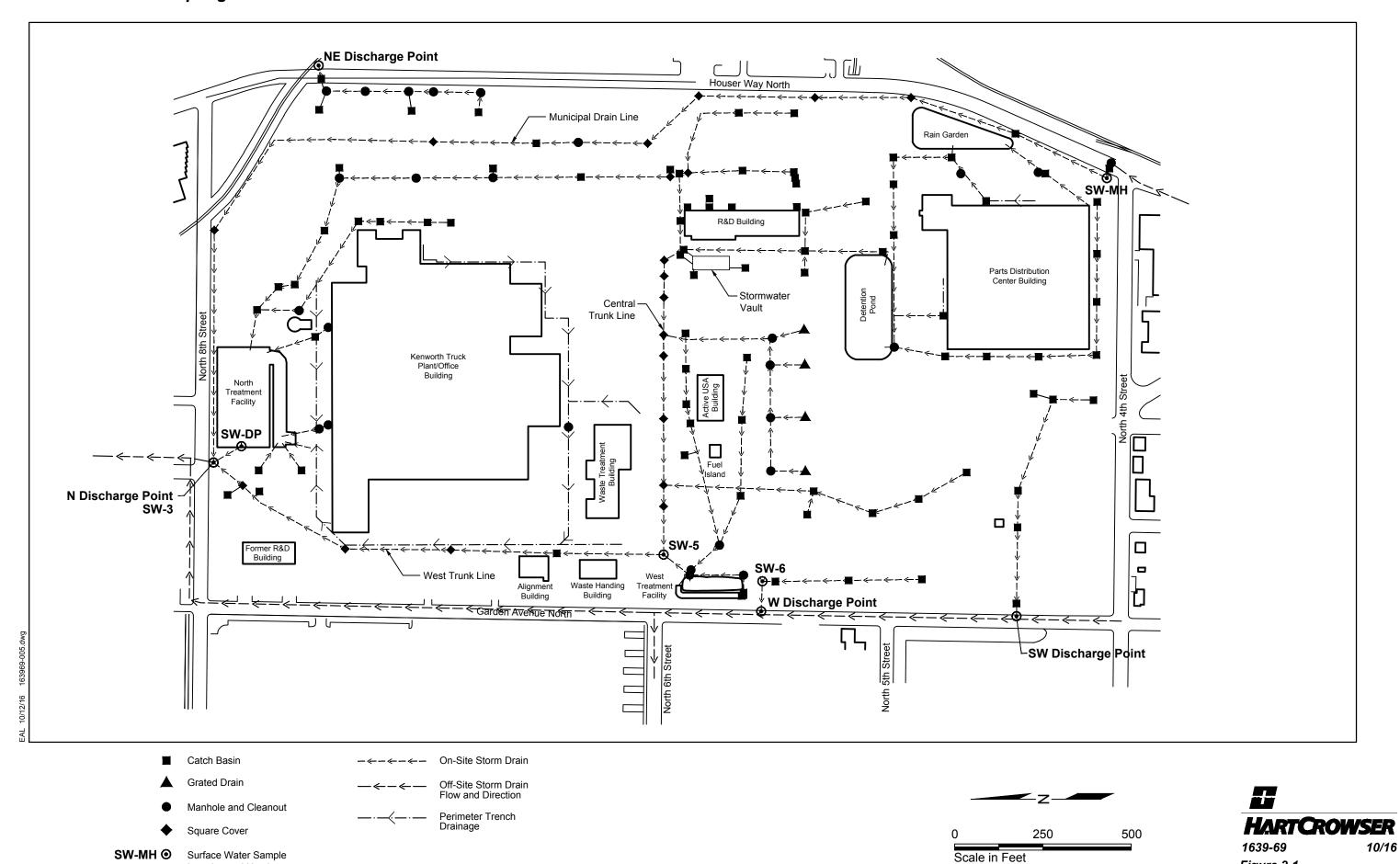


Figure 2-1

SECTION 3 PACCAR Structural Fill Cover Monitoring Field Inspection and Observation Form

SECTION 3 PACCAR STRUCTURAL FILL COVER MONITORING FIELD INSPECTION AND OBSERVATION FORM

The structural fill and pavement covers are monitored annually to document their condition and note areas where repair or maintenance is necessary. An engineer or technician conducted a site walk to observe and document the following:

- Conditions of paved area (settlement, ruts, cracks, other) and
- Disturbance in areas of planted cover (erosion, excavation, vegetation, other).

Field Inspection Observations

Date of Field Inspection: March 10, 2016

Weather Conditions: <u>Cloudy, Temperature = 51 °F</u>

Inspection Personnel: Brigitte Brown

Staff Engineer

North End of Site

Areas appear to be in good condition, with no obvious signs of settlement or cracking in asphalt cover.

South End of Site

The area is currently under construction. A new building and soil stockpiles are present. We will evaluate the conditions at the site once construction is completed and site grades have stabilized.

Recommended Actions and Follow-Up

Areas Needing Repair

Review site conditions in the Spring 2017.

Documentation of Repair Completion

None.

APPENDIX A
Data Validation Summary and
Laboratory Report
Groundwater Samples

APPENDIX A DATA VALIDATION SUMMARY AND LABORATORY REPORT GROUNDWATER SAMPLES

Summary of Data Validation Effort

This appendix provides the quality assurance (QA) review of eight groundwater samples, one purge water sample, and one field duplicate collected in accordance with the PACCAR CMIP (DOF 1997) and Periodic Review (Ecology 2014) for the March 2016 sampling event. The samples were submitted to Analytical Resources, Inc., (ARI) in Tukwila, Washington, for chemical analysis. The laboratory reported results as ARI Job No. AXK7. The samples were analyzed for one or more of the following:

- Diesel and heavy oil by Ecology Method NWTPH-Dx;
- Total metals (arsenic, chromium, and lead) by EPA Method 200.8; and
- Vinyl chloride by EPA Method 8260C-SIM; and volatile organic compounds (VOCs) by EPA Method 8260C.

The laboratory performed ongoing quality assurance/quality control (QA/QC) reviews of laboratory procedures. Hart Crowser performed the data review, using laboratory quality control results summary sheets, to check that the data met data quality objectives for the project. The following criteria were evaluated in the standard data quality review process:

- Holding times;
- Method blanks:
- Surrogate recoveries;
- Laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) recoveries and relative percent differences (RPDs);
- Matrix spike/matrix spike duplicate (MS/MSD) recoveries and RPDs;
- Laboratory and field duplicate RPDs;
- Calibration criteria (if reported); and
- Reporting limits (RL).

Overall Data Quality

The overall data quality objectives (DQOs) as set forth in the quality assurance project plan (QAPP) were met, and the data for this site are acceptable for use as qualified. The completeness for the associated data is 100 percent. Detailed discussions are presented in the following pages.

Quality Assurance Objectives

Precision. Precision measures the reproducibility of measurements under a given set of conditions. Specifically, it is a quantitative measure of the variability of a group of measurements compared with their average values. Precision is generally evaluated using LCS/LCSD, MS/MSD, lab duplicate results,

and field duplicate results. The LCS/LCSD, MS/MSD, and lab duplicate results provide information on laboratory (only) precision, while field duplicates provide information on field and laboratory precision combined.

Analytical precision is generally measured through LCS/LCSD and MS/MSD samples for organic analysis, and through laboratory duplicate samples for metals and other inorganic analysis. Analytical precision is quantitatively expressed as the RPD between the LCS/LCSD, MS/MSD, or laboratory duplicates. Analytical precision measurements were carried out on project groundwater samples at a minimum frequency of one in 20 samples. The analytical precision for all analytes was acceptable.

Accuracy. Accuracy measures the closeness of the measured value to the true value. The accuracy of chemical test results was assessed by analyzing standard reference materials or by "spiking" samples with known standards (surrogates, LCS, and/or MS) and measuring the percent recovery.

Accuracy measurements for all fractions were carried out in accordance with method requirements for organic and inorganic analyses and at a minimum frequency of one in 20 samples. The analytical accuracy for analytes was acceptable with the following exception:

■ Vinyl chloride by EPA Method 8260C-SIM. The recovery for the LCS slightly exceeded the control limit, while the recovery for the LCSD fell within the control limit. The associated samples were not qualified.

Completeness. Completeness is defined as the percentage of measurements made that are judged to be valid measurements. The completeness of the data is the ratio of acceptable data points to the total number of data points (expressed as a percent). The target completeness goal for this work was 100 percent. The completeness of the data for this project was 100 percent.

Comparability. Comparability is a qualitative parameter expressing the confidence with which one data set can be compared with another. Because standard techniques were used for both sample collection and laboratory analysis, the data collected from the same sampling locations and depths should be comparable to both internal data and other data generated.

No Major Problems Encountered

No major problems were encountered.

Minor Problems Encountered

Receiving Samples. The following issues were encountered:

- The trip blank was not listed on the chain of custody. The trip blank was analyzed for vinyl chloride by EPA Method 8260C-SIM.
- The cooler temperature upon receipt at the laboratory was 12°C, above the 2° to 6°C method recommended limits. The laboratory noted that insufficient ice was used to cool the samples.

Samples that were collected more than four hours before receipt at the laboratory were subsequently evaluated:

Samples LW-9D, LW-9S, and MW-31. The samples were analyzed for total arsenic by EPA Method 200.8 and vinyl chloride by EPA Method 8260C-SIM. The total arsenic results would not be affected by the temperature exceedance, and results were not qualified. The vinyl chloride results would potentially be affected by the temperature exceedance, and were qualified as estimated (J).

Vinyl Chloride. Samples LW-9D, LW-9S, and MW-31 were qualified as estimated (J) due to the temperature exceedance.

Total Arsenic. No problems were encountered.

Volatile Organic Analysis. The recovery of 1,2,3-Trichlorobenzene in the associated Calibration Verification Check failed low. The result for that analyte in the associated sample (KW Tank) was qualified as estimated (J).

Diesel and Heavy Oil. No problems were encountered.

Data Qualifier Definitions

The following data qualifiers are used in the text and tables according to a quality assurance review of the laboratory procedures and results:

- U Indicates the compound or analyte was analyzed for and not detected. The value reported is the sample quantitation limit corrected for sample dilution and moisture content by the laboratory.
- UJ Indicates the compound or analyte was analyzed for and not detected. Because of quality control deficiencies identified during data validation, the value reported may not accurately reflect the sample quantitation limit.
- J Indicates the compound or analyte was analyzed for and detected. The associated value is estimated, but the data are usable for decision making processes.

Table A-1 – Compilation of Chemical Analytical Data for Groundwater Samples

Sample ID	Cleanup		CW-100D	CW-1S	LW-6D	LW-9D	LW-9S	MW-3I
Sampling Date	Level	3/10/2016	3/10/2016	3/10/2016	3/10/2016	3/10/2016	3/10/2016	3/10/2016
Metals in mg/L								
Arsenic	0.005 ^a	0.0004	0.0006	0.0004	0.008	0.009	0.0148	0.0169
Volatiles in µg/L								
Vinyl chloride	0.4 ^b	0.02 U	0.021	0.02 U	0.24	0.44 J	0.027 J	0.077 J

Sample ID	Cleanup Tri	p Blank
Sampling Date	Level 3/1	0/2016
Metals in mg/L Arsenic Volatiles in µg/L	0.005 ^a	
Vinyl chloride	0.4 ^b	0.02 U

Notes:

Blank indicates sample not analyzed for specific analyte.

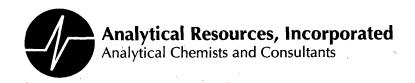
See page A-4 for explanation of data qualifiers.

CW-100D is a duplicate sample from CW-1D

^a HSAL for arsenic is 0.05 mg/L.

^b HSAL for vinyl chloride is 2 μg/L.

Table A-2 – Analytical Results for Purge Water


J
-
J
J
ĺ
j
J
J
J
JJ J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J

Sample ID	KW Tank
Sampling Date	3/10/2016
Volatiles in µg/L	
Chlorobenzene	0.20 U
Chloroethane	0.20 U
Chloroform	0.20 U
Chloromethane	0.50 U
cis-1,2-Dichloroethene	0.20 U
cis-1,3-Dichloropropene	0.20 U
Dibromochloromethane	0.20 U
Dibromomethane	0.20 U
Ethylbenzene	0.20 U
Hexachlorobutadiene	0.50 U
Iodomethane	1.0 U
Isopropylbenzene	0.20 U
m, p-Xylene	0.40 U
Methylene Chloride	1.0 U
Naphthalene	0.50 U
n-Butylbenzene	0.20 U
n-Propylbenzene	0.20 U
O-Xylene	0.20 U
sec-Butylbenzene	0.20 U
Styrene	0.20 U
tert-Butylbenzene	0.20 U
Tetrachloroethene	0.20 U
Toluene	0.20 U
trans-1,2-Dichloroethene	0.20 U
trans-1,3-Dichloropropene	0.20 U
trans-1,4-Dichloro-2-butene	1.0 U
Trichloroethene	0.20 U
Trichlorofluoromethane	0.20 U
Vinyl Acetate	0.20 U
Vinyl Chloride	0.20 U

See page A-4 for explanation of data qualifiers.

LABORATORY REPORT Analytical Resources, Incorporated

March 24, 2016

Roy Jensen Hart Crowser, Inc. 1700 Westlake Avenue North Suite 200 Seattle, WA 98109-3056

RE: Client Project: Paccar, 1639-69

ARI Job No: AXK7

Dear Mr. Jensen:

Please find enclosed the original chain-of-custody (COC) record and the final results for the sample from the project referenced above. Analytical Resources, Inc. (ARI) accepted eight water samples, and trip blanks in good condition on March 10, 2016. There were no discrepancies between the COC and the sample containers' labels.

The samples were analyzed for VOCs, SIM VOCs, Total Metals and NWTPH-Dx, as requested on the COC.

The SIM VOCs LCS is out of control high for Vinyl Chloride. LCSD is in control.

The VOCs CCAL is out of control low for 1,2,3-Trichlorobenzene, the sample was non-detect, no further actions taken.

No other analytical complications were noted for these analyses.

A copy of this report and the supporting data will remain on file with ARI. Please feel free to contact me at your convenience if you have any questions.

Sincerely,

ANALYTICAL RESOURCES, INC.

Amanda Volgardsen

-for-

Kelly Bottem

Client Services Manager

kellyb@arilabs.com

206-695-6211

(104. jensen @ hart crowser, com) SAMPLED BY: 13 LIS								10C (8 21	18,86,er	NWTP								NO. 0F				 		
LAB NO.	SAMPLE ID	DESCRIPTIO	N DATE	TIME	MATRIX							4-	-	+-		-		_						
	cw-is	Groundwa	kg 3110116		Worter	×	×		_	<u> </u>	_		-	-	-	-		4				·		
Ø	Charles 5	CW-100D		1415		X	X						-	╁	├-	+-		4						
	CW-12			1345		X	イ						+-	-	 	-		4						
	LW-60			1302		X	X						-			-	-	4						
	LW-95			0940		IX	\				\vdash	+-	+-	+	┼	-		4						
	LW-9D			G800		X	1			-	\vdash		+		+-	-	ļ	4						
	Mw-31			1048	<u> </u>	X	1	~	J	1			+		╁	+	-							
	KW Tank	*		1430	ļ 	 	ļ	X	X	X			+-		╀	+-	-	0						
		1		ļ		1	-	-			\vdash		+		+		-							
					-		-		-	 	\vdash		+-	+	+		-							
		ļ		 		+-	-	-	-		\vdash	-}-	+	+	+	+	┼	-						
			PECTIVED DV		DATE		ECIA	I CHI	DME	INT H	IANDLI	NG OF					<u> </u>	 	TOT	ΔΙ ΝΙ	IMBER (OF CONT	AINERS	
1 _	ISHED BY	DATE	RECEIVED BY	(4)							ENTS:	140 01						SAMPLE RECEIPT INFORMATION					9 . 1	
SIGNATURE	101	3/10/16	SIGNATURE S DUNN	Jesse -	3/10/16	4													STODY SEALS (ES [i ⊐NO		□N⁄A		
Brig it	te Brown	TIME	PRINT NAME	47 1100	TIME	1												GO	OD CONDITIC	ON				
COMPANY	Crowser	1552	COMPANY	<u> </u>	1552													TEI	MPERATURE_	□NO				
1		DATE	RECEIVED BY		DATE	\dashv													IPMENT METI COURIER	HOD:	□HAND □OVERI	NIGHT		
W	IISHED BY	DAIL	MECLIACO		-	 c	00LI	R NO).:				STO	RAGE	LOC	ATIO	N:		RNAROUND	TIME:	•			-
SIGNATUR	 E	TINAL	SIGNATURE		TIME	-													24 HOURS		1 WEE	K		
PRINT NAM	TIME TIME TIME		THE THE		AA A	h Ma	wk N	rdor	No	<u> </u>							io iiniine	1	Green					
COMPANIE	CLEATER!					See Lab Work Order No								111		 		11						
				1	A TERM CORRESPONDENCE												 							
					••• BUN HOUR VINCE HU.							L148 HUUKS LIKTANDARD												
LUIVIPANY	LUMPANY COMPANY						or Otl	ner Co	ontra	act Re	equiren	nents							72 HOURS	6	THER _			

Cooler Receipt Form

ARI Client: HATT CROWSER	Project Name:PACCAR_
COC No(s):(NA)	Delivered by: Fed-Ex UPS Courier Hand Delivered Other:
Assigned ARI Job No: AXK7	<u> </u>
Preliminary Examination Phase:	Tracking No: NA
Were intact, properly signed and dated custody seals attached	to the outside of to cooler?
Were custody papers included with the cooler?	
Were custody papers properly filled out (ink, signed, etc.)	
Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for che	
If cooler temperature is out of compliance fill out form 00070F	Temp Gun ID# 1005276
Cooler Accepted by:	Date:03/10/16 Time: 1552
Complete custody forms	s and attach all shipping documents
Log-In Phase:	
Was a temperature blank included in the cooler?	
Was a temperature blank included in the cooler?	
Was sufficient ice used (if appropriate)?	
Were all bottles sealed in individual plastic bags?	
Did all bottles arrive in good condition (unbroken)?	
Were all bottle labels complete and legible?	
Did the number of containers listed on COC match with the num	
Did all bottle labels and tags agree with custody papers?	
Were all bottles used correct for the requested analyses?	
Do any of the analyses (bottles) require preservation? (attach pr	()
Were all VOC vials free of air bubbles?	
Was sufficient amount of sample sent in each bottle?	
Date VOC Trip Blank was made at ARI	
	Equipment: Split by:
<u></u>	2/11/1
Samples Logged by:Date	· Inne
** Notify Project Manage	er of discrepancies or concerns **
Sample ID on Bottle Sample ID on COC	Sample ID on Bottle Sample ID on COC
1.	
3	
Additional Notes, Discrepancies, & Resolutions:	
Additional Notes, Discrepancies, & Nesolutions.	
By: Date:	
Small Air Bubbles Peabubbles LARGE Air Bubbles	Small → "sm" (<2 mm)
-2mm 2-4 mm > 4 mm	Peabubbles > "pb" (2 to < 4 mm)
	Large > "lg" (4 to < 6 mm)
	Headspace → "hs" (>6 mm)

0016F 3/2/10 Cooler Receipt Form

Revision 014

PRESERVATION VERIFICATION 03/11/16

Page 1 of 1

ANALYTICAL RESOURCES INCORPORATED ARI Job No: AXK7

PC: Kelly

VTSR: 03/10/16

Project #: 1639-69 Project: Paccar Sample Site:

SDG No:

Analytical Protocol: In-house

Inquiry Number: NONE

Analysis Requested: 03/11/16

Contact: Jensen, Roy

Client: Hart Crowser, Inc.

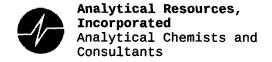
Logged by: AV

Sample Set Used: Yes-481 Validatable Package: No

Deliverables:

LOGNUM ARI ID	CLIENT ID	CN >12	WAD >12	NH3 <2	COD <2	FOG <2	MET <2	PHEN <2	PHOS <2	TKN <2	NO23 <2	TOC <2	S2 >9	TPHD <2	DMET FLT	PARAMETER	ADJUSTED TO	LOT NUMBER	AMOUNT ADDED	DATE/BY
16-4044 AXK7A	CW-1S						TOT													
16-4045 AXK7B	CW-100D						Y _{OT}												į	
16-4046 AXK7C	CW-1D						TOT						-						i	
16-4047 AXK7D	LW-6D						FOT												i	
16-4048 AXK7E	LW-9S		1				TOT												į	
16-4049 AXK7F	LW-9D						TOT													
16-4050 AXK7G	MW-31						OT													
16-4051 AXK7H	KW TANK						ST													

Sample ID Cross Reference Report



ARI Job No: AXK7

Client: Hart Crowser, Inc. Project Event: 1639-69 Project Name: Paccar

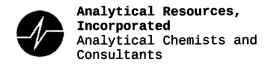
	Sample ID	ARI Lab ID	ARI LIMS ID	Matrix	Sample Date/Time	VTSR
1.	CW-1S	AXK7A	16-4044	Water	03/10/16 14:15	03/10/16 15:52
2.	CW-100D	AXK7B	16-4045	Water	03/10/16 14:15	03/10/16 15:52
3.	CW-1D	AXK7C	16-4046	Water	03/10/16 13:45	03/10/16 15:52
4.	LW-6D	AXK7D	16-4047	Water	03/10/16 13:02	03/10/16 15:52
5.	LW-9S	AXK7E	16-4048	Water	03/10/16 09:40	03/10/16 15:52
6.	LW-9D	AXK7F	16-4049	Water	03/10/16 08:00	03/10/16 15:52
7.	MW-31	AXK7G	16-4050	Water	03/10/16 10:48	03/10/16 15:52
8.	KW TANK	AXK7H	16-4051	Water	03/10/16 14:30	03/10/16 15:52
9.	TRIP BLANKS	AXK7I	16-4053	Water	03/10/16	03/10/16 15:52

Printed 03/11/16 Page 1 of 1

Data Reporting Qualifiers Effective 12/31/13

Inorganic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Duplicate RPD is not within established control limits
- B Reported value is less than the CRDL but ≥ the Reporting Limit
- N Matrix Spike recovery not within established control limits
- NA Not Applicable, analyte not spiked
- H The natural concentration of the spiked element is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- L Analyte concentration is ≤5 times the Reporting Limit and the replicate control limit defaults to ±1 RL instead of the normal 20% RPD

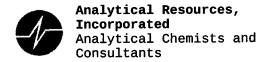

Organic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Flagged value is not within established control limits
- B Analyte detected in an associated Method Blank at a concentration greater than one-half of ARI's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.
- J Estimated concentration when the value is less than ARI's established reporting limits
- D The spiked compound was not detected due to sample extract dilution
- E Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.

Laboratory Quality Assurance Plan

Page 1 of 3

Version 14-003 12/31/13



- Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20%Drift or minimum RRF).
- S Indicates an analyte response that has saturated the detector. The calculated concentration is not valid; a dilution is required to obtain valid quantification of the analyte
- NA The flagged analyte was not analyzed for
- NR Spiked compound recovery is not reported due to chromatographic interference
- NS The flagged analyte was not spiked into the sample
- M Estimated value for an analyte detected and confirmed by an analyst but with low spectral match parameters. This flag is used only for GC-MS analyses
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification"
- Y The analyte is not detected at or above the reported concentration. The reporting limit is raised due to chromatographic interference. The Y flag is equivalent to the U flag with a raised reporting limit.
- EMPC Estimated Maximum Possible Concentration (EMPC) defined in EPA Statement of Work DLM02.2 as a value "calculated for 2,3,7,8-substituted isomers for which the quantitation and /or confirmation ion(s) has signal to noise in excess of 2.5, but does not meet identification criteria" (Dioxin/Furan analysis only)
- C The analyte was positively identified on only one of two chromatographic columns. Chromatographic interference prevented a positive identification on the second column
- P The analyte was detected on both chromatographic columns but the quantified values differ by ≥40% RPD with no obvious chromatographic interference
- Analyte signal includes interference from polychlorinated diphenyl ethers. (Dioxin/Furan analysis only)
- Z Analyte signal includes interference from the sample matrix or perfluorokerosene ions. (Dioxin/Furan analysis only)

Laboratory Quality Assurance Plan

Page 2 of 3

Version 14-003 12/31/13

Geotechnical Data

- A The total of all fines fractions. This flag is used to report total fines when only sieve analysis is requested and balances total grain size with sample weight.
- F Samples were frozen prior to particle size determination
- SM Sample matrix was not appropriate for the requested analysis. This normally refers to samples contaminated with an organic product that interferes with the sieving process and/or moisture content, porosity and saturation calculations
- SS Sample did not contain the proportion of "fines" required to perform the pipette portion of the grain size analysis
- W Weight of sample in some pipette aliquots was below the level required for accurate weighting

Version 14-00; 12/31/1:

Volatiles by Purge & Trap GC/MS-Method SW8260C-SIM Sample ID: CW-1S Page 1 of 1 SAMPLE

Lab Sample ID: AXK7A LIMS ID: 16-4044

Matrix: Water

Data Release Authorized: WW

Reported: 03/23/16

Instrument/Analyst: NT15/LH
Date Analyzed: 03/16/16 13:18

QC Report No: AXK7-Hart Crowser, Inc.

Project: Paccar 1639-69

Date Sampled: 03/10/16 Date Received: 03/10/16

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
75-01-4	Vinyl Chloride	0.020	< 0.020	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane 116%

FORM I

Volatiles by Purge & Trap GC/MS-Method SW8260C-SIM Sample ID: CW-100D

Page 1 of 1

SAMPLE

Lab Sample ID: AXK7B LIMS ID: 16-4045

Matrix: Water

Data Release Authorized: Www

Instrument/Analyst: NT15/LH

Date Analyzed: 03/16/16 13:43

Reported: 03/23/16

QC Report No: AXK7-Hart Crowser, Inc.

Project: Paccar

1639-69

Date Sampled: 03/10/16
Date Received: 03/10/16

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
75-01-4	Vinyl Chloride	0.020	0.021	

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane 117%

FORM I

Volatiles by Purge & Trap GC/MS-Method SW8260C-SIM Sample ID: CW-1D Page 1 of 1 SAMPLE

Lab Sample ID: AXK7C LIMS ID: 16-4046

Matrix: Water

Data Release Authorized:

Reported: 03/23/16

Instrument/Analyst: NT15/LH
Date Analyzed: 03/16/16 14:07

QC Report No: AXK7-Hart Crowser, Inc.

Project: Paccar 1639-69

Date Sampled: 03/10/16
Date Received: 03/10/16

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
75-01-4	Vinyl Chloride	0.020	< 0.020	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane 121%

FORM I

Volatiles by Purge & Trap GC/MS-Method SW8260C-SIM Sample ID: LW-6D Page 1 of 1 SAMPLE

Lab Sample ID: AXK7D LIMS ID: 16-4047

Matrix: Water

Data Release Authorized:

Reported: 03/23/16

Instrument/Analyst: NT15/LH Date Analyzed: 03/16/16 14:32 QC Report No: AXK7-Hart Crowser, Inc.

Project: Paccar 1639-69

Date Sampled: 03/10/16 Date Received: 03/10/16

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result C	5
75-01-4	Vinyl Chloride	0.020	0.24	

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane 122%

FORM I

Volatiles by Purge & Trap GC/MS-Method SW8260C-SIM Sample ID: LW-9S Page 1 of 1 SAMPLE

Lab Sample ID: AXK7E LIMS ID: 16-4048

Matrix: Water

Data Release Authorized:

Reported: 03/23/16

Instrument/Analyst: NT15/LH
Date Analyzed: 03/16/16 14:56

QC Report No: AXK7-Hart Crowser, Inc.

Project: Paccar

1639-69

Date Sampled: 03/10/16
Date Received: 03/10/16

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number Analyte RL Result Q
75-01-4 Vinyl Chloride 0.020 0.027

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane 124%

FORM I

Volatiles by Purge & Trap GC/MS-Method SW8260C-SIM Sample ID: LW-9D Page 1 of 1 SAMPLE

Lab Sample ID: AXK7F

LIMS ID: 16-4049 Matrix: Water

Data Release Authorized:

Reported: 03/23/16

Instrument/Analyst: NT15/LH Date Analyzed: 03/16/16 15:20 QC Report No: AXK7-Hart Crowser, Inc.

Project: Paccar

1639-69

Date Sampled: 03/10/16 Date Received: 03/10/16

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result Q
75-01-4	Vinyl Chloride	0.020	0.44

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane 124%

FORM I

Volatiles by Purge & Trap GC/MS-Method SW8260C-SIM Sample ID: MW-31 Page 1 of 1 SAMPLE

Lab Sample ID: AXK7G LIMS ID: 16-4050

Matrix: Water

Data Release Authorized: \text{NW}

Reported: 03/23/16

Instrument/Analyst: NT15/LH Date Analyzed: 03/16/16 15:45 QC Report No: AXK7-Hart Crowser, Inc.

Project: Paccar

1639-69

Date Sampled: 03/10/16 Date Received: 03/10/16

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number Analyte		RL	Result Q
75-01-4	Vinyl Chloride	0.020	0.077

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane

125%

Volatiles by Purge & Trap GC/MS-Method SW8260C-SIM Sample ID: TRIP BLANKS

Page 1 of 1 SAMPLE

Lab Sample ID: AXK7I LIMS ID: 16-4053

Matrix: Water

Data Release Authorized: WW

Reported: 03/23/16

Instrument/Analyst: NT15/LH Date Analyzed: 03/16/16 12:53 QC Report No: AXK7-Hart Crowser, Inc.

Project: Paccar 1639-69

Date Sampled: 03/10/16
Date Received: 03/10/16

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

 CAS Number
 Analyte
 RL
 Result Q

 75-01-4
 Vinyl Chloride
 0.020
 < 0.020</td>
 U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane 116%

FORM I

SW8260-SIM SURROGATE RECOVERY SUMMARY

QC Report No: AXK7-Hart Crowser, Inc. Project: Paccar Matrix: Water

1639-69

Client ID	DCE	TOT OUT
MB-031616	114%	0
LCS-031616	108%	0
LCSD-031616	107%	0
CW-1S	116%	0
CW-100D	117%	0
CW-1D	121%	0
LW-6D	122%	0
LW-9S	124%	0
LW-9D	124%	0
MW-31	125%	0
TRIP BLANKS	116%	0

LCS/MB LIMITS QC LIMITS

(DCE) = d4-1, 2-Dichloroethane

(80-129)

(80-129)

Prep Method: SW5030

Log Number Range: 16-4044 to 16-4053

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET

Volatiles by Purge & Trap GC/MS-Method SW8260C-SIM Sample ID: LCS-031616

Page 1 of 1 LAB CONTROL SAMPLE

Lab Sample ID: LCS-031616

LIMS ID: 16-4044 Matrix: Water

Data Release Authorized: \textbf{W}

Reported: 03/23/16

Instrument/Analyst LCS: NT15/LH LCSD: NT15/LH

Date Analyzed LCS: 03/16/16 11:09

LCSD: 03/16/16 11:34

QC Report No: AXK7-Hart Crowser, Inc.

Project: Paccar

1639-69

Date Sampled: NA Date Received: NA

Sample Amount LCS: 10.0 mL

LCSD: 10.0 mL

Purge Volume LCS: 10.0 mL

LCSD: 10.0 mL

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Vinyl Chloride	2.43	2.00	122%	2.28	2.00	114%	6.4%

Reported in µg/L (ppb)

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

LCS LCSD d4-1,2-Dichloroethane 108% 107%

Volatiles by Purge & Trap GC/MS-Method SW8260C-SIM Sample ID: MB-031616

Page 1 of 1 METHOD BLANK

Lab Sample ID: MB-031616

LIMS ID: 16-4044

Matrix: Water

Instrument/Analyst: NT15/LH

Date Analyzed: 03/16/16 11:58

Reported: 03/23/16

QC Report No: AXK7-Hart Crowser, Inc.

Project: Paccar

1639-69

Date Sampled: NA

Date Received: NA

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	RL	Result	Q
75-01-4	Vinyl Chloride	0.020	< 0.020	U

Reported in $\mu g/L$ (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane 114%

FORM I

ORGANICS ANALYSIS DATA SHEET Volatiles by P&T GC/MS-Method SW8260C

Page 1 of 2

Lab Sample ID: AXK7H LIMS ID: 16-4051

Matrix: Water

Data Release Authorized:

Instrument/Analyst: NT3/VTS

Date Analyzed: 03/16/16 17:38

Reported: 03/21/16

QC Report No: AXK7-Hart Crowser, Inc.

Sample ID: KW TANK

SAMPLE

Project: Paccar

1639-69

Date Sampled: 03/10/16
Date Received: 03/10/16

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

	Analyte	LOQ	Result	Q
74-87-3	Chloromethane	0.50	< 0.50	U
74-83-9	Bromomethane	1.0	< 1.0	U
75-01-4	Vinyl Chloride	0.20	< 0.20	U
75-00-3	Chloroethane	0.20	< 0.20	U
75-09-2	Methylene Chloride	1.0	< 1.0	U
67-64-1	Acetone	5.0	< 5.0	U
75-15-0	Carbon Disulfide	0.20	< 0.20	U
75-35-4	1,1-Dichloroethene	0.20	< 0.20	Ü
75-34-3	1,1-Dichloroethane	0.20	< 0.20	U
156-60-5	trans-1,2-Dichloroethene	0.20	< 0.20	U
156-59-2	cis-1,2-Dichloroethene	0.20	< 0.20	U
67-66-3	Chloroform	0.20	< 0.20	U
107-06-2	1,2-Dichloroethane	0.20	< 0.20	U
78-93-3	2-Butanone	5.0	< 5.0	Ū
71-55-6	1,1,1-Trichloroethane	0.20	< 0.20	Ū
56-23-5	Carbon Tetrachloride	0.20	< 0.20	Ü
108-05-4	Vinyl Acetate	0.20	< 0.20	Ü
75-27-4	Bromodichloromethane	0.20	< 0.20	Ü
78-87-5	1,2-Dichloropropane	0.20	< 0.20	Ü
10061-01-5	cis-1,3-Dichloropropene	0.20	< 0.20	Ü
79-01-6	Trichloroethene	0.20	< 0.20	Ü
124-48-1	Dibromochloromethane	0.20	< 0.20	Ü
79-00-5	1,1,2-Trichloroethane	0.20	< 0.20	Ü
71-43-2	Benzene	0.20	< 0.20	U
10061-02-6	trans-1,3-Dichloropropene	0.20	< 0.20	Ü
110-75-8	2-Chloroethylvinylether	1.0	< 1.0	Ü
75-25-2	Bromoform	0.20	< 0.20	Ü
108-10-1		5.0	< 5.0	U
591-78-6	4-Methyl-2-Pentanone (MIBK) 2-Hexanone	5.0	< 5.0	Ū
		0.20	-	
127-18-4	Tetrachloroethene		< 0.20	U
79-34-5	1,1,2,2-Tetrachloroethane	0.20	< 0.20	Ü
108-88-3	Toluene	0.20	< 0.20	U
108-90-7	Chlorobenzene	0.20	< 0.20	Ü
100-41-4	Ethylbenzene	0.20	< 0.20	U
100-42-5	Styrene	0.20	< 0.20	U
75-69-4	Trichlorofluoromethane	0.20	< 0.20	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroe		< 0.20	Ü
179601-23-1	m,p-Xylene	0.40	< 0.40	Ü
95-47-6	o-Xylene	0.20	< 0.20	Ü
95-50-1	1,2-Dichlorobenzene	0.20	< 0.20	U
541-73-1	1,3-Dichlorobenzene	0.20	< 0.20	Ü
106-46-7	1,4-Dichlorobenzene	0.20	< 0.20	U

ORGANICS ANALYSIS DATA SHEET Volatiles by P&T GC/MS-Method SW8260C

Page 2 of 2

Sample ID: KW TANK

SAMPLE

Lab Sample ID: AXK7H LIMS ID: 16-4051 QC Report No: AXK7-Hart Crowser, Inc.

Project: Paccar Matrix: Water 1639-69

Date Analyzed: 03/16/16 17:38

CAS Number	Analyte	LOQ Resul		Q
107-02-8	Acrolein	5.0	< 5.0	U
74-88-4	Iodomethane	1.0	< 1.0	U
74-96-4	Bromoethane	0.20	< 0.20	U
107-13-1	Acrylonitrile	1.0	< 1.0	U
563-58-6	1,1-Dichloropropene	0.20	< 0.20	U
74-95-3	Dibromomethane	0.20	< 0.20	U
630-20-6	1,1,1,2-Tetrachloroethane	0.20	< 0.20	U
96-12-8	1,2-Dibromo-3-chloropropane	0.50	< 0.50	U
96-18-4	1,2,3-Trichloropropane	0.50	< 0.50	U
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.20	< 0.20	U
95-63-6	1,2,4-Trimethylbenzene	0.20	< 0.20	U
87-68-3	Hexachlorobutadiene	0.50	< 0.50	U
106-93-4	1,2-Dibromoethane	0.20	< 0.20	U
74-97-5	Bromochloromethane	0.20	< 0.20	U
594-20-7	2,2-Dichloropropane	0.20	< 0.20	U
142-28-9	1,3-Dichloropropane	0.20	< 0.20	Ü
98-82-8	Isopropylbenzene	0.20	< 0.20	U
103-65-1	n-Propylbenzene	0.20	< 0.20	U
108-86-1	Bromobenzene	0.20	< 0.20	U
95-49-8	2-Chlorotoluene	0.20	< 0.20	U
106-43-4	4-Chlorotoluene	0.20	< 0.20	U
98-06-6	tert-Butylbenzene	0.20	< 0.20	U
135-98-8	sec-Butylbenzene	0.20	< 0.20	U
99-87-6	4-Isopropyltoluene	0.20	< 0.20	U
104-51-8	n-Butylbenzene	0.20	< 0.20	Ü
120-82-1	1,2,4-Trichlorobenzene	0.50	< 0.50	U
91-20-3	Naphthalene	0.50	< 0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	< 0.50	U

Reported in µg/L (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	93.2%
d8-Toluene	97.8%
Bromofluorobenzene	94.6%
d4-1,2-Dichlorobenzene	102%

2-Chloroethylvinylether is an acid labile compound and may not be recovered from an acid preserved sample.

EPA SW-846 indicates that vinyl chloride and styrene may degrade in the presence of acid preservative.

VOA SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: AXK7-Hart Crowser, Inc.
Project: Paccar

1639-69

ARI ID	Client ID	PV	DCE	TOL	BFB	DCB	TOT OUT
MB-031616A	Method Blank	10	94.8%	97.2%	97.6%	103%	0
LCS-031616A	Lab Control	10	91.0%	101%	103%	101%	0
LCSD-031616A	Lab Control Dup	10	91.6%	102%	102%	101%	0
AXK7H	KW TANK	10	93.2%	97.8%	94.6%	102%	0
SW8260C		LCS	/MB LIM	ITS		QC LIMI	rs
(DCE) = d4-1,2-Dichloroethane		(80-129)		(80-129)			
(TOL) = d8-Toluene		(80-120)		(80-120)			
(BFB) = Bromofluorobenzene		(80-120)		(80-120)			
(DCB) = d4-1,2-Dichlorobenzene		(80-120)		(80-120)			

Prep Method: SW5030B Log Number Range: 16-4051 to 16-4051

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Volatiles by P&T GC/MS-Method SW8260C

Page 1 of 2

Sample ID: LCS-031616A

LAB CONTROL SAMPLE

Lab Sample ID: LCS-031616A

LIMS ID: 16-4051 Matrix: Water

Data Release Authorized: WW

Reported: 03/21/16

QC Report No: AXK7-Hart Crowser, Inc.

Project: Paccar 1639-69

Date Sampled: NA Date Received: NA

Instrument/Analyst LCS: NT3/VTS

LCSD: NT3/VTS

Date Analyzed LCS: 03/16/16 08:43

LCSD: 03/16/16 09:09

Sample Amount LCS: 10.0 mL

LCSD: 10.0 mL

Purge Volume LCS: 10.0 mL

LCSD: 10.0 mL

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Chloromethane	8.31	10.0	83.1%	8.16	10.0	81.6%	1.8%
Bromomethane	10.6	10.0	106%	10.3	10.0	103%	2.9%
Vinyl Chloride	9.05	10.0	90.5%	8.77	10.0	87.7%	3.1%
Chloroethane	9.39	10.0	93.9%	9.14	10.0	91.4%	2.7%
Methylene Chloride	10.4	10.0	104%	10.2	10.0	102%	1.9%
Acetone	48.9	50.0	97.8%	49.8	50.0	99.6%	1.8%
Carbon Disulfide	10.5	10.0	105%	10.4	10.0	104%	1.0%
1,1-Dichloroethene	9.30	10.0	93.0%	9.21	10.0	92.1%	1.0%
1,1-Dichloroethane	10.0	10.0	100%	9.92	10.0	99.2%	0.8%
trans-1,2-Dichloroethene	11.0	10.0	110%	10.9	10.0	109%	0.9%
cis-1,2-Dichloroethene	10.8	10.0	108%	10.6	10.0	106%	1.9%
Chloroform	10.7	10.0	107%	10.7	10.0	107%	0.0%
1,2-Dichloroethane	9.35	10.0	93.5%	9.33	10.0	93.3%	0.2%
2-Butanone	50.1	50.0	100%	49.4	50.0	98.8%	1.4%
1,1,1-Trichloroethane	11.0	10.0	110%	10.6	10.0	106%	3.7%
Carbon Tetrachloride	10.8	10.0	108%	10.5	10.0	105%	2.8%
Vinyl Acetate	9.49	10.0	94.9%	9.55	10.0	95.5%	0.6%
Bromodichloromethane	10.7	10.0	107%	10.5	10.0	105%	1.9%
1,2-Dichloropropane	9.97	10.0	99.7%	9.85	10.0	98.5%	1.2%
cis-1,3-Dichloropropene	10.8	10.0	108%	10.8	10.0	108%	0.0%
Trichloroethene	10.8	10.0	108%	10.9	10.0	109%	0.9%
Dibromochloromethane	10.2	10.0	102%	9.90	10.0	99.0%	3.0%
1,1,2-Trichloroethane	10.5	10.0	105%	10.5	10.0	105%	0.0%
Benzene	10.8	10.0	108%	10.8	10.0	108%	0.0%
trans-1,3-Dichloropropene	10.6	10.0	106%	10.6	10.0	106%	0.0%
2-Chloroethylvinylether	9.74	10.0	97.4%	9.56	10.0	95.6%	1.9%
Bromoform	9.66	10.0	96.6%	9.40	10.0	94.0%	2.7%
4-Methyl-2-Pentanone (MIBK)	47.1	50.0	94.2%	46.9	50.0	93.8%	0.4%
2-Hexanone	45.8	50.0	91.6%	46.2	50.0	92.4%	0.9%
Tetrachloroethene	9.84	10.0	98.4%	9.52	10.0	95.2%	3.3%
1,1,2,2-Tetrachloroethane	9.36	10.0	93.6%	9.51	10.0	95.1%	1.6%
Toluene	10.5	10.0	105%	10.7	10.0	107%	1.9%
Chlorobenzene	9.96	10.0	99.6%	9.78	10.0	97.8%	1.8%
Ethylbenzene	10.1	10.0	101%	10.0	10.0	100%	1.0%
Styrene	10.5	10.0	105%	10.3	10.0	103%	1.9%
Trichlorofluoromethane	11.4	10.0	114%	11.2	10.0	112%	1.8%
1,1,2-Trichloro-1,2,2-trifluoroetha	10.5	10.0	105%	10.2	10.0	102%	2.9%
m,p-Xylene	20.0	20.0	100%	19.4	20.0	97.0%	3.0%

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Volatiles by P&T GC/MS-Method SW8260C

Page 2 of 2

Sample ID: LCS-031616A

LAB CONTROL SAMPLE

Lab Sample ID: LCS-031616A

LIMS ID: 16-4051 Matrix: Water QC Report No: AXK7-Hart Crowser, Inc.

Project: Paccar 1639-69

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
o-Xylene	9.69	10.0	96.9%	9.64	10.0	96.4%	0.5%
1,2-Dichlorobenzene	9.33	10.0	93.3%	9.25	10.0	92.5%	0.9%
1,3-Dichlorobenzene	9.50	10.0	95.0%	9.26	10.0	92.6%	2.6%
1,4-Dichlorobenzene	9.37	10.0	93.7%	9.26	10.0	92.6%	1.2용
Acrolein	42.6	50.0	85.2%	39.8	50.0	79.6%	6.8%
Iodomethane	10.9	10.0	109%	10.4	10.0	104%	4 .7 용
Bromoethane	11.2	10.0	112%	10.4	10.0	104%	7 . 4 용
Acrylonitrile	9.08	10.0	90.8%	9.27	10.0	92.7%	2.1%
1,1-Dichloropropene	10.6	10.0	106%	10.5	10.0	105%	0.9왕
Dibromomethane	10.6	10.0	106%	10.2	10.0	102%	3.8%
1,1,1,2-Tetrachloroethane	10.2	10.0	102%	10.0	10.0	100%	2.0%
1,2-Dibromo-3-chloropropane	9.07	10.0	90.7%	9.13	10.0	91.3%	0.7%
1,2,3-Trichloropropane	9.28	10.0	92.8%	8.81	10.0	88.1%	5.2%
trans-1,4-Dichloro-2-butene	7.86	10.0	78.6%	8.10	10.0	81.0%	3.0%
1,3,5-Trimethylbenzene	9.83	10.0	98.3%	9.73	10.0	97.3%	1.0%
1,2,4-Trimethylbenzene	9.86	10.0	98.6%	9.49	10.0	94.9%	3.8%
Hexachlorobutadiene	8.06	10.0	80.6%	7.82	10.0	78.2%	3.0%
1,2-Dibromoethane	10.9	10.0	109%	10.9	10.0	109%	0.0%
Bromochloromethane	11.3	10.0	113%	10.7	10.0	107%	5.5%
2,2-Dichloropropane	10.8	10.0	108%	10.9	10.0	109%	0.9%
1,3-Dichloropropane	9.75	10.0	97.5%	9.71	10.0	97.1%	0.4%
Isopropylbenzene	9.69	10.0	96.9%	9.66	10.0	96.6%	0.3%
n-Propylbenzene	9.66	10.0	96.6%	9.40	10.0	94.0%	2.7%
Bromobenzene	9.42	10.0	94.2%	9.24	10.0	92.4%	1.9%
2-Chlorotoluene	9.35	10.0	93.5%	9.22	10.0	92.2%	1.4%
4-Chlorotoluene	9.66	10.0	96.6%	9.27	10.0	92.7%	4.1%
tert-Butylbenzene	9.58	10.0	95.8%	9.34	10.0	93.4%	2.5%
sec-Butylbenzene	9.73	10.0	97.3%	9.58	10.0	95.8%	1.6%
4-Isopropyltoluene	9.80	10.0	98.0%	9.43	10.0	94.3%	3.8%
n-Butylbenzene	9.49	10.0	94.9%	9.13	10.0	91.3%	3.9%
1,2,4-Trichlorobenzene	8.68	10.0	86.8%	8.74	10.0	87.4%	0.7%
Naphthalene	8.29	10.0	82.9%	8.11	10.0	81.1%	2.2%
1,2,3-Trichlorobenzene	8.04 Q	10.0	80.4%	8.16 Q	10.0	81.6%	1.5%

Reported in $\mu g/L$ (ppb)

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

	LCS	LCSD
d4-1,2-Dichloroethane	91.0%	91.6%
d8-Toluene	101%	102%
Bromofluorobenzene	103%	102%
d4-1,2-Dichlorobenzene	101%	101%

ORGANICS ANALYSIS DATA SHEET Volatiles by P&T GC/MS-Method SW8260C

Page 1 of 2

Sample ID: MB-031616A METHOD BLANK

Lab Sample ID: MB-031616A LIMS ID: 16-4051

LIMS ID: 16-4051 Matrix: Water

Data Release Authorized:

Reported: 03/21/16

QC Report No: AXK7-Hart Crowser, Inc.

Project: Paccar 1639-69

Date Sampled: NA Date Received: NA

Instrument/Analyst: NT3/VTS Sample Amount: 10.0 mL Date Analyzed: 03/16/16 10:00 Purge Volume: 10.0 mL

CAS Number	Analyte	LOQ	Result Q
74-87-3	Chloromethane	0.50	< 0.50 U
74-83-9	Bromomethane	1.0	< 1.0 U
75-01-4	Vinyl Chloride	0.20	< 0.20 U
75-00-3	Chloroethane	0.20	< 0.20 U
75-09-2	Methylene Chloride	1.0	< 1.0 U
67-64-1	Acetone	5.0	< 5.0 U
75-15-0	Carbon Disulfide	0.20	< 0.20 U
75-35-4	1,1-Dichloroethene	0.20	< 0.20 U
75-34-3	1,1-Dichloroethane	0.20	< 0.20 U
156-60-5	trans-1,2-Dichloroethene	0.20	< 0.20 U
156-59-2	cis-1,2-Dichloroethene	0.20	< 0.20 U
67-66-3	Chloroform	0.20	
107-06-2	1,2-Dichloroethane	0.20	-
78-93-3	2-Butanone	5.0	=
71-55-6	1,1,1-Trichloroethane	0.20	
56-23-5	Carbon Tetrachloride	0.20	< 0.20 U
108-05-4	Vinyl Acetate	0.20	< 0.20 U
75-27-4	Bromodichloromethane	0.20	< 0.20 U
78-87-5	1,2-Dichloropropane	0.20	< 0.20 U
10061-01-5	cis-1,3-Dichloropropene	0.20	< 0.20 U
79-01-6	Trichloroethene	0.20	< 0.20 U
124-48-1	Dibromochloromethane	0.20	< 0.20 U
79-00-5	1,1,2-Trichloroethane	0.20	< 0.20 U
71-43-2	Benzene		< 0.20 U
10061-02-6	trans-1,3-Dichloropropene	0.20	< 0.20 U
110-75-8	2-Chloroethylvinylether	0.20	< 0.20 U
75-25-2	Bromoform	1.0	< 1.0 U
108-10-1	4-Methyl-2-Pentanone (MIBK)	0.20	< 0.20 U
591-78-6	2-Hexanone	5.0	< 5.0 U
L27-18-4	Tetrachloroethene	5.0	< 5.0 U
79~34-5	1,1,2,2-Tetrachloroethane	0.20	< 0.20 U
108-88-3	Toluene	0.20	< 0.20 U
108-90-7	Chlorobenzene	0.20	< 0.20 U
00-41-4	Ethylbenzene	0.20	< 0.20 U
.00-42-5	Styrene	0.20	< 0.20 U
75-69-4	Trichlorofluoromethane	0.20	< 0.20 U
6-13-1	1 1 2-Trichlers 1 2 2 + 161	0.20	< 0.20 U
79601-23-1	1,1,2-Trichloro-1,2,2-trifluoroet		< 0.20 U
95-47-6	m,p-Xylene o-Xylene	0.40	< 0.40 U
05-50-1		0.20	< 0.20 U
41-73-1	1,2-Dichlorobenzene	0.20	< 0.20 U
.06-46-7	1,3-Dichlorobenzene	0.20	< 0.20 U
.00 40 /	1,4-Dichlorobenzene	0.20	< 0.20 U

ORGANICS ANALYSIS DATA SHEET Volatiles by P&T GC/MS-Method SW8260C Page 2 of 2

ANALYTICAL RESOURCES INCORPORATED

Sample ID: MB-031616A

METHOD BLANK

Lab Sample ID: MB-031616A

LIMS ID: 16-4051

Matrix: Water

QC Report No: AXK7-Hart Crowser, Inc.

Project: Paccar

1639-69

Date Analyzed: 03/16/16 10:00

CAS Number	Analyte	LOQ	Result	Q
107-02-8	Acrolein	5.0	< 5.0	U
74-88-4	Iodomethane	1.0	< 1.0	U
74-96-4	Bromoethane	0.20	< 0.20	U
107-13-1	Acrylonitrile	1.0	< 1.0	U
563-58-6	1,1-Dichloropropene	0.20	< 0.20	U
74-95-3	Dibromomethane	0.20	< 0.20	U
630-20-6	1,1,1,2-Tetrachloroethane	0.20	< 0.20	U
96-12-8	1,2-Dibromo-3-chloropropane	0.50	< 0.50	U
96-18-4	1,2,3-Trichloropropane	0.50	< 0.50	U
110-57-6	trans-1,4-Dichloro-2-butene	1.0	< 1.0	U
108-67-8	1,3,5-Trimethylbenzene	0.20	< 0.20	U
95-63-6	1,2,4-Trimethylbenzene	0.20	< 0.20	U
87-68-3	Hexachlorobutadiene	0.50	< 0.50	U
106-93-4	1,2-Dibromoethane	0.20	< 0.20	U
74-97-5	Bromochloromethane	0.20	< 0.20	U
594-20-7	2,2-Dichloropropane	0.20	< 0.20	U
142-28-9	1,3-Dichloropropane	0.20	< 0.20	U
98-82-8	Isopropylbenzene	0.20	< 0.20	U
103-65-1	n-Propylbenzene	0.20	< 0.20	U
108-86-1	Bromobenzene	0.20	< 0.20	U
95-49-8	2-Chlorotoluene	0.20	< 0.20	U
106-43-4	4-Chlorotoluene	0.20	< 0.20	U
98-06-6	tert-Butylbenzene	0.20	< 0.20	U
135-98-8	sec-Butylbenzene	0.20	< 0.20	U
99-87-6	4-Isopropyltoluene	0.20	< 0.20	U
104-51-8	n-Butylbenzene	0.20	< 0.20	U
120-82-1	1,2,4-Trichlorobenzene	0.50	< 0.50	U
91-20-3	Naphthalene	0.50	< 0.50	U
87-61-6	1,2,3-Trichlorobenzene	0.50	< 0.50	U

Reported in $\mu g/L$ (ppb)

Volatile Surrogate Recovery

d4-1,2-Dichloroethane	94.8%
d8-Toluene	97.2%
Bromofluorobenzene	97.6%
d4-1,2-Dichlorobenzene	103%

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID

Extraction Method: SW3510C

Page 1 of 1

Matrix: Water

QC Report No: AXK7-Hart Crowser, Inc.

Project: Paccar

1639-69

Date Received: 03/10/16

Data Release Authorized: 18 Reported: 03/18/16

ARI ID	Sample ID	Extraction Date	Analysis Date	EFV DF	Range/Surrogate	RL	Result
MB-031416 16-4051	Method Blank HC ID:	03/14/16	03/15/16 FID3B	1.00	Diesel Range Motor Oil Range o-Terphenyl	0.10	< 0.10 U < 0.20 U 95.1%
AXK7H 16-4051	KW TANK HC ID: DRO	03/14/16	03/15/16 FID3B	1.00	Diesel Range Motor Oil Range o-Terphenyl	0.10 0.20	0.11 < 0.20 U 91.7%

Reported in mg/L (ppm)

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis. RL-Reporting limit.

Diesel range quantitation on total peaks in the range from C12 to C24. Motor Oil range quantitation on total peaks in the range from C24 to C38. HC ID: DRO/RRO indicates results of organics or additional hydrocarbons in ranges are not identifiable.

FORM I

AXKT: 00027

TPHD SURROGATE RECOVERY SUMMARY

Matrix: Water

QC Report No: AXK7-Hart Crowser, Inc. Project: Paccar

1639-69

Client ID	OTER	TOT OUT
MB-031416	95.1%	0
LCS-031416	104%	0
LCSD-031416	108%	0
KW TANK	91.7%	0

LCS/MB LIMITS QC LIMITS

(OTER) = o-Terphenyl

(50-150) (50-150)

Prep Method: SW3510C

Log Number Range: 16-4051 to 16-4051

NWTPHD by GC/FID

Page 1 of 1

Sample ID: LCS-031416

LCS/LCSD

Lab Sample ID: LCS-031416

LIMS ID: 16-4051 Matrix: Water

Data Release Authorized:

Reported: 03/18/16

QC Report No: AXK7-Hart Crowser, Inc.

Project: Paccar

1639-69

Date Sampled: NA Date Received: NA

Date Extracted LCS/LCSD: 03/14/16

Sample Amount LCS: 500 mL

LCSD: 500 mL

Date Analyzed LCS: 03/15/16 17:16

LCSD: 03/15/16 17:40

LCSD: FID3B/ML

Final Extract Volume LCS: 1.0 mL LCSD: 1.0 mL

Instrument/Analyst LCS: FID3B/ML

Dilution Factor LCS: 1.00

LCSD: 1.00

Spike LCS Spike LCSD Range LCS Added-LCS Recovery LCSD Added-LCSD Recovery RPD Diesel 2.51 3.00 83.7% 2.45 3.00 81.7% 2.4%

TPHD Surrogate Recovery

o-Terphenyl 104% LCSD 108%

Results reported in mg/L

RPD calculated using sample concentrations per SW846.

TOTAL DIESEL RANGE HYDROCARBONS-EXTRACTION REPORT

ARI Job: AXK7

Matrix: Water Project: Paccar Date Received: 03/10/16 1639-69

ARI ID	Client ID	Samp Amt	Final Vol	Prep Date
16-4051-031416MB1	Method Blank	500 mL	1.00 mL	03/14/16
16-4051-031416LCS1	Lab Control	500 mL	1.00 mL	03/14/16
16-4051-031416LCSD1	Lab Control Dup	500 mL	1.00 mL	03/14/16
16-4051-AXK7H	KW TANK	500 mL	1.00 mL	03/14/16

TOTAL METALS

Page 1 of 1

Lab Sample ID: AXK7A LIMS ID: 16-4044 Matrix: Water

Data Release Authorized: Reported: 03/23/16

Sample ID: CW-1S SAMPLE

QC Report No: AXK7-Hart Crowser, Inc.

Project: Paccar

1639-69

Date Sampled: 03/10/16 Date Received: 03/10/16

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	μg/L	Ω
200.8	03/21/16	200.8	03/22/16	7440-38-2	Arsenic	0.2	0.4	

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: AXK7B LIMS ID: 16-4045

Matrix: Water

Data Release Authorized:

Reported: 03/23/16

Sample ID: CW-100D SAMPLE

QC Report No: AXK7-Hart Crowser, Inc.

Project: Paccar 1639-69

Date Sampled: 03/10/16 Date Received: 03/10/16

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	μg/L	Q
200.8	03/21/16	200.8	03/22/16	7440-38-2	Arsenic	0.2	0.6	

TOTAL METALS

Page 1 of 1

Lab Sample ID: AXK7C

LIMS ID: 16-4046

Matrix: Water

Data Release Authorized:

Reported: 03/23/16

Sample ID: CW-1D

SAMPLE

QC Report No: AXK7-Hart Crowser, Inc.

Project: Paccar

1639-69

Date Sampled: 03/10/16 Date Received: 03/10/16

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	μg/L	Q
200.8	03/21/16	200.8	03/22/16	7440-38-2	Arsenic	0.2	0.4	

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: AXK7D LIMS ID: 16-4047

Matrix: Water

Data Release Authorized:

Reported: 03/23/16

Sample ID: LW-6D

SAMPLE

QC Report No: AXK7-Hart Crowser, Inc.

Project: Paccar

1639-69 Date Sampled: 03/10/16

Date Received: 03/10/16

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	μg/L	Q
200.8	03/21/16	200.8	03/22/16	7440-38-2	Arsenic	0.2	8.0	

TOTAL METALS

Page 1 of 1

Lab Sample ID: AXK7E

LIMS ID: 16-4048

Matrix: Water

Data Release Authorized:

Reported: 03/23/16

Sample ID: LW-9S SAMPLE

QC Report No: AXK7-Hart Crowser, Inc.

Project: Paccar 1639-69

Date Sampled: 03/10/16
Date Received: 03/10/16

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	μ g/ L	Q
200.8	03/21/16	200.8	03/22/16	7440-38-2	Arsenic	0.2	14.8	

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: AXK7F LIMS ID: 16-4049

Matrix: Water

Data Release Authorized:

Reported: 03/23/16

Sample ID: LW-9D

SAMPLE

QC Report No: AXK7-Hart Crowser, Inc.

Project: Paccar 1639-69

Date Sampled: 03/10/16 Date Received: 03/10/16

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	TOÖ	μ g/ L	Q
200.8	03/21/16	200.8	03/22/16	7440-38-2	Arsenic	0.2	9.0	

TOTAL METALS
Page 1 of 1

Lab Sample ID: AXK7G

LIMS ID: 16-4050 Matrix: Water

Data Release Authorized:

Reported: 03/23/16

Sample ID: MW-31 SAMPLE

QC Report No: AXK7-Hart Crowser, Inc.

Project: Paccar 1639-69

Date Sampled: 03/10/16
Date Received: 03/10/16

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	μg/L	Q
200.8	03/21/16	200.8	03/22/16	7440-38-2	Arsenic	0.2	16.9	

TOTAL METALS

Page 1 of 1

Lab Sample ID: AXK7H

LIMS ID: 16-4051 Matrix: Water

Data Release Authorized:

Reported: 03/23/16

Sample ID: KW TANK SAMPLE

QC Report No: AXK7-Hart Crowser, Inc.

Project: Paccar 1639-69

Date Sampled: 03/10/16 Date Received: 03/10/16

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	μg/L	Q
200.8	03/21/16	200.8	03/22/16	7440-38-2	Arsenic	0.2	8.3	
200.8	03/21/16	200.8	03/22/16	7440-47-3	Chromium	0.5	0.8	
200.8	03/21/16	200.8	03/22/16	7439-92-1	Lead	0.1	0.5	

U-Analyte undetected at given LOQ LOQ-Limit of Quantitation

AXK7:00038

TOTAL METALS

Page 1 of 1

Lab Sample ID: AXK7H

LIMS ID: 16-4051 Matrix: Water

Data Release Authorized:

Reported: 03/23/16

Sample ID: KW TANK
DUPLICATE

QC Report No: AXK7-Hart Crowser, Inc.

Project: Paccar 1639-69

Date Sampled: 03/10/16
Date Received: 03/10/16

MATRIX DUPLICATE QUALITY CONTROL REPORT

Analyte	Analysis Method	Sample	Duplicate	RPD	Control Limit	Q	
Arsenic	200.8	8.3	8.6	3.6% 22.2%	+/- 20% +/- 0.5	L	
Chromium ¿Lead	200.8 200.8	0.8 0.5	1.0 0.5	0.0%	+/- 0.3	L	

Reported in µg/L

*-Control Limit Not Met

¥í

L-RPD Invalid, Limit = Detection Limit

TOTAL METALS

Page 1 of 1

Lab Sample ID: AXK7H

LIMS ID: 16-4051 Matrix: Water

Data Release Authorized:

Reported: 03/23/16

Sample ID: KW TANK

MATRIX SPIKE

QC Report No: AXK7-Hart Crowser, Inc.

Project: Paccar 1639-69

Date Sampled: 03/10/16 Date Received: 03/10/16

MATRIX SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Sample	Spike	Spike Added	% Recovery	Q
Arsenic	200.8	8.3	29.8	25.0	86.0%	
Chromium Lead	200.8 200.8	0.8 0.5	22.6 21.8	25.0 25.0	87.2% 85.2%	

Reported in µg/L

N-Control Limit Not Met

H-% Recovery Not Applicable, Sample Concentration Too High

NA-Not Applicable, Analyte Not Spiked

NR-Not Recovered

Percent Recovery Limits: 75-125%

AXK7:00040

TOTAL METALS

Page 1 of 1

Lab Sample ID: AXK7MB

LIMS ID: 16-4051 Matrix: Water

Data Release Authorized:

Reported: 03/23/16

Sample ID: METHOD BLANK

QC Report No: AXK7-Hart Crowser, Inc.

Project: Paccar

1639-69

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	μg/L	Q
200.8	03/21/16	200.8	03/22/16	7440-38-2	Arsenic	0.2	0.2	U
200.8	03/21/16	200.8	03/22/16	7440-47-3	Chromium	0.5	0.5	U
200.8	03/21/16	200.8	03/22/16	7439-92-1	Lead	0.1	0.1	Ü

TOTAL METALS

Page 1 of 1

Lab Sample ID: AXK7LCS LIMS ID: 16-4051

Matrix: Water

Data Release Authorized:

Reported: 03/23/16

Sample ID: LAB CONTROL

QC Report No: AXK7-Hart Crowser, Inc.

Project: Paccar

1639-69

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Arsenic	200.8	24.3	25.0	97.2%	
Chromium	200.8	26.0	25.0	104%	
Lead	200.8	24.7	25.0	98.8%	

Reported in µg/L

N-Control limit not met Control Limits: 80-120%

AXK7:00042

APPENDIX B
Data Validation Summary and
Laboratory Report
Surface Water Samples

APPENDIX B DATA VALIDATION SUMMARY AND LABORATORY REPORT SURFACE WATER SAMPLES

Summary of Data Validation Effort

This appendix provides the quality assurance (QA) review of five surface water samples and one field duplicate, collected in accordance with the PACCAR CMIP (DOF 1997) and Periodic Review (Ecology 2014) for the March 2016 sampling event. The samples were submitted to Analytical Resources, Inc., (ARI) in Tukwila, Washington, for chemical analysis. The laboratory reported results as ARI Job No. AXJ3. The samples were analyzed for the following:

- Total metals (copper, lead, and zinc) by EPA Method 200.8; and
- Hexavalent chromium by SM 3500-Cr B.

The laboratory performed ongoing quality assurance/quality control (QA/QC) reviews of laboratory procedures. Hart Crowser performed the data review using laboratory quality control results summary sheets to ensure the data met data quality objectives for the project. The following criteria were evaluated in the standard data quality review process:

- Holding times;
- Method blanks;
- Laboratory control sample (LCS) recoveries;
- Matrix spike/matrix spike duplicate (MS/MSD) recoveries and relative percent differences (RPDs);
- Standard reference material (SRM) recoveries;
- Laboratory and field duplicate RPDs; and
- Reporting limits (RL).

Overall Data Quality

The overall data quality objectives (DQOs) as set forth in the quality assurance project plan (QAPP) were met, and the data for this site are acceptable for use as qualified. The completeness for the associated data is 100 percent. Detailed discussions are presented in the following pages.

Quality Assurance Objectives

Precision. Precision measures the reproducibility of measurements under a given set of conditions. Specifically, it is a quantitative measure of the variability of a group of measurements compared with their average values. Precision is generally evaluated using LCS/LCSD, MS/MSD, lab duplicate, and field duplicate results. The LCS/LCSD, MS/MSD, and lab duplicate results provide information on laboratory (only) precision, while field duplicates provide information on field and laboratory precision combined.

Analytical precision is generally measured through LCS/LCSD and MS/MSD samples for organic analysis, and through lab duplicate samples for metals and other inorganic analysis. Analytical precision is quantitatively expressed as the RPD between the MS/MSD or duplicates. Analytical precision measurements were carried out on project surface water samples at a minimum frequency of one in 20 samples. The analytical precision for all analytes was acceptable or not applicable when the sample and duplicate results were less than five times the RL.

Accuracy. Accuracy measures the closeness of the measured value to the true value. The accuracy of chemical test results was assessed by analyzing standard reference materials or by "spiking" samples with known standards (surrogates, LCS, SRM, and/or MS) and measuring the percent recovery.

Accuracy measurements for all fractions were carried out in accordance with method requirements for organic and inorganic analyses and at a minimum frequency of one in 20 samples. The analytical accuracy for all analytes was acceptable.

Completeness. Completeness is defined as the percentage of measurements made that are judged to be valid measurements. The completeness of the data is the ratio of acceptable data points to the total number of data points (expressed as a percent). The target completeness goal for this work was 100 percent. The completeness of the data for this project was 100 percent.

Comparability. Comparability is a qualitative parameter expressing the confidence with which one data set can be compared with another. Because standard techniques were used for both sample collection and laboratory analysis, the data collected from the same sampling locations and depths should be comparable to both internal and other data generated.

No Major Problems Encountered

No major problems were encountered.

Minor Problems Encountered

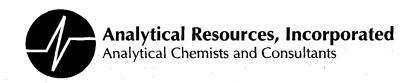
Receiving Samples. The following issues were encountered.

- The cooler temperature upon receipt at the laboratory was 12°C, above the 2° to 6°C method recommended limits. The laboratory noted that insufficient ice was used to cool the samples. Samples that were collected more than four hours before receipt at the laboratory were subsequently evaluated:
 - Samples SW-3, SW-5, and SW-6. The samples were analyzed for total copper, lead, and zinc by EPA Method 200.8 and hexavalent chromium by SM 3500-Cr B. The total metals results would not be affected by the temperature exceedance, and results were not qualified. The hexavalent chromium results would potentially be affected by the temperature exceedance, and were qualified as estimated (J).

Hexavalent Chromium. Samples SW-3, SW-5, and SW-6 were qualified as estimated (J) due to the temperature exceedance.

Total Metals. No problems were encountered.

Data Qualifier Definitions


The following data qualifiers are used in the text and tables according to a quality assurance review of the laboratory procedures and results:

- U Indicates the compound or analyte was analyzed for and not detected. The value reported is the sample quantitation limit corrected for sample dilution by the laboratory.
- UJ Indicates the compound or analyte was analyzed for and not detected. Because of quality control deficiencies identified during data validation, the value reported may not accurately reflect the sample quantitation limit.

LABORATORY REPORT Analytical Resources, Incorporated

March 22, 2016

Roy Jensen Hart Crowser, Inc. 1700 Westlake Avenue North Suite 200 Seattle, WA 98109-3056

RE: Client Project: Paccar, 1639-69

ARI Job No: AXJ3

Dear Mr. Jensen:

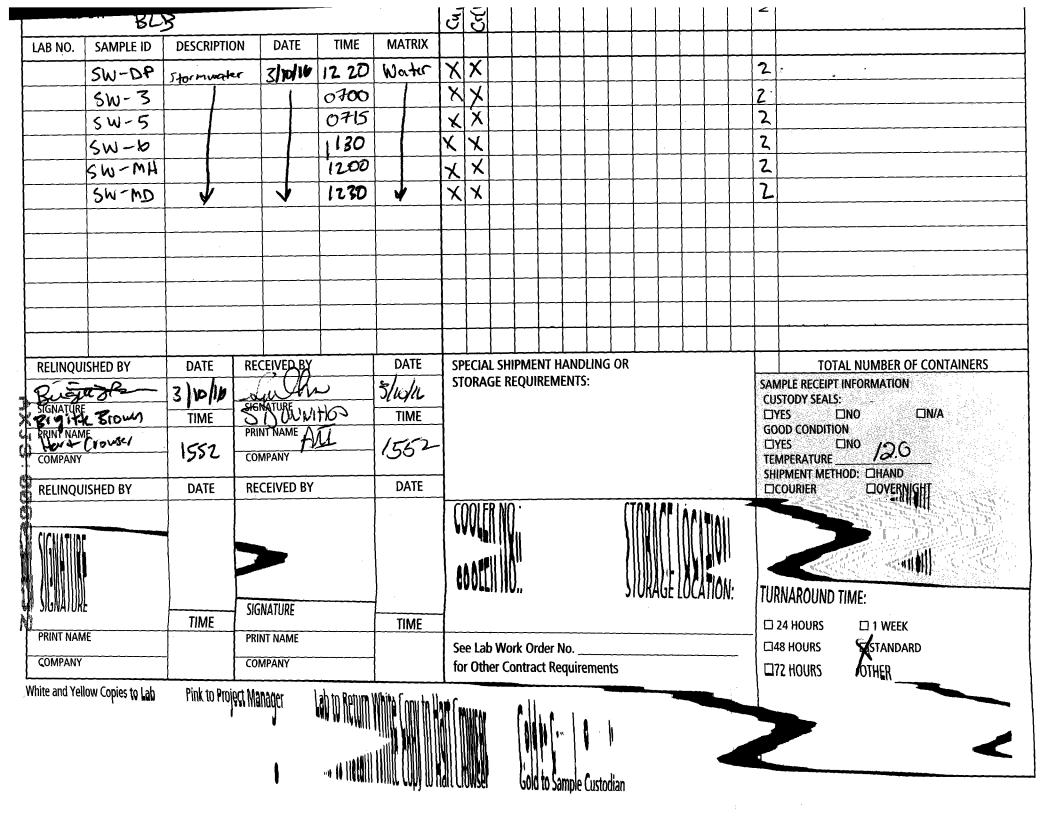
Please find enclosed the original chain-of-custody (COC) record and the final results for the sample from the project referenced above. Analytical Resources, Inc. (ARI) accepted six water samples in good condition on March 10, 2016. There were no discrepancies between the COC and the sample containers' labels.

The samples were analyzed for total metals, and hexavalent chromium, as requested on the COC.

No analytical complications were noted for the analyses.

A copy of this report and the supporting data will remain on file with ARI. Please feel free to contact me at your convenience if you have any questions.

Sincerely,

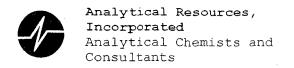

ANALYTICAL RESOURCES, INC.

Amanda Volgardsen

-for-

Kelly Bottem Client Services Manager kellyb@arilabs.com 206-695-6211

10927


Cooler Receipt Form

ARI Client: HATT CROWJER	F	Project Name:	PACCAR		
COC No(s):NA			2	5	
Assigned ARI Job No: AXJ3		Pelivered by: Fed-Ex UPS			· · ·
Preliminary Examination Phase:	1	racking No:			NA
Were intact, properly signed and dated custody seals attack	hed to the out	side of to cooler?		VEC	
Were custody papers included with the cooler?			<	YES	NO
Were custody papers properly filled out (ink, signed, etc.)			(YES	NO
Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C fo	r chemistry)	12.0	•	X58) NO	(NO)
If cooler temperature is out of compliance fill out form 00070	0F		Temp Cup II	D#: DO 04	277
Cooler Accepted by:	Date:	03/10/1/10 -	بسردسير الشناء		5610
		ch all shipping documen	"""	<u></u>	
Log-In Phase:	inis and atta	en an snipping documer	its		
Was a temperature blank included in the cooler?	Wrap Wet Ice	e Gel Packs Baggies Fo	am Biočk [°] Paper (NA	YES Other:YES	(NO)
Were all bottles sealed in individual plastic bags?		******		(VES)	NO
Did all bottles arrive in good condition (unbroken)?		***************************************		YES	(ND)
Were all bottle labels complete and legible?		******		YES	NO
Did the number of containers listed on COC match with the r	number of con	tainers received?		(ES	NO
Did all bottle labels and tags agree with custody papers?		*******		©	NO
Were all bottles used correct for the requested analyses?		***************************************		VES .	NO
Do any of the analyses (bottles) require preservation? (attack	h preservatior	sheet, excluding VOCs)	. NA	(YES)	NO
Were all VOC vials free of air bubbles?	• • • • • • • • • • • • • • • • • • • •		(NA)	YES	NO.
Was sufficient amount of sample sent in each bottle?				VES	_
Date VOC Trip Blank was made at ARI			A IN	reo	NO
144 6 1 6 11 1 1-1 / 6			چري	Split by:	
Samples Logged by:	Date: 3//	O/IC Time	11013		
** Notify Project Man	ager of disci	repancies or concerns ***			
Sample ID on Bottle Sample ID on COC		Sample ID on Bottle	Samp	le ID on CO	С
1.					
*					
Additional Notes Discrepancies & Resolutions:					
Additional Notes, Discrepancies, & Resolutions: COC dates + HIMLS + ILLA out	in penc	ul,			
- A./ -1.1.					
By: AV Date: 3/10/16					!
Small Air Bubbles Pesbubbles LARGE Air Bubbles -2mm 2-4 mm	l	"sm" (<2 mm)			
2-4 mm > 4 mm	Peabubb	les -> "pb" (2 to < 4 mm)			
	Large →	"lg" (4 to < 6 mm)			
	Headspa	ce > "hs" (>6 mm)	· · · · · · · · · · · · · · · · · · ·		

0016F 3/2/10

Cooler Receipt Form

Revision 014

Cooler Temperature Compliance Form

Cooler#:	Temperature(°C):	
Sample ID	Bottle Count	Bottle Type
Named as month and		Dotto typo
Samples received above 6°C.		
above 6°C		
Cooler#:	Temperature(°C):	
Sample ID	Bottle Count	Bottle Type
	·	
Cooler#:	Tomporeture (°C)	
Sample ID	Temperature(°C):	Bottle Type
	Dottie dount	Bottle Type
	·	
· ·		
Cooler#:	Temperature(°C):	
Sample ID	Bottle Count	Bottle Type
	· · · · · · · · · · · · · · · · · · ·	
Completed by:	A	=: 3/10/16 Time: 160/3
completed by	Date	e: 3/10/16 Time: 16/3

AXJ3:00003/3/09

PRESERVATION VERIFICATION 03/10/16

Page 1 of 1

Inquiry Number: NONE

Analysis Requested: 03/11/16

Contact: Jensen, Roy

Client: Hart Crowser, Inc.

Logged by: AV

Sample Set Used: Yes-481 Validatable Package: No

Deliverables:

ARI Job No: AXJ3

PC: Kelly

VTSR: 03/10/16

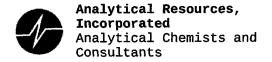
Project #: 1639-69 Project: Paccar Sample Site:

SDG No:

Analytical Protocol: In-house

LOGNUM ARI ID	CLIENT ID	CN >12	WAD >12	NH3 <2	COD <2	FOG <2	MET <2	PHEN <2	PHOS <2	TKN <2	NO23 <2	TOC <2	S2 >9	TPHD <2		DOC FLT	ADJUSTED TO	LOT NUMBER	AMOUNT ADDED	DATE/BY
16-4000 AXJ3A	SW-DP	į.																		
16-4001 AXJ3B	SW-3																			
16-4002 AXJ3C	SW-5					(ĬŢŢŢ Ĭ													
16-4003 AXJ3D	SW-6						TS NS													
16-4004 AXJ3E	SW-MH							,												
16-4005 AXJ3F	SW-MD							,												

Sample ID Cross Reference Report

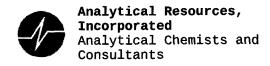

ARI Job No: AXJ3

Client: Hart Crowser, Inc. Project Event: 1639-69 Project Name: Paccar

	Sample ID	ARI Lab ID	ARI LIMS ID	Matrix	Sample Date/Time	VTSR
1. 2. 3. 4. 5.	SW-DP SW-3 SW-5 SW-6 SW-MH SW-MD	AXJ3A AXJ3B AXJ3C AXJ3D AXJ3E AXJ3F	16-4000 16-4001 16-4002 16-4003 16-4004 16-4005	Water Water Water Water Water Water	03/10/16 12:20 03/10/16 07:00 03/10/16 07:15 03/10/16 11:30 03/10/16 12:00 03/10/16 12:30	03/10/16 15:52 03/10/16 15:52 03/10/16 15:52 03/10/16 15:52 03/10/16 15:52 03/10/16 15:52

Printed 03/10/16 Page 1 of 1

AXJ3: @@@@G

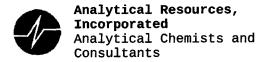

Data Reporting Qualifiers Effective 12/31/13

Inorganic Data

- U Indicates that the target analyte was not detected at the reported concentration
- Duplicate RPD is not within established control limits
- B Reported value is less than the CRDL but ≥ the Reporting Limit
- N Matrix Spike recovery not within established control limits
- NA Not Applicable, analyte not spiked
- H The natural concentration of the spiked element is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- L Analyte concentration is ≤5 times the Reporting Limit and the replicate control limit defaults to ±1 RL instead of the normal 20% RPD

Organic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Flagged value is not within established control limits
- B Analyte detected in an associated Method Blank at a concentration greater than one-half of ARI's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.
- J Estimated concentration when the value is less than ARI's established reporting limits
- D The spiked compound was not detected due to sample extract dilution
- E Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.



- Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20%Drift or minimum RRF).
- S Indicates an analyte response that has saturated the detector. The calculated concentration is not valid; a dilution is required to obtain valid quantification of the analyte
- NA The flagged analyte was not analyzed for
- NR Spiked compound recovery is not reported due to chromatographic interference
- NS The flagged analyte was not spiked into the sample
- M Estimated value for an analyte detected and confirmed by an analyst but with low spectral match parameters. This flag is used only for GC-MS analyses
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification"
- Y The analyte is not detected at or above the reported concentration. The reporting limit is raised due to chromatographic interference. The Y flag is equivalent to the U flag with a raised reporting limit.
- EMPC Estimated Maximum Possible Concentration (EMPC) defined in EPA Statement of Work DLM02.2 as a value "calculated for 2,3,7,8-substituted isomers for which the quantitation and /or confirmation ion(s) has signal to noise in excess of 2.5, but does not meet identification criteria" (Dioxin/Furan analysis only)
- C The analyte was positively identified on only one of two chromatographic columns. Chromatographic interference prevented a positive identification on the second column
- P The analyte was detected on both chromatographic columns but the quantified values differ by ≥40% RPD with no obvious chromatographic interference
- Analyte signal includes interference from polychlorinated diphenyl ethers. (Dioxin/Furan analysis only)
- Z Analyte signal includes interference from the sample matrix or perfluorokerosene ions. (Dioxin/Furan analysis only)

Laboratory Quality Assurance Plan

Page 2 of 3

Version 14-003 12/31/13

Geotechnical Data

- A The total of all fines fractions. This flag is used to report total fines when only sieve analysis is requested and balances total grain size with sample weight.
- F Samples were frozen prior to particle size determination
- SM Sample matrix was not appropriate for the requested analysis. This normally refers to samples contaminated with an organic product that interferes with the sieving process and/or moisture content, porosity and saturation calculations
- SS Sample did not contain the proportion of "fines" required to perform the pipette portion of the grain size analysis
- W Weight of sample in some pipette aliquots was below the level required for accurate weighting

TOTAL METALS

Page 1 of 1

Lab Sample ID: AXJ3A

LIMS ID: 16-4000

Matrix: Water

Data Release Authorized: Reported: 03/18/16

Sample ID: SW-DP SAMPLE

QC Report No: AXJ3-Hart Crowser, Inc. Project: Paccar

1639-69

Date Sampled: 03/10/16 Date Received: 03/10/16

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	μg/L	Q
200.8	03/15/16	200.8	03/17/16	7440-50-8	Copper	0.5	1.1	
200.8	03/15/16	200.8	03/17/16	7439-92-1	Lead	0.1		Ü
200.8	03/15/16	200.8	03/17/16	7440-66-6	Zinc	4	81	

TOTAL METALS

Page 1 of 1

Lab Sample ID: AXJ3B

LIMS ID: 16-4001

Matrix: Water
Data Release Authorized

Reported: 03/18/16

Sample ID: SW-3
SAMPLE

QC Report No: AXJ3-Hart Crowser, Inc.

Project: Paccar

1639-69

Date Sampled: 03/10/16 Date Received: 03/10/16

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	μg/L Q	!
200.8	03/15/16	200.8	03/17/16	7440-50-8	Copper	0.5	1.0	
200.8	03/15/16	200.8	03/17/16	7439-92-1	Lead	0.1	0.3	
200.8	03/15/16	200.8	03/17/16	7440-66-6	Zinc	4	125	

U-Analyte undetected at given LOQ LOQ-Limit of Quantitation

TOTAL METALS

Page 1 of 1

Lab Sample ID: AXJ3C

LIMS ID: 16-4002

Matrix: Water

Data Release Authorized:

Reported: 03/18/16

Sample ID: SW-5

SAMPLE

QC Report No: AXJ3-Hart Crowser, Inc.

Project: Paccar

1639-69

Date Sampled: 03/10/16

Date Received: 03/10/16

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	μg/L	Q
200.8	03/15/16	200.8	03/17/16	7440-50-8	Copper	0.5	11.4	
200.8	03/15/16	200.8	03/17/16	7439-92-1	Lead	0.1	5.2	
200.8	03/15/16	200.8	03/17/16	7440-66-6	Zinc	4	24	

U-Analyte undetected at given LOQ LOQ-Limit of Quantitation

TOTAL METALS

Page 1 of 1

Lab Sample ID: AXJ3D

LIMS ID: 16-4003 Matrix: Water

Data Release Authorized:

Reported: 03/18/16

Sample ID: SW-6
SAMPLE

QC Report No: AXJ3-Hart Crowser, Inc.

Project: Paccar

1639-69

Date Sampled: 03/10/16
Date Received: 03/10/16

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	μg/L	Q
200.8	03/15/16	200.8	03/17/16	7440-50-8	Copper	0.5	7.7	
200.8	03/15/16	200.8	03/17/16	7439-92-1	Lead	0.1	1.2	
200.8	03/15/16	200.8	03/17/16	7440-66-6	Zinc	4	10	

U-Analyte undetected at given LOQ LOQ-Limit of Quantitation

TOTAL METALS

Page 1 of 1

Lab Sample ID: AXJ3E

LIMS ID: 16-4004 Matrix: Water

Data Release Authorized:

Reported: 03/18/16

Sample ID: SW-MH
SAMPLE

QC Report No: AXJ3-Hart Crowser, Inc.

Project: Paccar

1639-69

Date Sampled: 03/10/16
Date Received: 03/10/16

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	µg/L	Q
200.8	03/15/16	200.8	03/17/16	7440-50-8	Copper	0.5	40.1	
200.8	03/15/16	200.8	03/17/16	7439-92-1	Lead	0.1	4.0	
200.8	03/15/16	200.8	03/17/16	7440-66-6	Zinc	4	169	

 $\begin{array}{c} \mbox{U-Analyte undetected at given LOQ} \\ \mbox{LOQ-Limit of Quantitation} \end{array}$

INORGANICS ANALYSIS DATA SHEET

TOTAL METALS

Page 1 of 1

Lab Sample ID: AXJ3F LIMS ID: 16-4005

Matrix: Water

Data Release Authorized:

Reported: 03/18/16

Sample ID: SW-MD

SAMPLE

QC Report No: AXJ3-Hart Crowser, Inc.

Project: Paccar 1639-69

Date Sampled: 03/10/16

Date Received: 03/10/16

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	μg/L	Q
200.8	03/15/16	200.8	03/17/16	7440-50-8	Copper	0.5	39.5	
200.8	03/15/16	200.8	03/17/16	7439-92-1	Lead	0.1	4.1	
200.8	03/15/16	200.8	03/17/16	7440-66-6	Zinc	4	164	

U-Analyte undetected at given LOQ LOQ-Limit of Quantitation

INORGANICS ANALYSIS DATA SHEET

TOTAL METALS

Page 1 of 1

Lab Sample ID: AXJ3MB

LIMS ID: 16-4005

Matrix: Water

Data Release Authorized:

Reported: 03/18/16

Sample ID: METHOD BLANK

QC Report No: AXJ3-Hart Crowser, Inc.

Project: Paccar

1639-69

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	μg/L	Q
200.8	03/15/16	200.8	03/17/16	7440-50-8	Copper	0.5	0.5	U
200.8	03/15/16	200.8	03/17/16	7439-92-1	Lead	0.1	0.1	U
200.8	03/15/16	200.8	03/17/16	7440-66-6	Zinc	4	4	Ū

U-Analyte undetected at given LOQ LOQ-Limit of Quantitation

INORGANICS ANALYSIS DATA SHEET

TOTAL METALS

Page 1 of 1

Lab Sample ID: AXJ3LCS

LIMS ID: 16-4005

Matrix: Water

Data Release Authorized:

Reported: 03/18/16

Sample ID: LAB CONTROL

QC Report No: AXJ3-Hart Crowser, Inc.

Project: Paccar

1639-69

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Copper	200.8	24.3	25.0	97.2%	
Lead	200.8	23.8	25.0	95.2%	
Zinc	200.8	73	80	91.2%	

Reported in µg/L

N-Control limit not met Control Limits: 80-120%

SAMPLE RESULTS-CONVENTIONALS AXJ3-Hart Crowser, Inc.

Matrix: Water

U

Data Release Authorized: $\mathcal J$

Reported: 03/15/16

Project: Paccar

Event: 1639-69
Date Sampled: 03/10/16

Date Received: 03/10/16

Client ID: SW-DP ARI ID: 16-4000 AXJ3A

Analyte	Date Batch	Method	Units	RL	Sample
Hexavalent Chromium	03/10/16 031016#1	SM3500Cr-B	mg/L	0.010	< 0.010 U

RLAnalytical reporting limit

Undetected at reported detection limit

Water Sample Report-AXJ3

AXJ3:0001 45

SAMPLE RESULTS-CONVENTIONALS AXJ3-Hart Crowser, Inc.

Matrix: Water

Data Release Authorized:

Reported: 03/15/16

Project: Paccar

Event: 1639-69
Date Sampled: 03/10/16 Date Received: 03/10/16

Client ID: SW-3 ARI ID: 16-4001 AXJ3B

Analyte	Date Batch	Method	Units	RL	Sample
Hexavalent Chromium	03/10/16 031016#1	SM3500Cr-B	mg/L	0.010	< 0.010 U

RL Analytical reporting limit

U Undetected at reported detection limit

SAMPLE RESULTS-CONVENTIONALS AXJ3-Hart Crowser, Inc.

Matrix: Water

Data Release Authorized:

Reported: 03/15/16

Project: Paccar Event: 1639-69 Date Sampled: 03/10/16 Date Received: 03/10/16

Client ID: SW-5
ARI ID: 16-4002 AXJ3C

Analyte	Date Batch	Method	Units	RL	Sample
Hexavalent Chromium	03/10/16 031016#1	SM3500Cr-B	mg/L	0.010	< 0.010 U

RL Analytical reporting limit

U Undetected at reported detection limit

Water Sample Report-AXJ3

SAMPLE RESULTS-CONVENTIONALS AXJ3-Hart Crowser, Inc.

Matrix: Water

Data Release Authorized:

Reported: 03/15/16

Project: Paccar

Event: 1639-69
Date Sampled: 03/10/16

Date Received: 03/10/16

Client ID: SW-6 ARI ID: 16-4003 AXJ3D

Analyte	Date Batch	Method	Units	RL	Sample
Hexavalent Chromium	03/10/16 031016#1	SM3500Cr-B	mg/L	0.010	< 0.010 U

Analytical reporting limit RL

U Undetected at reported detection limit

SAMPLE RESULTS-CONVENTIONALS AXJ3-Hart Crowser, Inc.

Matrix: Water

Data Release Authorized:

Reported: 03/15/16

Project: Paccar

Event: 1639-69

Date Sampled: 03/10/16

Date Received: 03/10/16

Client ID: SW-MH ARI ID: 16-4004 AXJ3E

Analyte	Date Batch	Method	Units	RL	Sample
Hexavalent Chromium	03/10/16 031016#1	SM3500Cr-B	mg/L	0.010	< 0.010 U

RL Analytical reporting limit

U Undetected at reported detection limit

SAMPLE RESULTS-CONVENTIONALS AXJ3-Hart Crowser, Inc.

Matrix: Water

Data Release Authorized: ω

Reported: 03/15/16

Project: Paccar

Event: 1639-69

Date Sampled: 03/10/16 Date Received: 03/10/16

Client ID: SW-MD ARI ID: 16-4005 AXJ3F

Analyte	Date Batch	Method	Units	RL	Sample
Hexavalent Chromium	03/10/16 031016#1	SM3500Cr-B	mg/L	0.010	< 0.010 U

RL Analytical reporting limit Undetected at reported detection limit U

METHOD BLANK RESULTS-CONVENTIONALS AXJ3-Hart Crowser, Inc.

Matrix: Water

Data Release Authorized:

Reported: 03/15/16

Project: Paccar Event: 1639-69 Date Sampled: NA Date Received: NA

Analyte	Method	Date	Units	Blank ID
Hexavalent Chromium	SM3500Cr-B	03/10/16	mg/L	< 0.010 U

Water Method Blank Report-AXJ3

STANDARD REFERENCE RESULTS-CONVENTIONALS AXJ3-Hart Crowser, Inc.

Matrix: Water

Data Release Authorized:

Reported: 03/15/16

Project: Paccar

Event: 1639-69
Date Sampled: NA
Date Received: NA

Analyte/SRM ID	Method	Date	Units	SRM	True Value	Recovery
Hexavalent Chromium ERA #300614	SM3500Cr-B	03/10/16	mg/L	0.611	0.620	98.5%

REPLICATE RESULTS-CONVENTIONALS AXJ3-Hart Crowser, Inc.

Matrix: Water

Data Release Authorized: \downarrow

Reported: 03/15/16

Project: Paccar

Event: 1639-69 Date Sampled: 03/10/16 Date Received: 03/10/16

Analyte	Method	Date	Units	Sample	Replicate(s)	RPD/RSD
ARI ID: AXJ3A Client	ID: SW-DP					
Hexavalent Chromium	SM3500Cr-B	03/10/16	mg/L	< 0.010	< 0.010	NA

Water Replicate Report-AXJ3

MS/MSD RESULTS-CONVENTIONALS AXJ3-Hart Crowser, Inc.

Matrix: Water

Data Release Authorized: ω

Reported: 03/15/16

Project: Paccar

Event: 1639-69
Date Sampled: 03/10/16
Date Received: 03/10/16

Analyte	Method Date	Units	Sample	Spike	Spike Added	Recovery
ARI ID: AXJ3A Client	ID: SW-DP					
Hexavalent Chromium	SM3500Cr-B 03/10/16	mg/L	< 0.010	0.059	0.062	95.2%

Water MS/MSD Report-AXJ3

APPENDIX C Groundwater Quality Summary Charts

CW-01D	19	98	19	99	20	000	20	01	20	02	20	03	20	04	20	05	20	06	20	07	20	80	20	09	20	10	20	11	20	12	20	13	20	14	20	15	20	16
Analytical Constitutents	Spring	Fall																																				
Arsenic	+	+	+	/	/		/		\		/		/		\		/		/						\		/		/		/		/		/		+	
Lead				+							+																				+							
Chromium				+							+																											
Benzene	+	+	+	+	+		+		+		+		+																									
VC	+	+	+	+	+		+		\		+		+																	+	+		+				+	
Total cPAHs											+																											
Diesel	+	+	+	+	+		+		+		+																											
Heavy Oil	+	+	+	+	+		+		+		+																											

= Analytical constituents concentration is above the HSAL.

= Analytical constituents concentration is above the CUL but below the HSAL.
 = Analytical constituents concentration is below the CUL.

= Not sampled VC = Vinyl chloride

HSAL = Hot spot action level

CW-01S	19	98	19	99	20	000	20	01	20	02	20	03	20	04	20	05	20	06	20	07	20	08	20	09	20	10	20	11	20	12	20	13	20	14	20	15	20	16
Analytical Constitutents	Spring	Fall	Spring	Fall	Spring		Spring	Fall																														
Arsenic	/	/	+	/	\		\		/		/		\		\		/		/		/		\		\		/		/		/		+		+		+	
Lead				+							+																				+							
Chromium				+							+																											
Benzene	+	+	+	+	+		+		+		+	+	+		+		+		+						+						+							
VC	+	/	/	/	\		\		Χ		/	/	\		\		/		/		/		\		+		\		/		+		+				+	
Total cPAHs											+																											
Diesel	+	+	+	+	+		+		+		+																				+							
Heavy Oil	+	+	+	+	+		+		+		+																											

= Analytical constituents concentration is above the HSAL.

= Analytical constituents concentration is above the CUL but below the HSAL. = Analytical constituents concentration is below the CUL.

= Not sampled VC = Vinyl chloride

HSAL = Hot spot action level

LW-06D	19	98	19	99	20	00	20	01	20	02	20	03	20	04	20	05	20	06	20	07	20	80	20	09	20	10	20	11	20	12	20	13	20	14	20	15	20	16
Analytical Constitutents	Spring	Fall	Spring	≡																																		
Arsenic	/	/	+	/	/		/		/		+		\		\		/		/		/		/		\		/		/		/		/		/		/	
Lead				+							+																											
Chromium				+							+																											ĺ
Benzene	+	+	+	+	+		+		+		+																				+							
VC	+	+	+	+	+		+		+		+																				+						+	П
Total cPAHs											+																											
Diesel	+	+	+	+	+		+		+		+																											П
Heavy Oil	+	+	+	+	+		+		+		+																											

= Analytical constituents concentration is above the HSAL.

= Analytical constituents concentration is above the CUL but below the HSAL. = Analytical constituents concentration is below the CUL.

= Not sampled VC = Vinyl chloride

HSAL = Hot spot action level

LW-09D	19	98	19	99	20	00	20	01	20	02	20	03	20	04	20	05	20	06	20	07	20	80	20	09	20	10	20	11	20	12	20	13	20	14	20	15	20	16
Analytical Constitutents	Spring	Fall																																				
Arsenic	/	/	/	+	/		/		\		+		\		\		/		/		\		/	\	/		/		/		/		/		/		/	
Lead				+							+																											
Chromium				+							+																				+							
Benzene	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+																			
VC	/	/	/	+	+	/	/	/	\	/	+	/	\	/	\	/	/		/		/		\	\	/		/		/		/		/				/	
Total cPAHs											+																											
Diesel	+	+	+	+	+		+		+		+																											
Heavy Oil	+	+	+	+	+		+		+		+																											

= Analytical constituents concentration is above the HSAL.

= Analytical constituents concentration is above the CUL but below the HSAL. = Analytical constituents concentration is below the CUL.

= Not sampled VC = Vinyl chloride

HSAL = Hot spot action level

LW-09S	19	98	19	99	20	00	20	01	20	02	20	03	20	04	20	05	20	06	20	07	20	80	20	09	20	10	20	11	20	12	20	13	20	14	20	15	20)16
Analytical Constitutents	Spring	Fall																																				
Arsenic	\	/	/	/	/		\		/		/		/		/		/		/		/		\		/		/		/		/		/		/		/	ı İ
Lead				+							+																											
Chromium				+							+																				+							
Benzene	+	+	+	+	+		+		+		+																											
VC	+	+	+	+	+		+		+		+																				+						+	
Total cPAHs											+																											ı
Diesel	+	+	+	+	+		+		+		+																				+							
Heavy Oil	+	+	+	+	+		+		+		+																				+							

= Analytical constituents concentration is above the HSAL.= Analytical constituents concentration is above the CUL but below the HSAL.

= Analytical constituents concentration is above the CUL.
= Analytical constituents concentration is below the CUL.
= Not sampled
VC = Vinyl chloride
HSAL = Hot spot action level
CUL = cleanup levels

MW-03I	19	98	19	99	20	00	20	01	20	02	20	03	20	04	20	005	20	06	20	07	20	08	20	09	20	10	20	11	20	12	20	13	20	14	20	15	20	16
Analytical Constitutents	Spring	Fall																																				
Arsenic	/	/	/	/	/		/		\		/		\	\	\	\	/		/		/		\		\		/		/		/		/		/		/	
Lead				+							+								+																			
Chromium				+							+								+												+							
Benzene	+	+	+	+	+		+		+		+		+						+																			
VC	+	+	+	+	+		+		\		+		+						+											+	+						+	
Total cPAHs											+								+																			
Diesel	+	+	+	+	+		+		+		+								+																			
Heavy Oil	+	+	+	+	+		+		+		+								+				·									Ť		Ť				

= Analytical constituents concentration is above the HSAL.
 = Analytical constituents concentration is above the CUL but below the HSAL.
 = Analytical constituents concentration is below the CUL.

= Not sampled VC = Vinyl chloride

HSAL = Hot spot action level

SC-01S	19	98	19	99	20	000	20	01	20	02	20	03	20	04	20	005	20	06	20	07	20	80	20	09	20	10	20	11	20	12	20	13	20	14	20	15	20	15
Analytical Constitutents	Spring	Fall																																				
Arsenic	+	+	+	/	+		\		\		+		/		\		+		+												+							
Lead	+	+	+	+	+		+		+		+																											П
Chromium	+	+	+	+	+		+		+		+																											1
Benzene																																						
VC																																						1
Total cPAHs																																						
Diesel																																						
Heavy Oil							Ť			Ť																Ť				·		Ť		Ť				

= Analytical constituents concentration is above the HSAL.

= Analytical constituents concentration is above the CUL but below the HSAL.
= Analytical constituents concentration is below the CUL.

= Not sampled VC = Vinyl chloride

HSAL = Hot spot action level

SC-02S	19	98	19	99	20	000	20	01	20	02	20	03	20	04	20	005	20	06	20	07	20	80	20	09	20	10	20	11	20	12	20	13	20	14	20	15	20	16
Analytical Constitutents	Spring	Fall																																				
Arsenic	+	+	+	+	+		+		\		+		+																		+							1
Lead	+	+	+	+	+		+		+		+																											
Chromium	+	+	+	+	+		+		+		+																				+							1
Benzene																																						
VC																																						
Total cPAHs																																						
Diesel																																						
Heavy Oil																																						

= Analytical constituents concentration is above the HSAL.

= Analytical constituents concentration is above the CUL but below the HSAL.
= Analytical constituents concentration is below the CUL.

= Not sampled VC = Vinyl chloride

HSAL = Hot spot action level