Feasibility Study

Van Stone Mine Onion Creek, Washington

for Washington State Department of Ecology

May 2, 2017

Feasibility Study

Van Stone Mine Onion Creek, Washington

for Washington State Department of Ecology

May 2, 2017

523 East Second Avenue Spokane, Washington 99202 509.363.3125

Feasibility Study

Van Stone Mine Onion Creek, Washington

File No. 0504-100-00

May 2, 2017

Prepared for:

Washington State Department of Ecology Toxics Cleanup Program – Eastern Region Office 4601 North Monroe Street Spokane, Washington 99205

Attention: Brendan Dowling

Prepared by:

GeoEngineers, Inc. 523 East Second Avenue Spokane, Washington 99202 509.363.3125

Jedidiah R. Sugalski, PE Project Manager

Dustin G. Wasley, PE Managing Principal

JRS:DGW:tjh

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

GEOENGINEERS

Table of Contents

1.0 INTRODUCTION	1
2.0 SITE BACKGROUND AND DESCRIPTION	1
 2.0 SITE BACKGROUND AND DESCRIPTION 2.1. Site History 2.2. Areas of Interest. 2.2.1. AOI-1 - Mill Area, Open Pits and Waste Rock. 2.2.2. AOI-2 - Upper Tailings Pile. 2.2.3. AOI-3 - Lower Tailings Pile. 2.2.4. AOI-4 - Tailings Pipelines and Access Roads. 2.2.5. AOI-5 - Onion Creek and Tributaries. 2.3.1. Meteorology 2.3.2. Geologic Setting and Soil Conditions 	1
 2.3.2. Geologic Setting and Soli Conditions 2.3.3. Hydrogeologic Setting 2.3.4. Hydrologic setting 2.4. Current and Likely Future Land Use 2.5. Summary of Site Assessment and Remedial Investigation Activities 2.6. Interim Actions 	
3.0 ADDITIONAL INVESTIGATIONS SINCE THE RI	8
 3.1. Additional Environmental Sampling in AOI-1	
 3.6. Topographic Data 3.7. Tailings Pile Geotechnical Assessment	12 12 13
4.1 Contaminants of Concern (COCs)	10
4.2. Cleanup Levels	
4.3. Extents of Contamination 4.3.1. AOI-1 4.3.2. AOI-2 4.3.3. AOI-3	15 15 16 16

4.3.4.	AOI-4	16					
4.3.5.	AOI-5	17					
4.4. Expos	4.4. Exposure Pathways and Receptors 17						
4.5. Locat	ions and Media Requiring Cleanup Actions	17					
4.5.1.	AOI-1	17					
4.5.2.	AOI-2	18					
4.5.3.	AOI-3	18					
4.5.4.	AOI-4	18					
4.5.5.	AOI-5	18					
4.6. Points	s of Compliance	19					
4.6.1.	Soil	19					
4.6.2.	Surface Water	19					
4.6.3.	Groundwater	19					
4.6.4.	Sediment	19					
5.0 DEVE	LOPMENT OF REMEDIAL ACTION ALTERNATIVES	. 19					
5.1. Reme	dial Action Objectives	. 20					
5.2. Gene	ral Categories of Response Actions and Initial Screening	. 20					
5.2.1.	No Action	20					
5.2.2.	Institutional Controls	. 20					
5.2.3.	Engineering Controls	. 21					
5.2.4.	Off-Site Disposal	21					
5.3. Descr	iption of Remedial Alternatives	. 21					
5.3.1.	Alternative 1 – No Action	. 22					
5.3.2.	Alternative 2 – Institutional Controls	. 22					
5.3.3.	Alternative 3 – In-place Containment without Cover System	. 22					
5.3.4.	Alternative 4 – In-place Containment with Cover System	. 22					
5.3.5.	Alternative 5 – Centralized Tailings Repository at AOI-3	. 23					
5.3.6.	Alternative 6 – Off-Site Disposal	. 23					
5.3.7.	Common Item to Alternatives 2, 3, 4, 5, and 6	. 23					
6.0 EVAL		. 24					
6.1 Three	hold Requirements	24					
611	Protection of Human Health and the Environment	24					
612	Compliance with Cleanup Standards	24					
613	Compliance with Applicable State and Federal Laws	24					
614	Drovision for Compliance Manitoring	25					
6.2 Other	MTCA Requirements	25					
	Disproportionate Cost Analysis	25					
6.3. MICA	Displopolitionate Cost Analysis	20					
0.3.1. 6.2.0	Protectiveness	20					
0.3.2.	Cost	20					
0.3.3.		20 07					
0.3.4.	Lung-Term Enecuveness	21					
0.3.5.	Implementability	21					
0.3.0.		21					
b.3./.	Consideration of Public Concerns	. 27					

7.0	EVALUATION AND COMPARISON OF CLEANUP ALTERNATIVES	27
7.1.	Threshold Requirements	
7.2.	MTCA Disproportionate Cost Analysis	
7.3.	Protectiveness	
7.4.	Permanence	
7.5.	Cost	29
7.6.	Long-Term Effectiveness	
7.7.	Management of Short-Term Risks	
7.8.	Technical and Administrative Implementability	
7.9.	Consideration of Public Concerns	30
7.10	Reasonable Restoration Time Frame	30
8.0	RECOMMENDED REMEDIAL ACTION	30
9.0	REFERENCES	30
LIST	OF TABLES	
Table	e 1. Soil Chemical Analytical Results - Total Metals	
Table	e 2. Soil Chemical Analytical Results - TCLP and SPLP	

- Table 3. Soil Chemical Analytical Results Asbestos
- Table 4. Soil Chemical Analytical Results ABAs
- Table 5. Soil Chemical Analytical Results Petroleum Hydrocarbons
- Table 6. Groundwater Chemical Analytical Results Metals
- Table 7. Groundwater Chemical Analytical Results General Chemistry
- Table 8. Site COCs and Cleanup Levels
- Table 9. Site COC Extents and Exceedance of Cleanup Levels
- Table 10. Summary of Quantities Used in Feasibility Study
- Table 11. Comparison of Retained Remediation Alternatives
- Table 12. Summary of ARARs
- Table 13. Evaluation of Cleanup Action Alternatives
- Table 14. Summary of MTCA Evaluation and Ranking of Cleanup Action Alternatives
- Table 15. Alternative 2. Institutional Controls
- Table 16. Alternative 3. In-Place Containment without Cover System
- Table 17. Alternative 4. In-Place Containment with Cover System
- Table 18. Alternative 5. Centralized Repository at AOI-3
- Table 19. Alternative 6. Off-Site Disposal

LIST OF FIGURES

- Figure 1. Vicinity Map and Areas of Interest
- Figure 2. Van Stone Mine Features
- Figure 3. AOI-1 Explorations Mill Area
- Figure 4. AOI-1 Explorations Waste Rock Piles and Mine Pits
- Figure 5. AOI-2 Explorations Upper Tailings Area
- Figure 6. AOI-3 Explorations Lower Tailings Area
- Figure 7. Approximate Volumes of Waste Rock in the Mine and Mill Area
- Figure 8. Cross-Sections of Mill and Mine Area, A-A', B-B' and C-C'
- Figure 9. Cross-Sections of Mill and Mine Area, D-D' and E-E'
- Figure 10. Cross-Sections of Mill and Mine Area, F-F' and G-G'

LIST OF FIGURES (CONTINUED)

- Figure 11. Cross-Sections of Mill and Mine Area, H-H'
- Figure 12. Cross-Sections of Mill and Mine Area, I-I', J-J' and K-K'
- Figure 13. Cross-Sections of Mill and Mine Area, L-L' and M-M'
- Figure 14. Approximate Volumes of Tailings in the Upper Tailings Pile
- Figure 15. Approximate Volumes of Tailings in the Upper Tailings Pile -Sections A-A', B-B', C-C', D-D' and E-E'
- Figure 16. Approximate Volumes of Tailings in the Upper Tailings Pile Section, F-F'
- Figure 17. Approximate Volumes of Tailings in the Lower Tailings Pile
- Figure 18. Approximate Volumes of Tailings in the Lower Tailings Pile -Sections A-A', B-B', C-C', D-D' and E-E'

Figure 19. Site CSM

APPENDICES

Appendix A. Laboratory Chemical Analysis Results

Appendix B. Additional Investigation Exploration Logs and Geotechnical Testing

Figure B-1. Key to Exploration Logs

Figures B-2 through B-20. Logs of Borings

Figures B-21 and B-22. Sieve Analysis Results

Figures B-23 and B-24. Atterberg Limits Test Results

Figures B-25 through B-27. Direct Shear Test Results

Appendix C. Upper and Lower Tailings Pile Stability Analysis Figure C-1. Detailed Site Plan – Upper Tailings Area Figure C-2. Detailed Site Plan – Lower Tailings Pile Figures C-3 through C-50. Slope Stability Models

1.0 INTRODUCTION

This Feasibility Study (FS) was conducted for the Van Stone Mine (herein referred to as the "site") located in Stevens County, Washington (Vicinity Map and Areas of Interest, Figure 1) and near the headwaters of Onion Creek, a Columbia River tributary.

The site operated intermittently from approximately 1938 to 1993 as a lead and zinc mine utilizing underground and open pit mining techniques until closure in 1993. The site included a concentrating mill that employed typical froth and flotation techniques to extract zinc and lead from ore and concentrate it for further processing off site.

Potentially liable parties have included American Smelting and Refining Company (ASARCO), Callahan Mining Corp., Sundown Holdings, Ltd., Equinox Resources (Wash) Inc. and Vaagen Brothers Lumber, Inc. (Vaagen). In 2005, ASARCO filed for reorganization under Chapter 11 of the United States Bankruptcy Code. The Washington State Department of Ecology (Ecology) filed a contingent proof of claim related to the anticipated Van Stone Mine cleanup as part of the ASARCO bankruptcy proceedings. Under the bankruptcy settlement, Ecology received \$3.5 million for its Van Stone Mine related claim. Using settlement funds, Ecology is actively pursuing site remedial actions in compliance with Washington State Model Toxics Control Act (MTCA) regulations.

An Agreed Order (AO) was negotiated between Ecology and Vaagen (AO No. 8613). The AO required Vaagen to allow site access for completion of a Remedial Investigation (RI) and FS. The RI was completed in 2013 (Hart Crowser 2013).

This FS was conducted to develop and evaluate cleanup alternatives to address contamination identified in the RI and select a preferred cleanup alternative. This FS also includes the results of additional investigations conducted after the RI. Additional investigations were performed to address data gaps identified in the RI, and collect missing or incomplete information required to complete the FS process.

This FS has been prepared in general accordance with the requirements defined by MTCA (Washington Administrative Code [WAC] 173-340-350) and follows the format of Ecology's Feasibility Study Checklist (Ecology 2016). Based on FS recommendations, Ecology will select a cleanup alternative and prepare a cleanup action plan (CAP) for the site.

2.0 SITE BACKGROUND AND DESCRIPTION

The following sections provide a brief site history and description, describe the site environmental setting, describe current and future land uses, provide a summary of previous site investigations and describe interim actions conducted at the site.

2.1. Site History

The site is in the Selkirk Mountains of northeastern Washington within the Onion Creek watershed headwaters, as shown on Figure 1. Exploration activities in the area began in the early part of the 20th century and Willow Creek Mines began active underground mining for lead and zinc at the site in approximately 1938. The site was originally operated as an underground lead and zinc mine and eventually

converted to an open pit operation. Open pit mining at the south pit consumed the underground development in 1953 (DNR 2005). To support open pit operations, a flotation mill was constructed onsite by ASARCO. Open pit mining was conducted by drilling and blasting out ore reserves and trucking the ore to the mill for processing. Blasted rock not classified as ore was placed into waste rock dumps around the open pit operations. Operations ceased in 1993.

As the ore was processed though the flotation mill, lead and zinc concentrates were produced and shipped off-site. Milling process material not classified as concentrates (tailings) was transported as a slurry through pipelines to one of two disposal areas. Tailings were hydraulically placed and coarser tailings were used to construct retainment berms along the tailings deposition perimeter. Water from the tailings was most likely decanted off and allowed to flow into nearby drainages.

The Upper Tailings Pile was used until a berm failure in 1961, resulted in a release of water and tailings into a tributary to Onion Creek. The Lower Tailings Pile was constructed after the 1961 berm failure. Tailings were placed in this lower pile for the remaining mine life. As part of mine reopening in 1992, Equinox reconfigured the Lower Tailings Pile and placed a polyvinyl chloride (PVC) geomembrane on top of the old tailings. In addition, a seepage collection pond was constructed out of tailings next the facility. Tailings were then placed on top of the PVC liner during the brief restart in the 1990's. A PVC geomembrane was also installed on top of the upper tailings pile for emergency tailings storage.

After final shutdown, mine buildings, access roads, waste rock, process tailings and exposed mining faces remained. The PVC geomembrane that was installed in the tailings piles has degraded because of UV exposure.

As previously noted, the 15 parcels of land comprising the site are currently owned by Stevens County, Vaagen, and Mr. Daniel Paul. Stevens County owns portions of the waste rock piles, north and south pits, a tailings conveyance pipeline, and the Lower Tailings Pile. Current land use for these areas by Stevens County is unknown. Vaagen owns portions of the waste rock piles, west end pit and the Upper Tailings Pile. Primary site use for these areas is likely timber management and harvesting. Mr. Daniel Paul owns the mill facility. His current and future land use intent are unknown.

Surrounding site land use is primarily designated forest land; however, residential single family properties are present to the south and northeast of the Lower Tailings Pile as well as adjacent to the mill site. A school and two additional residential single family parcels are located near the intersection of Onion Creek Road and Lotze Creek Road on the way to the site.

2.2. Areas of Interest

The RI identified five areas of interest (AOIs) at the site (AOI-1 through AOI-5) as shown on Figure 1. Site Features are identified on Van Stone Mine Features, Figure 2. The AOIs are based on site features, environmental impacts associated with past mining activity, and geographic locations within the watershed. The following sections provide a summary of site features within each AOI.

2.2.1. AOI-1 – Mill Area, Open Pits and Waste Rock

Primary site features of AOI-1 are show on AOI-1 Explorations, Figures 3 and 4 and include:

The North Pit, including West End Pit Lake;

- Pit Lake Dam;
- The South Pit;
- Waste rock piles;
- Overburden stockpiles; and
- Mill area.

The North Pit is the larger of the two mine pits and is divided into two distinct sub-areas referred to as the North End Pit and the West End Pit (Figure 4). An approximately 4½-acre lake referred to as the West End Pit Lake occupies the West End Pit. The lake is about 100 feet deep and formed when North Pit dewatering ended at cessation of mining operations. The West End Pit Lake currently discharges over fill material and into the Southwest tributary of Onion Creek. A feature referred to as the Pit Lake Dam was created by overburden and overlying fill material placed to create a road to the other side of the pit.

On June 11, 2010, Ecology inspected the Pit Lake Dam and estimated that it impounded approximately 50 acre-feet of water. The jurisdictional threshold for Ecology's Dam Safety Office (DSO) is 10 acre-feet; therefore, Ecology determined the Pit Lake Dam was under their authority and must meet the requirements of WAC 173-175. Because of the inspection, the dam was assigned State ID number ST61-2033 and rated Hazard Class 2 (having a significant downstream hazard classification). Required corrective actions were provided to Equinox, but actions have not been taken to upgrade the dam.

The South Pit is located approximately 1,000 feet south of the North Pit. A small, shallow pond occupies the center of the pit floor. The pond volume likely fluctuates seasonally; affected by spring snowmelt, seasonal precipitation, and/or limited discharge from pit wall seepage.

Waste rock is placed predominately north of the North Pit, but exploration areas are also distributed northwest, east, and southeast of the South Pit in AOI-1 (see Figures 3 and 4). Waste rock was generally end dumped at the angle of repose away from the mining pit and varies in size from fine rock flour to boulders.

An overburden stockpile was identified in a former Reclamation Plan (Beacon Hill 1999). The overburden stockpile is located east of the mill site and north of the North Pit (AOI-1- Explorations – Mill Area, Figure 3). According to the reclamation plan, the stockpiled material was reserved to cover waste rock piles and the ground surface around the mill area. Additional smaller overburden piles were also identified in disturbed areas around the mining pits.

The mill area consists of concrete foundations from the former mill buildings and crusher, offices, shop buildings, a former aboveground storage tank (AST) area, former water tank and core shack. Most of the milling equipment has been removed; however, some living quarters and office buildings remain. The ball mill and flotation equipment, AST(s), thickener and crusher were removed from the site. Many roads and laydown areas are present in the mill area including the crushing pad, where ore from the open pit was staged before it was fed into the crusher and milling circuit.

2.2.2. AOI-2 - Upper Tailings Pile

AOI-2 includes the Upper Tailings Pile which is located approximately 3,800 feet topographically downslope and west of the North Pit (Figure 1). The Upper Tailings Pile occupies approximately 9½ acres and is divided

into east and west basins, divided by a waste rock-lined drainage ditch (AOI-2 Explorations – Upper Tailings Area, Figure 5). The maximum height of the Upper Tailings Pile is approximately 35 feet, and it contains approximately 195,700 cubic yards of tailings.

Tailings were deposited in the Upper Tailings Pile from the earliest operations until 1961 when a failure resulted in erosion and transport of material into the Southeast Tributary of Onion Creek, and eventually, the main stem of Onion Creek. Additional failures and resulting tailings releases have occurred since 1961. As part of the mine reopening in the early 1990's, a PVC-lined tailings storage area was constructed atop the east basin.

During the April 23, 2014 site visit, GeoEngineers observed a degraded PVC geomembrane extending from below the 1990 tailings at the east basin. Standing water was observed on the surface of the east basin. The west basin was re-graded in 2010, as part of an emergency cleanup action conducted by Ecology to stop erosion of tailings into the southeast tributary of Onion Creek.

2.2.3. AOI-3 – Lower Tailings Pile

The Lower Tailings Pile and Seepage Recovery Pond comprise the primary site features of AOI-3 (AOI-3 Explorations – Lower Tailings Area, Figure 6). The Lower Tailings Pile was constructed after the 1961 Upper Tailings Pile breach and used until ASARCO ceased operations in 1970. The Lower Tailings Pile was reconfigured by Equinox in the late 1980's and early 1990's to accommodate the 1992 mine reopening. Reconfiguration included re-sloping the existing pile and constructing a PVC-lined containment on top of the tailings deposited prior to 1970.

The Lower Tailings Pile occupies about 40 acres and is approximately 60 to 75 feet in height. The Lower Tailings Pile contains an estimated 2,287,140 cubic yards of tailings. After the reconfiguration, the Lower Tailings Pile topmost surface was separated by an earthen berm forming two ponds; however, after mine closure, the berm was breached to connect the ponds and provide water and erosion control. The exposed portions of the PVC geomembrane had also degraded.

The Seepage Recovery Pond (SRP), is a geomembrane-lined pond located south of the Lower Tailings Pile. The SRP was reportedly constructed with tailings and has a liner manufactured from a slightly elastic, impregnated woven fabric material. The SRP reportedly was constructed to contain seepage water from the Lower Tailings Pile; however, the feature was never utilized for this purpose. The SRP liner appears to be in better condition than the PVC geomembranes observed at the Upper and Lower Tailings Piles.

2.2.4. AOI-4 – Tailings Pipelines and Access Roads

The former pipeline alignment and site access roads are the primary features of AOI-4 (Figure 1). There were two distinct former tailings pipeline routes designated as the north pipeline and south pipeline (Figure 2). The South Pipeline trends west from the southwest corner of the West End Pit to the Upper Tailings Pile. The North Pipeline was installed after the 1961 Upper Tailings Pile failure, and initially connected the South Pipeline to the Lower Tailings Pile. However, the North Pipeline was later extended to the mill area and the South Pipeline was abandoned. As part of the RI, multiple deposits of tailings were observed along the alignments. The deposits were the results of spills from the conveyance system.

2.2.5. AOI-5 - Onion Creek and Tributaries

AOI-5 includes Onion Creek and its tributaries (see Figure 1). Potential mining activity impacts to Onion Creek and its tributaries include surface water quality degradation and deposition of tailings as sediments along the creek channel.

2.3. Environmental Setting

The following sections provide information on the meteorology, geologic setting, hydrogeologic setting and hydraulic setting of the Van Stone Mine.

2.3.1. Meteorology

The site lies in a forested mountainous area. Precipitation is rain-snow dominated below elevation 3,600 feet above mean sea level (MSL) and changes to snow dominated above. The rain-snow dominated portion of the site receives approximately 25 inches of precipitation annually, while the higher snow dominated areas typically receive about 30 inches of precipitation annually (Hart Crowser 2013). Previous studies (Klohn 1990) estimated a pan evaporation rate of 37.6 inches for the site based on records from the Spokane weather station and National Oceanic and Atmospheric Administration (NOAA) Atlas.

As part of the RI, a weather station was installed near the Lower Tailings Pile. Data was collected from the station over a 7-month period from November 2011 to June 2012. The weather station's primary purpose was collecting wind data to assess potential windblown contamination from the exposed tailings pile. The results of data collection indicated that "maximum hourly wind direction is dominated by gentle westerly winds (blowing down-valley) with the higher intensity winds predominately blowing easterly up the valley".

2.3.2. Geologic Setting and Soil Conditions

The site is located adjacent to the Colville National Forest in Northeast Washington within the Selkirk Mountain range. The site ranges in elevation from approximately 2,700 feet above MSL near the Lower Tailings Pile to about 3,800 feet above MSL at the West End Pit high wall.

The Metaline Limestone is the principal host for lead-zinc mineralization in northeastern Washington. Yates and others (1964) place the Van Stone mineralization in the Middle Unit, which is principally dolomite. Early investigators felt the mineralization at Van Stone originated by hydrothermal replacement due to the orebody's proximity to the granitic Spirit pluton. Later investigators (Neitzel 1972) found evidence the sulfide mineralization was of syngenetic origin modified by one or more periods of regional metamorphism, overturned folding, and thermal metamorphism that caused recrystallization and grain growth of both the dolomite and sulfides. These processes concentrated what may have been disseminated galena and sphalerite into streaks, pods, and elongated tabular masses of commercial ore. These features make up the higher-grade portions of the ore body separated by low-grade areas where the sulfides are found in small streaks and lenticles (Mills 1977).

2.3.3. Hydrogeologic Setting

The site is underlain by at least two aquifers. These aquifers occur within: (1) unconsolidated glaciofluvial deposits (known as the Upper Outwash aquifer); and (2) bedrock. Groundwater within unconsolidated sediments near the site generally occurs within the Upper Outwash aquifer. The sediments are derived from the Colville Lobe of the Cordilleran ice sheet, which covered much of the area. The Okanogan Lobe, advancing to the west, dammed the Columbia River, creating glacial Lake Columbia, which deposited thick,

fine-grained sediments throughout the region (USGS 2004). As the Colville Lobe retreated, glacial-outburst flood deposits comprised of stratified sand, gravel, and boulders were deposited and reworked. The glaciofluvial sediments range from 10 to 480 feet thick (USGS 2004). The Upper Outwash aquifer is recharged by direct precipitation (as rain and snow), seepage from lakes, and losses by streams overlying the aquifer. Ground water discharge from the Upper Outwash aquifer occurs as seepage to streams. Overall, hydraulic conductivity estimates in the Upper Outwash aquifer range from 1.9 to 2,400 feet per day.

The bedrock aquifer likely includes dolomite and/or granite. Yields from the bedrock aquifer produce locally usable quantities where rocks are fractured. Bedrock hydraulic conductivity ranges from 0.0011 to 4.4 feet per day (USGS 2004).

2.3.4. Hydrologic setting

The site is within the upper Onion Creek watershed. In addition to Onion Creek, the upper watershed is drained by two tributaries; the Northeast Tributary and Southeast Tributary (Figure 2). Onion Creek and the larger tributaries are fed by smaller, unnamed tributaries with either year-round or intermittent flow.

Onion Creek originates approximately 2½ miles south of the site, flowing north-northwest to its confluences with the Southeast Tributary, Northeast Tributary, West Fork Onion Creek and eventually to the Columbia River. Until its confluence with the Southeast Tributary, Onion Creek is topographically isolated from the mine site.

The Southeast Tributary flows northeast to southwest, passing topographically and hydrogeologically downgradient from the mine pits and Upper Tailings Pile, before the channel is topographically redirected to the northwest and discharges to Onion Creek. When the Upper Tailings Pile failed, the material was discharged directly into the Southeast Tributary. Additionally, two unnamed tributaries flowing from southeast to northwest and discharging to the Southeast Tributary also flow topographically and hydrogeologically downgradient from the mine pit area and Upper Tailings Pile as shown on Figure 1.

The Northeast Tributary is topographically and hydrogeologically isolated from the mine site area, except for the lower reach, which passes topographically and hydrogeologically downgradient of the Lower Tailings Pile, before reaching its confluence with Onion Creek.

2.4. Current and Likely Future Land Use

As previously discussed, current land use for areas owned by Stevens County and Mr. Paul is unknown. Primary site uses for areas owned by Vaagen are likely timber management and harvesting. As noted in the RI, the public accesses the site to dump domestic garbage and for recreation (as observed by ORV use on the tailings piles).

2.5. Summary of Site Assessment and Remedial Investigation Activities

Multiple site investigations have been conducted; prior to the 1991 mine restart, and after mine closure in 1993. These investigations included:

- A seepage and environmental analysis of a tailings pond slime zone (USBM 1974).
- Onion Creek water quality which included collecting water samples and a "livebox survey" using eastern brook trout placed directly into the creek in circular liveboxes (Ecology 1976).

- A preliminary site assessment and sampling study conducted by Ecology on October 16, 1985 (Ecology 1986).
- A United States Environmental Protection Agency (EPA) Site Assessment conducted as part of the Upper Columbia River Mines and Mills Preliminary assessment in June 2001 (EPA 2002).
- Physical Limnology and Geochemistry of the North Pit Lake (Lentz 2002).
- Washington State Department of Natural Resources (DNR) Site Assessment in October 2002 (DNR 2003).
- An inactive and abandoned mine lands report by DNR for the mine in 2005. The report provided an overview of the current site conditions, as well as analytical results of various soil and water samples collected at the site (DNR 2005).
- Water quality and sediment sampling and analysis from 2004 to 2006 by Ecology at and around the site. Water samples were collected from surface waters and groundwater. Though, the samples were analyzed and results tabulated, a formal report was not prepared.
- A MTCA Site Hazard Assessment (Ecology 2007).
- A Van Stone Tailings Dam Periodic Inspection (Ecology 2008).
- Collecting surface water samples from the creeks around the site by Ecology in October 2010. The samples were analyzed and results were provided in GIS files and a table, but a formal report was not prepared.
- The Van Stone Mine RI (Hart Crowser 2013). The RI report and associated work plan included a historical document review and documentation of the following activities:
 - A list of nearby land owners;
 - A list/construction details of nearby domestic water wells in the area;
 - Installing five new monitoring wells (MW-1, MW-2, MW-3, MW-4 and MW-5);
 - Collecting and analyzing surface soil samples;
 - Collecting and analyzing surface water and sediment samples from Onion Creek and nearby tributaries;
 - Collecting and analyzing groundwater samples from nearby domestic water wells and site monitoring wells;
 - Conducting human health and ecological risk assessments;
 - Evaluating site Applicable or Relevant and Appropriate Requirements (ARARs); and
 - Conducting geotechnical stability evaluations for the Lower Tailings Pile and Upper Tailings Pile and Pit Lake Dam.

2.6. Interim Actions

In June of 2012, a substantial release of water and tailings from the Upper Tailings Pile was observed traveling downgradient into the southeast tributary of Onion Creek. To reduce additional migration of tailings, the failure channel within the Upper Tailings Pile was regraded to approximately a 2:1 slope, lined with geotextile, covered with waste rock quarry spalls and re-vegetated. This was done to reduce the amount of water stored on top of the tailings pile and minimize the transport of tailings downstream towards the tributary to Onion Creek.

An existing diversion ditch was also improved between the two cells of the Upper Tailings Piles to convey water from a culvert upstream of the pile. Water from the culvert discharges upgradient of the Upper Tailings Pile and into the diversion ditch. The diversion ditch diverts water from the two cells of the pile and discharges it into the downstream wooded area towards the Onion Creek Tributary. Design and construction activities were documented in an Emergency Action Work Plan (Hart Crowser 2012a) and Construction Completion Report (Hart Crowser 2012b).

3.0 ADDITIONAL INVESTIGATIONS SINCE THE RI

Additional investigations conducted in support of the FS after completion of the RI include:

- Conducting additional investigations at AOI-1, AOI-2 and AOI-3 to evaluate the extents or presence of metals and asbestos, evaluate leaching and acid generating potentials and determine geotechnical properties of the tailings including thickness, grain size and shear strength;
- Conducting two rounds of groundwater monitoring from existing site monitoring wells;
- Collecting a sample from an open pipe in the mill area;
- Obtaining additional topographic data of the site; and
- Conducting an additional geotechnical assessment of the tailings piles.

The following sections discuss the results of the additional investigations. Chemical analysis samples were submitted to Pace Analytical of Minneapolis, Minnesota. Geotechnical testing was conducted by GeoEngineers of Spokane Washington and Materials Testing and Consulting of Burlington, Washington. Laboratory Chemical Analysis results are provided in Appendix A. Boring logs, test pit logs and geotechnical test results are provided in Appendix B.

3.1. Additional Environmental Sampling in AOI-1

To better define lateral and vertical extents of contamination in the mill area and evaluate leaching and acid generating potential of waste rock in the mining area, 18 test pits (MS-19 through MS-36) were excavated in AOI-1 (Figures 3 and 4). One soil sample was collected from each the test pits and analyzed for various parameters.

3.1.1. Investigation Summary

Soil samples collected from test pits in the mill area (MS-19 through MS-28) were generally analyzed for the following:

- Total metals (antimony, arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc);
- Synthetic Precipitation Leaching Procedure (SPLP) on select samples;
- Toxicity Characteristic Leaching Procedure (TCLP) on select samples;
- Asbestos; and
- Total petroleum hydrocarbons (TPH) where contamination was suspected.

Soil samples collected in the waste rock area (MS-29 through MS-36) were generally analyzed for the following:

- Total metals (antimony, arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc);
- Asbestos; and
- Acid/Base accounting (ABA).

Test pit logs are provided in Appendix B.

3.1.2. Investigation results

Total metal analysis results were compared to the site cleanup levels for soil established in the RI. The results indicated that antimony, arsenic, cadmium, lead, mercury and zinc generally exceeded the respective cleanup levels. Each location sampled exceeded the cadmium, lead and zinc cleanup level. Results for other metals varied and are presented in Table 1.

SPLP testing indicated that most metals analyzed did not mobilize into the leachate except for lead. Seven out of the eight samples analyzed detected lead in the leachate in concentrations ranging from 0.0031 milligrams per liter (mg/L) to 0.051 mg/L. Other metals analyzed for SPLP had less than three detections of the respective metal in the leachate. This generally indicates that lead has the potential to leach into precipitation as it infiltrates through the waste rock at the site. SPLP results are presented in Table 2.

TCLP analytical results indicate lead concentrations at values considered to be dangerous waste were present in and around the mill area, former crusher and ore storage areas. Other metals analyzed did not exceed hazardous waste criteria. TCLP results are presented in Table 2.

Asbestos analysis results generally indicate that asbestos was not detected in the samples analyzed. Asbestos results are presented in Table 3.

The ABA analysis included acid generating potential (AGP), acid neutralization potential (ANP), acid base potential (ABP), and sulfur forms. The ABP is the result of the ANP minus the AGP. ABP units are presented as tons of calcium carbonate needed to neutralize a kiloton of waste (tCaCO₃/Kt). A negative ABP indicates that the AGP is greater than the ANP and thus the material has the potential to produce acid rock drainage (ARD). In general, ABP greater than 20 CaCO₃/Kt indicate that the material does not have the potential to generate ARD.

The ABP of waste rock samples ranged from 39.9 to 92 tCACO₃/Kt, indicating that the waste rock does not have the potential to produce ARD. Total sulfur ranged from less than the MRL (0.05 percent) to 2.2 percent, indicating low presence of sulfur forms. ABA accounting is presented in Table 4.

Diesel-range petroleum hydrocarbon (DRPH) and oil-range petroleum hydrocarbon (ORPH) concentrations were detected in collected samples, but did not exceed MTCA Method A cleanup levels. Gasoline-range petroleum hydrocarbon (GRPH) was not detected in the samples analyzed. Hydrocarbon analysis results are presented in Table 5.

3.2. Upper Tailings Pile Characterization (AOI-2)

Six hollow stem borings (HSA-1 through HSA-6) were advanced in AOI-2 (Figure 5) to depths of about 31 to 62 feet below ground surface (bgs) to further characterize the area. Three soil samples were collected from various depths in each boring and analyzed for various parameters. Boring logs are provided in Appendix B.

3.2.1. Investigation Summary

Samples collected in the upper tailings pile were generally analyzed for the following:

- Total metals;
- SPLP on select samples;
- TCLP on select samples;
- Asbestos; and
- ABA.

3.2.2. Investigation results

Total metal analysis results were compared to the site cleanup levels for soil established in the RI. The results indicate that the tailings exceed the metal cleanup level for at least one metal, while most locations exceed for multiple metals. Metal concentrations in soil samples of native soil under the tailings pile were less than cleanup levels. Results for other metals varied and are presented in Table 1.

SPLP testing indicated that most metals analyzed mobilized into the leachate except for mercury. Most SPLP leaching results were generally less than 0.001 mg/L except zinc, which ranged from 0.011 to 0.0069 mg/L. This indicates that most metals analyzed have the potential to leach from the pile as a result of precipitation infiltrating through the pile. SPLP results are presented in Table 2.

TCLP analytical results generally indicate that the tailings analyzed from HSA-1 and HSA-3 qualify as hazardous waste for lead concentrations. Other metals analyzed did not exceed hazardous waste criteria for TCLP analysis. TCLP results are presented in Table 2.

Asbestos analysis results generally indicate that asbestos was present in trace quantities in the samples analyzed. Asbestos results are presented in Table 3.

The ABP of tailings samples collected from AOI-2 ranged from 380 to 580 tCACO₃/Kt indicating that the tailings are highly buffering for acid and do not have the potential to produce ARD. Total sulfur samples were all less than the MRL of 0.05 percent, indicating low presence of sulfur forms. ABA accounting is presented in Table 4.

3.3. Lower Tailings Pile Characterization (AOI-3)

Five hollow stem borings (HSA-7 through HSA-11) were advanced in AOI-3 (Figure 6) to depths of about 27 to 97 feet bgs to further characterize the area. In addition, two shallow test pits (LT-NS-1 and LT-NS-2) were excavated downstream of the lower tailings pile near a historic water detention pond. Multiple soil samples were collected from various depths in each boring and analyzed for various parameters. Boring logs are provided in Appendix B.

3.3.1. Investigation Summary

Soil samples collected in the lower tailings pile were generally analyzed for the following:

- Total metals;
- SPLP on select samples;
- TCLP on select samples;
- Asbestos; and
- ABA.

3.3.2. Investigation results

Total metal analysis results were compared to the site cleanup levels for soil established in the RI. The results indicate that each boring exceeds the metals cleanup level for at least one metal, while most locations exceed for multiple metals. Metal concentrations in soil samples of native soil under the tailings pile were less than cleanup levels. Metal concentrations in soil samples collected from shallow test pits near the water detention pond did not exceed the site cleanup levels. Chemical analysis results are provided in Table 1.

SPLP testing indicated that most metals analyzed mobilized into the leachate. The SPLP results for chromium and nickel mobilized into the leachate in one sample, HSA-10(50-51.5). The SPLP analysis results indicate that most metals analyzed have the potential to leach from the lower tailings pile and into precipitation infiltrating through the pile. SPLP results are presented in Table 2.

Asbestos analysis results generally indicate that asbestos was not detected in the samples analyzed. One sample from HSA-7, collected around 35 feet bgs indicated less than 2 percent of chrysotile and actinolite. Asbestos results are presented in Table 3.

The ABP of tailings samples collected from AOI-3 ranged from 176 to 3900 tCACO₃/Kt indicating that the tailings are highly buffering for acid and do not have the potential to produce ARD. The ABP of the two shallow soil samples collected near the former detention pond were low; however, this could be characteristic of native soil in the area. Total sulfur samples ranged from less than the MRL of 0.05 percent to 0.57 percent, indicating low presence of sulfur forms. ABA accounting is presented in Table 4.

3.4. Groundwater Monitoring

Groundwater samples were collected from seven monitoring wells (DH-2, MW-1 through MW-3, MW-5, W-1, and W-2) in October 2015 and February 2016. During both sampling events water was not observed in MW-4 or DH-5. The samples were submitted for chemical analysis of metals (antimony, arsenic, cadmium, calcium, lead, magnesium, nickel, thallium and zinc), hardness as CaCO3, total dissolved solids (TDS), total suspended solids (TSS) and total alkalinity. The analytical parameters were generally selected based upon those metals which exceeded cleanup levels in the RI. Analytical results are presented in Tables 6 and 7. Groundwater analytical results indicate that metal concentrations were less than the RI cleanup levels for the two monitoring events.

3.5. Mill Pipe Water Sample

During a site visit in April 2014, water was observed flowing from a vertical pipe on the south side of the former mill. According to Gary Eichler of Knife River and resident of Onion Creek, a dug well was constructed in the mill area and held open with a steel culvert (Eicher 2015). A pipe was then installed for gravity conveyance of water from the dug well to the mill buildings. Water from the dug well was used as a non-potable water source for the mill and office facilities. On October 13, 2015, a water sample was collected from the pipe (Figure 3). Before collecting the sample Gary Eichler opened a valve on the pipe system and water was purged from the pipe for approximately 15 minutes before sampling. The sample was collected and submitted to Pace Analytical for chemical analysis.

Table I summarizes the chemical analysis results and compares the results to the site cleanup levels for groundwater and surface water quality criteria established in WAC 173-201A. Lead was greater than the site cleanup levels for groundwater and surface water. Zinc was also greater than the site surface water cleanup level, but less than the groundwater cleanup level. The other metals analyzed were less than the available water quality standards.

Parameter	Result (µg/L)	Groundwater Cleanup Level (µg/L)	Surface Water Cleanup Level (µg/L)
Cadmium	< 3.0	5	1.07
Calcium	114,000	NE	NE
Lead	50.4	15	4.5
Magnesium	40,900	NE	NE
Zinc	236	4,800	164
Alkalinity	176	NE	NE
TDS	609	NE	NE
TSS	30.0	NE	NE
Hardness	453,000	NE	NE

TABLE I. MILL PIPE CHEMICAL ANALYSIS RESULTS

Notes: $\mu g/L$ = micrograms per liter, NE = Not Established

3.6. Topographic Data

Quantum Spatial was retained to conduct a Light Detection and Ranging (LiDAR) survey of the site. The LiDAR survey was used to develop a topographic map of the site with 2-foot contour intervals. The topographic survey was used to further characterize the tailings piles and estimate waste rock and tailings quantities. The topographic map can also be used for design purposes as part of the cleanup action plan and engineering design report. Cross sections and plan views developed to estimate tailings and waste rock quantities are provided in Figures 7 through 18.

3.7. Tailings Pile Geotechnical Assessment

Six borings were advanced at the upper tailings pile and five borings were advanced in the lower tailings pile to obtain additional geotechnical data on the tailings and estimate the pile thickness. Samples of the tailings and underlying material were also submitted for chemical analysis as discussed in Sections 3.2 and 3.3. Boring locations for the Upper and Lower Tailings Piles are shown on Figures 5 and 6, respectively.

Information obtained from the borings and testing was used to conduct a stability analysis for the existing tailings and estimate more stable slope configurations to be considered as part of the design process. A copy of the slope stability evaluation is included in Appendix C.

The results of the evaluation indicated that the existing tailings embankments did not provide suitable factors of safety under static or seismic conditions in the current 1.5H:1V slope configurations. Using a 1.5 factor of safety for static conditions, a stable slope inclination between 2H:1V and 3H:1V was estimated for both tailings piles. As part of the final design; material costs, capping materials, earthwork costs and other items can be used to refine the stability analysis and determine a stable and cost effective slope inclination. For the purposes of this FS, a stable slope configuration of 3H:1V was used as a conservative assumption for cost comparisons between alternatives.

4.0 CONCEPTUAL SITE MODEL

As part of the RI, a detailed conceptual site model (CSM) was developed for the site. Modifications to the CSM were not made because the additional investigations conducted were focused on refining the extent of contamination, filling in a few data gaps and refining cleanup levels.

4.1. Contaminants of Concern (COCs)

The RI established COCs for the site. Additional investigations conducted after the RI did not indicate modifications to the site COCs were necessary. Site COCs were generally limited to metals including:

- Antimony;
- Arsenic;
- Beryllium;
- Cadmium;
- Chromium;
- Copper;
- Lead;
- Mercury;
- Nickel;
- Selenium;
- Silver;
- Thallium; and
- Zinc.

Volatile organic compounds (VOCs) and petroleum hydrocarbons were also identified as COCs in and around the mill area.

4.2. Cleanup Levels

Metal cleanup levels were established as part of the RI for the various site media including:

- Soil;
- Surface water;
- Groundwater; and
- Sediment.

The following sections provide information on development of the cleanup levels. A summary of cleanup levels is provided in Table 8. Petroleum hydrocarbon cleanup levels were based upon MTCA Method A cleanup levels.

4.2.1. Soil

Soil cleanup levels (referenced as screening levels in the RI) were based on natural background metal concentrations established in the RI, unless a background metal concentrations fell below the regulatory standard; in which case the lowest regulatory standard was used (Hart Crowser 2013). Natural background concentrations in soil were used for antimony, arsenic, cadmium, lead, mercury, selenium, and zinc. Other cleanup standards, including Ecology-accepted natural background, MTCA Method A and Method B soil cleanup levels, state ecological indicator screening criteria, and federal ecological soil screening levels, were used for aluminum, beryllium, chromium (III and VI), cobalt, copper, iron, manganese, nickel, silver, thallium, and vanadium. Soil cleanup levels established in the RI were also used in this FS.

4.2.2. Surface Water

Surface water cleanup levels for dissolved metals were based upon Washington state water quality standards, MTCA Method B cleanup levels, water quality criteria from section 304 of the Clean Water Act and the National Toxics Rule (40CFR 131.36). Hardness dependent surface water cleanup levels established in the RI were updated using a revised hardness concentration. In the RI, a hardness value of 98 mg/L was used as determined by the median of the background concentrations from a sampling event in October 2011. A review of the background concentrations indicated that hardness values might increase as the tributaries travel through the naturally occurring mineralized areas near the mining area. This was primarily represented by increased hardness concentrations in background samples BG-8 and B-10, as hardness concentrations were 200 and 300 mg/L, respectively. The median hardness concentration from water samples collected within AOI-5 was 180 mg/L.

In addition to surface water quality samples collected as part of the RI in 2011, Ecology conducted water quality monitoring of Onion Creek at Widow-Hawks Road, approximately 2 to 3 miles downstream of AOI-5. Water quality samples were collected in October 2011, December 2011, April 2012, June 2012 and August 2012 and hardness concentrations were 223, 220, 122, 134 and 195 mg/L, respectively. The median of the background, AOI-5 and Onion Creek at Widow-Hawks Road hardness concentrations was calculated as 170 mg/L to develop a revised representative hardness concentration for the site. This revised value was used to update the surface water cleanup levels for dissolved metals cadmium, chromium, copper, lead, nickel, silver and zinc.

The cleanup level for total arsenic was also revised from the RI. A cleanup level of 3.8 μ g/L based upon the laboratory method detection limit (MDL) was used for dissolved arsenic in the RI. MDLs vary between samples and laboratories and might not be protective of human or ecological health. The cleanup level for total arsenic was revised to 0.098 μ g/L, which is based on the MTCA Method B cleanup level for protection of human health for fish consumption. This value is more conservative than the previously used MDL and protects human health for the consumption of fish from Onion Creek. Onion Creek is not a source of drinking water; therefore, a more conservative value for consumption of fish and water under the national recommended water quality criteria was not used.

4.2.3. Groundwater

Groundwater cleanup levels for total metals presented in the RI were based on the lowest potential ARARs except for arsenic and thallium. The cleanup levels for total arsenic and thallium were based upon their respective laboratory MDLs of 3.8 μ g/L and 1.4 μ g/L. For the FS, the cleanup level for total arsenic in groundwater was revised to 5 μ g/L which is the MTCA Method A cleanup level and is reasonably near the previously used MDL. The cleanup value for thallium was revised as part of the FS to 2 μ g/L which is based upon the state and federal Maximum Contaminant Level (MCL) and is reasonably close to the previously used MDL. Other groundwater cleanup levels for total metals established in the RI were also used in this FS.

4.2.4. Sediment

Sediment cleanup levels were revised from the RI. Revised sediment cleanup levels were developed using literature based sediment quality values for available metals. The consensus based Probably Effects Concentrations (PEC) (MacDonald 2000) were used for arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc. Background concentrations were used for antimony, beryllium and thallium. Freshwater sediment quality values based on WAC 173-204-563 were used for selenium and silver, as the regulations were greater than background concentrations.

4.3. Extents of Contamination

Table 9 provides a summary of the site COCs that exceed cleanup values for select media (soil, sediment, surface water and groundwater). This evaluation was based upon data collected during the RI and additional investigations conducted since the RI. The following sections provide a summary of site COCs for each AOI.

In general, groundwater at the site was determined as not impacted based upon monitoring results to date. Residential wells sampled as part of the RI generally did not exceed site cleanup levels. One residential well sampled (RW-2) indicated arsenic was near the site cleanup level; however, the reported concentration (0.0053 mg/L) is generally equal to the site cleanup level of 0.005 mg/L.

4.3.1.A0I-1

Soil that exceeded cleanup levels in AOI-1 was generally limited to disturbed areas including the mining pit, mill area and waste rock. Soil samples collected around the former mill, crusher and ore staging area indicate soil in this area qualifies as dangerous waste as a result of TCLP analysis for lead. Soil samples collected in the native material just below the waste rock indicated reduced concentrations, but COC cleanup levels were still exceeded in these samples. Figures 3 and 4 show the approximate extents of soil contamination in AOI-1.

Surface water sampled from the south pit lake indicated cadmium and zinc were greater than cleanup levels.

Groundwater monitoring wells are not installed in within AOI-1.

4.3.2.A0I-2

Soil that exceeded cleanup levels in AOI-2 was generally limited to the tailings pile and shallow surface samples collected from the wooded area downstream of the tailing pile. Soil samples collected from borings through the tailings pile generally indicated that COCs were not present above cleanup levels in native soil under the tailings.

Surface water sampled from discharges of the tailings pile to the Onion Creek tributary in June 2011 generally indicated cadmium, lead and zinc were near or greater than cleanup levels. A sample of a seep coming from the tailings pile in November 2011 did not exceed site cleanup levels.

Two monitoring wells (MW-4 and MW-5) are installed within AOI-2 and downstream of the tailings pile. Groundwater monitoring conducted in November 2011 for MW-4 and MW-5 and MW-5 in October 2015 and February 2016 did not indicate COCs were greater than the cleanup levels in AOI-2. MW-4 was dry during the monitoring events in 2015 and 2016.

4.3.3.A0I-3

Soil that exceeded cleanup levels in AOI-3 was generally limited to the tailings pile and shallow surface samples collected downstream of the tailing pile along a former pipeline pathway. Soil samples collected from borings through the tailings pile generally indicated that COCs were not present above cleanup levels in native soil under the tailings.

Surface water was not sampled as part of AOI-3. The accumulated water on top of the tailings pile is not considered surface water and is not viable fish habitat. Cleanup of the site will most likely reduce or prevent the accumulation of water directly on top of the tailings surface.

Seven groundwater monitoring wells (MW-1, MW-2, MW-3, DH-2, DH-5, W-1[DH-8], W-2) are installed around the tailings pile in AOI-3. Some site COCs were detected in groundwater monitoring wells MW-2, MW-3, DH-2 and W-2 greater than cleanup levels during a groundwater monitoring event in November 2011. Follow up groundwater monitoring events in October 2015 and February 2016 did not indicate the COCs were greater than the cleanup values. DH-5 was dry during each groundwater monitoring event.

4.3.4. AOI-4

Soil that exceeded cleanup levels in AOI-4 was generally limited to surficial tailings deposits from historical tailings spills along the pipeline alignments.

Surface water was not sampled as part of AOI-4.

Groundwater monitoring wells are not installed to assess groundwater impacts in AOI-4.

4.3.5.AOI-5

Soil that exceeded cleanup levels in AOI-5 was generally limited to the sediments within Onion Creek and its tributaries.

Surface water sampling conducted in October of 2011 included 20 downstream locations and 14 background locations. Analysis results indicated two locations (OC-9-SW and OC-11-SW) within AOI-5 had detectable cadmium and zinc concentrations, but the concentrations were less than their respective surface water cleanup levels. During the sample monitoring event, background sample BG-10-SW exceeded cleanup levels for cadmium, lead and zinc.

Groundwater monitoring wells are not installed to assess groundwater impacts in AOI-5.

4.4. Exposure Pathways and Receptors

A MTCA compliant baseline Human Health Risk Assessment (HHRA) and an Ecological Risk Assessment (ERA) were completed during the RI (Hart Crowser 2013). A goal of unrestricted land use was assumed for the HHRA. In addition to the HHRA human receptors; ecological receptors used in the ERA consisted of terrestrial plants, soil invertebrates, birds, mammals, and aquatic species. Identified exposure pathways included soil/sediment ingestion, surface water ingestions (as drinking water and through fish ingestion), groundwater ingestion, and protection of groundwater. Figure 19 includes a site CSM and shows the potential exposure pathways and receptors at the site.

4.5. Locations and Media Requiring Cleanup Actions

Based upon the results of the RI, additional investigations, exposure pathways and potential receptors, the following sections describe the media, areas and features within each AOI to be addressed as part of the cleanup.

4.5.1.A0I-1

Features within AOI-1 to be addressed as part of the cleanup include the waste rock area, mill area and west end pit dam. The waste rock area and part of the mill area contain soil which exceed cleanup levels and part of the mill area has soil which qualifies as dangerous waste around the mill and former crusher. The west end pit dam is a physical hazard. If a dam failure were to occur, it could result in inundations of property downstream. Surface water within the west end pit was less than the site cleanup levels. Groundwater was not evaluated, although because of the steep topography, residential well sampling and groundwater monitoring results near the tailings areas, impacts to groundwater as a result of mining activities are not anticipated and therefore will not be addressed as part of the cleanup action.

Outlying overburden piles and the south pit will not be addressed as part of a cleanup action due to limited site accessibility and therefore limited exposure pathways. Exceedance of cleanup levels for soil at the overburden piles were generally a result of metals concentrations exceeding background concentrations. Provided that the overburden soil sampled was most likely in-situ soil that had been disturbed, chemical analysis results for metals within these areas is most likely representative of background concentrations with the mineralized area.

Surface water collected within the floor of the south pit is most likely the result of accumulated precipitations within the south pit. Although some water may overflow into the nearby tributary, if enough

water accumulates within the south pit, dilution and limited volumes are expected to have minimal impacts to water quality along the adjacent tributary.

4.5.2.A0I-2

Features within AOI-2 to be addressed as part of the cleanup include the Upper Tailings Pile and tailings which have eroded from the pile and migrated towards the southeast tributary to Onion Creek. Each cleanup alternative for this area includes limiting precipitation accumulation on top of the tailings pile and reducing/preventing infiltration through the tailings which should address surface water quality within AOI-2. Sampling has not indicated that groundwater exceeds cleanup levels within AOI-2.

4.5.3.AOI-3

Features within AOI-3 to be addressed as part of the cleanup include the Lower Tailings Pile, SRP and tailings which have eroded from the pile and migrated towards the Onion Creek tributaries. Each cleanup alternative for this area includes limiting precipitation accumulation on top of the tailings pile and reducing/preventing infiltration through the tailings which should address surface water quality. Groundwater sampling has not indicated that groundwater exceeds cleanup levels within AOI-3.

4.5.4.A0I-4

Features within AOI-4 to be addressed as part of the cleanup include tailings deposited on the forest floor as a result historical releases from the conveyance system. Surface water and groundwater are not believed to be impacted because of limited historical releases along the conveyance alignment.

4.5.5.A0I-5

Sediments and surface water of Onion Creek and the tributaries will not be addressed as part of the FS. Except for antimony and zinc, sediment concentrations were less than cleanup levels. The antimony cleanup value (0.59 milligrams per kilogram [mg/kg]) was based upon estimated background concentrations. State and federal regulations along with literature do not provide antimony sediment quality values. Four of the 21 samples analyzed exceeded the antimony cleanup level. Of the four samples that exceed the cleanup level, concentrations ranged from 0.67 to 1 mg/kg.

Five of the 21 sediment samples exceeded the PEC based cleanup level for zinc (459 mg/kg). Two locations (OC-9-SD and OC-11-SD) exceeded both the zinc and antimony cleanup levels. Of the five samples that exceed the zinc cleanup level, concentrations ranged from 510 to 970 mg/Kg. These values are significantly less than the sediment cleanup objective (SCO) of 3,200 mg/kg and cleanup screening level (CSL) of 4,200 mg/kg provided in WAC 173-204-563. In addition,

Only sample background location BG-10-SW was greater than the cleanup levels for cadmium, lead and zinc. The 20 other surface water samples collected from within AOI-5 were less than the site cleanup levels and therefore surface water of Onion Creek will not be directly addressed as part of this FS. By addressing potential source areas like the tailings and waste rock areas, impacts to AOI-5 are expected to be minimized and improve over time, although the sampling conducted in 2011 doesn't indicate that the surface water within AOI-5 is impacted.

4.6. Points of Compliance

Under MTCA, the point of compliance is the point or location on a site where cleanup levels must be attained. The points of compliance for the affected media will be approved by Ecology and presented in the CAP. However, it is necessary to identify points of compliance to evaluate the effectiveness of the cleanup action alternatives in the FS. This section describes the proposed points of compliance for soil and groundwater.

4.6.1. Soil

The standard point of compliance for soil cleanup levels to protect humans from direct contact will be throughout the soil column from the ground surface to 15 feet below ground surface, in accordance with WAC 173-340-740(6)(d) and WAC 173-340-7490(4)(b). The standard point of compliance for preliminary soil cleanup levels based on protection of groundwater shown in the table above will be throughout the soil column [WAC 173-340-740(6)(b)]. For cleanup actions that involve containment of hazardous substances, soil cleanup levels will typically not be met inside containment areas [WAC 173-340-740(6)(f)].

For potential terrestrial ecological exposures, MTCA regulations allow a conditional point of compliance to be established from the ground surface to 6 feet (the biologically active zone according to MTCA default assumptions), provided institutional controls are used to prevent excavation of deeper soil [WAC 173-340-7490(4)(a)]. Accordingly, in areas of the site where potential ecological exposures are a concern, and where appropriate institutional controls can be implemented, a conditional point of compliance for soil concentrations protective of terrestrial ecological receptors may be proposed throughout the soil column from the ground surface to 6 feet. For cleanup actions that involve containment of hazardous substances, soil cleanup levels will typically not be met inside containment area(s) [WAC 173-340-740(6)(f)].

4.6.2. Surface Water

The standard point of compliance for surface water cleanup levels will be at points where hazardous are release to surface waters of the state, WAC 173-340-730(6). A mixing zone will not be used as part of the proposed cleanup action.

4.6.3. Groundwater

The standard point of compliance for groundwater cleanup levels will be all groundwater beneath the site from the top of the saturated zone to the lowest depth which could be affected by the site {WAC 173-340-720(8)(b)}, which likely is bedrock.

4.6.4. Sediment

The point of compliance for sediment cleanup levels will be at sediments within the stream channels and up to the ordinary high water mark.

5.0 DEVELOPMENT OF REMEDIAL ACTION ALTERNATIVES

This section identifies the remedial action objectives and the initial screening of remedial alternatives for the site. An evaluation of the alternatives is presented in Section 6.0.

5.1. Remedial Action Objectives

MTCA requires that cleanup actions meet the threshold requirements identified in WAC 173-340-360. According to this section, the cleanup action shall:

- Protect human health and the environment Each alternative is assessed for its ability to protect present and future public health, safety, welfare, and the environment.
- Comply with cleanup standards Proposed cleanup standards are identified in Section 4.2 and Table 8. The MTCA cleanup regulation specifies that a cleanup action alternative that does not comply with cleanup standards is an "interim action" not a "cleanup action."
- Comply with applicable local, state and federal laws.
- Provide for compliance monitoring The cleanup action must provide for monitoring to verify that the cleanup action remains effective over time.
- Use permanent solutions to the maximum extent practicable Permanent solutions are those in which cleanup standards can be met without further action being required such as long-term monitoring and inspection or institutional controls.
- Provide for a reasonable restoration time frame This refers to the estimate of time required to achieve cleanup standards or other performance standards.
- Consider public concerns This FS of remedial alternatives will seek to address the potential technical and administrative concerns of state and local regulatory entities.

The primary remedial action objective (RAO) is to mitigate human exposure to contaminants in soil, tailings, and waste rock by dermal contact and ingestion. A secondary, although equally important, RAO is to mitigate ecological receptors (plants and animals) from exposure to contaminants.

5.2. General Categories of Response Actions and Initial Screening

The general categories of remedial actions identified for the site include:

- No Action
- Institutional Controls
- Engineering Controls
- Off-Site Disposal

5.2.1. No Action

The no action alternative does not achieve the remedial action objectives because it does not protect present and future public health, safety, and welfare, and the environment. However, it is retained for further evaluation, but does not meet MTCA requirements.

5.2.2. Institutional Controls

Institutional controls involve the placement of access barriers such as fencing and barricades to motorized and non-motorized travel, as well as withdrawal or restrictions on development of affected lands from future use (i.e., deed restrictions). The primary purpose of these controls is to minimize development and human

activities on contaminated areas and provide protection to an implemented solution. While institutional controls does not achieve the stated goals and objectives of the remedial action, it can protect the remedy that is implemented on site.

5.2.3. Engineering Controls

The engineering controls evaluated for this FS involve the use of containment technologies that serve as source control. These controls mitigate or reduce the migration of contaminants off site via the erosion/wind pathways. The engineering controls do not affect the chemical composition of the contaminated materials nor do they reduce the toxicity of the materials. Engineering controls include such measures as capping, placement of a coarse permeable barrier (to eliminate access to contaminated soil from burrowing animals), placement of a low-permeability (geotextile) liner, grading, and revegetation.

Cap and cover designs can vary in complexity from simple soil covers to multi-layered covers. Installation of a soil cover only would provide protection from direct exposure to contaminated material; however, it would not mitigate the potential infiltration of precipitation through the contaminated material and potentially to groundwater. Placement of a low-permeability liner would reduce or eliminate the infiltration of precipitation through contaminated material. Based on this and documented dangerous waste in the tailings, a soil cover only option is not retained for further evaluation for the tailings piles. However, a soil cover is retained for consideration for the waste rock and mill areas. Revegetation activities involve promoting plant growth, performing grading activities, and additional soil amendments and nutrients to facilitate vegetative growth. Revegetation should include species native to the area and consist of a variety of grasses and forbs. The establishment of vegetative covers can significantly reduce erosion potential and also reduces the infiltration of precipitation through the soil cover through the natural evapotranspiration process.

The use of engineering controls is retained as a stand-alone remedial alternative and in conjunction with other alternatives.

5.2.4. Off-Site Disposal

Off-site disposal options include excavation and transport of contaminated material to an engineered, permitted landfill that accepts dangerous waste. The only viable landfill that could accept the contaminated material on-site is the Waste Management facility in Arlington, Oregon, (310 miles from site). Although this alternative can be very costly compared to other alternatives, it is retained as a stand-alone remedial alternative.

5.3. Description of Remedial Alternatives

Six remedial alternatives were developed and evaluated for the FS. Based on information obtained during the original RI and additional investigations, no additional action is anticipated for AOI-5 – Onion Creek and its tributaries at this time and the focus of the FS will be on the major source areas. The evaluated alternatives include: no action; implementing engineering and/or institutional controls; in-place containment; creating a centralized repository to consolidate impacted material at the Lower Tailings Pile; and off-site disposal. Each alternative is discussed below. Quantities provided in Table 10 were used to develop cost estimates for each alternative. Table 11 provides a comparison of the alternatives.

5.3.1. Alternative 1 - No Action

A no action alternative is used to compare future conditions against other alternatives to determine beneficial and/or adverse impacts (i.e., what conditions would occur if other alternatives are not implemented), as well as, to compare potential mitigation measures used to minimize other alternative option impacts. Under Alternative 1, the impacted soil, waste rock, and tailings would remain in-place, and a comprehensive, long-term soil and surface water monitoring program would be required. However, given that this alternative does not protect human health and the environment, that cleanup level exceedances are not addressed, it does not comply with applicable state or federal laws, and it does not allow for a restoration time frame; this alternative does not meet MTCA Feasibility Study requirements and is not a selected option.

5.3.2. Alternative 2 – Institutional Controls

Alternative 2 include installing a security fence limiting public access and posting signage warning of site hazards and dangers. Institutional controls are legal or administrative tools or actions taken to reduce potential exposure to hazardous substances. Institutional controls include: easements, use restrictions/ covenants, zoning, administrative or judicial orders, and/or public information and education. The controls are evaluated through site monitoring and periodic review by the regulatory agency.

5.3.3. Alternative 3 – In-place Containment without Cover System

Alternative 3 consists of in-place containment of AOI-1, AOI-2, AOI-3, and AOI-4 with no cover system. Current slopes of the waste rock and tailings in AOI-1, AOI-2, and AOI-3 are not stable as evident of downgradient erosion. The waste rock in AOI-1 would be graded out to blend in with natural contours and then revegetated. The tailings piles in AOI-2 and AOI-3 would be regraded to a stable 3H:1V slope or less (depending on final design); with additional site grading to control and mitigate stormwater run-on and run-off. Additionally, buttresses, reinforce stabilized slopes, and benches could be used to enhance the stability and reduce the overall slope. The regraded areas would not be covered with a soil cap, but plant seed would be applied to the surfaces and the areas would be left to naturally revegetate over time.

Because of the fine-grained nature and elevated metals concentrations in tailings, in-place containment without a cover system is not an effective alternative for AOI-2 or AOI-3. In-place containment without a cover system could be an effective alternative to mitigate exposure risks and contaminant mobility in AOI-1 and AOI-4.

5.3.4. Alternative 4 - In-place Containment with Cover System

Alternative 4 is the same as Alternative 3 except a cover system would be installed over the tailings in AOI-2 and AOI-3 to mitigate infiltration through contaminated materials and exposure to biological receptors. In addition, under this alternative, dispersed tailing associated with AOI-4, will be excavated and consolidated with the nearest regraded tailings pile (AOI-2 or AOI-3) because placing a cover system on the dispersed tailings in not practicable. Also, dangerous waste identified in AOI-1 (Figure 3) would be excavated, transported to the Upper Tailings Pile and incorporated into the overall grading plan near the center of the tailings pile. The dangerous waste would be placed directly on the tailings surface and then covered with additional tailings from regrading activities to encapsulate it.

The cover system would consist of a multi-layer cover as below:

- 1. Top Soil (1-foot) and Vegetation
- 2. Common Borrow (2-feet) would consider using waste rock.
- 3. Geonet drainage geotextile
- 4. 12 oz. nonwoven geotextile
- 5. 60-mil HDPE geomembrane
- 6. 12 oz. nonwoven geotextile
- 7. Regraded Tailings/Waste Rock/Soil

Once the cover system is constructed, the regraded areas would be revegetated. For this alternative, the cover system is only proposed for AOI-2 and AOI-3 because metal concentrations in AOI-1 are relatively low and the dangerous waste material will be removed before grading activities. In addition, installation of a cover system over the large area of waste rock is impracticable.

The multi-layer cover system over the tailings will function not only to reduce contaminant migration but also address terrestrial and ecological exposure pathways. The multi-layer cover system creates a barrier to nearly eliminate the ingestion exposure pathway by controlling direct contact with the tailings. In addition, the multi-layer cover system reduces direct contact exposure pathways to vegetation and burrowing animals. Direct exposure to contaminants in the tailings to vegetation and burrowing animals could lead to contaminants working their way upwards through the food chain.

5.3.5. Alternative 5 – Centralized Tailings Repository at AOI-3

Under Alternative 5, tailings from AOI-2 and AOI-4, and dangerous waste material from AOI-1 would be excavated and hauled to AOI-3 for placement into a centralized repository. The dangerous waste from AOI-1 would be placed near the center of the repository directly on top of the tailings of lower tailings pile and covered with tailings from the upper tailings pile. The repository would have the same cover system as outlined in Alternative 4. The excavated areas in AOI-1 and AOI-2 would be graded with onsite materials and revegetated. This alternative will increase the beneficial use of AOI-2 and reduce monitoring costs by consolidating the tailings into one area as opposed to two separate units to be managed and monitoring individually.

5.3.6. Alternative 6 – Off-Site Disposal

Alternative 6 involves excavating tailings and waste rock greater than TCLP and hauling them offsite for disposal in a permitted landfill. The closest landfill that could accept the material is the Waste Management facility in Arlington, Oregon, (310 miles from site). Disturbed areas would be graded with onsite materials and revegetated. Although this alternative is cost prohibitive, it is an effective alternative for protection of human health and the environment and could be readily implemented. Therefore, this alternative is retained for further evaluation.

5.3.7. Common Item to Alternatives 2, 3, 4, 5 and 6

The following items are considered common to Alternatives 2, 3, 4, 5 and 6 and will be implemented regardless of which alternative is selected:

Installation of a buttress and emergency spillway at the North Pit Lake. There have been documented concerns with the stability of the earthen dam at the North Pit Lake (Johnson 2010) and it presents a physical hazard. There exists a potential for a full or partial high-wall mass release that could overtop the dam leading to the potential release of water and sediment into the southwest fork of Onion Creek and could lead to inundation of downstream property and residences.

As part of the remedial design, the dam will be stabilized using a buttress, increasing the cross section, flattening the slopes or a combination of these items. An impermeable surface on the upstream face may also be incorporated into the design.

A broad-crested rock-lined spillway will be installed to maintain the water level at approximately Elevation 3,510 feet above MSL while maintaining sufficient freeboard. The spillway will be designed to pass the inflow design flood (IDF). An operations and maintenance plan and emergency action plan will be developed in accordance with Washington State dam safety regulations. Preliminary costs have been included in the alternatives.

The waste rock area will be graded into the existing site contours. A seed mix will be applied to the rock and it will be allowed to revegetate naturally.

6.0 EVALUATION CRITERIA

This section presents a description of the threshold requirements for cleanup actions under MTCA and the additional criteria used in this FS to evaluate the cleanup action alternatives.

6.1. Threshold Requirements

Cleanup actions performed under MTCA must comply with several basic requirements. Cleanup action alternatives that do not comply with these criteria are not considered suitable cleanup actions. As provided in WAC 173-340-360(2)(a), the four threshold requirements for cleanup actions must:

- Protect human health and the environment;
- Comply with cleanup standards (WAC 173-340-700 through -760);
- Comply with applicable state and federal laws (WAC 173-340-710); and
- Provide for compliance monitoring (WAC 173-340-410 and WAC 173-340-720 through -760).

6.1.1. Protection of Human Health and the Environment

The results of cleanup actions performed under MTCA must ensure that both human health and the environment are protected.

6.1.2. Compliance with Cleanup Standards

Compliance with cleanup standards requires, in part, that cleanup levels are met at the applicable points of compliance. If a remedial action does not comply with cleanup standards, the remedial action is considered an interim action, not a cleanup action. When a cleanup action involves containment of soils with hazardous substance concentrations exceeding cleanup levels at the point of compliance, the cleanup action may be determined to comply with cleanup standards, provided the requirements specified in WAC 173-340-740(6)(f) are met.

6.1.3. Compliance with Applicable State and Federal Laws

Cleanup actions conducted under MTCA must comply with applicable state and federal laws. The term "applicable state and federal laws" includes legally applicable requirements and those requirements that Ecology determines to be relevant and appropriate as described in WAC 173-340-710. An evaluation of the ARARs potentially applicable to each alternative was completed and is summarized in Table 12. The alternatives evaluated in this FS comply with the intent of these laws and statutes and are protective of human health and the environment.

6.1.4. Provision for Compliance Monitoring

The cleanup action must allow for compliance monitoring in accordance with WAC 173-340-410. Compliance monitoring consists of protection monitoring, performance monitoring and conformational monitoring. Protection monitoring is conducted to confirm that human health and the environment are adequately protected during construction and the operation and maintenance period of a cleanup action. Performance monitoring is conducted to confirm that the cleanup action has attained cleanup standards and, if appropriate, remediation levels or other performance standards. Conformational monitoring (groundwater and/or soil) is conducted to confirm the long-term effectiveness of the cleanup action once cleanup standards and, if appropriate, remediation levels or other performance standards have been attained.

6.2. Other MTCA Requirements

Under MTCA, when selecting from the alternatives that meet the minimum requirements described above, the alternatives shall be further evaluated against the following additional criteria:

Use permanent solutions to the maximum extent practicable [WAC 173-340-360(2)(b)(i)]. MTCA requires that when selecting from cleanup action alternatives that fulfill the threshold requirements, the selected action shall use permanent solutions to the maximum extent practicable [WAC 173-340-360(2)(b)(i)]. MTCA specifies that the permanence of these qualifying alternatives shall be evaluated by balancing the costs and benefits of each of the alternatives using a "disproportionate cost analysis" in accordance with WAC 173-340-360(3)(e). The criteria for conducting this analysis are described in Section 6.3 below.

Provide a reasonable restoration time frame [WAC 173-340-360(2)(b)(ii)]. In accordance with WAC 173-340-360(2)(b)(ii), MTCA places a preference on those cleanup action alternatives that, while equivalent in other respects, can be implemented in a shorter period of time. MTCA includes a summary of factors to be considered in evaluating whether a cleanup action provides for a reasonable restoration time frame [WAC 173-340-360(4)(b)].

Consideration of public concerns [WAC 173-340-360(2)(b)(iii)]. Ecology will consider public comments submitted during the FS process when making its preliminary selection of an appropriate cleanup action alternative. This preliminary selection is subject to further public review and comment when the proposed remedy is published in the draft CAP.

6.3. MTCA Disproportionate Cost Analysis

The MTCA disproportionate cost analysis (DCA) is used to evaluate which of the alternatives that meet the threshold requirements are permanent to the maximum extent practicable. This analysis involves comparing the costs and benefits of alternatives and selecting the alternative with incremental costs that

are not disproportionate to the incremental benefits. The evaluation criteria for the disproportionate cost analysis are specified in WAC 173-340-360(2) and WAC 173-340-360(3), and include protectiveness, permanence, cost, long-term effectiveness, management of short-term risks, implementability and consideration of public concerns.

As outlined in WAC 173-340-360(3)(e), MTCA provides a methodology that uses the criteria below to determine whether the costs associated with each cleanup alternative are disproportionate relative to the incremental benefit of the alternative above the next lowest-cost alternative. The comparison of benefits relative to costs may be quantitative, but will often be qualitative. When possible for this FS, quantitative factors such as mass of contaminant removed or percentage of area of impacts remaining were compared to costs for the alternatives evaluated, but many of the benefits associated with the criteria described below were necessarily evaluated qualitatively. Costs are disproportionate to benefits if the incremental costs of the more permanent alternative exceed the incremental degree of benefits achieved by the other lower-cost alternative [WAC-173-340-360(e)(i)]. Where two or more alternatives are equal in benefits, Ecology selects the less costly alternative [WAC 173-340-360(e)(ii)(c)].

Each of the MTCA criteria used in the DCA is described below.

6.3.1. Protectiveness

The overall protectiveness of a cleanup action alternative is evaluated based on several factors. First, the extent to which human health and the environment are protected and the degree to which overall risk at a site is reduced are considered. Both on-site and off-site risk reduction resulting from implementing the alternative are considered.

6.3.2. Permanence

MTCA specifies that when selecting a cleanup action alternative, preference shall be given to actions that are "permanent solutions to the maximum extent practicable." Evaluation criteria include the degree to which the alternative permanently reduces the toxicity, mobility or mass of hazardous substances; the effectiveness of the alternative in destroying the hazardous substances; the reduction or elimination of hazardous substance releases and sources of releases; the degree of irreversibility of waste treatment processes; and the characteristics and quantity of treatment residuals generated.

6.3.3. Cost

The analysis of cleanup action alternative costs under MTCA includes all costs associated with implementing an alternative including design, construction, long-term monitoring and institutional controls. Costs are intended to be comparable among different alternatives to assist in the overall analysis of relative costs and benefits of the alternatives. The costs to implement an alternative include the cost of construction, the net present value of any long-term costs and agency oversight costs. Long-term costs include operation and maintenance costs, monitoring costs, equipment replacement costs and the cost of maintaining institutional controls. Unit costs used to develop overall remediation costs for this FS were derived using a combination of published engineering reference manuals (i.e., R.S. Means); construction cost estimates solicited from applicable vendors and contractors; a review of actual costs incurred during similar applicable projects; and professional judgment.

6.3.4. Long-Term Effectiveness

Long-term effectiveness is a parameter that expresses the degree of certainty that the alternative will be successful in maintaining compliance with cleanup standards over the long-term performance of the cleanup action. The MTCA regulations contain a specific preference ranking for different types of technologies that will be considered as part of the comparative analysis. The ranking places the highest preference on technologies such as reuse/recycling, treatment, immobilization/solidification, and disposal in an engineered, lined, and monitored facility. Lower preference rankings are applied for technologies such as on-site isolation/containment with attendant engineered controls, and institutional controls and monitoring.

6.3.5. Management of Short-term Risks

Evaluation of this criterion considers the relative magnitude and complexity of actions required to maintain protection of human health and the environment during implementation of the cleanup action. Cleanup actions carry short-term risks such as potential mobilization of contaminants during construction or safety risks typical of large construction projects. Some short-term risks can be managed through best practices during project design and construction, while other risks are inherent to project alternatives and can offset the long-term benefits of an alternative.

6.3.6. Implementability

Implementability is an overall metric expressing the relative difficulty and uncertainty of implementing the cleanup action. Evaluation of implementability includes consideration of technical factors such as the availability of mature technologies and experienced contractors to accomplish the cleanup work. It also includes administrative factors associated with permitting and completing the cleanup.

6.3.7. Consideration of Public Concerns

The public involvement process under MTCA is used to identify potential public concerns regarding cleanup action alternatives. The extent to which an alternative addresses those concerns is considered as part of the evaluation process. This includes concerns raised by individuals, community groups, local governments, tribes, federal and state agencies, and other organizations that may have an interest in or knowledge of the site. Public concerns for this site generally would be associated with environmental issues and cleanup action performance, which are addressed under other criteria such as protectiveness and permanence.

7.0 EVALUATION AND COMPARISON OF CLEANUP ALTERNATIVES

This section provides an evaluation and comparative analysis of cleanup action alternatives developed for the site. The alternatives are evaluated with respect to the MTCA evaluation criteria described in Section 6.0 and then compared to each other relative to its expected performance under each criterion. The components of the six alternatives are described above in Section 5.3 and summarized in Table 11. Detailed evaluation of the alternatives is presented in Evaluation of Cleanup Action Alternatives, Table 13, and the results of the evaluation are summarized in Summary of MTCA Evaluation and Ranking of Cleanup Action Alternatives, Table 14.

To evaluate reasonableness of costs, planning level estimates were developed for each alternative. While adequate for decision making purposes, final cost estimates will depend on the scope of the final remedial design. Please note that:

- 1. The estimated costs for each alternative are considered to be within a margin of +/- 30 percent;
- 2. Unit costs were derived from RS Means, professional experience, similar bids, or from local vendors;
- 3. Long-term monitoring and maintenance costs beyond 25 years are not included in the estimates; and
- 4. Costs are based on 2017 dollars.

Cost estimates for alternatives 2 through 6 are provided in Tables 15 through 19.

7.1. Threshold Requirements

Four of the six alternatives developed meet the four MTCA threshold requirements described for cleanup actions: protection of human health and the environment, compliance with cleanup standards, compliance with applicable state and federal regulations and provision for compliance monitoring. Alternatives 1 and 2, do not meet the threshold requirements for MTCA.

7.2. MTCA Disproportionate Cost Analysis

As discussed in Section 6.3, the MTCA analysis of disproportionate costs is used to determine which cleanup alternative meets threshold requirements and is permanent to the maximum extent practicable. The alternatives were evaluated based on the relative benefits ranking factors of the DCA. Using a numeric scoring scale of 1 (lowest) to 5 (highest) and the methodology described above in Section 7.0 and in Table 13, each individual criterion is evaluated based on how it applies to each alternative. Table 14 presents the analysis of these results, including the summation of the resulting scores for each alternative and the determination of disproportionate cost. The conclusions of this evaluation are summarized in the following sections and the graph below.

7.3. Protectiveness

Alternatives 4 through 6 achieve the highest level of protectiveness by containing or removing contaminated soil. Alternatives 1, 2 and 3 achieve lower levels of protectiveness because those alternatives result in contaminated soil remaining onsite with an elevated chance of mobility. Alternative 3 stabilizes the contaminated soil, and reduces the chance for mobility; however, without a cover there is still a potential for windblown erosion or exposure to biological receptors. Alternatives 4 and 5 are more protective by providing covers to control contaminant migration and reduce direct contact exposure to terrestrial and ecological receptors. Alternative 6 is the most protective by removing contamination from the site.

7.4. Permanence

Alternatives 1 through 3 generally provide low levels of permanence since they do not reduce the toxicity or mass of material at the site. Alternative 3 is slightly more permanent as it is expected to reduce contaminant mobility when compared to Alternatives 1 and 2. Alternatives 4 and 5 provide higher levels of permanence by reducing the toxicity of mobility of site contaminants; however, contaminant volumes at the site general remain unchanged. Alternative 6 is the most permanent by reducing the toxicity, mobility and volume of contaminated material at the site through off-site disposal.

7.5. Cost

For purposes of this evaluation, higher cost equates to lower scoring. Alternative 1 is the lowest cost alternative and therefore ranks highest. Alternative 6 is the highest cost alternative and therefore ranks lowest. The cost estimates for Alternatives 2 through 6 were developed as described in Section 5.3 and are presented in Tables 15 through 19, respectively. Estimated costs include maintenance and monitoring ranging from 5 to 25 years, dependent upon the alternative.

7.6. Long-Term Effectiveness

Long-term effectiveness of the alternatives has relative rankings similar to those described above for the permanence category. The long-term effectiveness relies on using proven technologies to remove or contain contaminant mass. Alternative 3 has moderate long term effectiveness by reducing the potential for contaminant mobility through erosion, but still leaves the contaminant exposed and could result in contaminant remobilization. Alternatives 4 and 5 protect human health and the environment and have longer term effectiveness by capping the material. Alternative 6 relies on removal of the contaminant mass from the site to the greatest extent practicable and therefore achieves the highest level of long-term effectiveness.

7.7. Management of Short-Term Risks

Alternatives 1 and 2 have the lowest short-term risks since minimal site work is required. Alternatives 3, 4 and 5 have moderate short-term risks associated with importing material to the site and general construction activities required to regrade or move contaminated material. Alternative 6 has the highest short-term risk since large volumes of material will need to excavated from the remote site, transported over a long distance and disposed of as dangerous waste.

7.8. Technical and Administrative Implementability

All five alternatives are generally implementable using commonly available methods. Alternatives 1 and 2 rank as the most technically implementable because they require minimal activities. Alternatives 3, 4 and 5

require mostly earthwork with capping of the tailings required for Alternatives 4 and 5. Earthwork and capping are generally implementable with factors of central repository design and cover material availability differentiating between the alternative ratings for Alternatives 3, 4 and 5. Alternative 6, removal of site contamination is the least implementable, since the volume of waste is so large and it would be difficult to procure enough transportation trucks to remove the material from the site within a reasonable timeframe.

7.9. Consideration of Public Concerns

The alternatives proposed vary in expected acceptance to the public. Alternatives 1 and 2 are least acceptable since they do little for beneficial uses of the site and do not sufficiently address contaminant exposure and migration. Alternative 6 has an assumed moderate level of public acceptance. Although the contaminated material would be removed from the site, the amount of traffic between the site and disposal area might not be acceptable to the public, especially residents around the site. In addition, the carbon footprint required to transport the material from the site to the dangerous waste disposal facility should also be considered. Alternatives 4 and 5 are assumed to be acceptable to the public, since this address contaminant exposure pathways and migration and alternative 5 has the added benefit of improving the future land use for AOI-2.

7.10. Reasonable Restoration Time Frame

The restoration time frame for the proposed alternatives is expected to be on the order of one to three years. This time frame includes project design, permitting, contracting and construction. Alternatives 4 and 5 require long-term cap, surface water and groundwater monitoring.

8.0 RECOMMENDED REMEDIAL ACTION

Based on the Disproportionate Cost Analysis, Alternative 5 is the preferred alternative. Alternatives 1, 2 and 3 had the lowest costs but were least protective. Alternative 6 was the most protective, but it had the highest costs and was not practical. Alternatives 4 and 5 had the highest total environmental benefit scores and relatively similar costs. Alternative 4 had a slightly better management of short term risks, by reducing the amount of material that would need to be hauled along the public roads between the upper and lower tailings piles. However, the overall costs are lower for moving the Upper Tailings Pile and consolidating it with the Lower Tailings Pile, which reduces long-term monitoring for another site and consolidates the material under one cover system that needs to be monitored. In compliance with MTCA [WAC 173-340-360(3)(e)(ii)(c)], Alternative 5 should be the preferred remedial alternative.

9.0 REFERENCES

- Beacon Hill, 1999. "Equinox Resources (Wash.) Inc., Van Stone Mine, Washington State, USA, Reclamation and Closure Plan," Prepared by Beacon Hill Consultants (1988) Ltd., for Mano River Resources Inc., July 1999.
- Ecology, 1986. "In the Matter of Remedial Action by: Vaagen Brothers Lumber Co., Inc., Agreed Order No. 8613."
- Ecology, 2016. "Feasibility Study Checklist," Washington State Department of Ecology, Toxics Cleanup Program, Publication Number 16-09-007, May 2016.

Eichler, 2015. "Personal Communications with Josh Lee," October 13, 2015.

- Hart Crowser, 2012a. "Work Plan for Emergency Remedial Action, Upper Tailings Pile, Van Stone Mine," Prepared for Washington State Department of Ecology, Hart Crowser 17800-34, October 15, 2012.
- Hart Crowser, 2012b. "Emergency Remedial Action Construction Completion Report, Upper Tailings Pile, Van Stone Mine," Prepared for Washington State Department of Ecology, Hart Crowser 17800-34, December 26, 2012.
- Hart Crowser, 2013. "Van Stone Mine Remedial Investigation," Prepared for Washington State Department of Ecology, Hart Crowser 17800-00, November 2013.
- Johnson, Douglas L., 2010. "Re: Notice of Corrective Docket # 7904". Received by Mr. Jack McCottier, August 24, 2010.
- Klohn Leonoff, 1990. Tailings Disposal Design Report, Van Stone Mine. September 5, 1990.
- MacDonald, D., C. Ingersoll, and T. Berger. (2000). Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Archives of Environmental Contamination and Toxicology, VI. 39, pp 20-31.
- USGS, 2004. Conceptual Model and Numerical Simulation of the Ground-Water-Flow System in the Unconsolidated Deposits of the Colville River Watershed, Stevens County, Washington. U.S. Geological Survey, Scientific Investigations Report 2004-5237.

Soil Chemical Analytical Results - Total Metals¹

Van Stone Mine

			Metals ²										
		Depth Interval	Antimony	Arsenic	Cadmium	Chromium	Hexavalent Chromium	Copper	Lead	Mercury ³	Nickel	Zinc	
Sample Name	Date	Feet					mg/kg	5	-		-		
Cle	anup Level ⁴		0.86	5.04	1.60	26 ⁵	19	28	44.9	0.13	30	206	
A0I-1		-									-		
MS-19 (0.5-1)	10/13/2015	0.5-1	1.8	13.1	78.3	0.76		6.9	6,890	0.34	7.2	29,700	
MS-20 (0.5-1)	10/13/2015	0.5-1	2.4	5.6	31.7	1.9		15.2	14,700	0.50	3.7	7,560	
MS-21 (0.5-1)	10/13/2015	0.5-1	0.45	4.3	9.3	3.7		175	1,370	0.12	3.1	2,980	
MS-22 (0.5-1)	10/13/2015	0.5-1	0.77	8.2	17.2	3.0		103	2,400	0.42	3.0	5,400	
MS-23 (0.5-1)	10/13/2015	0.5-1	0.71	2.0	215	0.91		57.7	3,730	0.31	1.8	57,200	
MS-24 (0.5-1)	10/13/2015	0.5-1	0.37 U	4.0	7.7	3.8		9.1	123	0.072	4.2	2,130	
MS-25 (0.5-1)	10/13/2015	0.5-1	0.83	13.5	11.3	1.1		3.2	272	0.050	4.8	1,860	
MS-26 (0.5-1)	10/13/2015	0.5-1	3.2	9.4	105	0.84	-	10.8	13,900	0.056	2.9	27,400	
MS-27 (0.5-1)	10/13/2015	0.5-1	0.46 U	5.7	6.2	3.0	-	8.6	608	0.095	3.5	3,680	
MS-28 (0.5-1)	10/13/2015	0.5-1	0.40 U	1.5	2.4	3.3	-	7.1	330	0.028	3.2	746	
MS-29 (6-7)	10/12/2015	6-7	0.77	7.0	30.9	3.2	-	3.3	11.5	0.019 U	6.9	2,930	
MS-30 (4-5)	10/13/2015	4-5	0.48 U	26.5	36.7	0.48 U	-	2.4	42 3	0.13	3.4	13,200	
MS-31 (6-8)	10/13/2015	6-8	0.45	5.3	4.7	5.9	-	6.3	293	0.048	6.2	1,580	
MS-32 (4-5)	10/13/2015	4-5	0.57	10.7	28.6	2.2	-	4.1	438	0.35	5.4	5,930	
MS-33 (4-5)	10/12/2015	4-5	0.50 U	1.8	0.56	4.0		3.6	63	0.019 U	3.3	269	
MS-34 (4-5)	10/12/2015	4-5	0.51 U	5.5	5.3	3.8		4.7	158	0.067	5.2	3,200	
MS-35 (6-8)	10/12/2015	6-8	0.49 U	13.5	10	2.3		3.3	186	0.079	4.4	3,950	
MS-36 (3-5)	10/12/2015	3-5	0.47 U	14.4	3.6	0.47 U		1.3	58.9	0.038	3.2	1,540	
A0I-2					-	-					-		
HSA-1 (20-21.5)	01/08/2015	20-21.5	1.7	10.6	32.3	-		23.3	814	0.0065		12,600	
HSA-1 (30-31.5)	01/08/2015	30-31.5	1.7	20.6	105			152	3,780	0.043		35,300	
HSA-1 (40-41.5)	01/08/2015	40-41.5	0.42 U	0.75	0.097	-		10.1	8.6	0.018 U		38.2	
HSA-2 (10-11.5)	01/09/2015	10-11.5	0.60	3.8	17.6	-		23.3	179	0.0014		9,180	
HSA-2 (15-16.5)	01/09/2015	15-16.5	0.49 U	0.49 U	0.079 U	-		0.99 U	1.9	0.019 U		57.9	
HSA-2 (20-21.5)	01/09/2015	20-21.5	0.50 U	0.53	0.14	-	-	19.8	3.5	0.020 U	-	86.8	

			Metals ²										
		Depth Interval	Antimony	Arsenic	Cadmium	Chromium	Hexavalent Chromium	Copper	Lead	Mercury ³	Nickel	Zinc	
Sample Name	Date	Feet					mg/kg	{					
Cle	anup Level ⁴		0.86	5.04	1.60	26 ⁵	19	28	44.9	0.13	30	206	
HSA-3 (10-11.5)	01/09/2015	10-11.5	1.0	3.3	19.4	-	-	21.8	329	0.0023 U	-	8,290	
HSA-3 (20-21.5)	01/09/2015	20-21.5	2.6	7.8	37.8		-	25.5	934	0.0056		16,200	
HSA-3 (30-31.5)	01/09/2015	30-31.5	0.51 U	2.1	0.096	-		3.7	5.2	0.022 U	-	448	
HSA-4 (10-11.5)	01/09/2015	10-11.5	1.0	3.0	14.4	-	-	21.3	439	0.0011		5,780	
HSA-4 (20-21.5)	01/09/2015	20-21.5	0.49 U	2.0	0.11	-	-	2.9	11.8	0.00021 U		19.0	
HSA-4 (25-26)	01/09/2015	25-26	0.47 U	0.63	0.12	-	-	9.2	6.4	0.00020 U		62.9	
HSA-5 (10-11.5)	01/08/2015	10-11.5	0.56 U	5.9	5.7	-		32.4	146	0.0011	-	2,890	
HSA-5 (20-21.5)	01/08/2015	20-21.5	0.79	7.7	9.5	-	-	149	716	0.0043		4,340	
HSA-5 (30-31.5)	01/08/2015	30-31.5	0.41 U	0.66	0.066 U	-	-	2.8	4.2	0.019 U		49.2	
HSA-6 (10-11.5)	01/07/2015	10-11.5	0.82	6.3	13.0	-	-	27.9	240	0.0019		5,410	
HSA-6 (20-21.5)	01/07/2015	20-21.5	1.5	5.9	25.8	-		18.9	335	0.0032		11,700	
HSA-6 (30-31.5)	01/07/2015	30-31.5	0.56 U	0.76	0.090 U			3.2	5.4	0.023 U		45.6	
A0I-3				-	-	-							
LT-NS-1 (0.5-1)	10/12/2015	0.5-1	0.48 U	0.82	0.10	1.6	2.0 U	5.6	2.2	0.019 U	1.7	13.2	
LT-NS-2 (0.5-1)	10/12/2015	0.5-1	0.50 U	0.78	0.10	1.6	2.0 U	8.8	7.5	0.018 U	1.7	27.6	
HSA-7 (10-11.5)	12/08/2014	10-11.5	0.54 U	4.1	4.6	1.3		17.1	268	-	2.3	1,560	
HSA-7 (35-36.5)	12/08/2014	35-36.5	1.6	6.2	7.3	0.91		20.8	334	-	12.2	4,000	
HSA-7 (60-61.5)	12/08/2014	60-61.5	0.62 U	10.5	6.2	4.2		95.6	244	-	3.9	4,030	
HSA-7 (70-71.5)	12/08/2014	70-71.5	0.81	12.3	13.2	1.4		36.6	195	-	3.4	5,020	
HSA-7 (76.1-76.5)	12/08/2014	76.1-76.5	0.63 U	2.3	0.62	5.3		8.7	13.0	-	6.7	87.7	
HSA-8 (20-21.5)	12/08/2014	20-21.5	0.68	27.0	4.8	2.4		19.3	282	-	2.3	2,190	
HSA-8 (40-41.5)	12/08/2014	40-41.5	0.52 U	2.9	4.8	1.2		17.2	375	-	1.3	2,080	
HSA-8 (70-71.5)	12/08/2014	70-71.5	0.97	5.3	15.2	0.60		23.9	193	-	2.1	6,070	
HSA-8 (76.4-76.5)	12/08/2014	76.4-76.5	1.1	19.0	11.8	2.1		143	200	-	4.3	5,190	
HSA-8 (80-81.5)	12/09/2014	80-81.5	0.56 U	2.4	0.24			4.9	2.9			29.0	
HSA-9 (10-11.5)	12/09/2014	10-11.5	0.99	4.5	5.3	1.9		15.9	495		1.9	2,270	
HSA-9 (50-51.5)	12/10/2014	50-51.5	2.3	7.5	16.2	0.57		11.2	1,200		1.3	4,710	
HSA-9 (80-81.5)	12/10/2014	80-81.5	0.53 U	3.7	11.4	1.9		24.7	144		2.2	7,290	
HSA-9 (85-86.5)	12/10/2014	85-86.5	0.60 U	2.8	0.50	7.4		11.5	14.1		9.1	94.6	
HSA-10 (10-11.5)	12/10/2014	10-11.5	0.80	8.4	5.5	2.5		16.5	291	-	2.8	2,270	
HSA-10 (30-31.5)	12/10/2014	30-31.5	0.84	11.9	11.9	3.4		234	912	-	3.8	4,480	
HSA-10 (50-51.5)	12/10/2014	50-51.5	0.73	30.8	8.8	3.1		201	567	-	4.1	3,370	

				Metals ²											
		Depth Interval	Antimony	Arsenic	Cadmium	Chromium	Hexavalent Chromium	Copper	Lead	Mercury ³	Nickel	Zinc			
Sample Name	Date	Feet		mg/kg											
Cle		0.86	5.04	1.60	26 ⁵	19	28	44.9	0.13	30	206				
HSA-10 (60-61.5)	12/11/2014	60-61.5	0.99	7.4	2.6	6.0		117	184	-	8.4	793			
HAS-10 (63-63.5)	12/11/2014	63-63.5	0.50 U	1.2	0.10			6.6	6.5	-		82.1			
HSA-11 (20-21.5)	12/11/2014	20-21.5	0.84	12.0	3.4	2.8	-	37.7	383	-	2.1	1,470			
HSA-11 (25.5-26.5)	12/11/2014	25.5-26.5	0.54 U	1.9	0.83	3.7	-	9	35.4	-	4.9	277			

¹Chemical analysis conducted by Pace Analytical located in Minneapolis, Minnesota.

²Metals analyzed by EPA Method 6020A.

³Mercury analyzed by EPA Method 7471B.

⁴Cleanup levels adapted from draft screening levels listed in Table 11 from the Hart Crowser Remedial Investigation.

⁵Cleanup level for Chromium III (Cr III)

'--' = not tested; AOI = Area of Interest (see Figure 1 for locations); ft = feet; mg/kg - milligrams per kilogram; U = Analyte was not detected above reporting limit; NE = not established; NL = no limit

Bold indicates analyte was detected above the reporting limit.

Red Bold and gray shading indicates analyte was detected above the applicable cleanup level or screening level.

Soil Chemical Analytical Results - TCLP and SPLP¹

Van Stone Mine

Onion Creek, Washington

				Metals ^{2,3}												
		Depth	SPLP	SPLP	TCLP	SPLP	TCLP	SPLP	TCLP	SPLP	SPLP	TCLP	SPLP	TCLP	SPLP	SPLP
		Interval	Antimony	Arsenic	Arsenic	Cadmium	Cadmium	Chromium	Chromium	Copper	Lead	Lead	Mercury	Mercury	Nickel	Zinc
Sample Name	Date	Feet								mg/L						
RCRA Ha	zardous Waste Li	mit	NE	5	5	1	1	5	5	NE	5	5	0.2	0.2	NE	NE
A0I-1		-	-													
MS-19 (0.5-1)	10/13/2015	0.5-1	0.0050 U	0.0050 U	0.012 U	0.00080 U	0.35		0.012 U	0.010 U	0.0035	7.7		0.00060 U		0.050 U
MS-20 (0.5-1)	10/13/2015	0.5-1	0.0050 U	0.0050 U	0.012 U	0.00083	0.54		0.012 U	0.010 U	0.013	257	-	0.00060 U	-	0.050 U
MS-21 (0.5-1)	10/13/2015	0.5-1	0.0050 U	0.0050 U	0.012 U	0.00080 U	0.19	-	0.012 U	0.011	0.051	17.4	-	0.00060 U	-	0.20 U
MS-22 (0.5-1)	10/13/2015	0.5-1	-				-	-	-			-			-	
MS-23 (0.5-1)	10/13/2015	0.5-1	0.0050 U	0.0050 U	0.012 U	0.00080 U	0.35		0.012 U	0.010 U	0.0043	51.9		0.00060 U		0.050 U
MS-24 (0.5-1)	10/13/2015	0.5-1	-		-			-	-	-	-	-	-		-	
MS-25 (0.5-1)	10/13/2015	0.5-1	-									-				
MS-26 (0.5-1)	10/13/2015	0.5-1	0.0050 U	0.0050 U	0.012 U	0.00082	0.56	-	0.012 U	0.010 U	0.0031	5.9	-	0.00060 U		0.050 U
MS-27 (0.5-1)	10/13/2015	0.5-1	0.0050 U	0.0050 U	0.012 U	0.00080 U	0.16		0.012 U	0.010 U	0.021	4.8		0.00060 U		0.13
MS-28 (0.5-1)	10/13/2015	0.5-1	0.0050 U	0.0050 U	0.012 U	0.00080 U	0.029		0.012 U	0.010 U	0.015	1.9		0.00060 U		0.063
MS-29 (6-7)	10/12/2015	6-7								-		-				
MS-30 (4-5)	10/13/2015	4-5	0.0050 U	0.0050 U	0.012 U	0.00080 U	0.21		0.012 U	0.010 U	0.0010 U	2.9		0.00060 U		0.050 U
A0I-2																
HSA-1 (20-21.5)	01/08/2015	20-21.5	0.0025	0.00050 U	0.0032	0.00027	0.18			0.0010 U	0.00088	9.3	0.00020 U	0.00060 U		0.0069
HSA-1 (30-31.5)	01/08/2015	30-31.5	0.00061	0.00050 U	0.012 U	0.0012	0.91			0.0014	0.026	23.6	0.00020 U	0.00060 U		0.065
HSA-2 (10-11.5)	01/09/2015	10-11.5	0.00090	0.00050 U	0.0025 U	0.00023	0.17			0.0015	0.0082	0.19	0.00020 U	0.00060 U		0.078
HSA-3 (10-11.5)	01/09/2015	10-11.5	0.00050 U	0.00050 U	0.012 U	0.00019	0.020			0.0010 U	0.0035	0.73	0.00020 U	0.00060 U		0.092
HSA-3 (20-21.5)	01/09/2015	20-21.5	0.0019	0.00050 U	0.0025 U	0.00014	0.15			0.0011	0.011	9.0	0.00020 U	0.00060 U		0.037
HSA-4 (10-11.5)	01/09/2015	10-11.5	0.0015	0.00050 U	0.0025 U	0.000080 U	0.069			0.0010 U	0.00078	3.9	0.00020 U	0.00060 U		0.0080
HSA-4 (20-21.5)	01/09/2015	20-21.5	0.00050 U	0.0011	0.025 U	0.000080 U	0.0040 U			0.0014	0.0097	0.11	0.00020 U	0.00060 U		0.013
HSA-4 (25-26)	01/09/2015	25-26	0.00050 U	0.0012	0.025 U	0.000080 U	0.0040 U			0.031	0.0047	0.15	0.00020 U	0.00060 U		0.048
HSA-5 (10-11.5)	01/08/2015	10-11.5	0.0018	0.00051	0.012 U	0.000090	0.11			0.0010 U	0.0029	1.6	0.00020 U	0.00060 U		0.027
HSA-5 (20-21.5)	01/08/2015	20-21.5	0.0046	0.00050 U	0.012 U	0.00022	0.088			0.0055	0.0042	2.1	0.00020 U	0.00060 U		0.033
HSA-6 (10-11.5)	01/07/2015	10-11.5	0.0022	0.00050 U	0.012 U	0.000080 U	0.078			0.0010 U	0.0012	2.6	0.00020 U	0.00060 U		0.011
HSA-6 (20-21.5)	01/07/2015	20-21.5	0.0024	0.00095	0.0025 U	0.000080 U	0.068			0.0010 U	0.0024	2.3	0.00020 U	0.00060 U		0.019

GEOENGINEERS

				Metals ^{2,3}												
		Depth Interval	SPLP Antimony	SPLP Arsenic	TCLP Arsenic	SPLP Cadmium	TCLP Cadmium	SPLP Chromium	TCLP Chromium	SPLP Copper	SPLP Lead	TCLP Lead	SPLP Mercury	TCLP Mercury	SPLP Nickel	SPLP Zinc
Sample Name	Date	Feet								mg/L						
RCRA Ha	zardous Waste Lir	mit	NE	5	5	1	1	5	5	NE	5	5	0.2	0.2	NE	NE
A0I-3																
HSA-7 (35-36.5)	12/08/2014	35-36.5	0.0036	0.0025 U	0.012 U	0.00040 U	0.048	0.0025 U	0.012 U	0.0050 U	0.0025	2.0			0.0025 U	0.026
HSA-7 (70-71.5)	12/08/2014	70-71.5	0.0051	0.013		0.00094		0.0025 U		0.034	0.029		-		0.0025 U	0.40
HSA-8 (76.4-76.5)	12/08/2014	76.4-76.5	0.026	0.0062	0.012 U	0.00046	0.096	0.0025 U	0.012 U	0.0066	0.0040	0.97	-		0.0025 U	0.19
HSA-9 (50-51.5)	12/10/2014	50-51.5	0.0054	0.0025 U	0.012 U	0.00040 U	0.048	0.0025 U	0.012 U	0.0050 U	0.015	4.5	-		0.0025 U	0.041
HSA-9 (80-81.5)	12/10/2014	80-81.5		0.0025 U	0.012 U	0.0045	0.098	0.0025 U	0.012 U	0.033	0.067	0.35	-		0.0025 U	2.1
HSA-10 (10-11.5)	12/10/2014	10-11.5	0.0025 U	0.0025 U		0.00068	-	0.0025 U	-	0.0050 U	0.026	-	-		0.0025 U	0.14
HSA-10 (30-31.5)	12/10/2014	30-31.5	0.0071	0.0025 U	0.012 U	0.00098	0.049	0.0025 U	0.012 U	0.020	0.032	3.0	-		0.0025 U	0.41
HSA-10 (50-51.5)	12/10/2014	50-51.5	0.0064	0.0068	0.012 U	0.0081	0.031	0.0035	0.012 U	0.19	0.39	1.1	-		0.0097	3.8
HSA-10 (60-61.5)	12/11/2014	60-61.5	0.020	0.0030	0.012 U	0.00092	0.043	0.0025 U	0.012 U	0.0087	0.069	0.61			0.0025 U	0.33
HSA-11 (20-21.5)	12/11/2014	20-21.5	0.0046	0.0025 U	-	0.00040 U		0.0025 U		0.0050 U	0.0023	-			0.0025 U	0.032

¹Chemical analysis conducted by Pace Analytical located in Minneapolis, Minnesota

²Toxic Characteristic Leaching Procedure (TCLP): Samples extracted using EPA Method 1311 and analyzed by EPA Method 6020A and/or EPA Method 7470A.

³Synthetic Precipitation Leaching Procedure (SPLP): Samples extracted using EPA Method 1312 and analyzed by EPA Method 6020A

--' = not tested; AOI = Area of Interest (see Figure 1 for locations); ft. = feet; mg/L = milligrams per liter.

U = Analyte was not detected above reporting limit; NE = not established.

Bold indicates analyte was detected above the reporting limit

Red Bold and gray shading indicates analyte was detected above the applicable cleanup level or screening level.

Soil Chemical Analytical Results - Asbestos¹

Van Stone Mine

Onion Creek, Washington

			Sa	mple Descrip	tion	Asbestos	
Sample Name	Date	Depth Interval	Layers	Color	Matrix	Estimated Quantity	Non-Asbestos Material Identification %
				A0I-1			
MS-29 (6-7)	10/13/15	6-7 ft	1/1	Tan	Sand	None Detected	100% Nonfibrous Binder
MS-30 (4-5)	10/13/15	4-5 ft	1/1	Brown	Soil	None Detected	100% Nonfibrous Binder
MS-31 (6-8)	10/13/15	6-8 ft	1/1	Brown	Soil	None Detected	100% Nonfibrous Binder
MS-32 (4-5)	10/13/15	4-5 ft	1/1	Brown	Soil	None Detected	100% Nonfibrous Binder
MS-33 (4-5)	10/13/15	4-5 ft	1/1	Brown	Soil	None Detected	100% Nonfibrous Binder
MS-34 (4-5)	10/13/15	4-5 ft	1/1	Brown	Soil	None Detected	100% Nonfibrous Binder
MS-35 (6-8)	10/12/15	6-8 ft	1/1	Brown	Sand/Rocks	None Detected	100% Nonfibrous Binder
MS-36 (3-5)	10/12/15	3-5 ft	1/1	Tan/Gray	Sand/Rocks	None Detected	100% Nonfibrous Binder
		• •		A0I-2			
HSA-3 (10-11.5)	01/09/2015	10-11.5 ft	1/1	Tan	Sand	Trace Actinolite	100% Nonfibrous Binder
HSA-3 (20-21.5)	01/09/2015	20-21.5 ft	1/1	Gray	Sand	Trace Actinolite	100% Nonfibrous Binder
HSA-6 (10-11.5)	01/07/2015	10-11.5 ft	1/1	Gray	Sand	Trace Actinolite	100% Nonfibrous Binder
HSA-6 (20-21.5)	01/07/2015	20-21.5 ft	1/1	Gray	Sand	Trace Actinolite	100% Nonfibrous Binder
				A0I-3			
LT-NS-1 (0.5-1)	10/12/15	0.5-1 ft	1/1	Tan	Sand	None Detected	100% Nonfibrous Binder
LT-NS-2 (0.5-1)	10/12/15	0.5-1 ft	1/1	Tan	Sand	None Detected	100% Nonfibrous Binder
HSA-7 (10-11.5)	12/08/2014	10-11.5 ft	1/1	Gray	Sand	None Detected	None Detected
HSA-7 (35-36.5)	12/08/2014	35-36.5 ft	1/1	Gray	Sand	<1 Chrysotile <1 Actinolite	98% Nonfibrous Binder
HSA-7 (70-71.5)	12/08/2014	70-71.5 ft	1/1	Gray	Sand	None Detected	100% Nonfibrous Binder
HSA-9 (10-11.5)	12/09/2014	10-11.5 ft	1/1	Gray	Sand	None Detected	100% Nonfibrous Binder
HSA-9 (50-51.5)	12/10/2014	50-51.5 ft	1/1	Gray	Sand	None Detected	100% Nonfibrous Binder
HSA-9 (80-81.5)	12/10/2014	80-81.5 ft	1/1	Gray	Sand	None Detected	100% Nonfibrous Binder

Notes:

¹Chemical analysis conducted by Pace Analytical located in Minneapolis, Minnesota.

File No. 0504-100-00 AOI = Area of interest (see Figure 1 for locations); ft = feet

Table 3 | May 2, 2017

Soil Chemical Analytical Results - ABAs¹

Van Stone Mine

			ABAs ²									
Sample Name	Sample Date	Depth Interval	Acid Generating Potential (AGP) t CaCO ₃ /Kt	Acid Neutralization Potential (ANP) t CaCO ₃ /Kt	Acid Base Potential (ABP) t CaCO ₃ /Kt	Total Sulfur % by weight	Sulfur HCI Extractable % by weight	Sulfur HNO3 Extractable % by weight	Sulfur Hot Water Extractable % by weight	Sulfur, Residual % by weight		
A0I-1												
MS-29 (6-7)	10/12/2015	6-7 ft	4.3 U	92.0	92.0	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U		
MS-30 (4-5)	10/13/2015	4-5 ft	47.6	92.6	45.0	2.20	0.563	1.08	0.532	0.050 U		
MS-31 (6-8)	10/13/2015	6-8 ft	4.8	44.6	39.9	0.329	0.050 U	0.115	0.173	0.050 U		
MS-35 (6-8)	10/12/2015	6-8 ft	4.3 U	91.7	91.7	0.050 U	0.053	0.050 U	0.050 U	0.050 U		
MS-36 (3-5)	10/12/2015	3-5 ft	4.3 U	92.0	92.0	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U		
A0I-2	-						-					
HSA-1 (20-21.5)	01/08/2015	20-21.5 ft	7.8	580	570	0.338	0.050 U	0.232	0.331	0.050 U		
HSA-1 (30-31.5)	01/08/2015	30-31.5 ft	8.4	480	470	0.427	0.050 U	0.223	0.416	0.050 U		
HSA-2 (10-11.5)	01/09/2015	10-11.5 ft	4.3 U	430	430	0.195	0.050 U	0.077	0.194	0.050 U		
HSA-3 (10-11.5)	01/09/2015	10-11.5 ft	4.3 U	380	380	0.355	0.050 U	0.113	0.354	0.050 U		
HSA-3 (20-21.5)	01/09/2015	20-21.5 ft	5.9	570	560	0.230	0.050 U	0.178	0.230	0.050 U		
HSA-4 (10-11.5)	01/09/2015	10-11.5 ft	8.1	580	570	0.299	0.050 U	0.244	0.287	0.050 U		
HSA-5 (10-11.5)	01/08/2015	10-11.5 ft	5.3	510	500	0.482	0.050 U	0.151	0.476	0.050 U		
HSA-5 (20-21.5)	01/08/2015	20-21.5 ft	11	580	570	0.175	0.050 U	0.325	0.175	0.050 U		
HSA-6 (10-11.5)	01/07/2015	10-11.5 ft	21	480	459	1.17	0.050 U	0.521	1.10	0.141		
HSA-6 (20-21.5)	01/07/2015	20-21.5 ft	11	400	389	0.885	0.050 U	0.321	0.862	0.050 U		

						ABA	s²			
Sample Name	Sample Date	Depth Interval	Acid Generating Potential (AGP) t CaCO ₃ /Kt	Acid Neutralization Potential (ANP) t CaCO ₃ /Kt	Acid Base Potential (ABP) t CaCO ₃ /Kt	Total Sulfur % by weight	Sulfur HCI Extractable % by weight	Sulfur HNO3 Extractable % by weight	Sulfur Hot Water Extractable % by weight	Sulfur, Residual % by weight
A0I-3										
LT-NS-1 (0.5-1)	10/12/2015	0.5-1 ft	4.3 U	0.050 U	0.0	0.50 U	0.050 U	0.050 U	0.050 U	0.050 U
LT-NS-2 (0.5-1)	10/12/2015	0.5-1 ft	4.3 U	6.19	6.2	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U
HSA-7 (10-11.5)	12/08/2014	10-11.5 ft	4.3 U	3800	3900	0.120	0.050 U	0.130	0.120	0.050 U
HSA-7 (35-36.5)	12/08/2014	35-36.5 ft	11.3	3600	3590	0.390	0.050 U	0.350	0.260	0.050 U
HSA-7 (70-71.5)	12/08/2014	70-71.5 ft	7.6	200	196	0.350	0.210	0.0800	0.0600	0.050 U
HSA-9 (10-11.5)	12/09/2014	10-11.5 ft	4.3 U	390	390	0.050 U	0.050 U	0.0900	0.050 U	0.050 U
HSA-9 (50-51.5)	12/10/2014	50-51.5 ft	9.40	310	304	0.570	0.050 U	0.300	0.290	0.050 U
HSA-9 (80-81.5)	12/10/2014	80-81.5 ft	8.55	180	176	0.350	0.250	0.0800	0.050 U	0.050 U

¹Chemical analysis conducted by Pace Analytical located in Minneapolis, Minnesota.

²Acid Base Accounting analyzed using EPA Method Modified Sobek 3.2.

'--' = not tested; ft = feet; t CaCO3/Kt = tons of calcium carbonate to per 1,000 tons of waste

AOI = Area of Interest (see Figure 1 for locations)

U = Analyte was not detected above reporting limit.

Bold indicates analyte was detected above the reporting limit.

Soil Chemical Analytical Results - Petroleum Hydrocarbons¹

Van Stone Mine

Onion Creek, Washington

Sample Name	Date	Depth Interval	Gasoline-range hydrocarbons ²	Diesel-range Hydrocarbons ³	Oil-range Hydrocarbons ³
				mg/Kg	
MS-20 (0.5-1)	10/13/2015	0.5-1 ft	5.2 U	15.8 U	91.3
MS-21 (0.5-1)	10/13/2015	0.5-1 ft	5.3 U	123	1,020
MS-22 (0.5-1)	10/13/2015	0.5-1 ft	5.2 U	76.4	932
MS-23 (0.5-1)	10/13/2015	0.5-1 ft	5.2 U	15.9 U	139
MS-27 (0.5-1)	10/13/2015	0.5-1 ft	5.0 U	15.6 U	110
MS-28 (0.5-1)	10/13/2015	0.5-1 ft	5.1 U	15.5 U	30.2
ſ	MTCA Method A CUL ⁴	-	30/1005	2,000	2,000

Notes:

¹Chemical analysis conducted by Pace Analytical located in Minneapolis, Minnesota.

 $^2\mbox{Gasoline-range}$ hydrocarbons analyzed by NWTPH-Gx.

³Diesel-range and motor oil range hydrocarbons analyzed by NWTPH-Dx.

⁴Model Toxics Control Act (MTCA) Method A cleanup levels.

⁵Gasoline-range petroleum hydrocarbon cleanup level is 100 mg/kg if benzene is not present and the total of ethylbenzene,

toluene and xylenes is less than 1% of the gasoline mixture, and 30 mg/kg when benzene is present.

ft = feet; mg/kg = milligrams per kilogram; TPH = total petroleum hydrocarbons; U = analyte was not detected above reporting limit

Groundwater Chemical Analytical Results - Metals¹

Van Stone Mine

Onion Creek, Washington

			Metals ²										
			Antimony	Arsenic	Cadmium	Calcium	Lead	Magnesium	Nickel	Thallium			
Location	Sample ID	Date				-	µg/L						
	Cleanup Level ^{3,4}	-	6	5	5	NE	15	NE	100	2			
	DH-2-101415	10/14/2015	3.0 U ⁵	4.0 U ⁵	4.2	333,000	10.0 U	320,000	20.0 U	5.0 U ^{5,6}			
DH-2 (DH03-2)	DH-2:020116	02/01/2016	0.15 U	1.1	3.3	350,000	2.7	341,000	8.0	0.10 U			
Duplicato (MW 2)	DUP-1-101515	10/15/2015	3.0 U ⁵	4.0 U ⁵	3.0 U	335,000	10.0 U	110,000	20.0 U	5.0 U ^{5,6}			
Duplicate (WW-2)	DUP: 020116	02/01/2016	0.15 U	1.4	0.13	355,000 M1	0.98	121,000 M1	1.0	0.10 U			
MW-1	MW-1: 020116	02/01/2016	0.15 U	2.0	0.080 U	92,000	0.34	20,600	0.68	0.10 U			
	MW-2-101515	10/15/2015	3.0 U ⁵	4.0 U ⁵	3.0 U	343,000	10.0 U	112,000	20.0 U	5.0 U ^{5,6}			
10100-2	MW-2: 020116	02/01/2016	0.15 U	1.4	0.10	345,000	0.99	117,000	1.0	0.10 U			
MW/ 2	MW-3-101415	10/14/2015	3.0 U ⁵	4.0 U ⁵	3.0 U	80,400	10.0 U	20,600	20.0 U	5.0 U ^{5,6}			
10100-3	MW-3: 020216	02/02/2016	0.15 U	0.50 U	0.080 U	88,800	0.10 U	23,800	0.50 U	0.10 U			
	MW-5-101515	10/15/2015	3.0 U ⁵	4.0 U ⁵	3.0 U	121,000	10.0 U	46,900	20.0 U	5.0 U ^{5,6}			
10100-5	MW-5: 020216	02/02/2016	0.15 U	1.4	3.5	104,000	3.9	39,900	7.3	0.10 U			
W-1	W1-101415	10/14/2015	3.0 U ⁵	4.0 U ⁵	3.0 U	185,000 M1	10.0 U	149,000 M1	20.0 U	5.0 U ^{5,6}			
(DH89-8 or DH-8)	W1: 020116	02/01/2016	0.65	0.68	0.45	197,000	0.64	161,000	1.1	0.10 U			
W-2	W-2-101415	10/14/2015	3.0 U ⁵	4.0 U ⁵	3.0 U	88,900	10.0 U	20,000	20.0 U	5.0 U ^{5,6}			

Notes:

¹Chemical analysis conducted by Pace Analytical located in Minneapolis, Minnesota.

²Metals analyzed by EPA Method 6020A.

³Model Toxics Control Act (MTCA) Method A and B cleanup levels. Method B cleanup levels are referenced from Ecology's CLARC Master Spreadsheet. When compounds have multiple cleanup levels referenced in CLARC (carcinogenic and non-carcinogenic), the most conservative value is displayed.

⁴Cleanup levels adapted from lowest potential groundwater ARAR listed in Table 14 from Hart Crowser Remedial Investigation.

⁵Result reported down to the method detection limit (MDL).

 $^{6}\mathrm{MDL}$ is greater than the applicable cleanup level (CUL).

'-' = not tested; U = Analyte was not detected above reporting limit; $\mu g/L$ = micrograms per liter; NE = not established; NL = indicates that a value (Method A or B) is available, but was not selected as the project cleanup level; M1 = Matrix spike recovery exceeded quality control limits. Batch accepted based on laboratory control (LCS) recovery.

1 of 1

Bold indicates analyte was detected above the reporting limit.

Red Bold and gray shading indicates analyte was detected above the applicable cleanup level.

Groundwater Chemical Analytical Results - General Chemistry¹

Van Stone Mine

Onion Creek, Washington

			Alkalinity as CaC0 ₃ ²	Total Dissolved Solids ³	Total Suspended Solids ⁴	Hardness as CaCO3 ⁵
Location	Sample Name	Date	mg/L	mg/L	mg/L	µg/L
DH-2	DH-2-101415	10/14/2015	328	3,000	12.0	2,150,000
	DH-2: 020116	02/01/2016	313	3,020	17.0	2,280,000
Duplicate	DUP-1-101515	10/15/2015	323	1,960	135	1,290,000
(MW-2)	DUP: 020116	02/01/2016	302	1,800	31.0	1,380,000
MW-1	MW-1: 020116	02/01/2016	145	413	10.0 U	315,000
MW-2	MW-2-101515	10/15/2015	321	1,970	145	1,320,000
	MW-2: 020116	02/01/2016	301	1,780	27.0	1,340,000
MW-3	MW-3-101415	10/14/2015	223	409	10.0 U	286,000
	MW-3: 020216	02/02/2016	210	410	10.0 U	320,000
MW-5	MW-5-101515	10/15/2015	155	692	200	494,000
	MW-5: 020216	02/02/2016	152	653	190	424,000
W-1	W1-101415	10/14/2015	244	1,520	10.0 U	1,070,000
	W1: 020116	02/01/2016	244	1,500	10.0 U	1,160,000
W-2	W-2-101415	10/14/2015	218	412	10.0 U	304,000

Notes:

¹Chemical analysis conducted by Pace Analytical located in Minneapolis, Minnesota.

 $^2\mbox{Alkalinity}$ as calcium carbonate (CaCO_3) was analyzed by EPA Method 2320B.

³Total Dissolved Solids was analyzed by EPA Method SM2540C.

⁴Total Suspended Solids analyzed by EPA Method SM2540D.

⁵Hardness as CaCO3 was analyzed by EPA Method 6010C.

mg/L = milligrams per liter; μ g/L = milligrams per liter; U = analyte was not detected above reporting limit.

Bold indicates analyte was detected above the laboratory reporting limit.

Site COCs and Cleanup Levels

Van Stone Mine

Onion Creek, Washington

		Metals ¹												
Media	Antimony	Arsenic	Beryllium	Cadmium	Chromium ²	Copper	Lead	Mercury	Nickel	Selenium	Silver	Thallium	Zinc	
Soil Cleanup Level (mg/kg) ³	0.86	5.04	1.4	1.60	26	28	44.9	0.13	30	1.65	2	1	206	
Surface Water Cleanup Level (mg/L) ⁴	0.014	0.098 ⁵	0.273 ⁵	0.00107 ⁶	0.114 ⁶	0.0141 ⁶	0.0045 ⁶	0.00014	0.081 ⁶	0.005	0.008 ⁶	0.0014	0.164 ⁷	
Groundwater Cleanup Level (mg/L) ⁸	0.006	0.005 ⁹	0.004	0.005	0.1	0.64	0.015	0.002	0.1	0.05	0.08	0.002 ¹⁰	4.8	
Sediment Cleanup Level (mg/kg) ¹¹	0.59 ¹²	33	0.74 ¹²	4.98	111	149	128	1.06	48.6	11	0.57 ¹²	0.41 ¹²	459	

Notes:

¹Metal concentrations are reported as total concentrations, unless otherwise noted.

²Screening level for total chromium

³Soil cleanup level based upon Table 11 of the RI (Hart Crowser, 2013).

⁴Surface water cleanup level based upon dissolved metal concentrations in Table 13 of the RI (Hart Crowser, 2013), unless otherwise noted.

⁵Surface water cleanup level for total concentration based on MTCA Method B for protection of human health, fish ingestion.

⁶Surface water cleanup level for dissolved metal based upon National Recommended Water Quality Criteria for Aquatic life, chronic criteria and a median hardness concentration of 170 mg/L.

⁷Surface water cleanup level for dissolved metal based upon WAC 173-201A and a median hardness concentration of 170 mg/L.

⁸Groundwater cleanup level based upon Table 14 of the RI (Hart Crowser, 2013), unless otherwise noted.

⁹Groundwater cleanup value established by MTCA Method A. Previous value was based on laboratory reporting limits which can very between samples and laboratories.

¹⁰Groundwater cleanup level based upon Washington State and Federal Maximum Contaminant Limit (MCL). Previous cleanup level was based upon laboratory detection limit which can very

between samples and laboratories

¹¹Sediment cleanup level based upon consensus based freshwater sediment values (MacDonald, 2000), unless otherwise noted

¹²Sediment cleanup level based upon background concentrations developed as part of the RI (Hart Crowser, 2013)

Site COC Extents and Exceedance of Cleanup Levels

Van Stone Mine

Onion Creek, Washington

	lony	ic	nium	er		ury	
Media and AOI where site COCs exceed Cleanup Levels	Antin	Arsen	Cadm	Copp	Lead	Merc	Zinc
AOI-1 – Mill Area, Open Pits and Waste Rock	-				•		•
Soil	Х	Х	Х	Х	Х	Х	Х
Surface Water			Х		Х		Х
Groundwater ¹	NA	NA	NA	NA	NA	NA	NA
AOI-2 – Upper Tailings Pile	-	-	-	-		-	
Soil	Х	Х	Х	Х	Х	Х	Х
Surface Water			Х	Х	Х		Х
Groundwater							
AOI-3 – Lower Tailings Pile							
Soil	Х	Х	Х	Х	Х		Х
Surface Water ²	NA	NA	NA	NA	NA	NA	NA
Groundwater							
AOI-4 – Tailings Pipelines and Access Roads							
Soil	Х	Х	Х	Х	Х	Х	Х
Surface Water	NA	NA	NA	NA	NA	NA	NA
Groundwater	NA	NA	NA	NA	NA	NA	NA
AOI-5 – Onion Creek and Tributaries							
Sediment	Х						Х
Surface Water ³							
Groundwater	NA	NA	NA	NA	NA	NA	NA

Notes:

 $^1\mbox{Groundwater}$ monitoring wells not installed in this AOI.

 2 Surface water not present in this AOI. Standing water on the lower tailings was not considered surface water.

³Cadmium, lead and zinc exceeded at a background location (BG-10-SW) during the October 2011

monitoring event.

NA = Not Applicable

Summary of Quantities Used in Feasibility Study

Van Stone Mine

Item	Quantity	Units	Assumptions
Mill and Waste Rock Area - AOI-1			
Perimeter of AOI-1	7,392	feet	From Google Earth
Areal extent of Mill Area	9.4	acres	From Google Earth
Volume of contaminated material at Mill Area	86,060	cubic yards	From Civil 3D
Areal extent of existing Waste Rock Area	53	acres	From Google Earth
Areal extent of graded Waste Rock Area	60	acres	From Google Earth
Volume of contaminated material at Waste Rock Area	3,787,615	cubic yards	From Civil 3D
Upper Tailings Pile - A0I-2	-		•
Perimeter of AOI-2	3,696	feet	From Google Earth
Areal extent of Tailings Pile	9.6	acres	From Google Earth
Areal extent of graded Tailings Pile - Alternatives 3/4	17	acres	From Civil 3D
Volume of tailings	196,000	cubic yards	From Civil 3D
Volume of tailings to grade to achieve in-place 3:1 slopes - Alternatives 3/4	39,000	cubic yards	From Civil 3D
Liner material for Alternative 4	740,000	square feet	From Civil 3D
Cover soil for Alternative 4	54,815	cubic yards	Calculation based on liner area
Haul distance from Upper to Lower Tailings Pile	2.2	miles	From Google Earth
Weight for disposal all tailings - Alternative 6	294,000	tons	Based on tailings moist unit weight of 110 pcf
Lower Tailings Pile - AOI-3			
Perimeter of AOI-3	5,808	feet	From Google Earth
Areal extent of existing Tailings Pile	35.1	acres	From Google Earth
Areal extent of graded Tailings Pile - Alternatives 3/4	51	acres	From Civil 3D
Areal extent of graded Tailings Pile - Alternative 5	59	acres	From Civil 3D, 8 additional acres for Upper Tailings
Volume of tailings, including seepage collection pond	2,300,000	cubic yards	From Civil 3D
Volume of tailings to grade to achieve in-place 3:1 slopes - Alternatives 3/4/5	300,000	cubic yards	From Civil 3D
Liner material for Alternative 4	2,221,560	square feet	From Civil 3D, calc based on overall acreage
Liner material for Alternative 5	2,570,040	square feet	From Civil 3D, calc based on overall acreage
Cover soil for Alternative 4	164,560	cubic yards	Calculation based on liner area
Cover soil for Alternative 5	190,373	cubic yards	Calculation based on liner area
Weight for disposal all tailings - Alternative 6	3,450,000	tons	Based on tailings moist unit weight of 110 pcf
Pipeline Dispersed Tailings - AOI-4			
Volume of dispersed tailings	1,000	cubic yards	From Google Earth

Comparison of Retained Remediation Alternatives Van Stone Mine Onion Creek, Washington

				1				
Remedial Method	Conceptual Description	Benefits	Limitations	Relative Cost	Construction Feasibility	Duration of O&M	Impacts to Future Development, Adjacent Land Uses	MTCA Preference
Alternative 1 - No Action	No change to existing conditions, but includes long-term soil and surface water monitoring plan.	Low cost.	Provides no active source control or waste volume reduction. Does not address downwind migration of contaminants. Does not address community. Does not provide restoration.	Low	Easy	Very long (+25 years or longer)	High. Site will be generally unusable, potential for wind-blown migration of contaminants to adjacent land.	Does not meet MTCA requirements for cleanup.
Alternative 2 - Institutional Controls	Institutional controls, including a restrictive covenant and fencing, would be established for the remedial area to mitigate dermal contact exposure to metals-contaminated soil, waste rock and tailings. In this scenario, there would be no active remedial measures.	Non-invasive and relatively low cost. Provides some control on potential exposure to contaminated media.	Provides no active source control or waste volume reduction. Does not address downwind migration of contaminants. Does not provide restoration.	Low	Easy	Very long (+25 years or longer)	High. Site will be generally unusable, potential for wind-blown migration of contaminants to adjacent land.	Lowest MTCA preference, doesn't treat source or create barrier to human and ecological receptors.
Alternative 3: In-Place Containment without Cover System.	In-place containment of waste rock and tailings with no cover system. Tailings slopes would be regraded to a stable 3:1 or less (depending on final design); with additional site grading to control and mitigate stormwater run-on and run-off. Waste rock would be graded to blend with site contours. Additionally, buttresses, reinforce stabilized slopes, and benches could be used to enhance the stability and reduce the overall slope. The regraded areas would not be covered with a soil cap. The tailings and waste rock areas would be seeded and left to naturally revegetate over time. Reclaimed areas would be fenced to limit access.	Moderate costs because no cover material import Contaminated materials not transported on public roadways. Provides some control on potential direct human exposure. Stabilizes sources areas from mass wasting and stormwater erosion.	No barrier to limit human and ecological exposure. Potential for wind-blown migration of contaminants.	Moderate	Moderate	Very long (+25 years or longer)	High. Site will be generally unusable. Although the areas will be regraded to stable slopes, there is still a potential for wind-blown migration of contaminants to adjacent land because no cover system.	Low MTCA preference, doesn't treat source or create barrier to human and ecological receptors.
Alternative 4: In-Place Containment with Cover System.	In-place containment of tailings and waste rock with multi-layer cover system. Dangerous waste from AOI-1 would be added to the upper tailings pile. Tailings slopes would be regraded to a stable 3:1 or less (depending on final design); with additional site grading to control and mitigate stormwater run-on and run-off. Waste rock would be graded to match site contours. Additionally, buttresses, reinforce stabilized slopes, and benches could be used to enhance the stability and reduce the overall slope. The regraded areas would be covered with a multi-layer geo synthetic cover system and 3-feet of common borrow and topsoil. All disturbed areas would be revegetated.	Permanent closure with reduced long-term monitoring. Stabilized source areas Geotextile and soil barrier to control human and ecological exposure, and wind-blown migration. Contaminated materials not transported on public roadways. Potential to use onsite material for cover system.	High costs due to imported materials. Long construction schedule.	High	Difficult	Moderate (10+ years or longer)	Moderate. Site will be generally unusable because of onsite reclamation. Impacts to adjacent land will be controlled with a cover system and vegetation. Wind-blown migration controlled.	Higher MTCA preference, create barrier to human and ecological receptors, but multiple sources areas remain.

Remedial Method	Conceptual Description	Benefits	Limitations	Relative Cost	Construction Feasibility	Duration of O&M	Impacts to Future Development, Adjacent Land Uses	MTCA Preference
Alternative 5: Centralized Repository at AOI-3	Tailings from AOI-2 and dangerous waste material from AOI-1 would be excavated and hauled to AOI-3 for placement into a centralized repository. Tailings slopes would be regraded to a stable 3:1 or less (depending on final design); with additional site grading to control and mitigate stormwater run-on and run-off. Waste rock would be graded to match site contours. Additionally, buttresses, reinforce stabilized slopes, and benches could be used to enhance the stability and reduce the overall slope. The regraded areas would be covered with a multi-layer geosynthetic cover system and 3-feet of common borrow and topsoil. All disturbed areas would be revegetated.	Permanent closure with waste consolidated in one location with stable slopes. Reduced long-term monitoring. Geotextile and soil barrier to control human and ecological exposure, and wind-blown migration. Potential to use onsite material for cover system.	High costs due to imported materials. Long construction schedule. Contaminated materials hauled on public roadways	High	Difficult	Moderate (10+ years or longer)	Moderate. Site will be generally unusable because of onsite reclamation. Impacts to adjacent land will be controlled with a cover system and vegetation. Wind-blown migration controlled.	Higher MTCA preference, create barrier to human and ecological receptors and all waste consolidated onsite.
Alternative 6: Off-Site Disposal	Tailings and waste rock that exceeds TCLP for lead would be excavated and hauled offsite for disposal in a permitted landfill. Waste rock would be graded to match site contours.	Permanent closure with all waste removed from the Site. Short long-term monitoring.	Very high costs Long construction schedule. Contaminated materials hauled on public roadways.	Very High	Difficult	Short (5 years)	Low	Highest MTCA preference, all contaminated waste removed from the Site.

Summary of ARARs Van Stone Mine Onion Creek, Washington

ARAR	Chemical, Location, or Action Specific	Regulated Activity	Alternative 1	Alternative 2	Alternative 3	Alternative 4	Alternative 5	Alternative 6	Evaluation
Washington State		Rogulatou Activity	Altoniutivo	Altoinutivo 2	Altoniutito o	Altoniutivo 4	Altoniutivo o	Altoniutivo o	
Washington Administrative Code 173-60	Action	Noise Levels	Applies	Applies	Applies	Applies	Applies	Applies	Maximum noise levels are applicable depending on action selected.
Washington Administrative Code 173-160	Action	Well Construction and Maintenance	Applies	Applies	Applies	Applies	Applies	Applies	Minimum standards for construction of water and monitoring wells, and decommissioning
Washington Administrative Code 173-162	Action	Well Contractors and Operators	Applies	Applies	Applies	Applies	Applies	Applies	Procedures for well contractors and operators, applicable to installation and decommissioning of wells and borings.
Washington Administrative Code 173-175	Action	Dam Safety	Applies	Applies	Applies	Applies	Applies	Applies	Regulations associated with dams in order to reasonability secure safety to life and property.
Washington Administrative Code 173-201A	Chemical	Water Quality Standards for Surface Waters	Applies	Applies	Applies	Applies	Applies	Applies	MTCA requires cleanup actions comply with applicable regulations.
Washington Administrative Code 173-303	Chemical/Action	Dangerous Waste Management	Applies	Applies	Applies	Applies	Applies	Applies	Identified dangerous waste onsite.
Washington Administrative Code 173-304	Chemical/Action/Locatior	Solid Waste Handling Standards	Does Not Apply	The facility was operated prior to 1985, when WAC 173-304 was promulgated. Therefore compliance with these regulations is not required.					
Washington Administrative Code 173-333	Chemical	Bioaccumulation Toxins Rule	Applies	Applies	Applies	Applies	Applies	Applies	Criteria to identify persistent, bioaccumulative toxins that pose human and ecological threats, and action plan.
Washington Administrative Code 173-340 (and subsets)	Chemical/Action	Toxic Waste Cleanup (MTCA)	Applies	Applies	Applies	Applies	Applies	Applies	The remedial action will be conducted under MTCA. Remedial alternatives will comply with MTCA regulations.
Washington Administrative Code 173-350	Action	Solid Waste Handling Standards	Applies	Applies	Applies	Applies	Applies	Applies	Limited purpose landfill regulations would apply if waste is capped in-place.
Washington Administrative Code 173-400	Action	Fugitive Emissions	Applies	Applies	Applies	Applies	Applies	Applies	Requires owner to take reasonable precautions to prevent fugitive emissions
Washington Administrative Code 197-11 and 173-802	Action	State Environmental Policy Act	Applies	Applies	Applies	Applies	Applies	Applies	A SEPA review is required for projects with potential significant environmental impacts.
Washington Administrative Code 332-30	Action	Aquatic Lands Management	Applies	Applies	Applies	Applies	Applies	Applies	Applicable for actions involving Onion Creek or tributaries.
Washington Administrative Code 296-155	Action	Safety Standards for Construction Work	Does Not Apply	Applies	Applies	Applies	Applies	Applies	Applicable during construction activities.
Washington Administrative Code 296-62	Action	General Occupational Health Standards	Does Not Apply	Applies	Applies	Applies	Applies	Applies	Applicable during construction activities.
Washington Administrative Code 246-290	Chemical	State Maximum Contaminant Level (MCL) limits	Applies	Applies	Applies	Applies	Applies	Applies	State MCLs are applicable to potential groundwater sources of drinking water in accordance with MTCA.
RCW 90.03-0.44	Action	Surface and Groundwater Withdrawal	Applies	Applies	Applies	Applies	Applies	Applies	Substantive compliance with regulations is applicable since action could involve withdrawal or diversion of groundwater or surface water.
RCW 90.48	Action	Water Pollution Control (Construction Stormwater Permit)	Applies	Applies	Applies	Applies	Applies	Applies	A Stormwater Pollution Prevention Plan (SWPPP) is required for each remediation alternative.
RCW 119A	Chemical	Drinking Water Regulations	Applies	Applies	Applies	Applies	Applies	Applies	MTCA has risk-based MCLs to protect consumes using public water supplies (surface water and groundwater)
Federal Regulations	-	·	-		-	-	-		
Title 40 Code of Federal Regulations 50	Action	Clean Air Act	Applies	Applies	Applies	Applies	Applies	Applies	MTCA requires cleanup actions comply with applicable regulations.
Title 40 Code of Federal Regulations 61	Action	Asbestos Removal	Applies	Applies	Applies	Applies	Applies	Applies	Demolition or removal of asbestos containing materials in mill building would be applicable
Title 40 Code of Federal Regulations 131	Chemical	Water Quality Standards (National Toxics Rule)	Applies	Applies	Applies	Applies	Applies	Applies	MTCA requires cleanup actions comply with applicable regulations.

	^	
۱.	n	

	Chemical, Location,								
ARAR	or Action Specific ARAR	Regulated Activity	Alternative 1	Alternative 2	Alternative 3	Alternative 4	Alternative 5	Alternative 6	Evaluation
Washington State		, , , , , , , , , , , , , , , , , , ,							
Title 40 Code of Federal Regulations 141/143	Chemical	Drinking Water Regulations (MCLs)	Applies	Applies	Applies	Applies	Applies	Applies	MTCA requires cleanup actions comply with applicable regulations.
Title 40 Code of Federal Regulations 260-279	Chemical/Action	Hazardous Waste (RCRA)	Applies	Applies	Applies	Applies	Applies	Applies	MTCA requires cleanup actions comply with applicable regulations.
US Environmental Protection Agency - Region 9	Chemical	Preliminary Remediation Goals	Applies	Applies	Applies	Applies	Applies	Applies	PRGs are used as a screening tool, used as part of the risk assessment process.
Title 16 of United States Code, 461-467	Location	Historic Site, Buildings, Objects, and Antiquities Act	Applies	Applies	Applies	Applies	Applies	Applies	Could be applicable if buildings at the site are deemed historic.
Title 16 of United States Code, 469	Location	Archaeological and Historic Preservation Act	Applies	Applies	Applies	Applies	Applies	Applies	Would be applicable if actions cause loss or adverse impacts to significant, prehistoric, historic, and archaeological data
Title 16 of United States Code, 470	Location	National Historic Preservation Action	Applies	Applies	Applies	Applies	Applies	Applies	Could be applicable if buildings at the site are deemed historic.
Title 16 of United States Code, 661-667, 2901-2911	Location	Fish and Wildlife Conservation Act	Applies	Applies	Applies	Applies	Applies	Applies	Applicable for actions that involve Onion Creek and its tributaries
Title 16 of United States Code, 668	Location	Bald Eagle Protection Act	Applies	Applies	Applies	Applies	Applies	Applies	Applicable and actions would be carried out in a way that avoids unnecessarily adversely affecting bald and golden eagles.
Title 16 of United States Code, 703	Location	Migratory Bird Treaty Act	Applies	Applies	Applies	Applies	Applies	Applies	Applicable and actions would be carried out in a way that avoids taking or killing of protected birds and their nests.
Title 16 of United States Code, 1531-1544	Location	Endangered Species Act	Applies	Applies	Applies	Applies	Applies	Applies	Protect species of fish, wildlife, and plants that are listed.
Title 25 of United States Code, 3001-3013	Location	Native American Graves Protection and Reparation Act	Applies	Applies	Applies	Applies	Applies	Applies	Would be applicable if actions cause disturbance or alteration of graves.
Title 33 of United States Code, 26	Chemical/Action	Water Pollution Control (Clean Water Act)	Applies	Applies	Applies	Applies	Applies	Applies	MTCA requires cleanup actions comply with applicable regulations.
Title 33 of United States Code, 26	Chemical/Action	Water Pollution Control (Clean Water Act)	Applies	Applies	Applies	Applies	Applies	Applies	MTCA requires cleanup actions comply with applicable regulations.
Title 33 of United States Code, 26, Section 404	Action/Location	Dredge and Fill Material	Applies	Applies	Applies	Applies	Applies	Applies	Establishes programs to regulate discharge of fill and dredged material into waters of US, including wetlands
Title 33 of United States Code, 1251	Action/Location	Water Pollution Control (Clean Water Act)	Applies	Applies	Applies	Applies	Applies	Applies	MTCA requires cleanup actions comply with applicable regulations.
Title 33 of United States Code, 300g-1	Action/Location	Water Pollution Control (Safe Drinking Water Act)	Applies	Applies	Applies	Applies	Applies	Applies	MTCA requires cleanup actions comply with applicable regulations.
Executive Order 11990	Location	Protection of Wetlands	Applies	Applies	Applies	Applies	Applies	Applies	Applicable for actions that involve Onion Creek and its tributaries and onsite wetlands
Executive Order 11988	Location	Protection of Floodplains	Applies	Applies	Applies	Applies	Applies	Applies	Applicable for actions that take place within the 100-year floodplain of Onion Creek and its tributaries

Evaluation of Cleanup Action Alternatives Van Stone Mine Onion Creek, Washington

Alternative Numbers	Alternative 1	Alternative 2	Alternative 3	Alternative 4	Alternative 5	Alternative 6
Alternative Descriptions	Alternative 1 - No Action	Alternative 2 - Institutional Controls	Alternative 3: In-Place Containment without Cover System.	Alternative 4: In-Place Containment with Cover System.	Alternative 5: Centralized Repository at AOI-3	Alternative 6: Off-Site Disposal
	No change to existing conditions, but includes long-term soil and surface water monitoring plan.	Institutional controls, including a restrictive covenant and fencing, would be established for the remedial area to mitigate dermal contact exposure to metals-contaminated soil, waste rock and tailings. In this scenario, there would be no active remedial measures.	In-place containment of waste rock and tailings with no cover system. Tailings slopes would be regraded to a stable 3:1 or less (depending on final design); with additional site grading to control and mitigate stormwater run-on and run-off. Waste rock would be graded to blend with site contours. Additionally, buttresses, reinforce stabilized slopes, and benches could be used to enhance the stability and reduce the overall slope. The regraded areas would not be covered with a soil cap. The tailings and waste rock areas would be seeded and left to naturally revegetate over time. Reclaimed areas would be fenced to limit access.	In-place containment of tailings and waste rock with multi-layer cover system. Dangerous waste from AOI-1 would be added to the upper tailings pile. Tailings slopes would be regraded to a stable 3:1 or less (depending on final design); with additional site grading to control and mitigate stormwater run-on and run-off. Waste rock would be graded to match site contours. Additionally, buttresses, reinforce stabilized slopes, and benches could be used to enhance the stability and reduce the overall slope. The regraded areas would be covered with a multi-layer geo synthetic cover system and 3-feet of common borrow and topsoil. All disturbed areas would be revegetated.	Tailings from AOI-2 and dangerous waste material from AOI-1 would be excavated and hauled to AOI-3 for placement into a centralized repository. Tailings slopes would be regraded to a stable 3:1 or less (depending on g final design); with additional site grading to control and mitigate stormwater run-on and run-off. Waste rock would be graded to match site contours. Additionally, buttresses, reinforce stabilized slopes, and benches could be used to enhance the stability and reduce the overall slope. The regraded areas would be covered with a multi-layer geosynthetic cover system and 3-feet of common borrow and topsoil. All disturbed areas would be revegetated.	Tailings and waste rock that exceeds TCLP for lead would be excavated and hauled offsite for disposal in a permitted landfill. Waste rock would be graded to match site contours.
		I	Alternative Ranking	g Under MTCA		
1. Compliance with MTCA Thre	shold Criteria				1. Compliance with MTCA Threshold Criteria	
Protection of Human Health and the Environment	No - Alternative does not provide protection of human health and environment.	No - Alternative does not provide protection of human health and environment.	No - Alternative does not provide protection of human health and environment.	Yes - Alternative will protect human health and the environment.	Yes - Alternative will protect human health and the environment.	Yes - Alternative will protect human health and the environment.

1 Compliance with MTCA The	achold Critoria				1. Compliance with MTCA Threshold Criteria	
I. Compliance with WICA The					1. Compliance with MTCA Threshold Chtena	
Protection of Human Health and the Environment	No - Alternative does not provide protection of human health and environment.	No - Alternative does not provide protection of human health and environment.	No - Alternative does not provide protection of human health and environment.	Yes - Alternative will protect human health and the environment.	Yes - Alternative will protect human health and the environment.	Yes - Alternative will protect human health and the environment.
Compliance with Cleanup Standards	No - Alternative does not comply with cleanup standards	No - Alternative does not comply with cleanup standards	Unlikely - Alternative provides for stable slopes and will reduce offsite migration, but no soil cover so potential exists for offsite migration via precipitation and wind-blow particles.	Yes - Alternative is expected to comply with cleanup standards through combination of excavation, grading, and capping.	Yes - Alternative is expected to comply with cleanup standards through combination of excavation, consolidation, grading, and capping.	Yes - Alternative is expected to comply with cleanup standards through excavation and offsite disposal.
Compliance with Applicable State and Federal Regulations	No - Alternative will not comply with applicable state and federal	No - Alternative will not comply with applicable state and federal regulations.	No - Alternative will not comply with applicable state and federal regulations.	Yes - Alternative complies with applicable state and federal regulations	Yes - Alternative complies with applicable state and federal regulations	Yes - Alternative complies with applicable state and federal regulations
Provision for Compliance Monitoring	Yes - Alternative includes long-term monitoring.	Yes - Alternative includes long-term monitoring.	Yes - Alternative includes provision for compliance monitoring (i.e., compliance sampling during remedial excavation, and long-term surface water and sediment monitoring).	Yes - Alternative includes provision for compliance monitoring (i.e., compliance sampling during remedial excavation, long-term cap monitoring, and long-term surface water and sediment monitoring).	Yes - Alternative includes provision for compliance monitoring (i.e., compliance sampling during remedial excavation, long-term cap monitoring, and long-term surface water and sediment monitoring).	Yes - Alternative includes provision for compliance monitoring (i.e., compliance sampling during remedial excavation) but no need for long- term cap and surface water and sediment monitoring because all material removed from the site.
2. Restoration Time Frame						
	Immediate for implementation. Long- term monitoring expected for 25+ years	Short timeframe for installation of fence (estimated at 4 weeks). Long-term monitoring expected for 25+ years.	Initial restoration timeframe is moderate (estimated at 10 weeks). Long-term monitoring expected for 25+ years	Initial restoration timeframe is moderate to long (estimated at 20 weeks - 2 field seasons). Long-term monitoring expected for 10 years.	Initial restoration timeframe is moderate to long (estimated at 20 weeks - 2 field seasons). Long-term monitoring expected for 10 years.	Initial restoration timeframe is long (estimated at 25 weeks - 2 field seasons). Long-term monitoring expected for 5 years.

Alternative Numbers	Alternative 1		Alternative 2		Alternative 3		Alternative 4		Alternative 5		Alternative 6	
3. Disproportionate Cost Analy	sis - Relative Benefits Ranking	\mathbf{g}^1										
		Score		Score		Score		Score		Score		Score
Protectiveness	No protectiveness achieved	1	Low level of protectiveness.	2	Achieves general protectiveness by reducing the potential for offsite migration but doesn't provide a cover system to control wind-blow migration.	3	Achieves overall protectiveness. This alternative is less protective than Alternative 6 because waste material will remain onsite. Addresses direct exposure pathway for terrestrial and ecological receptors.	4	Achieves overall protectiveness. This alternative is less protective than Alternative 6 because waste material will remain onsite. Addresses direct exposure pathway for terrestrial and ecological receptors.	4	Highest overall protectiveness will all waste material transported offsite for disposal. Addresses direct exposure pathway for terrestrial and ecological receptors.	5
Permanence	No reduction in the toxicity, mobility, and mass of material onsite.	1	No reduction in the toxicity, mobility, and mass of material onsite.	1	No reduction in the toxicity and mass of material onsite. Mobility is reduced by grading to stable slopes.	2	Achieves permanent reduction in toxicity and mobility, but not volume as the onsite material is contained by a cover system.	3	Achieves permanent reduction in toxicity and mobility, but not volume as the onsite material are consolidated in a centralized repository contained by a cover system. Improves future land use for AOI-2.	4	Achieves permanent reduction in toxicity, mobility, and volume with contaminated material transported offsite for disposal.	5
Long-Term Effectiveness	No long-term effectiveness	1	Limited long-term effectiveness	2	Moderate long-term effectiveness with slopes reduced, but waste material still exposed.	3	High long-term effectiveness with contaminated materials graded to stable slopes and contained in a cover system.	4	High long-term effectiveness with contaminated materials consolidated, graded to stable slopes and contained in a cover system. Requires monitoring of one repository and not two.	4	Highest long-term effectiveness with contaminated material hauled offsite.	5
Management of Short-Term Risks	Lowest short-term risks because no action is taken.	5	Lowest short-term risks because only a fence is installed and no contaminated material is excavated.	5	Lower level of short-term risks with no export or import of material from the site.	4	Moderate level of short-term risks with import of cover materials and onsite grading.	3	Moderate to high level of short-term risks due onsite transport of contaminated material to the centralized repository and import of cover materials.	3	Highest level of short-term risks due to excavation of large volumes of material, related over-the-road truck traffic for disposal, and transport of dangerous waste. Therefore, this alternative presents higher short term risks than Alternatives 3, 4 and 5.	1
Technical and Administrative Implementability	Highest level of implementability because no actions taken at the site.	5	High level of implementability with construction of a fence.	5	Moderate to high level of Implementability, and relies on long term maintenance. Plenty of experienced contractors in the areas that can implement this project.	4	Moderate level of Implementability, and relies on long term maintenance. Plenty of experienced contractors in the areas that can implement this project. Availability of cover material to import makes this alternative less implementable than Alternatives 1, 2 and 3.	3	Moderate level of Implementability, and relies on long term maintenance. Plenty of experienced contractors in the areas that can implement this project. Availability of cover material to import makes this alternative less implementable than Alternatives 1, 2 and 3.	3	Implementable, technically feasible, off- site disposal facilities are available, access for earthwork and transportation equipment is good. However, the number of trucks available to transport material off-site will be a limiting factor to the timeframe of construction and likely would prolong construction activities.	2
Consideration of Public Concerns	Lowest level of public acceptance because contaminated materials remain onsite with no control on migration offsite.	1	Lowest level of public acceptance because contaminated materials remain onsite with no control on migration offsite.		Low to moderate level of public acceptable because contaminated materials are stabilized onsite, but no control for offsite migration via wind-blow dust and surface erosion.	2	Moderate level of public acceptance because contaminated materials are covered onsite to control offsite migration and exposure.	4	Moderate level of public acceptance because contaminated materials are covered onsite to control offsite migration and exposure. Increased use of the public roadway to consolidate material in the lower tailings pile will impact local residents.	4	Higher level of public acceptable expected because contaminated material would be removed from the site, but significant traffic between the site and disposal area might not be acceptable to the public, especially residents around the site.	3
Iotal Score		14		16		18		21	lotal Score	22		21

¹Alternatives were scored using a scale of 1 to 5 with a score of 1 being the least amount of benefits provided by the alternative and a score of 5 being the most amount of benefits provided by the alternative.

Summary of MTCA Evaluation and Ranking of Cleanup Action Alternatives

Van Stone Mine

Onion Creek, Washington

			Alternative 3: In-Place Containment	Alternative 4: In-Place Containment	Alternative 5: Centralized	
	Alternative 1 - No Action	Alternative 2 - Institutional Controls	without Cover System.	with Cover System.	Repository at AOI-3	Alternative 6: Off-Site Disposal
Alternative Ranking Under MTCA						
1. Compliance with MTCA Threshold	No	No	Yes	Yes	Yes	Yes
2. Restoration Time Frame	Immediate for implementation.	Short timeframe for installation of fence	Initial restoration timeframe is moderate	Initial restoration timeframe is moderate	Initial restoration timeframe is moderate	Initial restoration timeframe is long
		(estimated at 4 weeks).	(estimated at 10 weeks).	to long (estimated at 20 weeks - 2 field	to long (estimated at 20 weeks - 2 field	(estimated at 25 weeks - 2 field
				seasons).	seasons).	seasons).
	Long-term monitoring expected for 25+	Long-term monitoring expected for 25+	Long-term monitoring expected for 25+	Long-term monitoring expected for 10	Long-term monitoring expected for 10	Long-term monitoring expected for 5
	years.	years.	years.	years.	years.	years.
3. Disproportionate Cost Analysis Relativ	e Benefits Ranking					
Protectiveness	5 1	2	3	4	4	5
Permanence	e 1	1	2	3	4	5
Cost	2 5	4	3	2	2	1
Long-Term Effectiveness	5 1	2	3	4	4	5
Management of Short-Term Risks	5	5	4	3	3	1
Implementability	y 5	5	4	3	3	2
Consideration of Public Concerns	5 1	1	2	4	4	3
Total of Scores	5 19	20	21	23	24	22
4. Disproportionate Cost Analysis						
	\$0	\$903,400	\$4,863,076	\$14,361,469	\$13,960,482	\$448,143,116
Benefits	s Yes	Yes	No	No	No	No
Practicability of Remedy	Not Practicable	Not Practicable	Low Practicability	Practicable	Practicable	Not Practicable
Remedy Permanent to Maximum Exten	t					
Practicable	e Not Permanent	Not Permanent	Not Permanent	Yes	Yes	Yes
Overall Alternative Ranking	5 6th	5th	4th	2nd	1st	3rd

Notes:

¹WAC 173-340-360(2)(a) ²Low cost is a benefit.

Alternative 2. Institutional Controls

Van Stone Mine

Onion Creek, Washington

Scope Item	Unit	Unit Cost	Quantity	Extended					
Design/Project Management									
Design, work plan and procurement	lump sum	\$20,000.00	1	\$20,000					
			Task Sub-Total	\$20,000					
8-foot Chain Link Fence Around AOIs									
Mill/Waste Rock Area	feet	\$15.00	7,392	\$110,880					
Upper Tailings Pile	feet	\$15.00	3,696	\$55,440					
Lower Tailings Pile	feet	\$15.00	5,808	\$87,120					
	Remedial Action Sub-Total								
		Remedial Ac	tion Contingency (15%)	\$38,016					
Engi	neering, Construction O	versight, Project M	Aanagement, Reporting	\$20,000					
		Remedial	Action Estimated Total	\$311,456					
Annual Maintenance and Monitoring									
Quarterly Groundwater Monitoring/Inspection and Reporting	event	\$10,000.00	4	\$40,000					
Occasional repairs	event	\$2,000.00	1	\$2,000					
	A	nnual Maintenan	ce and Monitoring Total	\$42,000					
Present	Worth Annual Mainten	ance and Monitor	ing Costs (5%, 25 years)	\$591,944					
		Total Estimated	l Costs for Alternative 2	\$903,400					

Notes:

Unit costs derived from either RS Means, estimates from local vendors, and experience. Estimated costs are considered to be within a margin of +/- 30 percent.

Refer to Table 1 for assumptions used to generate material quantities.

Alternative 3. In-Place Containment without Cover System

Van Stone Mine

Scope Item	Unit	Unit Cost	Quantity	Extended		
Design / Work Plan / Project Management						
Design Data Gaps - Borrow Materials, Dam Spillway, etc.	lump sum	\$35,000.00	1	\$35,000		
Design, Work Plan, Plans/Specs, Project Management	lump sum	\$300,000.00	1	\$300,000		
			Task Sub-Total	\$335,000		
Construction Oversight / Project Management / Reporting						
Construction monitoring/oversight - assume 10 weeks construction,						
includes PM and Per Diem	day	\$2,000.00	70	\$140,000		
Analytical	lump sum	\$15,000.00	1	\$15,000		
Remedial action report	lump	\$60,000.00	1	\$60,000		
			Task Sub-Total	\$215,000		
Mill Area / Waste Rock - AOI-1						
Grading mine area/waste rock	acre	\$5,000.00	60	\$300,000		
Surface water controls	lump sum	\$100,000.00	1	\$100,000		
Revegetation	acre	\$2,000.00	60	\$120,000		
			Task Sub-Total	\$520,000		
Upper Tailings Pile - AOI-2						
Grading tailings to 3:1 slope	cubic yards	\$7.00	39,000	\$273,000		
Surface water controls	lump sum	\$25,000.00	1	\$25,000		
Revegetation	acre	\$2,000.00	17	\$34,000		
			Task Sub-Total	\$332,000		
Lower Tailings Pile - AOI-3	-					
Grading tailings to 3:1 slope	cubic yards	\$5.00	300,000	\$1,500,000		
Surface water controls	lump sum	\$100,000.00	1	\$100,000		
Revegetation	acre	\$2,000.00	51	\$102,000		
Task Sub-Total						
North Pit Lake Dam						
Emergency Spillway Installation	lump sum	\$100,000.00	1	\$100,000		
Dam Stabilization	lump sum	\$100,000.00	1	\$100,000		
Task Sub-Total						
Additional Costs	-					
Erosion control	lump sum	\$100,000.00	1	\$100,000		
Mobilization/Demobilization (10% of construction est.)	lump sum	\$250,000.00	1	\$250,000		
Temp Construction Facilities	lump sum	\$75,000.00	1	\$75,000		
Construction Surveying	day	\$2,000.00	10	\$20,000		
Task Sub-Total						
Remedial Action Sub-Total				\$3,199,000		
Remedial Action Contingency (15%)				\$479,850		
Engineering, Construction Oversight, Project Management, Reporting				\$550,000		
Remedial Action Estimated Total				\$4,228,850		

Scope Item	Unit	Unit Cost	Quantity	Extended
Annual Maintenance and Monitoring				
Quarterly Groundwater Monitoring/Inspection and Reporting	event	\$10,000.00	4	\$40,000
Occasional repairs/grading	event	\$5,000.00	1	\$5,000
Annual Maintenance and Monitoring Total				
Present Worth Annual Maintenance and Monitoring Costs (5%, 25 years)				\$634,226
Total Estimated Costs for Alternative 3				\$4,863,076

Unit costs derived from either RS Means, estimates from local vendors, and experience. Estimated costs are considered to be

within a margin of +/- 30 percent.

Refer to Table 1 for assumptions used to generate material quantities.

Alternative 4. In-Place Containment with Cover System

Van Stone Mine

Scope Item	Unit	Unit Cost	Quantity	Extended		
Design / Work Plan / Project Management						
Design Data Gaps - Borrow Materials, Dam Spillway, etc.	lump sum	\$35,000	1	\$35,000		
Design, Work Plan, Plans/Specs, Project Management	lump sum	\$300,000	1	\$300,000		
			Task Sub-Total	\$335,000		
Construction Oversight / Project Management / Reporting						
PM and Per Diem	day	\$2,000	140	\$280,000		
Analytical	lump sum	\$30,000	1	\$30,000		
Remedial action report	lump	\$75,000	1	\$75,000		
			Task Sub-Total	\$385,000		
Mill Area / Waste Rock - AOI-1						
Grading mine area/waste rock	acre	\$5,000	60	\$300,000		
Surface water controls	lump sum	\$100,000	1	\$100,000		
Revegetation	acre	\$2,000	60	\$120,000		
			Task Sub-Total	\$520,000		
Upper Tailings Pile - AOI-2						
Grading tailings to 3:1 slope	cubic yards	\$5	39,000	\$195,000		
Install multi-layer liner system (non-woven, 60-mil HDPE, non-woven, geogrid						
drainage)	square feet	\$2	740,520	\$1,147,806		
Purchase and place 2 ft cover soil	cubic yards	\$15	54,815	\$822,222		
Surface water controls	lump sum	\$25,000	1	\$25,000		
Revegetation	acre	\$2,000	17	\$34,000		
		\$2,224,028				
Lower Tailings Pile - AOI-3						
Grading tailings to 3:1 slope	cubic yards	\$5	300,000	\$1,500,000		
Install multi-layer liner system (non-woven, 60-mil HDPE, non-woven, geogrid	Γ					
drainage)	square feet	\$2	2,221,560	\$3,443,418		
Purchase and place 2 ft cover soil	cubic yards	\$15	190,373	\$2,855,600		
Surface water controls	lump sum	\$100,000	1	\$100,000		
Revegetation	acre	\$2,000	51	\$102,000		
			Task Sub-Total	\$8,001,018		
Dispersed Tailings - AOI-4						
Excavation, transport and place in AOI-2 or AOI-3	cubic yards	\$35	1,000	\$35,000		
Grading with surrounding soils	lump sum	\$5,000	1	\$5,000		
			Task Sub-Total	\$40,000		
North Pit Lake Dam	<u>.</u>					
Emergency Spillway Installation	lump sum	\$100,000	1	\$100,000		
Dam Stabilization	lump sum	\$100,000	1	\$100,000		
			Task Sub-Total	\$200,000		

Scope Item	Unit	Unit Cost	Quantity	Extended
Additional Costs				
Erosion control	lump sum	\$100,000	1	\$100,000
Mobilization/Demobilization (est)	lump sum	\$400,000	1	\$400,000
Temp Construction Facilities	lump sum	\$75,000	1	\$75,000
Construction Surveying	day	\$2,000	10	\$20,000
			Task Sub-Total	\$595,000
		Reme	dial Action Sub-Total	\$11,580,046
		Remedial Actio	n Contingency (15%)	\$1,737,007
Engineer	ing, Construction Ove	rsight, Project Mai	nagement, Reporting	\$720,000
		Remedial Ac	ction Estimated Total	\$14,037,053
Annual Maintenance and Monitoring				
Quarterly Groundwater Monitoring/Inspection and Reporting				
(Years 1-3)	event	\$10,000	4	\$40,000
Annual Groundwater Monitoring/Inspection and Reporting				
(Years 7-10)	event	\$10,000	1	\$10,000
Occasional repairs/grading (Years 1-10)	event	\$7,500	1	\$7,500
Present Worth Annual Monitoring Costs (5%, Years 1-3)				
Present Worth Annual Monitoring Costs (5%, Years 4-10)				
Present Worth Annual Maintenance Costs (5%, Years 1-10)				\$57,913
		Total Estimated C	osts for Alternative 4	\$14,361,469

Unit costs derived from either RS Means, estimates from local vendors, and experience. Estimated costs are considered to be within a margin of +/- 30 percent.

Refer to Table 1 for assumptions used to generate material quantities.

Alternative 5. Centralized Repository at AOI-3

Van Stone Mine

Scope Item	Unit	Unit Cost	Quantity	Extended
Design / Work Plan / Project Management		<u> </u>		
Design Data Gaps - Borrow Materials, Dam Spillway, etc.	lump sum	\$35,000.00	1	\$35,000
Design, Work Plan, Plans/Specs, Project Management	lump sum	\$300,000.00	1	\$300,000
		-	Task Sub-Total	\$335,000
Construction Oversight / Project Management / Reporting				
Construction monitoring/oversight - assume 20 weeks construction,	1			
includes PM and Per Diem	day	\$2,000.00	140	\$280,000
Analytical	lump sum	\$30,000.00	1	\$30,000
Remedial action report	lump	\$75,000.00	1	\$75,000
			Task Sub-Total	\$385,000
Mill Area / Waste Rock - AOI-1				
Grading mine area/waste rock	acre	\$5,000.00	60	\$300,000
Surface water controls	lump sum	\$100,000.00	1	\$100,000
Revegetation	acre	\$2,000.00	60	\$120,000
			Task Sub-Total	\$520,000
Upper Tailings Pile - AOI-2				
Excavation, transport and place tailings at AOI-3	cubic yards	\$6.00	196,000	\$1,176,000
Site grading	acres	\$2,500.00	9.6	\$24,000
Revegetation	acre	\$2,000.00	9.6	\$19,200
		-	Task Sub-Total	\$1,219,200
Lower Tailings Pile - AOI-3				
Grading tailings to 3:1 slope	cubic yards	\$5.00	300,000	\$1,500,000
Install multi-laver liner system (non-woven, 60-mil HDPE, non-				
woven, geogrid drainage)	square feet	\$1.55	2,570,040	\$3,983,562
Purchase and place 2 ft cover soil	cubic yards	\$15	190,373	\$2,855,600
Surface water controls	lump sum	\$100,000.00	1	\$100,000
Revegetation	acre	\$2,000.00	59	\$118,000
		· ·	Task Sub-Total	\$8,557,162
Dispersed Tailings - AOI-4			.	
Excavation, transport and place in AOI-3	cubic yards	\$35	1,000	\$35,000
Grading with surrounding soils	lump sum	\$5,000	1	\$5,000
	·	1 1	Task Sub-Total	\$40,000
North Pit Lake Dam			L	
Emergency Spillway Installation	lump sum	\$100,000.00	1	\$100,000
Dam Stabilization	Iump sum	\$100,000.00	1	\$100,000
		<u> </u>	Task Sub-Total	\$200,000

Scope Item	Unit	Unit Cost	Quantity	Extended			
Additional Costs							
Erosion control	lump sum	\$100,000.00	1	\$100,000			
Mobilization/Demobilization (est)	lump sum	\$500,000.00	1	\$500,000			
Temp Construction Facilities	lump sum	\$75,000.00	1	\$75,000			
Construction Surveying	day	\$2,000.00	10	\$20,000			
			Task Sub-Total	\$695,000			
		Re	medial Action Sub-Total	\$11,231,362			
Remedial Action Contingency (15%)							
Engineering, Construction Oversight, Project Management, Reporting							
		Remedia	Action Estimated Total	\$13,636,066			
Annual Maintenance and Monitoring							
Quarterly Groundwater Monitoring/Inspection and Reporting							
(Years 1-3)	event	\$10,000	4	\$40,000			
(Years 7-10)	event	\$10,000	1	\$10,000			
Occasional repairs/grading (Years 1-10)	event	\$7,500	1	\$7,500			
	\$108,928						
Present Worth Annual Monitoring Costs (5%, Years 4-10)				\$157,575			
Present Worth Annual Maintenance Costs (5%, Years 1-10)				\$57,913			
Total Estimated Costs for Alternative 5				\$13,960,482			

Unit costs derived from either RS Means, estimates from local vendors, and experience. Estimated costs are considered to be within a margin of +/- 30 percent.

Refer to Table 1 for assumptions used to generate material quantities.

Table 19Alternative 6. Off-Site DisposalVan Stone MineOnion Creek, Washington

Scope Item	Unit	Unit Cost	Quantity	Extended
Design / Work Plan / Project Management				
Design Data Gaps - Borrow Materials, Dam Spillway, etc.	lump sum	\$35,000.00	1	\$35,000
Design, Work Plan, Plans/Specs, Project Management	lump sum	\$125,000.00	1	\$125,000
			Task Sub-Total	\$160,000
Construction Oversight / Project Management / Reporting				
Construction monitoring/oversight - assume 25 weeks construction,				
includes PM and Per Diem	day	\$2,000.00	175	\$350,000
Analytical	lump sum	\$30,000.00	1	\$30,000
Remedial action report	lump	\$75,000.00	1	\$75,000
			Task Sub-Total	\$455,000
Mill Area / Waste Rock - AOI-1	1	· · · · ·	r	
Excavation, transport and disposal of wasterock greater than TCLP	cubic yards	\$150.00	86,060	\$12,909,000
Grading mine area/waste rock	acre	\$5,000.00	60	\$300,000
Surface water controls	lump sum	\$100,000.00	1	\$100,000
Revegetation	acre	\$2,000.00	60	\$120,000
		•	Task Sub-Total	\$13,429,000
Upper Tailings Pile - AOI-2				
Excavation, transport and disposal of tailings	cubic yards	\$150.00	196,000	\$29,400,000
Site grading	acres	\$2,500.00	9.6	\$24,000
Revegetation	acre	\$2,000.00	9.6	\$19,200
			Task Sub-Total	\$29,443,200
Lower Tailings Pile - AOI-3				
Excavation, transport and disposal of tailings	cubic yards	\$150.00	2,300,000	\$345,000,000
Site grading	acres	\$2,500.00	51.0	\$127,500
Revegetation	acre	\$2,000.00	59	\$118,000
			Task Sub-Total	\$345,245,500
Dispersed Tailings - AOI-4				
Excavation, transport and place in AOI-3 for off-site transport	cubic yards	\$35	1,000	\$35,000
Grading with surrounding soils	lump sum	\$5,000	1	\$5,000
			Task Sub-Total	\$40,000
North Pit Lake Dam				
Emergency Spillway Installation	lump sum	\$100,000.00	1	\$100,000
Dam Stabilization	lump sum	\$100,000.00	1	\$100,000
			Task Sub-Total	\$200,000

Scope Item	Unit	Unit Cost	Quantity	Extended
Additional Costs				
Erosion control	lump sum	\$100,000.00	1	\$100,000
Mobilization/Demobilization (est)	lump sum	\$500,000.00	1	\$500,000
Temp Construction Facilities	lump sum	\$75,000.00	1	\$75,000
	-	-	Task Sub-Total	\$675,000
		Re	medial Action Sub-Total	\$389,032,700
Remedial Action Contingency (15%)				
Engineering, Construction Oversight, Project Management, Reporting				
Remedial Action Estimated Total				
Annual Maintenance and Monitoring (5 Years)				
Quarterly Groundwater Monitoring/Inspection and Reporting				
(Years 1-3)	event	\$10,000	4	\$40,000
Annual Groundwater Monitoring/Inspection and Reporting				
(Years 4-5)	event	\$10,000	1	\$10,000
Occasional repairs/grading (Years 1-5)	event	\$3,000	1	\$3,000
Present Worth Annual Monitoring Costs (5%, Years 1-3)				\$108,928
Present Worth Annual Monitoring Costs (5%, Years 4-5)				\$18,594
Present Worth Annual Maintenance Costs (5%, Years 1-5)				\$12,989
Total Estimated Costs for Alternative 6				\$448,143,116

Unit costs derived from either RS Means, estimates from local vendors, and experience. Estimated costs are considered to be within a margin of +/- 30 percent.

Refer to Table 1 for assumptions used to generate material quantities.

Legend

- Notes:
- The locations of all features shown are approximate.
 This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Projection: NAD 1983 StatePlane Washington North FIPS 4601 Feet

MS-32

1

MS-33

150

, 🖶

Legend

GeoEngineersTest Pit Number and Location

Tailings Pipeline

Metals Concentrations Exceed Clean-up Level

Outside of Tailings Accumulation Area

Observed Surface Tailings

Notes:

1. The locations of all features shown are approximate.

2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: Aerial from ArcGIS Online. Contours, surface tailings, tailings pipeline, monitoring wells and sample locations from HartCroswer, Job No. 17800-11 3/13.

Projection: NAD 1983 StatePlane Washington North FIPS 4601 Feet

and will serve as the official record of this communication.

Projection: NAD 1983 StatePlane Washington North FIPS 4601 Feet

Data Source: Aerial from ArcGIS Online.

Contours, surface tailings, tailings pipeline, monitoring wells and sample locations

from HartCroswer, Job No. 17800-11 3/13.

GeoEngineers Hollow Stem Auger Number and Location

Monitoring Well •

Tailings Pipeline

Observed Surface Tailings Outside of Tailings Accumulation Area

Metals Concentrations Exceed Cleanup Level

AOI-2 Explorations -Upper Tailings Pile

Van Stone Mine Onion Creek, Washington

GEOENGINEERS

•

•

2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: Aerial from ArcGIS Online. Contours, surface tailings, tailings pipeline, monitoring wells and sample locations from HartCroswer, Job No. 17800-11 3/13.

Projection: NAD 1983 StatePlane Washington North FIPS 4601 Feet

- GeoEngineers Hollow Stem Auger Number and Location
- GeoEngineers Near Surface Sample Number and Location
- Monitoring Well

Tailings Pipeline

Observed Surface Tailings Outside of Tailings Accumulation Area

Metals Concentrations Exceed Clean-up Level

AOI-3 Explorations -Lower Tailings Pile

Van Stone Mine Onion Creek, Washington

GEOENGINEERS

Legend

Mill Area

Mine Area

Test Pit by GeoEngineers

— Ground Contour - Major (10' Interval)

Ground Contour - Minor (2' Interval)

Cross-Section Location

Volumes

Estimated Mine Area Volume = 3,787,615 cy Estimated Mill Area Volume = 86,060 cy

Notes:

 The locations of all features shown are approximate.
 This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Projection: NAD83 WA State Planes, N Zone, US Foot

Approximate Volumes of Waste Rock in Mill and Mine Area

> Van Stone Mine Onion Creek, Washington

GEOENGINEERS

Volumes

Approximate Tailings Pile Volume = 195,733 cubic yards

Notes:

The locations of all features shown are approximate.
 This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Projection: NAD83 WA State Planes, N Zone, US Foot

Approximate Volumes of Tailings in the **Upper Tailings Pile**

> Van Stone Mine Onion Creek, Washington

GEOENGINEERS

Notes:

1. The locations of all features shown are approximate.

 This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Projection: NAD83 WA State Planes, N Zone, US Foot

HSA-9 - Hollow Stem Auger by GeoEngineers **CPT-9 A** Cone Penetrometer Test by GeoEngineers — Ground Contour - Major (10' Interval) Ground Contour - Minor (2' Interval) **Cross-Section Location**

Volumes

Approximate Tailings Pond Volume = 2,299,437 cubic yards

Notes:

- The locations of all features shown are approximate.
 This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Projection: NAD83 WA State Planes, N Zone, US Foot

Approximate Volumes of Tailings in the Lower Tailings Pile

> Van Stone Mine Onion Creek, Washington

GEOENGINEERS

	<u>Tresspasser</u>	<u>Terrestrial</u> <u>Plant, Soil</u> <u>Biota</u>	<u>Aquatic</u> <u>Biota</u>	<u>Terrestrial</u> <u>Wildlife</u>
	8	0	0	•
	۲			
	0	•	0	0
	•	•	0	0
10				
	0	9		
	0			
	0	0		0
	0			
	0	0	۲	۲
	•		•	
				*
	0			
	O	0	•	•
	•	0	0	
		130		-
	•		•	

APPENDIX A Laboratory Chemical Analysis Results

March 11, 2015

John Haney GeoEngineers, Inc - WA 523 East Second Ave. Spokane, WA 99202

RE: Project: 0504-100-00 Van Stone Mine Pace Project No.: 10292097

Dear John Haney:

Enclosed are the analytical results for sample(s) received by the laboratory on December 17, 2014. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

ENNI (TROSS

Jennifer Gross jennifer.gross@pacelabs.com Project Manager

Enclosures

cc: Chelsea Voss, GeoEngineers

CERTIFICATIONS

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10292097

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414 A2LA Certification #: 2926.01 Alaska Certification #: UST-078 Alaska Certification #MN00064 Alabama Certification #40770 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA Colorado Certification #Pace Connecticut Certification #: PH-0256 EPA Region 8 Certification #: 8TMS-L Florida/NELAP Certification #: E87605 Guam Certification #:14-008r Georgia Certification #: 959 Georgia EPD #: Pace Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062 Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322 Michigan DEPH Certification #: 9909

Montana Certification IDs

150 N. 9th Street, Billings, MT 59101 Colorado Asbestos #: 17119 A2LA Certification #: 3590.01 EPA Region 8 Certification #: 8TMS-L Idaho Certification #: MT00012 Minnesota Certification #: 027-053-137 Mississippi Certification #: Pace Montana Certification #: MT0092 Nevada Certification #: MN_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New York Certification #: 11647 North Carolina Certification #: 530 North Carolina State Public Health #: 27700 North Dakota Certification #: R-036 Ohio EPA #: 4150 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification Saipan (CNMI) #:MP0003 South Carolina #:74003001 Texas Certification #: T104704192 Tennessee Certification #: 02818 Utah Certification #: MN000642013-4 Virginia DGS Certification #: 251 Virginia/VELAP Certification #: Pace Washington Certification #: C486 West Virginia Certification #: 382 West Virginia DHHR #:9952C Wisconsin Certification #: 999407970

Minnesota Dept of Health Certification #: 030-999-442 Montana Certification #: MT CERT0040 North Dakota Dept. Of Health #: R-209 NVLAP Certification #: 101292-0 Washington Department of Ecology #: C993

SAMPLE SUMMARY

Project: 0504-100-00 Van Stone Mine

Pace Project No.:

10292097

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10292097001	HSA-7 (10-11.5)	Solid	12/08/14 09:35	12/17/14 10:15
10292097002	HSA-7 (25-26.5)	Solid	12/08/14 10:00	12/17/14 10:15
10292097003	HSA-7 (35-36.5)	Solid	12/08/14 10:20	12/17/14 10:15
10292097004	HSA-7 (45-46.5)	Solid	12/08/14 10:50	12/17/14 10:15
10292097005	HSA-7 (60-61.5)	Solid	12/08/14 12:00	12/17/14 10:15
10292097006	HSA-7 (70-71.5)	Solid	12/08/14 13:00	12/17/14 10:15
10292097007	HSA-7 (76.1-76.5)	Solid	12/08/14 13:15	12/17/14 10:15
10292097008	HSA-7 (76.5-78)	Solid	12/08/14 13:20	12/17/14 10:15
10292097009	HSA-7 (83-84.5)	Solid	12/08/14 14:00	12/17/14 10:15
10292097010	HSA-7 (85-86.5)	Solid	12/08/14 14:40	12/17/14 10:15
10292097011	HSA-7 (91.5-93)	Solid	12/08/14 15:20	12/17/14 10:15
10292097012	HSA-7 (95-96.5)	Solid	12/08/14 16:00	12/17/14 10:15
10292097013	HSA-8 (10-11.5)	Solid	12/09/14 09:10	12/17/14 10:15
10292097014	HSA-8 (20-21.5)	Solid	12/08/14 09:35	12/17/14 10:15
10292097015	HSA-8 (30-31.5)	Solid	12/09/14 09:50	12/17/14 10:15
10292097016	HSA-8 (40-41.5)	Solid	12/08/14 10:15	12/17/14 10:15
10292097017	HSA-8 (50-51.5)	Solid	12/09/14 10:40	12/17/14 10:15
10292097018	HSA-8 (60-61.5)	Solid	12/09/14 11:15	12/17/14 10:15
10292097019	HSA-8 (70-71.5)	Solid	12/08/14 11:45	12/17/14 10:15
10292097020	HSA-8 (76.4-76.5)	Solid	12/08/14 12:15	12/17/14 10:15
10292097021	HSA-8 (80-81.5)	Solid	12/09/14 12:30	12/17/14 10:15
10292097022	HSA-8 (85-86)	Solid	12/09/14 13:00	12/17/14 10:15
10292097023	HSA-9 (10-11.5)	Solid	12/09/14 15:40	12/17/14 10:15
10292097024	HSA-9 (20-21.5)	Solid	12/09/14 16:10	12/17/14 10:15
10292097025	HSA-9 (30-31.5)	Solid	12/09/14 16:20	12/17/14 10:15
10292097026	HSA-9 (40-41.5)	Solid	12/10/14 08:20	12/17/14 10:15
10292097027	HSA-9 (50-51.5)	Solid	12/10/14 08:55	12/17/14 10:15
10292097028	HSA-9 (60-61.5)	Solid	12/10/14 09:15	12/17/14 10:15
10292097029	HSA-9 (70-71.5)	Solid	12/10/14 10:00	12/17/14 10:15
10292097030	HSA-9 (80-81.5)	Solid	12/10/14 10:30	12/17/14 10:15
10292097031	HSA-9 (85-86.5)	Solid	12/10/14 12:20	12/17/14 10:15
10292097032	HSA-9 (89-89.5)	Solid	12/10/14 13:10	12/17/14 10:15
10292097033	HSA-11 (10-11.5)	Solid	12/11/14 10:00	12/17/14 10:15
10292097034	HSA-11 (20-21.5)	Solid	12/11/14 10:20	12/17/14 10:15
10292097035	HSA-11 (25.5-26.5)	Solid	12/11/14 10:30	12/17/14 10:15
10292097036	HSA-11 (27.1-27.3)	Solid	12/11/14 10:40	12/17/14 10:15
10292097037	HSA-10 (10-11.5)	Solid	12/10/14 15:00	12/17/14 10:15

SAMPLE SUMMARY

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10292097

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10292097038	HSA-10 (20-21.5)	Solid	12/10/14 13:20	12/17/14 10:15
10292097039	HSA-10 (30-31.5)	Solid	12/10/14 15:40	12/17/14 10:15
10292097040	HSA-10 (40-41.5)	Solid	12/10/14 15:50	12/17/14 10:15
10292097041	HSA-10 (50-51.5)	Solid	12/10/14 16:00	12/17/14 10:15
10292097042	HSA-10 (60-61.5)	Solid	12/11/14 07:50	12/17/14 10:15
10292097043	HSA-10 (63-63.5)	Solid	12/11/14 08:25	12/17/14 10:15

SAMPLE ANALYTE COUNT

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10292097

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10292097001	HSA-7 (10-11.5)	EPA 6020A	RJS	8	PASI-M
		ASTM D2974	JDL	1	PASI-M
		Modified Sobek 3.2	WT1	1	PASI-MT
		Modified Sobek 3.2	WT1	5	PASI-MT
		Modified Sobek 3.2	WT1	2	PASI-MT
10292097003	HSA-7 (35-36.5)	EPA 6020A	RJS	8	PASI-M
		EPA 6020A	RJS	4	PASI-M
		EPA 6020A	RJS	8	PASI-M
		ASTM D2974	JDL	1	PASI-M
		Modified Sobek 3.2	WT1	1	PASI-MT
		Modified Sobek 3.2	WT1	5	PASI-MT
		Modified Sobek 3.2	WT1	2	PASI-MT
10292097005	HSA-7 (60-61.5)	EPA 6020A	RJS	8	PASI-M
		ASTM D2974	JDL	1	PASI-M
10292097006	HSA-7 (70-71.5)	EPA 6020A	RJS	8	PASI-M
		EPA 6020A	RJS	8	PASI-M
		ASTM D2974	JDL	1	PASI-M
		Modified Sobek 3.2	WT1	1	PASI-MT
		Modified Sobek 3.2	WT1	5	PASI-MT
		Modified Sobek 3.2	WT1	2	PASI-MT
10292097007	HSA-7 (76.1-76.5)	EPA 6020A	RJS	8	PASI-M
		ASTM D2974	JDL	1	PASI-M
10292097014	HSA-8 (20-21.5)	EPA 6020A	RJS	8	PASI-M
		ASTM D2974	JDL	1	PASI-M
10292097016	HSA-8 (40-41.5)	EPA 6020A	RJS	8	PASI-M
		ASTM D2974	JDL	1	PASI-M
10292097019	HSA-8 (70-71.5)	EPA 6020A	RJS	8	PASI-M
		ASTM D2974	JDL	1	PASI-M
10292097020	HSA-8 (76.4-76.5)	EPA 6020A	RJS	8	PASI-M
		EPA 6020A	RJS	4	PASI-M
		EPA 6020A	RJS	8	PASI-M
		ASTM D2974	JDL	1	PASI-M
10292097021	HSA-8 (80-81.5)	EPA 6020A	RJS	6	PASI-M
		ASTM D2974	JDL	1	PASI-M
10292097023	HSA-9 (10-11.5)	EPA 6020A	RJS	8	PASI-M
		ASTM D2974	JDL	1	PASI-M
		Modified Sobek 3.2	WT1	1	PASI-MT

SAMPLE ANALYTE COUNT

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10292097

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		Modified Sobek 3.2	WT1	5	PASI-MT
		Modified Sobek 3.2	WT1	2	PASI-MT
10292097027	HSA-9 (50-51.5)	EPA 6020A	RJS	8	PASI-M
		EPA 6020A	RJS	4	PASI-M
		EPA 6020A	RJS	8	PASI-M
		ASTM D2974	JDL	1	PASI-M
		Modified Sobek 3.2	WT1	1	PASI-MT
		Modified Sobek 3.2	WT1	5	PASI-MT
		Modified Sobek 3.2	WT1	2	PASI-MT
10292097030	HSA-9 (80-81.5)	EPA 6020A	RJS	8	PASI-M
		EPA 6020A	RJS	4	PASI-M
		EPA 6020A	RJS	7	PASI-M
		ASTM D2974	JDL	1	PASI-M
		Modified Sobek 3.2	WT1	1	PASI-MT
		Modified Sobek 3.2	WT1	5	PASI-MT
		Modified Sobek 3.2	WT1	2	PASI-MT
10292097031	HSA-9 (85-86.5)	EPA 6020A	RJS	8	PASI-M
		ASTM D2974	JDL	1	PASI-M
10292097034	HSA-11 (20-21.5)	EPA 6020A	RJS	8	PASI-M
		EPA 6020A	RJS	8	PASI-M
		ASTM D2974	JDL	1	PASI-M
10292097035	HSA-11 (25.5-26.5)	EPA 6020A	RJS	8	PASI-M
		ASTM D2974	JDL	1	PASI-M
10292097037	HSA-10 (10-11.5)	EPA 6020A	RJS	8	PASI-M
		EPA 6020A	RJS	8	PASI-M
		ASTM D2974	JDL	1	PASI-M
10292097039	HSA-10 (30-31.5)	EPA 6020A	RJS	8	PASI-M
		EPA 6020A	RJS	4	PASI-M
		EPA 6020A	RJS	8	PASI-M
		ASTM D2974	JDL	1	PASI-M
10292097041	HSA-10 (50-51.5)	EPA 6020A	RJS	8	PASI-M
		EPA 6020A	RJS	4	PASI-M
		EPA 6020A	RJS	8	PASI-M
		ASTM D2974	JDL	1	PASI-M
10292097042	HSA-10 (60-61.5)	EPA 6020A	RJS	8	PASI-M
		EPA 6020A	RJS	4	PASI-M
		EPA 6020A	RJS	8	PASI-M

SAMPLE ANALYTE COUNT

Project:0504-100-00 Van Stone MinePace Project No.:10292097

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		ASTM D2974	JDL	1	PASI-M
10292097043	HSA-10 (63-63.5)	EPA 6020A	RJS	6	PASI-M
		ASTM D2974	JDL	1	PASI-M

Project: 0504-100-00 Van Stone Mine Pace Project No.: 10292097

Date: March 11, 2015

12/19/14 Per client request only the following samples were analyzed for ABA and Asbestos:

HSA-7(10-11.5) HSA-7(35-36.5) HSA-7(70-71.5) HSA-9(10-11.5) HSA-9(50-51.5) HSA-9(80-81.5) 01/27/15 Per client request the following samples were analyzed: HSA-7 (35-36.5) TCLP As, Cd, Cr, Pb, SPLP As, Cd, Cr, Cu, Pb, Ni, Sb, Zn HSA-7 (70-71.5) SPLP As, Cd, Cr, Cu, Pb, Ni, Sb, Zn HSA-8 (76.4-76.5) TCLP As, Cd, Cr, Pb, SPLP As, Cd, Cr, Cu, Pb, Ni, Sb, Zn HAS-8 (80-81.5) Total As, Cd, Cu, Pb, Sb, Zn HSA-9 (50-51.5) TCLP As, Cd, Cr, Pb, SPLP As, Cd, Cr, Cu, Pb, Ni, Sb, Zn HSA-9 (80-81.5) TCLP As, Cd, Cr, Pb, SPLP As, Cd, Cr, Cu, Pb, Ni, Zn HSA-10 (10-11.5) SPLP As, Cd, Cr, Cu, Pb, Ni, Sb, Zn HSA-10 (30-31.5) TCLP As, Cd, Cr, Pb, SPLP As, Cd, Cr, Cu, Pb, Ni, Sb, Zn HSA-10 (50-51.5) TCLP As, Cd, Cr, Pb, SPLP As, Cd, Cr, Cu, Pb, Ni, Sb, Zn HSA-10 (60-61.5) TCLP As, Cd, Cr, Pb, SPLP As, Cd, Cr, Cu, Pb, Ni, Sb, Zn HAS-10 (63-63.5) Total As, Cd, Cu, Pb, Sb, Zn

HSA-11 (20-21.5) SPLP As, Cd, Cr, Cu, Pb, Ni, Sb, Zn

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10292097

Method: EPA 6020A

Description:6020A MET ICPMSClient:GeoEngineers_WADate:March 11, 2015

General Information:

21 samples were analyzed for EPA 6020A. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3050 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: MPRP/51399

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 10292097001

M6: Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

- MS (Lab ID: 1870378)
 - Lead
 - Zinc
- MSD (Lab ID: 1870379)
 - Arsenic
 - Copper
 - Lead
 - Zinc

QC Batch: MPRP/52123

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 10292097021

- R1: RPD value was outside control limits.
 - MSD (Lab ID: 1891345)
 - Antimony

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10292097

EPA 6020A
6020A MET ICPMS
GeoEngineers_WA
March 11, 2015

QC Batch: MPRP/52123

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 10292097021

R1: RPD value was outside control limits.

Cadmium

Lead

Additional Comments:

Analyte Comments:

QC Batch: MPRP/51399

E: Analyte concentration exceeded the calibration range. The reported result is estimated.

- MS (Lab ID: 1870378)
- Zinc
- MSD (Lab ID: 1870379)

Zinc

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10292097

Method: EPA 6020A Description: 6020A MET ICPMS, TCLP Client: GeoEngineers_WA

Date: March 11, 2015

General Information:

7 samples were analyzed for EPA 6020A. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3020 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10292097

Method: EPA 6020A

Description:6020A MET ICPMS, SPLPClient:GeoEngineers_WADate:March 11, 2015

General Information:

10 samples were analyzed for EPA 6020A. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3020 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10292097

Method: Modified Sobek 3.2

Description:Sobek Acid Base PotentialClient:GeoEngineers_WADate:March 11, 2015

General Information:

6 samples were analyzed for Modified Sobek 3.2. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable): All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10292097

Method:	Modified	Sobek 3.2
methou.	mounicu	000000.0.2

Description:Sobek Extractable SulfurClient:GeoEngineers_WADate:March 11, 2015

General Information:

6 samples were analyzed for Modified Sobek 3.2. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: MT/17890

D6: The relative percent difference (RPD) between the sample and sample duplicate exceeded laboratory control limits.

- DUP (Lab ID: 1874580)
 - Sulfur, HNO3 Extractable
 - Sulfur, Hot Water Extractable

Additional Comments:

Analyte Comments:

QC Batch: MT/17890

- C0: Result confirmed by second analysis.
 - DUP (Lab ID: 1874580)
 - Sulfur, Hot Water Extractable

PROJECT NARRATIVE

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10292097

Method:	Modified Sobek 3.2			
Description:	Sobek Extractable Sulfur			
Client:	GeoEngineers_WA			
Date:	March 11, 2015			

Analyte Comments:

QC Batch: MT/17890

C0: Result confirmed by second analysis.

• HSA-7 (70-71.5) (Lab ID: 10292097006)

- Sulfur, Hot Water Extractable
- HSA-9 (10-11.5) (Lab ID: 10292097023)

Sulfur, HNO3 Extractable

Total Sulfur

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10292097

Method: Modified Sobek 3.2

Description:Sobek CalculationsClient:GeoEngineers_WADate:March 11, 2015

General Information:

6 samples were analyzed for Modified Sobek 3.2. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10292097

Sample: HSA-7 (10-11.5)	Lab ID: 102	292097001	Collected: 12/08/1	4 09:3	5 Received: 12	2/17/14 10:15 N	latrix: Solid	
Results reported on a "dry weigh	ht" basis and are ac	ljusted for p	ercent moisture, sa	ample s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Me	thod: EPA 60	20A Preparation Me	ethod: E	EPA 3050			
Antimony	<0.54	mg/kg	0.54	20	12/22/14 11:50	12/22/14 20:43	7440-36-0	
Arsenic	4.1	mg/kg	0.54	20	12/22/14 11:50	12/22/14 20:43	7440-38-2	M6
Cadmium	4.6	mg/kg	0.086	20	12/22/14 11:50	12/22/14 20:43	7440-43-9	
Chromium	1.3	mg/kg	0.54	20	12/22/14 11:50	12/22/14 20:43	7440-47-3	
Copper	17.1	mg/kg	1.1	20	12/22/14 11:50	12/22/14 20:43	7440-50-8	M6
Lead	268	mg/kg	1.1	200	12/22/14 11:50	12/23/14 15:17	7439-92-1	M6
Nickel	2.3	mg/kg	0.54	20	12/22/14 11:50	12/22/14 20:43	7440-02-0	
Zinc	1560	mg/kg	53.6	200	12/22/14 11:50	12/23/14 15:17	7440-66-6	M6
Dry Weight	Analytical Me	thod: ASTM I	D2974					
Percent Moisture	6.7	%	0.10	1		01/05/15 10:10		
Sobek Acid Base Potential	Analytical Me	thod: Modifie	ed Sobek 3.2					
Neutralization Potential	3800	tons/1000	0.50	1		01/07/15 13:00		
Sobek Extractable Sulfur	Analytical Me	thod: Modifie	d Sobek 3.2					
Sulfur, HCI Extractable	<0.050	% (w/w)	0.050	1		12/31/14 08:55		
Sulfur, HNO3 Extractable	0.130	% (w/w)	0.050	1		12/31/14 08:55		
Sulfur, Hot Water Extractable	0.120	% (w/w)	0.050	1		12/31/14 08:55		
Sulfur, Residual	<0.050	% (w/w)	0.050	1		12/31/14 08:55		
Total Sulfur	0.120	% (w/w)	0.050	1		12/31/14 08:55		
Sobek Calculations	Analytical Me	thod: Modifie	d Sobek 3.2					
Acid/Base Potential	3900	tons/1000)	1		12/31/14 14:22		
Acid Potential	<4.3	tons/1000	4.3	1		12/31/14 14:22		

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10292097

Sample: HSA-7 (35-36.5)	Lab ID: 102	292097003	Collected: 12/08/1	4 10:2	0 Received: 12	2/17/14 10:15 N	latrix: Solid	
Results reported on a "dry weigh	ht" basis and are ac	ljusted for per	rcent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Me	thod: EPA 6020	0A Preparation Me	thod: E	EPA 3050			
Antimony	1.6	mg/kg	0.55	20	12/22/14 11:50	12/22/14 20:29	7440-36-0	
Arsenic	6.2	mg/kg	0.55	20	12/22/14 11:50	12/22/14 20:29	7440-38-2	
Cadmium	7.3	mg/kg	0.087	20	12/22/14 11:50	12/22/14 20:29	7440-43-9	
Chromium	0.91	mg/kg	0.55	20	12/22/14 11:50	12/22/14 20:29	7440-47-3	
Copper	20.8	mg/kg	1.1	20	12/22/14 11:50	12/22/14 20:29	7440-50-8	
Lead	334	mg/kg	1.1	200	12/22/14 11:50	12/23/14 15:41	7439-92-1	
Nickel	12.2	mg/kg	0.55	20	12/22/14 11:50	12/22/14 20:29	7440-02-0	
Zinc	4000	mg/kg	54.5	200	12/22/14 11:50	12/23/14 15:41	7440-66-6	
6020A MET ICPMS, TCLP	Analytical Me Leachate Met	thod: EPA 6020 hod/Date: EPA	0A Preparation Me 1311: 02/03/15 11	thod: E :20 Ini	EPA 3020 Itial pH: 9.19: Fina	l pH: 5.29		
Araania	-0.012	mg/l	0.012		02/04/15 12:27	02/04/15 22:40	7440 20 2	
Cadmium	<0.012	mg/L	0.012	5	02/04/15 13.27	02/04/15 22:49	7440-30-2	
Chromium	0.040	mg/L	0.0020	5	02/04/15 13.27	02/04/15 22:49	7440-43-9	
Lood	<0.012	mg/L	0.012	5 5	02/04/15 13:27	02/04/15 22:49	7440-47-3	
Leau	2.0	mg/∟	0.0025	5	02/04/15 13.27	02/04/15 22.49	7439-92-1	
6020A MET ICPMS, SPLP	Analytical Me	thod: EPA 6020	DA Preparation Me	thod: E	EPA 3020	. 0.01		
	Leachate Met	nod/Date: EPA	1312; 01/31/15 13	5:12 In	itial pH: ; Final pH	: 8.91		
Antimony	0.0036	mg/L	0.0025	5	02/01/15 15:37	02/02/15 18:52	7440-36-0	
Arsenic	<0.0025	mg/L	0.0025	5	02/01/15 15:37	02/02/15 18:52	7440-38-2	
Cadmium	<0.00040	mg/L	0.00040	5	02/01/15 15:37	02/02/15 18:52	7440-43-9	
Chromium	<0.0025	mg/L	0.0025	5	02/01/15 15:37	02/02/15 18:52	7440-47-3	
Copper	<0.0050	mg/L	0.0050	5	02/01/15 15:37	02/02/15 18:52	7440-50-8	
Lead	0.0025	mg/L	0.00050	5	02/01/15 15:37	02/02/15 18:52	7439-92-1	
Nickel	<0.0025	mg/L	0.0025	5	02/01/15 15:37	02/02/15 18:52	7440-02-0	
Zinc	0.026	mg/L	0.025	5	02/01/15 15:37	02/02/15 18:52	7440-66-6	
Dry Weight	Analytical Me	thod: ASTM D2	2974					
Percent Moisture	8.3	%	0.10	1		01/05/15 10:11		
Sobek Acid Base Potential	Analytical Me	thod: Modified	Sobek 3.2					
Neutralization Potential	3600	tons/1000	0.50	1		01/07/15 13:00		
Sobek Extractable Sulfur	Analytical Me	thod: Modified	Sobek 3.2					
Sulfur, HCI Extractable	<0.050	% (w/w)	0.050	1		12/31/14 09:08		
Sulfur, HNO3 Extractable	0.350	% (w/w)	0.050	1		12/31/14 09:08		
Sulfur, Hot Water Extractable	0.260	% (w/w)	0.050	1		12/31/14 09:08		
Sulfur, Residual	<0.050	% (w/w)	0.050	1		12/31/14 09:08		
Total Sulfur	0.390	% (w/w)	0.050	1		12/31/14 09:08		
Sobek Calculations	Analytical Me	thod: Modified	Sobek 3.2					
Acid/Base Potential	3590	tons/1000		1		12/31/14 14:22		
Acid Potential	11.3	tons/1000	4.3	1		12/31/14 14:22		

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10292097

Sample: HSA-7 (60-61.5)	Lab ID: 102	92097005	Collected: 12/08/1	4 12:00) Received: 12	/17/14 10:15 N	latrix: Solid	
Results reported on a "dry weigh	ht" basis and are adj	usted for pe	rcent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Meth	nod: EPA 602	0A Preparation Me	thod: E	PA 3050			
Antimony	<0.62	mg/kg	0.62	20	12/22/14 11:50	12/22/14 20:33	7440-36-0	
Arsenic	10.5	mg/kg	0.62	20	12/22/14 11:50	12/22/14 20:33	7440-38-2	
Cadmium	6.2	mg/kg	0.099	20	12/22/14 11:50	12/22/14 20:33	7440-43-9	
Chromium	4.2	mg/kg	0.62	20	12/22/14 11:50	12/22/14 20:33	7440-47-3	
Copper	95.6	mg/kg	1.2	20	12/22/14 11:50	12/22/14 20:33	7440-50-8	
Lead	244	mg/kg	1.2	200	12/22/14 11:50	12/23/14 15:46	7439-92-1	
Nickel	3.9	mg/kg	0.62	20	12/22/14 11:50	12/22/14 20:33	7440-02-0	
Zinc	4030	mg/kg	61.6	200	12/22/14 11:50	12/23/14 15:46	7440-66-6	
Dry Weight	Analytical Meth	nod: ASTM D2	2974					
Percent Moisture	21.2	%	0.10	1		01/05/15 11:49		

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10292097

Sample: HSA-7 (70-71.5)	Lab ID: 10	292097006 (Collected: 12/08/1	4 13:0	0 Received: 12	2/17/14 10:15 N	latrix: Solid	
Results reported on a "dry weigh	ht" basis and are ac	djusted for per	cent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Me	thod: EPA 6020	A Preparation Me	thod: E	EPA 3050			
Antimony	0.81	mg/kg	0.54	20	12/22/14 11:50	12/22/14 20:38	7440-36-0	
Arsenic	12.3	mg/kg	0.54	20	12/22/14 11:50	12/22/14 20:38	7440-38-2	
Cadmium	13.2	mg/kg	0.086	20	12/22/14 11:50	12/22/14 20:38	7440-43-9	
Chromium	1.4	mg/kg	0.54	20	12/22/14 11:50	12/22/14 20:38	7440-47-3	
Copper	36.6	mg/kg	1.1	20	12/22/14 11:50	12/22/14 20:38	7440-50-8	
Lead	195	mg/kg	2.7	500	12/22/14 11:50	12/23/14 16:00	7439-92-1	
Nickel	3.4	mg/kg	0.54	20	12/22/14 11:50	12/22/14 20:38	7440-02-0	
Zinc	5020	mg/kg	135	500	12/22/14 11:50	12/23/14 16:00	7440-66-6	
6020A MET ICPMS, SPLP	Analytical Me	thod: EPA 6020	A Preparation Me	thod: E	EPA 3020			
	Leachate Met	thod/Date: EPA	1312; 01/31/15 13	8:12 Ini	itial pH: ; Final pH	: 9.11		
Antimony	0.0051	mg/L	0.0025	5	02/01/15 15:37	02/02/15 18:42	7440-36-0	
Arsenic	0.013	mg/L	0.0025	5	02/01/15 15:37	02/02/15 18:42	7440-38-2	
Cadmium	0.00094	mg/L	0.00040	5	02/01/15 15:37	02/02/15 18:42	7440-43-9	
Chromium	<0.0025	mg/L	0.0025	5	02/01/15 15:37	02/02/15 18:42	7440-47-3	
Copper	0.034	mg/L	0.0050	5	02/01/15 15:37	02/02/15 18:42	7440-50-8	
Lead	0.029	mg/L	0.00050	5	02/01/15 15:37	02/02/15 18:42	7439-92-1	
Nickel	<0.0025	mg/L	0.0025	5	02/01/15 15:37	02/02/15 18:42	7440-02-0	
Zinc	0.40	mg/L	0.025	5	02/01/15 15:37	02/02/15 18:42	7440-66-6	
Dry Weight	Analytical Me	thod: ASTM D2	974					
Percent Moisture	8.0	%	0.10	1		01/05/15 11:49		
Sobek Acid Base Potential	Analytical Me	thod: Modified S	Sobek 3.2					
Neutralization Potential	200	tons/1000	0.50	1		01/06/15 14:00		
Sobek Extractable Sulfur	Analytical Me	thod: Modified S	Sobek 3.2					
Sulfur, HCI Extractable	0.210	% (w/w)	0.050	1		12/31/14 09:33		
Sulfur, HNO3 Extractable	0.0800	% (w/w)	0.050	1		12/31/14 09:33		D6
Sulfur, Hot Water Extractable	0.0600	% (w/w)	0.050	1		12/31/14 09:33		C0,D6
Sulfur, Residual	<0.050	% (w/w)	0.050	1		12/31/14 09:33		
Total Sulfur	0.350	% (w/w)	0.050	1		12/31/14 09:33		
Sobek Calculations	Analytical Me	thod: Modified S	Sobek 3.2					
Acid/Base Potential	196	tons/1000		1		12/31/14 14:22		
Acid Potential	7.6	tons/1000	4.3	1		12/31/14 14:22		

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10292097

Sample: HSA-7 (76.1-76.5)	Lab ID: 102	92097007	Collected: 12/08/1	4 13:1	5 Received: 12	/17/14 10:15 N	latrix: Solid	
Results reported on a "dry weigh	t" basis and are adj	usted for per	rcent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Meth	nod: EPA 6020	DA Preparation Me	thod: E	EPA 3050			
Antimony	<0.63	mg/kg	0.63	20	12/22/14 11:50	12/22/14 21:18	7440-36-0	
Arsenic	2.3	mg/kg	0.63	20	12/22/14 11:50	12/22/14 21:18	7440-38-2	
Cadmium	0.62	mg/kg	0.10	20	12/22/14 11:50	12/22/14 21:18	7440-43-9	
Chromium	5.3	mg/kg	0.63	20	12/22/14 11:50	12/22/14 21:18	7440-47-3	
Copper	8.7	mg/kg	1.3	20	12/22/14 11:50	12/22/14 21:18	7440-50-8	
Lead	13.0	mg/kg	0.32	50	12/22/14 11:50	12/23/14 16:05	7439-92-1	
Nickel	6.7	mg/kg	0.63	20	12/22/14 11:50	12/22/14 21:18	7440-02-0	
Zinc	87.7	mg/kg	6.3	20	12/22/14 11:50	12/22/14 21:18	7440-66-6	
Dry Weight	Analytical Meth	nod: ASTM D2	2974					
Percent Moisture	21.5	%	0.10	1		01/05/15 11:50		

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10292097

Sample: HSA-8 (20-21.5)	Lab ID: 102	92097014	Collected: 12/08/1	4 09:35	5 Received: 12	/17/14 10:15 N	latrix: Solid	
Results reported on a "dry weigh	ht" basis and are adj	usted for pe	ercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Meth	nod: EPA 602	20A Preparation Me	thod: E	PA 3050			
Antimony	0.68	mg/kg	0.54	20	12/22/14 11:50	12/22/14 21:22	7440-36-0	
Arsenic	27.0	mg/kg	0.54	20	12/22/14 11:50	12/22/14 21:22	7440-38-2	
Cadmium	4.8	mg/kg	0.086	20	12/22/14 11:50	12/22/14 21:22	7440-43-9	
Chromium	2.4	mg/kg	0.54	20	12/22/14 11:50	12/22/14 21:22	7440-47-3	
Copper	19.3	mg/kg	1.1	20	12/22/14 11:50	12/22/14 21:22	7440-50-8	
Lead	282	mg/kg	1.1	200	12/22/14 11:50	12/23/14 16:10	7439-92-1	
Nickel	2.3	mg/kg	0.54	20	12/22/14 11:50	12/22/14 21:22	7440-02-0	
Zinc	2190	mg/kg	54.0	200	12/22/14 11:50	12/23/14 16:10	7440-66-6	
Dry Weight	Analytical Meth	nod: ASTM D	02974					
Percent Moisture	11.8	%	0.10	1		01/05/15 11:50		

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10292097

Sample: HSA-8 (40-41.5)	Lab ID: 102	92097016	Collected: 12/08/1	4 10:15	5 Received: 12	/17/14 10:15 N	latrix: Solid	
Results reported on a "dry weigh	ht" basis and are adj	usted for pe	rcent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Meth	nod: EPA 602	0A Preparation Me	thod: E	PA 3050			
Antimony	<0.52	mg/kg	0.52	20	12/22/14 11:50	12/22/14 21:27	7440-36-0	
Arsenic	2.9	mg/kg	0.52	20	12/22/14 11:50	12/22/14 21:27	7440-38-2	
Cadmium	4.8	mg/kg	0.084	20	12/22/14 11:50	12/22/14 21:27	7440-43-9	
Chromium	1.2	mg/kg	0.52	20	12/22/14 11:50	12/22/14 21:27	7440-47-3	
Copper	17.2	mg/kg	1.0	20	12/22/14 11:50	12/22/14 21:27	7440-50-8	
Lead	375	mg/kg	1.0	200	12/22/14 11:50	12/23/14 16:15	7439-92-1	
Nickel	1.3	mg/kg	0.52	20	12/22/14 11:50	12/22/14 21:27	7440-02-0	
Zinc	2080	mg/kg	52.3	200	12/22/14 11:50	12/23/14 16:15	7440-66-6	
Dry Weight	Analytical Meth	nod: ASTM D	2974					
Percent Moisture	5.3	%	0.10	1		01/05/15 11:50		

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10292097

Sample: HSA-8 (70-71.5)	Lab ID: 102	92097019	Collected: 12/08/1	4 11:45	5 Received: 12	/17/14 10:15 N	latrix: Solid	
Results reported on a "dry weig	ht" basis and are adj	iusted for pe	rcent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Meth	nod: EPA 602	0A Preparation Me	thod: E	PA 3050			
Antimony	0.97	mg/kg	0.50	20	12/22/14 11:50	12/22/14 21:32	7440-36-0	
Arsenic	5.3	mg/kg	0.50	20	12/22/14 11:50	12/22/14 21:32	7440-38-2	
Cadmium	15.2	mg/kg	0.079	20	12/22/14 11:50	12/22/14 21:32	7440-43-9	
Chromium	0.60	mg/kg	0.50	20	12/22/14 11:50	12/22/14 21:32	7440-47-3	
Copper	23.9	mg/kg	0.99	20	12/22/14 11:50	12/22/14 21:32	7440-50-8	
Lead	193	mg/kg	2.5	500	12/22/14 11:50	12/23/14 16:19	7439-92-1	
Nickel	2.1	mg/kg	0.50	20	12/22/14 11:50	12/22/14 21:32	7440-02-0	
Zinc	6070	mg/kg	124	500	12/22/14 11:50	12/23/14 16:19	7440-66-6	
Dry Weight	Analytical Meth	nod: ASTM D	2974					
Percent Moisture	5.1	%	0.10	1		01/05/15 11:50		

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10292097

Sample: HSA-8 (76.4-76.5)	Lab ID: 102	92097020	Collected: 12/08/1	4 12:1	5 Received: 12	/17/14 10:15 N	latrix: Solid			
Results reported on a "dry weig	ht" basis and are adj	iusted for p	ercent moisture, sa	mple s	ize and any dilu	tions.				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
6020A MET ICPMS	Analytical Mether	hod: EPA 60	20A Preparation Me	thod: E	PA 3050					
Antimony	1.1	mg/kg	0.59	20	12/22/14 11:50	12/22/14 21:37	7440-36-0			
Arsenic	19.0	mg/kg	0.59	20	12/22/14 11:50	12/22/14 21:37	7440-38-2			
Cadmium	11.8	mg/kg	0.094	20	12/22/14 11:50	12/22/14 21:37	7440-43-9			
Chromium	2.1	mg/kg	0.59	20	12/22/14 11:50	12/22/14 21:37	7440-47-3			
Copper	143	mg/kg	1.2	20	12/22/14 11:50	12/22/14 21:37	7440-50-8			
Lead	200	mg/kg	2.9	500	12/22/14 11:50	12/23/14 16:24	7439-92-1			
Nickel	4.3	mg/kg	0.59	20	12/22/14 11:50	12/22/14 21:37	7440-02-0			
Zinc	5190	mg/kg	147	500	12/22/14 11:50	12/23/14 16:24	7440-66-6			
6020A MET ICPMS, TCLP	Analytical Mether	hod: EPA 60	20A Preparation Me	thod: E	PA 3020					
	Leachate Meth	Leachate Method/Date: EPA 1311; 02/03/15 11:20 Initial pH: 9.33; Final pH: 5.2								
Arsenic	<0.012	mg/L	0.012	5	02/04/15 13:27	02/04/15 22:02	7440-38-2			
Cadmium	0.096	mg/L	0.0020	5	02/04/15 13:27	02/04/15 22:02	7440-43-9			
Chromium	<0.012	mg/L	0.012	5	02/04/15 13:27	02/04/15 22:02	7440-47-3			
Lead	0.97	mg/L	0.0025	5	02/04/15 13:27	02/04/15 22:02	7439-92-1			
6020A MET ICPMS, SPLP	Analytical Mether	hod: EPA 60	20A Preparation Me	thod: E	PA 3020					
	Leachate Meth	nod/Date: EF	PA 1312; 01/31/15 13	:12 Ini	tial pH: ; Final pH	: 8.99				
Antimony	0.026	mg/L	0.0025	5	02/01/15 15:37	02/02/15 18:47	7440-36-0			
Arsenic	0.0062	mg/L	0.0025	5	02/01/15 15:37	02/02/15 18:47	7440-38-2			
Cadmium	0.00046	mg/L	0.00040	5	02/01/15 15:37	02/02/15 18:47	7440-43-9			
Chromium	<0.0025	mg/L	0.0025	5	02/01/15 15:37	02/02/15 18:47	7440-47-3			
Copper	0.0066	mg/L	0.0050	5	02/01/15 15:37	02/02/15 18:47	7440-50-8			
Lead	0.0040	mg/L	0.00050	5	02/01/15 15:37	02/02/15 18:47	7439-92-1			
Nickel	<0.0025	mg/L	0.0025	5	02/01/15 15:37	02/02/15 18:47	7440-02-0			
Zinc	0.19	mg/L	0.025	5	02/01/15 15:37	02/02/15 18:47	7440-66-6			
Dry Weight	Analytical Mether	hod: ASTM I	02974							
Percent Moisture	19.6	%	0.10	1		01/05/15 11:51				

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10292097

Sample: HSA-8 (80-81.5)	Lab ID: 102	92097021	Collected: 12/09/1	4 12:3	0 Received: 12	/17/14 10:15 N	latrix: Solid	
Results reported on a "dry weigh	ht" basis and are adj	usted for pe	rcent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Meth	nod: EPA 602	0A Preparation Me	thod: E	EPA 3050			
Antimony	<0.56	mg/kg	0.56	20	02/01/15 12:17	02/02/15 16:51	7440-36-0	
Arsenic	2.4	mg/kg	0.56	20	02/01/15 12:17	02/02/15 16:51	7440-38-2	
Cadmium	0.24	mg/kg	0.090	20	02/01/15 12:17	02/02/15 16:51	7440-43-9	
Copper	4.9	mg/kg	1.1	20	02/01/15 12:17	02/02/15 16:51	7440-50-8	
Lead	2.9	mg/kg	0.11	20	02/01/15 12:17	02/02/15 16:51	7439-92-1	
Zinc	29.0	mg/kg	5.6	20	02/01/15 12:17	02/02/15 16:51	7440-66-6	
Dry Weight	Analytical Meth	nod: ASTM D	2974					
Percent Moisture	14.7	%	0.10	1		02/02/15 11:49		

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10292097

Sample: HSA-9 (10-11.5)	Lab ID: 102	292097023	Collected: 12/09/	14 15:40	0 Received: 12	2/17/14 10:15 N	latrix: Solid			
Results reported on a "dry weigh	ht" basis and are ac	ljusted for p	ercent moisture, sa	ample s	ize and any dilu	tions.				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
6020A MET ICPMS	Analytical Me	thod: EPA 60	20A Preparation Me	ethod: E	PA 3050					
Antimony	0.99	mg/kg	0.50	20	12/22/14 11:50	12/22/14 21:42	7440-36-0			
Arsenic	4.5	mg/kg	0.50	20	12/22/14 11:50	12/22/14 21:42	7440-38-2			
Cadmium	5.3	mg/kg	0.080	20	12/22/14 11:50	12/22/14 21:42	7440-43-9			
Chromium	1.9	mg/kg	0.50	20	12/22/14 11:50	12/22/14 21:42	7440-47-3			
Copper	15.9	mg/kg	1.0	20	12/22/14 11:50	12/22/14 21:42	7440-50-8			
Lead	495	mg/kg	1.0	200	12/22/14 11:50	12/23/14 16:29	7439-92-1			
Nickel	1.9	mg/kg	0.50	20	12/22/14 11:50	12/22/14 21:42	7440-02-0			
Zinc	2270	mg/kg	49.8	200	12/22/14 11:50	12/23/14 16:29	7440-66-6			
Dry Weight	Analytical Me	Analytical Method: ASTM D2974								
Percent Moisture	4.4	%	0.10	1		01/05/15 11:51				
Sobek Acid Base Potential	Analytical Me	thod: Modifie	d Sobek 3.2							
Neutralization Potential	390	tons/1000	0.50	1		01/07/15 13:00				
Sobek Extractable Sulfur	Analytical Me	thod: Modifie	d Sobek 3.2							
Sulfur, HCI Extractable	<0.050	% (w/w)	0.050	1		12/31/14 10:08				
Sulfur, HNO3 Extractable	0.0900	% (w/w)	0.050	1		12/31/14 10:08		C0		
Sulfur, Hot Water Extractable	<0.050	% (w/w)	0.050	1		12/31/14 10:08				
Sulfur, Residual	<0.050	% (w/w)	0.050	1		12/31/14 10:08				
Total Sulfur	<0.050	% (w/w)	0.050	1		12/31/14 10:08		C0		
Sobek Calculations	Analytical Me	thod: Modifie	d Sobek 3.2							
Acid/Base Potential	390	tons/1000)	1		12/31/14 14:22				
Acid Potential	<4.3	tons/1000	4.3	1		12/31/14 14:22				

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10292097

Sample: HSA-9 (50-51.5)	Lab ID: 102	292097027	Collected: 12/10/1	4 08:5	5 Received: 12	/17/14 10:15 N	latrix: Solid			
Results reported on a "dry weigh	ht" basis and are ad	ljusted for per	cent moisture, sa	mple s	size and any dilu	tions.				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
6020A MET ICPMS	Analytical Me	thod: EPA 6020	A Preparation Me	thod: E	EPA 3050					
Antimony	2.3	mg/kg	0.54	20	12/22/14 11:50	12/22/14 21:46	7440-36-0			
Arsenic	7.5	mg/kg	0.54	20	12/22/14 11:50	12/22/14 21:46	7440-38-2			
Cadmium	16.2	mg/kg	0.086	20	12/22/14 11:50	12/22/14 21:46	7440-43-9			
Chromium	0.57	mg/kg	0.54	20	12/22/14 11:50	12/22/14 21:46	7440-47-3			
Copper	11.2	mg/kg	1.1	20	12/22/14 11:50	12/22/14 21:46	7440-50-8			
Lead	1200	mg/kg	2.7	500	12/22/14 11:50	12/23/14 16:33	7439-92-1			
Nickel	1.3	mg/kg	0.54	20	12/22/14 11:50	12/22/14 21:46	7440-02-0			
Zinc	4710	mg/kg	134	500	12/22/14 11:50	12/23/14 16:33	7440-66-6			
6020A MET ICPMS, TCLP	Analytical Method: EPA 6020A Preparation Method: EPA 3020									
	Leachate Met	hod/Date: EPA	1311; 02/03/15 11	:20 Ini	tial pH: 9.22; Fina	l pH: 4.54				
Arsenic	<0.012	mg/L	0.012	5	02/04/15 13:27	02/04/15 22:06	7440-38-2			
Cadmium	0.048	mg/L	0.0020	5	02/04/15 13:27	02/04/15 22:06	7440-43-9			
Chromium	<0.012	mg/L	0.012	5	02/04/15 13:27	02/04/15 22:06	7440-47-3			
Lead	4.5	mg/L	0.0025	5	02/04/15 13:27	02/04/15 22:06	7439-92-1			
6020A MET ICPMS, SPLP	Analytical Me	thod: EPA 6020	A Preparation Me	thod: E	EPA 3020					
	Leachate Met	hod/Date: EPA	1312; 01/31/15 13	:12 In	itial pH: ; Final pH	: 9.14				
Antimony	0.0054	mg/L	0.0025	5	02/01/15 15:37	02/02/15 19:32	7440-36-0			
Arsenic	<0.0025	mg/L	0.0025	5	02/01/15 15:37	02/02/15 19:32	7440-38-2			
Cadmium	<0.00040	mg/L	0.00040	5	02/01/15 15:37	02/02/15 19:32	7440-43-9			
Chromium	<0.0025	mg/L	0.0025	5	02/01/15 15:37	02/02/15 19:32	7440-47-3			
Copper	<0.0050	mg/L	0.0050	5	02/01/15 15:37	02/02/15 19:32	7440-50-8			
Lead	0.015	mg/L	0.00050	5	02/01/15 15:37	02/02/15 19:32	7439-92-1			
Nickel	<0.0025	mg/L	0.0025	5	02/01/15 15:37	02/02/15 19:32	7440-02-0			
Zinc	0.041	mg/L	0.025	5	02/01/15 15:37	02/02/15 19:32	7440-66-6			
Dry Weight	Analytical Me	thod: ASTM D2	974							
Percent Moisture	7.0	%	0.10	1		01/05/15 11:51				
Sobek Acid Base Potential	Analytical Me	thod: Modified	Sobek 3.2							
Neutralization Potential	310	tons/1000	0.50	1		01/06/15 13:00				
Sobek Extractable Sulfur	Analytical Me	thod: Modified	Sobek 3.2							
Sulfur, HCI Extractable	<0.050	% (w/w)	0.050	1		12/31/14 10:18				
Sulfur, HNO3 Extractable	0.300	% (w/w)	0.050	1		12/31/14 10:18				
Sulfur, Hot Water Extractable	0.290	% (w/w)	0.050	1		12/31/14 10:18				
Sulfur, Residual	<0.050	% (w/w)	0.050	1		12/31/14 10:18				
Total Sulfur	0.570	% (w/w)	0.050	1		12/31/14 10:18				
Sobek Calculations	Analytical Me	thod: Modified	Sobek 3.2							
Acid/Base Potential	304	tons/1000		1		12/31/14 14:22				
Acid Potential	9.40	tons/1000	4.3	1		12/31/14 14:22				

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10292097

Sample: HSA-9 (80-81.5)	Lab ID: 10	292097030 (Collected: 12/10/1	4 10:30	Received: 12	/17/14 10:15 N	latrix: Solid	
Results reported on a "dry weigh	ht" basis and are ad	ljusted for per	cent moisture, sa	mple s	ize and any dilut	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Me	thod: EPA 6020	A Preparation Me	thod: E	PA 3050			
Antimony	<0.53	mg/kg	0.53	20	12/22/14 11:50	12/22/14 21:51	7440-36-0	
Arsenic	3.7	mg/kg	0.53	20	12/22/14 11:50	12/22/14 21:51	7440-38-2	
Cadmium	11.4	mg/kg	0.084	20	12/22/14 11:50	12/22/14 21:51	7440-43-9	
Chromium	1.9	mg/kg	0.53	20	12/22/14 11:50	12/22/14 21:51	7440-47-3	
Copper	24.7	mg/kg	1.1	20	12/22/14 11:50	12/22/14 21:51	7440-50-8	
Lead	144	mg/kg	2.6	500	12/22/14 11:50	12/23/14 16:38	7439-92-1	
Nickel	2.2	mg/kg	0.53	20	12/22/14 11:50	12/22/14 21:51	7440-02-0	
Zinc	7290	mg/kg	131	500	12/22/14 11:50	12/23/14 16:38	7440-66-6	
6020A MET ICPMS, TCLP	Analytical Me	thod: EPA 6020	A Preparation Me	thod: E	PA 3020			
	Leachate Met	hod/Date: EPA	1311; 02/03/15 11	:20 Ini	tial pH: 9.43; Final	l pH: 3.17		
Arsenic	<0.012	mg/L	0.012	5	02/04/15 13:27	02/04/15 22:11	7440-38-2	
Cadmium	0.098	mg/L	0.0020	5	02/04/15 13:27	02/04/15 22:11	7440-43-9	
Chromium	<0.012	mg/L	0.012	5	02/04/15 13:27	02/04/15 22:11	7440-47-3	
Lead	0.35	mg/L	0.0025	5	02/04/15 13:27	02/04/15 22:11	7439-92-1	
6020A MET ICPMS, SPLP	Analytical Me	thod: EPA 6020	A Preparation Me	thod: E	PA 3020			
	Leachate Met	hod/Date: EPA	1312; 01/31/15 13	:12 Ini	tial pH: ; Final pH:	: 9.35		
Arsenic	<0.0025	mg/L	0.0025	5	02/01/15 15:37	02/02/15 19:37	7440-38-2	
Cadmium	0.0045	mg/L	0.00040	5	02/01/15 15:37	02/02/15 19:37	7440-43-9	
Chromium	<0.0025	mg/L	0.0025	5	02/01/15 15:37	02/02/15 19:37	7440-47-3	
Copper	0.033	mg/L	0.0050	5	02/01/15 15:37	02/02/15 19:37	7440-50-8	
Lead	0.067	mg/L	0.00050	5	02/01/15 15:37	02/02/15 19:37	7439-92-1	
Nickel	<0.0025	mg/L	0.0025	5	02/01/15 15:37	02/02/15 19:37	7440-02-0	
Zinc	2.1	mg/L	0.025	5	02/01/15 15:37	02/02/15 19:37	7440-66-6	
Dry Weight	Analytical Me	thod: ASTM D2	974					
Percent Moisture	6.7	%	0.10	1		01/05/15 11:52		
Sobek Acid Base Potential	Analytical Me	thod: Modified	Sobek 3.2					
Neutralization Potential	180	tons/1000	0.50	1		01/06/15 14:00		
Sobek Extractable Sulfur	Analytical Me	thod: Modified	Sobek 3.2					
Sulfur, HCI Extractable	0.250	% (w/w)	0.050	1		12/31/14 10:32		
Sulfur, HNO3 Extractable	0.0800	% (w/w)	0.050	1		12/31/14 10:32		
Sulfur, Hot Water Extractable	<0.050	% (w/w)	0.050	1		12/31/14 10:32		
Sulfur, Residual	<0.050	% (w/w)	0.050	1		12/31/14 10:32		
Total Sulfur	0.350	% (w/w)	0.050	1		12/31/14 10:32		
Sobek Calculations	Analytical Me	thod: Modified	Sobek 3.2					
Acid/Base Potential	176	tons/1000		1		12/31/14 14:22		
Acid Potential	8.55	tons/1000	4.3	1		12/31/14 14:22		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10292097

Sample: HSA-9 (85-86.5)	Lab ID: 102	92097031	Collected: 12/10/1	4 12:2	0 Received: 12	/17/14 10:15 N	latrix: Solid	
Results reported on a "dry weigh	nt" basis and are adj	usted for pe	rcent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Meth	nod: EPA 602	0A Preparation Me	thod: E	EPA 3050			
Antimony	<0.60	mg/kg	0.60	20	12/22/14 11:50	12/22/14 21:56	7440-36-0	
Arsenic	2.8	mg/kg	0.60	20	12/22/14 11:50	12/22/14 21:56	7440-38-2	
Cadmium	0.50	mg/kg	0.096	20	12/22/14 11:50	12/22/14 21:56	7440-43-9	
Chromium	7.4	mg/kg	0.60	20	12/22/14 11:50	12/22/14 21:56	7440-47-3	
Copper	11.5	mg/kg	1.2	20	12/22/14 11:50	12/22/14 21:56	7440-50-8	
Lead	14.1	mg/kg	0.30	50	12/22/14 11:50	12/23/14 16:43	7439-92-1	
Nickel	9.1	mg/kg	0.60	20	12/22/14 11:50	12/22/14 21:56	7440-02-0	
Zinc	94.6	mg/kg	6.0	20	12/22/14 11:50	12/22/14 21:56	7440-66-6	
Dry Weight	Analytical Meth	nod: ASTM D	2974					
Percent Moisture	19.5	%	0.10	1		01/05/15 11:52		

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10292097

Sample: HSA-11 (20-21.5)	Lab ID: 102	92097034	2/17/14 10:15 N	latrix: Solid				
Results reported on a "dry weig	ht" basis and are ad	iusted for pe	ercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Met	hod: EPA 602	20A Preparation Me	thod: E	PA 3050			
Antimony	0.84	mg/kg	0.55	20	12/22/14 11:50	12/22/14 22:16	7440-36-0	
Arsenic	12.0	mg/kg	0.55	20	12/22/14 11:50	12/22/14 22:16	7440-38-2	
Cadmium	3.4	mg/kg	0.088	20	12/22/14 11:50	12/22/14 22:16	7440-43-9	
Chromium	2.8	mg/kg	0.55	20	12/22/14 11:50	12/22/14 22:16	7440-47-3	
Copper	37.7	mg/kg	1.1	20	12/22/14 11:50	12/22/14 22:16	7440-50-8	
Lead	383	mg/kg	1.1	200	12/22/14 11:50	12/23/14 16:57	7439-92-1	
Nickel	2.1	mg/kg	0.55	20	12/22/14 11:50	12/22/14 22:16	7440-02-0	
Zinc	1470	mg/kg	55.2	200	12/22/14 11:50	12/23/14 16:57	7440-66-6	
6020A MET ICPMS, SPLP	Analytical Met	hod: EPA 602	20A Preparation Me	thod: E	PA 3020			
	Leachate Meth	nod/Date: EP	A 1312; 01/31/15 13	8:12 Ini	tial pH: ; Final pH	: 8.92		
Antimony	0.0046	mg/L	0.0025	5	02/01/15 15:37	02/02/15 19:42	7440-36-0	
Arsenic	<0.0025	mg/L	0.0025	5	02/01/15 15:37	02/02/15 19:42	7440-38-2	
Cadmium	<0.00040	mg/L	0.00040	5	02/01/15 15:37	02/02/15 19:42	7440-43-9	
Chromium	<0.0025	mg/L	0.0025	5	02/01/15 15:37	02/02/15 19:42	7440-47-3	
Copper	<0.0050	mg/L	0.0050	5	02/01/15 15:37	02/02/15 19:42	7440-50-8	
Lead	0.0023	mg/L	0.00050	5	02/01/15 15:37	02/02/15 19:42	7439-92-1	
Nickel	<0.0025	mg/L	0.0025	5	02/01/15 15:37	02/02/15 19:42	7440-02-0	
Zinc	0.032	mg/L	0.025	5	02/01/15 15:37	02/02/15 19:42	7440-66-6	
Dry Weight	Analytical Met	hod: ASTM D	02974					
Percent Moisture	12.8	%	0.10	1		01/05/15 11:52		

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10292097

Sample: HSA-11 (25.5-26.5)	Lab ID: 102	92097035	Collected: 12/11/1	4 10:30	0 Received: 12	/17/14 10:15 N	latrix: Solid	
Results reported on a "dry weight	" basis and are adj	usted for per	rcent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Meth	nod: EPA 6020	DA Preparation Me	thod: E	EPA 3050			
Antimony	<0.54	mg/kg	0.54	20	12/22/14 11:50	12/22/14 22:20	7440-36-0	
Arsenic	1.9	mg/kg	0.54	20	12/22/14 11:50	12/22/14 22:20	7440-38-2	
Cadmium	0.83	mg/kg	0.087	20	12/22/14 11:50	12/22/14 22:20	7440-43-9	
Chromium	3.7	mg/kg	0.54	20	12/22/14 11:50	12/22/14 22:20	7440-47-3	
Copper	9.0	mg/kg	1.1	20	12/22/14 11:50	12/22/14 22:20	7440-50-8	
Lead	35.4	mg/kg	0.27	50	12/22/14 11:50	12/23/14 17:02	7439-92-1	
Nickel	4.9	mg/kg	0.54	20	12/22/14 11:50	12/22/14 22:20	7440-02-0	
Zinc	277	mg/kg	5.4	20	12/22/14 11:50	12/22/14 22:20	7440-66-6	
Dry Weight	Analytical Meth	nod: ASTM D2	2974					
Percent Moisture	7.6	%	0.10	1		01/05/15 11:52		

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10292097

Sample: HSA-10 (10-11.5)	Lab ID: 102	92097037	Collected: 12/10/1	4 15:00	0 Received: 12	2/17/14 10:15 N	latrix: Solid	
Results reported on a "dry weig	ht" basis and are adj	iusted for p	ercent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Mether	nod: EPA 60	20A Preparation Me	thod: E	EPA 3050			
Antimony	0.80	mg/kg	0.52	20	12/22/14 11:50	12/22/14 22:25	7440-36-0	
Arsenic	8.4	mg/kg	0.52	20	12/22/14 11:50	12/22/14 22:25	7440-38-2	
Cadmium	5.5	mg/kg	0.084	20	12/22/14 11:50	12/22/14 22:25	7440-43-9	
Chromium	2.5	mg/kg	0.52	20	12/22/14 11:50	12/22/14 22:25	7440-47-3	
Copper	16.5	mg/kg	1.0	20	12/22/14 11:50	12/22/14 22:25	7440-50-8	
Lead	291	mg/kg	1.0	200	12/22/14 11:50	12/23/14 17:07	7439-92-1	
Nickel	2.8	mg/kg	0.52	20	12/22/14 11:50	12/22/14 22:25	7440-02-0	
Zinc	2270	mg/kg	52.5	200	12/22/14 11:50	12/23/14 17:07	7440-66-6	
6020A MET ICPMS, SPLP	Analytical Mether	nod: EPA 60	20A Preparation Me	thod: E	EPA 3020			
	Leachate Meth	nod/Date: EF	PA 1312; 01/31/15 13	8:12 Ini	itial pH: ; Final pH	: 8.71		
Antimony	<0.0025	mg/L	0.0025	5	02/01/15 15:37	02/02/15 19:47	7440-36-0	
Arsenic	<0.0025	mg/L	0.0025	5	02/01/15 15:37	02/02/15 19:47	7440-38-2	
Cadmium	0.00068	mg/L	0.00040	5	02/01/15 15:37	02/02/15 19:47	7440-43-9	
Chromium	<0.0025	mg/L	0.0025	5	02/01/15 15:37	02/02/15 19:47	7440-47-3	
Copper	<0.0050	mg/L	0.0050	5	02/01/15 15:37	02/02/15 19:47	7440-50-8	
Lead	0.026	mg/L	0.00050	5	02/01/15 15:37	02/02/15 19:47	7439-92-1	
Nickel	<0.0025	mg/L	0.0025	5	02/01/15 15:37	02/02/15 19:47	7440-02-0	
Zinc	0.14	mg/L	0.025	5	02/01/15 15:37	02/02/15 19:47	7440-66-6	
Dry Weight	Analytical Meth	nod: ASTM [02974					
Percent Moisture	6.6	%	0.10	1		01/05/15 11:53		

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10292097

Sample: HSA-10 (30-31.5)	Lab ID: 102	92097039	Collected: 12/10/1	4 15:4	0 Received: 12	/17/14 10:15 N	latrix: Solid	
Results reported on a "dry weig	ht" basis and are adj	iusted for p	ercent moisture, sa	mple s	ize and any dilut	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Mether	hod: EPA 60	20A Preparation Me	ethod: E	PA 3050			
Antimony	0.84	mg/kg	0.64	20	12/22/14 11:50	12/22/14 22:30	7440-36-0	
Arsenic	11.9	mg/kg	0.64	20	12/22/14 11:50	12/22/14 22:30	7440-38-2	
Cadmium	11.9	mg/kg	0.10	20	12/22/14 11:50	12/22/14 22:30	7440-43-9	
Chromium	3.4	mg/kg	0.64	20	12/22/14 11:50	12/22/14 22:30	7440-47-3	
Copper	234	mg/kg	1.3	20	12/22/14 11:50	12/22/14 22:30	7440-50-8	
Lead	912	mg/kg	3.2	500	12/22/14 11:50	12/23/14 17:12	7439-92-1	
Nickel	3.8	mg/kg	0.64	20	12/22/14 11:50	12/22/14 22:30	7440-02-0	
Zinc	4480	mg/kg	160	500	12/22/14 11:50	12/23/14 17:12	7440-66-6	
6020A MET ICPMS, TCLP	Analytical Mether	hod: EPA 60	20A Preparation Me	ethod: E	PA 3020			
	Leachate Meth	nod/Date: El	PA 1311; 02/03/15 11	:20 Ini	tial pH: 9.23; Fina	l pH: 5.02		
Arsenic	<0.012	mg/L	0.012	5	02/04/15 13:27	02/04/15 22:16	7440-38-2	
Cadmium	0.049	mg/L	0.0020	5	02/04/15 13:27	02/04/15 22:16	7440-43-9	
Chromium	<0.012	mg/L	0.012	5	02/04/15 13:27	02/04/15 22:16	7440-47-3	
Lead	3.0	mg/L	0.0025	5	02/04/15 13:27	02/04/15 22:16	7439-92-1	
6020A MET ICPMS, SPLP	Analytical Mether	hod: EPA 60	20A Preparation Me	thod: E	PA 3020			
	Leachate Meth	nod/Date: El	PA 1312; 01/31/15 13	3:12 Ini	tial pH: ; Final pH:	: 9.03		
Antimony	0.0071	mg/L	0.0025	5	02/01/15 15:37	02/02/15 19:52	7440-36-0	
Arsenic	<0.0025	mg/L	0.0025	5	02/01/15 15:37	02/02/15 19:52	7440-38-2	
Cadmium	0.00098	mg/L	0.00040	5	02/01/15 15:37	02/02/15 19:52	7440-43-9	
Chromium	<0.0025	mg/L	0.0025	5	02/01/15 15:37	02/02/15 19:52	7440-47-3	
Copper	0.020	mg/L	0.0050	5	02/01/15 15:37	02/02/15 19:52	7440-50-8	
Lead	0.032	mg/L	0.00050	5	02/01/15 15:37	02/02/15 19:52	7439-92-1	
Nickel	<0.0025	mg/L	0.0025	5	02/01/15 15:37	02/02/15 19:52	7440-02-0	
Zinc	0.41	mg/L	0.025	5	02/01/15 15:37	02/02/15 19:52	7440-66-6	
Dry Weight	Analytical Mether	hod: ASTM	D2974					
Percent Moisture	25.0	%	0.10	1		01/05/15 11:53		

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10292097

ample: HSA-10 (50-51.5) Lab ID: 10292097041 Collected: 12/10/14 16:00 Received: 12/17/14 10:15 Matrix: Solid									
Results reported on a "dry weig	ht" basis and are ad	justed for p	ercent moisture, sa	mple s	size and any dilu	tions.			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
6020A MET ICPMS	Analytical Met	hod: EPA 60	20A Preparation Me	thod: E	EPA 3050				
Antimony	0.73	mg/kg	0.59	20	12/22/14 11:50	12/22/14 22:35	7440-36-0		
Arsenic	30.8	mg/kg	0.59	20	12/22/14 11:50	12/22/14 22:35	7440-38-2		
Cadmium	8.8	mg/kg	0.095	20	12/22/14 11:50	12/22/14 22:35	7440-43-9		
Chromium	3.1	mg/kg	0.59	20	12/22/14 11:50	12/22/14 22:35	7440-47-3		
Copper	201	mg/kg	1.2	20	12/22/14 11:50	12/22/14 22:35	7440-50-8		
Lead	567	mg/kg	3.0	500	12/22/14 11:50	12/23/14 17:16	7439-92-1		
Nickel	4.1	mg/kg	0.59	20	12/22/14 11:50	12/22/14 22:35	7440-02-0		
Zinc	3370	mg/kg	148	500	12/22/14 11:50	12/23/14 17:16	7440-66-6		
6020A MET ICPMS, TCLP	Analytical Met	hod: EPA 60	20A Preparation Me	thod: E	PA 3020				
	Leachate Meth	nod/Date: El	PA 1311; 02/03/15 11	:20 Ini	tial pH: 9.28; Fina	l pH: 4.91			
Arsenic	<0.012	mg/L	0.012	5	02/04/15 13:27	02/04/15 22:20	7440-38-2		
Cadmium	0.031	mg/L	0.0020	5	02/04/15 13:27	02/04/15 22:20	7440-43-9		
Chromium	<0.012	mg/L	0.012	5	02/04/15 13:27	02/04/15 22:20	7440-47-3		
Lead	1.1	mg/L	0.0025	5	02/04/15 13:27	02/04/15 22:20	7439-92-1		
6020A MET ICPMS, SPLP	Analytical Met	hod: EPA 60	20A Preparation Me	thod: E	EPA 3020				
	Leachate Meth	nod/Date: El	PA 1312; 01/31/15 13	:12 Ini	itial pH: ; Final pH	: 8.99			
Antimony	0.0064	mg/L	0.0025	5	02/01/15 15:37	02/02/15 19:57	7440-36-0		
Arsenic	0.0068	mg/L	0.0025	5	02/01/15 15:37	02/02/15 19:57	7440-38-2		
Cadmium	0.0081	mg/L	0.00040	5	02/01/15 15:37	02/02/15 19:57	7440-43-9		
Chromium	0.0035	mg/L	0.0025	5	02/01/15 15:37	02/02/15 19:57	7440-47-3		
Copper	0.19	mg/L	0.0050	5	02/01/15 15:37	02/02/15 19:57	7440-50-8		
Lead	0.39	mg/L	0.00050	5	02/01/15 15:37	02/02/15 19:57	7439-92-1		
Nickel	0.0097	mg/L	0.0025	5	02/01/15 15:37	02/02/15 19:57	7440-02-0		
Zinc	3.8	mg/L	0.25	50	02/01/15 15:37	02/03/15 10:16	7440-66-6		
Dry Weight	Analytical Met	hod: ASTM	D2974						
Percent Moisture	24.1	%	0.10	1		01/05/15 11:53			

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10292097

Sample: HSA-10 (60-61.5) Lab ID: 10292097042 Collected: 12/11/14 07:50 Received: 12/17/14 10:15 Matrix: Solid								
Results reported on a "dry weig	ht" basis and are ad	iusted for pe	rcent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Met	hod: EPA 602	0A Preparation Me	thod: E	EPA 3050			
Antimony	0.99	mg/kg	0.71	20	12/22/14 11:50	12/22/14 22:39	7440-36-0	
Arsenic	7.4	mg/kg	0.71	20	12/22/14 11:50	12/22/14 22:39	7440-38-2	
Cadmium	2.6	mg/kg	0.11	20	12/22/14 11:50	12/22/14 22:39	7440-43-9	
Chromium	6.0	mg/kg	0.71	20	12/22/14 11:50	12/22/14 22:39	7440-47-3	
Copper	117	mg/kg	1.4	20	12/22/14 11:50	12/22/14 22:39	7440-50-8	
Lead	184	mg/kg	0.71	100	12/22/14 11:50	12/23/14 17:21	7439-92-1	
Nickel	8.4	mg/kg	0.71	20	12/22/14 11:50	12/22/14 22:39	7440-02-0	
Zinc	793	mg/kg	35.5	100	12/22/14 11:50	12/23/14 17:21	7440-66-6	
6020A MET ICPMS, TCLP	Analytical Met	hod: EPA 602	0A Preparation Me	thod: E	EPA 3020			
	Leachate Meth	nod/Date: EPA	1311; 02/03/15 11	:20 Ini	tial pH: 8.27; Fina	l pH: 2.4		
Arsenic	<0.012	mg/L	0.012	5	02/04/15 13:27	02/04/15 22:25	7440-38-2	
Cadmium	0.043	mg/L	0.0020	5	02/04/15 13:27	02/04/15 22:25	7440-43-9	
Chromium	<0.012	mg/L	0.012	5	02/04/15 13:27	02/04/15 22:25	7440-47-3	
Lead	0.61	mg/L	0.0025	5	02/04/15 13:27	02/04/15 22:25	7439-92-1	
6020A MET ICPMS, SPLP	Analytical Met	hod: EPA 602	0A Preparation Me	thod: E	EPA 3020			
	Leachate Meth	nod/Date: EPA	1312; 01/31/15 13	:12 Ini	itial pH: ; Final pH	: 8.78		
Antimony	0.020	mg/L	0.0025	5	02/01/15 15:37	02/02/15 20:02	7440-36-0	
Arsenic	0.0030	mg/L	0.0025	5	02/01/15 15:37	02/02/15 20:02	7440-38-2	
Cadmium	0.00092	mg/L	0.00040	5	02/01/15 15:37	02/02/15 20:02	7440-43-9	
Chromium	<0.0025	mg/L	0.0025	5	02/01/15 15:37	02/02/15 20:02	7440-47-3	
Copper	0.0087	mg/L	0.0050	5	02/01/15 15:37	02/02/15 20:02	7440-50-8	
Lead	0.069	mg/L	0.00050	5	02/01/15 15:37	02/02/15 20:02	7439-92-1	
Nickel	<0.0025	mg/L	0.0025	5	02/01/15 15:37	02/02/15 20:02	7440-02-0	
Zinc	0.33	mg/L	0.025	5	02/01/15 15:37	02/02/15 20:02	7440-66-6	
Dry Weight	Analytical Met	hod: ASTM D	2974					
Percent Moisture	29.6	%	0.10	1		01/05/15 11:54		

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10292097

Sample: HSA-10 (63-63.5)	Lab ID: 102	92097043	Collected: 12/11/1	4 08:2	5 Received: 12	/17/14 10:15 N	latrix: Solid	
Results reported on a "dry weigh	nt" basis and are adj	usted for pe	rcent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Meth	nod: EPA 602	0A Preparation Me	thod: E	EPA 3050			
Antimony	<0.50	mg/kg	0.50	20	02/01/15 12:17	02/02/15 16:41	7440-36-0	
Arsenic	1.2	mg/kg	0.50	20	02/01/15 12:17	02/02/15 16:41	7440-38-2	
Cadmium	0.10	mg/kg	0.081	20	02/01/15 12:17	02/02/15 16:41	7440-43-9	
Copper	6.6	mg/kg	1.0	20	02/01/15 12:17	02/02/15 16:41	7440-50-8	
Lead	6.5	mg/kg	0.10	20	02/01/15 12:17	02/02/15 16:41	7439-92-1	
Zinc	82.1	mg/kg	5.0	20	02/01/15 12:17	02/02/15 16:41	7440-66-6	
Dry Weight	Analytical Meth	nod: ASTM D	2974					
Percent Moisture	1.7	%	0.10	1		02/02/15 11:50		

QUALITY CONTROL DATA

Project:	0504-1	00-00 Van Ston	e Mine										
Pace Project No.:	102920)97											
QC Batch:	MPR	P/51399		Analys	is Method	: E	EPA 6020A						
QC Batch Method:	EPA 3	3050		Analys	is Descrip	tion: 6	020A Solids	UPD4					
Associated Lab San	nples:	10292097001, 10292097019, 10292097035,	10292097003 10292097020 10292097037	10292097 10292097 10292097	005, 1029 023, 1029 039, 1029	2097006, 1 2097027, 1 2097041, 1	1029209700 1029209703 1029209704	7, 1029209 0, 1029209 2	7014, 1029 7031, 1029	2097016, 2097034,			
METHOD BLANK:	187037	'6		Ν	Aatrix: So	lid							
Associated Lab San	nples:	10292097001, 10292097019, 10292097035,	10292097003 10292097020 10292097037	, 10292097 , 10292097 , 10292097 , 10292097 Blank	005, 1029 023, 1029 039, 1029 c F	2097006, 1 2097027, 1 2097041, 1 Reporting	1029209700 1029209703 1029209704	7, 1029209 0, 1029209 2	7014, 1029 7031, 1029	2097016, 2097034,			
Paran	neter		Units	Resul	t	Limit	Analyz	zed	Qualifiers	_			
Antimony			mg/kg	~	<0.50	0.50	0 12/23/14	15:07					
Arsenic			mg/kg	<	<0.50	0.50) 12/23/14	15:07					
Cadmium			mg/kg	<(0.079	0.079	9 12/23/14	15:07					
Coppor			mg/kg	•	<0.50	0.50	$J = \frac{12}{23} + \frac{12}{23} + \frac{12}{23} + \frac{12}{23} + \frac{12}{23} + \frac{12}{14} + $	15:07					
Lead			mg/kg	-(1 099	0.98	a 12/23/14	15:07					
Nickel			ma/ka		<0.50	0.50	12/23/14	15:07					
Zinc			mg/kg		<5.0	5.0	0 12/23/14	15:07					
Paran	neter	SAMPLE: 187	Units	Spike Conc.	LCS Resi	S ult	LCS % Rec	% Red Limits	c 5 Qu	alifiers	_		
Antimony			mg/kg	19.2		18.8	98	80)-120				
Arsenic			mg/kg	19.2		18.3	95	80)-120				
Cadmium			mg/kg	19.2		19.1	99	80)-120				
Copper			mg/kg mg/kg	19.2		10.0	97	80)-120)_120				
Lead			ma/ka	19.2		19.3	100	80)-120				
Nickel			mg/kg	19.2		18.9	98	80)-120				
Zinc			mg/kg	19.2		19.0	99	80)-120				
MATRIX SPIKE & M	IATRIX S	SPIKE DUPLIC	ATE: 187037	78 MS	MSD	1870379							
		1	0292097001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	er	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony		mg/kg	<0.54	21	21.2	16.8	18.0	78	83	75-125	7	20	
Arsenic		mg/kg	4.1	21	21.2	28.5	31.5	116	129	75-125	10	20	M6
Cadmium		mg/kg	4.6	21	21.2	27.9	29.9	111	119	75-125	7	20	
Chromium		mg/kg	1.3	21	21.2	24.5	26.5	110	119	75-125	8	20	
Copper		mg/kg	17.1	21	21.2	41.9	46.8	118	140	75-125	11	20	IVI6 MG
Lead		mg/kg	268	21	21.2	322	: 361 ເ ດຂວ	259	439	75 125	11 0	20	IVID
Zinc		mg/kg	∠.3 1560	∠ı 21	∠ı.∠ 21.2	20.9	, ∠o.3) 19/10	2180	123	75-120	9 1	20 20	E M6
		ing/ing	1000	21	21.2	2020	10-10	2100	1770	10-120	-	20	_,0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10292097

QC Batch:	
QC Batch Method:	

Analysis Method:

Analysis Description: 6020A Solids UPD4

Matrix: Solid

EPA 6020A

QC Batch Method: EPA 3050 Associated Lab Samples: 10292097021, 10292097043

MPRP/52123

METHOD BLANK: 1891342

Associated Lab Samples: 10292097021, 10292097043

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Antimony	mg/kg	<0.49	0.49	02/02/15 16:31	
Arsenic	mg/kg	<0.49	0.49	02/02/15 16:31	
Cadmium	mg/kg	<0.078	0.078	02/02/15 16:31	
Copper	mg/kg	<0.97	0.97	02/02/15 16:31	
Lead	mg/kg	<0.097	0.097	02/02/15 16:31	
Zinc	mg/kg	<4.9	4.9	02/02/15 16:31	

LABORATORY CONTROL SAMPLE: 1891343

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Antimony			16.2			
Anumony	тід/кд	10.D	10.3	00	80-120	
Arsenic	mg/kg	18.5	16.8	90	80-120	
Cadmium	mg/kg	18.5	16.6	90	80-120	
Copper	mg/kg	18.5	17.2	93	80-120	
Lead	mg/kg	18.5	17.3	93	80-120	
Zinc	mg/kg	18.5	17.0	92	80-120	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1891344

			MS	MSD								
		10292097021	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/kg	<0.56	19.7	21.7	17.3	22.6	87	103	75-125	26	20	R1
Arsenic	mg/kg	2.4	19.7	21.7	22.9	27.8	104	117	75-125	19	20	
Cadmium	mg/kg	0.24	19.7	21.7	20.1	25.6	101	117	75-125	24	20	R1
Copper	mg/kg	4.9	19.7	21.7	25.8	31.0	107	120	75-125	18	20	
Lead	mg/kg	2.9	19.7	21.7	22.2	27.6	98	114	75-125	22	20	R1
Zinc	mg/kg	29.0	19.7	21.7	51.4	53.1	114	111	75-125	3	20	

1891345

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

0504-100-00 Var	n Stone Mine						
10292097							
MPRP/52217		Analysis M	ethod: E	PA 6020A			
EPA 3020		Analysis De	escription: 6	020A TCLP UP	D4		
mples: 1029209	97003, 10292097020,	10292097027,	10292097030, 1	0292097039, 1	0292097041,	10292097042	
1893954		Matrix	c Water				
mples: 1029209	97003, 10292097020,	10292097027,	10292097030, 1	0292097039, 1	0292097041,	10292097042	
meter	Units	Blank Result	Reporting Limit	Analyzed	Qualif	iers	
	ma/L	<0.0025	0.0025	5 02/04/15 21:	47		
	ma/L	< 0.00040	0.00040	02/04/15 21:	47		
	ma/L	<0.0025	0.0025	5 02/04/15 21:	47		
	mg/L	<0.00050	0.00050	02/04/15 21:	47		
1892242		Matrix	c Water				
mples: 1020200	7003 10202007020	10202007027	10202007030 1	0202007030 1	02020070/1	10202007042	
1029209	1003, 1029209/020,	RICCH RICCH	Departing	10292097039, 1	0292097041,	10292097042	
motor	Linito	Didiik	Limit	Apolyzod	Qualif	ioro	
		Result		Analyzeu			
	mg/L	<0.012	2 0.012	2 02/04/15 21:	57		
	mg/L	<0.0020	0.0020	0 02/04/15 21:	57		
	mg/L	<0.012	2 0.012	2 02/04/15 21:	57		
	mg/L	<0.0025	0.0025	5 02/04/15 21:	57		
1892243		Matrix	c: Water				
1892243 mples: 1029209	97003, 10292097020.	Matrix 10292097027.	<: Water 10292097030, 1	0292097039, 1	0292097041.	10292097042	
1892243 mples: 1029209	07003, 10292097020,	Matrix 10292097027, Blank	 Water 10292097030, 1 Reporting 	0292097039, 1	0292097041,	10292097042	
1892243 mples: 1029209 meter	07003, 10292097020, Units	Matrix 10292097027, Blank Result	: Water 10292097030, 1 Reporting Limit	0292097039, 1 Analyzed	0292097041, Qualif	10292097042 iers	
1892243 mples: 1029209 meter	07003, 10292097020, Units	Matrix 10292097027, Blank Result	c: Water 10292097030, 1 Reporting Limit	0292097039, 1 Analyzed	0292097041, Qualif	10292097042 iers	
1892243 mples: 1029209 meter	07003, 10292097020, Units 	Matriz 10292097027, Blank Result <0.012	x: Water 10292097030, 1 Reporting Limit 0.0022	Analyzed	0292097041, Qualif 44	10292097042 iers	
1892243 mples: 1029209 meter	07003, 10292097020, Units mg/L ng/L 	Matriz 10292097027, Blank Result <0.012 <0.0020	x: Water 10292097030, 1 Reporting Limit 2 0,0022 0,0022	Analyzed 02/04/15 22: 0 02/04/15 22: 0 02/04/15 22:	0292097041, Qualif 44 44	10292097042 iers	
1892243 mples: 1029209 meter	07003, 10292097020, Units mg/L mg/L mg/L mg/L mg/L	Matriz 10292097027, Blank Result <0.012 <0.0020 <0.012	x: Water 10292097030, 1 Reporting Limit 2 0.012 0 0.0020 2 0.012 0 0.012	Analyzed 2 02/04/15 22: 2 02/04/15 22: 2 02/04/15 22: 2 02/04/15 22:	0292097041, Qualif 44 44 44 44	10292097042 iers	
1892243 mples: 1029209 meter	07003, 10292097020, Units mg/L mg/L mg/L mg/L	Matriz 10292097027, Blank Result <0.012 <0.0020 <0.012 <0.0025	x: Water 10292097030, 1 Reporting Limit 2 0.012 0 0.0020 2 0.012 3 0.0025	Analyzed 2 02/04/15 22: 0 02/04/15 22: 2 02/04/15 22: 5 02/04/15 22:	0292097041, Qualif 44 44 44 44 44	10292097042 iers	
1892243 mples: 1029209 meter NTROL SAMPLE:	07003, 10292097020, Units mg/L mg/L mg/L 1893955	Matriz 10292097027, Blank Result <0.012 <0.0020 <0.012	x: Water 10292097030, 1 Reporting Limit 2 0.012 0 0.0020 2 0.012 5 0.0025	Analyzed 2 02/04/15 22: 0 02/04/15 22: 2 02/04/15 22: 5 02/04/15 22:	0292097041, Qualif 44 44 44 44	10292097042 iers	
1892243 mples: 1029209 meter NTROL SAMPLE:	07003, 10292097020, Units mg/L mg/L mg/L mg/L mg/L 1893955	Matriz 10292097027, Blank Result <0.012 <0.0020 <0.012 <0.0025	x: Water 10292097030, 1 Reporting Limit 0.012 0.0020 0.0025 LCS	Analyzed 2 02/04/15 22: 0 02/04/15 22: 0 02/04/15 22: 2 02/04/15 22: 5 02/04/15 22: LCS	0292097041, Qualif 44 44 44 44 44 44	10292097042 iers	
1892243 mples: 1029209 meter NTROL SAMPLE: meter	07003, 10292097020, 	Matriz 10292097027, Blank Result <0.012 <0.0020 <0.012 <0.0025 Spike Conc.	k: Water 10292097030, 1 Reporting Limit 2 0.012 0 0.0025 2 0.012 0 0.0025 LCS Result	Analyzed 2 02/04/15 22: 0 02/04/15 22: 0 02/04/15 22: 2 02/04/15 22: 5 02/04/15 22: LCS % Rec	0292097041, Qualif 44 44 44 44 44 44 % Rec Limits	10292097042 iers Qualifiers	
1892243 mples: 1029209 meter NTROL SAMPLE: meter	07003, 10292097020, 	Matriz 10292097027, Blank Result <0.012 <0.0020 <0.0025 <0.0025 Spike Conc. .4	x: Water 10292097030, 1 Reporting Limit 2 0.012 0 0.0020 2 0.012 0 0.0025 LCS Result 0.40	Analyzed 2 02/04/15 22: 0 02/04/15 22: 2 02/04/15 22: 2 02/04/15 22: 5 02/04/15 22: 4 02/04/15 22: 5 02/04/15 22: 4 02/04/15 22: 5 02/04/15 22: 4 02/04/15 22: 5 02/04/15 22: 4 02/04/15 22: 5 02	0292097041, Qualif 44 44 44 44 44 44 % Rec Limits 80-120	10292097042 iers Qualifiers	
1892243 mples: 1029209 meter NTROL SAMPLE: meter	07003, 10292097020, 	Matriz 10292097027, Blank Result <0.012 <0.0020 <0.0025 <0.0025 Spike Conc. .4 .4	x: Water 10292097030, 1 Reporting Limit 2 0.012 0 0.0020 2 0.012 0 0.0025 LCS Result 0.40 0.40 0.40	10292097039, 1 Analyzed 2 02/04/15 22: 0 02/04/15 22: 2 02/04/15 22: 5 02/04/15 22: 5 02/04/15 22: LCS % Rec 99 100	0292097041, Qualif 44 44 44 44 % Rec Limits 80-120 80-120	10292097042 iers Qualifiers	
1892243 mples: 1029209 meter NTROL SAMPLE: meter	07003, 10292097020, 	Matriz 10292097027, Blank Result <0.012 <0.0020 <0.012 <0.0025 Spike Conc. .4 .4 .4 .4	x: Water 10292097030, 1 Reporting Limit 2 0.012 0 0.0020 2 0.012 0 0.0025 LCS Result 0.40 0.40 0.41	10292097039, 1 Analyzed 2 02/04/15 22: 0 02/04/15 22: 2 02/04/15 22: 5 02/04/15 22: 5 02/04/15 22: 4 CS % Rec 99 100 103	0292097041, Qualif 44 44 44 44 % Rec Limits 80-120 80-120 80-120	10292097042 iers	
	10292097 MPRP/52217 EPA 3020 nples: 1029209 1893954 nples: 1029209 neter 1892242 nples: 1029209 neter	10292097 MPRP/52217 EPA 3020 nples: 10292097003, 10292097020, 1893954 nples: 10292097003, 10292097020, neter Units mg/L mg/L mg/L mg/L nples: 10292097003, 10292097020, neter Units 1892242 mg/L nples: 10292097003, 10292097020, neter Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	10292097 MPRP/52217 Analysis Me EPA 3020 Analysis De nples: 10292097003, 10292097020, 10292097027, 1893954 Matrix nples: 10292097003, 10292097020, 10292097027, Blank Matrix nples: 10292097003, 10292097020, 10292097027, Blank Result mg/L <0.0025	10292097 MPRP/52217 Analysis Method: E EPA 3020 Analysis Description: 6 nples: 10292097003, 10292097020, 10292097027, 10292097030, 1 1893954 Matrix: Water Natrix: Water nples: 10292097003, 10292097020, 10292097027, 10292097030, 1 Blank Reporting neter Units Result Limit mg/L <0.0025	10292097 MPRP/52217 Analysis Method: EPA 6020A EPA 3020 Analysis Description: 6020A TCLP UP nples: 10292097003, 10292097020, 10292097027, 10292097030, 10292097039, 1 10292097030, 10292097030, 10292097039, 1 1893954 Matrix: Water Intrix: Water nples: 10292097003, 10292097020, 10292097027, 10292097030, 10292097039, 1 Blank Result Limit Analyzed mg/L <0.0025	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{10292097}{10292097} \\ \hline MPRP/52217 & Analysis Method: EPA 6020A \\ EPA 3020 & Analysis Description: 6020A TCLP UPD4 \\ mples: 10292097003, 10292097020, 10292097027, 10292097030, 10292097039, 10292097041, 10292097042 \\\hline 1893954 & Matrix: Water \\ mples: 10292097003, 10292097020, 10292097027, 10292097030, 10292097039, 10292097041, 10292097042 \\\hline Blank & Reporting \\ meter & Units & Result & Limit & Analyzed & Qualifiers \\\hline mg/L & <0.0025 & 0.0025 & 02/04/15 21:47 \\ mg/L & <0.00040 & 0.00040 & 02/04/15 21:47 \\ mg/L & <0.00050 & 0.00050 & 02/04/15 21:47 \\\hline mg/L & <0.00050 & 0.00050 & 02/04/15 21:47 \\\hline mg/L & <0.00050 & 0.00050 & 02/04/15 21:47 \\\hline mg/L & <0.00050 & 0.00050 & 02/04/15 21:47 \\\hline mg/L & <0.00050 & 0.00050 & 02/04/15 21:47 \\\hline mg/L & <0.00050 & 0.00050 & 02/04/15 21:47 \\\hline mg/L & <0.00050 & 0.00050 & 02/04/15 21:47 \\\hline mg/L & <0.00050 & 0.00050 & 02/04/15 21:47 \\\hline mg/L & <0.00020 & 0.00050 & 02/04/15 21:47 \\\hline mg/L & <0.0012 & 0.012 & 0.012 & 02/04/15 21:57 \\\hline mg/L & <0.0012 & 0.012 & 0.012 & 02/04/15 21:57 \\\hline mg/L & <0.0025 & 0.0025 & 0.0025 & 02/04/15 21:57 \\\hline mg/L & <0.0025 & 0.0025 & 0.0025 & 0.0025 & 02/04/15 21:57 \\\hline mg/L & <0.0025 & 0.0025 & 0.0025 & 0.0025 & 02/04/15 21:57 \\\hline mg/L & <0.0020 & 0.0020 & 0.0020 & 02/04/15 21:57 \\\hline mg/L & <0.0012 & 0.012 & 0.012 & 02/04/15 21:57 \\\hline mg/L & <0.0025 & 0.0025 & 0.0025 & 0.0025 & 02/04/15 21:57 \\\hline mg/L & <0.0012 & 0.014/15 & 0.157 \\\hline mg/L & <0.0025 & 0.0025 & 0.0$

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

 Project:
 0504-100-00 Van Stone Mine

 Pace Project No.:
 10292097

MATRIX SPIKE & MATRIX SPIK	ATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1893956 1893957											
Parameter	Lipito	10292097003 Rocult	MS Spike	MSD Spike	MS	MSD	MS % Roc	MSD	% Rec	חסס	Max	Qual
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Quai
Arsenic	mg/L	<0.0025	.4	.4	0.41	0.41	103	102	75-125	1	20	
Cadmium	mg/L	<0.00040	.4	.4	0.46	0.45	102	100	75-125	2	20	
Chromium	mg/L	<0.0025	.4	.4	0.42	0.41	105	103	75-125	2	20	
Lead	mg/L	0.0025	.4	.4	2.4	2.3	116	86	75-125	5	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	0504-100	-00 Van Ston	e Mine					
Pace Project No.:	1029209	7						
QC Batch:	MPRP/	52155		Analysis Me	thod: E	PA 6020A		
QC Batch Method:	EPA 30	20		Analysis De	scription: 6	020A SPLP UF	PD4	
Associated Lab San	nples: 1 1	0292097003, 0292097039,	10292097006, 10292097041,	10292097020, 10292097042	10292097027, 1	0292097030, [,]	10292097034,	10292097037,
METHOD BLANK:	1892182			Matrix	: Water			
Associated Lab San	nples: 1 1	0292097003, 0292097039,	10292097006, 10292097041,	10292097020, 10292097042 Black	10292097027, 1	0292097030, ⁻	10292097034,	10292097037,
Paran	neter		Units	Result	Limit	Analyzed	I Quali	fiers
Antimony			mg/L	<0.00050	0.00050	02/02/15 18	:26	
Arsenic			mg/L	< 0.00050	0.00050	02/02/15 18	:26	
Cadmium			ma/L	<0.000080	0,000080	02/02/15 18	:26	
Chromium			ma/l	<0.00050	0 00050	02/02/15 18	:26	
Copper			mg/L	<0.00000	0.0000	02/02/15 18	:26	
Lead			mg/L		0.0010	02/02/15 10	.20	
Nickel			mg/L		0.00010	02/02/10 10	.20	
Zino			mg/L		0.00050	02/02/10 10	.20	
ZINC			mg/∟	<0.0050	0.0050	02/02/13 16	.20	
METHOD BLANK:	1891421			Matrix	: Solid			
Associated Lab San	nples: 1 1	0292097003, 0292097039,	10292097006, 10292097041,	10292097020, 10292097042	10292097027, 1	0292097030, ⁻	10292097034,	10292097037,
				Blank	Reporting			
Paran	neter		Units	Result	Limit	Analyzed	I Quali	fiers
Antimony			mg/L	<0.0025	0.0025	02/02/15 18	:36	
Arsenic			mg/L	<0.0025	0.0025	02/02/15 18	:36	
Cadmium			mg/L	<0.00040	0.00040	02/02/15 18	:36	
Chromium			mg/L	<0.0025	0.0025	02/02/15 18	:36	
Copper			mg/L	<0.0050	0.0050	02/02/15 18	:36	
Lead			mg/L	<0.00050	0.00050	02/02/15 18	:36	
Nickel			mg/L	<0.0025	0.0025	02/02/15 18	:36	
Zinc			mg/L	<0.025	0.025	02/02/15 18	:36	
			22183					
			2100	Snike	105	105	% Rec	
Paran	neter		Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony			mg/L	.08	0.077	96	80-120	
Arsenic			mg/L	.08	0.078	98	80-120	
Cadmium			ma/L	.08	0.077	96	80-120	
Chromium			mg/l	.08	0.076	94	80-120	
Copper			ma/l	.08	0.079	99	80-120	
Lead			mg/L	.00 08	0.078	97	80-120	
Nickel			mg/L	.00 08	0.080	100	80-120	
Zinc			mg/L	.00 08	0.000	07	80-120	
			iliy/∟	.00	0.070	91	00-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

 Project:
 0504-100-00 Van Stone Mine

 Pace Project No.:
 10292097

MATRIX SPIKE & MATRIX SPIK	1892185											
			MS	MSD								
	1	0292097003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/L	0.0036	.08	.08	0.089	0.087	107	104	75-125	3	20	
Arsenic	mg/L	<0.0025	.08	.08	0.086	0.083	107	103	75-125	4	20	
Cadmium	mg/L	<0.00040	.08	.08	0.085	0.083	106	103	75-125	3	20	
Chromium	mg/L	<0.0025	.08	.08	0.083	0.081	104	101	75-125	3	20	
Copper	mg/L	<0.0050	.08	.08	0.088	0.085	108	105	75-125	3	20	
Lead	mg/L	0.0025	.08	.08	0.089	0.087	108	105	75-125	3	20	
Nickel	mg/L	<0.0025	.08	.08	0.087	0.084	108	105	75-125	3	20	
Zinc	mg/L	0.026	.08	.08	0.11	0.10	102	98	75-125	3	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	0504-100-00 Van S	Stone Mine								
Pace Project No.:	10292097									
QC Batch:	MPRP/51626		Analysis Meth	nod:	ASTM D2974	Ļ				
QC Batch Method:	ASTM D2974		Analysis Desc	cription:	Dry Weight/P	ercent N	Moisture			
Associated Lab Sar	mples: 10292097	001, 10292097003								
SAMPLE DUPLICA	TE: 1876706									
			10292097001	Dup			Max			
Parar	neter	Units	Result	Result	RPD		RPD		Qualifiers	
Percent Moisture		%	6.7	-	7.1	5		30		
SAMPLE DUPLICA	TE: 1876707									
			10293120007	Dup			Max			
Parar	neter	Units	Result	Result	RPD		RPD		Qualifiers	
Percent Moisture		%	4.8	Ę	5.3	9		30		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	0504-100-00 Van	Stone Mine							
Pace Project No .:	10292097								
QC Batch:	MPRP/51627		Analysis Meth	nod: A	STM D2974				
QC Batch Method:	ASTM D2974		Analysis Des	cription: D	ry Weight/Per	cent Moisture	;		
Associated Lab Sam	ples: 10292097 10292097 10292097	7005, 10292097006 7023, 10292097027 7039, 10292097041	, 10292097007, 10 , 10292097030, 10 , 10292097042	0292097014, 1 0292097031, 1	0292097016, 0292097034,	1029209701 1029209703	9, 1029 5, 1029	2097020, 2097037,	
SAMPLE DUPLICAT	E: 1876798								
			10292097005	Dup		Мах			
Param	eter	Units	Result	Result	RPD	RPD)	Qualifiers	
Percent Moisture		%	21.2	21.1		0	30		
SAMPLE DUPLICAT	E: 1876805								
_			10292097042	Dup		Max			
Param	eter	Units	Result	Result	RPD	RPD)	Qualifiers	_
Percent Moisture		%	29.6	29.6	;	0	30		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	0504-100-00 Van S	tone Mine								
Pace Project No.:	10292097									
QC Batch:	MPRP/52167		Analysis Meth	nod:	ASTM D2974					
QC Batch Method:	ASTM D2974		Analysis Desc	cription:	Dry Weight/Pe	ercent N	<i>l</i> oisture			
Associated Lab Sar	mples: 102920970	21, 10292097043								
SAMPLE DUPLICA	TE: 1892421									
			10295556009	Dup			Max			
Parar	neter	Units	Result	Result	RPD		RPD		Qualifiers	
Percent Moisture		%	14.8	15	5.3	3		30		
SAMPLE DUPLICA	TE: 1892452									
			10295180001	Dup			Max			
Parar	neter	Units	Result	Result	RPD		RPD		Qualifiers	
Percent Moisture		%	19.0	19	9.2	1		30		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	0504-100-00 Van S	tone Mine						
Pace Project No.:	10292097							
QC Batch:	MT/17889		Analysis Meth	nod: M	lodified Sobek 3.2			
QC Batch Method:	Modified Sobek 3.	2	Analysis Des	cription: S	obek Acid Base Pot	tential		
Associated Lab San	nples: 102920970	01, 10292097003	, 10292097006, 10	0292097023, 1	0292097027, 10292	2097030		
METHOD BLANK:	1874576		Matrix:	Solid				
Associated Lab San	nples: 102920970	01, 10292097003	, 10292097006, 1	0292097023, 1	0292097027, 10292	2097030		
			Blank	Reporting				
Paran	neter	Units	Result	Limit	Analyzed	Qualifiers		
Neutralization Poter	ntial	tons/1000	<0.5	0.50	12/29/14 12:00		_	
SAMPLE DUPLICA	TE: 1874577							
			10292097006	Dup		Max		
Paran	neter	Units	Result	Result	RPD	RPD	Qualifiers	
Neutralization Poter	ntial	tons/1000	200	199				

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	0504-100-00 Van	Stone Mine						
Pace Project No.:	10292097							
QC Batch:	MT/17890		Analysis Me	ethod:	Modified Sobe	ek 3.2		
QC Batch Method:	Modified Sobek 3	3.2	Analysis De	escription:	Sobek Extract	able Sulfur		
Associated Lab San	nples: 10292097	001, 10292097003,	10292097006,	10292097023,	10292097027	, 10292097030		
METHOD BLANK:	1874578		Matrix	:: Solid				
Associated Lab San	nples: 10292097	001, 10292097003,	10292097006, Blank	10292097023, Reporting	10292097027	, 10292097030		
Paran	neter	Units	Result	Limit	Analyze	ed Quali	fiers	
Total Sulfur		% (w/w)	<0.050	0.05	12/31/14 ()8:46		
LABORATORY CON	NTROL SAMPLE:	1874579						
Paran	neter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
Total Sulfur		% (w/w)	1.06	1.10	104	70-130		
SAMPLE DUPLICA	TE: 1874580							
Paran	neter	Units	10292097006 Result	Dup Result	RPD	Max RPD	Qualifiers	
Sulfur, HCI Extracta	ble	% (w/w)	0.210	<0.05	50		20	
Sulfur, HNO3 Extrac	ctable	% (w/w)	0.0800	0.12	20	40	20 D6	
Sulfur, Hot Water Ex	ktractable	% (w/w)	0.0600	0.34	0	140	20 C0,D6	
Sulfur, Residual		% (w/w)	<0.050	<0.05	60		20	
Total Sulfur		% (w/w)	0.350	0.34	0	3	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10292097

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis

PASI-MT Pace Analytical Services - Montana

ANALYTE QUALIFIERS

- C0 Result confirmed by second analysis.
- D6 The relative percent difference (RPD) between the sample and sample duplicate exceeded laboratory control limits.
- E Analyte concentration exceeded the calibration range. The reported result is estimated.
- M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.
- R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10292097

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10292097001	HSA-7 (10-11.5)		ASB/6196		
10292097003	HSA-7 (35-36.5)		ASB/6196		
10292097006	HSA-7 (70-71.5)		ASB/6196		
10292097023	HSA-9 (10-11.5)		ASB/6196		
10292097027	HSA-9 (50-51.5)		ASB/6196		
10292097030	HSA-9 (80-81.5)		ASB/6196		
10292097001	HSA-7 (10-11.5)	EPA 3050	MPRP/51399	EPA 6020A	ICPM/22832
10292097003	HSA-7 (35-36.5)	EPA 3050	MPRP/51399	EPA 6020A	ICPM/22832
10292097005	HSA-7 (60-61.5)	EPA 3050	MPRP/51399	EPA 6020A	ICPM/22832
10292097006	HSA-7 (70-71.5)	EPA 3050	MPRP/51399	EPA 6020A	ICPM/22832
10292097007	HSA-7 (76.1-76.5)	EPA 3050	MPRP/51399	EPA 6020A	ICPM/22832
10292097014	HSA-8 (20-21.5)	EPA 3050	MPRP/51399	EPA 6020A	ICPM/22832
10292097016	HSA-8 (40-41.5)	EPA 3050	MPRP/51399	EPA 6020A	ICPM/22832
10292097019	HSA-8 (70-71.5)	EPA 3050	MPRP/51399	EPA 6020A	ICPM/22832
10292097020	HSA-8 (76.4-76.5)	EPA 3050	MPRP/51399	EPA 6020A	ICPM/22832
10292097021	HSA-8 (80-81.5)	EPA 3050	MPRP/52123	EPA 6020A	ICPM/23122
10292097023	HSA-9 (10-11.5)	EPA 3050	MPRP/51399	EPA 6020A	ICPM/22832
10292097027	HSA-9 (50-51.5)	EPA 3050	MPRP/51399	EPA 6020A	ICPM/22832
10292097030	HSA-9 (80-81.5)	EPA 3050	MPRP/51399	EPA 6020A	ICPM/22832
10292097031	HSA-9 (85-86.5)	EPA 3050	MPRP/51399	EPA 6020A	ICPM/22832
10292097034	HSA-11 (20-21.5)	EPA 3050	MPRP/51399	EPA 6020A	ICPM/22832
10292097035	HSA-11 (25.5-26.5)	EPA 3050	MPRP/51399	EPA 6020A	ICPM/22832
10292097037	HSA-10 (10-11.5)	EPA 3050	MPRP/51399	EPA 6020A	ICPM/22832
10292097039	HSA-10 (30-31.5)	EPA 3050	MPRP/51399	EPA 6020A	ICPM/22832
10292097041	HSA-10 (50-51.5)	EPA 3050	MPRP/51399	EPA 6020A	ICPM/22832
10292097042	HSA-10 (60-61.5)	EPA 3050	MPRP/51399	EPA 6020A	ICPM/22832
10292097043	HSA-10 (63-63.5)	EPA 3050	MPRP/52123	EPA 6020A	ICPM/23122
10292097003	HSA-7 (35-36.5)	EPA 3020	MPRP/52217	EPA 6020A	ICPM/23146
10292097020	HSA-8 (76.4-76.5)	EPA 3020	MPRP/52217	EPA 6020A	ICPM/23146
10292097027	HSA-9 (50-51.5)	EPA 3020	MPRP/52217	EPA 6020A	ICPM/23146
10292097030	HSA-9 (80-81.5)	EPA 3020	MPRP/52217	EPA 6020A	ICPM/23146
10292097039	HSA-10 (30-31.5)	EPA 3020	MPRP/52217	EPA 6020A	ICPM/23146
10292097041	HSA-10 (50-51.5)	EPA 3020	MPRP/52217	EPA 6020A	ICPM/23146
10292097042	HSA-10 (60-61.5)	EPA 3020	MPRP/52217	EPA 6020A	ICPM/23146
10292097003	HSA-7 (35-36.5)	EPA 3020	MPRP/52155	EPA 6020A	ICPM/23121
10292097006	HSA-7 (70-71.5)	EPA 3020	MPRP/52155	EPA 6020A	ICPM/23121
10292097020	HSA-8 (76.4-76.5)	EPA 3020	MPRP/52155	EPA 6020A	ICPM/23121
10292097027	HSA-9 (50-51.5)	EPA 3020	MPRP/52155	EPA 6020A	ICPM/23121
10292097030	HSA-9 (80-81.5)	EPA 3020	MPRP/52155	EPA 6020A	ICPM/23121
10292097034	HSA-11 (20-21.5)	EPA 3020	MPRP/52155	EPA 6020A	ICPM/23121
10292097037	HSA-10 (10-11.5)	EPA 3020	MPRP/52155	EPA 6020A	ICPM/23121
10292097039	HSA-10 (30-31.5)	EPA 3020	MPRP/52155	EPA 6020A	ICPM/23121
10292097041	HSA-10 (50-51.5)	EPA 3020	MPRP/52155	EPA 6020A	ICPM/23121
10292097042	HSA-10 (60-61.5)	EPA 3020	MPRP/52155	EPA 6020A	ICPM/23121
10292097001	HSA-7 (10-11.5)	ASTM D2974	MPRP/51626		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

 Project:
 0504-100-00 Van Stone Mine

 Pace Project No.:
 10292097

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10292097003	HSA-7 (35-36.5)	ASTM D2974	MPRP/51626		
10292097005	HSA-7 (60-61.5)	ASTM D2974	MPRP/51627		
10292097006	HSA-7 (70-71.5)	ASTM D2974	MPRP/51627		
10292097007	HSA-7 (76.1-76.5)	ASTM D2974	MPRP/51627		
10292097014	HSA-8 (20-21.5)	ASTM D2974	MPRP/51627		
10292097016	HSA-8 (40-41.5)	ASTM D2974	MPRP/51627		
10292097019	HSA-8 (70-71.5)	ASTM D2974	MPRP/51627		
10292097020	HSA-8 (76.4-76.5)	ASTM D2974	MPRP/51627		
10292097021	HSA-8 (80-81.5)	ASTM D2974	MPRP/52167		
10292097023	HSA-9 (10-11.5)	ASTM D2974	MPRP/51627		
10292097027	HSA-9 (50-51.5)	ASTM D2974	MPRP/51627		
10292097030	HSA-9 (80-81.5)	ASTM D2974	MPRP/51627		
10292097031	HSA-9 (85-86.5)	ASTM D2974	MPRP/51627		
10292097034	HSA-11 (20-21.5)	ASTM D2974	MPRP/51627		
10292097035	HSA-11 (25.5-26.5)	ASTM D2974	MPRP/51627		
10292097037	HSA-10 (10-11.5)	ASTM D2974	MPRP/51627		
10292097039	HSA-10 (30-31.5)	ASTM D2974	MPRP/51627		
10292097041	HSA-10 (50-51.5)	ASTM D2974	MPRP/51627		
10292097042	HSA-10 (60-61.5)	ASTM D2974	MPRP/51627		
10292097043	HSA-10 (63-63.5)	ASTM D2974	MPRP/52167		
10292097001	HSA-7 (10-11.5)	Modified Sobek 3.2	MT/17889		
10292097003	HSA-7 (35-36.5)	Modified Sobek 3.2	MT/17889		
10292097006	HSA-7 (70-71.5)	Modified Sobek 3.2	MT/17889		
10292097023	HSA-9 (10-11.5)	Modified Sobek 3.2	MT/17889		
10292097027	HSA-9 (50-51.5)	Modified Sobek 3.2	MT/17889		
10292097030	HSA-9 (80-81.5)	Modified Sobek 3.2	MT/17889		
10292097001	HSA-7 (10-11.5)	Modified Sobek 3.2	MT/17890		
10292097003	HSA-7 (35-36.5)	Modified Sobek 3.2	MT/17890		
10292097006	HSA-7 (70-71.5)	Modified Sobek 3.2	MT/17890		
10292097023	HSA-9 (10-11.5)	Modified Sobek 3.2	MT/17890		
10292097027	HSA-9 (50-51.5)	Modified Sobek 3.2	MT/17890		
10292097030	HSA-9 (80-81.5)	Modified Sobek 3.2	MT/17890		
10292097001	HSA-7 (10-11.5)	Modified Sobek 3.2	MT/17907		
10292097003	HSA-7 (35-36.5)	Modified Sobek 3.2	MT/17907		
10292097006	HSA-7 (70-71.5)	Modified Sobek 3.2	MT/17907		
10292097023	HSA-9 (10-11.5)	Modified Sobek 3.2	MT/17907		
10292097027	HSA-9 (50-51.5)	Modified Sobek 3.2	MT/17907		
10292097030	HSA-9 (80-81.5)	Modified Sobek 3.2	MT/17907		

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analysi	lica/ ` 						CH/ The C	AIN-C Chain-of-)F- Cust	CU tody	IS] is à		D'Y Sal		Inal Ume	iyti Ent.	cal All n	l Re eleva	eqt ant f	les fields	st D	OC st be	um comj	ent oleted	l acc	urately	j.		· ~)	MADI	a	of 60	
Section A Section B							Section C																										
Required Client Information: Required Project Information						tavoice information:																Pana: 1 and 2				4							
Company: GeoEngineers Report To: Chelses Vos										Attention: Accounts Payable																							
Podress: 523 East Second Street Copy To:									_	Company Name: GeoEngineers																							
Email To: cypse@generationers.com								-		Aduress: 523 E. 2nd Ave, Spokane, WA 99202											02	Rogulatory Agency											
Phone: 5093633125 Fax Client Project ID: Van Stor										Pace Project Manager Longi Gross																							
Requested Due Date/TAT: 10 Day (Standard) Container Order Number:										Pac	ce Project Manager: Jenni Gross									State/ Location													
																	T			Rei				Fillion	-	MARS 21		A				3	
						cou	LECTED		ŀ				Pres	Serva	rtives	3		ΝX		Ĩ								10 10 10				of state	
.s.	SAMPLE ID One Character por box. (A-Z, 0-97, -) iample lds must be unique	MATROL COD Dahalog Water DW Water WT Vinsta Water WW Produst P Salvidold BL OB CL Wipa WP Other OT Tessue TS	ATRIX CODE (soo valid eedaa to lat)	ANPLE TYPE (G#GRAB C=COMP)	5			END	WPLE TEMP AT COLLECTION	OF CONTAINERS	upreserved	2504	NO3	CH.	25203	othanol	btaat 1. Anno	Afalyege Test States and Afalyege Test	id Base Potential/ Acid Potential	hirdr Form8 / Neutralization Polential heathe (PI M)			tal 6020/7471* 11 5 6020/7471*	LP 6020/7470*				sictual Chlorine (Y/N)					
	A-7/10-115	<u></u>		3	DATE	TIME	DATE	TIME	ă	2	5	£	1	¥ 2	2	13	8		2				Ъ Ч	타			\square	то М				_	
			-+-+		<u>-147</u>	1075	-			그			_		╇			- 12	×1		4		×						_	<u>(;;)</u>	<u>ا</u>		
2	<u>A- + (25-29.5)</u>					nw	1			4												1								627	1		
∃s≦ ∂S	A-7 (35-36.5)					VOZO	1			4								- 5	2	T			\mathbf{x}				\square	- 1		Cel	<u> </u>	1	
KAN HS	1-7 (45-46.5)					1057		1		4	1		\uparrow	+	1	1 1	-	۴	~	+	+-	- 1	<u> </u>	+			+	ł		<u> </u>	<u> </u>	-	
See LC	A = 7 (60 - 615)		╼╊╴╢	-+		1200				54	-		+		+	╞─┤		-		+			_	+	+		+	- H			1	4	
<u></u>	4-7 (00-01.3)		_ _	_	<u> </u>	200		<u> </u>		4								9	R)				١×							Got	5		
6 HS/	4-7 (70-715)					1300		1		4					1				χľ				X							<u> 3</u>		1	
Site Hy	4-7 (75-76.5)						B 15			1								r					Y	+	tt		+		1			۲L	
A HS	A-7 (765-78)					1772	T			J				+					+	-1-	+		4	+	+		┿┥	ŀ	<u>i ja</u>		<u>/122/</u>	-1°	
191	A 1 177 74 7		╍┨╌┽				╂───				-+					┝─┦	_	⊢	4		+		+	+-	\square		44			<u></u>	<u>,v</u>	1	
A Bloc +Y	<u> </u>			_	4_	<u>(700)</u>	 			뀌								L												<u>م</u>	301		
Ho HSA	1-+ (25-84.5)	_				1440	1			4						11		1									\Box	ſ			10	1	
Sin Hy	4-7/91.5-93)					1520				4		Т			T			F						+			+	h			<u></u>	-	
14:A	-7 795-91.5			-+	. 7	Hair				ते	-	+			+	┠╌┼		ŀ	- -		+	┝─┤			+		+	- ŀ			<u> </u>	4	
		Street and the start of the start	50 2 3 9 0	1.162	<u>v</u>	1000		Section Const		বা	2.6.1		1-1-1-1-1																		<u> </u>		
	ADDITIONAL COMMENTS		RELINC	UISH	ED BX	AFFILIA		DAT	5	·	TIME	3		-	ACCE	PTE	28Y/	AFF	(LLÁT	ION			ĎÅ	行		INNE -		s	AMPLE	CONDITIC	MS	Ċ	
*AOI-1 / AOI-2 = S	Sb, As, Cd, Cu, Pb, Zn / Hg		_								_		C	2	-0	~		Q	· A-c	ç.			12-17	-14	10	5	3	7	V		T V	Ĵ	
AOH3 a Sb As Cd Cr Cu Pb Ni Zn (Ha and people)																		-		-					0.	<u>,</u>			┼╱	-			
					-																	-+					0	J		<u> </u>	+	1	
													-					\dashv	+					;+		├──	╉───	-					
SAMPLER NAME AND SIGNATURE													<u>.</u>	.	L 77		ا ل	-			+	4											
			PR	PRINT Name of SAMPLER: John Lee									<u> </u>						(NA)	tody Soald lar (Y/N)	pulos Intac. 1)												
									1	2											-gr 160	• [2	41	<u>[]</u>	U.		LÉ		Rec	50	Ser 1	1	

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section	A						Section C													Г													
Require	d Client Information:	juired Project Information:									Invoice Information:																Pa	. an	- A	of	4		
Compan	V. GeoEngineers	To: Chelsea Voss									Attention: Accounts Payable															1		201	<u> </u>	<u></u>	f		
	Spokano MA 00202		opy 10:										Company Name: GeoEngineers																				
Email To	Sporalle, VVA 95202	No								Address: 523 E. 2nd Ave, Spokane, WA 99202												Rogulatory Agency											
Phone:	5003833125 Fax	Cian		Prace Quote Reference:																													
Request	ad Duo Date/TAT: 10 Day (Standard)	Container (antainer Oxder Namber								Pace Project Manager: Jenni Gross											States Book States Bocation is the second states											
																												WA					
		· · · · · ·	Т				1	T			-	-			<u></u>	- 5-6 65	i di stati di st	, Ro	ques	Lied A	<u>traithr</u> i	sis (literè	8-[Y/	N) _{est}			1. 1. J. 1. d	<u>с</u> , с.,				
1				1 1					F				_					12		. 1						Ł			5		5165		
					.	COL	ECTED		-			 -	Pres	serva	ativ	85		Σ.											1		-19,1227-		
							1													_		Т			T ·				Т				
1										1	1									ġ.					1.		11						
		IX CODE Na Wieter DW			S	TART	Ιe	ND				1						\mathcal{T}	클	<u>۽</u>					1								
i 1	One Character per box. Wate	WT	2			1	+	T		1									Ξ	۵										1			
1	(A-Z, 0-9/, -) Proa	dt P	1	2														÷.	2	<u>[</u>]							1			1			
	Sample lds must be unique 3023	ଳ ଅ ଅ	Į	Š				1	ð										8	ž	- 14	<u>E</u> le		1									
	Wpe	WP	8	9					5		1 1	1							5	2	11						1 1						
	08e	OT	12	3					I										ā	됩	11		1.	1.	1.				ŝ				
1 1	Titte	13	13	ર્ગ			[1 č	2								ĽČ,	툍	₹ļ	Ωļ		15	l¥	Ę				2	'l			
			H	E I					à	N.	5								ď	2	Ľ ľ		ΙĔ	ΙS	S				Ę	1			
*			8	ξ					E	Ę	2				5	2 -		3	8	<u>5</u>	8 9		218	18	8				ð				
			XX	Ξ.			1		Z	8	1 E	ğ	8		± i s			n a	ĕ	Ξľ			[] 🖉		L L				3				
E			N N	3	DATE	TIME	DATE	TIME	l₹	ğ	ŝ	ŝ	Ž	되	Į		Í	N.	ğ	١Ę	913		18	٦đ	5				Ī				
	HSA-8 (10-11,5)			ī	2/9/2	OID			Ť	4			-+	╈	╧┼╴	╧┼╧	Ť					Υ ^z		5			\vdash	+	Ť		2:3		
2	HSA - 8(20-215)				1	0935			1-	4				+	╈	╈	+	1	X	-	+	╈	12	+	+			┿	-		<u>0.7</u>		
	145A-8/30-715)					3850		1 -		4			-	╈	╈	+	+		4	-+	+	-	-	╋		┝─	╞─┼		-	<u> </u>			
	1454-8/40-415)		+	+	╈	1015	<u> </u>		╆╌	4				+	╉	╉	╉──	11			-	╋	+	-	+	-	\vdash	-	-		015		
21.20	4-4-9/50-515)		+			intin			┢	11	\vdash		┿	+	╋	╋	╋╌		Ă	<u> </u>		+-		4			\square		-		16		
35.2	45.4-8/60-615				+-			 	╆	3			+	+	+	╋	┿	┦╽			+	+-	+	+			┝─┤		-		<u>uı </u>		
	HA-9/70 715		╉┥	-	+	1112			┢	균			┿	╉	+	+	╈	$\left\{ \right\}$		_	+		+	╉╾			\vdash	-	-	0	18		
1	$\frac{1000}{1000} = \frac{1000}{1000} = \frac{1000}{1000$		╂╌┨	+	+	1173			╂	H			-+-	_	+	+-	╉		শ		╇		X				\square	-		<u> </u>	<u>11</u>		
	$\frac{ _{SA} - 8 - 7 - 10}{ _{SA} - 9 - 9 - 7 - 10}$		╉─┤	-+	+-	11215				<u>e</u>	\vdash	\rightarrow	_		╋	+		4		-		+-	X		\square			\perp		Zj	3	670	
	$\frac{11}{100} \frac{11}{100} \frac{100}{100} \frac{100}$		╉┤	+	+-	112 20			┨	민			_	+	+		+					_	\downarrow	L			\square			Ľ		621	
3 -10 **	[12A-X(85-X6)		╇┥	-+	V/	11:200	Ļ	ļ	<u> </u>	2			_	_	1															2	wy d	40	
AST IS			-		_}_	<u> </u>]									IT	T	1				
12.					••																			Γ				Т	1				
	ADDITIONAL COMMENTS	R	LUNQ	ù sie	ED BY	AEFILIA	ION S	DAT	E	5.5	τių́e				ACC	EPT	EQ B1	i af	FILIA	TION	10			DĂT	E A	215	ME	÷.		SAMPLE	CONDITIC	NS AND	
*AOI-1 / /	NOI-2 = Sh. As. Col. Cu. Ph. Zn / Ho										2-2-							- 12-5					1	-(4	10	. C		2					
																	0.77 CE 14					101			17	-	<u>7 · /</u> 1 · V	<u> </u> _¥_	1	 ∕ 			
AU1-3 4	So, Az, Co, Cr, Co, Pb, Ni, Zn (Hg not needed)								_		_	-+										_							0.0				
<u> </u>				-				<u> </u>		ļ		_																10). 4	[
						. <u> </u>																			Τ		_	1	7.2			†	
SAMPLER NAME AND SIGNATURE													in et al	1.2					37 7			8	<u></u>										
						PRD	IT Name	of SAMP	LER:		1	Le/		10	,													-	с в	8	See 1	1	
SIGNATURE SAMPLES: DATE Signed												d: ,.	211	1	11	7		-	Law -	New New		l i z											
	SIGNATURE SAMPLER: DATE Signed:																				416/14						Ĩ	% 3	38	38			
CHAIN-OF-CÜSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Soction /	A ::::::::::::::::::::::::::::::::::::	Section B Required Pro	ject In	forma	tion:					Seci Invo	tion C sico In	; ntorm	ation:														Γ	Paan		3	of	77
Company	GeoEngineers	Report To:	Chels	iea V	/oss					Atte	ntion:	1	Accol	ints	Paya	able														<u> </u>	~.	
Address;	523 East Second Street	Copy To:								Con	npany	Nam	e: G	eoEr	ngine	ers																
	Spokane, WA 99202									Add	ress:		523 E	. 2m	d Av	e, Sp	pokar	ne, V	VA 9	9202	2	in e	b'as	ST C			Rog	91 M	Y Age	ncy 4 bit	109712 S	REAL YOU
Email To:	cvoss@geoengineers.com	Purchase Ord	ler No.	_						Pac	e Quo	te Re	ferent	X.																		
Phone:	5093633125 Fax	Client Project		an S	lone	Mine				Pac	e Proj	ect M	bnage	#T.	Jer	ni G	noss						2.5				5	tato / 1	ocati	00		1.1
Request	ed Due Date/TAT: 10 Day (Standard)	Comainer On	er Nun	nder:						Pac	e Piot	JB 7 .	34	1031	#1	-	1.5				10.15				1000	-		N.		21.2.2.2.2		1
				-					—			_						-2-92 •	1407	Requ			oyex I	I Pat	Dene		647.0					
						cour	ECTED						Prese	rvat	ives	— T	, NY															
		CODE					_											(#4.15.) iol	antial													
	SAMPLE ID Diriting Wa	wr DW WT		_	ST/	VRT	E		١.								5	to t														
	(A-Z, 0-0 /, -) Product Sample Ids must be unique collication Ai Ai Other	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	o vald codas to kđ 						COLLECTION R					1 - - -				ontial/ Acid Dr	Neutralization	(V	1 date leso		7.	-04	-02				(NVA) •			
ITEM#			NATRIX CODE (K		ATE	TIME	DATE	ТІМЕ	GAMPLE TEMP AT	POF CONTAINERE	Linpreserved	H2804	HN03	NaOH	Na28203	Methanol	Other	Arld Base Dri	Sulfur Forms /	Asbestos (PLA	WITTER (B)	WITTOX	Total 6020/74	SPLP 6020/74	TCLP 6020/74				Realdues Chlorin			
374977S	HLA-9 (10-11-5)			12	19	154n			मि					Τ	T			15	<				X							0.	25	
1.1574				+7	5				4			-+	+	╈			-	۴	╧											G	24	
-2	1+51+-1 (20-61.5)			+		1610			H			-	+	+-		┼╌┼	_	H	+					-		-+		+-	łŀ		<u></u>	
3	HSA-7 (30-31.5)			10	v	16ZQ			14								_	F		+						_			ł	0	9)	[
	HSA-9 (40-41,5)			12	10	6920			14																				ΙL		<u>طِدْ ذ</u>	
	45A-9 (50-515)			17	Ī	1855			14		1							>	(X							6	みて	027
	4154-9 110-615)					CAL			4			†-		1	1												╈	1-	1 1			326
				+					七	\vdash		-+	+	+	┼──			H	+	+						-		+	1			24
Pages.	HXA-] (70-110)			_		1000			17		\square	-		+	┢	┝╍┨	_	F		+						-			łŀ			
18	HSA-9 (80-81,5)					1030			4		\square							2	$(\square$				X	<u> </u>					11		<u> </u>	50
3	HSA-9 (85-865)					1720			14														X						ΙL		0	51.
A P	164-9 189-895)				V	13/0			4			Τ	Т					Γ	Γ							Τ			Ιſ		0	51 T
102			┝╌┼╴	╈	-				+^			+	+	1	1		-	F	╈			H				\neg		1	1 h	-		
<u></u>	·····		\vdash	+-					╈		┢─┼	+		+	╉─	╞╌┨		\vdash	╋	+						-+		+	┨┠			[
-12-							1				إل									120.00		-12-14				1	THE CAL					The Station of
	ADOITIONAL COMMENTS		LHOU	SHE	D'BY/	AFFRIA		DAT	E		THE	УŊ			NCCE	PTE	BY	AFF	LIAT	ION	5			ĎÁTÌ		1	TMĘ:		7 S	AMPLE	ONDITIO	S
*A0+1/	A01-2 = Sb, As, Cd, Cu, Pb, Zn / Hg												ĺ	2	2	2.		70	4-2	ε			12	17-	14	10	5	3	.7	Y	N	y
-4013-	Sh At Cd Cr Cu Ph Ni Zn (He not needed)										_																	0	.8	(·
	On an and all and a set an and and and analysing											1													_			0	4			
								<u> </u>	-	†		-†										-						10	.2			
L						STOL 1	RNUM	AND SK	NAT	功能				-						445	r.e	1	íC,		- 2	СĞ,	6334 6.397			8	ealed N)	dact
						PRI	NT Name	of SAMF	LER	:	(J	sh	4	u	~													e l	(NV)	200	plos t
					i	SIG	NATURE	of SAU	2ER	-	2_								DA	TE SI	gned	^k ľ	2/	16	<u></u>	14	, 			29 C	100 100	Sem (YN

Face Analytical

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section Require	A d Client Information:	Section B Required I	rojeci	t Info	mation					Se Im	rction rctice	C Infor	matio	n:												[Pag	po ;	4	Of	4
Address	523 East Second Street	Cocy To:	Ch	else	a Voss	<u> </u>		_	_		lentior	n: nu bla	Acco	write	Pay	rable															
	Spokane, WA 99202		_	· · · · ·							dress	ty real	523	5000 F 2r	ngu vi∆		i Sooka		A/A (0000			51.LA-	120 2007	Len a	w 212 De	-			13	
Email To	: cvoss@geoengineers.com	Purchase C	rder N	ło.						Pa	ce Qu	uote F	Referes	166:		10, C	pune			192.02				67.742	19.0	5 F	ingula:	10 A.	gency - 1	CHI MARKE	
Phone:	5093633125 Fax	Client Proje	ci ID;	Var	Stone	Mine				Pa	ce Pri	oject	Manag	er:	Je	กกว่ (Gross					702					Claim	T		100 T	Marian Statistics
Request	ed Due Date/TAT: 10 Day (Standard)	Container C	Inder N	łumb	۲					Po	ce Pn	ofile i	t 3	463	1 # 1						-h						040	WA			<u></u>
<u> </u>									_		_		_			_	14. 1	મુજ્યુ	وموصيت	Requi	267	Analyi	is F	Ztore	d M	N) 👬	- S-0	8 2.0		Vinc -	Stephen
						cou	ected						Pres	erva	tive:	5		NIN .								Π					
	SAMPLE ID	X CODE gWater DW			ST	ART	E	ND										stick (like) addal	otential												
ITEM#	One Character per box. West (A-Z, 0-9 /, -) Produ Sample ids must be unique Coa Ob Air Other Tosu	Water WW t P Bd SL OL WP AR OT T3	MATRIX CODE (sco valid codes to left)	SAMPLETYPE (G-ORAB C-COMP)	DATE	TIME	DATE	TIME	SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	Unpreserved	H2804	HNO3	NaCH	Na28203	Mathanot	Othor Association - 2012 - 2012 - 2012	richnaryaesulestage wie week	Sultur Forms / Neutralization P	Asbestas (PLM)		Tolal 6020/7471•	SPLP 6020/7470*	TCLP 6020/7470*				Residual Chlorina (Y/N)			
	HSA-11 (10-11.5)				2/11	IDDID			19	łū			+	+	-		-		Ť		+	+-	٣			⊢		┿	,	72 9	
	HSA-11 (20-21.5)		Н		1	1010			U	壮	1 1		+		╆			Ň	-1	╉╼╉			,	+		┝─╀			<u> </u>	$\frac{2}{2}$	
1.5	11. A 11 [75-71.5]		╉┥			1000			H1	17	╉╌╢				╉┯	┝─┤	_	P		+	-+-	ᆤ	-	1				4	<u> </u>	<u>2902</u>	1
	H3A-11 (27 200)			-+		<u>000</u>	<u> </u>	ļ	4	12	╞╌┤		_	╇	┢							ㅗ×								<u> </u>	5
2.4 S.	HSA-11 (27-275)				<u>V</u>	1047			14	12				1																J.	Ś
6.7	HSA-10(10-11.5)		1		5/12	Ka)			V	H								5	2	П		レ									1
5	454-10 (20-21.5)				1	1270			4	पि				1			-	۴	·	╎┤		-r-	<u>†</u>							$-\frac{0}{51}$	
135	119A-10/30-315)		╋╌┥		-1	1540			ť	1.	┢─╽		+	+	┢	┢─┤		- E		┥┥		╈	+	-		•		4	<u> </u>		20
100			┢╾╽	_	<u> </u>	עי כין			17	Ц		\square			╇	\square		Ž	4	\square		X									ย่งๆ
** 8	1154-10 (90-91.51					1550			17	14														11							248
9	HSA -10(50-57.5)				V.	1600		1	1	4									(TY	Γ					1			रंगा
	HSA -10 (60-615)			~	2/11	1700			Ť	U				+-				-	1		+	19	+				_	-			
	heA, $in(17-13-)$		╉╋	- Ľ	-/				把		1 1		-			┞╌┦	_			\vdash		<u></u>	-	ļ		-		4	 	(<u>~49</u>
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	112-10-63-670		┨ ┨	- ř	ųп	0825			K.	12	ŧ∔		_ _	_	-	\vdash				\square			<u> </u>								640
12									1	P																			1		
1.00	ADDITIONAL COMMENTS		TINO	UISH	ED BY/	AFFEIAT	ION.	DAT	E.S	瘀	TNE	5	-42	287	ICCE	PTEÊ	87	AFFI	AT	N.	1		DAT	E		TUE	5	7.4	SAMPLE	ONDITIO	S
													~	2			2		-	- <u>-</u> -		2 <u>2 4</u>	<u>.</u>	در - ال		<u>ا الرزيان</u> معيد	2.2 - 23		i i i i i i i i i i i i i i i i i i i		
AUF177	AUF2 = SD, As, Cd, Cu, Pb, Zn / Hg						_			<u> </u>		-+	-			\sim	2.20		4	112	5	116		71	10	<u> </u>	3	.7	Ý	N N	L Y
*A01-3 =	Sb, As, Cd, Cr, Cu, Pb, NI, Zn (Hp not needed)																										6	2.0			()
_	······								-			-										+		-			+-	<u> </u>		<u> </u>	
										-		-+										+		_			-10	<u>, ч</u>	 	'	┝───┨
						SAMPLE	RNAUE	AND SIC	NAT	Î	-112		1	<u>.</u>	10	المالية		-121-1	-	D. L. C.	9.577		<u> </u>			-5-5	- P	· [2	<u>-</u>
						PPR	IT Name	of SAMP	IFP-	<u>ः</u> :	1.91	8 <u>8</u> .		្រះខ្លា	<u>.</u>	2.4 <u>1</u> 0	H.2.)	253		5.74	وديني	4453			141	2.02	£1	ы	8	No al	ja Li
						SIGI	ATURE	of SAMP	LER		1	U J	<u>lost</u>	\	Le	Ľ		Т	DAT	E Sign	ed: (21	6	14	<u> </u>		-	rewe in t	Recoived co (Y/N)	Custody 5 Cooler (Y)	Samplus (Y/N)
										1		_						-	_				-+-	I	<u> </u>	-		-			_ ب ک

Page 55 of 60

	Pace Analytical [®]	Sample	Doi 2 Cond Do F-M	cument Na Ition Upon Document N N-L-213-re	ame: n Receip Io.; ev.09	t Form	Docur Pace	nent Revised: 28Fe Page 1 of 1 Issuing Authority: Minnesota Quality	0ffice	
Sample Condi Upon Receip	tion Client Name: Dr Geo Engine	<u>ج</u>		Pr	roject #	WO	#:10	029209	97	
ourier:]Commercial Tracking Num	Dece Dece Dece Bece See	S []U eeDee []O _S SLuct	SPS ther:		nt	10292	2097			
Custody Seal o	on Cooler/Box Present?		S	eals Intact	? 🗍	/es 🗹 No	Option	al: Proj. Due Dat	e: Proj. N	ame:
Packing Mater	rlal: 🔲 Bubble Wrap 🔤 Bul	bble Bags 🗌]None	COth	ner:			Temp Blank?	Yes	No
hermom. Used:	888A9130516413 □B88 CCt 0888	A912167504 A9132521491	Туре	of Ice:	Ø₩et	Blue	None	Samples on ice,	cooling proces	s has begur
Cooler Temp R emp should be	ead (°C): <u>فيزيماني</u> Cooler above freezing to 6°C Corre	Temp Corrects	d (°C): true		<u>Him</u> s Date	Bic and Initials o	ological Tiss f Person Exa	ue Frozen? []]Y amining Contents:	es [No	
Chain of Cus	tady Present?	· · · · · · · · · · · · · · · · · · ·	- C					Comments:		
Chain of Cus	tody Filled Out?	l			- <u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.				
Chain of Cus	tody Relinquished?	بب_ ا			<u> </u>	2.	<u> </u>	······································	••••••••••••••••••••••••••••••••••••••	
Sampler Nan	ne and/or Signature on COC?	······	Type		Ш-	<u>з.</u> А				<u> </u>
Samples Arri	ved within Hold Time?		Tyes			ج				
Short Hold T	'Ime Analysis (<72 hr)?	<u>_</u>	Tyes		Ľ	6.				
Rush Turn A	round Time Requested?	{	Tives		Ŭ	7.			•,	
Sufficient Vo	lume?		Yes			8.				
Correct Cont	ainers Used?	· [A Yes		<u> </u>	9.				
-Pace Con	tainers Used?	- [Yes		Ц				•	
Containers in	itact?		Ves			10.				
Filtered Volu	me Received for Dissolved Tests?	[]Yes		Ø	11.				
Sample Label	s Match COC?	Ę	Ives .			12. t.m.	labeled	on the cent	evers from	n samp
-Includes [Date/Time/ID/Analysis Matrix:	SL		\smile		6 096	of cor-	pose 4 is	1520, not	1320
All containers checked?	s needing acid/base preservation h	ave been	JYes		N	13.			NaOH [Лнсі
All containers compliance w (HNO ₃ , H ₂ SO ₄	s needing preservation are found to vith EPA recommendation? L HQ<2: NaOH >9 Sulfide, NaOH>1	o be in 2 Cvanide)]Yes	No		Sample #			•	
Exceptions: V DRO/8015 (w	OA, Coliform, TOC, Oll and Grease vater) DOC	'C]Yes			initial when completed:		, Lot # of ad preservativ	ded /e:	
Headspace In	VOA Vials (>6mm)?		Yes		N/A	14.				
Trip Blank Pre	esent?	<u>ې</u>	Yes	No	N N≦	15.		·		
Trip Blank Cu	stody Seals Present?	Ε]Yes	□ No	N/A				•	
Pace Trip Blar	hk Lot # (if purchased):		•				<u> </u>			
I <mark>ENT NOTIFIC</mark> Per Comme	ATION/RESOLUTION rson Contacted:	taney			_ Data	e/Time:	Field 2/19/1	Data Required? 4 18:00	UYes ØN	0
14 and 4-9(50-	21-13e ABA on 57.5), HSA-9(80-8	HSA-7(10 1.5). Al	50 m	5), # un #	S-A"	HSA-7(3 for ast	<u>5-36.5)</u> Destais.	, HSA-7(70-	11.5), HS	<u>x-9(10-</u>

Document Revised: 16Apr2012 Document Name: Pace Analytical Page 1 of 1 SCUR Exceptions Form Issuing Authority: Pace Minnesota Quality Office Document No.: F-MN-L-220-Rev.00

Workorder #: 10292097

Itelia	-Sample ID	Container:Type/#
Tracking Number	Read Temp (oc)	(orrected Temp ("C)
5779 5332 6170	3.7	3.7
.11 11 G192	0.8	. 0.8
" " 6207	04	0.4
11 11 G181	. 0.7	0.2
	·	
•		

12	Document Name: MN to MT Sample Transfer Form	Revised Date: 14Jul2014 Page: 1 of 1
A Bace Analytical	Document Number:	issuing Authority:
(F-MN-C-043-rev.11	Pace Minnesota Quality Office
Shipping (ctrcle):	UPS Fed Ex	
Tracking #:		
Client:	Gecengineers	
Due Date:	01/07/14 or Sooner	
Pace WO:	10292097	
Project Manager:	Jenni Gross	

MN to MT Sample Transfer Condition Upon Receipt Form

		ANALYS	is requested		
Method Number & Description	Container Type	# of Bottles	Lab ID's	Preservativo Yes or No	Verify Arrival Date & Initials
Tests			ale 12/24/14		
Acid Base Accounting	JGCU	1	-001,-003,-085,-006,-014	No	
Acid Base Accounting	JGCU	1	-016,-049,-023,-027,-030	No	
Acid Base Accounting	JGCU	1	-834,-037,-089,-841	No	

REPORTING REQUIREMENTS/ADDITIONAL COMMENTS

01/07/14 due date or sooner (Acid Base Potential, Acid Potential, Sulfur Forms, Neutralization Potential)

	MO	NTANA SAMPLE RECI	EIPT INFORMATION	
IR Gun: B88A0140728348	Correction Factor:		Sample Matrix:	
Cooler Temp Read (°C):	Cooler Temp Can	rected (°C):	Yes No NA	
	Arrived on Ice:	Yes No_	Samples pH have been checked:	Yes No NA
Cus	stody Seal Present:	Yes No	Trtp Blank Present:	Yes No NA
Short Hold Time Req	uested < 72 Hours:	Yes No	Trip Blank Custody Seals Present:	Yes No NA
Ru	sh TAT Requested:	Yes No	Pace Trip Blank Lot #:	
Sufficie	nt Sample Volume:	Yes No	Sample Composites Required:	Yes No NA
Samples Arrive	d within Hold Time:	Yes No	Report Samples:	Wet Wt Dry Wt
····· ····	Containers Intact:	Yes No	Reporting Units:	

CUSTODY TRANSFER											
Relinguished by/Affiliation	Date	Time	Accepted By Affiliation	Date	Time						
Franker 1 - Pare	12/19/14	1520									

CLIENT NOTIFICATION/RESOLUTION											
Person Contacted: John HTU (APL)	Date: 12/9/14 18:00										
Comments/Resolution: And Juze ABA+ Aspesto	(on -no1 - 003 - cold023027030 -										
Canad other Sumples for ABA Re											
CALLER CITOR COMPANY TO THE											

Project Manager Review:

تعمح ELA

Date: 12/19/14 18 20 41-14

REPORT TO: John Haney GeoEngineers, Inc - WA 523 East Second Ave. Spokane, WA 99202
 DATE:
 December 24, 2014

 PACE PROJECT NO:
 10292097

 PAGE:
 1 of 9

REPORT OF: Bulk Material Analysis - Van Stone Mine

CASE NARRATIVE:

On December 17, 2014, our laboratory received 6 bulk material sample(s) from the client. The asbestos analysis was performed in accordance with EPA 600/M4-82-020 and EPA/600/R-93/116 official test methods as outlined in 40CFR763.109 appendix A.

The samples will be held for sixty (60) days from the date of this report.

A < sign indicates the value reported was the practical quantitation limit for this sample using the method described.

Concentrations of analyte, if present, below this were not quantifiable.

Pace Analytical Services, Inc. is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP) for conducting asbestos analysis (NVLAP Lab Code 101292-0). Each result listed in the report applies only to the sample analyzed. This report may not be used to claim product endorsement by NVLAP or any agency of the U.S. Government nor may it be reproduced except in full without written approval of Pace Analytical Services, Inc.

12/19/14 Per client request only the following samples are to be analyzed for ABA and Asbestos has been added:

HSA-7(10-11.5)

HSA-7(35-36.5) HSA-7(70-71.5)

HSA-9(10-11.5)

HSA-9(50-51.5) HSA-9(80-81.5)

Project Manager

Milliam homas_

Will Thomas for Jennifer Gross - Project Manager jennifer.gross@pacelabs.com

Analyst/Approved Signatory

Nerclearly, Ofness

Michael Otness - Laboratory Analyst

REPORT OF LABORATORY ANALYSIS

Building Material Analysis Asbestos Content

Pace Analytical Services, Inc. Billings Laboratory 150 North 9th Street Billings, MT 59101

GeoEngineers WA Sobeks

Lab Number	Date Analyzed	Sample	Sample D	escription		Asbestos Identification	Non-Asbestos Material
		Identification	Layers	Color	Matrix	and Estimated Quantity	Identification
10292097001	12/22/2014	HSA-7 (10-11.5)	1/1	Gray	Sand	None Detected	100% Nonfibrous Binder
10292097003	12/22/2014	HSA-7 (35.36.5)	1/1	Gray	Sand	<1 Chrysotile	98% Nonfibrous Binder
						<1 Actinolite	
10292097006	12/22/2014	HSA-7 (70.71.5)	1/1	Gray	Sand	None Detected	100% Nonfibrous Binder
10292097023	12/22/2014	HSA-9 (10.11.5)	1/1	Gray	Sand	None Detected	100% Nonfibrous Binder
10292097027	12/22/2014	HSA-9 (50.51.5)	1/1	Gray	Sand	None Detected	100% Nonfibrous Binder
10292097030	12/22/2014	HAS-9 (80-81.5)	1/1	Gray	Sand	None Detected	100% Nonfibrous Binder

Michael Otness, analyst

In the case of nonhomogeneous samples (samples which contain more than one visually distinct material which is not mixed), concentrations of materials are given for each layer and, where applicable, composite values are given for the entire sample. The quantification of asbestos in the sample is an estimate only due to the nature of the test method.

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

March 11, 2015

John Haney GeoEngineers, Inc - WA 523 East Second Ave. Spokane, WA 99202

RE: Project: 0504-100-00 Van Stone Mine Pace Project No.: 10294014

Dear John Haney:

Enclosed are the analytical results for sample(s) received by the laboratory on January 13, 2015. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

02/24/15 Per client request the following samples were analyzed for TCLP As, Cd, Pb, Hg and SPLP As, Cd, Cu, Pb, Sb, Zn, Hg:

HSA-1 (20-21.5) HSA-1 (30-31.5) HSA-2 (10-11.5) HSA-3 (10-11.5) HSA-3 (20-21.5) HSA-4 (10-11.5) HSA-4 (20-21.5) HSA-4 (25-26) HSA-5 (10-11.5) HSA-5 (20-21.5) HSA-6 (10-11.5)

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

March 11, 2015 Page 2

Per client request the following samples were analyzed for Asbestos:

HSA-3 (10-11.5) HSA-3 (20-21.5) HSA-6 (10-11.5) HSA-6 (20-21.5)

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

JENNI GROSS

Jennifer Gross jennifer.gross@pacelabs.com Project Manager

Enclosures

cc: Chelsea Voss, GeoEngineers

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

CERTIFICATIONS

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10294014

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414 A2LA Certification #: 2926.01 Alaska Certification #: UST-078 Alaska Certification #MN00064 Alabama Certification #40770 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA Colorado Certification #Pace Connecticut Certification #: PH-0256 EPA Region 8 Certification #: 8TMS-L Florida/NELAP Certification #: E87605 Guam Certification #:14-008r Georgia Certification #: 959 Georgia EPD #: Pace Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062 Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322 Michigan DEPH Certification #: 9909

Montana Certification IDs

150 N. 9th Street, Billings, MT 59101 Colorado Asbestos #: 17119 A2LA Certification #: 3590.01 EPA Region 8 Certification #: 8TMS-L Idaho Certification #: MT00012 Minnesota Certification #: 027-053-137 Mississippi Certification #: Pace Montana Certification #: MT0092 Nevada Certification #: MN_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New York Certification #: 11647 North Carolina Certification #: 530 North Carolina State Public Health #: 27700 North Dakota Certification #: R-036 Ohio EPA #: 4150 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification Saipan (CNMI) #:MP0003 South Carolina #:74003001 Texas Certification #: T104704192 Tennessee Certification #: 02818 Utah Certification #: MN000642013-4 Virginia DGS Certification #: 251 Virginia/VELAP Certification #: Pace Washington Certification #: C486 West Virginia Certification #: 382 West Virginia DHHR #:9952C Wisconsin Certification #: 999407970

Minnesota Dept of Health Certification #: 030-999-442 Montana Certification #: MT CERT0040 North Dakota Dept. Of Health #: R-209 NVLAP Certification #: 101292-0 Washington Department of Ecology #: C993

Pace Project No .:

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

SAMPLE SUMMARY

Project: 0504-100-00 Van Stone Mine 10294014

Lab ID Sample ID Matrix **Date Collected** Date Received 10294014001 HSA-6(10-11.5) Solid 01/07/15 11:35 01/13/15 10:00 10294014002 HSA-6(20-21.5) Solid 01/07/15 12:00 01/13/15 10:00 10294014003 HSA-6(30-31.5) Solid 01/07/15 12:30 01/13/15 10:00 10294014004 Solid 01/07/15 13:00 01/13/15 10:00 HSA-6(35-36.5) 10294014005 HSA-6(40-41) Solid 01/07/15 13:15 01/13/15 10:00 10294014006 HSA-6(45-46.5) Solid 01/07/15 13:30 01/13/15 10:00 10294014007 HSA-6(50-51.5) Solid 01/07/15 14:00 01/13/15 10:00 10294014008 HSA-5(10-11.5) Solid 01/08/15 08:30 01/13/15 10:00 10294014009 HSA-5(20-21.5) Solid 01/08/15 09:00 01/13/15 10:00 Solid 10294014010 HSA-5(30-31.5) 01/08/15 09:25 01/13/15 10:00 Solid 01/08/15 12:00 10294014011 HSA-1(10-11.5) 01/13/15 10:00 10294014012 HSA-1(20-21.5) Solid 01/08/15 12:30 01/13/15 10:00 HSA-1(30-31.5) Solid 01/08/15 13:00 10294014013 01/13/15 10:00 10294014014 HSA-1(40-41.5) Solid 01/08/15 13:20 01/13/15 10:00 10294014015 HSA-1(45-46.5) Solid 01/08/15 13:40 01/13/15 10:00 Solid 10294014016 HSA-1(50-51.5) 01/08/15 13:50 01/13/15 10:00 10294014017 HSA-1(55-56.5) 01/08/15 14:00 Solid 01/13/15 10:00 10294014018 HSA-1(60-61.5) Solid 01/08/15 14:15 01/13/15 10:00 10294014019 HSA-2(10-11.5) Solid 01/09/15 08:15 01/13/15 10:00 10294014020 Solid 01/09/15 09:00 HSA-2(15-16.5) 01/13/15 10:00 10294014021 HSA-2(20-21.5) Solid 01/09/15 09:10 01/13/15 10:00 10294014022 HSA-2(25-26) Solid 01/09/15 09:20 01/13/15 10:00 10294014023 HSA-2(30-31.5) Solid 01/09/15 09:40 01/13/15 10:00 HSA-3(10-11.5) 10294014024 Solid 01/09/15 11:00 01/13/15 10:00 10294014025 HSA-3(20-21.5) Solid 01/09/15 11:15 01/13/15 10:00 10294014026 Solid 01/09/15 11:40 HSA-3(30-31.5) 01/13/15 10:00 10294014027 HSA-3(35-36.5) Solid 01/09/15 12:00 01/13/15 10:00 10294014028 HSA-3(40-41.5) Solid 01/09/15 12:40 01/13/15 10:00 10294014029 HSA-3(43-44.5) Solid 01/09/15 13:10 01/13/15 10:00 10294014030 HSA-4(10-11.5) Solid 01/09/15 14:40 01/13/15 10:00 10294014031 HSA-4(20-21.5) Solid 01/09/15 15:00 01/13/15 10:00 10294014032 HSA-4(25-26) Solid 01/09/15 15:20 01/13/15 10:00 10294014033 HSA-4(30-30.5) Solid 01/09/15 15:40 01/13/15 10:00

 Project:
 0504-100-00 Van Stone Mine

 Pace Project No.:
 10294014

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10294014001	HSA-6(10-11.5)	EPA 6020A	TT3	6	PASI-M
		EPA 6020A	TT3	3	PASI-M
		EPA 6020A	RJS	6	PASI-M
		EPA 7470A	DM	1	PASI-M
		EPA 7470A	JDD	1	PASI-M
		EPA 7471	DM	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		Modified Sobek 3.2	WT1	1	PASI-MT
		Modified Sobek 3.2	WT1	5	PASI-MT
		Modified Sobek 3.2	WT1	2	PASI-MT
10294014002	HSA-6(20-21.5)	EPA 6020A	TT3	6	PASI-M
		EPA 6020A	TT3	3	PASI-M
		EPA 6020A	RJS	6	PASI-M
		EPA 7470A	DM	1	PASI-M
		EPA 7470A	JDD	1	PASI-M
		EPA 7471	DM	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		Modified Sobek 3.2	WT1	1	PASI-MT
		Modified Sobek 3.2	WT1	5	PASI-MT
		Modified Sobek 3.2	WT1	2	PASI-MT
10294014003	HSA-6(30-31.5)	EPA 6020A	TT3	6	PASI-M
		EPA 7471	DM	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
10294014008	HSA-5(10-11.5)	EPA 6020A	TT3	6	PASI-M
		EPA 6020A	TT3	3	PASI-M
		EPA 6020A	RJS	6	PASI-M
		EPA 7470A	DM	1	PASI-M
		EPA 7470A	JDD	1	PASI-M
		EPA 7471	DM	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		Modified Sobek 3.2	WT1	1	PASI-MT
		Modified Sobek 3.2	WT1	5	PASI-MT
		Modified Sobek 3.2	WT1	2	PASI-MT
10294014009	HSA-5(20-21.5)	EPA 6020A	TT3	6	PASI-M
		EPA 6020A	TT3	3	PASI-M
		EPA 6020A	RJS	6	PASI-M
		EPA 7470A	DM	1	PASI-M

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10294014

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 7470A	JDD	1	PASI-M
		EPA 7471	DM	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		Modified Sobek 3.2	WT1	1	PASI-MT
		Modified Sobek 3.2	WT1	5	PASI-MT
		Modified Sobek 3.2	WT1	2	PASI-MT
10294014010	HSA-5(30-31.5)	EPA 6020A	TT3	6	PASI-M
		EPA 7471	DM	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
10294014012	HSA-1(20-21.5)	EPA 6020A	TT3	6	PASI-M
		EPA 6020A	TT3	3	PASI-M
		EPA 6020A	RJS	6	PASI-M
		EPA 7470A	DM	1	PASI-M
		EPA 7470A	JDD	1	PASI-M
		EPA 7471	DM	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		Modified Sobek 3.2	WT1	1	PASI-MT
		Modified Sobek 3.2	WT1	5	PASI-MT
		Modified Sobek 3.2	WT1	2	PASI-MT
10294014013	HSA-1(30-31.5)	EPA 6020A	TT3	6	PASI-M
		EPA 6020A	TT3	3	PASI-M
		EPA 6020A	RJS	6	PASI-M
		EPA 7470A	DM	1	PASI-M
		EPA 7470A	JDD	1	PASI-M
		EPA 7471	DM	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		Modified Sobek 3.2	WT1	1	PASI-MT
		Modified Sobek 3.2	WT1	5	PASI-MT
		Modified Sobek 3.2	WT1	2	PASI-MT
10294014014	HSA-1(40-41.5)	EPA 6020A	TT3	6	PASI-M
		EPA 7471	DM	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
10294014019	HSA-2(10-11.5)	EPA 6020A	TT3	6	PASI-M
		EPA 6020A	TT3	3	PASI-M
		EPA 6020A	RJS	6	PASI-M
		EPA 7470A	DM	1	PASI-M
		EPA 7470A	JDD	1	PASI-M

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10294014

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 7471	DM	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		Modified Sobek 3.2	WT1	1	PASI-MT
		Modified Sobek 3.2	WT1	5	PASI-MT
		Modified Sobek 3.2	WT1	2	PASI-MT
10294014020	HSA-2(15-16.5)	EPA 6020A	ТТ3	6	PASI-M
		EPA 7471	DM	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
10294014021	HSA-2(20-21.5)	EPA 6020A	ТТ3	6	PASI-M
		EPA 7471	DM	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
10294014024	HSA-3(10-11.5)	EPA 6020A	ТТ3	6	PASI-M
		EPA 6020A	ТТ3	3	PASI-M
		EPA 6020A	RJS	6	PASI-M
		EPA 7470A	DM	1	PASI-M
		EPA 7470A	JDD	1	PASI-M
		EPA 7471	DM	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		Modified Sobek 3.2	WT1	1	PASI-MT
		Modified Sobek 3.2	WT1	5	PASI-MT
		Modified Sobek 3.2	WT1	2	PASI-MT
10294014025	HSA-3(20-21.5)	EPA 6020A	TT3	6	PASI-M
		EPA 6020A	TT3	3	PASI-M
		EPA 6020A	RJS	6	PASI-M
		EPA 7470A	DM	1	PASI-M
		EPA 7470A	JDD	1	PASI-M
		EPA 7471	DM	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		Modified Sobek 3.2	WT1	1	PASI-MT
		Modified Sobek 3.2	WT1	5	PASI-MT
		Modified Sobek 3.2	WT1	2	PASI-MT
10294014026	HSA-3(30-31.5)	EPA 6020A	TT3	6	PASI-M
		EPA 7471	DM	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
10294014030	HSA-4(10-11.5)	EPA 6020A	TT3	6	PASI-M
		EPA 6020A	TT3	3	PASI-M
		EPA 6020A	RJS	6	PASI-M

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10294014

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 7470A	DM	1	PASI-M
		EPA 7470A	JDD	1	PASI-M
		EPA 7471	DM	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		Modified Sobek 3.2	WT1	1	PASI-MT
		Modified Sobek 3.2	WT1	5	PASI-MT
		Modified Sobek 3.2	WT1	2	PASI-MT
10294014031	HSA-4(20-21.5)	EPA 6020A	TT3	6	PASI-M
		EPA 6020A	TT3	3	PASI-M
		EPA 6020A	RJS	6	PASI-M
		EPA 7470A	DM	1	PASI-M
		EPA 7470A	JDD	1	PASI-M
		EPA 7471	DM	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
10294014032	HSA-4(25-26)	EPA 6020A	TT3	6	PASI-M
		EPA 6020A	TT3	3	PASI-M
		EPA 6020A	RJS	6	PASI-M
		EPA 7470A	DM	1	PASI-M
		EPA 7470A	JDD	1	PASI-M
		EPA 7471	DM	1	PASI-M
		ASTM D2974	JDL	1	PASI-M

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10294014

Sample: HSA-6(10-11.5)	Lab ID: 102	294014001	Collected: 01/07/1	5 11:3	5 Received: 01	/13/15 10:00 N	latrix: Solid	
Results reported on a "dry weigh	ht" basis and are ac	ljusted for per	rcent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Me	thod: EPA 6020	A Preparation Me	ethod: E	PA 3050			
Antimony	0.82	mg/kg	0.47	20	01/20/15 10:44	01/21/15 10:49	7440-36-0	M6
Arsenic	6.3	mg/kg	0.47	20	01/20/15 10:44	01/21/15 10:49	7440-38-2	
Cadmium	13.0	mg/kg	0.076	20	01/20/15 10:44	01/21/15 10:49	7440-43-9	
Copper	27.9	mg/kg	0.95	20	01/20/15 10:44	01/21/15 10:49	7440-50-8	M6
Lead	240	mg/kg	2.4	500	01/20/15 10:44	01/21/15 19:41	7439-92-1	M6
Zinc	5410	mg/kg	119	500	01/20/15 10:44	01/21/15 19:41	7440-66-6	M6,R1
6020A MET ICPMS, TCLP	Analytical Me Leachate Met	thod: EPA 6020 hod/Date: EPA	0A Preparation Me 1311; 03/04/15 12	ethod: E 2:05 Ini	:PA 3020 tial pH: 9.43; Fina	l pH: 5.21		
Arsenic	<0.012	ma/l	0.012	5	03/04/15 14:16	03/05/15 11:06	7440-38-2	
Cadmium	0.078	ma/L	0.0020	5	03/04/15 14:16	03/05/15 11:06	7440-43-9	
Lead	2.6	mg/L	0.0025	5	03/04/15 14:16	03/05/15 11:06	7439-92-1	M6
6020A MET ICPMS, SPLP	Analytical Me	thod: EPA 6020	OA Preparation Me	ethod: E	PA 3020			
	Leachate Met	hod/Date: EPA	1312; 03/06/15 16	3:31 Ini	tial pH: 8.88; Fina	ll pH: 8.88		
Antimony	0.0022	mg/L	0.00050	1	03/08/15 20:48	03/09/15 11:22	7440-36-0	
Arsenic	<0.00050	mg/L	0.00050	1	03/08/15 20:48	03/09/15 11:22	7440-38-2	
Cadmium	<0.000080	mg/L	0.000080	1	03/08/15 20:48	03/09/15 11:22	7440-43-9	
Copper	<0.0010	mg/L	0.0010	1	03/08/15 20:48	03/09/15 11:22	7440-50-8	
Lead	0.0012	mg/L	0.00010	1	03/08/15 20:48	03/09/15 11:22	7439-92-1	
Zinc	0.011	mg/L	0.0050	1	03/08/15 20:48	03/09/15 11:22	7440-66-6	
7470 Mercury, SPLP	Analytical Me	thod: EPA 747(0A Preparation Me	ethod: E	PA 7470A	l nH: 8 88		
Moroury	-0.00020		0,00020	.01	02/08/15 10:55	02/00/15 10:26	7420 07 6	
Mercury	<0.00020	mg/∟	0.00020	1	03/06/15 19.55	03/09/15 10.20	7439-97-0	
7470 Mercury, TCLP	Analytical Me Leachate Met	thod: EPA 7470 hod/Date: EPA	0A Preparation Me 1311; 03/04/15 12	ethod: E 2:05 Ini	:PA 7470A tial pH: 9.43; Fina	l pH: 5.21		
Mercury	<0.00060	mg/L	0.00060	1	03/04/15 16:15	03/05/15 11:28	7439-97-6	
7471 Mercury	Analytical Me	thod: EPA 7471	Preparation Met	nod: EF	PA 7471			
Mercury	0.0019	mg/L	0.00020	1	01/20/15 12:02	01/21/15 13:01	7439-97-6	
Dry Weight	Analytical Me	thod: ASTM D2	2974					
Percent Moisture	10	%	0.10	1		01/16/15 13:47		
Sobek Acid Base Potential	Analytical Me	thod: Modified	Sobek 3.2					
Neutralization Potential	480	tons/1000	0.50	1		01/26/15 11:00		
Sobek Extractable Sulfur	Analytical Me	thod: Modified	Sobek 3.2					
Sulfur, HCI Extractable	<0.050	% (w/w)	0.050	1		01/26/15 10:32		
Sulfur, HNO3 Extractable	0.521	% (w/w)	0.050	1		01/26/15 10:32		
Sulfur, Hot Water Extractable	1.10	% (w/w)	0.050	1		01/26/15 10:32		
Sulfur, Residual	0.141	% (w/w)	0.050	1		01/26/15 10:32		
Total Sulfur	1.17	% (w/w)	0.050	1		01/26/15 10:32		

REPORT OF LABORATORY ANALYSIS

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10294014

Sample: HSA-6(10-11.5)	Lab ID: 102	94014001	Collected: 01/07/	15 11:35	Received: 0	1/13/15 10:00	Matrix: Solid			
Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.										
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
Sobek Calculations	Analytical Met	hod: Modified	Sobek 3.2							
Acid/Base Potential	459	tons/1000		1		01/27/15 15:0	0			
Acid Potential	21	tons/1000	4.3	1		01/27/15 15:0	0			

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10294014

Sample: HSA-6(20-21.5)	Lab ID: 102	294014002	Collected: 01/07/	15 12:00	0 Received: 01	/13/15 10:00 N	latrix: Solid	
Results reported on a "dry weigh	ht" basis and are ad	ljusted for per	cent moisture, sa	ample s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Met	hod: EPA 6020	A Preparation Me	ethod: E	PA 3050			
Antimony	1.5	mg/kg	0.54	20	01/20/15 10:44	01/21/15 10:41	7440-36-0	
Arsenic	5.9	mg/kg	0.54	20	01/20/15 10:44	01/21/15 10:41	7440-38-2	
Cadmium	25.8	mg/kg	0.086	20	01/20/15 10:44	01/21/15 10:41	7440-43-9	
Copper	18.9	mg/kg	1.1	20	01/20/15 10:44	01/21/15 10:41	7440-50-8	
Lead	335	mg/kg	10.8	2000	01/20/15 10:44	01/21/15 19:55	7439-92-1	
Zinc	11700	mg/kg	540	2000	01/20/15 10:44	01/21/15 19:55	7440-66-6	
6020A MET ICPMS, TCLP	Analytical Met Leachate Met	hod: EPA 6020 hod/Date: EPA	0A Preparation Me 1311; 03/04/15 12	ethod: E 2:09 Ini	:PA 3020 tial pH: 9.59; Fina	l pH: 2.14		
Arsenic	<0.0025	ma/l	0.0025	1	03/04/15 14:10	03/05/15 09:39	7440-38-2	
Cadmium	0.068	ma/L	0.00040	1	03/04/15 14:10	03/05/15 09:39	7440-43-9	
Lead	2.3	mg/L	0.0050	10	03/04/15 14:10	03/05/15 10:13	7439-92-1	
6020A MET ICPMS, SPLP	Analytical Met	hod: EPA 6020	0A Preparation Me	ethod: E	:PA 3020 tial pH: 8 86: Fina	l pH: 8 86		
	0 0004		0,00050	۰.۰۰ ۱۰۱۱	02/00/45 00:40	02/00/45 44-47	7440.00.0	
Antimony	0.0024	mg/L	0.00050	1	03/08/15 20:48	03/09/15 11:47	7440-36-0	
Cadmium	0.00095	mg/L	0.00050	1	03/06/15 20:46	03/09/15 11:47	7440-30-2	
Cappor	<0.00000	mg/L	0.000080	1	03/06/15 20:46	03/09/15 11:47	7440-43-9	
Lead	0.0010	mg/L	0.0010	1	03/08/15 20:48	03/09/15 11:47	7440-30-8	
Zinc	0.019	mg/L	0.0050	1	03/08/15 20:48	03/09/15 11:47	7440-66-6	
7470 Mercury, SPLP	Analytical Met	hod: EPA 7470	0A Preparation Me 1312: 03/06/15 10	ethod: E 6:31 Ini	:PA 7470A itial pH: 8.86: Fina	l pH: 8.86		
Mercury	<0.00020	ma/l	0.00020	1	03/08/15 19:55	03/09/15 10:34	7439-97-6	
	<0.00020		0.00020			03/03/13 10.34	1400 01-0	
7470 Mercury, TCLP	Analytical Met Leachate Met	hod: EPA 7470 hod/Date: EPA	1311; 03/04/15 12	ethod: E 2:09 Ini	:PA 7470A tial pH: 9.59; Fina	l pH: 2.14		
Mercury	<0.00060	mg/L	0.00060	1	03/04/15 16:15	03/05/15 11:36	7439-97-6	
7471 Mercury	Analytical Met	hod: EPA 7471	Preparation Met	hod: EF	PA 7471			
Mercury	0.0032	mg/L	0.00020	1	01/20/15 12:02	01/21/15 13:07	7439-97-6	
Dry Weight	Analytical Met	hod: ASTM D2	2974					
Percent Moisture	11.0	%	0.10	1		01/16/15 13:48		
Sobek Acid Base Potential	Analytical Met	hod: Modified	Sobek 3.2					
Neutralization Potential	400	tons/1000	0.50	1		01/26/15 11:00		
Sobek Extractable Sulfur	Analytical Met	hod: Modified	Sobek 3.2					
Sulfur, HCI Extractable	<0.050	% (w/w)	0.050	1		01/26/15 11:10		
Sulfur, HNO3 Extractable	0.321	% (w/w)	0.050	1		01/26/15 11:10		
Sulfur, Hot Water Extractable	0.862	% (w/w)	0.050	1		01/26/15 11:10		
Sulfur, Residual	<0.050	% (w/w)	0.050	1		01/26/15 11:10		
Total Sulfur	0.885	% (w/w)	0.050	1		01/26/15 11:10		

REPORT OF LABORATORY ANALYSIS

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10294014

Sample: HSA-6(20-21.5)	Lab ID: 102	94014002	Collected: 01/07	/15 12:00	Received: 0	1/13/15 10:00	Matrix: Solid	
Results reported on a "dry weight" b	asis and are ad	justed for pe	rcent moisture, s	ample si	ze and any dilu	ıtions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Sobek Calculations	Analytical Met	hod: Modified	Sobek 3.2					
Acid/Base Potential	389	tons/1000		1		01/27/15 15:0	0	
Acid Potential	11	tons/1000	4.3	1		01/27/15 15:0	0	

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10294014

Sample: HSA-6(30-31.5)	Lab ID: 102	94014003	Collected: 01/07/1	5 12:3	0 Received: 01	/13/15 10:00 N	latrix: Solid	
Results reported on a "dry weig	ght" basis and are adj	usted for p	ercent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Meth	nod: EPA 60	20A Preparation Me	thod: E	EPA 3050			
Antimony	<0.56	mg/kg	0.56	20	01/20/15 10:44	01/21/15 19:58	7440-36-0	
Arsenic	0.76	mg/kg	0.56	20	01/20/15 10:44	01/21/15 19:58	7440-38-2	
Cadmium	<0.090	mg/kg	0.090	20	01/20/15 10:44	01/21/15 19:58	7440-43-9	
Copper	3.2	mg/kg	1.1	20	01/20/15 10:44	01/21/15 19:58	7440-50-8	
Lead	5.4	mg/kg	0.11	20	01/20/15 10:44	01/21/15 19:58	7439-92-1	
Zinc	45.6	mg/kg	5.6	20	01/20/15 10:44	01/21/15 19:58	7440-66-6	
7471 Mercury	Analytical Meth	nod: EPA 74	71 Preparation Meth	nod: EF	PA 7471			
Mercury	<0.023	mg/kg	0.023	1	01/20/15 12:02	01/21/15 13:09	7439-97-6	
Dry Weight	Analytical Meth	nod: ASTM	D2974					
Percent Moisture	12.4	%	0.10	1		01/16/15 13:48		

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10294014

Sample: HSA-5(10-11.5)	Lab ID: 102	294014008	Collected: 01/08/1	5 08:3	0 Received: 01	/13/15 10:00 N	latrix: Solid	
Results reported on a "dry weigh	ht" basis and are ad	ljusted for per	cent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Me	thod: EPA 6020	A Preparation Me	thod: E	EPA 3050			
Antimony	<0.56	mg/kg	0.56	20	01/20/15 10:44	01/21/15 11:12	7440-36-0	
Arsenic	5.9	mg/kg	0.56	20	01/20/15 10:44	01/21/15 11:12	7440-38-2	
Cadmium	5.7	mg/kg	0.089	20	01/20/15 10:44	01/21/15 11:12	7440-43-9	
Copper	32.4	mg/kg	1.1	20	01/20/15 10:44	01/21/15 11:12	7440-50-8	
Lead	146	mg/kg	1.1	200	01/20/15 10:44	01/21/15 20:01	7439-92-1	
Zinc	2890	mg/kg	55.7	200	01/20/15 10:44	01/21/15 20:01	7440-66-6	
6020A MET ICPMS, TCLP	Analytical Me	thod: EPA 6020	A Preparation Me	thod: E	EPA 3020 itial nH: 9 14: Fina	l pH [.] 5 72		
A no on in	-0.010		0.040		02/04/45 44:40	02/05/45 40.50	7440 00 0	
Arsenic	<0.012	mg/L	0.012	5	03/04/15 14:16	03/05/15 10:58	7440-38-2	
Lood	0.11	mg/L	0.0020	5 5	03/04/15 14:16	03/05/15 10:56	7440-43-9	
Lead	1.0	mg/∟	0.0025	Э	03/04/15 14:16	03/05/15 10.56	7439-92-1	
6020A MET ICPMS, SPLP	Analytical Me	thod: EPA 6020	A Preparation Me	thod: E	EPA 3020			
	Leachate Met	nod/Date: EPA	1312; 03/06/15 16	:31 IN	itial pH: 8.51; Fina	il pH: 8.51		
Antimony	0.0018	mg/L	0.00050	1	03/08/15 20:48	03/09/15 11:52	7440-36-0	
Arsenic	0.00051	mg/L	0.00050	1	03/08/15 20:48	03/09/15 11:52	7440-38-2	
Cadmium	0.000090	mg/L	0.000080	1	03/08/15 20:48	03/09/15 11:52	7440-43-9	
Copper	<0.0010	mg/L	0.0010	1	03/08/15 20:48	03/09/15 11:52	7440-50-8	
Lead	0.0029	mg/L	0.00010	1	03/08/15 20:48	03/09/15 11:52	7439-92-1	
Zinc	0.027	mg/L	0.0050	1	03/08/15 20:48	03/09/15 11:52	7440-66-6	
7470 Mercury, SPLP	Analytical Me	thod: EPA 7470 hod/Date: EPA	0A Preparation Me 1312: 03/06/15 16	thod: E 3:31 In	EPA 7470A itial pH: 8.51: Fina	l pH: 8.51		
Moroury	-0.00020	ma/l	0.00020	1	02/08/15 10:55	02/00/15 10:26	7420 07 6	
Mercury	<0.00020	mg/L	0.00020	1	03/06/15 19.55	03/09/15 10.36	/439-9/-0	
7470 Mercury, TCLP	Analytical Me Leachate Met	thod: EPA 7470 hod/Date: EPA	0A Preparation Me 1311; 03/04/15 12	thod: E ::05 Ini	EPA 7470A itial pH: 9.14; Fina	l pH: 5.72		
Mercury	<0.00060	mg/L	0.00060	1	03/04/15 16:15	03/05/15 11:38	7439-97-6	
7471 Mercury	Analytical Me	thod: EPA 7471	Preparation Met	nod: EF	PA 7471			
Mercury	0.0011	mg/L	0.00025	1	01/20/15 12:02	01/21/15 13:11	7439-97-6	
Dry Weight	Analytical Me	thod: ASTM D2	2974					
Percent Moisture	19.1	%	0.10	1		01/16/15 13:48		
Sobek Acid Base Potential	Analytical Me	thod: Modified	Sobek 3.2					
Neutralization Potential	510	tons/1000	0.50	1		01/26/15 11:00		
Sobek Extractable Sulfur	Analytical Me	thod: Modified	Sobek 3.2					
Sulfur, HCI Extractable	<0.050	% (w/w)	0.050	1		01/26/15 11:26		
Sulfur, HNO3 Extractable	0.151	% (w/w)	0.050	1		01/26/15 11:26		
Sulfur, Hot Water Extractable	0.476	% (w/w)	0.050	1		01/26/15 11:26		
Sulfur, Residual	<0.050	% (w/w)	0.050	1		01/26/15 11:26		
Total Sulfur	0.482	% (w/w)	0.050	1		01/26/15 11:26		

REPORT OF LABORATORY ANALYSIS

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10294014

Sample: HSA-5(10-11.5)	Lab ID: 102	294014008	Collected: 01/08/	15 08:30	Received: 0	1/13/15 10:00	Matrix: Solid	
Results reported on a "dry weight"	basis and are ad	ljusted for pe	rcent moisture, s	ample si	ze and any dilu	itions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Sobek Calculations	Analytical Me	thod: Modified	Sobek 3.2					
Acid/Base Potential	500	tons/1000		1		01/27/15 15:00)	
Acid Potential	5.3	tons/1000	4.3	1		01/27/15 15:00)	

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10294014

Sample: HSA-5(20-21.5)	Lab ID: 10	294014009	Collected: 01/08/1	5 09:00	0 Received: 01	/13/15 10:00 N	Aatrix: Solid	
Results reported on a "dry weigh	ht" basis and are ac	ljusted for pe	rcent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Me	thod: EPA 602	0A Preparation Me	thod: E	PA 3050			
Antimony	0.79	mg/kg	0.61	20	01/20/15 10:44	01/21/15 11:15	7440-36-0	
Arsenic	7.7	mg/kg	0.61	20	01/20/15 10:44	01/21/15 11:15	7440-38-2	
Cadmium	9.5	mg/kg	0.097	20	01/20/15 10:44	01/21/15 11:15	7440-43-9	
Copper	149	mg/kg	1.2	20	01/20/15 10:44	01/21/15 11:15	7440-50-8	
Lead	716	mg/kg	1.2	200	01/20/15 10:44	01/21/15 20:04	7439-92-1	
Zinc	4340	mg/kg	60.6	200	01/20/15 10:44	01/21/15 20:04	7440-66-6	
6020A MET ICPMS, TCLP	Analytical Me Leachate Met	thod: EPA 6020 hod/Date: EPA	0A Preparation Me 1311; 03/04/15 12	thod: E ::05 Ini	:PA 3020 tial pH: 8.94; Fina	l pH: 5.54		
Arsenic	<0.012	ma/l	0.012	5	03/04/15 14:16	03/05/15 11:01	7440-38-2	
Cadmium	0.088	ma/L	0.0020	5	03/04/15 14:16	03/05/15 11:01	7440-43-9	
Lead	2.1	mg/L	0.0025	5	03/04/15 14:16	03/05/15 11:01	7439-92-1	
6020A MET ICPMS, SPLP	Analytical Me	thod: EPA 602	0A Preparation Me	thod: E	PA 3020			
	Leachate Met	hod/Date: EPA	1312; 03/06/15 16	31 Ini	tial pH: 8.15; Fina	ll pH: 8.15		
Antimony	0.0046	mg/L	0.00050	1	03/08/15 20:48	03/09/15 12:29	7440-36-0	
Arsenic	<0.00050	mg/L	0.00050	1	03/08/15 20:48	03/09/15 12:29	7440-38-2	
Cadmium	0.00022	mg/L	0.000080	1	03/08/15 20:48	03/09/15 12:29	7440-43-9	
Copper	0.0055	mg/L	0.0010	1	03/08/15 20:48	03/09/15 12:29	7440-50-8	
Lead	0.0042	mg/L	0.00010	1	03/08/15 20:48	03/09/15 12:29	7439-92-1	
Zinc	0.033	mg/L	0.0050	1	03/08/15 20:48	03/09/15 12:29	7440-66-6	
7470 Mercury, SPLP	Analytical Me Leachate Met	thod: EPA 747(hod/Date: EPA	0A Preparation Me 1312; 03/06/15 16	thod: E 6:31 Ini	:PA 7470A tial pH: 8.15; Fina	ll pH: 8.15		
Mercury	<0.00020	mg/L	0.00020	1	03/08/15 19:55	03/09/15 10:44	7439-97-6	
7470 Mercury, TCLP	Analytical Me	thod: EPA 747	0A Preparation Me	thod: E	PA 7470A			
	Leachate Met	hod/Date: EPA	1311; 03/04/15 12	:05 Ini	tial pH: 8.94; Fina	l pH: 5.54		
Mercury	<0.00060	mg/L	0.00060	1	03/04/15 16:15	03/05/15 11:41	7439-97-6	
7471 Mercury	Analytical Me	thod: EPA 747	1 Preparation Meth	nod: EP	PA 7471			
Mercury	0.0043	mg/L	0.00024	1	01/20/15 12:02	01/21/15 13:17	7439-97-6	
Dry Weight	Analytical Me	thod: ASTM D2	2974					
Percent Moisture	23.6	%	0.10	1		01/16/15 13:49		
Sobek Acid Base Potential	Analytical Me	thod: Modified	Sobek 3.2					
Neutralization Potential	580	tons/1000	0.50	1		01/26/15 11:00		
Sobek Extractable Sulfur	Analytical Me	thod: Modified	Sobek 3.2					
Sulfur, HCI Extractable	<0.050	% (w/w)	0.050	1		01/26/15 11:45		
Sulfur, HNO3 Extractable	0.325	% (w/w)	0.050	1		01/26/15 11:45		
Sulfur, Hot Water Extractable	0.175	% (w/w)	0.050	1		01/26/15 11:45		
Sulfur, Residual	<0.050	% (w/w)	0.050	1		01/26/15 11:45		
Total Sulfur	0.175	% (w/w)	0.050	1		01/26/15 11:45		

REPORT OF LABORATORY ANALYSIS

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10294014

Sample: HSA-5(20-21.5)	Lab ID: 102	94014009	Collected: 01/08/	15 09:00	Received: 07	1/13/15 10:00	Matrix: Solid	
Results reported on a "dry weight" k	basis and are ad	justed for pe	rcent moisture, s	ample si	ze and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Sobek Calculations	Analytical Met	hod: Modified	Sobek 3.2					
Acid/Base Potential	570	tons/1000		1		01/27/15 15:0	0	
Acid Potential	11	tons/1000	4.3	1		01/27/15 15:0	0	

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10294014

Sample: HSA-5(30-31.5)	Lab ID: 102	94014010	Collected: 01/08/1	5 09:2	5 Received: 01	/13/15 10:00 N	Aatrix: Solid	
Results reported on a "dry weig	ght" basis and are adj	usted for p	ercent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Meth	nod: EPA 60	20A Preparation Me	thod: E	EPA 3050			
Antimony	<0.41	mg/kg	0.41	20	01/20/15 10:44	01/21/15 20:15	7440-36-0	
Arsenic	0.66	mg/kg	0.41	20	01/20/15 10:44	01/21/15 20:15	7440-38-2	
Cadmium	<0.066	mg/kg	0.066	20	01/20/15 10:44	01/21/15 20:15	7440-43-9	
Copper	2.8	mg/kg	0.83	20	01/20/15 10:44	01/21/15 20:15	7440-50-8	
Lead	4.2	mg/kg	0.083	20	01/20/15 10:44	01/21/15 20:15	7439-92-1	
Zinc	49.2	mg/kg	4.1	20	01/20/15 10:44	01/21/15 20:15	7440-66-6	
7471 Mercury	Analytical Meth	nod: EPA 74	71 Preparation Meth	od: EF	PA 7471			
Mercury	<0.019	mg/kg	0.019	1	01/20/15 12:02	01/21/15 13:19	7439-97-6	
Dry Weight	Analytical Meth	nod: ASTM [02974					
Percent Moisture	7.7	%	0.10	1		01/16/15 13:49		

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10294014

Sample: HSA-1(20-21.5)	Lab ID: 10	294014012	Collected: 01/08/	15 12:30	Received: 01	/13/15 10:00 M	latrix: Solid	
Results reported on a "dry weigh	ht" basis and are ad	ljusted for pe	rcent moisture, sa	ample s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Me	thod: EPA 602	0A Preparation Me	ethod: E	PA 3050			
Antimony	1.7	mg/kg	0.53	20	01/20/15 10:44	01/21/15 11:21	7440-36-0	
Arsenic	10.6	mg/kg	0.53	20	01/20/15 10:44	01/21/15 11:21	7440-38-2	
Cadmium	32.3	mg/kg	0.085	20	01/20/15 10:44	01/21/15 11:21	7440-43-9	
Copper	23.3	mg/kg	1.1	20	01/20/15 10:44	01/21/15 11:21	7440-50-8	
Lead	814	mg/kg	10.6	2000	01/20/15 10:44	01/21/15 20:18	7439-92-1	
Zinc	12600	mg/kg	530	2000	01/20/15 10:44	01/21/15 20:18	7440-66-6	
6020A MET ICPMS, TCLP	Analytical Me Leachate Met	thod: EPA 6020 hod/Date: EPA	0A Preparation Me 1311; 03/04/15 12	ethod: E 2:09 Init	PA 3020 ial pH: 9.06; Fina	l pH: 4.59		
Arsenic	0.0032	ma/L	0.0025	1	03/04/15 14:10	03/05/15 09:30	7440-38-2	
Cadmium	0.18	mg/L	0.00040	1	03/04/15 14:10	03/05/15 09:30	7440-43-9	
Lead	9.3	mg/L	0.0050	10	03/04/15 14:10	03/05/15 09:48	7439-92-1	
6020A MET ICPMS, SPLP	Analytical Me	thod: EPA 602	0A Preparation Me	ethod: E	PA 3020			
	Leachate Met	nod/Date: EPA	1312; 03/06/15 16	5:31 Inii	ial pH: 8.36; Fina	I pH: 8.36		
Antimony	0.0025	mg/L	0.00050	1	03/08/15 20:48	03/09/15 12:33	7440-36-0	
Arsenic	<0.00050	mg/L	0.00050	1	03/08/15 20:48	03/09/15 12:33	7440-38-2	
Cadmium	0.00027	mg/L	0.000080	1	03/08/15 20:48	03/09/15 12:33	7440-43-9	
Copper	<0.0010	mg/L	0.0010	1	03/08/15 20:48	03/09/15 12:33	7440-50-8	
Lead	0.00088	mg/L	0.00010	1	03/08/15 20:48	03/09/15 12:33	7439-92-1	
Zinc	0.0069	mg/L	0.0050	1	03/08/15 20:48	03/09/15 12:33	7440-66-6	
7470 Mercury, SPLP	Analytical Me Leachate Met	thod: EPA 747 hod/Date: EPA	0A Preparation Me 1312; 03/06/15 16	ethod: E 5:31 Init	PA 7470A tial pH: 8.36; Fina	l pH: 8.36		
Mercury	<0.00020	mg/L	0.00020	1	03/08/15 19:55	03/09/15 10:46	7439-97-6	
7470 Mercury, TCLP	Analytical Me	thod: EPA 747	DA Preparation Me	ethod: E	PA 7470A			
				.03 mm	iai pi i. 9.00, i ilia	i pi i. 4.55		
Mercury	<0.00060	mg/L	0.00060	1	03/04/15 16:15	03/05/15 11:43	7439-97-6	
7471 Mercury	Analytical Me	thod: EPA 747	1 Preparation Met	hod: EP	A 7471			
Mercury	0.0065	mg/L	0.00022	1	01/20/15 12:02	01/21/15 13:21	7439-97-6	
Dry Weight	Analytical Me	thod: ASTM D2	2974					
Percent Moisture	18.7	%	0.10	1		01/20/15 13:48		
Sobek Acid Base Potential	Analytical Me	thod: Modified	Sobek 3.2					
Neutralization Potential	580	tons/1000	0.50	1		01/26/15 11:00		
Sobek Extractable Sulfur	Analytical Me	thod: Modified	Sobek 3.2					
Sulfur, HCI Extractable	<0.050	% (w/w)	0.050	1		01/26/15 11:57		
Sulfur, HNO3 Extractable	0.232	% (w/w)	0.050	1		01/26/15 11:57		
Sulfur, Hot Water Extractable	0.331	% (w/w)	0.050	1		01/26/15 11:57		
Sulfur, Residual	<0.050	% (w/w)	0.050	1		01/26/15 11:57		
Total Sulfur	0.338	% (w/w)	0.050	1		01/26/15 11:57		

REPORT OF LABORATORY ANALYSIS

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10294014

Sample: HSA-1(20-21.5)	Lab ID: 102	94014012	Collected: 01/08	/15 12:30	Received: 0	1/13/15 10:00	Matrix: Solid	
Results reported on a "dry weight" b	asis and are ad	justed for pe	rcent moisture, s	ample si	ze and any dilu	ıtions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Sobek Calculations	Analytical Met	hod: Modified	Sobek 3.2					
Acid/Base Potential	570	tons/1000		1		01/27/15 15:0	0	
Acid Potential	7.8	tons/1000	4.3	1		01/27/15 15:0	0	

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10294014

Sample: HSA-1(30-31.5)	Lab ID: 102	294014013	Collected: 01/08/1	15 13:00	Received: 01	/13/15 10:00 N	1atrix: Solid				
Results reported on a "dry weigh	ht" basis and are ad	ljusted for p	ercent moisture, sa	ample s	ize and any dilut	tions.					
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual			
6020A MET ICPMS	Analytical Met	thod: EPA 60	20A Preparation Me	ethod: E	PA 3050						
Antimony	1.7	mg/kg	0.62	20	01/20/15 10:44	01/21/15 11:23	7440-36-0				
Arsenic	20.6	mg/kg	0.62	20	01/20/15 10:44	01/21/15 11:23	7440-38-2				
Cadmium	105	mg/kg	0.099	20	01/20/15 10:44	01/21/15 11:23	7440-43-9				
Copper	152	mg/kg	1.2	20	01/20/15 10:44	01/21/15 11:23	7440-50-8				
Lead	3780	mg/kg	12.4	2000	01/20/15 10:44	01/21/15 20:21	7439-92-1				
Zinc	35300	mg/kg	621	2000	01/20/15 10:44	01/21/15 20:21	7440-66-6				
6020A MET ICPMS, TCLP	Analytical Met	thod: EPA 60	20A Preparation Me	ethod: E	PA 3020						
	Leachate Met	Leachate Method/Date: EPA 1311; 03/04/15 12:05 Initial pH: 8.97; Final pH: 5.54									
Arsenic	<0.012	mg/L	0.012	5	03/04/15 14:16	03/05/15 11:04	7440-38-2				
Cadmium	0.91	mg/L	0.0020	5	03/04/15 14:16	03/05/15 11:04	7440-43-9				
Lead	23.6	mg/L	0.025	50	03/04/15 14:16	03/05/15 11:15	7439-92-1				
6020A MET ICPMS, SPLP	Analytical Met	thod: EPA 60	20A Preparation Me	ethod: E	PA 3020						
	Leachate Met	hod/Date: EF	PA 1312; 03/06/15 16	5:31 Init	tial pH: 8.09; Fina	l pH: 8.09					
Antimony	0.00061	mg/L	0.00050	1	03/08/15 20:48	03/09/15 12:38	7440-36-0				
Arsenic	<0.00050	mg/L	0.00050	1	03/08/15 20:48	03/09/15 12:38	7440-38-2				
Cadmium	0.0012	mg/L	0.000080	1	03/08/15 20:48	03/09/15 12:38	7440-43-9				
Copper	0.0014	mg/L	0.0010	1	03/08/15 20:48	03/09/15 12:38	7440-50-8				
Lead	0.026	mg/L	0.00010	1	03/08/15 20:48	03/09/15 12:38	7439-92-1				
Zinc	0.065	mg/L	0.0050	1	03/08/15 20:48	03/09/15 12:38	7440-66-6				
7470 Mercury, SPLP	Analytical Met	thod: EPA 74	70A Preparation Me	ethod: E	PA 7470A						
	Leachate Met	hod/Date: EF	PA 1312; 03/06/15 16	5:31 Init	tial pH: 8.09; Fina	l pH: 8.09					
Mercury	<0.00020	mg/L	0.00020	1	03/08/15 19:55	03/09/15 10:49	7439-97-6				
7470 Mercury, TCLP	Analytical Met	thod: EPA 74	70A Preparation Me	ethod: E	PA 7470A						
	Leachate Met	hod/Date: EF	PA 1311; 03/04/15 12	2:05 Init	ial pH: 8.97; Fina	l pH: 5.54					
Mercury	<0.00060	mg/L	0.00060	1	03/04/15 16:15	03/05/15 11:50	7439-97-6				
7471 Mercury	Analytical Met	thod: EPA 74	71 Preparation Met	hod: EP	A 7471						
Mercury	0.043	mg/L	0.0012	5	01/20/15 12:02	01/21/15 13:23	7439-97-6				
Dry Weight	Analytical Met	thod: ASTM [02974								
Percent Moisture	24.7	%	0.10	1		01/20/15 13:49					
Sobek Acid Base Potential	Analytical Met	thod: Modifie	d Sobek 3.2								
Neutralization Potential	480	tons/1000	0.50	1		01/26/15 11:00					
Sobek Extractable Sulfur	Analytical Met	thod: Modifie	d Sobek 3.2								
Sulfur, HCI Extractable	<0.050	% (w/w)	0.050	1		01/26/15 12:09					
Sulfur, HNO3 Extractable	0.223	% (w/w)	0.050	1		01/26/15 12:09					
Sulfur, Hot Water Extractable	0.416	% (w/w)	0.050	1		01/26/15 12:09					
Sulfur, Residual	<0.050	% (w/w)	0.050	1		01/26/15 12:09					
Total Sulfur	0.427	% (w/w)	0.050	1		01/26/15 12:09					

REPORT OF LABORATORY ANALYSIS

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10294014

Sample: HSA-1(30-31.5)	Lab ID: 102	94014013	Collected: 01/08	/15 13:00	Received: 0	1/13/15 10:00	Matrix: Solid	
Results reported on a "dry weight" ba	asis and are ad	justed for pe	rcent moisture, s	ample si	ze and any dilu	itions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Sobek Calculations	Analytical Met	hod: Modified	Sobek 3.2					
Acid/Base Potential	470	tons/1000		1		01/27/15 15:0	0	
Acid Potential	8.4	tons/1000	4.3	1		01/27/15 15:0	0	

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10294014

Sample: HSA-1(40-41.5)	Lab ID: 102	94014014	Collected: 01/08/1	5 13:20	0 Received: 01	/13/15 10:00 N	/latrix: Solid	
Results reported on a "dry weig	ght" basis and are adj	usted for p	ercent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Meth	nod: EPA 60	20A Preparation Me	thod: E	EPA 3050			
Antimony	<0.42	mg/kg	0.42	20	01/20/15 10:44	01/21/15 20:24	7440-36-0	
Arsenic	0.75	mg/kg	0.42	20	01/20/15 10:44	01/21/15 20:24	7440-38-2	
Cadmium	0.097	mg/kg	0.067	20	01/20/15 10:44	01/21/15 20:24	7440-43-9	
Copper	10.1	mg/kg	0.84	20	01/20/15 10:44	01/21/15 20:24	7440-50-8	
Lead	8.6	mg/kg	0.084	20	01/20/15 10:44	01/21/15 20:24	7439-92-1	
Zinc	38.2	mg/kg	4.2	20	01/20/15 10:44	01/21/15 20:24	7440-66-6	
7471 Mercury	Analytical Meth	nod: EPA 74	71 Preparation Meth	nod: EF	PA 7471			
Mercury	<0.018	mg/kg	0.018	1	01/20/15 12:02	01/21/15 13:25	7439-97-6	
Dry Weight	Analytical Meth	nod: ASTM	D2974					
Percent Moisture	8.3	%	0.10	1		01/20/15 13:49		

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10294014

Sample: HSA-2(10-11.5)	Lab ID: 102	294014019	Collected: 01/09/1	5 08:1	5 Received: 01	/13/15 10:00 N	latrix: Solid			
Results reported on a "dry weigh	ht" basis and are ad	ljusted for pe	ercent moisture, sa	mple s	ize and any dilut	tions.				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
6020A MET ICPMS	Analytical Me	thod: EPA 602	20A Preparation Me	thod: E	PA 3050					
Antimony	0.60	mg/kg	0.51	20	01/20/15 10:44	01/21/15 11:59	7440-36-0			
Arsenic	3.8	mg/kg	0.51	20	01/20/15 10:44	01/21/15 11:59	7440-38-2			
Cadmium	17.6	mg/kg	0.082	20	01/20/15 10:44	01/21/15 11:59	7440-43-9			
Copper	23.3	mg/kg	1.0	20	01/20/15 10:44	01/21/15 11:59	7440-50-8			
Lead	179	mg/kg	2.6	500	01/20/15 10:44	01/21/15 20:26	7439-92-1			
Zinc	9180	mg/kg	128	500	01/20/15 10:44	01/21/15 20:26	7440-66-6			
6020A MET ICPMS, TCLP	Analytical Me	thod: EPA 602	20A Preparation Me	thod: E	PA 3020					
	Leachate Method/Date: EPA 1311; 03/04/15 12:09 Initial pH: 8.71; Final pH: 2.2									
Arsenic	<0.0025	mg/L	0.0025	1	03/04/15 14:10	03/05/15 09:33	7440-38-2			
Cadmium	0.17	mg/L	0.00040	1	03/04/15 14:10	03/05/15 09:33	7440-43-9			
Lead	0.19	mg/L	0.00050	1	03/04/15 14:10	03/05/15 09:33	7439-92-1			
6020A MET ICPMS, SPLP	Analytical Me	thod: EPA 602	20A Preparation Me	thod: E	PA 3020					
	Leachate Met	hod/Date: EP	A 1312; 03/06/15 16	3:31 Ini	tial pH: 8.38; Fina	l pH: 8.38				
Antimony	0.00090	mg/L	0.00050	1	03/08/15 20:48	03/09/15 12:43	7440-36-0			
Arsenic	<0.00050	mg/L	0.00050	1	03/08/15 20:48	03/09/15 12:43	7440-38-2			
Cadmium	0.00023	mg/L	0.000080	1	03/08/15 20:48	03/09/15 12:43	7440-43-9			
Copper	0.0015	mg/L	0.0010	1	03/08/15 20:48	03/09/15 12:43	7440-50-8			
Lead	0.0082	mg/L	0.00010	1	03/08/15 20:48	03/09/15 12:43	7439-92-1			
Zinc	0.078	mg/L	0.0050	1	03/08/15 20:48	03/09/15 12:43	7440-66-6			
7470 Mercury, SPLP	Analytical Me	thod: EPA 747	OA Preparation Me	thod: E	PA 7470A					
	Leachate Met	hod/Date: EP	A 1312; 03/06/15 16	3:31 Ini	tial pH: 8.38; Fina	l pH: 8.38				
Mercury	<0.00020	mg/L	0.00020	1	03/08/15 19:55	03/09/15 10:51	7439-97-6			
7470 Mercury, TCLP	Analytical Me	thod: EPA 747	OA Preparation Me	thod: E	PA 7470A					
	Leachate Met	hod/Date: EP	A 1311; 03/04/15 12	:09 Ini	tial pH: 8.71; Fina	l pH: 2.2				
Mercury	<0.00060	mg/L	0.00060	1	03/04/15 16:15	03/05/15 11:53	7439-97-6			
7471 Mercury	Analytical Me	thod: EPA 747	1 Preparation Meth	nod: EF	PA 7471					
Mercury	0.0014	mg/L	0.00018	1	01/20/15 12:02	01/21/15 13:28	7439-97-6			
Dry Weight	Analytical Me	thod: ASTM D	2974							
Percent Moisture	7.9	%	0.10	1		01/20/15 15:10				
Sobek Acid Base Potential	Analytical Me	thod: Modified	I Sobek 3.2							
Neutralization Potential	430	tons/1000	0.50	1		01/27/15 13:00				
Sobek Extractable Sulfur	Analytical Me	thod: Modified	Sobek 3.2							
Sulfur, HCI Extractable	<0.050	% (w/w)	0.050	1		01/26/15 12:30				
Sulfur, HNO3 Extractable	0.0773	% (w/w)	0.050	1		01/26/15 12:30				
Sulfur, Hot Water Extractable	0.194	% (w/w)	0.050	1		01/26/15 12:30				
Sulfur, Residual	<0.050	% (w/w)	0.050	1		01/26/15 12:30				
Total Sulfur	0.195	% (w/w)	0.050	1		01/26/15 12:30				

REPORT OF LABORATORY ANALYSIS

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10294014

Sample: HSA-2(10-11.5)	Lab ID: 102	94014019	Collected: 01/09/	15 08:15	Received: 0	1/13/15 10:00	Matrix: Solid	
Results reported on a "dry weight" b	asis and are ad	justed for pe	rcent moisture, s	ample si	ze and any dilu	itions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Sobek Calculations	Analytical Met	hod: Modified	Sobek 3.2					
Acid/Base Potential	430	tons/1000		1		01/27/15 15:0	0	
Acid Potential	<4.3	tons/1000	4.3	1		01/27/15 15:0	0	

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10294014

Sample: HSA-2(15-16.5)	Lab ID: 102	94014020	Collected: 01/09/1	5 09:0	0 Received: 01	/13/15 10:00 N	latrix: Solid	
Results reported on a "dry weig	ght" basis and are adj	usted for p	ercent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Meth	nod: EPA 60	20A Preparation Me	thod: E	EPA 3050			
Antimony	<0.49	mg/kg	0.49	20	01/20/15 10:44	01/21/15 20:29	7440-36-0	
Arsenic	<0.49	mg/kg	0.49	20	01/20/15 10:44	01/21/15 20:29	7440-38-2	
Cadmium	<0.079	mg/kg	0.079	20	01/20/15 10:44	01/21/15 20:29	7440-43-9	
Copper	<0.99	mg/kg	0.99	20	01/20/15 10:44	01/21/15 20:29	7440-50-8	
Lead	1.9	mg/kg	0.099	20	01/20/15 10:44	01/21/15 20:29	7439-92-1	
Zinc	57.9	mg/kg	4.9	20	01/20/15 10:44	01/21/15 20:29	7440-66-6	
7471 Mercury	Analytical Meth	nod: EPA 74	71 Preparation Meth	nod: EF	PA 7471			
Mercury	<0.019	mg/kg	0.019	1	01/20/15 12:02	01/21/15 13:30	7439-97-6	
Dry Weight	Analytical Meth	nod: ASTM [02974					
Percent Moisture	3.4	%	0.10	1		01/20/15 15:10		

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10294014

Sample: HSA-2(20-21.5)	Lab ID: 102	94014021	Collected: 01/09/1	5 09:10	0 Received: 01	/13/15 10:00 N	Aatrix: Solid	
Results reported on a "dry weig	ght" basis and are adj	usted for p	ercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Meth	nod: EPA 60	20A Preparation Me	thod: E	PA 3050			
Antimony	<0.50	mg/kg	0.50	20	01/20/15 10:44	01/21/15 20:32	7440-36-0	
Arsenic	0.53	mg/kg	0.50	20	01/20/15 10:44	01/21/15 20:32	7440-38-2	
Cadmium	0.14	mg/kg	0.080	20	01/20/15 10:44	01/21/15 20:32	7440-43-9	
Copper	19.8	mg/kg	0.99	20	01/20/15 10:44	01/21/15 20:32	7440-50-8	
Lead	3.5	mg/kg	0.099	20	01/20/15 10:44	01/21/15 20:32	7439-92-1	
Zinc	86.8	mg/kg	5.0	20	01/20/15 10:44	01/21/15 20:32	7440-66-6	
7471 Mercury	Analytical Meth	nod: EPA 74	71 Preparation Meth	nod: EF	PA 7471			
Mercury	<0.020	mg/kg	0.020	1	01/20/15 12:02	01/21/15 13:36	7439-97-6	
Dry Weight	Analytical Meth	nod: ASTM	D2974					
Percent Moisture	4.2	%	0.10	1		01/20/15 15:10		

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10294014

Sample: HSA-3(10-11.5)	Lab ID: 10	294014024	Collected: 01/09/1	5 11:0	0 Received: 01	/13/15 10:00 N	latrix: Solid	
Results reported on a "dry weigh	ht" basis and are ac	ljusted for pe	rcent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Me	thod: EPA 602	0A Preparation Me	thod: E	EPA 3050			
Antimony	1.0	mg/kg	0.50	20	01/20/15 10:44	01/21/15 12:07	7440-36-0	
Arsenic	3.3	mg/kg	0.50	20	01/20/15 10:44	01/21/15 12:07	7440-38-2	
Cadmium	19.4	mg/kg	0.080	20	01/20/15 10:44	01/21/15 12:07	7440-43-9	
Copper	21.8	mg/kg	1.0	20	01/20/15 10:44	01/21/15 12:07	7440-50-8	
Lead	329	mg/kg	2.5	500	01/20/15 10:44	01/21/15 20:35	7439-92-1	
Zinc	8290	mg/kg	125	500	01/20/15 10:44	01/21/15 20:35	7440-66-6	
6020A MET ICPMS, TCLP	Analytical Me	thod: EPA 602	0A Preparation Me	thod: E	EPA 3020 itial nH: 7 99: Fina	l nH: 5.01		
• ·				-			7440.00.0	
Arsenic	<0.012	mg/L	0.012	5	03/04/15 14:16	03/05/15 11:30	7440-38-2	
Lood	0.020	mg/L	0.0020	5	03/04/15 14:16	03/05/15 11:30	7440-43-9	
Lead	0.73	mg/∟	0.0025	5	03/04/15 14:16	03/05/15 11:30	7439-92-1	
6020A MET ICPMS, SPLP	Analytical Me Leachate Met	thod: EPA 602 hod/Date: EPA	0A Preparation Me 1312; 03/06/15 16	thod: E 3:31 In	EPA 3020 itial pH: 7.47; Fina	l pH: 7.47		
Antimony	~0 00050	ma/l	0.00050	1	03/08/15 20:48	03/09/15 12:48	7440-36-0	
Arsenic	<0.00050	mg/L	0.00050	1	03/08/15 20:48	03/09/15 12:40	7440-38-2	
Cadmium	0.00019	mg/L	0.000080	1	03/08/15 20:48	03/09/15 12:48	7440-43-9	
Copper	<0.0010	ma/L	0.0010	1	03/08/15 20:48	03/09/15 12:48	7440-50-8	
Lead	0.0035	mg/L	0.00010	1	03/08/15 20:48	03/09/15 12:48	7439-92-1	
Zinc	0.092	mg/L	0.0050	1	03/08/15 20:48	03/09/15 12:48	7440-66-6	
7470 Mercury, SPLP	Analytical Me Leachate Met	thod: EPA 747	0A Preparation Me 1312: 03/06/15 16	thod: E 6:31 In	EPA 7470A itial pH: 7.47: Fina	l pH: 7.47		
Mercury	<0.00020	ma/l	0.00020	1	03/08/15 19:55	03/09/15 10:53	7439-97-6	
7470 Mercury, TCLP	Leachate Met	thod: EPA 747 thod/Date: EPA	0A Preparation Me 1311; 03/04/15 12	:05 In	EPA 7470A itial pH: 7.99; Fina	l pH: 5.01		
Mercury	<0.00060	mg/L	0.00060	1	03/04/15 16:15	03/05/15 11:55	7439-97-6	
7471 Mercury	Analytical Me	thod: EPA 747	1 Preparation Meth	nod: EF	PA 7471			
Mercury	0.0023	mg/L	0.00021	1	01/20/15 12:02	01/21/15 13:38	7439-97-6	
Dry Weight	Analytical Me	thod: ASTM D2	2974					
Percent Moisture	6.5	%	0.10	1		01/20/15 15:11		
Sobek Acid Base Potential	Analytical Me	thod: Modified	Sobek 3.2					
Neutralization Potential	380	tons/1000	0.50	1		01/27/15 13:00		
Sobek Extractable Sulfur	Analytical Me	thod: Modified	Sobek 3.2					
Sulfur, HCI Extractable	<0.050	% (w/w)	0.050	1		01/26/15 12:42		
Sulfur, HNO3 Extractable	0.113	% (w/w)	0.050	1		01/26/15 12:42		
Sulfur, Hot Water Extractable	0.354	% (w/w)	0.050	1		01/26/15 12:42		
Sulfur, Residual	<0.050	% (w/w)	0.050	1		01/26/15 12:42		
Iotal Sulfur	0.355	% (w/w)	0.050	1		01/26/15 12:42		

REPORT OF LABORATORY ANALYSIS

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10294014

Sample: HSA-3(10-11.5)	Lab ID: 102	294014024	Collected: 01/09/	15 11:00	Received: 07	1/13/15 10:00	Matrix: Solid	
Results reported on a "dry weight"	basis and are ad	ljusted for pe	ercent moisture, s	ample si	ze and any dilu	itions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Sobek Calculations	Analytical Met	hod: Modified	Sobek 3.2					
Acid/Base Potential	380	tons/1000		1		01/27/15 15:0	0	
Acid Potential	<4.3	tons/1000	4.3	1		01/27/15 15:0	0	

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10294014

Sample: HSA-3(20-21.5)	Lab ID: 102	294014025	Collected: 01/09/	15 11:18	5 Received: 01	/13/15 10:00 N	latrix: Solid	
Results reported on a "dry weigh	ht" basis and are ad	ljusted for per	cent moisture, sa	ample s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Met	hod: EPA 6020	A Preparation Me	ethod: E	PA 3050			
Antimony	2.6	mg/kg	0.48	20	01/20/15 10:44	01/21/15 12:10	7440-36-0	
Arsenic	7.8	mg/kg	0.48	20	01/20/15 10:44	01/21/15 12:10	7440-38-2	
Cadmium	37.8	mg/kg	0.076	20	01/20/15 10:44	01/21/15 12:10	7440-43-9	
Copper	25.5	mg/kg	0.96	20	01/20/15 10:44	01/21/15 12:10	7440-50-8	
Lead	934	mg/kg	9.6	2000	01/20/15 10:44	01/21/15 20:38	7439-92-1	
Zinc	16200	mg/kg	478	2000	01/20/15 10:44	01/21/15 20:38	7440-66-6	
6020A MET ICPMS, TCLP	Analytical Met Leachate Met	hod: EPA 6020 hod/Date: EPA	0A Preparation Me 1311; 03/04/15 12	ethod: E 2:09 Ini	PA 3020 tial pH: 8.55; Fina	l pH: 4.55		
Arsenic	<0.0025	ma/l	0 0025	1	03/04/15 14 10	03/05/15 09:56	7440-38-2	
Cadmium	0.15	mg/L	0.00040	1	03/04/15 14:10	03/05/15 09:56	7440-43-9	
Lead	9.0	mg/L	0.0050	10	03/04/15 14:10	03/05/15 10:02	7439-92-1	
6020A MET ICPMS, SPLP	Analytical Met	hod: EPA 6020	A Preparation Me	ethod: E	PA 3020			
•••••••••••••••••••••••••••••••••••••••	Leachate Met	hod/Date: EPA	1312; 03/06/15 16	6:31 Ini	tial pH: 7.98; Fina	l pH: 7.98		
Antimony	0.0019	mg/L	0.00050	1	03/08/15 20:48	03/09/15 12:53	7440-36-0	
Arsenic	<0.00050	mg/L	0.00050	1	03/08/15 20:48	03/09/15 12:53	7440-38-2	
Cadmium	0.00014	mg/L	0.000080	1	03/08/15 20:48	03/09/15 12:53	7440-43-9	
Copper	0.0011	mg/L	0.0010	1	03/08/15 20:48	03/09/15 12:53	7440-50-8	
Lead	0.011	mg/L	0.00010	1	03/08/15 20:48	03/09/15 12:53	7439-92-1	
Zinc	0.037	mg/L	0.0050	1	03/08/15 20:48	03/09/15 12:53	7440-66-6	
7470 Mercury, SPLP	Analytical Met	hod: EPA 7470	A Preparation Me	ethod: E	:PA 7470A tial nH: 7 98: Fina	l nH [.] 7 98		
Moroury		ma/l	0.00020	1	02/08/15 10:55	02/00/15 10:56	7420 07 6	
Mercury	<0.00020	ing/∟	0.00020		03/06/13 19:33	03/09/13 10.30	7439-97-0	
7470 Mercury, TCLP	Analytical Met Leachate Met	hod: EPA 7470 hod/Date: EPA	A Preparation Me 1311; 03/04/15 12	ethod: E 2:09 Ini	PA 7470A tial pH: 8.55; Fina	l pH: 4.55		
Mercury	<0.00060	mg/L	0.00060	1	03/04/15 16:15	03/05/15 11:58	7439-97-6	
7471 Mercury	Analytical Met	hod: EPA 7471	Preparation Met	hod: EF	PA 7471			
Mercury	0.0056	mg/L	0.00020	1	01/20/15 12:02	01/21/15 13:40	7439-97-6	
Dry Weight	Analytical Met	hod: ASTM D2	974					
Percent Moisture	7.4	%	0.10	1		01/20/15 15:11		
Sobek Acid Base Potential	Analytical Met	hod: Modified	Sobek 3.2					
Neutralization Potential	570	tons/1000	0.50	1		01/27/15 13:00		
Sobek Extractable Sulfur	Analytical Met	hod: Modified	Sobek 3.2					
Sulfur, HCI Extractable	<0.050	% (w/w)	0.050	1		01/26/15 12:59		
Sulfur, HNO3 Extractable	0.178	% (w/w)	0.050	1		01/26/15 12:59		
Sulfur, Hot Water Extractable	0.230	% (w/w)	0.050	1		01/26/15 12:59		
Sulfur, Residual	<0.050	% (w/w)	0.050	1		01/26/15 12:59		
Total Sulfur	0.230	% (w/w)	0.050	1		01/26/15 12:59		

REPORT OF LABORATORY ANALYSIS

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10294014

Sample: HSA-3(20-21.5)	Lab ID: 102	94014025	Collected: 01/09/	15 11:15	Received: 07	1/13/15 10:00	Matrix: Solid	
Results reported on a "dry weight" b	asis and are ad	justed for pe	rcent moisture, s	ample si	ze and any dilu	itions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Sobek Calculations	Analytical Met	hod: Modified	Sobek 3.2					
Acid/Base Potential	560	tons/1000		1		01/27/15 15:00)	
Acid Potential	5.9	tons/1000	4.3	1		01/27/15 15:0	D	

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10294014

Sample: HSA-3(30-31.5)	Lab ID: 102	94014026	Collected: 01/09/1	5 11:40	0 Received: 01	/13/15 10:00 N	Aatrix: Solid	
Results reported on a "dry weig	ght" basis and are adj	usted for p	ercent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Meth	nod: EPA 60	20A Preparation Me	thod: E	EPA 3050			
Antimony	<0.51	mg/kg	0.51	20	01/20/15 10:44	01/21/15 20:49	7440-36-0	
Arsenic	2.1	mg/kg	0.51	20	01/20/15 10:44	01/21/15 20:49	7440-38-2	
Cadmium	0.096	mg/kg	0.081	20	01/20/15 10:44	01/21/15 20:49	7440-43-9	
Copper	3.7	mg/kg	1.0	20	01/20/15 10:44	01/21/15 20:49	7440-50-8	
Lead	5.2	mg/kg	0.10	20	01/20/15 10:44	01/21/15 20:49	7439-92-1	
Zinc	448	mg/kg	5.1	20	01/20/15 10:44	01/21/15 20:49	7440-66-6	
7471 Mercury	Analytical Meth	nod: EPA 74	71 Preparation Meth	nod: EF	PA 7471			
Mercury	<0.022	mg/kg	0.022	1	01/20/15 12:02	01/21/15 13:42	7439-97-6	
Dry Weight	Analytical Meth	nod: ASTM [02974					
Percent Moisture	7.0	%	0.10	1		01/20/15 15:11		

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10294014

Sample: HSA-4(10-11.5)	Lab ID: 102	294014030	Collected: 01/09/1	5 14:40	0 Received: 01	/13/15 10:00 N	latrix: Solid	
Results reported on a "dry weigh	ht" basis and are ad	ljusted for pe	ercent moisture, sa	mple s	ize and any dilut	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Me	thod: EPA 602	20A Preparation Me	thod: E	PA 3050			
Antimony	1.0	mg/kg	0.51	20	01/20/15 10:44	01/21/15 12:16	7440-36-0	
Arsenic	3.0	mg/kg	0.51	20	01/20/15 10:44	01/21/15 12:16	7440-38-2	
Cadmium	14.4	mg/kg	0.081	20	01/20/15 10:44	01/21/15 12:16	7440-43-9	
Copper	21.3	mg/kg	1.0	20	01/20/15 10:44	01/21/15 12:16	7440-50-8	
Lead	439	mg/kg	2.5	500	01/20/15 10:44	01/21/15 20:52	7439-92-1	
Zinc	5780	mg/kg	126	500	01/20/15 10:44	01/21/15 20:52	7440-66-6	
6020A MET ICPMS, TCLP	Analytical Me	thod: EPA 602	20A Preparation Me	thod: E	PA 3020			
	Leachate Met	hod/Date: EP	A 1311; 03/04/15 12	:09 Ini	tial pH: 8.93; Fina	l pH: 4.94		
Arsenic	<0.0025	mg/L	0.0025	1	03/04/15 14:10	03/05/15 09:59	7440-38-2	
Cadmium	0.069	mg/L	0.00040	1	03/04/15 14:10	03/05/15 09:59	7440-43-9	
Lead	3.9	mg/L	0.0050	10	03/04/15 14:10	03/05/15 10:05	7439-92-1	
6020A MET ICPMS, SPLP	Analytical Me	thod: EPA 602	20A Preparation Me	thod: E	PA 3020			
	Leachate Met	hod/Date: EP	A 1312; 03/06/15 16	3:31 Ini	tial pH: 8.67; Fina	l pH: 8.67		
Antimony	0.0015	mg/L	0.00050	1	03/08/15 20:48	03/09/15 12:58	7440-36-0	
Arsenic	<0.00050	mg/L	0.00050	1	03/08/15 20:48	03/09/15 12:58	7440-38-2	
Cadmium	<0.000080	mg/L	0.000080	1	03/08/15 20:48	03/09/15 12:58	7440-43-9	
Copper	<0.0010	mg/L	0.0010	1	03/08/15 20:48	03/09/15 12:58	7440-50-8	
Lead	0.00078	mg/L	0.00010	1	03/08/15 20:48	03/09/15 12:58	7439-92-1	
Zinc	0.0080	mg/L	0.0050	1	03/08/15 20:48	03/09/15 12:58	7440-66-6	
7470 Mercury, SPLP	Analytical Me	thod: EPA 747	70A Preparation Me	thod: E	PA 7470A			
	Leachate Met	hod/Date: EP	A 1312; 03/06/15 16	3:31 Ini	tial pH: 8.67; Fina	l pH: 8.67		
Mercury	<0.00020	mg/L	0.00020	1	03/08/15 19:55	03/09/15 10:58	7439-97-6	
7470 Mercury, TCLP	Analytical Me	thod: EPA 747	70A Preparation Me	thod: E	PA 7470A			
	Leachate Met	hod/Date: EP	A 1311; 03/04/15 12	:09 Ini	tial pH: 8.93; Fina	l pH: 4.94		
Mercury	<0.00060	mg/L	0.00060	1	03/04/15 16:15	03/05/15 12:00	7439-97-6	
7471 Mercury	Analytical Me	thod: EPA 747	71 Preparation Meth	nod: EP	PA 7471			
Mercury	0.0011	mg/L	0.00020	1	01/20/15 12:02	01/21/15 13:44	7439-97-6	
Dry Weight	Analytical Me	thod: ASTM E	02974					
Percent Moisture	8.4	%	0.10	1		01/20/15 15:11		
Sobek Acid Base Potential	Analytical Me	thod: Modified	d Sobek 3.2					
Neutralization Potential	580	tons/1000	0.50	1		01/27/15 13:00		
Sobek Extractable Sulfur	Analytical Me	thod: Modified	d Sobek 3.2					
Sulfur, HCI Extractable	<0.050	% (w/w)	0.050	1		01/26/15 13:11		
Sulfur, HNO3 Extractable	0.244	% (w/w)	0.050	1		01/26/15 13:11		
Sulfur, Hot Water Extractable	0.287	% (w/w)	0.050	1		01/26/15 13:11		
Sulfur, Residual	<0.050	% (w/w)	0.050	1		01/26/15 13:11		
Total Sulfur	0.299	% (w/w)	0.050	1		01/26/15 13:11		

REPORT OF LABORATORY ANALYSIS

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10294014

Sample: HSA-4(10-11.5)	Lab ID: 102	294014030	Collected: 01/09/	15 14:40	Received: 07	1/13/15 10:00	Matrix: Solid	
Results reported on a "dry weight" k	asis and are ad	justed for pe	rcent moisture, s	ample si	ze and any dilu	itions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Sobek Calculations	Analytical Met	hod: Modified	Sobek 3.2					
Acid/Base Potential	570	tons/1000		1		01/27/15 15:0	0	
Acid Potential	8.1	tons/1000	4.3	1		01/27/15 15:0	0	

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10294014

Sample: HSA-4(20-21.5)	Lab ID: 102	94014031	Collected: 01/09/1	5 15:0	0 Received: 01	/13/15 10:00 N	latrix: Solid	
Results reported on a "dry weig	ht" basis and are ad	iusted for pe	rcent moisture, sa	mple	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Met	hod: EPA 602	OA Preparation Me	ethod: I	EPA 3050			
Antimony	<0.49	mg/kg	0.49	20	01/20/15 10:44	01/21/15 20:55	7440-36-0	
Arsenic	2.0	mg/kg	0.49	20	01/20/15 10:44	01/21/15 20:55	7440-38-2	
Cadmium	0.11	mg/kg	0.079	20	01/20/15 10:44	01/21/15 20:55	7440-43-9	
Copper	2.9	mg/kg	0.99	20	01/20/15 10:44	01/21/15 20:55	7440-50-8	
Lead	11.8	mg/kg	0.099	20	01/20/15 10:44	01/21/15 20:55	7439-92-1	
Zinc	19.0	mg/kg	4.9	20	01/20/15 10:44	01/21/15 20:55	7440-66-6	
6020A MET ICPMS, TCLP	Analytical Met	hod: EPA 602	0A Preparation Me	thod: I	EPA 3020			
	Leachate Meth	nod/Date: EP/	A 1311; 03/04/15 12	2:09 In	iitial pH: 7.72; Fina	l pH: 1.88		
Arsenic	<0.025	mg/L	0.025	10	03/04/15 14:10	03/05/15 10:34	7440-38-2	D3
Cadmium	<0.0040	mg/L	0.0040	10	03/04/15 14:10	03/05/15 10:34	7440-43-9	D3
Lead	0.11	mg/L	0.0050	10	03/04/15 14:10	03/05/15 10:34	7439-92-1	
6020A MET ICPMS, SPLP	Analytical Met	hod: EPA 602	0A Preparation Me	thod: I	EPA 3020			
	Leachate Meth	nod/Date: EP/	A 1312; 03/06/15 16	3:31 In	nitial pH: 7.48; Fina	al pH: 7.48		
Antimony	<0.00050	mg/L	0.00050	1	03/08/15 20:48	03/09/15 13:02	7440-36-0	
Arsenic	0.0011	mg/L	0.00050	1	03/08/15 20:48	03/09/15 13:02	7440-38-2	
Cadmium	<0.000080	mg/L	0.000080	1	03/08/15 20:48	03/09/15 13:02	7440-43-9	
Copper	0.0014	mg/L	0.0010	1	03/08/15 20:48	03/09/15 13:02	7440-50-8	
Lead	0.0097	mg/L	0.00010	1	03/08/15 20:48	03/09/15 13:02	7439-92-1	
Zinc	0.013	mg/L	0.0050	1	03/08/15 20:48	03/09/15 13:02	7440-66-6	
7470 Mercury, SPLP	Analytical Met	hod: EPA 747	OA Preparation Me	thod: I	EPA 7470A			
	Leachate Meth	nod/Date: EP/	A 1312; 03/06/15 16	3:31 In	iitial pH: 7.48; Fina	al pH: 7.48		
Mercury	<0.00020	mg/L	0.00020	1	03/08/15 19:55	03/09/15 11:01	7439-97-6	
7470 Mercury, TCLP	Analytical Met	hod: EPA 747	OA Preparation Me	thod: I	EPA 7470A			
	Leachate Meth	nod/Date: EP/	A 1311; 03/04/15 12	2:09 In	iitial pH: 7.72; Fina	ll pH: 1.88		
Mercury	<0.00060	mg/L	0.00060	1	03/04/15 16:15	03/05/15 12:08	7439-97-6	
7471 Mercury	Analytical Met	hod: EPA 747	1 Preparation Met	nod: El	PA 7471			
Mercury	<0.00021	mg/L	0.00021	1	01/20/15 12:02	01/21/15 13:46	7439-97-6	
Dry Weight	Analytical Met	hod: ASTM D	2974					
Percent Moisture	3.3	%	0.10	1		01/20/15 15:12		

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10294014

Sample: HSA-4(25-26)	Lab ID: 102	94014032	Collected: 01/09/1	5 15:2	20 Received: 01	/13/15 10:00 N	latrix: Solid	
Results reported on a "dry weig	ht" basis and are ad	justed for p	ercent moisture, sa	mple	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Met	hod: EPA 60	20A Preparation Me	ethod: I	EPA 3050			
Antimony	<0.47	mg/kg	0.47	20	01/20/15 10:44	01/21/15 20:58	7440-36-0	
Arsenic	0.63	mg/kg	0.47	20	01/20/15 10:44	01/21/15 20:58	7440-38-2	
Cadmium	0.12	mg/kg	0.075	20	01/20/15 10:44	01/21/15 20:58	7440-43-9	
Copper	9.2	mg/kg	0.94	20	01/20/15 10:44	01/21/15 20:58	7440-50-8	
Lead	6.4	mg/kg	0.094	20	01/20/15 10:44	01/21/15 20:58	7439-92-1	
Zinc	62.9	mg/kg	4.7	20	01/20/15 10:44	01/21/15 20:58	7440-66-6	
6020A MET ICPMS, TCLP	Analytical Met	hod: EPA 60	20A Preparation Me	thod: I	EPA 3020			
	Leachate Meth	nod/Date: EF	PA 1311; 03/04/15 12	2:09 In	iitial pH: 7.91; Fina	ll pH: 1.52		
Arsenic	<0.025	mg/L	0.025	10	03/04/15 14:10	03/05/15 10:37	7440-38-2	D3
Cadmium	<0.0040	mg/L	0.0040	10	03/04/15 14:10	03/05/15 10:37	7440-43-9	D3
Lead	0.15	mg/L	0.0050	10	03/04/15 14:10	03/05/15 10:37	7439-92-1	
6020A MET ICPMS, SPLP	Analytical Met	hod: EPA 60	20A Preparation Me	ethod: I	EPA 3020			
	Leachate Metr	IOU/Date: EF	A 1312, 03/00/15 10	5.51 III	illiai pn. 7.75, rina	upn: 7.75		
Antimony	<0.00050	mg/L	0.00050	1	03/08/15 20:48	03/09/15 13:07	7440-36-0	
Arsenic	0.0012	mg/L	0.00050	1	03/08/15 20:48	03/09/15 13:07	7440-38-2	
Cadmium	<0.000080	mg/L	0.000080	1	03/08/15 20:48	03/09/15 13:07	7440-43-9	
Copper	0.031	mg/L	0.0010	1	03/08/15 20:48	03/09/15 13:07	7440-50-8	
Lead	0.0047	mg/L	0.00010	1	03/08/15 20:48	03/09/15 13:07	7439-92-1	
ZINC	0.048	mg/L	0.0050	1	03/08/15 20:48	03/09/15 13:07	7440-66-6	
7470 Mercury, SPLP	Analytical Met	hod: EPA 74	70A Preparation Me	thod: I	EPA 7470A vitial pH: 7 75: Eina	u nH: 7 75		
	Leachate Meti	IOU/Date. LI	A 1312, 03/00/13 TC	.51 11		a pri. 7.75		
Mercury	<0.00020	mg/L	0.00020	1	03/08/15 19:55	03/09/15 11:03	7439-97-6	
7470 Mercury, TCLP	Analytical Meth	hod: EPA 74	70A Preparation Me	ethod: I	EPA 7470A	l nH: 1 52		
		100/Date. El	0 0000				7400 07 0	
Mercury	<0.00060	mg/L	0.00060	1	03/04/15 16:15	03/05/15 12:10	7439-97-6	
7471 Mercury	Analytical Met	hod: EPA 74	71 Preparation Met	nod: El	PA 7471			
Mercury	<0.00020	mg/L	0.00020	1	01/20/15 12:02	01/21/15 13:48	7439-97-6	
Dry Weight	Analytical Met	hod: ASTM [02974					
Percent Moisture	8.3	%	0.10	1		01/21/15 10:28		

Project:	0504-10	00-00 Van Sto	one Mine										
Pace Project No.:	102940	14											
QC Batch:	MERF	P/12911		Analys	is Method:		EPA 7470A						
QC Batch Method:	EPA 7	470A		Analys	is Descript	ion:	7470 Mercury	/ SPLP					
Associated Lab Sar	nples:	1029401400 1029401402	1, 10294014002 4, 10294014025	, 10294014 , 10294014	008, 1029 030, 1029	4014009, 4014031,	10294014012 10294014032	2, 1029401 2	4013, 1029	94014019,			
METHOD BLANK:	191346	0		N	Aatrix: Wa	ter							
Associated Lab Sar	nples:	1029401400 1029401402	1, 10294014002 4, 10294014025	, 10294014 , 10294014 Black	008, 1029 030, 1029	4014009, 4014031,	10294014012 10294014032	2, 1029401 2	4013, 1029	94014019,			
Paran	neter		Units	Resul	t it	Limit	Analyz	ed	Qualifiers				
Mercury			mg/L	<0.0	0020	0.0002	03/09/15	10:19					
METHOD BLANK:	191165	7		N	/latrix: Soli	d							
Associated Lab Sar	nples:	1029401400 1029401402	1, 10294014002 4, 10294014025	, 10294014 , 10294014	008, 1029 030, 1029	4014009, 4014031,	10294014012 10294014032	2, 1029401 2	4013, 1029	94014019,			
Paran	neter		Units	Blank Resul	t R	eporting Limit	Analyz	ed	Qualifiers				
Mercury			mg/L	<0.0	0020	0.0002	03/09/15	10:24					
LABORATORY COI		SAMPLE: 1	913461										
Parar	neter		Units	Spike Conc.	LCS Resu	s Ilt	LCS % Rec	% Reo Limits	c G QI	ualifiers			
Mercury			mg/L	.005	0	.0050	100	80	-120		-		
MATRIX SPIKE & M	IATRIX S		CATE: 191347	70 MS	MSD	191347 [,]	1						
Paramete	er	Units	10294014001 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Mercury		mg/L	<0.00020	.005	.005	0.005	2 0.0049	103	99	75-125	4	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	0504-100-00 Va	n Stone Mine									
Pace Project No .:	10294014										
QC Batch:	MERP/12880		Analysis M	lethod: E	PA 7470A						
QC Batch Method:	EPA 7470A		Analysis D	escription: 7	470 Mercury	TCLP					
Associated Lab Sar	mples: 102940 102940	14001, 10294014002 14024, 10294014025	2, 10294014008 5, 10294014030	, 10294014009, 1 , 10294014031, 1	10294014012 10294014032	2, 10294014 2	013, 1029	4014019,			
METHOD BLANK:	1911109		Matr	ix: Water							
Associated Lab Sar	mples: 102940 102940	14001, 10294014002 14024, 10294014025	2, 10294014008 5, 10294014030	, 10294014009, 1 , 10294014031, 1	10294014012 10294014032	2, 10294014 2	1013, 1029	4014019,			
Paran	neter	Units	Blank Result	Reporting Limit	Analyz	ed (Qualifiers				
Mercury		mq/l			$-\frac{1}{03/05/15}$	11·23	auamoro	_			
Wereary		ing/L	<0.0000	0.00000	00/00/10	11.20					
METHOD BLANK:	1909964		Matr	ix: Water							
Associated Lab Sar	mples: 102940 102940	14001, 10294014002 14024, 10294014025	2, 10294014008 5, 10294014030	, 10294014009, 1 , 10294014031, 1	10294014012 10294014032	2, 10294014 2	013, 1029	4014019,			
			Blank	Reporting							
Paran	neter	Units	Result	Limit	Analyz	ed (Qualifiers				
Mercury		mg/L	<0.0006	0.00060) 03/05/15 [·]	12:20					
	4040077		Mate	\A/atan							
METHOD BLANK:	1910677		Matr	ix: vvater			042 4020				
Associated Lab San	mplas: 102040	14001 10294014002	1020/01/008	1020/01/000 1	1020/01/012	10.20/101/		1011010			
Associated Lab Sar	mples: 102940 102940	14001, 10294014002 14024, 10294014025	2, 10294014008 5, 10294014030	, 10294014009, 1 , 10294014031, 1	10294014012 10294014032	2, 10294014 2	1013, 1029	4014019,			
Associated Lab Sar	nples: 102940 102940	14001, 10294014002 14024, 10294014025	2, 10294014008 5, 10294014030 Blank	, 10294014009, 1 , 10294014031, 1 Reporting	10294014012 10294014032	2, 10294014 2	013, 1029	4014019,			
Associated Lab Sar	nples: 102940 102940 neter	14001, 10294014002 14024, 10294014025 Units	2, 10294014008 5, 10294014030 Blank Result	, 10294014009, 1 , 10294014031, 1 Reporting Limit	10294014012 10294014032 Analyzo	ed (Qualifiers	4014019, 			
Associated Lab Sar Parar Mercury	nples: 102940 102940 neter	14001, 10294014002 14024, 10294014025 Units mg/L	2, 10294014008 5, 10294014030 Blank Result <0.0006	i, 10294014009, 1 i, 10294014031, 1 Reporting Limit 0 0.00060	10294014012 10294014032 Analyze 0 03/05/15	ed (Qualifiers	4014019, —			
Associated Lab Sar Paran Mercury	nples: 102940 102940 neter	14001, 10294014002 14024, 10294014025 	2, 10294014008 5, 10294014030 Blank Result <0.0006	i, 10294014009, 1 i, 10294014031, 1 Reporting Limit 0 0.00060	10294014012 10294014032 Analyz 03/05/15 -	ed (Qualifiers	4014019, —			
Associated Lab Sar Parar Mercury LABORATORY COR	nples: 102940 102940 neter NTROL SAMPLE	14001, 10294014002 14024, 10294014025 	2, 10294014008 5, 10294014030 Blank Result <0.0006 Spike	i, 10294014009, 1 i, 10294014031, 1 Reporting Limit 0 0.00060	10294014012 10294014032 	ed (12:22 % Rec	Qualifiers	4014019, —			
Associated Lab Sar Paran Mercury LABORATORY COI Paran	nples: 102940 102940 neter NTROL SAMPLE neter	14001, 10294014002 14024, 10294014025 	2, 10294014008 5, 10294014030 Blank Result <0.0006 Spike Conc.	LCS Result	10294014012 10294014032 - Analyz - 03/05/15 - LCS % Rec	ed (12:22 % Rec Limits	Qualifiers	4014019, — nalifiers			
Associated Lab Sar Paran Mercury LABORATORY COM Paran Mercury	nples: 102940 102940 neter NTROL SAMPLE neter	14001, 10294014002 14024, 10294014025 	2, 10294014008 5, 10294014030 Blank Result <0.0006 Spike Conc. .015	LCS Result 0.0015	10294014012 10294014032 - Analyz - 03/05/15 - LCS % Rec - 98	ed (12:22 / (% Rec Limits 80-	Qualifiers	4014019, — alifiers	-		
Associated Lab Sar Parar Mercury LABORATORY COM Parar Mercury	nples: 102940 102940 neter NTROL SAMPLE neter	14001, 10294014002 14024, 10294014025 	2, 10294014008 5, 10294014030 Blank Result <0.0006 Spike Conc. .015	LCS Result 0.0015	10294014012 10294014032 - Analyz - 03/05/15 - LCS % Rec - 98	ed (12:22 / (% Rec Limits 80-	Qualifiers	4014019, — nalifiers	-		
Associated Lab Sar Paran Mercury LABORATORY COI Paran Mercury MATRIX SPIKE & M	nples: 102940 102940 neter NTROL SAMPLE neter MATRIX SPIKE D	14001, 10294014002 14024, 10294014025 	2, 10294014008 5, 10294014030 Blank Result <0.0006 Spike Conc. .015	LCS Result 0.0015	10294014012 10294014032 - Analyze 0 03/05/15 - LCS % Rec 98	ed (12:22 % Rec Limits 80-	QualifiersQuQu	4014019, 	-		
Associated Lab Sar Parar Mercury LABORATORY COM Parar Mercury MATRIX SPIKE & M	nples: 102940 102940 neter NTROL SAMPLE neter MATRIX SPIKE D	14001, 10294014002 14024, 10294014025 	2, 10294014008 5, 10294014030 Blank Result <0.0006 Spike Conc. .015 11 MS M Spike St	i, 10294014009, 1 i, 10294014031, 1 Reporting Limit 0 0.00060 LCS Result 0.015 1911112 ISD Dike MS	10294014012 10294014032 Analyze 0 03/05/15 - LCS % Rec 98 98	, 10294014 2 ed	Qualifiers Qualifiers Qualifiers Qualifiers Qualifiers Qualifiers	4014019, nalifiers	-	Мах	
Associated Lab Sar Paran Mercury LABORATORY COI Paran Mercury MATRIX SPIKE & M Parameter	nples: 102940 102940 neter NTROL SAMPLE neter MATRIX SPIKE D	14001, 10294014002 14024, 10294014025 	2, 10294014008 5, 10294014030 Blank Result <0.0006 Spike Conc. .015	LCS Result 0.015 1911112 0.015	10294014012 10294014032 Analyz 0 03/05/15 1 LCS % Rec 98 98 MSD Result	ed (12:22 (% Rec Limits 80- 80- MS % Rec	Qualifiers Qualifiers Qualifiers Qualifiers Qualifiers Qualifiers Qualifiers Qualifiers Qualifiers	4014019, walifiers % Rec Limits	RPD	Max RPD	Qual
Associated Lab Sar Paran Mercury LABORATORY COM Paran Mercury MATRIX SPIKE & M Paramete Mercury	nples: 102940 102940 neter NTROL SAMPLE neter MATRIX SPIKE D er	14001, 10294014002 14024, 10294014025 	2, 10294014008 5, 10294014030 Blank Result <0.0006 5, 10294014030 Blank Result <0.0006 5, 10294014008 Conc. 0.015 5, 10294014008 Conc. 0.015	i) 10294014009, 1 i) 10294014031, 1 Reporting Limit iii 0.00060 LCS Result 0.015 1911112 ISD NS pike MS ponc. Result .015 0.015	10294014012 10294014032 Analyze 0 03/05/15 - LCS % Rec 98 98 MSD Result 0.014	ed (12:22 (% Rec Limits 80- % Rec 101 (Qualifiers Qualifiers	4014019, 	RPD 7	Max RPD 20	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	0504-10	00-00 Van St	tone Mine										
Pace Project No.:	102940 ⁻	14											
QC Batch:	MERP	/12555		Analys	is Method:	l	EPA 7471						
QC Batch Method:	EPA 7	471		Analys	is Descript	ion:	7471 Mercury						
Associated Lab San	nples:	102940140 102940140 102940140	01, 10294014002 13, 10294014014 26, 10294014030	2, 10294014 4, 10294014 9, 10294014	003, 10294 019, 10294 031, 10294	1014008, 1014020, 1014032	10294014009 10294014021	9, 1029401 1, 1029401	4010, 102 4024, 102	94014012, 94014025,			
METHOD BLANK:	188239	0		Ν	Aatrix: Soli	d							
Associated Lab San	nples:	1029401400 102940140 1029401402	01, 10294014002 13, 10294014014 26, 10294014030	2, 10294014 9, 10294014 9, 10294014 Blank	003, 10294 019, 10294 031, 10294 c Re	1014008, 1014020, 1014032 eporting	10294014009 10294014021	9, 1029401 1, 1029401	4010, 102 4024, 102	94014012, 94014025,			
Paran	neter		Units	Resul	t	Limit	Analyz	ed	Qualifiers				
Mercury			mg/L	<0.0	0017	0.0001	7 01/21/15	12:57					
LABORATORY COM	NTROL S	AMPLE:	1882391										
Paran	neter		Units	Spike Conc.	LCS Resu	lt	LCS % Rec	% Red Limits		alifiers			
Mercury			mg/L	.0043	0	.0047	109	80)-120		-		
MATRIX SPIKE & M	IATRIX S	PIKE DUPL	ICATE: 18823	92		1882393	3						
			40004044664	MS	MSD		MOD		MOD	0/ D -		M	
Paramete	er	Units	10294014001 Result	Spike Conc.	Spike Conc.	MS Result	Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	iviax RPD	Qual
Mercury		mg/L	0.0019	.0052	.005	0.0074	4 0.0068	105	97	75-125	8	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	0504-100-00 Van Sto	one Mine										
Pace Project No.:	10294014											
QC Batch:	MPRP/51857		Analysi	s Method	El	PA 6020A						
QC Batch Method:	EPA 3050		Analysi	s Descrip	ion: 60	020A Solids	UPD4					
Associated Lab San	nples: 1029401400 1029401401 1029401402	1, 10294014002, 3, 10294014014, 6, 10294014030,	102940140 102940140 102940140	003, 1029 019, 1029 031, 1029	4014008, 10 4014020, 10 4014032	0294014009 0294014021	9, 10294014 1, 10294014	4010, 1029 4024, 1029	4014012, 4014025,			
METHOD BLANK:	1882364		М	latrix: Sol	id							
Associated Lab San	nples: 1029401400 1029401401 1029401402	1, 10294014002, 3, 10294014014, 6, 10294014030,	102940140 102940140 102940140	003, 1029 019, 1029 031, 1029	4014008, 10 4014020, 10 4014032	0294014009 0294014021	9, 10294014 1, 10294014	4010, 1029 4024, 1029	4014012, 4014025,			
			Blank	R	eporting							
Paran	neter	Units	Result	:	Limit	Analyz	ed	Qualifiers	_			
Antimony		mg/kg	<	0.48	0.48	01/21/15	10:35					
Arsenic		mg/kg	<	0.48	0.48	01/21/15	10:35					
Cadmium		mg/kg	<0	.076	0.076	01/21/15	10:35					
Copper		mg/kg	<	0.95	0.95	01/21/15	10:35					
Zinc		mg/kg mg/kg	<0	-48	0.095	01/21/15	10:35					
						•						
LABORATORY CON	NTROL SAMPLE: 18	882365										
Paran	neter	Units	Spike Conc.	LCS Resu	; Ilt	LCS % Rec	% Rec Limits	Qu	alifiers			
Antimony	<u> </u>	ma/ka	18.5		20.2	109	80	-120		•		
Arsenic		mg/kg	18.5		19.2	104	80	-120				
Cadmium		mg/kg	18.5		20.3	110	80	-120				
Copper		mg/kg	18.5		20.8	113	80	-120				
Lead		mg/kg	18.5		18.9	102	80	-120				
Zinc		mg/kg	18.5		20.0	108	80	-120				
MATRIX SPIKE & M	IATRIX SPIKE DUPLI	CATE: 188236	6		1882367							
			MS	MSD	'							
		10294014001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/kg	0.82	21.3	20.2	16.3	16.9	72	80	75-125	4	20	M6
Arsenic	mg/kg	6.3	21.3	20.2	24.6	26.5	86	100	75-125	7	20	
Cadmium	mg/kg	13.0	21.3	20.2	31.5	36.3	87	115	75-125	14	20	
Copper	mg/kg	27.9	21.3	20.2	40.0	43.3	56	76	75-125	8	20	M6
Lead	mg/kg	240	21.3	20.2	240	266	-2	126	75-125	10	20	M6 E M6
ZINC	mg/kĝ	5410	21.3	20.2	4830	6260	-2700	4210	/5-125	26	20	E,100, R1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	0504-1	100-00 Van Sto	one Mine										
Pace Project No.:	10294	014											
QC Batch:	MPR	P/52740		Analysi	s Method:	El	PA 6020A						
QC Batch Method:	EPA	3020		Analysi	s Descript	tion: 60	20A TCLP	UPD4					
Associated Lab Sa	mples:	1029401400	1, 10294014008	, 102940140	09, 10294	4014013, 1	0294014024	4					
METHOD BLANK:	19109	73		М	atrix: Wa	ter							
Associated Lab Sa	mples:	1029401400	1, 10294014008	, 102940140	09, 1029	4014013, 10	0294014024	4					
				Blank	R	eporting							
Para	meter		Units	Result		Limit	Analyz	ed	Qualifiers				
Arsenic			mg/L	<0.00	0050	0.00050	03/05/15	10:52					
Cadmium			mg/L	<0.000	080	0.000080	03/05/15	10:52					
Lead			mg/L	<0.00	010	0.00010	03/05/15	10:52					
METHOD BLANK:	19106	77		M	atrix: Wa	ter							
Associated Lab Sa	mples:	1029401400 [.]	1. 10294014008	. 102940140	09. 10294	4014013. 10	0294014024	4					
			,	Blank	R	eporting							
Para	meter		Units	Result		Limit	Analyz	ed	Qualifiers				
Arsenic			ma/l	<0	.012	0.012	03/05/15	11:32		_			
Cadmium			mg/L	<0.0	020	0.0020	03/05/15	11:32					
Lead			mg/L	0.0	042	0.0025	03/05/15	11:32					
LABORATORY CO	NTROL	SAMPLE: 19	910974										
				Spike	LCS	5	LCS	% Rec	>				
Para	meter		Units	Conc.	Resu	ılt	% Rec	Limits	a Qi	ualifiers			
Arsenic			mg/L	.08		0.078	98	80	-120		-		
Cadmium			mg/L	.08		0.080	101	80	-120				
Lead			mg/L	.08		0.079	98	80	-120				
MATRIX SPIKE & I	MATRIX		CATE: 19109	75		1910976							
				MS	MSD	-							
			10294014001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramet	er	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic		mg/L	<0.00050	.4	.4	0.40	0.40	99	98	75-125	1	20	
Cadmium		mg/L	<0.000080	.4	.4	0.49	0.49	103	104	75-125	1	20	
			0 0010	4	4		~ ~ ~	400	400	75 405		~~~	MC

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	0504-1	00-00 Van Sto	one Mine										
Pace Project No.:	102940	014											
QC Batch:	MPR	P/52744		Analys	is Method:	E	PA 6020A						
QC Batch Method:	EPA	3020		Analysi	is Descript	tion: 60	020A TCLP	UPD4					
Associated Lab Sa	mples:	1029401400	2, 10294014012	, 102940140	019, 10294	4014025, 1	0294014030	0, 1029401	4031, 1029	94014032			
METHOD BLANK:	191106	50		N	latrix: Wa	ter							
Associated Lab Sa	mples:	1029401400	2, 10294014012	, 102940140	019, 10294	4014025, 1	0294014030), 1029401-	4031, 1029	94014032			
				Blank	R	eporting							
Para	meter		Units	Result	t 	Limit	Analyz	ed	Qualifiers				
Arsenic			mg/L	<0.0	0050	0.00050	03/05/15	09:21					
Cadmium			mg/L	<0.00	080	0.000080	03/05/15	09:21					
Lead			mg/L	<0.0	0010	0.00010	03/05/15	09:21					
METHOD BLANK:	19099	64		N	latrix: Wa	ter							
Associated Lab Sa	mples:	1029401400	2. 10294014012	. 102940140	019. 10294	4014025. 1	0294014030). 1029401 ₄	4031. 1029	94014032			
			,	Blank	R	eporting			,				
Para	meter		Units	Result	t	Limit	Analyz	ed	Qualifiers				
Arsenic			mg/L	<0	.025	0.025	03/05/15	10:31					
Cadmium			mg/L	<0.0	0040	0.0040	03/05/15	10:31					
Lead			mg/L	0.0	0098	0.0050	03/05/15	10:31					
LABORATORY CC	NTROL	SAMPLE: 1	911062										
	-	-		Spike	LCS	3	LCS	% Rec	;				
Para	meter		Units	Conc.	Resu	ılt	% Rec	Limits	Q	ualifiers			
Arsenic			mg/L	.08		0.078	98	80	-120		-		
Cadmium			mg/L	.08		0.082	103	80	-120				
Lead			mg/L	.08		0.081	101	80	-120				
MATRIX SPIKE & I	MATRIX		CATE: 191106	63		1911064							
				MS	MSD								
_			10294014002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramet	er	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
		ma/l	0.00095	.4	.4	0.41	0.42	102	105	75-125	3	20	
Arsenic		ing/ L				0 47	0.40	100	00	75 105		~ ~ ~	
Arsenic Cadmium		mg/L	<0.000080	.4	.4	0.47	0.46	100	99	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Destant	0504 400 00 V/ OL M'
Project:	0504-100-00 van Stone Mine

Pace Project No.: 10294014

QC Batch: MPRP/52807			Analysis Met	thod: E	EPA 6020A				
QC Batch Method:	EPA 3020		Analysis Des	scription: 60	20A SPLP UPD)4			
Associated Lab Sam	ples: 10294 10294	014001, 10294014002, 014024, 10294014025,	10294014008, 1 10294014030, 1	0294014009, 1 0294014031, 1	0294014012, 10 0294014032	294014013, 1029401401	19,		
METHOD BLANK:	1913414		Matrix:	Water					
Associated Lab Sam	ples: 10294 10294	014001, 10294014002, 014024, 10294014025,	10294014008, 1 10294014030, 1	0294014009, 1 0294014031, 1	0294014012, 10 0294014032	294014013, 1029401401	19,		
Parame	eter	Units	Result	Limit	Analyzed	Qualifiers			
Antimony		mg/L	<0.00050	0.00050	03/09/15 11:0	7			
Arsenic		mg/L	<0.00050	0.00050	03/09/15 11:0	7			
Cadmium		mg/L	<0.000080	0.000080	03/09/15 11:0	7			
Copper		mg/L	<0.0010	0.0010	03/09/15 11:0	7			
Lead		mg/L	<0.00010	0.00010	03/09/15 11:0	7			
Zinc		mg/L	<0.0050	0.0050	03/09/15 11:0	7			
METHOD BLANK:		Matrix:	Matrix: Solid						

Associated Lab Samples: 10294014001, 10294014002, 10294014008, 10294014009, 10294014012, 10294014013, 10294014019, 10294014024, 10294014025, 10294014030, 10294014031, 10294014032

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Antimony	mg/L	<0.00050	0.00050	03/09/15 11:17	
Arsenic	mg/L	<0.00050	0.00050	03/09/15 11:17	
Cadmium	mg/L	<0.000080	0.000080	03/09/15 11:17	
Copper	mg/L	<0.0010	0.0010	03/09/15 11:17	
Lead	mg/L	<0.00010	0.00010	03/09/15 11:17	
Zinc	mg/L	<0.0050	0.0050	03/09/15 11:17	

LABORATORY CONTROL SAMPLE:	1913415					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/L	.08	0.084	106	80-120	
Arsenic	mg/L	.08	0.083	103	80-120	
Cadmium	mg/L	.08	0.085	106	80-120	
Copper	mg/L	.08	0.085	106	80-120	
Lead	mg/L	.08	0.086	108	80-120	
Zinc	mg/L	.08	0.086	107	80-120	

MATRIX SPIKE & MATRIX SPIK	MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1913418 1913419											
		10294014001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/L	0.0022	.08	.08	0.084	0.089	103	108	75-125	5	20	
Arsenic	mg/L	<0.00050	.08	.08	0.081	0.085	101	106	75-125	5	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:0504-100-00 Van Stone MinePace Project No.:10294014

MATRIX SPIKE & MATRIX SPIK	MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1913418 1913419											
			MS	MSD					04 D			
		10294014001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Cadmium	mg/L	<0.000080	.08	.08	0.082	0.085	102	106	75-125	3	20	
Copper	mg/L	<0.0010	.08	.08	0.080	0.084	100	104	75-125	5	20	
Lead	mg/L	0.0012	.08	.08	0.083	0.087	102	108	75-125	5	20	
Zinc	mg/L	0.011	.08	.08	0.092	0.096	101	106	75-125	4	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	0504-100-00 Van S	Stone Mine								
Pace Project No .:	10294014									
QC Batch:	MPRP/51863		Analysis Meth	nod: A	STM D2974					
QC Batch Method:	Batch Method: ASTM D2974			Analysis Description: Dry Weight/Percent Moisture						
Associated Lab San	nples: 102940140	001, 1029401400	2, 10294014003, 10	294014008, 1	10294014009, 1	0294014010				
SAMPLE DUPLICA	TE: 1882520									
			10294014001	Dup		Max				
Paran	neter	Units	Result	Result	RPD	RPD		Qualifiers		
Percent Moisture		%	10	9.8	3	1	30			
SAMPLE DUPLICA	TE: 1882521									
			10294147008	Dup		Max				
Paran	neter	Units	Result	Result	RPD	RPD		Qualifiers		
Percent Moisture		%	16.9	16.6	6	1	30			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	0504-100-00 Van S	tone Mine								
Pace Project No.:	10294014									
QC Batch:	MPRP/51908		Analysis Meth	iod:	ASTM D2974					
QC Batch Method:	QC Batch Method: ASTM D2974			Analysis Description: Dry Weight/Percent Moisture						
Associated Lab Sar	mples: 102940140	12, 102940140 ²	13, 10294014014							
SAMPLE DUPLICA	TE: 1884292									
			10293337001	Dup			Max			
Para	meter	Units	Result	Result	RPD		RPD		Qualifiers	
Percent Moisture		%	98.1	98	.1	0		30		
SAMPLE DUPLICA	TE: 1884293									
			10294370002	Dup			Max			
Para	meter	Units	Result	Result	RPD		RPD		Qualifiers	
Percent Moisture		%	20.4	20	.4	0		30		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	0504-100-00 Van S	Stone Mine								
Pace Project No.:	10294014									
QC Batch:	MPRP/51909		Analysis Meth	iod:	ASTM D2974					
QC Batch Method:	ASTM D2974		Analysis Desc	Analysis Description: Dry Weight/Percent Moisture						
Associated Lab Sar	nples: 10294014 10294014	019, 10294014020 031	0, 10294014021, 10	0294014024,	10294014025, 1	0294014026	, 10294	014030,		
SAMPLE DUPLICA	TE: 1884305									
			10294014019	Dup		Max				
Parar	neter	Units	Result	Result	RPD	RPD		Qualifiers		
Percent Moisture		%	7.9	8.	2	4	30			
SAMPLE DUPLICA	TE: 1884308									
			10294443020	Dup		Max				
Parar	neter	Units	Result	Result	RPD	RPD		Qualifiers		
Percent Moisture		%	11.3	11.	7	4	30			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	0504-100-00 Van S	Stone Mine							
Pace Project No.:	10294014								
QC Batch:	MPRP/51926		Analysis Meth	nod:	ASTM D2974				
QC Batch Method:	QC Batch Method: ASTM D2974		Analysis Description:		Dry Weight/Percent Moisture				
Associated Lab Sar	mples: 102940140)32							
SAMPLE DUPLICA	TE: 1884750								
			10294014032	Dup		Max			
Parar	neter	Units	Result	Result	RPD	RPD		Qualifiers	
Percent Moisture		%	8.3	8	6	4	30		
SAMPLE DUPLICA	TE: 1884751								
			10294382012	Dup		Max			
Parar	neter	Units	Result	Result	RPD	RPD		Qualifiers	
Percent Moisture		%	11.9	11	2	6	30		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	0504-100-00 Van S	Stone Mine						
Pace Project No.:	10294014							
QC Batch:	MT/18009		Analysis Me	thod: N	Iodified Sobek 3.2			
QC Batch Method:	Modified Sobek 3	.2	Analysis Des	scription: S	obek Acid Base Po	otential		
Associated Lab San	nples: 102940140 102940140	001, 10294014002, 024, 10294014025,	, 10294014008, 1 , 10294014030	0294014009, 1	0294014012, 1029	94014013, 1029	4014019,	
METHOD BLANK:	1885362		Matrix:	Solid				
Associated Lab San	nples: 102940140 102940140	001, 10294014002, 024, 10294014025,	, 10294014008, 1 , 10294014030	0294014009, 1	0294014012, 1029	94014013, 1029	4014019,	
			Blank	Reporting				
Paran	neter	Units	Result	Limit	Analyzed	Qualifiers		
Neutralization Poter	tial	tons/1000	1.1	0.50	0 01/26/15 11:00	P8	_	
SAMPLE DUPLICA	ГЕ: 1885363							
			10294014001	Dup		Max		
Paran	neter	Units	Result	Result	RPD	RPD	Qualifiers	
Neutralization Poter	tial	tons/1000	480	490)			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	0504-100-00 Va	an Stone Mine						
Pace Project No.:	10294014							
QC Batch:	MT/18008		Analysis Me	ethod:	Modified Sobel	k 3.2		
QC Batch Method:	Modified Sobe	ek 3.2	Analysis De	escription:	Sobek Extracta	able Sulfur		
Associated Lab Sam	nples: 102940 102940	14001, 1029401400 14024, 1029401402	2, 10294014008, 5, 10294014030	10294014009,	10294014012,	10294014013,	10294014019,	
METHOD BLANK:	1885360		Matrix	c: Solid				
Associated Lab Sam	nples: 102940 102940	14001, 1029401400 14024, 1029401402	2, 10294014008, 5, 10294014030	10294014009,	10294014012,	10294014013,	10294014019,	
			Blank	Reporting				
Param	neter	Units	Result	Limit	Analyze	d Quali	fiers	
		% (w/w)	<0.050	0.05	0 01/26/15 1	0:23		
Total Sulfur								
Total Sulfur	NTROL SAMPLE	: 1888796	Snika			% Rec		
Total Sulfur	NTROL SAMPLE	: 1888796 Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
Total Sulfur LABORATORY CON Param Total Sulfur	NTROL SAMPLE	:: 1888796 Units (w/w)	Spike Conc. 1.06	LCS Result 1.12	LCS % Rec 105	% Rec Limits 70-130	Qualifiers	
Total Sulfur LABORATORY CON Param Total Sulfur SAMPLE DURUCAT	NTROL SAMPLE	: 1888796 	Spike Conc. 1.06	LCS Result 1.12	LCS % Rec 105	% Rec Limits 70-130	Qualifiers	
Total Sulfur LABORATORY CON Param Total Sulfur SAMPLE DUPLICAT	NTROL SAMPLE neter TE: 1885361	:: 1888796 Units % (w/w)	Spike Conc. 1.06	LCS Result 1.12	LCS % Rec 105	% Rec Limits 70-130 Max	Qualifiers	
Total Sulfur LABORATORY CON Param Total Sulfur SAMPLE DUPLICAT Param	NTROL SAMPLE neter TE: 1885361 neter	: 1888796 	Spike Conc. 1.06 10294014001 Result	LCS Result 1.12 Dup Result	LCS % Rec 105 RPD	% Rec Limits 70-130 Max RPD	Qualifiers	
Total Sulfur LABORATORY CON Param Total Sulfur SAMPLE DUPLICAT Param Sulfur, HCI Extractal	NTROL SAMPLE neter TE: 1885361 neter ble	:: 1888796 Units % (w/w) Units % (w/w)	Spike Conc. 1.06 10294014001 Result <0.050	LCS Result 1.12 Dup Result <0.05	LCS % Rec 105	% Rec Limits 70-130 Max RPD	Qualifiers Qualifiers 20	
Total Sulfur LABORATORY CON Param Total Sulfur SAMPLE DUPLICAT Param Sulfur, HCI Extractal Sulfur, HNO3 Extract	NTROL SAMPLE neter TE: 1885361 neter ble stable	:: 1888796 Units % (w/w) Units % (w/w) % (w/w) % (w/w)	Spike Conc. 1.06 10294014001 Result <0.050 0.521	LCS Result 1.12 Dup Result <0.05 0.47	LCS % Rec 105 	% Rec Limits 70-130 Max RPD	Qualifiers Qualifiers 20 20	
Total Sulfur LABORATORY CON Param Total Sulfur SAMPLE DUPLICAT Param Sulfur, HCI Extractat Sulfur, HNO3 Extract Sulfur, HO3 Extractat	NTROL SAMPLE neter TE: 1885361 neter ble stable ktractable	:: 1888796 Units % (w/w) Units % (w/w) % (w/w) % (w/w) % (w/w)	Spike Conc. 1.06 10294014001 Result <0.050 0.521 1.10	LCS Result 1.12 Dup Result 	LCS % Rec 105 0 5 4	% Rec Limits 70-130 Max RPD 9 12	Qualifiers Qualifiers 20 20 20 20	
Total Sulfur LABORATORY CON Param Total Sulfur SAMPLE DUPLICAT Param Sulfur, HCI Extractat Sulfur, HNO3 Extract Sulfur, Hot Water Ex Sulfur, Residual	NTROL SAMPLE neter TE: 1885361 neter ble ctable ktractable	:: 1888796 Units % (w/w) Units % (w/w) % (w/w) % (w/w) % (w/w) % (w/w) % (w/w)	Spike Conc. 1.06 10294014001 Result <0.050 0.521 1.10 0.141	LCS Result 1.12 Dup Result 0 <0.05 0.47 0 1.2 0.11	LCS % Rec 105 	% Rec Limits 70-130 Max RPD 9 12 20	Qualifiers Qualifiers 20 20 20 20 20 20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10294014

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis

PASI-MT Pace Analytical Services - Montana

ANALYTE QUALIFIERS

- D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
- E Analyte concentration exceeded the calibration range. The reported result is estimated.
- M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.
- P8 Analyte was detected in the method blank. All associated samples had concentrations of at least ten times greater than the blank or were below the reporting limit.
- R1 RPD value was outside control limits.

METHOD CROSS REFERENCE TABLE

 Project:
 0504-100-00 Van Stone Mine

 Pace Project No.:
 10294014

Matrix	Analytical Method	Preparation Method
Solid	SW-846 7470A	SW-846 1312/7470A
Solid	SW-846 7470A	SW-846 1311/7470A
Solid	SW-846 7471B	SW-846 7471B
	Matrix Solid Solid Solid	MatrixAnalytical MethodSolidSW-846 7470ASolidSW-846 7470ASolidSW-846 7471B

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10294014

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10294014001	HSA-6(10-11.5)		ASB/6305		
10294014002	HSA-6(20-21.5)		ASB/6305		
10294014024	HSA-3(10-11.5)		ASB/6305		
10294014025	HSA-3(20-21.5)		ASB/6305		
10294014001	HSA-6(10-11.5)	EPA 3050	MPRP/51857	EPA 6020A	ICPM/23008
10294014002	HSA-6(20-21.5)	EPA 3050	MPRP/51857	EPA 6020A	ICPM/23008
10294014003	HSA-6(30-31.5)	EPA 3050	MPRP/51857	EPA 6020A	ICPM/23008
10294014008	HSA-5(10-11.5)	EPA 3050	MPRP/51857	EPA 6020A	ICPM/23008
10294014009	HSA-5(20-21.5)	EPA 3050	MPRP/51857	EPA 6020A	ICPM/23008
10294014010	HSA-5(30-31.5)	EPA 3050	MPRP/51857	EPA 6020A	ICPM/23008
10294014012	HSA-1(20-21.5)	EPA 3050	MPRP/51857	EPA 6020A	ICPM/23008
10294014013	HSA-1(30-31.5)	EPA 3050	MPRP/51857	EPA 6020A	ICPM/23008
10294014014	HSA-1(40-41.5)	EPA 3050	MPRP/51857	EPA 6020A	ICPM/23008
10294014019	HSA-2(10-11.5)	EPA 3050	MPRP/51857	EPA 6020A	ICPM/23008
10294014020	HSA-2(15-16.5)	EPA 3050	MPRP/51857	EPA 6020A	ICPM/23008
10294014021	HSA-2(20-21.5)	EPA 3050	MPRP/51857	EPA 6020A	ICPM/23008
10294014024	HSA-3(10-11.5)	EPA 3050	MPRP/51857	EPA 6020A	ICPM/23008
10294014025	HSA-3(20-21.5)	EPA 3050	MPRP/51857	EPA 6020A	ICPM/23008
10294014026	HSA-3(30-31.5)	EPA 3050	MPRP/51857	EPA 6020A	ICPM/23008
10294014030	HSA-4(10-11.5)	EPA 3050	MPRP/51857	EPA 6020A	ICPM/23008
10294014031	HSA-4(20-21.5)	EPA 3050	MPRP/51857	EPA 6020A	ICPM/23008
10294014032	HSA-4(25-26)	EPA 3050	MPRP/51857	EPA 6020A	ICPM/23008
10294014001	HSA-6(10-11.5)	EPA 3020	MPRP/52740	EPA 6020A	ICPM/23390
10294014002	HSA-6(20-21.5)	EPA 3020	MPRP/52744	EPA 6020A	ICPM/23389
10294014008	HSA-5(10-11.5)	EPA 3020	MPRP/52740	EPA 6020A	ICPM/23390
10294014009	HSA-5(20-21.5)	EPA 3020	MPRP/52740	EPA 6020A	ICPM/23390
10294014012	HSA-1(20-21.5)	EPA 3020	MPRP/52744	EPA 6020A	ICPM/23389
10294014013	HSA-1(30-31.5)	EPA 3020	MPRP/52740	EPA 6020A	ICPM/23390
10294014019	HSA-2(10-11.5)	EPA 3020	MPRP/52744	EPA 6020A	ICPM/23389
10294014024	HSA-3(10-11.5)	EPA 3020	MPRP/52740	EPA 6020A	ICPM/23390
10294014025	HSA-3(20-21.5)	EPA 3020	MPRP/52744	EPA 6020A	ICPM/23389
10294014030	HSA-4(10-11.5)	EPA 3020	MPRP/52744	EPA 6020A	ICPM/23389
10294014031	HSA-4(20-21.5)	EPA 3020	MPRP/52744	EPA 6020A	ICPM/23389
10294014032	HSA-4(25-26)	EPA 3020	MPRP/52744	EPA 6020A	ICPM/23389
10294014001	HSA-6(10-11.5)	EPA 3020	MPRP/52807	EPA 6020A	ICPM/23417
10294014002	HSA-6(20-21.5)	EPA 3020	MPRP/52807	EPA 6020A	ICPM/23417
10294014008	HSA-5(10-11.5)	EPA 3020	MPRP/52807	EPA 6020A	ICPM/23417
10294014009	HSA-5(20-21.5)	EPA 3020	MPRP/52807	EPA 6020A	ICPM/23417
10294014012	HSA-1(20-21.5)	EPA 3020	MPRP/52807	EPA 6020A	ICPM/23417
10294014013	HSA-1(30-31.5)	EPA 3020	MPRP/52807	EPA 6020A	ICPM/23417
10294014019	HSA-2(10-11.5)	EPA 3020	MPRP/52807	EPA 6020A	ICPM/23417
10294014024	HSA-3(10-11.5)	EPA 3020	MPRP/52807	EPA 6020A	ICPM/23417
10294014025	HSA-3(20-21.5)	EPA 3020	MPRP/52807	EPA 6020A	ICPM/23417
10294014030	HSA-4(10-11.5)	EPA 3020	MPRP/52807	EPA 6020A	ICPM/23417

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 0504-100-00 Van Stone Mine

Pace Project No.: 10294014

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10294014031	HSA-4(20-21.5)	EPA 3020	MPRP/52807	EPA 6020A	ICPM/23417
10294014032	HSA-4(25-26)	EPA 3020	MPRP/52807	EPA 6020A	ICPM/23417
10294014001	HSA-6(10-11.5)	EPA 7470A	MERP/12911	EPA 7470A	MERC/14977
10294014002	HSA-6(20-21.5)	EPA 7470A	MERP/12911	EPA 7470A	MERC/14977
10294014008	HSA-5(10-11.5)	EPA 7470A	MERP/12911	EPA 7470A	MERC/14977
10294014009	HSA-5(20-21.5)	EPA 7470A	MERP/12911	EPA 7470A	MERC/14977
10294014012	HSA-1(20-21.5)	EPA 7470A	MERP/12911	EPA 7470A	MERC/14977
10294014013	HSA-1(30-31.5)	EPA 7470A	MERP/12911	EPA 7470A	MERC/14977
10294014019	HSA-2(10-11.5)	EPA 7470A	MERP/12911	EPA 7470A	MERC/14977
10294014024	HSA-3(10-11.5)	EPA 7470A	MERP/12911	EPA 7470A	MERC/14977
10294014025	HSA-3(20-21.5)	EPA 7470A	MERP/12911	EPA 7470A	MERC/14977
10294014030	HSA-4(10-11.5)	EPA 7470A	MERP/12911	EPA 7470A	MERC/14977
10294014031	HSA-4(20-21.5)	EPA 7470A	MERP/12911	EPA 7470A	MERC/14977
10294014032	HSA-4(25-26)	EPA 7470A	MERP/12911	EPA 7470A	MERC/14977
10294014001	HSA-6(10-11.5)	EPA 7470A	MERP/12880	EPA 7470A	MERC/14951
10294014002	HSA-6(20-21.5)	EPA 7470A	MERP/12880	EPA 7470A	MERC/14951
10294014008	HSA-5(10-11.5)	EPA 7470A	MERP/12880	EPA 7470A	MERC/14951
10294014009	HSA-5(20-21.5)	EPA 7470A	MERP/12880	EPA 7470A	MERC/14951
10294014012	HSA-1(20-21.5)	EPA 7470A	MERP/12880	EPA 7470A	MERC/14951
10294014013	HSA-1(30-31.5)	EPA 7470A	MERP/12880	EPA 7470A	MERC/14951
10294014019	HSA-2(10-11.5)	EPA 7470A	MERP/12880	EPA 7470A	MERC/14951
10294014024	HSA-3(10-11.5)	EPA 7470A	MERP/12880	EPA 7470A	MERC/14951
10294014025	HSA-3(20-21.5)	EPA 7470A	MERP/12880	EPA 7470A	MERC/14951
10294014030	HSA-4(10-11.5)	EPA 7470A	MERP/12880	EPA 7470A	MERC/14951
10294014031	HSA-4(20-21.5)	EPA 7470A	MERP/12880	EPA 7470A	MERC/14951
10294014032	HSA-4(25-26)	EPA 7470A	MERP/12880	EPA 7470A	MERC/14951
10294014001	HSA-6(10-11.5)	EPA 7471	MERP/12555	EPA 7471	MERC/14564
10294014002	HSA-6(20-21.5)	EPA 7471	MERP/12555	EPA 7471	MERC/14564
10294014003	HSA-6(30-31.5)	EPA 7471	MERP/12555	EPA 7471	MERC/14564
10294014008	HSA-5(10-11.5)	EPA 7471	MERP/12555	EPA 7471	MERC/14564
10294014009	HSA-5(20-21.5)	EPA 7471	MERP/12555	EPA 7471	MERC/14564
10294014010	HSA-5(30-31.5)	EPA 7471	MERP/12555	EPA 7471	MERC/14564
10294014012	HSA-1(20-21.5)	EPA 7471	MERP/12555	EPA 7471	MERC/14564
10294014013	HSA-1(30-31.5)	EPA 7471	MERP/12555	EPA 7471	MERC/14564
10294014014	HSA-1(40-41.5)	EPA 7471	MERP/12555	EPA 7471	MERC/14564
10294014019	HSA-2(10-11.5)	EPA 7471	MERP/12555	EPA 7471	MERC/14564
10294014020	HSA-2(15-16.5)	EPA 7471	MERP/12555	EPA 7471	MERC/14564
10294014021	HSA-2(20-21.5)	EPA 7471	MERP/12555	EPA 7471	MERC/14564
10294014024	HSA-3(10-11.5)	EPA 7471	MERP/12555	EPA 7471	MERC/14564
10294014025	HSA-3(20-21.5)	EPA 7471	MERP/12555	EPA 7471	MERC/14564
10294014026	HSA-3(30-31.5)	EPA 7471	MERP/12555	EPA 7471	MERC/14564
10294014030	HSA-4(10-11.5)	EPA 7471	MERP/12555	EPA 7471	MERC/14564
10294014031	HSA-4(20-21.5)	EPA 7471	MERP/12555	EPA 7471	MERC/14564
10294014032	HSA-4(25-26)	EPA 7471	MERP/12555	EPA 7471	MERC/14564
10294014001	HSA-6(10-11.5)	ASTM D2974	MPRP/51863		
10294014002	HSA-6(20-21.5)	ASTM D2974	MPRP/51863		
10294014003	HSA-6(30-31.5)	ASTM D2974	MPRP/51863		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:0504-100-00 Van Stone MinePace Project No.:10294014

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10294014008	HSA-5(10-11.5)	ASTM D2974	MPRP/51863	-	1
10294014009	HSA-5(20-21.5)	ASTM D2974	MPRP/51863		
10294014010	HSA-5(30-31.5)	ASTM D2974	MPRP/51863		
10294014012	HSA-1(20-21.5)	ASTM D2974	MPRP/51908		
10294014013	HSA-1(30-31.5)	ASTM D2974	MPRP/51908		
10294014014	HSA-1(40-41.5)	ASTM D2974	MPRP/51908		
10294014019	HSA-2(10-11.5)	ASTM D2974	MPRP/51909		
10294014020	HSA-2(15-16.5)	ASTM D2974	MPRP/51909		
10294014021	HSA-2(20-21.5)	ASTM D2974	MPRP/51909		
10294014024	HSA-3(10-11.5)	ASTM D2974	MPRP/51909		
10294014025	HSA-3(20-21.5)	ASTM D2974	MPRP/51909		
10294014026	HSA-3(30-31.5)	ASTM D2974	MPRP/51909		
10294014030	HSA-4(10-11.5)	ASTM D2974	MPRP/51909		
10294014031	HSA-4(20-21.5)	ASTM D2974	MPRP/51909		
10294014032	HSA-4(25-26)	ASTM D2974	MPRP/51926		
10294014001	HSA-6(10-11.5)	Modified Sobek 3.2	MT/18009		
10294014002	HSA-6(20-21.5)	Modified Sobek 3.2	MT/18009		
10294014008	HSA-5(10-11.5)	Modified Sobek 3.2	MT/18009		
10294014009	HSA-5(20-21.5)	Modified Sobek 3.2	MT/18009		
10294014012	HSA-1(20-21.5)	Modified Sobek 3.2	MT/18009		
10294014013	HSA-1(30-31.5)	Modified Sobek 3.2	MT/18009		
10294014019	HSA-2(10-11.5)	Modified Sobek 3.2	MT/18009		
10294014024	HSA-3(10-11.5)	Modified Sobek 3.2	MT/18009		
10294014025	HSA-3(20-21.5)	Modified Sobek 3.2	MT/18009		
10294014030	HSA-4(10-11.5)	Modified Sobek 3.2	MT/18009		
10294014001	HSA-6(10-11.5)	Modified Sobek 3.2	MT/18008		
10294014002	HSA-6(20-21.5)	Modified Sobek 3.2	MT/18008		
10294014008	HSA-5(10-11.5)	Modified Sobek 3.2	MT/18008		
10294014009	HSA-5(20-21.5)	Modified Sobek 3.2	MT/18008		
10294014012	HSA-1(20-21.5)	Modified Sobek 3.2	MT/18008		
10294014013	HSA-1(30-31.5)	Modified Sobek 3.2	MT/18008		
10294014019	HSA-2(10-11.5)	Modified Sobek 3.2	MT/18008		
10294014024	HSA-3(10-11.5)	Modified Sobek 3.2	MT/18008		
10294014025	HSA-3(20-21.5)	Modified Sobek 3.2	MT/18008		
10294014030	HSA-4(10-11.5)	Modified Sobek 3.2	MT/18008		
10294014001	HSA-6(10-11.5)	Modified Sobek 3.2	MT/18057		
10294014002	HSA-6(20-21.5)	Modified Sobek 3.2	MT/18057		
10294014008	HSA-5(10-11.5)	Modified Sobek 3.2	MT/18057		
10294014009	HSA-5(20-21.5)	Modified Sobek 3.2	MT/18057		
10294014012	HSA-1(20-21.5)	Modified Sobek 3.2	MT/18057		
10294014013	HSA-1(30-31.5)	Modified Sobek 3.2	MT/18057		
10294014019	HSA-2(10-11.5)	Modified Sobek 3.2	MT/18057		
10294014024	HSA-3(10-11.5)	Modified Sobek 3.2	MT/18057		
10294014025	HSA-3(20-21.5)	Modified Sobek 3.2	MT/18057		
10294014030	HSA-4(10-11.5)	Modified Sobek 3.2	MT/18057		

ce Analvtical

CHAIN-OF-CUSTODY / Analytical Request Document The Chein-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.)0294-1014 [mg 4014

Section A Required Client Information:	Section E Required (B Projo	et Info	mation:					Sec Invel	tion C ce Infe	; mati	on:												Page:	:	7	of	J	
Company: GIECAS ANDIS	Report To:		J	in	Hazu				Atter	ition:				_												17	342	57	
Address: 523 & Sussi har	Copy To:					· · · · · ·			Com	pany N	lame:		_						╞	EGU	1 670								<u>_</u>
Soshar 1.18 39202	·							<u> </u>	Addr	065:					_								AGEN	₩Ç T					_
Email to: Jacob A Baran	Purchaso C	Tebro	No.:						Pace	Quete									`,	NI 	PUES	1	GR		D WA	ATER T	DRI	KING WA	TER
Phone State State State State State	Project Nar	me:	17		The lot				Refor Paco	once: Project								-	-		81	1	RC	RA		ر ا	- OTH	ER	
S07-303-3723 307-303-94(, Requested Duo Date/TAT:	Project Nur	mber	<u> </u>	NV J		<u>``</u>			Mara Pace	ger. Profile /	t .		_						ا	Sito Li	ocatio	m							I
			<u>.</u> C	<u>100</u>	-100-0	<u>jõ</u>										-				5	STATE				_				
		-		<u> </u>					<u> </u>		_	-			4		Requ	leste	nA be	alysi	is Fiit	bered	(Y/N)					
Required Clent Information Matrix C	CODE	(La)	Â		COLL	ECTED					Pre	noze	ativ	95		z													
Drinking Wat	er DW	des to	Ş					Z	1	Т	Ť	T	T	Ĩ	ť		망격		s x			╉	┼╾╀	+	╉─				
Water Water	ww	8	8	دى ئ	MPOSITE.	COMP END:0	DSITTE BIRAD	Ē								t	1		<u>6</u> 7 7	Ę		}							
Sol/Solid	SL	8	В.	ĺ		1 a 2		1 2 1	s		1				-	-E	\$-3		315	5					13			•	ļ
	WP	Ш	ŝ				· ·	¥	Ë,					11		ă	32	ਭੋ	d	13	•				<u>e</u>				- 1
(A-2, 0-97, -) Air Sample IDs MUST BE UNIQUE Tissue	AR TS	<u></u>	Į į	l				A.	TAI	8					- 13]]	Ţ	23	3			{ {		hlor	1			[
Other	σ	ž	5	[Ē	No.	۲ وو			_lé	기질		2 2	1.	न्	۵							ļ			
		ATF	AMA				1 1	AMP	Ŭ.	l a c	₹ Į₹	5	튑		la la	ξ,		-4-	10	13					sidu	e a			- 1
			8			CATE	TIME	- 05	**		티모	티키	ΖĮŻ	2	<u>-</u>	-	44	₹ľ	-14	17					å	Pac	e Projec	t NoJ La	6 I.D.
1 H A - (2: -2/5)		<u>ملا</u>		17.57	1725	<u> </u>	-		7	Ă-		\square		+	4	Þ	4	_ 2	<u> </u>	\square						4	70-1		
$2 (T_{2} - (C_{2} - 1.7))$				\vdash	1200		-		4		+	\vdash	_	++	- .	X	11	<u> </u>	4	\square						0	in	_	
3 1737-6 (J(- (h))		╋		H	1230	<u> </u>			<u>7</u>		+	\vdash	+	++	4		11	_ 2	<u>(</u>							6	2007		
4 /737-6 (JS-3615)		+-	$\left - \right $		1.16	[*	++	+		-	$\left[+ \right]$	-		\downarrow	_	╇	\square							7 00		
		-			15/5				X	+	+	\vdash		\square	- '		╇	-	<u> </u>	\vdash							709		
					1410	<u> </u>			2		+		_	++	4		++	_	╇	\square							200		
		+-		1.1.1.1	<u>110</u>		<u> </u>	<u> </u>	7		+		_	\square	_		\downarrow \downarrow	-		$ \downarrow $		\square		_			0.0-	7	
		╋		<u>11 श</u>	<u>10750</u>	ļ			7	₩-	+		4	┢╌┟	-1	¥	┨╌┥╴	X	(\vdash	· [L		. 0,00	r	
10 1/5 A = 5 (20 - 21.5)					000				4		┦╢	-		\square	1	X	11	<u>-IX</u>	<u>(</u>	\square	\perp			1	\square		<u>009</u>		
		+			12765		├──-	┝━╋	7	╨	╀┥		+	++	-[┝╌┟	<u>_ X</u>	4	\vdash		\square		<u>.</u>	\square		<u>010</u>		
$\frac{1}{12}$		₩	┞─┤	510	100		├		귀		┼┦			\vdash	-	L	∔				_	Ц			Ľ	<u></u>	011		
		REI		SHED P	1450			ļ	<u> </u>	<u>v</u> L	┯			Ц		<u> </u>	Ц	X	<u>ل</u> لک			Ш		\bot			012	=	
* CIA / A N 7 /I		1	an	7		<u>7</u>		-+	11		+			CEPT	ed en	Y/AF	FILIAT	TON		D/	ATE	<u>_</u>	FUME			SAM	PLE COND	ITIONS	
* Sb, Hs, La, Lu, Tb, En/H	3 7	<u>n</u>)	<u>"'</u>		(9,00	<u> </u>	1/12/20	5	<u>150</u>	<u>v</u>			4		Ķ	Æ	È	74	4	///	3/15	11	Dier	1-2				1	
							-				1				1	10	7			•	l			-6	.7			<u> </u>	
					•						1				_	-			-			<u> </u>		+	-+				
	-						<u> </u>	+			+	_							_					+	-+		 	╉╼━	
					SAMPI EP						L			_			-	_				L,		1	_				
; 							DI GIONAI					:		-										۽ <u>ا</u>	2	59	X X	alact	
OF	IGINAL	•			<u> </u> !	TUNI Nam	e of SAMPL	ER:	d	zsh	ø	<u>ee</u>	~	,		1 6	TRA				_					Never Server	N C R	ales L	٤ ٤
"Important Many Dy classics this from							E of SAMPL	ER:	5	IL.	۶	1	Ž	2~			UK/DD/	9000 YY):	0	<u>1/1</u>	2			ĹĔ	:	a a	Sast	Samp S	-
and an Lorent the States of States of the second	ng maceta NET	130 d	ay payi	inent (emz	and agreeing to) late charges	1 of 1.5% per m	nonzh fe	ar jeny i	nvoices	not pe	sid with	hin 30	days.										F-/	411-0	-020rev.	07, 15-Ma	y-2007 Pa	ge 56 o f 6
				· · · ·	· · · ·																								

Pace Analytical

•

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.) 0294014

Section	A d Clinet Inter	motio		Sectio	30 B								Sei	ction	n C															Г		-	0		<u>'</u>
Corpose		Induoit		Roqui	Ter De	et in	iormati	ion:	_			_		cice	Infor	matic	XN:	-							_					Ľ	Pag	<u>e:</u>	~	Of	<u> </u>
Addross	523 F	ast Second St	met	Сори	To:	neis	ea vo	255	_		•		1400	entior	10: 	Acc	oun	ts P	'aya	<u>ble</u>	-									_					
	Spokar	ne. WA 99202											Ark	doses	ny Na	S10:	Geo	2-1	gine	ers	- 1	- 14	14.0												
Email To	CVOSS	Qgeoenginee	rs.com	Purcha	ase Order	No.							Pa	ce Oi	o. uoto f	JZJ Ralan	RDCE		AVE	, sp	okan	ie, vi	/A 9	9202	-	لأحبت	i an			: SRe	glates	ity A	0000000	15-5-38-F-6	1348(2)):
Phone:	50936	633125 F	ax	Client	Project ID	: Va	an Sto	ne Min	é				Pac	ce Pr	roject	Mana	HORT:		len	ni Gr	7169				_	100	121211				5	i ta fata se			~
Request	ed Duc Date/	TAT: 10 Day	(Standard)	Contai	iner Order	Num	ber:		_			_	Pac	ce Pr	rofile (# ;	346	31 #	¥ 1		000				_	1991.251					, <u>(; : : : : : : : : : : : : : : : : : : :</u>	LOCE			di se con
																-					14	÷.	18 C	Roqui	istoc	Änik	с Э́Е (107	M 50			- States		
		. •						C	ющ	ECTED						Pre	serv	rathy	ves		NN STAR	120001					T	<u> </u> .							
	S	AMPLE I		x co xWater DV	DDE W			START		E	ND											lial	tert												
	One	Character per be	OX. Water	Wi				<u> </u>	-				1									Xen	١Å		1	1									
ITEN#	Sampl	(A-Z, 0-9 ,, -) le ide must be un	vince Produ BolvE Ot Wipe At Other These	voluci W t P t CL V M AR OT T T T	LATRIX CODF / Less value mides in Le	SAMPLE TYPE (0-GRAB C-COMP	QA		WE	DATE	TIME	GAMPLE TEMP AT COLLECTION	# OF CONTAINERS	Unpresented	H2804	HND3	豆	NeOH	Na26203	Malhano) Other	Analváðs Teat verski kur	Acid Base Potential Acid Po	Sulfur Forms / Neutralization	Asbestos (PLM)	WATPHDu (Disselaniy)	ratel Anonizata	2011 D 8020/7470*	ICLP 6020/7470* ·				Residual Chlorine (YAV)			
	HSA-	1630-31	5)		SZ		1/8	5/3/	20			1	H	x			T	Ť				Ť	ار ا	Ĥ	-		7	1 -			+	Ħ		. ~	
- 25	HSA-	1 40 - 41	5)			1	11	13	20			+	4	ĥ			╈	-	-+	╈	1		†			1,	7	+			+	1		<u>(17</u>	——"
金桥	HSA -	1145-41	হ					1/3	4Ù				2	Ħ				+	+	╉		F	 	╏─┨	-+	-۴	╧	╈	┝╌╢		-	łł			
-	A-i	150-51	51			\top	++	124	-			╈	4	Ħ	\square	┝╼╌┠		+		╈	-	\vdash		\vdash	-+	+-	┿	+	⊢			łł		$\frac{1}{2}$	
5.23	HA-1	155-51	रो			┨──	┼┼	1)-1	20			┢	5	Н	\vdash		+	+	+	+		\vdash		$\left \right $	-	+	╉	+	$\left \cdot \right $	-+-	+	┨┟		<u> </u>	
	1120-1	110010	· · · · ·			-	\mathbb{T}	- 1				╢	8	HH	$\left \cdot \right $	┝─┼	+	-	+		_			┝┤			_	+	$\left - \right $			╏┟		1-1	
100 994 Sanatar	431-1	(100 010	/			╈		14	12			╋	17	₩-		┝─┼	_	-	-	+	-			\square	_		+	_			<u> </u>			P1 8	
Autor	TIN A	110-11.5	<u> </u>		H	-	177	IS DY	5			╇	1	Ш	+		+	\rightarrow	_		4	X		$ \downarrow \downarrow$	\downarrow	<u> </u> >	2		Ц				0	4	
. 7 8	113/1-2	[13-16.5]				1	\vdash	011	2			 	۲.	Щ												<u> </u> >	<u> </u>						6	20	
9 , ,	HZ4-2	<u>(20-21.5)</u>						<u> (</u>	0				2																				6	2-1	
10	H34-2	(25-26)			- 11		11	09:	201				H									Г			Т		Т		П			1 1		ia a	
-117	HSA-2	130-315					П	09	In			Τ	2	Π							1	F				+	+			+		1 1		an	3
1 12	15A.3	(10-115)	·			1	ホ	111	n I	_			ĺ.	17	H	-+	+	╈	+			t	⊢		-+	╈	1			-	+	łł	60		
			INFORTO TALE SAL		12.20	27.24		R101		a and a star	3.25.2-	2000	55.00		1571	ELAND.	- 5(3.2		19:15			1		-	35.17		1	Control		-	5		- 1		
12.80				255 四	R address at			T-APP	<u>1</u>		L.C.UAI	E.S.		IN C	1 23	1		19	9	١ <u>P</u>	BYIA	FFL	ATK	W Kr	Ť	ii ii	104		\mathbb{Z}_{2}	THE .		E S	AMPLEC	ONDITIO	Sc
ADL1 /	01-2 = Sb. As	s. Cd. Cu. Pb. Zn/	/ Ha		AL)	$\langle \rangle$	ð L	-1	ls,	. / l	1/12/2	0;5	11	501	$o \mid$	/	1	2	2	~	2	5		- 1	~	\top	Ir.	2/K	ιñ	450	-9	$\overline{\mathbf{N}}$			
				-7				6		4			 ^_	<u> </u>	<u>۲</u>	u de la constante de la consta	4			_/		7		F 6		-14	4;	<u>712 -</u>	10	$\mathcal{A}\mathcal{C}$		37			
701-6-	9 0,76, 0d, 0	r, Cu, Fb, N, 2n (STIC Realest																		~											~	_		
		•									_																					T			
				T																						╈		_				-†			
								ŠA V	M É		ND SP		រ ប៉ត្តិគេ	273	5.02		55D					<u> </u>	27	3733	Q.		فيناقد	592			5	-+		R	 _
								3/3	PRIM	T Namo	SAMP	LEP	1977 - 19 	23.N 	-	9 Q (×	2	5		<u>. د از</u>		动态	273	1.65	a a	<u> </u>	5	έ,	,	8	3 and	븉
													-	J	osh	<u> </u>		<u>c</u>															Page 1	32	- S
								L_'	القائد	ATURE	n SAMP	LERC	4	Ø.	6	M	7 ;	t-	/			1	DATI	E Sigr	wd:								8 C	19 19 1	EX.
													/			-	_					×	_			_					_	- 1	<u> </u>		

• • • • •

•

.

Sample	Cua Realed	Race	Ī		ىر	102/	21/1	0	waa eusis z	itag MMI)				7	A	Ø	5	_	:ਖਤ	1dmv9 10	สหม	VNDIS		7			(3))()		nnei eidt nei	nin 19. otol (octoom(*	
22	Ĩ S S S	N N N	5				_						/	~	7	75	2		-ਮਤ	IGNA2 %	own	I TNISP	,	1			JANIE	0BO				
<u>n</u>	ġ	- <u>s</u>		╇		T	: 		\sim	24	l y		•	77	7	<u> </u>	/: -		มห	LANDIS	e ANC	IMAN S	SAMPLER			_						
	<u>† </u>			+		┼━-		<u>.</u> .	_							┢				·· <u> </u>	╋	<u>.</u> .								- <u></u>		
PAR			ta-			<u> -</u>	,	_		0	/					╀						~				_				•		
			20	: 0):QI	<i>51/E</i>	\overline{m}	D	if a	Ľ	\geqslant	7	2		7	·	00	<i>ς</i> /	51	ahii	1	10	¥7)	~~~	111	/ .	1	जी/७≠	47-5	n'n) ⁽ ≤‡ ⁺	9
SNO	LE CONDITIC	IT MAS			TUMIT	ar	ra	 	NOLLVIT	ITTA I	78.0	BTG	NCCI		<u> </u>	\top	39911			₹1 ¥0	1	+ NO		L NB (03)	ISINO	KETIN	-	<u> </u>	DINING MUS	<u>U I</u>		101
														Ĩ			Т				1				Т	T						21
		· .	\square	\bot		\downarrow	\square		\square																	1	_				·	
	<u>(</u>	_	┞╌┠╴	+	_	\square	+		\square					Ц			\mathbf{I}															lor
	レンロ		┢╋╋	+		₽-	╉┦	╞	┟┼┝			_	\downarrow	\square	\bot	\downarrow	4	Ţ					04.51			A			(5.65	<u>- 987</u>	h-1/St	6
	12.2		┠┼╴	╁╌╂	+-	┝╌┝╴	╁┼		┝╌┠╴	$\left - \right $		+	+	\square	╇	\square	#	۶ F			_		v25/	$ \downarrow \downarrow$		ļŢ				12-267	h-1754	9
<u>.</u>	25.	2	╂╂	╉╌┨	-	┢╌┥	╉╉	−lŷ	┢╶┟╴	Y	ŀ	+	┼┤		╇	╀╢	╢	7	-				<u>\/\/</u>		_	+			<u>(Si</u>	<u>z- 0z)</u>	-HSH	1 2
	5-20	2	╞┼╴	╋	-+-	\square	╉┼	+^	[ŀ	+	┼┤		_	╋┥	╢	쥥	-		+				-	╨			(5)	<u> </u>	h-454	9
	82	0	$\uparrow \uparrow$	┼╌╢		╞─┝╴	┼┼	+-			Ì	╋	╋	+	╋	╋	╢	ž	╉		+-	_	1510 1x10	\vdash	╋	┼╂╴			<u>(3)</u> (3)	<u>* 26 </u>	-1/1-5	
,	1-2.	0		\square			$\uparrow \uparrow$				ŀ	+-	┼╌╢	-	+	┼┼	╢	7	-+				0071			┿╋		····	101	$\frac{1}{1}$	2725	
_	ىر.	0						X		Н	ľ	-	$\uparrow \uparrow$	+	╈	11	╢	Ъ	╡				्मा		+	┼╊		<u> </u>	1-15	15-051	<u>5-451</u>	
	<u>ک ک</u>	-0						X		X			\square				X	ĥ			1		<u>- Ś</u>	4-6-		$\overline{\mathbf{x}}$			- [512-07	5-12	11
4 - 17 -1	ll tooimg		Residual Chlorine (Y)				TUS 6020/7	14.10709 140	Why tame Mustele	Acity Broch Copy	Analysis Test 1	Other	Na ₂ S ₂ O ₃	NaOH	HNO;	H ₂ SO4	Unpreserved	# OF CONTAINERS	SAMPLE TEMP AT COL	TIME	31	.43	JINE	ΞŦΑΟ	SAMPLE TYPE (G=G	MATRIX CODE [100	ដី ៩ ៩៥២ ខេ	0196 00 Mp Mr Tesus Tesus Other	anone D	MPLE I	IA2 A) ECII elemes2	ITEM #
	_		Ż				10.4 10.4	н у Н	-tal not	1 MAR	•							ŀ	LECTION	av Bul	NOJONG SOJINO	0	t Tus	COMPC	RAB C=C	valid codes	WT WW	Product Waster Waster Waster				
	•		L								ΎN Ì		sovà	BAIG	ຮອບ	i			ſ		Q	ECTE	COL		OMP)	to luft)	3002 Sope	Matrix Co Matrix Co		noitermolini	etion D quired Cient	ਲ ਲ
				(N	N).pe	etita a	istier	uA bei	sənbə	ช								-		_												
						:ETAT	5		_			_				<u>:</u>	1014 0	<u></u>				90	7-001	-ha	50	nedm	Project Nu			:TAT\##	O ong pape	godno
				10.00		catton	al ette	<u>-</u>								90		22					340	S N	٩V_	:80/	eN tooloo9	182-59	-10c.	-3:32	£9.E-1.a	Shone's
			wi n	CB⊽ ₩200	لہ ہ ·	1 1	ыл <u> </u>	!⊢									onD o	24	_						:'0N	Order	eseriona	w07'	Mrv. Sur	NOO K	yverl(:01	160m3
		ل ED ف			L. 1	SEC		<u> </u>		_						:	6590;	₽¥										20	766	<u>AU</u>	wyce	2
6	9272	<u>сут</u>					EGIN								:00	Nen (uedu Iomia	∞ ™	-				/	Hwe	чүс	<u></u>	Copy To:	T Am	Var V	F. RAIGON	285	3014bA
<u> </u>	<u> </u>			P20											Uoge	D r moin	ction oice i	e8 vni	_		*			:uolier	ہے <i>ا</i> لا الازمل	B B B	Section Equines	L		inoüsmo)	A no bot Chont In You	Section Compa
	LIN		201			•••																							(1) (S)		•	

	Pace Analytical	Sam	Doc iple Condi Do F-Mi	ument Na tion Upor cument N N-L-213-re	ime: n Receipt lo.: ev.09	: Farm	Docur Pace	nent Revised: Page 1 of Issuing Autho Minnesota Qu	28Feb2014 1 rity: ality Office	·
imple Con Upon Rec urier: Commerc	ceipt Client Name: (20.0 F n (2) Fed Ex cial [] Pace	UPS]USPS]Other:	Pı Clie	nt	OL	# : 1 (0294	014	
racking N	umber: <u>5779533</u> 2	7464; 7475	; 745	3		1029	4014	alı Proj Dur	Date: Pr	oi Name
ustody Sea	al on Cooler/Box Present?	☑Yes □No	Se	als Intaci	13 []	'es. ⊡No				
acking Ma	aterial: Bubble Wrap	Bubble Bags	None	Otl	her:			Temp Bla	nk?	No []No
term om. Us poler Tem j mp should	eed: 전 B88A9130516413 p Read (*C): 이 · · · · · · · · · · · · · · · · · ·	B88A912167504 B88A9132521491 Cooler Temp Corre Correction Factor	Type cted (*C): : <u>0.(</u>	of Ice: -0.(; -0.(-0.2	⊡wet <u>6;</u> _0,7 •Date	Blue Bic and Initials o	None Nogical Tiss Person Ex	Samples or ue Frozen? amining Conte Comments	ice, cooling pr Yes i nts: <u>I</u>	ocess has beg
Chain of	Custody Present?		E Yes	No		1.				· · · · · · · · · · · · · · · · · · ·
Chain of	Custody Filled Out?		Ves			2.			- • • • • • • • • • • • • • • • • • • •	
Chain of	Custody Relinguished?	· · · ·	Eres /	/ []No		3.				
Sampler	Name and/or Signature on COC				Ū,	4.				
Samples	Arrived within Hold Time?		[7]Yes			5.				
Short Ho	id Time Analysis (<72 hr)?				Ü	6.				
Rush Tur	n Around Time Requested?				Ű	7.			· ·	
Sufficient	t Volume?		TAY AS		<u> </u>	8.				
Correct C	Containers Liced?					9.				· · ·
-Pacou	Containers Oscul				Щ	2.				
Containe	re Intert?					10				•
Container	Is induct	Toste2				11				
Sample I	abole Match COC2	162121			- <u>''</u>	17				
Sample L		SL.	L'Ares		N/A					
-includ All contai	des Date/Time/ID/Anatysis Mi iners needing acid/base preser	vation have been			- 1					
checked?	?		∐Yes	L_No	N/A	13.		∐H₂SO4	LINAOH	Пнсі
All contai	iners needing preservation are see with FRA recommendation?	found to be in		ΠNα	Ø	Sample #	·	•		
(HNO3, H	2504, HCl<2; NaOH >9 Sulfide, f	NaOH>12 Cyanide)		/	N/A					
Exception	ns: VOA, Collform, TOC, Oil and	Grease,	Yes	₽No		Initial when		, Lot #	of added	-
UKU/8UI	Dis (water) Doc				Z.	· completed.		pica		
Headspac	ce in VOA Vials (>6mm)?	······	Yes	No_	N/A	14.				· · ·
Trip Blan	k Present?	۲	🖾 Yes	No	NA	15.				
Trip Blan	k Custody Seals Present?		□Yes	ΠNo	Į⊿́ N∕A					
Pace Trin	Blank Lot # (If purchased):									
LIENT NOT	ITFICATION/RESOLUTION				-	Pa / Times	Fiel	o Data Kequi	agi Milites	Щио
-	rerson contacted:				Ua					
Con										
	<u></u>	<u></u>								
		<u></u>					<u> </u>			
							<u> </u>			
	1	\bigcirc					die	سين ا		

Pace Analytical	Document Name: MN to MT Sample Transfer Form Document Number: F-MN-C-043-rev.11	Revised Date: 14Jul2014 Page: 1 of 1 Issuing Authority. Pace Minnesota Coustly Office
Shipping (circle): Tracking #: Client:	UPS Fed Ex Geoengineers	16 1188 3220
Due Date: Pace WO: Project Manager:	27-Jan-2015 10294014 Jenni Gross	

MN to MT Sample Transfer Condition Upon Receipt Form

	ANALYS	S REQUESTED		
Container Type	# of Bottles	Lab ID's	Preservative Yes or No	Verify Arrival Date & Initials
ĸ₽ġ₽₽₽₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩			gan ang pangang ng mgang ng mg	
JGCU	4	-001, -002, -008, -009	No	
JGCU	4	-012, -013, -019, -024	No	1
JGCU	2	-025030	No	1/17 At
				,
			and second and a second sec	

		· · · · · · · · · · · · · · · · · · ·		
			٢- 19 A	
		a fand sie wegen a fan in de Bliederer fer Amerika wegen geste wenne die heef week fan weke die		
	Container Type JGCU JGCU JGCU	ANALYSI Container Type # of Bottlos JGCU 4 JGCU 2 JGCU 2	ANALYSIS REQUESTED Container Type # of Bottles Lab ID's JGCU 4 -001, -002, -008, -009 JGCU 4 -012, -013, -019, -024 JGCU 2 -025, -030	ANALYSIS REQUESTED Container Type # of Bottles Lab ID's Preservative Yes or No JGCU 4 -001, -002, -008, -009 No JGCU 4 -012, -013, -019, -024 No JGCU 2 -025, -030 No

ŧ.	
1	REPORTING REQUIREMENTS/ADDITIONAL COMMICNTS
1	
1	
3	Acid Base Potential Acid Potential Sulfur Forms, Neutralization Potential
ł	The base i vibriliai, role i vitrai, can be i provide a second
1	
1	
1	
1	
1	
3	
- 2	

MONTANA SAMPLE RECEIPT INFORMATION					
IR Gun: B88A0140728348, Correction Factor:	\wedge	Sample Matrix:	Si		
Cooler Temp Read (°C): / / Cooler Temp (Corrected (°C): 1. (p	Filtred volume rec'd for dissolved tests:	Yes No NA X		
Arrived on Ice:	Yes X No	Samples pH have been checked:	Yes No NA		
Custody Seal Present:	Yes X No	Trip Blank Present:	Yes No NA		
Short Hold Time Requested < 72 Hours:	Yes No x	Trip Blank Custody Seals Present:	Yes No NA 📩		
Rush TAT Requested:	Yes No ×	Pace Trip Blank Lot #:	ALL		
Sufficient Sample Volume:	Yes X No	Sample Composites Required:	Yes No X NA		
Sampler Arrived within Hold Time	Yes V No	Report Samples:	Wet Wt Dry Wt		
Containers Intact:	Yes No	Reporting Units:			

CUSTODY TRANSFER					
To the sector of build filling how	Date	Time	Accepted By Affiliation	Date	Time
Keinquisneu by/Annauon	Ditto		- and a second a second a second a second a second a second	11	
Anna Grants Roomed	1-10-15	0837		tintlar	10511
Fed Ex			N.H. Sa / Caca	11115	10010

	<u> </u>	<u> </u>			1
				20000000000000000000000000000000000000	
Landston Action of the second s					

	IENT NOTIFICATION/RESOLUTION
Person Contacted:	Date:
Comments/Resolution:	

Project Manager Review:

0 avas

_____Date: <u>1-20-15</u>

REPORT TO: John Haney GeoEngineers, Inc - WA 523 East Second Ave. Spokane, WA 99202

REPORT OF: Bulk Material Analysis - 0504-100-00 Van Stone Mine

 DATE:
 March 03, 2015

 PACE PROJECT NO:
 10294014

 PAGE:
 1 of 6

CASE NARRATIVE:

On January 13, 2015, our laboratory received 4 bulk material sample(s) from the client. The asbestos analysis was performed in accordance with EPA 600/M4-82-020 and EPA/600/R-93/116 official test methods as outlined in 40CFR763.109 appendix A.

The samples will be held for sixty (60) days from the date of this report.

A < sign indicates the value reported was the practical quantitation limit for this sample using the method described.

Concentrations of analyte, if present, below this were not quantifiable.

Pace Analytical Services, Inc. is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP) for conducting asbestos analysis (NVLAP Lab Code 101292-0). Each result listed in the report applies only to the sample analyzed. This report may not be used to claim product endorsement by NVLAP or any agency of the U.S. Government nor may it be reproduced except in full without written approval of Pace Analytical Services, Inc.

Project Manager

1) perfin

Vivianne Rhonda Johnson for Jennifer Gross - Project Manager jennifer.gross@pacelabs.com

Analyst/Approved Signatory

Reichard J. Deficess

Michael Otness - Laboratory Analyst

REPORT OF LABORATORY ANALYSIS

Prace Analytical[®]

Building Material Analysis Asbestos Content Pace Analytical Services, Inc. Billings Laboratory 150 North 9th Street Billings, MT 59101

GeoEngineers VAN STONE/0504-100-00

Lab Number	Date	Date Sample	Sample Description			Asbestos Identification and		Non-Asbestos Material	
Lab Number	Analyzed	Identification	Layers	Color	Matrix	Estimated Quantity %		Identification %	
10294014001	3/3/2015	HSA-6(10-11.5)	1/1	Gray	Sand (100%)(1)	Trace	Actinolite	100% Nonfibrous Binder	
10294014002	3/3/2015	HSA-6(20-21.5)	1/1	Gray	Sand (100%)(1)	Trace	Actinolite	100% Nonfibrous Binder	
10294014024	3/3/2015	HSA-3(10-11.5)	1/1	Tan	Sand (100%)(1)	Trace	Actinolite	100% Nonfibrous Binder	
10294014025	3/3/2015	HSA-3(20-21.5)	1/1	Gray	Sand (100%)(1)	Trace	Actinolite	100% Nonfibrous Binder	

Analyst - Michael Otness (1) Cannot point count sample

Pace Analytical	Document Name: MN to MT Sample Transfer Form Document Number: F-MN-C-043-rev.11	Revised Date: 14Jul2014 Page: 1 of 1 Issuing Authority. Pace Minnesota Coustly Office
Shipping (circle): Tracking #: Client:	UPS Fed Ex Geoengineers	16 1188 3220
Due Date: Pace WO: Project Manager:	27-Jan-2015 10294014 Jenni Gross	

MN to MT Sample Transfer Condition Upon Receipt Form

	ANALYS	S REQUESTED		
Container Type	# of Bottles	Lab ID's	Preservative Yes or No	Verify Arrival Date & Initials
∊⋎⋨⋫∊⋵∊⋹∊⋹∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊			gan ang pangang ng mgang ng mg	
JGCU	4	-001, -002, -008, -009	No	
JGCU	4	-012, -013, -019, -024	No	1
JGCU	2	-025030	No	1/17 At
				,
			and second and a second sec	

		· · · · · · · · · · · · · · · · · · ·		
			٢- 19 A	
		a fand sie wegen a fan in de Bliederer fer Amerika wegen geste weren die beste kaak beste kaak		
	Container Type JGCU JGCU JGCU	ANALYSI Container Type # of Bottlos JGCU 4 JGCU 2 JGCU 2	ANALYSIS REQUESTED Container Type # of Bottles Lab ID's JGCU 4 -001, -002, -008, -009 JGCU 4 -012, -013, -019, -024 JGCU 2 -025, -030	ANALYSIS REQUESTED Container Type # of Bottles Lab ID's Preservative Yes or No JGCU 4 -001, -002, -008, -009 No JGCU 4 -012, -013, -019, -024 No JGCU 2 -025, -030 No

ŧ.	
1	REPORTING REQUIREMENTS/ADDITIONAL COMMICNTS
1	
1	
3	Acid Base Potential Acid Potential Sulfur Forms, Neutralization Potential
1	
1	
1	
1	
1	
1	
1	
- 2	

MONTANA SAMPLE RECEIPT INFORMATION					
IR Gun: B88A0140728348, Correction Factor:	\wedge	Sample Matrix:	Si		
Cooler Temp Read (°C): / / Cooler Temp (Corrected (°C): 1. (p	Filtred volume rec'd for dissolved tests:	Yes No NA X		
Arrived on Ice:	Yes X No	Samples pH have been checked:	Yes No NA		
Custody Seal Present:	Yes X No	Trip Blank Present:	Yes No NA		
Short Hold Time Requested < 72 Hours:	Yes No x	Trip Blank Custody Seals Present:	Yes No NA 📩		
Rush TAT Requested:	Yes No ×	Pace Trip Blank Lot #:	ALL		
Sufficient Sample Volume:	Yes X No	Sample Composites Required:	Yes No X NA		
Sampler Arrived within Hold Time	Yes V No	Report Samples:	Wet Wt Dry Wt		
Containers Intact:	Yes No	Reporting Units:			

CUSTODY TRANSFER					
To the sector of build filling how	Date	Time	Accepted By Affiliation	Date	Time
Keinquisneu by/Annauon	Ditto		- and a second a second a second a second a second a second	11	
Junar Grants Roamed	1-10-15	0837		tintlar	10511
Fed Ex			N.H. Sa / Caca	11115	10010

	<u> </u>	<u> </u>			1
				20000000000000000000000000000000000000	
Landston Action of the second s					

	IENT NOTIFICATION/RESOLUTION
Person Contacted:	Date:
Comments/Resolution:	

Project Manager Review:

0 avas

_____Date: <u>1-20-15</u>

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

January 28, 2016

John Haney GeoEngineers, Inc - WA 523 East Second Ave. Spokane, WA 99202

RE: Project: 0504-100-00 VAN STONE Rev Pace Project No.: 10326596

Dear John Haney:

Enclosed are the analytical results for sample(s) received by the laboratory on October 17, 2015. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

ENNI (-ROSS

Jennifer Gross jennifer.gross@pacelabs.com Project Manager

Enclosures

cc: Joshua Lee, GeoEngineers

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

CERTIFICATIONS

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414 525 N 8th Street, Salina, KS 67401 A2LA Certification #: 2926.01 Alaska Certification #: UST-078 Alaska Certification #MN00064 Alabama Certification #40770 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA Colorado Certification #Pace Connecticut Certification #: PH-0256 EPA Region 8 Certification #: 8TMS-L Florida/NELAP Certification #: E87605 Guam Certification #:14-008r Georgia Certification #: 959 Georgia EPD #: Pace Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062 Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322 Michigan DEPH Certification #: 9909

Montana Certification IDs

150 N. 9th Street, Billings, MT 59101 Colorado Asbestos #: 17119 A2LA Certification #: 3590.01 EPA Region 8 Certification #: 8TMS-L Idaho Certification #: MT00012

Indiana Certification IDs

7726 Moller Road, Indianapolis, IN 46268 Illinois Certification #: 200074 Indiana Certification #: C-49-06 Kansas Certification #:E-10177 Kentucky UST Certification #: 0042 Kentucky WW Certification #:98019 Louisiana Certification #: 04076 Minnesota Certification #: 027-053-137 Mississippi Certification #: Pace Montana Certification #: MT0092 Nevada Certification #: MN_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New York Certification #: 11647 North Carolina Certification #: 530 North Carolina State Public Health #: 27700 North Dakota Certification #: R-036 Ohio EPA #: 4150 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification Saipan (CNMI) #:MP0003 South Carolina #:74003001 Texas Certification #: T104704192 Tennessee Certification #: 02818 Utah Certification #: MN000642013-4 Virginia DGS Certification #: 251 Virginia/VELAP Certification #: Pace Washington Certification #: C486 West Virginia Certification #: 382 West Virginia DHHR #:9952C Wisconsin Certification #: 999407970

Minnesota Dept of Health Certification #: 030-999-442 Montana Certification #: MT CERT0040 North Dakota Dept. Of Health #: R-209 NVLAP Certification #: 101292-0 Washington Department of Ecology #: C993

Ohio VAP Certification #: CL-0065 Oklahoma Certification #: 2014-148 Texas Certification #: T104704355-15-9 West Virginia Certification #: 330 Wisconsin Certification #: 999788130 USDA Soil Permit #: P330-10-00128

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

SAMPLE SUMMARY

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Date Collected Lab ID Sample ID Matrix **Date Received** 10326596001 LT-NS-1 (0.5-1) Solid 10/12/15 11:30 10/17/15 09:30 10326596002 LT-NS-2 (0.5-1) Solid 10/12/15 11:40 10/17/15 09:30 10326596003 MS-36 (3-5) Solid 10/12/15 14:15 10/17/15 09:30 10326596004 MS-29 (6-7) Solid 10/12/15 15:10 10/17/15 09:30 Solid 10326596005 MS-35 (6-8) 10/12/15 15:50 10/17/15 09:30 10326596006 MS-34 (4-5) Solid 10/12/15 16:10 10/17/15 09:30 10326596007 MS-33 (4-5) Solid 10/12/15 16:50 10/17/15 09:30 10326596008 MS-32 (4-5) Solid 10/13/15 09:30 10/17/15 09:30 10326596009 MS-30 (4-5) Solid 10/13/15 10:00 10/17/15 09:30 10326596010 MS-31 (6-8) Solid 10/13/15 10:40 10/17/15 09:30 10326596011 MS-19 (0.5-1) Solid 10/13/15 11:00 10/17/15 09:30 10326596012 MS-20 (0.5-1) Solid 10/13/15 11:15 10/17/15 09:30 10326596013 MS-21 (0.5-1) Solid 10/13/15 11:30 10/17/15 09:30 10326596014 MS-22 (0.5-1) Solid 10/13/15 11:40 10/17/15 09:30 10326596015 MS-23 (0.5-1) Solid 10/13/15 11:50 10/17/15 09:30 Solid 10326596016 MS-24 (0.5-1) 10/13/15 12:00 10/17/15 09:30 10326596017 MS-25 (0.5-1) Solid 10/13/15 12:10 10/17/15 09:30 10326596018 MS-26 (0.5-1) Solid 10/13/15 12:20 10/17/15 09:30 10326596019 MS-27 (0.5-1) Solid 10/13/15 12:30 10/17/15 09:30 10326596020 MS-28 (0.5-1) Solid 10/13/15 12:40 10/17/15 09:30

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10326596001	 LT-NS-1 (0.5-1)	EPA 6020A		8	PASI-M
		EPA 7471B	JDD	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		Modified Sobek 3.2	WT1	2	PASI-MT
		Modified Sobek 3.2	WT1	1	PASI-MT
		Modified Sobek 3.2	WT1	5	PASI-MT
		EPA 7196A	JRS	1	PASI-I
10326596002	LT-NS-2 (0.5-1)	EPA 6020A	ТТ3	8	PASI-M
		EPA 7471B	JDD	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		Modified Sobek 3.2	WT1	2	PASI-MT
		Modified Sobek 3.2	WT1	1	PASI-MT
		Modified Sobek 3.2	WT1	5	PASI-MT
		EPA 7196A	JRS	1	PASI-I
10326596003	MS-36 (3-5)	EPA 6020A	RJS	8	PASI-M
		EPA 7471B	JDD	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		Modified Sobek 3.2	WT1	2	PASI-MT
		Modified Sobek 3.2	WT1	1	PASI-MT
		Modified Sobek 3.2	WT1	5	PASI-MT
10326596004	MS-29 (6-7)	EPA 6020A	RJS	8	PASI-M
		EPA 7471B	JDD	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		Modified Sobek 3.2	WT1	2	PASI-MT
		Modified Sobek 3.2	WT1	1	PASI-MT
		Modified Sobek 3.2	WT1	5	PASI-MT
10326596005	MS-35 (6-8)	EPA 6020A	RJS	8	PASI-M
		EPA 7471B	JDD	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		Modified Sobek 3.2	WT1	2	PASI-MT
		Modified Sobek 3.2	WT1	1	PASI-MT
		Modified Sobek 3.2	WT1	5	PASI-MT
10326596006	MS-34 (4-5)	EPA 6020A	RJS	8	PASI-M
		EPA 6020A	TT3	4	PASI-M
		EPA 6020A	TT3	6	PASI-M
		EPA 7470A	LMW	1	PASI-M
		EPA 7470A	JDD	1	PASI-M

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Lab ID	Sample ID Method		Analysts	Analytes Reported	Laboratory	
		EPA 7471B	JDD	1	PASI-M	
		ASTM D2974	JDL	1	PASI-M	
10326596007	MS-33 (4-5)	EPA 6020A	RJS	8	PASI-M	
		EPA 7471B	JDD	1	PASI-M	
		ASTM D2974	JDL	1	PASI-M	
10326596008	MS-32 (4-5)	EPA 6020A	RJS	8	PASI-M	
		EPA 6020A	TT3	4	PASI-M	
		EPA 6020A	TT3	6	PASI-M	
		EPA 7470A	LMW	1	PASI-M	
		EPA 7470A	JDD	1	PASI-M	
		EPA 7471B	JDD	1	PASI-M	
		ASTM D2974	JDL	1	PASI-M	
10326596009	MS-30 (4-5)	EPA 6020A	RJS	8	PASI-M	
		EPA 6020A	TT3	4	PASI-M	
		EPA 6020A	TT3	6	PASI-M	
		EPA 7470A	LMW	1	PASI-M	
		EPA 7470A	JDD	1	PASI-M	
		EPA 7471B	JDD	1	PASI-M	
		ASTM D2974	JDL	1	PASI-M	
		Modified Sobek 3.2	WT1	2	PASI-MT	
		Modified Sobek 3.2	WT1	1	PASI-MT	
		Modified Sobek 3.2	WT1	5	PASI-MT	
10326596010	MS-31 (6-8)	EPA 6020A	RJS	8	PASI-M	
		EPA 7471B	JDD	1	PASI-M	
		ASTM D2974	JDL	1	PASI-M	
		Modified Sobek 3.2	WT1	2	PASI-MT	
		Modified Sobek 3.2	WT1	1	PASI-MT	
		Modified Sobek 3.2	WT1	5	PASI-MT	
10326596011	MS-19 (0.5-1)	EPA 6020A	RJS	8	PASI-M	
		EPA 6020A	TT3	4	PASI-M	
		EPA 6020A	TT3	6	PASI-M	
		EPA 7470A	LMW	1	PASI-M	
		EPA 7470A	JDD	1	PASI-M	
		EPA 7471B	JDD	1	PASI-M	
		ASTM D2974	JDL	1	PASI-M	
10326596012	MS-20 (0.5-1)	NWTPH-Dx	MT	4	PASI-M	
		NWTPH-G×	KMZ	2	PASI-M	

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 6020A	RJS	8	PASI-M
		EPA 6020A	TT3	4	PASI-M
		EPA 6020A	TT3	6	PASI-M
		EPA 7470A	LMW	1	PASI-M
		EPA 7470A	JDD	1	PASI-M
		EPA 7471B	JDD	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
10326596013	MS-21 (0.5-1)	NWTPH-Dx	MT	4	PASI-M
		NWTPH-Gx	KMZ	2	PASI-M
		EPA 6020A	RJS	8	PASI-M
		EPA 6020A	TT3	4	PASI-M
		EPA 6020A	TT3	6	PASI-M
		EPA 7470A	LMW	1	PASI-M
		EPA 7470A	JDD	1	PASI-M
		EPA 7471B	JDD	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
10326596014	MS-22 (0.5-1)	NWTPH-Dx	МТ	4	PASI-M
		NWTPH-Gx	KMZ	2	PASI-M
		EPA 6020A	RJS	8	PASI-M
		EPA 7471B	JDD	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
10326596015	MS-23 (0.5-1)	NWTPH-Dx	МТ	4	PASI-M
		NWTPH-Gx	KMZ	2	PASI-M
		EPA 6020A	RJS	8	PASI-M
		EPA 6020A	TT3	4	PASI-M
		EPA 6020A	TT3	6	PASI-M
		EPA 7470A	LMW	1	PASI-M
		EPA 7470A	JDD	1	PASI-M
		EPA 7471B	JDD	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
10326596016	MS-24 (0.5-1)	EPA 6020A	RJS	8	PASI-M
		EPA 7471B	JDD	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
10326596017	MS-25 (0.5-1)	EPA 6020A	RJS	8	PASI-M
		EPA 7471B	JDD	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
10326596018	MS-26 (0.5-1)	EPA 6020A	RJS	8	PASI-M

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 6020A	TT3	4	PASI-M
		EPA 6020A	TT3	6	PASI-M
		EPA 7470A	LMW	1	PASI-M
		EPA 7470A	JDD	1	PASI-M
		EPA 7471B	JDD	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
10326596019	MS-27 (0.5-1)	NWTPH-Dx	MT	4	PASI-M
		NWTPH-Gx	KMZ	2	PASI-M
		EPA 6020A	RJS	8	PASI-M
		EPA 6020A	ТТ3	4	PASI-M
		EPA 6020A	ТТ3	6	PASI-M
		EPA 7470A	LMW	1	PASI-M
		EPA 7470A	JDD	1	PASI-M
		EPA 7471B	JDD	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
10326596020	MS-28 (0.5-1)	NWTPH-Dx	MT	4	PASI-M
		NWTPH-Gx	KMZ	2	PASI-M
		EPA 6020A	RJS	8	PASI-M
		EPA 6020A	TT3	4	PASI-M
		EPA 6020A	TT3	6	PASI-M
		EPA 7470A	LMW	1	PASI-M
		EPA 7470A	JDD	1	PASI-M
		EPA 7471B	JDD	1	PASI-M
		ASTM D2974	JDL	1	PASI-M

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Date: January 28, 2016

This report was revised on January, 14th 2016. TCLP / SPLP were analyzed per client request:

TCLP As, Cd, Cr, Pb, Hg SPLP Sb, As, Cd, Cu, Pb, Hg, Zn MS-19 (0.5-1) MS-20 (0.5-1) MS-21 (0.5-1) MS-23 (0.5-1) MS-26 (0.5-1) MS-26 (0.5-1) MS-28 (0.5-1) MS-30 (4-5) MS-32 (4-5)

MS-34 (4-5)

Per client request the sample IDs were updated for 10326596-01, -002, -003, -005 as per revised COC from client.

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Method: NWTPH-Dx

Description:NWTPH-Dx GCSClient:GeoEngineersDate:January 28, 2016

General Information:

6 samples were analyzed for NWTPH-Dx. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3550 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Method: NWTPH-Gx

Description:NWTPH-Gx GCVClient:GeoEngineersDate:January 28, 2016

General Information:

6 samples were analyzed for NWTPH-Gx. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with NWTPH-Gx with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: GCV/14560

- 1M: Sample preserved in lab; results are from sample aliquot taken from a glass jar with headspace.
 - MS-22 (0.5-1) (Lab ID: 10326596014)
 - TPH as Gas

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Method:EPA 6020ADescription:6020A MET ICPMSClient:GeoEngineersDate:January 28, 2016

General Information:

20 samples were analyzed for EPA 6020A. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3050 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: MPRP/58952

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 10326596003

M6: Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

- MS (Lab ID: 2118200)
 - Arsenic
 - Lead
 - Zinc
- MSD (Lab ID: 2118201)
 - Cadmium
 - Copper
 - Lead
 - Nickel
 - Zinc

R1: RPD value was outside control limits.

- MSD (Lab ID: 2118201)
 - Arsenic

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Method:	EPA 6020A
Description:	6020A MET ICPMS
Client:	GeoEngineers
Date:	January 28, 2016

QC Batch: MPRP/58952

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 10326596003

R1: RPD value was outside control limits.

- Cadmium
- Lead
- Zinc

QC Batch: MPRP/59169

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 10326897001

M6: Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

- MS (Lab ID: 2120831)
 - Antimony
 - Arsenic
 - Cadmium
 - Chromium
 - Copper
 - Lead
 - NickelZinc
- MSD (Lab ID: 2120832)
 - Antimony
 - Arsenic
 - Cadmium
 - Chromium
 - Copper
 - Lead
 - Nickel
 - Zinc
- R1: RPD value was outside control limits.
 - MSD (Lab ID: 2120832)
 - Antimony
 - Arsenic
 - Cadmium
 - Chromium
 - Copper
 - Lead
 - Nickel
 - Zinc

Additional Comments:

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Method:EPA 6020ADescription:6020A MET ICPMSClient:GeoEngineersDate:January 28, 2016

Analyte Comments:

QC Batch: MPRP/58952

E: Analyte concentration exceeded the calibration range. The reported result is estimated.

• MS (Lab ID: 2118200)

Zinc

• MSD (Lab ID: 2118201)

Zinc

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Method:EPA 6020ADescription:6020A MET ICPMS, TCLPClient:GeoEngineersDate:January 28, 2016

General Information:

10 samples were analyzed for EPA 6020A. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation: The samples were prepared in accordance with EPA 3020 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: MPRP/61043

- D3: Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
 - MS-19 (0.5-1) (Lab ID: 10326596011)
 - Arsenic
 - Chromium
 - MS-20 (0.5-1) (Lab ID: 10326596012)
 - Arsenic
 - Chromium
 - MS-21 (0.5-1) (Lab ID: 10326596013)
 Arsenic
 - Chromium
 - MS-23 (0.5-1) (Lab ID: 10326596015)
 - Arsenic

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Method:	EPA 6020A
Description:	6020A MET ICPMS, TCLP
Client:	GeoEngineers
Date:	January 28, 2016

Analyte Comments:

QC Batch: MPRP/61043

D3: Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

• MS-23 (0.5-1) (Lab ID: 10326596015)

Chromium

• MS-26 (0.5-1) (Lab ID: 10326596018)

Arsenic

Chromium

• MS-27 (0.5-1) (Lab ID: 10326596019)

Arsenic

Chromium

• MS-30 (4-5) (Lab ID: 10326596009)

Arsenic

Chromium

• MS-32 (4-5) (Lab ID: 10326596008)

Arsenic

Chromium

• MS-34 (4-5) (Lab ID: 10326596006)

Arsenic

Chromium

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Method:EPA 6020ADescription:6020A MET ICPMS, SPLPClient:GeoEngineersDate:January 28, 2016

General Information:

10 samples were analyzed for EPA 6020A. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation: The samples were prepared in accordance with EPA 3020 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: MPRP/61089

- 2M: The temperature in the TCLP/ZHE extraction area was outside the method required range of 21-25 degrees C.
- MS-19 (0.5-1) (Lab ID: 10326596011)
 - Arsenic
 - Cadmium
 - Copper
 - Lead
 - Antimony
 - Zinc
- MS-20 (0.5-1) (Lab ID: 10326596012)
 - Arsenic
 - Cadmium
 - Copper

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Method:EPA 6020ADescription:6020A MET ICPMS, SPLPClient:GeoEngineersDate:January 28, 2016

Analyte Comments:

QC Batch: MPRP/61089

2M: The temperature in the TCLP/ZHE extraction area was outside the method required range of 21-25 degrees C.

- MS-20 (0.5-1) (Lab ID: 10326596012)
 - Lead
 - Antimony
 - Zinc
- MS-21 (0.5-1) (Lab ID: 10326596013)
 - Arsenic
 - Cadmium
 - Copper
 - Lead
 - Antimony
 - Zinc
- MS-23 (0.5-1) (Lab ID: 10326596015)
 - Arsenic
 - Cadmium
 - Copper
 - Lead
 - Antimony
 - Zinc
- MS-26 (0.5-1) (Lab ID: 10326596018)
 - Arsenic
 - Cadmium
 - Copper
 Lead
 - Antimony
 - Zinc
- MS-27 (0.5-1) (Lab ID: 10326596019)
 - Arsenic
 - Cadmium
 - Copper
 - Lead
 - Antimony

Zinc

- MS-28 (0.5-1) (Lab ID: 10326596020)
 - Arsenic
 - Cadmium
 - Copper
 - Lead
 - Antimony
 - Zinc
- MS-30 (4-5) (Lab ID: 10326596009)
 - Arsenic
 - Cadmium
 - Copper

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Method:EPA 6020ADescription:6020A MET ICPMS, SPLPClient:GeoEngineersDate:January 28, 2016

Analyte Comments:

QC Batch: MPRP/61089

2M: The temperature in the TCLP/ZHE extraction area was outside the method required range of 21-25 degrees C.

- MS-30 (4-5) (Lab ID: 10326596009)
 - Lead
 - Antimony
 - Zinc
- MS-32 (4-5) (Lab ID: 10326596008)
 - Arsenic
 - Cadmium
 - Copper
 - Lead
 - Antimony
 - Zinc
- MS-34 (4-5) (Lab ID: 10326596006)
 - Arsenic
 - Cadmium
 - Copper
 - Lead
 - Antimony
 - Zinc

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Method:EPA 7470ADescription:7470A Mercury, SPLPClient:GeoEngineersDate:January 28, 2016

General Information:

10 samples were analyzed for EPA 7470A. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 7470A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: MERP/15804

- 2M: The temperature in the TCLP/ZHE extraction area was outside the method required range of 21-25 degrees C.
 - MS-19 (0.5-1) (Lab ID: 10326596011)
 - Mercury
 - MS-20 (0.5-1) (Lab ID: 10326596012)
 - Mercury • MS-21 (0.5-1) (Lab ID: 10326596013)
 - Mercury
 - MS-23 (0.5-1) (Lab ID: 10326596015)
 - Mercury
 - MS-26 (0.5-1) (Lab ID: 10326596018)
 Mercury
 - MS-27 (0.5-1) (Lab ID: 10326596019) • Mercury
 - MS-28 (0.5-1) (Lab ID: 10326596020) • Mercury

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Method:EPA 7470ADescription:7470A Mercury, SPLPClient:GeoEngineersDate:January 28, 2016

Analyte Comments:

QC Batch: MERP/15804

2M: The temperature in the TCLP/ZHE extraction area was outside the method required range of 21-25 degrees C.

• MS-30 (4-5) (Lab ID: 10326596009)

Mercury

• MS-32 (4-5) (Lab ID: 10326596008)

Mercury

• MS-34 (4-5) (Lab ID: 10326596006)

Mercury

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Method:EPA 7470ADescription:7470A Mercury, TCLPClient:GeoEngineersDate:January 28, 2016

General Information:

10 samples were analyzed for EPA 7470A. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 7470A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Method: EPA 7471B

Description:7471B MercuryClient:GeoEngineersDate:January 28, 2016

General Information:

20 samples were analyzed for EPA 7471B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 7471B with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Method: Modified Sobek 3.2

Description:Sobek CalculationsClient:GeoEngineersDate:January 28, 2016

General Information:

7 samples were analyzed for Modified Sobek 3.2. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Method: Modified Sobek 3.2

Description:Sobek Neutralization PotentialClient:GeoEngineersDate:January 28, 2016

General Information:

7 samples were analyzed for Modified Sobek 3.2. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Method:	Modified	Sobek 3.2
methou.	wounted	JUDER J.Z

Description:Sobek Extractable SulfurClient:GeoEngineersDate:January 28, 2016

General Information:

7 samples were analyzed for Modified Sobek 3.2. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Method: EPA 7196A

Description:7196 Chromium, HexavalentClient:GeoEngineersDate:January 28, 2016

General Information:

2 samples were analyzed for EPA 7196A. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3060A with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Sample: LT-NS-1 (0.5-1)	Lab ID:	10326596001	Collected	d: 10/12/15	5 11:30	Received: 10/	17/15 09:30 Ma	atrix: Solid	
Results reported on a "dry weigh	t" basis and a	re adjusted for	r percent mo	oisture, sar	nple s	ize and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytica	I Method: EPA	6020A Prep	aration Met	hod: El	PA 3050			
Antimony	ND	mg/kg	0.48	0.19	20	10/28/15 20:12	10/29/15 09:26	7440-36-0	
Arsenic	0.82	mg/kg	0.48	0.12	20	10/28/15 20:12	10/29/15 09:26	7440-38-2	
Cadmium	0.10	mg/kg	0.077	0.026	20	10/28/15 20:12	10/29/15 09:26	7440-43-9	
Chromium	1.6	mg/kg	0.48	0.18	20	10/28/15 20:12	10/29/15 09:26	7440-47-3	
Copper	5.6	mg/kg	0.96	0.31	20	10/28/15 20:12	10/29/15 09:26	7440-50-8	
Lead	2.2	mg/kg	0.096	0.042	20	10/28/15 20:12	10/29/15 09:26	7439-92-1	
Nickel	1.7	mg/kg	0.48	0.15	20	10/28/15 20:12	10/29/15 09:26	7440-02-0	
Zinc	13.2	mg/kg	4.8	1.3	20	10/28/15 20:12	10/29/15 09:26	7440-66-6	
7471B Mercury	Analytica	I Method: EPA	7471B Prep	aration Met	hod: E	PA 7471B			
Mercury	ND	mg/kg	0.019	0.0064	1	10/28/15 18:01	10/28/15 20:17	7439-97-6	
Dry Weight	Analytica	Analytical Method: ASTM D2974							
Percent Moisture	1.8	%	0.10	0.10	1		10/28/15 15:31		
Sobek Calculations	Analytica	I Method: Modi	fied Sobek 3	.2					
Acid/Base Potential	0.0	tons/1000			1		10/30/15 10:41		
Acid Potential	ND	tons/1000	4.3	4.3	1		10/30/15 10:41		
Sobek Neutralization Potential	Analytica	I Method: Modi	fied Sobek 3	.2					
Neutralization Potential	ND	tons/1000	0.50	0.50	1		10/28/15 10:35		
Sobek Extractable Sulfur	Analytica	I Method: Modi	fied Sobek 3	.2					
Sulfur, HCI Extractable	ND	% (w/w)	0.050	0.018	1		10/29/15 06:33		
Sulfur, HNO3 Extractable	ND	% (w/w)	0.050	0.018	1		10/29/15 06:33		
Sulfur, Hot Water Extractable	ND	% (w/w)	0.050	0.018	1		10/29/15 06:33		
Sulfur, Residual	ND	% (w/w)	0.050	0.018	1		10/29/15 06:33		
Total Sulfur	ND	% (w/w)	0.050	0.018	1		10/29/15 06:33		
7196 Chromium, Hexavalent	Analytica	I Method: EPA	7196A Prep	aration Met	hod: El	PA 3060A			
Chromium, Hexavalent	ND	mg/kg	2.0	0.44	1	10/27/15 10:30	10/28/15 11:07	18540-29-9	

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Sample: LT-NS-2 (0.5-1)	Lab ID:	1032659600	2 Collected	d: 10/12/15	5 11:40	Received: 10/	17/15 09:30 Ma	atrix: Solid		
Results reported on a "dry weigh	t" basis and a	re adjusted fo	r percent mo	oisture, sar	nple s	ize and any diluti	ions.			
			Report							
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
6020A MET ICPMS	Analytica	I Method: EPA	6020A Prep	aration Met	hod: E	PA 3050				
Antimony	ND	mg/kg	0.50	0.20	20	10/28/15 20:12	10/29/15 09:28	7440-36-0		
Arsenic	0.78	mg/kg	0.50	0.12	20	10/28/15 20:12	10/29/15 09:28	7440-38-2		
Cadmium	0.10	mg/kg	0.080	0.027	20	10/28/15 20:12	10/29/15 09:28	7440-43-9		
Chromium	1.6	mg/kg	0.50	0.19	20	10/28/15 20:12	10/29/15 09:28	7440-47-3		
Copper	8.8	mg/kg	1.0	0.32	20	10/28/15 20:12	10/29/15 09:28	7440-50-8		
Lead	7.5	mg/kg	0.10	0.043	20	10/28/15 20:12	10/29/15 09:28	7439-92-1		
Nickel	1.7	mg/kg	0.50	0.15	20	10/28/15 20:12	10/29/15 09:28	7440-02-0		
Zinc	27.6	mg/kg	5.0	1.3	20	10/28/15 20:12	10/29/15 09:28	7440-66-6		
7471B Mercury	Analytica	Analytical Method: EPA 7471B Preparation Method: EPA 7471B								
Mercury	ND	mg/kg	0.018	0.0061	1	10/28/15 18:01	10/28/15 20:19	7439-97-6		
Dry Weight	Analytica	Analytical Method: ASTM D2974								
Percent Moisture	2.9	%	0.10	0.10	1		10/28/15 15:26			
Sobek Calculations	Analytica	I Method: Mod	lified Sobek 3	.2						
Acid/Base Potential	6.2	tons/1000			1		10/30/15 10:41			
Acid Potential	ND	tons/1000	4.3	4.3	1		10/30/15 10:41			
Sobek Neutralization Potential	Analytica	I Method: Mod	lified Sobek 3	.2						
Neutralization Potential	6.19	tons/1000	0.50	0.50	1		10/28/15 10:39			
Sobek Extractable Sulfur	Analytica	I Method: Mod	lified Sobek 3	.2						
Sulfur, HCI Extractable	ND	% (w/w)	0.050	0.018	1		10/29/15 06:48			
Sulfur, HNO3 Extractable	ND	% (w/w)	0.050	0.018	1		10/29/15 06:48			
Sulfur, Hot Water Extractable	ND	% (w/w)	0.050	0.018	1		10/29/15 06:48			
Sulfur, Residual	ND	% (w/w)	0.050	0.018	1		10/29/15 06:48			
Total Sulfur	ND	% (w/w)	0.050	0.018	1		10/29/15 06:48			
7196 Chromium, Hexavalent	Analytica	I Method: EPA	7196A Prep	aration Met	hod: E	PA 3060A				
Chromium, Hexavalent	ND	mg/kg	2.0	0.44	1	10/27/15 10:30	10/28/15 11:20	18540-29-9		

...

ANALYTICAL RESULTS

.

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

-

Sample: MS-36 (3-5)	Lab ID:	1032659600	3 Collected	d: 10/12/18	5 14:15	Received: 10/	17/15-09:30 Ma	atrix: Solid	
Results reported on a "dry weigh	t" basis and a	re adjusted fo	r percent mo	oisture, sar	nple si	ize and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytica	l Method: EPA	6020A Prepa	aration Met	hod: El	PA 3050			
Antimony	ND	mg/kg	0.47	0.19	20	10/26/15 22:42	10/27/15 22:59	7440-36-0	
Arsenic	14.4	mg/kg	0.47	0.12	20	10/26/15 22:42	10/27/15 22:59	7440-38-2	M6,R1
Cadmium	3.6	mg/kg	0.076	0.026	20	10/26/15 22:42	10/27/15 22:59	7440-43-9	M6,R1
Chromium	ND	mg/kg	0.47	0.18	20	10/26/15 22:42	10/27/15 22:59	7440-47-3	
Copper	1.3	mg/kg	0.95	0.31	20	10/26/15 22:42	10/27/15 22:59	7440-50-8	M6
Lead	58.9	mg/kg	0.95	0.41	200	10/26/15 22:42	10/29/15 11:30	7439-92-1	M6,R1
Nickel	3.2	mg/kg	0.47	0.14	20	10/26/15 22:42	10/27/15 22:59	7440-02-0	M6
Zinc	1540	mg/kg	47.4	12.7	200	10/26/15 22:42	10/29/15 11:30	7440-66-6	M6,R1
7471B Mercury	Analytica	I Method: EPA	7471B Prep	aration Met	hod: E	PA 7471B			
Mercury	0.038	mg/kg	0.020	0.0070	1	10/25/15 18:54	10/25/15 19:22	7439-97-6	
Dry Weight	Analytica	I Method: AST	M D2974						
Percent Moisture	4.2	%	0.10	0.10	1		10/28/15 15:26		
Sobek Calculations	Analytica	I Method: Mod	ified Sobek 3	.2					
Acid/Base Potential	92.0	tons/1000			1		10/30/15 10:41		
Acid Potential	ND	tons/1000	4.3	4.3	1		10/30/15 10:41		
Sobek Neutralization Potential	Analytica	I Method: Mod	ified Sobek 3	.2					
Neutralization Potential	92.0	tons/1000	0.50	0.50	1		10/28/15 10:44		
Sobek Extractable Sulfur	Analytica	I Method: Mod	ified Sobek 3	.2					
Sulfur, HCI Extractable	ND	% (w/w)	0.050	0.018	1		10/29/15 07:06		
Sulfur, HNO3 Extractable	ND	% (w/w)	0.050	0.018	1		10/29/15 07:06		
Sulfur, Hot Water Extractable	ND	% (w/w)	0.050	0.018	1		10/29/15 07:06		
Sulfur, Residual	ND	% (w/w)	0.050	0.018	1		10/29/15 07:06		
Total Sulfur	ND	% (w/w)	0.050	0.018	1		10/29/15 07:06		

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Sample: MS-29 (6-7)	Lab ID:	10326596004	Collecte	d: 10/12/1	5 15:10	Received: 10/	17/15 09:30 Ma	atrix: Solid	
Results reported on a "dry weigh	t" basis and ar	e adjusted for	percent m	oisture, sa	mple si	ze and any diluti	ons.		
		-	Report		-	-			
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prep	aration Me	thod: EF	PA 3050			
Antimony	0.77	mg/kg	0.47	0.19	20	10/26/15 22:42	10/29/15 11:55	7440-36-0	
Arsenic	7.0	mg/kg	0.47	0.12	20	10/26/15 22:42	10/29/15 11:55	7440-38-2	
Cadmium	30.9	mg/kg	0.076	0.026	20	10/26/15 22:42	10/29/15 11:55	7440-43-9	
Chromium	3.2	mg/kg	0.47	0.18	20	10/26/15 22:42	10/29/15 11:55	7440-47-3	
Copper	3.3	mg/kg	0.95	0.31	20	10/26/15 22:42	10/29/15 11:55	7440-50-8	
Lead	11.5	mg/kg	0.095	0.041	20	10/26/15 22:42	10/29/15 11:55	7439-92-1	
Nickel	6.9	mg/kg	0.47	0.14	20	10/26/15 22:42	10/29/15 11:55	7440-02-0	
Zinc	2930	mg/kg	475	127	2000	10/26/15 22:42	10/28/15 16:40	7440-66-6	
7471B Mercury	Analytical	Method: EPA 7	471B Prep	aration Me	thod: EF	PA 7471B			
Mercury	ND	mg/kg	0.019	0.0065	1	10/25/15 18:54	10/25/15 19:30	7439-97-6	
Dry Weight	Analytical	Method: ASTM	D2974						
Percent Moisture	5.2	%	0.10	0.10	1		10/28/15 15:27		
Sobek Calculations	Analytical	Method: Modifi	ed Sobek 3	3.2					
Acid/Base Potential	92.0	tons/1000			1		10/30/15 10:41		
Acid Potential	ND	tons/1000	4.3	4.3	1		10/30/15 10:41		
Sobek Neutralization Potential	Analytical	Method: Modifi	ed Sobek 3	9.2					
Neutralization Potential	92.0	tons/1000	0.50	0.50	1		10/28/15 10:49		
Sobek Extractable Sulfur	Analytical	Method: Modifi	ed Sobek 3	3.2					
Sulfur, HCI Extractable	ND	% (w/w)	0.050	0.018	1		10/29/15 07:20		
Sulfur, HNO3 Extractable	ND	% (w/w)	0.050	0.018	1		10/29/15 07:20		
Sulfur, Hot Water Extractable	ND	% (w/w)	0.050	0.018	1		10/29/15 07:20		
Sulfur, Residual	ND	% (w/w)	0.050	0.018	1		10/29/15 07:20		
Total Sulfur	ND	% (w/w)	0.050	0.018	1		10/29/15 07:20		

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Sample: MS-35 (6-8)	Lab ID:	10326596005	Collecte	d: 10/12/1	5 15:50	Received: 10/	17/15 09:30 Ma	atrix: Solid	
Results reported on a "dry weigh	t" basis and ar	e adjusted for	percent m	oisture, saı	nple si	ze and any diluti	ons.		
		-	Report		-	-			
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical	Method: EPA 6	020A Prep	aration Met	hod: Ef	PA 3050			
Antimony	ND	mg/kg	0.49	0.19	20	10/26/15 22:42	10/27/15 21:22	7440-36-0	
Arsenic	13.5	mg/kg	0.49	0.12	20	10/26/15 22:42	10/27/15 21:22	7440-38-2	
Cadmium	10.0	mg/kg	0.079	0.027	20	10/26/15 22:42	10/27/15 21:22	7440-43-9	
Chromium	2.3	mg/kg	0.49	0.19	20	10/26/15 22:42	10/27/15 21:22	7440-47-3	
Copper	3.3	mg/kg	0.99	0.32	20	10/26/15 22:42	10/27/15 21:22	7440-50-8	
Lead	186	mg/kg	0.099	0.043	20	10/26/15 22:42	10/27/15 21:22	7439-92-1	
Nickel	4.4	mg/kg	0.49	0.15	20	10/26/15 22:42	10/27/15 21:22	7440-02-0	
Zinc	3950	mg/kg	49.3	13.2	200	10/26/15 22:42	10/28/15 16:45	7440-66-6	
7471B Mercury	Analytical	Method: EPA 7	471B Prep	aration Met	hod: El	PA 7471B			
Mercury	0.079	mg/kg	0.020	0.0070	1	10/25/15 18:54	10/25/15 19:32	7439-97-6	
Dry Weight	Analytical	Method: ASTM	D2974						
Percent Moisture	3.3	%	0.10	0.10	1		10/28/15 15:27		
Sobek Calculations	Analytical	Method: Modifi	ed Sobek 3	3.2					
Acid/Base Potential	91.7	tons/1000			1		10/30/15 10:41		
Acid Potential	ND	tons/1000	4.3	4.3	1		10/30/15 10:41		
Sobek Neutralization Potential	Analytical	Method: Modifi	ed Sobek 3	3.2					
Neutralization Potential	91.7	tons/1000	0.50	0.50	1		10/28/15 10:56		
Sobek Extractable Sulfur	Analytical	Method: Modifi	ed Sobek 3	3.2					
Sulfur, HCI Extractable	0.0525	% (w/w)	0.050	0.018	1		10/29/15 07:31		
Sulfur, HNO3 Extractable	ND	% (w/w)	0.050	0.018	1		10/29/15 07:31		
Sulfur, Hot Water Extractable	ND	% (w/w)	0.050	0.018	1		10/29/15 07:31		
Sulfur, Residual	ND	% (w/w)	0.050	0.018	1		10/29/15 07:31		
Total Sulfur	ND	% (w/w)	0.050	0.018	1		10/29/15 07:31		

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Sample: MS-34 (4-5)	Lab ID:	103265960	06 Collecte	ed: 10/12/18	5 16:10	Received: 10/	(17/15 09:30 Ma	atrix: Solid		
Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.										
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
6020A MET ICPMS	Analytical	Method: EF	PA 6020A Prep	paration Met	hod: E	PA 3050				
Antimony	ND	mg/kg	0.51	0.20	20	10/26/15 22:42	10/27/15 21:27	7440-36-0		
Arsenic	5.5	mg/kg	0.51	0.12	20	10/26/15 22:42	10/27/15 21:27	7440-38-2		
Cadmium	5.3	mg/kg	0.081	0.028	20	10/26/15 22:42	10/27/15 21:27	7440-43-9		
Chromium	3.8	mg/kg	0.51	0.19	20	10/26/15 22:42	10/27/15 21:27	7440-47-3		
Copper	4.7	mg/kg	1.0	0.33	20	10/26/15 22:42	10/27/15 21:27	7440-50-8		
Lead	158	mg/kg	0.10	0.044	20	10/26/15 22:42	10/27/15 21:27	7439-92-1		
Nickel	5.2	mg/kg	0.51	0.15	20	10/26/15 22:42	10/27/15 21:27	7440-02-0		
Zinc	3200	mg/kg	50.9	13.6	200	10/26/15 22:42	10/28/15 16:49	7440-66-6		
6020A MET ICPMS, TCLP	Analytical	Method: EF	PA 6020A Prep	Daration Met	hod: E	PA 3020	nH- 1 52			
	Leachate	vietriou/Dat	e. LI A 1311, (51/21/10 05.	05 1111	iai pi i. 0.94, i iliai	pri. 1.55		_	
Arsenic	ND	mg/L	0.012	0.0028	5	01/21/16 10:22	01/22/16 13:56	7440-38-2	D3	
Cadmium	0.092	mg/L	0.0020	0.00061	5	01/21/16 10:22	01/22/16 13:56	7440-43-9		
Chromium	ND	mg/L	0.012	0.0042	5	01/21/16 10:22	01/22/16 13:56	7440-47-3	D3	
Lead	0.18	mg/L	0.0025	0.0011	5	01/21/16 10:22	01/22/16 13:56	7439-92-1		
6020A MET ICPMS, SPLP	Analytical	Method: EF	PA 6020A Prep	paration Met	hod: E	PA 3020				
	Leachate I	Method/Dat	e: EPA 1312; (01/22/16 14:	41 Init	tial pH: ; Final pH:	7.67			
Antimony	ND	mg/L	0.0050	0.0015	1	01/24/16 16:47	01/25/16 13:37	7440-36-0	2M	
Arsenic	ND	mg/L	0.0050	0.0011	1	01/24/16 16:47	01/25/16 13:37	7440-38-2	2M	
Cadmium	0.0011	mg/L	0.00080	0.00024	1	01/24/16 16:47	01/25/16 13:37	7440-43-9	2M	
Copper	ND	mg/L	0.010	0.0021	1	01/24/16 16:47	01/25/16 13:37	7440-50-8	2M	
Lead	0.042	mg/L	0.0010	0.00046	1	01/24/16 16:47	01/25/16 13:37	7439-92-1	2M	
Zinc	0.60	mg/L	0.25	0.12	5	01/24/16 16:47	01/26/16 08:20	7440-66-6	2M	
7470A Mercury, SPLP	Analytical	Method: EF Method/Dat	PA 7470A Prep	Daration Met	hod: E 41 Init	PA 7470A	7 67			
Mercury	ND	mg/L	0.00060	0.000065	1	01/24/16 18:50	01/24/16 20:48	7439-97-6	2M	
7470A Mercury, TCLP	Analytical Leachate	Method: EF Method/Dat	PA 7470A Prep e: EPA 1311; (Daration Met D1/21/16 05:	hod: E 03 Init	PA 7470A ial pH: 8.94; Final	pH: 1.53			
Mercury	ND	mg/L	0.00060	0.000065	1	01/21/16 09:00	01/21/16 18:34	7439-97-6		
7471B Mercury	Analytical	Method: EF	PA 7471B Pre	paration Met	hod: E	PA 7471B				
Mercury	0.067	mg/kg	0.020	0.0070	1	10/25/15 18:54	10/25/15 19:35	7439-97-6		
Dry Weight	Analytical	Method: AS	STM D2974							
Percent Moisture	9.0	%	0.10	0.10	1		10/28/15 15:27			

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

· ··

ANALYTICAL RESULTS

.

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

......

....

-

Sample: MS-33 (4-5)	Lab ID:	Lab ID: 10326596007 Collected: 10/12/15 16:50 Received: 10/17/15 09:30 Matrix: Solid								
Results reported on a "dry we	eight" basis and are	adjusted f	or percent mo	oisture, sai	nple si	ize and any dilut	ions.			
			Report		-	-				
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
6020A MET ICPMS	Analytical	Method: EP/	A 6020A Prepa	aration Met	hod: El	PA 3050				
Antimony	ND	mg/kg	0.50	0.19	20	10/26/15 22:42	10/27/15 21:32	7440-36-0		
Arsenic	1.8	mg/kg	0.50	0.12	20	10/26/15 22:42	10/27/15 21:32	7440-38-2		
Cadmium	0.56	mg/kg	0.079	0.027	20	10/26/15 22:42	10/27/15 21:32	7440-43-9		
Chromium	4.0	mg/kg	0.50	0.19	20	10/26/15 22:42	10/27/15 21:32	7440-47-3		
Copper	3.6	mg/kg	0.99	0.32	20	10/26/15 22:42	10/27/15 21:32	7440-50-8		
Lead	63.0	mg/kg	0.50	0.22	100	10/26/15 22:42	10/29/15 12:00	7439-92-1		
Nickel	3.3	mg/kg	0.50	0.15	20	10/26/15 22:42	10/27/15 21:32	7440-02-0		
Zinc	269	mg/kg	5.0	1.3	20	10/26/15 22:42	10/27/15 21:32	7440-66-6		
7471B Mercury	Analytical	Method: EP/	A 7471B Prep	aration Met	hod: E	PA 7471B				
Mercury	ND	mg/kg	0.019	0.0065	1	10/25/15 18:54	10/25/15 19:37	7439-97-6		
Dry Weight	Analytical	Method: AS	TM D2974							
Percent Moisture	4.9	%	0.10	0.10	1		10/28/15 15:28			

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Sample: MS-32 (4-5)	Lab ID: 10326596008 Collected: 10/13/15 09:30 Received: 10/17/15 09:30 Matrix: Solid								
Results reported on a "dry wei	ight" basis and are	adjusted fo	r percent m	oisture, sa	mple si	ze and any diluti	ions.		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical I	Method: EPA	6020A Prep	paration Met	thod: EF	PA 3050			
Antimony	0.57	mg/kg	0.50	0.20	20	10/26/15 22:42	10/27/15 21:37	7440-36-0	
Arsenic	10.7	mg/kg	0.50	0.12	20	10/26/15 22:42	10/27/15 21:37	7440-38-2	
Cadmium	28.6	mg/kg	0.080	0.027	20	10/26/15 22:42	10/27/15 21:37	7440-43-9	
Chromium	2.2	mg/kg	0.50	0.19	20	10/26/15 22:42	10/27/15 21:37	7440-47-3	
Copper	4.1	mg/kg	1.0	0.32	20	10/26/15 22:42	10/27/15 21:37	7440-50-8	
Lead	438	mg/kg	0.10	0.043	20	10/26/15 22:42	10/27/15 21:37	7439-92-1	
Nickel	5.4	mg/kg	0.50	0.15	20	10/26/15 22:42	10/27/15 21:37	7440-02-0	
Zinc	5930	mg/kg	499	134	2000	10/26/15 22:42	10/30/15 10:40	7440-66-6	
6020A MET ICPMS, TCLP	Analytical I	Method: EPA	6020A Pre	Daration Me	thod: EF	PA 3020 al pH: 8 97: Final	pH: 4.62		
A .		", "		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-			7440.00.0	Do
Arsenic	ND	mg/L	0.012	0.0028	5	01/21/16 10:22	01/22/16 13:51	7440-38-2	D3
Cadmium	0.66	mg/L	0.0020	0.00061	5	01/21/16 10:22	01/22/16 13:51	7440-43-9	
Chromium	ND	mg/L	0.012	0.0042	5	01/21/16 10:22	01/22/16 13:51	7440-47-3	D3
Lead	1.8	mg/L	0.0025	0.0011	5	01/21/16 10:22	01/22/16 13:51	7439-92-1	
6020A MET ICPMS, SPLP	Analytical I	Method: EPA	6020A Prep	paration Met	thod: EF	PA 3020			
	Leachate M	Method/Date:	EPA 1312; (01/22/16 14	:41 Initi	ial pH: ; Final pH:	7.74		
Antimony	ND	mg/L	0.0050	0.0015	1	01/24/16 16:47	01/25/16 13:40	7440-36-0	2M
Arsenic	ND	mg/L	0.0050	0.0011	1	01/24/16 16:47	01/25/16 13:40	7440-38-2	2M
Cadmium	0.0017	mg/L	0.00080	0.00024	1	01/24/16 16:47	01/25/16 13:40	7440-43-9	2M
Copper	ND	mg/L	0.010	0.0021	1	01/24/16 16:47	01/25/16 13:40	7440-50-8	2M
Lead	0.035	mg/L	0.0010	0.00046	1	01/24/16 16:47	01/25/16 13:40	7439-92-1	2M
Zinc	0.57	mg/L	0.25	0.12	5	01/24/16 16:47	01/26/16 08:22	7440-66-6	2M
7470A Mercury, SPLP	Analytical I	Method: EPA	7470A Pre	Daration Me	thod: EF	PA 7470A	7 74		
Mercury	ND	ma/l	0.00060	0.000065	1	01/24/16 18:50	01/24/16 20:52	7439-97-6	2M
Molodiy	112		0.00000	0.000000		0 1/2 1/10 10:00	0 1/2 1/10 20:02	1 100 01 0	2.00
7470A Mercury, TCLP	Analytical I Leachate N	Method: EPA //ethod/Date:	2470A Prep EPA 1311; (Daration Met D1/21/16 05:	thod: EF :03 Initi	PA 7470A al pH: 8.97; Final	pH: 4.62		
Mercury	ND	mg/L	0.00060	0.000065	1	01/21/16 09:00	01/21/16 18:41	7439-97-6	
7471B Mercury	Analytical I	Method: EPA	7471B Pre	paration Me	thod: Ef	PA 7471B			
Mercury	0.35	mg/kg	0.019	0.0066	1	10/25/15 18:54	10/25/15 19:45	7439-97-6	
Dry Weight	Analytical I	Method: AST	M D2974						
Percent Moisture	9.8	%	0.10	0.10	1		10/28/15 15:28		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Sample: MS-30 (4-5)	Lab ID:	1032659600	9 Collecte	ed: 10/13/1	5 10:00	Received: 10/	/17/15 09:30 Ma	atrix: Solid	
Results reported on a "dry wei	ight" basis and ar	re adjusted fo	r percent m	oisture, sa	mple si	ze and any diluti	ions.		
Deremetere	Depute	l Inita	Report			Dranarad	Analyzad		Qual
Parameters		Units		MDL		Piepared		CAS NO.	
6020A MET ICPMS	Analytica	I Method: EPA	6020A Prep	paration Me	thod: EF	PA 3050			
Antimony	ND	mg/kg	0.48	0.19	20	10/26/15 22:42	10/27/15 21:41	7440-36-0	
Arsenic	26.5	mg/kg	0.48	0.12	20	10/26/15 22:42	10/27/15 21:41	7440-38-2	
Cadmium	36.7	mg/kg	0.077	0.026	20	10/26/15 22:42	10/27/15 21:41	7440-43-9	
Chromium	ND	mg/kg	0.48	0.18	20	10/26/15 22:42	10/27/15 21:41	7440-47-3	
Copper	2.4	mg/kg	0.97	0.31	20	10/26/15 22:42	10/27/15 21:41	7440-50-8	
Lead	423	mg/kg	0.097	0.042	20	10/26/15 22:42	10/27/15 21:41	7439-92-1	
Nickel	3.4	mg/kg	0.48	0.15	20	10/26/15 22:42	10/27/15 21:41	7440-02-0	
Zinc	13200	mg/kg	484	129	2000	10/26/15 22:42	10/30/15 10:44	7440-66-6	
6020A MET ICPMS, TCLP	Analytica	I Method: EPA	6020A Prep	paration Me	thod: EF	PA 3020			
	Leachate	Method/Date:	EPA 1311; (01/21/16 05	:03 Initi	al pH: 9.22; Final	pH: 2.19		
Arsenic	ND	mg/L	0.012	0.0028	5	01/21/16 10:22	01/22/16 10:23	7440-38-2	D3
Cadmium	0.21	mg/L	0.0020	0.00061	5	01/21/16 10:22	01/22/16 10:23	7440-43-9	
Chromium	ND	mg/L	0.012	0.0042	5	01/21/16 10:22	01/22/16 10:23	7440-47-3	D3
Lead	2.9	mg/L	0.0025	0.0011	5	01/21/16 10:22	01/22/16 10:23	7439-92-1	
6020A MET ICPMS, SPLP	Analytica	I Method: EPA	6020A Prep	paration Me	thod: EF	PA 3020			
	Leachate	Method/Date:	EPA 1312; (01/22/16 14	:41 Initi	ial pH: ; Final pH:	7.95		
Antimony	ND	mg/L	0.0050	0.0015	1	01/24/16 16:47	01/25/16 13:42	7440-36-0	2M
Arsenic	ND	mg/L	0.0050	0.0011	1	01/24/16 16:47	01/25/16 13:42	7440-38-2	2M
Cadmium	ND	mg/L	0.00080	0.00024	1	01/24/16 16:47	01/25/16 13:42	7440-43-9	2M
Copper	ND	mg/L	0.010	0.0021	1	01/24/16 16:47	01/25/16 13:42	7440-50-8	2M
Lead	ND	mg/L	0.0010	0.00046	1	01/24/16 16:47	01/25/16 13:42	7439-92-1	2M
Zinc	ND	mg/L	0.050	0.024	1	01/24/16 16:47	01/25/16 13:42	7440-66-6	2M
7470A Mercury, SPLP	Analytica	I Method: EPA	7470A Prep	paration Me	thod: EF	PA 7470A			
	Leachate	Method/Date:	EPA 1312; (01/22/16 14	:41 Initi	ial pH: ; Final pH:	7.95		
Mercury	ND	mg/L	0.00060	0.000065	1	01/24/16 18:50	01/24/16 20:54	7439-97-6	2M
7470A Mercury, TCLP	Analytica	I Method: EPA	7470A Prep	paration Me	thod: EF	PA 7470A			
	Leachate	Method/Date:	EPA 1311; (01/21/16 05	:03 Initi	al pH: 9.22; Final	pH: 2.19		
Mercury	ND	mg/L	0.00060	0.000065	1	01/21/16 09:00	01/21/16 18:44	7439-97-6	
7471B Mercury	Analytica	I Method: EPA	7471B Prep	paration Me	thod: EF	PA 7471B			
Mercury	0.13	mg/kg	0.020	0.0071	1	10/25/15 18:54	10/25/15 19:47	7439-97-6	
Dry Weight	Analytica	I Method: AST	M D2974						
Percent Moisture	7.7	%	0.10	0.10	1		10/28/15 15:28		
Sobek Calculations	Analytica	I Method: Mod	ified Sobek 3	3.2					
Acid/Base Potential	45.0	tons/1000			1		10/30/15 10:41		
Acid Potential	47.6	tons/1000	4.3	4.3	1		10/30/15 10:41		

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Sample: MS-30 (4-5)	Lab ID:	10326596009	Collecte	d: 10/13/15	10:00	Received: 10)/17/15 09:30 Ma	trix: Solid	
Results reported on a "dry weigh	t" basis and ar	e adjusted for	percent mo	oisture, san	nple siz	e and any dilu	tions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Sobek Neutralization Potential	Analytical	Method: Modifi	ed Sobek 3	.2					
Neutralization Potential	92.6	tons/1000	0.50	0.50	1		10/28/15 11:00		
Sobek Extractable Sulfur	Analytical	Method: Modifi	ed Sobek 3	.2					
Sulfur, HCI Extractable	0.563	% (w/w)	0.050	0.018	1		10/29/15 07:46		
Sulfur, HNO3 Extractable	1.08	% (w/w)	0.050	0.018	1		10/29/15 07:46		
Sulfur, Hot Water Extractable	0.532	% (w/w)	0.050	0.018	1		10/29/15 07:46		
Sulfur, Residual	ND	% (w/w)	0.050	0.018	1		10/29/15 07:46		
Total Sulfur	2.20	% (w/w)	0.050	0.018	1		10/29/15 07:46		

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Sample: MS-31 (6-8)	Lab ID:	10326596010	Collecte	d: 10/13/1	5 10:40	Received: 10/	17/15 09:30 Ma	atrix: Solid	
Results reported on a "dry weigh	t" basis and ar	e adjusted for	percent m	oisture, saı	nple si	ze and any diluti	ons.		
			Report				-		
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytica	Method: EPA 6	020A Prep	aration Met	hod: EF	PA 3050			
Antimony	0.45	mg/kg	0.45	0.18	20	10/26/15 22:42	10/27/15 21:46	7440-36-0	
Arsenic	5.3	mg/kg	0.45	0.11	20	10/26/15 22:42	10/27/15 21:46	7440-38-2	
Cadmium	4.7	mg/kg	0.072	0.024	20	10/26/15 22:42	10/27/15 21:46	7440-43-9	
Chromium	5.9	mg/kg	0.45	0.17	20	10/26/15 22:42	10/27/15 21:46	7440-47-3	
Copper	6.3	mg/kg	0.90	0.29	20	10/26/15 22:42	10/27/15 21:46	7440-50-8	
Lead	293	mg/kg	0.090	0.039	20	10/26/15 22:42	10/27/15 21:46	7439-92-1	
Nickel	6.2	mg/kg	0.45	0.14	20	10/26/15 22:42	10/27/15 21:46	7440-02-0	
Zinc	1580	mg/kg	45.0	12.0	200	10/26/15 22:42	10/28/15 17:18	7440-66-6	
7471B Mercury	Analytica	Method: EPA 7	471B Prep	aration Met	hod: Ef	PA 7471B			
Mercury	0.048	mg/kg	0.022	0.0077	1	10/25/15 18:54	10/25/15 19:49	7439-97-6	
Dry Weight	Analytica	Method: ASTM	D2974						
Percent Moisture	15.1	%	0.10	0.10	1		10/28/15 15:28		
Sobek Calculations	Analytica	Method: Modifi	ed Sobek 3	3.2					
Acid/Base Potential	39.9	tons/1000			1		10/30/15 10:41		
Acid Potential	4.8	tons/1000	4.3	4.3	1		10/30/15 10:41		
Sobek Neutralization Potential	Analytica	Method: Modifi	ed Sobek 3	3.2					
Neutralization Potential	44.6	tons/1000	0.50	0.50	1		10/28/15 11:07		
Sobek Extractable Sulfur	Analytica	Method: Modifi	ed Sobek 3	3.2					
Sulfur, HCI Extractable	ND	% (w/w)	0.050	0.018	1		10/29/15 08:03		
Sulfur, HNO3 Extractable	0.115	% (w/w)	0.050	0.018	1		10/29/15 08:03		
Sulfur, Hot Water Extractable	0.173	% (w/w)	0.050	0.018	1		10/29/15 08:03		
Sulfur, Residual	ND	% (w/w)	0.050	0.018	1		10/29/15 08:03		
Total Sulfur	0.329	% (w/w)	0.050	0.018	1		10/29/15 08:03		

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Sample: MS-19 (0.5-1)	Lab ID: 10326596011 Collected: 10/13/15 11:00 Received: 10/17/15 09:30 Matrix: Solid								
Results reported on a "dry wei	ight" basis and are	adjusted fo	or percent m	oisture, sa	mple si	ze and any diluti	ions.		
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical	Method: EPA	A6020A Prep	paration Me	thod: EF	PA 3050			
Antimony	1.8	mg/kg	0.47	0.18	20	10/26/15 22:42	10/27/15 22:01	7440-36-0	
Arsenic	13.1	mg/kg	0.47	0.12	20	10/26/15 22:42	10/27/15 22:01	7440-38-2	
Cadmium	78.3	mg/kg	0.076	0.026	20	10/26/15 22:42	10/27/15 22:01	7440-43-9	
Chromium	0.76	mg/kg	0.47	0.18	20	10/26/15 22:42	10/27/15 22:01	7440-47-3	
Copper	6.9	mg/kg	0.95	0.31	20	10/26/15 22:42	10/27/15 22:01	7440-50-8	
Lead	6890	mg/kg	9.5	4.1	2000	10/26/15 22:42	11/02/15 09:29	7439-92-1	
Nickel	7.2	mg/kg	0.47	0.14	20	10/26/15 22:42	10/27/15 22:01	7440-02-0	
Zinc	29700	mg/kg	473	127	2000	10/26/15 22:42	11/02/15 09:29	7440-66-6	
6020A MET ICPMS, TCLP	Analytical	Method: EPA	6020A Prep	paration Me	thod: EF	PA 3020			
	Leachate I	Method/Date	: EPA 1311; (01/21/16 05	:03 Initi	al pH: 9.11; Final	pH: 3.61		
Arsenic	ND	mg/L	0.012	0.0028	5	01/21/16 10:22	01/22/16 10:25	7440-38-2	D3
Cadmium	0.35	mg/L	0.0020	0.00061	5	01/21/16 10:22	01/22/16 10:25	7440-43-9	
Chromium	ND	mg/L	0.012	0.0042	5	01/21/16 10:22	01/22/16 10:25	7440-47-3	D3
Lead	7.7	mg/L	0.0025	0.0011	5	01/21/16 10:22	01/22/16 10:25	7439-92-1	
6020A MET ICPMS, SPLP	Analytical	Method: EPA	A6020A Prep	paration Me	thod: EF	PA 3020			
	Leachate N	Method/Date	: EPA 1312; (01/22/16 14	:41 Initi	al pH: ; Final pH:	7.88		
Antimony	ND	mg/L	0.0050	0.0015	1	01/24/16 16:47	01/25/16 14:03	7440-36-0	2M
Arsenic	ND	mg/L	0.0050	0.0011	1	01/24/16 16:47	01/25/16 14:03	7440-38-2	2M
Cadmium	ND	mg/L	0.00080	0.00024	1	01/24/16 16:47	01/25/16 14:03	7440-43-9	2M
Copper	ND	mg/L	0.010	0.0021	1	01/24/16 16:47	01/25/16 14:03	7440-50-8	2M
Lead	0.0035	mg/L	0.0010	0.00046	1	01/24/16 16:47	01/25/16 14:03	7439-92-1	2M
Zinc	ND	mg/L	0.050	0.024	1	01/24/16 16:47	01/25/16 14:03	7440-66-6	2M
7470A Mercury, SPLP	Analytical	Method: EPA	A 7470A Prep	paration Me	thod: EF	PA 7470A			
	Leachate N	Method/Date	: EPA 1312; (01/22/16 14	:41 Initi	ial pH: ; Final pH:	7.88		
Mercury	ND	mg/L	0.00060	0.000065	1	01/24/16 18:50	01/24/16 20:57	7439-97-6	2M
7470A Mercury, TCLP	Analytical Leachate	Method: EPA Method/Date	A 7470A Prep : EPA 1311; (oaration Me 01/21/16 05	thod: EF :03 Initi	PA 7470A al pH: 9.11; Final	pH: 3.61		
Mercury	ND	mg/L	0.00060	0.000065	1	01/21/16 09:00	01/21/16 18:46	7439-97-6	
7471B Mercury	Analytical	Method: EPA	A7471B Prep	paration Me	thod: EF	PA 7471B			
Mercury	0.34	mg/kg	0.018	0.0063	1	10/25/15 18:54	10/25/15 19:52	7439-97-6	
Dry Weight	Analytical	Method: AST	FM D2974						
Percent Moisture	5.7	%	0.10	0.10	1		10/28/15 15:29		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Sample: MS-20 (0.5-1)	Lab ID:	10326596012	2 Collecte	d: 10/13/1	5 11:15	Received: 10/	/17/15 09:30 Ma	atrix: Solid	
Results reported on a "dry wei	ight" basis and are	adjusted fo	r percent m	oisture, sa	mple si	ze and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS	Analytical	Method: NWT	TPH-Dx Prep	paration Me	thod: E	PA 3550			
Diesel Fuel Range	ND	mg/kg	15.8	0.85	1	10/22/15 07:13	10/28/15 12:52	68334-30-5	
Motor Oil Range	91.3	mg/kg	10.5	1.9	1	10/22/15 07:13	10/28/15 12:52		
Surrogates									
n-Triacontane (S)	87	%.	50-150		1	10/22/15 07:13	10/28/15 12:52	638-68-6	
o-Terphenyl (S)	81	%.	50-150		1	10/22/15 07:13	10/28/15 12:52	84-15-1	
NWTPH-Gx GCV	Analytical	Method: NWT	PH-Gx Prep	paration Me	ethod: N	WTPH-Gx			
TPH as Gas	ND	mg/kg	5.2	2.6	1	10/26/15 14:07	10/26/15 19:06		
Surrogates	00	0/	E0 1E0		1	10/26/15 14:07	10/26/15 10:06	00 00 0	
a,a,a-minuorotoiuene (S)	63	%.	50-150		I	10/26/15 14:07	10/26/15 19:06	90-00-0	
6020A MET ICPMS	Analytical	Method: EPA	6020A Prep	aration Met	thod: EF	PA 3050			
Antimony	2.4	mg/kg	0.45	0.18	20	10/26/15 22:42	10/27/15 22:06	7440-36-0	
Arsenic	5.6	mg/kg	0.45	0.11	20	10/26/15 22:42	10/27/15 22:06	7440-38-2	
Cadmium	31.7	mg/kg	0.072	0.025	20	10/26/15 22:42	10/27/15 22:06	7440-43-9	
Chromium	1.9	mg/kg	0.45	0.17	20	10/26/15 22:42	10/27/15 22:06	7440-47-3	
Copper	15.2	mg/kg	0.90	0.29	20	10/26/15 22:42	10/27/15 22:06	7440-50-8	
Lead	14700	mg/kg	9.0	3.9	2000	10/26/15 22:42	10/28/15 17:28	7439-92-1	
Nickel	3.7	mg/kg	0.45	0.14	20	10/26/15 22:42	10/27/15 22:06	7440-02-0	
Zinc	7560	mg/kg	451	121	2000	10/26/15 22:42	10/28/15 17:28	7440-66-6	
6020A MET ICPMS, TCLP	Analytical	Method: EPA	6020A Prep	aration Me	thod: EF	PA 3020			
	Leachate	Method/Date:	EPA 1311; 0	1/21/16 05	:03 Initi	al pH: 8.14; Final	рн: 2.55		
Arsenic	ND	mg/L	0.012	0.0028	5	01/21/16 10:22	01/22/16 10:35	7440-38-2	D3
Cadmium	0.54	mg/L	0.0020	0.00061	5	01/21/16 10:22	01/22/16 10:35	7440-43-9	
Chromium	ND	mg/L	0.012	0.0042	5	01/21/16 10:22	01/22/16 10:35	7440-47-3	D3
Lead	257	mg/L	0.25	0.11	500	01/21/16 10:22	01/22/16 11:13	7439-92-1	
6020A MET ICPMS, SPLP	Analytical	Method: EPA	6020A Prep	aration Me	thod: EF	PA 3020			
	Leachate I	Method/Date:	EPA 1312; 0	01/22/16 14	:41 Initi	al pH: ; Final pH:	7.27		
Antimony	ND	mg/L	0.0050	0.0015	1	01/24/16 16:47	01/25/16 14:05	7440-36-0	2M
Arsenic	ND	mg/L	0.0050	0.0011	1	01/24/16 16:47	01/25/16 14:05	7440-38-2	2M
Cadmium	0.00083	mg/L	0.00080	0.00024	1	01/24/16 16:47	01/25/16 14:05	7440-43-9	2M
Copper	ND	mg/L	0.010	0.0021	1	01/24/16 16:47	01/25/16 14:05	7440-50-8	2M
Lead	0.013	mg/L	0.0010	0.00046	1	01/24/16 16:47	01/25/16 14:05	7439-92-1	2M
Zinc	ND	mg/L	0.050	0.024	1	01/24/16 16:47	01/25/16 14:05	7440-66-6	2M
7470A Mercury, SPLP	Analytical	Method: EPA	7470A Prep	aration Met	thod: EF	PA 7470A			
	Leachate	Method/Date:	EPA 1312; 0	1/22/16 14	:41 Initi	ial pH: ; Final pH:	7.27		
Mercury	ND	mg/L	0.00060	0.000065	1	01/24/16 18:50	01/24/16 21:07	7439-97-6	2M
7470A Mercury, TCLP	Analytical	Method: EPA	7470A Prep	aration Met	thod: EF	PA 7470A			
	Leachate	Method/Date:	EPA 1311; 0	1/21/16 05	:03 Initi	al pH: 8.14; Final	pH: 2.55		
Mercury	ND	mg/L	0.00060	0.000065	1	01/21/16 09:00	01/21/16 18:54	7439-97-6	

REPORT OF LABORATORY ANALYSIS

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Sample: MS-20 (0.5-1)	Lab ID:	10326596012	Collected	d: 10/13/15	5 11:15	Received: 10/	17/15 09:30 Ma	trix: Solid	
Results reported on a "dry weight"	basis and are	e adjusted for	percent mo	oisture, san	nple si	ize and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
7471B Mercury	Analytical	Method: EPA 7	471B Prep	aration Met	hod: El	PA 7471B			
Mercury	0.50	mg/kg	0.019	0.0065	1	10/25/15 18:54	10/25/15 19:54	7439-97-6	
Dry Weight	Analytical	Method: ASTM	1 D2974						
Percent Moisture	6.1	%	0.10	0.10	1		10/28/15 15:29		

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Sample: MS-21 (0.5-1)	Lab ID:	1032659601	3 Collecte	d: 10/13/1	5 11:30	Received: 10/	17/15 09:30 Ma	atrix: Solid	
Results reported on a "dry wei	ght" basis and are	adjusted fo	r percent m	oisture, sa	mple si	ze and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS	Analytical	Method: NW	TPH-Dx Prep	paration Me	thod: E	PA 3550			
Diesel Fuel Range	123	mg/kg	15.8	0.85	1	10/22/15 07:13	10/28/15 14:02	68334-30-5	
Motor Oil Range	1020	mg/kg	105	18.9	10	10/22/15 07:13	10/28/15 16:20		
Surrogates									
n-Triacontane (S)	96	%.	50-150		1	10/22/15 07:13	10/28/15 14:02	638-68-6	
o-Terphenyl (S)	81	%.	50-150		1	10/22/15 07:13	10/28/15 14:02	84-15-1	
NWTPH-Gx GCV	Analytical	Method: NW	TPH-Gx Pre	paration Me	ethod: N	WTPH-Gx			
TPH as Gas	ND	mg/kg	5.3	2.6	1	10/26/15 14:07	10/26/15 19:26		
Surrogates	00	0/	50 450			40/00/45 44.07	40/00/45 40 00	~ ~ ~ ~	
a,a,a-Irifluorotoluene (S)	86	%.	50-150		1	10/26/15 14:07	10/26/15 19:26	98-08-8	
6020A MET ICPMS	Analytical	Method: EPA	6020A Prep	aration Met	thod: EF	PA 3050			
Antimony	0.45	mg/kg	0.39	0.15	20	10/26/15 22:42	10/27/15 22:11	7440-36-0	
Arsenic	4.3	mg/kg	0.39	0.094	20	10/26/15 22:42	10/27/15 22:11	7440-38-2	
Cadmium	9.3	mg/kg	0.062	0.021	20	10/26/15 22:42	10/27/15 22:11	7440-43-9	
Chromium	3.7	mg/kg	0.39	0.15	20	10/26/15 22:42	10/27/15 22:11	7440-47-3	
Copper	175	mg/kg	0.77	0.25	20	10/26/15 22:42	10/27/15 22:11	7440-50-8	
Lead	1370	mg/kg	0.77	0.33	200	10/26/15 22:42	10/29/15 12:19	7439-92-1	
Nickel	3.1	mg/kg	0.39	0.12	20	10/26/15 22:42	10/27/15 22:11	7440-02-0	
Zinc	2980	mg/kg	385	103	2000	10/26/15 22:42	10/28/15 17:32	7440-66-6	
6020A MET ICPMS, TCLP	Analytical	Method: EPA	6020A Prep	aration Me	thod: EF	PA 3020			
	Leachate I	Method/Date:	EPA 1311; 0	1/21/16 05	:03 Initi	al pH: 8.03; Final	pH: 1.62		
Arsenic	ND	ma/L	0.012	0.0028	5	01/21/16 10:22	01/22/16 10:47	7440-38-2	D3
Cadmium	0.19	ma/L	0.0020	0.00061	5	01/21/16 10:22	01/22/16 10:47	7440-43-9	
Chromium	ND	ma/L	0.012	0.0042	5	01/21/16 10:22	01/22/16 10:47	7440-47-3	D3
Lead	17.4	mg/L	0.012	0.0057	25	01/21/16 10:22	01/22/16 11:19	7439-92-1	
6020A MET ICPMS, SPLP	Analytical	Method: EPA	6020A Prep	aration Me	thod: EF	PA 3020			
	Leachate I	Method/Date:	EPA 1312; 0	1/22/16 14	:41 Initi	al pH: ; Final pH:	7.22		
Antimony	ND	mg/L	0.0050	0.0015	1	01/24/16 16:47	01/25/16 14:08	7440-36-0	2M
Arsenic	ND	mg/L	0.0050	0.0011	1	01/24/16 16:47	01/25/16 14:08	7440-38-2	2M
Cadmium	ND	mg/L	0.00080	0.00024	1	01/24/16 16:47	01/25/16 14:08	7440-43-9	2M
Copper	0.011	mg/L	0.010	0.0021	1	01/24/16 16:47	01/25/16 14:08	7440-50-8	2M
Lead	0.051	mg/L	0.0010	0.00046	1	01/24/16 16:47	01/25/16 14:08	7439-92-1	2M
Zinc	0.20	mg/L	0.050	0.024	1	01/24/16 16:47	01/25/16 14:08	7440-66-6	2M
74704 Mercury SPI P	Analytical	Method: FPA	7470A Pren	aration Met	thod: FF	PA 7470A			
	Leachate I	Method/Date:	EPA 1312; 0	01/22/16 14	:41 Initi	al pH: ; Final pH:	7.22		
Mercury	ND	mg/L	0.00060	0.000065	1	01/24/16 18:50	01/24/16 21:09	7439-97-6	2M
7470A Mercury. TCLP	Analytical	Method: EPA	7470A Prep	aration Met	thod: EF	PA 7470A			
,,	Leachate I	Method/Date:	EPA 1311; 0	1/21/16 05	:03 Initi	al pH: 8.03; Final	pH: 1.62		
Mercury	ND	mg/L	0.00060	0.000065	1	01/21/16 09:00	01/21/16 18:56	7439-97-6	

REPORT OF LABORATORY ANALYSIS

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Sample: MS-21 (0.5-1)	Lab ID:	10326596013	Collected	d: 10/13/15	11:30	Received: 10/	17/15 09:30 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and are	adjusted for	percent mo	oisture, san	nple si	ze and any diluti	ons.		
Darameters	Results	Unite	Report	МП	DE	Prepared	Analyzed	CASNO	Qual
7471B Mercury	Analytical I	Method: EPA 7	471B Prep	aration Met	hod: El	PA 7471B			
Mercury	0.12	mg/kg	0.020	0.0069	1	10/25/15 18:54	10/25/15 19:57	7439-97-6	
Dry Weight	Analytical I	Method: ASTM	D2974						
Percent Moisture	5.9	%	0.10	0.10	1		10/28/15 15:29		

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Sample: MS-22 (0.5-1)	Lab ID:	103265960	14 Collected	d: 10/13/1	5 11:40	Received: 10/	17/15 09:30 Ma	atrix: Solid	
Results reported on a "dry we	eight" basis and are	e adjusted f	or percent mo	oisture, sa	mple si	ze and any diluti	ons.		
	Desette	11-26-	Report			Descent	Annaharad		
Parameters		Units		MDL		Prepared	Analyzed	CAS NO.	Quai
NWTPH-Dx GCS	Analytical	Method: NW	/TPH-Dx Prep	aration Me	thod: E	PA 3550			
Diesel Fuel Range	76.4	mg/kg	15.8	0.85	1	10/22/15 07:13	10/28/15 14:25	68334-30-5	
Motor Oil Range	932	mg/kg	105	18.9	10	10/22/15 07:13	10/28/15 15:57		
Surrogates									
n-Triacontane (S)	91	%.	50-150		1	10/22/15 07:13	10/28/15 14:25	638-68-6	
o-Terphenyl (S)	74	%.	50-150		1	10/22/15 07:13	10/28/15 14:25	84-15-1	
NWTPH-Gx GCV	Analytical	Method: NW	/TPH-Gx Prep	paration Me	ethod: N	WTPH-Gx			
TPH as Gas <i>Surrogates</i>	ND	mg/kg	5.2	2.6	1	10/26/15 14:07	10/26/15 19:46		1M
a,a,a-Trifluorotoluene (S)	86	%.	50-150		1	10/26/15 14:07	10/26/15 19:46	98-08-8	
6020A MET ICPMS	Analytical	Method: EP	A 6020A Prepa	aration Me	thod: EF	PA 3050			
Antimony	0.77	mg/kg	0.43	0.17	20	10/26/15 22:42	10/27/15 22:16	7440-36-0	
Arsenic	8.2	mg/kg	0.43	0.11	20	10/26/15 22:42	10/27/15 22:16	7440-38-2	
Cadmium	17.2	mg/kg	0.069	0.024	20	10/26/15 22:42	10/27/15 22:16	7440-43-9	
Chromium	3.0	mg/kg	0.43	0.16	20	10/26/15 22:42	10/27/15 22:16	7440-47-3	
Copper	103	mg/kg	0.86	0.28	20	10/26/15 22:42	10/27/15 22:16	7440-50-8	
Lead	2400	mg/kg	0.86	0.38	200	10/26/15 22:42	10/29/15 12:24	7439-92-1	
Nickel	3.0	mg/kg	0.43	0.13	20	10/26/15 22:42	10/27/15 22:16	7440-02-0	
Zinc	5400	mg/kg	432	116	2000	10/26/15 22:42	10/28/15 17:37	7440-66-6	
7471B Mercury	Analytical	Method: EP	A 7471B Prep	aration Me	thod: Ef	PA 7471B			
Mercury	0.42	mg/kg	0.021	0.0074	1	10/28/15 18:01	10/28/15 20:22	7439-97-6	
Dry Weight	Analytical	Method: AS	TM D2974						
Percent Moisture	5.9	%	0.10	0.10	1		10/28/15 15:29		

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Sample: MS-23 (0.5-1)	Lab ID:	1032659601	5 Collecte	d: 10/13/1	5 11:50	Received: 10/	17/15 09:30 Ma	atrix: Solid	
Results reported on a "dry wei	ight" basis and are	adjusted for	r percent m	oisture, sa	mple siz	ze and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS	Analytical	Method: NWT	TPH-Dx Prep	paration Me	ethod: El	PA 3550			
Diesel Fuel Range	ND	mg/kg	15.9	0.86	1	10/22/15 07:13	10/28/15 15:11	68334-30-5	
Motor Oil Range	139	mg/kg	10.6	1.9	1	10/22/15 07:13	10/28/15 15:11		
Surrogates									
n-Triacontane (S)	88	%.	50-150		1	10/22/15 07:13	10/28/15 15:11	638-68-6	
o-Terphenyl (S)	84	%.	50-150		1	10/22/15 07:13	10/28/15 15:11	84-15-1	
NWTPH-Gx GCV	Analytical	Method: NWT	PH-Gx Pre	paration Me	ethod: N	WTPH-Gx			
TPH as Gas	ND	mg/kg	5.2	2.6	1	10/26/15 14:07	10/26/15 20:06		
Surrogates	97	0/	E0 1E0		1	10/26/15 14:07	10/26/15 20:06	00 00 0	
a,a,a-minuorotoiuene (S)	87	70.	50-150		I	10/20/15 14:07	10/26/15 20:06	90-00-0	
6020A MET ICPMS	Analytical	Method: EPA	6020A Prep	aration Me	thod: EF	PA 3050			
Antimony	0.71	mg/kg	0.42	0.16	20	10/26/15 22:42	10/27/15 22:21	7440-36-0	
Arsenic	2.0	mg/kg	0.42	0.10	20	10/26/15 22:42	10/27/15 22:21	7440-38-2	
Cadmium	215	mg/kg	0.067	0.023	20	10/26/15 22:42	10/27/15 22:21	7440-43-9	
Chromium	0.91	mg/kg	0.42	0.16	20	10/26/15 22:42	10/27/15 22:21	7440-47-3	
Copper	57.7	mg/kg	0.83	0.27	20	10/26/15 22:42	10/27/15 22:21	7440-50-8	
Lead	3730	mg/kg	0.83	0.36	200	10/26/15 22:42	10/29/15 12:28	7439-92-1	
Nickel	1.8	mg/kg	0.42	0.13	20	10/26/15 22:42	10/27/15 22:21	7440-02-0	
Zinc	57200	mg/kg	2080	558	10000	10/26/15 22:42	10/28/15 17:47	7440-66-6	
6020A MET ICPMS, TCLP	Analytical	Method: EPA	6020A Prep	aration Me	thod: EF	PA 3020			
	Leachate I	Method/Date:	EPA 1311; 0	1/21/16 05	:03 Initi	al pH: 8.98; Final	pH: 2.98		
Arsenic	ND	mg/L	0.012	0.0028	5	01/21/16 10:22	01/22/16 10:41	7440-38-2	D3
Cadmium	0.35	ma/L	0.0020	0.00061	5	01/21/16 10:22	01/22/16 10:41	7440-43-9	
Chromium	ND	ma/L	0.012	0.0042	5	01/21/16 10:22	01/22/16 10:41	7440-47-3	D3
Lead	51.9	mg/L	0.050	0.023	100	01/21/16 10:22	01/22/16 11:16	7439-92-1	
6020A MET ICPMS, SPLP	Analytical	Method: EPA	6020A Prep	aration Me	thod: EF	PA 3020			
	Leachate I	Method/Date:	EPA 1312; 0	1/22/16 14	:41 Initi	al pH: ; Final pH:	7.25		
Antimony	ND	mg/L	0.0050	0.0015	1	01/24/16 16:47	01/25/16 14:10	7440-36-0	2M
Arsenic	ND	mg/L	0.0050	0.0011	1	01/24/16 16:47	01/25/16 14:10	7440-38-2	2M
Cadmium	ND	mg/L	0.00080	0.00024	1	01/24/16 16:47	01/25/16 14:10	7440-43-9	2M
Copper	ND	mg/L	0.010	0.0021	1	01/24/16 16:47	01/25/16 14:10	7440-50-8	2M
Lead	0.0043	mg/L	0.0010	0.00046	1	01/24/16 16:47	01/25/16 14:10	7439-92-1	2M
Zinc	ND	mg/L	0.050	0.024	1	01/24/16 16:47	01/25/16 14:10	7440-66-6	2M
74704 Mercury SPLP	Analytical	Method: EPA	7470A Pren	aration Me	thod: FF	PA 7470A			
r trock moroury, or Er	Leachate I	Method/Date:	EPA 1312; 0	1/22/16 14	:41 Initi	al pH: ; Final pH:	7.25		
Mercury	ND	mg/L	0.00060	0.000065	1	01/24/16 18:50	01/24/16 21:11	7439-97-6	2M
7470A Mercury, TCLP	Analytical	Method: EPA	7470A Pren	aration Me	thod: EF	PA 7470A			
, , , , , , , , , , , , , , , , , , ,	Leachate I	Method/Date:	EPA 1311; 0	1/21/16 05	:03 Initi	al pH: 8.98; Final	pH: 2.98		
Mercury	ND	mg/L	0.00060	0.000065	1	01/21/16 09:00	01/21/16 18:59	7439-97-6	

REPORT OF LABORATORY ANALYSIS

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Sample: MS-23 (0.5-1)	Lab ID:	10326596015	Collected	d: 10/13/15	5 11:50	Received: 10/	17/15 09:30 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and are	adjusted for	percent mo	oisture, san	nple si	ze and any diluti	ons.		
Devenuetere	Desults	l la ita	Report	MD		Dranarad			Qual
Parameters					DF		Analyzeu	CAS NO.	Quai
7471B Mercury	Analytical	Method: EPA 7	471B Prep	aration Met	hod: El	PA 7471B			
Mercury	0.31	mg/kg	0.020	0.0071	1	10/25/15 18:54	10/25/15 19:59	7439-97-6	
Dry Weight	Analytical	Method: ASTM	D2974						
Percent Moisture	5.6	%	0.10	0.10	1		10/28/15 15:30		

· ··

ANALYTICAL RESULTS

.

Project: 0504-100-00 VAN STONE Rev

- -

Pace Project No.: 10326596

- - --

....

-

Sample: MS-24 (0.5-1)	Lab ID:	103265960	16 Collected	d: 10/13/18	5 12:00	Received: 10/	17/15 09:30 Ma	atrix: Solid	
Results reported on a "dry we	eight" basis and are	adjusted f	or percent mo	oisture, sai	nple si	ize and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical	Method: EP	A 6020A Prepa	aration Met	hod: El	PA 3050			
Antimony	ND	mg/kg	0.37	0.14	20	10/26/15 22:42	10/27/15 22:25	7440-36-0	
Arsenic	4.0	mg/kg	0.37	0.090	20	10/26/15 22:42	10/27/15 22:25	7440-38-2	
Cadmium	7.7	mg/kg	0.059	0.020	20	10/26/15 22:42	10/27/15 22:25	7440-43-9	
Chromium	3.8	mg/kg	0.37	0.14	20	10/26/15 22:42	10/27/15 22:25	7440-47-3	
Copper	9.1	mg/kg	0.73	0.24	20	10/26/15 22:42	10/27/15 22:25	7440-50-8	
Lead	123	mg/kg	0.073	0.032	20	10/26/15 22:42	10/27/15 22:25	7439-92-1	
Nickel	4.2	mg/kg	0.37	0.11	20	10/26/15 22:42	10/27/15 22:25	7440-02-0	
Zinc	2130	mg/kg	36.7	9.8	200	10/26/15 22:42	10/28/15 18:01	7440-66-6	
7471B Mercury	Analytical	Method: EP	A 7471B Prep	aration Met	hod: E	PA 7471B			
Mercury	0.072	mg/kg	0.018	0.0063	1	10/25/15 18:54	10/25/15 20:02	7439-97-6	
Dry Weight	Analytical	Method: AS	TM D2974						
Percent Moisture	4.8	%	0.10	0.10	1		10/28/15 15:30		

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Sample: MS-25 (0.5-1)	Lab ID:	103265960	17 Collected	d: 10/13/1	5 12:10	Received: 10/	17/15 09:30 Ma	atrix: Solid	
Results reported on a "dry we	eight" basis and are	adjusted f	or percent mo	oisture, sai	nple si	ze and any diluti	ions.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical	Method: EP/	A 6020A Prepa	aration Met	hod: El	PA 3050			
Antimony	0.83	mg/kg	0.53	0.21	20	10/26/15 22:42	10/27/15 22:30	7440-36-0	
Arsenic	13.5	mg/kg	0.53	0.13	20	10/26/15 22:42	10/27/15 22:30	7440-38-2	
Cadmium	11.3	mg/kg	0.084	0.029	20	10/26/15 22:42	10/27/15 22:30	7440-43-9	
Chromium	1.1	mg/kg	0.53	0.20	20	10/26/15 22:42	10/27/15 22:30	7440-47-3	
Copper	3.2	mg/kg	1.1	0.34	20	10/26/15 22:42	10/27/15 22:30	7440-50-8	
Lead	272	mg/kg	0.11	0.046	20	10/26/15 22:42	10/27/15 22:30	7439-92-1	
Nickel	4.8	mg/kg	0.53	0.16	20	10/26/15 22:42	10/27/15 22:30	7440-02-0	
Zinc	1860	mg/kg	52.8	14.1	200	10/26/15 22:42	10/28/15 18:06	7440-66-6	
7471B Mercury	Analytical	Method: EP/	A 7471B Prep	aration Met	hod: El	PA 7471B			
Mercury	0.050	mg/kg	0.019	0.0065	1	10/25/15 18:54	10/25/15 20:04	7439-97-6	
Dry Weight	Analytical	Method: AS	TM D2974						
Percent Moisture	5.3	%	0.10	0.10	1		10/28/15 15:30		

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Sample: MS-26 (0.5-1)	Lab ID:	103265960	18 Collecte	ed: 10/13/1	5 12:20	Received: 10/	17/15 09:30 Ma	atrix: Solid	
Results reported on a "dry wei	ght" basis and are	e adjusted f	or percent m	oisture, sa	mple si	ze and any diluti	ions.		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical	Method: EP	A 6020A Prep	paration Me	thod: EF	PA 3050			
Antimony	3.2	mg/kg	0.42	0.16	20	10/26/15 22:42	10/27/15 22:35	7440-36-0	
Arsenic	9.4	mg/kg	0.42	0.10	20	10/26/15 22:42	10/27/15 22:35	7440-38-2	
Cadmium	105	mg/kg	0.067	0.023	20	10/26/15 22:42	10/27/15 22:35	7440-43-9	
Chromium	0.84	mg/kg	0.42	0.16	20	10/26/15 22:42	10/27/15 22:35	7440-47-3	
Copper	10.8	mg/kg	0.84	0.27	20	10/26/15 22:42	10/27/15 22:35	7440-50-8	
Lead	13900	mg/kg	21.0	9.1	5000	10/26/15 22:42	10/29/15 12:33	7439-92-1	
Nickel	2.9	mg/kg	0.42	0.13	20	10/26/15 22:42	10/27/15 22:35	7440-02-0	
Zinc	27400	mg/kg	1050	282	5000	10/26/15 22:42	10/29/15 12:33	7440-66-6	
6020A MET ICPMS, TCLP	Analytical	Method: EP	A 6020A Prep	paration Me	thod: EF	PA 3020			
	Leachate I	Method/Date	e: EPA 1311; (01/21/16 05	:03 Initi	al pH: 8.14; Final	pH: 4.64		
Arsenic	ND	mg/L	0.012	0.0028	5	01/21/16 10:22	01/22/16 10:53	7440-38-2	D3
Cadmium	0.56	mg/L	0.0020	0.00061	5	01/21/16 10:22	01/22/16 10:53	7440-43-9	
Chromium	ND	mg/L	0.012	0.0042	5	01/21/16 10:22	01/22/16 10:53	7440-47-3	D3
Lead	5.9	mg/L	0.0025	0.0011	5	01/21/16 10:22	01/22/16 10:53	7439-92-1	
6020A MET ICPMS, SPLP	Analytical	Method: EP	A 6020A Prep	paration Me	thod: EF	PA 3020			
	Leachate I	Method/Date	e: EPA 1312; (01/22/16 14	:41 Initi	al pH: ; Final pH:	7.71		
Antimony	ND	mg/L	0.0050	0.0015	1	01/24/16 16:47	01/25/16 14:13	7440-36-0	2M
Arsenic	ND	mg/L	0.0050	0.0011	1	01/24/16 16:47	01/25/16 14:13	7440-38-2	2M
Cadmium	0.00082	mg/L	0.00080	0.00024	1	01/24/16 16:47	01/25/16 14:13	7440-43-9	2M
Copper	ND	mg/L	0.010	0.0021	1	01/24/16 16:47	01/25/16 14:13	7440-50-8	2M
Lead	0.0031	mg/L	0.0010	0.00046	1	01/24/16 16:47	01/25/16 14:13	7439-92-1	2M
Zinc	ND	mg/L	0.050	0.024	1	01/24/16 16:47	01/25/16 14:13	7440-66-6	2M
7470A Mercury, SPLP	Analytical	Method: EP	A 7470A Prep	paration Me	thod: EF	PA 7470A			
	Leachate I	Method/Date	e: EPA 1312; (01/22/16 14	:41 Initi	ial pH: ; Final pH:	7.71		
Mercury	ND	mg/L	0.00060	0.000065	1	01/24/16 18:50	01/24/16 21:13	7439-97-6	2M
7470A Mercury, TCLP	Analytical Leachate I	Method: EP	A 7470A Prep e: EPA 1311; (oaration Me 01/21/16 05	thod: EF :03 Initi	PA 7470A al pH: 8.14; Final	pH: 4.64		
Mercury	ND	mg/L	0.00060	0.000065	1	01/21/16 09:00	01/21/16 19:01	7439-97-6	
7471B Mercury	Analytical	Method: EP	A 7471B Prep	paration Me	thod: EF	PA 7471B			
Mercury	0.056	mg/kg	0.019	0.0065	1	10/25/15 18:54	10/25/15 20:12	7439-97-6	
Dry Weight	Analytical	Method: AS	TM D2974						
Percent Moisture	5.0	%	0.10	0.10	1		10/28/15 15:30		

REPORT OF LABORATORY ANALYSIS

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Sample: MS-27 (0.5-1)	Lab ID:	103265960	19 Collecte	d: 10/13/1	5 12:30	Received: 10/	17/15 09:30 Ma	atrix: Solid	
Results reported on a "dry wei	ight" basis and are	e adjusted f	or percent m	oisture, saı	nple si	ize and any diluti	ons.		
_			Report						
Parameters	Results	Units		MDL		Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS	Analytical	Method: NW	/TPH-Dx Prep	paration Me	thod: E	PA 3550			
Diesel Fuel Range	ND	mg/kg	15.6	0.84	1	10/22/15 07:13	10/28/15 14:48	68334-30-5	
Motor Oil Range	110	mg/kg	10.4	1.9	1	10/22/15 07:13	10/28/15 14:48		
Surrogates		0/	50 450			40/00/45 07 40	40/00/45 44 40		
n-Triacontane (S)	//	%. %	50-150		1	10/22/15 07:13	10/28/15 14:48	638-68-6 84 15 1	
o-terprienyr (S)	65	70.	50-150		I	10/22/15 07.15	10/20/13 14.40	04-10-1	
NWTPH-Gx GCV	Analytical	Method: NW	/TPH-Gx Prej	paration Me	thod: N	IWTPH-Gx			
TPH as Gas	ND	mg/kg	5.0	2.5	1	10/26/15 14:07	10/26/15 20:26		
Surrogates	97	0/	50 150		1	10/26/15 14:07	10/26/15 20.26	00 00 0	
a,a,a-minuorototuene (S)	07	70.	50-150		I	10/20/15 14.07	10/20/15 20.20	90-00-0	
6020A MET ICPMS	Analytical	Method: EP	A 6020A Prep	aration Met	hod: El	PA 3050			
Antimony	ND	mg/kg	0.46	0.18	20	10/26/15 22:42	10/27/15 22:40	7440-36-0	
Arsenic	5.7	mg/kg	0.46	0.11	20	10/26/15 22:42	10/27/15 22:40	7440-38-2	
Cadmium	6.2	mg/kg	0.073	0.025	20	10/26/15 22:42	10/27/15 22:40	7440-43-9	
Chromium	3.0	mg/kg	0.46	0.17	20	10/26/15 22:42	10/27/15 22:40	7440-47-3	
Copper	8.6	mg/kg	0.91	0.30	20	10/26/15 22:42	10/27/15 22:40	7440-50-8	
Lead	608	mg/kg	0.91	0.40	200	10/26/15 22:42	10/29/15 12:38	7439-92-1	
Nickel	3.5	mg/kg	0.46	0.14	20	10/26/15 22:42	10/27/15 22:40	7440-02-0	
Zinc	3680	mg/kg	45.6	12.2	200	10/26/15 22:42	10/29/15 12:38	7440-66-6	
6020A MET ICPMS, TCLP	Analytical	Method: EP	A 6020A Prep	aration Met	hod: El	PA 3020			
	Leachate	Method/Date	e: EPA 1311; 0	1/21/16 05:	03 Init	ial pH: 8.76; Final	pH: 2.07		
Arsenic	ND	mg/L	0.012	0.0028	5	01/21/16 10:22	01/22/16 10:55	7440-38-2	D3
Cadmium	0.16	mg/L	0.0020	0.00061	5	01/21/16 10:22	01/22/16 10:55	7440-43-9	
Chromium	ND	mg/L	0.012	0.0042	5	01/21/16 10:22	01/22/16 10:55	7440-47-3	D3
Lead	4.8	mg/L	0.0025	0.0011	5	01/21/16 10:22	01/22/16 10:55	7439-92-1	
6020A MET ICPMS, SPLP	Analytical	Method: EP	A 6020A Prep	aration Met	hod: El	PA 3020			
	Leachate	Method/Date	e: EPA 1312; 0)1/22/16 14:	41 Init	ial pH: ; Final pH:	7.5		
Antimony	ND	mg/L	0.0050	0.0015	1	01/24/16 16:47	01/25/16 14:15	7440-36-0	2M
Arsenic	ND	mg/L	0.0050	0.0011	1	01/24/16 16:47	01/25/16 14:15	7440-38-2	2M
Cadmium	ND	mg/L	0.00080	0.00024	1	01/24/16 16:47	01/25/16 14:15	7440-43-9	2M
Copper	ND	mg/L	0.010	0.0021	1	01/24/16 16:47	01/25/16 14:15	7440-50-8	2M
Lead	0.021	mg/L	0.0010	0.00046	1	01/24/16 16:47	01/25/16 14:15	7439-92-1	2M
Zinc	0.13	mg/L	0.050	0.024	1	01/24/16 16:47	01/25/16 14:15	7440-66-6	2M
7470A Mercury, SPLP	Analytical	Method: EP	A 7470A Prep	aration Met	hod: El	PA 7470A			
•	Leachate	Method/Date	e: EPA 1312; 0	01/22/16 14:	41 Init	ial pH: ; Final pH:	7.5		
Mercury	ND	mg/L	0.00060	0.000065	1	01/24/16 18:50	01/24/16 21:15	7439-97-6	2M
7470A Mercury, TCLP	Analytical	Method: EP	A 7470A Prep	aration Met	hod: El	PA 7470A			
- *	Leachate	Method/Date	e: EPA 1311; 0	1/21/16 05:	03 Init	ial pH: 8.76; Final	pH: 2.07		
Mercury	ND	mg/L	0.00060	0.000065	1	01/21/16 09:00	01/21/16 19:04	7439-97-6	

REPORT OF LABORATORY ANALYSIS

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Sample: MS-27 (0.5-1)	Lab ID:	10326596019	Collected	I: 10/13/15	5 12:30	Received: 10/	17/15 09:30 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and are	e adjusted for	percent mo	isture, sar	nple si	ze and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
7471B Mercury	Analytical	Method: EPA 7	471B Prepa	aration Met	hod: El	PA 7471B			
Mercury	0.095	mg/kg	0.019	0.0066	1	10/25/15 18:54	10/25/15 20:14	7439-97-6	
Dry Weight	Analytical	Method: ASTM	1 D2974						
Percent Moisture	3.8	%	0.10	0.10	1		10/28/15 15:31		

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Sample: MS-28 (0.5-1)	Lab ID:	1032659602	20 Collecte	d: 10/13/15	5 12:40	Received: 10/	/17/15 09:30 Ma	atrix: Solid	
Results reported on a "dry wei	ight" basis and are	e adjusted f	or percent m	oisture, sar	mple s	ize and any dilut	ions.		
			Report		55			040 N	o 1
Parameters	Results	Units		MDL	F	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS	Analytical	Method: NW	TPH-Dx Pre	paration Me	thod: E	PA 3550			
Diesel Fuel Range	ND	mg/kg	15.5	0.84	1	10/22/15 07:13	10/28/15 15:34	68334-30-5	
Motor Oil Range	30.2	mg/kg	10.3	1.9	1	10/22/15 07:13	10/28/15 15:34		
Surrogates			/						
n-Triacontane (S)	76	%.	50-150		1	10/22/15 07:13	10/28/15 15:34	638-68-6	
o-Terphenyl (S)	87	%.	50-150		1	10/22/15 07:13	10/28/15 15:34	84-15-1	
NWTPH-Gx GCV	Analytical	Method: NW	TPH-Gx Pre	paration Me	thod: N	IWTPH-Gx			
TPH as Gas	ND	mg/kg	5.1	2.5	1	10/26/15 14:07	10/26/15 20:46		
Surrogates	85	0/_	50-150		1	10/26/15 14:07	10/26/15 20:46	08-08-8	
a,a,a- millorotototoene (3)	00	/0.	50-150		1	10/20/13 14.07	10/20/13 20.40	90-00-0	
6020A MET ICPMS	Analytical	Method: EP	A 6020A Prep	aration Met	hod: E	PA 3050			
Antimony	ND	mg/kg	0.40	0.16	20	10/26/15 22:42	10/27/15 22:45	7440-36-0	
Arsenic	1.5	mg/kg	0.40	0.097	20	10/26/15 22:42	10/27/15 22:45	7440-38-2	
Cadmium	2.4	mg/kg	0.064	0.022	20	10/26/15 22:42	10/27/15 22:45	7440-43-9	
Chromium	3.3	mg/kg	0.40	0.15	20	10/26/15 22:42	10/27/15 22:45	7440-47-3	
Copper	7.1	mg/kg	0.79	0.26	20	10/26/15 22:42	10/27/15 22:45	7440-50-8	
Lead	330	mg/kg	0.79	0.34	200	10/26/15 22:42	10/29/15 12:42	7439-92-1	
Nickel	3.2	mg/kg	0.40	0.12	20	10/26/15 22:42	10/27/15 22:45	7440-02-0	
Zinc	746	mg/kg	39.7	10.6	200	10/26/15 22:42	10/29/15 12:42	7440-66-6	
6020A MET ICPMS, TCLP	Analytical	Method: EP/	A 6020A Prep	aration Met	hod: E	PA 3020			
	Leachate	Method/Date	e: EPA 1311; C	1/21/16 05:	03 Init	ial pH: 8.56; Final	pH: 1.47		
Arsenic	ND	mg/L	0.012	0.0028	5	01/21/16 10:22	01/22/16 13:53	7440-38-2	
Cadmium	0.029	ma/L	0.0020	0.00061	5	01/21/16 10:22	01/22/16 13:53	7440-43-9	
Chromium	ND	ma/L	0.012	0.0042	5	01/21/16 10:22	01/22/16 13:53	7440-47-3	
Lead	1.9	mg/L	0.0025	0.0011	5	01/21/16 10:22	01/22/16 13:53	7439-92-1	
6020A MET ICPMS. SPLP	Analytical	Method: EP/	A 6020A Prep	aration Met	hod: E	PA 3020			
	Leachate	Method/Date	: EPA 1312; ()1/22/16 14:	41 Init	ial pH: ; Final pH:	7.77		
Antimony	ND	mg/L	0.0050	0.0015	1	01/24/16 16:47	01/25/16 14:18	7440-36-0	2M
Arsenic	ND	mg/L	0.0050	0.0011	1	01/24/16 16:47	01/25/16 14:18	7440-38-2	2M
Cadmium	ND	mg/L	0.00080	0.00024	1	01/24/16 16:47	01/25/16 14:18	7440-43-9	2M
Copper	ND	mg/L	0.010	0.0021	1	01/24/16 16:47	01/25/16 14:18	7440-50-8	2M
Lead	0.015	ma/L	0.0010	0.00046	1	01/24/16 16:47	01/25/16 14:18	7439-92-1	2M
Zinc	0.063	mg/L	0.050	0.024	1	01/24/16 16:47	01/25/16 14:18	7440-66-6	2M
74704 Mercury SPLP	Analytical	Method: EP	A 7470A Prer	aration Met	hod [.] E	PA 7470A			
	Leachate	Method/Date	e: EPA 1312; ()1/22/16 14:	41 Init	ial pH: ; Final pH:	7.77		
Mercury	ND	mg/L	0.00060	0.000065	1	01/24/16 18:50	01/24/16 21:17	7439-97-6	2M
7470A Mercury. TCLP	Analytical	Method: EP/	A 7470A Prec	aration Met	hod: E	PA 7470A			
,,	Leachate	Method/Date	e: EPA 1311; C	01/21/16 05:	03 Init	ial pH: 8.56; Final	pH: 1.47		
Mercury	ND	mg/L	0.00060	0.000065	1	01/21/16 09:00	01/21/16 19:06	7439-97-6	

REPORT OF LABORATORY ANALYSIS

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Sample: MS-28 (0.5-1)	Lab ID:	10326596020	Collected	d: 10/13/15	12:40	Received: 10/	17/15 09:30 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and are	adjusted for	percent mo	isture, san	nple si	ze and any diluti	ons.		
Paramotore	Poculto	Unite	Report	MDI	DE	Propored	Analyzod		Qual
I aldifieters					ы				
7471B Mercury	Analytical I	Method: EPA 7	471B Prepa	aration Metl	nod: EF	PA 7471B			
Mercury	0.028	mg/kg	0.018	0.0062	1	10/25/15 18:54	10/25/15 20:17	7439-97-6	
Dry Weight	Analytical I	Method: ASTM	D2974						
Percent Moisture	4.0	%	0.10	0.10	1		10/28/15 15:31		

Project:	0504-100	-00 VAN STONE Rev									
Pace Project No .:	10326596	3									
QC Batch:	GCV/14	560	Analysis	Method:	NV	NTPH-G	x				
QC Batch Method:	NWTPH	l-Gx	Analysis	Description	n: NV	NTPH-G	x Solid G	SCV			
Associated Lab Sar	nples: 1	0326596012, 10326596013,	1032659601	4, 103265	96015, 10)326596(019, 103	26596020			
METHOD BLANK:	2117867		Ma	trix: Solid							
Associated Lab Sar	nples: 1	0326596012, 10326596013,	1032659601	4, 103265	96015, 10)326596	019, 103	26596020			
_			Blank	Rep	orting						
Parar	neter	Units	Result	Li	imit	M	DL .	Analyze	ed	Qualifiers	_
TPH as Gas		mg/kg		ND	5.0		2.5	10/26/15 1	18:06		
a,a,a-Trifluorotoluer	ne (S)	%.		84	50-150			10/26/15 1	18:06		
METHOD BLANK:	2117868		Ma	trix: Solid							
METHOD BLANK: Associated Lab Sar	2117868 nples: 1	0326596012, 10326596013,	Ma 1032659601	trix: Solid 4, 103265	96015, 10)326596(019, 103	26596020			
METHOD BLANK: Associated Lab Sar	2117868 nples: 1	0326596012, 10326596013,	Ma 1032659607 Blank	trix: Solid 4, 103265 Rep	96015, 10 porting)326596	019, 103	26596020			
METHOD BLANK: Associated Lab Sar Parar	2117868 nples: 10 neter	0326596012, 10326596013, Units	Ma 103265960 Blank Result	trix: Solid 14, 103265 Rep	96015, 10 porting imit)326596(ME	019, 103 DL	26596020 Analyze	ed	Qualifiers	
METHOD BLANK: Associated Lab Sar Paran TPH as Gas	2117868 nples: 1 neter	0326596012, 10326596013, Units mg/kg	Ma 103265960 ⁷ Blank Result	trix: Solid 4, 103265 Rep Li ND	96015, 10 porting imit 5.0)3265960 ME	019, 103 DL 2.5	26596020 Analyzo 10/26/15 1	ed	Qualifiers	_
METHOD BLANK: Associated Lab Sar Paran TPH as Gas a,a,a-Trifluorotoluer	2117868 nples: 1 neter ne (S)	0326596012, 10326596013, Units mg/kg %.	Ma 103265960 ⁷ Blank Result	trix: Solid 4, 103265 Rep L ND 87	96015, 10 porting imit 5.0 50-150)326596(ME	019, 103 DL 2.5	26596020 Analyze 10/26/15 1 10/26/15 1	ed	Qualifiers	_
METHOD BLANK: Associated Lab Sar Parar TPH as Gas a,a,a-Trifluorotoluer	2117868 nples: 1 neter ne (S)	0326596012, 10326596013, Units mg/kg %.	Ma 1032659607 Blank Result	trix: Solid 4, 103265 Rep L ND 87	96015, 10 porting imit 5.0 50-150	03265960 ME	019, 103 DL 2.5	26596020 Analyza 10/26/15 1 10/26/15 1	ed	Qualifiers	_
METHOD BLANK: Associated Lab Sar Paran TPH as Gas a,a,a-Trifluorotoluer	2117868 nples: 1 neter ne (S) NTROL SA	0326596012, 10326596013, Units mg/kg %. MPLE & LCSD: 2117869	Ma 103265960 ² Blank Result	trix: Solid 14, 103265 Rep L ND 87 211	96015, 10 porting imit 5.0 50-150 17870	03265960 ME	019, 103 DL 2.5	26596020 Analyza 10/26/15 1 10/26/15 1	ed	Qualifiers	_
METHOD BLANK: Associated Lab Sar Parar TPH as Gas a,a,a-Trifluorotoluer LABORATORY COI	2117868 nples: 1 neter ne (S) NTROL SA	0326596012, 10326596013, Units mg/kg %. MPLE & LCSD: 2117869	Ma 103265960 ⁻⁷ Blank Result	trix: Solid 14, 103265 Rep L ND 87 211 LCS	96015, 10 porting imit 5.0 50-150 17870 LCSD)3265960 	019, 103 DL 2.5	26596020 Analyzo 10/26/15 1 10/26/15 1 % Rec	ed	Qualifiers	_
METHOD BLANK: Associated Lab Sar Paran TPH as Gas a,a,a-Trifluorotoluer LABORATORY CON Paran	2117868 nples: 1 neter ne (S) NTROL SA neter	0326596012, 10326596013, Units mg/kg %. MPLE & LCSD: 2117869 Units	Ma 103265960 Blank Result Spike Conc.	trix: Solid 4, 103265 Rep L ND 87 211 LCS Result	96015, 10 porting imit 5.0 50-150 17870 LCSD Result)326596 	019, 103 DL 2.5	26596020 Analyza 10/26/15 1 10/26/15 1 % Rec Limits	ed	Qualifiers Max RPD	Qualifiers
METHOD BLANK: Associated Lab Sar Paran TPH as Gas a,a,a-Trifluorotoluer LABORATORY COM Paran TPH as Gas	2117868 nples: 1 neter ne (S) NTROL SA neter	0326596012, 10326596013, Units mg/kg %. MPLE & LCSD: 2117869 Units mg/kg	Ma 103265960 Blank Result Spike Conc. 50	trix: Solid 4, 103265 Rep Li ND 87 211 LCS Result 45.1	96015, 10 porting imit 5.0 50-150 17870 LCSD Result 40.2	03265960 ME LCS % Rec 90	019, 103 DL 2.5 <u>% Rec</u> 80	26596020 Analyza 10/26/15 1 10/26/15 1 % Rec Limits 75-125	ed	Qualifiers Max RPD 20	Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	0504-10	00-00 VAN ST	ONE Rev											
Pace Project No.:	103265	96												
QC Batch:	MERP	/15804		Analys	is Method:	: 6	EPA 7470A							
QC Batch Method:	EPA 7	470A		Analys	is Descript	tion: 7	7470A Mercu	ry SPLP						
Associated Lab Sar	nples:	1032659600 1032659601	6, 10326596008, 8, 10326596019,	10326596 10326596	009, 1032 020	6596011, ⁻	10326596012	2, 10326	596013, 1	0326	596015,			
METHOD BLANK:	217965	0		N	latrix: Wa	ter								
Associated Lab Sar	nples:	1032659600 1032659601	6, 10326596008, 8, 10326596019,	10326596 10326596	009, 1032(020	6596011, ⁻	10326596012	2, 10326	596013, 10	0326	596015,			
				Blank	R	eporting								
Parar	neter		Units	Result	t	Limit	MDL		Analyze	d	Qua	alifiers		
Mercury			mg/L		ND	0.0006	0 0.00	0065 ()1/24/16 20	0:44				
METHOD BLANK:	217825	5		N	fatrix: Sol	id								
Associated Lab Sar	nples:	1032659600 1032659601	6, 10326596008, 8, 10326596019,	10326596 10326596	009, 1032 020	6596011, ⁻	10326596012	2, 10326	596013, 1	0326	596015,			
Doror	notor		Lipito	Blank	. R	eporting			Analyza	d	Our	lifioro		
	netei			Resul					Analyze	u		anners		
Mercury			mg/L		ND	0.0006	0 0.00	0065 ()1/24/16 2 ⁻	1:19				
LABORATORY CO	NTROL S	AMPLE: 2	179651											
				Spike	LCS	6	LCS	% F	Rec					
Parar	neter		Units	Conc.	Resu	ılt	% Rec	Lin	nits	Qua	lifiers			
Mercury			mg/L	.005	0	0.0056	111		80-120					
MATRIX SPIKE & M	ATRIX S		CATE: 21796	52		2179653	;							
				MS	MSD						_			
Paramete	er	Units	10326596011 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Re) C	% Rec Limits	RPD	Max RPD	Qual
Mercury		mg/L	ND	.005	.005	0.0049	0.0048	9	98	96	80-120	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	0504-100	0-00 VAN ST	ONE Rev										
Pace Project No .:	1032659	6											
QC Batch:	MERP/	15789		Analysi	is Method	: E	PA 7470A						
QC Batch Method:	EPA 74	70A		Analysi	is Descrip	tion: 7	470A Mercu	Iry TCLF	D C				
Associated Lab San	nples:	10326596006 10326596018	6, 10326596008, 3, 10326596019,	103265960 103265960	009, 1032 020	6596011, 1	032659601	2, 10326	6596013, 1	0326596015	,		
METHOD BLANK:	2178158			M	latrix: Wa	ater							
Associated Lab San	nples: 1	0326596006 0326596018	5, 10326596008, 3, 10326596019,	103265960 103265960	009, 1032 020	6596011, 1	032659601	2, 10326	6596013, 1	0326596015	3		
Paran	notor		Lipite	Blank	F	Reporting			Analyza	d 0	olifiore		
Faian	netei		Units "	Result					Analyze		ainers		
Mercury			mg/L		ND	0.00060) 0.00	0065	01/21/16 18	8:29			
METHOD BLANK:	2176745			M	latrix: Wa	ater							
Associated Lab San	nples: 1	0326596006 0326596018	6, 10326596008, 3, 10326596019,	103265960 103265960	009, 1032 020	6596011, 1	032659601	2, 10326	6596013, 1	0326596015	,		
_				Blank	F	Reporting							
Paran	neter		Units	Result	! 	Limit	MDL		Analyze	d Qi	alifiers		
Mercury			mg/L		ND	0.00060	0.00	0065	01/21/16 19	9:31			
METHOD BLANK:	2176746			M	latrix: Wa	ater							
Associated Lab San	nples: 1	0326596006 0326596018	6, 10326596008, 3, 10326596019,	103265960 103265960	009, 1032 020	6596011, 1	032659601	2, 10326	6596013, 1	0326596015	,		
_				Blank	F	Reporting							
Paran	neter		Units	Result	t 	Limit	MDL		Analyze	d Qı	alifiers		
Mercury			mg/L		ND	0.00060	0.00	0065	01/21/16 19	9:34			
LABORATORY COM	NTROL SA	AMPLE: 21	78159										
Paran	neter		Units	Spike Conc	LC: Resi	S ult	LCS % Rec	% Lir	Rec nits	Qualifiers			
Mercury			mg/L	.015		0.015	101		80-120	Qualifierte	-		
MATRIX SPIKE & N	1ATRIX SF		CATE: 217816	60 MS	MCD	2178161							
			10326596006	spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	er	Units	Result	Conc.	Conc.	Result	Result	% Re	c % Re	c Limits	RPD	RPD	Qual
Mercury		mg/L	ND	.015	.015	0.015	0.015		98	99 80-12) 1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	0504-100	-00 VAN S	ONE Rev										
Pace Project No.:	10326596	6											
QC Batch:	MERP/1	15083		Analys	is Method:	l	EPA 7471B						
QC Batch Method:	EPA 747	71B		Analys	is Descript	ion:	7471B Mercu	ry Solids					
Associated Lab San	nples: 1 1 1	032659600 032659601 032659601	3, 10326596004 0, 10326596011 8, 10326596019	, 10326596 , 10326596 , 10326596	005, 10326 012, 10326 020	6596006, 6596013,	10326596007 10326596015	7, 1032659 5, 1032659	6008, 1032 6016, 1032	26596009, 6596017,			
METHOD BLANK:	2114465			Ν	Aatrix: Soli	d							
Associated Lab San	nples: 1 1 1	032659600 032659601 032659601	3, 10326596004 0, 10326596011 8, 10326596019	, 10326596 , 10326596 , 10326596 , Blank	005, 10326 012, 10326 020	6596006, 6596013,	10326596007 10326596015	7, 1032659 5, 1032659	6008, 1032 6016, 1032	26596009, 6596017,			
Paran	neter		Units	Resul	t	Limit	MDL		Analyzed	Qua	alifiers		
Mercury			mg/kg		ND	0.01	8 0.0	0063 10/2	25/15 19:18	3		_	
LABORATORY COM	NTROL SA	MPLE: 2	114466										
Paran	neter		Units	Spike Conc.	LCS Resu	; lt	LCS % Rec	% Rec Limits	; Qı	ualifiers			
Mercury			mg/kg	.44		0.46	104	80	-120		-		
MATRIX SPIKE & M	IATRIX SP	IKE DUPLI	CATE: 211738	35		2117386	;						
			40000500000	MS	MSD					04 D			
Paramete	er	Units	10326596003 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Mercury		mg/kg	0.038	.49	.5	0.58	0.59	110	110	75-125	3	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	0504-100-00 VAN	STONE Rev										
Pace Project No.:	10326596											
QC Batch:	MERP/15112		Analysi	is Method:	E	PA 7471B						
QC Batch Method:	EPA 7471B		Analysi	is Descript	ion: 7	471B Mercu	ry Solids					
Associated Lab San	nples: 103265960	001, 10326596002,	, 103265960	014								
METHOD BLANK:	2117576		Μ	latrix: Soli	d							
Associated Lab San	nples: 103265960	001, 10326596002,	, 103265960	014								
			Blank	R	eporting							
Paran	neter	Units	Result	t	Limit	MDL	/	Analyzed	Qua	alifiers		
Mercury		mg/kg		ND	0.020	0.0	0070 10/2	28/15 20:12	2			
LABORATORY COM	NTROL SAMPLE:	2117577										
			Spike	LCS	;	LCS	% Red	;				
Paran	neter	Units	Conc.	Resu	lt	% Rec	Limits	Qı	alifiers			
Mercury		mg/kg	.44		0.49	111	80	-120		-		
MATRIX SPIKE & M	IATRIX SPIKE DUP	LICATE: 211757	78		2117579							
			MS	MSD								
		10326596014	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	er Unit	s Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Mercury	mg/k	ag 0.42	.53	.46	0.87	0.82	83	88	75-125	5	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

QC Batch:	MPRP/	58952		Analys	is Method:	: E	EPA 6020A						
QC Batch Method:	EPA 30	50		Analys	is Descrip	tion: 6	020A Solids	UPD4					
Associated Lab Sam	nples:	10326596003 10326596010 10326596017	8, 10326596004 9, 10326596011, 7, 10326596018	, 103265960 103265960 , 103265960	005, 1032 012, 1032 019, 1032	6596006, 1 6596013, 1 6596020	10326596007 10326596014	7, 103265 I, 103265	96008, 1032 96015, 1032	6596009, 6596016,			
METHOD BLANK:	2114415			Ν	latrix: Sol	id							
Associated Lab Sam	nples:	10326596003 10326596010 10326596017	8, 10326596004 9, 10326596011, 7, 10326596018	, 103265960 103265960 , 103265960	005, 1032 012, 1032 019, 1032	6596006, 1 6596013, 1 6596020	10326596007 10326596014	7, 103265 I, 103265	96008, 1032 96015, 1032	6596009, 6596016,			
Dorom	otor		Linita	Blank	. К	eporting			Applyzod	0	alifiara		
Paran	leter		Units	Result		Limit			Analyzeu		anners		
Antimony			mg/kg		ND	0.48	3	0.19 10	/27/15 21:08	}			
Arsenic			mg/kg		ND	0.48	3	0.12 10	/27/15 21:08	3			
Cadmium			mg/kg			0.076	5 U	0.19 10	/27/15 21:08	5			
Copper			mg/kg			0.40	5	0.10 10	/27/15 21:00 /27/15 21:00	2			
Lead			mg/kg		ND	0.90	5 0	0.31 10	/27/15 21:00	2			
Nickel			ma/ka		ND	0.000	3	0.14 10	/27/15 21:08	, }			
Zinc			mg/kg		ND	4.8	3	1.3 10	/27/15 21:08	3			
LABORATORY CON	ITROL SA	AMPLE: 21	14416	Spike	1 CS			% Re	90				
Param	neter		Units	Conc.	Resu	ılt	% Rec	Limit	is Qi	alifiers			
Antimony		·	ma/ka	18.7		18.9	101		0-120		-		
Arsenic			mg/kg	18.7		19.3	103	8	0-120				
Cadmium			mg/kg	18.7		18.8	101	8	0-120				
Chromium			mg/kg	18.7		19.2	103	8	0-120				
Copper			mg/kg	18.7		19.7	105	8	0-120				
Lead			mg/kg	18.7		18.7	100	8	0-120				
Nickel			mg/kg	18.7		19.6	105	8	0-120				
Zinc			mg/kg	18.7		19.6	105	8	0-120				
MATRIX SPIKE & M	ATRIX SI		ATE: 211820	00		2118201							
				MS	MSD								
			10326596003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	r	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony		mg/kg	ND	18.7	18.3	16.8	17.1	88	91	75-125	1	20	
Arsenic		mg/kg	14.4	18.7	18.3	46.3	37.3	171	125	75-125	22	20	M6,R1
Cadmium		mg/kg	3.6	18.7	18.3	23.8	30.1	108	3 145	75-125	23	20	M6,R1
Chromium		mg/kg	ND	18.7	18.3	19.9	22.6	105	5 122	75-125	13	20	
Copper		mg/kg	1.3	18.7	18.3	21.5	24.5	108	3 127	75-125	13	20	M6
Lead		mg/kg	58.9	18.7	18.3	85.6	109	143	3 274	75-125	24	20	M6,R1
Nickel		mg/kg	3.2	18.7	18.3	23.1	26.6	106	i 128	75-125	14	20	M6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

18.3

2060

2740

2780

6560

75-125

28

REPORT OF LABORATORY ANALYSIS

mg/kg

1540

18.7

Zinc

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

20 E,M6, R1

Analysis Method:

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

QC	Bato	ch:		
	_			

QC Batch Method:EPA 3050Associated Lab Samples:10326596001, 10326596002

MPRP/59169

Analysis Description: 6020A Solids UPD4

EPA 6020A

METHOD BLANK: 2119867

Associated Lab Samples: 10326596001, 10326596002

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Antimony	mg/kg	ND	0.47	0.18	10/29/15 08:51	
Arsenic	mg/kg	ND	0.47	0.12	10/29/15 08:51	
Cadmium	mg/kg	ND	0.075	0.026	10/29/15 08:51	
Chromium	mg/kg	ND	0.47	0.18	10/29/15 08:51	
Copper	mg/kg	ND	0.94	0.31	10/29/15 08:51	
Lead	mg/kg	ND	0.094	0.041	10/29/15 08:51	
Nickel	mg/kg	ND	0.47	0.14	10/29/15 08:51	
Zinc	mg/kg	ND	4.7	1.3	10/29/15 08:51	

Matrix: Solid

LABORATORY CONTROL SAMPLE: 2119868

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	mg/kg	19	19.6	103	80-120	
Arsenic	mg/kg	19	19.5	102	80-120	
Cadmium	mg/kg	19	20.8	109	80-120	
Chromium	mg/kg	19	20.6	108	80-120	
Copper	mg/kg	19	20.9	110	80-120	
Lead	mg/kg	19	21.0	110	80-120	
Nickel	mg/kg	19	21.3	112	80-120	
Zinc	mg/kg	19	20.7	108	80-120	

MATRIX SPIKE & MATRIX SI	PIKE DUPLICA	TE: 21208	31		2120832							
			MS	MSD								
	1	0326897001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/kg	0.38J	20.5	19.2	9.6	6.0	45	29	75-125	47	20	M6,R1
Arsenic	mg/kg	5.3	20.5	19.2	20.0	13.5	71	43	75-125	39	20	M6,R1
Cadmium	mg/kg	13.3	20.5	19.2	26.7	18.4	66	27	75-125	37	20	M6,R1
Chromium	mg/kg	95.6	20.5	19.2	97.1	65.3	7	-158	75-125	39	20	M6,R1
Copper	mg/kg	111	20.5	19.2	112	78.6	4	-169	75-125	35	20	M6,R1
Lead	mg/kg	13.2	20.5	19.2	27.8	18.7	71	28	75-125	39	20	M6,R1
Nickel	mg/kg	150	20.5	19.2	140	101	-49	-258	75-125	33	20	M6,R1
Zinc	mg/kg	269	20.5	19.2	191	133	-379	-707	75-125	36	20	M6,R1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

QC Batch:	MPRP/61043	Analysis	Method:	EPA 6020A			
QC Batch Method:	EPA 3020	Analysis	Description:	6020A TCLP UPD4			
Associated Lab Samp	les: 10326596006, 10326596018,	10326596008, 103265960 10326596019, 103265960	09, 10326596011 20	, 10326596012, 10326596013, 103265960)15,		
METHOD BLANK: 2	178154	Ma	trix: Water				
Associated Lab Samp	les: 10326596006,	10326596008, 103265960)9, 10326596011 20	, 10326596012, 10326596013, 103265960	015,		

105	20330010, 10320330013	Diamin	Dementing			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Arsenic	mg/L	ND	0.0025	0.00056	01/22/16 10:02	
Cadmium	mg/L	ND	0.00040	0.00012	01/22/16 10:02	
Chromium	mg/L	ND	0.0025	0.00084	01/22/16 10:02	
Lead	mg/L	ND	0.00050	0.00023	01/22/16 10:02	

METHOD BLANK: 2176745

Matrix: Water

Associated Lab Samples: 10326596006, 10326596008, 10326596009, 10326596011, 10326596012, 10326596013, 10326596015, 10326596018, 10326596019, 10326596020

Deremeter	Linita	Blank	Reporting	MDI	Analyzad	Qualifiara
Parameter	Units	Result	Limit	MDL	Analyzeu	Quaimers
Arsenic	mg/L	ND	0.012	0.0028	01/25/16 14:00	
Cadmium	mg/L	ND	0.0020	0.00061	01/25/16 14:00	
Chromium	mg/L	ND	0.012	0.0042	01/25/16 14:00	
Lead	mg/L	ND	0.0025	0.0011	01/25/16 14:00	

LABORATORY CONTROL SAMPLE: 2178155

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/L	.4	0.40	100	80-120	
Cadmium	mg/L	.4	0.42	104	80-120	
Chromium	mg/L	.4	0.42	105	80-120	
Lead	mg/L	.4	0.41	104	80-120	

ATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2178156 2178157												
		10326596006	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	mg/L	 ND	.4	.4	0.42	0.43	105	107	75-125	2	20	
Cadmium	mg/L	0.0011	.4	.4	0.49	0.52	99	106	75-125	6	20	
Chromium	mg/L	ND	.4	.4	0.41	0.43	103	108	75-125	5	20	
Lead	mg/L	0.042	.4	.4	0.56	0.60	97	107	75-125	7	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

QC Batch:	MPRP/61089		Analysis M	ethod:	EPA 6020A		
QC Batch Method:	EPA 3020		Analysis D	escription:	6020A SPLP U	PD4	
Associated Lab San	nples: 103265 103265	596006, 10326596008 596018, 10326596019	3, 10326596009, 9, 10326596020	10326596011,	10326596012,	10326596013,	10326596015,
METHOD BLANK:	2179645		Matri	x: Water			
Associated Lab San	nples: 103265 103265	596006, 10326596008 596018, 10326596019	3, 10326596009, 9, 10326596020	10326596011,	10326596012,	10326596013,	10326596015,
_			Blank	Reporting			
Paran	neter	Units	Result	Limit	MDL	Analyz	zed Qualifiers
Antimony		mg/L	NE	0.005	50 0.00	15 01/25/16	13:32
Arsenic		mg/L	NE	0.005	50 0.00	01/25/16	13:32
Cadmium		mg/L	NE	0.0008	0.000	01/25/16	13:32
Copper		mg/L	NE	0.01	10 0.00	01/25/16	13:32
Lead		mg/L	NE	0.001	10 0.000	46 01/25/16	13:32
Zinc		mg/L	NE	0.05	50 0.0	01/25/16	13:32
	2178255		Matri	x: Solid			
			math				
Associated Lab San	nples: 103265 103265	96006, 10326596008 96018, 10326596019	3, 10326596009, 9, 10326596020	10326596011,	10326596012,	10326596013,	10326596015,
Associated Lab San	nples: 103265 103265	596006, 10326596008 596018, 10326596019	3, 10326596009, 9, 10326596020 Blank	10326596011, Reporting	10326596012,	10326596013,	10326596015,
Associated Lab San Paran	nples: 103265 103265 neter	96006, 10326596008 96018, 10326596019 Units	3, 10326596009, 9, 10326596020 Blank Result	10326596011, Reporting Limit	10326596012, MDL	10326596013, Analyz	10326596015,
Associated Lab San Paran Antimony	nples: 103265 103265 neter	996006, 10326596008 996018, 10326596019 Units mg/L	3, 10326596009, 9, 10326596020 Blank Result NE	10326596011, Reporting Limit	10326596012, 	10326596013, Analyz 115 01/25/16	10326596015, zed Qualifiers 14:20
Associated Lab San Paran Antimony Arsenic	nples: 103265 103265 neter	996006, 10326596008 996018, 10326596019 	3, 10326596009, 9, 10326596020 Blank Result NE	10326596011, Reporting Limit 0 0.005 0 0.005	10326596012, <u>MDL</u> 50 0.00 50 0.00	10326596013, Analyz 115 01/25/16 111 01/25/16	10326596015, zed Qualifiers 14:20 14:20
Associated Lab San Paran Antimony Arsenic Cadmium	nples: 103265 103265 neter	996006, 10326596008 996018, 10326596019 	3, 10326596009, 9, 10326596020 Blank Result NE NE	10326596011, Reporting Limit 0 0.005 0 0.005 0 0.0005	10326596012, <u>MDL</u> 50 0.00 50 0.00 30 0.000	10326596013, Analyz 115 01/25/16 011 01/25/16 124 01/25/16	10326596015, 2ed Qualifiers 14:20 14:20 14:20
Associated Lab San Paran Antimony Arsenic Cadmium Copper	nples: 103265 103265 neter	996006, 10326596008 996018, 10326596019 	3, 10326596009, 9, 10326596020 Blank Result NE NE NE NE	10326596011, Reporting Limit 0 0.005 0 0.005 0 0.006 0 0.006 0 0.006	10326596012, <u>MDL</u> 50 0.00 50 0.00 30 0.000 10 0.00	10326596013, Analyz 115 01/25/16 111 01/25/16 124 01/25/16 121 01/25/16	10326596015, 2ed Qualifiers 14:20 14:20 14:20 14:20 14:20
Associated Lab San Paran Antimony Arsenic Cadmium Copper Lead	nples: 103265 103265 neter	996006, 10326596008 996018, 10326596019 	3, 10326596009, 9, 10326596020 Blank Result NE NE NE NE NE	10326596011, Reporting Limit 0 0.005 0 0.006 0 0.006 0 0.006 0 0.007 0 0.007	10326596012, <u>MDL</u> 50 0.00 50 0.00 50 0.00 10 0.00 10 0.00	10326596013, Analyz 115 01/25/16 111 01/25/16 124 01/25/16 121 01/25/16 124 01/25/16	10326596015, 2ed Qualifiers 14:20 14:20 14:20 14:20 14:20 14:20
Associated Lab San Paran Antimony Arsenic Cadmium Copper Lead Zinc	nples: 103265 103265 neter	996006, 10326596008 996018, 10326596019 	3, 10326596009, 9, 10326596020 Blank Result NE NE NE NE	10326596011, Reporting Limit 0 0.005 0 0.005 0 0.006 0 0.006 0 0.006 0 0.007 0 0.007 0 0.005	10326596012, <u>MDL</u> 50 0.00 50 0.00 50 0.00 10 0.00 50 0.00 50 0.00 50 0.00 50 0.00	10326596013, Analyz 115 01/25/16 111 01/25/16 124 01/25/16 121 01/25/16 124 01/25/16 124 01/25/16	10326596015, 2ed Qualifiers 14:20 14:20 14:20 14:20 14:20 14:20
Associated Lab San Paran Antimony Arsenic Cadmium Copper Lead Zinc LABORATORY COI	nples: 103265 103265 neter	996006, 10326596008 996018, 10326596019 	3, 10326596009, 9, 10326596020 Blank Result NE NE NE NE	10326596011, Reporting Limit 0 0.005 0 0.005 0 0.006 0 0.006 0 0.007 0 0.007 0 0.005	10326596012, <u>MDL</u> 50 0.00 50 0.00 50 0.00 10 0.00 50 0.00	10326596013, Analyz 115 01/25/16 111 01/25/16 124 01/25/16 121 01/25/16 146 01/25/16 124 01/25/16	10326596015, 2ed Qualifiers 14:20 14:20 14:20 14:20 14:20 14:20
Associated Lab San Paran Antimony Arsenic Cadmium Copper Lead Zinc LABORATORY COM	nples: 103265 103265 neter NTROL SAMPLE	996006, 10326596008 996018, 10326596019 	3, 10326596009, 9, 10326596020 Blank Result NE NE NE NE Spike	10326596011, Reporting Limit 0.005 0.005 0.0005 0.0005 0.0001 0.0005 0.005 0.0	10326596012, <u>MDL</u> 50 0.00 50 0.00 50 0.00 10 0.00 50 0.00 50 0.00 10 0.000 50 0.00 LCS	10326596013, Analyz 115 01/25/16 11 01/25/16 124 01/25/16 121 01/25/16 124 01/25/16 124 01/25/16 124 01/25/16 % Rec	10326596015, 2ed Qualifiers 14:20 14:20 14:20 14:20 14:20 14:20
Associated Lab San Paran Antimony Arsenic Cadmium Copper Lead Zinc LABORATORY COM	nples: 103265 103265 neter NTROL SAMPLE	596006, 10326596008 596018, 10326596018 	3, 10326596009, 9, 10326596020 Blank Result NE NE NE NE Spike Conc.	10326596011, Reporting Limit 0.005 0.005 0.005 0.0	10326596012, <u>MDL</u> 50 0.00 50 0.00 50 0.00 10 0.00 50 0.00 50 0.00 LCS % Rec	10326596013, Analyz 115 01/25/16 11 01/25/16 124 01/25/16 124 01/25/16 124 01/25/16 124 01/25/16 124 01/25/16 % Rec Limits	10326596015, red Qualifiers 14:20 14:20 14:20 14:20 14:20 14:20 Qualifiers
Associated Lab San Paran Antimony Arsenic Cadmium Copper Lead Zinc LABORATORY COM Paran Antimony	nples: 103265 103265 neter NTROL SAMPLE	596006, 10326596008 596018, 10326596019 0018, 10326596019 0018, 10326596019 0018 0018 0018 0018 0018 0018 0018 0	3, 10326596009, 9, 10326596020 Blank Result NE NE Spike Conc. .08	10326596011, Reporting Limit 0 0.005 0 0.005 0 0.006 0 0.007 0 0.007 0 0.005 LCS Result 0.088	10326596012, <u>MDL</u> 50 0.00 50 0.00 50 0.00 10 0.00 50 0.00 50 0.00 LCS % Rec 110	10326596013, Analyz 115 01/25/16 11 01/25/16 124 01/25/16 124 01/25/16 124 01/25/16 124 01/25/16 124 01/25/16 124 01/25/16 125/16 126 01/25/16 127 01/25/16 128 01/25/16 129 01/25/16 1	10326596015, 2ed Qualifiers 14:20 14:20 14:20 14:20 14:20 14:20 Qualifiers
Associated Lab San Paran Antimony Arsenic Cadmium Copper Lead Zinc LABORATORY COM Paran Antimony Arsenic	nples: 103265 103265 neter NTROL SAMPLE neter	596006, 10326596008 596018, 10326596018	3, 10326596009, 9, 10326596020 Blank Result NE NE Spike Conc. .08 .08	10326596011, Reporting Limit 0 0.005 0 0.005 0 0.006 0 0.007 0 0.007 0 0.007 LCS Result 0.088 0.087	10326596012, <u>MDL</u> 50 0.00 50 0.00 50 0.00 10 0.00 50 0.00 50 0.00 LCS % Rec 110 109	10326596013, Analyz 115 01/25/16 11 01/25/16 124 01/25/16 124 01/25/16 124 01/25/16 124 01/25/16 124 01/25/16 124 01/25/16 125/16 126 01/25/16 127 01/25/16 128 01/25/16 129 01/25/16 129 01/25/16 120 01/25/16 120 01/25/16 120 01/25/16 121 01/25/16 121 01/25/16 122 01/25/16 124 01/25/16 124 01/25/16 125 01/25/16 124 01/25/16 125 01/25/16 125 01/25/16 126 01/25/16 127 01/25/16 127 01/25/16 127 01/25/16 127 01/25/16 128 01/25/16 129 01/25/16 129 01/25/16 120 01/25/16 120 01/25/16 121 01/25/16 121 01/25/16 122 01/25/16 124 01/25/16 124 01/25/16 124 01/25/16 124 01/25/16 125 01/25/16 124 01/25/16 124 01/25/16 124 01/25/16 124 01/25/16 124 01/25/16 124 01/25/16 125 01/25/16 125 01/25/16 126 01/25/16 127 01/25/16 127 01/25/16 127 01/25/16 127 01/25/16 127 01/25/16 127 01/25/16 128 01/25/16 128 01/25/16 129 01/25/16 129 01/25/16 120 01/25/16 1	10326596015, 2ed Qualifiers 14:20 14:20 14:20 14:20 14:20 14:20 Qualifiers
Associated Lab San Paran Antimony Arsenic Cadmium Copper Lead Zinc LABORATORY COM Paran Antimony Arsenic Cadmium	nples: 103265 103265 neter NTROL SAMPLE	596006, 10326596008 596018, 10326596018 Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	3, 10326596009, 9, 10326596020 Blank Result NE NE Spike Conc. .08 .08 .08	10326596011, Reporting Limit 0 0.005 0 0.005 0 0.006 0 0.007 0 0.007 0 0.088 0.087 0.088	10326596012, <u>MDL</u> 50 0.00 50 0.00 50 0.00 10 0.00 50 0.00 50 0.00 50 0.00 50 0.00 10 0.000 50 0.00 10 0.000 50 0.00 10 0.000 10 0.0000 10 0.00000 10 0.00000 10 0.0000 10 0.0000 10 0.0000	10326596013, Analyz 115 01/25/16 11 01/25/16 124 01/25/16 125 01/25/16 126 01/25/16 127 01/25/16 127 01/25/16 128 01/25/16 129 01/25/16 129 01/25/16 120 01/25/16 120 01/25/16 121 01/25/16 121 01/25/16 121 01/25/16 122 01/25/16 124 01/25/16 124 01/25/16 125 01/25/16 124 01/25/16 125 01/25/16 125 01/25/16 126 01/25/16 127 01/25/16 127 01/25/16 127 01/25/16 128 01/25/16 129 01/25/16 129 01/25/16 120 01/25	10326596015, 2ed Qualifiers 14:20 14:20 14:20 14:20 14:20 14:20 Qualifiers
Associated Lab San Paran Antimony Arsenic Cadmium Copper Lead Zinc LABORATORY COM Paran Antimony Arsenic Cadmium Copper	nples: 103265 103265 neter NTROL SAMPLE	596006, 10326596008 596018, 10326596018	3, 10326596009, 9, 10326596020 Blank Result NE NE Spike Conc. .08 .08 .08 .08 .08	10326596011, Reporting Limit 0 0.005 0 0.005 0 0.006 0 0.007 0 0.007 0 0.088 0.087 0.088 0.089	10326596012, <u>MDL</u> 50 0.00 50 0.00 50 0.00 10 0.00 50 0.00 50 0.00 50 0.00 10 0.000 50 0.00 10 0.000 50 0.00 10 0.000 10 0.0000 10 0.00000 10 0.0000 10 0.00000 10 0.000	10326596013, Analyz 115 01/25/16 11 01/25/16 124 01/25	10326596015, 2ed Qualifiers 14:20 14:20 14:20 14:20 14:20 14:20 Qualifiers
Associated Lab San Paran Antimony Arsenic Cadmium Copper Lead Zinc LABORATORY COM Paran Antimony Arsenic Cadmium Copper Lead	nples: 103265 103265 neter NTROL SAMPLE	596006, 10326596008 596018, 10326596018	3, 10326596009, 9, 10326596020 Blank Result NE NE Spike Conc. .08 .08 .08 .08 .08 .08 .08	10326596011, Reporting Limit 0 0.005 0 0.005 0 0.006 0 0.006 0 0.007 0 0.007 0 0.088 0.087 0.088 0.089 0.090	10326596012, <u>MDL</u> 50 0.00 50 0.00	10326596013, Analyz 115 01/25/16 11 01/25/16 124 01/25	10326596015, 2ed Qualifiers 14:20 14:20 14:20 14:20 14:20 14:20 Qualifiers

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2179647 2179648												
100005			MS	MSD								
		10326596009	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	mg/L	ND	.08	.08	0.095	0.087	118	108	75-125	8	20	
Arsenic	mg/L	ND	.08	.08	0.093	0.087	115	108	75-125	7	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2179647 2179648												
		10326596009	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Cadmium	mg/L	ND	.08	.08	0.093	0.086	116	108	75-125	7	20	
Copper	mg/L	ND	.08	.08	0.092	0.085	115	106	75-125	8	20	
Lead	mg/L	ND	.08	.08	0.095	0.086	118	107	75-125	9	20	
Zinc	mg/L	ND	.08	.08	ND	ND	115	102	75-125		20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	0504-100-00 VAN	N STONE Rev							
Pace Project No.:	10326596								
QC Batch:	MPRP/59178		Analysis Meth	nod: A	ASTM D2974				
QC Batch Method:	ASTM D2974		Analysis Desc	cription: [Dry Weight/Pe	rcent Moist	ure		
Associated Lab Sar	nples: 1032659 1032659 1032659	6001, 10326596002 6008, 10326596009 6015, 10326596016	, 10326596003, 10 , 10326596010, 10 , 10326596017, 10)326596004, ⁻)326596011, ⁻)326596018, ⁻	10326596005, 10326596012, 10326596019,	10326596 10326596 10326596	006, 1032 013, 1032 020	26596007, 26596014,	
SAMPLE DUPLICA	TE: 2120354								
			10326596004	Dup		Ν	lax		
Paran	neter	Units	Result	Result	RPD	R	PD	Qualifiers	
Percent Moisture		%	5.2	4.9	9	4	30		
SAMPLE DUPLICA	TE: 2120355								
_			10326596020	Dup		N	lax	0 11/1	
Paran	neter	Units	Result	Result	RPD	R	чD	Qualifiers	
Percent Moisture		%	4.0	3.8	8	6	30		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	0504-100-00 VAN	STONE Rev						
Pace Project No.:	10326596							
QC Batch:	MT/21175		Analysis M	ethod:	Modified Sob	ek 3.2		
QC Batch Method:	Modified Sobek	3.2	Analysis D	escription:	Sobek Neutra	alization Potentia	I	
Associated Lab San	nples: 10326596	001, 10326596002	, 10326596003,	10326596004,	1032659600	5, 10326596009,	1032659601	0
METHOD BLANK:	2118027		Matri	x: Solid				
Associated Lab San	nples: 10326596	001, 10326596002	, 10326596003, Blank	10326596004, Reporting	1032659600	5, 10326596009,	1032659601	0
Paran	neter	Units	Result	Limit	MDL	Analyz	zed C	Jualifiers
Neutralization Poter	tial	tons/1000	NE	0.5	0	0.50 10/28/15	10:27	
LABORATORY CON	ITROL SAMPLE:	2118028						
_			Spike	LCS	LCS	% Rec		
Paran	neter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Neutralization Poter	tial	tons/1000	43.3	43.7	101	70-130		
SAMPLE DUPLICAT	TE: 2118029							
			10326596009	Dup		Max		
Paran	neter	Units	Result	Result	RPD	RPD	Qual	ifiers
Neutralization Poter	tial	tons/1000	92.6	<u> </u>	9	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

OC Batch:	MT/21174
-	

QC Batch:	MT/21	174		Analysis M	ethod:	Modified Sobel	x 3.2	
QC Batch Method:	Modifi	ed Sobek 3.2		Analysis De	escription:	Sobek Extracta	able Sulfur	
Associated Lab Samp	oles:	10326596001,	10326596002,	10326596003,	10326596004,	10326596005,	10326596009,	10326596010

 METHOD BLANK:
 2118022
 Matrix:
 Solid

 Associated Lab Samples:
 10326596001, 10326596002, 10326596003, 10326596004, 10326596005, 10326596009, 10326596010

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Sulfur, HCI Extractable	% (w/w)	ND	0.050	0.018	10/29/15 06:20	
Sulfur, HNO3 Extractable	% (w/w)	ND	0.050	0.018	10/29/15 06:20	
Sulfur, Hot Water Extractable	% (w/w)	ND	0.050	0.018	10/29/15 06:20	
Sulfur, Residual	% (w/w)	ND	0.050	0.018	10/29/15 06:20	
Total Sulfur	% (w/w)	ND	0.050	0.018	10/29/15 06:20	
LABORATORY CONTROL SAMPLE:	2118023					
		Spike	LCS L	.CS %	6 Rec	
Parameter	Units	Conc.	Result %	Rec L	_imits Qua	alifiers

 Total Sulfur
 % (w/w)
 .89
 0.860
 97
 90-110

	0110001
SAIVIPLE	2118024

		10326596002	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Sulfur, HCI Extractable	% (w/w)	ND	ND		20	
Sulfur, HNO3 Extractable	% (w/w)	ND	ND		20	
Sulfur, Hot Water Extractable	% (w/w)	ND	ND		20	
Sulfur, Residual	% (w/w)	ND	.0339J		20	
Total Sulfur	% (w/w)	ND	.0344J		20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

QC Batch:	OEXT/31331
QC Batch Method:	EPA 3550

Analysis Method:

Analysis Description: NWTPH-Dx GCS

NWTPH-Dx

Associated Lab Samples: 10326596012, 10326596013, 10326596014, 10326596015, 10326596019, 10326596020

METHOD BLANK: 2114511 Matrix: Solid Associated Lab Samples: 10326596012, 10326596013, 10326596014, 10326596015, 10326596019, 10326596020

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Diesel Fuel Range	mg/kg	ND	15.0	0.81	10/28/15 12:07	
Motor Oil Range	mg/kg	ND	10.0	1.8	10/28/15 12:07	
n-Triacontane (S)	%.	83	50-150		10/28/15 12:07	
o-Terphenyl (S)	%.	85	50-150		10/28/15 12:07	

LABORATORY CONTROL SAMPLE:	2114512
	2111012

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Diesel Fuel Range	mg/kg	50	38.8	78	50-150	
Motor Oil Range	mg/kg	50	47.3	95	50-150	
n-Triacontane (S)	%.			89	50-150	
o-Terphenyl (S)	%.			91	50-150	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2114513 2114514												
Parameter	Units	10326596012 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Diesel Fuel Range	ma/ka		53.2	53.2	63.5	62.6	94	92	50-150	1	30	
Motor Oil Range	mg/kg	91.3	53.2	53.2	151	161	112	131	50-150	7	30	
n-Triacontane (S)	%.						88	83	50-150			
o-Terphenyl (S)	%.						92	88	50-150			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	0504-100-00 VAN	STONE Rev										
Pace Project No .:	10326596											
QC Batch:	WET/25179		Analys	is Method:	E	PA 7196A						
QC Batch Method:	EPA 3060A		Analys	is Descript	tion: 7	196 Chromi	ium, Hexava	alent				
Associated Lab Sam	ples: 10326596	001, 10326596002	2									
METHOD BLANK:	1409262		Ν	latrix: Soli	id							
Associated Lab Sam	ples: 10326596	001, 10326596002	2									
5			Blank	R	eporting				0			
Param	eter	Units	Resul	t	Limit	MDL	<i></i>	Analyzed	Qua	alifiers		
Chromium, Hexavale	ent	mg/kg		ND	2.0		0.43 10/2	28/15 11:04				
LABORATORY CON	TROL SAMPLE:	1409263										
			Spike	LCS	5	LCS	% Rec	:				
Param	eter	Units	Conc.	Resu	ılt	% Rec	Limits	Qı	alifiers			
Chromium, Hexavale	ent	mg/kg	989		940	95	80	-120				
MATRIX SPIKE & M	ATRIX SPIKE DUF	PLICATE: 14092	64 MS	MSD	1409265							
Parameter	Uni	10326596001 its Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chromium, Hexavale	nt mg/	kg ND	1020	1010	921	910	90	90	75-125	1	20	
MATRIX SPIKE & M	ATRIX SPIKE DUF	PLICATE: 14092	:66		1409267							
			MS	MSD								
Parameter	Uni	10326596001 its Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chromium, Hexavale	nt mg/	kg ND	40.5	40.5	32.1	32.3	79	79	75-125	1	20	
SAMPLE DUPLICAT	E: 1409268											
			10326596	6002	Dup			Max				
Param	eter	Units	Result	t	Result	RPD		RPD	Qualifie	ers		
Chromium, Hexavale	ent	mg/kg		ND	ND			20		_		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

QUALIFIERS

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-I Pace Analytical Services - Indianapolis

- PASI-M Pace Analytical Services Minneapolis
- PASI-MT Pace Analytical Services Montana

ANALYTE QUALIFIERS

- 1M Sample preserved in lab; results are from sample aliquot taken from a glass jar with headspace.
- 2M The temperature in the TCLP/ZHE extraction area was outside the method required range of 21-25 degrees C.
- D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
- E Analyte concentration exceeded the calibration range. The reported result is estimated.
- M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.
- R1 RPD value was outside control limits.

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10326596001	LT-NS-1 (0.5-1)		ASB/6866		
10326596002	LT-NS-2 (0.5-1)		ASB/6866		
10326596003	MS-36 (3-5)		ASB/6866		
10326596004	MS-29 (6-7)		ASB/6866		
10326596005	MS-35 (6-8)		ASB/6866		
10326596006	MS-34 (4-5)		ASB/6866		
10326596007	MS-33 (4-5)		ASB/6866		
10326596008	MS-32 (4-5)		ASB/6866		
10326596009	MS-30 (4-5)		ASB/6866		
10326596010	MS-31 (6-8)		ASB/6866		
10326596012	MS-20 (0.5-1)	EPA 3550	OEXT/31331	NWTPH-Dx	GCSV/17118
10326596013	MS-21 (0.5-1)	EPA 3550	OEXT/31331	NWTPH-Dx	GCSV/17118
10326596014	MS-22 (0.5-1)	EPA 3550	OEXT/31331	NWTPH-Dx	GCSV/17118
10326596015	MS-23 (0.5-1)	EPA 3550	OEXT/31331	NWTPH-Dx	GCSV/17118
10326596019	MS-27 (0.5-1)	EPA 3550	OEXT/31331	NWTPH-Dx	GCSV/17118
10326596020	MS-28 (0.5-1)	EPA 3550	OEXT/31331	NWTPH-Dx	GCSV/17118
10326596012	MS-20 (0.5-1)	NWTPH-Gx	GCV/14560	NWTPH-Gx	GCV/14561
10326596013	MS-21 (0.5-1)	NWTPH-Gx	GCV/14560	NWTPH-Gx	GCV/14561
10326596014	MS-22 (0.5-1)	NWTPH-Gx	GCV/14560	NWTPH-Gx	GCV/14561
10326596015	MS-23 (0.5-1)	NWTPH-Gx	GCV/14560	NWTPH-Gx	GCV/14561
10326596019	MS-27 (0.5-1)	NWTPH-Gx	GCV/14560	NWTPH-Gx	GCV/14561
10326596020	MS-28 (0.5-1)	NWTPH-Gx	GCV/14560	NWTPH-Gx	GCV/14561
10326596001	LT-NS-1 (0.5-1)	EPA 3050	MPRP/59169	EPA 6020A	ICPM/27191
10326596002	LT-NS-2 (0.5-1)	EPA 3050	MPRP/59169	EPA 6020A	ICPM/27191
10326596003	MS-36 (3-5)	EPA 3050	MPRP/58952	EPA 6020A	ICPM/27156
10326596004	MS-29 (6-7)	EPA 3050	MPRP/58952	EPA 6020A	ICPM/27156
10326596005	MS-35 (6-8)	EPA 3050	MPRP/58952	EPA 6020A	ICPM/27156
10326596006	MS-34 (4-5)	EPA 3050	MPRP/58952	EPA 6020A	ICPM/27156
10326596007	MS-33 (4-5)	EPA 3050	MPRP/58952	EPA 6020A	ICPM/27156
10326596008	MS-32 (4-5)	EPA 3050	MPRP/58952	EPA 6020A	ICPM/27156
10326596009	MS-30 (4-5)	EPA 3050	MPRP/58952	EPA 6020A	ICPM/27156
10326596010	MS-31 (6-8)	EPA 3050	MPRP/58952	EPA 6020A	ICPM/27156
10326596011	MS-19 (0.5-1)	EPA 3050	MPRP/58952	EPA 6020A	ICPM/27156
10326596012	MS-20 (0.5-1)	EPA 3050	MPRP/58952	EPA 6020A	ICPM/27156
10326596013	MS-21 (0.5-1)	EPA 3050	MPRP/58952	EPA 6020A	ICPM/27156
10326596014	MS-22 (0.5-1)	EPA 3050	MPRP/58952	EPA 6020A	ICPM/27156
10326596015	MS-23 (0.5-1)	EPA 3050	MPRP/58952	EPA 6020A	ICPM/27156
10326596016	MS-24 (0.5-1)	EPA 3050	MPRP/58952	EPA 6020A	ICPM/27156
10326596017	MS-25 (0.5-1)	EPA 3050	MPRP/58952	EPA 6020A	ICPM/27156
10326596018	MS-26 (0.5-1)	EPA 3050	MPRP/58952	EPA 6020A	ICPM/27156
10326596019	MS-27 (0.5-1)	EPA 3050	MPRP/58952	EPA 6020A	ICPM/27156
10326596020	MS-28 (0.5-1)	EPA 3050	MPRP/58952	EPA 6020A	ICPM/27156
10326596006	MS-34 (4-5)	EPA 3020	MPRP/61043	EPA 6020A	ICPM/28170
10326596008	MS-32 (4-5)	EPA 3020	MPRP/61043	EPA 6020A	ICPM/28170
10326596009	MS-30 (4-5)	EPA 3020	MPRP/61043	EPA 6020A	ICPM/28170
10326596011	MS-19 (0.5-1)	EPA 3020	MPRP/61043	EPA 6020A	ICPM/28170

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Analytical Sample ID **QC Batch Method** Lab ID QC Batch **Analytical Method** Batch 10326596012 MS-20 (0.5-1) MPRP/61043 EPA 6020A ICPM/28170 EPA 3020 10326596013 MS-21 (0.5-1) EPA 3020 MPRP/61043 EPA 6020A ICPM/28170 10326596015 MS-23 (0.5-1) EPA 3020 MPRP/61043 EPA 6020A ICPM/28170 10326596018 MS-26 (0.5-1) EPA 3020 MPRP/61043 EPA 6020A ICPM/28170 MS-27 (0.5-1) 10326596019 EPA 3020 MPRP/61043 EPA 6020A ICPM/28170 10326596020 MS-28 (0.5-1) EPA 3020 MPRP/61043 EPA 6020A ICPM/28170 10326596006 MS-34 (4-5) EPA 3020 MPRP/61089 EPA 6020A ICPM/28185 10326596008 MS-32 (4-5) EPA 3020 MPRP/61089 EPA 6020A ICPM/28185 10326596009 MS-30 (4-5) EPA 3020 MPRP/61089 EPA 6020A ICPM/28185 10326596011 MS-19 (0.5-1) EPA 3020 MPRP/61089 EPA 6020A ICPM/28185 10326596012 MS-20 (0.5-1) EPA 3020 MPRP/61089 EPA 6020A ICPM/28185 10326596013 MS-21 (0.5-1) EPA 3020 MPRP/61089 EPA 6020A ICPM/28185 MS-23 (0.5-1) EPA 3020 MPRP/61089 EPA 6020A 10326596015 ICPM/28185 MS-26 (0.5-1) 10326596018 EPA 3020 MPRP/61089 EPA 6020A ICPM/28185 10326596019 MS-27 (0.5-1) FPA 3020 MPRP/61089 FPA 6020A ICPM/28185 MS-28 (0.5-1) MPRP/61089 EPA 6020A 10326596020 EPA 3020 ICPM/28185 10326596006 MS-34 (4-5) EPA 7470A MERP/15804 EPA 7470A MERC/18511 10326596008 MS-32 (4-5) EPA 7470A MERP/15804 EPA 7470A MERC/18511 10326596009 MS-30 (4-5) EPA 7470A MERP/15804 EPA 7470A MERC/18511 10326596011 MS-19 (0.5-1) EPA 7470A MERP/15804 EPA 7470A MERC/18511 10326596012 MS-20 (0.5-1) EPA 7470A MERP/15804 EPA 7470A MERC/18511 MS-21 (0.5-1) 10326596013 EPA 7470A MERP/15804 EPA 7470A MERC/18511 MS-23 (0.5-1) 10326596015 EPA 7470A MERP/15804 EPA 7470A MERC/18511 MS-26 (0.5-1) 10326596018 MERC/18511 EPA 7470A MERP/15804 EPA 7470A MS-27 (0.5-1) 10326596019 MERP/15804 EPA 7470A MERC/18511 FPA 7470A MS-28 (0.5-1) 10326596020 MERP/15804 EPA 7470A MERC/18511 EPA 7470A 10326596006 MS-34 (4-5) EPA 7470A MERP/15789 EPA 7470A MERC/18492 10326596008 MS-32 (4-5) EPA 7470A MERP/15789 EPA 7470A MERC/18492 10326596009 MS-30 (4-5) EPA 7470A MERP/15789 EPA 7470A MERC/18492 10326596011 MS-19 (0.5-1) MERP/15789 EPA 7470A MERC/18492 EPA 7470A 10326596012 MS-20 (0.5-1) EPA 7470A MERP/15789 EPA 7470A MERC/18492 10326596013 MS-21 (0.5-1) EPA 7470A MERP/15789 EPA 7470A MERC/18492 10326596015 MS-23 (0.5-1) EPA 7470A MERP/15789 EPA 7470A MERC/18492 10326596018 MS-26 (0.5-1) EPA 7470A MERP/15789 EPA 7470A MERC/18492 10326596019 MS-27 (0.5-1) MERP/15789 EPA 7470A MERC/18492 EPA 7470A 10326596020 MS-28 (0.5-1) MERP/15789 EPA 7470A MERC/18492 EPA 7470A 10326596001 LT-NS-1 (0.5-1) EPA 7471B MERP/15112 EPA 7471B MERC/17700 LT-NS-2 (0.5-1) 10326596002 EPA 7471B MERP/15112 EPA 7471B MERC/17700 10326596003 MS-36 (3-5) EPA 7471B MERP/15083 EPA 7471B MERC/17667 10326596004 MS-29 (6-7) EPA 7471B MERP/15083 EPA 7471B MERC/17667 10326596005 MS-35 (6-8) EPA 7471B MERP/15083 EPA 7471B MERC/17667 MS-34 (4-5) 10326596006 EPA 7471B MERP/15083 EPA 7471B MERC/17667 10326596007 MS-33 (4-5) EPA 7471B MERP/15083 EPA 7471B MERC/17667 MS-32 (4-5) 10326596008 FPA 7471B MERP/15083 EPA 7471B MFRC/17667 MS-30 (4-5) MERC/17667 10326596009 EPA 7471B MERP/15083 EPA 7471B 10326596010 MS-31 (6-8) EPA 7471B MERP/15083 EPA 7471B MERC/17667

Project: 0504-100-00 VAN STONE Rev

Pace Project No.: 10326596

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10326596011	MS-19 (0.5-1)	EPA 7471B	MERP/15083	EPA 7471B	MERC/17667
10326596012	MS-20 (0.5-1)	EPA 7471B	MERP/15083	EPA 7471B	MERC/17667
10326596013	MS-21 (0.5-1)	EPA 7471B	MERP/15083	EPA 7471B	MERC/17667
10326596014	MS-22 (0.5-1)	EPA 7471B	MERP/15112	EPA 7471B	MERC/17700
10326596015	MS-23 (0.5-1)	EPA 7471B	MERP/15083	EPA 7471B	MERC/17667
10326596016	MS-24 (0.5-1)	EPA 7471B	MERP/15083	EPA 7471B	MERC/17667
10326596017	MS-25 (0.5-1)	EPA 7471B	MERP/15083	EPA 7471B	MERC/17667
10326596018	MS-26 (0.5-1)	EPA 7471B	MERP/15083	EPA 7471B	MERC/17667
10326596019	MS-27 (0.5-1)	EPA 7471B	MERP/15083	EPA 7471B	MERC/17667
10326596020	MS-28 (0.5-1)	EPA 7471B	MERP/15083	EPA 7471B	MERC/17667
10326596001	LT-NS-1 (0.5-1)	ASTM D2974	MPRP/59178		
10326596002	LT-NS-2 (0.5-1)	ASTM D2974	MPRP/59178		
10326596003	MS-36 (3-5)	ASTM D2974	MPRP/59178		
10326596004	MS-29 (6-7)	ASTM D2974	MPRP/59178		
10326596005	MS-35 (6-8)	ASTM D2974	MPRP/59178		
10326596006	MS-34 (4-5)	ASTM D2974	MPRP/59178		
10326596007	MS-33 (4-5)	ASTM D2974	MPRP/59178		
10326596008	MS-32 (4-5)	ASTM D2974	MPRP/59178		
10326596009	MS-30 (4-5)	ASTM D2974	MPRP/59178		
10326596010	MS-31 (6-8)	ASTM D2974	MPRP/59178		
10326596011	MS-19 (0.5-1)	ASTM D2974	MPRP/59178		
10326596012	MS-20 (0.5-1)	ASTM D2974	MPRP/59178		
10326596013	MS-21 (0.5-1)	ASTM D2974	MPRP/59178		
10326596014	MS-22 (0.5-1)	ASTM D2974	MPRP/59178		
10326596015	MS-23 (0.5-1)	ASTM D2974	MPRP/59178		
10326596016	MS-24 (0.5-1)	ASTM D2974	MPRP/59178		
10326596017	MS-25 (0.5-1)	ASTM D2974	MPRP/59178		
10326596018	MS-26 (0.5-1)	ASTM D2974	MPRP/59178		
10326596019	MS-27 (0.5-1)	ASTM D2974	MPRP/59178		
10326596020	MS-28 (0.5-1)	ASTM D2974	MPRP/59178		
10326596001	LT-NS-1 (0.5-1)	Modified Sobek 3.2	MT/21233		
10326596002	LT-NS-2 (0.5-1)	Modified Sobek 3.2	MT/21233		
10326596003	MS-36 (3-5)	Modified Sobek 3.2	MT/21233		
10326596004	MS-29 (6-7)	Modified Sobek 3.2	MT/21233		
10326596005	MS-35 (6-8)	Modified Sobek 3.2	MT/21233		
10326596009	MS-30 (4-5)	Modified Sobek 3.2	MT/21233		
10326596010	MS-31 (6-8)	Modified Sobek 3.2	MT/21233		
10326596001	LT-NS-1 (0.5-1)	Modified Sobek 3.2	MT/21175		
10326596002	LT-NS-2 (0.5-1)	Modified Sobek 3.2	MT/21175		
10326596003	MS-36 (3-5)	Modified Sobek 3.2	MT/21175		
10326596004	MS-29 (6-7)	Modified Sobek 3.2	MT/21175		
10326596005	MS-35 (6-8)	Modified Sobek 3.2	MT/21175		
10326596009	MS-30 (4-5)	Modified Sobek 3.2	MT/21175		
10326596010	MS-31 (6-8)	Modified Sobek 3.2	MT/21175		
10326596001	LT-NS-1 (0.5-1)	Modified Sobek 3.2	MT/21174		
10326596002	LT-NS-2 (0.5-1)	Modified Sobek 3.2	MT/21174		

 Project:
 0504-100-00 VAN STONE Rev

 Pace Project No.:
 10326596

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10326596003	MS-36 (3-5)	Modified Sobek 3.2	MT/21174	_	
10326596004	MS-29 (6-7)	Modified Sobek 3.2	MT/21174		
10326596005	MS-35 (6-8)	Modified Sobek 3.2	MT/21174		
10326596009	MS-30 (4-5)	Modified Sobek 3.2	MT/21174		
10326596010	MS-31 (6-8)	Modified Sobek 3.2	MT/21174		
10326596001	LT-NS-1 (0.5-1)	EPA 3060A	WET/25179	EPA 7196A	WET/25231
10326596002	LT-NS-2 (0.5-1)	EPA 3060A	WET/25179	EPA 7196A	WET/25231

REVISED 01/20/16 per client

Page 73 of 103

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Test Pits/Sil 10326596

	Section A Required Client Information:	Section B Required Project Information:	Nin dista 15 1	Section C Invoice Information:		Page:	1 4 2	
	Company. Greenines	Report To: Theney E geos	inghets, con	Attention:			1980400	
	Address 5.73 E Screed Are	Copy Ta inter Carpe	13 MICS . COM	Company Nama:	REGL	ILATORY AGENCY		
	Spokere, WA 39802		,	Address:		T NPDES T GROUND WATER T DRINKING WATER		
JML 1/20/2016	Email Tot ikney (360 crimers, com	Purchase Order No.:		Pace Quote References	r .	JST T RCRA	TOTHER	
	Phone: 509-363-325 Fax: 509-31-3-3126	Project Name: VAN ST	DARE	Pace Project Manager	Site I	Location		
	Requested Due Date/TAT: Standor	Project Number: 0504-10	00-30	Pace Profile #:		STATE:	_	
	· · · · · · · · · · · · · · · · · · ·				Requested Analy	sis Filtered (Y/N)	ŀ	
	Section D Matrix C Required Cient Information MATRIX /	odos 2 G.	COLLECTED	Preservatives	twix			
	Drinking Water Wetter Wetter Wetter Worke Water Product SolfSolid SAMPLE ID (A-Z, 0-01,-) (A-Z, 0-01,-) Sample IDs MUST BE URIDUE Tissue Other	의 너희 농 등 위 약 ☆ 옷 옷 적 옷 옷 주 것 좋 지 지TRIX CODE (*** ********************************	COLPOSITE EXALADIA	MPLE TERM AL COLLECTION DF CONTAINERS SQ4 SQ4 SQ4 SQ4 SQ4 SQ4 SQ4 SQ4 SQ4 SQ	vialyals Test 4 Pet A PLP CLP CLP	the the	saldual Chlorina (YN)	
	E	E S DATE	TIME DATE TIME		2 Crowner		Pace Project No./ Lab LD	
	1 1-15-1 (C.S-1) LT-NS-1	(05-1) Je G 16/12	//30		×××××	×	00	
JML	2 21-13-2013-11-113-21	0.5-1) SL G	1/90			$+ \frac{1}{1}$		
	3 TIS 28(5-5) 115-56(5	->/ <u>>- 4 /</u>				┼┼┼┼┼┼		
	4 1/15-97 (6-7) AMD 97 // 9) MC - 25 //-	P KIG	150			┽┽┼┼┼┼	1 /9	
1/20/2010	+ MS-74 (4-6)		Y BO THE Y	+++++	Mater & ashely rate			
11-1	· m(-32/4-5)	FI G V	11.50			┼┼┼┼┼╊╌╊╸╊	1 1 1 1 6	
1	* M3-32(4-5)	51 6 10/13	0930		Xmax		1 1 1 10	
<i>r</i>	0 03-30 (4-5)	SL A	1000		XXXXX		1 a	
· .	10 148-31 (6-07)	816	1742	12121111	XXXXX		01	
8	$\frac{10}{11}MS = 19(0.5-1)$	66	1/00	12 X 1111	X		O	
а.	12 ms - 70(0.5-1)	SL G V	1115	17	X X X		DI	
	ADDITIONAL CONMENTS	RELINQUESHED BY	AFFILIATION DATE	TIME ACCEPTED	BY I AFFELIATION	DATE TIME.	SAMPLE CONDITIONS	
	Hardinony, Aron C., Colnium, Copper, Chron Leon, Mircuny, Nickel, Fisc	Al for	[GE] [0]16[15	1100	Capton R	7/17/09-30	5.9 YNY	
		IGINAL	SAMPLER NAME AND SIGNATURE				ntact at 0	
т	Si		PRINT Name of SAMPLE	PRINT Name of SAMPLER: Tosh Lee			The function of the function o	
Jage			SIGNATURE of BAMPLE	* LL	DATE Signed //	116/15		
73	"Important Note: By signing this form you are accept	ing Pace's NET 30 day poyment terms	and agrocing to late charges of 1.6% per me	anth forking involces not pold within 30 days.		•	F-ALL-Q-020rev.07, 15-May-2007	
of 10	· · · · · · · · · · · · · · · · · · ·			······································	,		مر بر المراجعيني العبر الد. ا	

ce Analy

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Test Pits/Sil 10326596

Section A Regulard Client Information;	Section B Required Project Information:	Section	C	Pa		
Company: Care Erring r	Report To: itener Caspennheres com	Attention	· · · · · · · · · · · · · · · · · · ·	1	1986465	
Address ST & Second Are	Copy Ta in la Prost Plan http:/	Compan	y Namo:	REGULATORY AGENC	Y	
inter 1/4 39807		Address	······································			
Email Tot January (1 3 Contranged Com	Purchase Order No.:	Pace Que			TOTHER	
Phone: 4 7/12 7/15 Fax: 539 9/2 3/2/	Project Name: : /A./ S.T.A.	Paco Proj	2 50	Site Location		
Requested Due Date/TAT:	Project Number: 2006- 100-50	Manager: Pace Prof	le #:	STATE	· · ·	
0124000	0507-700-30	<u> </u>	Requested	Anabisis Filtered (V/N)		
Section D Matrix Co						
Required Client Information MATRIX / C			Preservatives			
Watter Waste Watter Waste Watter Product SOVSolid Oti (A-Z, 0-01,) Sample IDs MUST BE UNIQUE Tissue Coher	WT 38 0 Commentate WW 48 0 Commentate P St. 48 0 Commentate St. 48 0	BAMPLE TEMP AT COLLECTIO BAMPLE TEMP AT COLLECTIO # OF CONTAINERS	HSO, HNO, HNO, NaCH Nathanol Methor SPL P ABA ACLD	Asternation Tal-bx M-6/Le AL	(XX)) (XX) (XX) (XX) (XX) (XX) (XX) (XX	
1 17-113-1 (25-1)	V. C. 14/17 1130	115				
2 LT-N3-2(0.5-1)	SL G 1140				+++	
3 MS-28 (3-5)	Sig / His	123		X		
4 MS-27 (6-7)	SLG/ 1510	2 2		· 🖌		
5 MB-27 (6-8)	XG 1550					
6 MS-34(4-5)	SLG / 1620		× RVG & A		Metals of assesses an	
1 M5-33(4-5)	FLG 1650					
8 M3-3a(4-5)	52 6 10/13 0930	<u> \$</u> >		NX		
1 M3-30 (4-5)	SLG 1000					
10 M3-51 (6-8)	24 1040	2>	<u> </u>			
$\frac{11}{MS} = \frac{19(0.5-1)}{0.5-1}$	<u>SG</u> 1100	1 2				
12 MS - 20(0.5-1)	SL G V 1115					
ADDITIONAL COMMENTS	RELINQUESHED BY / AFFILIATION	DATE THE	ACCEPTED BY / AFFELIATION	DATE TIME	SAMPLE CONDITIONS	
Leed, Moreny, Nickel, Fine	the to ge!	10/16/15 1100	All a ph	K 10/11/07-20	3AYN Y	
• *			9			
		AND SIGNATURE		L		
ORI	GINAL GOMET LEAR NAME	inn of SAUPI FP-		International States		
			inter to			
	SIGNAT	UKE OF BARFLER:	MINDDAM:	1011613	<u> </u>	
Pace Analytical*

Page 75 of 10\$

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

	n								Den	Ior *	~												Pag	30:	2	ei	' J	
Section A Required Clent Information:	socuen B Required Pi	oject	inform	nation					Invold	ion C Se Infe	- lomai	tion:												-		00	C A C	7
Company: General Company	Report To:	.1	how	P. aso	UNTRACS	.lon		·	Atton	ion:													1 1980401				1	
Address 523 E Second Are	Copy To:		1,0	A ADAL	13 A #/1 1	Co M			Company Name: REGULATORY					IY AG	ENC	Y.	•		•									
Septime UA 49202		<u>بەل</u> .	1164	<u></u>					Actor	1545										Г	NPDES	Г	GROL	JND V	VATE	RГ	DRINKING	WATER
Email To: handy & gedensher in	Purchase O	der N	ło.:						Pace Quoto						Г	UST	Г	RCRA			г	OTHER .						
Phone: 112-312 Fac 509-362-2124	Project Nam	9:	VA	WS	TONE				Pace Project					Site	Location			-	T.									
Requested Due Dato/TAT: S71	Project Num	ber;	0	504-	100-00	, .		_	Pacel	Profile	e ft										STATE:	-			-		• • • •	
										-						: .;·	R	equ	ested	Anaty	sis Flite) ber	Y/N)					
Section D Hetrix Co		ę	Ê		COLLE	ECTED					 ج	nəsə	vativ	195		TNIA												
Malaki Malaki Drinking Water Water Wester Wester Wester Water Product Sol/Sold SAMPLE ID (A-Z, 0-9 /,-) Sample IDs MUST BE UNIQUE Sample IDs MUST BE UNIQUE Cither	DW WT WW P SL OL WP AR TS OT	MATRIX CODE (see vald codes to)	SAMPLE TYPE (G=GRAB C=CON	Court Star (COMPOS	NTE IAB TIME	SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	Unpreserved	H ₂ SO ₄	HOO STATE	NaOH	Na ₂ S ₂ O ₃	Other	Analysis Test	Mekls *	TOH- DA	TPH-Gx					1. A DATE OF	Residual Chiorine (Y/N)	Pace	Project N	o/ Lab 1.D.
		5	r.	Inter 13	in	URIE		1	1	X	Ħ		Ħ			Ť	X	x	x			\mathbf{T}					0	13
2 M(-22 (45-1)		1		1	1140			1	TT	Ťī	$\uparrow \uparrow$		$\uparrow \uparrow$	T	\top	1	X	X	X	Π							Ó	14
3 ms-23 (0,5-1)		+			1150			╞	\mathbf{H}	\dagger	$\uparrow \uparrow$				T	1	X	X	X								0	15
4 ms-24/0.5-1)		\dagger			1200			1	\Box	T].	X										D	6
s ms-25/0,5-1)	İ	\top			1210		[Τ	Π	Π	Π	Τ				I .	X										0	17
s m2-24(0.5-1)		\top	+ +		1220		[Γ	Π	Π]	X										ð	10
7 ms-27(05-1)		\dagger		1.	1230	1				T].	X	X	X								C	<u>)/9</u>
8 ms-28 (05-1)		V	V	V	1240				V	V	1						×	×	x								σ	$\omega_{}$
3		-														_									Ц			
10														\square		<u> </u>				\square		\downarrow			\square			
11																	_			\square					\square			
12					1				 	<u> </u>			Ц	Ц		<u> </u>				Ц								
ADOITIONAL COMMENTS		REL	NOU	SHED BY	AFFILIATI	ON	DAT	E		TIME	E			ACC	EPTE	D BY		FILIA	TION		DATE		THE	1	01	SAMP	LE CONDIT	60.00
FATTIMONY, Arsere, Lastonia, Copper, Chrs		Į.	4	2/	GET		10/14/13	_	11	00				L	2	Ľ	1	24	1970	E	0170	η <i>i</i>	550	12	7	<u> </u>	2	Y
	17												-		-	-	· Ļ									· ·		<u> </u>
									T											T		1			T			
							1		1-							•				-1								
L					SANPLE	R NAME A	ND SIGN	ATUR	L													:			p	5	Sig.	별
UK	ICHINAL	•			l'	PRINT Nor	no of SAM	PLER	:	-	To	h	Lu	e											e	bovle: AY) a	Societa	(VN)
						SIGNATU	RE of SAM	PLER	t		A		Z	•			0 {1	MM/D	Signed IDMM):	/	w/16/15	<u>,</u>		ו		2 <u>2</u>	07 15 14~	2007

.

.

"Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late changes of 1.5% per month for any evolutes not paid within 30 days.

2007

Amount Notice Sumple Control Notice Sumple Control Notice Import Notice FANN-2215 res.13 Pace Minaccots Quality Office Control Notice Project #: WO# : 10326596 Current Roll Desc Desc Carton Roccini Desc Desc Desc Desc Desc Carton Roccini Desc Desc Desc Desc	Amount No.2 Provide No.2 Provide No.2 Imple Consultation (Construction) Client Name: Project #: WOC# 1: 10326596 University Based 2: 2015 Client Name: Project #: WOC# 1: 10326596 University Based 2: 2015 Client Name: Discourse Discourse Discourse University Based 2: 2015 Client Name: Discourse Discourse Discourse University Based 2: 2015 Client Name: Discourse Discourse Discourse Used: Based 2: 2015 Client Name: Discourse Discourse Discourse Project #: Discourse Project #: Discourse Discourse Project #: Discourse Discourse Project #: Discourse Discourse </th <th>ST .</th> <th>Comple Cond</th> <th>icument</th> <th>Name:</th> <th>nt Earm</th> <th>Doc</th> <th>ument Revised</th> <th>d: 23Feb2015</th> <th></th>	ST .	Comple Cond	icument	Name:	nt Earm	Doc	ument Revised	d: 23Feb2015	
Image: contrained in the contrained of the contrained the contredified of the contrained the contrained of	Prode-1213-rev.13 Pace Minnesics Quality Office Project 4: Project 4: WO# :: 10326596 Urler: Drod 64: Durs Durs Commercial Project 4: WO# :: 10326596 Urler: Drod 64: Durs Durs Commercial Project 4: WO# :: 10326596 ustedy Seal on Cooler/Box Present? Lycs Divo Divo ustedy Seal on Cooler/Box Present? Lycs Divo Seals Intent? Divo Divo usted: Divo BabadatAsilocott Divo D	Pace Analytical *	Sample Cond	ocumen	t No.:	pt runn	+	Issuing Aut	hority:	
Stringle Condition Client Name: Project #: WO# : 10326596 Currier: Pade Ex UPS Dusts : Client Commercial Page Specific Condition Disser:	Wind Condition Client Name: Project 8: WO##: 10326596 Urber: [Prodet & Urber] Users Client Commercial [Prodet & Urber] [Specober] Client Carding Number: [Bissedbar] [Specober] [Specober] [Specober] ustody Scal on Cooler/Box Present? [Yes [No Seals Intact? [Yes [No Seals Intact? [Yes [No Seals Intact? [Yes [No [Specober] [Spec		F-N	IN-L-213	-rev.13		Pac	e Minnesota C	Quality Office	
curier:	urler: Dreading Number: Dread Ex Dups Dups Dups Dup	ample Condition Client Name: Upon Receipt Geo	Engine	rs.	Project	#: [′] W()#:1	.032	6596	
Commercial Page Optional: Proj. Due Date: Proj. Name: Custody Seal on Cooler/Box Present? Uves No Seals Intact? Ves Mo Packing Muericit. Dibble Wap Bubble Bags None Optional: Proj. Due Date: Proj. Name: Packing Muericit. Dibble Wap Bubble Bags None Optional: Proj. Due Date: Proj. Name: Custody Seal on Cooler/Box Present? Diss Bassianscoord Type of tex: Diss Bassianscoord Temp Blank? Dves Diss Bassianscoord Cooler Temp Read (*C): 3-7 Cooler Temp Corrected (*C): 3-9 Biological Tissue Frozen? Diss and Includes Havaliand Puerson Examining Contents: Diss and Includes Havaliand Puerson Examininaly Havaliand Puerson Examinality:	Commercial Page SpeeDee Other: 10320538 ustady Seal on Cooler/Box Present? Lys No Seals Intact? Ives No Optional: Proj. Due Date: <	urier:	USPS		lient					
Tracking Number: 1815 294 1800 1800 1800 1800 1800 1800 1800 180	Tracking Number: 1515 214 1200 1200 1200 1200 1200 1200 1200	Commercial Pace SpeeDe	e Other:_		-	103	26596			
Custody Seal on Cooler/Box Present? IYes INO Seals Intact? IYes INO Optional: Proj. Due Date: Proj. Name: Packing Material: [Bubble Wrap Bubble Bags INOn Ottoral: Proj. Due Date: Proj. Name: Determometer BBBAD130056013 [BBBAD12167504 Type of tex: Dive of tex: Di	ustady Seal on Cooler/Box Present? Yes No Seals Intact? Yes No Optional: Proj. Due Date: Proj. Hame: acking Material: Bubble Bags No ne Optional: Proj. Due Date: Proj. Due Da	Fracking Number: 1815 294	1806			<u> </u>				· · · · · · · · · · · · · · · · · · ·
Packing Material: 20ubble Wrap Bubble Bags None Pether: Car 2020. Temp Blank? Ves No Thermometer Baskon 3051643. Bission 2107500 Used: Baskon 3051643. Bission 2107500 Destand 1011000 Baskon 1005000 Person Examples on Ice. cooling process has begin Biological Tissue Frazen? Ves No Examp Should be above freezing to 6°C Correction factor: 1000 Date and Initiates of Person Examples on Ice. cooling process has begin to any should be above freezing to 6°C Correction factor: 1000 Date and Initiates of Person Examples on Ice. cooling process has begin Biological Tissue Frazen? Ves No Examp Should be above freezing to 6°C Correction factor: 1000 Date and Initiates of Person Examples or glinate from a foreign source (Internationally, Id samples originate in a quarantine zone within the United States: AL, AR, AZ, CA, FL, CA, ID, LA If Yes to either question, fill out a Regulated Soil Checklist (F-MN 42-338) and Include with SCUR/COC paperwork. Chain of Custody Frieed Out? Dress NA 2 Chain of Custody Frieed Out? Dress NA 4 Sampler Name and Gress Bandwice and COC MMEMTS: Sampler Name and Gress Bandwice and COC MMEMTS: Sampler Name and Gress Bandwice and COC MMEMTS: Sufficient Volume? Dress NA 0 NA 4 Containers Used? Dress NA 0 NA 8 Containers Used? Dress NA 0 NA 8 Containers Used? Dress NA 0 NA 10. Filtered Volume Received for Discolved Tests? Tres NA 0 NA 11. Note if sediment is visible in the dissolved container Sample Janebas Match COC? Dress NA 0 NA 11. Note if sediment is visible in the dissolved container Sample abels Match COC? Dress NA 0 NA 11. Note if sediment is visible in the dissolved container Sample Abertan 2000 Base preservation have been checked? Alcontainers used? Dress NA 11. Note if sediment is visible in the dissolved container Sample Janebas Match COC? Dress NA 0 NA 12. 	acking Material: Dubble Wrap Bubble Bags None Pether: Car Duar Temp Blank? Ves No hermometer B884913051613 B884912167506 Type of los: Ever Blank? Eves No Desci Temp Read (*C): 3-9 Bubble Bags Octas Temp Corrected (*C): 3-9 Bubble Bass Proceent? Itsue Frozent?	ustody Seal on Cooler/Box Present? Yes	ENO	Seals Inti	act?	Yes Z	No Optio	onal: Proj. C)ue Date: Pr	oj. Name:
Hermoneter B883091205143 B8830912167544 Type of to:: Breit Bitue Invone Samples on ice, cooling process has begin Sooler Temp Read (*G): 3-9 Bitological Tissue Frazent? No No No Sonder Temp Read (*G): 3-9 Bitological Tissue Frazent? No No No Sonder Temp Read (*G): 3-9 Date and Initials of Person Examining Contents: No No Sonder Temp Read (*G): Sonder Temp Corrected (*C): 3-9 Date and Initials of Person Examining Contents: No No Sonder Temp Read (*G): Sonder Temp Corrected (*C): The Initial Contents: No No <td>Internometer BBBA913051643 BBBA912105764 Type of fee: Diversion Diversion BBBA912105764 Type of fee: Diversion <t< td=""><td>acking Material: Bubble Wrap Bubble</td><td>Bags None</td><td>• 🖓</td><td>Other:<u>(</u></td><td>and be</td><td>sare)</td><td>Temp E</td><td>3lank? 🗍Yes</td><td>E No</td></t<></td>	Internometer BBBA913051643 BBBA912105764 Type of fee: Diversion Diversion BBBA912105764 Type of fee: Diversion Diversion <t< td=""><td>acking Material: Bubble Wrap Bubble</td><td>Bags None</td><td>• 🖓</td><td>Other:<u>(</u></td><td>and be</td><td>sare)</td><td>Temp E</td><td>3lank? 🗍Yes</td><td>E No</td></t<>	acking Material: Bubble Wrap Bubble	Bags None	• 🖓	Other: <u>(</u>	and be	sare)	Temp E	3lank? 🗍Yes	E No
Construction Construction Sample construction <td< td=""><td>Object Temp Read (*C): 3-9 Biological Tissue Frazen? Ivis No. NVA. mp should be above freezing to 5°C Correction Factor: 12.00 Date and Initialis of Person Examining Contents: Ivis No. Ivis Ivis No. Ivis <td< td=""><td>hermometer B88A9130516413 2888A912</td><td>2167504 Type</td><td>e of Ice:</td><td>Dwei</td><td>: 🗍 Blue</td><td>None</td><td>Samples</td><td>on ice, cooling pr</td><td>ocess has begun</td></td<></td></td<>	Object Temp Read (*C): 3-9 Biological Tissue Frazen? Ivis No. NVA. mp should be above freezing to 5°C Correction Factor: 12.00 Date and Initialis of Person Examining Contents: Ivis No. Ivis Ivis No. Ivis Ivis <td< td=""><td>hermometer B88A9130516413 2888A912</td><td>2167504 Type</td><td>e of Ice:</td><td>Dwei</td><td>: 🗍 Blue</td><td>None</td><td>Samples</td><td>on ice, cooling pr</td><td>ocess has begun</td></td<>	hermometer B88A9130516413 2888A912	2167504 Type	e of Ice:	Dwei	: 🗍 Blue	None	Samples	on ice, cooling pr	ocess has begun
emp should be above freezing to 6°C Correction Factor:	mp should be above freezing to 6°C Correction Pactor:	coler Temp Read ("C): 3. 7 Copler Ter	no Corrected (*C)	: 3	9		Biological Ti	ssue Frozen?	Yes	NO EIN/A
SIGA Regulated Soil (NA, water sample) Job samples originate in a quarrantine some within the United States: AL, AR, AZ, CA, FL, GA, ID, LA Did samples originate from a foreign source (internationally, including wave) and Punch Reip) SIGA Regulated Soil (NA, NY, OK, OR, SC, TN, TX or WA (check maps)? Zifes INo Inducide wave) and Punch Reip) Inducide wave) and Punch Reip) Chain of Custody Present? Commemory Commemory Commemory Commemory Chain of Custody Relinquished? Zifes INo INA 1. Chain of Custody Relinquished? Zifes INo INA 3. Samples Arrived with Hold Time? Zifes INo INA 3. Samples Arrived with Analysia (21 hr)? Ches INo INA 5. Sufficient Volume? Zifes INo INA 8. Correct Containers Used? Zifes INo INA 8. -Pace Containers Used? Zifes INo INA 9. -Intered Volume Received for Disadved Tests? Ches INo INA 10. Filtered Volume Received for Disadved Tests? Ches INo INA 10. Filtered Volume Recei	IDA Regulated Soll (mp should be above freezing to 6°C Correction	n Factor:	20	Dat	e and initia	is of Person i	Examining Col	ntents:	CIOIT
Contractive control of the control of	In Period entry question, fill du's Regulated Sub Circlexits (Priving essent) Subhy Cotty patement. Comments Convolution and a Regulated Sub Circlexits (Priving essent) Subhy Cotty patement. Comments/Resolution: Comments/Resolution: Contracted: Contracter Containers Used? Containers Used? Containers Used? Containers Intect? Containers Containers Used? Containers Used? Containers Intect? Containers Intect	iDA Regulated Soil (IN/A, water sample) d samples originate in a quarantine zone within the U S, NC, NM, NY, OK, OR, SC, TN, TX or WA (check maps S, NC, NM, NY, OK, OR, SC, TN, TX or WA (check maps)	Inited States: AL, A	NR, AZ, CA	A, FL, GA, I	D, LA.	Did samples o Including Hav	riginate from a	foreign source (in Rico)?	ternationaliy, Yes Ano
Chain of Custody Present? Ores INA 1. Chain of Custody Filled Out? Ores INA 2. Chain of Custody Relinquished? Ores INA 3. Sampler Name and/or Signature on COC? Ores INA 4. Samples Arrived within Hold Time? Ores INA 5. Short Hold Time Analysis (<72 hr)?	Data of Custody Present? Ores IN/A 1. Data of Gustody Filed Out? Ores IN/A 2. Data of Custody Relinguished? Ores IN/A 3. Sampler Name and/or Signature on COC? Ores IN/A 4. Sampler Name and/or Signature on COC? Ores IN/A 5. Sampler Name and/or Signature on COC? Ores IN/A 5. Sampler Name and/or Signature on COC? Ores IN/A 5. Sampler Name and/or Signature on COC? Ores IN/A 5. Sampler Name and/or Signature on COC? Ores IN/A 5. Sampler Name and/or Signature on COC? Ores IN/A 6. Sush Turn Around Time Requested? Ores IN/A 8. Correct Containers Used? Ores IN/A 10. Containers Intact? Ores IN/A 11. Note if sediment is visible in the dissolved container Sincerd Volume Received for Dissolved Tests? Ores IN/A 12. . . -includes Date/Time/D/Analysis Matrix: Ores IN/A 13. IN/A IN	if tes to either question, fill out	a Regulated Soli	Checkin	or (1-0010-	Q-556) and	moude with	COMMEN	aperwork.	
Chain of Custody Filed Out? Iffes Inv	And Outdoy Filed Out? Dros Dros Prove Dros Pro	Chain of Custodu Brosent?				1.				
Chain of Custody Microsofti Dife	Data of Coacody function Difference Difference <td< td=""><td>Chain of Custody Filed Out?</td><td>Dives</td><td></td><td></td><td>2.</td><td>·· · · · · · · · · · · · · · · · · · ·</td><td>********</td><td></td><td></td></td<>	Chain of Custody Filed Out?	Dives			2.	·· · · · · · · · · · · · · · · · · · ·	********		
Link	Linkin Crosscop Namiquation Linkin Crosscop Namiquation Linkin Crosscop Namiquation Sampler Name and/or Signature on COC? Iffees No N/A 4. Samples Arrived within Hold Time? Iffees No N/A 5. Short Hold Time Analysis (<72 hr)?	Chain of Custody Palloguished?	Elies -			3	and an			
Samples Arrived within Hold Time 2 [Pits [Ho [Ho [N/A S. Short Hold Time Analysis (<72 hr)?	Samples Arrived within Hold Time? [1]10	Sampler Name and/or Signature on COC2	Ziver			4				
Sample Jack Volume Received for Dissolved Tests? Iftered Volume Rec	Samples Varied Within Fluid Time Analysis (<72 hr)?	Samplet Name and/or signature on Coor				5				
Stadt Hubb Hubb Hubb Pale (Presh)/1 Lifes	Aush Turn Around Time Requested? Image Fundor Time Requested? Image Fundor Time Requested? Sufficient Volume? Image Fundor Time Requested? Image Fundor Time Requested? Correct Containers Used? Image Fundor Time Requested? Image Fundor Time Requested? Prace Containers Used? Image Fundor Time Requested? Image Fundor Time Requested? Containers Intext? Image Fundor Time Requested for Dissolved Tests? Image Fundor Time Requested for Dissolved Container Sample Labels Match COC? Image Fundor Time/D/Analysis Matrix: Image Fundor Time/D/Analysis Matrix: -Includes Date/Time/D/Analysis Matrix: Image Fundor Time/D/Analysis Matrix: Image Fundor Time/D/Analysis Matrix: All containers needing preservation are found to be in compliance with EPA recommendation? Image Fundor Time/D/Analysis Matrix: Image Fundor Time/D/Analysis Matrix: With Containers needing preservation are found to be in compliance with EPA recommendation? Image Fundor Time Fundor Time Fundor Time Fundor Time Fundor Time Fundor Time Fundor Time: Image Fundor Time/Time/D/Analysis (> fundor Fundor Time) ON/2015 (water) DOC Image Fundor Time Fundor Time Fundor Time: Image Fundor Time: Image Fundor Time: Pace Trip Blank Lot # (If purchased): Image Fundor Time: Image Fundor Time: Image Fundor Time: Comments/Resolut	Samples Arrived Wittim Hold Filler				6				
Nulsi Additio Title Requested: Disc Div N/A Xi Sufficient Volume? Divs N/A B. Correct Containers Used? Divs N/A S. -Pace Containers Used? Divs N/A N/A -Pace Containers Used? Divs N/A N/A -Pace Containers Used? Divs N/A 10. Filtered Volume Received for Dissolved Tests? Divs N/A 11. Sample Labels Match COC? Divs N/A 12. -Includes Date/Time/ID/Analysis Matrix: Divs N/A All containers needing acid/base preservation have been checked? Divs N/A 13. -Includes Date/Time/ID/Analysis Matrix: Divs N/A All containers needing preservation are found to be in compliance with EPA recommendation? Divs Divs Containers VOA, Coliform, TOC, Oil and Grease, Divs Divs Divs Divs DO/DOSIS (water) DOC Divs Divs Divs Divs Headspace In VOA Vials (>6mm)? Divs N/A 15. Trip Blank Cust dy Sals Present? Divs Divs Divs Pace Trip Blank Cust di (f purchased): Divs Divs Divs CLIENT NOTIFICATION/RESOLU	Cash Turk Audulta Thine Requested T Dires	plott hold time Analysis (2 mpt</td <td></td> <td></td> <td></td> <td>7</td> <td></td> <td></td> <td></td> <td></td>				7				
Summer Volumer [Ites IND IND IND Correct Containers Used? Correct Containers Used? [Ites IND IND IND IND -Pace Containers Used? [Ites IND IND IND IND Contrainers Used? [Ites IND IND IND IND Filtered Volume Received for Dissolved Tests? [Ites IND IND IND Sample Labels Match COC? [Ites [Ites IND IND IItes IItes <t< td=""><td>Correct Containers Used? Created Containers Used? Created Containers Used? Prace Containers Used? Created Containers Used? Created Containers Used? Containers Intact? Created Containers Used? It. Note If sediment is visible in the dissolved container Sample Labels Match COC? Created Containers Interview Containers needing acid/base preservation have been interview Containers needing preservation are found to be in compliance with EPA recommendation? Interview Containers Interview Container All containers Needing preservation are found to be in compliance with EPA recommendation? Created Container Intial when Lot # of added completed: preservative: completed: /td><td>Sugar Tom Arbana Tune Requested</td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td></t<>	Correct Containers Used? Created Containers Used? Created Containers Used? Prace Containers Used? Created Containers Used? Created Containers Used? Containers Intact? Created Containers Used? It. Note If sediment is visible in the dissolved container Sample Labels Match COC? Created Containers Interview Containers needing acid/base preservation have been interview Containers needing preservation are found to be in compliance with EPA recommendation? Interview Containers Interview Container All containers Needing preservation are found to be in compliance with EPA recommendation? Created Container Intial when Lot # of added completed: preservative: completed:	Sugar Tom Arbana Tune Requested				0				
-Pace Containers Used? Dies Div Div Div -Pace Containers Used? Dies Div Div Div Div Filtered Volume Received for Dissolved Tests? Dies Div Div Div Div Sample Labels Match COC? Dives Div Div Div Div Div -Includes Date/Time/ID/Analysis Matrix: Div Div Div Div Div All containers needing acid/base preservation have been checked? Dives Div Div Div Sample # All containers needing preservation are found to be in compliance with EPA recommendation? Dives Div Div/A Sample # CMO/051 (water) DOC Dives Div Div/A Lot # of added Dov/A Readspace In VOA Vials (>6mm)? Dives Div Div/A Div Div/A Trip Blank Custody Seals Present? Dives Div Div/A Div Div/A Person Contacted: Cuentriners Date/Time: Date/Time: Date/Time: Date/Time: Div Div Comments/Resolution: Die Date/	Opreet Containers Used? Dite No N/A -Pace Containers Used? Dites No N/A Containers intact? Dies No N/A 10. Elltered Volume Received for Dissolved Tests? Dies No N/A 11. Note If sediment is visible in the dissolved container Sample Labels Match COC? Dires No N/A 12. -Includes Date/Time/ID/Analysis Matrix: Dires No N/A All containers needing acid/base preservation have been checked? No Divide Sample # Sample # Valcontainers needing preservation are found to be in compliance with EPA recommendation? Divide Sample # Initial when Lot # of added Sample Microsoftorm, TOC, Oil and Grease, Divide Site in Voc, Coliform, TOC, Oil and Grease, Divide Site in Voc Alls (>6mm)? Dives No Divide Site in Voc Alls (>6mm)? Pres Divide In Voc Valis (>6mm)? Ores No Divide Site in Voc Alls (>6mm)? Divide Site in Voc Alls (>6mm)? CiteNT NOTIFICATION/RESOLUTION CiteNT NOTIFICATION/RESOLUTION Date/Time:	Sumdent Volumer	- Cha			9				
-Pace Containers Used? []res []r	-Pace Containers Usedr					з.				
Containers intact? UPEs UNA LNA LNA<	Containers interr IPres INA 10. Filtered Volume Received for Dissolved Tests? IYes INO IN/A 11. Note if sediment is visible in the dissolved container Sample Labels Match COC? IYes INO IN/A 12. -includes Date/Time/ID/Analysis Matrix: IVes INO IN/A 12. All containers needing acid/base preservation have been Intecked? INO IN/A 13. IHNO2 IHJ504 INO IHCI Sample Labels Match COC? IYes INO IN/A 12. Intecked? INO IN/A 14. All containers needing preservation are found to be in compliance with EPA recommendation? INO INVA Initial when Lot # of added Dott # of added Exceptions: VOA, Coliform, TOC, Oll and Grease, DRO/BOIS (water) DOC IYes INO INVA 14. Initial when Lot # of added Dot # of added PRO/BOIS (water) DOC IYes INO INVA 14. Initial when Lot # of added Initial when Lot # of added Initial when Initial when Initial when Initial when Initial when Initial when	-Pace containers Oseor	Elles C			10				
Filtered volume necessed for Dissidued Testsr Its <	Filtered Volume Received for Distance fields? Ites					10.	if rediment l	r uicible in the	discoluted contain	
Sample Labels Match COCY	Sample Labels Match COCY	Filtered volume Received for Dissalved Testsr				13. NOU		A AIDIDIC III (IIC)	013301460 6011611	(2)
-Includes Date/Time/ID/Analysis Matrix: All containers needing acid/base preservation have been checked? I'res No ANA All containers needing preservation are found to be in compliance with EPA recommendation? I'res No ANA (MNO ₂ , HSO ₄ , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide) I'ves INo ANA Sample # Compliance with EPA recommendation? Initial when Lot # of added Initial when Lot # of added (MNO ₂ , HSO ₄ , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide) I'ves INo ANA Initial when Lot # of added DRO/8015 (water) DOC I'ves INo INA 14. Initial when Lot # of added Headspace In VOA Vials (>6mm)? I'ves INo INA 14. Initial when Lot # of added Trip Blank Present? I'ves INo INA 14. I'ves I'ves </td <td>-Includes Date/Time/ID/Analysis Matrix: </td> <td>Sample Labels Match COCr</td> <td>3/ Elres</td> <td></td> <td></td> <td>12.</td> <td></td> <td></td> <td></td> <td></td>	-Includes Date/Time/ID/Analysis Matrix:	Sample Labels Match COCr	3/ Elres			12.				
Checked? IYes No IAVA IS. IHNO, IHJSO4 INO IHCI All containers needing preservation are found to be in compliance with EPA recommendation? Sample # Sample # Sample # (HNO3, H3SO4, HCI<2; NaOH >9 Sulfide, NaOH>12 Cyanide) IYes INO INIA Initial when Lot # of added DRO/8015 (water) DOC IYes INO INIA IA. Initial when Lot # of added PRO/8015 (water) DOC IYes INO INIA IA. Initial when Lot # of added Trip Blank Present? IYes INO INIA IA. IA. Trip Blank Custody Seals Present? IYes INO INIA IS. Fleid Data Required? IYes INO Pace Trip Blank Lot # (if purchased): Oate/Time: Oate/Time: INO INIA INO Comments/Resolution: Comments/Resolution: INO INIA IA. INO	checked? Image: Solution and Solution	-includes Date/Time/ID/Analysis Matrix:	een				<u> </u>			<u> </u>
All containers needing preservation are found to be in compliance with EPA recommendation? (HNO ₂ , H ₂ SO ₄ , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide) [Yes No 2N/A Exceptions: VOA, Coliform, TOC, Oli and Grease, DRO/8015 (water) DOC Yes No 2N/A Headspace in VOA Vials (>6mm)? Yes No 2N/A Headspace in VOA Vials (>6mm)? Yes No 2N/A Trip Blank Present? Yes No 2N/A Trip Blank Custody Seals Present? Yes No 2N/A Pace Trip Blank Lot # (if purchased): CLIENT NOTIFICATION/RESOLUTION Field Data Required? Yes No Person Contacted: Comments/Resolution:	All containers needing preservation are found to be in compliance with EPA recommendation? (HNQ, H;SQ, HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide) [Ves No AVA Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC Ves No AVA Headspace in VOA Vials (>6mm)? Ves No AVA Headspace in VOA Vials (>6mm)? Ves No AVA Frip Blank Present? Ves No AVA Pace Trip Blank Lot # (If purchased): CLIENT NOTIFICATION/RESOLUTION Field Data Required? Ves No Person Contacted:	checked?	☐Yes	No	LANA	13.	L]HNO,	L]H2504	LINSOH	Пнс
CHNO2, HJSO4, HCI<2; NaOH >9 Sulfide, NaOH>12 Cyanide) Uves No DN/A Exceptions: VOA, Coliform, TOC, Oil and Grease, Uves No DN/A DRO/8015 (water) DOC Uves No DN/A Headspace in VOA Vials (>6mm)? Uves No DN/A Headspace in VOA Vials (>6mm)? Uves No DN/A Trip Blank Present? Uves No DN/A Trip Blank Custody Seals Present? Uves No DN/A Pace Trip Blank Lot # (if purchased): Uves No DN/A Person Contacted:	CHINGs, H3504, HCI<2; NaOH >9 Sulfide, NaOH>12 Cyanide) Ives No NA Exceptions: VOA, Coliform, TOC, Oli and Grease, Initial when Lot # of added DRO/8015 (water) DOC Ives No IN/A Headspace In VOA Vials (>6mm)? Ives No IN/A Headspace In VOA Vials (>6mm)? Ives No IN/A Trip Blank Present? Ives INO Ives Client NotificAtion/RESolution Ives Ives Ives Person Contacted:	All containers needing preservation are found to be in compliance with FPA recommandation?	n		-	Sample #				
Exceptions: VOA, Coliform, TOC, Oll and Grease, DRO/8015 (water) DOC Ives Ives Initial when Lot # of added Headspace in VOA Vials (>6mm)? Ives Ives Ives Ives Ives Trip Blank Present? Ives Ives Ives Ives Ives Ives CliENT NOTIFICATION/RESOLUTION Ives Ives Ives Ives Ives Ives Person Contacted:	Exceptions: VOA, Coliform, TOC, Oli and Grease, DRO/8015 (water) DOC Initial when Lot # of added Initial when Lot # of added DRO/8015 (water) DOC IYes INo Headspace in VOA Vials (>6mm)? IYes INo Initial when Lot # of added Headspace in VOA Vials (>6mm)? IYes INo Irip Blank Present? IYes INo Irip Blank Custody Seals Present? IYes INo Pace Trip Blank Lot # (if purchased): INO IN/A CLIENT NOTIFICATION/RESOLUTION Field Data Required? IYes Person Contacted:	(HNO2, H2504, HCI<2; NaOH >9 Sulfide, NaOH>12 Cya	nide) 🛛 🛛 Yes	No	DN/A					
Displace in VOA Viais (>6mm)? Ifes Lines Lines Lines Displaced. Headspace in VOA Viais (>6mm)? IYes No INA 14. Trip Blank Present? IYes INO INA 15. Trip Blank Lot # (if purchased): IYes INO INA CLIENT NOTIFICATION/RESOLUTION Field Data Required? IYes INO Person Contacted:	Discretion bott Discretion bott Discretion bott Discretion bott Headspace in VOA Vials (>6mm)? Ives No Ives 14. Trip Blank Present? Ives Ives Ives 15. Pace Trip Blank Lot # (if purchased): Ives Ives Ives Ives CLIENT NOTIFICATION/RESOLUTION Fleid Data Required? Ives Ives Person Contacted:	Exceptions: VOA, Coliform, TOC, Oli and Grease,	[]	["].v-	170%	Initial whe	n 1:	Lot # (of added rvative:	
Trip Blank Present? Ites Inte Inte Inte Trip Blank Custody Seals Present? IYes No IN/A Pace Trip Blank Lot # (if purchased): Ites IN/A CLIENT NOTIFICATION/RESOLUTION Field Data Required? IYes Person Contacted:	Trip Blank Present? Trip Blank Custody Seals Present? CLIENT NOTIFICATION/RESOLUTION Person Contacted: Comments/Resolution: Comments/Resolution: Comments/Resolution: Custody Seals Present? Comments/Resolution: omments/Resolution: Comments/Resolution: Comments/Resolution: Comm	DKU/8015 (Waler) DUL			DIN/A	14.		piese	1 TO (1 TO)	
Trip Blank Custody Seals Present?	Trip Blank Custody Seals Present? Pace Trip Blank Lot # (if purchased): CLIENT NOTIFICATION/RESOLUTION Person Contacted:	ncauspeus un von viers (>011111)/			PIN/A	15.				
Pace Trip Blank Lot # (if purchased): CLIENT NOTIFICATION/RESOLUTION Field Data Required? Yes No Person Contacted: Comments/Resolution:	Pace Trip Blank Lot # (If purchased): CLIENT NOTIFICATION/RESOLUTION Field Data Required? [Yes]No Person Contacted: Date/Time: Comments/Resolution:	Trip Blank Custody Seals Present?								
CLIENT NOTIFICATION/RESOLUTION Field Data Required? Yes No Person Contacted:	CLIENT NOTIFICATION/RESOLUTION Fleid Data Required? Yes No Person Contacted:	Pace Trip Blank Lot # (if purchased):	······································							
Person Contacted: Date/Time: Comments/Resolution:	Person Contacted: Date/Time: Date/Time:	CUENT NOTIFICATION/RESOLUTION						Field Data Re	equired? 🗍Ye	s 🗍 No
Comments/Resolution:	Comments/Resolution:	Person Contacted:				Date/Ti	me:			
	•	Comments/Resolution:								

Note: Whenever there is a discrepancy effecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e out of hold, incorrect preservative, out of temp, incorrect containers).

)	•				
	· ·	Docum	nt Namat . Soil Checklist	Document Ravised Page 1 C	13Feb2	015	
Pacel	nalytical	F-MN-R	rent No.: 338-Rev.00	Issuing Auti Pace Minnesote C	ontry: Lizity C	ffice .	
	USDA	REGULATED	ND DOMESTIC SOF	L CHECKLIST			
Be Completed by Project:	SR Staff: GeoEng	ince	cate: 10/17	15 initials:	K	<u>4-C-</u>	
Sample Origi	(circle one): (Note: soil samples fr	om Howall and	DOMESTIC uerto Rico are conside	ared to be of a Foreign Sa NC NM NY OK OR	sc T	N TO WA	D
If Domestic, circl if Foreign, list C	e State of Origin: ounty of Origin:						
	CARAFT		ACTION	•	<u>i i</u>	COMPLETE	D
Special Handling"	tickers are to be	Did "special He	ndiing" stickers get pl	aced on all sample	10	R)	NO
laced on all sempl	89.	concenterar		·	++		
amples must be s tored in designate	gregated and d bins, sheives and	Were samples and shelves? ⁱ	placed in a designate	a cooler, containers		YES	NO
coolers.		Ware there an	v stans of breakage on	leakage (check for	:]	YES A	NO)
		broken gless	nd/or loose soil in the	cooter)?		· 4	
		If NO, los and	meit water can be dis	posed of by normal proce	ss (do	wn the droi	<u>v)-</u>
		If YES, were it	e and melt water sep	irated from the cooler	A	S NO	N/A
Samples must be c	ouble contained to	and disposed	of property?	· •	ШJ		
prevent accidenta	release.	Any finites	ass and/or loose soll	are to be baggod and pl	adedia	n a USDA 🖗	gulated
		satellite cont	iner or active drum	see Waste Coordinator)	•		
•			·	d as a same same same	أملاه	21-1-1-54"F	2 hour
		and then coo	ed before going dow	n thẹ đrain.			
Fouloment and st	oplies that have	Was the cool	er(s) and/or countert	op(s) decontaminated			
coma into contac	samples must be	using either	fresh 10% bleach so	ution or 70% ethanol?	116	YES	NO
decontaminated.		(Gloves and) the SR USDA	ner (ap supplies will Regulated satellite ca	ntainer).			
				$\langle \rangle$			
To Be Complete	he conducted (circl	e all that apply a	••	(MN)	$\langle \rangle$	ubcontract	Lab)
Sample Analysis	D DE COllogrado (r	Named	Subcontract Lab:	Pave Drdy -	HI	Paul	M
· · · · · ·	·		ACTION			COMPL	ETED
REQ	VIREMENT	a la sine la tell	AREVERI MERIID C	ent Services Department			
Permission to sh	ib untreated soli mus	Docimente	Regulated Soils Perm	its-if permission to ship	, (YES NO	N/A
be on file prior 1	a snipping to any	s. letter is not	there, contact the W	este Coordinator.		_	
subcontract lab			bil naerled namerum	kinduded with the COC?		- And	
Shipment must	liciude a valid copy o		a samples until all no	cessary paperwork is	(YES	P N//
, the receiving la	bis permit as wen as	complied				-	
permission to s				,			
Comments:				·	<u>_</u>		
		i k	<u></u>		-+:+		
· · · · · · · · · · · · · · · · · · ·			:				1
				ONO Data:		10-2	1-15
Project Man	allon SiRuarmer	:		. ·			
	Į					ι.	
-				•			*
			·	•			
	r	1 •	17 1	•			\$1

.

Pace Apalytical	Document Name: MT to MN Sample Transfer Form	Revised Date: 01May2014 Page: 1 of 1
	Document Number: F-MT-C-179-rev.06	Issuing Authority: Pace Minnesota Quality Office
Shipping (circle):		
Tracking #:	6021 2789	1196
Client:	GeoEng	
Due Date:		
Pace WO:	10326596	· · · · · · · · · · · · · · · · · · ·
Project Manager:	Carol Davy	

MT to MN Sample Transfer Condition Upon Receipt Form

ANALYSIS REQUESTED											
Method Number & Description	Container Type	# of Bottles	Lab ID's	Preservative Yes or No	Verify Arrival Date & Initials						
Tests											
	JGFU	2	001 & 002	N	BM 10/28/15						
					•						

REPORTING REQUIREMENTS/ADDITIONAL COMMENTS									
	·								
	· ·	· · · ·							

MINNESOTA SAMPLE RECEIPT INFORMATION											
IR Gun (circle): 80512447, B88A912167504, 72	337080 Correction Factor:	-0, Sample Matrix:	SL								
Cooler Temp Read (°C): 2.4 Cooler Temp (Corrected (°C): 2.3	Filtred volume rec'd for dissolved tests:	Yes No NA 🎾								
Arrived on Ice:	Yes 🖌 No	Samples pH have been checked:	Yes No NA 🗡								
Custody Seal Present:	Yes 🖌 No	Trip Blank Present:	Yes 🔄 No NA 🗶								
Short Hold Time Requested < 72 Hours:	Yes No Y	Trip Blank Custody Seals Present:	Yes No NA 🎽								
Rush TAT Requested:	Yes No 🗶	Pace Trip Blank Lot #:									
Sufficient Sample Volume:	Yes 🗶 No	Sample Composites Required:	Yes No NA 💉								
Samples Arrived within Hold Time:	Yes 🗶 No	Report Samples:	Wet Wt Dry Wt								
Containers Intact:	Yes 🗶 No	Reporting Units:									

		CUSTO	DY TRANSI	ER			
Relinquished by/Affiliation	Date	Time		Acce	pted By Affiliation	Date	Time
Meratty - Vace 1	Verlis	1600	RI	n	face	10/28/15	1000
					•		
	1						

CLIENT NOTIFICATION/RESOLUTION

Person Contacted: Comments/Resolution:

Project Manager Review:

Mundap for CAD Date: 10/29/15

Date:

United States Department of Agriculture

Animal and Plant Health Inspection Service

Plant Protection and Quarantine

USDA APHIS PPQ 1220 Cole Avenue Helena, MT 59601

Voice: 406-449-5210 Cell: 406-431-6531 Fax: 406-449-5212 Email: gary.d.adams@ aphis.usda.gov October 15, 2015 Page 1 of 2

Approval to Transfer (Ship and Receive): Untreated USDA-APHIS-PPQ Regulated Soil and associated materials to Ms. Sarah Cherney, Pace Analytical Services, Inc. - Minneapolis, 1700 Elm Street SE, Suite 200, Minneapolis, MN 55414

Expiration Date: July 23, 2016 (expiration date of Sarah Cherney's soil permit)

Vivianne Rhonda Johnson Pace Analytical Services, Inc. - Montana 150 9th Street N Billings, MT 59101

Dear Vivianne Rhonda Johnson:

This communication serves as prior approval from the Montana PPQ office and the State Plant Regulatory Official of the Montana Department of Agriculture to ship and receive transfers of untreated USDA-APHIS-PPQ regulated soil and associated materials to/from the USDA-APHIS-PPQ-authorized soil lab facility of Ms. Sarah Cherney, Pace Analytical Services, Inc. -Minneapolis, 1700 Elm Street SE, Suite 200, Minneapolis, MN 55414 for the purpose of conducting non-biological soil analyses.

These transfers must be in accordance with all permit conditions and compliance agreement stipulations of the relevant documents listed below, including but not limited to all record keeping requirements, the requirement for both parties to maintain file copies of the documents, for a copy of the recipient's permit to accompany each shipment.

Authorized Individuals and Relevan	nt Documents								
Permittee: Sarah Cherney, Pace Analytical Services, Inc Minneapolis, 1700 Elm Street SE, Suite 200, Minneapolis, MN 55414									
Permit: P330-13-00225 Soil Compliance Agreement: Soil-MN-Lab-2013-03	Expiration Date: 07/23/2016 Date of Agreement: 07/10/2013								
Permittee: Ms. Vivianne Rhonda Johnson, Pace Analytica 150 9 th Street N, Billings, MT 59101	l Services, Inc. – Montana,								
Permit: P330-15-00120 Soil Compliance Agreement: MT-SL-2015-01	Expiration Date: 04/29/2018 Date of Agreement: 03/25/2015								

All packaging and labeling requirements must be met and shipment(s) must be by commercially bonded carrier.

An Equal Opportunity Provider and Employer

Page 1 of 2

October 13, 2015

Transfers are authorized as confirmation of the associated transfer approval by the Montana Department of Agriculture has been conveyed to our PPQ MT office by Andy Gray, Montana Department of Agriculture, Helena, MT.

Transfers of soil regulated under domestic Federal quarantines for imported fire ants (Solenopsis richteri and S. invicta), golden nematode (Globodera rostochiensis), and witchweed (Striga spp.) are authorized.

This approval **does not authorize** any soil regulated under domestic Federal quarantines for *Phytophthora ramorum* (sudden oak death), pale cyst nematode (*Globodera pallida*), or fruit flies (various species in the family Tephrididae); movement of these soils requires regulatory instruments other than a soil compliance agreement [Certificates (PPQ Form 540) or Limited Permits (PPQ FORM 530)] other than or in addition to a soil compliance agreement. Certificates would authorize movement from quarantine areas of *Phytophthora ramorum*, *Globodera palida*, or fruit flies and Limited Permits would authorize movement from quarantine areas of *Globodera pallida* or fruit flies. There is no limited permit option for movement from a *Phytophthora ramorum* quarantine area.

If there are any samples moving or have been moved under the authorization of a Certificate (PPQ Form 540) or Limited Permit (PPQ Form 530), documentation associating those documents with their authorized samples must accompany the shipment to/from this approved soil lab, such as any soil samples originating from a *Phytophthora ramorum* quarantine area or a Globodera palida Pale Cyst Nematode quarantine area.

This approval is valid until the expiration of Vivianne Rhonda Johnson's soil permit on April 29, 2018 providing the permits and compliance agreements listed above remain active. PPQ reserves the right to modify or cancel this approval at any time.

A transfer of regulated material scheduled after the expiration of this approval will require the issuance of new transfer approvals which in turn necessitates the issuance of a new soil permit for your soil lab.

Retain a copy of this approval with the shipping records associated with any authorized transfer.

Thank you for your cooperation in this matter and do not hesitate to contact our office if additional information or clarification is required.

Sincerely,

Lori Witham

Plant Health Trade Compliance Officer USDA, APHIS, PPQ- MT Field Operations

Andy Grav

Commodity Services Bureau Chief MT Dept. of Agriculture, Plant Protection Division

cc: Mark Hollister, Acting State Plant Health Director – MN and IA Gary Adams, State Plant Health Director – MT Pamela Deerwood, PPQ Officer / Plant Health Safeguarding Specialist - MN

Pace Analytical*	Doc Sample Condi Do	tion Up	Name: on Receij t No.:	ot Form	Docu	ment Revised: 23 Page 1 of 1 Issuing Authori	3Feb2015 ty:	
	F-M	N-L-213	-rev.13	1	Pace	Minnesota Qual	ity Office	
Imple Condition Client Name: Upon Receipt Pace IN			Project	#:				
urier: ØFed Ex UPS Commercial Pace SpeeDe Tracking Number: <u>6467 4544</u>	□USPS e □Other:_ 376)		lient				· •	
ustody Seal on Cooler/Box Present?	No S	eals Inta	act?	Yes No	Optio	nal: Proj. Due	Date: Pro	oj. Name:
acking Material: Bubble Wrap Bubble	Bags None		Other:			Temp Blan	k? Yes	No
ermometer B88A9130516413 B88A9120 Used: B88A9130516413 B88A014 poler Temp Read (°C): . O mp should be above freezing to 6°C Cooler Tem DA Regulated Soil (□ N/A, water sample) Isamples originate in a quarantine zone within the U NC NRA NY, OK OR SC, TN, TX or WA (check mass	167504 Type 3310098 Type np Corrected (°C): n Factor: nited States: AL, A	of Ice:	Dat	Blue Bic and Initials or D, LA. Did	None Nogical Tis f Person E I samples or luding Hawa	Samples on sue Frozen? [xamining Conter iginate from a fore ii and Puerto Rico	ice, cooling pro	ernationally,
If Yes to either question, fill out	a Regulated Soil	Checklis	st (F-MN-	Q-338) and inc	lude with	SCUR/COC pape	rwork.	
						COMMENTS:	100 1	iccost land
ain of Custody Present?	Yes	No		1. Keturn	ed sa	pies no	UC, M	I Special men
ain of Custody Filled Out?	Yes	No	DN/A	2.			58.	1 balan
ain of Custody Relinquished?	Yes	No	ØN/A	3.				
npler Name and/or Signature on COC?	Yes	No	ZN/A	4.				
mples Arrived within Hold Time?	Yes	No	□n/A	5.				
ort Hold Time Analysis (<72 hr)?	Yes	ZNg	□n/A	6.				
sh Turn Around Time Requested?	Yes	No	□N/A	7.				
fficient Volume?	Yes	□No	□n/a	8.				
prrect Containers Used?	A Yes	□No	□n/a	9.			•	
-Pace Containers Used?	Pres	□ No	□n/a					
ntainers Intact?	Yes	□No	□n/A	10.				
tered Volume Received for Dissolved Tests?	[]Yes,	No		11. Note if s	sediment is	visible in the diss	olved contair	er
mple Labels Match COC?	☐ res	No		12.				
-Includes Date/Time/ID/Analysis Matrix: SL	1				-			
Il containers needing acid/base preservation have be necked? Il containers needing preservation are found to be in	een Yes	□No		13. [Sample #	_HNO₃	H ₂ SO ₄	NaOH	HCI
1003, H ₂ SO ₄ , HCl<2; NaOH >9 Sulfide, NaOH>12 Cya kceptions: VOA, Coliform, TOC, Oil and Grease,	nide) 🗌 Yes	No		Initial when		Lot # of a	dded	
RO/8015 (water) DOC	Yes			completed:		preservat	live:	·····
eadspace in VOA Vials (>6mm)?	Yes		<u> </u>	14.				
ip Blank Present?	∐Yes			15.				
ip Blank Custody Seals Present?	LIYes	Сио	A/VIL					
				<u>I</u>		Field Data Poor		
CLIENT NOTIFICATION/RESOLUTION				Data /Time-		rielu Data Kequ	neu: Lite	
erson Contacted:				uate/Time:				
omments/Resolution:								

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers).

United States Department of Agriculture Animal and Plant Health Inspection Service 4700 River Road Riverdale, MD 20737

> Permit to Receive Soil Regulated by 7 CFR 330

PERMITTEE NAME:	Sarah Cherney	PERMIT NUMBER:	P330-13-00225
COMPANY:	Pace Analytical Services, Inc Minneanolis	APPLICATION NUMBER:	P525-130116-004
RECEIVING ADDRESS	:1700 Elm Street SE, Suite 200	DATE ISSUED:	07/23/2013
MAILING ADDRESS:	Minneapolis, MN 55414 1700 Elm Street SE, Suite 200 Minneapolis, MN 55414		
PHONE: FAX:	(612) 607-1700	EXPIRES:	07/23/2016
CA, Hawmone, CA, Haw CA, Sacramento; CA, San Hartford; CT, New Haven; Jacksonville; FL, Key Wes Sanford; FL, Tampa; FL, V Kahului; HI, Kailua-Kona; MD, Baltimore; MD, Belts MI, Romulus; MI, Sault Sa MO, Kansas City; MO, St. Bienville; MT, Raymond; J Pembina; ND, Portal; NJ, I Vegas; NY, Albany; NY, J Wegas; NY, Albany; NY, J Wegas; NY, Albany; NY, J Wy, Jamaica; NY, Newbur Wilmington; OK, Oklahom PA, Scranton; PR, Aguadil Charleston; TN, Memphis; TX, Eagle Pass; TX, El Pas TX, Laredo; TX, Los Indic Roma; TX, San Antonio; T VT, Berlin; WA, Blaine; W Milwaukee HAND CARPY.	Diego; CA, Long Beach, CA, Oi Diego; CA, San Francisco; CA, J DE, Dover; DE, Wilmington; FJ it; FL, Miami; FL, Orlando; FL, J Vest Palm Beach; GA, Atlanta; C HI, Lihue; ID, Eastport; IL, Chi- ville; ME, Bangor; ME, Calais; I aint Marie; MN, Duluth; MN, Gr Louis; MP, Commonwealth of t MT, Roosville; MT, Sweetgrass; Linden; NJ, Newark; NM, Albuq Alexandria Bay; NY, Brooklyn; N "gh; OH, Ashtabula; OH, Cincinr na City; OR, Portland; PA, Allen Ila; PR, Carolina; PR, Fajardo; PI TN, Nashville; TX, Austin; TX, so; TX, Fabens; TX, Falcon; TX, si; TX, Pharr; TX, Port Arthur; T "X, Victoria; UT, Salt Lake City; VA, Oroville; WA, Port Angeles; No	Anano, CA, Oharlo, CA, Olay San Jose; CA, San Ysidro; CA, L, Ft. Lauderdale; FL, Ft. Myer Pensacola; FL, Port Canaveral; A, Savannah; GU, Agana; HI, cago; IN, Indianapolis; KY, Lo ME, Houlton; ME, Portland; M and Portage; MN, International he Northern Mariana Islands; M NC, Raleigh; NC, Wilmington uerque; NM, Columbus; NM, S JY, Buffalo; NY, Champlain, F nati; OH, Cleveland; OH, Colur town; PA, Harrisburg; PA, Phil R, Mayaguez; PR, Ponce; RI, W Brownsville; TX, Corpus Chri , Fort Hancock; TX, Galveston; X, Presidio; TX, Progresso; TX VA, Dulles; VA, Norfolk; VI, WA, SeaTac; WA, Sumas; WI	Tecate; CO, Denver; CT, s; FL, Ft. Pierce; FL, FL, Port Everglades; FL, Hilo; HI, Honolulu; HI, uisville; MA, South Boston I, Detroit; MI, Port Huron; Falls; MN, Minneapolis; 1S, Gulfport; MS, Port ; ND, Dunseith; ND, GantaTeresa; NV, Las Rouses Point; NY, Jamaica; nbus; OH, Toledo; OH, adelphia; PA, Pittsburgh; /arwick/Providence; SC, sti; TX, Dallas; TX, Del Rid TX, Hidalgo; TX, Humble C, Rio Grande City; TX, St. Croix; VI, St. Thomas; , Green Bay; WI,
HAND CARRY:	No		
t	Inder the conditions specified, the	is permit authorizes the following in mont and Treatment	ng:
Over 3	b lbs - Your facility MUST be ins	pected and approved to receive	this soil
<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	SPECIAL INSTRUCTION	ONS TO INSPECTORS	
	See permit cor	nditions below	
			Permit Number P330-13-0022
THIS PERMIT HAS BEE FOLLOWING PPQ HEAI	N APPROVED ELECTRONICA DQUARTER OFFICIAL VIA EI	ALLY BY THE I PERMITS.	DATE
apras	O X NE		
		1	

WARNING: Any alteration, forgery or unauthorized use of this Federal Form is subject to civil penalties of up to \$250,000 (7 U.S.C.s 7734(b)) or punishable by a fine of not more than \$10,000, or imprisonment of not more than 5 years, or both (18 U.S.C.s 1001)

Page 1 of 6

INSTRUCTIONS TO DHS CBP INSPECTORS FOR IMPORTED SOIL SHIPMENTS ROUTED TO RECEIVING FACILITY:

For hand carry of soil, an official of CBP Agricultural Programs and Trade Liaison (APTL) would have been notified to document and facilitate the entry of the soil (See hand carry conditions below if stipulated). Otherwise:

1. Validate the permit in ePermits using the CBP search feature by logging on to:

https://epermits.aphis.usda.gov/epermits

2. Confirm that the shipment is being routed directly to a USDA APHIS PPQ Inspected Facility authorized to receive soil by logging on to: https://web01.aphis.usda.gov/PPQ/AuthSoilLabs.nsf/web?openform

3. Confirm that the imported shipment has a valid USDA PPQ Form 550 Black/White label.

Confirm that the carrier of the shipment imported under this USDA PPQ 525 permit is commercially bonded.
 For questions or concerns, contact the USDA APHIS PPQ Permit Unit in Riverdale, MD, at 866-524-5421 and ask to speak with a compliance officer.

PERMIT GUIDANCE

Receipt or use of foreign isolates or samples from countries under sanctions requires specific permission from the U.S. Department of Treasury (see

http://www.treasury.gov/resource-center/sanctions/Programs/Pages/Programs.aspx. for current country/regional listings) for current country listings.

This permit does not authorize importation, interstate movement, possession, and/or use of strains of genetically engineered regulated organisms (created by the use of recombinant DNA technology).

If an animal pathogen is identified in your shipment, to ensure appropriate safeguarding, please refer to http://www.aphis.usda.gov/import_export/animals/animal_import/animal_imports_anproducts.sh

tml.

If a human pathogen is identified, please see the CDC Etiologic Agent Import Permit Program at http://www.cdc.gov/od/eaipp/

This permit does not fulfill the requirements of other federal or state regulatory authorities. As appropriate, please contact the U.S. Environmental Protection Agency, the U.S. Fish and Wildlife Service, the U.S. Food and Drug Administration, the Centers for Disease Control and Prevention, the APHIS Veterinary Services unit, or your State's Department of Agriculture to ensure proper permitting.

If you are considering renewal of this permit, an application should be submitted at least 90 days prior to the expiration date of this permit to ensure continued coverage. Permits requiring containment facilities may take a longer period of time to process.

Approved Sterilization Methods:

All soil residues must be dry-heated, incinerated, hydroclaved or autoclaved.

DRY HEAT Treatment: use one of the following schedules:

110- 120.5 degrees C (230-249 F) for 16 hours

121-154 degrees C (250-309 F) for 2 hours

154.4 - 192.5 degrees C (310-379 F) for 30 minutes

193-220 degrees C (380-429 F) for 4 minutes 221-232 degrees C (430-450) for 2 minutes

Time starts when the entire sample reaches the required temperature, and a suitable temperature probe must be used for verification.

INCINERATION: With the exception of metal and glass containers, all regulated and associated material must be

	Permit Number P330-13-0022
THIS PERMIT HAS BEEN APPROVED ELECTRONICALLY BY THE FOLLOWING PPQ HEADQUARTER OFFICIAL VIA EPERMITS.	DATE
Ad garage	07/02/2012
Osmond Baron	07/23/2013

WARNING: Any alteration, forgery or unauthorized use of this Pederal Form is subject to civil penalties of up to \$250,000 (7 U.S.C.s 7734(b)) or punishable by a fine of not more than \$10,000, or imprisonment of not more than 5 years, or both (18 U.S.C.s 1001)

Page 2 of 6

reduced completely to ash at the end of the incineration cycle.

AUTOCLAVE soil and other material using the following conditions:

a. Soil must be autoclaved at 121 degrees Centigrade (250 degrees Fahrenheit) for a minimum of 30 minutes at 15 psi.

b. Autoclave tape or other indicators must be placed on each bag or sharps container prior to treatment. The autoclave tape or other indicator on each container must be checked to verify color change before disposal.
c. The autoclave log must be completed by each user for each autoclave cycle. All parameters must be noted as listed on the log for each autoclave load.

d. If the autoclave does not attain the minimum time and/or temperature or the autoclave tape does not change color, a notation must be made in the comment section of the autoclave log. The load must then be re-autoclaved after placing new tape on the material. If minimum time and temperature is not attained on the second cycle, users must contact the person responsible for maintaining the unit to initiate repairs. Waste must then be treated at an alternate autoclave facility that is approved by USDA.

e. Thermometers on the autoclave must be calibrated annually, and a written record must be maintained. This must be done by an authorized autoclave service company during routine servicing.

f. Every 6 months, you should use a commercially available test indicator kit that uses bacterial spores Bacillus stearothermophilus that are rendered unviable at 250 degrees F or 121 degrees C. For the test, ampules of B. stearothermophilus are autoclaved along with a load of waste. Upon completion of the cycle, the ampules are incubated for 48 hours and then observed for any sign of growth, which indicates insufficient sterilization.

HYDROCLAVE: Soil must be hydroclaved at 121oC/250oF for a minimum of 30 minutes or 1

PERMIT CONDITIONS

This permit authorizes the importation of soil from all foreign sources (except countries with sanctions or embargoes by U.S. State Department) only for chemical/physical analysis in a controlled laboratory environment at the named facility on the permit.

1. This permit is issued only for the named permit holder at the address(s) identified on this permit. This permit cannot be transferred or assigned.

2. The permit holder verifies United States residency by initialing and accepting these permit conditions. If you are not a United States resident, it is unlawful for you to initial or accept these permit conditions because a USDA 525 soil Permit can only be issued to United States residents.

3. The permit holder is solely responsible for ensuring compliance with all statutory requirements and specifically listed permit conditions. Failure to comply with the terms and conditions of this permit is cause for the following: (a) cancellation of this permit, (b) cancellation of other permits issued to the permit holder, (c) seizure and/or destruction of regulated organisms, (d) denial of future permit applications by this permit holder, (e) liability for civil penalties, and (f) criminal prosecution under provisions in the Plant Protection Act.

4. Any alteration, forgery, unauthorized use of this permit and/or associated Federal Forms are subject to civil and criminal penalties including fines and imprisonment.

5. This permit must not be used for the movement or use of plant pathogens listed in the Public Health Security and Bioterrorism Preparedness and Response Act of 2002. If any organism listed as a Select Agent is identified from materials associated with this research, the permit holder is required to notify APHIS, Agricultural Select Agent Program (ASAP) within one business day by phone at 301-851-3300, and within seven (7) days submit APHIS/CDC Form 4 (Report of Identification of a Select Agent or Toxin in a Clinical or Diagnostic Laboratory) to APHIS, ASAP; 4700 River Rd, Unit 2, Riverdale, MD 20737 (see instructions at:

http://www.aphis.usda.gov/programs/ag_selectagent/index.shtml). Failure to comply with this requirement is a violation of the Agricultural Bioterrorism Protection Act of 2002.

	Permit Number P330-13-00225
THIS PERMIT HAS BEEN APPROVED ELECTRONICALLY BY THE FOLLOWING PPQ HEADQUARTER OFFICIAL VIA EPERMITS.	DATE
Adjanon	07/23/2013
Osmond Baron	0772372013

WARNING: Any alteration, forgory or unauthorized use of this Federal Form is subject to civil penalties of up to \$250,000 (7 U.S.C.s 7734(b)) or punishable by a fine of not more than \$10,000, or imprisonment of not more than 5 years, or both (18 U.S.C.s 1001)

Page 3 of 6

6. If a regulated organism is received in this shipment, the permit holder must take all prudent measures to contain the organism(s) and notify the permit unit within one business day by calling 866-524-5421 or by e-mail to pest.permits@aphis.usda.gov. The permit holder must immediately notify the permit unit of the destruction of regulated organisms received under this permit, as above. Similarly, the permit holder must immediately notify the permit unit if facilities are destroyed or decommissioned for any reason.

7. You as the permit holder are responsible for maintaining a valid permit for as long as the soil is in your possession. APHIS does not issue extensions or renewals of existing permits; the permit holder must submit a new permit application at least three months prior to the expiration of this permit, and obtain a new permit to continue uninterrupted authorization for the soil approved under this permit.

8. If an accidental release into the environment occurs, notification must be made within one business day to APHIS, PPQ, 4700 River Rd., unit 133; Riverdale, MD 20737; 866-524-5421. A written report of the incident must be submitted identifying: (a) the name of the permit holder (responsible person), (b) the permit number, (c) the country or State of origin of the soil, (d) the nature of the release, and (e) measures already taken to contain, reduce or limit the effects of the accidentally released soil. Any plans prepared to contain, reduce or limit the effects of the accidentally released soil.

9. Without prior notice and during reasonable hours, authorized PPQ and/or State regulatory officials shall be allowed to inspect the conditions associated with the regulated soil authorized under this permit.

10. The permit holder must maintain an official permanent work assignment at the address identified on this permit. If the permit holder ceases assignment/affiliation at the address identified on this permit, or personnel circumstances change in any way, then a compliance officer must be notified at the PPQ permit unit immediately (that is, within one business day) by either (a) email to pest.permits@aphis.usda.gov, (b) fax to 301-734-4300 or 8700/5392, or (c) conventional mail to USDA PPQ Permit Unit, 4700 River Road, Riverdale, MD 20737. Should the permit holder depart from the organization/facility, the permit holder must either (a) request cancellation of this permit and comply with all permit-specific termination conditions, (b) apply for and receive a permit to move the soil to a new facility, or (c) relinquish control of the regulated soil to a qualified individual who obtained a permit for the continued use of this regulated soil prior to this permit holder's departure.

11. A copy of this permit must accompany all shipments authorized under this permit.

12. CBP-AI and PPQ have the authority to order and approve treatment, re-exportation or destruction of a shipment, a portion of a shipment or any other material associated with the shipment (i.e. pallets, packaging, and means of conveyance). If an official of CBP-AI or PPQ determines that the shipment requires treatment as a condition of entry, is contaminated with a quarantine plant pest or pests, is commingled with prohibited plant material or the required documentation is incomplete or missing, then that official may order and approve treatment, re-exportation or destruction of a shipment, a portion of a shipment or any other material associated with the shipment (i.e. pallets, packaging, means of conveyance).

13. All solid wood packing material (SWPM) accompanying the shipment must be in compliance with ISPM 15 treatment regulations and IPPC stamp requirements and enforcement. Noncompliant shipments will be treated, re-exported or destroyed at the consignee's expense.

14. All costs and arrangements for safeguarding and transportation of the cargo are the responsibility of the importer, broker or other parties associated with the shipment.

15. All operations must be consistent with information submitted in association with the above listed APHIS-PPQ inspected facility and subject to the conditions below.

16. Soil must be shipped in a securely closed, watertight container (primary container, test tube, vial, etc.) which must be enclosed in a second, durable watertight container (secondary container).

17. The shipment must be free from foreign matter or debris, plants and plant parts including noxious weeds and infestations by other macroorganisms such as insects, Cyst nematode nematodes, mollusks and acari. Authorized material found to be commingled with unauthorized material will be subject to the same action (i.e. re-export, destruction) as unauthorized material.

18. The imported article can be released without treatment at the port of entry to the permittee's address listed on the permit or label or to an authorized user only if the final destination is an approved facility listed at https://web01.aphis.usda.gov/PPQ/AuthSoilLabs.nsf/web?openform.

	Permit Number P330-1	3-00225
THIS PERMIT HAS BEEN APPROVED ELECTRONICALLY BY THE FOLLOWING PPQ HEADQUARTER OFFICIAL VIA EPERMITS.	DATE	
Jogan -	07/23/2013	
Osmond Baron		

WARNING: Any alteration, forgery or unauthorized use of this Federal Form is subject to civil penalties of up to \$250,000 (7 U.S.C.s 7734(b)) or punishable by a fine of not more than \$10,000, or imprisonment of not more than \$ years, or both (18 U.S.C.s 1001)

Page 4 of 6

19. The soil must not be used in field research or release into the environment before sterilization.

The soil must not be used for isolation or culture of organisms, or for extracting and concentrating organisms from the soil.

The soil must not be used as a growing medium.

20. Further distribution of soil is not allowed without prior approval from Federal officials [State Plant Health Director or designee] (or from Federal officials with State concurrence): Access the website at http://www.aphis.usda.gov/ppq/sphd/ for a list of State Plant Health Offices. Access the website at http://nationalplantboard.org/member/index.html for a list of State Plant Regulatory Officials.

21. While in storage, all soil must be kept locked (e.g. in freezer, cabinet) in the approved lab with access limited to authorized personnel or they will be in a restricted access building that requires a key card entry and access is restricted to authorized personnel only; or it must be in locked room restricted to authorized personnel only.

22. The soil must be handled as quarantined material until sterilized. This will include keeping the soil enclosed in containers when not in use and labeling all containers and/or storage areas: "Quarantine Soil- Sterilize Before Disposal"

23. All packing material, media, substrate, and shipping containers must be sterilized or destroyed as approved and prescribed by the permit conditions after removing the soil.

24. All unconsumed soil, containers and effluent must be autoclaved, incinerated or properly sterilized by the permittee at the conclusion of the project as approved and prescribed by the permit conditions.

25. Any water residues (effluent) from the processing of soil samples must be treated by an approved sterilization procedure such as hydroclave or autoclave.

26. All soil residues must be dry-heated, incinerated, hydroclaved or autoclaved.

Dry Heat Treatment: use one of the following schedules:

110- 120.5 degrees C (230-249 F) for 16 hours 121-154 degrees C (250-309 F) for 2 hours 154.4 - 192.5 degrees C (310-379 F) for 30 minutes 193-220 degrees C (380-429 F) for 4 minutes 221-232 degrees C (430-450) for 2 minutes

Time starts when the entire sample reaches the required temperature, and a suitable temperature probe must be used for verification.

27. Incineration: With the exception of metal and glass containers, all regulated and associated material must be reduced completely to ash at the end of the incineration cycle.

28. Equipment and supplies used to conduct operations or that have contacted the soil must be decontaminated using one of the following methods:

(a) Material can be soaked in a fresh bleach solution of 10 percent (1:10) for at least 30 minutes. (1:10 is a convention that means 1 in 10 or 1 part 9 parts = 10 parts total, which is a 10 percent solution)

(b) Material can be soaked in 70 percent ethanol

(c) Flamed with ethanol

(d) Treated with quaternary ammonium compounds.

Note also that autoclaving, hydroclave, incineration, and dry heat sterilization are also acceptable sterilization/decontamination methods.

	Permit Number P330-13-00225
THIS PERMIT HAS BEEN APPROVED ELECTRONICALLY BY THE FOLLOWING PPQ HEADQUARTER OFFICIAL VIA EPERMITS.	DATE
Joganon	07/23/2013
Osmond Baron	0172072020

WARNING: Any alteration, forgery or unauthorized use of this Federal Form is subject to civil penalties of up to \$250,000 (7 U.S.C.s 7734(b)) or punishable by a fine of not more than \$10,000, or imprisonment of not more than 5 years, or both (18 U.S.C.s 1001)

Page 5 of 6

29. You must attach a PPQ Form 550 Black/White label to the exterior of each shipment being imported under this permit. If you are e-authenticated, you are instructed to request labels using the My shipment/my label option within ePermits at least 7 days in advance. Labels also may be requested by email at:

BlackWhiteGreenYellow.labelrequest@aphis.usda.gov. All email requests must come from the permit holder or their authorized contact, if requested by an authorized contact the permit holder must be copied on all requests. You must specify PPQ Form 550 Black/White labels, the specific port(s) of entry and number of labels for each port when requesting labels. The requested labels will be sent to you through a bonded carrier.

30. Underlying packaging/wrapping must carry the address, billing, and any other information required to direct the shipment to its final destination (i.e., the permit holder's address; Please note: USDA APHIS does not defray any additional shipping costs incurred for transiting the shipment through an inspection station as the initial US destination).

END OF PERMIT CONDITIONS

THIS PERMIT HAS BEEN APPROVED ELECTRONICALLY BY THE FOLLOWING PPQ HEADQUARTER OFFICIAL VIA EPERMITS.	DATE
Joganon	
Osmond Baron	07/23/2013

WARNING: Any alteration, forgery or unauthorized use of this Federal Form is subject to civil penalties of up to \$250,000 (7 U.S.C.s 7734(b)) or punishable by a fine of m more than \$10,000, or imprisonment of not more than \$ years, or both (18 U.S.C.s 1001)

Page 6 of 6

Permit Number P330-13-00225

<i>p</i>	Document Name: MN to MT Sample Transfer Form	Revised Date: 14Jul2014 Page: 1 of 1
Pace Analytical	Document Number:	Issuing Authority: Bace Minnesote Quality Office
	[
Shipping (circle):	UPS (Fed Ex)	
Tracking #:	6484	8692 8900
Client:	GeoEngineers	
Due Date:	2-Nov-2015	
Pace WO:	10326596	· · · · · · · · · · · · · · · · · · ·
Project Manager:	CAD	

MN to MT Sample Transfer Condition Upon Receipt Form

ANALYSIS REQUESTED					
Method Number & Description	Container Type	# of Bottles	Lab ID's	Preservative Yes or No	Verify Arrival Date & Initials
Tests	**************************************				1 game
ABAccounting	none	7	001-005, 009, 010	none	LISON
Asbestos	JGFU	10	001-010	noné	l pio
<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		649		Doce	
±, , , , , , , , , , , , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·			P	1º 25 M
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	,	***	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1
			<u>╶╶</u> ┎╗╴┪╌╷╡╾┙┥┪╼┍┍┍┲┝┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙╝╝╝┙╸╸╝╝╝╵╸		
	,				
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
				<u> </u>	
₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩					

REPORTING REQUIREMENTS/ADDITIONAL COMMENTS

MONTANA SAMPLE RECEIPT INFORMATION 32 Sample Matrix: IR Gun: B88A0140728348, Correction Factor: -0.1 Filtred volume rec'd for dissolved tests: Cooler Temp Read (°C): 1-1,8 Cooler Temp Corrected (°C): Yes No NA 12.7 No.A Samples pH have been checked: Yes No NA Arrived on Ice: Yes Yes Trip Blank Present: No NA Yes X **Custody Seal Present:** No Trip Blank Custody Seals Present: Nox Yes Short Hold Time Requested < 72 Hours: Yes. No NA JK Pace Trip Blank Lot # Rush TAT Requested: Yes No X Sample Composites Required: Yes No / NA Sufficient Sample Volume: No Yes Wet Wt. Report Samples: Dry Wt. Samples Arrived within Hold Time: Yes 🗙 No Reporting Units: Containers Intact: No Yes X

CUSTODY TRANSFER							
Relinguished by/Affiliation	Relinguished by/Affiliation Date Time Accepted By Affiliation						Time
Harmon Plus	10/22/15	1315					······································
Sid Ex			ulfusalla	6	10/2	3/5	0945
					ļ		
ݥݖݺݗݚݷݛݙݪݐݩݑݲݞݷݸݠݧݛݷݜݷݪݜݻݪݞݜݖݻݚݵݑݛݯݞݘݕݘݗݵݑݤݸݘݷݘݹݘݻݘݻݹݷݵݗݯݑݚݵݑݘݑݵݑݤݵݘݹݷݵݙݷݪݤݕݪݬݬݥݦݹݷ ݛ ݕݕݐݻݒݬݬݥݥݹݷݛݕݕݐݘݛݷ	وسيعت محمود والمحمود و			ŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢ			
<u>,</u>	CLIEN	VT NOTIFI	CATION/RESOLUTION		a-ko-azzakitaria		
Person Contacted:			Dat	¢:			
Comments/Resolution:							
				๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛		ر میں	13-23C##CH307-207-207-207-209-
Project Manager Review:	_AR	<u> </u>	Dat	0: 10/23/15	_		

United States Department of Agriculture

Animal and Plant Health Inspection Service

Plant Protection and Quarantine

USDA APHIS PPQ 900 American Blvd East Suite 204 Bloomington, MN 55420

Voice: 952-814-1079 Cell: 612-741-1157 Fax: 952-814-1076 Email: pamela.m.deerwood@ aphis.usda.gov October 19, 2015 Page 1 of 2

Approval to Transfer (Ship and Receive): Untreated USDA-APHIS-PPQ Regulated Soil and associated materials to/from Ms. Vivianne Rhonda Johnson, Pace Analytical Services, Inc. --Montana, 150 9th Street N, Billings, MT 59101

Expiration Date: July 23, 2016 (expiration date of Sarah Cherney's soil permit)

Sarah Cherney Pace Analytical Services, Inc. - Minneapolis 1700 Elm Street SE, Suite 200 Minneapolis, MN 55414

Dear Sarah Cherney:

This communication serves as prior approval from the Minnesota PPQ office and the State Plant Regulatory Official of the Minnesota Department of Agriculture to ship and receive transfers of untreated USDA-APHIS-PPQ regulated soil and associated materials to/from the USDA-APHIS-PPQ-authorized soil lab facility of Ms. Vivianne Rhonda Johnson, Pace Analytical Services, Inc. - Montana, 150 9th Street N, Billings, MT 59101 for the purpose of conducting non-biological soil analyses.

These transfers must be in accordance with all permit conditions and compliance agreement stipulations of the relevant documents listed below, including but not limited to all record keeping requirements, the requirement for both parties to maintain file copies of the documents, for a copy of the recipient's permit to accompany each shipment.

Authorized Individuals and Relevant Documents						
Permittee: Sarah Cherney, Pace Analytical Services, Inc Minneapolis, 1700 Elm Street SE, Suite 200, Minneapolis, MN 55414						
Permit: P330-13-00225Expiration Date: 07/23/2016Soil Compliance Agreement: Soil-MN-Lab-2013-03Date of Agreement: 07/10/2013						
Permittee: Ms. Vivianne Rhonda Johnson, Pace Analytical Services, Inc. – Montana, 150 9 th Street N, Billings, MT 59101						
Permit: P330-15-00120 Soil Compliance Agreement: MT-SL-2015-01	Expiration Date: 04/29/2018 Date of Agreement: 03/25/2015					

All packaging and labeling requirements must be met and shipment(s) must be by commercially bonded carrier.

An Equal Opportunity Provider and Employer

Page 1 of 2

October 19, 2015 Sarah Cherney

Transfers are authorized as confirmation of the associated transfer approval by PPQ Montana and Montana Department of Agriculture has been conveyed to our PPQ MN office by copy of transfer approval letter to Pace Analytical Services, Inc. – Montana received from Lori Witham, PPQ-MT.

Transfers are authorized as confirmation of the associated transfer approval by the Minnesota Department of Agriculture and has been conveyed to our PPQ MN office by Jeanne Ciborowski, Minnesota Department of Agriculture, Plant Protection Division, St. Paul, MN.

Transfers of soil regulated under domestic Federal quarantines for imported fire ants (Solenopsis richteri and S. invicta), golden nematode (Globodera rostochiensis), and witchweed (Striga spp.) are authorized.

This approval does not authorize any soil regulated under domestic Federal quarantines for *Phytophthora ramorum* (sudden oak death), pale cyst nematode (*Globodera pallida*), or fruit flies (various species in the family Tephrididae); movement of these soils requires regulatory instruments other than a soil compliance agreement [Certificates (PPQ Form 540) or Limited Permits (PPQ FORM 530)] other than or in addition to a soil compliance agreement. Certificates would authorize movement from quarantine areas of *Phytophthora ramorum*, *Globodera pallida*, or fruit flies and Limited Permits would authorize movement from quarantine areas of *Globodera pallida* or fruit flies. There is no limited permit option for movement from a *Phytophthora ramorum* quarantine area.

If there are any samples moving or that have been moved under the authorization of a Certificate (PPQ Form 540) or Limited Permit (PPQ Form 530), these documents must accompany the authorized shipment of samples to/from this approved soil lab. This includes but is not limited to any soil samples originating from a *Phytophthora ramorum* quarantine area or a *Globodera palida* Pale Cyst Nematode quarantine area.

This approval is valid until the expiration of Sarah Cherney's soil permit on July 23, 2016 providing the permits and compliance agreements listed above remain active. PPQ reserves the right to modify or cancel this approval at any time.

A transfer of regulated material scheduled after the expiration of this approval will require the issuance of new transfer approvals which in turn necessitates the issuance of a new soil permit for your soil lab.

Retain a copy of this approval with the shipping records associated with any authorized transfer.

Thank you for your cooperation in this matter and please do not hesitate to contact our office if additional information or clarification is required.

Sincerely,

jula M Deerwood

Paméla M. Deerwood PPQ Officer/ Plant Health Safeguarding Specialist USDA, APHIS, PPQ- MN Field Operations

J. Ciboromski

Jeanne Ciborowski Research Scientist MN Dept. of Agriculture, Plant Protection Division

cc: Kathryn Kromroy, Minnesota Department of Agriculture, Plant Protection Division Jeanne Ciborowski, Minnesota Department of Agriculture, Plant Protection Division Gary Adams, State Plant Health Director – MT Lori Witham, Plant Health Trade Compliance Officer - MT Erin Stiers, State Plant Health Director - MN Mark Hollister, Acting State Plant Health Director – MN and IA

Page 2 of 2

	Document Name: MT to MN Sample Transfer Form	Revised Date: 01May2014 Page: 1 of 1
FaceAnalytica	Document Number: F-MT-C-179-rev.06	Issuing Authority: Pace Minnesota Quality Office
Shipping (circle):		
Tracking #:	6021 2789	1196
Client:	GeoEng	
Due Date:		
Pace WO:	10326596	
Project Manager:	Carol Davy	

MT to MN Sample Transfer Condition Upon Receipt Form

ANALYSIS REQUESTED						
Method Number & Description	Container Type	# of Bottles	Lab ID's	Preservative Yes or No	Verify Arrival Date & Initials	
Tests			· · · · · · · · · · · · · · · · · · ·		_	
· · · · · · · · · · · · · · · · · · ·	JGFU	2	001 & 002	N	BM 10/28/10	

REPORTING REQUIREMENTS/ADDITIONAL COMMENTS					

MINNESOTA SAMPLE RECEIPT INFORMATION						
IR Gun (circle): 80512447, B88A912167504, 72	337080 Correction Factor:	-o. Sample Mat	rix: SL			
Cooler Temp Read (°C): 2.4 Cooler Temp	Corrected (°C): 2,3	Filtred volume rec'd for dissolved tes	sts: Yes _ No_ NA 🏠			
Arrived on Ice:	Yes 😾 No	Samples pH have been check	ed: Yes No NA 💆			
Custody Seal Present:	Yes 🏆 No	Trip Blank Prese	ent: Yes _ No_ NA 🗶			
Short Hold Time Requested < 72 Hours:	Yes No¥	Trip Blank Custody Seals Prese	ent: Yes No_ NA 🗡			
Rush TAT Requested:	Yes No 🗶	Pace Trip Blank Lo	t #:			
Sufficient Sample Volume:	Yes 🗶 No	Sample Composites Requir	ed: Yes No NA 🖌			
Samples Arrived within Hold Time:	Yes 🗡 No	Report Sample	es: Wet Wt Dry Wt			
Containers Intact:	Yes 🖌 No	Reporting Un	its:			

		CUSTOD	Y TRANSI	FER			
Relinguished by/Affiliation	Date	Time		Acce	pted By Affiliation	Date	Time
Meraster - Pace 1	127/15	1600	81	n	Part	10/28/15	1000
·····							

CLIENT NOTIFICATION/RESOLUTION

Date:

Person Contacted: **Comments/Resolution:**

Project Manager Review:

Mudap for app Date: 10/29/15

Mary Walter - Fwd: sample containers for 10326596

From:Rhonda JohnsonTo:Corder, Carol; Davy, Carol; Thomas, Will; Walter, MaryDate:10/26/2015 3:28 PMSubject:Fwd: sample containers for 10326596

All,

See below. Try to spare some for MN. Give to Mary or Nikki when complete.

>>> Carol Davy 10/26/2015 3:15 PM >>> Rhonda,

Do you have any extra sample for samples 001 and 002 for the above? We received an 8 oz jar for each and were to send you just one 4oz for each, but now we have no sample at all for these two. You need to run asbestos and ABA. Please send back any sample you can spare for 001 and 002.

Thanks

Carol Davy Sr. Project Manager My hours are M-F 9:00 to 4:30 central.

Pace Analytical

Pace Analytical Services MN Laboratory, 1700 Elm St SE, Minneapolis, MN 55414 Direct 612-607-6436 email: carol.davy@pacelabs.com For after hours help, email or call Shawn Davis at <u>shawn.davis@pacelabs.com</u> or 612-607-6378.

United States Department of Agriculture

Animal and Plant Health Inspection Service

Plant Protection and Quarantine

USDA APHIS PPQ 1220 Cole Avenue Helena, MT 59601

Voice: 406-449-5210 Cell: 406-431-6531 Fax: 406-449-5212 Emall: gary.d.adams@ aphis.usda.gov October 15, 2015 Page 1 of 2

Approval to Transfer (Ship and Receive): Untreated USDA-APHIS-PPQ Regulated Soil and associated materials to Ms. Sarah Cherney, Pace Analytical Services, Inc. - Minneapolis, 1700 Elm Street SE, Suite 200, Minneapolis, MN 55414

Expiration Date: July 23, 2016 (expiration date of Sarah Cherney's soil permit)

Vivianne Rhonda Johnson Pace Analytical Services, Inc. - Montana 150 9th Street N Billings, MT 59101

Dear Vivianne Rhonda Johnson:

This communication serves as prior approval from the Montana PPQ office and the State Plant Regulatory Official of the Montana Department of Agriculture to ship and receive transfers of untreated USDA-APHIS-PPQ regulated soil and associated materials to/from the USDA-APHIS-PPQ-authorized soil lab facility of Ms. Sarah Cherney, Pace Analytical Services, Inc. -Minneapolis, 1700 Elm Street SE, Suite 200, Minneapolis, MN 55414 for the purpose of conducting non-biological soil analyses.

These transfers must be in accordance with all permit conditions and compliance agreement stipulations of the relevant documents listed below, including but not limited to all record keeping requirements, the requirement for both parties to maintain file copies of the documents, for a copy of the recipient's permit to accompany each shipment.

Authorized Individuals and Relevant Documents										
Permittee: Sarah Cherney, Pace Analytical Services, Inc Minneapolis, 1700 Elm Street SE, Suite 200, Minneapolis, MN 55414										
Permit: P330-13-00225 Soil Compliance Agreement: Soil-MN-Lab-2013-03	Expiration Date: 07/23/2016 Date of Agreement: 07/10/2013									
Permittee: Ms. Vivianne Rhonda Johnson, Pace Analytica 150 9 th Street N, Billings, MT 59101	I Services, Inc. – Montana,									
Permit: P330-15-00120 Soil Compliance Agreement: MT-SL-2015-01	Expiration Date: 04/29/2018 Date of Agreement: 03/25/2015									

All packaging and labeling requirements must be met and shipment(s) must be by commercially bonded carrier.

Page 1 of 2

October 13, 2015

Transfers are authorized as confirmation of the associated transfer approval by the Montana Department of Agriculture has been conveyed to our PPQ MT office by Andy Gray, Montana Department of Agriculture, Helena, MT.

Transfers of soil regulated under domestic Federal quarantines for imported fire ants (Solenopsis richteri and S. invicta), golden nematode (Globodera rostochiensis), and witchweed (Striga spp.) are authorized.

This approval **does not authorize** any soil regulated under domestic Federal quarantines for *Phytophthora ramorum* (sudden oak death), pale cyst nematode (*Globodera pallida*), or fruit flies (various species in the family Tephrididae); movement of these soils requires regulatory instruments other than a soil compliance agreement [Certificates (PPQ Form 540) or Limited Permits (PPQ FORM 530)] other than or in addition to a soil compliance agreement. Certificates would authorize movement from quarantine areas of *Phytophthora ramorum*, *Globodera palida*, or fruit flies and Limited Permits would authorize movement from quarantine areas of *Globodera pallida* or fruit flies. There is no limited permit option for movement from a *Phytophthora ramorum* quarantine area.

If there are any samples moving or have been moved under the authorization of a Certificate (PPQ Form 540) or Limited Permit (PPQ Form 530), documentation associating those documents with their authorized samples must accompany the shipment to/from this approved soil lab, such as any soil samples originating from a *Phytophthora ramorum* quarantine area or a Globodera palida Pale Cyst Nematode quarantine area.

This approval is valid until the expiration of Vivianne Rhonda Johnson's soil permit on April 29, 2018 providing the permits and compliance agreements listed above remain active. PPQ reserves the right to modify or cancel this approval at any time.

A transfer of regulated material scheduled after the expiration of this approval will require the issuance of new transfer approvals which in turn necessitates the issuance of a new soil permit for your soil lab.

Retain a copy of this approval with the shipping records associated with any authorized transfer.

Thank you for your cooperation in this matter and do not hesitate to contact our office if additional information or clarification is required.

Sincerely, Pou Witham

Lori Witham Plant Health Trade Compliance Officer USDA, APHIS, PPQ- MT Field Operations

Andy Grad

Commodity Services Bureau Chief MT Dept. of Agriculture, Plant Protection Division

cc: Mark Hollister, Acting State Plant Health Director – MN and IA Gary Adams, State Plant Health Director – MT Pamela Deerwood, PPQ Officer / Plant Health Safeguarding Specialist - MN

Chain of Custody Workorder: 10326596										ľ	þr		- /	C.P.	Z ace Analytical [®] www.pairotable.com
Pace Analytical Services, Inc. 1700 Elm Street, Suite 200 Minneapolis, MN 55414 Phone (612)607-1700 Fax (612)607-6444		1 Subconu	lère :	thdy				V I		Req	uested /				130651
Item Sample ID	Sample Type	Collect Date/Time	Lab ID	Matrix	je j	Servedice		Hex c							
1 LT-N3-1 (0.5-D*	82	10-12 1130	001	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>				- X		┨╶┨──	┼┼╴			+	
2 UT-N3-2 (0.5-1)*	82	<i>u</i> 114	» 002	31	11			-X			┼╌┼╴			╉╌┠╌	······································
3												- -			
4															
5															
		<u> </u>	<u> </u>	<u></u>	470 VI 367							<u> </u>	omment	S	
I Abace By	17	Date/Time	Receive	d By		Jaztra	Date	/Time	*Sar	nple IDs	update	d per c	lient re	quest on	January 20th, 2016
2 Marcherge	rann		<u>()</u>	ealex (MBIU	123/15	4			-NS-1(0.: -NS-2(0 !	5-1) 5-1)	٦N	/IG 01/2	20/16	
3 teday (m. 10/2	3/15	10/23/12	2:25 Mar	in Dr.	HIO	hee	106-	he and			- ')				
Cooler Temperature on Receip	t 2,4	°C Ci	istody Seal /	Y or N	<u>eu / ru</u>	RA	ceived	on Ice	$\overline{\mathbf{v}}$	r N		9	amples	Intact	Y or N

***In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document. This chain of custody is considered complete as is since this information is available in the owner laboratory.

REVISED 01/20/16 per client.

Sam	ole Co	ondit	ion L	lpon.	Receipt	an Cartanan Marina Marina ang Karanan Marina ang Karananan Marina ang Karanananan Marina ang Karananan Marina ang Karanananan Marina ang Karanananan Marina ang Karananan Marina ang Karananan Marina ang Karanananan Marina ang Karanananan Marina ang Karananan Marina ang Karananananan Marina ang Karananananan Marina ang Karananananan Marina ang Karananan Marina ang Karanananan	
Pace Analytical Client Name:	Paca		1			Proiect #	501301051
Client Name.	Tuce	<u>_ /vi/i</u>					
		mmerc	al		e Other		
Tracking #: 648486928873						-	Date/Time 5035A kits
Custody Seal on Cooler/Box Present: V yes	🗌 no	•	Seals	intact:	yes	no	placed in freezer
Packing Material: PBubble Wrap	ags	Nor	ne [_]Othe	er		
Thermometer <u>123456 A BCD E F</u>	Type	of Ice:	Wet	Blue	None	Samples on ice,	cooling process has begun
Cooler Temperature	ice \	isible/	in San	nple C	ontainers:	Date and in	o Itials of person examining
Temp should be above freezing to 6°C				Comn	nents:	contents:	INB IO/23/15
Are samples from West Virginia?	Yes			1.			
Document any containers out of temp.							
Chain of Custody Present:	LY op	□No		2		<u> </u>	
Chain of Custody Filled Out:	Vyes	□No	□n/A	3.			
Chain of Custody Relinquished:	D res			4.	_	<u></u>	
Sampler Name & Signature on COC:	□Yes	ENo		5.			
Short Hold Time Analysis (<72hr):	□Yes	□No	WININ	6.	<u>_</u> <u>-</u> .		
Rush Turn Around Time Requested:	□ Yes		LAN/A	7.		<u></u>	
Containers Intact:	VYes/			8.		<u></u>	
Sample Labels match COC:	F ires	□No	⊡n/A	9.			
-Includes date/time/ID/Analysis				<u> </u>		<u> </u>	
All containers needing acid/base pres. have been checked?	□Yes	□No	D N/A	10	(Circle) HNO	3 H2SO4 I	NaOH NaOH/ZnAc
exceptions: VOA, coliform, TOC, O&G					-		
All containers needing preservation are found to be in com recommendation (<2, >9, >12) unless otherwise noted.			<u> </u>				<u> </u>
Residual Chlorine Check (SVOC 625 Pest/PCB 608)	<u> </u>		11.	Present	Absent	
Residual Chlorine Check (Total/Amenable/Free Cya	nide)	0	NA	12.	Present	Absent	
Headspace in VOA Vials (>6mm):	□Yes	□No		13		<u></u>	· · · · · · · · · · · · · · · · · · ·
Headspace Wisconsin Sulfide	□Yes	□No	(NA)	14			
Trip Blank Present:	□Yes	□No	TUNK	15			
Trip Blank Custody Seals Present	□Yes	□No					
Project Manager Review							
Samples Arrived within Hold Time:	A Yes	□No		15.			······
Sufficient Volume:	C/Yes	□ No	□n/a	16.			
Correct Containers Used:	Pres	□No	□n/A	17.			
Client Notification/ Resolution:	1		_			Field Data Rec	juired? Y / N
Person Contacted:			Date	/Time:		<u></u>	
Comments/ Resolution:						<u></u>	·
·				<u> </u>			
	<u> </u>					<u></u>	<u></u>

Project Manager Review:

V. Budl 2 San

10/23 Date: 5

REPORT TO: John Haney GeoEngineers, Inc - WA 523 East Second Ave. Spokane, WA 99202

REPORT OF: Bulk Material Analysis - 0504-100-00 VAN STONE_REV

 DATE:
 January 20, 2016

 PACE PROJECT NO:
 10326596

 PAGE:
 1 of 6

CASE NARRATIVE:

On October 17, 2015, our laboratory received 10 bulk material sample(s) from the client. The asbestos analysis was performed in accordance with EPA 600/M4-82-020 and EPA/600/R-93/116 official test methods as outlined in 40CFR763.109 appendix A.

The samples will be held for sixty (60) days from the date of this report.

A < sign indicates the value reported was the practical quantitation limit for this sample using the method described.

Concentrations of analyte, if present, below this were not quantifiable.

Pace Analytical Services, Inc. is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP) for conducting asbestos analysis (NVLAP Lab Code 101292-0). Each result listed in the report applies only to the sample analyzed. This report may not be used to claim product endorsement by NVLAP or any agency of the U.S. Government nor may it be reproduced except in full without written approval of Pace Analytical Services, Inc.

The COC and Report were revised on January 20th, 2016, per client request to update the sample IDs.

Project Manager

Rang Fund

Beverly Faraday for Carol Davy - Project Manager carol.davy@pacelabs.com

Analyst/Approved Signatory

Nerclearly, Ofness

Michael Otness - Laboratory Analyst

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Pace Analytical*

Building Material Analysis Asbestos Content

GeoEngineers Van Stone/0504-100-00

	Date Analyzed	Sample		Samp	le Description	Asbestos Identification and	Non-Asbestos Material
	Analyzed	Identification	Layers	Color	Matrix	Estimated Quantity %	Identification %
10326596001	10/26/2015	LT-NS-1 (0.5-1)	1/1	Tan	Sand (100%)	None Detected	100% Nonfibrous Binder
10326596002	10/26/2015	LT-NS-2 (0.5-1)	1/1	Tan	Sand (100%)	None Detected	100% Nonfibrous Binder
10326596003	10/26/2015	MS-36 (3-5)	1/1	Tan	Sand (100%)	None Detected	100% Nonfibrous Binder
				Gray	Rocks		
10326596004	10/26/2015	MS-29 (6-7)	1/1	Tan	Sand (100%)	None Detected	100% Nonfibrous Binder
10326596005	10/26/2015	MS-35 (6-8)	1/1	Brown	Sand (100%)	None Detected	100% Nonfibrous Binder
				Brown	Gravel		
10326596006	10/26/2015	MS-34 (4-5)	1/1	Brown	Soil (100%)	None Detected	100% Nonfibrous Binder
10326596007	10/26/2015	MS-33 (4-5)	1/1	Brown	Soil (100%)	None Detected	100% Nonfibrous Binder
10326596008	10/26/2015	MS-32 (4-5)	1/1	Brown	Soil (100%)	None Detected	100% Nonfibrous Binder
10326596009	10/26/2015	MS-30 (4-5)	1/1	Brown	Soil (100%)	None Detected	100% Nonfibrous Binder
10326596010	10/26/2015	MS-31 (6-8)	1/1	Brown	Soil (100%)	None Detected	100% Nonfibrous Binder

Analyst - Michael Otness

REVISED 01/20/16 per client

·· ·· ·· ·· ·

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Test Pits/Sil 10326596

	Section A Required Client Information:	Section B Required Project Information:		Section C		Pag	= 1	
	Company: 17 20 20 100	Report To: The Part Passon	hela lash	Attention:	1		198	36465
	Address 573 & Success Are	Copy To:		Company Namo:	R	EGULATORY AGENCY	(
	inter LA 38007	jnie trgebist	WO.COM	Address	· · · · · · · · · · · · · · · · · · ·	NPDES T GROU	ND WATER	DRINKING WATER
	Email To faces (4 31 of tawas 100	Purchase Order No.:		Pace Quota		UST F RCRA	г	OTHER
	Phone: 9 - 7/3 - 1/3 Fax: 3/7/	Project Name: JAN STORE	5	Pace Project		Site Location		
	Requested Due Date/TAT:	Project Number: 1604-100-	- - 40	Pace Profile #:		STATE:		
	0.0000	0307755			Requested A	nalysis Filtered (Y/N)		
	Section D Matrix C	odos E a			Z			· · · ·
	Required Client Information MATRIX /		COLLECTED	Preservatives	×	┽┽┽┼┼┼┥		
	Water Waste Water Waste Water Product SOVSold SAMPLE ID (A-2, 0-01,-) Sample IDs MUST BE UNIQUE Tissue Cother	의 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		OF CONTAINERS Inpreserved IsSO4 INO3 INO3 IsOH Is25-03 fethanol	Mar Arialysis Teat & Matalat ABA ABA TCLD	the by the by to the fle gr	testduat Chlorine (Y/N)	
	- +T-113-4/2 C-4 IT-NG-1	1 0 DATE		1 1				ADI
	2 2T-N3-2/1-5-4)LT-NS-2	0.5-1) SI (- 11/	40	1 1	Y X X X	x X	+++	802
TIM	3. TAS- 28 (3-5) MS-36 (3	-5) Si G / M	115		XXXX	X		003
10.0	4 MS-27 (6-7)	SLGV 15	10	2 X	XXXXX			AJY
1/2016	5 MB-27/6-8) MS-35(6	1) x G 15	50	2 X	XXXXX			DDS
1/20/2	\$ MS-34(4-5)	52 6 1 14	020	ZX	× me 参加	X	Meta	its of assesta anly DOU
	7 1715-33(4-5)	SL G 16	50	2 7	↓ × w w w w	×[]		007
	8 M3-3a(4-5)	SL G 1913 0	930	XX		×		V V OOD
	1 M3-30 (4-5)	SLG 10	00	2 1	XXXXX			09
	10 M3-31 [6-87	SLG 10	140	2 X	XXXX	X		010
	11 MS-19 (0.5-1)	QG 11	00	1×				011
	12 MS-20(0.5-1)	52 G V 11	15	2 2		XX		015
	ADDITIONAL CONNENTS	RELINCUESHED BY I AF	FILIATION DATE	TIME ACCEP	TED BY I AFFELIATION	DATE TIME	SAM	IPLE CONDITIONS
	Lech, Mirium, Makel . 7:02	1 4h 2 10	1E! 10/16/15	1100 111	1 page	10/17/0 9-50	3.4 Y	NY
				que				/
						+		
1			I AMPLER NAME AND SIGNATUR	RE 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			2 8-	bler tact
	OH		PRINT Name of SAMPLER	R: Tosh Lee			a dr de la constante de la con	VN) VN)
			SIGNATURE of SAMPLEF	R LL	DATE Signed (NN/DD/YY):	10/16/15	Rec Ter	Samt Samt
	"Important Note: By signing this form you are accept	ng Pacata NET 30 day poyment terms and c	agrocing to late charges of 1.6% per man	nth forking involces not pold within 30 day			F-ALL-Q-020re	v.07, 15-May-2007
			*					

ivtical

Page 100 of 103 3 of 6

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analytical*						CHAI The Chain	N-OF-C	:US Is a Li	STO Egal	DY	/ / A UMEI	lnai NT. Ai	lyti 1 relev	cal rant fi	Re cids (ip e mus	UES' it be ca	t Di Imple	OCL ted at	ime	ent ay.			Tes	st	Pit	e/Si 1032	1 16596
Section A	Section E	3						S	iectior	n C													P	r9e:	1	•	of (×
Company: 2 3	Required i Report To:	Projec	ct Infor	mation				br IA	woice i	Inform n:	nation:								7							100	616	5
Address Contracts	Coor To:	$\gamma_{\rm v}$	<u>cney</u>	Caro	engineers	lon			Amaaa	w Nor					-				+							T.00	040	
523 E Scanst Are		jn	ke.	(geo	hznacs.	COM		_Ľ		-									RE	GUL	ATO	RY A	GENO	CY 				
Spokere, 6/A 797802			<u> </u>					_ <u>r</u>	ouress	5 									רך	NP	DES	Г	GRO	UND	WATE	R	DRINKIN	G WATER
janey (2 360 sty vers com	Purchase G	Order	No.:					R	ace Qua alerenci	040 8:									Г	ິນອ	ក	Г	RCR	A		<u> </u>	OTHER	
509-363-325 - 509-363-3/26	Project Na	ma:	VA	N Si	CNE			^^/	aco Proj anager:	joct									s	ļto La	catior	n					• • •	
Requested Due Date/TAT: Standard	Project Nu	mber	ÛS.	04-1	00-30			ĥ	aca Prol	(1)C #:										S	TATE	-			-[
																. 1	Requ	ste	d Aņi	aiysi	s Filte	ared	(Y/N)	·	I • .			
Section D Matrix C Required Clent Information MATRIX /	odas COCE	(Lala	(dMD)		COLLI	ECTED					Pres	ervet	ives		Vin											•	••••••	• • •
Christing Water Water Water Water Water Product SolVSolid SAMPLE ID Oil	NT WT WW P SL OL	(tee valid codee	J-GRAB C=O	C014 .87	Gab	COLPO	SITE RAD	COLLECTION	82						t t										(N/N) 0			
(A-Z, 0-91,-) Air Sample IDs MUST BE UNIQUE Tissue Other	WP AR TS OT	VTRIX CODE	MPLE TYPE (MPLE TEMP AT	DF CONTAINE	SO4	°0,	Н	2S203	Ithenoi	nalýsis Tes	2.4.1.*	216	ISA VIII	ccr2	4-bx	10/10				sidual Chiorir			
[E]		₩	3	DATE	TIME	DATE	TIME	8	₩ <u></u>	퇴걒	<u> </u> E	외훈	2	Ŝ₿	4	2		<u>v</u>	×	N	<u> 19</u>	5			2	Pace	Project N	io,/ Lab LD.
1 17-113-1 (25-1)		<u>تذ</u>	G	14/12	//30				1)	<u>X</u>	\square		\square	_	.	×	X	<u>t x</u>	X X		×	·			\square			001
2 LT-N3-2(0,5-1)		SL	Ġ	\rightarrow	1140	ļ	 		1	<u>¥</u> _	\square	\bot	\square		ŀ	뇌	' 	쒸	× ×		_ <u> </u> ×	4_	┼╌┞	+-	\square			001
3 MS-28 (3-5)		S <u>i</u>	9	$\not -$	1915		 	_	<u>d </u>	×J-	╀╌╄	_	┝┼		-	×	X	42	<u>l'x</u>			+	\vdash	+	+			007
4 11/3-97 (6-7)		56	9	(1510	ļ			$\frac{1}{2}$	7	╋╋	_	┝┼			Ę	121	<u>X X</u>	ĨX	$\left \right $		╋	┼┼	+	+			00T
5 MS-27 (6-8)		<u>×</u>	19	\rightarrow	1350	ļ	+		<u> 육</u> [2	¥–	++	+-	┝┼	╋		Æ		杀		┟┤		+	++	+	+	+a.L.	1.2.1	d Led
$\frac{6}{71}\frac{71}{2}\frac{9}{4}\frac{9}{72}$			4	$\neg \forall$	1620	 			÷ť.	-	++		┝╌┠	+		Ŕ	HIVE	4 1		+		+	┼╌┼╴	+-	┼┼	1	<u>, 10 10 10 10 10 10 10 10 10 10 10 10 10 </u>	ACT ACT
1 115-53(7-5)		<u>k</u>	4	10/13	1620	<u> </u>			бĸ	5	++	+	┝╂	+-	1.	Ŕ		201 (2) 201 (2)				+	╪╌┼╴		++	-17-		1 and
· M3-30(4-5)		57	2	1413	1000				<u>a (</u>	3-	++	+	\mathbf{H}	+		K		1				┿	┼╌┼╴	+-	++	<u> </u>		09
10 MR-21 16-07		87	4		1240		-		えん	? -	++	+	++		1	Ьý	H\$H	쏷	ХЦЗ			+	++		\mathbf{t}			nio
MS = 19(S = 1)		6	2		1100			-f	おお		++	+	++		1	Ż	+++	ť	Ŧ	+		+	++	╈	++			- OIT
$\frac{11}{12}$ ms = 7 $\frac{3}{0}$ (0.5-1)		N.	G		1115	<u> </u>		-ti	11	प्र े–	++	+	H	+	1	闵	++		╈	X	x	+		\neg	\mathbf{t}			012
ADDITIONAL COMMENTS	- T-	REL	INCU	ISHED BI	AFFILIAT	ON	DATE	Ť	TIM	E	1.	_ _	ACC	EPTE	0 BY	IA	FFILIA	ILCN	,	1	ATE	1	TIME.	T		SAMI	LE CONDIT	IONS
Affationy, Arone Collain, Copper, Chan- Lead, Mirlany, Nickel, Ziac	2	4	T.	Ł	GE]	,	10/16/19	₫	110	Û	Z	į				Ż		ph	¥1	Ø	170	1	-30	2	5.9	Y	N	4
								+																				
			~~~~~		[au			1			<u> </u>	-	s.							<u> </u>		-L		-			2	<b>छ</b>
ORIGINAL				SAMPLER NAME AND BIGNATURE PRINT Name of SAMPLER:			ATURE PLER: Josh Lee											5. ei qu	o (ViN)	valody od Coale	(YN)							
firmouthur Lines (D. station into face uses and	na Decela Si		day ar			SIGNATU	RE of BAMPL	ER:	J.			2	in 30 -				NATE S	lanec XYY):	1	10/	16/1	5			₽ -ALL-	2-020mm	07, 15-Mm	-2007
	-¥																											



## CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A Se	ction B								Sect	fon C	2										•			Page	<b>5</b> .	2	4	* J	•
Required Client Information: Re	quired Pr	oject	nformal	tion:					Involc	a Info	imati	)AL						_		7				Γ		1	00	616	7
Geologinars Ra	port 10:	_Ĵ	Frey	مو ک	winge	-lan			~	ucel:										Į				<u> </u>		<b>ر</b>	130	040	
523 E Second Ave Co	ру To:	Ja	he C	9000	17 A 2/2 .	so m			Comp	xany N	WARDO:									REG	ULAT	ORY	AGE	NĊY		•	· · ,	•	
Spottone, UA 99202									Addre	1521:										Г	NPDE	sГ	G	ROU	NDW	ATE	۲.	DRINKIN	G WATER
Emell To: handy & ged engines com Pu	rchase Or	der N	0.:						Pace C Refere	Quata Mice:											UST	٦	R	CRA			Г	OTHER	
Phone 509-363-3125 Fac 509-363-3126 Pm	ject Nam	<b>q</b> :	VAN	JS	TONE				Pace I Menac	Project zer:	1									Site	Locat	on					·.	•	• •
Requested Due Dato/TAT: STD Pr	ect Num	ber:	050	04-	100-00	, ·			Pace I	Profile	*										STAT	Æ:				-			
															:		Re	eque	sted	Analy	rsis Fl	Itere	d (Y/)	N)				•	
Section D Metrix Code	\$	e	2													I													
Required Client Information MATRIX / CO	DE	8	ğ⊢		Сотт	ECTED		,		<b> </b>		eserv	ative	30	-	획	-	_		┼╌┠╴	╉	+		$\left  - \right $	÷	<b>—</b>			
Water Water	WT	8	8	COMPO	BITE	COMPO	ATE	Ĕ																					
Product	P	No.	8	enna Č	deste	END/GF	IAB	Ľ																		٤			
SAMPLE ID OI	OL I	8	ĩ⊢					Ĕ	ER8							st										2			
(A-Z, 0-9/,-) Air Source 10t MUST BE UNICUSE	AR	۲ ۲	w l					Å	AIN	Σ						Ĕľ	*									흹			
Other	or	ğΙ	<u>۲</u>					9	No	Že				<u>e</u> 9		٣,		শ্ৰ	9							B			
2		Ē	룊		• .			R	FC	18d	စ္ဆိုင္ခ်		되여	빏흌	2	Ē	I	北	E							뒿			
E		₹ I	<u>8</u> 1	DATE	TIME	DATE	TIME	8	ă	5	Ŧ	외	22	2 <u>2</u>	ō.	≤	P		1					$\square$		<u> </u>	Pace	Project N	io/Lab I.D.
1 M3-21 (0.5-1)	!	SL !	G/19	<b>A</b> D	irso	ļ			1	X		$\downarrow \downarrow$			Ц		시	XX	4					Ļ				Q	13
2 MS-22 (0.5-1)			ЦĹ		1140	ļ				Ш		$\square$			Ц		X	XI	<u>k</u>									0	14
3 ms-23 (0,5-1)		Ш	11_		1150	1			$\square$	Ш		$\square$			Ц		×	X13	<u>× </u> _	$\square$								0	15
4 ms-24(0.5-1)		Ш	$\square$		1200					Ш					Ц		Χļ						_		$\square$			0	6
s m3-25(0.5-1)		Ц	$\square$		1210					Ш					Ц		적				_		_		$\square$				17
s mo-24(0.5-1)		Ц	$\square$		1220					Ш		$\square$			Ц		시			$\square$								0	10
$7 m_{3}-27(0.5-1)$		Ц			1230	ļ				Ш		$\square$					X	<u>×l</u> ;	×	$\square$		_				_		(	2/9
8 MS-28 (05-1)	!	٧þ	<u>×</u>	<u>v</u>	1240				V	M		$\square$		1_			×	×Þ	4						$\square$			σ	$\overline{\omega}_{-}$
9			_			<u> </u>				Ц		$\downarrow \downarrow$			Ľ							_		<u> </u>	$\square$				
10																				$\downarrow$					Ц				
11						ļ				$\square$		ļļ		1	Ц				4	$\downarrow \downarrow$		$\square$	_		┡┻	_			
12		<u> </u>	<u> </u>		l <u></u>	<u> </u>			Ļ	Ц	<b></b>	Ļ	Ļ	1	Lİ				1				Ļ		Ц				
ADDITIONAL COMMENTS	. (	RELIA	ionsi f	(ED BY )	AFFILIATI	ON	DATI	E .	1	INE		•	Å	CCEI	TED	BYI	2 ^{eff}		10N		DAT		TEM	E			SAMP	LE CONDIT	101118
Level, Moreny, Miller, End	<u>,                                    </u>	<u>L</u> h	$\underline{\lambda}$	- [	<u>GET</u>	-	10/16/13		110	0			1		-7	6	1	- 1	710	E	10-17	81	93	0	3.	4	У	N	14
	1			.,							Τ	P	/				L	-	•								· ·		/
									<b> </b>		+							•		-+		-†							
																						$\neg$		<b></b>	<b>†</b>	+			
					SANPLE	R NAME A	ND SIGMA	TÜR	L		Ļ				••	• :	: ;	<u>, 1</u>	.:							+	s.	<u>a</u>	द्व
ORIG	INAL				1111	PRINT Non	to of SAMI	LER		-	7.1			<u></u>				• •		· h.	<u></u>				L L		NUX)	1000	l i i
													æ			-	DA	TES	igned	1	am	20-					loo i	ទីទីខ្ល	Agenter 2
						SIGNATU	US OT BAADIN	LENC		-¢	sh.	<u></u>		<b>2</b>	-		{M	M/DD	m;		11071	5						50 17 15.14~	ی د2007

Page 101 of 103 4 of 6

______

ample Conc Upon Reco purier:			AN-L-21	3-rev.13		Pac	Issuing Au e Minnesota	thority: Quality Office	
ourier:	Intron Client Name:	Engine	rs.	Project	#:	)#:1	.032	6596	
]Commercia Tracking Nu	al Pace Speet	USPS Dee Other:_ 1806		Client	1032	6596			
Lustody Sea	l on Caoler/Box Present? []Yes	PINo :	Seals Int	act?	]Yes EIN	Optio	onal: Proj. (	Due Date: P	roj. Name:
acking Mat	terial: 🛛 Bubble Wrap 🗌 Bubbl	e Bags 🗌 Non	• 🖓	Other:_(	and box	NO	Temp i	Blank? 🗍Ye	s ENo
hermomete Used:	er 🗌 888A9130516413 🛛 🖉 888A9 2 9 🗍 888A0	L2167504 Type L43310098	e of Ice:	Dwe C	t 🗍 Blue	None	Samples	s on ice, cooling p	rocess has begun
coler Temp Imp should ( IDA Regulat d samples of S, NC, NM, N	Read (*C): Cooler Te be above freezing to 6°C Correctl ted Soll ( N/A, water sample) riginate in a quarantine zone within the JY, OK, OR, SC, TN, TX or WA (check map If Yes to either question, fill ou	mp Corrected (°C) on Factor:	: 3 2 AR, AZ, C/ Checkilis	Dat Dat A, FL, GA, I ØYes st (F-MN-	B e and initials ID, IA. D No in Q-338) and in	lological Ti of Person I Id samples o Iduding Haw Iclude with	ssue Frozen? Examining Co riginate from a rail and Puerto SCUR/COC p	UYes ntents: foreign source (iu Rico)? aperwork.	No EN/A CLOUEN Iternationally, IYes 2100
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				******	COMMEN	VTS:	
hain of Cust	tody Present?	7 Yes	DNO		1.				
nain of Cust	tady Filled Out?	Yes			Z .				
ain of Cus	tody Relinquished?	Pres			3.				·
mpler Nan	ne and/or Signature on COC?	Vies			4.				
moles Arri	ved within Hold Time?	Dies			5.		*********		
ort Hold T	Ime Analysis (<72 hr)?		Dia		6.				
ch Tura A	mund Time Requested?				7				
ficiant Vo	Jumo3								
millent Vu					<u>o</u>				
STREEL CON					3.				
-Pace Con	tainers Used?			LJN/A					
intainers in	ntact?	Vies	<u>No</u>		10.				
tered Volu	me Received for Dissolved Tests?		- No	ZIN/A	11. Note if	sediment is	i visible in the	dissolved contain	ner
mple Labe	Is Match COC?	Z/ ZYes	□ No	⊡n/a	12.				
-Includes	Date/Time/ID/Analysis Matrix:	51-							
Il container hecked? Il container	s needing acid/base preservation have i is needing preservation are found to be	Deen Tres In	□No		13. Sample #	HNO;	□ H ₂ SO ₄	Пивон	Пнсі
INO ₂ , H ₂ SO kceptions: 1	vich EPA recommendation r 4, HCl<2; NaOH >9 Sulfide, NaOH>12 Cyi VOA, Coliform, TOC, Oll and Grease,	anide) 🗍 Yes	No		Initial when		Lot # (of added	
RO/8015 (v	water) DOC	[]Yes	No	2NA	completed:		prese	rvative:	
eadspace ir	n VOA Vlais (>6mm)?	Yes	- No	EINA	14.				
ip Blank Pr	resent?	Yes	No	Elnya	15.				
ip Blank Cu	ustody Seals Present?	[]Yes	□ No	2N/A					
ice Trip Bla	nk Lot # (if purchased):				L				
C	CLIENT NOTIFICATION/RESOLUTION						Field Data Re	equired? 🗍Ye	es 🔲 No
erson Cont	tacted:				Date/Time	::			
:omments/	Resolution:								

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers).

ļ			· · ·	•		1	
	T	Docum	nt Nama: .	Document Ravised Page 1 C	13Fe	2015	7
Pace	nalytical	Doct	rent No.:	Issuing Aut Pace Minnesota C	ority: uality	Office	
			ND DOMESTIC SOIL	CHECKUST			
To Be Completed bi	USD SR Staff:	AREGULATEU	112	list and		AC	
Project:	Geoting	icours	pate: 10/1 1			FIGN	
Sample Origi	(circle one): (Note: soil samples f	rom Hawaii and	uerto Rico are conside	red to be of a Foreign Sc	urce		5
If Domestic, circl	e State of Origin:	AL AR AZ CA	FL GA ID LA MS	NC NM NY OK OR	sd '	TN TX WA	ĺ
if Foreign, list C	ounty of Origin:		ACTION			COMPLET	
REQUI	tickers are to be	Did "special ha	dling" stickers get pla	iced on all sample	1	(VES)	NO
placed on all samp	88.	containers?			4		
Samples must be s	gregated and	Were samples	placed in a designated	cooler, containers		YB)	NO
stored in designate	d billsy silores and			leskage (chock for			2
		broken glass a	d/or loose soil in the	cooler)?			
		If NO; ice and	neit water can be disp	osed of by normal proce	35 (0	own the dra	<u>b)-</u>
Camples must be	ouble contained to	and disposed	of property?			YES NO	N/A
prevent accidenta	release.	Any broken	ass and/or loose soil :	are to be bagged and pi		In a USDA	egulated
		satellite cont	iner or active drum (i	ee Weste Coordinator)			
		tce and mate	rater should be bake	i at a temperature rang	e of	21-154 7	r 2 hours
	and the second second second second second second second second second second second second second second second	and then coo	ed before going down	n the drain.			
Equipment and s	opplies that have	using either	fresh 10% bleech solu	ntion or 70% ethaniol?		YES	NO
decontaminated		(Gloves and a	ther lab supplies will b Reculated satellits ca	ve bagged and placed in mainer).		\smile	
		ting on open					
To Be Complete	d by PM/PC:	le all that apply):		MN	4	Subcontrac	Lab
Sample Analysis		Name	Subcontract Lab:	are Drdy -	4	Paul	MT.
REC	UREMENT		. ACTION			COMPL	ETED
Permission to sh	in untreated soll mu	RE GO to: J:LSH	RE\PRI_MGR\10_CH	int Services Department ts—if permission to ship		YES NO	N/A
be on file prior t	ncluding iR Pace Lai	bs letter is not	there, contact the Wa	ste Coordinator.			
Shipment must	laclude a valid copy	of is a copy of	all needed paperwork	Included with the COC?	·	YES N	D N/A
the receiving la	bs permit as well as	Do NOT SH	samples until all nec	essary paperwork is		, , , , , , , , , , , , , , , , , , ,	
permission to s	hip letter.	Compiler		······································		·	
Comments:	•					1	
and the second division of the second divisio						•	
				OLAO Date:		10-2	215
Project Man	ager Signature:	:				;	
						((
				•	1		* ,
	ł	i	81	•		:1	11

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

November 03, 2015

John Haney GeoEngineers, Inc - WA 523 East Second Ave. Spokane, WA 99202

RE: Project: 0504-100-00 VAN STONE Pace Project No.: 10326601

Dear John Haney:

Enclosed are the analytical results for sample(s) received by the laboratory on October 17, 2015. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Carlong

Carol Davy carol.davy@pacelabs.com Project Manager

Enclosures

cc: Joshua Lee, GeoEngineers

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

CERTIFICATIONS

Project: 0504-100-00 VAN STONE

Pace Project No.: 10326601

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414 A2LA Certification #: 2926.01 Alaska Certification #: UST-078 Alaska Certification #MN00064 Alabama Certification #40770 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA Colorado Certification #Pace Connecticut Certification #: PH-0256 EPA Region 8 Certification #: 8TMS-L Florida/NELAP Certification #: E87605 Guam Certification #:14-008r Georgia Certification #: 959 Georgia EPD #: Pace Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062 Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322 Michigan DEPH Certification #: 9909

Minnesota Certification #: 027-053-137 Mississippi Certification #: Pace Montana Certification #: MT0092 Nevada Certification #: MN_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New York Certification #: 11647 North Carolina Certification #: 530 North Carolina State Public Health #: 27700 North Dakota Certification #: R-036 Ohio EPA #: 4150 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification Saipan (CNMI) #:MP0003 South Carolina #:74003001 Texas Certification #: T104704192 Tennessee Certification #: 02818 Utah Certification #: MN000642013-4 Virginia DGS Certification #: 251 Washington Certification #: C486 West Virginia Certification #: 382 West Virginia DHHR #:9952C Wisconsin Certification #: 999407970

SAMPLE SUMMARY

Project: 0504-100-00 VAN STONE

Pace Project No.: 10326601

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10326601001	W1-101415	Water	10/14/15 13:01	10/17/15 09:30
10326601002	DH-2-101415	Water	10/14/15 14:07	10/17/15 09:30
10326601003	MW-3-101415	Water	10/14/15 16:23	10/17/15 09:30
10326601004	W-2-101415	Water	10/14/15 17:09	10/17/15 09:30
10326601005	MW-2-101515	Water	10/15/15 11:51	10/17/15 09:30
10326601006	MW-5-101515	Water	10/15/15 13:37	10/17/15 09:30
10326601007	DUP-1-101515	Water	10/15/15 08:00	10/17/15 09:30
10326601008	Mill Pipe-GW-101315	Water	10/13/15 13:00	10/17/15 09:30

SAMPLE ANALYTE COUNT

Project: 0504-100-00 VAN STONE

Pace Project No.: 10326601

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10326601001		EPA 6010C	DM	9	PASI-M
		SM 2320B	MW	1	PASI-M
		SM 2540C	MW	1	PASI-M
		SM 2540D	TLM	1	PASI-M
10326601002	DH-2-101415	EPA 6010C	DM	9	PASI-M
		SM 2320B	MW	1	PASI-M
		SM 2540C	MW	1	PASI-M
		SM 2540D	TLM	1	PASI-M
10326601003	MW-3-101415	EPA 6010C	DM	9	PASI-M
		SM 2320B	MW	1	PASI-M
		SM 2540C	MW	1	PASI-M
		SM 2540D	TLM	1	PASI-M
10326601004	W-2-101415	EPA 6010C	DM	9	PASI-M
		SM 2320B	MW	1	PASI-M
		SM 2540C	MW	1	PASI-M
		SM 2540D	TLM	1	PASI-M
10326601005	MW-2-101515	EPA 6010C	DM	9	PASI-M
		SM 2320B	MW	1	PASI-M
		SM 2540C	TLM	1	PASI-M
		SM 2540D	TLM	1	PASI-M
10326601006	MW-5-101515	EPA 6010C	DM	9	PASI-M
		SM 2320B	MW	1	PASI-M
		SM 2540C	TLM	1	PASI-M
		SM 2540D	TLM	1	PASI-M
10326601007	DUP-1-101515	EPA 6010C	DM	9	PASI-M
		SM 2320B	MW	1	PASI-M
		SM 2540C	TLM	1	PASI-M
		SM 2540D	TLM	1	PASI-M
10326601008	Mill Pipe-GW-101315	EPA 6010C	DM	6	PASI-M
		SM 2320B	MW	1	PASI-M
		SM 2540C	MW	1	PASI-M
		SM 2540D	MW	1	PASI-M

PROJECT NARRATIVE

Project: 0504-100-00 VAN STONE

Pace Project No.: 10326601

Method: EPA 6010C Description: 6010C MET ICP

 Client:
 GeoEngineeers

 Date:
 November 03, 2015

General Information:

8 samples were analyzed for EPA 6010C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: MPRP/58910

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 10326601001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 2112774)
 - Calcium
 - Magnesium

Additional Comments:

PROJECT NARRATIVE

Project: 0504-100-00 VAN STONE

Pace Project No.: 10326601

Method: SM 2320B Description: 2320B Alkalinity

 Client:
 GeoEngineeers

 Date:
 November 03, 2015

General Information:

8 samples were analyzed for SM 2320B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: 0504-100-00 VAN STONE

Pace Project No.: 10326601

Method: SM 2540C

Description:2540C Total Dissolved SolidsClient:GeoEngineeersDate:November 03, 2015

General Information:

8 samples were analyzed for SM 2540C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: 0504-100-00 VAN STONE

Pace Project No.: 10326601

Method: SM 2540D

Description:2540D Total Suspended SolidsClient:GeoEngineeersDate:November 03, 2015

General Information:

8 samples were analyzed for SM 2540D. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: 0504-100-00 VAN STONE

Pace Project No.: 10326601

Sample: W1-101415	Lab ID:	10326601001	Collecte	d: 10/14/15	5 13:01	Received: 10/	17/15 09:30 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	hod: El	PA 3010			
Antimony	ND	ug/L	20.0	3.0	1	10/23/15 14:15	10/27/15 10:34	7440-36-0	
Arsenic	ND	ug/L	20.0	4.0	1	10/23/15 14:15	10/27/15 10:34	7440-38-2	
Cadmium	ND	ug/L	3.0	0.65	1	10/23/15 14:15	10/27/15 10:34	7440-43-9	
Calcium	185000	ug/L	500	67.0	1	10/23/15 14:15	10/27/15 10:34	7440-70-2	M1
Lead	ND	ug/L	10.0	2.0	1	10/23/15 14:15	10/27/15 10:34	7439-92-1	
Magnesium	149000	ug/L	500	20.0	1	10/23/15 14:15	10/27/15 10:34	7439-95-4	M1
Nickel	ND	ug/L	20.0	1.5	1	10/23/15 14:15	10/27/15 10:34	7440-02-0	
Thallium	ND	ug/L	20.0	5.0	1	10/23/15 14:15	10/27/15 10:34	7440-28-0	
Total Hardness by 2340B	1070000	ug/L	3300	1650	1	10/23/15 14:15	10/27/15 10:34		
2320B Alkalinity	Analytical	Method: SM 23	320B						
Alkalinity, Total as CaCO3	244	mg/L	5.0	2.5	1		10/26/15 14:19		
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C						
Total Dissolved Solids	1520	mg/L	10.0	5.0	1		10/20/15 13:16		
2540D Total Suspended Solids	Analytical	Method: SM 2	540D						
Total Suspended Solids	ND	mg/L	10.0	5.0	1		10/21/15 12:07		

Project: 0504-100-00 VAN STONE

Pace Project No.: 10326601

Sample: DH-2-101415	Lab ID:	10326601002	Collecte	d: 10/14/15	5 14:07	Received: 10/	17/15 09:30 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	hod: EF	PA 3010			
Antimony	ND	ug/L	20.0	3.0	1	10/23/15 14:15	10/27/15 10:49	7440-36-0	
Arsenic	ND	ug/L	20.0	4.0	1	10/23/15 14:15	10/27/15 10:49	7440-38-2	
Cadmium	4.2	ug/L	3.0	0.65	1	10/23/15 14:15	10/27/15 10:49	7440-43-9	
Calcium	333000	ug/L	500	67.0	1	10/23/15 14:15	10/27/15 10:49	7440-70-2	
Lead	ND	ug/L	10.0	2.0	1	10/23/15 14:15	10/27/15 10:49	7439-92-1	
Magnesium	320000	ug/L	500	20.0	1	10/23/15 14:15	10/27/15 10:49	7439-95-4	
Nickel	ND	ug/L	20.0	1.5	1	10/23/15 14:15	10/27/15 10:49	7440-02-0	
Thallium	ND	ug/L	20.0	5.0	1	10/23/15 14:15	10/27/15 10:49	7440-28-0	
Total Hardness by 2340B	2150000	ug/L	3300	1650	1	10/23/15 14:15	10/27/15 10:49		
2320B Alkalinity	Analytical	Method: SM 23	320B						
Alkalinity, Total as CaCO3	328	mg/L	5.0	2.5	1		10/26/15 14:23		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	3000	mg/L	10.0	5.0	1		10/20/15 13:16		
2540D Total Suspended Solids	Analytical	Method: SM 25	540D						
Total Suspended Solids	12.0	mg/L	10.0	5.0	1		10/21/15 12:07		

Project: 0504-100-00 VAN STONE

Pace Project No.: 10326601

Sample: MW-3-101415	Lab ID:	10326601003	Collecte	d: 10/14/15	5 16:23	Received: 10/	(17/15 09:30 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	hod: El	 PA 3010			•
Antimony	ND	ug/L	20.0	3.0	1	10/23/15 14:15	10/27/15 10:59	7440-36-0	
Arsenic	ND	ug/L	20.0	4.0	1	10/23/15 14:15	10/27/15 10:59	7440-38-2	
Cadmium	ND	ug/L	3.0	0.65	1	10/23/15 14:15	10/27/15 10:59	7440-43-9	
Calcium	80400	ug/L	500	67.0	1	10/23/15 14:15	10/27/15 10:59	7440-70-2	
Lead	ND	ug/L	10.0	2.0	1	10/23/15 14:15	10/27/15 10:59	7439-92-1	
Magnesium	20600	ug/L	500	20.0	1	10/23/15 14:15	10/27/15 10:59	7439-95-4	
Nickel	ND	ug/L	20.0	1.5	1	10/23/15 14:15	10/27/15 10:59	7440-02-0	
Thallium	ND	ug/L	20.0	5.0	1	10/23/15 14:15	10/27/15 10:59	7440-28-0	
Total Hardness by 2340B	286000	ug/L	3300	1650	1	10/23/15 14:15	10/27/15 10:59		
2320B Alkalinity	Analytical	Method: SM 23	320B						
Alkalinity, Total as CaCO3	223	mg/L	5.0	2.5	1		10/28/15 12:11		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	409	mg/L	10.0	5.0	1		10/20/15 13:16		
2540D Total Suspended Solids	Analytical	Method: SM 25	540D						
Total Suspended Solids	ND	mg/L	10.0	5.0	1		10/21/15 12:07		

Project: 0504-100-00 VAN STONE

Pace Project No.: 10326601

Sample: W-2-101415	Lab ID:	10326601004	Collecte	d: 10/14/15	5 17:09	Received: 10/	17/15 09:30 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
	Analytical	Method: EPA 6	010C Prep	aration Met	hod: EF	PA 3010		<u>.</u>	
Antimony	ND	ug/L	20.0	3.0	1	10/23/15 14:15	10/27/15 11:02	7440-36-0	
Arsenic	ND	ug/L	20.0	4.0	1	10/23/15 14:15	10/27/15 11:02	7440-38-2	
Cadmium	ND	ug/L	3.0	0.65	1	10/23/15 14:15	10/27/15 11:02	7440-43-9	
Calcium	88900	ug/L	500	67.0	1	10/23/15 14:15	10/27/15 11:02	7440-70-2	
Lead	ND	ug/L	10.0	2.0	1	10/23/15 14:15	10/27/15 11:02	7439-92-1	
Magnesium	20000	ug/L	500	20.0	1	10/23/15 14:15	10/27/15 11:02	7439-95-4	
Nickel	ND	ug/L	20.0	1.5	1	10/23/15 14:15	10/27/15 11:02	7440-02-0	
Thallium	ND	ug/L	20.0	5.0	1	10/23/15 14:15	10/27/15 11:02	7440-28-0	
Total Hardness by 2340B	304000	ug/L	3300	1650	1	10/23/15 14:15	10/27/15 11:02		
2320B Alkalinity	Analytical	Method: SM 23	320B						
Alkalinity, Total as CaCO3	218	mg/L	5.0	2.5	1		10/28/15 12:26		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	412	mg/L	10.0	5.0	1		10/20/15 13:16		
2540D Total Suspended Solids	Analytical	Method: SM 25	540D						
Total Suspended Solids	ND	mg/L	10.0	5.0	1		10/21/15 12:07		

Project: 0504-100-00 VAN STONE

Pace Project No.: 10326601

Sample: MW-2-101515	Lab ID:	10326601005	Collecte	d: 10/15/15	5 11:51	Received: 10/	17/15 09:30 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	hod: EF	PA 3010			
Antimony	ND	ug/L	20.0	3.0	1	10/23/15 14:15	10/27/15 11:05	7440-36-0	
Arsenic	ND	ug/L	20.0	4.0	1	10/23/15 14:15	10/27/15 11:05	7440-38-2	
Cadmium	ND	ug/L	3.0	0.65	1	10/23/15 14:15	10/27/15 11:05	7440-43-9	
Calcium	343000	ug/L	500	67.0	1	10/23/15 14:15	10/27/15 11:05	7440-70-2	
Lead	ND	ug/L	10.0	2.0	1	10/23/15 14:15	10/27/15 11:05	7439-92-1	
Magnesium	112000	ug/L	500	20.0	1	10/23/15 14:15	10/27/15 11:05	7439-95-4	
Nickel	ND	ug/L	20.0	1.5	1	10/23/15 14:15	10/27/15 11:05	7440-02-0	
Thallium	ND	ug/L	20.0	5.0	1	10/23/15 14:15	10/27/15 11:05	7440-28-0	
Total Hardness by 2340B	1320000	ug/L	3300	1650	1	10/23/15 14:15	10/27/15 11:05		
2320B Alkalinity	Analytical	Method: SM 23	320B						
Alkalinity, Total as CaCO3	321	mg/L	5.0	2.5	1		10/28/15 12:54		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	1970	mg/L	10.0	5.0	1		10/21/15 11:12		
2540D Total Suspended Solids	Analytical	Method: SM 25	540D						
Total Suspended Solids	145	mg/L	10.0	5.0	1		10/21/15 12:07		

Project: 0504-100-00 VAN STONE

Pace Project No.: 10326601

Sample: MW-5-101515	Lab ID:	10326601006	Collected	d: 10/15/15	5 13:37	Received: 10/	17/15 09:30 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	hod: EF	PA 3010			
Antimony	ND	ug/L	20.0	3.0	1	10/23/15 14:15	10/27/15 11:08	7440-36-0	
Arsenic	ND	ug/L	20.0	4.0	1	10/23/15 14:15	10/27/15 11:08	7440-38-2	
Cadmium	ND	ug/L	3.0	0.65	1	10/23/15 14:15	10/27/15 11:08	7440-43-9	
Calcium	121000	ug/L	500	67.0	1	10/23/15 14:15	10/27/15 11:08	7440-70-2	
Lead	ND	ug/L	10.0	2.0	1	10/23/15 14:15	10/27/15 11:08	7439-92-1	
Magnesium	46900	ug/L	500	20.0	1	10/23/15 14:15	10/27/15 11:08	7439-95-4	
Nickel	ND	ug/L	20.0	1.5	1	10/23/15 14:15	10/27/15 11:08	7440-02-0	
Thallium	ND	ug/L	20.0	5.0	1	10/23/15 14:15	10/27/15 11:08	7440-28-0	
Total Hardness by 2340B	494000	ug/L	3300	1650	1	10/23/15 14:15	10/27/15 11:08		
2320B Alkalinity	Analytical	Method: SM 23	320B						
Alkalinity, Total as CaCO3	155	mg/L	5.0	2.5	1		10/28/15 12:58		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	692	mg/L	10.0	5.0	1		10/21/15 11:12		
2540D Total Suspended Solids	Analytical	Method: SM 25	540D						
Total Suspended Solids	200	mg/L	10.0	5.0	1		10/21/15 12:07		

Project: 0504-100-00 VAN STONE

Pace Project No.: 10326601

Sample: DUP-1-101515	Lab ID:	10326601007	Collected	d: 10/15/15	6 08:00	Received: 10/	17/15 09:30 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prep	aration Met	hod: EF	PA 3010			
Antimony	ND	ug/L	20.0	3.0	1	10/23/15 14:15	10/27/15 11:11	7440-36-0	
Arsenic	ND	ug/L	20.0	4.0	1	10/23/15 14:15	10/27/15 11:11	7440-38-2	
Cadmium	ND	ug/L	3.0	0.65	1	10/23/15 14:15	10/27/15 11:11	7440-43-9	
Calcium	335000	ug/L	500	67.0	1	10/23/15 14:15	10/27/15 11:11	7440-70-2	
Lead	ND	ug/L	10.0	2.0	1	10/23/15 14:15	10/27/15 11:11	7439-92-1	
Magnesium	110000	ug/L	500	20.0	1	10/23/15 14:15	10/27/15 11:11	7439-95-4	
Nickel	ND	ug/L	20.0	1.5	1	10/23/15 14:15	10/27/15 11:11	7440-02-0	
Thallium	ND	ug/L	20.0	5.0	1	10/23/15 14:15	10/27/15 11:11	7440-28-0	
Total Hardness by 2340B	1290000	ug/L	3300	1650	1	10/23/15 14:15	10/27/15 11:11		
2320B Alkalinity	Analytical	Method: SM 23	320B						
Alkalinity, Total as CaCO3	323	mg/L	5.0	2.5	1		10/28/15 13:01		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	1960	mg/L	10.0	5.0	1		10/21/15 11:12		
2540D Total Suspended Solids	Analytical	Method: SM 25	540D						
Total Suspended Solids	135	mg/L	10.0	5.0	1		10/21/15 12:07		

Project: 0504-100-00 VAN STONE

Pace Project No.: 10326601

Sample: Mill Pipe-GW-101315	Lab ID:	10326601008	Collected	: 10/13/15	5 13:00	Received: 10/	17/15 09:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prepa	aration Met	hod: EF	PA 3010			
Cadmium	ND	ug/L	3.0	0.65	1	10/23/15 14:15	10/27/15 11:14	7440-43-9	
Calcium	114000	ug/L	500	67.0	1	10/23/15 14:15	10/27/15 11:14	7440-70-2	
Lead	50.4	ug/L	10.0	2.0	1	10/23/15 14:15	10/27/15 11:14	7439-92-1	
Magnesium	40900	ug/L	500	20.0	1	10/23/15 14:15	10/27/15 11:14	7439-95-4	
Total Hardness by 2340B	453000	ug/L	3300	1650	1	10/23/15 14:15	10/27/15 11:14		
Zinc	236	ug/L	20.0	4.4	1	10/23/15 14:15	10/27/15 11:14	7440-66-6	
2320B Alkalinity	Analytical	Method: SM 23	320B						
Alkalinity, Total as CaCO3	176	mg/L	5.0	2.5	1		10/26/15 10:01		
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C						
Total Dissolved Solids	609	mg/L	10.0	5.0	1		10/20/15 13:16		
2540D Total Suspended Solids	Analytical	Method: SM 2	540D						
Total Suspended Solids	30.0	mg/L	10.0	5.0	1		10/20/15 13:53		

Project:	0504-1	00-00 VAN ST	ONE										
Pace Project No .:	10326	601											
QC Batch:	MPR	P/58910		Analys	is Method:	E	PA 6010C						
QC Batch Method:	EPA	3010		Analys	is Descript	tion: 6	010C Water						
Associated Lab Sar	nples:	1032660100 1032660100	1, 10326601002 8	, 10326601	003, 1032	6601004, 1	032660100	5, 103266	601006, 10	326601007	,		
METHOD BLANK:	21127	72		N	latrix: Wa	ter							
Associated Lab Sar	nples:	1032660100 1032660100	1, 10326601002 8	, 10326601	003, 1032	6601004, 1	032660100	5, 103266	601006, 10	326601007	,		
				Blank	R	eporting							
Parar	neter		Units	Resul	t	Limit	MDL		Analyzec	l Qu	alifiers		
Antimony			ug/L		ND	20.0		3.0 10	0/27/15 10	:27			
Arsenic			ug/L		ND	20.0		4.0 10	0/27/15 10	:27			
Cadmium			ug/L		ND	3.0		0.65 10	0/27/15 10	:27			
Calcium			ug/L		ND	500		67.0 10	0/27/15 10	:27			
Lead			ug/L		ND	10.0		2.0 10	0/27/15 10 0/27/15 10	:27			
Niekol			ug/L			20.0		20.0 10	J/27/15 10 D/27/15 10	:27 •97			
Thallium			ug/L		ND	20.0		5.0 10	0/27/15 10 0/27/15 10	.21 ·27			
Zinc			ug/L		ND	20.0		4.4 10	0/27/15 10	:27			
			-										
LABORATORY CO	NTROL	SAMPLE: 2	112773										
Demo			1.1.5.1.5	Spike	LCS	5	LCS	% R	ec	0			
Parar	neter		Units	Conc.	Resu	lit	% Rec	LIM	ts	Qualifiers	_		
Antimony			ug/L	1000		1000	100	8	80-120				
Arsenic			ug/L	1000		999	100	8	80-120				
Cadmium			ug/L	1000		1010	101	č	80-120 PO 120				
Lead			ug/L	10000		9910 1010	99 101	•	50-120 80-120				
Magnesium			ug/L	1000		1000	101	, ,	S0-120 R0-120				
Nickel			ug/L	1000		999	100	, i	B0-120				
Thallium			ug/L	1000		1010	101	8	80-120				
Zinc			ug/L	1000		1020	102	8	80-120				
			0.475 0.4407			0440775							
WAIKIN SPIKE & N	IAIKIX	SPIKE DUPLI	GATE: 21127	MS	MSD	2112775							
			10326601001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	er	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony		ug/L	ND	1000	1000	1020	1000	10	1 10	00 75-125	5 1	20	_
Arsenic		ug/L	ND	1000	1000	1020	1010	10	2 10	01 75-125	5 1	20	
Cadmium		ug/L	ND	1000	1000	1000	994	10	0 9	99 75-125	5 1	20	• • •
Calcium		ug/L	185000	10000	10000	200000	196000	15	0 1 [.]	13 75-125	2	20	M1
Lead		ug/L	ND	1000	1000	970	962	9	/ (7 4/	96 /5-125	1	20	N/1
Nickel		ug/L	149000	10000	10000	00000	000001	13	10 10 5 4	JS 75-125	2	20	
Thallium		ug/L		1000	1000	902	943 943	9:	6 (94 75-120 94 75-126	, I , 1	20 20	
Zinc		ug/L	ND	1000	1000	976	965	9	7 9	96 75-125	i 1	20	
		ч <u>9</u> , Е			1000	0.0	000	0	· ·			20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	0504-1	00-00 VAN ST	ONE											
Pace Project No.:	10326	501												
QC Batch:	WET	/44881		Analys	is Method:	S	M 2320B	1						
QC Batch Method:	SM 2	320B		Analys	sis Descripti	on: 2	320B Alka	alinity						
Associated Lab Sar	nples:	1032660100	8											
METHOD BLANK:	211762	20		Ν	Aatrix: Wat	er								
Associated Lab Sar	nples:	1032660100	8											
				Blank	k Re	eporting								
Parar	neter		Units	Resul	t	Limit	M	DL	An	alyzed	Qu	alifiers		
Alkalinity, Total as C	CaCO3		mg/L		ND	5.0		2.5	10/26	/15 08:38	3			
LABORATORY CO	NTROL	SAMPLE & LC	SD: 2117621		2	117622								
				Spike	LCS	LCSD	LCS	LCSD	% Re	C		Max		
Parar	neter		Units	Conc.	Result	Result	% Rec	% Rec	Limit	s RI	PD	RPD	Qua	alifiers
Alkalinity, Total as C	CaCO3		mg/L	40	43.2	43.0	108	107	90-1	110	0	30		
MATRIX SPIKE & M	IATRIX		CATE: 211762	23		2117624								
				MS	MSD									
			10326463001	Spike	Spike	MS	MSD	M	S	MSD	% Rec		Max	
Paramete	er	Units	Result	Conc.	Conc.	Result	Result	% R	lec	% Rec	Limits	RPD	RPD	Qual
Alkalinity, Total as C	aCO3	mg/L	328	40	40	366	36	67	93	98	80-120	0 0	30	
MATRIX SPIKE & N	IATRIX		CATE: 211762	25		2117626								
				MS	MSD									
			10326463004	Spike	Spike	MS	MSD	M	S	MSD	% Rec		Max	
Paramete	er	Units	Result	Conc.	Conc.	Result	Result	% R	lec	% Rec	Limits	RPD	RPD	Qual
Alkalinity, Total as C	aCO3	mg/L	378	40	40	421	42	22	107	111	80-120) 0	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	0504-1	100-00 VAN ST	FONE											
Pace Project No.:	10326	601												
QC Batch:	WET	/44882		Analys	is Method:	S	M 2320B							
QC Batch Method:	SM 2	320B		Analys	sis Descripti	ion: 2	320B Alka	alinity						
Associated Lab Sar	mples:	1032660100	1, 10326601002											
METHOD BLANK:	21176	31		Ν	Aatrix: Wat	er								
Associated Lab Sar	mples:	1032660100	1, 10326601002											
				Blank	k Re	eporting								
Parar	meter		Units	Resul	t	Limit	M	DL	A	Analyzed	Q	ualifiers		
Alkalinity, Total as C	CaCO3		mg/L		ND	5.0)	2.5	10/2	26/15 11:2	22			
LABORATORY CO	NTROL	SAMPLE & LC	SD: 2117632		2	117633								
				Spike	LCS	LCSD	LCS	LCSD	% F	Rec		Max		
Parar	meter		Units	Conc.	Result	Result	% Rec	% Rec	Lin	nits F	RPD	RPD	Qua	alifiers
Alkalinity, Total as C	CaCO3		mg/L	40	43.1	42.9	9 108	107	90	0-110	1	30		
MATRIX SPIKE & N	MATRIX		CATE: 211763	34		2117635								
				MS	MSD									
_			10326462002	Spike	Spike	MS	MSD	M	S	MSD	% Rec		Max	
Paramete	er	Units	Result	Conc.	Conc.	Result	Result	% R	lec	% Rec	Limits	_ RPD	RPD	Qual
Alkalinity, Total as C	CaCO3	mg/L	351	40	40	391	39	90	99	99	80-12	0 0	30	
MATRIX SPIKE & N	MATRIX	SPIKE DUPLI	CATE: 211763	36		2117637								
				MS	MSD									
Paramete	er	Units	10326503001 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	M: % R	S Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Alkalinity, Total as C	CaCO3	mg/L	143	40	40	185	18		106	104	80-12	0 0	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	0504-1	00-00 VAN ST	TONE											
Pace Project No.:	103260	501												
QC Batch:	WET	/44919		Analys	sis Method:	SI	M 2320B							
QC Batch Method:	SM 2	320B		Analys	sis Descript	ion: 23	320B Alka	alinity						
Associated Lab Sar	mples:	1032660100	3, 10326601004	, 10326601	005, 10326	6601006, 10	0326601	007						
METHOD BLANK:	211988	36		Ν	Matrix: Wat	ter								
Associated Lab Sar	mples:	1032660100	3, 10326601004	, 10326601 Blank	005, 10326 K R	6601006, 10 eportina	0326601	007						
Parar	meter		Units	Resul	t	Limit	ME	DL	A	nalyzed	Qua	alifiers		
Alkalinity, Total as C	CaCO3		mg/L		ND	5.0		2.5	10/2	8/15 12:00)		_	
LABORATORY CO	NTROL	SAMPLE & LO	CSD: 2119887		2	119888								
				Spike	LCS	LCSD	LCS	LCSD	% R	ec	ſ	Max		
Parar	meter		Units	Conc.	Result	Result	% Rec	% Rec	Limi	its RI	PD F	RPD	Qua	alifiers
Alkalinity, Total as C	CaCO3		mg/L	40	43.1	42.9	108	107	90·	-110	0	30		
MATRIX SPIKE & N	MATRIX	SPIKE DUPLI	CATE: 21198	89		2119890								
				MS	MSD									
			10326601003	Spike	Spike	MS	MSD	M	S	MSD	% Rec		Max	
Paramete	er	Units	Result	Conc.	Conc.	Result	Result	% R	lec	% Rec	Limits	RPD	RPD	Qual
Alkalinity, Total as C	CaCO3	mg/L	223	40	40	259	26	51	89	95	80-120	1	30	
MATRIX SPIKE & N	MATRIX	SPIKE DUPLI	CATE: 21198	91		2119892								
				MS	MSD									
			10326691001	Spike	Spike	MS	MSD	M	S	MSD	% Rec		Max	
Paramete	er	Units	Result	Conc.	Conc.	Result	Result	% R	ec	% Rec	Limits	RPD	RPD	Qual
Alkalinity, Total as C	CaCO3	mg/L	133	40	40	175	17	6	105	106	80-120	0	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	0504-100-00 VAN	STONE						
Pace Project No.:	10326601							
QC Batch:	WET/44787		Analysis Me	ethod:	SM 2540C			
QC Batch Method:	SM 2540C		Analysis De	escription:	2540C Total Di	ssolved Solids		
Associated Lab Sam	ples: 10326601	001, 10326601002,	10326601003,	10326601004,	10326601008			
METHOD BLANK:	2112316		Matrix	: Water				
Associated Lab Sam	ples: 10326601	001, 10326601002,	10326601003, Blank	10326601004, Reporting	10326601008			
Param	neter	Units	Result	Limit	MDL	Analy	zed	Qualifiers
Total Dissolved Solid	ds	mg/L	ND	10	.0	5.0 10/20/15	13:16	
LABORATORY CON	ITROL SAMPLE:	2112317						
Param	neter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qua	lifiers
Total Dissolved Solid	ds	mg/L	1000	968	97	80-120		
SAMPLE DUPLICAT	E: 2112319							
_			10326462002	Dup		Max		o ""
Param	neter	Units	Result	Result				Qualifiers
Total Dissolved Solid	ls	mg/L	580	59	96	3	10	
SAMPLE DUPLICAT	E: 2112608							
Daram	otor	Linita	10326462011 Booult	Dup Boou!t	ייטם	Max		Qualifiara
				result	KPU			
Iotal Dissolved Solid	ls	mg/L	290	28	39	0	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 0504-100-00 VAN	STONE					
Pace Project No.: 10326601						
QC Batch: WET/44815		Analysis Me	ethod:	SM 2540C		
QC Batch Method: SM 2540C		Analysis De	scription:	2540C Total D	issolved Solids	
Associated Lab Samples: 10326601	005, 1032660100	6, 10326601007				
METHOD BLANK: 2113387		Matrix	: Water			
Associated Lab Samples: 10326601	005, 1032660100	6, 10326601007				
		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyz	ed Qualifiers
Total Dissolved Solids	mg/L	ND	10.	0	5.0 10/21/15	11:12
	2113388					
	2110000	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Total Dissolved Solids	mg/L	1000	1020	102	80-120	
SAMPLE DUPLICATE: 2113389						
		10326601006	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Solids	mg/L	692	69	7	1	10
SAMPLE DUPLICATE: 2113390						
		10326601005	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Solids	mg/L	1970	197	0	0	10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 0504	100-00 VAN	STONE						
Pace Project No.: 1032	6601							
QC Batch: WE	C Batch: WET/44786			lethod:	SM 2540D			
QC Batch Method: SM 2540D		Analysis D	Analysis Description: 2540D Total Suspended Solids					
Associated Lab Samples:	10326601	800						
METHOD BLANK: 21123	312		Matri	ix: Water				
Associated Lab Samples:	10326601	008						
Parameter		Units	Blank Result	Reporting Limit	MDL	Analyz	zed Qualifiers	
Total Suspended Solids		mg/L	NI	D 10	.0	5.0 10/20/15	13:53	_
LABORATORY CONTROL	SAMPLE:	2112313						
Parameter		Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
Total Suspended Solids		mg/L	100	106	106	80-120		
SAMPLE DUPLICATE: 2	2112315							
_			10326215008	B Dup		Max		
Parameter		Units	Result	Result		RPD	Qualifiers	
Total Suspended Solids		mg/L	<5.	0 N	ID		10	
SAMPLE DUPLICATE: 2	2112341							
_			10326317002	2 Dup		Max		
Parameter		Units	Result	Result	RPD	RPD	Qualifiers	
Total Suspended Solids		mg/L	22	4 22	27	1	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	0504-100-00 VA	N STONE						
Pace Project No .:	10326601							
QC Batch:	WET/44813		Analysis M	ethod:	SM 2540D			
QC Batch Method:	SM 2540D		Analysis De	escription:	2540D Total St	uspended Solids	6	
Associated Lab Sam	nples: 1032660	1001, 10326601002,	10326601003,	10326601004,	10326601005,	, 10326601006,	1032660100)7
METHOD BLANK:	2113372		Matrix	x: Water				
Associated Lab Sam	nples: 1032660	1001, 10326601002,	10326601003, Blank	10326601004, Reporting	10326601005,	, 10326601006,	1032660100)7
Param	neter	Units	Result	Limit	MDL	Analyz	ed C	Qualifiers
Total Suspended So	lids	mg/L	NE	0 10	.0	5.0 10/21/15	12:07	
LABORATORY CON	ITROL SAMPLE:	2113373						
Param	neter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
Total Suspended So	lids	mg/L	50	53.0	106	80-120		
SAMPLE DUPLICAT	TE: 2113374							
			10326358008	Dup		Max		
Param	neter	Units	Result	Result	RPD	RPD	Qua	lifiers
Total Suspended So	lids	mg/L	24.0) 25	.0	4	10	
SAMPLE DUPLICAT	TE: 2113375							
Param	neter	Units	10326462002 Result	Dup Result	RPD	Max RPD	Qual	lifiers
Total Suspended So	lids	mg/L	NE	D N	D		10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 0504-100-00 VAN STONE

Pace Project No.: 10326601

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis

ANALYTE QUALIFIERS

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

 Project:
 0504-100-00 VAN STONE

 Pace Project No.:
 10326601

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10326601001	W1-101415	EPA 3010	MPRP/58910	EPA 6010C	ICP/25740
10326601002	DH-2-101415	EPA 3010	MPRP/58910	EPA 6010C	ICP/25740
10326601003	MW-3-101415	EPA 3010	MPRP/58910	EPA 6010C	ICP/25740
10326601004	W-2-101415	EPA 3010	MPRP/58910	EPA 6010C	ICP/25740
10326601005	MW-2-101515	EPA 3010	MPRP/58910	EPA 6010C	ICP/25740
10326601006	MW-5-101515	EPA 3010	MPRP/58910	EPA 6010C	ICP/25740
10326601007	DUP-1-101515	EPA 3010	MPRP/58910	EPA 6010C	ICP/25740
10326601008	Mill Pipe-GW-101315	EPA 3010	MPRP/58910	EPA 6010C	ICP/25740
10326601001	W1-101415	SM 2320B	WET/44882		
10326601002	DH-2-101415	SM 2320B	WET/44882		
10326601003	MW-3-101415	SM 2320B	WET/44919		
10326601004	W-2-101415	SM 2320B	WET/44919		
10326601005	MW-2-101515	SM 2320B	WET/44919		
10326601006	MW-5-101515	SM 2320B	WET/44919		
10326601007	DUP-1-101515	SM 2320B	WET/44919		
10326601008	Mill Pipe-GW-101315	SM 2320B	WET/44881		
10326601001	W1-101415	SM 2540C	WET/44787		
10326601002	DH-2-101415	SM 2540C	WET/44787		
10326601003	MW-3-101415	SM 2540C	WET/44787		
10326601004	W-2-101415	SM 2540C	WET/44787		
10326601005	MW-2-101515	SM 2540C	WET/44815		
10326601006	MW-5-101515	SM 2540C	WET/44815		
10326601007	DUP-1-101515	SM 2540C	WET/44815		
10326601008	Mill Pipe-GW-101315	SM 2540C	WET/44787		
10326601001	W1-101415	SM 2540D	WET/44813		
10326601002	DH-2-101415	SM 2540D	WET/44813		
10326601003	MW-3-101415	SM 2540D	WET/44813		
10326601004	W-2-101415	SM 2540D	WET/44813		
10326601005	MW-2-101515	SM 2540D	WET/44813		
10326601006	MW-5-101515	SM 2540D	WET/44813		
10326601007	DUP-1-101515	SM 2540D	WET/44813		
10326601008	Mill Pipe-GW-101315	SM 2540D	WET/44786		

CHAIN-OF-CUSTODY / Analytical Request Document

Section A Required Client Information:	on B ed Project Informati	CHAIN-OF-C The Chain-of-Custody i	USTODY / Analytical Reque s a LEGAL DOCUMENT. All relevant fields must b Section C Invoice Information:	est Document le completed accurately.	$\frac{GW}{10326004}$
Company: Geo Engineers Report	To: threy O	gloeminals.com	Attention:		1986466
Address: 523 E Second Ave Copy T	" inlee C.	yeoensiners long	Company Name:	REGULATORY AGENC	Y
Spohene, WA 49202	-	,	Address:		JND WATER DRINKING WATER
Email To: honey dependents. com Purcha	se Order No.:		Pace Quote Reference:		T OTHER
Phone: 509-363-3125 Fax: 509-363-3126 Project	Name:	AN STONE	Pace Project Manager:	Site Location	
Requested Due Date/TAT: 870 Project	Number: 050	4-100-00	Pace Profile #:	STATE:	
······································			Re	quested Analysis Filtered (Y/N)	
Section D Matrix Codes Required Client Information MATRIX / CODE	MP)	COLLECTED	Preservatives		
Drinking Water DW Water WT Waste Water WW Product P Soli/Solid SL Oil OL Wipe WF	G=GRAB C=CO	COMPOSITE COMPOSITE END	VERS est 1	e carus balánty	rine (Y/N)
Air AR Sample IDs MUST BE UNIQUE Tissue TS Other OT	MATRIX CODI SAMPLE TYPE	DATE TIME DATE TIME	# OF CONTAIL # OF CONTAIL Unpreserved H-2SO4 HNO3 HNO3 HOCH Na2S2O3 Methanol Other Other	10000000000000000000000000000000000000	이나 이 편 이 편 이 한 양 양 양 양 양 양 우 고 우 우 나 의 · · · · · · · · · · · · · · · · · ·
1 62-101415	WT G	10/14/15 1301	211 X:	XXXX	601
2 DH - 2 - 101415		1407			302
3 111 - 3 - 101415		1625	╶╂╲─┼╎┼╌╎┼┼╴┤╶┼╴┨╴┠┥┽		003
4 W - 2 - 10 1 - 17 M = 1 - 2 - 10 15 15		10/5/15 1151	╉┽┽╫╶╬╴┾┽┥╢╠┿		in one
= MW - 5 - in1515		1377			003
7 100-1-10155		V 0800		M V V V I I I I I I I I I I I I I I I I	POT
8 Mill Pipe - GW-101215 9	VV	10/13/15 1300			Test America bottles 008
10 11 12					
ADDITIONAL COMMENTS	RELINQUISHE	ED BY / AFFILIATION DATE	TIME ACCEPTED BY / AFFI	LIATION DATE TIME	SAMPLE CONDITIONS
* Anthony, Arsone, Cadmin, Lead, Nickel, Thallivin,	fh 2	- GEI i0/16/15	iloo	En 10/01/5+3	13 Y N Y
Fr Cadmium, Lend, Zine					
	κ. i	SAMPLER NAME AND SIGNATU	L I RE	<u> </u>	at e a
2 UHIGINA	<u>-\</u> L.	PRINT Name of SAMPLE	R: Thich let		o in °((Y/N) (Y/N)
1 • •		SIGNATURE of SAMPLE	R: Jul Jan MAT	E Signed //DD/YY): 10/16/15	Temi Recei Ice Cus Saaleo (Y

nt Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

F-ALL-Q-020rev.07, 15-May-2007

57	D Samula Carr	ocument	t Name:	Document Revised: 23Feb2015
Pace Analytical*	Sample Con	Documer	pon kece	Page 1 of 1
	F-1	MN-L-21	3-rev.13	Pace Minnesota Quality Office
Sample Condition Upon Receipt Gree Gree Greet	<u> </u>		Project	# WO#:10326601
Courier: Defed Ex UPS Commercial Pace SpeeDee Tracking Number: Org Org Org	USPS Other: 579		Client	10326601
Custody Seal on Cooler/Box Present?	No	Seals Int	tact?	Yes 🖉No Optional: Proj. Due Date: Proj. Name:
Packing Material: Bubble Wrap	Bags 🗌 Nor	ie 🗌	Other:	Temp Blank? 🖉 Yes 🗌 No
Thermometer B88A9130516413 1000000000000000000000000000000000000	.67504 Ту р	e of Ice:	⊠ ₩€	et Blue None Samples on ice, cooling process has begun
Cooler Temp Read (°C): Cooler Temp Temp should be above freezing to 6°C Correction USDA Regulated Soil (M/A, water sample) Did samples originate in a quarantine zone within the Un	• Corrected (°C Factor: ited States: AL, ،): <u>(</u>	Dat	Biological Tissue Frozen? Yes No PN/A te and Initials of Person Examining Contents:いいし(い)
MS, NC, NM, NY, OK, OR, SC, TN, TX or WA (check maps) If Yes to either question, fill out a	Regulated Soi	l Checkli	Yes St (F-MN	No including Hawaii and Puerto Rico)?YesNo -Q-338) and include with SCUR/COC paperwork.
				COMMENTS:
Chain of Custody Present?	Wes	□No	□n/a	1.
Chain of Custody Filled Out?	K PYes	ΠNo	 	2.
Chain of Custody Relinguished?	Where a second s	 No		3
Sampler Name and/or Signature on COC?	Detves			4
Samples Arrived within Hold Time?	tavor			τ
Short Hold Time Analysis (<72 hr)2				3.
Buch Turn Around Time Requested?		OVINA		0.
	Yes	<u>P</u> gNo		1.
Sumple Control on the 12	MYes -			
Correct Containers Used?	∆ d¥es	L]No	∐N/A	9. Coupton, Sample & vas
-Pace Containers Used?	Xes	□No	□N/A	Test America bottles
Containers Intact?	A Yes	□No	N/A	10.
Filtered Volume Received for Dissolved Tests?	Yes	□No	ØN/A	11. Note if sediment is visible in the dissolved container
Sample Labels Match COC?	- Ares	[]No	□n/a	12.
-Includes Date/Time/ID/Analysis Matrix: All containers needing acid/base preservation have been checked? All containers needing preservation are found to be in	n Øves	No	□n/a	13. ☑HNO₃ □H₂SO₄ □NaOH □HCI Sample # ↓↓
compliance with EPA recommendation? (HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanic Exceptions: VOA, Coliform, TOC, Oil and Grease,	le) ∑r¥es	No	□n/a	Initial when Lot # of added
DRO/8015 (water) DOC	Yes	No	□N/A	completed: preservative:
Headspace in VOA Vials (>6mm)?	☐ Yes	No	N/A	14.
Trip Blank Present?	Yes	No	□n/a	15.
Irip Blank Custody Seals Present?	S SYes	No	□n/A	
	e 			L
CLIENT NOTIFICATION/RESOLUTION				Field Data Required?
Person Contacted:		·		Date/Time:
Comments/Resolution:				
		-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Project Manager Review:			()) <i>A</i>	All Date: (わ~19~15)

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers).

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

February 12, 2016

John Haney GeoEngineers, Inc - WA 523 East Second Ave. Spokane, WA 99202

RE: Project: 0504-100.00 Van Stone Mine GW Pace Project No.: 10337632

Dear John Haney:

Enclosed are the analytical results for sample(s) received by the laboratory on February 04, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

ENNI (TROSS

Jennifer Gross jennifer.gross@pacelabs.com Project Manager

Enclosures

cc: Chelsea Voss, GeoEngineers

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

CERTIFICATIONS

Project: 0504-100.00 Van Stone Mine GW

Pace Project No.: 10337632

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414 525 N 8th Street, Salina, KS 67401 A2LA Certification #: 2926.01 Alaska Certification #: UST-078 Alaska Certification #MN00064 Alabama Certification #40770 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA Colorado Certification #Pace Connecticut Certification #: PH-0256 EPA Region 8 Certification #: 8TMS-L Florida/NELAP Certification #: E87605 Guam Certification #:14-008r Georgia Certification #: 959 Georgia EPD #: Pace Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062 Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322 Michigan DEPH Certification #: 9909

Minnesota Certification #: 027-053-137 Mississippi Certification #: Pace Montana Certification #: MT0092 Nevada Certification #: MN_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New York Certification #: 11647 North Carolina Certification #: 530 North Carolina State Public Health #: 27700 North Dakota Certification #: R-036 Ohio EPA #: 4150 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification Saipan (CNMI) #:MP0003 South Carolina #:74003001 Texas Certification #: T104704192 Tennessee Certification #: 02818 Utah Certification #: MN000642013-4 Virginia DGS Certification #: 251 Virginia/VELAP Certification #: Pace Washington Certification #: C486 West Virginia Certification #: 382 West Virginia DHHR #:9952C Wisconsin Certification #: 999407970

SAMPLE SUMMARY

Project: 0504-100.00 Van Stone Mine GW

Pace Project No.: 10337632

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10337632001	Dup: 020116	Water	02/01/16 08:00	02/04/16 09:40
10337632002	MW-2: 020116	Water	02/01/16 10:27	02/04/16 09:40
10337632003	W1: 020116	Water	02/01/16 12:19	02/04/16 09:40
10337632004	DH-2: 020116	Water	02/01/16 13:20	02/04/16 09:40
10337632005	MW-1: 020116	Water	02/01/16 15:54	02/04/16 09:40
10337632006	MW-3: 020216	Water	02/02/16 10:19	02/04/16 09:40
10337632007	MW-5: 020216	Water	02/02/16 13:20	02/04/16 09:40

SAMPLE ANALYTE COUNT

Project: 0504-100.00 Van Stone Mine GW

Pace Project No.: 10337632

Lab ID	Sample ID	N	lethod	Analysts	Analytes Reported	Laboratory
10337632001	Dup: 020116	EP	A 6020A	TT3	9	PASI-M
		SN	1 2320B	MW	1	PASI-M
		SN	1 2540C	MW	1	PASI-M
		SN	1 2540D	JFP	1	PASI-M
10337632002	MW-2: 020116	EP	A 6020A	TT3	9	PASI-M
		SN	1 2320B	MW	1	PASI-M
		SN	1 2540C	MW	1	PASI-M
		SN	1 2540D	JFP	1	PASI-M
10337632003	W1: 020116	EP	A 6020A	TT3	9	PASI-M
		SN	1 2320B	MW	1	PASI-M
		SN	1 2540C	MW	1	PASI-M
		SN	1 2540D	JFP	1	PASI-M
10337632004	DH-2: 020116	EP	A 6020A	TT3	9	PASI-M
		SN	1 2320B	MW	1	PASI-M
		SN	1 2540C	MW	1	PASI-M
		SN	1 2540D	JFP	1	PASI-M
10337632005	MW-1: 020116	EP	A 6020A	TT3	9	PASI-M
		SN	1 2320B	MW	1	PASI-M
		SN	1 2540C	MW	1	PASI-M
		SN	1 2540D	JFP	1	PASI-M
10337632006	MW-3: 020216	EP	A 6020A	TT3	9	PASI-M
		SN	1 2320B	MW	1	PASI-M
		SN	1 2540C	MW	1	PASI-M
		SN	1 2540D	JFP	1	PASI-M
10337632007	MW-5: 020216	EP	A 6020A	TT3	9	PASI-M
		SN	1 2320B	MW	1	PASI-M
		SN	1 2540C	MW	1	PASI-M
		SN	1 2540D	JFP	1	PASI-M

Project: 0504-100.00 Van Stone Mine GW

Pace Project No.: 10337632

Method:	EPA 6020A
Description:	6020A MET ICPMS
Client:	GeoEngineers_WA
Date:	February 12, 2016

General Information:

7 samples were analyzed for EPA 6020A. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3020 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: MPRP/61315

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 10337632001

- M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
 - MS (Lab ID: 2186700)
 - Calcium
 - Magnesium
 - MSD (Lab ID: 2186701)
 - Calcium

Additional Comments:

Analyte Comments:

QC Batch: MPRP/61315

- E: Analyte concentration exceeded the calibration range. The reported result is estimated.
 - MS (Lab ID: 2186700)
 - Calcium

Project: 0504-100.00 Van Stone Mine GW

Pace Project No.: 10337632

 Method:
 EPA 6020A

 Description:
 6020A MET ICPMS

 Client:
 GeoEngineers_WA

 Date:
 February 12, 2016

Analyte Comments:

QC Batch: MPRP/61315

E: Analyte concentration exceeded the calibration range. The reported result is estimated.

• MS (Lab ID: 2186700)

Magnesium

• MSD (Lab ID: 2186701)

Calcium

Magnesium

Project: 0504-100.00 Van Stone Mine GW

Pace Project No.: 10337632

Method:	SM 2320B
Description:	2320B Alkalinity
Client:	GeoEngineers_WA
Date:	February 12, 2016

General Information:

7 samples were analyzed for SM 2320B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: 0504-100.00 Van Stone Mine GW

Pace Project No.: 10337632

Method:SM 2540CDescription:2540C Total Dissolved SolidsClient:GeoEngineers_WADate:February 12, 2016

General Information:

7 samples were analyzed for SM 2540C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: 0504-100.00 Van Stone Mine GW

Pace Project No.: 10337632

Method: SM 2540D

Description:2540D Total Suspended SolidsClient:GeoEngineers_WADate:February 12, 2016

General Information:

7 samples were analyzed for SM 2540D. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: WET/46352

D8: The sample and duplicate results for this parameter are less than 5 times the reporting limit, the RPD may not be statistically valid.

• DUP (Lab ID: 2187452)

• Total Suspended Solids

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: 0504-100.00 Van Stone Mine GW

Pace Project No.: 10337632

Sample: Dup: 020116	Lab ID: 103	37632001	Collected: 02/01/1	16 08:00	Received: 02	2/04/16 09:40 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Met	nod: EPA 60	020A Preparation Me	ethod: E	PA 3020			
Antimony	<0.50	ug/L	0.50	1	02/08/16 10:42	02/09/16 15:57	7440-36-0	
Arsenic	1.4	ug/L	0.50	1	02/08/16 10:42	02/09/16 15:57	7440-38-2	
Cadmium	0.13	ug/L	0.080	1	02/08/16 10:42	02/09/16 15:57	7440-43-9	
Calcium	355000	ug/L	800	20	02/08/16 10:42	02/09/16 16:11	7440-70-2	M1
Lead	0.98	ug/L	0.10	1	02/08/16 10:42	02/09/16 15:57	7439-92-1	
Magnesium	121000	ug/L	200	20	02/08/16 10:42	02/09/16 16:11	7439-95-4	M1
Nickel	1.0	ug/L	0.50	1	02/08/16 10:42	02/09/16 15:57	7440-02-0	
Thallium	<0.10	ug/L	0.10	1	02/08/16 10:42	02/09/16 15:57	7440-28-0	
Total Hardness by 2340B	1380000	ug/L	2820	20	02/08/16 10:42	02/09/16 16:11		
2320B Alkalinity	Analytical Mether	nod: SM 23	20B					
Alkalinity, Total as CaCO3	302	mg/L	5.0	1		02/11/16 11:52		
2540C Total Dissolved Solids	Analytical Metl	nod: SM 25	40C					
Total Dissolved Solids	1800	mg/L	10.0	1		02/08/16 11:01		
2540D Total Suspended Solids	Analytical Met	nod: SM 25	40D					
Total Suspended Solids	31.0	mg/L	10.0	1		02/05/16 16:02		

Project: 0504-100.00 Van Stone Mine GW

Pace Project No.: 10337632

Sample: MW-2: 020116	Lab ID: 103	337632002	Collected: 02/01/1	6 10:27	7 Received: 02	2/04/16 09:40 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Met	hod: EPA 60	020A Preparation Me	ethod: E	PA 3020			
Antimony	<0.50	ug/L	0.50	1	02/08/16 10:42	02/09/16 16:24	7440-36-0	
Arsenic	1.4	ug/L	0.50	1	02/08/16 10:42	02/09/16 16:24	7440-38-2	
Cadmium	0.10	ug/L	0.080	1	02/08/16 10:42	02/09/16 16:24	7440-43-9	
Calcium	345000	ug/L	800	20	02/08/16 10:42	02/09/16 16:27	7440-70-2	
Lead	0.99	ug/L	0.10	1	02/08/16 10:42	02/09/16 16:24	7439-92-1	
Magnesium	117000	ug/L	200	20	02/08/16 10:42	02/09/16 16:27	7439-95-4	
Nickel	1.0	ug/L	0.50	1	02/08/16 10:42	02/09/16 16:24	7440-02-0	
Thallium	<0.10	ug/L	0.10	1	02/08/16 10:42	02/09/16 16:24	7440-28-0	
Total Hardness by 2340B	1340000	ug/L	2820	20	02/08/16 10:42	02/09/16 16:27		
2320B Alkalinity	Analytical Met	hod: SM 23	20B					
Alkalinity, Total as CaCO3	301	mg/L	5.0	1		02/11/16 12:04		
2540C Total Dissolved Solids	Analytical Met	hod: SM 25	40C					
Total Dissolved Solids	1780	mg/L	10.0	1		02/08/16 11:01		
2540D Total Suspended Solids	Analytical Met	hod: SM 25	40D					
Total Suspended Solids	27.0	ma/l	10.0	1		02/05/16 16:02		

Project: 0504-100.00 Van Stone Mine GW

Pace Project No.: 10337632

Sample: W1: 020116	Lab ID: 103	37632003	Collected: 02/01/1	6 12:19	9 Received: 02	/04/16 09:40 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Meth	nod: EPA 60	20A Preparation Me	thod: E	PA 3020			
Antimony	0.65	ug/L	0.50	1	02/08/16 10:42	02/09/16 16:30	7440-36-0	
Arsenic	0.68	ug/L	0.50	1	02/08/16 10:42	02/09/16 16:30	7440-38-2	
Cadmium	0.45	ug/L	0.080	1	02/08/16 10:42	02/09/16 16:30	7440-43-9	
Calcium	197000	ug/L	800	20	02/08/16 10:42	02/09/16 16:33	7440-70-2	
Lead	0.64	ug/L	0.10	1	02/08/16 10:42	02/09/16 16:30	7439-92-1	
Magnesium	161000	ug/L	200	20	02/08/16 10:42	02/09/16 16:33	7439-95-4	
Nickel	1.1	ug/L	0.50	1	02/08/16 10:42	02/09/16 16:30	7440-02-0	
Thallium	<0.10	ug/L	0.10	1	02/08/16 10:42	02/09/16 16:30	7440-28-0	
Total Hardness by 2340B	1160000	ug/L	2820	20	02/08/16 10:42	02/09/16 16:33		
2320B Alkalinity	Analytical Meth	nod: SM 232	20B					
Alkalinity, Total as CaCO3	244	mg/L	5.0	1		02/11/16 12:08		
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	40C					
Total Dissolved Solids	1500	mg/L	10.0	1		02/08/16 11:01		
2540D Total Suspended Solids	Analytical Meth	nod: SM 254	40D					
Total Suspended Solids	<10.0	mg/L	10.0	1		02/05/16 16:02		

Project: 0504-100.00 Van Stone Mine GW

Pace Project No.: 10337632

Sample: DH-2: 020116	Lab ID: 103	37632004	Collected: 02/01/	16 13:20	Received: 02	2/04/16 09:40 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Met	hod: EPA 60	020A Preparation Me	ethod: E	PA 3020			
Antimony	<0.50	ug/L	0.50	1	02/08/16 10:42	02/09/16 16:35	7440-36-0	
Arsenic	1.1	ug/L	0.50	1	02/08/16 10:42	02/09/16 16:35	7440-38-2	
Cadmium	3.3	ug/L	0.080	1	02/08/16 10:42	02/09/16 16:35	7440-43-9	
Calcium	350000	ug/L	800	20	02/08/16 10:42	02/09/16 16:38	7440-70-2	
Lead	2.7	ug/L	0.10	1	02/08/16 10:42	02/09/16 16:35	7439-92-1	
Magnesium	341000	ug/L	200	20	02/08/16 10:42	02/09/16 16:38	7439-95-4	
Nickel	8.0	ug/L	0.50	1	02/08/16 10:42	02/09/16 16:35	7440-02-0	
Thallium	<0.10	ug/L	0.10	1	02/08/16 10:42	02/09/16 16:35	7440-28-0	
Total Hardness by 2340B	2280000	ug/L	2820	20	02/08/16 10:42	02/09/16 16:38		
2320B Alkalinity	Analytical Met	hod: SM 23	20B					
Alkalinity, Total as CaCO3	313	mg/L	5.0	1		02/12/16 10:22		
2540C Total Dissolved Solids	Analytical Met	hod: SM 25	40C					
Total Dissolved Solids	3020	mg/L	10.0	1		02/08/16 11:01		
2540D Total Suspended Solids	Analytical Met	hod: SM 25	40D					
Total Suspended Solids	17.0	ma/L	10.0	1		02/05/16 16:02		

Project: 0504-100.00 Van Stone Mine GW

Pace Project No.: 10337632

Sample: MW-1: 020116	Lab ID: 103	337632005	Collected: 02/01/	16 15:54	Received: 02	2/04/16 09:40 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Me	thod: EPA 60	020A Preparation Me	ethod: El	PA 3020			
Antimony	<0.50	ug/L	0.50	1	02/08/16 10:42	02/09/16 16:41	7440-36-0	
Arsenic	2.0	ug/L	0.50	1	02/08/16 10:42	02/09/16 16:41	7440-38-2	
Cadmium	<0.080	ug/L	0.080	1	02/08/16 10:42	02/09/16 16:41	7440-43-9	
Calcium	92000	ug/L	800	20	02/08/16 10:42	02/09/16 16:44	7440-70-2	
Lead	0.34	ug/L	0.10	1	02/08/16 10:42	02/09/16 16:41	7439-92-1	
Magnesium	20600	ug/L	10.0	1	02/08/16 10:42	02/09/16 16:41	7439-95-4	
Nickel	0.68	ug/L	0.50	1	02/08/16 10:42	02/09/16 16:41	7440-02-0	
Thallium	<0.10	ug/L	0.10	1	02/08/16 10:42	02/09/16 16:41	7440-28-0	
Total Hardness by 2340B	315000	ug/L	2820	20	02/08/16 10:42	02/09/16 16:44		
2320B Alkalinity	Analytical Me	thod: SM 23	20B					
Alkalinity, Total as CaCO3	145	mg/L	5.0	1		02/12/16 10:37		
2540C Total Dissolved Solids	Analytical Me	thod: SM 25	40C					
Total Dissolved Solids	413	mg/L	10.0	1		02/08/16 11:01		
2540D Total Suspended Solids	Analytical Me	thod: SM 25	40D					
Total Suspended Solids	<10.0	ma/L	10.0	1		02/05/16 16:02		

Project: 0504-100.00 Van Stone Mine GW

Pace Project No.: 10337632

Sample: MW-3: 020216	Lab ID: 10	0337632006	Collected: 02/02/	16 10:19	Received: 02	2/04/16 09:40 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Me	ethod: EPA 60	020A Preparation M	ethod: E	PA 3020			
Antimony	<0.50	ug/L	0.50	1	02/08/16 10:42	02/09/16 16:46	7440-36-0	
Arsenic	<0.50	ug/L	0.50	1	02/08/16 10:42	02/09/16 16:46	7440-38-2	
Cadmium	<0.080	ug/L	0.080	1	02/08/16 10:42	02/09/16 16:46	7440-43-9	
Calcium	88800	ug/L	800	20	02/08/16 10:42	02/09/16 16:49	7440-70-2	
Lead	<0.10	ug/L	0.10	1	02/08/16 10:42	02/09/16 16:46	7439-92-1	
Magnesium	23800	ug/L	200	20	02/08/16 10:42	02/09/16 16:49	7439-95-4	
Nickel	<0.50	ug/L	0.50	1	02/08/16 10:42	02/09/16 16:46	7440-02-0	
Thallium	<0.10	ug/L	0.10	1	02/08/16 10:42	02/09/16 16:46	7440-28-0	
Total Hardness by 2340B	320000	ug/L	2820	20	02/08/16 10:42	02/09/16 16:49		
2320B Alkalinity	Analytical Me	ethod: SM 23	20B					
Alkalinity, Total as CaCO3	210	mg/L	5.0	1		02/12/16 10:45		
2540C Total Dissolved Solids	Analytical Me	ethod: SM 25	40C					
Total Dissolved Solids	410	mg/L	10.0	1		02/08/16 11:01		
2540D Total Suspended Solids	Analytical Me	ethod: SM 25	40D					
Total Suspended Solids	<10.0	ma/L	10.0	1		02/07/16 16:20		

ANALYTICAL RESULTS

Project: 0504-100.00 Van Stone Mine GW

Pace Project No.: 10337632

Sample: MW-5: 020216	Lab ID: 103	37632007	Collected: 02/02/1	6 13:20	0 Received: 02	2/04/16 09:40 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020A MET ICPMS	Analytical Meth	nod: EPA 60	20A Preparation Me	thod: E	EPA 3020			
Antimony	<0.50	ug/L	0.50	1	02/08/16 10:42	02/09/16 17:00	7440-36-0	
Arsenic	1.4	ug/L	0.50	1	02/08/16 10:42	02/09/16 17:00	7440-38-2	
Cadmium	3.5	ug/L	0.080	1	02/08/16 10:42	02/09/16 17:00	7440-43-9	
Calcium	104000	ug/L	800	20	02/08/16 10:42	02/10/16 14:22	7440-70-2	
Lead	3.9	ug/L	0.10	1	02/08/16 10:42	02/09/16 17:00	7439-92-1	
Magnesium	39900	ug/L	200	20	02/08/16 10:42	02/10/16 14:22	7439-95-4	
Nickel	7.3	ug/L	0.50	1	02/08/16 10:42	02/09/16 17:00	7440-02-0	
Thallium	<0.10	ug/L	0.10	1	02/08/16 10:42	02/09/16 17:00	7440-28-0	
Total Hardness by 2340B	424000	ug/L	2820	20	02/08/16 10:42	02/10/16 14:22		
2320B Alkalinity	Analytical Meth	nod: SM 232	20B					
Alkalinity, Total as CaCO3	152	mg/L	5.0	1		02/12/16 10:49		
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	40C					
Total Dissolved Solids	653	mg/L	10.0	1		02/08/16 11:01		
2540D Total Suspended Solids	Analytical Meth	nod: SM 254	40D					
Total Suspended Solids	190	mg/L	10.0	1		02/07/16 16:20		

Project: 0504-100.00 Van Stone Mine GW

Pace Project No.: 10337632

QC Batch:	MPRP/61315
QC Batch Method:	EPA 3020

Analysis Method:

Analysis Description: 6020A Water UPD4

EPA 6020A

Associated Lab Samples: 10337632001, 10337632002, 10337632003, 10337632004, 10337632005, 10337632006, 10337632007

 METHOD BLANK:
 2186698
 Matrix:
 Water

 Associated Lab Samples:
 10337632001, 10337632002, 10337632003, 10337632004, 10337632005, 10337632006, 10337632007

Reporting		
Limit	Analyzed	Qualifiers
0.50	02/09/16 15:52	
0.50	02/09/16 15:52	
0.080	02/09/16 15:52	
40.0	02/09/16 15:52	
0.10	02/09/16 15:52	
10.0	02/09/16 15:52	
0.50	02/09/16 15:52	
0.10	02/09/16 15:52	
	Limit 0.50 0.080 40.0 0.10 10.0 0.50 0.10	Limit Analyzed 0.50 02/09/16 15:52 0.50 02/09/16 15:52 0.080 02/09/16 15:52 40.0 02/09/16 15:52 0.10 02/09/16 15:52 10.0 02/09/16 15:52 0.50 02/09/16 15:52 0.50 02/09/16 15:52 0.50 02/09/16 15:52 0.10 02/09/16 15:52

LABORATORY CONTROL SAMPLE: 2186699

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	ug/L	80	83.8	105	80-120	
Arsenic	ug/L	80	87.1	109	80-120	
Cadmium	ug/L	80	83.3	104	80-120	
Calcium	ug/L	1000	1050	105	80-120	
Lead	ug/L	80	82.1	103	80-120	
Magnesium	ug/L	1000	1070	107	80-120	
Nickel	ug/L	80	84.0	105	80-120	
Thallium	ug/L	80	82.4	103	80-120	

MATRIX SPIKE & MATRIX SPIK		ATE: 218670	00		2186701							
			MS	MSD								
	1	0337632001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	ug/L	<0.50	80	80	85.7	86.9	107	108	80-120	1	20	
Arsenic	ug/L	1.4	80	80	91.3	92.6	112	114	80-120	1	20	
Cadmium	ug/L	0.13	80	80	80.9	82.1	101	102	80-120	2	20	
Calcium	ug/L	355000	1000	1000	360000	361000	531	613	80-120	0	20	E,M1
Lead	ug/L	0.98	80	80	80.8	81.7	100	101	80-120	1	20	
Magnesium	ug/L	121000	1000	1000	121000	122000	-10	83	80-120	1	20	E,M1
Nickel	ug/L	1.0	80	80	79.8	81.2	98	100	80-120	2	20	
Thallium	ug/L	<0.10	80	80	80.6	81.2	101	101	80-120	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project:	0504-1	100.00 Van Sto	one Mine GW											
Pace Project No.:	10337	632												
QC Batch:	WET	/46418		Analys	is Method:	: SI	M 2320B							
QC Batch Method:	SM 2	2320B		Analys	is Descript	tion: 23	320B Alka	alinity						
Associated Lab Sar	nples:	1033763200	1, 10337632002	, 10337632	003									
METHOD BLANK:	21895	83		N	Aatrix: Wa	ter								
Associated Lab Sar	nples:	1033763200	1, 10337632002	, 10337632	003									
				Blank	K R	eporting								
Paran	neter		Units	Resul	t	Limit	Ana	alyzed	Qu	alifiers				
Alkalinity, Total as C	aCO3		mg/L		<5.0	5.0	02/11/	16 10:04						
			00 0400504											
LABORATORY COI	NIROL	SAMPLE & LC	SD: 2189584	Spiko	100	189585	1.00		9/ Por			Mov		
Parar	neter		Units	Conc.	Result	Result	% Rec	% Rec	Limits	, R	PD	RPD	Qua	alifiers
Alkalinity, Total as C	aCO3		mg/L	40	41.2	41.2	103	103	90-1	10	0	30		
			CATE: 21905	26		2190597								
WATRIA SPIRE & W		SFIRE DUFLI	CATE. 210950	MS 2M	MSD	2109007								
			10337615001	Spike	Spike	MS	MSD	MS	6	MSD	% Rec		Max	
Paramete	er	Units	Result	Conc.	Conc.	Result	Result	% R	ec %	6 Rec	Limits	RPD	RPD	Qual
Alkalinity, Total as C	aCO3	mg/L	142	40	40	182	18	35	100	106	80-120) 2	30	
MATRIX SPIKE & M	IATRIX		CATE: 218958	38		2189589								
				MS	MSD									
			10337632001	Spike	Spike	MS	MSD	MS	6	MSD	% Rec		Max	
Paramete	er	Units	Result	Conc.	Conc.	Result	Result	% R	ec %	6 Rec	Limits	RPD	RPD	Qual
Alkalinity, Total as C	aCO3	mg/L	302	40	40	346	34	45	111	107	80-120	0 0	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	0504-1	00.00 Van Sto	one Mine GW											
Pace Project No.:	10337	632												
QC Batch:	WET	/46446		Analys	is Method:	S	M 2320B	1						
QC Batch Method:	SM 2	320B		Analys	is Descript	ion: 23	320B Alka	alinity						
Associated Lab Sar	nples:	1033763200	4, 10337632005	, 10337632	006, 10337	632007								
METHOD BLANK:	21906	47		Ν	Aatrix: Wat	er								
Associated Lab Sar	nples:	1033763200	4, 10337632005	, 10337632	006, 10337	632007								
				Blank	K Re	eporting								
Parar	neter		Units	Resul	t	Limit	Ana	lyzed	Qu	alifiers				
Alkalinity, Total as C	CaCO3		mg/L		<5.0	5.0	02/12/	16 10:08						
			200-0400040			400040								
LABORATORY COI	NIKUL	SAIVIPLE & LU	5D: 2190646	Sniko	105		105		% Rec			Max		
Parar	neter		Units	Conc.	Result	Result	% Rec	% Rec	Limits	R	PD F	RPD	Qua	alifiers
Alkalinity, Total as C	CaCO3		mg/L	40	41.2	41.1	103	103	90-1′	10	0	30		
MATRIX SPIKE & M	IATRIX		CATE: 21906	50		2190651								
				MS	MSD									
			10337632004	Spike	Spike	MS	MSD	MS	5 I	MSD	% Rec		Max	
Paramete	er	Units	Result	Conc.	Conc.	Result	Result	% R	ec %	Rec	Limits	RPD	RPD	Qual
Alkalinity, Total as C	aCO3	mg/L	313	40	40	357	35	56	110	108	80-120) 0	30	
MATRIX SPIKE & M	IATRIX		CATE: 21906	52		2190653								
				MS	MSD									
			10337666001	Spike	Spike	MS	MSD	MS	5 I	MSD	% Rec		Max	
Paramete	er	Units	Result	Conc.	Conc.	Result	Result	% R	ec %	6 Rec	Limits	RPD	RPD	Qual
Alkalinity, Total as C	aCO3	mg/L	87.8	40	40	128	12	28	99	101	80-120) 1	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Pace Project No: 10337632 QC Batch: WET/46355 Analysis Method: SM 2540C QC Batch SM 2540C Analysis Description: 2540C Total Dissolved Solids Associated Lab Samples: 10337632001, 10337632002, 10337632003, 10337632004, 10337632005, 10337632006, 10337632007 METHOD BLANK: 2187462 Matrix: Water Associated Lab Samples: 10337632001, 10337632002, 10337632003, 10337632005, 10337632006, 10337632007 Blank Reporting Analyzed Qualifiers Parameter Units Result Limit Analyzed Qualifiers LABORATORY CONTROL SAMPLE: 2187463 Spike LCS % Rec Max Qualifiers SAMPLE DUPLICATE: 2187464 Inits Result Result Result Result Result Result Result Result Qualifiers SAMPLE DUPLICATE: 2187464 Initis Result Result Result Result RPD Max SAMPLE DUPLICATE: 2187465 Initis Result Result RPD Max Qualifiers SAMPLE DUPLICATE: 2187465 Initis <th>Project:</th> <th>0504-100.00 Van</th> <th>Stone Mine GW</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Project:	0504-100.00 Van	Stone Mine GW						
QC Batch: WET/46355 Analysis Method: SM 2540C QC Batch: SM 2540C Analysis Description: 2540C Total Dissolved Solids Associated Lab Samples: 10337632001, 10337632002, 10337632004, 10337632005, 10337632006, 10337632007 METHOD BLANK: 2187462 Matrix: Associated Lab Samples: 10337632001, 10337632002, 10337632004, 10337632005, 10337632006, 10337632007 Blank Reporting Parameter Units Result Total Dissolved Solids mg/L <10.0	Pace Project No.:	10337632							
QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids Associated Lab Samples: 10337632001, 10337632002, 10337632003, 10337632004, 10337632006, 10337632006, 10337632007 Matrix: Water Associated Lab Samples: 10337632001, 10337632002, 10337632003, 10337632004, 10337632006, 10337632006, 10337632007 Blank Reporting Parameter Units Result Limit Analyzed Qualifiers IABORATORY CONTROL SAMPLE: 2187463 Spike LCS LCS % Rec Limits Qualifiers SAMPLE DUPLICATE: 2187464 1000 968 97 80-120 Qualifiers SAMPLE DUPLICATE: 2187464 10337632001 Dup Max RPD Qualifiers SAMPLE DUPLICATE: 2187465 10337632001 Dup Max RPD Qualifiers SAMPLE DUPLICATE: 2187465 10337632006 Dup Result RPD Qualifiers SAMPLE DUPLICATE: 2187465 10337632006 Dup Result RPD Qualifiers Total Dissolved Solids mg/L 10337632006 Dup Result RPD Qualifiers	QC Batch:	WET/46355		Analysis Me	ethod:	SM 2540C			
Associated Lab Samples: 10337632001, 10337632002, 10337632003, 10337632004, 10337632005, 10337632006, 10337632007 METHOD BLANK: 2187462 Associated Lab Samples: 10337632001, 10337632002, 10337632003, 10337632004, 10337632005, 10337632006, 10337632007 Blank Reporting Parameter Units Result Limit Analyzed Qualifiers Ital Dissolved Solids mg/L <10.0	QC Batch Method:	SM 2540C		Analysis De	escription:	2540C Total D	issolved Solids		
METHOD BLANK: 2187462 Matrix: Water Associated Lab Samples: 10337632001, 10337632002, 10337632003, 10337632004, 10337632006, 10337632007 Blank Reporting Parameter Units Result Limit Analyzed Qualifiers Total Dissolved Solids mg/L <10.0	Associated Lab Sam	nples: 10337632	2001, 10337632002,	10337632003,	10337632004,	10337632005	10337632006,	10337632007	
Associated Lab Samples: 10337632001, 10337632002, 10337632003, 10337632004, 10337632005, 10337632006, 10337632007 Parameter Units Result Limit Analyzed Qualifiers Total Dissolved Solids mg/L <10.0	METHOD BLANK:	2187462		Matrix	: Water				
ParameterUnitsResultLimitAnalyzedQualifiersTotal Dissolved Solidsmg/L<10.0	Associated Lab Sam	nples: 10337632	2001, 10337632002,	, 10337632003, Blank	10337632004, Reporting	10337632005	10337632006,	10337632007	
Total Dissolved Solids mg/L <10.0 10.0 02/08/16 11:01 LABORATORY CONTROL SAMPLE: 2187463 Spike LCS LCS LCS Limits Qualifiers Parameter Units Conc. Result % Rec Limits Qualifiers Total Dissolved Solids mg/L 1000 968 97 80-120 SAMPLE DUPLICATE: 2187464 10337632001 Dup Max RPD Qualifiers Total Dissolved Solids mg/L 1800 1800 0 10 10 SAMPLE DUPLICATE: 2187464 10337632001 Result RPD Max Qualifiers SAMPLE DUPLICATE: 2187465 10337632006 Dup RPD Qualifiers SAMPLE DUPLICATE: 2187465 10337632006 Dup Max Qualifiers Total Dissolved Solids mg/L 1800 1800 0 10 10	Param	neter	Units	Result	Limit	Analyze	ed Quali	fiers	
LABORATORY CONTROL SAMPLE: 2187463 Parameter Units Spike LCS LCS % Rec Limits Qualifiers Total Dissolved Solids mg/L 1000 968 97 80-120 Imits Qualifiers SAMPLE DUPLICATE: 2187464 10337632001 Dup Max RPD Qualifiers Total Dissolved Solids mg/L 10337632001 Bup Result RPD Qualifiers SAMPLE DUPLICATE: 2187464 10337632001 Result RPD Max SAMPLE DUPLICATE: 2187465 10337632006 Dup Max RPD Qualifiers SAMPLE DUPLICATE: 2187465 10337632006 Dup Max RPD Qualifiers Total Dissolved Solids mg/L 10337632006 Dup Max Qualifiers Total Dissolved Solids mg/L 10337632006 Dup Max Qualifiers Total Dissolved Solids mg/L 410 410 0 10	Total Dissolved Solid	ds	mg/L	<10.0	10	.0 02/08/16 1	1:01		
ParameterUnitsConc.Result% RecLimitsQualifiersTotal Dissolved Solidsmg/L10009689780-120SAMPLE DUPLICATE:2187464ParameterUnitsResultResultRPDMax RPDTotal Dissolved Solidsmg/L10337632001 ResultDup ResultMax RPDQualifiersSAMPLE DUPLICATE:218746510337632006 ResultDup ResultRPDQualifiersSAMPLE DUPLICATE:218746510337632006 	LABORATORY CON	ITROL SAMPLE:	2187463						
Total Dissolved Solidsmg/L10009689780-120SAMPLE DUPLICATE:218746410337632001 ResultDup ResultMax RPDQualifiersTotal Dissolved Solidsmg/L18001800010SAMPLE DUPLICATE:218746510337632006 ResultDup ResultMax RPDQualifiersSAMPLE DUPLICATE:218746510337632006 ResultDup ResultMax RPDQualifiersTotal Dissolved Solidsmg/L10337632006 ResultDup ResultMax RPDQualifiersTotal Dissolved Solidsmg/L410010	Param	neter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
SAMPLE DUPLICATE: 2187464 Parameter Units 10337632001 Result Dup Result RPD Max RPD Qualifiers Total Dissolved Solids mg/L 1800 1800 0 10 10 SAMPLE DUPLICATE: 2187465 10337632006 Dup Result RPD Max RPD Qualifiers Parameter Units Result Result RPD Max Result Max Total Dissolved Solids mg/L 410 0 0 10	Total Dissolved Solid	ds	mg/L	1000	968	97	80-120		
ParameterUnitsResultDupMaxTotal Dissolved Solidsmg/L18001800010SAMPLE DUPLICATE:2187465ParameterUnitsResultResultRPDMaxTotal Dissolved Solidsmg/L410010	SAMPLE DUPLICAT	FE: 2187464							
Parameter Units Result Result RPD RPD Qualifiers Total Dissolved Solids mg/L 1800 1800 0 10 SAMPLE DUPLICATE: 2187465 10337632006 Dup Max Parameter Units Result Result RPD Qualifiers Total Dissolved Solids mg/L 410 0 10	-			10337632001	Dup		Max		
Total Dissolved Solids mg/L 1800 1800 0 10 SAMPLE DUPLICATE: 2187465 10337632006 Dup Max Parameter Units Result RPD Qualifiers Total Dissolved Solids mg/L 410 0 10	Param	neter	Units	Result	Result			Qualifiers	
SAMPLE DUPLICATE: 2187465 Parameter Units Result Result RPD Qualifiers Total Dissolved Solids mg/l 410 0 10	Total Dissolved Solid	st	mg/L	1800	9 180	00	0	10	
Parameter Units Result Result RPD Qualifiers Total Dissolved Solids mg/l 410 0 10	SAMPLE DUPLICAT	TE: 2187465							
Total Dissolved Solids mg/l 410 410 0 10	Param	neter	Units	10337632006 Result	Dup Result	RPD	Max RPD	Qualifiers	
	Total Dissolved Solid	ds	mg/L	410	41	10	0	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	0504-100.00 Van	Stone Mine GW						
Pace Project No.:	10337632							
QC Batch:	WET/46334		Analysis M	ethod:	SM 2540D			
QC Batch Method:	SM 2540D		Analysis De	escription:	2540D Total Su	spended Solids	3	
Associated Lab San	nples: 10337632	2001, 10337632002	2, 10337632003,	10337632004	, 10337632005			
METHOD BLANK:	2186943		Matrix	x: Water				
Associated Lab San	nples: 10337632	2001, 10337632002	2, 10337632003, Blank	10337632004 Reporting	, 10337632005			
Paran	neter	Units	Result	Limit	Analyzed	d Qualit	iers	
Total Suspended Sc	blids	mg/L	<10.0) 10	0.0 02/05/16 16	5:02		
LABORATORY COM	NTROL SAMPLE:	2186944						
Paran	neter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
Total Suspended Sc	olids	mg/L	100	96.0	96	80-120		
SAMPLE DUPLICA	TE: 2186945							
			10337389001	Dup		Max		
Paran	neter	Units	Result	Result	RPD	RPD	Qualifiers	
Total Suspended Sc	blids	mg/L	NE) <10	0.0		10	
SAMPLE DUPLICA	TE: 2186946							
Daraa	aatar	Linita	10337632005	Dup	חחם	Max	Qualifiara	
Paran								
Iotal Suspended Sc	blids	mg/L	<10.0	J <10	0.0		10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 0504	-100.00 Van	Stone Mine GW					
Pace Project No.: 1033	7632						
QC Batch: WE	T/46352		Analysis M	lethod:	SM 2540D		
QC Batch Method: SM	2540D		Analysis D	escription:	2540D Total S	uspended Solid	8
Associated Lab Samples:	10337632	2006, 10337632007					
METHOD BLANK: 2187	450		Matri	x: Water			
Associated Lab Samples:	10337632	2006, 10337632007					
Parameter		Units	Blank Result	Reporting Limit	Analyz	ed Quali	fiers
Total Suspended Solids		mg/L	<10.0	0 10	0.0 02/07/16	16:20	
LABORATORY CONTRO	L SAMPLE:	2187451					
Parameter		Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Total Suspended Solids		mg/L	100	98.0	98	80-120	
SAMPLE DUPLICATE: 2	2187452						
_			10337784001	Dup		Max	
Parameter		Units	Result	Result	RPD	RPD	Qualifiers
Total Suspended Solids		mg/L	17.0	0 32	2.0	61	10 D8
SAMPLE DUPLICATE: 2	2187453						
_			10337632006	Dup		Max	
Parameter		Units	Result	Result	RPD	RPD	Qualifiers
Total Suspended Solids		mg/L	<10.0	0 <10	0.0		10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 0504-100.00 Van Stone Mine GW

Pace Project No.: 10337632

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis

ANALYTE QUALIFIERS

- D8 The sample and duplicate results for this parameter are less than 5 times the reporting limit, the RPD may not be statistically valid.
- E Analyte concentration exceeded the calibration range. The reported result is estimated.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 0504-100.00 Van Stone Mine GW

Pace Project No.: 10337632

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10337632001	Dup: 020116	EPA 3020	MPRP/61315	EPA 6020A	ICPM/28318
10337632002	MW-2: 020116	EPA 3020	MPRP/61315	EPA 6020A	ICPM/28318
10337632003	W1: 020116	EPA 3020	MPRP/61315	EPA 6020A	ICPM/28318
10337632004	DH-2: 020116	EPA 3020	MPRP/61315	EPA 6020A	ICPM/28318
10337632005	MW-1: 020116	EPA 3020	MPRP/61315	EPA 6020A	ICPM/28318
10337632006	MW-3: 020216	EPA 3020	MPRP/61315	EPA 6020A	ICPM/28318
10337632007	MW-5: 020216	EPA 3020	MPRP/61315	EPA 6020A	ICPM/28318
10337632001	Dup: 020116	SM 2320B	WET/46418		
10337632002	MW-2: 020116	SM 2320B	WET/46418		
10337632003	W1: 020116	SM 2320B	WET/46418		
10337632004	DH-2: 020116	SM 2320B	WET/46446		
10337632005	MW-1: 020116	SM 2320B	WET/46446		
10337632006	MW-3: 020216	SM 2320B	WET/46446		
10337632007	MW-5: 020216	SM 2320B	WET/46446		
10337632001	Dup: 020116	SM 2540C	WET/46355		
10337632002	MW-2: 020116	SM 2540C	WET/46355		
10337632003	W1: 020116	SM 2540C	WET/46355		
10337632004	DH-2: 020116	SM 2540C	WET/46355		
10337632005	MW-1: 020116	SM 2540C	WET/46355		
10337632006	MW-3: 020216	SM 2540C	WET/46355		
10337632007	MW-5: 020216	SM 2540C	WET/46355		
10337632001	Dup: 020116	SM 2540D	WET/46334		
10337632002	MW-2: 020116	SM 2540D	WET/46334		
10337632003	W1: 020116	SM 2540D	WET/46334		
10337632004	DH-2: 020116	SM 2540D	WET/46334		
10337632005	MW-1: 020116	SM 2540D	WET/46334		
10337632006	MW-3: 020216	SM 2540D	WET/46352		
10337632007	MW-5: 020216	SM 2540D	WET/46352		

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section /	4	Section B								Sec	tion C		**																P	0710		7		. /	
Roquine	Colem Information:	Required P	rejøct	LICTOR I		n:				Altr	ntion:	lonno Io	abua	1.00									-	_	-	I		ļ		ugo	•				
Company Address:	622 East Second Street	Conv To:	Jon	i nan	19y					Corr	carw l	Name	Go	oFor	hann	the line																			
	Sockase WA 00202			1963	010550	Aldered And				Add	1853:	52	3 East	d Sec	cond S	itreet	Sool	kana	. W	A 99	202				-	1.16	(. ji	堆积	an s	Reg	1	7/210	CA CO	2313-3	动的现法
Email:	ibanev@neoengineers.com	Purchase O	rder Ø.							Pac	o Quet	1 1																							
Phone:	517-363-3125 Fax 577-363-34	% Project Nar	0:	Van	Stone	Mine GW S	iampling			Pec	Proje	ct Ma	nagei	r.	jenni	ter.gr	uss@	0030	elab	5.00	m,					5	-AC	i hi	202	57 56	to I,	oc ile	di chiji	مند	
Requeste	d Due Dato: Stol. JAT	Project #:		Ŏ	507	- 100	.00			Рас	s Profi	ie #:	34	1247	• 3	46	51/	a	R	英	10	HC	j,					_		WA	/ On	ion Cre	<u>k</u>		
			_		_												Ť	环	÷Ľ.	R	oque	istic	s An		SE	tere	3 (Y/	NE	2656	24:	1	266		20	
	MATRO	L CODE	s to latif	(dwico		COLL	ECTED		z			<u>P</u>	rese	rvati	ves		149769	NUNE I																	
	Drinking Viatar Wasto	Wabur DW WT Nuter WW	ald coda	RAB C-					LECTIC										y 6020	y 6020											ε				
	SAMPLE ID	U 81. OL WP	y 868)	<u>0</u>		START	E	ND	0 VI 00	ers							- 19 - 19 C)))U		603	ų	٥	23208								Crino (
TEM#	(A-Z, 0-9 /, -) Ar Sample ids must be unique These	AR OT To	UATRIX CODE	SAMPLE TYPE	DAT		DATE	THE	SANPLE TEM	I OF CONTAU	Unpreserved	NN H	Ę	NEOH	Na28203	Methanol	Other units - Phone	EC-MUIVEC	Sb,Aa,Cd,Pb	Hardnoss(Ca	rds sm2540	F88 8M264C	Alkalinity SMC								Rosidual Ch				
建設	dun: 020116		1	G	2/1/1	1800		·	Ť	Z	1	1		╞	Ħ		T		x	¥	γ	X	X											G	JQ
2.4	mw-2:020116		1	7	1	NZ7				\mathbf{h}	\Box	1						Ī	1	1	1	١	1											9	50
	W1:020116	-		Π		IZA				Π		ŀ								Ι			Π			·								_,¢	52
	DH-2:020116					1320												ļ	\prod			L	Ц								┟		-	Q	34
5	MW-1:020116			\mathbb{N}	<u> </u>	1554	/			Ц	Ш			<u> </u> _						Ļ			 					_	-					00	15
6	MW-3:020216		-₩,		z/a/	6 1619	ļ	<u> </u>	 								_	·						-	-		┞				⊢┟			<u> </u>	10
	MIS-5:020216		V	V	પપ	16 1320	_	 	-	M	₽	1	η_	_			_		<u>¥</u>	M	۷	V	ľ	1	┢	┞	┝	╞			╞			6	21
							 	·			H		╉			Ŀ-	_		4	_				-	┢	\vdash	┝	╞	┝	\vdash	╞				
			-						┢	<u> </u> _	┝╌┠	+	╇	-			4						-	-		┢	-	┢	┢	\square	ŀ				
-10-	•		+						-	┝	┝─╊		╋	╋	\vdash		-{		-			\vdash		╞	+	┢	+	╀	┢╌	$\left \cdot \right $					
		n,,,	-	\square						┢	┝┼	+	╋	╋	┼╍		_		_			┝─	┝	╀	╀	┝	┢	┢		\square	ŀ				
12.5						775-175				1 2 2				医闭	1			00	ì	iton	7.3			療		日間の	1					Aupre	CONDI		335F
		/d	2		lish .	[u][EŢ	<u> 7/5/e</u>	0/6		\$	521 33		C	Ż	Ą	1	Ż		2		9.C.1		9	4/1	6	9	:4(リ	1,4		Y	Y		Y
				_						t														t			t				╡		T	二	
						14.16.11	*******		255.000				1000		(Lai		2010	-	مینورو	Arrest	275	4.4	100		à ch	in the second							<u> </u>	\dashv	
						PR	ER NAME	of SAMP	LER		J.	254			ション											9 ^{,25}	24					cahad an M	Apopa	불된	s gd ty (i
						SK	SNATURE	of SAMP	-LER	: 	Þ	/	9 7/	4		-				UAT	\$	<u>y</u>	20/	16						L F	<u> </u>	885	្រីខ្ល	88	825
										- 1											·. ·														Page

÷

60337632

	<i>(</i>)	Do	cument l	Name:		Doc	cument Revise	d: 05Jan2016		7
	Pace Analytical*	Sample Con	iltion Up	on Recei	pt Form		Page 1 o	f1		-
		L F-N	AN-L-213	rev.15		Pace	Minnesota Q	uality Office	e	
Sample Co Upon Re Courier:	ceipt Client Name:	USPS ee Other:_ 30	CI	Project ient	#: WO	# : 1	033 	7632 	2	
Custody Se	eal on Cooler/Box Present?	No	Seals Inta	nct? [7]Yes □No	Optic	nal: Proj. D	ue Date:	Proj. 1	lame:
Packing M	aterial: 🔲 Bubble Wrap 🛄 Bubble	Bags Non	e 🗖 o)ther:			Temp B	lank?	Yes	□ No
Thermome	ter 151401163 0888A91	2167504 Тур	e of Ice:	Swe t	t 🔲 Blue	None	Samples	on ice, coolir	g proces	is has begun
Used:	151401164 2888A01	43310098	. 14	_			reun Frazan?		E TAL	
Temp should	d be above freezing to 6°C Correction	n Factor: A	: <u>17</u> С.1	Dat	e and Initials of	f Person E	xamining Con	itents:	H 3	4/16
USDA Regul	lated Soll (🗹 N/A, water sample)	•					•			
Did samples MS, NC, NM,	originate in a quarantine zone within the L , NY, OK, OR, SC, TN, TX or WA (check map: If Yes to either question fill qui	United States: AL, A s)? t a Regulated Soli	AR, AZ, CA	, FL, GA, I Yes (F-MN-	ID, LA. Did No incl 0-338) and incl	samples or Juding Haw Jude with	riginate from a i all and Puerto R SCUR/COC pa	foreign sourc lico)? loerwork.	e (intern Yes	ationaïlγ, ∷⊡No
ſ 			GIECKIIS	e fi -mile-	C-SSBJ and me		COMMEN	TS:		
Chain of Cu	istody Present?	ZYes.			1.				-	
Chain of Cu	istady Filled Out?	Thes.			2.					
Chain of C	stody Relinquished?				3.			•		
Campler M	ame and/or Signature on COC2				4					
Sampler Ar	rrived within Hold Time?									
Samples Al					<u> </u>					
	Time Analysis (5/2 fir)r				7					
Rush Turn					 。					
Sumcient			NO		<u>.</u>					
Correct Co	ntainers Used?	L'Yes	04		9.					
•Pace Co	ontainers Used?	[Yes	No							
Containers	Intact?	Yes	[No		10.		1-11-1- 1- Al-A			
Filtered Vo	lume Received for Dissolved Tests?	Yes	No	<u>/</u>]N/A	11. Note if s	ediment is	visible in the c	dissolved col	ntainer	
Sample Lat	bels Match COC?	⊘ Yes	No		12.					
-Include All contain checked? All contain compliance	E Date/Time/ID/Analysis Matrix: ers needing acid/base preservation have b ers needing preservation are found to be in e with EPA recommendation?	n	⊡ No	□n/A	13. [Sample #	<u>тнио</u> , 9/4	∏H₂SO₄	ПиаОн		Пна
(HNO ₃ , H ₂ S	: VOA. Coliform. TOC. Oil and Grease.	inide) 🗹 Yes	⊡ No	□n/a	Initial when		Lot # c	of added		
DRO/8015	(water) DOC	<u> </u>	No	⊡ N/A	completed:	-	preser	vative:		
Headspace	e in VOA Vials (>6mm)?	<u>∏</u> Yes	No		_14.		• • •			
Trip Blank	Present?	☐Yes	⊡ No		15.	•				
Trip Blank	Custody Seals Present?	□ Yes	∐No	∐n/A	· ·					
Pace Trip B	Blank Lot # (if purchased):				l					7.1-
_	CLIENT NOTIFICATION/RESOLUTION				Date: 171		rield Data Re	dnii.eai. [
Person Co	ntacted:				uate/lime:					
Comment	s/Resolution:									
						-		<u> </u>		
<u> </u>		0								

Project Manager Review: Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containes)

APPENDIX B Additional Investigation Exploration Logs and Geotechnical Testing

	S	OIL CLASSI	FICATIO	ON CH	ART	ADDI	TIONAL	MA
1	MAJOR DIVIS	IONS	SYM	BOLS	TYPICAL	SYM	BOLS	
				LEIIER	DESCRIPTIONS	GRAPH	LETTER	2
	GRAVEL	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES		AC	As
	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES		СС	Ce
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES		CR	Cr
COLO	FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES			Qu
MORE THAN 50%	04115	CLEAN SANDS		sw	WELL-GRADED SANDS, GRAVELLY SANDS		SOD	S
RETAINED ON NO. 200 SIEVE	AND AND SANDY SOILS	(LITTLE OR NO FINES)	•••••	SP	POORLY-GRADED SANDS, GRAVELLY SAND		TS	Тс
	MORE THAN 50% OF COARSE	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES		Ground	lwat
	FRACTION PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES		Measure well, or p	d gro iezoi
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY		Measure	d fre
FINE	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS		Graphi	c Lo
GRAINED SOILS				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY		Distinct o	conta
MORE THAN 50% PASSING				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS		Approxim Materi:	nate al D
NO. 200 SIEVE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY	(Contact k	betw
			17	ОН	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY		Contact k unit	betw
	HIGHLY ORGANIC	SOILS	·····	РТ	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS		lahora	tory
)TE: Multiple b	symbols are u Sa 2.4 2.4 Sta She Pist Dire Bul Cor Iowcount is re	sed to indicate bo mpler Symb -inch I.D. split k ndard Penetrat elby tube ton ect-Push k or grab ntinuous Coring ecorded for driv I to advance sa	ool Desc parrel tion Test (ription SPT)	he number of (or distance noted).	%F %G AL CA CP DD DS HA MC MD MOhs OC PM PI PP SA TX UC	Percent f Percent g Atterberg Chemica Laborato Consolida Dry dens Direct sh Hydrome Moisture Crganic C Permeab Piasticity Pocket p Sieve ana Triaxial c	fines grave g limi l ana ry co ation ity ear eter a conte co
S "!	ee exploratio P" indicates s	n log for hamm	her weight	and dr	op.		Sheen	Cla
י ייע h	WOH" indicate ammer.	es sampler pus	shed using	the we	ight of the	NS SS MS HS	No Visibl Slight Sh Moderato Heavy Sh	e Sh leen e She neen

IONAL MATERIAL SYMBOLS

SYM	BOLS	TYPICAL
GRAPH	LETTER	DESCRIPTIONS
	AC	Asphalt Concrete
	сс	Cement Concrete
	CR	Crushed Rock/ Quarry Spalls
	SOD	Sod/Forest Duff
	TS	Topsoil

5		Groundwater Contact
	Ţ	Measured groundwater level in exploration, well, or piezometer
		Measured free product in well or piezometer
,		Graphic Log Contact Distinct contact between soil strata
	\sim	Approximate contact between soil strata
		Material Description Contact
		Contact between geologic units
		Contact between soil of the same geologic unit
		Laboratory / Field Tests
	%F %G AL CP CS DD DS HA MC MD Mohs OC PM PI PP SA TX UC VS	Percent fines Percent gravel Atterberg limits Chemical analysis Laboratory compaction test Consolidation test Dry density Direct shear Hydrometer analysis Moisture content Moisture content Mois hardness scale Organic content Permeability or hydraulic conductivity Plasticity index Pocket penetrometer Sieve analysis Triaxial compression Unconfined compression Vane shear
		Sheen Classification
	NS SS MS	No Visible Sheen Slight Sheen Moderate Sheen

NOTE: The reader must refer to the discussion in the report text and the logs of explorations for a proper understanding of subsurface conditions. Descriptions on the logs apply only at the specific exploration locations and at the time the explorations were made; they are not warranted to be representative of subsurface conditions at other locations or times.

Start End Total Logged By JML Drilled 1/8/2015 1/8/2015 Total Checked By JWR Driller Environment													Environmenta	l West			Drilling Method Hollow-Stem Auger
Surface Vertical	e Eleva Datu	tion (f n	:)		3: NAY	172 VD88			Ha Da	ammer ata	140	Autoha 0 (Ibs) / 3	mmer 30 (in) Drop		Drilling Equipm	hent	Mobile B-90
Easting Northin	; (X) g (Y)				229 126	97466 61563			Sy Da	ystem atum	W	A State Pla NAD83	ane South (feet)		Ground explora	lwater ation	observed at 42.5 feet at time of
Notes:																	
Elevation (feet)	o Depth (feet)	Interval		Blows/foot H	Collected Sample	Sample Name V Testing	Graphic Log	Group Classification			M/ DES	ATERIA CRIPTI	L ON		Moisture Content (%)	Dry Density (pcf)	REMARKS
- 1 ⁰ 	-							ML	_	Brown sandy (tailings)	silt (very so	oft to med	lium stiff, moist)) - -	-		
- - - -	5 — - - -	1	6	5		1			-	Grades to gra	ay			-			
- - - - -	10 — - - -	1	8 :	14		2			-					-	-		Approximate SPT N-value is 6
15 18 P 3 SA; AL; DS 14 108 SA (%F=50.7) AL (non-plastic) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -																	
	20	1	8 :	12	, (2	4 CA HSA-1 (0-21.5) CA			-					-	-		Approximate SPT N-value is 5
	25 — - - -	1	8	Ρ	AL	; īx; cs			-						22	93	AL (non-plastic)
	30 — - -	1	8	1	(3	6 CA <u>HSA-1</u> (0-31.5) CA			-					-			Approximate SPT N-value is 0
Note The Con	35 — e: See depth ordinat	Figure Is on t es Dat	A-1 f ne tes a Sou	or ex t pit l rce: l	planatic logs are Horizont	on of sym based o tal appro	nbols. In an	average o	∟ of m d on	neasurements 1 Aerial Imager	across the 1 y, Vertical a	test pit an pproxima	nd should be cor ted based on DI	 nsidered a EM	accurat	e to 0.	5 foot.
									5.1	Lo	g of Bo	oring l	HSA-1				
spokane: Date:5/2	ΞE	οE	N	GI	NE	ERS	5 /	D		Project: Project Project	Van Si Location	tone Mi a: Onic : 050	ine on Creek, Wa 4-100-00	ashingt	ton		Figure B-2 Sheet 1 of 2

Burban Devolution (1) NAMES Devolution (1) Address of the second of the	ſ	Drillec	1/9	<u>Start</u> 9/2015	<u>En</u> 1/9/	<u>d</u> ⁄2015	Total Depth	(ft)	32		Logged By JML Checked By JWR	Driller	Environmental Wes	t			Drilling Method Hollow-Stem Auger
Image: Normal Processes Status Mature Processes Considered in a case-resident media exploration Internet Processes The Data Mature Processes Considered in a case-resident media exploration Internet Processes FELD DATA Mature Processes Mature Processes Mature Processes Image: Processes FELD DATA Mature Processes Mature Processes Mature Processes REMARKS Image: Processes FELD DATA Mature Processes Mature Processes Remarks Remarks Image: Processes FELD DATA Mature Processes Mature Processes Remarks Remarks Image: Processes FELD DATA Mature Processes Processes Remarks Remarks Image: Processes FELD DATA Mature Processes Processes Remarks Remarks Image: Processes FELD DATA Mature Processes Processes Remarks Remarks Image: Processes FELD DATA Processes Processes Remarks Remarks Image: Processes FELD DATA Processes Processes Remarks Remarks Remarks Remarks Remarks		Surfac Vertica	e Eleva I Datu	ation (ft) m		3 N/	3175 AVD88			Ha Da	ammer ata <u>1</u> 40	Autoham 0 (Ibs) / 30	nmer) (in) Drop	Drilli Equi	ing pmer	nt	Mobile B-90
Nete: Interview of the expension of synch. Note: te: Note:		Easting Northir	g (X) ng (Y)			22 12	97718 61989			S) Di	vstem W4 atum	A State Pla NAD83 (1	ne South feet)	Grou	undwa	ater	not observed at time of exploration
PELD DATA Image: State of the state o	l	Notes															
Image: Set Provide the set of the s	ſ				FIE	LD DA	TA										
Approximate SPT Nvalue is 5 Approximate SPT Nvalue is 5 Approximate SPT Nvalue is 5 Approximate SPT Nvalue is 5 Approximate SPT Nvalue is 5 Approximate SPT Nvalue is 5 Approximate SPT Nvalue is 5 Approximate SPT Nvalue is 5 Approximate SPT Nvalue is 5 Approximate SPT Nvalue is 5 Approximate SPT Nvalue is 5 Approximate SPT Nvalue is 5 Approximate SPT Nvalue is 5 Approximate SPT Nvalue is 5 Approximate SPT Nvalue is 15 Approximate S		⁄ation (feet	th (feet)	rval overed (in)	vs/foot	ected Sample	<u>iple Name</u> ting	phic Log	up ssification		MA DES	ATERIAL CRIPTIC	N	ture	ent (%) Densitv	610100	REMARKS
Approximate SPT I value is 5 103 Approximate SPT I value is 5 103 Approximate SPT I value is 5 103 Approximate SPT I value is 5 103 Approximate SPT I value is 5 103 Approximate SPT I value is 5 103 Approximate SPT I value is 5 103 Approximate SPT I value is 5 103 Approximate SPT I value is 15 103 Approximate SPT I value is 15 104 Approximate SPT I value is 15 105 Brown fine to modum sand with trace sit (modum 104 Brown fine to modum sand with trace sit (modum 104 Brown fine to modum sand with trace sit (modum 104 Brown fine to modum sand with trace sit (modum 104 Brown fine to modum sand with trace sit (modum 104 Brown fine to modum sand with trace sit (modum 104 Brown fine to modum sand with sit (sey dense, most) 104 Brown fine to modum sand with sit (sey dense, most) 105 Brown fine to modum sand with sit (sey dense,		Elev	o Dep	Inte Rec	Blov	Colle	<u>San</u> Tesi	Gra	Gro		Gray sandy silt (modium	ctiff moiet	t) (tailings)	Mois	Cont	(bcf)	
Approximate SPT Notice is 5 103 Approximate SPT Notice is 5 104 Approximate SPT Notice is 5 105 Approximate SPT Notice is 5 105 Approximate SPT Notice is 7 Approximate SPT Notice is 15 105 Brown fine to medium and with trace all (medium 105 Brown fine to medium and with trace all (medium 105 Brown fine to medium and with trace all (medium 105 Brown fine to medium and with trace all (medium 105 Brown fine to medium and with trace all (medium 105 Brown fine to medium and with all (very dorse, model) 105 Brown fine to medium and with all (very dorse, model) 105 Brown fine to medium and with all (very dorse, model) 105 Brown fine to medium and with all (very dorse, model) 105 Brown fine to medium and with all (very dorse, model) 105 Brown fine to medium and with all (very dorse, model) 105 Brown fine to medium and with all (very dorse, model) 105 Brown fine to medium and with all (very dorse, model) 105 Brown fine to medium and with all (very dorse, model) 105 Brown fine to medium and with all (very dorse, model) 105 Brown fine to medium and with all (very dorse, model) 105 Brown fine to medium and with all (very dorse, model) 105 Brown fine to medium and with all (very dorse, model) 105 Brown fine to medium and with all (very dorse, model) 105 Brown fine to medium and with all (very dorse, model) 105 Brown fine to medium and with all (very dorse, model) 105 Brown fine to medium and with all (very dorse, model) 105 Brown fine to medium and with all (very dorse, model) 105 Brown fine to medium and with all (very dorse, Media accurate to 0.5 fort. 105 Brown fine to medium and with all (very dorse, Media accurate to 0.5 fort. 105 Brown fine to medium and with all (very dorse, Media accurate to 0.5 fort. 105 Brown fine to medium and with all (very dorse, Media accurate to 0.5 fort. 105 Brown fine to medium and with all (very dorse, Media accurate to 0.5 fort. 105 Brown fine to medium and with all (very dorse, Media accurate to 0.5 fort. 105 Brown fine to medium and with all (very dors	-		-						IVIL	_	dray sandy sitt (medium	Sun, moisi	(danngs)	-			
Image: Set of the set of	-		-							-				-			
Approximate SPT N-value is 7 Approximate SPT N-value is 7 Approximate SPT N-value is 16 Approximate SPT N-value is 15 Biowr court not representative Biowr court not representative Biowr court not representative Rock ensountered at 32 feet Medication of springer Control Spring ISA-2 In Control Spring ISA-2 Priority To Spring ISA-2 Priority To Spring ISA-2 Priority To Spring ISA-2 Priority To Spring ISA-2 Priority To Spring ISA-2 Priority To Spring ISA-2 Priority To Spring ISA-2 Priority To Spring ISA-2 Priority To Spring ISA-2 Priority To Spring ISA-2 Priority To Spring ISA-2 Priority To Spring ISA-2 Priority To Spring ISA-2 Priority To Spring ISA-2 Priority To Spring ISA-2	_	3170	- 5 —	14	13		1 MD			_				5	5 1	03	Approximate SPT N-value is 5
Approximate SPT N-value is 1 Approximate SPT N-value is 15	-		-							_				-			
Approximate SPT Nvalue is 7 Approximate SPT Nvalue is 7 Approximate SPT Nvalue is 16 Approximate SPT Nvalue is 15 Biow count not representative Brown fine to medium sand with silt (very dense, moist) Biow count not representative Rock encountered at 32 feet Note: See Figure A.1 for explanation of symbols. The depths on the tep Int log are based on an average of measurements across the test pit and should be considered accurate to 0.5 foot. Count not representative Note: See Figure A.1 for explanation of symbols. The depths on the tep Int logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 foot. Count not representative based on DEM Count not representative for Boring HSA-2 Project: Van Stone Mine Project Location: Onion Creek, Washington	-		-							-				-			
Approximate SPT Nvalue is 16	-		10 18 18 2 CA Grades to brown Approximate SPT N-value is 7 1 18 18 2 (10-11-5) CA 18 18 2 (10-11-5) CA 18 <t< td=""></t<>														
Approximate SPT N-value is 16 Approximate SPT N-value is 15 Approximate SPT N-value is 15 Biown fine to medium sand with sit (very dense, molet) Biown count not representative Rock encountered at 32 feet Rock encountered at 32 feet Contract Spt Spt Spt Spt Spt Spt Spt Spt Spt Sp	-																
Image: Contract of the set of the s	GW	3,60	Image: Second state														
Approximate SPT N-value is 15 Approximate SPT N-value is 15 Blow count not representative Blow count not representative Blow count not representative Blow count not representative Rock encountered at 32 feet Cordinates Data Sources Horizontal approximates Desed on an average of measurements across the test pit and should be considered accurate to 0.5 foot. Cordinates Data Sources Horizontal approximates Desed on Aneial Imagery, Vertical approximeted based on DEM Cordinates Data Sources Horizontal approximates Desed on Aneial Imagery, Vertical approximeted based on DEM Cordinates Data Sources Horizontal approximates Desed on Aneial Imagery, Vertical approximated based on DEM Cordinates Data Sources Horizontal approximates Desed on Aneial Imagery, Vertical approximated based on DEM Cordinates Data Sources Horizontal approximates Desed on Aneial Imagery, Vertical approximated based on DEM Cordinates Data Sources Horizontal approximates Desed on Aneial Imagery, Vertical approximates Desed on DEM	NDARD_DD		$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
Approximate SPT Nvalue is 15 2 117 Approximate SPT Nvalue is 15 Biow count not representative Biow count not representative Rock encountered at 32 feet Net: See Figure A1 for explanation of symbols. The depitrs on the test pt logs are based on an average of measurements across the test pt and should be considered accurate to 0.5 foot. Coordinates Data Source: Horizontal approximated based on Aeral Imagery. Vertical approximated based on DEM Coordinates Data Source: Horizontal approximated based on Aeral Imagery. Vertical approximated based on DEM Project: Van Stone Mine Project: Van Stone Mine Project: Van Stone Mine Project: Van Stone Mine Project: Van Stone Mine	EOTECH_STA	6	-							_				-			
Blow count not representative Blow count not representative Blow count not representative Blow count not representative Rock encountered at 32 feet Note: See Figure A-1 for explanation of symbols. The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 foot. Coordinates Data Source: Horizontal approximated based on Aerial Imagery. Vertical approximated based on DEM Log of Boring HSA-2 Project: Van Stone Mine Project Location: Onion Creek, Washington	DT/GEI8_GE	<u></u>	20 —	16	37		4 CA; MD HSA-2			_				_ 2	2 1	17	Approximate SPT N-value is 15
Image: Contract of the set of the s	US_2017.G		-			ţ	20-21.5) CA			-				-			
Image: displayed by the set of the	RS_DF_STD	a'ro	- 25					$\left[\right]$	SP-SM	-	Brown fine to medium sa	and with sil	lt (very dense, moist) _			
Image: Construct of the second of the sec	EOENGINEE		-	12	50/6"		5			-				-			Blow count not representative
And the set of the set o	oTemplate:G		-							_				_			
Note: See Figure A-1 for explanation of symbols. The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 foot. Coordinates Data Source: Horizontal approximated based on Aerial Imagery, Vertical approximated based on DEM Log of Boring HSA-2 Project: Van Stone Mine Project Location: Onion Creek, Washington	3Template/Li	AN AN	- 30 —	16	58		6			Ē	 Gray sandy silt (hard, mo						Rock encountered at 32 feet
Note: See Figure A-1 for explanation of symbols. The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 foot. Coordinates Data Source: Horizontal approximated based on Aerial Imagery, Vertical approximated based on DEM Log of Boring HSA-2 Project: Van Stone Mine Project Location: Onion Creek, Washington	000.GPJ DE		-							_							
Note: See Figure A-1 for explanation of symbols. The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 foot. Coordinates Data Source: Horizontal approximated based on Aerial Imagery, Vertical approximated based on DEM Log of Boring HSA-2 Project: Van Stone Mine Project Location: Onion Creek, Washington	NT\050410																
Coordinates Data Source: Horizontal approximated based on Aerial Imagery, Vertical approximated based on DEM Log of Boring HSA-2 Project: Van Stone Mine Project Location: Onion Creek, Washington Figure P.2	0504100\GI	Not The	te: See e denth	Figure	A-1 for e e test nit	xplanati : logs are	ion of syr e based o	nbols. on an :	average c	ofm	easurements across the t	test pit and	l should be consider	red accu	rate †	0 0.!	5 foot.
Log of Boring HSA-2 Project: Van Stone Mine Project Location: Onion Creek, Washington Figure P 2	Path:P:\0\(Coo	ordinat	es Data	Source:	Horizor	ntal appro	oximat	ed based	d on	Aerial Imagery, Vertical a	pproximate	ed based on DEM				
GEOENGINEERS Project Location: Onion Creek, Washington	ate:5/2/17										Log of Bo Project: Van St	tone Mir	15 A-2 ne				
	pokane: Da	C	BE	эE	NG	INE	ER	s /	D		Project Location	: Onior	n Creek, Washi	ngton			Figure B-3

Dri	illed	1/9	<u>8tart</u> /2015	<u>Er</u> 1/9,	<u>nd</u> /2015	Total Depth	(ft)	44.5		Logged By JML Checked By JWR	Driller Environmental We	est			Drilling Method Hollow-Stem Auger
Sur Ver	face E tical D	:leva)atur	tion (ft) n		S NA	3182 AVD88			Ha Da	ammer ata <u>1</u> 40	Autohammer D (lbs) / 30 (in) Drop	E	Drilling Equipm	nent	Mobile B-90
Eas Noi	sting (X thing (() (Y)			229 120	97864 62082			Sy Di	ystem W4 atum	A State Plane South NAD83 (feet)	(Ground	lwater	not observed at time of exploration
No	tes:							1							
				FIE	LD DA	TA									
Elevation (feet)	, (foot) dtod	o ueptn (reet)	Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	- Graphic Log	Group Classification		MADES	ITERIAL CRIPTION		Moisture Content (%)	Dry Density (pcf)	REMARKS
-	þ	_						ML	-	Light brown sandy silt (si	iff, moist) (tailings)	-			
 	ò	- - 5 - -	15	8		1 %F						- - - -			%F = 50.1
- - 	1	- 0 - - -	18	19	Ĺ	2 CA <u>HSA-3</u> <u>10-11.5)</u> CA		SM		Light brown silty fine sar	d (loose, moist) (tailings)	-			Approximate SPT N-value is 8
STANDARD_DD_N0_GW	1 Þ	5	18	Ρ		<u>3</u> DS; TX							85	108	
	2	.0 0	18	16	¢	4 CA HSA-3 20-21.5) CA		ML	-	Gray sandy silt (stiff, moi	st) (tailings)	-			Approximate SPT N-value is 6
	2	- 5 	18	24		5 %F; MD		SM	-	Dark gray fine to coarse (medium dense, moi	sand with silt and gravel st)		8	106	Approximate SPT N-value is 10 %F=30
	$30 - 11 = 18 64 6 \\ Approximate SPT N-value is 26 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $														
	3	5	F <				μĹ	ML	Ľ	Brown silt with sand (ha					
10/0204	Note: The de Coord	See epth linate	Figure s on the es Data	A-1 for e test pir Source	xplanati t logs are : Horizor	on of syn e based c ntal appro	nbols. In an Iximat	average o	of m d on	neasurements across the t Aerial Imagery, Vertical a	est pit and should be consid pproximated based on DEM	ered a	ccurat	e to 0.	5 foot.
2/17 Path:F										Log of Bo	ring HSA-3				
Spokane: Date:5/	G	EC	ÞΕ	NG	INE	ER	5 /	D		Project: Van St Project Location Project Number:	one Mine : Onion Creek, Wast 0504-100-00	ningt	on		Figure B-4 Sheet 1 of 2

\bigcap			FIE	LD D	ATA						
Elevation (feet)	Cepth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Moisture Content (%)	Dry Density (pcf)	REMARKS
- - -			5 71		7				-		
- - - - -	- 40 — -	12	8 81		8 SA; AL		 	Clayey fine to coarse sand with occasional gravel (dense to very dense, moist)	4		Approximate SPT N-value is 33 SA (%F=40) AL (LL=30; PI=16)
-	-	10	5 56		9						Drilling on rocks

Log of Boring HSA-3 (continued)

Project: Van Stone Mine Project Location: Onion Creek, Washington Project Number: 0504-100-00

Figure B-4 Sheet 2 of 2

	Drilled	1/9	<u>Start</u> 9/20	15	<u>En</u> 1/9/	<u>d</u> 2015	Total Depth	(ft)	30.5	Logged By Checked By	JML JWR	Driller	Environmental West			Drilling Method Hollow-Stem Auger
Su Ve	urface ertica	e Eleva I Datu	ation m	(ft)		3 NA	3182 AVD88			Hammer Data	140	Autohar (Ibs)/30	nmer) (in) Drop	Drilling Equipr	ç nent	Mobile B-90
Ea	asting orthir	g (X) ng (Y)				229 120	98025 62403			System Datum	WA	State Pla NAD83	ane South (feet)	Ground	dwater ation	observed at 25 feet at time of
N	lotes:													1		
					FIEI	_D DA	TA									
	Elevation (feet)	⊃ Depth (feet) 	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification		MA DESC	terial Criptic	_ DN	Moisture Content (%)	Dry Density (pcf)	REMARKS
-	Ş	-	-						SM	Brown silty fir -	ne sand (loo	se, moist) (tailings)	_		
	10	- - 5 — -		16	22		1 MD; SA			-				- - - - - - - -	102	Approximate SPT N-value is 9 SA (%F=28)
<u> </u>	10	- 10 — - -		18	11	C. Li	2 A; %F; AL <u>HSA-4</u> <u>10-11.5)</u> CA		ML	- Gray sandy si 	It (soft to m		ff, moist) (tailings)			Approximate SPT N-value is 4 %F=56 AL (non-plastic)
	69	- 15 — -		9	2		<u>3</u> MC			- - With debris/c -	organic matt	er (wood	chips)	25 		
	60	- 20 — - -		18	23	¢	4 CA; SA HS <u>A-4</u> 20-21.5) CA		SP-SM	Brown fine to – medium (– –	coarse san dense, moist	d with silt t) (native)	and gravel (loose to	- - - - -		Approximate SPT N-value is 9 SA (%F=5.7)
	(6 ⁵)	- 25 — -		12	50/6"	<u>HS</u> /	5 CA 44 (25-26) CA			– – Becomes verj –	y dense, wei	t		-		Approximate SPT N-value is 42 Blow count not representative
2 85 6 With pulverized granite rock												-		Approximate SPT N-value is 35 Blow count not representative Drilling difficult, possible rock		
	Note: See Figure A-1 for explanation of symbols. The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 foot. Coordinates Data Source: Horizontal approximated based on Aerial Imagery, Vertical approximated based on DEM															
34 JT /7/C										Log	g of Bo	ring I	ISA-4			
alle: Date:	(F	ol	= N	IG	INF	FR	5		Project: Project	Van St Location:	one Mi : Onio	ne n Creek, Washin	gton		

Project Number: 0504-100-00

Spok

Figure B-5 Sheet 1 of 1

ĺ	Drilled	<u>8</u> 1/8	<u>Start</u> 3/2015	<u>Er</u> 1/8,	<u>nd</u> /2015	Total Depth	(ft)	40	Logged By Checked By	JML JWR	Driller	Environmental West			Drilling Method Hollow-Stem Auger
	Surface Vertica	e Eleva I Datur	tion (ft n)	N/	3180 AVD88			Hammer Data	140	Autoham D (lbs) / 30	mer (in) Drop	Drilling Equipr	g nent	Mobile B-90
	Easting Northir	g (X) ng (Y)			22 12	97620 61519			System Datum	W	A State Plai NAD83 (f	ne South Teet)	Groun explor	dwater ation	observed at 29 feet at time of
	Notes:							·							
ĺ	_			FIE	LD DA	TA									
	Elevation (feet)	⊃ Depth (feet) 	Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	- Graphic Log	Group Classification		MA DES(ATERIAL CRIPTIO	N	Moisture Content (%)	Dry Density (pcf)	REMARKS
	_	-						ML	Gray sandy si -	ilt (soft, moi	st) (tailings	5)	-		
	-	-							-				_		
		- 5 —							-				_		
	-	-	10			1			_						
	-	-							_				-		
	- 310	- 10 —	TT 14	1 4		2			_				_		Approximate SPT N-value is 2
	-	-	Ш ⁻		(CA <u>HSA-5</u> (<u>10-11.5)</u> CA			_						
	-	_							_				-		
NO_GW		- 15 —	14	1 2		3			_				_		AL (non-plastic)
NDARD_DD	-	_				AL			-				-		
TECH_STAP	-	-							_				-		
/GEI8_GEC		20 —	18	3 1		A: MC			Gray clay (vei	ry soft, mois	 st to wet) (t		32		Approximate SPT N-value is 0
2017.GD1	-	-			Ĺ	<u>HSA-5</u> (20-21.5) CA			-				-		
DF_STD_US	- -	_							_				-		
IGINEERS_	_3 ¹⁵³	25 —	14	1 2		<u>5</u> MD; AL			_				30	101	Approximate SPT N-value is 1 AL (LL=25; PL=20)
olate:GEOEI	-	-							-				-		
ate/LibTem	- - 	_							_				_		
DBTempi	`` _	30 -	12	2 50/6"	HSA	6 CA 4-5 (30-31.5		SP	 Becomes har Brown fine to 	rd, wet coarse sar	nd, trace sil	t (dense, wet)			Blow count not representative
110000.GP	_	-				ĊA		SM	– (dense, n	noist)	in sanu wi	n occasional graver			
GINT 0504	- 2145	-							_ 				_		
00504100	Not	e: See depth	Figure s on th	A-1 for e	explanati t logs ar	ion of syn re based o	nbols.	average o	f measurements	across the t	est pit and	should be considered	d accura	te to O	5 foot.
-7 Path:P:\C		nuiriat	cs Dala	JUUICE	. HUNZUI	пагаррго	in nat	eu Daseo							
Date:5/2/1		_	_						Project:	Van St	tone Mir	ne			
Spokane:	Ċ	E	ЪЕ	NG	INE	ER	5 /		Project Project	Location Number	: Onior : 0504	n Creek, Washing -100-00	gton		Figure B-6

[FIEL	D DA	TA						
Elevation (feet)	l Depth (feet)	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Moisture Content (%)	Dry Density	REMARKS
-	35 —		2	50/2"		7	高	GRAN	Brown decomposed granite			Drilling slow through decomposed rock
-	-											
- 3 ¹⁴⁰	40 —											
5												
2												
									Log of Boring HSA-5 (continued)			
G		٦F	N			EED	c /	1	Project: Van Stone Mine Project Location: Onion Creek Washingto	on		
	EOENGINEERS								Project Number: 0504-100-00			Figure B-6 Sheet 2 of 2

Drille	d 1/	<u>Start</u> 7/20) 15	<u>En</u> 1/7/	<u>d</u> 2015	Total Depth	(ft)	51.5	Logged By JML Checked By JWR	Driller Environmental West				Drilling Method Hollow-Stem Auger
Surfac Vertic	ce Eleva al Datu	ation m	(ft)		S NA	3173 AVD88			Hammer Data 14	Autohammer 0 (Ibs) / 30 (in) Drop	Drilli Equi	ng pmer	nt	Mobile B-90
Eastir North	ng (X) ing (Y)				229 120	97549 61349			System W. Datum	A State Plane South NAD83 (feet)	Grou	indwa oratio	ater on	observed at 20 feet at time of
Notes	6:										·			
				FIEI	D DA	TA								
Elevation (feet)	o Depth (feet) I	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	- Graphic Log	Group Classification	M/ DES	ATERIAL CRIPTION	Moisture	Content (%) Drv Densitv	(pcf)	REMARKS
-	-	-						ML	Brown sandy silt (stiff, n –	noist) (tailings)	_			
- 31 ¹⁰	-	-							-		-			
- - -	- 5 — -		14	13		1 %F			-		-			%F=59
-	- - 10 - -		12	16	ú	2 CA; SA <u>HSA-6</u> 10-11.5) CA		 SM	Gray fine to coarse silty	sand (loose, moist) (tailings)				Approximate SPT N-value is 6 SA (%F=16)
ANDARD_DD_NO_GW	- - 15 — - -		14	17		<u>3</u> MD; AL			- Gray sandy silt (medium	n stiff, moist) (tailings)	 10 	0 1	.12	Approximate SPT N-value is 7 AL (non-plastic)
	- 20 — - -		18	12	¢	4 CA <u>HSA-6</u> 20-21.5) CA			-		-			Approximate SPT N-value is 5
plate:GEOENGINEERS_DF_STD	- 25 — -		18	7		5 AL		 	Grades to wet	(medium stiff, wet) (tailings)				AL (non-plastic)
	- 30 — - -		14	21	G	<u>6</u> CA <u>HSA-6</u> <u>30-31.5)</u> CA		SP	Light brown fine to coars (loose, wet)	se sand with gravel, trace silt	-			Approximate SPT N-value is 8
5/2/17 Pa									Log of Bo	oring HSA-6				
Spokane: Date:	ĜE	ol	En	١G	INE	ER	S/	D	Project: Van S Project Location Project Number	tone Mine n: Onion Creek, Washir : 0504-100-00	ngton			Figure B-7

\square			FIEI	D DA	ATA						
Elevation (feet)	Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Moisture Content (%)	Dry Density (pcf)	REMARKS
-	35 —	14	43	Ν	MD; SA; DS		SM	Brown silty fine to coarse sand, occasional gravel – (medium dense, wet) (native) –	8	120	Approximate SPT N-value is 18 SA (%F=33)
-	_										
	_								-		
-	-										
_	40 —	12	50/6"		8						Blow count not representative
- 200	-								-		
-	_								_		
-	45 —	14	59		9				-		
	_						CL	Dark gray sandy clay with occasional gravel (hard,			
325	_							-			
-	-								-		
-	50 -	16	84		<u>10</u> %F; AL				15		Approximate SPT N-value is 34 %F=60 AL (LL=34; PI=14)

Log of Boring HSA-6 (continued)

Project: Van Stone Mine Project Location: Onion Creek, Washington Project Number: 0504-100-00

Figure B-7 Sheet 2 of 2

	Drilled	Start End Total 97 Logged By JML Driller Environmental West Drilling Hollow-Stem Auger urface Elevation (ft) 2735 Hammer Autohammer Drilling Drilling Mobile B-90 urface Levation NAVD88 Data 140 (lbs) / 30 (in) Drop Drop Equipment Mobile B-90															
S V	Surface Vertica	e Eleva I Datu	ation m	(ft)		2 N/	2735 AVD88			Hammer Data	140	Autoha O (Ibs) / 3	mmer 0 (in) Drop		Drilling Equipn	hent	Mobile B-90
E N	asting Iorthir	ş (X) Ig (Y)				22 12	91851 67801			System Datum	W	A State Pla NAD83	ane South (feet)		Ground explora	lwater ation	observed at 94 feet at time of
ſ	Notes:																
Ī					FIEL	D DA	TA										
· ·	Elevation (feet)	o Depth (feet) I	Interval	Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	 Graphic Log 	Group Classification		M/ DES	ATERIA CRIPTIO	L N		Moisture Content (%)	Dry Density (pcf)	REMARKS
-		-	-						ML	Gray sandy sil	lt (medium	stiff to sti	iff, moist)		_		
-		-								-							
- - - -	130	- 5 — -		15	10		1			-				-	-		
- _า์	125	10 - 118 9 2 18 9 2 10 - 118 9 10 115 10 10 115 100 115 100 115 100 115 100 115 100 115 100 115 100 100								-				_	-		Approximate SPT N-value is 4
-		$\begin{array}{c c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $								_					-		
	120	- 15 — -		18	30		3			-				_	-		Approximate SPT N-value is 12
	115	- - 20 — -		13	11		4			-				-	-		
	140	- - 25 — -		18	22		5			-							Approximate SPT N-value is 9
spatial of the second s								- - Gray silty clay -	(stiff, mois	 t) (tailing			-		%F=88 AL (LL=38; PI=26)		
	10 ⁰ Not The Coc																
5/ T/ Fatu		Log of Boring HSA-7															
GEOENGINEERS Project La Project La Project N										Project: Project I Project I	Van Si Location	tone M : Onic : 050	ine on Creek, Wa 4-100-00	shing	ton		Figure B-8 Sheet 1 of 3

\bigcap			FIEI		DATA						
Elevation (feet)	Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Moisture Content (%)	Dry Density (pcf)	REMARKS
- - - ഗ്ല	-	18	29		(<u>76.1-76.5)</u> CA 16		SW-SM	grass) (medium stiff, moist) gravel (medium dense, moist)	-		Approximate SPT N-value is 12
0°	80 —								-		
-	-	16	68		<u>17</u> MD; SA; DS				3	118	Approximate SPT N-value is 28 SA (%F=8.1)
_	-	18	69		18						Approximate SPT N-value is 28
_2690 - -	85 - -	18	64		19		 	Brown sandy silt with occasional gravel (very stiff,			Approximate SPT N-value is 26
- - 	- 90 —	14	28		20			- · · ·			
-	-		20			TT		- Brown sandy silt (very stiff, moist to wet)			
-	-		38		21		SM	to wet)	-		Approximate SPT N-Value IS 16
- _2 ⁶⁴⁰ -	- 95 — -	16	33		22 SA; AL		CL-ML	Brown silty clay with sand and occasional gravel (stiff, wet)	17		Approximate SPT N-value is 14 SA (%F=57) AL (LL=24; PI=5)
	_									-	

Log of Boring HSA-7 (continued)

Project: Van Stone Mine Project Location: Onion Creek, Washington Project Number: 0504-100-00

Figure B-8 Sheet 3 of 3

Dri	Start End 12/9/2014 Total 12/9/2014 Total Depth (ft) 86 Logged By Checked By JML JWR Driller Environmental West Drilling Method Hollow-Stem Auger rface Elevation (ft) 2731 Hammer Autohammer Drilling Mobile B-90																	
Sur Ver	urface Elevation (ft) 2731 vrtical Datum NAVD88 asting (X) 2291526								Ha Da	ammer ata	140	Autohai D (Ibs) / 3	mmer 0 (in) Drop		Drilling Equipn	g nent	Mobile B-90	
Eas Nor	ting (thing	(X) § (Y)				229 126	1526 7688			S <u>j</u> D	ystem atum	WA	A State Pla NAD83	ane South (feet)		Ground	dwater	not observed at time of exploration
No	tes:																	
\bigcap				F	IELC) dat	A											
on (feet)		feet)	red (in)			l Sample	Name	: Log	cation			MA				(%)	sity	REMARKS
Elevatic		Depth (Interval Recove			Collected	<u>Sample</u> Testing	Graphic	Group Classifi			DLO				Moisture Content	Dry Dens (pcf)	
_275	2	0							ML	_	Gray sandy silt (very loose, wet) (tailings)							
-		-								_						-		
-		_								-						-		
- 	þ	5 —	6	1	1		1			_						-		
-		-								_						-		
-																-		
_272	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									_	Grades to stiff,	, moist				-		Approximate SPT N-value is 8
-															-			
- 5 -									-						_	105	Approximate SPT N-value is 8	
	(5) 15 10 19 3 MD; %F; AL 5 M									Gray silty fine sand (loose, moist) (tailings) 3 105						105	%⊦=17 AL (non-plastic)	
		_								_								
		- 20 —	T T							_						_		Approximate SPT Nucluo is 6
	2	-	18	3 1	.5		4			-						-		Approximate SFT revalue is o
1		-								_						_		
	_	- 25 —					-			_						-		
	5	-			9		5			_						_		
ol emplate:		_								-						-		
	2	- 30 —	TT 15		3		6			_						_		Approximate SPT N-value is 9
										_						-		
		_								-						-		
	Note	- 35 —	Figuro	Δ_1 fr		lanatio	n of eve	hole										
	Note: See Figure A-1 for explanation of symbols. The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 foot. Coordinates Data Source: Horizontal approximated based on Aerial Imagery, Vertical approximated based on DEM																	
	Log of Boring HSA-8																	
ne: Date:o	G	SEOFNCINEERS Project: Van Stone Mine Project Location: Onion Creek, Washington																
spoka	J	E		ING	JI		CK:	5 /			Project N	lumber:	050	4-100-00				Figure B-9 Sheet 1 of 3

\bigcap			FIE	LD D	ATA						
Elevation (feet)	Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Moisture Content (%)	Dry Density (pcf)	REMARKS
-	-	-			HSA-8 (76.4-76.5)		ML	Brown sandy silt (hard, moist) (native)			
- - - - - - -	- 80 — - -	18	70		CA SA; AL <u>HSA-8</u> (80-81-5) CA		SM	Gray silty fine to coarse sand with occasional gravel (medium dense, moist)	13		Approximate SPT N-value is 29 SA (%F=46) AL (non-plastic)
- 	85 -	□ 5	50/5"		17						Blow count not representative Broken pieces with granite rock at bottom of sampler

Log of Boring HSA-8 (continued)

Project: Van Stone Mine Project Location: Onion Creek, Washington Project Number: 0504-100-00

Figure B-9 Sheet 3 of 3

Drilled	StartEnd 12/9/2014Total Depth (ft)89.5Logged By Checked ByJML JWRDriller Environmental WestDrilling MethodHollow-Stem Augerface Elevation (ft)2731 NAVD88Hammer DataAutohammer 140 (lbs) / 30 (in) DropDrilling EquipmentMobile B-90														
Surface Vertical	Eleva Datu	ation (ft) m		2731 NAVD88	. ,		Hamı Data	mer	14	Autoha 0 (Ibs) / 3	mmer 0 (in) Drop		Drilling Equipn	ç nent	Mobile B-90
Easting Northin	(X) g (Y)			2291377 1267320	,)		Syste Datu	em Im	W	A State Pl NAD83	ane South (feet)		Ground	dwater	not observed at time of exploration
Notes:															
			FIEL	d data											
on (feet)	feet)	red (in)	foot	d Sample Name	Jog I	cation		MATERIAL			(%)	sity	REMARKS		
Elevatic	Depth (Interval Recove	Blows/1	Collected Sample Testing	Granhic	Group Classifi			DLO				Moisture Content	Dry Dens (pcf)	
_1130	0					ML	Gi -	Gray sandy silt (very soft, wet) (tailings)							
	-												_		
-	-						-						-		
-2725	5 —	1	1	1			_					-	-		
-	-	-					-						-		
-	-						-					-	-		
_2720	-	18	49	2 <u>HSA-9</u> (10-11.5 CA	1		_ Gi	races to stif	f to very sti	ff, moist			_		Approximate SPT N-value is 20
-	-						-						-		
	- 15 —											_		Approvimate SPT Nualue is 8	
- A ^N	-		19	3									-		
	_	-					-						_		
	20 —	18	20	4			-					-	-		Approximate SPT N-value is 8
	-												_		
	_	-					-						-		
	25 —	18	26	5	Ţ	SM	 	 ray silty fine	sand (loos	 e to medi			4	115	Approximate SPT N-value is 10 %F=21
- <u>^</u>	-			MD; %F			-	(tailings)					-		
	-												_		
	30 —	16	23	6			-					-	_		Approximate SPT N-value is 9
	_						_						-		
	-						-						-		
- Note	35 — e: See	Figure A	 -1 for e:	xplanation of s	 symbo	ll.	L				al ala and stills a	-	_		[
	The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 foot. Coordinates Data Source: Horizontal approximated based on Aerial Imagery, Vertical approximated based on DEM														
17 /2 (Co								Log Droigett		oring l	HSA-9				
G	E	οEι	NG	INEEF	٢S	\bigcap	Project Location: Onion Creek, Washington Figure B-10					Figure R 10			
5					-			Project /	Number	: 050	4-100-00				Sheet 1 of 3

\bigcap			FIE	LD D	ATA							
Elevation (feet)	ដំ Depth (feet)	25 Depth (feet) 97 Interval 17 Blows/foot 2 Collected Sample 2 Sample Name					Group Classification	MATERIAL DESCRIPTION	Moisture Content (%)	Dry Density (pcf)	REMARKS	
_1695	- 35	16	13		7				_			
- - - - -	- - 40 — -	18	30		8				-		Approximate SPT N-value is 12	
- - - - - -	- 45 — -	18	28		9				-		Approximate SPT N-value is 11	
- - - - -	- 50 — -	18	41		10 <u>HSA-9</u> (50-51.5) CA				-		Approximate SPT N-value is 17	
	- 55 — -	16	18		11 %F; AL				5	110	%F=43 AL (non-plastic)	
	- 60 — -	18	40		12		<u>CL</u> SM	Gray sandy clay (very stiff, moist) (tailings)/ Gray silty sand (medium dense, moist) (tailings)	-		Approximate SPT N-value is 16	
	- 65 — -	18	49		<u>13</u> MD; %F; AL				5	110	Approximate SPT N-value is 20 %F=30 AL (non-plastic)	
	 70	18	46		14				-		Approximate SPT N-value is 19	
	⁵ ⁷⁵ ⁷⁵ ¹⁸ ¹³ ¹⁵ ¹⁸ ¹³ ¹⁵ ^{MC; AL ¹⁵ ^{MC; AL} ²⁷ ^{AL} (LL=33; PI=12)}											
	Log of Poring USA Q (continued)											
Date:5/ 2/1	Project: Van Stone Mine											
	GEOENGINEERS Project Validation: Onion Creek, Washington Project Number: 0504-100-00 Figure B-10 Sheet 2 of 3											
											-	

[FIEL	DD	ATA						
Elevation (feet)	Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Moisture Content (%)	Dry Density (pcf)	REMARKS
-	-							 Gray sandy silt (very stiff, moist) (tailings) 			
- 00 - 100 -	80 —	18	50		<u>16</u> MC <u>HSA-9</u> (<u>80-81.5)</u> CA			 	9		Approximate SPT N-value is 21
- - -	- - 85	18	28		<u>17</u>		SM	Dark brown silty fine to coarse sand with gravel and – organic matter (wood chips) (medium dense, moist) –	10		Approximate SPT N-value is 11 SA (%F=28)
- - -	-				54 <u>HSA-9</u> (<u>85-86.5)</u> CA						
F	-	\prod_{12}	50/6"		18			-			Blow count not representative

Log of Boring HSA-9 (continued)

pokane: Date:5/2/1

Project: Van Stone Mine Project Location: Onion Creek, Washington Project Number: 0504-100-00

Figure B-10 Sheet 3 of 3

StartEnd DrilledTotal 12/11/2014Total 12/11/2014Logger ChecketSurface Elevation (ft)2761Hammer										Logged By Checked By	JML JWR	Driller	Environmental West				Drilling Method Hollow-Stem Auger	
	Surfac Vertica	e Eleva Il Datui	ation m	(ft)		2 NA	761 VD88			Har Dat	nmer a	14	Autohar D (Ibs) / 3	nmer) (in) Drop	Drilli Equi	ing ipmer	nt	Mobile B-90
	Easting Northir	g (X) ng (Y)				229 120	92062 57122			Sys Dat	tem tum	W	A State Pla NAD83	ane South (feet)	Grou	undwa	ater	not observed at time of exploration
	Notes	:																
ĺ	_				FIEI	_D DA1	ΓA											
	n (feet)	eet)		ed (in)	oot	Sample	Name	Log	ation			MA		-		(%)	5	REMARKS
	levatio	epth (f	nterval	ecover	lows/fo	ollected	esting	araphic	aroup classific			DES	RIPTI	JN	loisture	ontent ()	ocf)	
	ш 1 ⁶⁰	0-	=	Œ	ш	0			ML	(Gray sandy silt (very soft, moist to wet) (tailings)					0	28	
	-	-								_					_			
	-	-								-					_			
	- 2155	5 —		12	1		1			_					-			
	-	-								_					_			
	-	-							 CL	(Gray sandy cla	ay (very sof	 it, moist) (-			
	- 2150	10 —		18	1		2			_								Approximate SPT N-value is 0
	-	-								_					_			
	-	-								-	-				_			
U_NU_GW	15 18 45 3									Gray sandy silt (very stiff, moist) (tailings)						Approximate SPT N-value is 18		
	-	-								Gray sandy silt (very stiff, moist) (tailings)					_			
	-	-								_					_			
ו/מבוס_מב	- 2140	20 —		18	23		4 HSA-11		SP-SM		Gray fine sand	d with silt (oose, moi	st) (tailings)				Approximate SPT N-value is 9
019.1102_0	-	-				(4	20-21.5) CA			_					_			
UF_SIU_U	-	-								_					_			
	- _1 ³⁵	25 —		14	62		5 HSA-11		SP-SM	-	Dark brown fi	ne to medi	um sand v	vith silt and organic	_			
ate:GEUEIN	-	-	┝╴┻ ┲╼╼ੑ	2	50/2"		2 <u>5-26.5)</u> CA 6			-	matter (w	ood chips)	(very dens	e, moist)	_			Blow count not representative Granite rock in bottom of sampler shoe
e/ rini euib																		
norembia																		
1000.GPJ																		
TPUCUTIN																		
004.100/GI	Not	te: See	Figu	ire A-	1 for e	xplanati	on of syn	nbols.		of me	acuromente -	oroco the	oct nit ar	d chould be servide	nd accor	roto +	to O '	- foot
atn:P:\U\U		The depurs on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 foot. Coordinates Data Source: Horizontal approximated based on Aerial Imagery, Vertical approximated based on DEM																
4 / T / Z / C:2											Log	of Bo	ring H	SA-11				
kane: Date	(SE0	b	ĒN	IG	INF	ER	s /			Project: Project I	van Si Location	: Onio	ne n Creek, Washir	ngton			
ods.			-								Project I	Number	0504	4-100-00				Sheet 1 of 1

Date Excavated 10/12/2015 Total Depth (ft) 8 Logged By Checked By JML EBD Excavator Equipment Excavator Backhoe Observed at time of excavation Groundwater not observed Caving not observed Surface Elevation (ft) 3630 Easting (X) 2301673 Coordinate System WA State Plane South														
Surface Eleva Vertical Datu	ation (ft) Im	3630 NAVD88		Easting (X) Northing (Y)	2301673 1263645	Coordina Horizont	ate Sys al Dati	tem um	WA State Plane South NAD83 (feet)					
Elevation (feet) Depth (feet)	Testing Sample Sample Name Testing	Graphic Log	Classification	DE	MATERIAL ESCRIPTION		Moisture Content (%F)	Dry Density (pcf)	REMARKS					
-360^{20} 1 - -360^{20} 2 - -360^{20} 2 - -360^{20} 3 - -360^{20} 4 - -360^{20} 5 - -360^{20} 6 - -360^{20} 7 - -360^{20} 8 -	MS-27 (0.5- CA		- Ligh 	t brown/light gray coarse occasional boulders (me	e gravel with sand, cobbles, trace si dium dense, moist) (native)	It and								
Note: See The depti Coordinat	Note: See Figure A-1 for explanation of symbols. The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 foot. Coordinates Data Source: Horizontal approximated based on Aerial Imagery, Vertical approximated based on DEM													
Ge	οΕνσ	INEE	RS	Project: Project Project	Van Stone Mine Location: Onion Creek, W Number: 0504-100-00	/ashingt	on		Figure B-13 Sheet 1 of 1					

Spokane: Date:5/2/17 Path:P:0(0504100/GINT (050410000.GPJ DBTemplate/LIDTemplate/LIDTemplate/COENGINEERS_DF_STD_UG_2017.GDT/GEI8_TESTPIT_1P_GEOTEC_DD
Date Excavate	ed ¹	.0/12/2015	Total Depth	n (ft) 7		Logged By Checked By	JML EBD	Excavator Equipment Backhoe				Observed at time of excavation Groundwater not observed Caving not observed		
Surface E Vertical E	Elevat Datun	ion (ft) າ	3 NA	635 VD88		Easting (X Northing () Y)	2301748 1263768		Coordina Horizont	ate Sys al Dati	tem um	WA State Plane South NAD83 (feet)	
Elevation (feet)	Depth (feet)	Testing Sample Sample Name Testing	Graphic Log	Group Classification			DI	MATERIAL ESCRIPTION			Moisture Content (%F)	Dry Density (pcf)	REMARKS	
		MS-28 (0.5.1 CA		GP	Gray (r - -	fine to coarse medium dense	gravel wi	th sand, trace silt, cobbles ar waste rock)	nd bou	Iders -				
Note: See Figure A-1 for explanation of symbols. The depths on the test pit logis are based on an average of measurements across the test pit and should be considered accurate to 0.5 foot. Coordinates Data Source: Horizontal approximated based on Aerial Imagery, Vertical approximated based on DEM														
		_				F	Log Project:	of Test Pit MS-3 Van Stone Mine	30					
GEOENGINEERS Project: Van Stone Mine Project Location: Onion Creek, Washington Project Number: 0504-100-00							Figure B-14 Sheet 1 of 1							

Figure B-14 Sheet 1 of 1

Date Excavated	10/11/201	5 Total Dept	h (ft) 9		Logged By JML Checked By EBE	iy JML Excavator By EBD Equipment Backhoe					Observed at time of excavation Groundwater not observed Caving not observed		
Surface Eleva Vertical Datu	ation (ft) Im		3630 AVD88		Easting (X) Northing (Y)		2301469 1262785	Coordina Horizont	ate Sys al Datu	tem um	WA State Plane South NAD83 (feet)		
Elevation (feet) Depth (feet)	Testing Sample	l esting Graphic Log	Group Classification			MATERIAL DESCRIPTION			Moisture Content (%F)	Dry Density (pcf)	REMARKS		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MS-30		6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Gray (-	fine to coarse gravel loose, moist) (waste r	el with rock	h sand, cobbles, boulders and trace	e silt					
Note: See Figure A.1 for explanation of symbols. The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 foot. Coordinates Data Source: Horizontal approximated based on Aerial Imagery, Vertical approximated based on DEM													
GEOENGINEERS Project: Van Stone Mine Project Location: Onion Creek, Washington Project Number: 0504-100-00									Figure B-16 Sheet 1 of 1				

Sheet 1 of 1

	Date Excavated 10/13/2015 Total Depth (ft) 10 Logged Checked			Logged By Checked By	ly JML Excavator By EBD Equipment Backhoe					Observed at time of excavation Groundwater not observed Caving not observed		
l	Surface Ele Vertical Dat	vation (ft) um	3 NA	712 VD88	I.	Easting (X) Northing (Y)	2301998 1262961	Coordina Horizont	ate Sys al Dati	tem um	WA State Plane South NAD83 (feet)
	Elevation (feet) Depth (feet)	Testing Sample Sample Name Testing	Graphic Log	Group Classification			MATERIAL DESCRIPTION			Moisture Content (%F)	Dry Density (pcf)	REMARKS
emptare/LubremptaresEcoeNaiNeERs_DF_STD_us_2017.6Df/GE8_TESTPIT_1_2P_GE0TEC_DD	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>18</u> − − − − − − − − − − − − −		GPO	Gray (fine to coarse (medium dense,	gravel wit moist) (v	h sand, cobbles, boulders and trac waste rock)	2e silt 	Moi Contraction of the Contracti		
*:\0\0504100\GINT\050410000.GPJ	Note: See Figure A-1 for explanation of symbols. The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 foot. Coordinates Data Source: Horizontal anonximated based on Aerial Imagery. Vertical anonximated based on DEM											
5/2/17 Path:F							Log	of Test Pit MS-34				
Spokane: Date:							roject: roject L roject N	Van Stone Mine _ocation: Onion Creek, W Number: 0504-100-00	lashingt	on		Figure B-18 Sheet 1 of 1

Sheet 1 of 1

Da Ex	te 10/12/2015 Total Logged By Checked B				Logged By Checked By	JML EBD	Excavator Equipment Backhoe			Observed at time of excavation Groundwater not observed Caving not observed			
Su Vei	face Ele tical Dat	vation um	(ft)	3 NA	770 VD88	I	Easting (X) Northing () Y)	2302312 1262843	Coordii Horizor	nate Sys ntal Dat	stem um	WA State Plane South NAD83 (feet)
Elevation (feet)	Depth (feet)	Testing Sample	Sample Name Testing	Graphic Log	Group Classification			r De				Dry Density (pcf)	REMARKS
- 3 ⁷⁶	ð 1-	-			SP	Bro	wn fine to mediu cobbles (mediu	um sand v m dense,	vith trace silt, and occasional grav moist)	el and	-		
- 3 ⁷⁶	2-	-				_					-		
- 3 ¹⁶	3-	-				_					_		
- 3 ⁷⁶	5 4 -		MS-34 (4-5)			_					_		
_376	5 -					_					_		
_ 3 ^{(e}	× 6-	-				_					-		
_ 3 ⁶	5 7-	-				-					_		
	8-	_				_					_		
	9-	-				_					_		
197707.2017.01	د 10-	-									_		
IGINEERS_DF_SI	ð 11 -	-				_					_		
mplate:GEUEN	5 12 -												
P.(0)0504100\GINT\050410000.Gr/ UBIEmpirate/ LIDIE	Note: See Figure A-1 for explanation of symbols. The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 foot. Coordinates Data Source: Horizontal approximated based on Aerial Imagery, Vertical approximated based on DEM												
9:5/2/1/ Patn:							1 -	Log	of Test Pit MS-36				
Spokane: Dati	GEOENGINEERS Project: Van Stone Mine Project Location: Onion Creek, Washington Figure B-20												

Figure B-20 Sheet 1 of 1

Project Number: 0504-100-00

0504-100-00 March 24, 2017

0504-100-00 March 24, 2017

0504-100-00 March 31, 2017

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Client:	GeoEngineers	Date:	June 12, 2015
Address:	Spokane	Project:	Van Stone Mine Project
		Project #:	15T009
Attn:	John Haney, PE	Sample #:	various

As requested MTC, Inc. has performed the following test(s) on the sample referenced above. The testing was performed in accordance with current applicable AASHTO or ASTM standards as indicated below. The results obtained in our laboratory were as follows below or on the attached pages:

	Test(s) Performed:	Test Results	Test(s) Performed:	Test Results
	Sieve Analysis		Sulfate Soundness	
	Proctor		Bulk Density & Voids	
	Sand Equivalent		WSDOT Degradation	
	Fracture Count			
X	Moisture Content	see attached		
	pH			
	Minimum Resistivity			
	Organic Content			
	Atterberg Limits			
	Asphalt Extraction/Gradation			
	Rice Density			

If you have any questions concerning the test results, the procedures used, or if we can be of any further assistance please call on us at the number below.

HBarry

Harold Benny WABO Supervising Laboratory Technician

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Project: Van Stone Mine Project Project #: 15T009 Date Received: June 3, 2015 Date Tested: June 9, 2015

Client: GeoEngineers

Sampled by: Others

Tested by: B. Goble

Moisture Content - ASTM C-566, ASTM D-2216 & AASHTO T-265

Sample #	Client Sample #	Tare	Wet + Tare	Dry + Tare	Wgt. Of Moisture	Wgt. Of Soil	% Moisture
T15-0869	HSA-4-3-15	1.6	69.5	56.0	13.5	54.4	24.8%
T15-0871	HSA-5-4-20	1.5	65.1	49.6	15.5	48.1	32.2%
T15-0888	HSA-9-16-80	1.5	63.6	58.6	4.9	57.1	8.7%

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Reviewed by:

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Regional Offices: Olympia ~ 360.534.9777 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974

Visit our website: www.mtc-inc.net

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Client:	GeoEngineers	Date:	May 15, 2015
Address:	Spokane	Project:	Van Stone Mine Project
		Project #:	15T009
Attn:	John Haney, PE	Sample #:	Various

As requested MTC, Inc. has performed the following test(s) on the sample referenced above. The testing was performed in accordance with current applicable AASHTO or ASTM standards as indicated below. The results obtained in our laboratory were as follows below or on the attached pages:

Test(s) Performed:	Test Results		Test(s) Performed:	Test Results
Sieve Analysis			Sulfate Soundness	
Proctor		X	Bulk Density of Soils	See attached
Sand Equivalent			WSDOT Degradation	
Fracture Count		X	Penetrometer/Torvane	See attached
Moisture Content		X	Percent Fines	See attached
рН				
Minimum Resistivity				
Organic Content				
Atterberg Limits				
Asphalt Extraction/Gradation				
Rice Density				

If you have any questions concerning the test results, the procedures used, or if we can be of any further assistance please call on us at the number below.

HBorg

Harold Benny WABO Supervising Laboratory Technician

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Project: Van Stone Mine Project Project #: 15T009 Date Received: June 3, 2015 Date Tested: June 9, 2015 Client: GeoEngineers

Sampled by: Others

Tested by: A. Urban, B. Goble

Amount of Materials Finer Than #200 Sieve - ASTM C-117, ASTM D-1140 & AASHTO T-11

Sample #	Location	Tare	Before Wash + Tare	After Wash + Tare	Amount of Loss	% -#200
T15-0866	HSA-3-5-25	9.8	67.8	50.2	17.6	30.3%
T15-0884	HSA-9-5-25	10.6	137.3	110.4	26.9	21.2%

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Reviewed by:

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website:
 www.mtc-inc.net
 Silverdale ~ 360.698.6787
 Silverdale ~ 360.698.6787

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

 Project:
 Van Stone Mine Project
 Client:
 GeoEngineers

 Project #:
 157009
 Sampled by: Others

 Date Received:
 June 3, 2015
 Sampled by: Others

 Date Tested:
 June 9, 2015
 Tested by: A. Urban, B. Goble

Density, Moisture Content

MTC Sample #	Client Sample #	Wet Density, pcf	Moisture Content, %	Dry Density, pcf
T15-0863	HSA-2 at 5	107.4	4.7%	102.6
T15-0866	HAS-3 at 25	114.7	8.3%	106.0
T15-0884	HAS-9 at 25	119.3	3.7%	115.0

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Reviewed by: _______

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website:
 www.mtc-inc.net
 Visit our website:
 Silverdale ~ 360.698.6787
 Silverdale ~ 206.241.1974

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Pocket Penetrometer and Torvane Testing

 Project:
 Van Stone Mine Project

 Project #:
 157009

 Client :
 GeoEngineers

 Source:
 HSA-2-1-5, HSA-3-5-25, HSA-9-5-25

 Sample#:
 T15-0863, T15-0886

Date Received:	3-Jun-15
Sampled By:	Others
Date Tested:	9-Jun-15
Tested By:	A. Urban, B. Goble

		Pocket	
MTC ID	Client ID	Penetrometer, tsf	Torvane, tsf
T15-0863	HAS-2 at 5	1.75	0
T15-0866	HAS-3 at 25	0.75	1
15T-0884	HAS-9 at 25	2.5	0.5

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Comments:

HBarn

Reviewed by:

 Corporate ~ 777 Chrysler Drive
 Burlington, WA 98233
 Phone (360) 755-1990
 Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website:
 www.mtc-inc.net
 Silverdale ~ 360.698.6787
 Silverdale ~ 360.698.6787

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Client:	GeoEngineers	Date:	June 12, 2015
Address:	Spokane	Project:	Van Stone Mine Project
		Project #:	15T009
Attn:	John Haney, PE	Sample #:	HAS-3 at 5, HAS-6 at 5

As requested MTC, Inc. has performed the following test(s) on the sample referenced above. The testing was performed in accordance with current applicable AASHTO or ASTM standards as indicated below. The results obtained in our laboratory were as follows below or on the attached pages:

Tes	st(s) Performed:	Test Results		Test(s) Performed:	Test Results
Siev	ve Analysis			Sulfate Soundness	
Pro	ctor			Bulk Density & Voids	
San	nd Equivalent			WSDOT Degradation	
Fra	cture Count		Х	Percent Fines	See attached
Mo	isture Content				
pН					
Mir	nimum Resistivity				
Org	ganic Content				
Atte	erberg Limits				
Asp	phalt Extraction/Gradation				
Ric	e Density				

If you have any questions concerning the test results, the procedures used, or if we can be of any further assistance please call on us at the number below.

HBorg

Harold Benny WABO Supervising Laboratory Technician

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Project: Van Stone Mine Project
Project #: 15T009
Date Received: June 3, 2015

Date Tested: June 9, 2015

Client: GeoEngineers

Sampled by: Others

Tested by: A. Urban, B. Goble

Amount of Materials Finer Than #200 Sieve - ASTM C-117, ASTM D-1140 & AASHTO T-11

Sample #	Client Sample #	Tare	Before Wash + Tare	After Wash + Tare	Amount of Loss	% -#200
T15-0864	HSA-3-1-5	9.8	87.6	48.6	39.0	50.1%
T15-0873	HSA-6-1-5	10.3	85.6	41.6	44.0	58.5%

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Reviewed by:

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website: www.mtc-inc.net
 Visit our website: www.mtc-inc.net
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Client:	GeoEngineers	Date:	May 15, 2015
Address:	Spokane	Project:	Van Stone Mine Project
		Project #:	15T009
Attn:	John Haney, PE	Sample #:	HAS-4 at 5

As requested MTC, Inc. has performed the following test(s) on the sample referenced above. The testing was performed in accordance with current applicable AASHTO or ASTM standards as indicated below. The results obtained in our laboratory were as follows below or on the attached pages:

	Test(s) Performed:	Test Results		Test(s) Performed:	Test Results
Х	Sieve Analysis	See attached		Sulfate Soundness	
	Proctor		Χ	Bulk Density of Soils	See attached
	Sand Equivalent			WSDOT Degradation	
	Fracture Count		Χ	Penetrometer/Torvane	See attached
	Moisture Content				
	pН				
	Minimum Resistivity				
	Organic Content				
	Atterberg Limits				
	Asphalt Extraction/Gradation				
	Rice Density				

If you have any questions concerning the test results, the procedures used, or if we can be of any further assistance please call on us at the number below.

HBorg

Harold Benny WABO Supervising Laboratory Technician

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Sieve Report

Comments:

Reviewed by: _ HBarry

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Pocket Penetrometer and Torvane Testing

Project:	Van Stone Mine Project
Project #:	15T009
Client :	GeoEngineers
Source:	HSA-4 at 5
Sample#:	T15-0867

Date Received June 3, 2015				
Sampled By:	Others			
Date Tested:	June 9, 2015			
Tested By:	A. Urban, B. Goble			

		Pocket	
MICID	Client ID	Penetrometer, tsf	Torvane, tst
T15-0867	HAS-4 at 5	3.75	0

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Comments:

Reviewed by: HBa

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website:
 www.mtc-inc.net
 Visit our website:
 Www.mtc-inc.net

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

 Project:
 Van Stone Mine Project

 Project #:
 157009

 Date Received:
 June 3, 2015

 Date Tested:
 June 9, 2015

Sampled by: Others

Tested by: A. Urban, B. Goble

Client: GeoEngineers

Density and Moisture Content

MTC	Client Sample	Wet Density,	Moisture	Dry Density,
Sample #	#	pcf	Content, %	pcf
T15-0867	HAS-4 at 5	107.6	5.5%	102.0

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Reviewed by: ______

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website: www.mtc-inc.net

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Client:	GeoEngineers	Date:	June 17, 2015
Address:	Spokane	Project:	Van Stone Mine Project
		Project #:	15T009
Attn:	John Haney, PE	Sample #:	T15-0868, HSA-4 at 10 ft

As requested MTC, Inc. has performed the following test(s) on the sample referenced above. The testing was performed in accordance with current applicable AASHTO or ASTM standards as indicated below. The results obtained in our laboratory were as follows below or on the attached pages:

	Test(s) Performed:	Test Results		Test(s) Performed:	Test Results
	Sieve Analysis			Sulfate Soundness	
	Proctor			Bulk Density & Voids	
	Sand Equivalent			WSDOT Degradation	
	Fracture Count		Χ	Percent Fines	See Attached
	Moisture Content				
	pH				
	Minimum Resistivity				
	Organic Content				
Х	Atterberg Limits	Non-Plastic			
	Asphalt Extraction/Gradation				
	Rice Density				

Notes: The sample slipped in the cup on the Atterberg limits test, and tore during grooving and could not be tested at 25 blows.

If you have any questions concerning the test results, the procedures used, or if we can be of any further assistance please call on us at the number below.

HBorn

Harold Benny WABO Supervising Laboratory Technician

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Project: Van Stone Mine Project Project #: 15T009

 Date Received:
 June 3, 2015

 Date Tested:
 June 9, 2015

Client: GeoEngineers

Sampled by: Others

Tested by: A. Urban, B. Goble

Amount of Materials Finer Than #200 Sieve - ASTM C-117, ASTM D-1140 & AASHTO T-11

Sample #	Client Sample #	Tare	Before Wash + Tare	After Wash + Tare	Amount of Loss	% -#200
T15-0868	HSA-4-2-10	10.1	95.4	47.6	47.8	56.1%

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Reviewed by:

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website: www.mtc-inc.net

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Client:	GeoEngineers	Date:	June 17, 2015
Address:	Spokane	Project:	Van Stone Mine Project
		Project #:	15T009
Attn:	John Haney, PE	Sample #:	T15-0870, HAS-5 at 15 ft

As requested MTC, Inc. has performed the following test(s) on the sample referenced above. The testing was performed in accordance with current applicable AASHTO or ASTM standards as indicated below. The results obtained in our laboratory were as follows below or on the attached pages:

	Test(s) Performed:	Test Results	Test(s) Performed:	Test Results
	Sieve Analysis		Sulfate Soundness	
	Proctor		Bulk Density & Voids	
	Sand Equivalent		WSDOT Degradation	
	Fracture Count			
	Moisture Content			
	pН			
	Minimum Resistivity			
	Organic Content			
Х	Atterberg Limits	Non-Plastic		
	Asphalt Extraction/Gradation			
	Rice Density			

Notes: The sample slipped in the cup on the Atterberg limits test, and tore during grooving and could not be tested at 25 blows.

HBa

Harold Benny WABO Supervising Laboratory Technician

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Client:	GeoEngineers	Date:	June 22, 2015
Address:	Spokane	Project:	Van Stone Mine Project
		Project #:	15T009
Attn:	John Haney, PE	Sample #:	HAS-5 at 25 ft

As requested MTC, Inc. has performed the following test(s) on the sample referenced above. The testing was performed in accordance with current applicable AASHTO or ASTM standards as indicated below. The results obtained in our laboratory were as follows below or on the attached pages:

	Test(s) Performed:	Test Results		Test(s) Performed:	Test Results
	Sieve Analysis			Sulfate Soundness	
	Proctor		Χ	Bulk Density of Soils	See Attached
	Sand Equivalent			WSDOT Degradation	
	Fracture Count		Χ	Penetrometer	0.75 tsf
	Moisture Content		X	Torvane	1.5 tsf
	pH				
	Minimum Resistivity				
	Organic Content				
Χ	Atterberg Limits	See Attached			
	Asphalt Extraction/Gradation				
	Rice Density				

If you have any questions concerning the test results, the procedures used, or if we can be of any further assistance please call on us at the number below.

HBorg

Harold Benny WABO Supervising Laboratory Technician

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Project:	Van Stone Mine Project	
Project #:	15T009	
Date Received:	June 3, 2015	Sam
Date Tested:	June 9, 2015	Te

Client: GeoEngineers

ampled by:OthersTested by:A. Urban, B. Goble, C. Laramie

Density, Moisture Content

Sample #	Wet Density,	Moisture	Dry
	pcf	Content, %	Density, pcf
T15-0872	130.8	29.4%	101.0

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Reviewed by: ______

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~

Tukwila ~ 206.241.1974

Visit our website: www.mtc-inc.net

ASTM D4318 - Liquid Limit, Plastic Limit and Plasticity Index of Soils

extracts from or regarding our reports is reserved pending our written approval

Comments:

HBarg

Reviewed by:

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Client:	GeoEngineers	Date:	June 22, 2015
Address:	Spokane	Project:	Van Stone Mine Project
		Project #:	15T009
Attn:	John Haney PE	Sample #:	HAS-6 at 10 ft

As requested MTC, Inc. has performed the following test(s) on the sample referenced above. The testing was performed in accordance with current applicable AASHTO or ASTM standards as indicated below. The results obtained in our laboratory were as follows below or on the attached pages:

	Test(s) Performed:	Test Results	Test(s) Performed:	Test Results
Χ	Sieve Analysis	see attached	Sulfate Soundness	
	Proctor		Bulk Density & Voids	
	Sand Equivalent		WSDOT Degradation	
	Fracture Count			
	Moisture Content			
	pН			
	Minimum Resistivity			
	Organic Content			
	Atterberg Limits			
	Asphalt Extraction/Gradation			
	Rice Density			

If you have any questions concerning the test results, the procedures used, or if we can be of any further assistance please call on us at the number below.

HBorg

Harold Benny WABO Supervising Laboratory Technician

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Sieve Report

Comments:

Reviewed by:

HBarg

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Client:	GeoEngineers	Date:	June 22, 2015
Address:	Spokane	Project:	Van Stone Mine Project
		Project #:	15T009
Attn:	John Haney, PE	Sample #:	HSA-6 at 15 ft

As requested MTC, Inc. has performed the following test(s) on the sample referenced above. The testing was performed in accordance with current applicable AASHTO or ASTM standards as indicated below. The results obtained in our laboratory were as follows below or on the attached pages:

	Test(s) Performed:	Test Results		Test(s) Performed:	Test Results
	Sieve Analysis			Sulfate Soundness	
	Proctor		X	Bulk Density of Soils	see attached
	Sand Equivalent			WSDOT Degradation	
	Fracture Count		Χ	Penetrometer	0.25 tsf
	Moisture Content		Χ	Torvane	0.0 tsf
	pH				
	Minimum Resistivity				
	Organic Content				
Х	Atterberg Limits	Non-Plastic			
	Asphalt Extraction/Gradation				
	Rice Density				

If you have any questions concerning the test results, the procedures used, or if we can be of any further assistance please call on us at the number below.

HBorg

Harold Benny WABO Supervising Laboratory Technician

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Project: Van Stone Mine Project	Client: GeoEngineers
Project #: 15T009	
Date Received: June 3, 2015	Sampled by: Others
Date Tested: June 9, 2015	Tested by: A. Urban, B. Goble

Density, Porosity, Void Ratio, % Saturation

MTC Sample	Client Sample	Wet Density,	Moisture	Dry Density,
ID	ID	pcf	Content, %	pcf
T15-0875	HSA-6 at 15 ft	122.7	9.8%	111.8

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Reviewed by: ______

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website:
 www.mtc-inc.net
 Visit our website:
 Website:
 Website:
Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Client:	GeoEngineers	Date:	June 22, 2015
Address:	Spokane	Project:	Van Stone Mine Project
		Project #:	15T009
Attn:	John Haney, PE	Sample #:	HSA-6 at 25 ft

As requested MTC, Inc. has performed the following test(s) on the sample referenced above. The testing was performed in accordance with current applicable AASHTO or ASTM standards as indicated below. The results obtained in our laboratory were as follows below or on the attached pages:

	Test(s) Performed:	Test Results	Test(s) Performed:	Test Results
	Sieve Analysis		Sulfate Soundness	
	Proctor		Bulk Density & Voids	
	Sand Equivalent		WSDOT Degradation	
	Fracture Count			
	Moisture Content			
	pH			
	Minimum Resistivity			
	Organic Content			
Χ	Atterberg Limits	Non-Plastic		
	Asphalt Extraction/Gradation			
	Rice Density			

If you have any questions concerning the test results, the procedures used, or if we can be of any further assistance please call on us at the number below.

HBorg

Harold Benny WABO Supervising Laboratory Technician

and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of state ion to clients, the p extracts from or regarding our reports is reserved pending our written approval

HBang

Reviewed by:

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Client:	GeoEngineers	Date:	June 22, 2015
Address:	Spokane	Project:	Van Stone Mine Project
		Project #:	15T009
Attn:	John Haney, PE	Sample #:	HSA-7 at 50 ft

As requested MTC, Inc. has performed the following test(s) on the sample referenced above. The testing was performed in accordance with current applicable AASHTO or ASTM standards as indicated below. The results obtained in our laboratory were as follows below or on the attached pages:

	Test(s) Performed:	Test Results		Test(s) Performed:	Test Results
	Sieve Analysis			Sulfate Soundness	
	Proctor		Χ	Bulk Density & Voids	
	Sand Equivalent			WSDOT Degradation	
	Fracture Count		Χ	Percent Fines	
	Moisture Content		X	Penetrometer	1.5 tsf
	pН		Χ	Torvane	1.5 tsf
	Minimum Resistivity				
	Organic Content				
Χ	Atterberg Limits	Non-Plastic			
	Asphalt Extraction/Gradation				
	Rice Density				

If you have any questions concerning the test results, the procedures used, or if we can be of any further assistance please call on us at the number below.

HBorg

Harold Benny WABO Supervising Laboratory Technician

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Project:Van Stone Mine ProjectClient:GeoEngineersProject #:157009201520152015Date Received:June 9, 2015201520152015Date Tested:June 9, 2015Tested by:A. Urban, B. Goble

Density, Moisture Content

MTC Sample	Client Sample	Wet Density,	Moisture	Dry Density,
ID	ID	pcf	Content, %	pcf
T15-0878	HSA-7 at 50 ft	124.7	11.9%	111.4

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

HBan Reviewed by:

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website:
 www.mtc-inc.net
 Silverdale ~ 360.698.6787
 Silverdale ~ 360.698.6787

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

HBang

Reviewed by:

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website:
 www.mtc-inc.net
 Visit our website:
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

Comments: Sample slips in the cup and can't be brought to a moisture content corresponding to 25 blows.

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

 Project:
 Van Stone Mine Project

 Project #:
 15T009

 Date Received:
 June 3, 2015

 Date Tested:
 June 9, 2015

Client: GeoEngineers

Sampled by: Others

Tested by: A. Urban, B. Goble

Amount of Materials Finer Than #200 Sieve - ASTM C-117, ASTM D-1140 & AASHTO T-11

Sample #	Client Sample #	Tare	Before Wash + Tare	After Wash + Tare	Amount of Loss	% -#200
T15-0878	HSA-7-10-50	10.4	156.3	86.3	70.0	48.0%

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Reviewed by:

HBarry

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website: www.mtc-inc.net

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Client:	GeoEngineers	Date:	June 22, 2015
Address:	Spokane	Project:	Van Stone Mine Project
		Project #:	15T009
Attn:	John Haney, PE	Sample #:	HSA-7 at 65 ft

As requested MTC, Inc. has performed the following test(s) on the sample referenced above. The testing was performed in accordance with current applicable AASHTO or ASTM standards as indicated below. The results obtained in our laboratory were as follows below or on the attached pages:

	Test(s) Performed:	Test Results		Test(s) Performed:	Test Results
	Sieve Analysis			Sulfate Soundness	
	Proctor		Χ	Bulk Density of Soils	see attached
	Sand Equivalent			WSDOT Degradation	
	Fracture Count		Χ	Penetrometer	3.0 tsf
	Moisture Content		X	Torevane	1.0 tsf
	pH				
	Minimum Resistivity				
	Organic Content				
Х	Atterberg Limits	Non-Plastic			
	Asphalt Extraction/Gradation				
	Rice Density				

If you have any questions concerning the test results, the procedures used, or if we can be of any further assistance please call on us at the number below.

HBorg

Harold Benny WABO Supervising Laboratory Technician

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Comments: Sample slips in cup.

Reviewed by:

HBang

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website:
 www.mtc-inc.net
 Visit our website:
 Silverdale ~ 360.698.6787
 Silverdale ~ 360.698.6787

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

 Project:
 Van Stone Mine Project
 Client:
 GeoEngineers

 Project #:
 157009
 5
 5

 Date Received:
 June 3, 2015
 5
 5

 Date Tested:
 June 9, 2015
 Tested by: A. Urban, B. Goble

Density, Porosity, Void Ratio, % Saturation

MTC Sample	Client Sample	Wet Density,	Moisture	Dry Density,
ID	ID	pcf	Content, %	pcf
T15-0879	HSA-7 at 65 ft	122.8	15.3%	106.5

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

HDe Reviewed by:

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website:
 www.mtc-inc.net
 Silverdale ~ 360.698.6787
 Silverdale ~ 360.698.6787

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Client:	GeoEngineers	Date:	June 22, 2015
Address:	Spokane	Project:	Van Stone Mine Project
		Project #:	15T009
Attn:	John Haney, PE	Sample #:	HSA-8 at 15 ft

As requested MTC, Inc. has performed the following test(s) on the sample referenced above. The testing was performed in accordance with current applicable AASHTO or ASTM standards as indicated below. The results obtained in our laboratory were as follows below or on the attached pages:

	Test(s) Performed:	Test Results		Test(s) Performed:	Test Results
	Sieve Analysis			Sulfate Soundness	
	Proctor		X	Bulk Density of Soils	See attached
	Sand Equivalent			WSDOT Degradation	
	Fracture Count		X	Percent Fines	
	Moisture Content		X	Penetrometer	2.25 tsf
	рН		X	Torvane	0
	Minimum Resistivity				
	Organic Content				
Х	Atterberg Limits	Non-Plastic			
	Asphalt Extraction/Gradation				
	Rice Density				

If you have any questions concerning the test results, the procedures used, or if we can be of any further assistance please call on us at the number below.

HBorg

Harold Benny WABO Supervising Laboratory Technician

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Project:Van Stone Mine ProjectClient:GeoEngineersProject #:157009201520152015Date Received:June 9, 2015201520152015Date Tested:June 9, 2015201520152015

Density, Porosity, Void Ratio, % Saturation

MTC Sample	Client Sample	Wet Density,	Moisture	Dry Density,
ID	ID	pcf	Content, %	pcf
T15-0880	HSA-8 at 15 ft	108.4	3.0%	105.3

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Reviewed by:

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website:
 www.mtc-inc.net
 Silverdale ~ 360.698.6787
 Silverdale ~ 360.698.6787

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Comments: Sample tears in the cup, Non-Plastic

HBarg

Reviewed by:

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website:
 www.mtc-inc.net
 Silverdale ~ 360.698.6787
 Silverdale ~ 360.698.6787

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

 Project:
 Van Stone Mine Project

 Project #:
 15T009

 Date Received:
 June 3, 2015

 Date Tested:
 June 9, 2015

Client: GeoEngineers

Sampled by: Others

Tested by: A. Urban, B. Goble

Amount of Materials Finer Than #200 Sieve - ASTM C-117, ASTM D-1140 & AASHTO T-11

Sample #	Client Sample #	Tare	Before Wash + Tare	After Wash + Tare	Amount of Loss	% -#200
T15-0880	HSA-8-3-15	10.6	128.5	107.9	20.6	17.4%

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Reviewed by:

HBarry

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website: www.mtc-inc.net

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Project:	Van Stone Mine Project	Date Received: 3-Jun-15	
Project #:	15T009	Sampled By: Client	
Client:	GeoEngineers, Spokane	Date Tested: 8-Jun-15	
Source:	HAS-10 @ 25 ft.	Tested By: CL	
Sample #:	T15-0891		

Stress, psf	500	1000	2000	4000	8000	16000	32000	64000
Void Ratio	0.81	0.75	0.72	0.67	0.61	0.55	0.49	0.42

Comments:

Reviewed by:

HB0

Corporate Office ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Regional offices in Olympia, Bellingham, and Silverdale

Visit our website: www.mtc-inc.net

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Load, psf	Strain, %	t ₅₀	C _{v,} ft²/day
1000	3.06	1.4	0.3
2000	4.83	1.2	0.3
4000	7.10	1.0	0.4
8000	10.02	0.8	0.4
16000	12.99	0.3	1.2
32000	16.24	0.2	1.4
64000	19.67	0.2	1.7

Comments:

Reviewed by:

HBang

Corporate Office ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Regional offices in Olympia, Bellingham, and Silverdale

Visit our website: www.mtc-inc.net

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Client:	GeoEngineers	Date:	June 23, 2015
Address:	Spokane	Project:	Van Stone Mine Project
		Project #:	15T009
Attn:	John Haney, PE	Sample #:	HSA-8 at 45 ft

As requested MTC, Inc. has performed the following test(s) on the sample referenced above. The testing was performed in accordance with current applicable AASHTO or ASTM standards as indicated below. The results obtained in our laboratory were as follows below or on the attached pages:

	Test(s) Performed:	Test Results		Test(s) Performed:	Test Results
	Sieve Analysis			Sulfate Soundness	
	Proctor		Χ	Bulk Density of Soils	See attached
	Sand Equivalent			WSDOT Degradation	
	Fracture Count		X	Percent Fines	See attached
	Moisture Content		X	Penetrometer	1.25 tsf
	pН		Х	Torvane	0 tsf
	Minimum Resistivity				
	Organic Content				
Х	Atterberg Limits	Non-Plastic			
	Asphalt Extraction/Gradation				
	Rice Density				

If you have any questions concerning the test results, the procedures used, or if we can be of any further assistance please call on us at the number below.

HBarry

Harold Benny WABO Supervising Laboratory Technician

regarding our reports is reserved pending our written approval

Comments: Tears in cup, Non-Plastic

HBarg

Reviewed by:

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Regional Offices: Olympia ~ 360.534.9777 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974

Visit our website: www.mtc-inc.net

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Project: Van Stone Mine Project Project #: 15T009 Date Received: June 3, 2015

Date Tested: June 11, 2015

Client: GeoEngineers

Sampled by: Others

Tested by: A. Urban, B. Goble

Amount of Materials Finer Than #200 Sieve - ASTM C-117, ASTM D-1140 & AASHTO T-11

Sample #	Location	Tare	Before Wash + Tare	After Wash + Tare	Amount of Loss	% -#200
T15-0881	HSA-8-9-45	9.8	129.2	69.5	59.8	50.0%

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

HBong

Reviewed by:

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website:
 www.mtc-inc.net
 Silverdale ~ 360.698.6787
 Silverdale ~ 360.698.6787

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

 Project:
 Van Stone Mine Project

 Project #:
 15T009

 Date Received:
 June 3, 2015

 Date Tested:
 June 9, 2015

Client: GeoEngineers

 Sampled by:
 Others

 Tested by:
 A. Urban, B. Goble

Density, Moisture Content

MTC Sample	Client Sample	Wet Density,	Moisture	Dry Density,	
ID	ID	pcf	Content, %	pcf	
T15-0881	HSA-8 at 45 ft	107.5	13.3%	94.9	

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Reviewed by: _______

 Corporate ~ 777 Chrysler Drive
 Burlington, WA 98233
 Phone (360) 755-1990
 Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website:
 www.mtc-inc.net
 Visit our website:
 Wisit our website:
 Silverdale ~ 360.698.6787
 Silverdale ~ 360.698.

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Client:	GeoEngineers	Date:	June 23, 2015
Address:	Spokane	Project:	Van Stone Mine Project
		Project #:	15T009
Attn:	John Haney, PE	Sample #:	HSA-8 at 55 ft

As requested MTC, Inc. has performed the following test(s) on the sample referenced above. The testing was performed in accordance with current applicable AASHTO or ASTM standards as indicated below. The results obtained in our laboratory were as follows below or on the attached pages:

	Test(s) Performed:	Test Results	Test(s) Performed:	Test Results
	Sieve Analysis		Sulfate Soundness	
	Proctor		Bulk Density & Voids	
	Sand Equivalent		WSDOT Degradation	
	Fracture Count			
Х	Moisture Content	See attached		
	pН			
	Minimum Resistivity			
	Organic Content			
Х	Atterberg Limits	See attached		
	Asphalt Extraction/Gradation			
	Rice Density			

If you have any questions concerning the test results, the procedures used, or if we can be of any further assistance please call on us at the number below.

HBarry

Harold Benny WABO Supervising Laboratory Technician

regarding our reports is reserved pending our written approval

Comments:

Reviewed by:

HBand

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974

Regional Offices: Olympia ~ 360.534.9777

Visit our website: www.mtc-inc.net

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Project: Van Stone Mine Project	Client: GeoEngineers
Project #: 15T009	
Date Received: June 3, 2015	Sampled by: Others
Date Tested: June 10, 2015	Tested by: C. Laramie

Moisture Content - ASTM C-566, ASTM D-2216 & AASHTO T-265

Sample #	Location	Tare	Wet + Tare	Dry + Tare	Wgt. Of Moisture	Wgt. Of Soil	% Moisture
T15-0882	HSA-8-11-55	1.5	93.4	77.3	16.1	75.8	21.2%

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Reviewed by:

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

Visit our website: www.mtc-inc.net

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Client:	GeoEngineers	Date:	June 23, 2015
Address:	Spokane	Project:	Van Stone Mine Project
		Project #:	15T009
Attn:	John Haney, PE	Sample #:	HSA-8 at 75 ft

As requested MTC, Inc. has performed the following test(s) on the sample referenced above. The testing was performed in accordance with current applicable AASHTO or ASTM standards as indicated below. The results obtained in our laboratory were as follows below or on the attached pages:

	Test(s) Performed:	Test Results	Test(s) Performed:	Test Results
	Sieve Analysis		Sulfate Soundness	
	Proctor		Bulk Density & Voids	
	Sand Equivalent		WSDOT Degradation	
	Fracture Count			
	Moisture Content			
	pH			
	Minimum Resistivity			
	Organic Content			
Х	Atterberg Limits	Non-Plastic		
	Asphalt Extraction/Gradation			
	Rice Density			

If you have any questions concerning the test results, the procedures used, or if we can be of any further assistance please call on us at the number below.

HBarry

Harold Benny WABO Supervising Laboratory Technician

regarding our reports is reserved pending our written approva

Comments: Tears during grooving, Non-Plastic

Reviewed by:

HBarry

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974

Visit our website: www.mtc-inc.net

Regional Offices: Olympia ~ 360.534.9777

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Client:	GeoEngineers	Date:	June 23, 2015
Address:	Spokane	Project:	Van Stone Mine Project
		Project #:	15T009
Attn:	John Haney, PE	Sample #:	HSA-9 at 55 ft

As requested MTC, Inc. has performed the following test(s) on the sample referenced above. The testing was performed in accordance with current applicable AASHTO or ASTM standards as indicated below. The results obtained in our laboratory were as follows below or on the attached pages:

	Test(s) Performed:	Test Results		Test(s) Performed:	Test Results
	Sieve Analysis			Sulfate Soundness	
	Proctor			Bulk Density of Soils	
	Sand Equivalent			WSDOT Degradation	
	Fracture Count		X	Percent Fines	See Attached
	Moisture Content				
	pН				
	Minimum Resistivity				
	Organic Content				
Х	Atterberg Limits	Non-Plastic			
	Asphalt Extraction/Gradation				
	Rice Density				

If you have any questions concerning the test results, the procedures used, or if we can be of any further assistance please call on us at the number below.

HBarry

Harold Benny WABO Supervising Laboratory Technician

regarding our reports is reserved pending our written approva

Comments: Tears, slips in cup, Non-Plastic.

HBarg

Reviewed by:

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Project :: Van Stone Mine Project Project #: 15T009

Date Received: June 3, 2015

Date Tested: June 9, 2015

Client: GeoEngineers

Sampled by: Others

Tested by: A. Urban, B. Goble

Amount of Materials Finer Than #200 Sieve - ASTM C-117, ASTM D-1140 & AASHTO T-11

Sample #	Location	Tare	Before Wash + Tare	After Wash + Tare	Amount of Loss	% -#200
T15-0885	HSA-9-11-55	10.3	88.3	54.5	33.8	43.3%

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Reviewed by:

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website: www.mtc-inc.net

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Client:	GeoEngineers	Date:	June 23, 2015
Address:	Spokane	Project:	Van Stone Mine Project
		Project #:	15T009
Attn:	John Haney, PE	Sample #:	HSA-9 at 65 ft

As requested MTC, Inc. has performed the following test(s) on the sample referenced above. The testing was performed in accordance with current applicable AASHTO or ASTM standards as indicated below. The results obtained in our laboratory were as follows below or on the attached pages:

	Test(s) Performed:	Test Results		Test(s) Performed:	Test Results
	Sieve Analysis			Sulfate Soundness	
	Proctor		Χ	Bulk Density of Soils	See Attached
	Sand Equivalent			WSDOT Degradation	
	Fracture Count		X	Percent Fines	See Attached
	Moisture Content		X	Penetrometer/Torvane	4.5 tsf
	pН		Х	Torvane	2 tsf
	Minimum Resistivity				
	Organic Content				
Х	Atterberg Limits	Non-Plastic			
	Asphalt Extraction/Gradation				
	Rice Density				

If you have any questions concerning the test results, the procedures used, or if we can be of any further assistance please call on us at the number below.

HBarry

Harold Benny WABO Supervising Laboratory Technician

regarding our reports is reserved pending our written approval

Non-Plastic **Comments:**

Reviewed by:

HBang

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974

Visit our website: www.mtc-inc.net

Regional Offices: Olympia ~ 360.534.9777

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Project: Van Stone Mine Project **Client:** GeoEngineers Project #: 15T009 Date Received: June 3, 2015 Date Tested: June 9, 2015

Sampled by: Others Tested by: A. Urban, B. Goble

Density, Moisture Content

MTC Sample	Client Sample	Wet Density,	Moisture	Dry Density,
ID	ID	pcf	Content, %	pcf
T15-0886	HSA-9 at 65 ft	115.3	4.6%	110.2

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Reviewed by: _______

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 **Regional Offices:** Olympia ~ 360.534.9777 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Project: Van Stone Mine Project Project #: 15T009

Date Received: June 3, 2015

Date Tested: June 9, 2015

Client: GeoEngineers

Sampled by: Others

Tested by: A. Urban, B. Goble

Amount of Materials Finer Than #200 Sieve - ASTM C-117, ASTM D-1140 & AASHTO T-11

Sample #	Client Sample #	Tare	Before Wash + Tare	After Wash + Tare	Amount of Loss	% -#200
T15-0886	HSA-9-13-65	10.0	137.5	99.5	37.9	29.8%

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

HBar

Reviewed by:

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website: www.mtc-inc.net

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Client:	GeoEngineers	Date:	June 23, 2015
Address:	Spokane	Project:	Van Stone Mine Project
		Project #:	15T009
Attn:	John Haney, PE	Sample #:	HSA-9 at 75 ft

As requested MTC, Inc. has performed the following test(s) on the sample referenced above. The testing was performed in accordance with current applicable AASHTO or ASTM standards as indicated below. The results obtained in our laboratory were as follows below or on the attached pages:

	Test(s) Performed:	Test Results	Test(s) Performed:	Test Results
	Sieve Analysis		Sulfate Soundness	
	Proctor		Bulk Density & Voids	
	Sand Equivalent		WSDOT Degradation	
	Fracture Count			
Х	Moisture Content	See attached		
	pН			
	Minimum Resistivity			
	Organic Content			
Х	Atterberg Limits	See attached		
	Asphalt Extraction/Gradation			
	Rice Density			

If you have any questions concerning the test results, the procedures used, or if we can be of any further assistance please call on us at the number below.

HBarry

Harold Benny WABO Supervising Laboratory Technician

regarding our reports is reserved pending our written approval

Comments:

HBang

Reviewed by:

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787

Regional Offices: Olympia ~ 360.534.9777

Visit our website: www.mtc-inc.net

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Project:	Van Stone Mine Project	Client: GeoEngineers	
Project #:	15T009		
Date Received:	June 3, 2015	Sampled by: Others	
Date Tested:	June 11, 2015	Tested by: C. Laramie	

Moisture Content

Sample #	Client Sample #	Tare	Wet + Tare	Dry + Tare	Wgt. Of Moisture	Wgt. Of Soil	% Moisture
T15-0887	HSA-9-15-75	10.2	356.7	282.5	74.2	272.3	27.2%

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

H Ben

Reviewed by:

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website: www.mtc-inc.net
 Visit our website: www.mtc-inc.net
 Silverdale ~ 360.698.6787
 Silverdale ~ 360.698.6787

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Client:	GeoEngineers	Date:	June 23, 2015
Address:	Spokane	Project:	Van Stone Mine Project
		Project #:	15T009
Attn:	John Haney, PE	Sample #:	HSA-10 at 5 ft

As requested MTC, Inc. has performed the following test(s) on the sample referenced above. The testing was performed in accordance with current applicable AASHTO or ASTM standards as indicated below. The results obtained in our laboratory were as follows below or on the attached pages:

	Test(s) Performed:	Test Results	Test(s) Performed:	Test Results
	Sieve Analysis		Sulfate Soundness	
	Proctor		Bulk Density & Voids	
	Sand Equivalent		WSDOT Degradation	
	Fracture Count			
	Moisture Content			
	pH			
	Minimum Resistivity			
	Organic Content			
Х	Atterberg Limits	Non-Plastic		
	Asphalt Extraction/Gradation			
	Rice Density			

If you have any questions concerning the test results, the procedures used, or if we can be of any further assistance please call on us at the number below.

HBarry

Harold Benny WABO Supervising Laboratory Technician

all reports are submitted as the confidential property of clients, and authorization for publication regarding our reports is reserved pending our written approval

Non-Plastic **Comments:**

Reviewed by:

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Bellingham ~ 360.647.6111

Regional Offices: Olympia ~ 360.534.9777

HBarg

Visit our website: www.mtc-inc.net

Silverdale ~ 360.698.6787
Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Client:	GeoEngineers	Date:	June 23, 2015
Address:	Spokane	Project:	Van Stone Mine Project
		Project #:	15T009
Attn:	John Haney, PE	Sample #:	HSA-10 at 15 ft

As requested MTC, Inc. has performed the following test(s) on the sample referenced above. The testing was performed in accordance with current applicable AASHTO or ASTM standards as indicated below. The results obtained in our laboratory were as follows below or on the attached pages:

	Test(s) Performed:	Test Results		Test(s) Performed:	Test Results
	Sieve Analysis			Sulfate Soundness	
	Proctor			Bulk Density & Voids	
	Sand Equivalent			WSDOT Degradation	
	Fracture Count		X	Percent Fines	See attached
Х	Moisture Content	See attached			
	pН				
	Minimum Resistivity				
	Organic Content				
Х	Atterberg Limits	Non-Plastic			
	Asphalt Extraction/Gradation				
	Rice Density				

If you have any questions concerning the test results, the procedures used, or if we can be of any further assistance please call on us at the number below.

Respectfully Submitted,

HBarry

Harold Benny WABO Supervising Laboratory Technician

ASTM D4318 - Liquid Limit, Plastic Limit and Plasticity Index of Soils

regarding our reports is reserved pending our written approval

Non-Plastic **Comments:**

Reviewed by:

HBarg

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974

Visit our website: www.mtc-inc.net

Regional Offices: Olympia ~ 360.534.9777

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Project: Van Stone Mine Project	Client: GeoEngineers
Project #: 15T009	
Date Received: June 3, 2015	Sampled by: Others
Date Tested: June 9, 2015	Tested by: A. Urban, B. Goble

Moisture Content - ASTM C-566, ASTM D-2216 & AASHTO T-265

Sample #	Client Sample #	Tare	Wet + Tare	Dry + Tare	Wgt. Of Moisture	Wgt. Of Soil	% Moisture
T15-0890	HSA-10-3-15	10.9	82.8	78.1	4.7	67.3	7.0%

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Reviewed by:

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Regional Offices: Olympia ~ 360.534.9777 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974

Visit our website: www.mtc-inc.net

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Project: Van Stone Mine Project Project #: 15T009

Date Received: June 3, 2015

Date Tested: June 9, 2015

Client: GeoEngineers

Sampled by: Others

Tested by: A. Urban, B. Goble

Amount of Materials Finer Than #200 Sieve - ASTM C-117, ASTM D-1140 & AASHTO T-11

Sample #	Client Sample #	Tare	Before Wash + Tare	After Wash + Tare	Amount of Loss	% -#200
T15-0890	HSA-10-3-15	10.9	78.1	52.5	25.7	38.2%

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Reviewed by:

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website: www.mtc-inc.net

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Client:	GeoEngineers	Date:	June 23, 2015
Address:	Spokane	Project:	Van Stone Mine Project
		Project #:	15T009
Attn:	John Haney, PE	Sample #:	HSA-10 at 25 ft

As requested MTC, Inc. has performed the following test(s) on the sample referenced above. The testing was performed in accordance with current applicable AASHTO or ASTM standards as indicated below. The results obtained in our laboratory were as follows below or on the attached pages:

	Test(s) Performed:	Test Results		Test(s) Performed:	Test Results
	Sieve Analysis			Sulfate Soundness	
	Proctor			Bulk Density & Voids	
	Sand Equivalent			WSDOT Degradation	
	Fracture Count		Х	Percent Fines	See Attached
	Moisture Content				
	pН				
	Minimum Resistivity				
	Organic Content				
Х	Atterberg Limits	See Attached			
	Asphalt Extraction/Gradation				
	Rice Density				

If you have any questions concerning the test results, the procedures used, or if we can be of any further assistance please call on us at the number below.

Respectfully Submitted,

HBarry

Harold Benny WABO Supervising Laboratory Technician

ASTM D4318 - Liquid Limit, Plastic Limit and Plasticity Index of Soils

regarding our reports is reserved pending our written approval

Comments:

HBarg Reviewed by:

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Bellingham ~ 360.647.6111

Regional Offices: Olympia ~ 360.534.9777

Visit our website: www.mtc-inc.net

Silverdale ~ 360.698.6787

Tukwila ~ 206.241.1974

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Project: Van Stone Mine Project Project #: 15T009 Date Received: June 3, 2015

Date Tested: June 9, 2015

Client: GeoEngineers

Sampled by: Others

Tested by: A. Urban, C. Laramie

Amount of Materials Finer Than #200 Sieve - ASTM C-117, ASTM D-1140 & AASHTO T-11

Sample #	Location	Tare	Before Wash + Tare	After Wash + Tare	Amount of Loss	% -#200
T15-0891	HSA-10-5-25	10.1	129.1	10.8	118.2	99.4%

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Reviewed by:

HBon

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website: www.mtc-inc.net

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Client:	GeoEngineers	Date:	June 23, 2015
Address:	Spokane	Project:	Van Stone Mine Project
		Project #:	15T009
Attn:	John Haney, PE	Sample #:	HSA-10 at 45 ft

As requested MTC, Inc. has performed the following test(s) on the sample referenced above. The testing was performed in accordance with current applicable AASHTO or ASTM standards as indicated below. The results obtained in our laboratory were as follows below or on the attached pages:

	Test(s) Performed:	Test Results		Test(s) Performed:	Test Results
	Sieve Analysis			Sulfate Soundness	
	Proctor			Bulk Density & Voids	
	Sand Equivalent			WSDOT Degradation	
	Fracture Count		X	Percent Fines	See Attached
Х	Moisture Content	See Attached			
	pН				
	Minimum Resistivity				
	Organic Content				
Χ	Atterberg Limits	See Attached			
	Asphalt Extraction/Gradation				
	Rice Density				

If you have any questions concerning the test results, the procedures used, or if we can be of any further assistance please call on us at the number below.

Respectfully Submitted,

HBarry

Harold Benny WABO Supervising Laboratory Technician

ASTM D4318 - Liquid Limit, Plastic Limit and Plasticity Index of Soils

regarding our reports is reserved pending our written approval

Comments:

HBarg

Reviewed by:

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974

Visit our website: www.mtc-inc.net

Regional Offices: Olympia ~ 360.534.9777

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

 Project:
 Van Stone Mine Project

 Project #:
 157009

 Date Received:
 June 3, 2019

 Date Tested:
 June 9, 2015

Client: GeoEngineers

Sampled by: Others Tested by: A. Urban, B. Goble

Amount of Materials Finer Than #200 Sieve - ASTM C-117, ASTM D-1140 & AASHTO T-11

Sample #	Client Sample #	Tare	Before Wash + Tare	After Wash + Tare	Amount of Loss	% -#200
T15-0892	HSA-10-9-45	10.4	44.3	11.1	33.2	97.9%

Moisture Content - ASTM C-566, ASTM D-2216 & AASHTO T-265

Sample #	Location	Tare	Wet + Tare	Dry + Tare	Wgt. Of Moisture	Wgt. Of Soil	% Moisture
T15-0892	HSA-10-9-45	10.4	57.5	44.27	13.2	33.9	39.1%

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

ABar Reviewed by:

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website:
 www.mtc-inc.net
 Visit our website:
 Wisit our website:
 Tukwila ~ 206.241.1974

July 2, 2015 HWA Project No. 2012-002-23 Task 27

Materials Testing & Consulting, Inc. 5451 NW Newberry Hill Road Silverdale, WA 98233

Attention: Mr. Harold Benny

Subject: MATERIALS LABORATORY REPORT Direct Shear Testing Van Stone Mine

Dear Mr. Benny,

As requested, HWA GeoSciences Inc. (HWA) performed laboratory testing for the subject project. Herein we present the results of our laboratory analyses, which are summarized on the attached Figures. The laboratory testing program was performed in general accordance with your instructions and appropriate ASTM Standards as outlined below.

SAMPLE INFORMATION: Two samples were delivered to our laboratory on June 25, 2015 by MTC personnel. The samples were designated "T15-0861" and "T15-0865". "T15-0861" was delivered unextruded in a Shelby Tube and "T15-0865" was delivered in a one-gallon plastic bag having been previously extruded. Based on visual methods, the soil descriptions for the samples are as follows:

T15-0861	Gray, silty SAND (SM)
T15-0865	Yellowish brown, poorly graded SAND with silt (SP-SM)

MOISTURE CONTENT OF SOIL: The moisture content of the soil samples (percent by dry mass) were determined in general accordance with **ASTM D2216**. The results are shown on Figures 1 and 2, Direct Shear Test of Soils report.

SHEAR STRENGTH PARAMETERS OF SOIL: Direct shear tests were conducted on the samples in general accordance with ASTM D3080. Three test specimens were trimmed from each sample, maintaining the as-delivered density of the soil. The three specimens for each sample were sheared with normal stress increments of approximately 1.0, 2.0 and 3.0 ksf as requested by the client. The results of these tests are reported on Figures 1 and 2, Direct Shear Test of Soils report. The indicated shear stress at each point represents the maximum value obtained. The apparent cohesion and friction angle of the soil for the peak and residual conditions are inferred from a least-squares linear regression of the three test points, as indicated in Figures 1 and 2.

21312 30th Drive SE Suite 110 Bothell, WA 98021-7010 Tel: 425.774.0106 Fax: 425.774.2714 www.hwageo.com July 2, 2015 HWA Project No. 2012-002-23, Task 27

_____O • O______

CLOSURE: Experience has shown that laboratory test values for soil and other natural materials vary with each representative sample. As such, HWA has no knowledge as to the extent and quantity of material the tested sample may represent. HWA also makes no warranty as to how representative either the sample tested or the test results obtained are to actual field conditions. It is a well established fact that sampling methods present varying degrees of disturbance or variance that affect sample representativeness.

No copy should be made of this report except in its entirety.

We appreciate the opportunity to provide laboratory testing services on this project. Should you have any questions or comments, or if we may be of further service, please call.

Sincerely,

HWA GEOSCIENCES INC.

Jessica Herrera Laboratory Manager

Attachments:

Figure 1-2

Direct Shear Test of Soils

Steven E. Greene, L.G., L.E.G. Principal Engineering Geologist

Project:	Van Stone Mine	Date Sampled: NA
Project #:	15T009	Sampled By: Client
Client:	GeoEngineers	Date Tested: 7/12/2015
Sample ID	H S A-1	Tested by: H Benny

				Otracia	0	Deviates	O a service of	Deve		Induced					
Desired New Area	457000	LVDT	1	Strain	Corrected	Deviator	Corrected	Pore		Pore	10		11 / 10	(1 2)/2	(14 - 10)/0
Project Number	151009	LVDI	Load Cell	Ratio	Area	Stress	Stress	Pressure	ΔU	Pressure	63	61	σ1/σ3	(σ1-σ3)/2	(01+03)/2
Units	11.0.0.4	.001	IDS	0	11/2	psr	psr	psi	psi	psr	psr	psr		0	004
Sample #	H S A-1	0	0	0.001	0.0468	0	0	23.0	0.0	0	994	994	1	0	994
Cell pressure stage 1	25-27	5	22	0.001	0.0468	470	470	23.3	0.3	43	950	1622	1.49	235	1185
Cell pressure, stage 1	29.9	10	34	0.002	0.0466	074	725	23.6	0.0	00	907	1033	1.00	303	1270
Cell pressure, stage 2	36.9	15	41	0.003	0.0469	874	8/4	23.9	0.9	130	864	1/38	2.01	437	1301
Cell pressure, stage 3	43.0	20	40	0.004	0.0469	1123	11022	24.1	1.1	130	033	1037	2.22	511	1340
Dack Plessule	23	25	53	0.005	0.0470	1120	1127	24.2	1.2	1/3	021	2445	2.37	704	1600
Strain Rate	0.005	50	100	0.010	0.0472	1567	1565	24.0	1.0	144	850	2415	2.84	1052	1032
Initial Fatteri Reight	0	100	110	0.013	0.0475	2106	2103	23.7	0.7	20	093	2990	3.30	1055	1944
Initial Load Cell Reading	E 055	100	119	0.020	0.0477	2490	2492	23.2	0.2	29	903	4002	3.30	1240	2211
Initial Length	5.855	123	141	0.024	0.0479	2942	2938	22.5	-0.5	-/2	1066	4003	3.76	1471	2534
Initial Area	0.0400	130	102	0.029	0.0462	3304	3336	21.7	-1.3	-107	1101	4539	3.64	1002	2000
Height after Canaalidation	5.121	200	182	0.034	0.0484	3760	3/53	20.9	-2.1	-302	1296	5049	3.90	1880	3173
Height after Consolidation	5.121	200	202	0.039	0.0487	4152	4144	20.3	-2.1	-389	1382	5527	4.00	2076	3455
		223	219	0.044	0.0469	4479	4470	19.6	-3.4	-490	1403	5955	4.01	2239	3/10
		230	231	0.049	0.0491	4700	4690	19.1	-3.9	-562	1555	6500	4.02	2350	3900
		275	241	0.054	0.0494	4878	4868	18.5	-4.5	-648	1642	6709	3.97	2439	4075
		300	201	0.059	0.0497	5054	5045	18.2	-4.0	-091	1000	0720	3.99	2327	4200
		200	0	0.050	0.0407	0	0	28.0	0.0	0	2002	2002	- 1	0	2000
		300	102	0.003	0.0497	2452	2440	28.0	0.0	20	2002	2002	2.20	1006	2000
		310	122	0.061	0.0498	2432	2440	22.8	-0.2	-29	2030	4470	2.20	1220	3230
		315	132	0.062	0.0498	2650	2038	22.6	-0.4	-58	2059	4697	2.28	1325	3378
		320	142	0.062	0.0499	2040	2030	22.2	-0.6	-115	2117	4952	2.34	1424	3535
		323	159	0.063	0.0499	3185	3173	21.6	-1.4	-202	2203	5376	2.44	1593	3790
		330	1/4	0.000	0.0502	3400	3434	21.0	-2.0	-200	2290	5744	2.51	1734	4017
		3/5	102	0.073	0.0504	3000	3394	20.6	-2.4	-340	2347	6149	2.33	1004	4144
		410	200	0.080	0.0508	3/30	3743	20.2	-2.0	-403	2405	6265	2.50	10/9	4270
		450	200	0.084	0.0510	4079	3903	19.0	-3.2	-401	2402	6567	2.39	2020	4414
		430	209	0.000	0.0515	4078	4001	19.5	-3.5	-304	2500	6920	2.02	2035	4330
		500	220	0.093	0.0515	4209	4232	19.0	-4.0	-576	2070	7057	2.00	2135	4704
		500	241	0.000	0.0518	4435	4421	10.0	-4.4	-034	2033	7037	2.00	2220	4040
		550	241	0.103	0.0521	4027	4000	17.0	-4.0	-031	2055	7300	2.71	2313	4337 E110
		586	249	0.107	0.0524	4/54	47.34	17.0	-5.2	-749	2750	7400	2.72	23/7	5270
		600	202	0.117	0.0520	4303 5155	434Z	16.0	-5.0	-000	2000	9014	2.70	2401	5447
		000	213	0.117	0.0330	5155	5134	10.9	-0.1	-070	2000	0014	2.70	2370	3447
		600	0	0.117	0.0530	0	0	22.0	0.0	0	2005	2005	1.00	0	3000
		605	60	0.118	0.0530	1202	1290	23.0	0.0	0	2005	4275	1.00	651	2625
		610	118	0.119	0.0531	2223	2202	23.0	0.7	101	2894	5096	1.43	1112	3995
		615	158	0.120	0.0531	2974	2952	23.0	0.9	130	2866	5818	2.03	1487	4342
		620	196	0.121	0.0532	3685	3663	23.9	0.9	130	2866	6529	2.00	1842	4697
		625	234	0.122	0.0532	4394	4372	23.7	0.3	101	2894	7267	2.20	2107	5081
		650	398	0.127	0.0535	7433	7410	23.4	0.4	58	2938	10348	3.52	3716	6643
		675	485	0.132	0.0538	9007	8983	21.4	-16	-230	3226	12209	3.70	4503	7717
		700	534	0.137	0.0542	9861	9837	19.7	-3.3	-475	3470	13307	3.83	4931	8389
		725	558	0.142	0.0545	10246	10221	18.4	-4.6	-662	3658	13879	3.79	5123	8768
		750	577	0.146	0.0548	10535	10509	17.6	-5.4	-778	3773	14282	3.79	5267	9027
		775	594	0.151	0.0551	10783	10757	16.9	-6.1	-878	3874	14630	3.78	5392	9252
		800	609	0.156	0.0554	10002	10965	16.3	-6.7	-965	3960	1/025	3.77	5496	9442
		825	621	0.161	0.0557	11143	11116	15.8	-7.2	-1037	4032	15148	3.76	5572	9590
		850	633	0.166	0.0561	11293	11264	15.3	-7.7	-1109	4104	15368	3.74	5646	9736
		875	645	0.171	0.0564	11439	11410	14.8	-8.2	-1181	4176	15586	3.73	5720	9881
		900	655	0.176	0.0567	11548	11519	14.5	-8.5	-1224	4219	15738	3.73	5774	9979
		000	000	0.170	0.0007	11040	11010	17.0	-0.0	-1447	7213	10700	0.10	5114	3313
		1												1	

Reviewed By: HBa

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Regional Offices: Olympia ~ 360.534.9777 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

Van Stone Mine	Date Sampled:	NA	
15T009	Sampled By:	Client	
GeoEngineers	Date Tested:	7/12/2015	
H S A-1	Tested by:	H Benny	
	Van Stone Mine 15T009 GeoEngineers H S A-1	Van Stone Mine Date Sampled: 15T009 Sampled By: GeoEngineers Date Tested: H S A-1 Tested by:	Van Stone Mine Date Sampled: NA 15T009 Sampled By: Client GeoEngineers Date Tested: 7/12/2015 H S A-1 Tested by: H Benny

Reviewed By: HB

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 **Regional Offices:** Olympia ~ 360.534.9777 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

Mater	rials Testing	& Consulting	g, Inc.	MIC
Geotec	chnical Engineering • Special Inspe	ction • Materials Testing • Environm	nental Consulting	
Project:	Van Stone Mine	Date Sampled:	NA	Materials Testing & Consulting, In-
Project #:	15T009	Sampled By:	Client	
Client:	GeoEngineers	Date Tested:	7/12/2015	
Sample #:	H S A-1	Tested by:	H Benny	

Sample	Depth	Water 0	Content	Void I	Ratio	Satur	ation	Unit V	Veight	Pressure	
Number	Feet	Initial	Final	Initial	Final	Initial	Final	Initial Wet	Initial Dry	Consol	Back
H S A-1	25-27	16.3	22.0	0.620	0.573	0.695	1.019	118.7	97.3	6.9, 13.9, 20.8	23.0

Reviewed By: H

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Regional Offices: Olympia ~ 360.534.9777 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974

Visit our website: www.mtc-inc.net

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website: www.mtc-inc.net

Project: Project #: Client: Sample ID Van Stone Mine 15T009 GeoEngineers H S A-3 Date Sampled: NA Sampled By: Client Date Tested: 7/12/2015 Tested by: H Benny

				Strain	Corrected	Deviator	Corrected	Pore		Pore					
Project Number	15T009	LVDT	Load Cell	Ratio	Area	Stress	Stress	Pressure	ΛU	Pressure	σ'3	σ'1	$\sigma' 1/\sigma' 3$	$(\sigma 1 - \sigma 3)/2$	(σ'1+σ'3)/2
Units		.001"	lbs		ft^2	psf	psf	psi	psi	psf	psf	psf	0.100	(01 00/2	(0
Sample #	HSA-3	0	0	0	0.0415	0	0	23.0	0.0	0	994	994	1	0	994
Depth	15	5	12	0.001	0.0416	289	288	23.1	0.1	14	979	1268	1.29	144	1123
Cell pressure, stage 1	29.9	10	29	0.002	0.0416	697	697	23.3	0.3	43	950	1647	1.73	348	1299
Cell pressure, stage 2	36.9	15	40	0.003	0.0416	960	960	23.5	0.5	72	922	1882	2.04	480	1402
Cell pressure, stage 3	43.8	20	47	0.003	0.0417	1128	1127	23.6	0.6	86	907	2034	2.24	564	1471
Back Pressure	23	25	52	0.004	0.0417	1247	1246	23.8	0.8	115	878	2124	2.42	623	1501
Strain Rate	0.005	50	69	0.008	0.0419	1647	1645	24.2	1.2	173	821	2466	3.00	824	1643
Initial Platten Height	0	78	84	0.013	0.0421	1996	1993	24.5	1.5	216	778	2770	3.56	998	1774
Initial Load Cell Reading	0	100	97	0.017	0.0422	2296	2292	24.5	1.5	216	778	3070	3.95	1148	1924
Initial Length	6.017	125	111	0.021	0.0424	2616	2611	24.4	1.4	202	792	3403	4.30	1308	2098
Initial Area	0.0415	150	123	0.025	0.0426	2886	2881	24.2	1.2	173	821	3702	4.51	1443	2261
Height after Saturation	5.963	175	135	0.029	0.0428	3154	3148	23.9	0.9	130	864	4012	4.64	1577	2438
Height after Consolidation	5.963	200	145	0.034	0.0430	3373	3366	23.6	0.6	86	907	4273	4.71	1687	2590
		225	156	0.038	0.0432	3614	3605	23.3	0.3	43	950	4556	4.79	1807	2753
		250	164	0.042	0.0434	3782	3773	22.9	-0.1	-14	1008	4781	4.74	1891	2895
		275	169	0.046	0.0435	3881	3871	22.6	-0.4	-58	1051	4922	4.68	1940	2986
		300	174	0.050	0.0437	3978	3967	22.4	-0.6	-86	1080	5047	4.67	1989	3063
		300	0	0.050	0.0437	0	-11	23.0	0.0	0	2002	1991	0.99	0	1996
		305	79	0.051	0.0438	1804	1793	23.1	0.1	14	1987	3780	1.90	902	2884
		310	108	0.052	0.0438	2465	2453	23.1	0.1	14	1987	4441	2.23	1232	3214
		315	129	0.053	0.0439	2941	2930	23.1	0.1	14	1987	4917	2.47	1471	3452
		320	145	0.054	0.0439	3303	3292	23.1	0.1	14	1987	5279	2.66	1652	3633
		325	157	0.055	0.0439	3573	3562	23.1	0.1	14	1987	5549	2.79	1787	3768
		350	182	0.059	0.0441	4124	4111	23.0	0.0	0	2002	6113	3.05	2062	4057
		375	191	0.063	0.0443	4309	4295	22.9	-0.1	-14	2016	6311	3.13	2154	4164
		400	202	0.067	0.0445	4537	4522	22.8	-0.2	-29	2030	6552	3.23	2268	4291
		425	210	0.071	0.0447	4695	4680	22.6	-0.4	-58	2059	6739	3.27	2347	4399
		450	216	0.075	0.0449	4807	4791	22.4	-0.6	-86	2088	6879	3.29	2404	4484
		4/5	221	0.080	0.0451	4896	4879	22.2	-0.8	-115	2117	6996	3.31	2448	4556
		500	225	0.084	0.0453	4962	4944	22.0	-1.0	-144	2146	7090	3.30	2481	4618
		525	228	0.000	0.0456	5005	4987	21.8	-1.2	-173	2174	7161	3.29	2503	4668
		550	232	0.092	0.0458	5070	5050	21.6	-1.4	-202	2203	7254	3.29	2535	4728
		575 600	235	0.096	0.0460	5112	5091	21.4	-1.0	-230	2232	7323	3.20	2550	47709
		000	230	0.101	0.0462	5155	5132	21.4	-1.0	-230	2232	7304	3.30	2570	4790
		600	0	0.101	0.0462	0	01	22.0	0.0	0	2005	2074	0.00	0	2005
		605	45	0.101	0.0462	973	-21	23.0	0.0	14	2995	29/4	1.32	487	2900
		610	90	0.102	0.0463	1945	1924	23.1	0.1	14	2981	4904	1.52	972	3943
		615	133	0.102	0.0463	2871	2850	23.1	0.1	14	2981	5831	1.00	1436	4406
		620	178	0.104	0.0464	3839	3818	23.1	0.1	14	2981	6799	2.28	1920	4890
		625	203	0.105	0.0464	4375	4353	23.0	0.0	0	2995	7348	2.45	2187	5172
		650	352	0.109	0.0466	7550	7528	22.2	-0.8	-115	3110	10638	3.42	3775	6874
		675	423	0.113	0.0468	9030	9007	21.7	-1.3	-187	3182	12189	3.83	4515	7686
		700	457	0.117	0.0471	9710	9686	21.3	-1.7	-245	3240	12926	3.99	4855	8083
		725	475	0.122	0.0473	10044	10020	21.0	-2.0	-288	3283	13303	4.05	5022	8293
		750	492	0.126	0.0475	10354	10329	20.8	-2.2	-317	3312	13641	4.12	5177	8476
		775	501	0.130	0.0477	10493	10467	20.5	-2.5	-360	3355	13822	4.12	5246	8589
		800	511	0.134	0.0480	10651	10624	20.3	-2.7	-389	3384	14008	4.14	5325	8696
		825	516	0.138	0.0482	10703	10675	20.1	-2.9	-418	3413	14088	4.13	5351	8751
		850	520	0.143	0.0484	10733	10705	19.9	-3.1	-446	3442	14147	4.11	5367	8794
		875	527	0.147	0.0487	10825	10796	19.7	-3.3	-475	3470	14266	4.11	5412	8868
		900	534	0.151	0.0489	10915	10885	19.6	-3.4	-490	3485	14370	4.12	5457	8927

Reviewed By: HBarr

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980

Regional Offices: Olympia ~ 360.534.9777 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

Project:	Van Stone Mine	Date Sampled:	NA	
Project #:	15T009	Sampled By:	Client	
Client:	GeoEngineers	Date Tested:	7/12/2015	
Sample #:	H S A-3	Tested by:	H Benny	

Reviewed By: HB

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 **Regional Offices:** Olympia ~ 360.534.9777 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

Mater	tials Testing	& Consulting	g, Inc.	
Project:	Van Stone Mine	Date Sampled:	NA	Materials Testing & Consultion. Inc.
Project #:	15T009	Sampled By:	Client	
Client:	GeoEngineers	Date Tested:	7/12/2015	
Sample #:	H S A-3	Tested by:	H Benny	

Sample	Depth	Water 0	Content	Void	Ratio	Satur	ation	Unit V	Veight	Pressure	ł
Number	Feet	Initial	Final	Initial	Final	Initial	Final	Initial Wet	Initial Dry	Consol	Back
H S A-3	15.0	7.6	22.2	0.623	0.578	0.325	1.015	109.7	89.8	6.9, 13.9, 20.8	23.0

Reviewed By: H

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website:
 www.mtc-inc.net
 Visit our website:
 Visit our website:
 Visit our website:

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website: www.mtc-inc.net

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Comments:

HBa Reviewed by:

 Corporate ~ 777 Chrysler Drive
 Burlington, WA 98233
 Phone (360) 755-1990
 Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website:
 www.mtc-inc.net
 Silverdale ~ 360.698.6787
 Silverdale ~ 360.698.6787

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Load, psf	Void Ratio
500	0.838
1000	0.817
2000	0.797
4000	0.776
8000	0.755
16000	0.732
32000	0.705
64000	0.666
16000	0.675
4000	0.688
1000	0.710

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Comments:

HBarry

Reviewed by:

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Silverdale ~ 360.698.6787 Bellingham ~ 360.647.6111 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

Regional Offices: Olympia ~ 360.534.9777

Project:	Van Stone Mine	Date Sampled:	NA
Project #:	15T009	Sampled By:	Client
Client:	GeoEngineers	Date Tested:	7/22/2015
Sample ID	H S A-7	Tested by:	H Benny

								_		Induced					
				Strain	Corrected	Deviator	Corrected	Pore		Pore					
Project Number	15T009	LVDT	Load Cell	Ratio	Area	Stress	Stress	Pressure	ΔU	Pressure	σ'3	σ'1	σ'1/σ'3	$(\sigma 1 - \sigma 3)/2$	(σ'1+σ'3)/2
Units		.001"	lbs		ft^2	psf	psf	psi	psi	psf	psf	psf			
Sample #	H S A-7	0	0	0	0.0421	0	0	23.0	0.0	0	2002	2002	1	0	2002
Depth	30	5	24	0.001	0.0421	569	569	23.6	0.6	86	1915	2484	1.30	285	2200
Cell pressure, stage 1	36.9	10	43	0.002	0.0422	1019	1019	24.1	1.1	158	1843	2862	1.55	510	2353
Cell pressure, stage 2	50.8	15	55	0.002	0.0422	1303	1302	24.5	1.5	216	1786	3088	1.73	651	2437
Cell pressure, stage 3	64.7	20	65	0.003	0.0422	1539	1538	24.9	1.9	274	1728	3266	1.89	769	2497
Back Pressure	23	25	74	0.004	0.0423	1750	1749	25.3	2.3	331	1670	3420	2.05	875	2545
Strain Rate	0.005	50	101	0.008	0.0425	2379	2377	26.6	3.6	518	1483	3860	2.60	1189	2672
Initial Platten Height	0	78	118	0.013	0.0427	2766	2764	27.2	4.2	605	1397	4160	2.98	1383	2779
Initial Load Cell Reading	0	100	132	0.016	0.0428	3083	3080	27.5	4.5	648	1354	4433	3.28	1542	2893
Initial Length	6.167	125	143	0.020	0.0430	3326	3322	27.6	4.6	662	1339	4661	3.48	1663	3000
Initial Area	0.0421	150	151	0.025	0.0432	3498	3492	27.6	4.6	662	1339	4832	3.61	1749	3085
Height after Saturation	6 107	175	159	0.029	0.0434	3668	3661	27.5	4.5	648	1354	5015	3.70	1834	3184
Height after Consolidation	6 107	200	165	0.033	0.0435	3790	3783	27.5	4.5	648	1354	5136	3.79	1895	3245
Theight after Consolidation	0.107	225	171	0.037	0.0437	3011	3903	27.5	4.0	634	1368	5271	3.85	1055	3320
		250	177	0.001	0.0430	4021	4000	27.4	4.2	605	1300	5410	3.00	2016	2409
-		275	102	0.045	0.0439	4031	4022	27.2	4.2	500	1411	5419	3.00	2010	2470
		200	102	0.040	0.0441	4127	4110	27.1	4.1	530	1426	5629	2.92	2004	2522
-		300	107	0.049	0.0443	4223	4212	27.0	4.0	576	1420	3030	3.95	2(1)	3332
		200	0	0.040	0.0442	0	0	22.0	0.0	0	4002	4002	4	0	4002
		300	0	0.049	0.0443	0	0	23.0	0.0	0	4003	4003	1	0	4003
		305	61	0.050	0.0443	1376	1365	23.8	0.8	115	3888	5253	1.35	688	45/1
		310	98	0.051	0.0444	2209	2198	25.0	2.0	288	3715	5913	1.59	1105	4814
		315	126	0.052	0.0444	2838	2827	26.0	3.0	432	3571	6398	1.79	1419	4985
		320	146	0.052	0.0444	3285	3274	26.8	3.8	547	3456	6730	1.95	1643	5093
		325	162	0.053	0.0445	3642	3631	27.6	4.6	662	3341	6972	2.09	1821	5156
		350	214	0.057	0.0447	4791	4778	30.1	7.1	1022	2981	7759	2.60	2395	5370
		375	238	0.061	0.0449	5305	5292	31.7	8.7	1253	2750	8042	2.92	2652	5396
		400	251	0.065	0.0451	5570	5556	32.4	9.4	1354	2650	8206	3.10	2785	5428
		425	260	0.070	0.0453	5745	5730	32.9	9.9	1426	2578	8308	3.22	2872	5443
		450	267	0.074	0.0455	5873	5858	33.2	10.2	1469	2534	8392	3.31	2937	5463
		475	274	0.078	0.0457	6001	5984	33.4	10.4	1498	2506	8490	3.39	3000	5498
		500	279	0.082	0.0459	6083	6066	33.3	10.3	1483	2520	8586	3.41	3042	5553
		525	284	0.086	0.0461	6165	6147	33.4	10.4	1498	2506	8652	3.45	3082	5579
		550	289	0.090	0.0463	6245	6226	33.4	10.4	1498	2506	8732	3.48	3122	5619
		575	293	0.094	0.0465	6303	6283	33.4	10.4	1498	2506	8789	3.51	3151	5647
		600	298	0.098	0.0467	6382	6361	33.4	10.4	1498	2506	8867	3.54	3191	5686
-															
		600	0	0.098	0.0467	0	0	23.0	0.0	0	6005	6005	1.00	0	6005
		605	51	0.099	0.0467	1091	1071	24.1	1.1	158	5846	6917	1.18	546	6382
		610	109	0.100	0.0468	2330	2309	26.2	3.2	461	5544	7853	1.42	1165	6699
		615	159	0.101	0.0468	3396	3375	28.4	5.4	778	5227	8602	1.65	1698	6915
		620	10/	0.102	0.0469	4130	4110	30.2	7.2	1037	4968	9087	1.83	2070	7027
		625	225	0.102	0.0469	4796	4775	21.0	8.9	1282	4723	9499	2.01	2308	7111
		650	200	0.102	0.0403	47.50	4775	25.4	12.4	1796	4723	1075F	2.01	2000	7/07
		675	260	0.100	0.0471	7704	7772	30.4	12.4	1007	4219	11700	2.00	3210	7004
		700	309	0.115	0.0476	9621	9507	30.0	11.0	2102	4010	12500	2.93	3097	9201
		700	410	0.110	0.0470	0021	0000	37.0	14.0	2102	3902	12300	3.20	4310	0201
		720	433	0.119	0.0478	9062	9038	37.9	14.9	2140	3859	1289/	3.34	4531	83/8
		/50	451	0.123	0.0480	9395	9370	38.2	15.2	2189	3810	13186	3.40	4097	8501
		//5	464	0.127	0.0482	9621	9595	38.4	15.4	2218	3/87	13383	3.53	4810	8585
		800	475	0.131	0.0485	9802	9777	38.4	15.4	2218	3787	13564	3.58	4901	8675
		825	485	0.135	0.0487	9962	9935	38.3	15.3	2203	3802	13737	3.61	4981	8769
		850	494	0.139	0.0489	10099	10071	38.3	15.3	2203	3802	13873	3.65	5049	8837
		875	501	0.143	0.0492	10193	10165	38.2	15.2	2189	3816	13981	3.66	5096	8898
		900	505	0.147	0.0494	10225	10197	38.0	15.0	2160	3845	14041	3.65	5113	8943

Reviewed By: HBarry

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980

Regional Offices: Olympia ~ 360.534.9777 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

Project:	Van Stone Mine	Date Sampled:	NA	
Project #:	15T009	Sampled By:	Client	
Client:	GeoEngineers	Date Tested:	7/22/2015	
Sample #:	HSA-7	Tested by:	H Benny	

Reviewed By: HB

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 **Regional Offices:** Olympia ~ 360.534.9777 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974

Visit our website: www.mtc-inc.net

Mater	tials Testing	& Consulting	g, Inc.	
Project:	Van Stone Mine	Date Sampled:	NA	Materials Testing & Consulting, Inc.
Project #:	15T009	Sampled By:	Client	
Client:	GeoEngineers	Date Tested:	7/22/2015	
Sample #:	H S A-7	Tested by:	H Benny	
Sample #:	H S A-7	Tested by:	H Benny	

Sample	Depth	Water 0	Content	Void	Ratio	Satur	ation	Unit V	Veight	Pressure		
Number	Feet	Initial	Final	Initial	Final	Initial	Final	Initial Wet	Initial Dry	Consol	Back	
H S A-7	30.0	25.6	26.7	0.768	0.706	0.893	1.012	118.9	93.8	13.9, 27.8, 41.7	23.0	

Reviewed By: H

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website:
 www.mtc-inc.net
 Visit our website:
 Visit our website:
 Visit our website:

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website:
 www.mtc-inc.net
 Visit our website:
 Silverdale ~ 360.698.6787
 Silverdale ~ 360.698.6787

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Client:	GeoEngineers	Date:	May 15, 2015
Address:	Spokane, WA	Project:	Van Stone Mine
		Project #:	15T009
Attn:	Justin Rice	Sample #:	T15-0861

As requested MTC, Inc. has performed the following test(s) on the sample referenced above. The testing was performed in accordance with current applicable AASHTO or ASTM standards as indicated below. The results obtained in our laboratory were as follows below or on the attached pages:

	Test(s) Performed:	Test Results	Test(s) Performed:	Test Results
-				
	Sieve Analysis		Sulfate Soundness	
	Proctor		Bulk Density & Voids	
_	Sand Equivalent		WSDOT Degradation	
	Fracture Count			
	Moisture Content			
_	pH			
	Minimum Resistivity			
	Organic Content			
х	Atterberg Limits	Non-plastic		
	Asphalt Extraction/Gradation			
	Rice Density			

If you have any questions concerning the test results, the procedures used, or if we can be of any further assistance please call on us at the number below.

Respectfully Submitted,

HBorg

Harold Benny WABO Supervising Laboratory Technician

ASTM D4318 - Liquid Limit, Plastic Limit and Plasticity Index of Soils

extracts from or regarding our reports is reserved pending our written approval

Reviewed by:

HBarry

Regional Offices: Olympia ~ 360.534.9777

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Project:	Van Stone Mine
Project #:	15T009
Client :	GeoEngineers
Source:	HSA-1 (15-17)
MTC Sample#:	T15-0861

Date Received:	June 3, 2015
Sampled By:	Client
Date Tested:	June 24, 2015
Tested By:	CL

CASE NARRATIVE

1. One sample was submitted for Atterberg Limits, according to ASTM D4318, and hydrometer analysis, according to ASTM D422. The sample was prepared according to ASTM D421.

2. The sample was considered non-plastic, it slipped in the cup and could not reach 25 blows.

3. An assumed specific gravity of 2.65 was used in the hydrometer calculations.

4. A standard milkshake mixer type device was used to disperse the fine fraction sample for one minute.

5. The data is provided in summary tables and plots.

6. There were no noted anomalies in this project.

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval

Reviewed by:

Regional Offices: Olympia ~ 360.534.9777

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

Project:	Van Stone Mine
Project #:	15T009
Date Received:	June 3, 2015
Date Tested:	June 24, 2015

Sampled by: Client CL Tested by:

Client:

Percent Finer (Passing) Than the Indicated Size

GeoEngineers

Sieve Size (microns)	3"	2"	1 1/2"	1"	3/4"	1/2"	3/8"	#4 (4750)	#10 (2000)	#20 (850)	#40 (425)	#60 (250)	#100 (150)	#200 (75)	32	22	13	9	7	3.2	1.3
T15-0861	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	99.9	99.5	94.2	80.2	50.7	16.5	9.2	5.5	4.6	3.7	2.8	0.9

Testing performed according to ASTM D421/D422

Organics were not removed prior to analysis. The grain size distribution reported is the "apparent grain size distribution".

Reviewed by: HBarg

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Regional Offices: Olympia ~ 360.534.9777 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

Project:	Van Stone Mine	Client:	GeoEngineers
Project #:	15T009	_	
Date Received:	June 3, 2015	Sampled by:	Client
Date Tested:	June 24, 2015	Tested by:	CL
-			

Percent Retained in Each Size Fraction

Description	% Coarse Gravel				% Gravel % Coa San			% Coarse Sand	Coarse Sand % Medium Sand		% Fine Sand			% Very Coarse Silt	% Coarse Silt	% Medium Silt	% Fine Silt	% Fine Silt	% Very Fine Silt	% (Clay
Particle Size (microns)	3-2"	2-1 1/2"	1 1/2"-1"	1-3/4"	3/4-1/2"	1/2-3/8"	3/8"-4750	4750- 2000	2000-850	850-425	425-250	250-150	150-75	75-32	32-22	22-13	13-9	9-7	7-3.2	3.2-1.3	<1.3
T15-0861	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.4	5.3	13.9	29.5	34.2	7.3	3.7	0.9	0.9	0.9	1.8	0.9

Testing performed according to ASTM D421/D422

Organics were not removed prior to analysis. The grain size distribution reported is the "apparent grain size distribution".

Reviewed by: HBmg

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Regional Offices: Olympia ~ 360.534.9777 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Client:	GeoEngineers	Date:	May 15, 2015
Address:	Spokane, WA	Project:	Van Stone Mine
		Project #:	15T009
Attn:	Justin Rice	Sample #:	T15-0862

As requested MTC, Inc. has performed the following test(s) on the sample referenced above. The testing was performed in accordance with current applicable AASHTO or ASTM standards as indicated below. The results obtained in our laboratory were as follows below or on the attached pages:

	Test(s) Performed:	Test Results	Test(s) Performed:	Test Results
-				
	Sieve Analysis		Sulfate Soundness	
	Proctor		Bulk Density & Voids	
_	Sand Equivalent		WSDOT Degradation	
	Fracture Count			
	Moisture Content			
_	pH			
	Minimum Resistivity			
	Organic Content			
х	Atterberg Limits	Non-plastic		
	Asphalt Extraction/Gradation			
	Rice Density			

If you have any questions concerning the test results, the procedures used, or if we can be of any further assistance please call on us at the number below.

Respectfully Submitted,

HBorg

Harold Benny WABO Supervising Laboratory Technician

ASTM D4318 - Liquid Limit, Plastic Limit and Plasticity Index of Soils

extracts from or regarding our reports is reserved pending our written approval

Reviewed by:

HBarry

Regional Offices: Olympia ~ 360.534.9777
Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Client:	GeoEngineers	Date:	May 15, 2015
Address:	Spokane, WA	Project:	Van Stone Mine
		Project #:	15T009
Attn:	Justin Rice	Sample #:	T15-0877

As requested MTC, Inc. has performed the following test(s) on the sample referenced above. The testing was performed in accordance with current applicable AASHTO or ASTM standards as indicated below. The results obtained in our laboratory were as follows below or on the attached pages:

	Test(s) Performed:	Test Results	Test(s) Performed:	Test Results
	Sieve Analysis		Sulfate Soundness	
	Proctor		Bulk Density & Voids	
	Sand Equivalent		WSDOT Degradation	
	Fracture Count			
	Moisture Content			
	pH			
	Minimum Resistivity			
х	Fines Content	88.1%		
х	Atterberg Limits	See Attached		
	Asphalt Extraction/Gradation			
	Rice Density			

If you have any questions concerning the test results, the procedures used, or if we can be of any further assistance please call on us at the number below.

Respectfully Submitted,

HBorg

Harold Benny WABO Supervising Laboratory Technician

ASTM D4318 - Liquid Limit, Plastic Limit and Plasticity Index of Soils

Il results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Comments:

Reviewed by:

HBang

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website:
 www.mtc-inc.net
 Visit our website:
 Silverdale ~ 360.698.6787
 Silverdale ~ 360.698.6787

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

 Project:
 Van Stone Mine

 Project #:
 15T009

 Date Received:
 June 3, 2015

 Date Tested:
 June 24, 2015

Client: GeoEngineers

Sampled by: Client

Tested by: CL / HB

Amount of Materials Finer Than #200 Sieve - ASTM C-117, ASTM D-1140 & AASHTO T-11

Sample #	Location	Tare	Before Wash + Tare	After Wash + Tare	Amount of Loss	% -#200
T15-0877	HSA-7-30	172.9	1130.1	286.6	843.5	88.1%

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

HBarry

Reviewed by:

 Corporate ~ 777 Chrysler Drive
 • Burlington, WA 98233
 • Phone (360) 755-1990
 • Fax (360) 755-1980

 Regional Offices:
 Olympia ~ 360.534.9777
 Bellingham ~ 360.647.6111
 Silverdale ~ 360.698.6787
 Tukwila ~ 206.241.1974

 Visit our website: www.mtc-inc.net

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Project:Van Stonevoject #:15T009Date Received:06/03/15Client:GeoEngineersSampled By:ClientSource:HAS-1 - S5 - 26 ftDate Tested:10/01/15ample#:T15-0862Tested By:CL/HB				One-Dimensi Sample Desc Gray Sand Equipment U GeoTac Sigm	onal Consolid ription (sed a-1 Load Fram	e	ned in accorda	nce with AST	M D2435/D243
				Germale D					
Initial Maisture Content % 21.7%				arameters Final	Moisture Con	tent %	26.7%	ľ	
	Initial D	Dry Unit Weigh	t. lb/ft ³	93.0	Final I	Dry Unit Weig	ht, lb/ft'	99.4	
	In	itial Void Rati	0	0.867]	Final Void Rat	io	0.724	
	Ir	nitial Saturation	1	69.5%		Final Saturatic	n	100.8%	[
				Test	Data				
Load, psf	Strain Ratio	D_0	D ₅₀	D ₁₀₀	D_{f}	t _{90 (min)}	Sample Ht	Drainage	$C_v (in^2/s)$
500	0.51%	0.0000	0.0023	0.0046	0.0000		0.8999	Path 0.4500	
1.000	0.85%	0.0000	0.0023	0.0084	0.0074	1.96	0.8925	0.4463	0.0014
2,000	1.36%	0.0074	0.0031	0.0136	0.0110	1.96	0.8889	0.4445	0.0014
4,000	2.18%	0.0110	0.0054	0.0218	0.0174	1.44	0.8825	0.4413	0.0019
8,000	3.13%	0.0174	0.0070	0.0313	0.0247	0.81	0.8752	0.4376	0.0033
16,000	4.36%	0.0247	0.0095	0.0436	0.0347	0.64	0.8652	0.4326	0.0041
32,000	5.81%	0.0347	0.0122	0.0592	0.0458	0.42	0.8541	0.4270	0.0061
64,000	8.04%	0.0458	0.0182	0.0822	0.0607	0.30	0.8392	0.4196	0.0082
4,000	7.14%								
1,000	6.87%								
Calculations: The following	equation was u	sed to calculate	e the values sl	hown in the tabl	e above: C_v =	$= TH_{D50}^{2}/t_{50}$			
	Where: ratio and satura	$T = The time H_{D50} = The time t_{50} = The time tion values, are the time time time time to the time time time time time time time tim$	factor for 509 length of the ne correspond assumed spe	6 consolidation, drainage path at ling to 50% of p ecific gravity of 2	provided as 0. 50% of primat rimary consoli 2.65 was used.	197 (per ASTI ry consolidatio dation.	M D2435). n (double drain	age path).	

Comments:

HBan Reviewed by:

Regional Offices: Olympia ~ 360.534.9777

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Comments:

HBa Reviewed by:

Regional Offices: Olympia ~ 360.534.9777

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787 Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Load, psf	Void Ratio
500	0.856
1000	0.849
2000	0.839
4000	0.822
8000	0.802
16000	0.777
32000	0.746
64000	0.700
16000	0.708
4000	0.719
1000	0.724

These values are calculated from the loading increments and may

All results apply only to actual locations and materials tested. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Comments:

HBarn

Reviewed by:

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 • Phone (360) 755-1990 • Fax (360) 755-1980 Bellingham ~ 360.647.6111 Silverdale ~ 360.698.6787

Regional Offices: Olympia ~ 360.534.9777

Tukwila ~ 206.241.1974 Visit our website: www.mtc-inc.net

APPENDIX C Upper and Lower Tailings Pile Stability Analysis

APPENDIX C UPPER AND LOWER TAILINGS PILE STABILITY ANALYSIS

INTRODUCTION

General

We completed slope stability analyses of the Upper and Lower Tailings Pile embankments. Specifically, the existing slope, a 2H:1V (Horizontal:Vertical) reconstructed slope, and a proposed 3H:1V reconstructed slope were evaluated for general stability. Slope stability analyses were completed using the computer program SLOPE/W. SLOPE/W is used to evaluate the stability of the critical failure surfaces identified using vertical slice limit-equilibrium methods. Spencer's Method was used for this project, which solves for both force and moment equilibrium conditions. The model identifies the most critical failure surface for specified topography, subsurface conditions, soil properties, and groundwater profile. The stability of the soil mass is reported as a safety factor, which is the ratio of resisting forces and that the slope is at marginal stability. A safety factor less than 1.0 indicates that the resisting forces are smaller than the driving forces and that the slope is potentially at imminent risk of failure. A safety factor greater than 1.0 indicates that the resisting forces. Safety factors greater than 1.0 are commonly required for long-term stability of slopes and when mitigating failed or marginally stable slopes. The desired factor of safety greater than 1.0 is dependent on many factors, including seismic environment, performance standards, consequences of failure, applicable regulations, and many other factors.

This report presents the results of our geotechnical engineering evaluation of the Upper and Lower Tailings Piles at the Van Stone Mine. Our specific scope of services included:

- 1. Reviewing information regarding subsurface soil and groundwater at the Upper and Lower Tailings Piles, including reports in our files, selected geologic maps, and other geotechnical engineering related information.
- 2. Coordinating and managing the subsurface exploration program including scheduling of subcontractors and GeoEngineers' field staff.
- 3. Exploring subsurface soil and groundwater conditions at the site by drilling six borings in the Upper Tailings Pile and five borings in the Lower Tailings Pile. Borings in the Upper Tailings Pile were drilled to depths between about 30 feet below ground surface (bgs) in HSA-4 to 62 feet bgs in HSA-1. Borings in the Lower Tailings Pile were drilled to depths between 27 feet bgs in HSA-11 to 97 feet bgs in HSA-7. The borings were backfilled as required by state law. Soil cuttings from the drilled borings were distributed on the ground surface near the boring locations.
- 4. Obtaining soil samples at representative intervals from the explorations, observing groundwater conditions and maintaining detailed logs in general accordance with ASTM International (ASTM) D 2488, the Standard Practice for Classification of Soils, Visual-Method Procedure. Qualified staff from our office observed and documented field activities.
- 5. Performing laboratory tests on selected soil samples obtained from the explorations to evaluate pertinent engineering characteristics. Specific laboratory tests are noted in the boring logs in Appendix A.

- 6. Providing slope stability analyses of the Upper and Lower Tailings Piles that address the following geotechnical components:
 - a. Representative cross sections for the site topography, geology and subsurface conditions;
 - A calculation of the safety factor against slope failure for the Upper and Lower Tailings using limit equilibrium software. Safety factor against static slope failure and seismic slope failure were analyzed;
 - c. A calculation of reconstructed slope gradients to achieve suitable safety factors against static and seismic slope failure. Generally, values less than 1.5 for static and 1.1 for seismic conditions are considered unsatisfactory under conditions where there is an imminent danger to human life or major environmental impacts will occur if a slope fails.

LITERATURE REVIEW

Previous Investigations

The stability of the Lower Tailing Piles was previously evaluated by Klohn Leonoff, and summarized in their Tailings Disposal Design Report dated September 1990. The Klohn Leonoff slope stability evaluation was conducted in preparation of raising the height of the lower tailings pile. The Lower Tailings Pile was subsequently raised about 20 feet during mine operations in the 1990s. Additionally, Hart Crowser investigated the stability of the Upper and Lower Tailing Piles, and summarized their results in Appendix F of their Remedial Investigation report dated November 2013. A summary of engineering parameters for site soil materials investigated during previous evaluations are presented in Table 1.

Soil Type	Moist Unit Weight (pcf)	Friction Angle (degrees)	Cohesion (psf)
Klohn Leonoff			
New Tailings	110	30	0
Liner Interface		25	0
Tailings Sand	110	35	0
Sand Slimes	95	30	0
Slimes	70	23	0
Residual Soil	130	38	0
Granite	140	38	500
Hart Crowser ¹			
Tailings	110	36	0
Medium Dense Native Soil	125	32	0
Very Dense Native Soil	125	38	0

TABLE C-1. ENGINEERING PARAMETERS OF SITE SOIL UNITS

¹Additional parameters reported included undrained and residual undrained shear strength of saturated tailings.

SITE EXPLORATIONS

General

We evaluated site conditions in December, 2014 by advancing six exploratory borings (HSA-1 through HSA-6) into the Upper Tailings Pile and underlying native material and five exploratory borings into the Lower Tailings Pile (HSA-7 through HSA-11) and underlying native material. The approximate boring locations are shown in Figures C-1 and C-2.

Soil samples were obtained from the borings for visual classification and laboratory testing. Soil samples collected from the tailing piles were transported to Materials Testing & Consulting, Inc. (MTC) in Tukwila, Washington for evaluation and testing to assess select physical and engineering characteristics; soil samples collected from the underlying native material were transported to GeoEngineers' Spokane laboratory for evaluation and testing. Descriptions of the field exploration equipment and procedures, logs of the explorations are provided in Appendix A and laboratory test results are provided in Appendix B, of GeoEngineers' Feasibility Study (2017).

Surface Conditions

GeoEngineers contracted with Quantum Spatial to conduct a LiDAR survey of the site. The LiDAR survey was used to develop a topographic map of the site. The results of the survey were used to identify existing slope gradients of the Upper and Lower Tailings Piles for slope stability analysis models.

Subsurface Conditions

Geologic Setting

The Washington State Department of Natural Resources, Geologic Map of the Colville 1:100,000 Quadrangle, Washington-Idaho, maps the project area as Quaternary Age Glacial Drift (Qgd) overlying bedrock consisting of dolomite of the Cambrian Age Metaline Formation and granite of the Cretaceous Age Spirit Pluton. Glacial drift consists of a mixture of stratified and unstratified deposits of clay, silt, sand, gravel, and boulders including glacial outwash, till and glaciolacustrine deposits.

Upper Tailings Pile

The Upper Tailings Pile occupies approximately 9½ acres and generally is divided into an east basin and west basin with a waste rock-lined drainage ditch between the two (see Figure C-1). The Upper Tailings Pile was constructed with slopes of approximately 1.5H:1V (horizontal to vertical) with maximum heights of approximately 35 feet above existing grade. Based on our observation of the Upper Tailing embankments, the Upper Tailings dike appear to have been raised using tailings sands.

Lower Tailings Pile

The Lower Tailings Pile occupies approximately 40 acres near the western boundary of the site (see Figure C-2). The Lower Tailings Pile was constructed with slopes of approximately 1.5H:1V with maximum heights of approximately 75 feet above existing grade. Based on our observation of the Lower Tailing embankments, the Lower Tailings dike appear to have been raised using tailing sands.

Glacial Drift

The native material underlying the Upper and Lower Tailings piles consists of glacial drift deposits. Observed thicknesses of the native soils underlying the Lower Tailings pile were approximately 2 feet (HSA-10) to 21 feet (HSA-7); thicknesses of the native soils underlying the Upper Tailings pile were approximately 5 feet (HSA-5) to over 22 feet (HSA-1 and HSA-6). Bedrock was encountered beneath the Upper Tailings at a depth of 35 feet bgs in HSA-5. Bedrock was encountered beneath the Lower Tailings at a depth of 62 feet bgs in HSA-10

ENGINEERING PARAMETERS OF SOIL UNITS AND ASSUMPTIONS

General

For each unit used in the slope stability model, we developed engineering parameters based upon the results of our subsurface explorations and laboratory testing, review of available information in the public domain including geologic maps, and data presented in the above mentioned geotechnical reports. The following unit descriptions state the assumptions we made in developing the engineering parameters for each unit. The selected engineering parameters are presented in Table C-1.

Glacial Drift

The glacial drift unit in our slope stability analyses represents the natural soil deposits encountered in our explorations beneath the Upper and Lower Tailings Piles. This unit generally consisted of medium dense to very dense fine to coarse sand with varying amounts of silt and gravel interbedded with stiff to hard silt and clay. Native soil samples were encountered beneath the Upper Tailings at depths ranging from 15 feet (HSA-2) to 40 feet (HSA-1) bgs and beneath the Lower Tailings at depths ranging from 10 feet (HSA-10) to 85 feet (HSA-9) bgs. Based on results of grain-size analyses on the fine to coarse sand unit samples we tested, the native soil fines content (silt- and clay-sized soil particles passing the U.S. No. 200 sieve) is in the range of about 5 to 46 percent.

SPT N-values from 39 sampling attempts ranged from about 5 to 71, with an average of about 26. The lower SPT N-values are associated with the upper soil profile and may represent a thin weathered zone or transition from the tailings. Note that these values include approximate N-values correlated from large-diameter samples, as indicated on the boring logs. Engineering parameters selected for the natural soil (see Table C-1) are based on laboratory tests of soil samples collected from soil borings (HSA-1 through HSA-11), results of previous investigations, correlations of relative density and friction angle with SPT N-values, and our experience in the area.

Tailings

The tailings unit represents the material observed in the tailings impoundment dikes and the retained mine tailings within the impoundments. Tailings generally consisted of loose to medium dense silty fine sand (tailings sands) interbedded with very soft to very stiff silt and clay (tailings slimes). The amount of tailings fines observed in samples generally increased with depth and in borings located near the center of the Upper and Lower Tailing's basins. Because of this observation and our understanding of the construction of the tailing dikes and/or raises, it is our opinion that tailings slimes will not influence tailing's engineering parameters within the zones of possible slope failure and were therefore not included in our model. Tailings

thickness encountered in the Upper Tailings Pile ranged from 15 feet (HSA-2) to 40 feet (HSA-1). Tailings thickness encountered in the Lower Tailings Pile ranged from 10 feet (HSA-10) to 85 feet (HSA-9).

Based on grain-size analyses of samples of the silty sand, the fines content of the silty sand unit is in the range of about 15 to 49 percent. SPT N-values from 22 sampling attempts in the Upper Tailings Pile ranged from about 0 to 13, with an average of about 6. SPT N-values from 57 sampling attempts in the Lower Tailings Pile ranged from about 0 to 24, with an average of about 10. Note that these values include approximate N-values correlated from large-diameter samples, as indicated on the boring logs.

Strength Parameters

Engineering parameters selected for the tailings and native soil (see Table C-2) are based on laboratory tests of soil samples collected from soil borings (HSA-1 through HSA-11), results of previous investigations, correlations of relative density and friction angle with SPT N-values, our experience in the area, and our understanding of the construction of the tailing impoundments. Although low strength tailing slimes were encountered in our borings, they were generally isolated to areas more central within the tailing impoundments and therefore don't influence the strength of the overall mass within the zones of possible slope failure. Based on our understanding of the construction methods of the Tailings Piles and review of subsurface information, we modeled the tailings near the slope face as granular (cohesionless) soil. We used a range of friction angles to model the tailings, consistent with previous modeling. As previously mentioned, tailings slimes were not included and not considered to be a significant factor with regard to overall stability modeling.

Soil Type	Moist Unit Weight (pcf)	Friction Angle (degrees)	Cohesion (psf)
Tailings	110	34 to 36	0
Glacial Drift	125	38	0

TABLE C-2. ENGINEERING PARAMETERS OF SITE SOIL UNITS

Notes:

pcf = pounds per cubic foot; psf = pounds per square foot

Seismic Parameters

Seismic hazard design parameter values were obtained from the United States Geological Survey's (USGS) U.S. Seismic Design Maps tool. Site values were determined based on the 2009 National Earthquake Hazards Reduction Program (NEHRP) which provides the design parameter peak ground acceleration (PGA). Based on our review of the geologic literature, it is our opinion that the glacial drift deposits and tailings classify as a Site Class D in accordance with NEHRP criteria. Peak horizontal accelerations were calculated using the peak horizontal bedrock acceleration and designated amplification factors. Based on data presented by the USGS, the site may experience a PGA equal to 19.1 percent of the acceleration due to gravity (0.191g) for the 2,475 event.

A common approach to determine seismic slope stability is to use a pseudo static analysis approach where the horizontal component of seismic shaking is modeled as a permanent body force added to a static limit equilibrium analysis. A drawback of the pseudo static analysis is that earthquake shaking being represented as a permanent, unidirectional body force is extremely conservative and does not provide any indication of relative movement. For this reason, pseudo static coefficients generally are selected as some

fraction of the PGA. The pseudo static coefficient is typically assumed as about $\frac{1}{2}$ of PGA, and in this case we used 0.1.

TABLE C-3. SEISMIC PARAMETERS

Peak Ground Acceleration (g)	Horizontal Acceleration Coefficient (g)
0.191	0.1

Groundwater

Based on groundwater elevations observed, the phreatic surface is located beneath the zones of influence for possible slope failures and was therefore not included in our models. Additionally, we anticipate that with the placement of a final cover and appropriate drainage facilities, the potential is low for development of a groundwater table within either the Upper or Lower Tailings Piles.

SLOPE STABILITY ANALYSIS

Slope stability analyses were completed at three sections across the Lower Tailings Pile embankment (Cross Section A-A' through C-C') and two sections across the Upper Tailings Pile embankment (Cross Section D-D' and E-E'). These sections were selected for analysis because they either represented greatest slope height and steepness (Section C-C' and D-D') or because they were representative of general slope configurations along the embankment profiles (Section A-A', B-B' and E-E'). The approximate locations of the cross sections are shown in Figures C-1 and C-2.

Results – Existing Conditions

The safety factor results against failure within the existing tailing embankments are presented in Table C-4. Results of the Slope/W analyses are provided in Figure C-5 to C-52. To differentiate from surficial slope failure or raveling conditions, from deeper seated failures, the slope stability analyses were completed for failure surfaces at least five feet deep and at least ten feet deep.

TABLE C-4. SLOPE STABILITY RESULTS

Slope	Static Safety Factor	Seismic Safety Factor
Lower Tailings Pile		
Cross Section A-A': minimum 5-foot-deep failure	1.18 to 1.27	0.95 to 1.02
Cross Section A-A': minimum 10-foot-deep failure	1.34 to 1.44	1.10 to 1.18
Cross Section B-B': minimum 5-foot-deep failure	1.07 to 1.15	0.88 to 0.94
Cross Section B-B': minimum 10-foot-deep failure	1.24 to 1.32	1.03 to 1.09
Cross Section C-C': minimum 5-foot-deep failure	0.95 to 1.02	0.78 to 0.84
Cross Section C-C': minimum 10-foot-deep failure	1.08 to 1.16	0.90 to 0.97
Upper Tailings Pile		
Cross Section D-D': minimum 5-foot-deep failure	1.10 to 1.18	0.92 to 0.99
Cross Section D-D': minimum 10-foot-deep failure	1.27 to 1.36	1.07 to 1.15

Slope	Static Safety Factor	Seismic Safety Factor
Cross Section E-E': minimum 5-foot-deep failure	1.31 to 1.41	1.04 to 1.12
Cross Section E-E': minimum 10-foot-deep failure	1.44 to 1.55	1.15 to 1.24

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

Based on our analyses, it is our opinion that the existing tailing embankments do not provide a suitable safety factor against slope failures under static or seismic conditions. It is also our opinion that a suitable safety of factor can be achieved by regrading the existing Upper and Lower Tailings embankments. The final slope configuration will depend on several factors including: (1) design safety factors selected for this project; (2) requirements and design details for the final cover; and (3) subsurface conditions encountered during construction.

In general, safety factors of 1.5 have been used for "critical" slopes, where the consequences of slope failure could impact life safety or have a significant environmental impact. Lower static safety factors have been used for slopes where consequences of failure do not result in life safety concerns or significant environmental impact. Consideration when selecting the minimum slope stability safety factors include design of the final cover system.

Recommendations

Regrading of the Upper and Lower Tailings Pile's embankments is recommended due to the existing steep inclinations. We evaluated safety factors relative to regrading the slope gradients to 2H:1V and 3H:1V and the resultant safety factors are shown in Table C-5.

Slope Inclination	Static FS	Seismic FS
2H:1V	1.49 to 1.60	1.17 to 1.26
3H:1V	2.17 to 2.33	1.62 to 1.74

TABLE C-5. RECOMMENDED RECONFIGURED SLOPE INCLINATIONS

Selection of the target safety factors for slope stability for this project should be conducted in coordination with Ecology during final design. We suggest using a minimum static factor of safety of 1.5. To achieve a minimum static safety factor of 1.5, the existing slopes should be regraded to a minimum 2H:1V inclination. Final (design) slope inclinations also should be based on achieving a suitable factor of safety for the liner and cover system, which could result in a flatter slope inclination than required for overall (global) stability of the Tailings Piles.

The reconstructed slopes can be built by placing engineered structural fill along the face of the slope, which would need to be benched as described in the Earthwork section below. Structural fill should consist of material with an internal friction angle of at least 34 degrees when properly compacted and in-place unit weight of at least 110 pounds per cubic foot. If the slope geometries are constructed as described herein,

the reconstructed slopes should have adequate long-term safety factors with a static safety factor and seismic safety factor as shown in Table C-5.

Given the lack of specific design and construction documentation for the existing Tailings Piles, and the relative uncertainty of the dimensions of the starter dams, consideration should be given to balancing the cuts and fills required to regrade the sites. For example, establishing final slope inclinations solely by cutting the slopes back to a flatter inclination increases the potential for exposing portions of the tailings with lower shear strength. An alternative to reduce this potential includes cutting near the top of the slope (to a lesser extent than cutting along) and extending the toe of the tailings piles by placing and compacting the excavated soil near the toe of the slope. The uniformly placed and compacted soil will provide some buttressing effect.

After construction, there remains a moderate risk of shallow surficial failures and raveling along the slopes due to erosion prior to construction of the cover system. Appropriate temporary erosion control techniques should be implemented as part of the slope design to reduce erosion and sediment transportation until is the permanent cover system is established.

Earthwork Consideration

Engineered structural fill used to reconfigure the impoundment slopes should be placed and compacted as described below:

- 1. Regrading and compacting tailings should be completed using loose lifts no thicker than 12 inches and compacted to at least 90 percent of the maximum dry density per ASTM D 1557. The regraded tailing material would have a minimum angle of internal friction of 34 degrees when compacted as recommended herein and therefore be consistent with our stability analysis assumptions. The regraded tailings should be benched into the face of the existing slopes. Benching should be in accordance with the WSDOT *Standard Specifications* and extend at least 5 feet into the existing slope. Earthwork activities should occur during the drier summer months.
- 2. Tailing fines might be encountered during regrading of the tailing embankments. Tailing fines encountered during construction might require removal or stabilization using a geosynthetic fabric or replaced with new fill material as approved by the geotechnical engineer.
- 3. Surface water should be intercepted and diverted away from the top of the reconstructed slopes to prevent scouring (rilling) on the slope face. Ideally, a surface water control ditch could be constructed along the top of the slopes to intercept surface water runoff and to direct it away from the face of the slopes.
- 4. A dozer should be used to track-walk the slope face and temporary erosion control and slope protection measures should be implemented until vegetation is established for permanent erosion control purposes.
- 5. Local surficial failures or general erosion could occur until a vegetation is established on the slopes. Some raveling and rilling of the slopes should be expected unless a temporary erosion control product is applied.

REFERENCES

Geo-Slope International, Inc. 2012. Slope/W, Geostudio, Version 8.14.1

Hart Crowser, 2013. Van Stone Mine Remedial Investigation. November 2013.

Klohn Leonoff, 1990. Tailings Disposal Design Report, Van Stone Mine. September 5, 1990.

U.S. Geological Survey "U.S. Seismic Design Map," Accessed March 13, 2017. https://earthquake. usgs.gov/hazards/designmaps/usdesign.php

Projection: NAD 1983 StatePlane Washington North FIPS 4601 Feet

Have we delivered World Class Client Service? Please let us know by visiting **www.geoengineers.com/feedback**.

