Consulting Geotechnical Engineers and Geologists

#1658 0 816/1/91

REPORT OF GEOTECHNICAL SERVICES
SUBSURFACE HYDROCARBON STUDY
CHEVRON SERVICE STATION 0129
SEATTLE, WASHINGTON
FOR
CHEVRON U.S.A.

INTERIM SOIL GOV JS

REGERED

Ark 10 host

DEPT. OF ECOLOGY

¥4658

REPORT OF GEOTECHNICAL SERVICES
SUBSURFACE HYDROCARBON STUDY
CHEVRON SERVICE STATION 0129
SEATTLE, WASHINGTON
FOR
CHEVRON U.S.A.

Consulting Geotechnical Engineers and Geologists

December 11, 1990

Chevron U.S.A. Inc. P.O. Box 220 Seattle, Washington 98111

Attention: Mr. Steve Schuller

This letter transmits five copies of our report of geotechnical services for a subsurface hydrocarbon study at Chevron Service Station 0129 in Seattle, Washington. Our services were verbally authorized by Chevron on December 21, 1989, and have been performed under the terms of Contract Number M66CNW00699X.

We appreciate the opportunity to be of service to Chevron U.S.A. Please call if you have any questions regarding this report.

Yours very truly,

GeoEngineers, Inc.

James A. Miller, P.E.

Principal

CLH: JAM: cs

File No. 0372-068-B04

GeoEngineers, Inc. 2405 140th Ave. NE, Suite 105 Bellevue, WA 98005 Telephone (206) 746-5200 Fax. (206) 746-5068

TABLE OF CONTENTS

INTRODUCTION SCOPE SITE DESCRIPTION REMOVAL OF UNDERGROUND STORAGE TANKS AND RELATED FACILITIES BACKFILLING OF THE EXCAVATIONS SUBSURFACE SOIL CONDITIONS GROUND WATER CONDITIONS SUBSURFACE HYDROCARBONS AND SOIL CHEMISTRY EXCAVATIONS AND SOIL STOCKPILES EXPLORATORY BORING SOIL SAMPLES GROUND WATER CHEMISTRY HYDROCARBON VAPORS SOIL STOCKPILE DISPOSAL LIMITATIONS	Page No. 1 1 2 3 4 5 6 7 8 9 10 10 10
List of Tables	
SUMMARY OF SOIL CHEMICAL ANALYTICAL RESULTS OBTAINED FROM UNDERGROUND FACILITY EXCAVATIONS SUMMARY OF SOIL CHEMICAL ANALYTICAL RESULTS FROM SOIL STOCKPILES SUMMARY OF SOIL CHEMICAL ANALYTICAL RESULTS BORING SAMPLES SUMMARY OF PRODUCT SAMPLE RESULTS SUMMARY OF GROUND WATER AND HYDROCARBON VAPOR RESULTS MONITOR WELLS	Table No. 1 2 3 4 5
List of Figures	
VICINITY MAP SITE PLAN SURROUNDING PROPERTY GROUND WATER CONTOUR MAP ON 2/28/90 GROUND WATER CONTOUR MAP ON 5/8/90	Figure No. 1 2 3 4 5
APPENDIX A	
FIELD EXPLORATIONS DRILLING AND SOIL SAMPLING PROGRAM FIELD SCREENING OF SOIL SAMPLES MONITOR WELL CONSTRUCTION GROUND WATER SAMPLING PROGRAM GROUND WATER ELEVATIONS HYDROCARBON VAPOR CONCENTRATIONS CHEMICAL ANALYTICAL PROGRAM	Page No. A-1 A-1 A-2 A-3 A-4 A-4 A-4

TABLE OF CONTENTS (CONTINUED)

List of Appendix A Figures

List of Appendix A Figures	
	Figure No.
SOIL CLASSIFICATION SYSTEM KEY TO BORING LOG SYMBOLS LOGS OF MONITOR WELLS LOG OF RECOVERY WELL	A-1 A-2 A-3 thru A-16 1-17
APPENDIX B	Page No.
CHEMICAL ANALYTICAL DATA - SOIL SAMPLES	B-1 thru B-40
APPENDIX C	
CHEMICAL ANALYTICAL DATA - MONITOR WELL BORING SAMPLES	Page No.
AND GROUND WATER SAMPLES	C-1 thru C-23

REPORT OF GEOTECHNICAL SERVICES SUBSURFACE HYDROCARBON STUDY CHEVRON SERVICE STATION 0129 SEATTLE, WASHINGTON

FOR

CHEVRON U.S.A.

INTRODUCTION

The results of our subsurface hydrocarbon study at Chevron Service Station 0129 are presented in this report. The service station site is located northeast of the intersection between Northeast 47th Street and Brooklyn Avenue Northeast in Seattle, Washington. The site location is shown relative to surrounding physical features on the Vicinity Map, Figure 1.

Chevron Service Station 0129 was undergoing renovation during our initial site visits. The service station renovation consisted of the removal of existing underground fuel storage tanks, fuel lines and service islands, followed by excavation for the installation of new underground gasoline storage tanks, service islands and fuel lines. The general layout of the service station site and the locations of the former underground tanks are shown on the Site Plan, Figure 2. The site is shown relative to surrounding properties in Figure 3.

SCOPE

The purpose of our study is to explore subsurface soil and ground water conditions at the site for the potential presence of residual hydrocarbons. The scope of services completed for this project is listed below.

- Observe and document the removal of four underground fuel storage tanks and examine these tanks for evidence of corrosion or leaks.
- Observe and document the removal of fuel service islands and fuel lines.
- Obtain soil samples from the site's underground facility excavations for field screening tests and for chemical analysis of residual hydrocarbons.

- 4. Monitor compaction of backfill in the former underground fuel storage tanks excavation.
- 5. Obtain soil samples from soil stockpiles (soil removed from the underground facility excavations) for chemical analysis to characterize the soil.
- 6. Obtain permission for transporting soil stockpiles to the Cedar Hills Landfill for disposal.
- 7. Monitor the drilling of 14 exploratory borings and obtain soil samples from the borings at 5-foot intervals for field screening of residual hydrocarbons.
- 8. Submit at least one soil sample from each boring for chemical analysis of residual hydrocarbons.
- 9. Install a 2-inch-diameter PVC monitor well casing with a flush-grade lockable surface monument in each exploratory boring.
- 10. Develop the well screens by hand bailing with a stainless steel bailer.
- 11. Determine the well casing rim elevations to an accuracy of 0.01 feet using an engineer's level and an assumed site datum.
- 12. Measure water table elevations in the wells and sample each well for the presence of liquid hydrocarbons.
- 13. Measure the air space in each well casing for the presence of hydrocarbon vapors using a Bacharach TLV Sniffer calibrated to hexane.
- 14. Obtain ground water samples from the monitor wells for chemical analysis of dissolved hydrocarbons. Submit selected ground water samples for chemical analysis of dissolved lead.
- 15. Monitor the drilling and construction of an 8-inch-diameter liquid hydrocarbon recovery well.

SITE DESCRIPTION

The site is generally level and is situated at an elevation of approximately 200 feet above mean sea level. The area around the site slopes toward the south and southwest. The local geology consists of a glacial till cap overlying a thick sequence of sand. The site is located within a commercial and residential area in the University District of

Seattle, Washington (Figure 4). A parking lot and drive-through bank facility are located directly north of the property. A Seafirst Bank facility is located across an alley to the east. Small businesses and residential apartments are located west and south of the site, across Brooklyn Avenue Northeast and Northeast 47th Street. Circle K operates a convenience store/gasoline station on the southwest corner of the intersection between Northeast 47th Street and Brooklyn Avenue Northeast.

The renovated Chevron Service Station facility consists of a convenience store, four service islands and three underground gasoline storage tanks located south of the service islands.

REMOVAL OF UNDERGROUND STORAGE TANKS AND RELATED FACILITIES

O'Sullivan (O'Sullivan Construction, Inc.) removed three underground gasoline storage tanks from the northern portion of the site, two service islands, and associated fuel lines between January 3 and 12, 1990. The three removed underground gasoline storage tanks consisted of two 12,000-gallon steel tanks and one 5,000-gallon steel tank. O'Sullivan also completed an excavation in the southwestern portion of the site for the installation of the site's new underground gasoline storage tanks during this time. An abandoned 1,000-gallon underground fuel storage tank was discovered on January 8, 1990 in the eastern portion of the new gasoline tank excavation. The tank had been filled with pea gravel at the time of abandonment. We were unable to determine the type of fuel that had been stored in the abandoned tank. The location of the former underground facilities are shown in Figure 2.

A representative of GeoEngineers was present to observe the removal of the site's underground facilities and to obtain soil samples from the resulting excavations. Minor pitting and corrosion were observed on the southernmost gasoline tanks during removal procedures. No pitting or corrosion was observed on the northern gasoline tank. Severe corrosion was observed on the abandoned fuel tank. No holes were observed in any of these tanks.

The backfill surrounding the former underground facilities and some of the adjacent native soil was excavated and stockpiled temporarily on site. The backfill and native soil were placed in four separate soil stockpiles.

The soil stockpiles included (1) a stockpile from the former gasoline tanks excavation, (2) a stockpile from the area surrounding the abandoned fuel tank, (3) a stockpile from the eastern fuel line/service island excavation, and (4) a stockpile from the western fuel line/service island excavation. Additionally, soil removed from the new gasoline tank excavation was placed in two separate soil stockpiles.

The underground facilities excavations ranged in depth from 4 feet (fuel line excavations) to 15 feet (former gasoline tank excavation) below the ground surface. Ground water not observed in any of the excavations. The limits of the underground facilities excavations are shown in Figure 2.

BACKFILLING OF THE EXCAVATIONS

The former gasoline tank and fuel line/service island excavations were backfilled between January 5 and 7, 1990 with stockpiled soil which earlier had been removed from these excavations and with soil obtained during the excavation for the new gasoline tanks. We recommended to O'Sullivan that the backfill be compacted to at least 95 percent of the laboratory maximum dry density, based on the ASTM D-1557 compaction test procedure. A GeoEngineers representative evaluated the compaction and in-place density of the backfill placed in the excavation on January 5, 1990 and again on January 9, 1990 after the backfilling procedures were completed. GeoEngineers was not on site to monitor the entire backfilling and compaction operations.

GeoEngineers made additional compaction recommendations to O'Sullivan, based on the results of our January 5 and 9, 1990 field testing. Our compaction test results from January 5 and 9, 1990 indicated that the backfill in the northeast quadrant of the former gasoline tank excavation was less than the recommended 95 percent of the laboratory maximum dry density. We recommended that the contractor remove 1 to 2 feet of the backfill in this area and that additional compaction effort be applied to attain the proper compaction. At Chevron's request, a GeoEngineers representative visited the site to evaluate the subgrade footing excavation for the extension of the service station canopy on January 17, 1990. Based

on this site visit, we recommended to the contractor that further compaction effort be applied to bring compaction from loose to dense in the subgrade footing excavation.

SUBSURFACE SOIL CONDITIONS

Subsurface soil conditions at the site were observed during the removal and installation of underground facilities and explored by drilling 15 exploratory borings (MW-1 through MW-14 and R-1) at the locations shown in Figures 4 and 5. Details of the field exploration program and the boring logs are presented in Appendix A.

Borings MW-1 and R-1 encountered medium stiff to hard silt at approximately 27 and 30 feet below the ground surface, respectively.

GROUND WATER CONDITIONS

Ground water conditions were explored by constructing 2-inch-diameter monitor wells in 14 of the exploratory borings (MW-1 through MW-14) and an 8-inch-diameter recovery well (R-1). Construction details for the wells are presented in Appendix A.

Ground water was encountered in each exploratory boring. Water levels were measured in 12 of the 14 monitor wells (MW-2 through MW-7 and MW-9 through MW-14) on February 28 and May 8, 1990. The water level in R-1 was measured on May 8, 1990. The depth to ground water in the 12 monitor wells ranged from approximately 14 to 17.5 feet beneath the ground surface at the time of our measurements on February 28, 1990. The ground water levels were approximately 0.5 feet lower on May 8, 1990 than on February 28, 1990. The depth to ground water in R-1 was approximately 16 feet below the ground surface on May 8, 1990. Water table elevations based on our February 28 and May 8, 1990 measurements are shown in Figures 4 and 5, respectively. Based on these water table elevations, the shallow ground water beneath the site migrates generally toward the southeast.

The service station design plans were changed during the service station renovation procedures. As a result of the change in plans, MW-1 is located directly beneath the new location of the northeastern service island. A horizontal extension pipe was placed on the wellhead to provide access to the well for future abandonment purposes and for vapor concentration/ground vacuum measurements.

The depth to ground water was measured at 15.84 feet below the ground surface in MW-8 on February 8, 1990. Well MW-8 was found to be plugged at a depth of approximately 15 feet on February 20, 1990, three weeks after it was installed. Well MW-8 was destroyed during final service station renovation procedures.

SUBSURFACE HYDROCARBONS AND SOIL CHEMISTRY

The potential presence of hydrocarbons in the subsurface was evaluated by:

- 1. Performing field screening tests on soil samples obtained from the excavations and exploratory borings. The field screening methods employed included visual examination, sheen testing, and headspace vapor testing. The field screening methods are described in Appendix A.
- Submitting selected soil samples from each excavation and exploratory boring for one or more of the following chemical analyses: BETX (benzene, ethylbenzene, toluene and xylenes) by EPA Method 8020 and fuel hydrocarbons (gasoline and diesel) by EPA Method 8015 (modified).
- 3. Submitting soil samples from the soil stockpiles for one or more of the following chemical analyses to characterize the soil: TPH (total petroleum hydrocarbons) by EPA Method 418.1; fuel hydrocarbons by EPA Method 8015 (modified); BETX by EPA Method 8020; PCBs (polychlorinated biphenyls) by EPA Method 8080; EP Toxicity (metals); and purgeable halocarbons by EPA Method 8010.
- 4. Submitting ground water samples from each monitor well for chemical analysis of BETX by EPA Method 8020 and fuel hydrocarbons by EPA Method 8015 (modified).
- Submitting a sample of liquid hydrocarbons for chemical analysis of fuel hydrocarbons by EPA Method 8015 (modified).
- 6. Measuring the air space in the monitor well casings for hydrocarbon vapors using a Bacharach TLV Sniffer calibrated to hexane.

EXCAVATIONS AND SOIL STOCKPILES

Field screening results indicated the presence of residual hydrocarbons in soil from: (1) the base and the walls of the former gasoline tanks excavation, (2) the eastern fuel line/service island excavation, (3) the fuel line excavation for the new gasoline tanks, and (4) the southeast and northeast base, and the south wall of the new underground gasoline tanks excavation. Field screening detected little or no evidence of residual hydrocarbons in soil from the base and walls of the other excavations.

Discrete soil samples were obtained from the base and walls of each excavation for chemical analysis of residual hydrocarbons. Approximate soil sample locations are shown in Figure 2. Chemical analytical results for soil samples obtained from each excavation are summarized in Table 1. Laboratory reports are presented in Appendix B.

Chemical analytical results indicated that residual fuel hydrocarbons remain in the former gasoline tanks excavation. Soil samples obtained from the base of the excavation resulted in fuel hydrocarbon concentrations, quantified as gasoline, ranging from 897 ppm to 8,190 ppm (Sample Nos. 900104-2, 900104-5 and 900104-6). Benzene concentrations for these samples ranged from 0.60 ppm to 15.5 ppm. Chemical analytical results of soil samples obtained from the walls of the excavation indicated nondetectable concentrations of fuel hydrocarbons. Benzene was also not detected in the soil samples obtained from the excavation walls. Chemical analysis of ethylbenzene, toluene, and xylenes in soil samples obtained from the excavation walls resulted in concentrations ranging from less than 0.05 to 7.64 ppm.

Chemical analytical results indicated that residual fuel hydrocarbons and BETX were not detected in soil samples obtained from the vicinity of the abandoned fuel storage tank.

Fuel hydrocarbons, quantified as gasoline, were detected at a concentration of 1,023 ppm (Sample No. 900112-25) in the south wall of the new gasoline tanks excavation. Chemical analysis resulted in concentrations of fuel hydrocarbons, quantified as gasoline, ranging from less than 10 ppm to 122 ppm in other portions of the new gasoline tanks excavation. Benzene was detected at a concentration of 0.92 ppm, the sample (Sample No. 900112-31) from the base of the excavation's northeast corner. Benzene

was not detected in the other soil samples obtained from the excavation. Chemical analysis of ethylbenzene, toluene, and xylenes resulted in concentrations ranging from less than 0.05 ppm to 85.1 ppm in soil samples obtained from the new gasoline tanks excavation.

Chemical analysis of fuel hydrocarbons, quantified as gasoline, in the east fuel line excavation resulted in 4,397 ppm (Sample No. 900110-15) and 24 ppm (Sample No. 900108-13). Benzene concentrations were 0.49 ppm in Sample No. 900110-15 and less than 0.05 ppm in Sample No. 900108-13. Ethylbenzene, toluene, and xylene concentrations ranged from 0.64 ppm to 138 ppm in the soil samples obtained from the east fuel line excavation.

Chemical analysis of fuel hydrocarbons, quantified as gasoline, resulted in 470 ppm (Sample No. 900110-14) in the east service island excavation and 955 ppm (Sample No. 900110-16) in the west fuel line/service island excavation. Benzene concentrations were 0.49 ppm in Sample No. 900110-14 and less than 0.05 ppm in Sample No. 900110-16. Ethylbenzene, toluene, and xylene concentrations ranged from less than 0.05 ppm to 17.4 ppm in these soil samples.

Composite soil samples were obtained from the site's soil stockpiles and from exploratory boring soil cuttings for chemical analysis of residual hydrocarbons. Soil below the abandoned fuel tank was also tested for the presence of PCBs, purgeable halocarbons, and selected metals because the contents of the tank were unknown. Based on the results of our initial site studies a vapor extraction system was installed at the site to remediate subsurface hydrocarbons. A composite sample was also obtained from a soil stockpile created by excavating trenches for the VES. Chemical analytical results for the soil stockpiles are summarized in Table 2. Laboratory reports are presented in Appendix B.

EXPLORATORY BORING SOIL SAMPLES

Field screening tests on soil samples from 14 exploratory borings indicated the presence of residual hydrocarbons in MW-1, MW-2, MW-3, MW-4, MW-7, MW-10, MW-11 and MW-12. Soil from the recovery well boring was not field screened or submitted for chemical analysis. Field screening

Geo Engineers

indicated the presence of residual hydrocarbons in MW-1 through MW-4, MW-7, MW-10, MW-12 and MW-13. Field screening data are presented on the monitor well logs in Appendix A.

Soil samples from each boring were selected for chemical analysis on the basis of field screening results and depth. Chemical analytical results for these soil samples are summarized in Table 3. Laboratory reports are presented in Appendix C.

Chemical analysis of the soil samples resulted in fuel hydrocarbon concentrations, quantified as gasoline, ranging from 45 ppm to 5,568 ppm in MW-3, MW-4 and MW-12. Benzene was detected in MW-3, MW-4, MW-7 and MW-12 at concentrations of 27.1 ppm, 1.58 ppm, 0.17 ppm and 0.77 ppm, respectively. Concentrations of ethylbenzene, toluene, and xylenes ranging between 0.10 to 614 ppm were also detected in MW-3, MW-4, MW-7, MW-8, MW-11, MW-12 and MW-13. Fuel hydrocarbon and BETX concentrations were nondetectable in soil samples submitted from the other exploratory borings.

GROUND WATER CHEMISTRY

Liquid hydrocarbons were detected on the water table in MW-4 and MW-12. Measurements taken on February 28, 1990 indicated that MW-4 and MW-12 contained 2.27 and 1.22 feet of liquid hydrocarbons, respectively. A product sample was submitted from MW-4 which indicated that the product was gasoline. The results of the product sample analysis are presented in Table 4.

Ground water samples were obtained from the monitor wells between January 23 and February 20, 1990. Chemical analytical data for the ground water samples from each well with the exception of MW-4 are summarized in Table 5. Ground water samples were not obtained from MW-4 due to the presence of liquid hydrocarbons in the well. Laboratory reports are presented in Appendix C.

Chemical analytical results of fuel hydrocarbons indicated a concentration of 2,038 ppm gasoline in the ground water sample from MW-12. Fuel hydrocarbon concentrations, quantified as gasoline, ranged from 25 ppm to 526 ppm in MW-2, MW-3 and MW-6 through MW-11. Ground water from the remaining wells contained nondetectable concentrations of fuel hydrocarbons. Benzene concentrations ranged from 0.088 ppm to 29.1 ppm in 8 of the

14 monitor wells. Benzene was not detected in ground water samples from MW-5, MW-6, MW-13 and MW-14. Concentrations of ethylbenzene, toluene, and xylenes ranged from less than 0.001 ppm to 49.7 ppm in all of the ground water samples submitted. (Ground water from monitor wells MW-1 through MW-3 was analyzed for dissolved lead.) Dissolved lead was not detected in these wells.

HYDROCARBON VAPORS

The monitor well casings were tested for the presence of hydrocarbon vapors on February 28, 1990 and on April 14, 1990, using a Bacharach TLV Sniffer calibrated to hexane. The vapor concentrations measured are summarized in Table 5. Hydrocarbon vapor concentrations ranged from less than 400 ppm to greater than 10,000 ppm.

SOIL STOCKPILE DISPOSAL

The portions of soil stockpiles from the new gasoline tanks excavation which were not used to backfill other excavations on site were transported to two landfills for disposal after chemical analytical results were received. Approximately 450 cubic yards of this soil did not contain concentrations of residual fuel hydrocarbons and were transported to Coal Creek Landfill for disposal. Approximately 450 cubic yards of additional stockpiled soil from the exploratory borings and from the VES installation trenches contained concentrations of residual hydrocarbons and were transported to Cedar Hills Landfill for disposal.

Soil cuttings obtained during drilling of MW-1 through MW-14 were transported to Cedar Hills Landfill for disposal. Soil cuttings obtained during drilling of the recovery well, RW-1, were transported to Pacific Topsoil for disposal. Chemical testing of samples from the soil stockpiles and drill cuttings are summarized in Table 2.

LIMITATIONS

This report has been prepared for use by Chevron U.S.A. in their evaluation of subsurface hydrocarbons at Chevron Service Station 0129 in Seattle, Washington. This report may be made available to regulatory agencies. The report is not intended for use by others and the information contained herein may not be applicable to other sites.

The data reported herein are based on the sampling of several excavations and 14 monitor well borings at the service station property. It is always possible that additional subsurface hydrocarbons may exist in areas that were not explored and sampled.

Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted practices in this area at the time the report was prepared. No other conditions, express or implied, should be understood.

0

If you have any questions concerning this report, please call.

Respectfully submitted,

GeoEngineers, Inc.

Cheryl L. Haines by form Cheryl L. Haines

James A. Miller, P.E.

Principal

CLH: JAM: cs

OBTAINED FROM UNDERGROUND FACILITY EXCAVATIONS (1) SUMMARY OF SOIL CHEMICAL ANALYTICAL RESULTS TABLE 1 (Page 1 of 2)

Field Screening			Sheen (6)			SS	HS	SS	SS	HS	SS	SS			SS	SS	SS	SS
Field Sc	Vapor	Concentration	(bbm) (5)			<100	>10,000	<100	<100	1,500	2,500	<100			<100	<100	<100	110
		Fuel Hydrocarbons (ppm) (4)	Diesel			ND	ND	ND	ND	ND	ND	ND			MD	ND	ND	ND
		Fuel Hydrocark	Gasoline			ND	8,190	QN	ON .	897	2,254	ND			QN	ND	QN	QN
)	×			ND	754	7.64	QN	107	151	0.63			ND	QN	QN	09.0
) (mdo	⊢			QN	1,024	0.07	ON	27.1	62.1	ON			ON	ND	ON	ON
		BETX (ppm) (3)	ш			ON	145	0.86	ND	15.4	2.92	0.10			ND	ND	ND	QN
		ш	В			QN	15.5	0.35	ND	09.0	1.80	QN			ND	QN	ND	QN
		Depth	(ft)			0.9	14.0	7.5	7.0	13.0	14.0	0.9			7.0	7.0	7.0	7.0
			Location	FORMER GASOLINE	TANK EXCAVATION	North Wall	Base - North Tank	East Wall	West Wall	Base - Middle Tank	Base - South Tank	South Wali	ABANDONED FUEL	STORAGE TANK	South Wall	East Wall	West Wall	North Wall
		Date	Sampled			01/03/90	01/04/90	01/04/90	01/04/90	01/04/90	01/04/90	01/04/90			01/10/90	01/10/90	01/10/90	01/10/90
		Soil Sample	Number (2)			900103-1	900104-2	900104-3	900104-4	900104-5	900104-6	900104-7			900108-17	900108-18	900108-19	900108-20

- (1) Chemical analysis by Sound Analytical Service. Laboratory reports are presented in Appendix B.
- (2) Sample locations are shown in Figure 2.
- (3) BETX = benzene, ethylbenzene, toluene and xylenes by EPA Method 8020. Detection limit is 0.05 ppm.
- (4) Fuel hydrocarbons by EPA Method 8015 modified. Detection limit is 10 ppm.
- (5) Vapor measurements were obtained by using a Bacharach TLV Sniffer calibrated to hexane.
- (6) "NS" indicates "no sheen"; "SS" indicates "slight sheen"; "MS" indicates "moderate sheen"; "HS" indicates "Heavy Sheen"
- "<" indicates "less than"; ">" indicates "greater than"; "ff" indicates "feet"
- "ppm" indicates "parts per million"; "ND" indicates "not detected"

TABLE 1 (Page 2 of 2) (1)

Field Screening	tration) (3) Sheen (6)			SS 01	SN 00	SS 00	SN 00	0 MS		OH HS		SN 00	SS 00		OO HS	SS 0	000 HS			00 MS	SH 00	00 MS	SS 01	
	Val	T			<100	<100	<100	<100	200		<100		<100	<100		1,200	<100	>10,000			000'7	2,100	2,300	<100	
	Fuel Hydrocarbons (ppm) (4)	e Diesel		_	QN	ND	ND	QN	IN		QN		GN	ON		ON	ON	QN			QN	ON	ND	QN	
	Fuel Hydro				QN	QN ND	QN	QN	IN		11 ND		15 ND	14 ND		1,023	16 ND	1 122			53 24	8 4,397	7 470	25 955	
	(3)	×			QN	ND	ON	ND	IN		0.11		0.15	0.14		7 8.04	0.16	3 85.1			3.63	5 138	5 17.4	7 4.25	
	BETX (ppm) (3)	-			ON .	ND	QN	ON	IN		N.		ND	ND.		0.27	ND	12.3			1.38	17.5	3.25	3 0.47	
	BETX	ш			2	GN	ON	ON	IN		R		ON	QN		ND	OH.	9.1			0.64	16.4	1.02	0.78	
		В			ND	ON	ND	ON	TN		ND		ND	ND		QN	QN	0.92			0.49	ND	0.49	QN	
	Depth	(£)			7.0	7.0	7.0	15.0	15.0		13.0		0.9	14.0		9.5	7.6	14.0			7.0	4.5	4.5	4.5	
		Location	NEW GASOLINE	TANK EXCAVATION	West Wall	North Wall	East Wall	Base (North end)	Base (Southwest	Corner)	South Wall	(Southwest Corner)	West Wall (Center)	Base (Southwest	Center)	South Wall (Center)	East Wall (So. Center)	Base (Northeast Corner)	FUEL LINE/SERVICE	ISLAND EXCAVATIONS	East Fuel Line	East Fuel Line	East Service Island	West Fuel Line/	Service Island
	Date	Sampled			01/08/90	01/08/90	01/08/90	01/08/90	01/12/90		01/12/90		01/12/90	01/12/90		01/12/90	01/12/90	01/12/90			01/08/90	01/10/90	01/10/90	01/10/90	
	Soil Sample	Number (2)			900108-9	900108-10	900108-11	900108-12	900112-21		900112-22		900112-23	900112-24		900112-25	900112-29	900112-31			900108-13	900110-15	900110-14	900110-16	

- (1) Chemical analysis by Sound Analytical Service. Laboratory reports are presented in Appendix B.
 - (2) Sample locations are shown in Figure 2.
- (3) BETX = benzene, ethylbenzene, toluene and xylenes by EPA Method 8020. Detection limit is 0.05 ppm.
- (4) Fuel hydrocarbons by EPA Method 8015 modified. Detection limit is 10 ppm.
- (5) Vapor measurements were obtained by using a Bacharach TLV Snifter calibrated to hexane.
- (6) "NS" indicates "no sheen"; "SS" indicates "slight sheen"; "MS" indicates "moderate sheen"; "HS" indicates "Heavy Sheen" "<" indicates "less than"; ">" indicates "greater than"; "ft" indicates "feet"
- "ppm" indicates "parts per million"; "ND" indicates "not detected"

TABLE 2 (PAGE 1 OF 3) SUMMARY OF SOIL CHEMICAL ANALYTICAL RESULTS FROM SOIL STOCKPILES (1)

Sample	Soil Stockpile	250.5 - Marc - 1 - W	NAME OF THE OWNER OWNER OF THE OWNER OWNE	Concentration	Detection
Number	Description	Method	Parameter	(ppm)	Limit (ppm)
900105-8*	Soil from former	(EPA Method 8020)	Benzene	DM	0.05
	gasoline tank	Aromatic Volatile	Ethylbenzene	1.02	0.05
	excavation. This	Hydrocarbons	Toluene	0.43	0.05
	soil was used to		Total xylenes	9.10	0.05
	backfill the former	(EPA Method 8015,	Gasoline	356	10
	gasoline tanks	modified)	Diesel	ND	10
	excavation.	Fuel Hydrocarbons			
900110-16A	Soil from below	(EPA Method 8015,	Gasoline	292	10
	abandoned UST in	modified)	Diesel	ND	10
	the new USTs	Fuel hydrocarbons			
	excavation. This	(EPA Method 418.1)			
	soil was trans-	Total Petroleum	TPH	272	5
	ported to Cedar	Hydrocarbons (TPH)		Something and the second secon	
	Hills Landfill	Polychlorinated	PCBs	ND	0.1
	for disposal.	Biphenols (PCBs)			
	THE TABLE OF STANDARD THE BOOK OF THE	(EPA Method 8020)	Benzene	3.41	0.05
		Aromatic Volatile	Ethylbenzene	6.91	0.05
		Hydrocarbons	Toluene	0.16	0.05
			Total Xylenes	24.7	0.05
		EP Toxicity (metals)	Arsenic	ND	0.1
		1.50 TE 1911	Barium	0.4	0.1
			Cadmium	ND	0.1
			Chromium	ND	0.1
			Lead	ND	0.1
			Mercury	ND	0.05
			Selenium	ND	0.1
			Silver	ND	0.1
		(EPA Method 8010)	Tetrachloro-	0.07	0.1
		Purgeable	ethylene		
		Halocarbons	170 TO 190 SPA SPA OF TO TOO TO TO TO	p.	
900112-30*	Soil from east	(EPA Method 8020)	Benzene	ND	0.05
	fuel line/service	Aromatic Volatile	Ethylbenzene	ND	0.05
	island excavation.	Hydrocarbons	Toluene	0.16	0.05
	This soil was used		Total xylenes	39.2	0.05
	to backfill the	(EPA Method 8015,	Gasoline	434	10
	former gasoline	modified)	Diesel	ND	10
	tanks excavation.	Fuel Hydrocarbons			

⁽¹⁾ Chemical analysis by Sound Analytical Service and Analytical Techologies. Laboratory reports are presented in Appendix B.

^{**&}quot; indicates "composite samples"; "NA" indicates "not applicable"; "ppm" indicates parts per million"; "ND" indicates "not tested"

TABLE 2 (PAGE 2 OF 3) (1)

Sample Number	Soil Stockpile Description	Method	Parameter	Concentration (ppm)	Detection Limit (ppm)
900112-32*	Soil from west	(EPA Method 8020)	Benzene	ND	0.05
	fuel line/service	Aromatic Volatile	Ethylbenzene	ND	0.05
	island excavation.	Hydrocarbons	Toluene	ND	0.05
	This soil was used	5	Total xylenes	0.11	0.05
	to backfill the	(EPA Method 8015,	Gasoline	ND	10
	former gasoline	modified)	Diesel	ND	10
	tanks excavation.	Fuel Hydrocarbons			
900112-27*	Soil from new	(EPA Method 8020)	Benzene	ND	0.05
	gasoline tanks	Aromatic Volatile	Ethylbenzene	2.28	0.05
	excavation. This	Hydrocarbons	Toluene	ND	0.05
	soil was trans-	8	Total xylenes	0.11	0.05
	ported to Cedar	(EPA Method 8015,	Gasoline	266	10
	Hills Landfill	modified)	Diesel	ND	10
	for disposal.	Fuel Hydrocarbons			
		EP Toxicity	Arsenic	ND	0.1
		(metals)	Barium	0.3	0.1
		Code and the second of the	Cadmium	ND	0.1
			Chromium	ND	0.1
			Lead	0.1	0.1
			Mercury	ND	0.05
			Selenium	ND	0.1
			Silver	ND	0.1
		Flash Point	Flash Point	147 degress F.	NA
			PMCC	Post.	
			degrees F		
900112-28*	Soil from new	(EPA Method 8020)	Benzene	ND	0.05
	gasoline tanks	Aromatic Volatile	Ethylbenzene	ND	0.05
	excavation. This	Hydrocarbons	Toluene	ND	0.05
	soil was trans-		Total xylenes	0.16	0.05
	ported to Coal		100000000000000000000000000000000000000		
	Creek Landfill				
	for disposal.				

⁽¹⁾ Chemical analysis by Sound Analytical Service and Analytical Techologies. Laboratory reports are presented in Appendix B.

[&]quot;" indicates "composite samples"; "NA" indicates "not applicable"; "ppm" indicates parts per million"; "ND" indicates "not tested"

TABLE 2 (PAGE 3 OF 3) (1)

Sample Number	Soil Stockpile Description	Method	Parameter	Concentration (ppm)	Detection Limit (ppm)
900207-1	Soil cuttings obtained during the drilling of exploratory borings. This was transported to Cedar Hills Landfill for disposal.	(EPA Method 8020) Aromatic Volatile Hydrocarbons	Benzene Ethylbenzene Toluene Total xylenes	3.58 26.9 52.6 139	0.05 0.05 0.05 0.05
900207-2		(EPA Method 8015, modified) Fuel Hydrocarbons	Gasoline Diesel	1,904 ND	10 10
900214-1	Soil stockpiles from trenches for installation of the site's vapor extraction system. This so	(EPA Method 8020) Aromatic Volatile Hydrocarbons I	Benzene Ethylbenzene Toluene Total xylenes	ND ND ND ND	0.05 0.05 0.05 0.05
	was transported to Cedar Hills Landfill for disposal.		Gasoline Diesel	ND ND	10 10
S-1	Seven 55-gallon barrels of oil cuttings obtained during drilling of the recovery well. This soil	(EPA Method 8020) Aromatic Volatile Hydrocarbons	Benzene Ethylbenzene Toluene Total xylenes	ND ND ND ND	0.025 0.025 0.025 0.025
	was transported to Pacific Topsoil in Bothell, WA.	(EPA Method 8015, modified) Fuel Hydrocarbons	Gasoline Diesel	ND ND	5 5

⁽¹⁾ Chemical analysis by Sound Analytical Service and Analytical Techologies. Laboratory reports are presented in Appendix B.

[&]quot;" Indicates "composite samples"; "NA" indicates "not applicable"; "ppm" indicates parts per million"; "ND" indicates "not tested"

TABLE 3
SUMMARY OF SOIL CHEMICAL ANALYTICAL RESULTS
BORING SAMPLES (1)

Boring	Date	Depth		BETX (p	pm) (3)		Fuel Hydrocarl	oons (ppm) (4
Number (2)	Sampled	(ft)	В	E	Т	X	Gasoline	Diesel
MW-1	01/11/90	7	ND	0.10	ND	0.28	ND	ND
MW-1	01/11/90	13	ND	ND	ND	0.18	ND	ND
MW-2	01/11/90	8	ND	0.12	ND	0.14	ND	ND
MW-2	01/11/90	13	ND	0.14	ND	0.31	ND	ND
MW-3	01/12/90	13	ND	ND	ND	0.21	ND	ND
MW-3	01/12/90	18	27.1	88.1	327	614	5,568	ND
MW-4	01/31/90	15.5	1.58	9.71	31.1	52.6	3,267	ND
MW-4	01/31/90	20.5	ND	ND	ND	ND	ND	ND
MW-5	01/31/90	5.5	ND	ND	ND	ND	ND	ND
MW-5	01/31/90	10.5	ND	ND	ND	ND	ND	ND
MW-6	02/01/90	10.5	ND	ND	ND	ND	ND	ND
MW-6	02/01/90	15.5	ND	ND	ND	ND	ND	ND
MW-7	01/30/90	8	ND	ND	ND	ND	ND	ND
MW-7	01/30/90	13	0.17	0.17	0.25	0.93	ND	ND
MW-8	01/30/90	13	ND	ND	ND	0.18	ND	ND
MW-8	01/30/90	18	ND	ND	ND	ND	ND	ND
MW-9	01/30/90	8	ND	ND	ND	0.33	ND	ND
MW-9	01/30/90	13	ND	ND	ND	ND	ND	ND
MVV-10	01/29/90	8	ND	ND	ND	ND	ND	D
MW-10	01/29/90	13	ND	ND	ND	ND	ND	ND
MW-11	01/29/90	13	ND	ND	ND	ND	ND	ND
MW-11	01/29/90	18	ND	ND	0.14	0.34	ND	ND
MW-12	01/30/90	13	ND	ND	ND	0.18	ND	ND
MW-12	01/30/90	23	0.77	1.44	1.19	7.24	45	ND
MW-13	01/29/90	8	ND	ND	ND	ND	ND	ND
MW-13	01/29/90	13	ND	ND	0.12	0.35	ND	ND
MW-14	02/01/90	10	ND	ND	ИD	ND	ND	ND
MW-14	02/01/90	15	ND	ND	ND	ND	ND	ND

- (1) Chemical analysis by Sound Analytical Services. Laboratory reports are presented in Appendix C.
- (2) Sample locations are shown in Figure 3.
- (3) B = benzene, E = ethylbenzene, T = toluene, X = xylenes. BETX by EPA Method 8020. Detection limit is 0.05 ppm.
- (4) Fuel hydrocarbons by EPA Method 8015, modified. Detection limit is 10 ppm.
- "ft" indicates "feet"
- "ppm" indicates "parts per million"
- "ND" indicates "not detected"

TABLE 4 SUMMARY OF PRODUCT SAMPLE RESULTS (1)

Sample	Fuel Hydrocarbons (3)	API	Flash Point
Number (2)	Gasoline	Gravity	PMCC degrees F
MW-4	850,136	52.5	<70

- (1) Chemical Analysis by Sound Analytical Services. Laboratory results are presented in Appendix C.
- (2) Sample Icoations are shown in Figure 3.
- (3) Fuel hydrocarbons by EPA Method 8015, modified in ppm.
- "<" indicates "less than"

SUMMARY OF GROUND WATER AND HYDROCARBON VAPOR RESULTS MONITOR WELLS (1) TABLE 5

	_													
Hydrocarbon Vapor Concentrations(6)	in Well Casings ppm	04/14/90	MN	1,000	3,700	150	1,100	2,000	240	310	3,800	>10,000	3,900	2,500
Hydroc Vapor Conce	in Well Ca	02/28/90	NM	1,600	4,300	2,900	1,400	7,000	095	2,900	5,800	>10,000	2,900	3,100
	Dissolved	Lead(5)	QN	QN	QN	N	N	IN	Ā	N	ħ	N	Ä	Ä
	ons (ppm)(4)	Diesel	ND	N	N	N	QN	Q	QV	QN	QN	QV	QN	ND
	Fuel Hydrocarbons (ppm)(4)	Gasoline	ON	52	85	QN	38.2	526	9.66	89.4	544	2038	QN	ND
		×	0.409	1.120	12.8	0.022	2.43	8.01	4.29	1.99	9.02	28.9	0.176	ON
	K (ppm)(3)	Т	0.043	1.09	14.1	0.005	0.074	8.17	0.489	0.136	5.43	2.67	0.045	QN
	BETX (r	Ш	<0.001	0.161	5.06	QN	0.259	1.21	0.494	0.505	2.15	5.56	0.078	ON
		В	0.088	1.10	1.38	QN	QN	3.28	0.181	0.431	0.342	29.1	QN	ON
	Date	Sampled	01/22/90	01/22/90	01/22/90	05/13/90	02/19/90	02/19/90	02/19/90	02/19/90	02/19/90	02/19/90	02/20/90	05/19/90
	Sample	Number(2)	MW-1	MW-2	MW-3	MW-5	MW-6	MW-7	WW-9	MW-10	MW-11	MW-12	MW-13	MW-14

- (1) Chemical analysis by Sound Analytical Services. Laboratory reports are presented in Appendix C.
 - (2) Sample locations shown in Figure 3.
- (3) B = benzene, E = ethylbenzene, T = toluene, X = xylene. Detection limit is 0.001 ppm,
- (4) Fuel hdyrocarbons by EPA Method 8015, modified. Detection limit is 10 ppm.
 - (5) Dissolved lead by EPA Method 6010. Detection limit is 0.1 ppm.
- (6) Vapor measurements were obtained by using a Bacharach TLV Sniffer calibrated to hexane.
 - "ppm" indicates "parts per million"; "ND" indicates "not detected"
- "<" indicates "less than"; ">" indicates "greater than"
- "NM" indicates "not measured"; "NT" indicates "not tested"

REFERENCE: DRAWING ENTITLED "SITE PLAN, 4700 BROOKLYN AVE., SEATTLE, WA.", BY ROBERT H. LEE & ASSOCIATES FOR CHEVRON U.S.A., INC., DATED 5/25.89.

Geo Engineers

SITE PLAN

FIGURE 2

11.6.90

REJ: BDH

0372-068-BO4

⊗ MW-14 82.21 Chevron Convenience Store Concrete Sidewalk ⊕ MW-8 Destroyed <u>MW−11</u> 83.82 <u>MW−4</u> 84.63 MW-1 Existing Service Islands MW-13 Existing Underground Fuel Storage Tanks 84.34 MW-5 85.60 **●**MW-3 **●**MW-6 86.55 85.84 Concrete Approach Concrete Sidewalk

ALLEY

40 SCALE IN FEET EXPLANATION:

N.E. 47TH STREET

● MW-2 54.53 MONITOR WELL LOCATION AND NUMBER GROUND WATER ELEVATION ON 2/28/90

ASSUMED DATUM ELEVATION OF 100.00 FEET

GROUND WATER FLOW DIRECTION ON 2/28/90

BROOKLYN AVENUE

REFERENCE: DRAWING ENTITLED "SITE PLAN, 4700 BROOKLYN AVE., SEATTLE, WA.", BY ROBERT H. LEE & ASSOCIATES FOR CHEVRON U.S.A., INC., DATED

5/25/89.

BROOKLYN AVENUE

0 20 40
SCALE IN FEET

EXPLANATION:

● MW-2 84.11 MONITOR WELL LOCATION AND NUMBER GROUND WATER ELEVATION ON 5/8/90

83.73 RECOVERY WELL LOCATION AND NUMBER GROUND WATER ELEVATION ON 5/8/90

A ASSUMED DATUM ELEVATION OF 100.00 FEET

GROUND WATER FLOW DIRECTION ON 5/8/90

REFERENCE: DRAWING ENTITLED "SITE PLAN, 4700 BROOKLYN AVE., SEATTLE, WA.", BY ROBERT H. LEE & ASSOCIATES FOR CHEVRON U.S.A., INC., DATED 5/25/89.

APPENDIX A

APPENDIX A

FIELD EXPLORATIONS

DRILLING AND SOIL SAMPLING PROGRAM

Subsurface conditions at the site were explored by drilling 14 monitor well borings and one recovery well boring between January 11 and April 13, 1990, at the locations indicated in Figures 3 and 4. The borings were drilled to depths ranging between 23 and 34 feet using truck-mounted, hollow-stem auger equipment and top-drive air rotary equipment owned and operated by GeoBoring and Development, Inc., Pacific Testing Laboratories and Soil Sampling Service, Inc. The drilling and soil sampling equipment was cleaned with a hot-water pressure washer between each boring. The soil sampling equipment was cleaned in a trisodium phosphate (TSP) wash with distilled water rinse between each sampling attempt.

A hydrogeologist and/or a geotechnical engineer from our staff determined the boring locations (based on general predetermined boring locations established jointly by Chevron and GeoEngineers), examined and classified the soils encountered, and prepared a detailed log of each boring. Soils encountered were classified visually in general accordance with ASTM D-2488-83, which is described in Figure A-1. An explanation of the boring log symbols is presented in Figure A-2. The boring logs are given in Figures A-3 through A-17.

Soil samples were obtained from the exploratory borings using a split-barrel sampler (1.4-inch ID). The sampler was driven 18 inches by a 140-pound weight falling a vertical distance of approximately 30 inches. The number of blows needed to advance the sampler the final 12 inches is indicated to the left of the corresponding sample notations on the boring logs.

One or more soil samples from each boring, with the exception of the recovery well, were selected for chemical analysis based on field screening results and sample depth relative to the ground water table. Samples from the borings that were chemically tested are denoted in our boring logs with a "CA." Chain-of-custody procedures were followed in transporting the soil samples to the analytical laboratory.

FIELD SCREENING OF SOIL SAMPLES

A GeoEngineers representative conducted field screening on soil samples obtained from the site excavations and from exploratory borings. Field screening results are used as a general guideline to delineate areas of potential residual hydrocarbons in soils. In addition, screening results are often used as a basis for selecting soil samples for chemical analysis. The field screening methods employed included: (1) visual examination, (2) sheen testing, and (3) headspace vapor testing using a Bacharach TLV Sniffer calibrated to hexane. The results of headspace and sheen testing for the borings are included on the boring logs. The results of headspace and sheen testing for the excavation soil samples are presented in Table 1.

Visual screening consists of inspecting the soil for the presence of stains indicative of residual petroleum hydrocarbons. Visual screening is generally more effective in detecting the presence of heavier petroleum hydrocarbons such as motor oil, or when hydrocarbon concentrations are high. Sheen testing and measuring headspace vapors are more sensitive screening methods which have been effective in detecting hydrocarbons at concentrations less than regulatory cleanup guidelines.

Sheen testing involves immersion of the soil sample in water and observing the water surface for signs of a sheen. Because of its sensitivity, the sheen method was first tested on soils obtained from a portion of the site believed to be clean and unaffected by residual hydrocarbons. The results of the sheen tests on these soils were established as the background level of sheen for the site. Sheen classifications follow:

	022-2011 TO 000 FE	12/2/2/2/12/14/
No	Sheen	(NS)

Slight Sheen (SS)

Moderate Sheen (MS)

No visible sheen.

Light colorless sheen, spread is irregular, not rapid; film dissipates rapidly. (Note: Background test results were classified SS.)

Light to heavy film, may have some color or iridescence, globular to stringy; spread is irregular to flowing.

Heavy Sheen (HS)

Heavy colorful film with iridescence; stringy, spread is rapid; sheen flows off the sample; most of water surface is covered with sheen.

Headspace vapor testing involves placing a soil sample in a plastic sample bag. The sample bag is sealed and shaken slightly to expose the soil to the air trapped in the bag. The probe of a Bacharach TLV Sniffer is inserted into the bag and the TLV Sniffer withdraws air from the bag. The instrument measures the concentration of combustible vapors present within the sample bag headspace. The TLV Sniffer records concentrations in parts per million (ppm) and is calibrated to hexane. There is no direct relationship between hydrocarbon vapor concentrations measured with the Bacharach TLV Sniffer and concentrations which could be measured through chemical analysis of a soil sample. The lower threshold of significance for the TLV Sniffer in this application is 100 ppm. Background vapor levels were less than 100 ppm at this site.

Field screening results are site specific. The results vary with soil type, soil moisture and organic content, ambient air temperature, and type of contaminant.

MONITOR WELL CONSTRUCTION

Two-inch-diameter, Schedule 40 PVC pipe was installed in each monitor well boring at the completion of drilling. The lower portion of the PVC pipe is machine-slotted (0.02-inch slot width) to allow entry of water, floating hydrocarbons and hydrocarbon vapors into the well casings. Eight-inch-diameter, Schedule 40 PVC pipe was installed in the recovery well boring at the completion of drilling. The lower portion of the PVC pipe is machine-slotted (0.01-inch slot width) to allow entry of water, floating hydrocarbons and hydrocarbon vapors into the well casing. Medium sand was placed in the borehole annulus surrounding the slotted portion of the wells. Well casings are protected within flush-grade surface monuments. Monitor well construction is indicated in Figures A-3 through A-17.

Each monitor well was developed by removing approximately five well volumes of water from the well with a stainless steel bailer.

We determined the elevations of the well casing to the nearest 0.01 foot with an engineers level on February 20, 1990. We used a steel plate at the southwest corner of the site as our datum. The location of the steel plate is shown in Figures 3 and 4. We assumed an elevation of 100.00 feet. Elevations referenced to this datum are included on the monitor well logs.

GROUND WATER SAMPLING PROGRAM

Ground water samples were collected from the monitor wells MW-1 through MW-3 by GeoEngineers on January 23, 1990 and from MW-5 through MW-7 and MW-9 through MW-12 on February 20, 1990. A ground water sample was obtained from MW-13 on February 21, 1990. The water samples were collected with a teflon bailer after at least three well volumes of water were removed from each well casing. The water samples were transferred to septum vials in the field and kept cool during transport to the testing laboratory. Chain-of-custody procedures were followed during transport of the soil samples to the laboratory.

The bailer was cleaned prior to each sampling attempt with a fresh water rinse, a TSP wash and a second fresh water rinse which was followed by a distilled water rinse.

GROUND WATER ELEVATIONS

The depth of the ground water table relative to the monitor well casing rims was measured on February 28 and May 8, 1990. The site measurements were made using a weighted fiberglass tape and water-sensitive paste. Water table elevations were calculated by subtracting the water depth from the casing rim elevations. Water table positions as measured on February 28, 1990 are shown on the monitor well logs.

HYDROCARBON VAPOR CONCENTRATIONS

Hydrocarbon vapor concentrations were measured in each monitor well on February 23 and April 14, 1990. Vapor concentrations in parts per million (ppm) were measured with our Bacharach TLV Sniffer which is calibrated to hexane. These vapor concentrations are shown in Table 5. The lower threshold of significance for the TLV Sniffer in this application is 400 ppm, or 4 percent of the Lower Explosive Limit (LEL) of hexane.

CHEMICAL ANALYTICAL PROGRAM

Sixty-three soil samples from the exploratory borings, excavations and soil stockpiles and 12 ground water samples from the monitor wells were analyzed by Sound Analytical Services, Inc. One soil sample was analyzed by Analytical Technologies, Inc. Additionally, a sample of the liquid product beneath the site was chemically analyzed. The soil, ground water and product samples were submitted for one or more of the following chemical (1) benzene, ethylbenzene, toluene and xylenes (BETX) by gas chromatography/photoionization detection in accordance with EPA Method 8020, (2) fuel hydrocarbons (fuel "fingerprint") using gas chromatography/flame ionization detection techniques in accordance with EPA Method 8015 (modified), (3) total petroleum hydrocarbons (TPH) by freon extraction infrared spectroscopy in accordance with EPA Method 418.1, (4) halogenated volatile organics by gas chromatography/electrolytic conductivity in accordance with EPA Method 8010, (5) PCBs by gas chromatography/electron capture in accordance with EPA Method 8080, (6) EP-toxicity (metals) in accordance with "Test Methods for Evaluating Solid Waste" EPA SW-846, 3rd Edition, and (7) dissolved lead. The analytical data are summarized in Tables 1 through 5. The laboratory data sheets and chain-of-custody forms are included in Appendices B and C.

SOIL CLASSIFICATION SYSTEM

	MAJOR DIVISIONS		GROUP SYMBOL	GROUP NAME
COARSE	GRAVEL	CLEAN GRAVEL	GW	WELL-GRADED GRAVEL, FINE TO COARSE GRAVEL
GRAINED			GP	POORLY-GRADED GRAVEL
SOILS	MORE THAN 50% OF COARSE FRACTION	GRAVEL WITH FINES	GM	SILTY GRAVEL
MORE THAN 50%	ON NO. 4 SIEVE		GC	CLAYEY GRAVEL
RETAINED ON NO. 200 SIEVE	SAND	CLEAN SAND	sw	WELL-GRADED SAND, FINE TO COARSE SAND
			SP	POORLY-GRADED SAND
	MORE THAN 50% OF COARSE FRACTION	SAND WITH FINES	SM	SILTY SAND
	PASSES NO. 4 SIEVE	***************************************	sc	CLAYEY SAND
FINE	SILT AND CLAY	INODOANIO	ML	SILT
GRAINED		INORGANIC	CL	CLAY
SOILS	LIQUID LIMIT LESS THAN 50	ORGANIC	OL	ORGANIC SILT, ORGANIC CLAY
MORE THAN 50%	SILT AND CLAY	***************************************	мн	SILT OF HIGH PLASTICITY, ELASTIC SIL
PASSES NO. 200 SIEVE		INORGANIC	СН	CLAY OF HIGH PLASTICITY, FAT CLAY
	LIQUID LIMIT 50 OR MORE	ORGANIC	он	ORGANIC CLAY, ORGANIC SILT
н	GHLY ORGANIC SOILS	3	PT	PEAT

NOTES:

- Field classification is based on visual examination of soil in general accordance with ASTM D2488-83.
- Soil classification using laboratory tests is based on ASTM D2487-83.
- Descriptions of soil density or consistency are based on interpretation of blowcount data, visual appearance of soils, and/or test data.

SOIL MOISTURE MODIFIERS:

- Dry Absence of moisture, dusty, dry to the touch
- Moist Damp, but no visible water
- Wet Visible free water or saturated, usually soil is obtained from below water table

LABORATORY TESTS:

CA Chemical Analysis

VAPOR CONCENTRATION DATA:

Vapor concentration given in parts per million

SHEEN CLASSIFICATION SYSTEM:

NS No visible sheen

SS Slight sheen

MS Moderate sheen

HS Heavy sheen

SOIL GRAPH:

SM

ML

SP-

SM

Distinct Contact Between Soil Strata

Gradual Change Between Soil Strata

Water Level

Bottom of Boring

BLOW-COUNT/SAMPLE DATA:

Blows required to drive a split—barrel sampler (2.4-inch I.D.) 12 inches or other indicated distances using 300 pound hammer falling 30 inches.

"P" indicates sampler pushed with weight of hammer or hydraulics of drill rig.

Blows required to drive a splitbarrel sampler (1.5-inch I.D.) 12 inches or other indicated distances using 140 pound hammer falling 30 inches.

10 0

Location of relatively undisturbed sample

Location of disturbed sample

Location of sampling attempt with no recovery

Location of sample attempt using Standard Penetration Test procedures

NOTES:

- Information presented in the attached text and the Key To Boring Log Symbols is required to adequately explain the data on the boring logs.
- 2. Soil classification system is summarized in Figure A-1.
- The reader must refer to the discussion in the report test as well as the exploration logs for a proper understanding of subsurface conditions.

6/13/90

- 5

- 10

15

- 20

25

30

- 35

MONITOR WELL NO. MW-3

. 5

- 10

- 15

20

- 25

- 30

- 35

6/13/90

:LRM:CLH:IRA

6/13/98

:LRM:CLH:IRA

0372-068-B04

:LRM:CLH:IRA

Figure A-9

5

10

- 15

20

25

- 30

- 35

:LRM:CLH:IRA

6/15/98

:LRM: CLH: IRA

0372-068-B04

5

- 10

- 15

20

25

- 30

- 35

40

6/13/90

:LRM:CLH:IRA

:LRM:CLH:IRA 6/13/90

- 5

- 10

- 15

20

- 25

- 30

- 35

40

: LRM: CLH: IRA

0372-058-E04

APPENDIX B

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4630 PACIFIC HIGHWAY EAST, SUITE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: GeoEngineers, Inc.

Date: January 9, 1990

Report On: Analysis of Soil

Lab No.: 9216 Page 1 of 2

IDENTIFICATION:

Samples Received on 1-5-90

Project: 0372-068-B04 Chevron University, Seattle

ANALYSIS:

Lab Sample No.	Rush 1	Rush 2	Rush 3	Rush 4
Client ID	900103-1	900104-2	900104-3	900104-4
Matrix/Units	Soil mg/kg	Soil mg/kg	Soil mg/kg	Soil mg/kg
Benzene Toluene Ethyl Benzene Xylenes BTEX by EPA SW-846 Method 8020	< 0.05 < 0.05 < 0.05 < 0.05	15.5 1,024 145 754	0.35 0.07 0.86 7.64	< 0.05 < 0.05 < 0.05 < 0.05
Total Petroleum Fuel Hydrocarbons	< 10	8,190 Gasoline	< 10	< 10
TPH by EPA SW-846 Modified Method 8015		8		

Continued

GeoEngineers, Inc. Page 2 of 2 Lab No. 9216 January 9, 1990

Lab Sample No.	Rush 5	Rush 6	Rush 7	Rush 8
Client ID	900104-5	900104-6	900104-7	900105-8
Matrix/Units	Soil mg/kg	Soil mg/kg	Soil mg/kg	Soil mg/kg
Benzene Toluene Ethyl Benzene Xylenes BTEX by EPA SW-846 Method 8020	0.60 27.1 15.4 107	1.80 62.1 26.2 151	< 0.05 < 0.05 0.10 0.63	< 0.05 0.43 1.02 9.10
Total Petroleum Fuel Hydrocarbons AS	897 Gasoline	2,254 Gasoline	< 10	356 Gasoline
TPH by EPA SW-846 Modified Method 8015				

SOUND ANALYTICAL SERVICES

C. LARRY ZURA

	· · · · · · · · · · · · · · · · · · ·	SIT				\geq	1		_	1			_	_			·			 	1	-
)-})	SENTLE 0312-068-BOA	CHEVRON-UNIVERSIT	TS		/	TO OC	7	0000							TIME						eritoria (C	
ויינ	0000 C (40 t)	O	COMMENTS	4 HRS	4 M25				1		04 HRS				DATE 1-5-9	DATE						
	.00.	NAME.		N	1	1	24	24	24	1	8	_			Q:			10				
	FROJECT	FROJECT GEI FILE	NO. OF SAMPLE CONTAINERS	-	1	-	-	-	_	_					THE COURS	ı Üke		2				
)	-	0	ANALYSES TO BE CONDUCTED	8015/8020	8015/8020	-8015/802C	8015/8020	12015/2020	0206/5106	8015/802	8015/800				D BY AST GNATUS	D BY (SIGNATURE		31.4				
((ز	HEERS INC. N.E., SUITE SHINGTON 98005 6-5200	CUSTODY RECORD DATE 01-05-90	PRESERVATIVE ADDED TO SAMPLE												E RECEIVED NAME -	E RECEIVED NAME FIRM		AN CH	V-1-V			
	Sth Sth 204	CHAIN OF CUST	FIELD FILTERED		1										DATE TIME	TE TIME		O PSF	7			
·))	2405 - BELL	CHP S	TYPE OF SAMPLE	SeIL	18	2016	2015	710%	2017	710%	7105				DATE 1-5-9	DATE -)			
		FREER	DEPTH OF SAMPLE	,0'9	19,0	7.5'	7.0'	13,0'	14.0'	6.0'	STOCK				TURE)	ANURE)		ST	503			
		BY ANNE	TIME	1400	0890	0945	1145	1300	1540	1945	5110				BYSIGNATURE) TALLED TALETAS	4 61	COMMENTS:	M				
		SAMPLED B	DATE	1-3-90	1-4-60	1-4-90	1-4-90	1-4-90	1-4-40	1-4-9	1-5-90				RELINGUASHED E NAME CANNELS FIRM CACOLETIC							
.)))	*	٠.	SAMPLE No.	900103-1	7-6000	900104-3	900 104-4	9000g-5	9001046	900104-7	900105-8				RELING NAME (RELINGUISH NAME FIRM	ADDITIONAL					
										В –	3									GEI	100-	9

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4630 PACIFIC HIGHWAY EAST, SUITE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: GeoEngineers, Inc.

Date: January 10, 1990

Report On: Analysis of Soil

Lab No.: 9251 Page 1 of 2

IDENTIFICATION:

Samples Received on 1-8-90

Project: 0372-068-B04

ANALYSIS:

			1	_3
Lab Sample No.	RUSH 1	RUSH 2	RUSH 3	RUSH 4
Client ID	900108-9	900108-10	900108-11	900108-12
Matrix/Units	Soil mg/kg	Soil mg/kg	Soil mg/kg	Soil mg/kg
Benzene	< 0.05	< 0.05	< 0.05	< 0.05
Toluene	< 0.05	< 0.05	< 0.05	< 0.05
Ethyl Benzene	< 0.05	< 0.05	< 0.05	< 0.05
Xylenes	< 0.05	< 0.05	< 0.05	< 0.05
BTEX by EPA SW- 846 Method 8020				
Total Petroleum Fuel Hydro- carbons	< 10	< 10	< 10	< 10
TPH by EPA SW-846 Modified Method 8015				

Continued

GeoEngineers Page 2 of 2 Lab No. 9251 January 10, 1990

Lab Sample No. 5

Client ID: 900108-13

Matrix: Soil

Units: mg/kg

Benzene	0.49
Toluene	1.38
Ethyl Benzene	0.64
Xylenes	3.63
(BTEX by EPA SW-846 Method 8020)	
Total Petroleum Fuel Hydrocarbons	24.0 oline

SOUND ANALYTICAL SERVICES

STAN P. PALMOUTST

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4630 PACIFIC HIGHWAY EAST, SUITE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

QUALITY CONTROL REPORT

DUPLICATES

Lab No:

9251

January 10, 1990

Date:

Client: GeoEngineers

Client ID:

900108-13

Matrix:

Soil

Units:

mg/kg

Compound	Sample(S)	Duplicate(D)	RPD*	
Benzene	0.49	0.38	25.0	
Toluene	1.38	1.26	9.1	
Ethyl Benzene	0.64	0.60	6.5	
Xylenes	3.63	3.71	2.2	

*RPD = relative percent difference
=
$$[(S - D) / ((S + D) / 2)] \times 100$$

Enviros Corporation

600 Skyline Tower 10900 NE 4th St.

Bellevue, WA 98004 (206) 455-2962

225 112th Ave NE Laboratory:

Bellevue, WA 98004 (206) 453-8174

Chain of Custody Record

PROJECT NAME: CHEVICAL 129

PROJECT LOCATION: BROOKLYN & 47+44

Sample	Date/Time Type	11 0	MAIE: OF Analys	Sa	SITE NUMBER: 0372-068-BC4
Number 90008-0	Sampled O1-08-90	Samples	Containers	Required	Comments
10	900108-10 01-08-G	2016	-	9020/801S	14 HB
1900	900108-11 61-08-90	Coll		8020/8015	24 HV 0 11 1 1000 C T 0 22
2908-12	90908-12 61-68-90	SOIL	, ph	8070/ROIL	TO TOTAL
50 08-13	900108-13 01-08-90	7105	-	8070 / 901<	PATE NO ROLL
				\ \ \ \	
			1		
					* 3
				V	
linguished	Relinguished by: (Signature)		Date: 01-08-90	Received by: (Signature)	Date: 1-8-90
WE: Las	NAME: Lynn S. Julias	25	(2)	NAME:	
RM. GED	FIRM GED ENGINEERS	>	Time: M	S FIRM. # 310 PARWENT THE F	1435
Relinquished by: (Sign	Relinquished by: (Signature)		Date: 1/8/90	Т	Date: 1-9-90
FIRM: VA	- Rumst		Time: 3:30)	FIRM: FINANCE FORMON ANALYTHEM	1,1
					ENVIROS CITENT:

Additional Comments: SAWA FOR

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4630 PACIFIC HIGHWAY EAST, SUITE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: GeoEngineers, Inc.

Date: January 16, 1990

Report On: Analysis of Soil

Lab No.: 9307

IDENTIFICATION:

Samples Received on 01-10-90

Project: 0372-068-B04 Chevron 47th & Brooklyn

ANALYSIS:

Lab Sample No.	1	2	3
Client ID	900110	900110 -15	900110 -16
Total Petroleum Fuel Hydrocarbons, mg/kg as,	470 Gasoline	4,397 Gasoline	955 Gasoline
by EPA SW-846 Modified Method 8015			
Benzene, mg/kg	0.49	< 0.05	< 0.05
Toluene, mg/kg	3.25	17.5	0.47
Ethyl Benzene, mg/kg	1.02	16.4	0.78
Xylenes, mg/kg	17.4	138	4.25
BTEX by EPA SW-846 Method 8020			

SOUND ANALYTICAL SERVICES

C. LARRY ZURAW

GEOENGINEER INC.

2405 - 140th AVE. N.E. SUITE 105
BELLEVUE, WASHINGTON 98005
206-746-5200

 $((\bigcirc$

FROJECT LOC. 47th & BROULLYN

900/10-1S 1001.10-H 10011076 SAMPLE RELINOUTSHED BY (SIGNATURE) ADDITIONAL RELINQUISHED BY (SIGNATURE)
NAME DAME (SIGNATURE) SAMPLED BY ANNE FREE AS DATE SAMPLED 11-10-90 -10-90 10000 COMMENTS: IIME OFFIH TYPE 1035 1025 1178 4,5 4 JOK MAI U 2010 7105 7/08 极1/1990 DATE DATE FIELD MICH AROUND JMI I J.IME DATE 1-10-90 PRESERVATIVE ADDED TO SAMPLE RECEIVED NAME FIRM ____ RECEIVED BY (SIGNATURE) TO BE 8015/8020 E015/8620 CONDUCTED 805/800 BY (SIGNATURE SAMPLE CONTAINERS GET FILE NO.0372-068-BCK 86 TV BETX BETY MOD CUMMENTS DATE DATE MOD IONI 3M1T BMIT

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4630 PACIFIC HIGHWAY EAST, SUITE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: GeoEngineers, Inc.

Date: January 15, 1990

Report On: Analysis of Soil

Lab No.: 9326 Page 1 of 3

IDENTIFICATION:

Samples Received on 1-11-90

Project: 0372-068-B04 Chevron Univers 47th & Brook

ANALYSIS:

		1	1	1
Lab Sample No.	1	2	3	4
Client ID:	900110	900110 -18	900110	900110
Matrix/Units	Soil mg/kg	Soil mg/kg	Soil mg/kg	Soil mg/kg
Total Petroleum Fuel Hydrocarbons by EPA SW-846 Method 8015	< 10	< 10	< 10	< 10
Benzene	< 0.05	< 0.05	< 0.05	< 0.05
Toluene	< 0.05	< 0.05	< 0.05	< 0.05
Ethyl Benzene	< 0.05	< 0.05	< 0.05	< 0.05
Xylenes	< 0.05	< 0.05	< 0.05	0.60
BTEX by EPA SW-846 Method 8020		a		
		t	h	the second second second second

Continued . . .

GeoEngineers, Inc. Page 2 of 3 Lab No. 9326 January 15, 1990 Lab Sample No: 5 Client ID: 900110-16A Soil mg/kg Total Petroleum Hydrocarbons, mg/kg 272 by EPA Method 418.1 Total Petroleum Fuel Hydrocarbons, mg/kg 292 by EPA SW-846 Method 8015 Gasoline PCB, Type PCB, mg/kg Benzene, mg/kg 3.41 Toluene, mg/kg 0.16 Ethyl Benzene, mg/kg 6.91 Xylenes, mg/kg 24.7 BTEX by EPA Method 8020 Sample was analyzed for EP toxicity in accordance with "Test Methods for Evaluating Solid Waste", EPA SW-846, 3rd Edition, Sept. 1986. Concentration (mg/1) Contaminant Max Conc., (mq/1)Arsenic < 0.1 5.0 100.0 Barium 0.4 Cadmium < 0.1 1.0 Chromium < 0.1 5.0 Lead < 0.1 5.0 < 0.05 0.2 Mercury < 0.1 1.0 Selenium Silver < 0.1 5.0

Continued

his report is issued solely for the use of the person or company to whom it is addressed. This laboratory accepts responsibility only for the due performance of analysis in accordance with industry acceptable practice. In no event shall Sound Analytical Services, Inc. or its employees be responsible for consequential or special damages in any kind or in any amount.

GeoEngineers, Inc Page 3 of 3 Lab No. 9326 January 15, 1990

Lab Sample No: 5 Client ID: 900110-16 Soil mg/kg

Purgeable Halocarbons per EPA SW-846, Method 8010.

Contaminant	Concentration (mg/kg) (ppm)
Methylene chloride	< 0.05
1,1-dichloroethylene	< 0.05
1,2-dichloroethane	< 0.05
1,2-transdichloroethylene	< 0.05
Chloroform	< 0.05
1,2-dichloroethane	< 0.05
Freon	< 0.05
1,1,1-trichloroethane	< 0.05
Bromodichloromethane	< 0.05
Carbon Tetrachloride	< 0.05
1,2-dichloropropane	< 0.05
Trans-1,3-dichloropropene	< 0.05
Trichlorethylene	< 0.05
Cis-1,3-dichloropropene	< 0.05
1,1,2-trichloroethane	< 0.05
Chlorodibromomethane Bromoform Tetrachloroethylene 1,1,2,2-tetrachloroethane Chlorobenzene	< 0.05 < 0.05 0.07 < 0.05 < 0.05
1,2 Dichlorobenzene	< 0.05
1,3 Dichlorobenzene	< 0.05
1,4 Dichlorobenzene	< 0.05

SOUND ANALYTICAL SERVICES

C. LARRY ZURAW

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4630 PACIFIC HIGHWAY EAST, SUITE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

QUALITY CONTROL REPORT

DUPLICATES

Lab No:

9326

Date:

January 15, 1990

Client:

GeoEngineers, Inc.

Client ID:

900110-19

Matrix:

Soil

Units:

mg/kg

Compound	Sample(S)	Duplicate(D)	RPD*
Total Petroleum Fuel Hydrocarbons	< 10	< 10	
Benzene	< 0.05	< 0.05	
Toluene	< 0.05	< 0.05	
Ethyl Benzene	< 0.05	< 0.05	
Xylenes	< 0.05	< 0.05	

*RPD = relative percent difference $= [(S - D) / ((S + D) / 2)] \times 100$

GEOBNGINEER INC. 2405 - 140th AVE. N.E. SUITE 105 BELLEVUE, MASHINGTON 98005 CHAIN OF CUSTODY RECORD AR. DATE 01-10-90 GET FILE NO FIZZA - R.C.A.	TYPE FIELD PRESERVATIVE ANALYSES NO. UF UF: SANPLE SAMPLE SAMPLE CONDUCTED CONTAIN MOD	DATE TIME RECEIVED BY (SIGNATURE) -10-90 1630 NAME
405 - 140th BELLEVUE, 206 CHAIN OF		2 2 2
2	200 200 200 200 200 200 200 200 200 200	ATURE) ATURE) ALGONE NOTE
SAMFLED BY AM	SAMPLE DATE SAMPLED 900110-16 1-10-90 . 900110-19	RELINGUISHED BY (SIGNATURE FIRM - COMMENTS: NO.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4030 PACIFIC HIGHWAY EAST, SUTTE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: GeoEngineers, Inc.

Date: January 18, 1990

Revised: January 26, 1990

Report On: Analysis of Soil

Lab No.: 9383-2

IDENTIFICATION:

Samples Received on 01-15-90

Project: 0372-068-B04 47th/Brooklyn

ANALYSIS:

900112-22	6	7
900112-22		
BUS STORY STREET STREET STREET	900112-23	900112-24
Soil mg/kg	Soil mg/kg	Soil mg/kg
< 0.05	< 0.05	< 0.05
< 0.05	< 0.05	< 0.05
< 0.05	< 0.05	< 0.05
0.11	0.15	0.14
		H
< 10	< 10	< 10
	soil mg/kg < 0.05 < 0.05 < 0.05 0.11	Soil soil mg/kg < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 0.11 0.15

Continued

GeoEngineers, Inc. Page 2 of 2 Lab No. 9383-2 January 18, 1990

Revised:	January	26,	1990
----------	---------	-----	------

		r	
Lab Sample No.	8	9	10
Client ID	900112-25	900112-29	900112-31
Benzene	< 0.05	< 0.05	0.92
Toluene	0.27	< 0.05	12.3
Ethyl Benzene	< 0.05	< 0.05	9.1
Xylenes	8.04	0.16	85.1
BTEX by EPA SW-846 Method 8020			
Total Petroleum Fuel Hydrocarbons	1,023	< 10	122
TPH as	Aged Gasoline		Gasoline
TPH by EPA SW-846 Modified Method 8015	Gasoline		

SOUND ANALYTICAL SERVICES

STAN P. PALMQUIS

83-8

SAMPLE 9383-2-8 CLIENT 966112-26

MO. NAME	MIN	MG-L	COUNTS		CHECULHIIUM	HEEF EATE	Maur Simple	10st
+ CAS	4.255	717,5066	5138148 4677		PEAK PEAK	TIME	RESULT	AREA
2 DIESEL 4 OTHES	10.00€ :⊼.500	166.4613	915389		NO. NAME 1 GAS	MIN 6.255	MG-L 47.0590	COUNTS 336995
4 OTHE	31.500	0.0000	890	ŀ	2 DIESEL	17.500	925.9389	5091842 2969
TOTALE		883.9679	6059105	I		31.500	0.0001 	
DETECTED FELL		REJECTED P	EAKS: 0		TOTALS:		972.9981	5431807
AMOUNT STANDA MULTIPLISE : : NOISE : :::::::::	20000000	DIVISOR: 1	.0000000		DETECTED PEAR AMOUNT STANDA	KS: 1 <i>67</i> ARD: 1.000		PEAKS: 0
ATTACAMAN D		OFFSET: -3) <u>C</u>		MULTIPLIER: NOISE: 121.	1.0000000		. 0900000 5
RACK IS IAL	i LNJ i	9			RACK 16 VIAL		O1: 00: 3	
ERROR LOG AGC 19EFF4	MGE					± 2170 1		
			Ð\0		ERROR LOG; ADC OVERR	ANGE		
		. 1			ANNOTATION	A CWITTED		# # # # # # # # # # # # # # # # # # #
		1			PIESE			⊒ 40
10			_				1	
6 AS		1			PPm			_
2		}			9			
PPM					<u>a</u>		1	
9		\	_	φ.	0		1	
					1000			-
000		27.069	7		2		E	
00			\ _				=	F .
2							=	# F "
			91.975 💄 WI		24.239	24.055		. 392' 🚅
	5	21.484	21.975 VI 21.070		23,287	27.150		.494 .661
		15,453	19.144		25.399 21.643	88.205 21.370	88.005 <u>81</u> .7 91.881 <u> </u>	<u></u> €
			=)		20.693 <u>20</u> 19.925 19	.568 <u>20</u> _	397' pa 7 <u>6</u> 1	-
		16.809	15.355		:8.992 18. 8	77 18. A	THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAME	
	15,07	15.382	15.546		<u>18.07</u> 17.098 16.9			5-
,_ 14:TB4	14.305	14.005	4.634 II		16,088	16.04€	Name of the last o	-
12.75E	:.∸81 <u>13</u> £.⊤000 13	.232 _{19.} 64 .763 10.34			10.232 14.449 14.3	13.154 — 61 <u>- </u>	je, ²³	
11,943 ::	.811 197. 1 ta ose	355 TA SA			13.462	13.284	13.210 ==	
10.00		19.00	./n/i = -		11.708	12.502 ; 11.541	2.405 <u>12.4</u> 11.542	
3 55	. s.ta.	7 922			10.88	10.693	1.	0.134
B.051 -	0=0	, = ,			10.037 9.91 9.057 8.93	4	9.298	5.72
£ .= .5.213	5.369 F.501	5.749 =	500		_7.915 7.7	707	7,762	8.366 7.539
	4,819	7:000 E.		4	7.127 6.83 5.946 5.70	6.214	= 07/	5.613
<u> </u>		TARREST N			O.F.	25 5.470 -	5.127	5.575 青 -
7.			CR ADC		4.21 3.129		A	3.638 复 。
•				В - 18	22 22 24	3.053 <u>2</u> .	781 8,644	
				~				

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4630 PACIFIC HIGHWAY EAST, SUITE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: GeoEngineers, Inc.

Date: January 18, 1990

Report On: Analysis of Soil

Lab No.: 9383-1

IDENTIFICATION:

Samples Received on 01-15-90

Project: 0372-068-B04 47th/Brooklyn

ANALYSIS:

Lab Sample No.	RUSH 1	RUSH 2	RUSH 3	RUSH 4 900115-32 Soil mg/kg	
Client ID	900112-27	900112-28	900112-30		
Matrix/Units	Soil mg/kg	Soil mg/kg	Soil mg/kg		
Benzene Toluene Ethyl Benzene Xylenes BTEX by EPA SW-846 Method 8020	< 0.05 < 0.05 2.28 6.73	< 0.05 < 0.05 < 0.05 0.16	< 0.05 0.16 < 0.05 39.2	< 0.05 < 0.05 < 0.05 0.11	
Total Petroleum Fuel Hydrocarbons TPH as	266 Gasoline	< 10	434 Gasoline	< 10	
by EPA SW-846 Modified Method 8015					

Continued

GeoEngineers, Inc. Page 2 of 2 Lab No. 9383-1 January 18, 1990

ANALYSIS:

Lab Sample No. RUSH 1

Client ID: 900112-27

Sample was analyzed for EP toxicity in accordance with "Test Methods for Evaluating Solid Waste", EPA SW-846, 3rd Edition, Sept. 1986.

Contaminant	Concentration (mg/1)	<pre>Max Conc., (mg/l)</pre>
Arsenic	< 0.1	5.0
Barium	0.3	100.0
Cadmium	< 0.1	1.0
Chromium	< 0.1	5.0
Lead	0.1	5.0
Mercury	< 0.05	0.2
Selenium	< 0.1	1.0
Silver	< 0.1	5.0
Flash, PMCC ^O F		

SOUND ANALYTICAL SERVICES

STAN P PALMOUTST

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4630 PACIFIC HIGHWAY EAST, SUITE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

QUALITY CONTROL REPORT

DUPLICATES

Lab No: 9383-1

Date: January 18, 1990

Client: GeoEngineers

Client ID: 900115-32

Matrix:

Soil

Units:

mg/kg

Compound	Sample(S)	Duplicate(D)	RPD*	
Benzene	< 0.05	< 0.05		
Toluene	< 0.05	< 0.05		
Ethyl Benzene	< 0.05	< 0.05		
Xylenes	0.11	0.11		
Total Petroleum Hydrocarbons	< 10	< 10		

*RPD = relative percent difference $= [(S - D) / ((S + D) / 2)] \times 100$

	Ś		X			_							_		_		1			 	_	1	Т	Т	T
(P)	PROJECT LOC. 43th BRONCLIN	NAME CHELL # 129	0	O DIMENTO						24 TUEN	41 IVEN	5	44 10KN	PAL V	CA TORN	TE T	110/10 11:204	DATE TIME	-						
	FROJECT	PROJECT NAME	GEI FILE	NO. OF SAMPLE CONTAINFES	-				-		7					TURE)		TURE)							
(1)) <u>1</u>	,	`	0/1-15-90	ANALYSES TO BE CONDUCTED	OKEMOD Jan 20	700								×;	>	RECEIVED BY (SIGNATURE)	7/	D BY (SIGNATURE							
OENGINEER INC.	16-5200	CUSTODY RECORD	TE 1-12-90	PRESERVATIVE ADDED TO SAMPLE	1												Bu	E RECEIVED NAME FIRM							
GEOENGINEER 140th AVE. N	206-74	CHAIN OF CUS	DATE	FIELD FILTERED						(DATE TIME	1	DAIE TIME							
2405 - 1404 BELLEVUR	i ! !		XRS	TYPE UF SAMPLE	Soll	1801	SOIL	7188	Solc	SOIC	2011	2675	200	SAL		DAG /-/									
e E			ANNE GACKA	DEPTH OF SAMPLE	13.0'	, p, o'	14.0'	9.51	STOCK	21215	12.6	Stay Ic	14.0	Tiak		TURE)	30-1-10C) Jan 1							
		2	BY AND	TINE SAMPLED	MM	Am	A M	A M	my	PM	W d.	LVI d	D M	AM		EN SIGNATURED	VIOLONATION V		COMMENTS:						
()))			SAMPLED E	DATE SAMFLED	1-12-90	.) .		/	<i></i>	/			70	\		RELINGUISHED IN NAME (1444)			111111111111111111111111111111111111111						
Sar J. C			S	SAMPLE No.	900112-22	900112-23	900112-29	52-21/008	62-21/006	97-711001	900112-24	05-2110001	, Proi12-31			RELING NAME FIRM 6	REI TNOI	NAME FIRM	ADDITIONAL						

В - 22

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4630 PACIFIC HIGHWAY EAST, SUITE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: GeoEngineers, Inc.

Date: February 9, 1990

Report On: Analysis of Soil

Lab No.: 9793 GeoEngineers

FEB 1 4 1990

IDENTIFICATION:

Samples Received on 2-8-90 Project: 0372-68-4 Chevron Routing

ANALYSIS:

Lab Sample No. RUSH 1

Client ID: 900702-1

Benzene, mg/kg			3.58
Toluene, mg/kg			52.6
Ethyl Benzene,	mg/kg		26.9
Xylenes, mg/kg BTEX by EPA SW		8020	139

Lab Sample No. RUSH 2

CLient ID: 900702-2

Total Petroleum Fuel Hydrocarbons, mg/kg 1,904 by EPA SW-846 Modified 8015

TPH As Gasoline

SOUND ANALYTICAL SERVICES

LARRY ZURAW

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4630 PACIFIC HIGHWAY EAST, SUITE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

QUALITY CONTROL REPORT

DUPLICATES

Lab No:

9793

Date:

February 9, 1990

Client:

GeoEngineers, Inc.

Client ID:

900702-1

Matrix:

Soil

Units:

mg/kg

Compound	Sample(S)	Duplicate(D)	RPD*
Benzene	3.58	3.78	5.4
Toluene	52.6	47.0	11.3
Ethyl Benzene	26.9	26.6	1.0
Xylenes	139	142	2.1

Client ID:

900702-2

Matrix:

Soil

Units:

mg/kg

Compound	Sample(S)	Duplicate(D)	RPD*	
Total Petroleum Fuel Hydrocarbons	1,904	1,608	16.9	

CHAIN OF CUSTODY RECORD

Page / of /	
CUSTOMER: GEOFNGINCERS IN	UC
PROJECT: Cheuron.	P.O./JOB NO.: 0372-68-4
SAMPLER: JCK	
<u> </u>	

Lab No.	Sample No.	Date	Time	Cont.	Analysis Required
	900702-1	2-7	2:30	50:/	448W 8020
	900702-2	2-7	2:30	50:1	8015 (mod)
					please send results
					please send results to Cheryl Haines
	0				Rush 24he
					TANK- Chungh
					Alini,
				y	277-01
				`	

Relinquished by:	Date	Time	Received by:	Date	Time
Jon C Koloski	2-7-90		Frank Michald	2-8.90	921
Relinquished by:	Date	Time	Received by:	Date	Time
Frank Michales	7-8-90	1005	(dhy beldinan	2/8/90	110:05
Dispatched by:	Date	Time	Received at lab by:	Date	Time
	1			1	1

SOUND ANALYTICAL SERVICES, INC. 4630 Pacific Hwy East Suite B-14 Tacoma, WA 98424 (206) 922-2310 B-25 FAX (306) 922-5047

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4630 PACIFIC HIGHWAY EAST, SUITE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: GeoEngineers, Inc.

Date: February 15, 1990

Report On: Analysis of Soil

Lab No.: 9869

IDENTIFICATION:

Samples Received on 2-14-90

Project: 0372-068-B04 Chevron-Univ.

Client ID: RUSH 900214-1

ANALYSIS:

Total Petroleum Fuel Hydrocarbons, mg/kgby EPA SW-846 Modified 8015	<10
Benzene, mg/kg <	0.05
Toluene, mg/kg <	0.05
Ethyl Benzene, mg/kg <	0.05
Xylenes, mg/kg <	0.05
BTEX by EPA SW-846 Method 8020	

105	
2405 - 140th AVE. N.E SUITE	BELLEVUE, WASHINGTON 98005 206-746-5200

FROJECT LOC. SENDE

		SAMPLED BY		ANNE FARICAS	CHAIN ICAS	- P	CUSTODY RECORD DATE 2-14-90	0	FROJECT GEI FILE	NAME <u>CHEVRON-UNI</u> = NO. <u>0372-068-B</u> 0
	SAMPLE No.	DATE SANPLED	TIME SAMPLED	DEPTH OF SAMPLE	TYPE OF SAMPLE	FIELD FILTERED	PRESERVATIVE ADDED TO SAMPLE	ANALYSES TO BE CONDUCTED	NO. OF SAMPLE CONTAINERS	COMMENTS
	100214-1	2-14-90	AM	SURPICE	7105			8015/2020	7	RUSH - 24HR
		,			ş.					
22										
										,
	REL IN NAME FIRM	RELINGUABHED IN NAME CANAL	HY (SIGNATURE)	ZURE)	DATE 2-14-2	DATE ТІМЕ (145)	RECEIVED NAME - LEIRM	BY (SIGNATURE	1 JURE) 10x-79x	DATE TIME
	RELINGUISHED NAME FIRM ACT TO	VISHED BY	BY (STONATURE	ure) 426	DATE - 2(C	TIL		18 1816WA	TURE	TIME
	ADDITIONAL		COMMENTS:			11	4	Marga Was	and lake	1714 W-50
	PLI	NEASE	DO	A 2	24 HR	2 7UR	NAROUNI	JUAN C	CALL	CHRYC HAIN
	M	THE	SESUL!	15 A	1-3	146-52	200			
GEI										
101							8			
-94										

Routing

ATI I.D. # 9004-081

GeoEngineers

APR 2 6 1990

April 25, 1990

GeoEngineers, Inc. 2405-140th Ave. NE Suite 105 Bellevue, WA 98005

Attention: Roy Jensen

Project Number: 372-68-2

Project Name: 47th & Brooklyn

On April 17, 1990 Analytical Technologies, Inc. received one soil sample for analysis. The sample was analyzed with EPA methodology or equivalent methods as specified in the attached analytical schedule. The results, sample cross reference, and the quality control data are enclosed.

Mary C. Silva
Mary C. Silva
Serior Project Manager

FWG/tc

Frederick W. Grothkopp Technical Manager

Frederich Workhopp

SAMPLE CROSS REFERENCE SHEET

CLIENT : GEOENGINEERS, INC. PROJECT # : 372-68-2

PROJECT NAME: 47TH & BROOKLYN

ATI #	CLIENT	DESCRIPTION	DATE	SAMPLED	MATRIX
9004-081-1	s-1		04/17	7/90	SOIL

---- TOTALS ----

MATRIX # SAMPLES SOIL 1

ATI STANDARD DISPOSAL PRACTICE _____

The samples from this project will be disposed of in thirty (30) days from the date of this report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

ANALYTICAL SCHEDULE

CLIENT : GEOENGINEERS, INC. PROJECT # : 372-68-2

PROJECT NAME: 47TH & BROOKLYN

ANALYSIS	TECHNIQUE	REFERENCE	LAB
BETX	GC/PID	EPA 8020	R
FUEL HYDROCARBONS	GC/FID	EPA 8015 MODIFIED	R
MOISTURE	GRAVIMETRIC	METHOD 7-2.2	R

R = ATI - Renton

SD = ATI - San Diego

T = ATI - Tempe

PNR = ATI - Pensacola

FC = ATI - Fort Collins

SUB = Subcontract

PURGEABLE AROMATICS ANALYSIS DATA SUMMARY

CLIENT PROJECT # PROJECT NAME CLIENT I.D. SAMPLE MATRIX EPA METHOD RESULTS BASED	: GEOENGINEERS, INC. : 372-68-2 : 47TH & BROOKLYN : REAGENT BLANK : SOIL : 8020 (BETX) ON DRY WEIGHT	DATE SAMPLED : N/A DATE RECEIVED : N/A DATE EXTRACTED : 04/17/90 DATE ANALYZED : 04/18/90 UNITS : mg/Kg DILUTION FACTOR : 1
COMPOUND		RESULT
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES		<0.025 <0.025 <0.025 <0.025

SURROGATE PERCENT RECOVERY

BROMOFLUOROBENZENE 87

PURGEABLE AROMATICS ANALYSIS DATA SUMMARY

CLIENT : GEOENGINEERS, INC. PROJECT # : 372-68-2 PROJECT NAME : 47TH & BROOKLYN CLIENT I.D. : S-1 SAMPLE MATRIX : SOIL EPA METHOD : 8020 (BETX) RESULTS BASED ON DRY WEIGHT	DATE SAMPLED : 04/17/90 DATE RECEIVED : 04/17/90 DATE EXTRACTED : 04/17/90 DATE ANALYZED : 04/17/90 UNITS : mg/Kg DILUTION FACTOR : 1
COMPOUND	RESULT
BENZENE ETHYLBENZENE TOLUENE TOTAL XYLENES	<0.025 <0.025 <0.025 <0.025

SURROGATE PERCENT RECOVERY

BROMOFLUOROBENZENE 65

PURGEABLE AROMATICS QUALITY CONTROL DATA

CLIENT : GEOENGINEERS, INC. SAMPLE I.D. : 9004-072-2

PROJECT # : 372-68-2

DATE EXTRACTED : 04/16/90

PROJECT NAME: 47TH & BROOKLYN

DATE ANALYZED : 04/17/90

: SOIL

EPA METHOD : 8020 (BETX)

MATRIX

UNITS

: mg/Kg

COMPOUND	SAMPLE RESULT	SPIKE ADDED	SPIKED SAMPLE	% REC	DUP SPIKED SAMPLE	DUP % REC	RPD
BENZENE	<0.025	0.60	0.502	84	0.517	86	3
TOLUENE	<0.025	0.60	0.596	99	0.622	104	4
TOTAL XYLENES	<0.025	0.83	0.773	93	0.824	99	6

% Recovery = (Spike Sample Result - Sample Result) Spike Concentration

RPD (Relative % Difference) = (Sample Result - Duplicate Result) Average Result

FUEL HYDROCARBONS ANALYSIS DATA SUMMARY

	: 47TH & BROOKLYN : REAGENT BLANK	DATE SAMPLED : N/A DATE RECEIVED : N/A DATE EXTRACTED : 04/17/90 DATE ANALYZED : 04/17/90 UNITS : mg/Kg DILUTION FACTOR : 1
COMPOUND		RESULT
FUEL HYDROCARI HYDROCARBON RA HYDROCARBONS (5 C6 - C8 GASOLINE
FUEL HYDROCARI HYDROCARBON RA HYDROCARBONS (<5 DIESEL

FUEL HYDROCARBONS ANALYSIS DATA SUMMARY

CLIENT : GEOENGINEERS, INC. PROJECT # : 372-68-2 PROJECT NAME : 47TH & BROOKLYN CLIENT I.D. : S-1 SAMPLE MATRIX : SOIL EPA METHOD : 8015 MODIFIED	DATE SAMPLED : 04/17/90 DATE RECEIVED : 04/17/90 DATE EXTRACTED : 04/17/90 DATE ANALYZED : 04/17/90 UNITS : mg/Kg DILUTION FACTOR : 1
COMPOUND	RESULT
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBONS QUANTITATED USING	<5 GASOLINE
FUEL HYDROCARBONS HYDROCARBON RANGE HYDROCARBONS QUANTITATED USING	<5 DIESEL

9

104

FUEL HYDROCARBONS QUALITY CONTROL DATA

CLIENT : GEOENGINEERS, INC. SAMPLE I.D. : 9004-073-2
PROJECT # : 372-68-2 DATE EXTRACTED : 04/16/90
PROJECT NAME : 47TH & BROOKLYN DATE ANALYZED : 04/18/90
EPA METHOD : 8015 MODIFIED MATRIX : SOIL
UNITS : mg/Kg

COMPOUND RESULT SPIKED \$ SPIKED \$

COMPOUND RESULT SPIKED SAMPLE REC SAMPLE RECOVERY RPD

FUEL

HYDROCARBONS <5 500 573 115 522

% Recovery = (Spike Sample Result - Sample Result)
----- X 100
Spike Concentration

RPD (Relative % Difference) = (Sample Result - Duplicate Result)
----- X 100
Average Result

FUEL HYDROCARBONS QUALITY CONTROL DATA

CLIENT

PROJECT # : 372-68-2 PROJECT NAME: 47TH & BROOKLYN

: GEOENGINEERS, INC. SAMPLE I.D. : BLANK SPIKE : 372-68-2 DATE EXTRACTED : 04/16/90 E : 47TH & BROOKLYN DATE ANALYZED : 04/19/90 : 8015 MODIFIED MATRIX : SOIL EPA METHOD : 8015 MODIFIED

UNITS : mg/Kg

DUP DUP SAMPLE CONC SPIKED SPIKED RESULT SPIKED SAMPLE REC SAMPLE RECOVERY RPD COMPOUND FUEL HYDROCARBONS <5 500 458 92 N/A N/A N/A

% Recovery = (Spike Sample Result - Sample Result) Spike Concentration

RPD (Relative % Difference) = (Sample Result - Duplicate Result) Average Result

GENERAL CHEMISTRY RESULTS

CLIENT : GEOENGINEERS, INC. PROJECT # : 372-68-2

SAMPLE MATRIX : SOIL

PROJECT NAME: 47TH & BROOKLYN

UNITS

ATI I.D.#

CLIENT I.D.

MOISTURE

9004-081-1

S-1

21

GENERAL CHEMISTRY QUALITY CONTROL

CLIENT : GEOENGINEERS, INC. PROJECT # : 372-68-2

SAMPLE MATRIX : SOIL

PROJECT NAME: 47TH & BROOKLYN UNITS : %

PARAMETER	ATI I.D.	SAMPLE RESULT	DUP RESULT	RPD	SPIKED RESULT	SPIKE ADDED	% REC
MOISTURE	9004-081-1	21	21	0	N/A	N/A	N/A

% Recovery = (Spike Sample Result - Sample Result) Spike Concentration RPD (Relative % Difference) = (Sample Result - Duplicate Result) Average Result

		220
l	56	a
ı	00	
ı	$\stackrel{\sim}{=}$	I E
ı	~	de.
ı	ö	\supset
ı	3	3
ı	Sel	Q
l	7	-
ı	-	\rightarrow

ical**Technologies,**Inc.

venue SW_Suite 101 Renton,WA 98055

Chain of Custody

	D.
	DATE 2
ı	1/12
ľ	2
	PAGE
	E L
	7
l	OF_

RIGINATOR	White, Canary - ANALYTICAL TECHNOLOGIES, INC. • Pink - ORIGINATOR	TECHNOLO	YTICAL	ANAL	ary - 1	Cana	Vhite,		UTIO	DISTRIBUTION:	DIS		-100	4)474	la (90	Isacol	• Pen	8335	(206)228	Seattle	1530 •	x (602)438-	 Phoeni 	San Diego (619)458-9141 • Phoenix (602)438-1530 • Seattle (206)228-8335 • Pensacola (904)474-1001	ATI Labs: Sar
ies, Inc.	Analytical Technologies, Inc.				pany:	Company:				,	7	Company:	Con												
Date:	Printed Name:	Date:		me:	ed Nar	Printed Name:	-6	Date 7/	8	Printed Name: D	Sign	Ed N	PE								8				
Time:	Signature:	Time:			iture:	Signature:		Time: 7/	\$	Stomature Lower	8	ature	島											UCTIONS:	SPECIAL INSTRUCTIONS:
AB) 3.	RECEIVED BY: (LAB)	2		90	RECEIVED BY:	REC	-			7.	RECEIVED BY:	MES	ii)ATA	R RUSH E	RED FO	PRIOR AUTHORIZATION IS REQUIRED FOR RUSH DATA	PRIOR AUTHO
7,7							00					5	0	7	rmal)	S (No	2 WKS (Normal)		Н] 1 WK		72 HRS		☐ 48 HRS	TAT: 🔯 24HR
	Company:				pany:	Company:	September 1	-			1	Company:	ह	<	<		D D	COND./COLD	GOOD CO	VED GO	RECEIVED				VIA:
Date:	Printed Name:	Date:		me:	Printed Name:	Printe	,	Date:	_	8	2 %	Printed Name	P	A	2				Y/N/NA	1.5 AW	INTACT?		-		PURCHASE ORDER NUMBER:
Time:	Signature:	ime:			lure.	oigname.		71.75	F	to	3	20 Miles for	S.	A	7	Ā	N/A/	SEALS	CHAIN OF CUSTODY SEALS Y/N/NA	OF CU	CHAIN	2	Brakly	13 mth	PROJECT NAME:
1	?	Ton				Cign	:	T S		4	5	1	2			S	NER:	ONTAI	TOTAL NUMBER OF CONTAINERS	NUMB	TOTAL	7	-68-	3ER: 372	PROJECT NUMBER:
γ: 3.	RELINQUISHED BY:	2	RELINQUISHED BY:	#S#	NOU	RELL	÷		₹	RELINQUISHED BY:	HSIU	₩Q.	RE				뿔	RECE	SAMPLE RECEIPT				×	PROJECT INFORMATION	PR
					-					_				-					_				-		
7				+	\vdash	L		T	+	\vdash	L		\dagger	+	-	1			\perp				\dagger		
				\vdash	\vdash	L			+	\vdash	L		\top	+	1	\perp			+				+		
		Ė	+	+	+	1	I	士	+	+	1	Ţ	+	+	+	+			+				+		
			+	+	+	1			+	+			7	\dashv	4	4			4						
									-													1			
	7			\vdash					-	-			\vdash	\vdash	-				-			L	H		
				\vdash	-				 	-				\vdash	-				-				t		
				+	-	F		\dagger	+	\vdash	F	Γ	†	+	1	1			+				$^{+}$		
		Ė	#	+	+	T	T	\dagger	+	+	1	I	+	+	+	\downarrow			+				\dagger		
			+	+	\dashv	\downarrow		+	\dashv	4	\Box		\dashv	\dashv	_				_						
														_									H		
				\vdash	-					-			\vdash	\vdash	_				\vdash				+		
				\vdash	-				\vdash	-			+	+	1		ā		\vdash				+	in the second	
1			H	Н		7				-			\vdash	\vdash	7			-		1:00A1500	1:00A	7	1/1		1
NUME		EPTO:	TCLP	TOX %	TOC	8015	413.2	418.1	8150 WDO!	8140	PCB's	8080	8310	8240 8270	BETX	8020	8010	LAB ID	Contract de la contra	MATRIX	TIME	DATE		SAMPLE ID	S
SER O		X Met		902 Mo	906			(TPI		-			_	11/1/1/	2000000		Hal		(will call)	Pickup (will call)		Return		ATI Disposal @ \$5.00 each	ATI Disp
FCC		als (8		o sture	_	dified			bicid	-			C PN	MS V			ogen				SNOI	NSTRUCT	OSAL I	SAMPLE DISPOSAL INSTRUCTIONS	,
NATAC		B) Tota 8) EP I	Metals)	Oil	(1170	es (WAC	te Pest		s & PC		/olatile:		Volati	ated V			2	E	SAMPLED BY:	SAM	6-5200	PHONE: 741
NERS		ı	/401					173	1721	icides		B's		S		es	olatile		1						
				-													s							J	ADDRESS:
			ST	JUE	REQUEST	SIS	ANALYSIS	AN															2005	Ensil	COMPANY:
							00000000		ľ	יים איים איים איים	E	3	:	1	15	ţ	Į				ľ	110	K	WACHE AND	PROJECT MANAGER:

APPENDIX C

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4630 PACIFIC HIGHWAY EAST, SUITE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: GeoEngineers, Inc.

Date: January 18, 1990

Report On: Analysis of Soil

Lab No.: 9382

IDENTIFICATION:

Samples Received on 01-15-90 Project: 0372-068-B04 Seattle

ANALYSIS:

Lab Sample No.	1	2	3
Client ID	MW-1 #2	MW-1 #3	MW-2 #2
Benzene, mg/kg	<0.05	<0.05	<0.05
Toluene, mg/kg	<0.05	<0.05	<0.05
Ethyl Benzene, mg/kg	0.10	<0.05	0.12
Xylenes, mg/kg	0.28	0.18	0.14
(BTEX by EPA SW-846 Method 8020)			
Total Petroleum Hydrocarbons, mg/kg as, by EPA SW-846 Method 8015	<10	<10	<10

Continued . . .

GeoEngineers, Inc. Page 2 of 2 Lab No. 9382 January 18, 1990

Lab Sample No.	4	5	6
Client ID	MW-2 #3	MW-3 #3	MW-3 #4
Benzene, mg/kg	<0.05	<0.05	27.1
Toluene, mg/kg	<0.05	<0.05	327
Ethyl Benzene, mg/kg	0.14	<0.05	88.1
Xylenes, mg/kg	0.31	0.21	614
(BTEX by EPA SW-846 Method 8020)			
Total Petroleum Hydrocarbons, mg/kg as by EPA SW-846 Method 8015	<10	<10	5,568 Gasoline

SOUND ANALYTICAL SERVICES

STAN P. PALMQUIST

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4630 PACIFIC HIGHWAY EAST, SUITE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

QUALITY CONTROL REPORT

DUPLICATES

Lab No:

9382

Date:

January 18, 1990

Client:

GeoEngineers, Inc.

Client ID:

MW-3 #3

Matrix:

Soil

Units:

mg/kg

Compound	Sample(S)	Duplicate(D)	RPD*
Benzene	<0.05	<0.05	
Toluene	<0.05	<0.05	
Ethyl Benzene	<0.05	<0.05	
Xylenes	0.21	0.18	15.4
Total Petroleum Hydrocarbons	<10	<10	

RELINQUISHED NAME LAME ASPEN RELINQUISHED BOUNDED BOUN		MW-3&5 1/12		11/1 CXI-MM	SAMPLE DATE No. SAMP	SAMFLED	
7 1000 10 10 10				-	LED	- 177	
BY (SIGNATURE) BY (SIGNATURE) BY (SIGNATURE) MINENTS:		13	~ ~ ~	2 7	SAMPLED OF SAMPLE	LYNNE MILLER	
					SAMPLE SAMPLE	_1	2405 - 1 BELLE
DATE DATE					LE FILTERED] 물	GEOEI - 140th ELLEVUE, 20,
TIME COOL							GEOENGINEERS INC. 140th AVE. N.E., SUITE EVUE, WASHINGTON 98005 206-746-5200
RECEIVED NAME FIRM ————————————————————————————————————					ADDED TO SAMPLE	/ RECORD	INC. FON 98009
BY (SIGNAM)	21.21.07.0	8015/8020	8015/8020	8015 18020	ONDUCTED		105
VATURE) WATURE) WATURE) WATURE WAT				- -	NO. OF SAMPLE CONTAINERS	FROJECT NAME	PROJECT LOC.
DATE 1-15-90 DATE 1-45-%						NAME	
TIME TIME					COMMENTS	NO. 0372-068-804	SEATTLE

GeoEngine Sound Analytical Services, Inc.

FEB 1 2 1990

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4630 PACIFIC HIGHWAY EAST, SUITE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: GeoEngineers, Inc.

Date: February 8, 1990

Report On: Analysis of Soil

Lab No.: 9741

Page 1 of 2

IDENTIFICATION:

Samples Received on 2-5-90

Project: 372-68-B04 Chevron Brookyln & 47th

ANALYSIS:

1	1		
1	2	3	4
MW-4 15'	MW-4 20'	MW-5 5'	MW-5 10'
Soil mg/kg	Soil mg/kg	Soil mg/kg	Soil mg/kg
3,267	< 10	< 10	< 10
Gasoline			1 1
1.58	< 0.05	< 0.05	< 0.05
31.1	< 0.05	< 0.05	< 0.05
9.71	< 0.05	< 0.05	< 0.05
52.6	< 0.05	< 0.05	< 0.05
	MW-4 15' Soil mg/kg 3,267 Gasoline 1.58 31.1 9.71	MW-4 15' MW-4 20' Soil Soil mg/kg 3,267 < 10 Gasoline 1.58 < 0.05 31.1 < 0.05 9.71 < 0.05	MW-4 15' MW-4 20' MW-5 5' Soil Soil Soil mg/kg 3,267 < 10 < 10 Gasoline 1.58 < 0.05 < 0.05 31.1 < 0.05 < 0.05 9.71 < 0.05 < 0.05

Continued . .

GeoEngineers, Inc. Page 2 of 2 Lab No. 9741 February 8, 1990

Lab Sample No.	5	6	7	8
Client ID:	MW-6 10'	MW-6 15'	MW-14 10'	MW-14 15'
Matrix/Units	Soil mg/kg	Soil mg/kg	Soil mg/kg	Soil mg/kg
Total Petroleum Fuel Hydrocarbons by EPA SW-846 Modified 8015	< 10	< 10	< 10	< 10
Benzene	< 0.05	< 0.05	< 0.05	< 0.05
Toluene	< 0.05	< 0.05	< 0.05	< 0.05
Ethyl Benzene	< 0.05	< 0.05	< 0.05	< 0.05
Xylenes	< 0.05	< 0.05	< 0.05	< 0.05
BTEX by EPA SW-846 Method 8020				1947

SQUND ANALYTICAL SERVICES

STAN P PALMOUTST

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4630 PACIFIC HIGHWAY EAST, SUITE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

QUALITY CONTROL REPORT

DUPLICATES

Lab No:

9741

Client ID:

MW-14 15'

Date:

February 8, 1990

Matrix:

Soil

Client:

GeoEngineers

Units:

mg/kg

Compound	Sample(S) Du	Duplicate(D)	RPD*	
Total Petroleum Fuel < 10 Hydrocarbons		< 10		
Benzene	< 0.05	< 0.05		
Toluene	< 0.05	< 0.05		
Ethyl Benzene	< 0.05	< 0.05		
Xylenes	< 0.05	< 0.05		

*RPD = relative percent difference $= [(S - D) / ((S + D) / 2)] \times 100$

Roubing FEB 12 1850 SAMPLED BY GEOENGINEERS INC. 2405 - 140th AVE. N.E., SUITE BELLEVUE, WASHINGTON 98005 206-746-5200 CHAIN OF CUSTODY RECORD

ルバゴー DATE 105 GEI FILE NO. .PROJECT NAME FROJECT LOC. Brooklyn & 47th 372-69-B04 Cheuxon-

RELINOWISHED NAME FIRM TONAL CO	RELINDUASHEI			1	11/2/	5	2	1 5-mm	mw-5 1/31/	mw-4 in	mw-4 1/31/6	SAMPLE DATE No. SAMPLED
ENGINATE AMMENTS: MANAGEMENTS: MANAGEMENTS:	153				10		0		20		10	TIME
JRE)	TURE)			0.51	10.0	15.0	10.0	10.0	5,0	20.0	15.0	DEPTH OF SAMPLE
1 2	DAT			Soul	Sal	Sol	Sail	Soil	Sail	Sal	Soil	TYPE OF SAMPLE
70,	\dashv			No	No	20	No	20	C .	20	No	FIELD
1.3				No	てつ	Ų°	S S S S S S S S S S S S S S S S S S S		Ne	20	No	PRESERVATIVE ADDED TO SAMPLE
				1,	11	11	=	7	11	UCUS 5108	SD15 9,770	ANALYSES TO BE CONDUCTED
the sail	růre)			1		- .	٠,	- -		- -		NO. OF SAMPLE CONTAINERS
12 1 E												COMMENTS
	ED BY (SIGNATURE) DATE TIME RECEIVED BY (SIGNATURE) DATE COMMENTS:	DATE TIME RECEIVED BY (SIGNATURE) 2/2/90 3:15/2m. FIRM	DATE TIME RECEIVED BY (SIGNATURE) 2/2/90 3:152m. FIRM 14 G. E. 4 J. 22 DATE TIME RECEIVED BY (SIGNATURE) DATE TIME RECEIVED BY (SIGNATURE)	DATE TIME RECEIVED BY (SIGNATURE) 2/2/90 3:15 2m. FIRM 11 Cod Expression DATE TIME RECEIVED BY (SIGNATURE) DATE TIME RECEIVED BY (SIGNATURE)	DATE TIME RECEIVED BY (SIGNATURE) 2/2/90 3:15/2m. FIRM DATE TIME RECEIVED BY (SAGNATURE) DATE TIME RECEIVED BY (SAGNATURE)	ONAL COMMENTS:	DATE TIME RECEIVED BY (SIGNATURE) DATE TIME RECEIVED BY (SIGNATURE)	10.0 Soil No	S 1 10:0 Soil No No No II 1 1 1 1 1 1 1 1 1	131/90 5.0 Spil No	131/90 5.0 Sail No No 8DIS,8020	1/3/40

- 8 C

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4630 PACIFIC HIGHWAY EAST, SUITE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: GeoEngineers, Inc.

Date: February 7 1990

Report On: Analysis of Soil

Lab No.: 9684

Page 1 of 2

IDENTIFICATION:

Sample Received on 2-1-90

Project: 0372-068-B04 Chevron Seattle

ANALYSIS:

Lab Sample No.	1	2	3	4
Client ID	MW-7 8'	MW-7 13'	MW-8 13'	MW-8-18'
Matrix/Units	Soil mg/kg	Soil mg/kg	Soil mg/kg	Soil mg/kg
Total Petroleum Fuel Hydrocarbons	< 10	< 10	< 10	< 10
Benzene Toluene Ethyl Benzene Xylenes	< 0.05 < 0.05 < 0.05 < 0.05	0.17 0.25 0.17 0.93	< 0.05 < 0.05 < 0.05 0.18	< 0.05 < 0.05 < 0.05 < 0.05

Lab Sample No.	5	6	7	8
Client ID	MW-9 8'	MW-9 13'	MW-10 8'	MW-10 13'
Matrix/Units	Soil mg/kg	Soil mg/kg	Soil mg/kg	Soil mg/kg
Total Petroleum Fuel Hydrocarbons	< 10	< 10	< 10	< 10
Benzene Toluene Ethyl Benzene Xylenes	< 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 0.33	< 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05

Continued .

GeoEngineers, Inc. Page 2 of 2 Lab No. 9684 February 7, 1990

Lab Sample No.	9	10	11	12
Client ID	MW-11 13'	MW-11 18'	MW-12 13'	MW-12 23'
Matrix/Units	Soil mg/kg	Soil mg/kg	Soil mg/kg	Soil mg/kg
Total Petroleum Fuel Hydrocarbons	< 10	< 10	< 10	45
TPH as				Gasoline
Benzene	< 0.05	< 0.05	< 0.05	0.77
Toluene	< 0.05	0.14	< 0.05	1.19
Ethyl Benzene	< 0.05	< 0.05	< 0.05	1.44
Xylenes	< 0.05	0.34	0.18	7.24

Lab Sample No.	13	14
Client ID	MW-13 8'	MW-13 13'
Matrix/Units	Soil mg/kg	Soil mg/kg
Total Petroleum Fuel Hydrocarbons	< 10	< 10
Benzene Toluene Ethyl Benzene Xylenes	< 0.05 < 0.05 < 0.05 < 0.05	< 0.05 0.12 < 0.05 0.35

TPH by EPA SW-846 Modified Method 8015 BTEX by EPA SW-846 Method 8020

SOUND ANALYTICAL SERVICES

STAN P. PALMQUIST

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4630 PACIFIC HIGHWAY EAST, SUITE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

QUALITY CONTROL REPORT

DUPLICATES

Lab No:

9684

Date:

February 7, 1990

Client:

GeoEngineers

Client ID: MW-11 13' Matrix: Soil Units: mg/kg

Compound	Sample(S)	Duplicate(D)	RPD*	
Total Petroleum Fuel Hydrocarbons	< 10	< 10		

Client ID: MW-11 18' Matrix: Soil

Units: mg/kg

Compound	Sample(S)	Duplicate(D)	RPD*	
Benzene	< 0.05	< 0.05		
Toluene	0.10	0.14	33.3	
Ethyl Benzene	< 0.05	< 0.05		
Xylenes	0.34	0.38	11.1	
Fuel Hydrocarbons	< 10	< 10		

*RPD = relative percent difference $= [(S - D) / ((S + D) / 2)] \times 100$ GEDENGINEERS INC. 2405 - 140th AVE. N.E., SUITE 105 BELLEVUE, WASHINGTON 98005 206-746-5200

PROJECT LOC. Sea

			Ś			L				**
	C		10	2	SCHIN 2	5	700		FROJECT NAME	NAME CALLERY
L	,	SHIPLED E	EY CARRY	A Married		DATE	TE 2/2/90	- J	GEI FILE	NO.
.,]	SAMPLE No.	DATE SAMPLED	TIME SAMPLED	DEPTH OF SAMPLE	TYPE OF SAMPLE	FIELD FILTERED	PRESERVATIVE ADDED TO SAMPLE	ANALYSES TO BE CONDUCTED	NO. OF SAMPLE CONTAINERS	COMMENTS
9	mw-7(8	1/30/90	1	00	5017	1/0	/CeO	8020.8015	/	
9	mu-7(13)	1/30/8	(13'	11		.,	, ,		
0	mw-8(13)	1/30/90	V	13'	11	11	11			
0	(,81) 8-MW	1/30/90	ı	181	11	"	,,	II.		
0	mw-9(8')	1/29/90	1	, 00	"	3,	J,	17		
0	mw-9(13)	1725/90	1	13'	<i>''</i>	11	2,	11		
	mw-81 (8')	1/30/90	I	8	1/	"		"		
0	MW-10 (13)	1130/90	1	18,	"	:	2	13	,	
0	MW-11(13)	06/50/1	1	13'	-12	1	23		,	
0	(8)11-000	06/30/1	1	,81	1,	3,	2	11		
0	12(13)	1/30/50	}	131	"		.;	,,,	,	
	RELINGUI NAME	15HED	BY (SIGNATURE)	rure)	DATE	TE TIME	E RECEIVED	罗	rure)	DATE TIME
	FIRE	- DE	7	1	2118	05	FIRM	FARWEST	TAXII	,
	REL INCUISHED NAME		EY (SIGNATURE	JRE)	DATE	8552 6	E RECEIVED	EX.	1 1	DATE TIME
	TIVIT L	Mances 1	LATE.		- 11/	90 10,25pm		Charle	and amaly	100 3/16, 10:25
-1	ADDITIONAL		COMMENTS:		٠	•	5			1101
		2	Please	send	1000	10 % O	Prouf flow	m	Thanks	
EI										
101										
-9										1
4										

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4630 PACIFIC HIGHWAY EAST, SUITE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To:

GeoEngineers, Inc.

Date: January 26, 1990

Report On: Analysis of Water

Lab No.: 9521

IDENTIFICATION:

Samples Received on 1-23-90 Project: 372-68-4 Chevron

ANALYSIS:

	1	I	Č
Lab Sample No.	1	2	3
Client ID.	MW-1	MW-2	MW-3
Matrix/Units	Water mg/l	Water mg/l	Water mg/l
Dissolved Lead	< 0.1	< 0.1	< 0.1
Total Petroleum Fuel Hydrocarbons TPH as by EPA SW-846 Modified 8015	< 10 Gasoline	25 Gasoline	85 Gasoline
Benzene Toluene Ethyl Benzene	0.088 0.043 < 0.001	1.10 1.09 0.161	1.38 14.1 2.06
Xylenes BTEX by EPA SW-846 Method 8020	0.409	1.120	12.8

SOUND ANALYTICAL SERVICES

STAN P. PALMQUIST

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4630 PACIFIC HIGHWAY EAST, SUITE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

QUALITY CONTROL REPORT

DUPLICATES

Lab No:

9521

Date:

January 26, 1990

Client:

GeoEngineers, Inc.

Client ID: MW-3

Matrix:

Water

Units:

mg/l

Compound	Sample(S)	Duplicate(D)	RPD*
Total Petroleum Fuel Hydrocarbons	85	82	3.6
Benzene	1.38	1.17	16.5
Toluene	14.1	13.9	1.4
Ethyl Benzene	2.06	2.33	12.2
Xylenes	12.8	14.3	11.0

*RPD = relative percent difference $= [(S - D) / ((S + D) / 2)] \times 100$

CHAIN OF CUSTODY RECORD

Page / of /	
CUSTOMER: Geo Engineers	INC
PROJECT: Zheurow.	P.O./JOB NO.: 372-68-4
SAMPLER: JON CKOlosk.	
ĭ	

Lab No.	Sample No.	Date	Time	Cont.	Analysis Required
	mw-1	1-22		H20	dissolved Pb, 8020, 8015
	mw-1 mw-2	41	*	11	
	mw-3	μ		11	
					+
				4	
				1	

Relinquished by:	Date	Time	Received by:	Date	Time
JON C Koloski	1-23	11:45	ashy Eldman	1-23-90	2:00pm
Relinquished by:	Date	Time	Received by:	Date	Time
Sten 91. all	11-2390	200	1	1	
Dispatched by:	Date	Time	Received at lab by:	Date	Time
	1	1	20 20 20 20 20 20 20 20 20 20 20 20 20 2	1	

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4630 PACIFIC HIGHWAY EAST, SUITE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: GeoEngineers, Inc.

Date: February 22, 1990

Report On: Analysis of Water

Lab No.: 9935 Page 1 of 2

IDENTIFICATION:

Samples Received on 2-20-90

Project: 372-068-B04 Chevron Seattle

ANALYSIS:

	1			
Lab Sample No.	1	2	3	4
Client ID:	MW5	MW6	MW12	MW9
Matrix/Units	Water mg/l	Water mg/l	Water mg/l	Water mg/l
Total Petroleum Fuel Hydrocarbons by EPA SW-846 Modified 8015	< 10	38.2	2,038	99.6
TPH As	,	Gasoline	Gasoline	Gasoline
Benzene	< 0.001	< 0.001	29.1	0.181
Toluene	0.005	0.074	49.7	0.489
Ethyl Benzene	< 0.001	0.259	5.56	0.494
Xylenes	0.022	2.43	28.9	4.29
BTEX by EPA SW-846 Method 8020			2	

Continued . . .

GeoEngineers, Inc. Page 2 of 2 Lab No. 9935 February 22, 1990

			·	
Lab Sample No.	5	6	7	8
Client ID:	MW10	MW11	MW7	MW14
Matrix/Units	Water mg/l	Water mg/l	Water mg/l	Water mg/l
Total Petroleum Fuel Hydrocarbons by EPA SW-846 Modified 8015	89.4	244	526	< 10
TPH As	Gasoline	Gasoline	Gasoline	
Benzene	0.431	0.342	3.28	< 0.001
Toluene	0.136	5.43	8.17	< 0.001
Ethyl Benzene	0.505	2.15	1.21	< 0.001
Xylenes	1.99	9.02	8.01	< 0.001
BTEX by EPA SW-846 Method 8020				

SOUND ANALYTICAL SERVICES

STAN P. PALMOUIST

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4630 PACIFIC HIGHWAY EAST, SUITE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

QUALITY CONTROL REPORT

DUPLICATES

Lab No: Date:

Client:

9935

February 22, 1990

GeoEngineers

Client ID:

MW9

Matrix:

Water

Units:

mg/1

Compound	Sample(S)	Duplicate(D)	RPD*	
Total Petroleum Fuel Hydrocarbons	99.6	104	4.3	
Benzene	0.181	0.189	4.3	
Toluene	0.489	0.463	5.5	
Ethyl Benzene	0.494	0.447	10.0	
Xylenes	4.29	3.79	12.4	

Lab No:

9935

Date: Client:

February 22, 1990

GeoEngineers

Client ID:

MW14

Matrix:

Water

Units: mg/l

Compound	Sample(S)	Duplicate(D)	RPD*	
Total Petroleum Fuel Hydrocarbons	< 10	< 10		1
Benzene	< 0.001	< 0.001		
Toluene	< 0.001	< 0.001		
Ethyl Benzene	< 0.001	< 0.001		
Xylenes	< 0.001	< 0.001		

*RPD = relative percent difference $= [(S - D) / ((S + D) / 2)] \times 100$ GEDENGINEERS INC. 2405 - 140th AVE. N.E., SUITE 105 BELLEVUE, WASHINGTON 98005 206-746-5200

CHAIN OF CUSTODY RECORD

PROJECT LOC. SEACTE FROJECT NAME CHEVROL SSATTLE

	SAMPLED !	BY JIM WE	JIM WHITBRERO	0)(I	DATE _02/19/70	made that they have been seen that they make their seen	GEI FILE	NO. 372-068-807
SAMPLE No.	DATE	TIME SAMPLED	DEPTH OF SAMPLE	TYPE OF SAMPLE	FIELD FILTERED	PRESERVATIVE ADDED TO SAMPLE	ANALYSES TO BE CONDUCTED	NO. OF SAMPLE CONTAINERS	COMMENTS
MWS	51/20		1	WATER	200	674	8020 (877x) 9015	2	
38))	J		8020 (PFTR) 8015	2	
MWIZ									
MW9				_		_			
MUID									
MWII	-								
MUJ									
PI JAM			-4	P	-\$	Þ	les .	1	
								X	
RELINGUIS NAME FIRM	JED Gester	BY (SIGNATURE	TURE)	DATE 02/20	TE TIME (20/90 0800	TE RECEIVED NAME YE	JEN SER	Shoth Bushes	BATE TIME
RELING NAME/	RELINDAIGHED BY GIGNATI	V GIGNATI	EMB.	DATE 2209	-	TE RECEIVE S FIRM	WEV GREWAY	UKE UKE VALANCE	DATE TIME
ADDITIONAL		COMMENTS: A	ANAL728	ALC SA	SAMRES F	BR BETT,	87 8224 /	AND SOIS.	76458 INCLUSE
CETAIN	35	W57204 W	W/REPORT						
982									
PET 1									

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4630 PACIFIC HIGHWAY EAST, SUITE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: GeoEngineers, Inc.

Date: February 23, 1990

Revised:

Report On: Analysis of Water

Lab No.:

June 25, 1990 GeoEngineers 9960

JUN 2 6 1990

IDENTIFICATION:

Sample Received on 2-21-90

Project: 0372-068-B04 Chevron, Seattle

Client ID: MW-13

ANALYSIS:

Concentration, ppm

Benzene < 0.001 Toluene 0.045 Ethyl Benzene 0.078

Xylenes 0.176

Total Petroleum Fuel Hydrocarbons < 10

Analysis Procedures: BTEX by EPA SW-846 Method 8020 TPH by EPA SW-846 Modified Method 8015

Revisions made on the project identification on this lab report, number 9960.

SOUND ANALYTICAL SERVICES

105 GEOENGINEERS INC. 2405 - 140th AVE. N.E., SUITE BELLEVUE, WASHINGTON 98005 206-746-5200

CHAIN OF CUSTODY RECORD

PROJECT LOC. SEATTLE

PROJECT NAME

7,55 AM 10:35 FILE NO. 0372-068 BOL TIME TIME COMMENTS DATE 2/ar/90 8 DATE : NO. OF SAMPLE CONTAINERS GEI N RECEIVED BY (SIGNATURE)
NAME STAN PERAM
FIRM LARWEST 345 RECEIVED BY (STGNATURE)
NAME
FIRM ANALYSES TO BE CONDUCTED 8020 (BETX),8DIS PRESERVATIVE ADDED TO SAMPLE 2/20/90 02 10,35 AT DATE TIME TIME 0845 FIELD FILTERED 200 DATE 3/31/90 DATE 2/21 TYPE OF SAMPLE WATER DEPTH OF SAMPLE LYNNE MILLER RELINGUISHED BY (SIGNATURE)
NAME STAN PERAM
FIRM TANNEST 345 TIME SAMPLED 1830 COMMENTS: SAMPLED BY DATE SANPLED 2/20 ADDITIONAL SAMFLE No. MW-13

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4630 PACIFIC HIGHWAY EAST, SUITE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: GeoEngineers Date: February 2, 1990

Report On: Analysis of Liquid Product Lab No.: 9710

IDENTIFICATION:

Sample Received on 2-2-90

Project: 0372-068 Chevron Seattle

Client ID: MW-4 #1

FEB - 8 1590

CLH

ANALYSIS:

Total Petroleum Fuel Hydrocarbons, ppm 850,136 by EPA SW-846 Modified Method 8015	
TPH as Gasoline	1
API Gravity 52.5	
Flach DMCCOF	

SOUND ANALYTICAL SERVICES

STAN P. PALMOUIST

GEOENGINEERS INC. 140th AVE. N.E., SUITE 105 BELLEVUE, WASHINGTON 98005 206-746-5200

CHAIN OF CUSTODY RECORD

FROJECT LOC. Seattle, Wa

FROJECT NAME CHULLORY.

000 FILE NO. 0372-068 TIME TIME modulad COMMENTS DATE 292/2 DATE 8 ANALYSES/TNO. OF TO BE SAMPLE CONDUCTED CONTAINERS method BNATURE 8012 APT Sta moritan F1954 8 190 RECEIVED NAME FIRM PRESERVATIVE ADDED TO SAMPLE RECEIN NAME FIRM 010 Point DATE 0830 11Me 20分 TIME FIELD FILTERED Flash 20 2/2/90 DATE DEPTH TYPE OF SAMPLE SAMPLE Product Cun nelson Tho Kleesa one RELINGUISHED BY (SIGNATURE)
NAME
FIRM
FIRM Y (S) GNATURE) TIME SAMPLED 11:30 ADDITIONAL COMMENTS: SAMFLED BY Please DATE SANPLED 2/1/90 RELIMON) SAMPLE No.