CLEANUP ACTION REPORT (CAR)

14610 Purdy Drive Northwest Gig Harbor, Washington 98332

April 26, 2017

Prepared For:

Ms. Tracey Larson 5066 Southeast Hovgaard Road Olalla, Washington 98359

Brian A. Dixon Vice President/ Sr. Environmental Scientist Ashi

Melissa S. Leone, L.G. Senior Environmental Geologist

Anchorage | Tacoma | Portland

Prepared By:

ECI | Environmental Services PO Box 153 Fox Island, Washington 98333 (253) 238-9270

ECI Project No. 0359-01-04

TABLE OF CONTENTS

1.0	INTRODUCTION	.1
1.1	Document Purpose	.1
2.0	BACKGROUND	.1
2.1	Property Description	.1
2.2	Physical Setting	2
2	.2.1 Site Geology	. 2
2	.2.2 Site Hydrogeology	.2
2.3	Previous Site Investigations/ Remedial Actions	.2
2	.3.1 Tacoma Pierce County Health Department 2009 – Site Hazard Assessment	
2	.3.2 Alkai Consultants 2010 – Phase I ESA	. 3
2	.3.3 2010 – Interim Cleanup Action and Confirmation Sampling	.3
2	.3.5 ECI 2017 – Phase I ESA	4
2	.3.6 ECI 2017 – Focused Subsurface Investigation	.5
3.0		-
5.0	CONCEPTUAL SITE MODEL	.6
3.1	Concernor and Cleanup Levels	
		6
3.1	Contaminants of Concern and Cleanup Levels	. 6 . 6
3.1 3.2	Contaminants of Concern and Cleanup Levels Media of Concern	.6 .6 .6
3.1 3.2 3.3 3.4	Contaminants of Concern and Cleanup Levels Media of Concern Distribution of Contamination in Soil	.6 .6 .6
3.1 3.2 3.3 3.4	Contaminants of Concern and Cleanup Levels Media of Concern Distribution of Contamination in Soil Points of Compliance	.6 .6 .6 .6
3.1 3.2 3.3 3.4 3	Contaminants of Concern and Cleanup Levels Media of Concern Distribution of Contamination in Soil Points of Compliance .5.1 Point of Compliance for Soil	.6 .6 .6 .6 .6
3.1 3.2 3.3 3.4 3 4.0	Contaminants of Concern and Cleanup Levels Media of Concern Distribution of Contamination in Soil Points of Compliance .5.1 Point of Compliance for Soil CLEANUP ACTION	.6 .6 .6 .6 .6 .7
3.1 3.2 3.3 3.4 3 4.0 4.1	Contaminants of Concern and Cleanup Levels Media of Concern Distribution of Contamination in Soil Points of Compliance .5.1 Point of Compliance for Soil CLEANUP ACTION Health and Safety	.6 .6 .6 .6 .7 .7
3.1 3.2 3.3 3.4 3 4.0 4.1 4.2	Contaminants of Concern and Cleanup Levels Media of Concern Distribution of Contamination in Soil Points of Compliance .5.1 Point of Compliance for Soil CLEANUP ACTION Health and Safety On-Property Excavation Activities	.6 .6 .6 .6 .7 .7 .7

List of Appendices

Appendix A: Project Figures

- Figure 1: Property Vicinity Map
- Figure 2: Property Topographic Map
- Figure 3: Historical Soil Sample Location Map
- Figure 4: Confirmation Soil Sample Location Map
- Figure 5: Project Photographs

Cleanup Action Report

14610 Purdy Drive NW Gig Harbor, Washington

Appendix B: Project Tables

- Table 1: Summary of Soil Analytical Results
- Table 2: Summary of Groundwater Analytical Results

Appendix C: Soil Disposal Documentation

Appendix D: Project Analytical Results

- TPCHD 2009 Site Inspection
- EMS 2010 Phase II Subsurface Investigation
- ECI 2017 Focused Subsurface Investigation
- ECI 2017 Confirmation Soil Sampling

1.0 INTRODUCTION

EcoCon, Inc. (ECI), has prepared this Cleanup Action Report (CAR) for the property located at 14610 Purdy Drive Northwest in Gig Harbor, Washington (the Property) (Figures 1 and 2; Appendix A). This CAR was prepared on behalf of Ms. Tracey Larson for submittal to the Washington State Department of Ecology (Ecology), and was developed to meet the general requirements of a CAR as defined by the Washington State Model Toxics Control Act (MTCA) Regulation in Chapter 173-340-400 and -410 of the Washington Administrative Code (WAC).

As established in WAC 173-340-200, a "Site" is defined by the full lateral and vertical extent of contamination that has resulted from a release of hazardous substances. Based on the findings of environmental investigations and results of previous remedial actions discussed within this report, this Site had been defined as soil contaminated with: oil-range organics (ORO); polycyclic aromatic hydrocarbons (PAHs); and total lead. As discussed within this report, the release was associated with an above ground leaking hydraulic lift, and the area of impact was limited to two drainage trenches adjacent to this site feature (Figure 3; Appendix A).

1.1 Document Purpose

The purpose of this CAR is to present historical information regarding the source and extent of impacts, describe the remediation activities to remove the contaminated soil, and provide compliance sampling results documenting the completion of the cleanup action.

The work presented herein was performed on behalf of the Property owner with the ultimate objective of obtaining a determination of No Further Action from Ecology.

2.0 BACKGROUND

The following section provides a description of the Property, a summary of environmental investigations conducted on the Site, and a description of the physical characteristics of the Site.

2.1 **Property Description**

The Property consists of a commercial lot, 0.36 acres in size, currently improved with two structures. Both structures are occupied by Gig Harbor Transmission. The service garage was reportedly constructed in 1951 with the second structure, primarily used as storage, erected in 1975.

According to the USGS, Burley, WA topographic map (2014), the central elevation of the Property is at approximately 50 feet above mean sea level (NAD83/WGS84). The ground surface (or topography) at the Property generally slopes towards the Burley Lagoon to the west and southwest. The vicinity of the Property also gradually slopes towards the Burley Lagoon to the west and southwest. (Figure 2, Appendix A).

Cleanup Action Report

14610 Purdy Drive NW Gig Harbor, Washington

2.2 Physical Setting

2.2.1 Site Geology

The Site is located in the region of the Puget Lowlands an elongated topographic and structural depression filled with complex sequences of glacial and nonglacial sediments that overlie bedrock. Continental ice sheets up to 3,000 feet thick covered portions of the Puget Lowland several times during the Quaternary period. Retreating ice carved new landscapes, rechanneled rivers, drained or formed lakes, and deposited glacial drift including till and outwash (WA DNR, 2002).

Based on previous investigations conducted by EMS discussed in Section 2.3, the Site's surface geology varies across the Site. South of the Site's main structure, shallow soils consist clayey sands and concrete within the former tank pit to clayey, gravelly sand to clay (till) at depth. The soils in boring B2 consisted of clayey, silty and gravelly sand fill to approximately 15 feet bgs. The shallow soils around location B6 consisted of clayey, silty and gravelly sand fill to a depth of 14 feet bgs.

2.2.2 Site Hydrogeology

The primary aquifers in the Puget Sound region are typically overlain by relatively impermeable glacial till deposits that are present at or near the ground surface. Within these till deposits are localized areas or lenses of water-bearing sands and gravels that may result in a shallow, perched water table. Lateral and vertical migration of shallow groundwater may be impeded by the relatively impermeable nature of the till and by the sometimes-discontinuous nature of the perched water-bearing sands and gravel. Perched and discontinuous zones of shallow groundwater may be seasonally or perennially present, depending on site-specific conditions. Shallow groundwater flow directions fluctuate and tend to follow topographic gradient but are also affected by seasonal high water tables and variable soil porosity characteristics. Groundwater migration pathways may also follow underground conduits.

A review of Washington State Department of Ecology well logs for the Site vicinity within one-eighth of a mile indicates depth to the first water bearing zone at approximately 33 feet below ground surface (bgs) and a second water bearing zone at depths greater than 110 feet bgs. At the subject Site, shallow groundwater (perched water table) ranges from approximately 8.5 to 10.5 feet (bgs) and exists as discontinuous lenses. No settling ponds, lagoons, surface impoundments, wetlands or natural catch basins were observed at the Site or surrounding properties.

2.3 Previous Site Investigations/ Remedial Actions

2.3.1 Tacoma Pierce County Health Department 2009 – Site Hazard Assessment

In 2009, the Tacoma Pierce County Health Department (TPCHD) visited the Property and collected soil samples from a drainage trench adjacent to the north Property boundary (abutting a concrete pad staging an exterior hydraulic hoist) and a drainage trench on the western side of the main service garage. Both

areas receive runoff from the vicinity of the uncovered, above-ground hydraulic hoist. The soil samples collected contained concentrations of ORO, PAHs, cadmium, and/or lead above their respective Model Toxics Control Act (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Use. The exact location of the samples within the trenches was not provided in TPCHD records.

2.3.2 Alkai Consultants 2010 – Phase I ESA

In January of 2010, a Phase I ESA was conducted by Alkai Consultants, LLC (Alkai). Within the Phase I ESA report, two RECs were identified. The first REC was contamination previously discovered by the TPCHD within the drainage trenches on the Property. The second REC was Environmental Cleanup Liens or Activity and Use Limitations filed against the Subject Property. ECI reviewed available records at the Pierce County Recorder's Office, and was not able to identify any Environmental Cleanup Lien or Activity and Use Limitations filed against the Subject Property.

The Alkai Phase I report also included details pertaining to the decommissioning of four Underground Storage Tanks (USTs) on the Property in 1989. According to Alkai, one 10,000 gallon UST, one 5,000 gallon UST, two 2,000 gallon USTs, and all of the associated piping and dispenser islands were tested for leaks prior to being decommissioned. The Petro Tite Tank Tester representative onsite reported that all four USTs and associated piping had no detectable leaks. During the decommissioning, no holes or damage was identified on the USTs and no contamination was discovered in the surrounding soil. Two soil samples were reportedly collected from the bottom of the tank pits and analyzed as verification, however, the laboratory analytical report was not included within the Alkai Phase I report that was reviewed. Groundwater was reportedly not encountered during the decommissioning of the USTs.

2.3.3 2010 – Interim Cleanup Action and Confirmation Sampling

In February of 2010, the owner of the Property had the contaminated soil within the two drainage trenches excavated and removed.

Environmental Management Services (EMS) subsequently completed a Phase II Subsurface Investigation to evaluate the effectiveness of the interim cleanup action. The Phase II Subsurface Investigation involved the advancement of six (6) soil borings (B1, B2, B3, B4, B5 and B6) on the Property using direct push drilling techniques. Borings B1, B3, B4 and B5 were placed on the south side of the site building. Boring B2 was placed in the southwest area of the exterior lift area and B6 was placed in front of the north working bay. EMS also collected four (4) surface soil samples (T1-T4) from the north trench along the exterior lift area and the trench running parallel to the west side of the main building. One (1) surface soil sample was collected just off the sidewalk south of the building office area (SS1).

Shallow groundwater was encountered in five (5) of the six (6) borings in isolated, perched lenses. Groundwater water was encountered in B1 at 9 feet bgs, in B2 at 8.5 feet bgs, in B4 at 11.5 feet bgs, in B5 at 10.5 feet bgs and in B6 at 9.5 feet bgs. Groundwater was not encountered in boring B3. At the

completion of the drilling each boring was backfilled with bentonite pellets and sealed at the surface with an asphalt or concrete plug and patch.

Ten (10) soil samples and three (3) water samples were collected from the soil borings, and five (5) discrete soil samples were collected using hand tools. The boring locations, sample locations and sample depths, were selected based on historical site use to best characterize the subsurface.

Selected soil and groundwater samples were analyzed for: diesel-range organics (DRO) and ORO by Ecology Method NWTPH-Dx; gasoline-range organics (GRO) by Ecology Method NWTPH-Gx; benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8021b, metals (lead, chromium, and cadmium) by EPA Method 6020; and/or PAHs by EPA Method 8270C.

Analytical results reported metal concentrations in the five (5) shallow soil samples (T1, T2, T3, T4 and SS1) above the laboratories practical quantification limit but below the MTCA Method A Soil Cleanup Levels. No other contaminants were detected above their respective laboratory reporting limits. A summary of the laboratory analytical results is provided on Table 1 in Appendix B.

None of the groundwater samples contained detectable concentrations of any petroleum related contaminant. The groundwater sample collected from B2 did contain a concentration of lead above the MTCA Method A Cleanup Level, however the concentration was considered anomalous as suspended solids within reconnaissance groundwater samples typically bias metal concentrations high, and none of the carrier contaminants of concern were detected.

Based on these results, EMS concluded that the contamination identified by TPCHD in 2009 had been successfully remediated. The northern drainage trench was then filled with clean soil to surface grade and the western drainage trench filled to approximately 6-inches bgs. Oil absorbent socks were lined within the western drainage trench to avoid further contamination.

2.3.5 ECI 2017 – Phase I ESA

In January of 2017, a Phase I ESA was conducted by ECI in connection to a potential purchase of the Property. ECI noted that the exterior hydraulic hoist was still uncovered, and noted some oil staining on the concrete pad. Oil absorbent socks were present within the western drainage trench, however ECI did not consider this to be a sufficient engineering control to avoid potential contamination from the leaking hoist. The exposed soils to the north of the hydraulic pad, where the northern drainage trench formerly existed, also was identified as a potential receptor for contaminated runoff. One REC was identified during the assessment in reference to the leaking hoist and lack of secondary containment.

ECI recommended additional assessment of the western trench, and former northern trench areas, to evaluate if impacts from the leaking hoist had occurred since the interim cleanup action was conducted in 2010.

2.3.6 ECI 2017 – Focused Subsurface Investigation

On January 24, 2017, ECI collected four (4) near surface soil samples (TN1-6, TN1-12; TS1-6; and TS2-6) using stainless steel hand tools (spade and trowel) (Figure 3, Appendix A). The sample locations were strategically selected along the trench lines, within the areas of concern previously identified by the TPCHD and ECI's Phase I ESA. The samples were collected at depths between 6 and 12 inches below ground surface (bgs).

Four (4) soil samples were submitted to the Libby Environmental, of Olympia Washington, and analyzed for one or more of the following COCs:

- GRO by NWTPH-Gx;
- BTEX by EPA Method 8260C; and/or
- DRO and ORO by Northwest Method NWTPH-Dx.

Soil sample TS1-6 contained a concentration of ORO above its MTCA Method Cleanup Level of 2,000mg/kg. The three remaining soil samples also contained concentrations of ORO, however they were below the MTCA Method A Cleanup Level. No other COC was detected above its respective laboratory reporting limit in any of the four samples. A summary of the laboratory analytical results is provided on Table 1 in Appendix B.

As required in Table 830-1 in MTCA, an additional sample (TS1-6B) was collected in the vicinity of TS1-6 and analyzed for:

- DRO and ORO by Northwest Method NWTPH-Dx;
- Volatile Organic Compounds by EPA Method 8260C;
- Polychlorinated Biphenyls (PCBs) by EPA Method 8082;
- PAHs by EPA Method EPA Method 8270 (SIM); and
- Total lead by EPA Method 7010 Series.

The soil sample contained concentrations of ORO, PAHs, and lead above their respective MTCA Method A Cleanup Level. The remaining contaminants were not detected above their respective laboratory reporting limits. A summary of the laboratory analytical results is provided on Table 1 in Appendix B.

3.0 CONCEPTUAL SITE MODEL

This section provides a summary of the conceptual site model, which includes a discussion of the contaminants of concern (COCs), the media of concern, the distribution of contamination in soil, and the potential exposure pathways for the Site.

3.1 Contaminants of Concern and Cleanup Levels

Based upon the results of previous investigations, the COCs and respective cleanup levels for the Site are presented below:

MTCA Method-A Cleanup Lev (MTCA Cleanup Regulation 173-3	
Contaminant of Concern (COCs)	Soil Cleanup Levels (CUL) mg/kg
Oil Range Organics (ORO)-Method NWTPH-Dx	2,000
Polycyclic Aromatic Hydrocarbons (PAHs)	0.1*
Total Lead	250

*Total PAH concentration using toxicity equivalency methodology.

The MTCA Method A Cleanup Level has been selected for the purpose of returning the Site to its original condition and allowing for unrestricted land use during any future property transaction or redevelopment.

3.2 Media of Concern

Based upon the results of previous investigations, soil is the only media of concern for the Site.

3.3 Distribution of Contamination in Soil

The vertical and lateral extent of soil contamination appears limited to within the concrete drainage trench on the western side of the repair shop. The trench consists of foundation footing wall, abutted by a large concrete pad, utilized for bulk storage. A depiction of this site feature is presented on Figure 4 in Appendix A.

3.4 Points of Compliance

The point compliance is the location where the enforcement limits will be measured and cannot be exceeded.

3.5.1 Point of Compliance for Soil

The point of compliance for direct contact is throughout the Site, from ground surface to 15 feet bgs. This is the depth at which one would reasonably assume workers could encounter contaminated soil during construction or development activities. In situations where achieving the standard point of compliance is

not practicable, conditional points of compliance may be established, or institutional controls implemented to prevent direct contact and protect human health and the environment.

The point of compliance established for this Site is positioned at the end of the concrete drainage trench, which is the point where contaminants could be introduced, unimpeded, into the environment.

4.0 CLEANUP ACTION

Based on the conceptual model developed for the Site, the selected cleanup action components that were used are generally described below.

4.1 Health and Safety

Prior to implementation of the cleanup action a Site-specific Health and Safety Plan (HASP) was prepared in accordance with Chapter 296-62 of the Washington Administrative Code (WAC) and 29 CFR 1910.120 (Code of Federal Regulations). The HASP identified potential physical and chemical hazards and specified personal protection and safety monitoring requirements. Health and safety meetings were conducted during fieldwork to review aspects of the HASP, and to provide an opportunity for ECI workers and contractor personnel to discuss health and safety issues or concerns.

4.2 On-Property Excavation Activities

On April 3, 2017, Property owner representatives performed soil removal activities under the guidance of an ECI environmental professional. Approximately 3.69 tons of soil was removed from the western trench line, as well as from the northern edge of the hydraulic hoist pad (former northern trench). COC concentrations in this northern drainage area were below MTCA Method A Cleanup Levels during the characterization sampling, however the Property owner elected to remove this material due to the low level ORO concentrations. Soil disposal documentation is provided in Appendix C.

Excavation activities continued in the western trench until all soil was removed and the concrete footing was encountered. The trench measured approximately 8-inches wide, 24-inches deep, and 48-feet long (Figure 4; Appendix A).

The excavation extent in the northern drainage area measured approximately 24-inches wide, 24-inches deep, and 27-feet long (Figure 4; Appendix A).

5.0 CONFIRMATION SAMPLING

Confirmation sampling was conducted at the limits of the excavation to assess the concentrations of COCs in subsurface soil, to verify compliance with applicable cleanup standards, and to confirm the long-term effectiveness of the cleanup action. One soil sample (EX1-18) was collected just beyond the point where the concrete slab, abutting the foundation footing, terminated. This would be the location where

contaminants could enter the subsurface and where soil could be accessed. One soil sample (EX2-18) was also collected within the northern trench area excavation. Confirmation sample locations are shown on Figure 4 in Appendix A.

To confirm that cleanup levels had been achieved, the concentrations of COCs were compared to the MTCA Method A Cleanup Level for Unrestricted Land Uses. Each sample was analyzed by Libby Environmental for ORO by NWTPH-Dx; PAHs by EPA Method 8270 (SIM); and total lead by EPA 7010 Series.

Neither confirmation soil sample contained concentrations of any COC in excess of its respective MTCA Method A Cleanup Level. A summary of the sample analytical results is provided on Table 2 in Appendix B. Laboratory analytical reports are provided in Appendix D.

6.0 SUMMARY AND CONCLUSIONS

On April 3, 2017 ECI documented the excavation and removal of 3.69 tons of petroleum contaminated soil within two drainage areas on the Property. The purpose of the excavation was to remove soil with concentrations of COCs in excess of the MTCA Method A Cleanup Level and obtain a determination of "No Further Action" from the Washington State Department of Ecology.

Laboratory testing of soil samples collected from the final limits of the excavation have demonstrated that the goals of the cleanup action were successfully achieved.

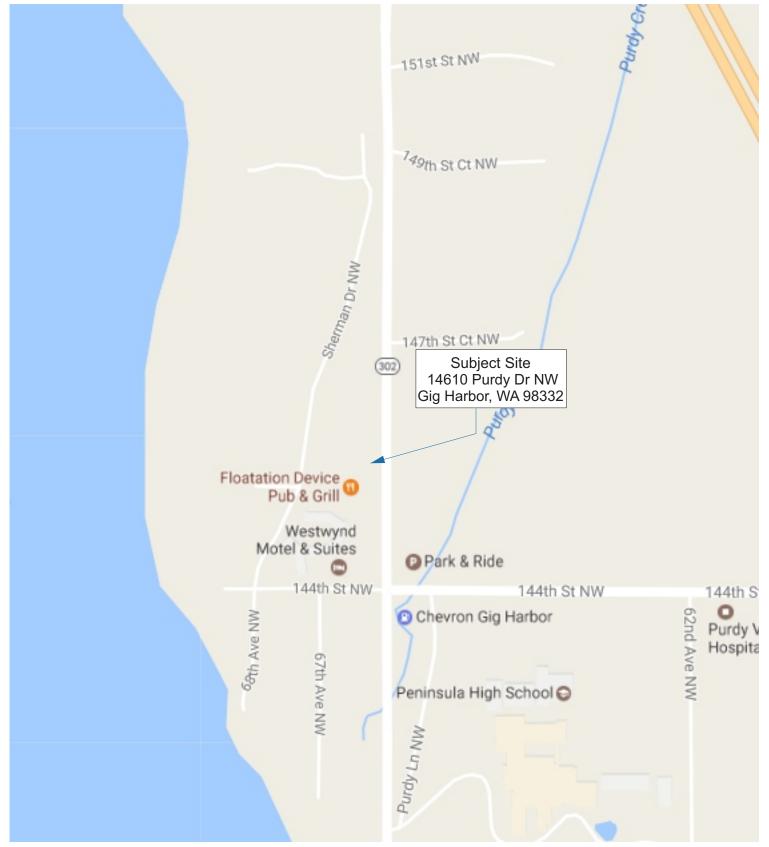
7.0 REFERENCES

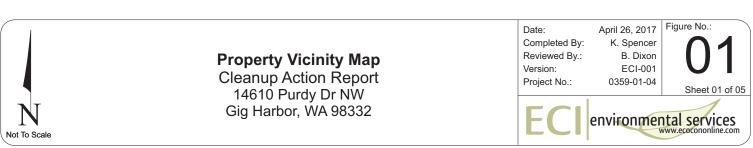
Tacoma Pierce County Health Department 2009. Site Inspection Letter. April 7.

Alkai Consultants, LLC. 2010. Phase I Environmental Site Assessment. January 22.

Environmental Management Services. 2010. Phase II Subsurface Investigation. February 19.

EcoCon Inc. 2017. Phase I Environmental Site Assessment. January 27.


EcoCon Inc. 2017. Focused Subsurface Investigation. February 3.


Appendix A

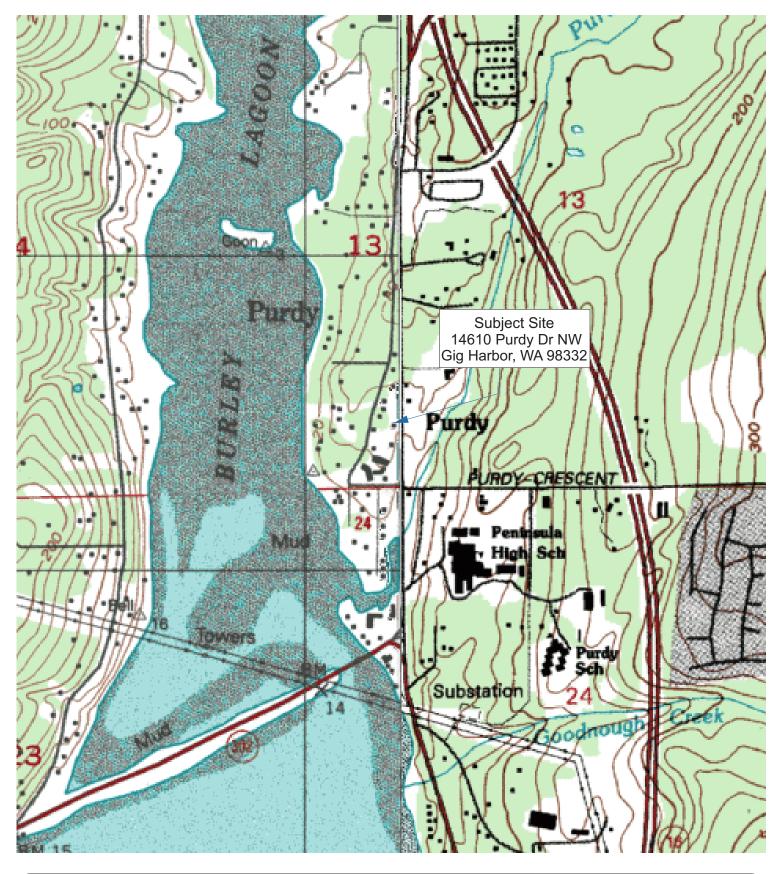
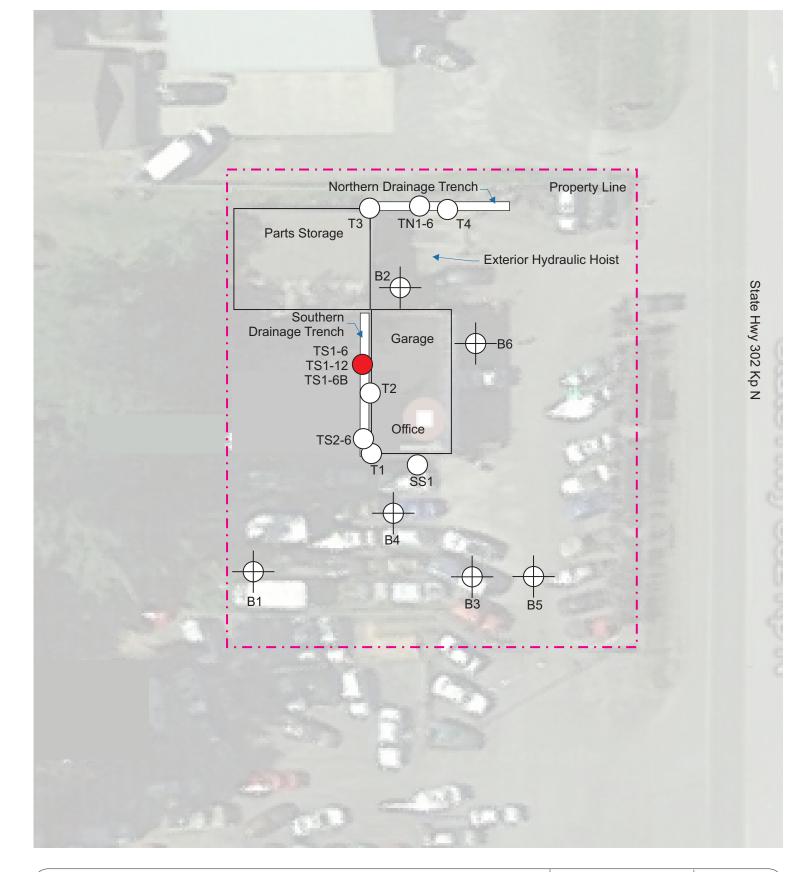

Project Figures

Figure 1: Property Vicinity Map Figure 2: Property Topographic Map Figure 3: Historical Soil Sample Location Map Figure 4: Confirmation Soil Sample Location Map Figure 5: Project Photographs

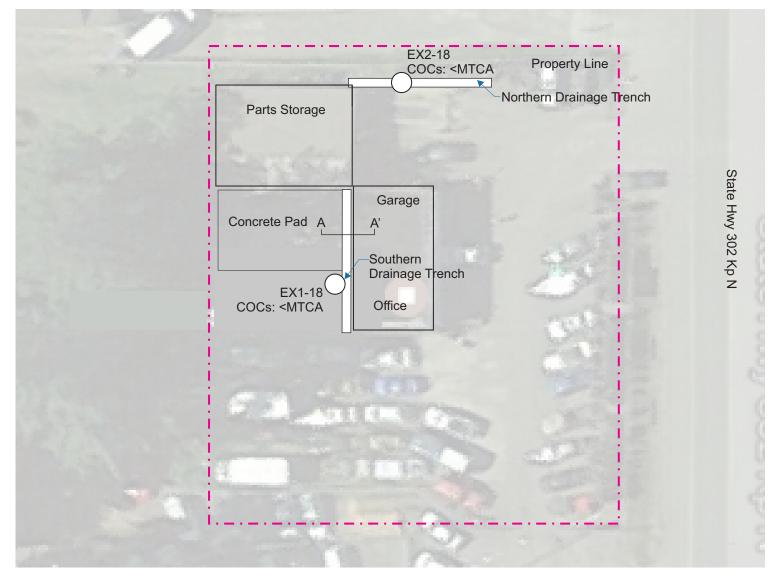


Property Topographic Map Cleanup Action Report 14610 Purdy Dr NW Gig Harbor, WA 98332

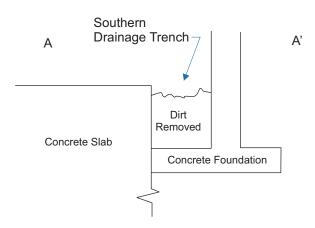
Γ

Not To Scale

ECI	environmer	tal services
Project No.:	0359-01-04	Sheet 02 of 05
Version:	ECI-001	
Reviewed By .:	B. Dixon	
Completed By:	K. Spencer	
Date:	April 26, 2017	Figure No.:



Legend



Historical Soil Sample Location Map

Cleanup Action Report 14610 Purdy Dr NW Gig Harbor, WA 98332 Date: January 25, 2017 Completed By: K. Spencer Reviewed By: B. Dixon Version: ECI-001 Project No.: 0359-01-04 Completed By: Sheet 03 of 05 Completed By: B. Dixon Version: ECI-001 Project No.: 0359-01-04

Cross Section

Digging Out Southern Drainage Trench

Sampling Northern Drainage Trench

Sampling Southern Drainage Trench

Close-up of Base of Footing Abutting Concrete Slab

Project Photographs Cleanup Action Report 14610 Purdy Dr NW Gig Harbor, WA 98332

Digging Out Southern Drainage Trench

Sampling Northern Drainage Trench

Sampling Southern Drainage Trench

Close-up of Base of Footing Abutting Concrete Slab

Project Photographs Cleanup Action Report 14610 Purdy Dr NW Gig Harbor, WA 98332

Appendix B

Project Tables

Table 1: Summary of Soil Analytical ResultsTable 2: Summary of Groundwater Analytical Results

Appendix B Project Tables

			Total Petro	leum Hydrocarbo	ons (mg/kg)	Volat	ile Organic Co	ompounds (m	g/kg)				Carcinogenic	PAHs (mg/kg)						Metals	(mg/kg)			
Sample ID	Sample Date	Sample Depth (Feet)	Gasoline-Range	Diesel- Range	Oil- Range	Benzene	Toluene	Ethylbenzene	Total Xylenes	Benz(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-cd)pyrene	Dibenz(a,h)anthracene	Total cPAHs*	Arsenic	Barium	Cadmium	Total Chromium	Lead	Mercury	Selenium	Silver
											TPCHD 200)9 - Site Inspe	ction												
S1-surface-031209	3/12/2009	Surface	<25	<31	180	< 0.0012	< 0.0062	<0.0012	<0.0037	< 0.0083	<0.0083	<0.0083	<0.0083	<0.0083	< 0.0083	< 0.0083	ND	<13	100	<0.63	57	120	< 0.31	<13	<0.63
S2-surface-031209	3/12/2009	Surface	<270	<4,200	29,000	< 0.0013	<0.0065	< 0.0013	<0.0026	0.094	0.21	0.33	<0.090	0.13	0.11	<0.090	0.20	<14	130	8.8	30	400	0.53	<14	<0.68
		-								EMS	2010 - Phase	II Subsurface	nvestigation												
B1-10-021010	2/10/2010	10	<5	<20	<50	<0.02	< 0.05	<0.05	<0.15																
B2-8-021010	2/10/2010	8		<20	<50																				
B3-10-021010	2/10/2010	10	<5	<20	<50	<0.02	<0.05	<0.05	<0.15																
B4-11-021010	2/10/2010	11	<5	<20	<50	<0.02	<0.05	<0.05	<0.15																
B5-14-021010	2/10/2010	14	<5	<20	<50	<0.02	<0.05	<0.05	<0.15																
B6-8-021010	2/10/2010	8		<20	<50																				
SS1	2/10/2010	0.5-1		<20	<50					<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08				0.6	3.4	17			
T1	2/10/2010	0.5-1								<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08				0.5	8.4	35			
T2	2/10/2010	0.5-1								<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08				0.3	13	20			
Т3	2/10/2010	0.5-1								<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08				0.4	35	53			
T4	2/10/2010	0.5-1								<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08				1.2	33	30			
	-	•								ECI 2	017 - Focuseo	d Subsurface I	nvestigation							•					
TN1-6	1/24/2017	0.5		<50	1,040																				
TS1-6	1/24/2017	0.5	<10	<50	3,440	<0.02	<0.1	<0.05	<0.15																
TS1-12	1/24/2017	1		<50	638																				
TS2-6	1/24/2017	0.5		<50	714																				
TS1-6B	1/24/2017	0.5		<50	5,660					<0.0703	0.156	0.174	<0.0703	0.0868	<0.0703	<0.0703	0.13					660			
						1						irmation Soil	1 0							1	1		1		
EX1-18	4/4/2017	1.5		<50	1,170					< 0.0451	< 0.0451	<0.0451	< 0.0451	<0.0451	< 0.0451	< 0.0451	ND					100			
EX2-18	4/4/2017	1.5		<50	<250					<0.0466	<0.0466	<0.0466	<0.0466	<0.0466	<0.0466	<0.0466	ND					55			
MTCA Metho	d A Cleanup Leve	IS	100	2,000	2,000	0.03	7	6	9	NA	NA	NA	NA	0.1	NA	NA	0.1	20	NA	2	2,000	250	2	NA	NA

Bold: Contaminant Detected Above Laboratory Reporting Limit

		Total Petroleum Hydrocarbons (µg/L)			Volatile Organic Compounds (µg/L)			Carcinogenic PAHs (μg/L)						Metals (µg/L)					
Sample ID	Sample Date	Gasoline-Range	Diesel- Range	Oil- Range	Benzene	Toluene	Ethylbenzene	Total Xylenes	Benz(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-cd)pyrene	Dibenz(a,h)anthracene	Total cPAHs ¹	Cadmium	Chromium	Lead
							ECI 201	7 - Focused Su	bsurface Inve	stigation			1	1					
B1H2O	2/10/2010	<50	<100	<200	<1	<1	<1	<2											
B2H2O	2/10/2010	<50	<100	<200	<1	<1	<1	<2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND	<0.4	50	35 ²
B6H2O	2/10/2010	<50	<100	<200	<1	<1	<1	<2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND			
MTCA Method A	Cleanup Levels	800	500	500	5	1,000	700	1,000	NA	NA	NA	NA	0.1	NA	NA	0.1	5	50	15

ND: Not detected above laboratory reporting limit

¹: Total Concentration using the toxicity equivalency methodology in WAC 173-340-708 (8)

²: Concentration is considered anomolous. Reconnassaince groundwater samples tend to bias metal concentrations high due to presence of suspended solids.

--: Not Analyzed

Appendix C

Disposal Documentation

PRS Group, Inc. 3003 Taylor Way						-383-4175 -383-4531	
Tacoma, WA 98421			1.79		jay@prspl	ant.net	
	GI	ENERATOR	S PROI	TILE			
		—					
Sample Provided	MSDS		Analytical	Report	G	lenerator Kno	wiedge
rofile Number: 6063-b	Approv	red By: Jay Jo	nnson 🚆	y sugrad by Jay Jaynoum wung Johnson, an 1923 Garuat, an Yayigan assam nat, am 10 Yayi da ba 10 27 43 da van a	Date A	ctive: 3/3/201	7
Waste Name: Petroleum Contami	inated Soils	Proc	ess genera	ting waste:	Site remedial activi	illes	
. Generator Information:							
Generator Name: Gig Harbor Trans	smission	PRS	Customer	Name: Same			
echnical Contact: Tracey Larson		Tech	nical Con	tact:			
Site Address: 146120 Purdy Drive	NW	Mail	ing Addre	:55:			
City: Gig Harbor State: WA	Zip: 98332	City		State:	Zip:		
Phone Number: 253-973-1347	<u> </u>	Phor	e Numbe	r:			
E Mail Address: tracey98359@ya	ahoo.com	EM	nil Addres	15:			
	ARACTERISTICS OF W		Layers	🖌 single Ch	lorinated 🖊 N	S PCBs 🛛 M	15
color 🗹 b <u>rown</u> Odor 🗹 <u>od</u>	Flash Test 🛛 >14		Layers	Single Ch			1 <u>5</u>
Color 🛛 b <u>rown</u> Odor 🖌 <u>oi</u>	Flash Test 🕢 >14		Layers	single Ch	lorinated 🕢 M ^{'fo} 10		I <u>S</u>
Color 🖌 b <u>rown</u> Odor 🖌 <u>ol</u>	Flash Test 🕢 >14		Layers	2 <u>single</u> Ch			<u>15</u>
Color 🔽 b <u>rown</u> Odor 🗹 <u>ol</u>	Flash Test 🕢 >14		Layers	Single_Ch	^{'10} 1()0 %	<u>IS</u>
Color 🔽 b <u>rown</u> Odor 🗹 <u>ol</u>	Flash Test 🕢 >14		Layers	Single_Ch	^{'fo} 10 To	00 % %	<u>15</u>
Color 🔽 b <u>rown</u> Odor 🗹 <u>ol</u>	Flash Test 🕢 >14		Layers	Single_ Ch	^{'fo} 10 Tu To	00 % % %	<u>15</u>
Color 🛛 b <u>rown</u> Odor 🗹 <u>el</u>	_ Flash Test	10F pH 🛛 wa			То 10 То То То То	00 % % % %	<u>IS</u>
Color 🔽 b <u>rown</u> Odor 🗹 <u>ol</u>	Flash Test 🕢 >14 ercentage Is (heavy oil) f you have representative	10F pH 🛛 wa			То 10 То То То То	00 % % % %	<u>из</u>

E. Shipping Information - Check a bos to indicate how material is to be shipped

Bulk 🗸

Tracey Larson

Printed Name

Containers

Zinc 🔲

PPM

Quantity to Ship <5 tons

Owner

Title

No heavy metals suspected 🗸

Frequency one time event

> 3/3/17 Date

No regulated metals

DOT Shipping Description: Material not regulated by DOT

Other. Please List NWTPH-Dx & G: BTEX

Generator Certification

I hereby certify, as an authorized representative of the Generator named above, that PRS Group. Inc. has been fully informed about this waste's designation, including barnory initial to, the waste's generation process, composition, and physical characteristics, necessary to identify proper treatment and disposal of waste and this information is true and accurate.

If this is an existing profile which is being renewed, I hereby certify that there have been no changes in this waste, chemical, physical or regulatory designation since the characterization by sample testing.

096080 Horseshoe Lake R USPORTATION COMPANY SYSTEMS, INC. 2301 Taylor Way, Tacoma, WA 98421 phone 800-323-2296 • fax 253-838-9631 AUTHORIZED SIGNAT RL 0 5557 EMPLOYEE NUMBER WT. RWŢ. TRK TRL 4740 61 15 CN: 159795 04-03-2017 TRUCK 13:21 13140,62 16 TRAILER 0 G3 1b ١. CONVERTER 17880 G 16 TRAILER TOTAL WEIGHT 1 096091 Horse Shoe Lake ORTATION TOMPANY SYSTEMS, INC. 2301 Taylor Way, Tacoma, WA 98421 phone 800-323-2296 • fax 253-838-9631 AUTHORIZED SIGNATURE 5 5 EMPLOYEE NUMBER RWT. WT. TRL TRK 04-03-2017 CN: 159806 5220 01 lb TRUCK 14:00 5280 G2 1b TRAILER Ø G3 1b CONVERTER TRAILER 10500 G 1b TOTAL WEIGHT

<u>PRS Group, Inc.</u> ENTRY LOG FOR NON-HAZARDOUS ITEMS

3003 Taylor Way Tacoma, WA 98421 Phone: (253)383-4175 Fax: (253)383-4531 prs@prsplant.net

Drivers Signature *:	Plant Employee: Colton	Time: 3:12 PM
Date: 4-3-2017	Carrier: Horseshoe Lake	Vehicle #: 1

		Work		% Water: 0% % Solids: 100%		% Oil / Fuel Ph: na 0% Tank # Or Area: PIT				Flash>140 Image: Child of the state o				
Generator Name	Profile #	Order, BOL, Or Manifest #	<u>Used</u> <u>Oil</u>	<u>"A" & "C"</u> <u>Category</u> <u>Waste</u>	<u>Used Oil</u> <u>Filters</u>	Off Spec. Fuel	<u>Oü /</u> <u>Water</u> <u>Mix</u>	<u>Oily</u> Solids / Sludges	PCS	Absorbent	<u>Empty</u> Drums	<u>Other</u>		
Gig Harbor Transmission	6063 -b								3.69T			i/c		
												, , , , , , , , , , , , , , , , , , ,		

The information contained in this entry log describes your waste as specified in the specific waste profile approved in to the PRS facility.
 Please verify the information for accuracy prior to signing.

PRS Group, Inc. 3003 Taylor Way Tacoma, WA 98421

Invoice

Invoice #

59722

Date

4/3/2017

04/03/2017

Bill To:

Horse Shoe Lake Wrecking PO Box 36 Wauna, WA 98395

	P.O.	No.	Terms		Due Date		Profile #		Entry I	_og
www.www.www.www.www.www.www.www.www.ww		1000 100 100 100 100 100 100 100 100 10	On Receipt		4/3/2017		6063-Ь		7155	5
Item	Qty		Des	criptio	n		Ra	te	An	nount
PCS	3.6	9 Ton(s)			нтин - у <u>и и со сило на пол</u> осси и на полос			85.00		313.65
	Grightlicer Copy Retain This Copy for Statement Verification	TRN Ref #: Validation Code:	04/03/17 Resp Code: 00 IVR: W8000000000 INVN: 0000002 InvN: 000002	Total:	VISA CHIP READ ATC: MOIT AC: DISTANJONGAGES7395	ADD11051100 Label: C XXXXXXXXXX1586 AID: A0000000031010	CREDIT	Herchant ID: 1888231425366 Record Mun.: 18682	PRS 6 3003 7 TRC0Ma (253) N10 1167	ry ei
- - -		0467093767129390 467093767129390 5702	14:18:32 Appr Code: 049759	USD\$ 313.65	Entry Nethod: Contact	ADDITUSITION LEDGET: CAPITIAL ONE VISA XXXXXXXXX1586 EXD: XX/XX AID: A0000000031010	CREDIT CARD Sale	125366	PRS GRUD THC 3063 TAYLOR GAY TACUNA, UA 36821 (253) 363-4175 HUD 46766250425366	
						Subt	otal			\$313.65
						Sale	s Tax(9.6%)		\$0.00
					2	Tota	I			\$313.65

Phone #	Fax #	E-mail	Web Site
253-383-4175	253-383-4531	prs@prsplant.net	www.prsplant.net

Appendix D

Project Analytical Results

TPCHD 2009 - Site Inspection EMS 2010 - Phase II Subsurface Investigation ECI 2017 - Focused Subsurface Investigation ECI 2017 - Confirmation Soil Sampling

RECEIVED APR-0 1 2009 lerce County Tacon

March 27, 2009

Kirsten Wecker Tacoma-Pierce County Health Department 3629 South "D" Street Tacoma, WA 98418-6813

Re: Analytical Data for Project 609920 Laboratory Reference No. 0903-065

Dear Kirsten:

Enclosed are the analytical results and associated quality control data for samples submitted on March 13, 2009.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely Far David Baumeister Project Manager

Enclosures

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881 • Fax (425) 885-4603

Case Narrative

Samples were collected on March 12, 2009, and received by the laboratory on March 13, 2009. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Volatiles EPA 8260B Analysis

Per EPA Method 5035A, samples were received by the laboratory in Encore sampler devices within 48 hours of sample collection. They were transferred into the proper analytical vials and then either stored in a freezer at between -7°C and -20°C or preserved with sodium bisulfate and/or methanol until extraction or analysis.

Internal Standard 1,4-Dichlorobenzene-d4 does not meet acceptance criteria and Surrogate Standard 4-Bromofluorobenzene is outside control limits for sample S2-surface-031209 due to sample matrix effects. The sample was re-analyzed with similar results. All results, including Practical Quantitation Limits, from Bromobenzene onward should be considered estimates.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-HCID

Date Extracted:3-16-09Date Analyzed:3-18-09

Matrix: Soil Units: mg/kg (ppm)

Client ID:	S1-surface-031209	S2-surface-031209
Lab ID:	03-065-01	03-065-02
Gasoline:	ND	ND
PQL:	25	270
Diesel Fuel:	ND	ND
PQL:	63	680
Lube Oil:	Lube Oil	Lube Oil
PQL:	130	1400
Surrogate Recovery:		
o-Terphenyl	114%	
Flags:	Y	Y,S

NWTPH-HCID METHOD BLANK QUALITY CONTROL

Date Extracted:	3-16-09
Date Analyzed:	3-17-09

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	MB0316S1
Gasoline:	ND
PQL:	20
Diesel Fuel:	ND
PQL:	50
Lube Oil:	ND
PQL:	100
Currente Dessurer"	
Surrogate Recovery:	
o-Terphenyl	113%

Flags

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TCLP Metals EPA 1311/6010B/7470A

Date Prepared:3-17-09Date Extracted:3-18-09Date Analyzed:3-18-09

Matrix:	TCLP Extract		
Units:	mg/L (ppm)		

Lab ID: 03-065-01 Client ID: **S1-Surface-031209**

Analyte	Method	Result	PQL
Arsenic	6010B	ND	0.40
Barium	6010B	0.60	0.20
Cadmium	6010B	ND	0.020
Chromium	6010B	ND	0.020
Lead	6010B	0.25	0.20
Mercury	7470A	ND	0.0050
Selenium	6010B	ND	0.40
Silver	6010B	ND	0.020

TCLP Metals EPA 1311/6010B/7470A

- Date Prepared:3-17-09Date Extracted:3-18-09Date Analyzed:3-18-09
- Matrix:TCLP ExtractUnits:mg/L (ppm)
- Lab ID: 03-065-02 Client ID: **S2-Surface-031209**

Analyte	Method	Result	PQL
Arsenic	6010B	ND	0.40
Barium	6010B	0.54	0.20
Cadmium	6010B	0.047	0.020
Chromium	6010B	ND	0.020
Lead	6010B	0.23	0.20
Mercury	7470A	ND	0.0050
Selenium	6010B	ND	0.40
Silver	6010B	ND	0.020

TCLP Metals EPA 1311/6010B/7470A METHOD BLANK QUALITY CONTROL

Date Prepared:3-17-09Date Extracted:3-18-09Date Analyzed:3-18-09

Matrix:TCLP ExtractUnits:mg/L (ppm)

Lab ID:

100

MB0318T1&MB0318T2

Analyte	Method	Result	PQL
Arsenic	6010B	ND	0.40
Barium	6010B	ND	0.20
Cadmium	6010B	ND	0.020
Chromium	6010B	ND	0.020
Lead	6010B	ND	0.20
Mercury	7470A	ND	0.0050
Selenium	6010B	ND	0.40
Silver	6010B	ND	0.020

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TCLP Metals EPA 1311/6010B/7470A DUPLICATE QUALITY CONTROL

Date Prepared:	3-17-09
Date Extracted:	3-18-09
Date Analyzed:	3-18-09

Matrix:	TCLP Extract
Units:	mg/L (ppm)

Lab ID:

03-065-01

Analyte	Sample Duplica Result Resu		PQL	Flags
Arsenic	ND ND	NA	0.40	
Barium	0.596 0.59 [.]	1 1	0.20	
Cadmium	ND ND	NA	0.020	
Chromium	ND ND	NA	0.020	
Lead	0.247 ND	NA	0.20	
Mercury	ND ND	NA	0.0050	
Selenium	ND ND	NA	0.40	
Silver	ND ND	NA	0.020	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Date Extracted: Date Analyzed:

3-23&24-09

3-23-09

Matrix: Units: Soil mg/kg (ppm)

Client ID: Lab ID:	S1-surface-031209 03-065-01	S2-surface-031209 03-065-02	
Diesel Range: PQL:	ND 31	ND 4200	
Identification:			
Lube Oil Range: PQL:	180 63	29000 1400	
Identification:	Lube Oil	Lube Oil	
Surrogate Recovery o-Terphenyl:	72%		
Flags:	Y	Y,U1,S	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:	3-23-09
Date Analyzed:	3-23-09

Matrix: Units: Soil mg/kg (ppm)

Lab ID:	MB0323S1
Diesel Range:	ND
PQL:	25
Identification:	
Lube Oil Range:	ND
PQL:	50
Identification:	
Surrogate Recovery	
o-Terphenyl:	96%
Flags:	Y

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted:	3-23-09
Date Analyzed:	3-23-09

Matrix: Soil Units: mg/kg (ppm)

03-113-01		03-113-01 DUP
		e
ND		ND
25		25
N/A		
82%		90%
Y		Y
	25 N/A 82%	ND 25 N/A 82%

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

12

VOLATILES by EPA 8260B Page 1 of 2

Date Extracted:	
Date Analyzed:	

Matrix: Units:

States and a second states

Soil mg/kg (ppm)

3-23-09 3-23-09

Lab ID: Client ID:

03-065-01 S1-surface-031209

Compound Dichlorodifluoromethane Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Acetone Iodomethane Carbon Disulfide Methylene Chloride (trans) 1,2-dichloroethene Methyl t-Butyl Ether 1,1-Dichloroethane Vinyl Acetate 2,2-Dichloropropane (cis) 1,2-Dichloroethene 2-Butanone Bromochloromethane Chloroform 1,1,1-Trichloroethane Carbon Tetrachloride 1,1-Dichloropropene Benzene 1,2-Dichloropropane Dibromomethane Trichloroethene 1,2-Dichloropropane Dibromomethane Bromodichloromethane 2-Chloroethyl Vinyl Ether (cis) 1,3-Dichloropropene Methyl Isobutyl Ketone Toluene	Results ND ND ND ND ND ND ND ND ND ND ND ND ND	Flags	PQL 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0062 0.0012 0.0062 0.0012 0.002 0.0012 0.002 0.
(trans) 1,3-Dichloropropene	ND ND		0.0062 0.0012

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

13

VOLATILES by EPA 8260B Page 2 of 2

Lab ID: Client ID:	03-065-01 S1-surface-03120	9		
Compound	20	Results	Flags	PQL
1,1,2-Trichloroethane		ND	-	0.0012
Tetrachloroethene		ND		0.0012
1,3-Dichloropropane		ND		0.0012
2-Hexanone		ND		0.0062
Dibromochloromethane		ND		0.0012
1,2-Dibromoethane		ND		0.0012
Chlorobenzene		ND		0.0012
1,1,1,2-Tetrachloroethane		ND		0.0012
Ethylbenzene		ND		0.0012
m,p-Xylene		ND		0.0025
o-Xylene		ND		0.0012
Styrene		ND	4	0.0012
Bromoform		ND		0.0012
Isopropylbenzene		ND		0.0012
Bromobenzene		ND		0.0012
1,1,2,2-Tetrachloroethane		ND		0.0012
1,2,3-Trichloropropane		ND		0.0012
n-Propylbenzene		ND		0.0012
2-Chlorotoluene		ND		0.0012
4-Chlorotoluene		ND		0.0012
1,3,5-Trimethylbenzene		ND		0.0012
tert-Butylbenzene		ND		0.0012
1,2,4-Trimethylbenzene		ND		0.0012
sec-Butylbenzene		ND		0.0012
1,3-Dichlorobenzene		ND		0.0012
p-Isopropyltoluene		ND		0.0012
1,4-Dichlorobenzene		ND		0.0012
1,2-Dichlorobenzene		ND		0.0012
n-Butylbenzene		ND		0.0012
1,2-Dibromo-3-chloropropane		ND		0.0062
1,2,4-Trichlorobenzene		ND		0.0012
Hexachlorobutadiene		ND		0.0062
Naphthalene		ND		0.0012
1,2,3-Trichlorobenzene		ND		0.0012
	D.			

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	90	70-118
Toluene-d8	97	70-121
4-Bromofluorobenzene	92	70-130

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 1 of 2

Date	Extracted:
Date	Analyzed:

Matrix: Soil Units: mg/kg (ppm)

Lab ID: Client ID:

03-065-02 S2-surface-031209

3-23-09 3-23-09

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.0013
Chloromethane	ND		0.0065
Vinyl Chloride	ND		0.0013
Bromomethane	ND		0.0013
Chloroethane	ND		0.0065
Trichlorofluoromethane	ND		0.0013
1,1-Dichloroethene	ND		0.0013
Acetone	0.13		0.0065
lodomethane	ND		0.0065
Carbon Disulfide	ND		0.0013
Methylene Chloride	ND		0.0065
(trans) 1,2-dichloroethene	ND		0.0013
Methyl t-Butyl Ether	ND		0.0013
1,1-Dichloroethane	ND		0.0013
Vinyl Acetate	ND		0.0065
2,2-Dichloropropane	ND		0.0013
(cis) 1,2-Dichloroethene	ND		0.0013
2-Butanone	ND		0.0065
Bromochloromethane	ND		0.0013
Chloroform	ND ND		0.0013
1,1,1-Trichloroethane			0.0013
Carbon Tetrachloride	ND		0.0013
1,1-Dichloropropene	ND		0.0013
Benzene	ND		0.0013
1,2-Dichloroethane	ND		0.0013
Trichloroethene	ND		0.0013
1,2-Dichloropropane	ND		0.0013
Dibromomethane	ND		0.0013
Bromodichloromethane	ND		0.0013
2-Chloroethyl Vinyl Ether	ND		0.0065
(cis) 1,3-Dichloropropene	ND		0.0013
Methyl Isobutyl Ketone	ND		0.0065
Toluene	ND		0.0065
(trans) 1,3-Dichloropropene	ND		0.0013

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 2 of 2

Lab ID: Client ID:	03-065-02 S2-surface-03 1	209		
Compound		Results	Flags	PQL
1,1,2-Trichloroethane		ND		0.0013
Tetrachloroethene		0.013		0.0013
1,3-Dichloropropane		ND		0.0013
2-Hexanone		ND		0.0065
Dibromochloromethane		ND		0.0013
1,2-Dibromoethane		ND		0.0013
Chlorobenzene		ND		0.0013
1,1,1,2-Tetrachloroethane		ND		0.0013
Ethylbenzene		ND		0.0013
m,p-Xylene		ND		0.0026
o-Xylene		ND		0.0013
Styrene		ND		0.0013
Bromoform		ND		0.0013
Isopropylbenzene		ND		0.0013
Bromobenzene		ND		0.0013
1,1,2,2-Tetrachloroethane		ND		0.0013
1,2,3-Trichloropropane		ND		0.0013
n-Propylbenzene		ND		0.0013
2-Chlorotoluene		ND		0.0013
4-Chlorotoluene		ND		0.0013
1,3,5-Trimethylbenzene		ND		0.0013
tert-Butylbenzene		ND		0.0013
1,2,4-Trimethylbenzene		ND		0.0013
sec-Butylbenzene		ND		0.0013
1,3-Dichlorobenzene		ND		0.0013
p-Isopropyltoluene		ND		0.0013
1,4-Dichlorobenzene		ND		0.0013
1,2-Dichlorobenzene		ND		0.0013
n-Butylbenzene		ND		0.0013
1,2-Dibromo-3-chloropropane	e	ND		0.0065
1,2,4-Trichlorobenzene		ND		0.0013
Hexachlorobutadiene		ND		0.0065
Naphthalene		ND		0.0013
1,2,3-Trichlorobenzene		ND		0.0013

	Percent		Control	
Surrogate	Recovery		Limits	
Dibromofluoromethane	95		70-118	
Toluene-d8	73		70-121	
4-Bromofluorobenzene	70	Q	70-130	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

16

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL Page 1 of 2

Date Extracted:	3-23-09
Date Analyzed:	3-23-09

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:

MB0323S1

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.0010
Chloromethane	ND		0.0050
Vinyl Chloride	ND		0.0010
Bromomethane	ND		0.0010
Chloroethane	ND		0.0050
Trichlorofluoromethane	ND		0.0010
1,1-Dichloroethene	ND		0.0010
Acetone	ND		0.0050
lodomethane	ND		0.0050 0.0010
Carbon Disulfide	ND		side in the second states of the second states
Methylene Chloride	ND ND		0.0050 0.0010
(trans) 1,2-dichloroethene	ND		0.0010
Methyl t-Butyl Ether	ND		0.0010
1,1-Dichloroethane	ND		0.0050
Vinyl Acetate	ND		0.0010
2,2-Dichloropropane	ND		0.0010
(cis) 1,2-Dichloroethene	ND		0.0050
2-Butanone Bromochloromethane	ND		0.0010
- Contraction and the second s	ND		0.0010
Chloroform	ND		0.0010
1,1,1-Trichloroethane	ND		0.0010
Carbon Tetrachloride	ND		0.0010
1,1-Dichloropropene	ND		0.0010
Benzene	ND		0.0010
1,2-Dichloroethane	ND		0.0010
Trichloroethene	ND		0.0010
1,2-Dichloropropane	ND		
Dibromomethane	ND		0.0010
Bromodichloromethane			0.0010
2-Chloroethyl Vinyl Ether	ND		0.0050
(cis) 1,3-Dichloropropene	ND		0.0010
Methyl Isobutyl Ketone	ND		0.0050
Toluene	ND		0.0050
(trans) 1,3-Dichloropropene	ND		0.0010

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL Page 2 of 2

Lab ID:

MB0323S1

Compound		Desults	C 1	no.
1,1,2-Trichloroethane		Results	Flags	PQL
Tetrachloroethene		ND		0.0010
1,3-Dichloropropane		ND		0.0010
2-Hexanone		ND		0.0010
Dibromochloromethane		ND		0.0050
1,2-Dibromoethane		ND		0.0010
Chlorobenzene		ND		0.0010
1,1,1,2-Tetrachloroethane		ND		0.0010
Ethylbenzene		ND		0.0010
m,p-Xylene		ND		0.0010
o-Xylene		ND		0.0020
Styrene		ND		0.0010
Bromoform		ND		0.0010
lsopropylbenzene		ND		0.0010
Bromobenzene		ND		0.0010
1,1,2,2-Tetrachloroethane		ND		0.0010
1,2,3-Trichloropropane		ND		0.0010
n-Propylbenzene		ND		0.0010
2-Chlorotoluene		ND		0.0010
4-Chlorotoluene		ND ND		0.0010
1,3,5-Trimethylbenzene		ND		0.0010
tert-Butylbenzene		ND		0.0010
1,2,4-Trimethylbenzene		ND		0.0010
sec-Butylbenzene		ND		0.0010
1,3-Dichlorobenzene		ND		0.0010
p-Isopropyltoluene		ND		0.0010
1,4-Dichlorobenzene		ND		0.0010
1,2-Dichlorobenzene		ND		0.0010
n-Butylbenzene		ND		0.0010
1,2-Dibromo-3-chloropropane		ND		0.0010
1,2,4-Trichlorobenzene		ND		0.0050
Hexachlorobutadiene				0.0010
		ND		0.0050
Naphthalene		ND		0.0010
1,2,3-Trichlorobenzene		ND		0.0010
	F	Percent		Control
Surrogate	R	ecovery		Limits
Dibromofluoromethane		85		70-118
Toluene-d8		93		70-121
4-Bromofluorobenzene		103		70-130

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Date Extracted:	3-23-09
Date Analyzed:	3-23-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID:

SB0323S1

Compound		Spike Amount	SB	Percent Recovery	SBD	Percent Recovery	Recovery Limits	Flags
1,1-Dichloroethene		0.0500	0.0367	73	0.0356	71	70-130	
Benzene		0.0500	0.0409	82	0.0428	86	70-128	
Trichloroethene		0.0500	0.0499	100	0.0466	93	73-121	
Toluene		0.0500	0.0456	91	0.0463	93	74-122	
Chlorobenzene		0.0500	0.0510	102	0.0519	104	76- 115	

RPD				
RPD	Limit	Flags		
3	15			
4	12			
7	17			
2	14			
2	13			
	3 4 7 2	RPD Limit 3 15 4 12 7 17 2 14		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

PAHs by EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

Units: mg/Kg	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Analyte Client ID:	S1-Surface-031209	I GL	motreu		1	
Laboratory ID:	03-065-01					
Naphthalene	ND	0.0083	EPA 8270/SIM	3-26-09	3-26-09	
2-Methylnaphthalene	ND	0.0083	EPA 8270/SIM	3-26-09	3-26-09	
1-Methylnaphthalene	ND	0.0083	EPA 8270/SIM	3-26-09	3-26-09	
Acenaphthylene	ND	0.0083	EPA 8270/SIM	3-26-09	3-26-09	
Acenaphthene	ND	0.0083	EPA 8270/SIM	3-26-09	3-26-09	
Fluorene	ND	0.0083	EPA 8270/SIM	3-26-09	3-26-09	
Phenanthrene	ND	0.0083	EPA 8270/SIM	3-26-09	3-26-09	
Anthracene	ND	0.0083	EPA 8270/SIM	3-26-09	3-26-09	
Fluoranthene	ND	0.0083	EPA 8270/SIM	3-26-09	3-26-09	
Pyrene	ND	0.0083	EPA 8270/SIM	3-26-09	3-26-09	
Benzo[a]anthracene	ND	0.0083	EPA 8270/SIM	3-26-09	3-26-09	
Chrysene	ND	0.0083	EPA 8270/SIM	3-26-09	3-26-09	
Benzo[b]fluoranthene	ND	0.0083	EPA 8270/SIM	3-26-09	3-26-09	
Benzo[k]fluoranthene	ND	0.0083	EPA 8270/SIM	3-26-09	3-26-09	
Benzo[a]pyrene	ND	0.0083	EPA 8270/SIM	3-26-09	3-26-09	
Indeno(1,2,3-c,d)pyrene	ND	0.0083	EPA 8270/SIM	3-26-09	3-26-09	
Dibenz[a,h]anthracene	ND	0.0083	EPA 8270/SIM	3-26-09	3-26-09	
	ND	0.0083	EPA 8270/SIM	3-26-09	3-26-09	
Benzo[g,h,i]perylene	Percent Recovery	Control Limits				
Surrogate: Nitrobenzene-d5	95	39 - 110				
	71	41 - 107				
2-Fluorobiphenyl	81	54 - 126				
Terphenyl-d14	0.					

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

PAHs by EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	S2-Surface-031209					
Laboratory ID:	03-065-02					
Naphthalene	ND	0.090	EPA 8270/SIM	3-26-09	3-26-09	
2-Methylnaphthalene	0.19	0.090	EPA 8270/SIM	3-26-09	3-26-09	
1-Methylnaphthalene	0.11	0.090	EPA 8270/SIM	3-26-09	3-26-09	
Acenaphthylene	ND	0.090	EPA 8270/SIM	3-26-09	3-26-09	
Acenaphthene	ND	0.090	EPA 8270/SIM	3-26-09	3-26-09	
Fluorene	ND	0.090	EPA 8270/SIM	3-26-09	3-26-09	
Phenanthrene	0.099	0.090	EPA 8270/SIM	3-26-09	3-26-09	
Anthracene	ND	0.090	EPA 8270/SIM	3-26-09	3-26-09	
Fluoranthene	0.17	0.090	EPA 8270/SIM	3-26-09	3-26-09	
Pyrene	0.39	0.090	EPA 8270/SIM	3-26-09	3-26-09	
Benzo[a]anthracene	0.094	0.090	EPA 8270/SIM	3-26-09	3-26-09	
Chrysene	0.21	0.090	EPA 8270/SIM	3-26-09	3-26-09	
Benzo[b]fluoranthene	0.33	0.090	EPA 8270/SIM	3-26-09	3-26-09	
Benzo[k]fluoranthene	ND	0.090	EPA 8270/SIM	3-26-09	3-26-09	
Benzo[a]pyrene	0.13	0.090	EPA 8270/SIM	3-26-09	3-26-09	
Indeno(1,2,3-c,d)pyrene	0.11	0.090	EPA 8270/SIM	3-26-09	3-26-09	
Dibenz[a,h]anthracene	ND	0.090	EPA 8270/SIM	3-26-09	3-26-09	
Benzo[g,h,i]perylene	0.31	0.090	EPA 8270/SIM	3-26-09	3-26-09	
Surrogate:	Percent Recovery	Control Limits				
Nitrobenzene-d5	98	39 - 110				
2-Fluorobiphenyl	67	41 - 107				
Terphenyl-d14	88	54 - 126				

PAHs by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Matrix: Soil Units: mg/Kg

Units. highty				Date	Date	Flores
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0326S1					
Naphthalene	ND	0.0067	EPA 8270/SIM	3-26-09	3-26-09	
2-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	3-26-09	3-26-09	
1-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	3-26-09	3-26-09	
Acenaphthylene	ND	0.0067	EPA 8270/SIM	3-26-09	3-26-09	
Acenaphthene	ND	0.0067	EPA 8270/SIM	3-26-09	3-26-09	
Fluorene	ND	0.0067	EPA 8270/SIM	3-26-09	3-26-09	
Phenanthrene	ND	0.0067	EPA 8270/SIM	3-26-09	3-26-09	
Anthracene	ND	0.0067	EPA 8270/SIM	3-26-09	3-26-09	
Fluoranthene	ND	0.0067	EPA 8270/SIM	3-26-09	3-26-09	
Pyrene	ND	0.0067	EPA 8270/SIM	3-26-09	3-26-09	
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	3-26-09	3-26-09	
Chrysene	ND	0.0067	EPA 8270/SIM	3-26-09	3-26-09	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270/SIM	3-26-09	3-26-09	
Benzo[k]fluoranthene	ND	0.0067	EPA 8270/SIM	3-26-09	3-26-09	
Benzo[a]pyrene	ND	0.0067	EPA 8270/SIM	3-26-09	3-26-09	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270/SIM	3-26-09	3-26-09	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270/SIM	3-26-09	3-26-09	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270/SIM	3-26-09	3-26-09	
Surrogate:	Percent Recovery	Control Limits				
Nitrobenzene-d5	94	39 - 110				
2-Fluorobiphenyl	68	41 - 107				
Terphenyl-d14	93	54 - 126				

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

.

PAHs by EPA 8270D/SIM MS/MSD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	03-065-	01 MSD									
	MS	MSD	MS	MSD		MS	MSD				
Naphthalene	0.0614	0.0564	0.0833	0.0833	ND	74	68	45 - 94	8	24	
Acenaphthylene	0.0776	0.0722		0.0833	ND	93	87	51 - 104	7	25	
Acenaphthene	0.0768	0.0690	0.0833	0.0833	ND	92	83	53 - 103	11	21	
Fluorene	0.0777	0.0722		0.0833	ND	93	87	57 - 107	7	19	
Phenanthrene	0.0741	0.0695	0.0833	0.0833	ND	89	83	61 - 104	6	17	
Anthracene	0.0725	0.0705	0.0833	0.0833	ND	87	85	58 - 102	3	14	
Fluoranthene	0.0850	0.0799	0.0833	0.0833	ND	102	96	69 - 109	6	27	
Pyrene	0.0848	0.0798	0.0833	0.0833	ND	102	96	71 - 114	6	27	
Benzo[a]anthracene	0.0910	0.0874	0.0833	0.0833	ND	109	105	61 - 123	4	18	
Chrysene	0.0881	0.0823	0.0833	0.0833	ND	106	99	66 - 124	7	19	
Benzo[b]fluoranthene	0.0839	0.0820	0.0833	0.0833	ND	101	98	72 - 114	2	26	
Benzo[k]fluoranthene	0.0837	0.0756	0.0833	0.0833	ND	100	91	70 - 115	10	17	
Benzo[a]pyrene	0.0830	0.0807	0.0833	0.0833	ND	100	97	57 - 104	3	18	
Indeno(1,2,3-c,d)pyrene	0.0790	0.0736	0.0833	0.0833	ND	95	88	63 - 121	7	20	
Dibenz[a,h]anthracene	0.0798	0.0741	0.0833	0.0833	ND	96	89	62 - 125	7	15	
Benzo[g,h,i]perylene	0.0820	0.0752	0.0833	0.0833	ND	98	90	64 - 117	9	21	
Surrogate:											
Nitrobenzene-d5						94	96	39 - 110			
2-Fluorobiphenyl						84	74	41 - 107			
Terphenyl-d14						103	88	54 - 126			

% MOISTURE

Date Analyzed: 3-16-09

Client ID	Lab ID	% Moisture
S1-surface-031209	03-065-01	20
S2-surface-031209	03-065-02	26

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

24

9

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

P - The RPD of the detected concentrations between the two columns is greater than 40.

Q - Surrogate recovery is outside of the control limits.

S - Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

U1 - The practical quantitation limit is elevated due to interferences present in the sample.

V - Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.

W - Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.

X - Sample extract treated with a mercury cleanup procedure.

Y - Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed by/Date	Received by	Relinquished by	Received by	Relinquished by	Received by	Relinquished by					12.2.7	1 51-50	Sampled by:	Project Name: Project Manager:	4	Envi	MA OnS
				Var Horad	Vai Hocket	Jest Le	Signature				NO-160-201	N-14-02)209		Lon Struck & Gright		Environmental Inc.	
DISTRIBUTION LEGEND: White - OnSite			R ASNA	The Sheer	5 Fleeder	CH Rella	Company				03.12.K 1:30 Sol 4	53.12.51 1:10 Soil 4	Dete (other)	2 Day Standard (7 workin (TPH analysis 5 w	(Check One)	turneround Reduest 4 (In Working days)	Chain of
oy/Date C White - OnSite Copy Yellow - Report Copy Pink - Client Copy			5 7/3/5 750	3/13/09 7:50	3/13/09 3.40	3/13/2 8:40 +					X Q Q X	X S S S	NWTPH-HCID NWTPH-Gx/B1 NWTPH-Dx Volatiles by 82 Halogenated V Semivolatiles t PAHs by 8270 PCBs by 8082	FEX 60B folatiles by 8260B by 8270D D / SIM		Laboratory Number:	Chain of Custody
Chromatograms with final report		BUNGING 3/23/19. 03		may be added	HCTO / other o	* Depending on res					×	×	Pesticides by 8 Herbicides by Total RCRA M TCLP Metals HEM by 1664	8081A 8151A letals (8)	equestes AncilyCl	- 50	Page
		00	×	CA CITA		123270 2							% Moisture			-065	of

Analytical Testing and Mobile Laboratory Services

5

April 2, 2009

Kirsten Wecker Tacoma-Pierce County Health Department 3629 South "D" Street Tacoma, WA 98418-6813

Re: Analytical Data for Project 609920 Laboratory Reference No. 0903-065B

Dear Kirsten:

Enclosed are the analytical results and associated quality control data for samples submitted on March 13, 2009.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely **ADavid Baumeister**

Project Manager

Enclosures

Case Narrative

Samples were collected on March 12, 2009, and received by the laboratory on March 13, 2009. They were maintained at the laboratory at a temperature of 2°C to 6°C except as noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

2

TOTAL METALS EPA 6010B/7471A

Date Extracted: 4-1-09 Date Analyzed: 4-1-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID:	03-065-01
Client ID:	S1-Surface-031209

Analyte	Method	Result	PQL
Arsenic	6010B	ND	13
Barium	6010B	100	3.1
Cadmium	6010B	ND	0.63
Chromium	6010B	57	0.63
Lead	6010B	120	6.3
Mercury	7471A	ND	Q.31
Selenium	6010B	ND	13
Silver	6010B	ND	0.63

TOTAL METALS EPA 6010B/7471A

Date Extracted: 4-1-09 Date Analyzed: 4-1-09

Matrix: Soil Units: mg/kg (ppm)

Lab ID: 03-065-02 Client ID: S2-Surface-031209

Analyte	Method	Result	PQL
Arsenic	6010B	ND	14
Barium	6010B	130	3.4
Cadmium	6010B	8.8	0.68
Chromium	6010B	30	0.68
Lead	6010B	400	6.8
Mercury	7471A	0.53	0.34
Selenium	6010B	ND	14
Silver	6010B	ND	0.68

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

4

TOTAL METALS EPA 6010B/7471A METHOD BLANK QUALITY CONTROL

Date Extracted:	4-1-09
Date Analyzed:	4-1-09
5.	
Matrix:	Soil
Units:	ma/ka (r

mg/kg (ppm)

Lab ID:

MB0401S2&MB0401S3

Analyte	Method	Result	PQL
Arsenic	6010B	ND	10
Barium	6010B	ND	2.5
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Lead	6010B	ND	5.0
Mercury	7471A	ND	0.25
Selenium	6010B	ND	10
Silver	6010B	ND	0.50

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010B/7471A DUPLICATE QUALITY CONTROL

Date Extracted:	4-1-09
Date Analyzed:	4-1-09

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 03-142-04

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	10	
Barium	76.4	77.8	2	2.5	
Cadmium	ND	ND	NA	0.50	
Chromium	37.2	36.4	2	0.50	
Lead	ND	ND	NA	5.0	
Mercury	ND	ND	NA	0.25	
Selenium	ND	ND	NA	10	
Silver	ND	ND	NA	0.50	

TOTAL METALS EPA 6010B/7471A MS/MSD QUALITY CONTROL

Date Extracted:4-1-09Date Analyzed:4-1-09

Matrix:	Soil
Units:	mg/kg (ppm)
	1961

Lab ID: 03-142-04

Spike Percent Percent Analyte Recovery RPD Flags Level Recovery MSD MS Arsenic 100 85.6 86 91.2 91 6 100 171 95 178 101 4 Barium 43.2 86 45.3 91 5 Cadmium 50 130 122 85 92 6 Chromium 100 250 220 88 230 92 5 Lead 0.523 0.50 0.488 98 105 7 Mercury 84.6 85 86.5 86 2 100 Selenium 20.7 20.9 84 83 25 1 Silver

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

P - The RPD of the detected concentrations between the two columns is greater than 40.

Q - Surrogate recovery is outside of the control limits.

S - Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

U1 - The practical quantitation limit is elevated due to interferences present in the sample.

V - Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.

W - Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.

X - Sample extract treated with a mercury cleanup procedure.

Y - Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Project Manager: Company Project Name: Project Number Sampled に対応に対 - hate 060000 TPCHD Received by Relinquished by Relinguished by Received by Reviewed by/Dale Received by Relinquished by SJ- Swime-031209 S1- Surface-031209 L OnSite **Environmental Inc.** Phone. (425) 863-3881 • Fax: (425) 885-4600 Wecher SPRE, State States 3 netatt 03.12.00 1:30 01:10-51:50 DISTRIBUTION LEGEND: White - OnSile Copy Yollow - Report Copy Pink - Client Copy Same Day X Standard (7 working days) 🗌 2 Day 57 (TPH analysis 5 working days) (Check One) Stard Reviewed by/Date Chain of Custody (other) 8. 20 100 🗍 1 Day 🗋 3 Day 1 τų sai * Laboratory Number: NWTPH-HCID × ${}^{\times}$ NWTPH-Gx/BTEX 3 3/09 3/13/09 3(3)5 N BB NWTPH-Dx 134 RR Volatiles by 8260B Halogenated Volatiles by 8260B 0.5% 35% 04:40 04.2 Semivolatiles by 8270D PAHS Dy 8270D / SIM HCID, other an alytes may be added ytes PCBs by 8082 Commences and the second second Chromatograms with final report Opulard 3/22/19. DB Pesticides by 8081A Herbicides by 8151A 6 Total RCRA Metals (8) R TCLP Metals × × HEM by 1664 \bigcirc 3-0 Page S S ZdayTH õ % Moisture

2930 Westlake Ave N Suite 100 Seattle, WA 98109 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Environmental Management Services, LLC Attn: Robin Hamlet PO Box 153 652 8th Ave. Fox Island, WA 98333

RE: Gig Harbor Transmission Fremont Project No: CHM100211-8 EMS Project No: 0359-01

February 18th, 2010

Robin:

Enclosed are the analytical results for the *Gig Harbor Transmission* soil and water samples submitted to Fremont Analytical on Thursday February 11th, 2010.

Examination of these samples was conducted for the presence of the following:

- Gasoline (NWTPH-Gx) & BTEX (EPA Method 8021B)
- Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.
- Polyaromatic Hydrocarbons by EPA Method 8270
- Total Metals by EPA Method 6020

These applications were performed under Washington State Department of Ecology accreditation parameters. All appropriate Quality Assurance / Quality Control method parameters have been applied.

Laboratory Notation – 6020 (soil): Matrix Effect - The relative percent difference between the sample and sample duplicate for lead was outside of the laboratory control limits (40%, range = 30%).

Please contact the laboratory if you should have any questions about the report.

Thank you for using Fremont Analytical!

Sincerely,

6p

Michael Dee Sr. Chemist / Principal mikedee@fremontanalytical.com

Analysis of Gasoline (NWTPH-Gx) and BTEX (EPA Method 8021B) in Soil

Project: Gig Harbor Transmission Client: EMS Client Project #: 0359-01 Lab Project #: CHM100211-8

-					Duplicate	
8021B+NWTPH-Gx (mg/kg)	MRL	Method Blank	LCS	B1-10-021010	B1-10-021010	B3-10-021010
Date Preserved				2/11/10	2/11/10	2/11/10
Date Analyzed		2/15/10	2/15/10	2/15/10	2/15/10	2/15/10
Matrix				Soil	Soil	Soil
8021B (mg/kg)						
Benzene	0.02	nd	80%	nd	nd	nd
Toluene	0.05	nd	77%	nd	nd	nd
Ethylbenzene	0.05	nd		nd	nd	nd
Total Xylenes	0.15	nd		nd	nd	nd
NWTPH-Gx (mg/kg)						
Gasoline	5.0	nd	108%	nd	nd	nd
Gasoline Range Hydrocarbons (GRO)*	5.0	nd		nd	nd	nd
Surrogate Recovery						
(Surr 1) a,a,a-Trifluorotoluene		105%	105%	99%	103%	105%
(Surr 2) Bromofluorobenzene		81%	85%	81%	82%	82%
"nd" Indicates not detected at listed reporting limits						
"C" Indicates coelution prevents determination "J" Indicates estimated value						
"MRL" Indicates Method Reporting Limits						
"LCS" Indicates Laboratory Control Sample						
"MS" Indicates Matrix Spike						
"MSD" Indicates Matrix Spike Duplicate "RPD" Indicates Relative Percent Difference						
" * " Indicates presence of petroleum distilate						
Acceptable RPD is determined to be less than 30%						
Acceptable Recovery Limits:						
Surrogate = 65% to 135%						
LCS, LCSD, MS, MSD = 65% to 135%						
Surrogate Concentration = 0.25 mg/kg						

Surrogate Concentration = 0.25 mg/kg BTEX Spike Concentration = 0.5 mg/kg

Gx Spike Concentration = 5.0 mg/kg

GRO = C6-C12

Analysis of Gasoline (NWTPH-Gx) and BTEX (EPA Method 8021B) in Soil

Project: Gig Harbor Transmission Client: EMS Client Project #: 0359-01 Lab Project #: CHM100211-8

Lab Project #: CHM100211-8				MS	MSD	
8021B+NWTPH-Gx	MRL	B4-11-021010	B5-14-021010	B1-10-021010	B1-10-021010	RPD
(mg/kg)						%
Date Preserved		2/11/10	2/11/10	2/11/10	2/11/10	
Date Analyzed		2/15/10	2/15/10	2/15/10	2/15/10	
Matrix		Soil	Soil	Soil	Soil	
8021B (mg/kg)						
Benzene	0.02	nd	nd	79%	81%	3%
Toluene	0.05	nd	nd	78%	79%	1%
Ethylbenzene	0.05	nd	nd			
Total Xylenes	0.15	nd	nd			
NWTPH-Gx (mg/kg)						
Gasoline	5.0	nd	nd			
Gasoline Range Hydrocarbons (GRO)*	5.0	nd	nd			
Surrogate Recovery						
(Surr 1) a,a,a-Trifluorotoluene		100%	103%	104%	107%	
(Surr 2) Bromofluorobenzene		80%	82%	90%	90%	
"nd" Indicates not detected at listed reporting limits						
"C" Indicates coelution prevents determination "J" Indicates estimated value						
"MRL" Indicates Method Reporting Limits						
"LCS" Indicates Laboratory Control Sample						
"MS" Indicates Matrix Spike "MSD" Indicates Matrix Spike Duplicate						
"RPD" Indicates Relative Percent Difference						
" * " Indicates presence of petroleum distilate						
Acceptable RPD is determined to be less than 30%						
Acceptable Recovery Limits:						
Surrogate = 65% to 135% LCS, LCSD, MS, MSD = 65% to 135%						
Surrogate Concentration = 0.25 mg/kg						

GRO = C6-C12

BTEX Spike Concentration = 0.5 mg/kg Gx Spike Concentration = 5.0 mg/kg

Analysis of Gasoline (NWTPH-Gx) and BTEX (EPA Method 8021B) in Water

Project: Gig Harbor Transmission Client: EMS Client Project #: 0359-01 Lab Project #: CHM100211-8

					Duplicate	
8021B+NWTPH-Gx	MRL		LCS	B1H ₂ O-021010	B1H ₂ O-021010	B2H ₂ O-021010
(μg/L)		Blank				
Date Analyzed		2/15/10	2/15/10	2/15/10	2/15/10	2/15/10
Matrix				Water	Water	Water
8021B (µg/L)						
Benzene	1.0	nd	82%	nd	nd	nd
Toluene	1.0	nd	83%	nd	nd	nd
Ethylbenzene	1.0	nd	0070	nd	nd	nd
Total Xylenes	2.0	nd		nd	nd	nd
NWTPH-Gx (µg/L)						
Gasoline	50	nd	104%	nd	nd	nd
Gasoline Range Hydrocarbons (GRO)*	* 50	nd		nd	nd	nd
Surrogate Recovery						
(Surr 1) a,a,a-Trifluorotoluene		103%	105%	107%	105%	107%
(Surr 2) Bromofluorobenzene		87%	91%	89%	86%	88%
"nd" Indicates not detected at listed reporting limits "C" Indicates coelution prevents determination "J" Indicates estimated value "MRL" Indicates Method Reporting Limits "LCS" Indicates Method Reporting Sample "MS" Indicates Matrix Spike "MSD" Indicates Matrix Spike Duplicate "RPD" Indicates Relative Percent Difference " * " Indicates presence of petroleum distilate	5					
Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits: Surrogate = 65% to 135% LCS, LCSD, MS, MSD = 65% to 135% Surrogate Concentration = 5.0 μg/L	6					

BTEX Spike Concentration = $10 \ \mu g/L$ Gx Spike Concentration = $100 \ \mu g/L$

GRO = C6-C12

Analysis of Gasoline (NWTPH-Gx) and BTEX (EPA Method 8021B) in Water

Project: Gig Harbor Transmission Client: EMS Client Project #: 0359-01 Lab Project #: CHM100211-8

Lab Project #: CHM100211-8			MS	MSD	
8021B+NWTPH-Gx	MRL	B6H ₂ O-021010	B2H ₂ O-021010	B2H ₂ O-021010	RPD
<u>(μg/L)</u>					%
Date Analyzed		2/15/10	2/15/10	2/15/10	
Matrix		Water	Water	Water	
8021B (µg/L)					
Benzene	1.0	nd	76%	79%	4%
Toluene	1.0	nd	77%	79%	3%
Ethylbenzene	1.0	nd	1170	10,0	070
Total Xylenes	2.0	nd			
NWTPH-Gx (µg/L)					
Gasoline	50	nd			
Gasoline Range Hydrocarbons (GRO)*		nd			
Surrogate Recovery					
(Surr 1) a,a,a-Trifluorotoluene		105%	101%	104%	
(Surr 2) Bromofluorobenzene		87%	89%	91%	
"nd" Indicates not detected at listed reporting limits	6				
"C" Indicates coelution prevents determination "J" Indicates estimated value					
"MRL" Indicates Method Reporting Limits					
"LCS" Indicates Laboratory Control Sample					
"MS" Indicates Matrix Spike					
"MSD" Indicates Matrix Spike Duplicate					
"RPD" Indicates Relative Percent Difference					
" * " Indicates presence of petroleum distilate					
Acceptable RPD is determined to be less than 30%	D				
Acceptable Recovery Limits:					
Surrogate = 65% to 135% LCS, LCSD, MS, MSD = 65% to 135%					
Surrogate Concentration = $5.0 \mu q/L$					

Surrogate Concentration = $5.0 \,\mu g/L$

BTEX Spike Concentration = $10 \mu g/L$ Gx Spike Concentration = $100 \mu g/L$

GRO = C6-C12

Analysis of Diesel and Heavy Oil in Soil by NWTPH-Dx / Dx Ext.

Project: Gig Harbor Transmission Client: EMS Client Project #: 0359-01 Lab Project #: CHM100211-8

					Duplicate
NWTPH-Dx/Dx Ext.	MRL	Method	LCS	B1-10-021010	B1-10-021010
(mg/kg)		Blank			
Date Extracted		2/17/10	2/17/10	2/17/10	2/17/10
Date Analyzed		2/17/10	2/17/10	2/17/10	2/17/10
Matrix				Soil	Soil
Diesel (Fuel Oil)	20	nd	121%	nd	nd
Mineral Oil	40	nd		nd	nd
Heavy Oil	50	nd		nd	nd
Surrogate Recovery					
(Surr 1) 2-Fluorobiphenyl		107%	119%	109%	103%
(Surr 2) o-Terphenyl		108%	110%	106%	99%
"nd" Indicates not detected at listed reporting lir "int" Indicates that interference prevents determ "J" Indicates estimated value					

"C" Indicates coelution prevents determination

"RPD" Indicates Relative Percent Difference

"MRL" Indicates Method Reporting Limit

Acceptable RPD is determined to be less than 30%

Acceptable Recovery Limits:

Surrogate = 65% to 135% Surrogate Concentration = 20 mg/kg Spike Concentration = 500 mg/kg

Diesel (Fuel Oil) = C12-C24 Mineral Oil = C15-C40 Heavy Oil = C24-C40

Analysis of Diesel and Heavy Oil in Soil by NWTPH-Dx / Dx Ext.

Project: Gig Harbor Transmission Client: EMS Client Project #: 0359-01 Lab Project #: CHM100211-8

NWTPH-Dx/Dx Ext.	MRL	B2-8-021010	B3-10-021010	B4-11-021010	B5-14-021010
<u>(</u> mg/kg)					
Date Extracted		2/17/10	2/17/10	2/17/10	2/17/10
Date Analyzed		2/17/10	2/17/10	2/17/10	2/17/10
Matrix		Soil	Soil	Soil	Soil
	20	nd	nd	nd	nd
Diesel (Fuel Oil)	-	nd	nd	nd	nd
Mineral Oil	40	nd	nd	nd	nd
Heavy Oil	50	nd	nd	nd	nd
Surrogate Recovery					
(Surr 1) 2-Fluorobiphenyl		107%	104%	103%	104%
(Surr 2) o-Terphenyl		102%	100%	99%	100%
"nd" Indicates not detected at listed reporting lim "int" Indicates that interference prevents determine					
"J" Indicates estimated value					
"C" Indicates coelution prevents determination					

"C" Indicates coelution prevents determination

"RPD" Indicates Relative Percent Difference

"MRL" Indicates Method Reporting Limit

Acceptable RPD is determined to be less than 30%

Acceptable Recovery Limits:

Surrogate = 65% to 135% Surrogate Concentration = 20 mg/kg

Spike Concentration = 500 mg/kg Diesel (Fuel Oil) = C12-C24 Mineral Oil = C15-C40 Heavy Oil = C24-C40

Analysis of Diesel and Heavy Oil in Soil by NWTPH-Dx / Dx Ext.

Project: Gig Harbor Transmission Client: EMS Client Project #: 0359-01 Lab Project #: CHM100211-8

NWTPH-Dx/Dx Ext.	MRL	B6-8-021010	SS15-021010				
(mg/kg)							
Date Extracted		2/17/10	2/17/10				
Date Analyzed		2/17/10	2/17/10				
Matrix		Soil	Soil				
Diesel (Fuel Oil)	20	nd	nd				
Mineral Oil	40	nd	nd				
Heavy Oil	50	nd	nd				
Surrogate Recovery							
(Surr 1) 2-Fluorobiphenyl		103%	104%				
(Surr 2) o-Terphenyl		98%	99%				
	!4						
"nd" Indicates not detected at listed reporting limits							
"int" Indicates that interference prevents determination "J" Indicates estimated value							
"C" Indicates coelution prevents determination							

"RPD" Indicates Relative Percent Difference

"MRL" Indicates Method Reporting Limit

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits:

Surrogate = 65% to 135%

Surrogate Concentration = 20 mg/kg Spike Concentration = 500 mg/kg Diesel (Fuel Oil) = C12-C24 Mineral Oil = C15-C40 Heavy Oil = C24-C40

Analysis of Diesel and Heavy Oil in Water by NWTPH-Dx / Dx Ext.

Project: Gig Harbor Transmissi Client: EMS Client Project #: 0359-01 Lab Project #: CHM100211-8

•					Duplicate		
NWTPH-Dx/Dx Ext. (µg/L)	MRL	Method Blank	LCS	B1H ₂ O-021010	B1H ₂ O-021010	B ₂ H2O-021010	B6H ₂ O-021010
Date Extracted		2/16/10	2/16/10	2/16/10	2/16/10	2/16/10	2/16/10
Date Analyzed		2/17/10	2/17/10	2/17/10	2/17/10	2/17/10	2/17/10
Matrix				Water	Water	Water	Water
Diesel (Fuel Oil)	100	nd	110%	nd	nd	nd	nd
Mineral Oil	100	nd		nd	nd	nd	nd
Heavy Oil	200	nd		nd	nd	nd	nd
Surrogate Recovery							
(Surr 1) 2-Fluorobiphenyl		99%	95%	68%	132%	98%	97%
(Surr 2) o-Terphenyl		80%	88%	84%	74%	84%	97%

"nd" Indicates not detected at listed reporting limits

"int" Indicates that interference prevents determination

"J" Indicates estimated value

"C" Indicates coelution prevents determination

"RPD" Indicates Relative Percent Difference

"MRL" Indicates Method Reporting Limit

Acceptable RPD is determined to be less than 30% <u>Acceptable Recovery Limits:</u> Surrogate = 65% to 135% Surrogate Concentration = 160 μ g/L Spike Concentration = 4000 μ g/L Diesel (Fuel Oil) = C12-C24 Mineral Oil = C15-C40 Heavy Oil = C24-C40

Analysis of Polyaromatic Hydrocarbons in Soil by EPA Method 8270C

Project: Gig Harbor Transmission Client: EMS Client Project #: 0359-01 Lab Project #: CHM100211-8

EPA 8270C	MRL	Method	LCS	SS15-021010	T15-021010	Duplicate T15-021010
(mg/kg)		Blank	LC3	3315-021010	115-021010	115-021010
Date Extracted		2/16/10	2/16/10	2/16/10	2/16/10	2/16/10
Date Analyzed		2/16/10	2/16/10	2/16/10	2/16/10	2/16/10
Matrix		2/10/10	2/10/10	Soil	Soil	Soil
				0011	001	0011
Naphthalene	0.1	nd		nd	nd	nd
-Methylnaphthalene	0.1	nd		nd	nd	nd
2-Methylnaphthalene	0.1	nd		nd	nd	nd
Acenaphthene	0.1	nd	57%	nd	nd	nd
Acenaphthylene	0.1	nd		nd	nd	nd
luorene	0.1	nd		nd	nd	nd
Phenanthrene	0.1	nd		nd	nd	nd
Anthracene	0.1	nd		nd	nd	nd
luoranthene	0.1	nd		nd	nd	nd
Pyrene	0.1	nd	126%	nd	nd	nd
Benzo(a)anthracene	0.08	nd		nd	nd	nd
Chrysene	0.08	nd		nd	nd	nd
Senzo(b)fluoranthene	0.08	nd		nd	nd	nd
Benzo(k)fluoranthene	0.08	nd		nd	nd	nd
Benzo(a)pyrene	0.08	nd		nd	nd	nd
ndeno(1,2,3-cd)pyrene	0.08	nd		nd	nd	nd
Dibenzo(a,h)anthracene	0.08	nd		nd	nd	nd
Benzo(g,h,i)perylene	0.1	nd		nd	nd	nd
Total PAH Carcinogen	s			0.0	0.0	0.0
Total PAH Carcinogens Defined as: Benzo(a)anthracene, Chrysene, Benzo(b)fluora Benzo(k)fluoranthene, Benzo(a)pyrene, deno(1,2,3-cd)pyrene & Dibenzo(a,h)anthrace						
Surrogate Recovery		720/	600/	760/	060/	020/
Surr 1) 2-Fluorobiphenyl		73% 66%	68% 63%	76% 67%	86% 67%	83% 65%
Surr 2) p-Terphenyl		00%	03%	07 %	07 %	03%
nd" Indicates not detected at listed reporting li	imits					
nt" Indicates that interference prevents deterr	mination					
J" Indicates estimated value						
MRL" Indicates Method Reporting Limit _CS" Indicates Laboratory Control Sample						
MS" Indicates Matrix Spike						
MSD" Indicates Matrix Spike Duplicate						
RPD" Indicates Relative Percent Difference						
Acceptable RPD is determined to be less than	30%					
Acceptable Recovery Limits:						
Surrogates = 50% to 150%						
LCS, LCSD, MS, MSD = 50% to 150%						

Surrogate Concentration = 0.5 mg/kg Spike Concentration = 1.0 mg/kg

Analysis of Polyaromatic Hydrocarbons in Soil by EPA Method 8270C

Project: Gig Harbor Transmission Client: EMS Client Project #: 0359-01 Lab Project #: CHM100211-8

EPA 8270C	MRL	T25-021010	T35-021010	T45-021010
(mg/kg)				
Date Extracted		2/16/10	2/16/10	2/16/10
Date Analyzed		2/16/10	2/16/10	2/16/10
Matrix		Soil	Soil	Soil
Naphthalene	0.1	nd	nd	nd
1-Methylnaphthalene	0.1	nd	nd	nd
2-Methylnaphthalene	0.1	nd	nd	nd
Acenaphthene	0.1	nd	nd	nd
Acenaphthylene	0.1	nd	nd	nd
Fluorene	0.1	nd	nd	nd
Phenanthrene	0.1	nd	nd	nd
Anthracene	0.1	nd	nd	nd
Fluoranthene	0.1	nd	nd	nd
Pyrene	0.1	nd	nd	nd
Benzo(a)anthracene	0.08	nd	nd	nd
Chrysene	0.08	nd	nd	nd
Benzo(b)fluoranthene	0.08	nd	nd	nd
Benzo(k)fluoranthene	0.08	nd	nd	nd
Benzo(a)pyrene	0.08	nd	nd	nd
Indeno(1,2,3-cd)pyrene	0.08	nd	nd	nd
Dibenzo(a,h)anthracene	0.08	nd	nd	nd
Benzo(g,h,i)perylene	0.00	nd	nd	nd
	0.1	na		
Total PAH Carcinogens		0.0	0.0	0.0
Total PAH Carcinogens Defined as:				
Benzo(a)anthracene, Chrysene, Benzo(b)fluoran	thene,			
Benzo(k)fluoranthene, Benzo(a)pyrene, Ideno(1,2,3-cd)pyrene & Dibenzo(a,h)anthracene				
Surrogate Recovery				
(Surr 1) 2-Fluorobiphenyl		77%	74%	81%
(Surr 2) p-Terphenyl		64%	64%	67%
"nd" Indicates not detected at listed reporting lim	ite			
"int" Indicates that interference prevents determi				
"J" Indicates estimated value				
"MRL" Indicates Method Reporting Limit				
"LCS" Indicates Laboratory Control Sample				
"MS" Indicates Matrix Spike				
"MSD" Indicates Matrix Spike Duplicate "RPD" Indicates Relative Percent Difference				
	201			
Acceptable RPD is determined to be less than 30 Acceptable Recovery Limits:	۳%			
Surrogates = 50% to 150%				
LCS, LCSD, MS, MSD = 50% to 150%				

LCS, LCSD, MS, MSD = 50% to 150% Surrogate Concentration = 0.5 mg/kg Spike Concentration = 1.0 mg/kg

T: 206.352.3790 F: 206.352.7178 email: info@fremontanalytical.com

Analysis of Polyaromatic Hydrocarbons in Soil by EPA Method 8270C

Project: Gig Harbor Transmission Client: EMS Client Project #: 0359-01 Lab Project #: CHM100211-8

		MS	MSD	
EPA 8270C	MRL	T15-021010	T15-021010	RPD
(mg/kg)				%
Date Extracted		2/16/10	2/16/10	
Date Analyzed		2/16/10	2/16/10	
Matrix		Soil	Soil	
Naphthalene	0.1			
1-Methylnaphthalene	0.1			
2-Methylnaphthalene	0.1			
	-	E 40/	569/	10/
Acenaphthene	0.1	54%	56%	4%
Acenaphthylene	0.1			
Fluorene	0.1			
Phenanthrene	0.1			
Anthracene	0.1			
Fluoranthene	0.1			
Pyrene	0.1	121%	110%	10%
Benzo(a)anthracene	0.08			
Chrysene	0.08			
Benzo(b)fluoranthene	0.08			
Benzo(k)fluoranthene	0.08			
Benzo(a)pyrene	0.08			
Indeno(1,2,3-cd)pyrene	0.08			
Dibenzo(a,h)anthracene	0.08			
Benzo(g,h,i)perylene	0.1			
Total PAH Carcinogen	s			
Total PAH Carcinogens Defined as:				
Benzo(a)anthracene, Chrysene, Benzo(b)fluora	anthene,			
Benzo(k)fluoranthene, Benzo(a)pyrene,				
Ideno(1,2,3-cd)pyrene & Dibenzo(a,h)anthrace	ne			
Surrogate Recovery				
(Surr 1) 2-Fluorobiphenyl		70%	66%	
(Surr 2) p-Terphenyl		56%	48%	
"nd" Indicates not detected at listed reporting li	imits			
"int" Indicates that interference prevents deterr	mination			
"J" Indicates estimated value				
"MRL" Indicates Method Reporting Limit				
"LCS" Indicates Laboratory Control Sample "MS" Indicates Matrix Spike				
"MSD" Indicates Matrix Spike Duplicate				
"RPD" Indicates Relative Percent Difference				
Acceptable RPD is determined to be less than	30%			
Acceptable Recovery Limits:				
Surrogates = 50% to 150%				
LCS, LCSD, MS, MSD = 50% to 150%				

Surrogate Concentration = 0.5 mg/kg Spike Concentration = 1.0 mg/kg

T: 206.352.3790 F: 206.352.7178 email: info@fremontanalytical.com

Analysis of Polyaromatic Hydrocarbons in Water by EPA Method 8270C

Project: Gig Harbor Transmission Client: EMS Client Project #: 0359-01 Lab Project #: CHM100211-8

EPA 8270C	MRL	Method	LCS	B2H ₂ O-021010	B6H ₂ O-021010
<u>(ug/L)</u>		Blank			
Date Extracted		2/16/10	2/16/10	2/16/10	2/16/10
Date Analyzed		2/16/10	2/16/10	2/16/10	2/16/10
Matrix				Water	Water
Naphthalene	0.5	nd		nd	nd
1-Methylnaphthalene	0.5	nd		nd	nd
2-Methylnaphthalene	0.5	nd		nd	nd
Acenaphthene	0.5	nd	95%	nd	nd
Acenaphthylene	0.5	nd		nd	nd
Fluorene	0.5	nd		nd	nd
Phenanthrene	0.5	nd		nd	nd
Anthracene	0.5	nd		nd	nd
Fluoranthene	0.5	nd		nd	nd
Pyrene	0.5	nd	65%	nd	nd
Benzo(a)anthracene	0.1	nd		nd	nd
Chrysene	0.1	nd		nd	nd
Benzo(b)fluoranthene	0.1	nd		nd	nd
Benzo(k)fluoranthene	0.1	nd		nd	nd
Benzo(a)pyrene	0.1	nd		nd	nd
Indeno(1,2,3-cd)pyrene	0.1	nd		nd	nd
Dibenzo(a,h)anthracene	0.1	nd		nd	nd
Benzo(g,h,i)perylene	0.5	nd		nd	nd
Total PAH Carcinogens	;			0.0	0.0
Total PAH Carcinogens Defined as: Benzo(a)anthracene, Chrysene, Benzo(b)fluorar Benzo(k)fluoranthene, Benzo(a)pyrene, Ideno(1,2,3-cd)pyrene & Dibenzo(a,h)anthracen					
Surrogate Recovery					
(Surr 1) 2-Fluorobiphenyl		66%	78%	103%	120%
(Surr 2) p-Terphenyl		97%	95%	103%	99%
"nd" Indicates not detected at listed reporting lin "int" Indicates that interference prevents determ "J" Indicates estimated value "MRL" Indicates Method Reporting Limit "LCS" Indicates Laboratory Control Sample "MS" Indicates Matrix Spike "MSD" Indicates Matrix Spike Duplicate "RPD" Indicates Relative Percent Difference					
Samples may be run under SIM Acceptable RPD is determined to be less than 3 <u>Acceptable Recovery Limits:</u> Surrogates = 50% to 150% LCS, LCSD, MS, MSD = 50% to 150%	0%				

LCS, LCSD, MS, MSD = 50% to 150% Surrogate Concentration = $4.0 \ \mu g/L$

Spike Concentration = $8.0 \,\mu g/L$

T: 206.352.3790 F: 206.352.7178 email: info@fremontanalytical.com

Analysis of Polyaromatic Hydrocarbons in Water by EPA Method 8270C

Project: Gig Harbor Transmission Client: EMS Client Project #: 0359-01 Lab Project #: CHM100211-8

		QA Sample	QA Duplicate	MS				
EPA 8270C	MRL	Batch	Batch	B6H ₂ O-021010				
_(ug/L)		100211-8-17	100211-8-17					
Date Extracted		2/16/10	2/16/10	2/16/10				
Date Analyzed		2/16/10	2/16/10	2/16/10				
Matrix		Water	Water	Water				
Naphthalene	0.5	nd	nd					
1-Methylnaphthalene	0.5	nd	nd					
2-Methylnaphthalene	0.5	nd	nd					
Acenaphthene	0.5	nd	nd	110%				
Acenaphthylene	0.5	nd	nd					
Fluorene	0.5	nd	nd					
Phenanthrene	0.5	nd	nd					
Anthracene	0.5	nd	nd					
Fluoranthene	0.5	nd	nd					
Pyrene	0.5	nd	nd	105%				
Benzo(a)anthracene	0.1	nd	nd					
Chrysene	0.1	nd	nd					
Benzo(b)fluoranthene	0.1	nd	nd					
Benzo(k)fluoranthene	0.1	nd	nd					
Benzo(a)pyrene	0.1	nd	nd					
Indeno(1,2,3-cd)pyrene	0.1	nd	nd					
Dibenzo(a,h)anthracene	0.1	nd	nd					
Benzo(g,h,i)perylene	0.5	nd	nd					
Total PAH Carcinogens		0.0	0.0					
Total PAH Carcinogens Defined as: Benzo(a)anthracene, Chrysene, Benzo(b)fluorant Benzo(k)fluoranthene, Benzo(a)pyrene, Ideno(1,2,3-cd)pyrene & Dibenzo(a,h)anthracene								
Surrogate Recovery								
(Surr 1) 2-Fluorobiphenyl		86%	109%	95%				
(Surr 2) p-Terphenyl		103%	97%	103%				
"nd" Indicates not detected at listed reporting lim "int" Indicates that interference prevents determi "J" Indicates estimated value "MRL" Indicates Method Reporting Limit "LCS" Indicates Laboratory Control Sample "MS" Indicates Matrix Spike "MSD" Indicates Matrix Spike Duplicate "RPD" Indicates Relative Percent Difference								
Samples may be run under SIM Acceptable RPD is determined to be less than 30 <u>Acceptable Recovery Limits:</u> Surrogates = 50% to 150% LCS, LCSD, MS, MSD = 50% to 150%)%							

Surrogate Concentration = $4.0 \,\mu$ g/L

Spike Concentration = $8.0 \,\mu g/L$

T: 206.352.3790 F: 206-352-7178 email: info@fremontanalytical.com

Analysis of Total Metals in Soil by EPA Method 6020

Project: Gig Harbor Transmission Client: EMS Client Project #: 0359-01 Lab Project #: CHM100211-8

EPA 6020	MRL	Method	LCS	SS15-021010	T15-021010	T25-021010
(mg/kg)		Blank				
Date Extracted		2/16/10	2/16/10	2/16/10	2/16/10	2/16/10
Date Analyzed		2/17/10	2/17/10	2/17/10	2/17/10	2/17/10
Matrix				Soil	Soil	Soil
Cadmium (Cd)	0.2	nd	84%	0.6	0.5	0.3
Chromium (Cr)	1.0	nd	93%	3.4	8.4	13
Lead (Pb)	1.0	nd	84%	17	35	20

"nd" Indicates no detection at the listed reporting limits

"int" Indicates that interference prevents determination

"J" Indicates estimated value

"MRL" Indicates Method Reporting Limit

"LCS" Indicates Laboratory Control Sample

"MS" Indicates Matrix Spike

"MSD" Indicates Matrix Spike Duplicate

"RPD" Indicates Relative Percent Difference

Acceptable RPD is determined to be less than 30%

Acceptable Recovery Limits:

LCS, LCSD, MS, MSD: 65% to 135%

Spiked Soil Concentrations:

Cr = 50 mg/kg Pb = 25 mg/kg

Cd = 2.5 mg/kg

T: 206.352.3790 F: 206-352-7178 email: info@fremontanalytical.com

Analysis of Total Metals in Soil by EPA Method 6020

Project: Gig Harbor Transmission Client: EMS Client Project #: 0359-01 Lab Project #: CHM100211-8

				Duplicate		MS
EPA 6020 (mg/kg)	MRL	T35-021010	T45-021010	T45-021010	RPD	T45-021010
Date Extracted		2/16/10	2/16/10	2/16/10	%	2/16/10
Date Analyzed		2/17/10	2/17/10	2/17/10		2/17/10
Matrix		Soil	Soil	Soil		Soil
Cadmium (Cd)	0.2	0.4	1.2	1.4	13%	91%
Chromium (Cr)	1.0	35	33	34	5%	86%
Lead (Pb)	1.0	53	30	45	40%	119%

"nd" Indicates no detection at the listed reporting limits

"int" Indicates that interference prevents determination

"J" Indicates estimated value

"MRL" Indicates Method Reporting Limit

"LCS" Indicates Laboratory Control Sample

"MS" Indicates Matrix Spike

"MSD" Indicates Matrix Spike Duplicate

"RPD" Indicates Relative Percent Difference

Acceptable RPD is determined to be less than 30%

Acceptable Recovery Limits:

LCS, LCSD, MS, MSD: 65% to 135%

Spiked Soil Concentrations:

Cr = 50 mg/kg Pb = 25 mg/kg

Cd = 2.5 mg/kg

T: 206.352.3790 F: 206-352-7178 email: info@fremontanalytical.com

Analysis of Total Metals in Water by EPA Method 6020

Project: Gig Harbor Transmission Client: EMS Client Project #: 0359-01 Lab Project #: CHM100211-8

					Duplicate		MS	MSD	
EPA 6020	MRL	Method	LCS	B ₂ H2O-021010	B ₂ H2O-021010	RPD	Batch	Batch	RPD
(mg/L)		Blank				%	100212-3-1	100212-3-1	%
Date Extracted		2/16/10	2/16/10	2/16/10	2/16/10		2/16/10	2/16/10	
Date Analyzed		2/16/10	2/16/10	2/16/10	2/16/10		2/16/10	2/16/10	
Matrix				Water	Water		Water	Water	
Cadmium (Cd)	0.0004	nd	97%	nd	nd		104%	109%	5%
Chromium (Cr)	0.002	nd	107%	0.050	0.047	5%	113%	120%	6%
Lead (Pb)	0.002	nd	110%	0.035	0.039		102%	109%	7%

"nd" Indicates no detection at the listed reporting limits

"int" Indicates that interference prevents determination

"J" Indicates estimated value

"MRL" Indicates Method Reporting Limit

"LCS" Indicates Laboratory Control Sample

"MS" Indicates Matrix Spike

"MSD" Indicates Matrix Spike Duplicate

"RPD" Indicates Relative Percent Difference

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits:

LCS, LCSD, MS, MSD: 65% to 135%

Spike Concentrations:

 $Cr = 100 \ \mu g/L$ $Pb = 50 \ \mu g/L$

 $Cd = 5.0 \,\mu g/L$

From:	Robin Hamlet
То:	<u>Mike Ridgeway (mridgeway@fremontanalytical.</u> <u>com);</u>
Subject: Date:	Revised Chain of custody Gig Harbor Samples Friday, February 12, 2010 12:59:27 PM

Mike,

Here is the revised analysis plan for soils. We reduced the metals to the three listed below. Soil sample B5-9 put on hold. Please revise the chain.

B2-8 Dx/DxExt

- B3-10 Dx/DxExt, Gx-BTEX
- B4-11 Dx/DxExt, Gx-BTEX
- B5-14 Dx/DxExt, Gx-BTEX
- B6-8 Dx/DxExt

- T1 Cadmium, chromium, lead, PAHs
- T2 Cadmium, chromium, lead, PAHs
- T3 Cadmium, chromium, lead, PAHs
- T4 Cadmium, chromium, lead, PAHs

Changes for waters.

B1H2O	Gx-BTEX, Dx/DxExt
B2H2O	Gx-BTEX, Dx/DxExt, cadmium, chromium, lead, PAHs
B6H2O	Gx-BTEX, Dx/DxExt, PAHs

All other samples on hold. Any remaining material from analysis please hold if there is enough material.

Thanks Robin

KINATAN - 10	100	-															Ch	ai	n	of	Cu	istody Record
Fre																						
	Ana	lytica	7.8											Labora	tory	Projec	t No	interr	nal):	C	40	100211-8
2930 Westlake Ave. N. Suite 100 Seattle, WA 98103	Tel: 206-3 Fax: 206-3				Date	: _4	2/1	0/10	>					Page:				1			_	of: <u>3</u>
Client: CM	5						Č.	ć		Proje	ect Na	me:		GI	5	HA	RR	OR	7	2An	SM	NISSION
Address:								_		Loca				Gil	3	HA	RB	oe				
City, State, Zip	,			Tel:				_		Colle	cted	by:		K	. 1	FAI	nu	E7	-	_		
Reports To (PM): ROBIN H	AMLET		Fax:					Emai	l:							Proje	ct No	: 0	35	59-0		
																(D)						HOLD *- HOLD 4
				tion		×			Ext.	ų			3081	81514		Dissolved (D						LATER ANAYLSIS It REQUIRED
				Date of Collection		VOA 8021B BTEX	ĕ	HCID	NWTPH-Dx//Dx	VOL 8270C	5	5	CI PESTICIDES 8081	CI HERBICIDES 8151A		_	(IC)**					It REQUIRED
		Sample Type	Container	te of	A 8260	A 802	NWTPH-Gx	NWTPH-HCID	-HdT/	MI VO	PAH 8270	PCBs 8082	PESTIC	HERBI	Metals*	Total (T)	ions (
Sample Name	Time	(Matrix)	Туре	Da	2	2	NN	Ň	N	SEMI	-	20	ō		1	Tot	An				_	Comments/Depth
1 BI-10-021010	1029	SOIL	402						X		X				X		_		_		_	
231-13-021010	1031								χ		χ				X							HOLDY
3 82-8-021010	1120								X		X				X							
4 B2-12-021010	123								χ		X				X							HOLD*
53-10-021010	12209								X		X				X							
6 B4-11-621010	1230								X		χ				X							
134-13-021010	124AZi	5							χ		X				X							HOLD*
835-9-021010	1312								X		χ				χ							
9 B5-14-021010	1314								χ		X				χ							HOLD*
10 86-8-021010	1348	Priority							χ		X				χ							
*Metals Analysis (Circle)		Priority	Pollutants	TAL	Individ	dual:	Ag A	l As	B Ba	Be	cá c	d Co	Cr (Cu Fe	Hg H	Mg	Mn	Mo	Na 1	Ni Pb	Sb 3	Se Sr Sn Ti TI U V Zn
**Anions (Circle): Nitrate	Nitrite 0	hloride	Sulfate	Bromide	0-	Phosp	hate	F	luori	de	Nit	rate+	Nitrite									
Relinguished,	Date/Tim	e	Recei	ANA	~	-		Date/	Time				Good	ple Rec	eipt:					4		Special Remarks:
× RHand 2/11		50	x	AN	/			21	110) 1	2Es	D		er Tem	perati	ure:				X		
Relinquished	Date/Tim		Rece	yed				Date/	time					Intact		Contr	Inerr			10		TAT> 24HR 48HR Standard
X			x										lota	Numb	er or	conta	mers:			0	_	TAT> Z4HK 48HK Standard V

Distribution: White - Lab, Yellow - File, Pink - Originator

www.fremontanalytical.com

Fre																	Cł	nai	n	of	Cı	ustody Record
	Ana	lytica												Labor	atory	Proje	t No	(interi	nal):			
2930 Westlake Ave. N. Suite 100 Seattle, WA 98103	Tel: 206-3 Fax: 206-3				Date	: 4	2/10	lic	>					Page:	_		1	2				of: <u>3</u>
Client: En	15									Proje	ect Na	ame:		GI	6	FAR	201	e -	TRA	4115	mi.	25104
Address:										Loca				41	6	HH	Bo	R				
City, State, Zip	Tel: Collected by: R.H.A																					
Reports To (PM): ROBIN A	FAMLE	7	Fax:					Emai	l:							Proje	ct No	:	03	59	-0	1
Sample Name	Time	Sample Type (Matrix)	Container Type	Date of Collection	VOA 8260	VOA 80218 BTEX	NWTPH-Gx	NWTPH-HCID	NWTPH-Dx/Dx Ext.	SEMI VOL 8270C	PAH 8270	PCBs 8082	CI PESTICIDES 8081	CI HERBICIDES 8151A	Metals*	fotal (T) Dissolved (D)	Anions (IC)**					HOLDX - HULD 4 LATER ANALYSIS If Require Comments/Depth
1 36-12-021010	1352	SUL	402	2/10/10					X		χ				χ							HOLDY
		1	100	1	1				V		Y				V				_			11000
2 551- 5-021010	1400			$\left \right $	-	-	-		χ	-	· ·	-		_	Å		-	-			-	
3 T1 5-021010	Idot								X		χ				X							
4 TZ5-021010	1015								X		χ				Ý							
5735-021010	1026								χ		χ				χ							
6 TH - 5-021010	1035	1	(Y		Y				٧							
7	1000								1		1				1							
8																						
9																						
10																						
*Metals Analysis (Circle):	1		I Pollutants Sulfate	TAL Bromide		dual: Phosp			B Ba				Cr C		Hg	K Mg	Mn	Mo	Na 1	Ni Pb	Sb 3	Se Sr Sn Ti TI U V Zn
			($\overline{)}$									_	le Rec	eipt:							Special Remarks:
Relinquished	Date/Tim		Baye	ved	_	1		Date/	Time	-			Good	_					5	1		
× K Mand 2/11	10 120		-W	K	V	11	10	Data	De	20			-	r Tem		ure:			6	K		-
Relinquished x	Date/Tim	e	x	weu -				Date/	ime					Intact		Conta	iners:		-	<u>n r</u>	<u>r</u>	TAT> 24HR 48HB Standard

www.fremontanalytical.com

Fre Fre	m	on	t														Ch	nai	n	of	Cı	usto	ody I	Reco	ord
	Ana	lytica	7											Labor	atory	Proje	ct No	(interi	nal):						
2930 Westlake Ave. N. Suite 100 Seattle, WA 98103	Tel: 206-3 Fax: 206-3				Date	:: _	2/	ali	0					Page:	_			3			_	of:	3		
Client:	EM5							-				ame:	3	Bie	5 /	FAL	2.00	x	TR	413	SMI	5510	n		
Address:								_		Loca				Gi	5	An	RED	12.							
City, State, Zip				Tel:				_		Colle	cted	by:		1	TH)	Am	LE								
Reports To (PM): RODIW	HAMI	-67	Fax:					Emai	l:							Proje	ct No	: (03	59	-0	>/			
														AL		(D)						Her	D# -H	al 150	1 5
				Date of Collection	260	VOA 8021B BTEX	H-Gx	NWTPH-HCID	NWTPH-Dx/Dx Ext.	SEMI VOL 8270C	270	1082	CI PESTICIDES 8081	CI HERBICIDES 8151A	•	Fotal (T) Dissolved (D)	Anions (IC)**					if k	D# -H. M. A. Poguik	0	
Sample Name	Time	Sample Type (Matrix)	Container Type	Date (VOA 8260	VOA 8	NWTPH-Gx	NWTP	NWTP	SEMI V	PAH 8270	PCBs 8082	CI PES	CI HER	Metals*	Total (Anions						Comme	nts/Depth	
	1040	HEU	I LIZAN Jau Kily	High					V		X				χ	T									
1 BIHO DAOIO 2 BRHD DAOID 3 BHHD DAOID 3 BHHD DAIOIO 4 BlothD DAIOID	1140		1						γ		χ				χ	1									
3 B4 HAD-021010	1242								χ		χ				X	T						Ho	LD*		
Blotho Dalalo	1355	l	I	1					χ		X				X	T									
5																									
б																									
7																									
8																									
9																									
10																									
*Metals Analysis (Circle): MTCA-			Pollutants												Hg	κM	, Mn	Mo	Na M	Ni Pb	Sb	Se Sr S	5n Ti Tl	U V Zn	
**Anions (Circle): Nitrate	Nitrite (Chloride	Sulfate	Bromide	0-	Phosp	phate		Fluori	de	Nit	trate+	Nitrite	ple Red	coint:							Special	Remarks:		
Relinguished	Date/Tim	e	Rede	ived				Date/	Time				Good		cerpt:				-	1		Special	Netherks:		
× R Hand 2/11	10 123		PAX	-	21	uli	D	13	2E	0				er Tem	perat	ture:				5×		1			
Relinquished	Date/Tim		Red	red	-	1		Date/	Time	0			Seals	s Intact	:?:				n	lia	,				_
×			×	9									Tota	I Numb	ber of	Conta	iners:			18		TAT	> 24HR	48HB S	tandard

www.fremontanalytical.com

Project Manager: Company Project Name: Project Number Sampled に対応に対 - hatta 060000 TPCHD Received by Relinquished by Relinguished by Received by Reviewed by/Dale Received by Relinquished by SJ- Swime-031209 S1- Surface-031209 L OnSite **Environmental Inc.** Phone. (425) 863-3881 • Fax: (425) 885-4600 Wecher SPRE, State States 3 netatt subject strains 03.12.00 1:30 01:10-51:50 DISTRIBUTION LEGEND: White - OnSile Copy Yollow - Report Copy Pink - Client Copy Same Day X Standard (7 working days) 🗌 2 Day 57 (TPH analysis 5 working days) (Check One) Stard Reviewed by/Date Chain of Custody (other) 8. 20 100 🗍 1 Day 🗋 3 Day T τų sai * Laboratory Number: NWTPH-HCID × ${}^{\times}$ NWTPH-Gx/BTEX 3 3/09 3/13/09 3(3)5 N BB NWTPH-Dx 134 RR Volatiles by 8260B Halogenated Volatiles by 8260B 0.5% 35% 04:40 04.2 Semivolatiles by 8270D PAHS Dy 8270D / SIM HCID, other an alytes may be added ytes PCBs by 8082 Commences and the second second Chromatograms with final report Opulard 3/22/19. DB Pesticides by 8081A Herbicides by 8151A 6 Total RCRA Metals (8) R TCLP Metals × × HEM by 1664 \bigcirc 3-0 Page S S ZdayTH õ % Moisture

Libby Environmental, Inc. 4139 Libby Road NE • Olympia, WA 98506-2518

January 27, 2017

Brian Dixon ECI P.O. Box 153 Fox Island, WA 98333

Dear Mr. Dixon:

Please find enclosed the analytical data report for the Gig Harbor Trans. Project located in Gig Harbor, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

2 2 Mu

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

Libby Environm	ental,	Inc.		Ch	ain	of (Cust	tody	y R	ecc	ord								www.Li	bbyEnvi	ronmer	ntal.com
4139 Libby Road NE Olympia, WA 98506	Ph: Fax:	360-352-2 360-352-4				Da	te: I	120	11	2						Page	э:		l	of	(
Client: EC						Pre	oject N	lanag	er:	Bri	an	-	Dix	00								
Address: 155. Drea	ion A	we i	#10			Pro	oject N	lame:	6	sHe	26	at	Tre	ans			-					
Address: 15 5. Dree City: Tacoma	, .	State: L	1A Zip	98409	_	Lo	cation:	Gi	4 F	for	52	~				City,	Stat	e: (Gig	Har	bor,	4A
Phone: 253-380-4303		Fax:				Co	llector	: Ke	le	'n	Pa	2e	P			Date	of C	ollec	ction: 1	1241	117	
Client Project # 0359-0	50-1					En	nail: Z	Zd:	roy	Ce	200	co	in	5								
Sample Number	Depth	Time	Sample Type	Container Type		5260 R	5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	L' HANNER	2 CR CHING	AT PHILIP	10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+	0 2210	nil 20	10 20 80 11 10 00 00 00 00 00 00 00 00 00 00 00	A A A	100 00 00	Netals		FI	eld Note	es	
1 TNI-6	6"		5	4 ozjar					X													
2 TS1-6	6"		S	402 105		\geq	$\langle $		X													
3 TSI-12	15"		S	402 jor 402 jar															He	2/d		
4 T52-6	6"		5	402 jar					X										11-			
5														ma								
6																						
7															- A	*					191	
8																						
9							-															
10																			40.00	Super-		
11																				Mar.		
12																						
13																						
14													-									
15																						
16																						
17																						(4)
Relinquished by:	Date	/ Time		Received by	11	2	.1.	1A h	Date	/ Time	al .		Sam	ple	Rec	eipt		Ren	narks:			
Kida Reed	y2	4/17	1440	1 AD	4		12	4/17	d	:401	34	Good	Condi	tion?		Y	N					
Relinquished by:	Date	/ Time		Received by.	C		. (Date	/ Time		Temp					°C					
Relinquished by:	Date	/ Time		Received by:					Date	/ Time	COLUMN ADDRESS OF	Total	Numb	er of	Y	N	N/A	TA	T. 04			E DAY
													ontaine	15				TA	T: 24		1 Alexandre	5-DAY

SAL ACTION CLAUSE: In the event of default of payment and/or failure to pay, Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a cout of law

Distribution: white - Lab, fellow - He, Pink One

GIG HARBOR TRANS. PROJECT ECI Gig Harbor, Washington Libby Project # L170124-4 Client Project # 0359-01-02 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260C) in Soil

Sample	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Gasoline	Surrogate
Number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Recovery (%)
Method Blank	1/25/17	nd	nd	nd	nd	nd	106
LCS	1/25/17	81%	82%				96
TS1-6	1/25/17	nd	nd	nd	nd	nd	105
TS1-6 MS	1/25/17	105%	107%				104
TS1-6 MSD	1/25/17	105%	106%				102
Practical Quantitation L	imit	0.02	0.10	0.05	0.15	10	
"nd" Indicates not detec	ted at the lis	ted detection	on limits.				

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Toluene-d8): 65% TO 135%

ANALYSES PERFORMED BY: Paul Burke

GIG HARBOR TRANS. PROJECT ECI Gig Harbor, Washington Libby Project # L170124-4 Client Project # 0359-01-02 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Surrogate	Diesel	Oil
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)
Method Blank	1/25/17	100	nd	nd
TN1-6	1/25/17	106	nd	1040
TS1-6	1/25/17	123	nd	3440
TS1-6 Dup	1/25/17	111	nd	3680
TS2-6	1/25/17	94	nd	714
Practical Quantitation Limit			50	250
"nd" Indicates not detected at t	he listed dete	ection limits.		
"int" Indicates that interformed	nrovanta da	tormination		

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Soil

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Paul Burke

Libby Environmental, Inc. 4139 Libby Road NE • Olympia, WA 98506-2518

February 2, 2017

Brian Dixon ECI P.O. Box 153 Fox Island, WA 98333

Dear Mr. Dixon:

Please find enclosed the analytical data report for the Gig Harbor Trans Project located in Gig Harbor, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

2 2 Mu

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

Libby Environm	ental,	Inc.		Ch	ain	of C	usto	dy F	Reco	ord	l							www.L	ibbyEnv	ironmental.com
4139 Libby Road NE Olympia, WA 98506 Client: <u>EC</u>	Fax:	360-352-2 360-352-4	154	2		Date Proj	ect Mar	2 4/1 nager:	7 Brin	as		Dix	0-1	and the second se	Page:		(of	[
Address: 15 5. Dree City: Tacoma	ion A	ve ?	#10			Proj	ect Nar	ne: G	is He	as6	at	Tre	ans							
City: Tacoma		State: 4	1A Zip	98409		Loc	ation:	21/1	Arri	6.1				(City, S	State	e: (5-9	Har	bor, WA
Phone: 253-380-4303		Fax:				Coll	ector:	Kad	en	Pa	20	L			Date	of Co	ollec	tion: 1	24	605,4A
Client Project # 0359-0	50.1					Ema	ail: Ro	lixa	CE	200	ro	1.4	5							
Sample Number	Depth	Time	Sample Type	Container Type	: 	14112 B	57 882 ST	HHCO H	2 ⁺ 2 ⁺	10+ 11 00 10+ 11 10+ 11	0 210 10 2210	Rin 20	210 28082 110	Sheet R	d ^S Ne	3.315		Fi	eld Not	es
1 TNI-6	6"		5	4 or jas				X												
2 TS1-6	6"		S	402 105		X		X											A	
3 751-12	/2″		S	402 jas 402 jas 402 jas				$(\times$)									H	old	
4 752-6	6"		5	402 jar				X										1-31	-17	added
5																		DxD,	e Der	Brian
6										*										. 48hr
7																				
8																				
9							-													
10																				-
11															ŀ				1 1 1 1 1 1 1	
12																				
13																				
14													2							
15																			te.	
16																				
17						-														`
Relinguished by:	/	/ Time		Received by:	11	,	lait	Date	/ Time			Sam	ple	Rece	eipt		Rem	arks:		
Kids Reed	51	<u> </u>	440	Y AD	Щ_		1241	40	(<u>40</u>	34	Good	Condi	tion?	•	Y N					:
Relinquished by:	Date	/ Time	•	Received by.	(. ()	Date	/ Time		Temp				CONTRACTOR AND ADDRESS	C				
Relinquished by:	Date	/ Time		Received by:				Date	/ Time		Total	Intact Numb ntaine	er of	Y	NN	<u>J/A</u>	TA	Г: 24	HR A	S-DAY
EGAL ACTION CLAUSE: In the event of default of pa				-6				termined hy	a anul of low										-7	

the event of default of payment and/or failure to pay, Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a cout of law.

Distribution: White - Lab, Yellow File, Pink

GIG HARBOR TRANS PROJECT ECI Gig Harbor, Washington Libby Project # L170124-4B Client Project # 0359-01-02 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Soil

Sample	Date	Surrogate	Diesel	Oil					
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)					
Method Blank	1/31/17	116	nd	nd					
TS1-12	1/31/17	99	nd	638					
Practical Quantitation Limit			50	250					
"nd" Indicates not detected at the listed detection limits.									
"int" Indicates that interferenc	e prevents de	termination.							

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Paul Burke

Libby Environmental, Inc. 4139 Libby Road NE • Olympia, WA 98506-2518

February 28, 2017

Brian Dixon ECI P.O. Box 153 Fox Island, WA 98333

Dear Mr. Dixon:

Please find enclosed the analytical data report for the Gig Harbor Transmission Project located in Gig Harbor, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

2 2 Mu

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

Libby Environm	nental,	Inc.		Ch	nain	of C	Cust	ody	R	eco	rd		in			Sector	and the	www.Libb	yEnviron	nental.com
4139 Libby Road NE Olympia, WA 98506 Client:	Ph: Fax:	360-352-2 360-352-4	2110 4154				te: Z					xon			Pag	e:		(of (
Address: 15 5 ORe	ann					Pro	oject N	lame:	G	0	Har	bor	To	ans	n	si	01			
City: Tacoma	3	State: L	Jt Zip	. Also			cation:			2						, Stat			1799.3	
Phone: 253-380-4									int	1	5.5	xaa						tion: Z	-21-	17
Client Project # 0359																				
Sample Number	Depth	Time	Sample Type	Container Type		Sol Print	51 800 IN	ALT HAN	IPHO D	the state	2 4 68 44	8210 100 8210 100 55 mil 20	10 52 BB 11	A A A	100 00 00 00 00 00 00 00 00 00 00 00 00	Meter Co	69	Field	d Notes	
1 TS1-6B	6"	0915	Sil	4 02 Jas	X				X	X		X	1.9		X	X	-		and the second	
2																				
3						-							1							
4	1									1		1.	:							
5																				
6																			States .	
7																				
8																				
9																1				
10				and the second										S						
11																				
12		·										1							a garage	
13																9. J.				Second Sector
14																				
15																				
16	and the second																-			
17																				
Relinguished by		/ Time		Received by:					Date /	Time		San	nple	Rec	eipt		Rem	arks:		
EU	and the second se	7 1:2	8	Hundrand	Day	id Cr	een				18 G	ood Cond	ition?		Y	Ν	57	D		
Relinquished by:	Date	/ Time		Received by:				Ī	Date /	Time	Te	emp.				°C				
		17		D							_	eals Intac		Y	Ν	N/A				6
Relinquished by:	Date	/ Time		Received by:				Ĺ	Date /	Ime	T	otal Numb Containe	per of ers				TAT	Г: 24HF	48HR	(5-DAY

	LEGAL ACTION CLAUSE: In the event	of default of payment and/or failure to pay,	Client agrees to pay the costs of coll	lection including court costs and reasonable attorne	y fees to be determined by a cout of
--	-----------------------------------	--	--	--	--------------------------------------

Distribution: White - Lab, Yellow - File, Pink Originator

GIG HARBOR TRANSMISSION PROJECT ECI Gig Harbor, Washington Libby Project # L170221-3 Client Project # 0359-01-03 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Volatile Organic Compounds by EPA Method 8260C in Soil

Sample Description		Method	TS1-6B
Sample Description		Blank	101-00
Data Sampled	Donorting		2/21/17
Date Sampled	Reporting	N/A 2/23/17	2/21/17
Date Analyzed	Limits (mg/kg)		$\frac{2}{23}$
		(mg/kg)	(mg/kg)
Dichlorodifluoromethane	0.06	nd	nd
Chloromethane	0.06	nd	nd
Vinyl chloride	0.02	nd	nd
Bromomethane	0.09	nd	nd
Chloroethane	0.06	nd	nd
Trichlorofluoromethane	0.05	nd	nd
1,1-Dichloroethene	0.05	nd	nd
Methylene chloride	0.02	nd	nd
Methyl tert-Butyl Ether (MTBE)	0.05	nd	nd
trans -1,2-Dichloroethene	0.02	nd	nd
1,1-Dichloroethane	0.03	nd	nd
2,2-Dichloropropane	0.05	nd	nd
cis-1,2-Dichloroethene	0.02	nd	nd
Chloroform	0.02	nd	nd
1,1,1-Trichloroethane (TCA)	0.02	nd	nd
Carbon tetrachloride	0.03	nd	nd
1,1-Dichloropropene	0.02	nd	nd
Benzene	0.02	nd	nd
1,2-Dichloroethane (EDC)	0.03	nd	nd
Trichloroethene (TCE)	0.03	nd	nd
1,2-Dichloropropane	0.03	nd	nd
Dibromomethane	0.02	nd	nd
Bromodichloromethane	0.04	nd	nd
cis-1,3-Dichloropropene	0.02	nd	nd
Toluene	0.02	nd	nd
	0.10	nd	nd
Trans-1,3-Dichloropropene			
1,1,2-Trichloroethane	0.03	nd	nd
Tetrachloroethene (PCE)	0.02	nd	nd
1,3-Dichloropropane	0.05	nd	nd
Dibromochloromethane	0.03	nd	nd
1,2-Dibromoethane (EDB) *	0.005	nd	nd
Chlorobenzene	0.02	nd	nd
1,1,1,2-Tetrachloroethane	0.03	nd	nd
Ethylbenzene	0.05	nd	nd
Total Xylenes	0.15	nd	nd
Styrene	0.02	nd	nd

GIG HARBOR TRANSMISSION PROJECT ECI Gig Harbor, Washington Libby Project # L170221-3 Client Project # 0359-01-03

4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Description		Method	TS1-6B
Sumple Description		Blank	101-00
Date Sampled	Reporting	N/A	2/21/17
Date Analyzed	Limits	2/23/17	2/23/17
zalo i marjžed	(mg/kg)	(mg/kg)	(mg/kg)
Bromoform	0.03	nd	nd
Isopropylbenzene	0.05	nd	nd
1,2,3-Trichloropropane	0.03	nd	nd
Bromobenzene	0.03	nd	nd
1,1,2,2-Tetrachloroethane	0.03	nd	nd
n-Propylbenzene	0.04	nd	nd
2-Chlorotoluene	0.03	nd	nd
4-Chlorotoluene	0.03	nd	nd
1,3,5-Trimethylbenzene	0.03	nd	nd
tert-Butylbenzene	0.03	nd	nd
1,2,4-Trimethylbenzene	0.03	nd	nd
sec-Butylbenzene	0.03	nd	nd
1,3-Dichlorobenzene	0.03	nd	nd
Isopropyltoluene	0.03	nd	nd
1,4-Dichlorobenzene	0.03	nd	nd
1,2-Dichlorobenzene	0.03	nd	nd
n-Butylbenzene	0.05	nd	nd
1,2-Dibromo-3-Chloropropane	0.05	nd	nd
1,2,4-Trichlorolbenzene	0.05	nd	nd
Hexachloro-1,3-butadiene	0.10	nd	nd
Naphthalenes	0.10	nd	nd
1,2,3-Trichlorobenzene	0.10	nd	nd
Surrogate Recovery			
Dibromofluoromethane		75	93
1,2-Dichloroethane-d4		100	68
Toluene-d8		126	98
4-Bromofluorobenzene		76	91
"nd" Indicates not detected at	t listed detectio	n limit.	

Volatile Organic Compounds by EPA Method 8260C in Soil

"int" Indicates that interference prevents determination.

* ANALYZED BY SIM

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135%

ANALYSES PERFORMED BY: Paul Burke

GIG HARBOR TRANSMISSION PROJECT ECI Gig Harbor, Washington Libby Project # L170221-3 Client Project # 0359-01-03

		Sample Id	lentification:	L170222-2			
		Matrix Spike		Mat	rix Spike Dup	licate	RPD
	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)	
1,1-Dichloroethene	0.50	0.36	72	0.50	0.40	80	10.5
Benzene	0.50	0.49	98	0.50	0.53	106	7.8
Toluene	0.50	0.66	132	0.50	0.56	112	16.4
Chlorobenzene	0.50	0.66	132	0.50	0.61	122	7.9
Trichloroethene (TCE)	0.50	0.63	126	0.50	0.60	120	4.9
Surrogate Recovery							
Dibromofluoromethane			90			80	
1,2-Dichloroethane-d4			65			66	
Toluene-d8			126			86	
4-Bromofluorobenzene			99			91	

QA/QC Data - EPA 8260C Analyses

	Laboratory C	Control Sample	e
	Spiked	Measured	Spike
	Conc. (mg/kg)	Conc. (mg/kg)	Recovery (%)
	(1112/112)	(1115/115)	(70)
1,1-Dichloroethene	0.50	0.53	106
Benzene	0.50	0.59	118
Toluene	0.50	0.59	118
Chlorobenzene	0.50	0.65	130
Trichloroethene (TCE)	0.50	0.56	112
Surrogate Recovery			
Dibromofluoromethane			107
1,2-Dichloroethane-d4			67
Toluene-d8			99
4-Bromofluorobenzene			110
ACCEPTABLE RECOVER ACCEPTABLE RPD IS 359		R MATRIX SI	PIKES: 65%-13

ANALYSES PERFORMED BY: Paul Burke

GIG HARBOR TRANSMISSION PROJECT ECI Gig Harbor, Washington Libby Project # L170221-3 Client Project # 0359-01-03 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Soil

Sample	Date	Surrogate	Diesel	Oil						
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)						
Method Blank	2/23/17	107	nd	nd						
TS1-6B	2/23/17	93	nd	5660						
Practical Quantitation Limit			50	250						
"nd" Indicates not detected at the listed detection limits.										
"int" Indicates that interferenc	e prevents de	termination.								

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Kodey Eley

GIG HARBOR TRANSMISSION PROJECT ECI Gig Harbor, Washington Libby Project # L170221-3 Client Project # 0359-01-03 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Description	PQL	Method	LCS	TS1-6B	TS1-6B	TS1-6B MS
	-	Blank			Dup	
Date Sampled		N/A	N/A	2/21/17	2/21/17	2/21/17
Date Analyzed		2/24/17	2/24/17	2/24/17	2/24/17	2/24/17
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Aroclor 1016	0.1	nd	91%	nd	nd	98%
Aroclor 1221	0.1	nd	J170	nd	nd	J 070
Aroclor 1232	0.1	nd		nd	nd	
Aroclor 1242	0.1	nd		nd	nd	
Aroclor 1248	0.1	nd		nd	nd	
Aroclor 1254	0.1	nd		nd	nd	
Aroclor 1260	0.1	nd	100%	nd	nd	80%
Surrogate Recovery						
TCMX		124	115	70	101	90
DCBP		96	102	98	133	113
"nd" Indicates not det	tected at listed	d detection lir	nit.			
"int" Indicates that in	terference pre	events determ	ination.			

Analyses of PCB (Polychlorinated Biphenyls) in Soil by EPA Method 8082

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE 65% TO 135% ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Paul Burke

GIG HARBOR TRANSMISSION PROJECT ECI Gig Harbor, Washington Libby Project # L170221-3 Client Project # 0359-01-03 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Analyses of Total Lead in Soil by EPA Method 7010 Series

Sample	Date	Lead
Number	Analyzed	(mg/kg)
Method Blank	2/26/17	nd
TS1-6B	2/26/17	660
Practical Quantitation Limit		5.0
"nd" Indicates not detected at the list	ted detection limits.	

ANALYSES PERFORMED BY: Dirk Peterson

GIG HARBOR TRANSMISSION PROJECT ECI Gig Harbor, Washington Libby Project # L170221-3 Client Project # 0359-01-03 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Lead
Number	Analyzed	(% Recovery)
LCS	2/26/17	114%
L170222-6 MS	2/26/17	115%
L170222-6 MSD	2/26/17	109%
RPD	2/26/17	5%

QA/QC for Lead in Soil by EPA Method 7010 Series

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Dirk Peterson

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Libby Environmental Sherry Chilcutt 4139 Libby Rd. NE Olympia, WA 98506

RE: Gig Harbor Transmission Work Order Number: 1702233

February 27, 2017

Attention Sherry Chilcutt:

Fremont Analytical, Inc. received 1 sample(s) on 2/21/2017 for the analyses presented in the following report.

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM) Sample Moisture (Percent Moisture)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Chelsea Ward Project Manager

DoD/ELAP Certification #L2371, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Project: Work Order:	Libby Environmental Gig Harbor Transmission 1702233	Work Order Sample Summary
Lab Sample ID 1702233-001	Client Sample ID TS1-6B	Date/Time Collected Date/Time Received 02/21/2017 9:15 AM 02/21/2017 2:47 PM

Case Narrative

WO#: **1702233** Date: **2/27/2017**

CLIENT:Libby EnvironmentalProject:Gig Harbor Transmission

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

 WO#:
 1702233

 Date Reported:
 2/27/2017

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery **CCB** - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor HEM - Hexane Extractable Material **ICV** - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **RL** - Reporting Limit **RPD** - Relative Percent Difference SD - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Analytical Report

 Work Order:
 1702233

 Date Reported:
 2/27/2017

Client: Libby Environmental	Collection Date: 2/21/2017 9:15:00 AM								
Project: Gig Harbor Transmission									
Lab ID: 1702233-001				Matrix: So	oil				
Client Sample ID: TS1-6B									
Analyses	Result	RL	Qual	Units	DF	Date Analyzed			
Polyaromatic Hydrocarbons by EP	<u>'A Method 8</u>	<u>270 (SIM)</u>		Batch	n ID:	16327 Analyst: EM			
Benz(a)anthracene	ND	70.3		µg/Kg-dry	1	2/24/2017 3:14:49 PM			
Chrysene	156	70.3		µg/Kg-dry	1	2/24/2017 3:14:49 PM			
Benzo(b)fluoranthene	174	70.3		µg/Kg-dry	1	2/24/2017 3:14:49 PM			
Benzo(k)fluoranthene	ND	70.3		µg/Kg-dry	1	2/24/2017 3:14:49 PM			
Benzo(a)pyrene	86.8	70.3		µg/Kg-dry	1	2/24/2017 3:14:49 PM			
Indeno(1,2,3-cd)pyrene	ND	70.3		µg/Kg-dry	1	2/24/2017 3:14:49 PM			
Dibenz(a,h)anthracene	ND	70.3		µg/Kg-dry	1	2/24/2017 3:14:49 PM			
Surr: 2-Fluorobiphenyl	71.7	24.5-139		%Rec	1	2/24/2017 3:14:49 PM			
Surr: Terphenyl-d14 (surr)	87.9	44.3-176		%Rec	1	2/24/2017 3:14:49 PM			
Sample Moisture (Percent Moistur	<u>e)</u>			Batch	n ID:	R34629 Analyst: BB			
Percent Moisture	44.3	0.500		wt%	1	2/24/2017 9:44:16 AM			

CLIENT: L	1702233 Libby Environme					P	olvaromat	• -	SUMMARY REP s by EPA Method 8270	-
Project: (Sample ID MB-1632	Gig Harbor Trans	mission	ĸ		Units: µg/Kg		Prep Date	-	RunNo: 34645	(0)
Client ID: MBLKS		tch ID: 163					Analysis Date		SeqNo: 661321	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Va	al %RPD RPDLimit	Qual
Benz(a)anthracene		ND	40.0							
Chrysene		ND	40.0							
Benzo(b)fluoranthene	9	ND	40.0							
Benzo(k)fluoranthene	9	ND	40.0							
Benzo(a)pyrene		ND	40.0							
Indeno(1,2,3-cd)pyrer	ne	ND	40.0							
Dibenz(a,h)anthracen	ne	ND	40.0							
Surr: 2-Fluorobiphe	enyl	491		500.0		98.2	24.5	139		
Surr: Terphenyl-d1	4 (surr)	503		500.0		101	44.3	176		
Sample ID LCS-163	27 Sa	mpType: LCS	;		Units: µg/Kg		Prep Date	: 2/24/2017	RunNo: 34645	
Client ID: LCSS	Ba	tch ID: 163	27				Analysis Date	2/24/2017	SeqNo: 661322	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Va	al %RPD RPDLimit	Qual

Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benz(a)anthracene	915	40.0	1,000	0	91.5	41.9	136				
Chrysene	1,010	40.0	1,000	0	101	46.9	138				
Benzo(b)fluoranthene	910	40.0	1,000	0	91.0	41	155				
Benzo(k)fluoranthene	917	40.0	1,000	0	91.7	41.8	153				
Benzo(a)pyrene	955	40.0	1,000	0	95.5	34.3	157				
Indeno(1,2,3-cd)pyrene	938	40.0	1,000	0	93.8	31.3	159				
Dibenz(a,h)anthracene	935	40.0	1,000	0	93.5	28	158				
Surr: 2-Fluorobiphenyl	513		500.0		103	24.5	139				
Surr: Terphenyl-d14 (surr)	479		500.0		95.8	44.3	176				
Sample ID 1702252-001ADUP	SampType: DUP			Units: µg/K	g-dry	Prep Date: 2/24/2017		17	RunNo: 34645		
Client ID: BATCH	Batch ID: 16327					Analysis Da	te: 2/24/20	17	SeqNo: 66	1324	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benz(a)anthracene	ND	45.5						0		30	
Chrysene	ND	45.5						0		30	

Work Order: 1702233								00.9	SUMMAF		
CLIENT: Libby Enviro	onmental							•			-
Project: Gig Harbor	Transmission	Polyaromatic Hydrocarbons							y EPA Me	thod 827	′0 (SI
Sample ID 1702252-001ADUP	SampType: DUP		Units: µg/Kg-dry		Prep Date	: 2/24/20	17	RunNo: 346	ò45		
Client ID: BATCH	Batch ID: 16327					Analysis Date	: 2/24/20	17	SeqNo: 661	1324	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzo(b)fluoranthene	ND	45.5						0		30	
Benzo(k)fluoranthene	ND	45.5						0		30	
Benzo(a)pyrene	ND	45.5						0		30	
Indeno(1,2,3-cd)pyrene	ND	45.5						0		30	
Dibenz(a,h)anthracene	ND	45.5						0		30	
Surr: 2-Fluorobiphenyl	486		568.7		85.5	24.5	139		0		
Surr: Terphenyl-d14 (surr)	525		568.7		92.2	44.3	176		0		
Sample ID 1702252-001AMS	SampType: MS		Units: µg/Kg-dry Prep Date: 2/24/2017)17	RunNo: 346	645		
Client ID: BATCH	Batch ID: 16327					Analysis Date	: 2/24/20	17	SeqNo: 661	1325	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benz(a)anthracene	934	44.2	1,105	14.45	83.2	57.5	169				
Chrysene	1,030	44.2	1,105	0	92.9	45.2	146				
Benzo(b)fluoranthene	1,010	44.2	1,105	0	91.1	42.2	168				
Benzo(k)fluoranthene	1,070	44.2	1,105	0	96.4	48	161				
Benzo(a)pyrene	1,080	44.2	1,105	0	97.9	34.4	179				
Indeno(1,2,3-cd)pyrene	855	44.2	1,105	8.524	76.6	5	113				
Dibenz(a,h)anthracene	883	44.2	1,105	0	79.9	17.3	156				
Surr: 2-Fluorobiphenyl	519		552.5		94.0	24.5	139				
Surr: Terphenyl-d14 (surr)	512		552.5		92.7	44.3	176				
Sample ID 1702252-001AMSD	SampType: MSD			Units: µg/I	Kg-dry	Prep Date	: 2/24/20)17	RunNo: 346	645	
Client ID: BATCH	Batch ID: 16327					Analysis Date	: 2/24/20	17	SeqNo: 661	1326	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benz(a)anthracene	1,150	45.5	1,136	14.45	100	57.5	169	934.2	21.1	30	
Chrysene	1,080	45.5	1,136	0	94.9	45.2	146	1,026	4.91	30	
Benzo(b)fluoranthene	1,120	45.5	1,136	0	98.3	42.2	168	1,007	10.3	30	
	• , • = •		.,	v	00.0	74.4	100	1,007	10.0	50	

Work Order: 1702233

CLIENT: Libby Environmental

QC SUMMARY REPORT

Project: Gig Harbor Transmission

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID 1702252-001AMSD	SampType: MSD		Units: µg/Kg-dry Prep Date: 2/24/2017					RunNo: 34645			
Client ID: BATCH	Batch ID: 16327					Analysis Da	ite: 2/24/20	SeqNo: 661326			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzo(a)pyrene	1,030	45.5	1,136	0	90.4	34.4	179	1,082	5.17	30	
Indeno(1,2,3-cd)pyrene	823	45.5	1,136	8.524	71.6	5	113	855.4	3.91	30	
Dibenz(a,h)anthracene	857	45.5	1,136	0	75.4	17.3	156	882.7	2.97	30	
Surr: 2-Fluorobiphenyl	516		568.2		90.9	24.5	139		0		
Surr: Terphenyl-d14 (surr)	545		568.2		95.9	44.3	176		0		

Work Order:	1702233								2.00	SUMMA		ORT
CLIENT:	Libby Enviro	onmental							•			
Project:	Gig Harbor	Transmission							Sample Mo	Disture (Pe	ercent Mo	oisture)
Sample ID 170222	20-010ADUP	SampType: DUP			Units: wt%		Prep Da	ate: 2/24/2	017	RunNo: 346	629	
Client ID: BATCH	4	Batch ID: R34629					Analysis Da	ate: 2/24/2	017	SeqNo: 661	1034	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Percent Moisture		46.0	0.500						46.96	2.02	20	
Sample ID 170223	35-005ADUP	SampType: DUP			Units: wt%		Prep Da	ate: 2/24/2	017	RunNo: 34629		
Client ID: BATCH	4	Batch ID: R34629					Analysis Da	ate: 2/24/2	017	SeqNo: 661	1066	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Percent Moisture		22.7	0.500						24.30	6.61	20	

Sample Log-In Check List

Client Name: LIBBY	Work Order Numb	per: 1702233		
Logged by: Clare Griggs	Date Received:	2/21/2017	7 2:47:00 PM	
Chain of Custody				
1. Is Chain of Custody complete?	Yes 🖌	No 🗌	Not Present	
2. How was the sample delivered?	<u>Client</u>			
Log In				
3. Coolers are present?	Yes 🔽	No 🗌		
	_			
4. Shipping container/cooler in good condition?	Yes 🗹	No 🗌		
 Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact) 	Yes	No 🗌	Not Required 🗹	
6. Was an attempt made to cool the samples?	Yes 🗸	No 🗌		
7. Were all items received at a temperature of $>0^{\circ}C$ to $10.0^{\circ}C^{*}$	Yes 🗸	No 🗌		
8. Sample(s) in proper container(s)?	Yes 🖌	No 🗌		
9. Sufficient sample volume for indicated test(s)?	Yes 🖌	No 🗌		
10. Are samples properly preserved?	Yes 🖌	No 🗌		
11. Was preservative added to bottles?	Yes	No 🖌	NA 🗌	
12. Is there headspace in the VOA vials?	Yes	No 🗌	NA 🗸	
13. Did all samples containers arrive in good condition(unbroken)?	Yes 🖌	No 🗌		
14. Does paperwork match bottle labels?	Yes 🖌	No 🗌		
15. Are matrices correctly identified on Chain of Custody?	Yes 🖌	No 🗌		
16. Is it clear what analyses were requested?	Yes 🗹	No 🗌		
17. Were all holding times able to be met?	Yes 🖌	No 🗌		
Special Handling (if applicable)				
18. Was client notified of all discrepancies with this order?	Yes	No 🗌	NA 🔽	
Person Notified: Dat	e			
By Whom: Via	: 🗌 eMail 🗌 Ph	one 🗌 Fax	In Person	
Regarding:				
Client Instructions:				
19. Additional remarks:				

Item Information

Item #	Temp ⁰C
Cooler	2.7
Sample	5.3
Temp Blank	1.6

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Determined were interview in the constraint of the co	Fremont	Chain of Custody Record and Laboratory Services Agreemen
Allow Light Light <thlight< th=""> Light <thlight< th=""></thlight<></thlight<>	Analytical	
Participation: Fas: PM Email: LEby_End 2 Can Cond atrix Codes: A = Air, AQ = Aqueous, B = Bulk, 0 = Other, P = Product, S = Soll, SD = Sediment, S1 = Sold, W = Water, DW = Drinking Water, GW = Ground Water, SW = Storm Water, WW = Water Water Image: Sample Sampl		Project Name: <u>Gig Harbor Transmission</u> Project No: Collected by:
atrix Codes: A = Air, AQ = Aqueous, B = Buik, O = Other, P = Product, S = Soil, SD = Sediment, SL = Soild, W = Water, OW = Ground Water, GW = Ground Water, SW = Storm Water, WW = Water Water mple Name Sample Sam	Address: <u>M139</u> Libby RD UE City, State, Zip: <u>Olympia</u> <u>WA</u> 985°C Telephone: Fax:	Location: Report To (PM): Sherry Chilchutt PM Email: Libby ENZ @ acl.com
Simple Sample Sample Sample Sample Type Sample Type Sample Sample Type<	*Matrix Codes: A = Air, AQ = Aqueous, B = Bulk, O = Other, P = Product, S = Soil, SD = S	
TS16B P31-17 09.5 Soil X X Image: Soil Soil Soil Image: Soil Soil Soil Soil Soil Soil Soil Soil	Sample Sample Sample Type Sample (Matrix)*	
Image: Second State Strong State State Strong State State State Strong State Stat		Comments
Anions (Circle): Nitrate Nitrite Chloride Sulfate Bromide O-Phosphate Fluoride Nitrate+Nitrite Turn-around times for samples received after 4:00pm will begin on the following business day. Special Remarks: ple Disposal: Return to Client Disposal by Lab (Samples will be held for 30 days unless otherwise noted. A fee may be assessed if samples are retained after 30 days.) on the following business day. Special Remarks: epresent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's eement to each of the terms on the front and backside of this Agreement. Special Remarks: Special Remarks:	1 15-2 - 6 B 2-21-17 095 501/	
Anions (Circle): Nitrate Nitrite Chloride Sulfate Bromide O-Phosphate Fluoride Nitrate+Nitrite Turn-around times for samples received after 4:00pm will begin on the following business day. Special Remarks: ple Disposal: Return to Client Disposal by Lab (Samples will be held for 30 days unless otherwise noted. A fee may be assessed if samples are retained after 30 days.) on the following business day. Special Remarks: epresent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's eement to each of the terms on the front and backside of this Agreement. Special Remarks: Special Remarks:	2	
Anions (Circle): Nitrate Nitrite Chloride Sulfate Bromide O-Phosphate Fluoride Nitrate+Nitrite Turn-around times for samples received after 4:00pm will begin on the following business day. Special Remarks: ple Disposal: Return to Client Disposal by Lab (Samples will be held for 30 days unless otherwise noted. A fee may be assessed if samples are retained after 30 days.) on the following business day. Special Remarks: epresent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's eement to each of the terms on the front and backside of this Agreement. Special Remarks: Special Remarks:		
Anions (Circle): Nitrate Nitrite Chloride Sulfate Bromide O-Phosphate Fluoride Nitrate+Nitrite Turn-around times for samples received after 4:00pm will begin on the following business day. Special Remarks: ple Disposal: Return to Client Disposal by Lab (Samples will be held for 30 days unless otherwise noted. A fee may be assessed if samples are retained after 30 days.) on the following business day. Special Remarks: epresent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's eement to each of the terms on the front and backside of this Agreement. Special Remarks: Special Remarks:	5	
Anions (Circle): Nitrate Nitrite Chloride Sulfate Bromide O-Phosphate Fluoride Nitrate+Nitrite Turn-around times for samples received after 4:00pm will begin on the following business day. Special Remarks: ple Disposal: Return to Client Disposal by Lab (Samples will be held for 30 days unless otherwise noted. A fee may be assessed if samples are retained after 30 days.) on the following business day. Special Remarks: epresent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's eement to each of the terms on the front and backside of this Agreement. Special Remarks: Special Remarks:	6	
Anions (Circle): Nitrate Nitrite Chloride Sulfate Bromide O-Phosphate Fluoride Nitrate+Nitrite Turn-around times for samples received after 4:00pm will begin on the following business day. Special Remarks: ple Disposal: Return to Client Disposal by Lab (Samples will be held for 30 days unless otherwise noted. A fee may be assessed if samples are retained after 30 days.) on the following business day. Special Remarks: epresent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's eement to each of the terms on the front and backside of this Agreement. Special Remarks: Special Remarks:	n na hanna an ann ann ann ann ann ann an	Annual Algorithm Reserved State Processing (1999) Reserved (199 Reserved (1999) Reserved (
Anions (Circle): Nitrate Nitrite Chloride Sulfate Bromide O-Phosphate Fluoride Nitrate+Nitrite Turn-around times for samples received after 4:00pm will begin on the following business day. Special Remarks: ple Disposal: Return to Client Disposal by Lab (Samples will be held for 30 days unless otherwise noted. A fee may be assessed if samples are retained after 30 days.) on the following business day. Special Remarks: epresent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's 	B	
Anions (Circle): Nitrate Nitrite Chloride Sulfate Bromide O-Phosphate Fluoride Nitrate+Nitrite Turn-around times for samples received after 4:00pm will begin on the following business day. Special Remarks: ple Disposal: Return to Client Disposal by Lab (Samples will be held for 30 days unless otherwise noted. A fee may be assessed if samples are retained after 30 days.) on the following business day. Special Remarks: epresent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's eement to each of the terms on the front and backside of this Agreement. Special Remarks: Special Remarks:	9	
Anions (Circle): Nitrate Nitrite Chloride Sulfate Bromide O-Phosphate Fluoride Nitrate+Nitrite Turn-around times for samples received after 4:00pm will begin on the following business day. Special Remarks: ple Disposal: Return to Client Disposal by Lab (Samples will be held for 30 days unless otherwise noted. A fee may be assessed if samples are retained after 30 days.) on the following business day. Special Remarks: epresent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's eement to each of the terms on the front and backside of this Agreement. Special Remarks: Special Remarks:	10 CATHARAN CRIME FOR STRUCTURE TO LARD SOLUTION ALL CRASHING OF	
Anions (Circle): Nitrate Nitrite Chloride Sulfate Bromide O-Phosphate Fluoride Nitrate+Nitrite Turn-around times for samples Special Remarks: ple Disposal: Return to Client Disposal by Lab (Samples will be held for 30 days unless otherwise noted. A fee may be assessed if samples are retained after 30 days.) Interview Turn-around times for samples received after 4:00pm will begin on the following business day. Special Remarks: epresent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's eement to each of the terms on the front and backside of this Agreement. Interview Inte		dividual: Ag Al As B Ba Be Ca Cd Co Cr Cu Fe Hg K Mg Mn Mo Na Ni Pb Sb Se Sr Sn Ti Tl U V Zn
ple Disposal: Present that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's eement to each of the terms on the front and backside of this Agreement.		O-Phosohate Fluoride Nitrate+Nitrite Turn-around times for samples Special Remarks:
eement to each of the terms on the front and backside of this Agreement.		led for 30 days unless otherwise noted. A fee may be on the following business day
	Relinquished Date/Time Re	ceived Date/Time
$\frac{2-21-17}{\text{pate/Time}} \xrightarrow{2.47} \times \cancel{2.117} \cancel{1.447}$		2/21/17 1447
$\begin{array}{cccc} \text{Date/Time} & \text{Please coordinate with the lab in advance} \\ x & & & & & & & \\ \end{array}$		

Libby Environmental, Inc. 4139 Libby Road NE • Olympia, WA 98506-2518

April 10, 2017

Brian Dixon ECI P.O. Box 153 Fox Island, WA 98333

Dear Mr. Dixon:

Please find enclosed the analytical data report for the Gig Harbor Transmission Project located in Gig Harbor, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

2 2 Mu

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

Libby Environm	ental,	Inc.		Ch	ain	of C	ust	ody	Re	ecor	ď					1	www.	LibbyEr	vironment	tal.com
4139 Libby Road NE	Ph:	360-352-2						1.11	1.7								1		,	
	Fax:	360-352-4	154			Dat	e: 4	141	11	(<u>.</u>		Pa	age:		l	of	/	
Client: ECT		-	<i>i</i> .			Pro	ect M	anage	er:	ria	n f	1. 20	7							
Address: 15 S. Or City: Ta.coma	egon	Ave	# 11	2		Project Name: Oig Horbor Itansmission)	1						
City: Tacoma	_	State: 4	H Zip	98407		Location: Gig Horbor City, State						ate: (Sigh	1-160	1, 20	4				
Phone: 253 - 380-430	3	Fax:				Location: Gig Horbor City, State: GigHarbor, WA Collector: Kaden Reel Date of Collection: 4/4/17														
Client Project # 0359-0	1-04					Project Manager: Brian Dixon Project Name: Gig Horbor Transmission Location: Gig Horbor City, State: GigHabbor A Collector: Kalen Reef Date of Collection: 4/4/17 Email: BDixon Cecocon, us														
Sample Number	Depth	Time	Sample Type	Container Type	10	/	/ /	//	/	/	/		/ /	/ /	/ /			Field No.	otes	
1 EX/12-18	18'1	1035	5	402 jar					X	X	$\langle $				4					
2 EX2-18	18"	1025	5	402 jar					X	X				X						
3									1											
4																				
5																				
6																				
7																				
8																				
9																				
10																				
11																				
12																				
13																				
14																				
15																				
16												1								
17												1					1			
Relinquished by:	Date	/ Time		Received by:					Date /	Time		San	nple	Recei	pt	Rer	narks:			
Kade Poar	4/4/1	7 1237	>	Kodey	ale	r	474	117	12	.32	God	od Cond		C) N					
Relinquished by:	Date	/ Time	-	Received by:	-				Date /	Time	Ten	np.			°C					
												als Intac		N N	N/A					
Relinquished by:	Date	/ Time		Received by:					Date /	Time		al Num Contain		-	2	TA	T: 2	4HR	48HR (5	-DAY

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay, Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a cout of law.

Libby Environmental, Inc.

GIG HARBOR TRANSMISSION PROJECT ECI Gig Harbor, Washington Libby Project # L170404-3 Client Project # 0359-01-04

4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Surrogate	Diesel	Oil
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)
Method Blank	4/5/17	99	nd	nd
EX1-18	4/5/17	99	nd	1170
EX2-18	4/5/17	102	nd	nd
EX2-18 Dup	4/5/17	113	nd	nd
Practical Quantitation Limit			50	250

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Soil

'nd" Indicates not detected at the listed detection limits.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Maria Friedrich

Libby Environmental, Inc.

GIG HARBOR TRANSMISSION PROJECT ECI Gig Harbor, Washington Libby Project # L170404-3 Client Project # 0359-01-04 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample Date Lead Number Analyzed (mg/kg) Method Blank 4/5/17 nd 4/5/17 EX1-18 100 EX2-18 4/5/17 55 **Practical Quantitation Limit** 5.0 "nd" Indicates not detected at the listed detection limits.

Analyses of Total Lead in Soil by EPA Method 7010 Series

ANALYSES PERFORMED BY: Dirk Peterson

Libby Environmental, Inc.

GIG HARBOR TRANSMISSION PROJECT ECI Gig Harbor, Washington Libby Project # L170404-3 Client Project # 0359-01-04 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Lead
Number	Analyzed	(% Recovery)
LCS	4/5/17	87%
L170407-6 MS	4/5/17	83%
L170407-6 MSD	4/5/17	87%
RPD	4/5/17	5%

QA/QC for Lead in Soil by EPA Method 7010 Series

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Dirk Peterson

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Libby Environmental Sherry Chilcutt 4139 Libby Rd. NE Olympia, WA 98506

RE: Gig Harbor Transmission Work Order Number: 1704025

April 05, 2017

Attention Sherry Chilcutt:

Fremont Analytical, Inc. received 2 sample(s) on 4/4/2017 for the analyses presented in the following report.

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM) Sample Moisture (Percent Moisture)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Chelsea Ward Project Manager

DoD/ELAP Certification #L2371, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Project: Work Order:	Libby Environmental Gig Harbor Transmission 1704025	Work Order S	Sample Summary
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1704025-001	EX1-18	04/04/2017 10:35 AM	04/04/2017 1:50 PM
1704025-002	EX2-18	04/04/2017 10:25 AM	04/04/2017 1:50 PM

Case Narrative

WO#: **1704025** Date: **4/5/2017**

CLIENT:Libby EnvironmentalProject:Gig Harbor Transmission

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1704025** Date Reported: **4/5/2017**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

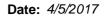
%Rec - Percent Recovery **CCB** - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor HEM - Hexane Extractable Material **ICV** - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **RL - Reporting Limit RPD** - Relative Percent Difference SD - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Analytical Report

 Work Order:
 1704025

 Date Reported:
 4/5/2017

Client: Libby Environmental				Collection	Dat	te: 4/4/2017 10:35:00 AM					
Project: Gig Harbor Transmissio _ab ID: 1704025-001 Client Sample ID: EX1-18	n	Matrix: Soil									
Analyses	Result	RL	Qual	Units	DF	Date Analyzed					
Polyaromatic Hydrocarbons b	y EPA Method 8	<u>270 (SIM)</u>		Batch	n ID:	16695 Analyst: BT					
Naphthalene	ND	45.1		µg/Kg-dry	1	4/4/2017 7:51:42 PM					
2-Methylnaphthalene	ND	45.1		μg/Kg-dry	1	4/4/2017 7:51:42 PM					
1-Methylnaphthalene	ND	45.1		μg/Kg-dry μg/Kg-dry	1	4/4/2017 7:51:42 PM					
Acenaphthylene	ND	45.1		μg/Kg-dry	1	4/4/2017 7:51:42 PM					
Acenaphthene	ND	45.1		μg/Kg-dry	1	4/4/2017 7:51:42 PM					
Fluorene	ND	45.1		μg/Kg-dry	1	4/4/2017 7:51:42 PM					
Phenanthrene	ND	45.1		μg/Kg-dry	1	4/4/2017 7:51:42 PM					
Anthracene	ND	45.1		µg/Kg-dry	1	4/4/2017 7:51:42 PM					
Fluoranthene	ND	45.1		μg/Kg-dry	1	4/4/2017 7:51:42 PM					
Pyrene	ND	45.1		μg/Kg-dry	1	4/4/2017 7:51:42 PM					
Benz(a)anthracene	ND	45.1		μg/Kg-dry	1	4/4/2017 7:51:42 PM					
Chrysene	ND	45.1		µg/Kg-dry	1	4/4/2017 7:51:42 PM					
Benzo(b)fluoranthene	ND	45.1		μg/Kg-dry	1	4/4/2017 7:51:42 PM					
Benzo(k)fluoranthene	ND	45.1		μg/Kg-dry	1	4/4/2017 7:51:42 PM					
Benzo(a)pyrene	ND	45.1		μg/Kg-dry	1	4/4/2017 7:51:42 PM					
Indeno(1,2,3-cd)pyrene	ND	45.1		µg/Kg-dry	1	4/4/2017 7:51:42 PM					
Dibenz(a,h)anthracene	ND	45.1		µg/Kg-dry	1	4/4/2017 7:51:42 PM					
Benzo(g,h,i)perylene	ND	45.1		µg/Kg-dry	1	4/4/2017 7:51:42 PM					
Surr: 2-Fluorobiphenyl	79.5	24.5-139		%Rec	1	4/4/2017 7:51:42 PM					
Surr: Terphenyl-d14 (surr)	93.2	44.3-176		%Rec	1	4/4/2017 7:51:42 PM					
Sample Moisture (Percent Moi	<u>sture)</u>			Batch	ID:	R35351 Analyst: BB					
Percent Moisture	12.8	0.500		wt%	1	4/5/2017 12:28:50 PM					



Analytical Report

 Work Order:
 1704025

 Date Reported:
 4/5/2017

Client: Libby Environmental				Collection	Dat	t e: 4/4/2017 10:25:00 AM
Project: Gig Harbor Transmission	on					
ab ID: 1704025-002				Matrix: So	oil	
Client Sample ID: EX2-18						
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons b	y EPA Method 8	270 (SIM)		Batch	n ID:	16695 Analyst: BT
N 1.4 1		40.0				
Naphthalene	ND	46.6		µg/Kg-dry	1	4/4/2017 8:13:10 PM
2-Methylnaphthalene	ND	46.6 46.6		µg/Kg-dry ug/Kg_dry	1	4/4/2017 8:13:10 PM
1-Methylnaphthalene	ND ND	46.6 46.6		µg/Kg-dry	1	4/4/2017 8:13:10 PM 4/4/2017 8:13:10 PM
Acenaphthylene	ND ND	46.6 46.6		µg/Kg-dry ug/Kg_dry	1	4/4/2017 8:13:10 PM 4/4/2017 8:13:10 PM
Acenaphthene Fluorene	ND ND	46.6		µg/Kg-dry ug/Kg_dry	1	4/4/2017 8:13:10 PM
Phenanthrene		46.6 46.6		µg/Kg-dry ug/Kg_dry	1	
Anthracene	ND			µg/Kg-dry	1	4/4/2017 8:13:10 PM
Fluoranthene	ND	46.6 46.6		µg/Kg-dry	1 1	4/4/2017 8:13:10 PM 4/4/2017 8:13:10 PM
	ND ND	46.6		µg/Kg-dry ug/Kg_dry		4/4/2017 8:13:10 PM
Pyrene	ND ND	46.6		µg/Kg-dry	1	4/4/2017 8:13:10 PM
Benz(a)anthracene				µg/Kg-dry	1	
Chrysene	ND	46.6		µg/Kg-dry	1	4/4/2017 8:13:10 PM
Benzo(b)fluoranthene	ND	46.6		µg/Kg-dry	1	4/4/2017 8:13:10 PM
Benzo(k)fluoranthene	ND	46.6		µg/Kg-dry	1	4/4/2017 8:13:10 PM
Benzo(a)pyrene	ND	46.6		µg/Kg-dry	1	4/4/2017 8:13:10 PM
Indeno(1,2,3-cd)pyrene	ND	46.6		µg/Kg-dry	1	4/4/2017 8:13:10 PM
Dibenz(a,h)anthracene	ND	46.6		µg/Kg-dry	1	4/4/2017 8:13:10 PM
Benzo(g,h,i)perylene	ND	46.6		µg/Kg-dry	1	4/4/2017 8:13:10 PM
Surr: 2-Fluorobiphenyl	63.8	24.5-139		%Rec	1	4/4/2017 8:13:10 PM
Surr: Terphenyl-d14 (surr)	72.0	44.3-176		%Rec	1	4/4/2017 8:13:10 PM
Sample Moisture (Percent Moi	<u>sture)</u>			Batch	n ID:	R35351 Analyst: BB
Percent Moisture	16.6	0.500		wt%	1	4/5/2017 12:28:50 PM

Fremont
Analytical

Work Order: 1704025							30	SUMMARY REF	PORT
CLIENT: Libby Env	vironmental				_				_
Project: Gig Harb	or Transmission				P	olyaromat	ic Hydrocarbons	by EPA Method 827	'0 (SIM)
Sample ID MB-16695	SampType: MBLK			Units: µg/Kg		Prep Date	e: 4/4/2017	RunNo: 35358	
Client ID: MBLKS	Batch ID: 16695					Analysis Date	e: 4/4/2017	SeqNo: 676760	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Naphthalene	ND	40.0							
2-Methylnaphthalene	ND	40.0							
1-Methylnaphthalene	ND	40.0							
Acenaphthylene	ND	40.0							
Acenaphthene	ND	40.0							
Fluorene	ND	40.0							
Phenanthrene	ND	40.0							
Anthracene	ND	40.0							
Fluoranthene	ND	40.0							
Pyrene	ND	40.0							
Benz(a)anthracene	ND	40.0							
Chrysene	ND	40.0							
Benzo(b)fluoranthene	ND	40.0							
Benzo(k)fluoranthene	ND	40.0							
Benzo(a)pyrene	ND	40.0							
Indeno(1,2,3-cd)pyrene	ND	40.0							
Dibenz(a,h)anthracene	ND	40.0							
Benzo(g,h,i)perylene	ND	40.0							
Surr: 2-Fluorobiphenyl	389		500.0		77.8	24.5	139		
Surr: Terphenyl-d14 (surr)	388		500.0		77.7	44.3	176		
Sample ID LCS-16695	SampType: LCS			Units: µg/Kg		Prep Date	e: 4/4/2017	RunNo: 35358	
Client ID: LCSS	Batch ID: 16695					Analysis Date	e: 4/4/2017	SeqNo: 676761	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Naphthalene	998	40.0	1,000	0	99.8	46.4	125		
2-Methylnaphthalene	986	40.0	1,000	0	98.6	45.1	135		
1-Methylnaphthalene	1,040	40.0	1,000	0	104	46.2	133		
Acenaphthylene	1,010	40.0	1,000	0	101	32.8	136		
Acenaphthene	1,030	40.0	1,000	0	103	38.7	129		
	,		,	-			-		

Work Order: 1704025

CLIENT: Libby Environmental

QC SUMMARY REPORT

Project: Gig Harbor Transmission

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID I CS 16605	SomeTune: LCC					Bron Do	A/4/204	7	BunNo: 25	250	
Sample ID LCS-16695	SampType: LCS			Units: µg/Kg		Prep Dat	te: 4/4/201	1	RunNo: 35:	338	
Client ID: LCSS	Batch ID: 16695					Analysis Dat	te: 4/4/201	7	SeqNo: 67	6761	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Fluorene	1,020	40.0	1,000	0	102	41.4	144				
Phenanthrene	1,060	40.0	1,000	0	106	43.9	133				
Anthracene	994	40.0	1,000	0	99.4	44.2	136				
Fluoranthene	1,020	40.0	1,000	0	102	45.9	137				
Pyrene	1,030	40.0	1,000	0	103	46.2	137				
Benz(a)anthracene	916	40.0	1,000	0	91.6	41.9	136				
Chrysene	1,140	40.0	1,000	0	114	46.9	138				
Benzo(b)fluoranthene	950	40.0	1,000	0	95.0	41	155				
Benzo(k)fluoranthene	980	40.0	1,000	0	98.0	41.8	153				
Benzo(a)pyrene	842	40.0	1,000	0	84.2	34.3	157				
Indeno(1,2,3-cd)pyrene	761	40.0	1,000	0	76.1	31.3	159				
Dibenz(a,h)anthracene	690	40.0	1,000	0	69.0	28	158				
Benzo(g,h,i)perylene	861	40.0	1,000	0	86.1	32.4	144				
Surr: 2-Fluorobiphenyl	454		500.0		90.8	24.5	139				
Surr: Terphenyl-d14 (surr)	434		500.0		86.7	44.3	176				

Sample ID 1703366-001ADUP	SampType: DUP			Units: µg/K	g-dry	Prep Da	ite: 4/4/201	17	RunNo: 35:	358	
Client ID: BATCH	Batch ID: 16695					Analysis Da	ite: 4/4/201	17	SeqNo: 67	6763	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	45.7						0		30	
2-Methylnaphthalene	ND	45.7						0		30	
1-Methylnaphthalene	ND	45.7						0		30	
Acenaphthylene	ND	45.7						0		30	
Acenaphthene	ND	45.7						0		30	
Fluorene	ND	45.7						0		30	
Phenanthrene	ND	45.7						0		30	
Anthracene	ND	45.7						0		30	
Fluoranthene	ND	45.7						0		30	
Pyrene	ND	45.7						0		30	

Work Order: 1704025

Project:

CLIENT: Libby Environmental

Gig Harbor Transmission

QC SUMMARY REPORT

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID 1703366-001ADUP	SampType: DUP			Units: µg/K	g-dry	Prep Da	te: 4/4/20 ⁻	17	RunNo: 35	358	
Client ID: BATCH	Batch ID: 16695					Analysis Da	te: 4/4/20	17	SeqNo: 67	6763	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benz(a)anthracene	ND	45.7						0		30	
Chrysene	ND	45.7						0		30	
Benzo(b)fluoranthene	ND	45.7						0		30	
Benzo(k)fluoranthene	ND	45.7						0		30	
Benzo(a)pyrene	ND	45.7						0		30	
Indeno(1,2,3-cd)pyrene	ND	45.7						0		30	
Dibenz(a,h)anthracene	ND	45.7						0		30	
Benzo(g,h,i)perylene	ND	45.7						0		30	
Surr: 2-Fluorobiphenyl	378		571.0		66.2	24.5	139		0		
Surr: Terphenyl-d14 (surr)	392		571.0		68.6	44.3	176		0		

Sample ID 1703366-001AMS	SampType: MS			Units: µg/K	(g-dry	Prep Dat	e: 4/4/201	7	RunNo: 35	358	
Client ID: BATCH	Batch ID: 16695					Analysis Dat	e: 4/4/201	7	SeqNo: 67	6764	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	884	41.4	1,036	0	85.4	42.9	138				
2-Methylnaphthalene	906	41.4	1,036	0	87.5	42.8	151				
1-Methylnaphthalene	928	41.4	1,036	2.446	89.4	41.6	148				
Acenaphthylene	950	41.4	1,036	0	91.8	32.6	160				
Acenaphthene	931	41.4	1,036	0	89.9	46.3	142				
Fluorene	919	41.4	1,036	0	88.8	43.4	153				
Phenanthrene	924	41.4	1,036	2.005	89.1	45.5	140				
Anthracene	938	41.4	1,036	0	90.5	32.6	160				
Fluoranthene	1,020	41.4	1,036	0	98.1	44.6	161				
Pyrene	998	41.4	1,036	5.471	95.9	48.3	158				
Benz(a)anthracene	982	41.4	1,036	5.679	94.3	57.5	169				
Chrysene	976	41.4	1,036	2.679	94.0	45.2	146				
Benzo(b)fluoranthene	1,080	41.4	1,036	10.34	103	42.2	168				
Benzo(k)fluoranthene	981	41.4	1,036	8.774	93.8	34.8	147				
Benzo(a)pyrene	1,060	41.4	1,036	10.97	101	34.4	179				

•	25 Environmental Irbor Transmission				Р	olyaroma	itic Hydr	QC S ocarbons b	SUMMAI by EPA Me		-
Sample ID 1703366-001AM	S SampType: MS			Units: µg/ł	Kg-dry	Prep Dat	te: 4/4/201	7	RunNo: 353	358	
Client ID: BATCH	Batch ID: 16695					Analysis Dat	te: 4/4/201	7	SeqNo: 676	6764	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Indeno(1,2,3-cd)pyrene	920	41.4	1,036	15.25	87.3	5	113				
Dibenz(a,h)anthracene	856	41.4	1,036	12.52	81.4	17.3	156				
Benzo(g,h,i)perylene	966	41.4	1,036	29.68	90.4	39.4	122				
Surr: 2-Fluorobiphenyl	380		517.8		73.4	24.5	139				
Surr: Terphenyl-d14 (surr)	378		517.8		72.9	44.3	176				
Sample ID 1703366-001AM	SD SampType: MSD			Units: µg/ł	Kg-dry	Prep Dat	te: 4/4/201	7	RunNo: 35:	358	
Client ID: BATCH	Batch ID: 16695					Analysis Dat	te: 4/4/201	7	SeqNo: 676	6765	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	953	42.2	1,055	0	90.3	42.9	138	884.2	7.44	30	
2-Methylnaphthalene	977	42.2	1,055	0	92.6	42.8	151	905.6	7.56	30	
1-Methylnaphthalene	1,000	42.2	1,055	2.446	94.7	41.6	148	928.4	7.56	30	
Acenaphthylene	1,030	42.2	1,055	0	97.8	32.6	160	950.5	8.17	30	
Acenaphthene	1,010	42.2	1,055	0	95.5	46.3	142	931.1	7.90	30	
Fluorene	991	42.2	1,055	0	94.0	43.4	153	919.2	7.57	30	
Phenanthrene	993	42.2	1,055	2.005	94.0	45.5	140	924.4	7.18	30	
Anthracene	1,020	42.2	1,055	0	96.5	32.6	160	937.6	8.24	30	
Fluoranthene	1,100	42.2	1,055	0	104	44.6	161	1,016	7.73	30	
Pyrene	1,070	42.2	1,055	5.471	101	48.3	158	998.4	7.31	30	
Benz(a)anthracene	1,070	42.2	1,055	5.679	101	57.5	169	982.1	9.02	30	
Chrysene	1,030	42.2	1,055	2.679	97.3	45.2	146	975.6	5.37	30	
Benzo(b)fluoranthene	1,090	42.2	1,055	10.34	102	42.2	168	1,078	0.946	30	
Benzo(k)fluoranthene	1,090	42.2	1,055	8.774	102	34.8	147	980.6	10.2	30	
Benzo(a)pyrene	1,100	42.2	1,055	10.97	103	34.4	179	1,061	3.50	30	
Indeno(1,2,3-cd)pyrene	1,010	42.2	1,055	15.25	94.4	5	113	919.5	9.46	30	
Dibenz(a,h)anthracene	962	42.2	1,055	12.52	90.0	17.3	156	856.0	11.7	30	
Benzo(g,h,i)perylene	1,050	42.2	1,055	29.68	96.7	39.4	122	966.0	8.33	30	
Surr: 2-Fluorobiphenyl	465		527.5		88.2	24.5	139		0		
Surr: Terphenyl-d14 (surr)	492		527.5		93.3	44.3	176		0		

Work Order: CLIENT: Project:	1704025 Libby Enviro Gig Harbor ⁻	nmental Transmission				F	QC Polyaromatic Hydrocarbons	SUMMARY REPORT by EPA Method 8270 (SIM)
Sample ID 17033		SampType: MSD			Units: µg/K	g-dry	Prep Date: 4/4/2017	RunNo: 35358
Client ID: BATC Analyte	п	Batch ID: 16695 Result	RL	SPK value	SPK Ref Val	%REC	Analysis Date: 4/4/2017 : LowLimit HighLimit RPD Ref Val	SeqNo: 676765 %RPD RPDLimit Qual

Work Order:	1704025								00.5	SUMMA		PORT
CLIENT:	Libby Enviro	nmental										
Project:	Gig Harbor T	Fransmission							Sample Mo	oisture (Pe	ercent Mo	oisture)
Sample ID 17040	08-001ADUP	SampType: DUP			Units: wt%		Prep Da	te: 4/5/20 ⁴	17	RunNo: 35:	351	
Client ID: BATC	н	Batch ID: R35351					Analysis Da	te: 4/5/20 ⁴	17	SeqNo: 676	6614	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Percent Moisture		9.66	0.500						10.46	7.96	20	

Sample Log-In Check List

Client Name: LIBBY	Work Order Num	ber: 1704025	
Logged by: Erica Silva	Date Received:	4/4/2017 1:	:50:00 PM
Chain of Custody			
1. Is Chain of Custody complete?	Yes 🖌	No 🗌	Not Present
2. How was the sample delivered?	<u>Client</u>		
<u>Log In</u>			
3. Coolers are present?	Yes 🗹	No 🗌	
0.			
4. Shipping container/cooler in good condition?	Yes 🖌	No 🗌	
 Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact) 	Yes	No 🗌	Not Required 🗹
6. Was an attempt made to cool the samples?	Yes 🖌	No 🗌	NA 🗌
7. Were all items received at a temperature of $>0^{\circ}$ C to 10.0° C*	Yes	No 🔽	
Sampl	le received straight	t from field	
8. Sample(s) in proper container(s)?	Yes 🖌	No 🗌	
9. Sufficient sample volume for indicated test(s)?	Yes 🖌	No 🗌	
10. Are samples properly preserved?	Yes 🗹	No 🗌	_
11. Was preservative added to bottles?	Yes	No 🖌	NA
12. Is there headspace in the VOA vials?	Yes	No 🗌	NA 🗹
13. Did all samples containers arrive in good condition(unbroken)?	Yes 🖌	No 🗌	
14. Does paperwork match bottle labels?	Yes 🖌	No 🗌	
15. Are matrices correctly identified on Chain of Custody?	Yes 🖌	No 🗌	
16. Is it clear what analyses were requested?	Yes 🖌	No 🗌	
17. Were all holding times able to be met?	Yes 🗹	No 🗌	
<u>Special Handling (if applicable)</u>			
18. Was client notified of all discrepancies with this order?	Yes	No 🗌	NA 🔽
Person Notified: Date			
By Whom: Via:	eMail Ph	ione 🗌 Fax 🗌	In Person
Regarding:			
Client Instructions:			
19. Additional remarks:			

Item Information

Item #	Temp ⁰C
Cooler	8.5
Sample	15.8
Temp Blank	5.5

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Zip:: Project Manager Zip:: Container Type Container Type Container Sample Container Type Container Si, I His- J J J J Sample Container Type Container Type Container Si, I His- J J J J J J Gold His- Signation His- J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J	Project Manager: Scherm: Charme: Gig Hambur - Location: Collector: K/S Email: Lith, or vecolt, container Type	
Project Manager Project Name: C Location: Collector: K/S Email: Libback	Contraction Contra	Temp. Chi ku H Chi ku H City, St City, St Date of Date of Date of Date of Containers
	Contraction of the second of t	Temp. Chi Kurtt